diff --git a/src/first_order/goedel2.md b/src/first_order/goedel2.md index e4933ec..4d8e513 100644 --- a/src/first_order/goedel2.md +++ b/src/first_order/goedel2.md @@ -171,7 +171,56 @@ Thanks to the completeness theorem, the following holds. - $U \vdash \mathrm{Bew}_T(\ulcorner \sigma \to \pi \urcorner) \to \mathrm{Bew}_T(\ulcorner \sigma \urcorner) \to \mathrm{Bew}_T(\ulcorner \pi \urcorner)$ - $U \vdash \sigma \to \mathrm{Bew}_T(\ulcorner \sigma \urcorner)$ if $\sigma \in \Sigma_1\text{-sentence}$ +## Second Incompleteness Theorem +Assume that $T$ is stronger than $\mathsf{I}\Sigma_1$. + +### Fixpoint Lemma + +Since the substitution is $\Sigma_1$, There is a formula $\mathrm{ssnum}(y, p, x)$ + such that, for all formula $\varphi$ with only one variable and $x, y \in V$, + +$$ + \mathrm{ssnum}(y, {\ulcorner \varphi \urcorner}, x) \iff + y = \ulcorner \varphi(\overline{x}) \urcorner +$$ + +holds. (overline $\overline{\bullet}$ denotes the (formalized) numeral of $x$) + +Define a sentence $\mathrm{fixpoint}_\theta$ for formula (with one variable) $\theta$ as follows. + +$$ + \begin{align*} + \mathrm{fixpoint}_\theta + &\coloneqq \mathrm{diag}_\theta(\overline{\ulcorner \mathrm{diag}_\theta \urcorner}) \\ + \mathrm{diag}_\theta(x) + &\coloneqq (\forall y)[\mathrm{ssnum}(y, x, x) \to \theta (y)] + \end{align*} +$$ + +**Lemma**: $T \vdash \mathrm{fixpoint}_\theta \leftrightarrow \theta({\ulcorner \mathrm{fixpoint}_\theta \urcorner})$ + +- _Proof._ + $$ + \begin{align*} + \mathrm{fixpoint}_\theta + &\equiv + (\forall x)[ + \mathrm{ssnum}( + x, + {\ulcorner \mathrm{diag}_\theta \urcorner}, + {\ulcorner \mathrm{diag}_\theta \urcorner}) \to + \theta (x) + ] \\ + &\leftrightarrow + \theta(\ulcorner \mathrm{diag}_\theta(\overline{\ulcorner \mathrm{diag}_\theta \urcorner}) \urcorner) \\ + &\equiv + \theta(\ulcorner \mathrm{fixpoint}_\theta \urcorner) + \end{align*} + $$ + ∎ + +### Main Theorem