-
Notifications
You must be signed in to change notification settings - Fork 0
/
Simple Ising 2D renormalization.nb
1558 lines (1510 loc) · 78 KB
/
Simple Ising 2D renormalization.nb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 12.0' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7]
NotebookDataLength[ 78204, 1550]
NotebookOptionsPosition[ 74811, 1488]
NotebookOutlinePosition[ 75154, 1503]
CellTagsIndexPosition[ 75111, 1500]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[CellGroupData[{
Cell["Simple 2D Ising Model renormalization", "Title",
CellChangeTimes->{
3.900137527874092*^9, {3.9001375590548544`*^9, 3.9001375999950147`*^9},
3.9001389913228207`*^9},ExpressionUUID->"c14574d7-ddc6-4955-89fb-\
f30bf881d4b3"],
Cell["Giuseppe D\[CloseCurlyQuote]Auria", "Author",
CellChangeTimes->{{3.9001502446149282`*^9,
3.9001502901949596`*^9}},ExpressionUUID->"81f8976a-3a94-479f-b5ad-\
bb103c7c2056"],
Cell["Latest changes: 23/08/04 05:06 p.m. ", "CodeText",
CellChangeTimes->{
3.9001502929010973`*^9, {3.900150329721038*^9,
3.9001503949962397`*^9}},ExpressionUUID->"45dfe568-4c7e-4431-b877-\
b261416a4d13"],
Cell["\<\
In this Notebook, we explore two dimensional Ising model and perform \
Kadanoff\[CloseCurlyQuote] s renormalization group theory for 2 D lattices. \
\>", "Text",
CellChangeTimes->{{3.9001398741773443`*^9,
3.9001399576817102`*^9}},ExpressionUUID->"858e1f14-275a-4e66-9de5-\
697ca936a0cb"],
Cell[CellGroupData[{
Cell["Definition of the 2D Ising model", "Section",
CellChangeTimes->{{3.9001376010885663`*^9, 3.9001376266523404`*^9},
3.9001389933291006`*^9},ExpressionUUID->"52dbbca9-b0fb-42a8-83b8-\
d13a178dbd34"],
Cell["\<\
We define the isingModel2D function to generate an initial random \
configuration of a 2 D magnetic (or spin) system,where L is the grid size. of \
the lattice. The configuration is represented as a 2 D matrix of dimension \
LxL, initialized as a random LxL matrix of 1 and -1, which is returned by the \
function as \[OpenCurlyDoubleQuote]config\[CloseCurlyDoubleQuote]. \
\>", "Text",
CellChangeTimes->{{3.900139965712044*^9, 3.9001401462635098`*^9}, {
3.900140211717187*^9, 3.900140321331196*^9}, {3.9001403601741943`*^9,
3.9001404791599236`*^9}, {3.9001405508459625`*^9,
3.900140554498434*^9}},ExpressionUUID->"b64cf237-98ae-4304-9094-\
bdae0bea7d38"],
Cell[BoxData[
RowBox[{
RowBox[{
RowBox[{"isingModel2D", "[", "L_", "]"}], ":=",
RowBox[{"Module", "[",
RowBox[{
RowBox[{"{", "config", "}"}], ",",
RowBox[{
RowBox[{"config", "=",
RowBox[{"RandomChoice", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"-", "1"}], ",", "1"}], "}"}], ",",
RowBox[{"{",
RowBox[{"L", ",", "L"}], "}"}]}], "]"}]}], ";",
"\[IndentingNewLine]",
RowBox[{"Return", "[", "config", "]"}], ";"}]}], "]"}]}],
";"}]], "Input",
CellChangeTimes->{{3.9001376278554897`*^9, 3.9001376388562927`*^9}},
CellLabel->
"In[425]:=",ExpressionUUID->"376b087e-e3b3-4493-9994-3cd71b429906"]
}, Open ]],
Cell[CellGroupData[{
Cell["Definition of the renormalizing function", "Section",
CellChangeTimes->{{3.9001376589271336`*^9,
3.9001377015633373`*^9}},ExpressionUUID->"fd3c506d-efbd-447e-a1c0-\
223df040ea97"],
Cell[BoxData[
RowBox[{
RowBox[{
RowBox[{"renormalize2D", "[", "config_", "]"}], ":=",
RowBox[{"Module", "[",
RowBox[{
RowBox[{"{",
RowBox[{"L", ",", "newConfig"}], "}"}], ",",
RowBox[{
RowBox[{"L", "=",
RowBox[{"Length", "[", "config", "]"}]}], ";", "\[IndentingNewLine]",
RowBox[{"newConfig", "=",
RowBox[{"Table", "[",
RowBox[{
RowBox[{
RowBox[{"config", "[",
RowBox[{"[",
RowBox[{"i", ",", "j"}], "]"}], "]"}], " ",
RowBox[{"config", "[",
RowBox[{"[",
RowBox[{"i", ",",
RowBox[{"j", "+", "1"}]}], "]"}], "]"}], " ",
RowBox[{"config", "[",
RowBox[{"[",
RowBox[{
RowBox[{"i", "+", "1"}], ",", "j"}], "]"}], "]"}], " ",
RowBox[{"config", "[",
RowBox[{"[",
RowBox[{
RowBox[{"i", "+", "1"}], ",",
RowBox[{"j", "+", "1"}]}], "]"}], "]"}]}], ",",
RowBox[{"{",
RowBox[{"i", ",", "1", ",", "L", ",", "2"}], "}"}], ",",
RowBox[{"{",
RowBox[{"j", ",", "1", ",", "L", ",", "2"}], "}"}]}], "]"}]}], ";",
"\[IndentingNewLine]",
RowBox[{"Return", "[", "newConfig", "]"}], ";"}]}], "]"}]}],
";"}]], "Input",
CellChangeTimes->{{3.9001377166419425`*^9, 3.900137718112023*^9}, {
3.9001404922097077`*^9,
3.9001404926003404`*^9}},ExpressionUUID->"04bb370b-f03c-4ecb-9d22-\
f32b75b1ac1c"],
Cell["\<\
The renormalize2D function performs renormalization of a 2D configuration \
using Kadanoff\[CloseCurlyQuote]s method.
Function input parameters : The renormalise2D function accepts a single input \
parameter, config, which represents the configuration of the 2 D lattice to \
be renormalized.
The main step of the function is the renormalization of the configuration.
To do this, we use a double iteration on i and j in increments of 2, which \
allows us to consider only the lattice sites at distance 2. From the spin \
values at the sites config[[i,j]], config[[i,j+1]], config[[i+1,j]] and \
config[[i+1,j+1]], we compute the product of their spin values to obtain a \
new spin value in the new configuration newConfig.
At the end of the renormalization process, the function returns the new \
configuration newConfig, which is a 2D array with dimensions halved from the \
initial configuration.
\
\>", "Text",
CellChangeTimes->{{3.9001377724809875`*^9, 3.900137801759222*^9}, {
3.9001378683412156`*^9, 3.900137869341066*^9}, {3.9001392450928106`*^9,
3.9001392461449895`*^9}, {3.900139297065987*^9, 3.9001393000988398`*^9},
3.900140038281711*^9, 3.900140351265725*^9, {3.900140503963581*^9,
3.9001405297015085`*^9}},ExpressionUUID->"eabbb540-482a-4f0c-b0f6-\
490055abf49a"]
}, Open ]],
Cell[CellGroupData[{
Cell["Numerical Example", "Section",
CellChangeTimes->{{3.9001378972697067`*^9,
3.9001379017248445`*^9}},ExpressionUUID->"f2e42eb2-73d5-434d-bc81-\
f9138878ab51"],
Cell["\<\
In the numerical example, we generate an initial random configuration \
initialConfig2D using the model isingModel2D, then apply the renormalize2D \
function to this configuration to obtain renormalizedConfig2D1. Finally, we \
visualize the initial configuration and the renormalized configurations using \
ArrayPlot graphs.\
\>", "Text",
CellChangeTimes->{{3.900139333390614*^9, 3.900139360521161*^9}, {
3.9001406018948402`*^9,
3.9001406381039677`*^9}},ExpressionUUID->"f52f2f0a-32cb-4204-810c-\
3cf18f852b2f"],
Cell[CellGroupData[{
Cell["Generate a random initial configuration with L = 256", "Subsection",
CellChangeTimes->{{3.9001379185191126`*^9, 3.900137937594017*^9}, {
3.900139522228978*^9,
3.9001395235902843`*^9}},ExpressionUUID->"7cabe512-bee3-4283-b7ea-\
f25dbe1d85d9"],
Cell[BoxData[
RowBox[{
RowBox[{"initialConfig2D", "=",
RowBox[{"isingModel2D", "[", "256", "]"}]}], ";"}]], "Input",
CellChangeTimes->{{3.9001389113198957`*^9, 3.9001389124149437`*^9}},
CellLabel->
"In[427]:=",ExpressionUUID->"122bf2ef-6d4b-4130-b504-c3e0444e5688"],
Cell[BoxData[
RowBox[{
RowBox[{"(*",
RowBox[{"Print", " ", "the", " ", "initial", " ", "configuration", " ",
RowBox[{"(",
RowBox[{"if", " ", "you", " ", "want"}], ")"}]}], "*)"}],
"\[IndentingNewLine]",
RowBox[{"(*",
RowBox[{
RowBox[{"CellPrint", "[",
RowBox[{"TextCell", "[",
RowBox[{"\"\<Initial Configuration:\>\"", ",", "\"\<Subsubtitle\>\""}],
"]"}], "]"}], "\n",
RowBox[{"MatrixForm", "[", "initialConfig2D", "]"}]}], "*)"}]}]], "Input",
CellChangeTimes->{{3.9001380078425164`*^9, 3.900138013855528*^9}, {
3.9001380552361298`*^9, 3.90013809845315*^9}},
CellLabel->
"In[428]:=",ExpressionUUID->"75a8aeb6-2fb5-427e-aa64-44e285666c08"]
}, Open ]],
Cell[CellGroupData[{
Cell["Renormalize the configuration", "Subsection",
CellChangeTimes->{{3.900138124562128*^9, 3.9001381365012083`*^9},
3.9001390025161495`*^9},ExpressionUUID->"7d4532f2-8cf5-4e26-a27b-\
66212bc7d2b4"],
Cell[BoxData[{
RowBox[{
RowBox[{
RowBox[{"renormalizedConfig2D1", "=",
RowBox[{"renormalize2D", "[", "initialConfig2D", "]"}]}], ";"}],
"\[IndentingNewLine]",
RowBox[{"(*",
RowBox[{
"Print", " ", "the", " ", "renormalized", " ", "configuration", " ",
RowBox[{"(",
RowBox[{"if", " ", "you", " ", "want"}], ")"}]}],
"*)"}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"(*",
RowBox[{
RowBox[{"CellPrint", "[",
RowBox[{"TextCell", "[",
RowBox[{
"\"\<Renormalized Configuration:\>\"", ",", "\"\<Subsubtitle\>\""}],
"]"}], "]"}], "\n",
RowBox[{"MatrixForm", "[", "renormalizedConfig2D", "]"}]}],
"*)"}]}]}], "Input",
CellChangeTimes->{{3.900138144367959*^9, 3.900138148547475*^9}, {
3.900138286507823*^9, 3.90013831493147*^9}, {3.9001383835347624`*^9,
3.9001384278363137`*^9}, 3.900138744938655*^9},
CellLabel->
"In[429]:=",ExpressionUUID->"1820cd7a-a114-4b9f-bc91-eb090560c324"],
Cell["\<\
We also perform further steps of the renormalization flow to probe how the \
lattice evolves at each step\
\>", "Text",
CellChangeTimes->{{3.9001384305935*^9, 3.9001384586993623`*^9}, {
3.9001385297549067`*^9,
3.900138534590505*^9}},ExpressionUUID->"f2987846-dade-4e96-8b3a-\
8600b9ffd5fd"],
Cell[BoxData[{
RowBox[{
RowBox[{"renormalizedConfig2D2", "=",
RowBox[{"renormalize2D", "[", "renormalizedConfig2D1", "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"renormalizedConfig2D3", "=",
RowBox[{"renormalize2D", "[", "renormalizedConfig2D2", "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"renormalizedConfig2D4", "=",
RowBox[{"renormalize2D", "[", "renormalizedConfig2D3", "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"renormalizedConfig2D5", "=",
RowBox[{"renormalize2D", "[", "renormalizedConfig2D4", "]"}]}],
";"}]}], "Input",
CellChangeTimes->{{3.900138144367959*^9, 3.900138148547475*^9}, {
3.900138286507823*^9, 3.90013831493147*^9}, {3.9001383835347624`*^9,
3.9001384278363137`*^9}, {3.900138662633417*^9, 3.9001386735445166`*^9}, {
3.9001387121862755`*^9, 3.900138725867875*^9}, {3.900138871445943*^9,
3.9001388767936015`*^9}},
CellLabel->
"In[430]:=",ExpressionUUID->"cf17235a-a349-422d-b07a-09900a3a9229"]
}, Open ]],
Cell[CellGroupData[{
Cell["Configuration Plots", "Subsection",
CellChangeTimes->{{3.9001385474499683`*^9, 3.900138552852645*^9},
3.900139004582073*^9},ExpressionUUID->"cb284c96-d8ea-4528-a811-\
7f75161a830c"],
Cell[CellGroupData[{
Cell["Plot of the initial configuration", "Subsubsection",
CellChangeTimes->{{3.9001382657248163`*^9, 3.900138285262803*^9}, {
3.9001385562285447`*^9,
3.900138602623099*^9}},ExpressionUUID->"67b377b5-6fac-4feb-84de-\
b323334e92c5"],
Cell[BoxData[
RowBox[{
RowBox[{"plotInitialConfig2D", "=",
RowBox[{"ArrayPlot", "[",
RowBox[{"initialConfig2D", ",",
RowBox[{"ColorRules", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"-", "1"}], "\[Rule]", "Red"}], ",",
RowBox[{"1", "\[Rule]", "Blue"}]}], "}"}]}], ",",
RowBox[{"PlotLabel", "\[Rule]", "\"\<Initial Configuration\>\""}], ",",
RowBox[{"ImageSize", "\[Rule]", "300"}]}], "]"}]}], ";"}]], "Input",
CellChangeTimes->{{3.9001382657248163`*^9, 3.900138285262803*^9}, {
3.9001385562285447`*^9, 3.9001385779426756`*^9}, {3.900138608560454*^9,
3.900138614602868*^9}},
CellLabel->
"In[434]:=",ExpressionUUID->"e3098efc-c225-4fdf-b8a6-1dfafc0429bb"]
}, Open ]],
Cell[CellGroupData[{
Cell["Plot of the renormalized configurations", "Subsubsection",
CellChangeTimes->{{3.9001382657248163`*^9, 3.900138285262803*^9}, {
3.9001385562285447`*^9, 3.9001385779426756`*^9}, {3.900138608560454*^9,
3.9001386337770023`*^9}},ExpressionUUID->"4000e74d-2236-4560-a510-\
ab48f05df02e"],
Cell[BoxData[{
RowBox[{
RowBox[{"plotRenormalizedConfig2D1", "=",
RowBox[{"ArrayPlot", "[",
RowBox[{"renormalizedConfig2D1", ",",
RowBox[{"ColorRules", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"-", "1"}], "\[Rule]", "Red"}], ",",
RowBox[{"1", "\[Rule]", "Blue"}]}], "}"}]}], ",",
RowBox[{
"PlotLabel", "\[Rule]", "\"\<Step 1 Renormalized Configuration\>\""}],
",",
RowBox[{"ImageSize", "\[Rule]", "300"}]}], "]"}]}], ";"}], "\n",
RowBox[{
RowBox[{"plotRenormalizedConfig2D2", "=",
RowBox[{"ArrayPlot", "[",
RowBox[{"renormalizedConfig2D2", ",",
RowBox[{"ColorRules", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"-", "1"}], "\[Rule]", "Red"}], ",",
RowBox[{"1", "\[Rule]", "Blue"}]}], "}"}]}], ",",
RowBox[{
"PlotLabel", "\[Rule]", "\"\<Step 2 Renormalized Configuration\>\""}],
",",
RowBox[{"ImageSize", "\[Rule]", "300"}]}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"plotRenormalizedConfig2D3", "=",
RowBox[{"ArrayPlot", "[",
RowBox[{"renormalizedConfig2D3", ",",
RowBox[{"ColorRules", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"-", "1"}], "\[Rule]", "Red"}], ",",
RowBox[{"1", "\[Rule]", "Blue"}]}], "}"}]}], ",",
RowBox[{
"PlotLabel", "\[Rule]", "\"\<Step 3 Renormalized Configuration\>\""}],
",",
RowBox[{"ImageSize", "\[Rule]", "300"}]}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"plotRenormalizedConfig2D4", "=",
RowBox[{"ArrayPlot", "[",
RowBox[{"renormalizedConfig2D4", ",",
RowBox[{"ColorRules", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"-", "1"}], "\[Rule]", "Red"}], ",",
RowBox[{"1", "\[Rule]", "Blue"}]}], "}"}]}], ",",
RowBox[{
"PlotLabel", "\[Rule]", "\"\<Step 4 Renormalized Configuration\>\""}],
",",
RowBox[{"ImageSize", "\[Rule]", "300"}]}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"plotRenormalizedConfig2D5", "=",
RowBox[{"ArrayPlot", "[",
RowBox[{"renormalizedConfig2D5", ",",
RowBox[{"ColorRules", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"-", "1"}], "\[Rule]", "Red"}], ",",
RowBox[{"1", "\[Rule]", "Blue"}]}], "}"}]}], ",",
RowBox[{
"PlotLabel", "\[Rule]", "\"\<Step 5 Renormalized Configuration\>\""}],
",",
RowBox[{"ImageSize", "\[Rule]", "300"}]}], "]"}]}], ";"}]}], "Input",
CellChangeTimes->{{3.9001382657248163`*^9, 3.900138285262803*^9}, {
3.9001385562285447`*^9, 3.9001385779426756`*^9}, {3.900138608560454*^9,
3.900138850157091*^9}, {3.900138885050645*^9, 3.900138893653734*^9},
3.900139020441147*^9},ExpressionUUID->"d636bf5e-d1dc-47de-ad26-\
403b0a32b359"],
Cell["Display the plots side by side", "Text",
CellChangeTimes->{{3.9001382657248163`*^9, 3.900138285262803*^9}, {
3.9001385562285447`*^9, 3.9001385779426756`*^9}, {3.900138608560454*^9,
3.900138850157091*^9}, {3.900138885050645*^9, 3.900138893653734*^9}, {
3.900139020441147*^9,
3.9001390616279907`*^9}},ExpressionUUID->"371e44df-5fdc-4b09-b80e-\
3ccdbda1fa50"],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{"CellPrint", "[",
RowBox[{"ExpressionCell", "[",
RowBox[{
RowBox[{"Grid", "[",
RowBox[{
RowBox[{"{",
RowBox[{"{",
RowBox[{"plotInitialConfig2D", ",", "plotRenormalizedConfig2D1"}],
"}"}], "}"}], ",",
RowBox[{"Spacings", "\[Rule]",
RowBox[{"{",
RowBox[{"1", ",", "1"}], "}"}]}]}], "]"}], ",", "\"\<Output\>\""}],
"]"}], "]"}], "\[IndentingNewLine]",
RowBox[{"CellPrint", "[",
RowBox[{"ExpressionCell", "[",
RowBox[{
RowBox[{"Grid", "[",
RowBox[{
RowBox[{"{",
RowBox[{"{",
RowBox[{
"plotRenormalizedConfig2D2", ",", "plotRenormalizedConfig2D3"}],
"}"}], "}"}], ",",
RowBox[{"Spacings", "\[Rule]",
RowBox[{"{",
RowBox[{"1", ",", "1"}], "}"}]}]}], "]"}], ",", "\"\<Output\>\""}],
"]"}], "]"}], "\[IndentingNewLine]",
RowBox[{"CellPrint", "[",
RowBox[{"ExpressionCell", "[",
RowBox[{
RowBox[{"Grid", "[",
RowBox[{
RowBox[{"{",
RowBox[{"{",
RowBox[{
"plotRenormalizedConfig2D4", ",", "plotRenormalizedConfig2D5"}],
"}"}], "}"}], ",",
RowBox[{"Spacings", "\[Rule]",
RowBox[{"{",
RowBox[{"1", ",", "1"}], "}"}]}]}], "]"}], ",", "\"\<Output\>\""}],
"]"}], "]"}]}], "Input",
CellChangeTimes->{{3.9001391191635447`*^9, 3.9001391247527456`*^9}},
CellLabel->
"In[449]:=",ExpressionUUID->"e6f00226-fcba-4973-a1f2-72d782894005"],
Cell[BoxData[
TagBox[GridBox[{
{
GraphicsBox[RasterBox[CompressedData["
1:eJztttGtNVkPXGfBkTgS5eAQBOjZqSsEGfaTAPX/dd0mT621uy8wmEENT7Ga
myzy//pv/8///d//z//j//37L///P//ff/9v//7Hf/1f//2vv6u4v+Jp3u34
7bwtPP39dj9sf5eFp5W3xbPNb+//Kf407/b7pnqmeE6d37u8bT2WfXeFW+6H
bZ6UP+WZykvr522eKZx2Z7bqkOK0/rnLS/XzLd62X23raflSq29TvNW3lvuH
tk/v6rDl3ebZzkvz8yvcMl+t+BSn+eEUf8qznTfFLfVM+VOeKfzUO9ZS5xa/
5Y6i1S3laflVms9Sf9o9Y89rqX+qZzue1g9PdVD9M40/tR9o/WbB099b3vFt
9bT7TIq3+O33ZIrb9wXNB2h9S9uzFh871Z/t/WnBW/OY8rTiUx5a307xT+mx
vJe9ny3vSJujNJ6mc5sn5W/tTdpcpzjNN2h6pngsdx1tf9H80NKf2/ip+4Lm
25b6TOWdip/S0+qfFKf1eat/3uafU3lpc017R1r/pDjtXSw+YI/fzkvbjxYe
S/0tOqf0pDx3edt7x1I32tyl/K34lIe2f2l7POWh1Xmbn/a+KU6r5xSPpf5X
uP3d07xpvOUdU5w2Lyl/K/7UvDT/sfQVrf60e2k7nrZfaP1M22u0d7fUbRun
+Woab6nzFW6v26n+kOK0PU6bC9penuI5tf8/f/jb71s+sM2T8qc8UzjtDk/z
nbpHLPu3paeln/butP6kzdEVTtsXtHd/2324zU97L9rep/mGZT9a3vGpDuo8
WvZsyt+Kn8Jp91gaT+sfix+24lOcNr/fPv0Nj90Pp/LS7hDank1x2vzSfIbm
q3fjqPXcjqftHVr9aXWjzd1dHe0+meLf5rHcb7Q+pO1NS93SeBp+FWe/J7d5
TvXhU/2fhqe/b+Xd1kP7riuclpfm57T9m/LQ7oEpHssc0fozxWn6ae87xWO5
J6fy0upp8R+an9Pu6inc8l0Wftr9TNtftDlt9b/ljrL4JG0u7PcerT8t/jyV
l8ZDu1umcJrPbOe1+8yUnimcNtcp/5Selq9e4bS8Uzw0n6fN9fe+Lp5TfTLN
m+IW/3zb+9r9bQo/1SdT3DIvlnuP9r1Pf9++z9Pfn9pXUzitzlN5ae9Fe/cr
/G19mPK07jFLv9n9cBun9ecUTvPV7Xj7PKbxtPei3RtpPO27tvlp35XiLR84
tX/seS33zKn9aekfWn0svtHKa/mut+mkfS9tvmj9Y/e91p5q3RX2vm35zNv6
cDuett/f9i7beWn3gMVXU/6UZzuvfQ9O8dC+y5KXtjdp/W/nmcpL6+dtnpSf
pudt995d3l/htPuBVmfLXND241Md7e9K831z1MXtfdK6o+7qaOtPcVo/n/ru
abxFD61/rnDafULzYdq70+6Nt72jpW4Wv7X7/Mczy3OXt91XqZ5tfto72v2E
1s9pPO3+bN+5d/H09/Z3t8xjmpfGQ/OrFD91Tmnv0oqn7R0LD61uU7hlr1l8
Mo2n9Qmtz2m+2spr32stX7XnTXHae03htLy0+/apDhtuv4db9Ut/T+OZwi17
866OX9Uh5ZnK29qblv63v6Ol/nYfsPtwi2cqnsbTqluLh1Yf+x1C8/MWv+V9
p3B7H96N+3zgXjwNb/lSirf0WOZiKq+9n6dwmm+0fLsVn+KWfTGFt959iv9t
vj2F0+6rlL8Vn/JY/KSlcxs/tc+neNr30V08/b1lX9DmJcVpfX5qv7Xf+Sl+
FUfr/23/nOKhvZdFz1Md1HvjbpxtLuz8tDszxVvfexV/Kk6br23cso/S39Pm
lOYP2/yW/Zjy0PbCFU6791r9Y8m7zf+2Pnyar30P2ONTHpqvtupp8b323fqv
v1/5T4q3fLilhzbvtHen9ds3X3/jp/l/mncqfltPC2/n/9dfW2eqJ833Nj20
vXmF0/ZFq09o+qdw2txN8dPiU5x259h9wD5f23m3ddLuq+3vmuKh3XW0eyzl
aeWl3eGn9g9tL7fexV6HKT20PrfP1zbPFP+p/pPilruItr9OxWl3ZorTfDvl
n9JzN87m89s4bY/Y/fYqPsW369DqW/t3WXzP4kvfvP8tL+2Opd1RtP2yzd+6
9yzvaO+HKZy2f+0+lvI/zdf2h6v4KfzUuW7P/b/+aPps9xKNJ8UtfkLbL5Z3
sfgA7Xtp/v/0922/pfGneafiW3jL91q+TfMBC3+7T//1R/UHWl7aXNDm0V63
D//PcZa7i3Y/0OaC5nspTqvndrydp8Wf5t3mp+132rzT7hka3s5/F7+Ks+8L
u69u89DiU57WPUzDr+JoPkB7x5S/pSfNO8VjubtaemhzncbT7kya723jtHdM
807poPktbU/R9kWLfyovba/R9sJ2/NfPs/yWvbzNT+OZwk+dI5of0nCL/7T0
WHwp5U95Uv631c3yXlN5LX5r78+WHtp73dVB9Ydt/lafT+mZ4qH5px2/iju1
/tt60vjW+07hrb76fH4WT/Wk+Wj6LfxTeVOeqfgUt+hp1Zk2vynPNj9t7lp7
+Qqn3QmWetL0pDhNJ823aXs8jW/xbPNbeKbyWvCrONpdTZuLNO9UfMpDq2dL
59N83x68pyfNR9Np8ZkpPTQfuMtLrf8VTqt/yp/ypPw0nz+1f1p5afW8wi37
5So+5bHwb+OW+bLX+Qpv7Uda/S33sP1usc8Xrf4p/vXVLJ7+3tIPrbz2d0zj
W3untdemeGj9cIVb3v2pjlPe99S+mso7hdPu6jTe0p8pTysvzZdoe/OrT1fP
FU6bO9pcT8WnPLR+aPVbi4d2L03h9vmi+fMU/xQPrW9p80LTc4XTfN5SnxaP
JW+K231mKn4Kt+wFS96p+G2elJ/Wz619lPKk/Jb7ijYvtO9t8dvnd4p/G7fU
09L/aV7aXbHNk/Jv66Hltc+jBb+Ks/Bb+mRbD+1d0t+38qY4rd+m8tK+i7Zf
Uvxt85jybOdNcVo/WOpM62dafMrT2hcpbvdni54r3O6TFv2tOUt/T+PfzjsV
n/LQ7oQpHtr7tt495afdS1N5p3D7fdjiofk2rc4WPbQ5tewR2v6i+f9dHb/K
S4vf5pnKa9mPtD2V8kzltffPdl6Lzqm8n55Z3K6HFn9qXtocpfGtfZfitHt7
Kn6bJ+Vv4dv57PNieS8aT8q/HU/rn7s6qPNlyZvqeaqjfZ/TfOMu74fv4Nvz
8t1L/xm3zOPnM3/DW/pP7fNWXpq/pfG0ubjCae+e5m3pedu+S+MtezPlsbwX
DU9/T+vDqbw0fhpu3/tpPO19LX3butPs+mm4vU8s+zrVk+aj1S3VQds7lnek
8ad5p+K389L60OKrab7WHZjGt+5J2t1Fw6/i3lb/lGcqL+1dLPW3143Wh9t5
7+po76nteBp+FUfTaXmv9Pe0d9nOO8Wf6qC9V5p3Crf0z1Md7X6w8Lf00OY6
5aftrym8tQdT3DJ3p/Kk/FPxU3rsdbPg9n5o6dmOP9Unt/lp8dv49ju28PT3
NF+a4rfH097l68+/4Vu8v6obzd9o9d/Waa/DFA+tDjQ/PHWfbuel7Xd7P1ve
JcUtfdLSM8VDuxtP9SuaL526H6d4LPVJ87biU5y2pyzfu81P249pfKue2/1z
hVvmhfa+ad4p/m099juENr80H6D1g+V7t+Np9aTVbZtnO6+lr9LfW3ha9y3t
rk7xU+/kt70LzQdod0KK0/r/bfWk7dO7cba+evp7m2+ceg/Q9uYUv6UO33f9
Z3xKz1Md7T01pefrn9l4ez9b/D/NO8W/jX/37bPf3cW3eNvvu41b6k/r221+
2h68q6P9XlP4dh1OjU95aP5J21OtO7Z1V9D6pNX/tHdM89HmosVzql/Z35c2
R7T3suxlGo8FT39P0zOFW/p2G7f4m+Weab176x2v4qdwS//Q/MSyF1L+NB9t
b7biU7y9l/711/alFKe911Remh5af6Y4bY7e5pOWeHuf0HRO8dDuHEve771+
o4d2D6Tx9n00pYeWt6Vnij/N2/IB+368G9eerzT+VH/b5j/1nqTNl70/7X47
pSfl39Zjv7dTnimc9u4pbvG9lD/lmcpr8ecpnObDVzjtvd7WtynPVF7Lu1zh
7f3wa/wqznKHtPYa7a5++vt2nWnfOxU/pedt876Nn9qHtDuf1g80f0t5puK3
89L8hHZ/fn3S1ZPyWHwj5d/WY3kXSz9b7pNWXtq9auG31znN28JbOmg+eVdH
+91beqZ4aPWf4mnNqSXvUx3tfU2rD80naXuKxjPFb/GxNG8r3sIzldcyd1N5
W99Lq6dljux3b6onxWl3CA2n7cepvNvx9rmj+dvH39VDu29b+p/+/pQ+bPkG
bY6meCz3w6n7Oo239IPFP2k+nMa39iMNb/VJK36bZ4qf1m8W33jbHUib3xSn
9c923q/+f+Ox7FmaP0/xWPCrODv/Nk7bI5Y7kHYXWe6oNK99Ti3fdWrelOcu
r803LHu5FZ/yWPqQdodY/GEKp/nMdt4p/lbeNN7en1d46y6a4qHV8wqn1Zm2
72h9Yqknra9SnlafWPhb72uf922e1j6Z0pPqoO1fWt5T3z3Faf5p56f5WxpP
u8/td9Q2P803aP0zhVvmsbXXpvDWfWvnab2j3Ye38VPfi+YPaTxNfwtPf9/a
U9s8KW7R35r37f5s8bf0pDjtbmz5GM3np+KncNpdbbn3aPe8ZR9t56X5RrtP
n+Lp72l1e/r7dn+27pY03nJvpHrSfJY93uKhvVeK2/1nOy/trrPrnIpPeWh1
o+Wdim/htH2d5k3jLTx2/ikeWp/Q/PAKt/RDirfuW9p3nXonbPcVzX+mcEud
W/Epfup8tfRM8ac6aH5Fu59b8z7FY6kDjf+7k/+W117n9Pe0fruro+0PlvrT
6pzGv03/2/yE1icpTqvnFP+2nu33avUJbW9a4i3+YPH5KR7aXKc4Tf+vvvsu
fhVH66sUt9zzNL+i3RVp3imc9i4p/xROu6tb8TSctq9pPkO7J2l3BY3H8o7b
/DQ9U3jrrpjCafftFE67V69w2r6w+xttL0zFpzjtbpmK387bendLv7Xm8Wm+
U/Y+7d23eWj6p3DavNDuohS33G+nxp/aPy1++51Mu4vs/WbX3+Kh7QWaziu8
fV8/xa/iaHNnf18a/9N8tvlt+fCp30vjt/fb5wN/45+Kb/FY7n9a/Vv9Q5uj
qbxTuH1fTOWl3RuW+BS39wNtT03lPfVdaP2f5qXtQbs/0PrBzj+FW/qW5od3
46h7cApv7QXae23z0/b1FU6rP21/0XyJlpemh8ZPe5cr3DK/lvq36nYVb887
xX/qvmvFb+el3UtXOK3f7HsnjW/1eYrT9p3FD2n939Jp6Z/vbvwbD+0ubfHQ
5jqNt/QPzX+ucFrepzra90+KW/hpfULbmymPpZ40/jRviyflt+el+S1t/1ry
pjx3edv458Ozeiz8T/P9ao5o/pDGW+bIcods89Pe66kO6r6zzO9dHe39Raub
/b1aeS373R5vuetod8UUTptf2runv6fNXQu331GW/pnCW/W8G9fe+zR/oN23
LZ6p+O28p77LFD/Nt2l71t4/tHlM42nzNYXT3t3SJylPy5fs30WbI4u/Wfx5
ir81Fyneqk8a/7b5pcXT+qTF39qPtH62zEvKQ9tTb7v/W/ip/ZzyTOE0P2zx
p3nTePs9YN9f9v5p5bXon8JpddjGab506pzS9iDNV7/5+lv8dl6LntYdQvMN
y1xb6nk3rs0/paf1XrS5noqn8Vj8JOVP86bx9rrZfZLmY1O45R2/+nR57vKe
UrdWfMpD88mUf0pPi7+lh/burX64wk+9k9P4t/UP7b1oPkzzzykeyz2Q4pZ7
Y0rP2753Cm/tiyn+lOcur+3uSnHanJ467/b7lrantvlpe2Ebb+mkzTttD6Z5
t+M/nKXjV75K25uW+9Duq6fuTdoeSXEa/7df/oanv6e9+3ber69+k8++f2l6
Uvyr2yx/y4dpePr7lt+mv7fvhfT3rf14N67tY1N46+5N4y3vTus3C0/K/7b5
/ersyrutp7Wvaf1PqwONZzueVocpfpoPtHDau0zxT8W3eGg6p/hbfnLqPU+r
Gy3vFG7fdynPdt4Ut/cJza9o+9fiPyn/dry9Ppa5TnHaPNL6uZWX5j9pPtqc
pjx3eal79tf5qHMxxUO7P2l1sPhMi2cq76nvYp9fy97Z1kPL29qPLT00/0l/
/83RLE7bL1e4hZ/W55b60PYpbV9c4a06XMW3eFo+b/FD+x6k9eEUTuurK5zm
t6fembQ7JMVb7/709+3vndIzldfyLjSdtDv56e9/5c8036bt05THUocpnNaH
V7glL+2ep71vu9//9de+E7b10O5kWr+l/Ja8LZ6Un+YzU/xTPK274tT3mtJz
N45aB9r7pvxTeWl3CM2X7vK27yLanj11jqb4W3pO3adTee33yTY/bS6mcPve
SXHaXbTNY79npuK3eWh5v36b5U/zbsfT+vZt70vrH/u70L5rCqf1yXa8fe5o
/TOF29/FHt+6b6fwU/W03uvUfT3Fa/f/lh+mPF///4b/aT7q/rL4g+X+t8xF
ynOX91f+P5X31LtoKm+rD7f5W31Cm8c03n5vvI3/ab72fZvyTPHTfG8Kt/Qb
bR6f6qD686l1pu3NNJ7WD2neNN7SJ7S5O3X/pjy0utHevfW92zwp/xQPrQ+3
cVq/pTzbuKVP2nX619+vfGYq79v6c4p/iudtOqfit3lSfpq/Pf1928dS/G39
Q9vLKX6qThp/C7fP4xQPzT8td4L9XWg823lpemi+2tp3ljvNrtNyz0zhNL+a
ik95Tu1nGv8Ubn/HFKd9r30PWnRu553iab2LZd4t97Pl/qHNb8pj8SUaj+W+
ovnn3bi2/qv47bw0/Rafb+lPeabip3CaP9DqQPte2jxO8VrmNMXfdr/R+pN2
z0zlpb17Gm95l1TPdt5Uj71vW3qe/r6t89Q7JP097d2n8LfVzXKnbfPb93iK
0743jbf4+TZO6x/aHtyOb31vip/aJ1N5U/407zYP7c6nzYulPlN60viWH9Le
ZSpvGk/bRylOm19LfWh1285Lu4u289Le/fP5rp6Uf0pPGk97ryn+VIfljqXV
k1aHqbwpTqsn7R6Yymv32zSe5hspfup3pTjNt1s4rQ5vu5NT/qm8p+o51cdo
fkKrM82vTvWZKT2tOtj7kHb/pzwp/6nzcoVb+scy79v8FvwqjvaOaTzNl776
/w1v5W3t96n4Fk67T+z8ln5Ocdr9cIXT7vy7ce3vtdxjT39PrXOqZyovbb+n
v2/vz7v4VZxlL9Dmt/Vd2/y0elr0p7jlvtrmoflYy/fsvkqr26k+sJ2X5re0
fZTG0/DtfDTfo90tUzy0eWzFb/Ok/LR9N8VD+y6L/0/Fp7il/7fz0nyVdren
/Gk+2hy1/DPlseel3S1XuH0eLfVs3aU0flp8ymPpwyvccqfR3tHOT/uuVl77
nJ661+w+n/JP6bkbR90jND+kzdEU/5Seb+6yuHY/pHnTePvcpfH2+W3lPdVP
aHV72xy1+n8bt9yBVzitT9K8abzlTrDcXVPxUzitzilumRf7XqD1s8U/03ia
fpovndqHtP2V4rQ6tObLrnOKv8UzxU+b3xSn3SG0OkzxWPqKdmfa7xzaXrbP
HW0uLH1C2yM0Hpr+Kf5T+2E73sJDm4vtvrrCW3VL87Xypvx2v6L5huXdt/lp
PmPpN1rebX5Lf07lnYqfwi1+aNkv2/jb7rRT+43WV1d4Sz9tX1v2Be2eofVP
Gm+ZX7vObZ7tvG/rc0veVM82D63+abzle1OcprNV/5SnlZfWDylPqmcKp+m3
9EOqJ43/7tVZHtr80vamvW/t/Wx/X9r80r6X1p9XOO0dn/6eOr+pnjTvNg9t
X9zlfeu70+4cu5+nedN4Gp7+ntZvFh7a+56q3+InqZ4WTytvq860e8byjpZ6
TvHT/IGWt3WHvO0d7fdM+vu33QnffTLL06pbitP61nLPp/wtnpT/1Hmnfdf2
/qX5j8Vn0rzb8ZZ3nIrf1tPKS+ufKR67b9PesYXb35d2d9nvjam8aXxrv1/h
Fl99W/9b6jmFt/fDXfwqzjK/ND3b/Kf69hV+6t1I86sp3LIH7e91qj+c6idT
PJb3svC0fMNetymelq/S5ugKp92ZtD6x9E/KM5XXco+lPLS+nYpPcfv30ua9
tTe3+WnvQuvbFKfpSfNa/LmVl+Y/9vuHdj9b3neb/9R3ad2xlvthKn5KT+t7
p/gtfWvZv+nvW991N+5Xc0q7x7Z0tOe3tRfSeMvcTeGWObL7SaonxWn+Y+dP
89r1WO4cy/dO5aXdw1M8lu9627xP5bXce1fxKQ+tH7bzpnpo/vztlyzOpsdy
b0zpoPWzxQ/fVjdaP9P8nOafKQ/Nxyx3l72elrn+5rTLs52Xdj9v81v6cAqn
3Se0++oKp/mhfe+n8a2+neJP81rmdFtPGt+6x2h7bTsvTSeNv+XPb7v/LXWm
1S3FLfdYGm/Hr+Jo/WDvkyk9U3lpe5C2N2l60rwtPbR3p/lMS4+lzy17jVa3
NN5ehym81W/2d09xmp4Ut7/7VHwLt/hYC2/l/3W+9vym8afe8639eCo/bb4s
fkJ7x21+2h6k9bPlXWi+fTfuV3eUvf/TeFrf0vJO4bT+p8VP4bS+OnVOLXj6
e4seS3zK0/KNFm7ZC7R3oc17Ky9tL6R5t3T86n1p9ydNv2XvX+G0u26bn3av
TsWnuKUONPzU/bilg+rDT3W086Z6tvO29GzP43belL/1vVP8tHmZwml9Trs/
aXvz6e/bfvu2u5d2b5/aV6keiy9Z3teyH+37pdW3Lf40b4sn5W/dFVP8KU/K
b99Tb/MHy76jzUWr/pY92NpT2zzb/LQ9TvuuNL51x9r9bSov7V22cdpdR/M9
2l6zxFv2fis+xVv9k+K0d5zip/WP5Q6k+QONP9VB24NT/E91tPfXlJ4Up+3Z
FKf52FTeKR57/5xaf4tP2ued1octHsteo/mJ5btoemj+Zpm7KT20OtN4tvO2
9ND8cIrHkpfmh7T+385r1z+Vd4qnxW/ZF9u4ZQ+e2j9TeqZ4LPNi/66Uf4qH
1udTeMs3Upy2xy31meKh7Zep+FZemp9P5Z3iObU+Lb9K4y17eTveUh9aXsvc
0fqktce3+S17526cbR6ncNrcpfG0fX2F0/zKUk/ae23z097F0g+0+83ih09/
T/VnSx22+S17/K4O29zdjbP58BRu8T1an9D6cIrn1Hu45cM0X0p5tvW87W5M
eSx75Aq3vzutn2n3Fe17LTjNt6dwmp4rvDVHV/HbPFN5aX47lfepjnadafsi
jae9yxVO61vLe23XjbZPW/dki/9pvlPu/O362PuBpj/FafvLMheWvFPxKU7T
k+a1138qL83faH5ouZ9p/pbyW/RM4d+d8Ox3d/E075YOqp+nPBb/ofXzFH8r
L23uaHv5qQ5qfbbnd5tnCrfcP1N5U5zWV/b+sXzXNt7Ofxdv6bDM3dPfU32A
5v+t723V4a6OX70jDb+Ko+lJcYvOK9z+7k9/T61Pquepjl/xp3lP7bfWHqTd
CXfjbPvCvgdpdUjzTuE036DhtP6k+UzKP6VnisfuS7R+o/XnN6e/wa/iaHvW
gl/F0fot5U/zTvHQ3mtLx6/qb5/H9Pc0PR/+t99t89Pu2G3+1n6n8U/lpdWz
tReu4lMeuw+kOK2erfuW9l6WOyfFafO+zUO7B7bjW/pT3KJzKq9d56n4VZxd
zxQPbV/Y3zHFaf02FZ/ilne3+EDKP6WHpn+Kn/a+dv+0+HAaf6pvpHnTeNr9
3PIxy363z+82btmDFj+n8T/VQfUr2n21zZPitDrbfZU213b+lGc77xR/a15o
72XvqxSn7TvLXNDwqzjaO6bxtPvwCqf5rcU3aDqn+FvxKQ/NT+z9Y9fZ0rOd
txWf4rR9TZtryz613DM0nZa9PIW35iv9Pe2OovHY/e2pjl/1Z4t/W0+rT+x1
a/GnedN4Wj9MxU/htLyW/tnWk/LQ+C3+Q7vbr/C33RtPdbR9ibZHaHnte4c2
L7Q5SnHa/XaFv+3dT9VPu/do72jnsexNO077Xtr9c1dH+96bwml6UpzmwxZ/
o/VbGm+5G1v353a8xW+ncEteWt/S+p/Gc6pfWfw55U/zWfY17X2vcMu82/ds
yv/ddX/Dp3gt/jaF2+9e2r3U8h/afNH89tS8tPey7M2WHos/3I1rzwWtntvx
ln5L8dZdOsWf8kzx076X1rfbOE3nqfdtykPTQ8u7zTOVl+ZvNJzWbzQ/b7/P
XfwqznJv0OLtfTiVdwqn9Tkt71T8Nm73kxZO8yW7n6T4qf4whbfuuik9tLt0
iv+pjvZ3Pc33q7p9/LN6Un7aXmvxnKozxWlzQeOfit/mmcpr6WeLf07l3eZp
vTvtHbd5Uv6UZyov7X1p9wytb2nfa/cT2t3Vepcp/NR7o+UPFrzlM7S5oPWh
xf/v6mjjljpP8dB00uqZ4pa5++o5y3OXd1pPCz+1z6dw2p1Ju9tp82vReZe3
3f+pHtrdu4235j2Nt997p37X03zUPklx2vumPKmebdzez1O4RecVTvO3U/Vc
4a06bOux503jLX1C28vbeOs+bOFXcbT+pM37qfczLS/tHtjmocXbeSxzYa+D
fR4td34ab+9/2t2S4rTvovVVmpcWb/fzNO9THb+aI5r/0Obd4sO0901x2jy2
vpfWP9t5t3HL3qG9O80HaHnt757itP1uuUtTnNY/tP6fwml99d0tf9OT4haf
v8Itd1eK0/zc3s9pPK3Pr3DLPW/Jm+Kt+20bp90D2/yWfm71m2UeU5ym095v
U3qm+Fs8Kb/lfqDNyxVu8cmU5y6v7X1pfWXZjy1/aMXb827znzrvnz//Bk9/
b69D+vuWHvv3TvE/1dH2q5aeKX6an9DmqLVfaPNyhdP8kLYHW3lp/Wbnn8It
Oq9w+56i9SFtf1nqSbuH7fvL8l0pTrsHLPewZb62eG37tFU3e/+cun9PnXcL
PsVL6wda/9PypnqmeFp3e0vPd9f9jSfFW++S4nadNP2n+jNt36U6aPpb3/tU
B7WeqQ6Lb9D0WPpzW0/rrtjWY3kXmj/T8Ks4u3+euk/TvK06XOE0ftrcXeE0
f7bf4S09tD01xZ/ybOfd1pPmTflp/nOF03wg5XlbXst9kvJM5f3uwL/hv87X
9vn29z3Fr+JO3bNpXns9t3m289J8hnbn0PxtKu8UbnmXlh6aj7X6eSo+5Wm9
F20e7f1Aq+d2fKufU9ziVzSdKf9UfMpD60N7/Wn1nMLt+5f27nfjqL5qqSct
3o7bfd7et3aeFLf40l0dv/KNU++lqbzbeqb4aXOXxrf2I21OaXNE658p/lP7
loanv2/tcct+2Y6n7Ufad03hlj63+EDKP6WHxkPb4615v6ujfZ9M4Zb9RfO9
bZ4WbnlHyx6h6Un5p+K389L64W37ixaf4jSf//bd33Dau6T82zhtr6X8tDsh
xd+2v0793inc4re0eZ/KO6WH9i6W+aXp/Pb4bF57/7fyWvbmFM+pd+lU3hS3
6JzC2/nv4ldxtPgWD+27aH6Y/v5UP6TthTSvfd5p/nmF2+d3Sk8rL+0dp/jt
/UB7l+15nMo7paflP6274tR+sMx1qw9Tnru8trlLf2+Zd/u7W/rf4ksWHku8
ZY9b5ou2T1O8lTfFT/WrbT20OZrip90PKT9NP83/07wpTuvblP9pPtt9nvJb
/J92h0zlfaqj/b0pTrsDP/6Z37f3Gs0ftutgeffWPfxUR5ufdj9M4bTvas1L
itPucMtc03TS7knLHUKrW5o3jbe877Ye2l2X/p6m5wpvzeNUfCuv3fcs75jy
n/q9KX7qPUbzB8tct/ZRa69N6bHMkYXHcl/R7rFT9xetn6fy0u6TFg/N/1Pc
rrN1b0zxpzpOva9od4sFv4qjzQvNP+191dLz9Pftd6HhtDtnip/WP1Px2zxT
eWn3OW2uaf1s78NUj31OLXf+dt4WTruvUtzuwzSdp85da4/b6/D0921fmtIz
hbf6zY5v56P59hRu3y80X53i/+7ne/m38tLwlh+eWrc0/m17qvW9p/oSDb+K
a+2d1l5Icfv9Q9ubtO9N86bx9v7f1mPpZ5r/0PbvFD+tH7674j/j6e8t/Uzb
I1PxKQ+tn9O8Uzpo/JZ5T3GLfkuf0+Y65U/zWeboVH+z7/fWvDzV0Z6LbT0p
D+19afwpbn+vVM8Uz9u+txWf4rT5farjV/deqifFLfM4pWeK5/Ofv/Fb9nVL
j8VPaH1Lm5ftvLS53s5L80/afUKrmwWnvW9r7rb10PaCpc60uab18zZOq3+K
0/qftu+m8k7Fn6qHtkem8M/nZ/lp94l9frf7x+4/tP6xzLXdh7f5aXcOzWfu
xn31Yeel1Z/mS9u45R0tfb7NT7tP0nja3Z7ilj2e8k/htPelzQvtHWnvReOn
3Ut3edu+TasbTT/Nt69w2l23jdP2QsqzHW/ReRXfwmn9M4XT/OFtvpTGW/Cr
ONp7WfrN8l72PrHob+0jGn4VZ/F/Wn1oeqbit/O26p/+nuarabxlL0/FT+mx
7KOU3+4DKW7x1RSn7X3aXjv1HS17c1uP5R6jzcVdHW1/oOW1z9FU3lTPdrxl
7uz4VdypPNu45R3TeMvepPl2i6eV13K3W3RO5W3dY1M8LZ2073qbr07htP1r
4aH1f8qf8mzzW97x1HmZymvph1RPyk/Dt/PZv4s2F3a/SnF7Pafy0uaXFk/T
meKtu86+j2j3AK1PaN/VmvcpPVP8NL+i7S+LP9Puou14mm9P4TSfse9TWt63
9T+tbq28ND1T8Ractgdb/DT/pO0j2n11hdN0Wvz5bThtLmj35FMd7XdJ+bd5
Wv68HW/5Lvs+ou33VAdtL6e4RY+lzjTfmOJpzUvKn+ZN42nzcoW389/Ft/NZ
5oV2B27npfWhpU+mcNr8Wu5DWt4Wf4rT9i/NB7Zxmr99+N9+T7srWj42pcM+
75Z5TPWk8bS5m8Itd9dU3jS+dS+lPJa8d3X8qt/seix7MMUte6flb9u4xWda
eGsvtN4lxWl3EW3fWfYRzcdoeq5wms7Wu1v2aeses+tv6Ul5pvLS+j/9fftu
uotfxbXiafV/+vv2HmnpmeKh9ckUDy1v+nuaj1m+d5vfUs8rvLVHvu/6G27Z
p1O4/R1P9cmn+dp1pu19y3u18NZ32e/M7fma4qF97xW+PY+Wvkr503yW923l
tdTn1H629MkUj72vpvJu4zT9lv4/9f5J+af0TMVv47T+t9+3V/jbdLbm3dLP
U/w0ntZdYa/b3bj2PrX4UovnLq9Nz6k8LZ00/5zCae8+xU97L3s/tPRc4Zb7
1sIzhZ/aJ7R9tM2zjVve5Qqn6Wz5CW2v0fay5Xst/TOVN+Wfymvx5xRv5//X
X3veT/2uqfgW/ra7jvbuNH9OeSx6LPsx5dmOp91Ldp67vNTvsvBb3jGNb9Vh
G7foofXVFL9lLlKeb//+TQ8Np90htH5LeWj4VVyrz2nzvs2T4rQ+n8Jpvkrb
UylO278Wf2jp+Xzpb/yW+JSn5c+W+yrlt/temjeNP/Xem8Jpd+Z23ik9NJzm
82k8zZ9pc3Gq307pmeKh7QuL71l8IMVp9WnFb+N2n7T7myXvtp5WX6V4696w
+FLrvSz67feMZX5pdXiqw3a/TeH2vrXcLZY+oek89b6i9X+Lfyov7T6x7Lsp
PW/bI7S8tPfajj91Xrb57T6Z8lj6pMUzxd/adzQ/THG7b9D2yzZPym/3Zxpu
8T3aHbXNM8XfqsMUTrsraL7Xykvbm+nv2777rz/qO07pmYrfzkvj2Y63zN3T
37f7h1b/NN5yV9j10/Sc2udTuN23W/xP89nePeU5dV5S3HKn0fxwG2/NdWvu
Pp7f5E1xu/9v81v2Na3/U/7teNq+sPjSNk7zAUu/nfrurfe6q4Pa/5Y5au2v
NL61Ty33+ZSeVvx23lb/p7hFzxQPbS/T8HZ+Cp7+/tR9dzeu7aupnlZey55q
8dzlbd8JU/jbfOxtfv709+2+bX2vXc9UvD1vykObuyl8e8/a93gLp+2XKR77
fNHytuYr5d/moc077R6j1SfFaXd1i2cq76nfe1cHdS9Y3j3F7XcFzVdP/V7a
d9HuJXt8ykPba2m8Zb6m4lMey7vT+oGGX8XZ65/yb+t5272R/p72LrQ+bPFY
+oQ2X7S8tDlN87b0WN53ip82v7S7wrIXUn77HX43jnqHTPE/1WGb06c62u9O
y2vBr+Ise22K57tPuvyW/d7SM5X367dZ3NLnlrvCUh/aPmrF0/yk1YdTPDQf
a/UJ7Z5Pf0/zpVP9jcYzFb+d167Hop/me1M8lnlP8a8Of+O3z/U2fup9MpXX
oscyj9t5aXWg+bDlvVKe7Xjafmztr5YeWnzKY9n72/z2vXbqPUnbOzSft+i/
ik/xU/cX7V3s/Ua7K2j8U3pofWLpzzSetpe389Lu3lb/0+7PK5ymn8aT8tP2
i/3OOfUdUz3bPJ/v/U0PrW60OdqOt9+3rf6/wu39ZumrVE+LZ5vfXn+Lnqn4
lKc1p3aeu7zUvUO7Z77v7fKnOiz13I6n+cl23pYe2ntZ+jbFafpp80LzgSn+
Vn1OzZvyTMWnuKU+Fp7WfTXFPxWf8tDmOs1n6du7vO3+afX5Nk8LP3XuUv5t
X031TMVP4bQ7iqYn5dmOp80prc9pPjPFQ9trtH5uzUuK03ysxT+FW+bI/r6W
eaHVLeWf0jMVn/LQ5uLT+fEQeCx7Zwqn1dm+pyzfNcVD69s0/tR77+nvqfWf
4qfdY2k87d1pPknbvzT/P/WuntKT8rf0WPyEVuc0nnZftfrkro72vrC/e6qD
tk9THns/b/NY+i3lmcpreZdtPSlPq6/s+46mk4a3dNj9gebPlj6/G/ervqK9
4xS/3TdofWi5Nyy+N4W3+vbUuaD5of0dafd8yj/FQ/ONK5w215b+2c5L+97W
3qTVIcVbfT4Vv53XMqen7gua31r6wc5P84E0bwun1dnyjtvvM5W3xXOXt33n
t3w4jbfvi6m8b9svUzytPZPqSfOd6ns0/tbeofUnbd+1fOwKp93Db/OlbX5a
/1j2VMpvqYPFb2l7JM1H29d3edv1b+Gn1m27f2j+TMub6rH0yRRu31Np3jSe
tmdT/u28p+qk+T/te1vxNN++wu16pvJO4fb9a9kXnw908as4+/ta/IfmJ7R9
MRWf8tD69m7cr+4EWt+m/LT3pb3LFU7b1ynPqf2Q5k3jaX67nZemZyrvNn6q
j9lxmp/c1WHLm/LQvot2n1j8oeUnljrQ7grad7XqQ9ND05nmnYpPeSx90ro3
aHru6mjf1d98/Y1nCm/1Py2v/X3f5gM0X6X14RVOe8cpnlP9gbanLP5mea8p
PbS7IsXt+zfFLXutxUPz4W2cVk+anqe//9VdN8VDu5fS39Pu+ZTH8r6t+O28
tP6c4k95Un7LfUjr51PvfJovpTytvqW976l30baeNJ5W521+2txd4TRf2uZp
3fOWfrjCafsxzTvFY+m3KT0pf5p3O75VN8u7P9XRxi31T3HanZzypHpSnObD
lr66wi06r3CLz6d5t3Sccv+n/LQ7Z4qHVs9T7zda3lP9p1WfVj1pvmSpv/0+
sbxLyjMVv52XVgdaPWnfZeGfwtu+dRe/iqPN110d7XdMeab0pDwpP+1drnBL
39r7wRK/zTOFW+qW4qfeOS3+Vl7afTKFW+7S9l791x/Vl1r7wlIHWp+nOO19
W3OU4jS/pcVb3pd2/6T4V+e/6ZnKS6vn15+z8RaelJ+2F+7Gnf7urTq35vRt
fniF0/rZPi+WudjOS5vTKfxXef71Z+tz2t6nfRdNz3Z863tT3OLDUzw0H7b4
21TeVAdtX6Txrfmd4m/htLlI+afiW3ktc22/M1v8lv1L87dT+9DSV1N5aXNK
ux8s+FUczTeucLsPW+Yr5ZmKb+Ht/P/6+/bsTt5tntY9MIXb9V/htH6jvS/N
365wy/6i3aUpz5SelCflp30vba7T+FN5puJTHnsd7PuRxjOV9+urv+Xd5qHd
VzT9W7zT+rf57e9+N+67Z+7xtOaL1s+WPqS9S4uf5m8t/2zx0OaLdu/R+mo7
L+17aXWb4rfEpzw0fprPn3qHW/qwdQemuKWeU3po+4LWP/b7bSq+pYd2X6X5
LHU4FZ/ipem332m0OU3xb+//jedtc53mnYpPcQu/pa9SnKbTcrdb+O33Z5o3
xWnzeIW3fMY+X2+79+zxKQ/tXrXfw1P8qQ6Lz9jf19In9n6w9NUUf+s+SXFa
3ab4t+Pt9xLNb7d4fzXXU/wpz13e9jva+621Z2l1aOG0e2AKp+1Bmg+0cNq+
nuKhva/Fn+16Uty+X069E6Zw2rx/9w8j/138Ko72XhZ+mp6Uf4pne04t9/Y2
zxRO84fW3KX8tDufxk+Lp71jyr+N0+b6Cqfdje13+9dfu240n7HUgda3Uzy0
u2sqPuWx14G212j1mYpv4af61bae7bxTuOW9LHt8ioemk8ZvuU/SfBY/sew7
e15a31rq+TbfaOGf/zPx1l1hqVtrri38LZx2d506R7TvsvTnFd7Kn/7eovMK
b7/zv/7a9ypND63OKX5qn2/xtn11ij/lmeKnzddU3ikey3dN8dP0pPzbemj7
sZWX1g/2vT+Vl9Yn2/G077X4ScpjmZdUj2W+tnm2cZo/nHqHX8WnPBY9LR+m
9adFD22PtPhpd8tUfIvH0lf2fk7z0nzDonMqPsXt9UnxVl/R7naa/lP7ZErP
VF7aPWD3H3sf0u69KZym5wpv5//XX3tfWOqQ5rP73jbPFD/tHnvbvKQ4Tc8V
bvHPbfxtftia3zTe4gO0/qfltdTHMqcpz1R8ymPphyu8VX+Lj9nfN8W3v5fW
Py0fs+M0H055WvxpXvs83o2jvpe9Plc4bR7t/X9Xxyl129bz9Pen3A+0d7Hr
oc1vC6fVudVXU3po/kC7Q+zzvo1bfIn2LhZf2ua3fxfNJ7fzpvxT8SnPqXsw
zZvG2+drSg+tn9N42v1guQ8tOqdwuw/Q5m47/m376K6Otp/T6mzRn+rZjqf1
z10d1L1A6xMLv6Uf0njavfG2ub7CaXNKuwem+D89MzpO6SuaL1nwKV5a3m1+
2nvR4lPcot/y7pa52NZjiZ/CaXXe5rfPV2teUj3b8ZZ6Wu7Sbdyu57vz/zNO
q6c9b4q39lqaz76vafNoeZcpPTTfS/GWX9HiafWn3SdXuMUPp/if6qD6yben
fhNP6/80bxpPm1+Lr17h9nra564Vn/JY3rG1Z9P47x74DX+a7/uuv/G07geL
z5x6V9D6cxun9TmtD2n+ZumrFKft9yvcfi9N8Vj8v+Uzd+PaPmZ/3yvcUh/7
PkrjLfcVjZ9251viU5636aH5GG2ftvohxS13Jq2etD6h7evtvFP8b/MTO34V
Z/HPt9XBEr/Ns52XFr+NW/TT5p3mS629fIXT7rEW3nrfKf5Uh4WH5icpTvO3
U3ns7z7FQ6tPy9dTPWk+i59b7pApnNY/tPm11yflafUt7R2f/r7tP2neKR00
X7XnneJ/quNX/ty6N6b47fq342l+lea197PlXWjfa8e/u2gWv4przZflfa/w
lv+87d6z1+1u3Fv3+BQPrZ9pPkarT6qDtjencFofnnpXb+uh1dmed5vfXoft
vJZ+tsSnOK3fLPtiG6fpp827xVdP1X+Xt423+srePylu6XNLHbb1bPO07gH7
vGzHt/phiofmt7Q6W97X/i4pTvOr1l2W6mnFt3hoezPl346n+QDtTmjlpfXD
3bh2v7XeN8Vp+mk+Znl32tylOC1v675NddB8pjW/LR7LHNn97Qqn3YcWf7DU
jTZH23lTPZZ5P1XnFE+r/2nv2+Lfzku7i1L+1j1mmRfL+07ltb/LFH/Kk/LT
7skpnObPT39PffcpPWm8pf7buOV+a/Fv67HHb+Mt/2ndUbQ9TrsnLf3Zip/C
LXv/u6tn+S31tPDQ8Cle2r6zv2OqJ83Xqs8U/3a8Ze5aOK2fU5ymk+YnNF+i
zfUUb6v+tL469X5I+e132ql+TpvTuzra/ZDqSXFa/Vt7kOZ7Fh6LTkteC49F
/3Y8bb+39khLD83fWj5Jq/Opd86p+2I73nK30+4Hi5/TfKm139Pfn8q/HU/j
ucv7q35rve8UTrvPab63jdv39edv74y3zJ3F5y06U56U/21+2NqDlnuYto/s
82jpN1o/2/PafZXGn+a18G/rofnhFD9tHlvzlfJs46260fJa9v5THbY+mdLz
NpzWn7Q9eOq8W97L4g+075rCLXU+tf4pbvmulh67b5+at6VzWw/tXdL47XmZ
0pPypHqm+Fv+09KT5m3Fpzyn1nmKx7JPaTppvndq/e13keV+bulpxae4pc9p
736Ft+4ri/+k8bR5mcpr6ecrnPa97Xr866+9r1M9U3hrP7Z8eEtHu3/sc/rr
fNT+tNSZdj+05mKKh8ZPi7fjln1H20dp3ikeiw9f4af6wKn1t3zXFU6b969u
z353F6fpscxdy/fsPjOF0+7tqbyt+Cm8dSe/Le9U/BT++c9/xlMemp5T7xwL
v/0esPeP5Z6cip/CW/WZwlvvTvPzVrxlP9L00PqK1j+0urXiU5xWB1peC/92
PM3PaXfI2+7zNK+9b1s+3OI/1Q9THpovWe7wKR7a+9LyWt4x5Un5af52l7ft
P607IcXt9Tk1L83/LXosdxRtL1j2eMo/pSeNp/m/xc+ncIufpDx3ean7y16f
U/thKi/tnqTtX9pctPaXpW60+tPuvda8T+G077X7bRpP8+cpHtp9Qqs/TecV
TpuXNP5t72jZL614Gg9tz9L6k9a3tDpb8qY8rfgUp/UzbU5b8zuF299xir+1
F94Wb99323mn+FMeC06rG22OTr2XaPppfbidt3WX0u7bqbzbeizf1cpL6/+W
76V6WvEpD+0uavnYdnyr/q1+a/FP6aHtZUvdpnhoe4Gm8+nvv3d5xmu5t2n3
sGVeaN87lbflb1PxKc+pfTLFb/Fhez/TeKby0u6BNO+WDmo/T+nZ5kn5p3gs
/Ubzc1oftvBW3Wh67O81xdOqZ7uud/H09zQ9KW6ZL3vfpr+n8Uzx2+uZ8tPy
fnPUzftUx3T9p/SkuGXfbfcPrd9o9Ulx2v1sr8NUXlqfXOHb89uKt9whtD6x
+LN9H9H2jmWPTMWnPK360+rQit/mmeK39/823s5/F7+Ko/GkeOvesOyvlJ+m
cwq3fBfNV2l1oO3H7bytvZDitPt/G//24yxO28v2+5/2vine2mutfqD5PK0P
afW098/duPb9RuOZwu36r3B7PWl5W9+1jdP8PP29ZX5p++iujva8fO/1N54U
t9xdtHk51T9p85jitLmj1bk1v2k+uw+8TT+tf1L+1r00xWPJS9NJm1PavrjC
aXNq78Op+FZei39a9lEa//nhb/CrOJqebbx1R9H2joV/W0+rn2lzR/veFv+p
/pbG0+pmmZc0noZv56Pd57S+TXVY+vbp79v9dur3WvRYfCPlt+Sd4m/pofm5
ff/S9vLT37f12O9kWt3SeMs7TulJebbzfn3SzWvn2ea3z9FU/DZPyn/qnE7h
lr1m78MpHksd0ry077LMNe3evsJp70LbmzTfoN3Vad6U3z6/Kf+Unrtx7flN
9UzFb+vZxn+V519/7Xn55vFvPKmelN9y59B8ozXXFt9IdbzNN6Zwix6az0zh
7fz/+mv7XqonxS31mYq3593mmcLfVk/aHG3jNL+l8dvvsbfxp3lbPFN5aX5y
hVvuh5S/5QNTPK26pfEW/7G/O82HW741peepjvactvqkhdPmiNZX3xz9LX/K
38rb2nd237bfJ7S8Kc923imc5v9pXlofpr8/1T+n4lO89S40X0pxy91Im4tT
fWNKz6l5Uz1230vjaXPxVEd7v6T8U3lP3e8pP22+0rxTuOWemcIt/dby2xSn
7ZcWnv7+VD0p/1R8K6/lHVs8Kf+pfZjiNP+n1d+yZy3v2Irfzmuvp52Hth+v
8Lf5WKqj5f80/NQ92MpLu6/SeNrdZZ932j6l1cFSz22cNr+W993m2cbtc0rj
T3HLfvnuilme7bytubDXp1UH2t5M42nfS+O37BdaH9LqRtNj4aHNS0t/Gk/j
seTdjqf5zxT/dnzrPmzhlruUNr+WuqW/P9XfWvc2bW+m/Ns8b/uu7fhT+zPF
W/VMf295d5p/Pv19ey+09LTiUx5LP7T0vG1Or3Da3KW4ZS/TdNL6f4o/5Zni
b80R7U7e5mnxb+e11HOKh9aHd3nb+522F2j3zBVO62ca3rpPtuNpvjqFW/Sc
updp35XG0/ZI+nsaD42f5g9X+Ff/rh5Ln1zhtP6x75cr3FLn1t7Z7pNtnu28
tPthCrfovMJb9+HdOCq+3bctf7Dot/BP4V+/zfK07pnWHrT0T8r/tjuQ1s/b
PKfeJ7S+faqjnbc115a8Fp+fymupm4WHhlN0tP3NMo8pj2UPtvzz1H1Ei6f5
avp7mj9b/J/Wb/Z3od2ZNP+n6Unzpvin8288NDz9Pc3np3CLD9D47e+e4q19
nfLc5T39XqLdOfb5tc87ra9oe2cKb30v7V66wmn7vaVnm4dW55Qn1TOF0/YL
zben4lPc0v9TPHZ/pt0Vljqn8bR+nspLmy+ar9L6Zxun+UP6+1P9ZztvC7ff
ybS+ot0Pad6p+Cnc8r00nXaeFKf5mJ3f3j+0ek7lTeNpd53lHU99X9p3bedt
4Vdxlne3+ycNt7x7ilv2Do2/FZ/iFj/f5pnC3zYvT3W0v3cbt9T/bfcD7V1a
fd7in4pPeSzvRXuXbZ4pnPa+9jvWPo+0eNrctfasBb+Ka+VN9UzFW3DaPbnd
b0/ztf1hOy/t3Wl5Lf5D+94WPy1vilv24xRP63u3ccv9Y/HhbT2t+BaP5f5P
f2+ZuzSe9i40X2r5ffr71vdO8Vj4n+Zr66f54dPf2+7wbZx2J0zltezN7bx3
dZzSV6fe+XY8/b29blO8lrui5W+n6tzmp+Wl4VdxNH+zx7f2iKUfaPvl1HrS
5ppWtyme1nel/K15vMItee13SCsvrQ9p+i08d3l/hdP6fCrvUx3tOm/z0+Z3
Ct+e05Y/0O7SlIfWb2+r/3Y8zYdpd1Erfgq3+H+K0/yf9r5T8VM4zYdP3V+0
e8CSN8XteS36af1g6XMLP23/0vSkuP0emOJp9ecVbrkfWnlbfUt735R/m4dW
H4vf2vufdiek/NvxXz//jWdKT8qzjdPe8Qo/dU+lPLS5pt2lT3VQ+9DuzylO
m6OUf1uPfd/RfKDd73fx9Pen+gbtXVr9n+K0+tj9dipvi2cq76n+kPJv69mu
s6UOT3/fvv9p/ZnyWO4WWjytT9K8aTxN5xQPTf8Ubt+P6e8te5y2Ny11m8Jb
/p/itDm9G3dKn9Pwb0/9jWcqL03nXR1tP7S8S6pnm6fl599e/g1/K6+lT+x+
Qnuvt+G0+/MKt++Xq/gUp+1xy100FZ/y2N9rCrf4cGt+p3gs9/ypPtm6z2l1
3uax9P8UTvNt2nulOO19p3B7PWl3IM1nWv3163zUuk3p2eaZwi31ObWfv+/9
Td4pHtq8bPO3dNL0W/aR/X6gzRft3VO8tS9o/WZ5F1r/p/zbOmm+R/Pzp78/
vZ+336WV14Knv6fxWPgtvmTR2cr73W9/47G8b5o3jbfcD1d4a89OxW/nteBX
cRafpL1XmncqfptnKm/L92j+MJWXhk/x0vo2jW/Vx35Xb+vZzpvGW96rte/s
et52J9DuTPt3TeG0Op/qzxZf2tYzFb+d1zIX9nmZytvSc2r/WHwjxWn9meLb
70jrhxaPZV/T8Ku41nvR9qOF3+JvLZ6p+JTHMr+n+vwUTnuvlKfVhylO68OU
31I3mm+nOK1P7HN3hdN8LOWZ4m/Ny6n9YHnf7XiaD9Put5afWOZrOy/Nf1Lc
7jNTOG1/tfjTvE91UPntfZvGt/aRpZ9bd2mrDrR+pt3JLfwqjlaHKf4pPbT6
0PzBHp/itLrR9pHlHqO9F63OKd66K+z1pH2X5R23eNv+c+p+bOmZykvbdzR/
sNRzW4/F3yz7IuXZ5rfo3M576n5v4dv1OfV9aT6W4jSd9nvjbfWcypvqsO9B
yz6y9MNU3q/+f+Pfxi0+TLuXpuJTnLbHr3BL/6e43W9b/mZ5d0udn+r41R7c
ztvSY+l/iw/Q+vCuDtvet+g5tU9Sftp3Wfb4FU7z4e142vta9ump/ka7T1o4
7f6089Dwqzjanj3Vn6f0pLilD69w2vtu80zx0+pmmfdtnHa30OpP6/MrnLbv
Wu9I64cpHtrcTeG0vJb+p80LzSctetJ4yz1Mmwuaz0zFT+Fv80NLnVvzO8Vz
al/Zv2ubJ+Vv6T+1/1vflfJP6ZmKb+mx1NnSV5Y9a7mf7+po95tlv1juFstc
TPGnOt52v6V5ab5He68p/G2+Z6l/S0+K0/ZCitt9g3YPTOVNcdoepPVPmjeN
t9xLUzhtrqfwVj+cenfR6mOpM20urnCa71nwqzhaf1r8cIrXfh/S3vduXJt/
iodWH3s/pLjdb6d4aPMyldfyLvb7wa4//T2tDi3cUucp/m2elH+Kh7Z37HeI
5b1aeS3vRfN52n6060/x1t2Y4vb7dpvf0v/beWl3Jq1/Up67vKfs5Smcthcs
vvT51d/4p/Ju89v1WPCruO9dujpo+93+vlO8b9sLqZ40nnZ32eeOVs80vtW3
tLl+W157n1v8bTvvFG6p8xXemq8pvP3+//prf++2niu8VWdLPA2/irPvwVRP
632n+FMdb9NDm6NW/Db+tv5P42l1SHFaXlo97XpoPLT7nOYbtH1B23eW/dji
2c67/b00H6DpSeNb+4jWzzQ92zyW+5Y217S8tPpb6nnqXUG7N2j7hTZ3d3W0
9w5tfls8U/GtvKfulzQf7Q65wi3+NsVD218pf+u9rnBan9DqMMVD219TOK0/
U/4pvDXvtPlNeWh7hHb3buM0fz7V/1OeqbyW97LrTPNO6aD5Jy2v5btoOO0e
pvnANn+rPlf4N+/dvLT7trUfv/vqNzzbfnKFW+Z3iqe1Z7d5WnirP0/1gZRn
Ku+Hd/H09zTfS3lS/tYcTfFY/MRSZ0sdUtz+Lts8tPqceu99vjSL0/rTgl/F
2e+rlv5T86b457d/w+1zMYXT6nxqXvv9QNvX6e9p9aHlTfktd1Saj+bztDm6
wlv13+aZymv5Lpr/bOe1zBHtbrzCaXVL4y1zmualfS8tL+2upn1XmvepjnZe
Wn3sPK1+bs27xWfu6mjztOo2pcfeJ5a7923xUzjNH1J+mn7aHLX4af1A80PL
HWLXadGzjdP6dirvVHwr79vuuikeWj/Q6mz3Sdq7b+OWvWPXmca39sg2v90f
fp2vPRe0Oljuq209Uzy076L5Z5rXwp/mtdyx9vutvU/+9dfWZ++HVv9vx5+q
c5ufVs9TfYb27i2cNqetvDQ/aeHt/HfxKd5Wf07hrb1jf8dWfZ7+vt0PU3pa
eS13Gm2OaP5Au+ctd/vduPZeS/G37bsr3L5nW3lpfkXrQ7v+K9zi52n8qb7U
6ueUfzvv9473/v9T/qm8tHvS4mO0ePs+TX9v6c8p/JuX3+Bvu3Ms+yjlf5rv
9LpN4W/bFxZ/sPQnbb/Y3yXNa/fhVnzKY+kri37aHkxx2rxM8VvupZSnpWcq
bxpP8xPa3kzjab5Kq/MVTrvPp3ho99VUXlpf2f2fNo9XuKX/LfWcwi11pu3H
NJ62r2nzYrmHt3lSfvs+neKn1cfyLrR7eCo+5Xnbd9H0WOaR1j/beOt7aXNn
f1/aHUW7z0/Nm/LQ+mQ7b8v/t+tP+64pXppvW+qQ8tD6c4rH3ucW/7nCW31F
46fd+Vc4rX+ucFr9t+v2tv1lqY9lrlOctvdTfgt+FUebU5r/0N5lS4dt323r
oeWl+T/t3VMems+k+Nt8poVb+uTUO9bSn627y37v2flpe2oKp807rQ5pPG3u
aD5s2YPbeqZ4aHlbPkm7c776/C3vlJ4p/rfx0PbUqX1I20c0P3mqo+1jtD1u
uauneE59x5Rnm/97l7/xTPGfWv9T7wGLP9P2Ee3+P9VPpnjs/Z/GW3gsvkfr
B0s9U/5W/DZPyk+b3+14y16YyrutZwqn9UPLz2l+m/Jsx9PqY/H/Fk6bF5pv
pL+n5X2qg8pvj6fhtH1xN+4U3FJ/Gs8Uv2XeLffwdrzFT2j91pqvKf5tPfa5
TvnTfDQ9KT9tf7Xvjn/9te9hmp9v47Q7ioZ/Pva3vK0+od1vlvukdV/RdF7h
lry0vdna+7T3mopv4TQfS/NO4bT+pM17yrOd166T1m9Teaf4U54pflo9ae8+
Fb+dl7ZfrnDa99r78FTcsi9SPVP8U3pO9T3a3qH5WMq/jdP8fDvvFP8UD03n
dl6a71n02POmemg8rTq09uNUPA2nvW8aT+vDFj/Nt9N4y/em/BY/T3m2ccv7
TvGneVv4VZyl/tt+RbtjW/FTeKtv7fcGLX4bp/kkbV62+Wn9Y69/a1/Q7gSa
n9P2O62eU3m3eab4ae+Sxrd4UtzOn+Y99Q5p+WSLZ5vfMo+0vqXttSncUmda
vL0O23nt+tN42j6dwi17+evDv8XTvpemZyo+5Wn1M23eaT5g7/Mpfkv/b+tp
8UzFp3jrnqHNEW1+3/bu2/G0etrvhLtx1Lq16k/zh1Z9pvRM8ac82/yW+2QK
p80d7X6g7Zcp/FSd2/yn+vOUnha/5d6g4VdxFn7L3rHUh6Zzipemk6bnCqfN
Rcrz3ed/i2/psbzLNk7zn5Q/zUvjp/U5Dbf057aeKZ5T5/FUPZb3ss/LVN7W
vU2rZ6sOqZ6nOqjz1cJbvtSaL5qeNF9LD81nWnlp+7317q06XOGn+vMVTrsn
t/lpffjpn+XZjrfcqzQfo71vykPrH8v92fKHKZy239v3wr/+2vWkvVeKv63/
W760zWPhP7WvtnHant3maeG0PXXqvWTJO8XT7uu7+FXc2+YixWl1sLzX2/ok
zUub9zSetr/seS04rd9OrfMVTptH2nu19tE2j32PT+mZ4rHv3+14Wr/Z+yTV
s6XjV+8+lZfW/7Q9kvK/bY5o/Jb+34639L9l3lt5aXWewmn9QLs3aHVI857K
P6WHth+neGlzZOe33zmtOqT8Uzhtvmj9Q+tDGv8UTrsfLDyW/ZXmtfQ5zceu
cMv70nROxU/pae2juzps9W/14an9s43T/PZtft7C37avU5zmny2e7byWfkhx
2r6gzWP7ff7196t7hlYHS99O8dDuFnt/pjxTeS19MqVnisc+1y3+NG/re1vv
m+I0P2z5zLYeWh2283774jc8tPey+9ip/GneNJ7mh/Z53NaT5m3htP6f4jl1
D6a4Xec2z/b3pb9v+YFFT4rT7vmvnr/BaXdFmjeNt9yHtH6ewls+nOaz7FkL
T4q37ocpPZZ74+nv23Nk78M0bys+xWl9eIWfOtc0n0zjLf1zhbfepcVv6XN7
v9HuwLu8bR/e4m37xtvueVp97PgUr13PVN5UTxrfuuum+C17/6kO6v28zZPy
b/O0fKn17mm8Hb+Ks9y3aTzt3dO8aT7anG7zTPFb5tFyh2zrSeNb73iFn+rP
tLy0ObXUbYp/So/93ad4aPeeReddHae/76n1p/lYGm/XfxW/zTOFW/avfS5o
Oqd4aP5sfy/Lnk1x+17exu19u83T6tsWTpsLmh/S+jDNO4W39Jy6x2n71L4X
Wnt/G2/dS3Y99n5+quOU+qR6tnlo/XmXl6rnbThtHmn+Q/PVlj9cxac8lrsr
zZvG0/Tb+yqNp+1ZWj1p9ZnKm+KW/ZXGv63+Fv/58P8cd2rfbudt8Wzntb/7
qf48xXNqfWj6afWn7f0rnFb/Kf6nOk7/Xsu8bPNM4W97F8teSHGa31r2yBVO
00+7zy11SHlo94zFl2j7dDtvi7+V1+KHtH2RxtPuTFo/T8Vv56XdS988dvlp
7/JUR7sf7P1Puz+vcMs9ZtGZ4m+rD63OU/GWvPZ7ZlvPFP9THe25nopv5bXc
XS3/38bfNnct3HI3bvO3/L8Vn+L2fZ3qsOicymvpc0temp6UZxunzUUab5mL
lN/yLtu4Rc+pOmm+mvJb/Jx2D0zhFn+m1edt/UCrQ+supb1LGv+2edzmmeKn
zRFNzxRPq/9p8SlO67c0b5rP7m8t/hbemi9Ln1vq8/T3v9JjmRfLO1rqb+nn
KR5an9PqPxU/pYfme5Y6TOm5wmk6W33ytjlN8dadb5mLlp5tftr30vCruNZd
SqvDFW65z1vxtH00xU/rN0s/0+5k2h63+57lPqTdCVd4q572Pm/pefr7dj/Q
/IdW/yuc9i5340753lY9W/NCq+cUfqrP0973qQ7qvUF7x21+y5zSfLWVl4ZP
8bbmYlsPbd5Tnu28KW7pB7ufpL+n+YOl/+3+8LZ3uctr6+eUx9IPKY/Fz6f4
U56pvLS+SvFWPdN42t6n9Wcab/GxlGc7L8337P5P0z8V3+JpzdEVbt9fLT20
96XNb4q/jZ/mM7Q+sdw/tPt2Kj7lsdwDljpP4TT9ljstjbf7bYrbv9fiYykP
7btaPClur9s2bqkPjX87L61/aPppd0KaN8Xt+2iKf4qH1rf2/TiVN423vwvN
f2hzl/6+5QO0+Z3iob3XNr/lu6bybu/fNJ/9vqLVzXK/pfxTPLS6pfns72vJ
S+OxvGOK23Vu87T8h9bP27hlX1j4U5y2f2nzPpWXxm/xwyk9lv1O02/xH5ov
tfok5ZnCaX2S8qR6Uv5T5zSNp/W/fX89/T21z1t5afs31UGbu1/145aeKR7L
u9N85gqn+aT9HWlzdJe3/b1X8SlOuw9pfkirf8pDqw+NJ8Ut9Uzjab40hdPq
Sas/rX9ofWXZj7S8T3W0fabtW3fx9Pe0fp7Km/JP4a13mcLt70ir21T8lJ5v
v/yNv+V7V7ilzy15LfNi6bfWvNPqdoXT3muK59Q+b+27LR3UvqLdhzTfuMK/
d5nluctLfV/7/Tylxx7fqs82Trv3WnqmeCx1o91vdp6p+BSn3cO0eU/jaXOd
/p7mA1M4rR9aPHd5T7k3aHWj3ZMpTrsHWvEpD81/aHN9hbf23ZQe2j1Am9Mp
HnufpHpS3NJvtLvF4pNXuOW9Ury1r0/N+1RHm99SN9p9uB1Py0vbR5a63Y2j
3vlp3m0e2ned2udTPNv6W/zbPCnevpfv4ldxtHtjir/V57Q9dYV/c/ef8Sle
+/y+rW60/TiFt3RaeGh+QvNhGs8UTvPhlL91F6XxNHw7H+0ebvHTdLb6irYX
0nhLP0zltd+f2/GWfqDVx+IzLf4pPfY53cZpPpDm3eah3fO0fp7CLf789PdU
36PVwXJXtHDLPXbqvmjtEVpe2h1Lm4u2T9zFr+JoczTF39qDtP6n3cMpTvuu
U/sq5bH4VUtP67vSeNr9b+mrbZ4WTqsbTU8ab/EZWt9a+mG7brT9Qus3Wh0s
fdJ6Xxq/Hf/efTZvquepjrY/p3hrvmh99fT3v5rrbT1T/Gne1t6/q8Pm/yn/
lJ6pvFN6aPpT/G113tYzxd/i2c47pWeKx+Lb27jF92h9aL8nae94V0e7nqf6
eRrf6tsrnKbTvh+n+E/tB9octb7LoifF7fchrf+3eVJ+Wl/Z547WD2/jaek8
dW9u62ntfdo9TNuz7b39r79T5m4bt+wvWr+1fCnlucvb9odT+Wl3SAunfW+r
T2i+l+ZN89F8zOL/abxFz9240+c05aHF096d5jMpTpuXKdzyXZb9OMXTvgc/
/H+PT/HS9NPiU55T74Ft3D5f9ruRxnOX1/ZdlnvA4g9pPM0ftnlofUvD2/n/
9UetwxRP677djj91j5x6r1r2KU2nvZ+3cdrdcuq80/qW5m+tvLR5t9xjV/ip
+lv8NN+Yytviod3/LZzW59v89v5M+bf1WHzDcj+c+u6Wfjj1TrPUcyrvNk+K
W3wgxS191fIl+91u8bcUb+21KZx2x07lpfk5bd+14mm4ZV+/bb5o+FVcq39O
9Q3avNB0ntrPabwdv4qj9dVd3lPePdUzFZ/ip/rSqX2Y/p7Wt5b3ouW1zGPK
M5WX9r60uzrlofGfukeu8NadQPveU/GrONq83NVh658WP63fWjjtLnpbPI3n
Li/VH9K8U/zbuP3dU7w1Fy3c4ldX8SlOu4to3zvF07qLWnruxrX3hWX/tubu
u8//9ruUh5Y3xU999ync4jNTPJZ9Ydmzd3XY7p9W/Wl1SONpee13Aq2vUpw2
RzT+NO8UD20uaPNI05Pib+vDKT1pPO0eoNV5G//ecRb/db72vZrGW/aOJe+U
nin+7fjtvNs827jFn6dwmp4p/JuvLn4VR/Nt2t5PcXvfTvHTfIzmP5a7bpvf
8i7b/LR7xq7zLq/tHdN4+z6l4dv9ts3Trt+//tp7apvHchfR/MSiZ4qH1g+0
vNs6af6wnXcbp9WBNo+nvtfbvovWtyn/03ztubPUIY23+BWtnq28b+t/2l29
Hd96xxb/Ux3Ueqb5Wnt/Kn4Kp/UnrX8s9yHtu6by0ur89PftfT3FT+tPSz2n
9NDm4m173LLXaHlTnu28U3pSHtrescw1LZ72vlc4bf/SfJU2d1N5W7jFN6b4
aXktej6f+dvvaXcaDb+Ko90J2zwpTnuvK7xVhyn+lh7avKe/b90VU/ip/kOb
a4tOS95Uj2V/TfHQ3uUKb80Fzcfu8tp4LPtliv9U/Zb9dWq/pTxT/LQ+nMqb
xlv6hFa3NJ72XS1+y11H2y+0utH85y4vtZ5XeGuuafuR5qt2fDsfbY6ucMve
tOTdxlv321V8ymPxpS3e9p6yz7tlD6b8U3qm4qfwU+fxCrffMzSd7fe8i0/x
Ts01DU9/39p3299Lu8emeGj9QJvrK7ylv/VeLT1TOM0fUtwyj1N6puKn9NDm
gtZvtLrR/OcKf5sv0fxnG39bfVo+8DZfndIzhbfukyn+KT2t+bX0Fa2fW3Wz
3EuWu9cyj7T6pPxp3ike2nfR8Ks4+7tP8Xz8szzb/Pa9PIXb/cTu21N503ha
P5+qJ8Vpe59Wh+28KU7rN8s7bteN5v/bPNu4ZY/T9ux23il+e99a3t2yf69w
mp/T9KQ6aO+b4rT9OxU/pafVPy0fu6vj9L5qva8977Yey56dwu17kPZeNN9O
+VOe7byt+20q3s7T8gGL31rmyMKT8tv7k/ZdNP4pHtqdbIlP8bfpn+Jv+QBt
f9n7wb6PpvhP7Sv7PqX5wBXeuutTPWk8bd5P9Q3afE3xb+uhfVeLv+WftHlJ
eVJ+Wj1THsvd/sX/DX/6+7fesbR4mq9a9iAtL80H7P1m2Tu0e2CKn9bPU3lT
HlreKZ7P/2fjaXlTftremeK3vPsUD+29pvLS6mCpD+3u2sZpPmDhf9s91uKn
zRHNhy24pc+neCx3kYU/zbvNY7/PaT5j+d5T62mpj2XutvPa7zFanaf4aXpo
9yqtn6f4p3je1v9pvH3PbuuZwi3+QLsrUn6aP6c47a5IcZqeKZzm85Z9Sqtb
Gm+5H6bwt/WDZb5o/d/SMxWf4va+ffr7dp1pdTuVJ8UtOlO8pefUO5/GQ8ub
/t7+vlPxKQ8N385neUdLn6T82/ip75vyWOaXthda8bT7IcXteS37K8Ut/Z/G
2++HlH9bT7tP7+Lp7y36afEpTuO3+DntuyxzYd+/lvey50157vK258XiG9t6
LHvw1P6fwmn3j32ut+Np/TOFt/ZCyp/mnYpPeex9Yqknbe9s65nCaXlpd90U
vq3H4mOW+5PmM2k++56lze8VTusHWp/T+pnWV7TvsuhpvaN9ftO8UzpofrKN
097d7s+n8rR8MuVp5W29I03PNs8UTtsjrbyWvXZqn9v34HZemm+08O+u/ht/
ms9+V5zqJzSdb7vTTr3P7d91l5f67i38VB9I827z0PxtCqfNBc33Upym3/K9
Fj95m09u57Xc+a279NS9c4W3+sc+16fundZcWPrn1HjanTOF2/2c1g+We/JU
fIqX5vMt/haPxT9T3L5naf3Q2l80nZa7pT1///qj6k/1TOmw+FUr79v8kPZd
tP6k1SfNm8bT8tLuhJSndffS+tCOX8XZ59oyjxY9dv6WX03hre+i9e0VTrsT
aPW5wi1+fjfuFH+g1WebZwo/1Wda/FN533avpjy0d5zisfgDrf60+qTxlvma
0kO7H65wmk9a+t/ik5Z6bvPQ6nCFt+6lFG+94xT+1WdWz9efszytvTPFQ7v3
pni235GmP+VvxU/hp9bH7s+fz8zqsdSNVucpfstdN8VDm7uU33L3pjjtLp3K
23ovy16z3LeWvtrWM8U/lZfmb7Q+pN05Uzy0/U57X4tvvG1eaHsnxWn67fWZ
4qHF0/Ju81t8nubPaV4aT2tPpTyWOmznpflky99o82vp/209Ld9OdVj61tL/
2/w0n0xx2vdu47T70DJ3KU67k+11pu2pKZxWt5Tn1L02xU+bL9pePvW7pvhp
erb5W/1Aq8MUf8t/TvW9Kf6vH3Z1UPeFZY5oead0nDrvKU7z5ym8pcfuA617
3jLvKf+pfkjbCy3+VMepOmn9T9tHUzitDq19McVj8RPafr/C7d9Lq+cVbvHn
t82RZf9O5W3xbMdb6mD53jSfZY5O9f80bxpPexean6c8U3os8ds4bS6meCx1
ps0F7Q5s8Uzx2/uc5sO0/T4Vv41b/Cflmcr73V1/4095Un77nNL8czvvFD9t
vqZwmk5af9L6we6r23po70ibo7f5J+29Tr33pnDae23jlu9q3cMp3n7Pp/hV
nJ1n+z6h6Xmq41f3MO0+SeNPrb8975SebX6af97l/dV8pfG077Lkbe1fWl6L
/1j8Ks2bxtPe9wqnzUWqo+XnV/FTOM1PWnMxpWcKb+VN8ZYPT/HT4i0++e0d
F79ln7bmfYqf5tuWO9nuD7S5o+WlfVcaT+O5y0v1Acs7TvHT6kbbv6d+L+3e
o90t9j60z7XFV7fjaf2/nTfVY7nnU3xbJ20f0eJp9aH1Oa0faPOS8kzlfVsd
7ur4FQ9tX1vuw1Z8ykO7k1P+NB/te0+tG+27aDpb/FM8NP6pvCkPLd5SN9q9
sY3T6karPy1va89O4TS/Snm262nZRy092zyn5qXh6e9p9Wnxt3DLvZrirff9
+nkWp/kYrT5XeOu72n72FL+Ko+m0z28a33rfNJ+dx5KXtpe3eSxz0brraPtu
O++UnhY/bQ/S5sviDylu/67P/2fjt3mm+C17gXYPp/wtX7rCaX3Y4rfsC1pe
uz/TdNp5pvgtPmnRQ+urVl7a/WbZO60+t+i5wi2+kcbT7nCLL03p2eZv6aHt
i6m8rfvn1LvO0p+0vLR3+e6oWT1TOM0Pp/Ju86T8U/EtHtp9m+IWf2vh9nmk
xbfwU33Msven+C31pNWf5ieW/U6Lp/WVhSflb/lta59a/IHme7S9kOKWd78b
R/U92p6y8FjuvTTvUx3Uffe2O4qmZzuv3QdSPWm8fY4s94ylzilO64c03n7X