forked from hefeda/PGP
-
Notifications
You must be signed in to change notification settings - Fork 0
/
tmbed_viterbi.py
142 lines (97 loc) · 4.71 KB
/
tmbed_viterbi.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
# Copyright 2022 Rostlab
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
import torch.nn as nn
class Decoder(nn.Module):
def __init__(self):
super().__init__()
self._init_transitions()
def _init_transitions(self):
num_tags = 27
end_transitions = torch.full((num_tags,), -100)
start_transitions = torch.full((num_tags,), -100)
transitions = torch.full((num_tags, num_tags), -100)
for i in [0, 5, 10, 15, 20, -2, -1]:
start_transitions[i] = 0 # B1a, B1b, H1a, H1b, S1, i, o
for i in range(4):
transitions[0+i, 1+i] = 0 # Bxa -> Bya
transitions[5+i, 6+i] = 0 # Bxb -> Byb
transitions[10+i, 11+i] = 0 # Hxa -> Hya
transitions[15+i, 16+i] = 0 # Hxb -> Hyb
transitions[20+i, 21+i] = 0 # Sx -> Sy
for i in [4, 9, 14, 19, 24]:
transitions[i, i] = 0 # X5 -> X5
transitions[4, -1] = 0 # B5a -> o
transitions[9, -2] = 0 # B5b -> i
transitions[14, -1] = 0 # H5a -> o
transitions[19, -2] = 0 # H5b -> i
transitions[24, -2:] = 0 # S5 -> (i, o)
transitions[-2, 0] = 0 # i -> B1a
transitions[-2, 10] = 0 # i -> H1a
transitions[-2, -2:] = 0 # i -> (i, o)
transitions[-1, 5] = 0 # o -> B1b
transitions[-1, 15] = 0 # o -> H1b
transitions[-1, -2:] = 0 # o -> (i, o)
for i in [4, 9, 14, 19, 24, -2, -1]:
end_transitions[i] = 0 # B5a, B5b, H5a, H5b, S5, i, o
repeats = torch.tensor([10, 10, 5, 1, 1], dtype=torch.int32)
mapping = torch.arange(7, dtype=torch.int32)
mapping = mapping.repeat_interleave(torch.tensor([5, 5, # B
5, 5, # H
5, # S
1, # i
1])) # o
assert repeats.sum() == num_tags
assert mapping.shape == (num_tags,)
self.register_buffer('transitions', tensor=transitions)
self.register_buffer('end_transitions', tensor=end_transitions)
self.register_buffer('start_transitions', tensor=start_transitions)
self.register_buffer('repeats', tensor=repeats)
self.register_buffer('mapping', tensor=mapping)
def forward(self, emissions, mask):
mask = mask.transpose(0, 1).bool()
emissions = emissions.permute(2, 0, 1)
emissions = emissions.repeat_interleave(self.repeats, dim=2)
decoded = self._viterbi_decode(emissions, mask)
decoded = self.mapping[decoded]
return decoded
def _viterbi_decode(self, emissions, mask):
device = emissions.device
seq_length, batch_size, num_tags = emissions.shape
score = self.start_transitions + emissions[0]
history = torch.zeros((seq_length, batch_size, num_tags),
dtype=torch.long, device=device)
for i in range(1, seq_length):
next_score = (self.transitions
+ score.unsqueeze(2)
+ emissions[i].unsqueeze(1))
next_score, indices = next_score.max(dim=1)
score = torch.where(mask[i].unsqueeze(-1), next_score, score)
history[i - 1] = indices
score = score + self.end_transitions
_, end_tag = score.max(dim=1)
seq_ends = mask.long().sum(dim=0) - 1
history = history.transpose(1, 0)
history.scatter_(1,
seq_ends.view(-1, 1, 1).expand(-1, 1, num_tags),
end_tag.view(-1, 1, 1).expand(-1, 1, num_tags))
history = history.transpose(1, 0)
best_tags = torch.zeros((batch_size, 1), dtype=torch.long,
device=device)
best_tags_arr = torch.zeros((seq_length, batch_size), dtype=torch.long,
device=device)
for idx in range(seq_length - 1, -1, -1):
best_tags = torch.gather(history[idx], 1, best_tags)
best_tags_arr[idx] = best_tags.view(batch_size)
return best_tags_arr.transpose(0, 1)