The pod5
Python package contains the tools and python API wrapping the compiled bindings
for the POD5 file format from lib_pod5
.
The pod5
package is available on pypi and is
installed using pip
:
pip install pod5
To read a pod5
file provide the the Reader
class with the input pod5
file path
and call Reader.reads()
to iterate over read records in the file. The example below
prints the read_id of every record in the input pod5
file.
import pod5 as p5
with p5.Reader("example.pod5") as reader:
for read_record in reader.reads():
print(read_record.read_id)
To iterate over a selection of read_ids supply Reader.reads()
with a collection
of read_ids which must be UUID
compatible:
import pod5 as p5
# Create a collection of read_id UUIDs
read_ids: List[str] = [
"00445e58-3c58-4050-bacf-3411bb716cc3",
"00520473-4d3d-486b-86b5-f031c59f6591",
]
with p5.Reader("example.pod5") as reader:
for read_record in reader.reads(selection=read_ids):
assert str(read_record.read_id) in read_ids
Here is an example of how a user may plot a read’s signal data against time.
import matplotlib.pyplot as plt
import numpy as np
import pod5 as p5
# Using the example pod5 file provided
example_pod5 = "test_data/multi_fast5_zip.pod5"
selected_read_id = '0000173c-bf67-44e7-9a9c-1ad0bc728e74'
with p5.Reader(example_pod5) as reader:
# Read the selected read from the pod5 file
# next() is required here as Reader.reads() returns a Generator
read = next(reader.reads(selection=[selected_read_id]))
# Get the signal data and sample rate
sample_rate = read.run_info.sample_rate
signal = read.signal
# Compute the time steps over the sampling period
time = np.arange(len(signal)) / sample_rate
# Plot using matplotlib
plt.plot(time, signal)
The pod5
package provides the functionality to write POD5 files.
It is strongly recommended that users first look at the available tools when manipulating existing datasets, as there may already be a tool to meet your needs. New tools may be added to support our users and if you have a suggestion for a new tool or feature please submit a request on the pod5-file-format GitHub issues page.
Below is an example of how one may add reads to a new POD5 file using the Writer
and its add_read()
method.
import pod5 as p5
# Populate container classes for read metadata
pore = p5.Pore(channel=123, well=3, pore_type="pore_type")
calibration = p5.Calibration(offset=0.1, scale=1.1)
end_reason = p5.EndReason(name=p5.EndReasonEnum.SIGNAL_POSITIVE, forced=False)
run_info = p5.RunInfo(
acquisition_id = ...
acquisition_start_time = ...
adc_max = ...
...
)
signal = ... # some signal data as numpy np.int16 array
read = p5.Read(
read_id=UUID("0000173c-bf67-44e7-9a9c-1ad0bc728e74"),
end_reason=end_reason,
calibration=calibration,
pore=pore,
run_info=run_info,
...
signal=signal,
)
with p5.Writer("example.pod5") as writer:
# Write the read object
writer.add_read(read)
The pod5
package provides the following tools for inspecting and manipulating
.pod5
files as well as converting between .pod5
and .fast5
file formats.
The pod5 update
tool can be used to update a file in an older pod5 format to the latest available format.
# View help on pod5 update tools
> pod5 update --help
> pod5 update my-old-pod5-file.pod5 ./migrated_files/
The pod5 inspect
tool can be used to extract details and summaries of the contents of .pod5
files. There are three programs for users within pod5 inspect
and these are reads
, read
, and summary
,
# View help on pod5 inspect tools
> pod5 inspect --help
> pod5 inspect {reads, read, summary} --help
Inspect all reads and print a csv table of the details of all reads in the given .pod5
files.
> pod5 inspect reads pod5_file.pod5
# Sample Output:
read_id,channel,well,pore_type,read_number,start_sample,end_reason,median_before,calibration_offset,calibration_scale,sample_count,byte_count,signal_compression_ratio
00445e58-3c58-4050-bacf-3411bb716cc3,908,1,not_set,100776,374223800,signal_positive,205.3,-240.0,0.1,65582,58623,0.447
00520473-4d3d-486b-86b5-f031c59f6591,220,1,not_set,7936,16135986,signal_positive,192.0,-233.0,0.1,167769,146495,0.437
...
Inspect the pod5 file, find a specific read and print its details.
> pod5 inspect read pod5_file.pod5 00445e58-3c58-4050-bacf-3411bb716cc3
# Sample Output:
File: out-tmp/output.pod5
read_id: 0e5d6827-45f6-462c-9f6b-21540eef4426
read_number: 129227
start_sample: 367096601
median_before: 171.889404296875
channel data:
channel: 2366
well: 1
pore_type: not_set
end reason:
name: signal_positive
forced False
calibration:
offset: -243.0
scale: 0.1462070643901825
samples:
sample_count: 81040
byte_count: 71989
compression ratio: 0.444
run info
acquisition_id: 2ca00715f2e6d8455e5174cd20daa4c38f95fae2
acquisition_start_time: 2021-07-23 13:48:59.780000
adc_max: 0
adc_min: 0
context_tags
barcoding_enabled: 0
basecall_config_filename: dna_r10.3_450bps_hac_prom.cfg
experiment_duration_set: 2880
...
Inspect the pod5 file, printing summary information on the reads in each batch
pod5 subset
is a tool for separating the reads in .pod5
files into one or more
output files. This tool can be used to create new .pod5
files which contain a
user-defined subset of reads from the input.
The pod5 subset
tool requires a mapping which defines which read_ids should be
written to which output. There are multiple ways of specifying this mapping which are
defined in either a .csv
or .json
file or by using a tab-separated table
(e.g. basecaller sequencing summary) and instructions on how to interpret it.
# View help
> pod5 subset --help
# Subset input(s) using a pre-defined mapping
> pod5 subset example_1.pod5 --csv mapping.csv
> pod5 subset examples_*.pod5 --json mapping.json
# Subset input(s) using a dynamic mapping created at runtime
> pod5 subset example_1.pod5 --summary summary.txt --columns barcode alignment_genome
Care should be taken to ensure that when providing multiple input .pod5
files to pod5 subset
that there are no read_id UUID clashes. If this occurs both reads are written to the output.
The .csv
or .json
inputs should define a mapping of destination filename to an array
of read_ids which will be written to the destination.
In the example below of a .csv
subset mapping, note that the output filename can be specified on multiple lines. This allows multi-line specifications to avoid excessively long lines.
# --csv mapping filename to array of read_id
output_1.pod5, 132b582c-56e8-4d46-9e3d-48a275646d3a, 12a4d6b1-da6e-4136-8bb3-1470ef27e311, ...
output_2.pod5, 0ff4dc01-5fa4-4260-b54e-1d8716c7f225
output_2.pod5, 0e359c40-296d-4edc-8f4a-cca135310ab2, 0e9aa0f8-99ad-40b3-828a-45adbb4fd30c
See below an example of a .json
subset mapping. This file must of course be well-formatted
json
in addition to the formatting standard required by the tool. The formatting requirements
for the .json
subset mapping are that keys should be unique filenames mapped to an array
of read_id strings.
{
"output_1.pod5": [
"0000173c-bf67-44e7-9a9c-1ad0bc728e74",
"006d1319-2877-4b34-85df-34de7250a47b"
],
"output_2.pod5": [
"00925f34-6baf-47fc-b40c-22591e27fb5c",
"009dc9bd-c5f4-487b-ba4c-b9ce7e3a711e"
]
}
pod5 subset
can dynamically generate output targets and collect associated reads
based on a tab-separated file (e.g. sequencing summary) which contains a header row
and a series of columns on which to group unique collections of values. Internally
this process uses the pandas.Dataframe.groupby
function where the by
parameter is the sequence of column names
specified using the ``--columns` argument.
The column names specified in --columns
should be categorical in nature.
There is no restriction in-place however there may be an excessive number of output files
generated if a continuous variable was used for subsetting.
Given the following example summary file, observe the resultant outputs given various arguments:
read_id mux barcode length
read_a 1 barcode_a 4321
read_b 1 barcode_b 1000
read_c 2 barcode_b 1200
read_d 2 barcode_c 1234
> pod5 subset example_1.pod5 --output barcode_subset --summary summary.txt --columns barcode
> ls barcode_subset
barcode-barcode_a.pod5 # Contains: read_a
barcode-barcode_b.pod5 # Contains: read_b, read_c
barcode-barcode_c.pod5 # Contains: read_d
> pod5 subset example_1.pod5 --output mux_subset --summary summary.txt --columns mux
> ls mux_subset
mux-1.pod5 # Contains: read_a, read_b
mus-2.pod5 # Contains: read_c, read_d
> pod5 subset example_1.pod5 --output barcode_mux_subset --summary summary.txt --columns barcode mux
> ls barcode_mux_subset
barcode-barcode_a_mux-1.pod5 # Contains: read_a
barcode-barcode_b_mux-1.pod5 # Contains: read_b
barcode-barcode_b_mux-2.pod5 # Contains: read_c
barcode-barcode_c_mux-2.pod5 # Contains: read_d
The output filename is generated from a template string. The automatically generated
template is the sequential concatenation of column_name-column_value followed by the
.pod5
file extension. The user can set their own filename template using the --template
argument. This argument accepts a string in the Python f-string style where the subsetting
variables are used for keyword placeholder substitution. Keywords should be placed
within curly-braces. For example:
From the examples above:
> pod5 subset example_1.pod5 --output barcode_subset --summary summary.txt --columns barcode
# default template used = "barcode-{barcode}.pod5"
> pod5 subset example_1.pod5 --output barcode_mux_subset --summary summary.txt --columns barcode mux
# default template used = "barcode-{barcode}_mux-{mux}.pod5"
Custom template example:
> pod5 subset example_1.pod5 --output barcode_subset --summary summary.txt --columns barcode --template "{barcode}.subset.pod5"
> ls barcode_subset
barcode_a.subset.pod5 # Contains: read_a
barcode_b.subset.pod5 # Contains: read_b, read_c
barcode_c.subset.pod5 # Contains: read_d
pod5 repack
will simply repack .pod5
files into one-for-one output files of the same name.
> pod5 repack pod5s/*.pod5 repacked_pods/
pod5 merge
will merge multiple .pod5
files into one output file.
> pod5 merge pod5s/*.pod5 merged.pod5
The pod5 convert fast5
tool takes one or more .fast5
files and converts them
to one or more .pod5
files.
Some content previously stored in fast5 files is not compatible with the pod5 format and will not be converted
# View help
> pod5 convert fast5 --help
# Convert fast5 files into a monolithic output file
> pod5 convert fast5 ./input/*.fast5 --output converted.pod5
# Convert fast5 files into a monolithic output in an existing directory
> pod5 convert fast5 ./input/*.fast5 --output outputs/
> ls outputs/
outputs/output.pod5 # default name
# Convert each fast5 to its relative converted output. The output files are written
# into the output directory at paths relatve to the path given to the
# --one-to-one argument. Note: This path must be a relative parent to all
# input paths.
> ls input/*.fast5
fast5_1.fast5 fast5_2.fast5 ... fast5_N.fast5
> pod5 convert fast5 ./input/*.fast5 --output output_pod5s --one-to-one input/
> ls output_pod5s/
fast5_1.pod5 fast5_2.pod5 ... fast5_N.pod5
# Note the different --one-to-one path which is now the current working directory.
# The new sub-directory output_pod5/input is created.
> pod5 convert fast5 ./input/*.fast5 --output output_pod5s --one-to-one ./
> ls output_pod5s/
input/fast5_1.pod5 input/fast5_2.pod5 ... input/fast5_N.pod5
The pod5 convert to_fast5
tool takes one or more .pod5
files and converts them
to multiple .fast5
files. The default behaviour is to write 4000 reads per output file
but this can be controlled with the --file-read-count
argument.
# View help
> pod5 convert to_fast5 --help
# Convert pod5 files to fast5 files with default 4000 reads per file
> pod5 convert to_fast5 example.pod5 pod5_to_fast5
> ls pod5_to_fast5/
output_1.fast5 output_2.fast5 ... output_N.fast5