-
Notifications
You must be signed in to change notification settings - Fork 3
/
Test.v
63 lines (51 loc) · 2.92 KB
/
Test.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
(* This program is free software; you can redistribute it and/or *)
(* modify it under the terms of the GNU Lesser General Public License *)
(* as published by the Free Software Foundation; either version 2.1 *)
(* of the License, or (at your option) any later version. *)
(* *)
(* This program is distributed in the hope that it will be useful, *)
(* but WITHOUT ANY WARRANTY; without even the implied warranty of *)
(* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *)
(* GNU General Public License for more details. *)
(* *)
(* You should have received a copy of the GNU Lesser General Public *)
(* License along with this program; if not, write to the Free *)
(* Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA *)
(* 02110-1301 USA *)
(* Contribution to the Coq Library V6.3 (July 1999) *)
(****************************************************************************)
(* The Calculus of Inductive Constructions *)
(* *)
(* Projet Coq *)
(* *)
(* INRIA ENS-CNRS *)
(* Rocquencourt Lyon *)
(* *)
(* Coq V5.10 *)
(* Nov 25th 1994 *)
(* *)
(****************************************************************************)
(* Test.v *)
(****************************************************************************)
(* Arithmetic tests *)
Require Import Arith.
(* Pattern-matching lemmas for comparing 2 naturals
Similar to lemmas in Compare_dec *)
Definition test : forall n m : nat, {n <= m} + {n > m}.
Proof.
simple induction n; simple induction m; simpl in |- *; auto with arith.
intros m' H'; elim (H m'); auto with arith.
Defined.
(* Transparent test. *)
Definition le_lt : forall n m : nat, n <= m -> {n < m} + {n = m}.
Proof.
simple induction n; simple induction m; simpl in |- *; auto with arith.
intros m' H1 H2; elim (H m'); auto with arith.
Defined.
(* Transparent le_lt. *)
Definition compare : forall n m : nat, {n < m} + {n = m} + {n > m}.
Proof.
intros n m; elim (test n m); auto with arith.
left; apply le_lt; trivial with arith.
Defined.
(* Transparent compare. *)