-
Notifications
You must be signed in to change notification settings - Fork 46
/
libbps-suf.cpp
900 lines (737 loc) · 25.9 KB
/
libbps-suf.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
//Module name: libbps-suf
//Author: Alcaro
//Date: See Git history
//Licence: GPL v3.0 or higher
#include "libbps.h"
#include "crc32.h"
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
//These two give minor performance penalties and will print some random stuff to stdout.
//The former will verify the correctness of the output patch, the latter will print some performance data.
//Can be useful for debugging, but should be disabled for release builds.
#ifdef BPS_STANDALONE
#endif
//#define TEST_CORRECT
//#define TEST_PERF
//If the suffix array of [0, 0, 0, 0] is [3, 2, 1, 0], set to true. If it's [0, 1, 2, 3], this is false.
//If it's [4, 3, 2, 1, 0] or [0, 1, 2, 3, 4], remove the 4 (easily done with some pointer math), and follow the above.
//If it's something else, get a non-broken array calculator.
#define EOF_IS_LAST false
#if defined(TEST_CORRECT) || defined(TEST_PERF)
#include <stdio.h>
#endif
//Algorithm description:
//
//This is heavily built upon suffix sorting; the implementation I use, libdivsufsort, claims
// O(n log n) complexity, so I'll believe that. There is also SA-IS, which claims O(n), but if that
// is true, its constant factors are ridiculously high.
//
//The program starts by taking an equal amount of the source file and target file, concatenates that
// with target first, and suffix sorts it.
//It also calculates a reverse index, such that reverse[sorted[i]]==i.
//
//To find a match, it goes to reverse[outpos], and scans sorted[] up and down for the closest entry
// that either starts before the current output position, or is somewhere in the source file.
//As the source file comes last, the end-of-file marker (whose value is outside the range of a byte)
// is guaranteed to not be in the way for a better match.
//This is called O(n) times, and averages O(1) as at least 50% of sorted[] is in range. However, it
// is worst-case O(n) for sorted inputs, giving a total of O(n^2).
//
//It then checks which of the two candidates are superior, by checking how far they match each
// other, and then checking if the upper one has another correct byte.
//This is potentially O(n), but for each matched byte, another iteration is removed from the outer
// loop, so the sum of all calls is O(n).
//
//When the program approaches the end of the sorted area, it re-sorts twice as much as last time.
// This gives O(log n) calls to the suffix sorter.
//Given O(n log n) for one sorting step, the time taken is O(n/1 log n/1 + n/2 log n/2 +
// n/4 log n/4 + ...), which is strictly less than O(n/1 log n + n/2 log n + n/4 log n + ...), which
// equals O(2n log n), which is O(n log n). (The exact value of that infinite sum is 2n*log(n/2).)
//
//Many details were omitted from the above, but that's the basic setup.
//
//Thus, the program is O(max(n log n, n, n) = n log n) average and O(max(n log n, n^2, n) = n^2)
// worst case.
//
//I conclude that the task of finding, understanding and implementing a sub-O(n^2) algorithm for
// delta patching is resolved.
//Known cases where this function does not emit the optimal encoding:
//If a match in the target file would extend further than target_search_size, it is often skipped.
// Penalty: O(log n), with extremely low constants (it'd require a >256B match to be exactly there).
// Even for big files, the penalty is very likely to remain zero; even hitting double-digit bytes
// would require a file designed exactly for that.
//If multiple matches are equally good, it picks one at random, not the one that's cheaper to encode.
// Penalty: Likely O(n) or O(n log log n), with low constants. I'd guess ~1.4% for my 48MB test file.
//However, due to better heuristics and others' performance optimizations, this one still beats its
// competitors.
//Possible optimizations:
//divsufsort() takes approximately 2/3 of the total time. create_reverse_index() takes roughly a third of the remainder.
//Each iteration takes four times as long as the previous one.
//If each iteration takes 4 times as long as the previous one, then the last one takes 3/4 of the total time.
//Since divsufsort+create_reverse_index doesn't depend on anything else, the last iteration can be split off to its own thread.
//This would split it to
//Search, non-final: 2/9 * 1/4 = 2/36
//Search, final: 2/9 * 3/4 = 6/36
//Sort+rev, non-final: 7/9 * 1/4 = 7/36
//Sort+rev, final: 7/9 * 3/4 = 21/36
//All non-final must be done sequentially. Both Sort Final and non-final must be done before Search Final can start.
//This means the final time, if Sort Final is split off, is
//max(7/36+2/36, 21/36) + 6/36 = 27/36 = 3/4
//of the original time.
//Due to
//- the considerable complexity costs (OpenMP doesn't seem able to represent the "insert a wait in
// the middle of this while loop" I would need)
//- the added memory use, approximately 25% higher - it's already high enough
//- libdivsufsort already using threads, which would make the gains lower
// and would increase complexity, as I have to ensure the big one remains threaded -
// and that the small ones are not, as that'd starve the big one
//I deem a possible 25% boost not worthwhile.
//Both sorting algorithms claim O(1) memory use (in addition to the bytes and the output). In
// addition to that, this algorithm uses (source.len*target.len)*(sizeof(uint8_t)+2*sizeof(off_t))
// bytes of memory, plus the patch (the input/output files are read from disk).
//For most hardware, this is 9*(source.len+target.len), or 5*(source+target) for the slim one.
//I don't need 64bit support, it'd take 20GB RAM and way too long.
//#include "sais.cpp"
//template<typename sais_index_type>
//static void sufsort(sais_index_type* SA, const uint8_t* T, sais_index_type n) {
// if(n <= 1) { if(n == 1) SA[0] = 0; return; }
// sais_main<sais_index_type>(T, SA, 0, n, 256);
//}
//According to <https://code.google.com/p/libdivsufsort/wiki/SACA_Benchmarks>, divsufsort achieves
// approximately half the time of SAIS for nearly all files, despite SAIS' promises of linear
// performance (divsufsort claims O(n log n)).
//divsufsort only allocates O(1) for some radix/bucket sorting. SAIS seems constant too.
//I'd prefer to let them allocate from an array I give it, but divsuf doesn't allow that, and there
// are only half a dozen allocations per call anyways.
#include "divsufsort.h"
static void sufsort(int32_t* SA, uint8_t* T, int32_t n)
{
divsufsort(T, SA, n);
}
#ifdef USE_DIVSUFSORT64
#include "divsufsort64.h"
static void sufsort(int64_t* SA, uint8_t* T, int64_t n)
{
divsufsort(T, SA, n);
}
#endif
template<typename T> static T min(T a, T b) { return a<b ? a : b; }
template<typename T> static T max(T a, T b) { return a<b ? b : a; }
namespace {
struct bps_creator {
uint8_t* out;
size_t outlen;
size_t outbuflen;
void reserve(size_t len)
{
if (outlen+len > outbuflen)
{
if (!outbuflen) outbuflen = 128;
while (outlen+len > outbuflen) outbuflen *= 2;
out = (uint8_t*)realloc(out, outbuflen);
}
}
void append(const uint8_t * data, size_t len)
{
reserve(len);
memcpy(out+outlen, data, len);
outlen+=len;
}
void appendnum(size_t num)
{
#ifdef TEST_CORRECT
if (num > 1000000000)
printf("ERROR: Attempt to write %.8lX\n",(unsigned long)num),abort();
#endif
reserve(sizeof(size_t)*8/7+1);
while (num >= 128)
{
out[outlen++]=(num&0x7F);
num>>=7;
num--;
}
out[outlen++]=num|0x80;
}
void appendnum32(uint32_t num)
{
reserve(4);
out[outlen++] = num>>0;
out[outlen++] = num>>8;
out[outlen++] = num>>16;
out[outlen++] = num>>24;
}
static size_t maxsize()
{
return SIZE_MAX>>2; // can be reduced to SIZE_MAX>>1 by amending append_cmd, but the mallocs overflow at that point anyways.
}
size_t sourcelen;
size_t targetlen;
const uint8_t* targetmem;
enum bpscmd { SourceRead, TargetRead, SourceCopy, TargetCopy };
size_t outpos;
size_t sourcecopypos;
size_t targetcopypos;
size_t numtargetread;
bps_creator(file* source, file* target, struct mem metadata)
{
outlen = 0;
outbuflen = 128;
out = (uint8_t*)malloc(outbuflen);
outpos = 0;
sourcelen = source->len();
targetlen = target->len();
sourcecopypos = 0;
targetcopypos = 0;
numtargetread = 0;
append((const uint8_t*)"BPS1", 4);
appendnum(sourcelen);
appendnum(targetlen);
appendnum(metadata.len);
append(metadata.ptr, metadata.len);
setProgress(NULL, NULL);
}
void move_target(const uint8_t* ptr)
{
targetmem = ptr;
}
size_t encode_delta(size_t prev, size_t next)
{
bool negative = (next<prev);
size_t offset = negative ? prev-next : next-prev;
return (negative?1:0) | (offset<<1);
}
void append_delta(size_t prev, size_t next)
{
appendnum(encode_delta(prev, next));
}
void append_cmd(bpscmd command, size_t count)
{
appendnum((count-1)<<2 | command);
}
void flush_target_read()
{
if (!numtargetread) return;
append_cmd(TargetRead, numtargetread);
append(targetmem+outpos-numtargetread, numtargetread);
numtargetread = 0;
}
size_t emit_source_copy(size_t location, size_t count)
{
if (location == outpos) return emit_source_read(location, count);
flush_target_read();
append_cmd(SourceCopy, count);
append_delta(sourcecopypos, location);
sourcecopypos = location+count;
outpos += count;
return count;
}
size_t emit_source_read(size_t location, size_t count)
{
flush_target_read();
#ifdef TEST_CORRECT
if (location != outpos)
puts("ERROR: SourceRead not from source pointer"),abort();
#endif
append_cmd(SourceRead, count);
outpos+=count;
return count;
}
size_t emit_target_copy(size_t location, size_t count)
{
flush_target_read();
append_cmd(TargetCopy, count);
append_delta(targetcopypos, location);
targetcopypos = location+count;
outpos += count;
return count;
}
size_t emit_target_read()
{
numtargetread++;
outpos++;
return 1;
}
size_t abs_diff(size_t a, size_t b)
{
return (b<a) ? (a-b) : (b-a);
}
size_t num_cost(size_t num)
{
if (num<128) return 1;
if (num<128*128) return 2; // 32KB
if (num<128*128*128) return 3; // 2MB
if (num<128*128*128*128) return 4; // 256MB
return 5; // 128^5 is 32GB, let's just assume the sizes don't go any higher...
}
bool use_match(bool hastargetread, size_t cost, size_t len)
{
//numbers calculated via trial and error; checking for each cost, optimizing 'len' for each, and checking what happens
//then a pattern was identified and used
//yes, it looks weird
return len >= 1+cost+hastargetread+(len==1);
}
//Return value is how many bytes were used. If you believe the given one sucks, use TargetRead and return 1.
size_t match(bool is_target, size_t pos, size_t len)
{
if (!use_match(
numtargetread,
(!is_target && pos==outpos) ? 1 : // SourceRead
(num_cost(abs_diff(pos, (is_target ? targetcopypos : sourcecopypos)))+1),
len
))
{
return emit_target_read();
}
if (is_target) return emit_target_copy(pos, len);
else return emit_source_copy(pos, len);
}
bool (*prog_func)(void* userdata, size_t done, size_t total);
void* prog_dat;
static bool prog_func_null(void* userdata, size_t done, size_t total) { return true; }
void setProgress(bool (*progress)(void* userdata, size_t done, size_t total), void* userdata)
{
if (!progress) progress = prog_func_null;
prog_func=progress;
prog_dat=userdata;
}
bool progress(size_t done, size_t total)
{
return prog_func(prog_dat, done, total);
}
void finish(const uint8_t* source, const uint8_t* target)
{
flush_target_read();
#ifdef TEST_CORRECT
if (outpos != targetlen)
puts("ERROR: patch creates wrong ROM size"),abort();
#endif
appendnum32(crc32(source, sourcelen));
appendnum32(crc32(target, targetlen));
appendnum32(crc32(out, outlen));
}
struct mem getpatch()
{
struct mem ret = { out, outlen };
out = NULL;
return ret;
}
~bps_creator() { free(out); }
};
}
#ifdef TEST_PERF
static int match_len_n=0;
static int match_len_tot=0;
#endif
template<typename off_t>
static off_t match_len(const uint8_t* a, const uint8_t* b, off_t len)
{
off_t i;
for (i=0;i<len && a[i]==b[i];i++) {}
#ifdef TEST_PERF
match_len_n++;
match_len_tot+=i;
#endif
return i;
}
//This one assumes that the longest common prefix of 'a' and 'b' is shared also by 'search'.
//In practice, lexographically, a < search < b, which is a stronger guarantee.
template<typename off_t>
static off_t pick_best_of_two(const uint8_t* search, off_t searchlen,
const uint8_t* data, off_t datalen,
off_t a, off_t b,
off_t* bestlen)
{
off_t commonlen = match_len(data+a, data+b, min(datalen-a, datalen-b));
if (commonlen>=searchlen)
{
*bestlen=searchlen;
return a;
}
if (a+commonlen<datalen && search[commonlen]==data[a+commonlen])
{
// a is better
*bestlen = commonlen + match_len(search+commonlen, data+a+commonlen, min(searchlen, datalen-a)-commonlen);
return a;
}
else
{
// b is better, or they're equal
*bestlen = commonlen + match_len(search+commonlen, data+b+commonlen, min(searchlen, datalen-b)-commonlen);
return b;
}
}
//This one takes a match, which is assumed optimal, and looks for the lexographically closest one
// that either starts before 'maxstart', or starts at or after 'minstart'.
template<typename off_t>
static off_t adjust_match(off_t match, const uint8_t* search, off_t searchlen,
const uint8_t* data,off_t datalen, off_t maxstart,off_t minstart,
const off_t* sorted, off_t sortedlen,
off_t* bestlen)
{
off_t match_up = match;
off_t match_dn = match;
while (match_up>=0 && sorted[match_up]>=maxstart && sorted[match_up]<minstart) match_up--;
while (match_dn<sortedlen && sorted[match_dn]>=maxstart && sorted[match_dn]<minstart) match_dn++;
if (match_up<0 || match_dn>=sortedlen)
{
if (match_up<0 && match_dn>=sortedlen)
{
*bestlen=0;
return 0;
}
off_t pos = sorted[match_up<0 ? match_dn : match_up];
*bestlen = match_len(search, data+pos, min(searchlen, datalen-pos));
return pos;
}
return pick_best_of_two(search,searchlen, data,datalen, sorted[match_up],sorted[match_dn], bestlen);
}
static uint16_t read2_uc(const uint8_t* data)
{
return data[0]<<8 | data[1];
}
template<typename off_t>
static uint16_t read2(const uint8_t* data, off_t len)
{
if (len>=2) return read2_uc(data);
else
{
uint16_t out = (EOF_IS_LAST ? 0xFFFF : 0x0000);
if (len==1) out = (data[0]<<8) | (out&0x00FF);
return out;
}
}
template<typename off_t>
static void create_buckets(const uint8_t* data, off_t* index, off_t len, off_t* buckets)
{
off_t low = 0;
off_t high;
for (int n=0;n<65536;n++)
{
//'low' remains from the previous iteration and is a known minimum
high = low+(len/131072)+1; // optimal value: slightly above a third of the distance to the next one
while (true)
{
if (high > len-1) break;
off_t pos = index[high];
uint16_t here = read2(data+pos, len-pos);
if (here >= n) break;
else
{
off_t diff = high-low;
low = high;
high = high+diff*2;
}
}
if (high > len-1) high = len-1;
while (low < high)
{
off_t mid = low + (high-low)/2;
off_t midpos = index[mid];
uint16_t here = read2(data+midpos, len-midpos);
if (here < n) low = mid+1;
else high = mid;
}
buckets[n] = low;
}
buckets[65536] = len;
#ifdef TEST_CORRECT
if (buckets[0]!=0)
{
printf("e: buckets suck, [0]=%i\n", buckets[0]);
abort();
}
for (int n=0;n<65536;n++)
{
off_t low = buckets[n];
off_t high = buckets[n+1];
for (off_t i=low;i<high;i++)
{
if (read2(data+index[i], len-index[i])!=n)
{
printf("e: buckets suck, %i != (%i)[%i]%i [%i-%i]", n, i,index[i],read2(data+index[i],len-index[i]),low,high);
abort();
}
}
//printf("%i:[%i]%i\n",n,low,read2(data+index[low],len-low));
}
#endif
}
template<typename off_t>
static off_t find_index(off_t pos, const uint8_t* data, off_t datalen, const off_t* index, const off_t* reverse, off_t* buckets)
{
if (reverse) return reverse[pos];
uint16_t bucket = read2(data+pos, datalen-pos);
//printf("p=%i b=%i\n",pos,bucket);
off_t low = buckets[bucket];
off_t high = buckets[bucket+1]-1;
off_t lowmatch = 2;
off_t highmatch = 2;
//printf("b=%i r=%i(%i)-%i(%i)\n",bucket,low,read2(data+index[low],datalen-index[low]),high,read2(data+index[high],datalen-index[high]));
//fflush(stdout);
while (true)
{
off_t mid = low + (high-low)/2;
off_t midpos = index[mid];
if (midpos == pos) return mid;
//printf("r=[%i]%i-%i \n",high-low,low,high,);
//fflush(stdout);
#ifdef TEST_CORRECT
if (low >= high)
{
printf("E: [%i](%i): stuck at %i(%i)-%i(%i)\n", pos, read2_uc(data+pos),
low, read2_uc(data+index[low]), high, read2_uc(data+index[high]));
int n=0;
while (index[n]!=pos) n++;
printf("correct one is %i(%i)\n",n, read2_uc(data+index[n]));
abort();
}
#endif
off_t matchlenstart = min(lowmatch, highmatch);
off_t len = datalen - max(pos, midpos) - matchlenstart;
const uint8_t* search = data+pos+matchlenstart;
const uint8_t* here = data+midpos+matchlenstart;
while (len>0 && *search==*here)
{
search++;
here++;
len--;
}
off_t matchlen = search-data-pos;
bool less;
if (len > 0) less = (*here<*search);
else less = (here > search) ^ EOF_IS_LAST;
if (less)
{
low = mid+1;
lowmatch = matchlen;
}
else
{
high = mid-1;
highmatch = matchlen;
}
if (low+256 > high)
{
off_t i=low;
while (true)
{
if (index[i]==pos) return i;
i++;
}
}
}
}
template<typename off_t>
static void create_reverse_index(off_t* index, off_t* reverse, off_t len)
{
//testcase: linux 3.18.14 -> 4.0.4 .xz
//without: real23.544 user32.930
//with: real22.636 user40.168
//'user' jumps up quite a lot, while 'real' only moves a short bit
//I'm not sure why the tradeoff is so bad (do the cachelines bounce THAT badly?), but I deem it not worth it.
//#pragma omp parallel for
for (off_t i=0;i<len;i++) reverse[index[i]]=i;
}
template<typename off_t>
static off_t nextsize(off_t outpos, off_t sortedsize, off_t targetlen)
{
while (outpos >= sortedsize-256 && sortedsize < targetlen)
sortedsize = min(sortedsize*4+3, targetlen);
return sortedsize;
}
template<typename off_t>
off_t lerp(off_t x, off_t y, float frac)
{
return x + (y-x)*frac;
}
template<typename off_t>
static bpserror bps_create_suf_core(file* source, file* target, bool moremem, struct bps_creator * out)
{
#define error(which) do { err = which; goto error; } while(0)
bpserror err;
size_t realsourcelen = source->len();
size_t realtargetlen = target->len();
size_t overflowtest = realsourcelen + realtargetlen;
//source+target length is bigger than size_t (how did that manage to get allocated?)
if (overflowtest < realsourcelen) return bps_too_big;
//source+target doesn't fit in unsigned off_t
if ((size_t)(off_t)overflowtest != overflowtest) return bps_too_big;
//source+target doesn't fit in signed off_t
if ((off_t)overflowtest < 0) return bps_too_big;
//the mallocs would overflow
if (realsourcelen+realtargetlen >= SIZE_MAX/sizeof(off_t)) return bps_too_big;
if (realsourcelen+realtargetlen >= out->maxsize()) return bps_too_big;
off_t sourcelen = realsourcelen;
off_t targetlen = realtargetlen;
uint8_t* mem_joined = (uint8_t*)malloc(sizeof(uint8_t)*(realsourcelen+realtargetlen));
off_t* sorted = (off_t*)malloc(sizeof(off_t)*(realsourcelen+realtargetlen));
off_t* sorted_inverse = NULL;
if (moremem) sorted_inverse = (off_t*)malloc(sizeof(off_t)*(realsourcelen+realtargetlen));
off_t* buckets = NULL;
if (!sorted_inverse) buckets = (off_t*)malloc(sizeof(off_t)*65537);
if (!sorted || !mem_joined || (!sorted_inverse && !buckets))
{
free(mem_joined);
free(sorted);
free(sorted_inverse);
free(buckets);
return bps_out_of_mem;
}
//sortedsize is how much of the target file is sorted
off_t sortedsize = targetlen;
//divide by 4 for each iteration, to avoid sorting 50% of the file (the sorter is slow)
while (sortedsize/4 > sourcelen && sortedsize > 1024) sortedsize >>= 2;
off_t prevsortedsize = 0;
off_t outpos = 0;
goto reindex; // jump into the middle so I won't need a special case to enter it
while (outpos < targetlen)
{
if (outpos >= sortedsize-256 && sortedsize < targetlen)
{
sortedsize = nextsize(outpos, sortedsize, targetlen);
reindex:
//this isn't an exact science
const float percSort = sorted_inverse ? 0.67 : 0.50;
const float percInv = sorted_inverse ? 0.11 : 0.10;
//const float percFind = sorted_inverse ? 0.22 : 0.40; // unused
const size_t progPreSort = lerp(prevsortedsize, sortedsize, 0);
const size_t progPreInv = lerp(prevsortedsize, sortedsize, percSort);
const size_t progPreFind = lerp(prevsortedsize, sortedsize, percSort+percInv);
prevsortedsize = sortedsize;
if (!out->progress(progPreSort, targetlen)) error(bps_canceled);
if (!target->read(mem_joined, 0, sortedsize)) error(bps_io);
if (!source->read(mem_joined+sortedsize, 0, sourcelen)) error(bps_io);
out->move_target(mem_joined);
sufsort(sorted, mem_joined, sortedsize+sourcelen);
if (!out->progress(progPreInv, targetlen)) error(bps_canceled);
if (sorted_inverse)
create_reverse_index(sorted, sorted_inverse, sortedsize+sourcelen);
else
create_buckets(mem_joined, sorted, sortedsize+sourcelen, buckets);
if (!out->progress(progPreFind, targetlen)) error(bps_canceled);
}
off_t matchlen = 0;
off_t matchpos = adjust_match(find_index(outpos, mem_joined, sortedsize+sourcelen, sorted, sorted_inverse, buckets),
mem_joined+outpos, sortedsize-outpos,
mem_joined,sortedsize+sourcelen, outpos,sortedsize,
sorted, sortedsize+sourcelen,
&matchlen);
#ifdef TEST_CORRECT
if (matchlen && matchpos >= outpos && matchpos < sortedsize) puts("ERROR: found match in invalid location"),abort();
if (memcmp(mem_joined+matchpos, mem_joined+outpos, matchlen)) puts("ERROR: found match doesn't match"),abort();
#endif
off_t taken;
if (matchpos >= sortedsize) taken = out->match(false, matchpos-sortedsize, matchlen);
else taken = out->match(true, matchpos, matchlen);
#ifdef TEST_CORRECT
if (taken < 0) puts("ERROR: match() returned negative"),abort();
if (matchlen >= 7 && taken < matchlen) printf("ERROR: match() took %i bytes, offered %i\n", taken, matchlen),abort();
#endif
outpos += taken;
}
out->finish(mem_joined+sortedsize, mem_joined);
err = bps_ok;
error:
free(buckets);
free(sorted_inverse);
free(sorted);
free(mem_joined);
return err;
}
//template<typename T> static bpserror bps_create_suf_pick(file* source, file* target, bool moremem, struct bps_creator * bps);
//template<> bpserror bps_create_suf_pick<uint32_t>(file* source, file* target, bool moremem, struct bps_creator * bps)
//{
// return bps_create_suf_core<int32_t>(source, target, moremem, bps);
//}
//template<> bpserror bps_create_suf_pick<uint64_t>(file* source, file* target, bool moremem, struct bps_creator * bps)
//{
// bpserror err = bps_create_suf_core<int32_t>(source, target, moremem, bps);
// if (err==bps_too_big) err = bps_create_suf_core<int64_t>(source, target, moremem, bps);
// return err;
//}
//This one picks a function based on 32-bit integers if that fits. This halves memory use for common inputs.
//It also handles some stuff related to the BPS headers and footers.
bpserror bps_create_delta(file* source, file* target, struct mem metadata, struct mem * patchmem,
bool (*progress)(void* userdata, size_t done, size_t total), void* userdata, bool moremem)
{
bps_creator bps(source, target, metadata);
bps.setProgress(progress, userdata);
size_t maindata = bps.outlen;
//off_t must be signed
bpserror err = bps_create_suf_core<int32_t>(source, target, moremem, &bps);
if (err!=bps_ok) return err;
*patchmem = bps.getpatch();
while ((patchmem->ptr[maindata]&0x80) == 0x00) maindata++;
if (maindata==patchmem->len-12-1) return bps_identical;
return bps_ok;
}
enum bpserror bps_create_delta_inmem(struct mem source, struct mem target, struct mem metadata, struct mem * patch,
bool (*progress)(void* userdata, size_t done, size_t total), void* userdata,
bool moremem)
{
class memfile : public file {
public:
const uint8_t * m_ptr;
size_t m_len;
size_t len() { return m_len; }
bool read(uint8_t* target, size_t start, size_t len) { memcpy(target, m_ptr+start, len); return true; }
memfile(const uint8_t * ptr, size_t len) : m_ptr(ptr), m_len(len) {}
};
memfile sourcef(source.ptr, source.len);
memfile targetf(target.ptr, target.len);
return bps_create_delta(&sourcef, &targetf, metadata, patch, progress, userdata, moremem);
}
#ifdef BPS_STANDALONE
#include <stdio.h>
static struct mem ReadWholeFile(const char * filename)
{
struct mem null = {NULL, 0};
FILE * file=fopen(filename, "rb");
if (!file) return null;
fseek(file, 0, SEEK_END);
size_t len=ftell(file);
fseek(file, 0, SEEK_SET);
unsigned char * data=(unsigned char*)malloc(len);
size_t truelen=fread(data, 1,len, file);
fclose(file);
if (len!=truelen)
{
free(data);
return null;
}
struct mem ret = { (unsigned char*)data, len };
return ret;
}
static bool WriteWholeFile(const char * filename, struct mem data)
{
FILE * file=fopen(filename, "wb");
if (!file) return false;
unsigned int truelen=fwrite(data.ptr, 1,data.len, file);
fclose(file);
return (truelen==data.len);
}
int main(int argc, char * argv[])
{
//struct mem out = ReadWholeFile(argv[2]);
//printf("check=%.8X\n",crc32(out.ptr, out.len));
struct mem in = ReadWholeFile(argv[1]);
struct mem out = ReadWholeFile(argv[2]);
struct mem null = {NULL, 0};
struct mem p={NULL,0};
//int n=50;
//for(int i=0;i<n;i++)
//printf("%i/%i\n",i,n),
bps_create_delta(in,out,null,&p, NULL,NULL);
printf("len=%lu \n",p.len);
printf("check=%.8X\n",*(uint32_t*)(p.ptr+p.len-4));
WriteWholeFile(argv[3], p);
free(in.ptr);
free(out.ptr);
free(p.ptr);
#ifdef TEST_PERF
printf("%i/%i=%f\n",match_len_tot,match_len_n,(float)match_len_tot/match_len_n);
#endif
}
#endif