-
Notifications
You must be signed in to change notification settings - Fork 0
/
160519_run2_calibration.Rmd
522 lines (448 loc) · 18.7 KB
/
160519_run2_calibration.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
---
title: 'Run 2: Oman 2015 NO$_3$ $\delta^{15}N$ and $\delta^{18}O$'
subtitle: "Source file: 160519_run2_calibration.Rmd"
date: "`r Sys.Date()`"
output:
html_document:
css: stylesheet.css
fig_caption: yes
number_sections: yes
df_print: paged
toc: yes
toc_float: true
toc_depth: 3
code_folding: show
editor_options:
chunk_output_type: console
---
```{r setup, include=FALSE}
library(isoreader)
library(isoprocessor)
library(isorunN2O)
library(tidyverse)
library(latex2exp)
library(readxl)
library(ggplot2)
library(plotly)
library(stringr)
library(knitr)
opts_knit$set(root.dir = ".", output_dir = file.path("docs"))
source(file.path("scripts", "functions.R"))
```
The dissolved $NO_3$ isotopic composition was measured using the denitrifier method coupled to GC-IRMS as described in the methods section of the manuscript. The following code steps through the calibration of measured isotopic values. The fluid samples processed here in this document were collected in Oman in the 2015 field season.
Run 2 was based on acidified samples (for IC analysis) that were acidified using hydrochloric acid to a pH of ~3. At this low pH, all nitrite would have reacted away during storage so the measured sample was pure nitrate rather than $NO_x$.
This processing script uses isoreader version `r packageVersion("isoreader")`, isorunN2O version `r packageVersion("isorunN2O")`, and isoprocessor version `r packageVersion("isoprocessor")`.
## Load Raw Data
### To create .rds file from folder of .dxf files for fast loading
```{r eval = FALSE}
#Load raw data from .dxf files
folder <- "160519_OM_run2"
raw_data <-
file.path("data", "raw", folder) %>%
iso_read_continuous_flow()
#look for problematic files
if (iso_has_problems(raw_data)) {
message("are these problems okay?")
print(iso_get_problems_summary(raw_data))
}
#omit any files with problems and export to an .rds file
raw_data %>%
iso_omit_files_with_problems() %>%
iso_save("data/raw/run2_raw")
```
### Load raw data from .rds file
```{r "load run"}
#load entire run
raw_data <- iso_read_continuous_flow(file.path("data", "raw", "run2_raw.cf.rds"))
```
### Parse file information
```{r "retrieve data"}
df.raw <- raw_data %>%
# aggregate peak data
iso_get_vendor_data_table(include_file_info = c(file_path, file_datetime, Row, `Identifier 1`, `Identifier 2`, Analysis)) %>%
# select N2O peak (select_N2O_peak requires file field)
rename(file = file_id) %>%
select_N2O_peak(c(310, 370)) %>%
# extract relevant file information
# focus on the columns we care about:
rename(d45 = `d 45N2O/44N2O`, d46 = `d 46N2O/44N2O`, area = `Intensity All`) %>%
mutate(folder = basename(dirname(file_path)), run_number = parse_integer(Row), analysis = as.numeric(sub(pattern = "MAT253", replacement = "", x = Analysis)),
name = `Identifier 1`, volume = parse_number(`Identifier 2`)) %>%
# select relevant columns
select(analysis, name,
folder, date = file_datetime, run_number, volume,
area, d45, d46) %>%
# extract categories from names
mutate(category = extract_word(name, capture_n = 1, include_dash = TRUE),
#add big picture categories
is_standard = str_detect(category, "(USGS|IAEA)"),
is_sample = category %in% c("OM15"),
year = case_when(
category == "OM15" ~ "2015"),
#samples with NR are nitrate only
compound = "NO3",
volume = ifelse(category == "N2O"| category == "Conditioner", NA, volume/1000), #convert volume to mL
id = sub("NR", "", name)) %>%
#label conditioners
change_category(run_number < 6, "Conditioner") %>%
change_category(grepl("HPW", name), "Background") %>%
change_category(grepl("ICDSTD", name), "control") %>% #select only relevant categories from metadata for downstream processing
filter(category %in% c("Background", "control", "N2O", "Conditioner", "OM15", "OM16", "USGS-34","IAEA-NO3"))
df.raw
```
## Summary of the raw data
$\delta^{45}N_{2}O$ and $\delta^{46}N_{2}O$ in $‰$ are represented as d45 and d46 respectively in the data table. Raw d45 and d46 peak areas and standard deviations are reported. Two potassium nitrate isotopic standards (USGS-34 and IAEA) dissolved in HPW (high purity water) in two concentrations (30 $\mu$M and 250 $\mu$M) were spaced every 8-10 samples for calibration of $\delta^{15}N$, $\delta^{18}O$, and nitrate concentration. Vials of 20 nmoles of injected N2O were also evenly spaced every 8 samples + standards to monitor drift.
```{r "raw data summary"}
#table of average and standard deviations of peak areas, d45, and d46 for standards and controls
df.raw %>% group_by(category, name) %>%
iso_summarize_data_table(area, d45, d46, cutoff = 3)
```
## First look at standards
With the exception of run_number 91 and 102, standards look uniform in area and d45. Standards are plotted by subrun. Subrun 1 is samples that contain nitrate and potentially nitrite; subrun 2 contains samples and standards that underwent nitrite removal procedures.
```{r "plot standards", warning= FALSE, plotly=TRUE}
plot_raw_standards <- df.raw %>%
#select just isotopic and N2O standards
filter(category %in% c("IAEA-NO3", "USGS-34", "N2O")) %>%
#plot with panels with ggplot
iso_plot_data(
x = run_number, y = d45, points = TRUE,
# shape = 21 with fill makes data points with black borders
shape = 21, fill = name, size = area,
panel = category ~ .
)
#change to colorblind friendly palette and add axis labels
plot_raw_standards +
scale_fill_manual(values = cbPalette) +
scale_color_manual(values = cbPalette) +
ylab(latex2exp::TeX("$\\delta^{45}N_{2}O$")) +
xlab("run number")
#plot interactive version
# ggplotly(plot_raw_standards, dynamicTicks = TRUE)
```
## Corrections
### Drift correction
Evaluate drift throughout run duration. Linear drift is observed; correction applied.
```{r}
df.drift <- df.raw %>% evaluate_drift(d45, d46, correct = TRUE, method = "lm", correct_with = category %in% c("USGS-34", "IAEA-NO3", "N2O"), plot = TRUE)
#linear calibration applied; new columns d45.drift, d46.drift, p.drift created
```
### $^{17}$O correction
Correction for $^{17}$O isobaric interference in the mass 45 peak according to Kaiser et al. (2008) to derive raw $\delta^{15}N$ and $\delta^{18}O$ values.
```{r}
df.O17 <- df.drift %>%
correct_N2O_for_17O(d45.drift, d46.drift) %>% #apply the 17O corrections to the drift-corrected d45.drift and d46.drift columns
#corrected columns are d15.raw and 18.raw; p.17Ocor column added with correction parameters
select_columns(-d45, -d45.drift, -d46, -d46.drift)
```
## Concentration Calibration with Isoprocessor
### Load Standards
```{r}
#load in concentration and isotopic standards from excel file
stds_isotopes <- read_excel(file.path("data", "standards", "standards_run2.xlsx"), sheet = "isotopes")
stds_concs <- read_excel(file.path("data", "standards", "standards_run2.xlsx"), sheet = "concentrations")
kable(stds_isotopes)
kable(stds_concs)
```
### Generate concentration calibration
```{r "add standards", warning = FALSE}
df_calibp <-
df.O17 %>%
filter(category != "excluded") %>% #filter out excluded categories and conditioners
filter(category != "Conditioner") %>%
select(-p.17Ocor, -p.drift, -date) %>% #removed nested parameter columns
# add standards
iso_add_standards(stds_isotopes, match_by = category, is_std_peak = is_iso_std) %>% #add isotope standards
iso_add_standards(stds_concs, match_by = name, is_std_peak = is_conc_std) #add concentration standards
```
```{r "concentration calibration", warning=FALSE}
df_calib <- df_calibp %>%
mutate(amount.nmol = true_conc.uM * volume) %>% #calculate nmoles from concentration
iso_prepare_for_calibration() %>%
iso_generate_calibration(
model = lm(area ~ amount.nmol - 1), #linear model where area is the response variable; the - 1 removes the implied intercept term
calibration = "area",
use_in_calib = is_conc_std)
# check for problems
df_calib %>% iso_get_problematic_calibrations(calibration = "area")
```
### Inspect calibration
Residuals ~2% for most concentration standards
```{r warning = FALSE}
# parameter overview table
df_calib %>%
iso_get_calibration_parameters(calibration = "area")
```
```{r warning=FALSE}
# visualization of residuals
conc_resid <- df_calib %>%
iso_get_calibration_data() %>%
filter(is_conc_std) %>%
filter(category != "excluded") %>% #filter for only standards used in calibration
mutate(
`Var: rel. residual area [%]` = 100*area_resid/area #calculate % relative residual area
) %>%
ggplot(
aes(x = run_number, y =`Var: rel. residual area [%]`, color = name)) +
geom_point(size = 4) +
theme_figure() +
scale_color_manual(values = cbPalette) +
xlab("Run Number") +
ylab("Relative Residual Area (%)") +
guides(color = guide_legend(title = NULL))
ggplotly(conc_resid)
```
### Apply calibration
```{r warning = FALSE}
# apply concentration calibration
df_w_conc <- df_calib %>%
iso_apply_calibration(
predict = amount.nmol,
calibration = "area",
calculate_error = TRUE, #standard error using Wald method
predict_range = c(0, 20) #prediction range from standards
) %>%
iso_get_calibration_data()
df_w_conc
```
### Check data
A concentration control was not used in calibration, but is calculated to be 162.9 uM +/- 1.66 uM. The known value is 161 uM
```{r}
# visualize (note that most are technically out of range of the calibration which is only defined for the narrow signal observed in standards; the rest are extrapolations beyond the calibration model)
plot_nmoles <- df_w_conc %>%
filter(category != "excluded") %>%
ggplot(
#define global plot aesthetics
aes(x = run_number, y = amount.nmol_pred, color = category, label = name)) +
scale_color_manual(values = cbPalette) +
xlab("Run number") +
ylab("Predicted nmoles of N") +
theme_figure(grid = TRUE, legend = TRUE, text_size = 20) +
guides(color = guide_legend(title = NULL))
#ggplot version with check or if calibration was ok
plot_nmoles_ggplot <- plot_nmoles +
geom_point(aes(shape = df_w_conc$area_calib_ok, fill = df_w_conc$category, color = df_w_conc$category)) +
scale_shape_manual(values = c(21, 22)) +
scale_fill_manual(values = cbPalette) +
theme_figure(grid = TRUE, legend = TRUE, text_size = 20) +
guides(shape = guide_legend(title = "Calibration OK"), fill = guide_legend(title = NULL))
plot_nmoles_ggplot
#interactive plot to see individual sample names from plot above
ggplotly((plot_nmoles + geom_point()), tooltip=c("name", "amount.nmol_pred", "run_number"))
```
```{r "exclude samples with <5 nmoles N"}
#exclude samples that have <5 nmoles predicted N
df_w_conc <- df_w_conc %>%
filter(
if_else(is_sample == TRUE, amount.nmol_pred > 5, amount.nmol_pred > 0)
)
df_w_conc
```
```{r "calculate concentration"}
# calculate concentration
df_w_conc <-
df_w_conc %>%
mutate(conc_uM = amount.nmol_pred / volume,
conc_uM_err = amount.nmol_pred_se / volume)
# check amount and concentration data
df_w_conc %>% filter(category != "N2O") %>%
group_by(category, true_conc.uM) %>%
iso_summarize_data_table(
conc_uM,
amount.nmol_pred,
amount.nmol_pred_se,
cutoff = 3)
```
## Delta calibration with Isoprocessor
### Generate calibration for N
```{r warning = FALSE}
df_calibN <- df_w_conc %>%
iso_prepare_for_calibration() %>%
iso_generate_calibration(
model = c(
# generate calibration using different regression models
Nlinear = lm(d15.raw ~ true_d15N), #simple linear
Nwith_conc = lm(d15.raw ~ true_d15N + conc_uM), #multiple regression with concentration
Nwith_volume = lm(d15.raw ~ true_d15N + volume) #multiple regression with volume
),
calibration = "d15N",
use_in_calib = is_iso_std)
```
### Inspect calibration for N
```{r}
# parameter overview table
df_calibN %>%
iso_get_calibration_parameters(calibration = "d15N")
#visualization of residuals for each N isotope calibration
N_residuals <- df_calibN %>%
iso_get_calibration_data() %>%
filter(is_iso_std) %>%
filter(category != "excluded") %>% #filter for only standards used in calibration
ggplot(
aes(x = run_number, y = d15N_resid, color = d15N_calib)) +
geom_point(size = 4) +
theme_figure() +
scale_color_manual(values = cbPalette) +
xlab("Run Number") +
ylab("Residuals") +
guides(color = guide_legend(title = NULL))
ggplotly(N_residuals)
#multiple regressions using concentration or volume are not significantly better than the simple linear calibration model
```
### Generate calibration for O
```{r warning = FALSE}
df_calibO <- df_w_conc %>%
iso_prepare_for_calibration() %>%
iso_generate_calibration(
model = c(
# generate calibration using different regression models
Olinear = lm(d18.raw ~ true_d18O), #linear
Owith_conc = lm(d18.raw ~ true_d18O + conc_uM), #multiple regression with concentration
Owith_volume = lm(d18.raw ~ true_d18O + volume) #multiple regression with volume
),
calibration = "d18O",
use_in_calib = is_iso_std)
```
### Inspect calibration for O
```{r}
# parameter overview table
df_calibO %>%
iso_get_calibration_parameters(calibration = "d18O")
#visualization of residuals for each N isotope calibration
O_residuals <- df_calibO %>%
iso_get_calibration_data() %>%
filter(is_iso_std) %>%
filter(category != "excluded") %>% #filter for only standards used in calibration
ggplot(
aes(x = run_number, y = d18O_resid, color = d18O_calib)) +
geom_point(size = 4) +
theme_figure() +
scale_color_manual(values = cbPalette) +
xlab("Run Number") +
ylab("Residuals") +
guides(color = guide_legend(title = NULL))
ggplotly(O_residuals)
#multiple regression using concentration is better than the simple linear calibration model# visualization of residuals
```
### Apply calibration
Applying a multiple regression calibration with volume for N and O
```{r warning = FALSE}
# apply linear calibration for N
df_finalN <- df_calibN %>%
filter(d15N_calib == "Nlinear")%>%
iso_apply_calibration(
predict = true_d15N,
calibration = "d15N",
calculate_error = TRUE
) %>%
iso_get_calibration_data() %>% iso_remove_list_columns()
# apply multiple regression calibration with volume for O
df_finalO <- df_calibO %>%
filter(d18O_calib == "Owith_volume") %>%
iso_apply_calibration(
predict = true_d18O,
calibration = "d18O",
calculate_error = TRUE
) %>%
iso_get_calibration_data() %>%
iso_remove_list_columns()
#join O and N calibrated data into final dataframe, df_final
df_final <- left_join(df_finalN, df_finalO)
df_final
```
### Check data
```{r}
# summary of calibrated isotopic data for major categories
df_final %>%
filter(category != "N2O") %>%
group_by(category, true_d15N, true_d18O) %>%
iso_summarize_data_table(
d15N = true_d15N_pred,
d15N_se = true_d15N_pred_se,
d18O = true_d18O_pred,
d18O_se = true_d18O_pred_se,
cutoff = 3)
```
### Visualize Calibrated Nitrogen Isotopic Data
```{r "Visualize Calibrated Nitrogen Isotopic Data"}
#visualization of calibrated N isotopic data
N_plot <- df_final %>%
filter(category != "N2O") %>%
filter(category != "excluded") %>% #remove excluded samples and standards from plot
ggplot(
aes(x = run_number, y = true_d15N_pred, color = category, label = name, shape = d15N_calib_ok)) +
geom_point(size = 4) +
geom_errorbar(aes(ymax = true_d15N_pred + true_d15N_pred_se, ymin = true_d15N_pred - true_d15N_pred_se)) +
theme_figure() +
scale_color_manual(values = cbPalette) +
xlab("Run Number") +
guides(color = guide_legend(title = NULL), shape = guide_legend(title = NULL))
#ggplot version with check for if calibration was ok
plot_Nisotopes_ggplot <- N_plot +
scale_fill_manual(values = cbPalette) +
theme_figure(grid = TRUE, legend = TRUE, text_size = 20) +
ylab(latex2exp::TeX("$\\delta^{15}N$")) +
guides(shape = guide_legend(title = "Calibration OK"), fill = guide_legend(title = NULL), color = guide_legend(title = NULL))
plot_Nisotopes_ggplot
```
### Visualize Calibrated Oxygen Isotopic Data
```{r "Visualize Calibrated Oxygen Isotopic Data"}
#visualization of calibrated O isotopic data
O_plot <- df_final %>%
filter(category != "N2O") %>%
filter(category != "excluded") %>% #remove excluded samples and standards from plot
ggplot(
aes(x = run_number, y = true_d18O_pred, color = category, label = name, shape = d18O_calib_ok)) +
geom_point(size = 4) +
geom_errorbar(aes(ymax = true_d18O_pred + true_d18O_pred_se, ymin = true_d18O_pred - true_d18O_pred_se)) +
theme_figure() +
scale_color_manual(values = cbPalette) +
xlab("Run Number") +
guides(color = guide_legend(title = NULL), shape = guide_legend(title = NULL))
#ggplot version with check for if the calibration was ok
plot_Oisotopes_ggplot <- O_plot +
scale_fill_manual(values = cbPalette) +
theme_figure(grid = TRUE, legend = TRUE, text_size = 20) +
ylab(latex2exp::TeX("$\\delta^{18}O$")) +
guides(shape = guide_legend(title = "Calibration OK"), fill = guide_legend(title = NULL), color = guide_legend(title = NULL))
plot_Oisotopes_ggplot
```
The first part of this run was direct injections of sampling volume into denitrifier vials since the resuspension medium was well buffered, no issues were expected with the low pH for low injections. The second part of the run was combined with base addition to neutralize acidified samples. However, the volume dependent discrepancy (higher *measured* concentration with base addition) between the first and second part of the run suggests base contamination with residual nitrate and only the first part of the run is considered in downstream data processing.
```{r}
df_final <- df_final %>% filter(analysis < 126215)
```
## Summary of calibrated data
```{r}
df_final <- df_final %>%
mutate(
conc = conc_uM,
conc_err = conc_uM_err,
d15N = true_d15N_pred,
d15N_err = true_d15N_pred_se,
d18O = true_d18O_pred,
d18O_err = true_d18O_pred_se
)
df_final %>% group_by(category, name) %>%
iso_summarize_data_table(cutoff = 1, d15N, d15N_err, d18O, d18O_err, conc, conc_err)
```
## Export Samples Data
```{r, include=FALSE}
df_final %>%
filter(category %in% c("OM15")) %>%
select(analysis, run_number, volume, area, name, category, conc, conc_err, d15N, d15N_err, d18O, d18O_err, compound) %>%
write.csv(file = file.path("data", "calibrated", "run2_calib_data_export.csv"))
df_final %>%
filter(category %in% c("OM15")) %>%
saveRDS(file = file.path("data", "calibrated", "df_final_run2"))
# saveRDS
```
## Export standards data
```{r, include=FALSE}
df_final %>%
filter(category %in% c("USGS-34", "IAEA-NO3")) %>%
select(analysis, run_number, volume, area, name, category, conc, conc_err, d15N, d15N_err, d18O, d18O_err, compound) %>%
write.csv(file = file.path("data", "calibrated", "run2_stds_calib_data_export.csv"))
df_final %>%
filter(category %in% c("USGS-34", "IAEA-NO3")) %>%
saveRDS(file = file.path("data", "calibrated", "df_stds_run2"))
# saveRDS
```