-
Notifications
You must be signed in to change notification settings - Fork 165
/
demo.py
105 lines (87 loc) · 3.87 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
import os
import sys
import argparse
import cv2
from tqdm import tqdm
from ssds.ssds import SSDDetector
COLORS = [(255, 0, 0), (0, 255, 0), (0, 0, 255)]
FONT = cv2.FONT_HERSHEY_SIMPLEX
def plot_one_box(img, x, color=None, label=None, line_thickness=None):
# Plots one bounding box on image img
tl = line_thickness or round(0.002 * (img.shape[0] + img.shape[1]) / 2) + 1 # line/font thickness
color = color or [random.randint(0, 255) for _ in range(3)]
c1, c2 = (int(x[0]), int(x[1])), (int(x[2]), int(x[3]))
cv2.rectangle(img, c1, c2, color, thickness=tl, lineType=cv2.LINE_AA)
if label:
tf = max(tl - 1, 1) # font thickness
t_size = cv2.getTextSize(label, 0, fontScale=tl / 3, thickness=tf)[0]
c2 = c1[0] + t_size[0], c1[1] - t_size[1] - 3
cv2.rectangle(img, c1, c2, color, -1, cv2.LINE_AA) # filled
cv2.putText(img, label, (c1[0], c1[1] - 2), 0, tl / 3, [225, 255, 255], thickness=tf, lineType=cv2.LINE_AA)
def demo_image(model, image_path, display):
# 1. prepare image
image = cv2.imread(image_path)
image = cv2.resize(image, model.image_size)
# 2. model infer
scores, boxes, classes = model(image)
# 3. draw bounding box on the image
for score, box, labels in zip(scores, boxes, classes):
plot_one_box(image, box, COLORS[labels % 3], '{label}: {score:.3f}'.format(label=labels, score=score))
# 4. visualize result
if display:
cv2.imshow('result', image)
cv2.waitKey(0)
else:
path, _ = os.path.splitext(image_path)
cv2.imwrite(path + '_result.jpg', image)
print("output file save at '{}'".format(path + '_result.jpg'))
def demo_video(model, video_path, display):
# 0. prepare video
cap = cv2.VideoCapture(video_path)
frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
if cap.isOpened() and (not display):
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
fps = int(cap.get(cv2.CAP_PROP_FPS))
writer = cv2.VideoWriter(video_path+"_output.mp4", fourcc, fps, (width,height))
for fid in tqdm(range(frames)):
# 1. prepare image
flag, image = cap.read()
image = cv2.resize(image, model.image_size)
# 2. model infer
scores, boxes, classes = model(image)
# 3. draw bounding box on the image
for score, box, labels in zip(scores, boxes, classes):
plot_one_box(image, box, COLORS[labels % 3], '{label}: {score:.3f}'.format(label=labels, score=score))
image = cv2.resize(image, (width,height))
# 4. visualize result
if display:
cv2.imshow("Image", image)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
else:
writer.write(image)
# 5. release the video resources
cap.release()
if display:
cv2.destroyAllWindows()
else:
writer.release()
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Demo a ssds.pytorch network')
parser.add_argument('-cfg', '--confg-file',
help='the address of optional config file', default=None, type=str, required=True)
parser.add_argument('-i', '--demo-file',
help='the address of the demo file', default=None, type=str, required=True)
parser.add_argument('-t', '--type',
default='image', choices=['image', 'video'])
parser.add_argument('-d', '--display',
help='whether display the detection result', action="store_true")
parser.add_argument('-s', '--shift', action="store_true")
if len(sys.argv) == 1:
parser.print_help()
sys.exit(1)
args = parser.parse_args()
model = SSDDetector(args.confg_file, args.shift)
getattr(sys.modules[__name__], "demo_"+args.type)(model, args.demo_file, args.display)