-
Notifications
You must be signed in to change notification settings - Fork 5
/
shopping.py
executable file
·166 lines (131 loc) · 5.53 KB
/
shopping.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
import csv
import sys
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
TEST_SIZE = 0.4
def main():
# Check command-line arguments
if len(sys.argv) != 2:
sys.exit("Usage: python shopping.py data")
# Load data from spreadsheet and split into train and test sets
evidence, labels = load_data(sys.argv[1])
X_train, X_test, y_train, y_test = train_test_split(
evidence, labels, test_size=TEST_SIZE
)
# Train model and make predictions
model = train_model(X_train, y_train)
predictions = model.predict(X_test)
sensitivity, specificity = evaluate(y_test, predictions)
# Print results
print(f"Correct: {(y_test == predictions).sum()}")
print(f"Incorrect: {(y_test != predictions).sum()}")
print(f"True Positive Rate: {100 * sensitivity:.2f}%")
print(f"True Negative Rate: {100 * specificity:.2f}%")
def load_data(filename):
"""
Load shopping data from a CSV file `filename` and convert into a list of
evidence lists and a list of labels. Return a tuple (evidence, labels).
evidence should be a list of lists, where each list contains the
following values, in order:
- Administrative, an integer
- Administrative_Duration, a floating point number
- Informational, an integer
- Informational_Duration, a floating point number
- ProductRelated, an integer
- ProductRelated_Duration, a floating point number
- BounceRates, a floating point number
- ExitRates, a floating point number
- PageValues, a floating point number
- SpecialDay, a floating point number
- Month, an index from 0 (January) to 11 (December)
- OperatingSystems, an integer
- Browser, an integer
- Region, an integer
- TrafficType, an integer
- VisitorType, an integer 0 (not returning) or 1 (returning)
- Weekend, an integer 0 (if false) or 1 (if true)
labels should be the corresponding list of labels, where each label
is 1 if Revenue is true, and 0 otherwise.
"""
evidence = []
labels = []
# for converting months (strings) to corresponding ints
months = ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'June', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec']
month_num = enumerate(months)
month = {k: v for v, k in month_num}
with open(filename, "r") as raw:
# returns an OrderedDict object for iterating
reader = csv.DictReader(raw)
for each_row in reader:
# initializing an empty list and
# append values to it after typecasting
row = []
row.append(int(each_row["Administrative"]))
row.append(float(each_row["Administrative_Duration"]))
row.append(int(each_row["Informational"]))
row.append(float(each_row["Informational_Duration"]))
row.append(int(each_row["ProductRelated"]))
row.append(float(each_row["ProductRelated_Duration"]))
row.append(float(each_row["BounceRates"]))
row.append(float(each_row["ExitRates"]))
row.append(float(each_row["PageValues"]))
row.append(float(each_row["SpecialDay"]))
row.append(int(month[each_row["Month"]]))
row.append(int(each_row["OperatingSystems"]))
row.append(int(each_row["Browser"]))
row.append(int(each_row["Region"]))
row.append(int(each_row["TrafficType"]))
row.append(int(each_row["VisitorType"] == 'Returning_Visitor'))
row.append(int(each_row["Weekend"] == 'TRUE'))
evidence.append(row)
# append the corresponding label
labels.append(int(each_row["Revenue"] == 'TRUE'))
return evidence, labels
def train_model(evidence, labels):
"""
Given a list of evidence lists and a list of labels, return a
fitted k-nearest neighbor model (k=1) trained on the data.
"""
# sklearn's K-Nearest Neighbor Classifier
# considering 1 neighbor and then, training (fit-ing)
model = KNeighborsClassifier(n_neighbors=1)
model.fit(evidence, labels)
return model
def evaluate(labels, predictions):
"""
Given a list of actual labels and a list of predicted labels,
return a tuple (sensitivity, specificty).
Assume each label is either a 1 (positive) or 0 (negative).
`sensitivity` should be a floating-point value from 0 to 1
representing the "true positive rate": the proportion of
actual positive labels that were accurately identified.
`specificity` should be a floating-point value from 0 to 1
representing the "true negative rate": the proportion of
actual negative labels that were accurately identified.
"""
# total test set size
size = len(labels)
# total negative examples
negatives = 0
# total positive examples
positives = 0
# no. of positives identified as positives
true_positives = 0
# no. of negatives identified as negatives
true_negatives = 0
for i in range(size):
if labels[i] == 0:
negatives += 1
if labels[i] == predictions[i]:
true_negatives += 1
else:
positives += 1
if labels[i] == predictions[i]:
true_positives += 1
# True Positive Rate
sensitivity = true_positives / positives
# True Negative Rate
specificity = true_negatives / negatives
return sensitivity, specificity
if __name__ == "__main__":
main()