-
Notifications
You must be signed in to change notification settings - Fork 111
/
fit_scan.py
261 lines (213 loc) · 10.8 KB
/
fit_scan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
'''
Max-Planck-Gesellschaft zur Foerderung der Wissenschaften e.V. (MPG) is holder of all proprietary rights on this computer program.
Using this computer program means that you agree to the terms in the LICENSE file (https://flame.is.tue.mpg.de/modellicense) included
with the FLAME model. Any use not explicitly granted by the LICENSE is prohibited.
Copyright 2020 Max-Planck-Gesellschaft zur Foerderung der Wissenschaften e.V. (MPG). acting on behalf of its
Max Planck Institute for Intelligent Systems. All rights reserved.
More information about FLAME is available at http://flame.is.tue.mpg.de.
For comments or questions, please email us at flame@tue.mpg.de
'''
import numpy as np
import chumpy as ch
from os.path import join
from psbody.mesh import Mesh
from smpl_webuser.serialization import load_model
from sbody.mesh_distance import ScanToMesh
from sbody.robustifiers import GMOf
from sbody.alignment.objectives import sample_from_mesh
from fitting.landmarks import load_embedding, landmark_error_3d, mesh_points_by_barycentric_coordinates
from fitting.util import load_binary_pickle, write_simple_obj, safe_mkdir, get_unit_factor
# -----------------------------------------------------------------------------
def compute_approx_scale(lmk_3d, model, lmk_face_idx, lmk_b_coords, opt_options=None):
""" function: compute approximate scale to align scan and model
input:
lmk_3d: input landmark 3d, in shape (N,3)
model: FLAME face model
lmk_face_idx, lmk_b_coords: landmark embedding, in face indices and barycentric coordinates
opt_options: optimizaton options
output:
model.r: fitted result vertices
model.f: fitted result triangulations (fixed in this code)
parms: fitted model parameters
"""
scale = ch.ones(1)
scan_lmks = scale*ch.array(lmk_3d)
model_lmks = mesh_points_by_barycentric_coordinates( model, model.f, lmk_face_idx, lmk_b_coords )
lmk_err = scan_lmks-model_lmks
# options
if opt_options is None:
print("fit_lmk3d(): no 'opt_options' provided, use default settings.")
import scipy.sparse as sp
opt_options = {}
opt_options['disp'] = 1
opt_options['delta_0'] = 0.1
opt_options['e_3'] = 1e-4
opt_options['maxiter'] = 2000
sparse_solver = lambda A, x: sp.linalg.cg(A, x, maxiter=opt_options['maxiter'])[0]
opt_options['sparse_solver'] = sparse_solver
# on_step callback
def on_step(_):
pass
ch.minimize( fun = lmk_err,
x0 = [ scale, model.trans, model.pose[:3] ],
method = 'dogleg',
callback = on_step,
options = opt_options )
return scale.r
# -----------------------------------------------------------------------------
def fit_scan( scan, # input scan
lmk_3d, # input scan landmarks
model, # model
lmk_face_idx, lmk_b_coords, # landmark embedding
weights, # weights for the objectives
gmo_sigma, # weight of the robustifier
shape_num=300, expr_num=100, opt_options=None ):
""" function: fit FLAME model to a 3D scan
input:
scan: input scan
lmk_3d: input landmark 3d, in shape (N,3)
model: FLAME face model
lmk_face_idx, lmk_b_coords: landmark embedding, in face indices and barycentric coordinates
weights: weights for each objective
shape_num, expr_num: numbers of shape and expression compoenents used
opt_options: optimizaton options
output:
model.r: fitted result vertices
model.f: fitted result triangulations (fixed in this code)
parms: fitted model parameters
"""
# variables
shape_idx = np.arange( 0, min(300,shape_num) ) # valid shape component range in "betas": 0-299
expr_idx = np.arange( 300, 300+min(100,expr_num) ) # valid expression component range in "betas": 300-399
used_idx = np.union1d( shape_idx, expr_idx )
model.betas[:] = np.random.rand( model.betas.size ) * 0.0 # initialized to zero
model.pose[:] = np.random.rand( model.pose.size ) * 0.0 # initialized to zero
free_variables = [model.trans, model.pose, model.betas[used_idx]]
# weights
print("fit_scan(): use the following weights:")
for kk in weights.keys():
print("fit_scan(): weights['%s'] = %f" % ( kk, weights[kk] ))
# objectives
# landmark error
lmk_err = landmark_error_3d(mesh_verts=model, mesh_faces=model.f, lmk_3d=lmk_3d, lmk_face_idx=lmk_face_idx, lmk_b_coords=lmk_b_coords)
# scan-to-mesh distance, measuring the distance between scan vertices and the closest points in the model's surface
sampler = sample_from_mesh(scan, sample_type='vertices')
s2m = ScanToMesh(scan, model, model.f, scan_sampler=sampler, rho=lambda x: GMOf(x, sigma=gmo_sigma))
# regularizer
shape_err = weights['shape'] * model.betas[shape_idx]
expr_err = weights['expr'] * model.betas[expr_idx]
pose_err = weights['pose'] * model.pose[3:] # exclude global rotation
objectives = {'s2m': weights['s2m']*s2m, 'lmk': weights['lmk']*lmk_err, 'shape': shape_err, 'expr': expr_err, 'pose': pose_err}
# options
if opt_options is None:
print("fit_lmk3d(): no 'opt_options' provided, use default settings.")
import scipy.sparse as sp
opt_options = {}
opt_options['disp'] = 1
opt_options['delta_0'] = 0.1
opt_options['e_3'] = 1e-4
opt_options['maxiter'] = 2000
sparse_solver = lambda A, x: sp.linalg.cg(A, x, maxiter=opt_options['maxiter'])[0]
opt_options['sparse_solver'] = sparse_solver
# on_step callback
def on_step(_):
pass
# optimize
# step 1: rigid alignment
from time import time
timer_start = time()
print("\nstep 1: start rigid fitting...")
ch.minimize( fun = lmk_err,
x0 = [ model.trans, model.pose[:3] ],
method = 'dogleg',
callback = on_step,
options = opt_options )
timer_end = time()
print("step 1: fitting done, in %f sec\n" % ( timer_end - timer_start ))
# step 2: non-rigid alignment
timer_start = time()
print("step 2: start non-rigid fitting...")
ch.minimize( fun = objectives,
x0 = free_variables,
method = 'dogleg',
callback = on_step,
options = opt_options )
timer_end = time()
print("step 2: fitting done, in %f sec\n" % ( timer_end - timer_start ))
# return results
parms = { 'trans': model.trans.r, 'pose': model.pose.r, 'betas': model.betas.r }
return model.r, model.f, parms
def run_fitting():
# input scan
scan_path = './data/scan.obj'
# landmarks of the scan
scan_lmk_path = './data/scan_lmks.npy'
# measurement unit of landmarks ['m', 'cm', 'mm', 'NA']
# When using option 'NA', the scale of the scan will be estimated by rigidly aligning model and scan landmarks
scan_unit = 'm'
scan = Mesh(filename=scan_path)
print("loaded scan from:", scan_path)
lmk_3d = np.load(scan_lmk_path)
print("loaded scan landmark from:", scan_lmk_path)
# model
model_path = './models/generic_model.pkl' # change to 'female_model.pkl' or 'male_model.pkl', if gender is known
model = load_model(model_path) # the loaded model object is a 'chumpy' object, check https://github.com/mattloper/chumpy for details
print("loaded model from:", model_path)
# landmark embedding
lmk_emb_path = './models/flame_static_embedding.pkl'
lmk_face_idx, lmk_b_coords = load_embedding(lmk_emb_path)
print("loaded lmk embedding")
# scale scans and scan landmarks to be in the same local coordinate systems as the FLAME model
if scan_unit.lower() == 'na':
print('No scale specifiec - compute approximate scale based on the landmarks')
scale_factor = compute_approx_scale(lmk_3d, model, lmk_face_idx, lmk_b_coords)
print('Scale factor: %f' % scale_factor)
else:
scale_factor = get_unit_factor('m') / get_unit_factor(scan_unit)
print('Scale factor: %f' % scale_factor)
scan.v[:] *= scale_factor
lmk_3d[:] *= scale_factor
# output
output_dir = './output'
safe_mkdir(output_dir)
# weights
weights = {}
# scan vertex to model surface distance term
weights['s2m'] = 2.0
# landmark term
weights['lmk'] = 1e-2
# shape regularizer (weight higher to regularize face shape more towards the mean)
weights['shape'] = 1e-4
# expression regularizer (weight higher to regularize facial expression more towards the mean)
weights['expr'] = 1e-4
# regularization of head rotation around the neck and jaw opening (weight higher for more regularization)
weights['pose'] = 1e-3
# Parameter of the Geman-McClure robustifier (higher weight for a larger bassin of attraction which makes it less robust to outliers)
gmo_sigma = 1e-4
# optimization options
import scipy.sparse as sp
opt_options = {}
opt_options['disp'] = 1
opt_options['delta_0'] = 0.1
opt_options['e_3'] = 1e-4
opt_options['maxiter'] = 2000
sparse_solver = lambda A, x: sp.linalg.cg(A, x, maxiter=opt_options['maxiter'])[0]
opt_options['sparse_solver'] = sparse_solver
# run fitting
mesh_v, mesh_f, parms = fit_scan( scan=scan, # input scan
lmk_3d=lmk_3d, # input landmark 3d
model=model, # model
lmk_face_idx=lmk_face_idx, lmk_b_coords=lmk_b_coords, # landmark embedding
weights=weights, # weights for the objectives
gmo_sigma=gmo_sigma, # parameter of the regularizer
shape_num=300, expr_num=100, opt_options=opt_options ) # options
# write result
output_path = join( output_dir, 'fit_scan_result.obj' )
write_simple_obj( mesh_v=mesh_v, mesh_f=mesh_f, filepath=output_path, verbose=False )
print('output mesh saved to: ', output_path)
# output scaled scan for reference (output scan fit and the scan should be spatially aligned)
output_path = join( output_dir, 'scan_scaled.obj' )
write_simple_obj( mesh_v=scan.v, mesh_f=scan.f, filepath=output_path, verbose=False )
# -----------------------------------------------------------------------------
if __name__ == '__main__':
run_fitting()