-
Notifications
You must be signed in to change notification settings - Fork 0
/
emo_utils.py
131 lines (99 loc) · 3.84 KB
/
emo_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
import csv
import numpy as np
import emoji
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.metrics import confusion_matrix
def read_glove_vecs(glove_file):
with open(glove_file, 'r') as f:
words = set()
word_to_vec_map = {}
for line in f:
line = line.strip().split()
curr_word = line[0]
words.add(curr_word)
word_to_vec_map[curr_word] = np.array(line[1:], dtype=np.float64)
i = 1
words_to_index = {}
index_to_words = {}
for w in sorted(words):
words_to_index[w] = i
index_to_words[i] = w
i = i + 1
return words_to_index, index_to_words, word_to_vec_map
def softmax(x):
"""Compute softmax values for each sets of scores in x."""
e_x = np.exp(x - np.max(x))
return e_x / e_x.sum()
def read_csv(filename = 'data/emojify_data.csv'):
phrase = []
emoji = []
with open (filename) as csvDataFile:
csvReader = csv.reader(csvDataFile)
for row in csvReader:
phrase.append(row[0])
emoji.append(row[1])
X = np.asarray(phrase)
Y = np.asarray(emoji, dtype=int)
return X, Y
def convert_to_one_hot(Y, C):
Y = np.eye(C)[Y.reshape(-1)]
return Y
emoji_dictionary = {"0": "\u2764\uFE0F", # :heart: prints a black instead of red heart depending on the font
"1": ":baseball:",
"2": ":smile:",
"3": ":disappointed:",
"4": ":fork_and_knife:"}
def label_to_emoji(label):
"""
Converts a label (int or string) into the corresponding emoji code (string) ready to be printed
"""
return emoji.emojize(emoji_dictionary[str(label)], use_aliases=True)
def print_predictions(X, pred):
print()
for i in range(X.shape[0]):
print(X[i], label_to_emoji(int(pred[i])))
def plot_confusion_matrix(y_actu, y_pred, title='Confusion matrix', cmap=plt.cm.gray_r):
df_confusion = pd.crosstab(y_actu, y_pred.reshape(y_pred.shape[0],), rownames=['Actual'], colnames=['Predicted'], margins=True)
df_conf_norm = df_confusion / df_confusion.sum(axis=1)
plt.matshow(df_confusion, cmap=cmap) # imshow
#plt.title(title)
plt.colorbar()
tick_marks = np.arange(len(df_confusion.columns))
plt.xticks(tick_marks, df_confusion.columns, rotation=45)
plt.yticks(tick_marks, df_confusion.index)
#plt.tight_layout()
plt.ylabel(df_confusion.index.name)
plt.xlabel(df_confusion.columns.name)
def predict(X, Y, W, b, word_to_vec_map):
"""
Given X (sentences) and Y (emoji indices), predict emojis and compute the accuracy of your model over the given set.
Arguments:
X -- input data containing sentences, numpy array of shape (m, None)
Y -- labels, containing index of the label emoji, numpy array of shape (m, 1)
Returns:
pred -- numpy array of shape (m, 1) with your predictions
"""
m = X.shape[0]
pred = np.zeros((m, 1))
any_word = list(word_to_vec_map.keys())[0]
# number of classes
n_h = word_to_vec_map[any_word].shape[0]
for j in range(m): # Loop over training examples
# Split jth test example (sentence) into list of lower case words
words = X[j].lower().split()
# Average words' vectors
avg = np.zeros((n_h,))
count = 0
for w in words:
if w in word_to_vec_map:
avg += word_to_vec_map[w]
count += 1
if count > 0:
avg = avg / count
# Forward propagation
Z = np.dot(W, avg) + b
A = softmax(Z)
pred[j] = np.argmax(A)
print("Accuracy: " + str(np.mean((pred[:] == Y.reshape(Y.shape[0],1)[:]))))
return pred