-
Notifications
You must be signed in to change notification settings - Fork 2
/
track.py
453 lines (378 loc) · 21.9 KB
/
track.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
import argparse
import os
# limit the number of cpus used by high performance libraries
os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE"
os.environ["OMP_NUM_THREADS"] = "1"
os.environ["OPENBLAS_NUM_THREADS"] = "1"
os.environ["MKL_NUM_THREADS"] = "1"
os.environ["VECLIB_MAXIMUM_THREADS"] = "1"
os.environ["NUMEXPR_NUM_THREADS"] = "1"
import sys
import numpy as np
from pathlib import Path
import torch
import torch.backends.cudnn as cudnn
import math
import psutil
FILE = Path(__file__).resolve()
ROOT = FILE.parents[0] # yolov5 strongsort root directory
WEIGHTS = ROOT / 'weights'
if str(ROOT) not in sys.path:
sys.path.append(str(ROOT)) # add ROOT to PATH
if str(ROOT / 'yolov5') not in sys.path:
sys.path.append(str(ROOT / 'yolov5')) # add yolov5 ROOT to PATH
if str(ROOT / 'trackers' / 'strong_sort') not in sys.path:
sys.path.append(str(ROOT / 'trackers' / 'strong_sort')) # add strong_sort ROOT to PATH
if str(ROOT / 'trackers' / 'ocsort') not in sys.path:
sys.path.append(str(ROOT / 'trackers' / 'ocsort')) # add strong_sort ROOT to PATH
if str(ROOT / 'trackers' / 'strong_sort' / 'deep' / 'reid' / 'torchreid') not in sys.path:
sys.path.append(str(ROOT / 'trackers' / 'strong_sort' / 'deep' / 'reid' / 'torchreid')) # add strong_sort ROOT to PATH
ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
import logging
from yolov5.models.common import DetectMultiBackend
from yolov5.utils.dataloaders import VID_FORMATS, LoadImages, LoadStreams
from utils.augmentations import letterbox
from yolov5.utils.general import (LOGGER, check_img_size, non_max_suppression, scale_coords, check_requirements, cv2,
check_imshow, xyxy2xywh, increment_path, strip_optimizer, colorstr, print_args, check_file)
from yolov5.utils.torch_utils import select_device, time_sync
from yolov5.utils.plots import Annotator, colors, save_one_box
from trackers.multi_tracker_zoo import create_tracker
import pandas as pd
import easyocr
# remove duplicated stream handler to avoid duplicated logging
logging.getLogger().removeHandler(logging.getLogger().handlers[0])
### for OCR
reader = easyocr.Reader(["en"],gpu = True)
### for logging
logger_filename = 'detection_results.csv'
logger_data = pd.DataFrame(columns=['id', 'Class', 'Licence Plate', 'speed'])
################ speed calculation #############################################
id_centers = {}
def update_speed(outputs, frame_gap = 30):
global id_centers
speeds = {}
centers = np.stack([(outputs[:,2]+outputs[:,0])/2, (outputs[:,3]+outputs[:,1])/2], axis = 1)
new_id_centers = {i:cen for i,cen in zip(outputs[:,4], centers)}
if not bool(id_centers):
id_centers = new_id_centers.copy()
speeds = {id:0 for id in id_centers.keys()}
return speeds
all_keys = list(id_centers.keys()) + list(new_id_centers.keys())
for id in set(all_keys):
old, new = id_centers.get(id,[0,0]), new_id_centers.get(id,[0,0])
# print(old)
# print(new)
if len(old)!=0 and len(new)!=0 :
speeds[id]=math.pow(((new[1]-old[1])**2 + (new[0]-old[0])**2), 0.5)/frame_gap
id_centers[id] = new
return speeds
###################################################################################
label_names = {2: 'car', 5: 'bus', 7: 'truck'}
@torch.no_grad()
def run(
source='0',
yolo_weights=WEIGHTS / 'yolov5m.pt', # model.pt path(s),
yolo_weights_licence = WEIGHTS / 'yolov5n_license_plate.pt',
appearance_descriptor_weights=WEIGHTS / 'osnet_x0_25_msmt17.pt', # model.pt path,
stframe=None,
tracking_method='strongsort',
imgsz=(640, 640), # inference size (height, width)
conf_thres=0.25, # confidence threshold
iou_thres=0.45, # NMS IOU threshold
max_det=1000, # maximum detections per image
device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu
show_vid=True, # show results
save_txt=False, # save results to *.txt
save_conf=False, # save confidences in --save-txt labels
save_crop=False, # save cropped prediction boxes
save_vid=False, # save confidences in --save-txt labels
nosave=False, # do not save images/videos
classes=None, # filter by class: --class 0, or --class 0 2 3
agnostic_nms=False, # class-agnostic NMS
augment=False, # augmented inference
visualize=False, # visualize features
update=False, # update all models
project=ROOT / 'runs/track', # save results to project/name
name='exp', # save results to project/name
exist_ok=False, # existing project/name ok, do not increment
line_thickness=2, # bounding box thickness (pixels)
hide_labels=False, # hide labels
hide_conf=False, # hide confidences
hide_class=False, # hide IDs
half=False, # use FP16 half-precision inference
dnn=False, # use OpenCV DNN for ONNX inference
eval=False, # run multi-gpu eval
):
global logger_data
source = str(source)
save_img = not nosave and not source.endswith('.txt') # save inference images
is_file = Path(source).suffix[1:] in (VID_FORMATS)
is_url = source.lower().startswith(('rtsp://', 'rtmp://', 'http://', 'https://'))
webcam = source.isnumeric() or source.endswith('.txt') or (is_url and not is_file)
if is_url and is_file:
source = check_file(source) # download
# Directories
if not isinstance(yolo_weights, list): # single yolo model
exp_name = yolo_weights.stem
elif type(yolo_weights) is list and len(yolo_weights) == 1: # single models after --yolo_weights
exp_name = Path(yolo_weights[0]).stem
else: # multiple models after --yolo_weights
exp_name = 'ensemble'
# exp_name = name if name else exp_name + "_" + strong_sort_weights.stem
save_dir = increment_path(Path(project) / exp_name, exist_ok=exist_ok) # increment run
(save_dir / 'tracks' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir
# Load model
if eval:
device = torch.device(int(device))
else:
device = select_device(device)
model = DetectMultiBackend(yolo_weights, device=device, dnn=dnn, data=None, fp16=half)
stride, names, pt = model.stride, model.names, model.pt
imgsz = check_img_size(imgsz, s=stride) # check image size
# licence plate
l_model = DetectMultiBackend(yolo_weights_licence, device=device, dnn=dnn, data=None, fp16=half)
# stride, names, pt = l_model.stride, l_model.names, l_model.pt
l_imgsz = check_img_size(640, s=l_model.stride) # check image size
# Dataloader
if webcam:
show_vid = check_imshow()
cudnn.benchmark = True # set True to speed up constant image size inference
dataset = LoadStreams(source, img_size=imgsz, stride=stride, auto=pt)
nr_sources = len(dataset)
else:
dataset = LoadImages(source, img_size=imgsz, stride=stride, auto=pt)
nr_sources = 1
vid_path, vid_writer, txt_path = [None] * nr_sources, [None] * nr_sources, [None] * nr_sources
# Create as many strong sort instances as there are video sources
tracker_list = []
for i in range(nr_sources):
tracker = create_tracker(tracking_method, appearance_descriptor_weights, device, half)
tracker_list.append(tracker, )
if hasattr(tracker_list[i], 'model'):
if hasattr(tracker_list[i].model, 'warmup'):
tracker_list[i].model.warmup()
outputs = [None] * nr_sources
# Run tracking
model.warmup(imgsz=(1 if pt else nr_sources, 3, *imgsz)) # warmup
dt, seen = [0.0, 0.0, 0.0, 0.0], 0
curr_frames, prev_frames = [None] * nr_sources, [None] * nr_sources
for frame_idx, (path, im, im0s, vid_cap, s) in enumerate(dataset):
t1 = time_sync()
im_backup = im.copy()
im = torch.from_numpy(im).to(device)
im = im.half() if half else im.float() # uint8 to fp16/32
im /= 255.0 # 0 - 255 to 0.0 - 1.0
if len(im.shape) == 3:
im = im[None] # expand for batch dim
t2 = time_sync()
dt[0] += t2 - t1
# Inference
visualize = increment_path(save_dir / Path(path[0]).stem, mkdir=True) if visualize else False
pred = model(im, augment=augment, visualize=visualize)
t3 = time_sync()
dt[1] += t3 - t2
# Apply NMS
pred = non_max_suppression(pred, conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det)
dt[2] += time_sync() - t3
# Process detections
for i, det in enumerate(pred): # detections per image
seen += 1
if webcam: # nr_sources >= 1
p, im0, _ = path[i], im0s[i].copy(), dataset.count
p = Path(p) # to Path
s += f'{i}: '
txt_file_name = p.name
save_path = str(save_dir / p.name) # im.jpg, vid.mp4, ...
else:
p, im0, _ = path, im0s.copy(), getattr(dataset, 'frame', 0)
p = Path(p) # to Path
# video file
if source.endswith(VID_FORMATS):
txt_file_name = p.stem
save_path = str(save_dir / p.name) # im.jpg, vid.mp4, ...
# folder with imgs
else:
txt_file_name = p.parent.name # get folder name containing current img
save_path = str(save_dir / p.parent.name) # im.jpg, vid.mp4, ...
curr_frames[i] = im0
txt_path = str(save_dir / 'tracks' / txt_file_name) # im.txt
s += '%gx%g ' % im.shape[2:] # print string
imc = im0.copy() if save_crop else im0 # for save_crop
annotator = Annotator(im0, line_width=line_thickness, pil=not ascii)
#if cfg.STRONGSORT.ECC: # camera motion compensation
# strongsort_list[i].tracker.camera_update(prev_frames[i], curr_frames[i])
p = 'output'
if det is not None and len(det):
# Rescale boxes from img_size to im0 size
det[:, :4] = scale_coords(im.shape[2:], det[:, :4], im0.shape).round()
# Print results
for c in det[:, -1].unique():
n = (det[:, -1] == c).sum() # detections per class
s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " # add to string
##################################################################
## get licence plates for each detection
licence_plates = []
for k,d in enumerate(det):
im_1_backup = im0[int(d[1]):int(d[3]),int(d[0]):int(d[2])].copy()
im_1 = letterbox(im_1_backup, l_imgsz, stride=l_model.stride, auto=l_model.pt)[0] # padded resize
im_1_backup_2 = im_1.copy()
im_1 = im_1.transpose((2, 0, 1))[::-1] # HWC to CHW, BGR to RGB
im_1 = np.ascontiguousarray(im_1)
im_1 = torch.from_numpy(im_1).to(device)
im_1 = im_1.half() if half else im_1.float() # uint8 to fp16/32
im_1 /= 255.0 # 0 - 255 to 0.0 - 1.0
if len(im_1.shape) == 3:
im_1 = im_1[None] # expand for batch dim
p_l = l_model(im_1, augment=augment, visualize=visualize)
# Apply NMS
p_l = non_max_suppression(p_l, 0.5, 0.3, [0], agnostic_nms, max_det=2)[0]
bounds = None
if len(p_l)!=0:
try:
im_ocr = im_1_backup_2[int(p_l[0][1]):int(p_l[0][3]),int(p_l[0][0]):int(p_l[0][2])].copy()
bounds = reader.readtext(im_ocr)
except:
bounds = None
p_l[:, :4] = scale_coords(im_1.shape[2:], p_l[:, :4], im_1_backup.shape).round()
# cv2.imwrite(f"{k}.jpg", im_1_backup[int(p[0][1]):int(p[0][3]),int(p[0][0]):int(p[0][2])].copy())
p_l[:, 0] += d[0]
p_l[:, 2] += d[0]
p_l[:, 1] += d[1]
p_l[:, 3] += d[1]
try:
if len(bounds[0][1]) >7:
lp = bounds[0][1]
except:
lp = 'None'
licence_plates.append((p_l, lp))
############################################################
# print("lens :",len(det)==len(licence_plates))
# print(det)
# print(licence_plates)
# pass detections to strongsort
t4 = time_sync()
outputs[i] = tracker_list[i].update(det.cpu(), im0)
####################################################################################################
#get speeds
if seen%30 and len(outputs[i])>0: speeds = update_speed(np.asarray(outputs[i]), frame_gap = 1)
####################################################################################################
t5 = time_sync()
dt[3] += t5 - t4
# draw boxes for visualization
if len(outputs[i]) > 0:
for j, (output, conf, lp_set) in enumerate(zip(outputs[i], det[:, 4], licence_plates)):
bboxes = output[0:4]
id = output[4]
cls = output[5]
c = int(cls) # integer class
id = int(id) # integer id
label = None if hide_labels else (f'{id} {names[c]}' if hide_conf else \
(f'{id} {conf:.2f}' if hide_class else f'{id} {names[c]} {speeds.get(id,0):.2f}'))
annotator.box_label(bboxes, label, color=colors(c, True))
LOGGER.info(f'{id} {names[c]} {speeds.get(id,0):.2f}')
# show licence plate
lp_bb, lp = lp_set
if len(lp_bb)!=0:
annotator.box_label(lp_bb[0][0:4], lp, color=colors(c, True))
if speeds.get(id,0) > 50:
sp = 50
else:
sp = speeds.get(id,0)
if id in logger_data['id']:
index = logger_data.loc[logger_data['id']==id].index[0]
entry = logger_data.iloc[index]
if lp == 'None':
logger_data.iloc[index] = [id, label_names[c], entry['Licence Plate'], sp]
else:
logger_data.iloc[index] = [id, label_names[c], lp, sp]
else:
logger_data = logger_data.append({'id' : id, 'Class':label_names[c] ,
'Licence Plate':lp, 'speed': sp}, ignore_index=True)
LOGGER.info(f'{s}Done. yolo:({t3 - t2:.3f}s), {tracking_method}:({t5 - t4:.3f}s)')
else:
#strongsort_list[i].increment_ages()
LOGGER.info('No detections')
# Stream results
im0 = annotator.result()
# if show_vid:
# cv2.imshow(str(p), im0)
# cv2.waitKey(1) # 1 millisecond
stframe.image(im0, channels="BGR",use_column_width=True)
# Save results (image with detections)
if save_vid:
if vid_path[i] != save_path: # new video
vid_path[i] = save_path
if isinstance(vid_writer[i], cv2.VideoWriter):
vid_writer[i].release() # release previous video writer
if vid_cap: # video
fps = vid_cap.get(cv2.CAP_PROP_FPS)
w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
else: # stream
fps, w, h = 30, im0.shape[1], im0.shape[0]
save_path = str(Path(save_path).with_suffix('.mp4')) # force *.mp4 suffix on results videos
vid_writer[i] = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
vid_writer[i].write(im0)
prev_frames[i] = curr_frames[i]
# Create the pandas DataFrame
# df = pd.DataFrame(logger_data, columns = ['id', 'Class', 'Licence Plate', 'speed'])
# print(df)
# df.to_csv(logger_filename, index = False)
# idx = np.unique(df[['id', 'Licence Plate']].values, return_index=1)[-1]
# print(idx)
# df = df.filter(items=idx, axis=0)
logger_data.reset_index(drop = True, inplace = True)
logger_data.to_csv(logger_filename, index = False)
# Print results
t = tuple(x / seen * 1E3 for x in dt) # speeds per image
LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS, %.1fms strong sort update per image at shape {(1, 3, *imgsz)}' % t)
if save_txt or save_vid:
s = f"\n{len(list(save_dir.glob('tracks/*.txt')))} tracks saved to {save_dir / 'tracks'}" if save_txt else ''
LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}")
if update:
strip_optimizer(yolo_weights) # update model (to fix SourceChangeWarning)
def parse_opt():
parser = argparse.ArgumentParser()
parser.add_argument('--yolo-weights', nargs='+', type=Path, default=WEIGHTS / 'yolov5m.pt', help='model.pt path(s)')
parser.add_argument('--yolo-weights-licence', nargs='+', type=Path, default=WEIGHTS / 'yolov5n_license_plate.pt', help='model.pt path(s)')
parser.add_argument('--appearance-descriptor-weights', type=Path, default=WEIGHTS / 'osnet_x0_25_msmt17.pt')
parser.add_argument('--tracking-method', type=str, default='strongsort', help='strongsort, ocsort, bytetrack')
parser.add_argument('--source', type=str, default='video_test.mp4', help='file/dir/URL/glob, 0 for webcam')
parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[640], help='inference size h,w')
parser.add_argument('--conf-thres', type=float, default=0.5, help='confidence threshold')
parser.add_argument('--iou-thres', type=float, default=0.5, help='NMS IoU threshold')
parser.add_argument('--max-det', type=int, default=1000, help='maximum detections per image')
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
parser.add_argument('--show-vid', action='store_false', help='display tracking video results')
parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
parser.add_argument('--save-crop', action='store_true', help='save cropped prediction boxes')
parser.add_argument('--save-vid', action='store_true', help='save video tracking results')
parser.add_argument('--nosave', action='store_true', help='do not save images/videos')
# class 0 is person, 1 is bycicle, 2 is car, 5 is bus, 7 is truck... 79 is oven
parser.add_argument('--classes', nargs='+', default=[2,5,7], type=int, help='filter by class: --class 0, or --class 16 17')
parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS')
parser.add_argument('--augment', action='store_true', help='augmented inference')
parser.add_argument('--visualize', action='store_true', help='visualize features')
parser.add_argument('--update', action='store_true', help='update all models')
parser.add_argument('--project', default=ROOT / 'runs/track', help='save results to project/name')
parser.add_argument('--name', default='exp', help='save results to project/name')
parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
parser.add_argument('--line-thickness', default=2, type=int, help='bounding box thickness (pixels)')
parser.add_argument('--hide-labels', default=False, action='store_true', help='hide labels')
parser.add_argument('--hide-conf', default=False, action='store_true', help='hide confidences')
parser.add_argument('--hide-class', default=False, action='store_true', help='hide IDs')
parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference')
parser.add_argument('--dnn', action='store_true', help='use OpenCV DNN for ONNX inference')
parser.add_argument('--eval', action='store_true', help='run evaluation')
parser.add_argument('--stframe',default =None)
opt = parser.parse_args()
opt.imgsz *= 2 if len(opt.imgsz) == 1 else 1 # expand
print_args(vars(opt))
return opt
def main(opt):
check_requirements(requirements=ROOT / 'requirements.txt', exclude=('tensorboard', 'thop'))
run(**vars(opt))
if __name__ == "__main__":
opt = parse_opt()
main(opt)