-
Notifications
You must be signed in to change notification settings - Fork 400
/
demo_camera.py
44 lines (34 loc) · 1.17 KB
/
demo_camera.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
import cv2
import matplotlib.pyplot as plt
import copy
import numpy as np
import torch
from src import model
from src import util
from src.body import Body
from src.hand import Hand
body_estimation = Body('model/body_pose_model.pth')
hand_estimation = Hand('model/hand_pose_model.pth')
print(f"Torch device: {torch.cuda.get_device_name()}")
cap = cv2.VideoCapture(0)
cap.set(3, 640)
cap.set(4, 480)
while True:
ret, oriImg = cap.read()
candidate, subset = body_estimation(oriImg)
canvas = copy.deepcopy(oriImg)
canvas = util.draw_bodypose(canvas, candidate, subset)
# detect hand
hands_list = util.handDetect(candidate, subset, oriImg)
all_hand_peaks = []
for x, y, w, is_left in hands_list:
peaks = hand_estimation(oriImg[y:y+w, x:x+w, :])
peaks[:, 0] = np.where(peaks[:, 0]==0, peaks[:, 0], peaks[:, 0]+x)
peaks[:, 1] = np.where(peaks[:, 1]==0, peaks[:, 1], peaks[:, 1]+y)
all_hand_peaks.append(peaks)
canvas = util.draw_handpose(canvas, all_hand_peaks)
cv2.imshow('demo', canvas)#一个窗口用以显示原视频
if cv2.waitKey(1) & 0xFF == ord('q'):
break
cap.release()
cv2.destroyAllWindows()