-
Notifications
You must be signed in to change notification settings - Fork 0
/
generateTestCases.py
925 lines (898 loc) · 60.3 KB
/
generateTestCases.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
# New Generate Test Cases
from solutions import *
import numpy as np
import math
import os,sys
# import copy
# from keras.callbacks import History
# import tensorflow as tf
sys.path.append('../')
sys.path.append('../../')
from grader_support import stdout_redirector
from grader_support import util
os.environ['TF_CPP_MIN_LOG_LEVEL']='3'
# This grader is for the Emojify assignment
mFiles = [
"sentence_to_avg.py",
"model.py",
"sentences_to_indices.py",
"pretrained_embedding_layer.py",
"Emojify_V2.py"
]
np.random.seed(3)
# generating test cases for sentence_to_avg
X = np.asarray(['I am going to the bar tonight', 'I love you', 'miss you my dear',
'Lets go party and drinks','Congrats on the new job','Congratulations',
'I am so happy for you', 'Why are you feeling bad', 'What is wrong with you',
'You totally deserve this prize', 'Let us go play football',
'Are you down for football this afternoon', 'Work hard play harder',
'It is suprising how people can be dumb sometimes',
'I am very disappointed','It is the best day in my life',
'I think I will end up alone','My life is so boring','Good job',
'Great so awesome'])
Y = np.asarray([4, 0, 0, 3, 4, 4, 4, 3, 2, 4, 1, 1, 2, 3, 2, 1, 1, 3, 4, 4])
diw = {69: 'i', 1: 'am', 2: 'going', 3: 'to', 4: 'the', 5: 'bar', 6: 'tonight', 7: 'love', 8: 'you', 9: 'miss', 10: 'my', 11: 'dear', 12: 'lets', 13: 'go', 14: 'party', 15: 'and', 16: 'drinks', 17: 'congrats', 18: 'on', 19: 'new', 20: 'job', 21: 'congratulations', 22: 'so', 23: 'happy', 24: 'for', 25: 'why', 26: 'are', 27: 'feeling', 28: 'bad', 29: 'what', 30: 'is', 31: 'wrong', 32: 'with', 33: 'totally', 34: 'deserve', 35: 'this', 36: 'prize', 37: 'let', 38: 'us', 39: 'play', 40: 'football', 41: 'down', 42: 'afternoon', 43: 'work', 44: 'hard', 45: 'harder', 46: 'it', 47: 'suprising', 48: 'how', 49: 'people', 50: 'can', 51: 'be', 52: 'dumb', 53: 'sometimes', 54: 'very', 55: 'disappointed', 56: 'best', 57: 'day', 58: 'in', 59: 'life', 60: 'think', 61: 'will', 62: 'end', 63: 'up', 64: 'alone', 65: 'boring', 66: 'good', 67: 'great', 68: 'awesome'}
# dwi = {'i': 185457, 'am': 52943, 'going': 163745, 'to': 360915, 'the': 357266, 'bar': 68431, 'tonight': 361859, 'love': 226278, 'you': 394475, 'miss': 246253, 'my': 254258, 'dear': 118309, 'lets': 220930, 'go': 163237, 'party': 278093, 'and': 54718, 'drinks': 129414, 'congrats': 107277, 'on': 269798, 'new': 259972, 'job': 198213, 'congratulations': 107283, 'so': 336114, 'happy': 173081, 'for': 151349, 'why': 386984, 'are': 58997, 'feeling': 146352, 'bad': 65963, 'what': 386307, 'is': 192973, 'wrong': 390470, 'with': 388711, 'totally': 362776, 'deserve': 121794, 'this': 358160, 'prize': 292631, 'let': 220870, 'us': 374021, 'play': 286375, 'football': 151266, 'down': 128527, 'afternoon': 47835, 'work': 389836, 'hard': 173236, 'harder': 173320, 'it': 193716, 'suprising': 348287, 'how': 182540, 'people': 280944, 'can': 90548, 'be': 71090, 'dumb': 130637, 'sometimes': 337305, 'very': 377946, 'disappointed': 124906, 'best': 74390, 'day': 117874, 'in': 188481, 'life': 222138, 'think': 357970, 'will': 387696, 'end': 136979, 'up': 373317, 'alone': 52315, 'boring': 81044, 'good': 164328, 'great': 166369, 'awesome': 64354}
dwi = {'happy': 23, 'to': 3, 'harder': 45, 'feeling': 27, 'alone': 64, 'think': 60, 'bad': 28, 'i': 69, 'dear': 11, 'it': 46, 'down': 41, 'be': 51, 'work': 43, 'great': 67, 'play': 39, 'this': 35, 'the': 4, 'love': 7, 'job': 20, 'sometimes': 53, 'and': 15, 'day': 57, 'best': 56, 'bar': 5, 'disappointed': 55, 'on': 18, 'congratulations': 21, 'let': 37, 'awesome': 68, 'can': 50, 'good': 66, 'new': 19, 'life': 59, 'us': 38, 'what': 29, 'up': 63, 'going': 2, 'will': 61, 'miss': 9, 'totally': 33, 'with': 32, 'very': 54, 'so': 22, 'my': 10, 'tonight': 6, 'are': 26, 'am': 1, 'suprising': 47, 'deserve': 34, 'lets': 12, 'football': 40, 'is': 30, 'go': 13, 'drinks': 16, 'congrats': 17, 'you': 8, 'party': 14, 'people': 49, 'prize': 36, 'in': 58, 'hard': 44, 'why': 25, 'for': 24, 'end': 62, 'afternoon': 42, 'how': 48, 'wrong': 31, 'dumb': 52, 'boring': 65}
d = {'i': np.asarray([ 1.18910000e-01, 1.52550000e-01, -8.20730000e-02,
-7.41440000e-01, 7.59170000e-01, -4.83280000e-01,
-3.10090000e-01, 5.14760000e-01, -9.87080000e-01,
6.17570000e-04, -1.50430000e-01, 8.37700000e-01,
-1.07970000e+00, -5.14600000e-01, 1.31880000e+00,
6.20070000e-01, 1.37790000e-01, 4.71080000e-01,
-7.28740000e-02, -7.26750000e-01, -7.41160000e-01,
7.52630000e-01, 8.81800000e-01, 2.95610000e-01,
1.35480000e+00, -2.57010000e+00, -1.35230000e+00,
4.58800000e-01, 1.00680000e+00, -1.18560000e+00,
3.47370000e+00, 7.78980000e-01, -7.29290000e-01,
2.51020000e-01, -2.61560000e-01, -3.46840000e-01,
5.58410000e-01, 7.50980000e-01, 4.98300000e-01,
-2.68230000e-01, -2.74430000e-03, -1.82980000e-02,
-2.80960000e-01, 5.53180000e-01, 3.77060000e-02,
1.85550000e-01, -1.50250000e-01, -5.75120000e-01,
-2.66710000e-01, 9.21210000e-01]), 'am': np.asarray([ 0.34664 , 0.39805 , 0.4897 , -0.51421 , 0.54574 , -1.2005 ,
0.32107 , 0.74004 , -1.4979 , -0.19651 , -0.12631 , -0.37703 ,
-0.62569 , 0.038792, 1.0579 , 0.77199 , -0.18589 , 1.3032 ,
-0.72128 , 0.40231 , 0.066442, 1.2315 , 0.93956 , 1.3903 ,
1.5334 , -1.473 , -0.34997 , 0.31562 , 0.90691 , 0.45498 ,
2.5481 , 0.1641 , -0.607 , 0.27061 , -0.79072 , -1.146 ,
0.91795 , -0.11797 , 0.23526 , -0.12659 , 0.66527 , -0.91816 ,
0.10048 , 0.70457 , -0.21777 , 0.52479 , -0.54452 , 0.086576,
0.34037 , 1.3588 ]), 'going': np.asarray([ 1.42120000e-02, -1.80110000e-01, 2.34780000e-01,
-2.50380000e-01, 2.68160000e-01, -5.48870000e-01,
-7.44360000e-01, 5.20340000e-01, -2.85710000e-01,
1.53760000e-01, -5.59160000e-01, 1.04230000e-01,
-1.01790000e+00, 1.06340000e-02, 9.52800000e-01,
5.18110000e-01, 7.86240000e-01, -2.00990000e-01,
-2.88160000e-01, -6.57350000e-01, 1.83070000e-02,
3.19300000e-01, 3.44560000e-01, 2.65160000e-01,
7.20610000e-01, -1.86990000e+00, -2.53840000e-01,
-3.00760000e-03, 1.22030000e+00, -9.20190000e-01,
3.40570000e+00, 1.13510000e+00, -5.84060000e-01,
-1.26110000e-01, -3.50170000e-02, -2.99410000e-01,
3.14750000e-02, 3.38830000e-01, 3.89100000e-01,
-4.29990000e-01, -8.52640000e-01, -3.17510000e-01,
-8.91630000e-02, 5.31760000e-01, 4.37730000e-02,
6.09980000e-02, 2.47620000e-01, -1.66790000e-01,
6.15950000e-02, 6.99270000e-01]), 'to': np.asarray([ 0.68047 , -0.039263, 0.30186 , -0.17792 , 0.42962 , 0.032246,
-0.41376 , 0.13228 , -0.29847 , -0.085253, 0.17118 , 0.22419 ,
-0.10046 , -0.43653 , 0.33418 , 0.67846 , 0.057204, -0.34448 ,
-0.42785 , -0.43275 , 0.55963 , 0.10032 , 0.18677 , -0.26854 ,
0.037334, -2.0932 , 0.22171 , -0.39868 , 0.20912 , -0.55725 ,
3.8826 , 0.47466 , -0.95658 , -0.37788 , 0.20869 , -0.32752 ,
0.12751 , 0.088359, 0.16351 , -0.21634 , -0.094375, 0.018324,
0.21048 , -0.03088 , -0.19722 , 0.082279, -0.09434 , -0.073297,
-0.064699, -0.26044 ]), 'the': np.asarray([ 4.18000000e-01, 2.49680000e-01, -4.12420000e-01,
1.21700000e-01, 3.45270000e-01, -4.44570000e-02,
-4.96880000e-01, -1.78620000e-01, -6.60230000e-04,
-6.56600000e-01, 2.78430000e-01, -1.47670000e-01,
-5.56770000e-01, 1.46580000e-01, -9.50950000e-03,
1.16580000e-02, 1.02040000e-01, -1.27920000e-01,
-8.44300000e-01, -1.21810000e-01, -1.68010000e-02,
-3.32790000e-01, -1.55200000e-01, -2.31310000e-01,
-1.91810000e-01, -1.88230000e+00, -7.67460000e-01,
9.90510000e-02, -4.21250000e-01, -1.95260000e-01,
4.00710000e+00, -1.85940000e-01, -5.22870000e-01,
-3.16810000e-01, 5.92130000e-04, 7.44490000e-03,
1.77780000e-01, -1.58970000e-01, 1.20410000e-02,
-5.42230000e-02, -2.98710000e-01, -1.57490000e-01,
-3.47580000e-01, -4.56370000e-02, -4.42510000e-01,
1.87850000e-01, 2.78490000e-03, -1.84110000e-01,
-1.15140000e-01, -7.85810000e-01]), 'bar': np.asarray([ -9.45310000e-01, 3.96860000e-01, -8.06050000e-01,
-3.02150000e-01, 2.77360000e-01, -1.00190000e-01,
-4.05000000e-01, -1.00950000e-01, -6.59340000e-02,
-4.72580000e-02, -2.08280000e-01, -2.57210000e-01,
6.87500000e-02, 9.37510000e-01, -8.14830000e-02,
1.34600000e-01, 2.73020000e-02, -1.80960000e-01,
-3.56380000e-01, -8.81040000e-01, 1.19510000e+00,
5.55560000e-02, -3.17410000e-01, 1.02440000e+00,
-8.47680000e-01, -1.59590000e+00, 2.16570000e-02,
4.36280000e-01, 8.83880000e-04, -4.18200000e-01,
2.12470000e+00, -4.33320000e-01, -1.08160000e+00,
3.36160000e-01, 3.33990000e-01, -2.00640000e-01,
5.86330000e-01, 9.01860000e-02, 7.50540000e-01,
4.85000000e-01, 1.73700000e-01, 6.81290000e-01,
-1.68100000e-01, 6.12650000e-01, 7.68750000e-02,
-1.97970000e-01, -9.95550000e-02, -1.02310000e+00,
9.53940000e-01, -6.35000000e-02]), 'tonight': np.asarray([-0.24077 , 0.64182 , -0.24113 , 0.75178 , 0.53864 ,
-1.1493 , -0.61891 , 0.9137 , -0.53606 , 0.17756 ,
-0.76413 , 0.016193 , -0.51358 , 0.93094 , 1.2053 ,
0.4189 , 0.16474 , -0.13126 , -1.0023 , 0.007583 ,
0.0035247, 0.52336 , 0.68604 , 0.35461 , 0.54968 ,
-0.59051 , -0.26113 , 0.61433 , 0.7793 , -1.1467 ,
2.0951 , 1.39 , -0.30046 , -0.18278 , -0.45401 ,
-0.13385 , 0.90233 , -0.28826 , 0.030881 , -0.63533 ,
-0.50969 , -0.15814 , -1.1477 , -0.16897 , -0.42309 ,
0.67139 , 0.0269 , -0.026077 , -0.3064 , 1.6869 ]), 'love': np.asarray([-0.13886 , 1.1401 , -0.85212 , -0.29212 , 0.75534 ,
0.82762 , -0.3181 , 0.0072204, -0.34762 , 1.0731 ,
-0.24665 , 0.97765 , -0.55835 , -0.090318 , 0.83182 ,
-0.33317 , 0.22648 , 0.30913 , 0.026929 , -0.086739 ,
-0.14703 , 1.3543 , 0.53695 , 0.43735 , 1.2749 ,
-1.4382 , -1.2815 , -0.15196 , 1.0506 , -0.93644 ,
2.7561 , 0.58967 , -0.29473 , 0.27574 , -0.32928 ,
-0.201 , -0.28547 , -0.45987 , -0.14603 , -0.69372 ,
0.070761 , -0.19326 , -0.1855 , -0.16095 , 0.24268 ,
0.20784 , 0.030924 , -1.3711 , -0.28606 , 0.2898 ]), 'you': np.asarray([ -1.09190000e-03, 3.33240000e-01, 3.57430000e-01,
-5.40410000e-01, 8.20320000e-01, -4.93910000e-01,
-3.25880000e-01, 1.99720000e-03, -2.38290000e-01,
3.55540000e-01, -6.06550000e-01, 9.89320000e-01,
-2.17860000e-01, 1.12360000e-01, 1.14940000e+00,
7.32840000e-01, 5.11820000e-01, 2.92870000e-01,
2.83880000e-01, -1.35900000e+00, -3.79510000e-01,
5.09430000e-01, 7.07100000e-01, 6.29410000e-01,
1.05340000e+00, -2.17560000e+00, -1.32040000e+00,
4.00010000e-01, 1.57410000e+00, -1.66000000e+00,
3.77210000e+00, 8.69490000e-01, -8.04390000e-01,
1.83900000e-01, -3.43320000e-01, 1.07140000e-02,
2.39690000e-01, 6.67480000e-02, 7.01170000e-01,
-7.37020000e-01, 2.08770000e-01, 1.15640000e-01,
-1.51900000e-01, 8.59080000e-01, 2.26200000e-01,
1.65190000e-01, 3.63090000e-01, -4.56970000e-01,
-4.89690000e-02, 1.13160000e+00]), 'miss': np.asarray([ -3.22730000e-01, 5.61820000e-01, -6.63630000e-01,
3.88830000e-01, -4.65580000e-02, 2.23280000e-01,
-7.56910000e-01, 7.08530000e-01, 5.57140000e-01,
-5.99960000e-02, 3.12350000e-01, 1.67410000e-01,
-5.45680000e-01, -3.87650000e-01, 1.23090000e+00,
3.47660000e-01, -5.00170000e-02, -4.98040000e-02,
-6.62820000e-01, 2.28540000e-01, -7.84430000e-01,
6.58230000e-01, 5.60990000e-01, 3.32180000e-01,
5.30490000e-01, -1.36110000e+00, -4.94520000e-01,
2.77110000e-01, -2.29820000e-01, -1.14920000e+00,
1.50280000e+00, 1.09160000e+00, -9.84640000e-02,
3.93490000e-04, 2.57530000e-01, -1.54700000e-01,
2.75950000e-01, 6.47500000e-01, -5.65370000e-02,
-1.30460000e+00, -5.82000000e-01, 1.28380000e-01,
-1.14160000e-01, -8.08360000e-01, -8.39210000e-01,
2.56090000e-01, 1.56290000e-01, -9.72990000e-01,
1.11300000e-01, 4.45000000e-01]), 'my': np.asarray([-0.27279 , 0.77515 , -0.10181 , -0.9166 , 0.90477 ,
-0.070501 , -0.47569 , 0.44608 , 0.1697 , 0.072352 ,
-0.16306 , 0.86852 , -0.76634 , -0.016103 , 0.78492 ,
0.2952 , -0.74859 , 0.2099 , 0.65537 , -0.62334 ,
-0.43711 , 1.1854 , 0.47519 , 0.0093866, 1.1377 ,
-2.4394 , -1.5619 , 0.49001 , 1.0985 , -0.97371 ,
3.4628 , 1.0408 , -0.65138 , 0.57189 , -0.12523 ,
0.26705 , 0.16373 , 0.41105 , 0.7509 , -0.77923 ,
0.03638 , -0.28609 , -0.72365 , 0.63511 , 0.089441 ,
-0.30133 , 0.36518 , -0.73367 , 0.040383 , 0.26657 ]), 'dear': np.asarray([-0.29946 , 1.172 , 0.3289 , -0.74413 , 1.0811 , -0.1525 ,
-0.19838 , 0.052137, -0.34856 , -0.20578 , -0.70299 , 1.4999 ,
0.23187 , -0.22932 , 0.45783 , -0.057641, -0.42777 , 0.35264 ,
1.0389 , 0.59088 , -0.49418 , 1.0761 , 0.58225 , 0.5137 ,
1.2708 , -1.0246 , -1.0251 , -0.25016 , 0.27673 , -0.39602 ,
0.95889 , 0.43321 , -0.098083, 0.54379 , -0.39457 , -0.27019 ,
0.15541 , -0.94886 , 0.64448 , -0.75184 , 0.24743 , -0.17944 ,
-0.16587 , -0.045956, 0.47237 , 0.69745 , -0.43758 , -0.27562 ,
0.49816 , 0.83257 ]), 'lets': np.asarray([ 0.30423 , -0.24405 , 1.0303 , 0.039387, 0.23262 , -0.39686 ,
-0.36583 , -0.18573 , 0.31051 , 0.48486 , -0.035048, 0.76138 ,
0.42608 , 0.58651 , 0.35601 , 0.73256 , -0.092297, -0.1974 ,
0.7983 , -1.1569 , 0.43523 , 0.2619 , -0.45631 , 1.1645 ,
0.7541 , -0.89915 , 0.068323, -0.40341 , 0.53135 , -1.1687 ,
1.8254 , 0.40052 , -0.76422 , -0.076685, -0.26669 , 0.2565 ,
-0.048207, -0.46385 , -0.037947, -0.94777 , 0.9061 , 0.28996 ,
0.096715, 0.5577 , -0.1583 , -0.043148, 1.0421 , -0.43296 ,
-0.096168, 0.43463 ]), 'go': np.asarray([ 1.48280000e-01, 1.77610000e-01, 4.23460000e-01,
-3.14890000e-01, 3.22730000e-01, -7.24130000e-01,
-7.89550000e-01, 4.92140000e-01, -2.06930000e-01,
-5.50880000e-04, -4.78770000e-01, 2.88530000e-01,
-5.73760000e-01, 2.72170000e-01, 1.11290000e+00,
5.78080000e-01, 6.93210000e-01, -2.86520000e-01,
-5.45450000e-02, -6.18260000e-01, 1.72270000e-01,
2.92630000e-01, 3.81840000e-01, 6.21860000e-01,
5.54610000e-01, -1.74110000e+00, -2.88020000e-01,
-1.71400000e-01, 7.47430000e-01, -1.01350000e+00,
3.35960000e+00, 1.13700000e+00, -1.00280000e+00,
1.76850000e-01, -6.17950000e-03, -6.34910000e-02,
1.90770000e-01, 4.40460000e-02, 3.82280000e-01,
-4.16070000e-01, -5.03590000e-01, -8.38030000e-02,
1.75080000e-01, 4.04200000e-01, 7.73240000e-02,
1.74150000e-01, 1.25410000e-01, -2.18200000e-01,
1.29710000e-01, 3.29530000e-01]), 'party': np.asarray([ -5.52700000e-01, -1.83340000e-01, 4.11460000e-01,
1.87100000e-01, 3.23660000e-01, 8.14010000e-01,
-2.58340000e-01, -3.79910000e-02, -1.28930000e+00,
-6.93910000e-01, -4.35240000e-01, -8.44170000e-01,
-4.43500000e-01, 8.17660000e-01, -4.22730000e-01,
-2.58190000e-01, 2.22410000e-01, -2.44980000e-01,
7.48570000e-01, -1.88360000e-01, -2.07980000e-01,
-1.09650000e-01, 4.30510000e-01, 3.48850000e-01,
4.70030000e-03, -1.87220000e+00, -4.56930000e-01,
-5.90190000e-01, -1.07990000e+00, 8.91010000e-01,
3.29060000e+00, 6.09320000e-01, -1.83940000e+00,
-1.39300000e-03, -1.20880000e+00, -5.42400000e-01,
-2.03980000e-01, -1.06500000e-02, -4.78150000e-01,
-3.58880000e-01, -4.34130000e-01, 1.09430000e-01,
-1.53870000e+00, -1.06080000e-01, -3.05070000e-01,
1.39780000e-03, -1.93320000e+00, -4.28900000e-01,
1.01750000e+00, -5.99310000e-01]), 'and': np.asarray([ 0.26818 , 0.14346 , -0.27877 , 0.016257, 0.11384 , 0.69923 ,
-0.51332 , -0.47368 , -0.33075 , -0.13834 , 0.2702 , 0.30938 ,
-0.45012 , -0.4127 , -0.09932 , 0.038085, 0.029749, 0.10076 ,
-0.25058 , -0.51818 , 0.34558 , 0.44922 , 0.48791 , -0.080866,
-0.10121 , -1.3777 , -0.10866 , -0.23201 , 0.012839, -0.46508 ,
3.8463 , 0.31362 , 0.13643 , -0.52244 , 0.3302 , 0.33707 ,
-0.35601 , 0.32431 , 0.12041 , 0.3512 , -0.069043, 0.36885 ,
0.25168 , -0.24517 , 0.25381 , 0.1367 , -0.31178 , -0.6321 ,
-0.25028 , -0.38097 ]), 'drinks': np.asarray([ 0.18539 , -0.30933 , -0.91416 , 0.17986 , 0.43113 , 0.26739 ,
-0.63414 , -0.4626 , 0.89267 , 1.3099 , 0.33861 , 0.27632 ,
0.75899 , 0.058297, 0.5976 , 0.19091 , -0.67459 , 0.81045 ,
-0.08114 , -1.981 , 1.3042 , 0.50831 , 1.2879 , 0.84307 ,
-0.76808 , -0.32957 , 0.061111, 0.74599 , 0.84949 , 0.54812 ,
1.6615 , 1.0371 , -0.35059 , 1.1602 , 0.38933 , -0.49988 ,
-0.79961 , 0.86017 , 0.43495 , 0.36262 , 0.56211 , 0.62906 ,
-0.24666 , 0.7835 , 0.61416 , 0.66516 , -1.0603 , -0.57106 ,
0.46365 , 0.17851 ]), 'congrats': np.asarray([ -5.70920000e-02, 5.04180000e-02, 2.48050000e-01,
6.28790000e-02, -3.66510000e-01, -5.58390000e-01,
7.96300000e-01, 5.50320000e-01, -1.29480000e-01,
2.82540000e-01, -9.35950000e-01, 7.35330000e-01,
5.61630000e-01, 7.58200000e-04, 4.22260000e-01,
-3.99030000e-01, -4.65830000e-01, 3.82710000e-01,
4.60270000e-01, 1.48260000e-01, 1.27760000e-01,
7.24220000e-02, 5.86580000e-01, 7.49630000e-02,
1.22610000e+00, 7.60750000e-02, 3.81510000e-01,
1.41770000e-01, 5.91010000e-01, -9.65130000e-01,
-1.21780000e+00, 9.56730000e-01, -9.90670000e-01,
4.67990000e-01, -3.62620000e-01, -4.91490000e-02,
1.37410000e-01, -4.34850000e-01, 1.21810000e-01,
-4.58870000e-01, -1.32990000e-01, -2.58790000e-01,
1.13250000e-02, -3.08230000e-01, 1.53970000e-01,
4.33950000e-01, 7.08730000e-01, 2.95020000e-01,
7.38500000e-01, 5.40940000e-01]), 'on': np.asarray([ 0.30045 , 0.25006 , -0.16692 , 0.1923 , 0.026921 ,
-0.079486 , -0.91383 , -0.1974 , -0.053413 , -0.40846 ,
-0.26844 , -0.28212 , -0.5 , 0.1221 , 0.3903 ,
0.17797 , -0.4429 , -0.40478 , -0.9505 , -0.16897 ,
0.77793 , 0.33525 , 0.3346 , -0.1754 , -0.12017 ,
-1.7861 , 0.29241 , 0.55933 , 0.029982 , -0.32417 ,
3.9297 , 0.1088 , -0.57335 , -0.17842 , 0.0041748,
-0.16309 , 0.45077 , -0.16123 , -0.17311 , -0.087889 ,
-0.089032 , 0.062001 , -0.19946 , -0.38863 , -0.18232 ,
0.060751 , 0.098603 , -0.07131 , 0.23052 , -0.51939 ]), 'new': np.asarray([ 1.95110000e-01, 5.07390000e-01, 1.47090000e-03,
4.19140000e-02, -1.67590000e-01, 3.75170000e-02,
-1.39700000e+00, -9.23980000e-01, -2.42960000e-01,
-1.51710000e-01, -4.78290000e-01, 5.46120000e-02,
-2.49860000e-01, 3.83980000e-01, 1.61820000e-02,
3.49380000e-01, -2.26270000e-01, 8.66180000e-02,
-4.10010000e-01, -1.81390000e-01, 7.56070000e-01,
-2.62000000e-02, -6.95570000e-01, 1.08740000e-01,
-4.75390000e-01, -1.80950000e+00, -1.69400000e-01,
-5.98630000e-02, -1.68060000e-01, -9.45460000e-02,
3.66100000e+00, 4.14620000e-02, -2.91610000e-01,
-6.97720000e-01, 3.08050000e-01, -2.84570000e-01,
1.32170000e-01, -7.64300000e-03, -9.23900000e-02,
-4.92370000e-01, -2.70550000e-01, 6.04250000e-02,
9.51070000e-02, -2.36790000e-01, -8.61080000e-02,
1.02430000e+00, -2.27790000e-01, 3.04880000e-02,
-1.42720000e-01, 4.54110000e-01]), 'job': np.asarray([-0.20343 , -0.045235 , 0.23346 , -0.59289 , 0.49678 ,
-0.18233 , -1.113 , 0.32915 , -0.083461 , -0.46827 ,
-0.2608 , 0.062637 , -0.69844 , -0.059388 , 0.96493 ,
-0.27605 , 0.041796 , 0.44355 , 0.39495 , -0.7385 ,
0.20983 , 0.29984 , -0.52718 , -0.13907 , 0.20699 ,
-1.6566 , -0.15556 , -0.089032 , 0.53444 , 0.34896 ,
3.1243 , 0.7747 , -0.038041 , -0.63928 , 0.0061523,
0.51253 , -0.14199 , 0.76461 , 0.68417 , -0.84998 ,
-0.56657 , 0.039032 , -0.40812 , 0.34442 , -0.27174 ,
-0.54446 , 0.055983 , 0.78093 , 0.0046384, 1.3011 ]), 'congratulations': np.asarray([-0.098995, 1.3586 , -0.16704 , -0.32321 , 0.61358 , -1.2561 ,
-0.24749 , 1.2712 , -0.17758 , 0.35208 , -0.65754 , 0.94075 ,
0.92373 , -0.041171, -0.23071 , -0.68954 , -0.98791 , -0.42584 ,
0.81626 , -0.41026 , -0.036613, 0.64291 , 0.47747 , -0.90263 ,
1.4832 , -0.69925 , -0.13329 , 0.12745 , -0.39035 , -0.56113 ,
0.92246 , 1.902 , -0.75908 , 1.061 , -0.44958 , -0.64738 ,
0.17264 , 0.012265, -0.90771 , -0.41756 , 0.81103 , 0.025966,
-1.1082 , -0.56211 , -0.4323 , 0.083469, -0.57773 , 0.92271 ,
-0.32267 , 0.10943 ]), 'so': np.asarray([ 6.03080000e-01, -3.20240000e-01, 8.88570000e-02,
-5.51760000e-01, 5.31820000e-01, 4.70690000e-02,
-3.62460000e-01, 5.70180000e-03, -3.76650000e-01,
2.25340000e-01, -1.35340000e-01, 3.59880000e-01,
-4.25180000e-01, 7.13240000e-02, 7.70650000e-01,
5.67120000e-01, 4.12260000e-01, 1.24510000e-01,
1.42300000e-01, -9.65350000e-01, -3.90530000e-01,
3.41990000e-01, 5.69690000e-01, 3.16350000e-02,
6.94650000e-01, -1.92160000e+00, -6.71180000e-01,
5.79710000e-01, 8.60880000e-01, -5.91050000e-01,
3.77870000e+00, 3.04310000e-01, -4.31030000e-02,
-4.23980000e-01, -6.39150000e-02, -6.68220000e-02,
6.19830000e-02, 5.63320000e-01, -2.23350000e-01,
-4.73860000e-01, -4.70210000e-01, 9.17140000e-02,
1.47780000e-01, 6.38050000e-01, -1.43560000e-01,
-2.29280000e-03, -3.15000000e-01, -2.51870000e-01,
-2.68790000e-01, 3.66570000e-01]), 'happy': np.asarray([ 0.092086, 0.2571 , -0.58693 , -0.37029 , 1.0828 , -0.55466 ,
-0.78142 , 0.58696 , -0.58714 , 0.46318 , -0.11267 , 0.2606 ,
-0.26928 , -0.072466, 1.247 , 0.30571 , 0.56731 , 0.30509 ,
-0.050312, -0.64443 , -0.54513 , 0.86429 , 0.20914 , 0.56334 ,
1.1228 , -1.0516 , -0.78105 , 0.29656 , 0.7261 , -0.61392 ,
2.4225 , 1.0142 , -0.17753 , 0.4147 , -0.12966 , -0.47064 ,
0.3807 , 0.16309 , -0.323 , -0.77899 , -0.42473 , -0.30826 ,
-0.42242 , 0.055069, 0.38267 , 0.037415, -0.4302 , -0.39442 ,
0.10511 , 0.87286 ]), 'for': np.asarray([ 0.15272 , 0.36181 , -0.22168 , 0.066051, 0.13029 , 0.37075 ,
-0.75874 , -0.44722 , 0.22563 , 0.10208 , 0.054225, 0.13494 ,
-0.43052 , -0.2134 , 0.56139 , -0.21445 , 0.077974, 0.10137 ,
-0.51306 , -0.40295 , 0.40639 , 0.23309 , 0.20696 , -0.12668 ,
-0.50634 , -1.7131 , 0.077183, -0.39138 , -0.10594 , -0.23743 ,
3.9552 , 0.66596 , -0.61841 , -0.3268 , 0.37021 , 0.25764 ,
0.38977 , 0.27121 , 0.043024, -0.34322 , 0.020339, 0.2142 ,
0.044097, 0.14003 , -0.20079 , 0.074794, -0.36076 , 0.43382 ,
-0.084617, 0.1214 ]), 'why': np.asarray([ 0.32386 , 0.011154 , 0.23443 , -0.18039 , 0.6233 ,
-0.059467 , -0.62369 , 0.12782 , -0.40932 , 0.083849 ,
-0.19215 , 0.57834 , -0.49637 , -0.048521 , 1.099 ,
0.6298 , 0.26122 , -0.11049 , 0.16728 , -0.71227 ,
-0.371 , 0.51635 , 0.54567 , 0.27623 , 0.82096 ,
-2.1861 , -1.0027 , 0.11441 , 0.53145 , -0.86653 ,
2.5888 , 0.37458 , -0.51935 , -0.68734 , -0.14537 ,
-0.53177 , -0.065899 , 0.0077695, 0.31162 , -0.17694 ,
-0.36669 , 0.17919 , 0.21591 , 0.61326 , 0.41495 ,
0.17295 , -0.19359 , 0.26349 , -0.19398 , 0.58678 ]), 'are': np.asarray([ 0.96193 , 0.012516 , 0.21733 , -0.06539 , 0.26843 ,
0.33586 , -0.45112 , -0.60547 , -0.46845 , -0.18412 ,
0.060949 , 0.19597 , 0.22645 , 0.032802 , 0.42488 ,
0.49678 , 0.65346 , -0.0274 , 0.17809 , -1.1979 ,
-0.40634 , -0.22659 , 1.1495 , 0.59342 , -0.23759 ,
-0.93254 , -0.52502 , 0.05125 , 0.032248 , -0.72774 ,
4.2466 , 0.60592 , 0.33397 , -0.85754 , 0.4895 ,
0.21744 , -0.13451 , 0.0094912, -0.54173 , 0.18857 ,
-0.64506 , 0.012695 , 0.73452 , 1.0032 , 0.41874 ,
0.16596 , -0.71085 , 0.14032 , -0.38468 , -0.38712 ]), 'feeling': np.asarray([-0.07035 , -0.12121 , -0.52871 , -0.62478 , 0.75067 , -0.05449 ,
0.062919, 1.2127 , -0.59619 , 0.69222 , 0.40456 , -0.050729,
-0.61109 , -0.20101 , 0.36364 , 0.28294 , 0.019544, 0.16399 ,
0.065644, -0.68719 , -1.0993 , 1.3423 , 0.22274 , 0.16956 ,
1.2745 , -1.1989 , -1.015 , 0.85504 , 1.3961 , 0.1528 ,
2.635 , 1.231 , 0.95117 , -0.55716 , -0.78802 , -0.33579 ,
-0.23524 , -0.14593 , 0.33506 , -0.74005 , -0.31389 , -0.33582 ,
-0.28016 , 0.49318 , 0.20621 , 0.47646 , -0.53762 , -0.20321 ,
-0.21013 , 0.47085 ]), 'bad': np.asarray([-0.17981 , -0.40407 , -0.1653 , -0.60687 , -0.39656 , 0.12688 ,
-0.053049, 0.38024 , -0.51008 , 0.46593 , -0.30818 , 0.79362 ,
-0.85766 , -0.25143 , 1.0448 , 0.18628 , 0.13688 , 0.092588,
-0.2236 , -0.13604 , -0.19482 , 0.057702, 0.56133 , 0.24823 ,
0.627 , -1.8437 , -1.2573 , 0.64482 , 1.2787 , -0.29522 ,
3.0493 , 0.62079 , 0.90369 , -0.030099, -0.13091 , 0.30525 ,
-0.070138, -0.12912 , 0.72277 , -0.79774 , -0.70277 , 0.038009,
0.27192 , 0.35679 , 0.26493 , 0.13037 , -0.01369 , 0.33713 ,
0.99956 , 0.72031 ]), 'what': np.asarray([ 0.45323 , 0.059811, -0.10577 , -0.333 , 0.72359 , -0.08717 ,
-0.61053 , -0.037695, -0.30945 , 0.21805 , -0.43605 , 0.47318 ,
-0.76866 , -0.2713 , 1.1042 , 0.59141 , 0.56962 , -0.18678 ,
0.14867 , -0.67292 , -0.34672 , 0.52284 , 0.22959 , -0.072014,
0.93967 , -2.3985 , -1.3238 , 0.28698 , 0.75509 , -0.76522 ,
3.3425 , 0.17233 , -0.51803 , -0.8297 , -0.29333 , -0.50076 ,
-0.15228 , 0.098973, 0.18146 , -0.1742 , -0.40666 , 0.20348 ,
-0.011788, 0.48252 , 0.024598, 0.34064 , -0.084724, 0.5324 ,
-0.25103 , 0.62546 ]), 'is': np.asarray([ 6.18500000e-01, 6.42540000e-01, -4.65520000e-01,
3.75700000e-01, 7.48380000e-01, 5.37390000e-01,
2.22390000e-03, -6.05770000e-01, 2.64080000e-01,
1.17030000e-01, 4.37220000e-01, 2.00920000e-01,
-5.78590000e-02, -3.45890000e-01, 2.16640000e-01,
5.85730000e-01, 5.39190000e-01, 6.94900000e-01,
-1.56180000e-01, 5.58300000e-02, -6.05150000e-01,
-2.89970000e-01, -2.55940000e-02, 5.55930000e-01,
2.53560000e-01, -1.96120000e+00, -5.13810000e-01,
6.90960000e-01, 6.62460000e-02, -5.42240000e-02,
3.78710000e+00, -7.74030000e-01, -1.26890000e-01,
-5.14650000e-01, 6.67050000e-02, -3.29330000e-01,
1.34830000e-01, 1.90490000e-01, 1.38120000e-01,
-2.15030000e-01, -1.65730000e-02, 3.12000000e-01,
-3.31890000e-01, -2.60010000e-02, -3.82030000e-01,
1.94030000e-01, -1.24660000e-01, -2.75570000e-01,
3.08990000e-01, 4.84970000e-01]), 'wrong': np.asarray([ 0.13423 , -0.70572 , 0.25652 , -0.70702 , 0.66891 ,
0.078309 , -0.085091 , 0.1273 , -0.25349 , 0.0039005,
-0.47367 , 0.45491 , -0.85656 , -0.16408 , 0.54799 ,
0.36329 , 0.33482 , -0.25919 , -0.01283 , -0.56152 ,
-0.54376 , 0.52644 , 0.47671 , 0.29848 , 1.2667 ,
-2.3394 , -0.93657 , 0.6793 , 0.93526 , -0.93051 ,
2.2586 , 0.017803 , -0.2772 , -0.57896 , -0.31235 ,
-0.51586 , 0.37149 , 0.24718 , 0.0073157, -0.25879 ,
-0.036868 , -0.073569 , 0.36549 , 0.90229 , -0.019807 ,
0.02628 , -0.078312 , 0.43723 , 0.90636 , 0.51193 ]), 'with': np.asarray([ 0.25616 , 0.43694 , -0.11889 , 0.20345 , 0.41959 , 0.85863 ,
-0.60344 , -0.31835 , -0.6718 , 0.003984, -0.075159, 0.11043 ,
-0.73534 , 0.27436 , 0.054015, -0.23828 , -0.13767 , 0.011573,
-0.46623 , -0.55233 , 0.083317, 0.55938 , 0.51903 , -0.27065 ,
-0.28211 , -1.3918 , 0.17498 , 0.26586 , 0.061449, -0.273 ,
3.9032 , 0.38169 , -0.056009, -0.004425, 0.24033 , 0.30675 ,
-0.12638 , 0.33436 , 0.075485, -0.036218, 0.13691 , 0.37762 ,
-0.12159 , -0.13808 , 0.19505 , 0.22793 , -0.17304 , -0.07573 ,
-0.25868 , -0.39339 ]), 'totally': np.asarray([ 0.40695 , -1.4406 , -0.17813 , -0.21023 , 0.36731 , 0.26126 ,
0.14239 , 0.041061, -0.61054 , 0.30215 , 0.18146 , -0.049216,
-0.64714 , 0.028726, 0.70163 , 0.72709 , 0.73611 , 0.54732 ,
0.36596 , -0.11867 , -0.66232 , 0.88739 , 0.27436 , 0.32745 ,
0.9479 , -1.0829 , -0.48233 , 1.179 , 1.3878 , -0.11181 ,
2.4607 , -0.71156 , 0.17669 , -0.60554 , -0.88381 , 0.083859,
0.85267 , 0.23708 , -0.77943 , -0.57827 , -0.098225, -0.98837 ,
0.55839 , 0.54079 , -0.36776 , 0.17429 , -1.2801 , 0.1565 ,
0.68669 , 0.27528 ]), 'deserve': np.asarray([-0.2927 , 0.23329 , -0.14797 , -0.70162 , 0.72223 , -0.45522 ,
0.57729 , 0.8525 , 0.24885 , 0.69968 , -0.34952 , 0.19905 ,
0.46813 , -0.74116 , 0.81076 , -0.31371 , 1.256 , -0.10886 ,
0.69101 , -0.9245 , -1.0401 , 0.52452 , 0.036144, -0.25501 ,
0.40509 , -1.0917 , -1.0773 , -0.40504 , 0.26759 , -0.72016 ,
1.6169 , 1.3855 , -0.27887 , -0.54517 , -0.37724 , 0.043132,
0.44374 , -0.35941 , -0.21471 , -0.97736 , -0.25303 , -0.16316 ,
0.48472 , 0.63338 , -0.29871 , 0.07218 , -0.95737 , 0.90857 ,
-0.33246 , 0.58163 ]), 'this': np.asarray([ 5.30740000e-01, 4.01170000e-01, -4.07850000e-01,
1.54440000e-01, 4.77820000e-01, 2.07540000e-01,
-2.69510000e-01, -3.40230000e-01, -1.08790000e-01,
1.05630000e-01, -1.02890000e-01, 1.08490000e-01,
-4.96810000e-01, -2.51280000e-01, 8.40250000e-01,
3.89490000e-01, 3.22840000e-01, -2.27970000e-01,
-4.43420000e-01, -3.16490000e-01, -1.24060000e-01,
-2.81700000e-01, 1.94670000e-01, 5.55130000e-02,
5.67050000e-01, -1.74190000e+00, -9.11450000e-01,
2.70360000e-01, 4.19270000e-01, 2.02790000e-02,
4.04050000e+00, -2.49430000e-01, -2.04160000e-01,
-6.27620000e-01, -5.47830000e-02, -2.68830000e-01,
1.84440000e-01, 1.82040000e-01, -2.35360000e-01,
-1.61550000e-01, -2.76550000e-01, 3.55060000e-02,
-3.82110000e-01, -7.51340000e-04, -2.48220000e-01,
2.81640000e-01, 1.28190000e-01, 2.87620000e-01,
1.44400000e-01, 2.36110000e-01]), 'prize': np.asarray([ -3.31750000e-01, 1.82220000e+00, 8.75410000e-02,
-1.40560000e-01, 7.38970000e-01, 3.04110000e-01,
-2.19000000e-01, -1.79360000e-01, 3.07550000e-01,
8.46860000e-01, -1.40850000e-01, -1.41740000e-01,
4.40420000e-02, -3.56610000e-01, 1.46540000e+00,
-1.04980000e+00, 1.39100000e+00, 2.17210000e-01,
-1.17070000e+00, -8.76680000e-02, 1.10820000e+00,
3.37220000e-02, 2.06300000e-02, -8.37090000e-01,
4.31150000e-01, -1.28140000e+00, -1.14860000e+00,
-1.17030000e+00, -1.83450000e+00, 4.89060000e-02,
1.39210000e+00, 8.02030000e-05, -1.12170000e+00,
-1.83780000e-01, -4.54920000e-01, -3.05920000e-01,
1.57010000e-02, 1.08040000e+00, 2.03810000e-01,
-7.59700000e-01, 6.51700000e-01, 2.47660000e-01,
-3.20510000e-01, -5.75430000e-01, -8.30970000e-01,
-4.06410000e-01, -2.42570000e-01, 2.15200000e-01,
-5.77180000e-01, -7.95250000e-01]), 'let': np.asarray([ 0.067025 , -0.010427 , 0.61778 , -0.29952 , 0.68244 ,
-0.53138 , -0.0049878, 0.67877 , -0.3801 , 0.1606 ,
-0.054663 , 0.85439 , -0.48949 , 0.091105 , 0.79834 ,
0.83093 , 0.79013 , -0.31992 , 0.27924 , -1.1659 ,
-0.0048596, 0.20945 , 0.5982 , 0.59395 , 0.50349 ,
-1.8205 , -0.31137 , -0.073957 , 1.0215 , -1.0536 ,
2.9803 , 0.83399 , -1.1412 , 0.15333 , -0.49095 ,
-0.28432 , 0.21243 , -0.37621 , 0.46302 , -0.32079 ,
0.18216 , 0.20559 , -0.051854 , 0.38381 , 0.062563 ,
0.20926 , 0.21338 , -0.42741 , -0.19243 , 0.42443 ]), 'us': np.asarray([ 0.19086 , 0.24339 , 1.2768 , -0.038207 , 0.6094 ,
-0.70188 , 0.040862 , -0.44903 , 0.0080416, -0.18819 ,
-0.68578 , -0.12465 , -0.32855 , -0.073507 , 0.79112 ,
0.31981 , 0.081126 , -0.033057 , -0.6007 , 0.014536 ,
0.42773 , 0.71318 , 0.13327 , -0.64247 , 0.066402 ,
-2.2346 , 0.013668 , -0.45647 , 0.40542 , -0.0042052,
3.4561 , 0.54602 , -0.3789 , 0.58198 , -0.22852 ,
-0.8409 , -0.30465 , -0.69669 , -0.4232 , -0.81757 ,
0.036113 , 0.25739 , 1.745 , -0.61482 , 0.41547 ,
0.40002 , -0.51528 , 0.89973 , -0.54324 , 0.69393 ]), 'play': np.asarray([-0.73571 , 0.19937 , -0.89408 , 0.36406 , -0.20246 , -0.034324,
-0.63138 , 0.76669 , -0.94343 , 0.65883 , 0.049478, 0.55608 ,
-1.2809 , 0.44575 , 0.73791 , 0.014728, 0.80956 , -0.35516 ,
-1.0248 , -0.13845 , -0.47632 , 0.32001 , 0.35023 , 0.77794 ,
0.60233 , -1.2321 , 0.043144, -0.41347 , 0.34533 , -1.3093 ,
3.4681 , 0.9882 , 0.038253, -0.33672 , 0.30999 , 0.6331 ,
0.30798 , 0.68528 , -0.21989 , -0.77505 , -0.036884, 0.051738,
-0.25442 , -0.063405, -0.20665 , 0.91281 , 0.80133 , -0.075279,
-0.44448 , 0.47437 ]), 'football': np.asarray([-1.8209 , 0.70094 , -1.1403 , 0.34363 , -0.42266 , -0.92479 ,
-1.3942 , 0.28512 , -0.78416 , -0.52579 , 0.89627 , 0.35899 ,
-0.80087 , -0.34636 , 1.0854 , -0.087046, 0.63411 , 1.1429 ,
-1.6264 , 0.41326 , -1.1283 , -0.16645 , 0.17424 , 0.99585 ,
-0.81838 , -1.7724 , 0.078281, 0.13382 , -0.59779 , -0.45068 ,
2.5474 , 1.0693 , -0.27017 , -0.75646 , 0.24757 , 1.0261 ,
0.11329 , 0.17668 , -0.23257 , -1.1561 , -0.10665 , -0.25377 ,
-0.65102 , 0.32393 , -0.58262 , 0.88137 , -0.13465 , 0.96903 ,
-0.076259, -0.59909 ]), 'down': np.asarray([-0.1981 , -0.70847 , 0.85857 , -0.48108 , 0.51562 , -0.28924 ,
-0.64311 , -0.41966 , -0.68718 , -0.12307 , -0.44594 , -0.35226 ,
-0.84826 , 0.12962 , 0.20005 , 0.48916 , -0.20257 , -0.53341 ,
-0.96196 , -0.67681 , 0.69808 , 0.50599 , 0.24012 , -0.72813 ,
0.11396 , -1.8256 , 0.8098 , 0.65007 , 0.73111 , -0.50325 ,
3.5865 , 0.30906 , -0.14279 , 0.6753 , -0.074059, -0.45274 ,
-0.28001 , -0.20383 , 0.61044 , -0.24875 , -0.47409 , 0.25916 ,
0.41522 , 0.15245 , 0.093191, -0.091906, 0.40082 , -0.90268 ,
0.30191 , -0.89862 ]), 'afternoon': np.asarray([ 0.13771 , 0.15251 , -0.28598 , 0.34615 , 0.074422, -1.4899 ,
-1.027 , 0.88307 , -0.60113 , -0.57746 , -0.72624 , -1.2508 ,
0.10787 , 0.23726 , 0.50235 , 0.27648 , -1.3065 , -0.4129 ,
-1.1716 , -0.6428 , 0.81788 , 1.1329 , 0.46562 , -0.3858 ,
0.43708 , -0.83755 , 0.47821 , 1.13 , 0.17396 , 0.26338 ,
2.9635 , 0.28777 , 0.027204, 0.26936 , 0.33261 , -0.55208 ,
0.31409 , 0.067098, 0.17907 , 0.214 , -0.59494 , 0.41803 ,
-0.275 , -0.26227 , 0.54372 , 0.083923, 0.04968 , -0.1062 ,
0.080406, 0.11109 ]), 'work': np.asarray([ 5.13590000e-01, 1.96950000e-01, -5.19440000e-01,
-8.62180000e-01, 1.54940000e-02, 1.09730000e-01,
-8.02930000e-01, -3.33610000e-01, -1.61190000e-04,
1.01890000e-02, 4.67340000e-02, 4.67510000e-01,
-4.74750000e-01, 1.10380000e-01, 3.93270000e-01,
-4.36520000e-01, 3.99840000e-01, 2.71090000e-01,
4.26500000e-01, -6.06400000e-01, 8.11450000e-01,
4.56300000e-01, -1.27260000e-01, -2.24740000e-01,
6.40710000e-01, -1.27670000e+00, -7.22310000e-01,
-6.95900000e-01, 2.80450000e-02, -2.30720000e-01,
3.79960000e+00, -1.26250000e-01, -4.79670000e-01,
-9.99720000e-01, -2.19760000e-01, 5.05650000e-01,
2.59530000e-02, 8.05140000e-01, 1.99290000e-01,
2.87960000e-01, -1.59150000e-01, -3.04380000e-01,
1.60250000e-01, -1.82900000e-01, -3.85630000e-02,
-1.76190000e-01, 2.70410000e-02, 4.68420000e-02,
-6.28970000e-01, 3.57260000e-01]), 'hard': np.asarray([-0.53079 , -0.21965 , 0.53268 , -0.23144 , 0.074339, -0.065505,
-0.10421 , 0.30725 , -0.49644 , 0.65372 , -0.38484 , -0.16258 ,
-0.6452 , 0.36771 , 0.089541, 0.33131 , 0.72552 , -0.05129 ,
0.36862 , -0.89896 , -0.53229 , 0.33536 , 0.19408 , 0.18393 ,
0.5277 , -1.8321 , -0.53567 , 0.11963 , 0.87309 , -0.40913 ,
3.5748 , 0.168 , -0.26982 , 0.1895 , -0.15528 , 0.23055 ,
-0.30747 , 0.44402 , 0.14332 , -0.56575 , -0.13017 , 0.2943 ,
-0.052564, 0.40329 , 0.45792 , 0.3516 , -0.019691, -0.20061 ,
-0.24725 , -0.030552]), 'harder': np.asarray([-0.29399 , -0.79617 , 0.67096 , -0.66914 , -0.19887 , 0.12998 ,
0.092694, 0.3473 , -0.24361 , 0.52228 , -0.1028 , 0.19513 ,
-0.40637 , 0.2347 , 0.13594 , 0.78369 , 0.97587 , -0.16608 ,
0.67398 , -0.99359 , -0.11845 , 0.026627, 0.27858 , 0.31713 ,
0.66437 , -1.4722 , -0.11494 , -0.10703 , 0.90995 , -0.59183 ,
2.4475 , 0.53444 , -0.020802, -0.19736 , 0.12 , -0.15844 ,
-0.41524 , 0.52509 , -0.074545, -0.6972 , -0.67977 , -0.030141,
0.64788 , 0.31299 , 0.43638 , -0.17408 , 0.35904 , 0.093447,
-0.091229, 0.47121 ]), 'it': np.asarray([ 0.61183 , -0.22072 , -0.10898 , -0.052967, 0.50804 , 0.34684 ,
-0.33558 , -0.19152 , -0.035865, 0.1051 , 0.07935 , 0.2449 ,
-0.4373 , -0.33344 , 0.57479 , 0.69052 , 0.29713 , 0.090669,
-0.54992 , -0.46176 , 0.10113 , -0.02024 , 0.28479 , 0.043512,
0.45735 , -2.0466 , -0.58084 , 0.61797 , 0.6518 , -0.58263 ,
4.0786 , -0.2542 , -0.14649 , -0.34321 , -0.25437 , -0.44677 ,
0.12657 , 0.28134 , 0.13331 , -0.36974 , 0.050059, -0.10058 ,
-0.017907, 0.11142 , -0.71798 , 0.491 , -0.099974, -0.043688,
-0.097922, 0.16806 ]), 'suprising': np.asarray([ 0.14763 , -0.66334 , 0.22033 , 0.16203 , 0.90019 ,
0.16227 , 0.8552 , 0.84747 , -0.33919 , 0.8899 ,
-0.058219 , -0.54394 , 0.56183 , -0.15908 , -0.063711 ,
0.46336 , 0.35028 , -0.25461 , -0.0028344, -0.12028 ,
-0.76789 , -0.24549 , -0.29706 , -0.20956 , 0.58641 ,
0.5831 , -0.29427 , 0.63722 , 0.75541 , -0.23802 ,
-1.069 , 0.35444 , 0.62498 , -0.084038 , 0.47742 ,
-0.32221 , 0.34878 , 0.59345 , -0.97995 , -0.73965 ,
0.03104 , -0.48903 , -0.12942 , 0.58871 , -0.65699 ,
0.046639 , -0.0059467, 1.0374 , 0.16819 , 0.25654 ]), 'how': np.asarray([ 6.89380000e-01, -1.06440000e-01, 1.70830000e-01,
-3.75830000e-01, 7.51700000e-01, 7.81490000e-04,
-5.31020000e-01, -1.99030000e-01, -1.44190000e-01,
1.27480000e-01, -2.80380000e-01, 7.07230000e-01,
-5.41000000e-01, 1.96250000e-01, 9.66350000e-01,
6.05190000e-01, 4.09180000e-01, -3.16120000e-02,
5.39000000e-01, -8.70860000e-01, -2.09120000e-01,
5.68530000e-01, 6.59830000e-01, 1.45830000e-01,
1.01120000e+00, -2.07360000e+00, -1.12420000e+00,
5.96620000e-04, 7.03320000e-01, -8.26080000e-01,
3.44450000e+00, 3.29840000e-01, -3.53240000e-01,
-1.03350000e+00, -1.47530000e-01, -1.48740000e-01,
-4.12460000e-01, 3.34890000e-01, 1.98410000e-01,
-2.54780000e-01, -4.71930000e-01, 6.67010000e-02,
3.27770000e-01, 6.87810000e-01, 3.64280000e-01,
2.15220000e-01, 1.64940000e-01, 4.17610000e-01,
-2.25040000e-01, 6.14120000e-01]), 'people': np.asarray([ 0.95281 , -0.20608 , 0.55618 , -0.46323 , 0.73354 ,
0.029137 , -0.19367 , -0.090066 , -0.22958 , -0.19058 ,
-0.34857 , -1.0231 , 0.743 , -0.5489 , 0.88484 ,
-0.14051 , 0.0040139, 0.58448 , 0.10767 , -0.44657 ,
-0.43205 , 0.9868 , 0.78288 , 0.51513 , 0.85788 ,
-1.7713 , -0.88259 , -0.59728 , 0.084934 , -0.48112 ,
3.9678 , 0.8893 , -0.27064 , -0.44094 , -0.26213 ,
0.085597 , 0.022099 , -0.58376 , 0.10908 , 0.77973 ,
-0.95447 , 0.40482 , 0.8941 , 0.65251 , 0.39858 ,
0.20884 , -1.3281 , -0.10882 , -0.22822 , -0.46303 ]), 'can': np.asarray([ 0.8052 , 0.37121 , 0.55933 , -0.011405, 0.17319 , 0.195 ,
0.057701, -0.12447 , -0.011342, 0.20654 , 0.41079 , 0.89578 ,
0.31893 , 0.030787, 0.60194 , 1.2023 , 0.68283 , -0.13267 ,
0.16984 , -1.4674 , -0.41844 , -0.47395 , 0.7267 , 0.61088 ,
0.44584 , -1.4793 , -0.50037 , -0.12249 , 0.75994 , -0.77112 ,
3.9653 , 0.38077 , -0.6439 , -0.84899 , 0.07554 , 0.17522 ,
0.30117 , 0.12964 , 0.27253 , -0.32951 , 0.34211 , 0.15608 ,
0.20953 , 0.97948 , 0.35927 , 0.19116 , 0.45494 , -0.1895 ,
-0.20902 , 0.47612 ]), 'be': np.asarray([ 9.11020000e-01, -2.28720000e-01, 2.07700000e-01,
-2.02370000e-01, 5.06970000e-01, -5.78930000e-02,
-4.17290000e-01, -7.53410000e-02, -3.04540000e-01,
-3.28600000e-03, 4.44810000e-01, 4.18180000e-01,
-3.34090000e-01, 3.29170000e-02, 9.88720000e-01,
9.19840000e-01, 4.05210000e-01, 1.92500000e-02,
-1.05200000e-01, -7.98650000e-01, -3.64030000e-01,
-8.79950000e-02, 7.21820000e-01, 1.11140000e-01,
2.15300000e-01, -1.94110000e+00, -2.63760000e-01,
4.45500000e-01, 2.75860000e-01, -2.11040000e-01,
4.02120000e+00, -6.19430000e-02, -3.21340000e-01,
-8.19220000e-01, 2.10800000e-01, -2.04140000e-01,
7.26250000e-01, 4.75170000e-01, -3.98530000e-01,
-3.91680000e-01, -3.45810000e-01, 2.59280000e-02,
1.30720000e-01, 7.35620000e-01, -1.51990000e-01,
-1.84390000e-01, -6.71280000e-01, 1.66920000e-01,
-5.00630000e-02, 1.92410000e-01]), 'dumb': np.asarray([-0.50578 , -0.69265 , -0.019215 , -0.62411 , 0.2218 ,
0.4589 , 0.3598 , -0.71224 , -1.2021 , 0.81237 ,
-0.71109 , 1.1141 , -0.0081467, 0.63739 , 0.37285 ,
0.16493 , 0.62563 , 1.2656 , -0.071614 , -0.22088 ,
-0.071549 , 0.5851 , 0.15531 , 0.79637 , 1.1118 ,
-1.3115 , -0.7694 , 0.70862 , 1.4785 , -1.2291 ,
0.94624 , 0.25398 , 0.44926 , 0.31991 , 0.30786 ,
0.39901 , 0.38909 , -0.44259 , -0.18133 , -0.26765 ,
-0.30712 , 0.34618 , 0.52472 , 0.75486 , 0.20978 ,
0.3054 , 0.063189 , 0.16984 , 0.9853 , 1.026 ]), 'sometimes': np.asarray([ 4.97020000e-01, 1.54370000e-02, -6.15460000e-01,
-7.50060000e-01, 1.40330000e-01, 5.93800000e-01,
-4.83290000e-02, 1.39340000e-01, -7.14620000e-01,
1.73350000e-01, -2.03600000e-01, 4.93050000e-01,
4.17080000e-01, 7.85330000e-02, 2.11430000e-01,
7.67770000e-02, -5.32770000e-02, -9.78390000e-04,
-7.30050000e-02, -1.11040000e+00, -4.32720000e-01,
1.03090000e-01, 8.75370000e-01, 6.27400000e-01,
6.43800000e-01, -1.38320000e+00, -6.68540000e-01,
6.91580000e-01, 8.70800000e-01, -2.87140000e-01,
3.29350000e+00, -1.13990000e-01, 4.66780000e-01,
-6.66330000e-01, 8.79330000e-03, 3.69880000e-01,
-1.66240000e-01, 1.02770000e-01, -5.63190000e-01,
-5.78050000e-02, -4.68200000e-02, 3.14070000e-01,
3.92530000e-02, 9.92000000e-01, 4.64110000e-01,
-2.99360000e-01, 9.77870000e-02, -3.40170000e-01,
-1.02060000e-01, 1.01460000e-01]), 'very': np.asarray([ 5.70490000e-01, -7.78540000e-03, -7.07660000e-01,
-3.17850000e-01, 8.94930000e-01, -1.61280000e-02,
-6.71490000e-02, 1.57650000e-01, -4.98320000e-01,
2.58450000e-01, 1.09430000e-01, 3.67280000e-01,
-1.48430000e-01, 6.32860000e-02, 2.08320000e-01,
4.59200000e-01, 7.17810000e-01, 2.27720000e-01,
-1.53490000e-03, -9.30930000e-01, -8.00480000e-01,
4.67140000e-01, 4.15710000e-01, 1.75720000e-01,
1.08760000e+00, -1.61160000e+00, -7.09430000e-01,
8.37720000e-01, 6.70810000e-01, 1.81390000e-01,
3.98990000e+00, -1.02700000e-01, 4.39000000e-01,
-6.79260000e-01, 1.18610000e-01, -2.01820000e-01,
-8.16030000e-02, 9.07390000e-01, -5.22580000e-01,
-4.84260000e-01, -3.13260000e-01, 1.03250000e-01,
1.30360000e-01, 3.51150000e-01, 3.75930000e-01,
6.43880000e-02, -2.25900000e-01, 7.91250000e-02,
1.25730000e-01, 8.39390000e-01]), 'disappointed': np.asarray([ -2.26850000e-02, -8.59230000e-01, 4.94770000e-02,
-1.76060000e-01, 6.49410000e-01, -5.41910000e-01,
-5.57310000e-01, 1.20370000e+00, -7.94210000e-01,
3.26720000e-01, 1.31170000e-01, -6.61060000e-03,
-6.74980000e-01, -5.30800000e-01, 9.82690000e-01,
6.52160000e-01, 4.18660000e-01, -2.64900000e-01,
8.61920000e-02, -8.99270000e-01, -6.62510000e-01,
7.08420000e-01, 1.02790000e-01, 3.72340000e-02,
1.24160000e+00, -1.39990000e+00, -3.47430000e-01,
5.89470000e-01, -2.46080000e-01, -5.81110000e-02,
1.67440000e+00, 5.83940000e-01, 5.69900000e-01,
-2.61740000e-01, -3.35120000e-01, -1.25320000e+00,
4.40940000e-01, 2.27650000e-01, -3.41980000e-01,
-1.02270000e+00, -3.96040000e-01, -3.15110000e-01,
3.57690000e-03, 1.51520000e-01, 3.83440000e-01,
3.93690000e-01, -1.05010000e+00, 6.99150000e-01,
-7.83640000e-04, 6.03560000e-01]), 'best': np.asarray([ -9.15720000e-01, 6.03450000e-01, -3.10770000e-01,
2.84330000e-01, 5.46100000e-01, -3.92290000e-03,
-9.46400000e-01, -3.02100000e-01, 7.11500000e-02,
8.23850000e-01, -1.69490000e-01, 4.10540000e-01,
-4.86220000e-01, 6.14830000e-01, 7.04680000e-01,
-6.00320000e-01, 8.93820000e-01, 1.17810000e-01,
-7.78310000e-01, -5.22060000e-01, -1.00770000e-01,
3.83920000e-01, 2.78920000e-01, 3.72020000e-01,
4.93740000e-01, -1.14950000e+00, -1.15050000e+00,
-7.20890000e-01, -3.80900000e-02, -4.56990000e-01,
3.34250000e+00, 5.66600000e-01, 8.89440000e-04,
-2.00300000e-01, 5.36620000e-01, 2.84780000e-01,
-8.38220000e-02, 9.75350000e-01, -3.59850000e-01,
-1.08180000e+00, -5.15550000e-02, 3.04530000e-01,
4.71550000e-03, -2.52140000e-01, -3.51510000e-01,
2.61350000e-01, 1.99980000e-01, -5.60320000e-02,
7.49880000e-02, 7.60920000e-01]), 'day': np.asarray([ 0.11626 , 0.53897 , -0.39514 , -0.26027 , 0.57706 , -0.79198 ,
-0.88374 , 0.30119 , 0.082896, -0.33443 , -0.64467 , -0.75366 ,
-0.30356 , 0.07884 , 1.2252 , -0.038627, -0.47341 , -0.40556 ,
-1.1165 , -0.21352 , 0.49275 , 0.55574 , 0.38941 , -0.22514 ,
0.37775 , -1.4233 , -0.13409 , 0.10737 , 0.16528 , 0.35527 ,
3.5733 , 0.76404 , -0.59226 , 0.51366 , 0.12055 , -0.36967 ,
0.43251 , 0.086429, 0.034554, 0.082458, -0.8792 , 0.26134 ,
-0.32132 , -0.12652 , 0.25573 , 0.32818 , 0.024073, -0.39062 ,
-0.10885 , 0.084513]), 'in': np.asarray([ 0.33042 , 0.24995 , -0.60874 , 0.10923 , 0.036372 ,
0.151 , -0.55083 , -0.074239 , -0.092307 , -0.32821 ,
0.09598 , -0.82269 , -0.36717 , -0.67009 , 0.42909 ,
0.016496 , -0.23573 , 0.12864 , -1.0953 , 0.43334 ,
0.57067 , -0.1036 , 0.20422 , 0.078308 , -0.42795 ,
-1.7984 , -0.27865 , 0.11954 , -0.12689 , 0.031744 ,
3.8631 , -0.17786 , -0.082434 , -0.62698 , 0.26497 ,
-0.057185 , -0.073521 , 0.46103 , 0.30862 , 0.12498 ,
-0.48609 , -0.0080272, 0.031184 , -0.36576 , -0.42699 ,
0.42164 , -0.11666 , -0.50703 , -0.027273 , -0.53285 ]), 'life': np.asarray([ 0.51491 , 0.88806 , -0.71906 , -0.5748 , 0.85655 , 0.52474 ,
-0.31788 , -0.20168 , 0.17936 , 0.51999 , -0.11527 , 0.59296 ,
-0.3468 , 0.052568, 0.87153 , -0.036582, -0.056057, 0.08516 ,
0.036249, 0.23403 , 0.073175, 1.1394 , -0.17921 , -0.034245,
0.69977 , -1.6516 , -1.106 , -0.44145 , 0.77042 , 0.23963 ,
3.1823 , -0.020451, -0.056117, -0.69918 , -0.19543 , 0.19492 ,
-0.36403 , 0.053196, 0.26225 , -0.29054 , -0.64883 , -0.057846,
0.21646 , 0.40237 , -0.1413 , -0.015453, -0.11988 , -0.99837 ,
-0.066328, 0.13118 ]), 'think': np.asarray([-0.1166 , -0.010887 , 0.044444 , -0.39349 , 0.77743 ,
-0.35689 , -0.42073 , -0.12338 , -0.58818 , 0.3166 ,
-0.3084 , 0.4558 , -0.83117 , 0.0231 , 0.88091 ,
0.71288 , 1.1223 , 0.13017 , 0.017489 , -0.82336 ,
-0.65853 , 0.63098 , 0.34655 , 0.25429 , 0.9928 ,
-2.2232 , -1.1191 , 0.26796 , 0.71472 , -0.76952 ,
3.0569 , 0.75397 , -0.34325 , -0.60568 , -0.4142 ,
-0.8 , -0.17019 , 0.35416 , 0.29577 , -0.51743 ,
-0.48561 , 0.0161 , 0.10267 , 0.52783 , 0.32212 ,
0.26552 , -0.23728 , 0.44057 , 0.0064518, 1.2454 ]), 'will': np.asarray([ 8.15440000e-01, 3.01710000e-01, 5.47200000e-01,
4.65810000e-01, 2.85310000e-01, -5.61120000e-01,
-4.39130000e-01, -9.08770000e-03, 1.00020000e-01,
-1.72180000e-01, 2.81330000e-01, 3.76720000e-01,
-4.07560000e-01, 1.58360000e-01, 8.91130000e-01,
1.29970000e+00, 5.15080000e-01, -1.94800000e-01,
5.18560000e-02, -9.33800000e-01, 6.99550000e-02,
-2.48760000e-01, -1.67230000e-02, -2.03100000e-01,
-3.35580000e-02, -1.81320000e+00, 1.11990000e-01,
-3.19610000e-01, -1.37460000e-01, -4.54990000e-01,
3.88560000e+00, 1.21400000e+00, -1.00460000e+00,
-5.62740000e-02, 3.87760000e-03, -4.06690000e-01,
2.94520000e-01, 3.01710000e-01, 3.88480000e-02,
-5.60880000e-01, -4.65820000e-01, 1.71550000e-01,
3.37290000e-01, -1.52470000e-01, 2.37710000e-02,
5.14150000e-01, -2.17590000e-01, 3.19650000e-01,
-3.47410000e-01, 4.16720000e-01]), 'end': np.asarray([-0.04116 , 0.22243 , -0.11458 , -0.33628 , 0.038872, -0.066803,
-0.58309 , -0.19971 , -0.51087 , -0.29037 , -0.49177 , -0.13533 ,
-1.0737 , -0.4156 , 0.81837 , 0.47902 , 0.078869, -0.60318 ,
-0.5732 , 0.065613, 0.21122 , -0.20912 , -0.27305 , -0.21332 ,
-0.077237, -1.4695 , 0.46413 , 0.1222 , 0.80235 , 0.25796 ,
3.7452 , 0.14293 , -0.51556 , 0.34662 , 0.12782 , -0.21896 ,
0.15115 , -0.2969 , -0.37945 , -0.41931 , -0.74006 , -0.10499 ,
-0.31756 , -0.23893 , -0.40606 , 0.24247 , 0.55832 , -0.1801 ,
-0.37332 , -0.18039 ]), 'up': np.asarray([ 0.032286 , -0.27071 , 0.68108 , -0.27942 , 0.5797 ,
-0.0081097, -0.82792 , -0.53342 , -0.47851 , -0.068256 ,
-0.46964 , -0.31717 , -0.49372 , 0.09808 , 0.49961 ,
0.27305 , 0.099922 , -0.16148 , -0.69952 , -0.70435 ,
0.59084 , 0.62031 , 0.30467 , -0.41578 , -0.0222 ,
-1.6312 , 0.54676 , 0.25754 , 0.44541 , -0.72799 ,
3.9129 , 0.80075 , -0.18839 , 0.42435 , 0.039207 ,
-0.093939 , -0.39516 , 0.20976 , 0.59488 , -0.3907 ,
-0.31555 , 0.24074 , 0.41694 , 0.10415 , -0.044305 ,
-0.09516 , 0.25464 , -0.56699 , 0.033216 , -0.58123 ]), 'alone': np.asarray([ 0.5357 , -0.10067 , 0.53897 , -0.36807 , 0.67909 , 0.31371 ,
-0.26976 , -0.16813 , 0.12638 , 0.23458 , 0.1364 , -0.45599 ,
-0.030773, -0.51339 , 1.0718 , 0.4463 , 0.037857, 0.3219 ,
-0.22648 , -0.12073 , 0.14079 , 0.54096 , 0.29617 , 0.06971 ,
0.50718 , -1.2427 , -0.21958 , 0.040117, 0.40179 , -0.38644 ,
2.7514 , 0.61158 , -0.03015 , -0.027541, -0.02719 , -0.23114 ,
0.018789, 0.148 , 0.28147 , -0.16007 , -0.53388 , 0.10427 ,
0.51568 , -0.025971, -0.60817 , -0.077016, -0.16988 , -0.41623 ,
-0.22232 , 0.16686 ]), 'boring': np.asarray([-0.035674, -0.41765 , -0.44104 , -0.35455 , -0.28748 , -0.25642 ,
0.13326 , 0.020065, -0.66321 , 0.12049 , -1.0205 , -0.029451,
-0.25333 , 0.56927 , 0.51631 , 0.11365 , 0.33299 , 1.074 ,
0.070584, -0.75984 , -0.2908 , 0.56506 , 0.54392 , 0.66245 ,
1.1402 , -0.56075 , -0.99398 , 1.1002 , 1.1428 , -0.1684 ,
1.3748 , -0.45543 , 0.38396 , -0.011839, -0.087978, 0.32026 ,
0.28684 , 0.88902 , -0.18163 , -0.54099 , -0.16129 , -0.38781 ,
0.042476, 1.313 , 0.20165 , 0.12567 , 0.37838 , -0.041809,
0.37791 , 0.98184 ]), 'good': np.asarray([ -3.55860000e-01, 5.21300000e-01, -6.10700000e-01,
-3.01310000e-01, 9.48620000e-01, -3.15390000e-01,
-5.98310000e-01, 1.21880000e-01, -3.19430000e-02,
5.56950000e-01, -1.06210000e-01, 6.33990000e-01,
-4.73400000e-01, -7.58950000e-02, 3.82470000e-01,
8.15690000e-02, 8.22140000e-01, 2.22200000e-01,
-8.37640000e-03, -7.66200000e-01, -5.62530000e-01,
6.17590000e-01, 2.02920000e-01, -4.85980000e-02,
8.78150000e-01, -1.65490000e+00, -7.74180000e-01,
1.54350000e-01, 9.48230000e-01, -3.95200000e-01,
3.73020000e+00, 8.28550000e-01, -1.41040000e-01,
1.63950000e-02, 2.11150000e-01, -3.60850000e-02,
-1.55870000e-01, 8.65830000e-01, 2.63090000e-01,
-7.10150000e-01, -3.67700000e-02, 1.82820000e-03,
-1.77040000e-01, 2.70320000e-01, 1.10260000e-01,
1.41330000e-01, -5.73220000e-02, 2.72070000e-01,
3.13050000e-01, 9.27710000e-01]), 'great': np.asarray([-0.026567, 1.3357 , -1.028 , -0.3729 , 0.52012 , -0.12699 ,
-0.35433 , 0.37824 , -0.29716 , 0.093894, -0.034122, 0.92961 ,
-0.14023 , -0.63299 , 0.020801, -0.21533 , 0.96923 , 0.47654 ,
-1.0039 , -0.24013 , -0.36325 , -0.004757, -0.5148 , -0.4626 ,
1.2447 , -1.8316 , -1.5581 , -0.37465 , 0.53362 , 0.20883 ,
3.2209 , 0.64549 , 0.37438 , -0.17657 , -0.024164, 0.33786 ,
-0.419 , 0.40081 , -0.11449 , 0.051232, -0.15205 , 0.29855 ,
-0.44052 , 0.11089 , -0.24633 , 0.66251 , -0.26949 , -0.49658 ,
-0.41618 , -0.2549 ]), 'awesome': np.asarray([-0.35848 , -0.1155 , 0.11371 , 0.46814 , 0.7495 , -0.61523 ,
0.47639 , 0.090754, 0.3689 , 0.50331 , -0.22467 , 0.234 ,
-0.64901 , 0.055667, 0.30192 , -0.13536 , 0.93473 , 0.88677 ,
-0.70756 , -0.48408 , -0.90625 , 0.62314 , -0.18793 , -0.5102 ,
1.2565 , -0.28897 , -1.2819 , 0.30284 , 1.0423 , -0.54885 ,
1.0054 , 0.62053 , 0.31879 , -0.060822, -0.24919 , 0.5019 ,
0.41171 , 0.13648 , -0.49815 , -0.59822 , -0.16876 , -0.26096 ,
-0.53283 , 0.20083 , -0.19095 , -0.028693, 0.090843, -0.11063 ,
-0.040858, 0.88439 ])}
diw[70] = 'cucumber'
dwi['cucumber'] = 70
d['cucumber'] = np.asarray([ 0.68224 , -0.31608 , -0.95201 , 0.47108 , 0.56571 , 0.13151 ,
0.22457 , 0.094995, -1.3237 , -0.51545 , -0.39337 , 0.88488 ,
0.93826 , 0.22931 , 0.088624, -0.53908 , 0.23396 , 0.73245 ,
-0.019123, -0.26552 , -0.40433 , -1.5832 , 1.1316 , 0.4419 ,
-0.48218 , 0.4828 , 0.14938 , 1.1245 , 1.0159 , -0.50213 ,
0.83831 , -0.31303 , 0.083242, 1.7161 , 0.15024 , 1.0324 ,
-1.5005 , 0.62348 , 0.54508 , -0.88484 , 0.53279 , -0.085119,
0.02141 , -0.56629 , 1.1463 , 0.6464 , 0.78318 , -0.067662,
0.22884 , -0.042453])
class suppress_stdout_stderr(object):
'''
A context manager for doing a "deep suppression" of stdout and stderr in
Python, i.e. will suppress all print, even if the print originates in a
compiled C/Fortran sub-function.
This will not suppress raised exceptions, since exceptions are printed
to stderr just before a script exits, and after the context manager has
exited (at least, I think that is why it lets exceptions through).
'''
def __init__(self):
# Open a pair of null files
self.null_fds = [os.open(os.devnull,os.O_RDWR) for x in range(2)]
# Save the actual stdout (1) and stderr (2) file descriptors.
self.save_fds = [os.dup(1), os.dup(2)]
def __enter__(self):
# Assign the null pointers to stdout and stderr.
os.dup2(self.null_fds[0],1)
os.dup2(self.null_fds[1],2)
def __exit__(self, *_):
# Re-assign the real stdout/stderr back to (1) and (2)
os.dup2(self.save_fds[0],1)
os.dup2(self.save_fds[1],2)
# Close all file descriptors
for fd in self.null_fds + self.save_fds:
os.close(fd)
# with suppress_stdout_stderr():
with stdout_redirector.stdout_redirected():
sta = sentence_to_avg('I am going to the bar tonight',d)
# generating the the model
p,w,b = model(X, Y, d, learning_rate = 0.01, num_iterations = 300)
# generating the sentences_to_indices
a = sentences_to_indices(X, dwi, 20)
from keras.models import Sequential
from keras.initializers import glorot_uniform
# generating the test cases for pretrain_embedding_layer
# model2 = Sequential()
# model2.add(pretrained_embedding_layer(d, dwi))
# # compile the model
# model2.compile(optimizer='adam', loss='binary_crossentropy', metrics=['acc'])
# ct = model2.count_params()
# summarize the model
embedding_layer = pretrained_embedding_layer(d, dwi)
el = embedding_layer.get_weights()[0][1][3]
np.random.seed(3)
m = Emojify_V2((10,), d, dwi)
cp = m.count_params()
ml = len(m.layers)
mi = len(m.inputs)
mo = len(m.outputs)
def generateTestCases():
testCases = {
'sentence_to_avg': {
'partId': 'Ub0em',
'testCases': [
{
'testInput': ('I am going to the bar tonight',d),
'testOutput': sta
}
]
},
'model': {
'partId': 'EDw3y',
'testCases': [
{
'testInput': (X, Y, d, 0.01, 300),
'testOutput': (p,w,b)
}
]
},
'sentences_to_indices': {
'partId': 'ELQ6c',
'testCases': [
{
'testInput': (X, dwi, 20),
'testOutput': a
}
]
},
'pretrained_embedding_layer': {
'partId': 'pEJr9',
'testCases': [
{
'testInput': (d, dwi),
'testOutput': el
}
]
},
'Emojify_V2': {
'partId': 'VRhCD',
'testCases': [
{
'testInput': (d, dwi),
'testOutput': (cp, ml, mi, mo)
}
]
}
}
return testCases