-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.py
624 lines (561 loc) · 21.7 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
import json
import random
import numpy as np
import os
import time
import os.path
import networkx as nx
import users_endpoint.users
import grn_endpoint.grn_info
import move_endpoint.movement
import reward_endpoint.rewards
import matplotlib.pyplot as plt
from matplotlib.backends.backend_pdf import PdfPages
# Global variables declaration
# User coverage threshold
coverage_threshold = 0
# GRN Edge Similarity threshold
similarity_threshold = 0
# Start time of program
start_time = 0
# End time of program
end_time = 0
# Threshold for UAVs i.e each UAV must be placed at least this distance away
t = 0
# Number of rows and columns in the grid
N = 0
M = 0
# Exploration and exploitation rate of the agent
epsilon = 0
# Learning rate of the agent
learning_rate = 0
# Decay factor for exploration rate
decay_factor = 0
# Number of UAVs
number_UAV = 0
# Variable to hold the UAV to UAV Threshold
UAV_to_UAV_threshold = 0
# Radius of the UAV
radius_UAV = 0
# Power of the UAV
power_UAV = 0
# Maximum iteration for the algorithm
max_iter = 0
# Dictionary to hold the location of jth UAV
# Key in this dictionary is the UAV_node
# Value is the location in which it is placed
UAV_location = {}
# List to contain already connected ground users
ground_placed = []
# Cell Size of grid
cell_size = 0
# Unit multiplier
unit_mul = 0
def init():
"""
Function: init
Functionality: Sets all the global variables
"""
global start_time
global similarity_threshold
global coverage_threshold
start_time = time.time()
global N
global M
global t
global epsilon
global learning_rate
global decay_factor
global max_iter
global number_UAV
global radius_UAV
global UAV_to_UAV_threshold
global power_UAV
global cell_size, unit_mul
parent_dir = os.getcwd()
dir_path = os.path.join(parent_dir, 'output_files')
try:
os.mkdir(dir_path)
except OSError as error:
pass
dir_path = os.path.join(parent_dir, 'graph_output_files')
try:
os.mkdir(dir_path)
except OSError as error:
pass
parent_dir = os.getcwd()
folder_name = 'input_files'
file_name = 'scenario_input.json'
file_path = os.path.join(parent_dir, folder_name, file_name)
with open(file_path, 'r') as file_pointer:
file_data = json.load(file_pointer)
N = file_data['N']
M = file_data['M']
t = file_data['t']
epsilon = file_data['epsilon']
learning_rate = file_data['learning_rate']
decay_factor = file_data['decay_factor']
max_iter = file_data['max_iter']
number_UAV = file_data['number_UAV']
radius_UAV = file_data['radius_UAV']
UAV_to_UAV_threshold = file_data['UAV_to_UAV_threshold']
power_UAV = file_data['power_UAV']
coverage_threshold = file_data['coverage_threshold']
similarity_threshold = file_data['similarity_threshold']
cell_size = file_data['cell_size']
unit_mul = file_data['unit_multiplier']
UAV_to_UAV_threshold *= unit_mul
radius_UAV *= unit_mul
cell_size *= unit_mul
t *= unit_mul
t //= cell_size
users_endpoint.users.init()
grn_endpoint.grn_info.init_custom()
def q_learn(UAV_node, placed, flag):
"""
Function: q_learn\n
Parameters: UAV_node -> UAV_node which is to be placed, placed -> list of already placed UAV_nodes, flag -> True if only user coverage is considered\n
Return: the optimal position where the UAV_node needs to be placed\n
"""
global N
global M
global epsilon
global learning_rate
global decay_factor
global max_iter
global power_UAV
global UAV_location
global radius_UAV
global t
Q = np.zeros((N * M, 15))
# Centroid Location
# loc = move_endpoint.movement.get_centroid_location(
# N, M, UAV_location, int(UAV_to_UAV_threshold // cell_size))
# Center Location
# loc = move_endpoint.movement.get_center_location(N, M)
# Random Location
loc = move_endpoint.movement.get_random_location(N, M)
# Vicinity Location
# loc = move_endpoint.movement.get_vicinity_location(
# N, M, UAV_location, int(UAV_to_UAV_threshold // cell_size))
epsilon_val = epsilon
# low, medium, high power
action_power = [0, 5, 10]
for iterations in range(max_iter):
x, y, action, power_factor = move_endpoint.movement.get_random_move(
loc, N, M)
loc = (x, y)
action += action_power[power_factor]
power_UAV += power_factor
if random.uniform(0, 1) <= epsilon_val:
index = move_endpoint.movement.map_2d_to_1d(loc, N)
if flag:
Q[index, action] = reward_endpoint.rewards.reward_function_user(
UAV_node, placed, loc, UAV_location, t, power_UAV, int(UAV_to_UAV_threshold // cell_size), int(radius_UAV // cell_size), N, M, set(ground_placed))
else:
Q[index, action] = reward_endpoint.rewards.reward_function(
UAV_node, placed, loc, UAV_location, t, power_UAV, int(UAV_to_UAV_threshold // cell_size), int(radius_UAV // cell_size), N, M, set(ground_placed))
else:
index = move_endpoint.movement.map_2d_to_1d(loc, N)
if flag:
reward = reward_endpoint.rewards.reward_function_user(
UAV_node, placed, loc, UAV_location, t, power_UAV, int(UAV_to_UAV_threshold // cell_size), int(radius_UAV // cell_size), N, M, set(ground_placed))
else:
reward = reward_endpoint.rewards.reward_function(
UAV_node, placed, loc, UAV_location, t, power_UAV, int(UAV_to_UAV_threshold // cell_size), int(radius_UAV // cell_size), N, M, set(ground_placed))
Q[index, action] = Q[index, action] + learning_rate * \
(reward + decay_factor *
np.max(Q[index, :]) - Q[index, action])
epsilon_val *= decay_factor
max_reward = -1
max_pos = -1
for index, rows in enumerate(Q):
expected_max = np.max(rows)
if expected_max >= max_reward:
max_reward = expected_max
max_pos = index
x, y = move_endpoint.movement.map_1d_to_2d(max_pos, N, M)
return (x, y)
def done_simulation(ground_placed, placed):
"""
Function: done_simulation\n
Parameters: ground_placed -> list of users alredy placed, placed -> list of UAVs placed\n
Returns: True if simulation is done\n
"""
global coverage_threshold, similarity_threshold
ground_users = users_endpoint.users.get_number_ground_users()
done_user_connectivity = False
done_UAV_coverage = False
done_edge_similarity = False
if len(set(ground_placed)) / ground_users >= coverage_threshold:
done_user_connectivity = True
UAV_G = get_UAV_graph(placed)
common_lst, _, grn_edge_lst, _ = similarity_criteria(
UAV_G)
total_edge_grn_SG = len(grn_edge_lst)
if total_edge_grn_SG == 0:
total_edge_grn_SG = 1
if len(common_lst) / total_edge_grn_SG >= similarity_threshold:
done_edge_similarity = True
if nx.number_connected_components(UAV_G) == 1:
done_UAV_coverage = True
return done_user_connectivity and done_UAV_coverage and done_edge_similarity
def valid_loc(loc):
"""
Function: valid_loc\n
Parameter: loc -> location of the UAV being placed\n
Return: true if that location is not occupied\n
"""
global UAV_location
for node, location in UAV_location.items():
if location == loc:
return False
return True
def bruteforce(UAV_node, placed, flag):
"""
Function: bruteforce\n
Parameters: UAV_node -> UAV_node which is to be placed, placed -> list of already placed UAV_nodes, flag -> True if only user coverage is considered\n
Functionality: bruteforce all the grid location\n
"""
global N
global M
global radius_UAV
global UAV_location
global t
global power_UAV
global ground_placed
max_reward = -999999
max_pos = (-1, -1)
for i in range(N):
for j in range(M):
loc = (i, j)
if flag:
reward = reward_endpoint.rewards.reward_function_user(
UAV_node, placed, loc, UAV_location, t, power_UAV, int(UAV_to_UAV_threshold // cell_size), int(radius_UAV // cell_size), N, M, set(ground_placed))
else:
reward = reward_endpoint.rewards.reward_function(
UAV_node, placed, loc, UAV_location, t, power_UAV, int(UAV_to_UAV_threshold // cell_size), int(radius_UAV // cell_size), N, M, set(ground_placed))
if reward > max_reward and valid_loc(loc):
max_reward = reward
max_pos = loc
return max_pos
def consider_user_coverage():
"""
Function: consider_user_coverage\n
Parameters: None\n
Functionality: consider only user_coverage of the network\n
"""
global ground_placed
ground_users = users_endpoint.users.get_number_ground_users()
placed = [1]
unplaced = []
max_pos, max_density = users_endpoint.users.get_max_pos_density()
UAV_location[1] = max_pos
print(f'Placed UAV {1}')
user_list = users_endpoint.users.get_users_cell_connections(max_pos)
for user in user_list:
ground_placed.append(user)
for UAV_node in range(2, number_UAV + 1):
unplaced.append(UAV_node)
for UAV_node in unplaced:
if done_simulation(ground_placed, placed):
break
if len(set(ground_placed)) / ground_users >= coverage_threshold:
break
loc = bruteforce(UAV_node, placed, True)
UAV_location[UAV_node] = loc
placed.append(UAV_node)
print(f'Placed UAV {UAV_node}')
user_list = users_endpoint.users.get_users_cell_connections(loc)
for user in user_list:
ground_placed.append(user)
return placed
def reallocate(placed):
"""
Function: reallocate\n
Parameters: placed -> list of UAVs which are placed\n
Functionality: Checks if reallocating the UAVs meets the criteria or not
"""
global UAV_location, ground_placed
for UAV_node in placed:
if done_simulation(ground_placed, placed):
break
print(f'Trying to redeploy UAV {UAV_node}')
prev_loc = UAV_location[UAV_node]
prev_user_list = users_endpoint.users.get_users_cell_connections(
prev_loc)
UAV_G = get_UAV_graph(placed)
common_lst, _, grn_edge_lst, _ = similarity_criteria(
UAV_G)
total_edge_grn_SG = len(grn_edge_lst)
if total_edge_grn_SG == 0:
total_edge_grn_SG = 1
prev_edge_similarity = len(common_lst) / total_edge_grn_SG
prev_len_ground = len(set(ground_placed))
for user in prev_user_list:
if user in ground_placed:
ground_placed.remove(user)
loc = bruteforce(UAV_node, placed, False)
UAV_location[UAV_node] = loc
user_list = users_endpoint.users.get_users_cell_connections(loc)
for user in user_list:
ground_placed.append(user)
len_ground = len(set(ground_placed))
UAV_G = get_UAV_graph(placed)
common_lst, _, grn_edge_lst, _ = similarity_criteria(
UAV_G)
total_edge_grn_SG = len(grn_edge_lst)
if total_edge_grn_SG == 0:
total_edge_grn_SG = 1
edge_similarity = len(common_lst) / total_edge_grn_SG
print(f'Total User covered when UAV {UAV_node} was placed at {prev_loc} was {prev_len_ground}\nTotal User covered when UAV {UAV_node} is placed at {loc} is {len_ground}\nPrevious Edge Similarity was {round(prev_edge_similarity * 100, 2)}\nCurrent edge similarity is {round(edge_similarity * 100, 2)}')
global coverage_threshold
ground_users = users_endpoint.users.get_number_ground_users()
if edge_similarity >= prev_edge_similarity and (len_ground >= prev_len_ground or len_ground / ground_users >= coverage_threshold):
print(f'ReDeployed UAV {UAV_node}')
else:
UAV_location[UAV_node] = prev_loc
for user in prev_user_list:
ground_placed.append(user)
for user in user_list:
if user in ground_placed:
ground_placed.remove(user)
print(f'ReDeployment of UAV {UAV_node} failed')
def simulation(placed):
"""
Function: simulation\n
Parameters: placed -> list of placed UAVs\n
Functionality: Simulates the network\n
"""
global ground_placed
reallocate(placed)
if done_simulation(ground_placed, placed):
write_output(placed)
return
unplaced = []
for UAV_node in range(placed[-1] + 1, number_UAV + 1):
unplaced.append(UAV_node)
for UAV_node in unplaced:
loc = bruteforce(UAV_node, placed, False)
UAV_location[UAV_node] = bruteforce(UAV_node, placed, False)
placed.append(UAV_node)
print(f'Placed UAV {UAV_node}')
user_list = users_endpoint.users.get_users_cell_connections(loc)
for user in user_list:
ground_placed.append(user)
reallocate(placed)
if done_simulation(ground_placed, placed):
break
write_output(placed)
def get_UAV_graph(placed):
"""
Function: get_UAV_graph\n
Parameters: placed -> list of already placed ground users\n:
Returns: UAV graph at a particular point of time\n
"""
global UAV_to_UAV_threshold, cell_size, UAV_location
UAV_G = nx.Graph()
for node in placed:
UAV_G.add_node(node)
for node1 in placed:
for node2 in placed:
if move_endpoint.movement.get_euc_dist(UAV_location[node1], UAV_location[node2]) <= int(UAV_to_UAV_threshold // cell_size) and node1 != node2:
UAV_G.add_edge(node1, node2)
return UAV_G
def similarity_criteria(UAV_G):
"""
Function:similarity_criteria\n
Parameter: UAV_G -> Current UAV graph\n
Returns: A tuple of common edges, uncommon edges and edges which are in grn graph. Dictionary of reverse mapping is also returned\n
"""
grn_node_lst = [grn_endpoint.grn_info.m(node) for node in UAV_G.nodes]
reverse_mapping = {}
for node in UAV_G.nodes:
if grn_endpoint.grn_info.m(node) not in reverse_mapping:
reverse_mapping[grn_endpoint.grn_info.m(node)] = node
uncommon_lst = []
common_lst = []
grn_graph = grn_endpoint.grn_info.get_grn_graph()
grn_SG = grn_graph.subgraph(grn_node_lst)
grn_edge_lst = []
for edge in grn_SG.edges:
u, v = edge
if (u, v) not in grn_edge_lst and (v, u) not in grn_edge_lst:
grn_edge_lst.append((u, v))
for edge in grn_edge_lst:
u, v = edge
if (reverse_mapping[u], reverse_mapping[v]) in UAV_G.edges or (reverse_mapping[v], reverse_mapping[u]) in UAV_G.edges:
if (reverse_mapping[u], reverse_mapping[v]) not in common_lst and (reverse_mapping[v], reverse_mapping[u]) not in common_lst:
common_lst.append((reverse_mapping[u], reverse_mapping[v]))
else:
if (reverse_mapping[u], reverse_mapping[v]) not in uncommon_lst and (reverse_mapping[v], reverse_mapping[u]) not in uncommon_lst:
uncommon_lst.append((reverse_mapping[u], reverse_mapping[v]))
return (common_lst, uncommon_lst, grn_edge_lst, reverse_mapping)
def write_output(placed):
"""
Function: write_output
Parameters: placed -> list of already placed UAVs
Functionality: write the output to the respective files
"""
global radius_UAV, cell_size, UAV_to_UAV_threshold
main_file_name = os.getcwd()
parent_dir = os.path.join(main_file_name, 'output_files')
curr_dir = str(epsilon) + "_" + str(learning_rate) + \
"_" + str(decay_factor)
dir_path = os.path.join(parent_dir, curr_dir)
try:
os.mkdir(dir_path)
except OSError as error:
pass
file_num = len([name for name in os.listdir(
dir_path)])
os.chdir(dir_path)
if file_num == 0:
file_num = 1
text_file_name = 'Output_text' + str(file_num) + '.txt'
image_path = os.path.join(dir_path, 'images')
try:
os.mkdir(image_path)
except OSError as error:
pass
graph_file_name = 'Output_graph' + str(file_num) + '.pdf'
text_file_data = []
text_file_data.append(
f'Total Number of users served: {len(set(ground_placed))}\nList of users: {sorted(set(ground_placed))}\n')
text_file_data.append(f'Total number of UAV used: {len(UAV_location)}\n')
for UAV_node, loc in UAV_location.items():
text_file_data.append(
f'UAV: {UAV_node} can serve users: {users_endpoint.users.get_users_cell_connections(loc)} when placed at {loc}\n')
UAV_G = get_UAV_graph(placed)
total_edge = len(UAV_G.edges)
common_lst, uncommon_lst, grn_edge_lst, reverse_mapping = similarity_criteria(
UAV_G)
total_edge_grn_SG = len(grn_edge_lst)
if total_edge_grn_SG == 0:
total_edge_grn_SG = 1
if total_edge == 0:
total_edge = 1
if len(common_lst) > 0:
text_file_data.append(
f'Following are the edges which is present in both UAV and GRN netwrok: ({len(common_lst)})\n')
for edge in common_lst:
text_file_data.append(f'{edge}, ')
text_file_data.append(f'\n')
else:
text_file_data.append(f'No edge is common in UAV and GRN graph.\n')
if len(uncommon_lst) > 0:
text_file_data.append(
f'Following are the edges which is present in GRN but not in UAV network: ({len(uncommon_lst)})\n')
for edge in uncommon_lst:
text_file_data.append(f'{edge}, ')
text_file_data.append(f'\n')
else:
text_file_data.append(
f'There is no edge which is in GRN but not in the UAV graph\n')
text_file_data.append(
f'Total Number of edges (in UAV Topology): {total_edge}\nPercentage of edge which is both in GRN and UAV: {(len(common_lst) / total_edge_grn_SG) * 100}\n')
text_file_data.append(
f'Following are the edges (in GRN Subgraph): {[(reverse_mapping[u], reverse_mapping[v]) for (u, v) in grn_edge_lst]}\n')
text_file_data.append(
f'Total Number of edges (in GRN Subgraph): {total_edge_grn_SG}\n')
node_motif = grn_endpoint.grn_info.get_motif_dict(UAV_G)
for node, motif in node_motif.items():
text_file_data.append(f'Motif of UAV {node} is {motif}\n')
e_motif = {}
PI = 0
for edge in UAV_G.edges:
node1, node2 = edge
e_motif[edge] = min(node_motif[node1], node_motif[node2])
text_file_data.append(
f'Edge {edge} has edge motif centrality of {e_motif[edge]}\n')
PI = max(PI, e_motif[edge])
text_file_data.append(f'Maximum Edge motif centrality is {PI}\n')
UAV_topology = plt.figure(1)
nx.draw(UAV_G, with_labels=True)
global end_time
text_file_data.append(
f'Standard Deviation of distances between users: {users_endpoint.users.get_standard_deviation()}\n')
end_time = time.time()
text_file_data.append(
f'Total time to run the simulation: {end_time - start_time} seconds')
with open(text_file_name, 'w') as file_pointer:
file_pointer.writelines(text_file_data)
plt.close()
g_x, g_y = get_user_location(main_file_name)
UAV_guser_plot = plt.figure(2)
plt.scatter(g_x, g_y, color='gray')
UAV_x = []
UAV_y = []
rad = int(radius_UAV // cell_size) + 1
for node, loc in UAV_location.items():
a, b = loc
UAV_x.append(a)
UAV_y.append(b)
c = plt.Circle((a, b), rad, color='green', fill=False)
ax = plt.gca()
ax.add_artist(c)
plt.scatter(UAV_x, UAV_y, color='blue')
for idx in range(len(UAV_x)):
plt.annotate(f'{idx + 1}', (UAV_x[idx], UAV_y[idx]), color='black')
for edge in UAV_G.edges:
edge_x = []
edge_y = []
a, b = edge
loc_a = UAV_location[a]
loc_b = UAV_location[b]
x1, y1 = loc_a
x2, y2 = loc_b
edge_x = [x1, x2]
edge_y = [y1, y2]
plt.plot(edge_x, edge_y, color='blue')
for edge in common_lst:
edge_x = []
edge_y = []
a, b = edge
loc_a = UAV_location[a]
loc_b = UAV_location[b]
x1, y1 = loc_a
x2, y2 = loc_b
edge_x = [x1, x2]
edge_y = [y1, y2]
plt.plot(edge_x, edge_y, color='red')
plt.title('Overall Scenario Visualization', fontweight="bold")
plt.xlabel('N', fontweight='bold')
plt.ylabel('M', fontweight='bold')
pp = PdfPages(os.path.join(image_path, graph_file_name))
pp.savefig(UAV_topology, dpi=500, transparent=True)
pp.savefig(UAV_guser_plot, dpi=500, transparent=True)
pp.close()
graph_output_dir = os.path.join(main_file_name, 'graph_output_files')
file_num = len([name for name in os.listdir(graph_output_dir)])
file_name = os.path.join(graph_output_dir, f'output_main{file_num // 2}.json')
with open(file_name, 'w') as file_pointer:
json.dump(UAV_location, file_pointer)
def get_user_location(parent_dir):
"""
Function: get_user_location\n
Parameter: parent_dir -> path of current dir\n
Returns: Returns list of x and y coordinates of ground users\n
"""
dir_name = 'input_files'
file_name = 'user_input.json'
user_input = {}
with open(os.path.join(parent_dir, dir_name, file_name), 'r') as file_pointer:
user_input = json.load(file_pointer)
pos = user_input['Position of Ground users']
x = []
y = []
for item in pos:
a, b = map(float, item.split(' '))
x.append(a)
y.append(b)
return (x, y)
if __name__ == "__main__":
print(f'Initialiazing the environment')
init()
print(f'Initialiazed environment')
placed = consider_user_coverage()
if done_simulation(ground_placed, placed):
write_output(placed)
else:
simulation(placed)