diff --git a/assets/css/atom.css.map b/assets/css/atom.css.map index 4f3f9e5cc3..3fb5ed84c7 100644 --- a/assets/css/atom.css.map +++ b/assets/css/atom.css.map @@ -1 +1 @@ -{"version":3,"sourceRoot":"","sources":["../../../../../../../../../tmp/jekyll-remote-theme-20241010-3005-owiwgx/_sass/_02_settings_typography.scss","../../../../../../../../../tmp/jekyll-remote-theme-20241010-3005-owiwgx/_sass/_03_settings_mixins_media_queries.scss","atom.scss","../../_sass/_01_settings_colors.scss"],"names":[],"mappings":"AAuDA,wBAPoB,QAQpB,wBAPoB,QAQpB,wBAPoB,QAQpB,wBAPoB,OAQpB,wBAPoB,QC8RlB,wBACE,sBAGF,yBACE,4BACA,UAGF,8BACE,kDACA,UAGF,0BACE,qDACA,eAGF,+BACE,0EACA,eAGF,yBACE,qDACA,eAGF,8BACE,0EACA,eAGF,0BACE,qDACA,eAGF,+BACE,2EACA,eAGF,2BACE,sDACA,gBAGF,yCACE,kBC1XJ,EACC,cAGD,MACC,WACA,WCKqB,QDJrB,MCEqB,KDDrB,YFMwB,mDEFxB,WACC,kBACA,cACA,0CACA,mBACA,mBACA,mBACC,yBACA,oBAED,kBACC,sFACA,cACA,YACA,iBCHmB,QDInB,WACA,oBACA,kBACA,uBAIF,wEAMC,aAIF,MACC,cACA,gCACA,iBACC,mBAGD,YACC,MCxBoB,QDyBpB,YFtCkB,8BEuClB,UFhBkB,QEiBlB,mBAGD,kBACC,mBACA,MCzCoB,QD4CrB,cACC,MCdoB,QDepB,gBAGD,cACC,eAGD,mEAKC","sourcesContent":["@charset \"utf-8\";\n/* TOC – Typography variables\n\nModular Scale › http://www.modularscale.com//?16,36&px&1.25&web&table\n\n- Fonts\n- Font Weight\n- Font Size Variables\n\n*/\n\n@import \"functions\"; // Allows the use of rem-calc() or lower-bound() in your settings\n\n\n\n/* Fonts\n------------------------------------------------------------------- */\n\n$base-font-size: 16px;\n$rem-base: $base-font-size;\n// $base-line-height is 24px while $base-font-size is 16px\n$base-line-height: 1.5 !default;\n\n\n$font-family-sans-serif: \"Lato\", \"Helvetica Neue\", Helvetica, Arial, sans-serif;\n$font-family-serif: \"Volkhov\", Georgia, Times, serif;\n$font-family-monospace: \"Lucida Console\", Monaco, monospace;\n\n$body-font-family: $font-family-sans-serif;\n$body-font-weight: normal;\n$body-font-style: normal;\n\n$header-font-family: $font-family-serif;\n\n\n\n/* Font Weight\n------------------------------------------------------------------- */\n\n$font-weight-normal: normal;\n$font-weight-bold: bold;\n\n\n\n/* Font Size Variables\n------------------------------------------------------------------- */\n\n$font-size-p: \t$base-font-size;\n$font-size-h1: 2.441em;\n$font-size-h2: 1.953em;\n$font-size-h3: 1.563em;\n$font-size-h4: 1.25em;\n$font-size-h5: 1.152em;\n$font-size-small: 0.8em;\n\n.font-size-h1 { font-size: $font-size-h1; }\n.font-size-h2 { font-size: $font-size-h2; }\n.font-size-h3 { font-size: $font-size-h3; }\n.font-size-h4 { font-size: $font-size-h4; }\n.font-size-h5 { font-size: $font-size-h5; }\n","@charset \"utf-8\";\n// Foundation by ZURB\n// foundation.zurb.com\n// Licensed under MIT Open Source\n\n//\n// Foundation Variables\n//\n\n// Data attribute namespace\n// styles get applied to [data-mysite-plugin], etc\n$namespace: false !default;\n\n// The default font-size is set to 100% of the browser style sheet (usually 16px)\n// for compatibility with browser-based text zoom or user-set defaults.\n\n// Since the typical default browser font-size is 16px, that makes the calculation for grid size.\n// If you want your base font-size to be different and not have it affect the grid breakpoints,\n// set $rem-base to $base-font-size and make sure $base-font-size is a px value.\n$base-font-size: 100% !default;\n\n\n\n//\n// Global Foundation Mixins\n//\n\n// @mixins\n//\n// We use this to control border radius.\n// $radius - Default: $global-radius || 4px\n@mixin radius($radius: $global-radius) {\n @if $radius {\n border-radius: $radius;\n }\n}\n\n// @mixins\n//\n// We use this to create equal side border radius on elements.\n// $side - Options: left, right, top, bottom\n@mixin side-radius($side, $radius: $global-radius) {\n @if ($side ==left or $side ==right) {\n -webkit-border-bottom-#{$side}-radius: $radius;\n -webkit-border-top-#{$side}-radius: $radius;\n border-bottom-#{$side}-radius: $radius;\n border-top-#{$side}-radius: $radius;\n }\n\n @else {\n -webkit-#{$side}-left-radius: $radius;\n -webkit-#{$side}-right-radius: $radius;\n border-#{$side}-left-radius: $radius;\n border-#{$side}-right-radius: $radius;\n }\n}\n\n// @mixins\n//\n// We can control whether or not we have inset shadows edges.\n// $active - Default: true, Options: false\n@mixin inset-shadow($active: true) {\n box-shadow: $shiny-edge-size $shiny-edge-color inset;\n\n @if $active {\n &:active {\n box-shadow: $shiny-edge-size $shiny-edge-active-color inset;\n }\n }\n}\n\n// @mixins\n//\n// We use this to add transitions to elements\n// $property - Default: all, Options: http://www.w3.org/TR/css3-transitions/#animatable-properties\n// $speed - Default: 300ms\n// $ease - Default:ease-out, Options: http://css-tricks.com/almanac/properties/t/transition-timing-function/\n@mixin single-transition($property: all, $speed: 300ms, $ease: ease-out) {\n transition: $property $speed $ease;\n}\n\n// @mixins\n//\n// We use this to add box-sizing across browser prefixes\n@mixin box-sizing($type: border-box) {\n -webkit-box-sizing: $type; // Android < 2.3, iOS < 4\n -moz-box-sizing: $type; // Firefox < 29\n box-sizing: $type; // Chrome, IE 8+, Opera, Safari 5.1\n}\n\n// @mixins\n//\n// We use this to create isosceles triangles\n// $triangle-size - Used to set border-size. No default, set a px or em size.\n// $triangle-color - Used to set border-color which makes up triangle. No default\n// $triangle-direction - Used to determine which direction triangle points. Options: top, bottom, left, right\n@mixin css-triangle($triangle-size, $triangle-color, $triangle-direction) {\n content: \"\";\n display: block;\n width: 0;\n height: 0;\n border: inset $triangle-size;\n\n @if ($triangle-direction ==top) {\n border-color: $triangle-color transparent transparent transparent;\n border-top-style: solid;\n }\n\n @if ($triangle-direction ==bottom) {\n border-color: transparent transparent $triangle-color transparent;\n border-bottom-style: solid;\n }\n\n @if ($triangle-direction ==left) {\n border-color: transparent transparent transparent $triangle-color;\n border-left-style: solid;\n }\n\n @if ($triangle-direction ==right) {\n border-color: transparent $triangle-color transparent transparent;\n border-right-style: solid;\n }\n}\n\n// @mixins\n//\n// We use this to create the icon with three lines aka the hamburger icon, the menu-icon or the navicon\n// $width - Width of hamburger icon in rem\n// $left - If false, icon will be centered horizontally || explicitly set value in rem\n// $top - If false, icon will be centered vertically || explicitly set value in rem\n// $thickness - thickness of lines in hamburger icon, set value in px\n// $gap - spacing between the lines in hamburger icon, set value in px\n// $color - icon color\n// $hover-color - icon color during hover\n// $offcanvas - Set to true of @include in offcanvas\n@mixin hamburger($width, $left, $top, $thickness, $gap, $color, $hover-color, $offcanvas) {\n span::after {\n content: \"\";\n position: absolute;\n display: block;\n height: 0;\n\n @if $offcanvas {\n @if $top {\n top: $top;\n }\n\n @else {\n top: 50%;\n margin-top: (-$width/2);\n }\n\n @if $left {\n left: $left;\n }\n\n @else {\n left: ($tabbar-menu-icon-width - $width)/2;\n }\n }\n\n @else {\n top: 50%;\n margin-top: -($width/2);\n #{$opposite-direction}: $topbar-link-padding;\n }\n\n box-shadow: 0 0 0 $thickness $color,\n 0 ($gap + $thickness) 0 $thickness $color,\n 0 (2 * $gap + 2*$thickness) 0 $thickness $color;\n width: $width;\n }\n\n span:hover:after {\n box-shadow:\n 0 0 0 $thickness $hover-color,\n 0 $gap + $thickness 0 $thickness $hover-color,\n 0 (2 * $gap + 2*$thickness) 0 $thickness $hover-color;\n }\n}\n\n// We use this to do clear floats\n@mixin clearfix {\n\n &:before,\n &:after {\n content: \" \";\n display: table;\n }\n\n &:after {\n clear: both;\n }\n}\n\n// @mixins\n//\n// We use this to add a glowing effect to block elements\n// $selector - Used for selector state. Default: focus, Options: hover, active, visited\n// $fade-time - Default: 300ms\n// $glowing-effect-color - Default: fade-out($primary-color, .25)\n@mixin block-glowing-effect($selector: focus, $fade-time: 300ms, $glowing-effect-color: fade-out($primary-color, .25)) {\n transition: box-shadow $fade-time, border-color $fade-time ease-in-out;\n\n &:#{$selector} {\n box-shadow: 0 0 5px $glowing-effect-color;\n border-color: $glowing-effect-color;\n }\n}\n\n// @mixins\n//\n// We use this to translate elements in 2D\n// $horizontal: Default: 0\n// $vertical: Default: 0\n@mixin translate2d($horizontal: 0, $vertical: 0) {\n transform: translate($horizontal, $vertical)\n}\n\n// @mixins\n//\n// Makes an element visually hidden, but accessible.\n// @see http://snook.ca/archives/html_and_css/hiding-content-for-accessibility\n@mixin element-invisible {\n position: absolute !important;\n height: 1px;\n width: 1px;\n overflow: hidden;\n clip: rect(1px, 1px, 1px, 1px);\n}\n\n// @mixins\n//\n// Turns off the element-invisible effect.\n@mixin element-invisible-off {\n position: static !important;\n height: auto;\n width: auto;\n overflow: visible;\n clip: auto;\n}\n\n\n// We use these to control text direction settings\n$text-direction: ltr !default;\n$default-float: left !default;\n$opposite-direction: right !default;\n\n@if $text-direction ==ltr {\n $default-float: left;\n $opposite-direction: right;\n}\n\n@else {\n $default-float: right;\n $opposite-direction: left;\n}\n\n// We use these to control inset shadow shiny edges and depressions.\n$shiny-edge-size: 0 1px 0 !default;\n$shiny-edge-color: rgba(#fff, .5) !default;\n$shiny-edge-active-color: rgba(#000, .2) !default;\n\n// We use this to control whether or not CSS classes come through in the gem files.\n$include-html-classes: true !default;\n$include-print-styles: true !default;\n$include-html-global-classes: $include-html-classes !default;\n\n$column-gutter: rem-calc(30) !default;\n\n\n\n\n// d. Media Query Ranges\n// - - - - - - - - - - - - - - - - - - - - - - - - -\n\n$small-range: (\n 0em,\n 40em\n);\n$medium-range: (\n 40.063em,\n 64em\n);\n$large-range: (\n 64.063em,\n 90em\n);\n$xlarge-range: (\n 90.063em,\n 120em\n);\n$xxlarge-range: (\n 120.063em,\n 99999999em\n);\n\n\n$screen: \"only screen\" !default;\n\n$landscape: \"#{$screen} and (orientation: landscape)\" !default;\n$portrait: \"#{$screen} and (orientation: portrait)\" !default;\n\n$small-up: $screen !default;\n$small-only: \"#{$screen} and (max-width: #{upper-bound($small-range)})\";\n\n$medium-up: \"#{$screen} and (min-width:#{lower-bound($medium-range)})\" !default;\n$medium-only: \"#{$screen} and (min-width:#{lower-bound($medium-range)}) and (max-width:#{upper-bound($medium-range)})\" !default;\n\n$large-up: \"#{$screen} and (min-width:#{lower-bound($large-range)})\" !default;\n$large-only: \"#{$screen} and (min-width:#{lower-bound($large-range)}) and (max-width:#{upper-bound($large-range)})\" !default;\n\n$xlarge-up: \"#{$screen} and (min-width:#{lower-bound($xlarge-range)})\" !default;\n$xlarge-only: \"#{$screen} and (min-width:#{lower-bound($xlarge-range)}) and (max-width:#{upper-bound($xlarge-range)})\" !default;\n\n$xxlarge-up: \"#{$screen} and (min-width:#{lower-bound($xxlarge-range)})\" !default;\n$xxlarge-only: \"#{$screen} and (min-width:#{lower-bound($xxlarge-range)}) and (max-width:#{upper-bound($xxlarge-range)})\" !default;\n\n// Legacy\n$small: $medium-up;\n$medium: $medium-up;\n$large: $large-up;\n\n//We use this as cursors values for enabling the option of having custom cursors in the whole site's stylesheet\n$cursor-auto-value: auto !default;\n$cursor-crosshair-value: crosshair !default;\n$cursor-default-value: default !default;\n$cursor-pointer-value: pointer !default;\n$cursor-help-value: help !default;\n$cursor-text-value: text !default;\n\n\n@include exports(\"global\") {\n\n // Meta styles are included in all builds, as they are a dependency of the Javascript.\n // Used to provide media query values for javascript components.\n // Forward slash placed around everything to convince PhantomJS to read the value.\n\n meta.foundation-version {\n font-family: \"/5.5.0/\";\n }\n\n meta.foundation-mq-small {\n font-family: \"/\" + unquote($small-up) + \"/\";\n width: lower-bound($small-range);\n }\n\n meta.foundation-mq-small-only {\n font-family: \"/\" + unquote($small-only) + \"/\";\n width: lower-bound($small-range);\n }\n\n meta.foundation-mq-medium {\n font-family: \"/\" + unquote($medium-up) + \"/\";\n width: lower-bound($medium-range);\n }\n\n meta.foundation-mq-medium-only {\n font-family: \"/\" + unquote($medium-only) + \"/\";\n width: lower-bound($medium-range);\n }\n\n meta.foundation-mq-large {\n font-family: \"/\" + unquote($large-up) + \"/\";\n width: lower-bound($large-range);\n }\n\n meta.foundation-mq-large-only {\n font-family: \"/\" + unquote($large-only) + \"/\";\n width: lower-bound($large-range);\n }\n\n meta.foundation-mq-xlarge {\n font-family: \"/\" + unquote($xlarge-up) + \"/\";\n width: lower-bound($xlarge-range);\n }\n\n meta.foundation-mq-xlarge-only {\n font-family: \"/\" + unquote($xlarge-only) + \"/\";\n width: lower-bound($xlarge-range);\n }\n\n meta.foundation-mq-xxlarge {\n font-family: \"/\" + unquote($xxlarge-up) + \"/\";\n width: lower-bound($xxlarge-range);\n }\n\n meta.foundation-data-attribute-namespace {\n font-family: #{$namespace};\n }\n\n @if $include-html-global-classes {\n\n // Must be 100% for off canvas to work\n html,\n body {\n height: 100%;\n }\n\n // Set box-sizing globally to handle padding and border widths\n *,\n *:before,\n *:after {\n @include box-sizing(border-box);\n }\n\n html,\n body {\n font-size: $base-font-size;\n }\n\n // Default body styles\n body {\n background: $body-bg;\n color: $body-font-color;\n padding: 0;\n margin: 0;\n font-family: $body-font-family;\n font-weight: $body-font-weight;\n font-style: $body-font-style;\n line-height: $base-line-height; // Set to $base-line-height to take on browser default of 150%\n position: relative;\n cursor: $cursor-auto-value;\n }\n\n a:hover {\n cursor: $cursor-pointer-value;\n }\n\n // Grid Defaults to get images and embeds to work properly\n img {\n max-width: 100%;\n height: auto;\n }\n\n img {\n -ms-interpolation-mode: bicubic;\n }\n\n #map_canvas,\n .map_canvas {\n\n img,\n embed,\n object {\n max-width: none !important;\n }\n }\n\n // Miscellaneous useful HTML classes\n .left {\n float: left !important;\n }\n\n .right {\n float: right !important;\n }\n\n .clearfix {\n @include clearfix;\n }\n\n // Hide visually and from screen readers\n .hide {\n display: none !important;\n visibility: hidden;\n }\n\n // Hide visually and from screen readers, but maintain layout\n .invisible {\n visibility: hidden;\n }\n\n // Font smoothing\n // Antialiased font smoothing works best for light text on a dark background.\n // Apply to single elements instead of globally to body.\n // Note this only applies to webkit-based desktop browsers and Firefox 25 (and later) on the Mac.\n .antialiased {\n -webkit-font-smoothing: antialiased;\n -moz-osx-font-smoothing: grayscale;\n }\n\n // Get rid of gap under images by making them display: inline-block; by default\n img {\n display: inline-block;\n vertical-align: middle;\n }\n\n //\n // Global resets for forms\n //\n\n // Make sure textarea takes on height automatically\n textarea {\n height: auto;\n min-height: 50px;\n }\n\n // Make select elements 100% width by default\n select {\n width: 100%;\n }\n }\n}","@charset \"utf-8\";\n\n@import \"functions.scss\";\n\n$include-html-classes: false;\n@import \"01_settings_colors.scss\";\n@import \"02_settings_typography.scss\";\n@import \"03_settings_mixins_media_queries.scss\";\n@import \"04_settings_global.scss\";\n\n* {\n\tdisplay: block;\n}\n\n:root {\n\tmargin: 3em;\n\tbackground: $body-bg;\n\tcolor: $body-font-color;\n\tfont-family: $body-font-family;\n}\n\nfeed {\n\t> title {\n\t\ttext-align: center;\n\t\tcolor: lighten($primary-color, 25%);\n\t\tfont-family: $header-font-family;\n\t\tfont-size: $font-size-h1 * 1.5;\n\t\tfont-weight: bolder;\n\t\t&::before {\n\t\t\tcontent: 'Atom Feed for ';\n\t\t\tfont-weight: initial;\n\t\t}\n\t\t&::after {\n\t\t\tcontent: \"This Atom feed is meant to be used by RSS reader applications and websites.\";\n\t\t\tdisplay: block;\n\t\t\tpadding: 1em;\n\t\t\tbackground-color: $alert-color;\n\t\t\tcolor: #fff;\n\t\t\tfont-family: initial;\n\t\t\tfont-size: initial;\n\t\t\tletter-spacing: initial;\n\t\t}\n\t}\n\t\n\t> id,\n\t> updated,\n\t> subtitle,\n\t> author,\n\t> link,\n\t> generator {\n\t\tdisplay: none;\n\t}\n}\n\nentry {\n\tpadding: 1em 0;\n\tborder-bottom: 1px solid invert($body-bg);\n\t&:last-child {\n\t\tborder-bottom: none;\n\t}\n\n\t> title {\n\t\tcolor: $secondary-color;\n\t\tfont-family: $header-font-family;\n\t\tfont-size: $font-size-h1;\n\t\tmargin-bottom: 0.5em;\n\t}\n\n\t> link::after {\n\t\tcontent: attr(href);\n\t\tcolor: $primary-color;\n\t}\n\n\t> updated {\n\t\tcolor: $grey-5;\n\t\tfont-size: small;\n\t}\n\n\t> summary {\n\t\tmargin-top: 1em;\n\t}\n\n\t> id,\n\t> author,\n\t> category,\n\t> published,\n\t> content {\n\t\tdisplay: none;\n\t}\n}\n","/// from https://github.com/Phlow/feeling-responsive/raw/gh-pages/_sass/_01_settings_colors.scss\n@charset \"utf-8\";\n/* TOC – Color Variables\n\n- Basics\n- Corporate Identity Colorpalette\n- Foundation Color Variables\n- Grey Scale\n- Topbar-Navigation\n- Footer\n- Code\n\n*/\n\n\n\n/* Basics\n------------------------------------------------------------------- */\n\n$text-color : #111;\n$body-font-color : $text-color;\n$body-bg : #fdfdfd;\n\n\n\n/* Corporate Identity Colorpalette\n https://color.adobe.com/de/Flat-Design-Colors-v2-color-theme-4341903/\n------------------------------------------------------------------- */\n\n$ci-1 : #334D5C; // dark turquoise\n$ci-2 : #45B29D; // turquoise\n$ci-3 : #EFC94C; // yellow\n$ci-4 : #E27A3F; // orange\n$ci-5 : #DF4949; // red\n$ci-6 : #A1D044; // green\n\n/// CIL overrides\n$ci-2 : #c92c99;\n$ci-6 : #e50695;\n\n\n/* Foundation Color Variables\n------------------------------------------------------------------- */\n\n$primary-color : $ci-1;\n$secondary-color : $ci-6;\n$alert-color : $ci-5;\n$success-color : $ci-6;\n$warning-color : $ci-4;\n$info-color : $ci-1;\n\n\n\n/* Grey Scale\n------------------------------------------------------------------- */\n\n$grey-1 : #E4E4E4;\n$grey-2 : #D7D7D7;\n$grey-3 : #CBCBCB;\n$grey-4 : #BEBEBE;\n$grey-5 : #A4A4A4;\n$grey-6 : #979797;\n$grey-7 : #8B8B8B;\n$grey-8 : #7E7E7E;\n$grey-9 : #646464;\n$grey-10 : #575757;\n$grey-11 : #4B4B4B;\n$grey-12 : #3E3E3E;\n$grey-13 : #313131;\n$grey-14 : #242424;\n$grey-15 : #171717;\n$grey-16 : #0B0B0B;\n\n/// CIL overrides\n$grey-8 : #043852;\n$grey-13 : #510c76;\n\n\n/* Topbar-Navigation\n------------------------------------------------------------------- */\n\n$topbar-bg-color : $body-bg;\n$topbar-bg : $topbar-bg-color;\n\n\n$topbar-dropdown-toggle-color: $ci-1;\n\n$topbar-link-color : #000;\n$topbar-link-color-hover: #000;\n$topbar-link-color-active: #000;\n$topbar-link-color-active-hover: #000;\n\n$topbar-dropdown-label-color: $ci-2;\n$topbar-dropdown-link-bg-hover: $ci-6;\n\n$topbar-link-bg-active: $ci-6; // Active Navigation Link\n$topbar-link-bg-hover: $ci-6;\n$topbar-link-bg-active-hover: $ci-2;\n\n\n$topbar-dropdown-bg: $ci-6; // Background Mobile Navigation\n$topbar-dropdown-link-color: #000;\n$topbar-dropdown-link-bg: $ci-2;\n\n$topbar-menu-link-color-toggled: $ci-1;\n$topbar-menu-icon-color-toggled: $ci-1;\n$topbar-menu-link-color: #000;\n$topbar-menu-icon-color: #000;\n$topbar-menu-link-color-toggled: $ci-6;\n$topbar-menu-icon-color-toggled: $ci-6;\n\n\n\n/* Footer\n------------------------------------------------------------------- */\n\n$footer-bg : $grey-8;\n$footer-color : #fff;\n$footer-link-color : $ci-6;\n\n\n$subfooter-bg : $grey-13;\n$subfooter-color : $grey-8;\n$subfooter-link-color: $grey-8;\n\n\n\n/* Code\n------------------------------------------------------------------- */\n\n$code-background-color: scale-color($secondary-color, $lightness: 70%);\n\n$highlight-background: #ffffff;\n$highlight-comment: #999988;\n$highlight-error: #a61717;\n$highlight-comment-special: #999999;\n$highlight-deleted: #000000;\n$highlight-error-2: #aa0000;\n$highlight-literal-string: #d14;\n$highlight-literal-number: #009999;\n$highlight-name-attribut: #008080;\n$highlight-error-background: #e3d2d2;\n$highlight-generic-deleted: #ffdddd;\n$highlight-generic-deleted-specific: #ffaaaa;\n$highlight-generic-inserted: #ddffdd;\n$highlight-generic-inserted-specific: #aaffaa;\n$highlight-generic-output: #888888;\n$highlight-generic-prompt: #555555;\n$highlight-subheading: #aaaaaa;\n$highlight-keyword-type: #445588;\n$highlight-name-builtin: #0086B3;\n$highlight-name-class: #445588;\n$highlight-name-entity: #800080;\n$highlight-name-exception: #990000;\n$highlight-name-function: #990000;\n$highlight-name-namespace: #555555;\n$highlight-name-tag: #000080;\n$highlight-text-whitespace: #bbbbbb;\n$highlight-literal-string-regex: #009926;\n$highlight-literal-string-symbol: #990073;\n"],"file":"atom.css"} \ No newline at end of file +{"version":3,"sourceRoot":"","sources":["../../../../../../../../../tmp/jekyll-remote-theme-20241010-3081-qfwnhs/_sass/_02_settings_typography.scss","../../../../../../../../../tmp/jekyll-remote-theme-20241010-3081-qfwnhs/_sass/_03_settings_mixins_media_queries.scss","atom.scss","../../_sass/_01_settings_colors.scss"],"names":[],"mappings":"AAuDA,wBAPoB,QAQpB,wBAPoB,QAQpB,wBAPoB,QAQpB,wBAPoB,OAQpB,wBAPoB,QC8RlB,wBACE,sBAGF,yBACE,4BACA,UAGF,8BACE,kDACA,UAGF,0BACE,qDACA,eAGF,+BACE,0EACA,eAGF,yBACE,qDACA,eAGF,8BACE,0EACA,eAGF,0BACE,qDACA,eAGF,+BACE,2EACA,eAGF,2BACE,sDACA,gBAGF,yCACE,kBC1XJ,EACC,cAGD,MACC,WACA,WCKqB,QDJrB,MCEqB,KDDrB,YFMwB,mDEFxB,WACC,kBACA,cACA,0CACA,mBACA,mBACA,mBACC,yBACA,oBAED,kBACC,sFACA,cACA,YACA,iBCHmB,QDInB,WACA,oBACA,kBACA,uBAIF,wEAMC,aAIF,MACC,cACA,gCACA,iBACC,mBAGD,YACC,MCxBoB,QDyBpB,YFtCkB,8BEuClB,UFhBkB,QEiBlB,mBAGD,kBACC,mBACA,MCzCoB,QD4CrB,cACC,MCdoB,QDepB,gBAGD,cACC,eAGD,mEAKC","sourcesContent":["@charset \"utf-8\";\n/* TOC – Typography variables\n\nModular Scale › http://www.modularscale.com//?16,36&px&1.25&web&table\n\n- Fonts\n- Font Weight\n- Font Size Variables\n\n*/\n\n@import \"functions\"; // Allows the use of rem-calc() or lower-bound() in your settings\n\n\n\n/* Fonts\n------------------------------------------------------------------- */\n\n$base-font-size: 16px;\n$rem-base: $base-font-size;\n// $base-line-height is 24px while $base-font-size is 16px\n$base-line-height: 1.5 !default;\n\n\n$font-family-sans-serif: \"Lato\", \"Helvetica Neue\", Helvetica, Arial, sans-serif;\n$font-family-serif: \"Volkhov\", Georgia, Times, serif;\n$font-family-monospace: \"Lucida Console\", Monaco, monospace;\n\n$body-font-family: $font-family-sans-serif;\n$body-font-weight: normal;\n$body-font-style: normal;\n\n$header-font-family: $font-family-serif;\n\n\n\n/* Font Weight\n------------------------------------------------------------------- */\n\n$font-weight-normal: normal;\n$font-weight-bold: bold;\n\n\n\n/* Font Size Variables\n------------------------------------------------------------------- */\n\n$font-size-p: \t$base-font-size;\n$font-size-h1: 2.441em;\n$font-size-h2: 1.953em;\n$font-size-h3: 1.563em;\n$font-size-h4: 1.25em;\n$font-size-h5: 1.152em;\n$font-size-small: 0.8em;\n\n.font-size-h1 { font-size: $font-size-h1; }\n.font-size-h2 { font-size: $font-size-h2; }\n.font-size-h3 { font-size: $font-size-h3; }\n.font-size-h4 { font-size: $font-size-h4; }\n.font-size-h5 { font-size: $font-size-h5; }\n","@charset \"utf-8\";\n// Foundation by ZURB\n// foundation.zurb.com\n// Licensed under MIT Open Source\n\n//\n// Foundation Variables\n//\n\n// Data attribute namespace\n// styles get applied to [data-mysite-plugin], etc\n$namespace: false !default;\n\n// The default font-size is set to 100% of the browser style sheet (usually 16px)\n// for compatibility with browser-based text zoom or user-set defaults.\n\n// Since the typical default browser font-size is 16px, that makes the calculation for grid size.\n// If you want your base font-size to be different and not have it affect the grid breakpoints,\n// set $rem-base to $base-font-size and make sure $base-font-size is a px value.\n$base-font-size: 100% !default;\n\n\n\n//\n// Global Foundation Mixins\n//\n\n// @mixins\n//\n// We use this to control border radius.\n// $radius - Default: $global-radius || 4px\n@mixin radius($radius: $global-radius) {\n @if $radius {\n border-radius: $radius;\n }\n}\n\n// @mixins\n//\n// We use this to create equal side border radius on elements.\n// $side - Options: left, right, top, bottom\n@mixin side-radius($side, $radius: $global-radius) {\n @if ($side ==left or $side ==right) {\n -webkit-border-bottom-#{$side}-radius: $radius;\n -webkit-border-top-#{$side}-radius: $radius;\n border-bottom-#{$side}-radius: $radius;\n border-top-#{$side}-radius: $radius;\n }\n\n @else {\n -webkit-#{$side}-left-radius: $radius;\n -webkit-#{$side}-right-radius: $radius;\n border-#{$side}-left-radius: $radius;\n border-#{$side}-right-radius: $radius;\n }\n}\n\n// @mixins\n//\n// We can control whether or not we have inset shadows edges.\n// $active - Default: true, Options: false\n@mixin inset-shadow($active: true) {\n box-shadow: $shiny-edge-size $shiny-edge-color inset;\n\n @if $active {\n &:active {\n box-shadow: $shiny-edge-size $shiny-edge-active-color inset;\n }\n }\n}\n\n// @mixins\n//\n// We use this to add transitions to elements\n// $property - Default: all, Options: http://www.w3.org/TR/css3-transitions/#animatable-properties\n// $speed - Default: 300ms\n// $ease - Default:ease-out, Options: http://css-tricks.com/almanac/properties/t/transition-timing-function/\n@mixin single-transition($property: all, $speed: 300ms, $ease: ease-out) {\n transition: $property $speed $ease;\n}\n\n// @mixins\n//\n// We use this to add box-sizing across browser prefixes\n@mixin box-sizing($type: border-box) {\n -webkit-box-sizing: $type; // Android < 2.3, iOS < 4\n -moz-box-sizing: $type; // Firefox < 29\n box-sizing: $type; // Chrome, IE 8+, Opera, Safari 5.1\n}\n\n// @mixins\n//\n// We use this to create isosceles triangles\n// $triangle-size - Used to set border-size. No default, set a px or em size.\n// $triangle-color - Used to set border-color which makes up triangle. No default\n// $triangle-direction - Used to determine which direction triangle points. Options: top, bottom, left, right\n@mixin css-triangle($triangle-size, $triangle-color, $triangle-direction) {\n content: \"\";\n display: block;\n width: 0;\n height: 0;\n border: inset $triangle-size;\n\n @if ($triangle-direction ==top) {\n border-color: $triangle-color transparent transparent transparent;\n border-top-style: solid;\n }\n\n @if ($triangle-direction ==bottom) {\n border-color: transparent transparent $triangle-color transparent;\n border-bottom-style: solid;\n }\n\n @if ($triangle-direction ==left) {\n border-color: transparent transparent transparent $triangle-color;\n border-left-style: solid;\n }\n\n @if ($triangle-direction ==right) {\n border-color: transparent $triangle-color transparent transparent;\n border-right-style: solid;\n }\n}\n\n// @mixins\n//\n// We use this to create the icon with three lines aka the hamburger icon, the menu-icon or the navicon\n// $width - Width of hamburger icon in rem\n// $left - If false, icon will be centered horizontally || explicitly set value in rem\n// $top - If false, icon will be centered vertically || explicitly set value in rem\n// $thickness - thickness of lines in hamburger icon, set value in px\n// $gap - spacing between the lines in hamburger icon, set value in px\n// $color - icon color\n// $hover-color - icon color during hover\n// $offcanvas - Set to true of @include in offcanvas\n@mixin hamburger($width, $left, $top, $thickness, $gap, $color, $hover-color, $offcanvas) {\n span::after {\n content: \"\";\n position: absolute;\n display: block;\n height: 0;\n\n @if $offcanvas {\n @if $top {\n top: $top;\n }\n\n @else {\n top: 50%;\n margin-top: (-$width/2);\n }\n\n @if $left {\n left: $left;\n }\n\n @else {\n left: ($tabbar-menu-icon-width - $width)/2;\n }\n }\n\n @else {\n top: 50%;\n margin-top: -($width/2);\n #{$opposite-direction}: $topbar-link-padding;\n }\n\n box-shadow: 0 0 0 $thickness $color,\n 0 ($gap + $thickness) 0 $thickness $color,\n 0 (2 * $gap + 2*$thickness) 0 $thickness $color;\n width: $width;\n }\n\n span:hover:after {\n box-shadow:\n 0 0 0 $thickness $hover-color,\n 0 $gap + $thickness 0 $thickness $hover-color,\n 0 (2 * $gap + 2*$thickness) 0 $thickness $hover-color;\n }\n}\n\n// We use this to do clear floats\n@mixin clearfix {\n\n &:before,\n &:after {\n content: \" \";\n display: table;\n }\n\n &:after {\n clear: both;\n }\n}\n\n// @mixins\n//\n// We use this to add a glowing effect to block elements\n// $selector - Used for selector state. Default: focus, Options: hover, active, visited\n// $fade-time - Default: 300ms\n// $glowing-effect-color - Default: fade-out($primary-color, .25)\n@mixin block-glowing-effect($selector: focus, $fade-time: 300ms, $glowing-effect-color: fade-out($primary-color, .25)) {\n transition: box-shadow $fade-time, border-color $fade-time ease-in-out;\n\n &:#{$selector} {\n box-shadow: 0 0 5px $glowing-effect-color;\n border-color: $glowing-effect-color;\n }\n}\n\n// @mixins\n//\n// We use this to translate elements in 2D\n// $horizontal: Default: 0\n// $vertical: Default: 0\n@mixin translate2d($horizontal: 0, $vertical: 0) {\n transform: translate($horizontal, $vertical)\n}\n\n// @mixins\n//\n// Makes an element visually hidden, but accessible.\n// @see http://snook.ca/archives/html_and_css/hiding-content-for-accessibility\n@mixin element-invisible {\n position: absolute !important;\n height: 1px;\n width: 1px;\n overflow: hidden;\n clip: rect(1px, 1px, 1px, 1px);\n}\n\n// @mixins\n//\n// Turns off the element-invisible effect.\n@mixin element-invisible-off {\n position: static !important;\n height: auto;\n width: auto;\n overflow: visible;\n clip: auto;\n}\n\n\n// We use these to control text direction settings\n$text-direction: ltr !default;\n$default-float: left !default;\n$opposite-direction: right !default;\n\n@if $text-direction ==ltr {\n $default-float: left;\n $opposite-direction: right;\n}\n\n@else {\n $default-float: right;\n $opposite-direction: left;\n}\n\n// We use these to control inset shadow shiny edges and depressions.\n$shiny-edge-size: 0 1px 0 !default;\n$shiny-edge-color: rgba(#fff, .5) !default;\n$shiny-edge-active-color: rgba(#000, .2) !default;\n\n// We use this to control whether or not CSS classes come through in the gem files.\n$include-html-classes: true !default;\n$include-print-styles: true !default;\n$include-html-global-classes: $include-html-classes !default;\n\n$column-gutter: rem-calc(30) !default;\n\n\n\n\n// d. Media Query Ranges\n// - - - - - - - - - - - - - - - - - - - - - - - - -\n\n$small-range: (\n 0em,\n 40em\n);\n$medium-range: (\n 40.063em,\n 64em\n);\n$large-range: (\n 64.063em,\n 90em\n);\n$xlarge-range: (\n 90.063em,\n 120em\n);\n$xxlarge-range: (\n 120.063em,\n 99999999em\n);\n\n\n$screen: \"only screen\" !default;\n\n$landscape: \"#{$screen} and (orientation: landscape)\" !default;\n$portrait: \"#{$screen} and (orientation: portrait)\" !default;\n\n$small-up: $screen !default;\n$small-only: \"#{$screen} and (max-width: #{upper-bound($small-range)})\";\n\n$medium-up: \"#{$screen} and (min-width:#{lower-bound($medium-range)})\" !default;\n$medium-only: \"#{$screen} and (min-width:#{lower-bound($medium-range)}) and (max-width:#{upper-bound($medium-range)})\" !default;\n\n$large-up: \"#{$screen} and (min-width:#{lower-bound($large-range)})\" !default;\n$large-only: \"#{$screen} and (min-width:#{lower-bound($large-range)}) and (max-width:#{upper-bound($large-range)})\" !default;\n\n$xlarge-up: \"#{$screen} and (min-width:#{lower-bound($xlarge-range)})\" !default;\n$xlarge-only: \"#{$screen} and (min-width:#{lower-bound($xlarge-range)}) and (max-width:#{upper-bound($xlarge-range)})\" !default;\n\n$xxlarge-up: \"#{$screen} and (min-width:#{lower-bound($xxlarge-range)})\" !default;\n$xxlarge-only: \"#{$screen} and (min-width:#{lower-bound($xxlarge-range)}) and (max-width:#{upper-bound($xxlarge-range)})\" !default;\n\n// Legacy\n$small: $medium-up;\n$medium: $medium-up;\n$large: $large-up;\n\n//We use this as cursors values for enabling the option of having custom cursors in the whole site's stylesheet\n$cursor-auto-value: auto !default;\n$cursor-crosshair-value: crosshair !default;\n$cursor-default-value: default !default;\n$cursor-pointer-value: pointer !default;\n$cursor-help-value: help !default;\n$cursor-text-value: text !default;\n\n\n@include exports(\"global\") {\n\n // Meta styles are included in all builds, as they are a dependency of the Javascript.\n // Used to provide media query values for javascript components.\n // Forward slash placed around everything to convince PhantomJS to read the value.\n\n meta.foundation-version {\n font-family: \"/5.5.0/\";\n }\n\n meta.foundation-mq-small {\n font-family: \"/\" + unquote($small-up) + \"/\";\n width: lower-bound($small-range);\n }\n\n meta.foundation-mq-small-only {\n font-family: \"/\" + unquote($small-only) + \"/\";\n width: lower-bound($small-range);\n }\n\n meta.foundation-mq-medium {\n font-family: \"/\" + unquote($medium-up) + \"/\";\n width: lower-bound($medium-range);\n }\n\n meta.foundation-mq-medium-only {\n font-family: \"/\" + unquote($medium-only) + \"/\";\n width: lower-bound($medium-range);\n }\n\n meta.foundation-mq-large {\n font-family: \"/\" + unquote($large-up) + \"/\";\n width: lower-bound($large-range);\n }\n\n meta.foundation-mq-large-only {\n font-family: \"/\" + unquote($large-only) + \"/\";\n width: lower-bound($large-range);\n }\n\n meta.foundation-mq-xlarge {\n font-family: \"/\" + unquote($xlarge-up) + \"/\";\n width: lower-bound($xlarge-range);\n }\n\n meta.foundation-mq-xlarge-only {\n font-family: \"/\" + unquote($xlarge-only) + \"/\";\n width: lower-bound($xlarge-range);\n }\n\n meta.foundation-mq-xxlarge {\n font-family: \"/\" + unquote($xxlarge-up) + \"/\";\n width: lower-bound($xxlarge-range);\n }\n\n meta.foundation-data-attribute-namespace {\n font-family: #{$namespace};\n }\n\n @if $include-html-global-classes {\n\n // Must be 100% for off canvas to work\n html,\n body {\n height: 100%;\n }\n\n // Set box-sizing globally to handle padding and border widths\n *,\n *:before,\n *:after {\n @include box-sizing(border-box);\n }\n\n html,\n body {\n font-size: $base-font-size;\n }\n\n // Default body styles\n body {\n background: $body-bg;\n color: $body-font-color;\n padding: 0;\n margin: 0;\n font-family: $body-font-family;\n font-weight: $body-font-weight;\n font-style: $body-font-style;\n line-height: $base-line-height; // Set to $base-line-height to take on browser default of 150%\n position: relative;\n cursor: $cursor-auto-value;\n }\n\n a:hover {\n cursor: $cursor-pointer-value;\n }\n\n // Grid Defaults to get images and embeds to work properly\n img {\n max-width: 100%;\n height: auto;\n }\n\n img {\n -ms-interpolation-mode: bicubic;\n }\n\n #map_canvas,\n .map_canvas {\n\n img,\n embed,\n object {\n max-width: none !important;\n }\n }\n\n // Miscellaneous useful HTML classes\n .left {\n float: left !important;\n }\n\n .right {\n float: right !important;\n }\n\n .clearfix {\n @include clearfix;\n }\n\n // Hide visually and from screen readers\n .hide {\n display: none !important;\n visibility: hidden;\n }\n\n // Hide visually and from screen readers, but maintain layout\n .invisible {\n visibility: hidden;\n }\n\n // Font smoothing\n // Antialiased font smoothing works best for light text on a dark background.\n // Apply to single elements instead of globally to body.\n // Note this only applies to webkit-based desktop browsers and Firefox 25 (and later) on the Mac.\n .antialiased {\n -webkit-font-smoothing: antialiased;\n -moz-osx-font-smoothing: grayscale;\n }\n\n // Get rid of gap under images by making them display: inline-block; by default\n img {\n display: inline-block;\n vertical-align: middle;\n }\n\n //\n // Global resets for forms\n //\n\n // Make sure textarea takes on height automatically\n textarea {\n height: auto;\n min-height: 50px;\n }\n\n // Make select elements 100% width by default\n select {\n width: 100%;\n }\n }\n}","@charset \"utf-8\";\n\n@import \"functions.scss\";\n\n$include-html-classes: false;\n@import \"01_settings_colors.scss\";\n@import \"02_settings_typography.scss\";\n@import \"03_settings_mixins_media_queries.scss\";\n@import \"04_settings_global.scss\";\n\n* {\n\tdisplay: block;\n}\n\n:root {\n\tmargin: 3em;\n\tbackground: $body-bg;\n\tcolor: $body-font-color;\n\tfont-family: $body-font-family;\n}\n\nfeed {\n\t> title {\n\t\ttext-align: center;\n\t\tcolor: lighten($primary-color, 25%);\n\t\tfont-family: $header-font-family;\n\t\tfont-size: $font-size-h1 * 1.5;\n\t\tfont-weight: bolder;\n\t\t&::before {\n\t\t\tcontent: 'Atom Feed for ';\n\t\t\tfont-weight: initial;\n\t\t}\n\t\t&::after {\n\t\t\tcontent: \"This Atom feed is meant to be used by RSS reader applications and websites.\";\n\t\t\tdisplay: block;\n\t\t\tpadding: 1em;\n\t\t\tbackground-color: $alert-color;\n\t\t\tcolor: #fff;\n\t\t\tfont-family: initial;\n\t\t\tfont-size: initial;\n\t\t\tletter-spacing: initial;\n\t\t}\n\t}\n\t\n\t> id,\n\t> updated,\n\t> subtitle,\n\t> author,\n\t> link,\n\t> generator {\n\t\tdisplay: none;\n\t}\n}\n\nentry {\n\tpadding: 1em 0;\n\tborder-bottom: 1px solid invert($body-bg);\n\t&:last-child {\n\t\tborder-bottom: none;\n\t}\n\n\t> title {\n\t\tcolor: $secondary-color;\n\t\tfont-family: $header-font-family;\n\t\tfont-size: $font-size-h1;\n\t\tmargin-bottom: 0.5em;\n\t}\n\n\t> link::after {\n\t\tcontent: attr(href);\n\t\tcolor: $primary-color;\n\t}\n\n\t> updated {\n\t\tcolor: $grey-5;\n\t\tfont-size: small;\n\t}\n\n\t> summary {\n\t\tmargin-top: 1em;\n\t}\n\n\t> id,\n\t> author,\n\t> category,\n\t> published,\n\t> content {\n\t\tdisplay: none;\n\t}\n}\n","/// from https://github.com/Phlow/feeling-responsive/raw/gh-pages/_sass/_01_settings_colors.scss\n@charset \"utf-8\";\n/* TOC – Color Variables\n\n- Basics\n- Corporate Identity Colorpalette\n- Foundation Color Variables\n- Grey Scale\n- Topbar-Navigation\n- Footer\n- Code\n\n*/\n\n\n\n/* Basics\n------------------------------------------------------------------- */\n\n$text-color : #111;\n$body-font-color : $text-color;\n$body-bg : #fdfdfd;\n\n\n\n/* Corporate Identity Colorpalette\n https://color.adobe.com/de/Flat-Design-Colors-v2-color-theme-4341903/\n------------------------------------------------------------------- */\n\n$ci-1 : #334D5C; // dark turquoise\n$ci-2 : #45B29D; // turquoise\n$ci-3 : #EFC94C; // yellow\n$ci-4 : #E27A3F; // orange\n$ci-5 : #DF4949; // red\n$ci-6 : #A1D044; // green\n\n/// CIL overrides\n$ci-2 : #c92c99;\n$ci-6 : #e50695;\n\n\n/* Foundation Color Variables\n------------------------------------------------------------------- */\n\n$primary-color : $ci-1;\n$secondary-color : $ci-6;\n$alert-color : $ci-5;\n$success-color : $ci-6;\n$warning-color : $ci-4;\n$info-color : $ci-1;\n\n\n\n/* Grey Scale\n------------------------------------------------------------------- */\n\n$grey-1 : #E4E4E4;\n$grey-2 : #D7D7D7;\n$grey-3 : #CBCBCB;\n$grey-4 : #BEBEBE;\n$grey-5 : #A4A4A4;\n$grey-6 : #979797;\n$grey-7 : #8B8B8B;\n$grey-8 : #7E7E7E;\n$grey-9 : #646464;\n$grey-10 : #575757;\n$grey-11 : #4B4B4B;\n$grey-12 : #3E3E3E;\n$grey-13 : #313131;\n$grey-14 : #242424;\n$grey-15 : #171717;\n$grey-16 : #0B0B0B;\n\n/// CIL overrides\n$grey-8 : #043852;\n$grey-13 : #510c76;\n\n\n/* Topbar-Navigation\n------------------------------------------------------------------- */\n\n$topbar-bg-color : $body-bg;\n$topbar-bg : $topbar-bg-color;\n\n\n$topbar-dropdown-toggle-color: $ci-1;\n\n$topbar-link-color : #000;\n$topbar-link-color-hover: #000;\n$topbar-link-color-active: #000;\n$topbar-link-color-active-hover: #000;\n\n$topbar-dropdown-label-color: $ci-2;\n$topbar-dropdown-link-bg-hover: $ci-6;\n\n$topbar-link-bg-active: $ci-6; // Active Navigation Link\n$topbar-link-bg-hover: $ci-6;\n$topbar-link-bg-active-hover: $ci-2;\n\n\n$topbar-dropdown-bg: $ci-6; // Background Mobile Navigation\n$topbar-dropdown-link-color: #000;\n$topbar-dropdown-link-bg: $ci-2;\n\n$topbar-menu-link-color-toggled: $ci-1;\n$topbar-menu-icon-color-toggled: $ci-1;\n$topbar-menu-link-color: #000;\n$topbar-menu-icon-color: #000;\n$topbar-menu-link-color-toggled: $ci-6;\n$topbar-menu-icon-color-toggled: $ci-6;\n\n\n\n/* Footer\n------------------------------------------------------------------- */\n\n$footer-bg : $grey-8;\n$footer-color : #fff;\n$footer-link-color : $ci-6;\n\n\n$subfooter-bg : $grey-13;\n$subfooter-color : $grey-8;\n$subfooter-link-color: $grey-8;\n\n\n\n/* Code\n------------------------------------------------------------------- */\n\n$code-background-color: scale-color($secondary-color, $lightness: 70%);\n\n$highlight-background: #ffffff;\n$highlight-comment: #999988;\n$highlight-error: #a61717;\n$highlight-comment-special: #999999;\n$highlight-deleted: #000000;\n$highlight-error-2: #aa0000;\n$highlight-literal-string: #d14;\n$highlight-literal-number: #009999;\n$highlight-name-attribut: #008080;\n$highlight-error-background: #e3d2d2;\n$highlight-generic-deleted: #ffdddd;\n$highlight-generic-deleted-specific: #ffaaaa;\n$highlight-generic-inserted: #ddffdd;\n$highlight-generic-inserted-specific: #aaffaa;\n$highlight-generic-output: #888888;\n$highlight-generic-prompt: #555555;\n$highlight-subheading: #aaaaaa;\n$highlight-keyword-type: #445588;\n$highlight-name-builtin: #0086B3;\n$highlight-name-class: #445588;\n$highlight-name-entity: #800080;\n$highlight-name-exception: #990000;\n$highlight-name-function: #990000;\n$highlight-name-namespace: #555555;\n$highlight-name-tag: #000080;\n$highlight-text-whitespace: #bbbbbb;\n$highlight-literal-string-regex: #009926;\n$highlight-literal-string-symbol: #990073;\n"],"file":"atom.css"} \ No newline at end of file diff --git a/assets/css/rss.css.map b/assets/css/rss.css.map index d5a0a3fec7..eeb0a936ad 100644 --- a/assets/css/rss.css.map +++ b/assets/css/rss.css.map @@ -1 +1 @@ -{"version":3,"sourceRoot":"","sources":["../../../../../../../../../tmp/jekyll-remote-theme-20241010-3005-owiwgx/_sass/_02_settings_typography.scss","../../../../../../../../../tmp/jekyll-remote-theme-20241010-3005-owiwgx/_sass/_03_settings_mixins_media_queries.scss","rss.scss","../../_sass/_01_settings_colors.scss"],"names":[],"mappings":"AAuDA,wBAPoB,QAQpB,wBAPoB,QAQpB,wBAPoB,QAQpB,wBAPoB,OAQpB,wBAPoB,QC8RlB,wBACE,sBAGF,yBACE,4BACA,UAGF,8BACE,kDACA,UAGF,0BACE,qDACA,eAGF,+BACE,0EACA,eAGF,yBACE,qDACA,eAGF,8BACE,0EACA,eAGF,0BACE,qDACA,eAGF,+BACE,2EACA,eAGF,2BACE,sDACA,gBAGF,yCACE,kBC1XJ,EACC,cAGD,MACC,WACA,WCKqB,QDJrB,MCEqB,KDDrB,YFMwB,mDEFxB,cACC,kBACA,cACA,0CACA,mBACA,mBACA,sBACC,wBACA,oBAED,qBACC,qFACA,cACA,YACA,iBCHmB,QDInB,WACA,oBACA,kBACA,uBAIF,iCAEC,aAIF,KACC,cACA,gCACA,gBACC,mBAGD,WACC,MCpBoB,QDqBpB,YFlCkB,8BEmClB,UFZkB,QEalB,mBAGD,UACC,MCpCoB,QDuCrB,aACC,MCToB,QDUpB,gBAGD,iBACC,eACA,gBACA,mBACA,uBAGD,wBAEC","sourcesContent":["@charset \"utf-8\";\n/* TOC – Typography variables\n\nModular Scale › http://www.modularscale.com//?16,36&px&1.25&web&table\n\n- Fonts\n- Font Weight\n- Font Size Variables\n\n*/\n\n@import \"functions\"; // Allows the use of rem-calc() or lower-bound() in your settings\n\n\n\n/* Fonts\n------------------------------------------------------------------- */\n\n$base-font-size: 16px;\n$rem-base: $base-font-size;\n// $base-line-height is 24px while $base-font-size is 16px\n$base-line-height: 1.5 !default;\n\n\n$font-family-sans-serif: \"Lato\", \"Helvetica Neue\", Helvetica, Arial, sans-serif;\n$font-family-serif: \"Volkhov\", Georgia, Times, serif;\n$font-family-monospace: \"Lucida Console\", Monaco, monospace;\n\n$body-font-family: $font-family-sans-serif;\n$body-font-weight: normal;\n$body-font-style: normal;\n\n$header-font-family: $font-family-serif;\n\n\n\n/* Font Weight\n------------------------------------------------------------------- */\n\n$font-weight-normal: normal;\n$font-weight-bold: bold;\n\n\n\n/* Font Size Variables\n------------------------------------------------------------------- */\n\n$font-size-p: \t$base-font-size;\n$font-size-h1: 2.441em;\n$font-size-h2: 1.953em;\n$font-size-h3: 1.563em;\n$font-size-h4: 1.25em;\n$font-size-h5: 1.152em;\n$font-size-small: 0.8em;\n\n.font-size-h1 { font-size: $font-size-h1; }\n.font-size-h2 { font-size: $font-size-h2; }\n.font-size-h3 { font-size: $font-size-h3; }\n.font-size-h4 { font-size: $font-size-h4; }\n.font-size-h5 { font-size: $font-size-h5; }\n","@charset \"utf-8\";\n// Foundation by ZURB\n// foundation.zurb.com\n// Licensed under MIT Open Source\n\n//\n// Foundation Variables\n//\n\n// Data attribute namespace\n// styles get applied to [data-mysite-plugin], etc\n$namespace: false !default;\n\n// The default font-size is set to 100% of the browser style sheet (usually 16px)\n// for compatibility with browser-based text zoom or user-set defaults.\n\n// Since the typical default browser font-size is 16px, that makes the calculation for grid size.\n// If you want your base font-size to be different and not have it affect the grid breakpoints,\n// set $rem-base to $base-font-size and make sure $base-font-size is a px value.\n$base-font-size: 100% !default;\n\n\n\n//\n// Global Foundation Mixins\n//\n\n// @mixins\n//\n// We use this to control border radius.\n// $radius - Default: $global-radius || 4px\n@mixin radius($radius: $global-radius) {\n @if $radius {\n border-radius: $radius;\n }\n}\n\n// @mixins\n//\n// We use this to create equal side border radius on elements.\n// $side - Options: left, right, top, bottom\n@mixin side-radius($side, $radius: $global-radius) {\n @if ($side ==left or $side ==right) {\n -webkit-border-bottom-#{$side}-radius: $radius;\n -webkit-border-top-#{$side}-radius: $radius;\n border-bottom-#{$side}-radius: $radius;\n border-top-#{$side}-radius: $radius;\n }\n\n @else {\n -webkit-#{$side}-left-radius: $radius;\n -webkit-#{$side}-right-radius: $radius;\n border-#{$side}-left-radius: $radius;\n border-#{$side}-right-radius: $radius;\n }\n}\n\n// @mixins\n//\n// We can control whether or not we have inset shadows edges.\n// $active - Default: true, Options: false\n@mixin inset-shadow($active: true) {\n box-shadow: $shiny-edge-size $shiny-edge-color inset;\n\n @if $active {\n &:active {\n box-shadow: $shiny-edge-size $shiny-edge-active-color inset;\n }\n }\n}\n\n// @mixins\n//\n// We use this to add transitions to elements\n// $property - Default: all, Options: http://www.w3.org/TR/css3-transitions/#animatable-properties\n// $speed - Default: 300ms\n// $ease - Default:ease-out, Options: http://css-tricks.com/almanac/properties/t/transition-timing-function/\n@mixin single-transition($property: all, $speed: 300ms, $ease: ease-out) {\n transition: $property $speed $ease;\n}\n\n// @mixins\n//\n// We use this to add box-sizing across browser prefixes\n@mixin box-sizing($type: border-box) {\n -webkit-box-sizing: $type; // Android < 2.3, iOS < 4\n -moz-box-sizing: $type; // Firefox < 29\n box-sizing: $type; // Chrome, IE 8+, Opera, Safari 5.1\n}\n\n// @mixins\n//\n// We use this to create isosceles triangles\n// $triangle-size - Used to set border-size. No default, set a px or em size.\n// $triangle-color - Used to set border-color which makes up triangle. No default\n// $triangle-direction - Used to determine which direction triangle points. Options: top, bottom, left, right\n@mixin css-triangle($triangle-size, $triangle-color, $triangle-direction) {\n content: \"\";\n display: block;\n width: 0;\n height: 0;\n border: inset $triangle-size;\n\n @if ($triangle-direction ==top) {\n border-color: $triangle-color transparent transparent transparent;\n border-top-style: solid;\n }\n\n @if ($triangle-direction ==bottom) {\n border-color: transparent transparent $triangle-color transparent;\n border-bottom-style: solid;\n }\n\n @if ($triangle-direction ==left) {\n border-color: transparent transparent transparent $triangle-color;\n border-left-style: solid;\n }\n\n @if ($triangle-direction ==right) {\n border-color: transparent $triangle-color transparent transparent;\n border-right-style: solid;\n }\n}\n\n// @mixins\n//\n// We use this to create the icon with three lines aka the hamburger icon, the menu-icon or the navicon\n// $width - Width of hamburger icon in rem\n// $left - If false, icon will be centered horizontally || explicitly set value in rem\n// $top - If false, icon will be centered vertically || explicitly set value in rem\n// $thickness - thickness of lines in hamburger icon, set value in px\n// $gap - spacing between the lines in hamburger icon, set value in px\n// $color - icon color\n// $hover-color - icon color during hover\n// $offcanvas - Set to true of @include in offcanvas\n@mixin hamburger($width, $left, $top, $thickness, $gap, $color, $hover-color, $offcanvas) {\n span::after {\n content: \"\";\n position: absolute;\n display: block;\n height: 0;\n\n @if $offcanvas {\n @if $top {\n top: $top;\n }\n\n @else {\n top: 50%;\n margin-top: (-$width/2);\n }\n\n @if $left {\n left: $left;\n }\n\n @else {\n left: ($tabbar-menu-icon-width - $width)/2;\n }\n }\n\n @else {\n top: 50%;\n margin-top: -($width/2);\n #{$opposite-direction}: $topbar-link-padding;\n }\n\n box-shadow: 0 0 0 $thickness $color,\n 0 ($gap + $thickness) 0 $thickness $color,\n 0 (2 * $gap + 2*$thickness) 0 $thickness $color;\n width: $width;\n }\n\n span:hover:after {\n box-shadow:\n 0 0 0 $thickness $hover-color,\n 0 $gap + $thickness 0 $thickness $hover-color,\n 0 (2 * $gap + 2*$thickness) 0 $thickness $hover-color;\n }\n}\n\n// We use this to do clear floats\n@mixin clearfix {\n\n &:before,\n &:after {\n content: \" \";\n display: table;\n }\n\n &:after {\n clear: both;\n }\n}\n\n// @mixins\n//\n// We use this to add a glowing effect to block elements\n// $selector - Used for selector state. Default: focus, Options: hover, active, visited\n// $fade-time - Default: 300ms\n// $glowing-effect-color - Default: fade-out($primary-color, .25)\n@mixin block-glowing-effect($selector: focus, $fade-time: 300ms, $glowing-effect-color: fade-out($primary-color, .25)) {\n transition: box-shadow $fade-time, border-color $fade-time ease-in-out;\n\n &:#{$selector} {\n box-shadow: 0 0 5px $glowing-effect-color;\n border-color: $glowing-effect-color;\n }\n}\n\n// @mixins\n//\n// We use this to translate elements in 2D\n// $horizontal: Default: 0\n// $vertical: Default: 0\n@mixin translate2d($horizontal: 0, $vertical: 0) {\n transform: translate($horizontal, $vertical)\n}\n\n// @mixins\n//\n// Makes an element visually hidden, but accessible.\n// @see http://snook.ca/archives/html_and_css/hiding-content-for-accessibility\n@mixin element-invisible {\n position: absolute !important;\n height: 1px;\n width: 1px;\n overflow: hidden;\n clip: rect(1px, 1px, 1px, 1px);\n}\n\n// @mixins\n//\n// Turns off the element-invisible effect.\n@mixin element-invisible-off {\n position: static !important;\n height: auto;\n width: auto;\n overflow: visible;\n clip: auto;\n}\n\n\n// We use these to control text direction settings\n$text-direction: ltr !default;\n$default-float: left !default;\n$opposite-direction: right !default;\n\n@if $text-direction ==ltr {\n $default-float: left;\n $opposite-direction: right;\n}\n\n@else {\n $default-float: right;\n $opposite-direction: left;\n}\n\n// We use these to control inset shadow shiny edges and depressions.\n$shiny-edge-size: 0 1px 0 !default;\n$shiny-edge-color: rgba(#fff, .5) !default;\n$shiny-edge-active-color: rgba(#000, .2) !default;\n\n// We use this to control whether or not CSS classes come through in the gem files.\n$include-html-classes: true !default;\n$include-print-styles: true !default;\n$include-html-global-classes: $include-html-classes !default;\n\n$column-gutter: rem-calc(30) !default;\n\n\n\n\n// d. Media Query Ranges\n// - - - - - - - - - - - - - - - - - - - - - - - - -\n\n$small-range: (\n 0em,\n 40em\n);\n$medium-range: (\n 40.063em,\n 64em\n);\n$large-range: (\n 64.063em,\n 90em\n);\n$xlarge-range: (\n 90.063em,\n 120em\n);\n$xxlarge-range: (\n 120.063em,\n 99999999em\n);\n\n\n$screen: \"only screen\" !default;\n\n$landscape: \"#{$screen} and (orientation: landscape)\" !default;\n$portrait: \"#{$screen} and (orientation: portrait)\" !default;\n\n$small-up: $screen !default;\n$small-only: \"#{$screen} and (max-width: #{upper-bound($small-range)})\";\n\n$medium-up: \"#{$screen} and (min-width:#{lower-bound($medium-range)})\" !default;\n$medium-only: \"#{$screen} and (min-width:#{lower-bound($medium-range)}) and (max-width:#{upper-bound($medium-range)})\" !default;\n\n$large-up: \"#{$screen} and (min-width:#{lower-bound($large-range)})\" !default;\n$large-only: \"#{$screen} and (min-width:#{lower-bound($large-range)}) and (max-width:#{upper-bound($large-range)})\" !default;\n\n$xlarge-up: \"#{$screen} and (min-width:#{lower-bound($xlarge-range)})\" !default;\n$xlarge-only: \"#{$screen} and (min-width:#{lower-bound($xlarge-range)}) and (max-width:#{upper-bound($xlarge-range)})\" !default;\n\n$xxlarge-up: \"#{$screen} and (min-width:#{lower-bound($xxlarge-range)})\" !default;\n$xxlarge-only: \"#{$screen} and (min-width:#{lower-bound($xxlarge-range)}) and (max-width:#{upper-bound($xxlarge-range)})\" !default;\n\n// Legacy\n$small: $medium-up;\n$medium: $medium-up;\n$large: $large-up;\n\n//We use this as cursors values for enabling the option of having custom cursors in the whole site's stylesheet\n$cursor-auto-value: auto !default;\n$cursor-crosshair-value: crosshair !default;\n$cursor-default-value: default !default;\n$cursor-pointer-value: pointer !default;\n$cursor-help-value: help !default;\n$cursor-text-value: text !default;\n\n\n@include exports(\"global\") {\n\n // Meta styles are included in all builds, as they are a dependency of the Javascript.\n // Used to provide media query values for javascript components.\n // Forward slash placed around everything to convince PhantomJS to read the value.\n\n meta.foundation-version {\n font-family: \"/5.5.0/\";\n }\n\n meta.foundation-mq-small {\n font-family: \"/\" + unquote($small-up) + \"/\";\n width: lower-bound($small-range);\n }\n\n meta.foundation-mq-small-only {\n font-family: \"/\" + unquote($small-only) + \"/\";\n width: lower-bound($small-range);\n }\n\n meta.foundation-mq-medium {\n font-family: \"/\" + unquote($medium-up) + \"/\";\n width: lower-bound($medium-range);\n }\n\n meta.foundation-mq-medium-only {\n font-family: \"/\" + unquote($medium-only) + \"/\";\n width: lower-bound($medium-range);\n }\n\n meta.foundation-mq-large {\n font-family: \"/\" + unquote($large-up) + \"/\";\n width: lower-bound($large-range);\n }\n\n meta.foundation-mq-large-only {\n font-family: \"/\" + unquote($large-only) + \"/\";\n width: lower-bound($large-range);\n }\n\n meta.foundation-mq-xlarge {\n font-family: \"/\" + unquote($xlarge-up) + \"/\";\n width: lower-bound($xlarge-range);\n }\n\n meta.foundation-mq-xlarge-only {\n font-family: \"/\" + unquote($xlarge-only) + \"/\";\n width: lower-bound($xlarge-range);\n }\n\n meta.foundation-mq-xxlarge {\n font-family: \"/\" + unquote($xxlarge-up) + \"/\";\n width: lower-bound($xxlarge-range);\n }\n\n meta.foundation-data-attribute-namespace {\n font-family: #{$namespace};\n }\n\n @if $include-html-global-classes {\n\n // Must be 100% for off canvas to work\n html,\n body {\n height: 100%;\n }\n\n // Set box-sizing globally to handle padding and border widths\n *,\n *:before,\n *:after {\n @include box-sizing(border-box);\n }\n\n html,\n body {\n font-size: $base-font-size;\n }\n\n // Default body styles\n body {\n background: $body-bg;\n color: $body-font-color;\n padding: 0;\n margin: 0;\n font-family: $body-font-family;\n font-weight: $body-font-weight;\n font-style: $body-font-style;\n line-height: $base-line-height; // Set to $base-line-height to take on browser default of 150%\n position: relative;\n cursor: $cursor-auto-value;\n }\n\n a:hover {\n cursor: $cursor-pointer-value;\n }\n\n // Grid Defaults to get images and embeds to work properly\n img {\n max-width: 100%;\n height: auto;\n }\n\n img {\n -ms-interpolation-mode: bicubic;\n }\n\n #map_canvas,\n .map_canvas {\n\n img,\n embed,\n object {\n max-width: none !important;\n }\n }\n\n // Miscellaneous useful HTML classes\n .left {\n float: left !important;\n }\n\n .right {\n float: right !important;\n }\n\n .clearfix {\n @include clearfix;\n }\n\n // Hide visually and from screen readers\n .hide {\n display: none !important;\n visibility: hidden;\n }\n\n // Hide visually and from screen readers, but maintain layout\n .invisible {\n visibility: hidden;\n }\n\n // Font smoothing\n // Antialiased font smoothing works best for light text on a dark background.\n // Apply to single elements instead of globally to body.\n // Note this only applies to webkit-based desktop browsers and Firefox 25 (and later) on the Mac.\n .antialiased {\n -webkit-font-smoothing: antialiased;\n -moz-osx-font-smoothing: grayscale;\n }\n\n // Get rid of gap under images by making them display: inline-block; by default\n img {\n display: inline-block;\n vertical-align: middle;\n }\n\n //\n // Global resets for forms\n //\n\n // Make sure textarea takes on height automatically\n textarea {\n height: auto;\n min-height: 50px;\n }\n\n // Make select elements 100% width by default\n select {\n width: 100%;\n }\n }\n}","@charset \"utf-8\";\n\n@import \"functions.scss\";\n\n$include-html-classes: false;\n@import \"01_settings_colors.scss\";\n@import \"02_settings_typography.scss\";\n@import \"03_settings_mixins_media_queries.scss\";\n@import \"04_settings_global.scss\";\n\n* {\n\tdisplay: block;\n}\n\n:root {\n\tmargin: 3em;\n\tbackground: $body-bg;\n\tcolor: $body-font-color;\n\tfont-family: $body-font-family;\n}\n\nchannel {\n\t> title {\n\t\ttext-align: center;\n\t\tcolor: lighten($primary-color, 25%);\n\t\tfont-family: $header-font-family;\n\t\tfont-size: $font-size-h1 * 1.5;\n\t\tfont-weight: bolder;\n\t\t&::before {\n\t\t\tcontent: 'RSS Feed for ';\n\t\t\tfont-weight: initial;\n\t\t}\n\t\t&::after {\n\t\t\tcontent: \"This RSS feed is meant to be used by RSS reader applications and websites.\";\n\t\t\tdisplay: block;\n\t\t\tpadding: 1em;\n\t\t\tbackground-color: $alert-color;\n\t\t\tcolor: #fff;\n\t\t\tfont-family: initial;\n\t\t\tfont-size: initial;\n\t\t\tletter-spacing: initial;\n\t\t}\n\t}\n\t\n\t> description,\n\t> link {\n\t\tdisplay: none;\n\t}\n}\n\nitem {\n\tpadding: 1em 0;\n\tborder-bottom: 1px solid invert($body-bg);\n\t&:last-child {\n\t\tborder-bottom: none;\n\t}\n\n\t> title {\n\t\tcolor: $secondary-color;\n\t\tfont-family: $header-font-family;\n\t\tfont-size: $font-size-h1;\n\t\tmargin-bottom: 0.5em;\n\t}\n\n\t> link {\n\t\tcolor: $primary-color;\n\t}\n\n\t> pubDate {\n\t\tcolor: $grey-5;\n\t\tfont-size: small;\n\t}\n\n\t> description {\n\t\tmargin-top: 1em;\n\t\toverflow: hidden;\n\t\twhite-space: nowrap;\n\t\ttext-overflow:ellipsis;\n\t}\n\n\t> guid,\n\t> category {\n\t\tdisplay: none;\n\t}\n}\n","/// from https://github.com/Phlow/feeling-responsive/raw/gh-pages/_sass/_01_settings_colors.scss\n@charset \"utf-8\";\n/* TOC – Color Variables\n\n- Basics\n- Corporate Identity Colorpalette\n- Foundation Color Variables\n- Grey Scale\n- Topbar-Navigation\n- Footer\n- Code\n\n*/\n\n\n\n/* Basics\n------------------------------------------------------------------- */\n\n$text-color : #111;\n$body-font-color : $text-color;\n$body-bg : #fdfdfd;\n\n\n\n/* Corporate Identity Colorpalette\n https://color.adobe.com/de/Flat-Design-Colors-v2-color-theme-4341903/\n------------------------------------------------------------------- */\n\n$ci-1 : #334D5C; // dark turquoise\n$ci-2 : #45B29D; // turquoise\n$ci-3 : #EFC94C; // yellow\n$ci-4 : #E27A3F; // orange\n$ci-5 : #DF4949; // red\n$ci-6 : #A1D044; // green\n\n/// CIL overrides\n$ci-2 : #c92c99;\n$ci-6 : #e50695;\n\n\n/* Foundation Color Variables\n------------------------------------------------------------------- */\n\n$primary-color : $ci-1;\n$secondary-color : $ci-6;\n$alert-color : $ci-5;\n$success-color : $ci-6;\n$warning-color : $ci-4;\n$info-color : $ci-1;\n\n\n\n/* Grey Scale\n------------------------------------------------------------------- */\n\n$grey-1 : #E4E4E4;\n$grey-2 : #D7D7D7;\n$grey-3 : #CBCBCB;\n$grey-4 : #BEBEBE;\n$grey-5 : #A4A4A4;\n$grey-6 : #979797;\n$grey-7 : #8B8B8B;\n$grey-8 : #7E7E7E;\n$grey-9 : #646464;\n$grey-10 : #575757;\n$grey-11 : #4B4B4B;\n$grey-12 : #3E3E3E;\n$grey-13 : #313131;\n$grey-14 : #242424;\n$grey-15 : #171717;\n$grey-16 : #0B0B0B;\n\n/// CIL overrides\n$grey-8 : #043852;\n$grey-13 : #510c76;\n\n\n/* Topbar-Navigation\n------------------------------------------------------------------- */\n\n$topbar-bg-color : $body-bg;\n$topbar-bg : $topbar-bg-color;\n\n\n$topbar-dropdown-toggle-color: $ci-1;\n\n$topbar-link-color : #000;\n$topbar-link-color-hover: #000;\n$topbar-link-color-active: #000;\n$topbar-link-color-active-hover: #000;\n\n$topbar-dropdown-label-color: $ci-2;\n$topbar-dropdown-link-bg-hover: $ci-6;\n\n$topbar-link-bg-active: $ci-6; // Active Navigation Link\n$topbar-link-bg-hover: $ci-6;\n$topbar-link-bg-active-hover: $ci-2;\n\n\n$topbar-dropdown-bg: $ci-6; // Background Mobile Navigation\n$topbar-dropdown-link-color: #000;\n$topbar-dropdown-link-bg: $ci-2;\n\n$topbar-menu-link-color-toggled: $ci-1;\n$topbar-menu-icon-color-toggled: $ci-1;\n$topbar-menu-link-color: #000;\n$topbar-menu-icon-color: #000;\n$topbar-menu-link-color-toggled: $ci-6;\n$topbar-menu-icon-color-toggled: $ci-6;\n\n\n\n/* Footer\n------------------------------------------------------------------- */\n\n$footer-bg : $grey-8;\n$footer-color : #fff;\n$footer-link-color : $ci-6;\n\n\n$subfooter-bg : $grey-13;\n$subfooter-color : $grey-8;\n$subfooter-link-color: $grey-8;\n\n\n\n/* Code\n------------------------------------------------------------------- */\n\n$code-background-color: scale-color($secondary-color, $lightness: 70%);\n\n$highlight-background: #ffffff;\n$highlight-comment: #999988;\n$highlight-error: #a61717;\n$highlight-comment-special: #999999;\n$highlight-deleted: #000000;\n$highlight-error-2: #aa0000;\n$highlight-literal-string: #d14;\n$highlight-literal-number: #009999;\n$highlight-name-attribut: #008080;\n$highlight-error-background: #e3d2d2;\n$highlight-generic-deleted: #ffdddd;\n$highlight-generic-deleted-specific: #ffaaaa;\n$highlight-generic-inserted: #ddffdd;\n$highlight-generic-inserted-specific: #aaffaa;\n$highlight-generic-output: #888888;\n$highlight-generic-prompt: #555555;\n$highlight-subheading: #aaaaaa;\n$highlight-keyword-type: #445588;\n$highlight-name-builtin: #0086B3;\n$highlight-name-class: #445588;\n$highlight-name-entity: #800080;\n$highlight-name-exception: #990000;\n$highlight-name-function: #990000;\n$highlight-name-namespace: #555555;\n$highlight-name-tag: #000080;\n$highlight-text-whitespace: #bbbbbb;\n$highlight-literal-string-regex: #009926;\n$highlight-literal-string-symbol: #990073;\n"],"file":"rss.css"} \ No newline at end of file +{"version":3,"sourceRoot":"","sources":["../../../../../../../../../tmp/jekyll-remote-theme-20241010-3081-qfwnhs/_sass/_02_settings_typography.scss","../../../../../../../../../tmp/jekyll-remote-theme-20241010-3081-qfwnhs/_sass/_03_settings_mixins_media_queries.scss","rss.scss","../../_sass/_01_settings_colors.scss"],"names":[],"mappings":"AAuDA,wBAPoB,QAQpB,wBAPoB,QAQpB,wBAPoB,QAQpB,wBAPoB,OAQpB,wBAPoB,QC8RlB,wBACE,sBAGF,yBACE,4BACA,UAGF,8BACE,kDACA,UAGF,0BACE,qDACA,eAGF,+BACE,0EACA,eAGF,yBACE,qDACA,eAGF,8BACE,0EACA,eAGF,0BACE,qDACA,eAGF,+BACE,2EACA,eAGF,2BACE,sDACA,gBAGF,yCACE,kBC1XJ,EACC,cAGD,MACC,WACA,WCKqB,QDJrB,MCEqB,KDDrB,YFMwB,mDEFxB,cACC,kBACA,cACA,0CACA,mBACA,mBACA,sBACC,wBACA,oBAED,qBACC,qFACA,cACA,YACA,iBCHmB,QDInB,WACA,oBACA,kBACA,uBAIF,iCAEC,aAIF,KACC,cACA,gCACA,gBACC,mBAGD,WACC,MCpBoB,QDqBpB,YFlCkB,8BEmClB,UFZkB,QEalB,mBAGD,UACC,MCpCoB,QDuCrB,aACC,MCToB,QDUpB,gBAGD,iBACC,eACA,gBACA,mBACA,uBAGD,wBAEC","sourcesContent":["@charset \"utf-8\";\n/* TOC – Typography variables\n\nModular Scale › http://www.modularscale.com//?16,36&px&1.25&web&table\n\n- Fonts\n- Font Weight\n- Font Size Variables\n\n*/\n\n@import \"functions\"; // Allows the use of rem-calc() or lower-bound() in your settings\n\n\n\n/* Fonts\n------------------------------------------------------------------- */\n\n$base-font-size: 16px;\n$rem-base: $base-font-size;\n// $base-line-height is 24px while $base-font-size is 16px\n$base-line-height: 1.5 !default;\n\n\n$font-family-sans-serif: \"Lato\", \"Helvetica Neue\", Helvetica, Arial, sans-serif;\n$font-family-serif: \"Volkhov\", Georgia, Times, serif;\n$font-family-monospace: \"Lucida Console\", Monaco, monospace;\n\n$body-font-family: $font-family-sans-serif;\n$body-font-weight: normal;\n$body-font-style: normal;\n\n$header-font-family: $font-family-serif;\n\n\n\n/* Font Weight\n------------------------------------------------------------------- */\n\n$font-weight-normal: normal;\n$font-weight-bold: bold;\n\n\n\n/* Font Size Variables\n------------------------------------------------------------------- */\n\n$font-size-p: \t$base-font-size;\n$font-size-h1: 2.441em;\n$font-size-h2: 1.953em;\n$font-size-h3: 1.563em;\n$font-size-h4: 1.25em;\n$font-size-h5: 1.152em;\n$font-size-small: 0.8em;\n\n.font-size-h1 { font-size: $font-size-h1; }\n.font-size-h2 { font-size: $font-size-h2; }\n.font-size-h3 { font-size: $font-size-h3; }\n.font-size-h4 { font-size: $font-size-h4; }\n.font-size-h5 { font-size: $font-size-h5; }\n","@charset \"utf-8\";\n// Foundation by ZURB\n// foundation.zurb.com\n// Licensed under MIT Open Source\n\n//\n// Foundation Variables\n//\n\n// Data attribute namespace\n// styles get applied to [data-mysite-plugin], etc\n$namespace: false !default;\n\n// The default font-size is set to 100% of the browser style sheet (usually 16px)\n// for compatibility with browser-based text zoom or user-set defaults.\n\n// Since the typical default browser font-size is 16px, that makes the calculation for grid size.\n// If you want your base font-size to be different and not have it affect the grid breakpoints,\n// set $rem-base to $base-font-size and make sure $base-font-size is a px value.\n$base-font-size: 100% !default;\n\n\n\n//\n// Global Foundation Mixins\n//\n\n// @mixins\n//\n// We use this to control border radius.\n// $radius - Default: $global-radius || 4px\n@mixin radius($radius: $global-radius) {\n @if $radius {\n border-radius: $radius;\n }\n}\n\n// @mixins\n//\n// We use this to create equal side border radius on elements.\n// $side - Options: left, right, top, bottom\n@mixin side-radius($side, $radius: $global-radius) {\n @if ($side ==left or $side ==right) {\n -webkit-border-bottom-#{$side}-radius: $radius;\n -webkit-border-top-#{$side}-radius: $radius;\n border-bottom-#{$side}-radius: $radius;\n border-top-#{$side}-radius: $radius;\n }\n\n @else {\n -webkit-#{$side}-left-radius: $radius;\n -webkit-#{$side}-right-radius: $radius;\n border-#{$side}-left-radius: $radius;\n border-#{$side}-right-radius: $radius;\n }\n}\n\n// @mixins\n//\n// We can control whether or not we have inset shadows edges.\n// $active - Default: true, Options: false\n@mixin inset-shadow($active: true) {\n box-shadow: $shiny-edge-size $shiny-edge-color inset;\n\n @if $active {\n &:active {\n box-shadow: $shiny-edge-size $shiny-edge-active-color inset;\n }\n }\n}\n\n// @mixins\n//\n// We use this to add transitions to elements\n// $property - Default: all, Options: http://www.w3.org/TR/css3-transitions/#animatable-properties\n// $speed - Default: 300ms\n// $ease - Default:ease-out, Options: http://css-tricks.com/almanac/properties/t/transition-timing-function/\n@mixin single-transition($property: all, $speed: 300ms, $ease: ease-out) {\n transition: $property $speed $ease;\n}\n\n// @mixins\n//\n// We use this to add box-sizing across browser prefixes\n@mixin box-sizing($type: border-box) {\n -webkit-box-sizing: $type; // Android < 2.3, iOS < 4\n -moz-box-sizing: $type; // Firefox < 29\n box-sizing: $type; // Chrome, IE 8+, Opera, Safari 5.1\n}\n\n// @mixins\n//\n// We use this to create isosceles triangles\n// $triangle-size - Used to set border-size. No default, set a px or em size.\n// $triangle-color - Used to set border-color which makes up triangle. No default\n// $triangle-direction - Used to determine which direction triangle points. Options: top, bottom, left, right\n@mixin css-triangle($triangle-size, $triangle-color, $triangle-direction) {\n content: \"\";\n display: block;\n width: 0;\n height: 0;\n border: inset $triangle-size;\n\n @if ($triangle-direction ==top) {\n border-color: $triangle-color transparent transparent transparent;\n border-top-style: solid;\n }\n\n @if ($triangle-direction ==bottom) {\n border-color: transparent transparent $triangle-color transparent;\n border-bottom-style: solid;\n }\n\n @if ($triangle-direction ==left) {\n border-color: transparent transparent transparent $triangle-color;\n border-left-style: solid;\n }\n\n @if ($triangle-direction ==right) {\n border-color: transparent $triangle-color transparent transparent;\n border-right-style: solid;\n }\n}\n\n// @mixins\n//\n// We use this to create the icon with three lines aka the hamburger icon, the menu-icon or the navicon\n// $width - Width of hamburger icon in rem\n// $left - If false, icon will be centered horizontally || explicitly set value in rem\n// $top - If false, icon will be centered vertically || explicitly set value in rem\n// $thickness - thickness of lines in hamburger icon, set value in px\n// $gap - spacing between the lines in hamburger icon, set value in px\n// $color - icon color\n// $hover-color - icon color during hover\n// $offcanvas - Set to true of @include in offcanvas\n@mixin hamburger($width, $left, $top, $thickness, $gap, $color, $hover-color, $offcanvas) {\n span::after {\n content: \"\";\n position: absolute;\n display: block;\n height: 0;\n\n @if $offcanvas {\n @if $top {\n top: $top;\n }\n\n @else {\n top: 50%;\n margin-top: (-$width/2);\n }\n\n @if $left {\n left: $left;\n }\n\n @else {\n left: ($tabbar-menu-icon-width - $width)/2;\n }\n }\n\n @else {\n top: 50%;\n margin-top: -($width/2);\n #{$opposite-direction}: $topbar-link-padding;\n }\n\n box-shadow: 0 0 0 $thickness $color,\n 0 ($gap + $thickness) 0 $thickness $color,\n 0 (2 * $gap + 2*$thickness) 0 $thickness $color;\n width: $width;\n }\n\n span:hover:after {\n box-shadow:\n 0 0 0 $thickness $hover-color,\n 0 $gap + $thickness 0 $thickness $hover-color,\n 0 (2 * $gap + 2*$thickness) 0 $thickness $hover-color;\n }\n}\n\n// We use this to do clear floats\n@mixin clearfix {\n\n &:before,\n &:after {\n content: \" \";\n display: table;\n }\n\n &:after {\n clear: both;\n }\n}\n\n// @mixins\n//\n// We use this to add a glowing effect to block elements\n// $selector - Used for selector state. Default: focus, Options: hover, active, visited\n// $fade-time - Default: 300ms\n// $glowing-effect-color - Default: fade-out($primary-color, .25)\n@mixin block-glowing-effect($selector: focus, $fade-time: 300ms, $glowing-effect-color: fade-out($primary-color, .25)) {\n transition: box-shadow $fade-time, border-color $fade-time ease-in-out;\n\n &:#{$selector} {\n box-shadow: 0 0 5px $glowing-effect-color;\n border-color: $glowing-effect-color;\n }\n}\n\n// @mixins\n//\n// We use this to translate elements in 2D\n// $horizontal: Default: 0\n// $vertical: Default: 0\n@mixin translate2d($horizontal: 0, $vertical: 0) {\n transform: translate($horizontal, $vertical)\n}\n\n// @mixins\n//\n// Makes an element visually hidden, but accessible.\n// @see http://snook.ca/archives/html_and_css/hiding-content-for-accessibility\n@mixin element-invisible {\n position: absolute !important;\n height: 1px;\n width: 1px;\n overflow: hidden;\n clip: rect(1px, 1px, 1px, 1px);\n}\n\n// @mixins\n//\n// Turns off the element-invisible effect.\n@mixin element-invisible-off {\n position: static !important;\n height: auto;\n width: auto;\n overflow: visible;\n clip: auto;\n}\n\n\n// We use these to control text direction settings\n$text-direction: ltr !default;\n$default-float: left !default;\n$opposite-direction: right !default;\n\n@if $text-direction ==ltr {\n $default-float: left;\n $opposite-direction: right;\n}\n\n@else {\n $default-float: right;\n $opposite-direction: left;\n}\n\n// We use these to control inset shadow shiny edges and depressions.\n$shiny-edge-size: 0 1px 0 !default;\n$shiny-edge-color: rgba(#fff, .5) !default;\n$shiny-edge-active-color: rgba(#000, .2) !default;\n\n// We use this to control whether or not CSS classes come through in the gem files.\n$include-html-classes: true !default;\n$include-print-styles: true !default;\n$include-html-global-classes: $include-html-classes !default;\n\n$column-gutter: rem-calc(30) !default;\n\n\n\n\n// d. Media Query Ranges\n// - - - - - - - - - - - - - - - - - - - - - - - - -\n\n$small-range: (\n 0em,\n 40em\n);\n$medium-range: (\n 40.063em,\n 64em\n);\n$large-range: (\n 64.063em,\n 90em\n);\n$xlarge-range: (\n 90.063em,\n 120em\n);\n$xxlarge-range: (\n 120.063em,\n 99999999em\n);\n\n\n$screen: \"only screen\" !default;\n\n$landscape: \"#{$screen} and (orientation: landscape)\" !default;\n$portrait: \"#{$screen} and (orientation: portrait)\" !default;\n\n$small-up: $screen !default;\n$small-only: \"#{$screen} and (max-width: #{upper-bound($small-range)})\";\n\n$medium-up: \"#{$screen} and (min-width:#{lower-bound($medium-range)})\" !default;\n$medium-only: \"#{$screen} and (min-width:#{lower-bound($medium-range)}) and (max-width:#{upper-bound($medium-range)})\" !default;\n\n$large-up: \"#{$screen} and (min-width:#{lower-bound($large-range)})\" !default;\n$large-only: \"#{$screen} and (min-width:#{lower-bound($large-range)}) and (max-width:#{upper-bound($large-range)})\" !default;\n\n$xlarge-up: \"#{$screen} and (min-width:#{lower-bound($xlarge-range)})\" !default;\n$xlarge-only: \"#{$screen} and (min-width:#{lower-bound($xlarge-range)}) and (max-width:#{upper-bound($xlarge-range)})\" !default;\n\n$xxlarge-up: \"#{$screen} and (min-width:#{lower-bound($xxlarge-range)})\" !default;\n$xxlarge-only: \"#{$screen} and (min-width:#{lower-bound($xxlarge-range)}) and (max-width:#{upper-bound($xxlarge-range)})\" !default;\n\n// Legacy\n$small: $medium-up;\n$medium: $medium-up;\n$large: $large-up;\n\n//We use this as cursors values for enabling the option of having custom cursors in the whole site's stylesheet\n$cursor-auto-value: auto !default;\n$cursor-crosshair-value: crosshair !default;\n$cursor-default-value: default !default;\n$cursor-pointer-value: pointer !default;\n$cursor-help-value: help !default;\n$cursor-text-value: text !default;\n\n\n@include exports(\"global\") {\n\n // Meta styles are included in all builds, as they are a dependency of the Javascript.\n // Used to provide media query values for javascript components.\n // Forward slash placed around everything to convince PhantomJS to read the value.\n\n meta.foundation-version {\n font-family: \"/5.5.0/\";\n }\n\n meta.foundation-mq-small {\n font-family: \"/\" + unquote($small-up) + \"/\";\n width: lower-bound($small-range);\n }\n\n meta.foundation-mq-small-only {\n font-family: \"/\" + unquote($small-only) + \"/\";\n width: lower-bound($small-range);\n }\n\n meta.foundation-mq-medium {\n font-family: \"/\" + unquote($medium-up) + \"/\";\n width: lower-bound($medium-range);\n }\n\n meta.foundation-mq-medium-only {\n font-family: \"/\" + unquote($medium-only) + \"/\";\n width: lower-bound($medium-range);\n }\n\n meta.foundation-mq-large {\n font-family: \"/\" + unquote($large-up) + \"/\";\n width: lower-bound($large-range);\n }\n\n meta.foundation-mq-large-only {\n font-family: \"/\" + unquote($large-only) + \"/\";\n width: lower-bound($large-range);\n }\n\n meta.foundation-mq-xlarge {\n font-family: \"/\" + unquote($xlarge-up) + \"/\";\n width: lower-bound($xlarge-range);\n }\n\n meta.foundation-mq-xlarge-only {\n font-family: \"/\" + unquote($xlarge-only) + \"/\";\n width: lower-bound($xlarge-range);\n }\n\n meta.foundation-mq-xxlarge {\n font-family: \"/\" + unquote($xxlarge-up) + \"/\";\n width: lower-bound($xxlarge-range);\n }\n\n meta.foundation-data-attribute-namespace {\n font-family: #{$namespace};\n }\n\n @if $include-html-global-classes {\n\n // Must be 100% for off canvas to work\n html,\n body {\n height: 100%;\n }\n\n // Set box-sizing globally to handle padding and border widths\n *,\n *:before,\n *:after {\n @include box-sizing(border-box);\n }\n\n html,\n body {\n font-size: $base-font-size;\n }\n\n // Default body styles\n body {\n background: $body-bg;\n color: $body-font-color;\n padding: 0;\n margin: 0;\n font-family: $body-font-family;\n font-weight: $body-font-weight;\n font-style: $body-font-style;\n line-height: $base-line-height; // Set to $base-line-height to take on browser default of 150%\n position: relative;\n cursor: $cursor-auto-value;\n }\n\n a:hover {\n cursor: $cursor-pointer-value;\n }\n\n // Grid Defaults to get images and embeds to work properly\n img {\n max-width: 100%;\n height: auto;\n }\n\n img {\n -ms-interpolation-mode: bicubic;\n }\n\n #map_canvas,\n .map_canvas {\n\n img,\n embed,\n object {\n max-width: none !important;\n }\n }\n\n // Miscellaneous useful HTML classes\n .left {\n float: left !important;\n }\n\n .right {\n float: right !important;\n }\n\n .clearfix {\n @include clearfix;\n }\n\n // Hide visually and from screen readers\n .hide {\n display: none !important;\n visibility: hidden;\n }\n\n // Hide visually and from screen readers, but maintain layout\n .invisible {\n visibility: hidden;\n }\n\n // Font smoothing\n // Antialiased font smoothing works best for light text on a dark background.\n // Apply to single elements instead of globally to body.\n // Note this only applies to webkit-based desktop browsers and Firefox 25 (and later) on the Mac.\n .antialiased {\n -webkit-font-smoothing: antialiased;\n -moz-osx-font-smoothing: grayscale;\n }\n\n // Get rid of gap under images by making them display: inline-block; by default\n img {\n display: inline-block;\n vertical-align: middle;\n }\n\n //\n // Global resets for forms\n //\n\n // Make sure textarea takes on height automatically\n textarea {\n height: auto;\n min-height: 50px;\n }\n\n // Make select elements 100% width by default\n select {\n width: 100%;\n }\n }\n}","@charset \"utf-8\";\n\n@import \"functions.scss\";\n\n$include-html-classes: false;\n@import \"01_settings_colors.scss\";\n@import \"02_settings_typography.scss\";\n@import \"03_settings_mixins_media_queries.scss\";\n@import \"04_settings_global.scss\";\n\n* {\n\tdisplay: block;\n}\n\n:root {\n\tmargin: 3em;\n\tbackground: $body-bg;\n\tcolor: $body-font-color;\n\tfont-family: $body-font-family;\n}\n\nchannel {\n\t> title {\n\t\ttext-align: center;\n\t\tcolor: lighten($primary-color, 25%);\n\t\tfont-family: $header-font-family;\n\t\tfont-size: $font-size-h1 * 1.5;\n\t\tfont-weight: bolder;\n\t\t&::before {\n\t\t\tcontent: 'RSS Feed for ';\n\t\t\tfont-weight: initial;\n\t\t}\n\t\t&::after {\n\t\t\tcontent: \"This RSS feed is meant to be used by RSS reader applications and websites.\";\n\t\t\tdisplay: block;\n\t\t\tpadding: 1em;\n\t\t\tbackground-color: $alert-color;\n\t\t\tcolor: #fff;\n\t\t\tfont-family: initial;\n\t\t\tfont-size: initial;\n\t\t\tletter-spacing: initial;\n\t\t}\n\t}\n\t\n\t> description,\n\t> link {\n\t\tdisplay: none;\n\t}\n}\n\nitem {\n\tpadding: 1em 0;\n\tborder-bottom: 1px solid invert($body-bg);\n\t&:last-child {\n\t\tborder-bottom: none;\n\t}\n\n\t> title {\n\t\tcolor: $secondary-color;\n\t\tfont-family: $header-font-family;\n\t\tfont-size: $font-size-h1;\n\t\tmargin-bottom: 0.5em;\n\t}\n\n\t> link {\n\t\tcolor: $primary-color;\n\t}\n\n\t> pubDate {\n\t\tcolor: $grey-5;\n\t\tfont-size: small;\n\t}\n\n\t> description {\n\t\tmargin-top: 1em;\n\t\toverflow: hidden;\n\t\twhite-space: nowrap;\n\t\ttext-overflow:ellipsis;\n\t}\n\n\t> guid,\n\t> category {\n\t\tdisplay: none;\n\t}\n}\n","/// from https://github.com/Phlow/feeling-responsive/raw/gh-pages/_sass/_01_settings_colors.scss\n@charset \"utf-8\";\n/* TOC – Color Variables\n\n- Basics\n- Corporate Identity Colorpalette\n- Foundation Color Variables\n- Grey Scale\n- Topbar-Navigation\n- Footer\n- Code\n\n*/\n\n\n\n/* Basics\n------------------------------------------------------------------- */\n\n$text-color : #111;\n$body-font-color : $text-color;\n$body-bg : #fdfdfd;\n\n\n\n/* Corporate Identity Colorpalette\n https://color.adobe.com/de/Flat-Design-Colors-v2-color-theme-4341903/\n------------------------------------------------------------------- */\n\n$ci-1 : #334D5C; // dark turquoise\n$ci-2 : #45B29D; // turquoise\n$ci-3 : #EFC94C; // yellow\n$ci-4 : #E27A3F; // orange\n$ci-5 : #DF4949; // red\n$ci-6 : #A1D044; // green\n\n/// CIL overrides\n$ci-2 : #c92c99;\n$ci-6 : #e50695;\n\n\n/* Foundation Color Variables\n------------------------------------------------------------------- */\n\n$primary-color : $ci-1;\n$secondary-color : $ci-6;\n$alert-color : $ci-5;\n$success-color : $ci-6;\n$warning-color : $ci-4;\n$info-color : $ci-1;\n\n\n\n/* Grey Scale\n------------------------------------------------------------------- */\n\n$grey-1 : #E4E4E4;\n$grey-2 : #D7D7D7;\n$grey-3 : #CBCBCB;\n$grey-4 : #BEBEBE;\n$grey-5 : #A4A4A4;\n$grey-6 : #979797;\n$grey-7 : #8B8B8B;\n$grey-8 : #7E7E7E;\n$grey-9 : #646464;\n$grey-10 : #575757;\n$grey-11 : #4B4B4B;\n$grey-12 : #3E3E3E;\n$grey-13 : #313131;\n$grey-14 : #242424;\n$grey-15 : #171717;\n$grey-16 : #0B0B0B;\n\n/// CIL overrides\n$grey-8 : #043852;\n$grey-13 : #510c76;\n\n\n/* Topbar-Navigation\n------------------------------------------------------------------- */\n\n$topbar-bg-color : $body-bg;\n$topbar-bg : $topbar-bg-color;\n\n\n$topbar-dropdown-toggle-color: $ci-1;\n\n$topbar-link-color : #000;\n$topbar-link-color-hover: #000;\n$topbar-link-color-active: #000;\n$topbar-link-color-active-hover: #000;\n\n$topbar-dropdown-label-color: $ci-2;\n$topbar-dropdown-link-bg-hover: $ci-6;\n\n$topbar-link-bg-active: $ci-6; // Active Navigation Link\n$topbar-link-bg-hover: $ci-6;\n$topbar-link-bg-active-hover: $ci-2;\n\n\n$topbar-dropdown-bg: $ci-6; // Background Mobile Navigation\n$topbar-dropdown-link-color: #000;\n$topbar-dropdown-link-bg: $ci-2;\n\n$topbar-menu-link-color-toggled: $ci-1;\n$topbar-menu-icon-color-toggled: $ci-1;\n$topbar-menu-link-color: #000;\n$topbar-menu-icon-color: #000;\n$topbar-menu-link-color-toggled: $ci-6;\n$topbar-menu-icon-color-toggled: $ci-6;\n\n\n\n/* Footer\n------------------------------------------------------------------- */\n\n$footer-bg : $grey-8;\n$footer-color : #fff;\n$footer-link-color : $ci-6;\n\n\n$subfooter-bg : $grey-13;\n$subfooter-color : $grey-8;\n$subfooter-link-color: $grey-8;\n\n\n\n/* Code\n------------------------------------------------------------------- */\n\n$code-background-color: scale-color($secondary-color, $lightness: 70%);\n\n$highlight-background: #ffffff;\n$highlight-comment: #999988;\n$highlight-error: #a61717;\n$highlight-comment-special: #999999;\n$highlight-deleted: #000000;\n$highlight-error-2: #aa0000;\n$highlight-literal-string: #d14;\n$highlight-literal-number: #009999;\n$highlight-name-attribut: #008080;\n$highlight-error-background: #e3d2d2;\n$highlight-generic-deleted: #ffdddd;\n$highlight-generic-deleted-specific: #ffaaaa;\n$highlight-generic-inserted: #ddffdd;\n$highlight-generic-inserted-specific: #aaffaa;\n$highlight-generic-output: #888888;\n$highlight-generic-prompt: #555555;\n$highlight-subheading: #aaaaaa;\n$highlight-keyword-type: #445588;\n$highlight-name-builtin: #0086B3;\n$highlight-name-class: #445588;\n$highlight-name-entity: #800080;\n$highlight-name-exception: #990000;\n$highlight-name-function: #990000;\n$highlight-name-namespace: #555555;\n$highlight-name-tag: #000080;\n$highlight-text-whitespace: #bbbbbb;\n$highlight-literal-string-regex: #009926;\n$highlight-literal-string-symbol: #990073;\n"],"file":"rss.css"} \ No newline at end of file diff --git a/assets/css/styles_feeling_responsive.css.map b/assets/css/styles_feeling_responsive.css.map index 14ee78c95a..294fc47365 100644 --- a/assets/css/styles_feeling_responsive.css.map +++ b/assets/css/styles_feeling_responsive.css.map @@ -1 +1 @@ -{"version":3,"sourceRoot":"","sources":["../../../../../../../../../tmp/jekyll-remote-theme-20241010-3005-owiwgx/_sass/_02_settings_typography.scss","../../../../../../../../../tmp/jekyll-remote-theme-20241010-3005-owiwgx/_sass/_03_settings_mixins_media_queries.scss","../../_sass/_01_settings_colors.scss","../../../../../../../../../tmp/jekyll-remote-theme-20241010-3005-owiwgx/_sass/_05_normalize.scss","../../../../../../../../../tmp/jekyll-remote-theme-20241010-3005-owiwgx/_sass/foundation-components/_grid.scss","../../../../../../../../../tmp/jekyll-remote-theme-20241010-3005-owiwgx/_sass/foundation-components/_global.scss","../../../../../../../../../tmp/jekyll-remote-theme-20241010-3005-owiwgx/_sass/foundation-components/_buttons.scss","../../../../../../../../../tmp/jekyll-remote-theme-20241010-3005-owiwgx/_sass/_04_settings_global.scss","../../../../../../../../../tmp/jekyll-remote-theme-20241010-3005-owiwgx/_sass/foundation-components/_forms.scss","../../../../../../../../../tmp/jekyll-remote-theme-20241010-3005-owiwgx/_sass/foundation-components/_top-bar.scss","../../../../../../../../../tmp/jekyll-remote-theme-20241010-3005-owiwgx/_sass/foundation-components/_accordion.scss","../../../../../../../../../tmp/jekyll-remote-theme-20241010-3005-owiwgx/_sass/foundation-components/_alert-boxes.scss","../../../../../../../../../tmp/jekyll-remote-theme-20241010-3005-owiwgx/_sass/foundation-components/_breadcrumbs.scss","../../../../../../../../../tmp/jekyll-remote-theme-20241010-3005-owiwgx/_sass/foundation-components/_block-grid.scss","../../../../../../../../../tmp/jekyll-remote-theme-20241010-3005-owiwgx/_sass/foundation-components/_button-groups.scss","../../../../../../../../../tmp/jekyll-remote-theme-20241010-3005-owiwgx/_sass/foundation-components/_clearing.scss","../../../../../../../../../tmp/jekyll-remote-theme-20241010-3005-owiwgx/_sass/foundation-components/_dropdown.scss","../../../../../../../../../tmp/jekyll-remote-theme-20241010-3005-owiwgx/_sass/foundation-components/_dropdown-buttons.scss","../../../../../../../../../tmp/jekyll-remote-theme-20241010-3005-owiwgx/_sass/foundation-components/_flex-video.scss","../../../../../../../../../tmp/jekyll-remote-theme-20241010-3005-owiwgx/_sass/foundation-components/_inline-lists.scss","../../../../../../../../../tmp/jekyll-remote-theme-20241010-3005-owiwgx/_sass/foundation-components/_keystrokes.scss","../../../../../../../../../tmp/jekyll-remote-theme-20241010-3005-owiwgx/_sass/foundation-components/_panels.scss","../../../../../../../../../tmp/jekyll-remote-theme-20241010-3005-owiwgx/_sass/foundation-components/_reveal.scss","../../../../../../../../../tmp/jekyll-remote-theme-20241010-3005-owiwgx/_sass/foundation-components/_side-nav.scss","../../../../../../../../../tmp/jekyll-remote-theme-20241010-3005-owiwgx/_sass/foundation-components/_sub-nav.scss","../../../../../../../../../tmp/jekyll-remote-theme-20241010-3005-owiwgx/_sass/foundation-components/_tables.scss","../../../../../../../../../tmp/jekyll-remote-theme-20241010-3005-owiwgx/_sass/foundation-components/_thumbs.scss","../../../../../../../../../tmp/jekyll-remote-theme-20241010-3005-owiwgx/_sass/foundation-components/_type.scss","../../../../../../../../../tmp/jekyll-remote-theme-20241010-3005-owiwgx/_sass/foundation-components/_visibility.scss","../../../../../../../../../tmp/jekyll-remote-theme-20241010-3005-owiwgx/_sass/_06_typography.scss","../../../../../../../../../tmp/jekyll-remote-theme-20241010-3005-owiwgx/_sass/_07_layout.scss","../../../../../../../../../tmp/jekyll-remote-theme-20241010-3005-owiwgx/_sass/_09_elements.scss","../../../../../../../../../tmp/jekyll-remote-theme-20241010-3005-owiwgx/_sass/_11_syntax-highlighting.scss"],"names":[],"mappings":"CAuDA,wBAPoB,QAQpB,wBAPoB,QAQpB,wBAPoB,QAQpB,wBAPoB,OAQpB,wBAPoB,QC8RlB,wBACE,sBAGF,yBACE,4BACA,UAGF,8BACE,kDACA,UAGF,0BACE,qDACA,eAGF,+BACE,0EACA,eAGF,yBACE,qDACA,eAGF,8BACE,0EACA,eAGF,0BACE,qDACA,eAGF,+BACE,2EACA,eAGF,2BACE,sDACA,gBAGF,yCACE,kBAMA,UAEE,YAIF,mBA3TF,mBA8TwB,WA7TxB,gBA6TwB,WA5TxB,WA4TwB,WAGtB,UAEE,UDtYW,KC0Yb,KACE,WCxYgB,QDyYhB,MC3YgB,KD4YhB,UACA,SACA,YDzYmB,mDC0YnB,YDrYa,OCsYb,WDrYY,OCsYZ,YD/Ya,ICgZb,kBACA,OAlGc,KAqGhB,QACE,OAnGiB,QAuGnB,IACE,eACA,YAGF,IACE,+BAMA,0GAGE,0BAKJ,MACE,sBAGF,OACE,uBA/QJ,iCAEE,YACA,cAGF,gBACE,WAgRA,MACE,wBACA,kBAIF,WACE,kBAOF,aACE,mCACA,kCAIF,IACE,qBACA,sBAQF,SACE,YACA,gBAIF,OACE,WEnfN,4DAQA,KACE,uBACA,0BACA,8BAOF,KACE,SAaF,2FAaE,cAQF,4BAIE,qBACA,wBAQF,sBACE,aACA,SAQF,kBAEE,aAUF,EACE,+BAOF,iBAEE,UAUF,YACE,yBAOF,SAEE,iBAOF,IACE,kBAQF,GACE,cACA,eAOF,KACE,gBACA,WAOF,MACE,cAOF,QAEE,cACA,cACA,kBACA,wBAGF,IACE,WAGF,IACE,eAUF,IACE,SAOF,eACE,gBAUF,OACE,gBAOF,GACE,4BACA,uBACA,SAOF,IACE,cAOF,kBAIE,gCACA,cAkBF,sCAKE,cACA,aACA,SAOF,OACE,iBAUF,cAEE,oBAWF,oEAIE,0BACA,eAOF,sCAEE,eAOF,iDAEE,SACA,UAQF,MACE,mBAWF,uCAEE,sBACA,UASF,4FAEE,YASF,mBACE,6BACA,4BACA,+BACA,uBASF,+FAEE,wBAOF,SACE,wBACA,aACA,2BAQF,OACE,SACA,UAOF,SACE,cAQF,SACE,iBAUF,MACE,yBACA,iBAGF,MAEE,UChKE,KApMA,WACA,iBACA,kBACA,aACA,gBACA,UA/DQ,QC6KV,uBAEE,YACA,cAGF,WACE,WD+EI,6CAjKJ,eACA,gBAqKI,mBACE,cACA,eAIJ,UA5OF,WACA,uBACA,wBACA,aACA,gBACA,eCsIF,iCAEE,YACA,cAGF,gBACE,WD6FI,mBA9NJ,WACA,SACA,eCwHF,mDAEE,YACA,cAGF,yBACE,WDmGA,iBA9KA,sBACA,uBAKA,WAqBE,MCwJY,gDDCZ,YAGF,oCACE,MCLY,KDQd,mBAhIA,cAvEA,kBA4BA,QACA,WA8CA,cA3EA,kBAiCA,SACA,UAqCA,cAvEA,kBA4BA,mBACA,WA8CA,cA3EA,kBAiCA,oBACA,UAqCA,cAvEA,kBA4BA,oBACA,WA8CA,cA3EA,kBAiCA,qBACA,UAqCA,cAvEA,kBA4BA,SACA,WA8CA,cA3EA,kBAiCA,UACA,UAqCA,cAvEA,kBA4BA,oBACA,WA8CA,cA3EA,kBAiCA,qBACA,UAqCA,cAvEA,kBA4BA,oBACA,WA8CA,cA3EA,kBAiCA,qBACA,UAqCA,cAvEA,kBA4BA,SACA,WA8CA,cA3EA,kBAiCA,UACA,UAqCA,cAvEA,kBA4BA,oBACA,WA8CA,cA3EA,kBAiCA,qBACA,UAqCA,cAvEA,kBA4BA,oBACA,WA8CA,cA3EA,kBAiCA,qBACA,UAqCA,cAvEA,kBA4BA,SACA,WA8CA,cA3EA,kBAiCA,UACA,UAqCA,eAvEA,kBA4BA,oBACA,WA8CA,eA3EA,kBAiCA,qBACA,UAqCA,eAvEA,kBA4BA,oBACA,WA8CA,eA3EA,kBAiCA,qBACA,UA8CF,iBAhFE,kBAYA,sBACA,uBA0BE,MCwJY,KDxGd,SArEA,oBAqEA,SArEA,qBAqEA,SArEA,UAqEA,SArEA,qBAqEA,SArEA,qBAqEA,SArEA,UAqEA,SArEA,qBAqEA,SArEA,qBAqEA,SArEA,UAqEA,UArEA,qBAqEA,UArEA,qBAqEA,UArEA,WA2EA,gBAjCA,0BAiCA,gBAjCA,qCAiCA,gBAjCA,sCAiCA,gBAjCA,2BAiCA,gBAjCA,sCAiCA,gBAjCA,sCAiCA,gBAjCA,2BAiCA,gBAjCA,sCAiCA,gBAjCA,sCAiCA,gBAjCA,2BAiCA,iBAjCA,sCAiCA,iBAjCA,sCAsCF,mBACE,cACA,eACA,UACA,WACA,MCwFc,KDrFhB,+CArDE,iBACA,kBACA,WAwDF,mDAEE,cACA,eACA,MC4Ec,KDxEhB,qEAEE,WAIF,yEAEE,MCgEc,KD7DhB,qEAEE,MC4DmB,MDtDjB,yDArIF,eACA,gBAyIE,yBACE,cACA,eAMF,6DA3IF,sBACA,uBA0BE,MCwJY,MDYd,4CApIA,eAvEA,kBA4BA,QACA,WA8CA,eA3EA,kBAiCA,SACA,UAqCA,eAvEA,kBA4BA,mBACA,WA8CA,eA3EA,kBAiCA,oBACA,UAqCA,eAvEA,kBA4BA,oBACA,WA8CA,eA3EA,kBAiCA,qBACA,UAqCA,eAvEA,kBA4BA,SACA,WA8CA,eA3EA,kBAiCA,UACA,UAqCA,eAvEA,kBA4BA,oBACA,WA8CA,eA3EA,kBAiCA,qBACA,UAqCA,eAvEA,kBA4BA,oBACA,WA8CA,eA3EA,kBAiCA,qBACA,UAqCA,eAvEA,kBA4BA,SACA,WA8CA,eA3EA,kBAiCA,UACA,UAqCA,eAvEA,kBA4BA,oBACA,WA8CA,eA3EA,kBAiCA,qBACA,UAqCA,eAvEA,kBA4BA,oBACA,WA8CA,eA3EA,kBAiCA,qBACA,UAqCA,eAvEA,kBA4BA,SACA,WA8CA,eA3EA,kBAiCA,UACA,UAqCA,gBAvEA,kBA4BA,oBACA,WA8CA,gBA3EA,kBAiCA,qBACA,UAqCA,gBAvEA,kBA4BA,oBACA,WA8CA,gBA3EA,kBAiCA,qBACA,UA8CF,iBAhFE,kBAYA,sBACA,uBA0BE,MCwJY,KDxGd,UArEA,oBAqEA,UArEA,qBAqEA,UArEA,UAqEA,UArEA,qBAqEA,UArEA,qBAqEA,UArEA,UAqEA,UArEA,qBAqEA,UArEA,qBAqEA,UArEA,UAqEA,WArEA,qBAqEA,WArEA,qBAqEA,WArEA,WA2EA,iBAjCA,0BAiCA,iBAjCA,qCAiCA,iBAjCA,sCAiCA,iBAjCA,2BAiCA,iBAjCA,sCAiCA,iBAjCA,sCAiCA,iBAjCA,2BAiCA,iBAjCA,sCAiCA,iBAjCA,sCAiCA,iBAjCA,2BAiCA,kBAjCA,sCAiCA,kBAjCA,sCAsCF,oBACE,cACA,eACA,UACA,WACA,MCwFc,KDrFhB,iDArDE,iBACA,kBACA,WAwDF,qDAEE,cACA,eACA,MC4Ec,KDxEhB,uEAEE,WAIF,2EAEE,MCgEc,KD7DhB,uEAEE,MC4DmB,MDtDjB,2DArIF,eACA,gBAyIE,0BACE,cACA,eAMF,+DA3IF,sBACA,uBA0BE,MCwJY,KDiBV,QAhNJ,kBA4BA,QACA,WAuLI,QApNJ,kBAiCA,SACA,UA8KI,QAhNJ,kBA4BA,mBACA,WAuLI,QApNJ,kBAiCA,oBACA,UA8KI,QAhNJ,kBA4BA,oBACA,WAuLI,QApNJ,kBAiCA,qBACA,UA8KI,QAhNJ,kBA4BA,SACA,WAuLI,QApNJ,kBAiCA,UACA,UA8KI,QAhNJ,kBA4BA,oBACA,WAuLI,QApNJ,kBAiCA,qBACA,UA8KI,QAhNJ,kBA4BA,oBACA,WAuLI,QApNJ,kBAiCA,qBACA,UA8KI,QAhNJ,kBA4BA,SACA,WAuLI,QApNJ,kBAiCA,UACA,UA8KI,QAhNJ,kBA4BA,oBACA,WAuLI,QApNJ,kBAiCA,qBACA,UA8KI,QAhNJ,kBA4BA,oBACA,WAuLI,QApNJ,kBAiCA,qBACA,UA8KI,QAhNJ,kBA4BA,SACA,WAuLI,QApNJ,kBAiCA,UACA,UA8KI,SAhNJ,kBA4BA,oBACA,WAuLI,SApNJ,kBAiCA,qBACA,UA8KI,SAhNJ,kBA4BA,oBACA,WAuLI,SApNJ,kBAiCA,qBACA,WAwLA,4CAnJA,cAvEA,kBA4BA,QACA,WA8CA,cA3EA,kBAiCA,SACA,UAqCA,cAvEA,kBA4BA,mBACA,WA8CA,cA3EA,kBAiCA,oBACA,UAqCA,cAvEA,kBA4BA,oBACA,WA8CA,cA3EA,kBAiCA,qBACA,UAqCA,cAvEA,kBA4BA,SACA,WA8CA,cA3EA,kBAiCA,UACA,UAqCA,cAvEA,kBA4BA,oBACA,WA8CA,cA3EA,kBAiCA,qBACA,UAqCA,cAvEA,kBA4BA,oBACA,WA8CA,cA3EA,kBAiCA,qBACA,UAqCA,cAvEA,kBA4BA,SACA,WA8CA,cA3EA,kBAiCA,UACA,UAqCA,cAvEA,kBA4BA,oBACA,WA8CA,cA3EA,kBAiCA,qBACA,UAqCA,cAvEA,kBA4BA,oBACA,WA8CA,cA3EA,kBAiCA,qBACA,UAqCA,cAvEA,kBA4BA,SACA,WA8CA,cA3EA,kBAiCA,UACA,UAqCA,eAvEA,kBA4BA,oBACA,WA8CA,eA3EA,kBAiCA,qBACA,UAqCA,eAvEA,kBA4BA,oBACA,WA8CA,eA3EA,kBAiCA,qBACA,UA8CF,iBAhFE,kBAYA,sBACA,uBA0BE,MCwJY,KDxGd,SArEA,oBAqEA,SArEA,qBAqEA,SArEA,UAqEA,SArEA,qBAqEA,SArEA,qBAqEA,SArEA,UAqEA,SArEA,qBAqEA,SArEA,qBAqEA,SArEA,UAqEA,UArEA,qBAqEA,UArEA,qBAqEA,UArEA,WA2EA,gBAjCA,0BAiCA,gBAjCA,qCAiCA,gBAjCA,sCAiCA,gBAjCA,2BAiCA,gBAjCA,sCAiCA,gBAjCA,sCAiCA,gBAjCA,2BAiCA,gBAjCA,sCAiCA,gBAjCA,sCAiCA,gBAjCA,2BAiCA,iBAjCA,sCAiCA,iBAjCA,sCAsCF,mBACE,cACA,eACA,UACA,WACA,MCwFc,KDrFhB,+CArDE,iBACA,kBACA,WAwDF,mDAEE,cACA,eACA,MC4Ec,KDxEhB,qEAEE,WAIF,yEAEE,MCgEc,KD7DhB,qEAEE,MC4DmB,MDtDjB,yDArIF,eACA,gBAyIE,yBACE,cACA,eAMF,6DA3IF,sBACA,uBA0BE,MCwJY,KD+BV,QA9NJ,kBA4BA,QACA,WAqMI,QAlOJ,kBAiCA,SACA,UA4LI,QA9NJ,kBA4BA,mBACA,WAqMI,QAlOJ,kBAiCA,oBACA,UA4LI,QA9NJ,kBA4BA,oBACA,WAqMI,QAlOJ,kBAiCA,qBACA,UA4LI,QA9NJ,kBA4BA,SACA,WAqMI,QAlOJ,kBAiCA,UACA,UA4LI,QA9NJ,kBA4BA,oBACA,WAqMI,QAlOJ,kBAiCA,qBACA,UA4LI,QA9NJ,kBA4BA,oBACA,WAqMI,QAlOJ,kBAiCA,qBACA,UA4LI,QA9NJ,kBA4BA,SACA,WAqMI,QAlOJ,kBAiCA,UACA,UA4LI,QA9NJ,kBA4BA,oBACA,WAqMI,QAlOJ,kBAiCA,qBACA,UA4LI,QA9NJ,kBA4BA,oBACA,WAqMI,QAlOJ,kBAiCA,qBACA,UA4LI,QA9NJ,kBA4BA,SACA,WAqMI,QAlOJ,kBAiCA,UACA,UA4LI,SA9NJ,kBA4BA,oBACA,WAqMI,SAlOJ,kBAiCA,qBACA,UA4LI,SA9NJ,kBA4BA,oBACA,WAqMI,SAlOJ,kBAiCA,qBACA,WE4EA,eAhJA,aAlCkB,MAmClB,aApCkB,EAqClB,OL8PmB,QK7PnB,YNlDqB,mDMmDrB,YNpCiB,OMqCjB,mBACA,mBACA,kBACA,qBACA,WAlDgB,OAmDhB,wBACA,gBAEa,QAlEA,aAiFb,YArFS,KAsFT,mBACA,yBACA,kBAGmC,UA9ErB,KAmId,iBJjIkB,QIkIlB,aARiB,QAajB,WDrFF,2CCiFE,sDACU,iBAdG,QAmBb,sDAEE,WAsDA,mCAhEF,iBJxHkB,QIyHlB,aAtHwB,QA2HxB,WAJA,8FACU,iBAxHc,QA6HxB,8FAEE,WAuDA,+BAjEF,iBJxHkB,QIyHlB,aApHsB,QAyHtB,WAJA,sFACU,iBAtHY,QA2HtB,sFAEE,WAwDA,2BAlEF,iBJ7HkB,QI8HlB,aAlHoB,QAuHpB,WAJA,8EACU,iBApHU,QAyHpB,8EAEE,WAyDA,+BAnEF,iBJ9HkB,QI+HlB,aAhHsB,QAqHtB,WAJA,sFACU,iBAlHY,QAuHtB,sFAEE,WA0DA,yBApEF,iBJjIkB,QIkIlB,aA9GmB,QAmHnB,WAJA,0EACU,iBAhHS,QAqHnB,0EAEE,WA4DA,2BAjIF,YApFS,SAqFT,sBACA,yBACA,qBAMmC,UAhFrB,QAyMZ,2BAlIF,YAtFS,QAuFT,sBACA,wBACA,qBAKmC,UAjFrB,SA4MZ,yBAnIF,YAvFS,QAwFT,sBACA,wBACA,qBAImC,UAjFrB,SA8MZ,6BA9GF,gBACA,eACA,WA8GE,wEACA,6EAEA,6BD1MF,cEqHY,IDsFV,2BD3MF,cAiRa,OCpEX,oEAjFF,iBJjIkB,QIkIlB,aAxHc,QA6Hd,WAUA,OLwJmB,QKvJnB,QAtHsB,GAuHtB,gBAhBA,wLACU,iBA1HI,QA+Hd,wLAEE,WASF,wLACU,iBJrJQ,QImNd,4GAlFJ,iBJxHkB,QIyHlB,aAtHwB,QA2HxB,WAUA,OLwJmB,QKvJnB,QAtHsB,GAuHtB,gBAhBA,wQACU,iBAxHc,QA6HxB,wQAEE,WASF,wQACU,iBJ5IQ,QI2Md,oGAnFJ,iBJxHkB,QIyHlB,aApHsB,QAyHtB,WAUA,OLwJmB,QKvJnB,QAtHsB,GAuHtB,gBAhBA,wPACU,iBAtHY,QA2HtB,wPAEE,WASF,wPACU,iBJ5IQ,QI4Md,4FApFJ,iBJ7HkB,QI8HlB,aAlHoB,QAuHpB,WAUA,OLwJmB,QKvJnB,QAtHsB,GAuHtB,gBAhBA,wOACU,iBApHU,QAyHpB,wOAEE,WASF,wOACU,iBJjJQ,QIkNd,oGArFJ,iBJ9HkB,QI+HlB,aAhHsB,QAqHtB,WAUA,OLwJmB,QKvJnB,QAtHsB,GAuHtB,gBAhBA,wPACU,iBAlHY,QAuHtB,wPAEE,WASF,wPACU,iBJlJQ,QIoNd,wFAtFJ,iBJjIkB,QIkIlB,aA9GmB,QAmHnB,WAUA,OLwJmB,QKvJnB,QAtHsB,GAuHtB,gBAhBA,gOACU,iBAhHS,QAqHnB,gOAEE,WASF,gOACU,iBJrJQ,QI4NlB,4CAEA,4CACE,eAxKW,QAyKmC,cEyKhD,KACE,gBAjVJ,eACE,iBAEA,+CAEE,gBAIF,wBACE,SAEA,iEAEE,UAGF,8BH3DF,mCG4D8C,EH3D9C,gCG2D8C,EH1D9C,2BG0D8C,EHzD9C,wBGyD8C,EAMhD,oGAIE,mBA8TA,MA/PA,UAhKmB,QAiKnB,MA9JoB,QA+JpB,OAnKiB,QAoKjB,cACA,YR9IiB,OQ+IjB,YAnKqB,IAoKrB,cAjKuB,EA6ZrB,YAvPF,sBACA,iBA0PE,aAtPF,kBACA,mBA0PE,YACE,eAxaqB,WAyarB,cAKJ,iBA3PF,cACA,kBACA,UACA,kBACA,WACA,cACA,iBACA,aAzJyB,MA0JzB,aA3JyB,IA4JzB,SA1JsB,OA2JtB,UAjMqB,QAkMrB,iBACA,sBAqPE,gBAjLA,eACA,gBACA,cACA,iBACA,kBACA,YAiLA,eA3NA,eACA,gBACA,cACA,iBACA,kBACA,YA2NA,sBHjbA,cGkbkB,EHxalB,kCE2GY,IF1GZ,+BE0GY,IFzGZ,0BEyGY,IFxGZ,uBEwGY,ICiUZ,uBHtbA,cGubkB,EH7alB,mCE2GY,IF1GZ,gCE0GY,IFzGZ,2BEyGY,IFxGZ,wBEwGY,ICsUZ,qBH3bA,cG4bkB,EHlblB,kCAuQa,OAtQb,+BAsQa,OArQb,0BAqQa,OApQb,uBAoQa,OG+Kb,sBHhcA,cGickB,EHvblB,mCAuQa,OAtQb,gCAsQa,OArQb,2BAqQa,OApQb,wBAoQa,OGqLb,yBAvQA,WA9Kc,QA+Kd,kBAIE,MH6BC,KGpBH,aA3LwB,KAybxB,2BAvOA,WAnNc,QAoNd,iBAIE,MHRC,KGiBH,aAhOwB,KA+bxB,8QACE,wBACA,gBA3XJ,iBHyHO,KGxHP,YApGkB,QAuGhB,aAhGiB,MAiGjB,aAhGiB,IAiGjB,aApGiB,KAuGnB,WAhGiB,+BAiGjB,MA5GiB,gBA6GjB,cACA,UA7GgB,QA8GhB,kBACA,cACA,iBACA,WHpDA,mBGqDoB,WHpDpB,gBGoDoB,WHnDpB,WGmDoB,WHgEpB,yDAEA,wWACE,wBACA,aGlLuB,KAqHzB,wWACE,WAxHmB,QAyHnB,aAvHuB,KAwHvB,aAIF,qZACE,iBHgGS,KG/FT,OP2KmB,QOvKrB,m3CAGE,iBHwFS,KGvFT,OPmKmB,QOsLjB,uXH1dF,cEqHY,IC8WN,wIHneN,cGsewB,EH5dxB,mCE2GY,IF1GZ,gCE0GY,IFzGZ,2BEyGY,IFxGZ,wBEwGY,ICqXN,8CH1eN,cG2ewB,EHjexB,kCE2GY,IF1GZ,+BE0GY,IFzGZ,0BEyGY,IFxGZ,uBEwGY,IC6XN,2IHlfN,cGqfwB,EH3exB,kCE2GY,IF1GZ,+BE0GY,IFzGZ,0BEyGY,IFxGZ,uBEwGY,ICoYN,gDHzfN,cG0fwB,EHhfxB,mCE2GY,IF1GZ,gCE0GY,IFzGZ,2BEyGY,IFxGZ,wBEwGY,IC4YN,qIHjgBN,cGogBwB,EH1fxB,mCAuQa,OAtQb,gCAsQa,OArQb,2BAqQa,OApQb,wBAoQa,OGuPP,6CHxgBN,cGygBwB,EH/fxB,kCAuQa,OAtQb,+BAsQa,OArQb,0BAqQa,OApQb,uBAoQa,OG+PP,wIHhhBN,cGmhBwB,EHzgBxB,kCAuQa,OAtQb,+BAsQa,OArQb,0BAqQa,OApQb,uBAoQa,OGsQP,+CHvhBN,cGwhBwB,EH9gBxB,mCAuQa,OAtQb,gCAsQa,OArQb,2BAqQa,OApQb,wBAoQa,OG8Qb,mBACE,wBACA,gBAIF,eACE,YAIF,SACE,eAIF,OA5OF,mCACA,gBACA,iBHnHO,QG4HP,qVAGA,gCAEA,4BAGE,aA1ViB,MA2VjB,aA1ViB,IA2VjB,aA9ViB,KAiWnB,cACA,UArWgB,QAsWhB,YRvWuB,mDQwWvB,MAxWiB,gBAyWjB,mBH/VE,cGgWc,EAiNZ,iBAzOJ,mBACE,aAyBF,cHlWE,cEqHY,ICiPd,aACE,iBA3ToB,QA4TpB,aA7WuB,KAiXzB,gBACE,iBHrJS,KGsJT,OP1EmB,QOiRnB,+DAIE,kBAGF,mDAEE,qBACA,kBACA,aArlBS,KAslBT,gBACA,wBAIF,iBACE,WAcF,SAnVF,sBACA,QA3PiB,QA4PjB,OA3PgB,WA8PhB,gBACE,YRlQe,KQmQf,WHxDK,KGyDL,QA5Pa,WA6Pb,SACA,uBAiVE,gHAjTJ,cACA,QAhR4B,0BAiR5B,WAhRwB,KAiRxB,cApUa,KAqUb,UAjR8B,OAkR9B,YR5SmB,OQ6SnB,WAjR+B,OAqR/B,WNvToB,QM0TlB,MHxGK,KGmZH,iDAEE,aAIJ,uBA9TF,cACA,QAhR4B,0BAiR5B,WAhRwB,KAiRxB,cApUa,KAqUb,UAjR8B,OAkR9B,YR5SmB,OQ6SnB,WAjR+B,OAqR/B,WNvToB,QM0TlB,MHxGK,KGgaH,2CAGE,gBAGF,qDAEE,cA9oBO,KAipBT,gCAxVJ,MNrSoB,QMkoBhB,mBArVJ,cACA,QAhR4B,0BAiR5B,WAhRwB,KAiRxB,cApUa,KAqUb,UAjR8B,OAkR9B,YR5SmB,OQ6SnB,WAjR+B,OAqR/B,WNvToB,QM0TlB,MHxGK,KGqbD,mBACE,cACA,yBACA,UACA,eAvpBmB,WAwpBnB,kBACA,cACA,SACA,eAIJ,0BACE,cAIJ,wCAGE,gBAGF,YAzXF,MNrSoB,QO8ElB,0BACE,sDACA,MFuyCc,SEnyChB,iBACE,WACA,WPlGgB,QOoGhB,0BACE,cAtGe,EA2GnB,OACE,WACA,OACA,eACA,MACA,WAEA,8BACE,gBACA,YACA,WACA,gBAEA,0CACE,eACA,WACA,WAIF,+CACE,WACA,WF2sCM,SEtsCZ,SACE,gBACA,OFosCU,SEnsCV,YFmsCU,SElsCV,kBACA,WP1IgB,QO2IhB,cA5IiB,EA+IjB,YACE,gBACA,gBAGF,cACE,eAGF,6BAEE,gBAGF,eACE,OAlGc,QAmGd,mBACA,sBACA,UAzIkB,OA4IpB,iCAEE,qBACA,wBACA,gBACA,UAjJkB,OAsJlB,yCAVF,iCAWI,kBACA,UAKJ,qBACE,kBACA,SAGF,eACE,OFipCQ,SEhpCR,SACA,UFzIS,KE2IT,6GAME,YFuoCM,SEtoCN,UF2oCe,UE1oCf,SAEA,yHACE,YTtLO,KSuLP,MPxIU,KOyIV,UACA,cACA,0BAMN,wBACE,kBACA,QACA,MAEA,0BACE,MPvJY,KOwJZ,eF8pCmB,UE7pCnB,UA9KmB,SA+KnB,YTzMS,KS0MT,kBACA,cACA,0BACA,OF2mCM,SE1mCN,YF0mCM,SEtmCR,kCACE,QACA,iBAEA,oCAKE,YACA,iBACA,4CACA,MP5Ja,KO6Jb,kBJ9HV,gDACE,WACA,kBACA,cACA,SAsBE,QACA,gBACA,MI5HgB,gBJ+HlB,6DAGA,MI0G6B,KJvG/B,qDACE,WACE,4CI4GA,kBACE,YACA,yBAEA,8BACE,WP5QY,QOgRZ,mCACE,MPhQU,QOkQV,+CAGE,sEAUV,iBACE,OACA,kBACA,WJzOJ,+BI4OI,oBACE,UACA,WACA,YACA,cACA,UFxPS,KEyPT,SAGF,4DAEE,WFulCoB,kBEtlCpB,WACA,WACA,WAGF,uBACE,WPvSc,QOySd,yBACE,cACA,WACA,MP3PY,KO4PZ,sBACA,aA3SY,gBA4SZ,YT7Te,mDS8Tf,UFgiCc,SE/hCd,YThTW,OSiTX,eFsiCmB,UEpiCnB,gCACE,UF2hCY,SE1hCZ,cAnTU,gBAoTV,aApTU,gBHqHlB,iBJjIkB,QIkIlB,aARiB,QAajB,WAJA,4EACU,iBAdG,QAmBb,4EAEE,WGyLI,0CHnMN,iBJxHkB,QIyHlB,aARiB,QAajB,WAJA,gGACU,iBAdG,QAmBb,gGAEE,WG6LI,wCHvMN,iBJxHkB,QIyHlB,aARiB,QAajB,WAJA,4FACU,iBAdG,QAmBb,4FAEE,WGiMI,sCH3MN,iBJ7HkB,QI8HlB,aARiB,QAajB,WAJA,wFACU,iBAdG,QAmBb,wFAEE,WGqMI,wCH/MN,iBJ9HkB,QI+HlB,aARiB,QAajB,WAJA,4FACU,iBAdG,QAmBb,4FAEE,WG0ME,8BACE,UFmgCc,SElgCd,cA3UY,gBA4UZ,aA5UY,gBHqHlB,iBJjIkB,QIkIlB,aARiB,QAajB,WAJA,wEACU,iBAdG,QAmBb,wEAEE,WGgNI,wCH1NN,iBJxHkB,QIyHlB,aARiB,QAajB,WAJA,4FACU,iBAdG,QAmBb,4FAEE,WGoNI,sCH9NN,iBJxHkB,QIyHlB,aARiB,QAajB,WAJA,wFACU,iBAdG,QAmBb,wFAEE,WGwNI,oCHlON,iBJ7HkB,QI8HlB,aARiB,QAajB,WAJA,oFACU,iBAdG,QAmBb,oFAEE,WG4NI,sCHtON,iBJ9HkB,QI+HlB,aARiB,QAajB,WAJA,wFACU,iBAdG,QAmBb,wFAEE,WGkOE,8CACE,iBJ1IE,KI6IA,WPxWU,QO2WZ,MPzTgB,KO6TlB,gCACE,WPhXY,QOiXZ,MP9TiB,KOgUjB,sCACE,WPrXU,QOsXV,MPjUqB,KOuU3B,2BACE,QAzXc,gBA6XhB,+BACE,kBAGE,uCJxUR,WACA,cACA,QACA,SACA,iBAaE,yEACA,wBI2TQ,aAtYU,gBAuYV,kBACA,kBACA,QACA,QAIJ,qCACE,gBAEA,+CAvVR,cJyIA,2BACA,YACA,WACA,iBACA,UI3IA,6BAuVU,WAGF,6CACE,aAMN,2BACE,UACA,kBACA,UACA,MACA,WA7WN,cJmIA,6BACA,WACA,UACA,gBACA,8BIyOM,8BACE,WACA,YAEA,gCACE,YT5aS,OS6aT,4BAEA,4CACE,YThbO,OSobX,iFAGE,gBACA,aACA,UAtbY,SAwbZ,qFACE,MP5YQ,KO8YR,cAEA,iGACE,gBAKN,uCACE,4BAGF,2EAEE,SAIJ,iCACE,gCACA,gBACA,eA/b6B,UAgc7B,MPtdY,QOudZ,YTpdS,KSqdT,UAhcwB,QAqc9B,cACE,cAKF,6CACE,SACE,WPrfc,QOufd,iBJnVN,+BAEE,YACA,cAGF,eACE,WI8UI,wBACE,aAGF,qBACE,MJ3OQ,KI8OV,oBACE,WAGF,gDAGE,kBACA,kBACA,OA/cY,QAgdZ,aAGF,kBACE,WP/gBY,QOmhBhB,0BACE,UL7hBI,QK8hBJ,cACA,cAvhBe,EA0hBjB,iBJ/dJ,oBIieM,kBAEA,oBACE,WACA,uBACA,eAEA,uBACE,MJhRM,KIkRN,qCACE,aAOF,yCACE,iBJlUF,KIqUI,WPhiBM,QOmiBR,MPjfY,KOsfd,kDACE,0BACA,YFgxBE,SE/wBF,WP5jBQ,QO8jBR,wDACE,iBJnVJ,KIsVM,WPjjBI,QOwjBV,yDACE,0BACA,YFgwBE,SE/vBF,MPxgBa,KOygBb,WP5jBQ,QO8jBR,+DACE,WPhkBM,QOikBN,MP5gBiB,KOohBrB,iCACE,yCAEA,uCJ/gBZ,WACA,cACA,QACA,SACA,iBAGE,yEACA,uBIygBY,kBACA,cAKN,qCACE,kBAEA,+CA9hBV,cJmIA,6BACA,WACA,UACA,gBACA,8BI8ZU,wGAhiBV,cJyIA,2BACA,YACA,WACA,iBACA,UI3IA,6BAmiBQ,iDAriBR,cJyIA,2BACA,YACA,WACA,iBACA,UI3IA,6BA0iBc,iEACE,YACA,YACA,SACA,gBACA,UACA,gBAOV,2BACE,OACA,SACA,yBACA,eAGE,gCACE,MP/jBe,KOgkBf,YF2rBE,SE1rBF,mBACA,6BACA,WPnoBQ,QOuoBR,yEACE,MPxkBa,KOykBb,WPzoBM,QO4oBR,+EACE,MP1lBU,KO2lBV,iBJlbJ,KIqbM,WPhpBI,QOqpBV,oCACE,mBACA,WJ1bP,KI8bK,wCACE,UACA,MAKN,kEAEE,mBACA,gBACA,aFgtBqB,kBE/sBrB,WACA,OFkpBM,SEjpBN,QAGF,2BACE,WP9rBY,QO+rBZ,0BACA,OF2oBM,SEtoBN,qCACE,UACA,QAEA,kDACE,WAMJ,oCACE,WACA,OAEA,iDACE,UAYJ,sCACE,iBJtfA,KIyfE,WPptBQ,QOutBV,MPrqBc,KOyqBhB,uCACE,WP5tBU,QO6tBV,MP1qBe,KOgrBf,sDAtqBV,cJyIA,2BACA,YACA,WACA,iBACA,UI3IA,6BAyqBQ,wDA3qBR,cJyIA,2BACA,YACA,WACA,iBACA,UI3IA,8BC+CE,WAEE,gBLmCJ,mCAEE,YACA,cAGF,iBACE,WKxCE,+CAEE,cACA,2BAEA,iEACE,WA/I6B,QAkJ/B,mDACE,WLsFA,QKrFA,MLiGH,KKhGG,QHoKqB,OGnKrB,cACA,YV9Ie,mDU+If,UAtJuB,KAwJvB,+DACE,WA5J0B,QAgK9B,iEACE,aACA,QA5JkB,SA8JlB,+EACE,cACA,WR/JU,QSkGlB,WAjEF,aA3BmB,MA4BnB,aA3BmB,IA4BnB,cACA,YXlBmB,OWmBnB,cA5BoB,QA6BpB,kBACA,uCACA,UJmSgB,SFjRhB,kCMLA,iBT7CoB,QS8CpB,qBAQE,MNgKK,KMzHH,kBAhCJ,UAtDsB,SAuDtB,QApDoB,YAqDpB,cACA,kBACA,IA5DgB,IA6DhB,sBACA,MA7DqB,OA8DrB,MNkKK,KMjKL,QA7DoB,GA8DpB,WA3DuB,QA6DvB,gDAEE,QAjEwB,GAwFtB,kBN5FF,cEqHY,IIrBV,iBNhGF,cAiRa,OM7KX,mBA5DJ,iBTpCoB,QSqCpB,qBAQE,MNgKK,KMzGH,iBAhEJ,iBTzCoB,QS0CpB,qBAQE,MNgKK,KMrGH,qBApEJ,iBTpCoB,QSqCpB,qBAQE,MNgKK,KMjGH,mBAxEJ,iBT1CoB,QS2CpB,qBAQE,MNgKK,KM7FH,gBA5EJ,iBT7CoB,QS8CpB,qBAQE,MNgKK,KMzFH,uBACE,UCtCJ,aA1EF,cACA,QA7Bc,0BA8Bd,gBACA,cACA,gBACA,aA3BmB,MA4BnB,aLwWkB,EKrWlB,iBVIoB,QUHpB,aVGoB,QGtBlB,cE0XW,EKnST,eA7DJ,SACA,MP2OgB,KO1OhB,UApCgB,SAqChB,YArCgB,SAsChB,eAlCqB,UAmCrB,MVpCoB,QUsCpB,8DApCiB,UAsCjB,iBACE,MVzCkB,QU6CpB,uBACE,OX2PmB,QW1PnB,MPuLG,KOtLH,yBACE,OXwPiB,QWvPjB,MPoLC,KOjLH,wHACqB,qBAIvB,2BACE,MPqKQ,KOpKR,mCPoKQ,KOlKR,wIAIE,qBACA,MP6JM,KO5JN,OXqOiB,QWjOrB,sBACE,YACA,MPqJI,KOpJJ,gBACA,kBACA,QAGF,kCACE,YACA,SAkBJ,kDACE,YCVE,qBAhFA,cACA,UAOE,mBRyIJ,uDAEE,YACA,cAGF,2BACE,WQ3IA,wBACE,cACA,YACA,MRgPY,KQ7OV,0BAkEF,mBA5DF,uBACE,WAMA,gBAEA,uCACE,WAGF,yCACE,WAdJ,uBACE,UAMA,gBAEA,uCACE,WAGF,yCACE,WAdJ,uBACE,qBAMA,gBAEA,uCACE,WAGF,yCACE,WAdJ,uBACE,UAMA,gBAEA,uCACE,WAGF,yCACE,WAdJ,uBACE,UAMA,gBAEA,uCACE,WAGF,yCACE,WAdJ,uBACE,qBAMA,gBAEA,uCACE,WAGF,yCACE,WAdJ,uBACE,qBAMA,gBAEA,uCACE,WAGF,yCACE,WAdJ,uBACE,YAMA,gBAEA,uCACE,WAGF,yCACE,WAdJ,uBACE,qBAMA,gBAEA,uCACE,WAGF,yCACE,WAdJ,wBACE,UAMA,gBAEA,wCACE,WAGF,2CACE,WAdJ,wBACE,oBAMA,gBAEA,wCACE,WAGF,2CACE,WAdJ,wBACE,oBAMA,gBAEA,wCACE,WAGF,2CACE,YAkDF,4CAhEF,wBACE,WAMA,gBAEA,wCACE,WAGF,0CACE,WAdJ,wBACE,UAMA,gBAEA,wCACE,WAGF,0CACE,WAdJ,wBACE,qBAMA,gBAEA,wCACE,WAGF,0CACE,WAdJ,wBACE,UAMA,gBAEA,wCACE,WAGF,0CACE,WAdJ,wBACE,UAMA,gBAEA,wCACE,WAGF,0CACE,WAdJ,wBACE,qBAMA,gBAEA,wCACE,WAGF,0CACE,WAdJ,wBACE,qBAMA,gBAEA,wCACE,WAGF,0CACE,WAdJ,wBACE,YAMA,gBAEA,wCACE,WAGF,0CACE,WAdJ,wBACE,qBAMA,gBAEA,wCACE,WAGF,0CACE,WAdJ,yBACE,UAMA,gBAEA,yCACE,WAGF,4CACE,WAdJ,yBACE,oBAMA,gBAEA,yCACE,WAGF,4CACE,WAdJ,yBACE,oBAMA,gBAEA,yCACE,WAGF,4CACE,YAsDF,4CApEF,uBACE,WAMA,gBAEA,uCACE,WAGF,yCACE,WAdJ,uBACE,UAMA,gBAEA,uCACE,WAGF,yCACE,WAdJ,uBACE,qBAMA,gBAEA,uCACE,WAGF,yCACE,WAdJ,uBACE,UAMA,gBAEA,uCACE,WAGF,yCACE,WAdJ,uBACE,UAMA,gBAEA,uCACE,WAGF,yCACE,WAdJ,uBACE,qBAMA,gBAEA,uCACE,WAGF,yCACE,WAdJ,uBACE,qBAMA,gBAEA,uCACE,WAGF,yCACE,WAdJ,uBACE,YAMA,gBAEA,uCACE,WAGF,yCACE,WAdJ,uBACE,qBAMA,gBAEA,uCACE,WAGF,yCACE,WAdJ,wBACE,UAMA,gBAEA,wCACE,WAGF,2CACE,WAdJ,wBACE,oBAMA,gBAEA,wCACE,WAGF,2CACE,WAdJ,wBACE,oBAMA,gBAEA,wCACE,WAGF,2CACE,YCsGJ,cA9JA,gBACA,SACA,OTgKF,yCAEE,YACA,cAGF,oBACE,WSRE,iBAnHF,cACA,qBA5BF,iDAEE,sBACA,kCAKA,yEAEE,cAyIE,uBAxHJ,cACA,qBAIA,cACA,SAoHM,WArJR,6DAEE,sBACA,kCAKA,qFAEE,cAyBF,6DAEE,qBACA,kCACA,oBACA,SACA,cAKA,qFAEE,aA0GA,iCA/HJ,cACA,qBA5BF,iFAEE,sBACA,kCAKA,yGAEE,cAmJI,yCAHF,iCA/HJ,cACA,qBAIA,cACA,SAjCF,iFAEE,sBACA,kCAKA,yGAEE,cAyBF,iFAEE,qBACA,kCACA,oBACA,SACA,cAKA,yGAEE,cAmHF,uBAxIF,cACA,qBA5BF,6DAEE,sBACA,kCAKA,qFAEE,cAkFF,6GTpGA,cSwGkB,EAGlB,6JTjGA,kCE2GY,IF1GZ,+BE0GY,IFzGZ,0BEyGY,IFxGZ,uBEwGY,IOGZ,yJT9GA,mCE2GY,IF1GZ,gCE0GY,IFzGZ,2BEyGY,IFxGZ,wBEwGY,IO0DV,6BA5IF,cACA,qBAIA,cACA,SAjCF,yEAEE,sBACA,kCAKA,iGAEE,cAyBF,yEAEE,qBACA,kCACA,oBACA,SACA,cAKA,iGAEE,aA4CJ,qITpGA,cSwGkB,EAGlB,qLT1FA,wBEoGY,IFnGZ,yBEmGY,IFlGZ,uBEkGY,IFjGZ,wBEiGY,IOGZ,iLTvGA,2BEoGY,IFnGZ,4BEmGY,IFlGZ,0BEkGY,IFjGZ,2BEiGY,IO+DR,4CADF,uCAhJF,cACA,qBA5BF,6FAEE,sBACA,kCAKA,qHAEE,cAkFF,6KTpGA,cSwGkB,EAGlB,6NTjGA,kCE2GY,IF1GZ,+BE0GY,IFzGZ,0BEyGY,IFxGZ,uBEwGY,IOGZ,yNT9GA,mCE2GY,IF1GZ,gCE0GY,IFzGZ,2BEyGY,IFxGZ,wBEwGY,KOmER,yCALF,uCAhJF,cACA,qBAIA,cACA,SAjCF,6FAEE,sBACA,kCAKA,qHAEE,cAyBF,6FAEE,qBACA,kCACA,oBACA,SACA,cAKA,qHAEE,aA4CJ,6KTpGA,cSwGkB,EAGlB,6NT1FA,wBEoGY,IFnGZ,yBEmGY,IFlGZ,uBEkGY,IFjGZ,wBEiGY,IOGZ,yNTvGA,2BEoGY,IFnGZ,4BEmGY,IFlGZ,0BEkGY,IFjGZ,2BEiGY,KOwEV,sBA1JF,cACA,qBA5BF,2DAEE,sBACA,kCAKA,mFAEE,cAkFF,yGTpGA,cSwGkB,EAGlB,yJTjGA,kCAuQa,OAtQb,+BAsQa,OArQb,0BAqQa,OApQb,uBAoQa,OSzJb,qJT9GA,mCAuQa,OAtQb,gCAsQa,OArQb,2BAqQa,OApQb,wBAoQa,OShFX,4BA9JF,cACA,qBAIA,cACA,SAjCF,uEAEE,sBACA,kCAKA,+FAEE,cAyBF,uEAEE,qBACA,kCACA,oBACA,SACA,cAKA,+FAEE,aA4CJ,iITpGA,cSwGkB,EAGlB,iLT1FA,wBCrCS,KDsCT,yBCtCS,KDuCT,uBCvCS,KDwCT,wBCxCS,KQ4IT,6KTvGA,2BCrCS,KDsCT,4BCtCS,KDuCT,0BCvCS,KDwCT,2BCxCS,KQ0NL,4CADF,sCAlKF,cACA,qBA5BF,2FAEE,sBACA,kCAKA,mHAEE,cAkFF,yKTpGA,cSwGkB,EAGlB,yNTjGA,kCAuQa,OAtQb,+BAsQa,OArQb,0BAqQa,OApQb,uBAoQa,OSzJb,qNT9GA,mCAuQa,OAtQb,gCAsQa,OArQb,2BAqQa,OApQb,wBAoQa,QSvET,yCALF,sCAlKF,cACA,qBAIA,cACA,SAjCF,2FAEE,sBACA,kCAKA,mHAEE,cAyBF,2FAEE,qBACA,kCACA,oBACA,SACA,cAKA,mHAEE,aA4CJ,yKTpGA,cSwGkB,EAGlB,yNT1FA,wBCrCS,KDsCT,yBCtCS,KDuCT,uBCvCS,KDwCT,wBCxCS,KQ4IT,qNTvGA,2BCrCS,KDsCT,4BCtCS,KDuCT,0BCvCS,KDwCT,2BCxCS,MQoOL,wBA7KJ,cACA,qBAoGA,UAhIF,+DAEE,sBACA,kCAKA,uFAEE,cAwHF,+DAEE,WAoEE,wBA7KJ,cACA,qBAoGA,qBAhIF,+DAEE,sBACA,kCAKA,uFAEE,cAwHF,+DAEE,WAoEE,wBA7KJ,cACA,qBAoGA,UAhIF,+DAEE,sBACA,kCAKA,uFAEE,cAwHF,+DAEE,WAoEE,wBA7KJ,cACA,qBAoGA,UAhIF,+DAEE,sBACA,kCAKA,uFAEE,cAwHF,+DAEE,WAoEE,wBA7KJ,cACA,qBAoGA,qBAhIF,+DAEE,sBACA,kCAKA,uFAEE,cAwHF,+DAEE,WAoEE,wBA7KJ,cACA,qBAoGA,qBAhIF,+DAEE,sBACA,kCAKA,uFAEE,cAwHF,+DAEE,WAoEE,wBA7KJ,cACA,qBAoGA,YAhIF,+DAEE,sBACA,kCAKA,uFAEE,cAwHF,+DAEE,WTWJ,qCAEE,YACA,cAGF,kBACE,WS2DE,0BA7NF,WACA,aAlByB,QAoBzB,8BACE,gBCSF,iCAEE,gBACA,cACA,gBV0IJ,4FAEE,YACA,cAGF,6CACE,WU/IE,uCACE,MVsPU,KUrPV,kBAGF,+EACE,eAIJ,mBACE,WVuMC,KUtMD,eACA,WACA,YACA,MACA,OACA,YAEA,iDAGF,oBACE,kBACA,YACA,YACA,gBACA,SAGF,sBACE,kBACA,QACA,SACA,MVyKE,KUxKF,eAGF,aACE,WACA,kBAEA,iBACE,kBACA,SACA,QACA,iBACA,gBACA,eAIJ,kBACE,MVqJE,KUpJF,UA5EuB,OA6EvB,gBACA,gBACA,kBACA,SACA,WVuJC,KUtJD,WACA,QAlFqB,eAmFrB,kBACA,OAGF,gBACE,YACA,kBACA,iBACA,UApGgB,KAqGhB,cACA,MVkIE,KUjIF,aAEA,4CACU,MV8HR,KU3HJ,oDACE,kEAIF,qBACE,aACA,2CACE,cAKJ,4CACE,wCAEE,kBACA,YACA,WACA,MACA,kDACE,kBACA,QACA,cACA,QACA,SACA,kBACA,yEAGJ,oBACE,OACA,yBACE,SACA,2BACA,mBVwFF,KUrFF,oBACE,QACA,yBACE,2BACA,kBViFF,KU7EF,0DAC+B,WAI7B,kDACE,WAtKa,kBAuKb,OArJiB,MAsJjB,gBACA,kBAEA,qDACE,qBACA,YACA,YACA,kBACA,WAEA,wDACE,cACA,MAjKkB,MAkKlB,mBACA,MVoGI,KUnGJ,gBACA,eACA,UACA,kBACA,Od8HS,Qc7HT,WACA,WAGE,uEACE,YACA,eAIJ,6DACE,YACA,gBACA,cAGF,4DACA,0BACA,sBAGA,0EACA,yEAKN,qDACE,WV6BH,KU5BG,gBACA,OAzMmB,IA6MvB,gBACE,kBACA,SACA,WACA,eACA,eCjBJ,YA9JF,kBACA,aACA,WA1BsB,KA2BtB,cACA,aAME,WACA,WA/DoB,KAgEpB,OAjEgB,KAkEhB,WXoKK,KWnKL,sBACA,UArCmB,QAsCnB,WAcA,WA/EoB,IA+KL,UApLI,MA4DrB,uCACA,yCAyBE,8BXCF,cACA,QACA,SACA,iBAQE,4DACA,0BWXE,kBACA,UACA,KA/D4B,KAgE5B,WAEF,kBXPF,WACA,cACA,QACA,SACA,iBAQE,4DACA,0BWJE,kBACA,UACA,SACA,WAGF,yBACE,UACA,MA5E4B,KA8E9B,wBACE,UACA,UA4GA,uBAjKJ,kBACA,aACA,WA1BsB,KA2BtB,cACA,aAME,WACA,WA/DoB,KAgEpB,OAjEgB,KAkEhB,WXoKK,KWnKL,sBACA,UArCmB,QAsCnB,WA0CA,aACA,YA5GoB,IA+KL,UApLI,MA4DrB,kDACA,oDAsDE,8BX7BF,WACA,cACA,QACA,SACA,iBAkBE,4DACA,yBWQE,kBACA,IA3F4B,KA4F5B,WACA,WAEF,6BXpCF,WACA,cACA,QACA,SACA,iBAkBE,4DACA,yBWeE,kBACA,QACA,WACA,WA4FA,sBArKJ,kBACA,aACA,WA1BsB,KA2BtB,cACA,aAME,WACA,WA/DoB,KAgEpB,OAjEgB,KAkEhB,WXoKK,KWnKL,sBACA,UArCmB,QAsCnB,WA+DA,aACA,iBA8Ce,UApLI,MA4DrB,iDACA,mDA2EE,6BXlDF,WACA,cACA,QACA,SACA,iBAaE,4DACA,wBWkCE,kBACA,IAhH4B,KAiH5B,YACA,UACA,WAEF,4BX1DF,WACA,cACA,QACA,SACA,iBAaE,4DACA,wBW0CE,kBACA,QACA,YACA,UACA,WAyEA,qBAzKJ,kBACA,aACA,WA1BsB,KA2BtB,cACA,aAME,WACA,WA/DoB,KAgEpB,OAjEgB,KAkEhB,WXoKK,KWnKL,sBACA,UArCmB,QAsCnB,WAsFA,gBACA,cAuBe,UApLI,MA4DrB,gDACA,kDAkGE,4BXzEF,WACA,cACA,QACA,SACA,iBAGE,4DACA,uBWmEE,kBACA,SACA,aACA,KAzI4B,KA0I5B,WACA,WAEF,2BXlFF,WACA,cACA,QACA,SACA,iBAGE,4DACA,uBW4EE,kBACA,SACA,aACA,SACA,WACA,WAqDA,eAtCJ,UA9JqB,QA+JrB,Of4HqB,Qe1HrB,YA/JuB,SAgKvB,SAEA,0CACU,WXwCH,KWtCP,sBXjLE,cEqHY,IS8Dd,iBACE,cACA,QA1KsB,MA2KtB,MXyCQ,KWdN,oBAjLJ,kBACA,aACA,WA1BsB,KA2BtB,cACA,aAeE,QAlCyB,QAmCzB,WACA,OA1EgB,KA2EhB,WA1EoB,KA2EpB,WX0JK,KWzJL,sBACA,UA/CmB,QAgDnB,WAoGe,UApLI,MA4DrB,+CACA,iDA6KI,iCACA,kCACA,mCACA,kCACA,iBACE,sBACA,0BAEA,sBACE,kBC9HN,iCAvEA,kBACA,aAuCA,cAjE0B,UA6B1B,+CACE,kBACA,WACA,QACA,SACA,cACA,mBACA,4DACA,QA8BF,+CACE,aAnEyB,QAoEzB,MAnE6B,WAoE7B,WAnEwB,YAoF1B,+CACE,4DAYA,2CAzDF,cAvD0B,SAyD1B,uDACE,aAhEW,QAiEX,MAzD6B,SA0D7B,WAzDwB,UAgG1B,yDACE,4DAgBA,6CAlDF,cA5D0B,UA8D1B,2DACE,aA1EW,SA2EX,MA9D6B,UA+D7B,WA9DwB,YA0F1B,2DACE,4DAoBA,6CAhCF,cAtE0B,SAwE1B,2DACE,aAxEyB,SAyEzB,MAxE6B,WAyE7B,WAxEwB,YA8E1B,2DACE,4DAwBA,iEACE,4DClGJ,YAxBF,kBACA,YAbuB,UAcvB,eAb0B,MAc1B,SACA,cAdyB,KAezB,gBAEA,sCAdqC,OAerC,gCAEA,0EAIE,kBACA,MACA,OACA,WACA,YCUA,aAlBF,6BACA,YApBiC,UAqBjC,aAvB4B,EAwB5B,QAnBoB,EAoBpB,gBACA,SAlBqB,OAoBrB,gBACE,gBACA,Md6Pc,Kc5Pd,YA5BoC,SA6BpC,QArBkB,MAsBlB,0BAnB2B,MC2B3B,eAjBF,iBAfa,QAgBb,kBAG0B,Mf2NrB,KexNL,aArBuB,MAsBvB,aArBuB,IAsBvB,SACA,YAnCe,uCAoCf,UAnCoB,QAoCpB,QA9BkB,iBfehB,cEqHY,Ic3BZ,OAhFA,aA/BiB,MAgCjB,aA/BgB,IAgChB,qBACA,cA1BkB,QA2BlB,QA1BY,QA4BZ,WnBMkB,QmBHhB,MhB8MC,KgBtMH,oBACE,aAGF,mBACE,gBAQE,yFASE,MhBgLH,KgB5JD,4DAME,cACA,sBAEA,wHACE,gBAcJ,eAnFF,aA/BiB,MAgCjB,aA/BgB,IAgChB,qBACA,cA1BkB,QA2BlB,QA1BY,QA4BZ,WA8EmB,QA3EjB,MhB8MC,KgBtMH,4BACE,aAGF,2BACE,gBAQE,iKASE,MhBgLH,KgB5JD,4GAME,cACA,sBAEA,wKACE,gBAiBF,8BACE,MnBtGY,QmBwGZ,wEAEE,MAzGqB,QA8G3B,chB1GF,cEqHY,IecZ,iBAjHF,kBACA,MACA,SACA,OACA,QACA,WjB4MO,KiB3MP,WA3CkB,gBA4ClB,aACA,aACA,OA0GE,qBAhGA,kBACA,aACA,kBACA,aACA,YACA,MACA,cf0EY,IezEZ,OAgDQ,iBjBqHH,KiBpHiB,QAxGH,QA0GP,sBAIZ,WA7GgB,wBAuGM,QAkDiB,SAjGvC,yCAuFA,qBAtFE,kBAIF,wFAGA,4DAEA,6DAIA,4CAyEA,qBAxEE,MA1EiB,IA2EjB,UlBpFM,QkBqFN,OACA,QACA,eA0CF,4CA0BA,qBAzBE,IA1HgB,SA+JhB,mCjBjJF,cEqHY,Ie6BV,iCjBlJF,cAiRa,OiB9HX,uCAtDoB,QAsD8B,EAvFpD,4CAwFE,+BAvFA,MAuF4C,IAtF5C,UlBpFM,QkBqFN,OACA,QACA,eALF,4CAyFE,iCAxFA,MAwF4C,IAvF5C,UlBpFM,QkBqFN,OACA,QACA,eALF,4CA0FE,mCAzFA,MAyF8C,IAxF9C,UlBpFM,QkBqFN,OACA,QACA,eALF,4CA2FE,iCA1FA,MA0F4C,IAzF5C,UlBpFM,QkBqFN,OACA,QACA,eALF,4CA4FE,mCA3FA,MA2F6C,IA1F7C,UlBpFM,QkBqFN,OACA,QACA,eAwFA,+BAEE,MACA,OACA,YACA,aACA,iBACA,0BACA,yBArGJ,4CA6FE,+BA5FA,MA6FoC,MA5FpC,UlBpFM,QkBqFN,OACA,QACA,eAmGA,6DA/CJ,UA5HuB,OA6HvB,cACA,kBACA,IA9HiB,QA+HjB,MA9HkB,SA+HlB,MjBgGM,KiB/FN,YtBrHiB,KsBsHjB,OrByKqB,QqB9HnB,OAEE,aAEA,kCAzJJ,kBACA,MACA,SACA,OACA,QACA,WjB4MO,KiB3MP,WA3CkB,gBA4ClB,aACA,aACA,OAoJI,aACE,cAKJ,aACE,qBACE,aACA,4BCvGJ,UAtDF,cACA,SACA,QhB8iCiB,QgB7iCjB,gBAhDmB,KAiDnB,oBAhDuB,QAiDvB,YvB1CuB,mDuB4CvB,aACE,OhB6iCmB,QgB5iCnB,UhBkjCiB,KgBjjCjB,YvBhCiB,OuBkCjB,4BACE,cACA,MrB9CgB,QqB+ChB,OAnDiB,EAoDjB,QAnDkB,iBAqDlB,oEAEE,WAzDiB,iBA0DjB,MhBqiCoB,QgBjiCxB,+CACE,MhB+hCuB,QgB9hCvB,YvBjDe,OuBkDf,YvBjEmB,mDuBoErB,qBACE,qBACA,SACA,UACA,gBACA,iBrBzCgB,QqB4ClB,qBACE,MrBxEgB,QqB2Ed,UhBghCa,KgB/gCb,YArEuB,KAwEzB,eAvE4B,UCmF9B,SA5DF,cACA,WACA,gBACA,OA7CoB,oBA8CpB,YA7CyB,OA+CzB,YACE,yBAGF,oCAGE,MnB+Nc,KmB9Nd,eACA,iBACA,gBACA,YxBrDqB,mDwBsDrB,YxBvCiB,OwBwCjB,UAxDgB,QAyDhB,MnB6KQ,KmB3KR,0CACE,gBAzDoB,KA0DpB,MnByKM,KmBxKN,QA1DY,cA2DZ,4DACE,MA1DmB,QA8DvB,+DnBzDA,cmBNoB,IAiElB,YxBtDe,OwBuDf,WtBjEgB,QsBkEhB,QApEY,cAqEZ,OAzDkB,QA0DlB,MnBkJG,KmBjJH,iFACE,WA/DkB,QC8FtB,MAnEF,WpBoLO,KoBnLP,cAToB,QAUpB,sBACA,aAba,KAeb,cACE,WA5Be,cA6Bf,MpB8LG,KoB5LD,UA7BoB,KA8BpB,YA7BsB,KAiC1B,YACE,WvBrBkB,QuBwBhB,oCAEE,QApDa,sBAqDb,UAxDe,QAyDf,YzB7CW,KyB8CX,MpB8KD,KoBzKL,YACE,WvBnCkB,QuBsChB,oCAEE,QAlEa,sBAmEb,UAtEe,QAuEf,YzB3DW,KyB4DX,MpBgKD,KoB1JH,wBAEE,QA7Dc,iBA8Dd,UA7DgB,QA8DhB,MpBsJC,KoBrJD,WpByLY,KoBtLd,sDAEsB,WvB5DJ,QuB+DpB,sGAKQ,QAtEM,WAsEmB,YA1Ef,SCQhB,IAjBF,cACA,qBACA,sBACA,eACA,WAxBiB,yBrB0DjB,8BqBhCA,oBAEE,WA3BqB,8BAwCnB,WrB5BF,cEqHY,IoBGd,sCACA,wCACA,0CACA,4CAGE,yCACE,iDACA,mDACA,qDACA,wDAJF,mBACE,4CACA,8CACA,gDACA,mDAJF,gEACE,kDACA,oDACA,sDACA,yDAJF,4CACE,6CACA,+CACA,iDACA,oDAJF,gEACE,iDACA,mDACA,qDACA,wDAJF,4CACE,4CACA,8CACA,gDACA,mDAJF,iEACE,kDACA,oDACA,sDACA,yDAJF,4CACE,6CACA,+CACA,iDACA,oDAJF,uEACE,mDACA,qDACA,uDACA,0DAJF,6CACE,8CACA,gDACA,kDACA,qDA4BF,oEAmBE,SACA,UAIF,EACE,MzB5LgB,QyB6LhB,gBAvJmB,KAwJnB,oBAEA,gBAEE,MAzJkB,QA+JpB,kBAIF,EACE,YA5LkB,QA6LlB,Y3BpMe,O2BqMf,UA5LgB,KA6LhB,YA5LkB,IA6LlB,cA5LoB,QA6LpB,eAzLqB,mBA2LrB,OAlEJ,qBACA,gBAmEI,QACE,UAjMoB,QAkMpB,YAjMsB,KAkMtB,WAjMqB,OAsMzB,kBACE,Y3BnOc,8B2BoOd,Y3BtNe,O2BuNf,W3BvNe,O2BwNf,MtBKC,KsBJD,eAhPkB,mBAiPlB,WAnPc,MAoPd,cAnPiB,MAoPjB,YAtPe,IAwPf,sDACE,UA5NU,IA6NV,MA5NW,QA6NX,cAIJ,sBACA,uBACA,sBACA,sBACA,sBACA,kBAEA,WA/FF,YAjJsB,IAkJtB,MAjJqB,QAkJrB,Y3B/ImB,O2BgJnB,WAjJqB,MAkJrB,cAjJwB,MA8OtB,GACE,qBACA,qBACA,WACA,2BACA,SAIF,KAEE,kBACA,oBAGF,SAEE,Y3B9Pa,K2B+Pb,oBAGF,MACE,UAjQY,IAkQZ,oBAGF,KACE,Y3BtRkB,kC2BuRlB,Y3B1Qe,O2B2Qf,MtB/CC,KsBgDD,iBzBjLkB,QyBkLlB,aAvPa,IAwPb,aAvPc,MAwPd,aAvPc,QAwPd,QAvPS,0BA2PX,SAGE,UA9QgB,KA+QhB,YA9QkB,IA+QlB,cA9QoB,QA+QpB,oBA9OgB,QA+OhB,YApRkB,QAuRpB,GACE,YpB7Ca,OoB8Cb,aACE,YAlPqB,EAoPnB,sCAEE,YArPS,QAsPT,gBACA,gBASJ,kBAEE,YAlQW,QAmQX,gBAMF,iEAGF,6CpB1Ea,OoB2Eb,6CpB3Ea,OoB4Eb,yCpB5Ea,OoB6Eb,6BAIF,GACE,YAtRqB,OAwRnB,kBAEE,YAxRW,QAyRX,gBAOJ,MACE,cA/R+B,MAgS/B,Y3BjVW,K2BmVb,oBAjS0B,OAqS5B,aAEE,yBACA,cACA,MzBhXgB,KyBiXhB,O1B5Dc,K0B8DhB,KACE,oBACA,YACE,cApSY,gBAyShB,WACE,mBACA,QAlTe,6BAmTf,YAlTc,eAoTd,gBACE,cACA,UArToB,SAsTpB,MArTqB,KAsTrB,uBACE,aAGF,4CAEE,MA5TmB,KAgUzB,wBAEE,YAlXkB,IAmXlB,MAvUkB,QA2UpB,OACE,qBACA,OAjUe,cAkUf,sBACA,QApUgB,eAsUhB,UACE,SACA,cAEF,WACE,Y3B3YW,K2B4YX,UAlUyB,SAuU3B,6B3BjZa,K2BmZb,aACE,O1BtHe,Q0BuHf,gBAjU2B,KAkU3B,Y3BtZW,K2BuZX,YACA,QAxUmB,WA6UvB,4CACE,8BAzbe,IA0bf,aApbS,QAqbT,aApbS,UAqbT,aApbS,UAqbT,aApbS,UAqbT,aApbS,SAqbT,aApbS,MA+bT,oCACA,aACE,EACE,oCACA,sBACA,2BACA,4BAGF,YACY,0BACZ,0CAEA,+CAGA,4DAEqB,WAErB,eAEE,sBACA,wBAGF,iCAEA,OACM,wBAEN,8BAEA,kBAEA,QAGE,UACA,SAGF,MACK,uBAEL,uCACA,qCACA,wCACA,4CCrRJ,mBACE,iZACE,2BAEF,iZACE,wBAGA,icvBdN,2BACA,YACA,WACA,iBACA,UuBaM,qcvB5BN,6BACA,WACA,UACA,gBACA,8BuB6BM,qfACE,yBAEF,qfACE,sCAEF,qfACE,mCAEF,ybACE,6BAEF,k3BACE,+BA7BN,4CACE,iZACE,2BAEF,iZACE,wBAGA,icvBdN,2BACA,YACA,WACA,iBACA,UuBaM,qcvB5BN,6BACA,WACA,UACA,gBACA,8BuB6BM,qfACE,yBAEF,qfACE,sCAEF,qfACE,mCAEF,ybACE,6BAEF,k3BACE,+BA7BN,4CACE,iZACE,2BAEF,iZACE,wBAGA,icvBdN,2BACA,YACA,WACA,iBACA,UuBaM,qcvB5BN,6BACA,WACA,UACA,gBACA,8BuB6BM,qfACE,yBAEF,qfACE,sCAEF,qfACE,mCAEF,ybACE,6BAEF,k3BACE,+BA7BN,4CACE,iZACE,2BAEF,iZACE,wBAGA,icvBdN,2BACA,YACA,WACA,iBACA,UuBaM,qcvB5BN,6BACA,WACA,UACA,gBACA,8BuB6BM,qfACE,yBAEF,qfACE,sCAEF,qfACE,mCAEF,ybACE,6BAEF,k3BACE,+BA7BN,6CACE,iZACE,2BAEF,iZACE,wBAGA,icvBdN,2BACA,YACA,WACA,iBACA,UuBaM,qcvB5BN,6BACA,WACA,UACA,gBACA,8BuB6BM,qfACE,yBAEF,qfACE,sCAEF,qfACE,mCAEF,ybACE,6BAEF,k3BACE,+BAaR,uCACqB,2BACrB,uCACqB,wBAInB,iDACsB,yBAGtB,iDACsB,sCAGtB,iDACsB,mCAGtB,2CACsB,6BAItB,sFACsB,8BAGxB,gDACE,uCACqB,2BACrB,uCACqB,wBAInB,iDACsB,yBAGtB,iDACsB,sCAGtB,iDACsB,mCAGtB,2CACsB,6BAItB,sFACsB,+BAI1B,+CACE,uCACsB,2BACtB,uCACsB,wBAIpB,iDACuB,yBAGvB,iDACuB,sCAGvB,iDACuB,mCAGvB,2CACuB,6BAIvB,sFACuB,+BAK3B,wCACA,2CACA,kDACA,+CAGA,8CACA,qDACA,2DACA,kEACA,wDACA,+DACA,+CACA,sDACA,gDACA,uDACA,gDACA,uDAIA,aACE,8BACA,6BAEA,8CACA,2DACA,wDACA,+CACA,gDACA,iDCzXJ,SAEI,mBAGJ,UACI,c3ByBkB,Q2BtBtB,QACI,cAGJ,QACI,cAGJ,SACI,cAQJ,EACI,qBACA,kBACA,iBACA,aACA,sBAEA,kBAEJ,cAEI,iBACA,yBAEJ,0BAEI,wBAEJ,iCAGI,SACA,WAEJ,WACI,SACA,WACA,qCAWJ,kBACI,Y7BlEgB,8B6BmEhB,mBACA,UAEJ,GACI,U7BhDgB,Q6BiDhB,aAEJ,GACI,U7BnDgB,Q6BoDhB,qBAEA,eACI,aAER,GACI,U7BzDgB,Q6B0DhB,qBAEJ,GACI,U7B5DgB,O6B6DhB,qBAEJ,GACI,U7B/DgB,Q6BgEhB,iBAQJ,kBtB2BgB,IsB1BZ,uBACkB,iCAClB,yBACkB,kCAClB,2BACkB,iCAEtB,OACI,sBAEJ,qEAEI,SAEJ,6BAEI,M3B5EkB,Q2B6ElB,Y7BtHqB,mD6BuHrB,mBACA,oBAEJ,iCAEI,iCACA,M3BpFkB,Q2BsFtB,6CAEI,gCACA,M3B7HkB,Q2B+HtB,kBACI,mBACA,iBAQJ,GACI,mBAQJ,IACI,cACA,sBACA,YACA,iB3BjDoB,Q2BkDpB,ctB7BY,IsB+BhB,SACI,oCACA,SAGJ,KACI,kBACA,gBAQJ,MACI,iBACA,UAEJ,GACI,cAGJ,WACI,gBACA,cAIA,YAEK,gBAOT,eACI,gBAEJ,GACI,iBACA,iBAIJ,8BACA,sEAOA,WACI,kBACA,kBACA,YACA,wBACA,M3BhLkB,Q2BmLlB,qC3BpLkB,Q2BsLlB,kBACI,0BACA,eACA,cACA,kBACA,WACA,SACA,M3B5Lc,Q2B8LlB,iBACI,cACA,YACA,eACA,cACA,kBACA,YACA,YACA,M3BtMc,Q2BwMlB,uBACI,aAEJ,4CACI,M3B7Mc,Q2B+MtB,KACI,gBAGJ,eACI,mBAGJ,KACI,yBAQJ,aACI,eACA,SACA,yBAEJ,QACI,kBAEJ,YACI,kCAEJ,cACI,kCAIJ,mBACI,YACI,mBAGR,6CACI,YACI,qBASR,kB7BzSyB,mD6B0SzB,mB7BzSoB,8B6B2SpB,wB7BpRoB,Q6BqRpB,wB7BpRoB,Q6BqRpB,wB7BpRoB,Q6BqRpB,wB7BpRoB,O6BqRpB,wB7BpRoB,Q6BqRpB,uB7BvTiB,K6B8TjB,kBACI,WACA,kBACA,WACA,WACA,iBACA,gCAEJ,WACI,gBAEJ,cACI,U7BvSgB,K6BySpB,aACI,kBACA,gBAUJ,WACE,uBACA,iCACA,wNAMF,+BACA,4BAGA,2CAEA,0rCAwDE,qBACF,uBACA,kBACA,mBACA,oBACA,cACA,wBACA,kCACA,oBACA,kCACA,mCACA,2BAGA,iCACA,iCACA,kCACA,gCACA,8BACA,+BACA,sCACA,sCACA,uCACA,oCACA,2CACA,2CACA,0CACA,+BACA,8BACA,6BACA,iCACA,8BACA,gCACA,6BACA,kCACA,iCACA,gCACA,+BACA,oCACA,+BACA,wCACA,8BACA,mCACA,mCACA,8BACA,kCACA,8BACA,iCACA,6BACA,iCACA,qCACA,mCACA,mCACA,gCACA,6BACA,oCACA,8BACA,uCACA,qCACA,mCACA,8BACA,gCACA,iCACA,yCACA,+BACA,+BACA,iCACA,8BACA,iCC5dA,gDACuC,gBACvC,wDACA,yLAUqB,WACrB,qCACA,2BAOA,YACI,8CACA,sCAEA,uEACI,mBASR,mBACE,aAQF,UACI,iB5B1CkB,Q4B4CtB,0BACI,iB5B7CkB,Q4B+CtB,oBACI,kBACA,mBACA,Y9BtDgB,8B8BuDhB,WACA,yBACA,qCAEJ,0BACI,aAEJ,oCACI,gBAMJ,yCACI,UACI,aAEJ,UACI,aAEJ,uBACI,eAEJ,gCACI,eAEJ,oBACI,aACA,eACA,kBAEJ,0BACI,cAQR,gEACI,UACI,gBAEJ,UACI,aAEJ,uBACI,eAEJ,gCACI,eAEJ,oBACI,eACA,cAQR,gEACI,UACI,gBAEJ,UACI,aAEJ,uBACI,eAEJ,gCACI,eAEJ,oBACI,aACA,gBAQR,4CACI,UACI,iBAEJ,UACI,aAEJ,uBACI,eAEJ,gCACI,eAEJ,oBACI,eACA,cAKR,mBACI,aAEJ,mBACI,aAEJ,yBACI,aAEJ,yBACI,aAQJ,YACI,mBACA,6BACA,gCAEJ,sBACE,iBAOF,wBACI,M5B/JkB,Q4BkKtB,mBACI,W5BnKkB,Q4BoKlB,SAEJ,mBACI,WAEJ,yBACI,W5BzMkB,Q4B2MtB,aACE,mBACA,cAEA,aACE,0BACA,cAEF,mBACE,qBACA,M5B5MkB,Q4BoNtB,WACI,uBAEJ,aACI,eACA,YACA,kBAEJ,mBACI,W5B1MkB,Q4BkNtB,qCAEI,mBACA,gBAGJ,QACI,iBACA,oBACA,W5B1MkB,Q4B2MlB,M5BhKkB,K4BmKlB,UACI,M5BnPc,Q4BqPlB,sBAEI,mBACA,WACA,yBAQR,WACI,W5B7NkB,Q4B8NlB,M5B/NkB,Q4BgOlB,iBAGJ,+BACI,WAGJ,WACI,M5BxOkB,Q4ByOlB,SACA,yBACA,iBACI,WAIR,cACI,8BAGF,iBACE,mBAEF,gBACE,oBACA,cACA,WACA,kBACA,M5B3PkB,Q4B4PlB,W5B7PkB,Q4B8PlB,kBACA,sBACE,W5B/PgB,Q4BgQhB,WAUN,gCACA,gCACA,gCACA,gCACA,gCACA,gCACA,gCACA,gCACA,gCAEA,mCACA,mCACA,mCACA,mCAEA,iCACA,kCAEA,mCACA,kCACA,oCACA,oCCrVA,iCAGI,gBACA,iBAEJ,QACI,cACA,WxB3BW,KwBmCf,eACE,0BACA,gBACA,cxB+Gc,IwBvGhB,2CACA,0DACA,gEAOA,WACE,Y/BlCuB,mD+BmCvB,uCAEA,aACE,gBAEF,aACE,6BACA,WACA,8BAEF,mBACE,6BAEF,oBACE,W7BNkB,Q6BOlB,WACA,qBACA,Y/BlDoB,kC+BoDtB,4BACE,aACA,M7B1CkB,Q6B2ClB,WACA,sBAEF,gBACE,iB7B5BkB,Q6B6BlB,uCACA,qBACA,M7BrBkB,Q6B6BtB,kCACE,oC7BhCoB,Q6BiCpB,0EAG0B,iB7B9BN,Q6BqCtB,4CACA,0CACA,kEACA,+E7BvDsB,Q6ByDtB,qC7BhDsB,Q6BuDtB,0CACA,8CACA,gDACA,gDACA,uDACA,uDAOA;AAAA;AAAA;AAAA,wBAIA,SACE,aAEF,aACI,UAEJ,aACI,+BACA,4BACA,2BACA,0BACA,uBACA,UAIF,sDACE,YACA,QACA,SAEA,cACA,iBACA,iBC3JJ,WACI,gBACA,+BACA,wBACA,cACA,iBACA,iBACA,yBAEA,2CACA,uDACA,+BACA,+BACA,4CACA,2CACA,4CACA,6DACA,gDACA,mDACA,iCACA,0BACA,0BACA,gDACA,mDACA,0BACA,0BACA,gCACA,0BACA,0BACA,gCACA,gCACA,gCACA,gCACA,2CACA,yBACA,yBACA,0BACA,6BACA,2CACA,0BACA,4BACA,2CACA,2CACA,0BACA,0BACA,0BACA,gCACA,yBACA,0BACA,0BACA,0BACA,0BACA,0BACA,0BACA,0BACA,0BACA,0BACA,0BACA,0BACA,0BACA,6BACA,0BACA,6BACA,0BACA,0BACA,0BACA,0BACA","sourcesContent":["@charset \"utf-8\";\n/* TOC – Typography variables\n\nModular Scale › http://www.modularscale.com//?16,36&px&1.25&web&table\n\n- Fonts\n- Font Weight\n- Font Size Variables\n\n*/\n\n@import \"functions\"; // Allows the use of rem-calc() or lower-bound() in your settings\n\n\n\n/* Fonts\n------------------------------------------------------------------- */\n\n$base-font-size: 16px;\n$rem-base: $base-font-size;\n// $base-line-height is 24px while $base-font-size is 16px\n$base-line-height: 1.5 !default;\n\n\n$font-family-sans-serif: \"Lato\", \"Helvetica Neue\", Helvetica, Arial, sans-serif;\n$font-family-serif: \"Volkhov\", Georgia, Times, serif;\n$font-family-monospace: \"Lucida Console\", Monaco, monospace;\n\n$body-font-family: $font-family-sans-serif;\n$body-font-weight: normal;\n$body-font-style: normal;\n\n$header-font-family: $font-family-serif;\n\n\n\n/* Font Weight\n------------------------------------------------------------------- */\n\n$font-weight-normal: normal;\n$font-weight-bold: bold;\n\n\n\n/* Font Size Variables\n------------------------------------------------------------------- */\n\n$font-size-p: \t$base-font-size;\n$font-size-h1: 2.441em;\n$font-size-h2: 1.953em;\n$font-size-h3: 1.563em;\n$font-size-h4: 1.25em;\n$font-size-h5: 1.152em;\n$font-size-small: 0.8em;\n\n.font-size-h1 { font-size: $font-size-h1; }\n.font-size-h2 { font-size: $font-size-h2; }\n.font-size-h3 { font-size: $font-size-h3; }\n.font-size-h4 { font-size: $font-size-h4; }\n.font-size-h5 { font-size: $font-size-h5; }\n","@charset \"utf-8\";\n// Foundation by ZURB\n// foundation.zurb.com\n// Licensed under MIT Open Source\n\n//\n// Foundation Variables\n//\n\n// Data attribute namespace\n// styles get applied to [data-mysite-plugin], etc\n$namespace: false !default;\n\n// The default font-size is set to 100% of the browser style sheet (usually 16px)\n// for compatibility with browser-based text zoom or user-set defaults.\n\n// Since the typical default browser font-size is 16px, that makes the calculation for grid size.\n// If you want your base font-size to be different and not have it affect the grid breakpoints,\n// set $rem-base to $base-font-size and make sure $base-font-size is a px value.\n$base-font-size: 100% !default;\n\n\n\n//\n// Global Foundation Mixins\n//\n\n// @mixins\n//\n// We use this to control border radius.\n// $radius - Default: $global-radius || 4px\n@mixin radius($radius: $global-radius) {\n @if $radius {\n border-radius: $radius;\n }\n}\n\n// @mixins\n//\n// We use this to create equal side border radius on elements.\n// $side - Options: left, right, top, bottom\n@mixin side-radius($side, $radius: $global-radius) {\n @if ($side ==left or $side ==right) {\n -webkit-border-bottom-#{$side}-radius: $radius;\n -webkit-border-top-#{$side}-radius: $radius;\n border-bottom-#{$side}-radius: $radius;\n border-top-#{$side}-radius: $radius;\n }\n\n @else {\n -webkit-#{$side}-left-radius: $radius;\n -webkit-#{$side}-right-radius: $radius;\n border-#{$side}-left-radius: $radius;\n border-#{$side}-right-radius: $radius;\n }\n}\n\n// @mixins\n//\n// We can control whether or not we have inset shadows edges.\n// $active - Default: true, Options: false\n@mixin inset-shadow($active: true) {\n box-shadow: $shiny-edge-size $shiny-edge-color inset;\n\n @if $active {\n &:active {\n box-shadow: $shiny-edge-size $shiny-edge-active-color inset;\n }\n }\n}\n\n// @mixins\n//\n// We use this to add transitions to elements\n// $property - Default: all, Options: http://www.w3.org/TR/css3-transitions/#animatable-properties\n// $speed - Default: 300ms\n// $ease - Default:ease-out, Options: http://css-tricks.com/almanac/properties/t/transition-timing-function/\n@mixin single-transition($property: all, $speed: 300ms, $ease: ease-out) {\n transition: $property $speed $ease;\n}\n\n// @mixins\n//\n// We use this to add box-sizing across browser prefixes\n@mixin box-sizing($type: border-box) {\n -webkit-box-sizing: $type; // Android < 2.3, iOS < 4\n -moz-box-sizing: $type; // Firefox < 29\n box-sizing: $type; // Chrome, IE 8+, Opera, Safari 5.1\n}\n\n// @mixins\n//\n// We use this to create isosceles triangles\n// $triangle-size - Used to set border-size. No default, set a px or em size.\n// $triangle-color - Used to set border-color which makes up triangle. No default\n// $triangle-direction - Used to determine which direction triangle points. Options: top, bottom, left, right\n@mixin css-triangle($triangle-size, $triangle-color, $triangle-direction) {\n content: \"\";\n display: block;\n width: 0;\n height: 0;\n border: inset $triangle-size;\n\n @if ($triangle-direction ==top) {\n border-color: $triangle-color transparent transparent transparent;\n border-top-style: solid;\n }\n\n @if ($triangle-direction ==bottom) {\n border-color: transparent transparent $triangle-color transparent;\n border-bottom-style: solid;\n }\n\n @if ($triangle-direction ==left) {\n border-color: transparent transparent transparent $triangle-color;\n border-left-style: solid;\n }\n\n @if ($triangle-direction ==right) {\n border-color: transparent $triangle-color transparent transparent;\n border-right-style: solid;\n }\n}\n\n// @mixins\n//\n// We use this to create the icon with three lines aka the hamburger icon, the menu-icon or the navicon\n// $width - Width of hamburger icon in rem\n// $left - If false, icon will be centered horizontally || explicitly set value in rem\n// $top - If false, icon will be centered vertically || explicitly set value in rem\n// $thickness - thickness of lines in hamburger icon, set value in px\n// $gap - spacing between the lines in hamburger icon, set value in px\n// $color - icon color\n// $hover-color - icon color during hover\n// $offcanvas - Set to true of @include in offcanvas\n@mixin hamburger($width, $left, $top, $thickness, $gap, $color, $hover-color, $offcanvas) {\n span::after {\n content: \"\";\n position: absolute;\n display: block;\n height: 0;\n\n @if $offcanvas {\n @if $top {\n top: $top;\n }\n\n @else {\n top: 50%;\n margin-top: (-$width/2);\n }\n\n @if $left {\n left: $left;\n }\n\n @else {\n left: ($tabbar-menu-icon-width - $width)/2;\n }\n }\n\n @else {\n top: 50%;\n margin-top: -($width/2);\n #{$opposite-direction}: $topbar-link-padding;\n }\n\n box-shadow: 0 0 0 $thickness $color,\n 0 ($gap + $thickness) 0 $thickness $color,\n 0 (2 * $gap + 2*$thickness) 0 $thickness $color;\n width: $width;\n }\n\n span:hover:after {\n box-shadow:\n 0 0 0 $thickness $hover-color,\n 0 $gap + $thickness 0 $thickness $hover-color,\n 0 (2 * $gap + 2*$thickness) 0 $thickness $hover-color;\n }\n}\n\n// We use this to do clear floats\n@mixin clearfix {\n\n &:before,\n &:after {\n content: \" \";\n display: table;\n }\n\n &:after {\n clear: both;\n }\n}\n\n// @mixins\n//\n// We use this to add a glowing effect to block elements\n// $selector - Used for selector state. Default: focus, Options: hover, active, visited\n// $fade-time - Default: 300ms\n// $glowing-effect-color - Default: fade-out($primary-color, .25)\n@mixin block-glowing-effect($selector: focus, $fade-time: 300ms, $glowing-effect-color: fade-out($primary-color, .25)) {\n transition: box-shadow $fade-time, border-color $fade-time ease-in-out;\n\n &:#{$selector} {\n box-shadow: 0 0 5px $glowing-effect-color;\n border-color: $glowing-effect-color;\n }\n}\n\n// @mixins\n//\n// We use this to translate elements in 2D\n// $horizontal: Default: 0\n// $vertical: Default: 0\n@mixin translate2d($horizontal: 0, $vertical: 0) {\n transform: translate($horizontal, $vertical)\n}\n\n// @mixins\n//\n// Makes an element visually hidden, but accessible.\n// @see http://snook.ca/archives/html_and_css/hiding-content-for-accessibility\n@mixin element-invisible {\n position: absolute !important;\n height: 1px;\n width: 1px;\n overflow: hidden;\n clip: rect(1px, 1px, 1px, 1px);\n}\n\n// @mixins\n//\n// Turns off the element-invisible effect.\n@mixin element-invisible-off {\n position: static !important;\n height: auto;\n width: auto;\n overflow: visible;\n clip: auto;\n}\n\n\n// We use these to control text direction settings\n$text-direction: ltr !default;\n$default-float: left !default;\n$opposite-direction: right !default;\n\n@if $text-direction ==ltr {\n $default-float: left;\n $opposite-direction: right;\n}\n\n@else {\n $default-float: right;\n $opposite-direction: left;\n}\n\n// We use these to control inset shadow shiny edges and depressions.\n$shiny-edge-size: 0 1px 0 !default;\n$shiny-edge-color: rgba(#fff, .5) !default;\n$shiny-edge-active-color: rgba(#000, .2) !default;\n\n// We use this to control whether or not CSS classes come through in the gem files.\n$include-html-classes: true !default;\n$include-print-styles: true !default;\n$include-html-global-classes: $include-html-classes !default;\n\n$column-gutter: rem-calc(30) !default;\n\n\n\n\n// d. Media Query Ranges\n// - - - - - - - - - - - - - - - - - - - - - - - - -\n\n$small-range: (\n 0em,\n 40em\n);\n$medium-range: (\n 40.063em,\n 64em\n);\n$large-range: (\n 64.063em,\n 90em\n);\n$xlarge-range: (\n 90.063em,\n 120em\n);\n$xxlarge-range: (\n 120.063em,\n 99999999em\n);\n\n\n$screen: \"only screen\" !default;\n\n$landscape: \"#{$screen} and (orientation: landscape)\" !default;\n$portrait: \"#{$screen} and (orientation: portrait)\" !default;\n\n$small-up: $screen !default;\n$small-only: \"#{$screen} and (max-width: #{upper-bound($small-range)})\";\n\n$medium-up: \"#{$screen} and (min-width:#{lower-bound($medium-range)})\" !default;\n$medium-only: \"#{$screen} and (min-width:#{lower-bound($medium-range)}) and (max-width:#{upper-bound($medium-range)})\" !default;\n\n$large-up: \"#{$screen} and (min-width:#{lower-bound($large-range)})\" !default;\n$large-only: \"#{$screen} and (min-width:#{lower-bound($large-range)}) and (max-width:#{upper-bound($large-range)})\" !default;\n\n$xlarge-up: \"#{$screen} and (min-width:#{lower-bound($xlarge-range)})\" !default;\n$xlarge-only: \"#{$screen} and (min-width:#{lower-bound($xlarge-range)}) and (max-width:#{upper-bound($xlarge-range)})\" !default;\n\n$xxlarge-up: \"#{$screen} and (min-width:#{lower-bound($xxlarge-range)})\" !default;\n$xxlarge-only: \"#{$screen} and (min-width:#{lower-bound($xxlarge-range)}) and (max-width:#{upper-bound($xxlarge-range)})\" !default;\n\n// Legacy\n$small: $medium-up;\n$medium: $medium-up;\n$large: $large-up;\n\n//We use this as cursors values for enabling the option of having custom cursors in the whole site's stylesheet\n$cursor-auto-value: auto !default;\n$cursor-crosshair-value: crosshair !default;\n$cursor-default-value: default !default;\n$cursor-pointer-value: pointer !default;\n$cursor-help-value: help !default;\n$cursor-text-value: text !default;\n\n\n@include exports(\"global\") {\n\n // Meta styles are included in all builds, as they are a dependency of the Javascript.\n // Used to provide media query values for javascript components.\n // Forward slash placed around everything to convince PhantomJS to read the value.\n\n meta.foundation-version {\n font-family: \"/5.5.0/\";\n }\n\n meta.foundation-mq-small {\n font-family: \"/\" + unquote($small-up) + \"/\";\n width: lower-bound($small-range);\n }\n\n meta.foundation-mq-small-only {\n font-family: \"/\" + unquote($small-only) + \"/\";\n width: lower-bound($small-range);\n }\n\n meta.foundation-mq-medium {\n font-family: \"/\" + unquote($medium-up) + \"/\";\n width: lower-bound($medium-range);\n }\n\n meta.foundation-mq-medium-only {\n font-family: \"/\" + unquote($medium-only) + \"/\";\n width: lower-bound($medium-range);\n }\n\n meta.foundation-mq-large {\n font-family: \"/\" + unquote($large-up) + \"/\";\n width: lower-bound($large-range);\n }\n\n meta.foundation-mq-large-only {\n font-family: \"/\" + unquote($large-only) + \"/\";\n width: lower-bound($large-range);\n }\n\n meta.foundation-mq-xlarge {\n font-family: \"/\" + unquote($xlarge-up) + \"/\";\n width: lower-bound($xlarge-range);\n }\n\n meta.foundation-mq-xlarge-only {\n font-family: \"/\" + unquote($xlarge-only) + \"/\";\n width: lower-bound($xlarge-range);\n }\n\n meta.foundation-mq-xxlarge {\n font-family: \"/\" + unquote($xxlarge-up) + \"/\";\n width: lower-bound($xxlarge-range);\n }\n\n meta.foundation-data-attribute-namespace {\n font-family: #{$namespace};\n }\n\n @if $include-html-global-classes {\n\n // Must be 100% for off canvas to work\n html,\n body {\n height: 100%;\n }\n\n // Set box-sizing globally to handle padding and border widths\n *,\n *:before,\n *:after {\n @include box-sizing(border-box);\n }\n\n html,\n body {\n font-size: $base-font-size;\n }\n\n // Default body styles\n body {\n background: $body-bg;\n color: $body-font-color;\n padding: 0;\n margin: 0;\n font-family: $body-font-family;\n font-weight: $body-font-weight;\n font-style: $body-font-style;\n line-height: $base-line-height; // Set to $base-line-height to take on browser default of 150%\n position: relative;\n cursor: $cursor-auto-value;\n }\n\n a:hover {\n cursor: $cursor-pointer-value;\n }\n\n // Grid Defaults to get images and embeds to work properly\n img {\n max-width: 100%;\n height: auto;\n }\n\n img {\n -ms-interpolation-mode: bicubic;\n }\n\n #map_canvas,\n .map_canvas {\n\n img,\n embed,\n object {\n max-width: none !important;\n }\n }\n\n // Miscellaneous useful HTML classes\n .left {\n float: left !important;\n }\n\n .right {\n float: right !important;\n }\n\n .clearfix {\n @include clearfix;\n }\n\n // Hide visually and from screen readers\n .hide {\n display: none !important;\n visibility: hidden;\n }\n\n // Hide visually and from screen readers, but maintain layout\n .invisible {\n visibility: hidden;\n }\n\n // Font smoothing\n // Antialiased font smoothing works best for light text on a dark background.\n // Apply to single elements instead of globally to body.\n // Note this only applies to webkit-based desktop browsers and Firefox 25 (and later) on the Mac.\n .antialiased {\n -webkit-font-smoothing: antialiased;\n -moz-osx-font-smoothing: grayscale;\n }\n\n // Get rid of gap under images by making them display: inline-block; by default\n img {\n display: inline-block;\n vertical-align: middle;\n }\n\n //\n // Global resets for forms\n //\n\n // Make sure textarea takes on height automatically\n textarea {\n height: auto;\n min-height: 50px;\n }\n\n // Make select elements 100% width by default\n select {\n width: 100%;\n }\n }\n}","/// from https://github.com/Phlow/feeling-responsive/raw/gh-pages/_sass/_01_settings_colors.scss\n@charset \"utf-8\";\n/* TOC – Color Variables\n\n- Basics\n- Corporate Identity Colorpalette\n- Foundation Color Variables\n- Grey Scale\n- Topbar-Navigation\n- Footer\n- Code\n\n*/\n\n\n\n/* Basics\n------------------------------------------------------------------- */\n\n$text-color : #111;\n$body-font-color : $text-color;\n$body-bg : #fdfdfd;\n\n\n\n/* Corporate Identity Colorpalette\n https://color.adobe.com/de/Flat-Design-Colors-v2-color-theme-4341903/\n------------------------------------------------------------------- */\n\n$ci-1 : #334D5C; // dark turquoise\n$ci-2 : #45B29D; // turquoise\n$ci-3 : #EFC94C; // yellow\n$ci-4 : #E27A3F; // orange\n$ci-5 : #DF4949; // red\n$ci-6 : #A1D044; // green\n\n/// CIL overrides\n$ci-2 : #c92c99;\n$ci-6 : #e50695;\n\n\n/* Foundation Color Variables\n------------------------------------------------------------------- */\n\n$primary-color : $ci-1;\n$secondary-color : $ci-6;\n$alert-color : $ci-5;\n$success-color : $ci-6;\n$warning-color : $ci-4;\n$info-color : $ci-1;\n\n\n\n/* Grey Scale\n------------------------------------------------------------------- */\n\n$grey-1 : #E4E4E4;\n$grey-2 : #D7D7D7;\n$grey-3 : #CBCBCB;\n$grey-4 : #BEBEBE;\n$grey-5 : #A4A4A4;\n$grey-6 : #979797;\n$grey-7 : #8B8B8B;\n$grey-8 : #7E7E7E;\n$grey-9 : #646464;\n$grey-10 : #575757;\n$grey-11 : #4B4B4B;\n$grey-12 : #3E3E3E;\n$grey-13 : #313131;\n$grey-14 : #242424;\n$grey-15 : #171717;\n$grey-16 : #0B0B0B;\n\n/// CIL overrides\n$grey-8 : #043852;\n$grey-13 : #510c76;\n\n\n/* Topbar-Navigation\n------------------------------------------------------------------- */\n\n$topbar-bg-color : $body-bg;\n$topbar-bg : $topbar-bg-color;\n\n\n$topbar-dropdown-toggle-color: $ci-1;\n\n$topbar-link-color : #000;\n$topbar-link-color-hover: #000;\n$topbar-link-color-active: #000;\n$topbar-link-color-active-hover: #000;\n\n$topbar-dropdown-label-color: $ci-2;\n$topbar-dropdown-link-bg-hover: $ci-6;\n\n$topbar-link-bg-active: $ci-6; // Active Navigation Link\n$topbar-link-bg-hover: $ci-6;\n$topbar-link-bg-active-hover: $ci-2;\n\n\n$topbar-dropdown-bg: $ci-6; // Background Mobile Navigation\n$topbar-dropdown-link-color: #000;\n$topbar-dropdown-link-bg: $ci-2;\n\n$topbar-menu-link-color-toggled: $ci-1;\n$topbar-menu-icon-color-toggled: $ci-1;\n$topbar-menu-link-color: #000;\n$topbar-menu-icon-color: #000;\n$topbar-menu-link-color-toggled: $ci-6;\n$topbar-menu-icon-color-toggled: $ci-6;\n\n\n\n/* Footer\n------------------------------------------------------------------- */\n\n$footer-bg : $grey-8;\n$footer-color : #fff;\n$footer-link-color : $ci-6;\n\n\n$subfooter-bg : $grey-13;\n$subfooter-color : $grey-8;\n$subfooter-link-color: $grey-8;\n\n\n\n/* Code\n------------------------------------------------------------------- */\n\n$code-background-color: scale-color($secondary-color, $lightness: 70%);\n\n$highlight-background: #ffffff;\n$highlight-comment: #999988;\n$highlight-error: #a61717;\n$highlight-comment-special: #999999;\n$highlight-deleted: #000000;\n$highlight-error-2: #aa0000;\n$highlight-literal-string: #d14;\n$highlight-literal-number: #009999;\n$highlight-name-attribut: #008080;\n$highlight-error-background: #e3d2d2;\n$highlight-generic-deleted: #ffdddd;\n$highlight-generic-deleted-specific: #ffaaaa;\n$highlight-generic-inserted: #ddffdd;\n$highlight-generic-inserted-specific: #aaffaa;\n$highlight-generic-output: #888888;\n$highlight-generic-prompt: #555555;\n$highlight-subheading: #aaaaaa;\n$highlight-keyword-type: #445588;\n$highlight-name-builtin: #0086B3;\n$highlight-name-class: #445588;\n$highlight-name-entity: #800080;\n$highlight-name-exception: #990000;\n$highlight-name-function: #990000;\n$highlight-name-namespace: #555555;\n$highlight-name-tag: #000080;\n$highlight-text-whitespace: #bbbbbb;\n$highlight-literal-string-regex: #009926;\n$highlight-literal-string-symbol: #990073;\n","@charset \"utf-8\";\n/*! normalize.css v3.0.2 | MIT License | git.io/normalize */\n\n/**\n * 1. Set default font family to sans-serif.\n * 2. Prevent iOS text size adjust after orientation change, without disabling\n * user zoom.\n */\n\nhtml {\n font-family: sans-serif; /* 1 */\n -ms-text-size-adjust: 100%; /* 2 */\n -webkit-text-size-adjust: 100%; /* 2 */\n}\n\n/**\n * Remove default margin.\n */\n\nbody {\n margin: 0;\n}\n\n/* HTML5 display definitions\n ========================================================================== */\n\n/**\n * Correct `block` display not defined for any HTML5 element in IE 8/9.\n * Correct `block` display not defined for `details` or `summary` in IE 10/11\n * and Firefox.\n * Correct `block` display not defined for `main` in IE 11.\n */\n\narticle,\naside,\ndetails,\nfigcaption,\nfigure,\nfooter,\nheader,\nhgroup,\nmain,\nmenu,\nnav,\nsection,\nsummary {\n display: block;\n}\n\n/**\n * 1. Correct `inline-block` display not defined in IE 8/9.\n * 2. Normalize vertical alignment of `progress` in Chrome, Firefox, and Opera.\n */\n\naudio,\ncanvas,\nprogress,\nvideo {\n display: inline-block; /* 1 */\n vertical-align: baseline; /* 2 */\n}\n\n/**\n * Prevent modern browsers from displaying `audio` without controls.\n * Remove excess height in iOS 5 devices.\n */\n\naudio:not([controls]) {\n display: none;\n height: 0;\n}\n\n/**\n * Address `[hidden]` styling not present in IE 8/9/10.\n * Hide the `template` element in IE 8/9/11, Safari, and Firefox < 22.\n */\n\n[hidden],\ntemplate {\n display: none;\n}\n\n/* Links\n ========================================================================== */\n\n/**\n * Remove the gray background color from active links in IE 10.\n */\n\na {\n background-color: transparent;\n}\n\n/**\n * Improve readability when focused and also mouse hovered in all browsers.\n */\n\na:active,\na:hover {\n outline: 0;\n}\n\n/* Text-level semantics\n ========================================================================== */\n\n/**\n * Address styling not present in IE 8/9/10/11, Safari, and Chrome.\n */\n\nabbr[title] {\n border-bottom: 1px dotted;\n}\n\n/**\n * Address style set to `bolder` in Firefox 4+, Safari, and Chrome.\n */\n\nb,\nstrong {\n font-weight: bold;\n}\n\n/**\n * Address styling not present in Safari and Chrome.\n */\n\ndfn {\n font-style: italic;\n}\n\n/**\n * Address variable `h1` font-size and margin within `section` and `article`\n * contexts in Firefox 4+, Safari, and Chrome.\n */\n\nh1 {\n font-size: 2em;\n margin: 0.67em 0;\n}\n\n/**\n * Address styling not present in IE 8/9.\n */\n\nmark {\n background: #ff0;\n color: #000;\n}\n\n/**\n * Address inconsistent and variable font size in all browsers.\n */\n\nsmall {\n font-size: 80%;\n}\n\n/**\n * Prevent `sub` and `sup` affecting `line-height` in all browsers.\n */\n\nsub,\nsup {\n font-size: 75%;\n line-height: 0;\n position: relative;\n vertical-align: baseline;\n}\n\nsup {\n top: -0.5em;\n}\n\nsub {\n bottom: -0.25em;\n}\n\n/* Embedded content\n ========================================================================== */\n\n/**\n * Remove border when inside `a` element in IE 8/9/10.\n */\n\nimg {\n border: 0;\n}\n\n/**\n * Correct overflow not hidden in IE 9/10/11.\n */\n\nsvg:not(:root) {\n overflow: hidden;\n}\n\n/* Grouping content\n ========================================================================== */\n\n/**\n * Address margin not present in IE 8/9 and Safari.\n */\n\nfigure {\n margin: 1em 40px;\n}\n\n/**\n * Address differences between Firefox and other browsers.\n */\n\nhr {\n -moz-box-sizing: content-box;\n box-sizing: content-box;\n height: 0;\n}\n\n/**\n * Contain overflow in all browsers.\n */\n\npre {\n overflow: auto;\n}\n\n/**\n * Address odd `em`-unit font size rendering in all browsers.\n */\n\ncode,\nkbd,\npre,\nsamp {\n font-family: monospace, monospace;\n font-size: 1em;\n}\n\n/* Forms\n ========================================================================== */\n\n/**\n * Known limitation: by default, Chrome and Safari on OS X allow very limited\n * styling of `select`, unless a `border` property is set.\n */\n\n/**\n * 1. Correct color not being inherited.\n * Known issue: affects color of disabled elements.\n * 2. Correct font properties not being inherited.\n * 3. Address margins set differently in Firefox 4+, Safari, and Chrome.\n */\n\nbutton,\ninput,\noptgroup,\nselect,\ntextarea {\n color: inherit; /* 1 */\n font: inherit; /* 2 */\n margin: 0; /* 3 */\n}\n\n/**\n * Address `overflow` set to `hidden` in IE 8/9/10/11.\n */\n\nbutton {\n overflow: visible;\n}\n\n/**\n * Address inconsistent `text-transform` inheritance for `button` and `select`.\n * All other form control elements do not inherit `text-transform` values.\n * Correct `button` style inheritance in Firefox, IE 8/9/10/11, and Opera.\n * Correct `select` style inheritance in Firefox.\n */\n\nbutton,\nselect {\n text-transform: none;\n}\n\n/**\n * 1. Avoid the WebKit bug in Android 4.0.* where (2) destroys native `audio`\n * and `video` controls.\n * 2. Correct inability to style clickable `input` types in iOS.\n * 3. Improve usability and consistency of cursor style between image-type\n * `input` and others.\n */\n\nbutton,\nhtml input[type=\"button\"], /* 1 */\ninput[type=\"reset\"],\ninput[type=\"submit\"] {\n -webkit-appearance: button; /* 2 */\n cursor: pointer; /* 3 */\n}\n\n/**\n * Re-set default cursor for disabled elements.\n */\n\nbutton[disabled],\nhtml input[disabled] {\n cursor: default;\n}\n\n/**\n * Remove inner padding and border in Firefox 4+.\n */\n\nbutton::-moz-focus-inner,\ninput::-moz-focus-inner {\n border: 0;\n padding: 0;\n}\n\n/**\n * Address Firefox 4+ setting `line-height` on `input` using `!important` in\n * the UA stylesheet.\n */\n\ninput {\n line-height: normal;\n}\n\n/**\n * It's recommended that you don't attempt to style these elements.\n * Firefox's implementation doesn't respect box-sizing, padding, or width.\n *\n * 1. Address box sizing set to `content-box` in IE 8/9/10.\n * 2. Remove excess padding in IE 8/9/10.\n */\n\ninput[type=\"checkbox\"],\ninput[type=\"radio\"] {\n box-sizing: border-box; /* 1 */\n padding: 0; /* 2 */\n}\n\n/**\n * Fix the cursor style for Chrome's increment/decrement buttons. For certain\n * `font-size` values of the `input`, it causes the cursor style of the\n * decrement button to change from `default` to `text`.\n */\n\ninput[type=\"number\"]::-webkit-inner-spin-button,\ninput[type=\"number\"]::-webkit-outer-spin-button {\n height: auto;\n}\n\n/**\n * 1. Address `appearance` set to `searchfield` in Safari and Chrome.\n * 2. Address `box-sizing` set to `border-box` in Safari and Chrome\n * (include `-moz` to future-proof).\n */\n\ninput[type=\"search\"] {\n -webkit-appearance: textfield; /* 1 */\n -moz-box-sizing: content-box;\n -webkit-box-sizing: content-box; /* 2 */\n box-sizing: content-box;\n}\n\n/**\n * Remove inner padding and search cancel button in Safari and Chrome on OS X.\n * Safari (but not Chrome) clips the cancel button when the search input has\n * padding (and `textfield` appearance).\n */\n\ninput[type=\"search\"]::-webkit-search-cancel-button,\ninput[type=\"search\"]::-webkit-search-decoration {\n -webkit-appearance: none;\n}\n\n/**\n * Define consistent border, margin, and padding.\n */\n\nfieldset {\n border: 1px solid #c0c0c0;\n margin: 0 2px;\n padding: 0.35em 0.625em 0.75em;\n}\n\n/**\n * 1. Correct `color` not being inherited in IE 8/9/10/11.\n * 2. Remove padding so people aren't caught out if they zero out fieldsets.\n */\n\nlegend {\n border: 0; /* 1 */\n padding: 0; /* 2 */\n}\n\n/**\n * Remove default vertical scrollbar in IE 8/9/10/11.\n */\n\ntextarea {\n overflow: auto;\n}\n\n/**\n * Don't inherit the `font-weight` (applied by a rule above).\n * NOTE: the default cannot safely be changed in Chrome and Safari on OS X.\n */\n\noptgroup {\n font-weight: bold;\n}\n\n/* Tables\n ========================================================================== */\n\n/**\n * Remove most spacing between table cells.\n */\n\ntable {\n border-collapse: collapse;\n border-spacing: 0;\n}\n\ntd,\nth {\n padding: 0;\n}","// Foundation by ZURB\n// foundation.zurb.com\n// Licensed under MIT Open Source\n\n@import \"global\";\n\n//\n// @variables\n//\n$include-html-grid-classes: $include-html-classes !default;\n$include-xl-html-grid-classes: false !default;\n\n$row-width: rem-calc(1000) !default;\n$total-columns: 12 !default;\n\n$last-child-float: $opposite-direction !default;\n\n//\n// Grid Functions\n//\n\n// Deprecated: We'll drop support for this in 5.1, use grid-calc()\n@function gridCalc($colNumber, $totalColumns) {\n @warn \"gridCalc() is deprecated, use grid-calc()\";\n @return grid-calc($colNumber, $totalColumns);\n}\n\n// @FUNCTION\n// $colNumber - Found in settings file\n// $totalColumns - Found in settings file\n@function grid-calc($colNumber, $totalColumns) {\n @return percentage(calc($colNumber / $totalColumns));\n}\n\n//\n// @mixins\n//\n\n// For creating container, nested, and collapsed rows.\n//\n//\n// $behavior - Any special behavior for this row? Default: false. Options: nest, collapse, nest-collapse, false.\n@mixin grid-row($behavior: false) {\n\n // use @include grid-row(nest); to include a nested row\n @if $behavior ==nest {\n width: auto;\n margin-#{$default-float}: - calc($column-gutter/2);\n margin-#{$opposite-direction}: - calc($column-gutter/2);\n margin-top: 0;\n margin-bottom: 0;\n max-width: none;\n }\n\n // use @include grid-row(collapse); to collapsed a container row margins\n @else if $behavior ==collapse {\n width: 100%;\n margin: 0;\n max-width: $row-width;\n }\n\n // use @include grid-row(nest-collapse); to collapse outer margins on a nested row\n @else if $behavior ==nest-collapse {\n width: auto;\n margin: 0;\n max-width: none;\n }\n\n // use @include grid-row; to use a container row\n @else {\n width: 100%;\n margin-#{$default-float}: auto;\n margin-#{$opposite-direction}: auto;\n margin-top: 0;\n margin-bottom: 0;\n max-width: $row-width;\n }\n\n // Clearfix for all rows\n @include clearfix();\n}\n\n// Creates a column, should be used inside of a media query to control layouts\n//\n// $columns - The number of columns this should be\n// $last-column - Is this the last column? Default: false.\n// $center - Center these columns? Default: false.\n// $offset - # of columns to offset. Default: false.\n// $push - # of columns to push. Default: false.\n// $pull - # of columns to pull. Default: false.\n// $collapse - Get rid of gutter padding on column? Default: false.\n// $float - Should this float? Default: true. Options: true, false, left, right.\n@mixin grid-column($columns: false,\n $last-column: false,\n $center: false,\n $offset: false,\n $push: false,\n $pull: false,\n $collapse: false,\n $float: true,\n $position: false) {\n\n // If positioned for default .column, include relative position\n // push and pull require position set\n @if $position or $push or $pull {\n position: relative;\n }\n\n // If collapsed, get rid of gutter padding\n @if $collapse {\n padding-left: 0;\n padding-right: 0;\n }\n\n // Gutter padding whenever a column isn't set to collapse\n // (use $collapse:null to do nothing)\n @else if $collapse ==false {\n padding-left: calc($column-gutter / 2);\n padding-right: calc($column-gutter / 2);\n }\n\n // If a column number is given, calculate width\n @if $columns {\n width: grid-calc($columns, $total-columns);\n\n // If last column, float naturally instead of to the right\n @if $last-column {\n float: $opposite-direction;\n }\n }\n\n // Source Ordering, adds left/right depending on which you use.\n @if $push {\n #{$default-float}: grid-calc($push, $total-columns);\n #{$opposite-direction}: auto;\n }\n\n @if $pull {\n #{$opposite-direction}: grid-calc($pull, $total-columns);\n #{$default-float}: auto;\n }\n\n @if $float {\n @if $float ==left or $float ==true {\n float: $default-float;\n }\n\n @else if $float ==right {\n float: $opposite-direction;\n }\n\n @else {\n float: none;\n }\n }\n\n // If centered, get rid of float and add appropriate margins\n @if $center {\n margin-#{$default-float}: auto;\n margin-#{$opposite-direction}: auto;\n float: none;\n }\n\n // If offset, calculate appropriate margins\n @if $offset {\n margin-#{$default-float}: grid-calc($offset, $total-columns) !important;\n }\n\n}\n\n// Create presentational classes for grid\n//\n// $size - Name of class to use, i.e. \"large\" will generate .large-1, .large-2, etc.\n@mixin grid-html-classes($size) {\n\n @for $i from 0 through $total-columns - 1 {\n .#{$size}-push-#{$i} {\n @include grid-column($push: $i, $collapse: null, $float: false);\n }\n\n .#{$size}-pull-#{$i} {\n @include grid-column($pull: $i, $collapse: null, $float: false);\n }\n }\n\n .column,\n .columns {\n @include grid-column($columns: false, $position: true);\n }\n\n\n @for $i from 1 through $total-columns {\n .#{$size}-#{$i} {\n @include grid-column($columns: $i, $collapse: null, $float: false);\n }\n }\n\n @for $i from 0 through $total-columns - 1 {\n .#{$size}-offset-#{$i} {\n @include grid-column($offset: $i, $collapse: null, $float: false);\n }\n }\n\n .#{$size}-reset-order {\n margin-#{$default-float}: 0;\n margin-#{$opposite-direction}: 0;\n left: auto;\n right: auto;\n float: $default-float;\n }\n\n .column.#{$size}-centered,\n .columns.#{$size}-centered {\n @include grid-column($center: true, $collapse: null, $float: false);\n }\n\n .column.#{$size}-uncentered,\n .columns.#{$size}-uncentered {\n margin-#{$default-float}: 0;\n margin-#{$opposite-direction}: 0;\n float: $default-float;\n }\n\n // Fighting [class*=\"column\"] + [class*=\"column\"]:last-child\n .column.#{$size}-centered:last-child,\n .columns.#{$size}-centered:last-child {\n float: none;\n }\n\n // Fighting .column.-centered:last-child\n .column.#{$size}-uncentered:last-child,\n .columns.#{$size}-uncentered:last-child {\n float: $default-float;\n }\n\n .column.#{$size}-uncentered.opposite,\n .columns.#{$size}-uncentered.opposite {\n float: $opposite-direction;\n }\n\n .row {\n &.#{$size}-collapse {\n\n >.column,\n >.columns {\n @include grid-column($collapse: true, $float: false);\n }\n\n .row {\n margin-left: 0;\n margin-right: 0;\n }\n }\n\n &.#{$size}-uncollapse {\n\n >.column,\n >.columns {\n @include grid-column;\n }\n }\n }\n}\n\n@include exports(\"grid\") {\n @if $include-html-grid-classes {\n .row {\n @include grid-row;\n\n &.collapse {\n\n >.column,\n >.columns {\n @include grid-column($collapse: true, $float: false);\n }\n\n .row {\n margin-left: 0;\n margin-right: 0;\n }\n }\n\n .row {\n @include grid-row($behavior: nest);\n\n &.collapse {\n @include grid-row($behavior: nest-collapse);\n }\n }\n }\n\n .column,\n .columns {\n @include grid-column($columns: $total-columns);\n }\n\n [class*=\"column\"]+[class*=\"column\"]:last-child {\n float: $last-child-float;\n }\n\n [class*=\"column\"]+[class*=\"column\"].end {\n float: $default-float;\n }\n\n @media #{$small-up} {\n @include grid-html-classes($size: small);\n }\n\n @media #{$medium-up} {\n @include grid-html-classes($size: medium);\n\n // Old push and pull classes\n @for $i from 0 through $total-columns - 1 {\n .push-#{$i} {\n @include grid-column($push: $i, $collapse: null, $float: false);\n }\n\n .pull-#{$i} {\n @include grid-column($pull: $i, $collapse: null, $float: false);\n }\n }\n }\n\n @media #{$large-up} {\n @include grid-html-classes($size: large);\n\n @for $i from 0 through $total-columns - 1 {\n .push-#{$i} {\n @include grid-column($push: $i, $collapse: null, $float: false);\n }\n\n .pull-#{$i} {\n @include grid-column($pull: $i, $collapse: null, $float: false);\n }\n }\n }\n }\n\n @if $include-xl-html-grid-classes {\n @media #{$xlarge-up} {\n @include grid-html-classes($size: xlarge);\n }\n\n @media #{$xxlarge-up} {\n @include grid-html-classes($size: xxlarge);\n }\n }\n}","// Foundation by ZURB\n// foundation.zurb.com\n// Licensed under MIT Open Source\n\n@import \"../functions\";\n//\n// Foundation Variables\n//\n\n// Data attribute namespace\n// styles get applied to [data-mysite-plugin], etc\n$namespace: false !default;\n\n// The default font-size is set to 100% of the browser style sheet (usually 16px)\n// for compatibility with browser-based text zoom or user-set defaults.\n\n// Since the typical default browser font-size is 16px, that makes the calculation for grid size.\n// If you want your base font-size to be different and not have it affect the grid breakpoints,\n// set $rem-base to $base-font-size and make sure $base-font-size is a px value.\n$base-font-size: 100% !default;\n\n// $base-line-height is 24px while $base-font-size is 16px\n$base-line-height: 1.5 !default;\n\n//\n// Global Foundation Mixins\n//\n\n// @mixins\n//\n// We use this to control border radius.\n// $radius - Default: $global-radius || 4px\n@mixin radius($radius: $global-radius) {\n @if $radius {\n border-radius: $radius;\n }\n}\n\n// @mixins\n//\n// We use this to create equal side border radius on elements.\n// $side - Options: left, right, top, bottom\n@mixin side-radius($side, $radius: $global-radius) {\n @if ($side ==left or $side ==right) {\n -webkit-border-bottom-#{$side}-radius: $radius;\n -webkit-border-top-#{$side}-radius: $radius;\n border-bottom-#{$side}-radius: $radius;\n border-top-#{$side}-radius: $radius;\n }\n\n @else {\n -webkit-#{$side}-left-radius: $radius;\n -webkit-#{$side}-right-radius: $radius;\n border-#{$side}-left-radius: $radius;\n border-#{$side}-right-radius: $radius;\n }\n}\n\n// @mixins\n//\n// We can control whether or not we have inset shadows edges.\n// $active - Default: true, Options: false\n@mixin inset-shadow($active: true) {\n box-shadow: $shiny-edge-size $shiny-edge-color inset;\n\n @if $active {\n &:active {\n box-shadow: $shiny-edge-size $shiny-edge-active-color inset;\n }\n }\n}\n\n// @mixins\n//\n// We use this to add transitions to elements\n// $property - Default: all, Options: http://www.w3.org/TR/css3-transitions/#animatable-properties\n// $speed - Default: 300ms\n// $ease - Default:ease-out, Options: http://css-tricks.com/almanac/properties/t/transition-timing-function/\n@mixin single-transition($property: all, $speed: 300ms, $ease: ease-out) {\n transition: $property $speed $ease;\n}\n\n// @mixins\n//\n// We use this to add box-sizing across browser prefixes\n@mixin box-sizing($type: border-box) {\n -webkit-box-sizing: $type; // Android < 2.3, iOS < 4\n -moz-box-sizing: $type; // Firefox < 29\n box-sizing: $type; // Chrome, IE 8+, Opera, Safari 5.1\n}\n\n// @mixins\n//\n// We use this to create isosceles triangles\n// $triangle-size - Used to set border-size. No default, set a px or em size.\n// $triangle-color - Used to set border-color which makes up triangle. No default\n// $triangle-direction - Used to determine which direction triangle points. Options: top, bottom, left, right\n@mixin css-triangle($triangle-size, $triangle-color, $triangle-direction) {\n content: \"\";\n display: block;\n width: 0;\n height: 0;\n border: inset $triangle-size;\n\n @if ($triangle-direction ==top) {\n border-color: $triangle-color transparent transparent transparent;\n border-top-style: solid;\n }\n\n @if ($triangle-direction ==bottom) {\n border-color: transparent transparent $triangle-color transparent;\n border-bottom-style: solid;\n }\n\n @if ($triangle-direction ==left) {\n border-color: transparent transparent transparent $triangle-color;\n border-left-style: solid;\n }\n\n @if ($triangle-direction ==right) {\n border-color: transparent $triangle-color transparent transparent;\n border-right-style: solid;\n }\n}\n\n// @mixins\n//\n// We use this to create the icon with three lines aka the hamburger icon, the menu-icon or the navicon\n// $width - Width of hamburger icon in rem\n// $left - If false, icon will be centered horizontally || explicitly set value in rem\n// $top - If false, icon will be centered vertically || explicitly set value in rem\n// $thickness - thickness of lines in hamburger icon, set value in px\n// $gap - spacing between the lines in hamburger icon, set value in px\n// $color - icon color\n// $hover-color - icon color during hover\n// $offcanvas - Set to true of @include in offcanvas\n@mixin hamburger($width, $left, $top, $thickness, $gap, $color, $hover-color, $offcanvas) {\n span::after {\n content: \"\";\n position: absolute;\n display: block;\n height: 0;\n\n @if $offcanvas {\n @if $top {\n top: $top;\n }\n\n @else {\n top: 50%;\n margin-top: (-$width/2);\n }\n\n @if $left {\n left: $left;\n }\n\n @else {\n left: ($tabbar-menu-icon-width - $width)/2;\n }\n }\n\n @else {\n top: 50%;\n margin-top: -(calc($width / 2));\n #{$opposite-direction}: $topbar-link-padding;\n }\n\n box-shadow: 0 0 0 $thickness $color,\n 0 ($gap + $thickness) 0 $thickness $color,\n 0 (2 * $gap + 2*$thickness) 0 $thickness $color;\n width: $width;\n }\n\n span:hover:after {\n box-shadow:\n 0 0 0 $thickness $hover-color,\n 0 $gap + $thickness 0 $thickness $hover-color,\n 0 (2 * $gap + 2*$thickness) 0 $thickness $hover-color;\n }\n}\n\n// We use this to do clear floats\n@mixin clearfix {\n\n &:before,\n &:after {\n content: \" \";\n display: table;\n }\n\n &:after {\n clear: both;\n }\n}\n\n// @mixins\n//\n// We use this to add a glowing effect to block elements\n// $selector - Used for selector state. Default: focus, Options: hover, active, visited\n// $fade-time - Default: 300ms\n// $glowing-effect-color - Default: fade-out($primary-color, .25)\n@mixin block-glowing-effect($selector: focus, $fade-time: 300ms, $glowing-effect-color: fade-out($primary-color, .25)) {\n transition: box-shadow $fade-time, border-color $fade-time ease-in-out;\n\n &:#{$selector} {\n box-shadow: 0 0 5px $glowing-effect-color;\n border-color: $glowing-effect-color;\n }\n}\n\n// @mixins\n//\n// We use this to translate elements in 2D\n// $horizontal: Default: 0\n// $vertical: Default: 0\n@mixin translate2d($horizontal: 0, $vertical: 0) {\n transform: translate($horizontal, $vertical)\n}\n\n// @mixins\n//\n// Makes an element visually hidden, but accessible.\n// @see http://snook.ca/archives/html_and_css/hiding-content-for-accessibility\n@mixin element-invisible {\n position: absolute !important;\n height: 1px;\n width: 1px;\n overflow: hidden;\n clip: rect(1px, 1px, 1px, 1px);\n}\n\n// @mixins\n//\n// Turns off the element-invisible effect.\n@mixin element-invisible-off {\n position: static !important;\n height: auto;\n width: auto;\n overflow: visible;\n clip: auto;\n}\n\n$white : #FFFFFF !default;\n$ghost : #FAFAFA !default;\n$snow : #F9F9F9 !default;\n$vapor : #F6F6F6 !default;\n$white-smoke : #F5F5F5 !default;\n$silver : #EFEFEF !default;\n$smoke : #EEEEEE !default;\n$gainsboro : #DDDDDD !default;\n$iron : #CCCCCC !default;\n$base : #AAAAAA !default;\n$aluminum : #999999 !default;\n$jumbo : #888888 !default;\n$monsoon : #777777 !default;\n$steel : #666666 !default;\n$charcoal : #555555 !default;\n$tuatara : #444444 !default;\n$oil : #333333 !default;\n$jet : #222222 !default;\n$black : #000000 !default;\n\n// We use these as default colors throughout\n$primary-color: #008CBA !default; // bondi-blue\n$secondary-color: #e7e7e7 !default; // white-lilac\n$alert-color: #f04124 !default; // cinnabar\n$success-color: #43AC6A !default; // sea-green\n$warning-color: #f08a24 !default; // carrot\n$info-color: #a0d3e8 !default; // cornflower\n\n// We use these to define default font stacks\n$font-family-sans-serif: \"Helvetica Neue\", Helvetica, Roboto, Arial, sans-serif !default;\n$font-family-serif: Georgia, Cambria, \"Times New Roman\", Times, serif !default;\n$font-family-monospace: Consolas, \"Liberation Mono\", Courier, monospace !default;\n\n// We use these to define default font weights\n$font-weight-normal: normal !default;\n$font-weight-bold: bold !default;\n\n// We use these to control various global styles\n$body-bg: #fff !default;\n$body-font-color: #222 !default;\n$body-font-family: $font-family-sans-serif !default;\n$body-font-weight: $font-weight-normal !default;\n$body-font-style: normal !default;\n\n// We use this to control font-smoothing\n$font-smoothing: antialiased !default;\n\n// We use these to control text direction settings\n$text-direction: ltr !default;\n$default-float: left !default;\n$opposite-direction: right !default;\n\n@if $text-direction ==ltr {\n $default-float: left;\n $opposite-direction: right;\n}\n\n@else {\n $default-float: right;\n $opposite-direction: left;\n}\n\n// We use these to make sure border radius matches unless we want it different.\n$global-radius: 3px !default;\n$global-rounded: 1000px !default;\n\n// We use these to control inset shadow shiny edges and depressions.\n$shiny-edge-size: 0 1px 0 !default;\n$shiny-edge-color: rgba(#fff, .5) !default;\n$shiny-edge-active-color: rgba(#000, .2) !default;\n\n// We use this to control whether or not CSS classes come through in the gem files.\n$include-html-classes: true !default;\n$include-print-styles: true !default;\n$include-html-global-classes: $include-html-classes !default;\n\n$column-gutter: rem-calc(30) !default;\n\n// Media Query Ranges\n$small-range: (\n 0,\n 40em) !default;\n$medium-range: (\n 40.063em,\n 64em) !default;\n$large-range: (\n 64.063em,\n 90em) !default;\n$xlarge-range: (\n 90.063em,\n 120em) !default;\n$xxlarge-range: (\n 120.063em,\n 99999999em) !default;\n\n\n$screen: \"only screen\" !default;\n\n$landscape: \"#{$screen} and (orientation: landscape)\" !default;\n$portrait: \"#{$screen} and (orientation: portrait)\" !default;\n\n$small-up: $screen !default;\n$small-only: \"#{$screen} and (max-width: #{upper-bound($small-range)})\" !default;\n\n$medium-up: \"#{$screen} and (min-width:#{lower-bound($medium-range)})\" !default;\n$medium-only: \"#{$screen} and (min-width:#{lower-bound($medium-range)}) and (max-width:#{upper-bound($medium-range)})\" !default;\n\n$large-up: \"#{$screen} and (min-width:#{lower-bound($large-range)})\" !default;\n$large-only: \"#{$screen} and (min-width:#{lower-bound($large-range)}) and (max-width:#{upper-bound($large-range)})\" !default;\n\n$xlarge-up: \"#{$screen} and (min-width:#{lower-bound($xlarge-range)})\" !default;\n$xlarge-only: \"#{$screen} and (min-width:#{lower-bound($xlarge-range)}) and (max-width:#{upper-bound($xlarge-range)})\" !default;\n\n$xxlarge-up: \"#{$screen} and (min-width:#{lower-bound($xxlarge-range)})\" !default;\n$xxlarge-only: \"#{$screen} and (min-width:#{lower-bound($xxlarge-range)}) and (max-width:#{upper-bound($xxlarge-range)})\" !default;\n\n// Legacy\n$small: $medium-up;\n$medium: $medium-up;\n$large: $large-up;\n\n\n//We use this as cursors values for enabling the option of having custom cursors in the whole site's stylesheet\n$cursor-auto-value: auto !default;\n$cursor-crosshair-value: crosshair !default;\n$cursor-default-value: default !default;\n$cursor-pointer-value: pointer !default;\n$cursor-help-value: help !default;\n$cursor-text-value: text !default;\n\n\n@include exports(\"global\") {\n\n // Meta styles are included in all builds, as they are a dependency of the Javascript.\n // Used to provide media query values for javascript components.\n // Forward slash placed around everything to convince PhantomJS to read the value.\n\n meta.foundation-version {\n font-family: \"/5.5.0/\";\n }\n\n meta.foundation-mq-small {\n font-family: \"/\" + unquote($small-up) + \"/\";\n width: lower-bound($small-range\n );\n}\n\nmeta.foundation-mq-small-only {\n font-family: \"/\" + unquote($small-only) + \"/\";\n width: lower-bound($small-range);\n}\n\nmeta.foundation-mq-medium {\n font-family: \"/\" + unquote($medium-up) + \"/\";\n width: lower-bound($medium-range);\n}\n\nmeta.foundation-mq-medium-only {\n font-family: \"/\" + unquote($medium-only) + \"/\";\n width: lower-bound($medium-range);\n}\n\nmeta.foundation-mq-large {\n font-family: \"/\" + unquote($large-up) + \"/\";\n width: lower-bound($large-range);\n}\n\nmeta.foundation-mq-large-only {\n font-family: \"/\" + unquote($large-only) + \"/\";\n width: lower-bound($large-range);\n}\n\nmeta.foundation-mq-xlarge {\n font-family: \"/\" + unquote($xlarge-up) + \"/\";\n width: lower-bound($xlarge-range);\n}\n\nmeta.foundation-mq-xlarge-only {\n font-family: \"/\" + unquote($xlarge-only) + \"/\";\n width: lower-bound($xlarge-range);\n}\n\nmeta.foundation-mq-xxlarge {\n font-family: \"/\" + unquote($xxlarge-up) + \"/\";\n width: lower-bound($xxlarge-range);\n}\n\nmeta.foundation-data-attribute-namespace {\n font-family: #{$namespace};\n}\n\n@if $include-html-global-classes {\n\n // Must be 100% for off canvas to work\n html,\n body {\n height: 100%;\n }\n\n // Set box-sizing globally to handle padding and border widths\n *,\n *:before,\n *:after {\n @include box-sizing(border-box);\n }\n\n html,\n body {\n font-size: $base-font-size;\n }\n\n // Default body styles\n body {\n background: $body-bg;\n color: $body-font-color;\n padding: 0;\n margin: 0;\n font-family: $body-font-family;\n font-weight: $body-font-weight;\n font-style: $body-font-style;\n line-height: $base-line-height; // Set to $base-line-height to take on browser default of 150%\n position: relative;\n cursor: $cursor-auto-value;\n }\n\n a:hover {\n cursor: $cursor-pointer-value;\n }\n\n // Grid Defaults to get images and embeds to work properly\n img {\n max-width: 100%;\n height: auto;\n }\n\n img {\n -ms-interpolation-mode: bicubic;\n }\n\n #map_canvas,\n .map_canvas {\n\n img,\n embed,\n object {\n max-width: none !important;\n }\n }\n\n // Miscellaneous useful HTML classes\n .left {\n float: left !important;\n }\n\n .right {\n float: right !important;\n }\n\n .clearfix {\n @include clearfix;\n }\n\n // Hide visually and from screen readers\n .hide {\n display: none !important;\n visibility: hidden;\n }\n\n // Hide visually and from screen readers, but maintain layout\n .invisible {\n visibility: hidden;\n }\n\n // Font smoothing\n // Antialiased font smoothing works best for light text on a dark background.\n // Apply to single elements instead of globally to body.\n // Note this only applies to webkit-based desktop browsers and Firefox 25 (and later) on the Mac.\n .antialiased {\n -webkit-font-smoothing: antialiased;\n -moz-osx-font-smoothing: grayscale;\n }\n\n // Get rid of gap under images by making them display: inline-block; by default\n img {\n display: inline-block;\n vertical-align: middle;\n }\n\n //\n // Global resets for forms\n //\n\n // Make sure textarea takes on height automatically\n textarea {\n height: auto;\n min-height: 50px;\n }\n\n // Make select elements 100% width by default\n select {\n width: 100%;\n }\n}\n}","// Foundation by ZURB\n// foundation.zurb.com\n// Licensed under MIT Open Source\n\n@import \"global\";\n\n//\n// @variables\n//\n$include-html-button-classes: $include-html-classes !default;\n\n// We use these to build padding for buttons.\n$button-tny: rem-calc(10) !default;\n$button-sml: rem-calc(14) !default;\n$button-med: rem-calc(16) !default;\n$button-lrg: rem-calc(18) !default;\n\n// We use this to control the display property.\n$button-display: inline-block !default;\n$button-margin-bottom: rem-calc(20) !default;\n\n// We use these to control button text styles.\n$button-font-family: $body-font-family !default;\n$button-font-color: $white !default;\n$button-font-color-alt: $oil !default;\n$button-font-tny: rem-calc(11) !default;\n$button-font-sml: rem-calc(13) !default;\n$button-font-med: rem-calc(16) !default;\n$button-font-lrg: rem-calc(20) !default;\n$button-font-weight: $font-weight-normal !default;\n$button-font-align: center !default;\n\n// We use these to control various hover effects.\n$button-function-factor: -20% !default;\n\n// We use these to control button border styles.\n$button-border-width: 0 !default;\n$button-border-style: solid !default;\n$button-bg-color: $primary-color !default;\n$button-bg-hover: scale-color($button-bg-color, $lightness: $button-function-factor) !default;\n$button-border-color: $button-bg-hover !default;\n$secondary-button-bg-hover: scale-color($secondary-color, $lightness: $button-function-factor) !default;\n$secondary-button-border-color: $secondary-button-bg-hover !default;\n$success-button-bg-hover: scale-color($success-color, $lightness: $button-function-factor) !default;\n$success-button-border-color: $success-button-bg-hover !default;\n$alert-button-bg-hover: scale-color($alert-color, $lightness: $button-function-factor) !default;\n$alert-button-border-color: $alert-button-bg-hover !default;\n$warning-button-bg-hover: scale-color($warning-color, $lightness: $button-function-factor) !default;\n$warning-button-border-color: $warning-button-bg-hover !default;\n$info-button-bg-hover: scale-color($info-color, $lightness: $button-function-factor) !default;\n$info-button-border-color: $info-button-bg-hover !default;\n\n// We use this to set the default radius used throughout the core.\n$button-radius: $global-radius !default;\n$button-round: $global-rounded !default;\n\n// We use this to set default opacity and cursor for disabled buttons.\n$button-disabled-opacity: 0.7 !default;\n$button-disabled-cursor: $cursor-default-value !default;\n\n\n//\n// @MIXIN\n//\n// We use this mixin to create a default button base.\n//\n// $style - Sets base styles. Can be set to false. Default: true.\n// $display - Used to control display property. Default: $button-display || inline-block\n\n@mixin button-base($style:true, $display:$button-display) {\n @if $style {\n border-style: $button-border-style;\n border-width: $button-border-width;\n cursor: $cursor-pointer-value;\n font-family: $button-font-family;\n font-weight: $button-font-weight;\n line-height: normal;\n margin: 0 0 $button-margin-bottom;\n position: relative;\n text-decoration: none;\n text-align: $button-font-align;\n -webkit-appearance: none;\n border-radius:0;\n }\n @if $display { display: $display; }\n}\n\n// @MIXIN\n//\n// We use this mixin to add button size styles\n//\n// $padding - Used to build padding for buttons Default: $button-med ||= rem-calc(12)\n// $full-width - We can set $full-width:true to remove side padding extend width - Default: false\n\n@mixin button-size($padding:$button-med, $full-width:false) {\n\n // We control which padding styles come through,\n // these can be turned off by setting $padding:false\n @if $padding {\n padding-top: $padding;\n padding-#{$opposite-direction}: $padding * 2;\n padding-bottom: $padding + rem-calc(1);\n padding-#{$default-float}: $padding * 2;\n\n // We control the font-size based on mixin input.\n @if $padding == $button-med { font-size: $button-font-med; }\n @else if $padding == $button-tny { font-size: $button-font-tny; }\n @else if $padding == $button-sml { font-size: $button-font-sml; }\n @else if $padding == $button-lrg { font-size: $button-font-lrg; }\n }\n\n // We can set $full-width:true to remove side padding extend width.\n @if $full-width {\n // We still need to check if $padding is set.\n @if $padding {\n padding-top: $padding;\n padding-bottom: $padding + rem-calc(1);\n } @else if $padding == false {\n padding-top:0;\n padding-bottom:0;\n }\n padding-right: 0;\n padding-left: 0;\n width: 100%;\n }\n}\n\n// @MIXIN\n//\n// we use this mixin to create the button hover and border colors\n\n// @MIXIN\n//\n// We use this mixin to add button color styles\n//\n// $bg - Background color. We can set $bg:false for a transparent background. Default: $primary-color.\n// $radius - If true, set to button radius which is $global-radius || explicitly set radius amount in px (ex. $radius:10px). Default: true\n// $disabled - We can set $disabled:true to create a disabled transparent button. Default: false\n// $bg-hover - Button Hover Background Color. Default: $button-bg-hover\n// $border-color - Button Border Color. Default: $button-border-color\n@mixin button-style($bg:$button-bg-color, $radius:false, $disabled:false, $bg-hover:null, $border-color:null) {\n\n // We control which background styles are used,\n // these can be removed by setting $bg:false\n @if $bg {\n\n @if $bg-hover == null {\n $bg-hover: if($bg == $button-bg-color, $button-bg-hover, scale-color($bg, $lightness: $button-function-factor));\n }\n\n @if $border-color == null {\n $border-color: if($bg == $button-bg-color, $button-border-color, scale-color($bg, $lightness: $button-function-factor));\n }\n\n // This find the lightness percentage of the background color.\n $bg-lightness: lightness($bg);\n $bg-hover-lightness: lightness($bg-hover);\n\n background-color: $bg;\n border-color: $border-color;\n &:hover,\n &:focus { background-color: $bg-hover; }\n\n // We control the text color for you based on the background color.\n color: if($bg-lightness > 70%, $button-font-color-alt, $button-font-color);\n\n &:hover,\n &:focus {\n color: if($bg-hover-lightness > 70%, $button-font-color-alt, $button-font-color);\n }\n }\n\n // We can set $disabled:true to create a disabled transparent button.\n @if $disabled {\n cursor: $button-disabled-cursor;\n opacity: $button-disabled-opacity;\n box-shadow: none;\n &:hover,\n &:focus { background-color: $bg; }\n }\n\n // We can control how much button radius is used.\n @if $radius == true { @include radius($button-radius); }\n @else if $radius { @include radius($radius); }\n\n}\n\n// @MIXIN\n//\n// We use this to quickly create buttons with a single mixin. As @jaredhardy puts it, \"the kitchen sink mixin\"\n//\n// $padding - Used to build padding for buttons Default: $button-med ||= rem-calc(12)\n// $bg - Primary color set in settings file. Default: $button-bg.\n// $radius - If true, set to button radius which is $global-radius || explicitly set radius amount in px (ex. $radius:10px). Default:false.\n// $full-width - We can set $full-width:true to remove side padding extend width. Default:false.\n// $disabled - We can set $disabled:true to create a disabled transparent button. Default:false.\n// $is-prefix - Not used? Default:false.\n// $bg-hover - Button Hover Color - Default null - see button-style mixin\n// $border-color - Button Border Color - Default null - see button-style mixin\n// $transition - We can control whether or not to include the background-color transition property - Default:true.\n@mixin button($padding:$button-med, $bg:$button-bg-color, $radius:false, $full-width:false, $disabled:false, $is-prefix:false, $bg-hover:null, $border-color:null, $transition: true) {\n @include button-base;\n @include button-size($padding, $full-width);\n @include button-style($bg, $radius, $disabled, $bg-hover, $border-color);\n\n @if $transition {\n @include single-transition(background-color);\n }\n}\n\n\n@include exports(\"button\") {\n @if $include-html-button-classes {\n\n // Default styles applied outside of media query\n button, .button {\n @include button-base;\n @include button-size;\n @include button-style;\n\n @include single-transition(background-color);\n\n &.secondary { @include button-style($bg:$secondary-color, $bg-hover:$secondary-button-bg-hover, $border-color:$secondary-button-border-color); }\n &.success { @include button-style($bg:$success-color, $bg-hover:$success-button-bg-hover, $border-color:$success-button-border-color); }\n &.alert { @include button-style($bg:$alert-color, $bg-hover:$alert-button-bg-hover, $border-color:$alert-button-border-color); }\n &.warning { @include button-style($bg:$warning-color, $bg-hover:$warning-button-bg-hover, $border-color:$warning-button-border-color); }\n &.info { @include button-style($bg:$info-color, $bg-hover:$info-button-bg-hover, $border-color:$info-button-border-color); }\n\n &.large { @include button-size($padding:$button-lrg); }\n &.small { @include button-size($padding:$button-sml); }\n &.tiny { @include button-size($padding:$button-tny); }\n &.expand { @include button-size($padding:null,$full-width:true); }\n\n &.left-align { text-align: left; text-indent: rem-calc(12); }\n &.right-align { text-align: right; padding-right: rem-calc(12); }\n\n &.radius { @include button-style($bg:false, $radius:true); }\n &.round { @include button-style($bg:false, $radius:$button-round); }\n\n &.disabled, &[disabled] { @include button-style($bg:$button-bg-color, $disabled:true, $bg-hover:$button-bg-hover, $border-color:$button-border-color);\n &.secondary { @include button-style($bg:$secondary-color, $disabled:true, $bg-hover:$secondary-button-bg-hover, $border-color:$secondary-button-border-color); }\n &.success { @include button-style($bg:$success-color, $disabled:true, $bg-hover:$success-button-bg-hover, $border-color:$success-button-border-color); }\n &.alert { @include button-style($bg:$alert-color, $disabled:true, $bg-hover:$alert-button-bg-hover, $border-color:$alert-button-border-color); }\n &.warning { @include button-style($bg:$warning-color, $disabled:true, $bg-hover:$warning-button-bg-hover, $border-color:$warning-button-border-color); }\n &.info { @include button-style($bg:$info-color, $disabled:true, $bg-hover:$info-button-bg-hover, $border-color:$info-button-border-color); }\n }\n }\n\n //firefox 2px fix\n button::-moz-focus-inner {border:0; padding:0;}\n\n @media #{$medium-up} {\n button, .button {\n @include button-base($style:false, $display:inline-block);\n @include button-size($padding:false, $full-width:false);\n }\n }\n }\n}\n","@charset \"utf-8\";\n\n$spacing-unit: 30px;\n\n\n// Foundation by ZURB\n// foundation.zurb.com\n// Licensed under MIT Open Source\n\n//\n\n// Table of Contents\n// Foundation Settings\n//\n// a. Base\n// b. Grid\n// c. Global\n// d. Media Query Ranges\n// e. Typography\n// 01. Accordion\n// 02. Alert Boxes\n// 03. Block Grid\n// 04. Breadcrumbs\n// 05. Buttons\n// 06. Button Groups\n// 07. Clearing\n// 08. Dropdown\n// 09. Dropdown Buttons\n// 10. Flex Video\n// 11. Forms\n// 12. Icon Bar\n// 13. Inline Lists\n// 14. Joyride\n// 15. Keystrokes\n// 16. Labels\n// 17. Magellan\n// 18. Off-canvas\n// 19. Orbit\n// 20. Pagination\n// 21. Panels\n// 22. Pricing Tables\n// 23. Progress Bar\n// 24. Range Slider\n// 25. Reveal\n// 26. Side Nav\n// 27. Split Buttons\n// 28. Sub Nav\n// 29. Switch\n// 30. Tables\n// 31. Tabs\n// 32. Thumbnails\n// 33. Tooltips\n// 34. Top Bar\n// 36. Visibility Classes\n\n// a. Base\n// - - - - - - - - - - - - - - - - - - - - - - - - -\n\n// This is the default html and body font-size for the base rem value.\n// $rem-base: 16px;\n\n// Allows the use of rem-calc() or lower-bound() in your settings\n@import \"functions\";\n\n// The default font-size is set to 100% of the browser style sheet (usually 16px)\n// for compatibility with browser-based text zoom or user-set defaults.\n\n// Since the typical default browser font-size is 16px, that makes the calculation for grid size.\n// If you want your base font-size to be different and not have it affect the grid breakpoints,\n// set $rem-base to $base-font-size and make sure $base-font-size is a px value.\n// $base-font-size: 100%;\n\n$base-font-size: 16px;\n$rem-base: $base-font-size;\n\n\n// The $base-font-size is 100% while $base-line-height is 150%\n// $base-line-height: 150%;\n\n// We use this to control whether or not CSS classes come through in the gem files.\n$include-html-classes: true;\n// $include-print-styles: true;\n$include-html-global-classes: $include-html-classes;\n\n// b. Grid\n// - - - - - - - - - - - - - - - - - - - - - - - - -\n\n// $include-html-grid-classes: $include-html-classes;\n// $include-xl-html-grid-classes: false;\n\n// $row-width: rem-calc(1000);\n// $total-columns: 12;\n// $column-gutter: rem-calc(30);\n\n// c. Global\n// - - - - - - - - - - - - - - - - - - - - - - - - -\n\n// We use these to define default font stacks\n// $font-family-sans-serif: \"Lato\", \"Helvetica Neue\", \"Helvetica\", Helvetica, Arial, sans-serif;\n// $font-family-serif: \"Volkhov\", Georgia, Times, serif;\n// $font-family-monospace: \"Lucida Console\", Monaco, monospace;\n\n// We use these to define default font weights\n// $font-weight-normal: normal !default;\n// $font-weight-bold: bold !default;\n\n// $white : #FFFFFF;\n// $ghost : #FAFAFA;\n// $snow : #F9F9F9;\n// $vapor : #F6F6F6;\n// $white-smoke : #F5F5F5;\n// $silver : #EFEFEF;\n// $smoke : #EEEEEE;\n// $gainsboro : #DDDDDD;\n// $iron : #CCCCCC;\n// $base : #AAAAAA;\n// $aluminum : #999999;\n// $jumbo : #888888;\n// $monsoon : #777777;\n// $steel : #666666;\n// $charcoal : #555555;\n// $tuatara : #444444;\n// $oil : #333333;\n// $jet : #222222;\n// $black : #000000;\n\n// We use these as default colors throughout\n// $primary-color: #008CBA;\n// $secondary-color: #e7e7e7;\n// $alert-color: #f04124;\n// $success-color: #43AC6A;\n// $warning-color: #f08a24;\n// $info-color: #a0d3e8;\n\n// We use these to control various global styles\n// $body-bg: $white;\n// $body-font-color: $jet;\n// $body-font-family: $font-family-sans-serif;\n// $body-font-weight: $font-weight-normal;\n// $body-font-style: normal;\n\n// We use this to control font-smoothing\n// $font-smoothing: antialiased;\n\n// We use these to control text direction settings\n// $text-direction: ltr;\n// $opposite-direction: right;\n// $default-float: left;\n// $last-child-float: $opposite-direction;\n\n// We use these to make sure border radius matches unless we want it different.\n$global-radius: 3px;\n// $global-rounded: 1000px;\n\n// We use these to control inset shadow shiny edges and depressions.\n// $shiny-edge-size: 0 1px 0;\n// $shiny-edge-color: rgba($white, .5);\n// $shiny-edge-active-color: rgba($black, .2);\n\n// // d. Media Query Ranges\n// // - - - - - - - - - - - - - - - - - - - - - - - - -\n\n// $small-range: (0em, 40em);\n// $medium-range: (40.063em, 64em);\n// $large-range: (64.063em, 90em);\n// $xlarge-range: (90.063em, 120em);\n// $xxlarge-range: (120.063em, 99999999em);\n\n// $screen: \"only screen\";\n\n// // $landscape: \"#{$screen} and (orientation: landscape)\";\n// // $portrait: \"#{$screen} and (orientation: portrait)\";\n\n// $small-up: $screen;\n// $small-only: \"#{$screen} and (max-width: #{upper-bound($small-range)})\";\n\n// $medium-up: \"#{$screen} and (min-width:#{lower-bound($medium-range)})\";\n// $medium-only: \"#{$screen} and (min-width:#{lower-bound($medium-range)}) and (max-width:#{upper-bound($medium-range)})\";\n\n// $large-up: \"#{$screen} and (min-width:#{lower-bound($large-range)})\";\n// $large-only: \"#{$screen} and (min-width:#{lower-bound($large-range)}) and (max-width:#{upper-bound($large-range)})\";\n\n// $xlarge-up: \"#{$screen} and (min-width:#{lower-bound($xlarge-range)})\";\n// $xlarge-only: \"#{$screen} and (min-width:#{lower-bound($xlarge-range)}) and (max-width:#{upper-bound($xlarge-range)})\";\n\n// $xxlarge-up: \"#{$screen} and (min-width:#{lower-bound($xxlarge-range)})\";\n// $xxlarge-only: \"#{$screen} and (min-width:#{lower-bound($xxlarge-range)}) and (max-width:#{upper-bound($xxlarge-range)})\";\n\n// Legacy\n// $small: $medium-up;\n// $medium: $medium-up;\n// $large: $large-up;\n\n// We use this as cursors values for enabling the option of having custom cursors in the whole site's stylesheet\n// $cursor-crosshair-value: crosshair;\n// $cursor-default-value: default;\n// $cursor-pointer-value: pointer;\n// $cursor-help-value: help;\n// $cursor-text-value: text;\n\n// e. Typography\n// - - - - - - - - - - - - - - - - - - - - - - - - -\n\n// $include-html-type-classes: $include-html-classes;\n\n// We use these to control header font styles\n// $header-font-family: $font-family-serif;\n// $header-font-weight: $font-weight-normal;\n// $header-font-style: normal;\n// $header-font-color: $jet;\n// $header-line-height: 1.4;\n// $header-top-margin: .2rem;\n// $header-bottom-margin: .5rem;\n// $header-text-rendering: optimizeLegibility;\n\n// We use these to control header font sizes\n// $h1-font-size: rem-calc(54);\n// $h2-font-size: rem-calc(36);\n// $h3-font-size: rem-calc(29);\n// $h4-font-size: rem-calc(24);\n// $h5-font-size: rem-calc(19);\n// $h6-font-size: 1rem;\n\n// We use these to control header size reduction on small screens\n// $h1-font-reduction: rem-calc(10) !default;\n// $h2-font-reduction: rem-calc(10) !default;\n// $h3-font-reduction: rem-calc(5) !default;\n// $h4-font-reduction: rem-calc(5) !default;\n// $h5-font-reduction: 0 !default;\n// $h6-font-reduction: 0 !default;\n\n// These control how subheaders are styled.\n// $subheader-line-height: 1.4;\n// $subheader-font-color: scale-color($header-font-color, $lightness: 35%);\n// $subheader-font-weight: $font-weight-normal;\n// $subheader-top-margin: .2rem;\n// $subheader-bottom-margin: .5rem;\n\n// A general styling\n// $small-font-size: 60%;\n// $small-font-color: scale-color($header-font-color, $lightness: 35%);\n\n// We use these to style paragraphs\n// $paragraph-font-family: inherit;\n// $paragraph-font-weight: $font-weight-normal;\n// $paragraph-font-size: 1rem;\n// $paragraph-line-height: 1.6;\n// $paragraph-margin-bottom: rem-calc(20);\n// $paragraph-aside-font-size: rem-calc(14);\n// $paragraph-aside-line-height: 1.35;\n// $paragraph-aside-font-style: italic;\n// $paragraph-text-rendering: optimizeLegibility;\n\n// We use these to style tags\n// $code-color: $oil;\n// $code-font-family: $font-family-monospace;\n// $code-font-weight: $font-weight-normal;\n// $code-background-color: scale-color($secondary-color, $lightness: 70%);\n// $code-border-size: 1px;\n// $code-border-style: solid;\n// $code-border-color: scale-color($code-background-color, $lightness: -10%);\n// $code-padding: rem-calc(2) rem-calc(5) rem-calc(1);\n\n// We use these to style anchors\n// $anchor-text-decoration: none;\n// $anchor-text-decoration-hover: none;\n// $anchor-font-color: $primary-color;\n// $anchor-font-color-hover: scale-color($primary-color, $lightness: -14%);\n\n// We use these to style the
element\n// $hr-border-width: 1px;\n// $hr-border-style: solid;\n$hr-border-color: $grey-3;\n// $hr-margin: rem-calc(20);\n\n// We use these to style lists\n// $list-font-family: $paragraph-font-family;\n// $list-font-size: $paragraph-font-size;\n// $list-line-height: $paragraph-line-height;\n// $list-margin-bottom: $paragraph-margin-bottom;\n// $list-style-position: outside;\n$list-side-margin: 1.3rem;\n// $list-ordered-side-margin: 1.4rem;\n// $list-side-margin-no-bullet: 0;\n// $list-nested-margin: rem-calc(20);\n// $definition-list-header-weight: $font-weight-bold;\n// $definition-list-header-margin-bottom: .3rem;\n// $definition-list-margin-bottom: rem-calc(12);\n\n// We use these to style blockquotes\n// $blockquote-font-color: scale-color($header-font-color, $lightness: 35%);\n// $blockquote-padding: rem-calc(9 20 0 19);\n// $blockquote-border: 1px solid $gainsboro;\n// $blockquote-cite-font-size: rem-calc(13);\n// $blockquote-cite-font-color: scale-color($header-font-color, $lightness: 23%);\n// $blockquote-cite-link-color: $blockquote-cite-font-color;\n\n// Acronym styles\n// $acronym-underline: 1px dotted $gainsboro;\n\n// We use these to control padding and margin\n// $microformat-padding: rem-calc(10 12);\n// $microformat-margin: rem-calc(0 0 20 0);\n\n// We use these to control the border styles\n// $microformat-border-width: 1px;\n// $microformat-border-style: solid;\n// $microformat-border-color: $gainsboro;\n\n// We use these to control full name font styles\n// $microformat-fullname-font-weight: $font-weight-bold;\n// $microformat-fullname-font-size: rem-calc(15);\n\n// We use this to control the summary font styles\n// $microformat-summary-font-weight: $font-weight-bold;\n\n// We use this to control abbr padding\n// $microformat-abbr-padding: rem-calc(0 1);\n\n// We use this to control abbr font styles\n// $microformat-abbr-font-weight: $font-weight-bold;\n// $microformat-abbr-font-decoration: none;\n\n// 01. Accordion\n// - - - - - - - - - - - - - - - - - - - - - - - - -\n\n// $include-html-accordion-classes: $include-html-classes;\n\n$accordion-navigation-padding: rem-calc(12);\n// $accordion-navigation-bg-color: #ffffff;\n// $accordion-navigation-hover-bg-color: $grey-1;\n// $accordion-navigation-active-bg-color: $grey-1;\n// $accordion-navigation-font-color: $jet;\n// $accordion-navigation-font-size: rem-calc(16);\n// $accordion-navigation-font-family: $body-font-family;\n\n// $accordion-content-padding: $column-gutter/2;\n$accordion-content-active-bg-color: $body-bg;\n\n// 02. Alert Boxes\n// - - - - - - - - - - - - - - - - - - - - - - - - -\n\n// $include-html-alert-classes: $include-html-classes;\n\n// We use this to control alert padding.\n// $alert-padding-top: rem-calc(14);\n// $alert-padding-default-float: $alert-padding-top;\n// $alert-padding-opposite-direction: $alert-padding-top + rem-calc(10);\n// $alert-padding-bottom: $alert-padding-top;\n\n// We use these to control text style.\n// $alert-font-weight: $font-weight-normal;\n$alert-font-size: rem-calc(15);\n// $alert-font-color: $white;\n// $alert-font-color-alt: scale-color($secondary-color, $lightness: -66%);\n\n// We use this for close hover effect.\n// $alert-function-factor: -14%;\n\n// We use these to control border styles.\n// $alert-border-style: solid;\n// $alert-border-width: 1px;\n// $alert-border-color: scale-color($primary-color, $lightness: $alert-function-factor);\n// $alert-bottom-margin: rem-calc(20);\n\n// We use these to style the close buttons\n// $alert-close-color: $oil;\n// $alert-close-top: 50%;\n// $alert-close-position: rem-calc(4);\n// $alert-close-font-size: rem-calc(22);\n// $alert-close-opacity: 0.3;\n// $alert-close-opacity-hover: 0.5;\n// $alert-close-padding: 9px 6px 4px;\n\n// We use this to control border radius\n// $alert-radius: $global-radius;\n\n// We use this to control transition effects\n// $alert-transition-speed: 300ms;\n// $alert-transition-ease: ease-out;\n\n// 03. Block Grid\n// - - - - - - - - - - - - - - - - - - - - - - - - -\n\n// $include-html-block-grid-classes: $include-html-classes;\n// $include-xl-html-block-grid-classes: false;\n\n// We use this to control the maximum number of block grid elements per row\n// $block-grid-elements: 12;\n// $block-grid-default-spacing: rem-calc(20);\n// $align-block-grid-to-grid: false;\n\n// Enables media queries for block-grid classes. Set to false if writing semantic HTML.\n// $block-grid-media-queries: true;\n\n// 04. Breadcrumbs\n// - - - - - - - - - - - - - - - - - - - - - - - - -\n\n// $include-html-nav-classes: $include-html-classes;\n\n// We use this to set the background color for the breadcrumb container.\n$crumb-bg: $grey-1;\n\n// We use these to set the padding around the breadcrumbs.\n// $crumb-padding: rem-calc(9 9 14 0);\n// $crumb-side-padding: rem-calc(12);\n\n// We use these to control border styles.\n// $crumb-function-factor: -10%;\n$crumb-border-size: 0;\n// $crumb-border-style: solid;\n$crumb-border-color: $grey-1;\n$crumb-radius: 0;\n\n// We use these to set various text styles for breadcrumbs.\n// $crumb-font-size: rem-calc(11);\n// $crumb-font-color: $primary-color;\n// $crumb-font-color-current: $oil;\n// $crumb-font-color-unavailable: $aluminum;\n// $crumb-font-transform: uppercase;\n// $crumb-link-decor: underline;\n\n// We use these to control the slash between breadcrumbs\n// $crumb-slash-color: $base;\n$crumb-slash: \"/\";\n\n// 05. Buttons\n// - - - - - - - - - - - - - - - - - - - - - - - - -\n\n// $include-html-button-classes: $include-html-classes;\n\n// We use these to build padding for buttons.\n// $button-tny: rem-calc(10);\n// $button-sml: rem-calc(14);\n// $button-med: rem-calc(16);\n// $button-lrg: rem-calc(18);\n\n// We use this to control the display property.\n// $button-display: inline-block;\n// $button-margin-bottom: rem-calc(20);\n\n// We use these to control button text styles.\n// $button-font-family: $body-font-family;\n// $button-font-color: $white;\n// $button-font-color-alt: $oil;\n// $button-font-tny: rem-calc(11);\n// $button-font-sml: rem-calc(13);\n// $button-font-med: rem-calc(16);\n// $button-font-lrg: rem-calc(20);\n// $button-font-weight: $font-weight-normal;\n// $button-font-align: center;\n\n// We use these to control various hover effects.\n// $button-function-factor: -20%;\n\n// We use these to control button border and hover styles.\n// $button-border-width: 0px;\n// $button-border-style: solid;\n// $button-bg-color: $primary-color;\n// $button-bg-hover: scale-color($button-bg-color, $lightness: $button-function-factor);\n// $button-border-color: $button-bg-hover;\n// $secondary-button-bg-hover: scale-color($secondary-color, $lightness: $button-function-factor);\n// $secondary-button-border-color: $secondary-button-bg-hover;\n// $success-button-bg-hover: scale-color($success-color, $lightness: $button-function-factor);\n// $success-button-border-color: $success-button-bg-hover;\n// $alert-button-bg-hover: scale-color($alert-color, $lightness: $button-function-factor);\n// $alert-button-border-color: $alert-button-bg-hover;\n\n// We use this to set the default radius used throughout the core.\n// $button-radius: $global-radius;\n// $button-round: $global-rounded;\n\n// We use this to set default opacity and cursor for disabled buttons.\n// $button-disabled-opacity: 0.7;\n// $button-disabled-cursor: $cursor-default-value;\n\n// 06. Button Groups\n// - - - - - - - - - - - - - - - - - - - - - - - - -\n\n// $include-html-button-classes: $include-html-classes;\n\n// Sets the margin for the right side by default, and the left margin if right-to-left direction is used\n// $button-bar-margin-opposite: rem-calc(10);\n// $button-group-border-width: 1px;\n\n// 07. Clearing\n// - - - - - - - - - - - - - - - - - - - - - - - - -\n\n// $include-html-clearing-classes: $include-html-classes;\n\n// We use these to set the background colors for parts of Clearing.\n// $clearing-bg: $oil;\n// $clearing-caption-bg: $clearing-bg;\n// $clearing-carousel-bg: rgba(51,51,51,0.8);\n// $clearing-img-bg: $clearing-bg;\n\n// We use these to style the close button\n// $clearing-close-color: $iron;\n// $clearing-close-size: 30px;\n\n// We use these to style the arrows\n// $clearing-arrow-size: 12px;\n// $clearing-arrow-color: $clearing-close-color;\n\n// We use these to style captions\n// $clearing-caption-font-color: $iron;\n// $clearing-caption-font-size: 0.875em;\n// $clearing-caption-padding: 10px 30px 20px;\n\n// We use these to make the image and carousel height and style\n// $clearing-active-img-height: 85%;\n// $clearing-carousel-height: 120px;\n// $clearing-carousel-thumb-width: 120px;\n// $clearing-carousel-thumb-active-border: 1px solid rgb(255,255,255);\n\n// 08. Dropdown\n// - - - - - - - - - - - - - - - - - - - - - - - - -\n\n// $include-html-dropdown-classes: $include-html-classes;\n\n// We use these to controls height and width styles.\n// $f-dropdown-max-width: 200px;\n// $f-dropdown-height: auto;\n// $f-dropdown-max-height: none;\n\n// Used for bottom position\n// $f-dropdown-margin-top: 2px;\n\n// Used for right position\n// $f-dropdown-margin-left: $f-dropdown-margin-top;\n\n// Used for left position\n// $f-dropdown-margin-right: $f-dropdown-margin-top;\n\n// Used for top position\n// $f-dropdown-margin-bottom: $f-dropdown-margin-top;\n\n// We use this to control the background color\n// $f-dropdown-bg: $white;\n\n// We use this to set the border styles for dropdowns.\n// $f-dropdown-border-style: solid;\n// $f-dropdown-border-width: 1px;\n// $f-dropdown-border-color: scale-color($white, $lightness: -20%);\n\n// We use these to style the triangle pip.\n// $f-dropdown-triangle-size: 6px;\n// $f-dropdown-triangle-color: $white;\n// $f-dropdown-triangle-side-offset: 10px;\n\n// We use these to control styles for the list elements.\n// $f-dropdown-list-style: none;\n// $f-dropdown-font-color: $charcoal;\n// $f-dropdown-font-size: rem-calc(14);\n// $f-dropdown-list-padding: rem-calc(5, 10);\n// $f-dropdown-line-height: rem-calc(18);\n// $f-dropdown-list-hover-bg: $smoke ;\n// $dropdown-mobile-default-float: 0;\n\n// We use this to control the styles for when the dropdown has custom content.\n// $f-dropdown-content-padding: rem-calc(20);\n\n// Default radius for dropdown.\n// $f-dropdown-radius: $global-radius;\n\n\n// 09. Dropdown Buttons\n// - - - - - - - - - - - - - - - - - - - - - - - - -\n\n// $include-html-button-classes: $include-html-classes;\n\n// We use these to set the color of the pip in dropdown buttons\n// $dropdown-button-pip-color: $white;\n// $dropdown-button-pip-color-alt: $oil;\n\n// $button-pip-tny: rem-calc(6);\n// $button-pip-sml: rem-calc(7);\n// $button-pip-med: rem-calc(9);\n// $button-pip-lrg: rem-calc(11);\n\n// We use these to style tiny dropdown buttons\n// $dropdown-button-padding-tny: $button-pip-tny * 7;\n// $dropdown-button-pip-size-tny: $button-pip-tny;\n// $dropdown-button-pip-opposite-tny: $button-pip-tny * 3;\n// $dropdown-button-pip-top-tny: -$button-pip-tny / 2 + rem-calc(1);\n\n// We use these to style small dropdown buttons\n// $dropdown-button-padding-sml: $button-pip-sml * 7;\n// $dropdown-button-pip-size-sml: $button-pip-sml;\n// $dropdown-button-pip-opposite-sml: $button-pip-sml * 3;\n// $dropdown-button-pip-top-sml: -$button-pip-sml / 2 + rem-calc(1);\n\n// We use these to style medium dropdown buttons\n// $dropdown-button-padding-med: $button-pip-med * 6 + rem-calc(3);\n// $dropdown-button-pip-size-med: $button-pip-med - rem-calc(3);\n// $dropdown-button-pip-opposite-med: $button-pip-med * 2.5;\n// $dropdown-button-pip-top-med: -$button-pip-med / 2 + rem-calc(2);\n\n// We use these to style large dropdown buttons\n// $dropdown-button-padding-lrg: $button-pip-lrg * 5 + rem-calc(3);\n// $dropdown-button-pip-size-lrg: $button-pip-lrg - rem-calc(6);\n// $dropdown-button-pip-opposite-lrg: $button-pip-lrg * 2.5;\n// $dropdown-button-pip-top-lrg: -$button-pip-lrg / 2 + rem-calc(3);\n\n// 10. Flex Video\n// - - - - - - - - - - - - - - - - - - - - - - - - -\n\n// $include-html-media-classes: $include-html-classes;\n\n// We use these to control video container padding and margins\n// $flex-video-padding-top: rem-calc(25);\n// $flex-video-padding-bottom: 67.5%;\n// $flex-video-margin-bottom: rem-calc(16);\n\n// We use this to control widescreen bottom padding\n// $flex-video-widescreen-padding-bottom: 56.34%;\n\n// 11. Forms\n// - - - - - - - - - - - - - - - - - - - - - - - - -\n\n// $include-html-form-classes: $include-html-classes;\n\n// We use this to set the base for lots of form spacing and positioning styles\n// $form-spacing: rem-calc(16);\n\n// We use these to style the labels in different ways\n// $form-label-pointer: pointer;\n// $form-label-font-size: rem-calc(14);\n// $form-label-font-weight: $font-weight-normal;\n// $form-label-line-height: 1.5;\n// $form-label-font-color: scale-color($black, $lightness: 30%);\n// $form-label-small-transform: capitalize;\n// $form-label-bottom-margin: 0;\n// $input-font-family: inherit;\n// $input-font-color: rgba(0,0,0,0.75);\n// $input-font-size: rem-calc(14);\n// $input-bg-color: $white;\n// $input-focus-bg-color: scale-color($white, $lightness: -2%);\n// $input-border-color: scale-color($white, $lightness: -20%);\n// $input-focus-border-color: scale-color($white, $lightness: -40%);\n// $input-border-style: solid;\n// $input-border-width: 1px;\n// $input-border-radius: $global-radius;\n// $input-disabled-bg: $gainsboro;\n// $input-disabled-cursor: $cursor-default-value;\n// $input-box-shadow: inset 0 1px 2px rgba(0,0,0,0.1);\n\n// We use these to style the fieldset border and spacing.\n// $fieldset-border-style: solid;\n// $fieldset-border-width: 1px;\n// $fieldset-border-color: $gainsboro;\n// $fieldset-padding: rem-calc(20);\n// $fieldset-margin: rem-calc(18 0);\n\n// We use these to style the legends when you use them\n// $legend-bg: $white;\n// $legend-font-weight: $font-weight-bold;\n// $legend-padding: rem-calc(0 3);\n\n// We use these to style the prefix and postfix input elements\n// $input-prefix-bg: scale-color($white, $lightness: -5%);\n// $input-prefix-border-color: scale-color($white, $lightness: -20%);\n// $input-prefix-border-size: 1px;\n// $input-prefix-border-type: solid;\n// $input-prefix-overflow: hidden;\n// $input-prefix-font-color: $oil;\n// $input-prefix-font-color-alt: $white;\n\n// We use this setting to turn on/off HTML5 number spinners (the up/down arrows)\n// $input-number-spinners: true;\n\n// We use these to style the error states for inputs and labels\n// $input-error-message-padding: rem-calc(6 9 9);\n// $input-error-message-top: -1px;\n// $input-error-message-font-size: rem-calc(12);\n// $input-error-message-font-weight: $font-weight-normal;\n// $input-error-message-font-style: italic;\n// $input-error-message-font-color: $white;\n// $input-error-message-font-color-alt: $oil;\n\n// We use this to style the glowing effect of inputs when focused\n// $input-include-glowing-effect: true;\n// $glowing-effect-fade-time: 0.45s;\n// $glowing-effect-color: $input-focus-border-color;\n\n// Select variables\n// $select-bg-color: $ghost;\n// $select-hover-bg-color: scale-color($select-bg-color, $lightness: -3%);\n\n// 12. Icon Bar\n// - - - - - - - - - - - - - - - - - - - - - - - - -\n\n// We use these to style the icon-bar and items\n// $include-html-icon-bar-classes: $include-html-classes;\n// $icon-bar-bg: $oil;\n// $icon-bar-font-color: $white;\n// $icon-bar-font-size: 1rem;\n// $icon-bar-hover-color: $primary-color;\n// $icon-bar-icon-color: $white;\n// $icon-bar-icon-size: 1.875rem;\n// $icon-bar-image-width: 1.875rem;\n// $icon-bar-image-height: 1.875rem;\n// $icon-bar-active-color: $primary-color;\n// $icon-bar-item-padding: 1.25rem;\n\n// 13. Inline Lists\n// - - - - - - - - - - - - - - - - - - - - - - - - -\n\n// $include-html-inline-list-classes: $include-html-classes;\n\n// We use this to control the margins and padding of the inline list.\n// $inline-list-top-margin: 0;\n// $inline-list-opposite-margin: 0;\n// $inline-list-bottom-margin: rem-calc(17);\n// $inline-list-default-float-margin: rem-calc(-22);\n// $inline-list-default-float-list-margin: rem-calc(22);\n\n// $inline-list-padding: 0;\n\n// We use this to control the overflow of the inline list.\n// $inline-list-overflow: hidden;\n\n// We use this to control the list items\n// $inline-list-display: block;\n\n// We use this to control any elements within list items\n// $inline-list-children-display: block;\n\n// 14. Joyride\n// - - - - - - - - - - - - - - - - - - - - - - - - -\n\n// $include-html-joyride-classes: $include-html-classes;\n\n// Controlling default Joyride styles\n// $joyride-tip-bg: $oil;\n// $joyride-tip-default-width: 300px;\n// $joyride-tip-padding: rem-calc(18 20 24);\n// $joyride-tip-border: solid 1px $charcoal;\n// $joyride-tip-radius: 4px;\n// $joyride-tip-position-offset: 22px;\n\n// Here, we're setting the tip font styles\n// $joyride-tip-font-color: $white;\n// $joyride-tip-font-size: rem-calc(14);\n// $joyride-tip-header-weight: $font-weight-bold;\n\n// This changes the nub size\n// $joyride-tip-nub-size: 10px;\n\n// This adjusts the styles for the timer when its enabled\n// $joyride-tip-timer-width: 50px;\n// $joyride-tip-timer-height: 3px;\n// $joyride-tip-timer-color: $steel;\n\n// This changes up the styles for the close button\n// $joyride-tip-close-color: $monsoon;\n// $joyride-tip-close-size: 24px;\n// $joyride-tip-close-weight: $font-weight-normal;\n\n// When Joyride is filling the screen, we use this style for the bg\n// $joyride-screenfill: rgba(0,0,0,0.5);\n\n// 15. Keystrokes\n// - - - - - - - - - - - - - - - - - - - - - - - - -\n\n// $include-html-keystroke-classes: $include-html-classes;\n\n// We use these to control text styles.\n// $keystroke-font: \"Consolas\", \"Menlo\", \"Courier\", monospace;\n// $keystroke-font-size: inherit;\n// $keystroke-font-color: $jet;\n// $keystroke-font-color-alt: $white;\n// $keystroke-function-factor: -7%;\n\n// We use this to control keystroke padding.\n// $keystroke-padding: rem-calc(2 4 0);\n\n// We use these to control background and border styles.\n// $keystroke-bg: scale-color($white, $lightness: $keystroke-function-factor);\n// $keystroke-border-style: solid;\n// $keystroke-border-width: 1px;\n// $keystroke-border-color: scale-color($keystroke-bg, $lightness: $keystroke-function-factor);\n// $keystroke-radius: $global-radius;\n\n// 16. Labels\n// - - - - - - - - - - - - - - - - - - - - - - - - -\n\n// $include-html-label-classes: $include-html-classes;\n\n// We use these to style the labels\n// $label-padding: rem-calc(4 8 4);\n// $label-radius: $global-radius;\n\n// We use these to style the label text\n// $label-font-sizing: rem-calc(11);\n// $label-font-weight: $font-weight-normal;\n// $label-font-color: $oil;\n// $label-font-color-alt: $white;\n// $label-font-family: $body-font-family;\n\n// 17. Magellan\n// - - - - - - - - - - - - - - - - - - - - - - - - -\n\n// $include-html-magellan-classes: $include-html-classes;\n\n// $magellan-bg: $white;\n// $magellan-padding: 0 !important;\n\n// 18. Off-canvas\n// - - - - - - - - - - - - - - - - - - - - - - - - -\n\n// $include-html-off-canvas-classes: $include-html-classes;\n\n// $tabbar-bg: $oil;\n// $tabbar-height: rem-calc(45);\n// $tabbar-icon-width: $tabbar-height;\n// $tabbar-line-height: $tabbar-height;\n// $tabbar-color: $white;\n// $tabbar-middle-padding: 0 rem-calc(10);\n\n// Off Canvas Divider Styles\n// $tabbar-right-section-border: solid 1px scale-color($tabbar-bg, $lightness: 13%);\n// $tabbar-left-section-border: solid 1px scale-color($tabbar-bg, $lightness: -50%);\n\n// Off Canvas Tab Bar Headers\n// $tabbar-header-color: $white;\n// $tabbar-header-weight: $font-weight-bold;\n// $tabbar-header-line-height: $tabbar-height;\n// $tabbar-header-margin: 0;\n\n// Off Canvas Menu Variables\n// $off-canvas-width: rem-calc(250);\n// $off-canvas-bg: $oil;\n// $off-canvas-bg-hover: scale-color($tabbar-bg, $lightness: -30%);\n\n// Off Canvas Menu List Variables\n// $off-canvas-label-padding: 0.3rem rem-calc(15);\n// $off-canvas-label-color: $aluminum;\n// $off-canvas-label-text-transform: uppercase;\n// $off-canvas-label-font-size: rem-calc(12);\n// $off-canvas-label-font-weight: $font-weight-bold;\n// $off-canvas-label-bg: $tuatara;\n// $off-canvas-label-border-top: 1px solid scale-color($tuatara, $lightness: 14%);\n// $off-canvas-label-border-bottom: none;\n// $off-canvas-label-margin:0;\n// $off-canvas-link-padding: rem-calc(10, 15);\n// $off-canvas-link-color: rgba($white, 0.7);\n// $off-canvas-link-border-bottom: 1px solid scale-color($off-canvas-bg, $lightness: -25%);\n// $off-canvas-back-bg: $tuatara;\n// $off-canvas-back-border-top: $off-canvas-label-border-top;\n// $off-canvas-back-border-bottom: $off-canvas-label-border-bottom;\n// $off-canvas-back-hover-bg: scale-color($off-canvas-back-bg, $lightness: -30%);\n// $off-canvas-back-hover-border-top: 1px solid scale-color($off-canvas-label-bg, $lightness: 14%);\n// $off-canvas-back-hover-border-bottom: none;\n\n// Off Canvas Menu Icon Variables\n// $tabbar-menu-icon-color: $white;\n// $tabbar-menu-icon-hover: scale-color($tabbar-menu-icon-color, $lightness: -30%);\n\n// $tabbar-menu-icon-text-indent: rem-calc(35);\n// $tabbar-menu-icon-width: $tabbar-height;\n// $tabbar-menu-icon-height: $tabbar-height;\n// $tabbar-menu-icon-padding: 0;\n\n// $tabbar-hamburger-icon-width: rem-calc(16);\n// $tabbar-hamburger-icon-left: false;\n// $tabbar-hamburger-icon-top: false;\n// $tabbar-hamburger-icon-thickness: 1px;\n// $tabbar-hamburger-icon-gap: 6px;\n\n// Off Canvas Back-Link Overlay\n// $off-canvas-overlay-transition: background 300ms ease;\n// $off-canvas-overlay-cursor: pointer;\n// $off-canvas-overlay-box-shadow: -4px 0 4px rgba($black, 0.5), 4px 0 4px rgba($black, 0.5);\n// $off-canvas-overlay-background: rgba($white, 0.2);\n// $off-canvas-overlay-background-hover: rgba($white, 0.05);\n\n// Transition Variables\n// $menu-slide: \"transform 500ms ease\";\n\n// 19. Orbit\n// - - - - - - - - - - - - - - - - - - - - - - - - -\n\n// $include-html-orbit-classes: $include-html-classes;\n\n// We use these to control the caption styles\n// $orbit-container-bg: none;\n// $orbit-caption-bg: rgba(51,51,51, 0.8);\n// $orbit-caption-font-color: $white;\n// $orbit-caption-font-size: rem-calc(14);\n// $orbit-caption-position: \"bottom\"; // Supported values: \"bottom\", \"under\"\n// $orbit-caption-padding: rem-calc(10 14);\n// $orbit-caption-height: auto;\n\n// We use these to control the left/right nav styles\n// $orbit-nav-bg: transparent;\n// $orbit-nav-bg-hover: rgba(0,0,0,0.3);\n// $orbit-nav-arrow-color: $white;\n// $orbit-nav-arrow-color-hover: $white;\n\n// We use these to control the timer styles\n// $orbit-timer-bg: rgba(255,255,255,0.3);\n// $orbit-timer-show-progress-bar: true;\n\n// We use these to control the bullet nav styles\n// $orbit-bullet-nav-color: $iron;\n// $orbit-bullet-nav-color-active: $aluminum;\n// $orbit-bullet-radius: rem-calc(9);\n\n// We use these to controls the style of slide numbers\n// $orbit-slide-number-bg: rgba(0,0,0,0);\n// $orbit-slide-number-font-color: $white;\n// $orbit-slide-number-padding: rem-calc(5);\n\n// Hide controls on small\n// $orbit-nav-hide-for-small: true;\n// $orbit-bullet-hide-for-small: true;\n// $orbit-timer-hide-for-small: true;\n\n// Graceful Loading Wrapper and preloader\n// $wrapper-class: \"slideshow-wrapper\";\n// $preloader-class: \"preloader\";\n\n// 20. Pagination\n// - - - - - - - - - - - - - - - - - - - - - - - - -\n\n// $include-pagination-classes: $include-html-classes;\n\n// We use these to control the pagination container\n// $pagination-height: rem-calc(24);\n// $pagination-margin: rem-calc(-5);\n\n// We use these to set the list-item properties\n// $pagination-li-float: $default-float;\n// $pagination-li-height: rem-calc(24);\n// $pagination-li-font-color: $jet;\n// $pagination-li-font-size: rem-calc(14);\n// $pagination-li-margin: rem-calc(5);\n\n// We use these for the pagination anchor links\n// $pagination-link-pad: rem-calc(1 10 1);\n// $pagination-link-font-color: $aluminum;\n// $pagination-link-active-bg: scale-color($white, $lightness: -10%);\n\n// We use these for disabled anchor links\n// $pagination-link-unavailable-cursor: default;\n// $pagination-link-unavailable-font-color: $aluminum;\n// $pagination-link-unavailable-bg-active: transparent;\n\n// We use these for currently selected anchor links\n// $pagination-link-current-background: $primary-color;\n// $pagination-link-current-font-color: $white;\n// $pagination-link-current-font-weight: $font-weight-bold;\n// $pagination-link-current-cursor: default;\n// $pagination-link-current-active-bg: $primary-color;\n\n// 21. Panels\n// - - - - - - - - - - - - - - - - - - - - - - - - -\n\n// $include-html-panel-classes: $include-html-classes;\n\n// We use these to control the background and border styles\n$panel-bg: $grey-1;\n// $panel-border-style: solid;\n// $panel-border-size: 1px;\n\n// We use this % to control how much we darken things on hover\n// $panel-function-factor: -11%;\n// $panel-border-color: scale-color($panel-bg, $lightness: $panel-function-factor);\n\n// We use these to set default inner padding and bottom margin\n// $panel-margin-bottom: rem-calc(20);\n// $panel-padding: rem-calc(20);\n\n// We use these to set default font colors\n// $panel-font-color: $oil;\n// $panel-font-color-alt: $white;\n\n// $panel-header-adjust: true;\n// $callout-panel-link-color: $primary-color;\n\n// 22. Pricing Tables\n// - - - - - - - - - - - - - - - - - - - - - - - - -\n\n// $include-html-pricing-classes: $include-html-classes;\n\n// We use this to control the border color\n// $price-table-border: solid 1px $gainsboro;\n\n// We use this to control the bottom margin of the pricing table\n// $price-table-margin-bottom: rem-calc(20);\n\n// We use these to control the title styles\n// $price-title-bg: $oil;\n// $price-title-padding: rem-calc(15 20);\n// $price-title-align: center;\n// $price-title-color: $smoke;\n// $price-title-weight: $font-weight-normal;\n// $price-title-size: rem-calc(16);\n// $price-title-font-family: $body-font-family;\n\n// We use these to control the price styles\n// $price-money-bg: $vapor ;\n// $price-money-padding: rem-calc(15 20);\n// $price-money-align: center;\n// $price-money-color: $oil;\n// $price-money-weight: $font-weight-normal;\n// $price-money-size: rem-calc(32);\n// $price-money-font-family: $body-font-family;\n\n// We use these to control the description styles\n// $price-bg: $white;\n// $price-desc-color: $monsoon;\n// $price-desc-padding: rem-calc(15);\n// $price-desc-align: center;\n// $price-desc-font-size: rem-calc(12);\n// $price-desc-weight: $font-weight-normal;\n// $price-desc-line-height: 1.4;\n// $price-desc-bottom-border: dotted 1px $gainsboro;\n\n// We use these to control the list item styles\n// $price-item-color: $oil;\n// $price-item-padding: rem-calc(15);\n// $price-item-align: center;\n// $price-item-font-size: rem-calc(14);\n// $price-item-weight: $font-weight-normal;\n// $price-item-bottom-border: dotted 1px $gainsboro;\n\n// We use these to control the CTA area styles\n// $price-cta-bg: $white;\n// $price-cta-align: center;\n// $price-cta-padding: rem-calc(20 20 0);\n\n// 23. Progress Bar\n// - - - - - - - - - - - - - - - - - - - - - - - - -\n\n// $include-html-media-classes: $include-html-classes;\n\n// We use this to set the progress bar height\n// $progress-bar-height: rem-calc(25);\n// $progress-bar-color: $vapor ;\n\n// We use these to control the border styles\n// $progress-bar-border-color: scale-color($white, $lightness: 20%);\n// $progress-bar-border-size: 1px;\n// $progress-bar-border-style: solid;\n// $progress-bar-border-radius: $global-radius;\n\n// We use these to control the margin & padding\n// $progress-bar-pad: rem-calc(2);\n// $progress-bar-margin-bottom: rem-calc(10);\n\n// We use these to set the meter colors\n// $progress-meter-color: $primary-color;\n// $progress-meter-secondary-color: $secondary-color;\n// $progress-meter-success-color: $success-color;\n// $progress-meter-alert-color: $alert-color;\n\n// 24. Range Slider\n// - - - - - - - - - - - - - - - - - - - - - - - - -\n\n// $include-html-range-slider-classes: $include-html-classes;\n\n// These variables define the slider bar styles\n// $range-slider-bar-width: 100%;\n// $range-slider-bar-height: rem-calc(16);\n\n// $range-slider-bar-border-width: 1px;\n// $range-slider-bar-border-style: solid;\n// $range-slider-bar-border-color: $gainsboro;\n// $range-slider-radius: $global-radius;\n// $range-slider-round: $global-rounded;\n// $range-slider-bar-bg-color: $ghost;\n\n// Vertical bar styles\n// $range-slider-vertical-bar-width: rem-calc(16);\n// $range-slider-vertical-bar-height: rem-calc(200);\n\n// These variables define the slider handle styles\n// $range-slider-handle-width: rem-calc(32);\n// $range-slider-handle-height: rem-calc(22);\n// $range-slider-handle-position-top: rem-calc(-5);\n// $range-slider-handle-bg-color: $primary-color;\n// $range-slider-handle-border-width: 1px;\n// $range-slider-handle-border-style: solid;\n// $range-slider-handle-border-color: none;\n// $range-slider-handle-radius: $global-radius;\n// $range-slider-handle-round: $global-rounded;\n// $range-slider-handle-bg-hover-color: scale-color($primary-color, $lightness: -12%);\n// $range-slider-handle-cursor: pointer;\n\n// 25. Reveal\n// - - - - - - - - - - - - - - - - - - - - - - - - -\n\n// $include-html-reveal-classes: $include-html-classes;\n\n// We use these to control the style of the reveal overlay.\n// $reveal-overlay-bg: rgba($black, .45);\n// $reveal-overlay-bg-old: $black;\n\n// We use these to control the style of the modal itself.\n// $reveal-modal-bg: $white;\n// $reveal-position-top: rem-calc(100);\n// $reveal-default-width: 80%;\n// $reveal-max-width: $row-width;\n// $reveal-modal-padding: rem-calc(20);\n// $reveal-box-shadow: 0 0 10px rgba($black,.4);\n\n// We use these to style the reveal close button\n// $reveal-close-font-size: rem-calc(40);\n// $reveal-close-top: rem-calc(8);\n// $reveal-close-side: rem-calc(11);\n// $reveal-close-color: $base;\n// $reveal-close-weight: $font-weight-bold;\n\n// We use this to set the default radius used throughout the core.\n// $reveal-radius: $global-radius;\n// $reveal-round: $global-rounded;\n\n// We use these to control the modal border\n// $reveal-border-style: solid;\n// $reveal-border-width: 1px;\n// $reveal-border-color: $steel;\n\n// $reveal-modal-class: \"reveal-modal\";\n// $close-reveal-modal-class: \"close-reveal-modal\";\n\n// 26. Side Nav\n// - - - - - - - - - - - - - - - - - - - - - - - - -\n\n// $include-html-nav-classes: $include-html-classes;\n\n// We use this to control padding.\n$side-nav-padding: rem-calc(0 0 0 0);\n\n// We use these to control list styles.\n// $side-nav-list-type: none;\n// $side-nav-list-position: inside;\n$side-nav-list-margin: rem-calc(0 0 0 0);\n\n// We use these to control link styles.\n$side-nav-link-color: $primary-color;\n$side-nav-link-color-active: scale-color($side-nav-link-color, $lightness: -40%);\n$side-nav-link-color-hover: scale-color($side-nav-link-color, $lightness: -40%);\n$side-nav-font-size: rem-calc(16);\n\n// $side-nav-link-bg-hover: hsla(0, 0, 0, 0.025);\n// $side-nav-link-margin: 0;\n// $side-nav-link-padding: rem-calc(7 14);\n// $side-nav-font-size: rem-calc(14);\n// $side-nav-font-weight: $font-weight-normal;\n// $side-nav-font-weight-active: $side-nav-font-weight;\n// $side-nav-font-family: $body-font-family;\n// $side-nav-font-family-active: $side-nav-font-family;\n\n// We use these to control heading styles.\n// $side-nav-heading-color: $side-nav-link-color;\n// $side-nav-heading-font-size: $side-nav-font-size;\n// $side-nav-heading-font-weight: bold;\n// $side-nav-heading-text-transform: uppercase;\n\n// We use these to control border styles\n$side-nav-divider-size: 1px;\n$side-nav-divider-style: solid;\n$side-nav-divider-color: $grey-1;\n\n\n\n// 27. Split Buttons\n// - - - - - - - - - - - - - - - - - - - - - - - - -\n\n// $include-html-button-classes: $include-html-classes;\n\n// We use these to control different shared styles for Split Buttons\n// $split-button-function-factor: 10%;\n// $split-button-pip-color: $white;\n// $split-button-pip-color-alt: $oil;\n// $split-button-active-bg-tint: rgba(0,0,0,0.1);\n\n// We use these to control tiny split buttons\n// $split-button-padding-tny: $button-pip-tny * 10;\n// $split-button-span-width-tny: $button-pip-tny * 6;\n// $split-button-pip-size-tny: $button-pip-tny;\n// $split-button-pip-top-tny: $button-pip-tny * 2;\n// $split-button-pip-default-float-tny: rem-calc(-6);\n\n// We use these to control small split buttons\n// $split-button-padding-sml: $button-pip-sml * 10;\n// $split-button-span-width-sml: $button-pip-sml * 6;\n// $split-button-pip-size-sml: $button-pip-sml;\n// $split-button-pip-top-sml: $button-pip-sml * 1.5;\n// $split-button-pip-default-float-sml: rem-calc(-6);\n\n// We use these to control medium split buttons\n// $split-button-padding-med: $button-pip-med * 9;\n// $split-button-span-width-med: $button-pip-med * 5.5;\n// $split-button-pip-size-med: $button-pip-med - rem-calc(3);\n// $split-button-pip-top-med: $button-pip-med * 1.5;\n// $split-button-pip-default-float-med: rem-calc(-6);\n\n// We use these to control large split buttons\n// $split-button-padding-lrg: $button-pip-lrg * 8;\n// $split-button-span-width-lrg: $button-pip-lrg * 5;\n// $split-button-pip-size-lrg: $button-pip-lrg - rem-calc(6);\n// $split-button-pip-top-lrg: $button-pip-lrg + rem-calc(5);\n// $split-button-pip-default-float-lrg: rem-calc(-6);\n\n// 28. Sub Nav\n// - - - - - - - - - - - - - - - - - - - - - - - - -\n\n// $include-html-nav-classes: $include-html-classes;\n\n// We use these to control margin and padding\n// $sub-nav-list-margin: rem-calc(-4 0 18);\n// $sub-nav-list-padding-top: rem-calc(4);\n\n// We use this to control the definition\n// $sub-nav-font-family: $body-font-family;\n// $sub-nav-font-size: rem-calc(14);\n// $sub-nav-font-color: $aluminum;\n// $sub-nav-font-weight: $font-weight-normal;\n// $sub-nav-text-decoration: none;\n// $sub-nav-padding: rem-calc(3 16);\n// $sub-nav-border-radius: 3px;\n// $sub-nav-font-color-hover: scale-color($sub-nav-font-color, $lightness: -25%);\n\n// We use these to control the active item styles\n// $sub-nav-active-font-weight: $font-weight-normal;\n// $sub-nav-active-bg: $primary-color;\n// $sub-nav-active-bg-hover: scale-color($sub-nav-active-bg, $lightness: -14%);\n// $sub-nav-active-color: $white;\n// $sub-nav-active-padding: $sub-nav-padding;\n// $sub-nav-active-cursor: default;\n\n// $sub-nav-item-divider: \"\";\n// $sub-nav-item-divider-margin: rem-calc(12);\n\n// 29. Switch\n// - - - - - - - - - - - - - - - - - - - - - - - - -\n\n// $include-html-form-classes: $include-html-classes;\n\n// Controlling border styles and background colors for the switch container\n// $switch-border-color: scale-color($white, $lightness: -20%);\n// $switch-border-style: solid;\n// $switch-border-width: 1px;\n// $switch-bg: $white;\n\n// We use these to control the switch heights for our default classes\n// $switch-height-tny: rem-calc(22);\n// $switch-height-sml: rem-calc(28);\n// $switch-height-med: rem-calc(36);\n// $switch-height-lrg: rem-calc(44);\n// $switch-bottom-margin: rem-calc(20);\n\n// We use these to control default font sizes for our classes.\n// $switch-font-size-tny: 11px;\n// $switch-font-size-sml: 12px;\n// $switch-font-size-med: 14px;\n// $switch-font-size-lrg: 17px;\n// $switch-label-side-padding: 6px;\n\n// We use these to style the switch-paddle\n// $switch-paddle-bg: $white;\n// $switch-paddle-fade-to-color: scale-color($switch-paddle-bg, $lightness: -10%);\n// $switch-paddle-border-color: scale-color($switch-paddle-bg, $lightness: -35%);\n// $switch-paddle-border-width: 1px;\n// $switch-paddle-border-style: solid;\n// $switch-paddle-transition-speed: .1s;\n// $switch-paddle-transition-ease: ease-out;\n// $switch-positive-color: scale-color($success-color, $lightness: 94%);\n// $switch-negative-color: $white-smoke;\n\n// Outline Style for tabbing through switches\n// $switch-label-outline: 1px dotted $jumbo;\n\n// 30. Tables\n// - - - - - - - - - - - - - - - - - - - - - - - - -\n\n// $include-html-table-classes: $include-html-classes;\n\n// These control the background color for the table and even rows\n// $table-bg: $white;\n$table-even-row-bg: $grey-1;\n\n// These control the table cell border style\n// $table-border-style: solid;\n// $table-border-size: 1px;\n// $table-border-color: $gainsboro;\n\n// These control the table head styles\n$table-head-bg: $grey-2;\n// $table-head-font-size: rem-calc(14);\n// $table-head-font-color: $jet;\n// $table-head-font-weight: $font-weight-bold;\n// $table-head-padding: rem-calc(8 10 10);\n\n// These control the row padding and font styles\n// $table-row-padding: rem-calc(9 10);\n// $table-row-font-size: rem-calc(14);\n// $table-row-font-color: $jet;\n// $table-line-height: rem-calc(18);\n\n// These are for controlling the layout, display and margin of tables\n// $table-layout: auto;\n// $table-display: table-cell;\n// $table-margin-bottom: rem-calc(20);\n\n// 31. Tabs\n// - - - - - - - - - - - - - - - - - - - - - - - - -\n\n// $include-html-tabs-classes: $include-html-classes;\n\n// $tabs-navigation-padding: rem-calc(16);\n// $tabs-navigation-bg-color: $silver ;\n// $tabs-navigation-active-bg-color: $white;\n// $tabs-navigation-hover-bg-color: scale-color($tabs-navigation-bg-color, $lightness: -6%);\n// $tabs-navigation-font-color: $jet;\n// $tabs-navigation-active-font-color: $tabs-navigation-font-color;\n// $tabs-navigation-font-size: rem-calc(16);\n// $tabs-navigation-font-family: $body-font-family;\n\n// $tabs-content-margin-bottom: rem-calc(24);\n// $tabs-content-padding: $column-gutter/2;\n\n// $tabs-vertical-navigation-margin-bottom: 1.25rem;\n\n// 32. Thumbnails\n// - - - - - - - - - - - - - - - - - - - - - - - - -\n\n// $include-html-media-classes: $include-html-classes;\n\n// We use these to control border styles\n// $thumb-border-style: solid;\n// $thumb-border-width: 4px;\n// $thumb-border-color: $white;\n// $thumb-box-shadow: 0 0 0 1px rgba($black,.2);\n// $thumb-box-shadow-hover: 0 0 6px 1px rgba($primary-color,0.5);\n\n// Radius and transition speed for thumbs\n// $thumb-radius: $global-radius;\n// $thumb-transition-speed: 200ms;\n\n// 33. Tooltips\n// - - - - - - - - - - - - - - - - - - - - - - - - -\n\n// $include-html-tooltip-classes: $include-html-classes;\n\n// $has-tip-border-bottom: dotted 1px $iron;\n// $has-tip-font-weight: $font-weight-bold;\n// $has-tip-font-color: $oil;\n// $has-tip-border-bottom-hover: dotted 1px scale-color($primary-color, $lightness: -55%);\n// $has-tip-font-color-hover: $primary-color;\n// $has-tip-cursor-type: help;\n\n// $tooltip-padding: rem-calc(12);\n// $tooltip-bg: $oil;\n// $tooltip-font-size: rem-calc(14);\n// $tooltip-font-weight: $font-weight-normal;\n// $tooltip-font-color: $white;\n// $tooltip-line-height: 1.3;\n// $tooltip-close-font-size: rem-calc(10);\n// $tooltip-close-font-weight: $font-weight-normal;\n// $tooltip-close-font-color: $monsoon;\n// $tooltip-font-size-sml: rem-calc(14);\n// $tooltip-radius: $global-radius;\n// $tooltip-rounded: $global-rounded;\n// $tooltip-pip-size: 5px;\n// $tooltip-max-width: 300px;\n\n// 34. Top Bar\n// - - - - - - - - - - - - - - - - - - - - - - - - -\n\n// $include-html-top-bar-classes: $include-html-classes;\n\n// Height and margin\n$topbar-height: rem-calc(50);\n// $topbar-margin-bottom: 0;\n\n// Controlling the styles for the title in the top bar\n$topbar-title-weight: $font-weight-bold;\n$topbar-title-font-size: rem-calc(19);\n\n// Style the top bar dropdown elements\n// $topbar-dropdown-bg: $oil;\n// $topbar-dropdown-link-color: $white;\n// $topbar-dropdown-link-bg: $ci-2;\n// $topbar-dropdown-link-weight: $font-weight-normal;\n// $topbar-dropdown-toggle-size: 5px;\n// $topbar-dropdown-toggle-color: $ci-2;\n// $topbar-dropdown-toggle-alpha: 0.4;\n\n// Set the link colors and styles for top-level nav\n// $topbar-link-color: #000;\n// $topbar-link-color-hover: #000;\n// $topbar-link-color-active: #000;\n// $topbar-link-color-active-hover: #000;\n// $topbar-link-weight: $font-weight-normal;\n$topbar-link-font-size: rem-calc(15);\n// $topbar-link-hover-lightness: -10%; // Darken by 10%\n// $topbar-link-bg: $topbar-bg;\n// $topbar-link-bg-color-hover: #ff0;\n// $topbar-link-bg-hover: #f00;\n// $topbar-link-bg-active: $primary-color;\n// $topbar-link-bg-active-hover: scale-color($primary-color, $lightness: -14%);\n// $topbar-link-font-family: $body-font-family;\n$topbar-link-text-transform: uppercase;\n// $topbar-link-padding: $topbar-height / 3;\n// $topbar-back-link-size: $h5-font-size;\n// $topbar-link-dropdown-padding: 20px;\n\n// $topbar-button-font-size: 0.75rem;\n// $topbar-button-top: 7px;\n\n// $topbar-dropdown-label-color: #f77;\n// $topbar-dropdown-label-text-transform: uppercase;\n// $topbar-dropdown-label-font-weight: $font-weight-bold;\n// $topbar-dropdown-label-font-size: rem-calc(10);\n// $topbar-dropdown-label-bg: $oil;\n\n// Top menu icon styles\n$topbar-menu-link-transform: uppercase;\n// $topbar-menu-link-font-size: rem-calc(13);\n// $topbar-menu-link-weight: $font-weight-bold;\n// $topbar-menu-link-color: $white;\n// $topbar-menu-icon-color: $white;\n// $topbar-menu-link-color-toggled: $ci-6;\n// $topbar-menu-icon-color-toggled: $ci-6;\n\n// Transitions and breakpoint styles\n// $topbar-transition-speed: 300ms;\n// Using rem-calc for the below breakpoint causes issues with top bar\n$topbar-breakpoint: #{lower-bound($large-range)}; // Change to 9999px for always mobile layout\n$topbar-media-query: \"only screen and (min-width: #{$topbar-breakpoint})\" !default;\n\n// Divider Styles\n$topbar-divider-border-bottom: solid 0px scale-color($topbar-bg-color, $lightness: 23%);\n$topbar-divider-border-top: solid 0px scale-color($topbar-bg-color, $lightness: -50%);\n\n// Sticky Class\n// $topbar-sticky-class: \".sticky\";\n// $topbar-arrows: true; //Set false to remove the triangle icon from the menu item\n\n// 36. Visibility Classes\n// - - - - - - - - - - - - - - - - - - - - - - - - -\n\n// $include-html-visibility-classes: $include-html-classes;\n// $include-table-visibility-classes: true;\n// $include-legacy-visibility-classes: true;\n// $include-accessibility-classes: true;\n","// Foundation by ZURB\n// foundation.zurb.com\n// Licensed under MIT Open Source\n\n@import \"global\";\n@import \"buttons\";\n\n//\n// @variables\n//\n$include-html-form-classes: $include-html-classes !default;\n\n// We use this to set the base for lots of form spacing and positioning styles\n$form-spacing: rem-calc(16) !default;\n\n// We use these to style the labels in different ways\n$form-label-pointer: pointer !default;\n$form-label-font-size: rem-calc(14) !default;\n$form-label-font-weight: $font-weight-normal !default;\n$form-label-line-height: 1.5 !default;\n$form-label-font-color: scale-color($black, $lightness: 30%) !default;\n$form-label-small-transform: capitalize !default;\n$form-label-bottom-margin: 0 !default;\n$input-font-family: inherit !default;\n$input-font-color: rgba(0, 0, 0, 0.75) !default;\n$input-font-size: rem-calc(14) !default;\n$input-bg-color: $white !default;\n$input-focus-bg-color: scale-color($white, $lightness: -2%) !default;\n$input-border-color: scale-color($white, $lightness: -20%) !default;\n$input-focus-border-color: scale-color($white, $lightness: -40%) !default;\n$input-border-style: solid !default;\n$input-border-width: 1px !default;\n$input-border-radius: $global-radius !default;\n$input-disabled-bg: $gainsboro !default;\n$input-disabled-cursor: $cursor-default-value !default;\n$input-box-shadow: inset 0 1px 2px rgba(0, 0, 0, 0.1) !default;\n$input-include-glowing-effect: true !default;\n\n// We use these to style the fieldset border and spacing.\n$fieldset-border-style: solid !default;\n$fieldset-border-width: 1px !default;\n$fieldset-border-color: $gainsboro !default;\n$fieldset-padding: rem-calc(20) !default;\n$fieldset-margin: rem-calc(18 0) !default;\n\n// We use these to style the legends when you use them\n$legend-bg: $white !default;\n$legend-font-weight: $font-weight-bold !default;\n$legend-padding: rem-calc(0 3) !default;\n\n// We use these to style the prefix and postfix input elements\n$input-prefix-bg: scale-color($white, $lightness: -5%) !default;\n$input-prefix-border-color: scale-color($white, $lightness: -20%) !default;\n$input-prefix-border-size: 1px !default;\n$input-prefix-border-type: solid !default;\n$input-prefix-overflow: hidden !default;\n$input-prefix-font-color: $oil !default;\n$input-prefix-font-color-alt: $white !default;\n\n// We use this setting to turn on/off HTML5 number spinners (the up/down arrows)\n$input-number-spinners: true !default;\n\n// We use these to style the error states for inputs and labels\n$input-error-message-padding: rem-calc(6 9 9) !default;\n$input-error-message-top: -1px !default;\n$input-error-message-font-size: rem-calc(12) !default;\n$input-error-message-font-weight: $font-weight-normal !default;\n$input-error-message-font-style: italic !default;\n$input-error-message-font-color: $white !default;\n$input-error-message-bg-color: $alert-color !default;\n$input-error-message-font-color-alt: $oil !default;\n\n// We use this to style the glowing effect of inputs when focused\n$glowing-effect-fade-time: 0.45s !default;\n$glowing-effect-color: $input-focus-border-color !default;\n\n// Select variables\n$select-bg-color: $ghost !default;\n$select-hover-bg-color: scale-color($select-bg-color, $lightness: -3%) !default;\n\n//\n// @MIXINS\n//\n\n// We use this mixin to give us form styles for rows inside of forms\n@mixin form-row-base {\n .row {\n margin: 0 calc((-1 * $form-spacing) / 2);\n\n .column,\n .columns {\n padding: 0 calc($form-spacing / 2);\n }\n\n // Use this to collapse the margins of a form row\n &.collapse {\n margin: 0;\n\n .column,\n .columns {\n padding: 0;\n }\n\n input {\n @include side-radius($opposite-direction, 0);\n }\n\n }\n }\n\n input.column,\n input.columns,\n textarea.column,\n textarea.columns {\n padding-#{$default-float}: calc($form-spacing / 2);\n }\n}\n\n// @MIXIN\n//\n// We use this mixin to give all basic form elements their style\n@mixin form-element {\n background-color: $input-bg-color;\n font-family: $input-font-family;\n\n border: {\n style: $input-border-style;\n width: $input-border-width;\n color: $input-border-color;\n }\n\n box-shadow: $input-box-shadow;\n color: $input-font-color;\n display: block;\n font-size: $input-font-size;\n margin: 0 0 $form-spacing 0;\n padding: calc($form-spacing / 2);\n height: ($input-font-size + ($form-spacing * 1.5) - rem-calc(1));\n width: 100%;\n @include box-sizing(border-box);\n\n @if $input-include-glowing-effect {\n @include block-glowing-effect(focus, $glowing-effect-fade-time, $glowing-effect-color);\n }\n\n // Basic focus styles\n &:focus {\n background: $input-focus-bg-color;\n border-color: $input-focus-border-color;\n outline: none;\n }\n\n // Disabled Styles\n &:disabled {\n background-color: $input-disabled-bg;\n cursor: $input-disabled-cursor;\n }\n\n // Disabled background input background color\n &[disabled],\n &[readonly],\n fieldset[disabled] & {\n background-color: $input-disabled-bg;\n cursor: $input-disabled-cursor;\n }\n}\n\n// @MIXIN\n//\n// We use this mixin to create form labels\n//\n// $alignment - Alignment options. Default: false. Options: [right, inline, false]\n// $base-style - Control whether or not the base styles come through. Default: true.\n@mixin form-label($alignment: false, $base-style: true) {\n\n // Control whether or not the base styles come through.\n @if $base-style {\n font-size: $form-label-font-size;\n color: $form-label-font-color;\n cursor: $form-label-pointer;\n display: block;\n font-weight: $form-label-font-weight;\n line-height: $form-label-line-height;\n margin-bottom: $form-label-bottom-margin;\n }\n\n // Alignment options\n @if $alignment ==right {\n float: none !important;\n text-align: right;\n }\n\n @else if $alignment ==inline {\n margin: 0 0 $form-spacing 0;\n padding: calc($form-spacing / 2) + rem-calc($input-border-width) 0;\n }\n}\n\n// We use this mixin to create postfix/prefix form Labels\n@mixin prefix-postfix-base {\n display: block;\n position: relative;\n z-index: 2;\n text-align: center;\n width: 100%;\n padding-top: 0;\n padding-bottom: 0;\n border-style: $input-prefix-border-type;\n border-width: $input-prefix-border-size;\n overflow: $input-prefix-overflow;\n font-size: $form-label-font-size;\n height: ($input-font-size + ($form-spacing * 1.5) - rem-calc(1));\n line-height: ($input-font-size + ($form-spacing * 1.5) - rem-calc(1));\n}\n\n// @MIXIN\n//\n// We use this mixin to create prefix label styles\n// $bg - Default:$input-prefix-bg || scale-color($white, $lightness: -5%) !default;\n// $is-button - Toggle position settings if prefix is a button. Default:false\n//\n@mixin prefix($bg: $input-prefix-bg, $border: $input-prefix-border-color, $is-button: false) {\n\n @if $bg {\n $bg-lightness: lightness($bg);\n background: $bg;\n border-#{$opposite-direction}: none;\n\n // Control the font color based on background brightness\n @if $bg-lightness >70% or $bg ==yellow {\n color: $input-prefix-font-color;\n }\n\n @else {\n color: $input-prefix-font-color-alt;\n }\n }\n\n @if $border {\n border-color: $border;\n }\n\n @if $is-button {\n padding-#{$default-float}: 0;\n padding-#{$opposite-direction}: 0;\n padding-top: 0;\n padding-bottom: 0;\n text-align: center;\n border: none;\n }\n\n}\n\n// @MIXIN\n//\n// We use this mixin to create postfix label styles\n// $bg - Default:$input-prefix-bg || scale-color($white, $lightness: -5%) !default;\n// $is-button - Toggle position settings if prefix is a button. Default: false\n@mixin postfix($bg: $input-prefix-bg, $border: $input-prefix-border-color, $is-button: false) {\n\n @if $bg {\n $bg-lightness: lightness($bg);\n background: $bg;\n border-#{$default-float}: none;\n\n // Control the font color based on background brightness\n @if $bg-lightness >70% or $bg ==yellow {\n color: $input-prefix-font-color;\n }\n\n @else {\n color: $input-prefix-font-color-alt;\n }\n }\n\n @if $border {\n border-color: $border;\n }\n\n @if $is-button {\n padding-#{$default-float}: 0;\n padding-#{$opposite-direction}: 0;\n padding-top: 0;\n padding-bottom: 0;\n text-align: center;\n border: none;\n }\n\n}\n\n// We use this mixin to style fieldsets\n@mixin fieldset {\n border: $fieldset-border-width $fieldset-border-style $fieldset-border-color;\n padding: $fieldset-padding;\n margin: $fieldset-margin;\n\n // and legend styles\n legend {\n font-weight: $legend-font-weight;\n background: $legend-bg;\n padding: $legend-padding;\n margin: 0;\n margin-#{$default-float}: rem-calc(-3);\n }\n}\n\n// @MIXIN\n//\n// We use this mixin to control border and background color of error inputs\n// $color - Default: $alert-color (found in settings file)\n@mixin form-error-color($color: $alert-color) {\n border-color: $color;\n background-color: rgba($color, 0.1);\n\n // Go back to normal on focus\n &:focus {\n background: $input-focus-bg-color;\n border-color: $input-focus-border-color;\n }\n}\n\n// @MIXIN\n//\n// We use this simple mixin to style labels for error inputs\n// $color - Default:$alert-color. Found in settings file\n@mixin form-label-error-color($color: $alert-color) {\n color: $color;\n}\n\n// @MIXIN\n//\n// We use this mixin to create error message styles\n// $bg - Default: $alert-color (Found in settings file)\n@mixin form-error-message($bg: $input-error-message-bg-color) {\n display: block;\n padding: $input-error-message-padding;\n margin-top: $input-error-message-top;\n margin-bottom: $form-spacing;\n font-size: $input-error-message-font-size;\n font-weight: $input-error-message-font-weight;\n font-style: $input-error-message-font-style;\n\n // We can control the text color based on the brightness of the background.\n $bg-lightness: lightness($bg);\n background: $bg;\n\n @if $bg-lightness < 70% or $bg ==yellow {\n color: $input-error-message-font-color;\n }\n\n @else {\n color: $input-error-message-font-color-alt;\n }\n}\n\n// We use this mixin to style select elements\n@mixin form-select {\n -webkit-appearance: none !important;\n border-radius: 0;\n background-color: $select-bg-color;\n\n // Hide the dropdown arrow shown in newer IE versions\n &::-ms-expand {\n display: none;\n }\n\n // The custom arrow has some fake horizontal padding so we can align it\n // from the right side of the element without relying on CSS3\n background-image: url();\n\n // We can safely use leftmost and rightmost now\n background-position: if($text-direction =='rtl', 0%, 100%) center;\n\n background-repeat: no-repeat;\n\n border: {\n style: $input-border-style;\n width: $input-border-width;\n color: $input-border-color;\n }\n\n padding: calc($form-spacing / 2);\n font-size: $input-font-size;\n font-family: $body-font-family;\n color: $input-font-color;\n line-height: normal;\n @include radius(0);\n\n &.radius {\n @include radius($global-radius);\n }\n\n &:hover {\n background-color: $select-hover-bg-color;\n border-color: $input-focus-border-color;\n }\n\n // Disabled Styles\n &:disabled {\n background-color: $input-disabled-bg;\n cursor: $input-disabled-cursor;\n }\n}\n\n// We use this mixin to turn on/off HTML5 number spinners\n@mixin html5number($browser, $on: true) {\n @if $on==false {\n @if $browser==webkit {\n -webkit-appearance: none;\n margin: 0;\n }\n\n @else if $browser==moz {\n -moz-appearance: textfield;\n }\n }\n}\n\n@include exports(\"form\") {\n @if $include-html-form-classes {\n\n /* Standard Forms */\n form {\n margin: 0 0 $form-spacing;\n }\n\n /* Using forms within rows, we need to set some defaults */\n form .row {\n @include form-row-base;\n }\n\n /* Label Styles */\n label {\n @include form-label;\n\n &.right {\n @include form-label(right, false);\n }\n\n &.inline {\n @include form-label(inline, false);\n }\n\n /* Styles for required inputs */\n small {\n text-transform: $form-label-small-transform;\n color: scale-color($form-label-font-color, $lightness: 15%);\n }\n }\n\n /* Attach elements to the beginning or end of an input */\n .prefix,\n .postfix {\n @include prefix-postfix-base;\n }\n\n /* Adjust padding, alignment and radius if pre/post element is a button */\n .postfix.button {\n @include button-size(false, false);\n @include postfix(false, false, true);\n }\n\n .prefix.button {\n @include button-size(false, false);\n @include prefix(false, false, true);\n }\n\n .prefix.button.radius {\n @include radius(0);\n @include side-radius($default-float, $button-radius);\n }\n\n .postfix.button.radius {\n @include radius(0);\n @include side-radius($opposite-direction, $button-radius);\n }\n\n .prefix.button.round {\n @include radius(0);\n @include side-radius($default-float, $button-round);\n }\n\n .postfix.button.round {\n @include radius(0);\n @include side-radius($opposite-direction, $button-round);\n }\n\n /* Separate prefix and postfix styles when on span or label so buttons keep their own */\n span.prefix,\n label.prefix {\n @include prefix();\n }\n\n span.postfix,\n label.postfix {\n @include postfix();\n }\n\n /* We use this to get basic styling on all basic form elements */\n #{text-inputs(all, 'input')} {\n -webkit-appearance: none;\n border-radius: 0;\n @include form-element;\n\n @if $input-include-glowing-effect ==false {\n @include single-transition(all, 0.15s, linear);\n }\n\n &.radius {\n @include radius($input-border-radius);\n }\n }\n\n form {\n .row {\n .prefix-radius.row.collapse {\n\n input,\n textarea,\n select {\n @include radius(0);\n @include side-radius($opposite-direction, $button-radius);\n }\n\n .prefix {\n @include radius(0);\n @include side-radius($default-float, $button-radius);\n }\n }\n\n .postfix-radius.row.collapse {\n\n input,\n textarea,\n select {\n @include radius(0);\n @include side-radius($default-float, $button-radius);\n }\n\n .postfix {\n @include radius(0);\n @include side-radius($opposite-direction, $button-radius);\n }\n }\n\n .prefix-round.row.collapse {\n\n input,\n textarea,\n select {\n @include radius(0);\n @include side-radius($opposite-direction, $button-round);\n }\n\n .prefix {\n @include radius(0);\n @include side-radius($default-float, $button-round);\n }\n }\n\n .postfix-round.row.collapse {\n\n input,\n textarea,\n select {\n @include radius(0);\n @include side-radius($default-float, $button-round);\n }\n\n .postfix {\n @include radius(0);\n @include side-radius($opposite-direction, $button-round);\n }\n }\n }\n }\n\n input[type=\"submit\"] {\n -webkit-appearance: none;\n border-radius: 0;\n }\n\n /* Respect enforced amount of rows for textarea */\n textarea[rows] {\n height: auto;\n }\n\n /* Not allow resize out of parent */\n textarea {\n max-width: 100%;\n }\n\n /* Add height value for select elements to match text input height */\n select {\n @include form-select;\n height: ($input-font-size + ($form-spacing * 1.5) - rem-calc(1));\n }\n\n /* Adjust margin for form elements below */\n input[type=\"file\"],\n input[type=\"checkbox\"],\n input[type=\"radio\"],\n select {\n margin: 0 0 $form-spacing 0;\n }\n\n input[type=\"checkbox\"]+label,\n input[type=\"radio\"]+label {\n display: inline-block;\n margin-#{$default-float}: $form-spacing * .5;\n margin-#{$opposite-direction}: $form-spacing;\n margin-bottom: 0;\n vertical-align: baseline;\n }\n\n /* Normalize file input width */\n input[type=\"file\"] {\n width: 100%;\n }\n\n /* HTML5 Number spinners settings */\n input[type=number] {\n @include html5number(moz, $input-number-spinners)\n }\n\n input[type=\"number\"]::-webkit-inner-spin-button,\n input[type=\"number\"]::-webkit-outer-spin-button {\n @include html5number(webkit, $input-number-spinners);\n }\n\n /* We add basic fieldset styling */\n fieldset {\n @include fieldset;\n }\n\n /* Error Handling */\n\n #{data('abide')} {\n\n .error small.error,\n .error span.error,\n span.error,\n small.error {\n @include form-error-message;\n }\n\n span.error,\n small.error {\n display: none;\n }\n }\n\n span.error,\n small.error {\n @include form-error-message;\n }\n\n .error {\n\n input,\n textarea,\n select {\n margin-bottom: 0;\n }\n\n input[type=\"checkbox\"],\n input[type=\"radio\"] {\n margin-bottom: $form-spacing\n }\n\n label,\n label.error {\n @include form-label-error-color;\n }\n\n small.error {\n @include form-error-message;\n }\n\n >label {\n >small {\n color: scale-color($form-label-font-color, $lightness: 15%);\n background: transparent;\n padding: 0;\n text-transform: $form-label-small-transform;\n font-style: normal;\n font-size: 60%;\n margin: 0;\n display: inline;\n }\n }\n\n span.error-message {\n display: block;\n }\n }\n\n input.error,\n textarea.error,\n select.error {\n margin-bottom: 0;\n }\n\n label.error {\n @include form-label-error-color;\n }\n }\n}","// Foundation by ZURB\n// foundation.zurb.com\n// Licensed under MIT Open Source\n\n@import \"global\";\n@import \"grid\";\n@import \"buttons\";\n@import \"forms\";\n\n//\n// Top Bar Variables\n//\n$include-html-top-bar-classes: $include-html-classes !default;\n\n// Background color for the top bar\n$topbar-bg-color: $oil !default;\n$topbar-bg: $topbar-bg-color !default;\n\n// Height and margin\n$topbar-height: rem-calc(45) !default;\n$topbar-margin-bottom: 0 !default;\n\n// Controlling the styles for the title in the top bar\n$topbar-title-weight: $font-weight-normal !default;\n$topbar-title-font-size: rem-calc(17) !default;\n\n// Set the link colors and styles for top-level nav\n$topbar-link-color: $white !default;\n$topbar-link-color-hover: $white !default;\n$topbar-link-color-active: $white !default;\n$topbar-link-color-active-hover: $white !default;\n$topbar-link-weight: $font-weight-normal !default;\n$topbar-link-font-size: rem-calc(13) !default;\n$topbar-link-hover-lightness: -10% !default; // Darken by 10%\n$topbar-link-bg: $topbar-bg !default;\n$topbar-link-bg-hover: $oil !default;\n$topbar-link-bg-color-hover: $charcoal !default;\n$topbar-link-bg-active: $primary-color !default;\n$topbar-link-bg-active-hover: scale-color($primary-color, $lightness: -14%) !default;\n$topbar-link-font-family: $body-font-family !default;\n$topbar-link-text-transform: none !default;\n$topbar-link-padding: calc($topbar-height / 3) !default;\n$topbar-back-link-size: rem-calc(18) !default;\n$topbar-link-dropdown-padding: rem-calc(20) !default;\n$topbar-button-font-size: 0.75rem !default;\n$topbar-button-top: 7px !default;\n\n// Style the top bar dropdown elements\n$topbar-dropdown-bg: $oil !default;\n$topbar-dropdown-link-color: $white !default;\n$topbar-dropdown-link-color-hover: $topbar-link-color-hover !default;\n$topbar-dropdown-link-bg: $oil !default;\n$topbar-dropdown-link-bg-hover: $oil !default;\n$topbar-dropdown-link-weight: $font-weight-normal !default;\n$topbar-dropdown-toggle-size: 5px !default;\n$topbar-dropdown-toggle-color: $white !default;\n$topbar-dropdown-toggle-alpha: 0.4 !default;\n\n$topbar-dropdown-label-color: $monsoon !default;\n$topbar-dropdown-label-text-transform: uppercase !default;\n$topbar-dropdown-label-font-weight: $font-weight-bold !default;\n$topbar-dropdown-label-font-size: rem-calc(10) !default;\n$topbar-dropdown-label-bg: $oil !default;\n\n// Top menu icon styles\n$topbar-menu-link-transform: uppercase !default;\n$topbar-menu-link-font-size: rem-calc(13) !default;\n$topbar-menu-link-weight: $font-weight-bold !default;\n$topbar-menu-link-color: $white !default;\n$topbar-menu-icon-color: $white !default;\n$topbar-menu-link-color-toggled: $jumbo !default;\n$topbar-menu-icon-color-toggled: $jumbo !default;\n\n// Transitions and breakpoint styles\n$topbar-transition-speed: 300ms !default;\n// Using rem-calc for the below breakpoint causes issues with top bar\n$topbar-breakpoint: #{lower-bound($medium-range)} !default; // Change to 9999px for always mobile layout\n$topbar-media-query: $medium-up !default;\n\n// Top-bar input styles\n$topbar-input-height: rem-calc(28) !default;\n\n// Divider Styles\n$topbar-divider-border-bottom: solid 1px scale-color($topbar-bg-color, $lightness: 13%) !default;\n$topbar-divider-border-top: solid 1px scale-color($topbar-bg-color, $lightness: -50%) !default;\n\n// Sticky Class\n$topbar-sticky-class: \".sticky\" !default;\n$topbar-arrows: true !default; //Set false to remove the triangle icon from the menu item\n$topbar-dropdown-arrows: true !default; //Set false to remove the \\00bb >> text from dropdown subnavigation li\n\n// Accessibility mixins for hiding and showing the menu dropdown items\n@mixin topbar-hide-dropdown {\n // Makes an element visually hidden by default, but visible when focused.\n display: block;\n @include element-invisible();\n}\n\n@mixin topbar-show-dropdown {\n display: block;\n @include element-invisible-off();\n position: absolute !important; // Reset the position from static to absolute\n}\n\n@include exports(\"top-bar\") {\n\n @if $include-html-top-bar-classes {\n\n // Used to provide media query values for javascript components.\n // This class is generated despite the value of $include-html-top-bar-classes\n // to ensure width calculations work correctly.\n meta.foundation-mq-topbar {\n font-family: \"/\" + unquote($topbar-media-query) + \"/\";\n width: $topbar-breakpoint;\n }\n\n /* Wrapped around .top-bar to contain to grid width */\n .contain-to-grid {\n width: 100%;\n background: $topbar-bg;\n\n .top-bar {\n margin-bottom: $topbar-margin-bottom;\n }\n }\n\n // Wrapped around .top-bar to make it stick to the top\n .fixed {\n width: 100%;\n #{$default-float}: 0;\n position: fixed;\n top: 0;\n z-index: 99;\n\n &.expanded:not(.top-bar) {\n overflow-y: auto;\n height: auto;\n width: 100%;\n max-height: 100%;\n\n .title-area {\n position: fixed;\n width: 100%;\n z-index: 99;\n }\n\n // Ensure you can scroll the menu on small screens\n .top-bar-section {\n z-index: 98;\n margin-top: $topbar-height;\n }\n }\n }\n\n .top-bar {\n overflow: hidden;\n height: $topbar-height;\n line-height: $topbar-height;\n position: relative;\n background: $topbar-bg;\n margin-bottom: $topbar-margin-bottom;\n\n // Topbar Global list Styles\n ul {\n margin-bottom: 0;\n list-style: none;\n }\n\n .row {\n max-width: none;\n }\n\n form,\n input {\n margin-bottom: 0;\n }\n\n input {\n height: $topbar-input-height;\n padding-top: .35rem;\n padding-bottom: .35rem;\n font-size: $topbar-button-font-size;\n }\n\n .button,\n button {\n padding-top: .35rem + rem-calc(1);\n padding-bottom: .35rem + rem-calc(1);\n margin-bottom: 0;\n font-size: $topbar-button-font-size;\n // position: relative;\n // top: -1px;\n\n // Corrects a slight misalignment when put next to an input field\n @media #{$small-only} {\n position: relative;\n top: -1px;\n }\n }\n\n // Title Area\n .title-area {\n position: relative;\n margin: 0;\n }\n\n .name {\n height: $topbar-height;\n margin: 0;\n font-size: $rem-base;\n\n h1,\n h2,\n h3,\n h4,\n p,\n span {\n line-height: $topbar-height;\n font-size: $topbar-title-font-size;\n margin: 0;\n\n a {\n font-weight: $topbar-title-weight;\n color: $topbar-link-color;\n width: 75%;\n display: block;\n padding: 0 $topbar-link-padding;\n }\n }\n }\n\n // Menu toggle button on small devices\n .toggle-topbar {\n position: absolute;\n #{$opposite-direction}: 0;\n top: 0;\n\n a {\n color: $topbar-link-color;\n text-transform: $topbar-menu-link-transform;\n font-size: $topbar-menu-link-font-size;\n font-weight: $topbar-menu-link-weight;\n position: relative;\n display: block;\n padding: 0 $topbar-link-padding;\n height: $topbar-height;\n line-height: $topbar-height;\n }\n\n // Adding the class \"menu-icon\" will add the 3-line icon people love and adore.\n &.menu-icon {\n top: 50%;\n margin-top: -16px;\n\n a {\n @if $text-direction ==rtl {\n text-indent: -58px;\n }\n\n height: 34px;\n line-height: 33px;\n padding: 0 $topbar-link-padding+rem-calc(25) 0 $topbar-link-padding;\n color: $topbar-menu-link-color;\n position: relative;\n\n & {\n // @include hamburger icon\n //\n // We use this to create the icon with three lines aka the hamburger icon, the menu-icon or the navicon\n // $width - Width of hamburger icon\n // $left - If false, icon will be centered horizontally || explicitly set value in rem\n // $top - If false, icon will be centered vertically || explicitly set value in rem\n // $thickness - thickness of lines in hamburger icon, set value in px\n // $gap - spacing between the lines in hamburger icon, set value in px\n // $color - icon color\n // $hover-color - icon color during hover, here it isn't set b/c it would override $topbar-menu-icon-color-toggled\n // $offcanvas - Set to false of @include in topbar\n @include hamburger(16px, false, 0, 1px, 6px, $topbar-menu-icon-color, \"\", false);\n }\n }\n }\n }\n\n // Change things up when the top-bar is expanded\n &.expanded {\n height: auto;\n background: transparent;\n\n .title-area {\n background: $topbar-bg;\n }\n\n .toggle-topbar {\n a {\n color: $topbar-menu-link-color-toggled;\n\n span::after {\n // Shh, don't tell, but box-shadows create the menu icon :)\n // Change the color of the bars when the menu is expanded, using given thickness from hamburger() above\n box-shadow: 0 0 0 1px $topbar-menu-icon-color-toggled,\n 0 7px 0 1px $topbar-menu-icon-color-toggled,\n 0 14px 0 1px $topbar-menu-icon-color-toggled;\n }\n }\n }\n }\n }\n\n // Right and Left Navigation that stacked by default\n .top-bar-section {\n #{$default-float}: 0;\n position: relative;\n width: auto;\n @include single-transition($default-float, $topbar-transition-speed);\n\n ul {\n padding: 0;\n width: 100%;\n height: auto;\n display: block;\n font-size: $rem-base;\n margin: 0;\n }\n\n .divider,\n [role=\"separator\"] {\n border-top: $topbar-divider-border-top;\n clear: both;\n height: 1px;\n width: 100%;\n }\n\n ul li {\n background: $topbar-dropdown-bg;\n\n &>a {\n display: block;\n width: 100%;\n color: $topbar-link-color;\n padding: 12px 0 12px 0;\n padding-#{$default-float}: $topbar-link-padding;\n font-family: $topbar-link-font-family;\n font-size: $topbar-link-font-size;\n font-weight: $topbar-link-weight;\n text-transform: $topbar-link-text-transform;\n\n &.button {\n font-size: $topbar-link-font-size;\n padding-#{$opposite-direction}: $topbar-link-padding;\n padding-#{$default-float}: $topbar-link-padding;\n @include button-style($bg: $primary-color);\n }\n\n &.button.secondary {\n @include button-style($bg: $secondary-color);\n }\n\n &.button.success {\n @include button-style($bg: $success-color);\n }\n\n &.button.alert {\n @include button-style($bg: $alert-color);\n }\n\n &.button.warning {\n @include button-style($bg: $warning-color);\n }\n }\n\n >button {\n font-size: $topbar-link-font-size;\n padding-#{$opposite-direction}: $topbar-link-padding;\n padding-#{$default-float}: $topbar-link-padding;\n @include button-style($bg: $primary-color);\n\n &.secondary {\n @include button-style($bg: $secondary-color);\n }\n\n &.success {\n @include button-style($bg: $success-color);\n }\n\n &.alert {\n @include button-style($bg: $alert-color);\n }\n\n &.warning {\n @include button-style($bg: $warning-color);\n }\n }\n\n // Apply the hover link color when it has that class\n &:hover:not(.has-form)>a {\n background-color: $topbar-link-bg-color-hover;\n\n @if ($topbar-link-bg-hover) {\n background: $topbar-link-bg-hover;\n }\n\n color: $topbar-link-color-hover;\n }\n\n // Apply the active link color when it has that class\n &.active>a {\n background: $topbar-link-bg-active;\n color: $topbar-link-color-active;\n\n &:hover {\n background: $topbar-link-bg-active-hover;\n color: $topbar-link-color-active-hover;\n }\n }\n }\n\n // Add some extra padding for list items contains buttons\n .has-form {\n padding: $topbar-link-padding;\n }\n\n // Styling for list items that have a dropdown within them.\n .has-dropdown {\n position: relative;\n\n &>a {\n &:after {\n @if ($topbar-arrows) {\n @include css-triangle($topbar-dropdown-toggle-size, rgba($topbar-dropdown-toggle-color, $topbar-dropdown-toggle-alpha), $default-float);\n }\n\n margin-#{$opposite-direction}: $topbar-link-padding;\n margin-top: -(calc($topbar-dropdown-toggle-size / 2)) - 2;\n position: absolute;\n top: 50%;\n #{$opposite-direction}: 0;\n }\n }\n\n &.moved {\n position: static;\n\n &>.dropdown {\n @include topbar-show-dropdown();\n width: 100%;\n }\n\n &>a:after {\n display: none;\n }\n }\n }\n\n // Styling elements inside of dropdowns\n .dropdown {\n padding: 0;\n position: absolute;\n #{$default-float}: 100%;\n top: 0;\n z-index: 99;\n @include topbar-hide-dropdown();\n\n li {\n width: 100%;\n height: auto;\n\n a {\n font-weight: $topbar-dropdown-link-weight;\n padding: 8px $topbar-link-padding;\n\n &.parent-link {\n font-weight: $topbar-link-weight;\n }\n }\n\n &.title h5,\n &.parent-link {\n // Back Button\n margin-bottom: 0;\n margin-top: 0;\n font-size: $topbar-back-link-size;\n\n a {\n color: $topbar-link-color;\n // line-height: ($topbar-height / 2);\n display: block;\n\n &:hover {\n background: none;\n }\n }\n }\n\n &.has-form {\n padding: 8px $topbar-link-padding;\n }\n\n .button,\n button {\n top: auto;\n }\n }\n\n label {\n padding: 8px $topbar-link-padding 2px;\n margin-bottom: 0;\n text-transform: $topbar-dropdown-label-text-transform;\n color: $topbar-dropdown-label-color;\n font-weight: $topbar-dropdown-label-font-weight;\n font-size: $topbar-dropdown-label-font-size;\n }\n }\n }\n\n .js-generated {\n display: block;\n }\n\n\n // Top Bar styles intended for screen sizes above the breakpoint.\n @media #{$topbar-media-query} {\n .top-bar {\n background: $topbar-bg;\n @include clearfix;\n overflow: visible;\n\n .toggle-topbar {\n display: none;\n }\n\n .title-area {\n float: $default-float;\n }\n\n .name h1 a {\n width: auto;\n }\n\n input,\n .button,\n button {\n font-size: rem-calc(14);\n position: relative;\n height: $topbar-input-height;\n top: calc(($topbar-height - $topbar-input-height) / 2);\n }\n\n &.expanded {\n background: $topbar-bg;\n }\n }\n\n .contain-to-grid .top-bar {\n max-width: $row-width;\n margin: 0 auto;\n margin-bottom: $topbar-margin-bottom;\n }\n\n .top-bar-section {\n @include single-transition(none, 0, 0);\n #{$default-float}: 0 !important;\n\n ul {\n width: auto;\n height: auto !important;\n display: inline;\n\n li {\n float: $default-float;\n\n .js-generated {\n display: none;\n }\n }\n }\n\n li {\n &.hover {\n >a:not(.button) {\n background-color: $topbar-link-bg-color-hover;\n\n @if ($topbar-link-bg-hover) {\n background: $topbar-link-bg-hover;\n }\n\n color: $topbar-link-color-hover;\n }\n }\n\n &:not(.has-form) {\n a:not(.button) {\n padding: 0 $topbar-link-padding;\n line-height: $topbar-height;\n background: $topbar-link-bg;\n\n &:hover {\n background-color: $topbar-link-bg-color-hover;\n\n @if ($topbar-link-bg-hover) {\n background: $topbar-link-bg-hover;\n }\n }\n }\n }\n\n &.active:not(.has-form) {\n a:not(.button) {\n padding: 0 $topbar-link-padding;\n line-height: $topbar-height;\n color: $topbar-link-color-active;\n background: $topbar-link-bg-active;\n\n &:hover {\n background: $topbar-link-bg-active-hover;\n color: $topbar-link-color-active-hover;\n }\n }\n }\n }\n\n .has-dropdown {\n @if($topbar-arrows) {\n &>a {\n padding-#{$opposite-direction}: $topbar-link-padding + $topbar-link-dropdown-padding !important;\n\n &:after {\n @include css-triangle($topbar-dropdown-toggle-size, rgba($topbar-dropdown-toggle-color, $topbar-dropdown-toggle-alpha), top);\n margin-top: -(calc($topbar-dropdown-toggle-size / 2));\n top: calc($topbar-height / 2);\n }\n }\n }\n\n &.moved {\n position: relative;\n\n &>.dropdown {\n @include topbar-hide-dropdown();\n }\n }\n\n &.hover,\n &.not-click:hover {\n &>.dropdown {\n @include topbar-show-dropdown();\n }\n }\n\n >a:focus+.dropdown {\n @include topbar-show-dropdown();\n }\n\n .dropdown li.has-dropdown {\n &>a {\n @if ($topbar-dropdown-arrows) {\n &:after {\n border: none;\n content: \"\\00bb\";\n top: 1rem;\n margin-top: -1px;\n #{$opposite-direction}: 5px;\n line-height: 1.2;\n }\n }\n }\n }\n }\n\n .dropdown {\n #{$default-float}: 0;\n top: auto;\n background: transparent;\n min-width: 100%;\n\n li {\n a {\n color: $topbar-dropdown-link-color;\n line-height: $topbar-height;\n white-space: nowrap;\n padding: 12px $topbar-link-padding;\n background: $topbar-dropdown-link-bg;\n }\n\n &:not(.has-form):not(.active) {\n &>a:not(.button) {\n color: $topbar-dropdown-link-color;\n background: $topbar-dropdown-link-bg;\n }\n\n &:hover>a:not(.button) {\n color: $topbar-dropdown-link-color-hover;\n background-color: $topbar-link-bg-color-hover;\n\n @if ($topbar-dropdown-link-bg-hover) {\n background: $topbar-dropdown-link-bg-hover;\n }\n }\n }\n\n label {\n white-space: nowrap;\n background: $topbar-dropdown-label-bg;\n }\n\n // Second Level Dropdowns\n .dropdown {\n #{$default-float}: 100%;\n top: 0;\n }\n }\n }\n\n &>ul>.divider,\n &>ul>[role=\"separator\"] {\n border-bottom: none;\n border-top: none;\n border-#{$opposite-direction}: $topbar-divider-border-bottom;\n clear: none;\n height: $topbar-height;\n width: 0;\n }\n\n .has-form {\n background: $topbar-link-bg;\n padding: 0 calc($topbar-height / 3);\n height: $topbar-height;\n }\n\n // Position overrides for ul.right and ul.left\n .#{$opposite-direction} {\n li .dropdown {\n #{$default-float}: auto;\n #{$opposite-direction}: 0;\n\n li .dropdown {\n #{$opposite-direction}: 100%;\n }\n }\n }\n\n .#{$default-float} {\n li .dropdown {\n #{$opposite-direction}: auto;\n #{$default-float}: 0;\n\n li .dropdown {\n #{$default-float}: 100%;\n }\n }\n }\n }\n\n // Degrade gracefully when Javascript is disabled. Displays dropdown and changes\n // background & text color on hover.\n .no-js .top-bar-section {\n ul li {\n\n // Apply the hover link color when it has that class\n &:hover>a {\n background-color: $topbar-link-bg-color-hover;\n\n @if ($topbar-link-bg-hover) {\n background: $topbar-link-bg-hover;\n }\n\n color: $topbar-link-color-hover;\n }\n\n // Apply the active link color when it has that class\n &:active>a {\n background: $topbar-link-bg-active;\n color: $topbar-link-color-active;\n }\n }\n\n .has-dropdown {\n &:hover {\n &>.dropdown {\n @include topbar-show-dropdown();\n }\n }\n\n >a:focus+.dropdown {\n @include topbar-show-dropdown();\n }\n }\n }\n }\n }\n}","// Foundation by ZURB\n// foundation.zurb.com\n// Licensed under MIT Open Source\n\n@import \"global\";\n\n//\n// @variables\n//\n\n$include-html-accordion-classes: $include-html-classes !default;\n\n$accordion-navigation-padding: rem-calc(16) !default;\n$accordion-navigation-bg-color: $silver !default;\n$accordion-navigation-hover-bg-color: scale-color($accordion-navigation-bg-color, $lightness: -5%) !default;\n$accordion-navigation-active-bg-color: scale-color($accordion-navigation-bg-color, $lightness: -3%) !default;\n$accordion-navigation-font-color: $jet !default;\n$accordion-navigation-font-size: rem-calc(16) !default;\n$accordion-navigation-font-family: $body-font-family !default;\n\n$accordion-content-padding: calc($column-gutter / 2) !default;\n$accordion-content-active-bg-color: $white !default;\n\n\n// Mixin: accordion-container()\n// Description: Responsible for the container component of accordions, generating styles relating to a margin of zero and a clearfix\n// Explicit Dependencies: a clearfix mixin *is* defined.\n// Implicit Dependencies: None\n\n@mixin accordion-container() {\n @include clearfix;\n margin-bottom: 0;\n}\n\n// Mixin: accordion-navigation( $bg, $hover-bg, $active-bg, $padding, $active_class, $font-color, $font-size, $font-family){\n// @params $bg-color: [ color or string ]: Specify the background color for the navigation element\n// @params $hover-bg-color [ color or string ]: Specify the background color for the navigation element when hovered\n// @params $active-bg [ color or string ]: Specify the background color for the navigation element when clicked and not released.\n// @params $active_class [ string ]: Specify the class name used to keep track of which accordion tab should be visible\n// @params $font-color [ color or string ]: Color of the font for accordion\n// @params $font-size [ number ]: Specify the font-size of the text inside the navigation element\n// @params $font-family [ string ]: Specify the font family for the text of the navigation of the accordion\n\n@mixin accordion-navigation($bg: $accordion-navigation-bg-color, $hover-bg: $accordion-navigation-hover-bg-color, $active-bg: $accordion-navigation-active-bg-color, $padding: $accordion-navigation-padding, $active_class: 'active', $font-color: $accordion-navigation-font-color, $font-size: $accordion-navigation-font-size, $font-family: $accordion-navigation-font-family ) {\n display: block;\n margin-bottom: 0 !important;\n\n @if type-of($active_class) !=\"string\" {\n @warn \"`#{$active_class}` isn't a valid string. A valid string is needed to correctly be interpolated as a CSS class. CSS classes cannot start with a number or consist of only numbers. CSS will not be generated for the active state of this navigation component.\"\n }\n\n @else {\n &.#{ $active_class }>a {\n background: $active-bg;\n }\n }\n\n >a {\n background: $bg;\n color: $font-color;\n\n @if type-of($padding) !=number {\n @warn \"`#{$padding}` was read as #{type-of($padding)}\";\n\n @if $accordion-navigation-padding !=null {\n @warn \"#{$padding} was read as a #{type-of($padding)}\";\n @warn \"`#{$padding}` isn't a valid number. $accordion-navigation-padding (#{$accordion-navigation-padding}) will be used instead.)\";\n padding: $accordion-navigation-padding;\n }\n\n @else {\n @warn \"`#{$padding}` isn't a valid number and $accordion-navigation-padding is missing. A value of `null` is returned to not output an invalid value for padding\";\n padding: null;\n }\n }\n\n @else {\n padding: $padding;\n }\n\n display: block;\n font-family: $font-family;\n\n @if type-of($font-size) !=number {\n @warn \"`#{$font-size}` was read as a #{type-of($font-size)}\";\n\n @if $accordion-navigation-font-size !=null {\n @warn \"`#{$font-size}` is not a valid number. The value of $accordion-navigation-font-size will be used instead (#{$accordion-navigation-font-size}).\";\n font-size: $accordion-navigation-font-size;\n }\n\n @else {\n @warn \"`#{$font-size}` is not a valid number and the default value of $accordion-navigation-font-size is not defined. A value of `null` will be returned to not generate an invalid value for font-size.\";\n font-size: null;\n\n }\n }\n\n @else {\n font-size: $font-size;\n }\n\n &:hover {\n background: $hover-bg;\n }\n }\n}\n\n// Mixin: accordion-content($bg, $padding, $active-class)\n// @params $padding [ number ]: Padding for the content of the container\n// @params $bg [ color ]: Background color for the content when it's visible\n// @params $active_class [ string ]: Class name used to keep track of which accordion tab should be visible.\n\n@mixin accordion-content($bg: $accordion-content-active-bg-color, $padding: $accordion-content-padding, $active_class: 'active') {\n display: none;\n\n @if type-of($padding) !=\"number\" {\n @warn \"#{$padding} was read as a #{type-of($padding)}\";\n\n @if $accordion-content-padding !=null {\n @warn \"`#{$padding}` isn't a valid number. $accordion-content-padding used instead\";\n padding: $accordion-content-padding;\n }\n\n @else {\n @warn \"`#{$padding}` isn't a valid number and the default value of $accordion-content-padding is not defined. A value of `null` is returned to not output an invalid value for padding.\";\n padding: null;\n }\n }\n\n @else {\n padding: $padding;\n }\n\n @if type-of($active_class) !=\"string\" {\n @warn \"`#{$active_class}` isn't a valid string. A valid string is needed to correctly be interpolated as a CSS class. CSS classes cannot start with a number or consist of only numbers. CSS will not be generated for the active state of the content. \"\n }\n\n @else {\n &.#{$active_class} {\n display: block;\n background: $bg;\n }\n }\n}\n\n@include exports(\"accordion\") {\n @if $include-html-accordion-classes {\n .accordion {\n @include clearfix;\n margin-bottom: 0;\n\n .accordion-navigation,\n dd {\n display: block;\n margin-bottom: 0 !important;\n\n &.active>a {\n background: $accordion-navigation-active-bg-color;\n }\n\n >a {\n background: $accordion-navigation-bg-color;\n color: $accordion-navigation-font-color;\n padding: $accordion-navigation-padding;\n display: block;\n font-family: $accordion-navigation-font-family;\n font-size: $accordion-navigation-font-size;\n\n &:hover {\n background: $accordion-navigation-hover-bg-color;\n }\n }\n\n >.content {\n display: none;\n padding: $accordion-content-padding;\n\n &.active {\n display: block;\n background: $accordion-content-active-bg-color;\n }\n }\n }\n }\n }\n}","// Foundation by ZURB\n// foundation.zurb.com\n// Licensed under MIT Open Source\n\n@import \"global\";\n\n//\n// Alert Box Variables\n//\n$include-html-alert-classes: $include-html-classes !default;\n\n// We use this to control alert padding.\n$alert-padding-top: rem-calc(14) !default;\n$alert-padding-default-float: $alert-padding-top !default;\n$alert-padding-opposite-direction: $alert-padding-top + rem-calc(10) !default;\n$alert-padding-bottom: $alert-padding-top !default;\n\n// We use these to control text style.\n$alert-font-weight: $font-weight-normal !default;\n$alert-font-size: rem-calc(13) !default;\n$alert-font-color: $white !default;\n$alert-font-color-alt: scale-color($secondary-color, $lightness: -66%) !default;\n\n// We use this for close hover effect.\n$alert-function-factor: -14% !default;\n\n// We use these to control border styles.\n$alert-border-style: solid !default;\n$alert-border-width: 1px !default;\n$alert-border-color: scale-color($primary-color, $lightness: $alert-function-factor) !default;\n$alert-bottom-margin: rem-calc(20) !default;\n\n// We use these to style the close buttons\n$alert-close-color: $oil !default;\n$alert-close-top: 50% !default;\n$alert-close-position: rem-calc(4) !default;\n$alert-close-font-size: rem-calc(22) !default;\n$alert-close-opacity: 0.3 !default;\n$alert-close-opacity-hover: 0.5 !default;\n$alert-close-padding: 9px 6px 4px !default;\n$alert-close-background: inherit !default;\n\n// We use this to control border radius\n$alert-radius: $global-radius !default;\n\n$alert-transition-speed: 300ms !default;\n$alert-transition-ease: ease-out !default;\n\n//\n// Alert Mixins\n//\n\n// We use this mixin to create a default alert base.\n@mixin alert-base {\n border-style: $alert-border-style;\n border-width: $alert-border-width;\n display: block;\n font-weight: $alert-font-weight;\n margin-bottom: $alert-bottom-margin;\n position: relative;\n padding: $alert-padding-top $alert-padding-opposite-direction $alert-padding-bottom $alert-padding-default-float;\n font-size: $alert-font-size;\n @include single-transition(opacity, $alert-transition-speed, $alert-transition-ease)\n}\n\n// We use this mixin to add alert styles\n//\n// $bg - The background of the alert. Default: $primary-color.\n@mixin alert-style($bg: $primary-color) {\n\n // This finds the lightness percentage of the background color.\n $bg-lightness: lightness($bg);\n\n // We control which background color and border come through.\n background-color: $bg;\n border-color: scale-color($bg, $lightness: $alert-function-factor);\n\n // We control the text color for you based on the background color.\n @if $bg-lightness >70% {\n color: $alert-font-color-alt;\n }\n\n @else {\n color: $alert-font-color;\n }\n\n}\n\n// We use this to create the close button.\n@mixin alert-close {\n font-size: $alert-close-font-size;\n padding: $alert-close-padding;\n line-height: 0;\n position: absolute;\n top: $alert-close-top;\n margin-top: -(calc($alert-close-font-size / 2));\n #{$opposite-direction}: $alert-close-position;\n color: $alert-close-color;\n opacity: $alert-close-opacity;\n background: $alert-close-background;\n\n &:hover,\n &:focus {\n opacity: $alert-close-opacity-hover;\n }\n}\n\n// We use this to quickly create alerts with a single mixin.\n//\n// $bg - Background of alert. Default: $primary-color.\n// $radius - Radius of alert box. Default: false.\n@mixin alert($bg: $primary-color, $radius: false) {\n @include alert-base;\n @include alert-style($bg);\n @include radius($radius);\n}\n\n@include exports(\"alert-box\") {\n @if $include-html-alert-classes {\n .alert-box {\n @include alert;\n\n .close {\n @include alert-close;\n }\n\n &.radius {\n @include radius($alert-radius);\n }\n\n &.round {\n @include radius($global-rounded);\n }\n\n &.success {\n @include alert-style($success-color);\n }\n\n &.alert {\n @include alert-style($alert-color);\n }\n\n &.secondary {\n @include alert-style($secondary-color);\n }\n\n &.warning {\n @include alert-style($warning-color);\n }\n\n &.info {\n @include alert-style($info-color);\n }\n\n &.alert-close {\n opacity: 0\n }\n }\n }\n}","// Foundation by ZURB\n// foundation.zurb.com\n// Licensed under MIT Open Source\n\n@import \"global\";\n\n//\n// Breadcrumb Variables\n//\n$include-html-nav-classes: $include-html-classes !default;\n\n// We use this to set the background color for the breadcrumb container.\n$crumb-bg: scale-color($secondary-color, $lightness: 55%) !default;\n\n// We use these to set the padding around the breadcrumbs.\n$crumb-padding: rem-calc(9 14 9) !default;\n$crumb-side-padding: rem-calc(12) !default;\n\n// We use these to control border styles.\n$crumb-function-factor: -10% !default;\n$crumb-border-size: 1px !default;\n$crumb-border-style: solid !default;\n$crumb-border-color: scale-color($crumb-bg, $lightness: $crumb-function-factor) !default;\n$crumb-radius: $global-radius !default;\n\n// We use these to set various text styles for breadcrumbs.\n$crumb-font-size: rem-calc(11) !default;\n$crumb-font-color: $primary-color !default;\n$crumb-font-color-current: $oil !default;\n$crumb-font-color-unavailable: $aluminum !default;\n$crumb-font-transform: uppercase !default;\n$crumb-link-decor: underline !default;\n\n// We use these to control the slash between breadcrumbs\n$crumb-slash-color: $base !default;\n$crumb-slash: \"/\" !default;\n\n//\n// Breadcrumb Mixins\n//\n\n// We use this mixin to create a container around our breadcrumbs\n@mixin crumb-container {\n display: block;\n padding: $crumb-padding;\n overflow: hidden;\n margin-#{$default-float}: 0;\n list-style: none;\n border-style: $crumb-border-style;\n border-width: $crumb-border-size;\n\n // We control which background color and border come through.\n background-color: $crumb-bg;\n border-color: $crumb-border-color;\n}\n\n// We use this mixin to create breadcrumb styles from list items.\n@mixin crumbs {\n\n // A normal state will make the links look and act like clickable breadcrumbs.\n margin: 0;\n float: $default-float;\n font-size: $crumb-font-size;\n line-height: $crumb-font-size;\n text-transform: $crumb-font-transform;\n color: $crumb-font-color;\n\n &:hover a, &:focus a { text-decoration: $crumb-link-decor; }\n\n a {\n color: $crumb-font-color;\n }\n\n // Current is for the link of the current page\n &.current {\n cursor: $cursor-default-value;\n color: $crumb-font-color-current;\n a {\n cursor: $cursor-default-value;\n color: $crumb-font-color-current;\n }\n\n &:hover, &:hover a,\n &:focus, &:focus a { text-decoration: none; }\n }\n\n // Unavailable removed color and link styles so it looks inactive.\n &.unavailable {\n color: $crumb-font-color-unavailable;\n a { color: $crumb-font-color-unavailable; }\n\n &:hover,\n &:hover a,\n &:focus,\n a:focus {\n text-decoration: none;\n color: $crumb-font-color-unavailable;\n cursor: $cursor-default-value;\n }\n }\n\n &:before {\n content: \"#{$crumb-slash}\";\n color: $crumb-slash-color;\n margin: 0 $crumb-side-padding;\n position: relative;\n top: 1px;\n }\n\n &:first-child:before {\n content: \" \";\n margin: 0;\n }\n}\n\n@include exports(\"breadcrumbs\") {\n @if $include-html-nav-classes {\n .breadcrumbs {\n @include crumb-container;\n @include radius($crumb-radius);\n\n &>* {\n @include crumbs;\n }\n }\n }\n}\n\n/* Accessibility - hides the forward slash */\n[aria-label=\"breadcrumbs\"] [aria-hidden=\"true\"]:after {\n content: \"/\";\n }\n","// Foundation by ZURB\n// foundation.zurb.com\n// Licensed under MIT Open Source\n\n@import \"global\";\n\n//\n// Block Grid Variables\n//\n$include-html-block-grid-classes: $include-html-classes !default;\n$include-xl-html-block-grid-classes: false !default;\n\n// We use this to control the maximum number of block grid elements per row\n$block-grid-elements: 12 !default;\n$block-grid-default-spacing: rem-calc(20) !default;\n\n$align-block-grid-to-grid: false !default;\n\n@if $align-block-grid-to-grid {\n $block-grid-default-spacing: $column-gutter;\n}\n\n// Enables media queries for block-grid classes. Set to false if writing semantic HTML.\n$block-grid-media-queries: true !default;\n\n//\n// Block Grid Mixins\n//\n\n// Create a custom block grid\n//\n// $per-row - # of items to display per row. Default: false.\n// $spacing - # of ems to use as padding on each block item. Default: rem-calc(20).\n// $base-style - Apply a base style to block grid. Default: true.\n@mixin block-grid($per-row: false,\n $spacing: $block-grid-default-spacing,\n $include-spacing: true,\n $base-style: true) {\n\n @if $base-style {\n display: block;\n padding: 0;\n\n @if $align-block-grid-to-grid {\n margin: 0;\n }\n\n @else {\n margin: 0 calc(-1 * $spacing / 2);\n }\n\n @include clearfix;\n\n &>li {\n display: block;\n height: auto;\n float: $default-float;\n\n @if $include-spacing {\n padding: 0 calc($spacing / 2) $spacing;\n }\n }\n }\n\n @if $per-row {\n &>li {\n width: calc(100% / $per-row);\n\n @if $include-spacing {\n padding: 0 ($spacing/2) $spacing;\n }\n\n list-style: none;\n\n &:nth-of-type(1n) {\n clear: none;\n }\n\n &:nth-of-type(#{$per-row}n+1) {\n clear: both;\n }\n\n @if $align-block-grid-to-grid {\n @include block-grid-aligned($per-row, $spacing);\n }\n }\n }\n}\n\n@mixin block-grid-aligned($per-row, $spacing) {\n @for $i from 1 through $block-grid-elements {\n @if $per-row >=$i {\n $grid-column: '+'+$i;\n\n @if $per-row ==$i {\n $grid-column: '';\n }\n\n &:nth-of-type(#{$per-row}n#{unquote($grid-column)}) {\n padding-left: ($spacing - (($spacing / $per-row) * ($per-row - ($i - 1))));\n padding-right: ($spacing - (($spacing / $per-row) * $i));\n }\n }\n }\n}\n\n// Generate presentational markup for block grid.\n//\n// $size - Name of class to use, i.e. \"large\" will generate .large-block-grid-1, .large-block-grid-2, etc.\n@mixin block-grid-html-classes($size, $include-spacing) {\n @for $i from 1 through $block-grid-elements {\n .#{$size}-block-grid-#{($i)} {\n @include block-grid($i, $block-grid-default-spacing, $include-spacing, false);\n }\n }\n}\n\n@include exports(\"block-grid\") {\n @if $include-html-block-grid-classes {\n\n [class*=\"block-grid-\"] {\n @include block-grid;\n }\n\n @if $block-grid-media-queries {\n @media #{$small-up} {\n @include block-grid-html-classes($size: small, $include-spacing: false);\n }\n\n @media #{$medium-up} {\n @include block-grid-html-classes($size: medium, $include-spacing: false);\n }\n\n @media #{$large-up} {\n @include block-grid-html-classes($size: large, $include-spacing: false);\n }\n\n @if $include-xl-html-block-grid-classes {\n @media #{$xlarge-up} {\n @include block-grid-html-classes($size: xlarge, $include-spacing: false);\n }\n\n @media #{$xxlarge-up} {\n @include block-grid-html-classes($size: xxlarge, $include-spacing: false);\n }\n }\n }\n }\n}","// Foundation by ZURB\n// foundation.zurb.com\n// Licensed under MIT Open Source\n\n@import \"global\";\n@import \"buttons\";\n\n//\n// Button Group Variables\n//\n$include-html-button-classes: $include-html-classes !default;\n\n// Sets the margin for the right side by default, and the left margin if right-to-left direction is used\n$button-bar-margin-opposite: rem-calc(10) !default;\n$button-group-border-width: 1px !default;\n\n//\n// Button Group Mixins\n//\n\n// We use this to add styles for a button group container\n@mixin button-group-container($styles: true, $float: false) {\n @if $styles {\n list-style: none;\n margin: 0;\n #{$default-float}: 0;\n @include clearfix();\n }\n\n @if $float {\n float: #{$default-float};\n margin-#{$opposite-direction}: $button-bar-margin-opposite;\n\n & div {\n overflow: hidden;\n }\n }\n}\n\n// We use this to control styles for button groups\n@mixin button-group-style($radius: false, $even: false, $float: false, $orientation: horizontal) {\n\n >button,\n .button {\n border-#{$default-float}: $button-group-border-width solid;\n border-color: rgba(255, 255, 255, 0.5);\n }\n\n &:first-child {\n\n button,\n .button {\n border-#{$default-float}: 0;\n }\n }\n\n // We use this to control the flow, or remove those styles completely.\n @if $float {\n margin: 0;\n float: $float;\n display: list-item;\n\n // Make sure the first child doesn't get the negative margin.\n &:first-child {\n margin-#{$default-float}: 0;\n }\n }\n\n @else {\n margin: 0 -2px;\n display: inline-block;\n }\n\n @if $orientation ==vertical {\n display: block;\n margin: 0;\n\n >button,\n .button {\n border-top: $button-group-border-width solid;\n border-color: rgba(255, 255, 255, 0.5);\n border-left-width: 0;\n margin: 0;\n display: block;\n }\n\n &:first-child {\n\n button,\n .button {\n border-top: 0;\n }\n }\n }\n\n // We use these to control left and right radius on first/last buttons in the group.\n @if $radius ==true {\n\n &,\n &>a,\n &>button,\n &>.button {\n @include radius(0);\n }\n\n &:first-child,\n &:first-child>a,\n &:first-child>button,\n &:first-child>.button {\n @if $orientation ==vertical {\n @include side-radius(top, $button-radius);\n }\n\n @else {\n @include side-radius($default-float, $button-radius);\n }\n }\n\n &:last-child,\n &:last-child>a,\n &:last-child>button,\n &:last-child>.button {\n @if $orientation ==vertical {\n @include side-radius(bottom, $button-radius);\n }\n\n @else {\n @include side-radius($opposite-direction, $button-radius);\n }\n }\n }\n\n @else if $radius {\n\n &,\n &>a,\n &>button,\n &>.button {\n @include radius(0);\n }\n\n &:first-child,\n &:first-child>a,\n &:first-child>button,\n &:first-child>.button {\n @if $orientation ==vertical {\n @include side-radius(top, $radius);\n }\n\n @else {\n @include side-radius($default-float, $radius);\n }\n }\n\n &:last-child,\n &:last-child>a,\n &:last-child>button,\n &:last-child>.button {\n @if $orientation ==vertical {\n @include side-radius(bottom, $radius);\n }\n\n @else {\n @include side-radius($opposite-direction, $radius);\n }\n }\n }\n\n // We use this to make the buttons even width across their container\n @if $even {\n width: percentage(calc((100/$even) / 100));\n\n button,\n .button {\n width: 100%;\n }\n }\n}\n\n@include exports(\"button-group\") {\n @if $include-html-button-classes {\n .button-group {\n @include button-group-container;\n\n &>li {\n @include button-group-style();\n }\n\n &.stack {\n &>li {\n @include button-group-style($orientation: vertical);\n float: none;\n }\n }\n\n &.stack-for-small {\n &>li {\n @include button-group-style($orientation: horizontal);\n\n @media #{$small-only} {\n @include button-group-style($orientation: vertical);\n }\n }\n }\n\n &.radius>* {\n @include button-group-style($radius: $button-radius, $float: null);\n }\n\n &.radius.stack>* {\n @include button-group-style($radius: $button-radius, $float: null, $orientation: vertical);\n }\n\n &.radius.stack-for-small>* {\n @media #{$medium-up} {\n @include button-group-style($radius: $button-radius, $orientation: horizontal);\n }\n\n @media #{$small-only} {\n @include button-group-style($radius: $button-radius, $orientation: vertical);\n }\n }\n\n &.round>* {\n @include button-group-style($radius: $button-round, $float: null);\n }\n\n &.round.stack>* {\n @include button-group-style($radius: $button-med, $float: null, $orientation: vertical);\n }\n\n &.round.stack-for-small>* {\n @media #{$medium-up} {\n @include button-group-style($radius: $button-round, $orientation: horizontal);\n }\n\n @media #{$small-only} {\n @include button-group-style($radius: $button-med, $orientation: vertical);\n }\n }\n\n @for $i from 2 through 8 {\n &.even-#{$i} li {\n @include button-group-style($even: $i, $float: null);\n }\n }\n }\n\n .button-bar {\n @include clearfix;\n\n .button-group {\n @include button-group-container($styles: false, $float: true);\n }\n }\n }\n}","// Foundation by ZURB\n// foundation.zurb.com\n// Licensed under MIT Open Source\n\n@import \"global\";\n\n//\n// @variables\n//\n$include-html-clearing-classes: $include-html-classes !default;\n\n// We use these to set the background colors for parts of Clearing.\n$clearing-bg: $oil !default;\n$clearing-caption-bg: $clearing-bg !default;\n$clearing-carousel-bg: rgba(51,51,51,0.8) !default;\n$clearing-img-bg: $clearing-bg !default;\n\n// We use these to style the close button\n$clearing-close-color: $iron !default;\n$clearing-close-size: 30px !default;\n\n// We use these to style the arrows\n$clearing-arrow-size: 12px !default;\n$clearing-arrow-color: $clearing-close-color !default;\n\n// We use these to style captions\n$clearing-caption-font-color: $iron !default;\n$clearing-caption-font-size: 0.875em !default;\n$clearing-caption-padding: 10px 30px 20px !default;\n\n// We use these to make the image and carousel height and style\n$clearing-active-img-height: 85% !default;\n$clearing-carousel-height: 120px !default;\n$clearing-carousel-thumb-width: 120px !default;\n$clearing-carousel-thumb-active-border: 1px solid rgb(255,255,255) !default;\n\n@include exports(\"clearing\") {\n @if $include-html-clearing-classes {\n // We decided to not create a mixin for Clearing because it relies\n // on predefined classes and structure to work properly.\n // The variables above should give enough control.\n\n /* Clearing Styles */\n .clearing-thumbs, #{data('clearing')} {\n @include clearfix;\n margin-bottom: 0;\n margin-#{$default-float}: 0;\n list-style: none;\n\n li {\n float: $default-float;\n margin-#{$opposite-direction}: 10px;\n }\n\n &[class*=\"block-grid-\"] li {\n margin-#{$opposite-direction}: 0;\n }\n }\n\n .clearing-blackout {\n background: $clearing-bg;\n position: fixed;\n width: 100%;\n height: 100%;\n top: 0;\n #{$default-float}: 0;\n z-index: 998;\n\n .clearing-close { display: block; }\n }\n\n .clearing-container {\n position: relative;\n z-index: 998;\n height: 100%;\n overflow: hidden;\n margin: 0;\n }\n\n .clearing-touch-label {\n position: absolute;\n top: 50%;\n left: 50%;\n color: $base;\n font-size: 0.6em;\n }\n\n .visible-img {\n height: 95%;\n position: relative;\n\n img {\n position: absolute;\n #{$default-float}: 50%;\n top: 50%;\n margin-#{$default-float}: -50%;\n max-height: 100%;\n max-width: 100%;\n }\n }\n\n .clearing-caption {\n color: $clearing-caption-font-color;\n font-size: $clearing-caption-font-size;\n line-height: 1.3;\n margin-bottom: 0;\n text-align: center;\n bottom: 0;\n background: $clearing-caption-bg;\n width: 100%;\n padding: $clearing-caption-padding;\n position: absolute;\n #{$default-float}: 0;\n }\n\n .clearing-close {\n z-index: 999;\n padding-#{$default-float}: 20px;\n padding-top: 10px;\n font-size: $clearing-close-size;\n line-height: 1;\n color: $clearing-close-color;\n display: none;\n\n &:hover,\n &:focus { color: $iron; }\n }\n\n .clearing-assembled .clearing-container { height: 100%;\n .carousel > ul { display: none; }\n }\n\n // If you want to show a lightbox, but only have a single image come through as the thumbnail\n .clearing-feature li {\n display: none;\n &.clearing-featured-img {\n display: block;\n }\n }\n\n // Large screen overrides\n @media #{$medium-up} {\n .clearing-main-prev,\n .clearing-main-next {\n position: absolute;\n height: 100%;\n width: 40px;\n top: 0;\n & > span {\n position: absolute;\n top: 50%;\n display: block;\n width: 0;\n height: 0;\n border: solid $clearing-arrow-size;\n &:hover { opacity: 0.8; }\n }\n }\n .clearing-main-prev {\n #{$default-float}: 0;\n & > span {\n #{$default-float}: 5px;\n border-color: transparent;\n border-#{$opposite-direction}-color: $clearing-arrow-color;\n }\n }\n .clearing-main-next {\n #{$opposite-direction}: 0;\n & > span {\n border-color: transparent;\n border-#{$default-float}-color: $clearing-arrow-color;\n }\n }\n \n .clearing-main-prev.disabled,\n .clearing-main-next.disabled { opacity: 0.3; }\n\n .clearing-assembled .clearing-container {\n\n .carousel {\n background: $clearing-carousel-bg;\n height: $clearing-carousel-height;\n margin-top: 10px;\n text-align: center;\n\n & > ul {\n display: inline-block;\n z-index: 999;\n height: 100%;\n position: relative;\n float: none;\n\n li {\n display: block;\n width: $clearing-carousel-thumb-width;\n min-height: inherit;\n float: $default-float;\n overflow: hidden;\n margin-#{$opposite-direction}: 0;\n padding: 0;\n position: relative;\n cursor: $cursor-pointer-value;\n opacity: 0.4;\n clear: none;\n\n &.fix-height {\n img {\n height: 100%;\n max-width: none;\n }\n }\n\n a.th {\n border: none;\n box-shadow: none;\n display: block;\n }\n\n img {\n cursor: $cursor-pointer-value !important;\n width: 100% !important;\n }\n\n &.visible { opacity: 1; }\n &:hover { opacity: 0.8; }\n }\n }\n }\n\n .visible-img {\n background: $clearing-img-bg;\n overflow: hidden;\n height: $clearing-active-img-height;\n }\n }\n\n .clearing-close {\n position: absolute;\n top: 10px;\n #{$opposite-direction}: 20px;\n padding-#{$default-float}: 0;\n padding-top: 0;\n }\n }\n\n }\n}\n","// Foundation by ZURB\n// foundation.zurb.com\n// Licensed under MIT Open Source\n\n@import \"global\";\n\n//\n// @variables\n//\n$include-html-dropdown-classes: $include-html-classes !default;\n\n// We use these to controls height and width styles.\n$f-dropdown-max-width: 200px !default;\n$f-dropdown-height: auto !default;\n$f-dropdown-max-height: none !default;\n\n// Used for bottom position\n$f-dropdown-margin-top: 2px !default;\n\n// Used for right position\n$f-dropdown-margin-left: $f-dropdown-margin-top !default;\n\n// Used for left position\n$f-dropdown-margin-right: $f-dropdown-margin-top !default;\n\n// Used for top position\n$f-dropdown-margin-bottom: $f-dropdown-margin-top !default;\n\n// We use this to control the background color\n$f-dropdown-bg: $white !default;\n\n// We use this to set the border styles for dropdowns.\n$f-dropdown-border-style: solid !default;\n$f-dropdown-border-width: 1px !default;\n$f-dropdown-border-color: scale-color($white, $lightness: -20%) !default;\n\n// We use these to style the triangle pip.\n$f-dropdown-triangle-size: 6px !default;\n$f-dropdown-triangle-color: $white !default;\n$f-dropdown-triangle-side-offset: 10px !default;\n\n// We use these to control styles for the list elements.\n$f-dropdown-list-style: none !default;\n$f-dropdown-font-color: $charcoal !default;\n$f-dropdown-font-size: rem-calc(14) !default;\n$f-dropdown-list-padding: rem-calc(5, 10) !default;\n$f-dropdown-line-height: rem-calc(18) !default;\n$f-dropdown-list-hover-bg: $smoke !default;\n$dropdown-mobile-default-float: 0 !default;\n\n// We use this to control the styles for when the dropdown has custom content.\n$f-dropdown-content-padding: rem-calc(20) !default;\n\n// Default radius for dropdown.\n$f-dropdown-radius: $global-radius !default;\n\n//\n// @mixins\n//\n//\n// NOTE: Make default max-width change between list and content types. Can add more width with classes, maybe .small, .medium, .large, etc.;\n// We use this to style the dropdown container element.\n// $content-list - Sets list-style. Default: list. Options: [list, content]\n// $triangle - Sets if dropdown has triangle. Default:true.\n// $max-width - Default: $f-dropdown-max-width || 200px.\n@mixin dropdown-container($content:list, $triangle:true, $max-width:$f-dropdown-max-width) {\n position: absolute;\n left: -9999px;\n list-style: $f-dropdown-list-style;\n margin-#{$default-float}: 0;\n outline: none;\n\n > *:first-child { margin-top: 0; }\n > *:last-child { margin-bottom: 0; }\n\n @if $content == list {\n width: 100%;\n max-height: $f-dropdown-max-height;\n height: $f-dropdown-height;\n background: $f-dropdown-bg;\n border: $f-dropdown-border-style $f-dropdown-border-width $f-dropdown-border-color;\n font-size: $f-dropdown-font-size;\n z-index: 89;\n }\n @else if $content == content {\n padding: $f-dropdown-content-padding;\n width: 100%;\n height: $f-dropdown-height;\n max-height: $f-dropdown-max-height;\n background: $f-dropdown-bg;\n border: $f-dropdown-border-style $f-dropdown-border-width $f-dropdown-border-color;\n font-size: $f-dropdown-font-size;\n z-index: 89;\n }\n\n @if $triangle == bottom {\n margin-top: $f-dropdown-margin-top;\n\n &:before {\n @include css-triangle($f-dropdown-triangle-size, $f-dropdown-triangle-color, bottom);\n position: absolute;\n top: -($f-dropdown-triangle-size * 2);\n #{$default-float}: $f-dropdown-triangle-side-offset;\n z-index: 89;\n }\n &:after {\n @include css-triangle($f-dropdown-triangle-size + 1, $f-dropdown-border-color, bottom);\n position: absolute;\n top: -(($f-dropdown-triangle-size + 1) * 2);\n #{$default-float}: $f-dropdown-triangle-side-offset - 1;\n z-index: 88;\n }\n\n &.right:before {\n #{$default-float}: auto;\n #{$opposite-direction}: $f-dropdown-triangle-side-offset;\n }\n &.right:after {\n #{$default-float}: auto;\n #{$opposite-direction}: $f-dropdown-triangle-side-offset - 1;\n }\n }\n\n @if $triangle == $default-float {\n margin-top: 0;\n margin-#{$default-float}: $f-dropdown-margin-right;\n\n &:before {\n @include css-triangle($f-dropdown-triangle-size, $f-dropdown-triangle-color, #{$opposite-direction});\n position: absolute;\n top: $f-dropdown-triangle-side-offset;\n #{$default-float}: -($f-dropdown-triangle-size * 2);\n z-index: 89;\n }\n &:after {\n @include css-triangle($f-dropdown-triangle-size + 1, $f-dropdown-border-color, #{$opposite-direction});\n position: absolute;\n top: $f-dropdown-triangle-side-offset - 1;\n #{$default-float}: -($f-dropdown-triangle-size * 2) - 2;\n z-index: 88;\n }\n\n }\n\n @if $triangle == $opposite-direction {\n margin-top: 0;\n margin-#{$default-float}: -$f-dropdown-margin-right;\n\n &:before {\n @include css-triangle($f-dropdown-triangle-size, $f-dropdown-triangle-color, #{$default-float});\n position: absolute;\n top: $f-dropdown-triangle-side-offset;\n #{$opposite-direction}: -($f-dropdown-triangle-size * 2);\n #{$default-float}: auto;\n z-index: 89;\n }\n &:after {\n @include css-triangle($f-dropdown-triangle-size + 1, $f-dropdown-border-color, #{$default-float});\n position: absolute;\n top: $f-dropdown-triangle-side-offset - 1;\n #{$opposite-direction}: -($f-dropdown-triangle-size * 2) - 2;\n #{$default-float}: auto;\n z-index: 88;\n }\n\n }\n\n @if $triangle == top {\n margin-top: -$f-dropdown-margin-bottom;\n margin-left: 0;\n\n &:before {\n @include css-triangle($f-dropdown-triangle-size, $f-dropdown-triangle-color, top);\n position: absolute;\n top: auto;\n bottom: -($f-dropdown-triangle-size * 2);\n #{$default-float}: $f-dropdown-triangle-side-offset;\n #{$opposite-direction}: auto;\n z-index: 89;\n }\n &:after {\n @include css-triangle($f-dropdown-triangle-size + 1, $f-dropdown-border-color, top);\n position: absolute;\n top: auto;\n bottom: -($f-dropdown-triangle-size * 2) - 2;\n #{$default-float}: $f-dropdown-triangle-side-offset - 1;\n #{$opposite-direction}: auto;\n z-index: 88;\n }\n\n }\n\n @if $max-width { max-width: $max-width; }\n @else { max-width: $f-dropdown-max-width; }\n\n}\n\n// @MIXIN\n//\n// We use this to style the list elements or content inside the dropdown.\n\n@mixin dropdown-style {\n font-size: $f-dropdown-font-size;\n cursor: $cursor-pointer-value;\n\n line-height: $f-dropdown-line-height;\n margin: 0;\n\n &:hover,\n &:focus { background: $f-dropdown-list-hover-bg; }\n\n &.radius { @include radius($f-dropdown-radius); }\n\n a {\n display: block;\n padding: $f-dropdown-list-padding;\n color: $f-dropdown-font-color;\n }\n}\n\n@include exports(\"dropdown\") {\n @if $include-html-dropdown-classes {\n\n /* Foundation Dropdowns */\n .f-dropdown {\n @include dropdown-container(list, bottom);\n\n &.drop-#{$opposite-direction} {\n @include dropdown-container(list, #{$default-float});\n }\n\n &.drop-#{$default-float} {\n @include dropdown-container(list, #{$opposite-direction});\n }\n\n &.drop-top {\n @include dropdown-container(list, top);\n }\n // max-width: none;\n\n li { @include dropdown-style; }\n\n // You can also put custom content in these dropdowns\n &.content { @include dropdown-container(content, $triangle:false); }\n\n // Sizes\n &.tiny { max-width: 200px; }\n &.small { max-width: 300px; }\n &.medium { max-width: 500px; }\n &.large { max-width: 800px; }\n &.mega {\n width:100%!important;\n max-width:100%!important;\n\n &.open{\n left:0!important;\n }\n }\n }\n\n }\n}\n","// Foundation by ZURB\n// foundation.zurb.com\n// Licensed under MIT Open Source\n\n@import \"global\";\n\n//\n// @variables\n//\n$include-html-button-classes: $include-html-classes !default;\n\n// We use these to set the color of the pip in dropdown buttons\n$dropdown-button-pip-color: $white !default;\n$dropdown-button-pip-color-alt: $oil !default;\n\n$button-pip-tny: rem-calc(6) !default;\n$button-pip-sml: rem-calc(7) !default;\n$button-pip-med: rem-calc(9) !default;\n$button-pip-lrg: rem-calc(11) !default;\n\n// We use these to style tiny dropdown buttons\n$dropdown-button-padding-tny: $button-pip-tny * 7 !default;\n$dropdown-button-pip-size-tny: $button-pip-tny !default;\n$dropdown-button-pip-opposite-tny: $button-pip-tny * 3 !default;\n$dropdown-button-pip-top-tny: calc(-1 * $button-pip-tny / 2) + rem-calc(1) !default;\n\n// We use these to style small dropdown buttons\n$dropdown-button-padding-sml: $button-pip-sml * 7 !default;\n$dropdown-button-pip-size-sml: $button-pip-sml !default;\n$dropdown-button-pip-opposite-sml: $button-pip-sml * 3 !default;\n$dropdown-button-pip-top-sml: calc(-1 * $button-pip-sml / 2) + rem-calc(1) !default;\n\n// We use these to style medium dropdown buttons\n$dropdown-button-padding-med: $button-pip-med * 6 + rem-calc(3) !default;\n$dropdown-button-pip-size-med: $button-pip-med - rem-calc(3) !default;\n$dropdown-button-pip-opposite-med: $button-pip-med * 2.5 !default;\n$dropdown-button-pip-top-med: calc(-1 * $button-pip-med / 2) + rem-calc(2) !default;\n\n// We use these to style large dropdown buttons\n$dropdown-button-padding-lrg: $button-pip-lrg * 5 + rem-calc(3) !default;\n$dropdown-button-pip-size-lrg: $button-pip-lrg - rem-calc(6) !default;\n$dropdown-button-pip-opposite-lrg: $button-pip-lrg * 2.5 !default;\n$dropdown-button-pip-top-lrg: calc(-1 * $button-pip-lrg / 2) + rem-calc(3) !default;\n\n// @mixins\n//\n// Dropdown Button Mixin\n//\n// We use this mixin to build off of the button mixin and add dropdown button styles\n//\n// $padding - Determines the size of button you're working with. Default: medium. Options [tiny, small, medium, large]\n// $pip-color - Color of the little triangle that points to the dropdown. Default: $white.\n// $base-style - Add in base-styles. This can be set to false. Default:true\n\n@mixin dropdown-button($padding: medium, $pip-color: $white, $base-style: true) {\n\n // We add in base styles, but they can be negated by setting to 'false'.\n @if $base-style {\n position: relative;\n outline: none;\n\n // This creates the base styles for the triangle pip\n &::after {\n position: absolute;\n content: \"\";\n width: 0;\n height: 0;\n display: block;\n border-style: solid;\n border-color: $dropdown-button-pip-color transparent transparent transparent;\n top: 50%;\n }\n }\n\n // If we're dealing with tiny buttons, use these styles\n @if $padding ==tiny {\n padding-#{$opposite-direction}: $dropdown-button-padding-tny;\n\n &:after {\n border-width: $dropdown-button-pip-size-tny;\n #{$opposite-direction}: $dropdown-button-pip-opposite-tny;\n margin-top: $dropdown-button-pip-top-tny;\n }\n }\n\n // If we're dealing with small buttons, use these styles\n @if $padding ==small {\n padding-#{$opposite-direction}: $dropdown-button-padding-sml;\n\n &::after {\n border-width: $dropdown-button-pip-size-sml;\n #{$opposite-direction}: $dropdown-button-pip-opposite-sml;\n margin-top: $dropdown-button-pip-top-sml;\n }\n }\n\n // If we're dealing with default (medium) buttons, use these styles\n @if $padding ==medium {\n padding-#{$opposite-direction}: $dropdown-button-padding-med;\n\n &::after {\n border-width: $dropdown-button-pip-size-med;\n #{$opposite-direction}: $dropdown-button-pip-opposite-med;\n margin-top: $dropdown-button-pip-top-med;\n }\n }\n\n // If we're dealing with large buttons, use these styles\n @if $padding ==large {\n padding-#{$opposite-direction}: $dropdown-button-padding-lrg;\n\n &::after {\n border-width: $dropdown-button-pip-size-lrg;\n #{$opposite-direction}: $dropdown-button-pip-opposite-lrg;\n margin-top: $dropdown-button-pip-top-lrg;\n }\n }\n\n // We can control the pip color. We didn't use logic in this case, just set it and forget it.\n @if $pip-color {\n &::after {\n border-color: $pip-color transparent transparent transparent;\n }\n }\n}\n\n@include exports(\"dropdown-button\") {\n @if $include-html-button-classes {\n\n .dropdown.button,\n button.dropdown {\n @include dropdown-button;\n\n &.tiny {\n @include dropdown-button(tiny, $base-style: false);\n }\n\n &.small {\n @include dropdown-button(small, $base-style: false);\n }\n\n &.large {\n @include dropdown-button(large, $base-style: false);\n }\n\n &.secondary:after {\n border-color: $dropdown-button-pip-color-alt transparent transparent transparent;\n }\n }\n }\n}","// Foundation by ZURB\n// foundation.zurb.com\n// Licensed under MIT Open Source\n\n@import \"global\";\n\n//\n// @variables\n//\n$include-html-media-classes: $include-html-classes !default;\n\n// We use these to control video container padding and margins\n$flex-video-padding-top: rem-calc(25) !default;\n$flex-video-padding-bottom: 67.5% !default;\n$flex-video-margin-bottom: rem-calc(16) !default;\n\n// We use this to control widescreen bottom padding\n$flex-video-widescreen-padding-bottom: 56.34% !default;\n\n//\n// @mixins\n//\n\n@mixin flex-video-container {\n position: relative;\n padding-top: $flex-video-padding-top;\n padding-bottom: $flex-video-padding-bottom;\n height: 0;\n margin-bottom: $flex-video-margin-bottom;\n overflow: hidden;\n\n &.widescreen { padding-bottom: $flex-video-widescreen-padding-bottom; }\n &.vimeo { padding-top: 0; }\n\n iframe,\n object,\n embed,\n video {\n position: absolute;\n top: 0;\n #{$default-float}: 0;\n width: 100%;\n height: 100%;\n }\n}\n\n@include exports(\"flex-video\") {\n @if $include-html-media-classes {\n .flex-video { @include flex-video-container; }\n }\n}","// Foundation by ZURB\n// foundation.zurb.com\n// Licensed under MIT Open Source\n\n@import \"global\";\n\n//\n// @variables\n//\n$include-html-inline-list-classes: $include-html-classes !default;\n\n// We use this to control the margins and padding of the inline list.\n$inline-list-top-margin: 0 !default;\n$inline-list-opposite-margin: 0 !default;\n$inline-list-bottom-margin: rem-calc(17) !default;\n$inline-list-default-float-margin: rem-calc(-22) !default;\n$inline-list-default-float-list-margin: rem-calc(22) !default;\n\n$inline-list-padding: 0 !default;\n\n// We use this to control the overflow of the inline list.\n$inline-list-overflow: hidden !default;\n\n// We use this to control the list items\n$inline-list-display: block !default;\n\n// We use this to control any elements within list items\n$inline-list-children-display: block !default;\n\n//\n// @mixins\n//\n// We use this mixin to create inline lists\n@mixin inline-list {\n margin: $inline-list-top-margin auto $inline-list-bottom-margin auto;\n margin-#{$default-float}: $inline-list-default-float-margin;\n margin-#{$opposite-direction}: $inline-list-opposite-margin;\n padding: $inline-list-padding;\n list-style: none;\n overflow: $inline-list-overflow;\n\n & > li {\n list-style: none;\n float: $default-float;\n margin-#{$default-float}: $inline-list-default-float-list-margin;\n display: $inline-list-display;\n &>* { display: $inline-list-children-display; }\n }\n}\n\n@include exports(\"inline-list\") {\n @if $include-html-inline-list-classes {\n .inline-list {\n @include inline-list();\n }\n }\n}\n","// Foundation by ZURB\n// foundation.zurb.com\n// Licensed under MIT Open Source\n\n@import \"global\";\n\n//\n// @variables\n//\n$include-html-keystroke-classes: $include-html-classes !default;\n\n// We use these to control text styles.\n$keystroke-font: \"Consolas\", \"Menlo\", \"Courier\", monospace !default;\n$keystroke-font-size: inherit !default;\n$keystroke-font-color: $jet !default;\n$keystroke-font-color-alt: $white !default;\n$keystroke-function-factor: -7% !default;\n\n// We use this to control keystroke padding.\n$keystroke-padding: rem-calc(2 4 0) !default;\n\n// We use these to control background and border styles.\n$keystroke-bg: scale-color($white, $lightness: $keystroke-function-factor) !default;\n$keystroke-border-style: solid !default;\n$keystroke-border-width: 1px !default;\n$keystroke-border-color: scale-color($keystroke-bg, $lightness: $keystroke-function-factor) !default;\n$keystroke-radius: $global-radius !default;\n\n//\n// @mixins\n//\n// We use this mixin to create keystroke styles.\n// $bg - Default: $keystroke-bg || scale-color($white, $lightness: $keystroke-function-factor) !default;\n@mixin keystroke($bg:$keystroke-bg) {\n // This find the lightness percentage of the background color.\n $bg-lightness: lightness($bg);\n\n background-color: $bg;\n border-color: scale-color($bg, $lightness: $keystroke-function-factor);\n\n // We adjust the font color based on the brightness of the background.\n @if $bg-lightness > 70% { color: $keystroke-font-color; }\n @else { color: $keystroke-font-color-alt; }\n\n border-style: $keystroke-border-style;\n border-width: $keystroke-border-width;\n margin: 0;\n font-family: $keystroke-font;\n font-size: $keystroke-font-size;\n padding: $keystroke-padding;\n}\n\n@include exports(\"keystroke\") {\n @if $include-html-keystroke-classes {\n .keystroke,\n kbd {\n @include keystroke;\n @include radius($keystroke-radius);\n }\n }\n}\n","// Foundation by ZURB\n// foundation.zurb.com\n// Licensed under MIT Open Source\n\n@import \"global\";\n\n//\n// @variables\n//\n$include-html-panel-classes: $include-html-classes !default;\n\n// We use these to control the background and border styles\n$panel-bg: scale-color($white, $lightness: -5%) !default;\n$panel-border-style: solid !default;\n$panel-border-size: 1px !default;\n\n// We use this % to control how much we darken things on hover\n$panel-function-factor: -11% !default;\n$panel-border-color: scale-color($panel-bg, $lightness: $panel-function-factor) !default;\n\n// We use these to set default inner padding and bottom margin\n$panel-margin-bottom: rem-calc(20) !default;\n$panel-padding: rem-calc(20) !default;\n\n// We use these to set default font colors\n$panel-font-color: $oil !default;\n$panel-font-color-alt: $white !default;\n\n$panel-header-adjust: true !default;\n$callout-panel-link-color: $primary-color !default;\n$callout-panel-link-color-hover: scale-color($callout-panel-link-color, $lightness: -14%) !default;\n\n//\n// @mixins\n//\n// We use this mixin to create panels.\n// $bg - Sets the panel background color. Default: $panel-pg || scale-color($white, $lightness: -5%) !default\n// $padding - Sets the panel padding amount. Default: $panel-padding || rem-calc(20)\n// $adjust - Sets the font color based on the darkness of the bg & resets header line-heights for panels. Default: $panel-header-adjust || true\n@mixin panel($bg: $panel-bg, $padding: $panel-padding, $adjust: $panel-header-adjust) {\n\n @if $bg {\n $bg-lightness: lightness($bg);\n\n border-style: $panel-border-style;\n border-width: $panel-border-size;\n border-color: scale-color($bg, $lightness: $panel-function-factor);\n margin-bottom: $panel-margin-bottom;\n padding: $padding;\n\n background: $bg;\n\n @if $bg-lightness >=50% {\n color: $panel-font-color;\n }\n\n @else {\n color: $panel-font-color-alt;\n }\n\n // Respect the padding, fool.\n &>:first-child {\n margin-top: 0;\n }\n\n &>:last-child {\n margin-bottom: 0;\n }\n\n @if $adjust {\n\n // We set the font color based on the darkness of the bg.\n @if $bg-lightness >=50% {\n\n h1,\n h2,\n h3,\n h4,\n h5,\n h6,\n p,\n li,\n dl {\n color: $panel-font-color;\n }\n }\n\n @else {\n\n h1,\n h2,\n h3,\n h4,\n h5,\n h6,\n p,\n li,\n dl {\n color: $panel-font-color-alt;\n }\n }\n\n // reset header line-heights for panels\n h1,\n h2,\n h3,\n h4,\n h5,\n h6 {\n line-height: 1;\n margin-bottom: calc(rem-calc(20) / 2);\n\n &.subheader {\n line-height: 1.4;\n }\n }\n }\n }\n}\n\n@include exports(\"panel\") {\n @if $include-html-panel-classes {\n\n /* Panels */\n .panel {\n @include panel;\n\n &.callout {\n @include panel(scale-color($primary-color, $lightness: 94%));\n\n a:not(.button) {\n color: $callout-panel-link-color;\n\n &:hover,\n &:focus {\n color: $callout-panel-link-color-hover;\n }\n }\n }\n\n &.radius {\n @include radius;\n }\n\n }\n\n }\n}","// Foundation by ZURB\n// foundation.zurb.com\n// Licensed under MIT Open Source\n\n@import \"global\";\n@import \"grid\";\n\n//\n// @name _reveal.scss\n// @dependencies _global.scss\n//\n\n$include-html-reveal-classes: $include-html-classes !default;\n\n// We use these to control the style of the reveal overlay.\n$reveal-overlay-bg: rgba($black, .45) !default;\n$reveal-overlay-bg-old: $black !default;\n\n// We use these to control the style of the modal itself.\n$reveal-modal-bg: $white !default;\n$reveal-position-top: rem-calc(100) !default;\n$reveal-default-width: 80% !default;\n$reveal-max-width: $row-width !default;\n$reveal-modal-padding: rem-calc(20) !default;\n$reveal-box-shadow: 0 0 10px rgba($black,.4) !default;\n\n// We use these to style the reveal close button\n$reveal-close-font-size: rem-calc(40) !default;\n$reveal-close-top: rem-calc(10) !default;\n$reveal-close-side: rem-calc(22) !default;\n$reveal-close-color: $base !default;\n$reveal-close-weight: $font-weight-bold !default;\n\n// We use this to set the default radius used throughout the core.\n$reveal-radius: $global-radius !default;\n$reveal-round: $global-rounded !default;\n\n// We use these to control the modal border\n$reveal-border-style: solid !default;\n$reveal-border-width: 1px !default;\n$reveal-border-color: $steel !default;\n\n$reveal-modal-class: \"reveal-modal\" !default;\n$close-reveal-modal-class: \"close-reveal-modal\" !default;\n\n//\n// @mixins\n//\n\n// We use this to create the reveal background overlay styles\n@mixin reveal-bg( $include-z-index-value: true ) {\n //position: fixed;\n position: absolute; // allows modal background to extend beyond window position\n top: 0;\n bottom: 0;\n left: 0;\n right: 0;\n background: $reveal-overlay-bg-old; // Autoprefixer should be used to avoid such variables needed when Foundation for Sites can do so in the near future.\n background: $reveal-overlay-bg;\n z-index: if( $include-z-index-value, 1004, auto );\n display: none;\n #{$default-float}: 0;\n}\n\n// We use this mixin to create the structure of a reveal modal\n//\n// $base-style - Provides reveal base styles, can be set to false to override. Default: true, Options: false\n// $width - Sets reveal width Default: $reveal-default-width || 80%\n//\n@mixin reveal-modal-base( $base-style: true, $width:$reveal-default-width, $max-width:$reveal-max-width, $border-radius: $reveal-radius) {\n @if $base-style {\n visibility: hidden;\n display: none;\n position: absolute;\n z-index: 1005;\n width: 100vw;\n top:0;\n border-radius: $border-radius;\n #{$default-float}: 0;\n\n @media #{$small-only} {\n min-height:100vh;\n }\n\n // Make sure rows don't have a min-width on them\n .column, .columns { min-width: 0; }\n\n // Get rid of margin from first and last element inside modal\n & > :first-child { margin-top: 0; }\n\n & > :last-child { margin-bottom: 0; }\n }\n\n @if $width {\n @media #{$medium-up} {\n width: $width;\n max-width: $max-width;\n left: 0;\n right: 0;\n margin: 0 auto;\n }\n }\n}\n\n// We use this to style the reveal modal defaults\n//\n// $bg - Sets background color of reveal modal. Default: $reveal-modal-bg || $white\n// $padding - Padding to apply to reveal modal. Default: $reveal-modal-padding.\n// $border - Choose whether reveal uses a border. Default: true, Options: false\n// $border-style - Set reveal border style. Default: $reveal-border-style || solid\n// $border-width - Width of border (i.e. 1px). Default: $reveal-border-width.\n// $border-color - Color of border. Default: $reveal-border-color.\n// $box-shadow - Choose whether or not to include the default box-shadow. Default: true, Options: false\n// $radius - If true, set to modal radius which is $global-radius || explicitly set radius amount in px (ex. $radius:10px). Default: false\n// $top-offset - Default: $reveal-position-top || 50px\n@mixin reveal-modal-style(\n $bg:false,\n $padding:false,\n $border:false,\n $border-style:$reveal-border-style,\n $border-width:$reveal-border-width,\n $border-color:$reveal-border-color,\n $box-shadow:false,\n $radius:false,\n $top-offset:false) {\n\n @if $bg { background-color: $bg; }\n @if $padding != false { padding: $padding; }\n\n @if $border { border: $border-style $border-width $border-color; }\n\n // We can choose whether or not to include the default box-shadow.\n @if $box-shadow {\n box-shadow: $reveal-box-shadow;\n }\n\n // We can control how much radius is used on the modal\n @if $radius == true { @include radius($reveal-radius); }\n @else if $radius { @include radius($radius); }\n\n @if $top-offset {\n @media #{$medium-up} {\n top: $top-offset;\n }\n }\n}\n\n// We use this to create a close button for the reveal modal\n//\n// $color - Default: $reveal-close-color || $base\n@mixin reveal-close($color:$reveal-close-color) {\n font-size: $reveal-close-font-size;\n line-height: 1;\n position: absolute;\n top: $reveal-close-top;\n #{$opposite-direction}: $reveal-close-side;\n color: $color;\n font-weight: $reveal-close-weight;\n cursor: $cursor-pointer-value;\n}\n\n@include exports(\"reveal\") {\n @if $include-html-reveal-classes {\n\n // Reveal Modals\n .reveal-modal-bg { @include reveal-bg; }\n\n .#{$reveal-modal-class} {\n @include reveal-modal-base;\n @include reveal-modal-style(\n $bg:$reveal-modal-bg,\n $padding:$reveal-modal-padding,\n $border:true,\n $box-shadow:true,\n $radius:false,\n $top-offset:$reveal-position-top\n );\n @include reveal-modal-style($padding:$reveal-modal-padding * 1.5);\n\n &.radius { @include reveal-modal-style($radius:true); }\n &.round { @include reveal-modal-style($radius:$reveal-round); }\n &.collapse { @include reveal-modal-style($padding:0); }\n &.tiny { @include reveal-modal-base(false, 30%); }\n &.small { @include reveal-modal-base(false, 40%); }\n &.medium { @include reveal-modal-base(false, 60%); }\n &.large { @include reveal-modal-base(false, 70%); }\n &.xlarge { @include reveal-modal-base(false, 95%); }\n &.full {\n @include reveal-modal-base(false, 100vw);\n top:0;\n left:0;\n height:100%;\n height: 100vh;\n min-height:100vh;\n max-width: none !important;\n margin-left: 0 !important;\n }\n\n .#{$close-reveal-modal-class} { @include reveal-close; }\n }\n\n dialog {\n @extend .#{$reveal-modal-class};\n display: none;\n\n &::backdrop, & + .backdrop {\n @include reveal-bg(false);\n }\n\n &[open]{\n display: block;\n }\n }\n\n // Reveal Print Styles: It should be invisible, adds no value being printed.\n @media print {\n dialog, .#{$reveal-modal-class} { \n display: none;\n background: $white !important;\n }\n }\n }\n}\n","// Foundation by ZURB\n// foundation.zurb.com\n// Licensed under MIT Open Source\n\n@import \"global\";\n\n//\n// @variables\n//\n\n$include-html-nav-classes: $include-html-classes !default;\n\n// We use this to control padding.\n$side-nav-padding: rem-calc(14 0) !default;\n\n// We use these to control list styles.\n$side-nav-list-type: none !default;\n$side-nav-list-position: outside !default;\n$side-nav-list-margin: rem-calc(0 0 7 0) !default;\n\n// We use these to control link styles.\n$side-nav-link-color: $primary-color !default;\n$side-nav-link-color-active: scale-color($side-nav-link-color, $lightness: 30%) !default;\n$side-nav-link-color-hover: scale-color($side-nav-link-color, $lightness: 30%) !default;\n$side-nav-link-bg-hover: hsla(0deg, 0%, 0%, 0.025) !default;\n$side-nav-link-margin: 0 !default;\n$side-nav-link-padding: rem-calc(7 14) !default;\n$side-nav-font-size: rem-calc(14) !default;\n$side-nav-font-weight: $font-weight-normal !default;\n$side-nav-font-weight-active: $side-nav-font-weight !default;\n$side-nav-font-family: $body-font-family !default;\n$side-nav-font-family-active: $side-nav-font-family !default;\n\n// We use these to control heading styles.\n$side-nav-heading-color: $side-nav-link-color !default;\n$side-nav-heading-font-size: $side-nav-font-size !default;\n$side-nav-heading-font-weight: bold !default;\n$side-nav-heading-text-transform: uppercase !default;\n\n// We use these to control border styles\n$side-nav-divider-size: 1px !default;\n$side-nav-divider-style: solid !default;\n$side-nav-divider-color: scale-color($white, $lightness: 10%) !default;\n\n\n//\n// @mixins\n//\n\n\n// We use this to style the side-nav\n//\n// $divider-color - Border color of divider. Default: $side-nav-divider-color.\n// $font-size - Font size of nav items. Default: $side-nav-font-size.\n// $link-color - Color of navigation links. Default: $side-nav-link-color.\n// $link-color-hover - Color of navigation links when hovered. Default: $side-nav-link-color-hover.\n@mixin side-nav($divider-color: $side-nav-divider-color,\n $font-size: $side-nav-font-size,\n $link-color: $side-nav-link-color,\n $link-color-hover: $side-nav-link-color-hover,\n $link-bg-hover: $side-nav-link-bg-hover) {\n display: block;\n margin: 0;\n padding: $side-nav-padding;\n list-style-type: $side-nav-list-type;\n list-style-position: $side-nav-list-position;\n font-family: $side-nav-font-family;\n\n li {\n margin: $side-nav-list-margin;\n font-size: $font-size;\n font-weight: $side-nav-font-weight;\n\n a:not(.button) {\n display: block;\n color: $link-color;\n margin: $side-nav-link-margin;\n padding: $side-nav-link-padding;\n\n &:hover,\n &:focus {\n background: $link-bg-hover;\n color: $link-color-hover;\n }\n }\n\n &.active>a:first-child:not(.button) {\n color: $side-nav-link-color-active;\n font-weight: $side-nav-font-weight-active;\n font-family: $side-nav-font-family-active;\n }\n\n &.divider {\n border-top: $side-nav-divider-size $side-nav-divider-style;\n height: 0;\n padding: 0;\n list-style: none;\n border-top-color: $divider-color;\n }\n\n &.heading {\n color: $side-nav-heading-color;\n\n font: {\n size: $side-nav-heading-font-size;\n weight: $side-nav-heading-font-weight;\n }\n\n text-transform: $side-nav-heading-text-transform;\n }\n }\n}\n\n@include exports(\"side-nav\") {\n @if $include-html-nav-classes {\n .side-nav {\n @include side-nav;\n }\n }\n}","// Foundation by ZURB\n// foundation.zurb.com\n// Licensed under MIT Open Source\n\n@import \"global\";\n\n//\n// @name _sub-nav.scss\n// @dependencies _global.scss\n//\n\n//\n// @variables\n//\n\n$include-html-nav-classes: $include-html-classes !default;\n\n// We use these to control margin and padding\n$sub-nav-list-margin: rem-calc(-4 0 18) !default;\n$sub-nav-list-padding-top: rem-calc(4) !default;\n\n// We use this to control the definition\n$sub-nav-font-family: $body-font-family !default;\n$sub-nav-font-size: rem-calc(14) !default;\n$sub-nav-font-color: $aluminum !default;\n$sub-nav-font-weight: $font-weight-normal !default;\n$sub-nav-text-decoration: none !default;\n$sub-nav-padding: rem-calc(3 16) !default;\n$sub-nav-border-radius: 3px !default;\n$sub-nav-font-color-hover: scale-color($sub-nav-font-color, $lightness: -25%) !default;\n\n\n// We use these to control the active item styles\n\n$sub-nav-active-font-weight: $font-weight-normal !default;\n$sub-nav-active-bg: $primary-color !default;\n$sub-nav-active-bg-hover: scale-color($sub-nav-active-bg, $lightness: -14%) !default;\n$sub-nav-active-color: $white !default;\n$sub-nav-active-padding: $sub-nav-padding !default;\n$sub-nav-active-cursor: default !default;\n\n$sub-nav-item-divider: \"\" !default;\n$sub-nav-item-divider-margin: rem-calc(12) !default;\n\n//\n// @mixins\n//\n\n\n// Create a sub-nav item\n//\n// $font-color - Font color. Default: $sub-nav-font-color.\n// $font-size - Font size. Default: $sub-nav-font-size.\n// $active-bg - Background of active nav item. Default: $sub-nav-active-bg.\n// $active-bg-hover - Background of active nav item, when hovered. Default: $sub-nav-active-bg-hover.\n@mixin sub-nav(\n $font-color: $sub-nav-font-color,\n $font-size: $sub-nav-font-size,\n $active-bg: $sub-nav-active-bg,\n $active-bg-hover: $sub-nav-active-bg-hover) {\n display: block;\n width: auto;\n overflow: hidden;\n margin: $sub-nav-list-margin;\n padding-top: $sub-nav-list-padding-top;\n\n dt {\n text-transform: uppercase;\n }\n\n dt,\n dd,\n li {\n float: $default-float;\n display: inline;\n margin-#{$default-float}: rem-calc(16);\n margin-bottom: 0;\n font-family: $sub-nav-font-family;\n font-weight: $sub-nav-font-weight;\n font-size: $font-size;\n color: $font-color;\n\n a {\n text-decoration: $sub-nav-text-decoration;\n color: $sub-nav-font-color;\n padding: $sub-nav-padding;\n &:hover {\n color: $sub-nav-font-color-hover;\n }\n }\n\n &.active a {\n @include radius($sub-nav-border-radius);\n font-weight: $sub-nav-active-font-weight;\n background: $active-bg;\n padding: $sub-nav-active-padding;\n cursor: $sub-nav-active-cursor;\n color: $sub-nav-active-color;\n &:hover {\n background: $active-bg-hover;\n }\n }\n @if $sub-nav-item-divider != \"\" {\n margin-#{$default-float}: 0;\n\n &:before {\n content: \"#{$sub-nav-item-divider}\";\n margin: 0 $sub-nav-item-divider-margin;\n }\n\n &:first-child:before {\n content: \"\";\n margin: 0;\n }\n }\n }\n}\n\n@include exports(\"sub-nav\") {\n @if $include-html-nav-classes {\n .sub-nav { @include sub-nav; }\n }\n}\n","// Foundation by ZURB\n// foundation.zurb.com\n// Licensed under MIT Open Source\n\n@import \"global\";\n\n//\n// @name _tables.scss\n// @dependencies _global.scss\n//\n\n//\n// @variables\n//\n\n$include-html-table-classes: $include-html-classes !default;\n\n// These control the background color for the table and even rows\n$table-bg: $white !default;\n$table-even-row-bg: $snow !default;\n\n// These control the table cell border style\n$table-border-style: solid !default;\n$table-border-size: 1px !default;\n$table-border-color: $gainsboro !default;\n\n// These control the table head styles\n$table-head-bg: $white-smoke !default;\n$table-head-font-size: rem-calc(14) !default;\n$table-head-font-color: $jet !default;\n$table-head-font-weight: $font-weight-bold !default;\n$table-head-padding: rem-calc(8 10 10) !default;\n\n// These control the table foot styles\n$table-foot-bg: $table-head-bg !default;\n$table-foot-font-size: $table-head-font-size !default;\n$table-foot-font-color: $table-head-font-color !default;\n$table-foot-font-weight: $table-head-font-weight !default;\n$table-foot-padding: $table-head-padding !default;\n\n// These control the caption\n$table-caption-bg: transparent !default;\n$table-caption-font-color: $table-head-font-color !default;\n$table-caption-font-size: rem-calc(16) !default;\n$table-caption-font-weight: bold !default;\n\n// These control the row padding and font styles\n$table-row-padding: rem-calc(9 10) !default;\n$table-row-font-size: rem-calc(14) !default;\n$table-row-font-color: $jet !default;\n$table-line-height: rem-calc(18) !default;\n\n// These are for controlling the layout, display and margin of tables\n$table-layout: auto !default;\n$table-display: table-cell !default;\n$table-margin-bottom: rem-calc(20) !default;\n\n\n//\n// @mixins\n//\n\n@mixin table {\n background: $table-bg;\n margin-bottom: $table-margin-bottom;\n border: $table-border-style $table-border-size $table-border-color;\n table-layout: $table-layout;\n\n caption {\n background: $table-caption-bg;\n color: $table-caption-font-color;\n font: {\n size: $table-caption-font-size;\n weight: $table-caption-font-weight;\n }\n }\n\n thead {\n background: $table-head-bg;\n\n tr {\n th,\n td {\n padding: $table-head-padding;\n font-size: $table-head-font-size;\n font-weight: $table-head-font-weight;\n color: $table-head-font-color;\n }\n }\n }\n\n tfoot {\n background: $table-foot-bg;\n\n tr {\n th,\n td {\n padding: $table-foot-padding;\n font-size: $table-foot-font-size;\n font-weight: $table-foot-font-weight;\n color: $table-foot-font-color;\n }\n }\n }\n\n tr {\n th,\n td {\n padding: $table-row-padding;\n font-size: $table-row-font-size;\n color: $table-row-font-color;\n text-align: $default-float;\n }\n\n &.even,\n &.alt,\n &:nth-of-type(even) { background: $table-even-row-bg; }\n }\n\n thead tr th,\n tfoot tr th,\n tfoot tr td,\n tbody tr th,\n tbody tr td,\n tr td { display: $table-display; line-height: $table-line-height; }\n}\n\n\n@include exports(\"table\") {\n @if $include-html-table-classes {\n table {\n @include table;\n }\n }\n}\n","// Foundation by ZURB\n// foundation.zurb.com\n// Licensed under MIT Open Source\n\n@import \"global\";\n\n//\n// @name _thumbs.scss\n// @dependencies _globals.scss\n//\n\n//\n// @variables\n//\n\n$include-html-media-classes: $include-html-classes !default;\n\n// We use these to control border styles\n$thumb-border-style: solid !default;\n$thumb-border-width: 4px !default;\n$thumb-border-color: $white !default;\n$thumb-box-shadow: 0 0 0 1px rgba($black,.2) !default;\n$thumb-box-shadow-hover: 0 0 6px 1px rgba($primary-color,0.5) !default;\n\n// Radius and transition speed for thumbs\n$thumb-radius: $global-radius !default;\n$thumb-transition-speed: 200ms !default;\n\n//\n// @mixins\n//\n\n// We use this to create image thumbnail styles.\n//\n// $border-width - Width of border around thumbnail. Default: $thumb-border-width.\n// $box-shadow - Box shadow to apply to thumbnail. Default: $thumb-box-shadow.\n// $box-shadow-hover - Box shadow to apply on hover. Default: $thumb-box-shadow-hover.\n@mixin thumb(\n $border-width:$thumb-border-width, \n $box-shadow:$thumb-box-shadow, \n $box-shadow-hover:$thumb-box-shadow-hover) {\n line-height: 0;\n display: inline-block;\n border: $thumb-border-style $border-width $thumb-border-color;\n max-width: 100%;\n box-shadow: $box-shadow;\n\n &:hover,\n &:focus {\n box-shadow: $box-shadow-hover;\n }\n}\n\n\n@include exports(\"thumb\") {\n @if $include-html-media-classes {\n\n /* Image Thumbnails */\n .th {\n @include thumb;\n @include single-transition(all,$thumb-transition-speed,ease-out);\n\n &.radius { @include radius($thumb-radius); }\n }\n }\n}","// Foundation by ZURB\n// foundation.zurb.com\n// Licensed under MIT Open Source\n\n@import \"global\";\n\n$include-html-type-classes: $include-html-classes !default;\n\n// We use these to control header font styles\n$header-font-family: $body-font-family !default;\n$header-font-weight: $font-weight-normal !default;\n$header-font-style: $font-weight-normal !default;\n$header-font-color: $jet !default;\n$header-line-height: 1.4 !default;\n$header-top-margin: .2rem !default;\n$header-bottom-margin: .5rem !default;\n$header-text-rendering: optimizeLegibility !default;\n\n// We use these to control header font sizes\n$h1-font-size: rem-calc(44) !default;\n$h2-font-size: rem-calc(37) !default;\n$h3-font-size: rem-calc(27) !default;\n$h4-font-size: rem-calc(23) !default;\n$h5-font-size: rem-calc(18) !default;\n$h6-font-size: 1rem !default;\n\n// We use these to control header size reduction on small screens\n$h1-font-reduction: rem-calc(10) !default;\n$h2-font-reduction: rem-calc(10) !default;\n$h3-font-reduction: rem-calc(5) !default;\n$h4-font-reduction: rem-calc(5) !default;\n$h5-font-reduction: 0 !default;\n$h6-font-reduction: 0 !default;\n\n// These control how subheaders are styled.\n$subheader-line-height: 1.4 !default;\n$subheader-font-color: scale-color($header-font-color, $lightness: 35%) !default;\n$subheader-font-weight: $font-weight-normal !default;\n$subheader-top-margin: .2rem !default;\n$subheader-bottom-margin: .5rem !default;\n\n// A general styling\n$small-font-size: 60% !default;\n$small-font-color: scale-color($header-font-color, $lightness: 35%) !default;\n\n// We use these to style paragraphs\n$paragraph-font-family: inherit !default;\n$paragraph-font-weight: $font-weight-normal !default;\n$paragraph-font-size: 1rem !default;\n$paragraph-line-height: 1.6 !default;\n$paragraph-margin-bottom: rem-calc(20) !default;\n$paragraph-aside-font-size: rem-calc(14) !default;\n$paragraph-aside-line-height: 1.35 !default;\n$paragraph-aside-font-style: italic !default;\n$paragraph-text-rendering: optimizeLegibility !default;\n\n// We use these to style tags\n$code-color: $oil !default;\n$code-font-family: $font-family-monospace !default;\n$code-font-weight: $font-weight-normal !default;\n$code-background-color: scale-color($secondary-color, $lightness: 70%) !default;\n$code-border-size: 0px !default;\n$code-border-style: solid !default;\n$code-border-color: scale-color($code-background-color, $lightness: -10%) !default;\n$code-padding: rem-calc(2) rem-calc(5) rem-calc(1) !default;\n\n// We use these to style anchors\n$anchor-text-decoration: none !default;\n$anchor-text-decoration-hover: none !default;\n$anchor-font-color: $primary-color !default;\n$anchor-font-color-hover: scale-color($anchor-font-color, $lightness: -14%) !default;\n\n// We use these to style the
element\n$hr-border-width: 1px !default;\n$hr-border-style: solid !default;\n$hr-border-color: $gainsboro !default;\n$hr-margin: rem-calc(20) !default;\n\n// We use these to style lists\n$list-font-family: $paragraph-font-family !default;\n$list-font-size: $paragraph-font-size !default;\n$list-line-height: $paragraph-line-height !default;\n$list-margin-bottom: $paragraph-margin-bottom !default;\n$list-style-position: outside !default;\n$list-side-margin: 1.1rem !default;\n$list-ordered-side-margin: 1.4rem !default;\n$list-side-margin-no-bullet: 0 !default;\n$list-nested-margin: rem-calc(20) !default;\n$definition-list-header-weight: $font-weight-bold !default;\n$definition-list-header-margin-bottom: .3rem !default;\n$definition-list-margin-bottom: rem-calc(12) !default;\n\n// We use these to style blockquotes\n$blockquote-font-color: scale-color($header-font-color, $lightness: 35%) !default;\n$blockquote-padding: rem-calc(9 20 0 19) !default;\n$blockquote-border: 1px solid $gainsboro !default;\n$blockquote-cite-font-size: rem-calc(13) !default;\n$blockquote-cite-font-color: scale-color($header-font-color, $lightness: 23%) !default;\n$blockquote-cite-link-color: $blockquote-cite-font-color !default;\n\n// Acronym styles\n$acronym-underline: 1px dotted $gainsboro !default;\n\n// We use these to control padding and margin\n$microformat-padding: rem-calc(10 12) !default;\n$microformat-margin: rem-calc(0 0 20 0) !default;\n\n// We use these to control the border styles\n$microformat-border-width: 1px !default;\n$microformat-border-style: solid !default;\n$microformat-border-color: $gainsboro !default;\n\n// We use these to control full name font styles\n$microformat-fullname-font-weight: $font-weight-bold !default;\n$microformat-fullname-font-size: rem-calc(15) !default;\n\n// We use this to control the summary font styles\n$microformat-summary-font-weight: $font-weight-bold !default;\n\n// We use this to control abbr padding\n$microformat-abbr-padding: rem-calc(0 1) !default;\n\n// We use this to control abbr font styles\n$microformat-abbr-font-weight: $font-weight-bold !default;\n$microformat-abbr-font-decoration: none !default;\n\n// Text alignment class names\n$align-class-names:\n small-only,\n small,\n medium-only,\n medium,\n large-only,\n large,\n xlarge-only,\n xlarge,\n xxlarge-only,\n xxlarge;\n\n// Text alignment breakpoints\n$align-class-breakpoints:\n $small-only,\n $small-up,\n $medium-only,\n $medium-up,\n $large-only,\n $large-up,\n $xlarge-only,\n $xlarge-up,\n $xxlarge-only,\n $xxlarge-up;\n\n// Generates text align and justify classes\n@mixin align-classes{\n .text-left { text-align: left !important; }\n .text-right { text-align: right !important; }\n .text-center { text-align: center !important; }\n .text-justify { text-align: justify !important; }\n\n @for $i from 1 through length($align-class-names) {\n @media #{(nth($align-class-breakpoints, $i))} {\n .#{(nth($align-class-names, $i))}-text-left { text-align: left !important; }\n .#{(nth($align-class-names, $i))}-text-right { text-align: right !important; }\n .#{(nth($align-class-names, $i))}-text-center { text-align: center !important; }\n .#{(nth($align-class-names, $i))}-text-justify { text-align: justify !important; }\n }\n }\n}\n\n//\n// Typography Placeholders\n//\n\n// These will throw a deprecation warning if used within a media query.\n@mixin lead {\n font-size: $paragraph-font-size + rem-calc(3.5);\n line-height: 1.6;\n}\n\n@mixin subheader {\n line-height: $subheader-line-height;\n color: $subheader-font-color;\n font-weight: $subheader-font-weight;\n margin-top: $subheader-top-margin;\n margin-bottom: $subheader-bottom-margin;\n}\n@include exports(\"type\") {\n @if $include-html-type-classes {\n // Responsive Text alignment\n @include align-classes;\n\n /* Typography resets */\n div,\n dl,\n dt,\n dd,\n ul,\n ol,\n li,\n h1,\n h2,\n h3,\n h4,\n h5,\n h6,\n pre,\n form,\n p,\n blockquote,\n th,\n td {\n margin:0;\n padding:0;\n }\n\n /* Default Link Styles */\n a {\n color: $anchor-font-color;\n text-decoration: $anchor-text-decoration;\n line-height: inherit;\n\n &:hover,\n &:focus {\n color: $anchor-font-color-hover;\n @if $anchor-text-decoration-hover != $anchor-text-decoration {\n \ttext-decoration: $anchor-text-decoration-hover;\n }\n }\n\n img { border:none; }\n }\n\n /* Default paragraph styles */\n p {\n font-family: $paragraph-font-family;\n font-weight: $paragraph-font-weight;\n font-size: $paragraph-font-size;\n line-height: $paragraph-line-height;\n margin-bottom: $paragraph-margin-bottom;\n text-rendering: $paragraph-text-rendering;\n\n &.lead { @include lead; }\n\n & aside {\n font-size: $paragraph-aside-font-size;\n line-height: $paragraph-aside-line-height;\n font-style: $paragraph-aside-font-style;\n }\n }\n\n /* Default header styles */\n h1, h2, h3, h4, h5, h6 {\n font-family: $header-font-family;\n font-weight: $header-font-weight;\n font-style: $header-font-style;\n color: $header-font-color;\n text-rendering: $header-text-rendering;\n margin-top: $header-top-margin;\n margin-bottom: $header-bottom-margin;\n line-height: $header-line-height;\n\n small {\n font-size: $small-font-size;\n color: $small-font-color;\n line-height: 0;\n }\n }\n\n h1 { font-size: $h1-font-size - $h1-font-reduction; }\n h2 { font-size: $h2-font-size - $h2-font-reduction; }\n h3 { font-size: $h3-font-size - $h3-font-reduction; }\n h4 { font-size: $h4-font-size - $h4-font-reduction; }\n h5 { font-size: $h5-font-size - $h5-font-reduction; }\n h6 { font-size: $h6-font-size - $h6-font-reduction; }\n\n .subheader { @include subheader; }\n\n hr {\n border: $hr-border-style $hr-border-color;\n border-width: $hr-border-width 0 0;\n clear: both;\n margin: $hr-margin 0 ($hr-margin - rem-calc($hr-border-width));\n height: 0;\n }\n\n /* Helpful Typography Defaults */\n em,\n i {\n font-style: italic;\n line-height: inherit;\n }\n\n strong,\n b {\n font-weight: $font-weight-bold;\n line-height: inherit;\n }\n\n small {\n font-size: $small-font-size;\n line-height: inherit;\n }\n\n code {\n font-family: $code-font-family;\n font-weight: $code-font-weight;\n color: $code-color;\n background-color: $code-background-color;\n border-width: $code-border-size;\n border-style: $code-border-style;\n border-color: $code-border-color;\n padding: $code-padding;\n }\n\n /* Lists */\n ul,\n ol,\n dl {\n font-size: $list-font-size;\n line-height: $list-line-height;\n margin-bottom: $list-margin-bottom;\n list-style-position: $list-style-position;\n font-family: $list-font-family;\n }\n\n ul {\n margin-#{$default-float}: $list-side-margin;\n &.no-bullet {\n margin-#{$default-float}: $list-side-margin-no-bullet;\n li {\n ul,\n ol {\n margin-#{$default-float}: $list-nested-margin;\n margin-bottom: 0;\n list-style: none;\n }\n }\n }\n }\n\n /* Unordered Lists */\n ul {\n li {\n ul,\n ol {\n margin-#{$default-float}: $list-nested-margin;\n margin-bottom: 0;\n }\n }\n &.square,\n &.circle,\n &.disc {\n li ul { list-style: inherit; }\n }\n\n &.square { list-style-type: square; margin-#{$default-float}: $list-side-margin;}\n &.circle { list-style-type: circle; margin-#{$default-float}: $list-side-margin;}\n &.disc { list-style-type: disc; margin-#{$default-float}: $list-side-margin;}\n &.no-bullet { list-style: none; }\n }\n\n /* Ordered Lists */\n ol {\n margin-#{$default-float}: $list-ordered-side-margin;\n li {\n ul,\n ol {\n margin-#{$default-float}: $list-nested-margin;\n margin-bottom: 0;\n }\n }\n }\n\n /* Definition Lists */\n dl {\n dt {\n margin-bottom: $definition-list-header-margin-bottom;\n font-weight: $definition-list-header-weight;\n }\n dd { margin-bottom: $definition-list-margin-bottom; }\n }\n\n /* Abbreviations */\n abbr,\n acronym {\n text-transform: uppercase;\n font-size: 90%;\n color: $body-font-color;\n cursor: $cursor-help-value;\n }\n abbr {\n text-transform: none;\n &[title] {\n border-bottom: $acronym-underline;\n }\n }\n\n /* Blockquotes */\n blockquote {\n margin: 0 0 $paragraph-margin-bottom;\n padding: $blockquote-padding;\n border-#{$default-float}: $blockquote-border;\n\n cite {\n display: block;\n font-size: $blockquote-cite-font-size;\n color: $blockquote-cite-font-color;\n &:before {\n content: \"\\2014 \\0020\";\n }\n\n a,\n a:visited {\n color: $blockquote-cite-link-color;\n }\n }\n }\n blockquote,\n blockquote p {\n line-height: $paragraph-line-height;\n color: $blockquote-font-color;\n }\n\n /* Microformats */\n .vcard {\n display: inline-block;\n margin: $microformat-margin;\n border: $microformat-border-width $microformat-border-style $microformat-border-color;\n padding: $microformat-padding;\n\n li {\n margin: 0;\n display: block;\n }\n .fn {\n font-weight: $microformat-fullname-font-weight;\n font-size: $microformat-fullname-font-size;\n }\n }\n\n .vevent {\n .summary { font-weight: $microformat-summary-font-weight; }\n\n abbr {\n cursor: $cursor-default-value;\n text-decoration: $microformat-abbr-font-decoration;\n font-weight: $microformat-abbr-font-weight;\n border: none;\n padding: $microformat-abbr-padding;\n }\n }\n\n\n @media #{$medium-up} {\n h1,h2,h3,h4,h5,h6 { line-height: $header-line-height; }\n h1 { font-size: $h1-font-size; }\n h2 { font-size: $h2-font-size; }\n h3 { font-size: $h3-font-size; }\n h4 { font-size: $h4-font-size; }\n h5 { font-size: $h5-font-size; }\n h6 { font-size: $h6-font-size; }\n }\n\n // Only include these styles if you want them.\n @if $include-print-styles {\n /*\n * Print styles.\n *\n * Inlined to avoid required HTTP connection: www.phpied.com/delay-loading-your-print-css/\n * Credit to Paul Irish and HTML5 Boilerplate (html5boilerplate.com)\n */\n .print-only { display: none !important; }\n @media print {\n * {\n background: transparent !important;\n color: $black !important; /* Black prints faster: h5bp.com/s */\n box-shadow: none !important;\n text-shadow: none !important;\n }\n\n a,\n a:visited { text-decoration: underline;}\n a[href]:after { content: \" (\" attr(href) \")\"; }\n\n abbr[title]:after { content: \" (\" attr(title) \")\"; }\n\n // Don't show links for images, or javascript/internal links\n .ir a:after,\n a[href^=\"javascript:\"]:after,\n a[href^=\"#\"]:after { content: \"\"; }\n\n pre,\n blockquote {\n border: 1px solid $aluminum;\n page-break-inside: avoid;\n }\n\n thead { display: table-header-group; /* h5bp.com/t */ }\n\n tr,\n img { page-break-inside: avoid; }\n\n img { max-width: 100% !important; }\n\n @page { margin: 0.5cm; }\n\n p,\n h2,\n h3 {\n orphans: 3;\n widows: 3;\n }\n\n h2,\n h3 { page-break-after: avoid; }\n\n .hide-on-print { display: none !important; }\n .print-only { display: block !important; }\n .hide-for-print { display: none !important; }\n .show-for-print { display: inherit !important; }\n }\n }\n\n }\n}\n","// Foundation by ZURB\n// foundation.zurb.com\n// Licensed under MIT Open Source\n\n@import \"global\";\n\n//\n// Foundation Visibility Classes\n//\n$include-html-visibility-classes: $include-html-classes !default;\n$include-accessibility-classes: true !default;\n$include-table-visibility-classes: true !default;\n$include-legacy-visibility-classes: true !default;\n\n//\n// Media Class Names\n//\n// Visibility Breakpoints\n$visibility-breakpoint-sizes:\n small,\n medium,\n large,\n xlarge,\n xxlarge;\n\n$visibility-breakpoint-queries:\n unquote($small-up),\n unquote($medium-up),\n unquote($large-up),\n unquote($xlarge-up),\n unquote($xxlarge-up);\n\n@mixin visibility-loop {\n @each $current-visibility-breakpoint in $visibility-breakpoint-sizes {\n $visibility-inherit-list: ();\n $visibility-none-list: ();\n\n $visibility-visible-list: ();\n $visibility-hidden-list: ();\n\n $visibility-table-list: ();\n $visibility-table-header-group-list: ();\n $visibility-table-row-group-list: ();\n $visibility-table-row-list: ();\n $visibility-table-cell-list: ();\n\n @each $visibility-comparison-breakpoint in $visibility-breakpoint-sizes {\n @if index($visibility-breakpoint-sizes, $visibility-comparison-breakpoint) < index($visibility-breakpoint-sizes, $current-visibility-breakpoint) {\n // Smaller than current breakpoint\n\n $visibility-inherit-list: append($visibility-inherit-list, unquote(\n '.hide-for-#{$visibility-comparison-breakpoint}-only, .show-for-#{$visibility-comparison-breakpoint}-up'\n ), comma);\n $visibility-none-list: append($visibility-none-list, unquote(\n '.show-for-#{$visibility-comparison-breakpoint}-only, .hide-for-#{$visibility-comparison-breakpoint}-up'\n ), comma);\n $visibility-visible-list: append($visibility-visible-list, unquote(\n '.hidden-for-#{$visibility-comparison-breakpoint}-only, .visible-for-#{$visibility-comparison-breakpoint}-up'\n ), comma);\n $visibility-hidden-list: append($visibility-hidden-list, unquote(\n '.visible-for-#{$visibility-comparison-breakpoint}-only, .hidden-for-#{$visibility-comparison-breakpoint}-up'\n ), comma);\n $visibility-table-list: append($visibility-table-list, unquote(\n 'table.hide-for-#{$visibility-comparison-breakpoint}-only, table.show-for-#{$visibility-comparison-breakpoint}-up'\n ), comma);\n $visibility-table-header-group-list: append($visibility-table-header-group-list, unquote(\n 'thead.hide-for-#{$visibility-comparison-breakpoint}-only, thead.show-for-#{$visibility-comparison-breakpoint}-up'\n ), comma);\n $visibility-table-row-group-list: append($visibility-table-row-group-list, unquote(\n 'tbody.hide-for-#{$visibility-comparison-breakpoint}-only, tbody.show-for-#{$visibility-comparison-breakpoint}-up'\n ), comma);\n $visibility-table-row-list: append($visibility-table-row-list, unquote(\n 'tr.hide-for-#{$visibility-comparison-breakpoint}-only, tr.show-for-#{$visibility-comparison-breakpoint}-up'\n ), comma);\n $visibility-table-cell-list: append($visibility-table-cell-list, unquote(\n 'th.hide-for-#{$visibility-comparison-breakpoint}-only, td.hide-for-#{$visibility-comparison-breakpoint}-only, th.show-for-#{$visibility-comparison-breakpoint}-up, td.show-for-#{$visibility-comparison-breakpoint}-up'\n ), comma);\n\n // Foundation 4 compatibility:\n // Include .show/hide-for-[size] and .show/hide-for-[size]-down classes\n // for small, medium, and large breakpoints only\n @if $include-legacy-visibility-classes and index((small, medium, large), $visibility-comparison-breakpoint) != false {\n $visibility-inherit-list: append($visibility-inherit-list, unquote(\n '.hide-for-#{$visibility-comparison-breakpoint}, .hide-for-#{$visibility-comparison-breakpoint}-down'\n ), comma);\n $visibility-none-list: append($visibility-none-list, unquote(\n '.show-for-#{$visibility-comparison-breakpoint}, .show-for-#{$visibility-comparison-breakpoint}-down'\n ), comma);\n $visibility-visible-list: append($visibility-visible-list, unquote(\n '.hidden-for-#{$visibility-comparison-breakpoint}, .hidden-for-#{$visibility-comparison-breakpoint}-down'\n ), comma);\n $visibility-hidden-list: append($visibility-hidden-list, unquote(\n '.visible-for-#{$visibility-comparison-breakpoint}, .visible-for-#{$visibility-comparison-breakpoint}-down'\n ), comma);\n $visibility-table-list: append($visibility-table-list, unquote(\n 'table.hide-for-#{$visibility-comparison-breakpoint}, table.hide-for-#{$visibility-comparison-breakpoint}-down'\n ), comma);\n $visibility-table-header-group-list: append($visibility-table-header-group-list, unquote(\n 'thead.hide-for-#{$visibility-comparison-breakpoint}, thead.hide-for-#{$visibility-comparison-breakpoint}-down'\n ), comma);\n $visibility-table-row-group-list: append($visibility-table-row-group-list, unquote(\n 'tbody.hide-for-#{$visibility-comparison-breakpoint}, tbody.hide-for-#{$visibility-comparison-breakpoint}-down'\n ), comma);\n $visibility-table-row-list: append($visibility-table-row-list, unquote(\n 'tr.hide-for-#{$visibility-comparison-breakpoint}, tr.hide-for-#{$visibility-comparison-breakpoint}-down'\n ), comma);\n $visibility-table-cell-list: append($visibility-table-cell-list, unquote(\n 'th.hide-for-#{$visibility-comparison-breakpoint}, td.hide-for-#{$visibility-comparison-breakpoint}, th.hide-for-#{$visibility-comparison-breakpoint}-down, td.hide-for-#{$visibility-comparison-breakpoint}-down'\n ), comma);\n }\n\n } @else if index($visibility-breakpoint-sizes, $visibility-comparison-breakpoint) > index($visibility-breakpoint-sizes, $current-visibility-breakpoint) {\n // Larger than current breakpoint\n\n $visibility-inherit-list: append($visibility-inherit-list, unquote(\n '.hide-for-#{$visibility-comparison-breakpoint}-only, .hide-for-#{$visibility-comparison-breakpoint}-up'\n ), comma);\n $visibility-none-list: append($visibility-none-list, unquote(\n '.show-for-#{$visibility-comparison-breakpoint}-only, .show-for-#{$visibility-comparison-breakpoint}-up'\n ), comma);\n $visibility-visible-list: append($visibility-visible-list, unquote(\n '.hidden-for-#{$visibility-comparison-breakpoint}-only, .hidden-for-#{$visibility-comparison-breakpoint}-up'\n ), comma);\n $visibility-hidden-list: append($visibility-hidden-list, unquote(\n '.visible-for-#{$visibility-comparison-breakpoint}-only, .visible-for-#{$visibility-comparison-breakpoint}-up'\n ), comma);\n $visibility-table-list: append($visibility-table-list, unquote(\n 'table.hide-for-#{$visibility-comparison-breakpoint}-only, table.hide-for-#{$visibility-comparison-breakpoint}-up'\n ), comma);\n $visibility-table-header-group-list: append($visibility-table-header-group-list, unquote(\n 'thead.hide-for-#{$visibility-comparison-breakpoint}-only, thead.hide-for-#{$visibility-comparison-breakpoint}-up'\n ), comma);\n $visibility-table-row-group-list: append($visibility-table-row-group-list, unquote(\n 'tbody.hide-for-#{$visibility-comparison-breakpoint}-only, tbody.hide-for-#{$visibility-comparison-breakpoint}-up'\n ), comma);\n $visibility-table-row-list: append($visibility-table-row-list, unquote(\n 'tr.hide-for-#{$visibility-comparison-breakpoint}-only, tr.hide-for-#{$visibility-comparison-breakpoint}-up'\n ), comma);\n $visibility-table-cell-list: append($visibility-table-cell-list, unquote(\n 'th.hide-for-#{$visibility-comparison-breakpoint}-only, td.hide-for-#{$visibility-comparison-breakpoint}-only, th.hide-for-#{$visibility-comparison-breakpoint}-up, td.hide-for-#{$visibility-comparison-breakpoint}-up'\n ), comma);\n\n // Foundation 4 compatibility:\n // Include .show/hide-for-[size] and .show/hide-for-[size]-down classes\n // for small, medium, and large breakpoints only\n @if $include-legacy-visibility-classes and index((small, medium, large), $visibility-comparison-breakpoint) != false {\n $visibility-inherit-list: append($visibility-inherit-list, unquote(\n '.hide-for-#{$visibility-comparison-breakpoint}, .show-for-#{$visibility-comparison-breakpoint}-down'\n ), comma);\n $visibility-none-list: append($visibility-none-list, unquote(\n '.show-for-#{$visibility-comparison-breakpoint}, .hide-for-#{$visibility-comparison-breakpoint}-down'\n ), comma);\n $visibility-visible-list: append($visibility-visible-list, unquote(\n '.hidden-for-#{$visibility-comparison-breakpoint}, .visible-for-#{$visibility-comparison-breakpoint}-down'\n ), comma);\n $visibility-hidden-list: append($visibility-hidden-list, unquote(\n '.visible-for-#{$visibility-comparison-breakpoint}, .hidden-for-#{$visibility-comparison-breakpoint}-down'\n ), comma);\n $visibility-table-list: append($visibility-table-list, unquote(\n 'table.hide-for-#{$visibility-comparison-breakpoint}, table.show-for-#{$visibility-comparison-breakpoint}-down'\n ), comma);\n $visibility-table-header-group-list: append($visibility-table-header-group-list, unquote(\n 'thead.hide-for-#{$visibility-comparison-breakpoint}, thead.show-for-#{$visibility-comparison-breakpoint}-down'\n ), comma);\n $visibility-table-row-group-list: append($visibility-table-row-group-list, unquote(\n 'tbody.hide-for-#{$visibility-comparison-breakpoint}, tbody.show-for-#{$visibility-comparison-breakpoint}-down'\n ), comma);\n $visibility-table-row-list: append($visibility-table-row-list, unquote(\n 'tr.hide-for-#{$visibility-comparison-breakpoint}, tr.show-for-#{$visibility-comparison-breakpoint}-down'\n ), comma);\n $visibility-table-cell-list: append($visibility-table-cell-list, unquote(\n 'th.hide-for-#{$visibility-comparison-breakpoint}, td.hide-for-#{$visibility-comparison-breakpoint}, th.show-for-#{$visibility-comparison-breakpoint}-down, td.show-for-#{$visibility-comparison-breakpoint}-down'\n ), comma);\n }\n\n } @else {\n // Current breakpoint\n\n $visibility-inherit-list: append($visibility-inherit-list, unquote(\n '.show-for-#{$visibility-comparison-breakpoint}-only, .show-for-#{$visibility-comparison-breakpoint}-up'\n ), comma);\n $visibility-none-list: append($visibility-none-list, unquote(\n '.hide-for-#{$visibility-comparison-breakpoint}-only, .hide-for-#{$visibility-comparison-breakpoint}-up'\n ), comma);\n $visibility-visible-list: append($visibility-visible-list, unquote(\n '.visible-for-#{$visibility-comparison-breakpoint}-only, .visible-for-#{$visibility-comparison-breakpoint}-up'\n ), comma);\n $visibility-hidden-list: append($visibility-hidden-list, unquote(\n '.hidden-for-#{$visibility-comparison-breakpoint}-only, .hidden-for-#{$visibility-comparison-breakpoint}-up'\n ), comma);\n $visibility-table-list: append($visibility-table-list, unquote(\n 'table.show-for-#{$visibility-comparison-breakpoint}-only, table.show-for-#{$visibility-comparison-breakpoint}-up'\n ), comma);\n $visibility-table-header-group-list: append($visibility-table-header-group-list, unquote(\n 'thead.show-for-#{$visibility-comparison-breakpoint}-only, thead.show-for-#{$visibility-comparison-breakpoint}-up'\n ), comma);\n $visibility-table-row-group-list: append($visibility-table-row-group-list, unquote(\n 'tbody.show-for-#{$visibility-comparison-breakpoint}-only, tbody.show-for-#{$visibility-comparison-breakpoint}-up'\n ), comma);\n $visibility-table-row-list: append($visibility-table-row-list, unquote(\n 'tr.show-for-#{$visibility-comparison-breakpoint}-only, tr.show-for-#{$visibility-comparison-breakpoint}-up'\n ), comma);\n $visibility-table-cell-list: append($visibility-table-cell-list, unquote(\n 'th.show-for-#{$visibility-comparison-breakpoint}-only, td.show-for-#{$visibility-comparison-breakpoint}-only, th.show-for-#{$visibility-comparison-breakpoint}-up, td.show-for-#{$visibility-comparison-breakpoint}-up'\n ), comma);\n\n // Foundation 4 compatibility:\n // Include .show/hide-for-[size] and .show/hide-for-[size]-down classes\n // for small, medium, and large breakpoints only\n @if $include-legacy-visibility-classes and index((small, medium, large), $visibility-comparison-breakpoint) != false {\n $visibility-inherit-list: append($visibility-inherit-list, unquote(\n '.show-for-#{$visibility-comparison-breakpoint}, .show-for-#{$visibility-comparison-breakpoint}-down'\n ), comma);\n $visibility-none-list: append($visibility-none-list, unquote(\n '.hide-for-#{$visibility-comparison-breakpoint}, .hide-for-#{$visibility-comparison-breakpoint}-down'\n ), comma);\n $visibility-visible-list: append($visibility-visible-list, unquote(\n '.visible-for-#{$visibility-comparison-breakpoint}, .visible-for-#{$visibility-comparison-breakpoint}-down'\n ), comma);\n $visibility-hidden-list: append($visibility-hidden-list, unquote(\n '.hidden-for-#{$visibility-comparison-breakpoint}, .hidden-for-#{$visibility-comparison-breakpoint}-down'\n ), comma);\n $visibility-table-list: append($visibility-table-list, unquote(\n 'table.show-for-#{$visibility-comparison-breakpoint}, table.show-for-#{$visibility-comparison-breakpoint}-down'\n ), comma);\n $visibility-table-header-group-list: append($visibility-table-header-group-list, unquote(\n 'thead.show-for-#{$visibility-comparison-breakpoint}, thead.show-for-#{$visibility-comparison-breakpoint}-down'\n ), comma);\n $visibility-table-row-group-list: append($visibility-table-row-group-list, unquote(\n 'tbody.show-for-#{$visibility-comparison-breakpoint}, tbody.show-for-#{$visibility-comparison-breakpoint}-down'\n ), comma);\n $visibility-table-row-list: append($visibility-table-row-list, unquote(\n 'tr.show-for-#{$visibility-comparison-breakpoint}, tr.show-for-#{$visibility-comparison-breakpoint}-down'\n ), comma);\n $visibility-table-cell-list: append($visibility-table-cell-list, unquote(\n 'th.show-for-#{$visibility-comparison-breakpoint}, td.show-for-#{$visibility-comparison-breakpoint}, th.show-for-#{$visibility-comparison-breakpoint}-down, td.show-for-#{$visibility-comparison-breakpoint}-down'\n ), comma);\n }\n }\n }\n\n /* #{$current-visibility-breakpoint} displays */\n @media #{nth($visibility-breakpoint-queries, index($visibility-breakpoint-sizes, $current-visibility-breakpoint))} {\n #{$visibility-inherit-list} {\n display: inherit !important;\n }\n #{$visibility-none-list} {\n display: none !important;\n }\n @if $include-accessibility-classes != false {\n #{$visibility-visible-list} {\n @include element-invisible-off;\n }\n #{$visibility-hidden-list} {\n @include element-invisible;\n }\n }\n @if $include-table-visibility-classes != false {\n #{$visibility-table-list} {\n display: table !important;\n }\n #{$visibility-table-header-group-list} {\n display: table-header-group !important;\n }\n #{$visibility-table-row-group-list} {\n display: table-row-group !important;\n }\n #{$visibility-table-row-list} {\n display: table-row !important;\n }\n #{$visibility-table-cell-list} {\n display: table-cell !important;\n }\n }\n }\n }\n}\n\n\n@if $include-html-visibility-classes != false {\n\n @include visibility-loop;\n\n /* Orientation targeting */\n .show-for-landscape,\n .hide-for-portrait { display: inherit !important; }\n .hide-for-landscape,\n .show-for-portrait { display: none !important; }\n\n /* Specific visibility for tables */\n table {\n &.hide-for-landscape,\n &.show-for-portrait { display: table !important; }\n }\n thead {\n &.hide-for-landscape,\n &.show-for-portrait { display: table-header-group !important; }\n }\n tbody {\n &.hide-for-landscape,\n &.show-for-portrait { display: table-row-group !important; }\n }\n tr {\n &.hide-for-landscape,\n &.show-for-portrait { display: table-row !important; }\n }\n td,\n th {\n &.hide-for-landscape,\n &.show-for-portrait { display: table-cell !important; }\n }\n\n @media #{$landscape} {\n .show-for-landscape,\n .hide-for-portrait { display: inherit !important; }\n .hide-for-landscape,\n .show-for-portrait { display: none !important; }\n\n /* Specific visibility for tables */\n table {\n &.show-for-landscape,\n &.hide-for-portrait { display: table !important; }\n }\n thead {\n &.show-for-landscape,\n &.hide-for-portrait { display: table-header-group !important; }\n }\n tbody {\n &.show-for-landscape,\n &.hide-for-portrait { display: table-row-group !important; }\n }\n tr {\n &.show-for-landscape,\n &.hide-for-portrait { display: table-row !important; }\n }\n td,\n th {\n &.show-for-landscape,\n &.hide-for-portrait { display: table-cell !important; }\n }\n }\n\n @media #{$portrait} {\n .show-for-portrait,\n .hide-for-landscape { display: inherit !important; }\n .hide-for-portrait,\n .show-for-landscape { display: none !important; }\n\n /* Specific visibility for tables */\n table {\n &.show-for-portrait,\n &.hide-for-landscape { display: table !important; }\n }\n thead {\n &.show-for-portrait,\n &.hide-for-landscape { display: table-header-group !important; }\n }\n tbody {\n &.show-for-portrait,\n &.hide-for-landscape { display: table-row-group !important; }\n }\n tr {\n &.show-for-portrait,\n &.hide-for-landscape { display: table-row !important; }\n }\n td,\n th {\n &.show-for-portrait,\n &.hide-for-landscape { display: table-cell !important; }\n }\n }\n\n /* Touch-enabled device targeting */\n .show-for-touch { display: none !important; }\n .hide-for-touch { display: inherit !important; }\n .touch .show-for-touch { display: inherit !important; }\n .touch .hide-for-touch { display: none !important; }\n\n /* Specific visibility for tables */\n table.hide-for-touch { display: table !important; }\n .touch table.show-for-touch { display: table !important; }\n thead.hide-for-touch { display: table-header-group !important; }\n .touch thead.show-for-touch { display: table-header-group !important; }\n tbody.hide-for-touch { display: table-row-group !important; }\n .touch tbody.show-for-touch { display: table-row-group !important; }\n tr.hide-for-touch { display: table-row !important; }\n .touch tr.show-for-touch { display: table-row !important; }\n td.hide-for-touch { display: table-cell !important; }\n .touch td.show-for-touch { display: table-cell !important; }\n th.hide-for-touch { display: table-cell !important; }\n .touch th.show-for-touch { display: table-cell !important; }\n\n\n /* Print visibility */\n @media print {\n .show-for-print { display: block; }\n .hide-for-print { display: none; }\n\n table.show-for-print { display: table !important; }\n thead.show-for-print { display: table-header-group !important; }\n tbody.show-for-print { display: table-row-group !important; }\n tr.show-for-print { display: table-row !important; }\n td.show-for-print { display: table-cell !important; }\n th.show-for-print { display: table-cell !important; }\n\n }\n\n}\n","@charset \"utf-8\";\n/* TOC – Typography\n\nCheck typography variables › _3_typography_settings.scss\n\n- Links\n- Customize Foundation Typography\n- Headlines\n- Images\n- Lists\n- Tables\n- Code\n- Quotes\n- Typography for Articles\n- Smaller Fontsize for Bigteaser on small devices\n- Additional typographical elements\n- Footnotes\n- Icon Font\n\n*/\n\n\n\n/* Links\n------------------------------------------------------------------- */\n\na,\na:link {\n transition: all .4s;\n}\n\na:visited {\n border-bottom: $grey-2;\n}\n\na:hover {\n color: darken( $ci-1, 10% );\n}\n\na:focus {\n color: lighten( $ci-1, 20% );\n}\n\na:active {\n color: darken( $ci-1, 20% );\n}\n\n\n\n/* Customize Foundation Typography\n------------------------------------------------------------------- */\n\np {\n -webkit-hyphens: auto;\n -moz-hyphens: auto;\n -ms-hyphens: auto;\n hyphens: auto;\n -ms-word-break: normal;\n /* Non standard for webkit */\n word-break: normal;\n}\np a,\narticle a {\n font-weight: bold;\n border-bottom: 1px dotted;\n}\np a:hover,\narticle a:hover {\n border-bottom: 2px solid;\n}\np a.button,\n.button,\n.button:hover {\n border: 0;\n color: #fff;\n}\np.button a {\n border: 0;\n color: #fff;\n text-shadow: 0 1px 3px rgba(0, 0, 0, 0.5);\n}\n\n\n\n/* Headlines\n The hK::before logic is to accomodate a vert. offset for persistent\n top of page menu. The logic is copied from\n https://css-tricks.com/hash-tag-links-padding/\n------------------------------------------------------------------- */\n\nh1, h2, h3, h4, h5, h6 {\n font-family: $header-font-family;\n font-weight: normal;\n padding: 0;\n}\nh1 {\n font-size: $font-size-h1;\n margin-top: 0;\n}\nh2 {\n font-size: $font-size-h2;\n margin: 1.563em 0 0 0;\n}\n .blog-index h2 {\n margin-top: 0;\n }\nh3 {\n font-size: $font-size-h3;\n margin: 1.152em 0 0 0;\n}\nh4 {\n font-size: $font-size-h4;\n margin: 1.152em 0 0 0;\n}\nh5 {\n font-size: $font-size-h5;\n margin: 1em 0 0 0;\n}\n\n\n\n/* Images\n------------------------------------------------------------------- */\n\nimg { border-radius: $global-radius;}\n img.alignleft,\n img.left { float: left; margin:5px 15px 5px 0; }\n img.alignright,\n img.right { float: right; margin:5px 0 5px 15px; }\n img.aligncenter,\n img.center { display: block; margin:0 auto 10px; }\n\nfigure {\n margin: 0 0 rem-calc(30) 0;\n}\n#masthead-with-background-color figure,\n#masthead-with-pattern figure {\n margin: 0;\n}\nfigcaption,\n.masthead-caption {\n color: $grey-10;\n font-family: $font-family-sans-serif;\n font-size: rem-calc(13);\n padding-top: rem-calc(2);\n}\nfigcaption a,\n.masthead-caption a {\n border-bottom: 1px dotted $grey-4;\n color: $grey-10;\n}\nfigcaption a:hover,\n.masthead-caption a:hover {\n border-bottom: 2px solid $primary-color;\n color: $primary-color;\n}\n.masthead-caption {\n padding-right: 10px;\n text-align: right;\n}\n\n\n\n/* Tables\n------------------------------------------------------------------- */\n\ntd {\n vertical-align: top;\n}\n\n\n\n/* Code\n------------------------------------------------------------------- */\n\npre {\n overflow: auto;\n margin-bottom: rem-calc(20);\n padding: 5px;\n background-color: $code-background-color;\n border-radius: $global-radius;\n}\npre code {\n padding: rem-calc(2) rem-calc(5) rem-calc(1) rem-calc(0);\n border: 0;\n}\n\ncode {\n font-size: rem-calc(14);\n line-height: 1.5;\n}\n\n\n\n/* Lists\n------------------------------------------------------------------- */\n\nul, ol {\n margin-left: 20px;\n padding: 0;\n}\nli {\n margin-left: 0;\n}\n\n.no-bullet {\n list-style: none;\n margin-left: 0;\n}\n\nli {\n > ul,\n > ol {\n margin-bottom: 0;\n }\n}\n\ndl {\n\n}\ndt:first-child {\n padding-top: 0px;\n}\ndt {\n font-weight: bold;\n padding-top: 30px;\n}\ndd {\n}\narticle dl dt { line-height: 1.3; }\narticle dl dd { line-height: 1.6; margin-bottom: rem-calc(12); margin-left: rem-calc(24); }\n\n\n\n/* Quotes\n------------------------------------------------------------------- */\n\nblockquote {\n font-style: italic;\n position: relative;\n border: none;\n margin: 0 30px 30px 30px;\n color: $grey-11;\n}\n\n blockquote p {font-style: italic; color: $grey-10; }\n\n blockquote:before {\n display:block;content:\"\\00BB\";\n font-size:80px;\n line-height: 0;\n position:absolute;\n left:-25px;\n top: auto;\n color: $grey-11;\n }\n blockquote:after {\n display:block;\n content:\"\\00AB\";\n font-size:80px;\n line-height: 0;\n position:absolute;\n right:-10px;\n bottom: 20px;\n color: $grey-11;\n }\n blockquote cite:before {\n content:\"\\2014 \\0020\"\n }\n blockquote cite a,blockquote cite a:visited {\n color: $grey-10;\n }\ncite {\n padding-top: 5px;\n}\n\nbutton, .button {\n letter-spacing: 1px;\n}\n\nmark {\n background-color: scale-color($warning-color, $lightness: 60%);\n}\n\n\n\n/* Typography for Articles\n------------------------------------------------------------------- */\n\n.subheadline {\n font-size: rem-calc(16);\n margin: 0;\n text-transform: uppercase;\n}\n.teaser {\n font-size: rem-calc(20);\n}\n.big-teaser {\n font-style: italic; font-weight: 300;\n}\n.big-teaser a {\n font-style: italic; font-weight: 400;\n}\n\n/* Smaller Fontsize for Bigteaser on small devices */\n@media only screen {\n .big-teaser {\n font-size: rem-calc(20);\n }\n}\n@media only screen and (min-width: 40.063em) {\n .big-teaser {\n font-size: rem-calc(29);\n }\n}\n\n\n\n/* Additional typographical elements\n------------------------------------------------------------------- */\n\n.sans { font-family: $font-family-sans-serif; }\n.serif { font-family: $font-family-serif; }\n\n.font-size-h1 { font-size: $font-size-h1; }\n.font-size-h2 { font-size: $font-size-h2; }\n.font-size-h3 { font-size: $font-size-h3; }\n.font-size-h4 { font-size: $font-size-h4; }\n.font-size-h5 { font-size: $font-size-h5; }\n.font-size-p { font-size: $font-size-p; }\n\n\n\n/* Footnotes\n------------------------------------------------------------------- */\n\n.footnotes:before {\n content: \"\";\n position: absolute;\n height: 1px;\n width: 60px;\n margin-top: -10px;\n border-bottom: 1px solid $grey-2;\n}\n.footnotes {\n margin-top: 60px;\n}\n.footnotes ol {\n font-size: $font-size-small;\n}\n.footnotes p {\n font-size: inherit;\n margin-bottom: 0;\n}\n\n\n\n\n/* Icon Font\n See the icon-set/preview in /assets/fonts/iconfont-preview.html\n------------------------------------------------------------------- */\n\n@font-face {\n font-family: 'iconfont';\n src: url('../fonts/iconfont.eot'); /* IE9 Compat Modes */\n src: url('../fonts/iconfont.eot?#iefix') format('embedded-opentype'), /* IE6-IE8 */\n url('../fonts/iconfont.woff') format('woff'), /* Pretty Modern Browsers */\n url('../fonts/iconfont.ttf') format('truetype'), /* Safari, Android, iOS */\n url('../fonts/iconfont.svg#svgFontName') format('svg'); /* Legacy iOS */\n}\n\n.iconfont { font-family: iconfont; }\n.iconfont-48 { font-size: 48px; }\n\n\n[data-icon]:before { content: attr(data-icon); }\n\n[data-icon]:before,\n.icon-archive:before,\n.icon-browser:before,\n.icon-calendar:before,\n.icon-camera:before,\n.icon-chat:before,\n.icon-check:before,\n.icon-chevron-down:before,\n.icon-chevron-left:before,\n.icon-chevron-right:before,\n.icon-chevron-up:before,\n.icon-circle-with-cross:before,\n.icon-circle-with-minus:before,\n.icon-circle-with-plus:before,\n.icon-cloud:before,\n.icon-code:before,\n.icon-cog:before,\n.icon-dropbox:before,\n.icon-edit:before,\n.icon-export:before,\n.icon-eye:before,\n.icon-facebook:before,\n.icon-feather:before,\n.icon-github:before,\n.icon-globe:before,\n.icon-googleplus:before,\n.icon-heart:before,\n.icon-heart-outlined:before,\n.icon-home:before,\n.icon-instagram:before,\n.icon-lab-flask:before,\n.icon-leaf:before,\n.icon-linkedin:before,\n.icon-mail:before,\n.icon-message:before,\n.icon-mic:before,\n.icon-network:before,\n.icon-paper-plane:before,\n.icon-pinterest:before,\n.icon-price-tag:before,\n.icon-rocket:before,\n.icon-rss:before,\n.icon-soundcloud:before,\n.icon-star:before,\n.icon-star-outlined:before,\n.icon-thumbs-down:before,\n.icon-thumbs-up:before,\n.icon-tree:before,\n.icon-tumblr:before,\n.icon-twitter:before,\n.icon-upload-to-cloud:before,\n.icon-video:before,\n.icon-vimeo:before,\n.icon-warning:before,\n.icon-xing:before,\n.icon-youtube:before {\n display: inline-block;\nfont-family: \"iconfont\";\nfont-style: normal;\nfont-weight: normal;\nfont-variant: normal;\nline-height: 1;\ntext-decoration: inherit;\ntext-rendering: optimizeLegibility;\ntext-transform: none;\n-moz-osx-font-smoothing: grayscale;\n-webkit-font-smoothing: antialiased;\nfont-smoothing: antialiased;\n}\n\n.icon-archive:before { content: \"\\f100\"; }\n.icon-browser:before { content: \"\\f101\"; }\n.icon-calendar:before { content: \"\\f133\"; }\n.icon-camera:before { content: \"\\f102\"; }\n.icon-chat:before { content: \"\\f103\"; }\n.icon-check:before { content: \"\\f104\"; }\n.icon-chevron-down:before { content: \"\\f105\"; }\n.icon-chevron-left:before { content: \"\\f106\"; }\n.icon-chevron-right:before { content: \"\\f107\"; }\n.icon-chevron-up:before { content: \"\\f108\"; }\n.icon-circle-with-cross:before { content: \"\\f109\"; }\n.icon-circle-with-minus:before { content: \"\\f10a\"; }\n.icon-circle-with-plus:before { content: \"\\f10b\"; }\n.icon-cloud:before { content: \"\\f10c\"; }\n.icon-code:before { content: \"\\f10d\"; }\n.icon-cog:before { content: \"\\f10e\"; }\n.icon-dropbox:before { content: \"\\f10f\"; }\n.icon-edit:before { content: \"\\f110\"; }\n.icon-export:before { content: \"\\f111\"; }\n.icon-eye:before { content: \"\\f112\"; }\n.icon-facebook:before { content: \"\\f113\"; }\n.icon-feather:before { content: \"\\f114\"; }\n.icon-github:before { content: \"\\f115\"; }\n.icon-globe:before { content: \"\\f116\"; }\n.icon-googleplus:before { content: \"\\f136\"; }\n.icon-heart:before { content: \"\\f117\"; }\n.icon-heart-outlined:before { content: \"\\f118\"; }\n.icon-home:before { content: \"\\f119\"; }\n.icon-instagram:before { content: \"\\f11a\"; }\n.icon-lab-flask:before { content: \"\\f11b\"; }\n.icon-leaf:before { content: \"\\f11c\"; }\n.icon-linkedin:before { content: \"\\f11d\"; }\n.icon-mail:before { content: \"\\f11e\"; }\n.icon-message:before { content: \"\\f11f\"; }\n.icon-mic:before { content: \"\\f120\"; }\n.icon-network:before { content: \"\\f121\"; }\n.icon-paper-plane:before { content: \"\\f122\"; }\n.icon-pinterest:before { content: \"\\f123\"; }\n.icon-price-tag:before { content: \"\\f124\"; }\n.icon-rocket:before { content: \"\\f125\"; }\n.icon-rss:before { content: \"\\f126\"; }\n.icon-soundcloud:before { content: \"\\f127\"; }\n.icon-star:before { content: \"\\f128\"; }\n.icon-star-outlined:before { content: \"\\f129\"; }\n.icon-thumbs-down:before { content: \"\\f12a\"; }\n.icon-thumbs-up:before { content: \"\\f12b\"; }\n.icon-tree:before { content: \"\\f134\"; }\n.icon-tumblr:before { content: \"\\f12c\"; }\n.icon-twitter:before { content: \"\\f12d\"; }\n.icon-upload-to-cloud:before { content: \"\\f12e\"; }\n.icon-video:before { content: \"\\f12f\"; }\n.icon-vimeo:before { content: \"\\f130\"; }\n.icon-warning:before { content: \"\\f131\"; }\n.icon-xing:before { content: \"\\f135\"; }\n.icon-youtube:before { content: \"\\f132\"; }\n","@charset \"utf-8\";\n/* TOC\n\n- Adjustments: Video Layout\n- Navigation\n- Search\n- Masthead\n- Masthead › small-only\n- Masthead › medium-only\n- Masthead › large-only\n- Masthead › xlarge-up\n- Breadcrumb\n- Meta\n- Jump to top\n- Footer\n- Subfooter\n- CSS-Classes to add margin at top or bottom\n\n*/\n\n\n\n/* Adjustments: Video Layout\n------------------------------------------------------------------- */\n\nbody.video,\nbody.video #masthead-no-image-header { background: #000; }\nbody.video #masthead-no-image-header { margin-bottom: 60px; }\nbody.video h1,\nbody.video h2,\nbody.video h3,\nbody.video h4,\nbody.video h5,\nbody.video h6,\nbody.video p,\nbody.video a,\nbody.video blockquote:before,\nbody.video blockquote:after,\nbody.video cite a, { color: #fff; }\nbody.video cite a:visited, { color: #fff; }\nbody.video cite { color: #fff; }\n\n\n\n/* Navigation\n------------------------------------------------------------------- */\n\n#navigation {\n -webkit-box-shadow: 0 2px 2px 0 rgba(0,0,0,.2);\n box-shadow: 0 2px 3px 0 rgba(0,0,0,.2);\n\n [class^='icon-']:before, [class*=' icon-']:before {\n margin-right: rem-calc(8);\n }\n}\n\n\n\n/* Search\n------------------------------------------------------------------- */\n\n.no-js form#search {\n display: none;\n}\n\n\n\n/* Masthead\n------------------------------------------------------------------- */\n\n#masthead {\n background-color: $primary-color;\n}\n#masthead-no-image-header {\n background-color: $primary-color;\n}\n#masthead-with-text {\n text-align: center;\n font-size: rem-calc(54);\n font-family: $header-font-family;\n color: #fff;\n text-transform: uppercase;\n text-shadow: 0 2px 3px rgba(0,0,0,.4);\n}\n#masthead-no-image-header {\n height: 175px;\n}\n#masthead-no-image-header #logo img {\n margin-top: 60px;\n}\n\n/* Masthead › small-only\n------------------------------------------------------------------- */\n\n@media #{$small-only} {\n #logo img {\n display: none;\n }\n #masthead {\n height: 200px;\n }\n #masthead-with-pattern {\n padding: 15px 0;\n }\n #masthead-with-background-color {\n padding: 15px 0;\n }\n #masthead-with-text {\n height: 220px;\n padding: 30px 0;\n font-size: rem-calc(36);\n }\n #masthead-no-image-header {\n display: none;\n }\n}\n\n\n/* Masthead › medium-only\n------------------------------------------------------------------- */\n\n@media #{$medium-only} {\n #logo img {\n margin-top: 60px;\n }\n #masthead {\n height: 280px;\n }\n #masthead-with-pattern {\n padding: 20px 0;\n }\n #masthead-with-background-color {\n padding: 20px 0;\n }\n #masthead-with-text {\n padding: 60px 0;\n height: 300px;\n }\n}\n\n\n/* Masthead › large-only\n------------------------------------------------------------------- */\n\n@media #{$large-only} {\n #logo img {\n margin-top: 80px;\n }\n #masthead {\n height: 310px;\n }\n #masthead-with-pattern {\n padding: 30px 0;\n }\n #masthead-with-background-color {\n padding: 30px 0;\n }\n #masthead-with-text {\n height: 330px;\n padding: 60px 0;\n }\n}\n\n\n/* Masthead › xlarge-up\n------------------------------------------------------------------- */\n\n@media #{$xlarge-up} {\n #logo img {\n margin-top: 110px;\n }\n #masthead {\n height: 380px;\n }\n #masthead-with-pattern {\n padding: 45px 0;\n }\n #masthead-with-background-color {\n padding: 45px 0;\n }\n #masthead-with-text {\n padding: 95px 0;\n height: 400px;\n }\n}\n\n\n#title-image-small {\n height: 240px;\n}\n#title-image-large {\n height: 520px;\n}\n#title-image-index-small {\n height: 120px;\n}\n#title-image-index-large {\n height: 260px;\n}\n\n\n\n/* Breadcrumb\n------------------------------------------------------------------- */\n\n#breadcrumb {\n background: scale-color($grey-1, $lightness: 55%);\n border-top: 1px solid scale-color($grey-1, $lightness: 45%);\n border-bottom: 1px solid scale-color($grey-1, $lightness: 45%);\n}\n.breadcrumbs>.current {\n font-weight: bold;\n}\n\n\n/* Meta\n------------------------------------------------------------------- */\n\n#page-meta, #page-meta a {\n color: $grey-5;\n}\n\n#page-meta .button {\n background: $grey-5;\n border: 0;\n}\n#page-meta .button {\n color: #fff;\n}\n#page-meta .button:hover {\n background: $primary-color;\n}\n.meta-info p {\n font-size: rem-calc(13);\n color: scale-color($grey-1, $lightness: 40%);\n}\n .meta-info a {\n text-decoration: underline;\n color: scale-color($grey-1, $lightness: 40%);\n }\n .meta-info a:hover {\n text-decoration: none;\n color: $secondary-color;\n }\n\n\n\n/* Jump to top\n------------------------------------------------------------------- */\n\n#up-to-top {\n padding: 160px 0 10px 0;\n}\n#up-to-top a {\n font-size: 24px;\n padding: 5px;\n border-radius: 3px;\n}\n#up-to-top a:hover {\n background: $grey-2;\n}\n\n\n\n/* Footer\n------------------------------------------------------------------- */\n\n#footer-content p,\n#footer-content li {\n font-size: rem-calc(13);\n font-weight: 300;\n}\n\n#footer {\n padding-top: 30px;\n padding-bottom: 20px;\n background: $footer-bg;\n color: $footer-color;\n }\n\n #footer a {\n color: $footer-link-color;\n }\n #footer h4,\n #footer h5 {\n letter-spacing: 1px;\n color: #fff;\n text-transform: uppercase;\n }\n\n\n\n/* Subfooter\n------------------------------------------------------------------- */\n\n#subfooter {\n background: $subfooter-bg;\n color: $subfooter-color;\n padding-top: 30px;\n}\n\n#subfooter-left ul.inline-list {\n float: left;\n}\n\n.credits a {\n color: $subfooter-link-color;\n border: 0;\n text-transform: uppercase;\n &:hover {\n color: #fff;\n }\n}\n\n.social-icons {\n margin-bottom: 10px !important;\n\n// Beware of SCSS-Syntax here\n li {\n padding: 0 0 20px 0;\n }\n a {\n font-size: rem-calc(23);\n display: block;\n width: 36px;\n border-radius: 50%;\n color: $subfooter-bg;\n background: $subfooter-color;\n text-align: center;\n &:hover {\n background: $subfooter-bg;\n color: #fff;\n }\n }\n}\n\n\n\n/* CSS-Classes to add margin at top or bottom\n------------------------------------------------------------------- */\n\n.t10 { margin-top: 10px !important; }\n.t15 { margin-top: 15px !important; }\n.t20 { margin-top: 20px !important; }\n.t30 { margin-top: 30px !important; }\n.t50 { margin-top: 50px !important; }\n.t60 { margin-top: 60px !important; }\n.t70 { margin-top: 70px !important; }\n.t80 { margin-top: 80px !important; }\n.t90 { margin-top: 90px !important; }\n\n.b15 { margin-bottom: 15px !important; }\n.b20 { margin-bottom: 20px !important; }\n.b30 { margin-bottom: 30px !important; }\n.b60 { margin-bottom: 60px !important; }\n\n.l15 { margin-left: 15px !important; }\n.r15 { margin-right: 15px !important; }\n\n.pl20 { padding-left: 20px !important; }\n.pr5 { padding-right: 5px !important; }\n.pr10 { padding-right: 10px !important; }\n.pr20 { padding-right: 20px !important; }\n","@charset \"utf-8\";\n/* TOC\n\n- Table of Contents (Index)\n- Panel\n- Shadows\n- Alerts\n- Breadcrumb\n- Button\n- Side-Nav\n- Accordion\n- Lazy Load XT\n- Frontpage Widget\n\n*/\n\n\n\n/* Table of Contents (Index)\n------------------------------------------------------------------- */\n\n#toc ul,\n#toc ul ul,\n#toc ul ul ul, {\n list-style: none;\n margin-left: 30px;\n}\n#toc ul {\n margin-left: 0;\n margin-top: $spacing-unit;\n}\n\n\n\n/* Panel\n------------------------------------------------------------------- */\n\n.border-dotted {\n border: 1px dotted $grey-5;\n padding: rem-calc(20);\n border-radius: $global-radius;\n}\n\n\n\n/* Shadows\n------------------------------------------------------------------- */\n\n.shadow-no {text-shadow: rgba(0, 0, 0, 0) 0 0 0;}\n.shadow-black {text-shadow: rgba(0, 0, 0, 0.498039) 0px 1px 2px;}\n.shadow-white {text-shadow: rgba(255, 255, 255, 0.498039) 0px 1px 2px;}\n\n\n\n/* Alerts\n------------------------------------------------------------------- */\n\n.alert-box {\n font-family: $font-family-sans-serif;\n text-shadow: 0px 1px 1px rgba(0,0,0,0.9);\n}\n .alert-box p {\n margin-bottom: 0;\n }\n .alert-box a {\n text-shadow: 1px 1px 0px rgba(0, 0, 0, 1);\n color: #fff;\n border-bottom: 1px dotted #fff;\n }\n .alert-box a:hover {\n border-bottom: 1px solid #fff;\n }\n .alert-box.terminal {\n background: $grey-12; \n color: #fff; \n border-color: scale-color($grey-12, $lightness: -14%);\n font-family: $font-family-monospace;\n }\n .alert-box.terminal::before {\n content: \"$ \";\n color: $ci-6;\n float: left;\n margin: .25em .5em 0 0;\n }\n .alert-box.text {\n background-color: $grey-2;\n text-shadow: 0px 0px 0px rgba(0,0,0,0.9);\n border-color: scale-color($grey-2, $lightness: -14%);\n color: $grey-12;\n }\n\n\n\n/* Button\n------------------------------------------------------------------- */\n\nbutton, .button { letter-spacing: 1px; }\n button.grey, .button.grey { background: $grey-10; }\n button.grey:hover,\n button.grey:focus,\n .button.grey:hover,\n .button.grey:focus { background-color: $grey-16; }\n\n\n\n/* Side-Nav\n------------------------------------------------------------------- */\n\n.side-nav li.title { text-transform: uppercase;}\n.side-nav li { border-top: 1px solid $grey-3;}\n.side-nav li a:not(.button) { border-bottom: 0; padding: 0.4375rem 0rem; }\n.side-nav li a:not(.button):hover, .side-nav li a:not(.button):focus { background: $grey-1; }\n\n.homepage p { margin: 0; padding: 0; color: $grey-10; }\n\n\n\n/* Accordion\n------------------------------------------------------------------- */\n\ndl.accordion { border-top: 1px solid $grey-2; }\n.accordion dd { border-bottom: 1px solid $grey-2; }\ndd.accordion-navigation span { padding-right: 12px; }\ndd.accordion-navigation span:before { content: \"\\F107\" }\ndd.accordion-navigation.active span:before { content: \"\\F105\" }\ndd.accordion-navigation.active span:before { content: \"\\F105\" }\n\n\n\n/* Lazy Load XT\n------------------------------------------------------------------- */\n\n/*! Lazy Load XT v1.0.6 2014-11-19\n * http://ressio.github.io/lazy-load-xt\n * (C) 2014 RESS.io\n * Licensed under MIT */\nimg.lazy {\n display: none;\n}\n.lazy-hidden {\n opacity: 0;\n}\n.lazy-loaded {\n -webkit-transition: opacity 0.7s;\n -moz-transition: opacity 0.7s;\n -ms-transition: opacity 0.7s;\n -o-transition: opacity 0.7s;\n transition: opacity 0.7s;\n opacity: 1;\n}\n\n*:target:not([id^='fn:']):not([id^='fnref:']) {\n &::before {\n content: \" \";\n width: 0;\n height: 0;\n\n display: block;\n padding-top: 50px;\n margin-top: -50px;\n }\n}\n","@charset \"utf-8\";\n/* Syntax highlighting styles\n------------------------------------------------------------------- */\n\n.highlight {\n background: #fff;\n [data-lang]::before {\n content: attr(data-lang);\n display: block;\n text-align: right;\n margin-right: 5px;\n text-transform: uppercase;\n }\n .c { color: #998; font-style: italic } // Comment\n .err { color: #a61717; background-color: #e3d2d2 } // Error\n .k { font-weight: bold } // Keyword\n .o { font-weight: bold } // Operator\n .cm { color: #998; font-style: italic } // Comment.Multiline\n .cp { color: #999; font-weight: bold } // Comment.Preproc\n .c1 { color: #998; font-style: italic } // Comment.Single\n .cs { color: #999; font-weight: bold; font-style: italic } // Comment.Special\n .gd { color: #000; background-color: #fdd } // Generic.Deleted\n .gd .x { color: #000; background-color: #faa } // Generic.Deleted.Specific\n .ge { font-style: italic } // Generic.Emph\n .gr { color: #a00 } // Generic.Error\n .gh { color: #999 } // Generic.Heading\n .gi { color: #000; background-color: #dfd } // Generic.Inserted\n .gi .x { color: #000; background-color: #afa } // Generic.Inserted.Specific\n .go { color: #888 } // Generic.Output\n .gp { color: #555 } // Generic.Prompt\n .gs { font-weight: bold } // Generic.Strong\n .gu { color: #aaa } // Generic.Subheading\n .gt { color: #a00 } // Generic.Traceback\n .kc { font-weight: bold } // Keyword.Constant\n .kd { font-weight: bold } // Keyword.Declaration\n .kp { font-weight: bold } // Keyword.Pseudo\n .kr { font-weight: bold } // Keyword.Reserved\n .kt { color: #458; font-weight: bold } // Keyword.Type\n .m { color: #099 } // Literal.Number\n .s { color: #d14 } // Literal.String\n .na { color: #008080 } // Name.Attribute\n .nb { color: #0086B3 } // Name.Builtin\n .nc { color: #458; font-weight: bold } // Name.Class\n .no { color: #008080 } // Name.Constant\n .ni { color: #800080 } // Name.Entity\n .ne { color: #900; font-weight: bold } // Name.Exception\n .nf { color: #900; font-weight: bold } // Name.Function\n .nn { color: #555 } // Name.Namespace\n .nt { color: #000080 } // Name.Tag\n .nv { color: #008080 } // Name.Variable\n .ow { font-weight: bold } // Operator.Word\n .w { color: #bbb } // Text.Whitespace\n .mf { color: #099 } // Literal.Number.Float\n .mh { color: #099 } // Literal.Number.Hex\n .mi { color: #099 } // Literal.Number.Integer\n .mo { color: #099 } // Literal.Number.Oct\n .sb { color: #d14 } // Literal.String.Backtick\n .sc { color: #d14 } // Literal.String.Char\n .sd { color: #d14 } // Literal.String.Doc\n .s2 { color: #d14 } // Literal.String.Double\n .se { color: #d14 } // Literal.String.Escape\n .sh { color: #d14 } // Literal.String.Heredoc\n .si { color: #d14 } // Literal.String.Interpol\n .sx { color: #d14 } // Literal.String.Other\n .sr { color: #009926 } // Literal.String.Regex\n .s1 { color: #d14 } // Literal.String.Single\n .ss { color: #990073 } // Literal.String.Symbol\n .bp { color: #999 } // Name.Builtin.Pseudo\n .vc { color: #008080 } // Name.Variable.Class\n .vg { color: #008080 } // Name.Variable.Global\n .vi { color: #008080 } // Name.Variable.Instance\n .il { color: #099 } // Literal.Number.Integer.Long\n}\n"],"file":"styles_feeling_responsive.css"} \ No newline at end of file +{"version":3,"sourceRoot":"","sources":["../../../../../../../../../tmp/jekyll-remote-theme-20241010-3081-qfwnhs/_sass/_02_settings_typography.scss","../../../../../../../../../tmp/jekyll-remote-theme-20241010-3081-qfwnhs/_sass/_03_settings_mixins_media_queries.scss","../../_sass/_01_settings_colors.scss","../../../../../../../../../tmp/jekyll-remote-theme-20241010-3081-qfwnhs/_sass/_05_normalize.scss","../../../../../../../../../tmp/jekyll-remote-theme-20241010-3081-qfwnhs/_sass/foundation-components/_grid.scss","../../../../../../../../../tmp/jekyll-remote-theme-20241010-3081-qfwnhs/_sass/foundation-components/_global.scss","../../../../../../../../../tmp/jekyll-remote-theme-20241010-3081-qfwnhs/_sass/foundation-components/_buttons.scss","../../../../../../../../../tmp/jekyll-remote-theme-20241010-3081-qfwnhs/_sass/_04_settings_global.scss","../../../../../../../../../tmp/jekyll-remote-theme-20241010-3081-qfwnhs/_sass/foundation-components/_forms.scss","../../../../../../../../../tmp/jekyll-remote-theme-20241010-3081-qfwnhs/_sass/foundation-components/_top-bar.scss","../../../../../../../../../tmp/jekyll-remote-theme-20241010-3081-qfwnhs/_sass/foundation-components/_accordion.scss","../../../../../../../../../tmp/jekyll-remote-theme-20241010-3081-qfwnhs/_sass/foundation-components/_alert-boxes.scss","../../../../../../../../../tmp/jekyll-remote-theme-20241010-3081-qfwnhs/_sass/foundation-components/_breadcrumbs.scss","../../../../../../../../../tmp/jekyll-remote-theme-20241010-3081-qfwnhs/_sass/foundation-components/_block-grid.scss","../../../../../../../../../tmp/jekyll-remote-theme-20241010-3081-qfwnhs/_sass/foundation-components/_button-groups.scss","../../../../../../../../../tmp/jekyll-remote-theme-20241010-3081-qfwnhs/_sass/foundation-components/_clearing.scss","../../../../../../../../../tmp/jekyll-remote-theme-20241010-3081-qfwnhs/_sass/foundation-components/_dropdown.scss","../../../../../../../../../tmp/jekyll-remote-theme-20241010-3081-qfwnhs/_sass/foundation-components/_dropdown-buttons.scss","../../../../../../../../../tmp/jekyll-remote-theme-20241010-3081-qfwnhs/_sass/foundation-components/_flex-video.scss","../../../../../../../../../tmp/jekyll-remote-theme-20241010-3081-qfwnhs/_sass/foundation-components/_inline-lists.scss","../../../../../../../../../tmp/jekyll-remote-theme-20241010-3081-qfwnhs/_sass/foundation-components/_keystrokes.scss","../../../../../../../../../tmp/jekyll-remote-theme-20241010-3081-qfwnhs/_sass/foundation-components/_panels.scss","../../../../../../../../../tmp/jekyll-remote-theme-20241010-3081-qfwnhs/_sass/foundation-components/_reveal.scss","../../../../../../../../../tmp/jekyll-remote-theme-20241010-3081-qfwnhs/_sass/foundation-components/_side-nav.scss","../../../../../../../../../tmp/jekyll-remote-theme-20241010-3081-qfwnhs/_sass/foundation-components/_sub-nav.scss","../../../../../../../../../tmp/jekyll-remote-theme-20241010-3081-qfwnhs/_sass/foundation-components/_tables.scss","../../../../../../../../../tmp/jekyll-remote-theme-20241010-3081-qfwnhs/_sass/foundation-components/_thumbs.scss","../../../../../../../../../tmp/jekyll-remote-theme-20241010-3081-qfwnhs/_sass/foundation-components/_type.scss","../../../../../../../../../tmp/jekyll-remote-theme-20241010-3081-qfwnhs/_sass/foundation-components/_visibility.scss","../../../../../../../../../tmp/jekyll-remote-theme-20241010-3081-qfwnhs/_sass/_06_typography.scss","../../../../../../../../../tmp/jekyll-remote-theme-20241010-3081-qfwnhs/_sass/_07_layout.scss","../../../../../../../../../tmp/jekyll-remote-theme-20241010-3081-qfwnhs/_sass/_09_elements.scss","../../../../../../../../../tmp/jekyll-remote-theme-20241010-3081-qfwnhs/_sass/_11_syntax-highlighting.scss"],"names":[],"mappings":"CAuDA,wBAPoB,QAQpB,wBAPoB,QAQpB,wBAPoB,QAQpB,wBAPoB,OAQpB,wBAPoB,QC8RlB,wBACE,sBAGF,yBACE,4BACA,UAGF,8BACE,kDACA,UAGF,0BACE,qDACA,eAGF,+BACE,0EACA,eAGF,yBACE,qDACA,eAGF,8BACE,0EACA,eAGF,0BACE,qDACA,eAGF,+BACE,2EACA,eAGF,2BACE,sDACA,gBAGF,yCACE,kBAMA,UAEE,YAIF,mBA3TF,mBA8TwB,WA7TxB,gBA6TwB,WA5TxB,WA4TwB,WAGtB,UAEE,UDtYW,KC0Yb,KACE,WCxYgB,QDyYhB,MC3YgB,KD4YhB,UACA,SACA,YDzYmB,mDC0YnB,YDrYa,OCsYb,WDrYY,OCsYZ,YD/Ya,ICgZb,kBACA,OAlGc,KAqGhB,QACE,OAnGiB,QAuGnB,IACE,eACA,YAGF,IACE,+BAMA,0GAGE,0BAKJ,MACE,sBAGF,OACE,uBA/QJ,iCAEE,YACA,cAGF,gBACE,WAgRA,MACE,wBACA,kBAIF,WACE,kBAOF,aACE,mCACA,kCAIF,IACE,qBACA,sBAQF,SACE,YACA,gBAIF,OACE,WEnfN,4DAQA,KACE,uBACA,0BACA,8BAOF,KACE,SAaF,2FAaE,cAQF,4BAIE,qBACA,wBAQF,sBACE,aACA,SAQF,kBAEE,aAUF,EACE,+BAOF,iBAEE,UAUF,YACE,yBAOF,SAEE,iBAOF,IACE,kBAQF,GACE,cACA,eAOF,KACE,gBACA,WAOF,MACE,cAOF,QAEE,cACA,cACA,kBACA,wBAGF,IACE,WAGF,IACE,eAUF,IACE,SAOF,eACE,gBAUF,OACE,gBAOF,GACE,4BACA,uBACA,SAOF,IACE,cAOF,kBAIE,gCACA,cAkBF,sCAKE,cACA,aACA,SAOF,OACE,iBAUF,cAEE,oBAWF,oEAIE,0BACA,eAOF,sCAEE,eAOF,iDAEE,SACA,UAQF,MACE,mBAWF,uCAEE,sBACA,UASF,4FAEE,YASF,mBACE,6BACA,4BACA,+BACA,uBASF,+FAEE,wBAOF,SACE,wBACA,aACA,2BAQF,OACE,SACA,UAOF,SACE,cAQF,SACE,iBAUF,MACE,yBACA,iBAGF,MAEE,UChKE,KApMA,WACA,iBACA,kBACA,aACA,gBACA,UA/DQ,QC6KV,uBAEE,YACA,cAGF,WACE,WD+EI,6CAjKJ,eACA,gBAqKI,mBACE,cACA,eAIJ,UA5OF,WACA,uBACA,wBACA,aACA,gBACA,eCsIF,iCAEE,YACA,cAGF,gBACE,WD6FI,mBA9NJ,WACA,SACA,eCwHF,mDAEE,YACA,cAGF,yBACE,WDmGA,iBA9KA,sBACA,uBAKA,WAqBE,MCwJY,gDDCZ,YAGF,oCACE,MCLY,KDQd,mBAhIA,cAvEA,kBA4BA,QACA,WA8CA,cA3EA,kBAiCA,SACA,UAqCA,cAvEA,kBA4BA,mBACA,WA8CA,cA3EA,kBAiCA,oBACA,UAqCA,cAvEA,kBA4BA,oBACA,WA8CA,cA3EA,kBAiCA,qBACA,UAqCA,cAvEA,kBA4BA,SACA,WA8CA,cA3EA,kBAiCA,UACA,UAqCA,cAvEA,kBA4BA,oBACA,WA8CA,cA3EA,kBAiCA,qBACA,UAqCA,cAvEA,kBA4BA,oBACA,WA8CA,cA3EA,kBAiCA,qBACA,UAqCA,cAvEA,kBA4BA,SACA,WA8CA,cA3EA,kBAiCA,UACA,UAqCA,cAvEA,kBA4BA,oBACA,WA8CA,cA3EA,kBAiCA,qBACA,UAqCA,cAvEA,kBA4BA,oBACA,WA8CA,cA3EA,kBAiCA,qBACA,UAqCA,cAvEA,kBA4BA,SACA,WA8CA,cA3EA,kBAiCA,UACA,UAqCA,eAvEA,kBA4BA,oBACA,WA8CA,eA3EA,kBAiCA,qBACA,UAqCA,eAvEA,kBA4BA,oBACA,WA8CA,eA3EA,kBAiCA,qBACA,UA8CF,iBAhFE,kBAYA,sBACA,uBA0BE,MCwJY,KDxGd,SArEA,oBAqEA,SArEA,qBAqEA,SArEA,UAqEA,SArEA,qBAqEA,SArEA,qBAqEA,SArEA,UAqEA,SArEA,qBAqEA,SArEA,qBAqEA,SArEA,UAqEA,UArEA,qBAqEA,UArEA,qBAqEA,UArEA,WA2EA,gBAjCA,0BAiCA,gBAjCA,qCAiCA,gBAjCA,sCAiCA,gBAjCA,2BAiCA,gBAjCA,sCAiCA,gBAjCA,sCAiCA,gBAjCA,2BAiCA,gBAjCA,sCAiCA,gBAjCA,sCAiCA,gBAjCA,2BAiCA,iBAjCA,sCAiCA,iBAjCA,sCAsCF,mBACE,cACA,eACA,UACA,WACA,MCwFc,KDrFhB,+CArDE,iBACA,kBACA,WAwDF,mDAEE,cACA,eACA,MC4Ec,KDxEhB,qEAEE,WAIF,yEAEE,MCgEc,KD7DhB,qEAEE,MC4DmB,MDtDjB,yDArIF,eACA,gBAyIE,yBACE,cACA,eAMF,6DA3IF,sBACA,uBA0BE,MCwJY,MDYd,4CApIA,eAvEA,kBA4BA,QACA,WA8CA,eA3EA,kBAiCA,SACA,UAqCA,eAvEA,kBA4BA,mBACA,WA8CA,eA3EA,kBAiCA,oBACA,UAqCA,eAvEA,kBA4BA,oBACA,WA8CA,eA3EA,kBAiCA,qBACA,UAqCA,eAvEA,kBA4BA,SACA,WA8CA,eA3EA,kBAiCA,UACA,UAqCA,eAvEA,kBA4BA,oBACA,WA8CA,eA3EA,kBAiCA,qBACA,UAqCA,eAvEA,kBA4BA,oBACA,WA8CA,eA3EA,kBAiCA,qBACA,UAqCA,eAvEA,kBA4BA,SACA,WA8CA,eA3EA,kBAiCA,UACA,UAqCA,eAvEA,kBA4BA,oBACA,WA8CA,eA3EA,kBAiCA,qBACA,UAqCA,eAvEA,kBA4BA,oBACA,WA8CA,eA3EA,kBAiCA,qBACA,UAqCA,eAvEA,kBA4BA,SACA,WA8CA,eA3EA,kBAiCA,UACA,UAqCA,gBAvEA,kBA4BA,oBACA,WA8CA,gBA3EA,kBAiCA,qBACA,UAqCA,gBAvEA,kBA4BA,oBACA,WA8CA,gBA3EA,kBAiCA,qBACA,UA8CF,iBAhFE,kBAYA,sBACA,uBA0BE,MCwJY,KDxGd,UArEA,oBAqEA,UArEA,qBAqEA,UArEA,UAqEA,UArEA,qBAqEA,UArEA,qBAqEA,UArEA,UAqEA,UArEA,qBAqEA,UArEA,qBAqEA,UArEA,UAqEA,WArEA,qBAqEA,WArEA,qBAqEA,WArEA,WA2EA,iBAjCA,0BAiCA,iBAjCA,qCAiCA,iBAjCA,sCAiCA,iBAjCA,2BAiCA,iBAjCA,sCAiCA,iBAjCA,sCAiCA,iBAjCA,2BAiCA,iBAjCA,sCAiCA,iBAjCA,sCAiCA,iBAjCA,2BAiCA,kBAjCA,sCAiCA,kBAjCA,sCAsCF,oBACE,cACA,eACA,UACA,WACA,MCwFc,KDrFhB,iDArDE,iBACA,kBACA,WAwDF,qDAEE,cACA,eACA,MC4Ec,KDxEhB,uEAEE,WAIF,2EAEE,MCgEc,KD7DhB,uEAEE,MC4DmB,MDtDjB,2DArIF,eACA,gBAyIE,0BACE,cACA,eAMF,+DA3IF,sBACA,uBA0BE,MCwJY,KDiBV,QAhNJ,kBA4BA,QACA,WAuLI,QApNJ,kBAiCA,SACA,UA8KI,QAhNJ,kBA4BA,mBACA,WAuLI,QApNJ,kBAiCA,oBACA,UA8KI,QAhNJ,kBA4BA,oBACA,WAuLI,QApNJ,kBAiCA,qBACA,UA8KI,QAhNJ,kBA4BA,SACA,WAuLI,QApNJ,kBAiCA,UACA,UA8KI,QAhNJ,kBA4BA,oBACA,WAuLI,QApNJ,kBAiCA,qBACA,UA8KI,QAhNJ,kBA4BA,oBACA,WAuLI,QApNJ,kBAiCA,qBACA,UA8KI,QAhNJ,kBA4BA,SACA,WAuLI,QApNJ,kBAiCA,UACA,UA8KI,QAhNJ,kBA4BA,oBACA,WAuLI,QApNJ,kBAiCA,qBACA,UA8KI,QAhNJ,kBA4BA,oBACA,WAuLI,QApNJ,kBAiCA,qBACA,UA8KI,QAhNJ,kBA4BA,SACA,WAuLI,QApNJ,kBAiCA,UACA,UA8KI,SAhNJ,kBA4BA,oBACA,WAuLI,SApNJ,kBAiCA,qBACA,UA8KI,SAhNJ,kBA4BA,oBACA,WAuLI,SApNJ,kBAiCA,qBACA,WAwLA,4CAnJA,cAvEA,kBA4BA,QACA,WA8CA,cA3EA,kBAiCA,SACA,UAqCA,cAvEA,kBA4BA,mBACA,WA8CA,cA3EA,kBAiCA,oBACA,UAqCA,cAvEA,kBA4BA,oBACA,WA8CA,cA3EA,kBAiCA,qBACA,UAqCA,cAvEA,kBA4BA,SACA,WA8CA,cA3EA,kBAiCA,UACA,UAqCA,cAvEA,kBA4BA,oBACA,WA8CA,cA3EA,kBAiCA,qBACA,UAqCA,cAvEA,kBA4BA,oBACA,WA8CA,cA3EA,kBAiCA,qBACA,UAqCA,cAvEA,kBA4BA,SACA,WA8CA,cA3EA,kBAiCA,UACA,UAqCA,cAvEA,kBA4BA,oBACA,WA8CA,cA3EA,kBAiCA,qBACA,UAqCA,cAvEA,kBA4BA,oBACA,WA8CA,cA3EA,kBAiCA,qBACA,UAqCA,cAvEA,kBA4BA,SACA,WA8CA,cA3EA,kBAiCA,UACA,UAqCA,eAvEA,kBA4BA,oBACA,WA8CA,eA3EA,kBAiCA,qBACA,UAqCA,eAvEA,kBA4BA,oBACA,WA8CA,eA3EA,kBAiCA,qBACA,UA8CF,iBAhFE,kBAYA,sBACA,uBA0BE,MCwJY,KDxGd,SArEA,oBAqEA,SArEA,qBAqEA,SArEA,UAqEA,SArEA,qBAqEA,SArEA,qBAqEA,SArEA,UAqEA,SArEA,qBAqEA,SArEA,qBAqEA,SArEA,UAqEA,UArEA,qBAqEA,UArEA,qBAqEA,UArEA,WA2EA,gBAjCA,0BAiCA,gBAjCA,qCAiCA,gBAjCA,sCAiCA,gBAjCA,2BAiCA,gBAjCA,sCAiCA,gBAjCA,sCAiCA,gBAjCA,2BAiCA,gBAjCA,sCAiCA,gBAjCA,sCAiCA,gBAjCA,2BAiCA,iBAjCA,sCAiCA,iBAjCA,sCAsCF,mBACE,cACA,eACA,UACA,WACA,MCwFc,KDrFhB,+CArDE,iBACA,kBACA,WAwDF,mDAEE,cACA,eACA,MC4Ec,KDxEhB,qEAEE,WAIF,yEAEE,MCgEc,KD7DhB,qEAEE,MC4DmB,MDtDjB,yDArIF,eACA,gBAyIE,yBACE,cACA,eAMF,6DA3IF,sBACA,uBA0BE,MCwJY,KD+BV,QA9NJ,kBA4BA,QACA,WAqMI,QAlOJ,kBAiCA,SACA,UA4LI,QA9NJ,kBA4BA,mBACA,WAqMI,QAlOJ,kBAiCA,oBACA,UA4LI,QA9NJ,kBA4BA,oBACA,WAqMI,QAlOJ,kBAiCA,qBACA,UA4LI,QA9NJ,kBA4BA,SACA,WAqMI,QAlOJ,kBAiCA,UACA,UA4LI,QA9NJ,kBA4BA,oBACA,WAqMI,QAlOJ,kBAiCA,qBACA,UA4LI,QA9NJ,kBA4BA,oBACA,WAqMI,QAlOJ,kBAiCA,qBACA,UA4LI,QA9NJ,kBA4BA,SACA,WAqMI,QAlOJ,kBAiCA,UACA,UA4LI,QA9NJ,kBA4BA,oBACA,WAqMI,QAlOJ,kBAiCA,qBACA,UA4LI,QA9NJ,kBA4BA,oBACA,WAqMI,QAlOJ,kBAiCA,qBACA,UA4LI,QA9NJ,kBA4BA,SACA,WAqMI,QAlOJ,kBAiCA,UACA,UA4LI,SA9NJ,kBA4BA,oBACA,WAqMI,SAlOJ,kBAiCA,qBACA,UA4LI,SA9NJ,kBA4BA,oBACA,WAqMI,SAlOJ,kBAiCA,qBACA,WE4EA,eAhJA,aAlCkB,MAmClB,aApCkB,EAqClB,OL8PmB,QK7PnB,YNlDqB,mDMmDrB,YNpCiB,OMqCjB,mBACA,mBACA,kBACA,qBACA,WAlDgB,OAmDhB,wBACA,gBAEa,QAlEA,aAiFb,YArFS,KAsFT,mBACA,yBACA,kBAGmC,UA9ErB,KAmId,iBJjIkB,QIkIlB,aARiB,QAajB,WDrFF,2CCiFE,sDACU,iBAdG,QAmBb,sDAEE,WAsDA,mCAhEF,iBJxHkB,QIyHlB,aAtHwB,QA2HxB,WAJA,8FACU,iBAxHc,QA6HxB,8FAEE,WAuDA,+BAjEF,iBJxHkB,QIyHlB,aApHsB,QAyHtB,WAJA,sFACU,iBAtHY,QA2HtB,sFAEE,WAwDA,2BAlEF,iBJ7HkB,QI8HlB,aAlHoB,QAuHpB,WAJA,8EACU,iBApHU,QAyHpB,8EAEE,WAyDA,+BAnEF,iBJ9HkB,QI+HlB,aAhHsB,QAqHtB,WAJA,sFACU,iBAlHY,QAuHtB,sFAEE,WA0DA,yBApEF,iBJjIkB,QIkIlB,aA9GmB,QAmHnB,WAJA,0EACU,iBAhHS,QAqHnB,0EAEE,WA4DA,2BAjIF,YApFS,SAqFT,sBACA,yBACA,qBAMmC,UAhFrB,QAyMZ,2BAlIF,YAtFS,QAuFT,sBACA,wBACA,qBAKmC,UAjFrB,SA4MZ,yBAnIF,YAvFS,QAwFT,sBACA,wBACA,qBAImC,UAjFrB,SA8MZ,6BA9GF,gBACA,eACA,WA8GE,wEACA,6EAEA,6BD1MF,cEqHY,IDsFV,2BD3MF,cAiRa,OCpEX,oEAjFF,iBJjIkB,QIkIlB,aAxHc,QA6Hd,WAUA,OLwJmB,QKvJnB,QAtHsB,GAuHtB,gBAhBA,wLACU,iBA1HI,QA+Hd,wLAEE,WASF,wLACU,iBJrJQ,QImNd,4GAlFJ,iBJxHkB,QIyHlB,aAtHwB,QA2HxB,WAUA,OLwJmB,QKvJnB,QAtHsB,GAuHtB,gBAhBA,wQACU,iBAxHc,QA6HxB,wQAEE,WASF,wQACU,iBJ5IQ,QI2Md,oGAnFJ,iBJxHkB,QIyHlB,aApHsB,QAyHtB,WAUA,OLwJmB,QKvJnB,QAtHsB,GAuHtB,gBAhBA,wPACU,iBAtHY,QA2HtB,wPAEE,WASF,wPACU,iBJ5IQ,QI4Md,4FApFJ,iBJ7HkB,QI8HlB,aAlHoB,QAuHpB,WAUA,OLwJmB,QKvJnB,QAtHsB,GAuHtB,gBAhBA,wOACU,iBApHU,QAyHpB,wOAEE,WASF,wOACU,iBJjJQ,QIkNd,oGArFJ,iBJ9HkB,QI+HlB,aAhHsB,QAqHtB,WAUA,OLwJmB,QKvJnB,QAtHsB,GAuHtB,gBAhBA,wPACU,iBAlHY,QAuHtB,wPAEE,WASF,wPACU,iBJlJQ,QIoNd,wFAtFJ,iBJjIkB,QIkIlB,aA9GmB,QAmHnB,WAUA,OLwJmB,QKvJnB,QAtHsB,GAuHtB,gBAhBA,gOACU,iBAhHS,QAqHnB,gOAEE,WASF,gOACU,iBJrJQ,QI4NlB,4CAEA,4CACE,eAxKW,QAyKmC,cEyKhD,KACE,gBAjVJ,eACE,iBAEA,+CAEE,gBAIF,wBACE,SAEA,iEAEE,UAGF,8BH3DF,mCG4D8C,EH3D9C,gCG2D8C,EH1D9C,2BG0D8C,EHzD9C,wBGyD8C,EAMhD,oGAIE,mBA8TA,MA/PA,UAhKmB,QAiKnB,MA9JoB,QA+JpB,OAnKiB,QAoKjB,cACA,YR9IiB,OQ+IjB,YAnKqB,IAoKrB,cAjKuB,EA6ZrB,YAvPF,sBACA,iBA0PE,aAtPF,kBACA,mBA0PE,YACE,eAxaqB,WAyarB,cAKJ,iBA3PF,cACA,kBACA,UACA,kBACA,WACA,cACA,iBACA,aAzJyB,MA0JzB,aA3JyB,IA4JzB,SA1JsB,OA2JtB,UAjMqB,QAkMrB,iBACA,sBAqPE,gBAjLA,eACA,gBACA,cACA,iBACA,kBACA,YAiLA,eA3NA,eACA,gBACA,cACA,iBACA,kBACA,YA2NA,sBHjbA,cGkbkB,EHxalB,kCE2GY,IF1GZ,+BE0GY,IFzGZ,0BEyGY,IFxGZ,uBEwGY,ICiUZ,uBHtbA,cGubkB,EH7alB,mCE2GY,IF1GZ,gCE0GY,IFzGZ,2BEyGY,IFxGZ,wBEwGY,ICsUZ,qBH3bA,cG4bkB,EHlblB,kCAuQa,OAtQb,+BAsQa,OArQb,0BAqQa,OApQb,uBAoQa,OG+Kb,sBHhcA,cGickB,EHvblB,mCAuQa,OAtQb,gCAsQa,OArQb,2BAqQa,OApQb,wBAoQa,OGqLb,yBAvQA,WA9Kc,QA+Kd,kBAIE,MH6BC,KGpBH,aA3LwB,KAybxB,2BAvOA,WAnNc,QAoNd,iBAIE,MHRC,KGiBH,aAhOwB,KA+bxB,8QACE,wBACA,gBA3XJ,iBHyHO,KGxHP,YApGkB,QAuGhB,aAhGiB,MAiGjB,aAhGiB,IAiGjB,aApGiB,KAuGnB,WAhGiB,+BAiGjB,MA5GiB,gBA6GjB,cACA,UA7GgB,QA8GhB,kBACA,cACA,iBACA,WHpDA,mBGqDoB,WHpDpB,gBGoDoB,WHnDpB,WGmDoB,WHgEpB,yDAEA,wWACE,wBACA,aGlLuB,KAqHzB,wWACE,WAxHmB,QAyHnB,aAvHuB,KAwHvB,aAIF,qZACE,iBHgGS,KG/FT,OP2KmB,QOvKrB,m3CAGE,iBHwFS,KGvFT,OPmKmB,QOsLjB,uXH1dF,cEqHY,IC8WN,wIHneN,cGsewB,EH5dxB,mCE2GY,IF1GZ,gCE0GY,IFzGZ,2BEyGY,IFxGZ,wBEwGY,ICqXN,8CH1eN,cG2ewB,EHjexB,kCE2GY,IF1GZ,+BE0GY,IFzGZ,0BEyGY,IFxGZ,uBEwGY,IC6XN,2IHlfN,cGqfwB,EH3exB,kCE2GY,IF1GZ,+BE0GY,IFzGZ,0BEyGY,IFxGZ,uBEwGY,ICoYN,gDHzfN,cG0fwB,EHhfxB,mCE2GY,IF1GZ,gCE0GY,IFzGZ,2BEyGY,IFxGZ,wBEwGY,IC4YN,qIHjgBN,cGogBwB,EH1fxB,mCAuQa,OAtQb,gCAsQa,OArQb,2BAqQa,OApQb,wBAoQa,OGuPP,6CHxgBN,cGygBwB,EH/fxB,kCAuQa,OAtQb,+BAsQa,OArQb,0BAqQa,OApQb,uBAoQa,OG+PP,wIHhhBN,cGmhBwB,EHzgBxB,kCAuQa,OAtQb,+BAsQa,OArQb,0BAqQa,OApQb,uBAoQa,OGsQP,+CHvhBN,cGwhBwB,EH9gBxB,mCAuQa,OAtQb,gCAsQa,OArQb,2BAqQa,OApQb,wBAoQa,OG8Qb,mBACE,wBACA,gBAIF,eACE,YAIF,SACE,eAIF,OA5OF,mCACA,gBACA,iBHnHO,QG4HP,qVAGA,gCAEA,4BAGE,aA1ViB,MA2VjB,aA1ViB,IA2VjB,aA9ViB,KAiWnB,cACA,UArWgB,QAsWhB,YRvWuB,mDQwWvB,MAxWiB,gBAyWjB,mBH/VE,cGgWc,EAiNZ,iBAzOJ,mBACE,aAyBF,cHlWE,cEqHY,ICiPd,aACE,iBA3ToB,QA4TpB,aA7WuB,KAiXzB,gBACE,iBHrJS,KGsJT,OP1EmB,QOiRnB,+DAIE,kBAGF,mDAEE,qBACA,kBACA,aArlBS,KAslBT,gBACA,wBAIF,iBACE,WAcF,SAnVF,sBACA,QA3PiB,QA4PjB,OA3PgB,WA8PhB,gBACE,YRlQe,KQmQf,WHxDK,KGyDL,QA5Pa,WA6Pb,SACA,uBAiVE,gHAjTJ,cACA,QAhR4B,0BAiR5B,WAhRwB,KAiRxB,cApUa,KAqUb,UAjR8B,OAkR9B,YR5SmB,OQ6SnB,WAjR+B,OAqR/B,WNvToB,QM0TlB,MHxGK,KGmZH,iDAEE,aAIJ,uBA9TF,cACA,QAhR4B,0BAiR5B,WAhRwB,KAiRxB,cApUa,KAqUb,UAjR8B,OAkR9B,YR5SmB,OQ6SnB,WAjR+B,OAqR/B,WNvToB,QM0TlB,MHxGK,KGgaH,2CAGE,gBAGF,qDAEE,cA9oBO,KAipBT,gCAxVJ,MNrSoB,QMkoBhB,mBArVJ,cACA,QAhR4B,0BAiR5B,WAhRwB,KAiRxB,cApUa,KAqUb,UAjR8B,OAkR9B,YR5SmB,OQ6SnB,WAjR+B,OAqR/B,WNvToB,QM0TlB,MHxGK,KGqbD,mBACE,cACA,yBACA,UACA,eAvpBmB,WAwpBnB,kBACA,cACA,SACA,eAIJ,0BACE,cAIJ,wCAGE,gBAGF,YAzXF,MNrSoB,QO8ElB,0BACE,sDACA,MFuyCc,SEnyChB,iBACE,WACA,WPlGgB,QOoGhB,0BACE,cAtGe,EA2GnB,OACE,WACA,OACA,eACA,MACA,WAEA,8BACE,gBACA,YACA,WACA,gBAEA,0CACE,eACA,WACA,WAIF,+CACE,WACA,WF2sCM,SEtsCZ,SACE,gBACA,OFosCU,SEnsCV,YFmsCU,SElsCV,kBACA,WP1IgB,QO2IhB,cA5IiB,EA+IjB,YACE,gBACA,gBAGF,cACE,eAGF,6BAEE,gBAGF,eACE,OAlGc,QAmGd,mBACA,sBACA,UAzIkB,OA4IpB,iCAEE,qBACA,wBACA,gBACA,UAjJkB,OAsJlB,yCAVF,iCAWI,kBACA,UAKJ,qBACE,kBACA,SAGF,eACE,OFipCQ,SEhpCR,SACA,UFzIS,KE2IT,6GAME,YFuoCM,SEtoCN,UF2oCe,UE1oCf,SAEA,yHACE,YTtLO,KSuLP,MPxIU,KOyIV,UACA,cACA,0BAMN,wBACE,kBACA,QACA,MAEA,0BACE,MPvJY,KOwJZ,eF8pCmB,UE7pCnB,UA9KmB,SA+KnB,YTzMS,KS0MT,kBACA,cACA,0BACA,OF2mCM,SE1mCN,YF0mCM,SEtmCR,kCACE,QACA,iBAEA,oCAKE,YACA,iBACA,4CACA,MP5Ja,KO6Jb,kBJ9HV,gDACE,WACA,kBACA,cACA,SAsBE,QACA,gBACA,MI5HgB,gBJ+HlB,6DAGA,MI0G6B,KJvG/B,qDACE,WACE,4CI4GA,kBACE,YACA,yBAEA,8BACE,WP5QY,QOgRZ,mCACE,MPhQU,QOkQV,+CAGE,sEAUV,iBACE,OACA,kBACA,WJzOJ,+BI4OI,oBACE,UACA,WACA,YACA,cACA,UFxPS,KEyPT,SAGF,4DAEE,WFulCoB,kBEtlCpB,WACA,WACA,WAGF,uBACE,WPvSc,QOySd,yBACE,cACA,WACA,MP3PY,KO4PZ,sBACA,aA3SY,gBA4SZ,YT7Te,mDS8Tf,UFgiCc,SE/hCd,YThTW,OSiTX,eFsiCmB,UEpiCnB,gCACE,UF2hCY,SE1hCZ,cAnTU,gBAoTV,aApTU,gBHqHlB,iBJjIkB,QIkIlB,aARiB,QAajB,WAJA,4EACU,iBAdG,QAmBb,4EAEE,WGyLI,0CHnMN,iBJxHkB,QIyHlB,aARiB,QAajB,WAJA,gGACU,iBAdG,QAmBb,gGAEE,WG6LI,wCHvMN,iBJxHkB,QIyHlB,aARiB,QAajB,WAJA,4FACU,iBAdG,QAmBb,4FAEE,WGiMI,sCH3MN,iBJ7HkB,QI8HlB,aARiB,QAajB,WAJA,wFACU,iBAdG,QAmBb,wFAEE,WGqMI,wCH/MN,iBJ9HkB,QI+HlB,aARiB,QAajB,WAJA,4FACU,iBAdG,QAmBb,4FAEE,WG0ME,8BACE,UFmgCc,SElgCd,cA3UY,gBA4UZ,aA5UY,gBHqHlB,iBJjIkB,QIkIlB,aARiB,QAajB,WAJA,wEACU,iBAdG,QAmBb,wEAEE,WGgNI,wCH1NN,iBJxHkB,QIyHlB,aARiB,QAajB,WAJA,4FACU,iBAdG,QAmBb,4FAEE,WGoNI,sCH9NN,iBJxHkB,QIyHlB,aARiB,QAajB,WAJA,wFACU,iBAdG,QAmBb,wFAEE,WGwNI,oCHlON,iBJ7HkB,QI8HlB,aARiB,QAajB,WAJA,oFACU,iBAdG,QAmBb,oFAEE,WG4NI,sCHtON,iBJ9HkB,QI+HlB,aARiB,QAajB,WAJA,wFACU,iBAdG,QAmBb,wFAEE,WGkOE,8CACE,iBJ1IE,KI6IA,WPxWU,QO2WZ,MPzTgB,KO6TlB,gCACE,WPhXY,QOiXZ,MP9TiB,KOgUjB,sCACE,WPrXU,QOsXV,MPjUqB,KOuU3B,2BACE,QAzXc,gBA6XhB,+BACE,kBAGE,uCJxUR,WACA,cACA,QACA,SACA,iBAaE,yEACA,wBI2TQ,aAtYU,gBAuYV,kBACA,kBACA,QACA,QAIJ,qCACE,gBAEA,+CAvVR,cJyIA,2BACA,YACA,WACA,iBACA,UI3IA,6BAuVU,WAGF,6CACE,aAMN,2BACE,UACA,kBACA,UACA,MACA,WA7WN,cJmIA,6BACA,WACA,UACA,gBACA,8BIyOM,8BACE,WACA,YAEA,gCACE,YT5aS,OS6aT,4BAEA,4CACE,YThbO,OSobX,iFAGE,gBACA,aACA,UAtbY,SAwbZ,qFACE,MP5YQ,KO8YR,cAEA,iGACE,gBAKN,uCACE,4BAGF,2EAEE,SAIJ,iCACE,gCACA,gBACA,eA/b6B,UAgc7B,MPtdY,QOudZ,YTpdS,KSqdT,UAhcwB,QAqc9B,cACE,cAKF,6CACE,SACE,WPrfc,QOufd,iBJnVN,+BAEE,YACA,cAGF,eACE,WI8UI,wBACE,aAGF,qBACE,MJ3OQ,KI8OV,oBACE,WAGF,gDAGE,kBACA,kBACA,OA/cY,QAgdZ,aAGF,kBACE,WP/gBY,QOmhBhB,0BACE,UL7hBI,QK8hBJ,cACA,cAvhBe,EA0hBjB,iBJ/dJ,oBIieM,kBAEA,oBACE,WACA,uBACA,eAEA,uBACE,MJhRM,KIkRN,qCACE,aAOF,yCACE,iBJlUF,KIqUI,WPhiBM,QOmiBR,MPjfY,KOsfd,kDACE,0BACA,YFgxBE,SE/wBF,WP5jBQ,QO8jBR,wDACE,iBJnVJ,KIsVM,WPjjBI,QOwjBV,yDACE,0BACA,YFgwBE,SE/vBF,MPxgBa,KOygBb,WP5jBQ,QO8jBR,+DACE,WPhkBM,QOikBN,MP5gBiB,KOohBrB,iCACE,yCAEA,uCJ/gBZ,WACA,cACA,QACA,SACA,iBAGE,yEACA,uBIygBY,kBACA,cAKN,qCACE,kBAEA,+CA9hBV,cJmIA,6BACA,WACA,UACA,gBACA,8BI8ZU,wGAhiBV,cJyIA,2BACA,YACA,WACA,iBACA,UI3IA,6BAmiBQ,iDAriBR,cJyIA,2BACA,YACA,WACA,iBACA,UI3IA,6BA0iBc,iEACE,YACA,YACA,SACA,gBACA,UACA,gBAOV,2BACE,OACA,SACA,yBACA,eAGE,gCACE,MP/jBe,KOgkBf,YF2rBE,SE1rBF,mBACA,6BACA,WPnoBQ,QOuoBR,yEACE,MPxkBa,KOykBb,WPzoBM,QO4oBR,+EACE,MP1lBU,KO2lBV,iBJlbJ,KIqbM,WPhpBI,QOqpBV,oCACE,mBACA,WJ1bP,KI8bK,wCACE,UACA,MAKN,kEAEE,mBACA,gBACA,aFgtBqB,kBE/sBrB,WACA,OFkpBM,SEjpBN,QAGF,2BACE,WP9rBY,QO+rBZ,0BACA,OF2oBM,SEtoBN,qCACE,UACA,QAEA,kDACE,WAMJ,oCACE,WACA,OAEA,iDACE,UAYJ,sCACE,iBJtfA,KIyfE,WPptBQ,QOutBV,MPrqBc,KOyqBhB,uCACE,WP5tBU,QO6tBV,MP1qBe,KOgrBf,sDAtqBV,cJyIA,2BACA,YACA,WACA,iBACA,UI3IA,6BAyqBQ,wDA3qBR,cJyIA,2BACA,YACA,WACA,iBACA,UI3IA,8BC+CE,WAEE,gBLmCJ,mCAEE,YACA,cAGF,iBACE,WKxCE,+CAEE,cACA,2BAEA,iEACE,WA/I6B,QAkJ/B,mDACE,WLsFA,QKrFA,MLiGH,KKhGG,QHoKqB,OGnKrB,cACA,YV9Ie,mDU+If,UAtJuB,KAwJvB,+DACE,WA5J0B,QAgK9B,iEACE,aACA,QA5JkB,SA8JlB,+EACE,cACA,WR/JU,QSkGlB,WAjEF,aA3BmB,MA4BnB,aA3BmB,IA4BnB,cACA,YXlBmB,OWmBnB,cA5BoB,QA6BpB,kBACA,uCACA,UJmSgB,SFjRhB,kCMLA,iBT7CoB,QS8CpB,qBAQE,MNgKK,KMzHH,kBAhCJ,UAtDsB,SAuDtB,QApDoB,YAqDpB,cACA,kBACA,IA5DgB,IA6DhB,sBACA,MA7DqB,OA8DrB,MNkKK,KMjKL,QA7DoB,GA8DpB,WA3DuB,QA6DvB,gDAEE,QAjEwB,GAwFtB,kBN5FF,cEqHY,IIrBV,iBNhGF,cAiRa,OM7KX,mBA5DJ,iBTpCoB,QSqCpB,qBAQE,MNgKK,KMzGH,iBAhEJ,iBTzCoB,QS0CpB,qBAQE,MNgKK,KMrGH,qBApEJ,iBTpCoB,QSqCpB,qBAQE,MNgKK,KMjGH,mBAxEJ,iBT1CoB,QS2CpB,qBAQE,MNgKK,KM7FH,gBA5EJ,iBT7CoB,QS8CpB,qBAQE,MNgKK,KMzFH,uBACE,UCtCJ,aA1EF,cACA,QA7Bc,0BA8Bd,gBACA,cACA,gBACA,aA3BmB,MA4BnB,aLwWkB,EKrWlB,iBVIoB,QUHpB,aVGoB,QGtBlB,cE0XW,EKnST,eA7DJ,SACA,MP2OgB,KO1OhB,UApCgB,SAqChB,YArCgB,SAsChB,eAlCqB,UAmCrB,MVpCoB,QUsCpB,8DApCiB,UAsCjB,iBACE,MVzCkB,QU6CpB,uBACE,OX2PmB,QW1PnB,MPuLG,KOtLH,yBACE,OXwPiB,QWvPjB,MPoLC,KOjLH,wHACqB,qBAIvB,2BACE,MPqKQ,KOpKR,mCPoKQ,KOlKR,wIAIE,qBACA,MP6JM,KO5JN,OXqOiB,QWjOrB,sBACE,YACA,MPqJI,KOpJJ,gBACA,kBACA,QAGF,kCACE,YACA,SAkBJ,kDACE,YCVE,qBAhFA,cACA,UAOE,mBRyIJ,uDAEE,YACA,cAGF,2BACE,WQ3IA,wBACE,cACA,YACA,MRgPY,KQ7OV,0BAkEF,mBA5DF,uBACE,WAMA,gBAEA,uCACE,WAGF,yCACE,WAdJ,uBACE,UAMA,gBAEA,uCACE,WAGF,yCACE,WAdJ,uBACE,qBAMA,gBAEA,uCACE,WAGF,yCACE,WAdJ,uBACE,UAMA,gBAEA,uCACE,WAGF,yCACE,WAdJ,uBACE,UAMA,gBAEA,uCACE,WAGF,yCACE,WAdJ,uBACE,qBAMA,gBAEA,uCACE,WAGF,yCACE,WAdJ,uBACE,qBAMA,gBAEA,uCACE,WAGF,yCACE,WAdJ,uBACE,YAMA,gBAEA,uCACE,WAGF,yCACE,WAdJ,uBACE,qBAMA,gBAEA,uCACE,WAGF,yCACE,WAdJ,wBACE,UAMA,gBAEA,wCACE,WAGF,2CACE,WAdJ,wBACE,oBAMA,gBAEA,wCACE,WAGF,2CACE,WAdJ,wBACE,oBAMA,gBAEA,wCACE,WAGF,2CACE,YAkDF,4CAhEF,wBACE,WAMA,gBAEA,wCACE,WAGF,0CACE,WAdJ,wBACE,UAMA,gBAEA,wCACE,WAGF,0CACE,WAdJ,wBACE,qBAMA,gBAEA,wCACE,WAGF,0CACE,WAdJ,wBACE,UAMA,gBAEA,wCACE,WAGF,0CACE,WAdJ,wBACE,UAMA,gBAEA,wCACE,WAGF,0CACE,WAdJ,wBACE,qBAMA,gBAEA,wCACE,WAGF,0CACE,WAdJ,wBACE,qBAMA,gBAEA,wCACE,WAGF,0CACE,WAdJ,wBACE,YAMA,gBAEA,wCACE,WAGF,0CACE,WAdJ,wBACE,qBAMA,gBAEA,wCACE,WAGF,0CACE,WAdJ,yBACE,UAMA,gBAEA,yCACE,WAGF,4CACE,WAdJ,yBACE,oBAMA,gBAEA,yCACE,WAGF,4CACE,WAdJ,yBACE,oBAMA,gBAEA,yCACE,WAGF,4CACE,YAsDF,4CApEF,uBACE,WAMA,gBAEA,uCACE,WAGF,yCACE,WAdJ,uBACE,UAMA,gBAEA,uCACE,WAGF,yCACE,WAdJ,uBACE,qBAMA,gBAEA,uCACE,WAGF,yCACE,WAdJ,uBACE,UAMA,gBAEA,uCACE,WAGF,yCACE,WAdJ,uBACE,UAMA,gBAEA,uCACE,WAGF,yCACE,WAdJ,uBACE,qBAMA,gBAEA,uCACE,WAGF,yCACE,WAdJ,uBACE,qBAMA,gBAEA,uCACE,WAGF,yCACE,WAdJ,uBACE,YAMA,gBAEA,uCACE,WAGF,yCACE,WAdJ,uBACE,qBAMA,gBAEA,uCACE,WAGF,yCACE,WAdJ,wBACE,UAMA,gBAEA,wCACE,WAGF,2CACE,WAdJ,wBACE,oBAMA,gBAEA,wCACE,WAGF,2CACE,WAdJ,wBACE,oBAMA,gBAEA,wCACE,WAGF,2CACE,YCsGJ,cA9JA,gBACA,SACA,OTgKF,yCAEE,YACA,cAGF,oBACE,WSRE,iBAnHF,cACA,qBA5BF,iDAEE,sBACA,kCAKA,yEAEE,cAyIE,uBAxHJ,cACA,qBAIA,cACA,SAoHM,WArJR,6DAEE,sBACA,kCAKA,qFAEE,cAyBF,6DAEE,qBACA,kCACA,oBACA,SACA,cAKA,qFAEE,aA0GA,iCA/HJ,cACA,qBA5BF,iFAEE,sBACA,kCAKA,yGAEE,cAmJI,yCAHF,iCA/HJ,cACA,qBAIA,cACA,SAjCF,iFAEE,sBACA,kCAKA,yGAEE,cAyBF,iFAEE,qBACA,kCACA,oBACA,SACA,cAKA,yGAEE,cAmHF,uBAxIF,cACA,qBA5BF,6DAEE,sBACA,kCAKA,qFAEE,cAkFF,6GTpGA,cSwGkB,EAGlB,6JTjGA,kCE2GY,IF1GZ,+BE0GY,IFzGZ,0BEyGY,IFxGZ,uBEwGY,IOGZ,yJT9GA,mCE2GY,IF1GZ,gCE0GY,IFzGZ,2BEyGY,IFxGZ,wBEwGY,IO0DV,6BA5IF,cACA,qBAIA,cACA,SAjCF,yEAEE,sBACA,kCAKA,iGAEE,cAyBF,yEAEE,qBACA,kCACA,oBACA,SACA,cAKA,iGAEE,aA4CJ,qITpGA,cSwGkB,EAGlB,qLT1FA,wBEoGY,IFnGZ,yBEmGY,IFlGZ,uBEkGY,IFjGZ,wBEiGY,IOGZ,iLTvGA,2BEoGY,IFnGZ,4BEmGY,IFlGZ,0BEkGY,IFjGZ,2BEiGY,IO+DR,4CADF,uCAhJF,cACA,qBA5BF,6FAEE,sBACA,kCAKA,qHAEE,cAkFF,6KTpGA,cSwGkB,EAGlB,6NTjGA,kCE2GY,IF1GZ,+BE0GY,IFzGZ,0BEyGY,IFxGZ,uBEwGY,IOGZ,yNT9GA,mCE2GY,IF1GZ,gCE0GY,IFzGZ,2BEyGY,IFxGZ,wBEwGY,KOmER,yCALF,uCAhJF,cACA,qBAIA,cACA,SAjCF,6FAEE,sBACA,kCAKA,qHAEE,cAyBF,6FAEE,qBACA,kCACA,oBACA,SACA,cAKA,qHAEE,aA4CJ,6KTpGA,cSwGkB,EAGlB,6NT1FA,wBEoGY,IFnGZ,yBEmGY,IFlGZ,uBEkGY,IFjGZ,wBEiGY,IOGZ,yNTvGA,2BEoGY,IFnGZ,4BEmGY,IFlGZ,0BEkGY,IFjGZ,2BEiGY,KOwEV,sBA1JF,cACA,qBA5BF,2DAEE,sBACA,kCAKA,mFAEE,cAkFF,yGTpGA,cSwGkB,EAGlB,yJTjGA,kCAuQa,OAtQb,+BAsQa,OArQb,0BAqQa,OApQb,uBAoQa,OSzJb,qJT9GA,mCAuQa,OAtQb,gCAsQa,OArQb,2BAqQa,OApQb,wBAoQa,OShFX,4BA9JF,cACA,qBAIA,cACA,SAjCF,uEAEE,sBACA,kCAKA,+FAEE,cAyBF,uEAEE,qBACA,kCACA,oBACA,SACA,cAKA,+FAEE,aA4CJ,iITpGA,cSwGkB,EAGlB,iLT1FA,wBCrCS,KDsCT,yBCtCS,KDuCT,uBCvCS,KDwCT,wBCxCS,KQ4IT,6KTvGA,2BCrCS,KDsCT,4BCtCS,KDuCT,0BCvCS,KDwCT,2BCxCS,KQ0NL,4CADF,sCAlKF,cACA,qBA5BF,2FAEE,sBACA,kCAKA,mHAEE,cAkFF,yKTpGA,cSwGkB,EAGlB,yNTjGA,kCAuQa,OAtQb,+BAsQa,OArQb,0BAqQa,OApQb,uBAoQa,OSzJb,qNT9GA,mCAuQa,OAtQb,gCAsQa,OArQb,2BAqQa,OApQb,wBAoQa,QSvET,yCALF,sCAlKF,cACA,qBAIA,cACA,SAjCF,2FAEE,sBACA,kCAKA,mHAEE,cAyBF,2FAEE,qBACA,kCACA,oBACA,SACA,cAKA,mHAEE,aA4CJ,yKTpGA,cSwGkB,EAGlB,yNT1FA,wBCrCS,KDsCT,yBCtCS,KDuCT,uBCvCS,KDwCT,wBCxCS,KQ4IT,qNTvGA,2BCrCS,KDsCT,4BCtCS,KDuCT,0BCvCS,KDwCT,2BCxCS,MQoOL,wBA7KJ,cACA,qBAoGA,UAhIF,+DAEE,sBACA,kCAKA,uFAEE,cAwHF,+DAEE,WAoEE,wBA7KJ,cACA,qBAoGA,qBAhIF,+DAEE,sBACA,kCAKA,uFAEE,cAwHF,+DAEE,WAoEE,wBA7KJ,cACA,qBAoGA,UAhIF,+DAEE,sBACA,kCAKA,uFAEE,cAwHF,+DAEE,WAoEE,wBA7KJ,cACA,qBAoGA,UAhIF,+DAEE,sBACA,kCAKA,uFAEE,cAwHF,+DAEE,WAoEE,wBA7KJ,cACA,qBAoGA,qBAhIF,+DAEE,sBACA,kCAKA,uFAEE,cAwHF,+DAEE,WAoEE,wBA7KJ,cACA,qBAoGA,qBAhIF,+DAEE,sBACA,kCAKA,uFAEE,cAwHF,+DAEE,WAoEE,wBA7KJ,cACA,qBAoGA,YAhIF,+DAEE,sBACA,kCAKA,uFAEE,cAwHF,+DAEE,WTWJ,qCAEE,YACA,cAGF,kBACE,WS2DE,0BA7NF,WACA,aAlByB,QAoBzB,8BACE,gBCSF,iCAEE,gBACA,cACA,gBV0IJ,4FAEE,YACA,cAGF,6CACE,WU/IE,uCACE,MVsPU,KUrPV,kBAGF,+EACE,eAIJ,mBACE,WVuMC,KUtMD,eACA,WACA,YACA,MACA,OACA,YAEA,iDAGF,oBACE,kBACA,YACA,YACA,gBACA,SAGF,sBACE,kBACA,QACA,SACA,MVyKE,KUxKF,eAGF,aACE,WACA,kBAEA,iBACE,kBACA,SACA,QACA,iBACA,gBACA,eAIJ,kBACE,MVqJE,KUpJF,UA5EuB,OA6EvB,gBACA,gBACA,kBACA,SACA,WVuJC,KUtJD,WACA,QAlFqB,eAmFrB,kBACA,OAGF,gBACE,YACA,kBACA,iBACA,UApGgB,KAqGhB,cACA,MVkIE,KUjIF,aAEA,4CACU,MV8HR,KU3HJ,oDACE,kEAIF,qBACE,aACA,2CACE,cAKJ,4CACE,wCAEE,kBACA,YACA,WACA,MACA,kDACE,kBACA,QACA,cACA,QACA,SACA,kBACA,yEAGJ,oBACE,OACA,yBACE,SACA,2BACA,mBVwFF,KUrFF,oBACE,QACA,yBACE,2BACA,kBViFF,KU7EF,0DAC+B,WAI7B,kDACE,WAtKa,kBAuKb,OArJiB,MAsJjB,gBACA,kBAEA,qDACE,qBACA,YACA,YACA,kBACA,WAEA,wDACE,cACA,MAjKkB,MAkKlB,mBACA,MVoGI,KUnGJ,gBACA,eACA,UACA,kBACA,Od8HS,Qc7HT,WACA,WAGE,uEACE,YACA,eAIJ,6DACE,YACA,gBACA,cAGF,4DACA,0BACA,sBAGA,0EACA,yEAKN,qDACE,WV6BH,KU5BG,gBACA,OAzMmB,IA6MvB,gBACE,kBACA,SACA,WACA,eACA,eCjBJ,YA9JF,kBACA,aACA,WA1BsB,KA2BtB,cACA,aAME,WACA,WA/DoB,KAgEpB,OAjEgB,KAkEhB,WXoKK,KWnKL,sBACA,UArCmB,QAsCnB,WAcA,WA/EoB,IA+KL,UApLI,MA4DrB,uCACA,yCAyBE,8BXCF,cACA,QACA,SACA,iBAQE,4DACA,0BWXE,kBACA,UACA,KA/D4B,KAgE5B,WAEF,kBXPF,WACA,cACA,QACA,SACA,iBAQE,4DACA,0BWJE,kBACA,UACA,SACA,WAGF,yBACE,UACA,MA5E4B,KA8E9B,wBACE,UACA,UA4GA,uBAjKJ,kBACA,aACA,WA1BsB,KA2BtB,cACA,aAME,WACA,WA/DoB,KAgEpB,OAjEgB,KAkEhB,WXoKK,KWnKL,sBACA,UArCmB,QAsCnB,WA0CA,aACA,YA5GoB,IA+KL,UApLI,MA4DrB,kDACA,oDAsDE,8BX7BF,WACA,cACA,QACA,SACA,iBAkBE,4DACA,yBWQE,kBACA,IA3F4B,KA4F5B,WACA,WAEF,6BXpCF,WACA,cACA,QACA,SACA,iBAkBE,4DACA,yBWeE,kBACA,QACA,WACA,WA4FA,sBArKJ,kBACA,aACA,WA1BsB,KA2BtB,cACA,aAME,WACA,WA/DoB,KAgEpB,OAjEgB,KAkEhB,WXoKK,KWnKL,sBACA,UArCmB,QAsCnB,WA+DA,aACA,iBA8Ce,UApLI,MA4DrB,iDACA,mDA2EE,6BXlDF,WACA,cACA,QACA,SACA,iBAaE,4DACA,wBWkCE,kBACA,IAhH4B,KAiH5B,YACA,UACA,WAEF,4BX1DF,WACA,cACA,QACA,SACA,iBAaE,4DACA,wBW0CE,kBACA,QACA,YACA,UACA,WAyEA,qBAzKJ,kBACA,aACA,WA1BsB,KA2BtB,cACA,aAME,WACA,WA/DoB,KAgEpB,OAjEgB,KAkEhB,WXoKK,KWnKL,sBACA,UArCmB,QAsCnB,WAsFA,gBACA,cAuBe,UApLI,MA4DrB,gDACA,kDAkGE,4BXzEF,WACA,cACA,QACA,SACA,iBAGE,4DACA,uBWmEE,kBACA,SACA,aACA,KAzI4B,KA0I5B,WACA,WAEF,2BXlFF,WACA,cACA,QACA,SACA,iBAGE,4DACA,uBW4EE,kBACA,SACA,aACA,SACA,WACA,WAqDA,eAtCJ,UA9JqB,QA+JrB,Of4HqB,Qe1HrB,YA/JuB,SAgKvB,SAEA,0CACU,WXwCH,KWtCP,sBXjLE,cEqHY,IS8Dd,iBACE,cACA,QA1KsB,MA2KtB,MXyCQ,KWdN,oBAjLJ,kBACA,aACA,WA1BsB,KA2BtB,cACA,aAeE,QAlCyB,QAmCzB,WACA,OA1EgB,KA2EhB,WA1EoB,KA2EpB,WX0JK,KWzJL,sBACA,UA/CmB,QAgDnB,WAoGe,UApLI,MA4DrB,+CACA,iDA6KI,iCACA,kCACA,mCACA,kCACA,iBACE,sBACA,0BAEA,sBACE,kBC9HN,iCAvEA,kBACA,aAuCA,cAjE0B,UA6B1B,+CACE,kBACA,WACA,QACA,SACA,cACA,mBACA,4DACA,QA8BF,+CACE,aAnEyB,QAoEzB,MAnE6B,WAoE7B,WAnEwB,YAoF1B,+CACE,4DAYA,2CAzDF,cAvD0B,SAyD1B,uDACE,aAhEW,QAiEX,MAzD6B,SA0D7B,WAzDwB,UAgG1B,yDACE,4DAgBA,6CAlDF,cA5D0B,UA8D1B,2DACE,aA1EW,SA2EX,MA9D6B,UA+D7B,WA9DwB,YA0F1B,2DACE,4DAoBA,6CAhCF,cAtE0B,SAwE1B,2DACE,aAxEyB,SAyEzB,MAxE6B,WAyE7B,WAxEwB,YA8E1B,2DACE,4DAwBA,iEACE,4DClGJ,YAxBF,kBACA,YAbuB,UAcvB,eAb0B,MAc1B,SACA,cAdyB,KAezB,gBAEA,sCAdqC,OAerC,gCAEA,0EAIE,kBACA,MACA,OACA,WACA,YCUA,aAlBF,6BACA,YApBiC,UAqBjC,aAvB4B,EAwB5B,QAnBoB,EAoBpB,gBACA,SAlBqB,OAoBrB,gBACE,gBACA,Md6Pc,Kc5Pd,YA5BoC,SA6BpC,QArBkB,MAsBlB,0BAnB2B,MC2B3B,eAjBF,iBAfa,QAgBb,kBAG0B,Mf2NrB,KexNL,aArBuB,MAsBvB,aArBuB,IAsBvB,SACA,YAnCe,uCAoCf,UAnCoB,QAoCpB,QA9BkB,iBfehB,cEqHY,Ic3BZ,OAhFA,aA/BiB,MAgCjB,aA/BgB,IAgChB,qBACA,cA1BkB,QA2BlB,QA1BY,QA4BZ,WnBMkB,QmBHhB,MhB8MC,KgBtMH,oBACE,aAGF,mBACE,gBAQE,yFASE,MhBgLH,KgB5JD,4DAME,cACA,sBAEA,wHACE,gBAcJ,eAnFF,aA/BiB,MAgCjB,aA/BgB,IAgChB,qBACA,cA1BkB,QA2BlB,QA1BY,QA4BZ,WA8EmB,QA3EjB,MhB8MC,KgBtMH,4BACE,aAGF,2BACE,gBAQE,iKASE,MhBgLH,KgB5JD,4GAME,cACA,sBAEA,wKACE,gBAiBF,8BACE,MnBtGY,QmBwGZ,wEAEE,MAzGqB,QA8G3B,chB1GF,cEqHY,IecZ,iBAjHF,kBACA,MACA,SACA,OACA,QACA,WjB4MO,KiB3MP,WA3CkB,gBA4ClB,aACA,aACA,OA0GE,qBAhGA,kBACA,aACA,kBACA,aACA,YACA,MACA,cf0EY,IezEZ,OAgDQ,iBjBqHH,KiBpHiB,QAxGH,QA0GP,sBAIZ,WA7GgB,wBAuGM,QAkDiB,SAjGvC,yCAuFA,qBAtFE,kBAIF,wFAGA,4DAEA,6DAIA,4CAyEA,qBAxEE,MA1EiB,IA2EjB,UlBpFM,QkBqFN,OACA,QACA,eA0CF,4CA0BA,qBAzBE,IA1HgB,SA+JhB,mCjBjJF,cEqHY,Ie6BV,iCjBlJF,cAiRa,OiB9HX,uCAtDoB,QAsD8B,EAvFpD,4CAwFE,+BAvFA,MAuF4C,IAtF5C,UlBpFM,QkBqFN,OACA,QACA,eALF,4CAyFE,iCAxFA,MAwF4C,IAvF5C,UlBpFM,QkBqFN,OACA,QACA,eALF,4CA0FE,mCAzFA,MAyF8C,IAxF9C,UlBpFM,QkBqFN,OACA,QACA,eALF,4CA2FE,iCA1FA,MA0F4C,IAzF5C,UlBpFM,QkBqFN,OACA,QACA,eALF,4CA4FE,mCA3FA,MA2F6C,IA1F7C,UlBpFM,QkBqFN,OACA,QACA,eAwFA,+BAEE,MACA,OACA,YACA,aACA,iBACA,0BACA,yBArGJ,4CA6FE,+BA5FA,MA6FoC,MA5FpC,UlBpFM,QkBqFN,OACA,QACA,eAmGA,6DA/CJ,UA5HuB,OA6HvB,cACA,kBACA,IA9HiB,QA+HjB,MA9HkB,SA+HlB,MjBgGM,KiB/FN,YtBrHiB,KsBsHjB,OrByKqB,QqB9HnB,OAEE,aAEA,kCAzJJ,kBACA,MACA,SACA,OACA,QACA,WjB4MO,KiB3MP,WA3CkB,gBA4ClB,aACA,aACA,OAoJI,aACE,cAKJ,aACE,qBACE,aACA,4BCvGJ,UAtDF,cACA,SACA,QhB8iCiB,QgB7iCjB,gBAhDmB,KAiDnB,oBAhDuB,QAiDvB,YvB1CuB,mDuB4CvB,aACE,OhB6iCmB,QgB5iCnB,UhBkjCiB,KgBjjCjB,YvBhCiB,OuBkCjB,4BACE,cACA,MrB9CgB,QqB+ChB,OAnDiB,EAoDjB,QAnDkB,iBAqDlB,oEAEE,WAzDiB,iBA0DjB,MhBqiCoB,QgBjiCxB,+CACE,MhB+hCuB,QgB9hCvB,YvBjDe,OuBkDf,YvBjEmB,mDuBoErB,qBACE,qBACA,SACA,UACA,gBACA,iBrBzCgB,QqB4ClB,qBACE,MrBxEgB,QqB2Ed,UhBghCa,KgB/gCb,YArEuB,KAwEzB,eAvE4B,UCmF9B,SA5DF,cACA,WACA,gBACA,OA7CoB,oBA8CpB,YA7CyB,OA+CzB,YACE,yBAGF,oCAGE,MnB+Nc,KmB9Nd,eACA,iBACA,gBACA,YxBrDqB,mDwBsDrB,YxBvCiB,OwBwCjB,UAxDgB,QAyDhB,MnB6KQ,KmB3KR,0CACE,gBAzDoB,KA0DpB,MnByKM,KmBxKN,QA1DY,cA2DZ,4DACE,MA1DmB,QA8DvB,+DnBzDA,cmBNoB,IAiElB,YxBtDe,OwBuDf,WtBjEgB,QsBkEhB,QApEY,cAqEZ,OAzDkB,QA0DlB,MnBkJG,KmBjJH,iFACE,WA/DkB,QC8FtB,MAnEF,WpBoLO,KoBnLP,cAToB,QAUpB,sBACA,aAba,KAeb,cACE,WA5Be,cA6Bf,MpB8LG,KoB5LD,UA7BoB,KA8BpB,YA7BsB,KAiC1B,YACE,WvBrBkB,QuBwBhB,oCAEE,QApDa,sBAqDb,UAxDe,QAyDf,YzB7CW,KyB8CX,MpB8KD,KoBzKL,YACE,WvBnCkB,QuBsChB,oCAEE,QAlEa,sBAmEb,UAtEe,QAuEf,YzB3DW,KyB4DX,MpBgKD,KoB1JH,wBAEE,QA7Dc,iBA8Dd,UA7DgB,QA8DhB,MpBsJC,KoBrJD,WpByLY,KoBtLd,sDAEsB,WvB5DJ,QuB+DpB,sGAKQ,QAtEM,WAsEmB,YA1Ef,SCQhB,IAjBF,cACA,qBACA,sBACA,eACA,WAxBiB,yBrB0DjB,8BqBhCA,oBAEE,WA3BqB,8BAwCnB,WrB5BF,cEqHY,IoBGd,sCACA,wCACA,0CACA,4CAGE,yCACE,iDACA,mDACA,qDACA,wDAJF,mBACE,4CACA,8CACA,gDACA,mDAJF,gEACE,kDACA,oDACA,sDACA,yDAJF,4CACE,6CACA,+CACA,iDACA,oDAJF,gEACE,iDACA,mDACA,qDACA,wDAJF,4CACE,4CACA,8CACA,gDACA,mDAJF,iEACE,kDACA,oDACA,sDACA,yDAJF,4CACE,6CACA,+CACA,iDACA,oDAJF,uEACE,mDACA,qDACA,uDACA,0DAJF,6CACE,8CACA,gDACA,kDACA,qDA4BF,oEAmBE,SACA,UAIF,EACE,MzB5LgB,QyB6LhB,gBAvJmB,KAwJnB,oBAEA,gBAEE,MAzJkB,QA+JpB,kBAIF,EACE,YA5LkB,QA6LlB,Y3BpMe,O2BqMf,UA5LgB,KA6LhB,YA5LkB,IA6LlB,cA5LoB,QA6LpB,eAzLqB,mBA2LrB,OAlEJ,qBACA,gBAmEI,QACE,UAjMoB,QAkMpB,YAjMsB,KAkMtB,WAjMqB,OAsMzB,kBACE,Y3BnOc,8B2BoOd,Y3BtNe,O2BuNf,W3BvNe,O2BwNf,MtBKC,KsBJD,eAhPkB,mBAiPlB,WAnPc,MAoPd,cAnPiB,MAoPjB,YAtPe,IAwPf,sDACE,UA5NU,IA6NV,MA5NW,QA6NX,cAIJ,sBACA,uBACA,sBACA,sBACA,sBACA,kBAEA,WA/FF,YAjJsB,IAkJtB,MAjJqB,QAkJrB,Y3B/ImB,O2BgJnB,WAjJqB,MAkJrB,cAjJwB,MA8OtB,GACE,qBACA,qBACA,WACA,2BACA,SAIF,KAEE,kBACA,oBAGF,SAEE,Y3B9Pa,K2B+Pb,oBAGF,MACE,UAjQY,IAkQZ,oBAGF,KACE,Y3BtRkB,kC2BuRlB,Y3B1Qe,O2B2Qf,MtB/CC,KsBgDD,iBzBjLkB,QyBkLlB,aAvPa,IAwPb,aAvPc,MAwPd,aAvPc,QAwPd,QAvPS,0BA2PX,SAGE,UA9QgB,KA+QhB,YA9QkB,IA+QlB,cA9QoB,QA+QpB,oBA9OgB,QA+OhB,YApRkB,QAuRpB,GACE,YpB7Ca,OoB8Cb,aACE,YAlPqB,EAoPnB,sCAEE,YArPS,QAsPT,gBACA,gBASJ,kBAEE,YAlQW,QAmQX,gBAMF,iEAGF,6CpB1Ea,OoB2Eb,6CpB3Ea,OoB4Eb,yCpB5Ea,OoB6Eb,6BAIF,GACE,YAtRqB,OAwRnB,kBAEE,YAxRW,QAyRX,gBAOJ,MACE,cA/R+B,MAgS/B,Y3BjVW,K2BmVb,oBAjS0B,OAqS5B,aAEE,yBACA,cACA,MzBhXgB,KyBiXhB,O1B5Dc,K0B8DhB,KACE,oBACA,YACE,cApSY,gBAyShB,WACE,mBACA,QAlTe,6BAmTf,YAlTc,eAoTd,gBACE,cACA,UArToB,SAsTpB,MArTqB,KAsTrB,uBACE,aAGF,4CAEE,MA5TmB,KAgUzB,wBAEE,YAlXkB,IAmXlB,MAvUkB,QA2UpB,OACE,qBACA,OAjUe,cAkUf,sBACA,QApUgB,eAsUhB,UACE,SACA,cAEF,WACE,Y3B3YW,K2B4YX,UAlUyB,SAuU3B,6B3BjZa,K2BmZb,aACE,O1BtHe,Q0BuHf,gBAjU2B,KAkU3B,Y3BtZW,K2BuZX,YACA,QAxUmB,WA6UvB,4CACE,8BAzbe,IA0bf,aApbS,QAqbT,aApbS,UAqbT,aApbS,UAqbT,aApbS,UAqbT,aApbS,SAqbT,aApbS,MA+bT,oCACA,aACE,EACE,oCACA,sBACA,2BACA,4BAGF,YACY,0BACZ,0CAEA,+CAGA,4DAEqB,WAErB,eAEE,sBACA,wBAGF,iCAEA,OACM,wBAEN,8BAEA,kBAEA,QAGE,UACA,SAGF,MACK,uBAEL,uCACA,qCACA,wCACA,4CCrRJ,mBACE,iZACE,2BAEF,iZACE,wBAGA,icvBdN,2BACA,YACA,WACA,iBACA,UuBaM,qcvB5BN,6BACA,WACA,UACA,gBACA,8BuB6BM,qfACE,yBAEF,qfACE,sCAEF,qfACE,mCAEF,ybACE,6BAEF,k3BACE,+BA7BN,4CACE,iZACE,2BAEF,iZACE,wBAGA,icvBdN,2BACA,YACA,WACA,iBACA,UuBaM,qcvB5BN,6BACA,WACA,UACA,gBACA,8BuB6BM,qfACE,yBAEF,qfACE,sCAEF,qfACE,mCAEF,ybACE,6BAEF,k3BACE,+BA7BN,4CACE,iZACE,2BAEF,iZACE,wBAGA,icvBdN,2BACA,YACA,WACA,iBACA,UuBaM,qcvB5BN,6BACA,WACA,UACA,gBACA,8BuB6BM,qfACE,yBAEF,qfACE,sCAEF,qfACE,mCAEF,ybACE,6BAEF,k3BACE,+BA7BN,4CACE,iZACE,2BAEF,iZACE,wBAGA,icvBdN,2BACA,YACA,WACA,iBACA,UuBaM,qcvB5BN,6BACA,WACA,UACA,gBACA,8BuB6BM,qfACE,yBAEF,qfACE,sCAEF,qfACE,mCAEF,ybACE,6BAEF,k3BACE,+BA7BN,6CACE,iZACE,2BAEF,iZACE,wBAGA,icvBdN,2BACA,YACA,WACA,iBACA,UuBaM,qcvB5BN,6BACA,WACA,UACA,gBACA,8BuB6BM,qfACE,yBAEF,qfACE,sCAEF,qfACE,mCAEF,ybACE,6BAEF,k3BACE,+BAaR,uCACqB,2BACrB,uCACqB,wBAInB,iDACsB,yBAGtB,iDACsB,sCAGtB,iDACsB,mCAGtB,2CACsB,6BAItB,sFACsB,8BAGxB,gDACE,uCACqB,2BACrB,uCACqB,wBAInB,iDACsB,yBAGtB,iDACsB,sCAGtB,iDACsB,mCAGtB,2CACsB,6BAItB,sFACsB,+BAI1B,+CACE,uCACsB,2BACtB,uCACsB,wBAIpB,iDACuB,yBAGvB,iDACuB,sCAGvB,iDACuB,mCAGvB,2CACuB,6BAIvB,sFACuB,+BAK3B,wCACA,2CACA,kDACA,+CAGA,8CACA,qDACA,2DACA,kEACA,wDACA,+DACA,+CACA,sDACA,gDACA,uDACA,gDACA,uDAIA,aACE,8BACA,6BAEA,8CACA,2DACA,wDACA,+CACA,gDACA,iDCzXJ,SAEI,mBAGJ,UACI,c3ByBkB,Q2BtBtB,QACI,cAGJ,QACI,cAGJ,SACI,cAQJ,EACI,qBACA,kBACA,iBACA,aACA,sBAEA,kBAEJ,cAEI,iBACA,yBAEJ,0BAEI,wBAEJ,iCAGI,SACA,WAEJ,WACI,SACA,WACA,qCAWJ,kBACI,Y7BlEgB,8B6BmEhB,mBACA,UAEJ,GACI,U7BhDgB,Q6BiDhB,aAEJ,GACI,U7BnDgB,Q6BoDhB,qBAEA,eACI,aAER,GACI,U7BzDgB,Q6B0DhB,qBAEJ,GACI,U7B5DgB,O6B6DhB,qBAEJ,GACI,U7B/DgB,Q6BgEhB,iBAQJ,kBtB2BgB,IsB1BZ,uBACkB,iCAClB,yBACkB,kCAClB,2BACkB,iCAEtB,OACI,sBAEJ,qEAEI,SAEJ,6BAEI,M3B5EkB,Q2B6ElB,Y7BtHqB,mD6BuHrB,mBACA,oBAEJ,iCAEI,iCACA,M3BpFkB,Q2BsFtB,6CAEI,gCACA,M3B7HkB,Q2B+HtB,kBACI,mBACA,iBAQJ,GACI,mBAQJ,IACI,cACA,sBACA,YACA,iB3BjDoB,Q2BkDpB,ctB7BY,IsB+BhB,SACI,oCACA,SAGJ,KACI,kBACA,gBAQJ,MACI,iBACA,UAEJ,GACI,cAGJ,WACI,gBACA,cAIA,YAEK,gBAOT,eACI,gBAEJ,GACI,iBACA,iBAIJ,8BACA,sEAOA,WACI,kBACA,kBACA,YACA,wBACA,M3BhLkB,Q2BmLlB,qC3BpLkB,Q2BsLlB,kBACI,0BACA,eACA,cACA,kBACA,WACA,SACA,M3B5Lc,Q2B8LlB,iBACI,cACA,YACA,eACA,cACA,kBACA,YACA,YACA,M3BtMc,Q2BwMlB,uBACI,aAEJ,4CACI,M3B7Mc,Q2B+MtB,KACI,gBAGJ,eACI,mBAGJ,KACI,yBAQJ,aACI,eACA,SACA,yBAEJ,QACI,kBAEJ,YACI,kCAEJ,cACI,kCAIJ,mBACI,YACI,mBAGR,6CACI,YACI,qBASR,kB7BzSyB,mD6B0SzB,mB7BzSoB,8B6B2SpB,wB7BpRoB,Q6BqRpB,wB7BpRoB,Q6BqRpB,wB7BpRoB,Q6BqRpB,wB7BpRoB,O6BqRpB,wB7BpRoB,Q6BqRpB,uB7BvTiB,K6B8TjB,kBACI,WACA,kBACA,WACA,WACA,iBACA,gCAEJ,WACI,gBAEJ,cACI,U7BvSgB,K6BySpB,aACI,kBACA,gBAUJ,WACE,uBACA,iCACA,wNAMF,+BACA,4BAGA,2CAEA,0rCAwDE,qBACF,uBACA,kBACA,mBACA,oBACA,cACA,wBACA,kCACA,oBACA,kCACA,mCACA,2BAGA,iCACA,iCACA,kCACA,gCACA,8BACA,+BACA,sCACA,sCACA,uCACA,oCACA,2CACA,2CACA,0CACA,+BACA,8BACA,6BACA,iCACA,8BACA,gCACA,6BACA,kCACA,iCACA,gCACA,+BACA,oCACA,+BACA,wCACA,8BACA,mCACA,mCACA,8BACA,kCACA,8BACA,iCACA,6BACA,iCACA,qCACA,mCACA,mCACA,gCACA,6BACA,oCACA,8BACA,uCACA,qCACA,mCACA,8BACA,gCACA,iCACA,yCACA,+BACA,+BACA,iCACA,8BACA,iCC5dA,gDACuC,gBACvC,wDACA,yLAUqB,WACrB,qCACA,2BAOA,YACI,8CACA,sCAEA,uEACI,mBASR,mBACE,aAQF,UACI,iB5B1CkB,Q4B4CtB,0BACI,iB5B7CkB,Q4B+CtB,oBACI,kBACA,mBACA,Y9BtDgB,8B8BuDhB,WACA,yBACA,qCAEJ,0BACI,aAEJ,oCACI,gBAMJ,yCACI,UACI,aAEJ,UACI,aAEJ,uBACI,eAEJ,gCACI,eAEJ,oBACI,aACA,eACA,kBAEJ,0BACI,cAQR,gEACI,UACI,gBAEJ,UACI,aAEJ,uBACI,eAEJ,gCACI,eAEJ,oBACI,eACA,cAQR,gEACI,UACI,gBAEJ,UACI,aAEJ,uBACI,eAEJ,gCACI,eAEJ,oBACI,aACA,gBAQR,4CACI,UACI,iBAEJ,UACI,aAEJ,uBACI,eAEJ,gCACI,eAEJ,oBACI,eACA,cAKR,mBACI,aAEJ,mBACI,aAEJ,yBACI,aAEJ,yBACI,aAQJ,YACI,mBACA,6BACA,gCAEJ,sBACE,iBAOF,wBACI,M5B/JkB,Q4BkKtB,mBACI,W5BnKkB,Q4BoKlB,SAEJ,mBACI,WAEJ,yBACI,W5BzMkB,Q4B2MtB,aACE,mBACA,cAEA,aACE,0BACA,cAEF,mBACE,qBACA,M5B5MkB,Q4BoNtB,WACI,uBAEJ,aACI,eACA,YACA,kBAEJ,mBACI,W5B1MkB,Q4BkNtB,qCAEI,mBACA,gBAGJ,QACI,iBACA,oBACA,W5B1MkB,Q4B2MlB,M5BhKkB,K4BmKlB,UACI,M5BnPc,Q4BqPlB,sBAEI,mBACA,WACA,yBAQR,WACI,W5B7NkB,Q4B8NlB,M5B/NkB,Q4BgOlB,iBAGJ,+BACI,WAGJ,WACI,M5BxOkB,Q4ByOlB,SACA,yBACA,iBACI,WAIR,cACI,8BAGF,iBACE,mBAEF,gBACE,oBACA,cACA,WACA,kBACA,M5B3PkB,Q4B4PlB,W5B7PkB,Q4B8PlB,kBACA,sBACE,W5B/PgB,Q4BgQhB,WAUN,gCACA,gCACA,gCACA,gCACA,gCACA,gCACA,gCACA,gCACA,gCAEA,mCACA,mCACA,mCACA,mCAEA,iCACA,kCAEA,mCACA,kCACA,oCACA,oCCrVA,iCAGI,gBACA,iBAEJ,QACI,cACA,WxB3BW,KwBmCf,eACE,0BACA,gBACA,cxB+Gc,IwBvGhB,2CACA,0DACA,gEAOA,WACE,Y/BlCuB,mD+BmCvB,uCAEA,aACE,gBAEF,aACE,6BACA,WACA,8BAEF,mBACE,6BAEF,oBACE,W7BNkB,Q6BOlB,WACA,qBACA,Y/BlDoB,kC+BoDtB,4BACE,aACA,M7B1CkB,Q6B2ClB,WACA,sBAEF,gBACE,iB7B5BkB,Q6B6BlB,uCACA,qBACA,M7BrBkB,Q6B6BtB,kCACE,oC7BhCoB,Q6BiCpB,0EAG0B,iB7B9BN,Q6BqCtB,4CACA,0CACA,kEACA,+E7BvDsB,Q6ByDtB,qC7BhDsB,Q6BuDtB,0CACA,8CACA,gDACA,gDACA,uDACA,uDAOA;AAAA;AAAA;AAAA,wBAIA,SACE,aAEF,aACI,UAEJ,aACI,+BACA,4BACA,2BACA,0BACA,uBACA,UAIF,sDACE,YACA,QACA,SAEA,cACA,iBACA,iBC3JJ,WACI,gBACA,+BACA,wBACA,cACA,iBACA,iBACA,yBAEA,2CACA,uDACA,+BACA,+BACA,4CACA,2CACA,4CACA,6DACA,gDACA,mDACA,iCACA,0BACA,0BACA,gDACA,mDACA,0BACA,0BACA,gCACA,0BACA,0BACA,gCACA,gCACA,gCACA,gCACA,2CACA,yBACA,yBACA,0BACA,6BACA,2CACA,0BACA,4BACA,2CACA,2CACA,0BACA,0BACA,0BACA,gCACA,yBACA,0BACA,0BACA,0BACA,0BACA,0BACA,0BACA,0BACA,0BACA,0BACA,0BACA,0BACA,0BACA,6BACA,0BACA,6BACA,0BACA,0BACA,0BACA,0BACA","sourcesContent":["@charset \"utf-8\";\n/* TOC – Typography variables\n\nModular Scale › http://www.modularscale.com//?16,36&px&1.25&web&table\n\n- Fonts\n- Font Weight\n- Font Size Variables\n\n*/\n\n@import \"functions\"; // Allows the use of rem-calc() or lower-bound() in your settings\n\n\n\n/* Fonts\n------------------------------------------------------------------- */\n\n$base-font-size: 16px;\n$rem-base: $base-font-size;\n// $base-line-height is 24px while $base-font-size is 16px\n$base-line-height: 1.5 !default;\n\n\n$font-family-sans-serif: \"Lato\", \"Helvetica Neue\", Helvetica, Arial, sans-serif;\n$font-family-serif: \"Volkhov\", Georgia, Times, serif;\n$font-family-monospace: \"Lucida Console\", Monaco, monospace;\n\n$body-font-family: $font-family-sans-serif;\n$body-font-weight: normal;\n$body-font-style: normal;\n\n$header-font-family: $font-family-serif;\n\n\n\n/* Font Weight\n------------------------------------------------------------------- */\n\n$font-weight-normal: normal;\n$font-weight-bold: bold;\n\n\n\n/* Font Size Variables\n------------------------------------------------------------------- */\n\n$font-size-p: \t$base-font-size;\n$font-size-h1: 2.441em;\n$font-size-h2: 1.953em;\n$font-size-h3: 1.563em;\n$font-size-h4: 1.25em;\n$font-size-h5: 1.152em;\n$font-size-small: 0.8em;\n\n.font-size-h1 { font-size: $font-size-h1; }\n.font-size-h2 { font-size: $font-size-h2; }\n.font-size-h3 { font-size: $font-size-h3; }\n.font-size-h4 { font-size: $font-size-h4; }\n.font-size-h5 { font-size: $font-size-h5; }\n","@charset \"utf-8\";\n// Foundation by ZURB\n// foundation.zurb.com\n// Licensed under MIT Open Source\n\n//\n// Foundation Variables\n//\n\n// Data attribute namespace\n// styles get applied to [data-mysite-plugin], etc\n$namespace: false !default;\n\n// The default font-size is set to 100% of the browser style sheet (usually 16px)\n// for compatibility with browser-based text zoom or user-set defaults.\n\n// Since the typical default browser font-size is 16px, that makes the calculation for grid size.\n// If you want your base font-size to be different and not have it affect the grid breakpoints,\n// set $rem-base to $base-font-size and make sure $base-font-size is a px value.\n$base-font-size: 100% !default;\n\n\n\n//\n// Global Foundation Mixins\n//\n\n// @mixins\n//\n// We use this to control border radius.\n// $radius - Default: $global-radius || 4px\n@mixin radius($radius: $global-radius) {\n @if $radius {\n border-radius: $radius;\n }\n}\n\n// @mixins\n//\n// We use this to create equal side border radius on elements.\n// $side - Options: left, right, top, bottom\n@mixin side-radius($side, $radius: $global-radius) {\n @if ($side ==left or $side ==right) {\n -webkit-border-bottom-#{$side}-radius: $radius;\n -webkit-border-top-#{$side}-radius: $radius;\n border-bottom-#{$side}-radius: $radius;\n border-top-#{$side}-radius: $radius;\n }\n\n @else {\n -webkit-#{$side}-left-radius: $radius;\n -webkit-#{$side}-right-radius: $radius;\n border-#{$side}-left-radius: $radius;\n border-#{$side}-right-radius: $radius;\n }\n}\n\n// @mixins\n//\n// We can control whether or not we have inset shadows edges.\n// $active - Default: true, Options: false\n@mixin inset-shadow($active: true) {\n box-shadow: $shiny-edge-size $shiny-edge-color inset;\n\n @if $active {\n &:active {\n box-shadow: $shiny-edge-size $shiny-edge-active-color inset;\n }\n }\n}\n\n// @mixins\n//\n// We use this to add transitions to elements\n// $property - Default: all, Options: http://www.w3.org/TR/css3-transitions/#animatable-properties\n// $speed - Default: 300ms\n// $ease - Default:ease-out, Options: http://css-tricks.com/almanac/properties/t/transition-timing-function/\n@mixin single-transition($property: all, $speed: 300ms, $ease: ease-out) {\n transition: $property $speed $ease;\n}\n\n// @mixins\n//\n// We use this to add box-sizing across browser prefixes\n@mixin box-sizing($type: border-box) {\n -webkit-box-sizing: $type; // Android < 2.3, iOS < 4\n -moz-box-sizing: $type; // Firefox < 29\n box-sizing: $type; // Chrome, IE 8+, Opera, Safari 5.1\n}\n\n// @mixins\n//\n// We use this to create isosceles triangles\n// $triangle-size - Used to set border-size. No default, set a px or em size.\n// $triangle-color - Used to set border-color which makes up triangle. No default\n// $triangle-direction - Used to determine which direction triangle points. Options: top, bottom, left, right\n@mixin css-triangle($triangle-size, $triangle-color, $triangle-direction) {\n content: \"\";\n display: block;\n width: 0;\n height: 0;\n border: inset $triangle-size;\n\n @if ($triangle-direction ==top) {\n border-color: $triangle-color transparent transparent transparent;\n border-top-style: solid;\n }\n\n @if ($triangle-direction ==bottom) {\n border-color: transparent transparent $triangle-color transparent;\n border-bottom-style: solid;\n }\n\n @if ($triangle-direction ==left) {\n border-color: transparent transparent transparent $triangle-color;\n border-left-style: solid;\n }\n\n @if ($triangle-direction ==right) {\n border-color: transparent $triangle-color transparent transparent;\n border-right-style: solid;\n }\n}\n\n// @mixins\n//\n// We use this to create the icon with three lines aka the hamburger icon, the menu-icon or the navicon\n// $width - Width of hamburger icon in rem\n// $left - If false, icon will be centered horizontally || explicitly set value in rem\n// $top - If false, icon will be centered vertically || explicitly set value in rem\n// $thickness - thickness of lines in hamburger icon, set value in px\n// $gap - spacing between the lines in hamburger icon, set value in px\n// $color - icon color\n// $hover-color - icon color during hover\n// $offcanvas - Set to true of @include in offcanvas\n@mixin hamburger($width, $left, $top, $thickness, $gap, $color, $hover-color, $offcanvas) {\n span::after {\n content: \"\";\n position: absolute;\n display: block;\n height: 0;\n\n @if $offcanvas {\n @if $top {\n top: $top;\n }\n\n @else {\n top: 50%;\n margin-top: (-$width/2);\n }\n\n @if $left {\n left: $left;\n }\n\n @else {\n left: ($tabbar-menu-icon-width - $width)/2;\n }\n }\n\n @else {\n top: 50%;\n margin-top: -($width/2);\n #{$opposite-direction}: $topbar-link-padding;\n }\n\n box-shadow: 0 0 0 $thickness $color,\n 0 ($gap + $thickness) 0 $thickness $color,\n 0 (2 * $gap + 2*$thickness) 0 $thickness $color;\n width: $width;\n }\n\n span:hover:after {\n box-shadow:\n 0 0 0 $thickness $hover-color,\n 0 $gap + $thickness 0 $thickness $hover-color,\n 0 (2 * $gap + 2*$thickness) 0 $thickness $hover-color;\n }\n}\n\n// We use this to do clear floats\n@mixin clearfix {\n\n &:before,\n &:after {\n content: \" \";\n display: table;\n }\n\n &:after {\n clear: both;\n }\n}\n\n// @mixins\n//\n// We use this to add a glowing effect to block elements\n// $selector - Used for selector state. Default: focus, Options: hover, active, visited\n// $fade-time - Default: 300ms\n// $glowing-effect-color - Default: fade-out($primary-color, .25)\n@mixin block-glowing-effect($selector: focus, $fade-time: 300ms, $glowing-effect-color: fade-out($primary-color, .25)) {\n transition: box-shadow $fade-time, border-color $fade-time ease-in-out;\n\n &:#{$selector} {\n box-shadow: 0 0 5px $glowing-effect-color;\n border-color: $glowing-effect-color;\n }\n}\n\n// @mixins\n//\n// We use this to translate elements in 2D\n// $horizontal: Default: 0\n// $vertical: Default: 0\n@mixin translate2d($horizontal: 0, $vertical: 0) {\n transform: translate($horizontal, $vertical)\n}\n\n// @mixins\n//\n// Makes an element visually hidden, but accessible.\n// @see http://snook.ca/archives/html_and_css/hiding-content-for-accessibility\n@mixin element-invisible {\n position: absolute !important;\n height: 1px;\n width: 1px;\n overflow: hidden;\n clip: rect(1px, 1px, 1px, 1px);\n}\n\n// @mixins\n//\n// Turns off the element-invisible effect.\n@mixin element-invisible-off {\n position: static !important;\n height: auto;\n width: auto;\n overflow: visible;\n clip: auto;\n}\n\n\n// We use these to control text direction settings\n$text-direction: ltr !default;\n$default-float: left !default;\n$opposite-direction: right !default;\n\n@if $text-direction ==ltr {\n $default-float: left;\n $opposite-direction: right;\n}\n\n@else {\n $default-float: right;\n $opposite-direction: left;\n}\n\n// We use these to control inset shadow shiny edges and depressions.\n$shiny-edge-size: 0 1px 0 !default;\n$shiny-edge-color: rgba(#fff, .5) !default;\n$shiny-edge-active-color: rgba(#000, .2) !default;\n\n// We use this to control whether or not CSS classes come through in the gem files.\n$include-html-classes: true !default;\n$include-print-styles: true !default;\n$include-html-global-classes: $include-html-classes !default;\n\n$column-gutter: rem-calc(30) !default;\n\n\n\n\n// d. Media Query Ranges\n// - - - - - - - - - - - - - - - - - - - - - - - - -\n\n$small-range: (\n 0em,\n 40em\n);\n$medium-range: (\n 40.063em,\n 64em\n);\n$large-range: (\n 64.063em,\n 90em\n);\n$xlarge-range: (\n 90.063em,\n 120em\n);\n$xxlarge-range: (\n 120.063em,\n 99999999em\n);\n\n\n$screen: \"only screen\" !default;\n\n$landscape: \"#{$screen} and (orientation: landscape)\" !default;\n$portrait: \"#{$screen} and (orientation: portrait)\" !default;\n\n$small-up: $screen !default;\n$small-only: \"#{$screen} and (max-width: #{upper-bound($small-range)})\";\n\n$medium-up: \"#{$screen} and (min-width:#{lower-bound($medium-range)})\" !default;\n$medium-only: \"#{$screen} and (min-width:#{lower-bound($medium-range)}) and (max-width:#{upper-bound($medium-range)})\" !default;\n\n$large-up: \"#{$screen} and (min-width:#{lower-bound($large-range)})\" !default;\n$large-only: \"#{$screen} and (min-width:#{lower-bound($large-range)}) and (max-width:#{upper-bound($large-range)})\" !default;\n\n$xlarge-up: \"#{$screen} and (min-width:#{lower-bound($xlarge-range)})\" !default;\n$xlarge-only: \"#{$screen} and (min-width:#{lower-bound($xlarge-range)}) and (max-width:#{upper-bound($xlarge-range)})\" !default;\n\n$xxlarge-up: \"#{$screen} and (min-width:#{lower-bound($xxlarge-range)})\" !default;\n$xxlarge-only: \"#{$screen} and (min-width:#{lower-bound($xxlarge-range)}) and (max-width:#{upper-bound($xxlarge-range)})\" !default;\n\n// Legacy\n$small: $medium-up;\n$medium: $medium-up;\n$large: $large-up;\n\n//We use this as cursors values for enabling the option of having custom cursors in the whole site's stylesheet\n$cursor-auto-value: auto !default;\n$cursor-crosshair-value: crosshair !default;\n$cursor-default-value: default !default;\n$cursor-pointer-value: pointer !default;\n$cursor-help-value: help !default;\n$cursor-text-value: text !default;\n\n\n@include exports(\"global\") {\n\n // Meta styles are included in all builds, as they are a dependency of the Javascript.\n // Used to provide media query values for javascript components.\n // Forward slash placed around everything to convince PhantomJS to read the value.\n\n meta.foundation-version {\n font-family: \"/5.5.0/\";\n }\n\n meta.foundation-mq-small {\n font-family: \"/\" + unquote($small-up) + \"/\";\n width: lower-bound($small-range);\n }\n\n meta.foundation-mq-small-only {\n font-family: \"/\" + unquote($small-only) + \"/\";\n width: lower-bound($small-range);\n }\n\n meta.foundation-mq-medium {\n font-family: \"/\" + unquote($medium-up) + \"/\";\n width: lower-bound($medium-range);\n }\n\n meta.foundation-mq-medium-only {\n font-family: \"/\" + unquote($medium-only) + \"/\";\n width: lower-bound($medium-range);\n }\n\n meta.foundation-mq-large {\n font-family: \"/\" + unquote($large-up) + \"/\";\n width: lower-bound($large-range);\n }\n\n meta.foundation-mq-large-only {\n font-family: \"/\" + unquote($large-only) + \"/\";\n width: lower-bound($large-range);\n }\n\n meta.foundation-mq-xlarge {\n font-family: \"/\" + unquote($xlarge-up) + \"/\";\n width: lower-bound($xlarge-range);\n }\n\n meta.foundation-mq-xlarge-only {\n font-family: \"/\" + unquote($xlarge-only) + \"/\";\n width: lower-bound($xlarge-range);\n }\n\n meta.foundation-mq-xxlarge {\n font-family: \"/\" + unquote($xxlarge-up) + \"/\";\n width: lower-bound($xxlarge-range);\n }\n\n meta.foundation-data-attribute-namespace {\n font-family: #{$namespace};\n }\n\n @if $include-html-global-classes {\n\n // Must be 100% for off canvas to work\n html,\n body {\n height: 100%;\n }\n\n // Set box-sizing globally to handle padding and border widths\n *,\n *:before,\n *:after {\n @include box-sizing(border-box);\n }\n\n html,\n body {\n font-size: $base-font-size;\n }\n\n // Default body styles\n body {\n background: $body-bg;\n color: $body-font-color;\n padding: 0;\n margin: 0;\n font-family: $body-font-family;\n font-weight: $body-font-weight;\n font-style: $body-font-style;\n line-height: $base-line-height; // Set to $base-line-height to take on browser default of 150%\n position: relative;\n cursor: $cursor-auto-value;\n }\n\n a:hover {\n cursor: $cursor-pointer-value;\n }\n\n // Grid Defaults to get images and embeds to work properly\n img {\n max-width: 100%;\n height: auto;\n }\n\n img {\n -ms-interpolation-mode: bicubic;\n }\n\n #map_canvas,\n .map_canvas {\n\n img,\n embed,\n object {\n max-width: none !important;\n }\n }\n\n // Miscellaneous useful HTML classes\n .left {\n float: left !important;\n }\n\n .right {\n float: right !important;\n }\n\n .clearfix {\n @include clearfix;\n }\n\n // Hide visually and from screen readers\n .hide {\n display: none !important;\n visibility: hidden;\n }\n\n // Hide visually and from screen readers, but maintain layout\n .invisible {\n visibility: hidden;\n }\n\n // Font smoothing\n // Antialiased font smoothing works best for light text on a dark background.\n // Apply to single elements instead of globally to body.\n // Note this only applies to webkit-based desktop browsers and Firefox 25 (and later) on the Mac.\n .antialiased {\n -webkit-font-smoothing: antialiased;\n -moz-osx-font-smoothing: grayscale;\n }\n\n // Get rid of gap under images by making them display: inline-block; by default\n img {\n display: inline-block;\n vertical-align: middle;\n }\n\n //\n // Global resets for forms\n //\n\n // Make sure textarea takes on height automatically\n textarea {\n height: auto;\n min-height: 50px;\n }\n\n // Make select elements 100% width by default\n select {\n width: 100%;\n }\n }\n}","/// from https://github.com/Phlow/feeling-responsive/raw/gh-pages/_sass/_01_settings_colors.scss\n@charset \"utf-8\";\n/* TOC – Color Variables\n\n- Basics\n- Corporate Identity Colorpalette\n- Foundation Color Variables\n- Grey Scale\n- Topbar-Navigation\n- Footer\n- Code\n\n*/\n\n\n\n/* Basics\n------------------------------------------------------------------- */\n\n$text-color : #111;\n$body-font-color : $text-color;\n$body-bg : #fdfdfd;\n\n\n\n/* Corporate Identity Colorpalette\n https://color.adobe.com/de/Flat-Design-Colors-v2-color-theme-4341903/\n------------------------------------------------------------------- */\n\n$ci-1 : #334D5C; // dark turquoise\n$ci-2 : #45B29D; // turquoise\n$ci-3 : #EFC94C; // yellow\n$ci-4 : #E27A3F; // orange\n$ci-5 : #DF4949; // red\n$ci-6 : #A1D044; // green\n\n/// CIL overrides\n$ci-2 : #c92c99;\n$ci-6 : #e50695;\n\n\n/* Foundation Color Variables\n------------------------------------------------------------------- */\n\n$primary-color : $ci-1;\n$secondary-color : $ci-6;\n$alert-color : $ci-5;\n$success-color : $ci-6;\n$warning-color : $ci-4;\n$info-color : $ci-1;\n\n\n\n/* Grey Scale\n------------------------------------------------------------------- */\n\n$grey-1 : #E4E4E4;\n$grey-2 : #D7D7D7;\n$grey-3 : #CBCBCB;\n$grey-4 : #BEBEBE;\n$grey-5 : #A4A4A4;\n$grey-6 : #979797;\n$grey-7 : #8B8B8B;\n$grey-8 : #7E7E7E;\n$grey-9 : #646464;\n$grey-10 : #575757;\n$grey-11 : #4B4B4B;\n$grey-12 : #3E3E3E;\n$grey-13 : #313131;\n$grey-14 : #242424;\n$grey-15 : #171717;\n$grey-16 : #0B0B0B;\n\n/// CIL overrides\n$grey-8 : #043852;\n$grey-13 : #510c76;\n\n\n/* Topbar-Navigation\n------------------------------------------------------------------- */\n\n$topbar-bg-color : $body-bg;\n$topbar-bg : $topbar-bg-color;\n\n\n$topbar-dropdown-toggle-color: $ci-1;\n\n$topbar-link-color : #000;\n$topbar-link-color-hover: #000;\n$topbar-link-color-active: #000;\n$topbar-link-color-active-hover: #000;\n\n$topbar-dropdown-label-color: $ci-2;\n$topbar-dropdown-link-bg-hover: $ci-6;\n\n$topbar-link-bg-active: $ci-6; // Active Navigation Link\n$topbar-link-bg-hover: $ci-6;\n$topbar-link-bg-active-hover: $ci-2;\n\n\n$topbar-dropdown-bg: $ci-6; // Background Mobile Navigation\n$topbar-dropdown-link-color: #000;\n$topbar-dropdown-link-bg: $ci-2;\n\n$topbar-menu-link-color-toggled: $ci-1;\n$topbar-menu-icon-color-toggled: $ci-1;\n$topbar-menu-link-color: #000;\n$topbar-menu-icon-color: #000;\n$topbar-menu-link-color-toggled: $ci-6;\n$topbar-menu-icon-color-toggled: $ci-6;\n\n\n\n/* Footer\n------------------------------------------------------------------- */\n\n$footer-bg : $grey-8;\n$footer-color : #fff;\n$footer-link-color : $ci-6;\n\n\n$subfooter-bg : $grey-13;\n$subfooter-color : $grey-8;\n$subfooter-link-color: $grey-8;\n\n\n\n/* Code\n------------------------------------------------------------------- */\n\n$code-background-color: scale-color($secondary-color, $lightness: 70%);\n\n$highlight-background: #ffffff;\n$highlight-comment: #999988;\n$highlight-error: #a61717;\n$highlight-comment-special: #999999;\n$highlight-deleted: #000000;\n$highlight-error-2: #aa0000;\n$highlight-literal-string: #d14;\n$highlight-literal-number: #009999;\n$highlight-name-attribut: #008080;\n$highlight-error-background: #e3d2d2;\n$highlight-generic-deleted: #ffdddd;\n$highlight-generic-deleted-specific: #ffaaaa;\n$highlight-generic-inserted: #ddffdd;\n$highlight-generic-inserted-specific: #aaffaa;\n$highlight-generic-output: #888888;\n$highlight-generic-prompt: #555555;\n$highlight-subheading: #aaaaaa;\n$highlight-keyword-type: #445588;\n$highlight-name-builtin: #0086B3;\n$highlight-name-class: #445588;\n$highlight-name-entity: #800080;\n$highlight-name-exception: #990000;\n$highlight-name-function: #990000;\n$highlight-name-namespace: #555555;\n$highlight-name-tag: #000080;\n$highlight-text-whitespace: #bbbbbb;\n$highlight-literal-string-regex: #009926;\n$highlight-literal-string-symbol: #990073;\n","@charset \"utf-8\";\n/*! normalize.css v3.0.2 | MIT License | git.io/normalize */\n\n/**\n * 1. Set default font family to sans-serif.\n * 2. Prevent iOS text size adjust after orientation change, without disabling\n * user zoom.\n */\n\nhtml {\n font-family: sans-serif; /* 1 */\n -ms-text-size-adjust: 100%; /* 2 */\n -webkit-text-size-adjust: 100%; /* 2 */\n}\n\n/**\n * Remove default margin.\n */\n\nbody {\n margin: 0;\n}\n\n/* HTML5 display definitions\n ========================================================================== */\n\n/**\n * Correct `block` display not defined for any HTML5 element in IE 8/9.\n * Correct `block` display not defined for `details` or `summary` in IE 10/11\n * and Firefox.\n * Correct `block` display not defined for `main` in IE 11.\n */\n\narticle,\naside,\ndetails,\nfigcaption,\nfigure,\nfooter,\nheader,\nhgroup,\nmain,\nmenu,\nnav,\nsection,\nsummary {\n display: block;\n}\n\n/**\n * 1. Correct `inline-block` display not defined in IE 8/9.\n * 2. Normalize vertical alignment of `progress` in Chrome, Firefox, and Opera.\n */\n\naudio,\ncanvas,\nprogress,\nvideo {\n display: inline-block; /* 1 */\n vertical-align: baseline; /* 2 */\n}\n\n/**\n * Prevent modern browsers from displaying `audio` without controls.\n * Remove excess height in iOS 5 devices.\n */\n\naudio:not([controls]) {\n display: none;\n height: 0;\n}\n\n/**\n * Address `[hidden]` styling not present in IE 8/9/10.\n * Hide the `template` element in IE 8/9/11, Safari, and Firefox < 22.\n */\n\n[hidden],\ntemplate {\n display: none;\n}\n\n/* Links\n ========================================================================== */\n\n/**\n * Remove the gray background color from active links in IE 10.\n */\n\na {\n background-color: transparent;\n}\n\n/**\n * Improve readability when focused and also mouse hovered in all browsers.\n */\n\na:active,\na:hover {\n outline: 0;\n}\n\n/* Text-level semantics\n ========================================================================== */\n\n/**\n * Address styling not present in IE 8/9/10/11, Safari, and Chrome.\n */\n\nabbr[title] {\n border-bottom: 1px dotted;\n}\n\n/**\n * Address style set to `bolder` in Firefox 4+, Safari, and Chrome.\n */\n\nb,\nstrong {\n font-weight: bold;\n}\n\n/**\n * Address styling not present in Safari and Chrome.\n */\n\ndfn {\n font-style: italic;\n}\n\n/**\n * Address variable `h1` font-size and margin within `section` and `article`\n * contexts in Firefox 4+, Safari, and Chrome.\n */\n\nh1 {\n font-size: 2em;\n margin: 0.67em 0;\n}\n\n/**\n * Address styling not present in IE 8/9.\n */\n\nmark {\n background: #ff0;\n color: #000;\n}\n\n/**\n * Address inconsistent and variable font size in all browsers.\n */\n\nsmall {\n font-size: 80%;\n}\n\n/**\n * Prevent `sub` and `sup` affecting `line-height` in all browsers.\n */\n\nsub,\nsup {\n font-size: 75%;\n line-height: 0;\n position: relative;\n vertical-align: baseline;\n}\n\nsup {\n top: -0.5em;\n}\n\nsub {\n bottom: -0.25em;\n}\n\n/* Embedded content\n ========================================================================== */\n\n/**\n * Remove border when inside `a` element in IE 8/9/10.\n */\n\nimg {\n border: 0;\n}\n\n/**\n * Correct overflow not hidden in IE 9/10/11.\n */\n\nsvg:not(:root) {\n overflow: hidden;\n}\n\n/* Grouping content\n ========================================================================== */\n\n/**\n * Address margin not present in IE 8/9 and Safari.\n */\n\nfigure {\n margin: 1em 40px;\n}\n\n/**\n * Address differences between Firefox and other browsers.\n */\n\nhr {\n -moz-box-sizing: content-box;\n box-sizing: content-box;\n height: 0;\n}\n\n/**\n * Contain overflow in all browsers.\n */\n\npre {\n overflow: auto;\n}\n\n/**\n * Address odd `em`-unit font size rendering in all browsers.\n */\n\ncode,\nkbd,\npre,\nsamp {\n font-family: monospace, monospace;\n font-size: 1em;\n}\n\n/* Forms\n ========================================================================== */\n\n/**\n * Known limitation: by default, Chrome and Safari on OS X allow very limited\n * styling of `select`, unless a `border` property is set.\n */\n\n/**\n * 1. Correct color not being inherited.\n * Known issue: affects color of disabled elements.\n * 2. Correct font properties not being inherited.\n * 3. Address margins set differently in Firefox 4+, Safari, and Chrome.\n */\n\nbutton,\ninput,\noptgroup,\nselect,\ntextarea {\n color: inherit; /* 1 */\n font: inherit; /* 2 */\n margin: 0; /* 3 */\n}\n\n/**\n * Address `overflow` set to `hidden` in IE 8/9/10/11.\n */\n\nbutton {\n overflow: visible;\n}\n\n/**\n * Address inconsistent `text-transform` inheritance for `button` and `select`.\n * All other form control elements do not inherit `text-transform` values.\n * Correct `button` style inheritance in Firefox, IE 8/9/10/11, and Opera.\n * Correct `select` style inheritance in Firefox.\n */\n\nbutton,\nselect {\n text-transform: none;\n}\n\n/**\n * 1. Avoid the WebKit bug in Android 4.0.* where (2) destroys native `audio`\n * and `video` controls.\n * 2. Correct inability to style clickable `input` types in iOS.\n * 3. Improve usability and consistency of cursor style between image-type\n * `input` and others.\n */\n\nbutton,\nhtml input[type=\"button\"], /* 1 */\ninput[type=\"reset\"],\ninput[type=\"submit\"] {\n -webkit-appearance: button; /* 2 */\n cursor: pointer; /* 3 */\n}\n\n/**\n * Re-set default cursor for disabled elements.\n */\n\nbutton[disabled],\nhtml input[disabled] {\n cursor: default;\n}\n\n/**\n * Remove inner padding and border in Firefox 4+.\n */\n\nbutton::-moz-focus-inner,\ninput::-moz-focus-inner {\n border: 0;\n padding: 0;\n}\n\n/**\n * Address Firefox 4+ setting `line-height` on `input` using `!important` in\n * the UA stylesheet.\n */\n\ninput {\n line-height: normal;\n}\n\n/**\n * It's recommended that you don't attempt to style these elements.\n * Firefox's implementation doesn't respect box-sizing, padding, or width.\n *\n * 1. Address box sizing set to `content-box` in IE 8/9/10.\n * 2. Remove excess padding in IE 8/9/10.\n */\n\ninput[type=\"checkbox\"],\ninput[type=\"radio\"] {\n box-sizing: border-box; /* 1 */\n padding: 0; /* 2 */\n}\n\n/**\n * Fix the cursor style for Chrome's increment/decrement buttons. For certain\n * `font-size` values of the `input`, it causes the cursor style of the\n * decrement button to change from `default` to `text`.\n */\n\ninput[type=\"number\"]::-webkit-inner-spin-button,\ninput[type=\"number\"]::-webkit-outer-spin-button {\n height: auto;\n}\n\n/**\n * 1. Address `appearance` set to `searchfield` in Safari and Chrome.\n * 2. Address `box-sizing` set to `border-box` in Safari and Chrome\n * (include `-moz` to future-proof).\n */\n\ninput[type=\"search\"] {\n -webkit-appearance: textfield; /* 1 */\n -moz-box-sizing: content-box;\n -webkit-box-sizing: content-box; /* 2 */\n box-sizing: content-box;\n}\n\n/**\n * Remove inner padding and search cancel button in Safari and Chrome on OS X.\n * Safari (but not Chrome) clips the cancel button when the search input has\n * padding (and `textfield` appearance).\n */\n\ninput[type=\"search\"]::-webkit-search-cancel-button,\ninput[type=\"search\"]::-webkit-search-decoration {\n -webkit-appearance: none;\n}\n\n/**\n * Define consistent border, margin, and padding.\n */\n\nfieldset {\n border: 1px solid #c0c0c0;\n margin: 0 2px;\n padding: 0.35em 0.625em 0.75em;\n}\n\n/**\n * 1. Correct `color` not being inherited in IE 8/9/10/11.\n * 2. Remove padding so people aren't caught out if they zero out fieldsets.\n */\n\nlegend {\n border: 0; /* 1 */\n padding: 0; /* 2 */\n}\n\n/**\n * Remove default vertical scrollbar in IE 8/9/10/11.\n */\n\ntextarea {\n overflow: auto;\n}\n\n/**\n * Don't inherit the `font-weight` (applied by a rule above).\n * NOTE: the default cannot safely be changed in Chrome and Safari on OS X.\n */\n\noptgroup {\n font-weight: bold;\n}\n\n/* Tables\n ========================================================================== */\n\n/**\n * Remove most spacing between table cells.\n */\n\ntable {\n border-collapse: collapse;\n border-spacing: 0;\n}\n\ntd,\nth {\n padding: 0;\n}","// Foundation by ZURB\n// foundation.zurb.com\n// Licensed under MIT Open Source\n\n@import \"global\";\n\n//\n// @variables\n//\n$include-html-grid-classes: $include-html-classes !default;\n$include-xl-html-grid-classes: false !default;\n\n$row-width: rem-calc(1000) !default;\n$total-columns: 12 !default;\n\n$last-child-float: $opposite-direction !default;\n\n//\n// Grid Functions\n//\n\n// Deprecated: We'll drop support for this in 5.1, use grid-calc()\n@function gridCalc($colNumber, $totalColumns) {\n @warn \"gridCalc() is deprecated, use grid-calc()\";\n @return grid-calc($colNumber, $totalColumns);\n}\n\n// @FUNCTION\n// $colNumber - Found in settings file\n// $totalColumns - Found in settings file\n@function grid-calc($colNumber, $totalColumns) {\n @return percentage(calc($colNumber / $totalColumns));\n}\n\n//\n// @mixins\n//\n\n// For creating container, nested, and collapsed rows.\n//\n//\n// $behavior - Any special behavior for this row? Default: false. Options: nest, collapse, nest-collapse, false.\n@mixin grid-row($behavior: false) {\n\n // use @include grid-row(nest); to include a nested row\n @if $behavior ==nest {\n width: auto;\n margin-#{$default-float}: - calc($column-gutter/2);\n margin-#{$opposite-direction}: - calc($column-gutter/2);\n margin-top: 0;\n margin-bottom: 0;\n max-width: none;\n }\n\n // use @include grid-row(collapse); to collapsed a container row margins\n @else if $behavior ==collapse {\n width: 100%;\n margin: 0;\n max-width: $row-width;\n }\n\n // use @include grid-row(nest-collapse); to collapse outer margins on a nested row\n @else if $behavior ==nest-collapse {\n width: auto;\n margin: 0;\n max-width: none;\n }\n\n // use @include grid-row; to use a container row\n @else {\n width: 100%;\n margin-#{$default-float}: auto;\n margin-#{$opposite-direction}: auto;\n margin-top: 0;\n margin-bottom: 0;\n max-width: $row-width;\n }\n\n // Clearfix for all rows\n @include clearfix();\n}\n\n// Creates a column, should be used inside of a media query to control layouts\n//\n// $columns - The number of columns this should be\n// $last-column - Is this the last column? Default: false.\n// $center - Center these columns? Default: false.\n// $offset - # of columns to offset. Default: false.\n// $push - # of columns to push. Default: false.\n// $pull - # of columns to pull. Default: false.\n// $collapse - Get rid of gutter padding on column? Default: false.\n// $float - Should this float? Default: true. Options: true, false, left, right.\n@mixin grid-column($columns: false,\n $last-column: false,\n $center: false,\n $offset: false,\n $push: false,\n $pull: false,\n $collapse: false,\n $float: true,\n $position: false) {\n\n // If positioned for default .column, include relative position\n // push and pull require position set\n @if $position or $push or $pull {\n position: relative;\n }\n\n // If collapsed, get rid of gutter padding\n @if $collapse {\n padding-left: 0;\n padding-right: 0;\n }\n\n // Gutter padding whenever a column isn't set to collapse\n // (use $collapse:null to do nothing)\n @else if $collapse ==false {\n padding-left: calc($column-gutter / 2);\n padding-right: calc($column-gutter / 2);\n }\n\n // If a column number is given, calculate width\n @if $columns {\n width: grid-calc($columns, $total-columns);\n\n // If last column, float naturally instead of to the right\n @if $last-column {\n float: $opposite-direction;\n }\n }\n\n // Source Ordering, adds left/right depending on which you use.\n @if $push {\n #{$default-float}: grid-calc($push, $total-columns);\n #{$opposite-direction}: auto;\n }\n\n @if $pull {\n #{$opposite-direction}: grid-calc($pull, $total-columns);\n #{$default-float}: auto;\n }\n\n @if $float {\n @if $float ==left or $float ==true {\n float: $default-float;\n }\n\n @else if $float ==right {\n float: $opposite-direction;\n }\n\n @else {\n float: none;\n }\n }\n\n // If centered, get rid of float and add appropriate margins\n @if $center {\n margin-#{$default-float}: auto;\n margin-#{$opposite-direction}: auto;\n float: none;\n }\n\n // If offset, calculate appropriate margins\n @if $offset {\n margin-#{$default-float}: grid-calc($offset, $total-columns) !important;\n }\n\n}\n\n// Create presentational classes for grid\n//\n// $size - Name of class to use, i.e. \"large\" will generate .large-1, .large-2, etc.\n@mixin grid-html-classes($size) {\n\n @for $i from 0 through $total-columns - 1 {\n .#{$size}-push-#{$i} {\n @include grid-column($push: $i, $collapse: null, $float: false);\n }\n\n .#{$size}-pull-#{$i} {\n @include grid-column($pull: $i, $collapse: null, $float: false);\n }\n }\n\n .column,\n .columns {\n @include grid-column($columns: false, $position: true);\n }\n\n\n @for $i from 1 through $total-columns {\n .#{$size}-#{$i} {\n @include grid-column($columns: $i, $collapse: null, $float: false);\n }\n }\n\n @for $i from 0 through $total-columns - 1 {\n .#{$size}-offset-#{$i} {\n @include grid-column($offset: $i, $collapse: null, $float: false);\n }\n }\n\n .#{$size}-reset-order {\n margin-#{$default-float}: 0;\n margin-#{$opposite-direction}: 0;\n left: auto;\n right: auto;\n float: $default-float;\n }\n\n .column.#{$size}-centered,\n .columns.#{$size}-centered {\n @include grid-column($center: true, $collapse: null, $float: false);\n }\n\n .column.#{$size}-uncentered,\n .columns.#{$size}-uncentered {\n margin-#{$default-float}: 0;\n margin-#{$opposite-direction}: 0;\n float: $default-float;\n }\n\n // Fighting [class*=\"column\"] + [class*=\"column\"]:last-child\n .column.#{$size}-centered:last-child,\n .columns.#{$size}-centered:last-child {\n float: none;\n }\n\n // Fighting .column.-centered:last-child\n .column.#{$size}-uncentered:last-child,\n .columns.#{$size}-uncentered:last-child {\n float: $default-float;\n }\n\n .column.#{$size}-uncentered.opposite,\n .columns.#{$size}-uncentered.opposite {\n float: $opposite-direction;\n }\n\n .row {\n &.#{$size}-collapse {\n\n >.column,\n >.columns {\n @include grid-column($collapse: true, $float: false);\n }\n\n .row {\n margin-left: 0;\n margin-right: 0;\n }\n }\n\n &.#{$size}-uncollapse {\n\n >.column,\n >.columns {\n @include grid-column;\n }\n }\n }\n}\n\n@include exports(\"grid\") {\n @if $include-html-grid-classes {\n .row {\n @include grid-row;\n\n &.collapse {\n\n >.column,\n >.columns {\n @include grid-column($collapse: true, $float: false);\n }\n\n .row {\n margin-left: 0;\n margin-right: 0;\n }\n }\n\n .row {\n @include grid-row($behavior: nest);\n\n &.collapse {\n @include grid-row($behavior: nest-collapse);\n }\n }\n }\n\n .column,\n .columns {\n @include grid-column($columns: $total-columns);\n }\n\n [class*=\"column\"]+[class*=\"column\"]:last-child {\n float: $last-child-float;\n }\n\n [class*=\"column\"]+[class*=\"column\"].end {\n float: $default-float;\n }\n\n @media #{$small-up} {\n @include grid-html-classes($size: small);\n }\n\n @media #{$medium-up} {\n @include grid-html-classes($size: medium);\n\n // Old push and pull classes\n @for $i from 0 through $total-columns - 1 {\n .push-#{$i} {\n @include grid-column($push: $i, $collapse: null, $float: false);\n }\n\n .pull-#{$i} {\n @include grid-column($pull: $i, $collapse: null, $float: false);\n }\n }\n }\n\n @media #{$large-up} {\n @include grid-html-classes($size: large);\n\n @for $i from 0 through $total-columns - 1 {\n .push-#{$i} {\n @include grid-column($push: $i, $collapse: null, $float: false);\n }\n\n .pull-#{$i} {\n @include grid-column($pull: $i, $collapse: null, $float: false);\n }\n }\n }\n }\n\n @if $include-xl-html-grid-classes {\n @media #{$xlarge-up} {\n @include grid-html-classes($size: xlarge);\n }\n\n @media #{$xxlarge-up} {\n @include grid-html-classes($size: xxlarge);\n }\n }\n}","// Foundation by ZURB\n// foundation.zurb.com\n// Licensed under MIT Open Source\n\n@import \"../functions\";\n//\n// Foundation Variables\n//\n\n// Data attribute namespace\n// styles get applied to [data-mysite-plugin], etc\n$namespace: false !default;\n\n// The default font-size is set to 100% of the browser style sheet (usually 16px)\n// for compatibility with browser-based text zoom or user-set defaults.\n\n// Since the typical default browser font-size is 16px, that makes the calculation for grid size.\n// If you want your base font-size to be different and not have it affect the grid breakpoints,\n// set $rem-base to $base-font-size and make sure $base-font-size is a px value.\n$base-font-size: 100% !default;\n\n// $base-line-height is 24px while $base-font-size is 16px\n$base-line-height: 1.5 !default;\n\n//\n// Global Foundation Mixins\n//\n\n// @mixins\n//\n// We use this to control border radius.\n// $radius - Default: $global-radius || 4px\n@mixin radius($radius: $global-radius) {\n @if $radius {\n border-radius: $radius;\n }\n}\n\n// @mixins\n//\n// We use this to create equal side border radius on elements.\n// $side - Options: left, right, top, bottom\n@mixin side-radius($side, $radius: $global-radius) {\n @if ($side ==left or $side ==right) {\n -webkit-border-bottom-#{$side}-radius: $radius;\n -webkit-border-top-#{$side}-radius: $radius;\n border-bottom-#{$side}-radius: $radius;\n border-top-#{$side}-radius: $radius;\n }\n\n @else {\n -webkit-#{$side}-left-radius: $radius;\n -webkit-#{$side}-right-radius: $radius;\n border-#{$side}-left-radius: $radius;\n border-#{$side}-right-radius: $radius;\n }\n}\n\n// @mixins\n//\n// We can control whether or not we have inset shadows edges.\n// $active - Default: true, Options: false\n@mixin inset-shadow($active: true) {\n box-shadow: $shiny-edge-size $shiny-edge-color inset;\n\n @if $active {\n &:active {\n box-shadow: $shiny-edge-size $shiny-edge-active-color inset;\n }\n }\n}\n\n// @mixins\n//\n// We use this to add transitions to elements\n// $property - Default: all, Options: http://www.w3.org/TR/css3-transitions/#animatable-properties\n// $speed - Default: 300ms\n// $ease - Default:ease-out, Options: http://css-tricks.com/almanac/properties/t/transition-timing-function/\n@mixin single-transition($property: all, $speed: 300ms, $ease: ease-out) {\n transition: $property $speed $ease;\n}\n\n// @mixins\n//\n// We use this to add box-sizing across browser prefixes\n@mixin box-sizing($type: border-box) {\n -webkit-box-sizing: $type; // Android < 2.3, iOS < 4\n -moz-box-sizing: $type; // Firefox < 29\n box-sizing: $type; // Chrome, IE 8+, Opera, Safari 5.1\n}\n\n// @mixins\n//\n// We use this to create isosceles triangles\n// $triangle-size - Used to set border-size. No default, set a px or em size.\n// $triangle-color - Used to set border-color which makes up triangle. No default\n// $triangle-direction - Used to determine which direction triangle points. Options: top, bottom, left, right\n@mixin css-triangle($triangle-size, $triangle-color, $triangle-direction) {\n content: \"\";\n display: block;\n width: 0;\n height: 0;\n border: inset $triangle-size;\n\n @if ($triangle-direction ==top) {\n border-color: $triangle-color transparent transparent transparent;\n border-top-style: solid;\n }\n\n @if ($triangle-direction ==bottom) {\n border-color: transparent transparent $triangle-color transparent;\n border-bottom-style: solid;\n }\n\n @if ($triangle-direction ==left) {\n border-color: transparent transparent transparent $triangle-color;\n border-left-style: solid;\n }\n\n @if ($triangle-direction ==right) {\n border-color: transparent $triangle-color transparent transparent;\n border-right-style: solid;\n }\n}\n\n// @mixins\n//\n// We use this to create the icon with three lines aka the hamburger icon, the menu-icon or the navicon\n// $width - Width of hamburger icon in rem\n// $left - If false, icon will be centered horizontally || explicitly set value in rem\n// $top - If false, icon will be centered vertically || explicitly set value in rem\n// $thickness - thickness of lines in hamburger icon, set value in px\n// $gap - spacing between the lines in hamburger icon, set value in px\n// $color - icon color\n// $hover-color - icon color during hover\n// $offcanvas - Set to true of @include in offcanvas\n@mixin hamburger($width, $left, $top, $thickness, $gap, $color, $hover-color, $offcanvas) {\n span::after {\n content: \"\";\n position: absolute;\n display: block;\n height: 0;\n\n @if $offcanvas {\n @if $top {\n top: $top;\n }\n\n @else {\n top: 50%;\n margin-top: (-$width/2);\n }\n\n @if $left {\n left: $left;\n }\n\n @else {\n left: ($tabbar-menu-icon-width - $width)/2;\n }\n }\n\n @else {\n top: 50%;\n margin-top: -(calc($width / 2));\n #{$opposite-direction}: $topbar-link-padding;\n }\n\n box-shadow: 0 0 0 $thickness $color,\n 0 ($gap + $thickness) 0 $thickness $color,\n 0 (2 * $gap + 2*$thickness) 0 $thickness $color;\n width: $width;\n }\n\n span:hover:after {\n box-shadow:\n 0 0 0 $thickness $hover-color,\n 0 $gap + $thickness 0 $thickness $hover-color,\n 0 (2 * $gap + 2*$thickness) 0 $thickness $hover-color;\n }\n}\n\n// We use this to do clear floats\n@mixin clearfix {\n\n &:before,\n &:after {\n content: \" \";\n display: table;\n }\n\n &:after {\n clear: both;\n }\n}\n\n// @mixins\n//\n// We use this to add a glowing effect to block elements\n// $selector - Used for selector state. Default: focus, Options: hover, active, visited\n// $fade-time - Default: 300ms\n// $glowing-effect-color - Default: fade-out($primary-color, .25)\n@mixin block-glowing-effect($selector: focus, $fade-time: 300ms, $glowing-effect-color: fade-out($primary-color, .25)) {\n transition: box-shadow $fade-time, border-color $fade-time ease-in-out;\n\n &:#{$selector} {\n box-shadow: 0 0 5px $glowing-effect-color;\n border-color: $glowing-effect-color;\n }\n}\n\n// @mixins\n//\n// We use this to translate elements in 2D\n// $horizontal: Default: 0\n// $vertical: Default: 0\n@mixin translate2d($horizontal: 0, $vertical: 0) {\n transform: translate($horizontal, $vertical)\n}\n\n// @mixins\n//\n// Makes an element visually hidden, but accessible.\n// @see http://snook.ca/archives/html_and_css/hiding-content-for-accessibility\n@mixin element-invisible {\n position: absolute !important;\n height: 1px;\n width: 1px;\n overflow: hidden;\n clip: rect(1px, 1px, 1px, 1px);\n}\n\n// @mixins\n//\n// Turns off the element-invisible effect.\n@mixin element-invisible-off {\n position: static !important;\n height: auto;\n width: auto;\n overflow: visible;\n clip: auto;\n}\n\n$white : #FFFFFF !default;\n$ghost : #FAFAFA !default;\n$snow : #F9F9F9 !default;\n$vapor : #F6F6F6 !default;\n$white-smoke : #F5F5F5 !default;\n$silver : #EFEFEF !default;\n$smoke : #EEEEEE !default;\n$gainsboro : #DDDDDD !default;\n$iron : #CCCCCC !default;\n$base : #AAAAAA !default;\n$aluminum : #999999 !default;\n$jumbo : #888888 !default;\n$monsoon : #777777 !default;\n$steel : #666666 !default;\n$charcoal : #555555 !default;\n$tuatara : #444444 !default;\n$oil : #333333 !default;\n$jet : #222222 !default;\n$black : #000000 !default;\n\n// We use these as default colors throughout\n$primary-color: #008CBA !default; // bondi-blue\n$secondary-color: #e7e7e7 !default; // white-lilac\n$alert-color: #f04124 !default; // cinnabar\n$success-color: #43AC6A !default; // sea-green\n$warning-color: #f08a24 !default; // carrot\n$info-color: #a0d3e8 !default; // cornflower\n\n// We use these to define default font stacks\n$font-family-sans-serif: \"Helvetica Neue\", Helvetica, Roboto, Arial, sans-serif !default;\n$font-family-serif: Georgia, Cambria, \"Times New Roman\", Times, serif !default;\n$font-family-monospace: Consolas, \"Liberation Mono\", Courier, monospace !default;\n\n// We use these to define default font weights\n$font-weight-normal: normal !default;\n$font-weight-bold: bold !default;\n\n// We use these to control various global styles\n$body-bg: #fff !default;\n$body-font-color: #222 !default;\n$body-font-family: $font-family-sans-serif !default;\n$body-font-weight: $font-weight-normal !default;\n$body-font-style: normal !default;\n\n// We use this to control font-smoothing\n$font-smoothing: antialiased !default;\n\n// We use these to control text direction settings\n$text-direction: ltr !default;\n$default-float: left !default;\n$opposite-direction: right !default;\n\n@if $text-direction ==ltr {\n $default-float: left;\n $opposite-direction: right;\n}\n\n@else {\n $default-float: right;\n $opposite-direction: left;\n}\n\n// We use these to make sure border radius matches unless we want it different.\n$global-radius: 3px !default;\n$global-rounded: 1000px !default;\n\n// We use these to control inset shadow shiny edges and depressions.\n$shiny-edge-size: 0 1px 0 !default;\n$shiny-edge-color: rgba(#fff, .5) !default;\n$shiny-edge-active-color: rgba(#000, .2) !default;\n\n// We use this to control whether or not CSS classes come through in the gem files.\n$include-html-classes: true !default;\n$include-print-styles: true !default;\n$include-html-global-classes: $include-html-classes !default;\n\n$column-gutter: rem-calc(30) !default;\n\n// Media Query Ranges\n$small-range: (\n 0,\n 40em) !default;\n$medium-range: (\n 40.063em,\n 64em) !default;\n$large-range: (\n 64.063em,\n 90em) !default;\n$xlarge-range: (\n 90.063em,\n 120em) !default;\n$xxlarge-range: (\n 120.063em,\n 99999999em) !default;\n\n\n$screen: \"only screen\" !default;\n\n$landscape: \"#{$screen} and (orientation: landscape)\" !default;\n$portrait: \"#{$screen} and (orientation: portrait)\" !default;\n\n$small-up: $screen !default;\n$small-only: \"#{$screen} and (max-width: #{upper-bound($small-range)})\" !default;\n\n$medium-up: \"#{$screen} and (min-width:#{lower-bound($medium-range)})\" !default;\n$medium-only: \"#{$screen} and (min-width:#{lower-bound($medium-range)}) and (max-width:#{upper-bound($medium-range)})\" !default;\n\n$large-up: \"#{$screen} and (min-width:#{lower-bound($large-range)})\" !default;\n$large-only: \"#{$screen} and (min-width:#{lower-bound($large-range)}) and (max-width:#{upper-bound($large-range)})\" !default;\n\n$xlarge-up: \"#{$screen} and (min-width:#{lower-bound($xlarge-range)})\" !default;\n$xlarge-only: \"#{$screen} and (min-width:#{lower-bound($xlarge-range)}) and (max-width:#{upper-bound($xlarge-range)})\" !default;\n\n$xxlarge-up: \"#{$screen} and (min-width:#{lower-bound($xxlarge-range)})\" !default;\n$xxlarge-only: \"#{$screen} and (min-width:#{lower-bound($xxlarge-range)}) and (max-width:#{upper-bound($xxlarge-range)})\" !default;\n\n// Legacy\n$small: $medium-up;\n$medium: $medium-up;\n$large: $large-up;\n\n\n//We use this as cursors values for enabling the option of having custom cursors in the whole site's stylesheet\n$cursor-auto-value: auto !default;\n$cursor-crosshair-value: crosshair !default;\n$cursor-default-value: default !default;\n$cursor-pointer-value: pointer !default;\n$cursor-help-value: help !default;\n$cursor-text-value: text !default;\n\n\n@include exports(\"global\") {\n\n // Meta styles are included in all builds, as they are a dependency of the Javascript.\n // Used to provide media query values for javascript components.\n // Forward slash placed around everything to convince PhantomJS to read the value.\n\n meta.foundation-version {\n font-family: \"/5.5.0/\";\n }\n\n meta.foundation-mq-small {\n font-family: \"/\" + unquote($small-up) + \"/\";\n width: lower-bound($small-range\n );\n}\n\nmeta.foundation-mq-small-only {\n font-family: \"/\" + unquote($small-only) + \"/\";\n width: lower-bound($small-range);\n}\n\nmeta.foundation-mq-medium {\n font-family: \"/\" + unquote($medium-up) + \"/\";\n width: lower-bound($medium-range);\n}\n\nmeta.foundation-mq-medium-only {\n font-family: \"/\" + unquote($medium-only) + \"/\";\n width: lower-bound($medium-range);\n}\n\nmeta.foundation-mq-large {\n font-family: \"/\" + unquote($large-up) + \"/\";\n width: lower-bound($large-range);\n}\n\nmeta.foundation-mq-large-only {\n font-family: \"/\" + unquote($large-only) + \"/\";\n width: lower-bound($large-range);\n}\n\nmeta.foundation-mq-xlarge {\n font-family: \"/\" + unquote($xlarge-up) + \"/\";\n width: lower-bound($xlarge-range);\n}\n\nmeta.foundation-mq-xlarge-only {\n font-family: \"/\" + unquote($xlarge-only) + \"/\";\n width: lower-bound($xlarge-range);\n}\n\nmeta.foundation-mq-xxlarge {\n font-family: \"/\" + unquote($xxlarge-up) + \"/\";\n width: lower-bound($xxlarge-range);\n}\n\nmeta.foundation-data-attribute-namespace {\n font-family: #{$namespace};\n}\n\n@if $include-html-global-classes {\n\n // Must be 100% for off canvas to work\n html,\n body {\n height: 100%;\n }\n\n // Set box-sizing globally to handle padding and border widths\n *,\n *:before,\n *:after {\n @include box-sizing(border-box);\n }\n\n html,\n body {\n font-size: $base-font-size;\n }\n\n // Default body styles\n body {\n background: $body-bg;\n color: $body-font-color;\n padding: 0;\n margin: 0;\n font-family: $body-font-family;\n font-weight: $body-font-weight;\n font-style: $body-font-style;\n line-height: $base-line-height; // Set to $base-line-height to take on browser default of 150%\n position: relative;\n cursor: $cursor-auto-value;\n }\n\n a:hover {\n cursor: $cursor-pointer-value;\n }\n\n // Grid Defaults to get images and embeds to work properly\n img {\n max-width: 100%;\n height: auto;\n }\n\n img {\n -ms-interpolation-mode: bicubic;\n }\n\n #map_canvas,\n .map_canvas {\n\n img,\n embed,\n object {\n max-width: none !important;\n }\n }\n\n // Miscellaneous useful HTML classes\n .left {\n float: left !important;\n }\n\n .right {\n float: right !important;\n }\n\n .clearfix {\n @include clearfix;\n }\n\n // Hide visually and from screen readers\n .hide {\n display: none !important;\n visibility: hidden;\n }\n\n // Hide visually and from screen readers, but maintain layout\n .invisible {\n visibility: hidden;\n }\n\n // Font smoothing\n // Antialiased font smoothing works best for light text on a dark background.\n // Apply to single elements instead of globally to body.\n // Note this only applies to webkit-based desktop browsers and Firefox 25 (and later) on the Mac.\n .antialiased {\n -webkit-font-smoothing: antialiased;\n -moz-osx-font-smoothing: grayscale;\n }\n\n // Get rid of gap under images by making them display: inline-block; by default\n img {\n display: inline-block;\n vertical-align: middle;\n }\n\n //\n // Global resets for forms\n //\n\n // Make sure textarea takes on height automatically\n textarea {\n height: auto;\n min-height: 50px;\n }\n\n // Make select elements 100% width by default\n select {\n width: 100%;\n }\n}\n}","// Foundation by ZURB\n// foundation.zurb.com\n// Licensed under MIT Open Source\n\n@import \"global\";\n\n//\n// @variables\n//\n$include-html-button-classes: $include-html-classes !default;\n\n// We use these to build padding for buttons.\n$button-tny: rem-calc(10) !default;\n$button-sml: rem-calc(14) !default;\n$button-med: rem-calc(16) !default;\n$button-lrg: rem-calc(18) !default;\n\n// We use this to control the display property.\n$button-display: inline-block !default;\n$button-margin-bottom: rem-calc(20) !default;\n\n// We use these to control button text styles.\n$button-font-family: $body-font-family !default;\n$button-font-color: $white !default;\n$button-font-color-alt: $oil !default;\n$button-font-tny: rem-calc(11) !default;\n$button-font-sml: rem-calc(13) !default;\n$button-font-med: rem-calc(16) !default;\n$button-font-lrg: rem-calc(20) !default;\n$button-font-weight: $font-weight-normal !default;\n$button-font-align: center !default;\n\n// We use these to control various hover effects.\n$button-function-factor: -20% !default;\n\n// We use these to control button border styles.\n$button-border-width: 0 !default;\n$button-border-style: solid !default;\n$button-bg-color: $primary-color !default;\n$button-bg-hover: scale-color($button-bg-color, $lightness: $button-function-factor) !default;\n$button-border-color: $button-bg-hover !default;\n$secondary-button-bg-hover: scale-color($secondary-color, $lightness: $button-function-factor) !default;\n$secondary-button-border-color: $secondary-button-bg-hover !default;\n$success-button-bg-hover: scale-color($success-color, $lightness: $button-function-factor) !default;\n$success-button-border-color: $success-button-bg-hover !default;\n$alert-button-bg-hover: scale-color($alert-color, $lightness: $button-function-factor) !default;\n$alert-button-border-color: $alert-button-bg-hover !default;\n$warning-button-bg-hover: scale-color($warning-color, $lightness: $button-function-factor) !default;\n$warning-button-border-color: $warning-button-bg-hover !default;\n$info-button-bg-hover: scale-color($info-color, $lightness: $button-function-factor) !default;\n$info-button-border-color: $info-button-bg-hover !default;\n\n// We use this to set the default radius used throughout the core.\n$button-radius: $global-radius !default;\n$button-round: $global-rounded !default;\n\n// We use this to set default opacity and cursor for disabled buttons.\n$button-disabled-opacity: 0.7 !default;\n$button-disabled-cursor: $cursor-default-value !default;\n\n\n//\n// @MIXIN\n//\n// We use this mixin to create a default button base.\n//\n// $style - Sets base styles. Can be set to false. Default: true.\n// $display - Used to control display property. Default: $button-display || inline-block\n\n@mixin button-base($style:true, $display:$button-display) {\n @if $style {\n border-style: $button-border-style;\n border-width: $button-border-width;\n cursor: $cursor-pointer-value;\n font-family: $button-font-family;\n font-weight: $button-font-weight;\n line-height: normal;\n margin: 0 0 $button-margin-bottom;\n position: relative;\n text-decoration: none;\n text-align: $button-font-align;\n -webkit-appearance: none;\n border-radius:0;\n }\n @if $display { display: $display; }\n}\n\n// @MIXIN\n//\n// We use this mixin to add button size styles\n//\n// $padding - Used to build padding for buttons Default: $button-med ||= rem-calc(12)\n// $full-width - We can set $full-width:true to remove side padding extend width - Default: false\n\n@mixin button-size($padding:$button-med, $full-width:false) {\n\n // We control which padding styles come through,\n // these can be turned off by setting $padding:false\n @if $padding {\n padding-top: $padding;\n padding-#{$opposite-direction}: $padding * 2;\n padding-bottom: $padding + rem-calc(1);\n padding-#{$default-float}: $padding * 2;\n\n // We control the font-size based on mixin input.\n @if $padding == $button-med { font-size: $button-font-med; }\n @else if $padding == $button-tny { font-size: $button-font-tny; }\n @else if $padding == $button-sml { font-size: $button-font-sml; }\n @else if $padding == $button-lrg { font-size: $button-font-lrg; }\n }\n\n // We can set $full-width:true to remove side padding extend width.\n @if $full-width {\n // We still need to check if $padding is set.\n @if $padding {\n padding-top: $padding;\n padding-bottom: $padding + rem-calc(1);\n } @else if $padding == false {\n padding-top:0;\n padding-bottom:0;\n }\n padding-right: 0;\n padding-left: 0;\n width: 100%;\n }\n}\n\n// @MIXIN\n//\n// we use this mixin to create the button hover and border colors\n\n// @MIXIN\n//\n// We use this mixin to add button color styles\n//\n// $bg - Background color. We can set $bg:false for a transparent background. Default: $primary-color.\n// $radius - If true, set to button radius which is $global-radius || explicitly set radius amount in px (ex. $radius:10px). Default: true\n// $disabled - We can set $disabled:true to create a disabled transparent button. Default: false\n// $bg-hover - Button Hover Background Color. Default: $button-bg-hover\n// $border-color - Button Border Color. Default: $button-border-color\n@mixin button-style($bg:$button-bg-color, $radius:false, $disabled:false, $bg-hover:null, $border-color:null) {\n\n // We control which background styles are used,\n // these can be removed by setting $bg:false\n @if $bg {\n\n @if $bg-hover == null {\n $bg-hover: if($bg == $button-bg-color, $button-bg-hover, scale-color($bg, $lightness: $button-function-factor));\n }\n\n @if $border-color == null {\n $border-color: if($bg == $button-bg-color, $button-border-color, scale-color($bg, $lightness: $button-function-factor));\n }\n\n // This find the lightness percentage of the background color.\n $bg-lightness: lightness($bg);\n $bg-hover-lightness: lightness($bg-hover);\n\n background-color: $bg;\n border-color: $border-color;\n &:hover,\n &:focus { background-color: $bg-hover; }\n\n // We control the text color for you based on the background color.\n color: if($bg-lightness > 70%, $button-font-color-alt, $button-font-color);\n\n &:hover,\n &:focus {\n color: if($bg-hover-lightness > 70%, $button-font-color-alt, $button-font-color);\n }\n }\n\n // We can set $disabled:true to create a disabled transparent button.\n @if $disabled {\n cursor: $button-disabled-cursor;\n opacity: $button-disabled-opacity;\n box-shadow: none;\n &:hover,\n &:focus { background-color: $bg; }\n }\n\n // We can control how much button radius is used.\n @if $radius == true { @include radius($button-radius); }\n @else if $radius { @include radius($radius); }\n\n}\n\n// @MIXIN\n//\n// We use this to quickly create buttons with a single mixin. As @jaredhardy puts it, \"the kitchen sink mixin\"\n//\n// $padding - Used to build padding for buttons Default: $button-med ||= rem-calc(12)\n// $bg - Primary color set in settings file. Default: $button-bg.\n// $radius - If true, set to button radius which is $global-radius || explicitly set radius amount in px (ex. $radius:10px). Default:false.\n// $full-width - We can set $full-width:true to remove side padding extend width. Default:false.\n// $disabled - We can set $disabled:true to create a disabled transparent button. Default:false.\n// $is-prefix - Not used? Default:false.\n// $bg-hover - Button Hover Color - Default null - see button-style mixin\n// $border-color - Button Border Color - Default null - see button-style mixin\n// $transition - We can control whether or not to include the background-color transition property - Default:true.\n@mixin button($padding:$button-med, $bg:$button-bg-color, $radius:false, $full-width:false, $disabled:false, $is-prefix:false, $bg-hover:null, $border-color:null, $transition: true) {\n @include button-base;\n @include button-size($padding, $full-width);\n @include button-style($bg, $radius, $disabled, $bg-hover, $border-color);\n\n @if $transition {\n @include single-transition(background-color);\n }\n}\n\n\n@include exports(\"button\") {\n @if $include-html-button-classes {\n\n // Default styles applied outside of media query\n button, .button {\n @include button-base;\n @include button-size;\n @include button-style;\n\n @include single-transition(background-color);\n\n &.secondary { @include button-style($bg:$secondary-color, $bg-hover:$secondary-button-bg-hover, $border-color:$secondary-button-border-color); }\n &.success { @include button-style($bg:$success-color, $bg-hover:$success-button-bg-hover, $border-color:$success-button-border-color); }\n &.alert { @include button-style($bg:$alert-color, $bg-hover:$alert-button-bg-hover, $border-color:$alert-button-border-color); }\n &.warning { @include button-style($bg:$warning-color, $bg-hover:$warning-button-bg-hover, $border-color:$warning-button-border-color); }\n &.info { @include button-style($bg:$info-color, $bg-hover:$info-button-bg-hover, $border-color:$info-button-border-color); }\n\n &.large { @include button-size($padding:$button-lrg); }\n &.small { @include button-size($padding:$button-sml); }\n &.tiny { @include button-size($padding:$button-tny); }\n &.expand { @include button-size($padding:null,$full-width:true); }\n\n &.left-align { text-align: left; text-indent: rem-calc(12); }\n &.right-align { text-align: right; padding-right: rem-calc(12); }\n\n &.radius { @include button-style($bg:false, $radius:true); }\n &.round { @include button-style($bg:false, $radius:$button-round); }\n\n &.disabled, &[disabled] { @include button-style($bg:$button-bg-color, $disabled:true, $bg-hover:$button-bg-hover, $border-color:$button-border-color);\n &.secondary { @include button-style($bg:$secondary-color, $disabled:true, $bg-hover:$secondary-button-bg-hover, $border-color:$secondary-button-border-color); }\n &.success { @include button-style($bg:$success-color, $disabled:true, $bg-hover:$success-button-bg-hover, $border-color:$success-button-border-color); }\n &.alert { @include button-style($bg:$alert-color, $disabled:true, $bg-hover:$alert-button-bg-hover, $border-color:$alert-button-border-color); }\n &.warning { @include button-style($bg:$warning-color, $disabled:true, $bg-hover:$warning-button-bg-hover, $border-color:$warning-button-border-color); }\n &.info { @include button-style($bg:$info-color, $disabled:true, $bg-hover:$info-button-bg-hover, $border-color:$info-button-border-color); }\n }\n }\n\n //firefox 2px fix\n button::-moz-focus-inner {border:0; padding:0;}\n\n @media #{$medium-up} {\n button, .button {\n @include button-base($style:false, $display:inline-block);\n @include button-size($padding:false, $full-width:false);\n }\n }\n }\n}\n","@charset \"utf-8\";\n\n$spacing-unit: 30px;\n\n\n// Foundation by ZURB\n// foundation.zurb.com\n// Licensed under MIT Open Source\n\n//\n\n// Table of Contents\n// Foundation Settings\n//\n// a. Base\n// b. Grid\n// c. Global\n// d. Media Query Ranges\n// e. Typography\n// 01. Accordion\n// 02. Alert Boxes\n// 03. Block Grid\n// 04. Breadcrumbs\n// 05. Buttons\n// 06. Button Groups\n// 07. Clearing\n// 08. Dropdown\n// 09. Dropdown Buttons\n// 10. Flex Video\n// 11. Forms\n// 12. Icon Bar\n// 13. Inline Lists\n// 14. Joyride\n// 15. Keystrokes\n// 16. Labels\n// 17. Magellan\n// 18. Off-canvas\n// 19. Orbit\n// 20. Pagination\n// 21. Panels\n// 22. Pricing Tables\n// 23. Progress Bar\n// 24. Range Slider\n// 25. Reveal\n// 26. Side Nav\n// 27. Split Buttons\n// 28. Sub Nav\n// 29. Switch\n// 30. Tables\n// 31. Tabs\n// 32. Thumbnails\n// 33. Tooltips\n// 34. Top Bar\n// 36. Visibility Classes\n\n// a. Base\n// - - - - - - - - - - - - - - - - - - - - - - - - -\n\n// This is the default html and body font-size for the base rem value.\n// $rem-base: 16px;\n\n// Allows the use of rem-calc() or lower-bound() in your settings\n@import \"functions\";\n\n// The default font-size is set to 100% of the browser style sheet (usually 16px)\n// for compatibility with browser-based text zoom or user-set defaults.\n\n// Since the typical default browser font-size is 16px, that makes the calculation for grid size.\n// If you want your base font-size to be different and not have it affect the grid breakpoints,\n// set $rem-base to $base-font-size and make sure $base-font-size is a px value.\n// $base-font-size: 100%;\n\n$base-font-size: 16px;\n$rem-base: $base-font-size;\n\n\n// The $base-font-size is 100% while $base-line-height is 150%\n// $base-line-height: 150%;\n\n// We use this to control whether or not CSS classes come through in the gem files.\n$include-html-classes: true;\n// $include-print-styles: true;\n$include-html-global-classes: $include-html-classes;\n\n// b. Grid\n// - - - - - - - - - - - - - - - - - - - - - - - - -\n\n// $include-html-grid-classes: $include-html-classes;\n// $include-xl-html-grid-classes: false;\n\n// $row-width: rem-calc(1000);\n// $total-columns: 12;\n// $column-gutter: rem-calc(30);\n\n// c. Global\n// - - - - - - - - - - - - - - - - - - - - - - - - -\n\n// We use these to define default font stacks\n// $font-family-sans-serif: \"Lato\", \"Helvetica Neue\", \"Helvetica\", Helvetica, Arial, sans-serif;\n// $font-family-serif: \"Volkhov\", Georgia, Times, serif;\n// $font-family-monospace: \"Lucida Console\", Monaco, monospace;\n\n// We use these to define default font weights\n// $font-weight-normal: normal !default;\n// $font-weight-bold: bold !default;\n\n// $white : #FFFFFF;\n// $ghost : #FAFAFA;\n// $snow : #F9F9F9;\n// $vapor : #F6F6F6;\n// $white-smoke : #F5F5F5;\n// $silver : #EFEFEF;\n// $smoke : #EEEEEE;\n// $gainsboro : #DDDDDD;\n// $iron : #CCCCCC;\n// $base : #AAAAAA;\n// $aluminum : #999999;\n// $jumbo : #888888;\n// $monsoon : #777777;\n// $steel : #666666;\n// $charcoal : #555555;\n// $tuatara : #444444;\n// $oil : #333333;\n// $jet : #222222;\n// $black : #000000;\n\n// We use these as default colors throughout\n// $primary-color: #008CBA;\n// $secondary-color: #e7e7e7;\n// $alert-color: #f04124;\n// $success-color: #43AC6A;\n// $warning-color: #f08a24;\n// $info-color: #a0d3e8;\n\n// We use these to control various global styles\n// $body-bg: $white;\n// $body-font-color: $jet;\n// $body-font-family: $font-family-sans-serif;\n// $body-font-weight: $font-weight-normal;\n// $body-font-style: normal;\n\n// We use this to control font-smoothing\n// $font-smoothing: antialiased;\n\n// We use these to control text direction settings\n// $text-direction: ltr;\n// $opposite-direction: right;\n// $default-float: left;\n// $last-child-float: $opposite-direction;\n\n// We use these to make sure border radius matches unless we want it different.\n$global-radius: 3px;\n// $global-rounded: 1000px;\n\n// We use these to control inset shadow shiny edges and depressions.\n// $shiny-edge-size: 0 1px 0;\n// $shiny-edge-color: rgba($white, .5);\n// $shiny-edge-active-color: rgba($black, .2);\n\n// // d. Media Query Ranges\n// // - - - - - - - - - - - - - - - - - - - - - - - - -\n\n// $small-range: (0em, 40em);\n// $medium-range: (40.063em, 64em);\n// $large-range: (64.063em, 90em);\n// $xlarge-range: (90.063em, 120em);\n// $xxlarge-range: (120.063em, 99999999em);\n\n// $screen: \"only screen\";\n\n// // $landscape: \"#{$screen} and (orientation: landscape)\";\n// // $portrait: \"#{$screen} and (orientation: portrait)\";\n\n// $small-up: $screen;\n// $small-only: \"#{$screen} and (max-width: #{upper-bound($small-range)})\";\n\n// $medium-up: \"#{$screen} and (min-width:#{lower-bound($medium-range)})\";\n// $medium-only: \"#{$screen} and (min-width:#{lower-bound($medium-range)}) and (max-width:#{upper-bound($medium-range)})\";\n\n// $large-up: \"#{$screen} and (min-width:#{lower-bound($large-range)})\";\n// $large-only: \"#{$screen} and (min-width:#{lower-bound($large-range)}) and (max-width:#{upper-bound($large-range)})\";\n\n// $xlarge-up: \"#{$screen} and (min-width:#{lower-bound($xlarge-range)})\";\n// $xlarge-only: \"#{$screen} and (min-width:#{lower-bound($xlarge-range)}) and (max-width:#{upper-bound($xlarge-range)})\";\n\n// $xxlarge-up: \"#{$screen} and (min-width:#{lower-bound($xxlarge-range)})\";\n// $xxlarge-only: \"#{$screen} and (min-width:#{lower-bound($xxlarge-range)}) and (max-width:#{upper-bound($xxlarge-range)})\";\n\n// Legacy\n// $small: $medium-up;\n// $medium: $medium-up;\n// $large: $large-up;\n\n// We use this as cursors values for enabling the option of having custom cursors in the whole site's stylesheet\n// $cursor-crosshair-value: crosshair;\n// $cursor-default-value: default;\n// $cursor-pointer-value: pointer;\n// $cursor-help-value: help;\n// $cursor-text-value: text;\n\n// e. Typography\n// - - - - - - - - - - - - - - - - - - - - - - - - -\n\n// $include-html-type-classes: $include-html-classes;\n\n// We use these to control header font styles\n// $header-font-family: $font-family-serif;\n// $header-font-weight: $font-weight-normal;\n// $header-font-style: normal;\n// $header-font-color: $jet;\n// $header-line-height: 1.4;\n// $header-top-margin: .2rem;\n// $header-bottom-margin: .5rem;\n// $header-text-rendering: optimizeLegibility;\n\n// We use these to control header font sizes\n// $h1-font-size: rem-calc(54);\n// $h2-font-size: rem-calc(36);\n// $h3-font-size: rem-calc(29);\n// $h4-font-size: rem-calc(24);\n// $h5-font-size: rem-calc(19);\n// $h6-font-size: 1rem;\n\n// We use these to control header size reduction on small screens\n// $h1-font-reduction: rem-calc(10) !default;\n// $h2-font-reduction: rem-calc(10) !default;\n// $h3-font-reduction: rem-calc(5) !default;\n// $h4-font-reduction: rem-calc(5) !default;\n// $h5-font-reduction: 0 !default;\n// $h6-font-reduction: 0 !default;\n\n// These control how subheaders are styled.\n// $subheader-line-height: 1.4;\n// $subheader-font-color: scale-color($header-font-color, $lightness: 35%);\n// $subheader-font-weight: $font-weight-normal;\n// $subheader-top-margin: .2rem;\n// $subheader-bottom-margin: .5rem;\n\n// A general styling\n// $small-font-size: 60%;\n// $small-font-color: scale-color($header-font-color, $lightness: 35%);\n\n// We use these to style paragraphs\n// $paragraph-font-family: inherit;\n// $paragraph-font-weight: $font-weight-normal;\n// $paragraph-font-size: 1rem;\n// $paragraph-line-height: 1.6;\n// $paragraph-margin-bottom: rem-calc(20);\n// $paragraph-aside-font-size: rem-calc(14);\n// $paragraph-aside-line-height: 1.35;\n// $paragraph-aside-font-style: italic;\n// $paragraph-text-rendering: optimizeLegibility;\n\n// We use these to style tags\n// $code-color: $oil;\n// $code-font-family: $font-family-monospace;\n// $code-font-weight: $font-weight-normal;\n// $code-background-color: scale-color($secondary-color, $lightness: 70%);\n// $code-border-size: 1px;\n// $code-border-style: solid;\n// $code-border-color: scale-color($code-background-color, $lightness: -10%);\n// $code-padding: rem-calc(2) rem-calc(5) rem-calc(1);\n\n// We use these to style anchors\n// $anchor-text-decoration: none;\n// $anchor-text-decoration-hover: none;\n// $anchor-font-color: $primary-color;\n// $anchor-font-color-hover: scale-color($primary-color, $lightness: -14%);\n\n// We use these to style the
element\n// $hr-border-width: 1px;\n// $hr-border-style: solid;\n$hr-border-color: $grey-3;\n// $hr-margin: rem-calc(20);\n\n// We use these to style lists\n// $list-font-family: $paragraph-font-family;\n// $list-font-size: $paragraph-font-size;\n// $list-line-height: $paragraph-line-height;\n// $list-margin-bottom: $paragraph-margin-bottom;\n// $list-style-position: outside;\n$list-side-margin: 1.3rem;\n// $list-ordered-side-margin: 1.4rem;\n// $list-side-margin-no-bullet: 0;\n// $list-nested-margin: rem-calc(20);\n// $definition-list-header-weight: $font-weight-bold;\n// $definition-list-header-margin-bottom: .3rem;\n// $definition-list-margin-bottom: rem-calc(12);\n\n// We use these to style blockquotes\n// $blockquote-font-color: scale-color($header-font-color, $lightness: 35%);\n// $blockquote-padding: rem-calc(9 20 0 19);\n// $blockquote-border: 1px solid $gainsboro;\n// $blockquote-cite-font-size: rem-calc(13);\n// $blockquote-cite-font-color: scale-color($header-font-color, $lightness: 23%);\n// $blockquote-cite-link-color: $blockquote-cite-font-color;\n\n// Acronym styles\n// $acronym-underline: 1px dotted $gainsboro;\n\n// We use these to control padding and margin\n// $microformat-padding: rem-calc(10 12);\n// $microformat-margin: rem-calc(0 0 20 0);\n\n// We use these to control the border styles\n// $microformat-border-width: 1px;\n// $microformat-border-style: solid;\n// $microformat-border-color: $gainsboro;\n\n// We use these to control full name font styles\n// $microformat-fullname-font-weight: $font-weight-bold;\n// $microformat-fullname-font-size: rem-calc(15);\n\n// We use this to control the summary font styles\n// $microformat-summary-font-weight: $font-weight-bold;\n\n// We use this to control abbr padding\n// $microformat-abbr-padding: rem-calc(0 1);\n\n// We use this to control abbr font styles\n// $microformat-abbr-font-weight: $font-weight-bold;\n// $microformat-abbr-font-decoration: none;\n\n// 01. Accordion\n// - - - - - - - - - - - - - - - - - - - - - - - - -\n\n// $include-html-accordion-classes: $include-html-classes;\n\n$accordion-navigation-padding: rem-calc(12);\n// $accordion-navigation-bg-color: #ffffff;\n// $accordion-navigation-hover-bg-color: $grey-1;\n// $accordion-navigation-active-bg-color: $grey-1;\n// $accordion-navigation-font-color: $jet;\n// $accordion-navigation-font-size: rem-calc(16);\n// $accordion-navigation-font-family: $body-font-family;\n\n// $accordion-content-padding: $column-gutter/2;\n$accordion-content-active-bg-color: $body-bg;\n\n// 02. Alert Boxes\n// - - - - - - - - - - - - - - - - - - - - - - - - -\n\n// $include-html-alert-classes: $include-html-classes;\n\n// We use this to control alert padding.\n// $alert-padding-top: rem-calc(14);\n// $alert-padding-default-float: $alert-padding-top;\n// $alert-padding-opposite-direction: $alert-padding-top + rem-calc(10);\n// $alert-padding-bottom: $alert-padding-top;\n\n// We use these to control text style.\n// $alert-font-weight: $font-weight-normal;\n$alert-font-size: rem-calc(15);\n// $alert-font-color: $white;\n// $alert-font-color-alt: scale-color($secondary-color, $lightness: -66%);\n\n// We use this for close hover effect.\n// $alert-function-factor: -14%;\n\n// We use these to control border styles.\n// $alert-border-style: solid;\n// $alert-border-width: 1px;\n// $alert-border-color: scale-color($primary-color, $lightness: $alert-function-factor);\n// $alert-bottom-margin: rem-calc(20);\n\n// We use these to style the close buttons\n// $alert-close-color: $oil;\n// $alert-close-top: 50%;\n// $alert-close-position: rem-calc(4);\n// $alert-close-font-size: rem-calc(22);\n// $alert-close-opacity: 0.3;\n// $alert-close-opacity-hover: 0.5;\n// $alert-close-padding: 9px 6px 4px;\n\n// We use this to control border radius\n// $alert-radius: $global-radius;\n\n// We use this to control transition effects\n// $alert-transition-speed: 300ms;\n// $alert-transition-ease: ease-out;\n\n// 03. Block Grid\n// - - - - - - - - - - - - - - - - - - - - - - - - -\n\n// $include-html-block-grid-classes: $include-html-classes;\n// $include-xl-html-block-grid-classes: false;\n\n// We use this to control the maximum number of block grid elements per row\n// $block-grid-elements: 12;\n// $block-grid-default-spacing: rem-calc(20);\n// $align-block-grid-to-grid: false;\n\n// Enables media queries for block-grid classes. Set to false if writing semantic HTML.\n// $block-grid-media-queries: true;\n\n// 04. Breadcrumbs\n// - - - - - - - - - - - - - - - - - - - - - - - - -\n\n// $include-html-nav-classes: $include-html-classes;\n\n// We use this to set the background color for the breadcrumb container.\n$crumb-bg: $grey-1;\n\n// We use these to set the padding around the breadcrumbs.\n// $crumb-padding: rem-calc(9 9 14 0);\n// $crumb-side-padding: rem-calc(12);\n\n// We use these to control border styles.\n// $crumb-function-factor: -10%;\n$crumb-border-size: 0;\n// $crumb-border-style: solid;\n$crumb-border-color: $grey-1;\n$crumb-radius: 0;\n\n// We use these to set various text styles for breadcrumbs.\n// $crumb-font-size: rem-calc(11);\n// $crumb-font-color: $primary-color;\n// $crumb-font-color-current: $oil;\n// $crumb-font-color-unavailable: $aluminum;\n// $crumb-font-transform: uppercase;\n// $crumb-link-decor: underline;\n\n// We use these to control the slash between breadcrumbs\n// $crumb-slash-color: $base;\n$crumb-slash: \"/\";\n\n// 05. Buttons\n// - - - - - - - - - - - - - - - - - - - - - - - - -\n\n// $include-html-button-classes: $include-html-classes;\n\n// We use these to build padding for buttons.\n// $button-tny: rem-calc(10);\n// $button-sml: rem-calc(14);\n// $button-med: rem-calc(16);\n// $button-lrg: rem-calc(18);\n\n// We use this to control the display property.\n// $button-display: inline-block;\n// $button-margin-bottom: rem-calc(20);\n\n// We use these to control button text styles.\n// $button-font-family: $body-font-family;\n// $button-font-color: $white;\n// $button-font-color-alt: $oil;\n// $button-font-tny: rem-calc(11);\n// $button-font-sml: rem-calc(13);\n// $button-font-med: rem-calc(16);\n// $button-font-lrg: rem-calc(20);\n// $button-font-weight: $font-weight-normal;\n// $button-font-align: center;\n\n// We use these to control various hover effects.\n// $button-function-factor: -20%;\n\n// We use these to control button border and hover styles.\n// $button-border-width: 0px;\n// $button-border-style: solid;\n// $button-bg-color: $primary-color;\n// $button-bg-hover: scale-color($button-bg-color, $lightness: $button-function-factor);\n// $button-border-color: $button-bg-hover;\n// $secondary-button-bg-hover: scale-color($secondary-color, $lightness: $button-function-factor);\n// $secondary-button-border-color: $secondary-button-bg-hover;\n// $success-button-bg-hover: scale-color($success-color, $lightness: $button-function-factor);\n// $success-button-border-color: $success-button-bg-hover;\n// $alert-button-bg-hover: scale-color($alert-color, $lightness: $button-function-factor);\n// $alert-button-border-color: $alert-button-bg-hover;\n\n// We use this to set the default radius used throughout the core.\n// $button-radius: $global-radius;\n// $button-round: $global-rounded;\n\n// We use this to set default opacity and cursor for disabled buttons.\n// $button-disabled-opacity: 0.7;\n// $button-disabled-cursor: $cursor-default-value;\n\n// 06. Button Groups\n// - - - - - - - - - - - - - - - - - - - - - - - - -\n\n// $include-html-button-classes: $include-html-classes;\n\n// Sets the margin for the right side by default, and the left margin if right-to-left direction is used\n// $button-bar-margin-opposite: rem-calc(10);\n// $button-group-border-width: 1px;\n\n// 07. Clearing\n// - - - - - - - - - - - - - - - - - - - - - - - - -\n\n// $include-html-clearing-classes: $include-html-classes;\n\n// We use these to set the background colors for parts of Clearing.\n// $clearing-bg: $oil;\n// $clearing-caption-bg: $clearing-bg;\n// $clearing-carousel-bg: rgba(51,51,51,0.8);\n// $clearing-img-bg: $clearing-bg;\n\n// We use these to style the close button\n// $clearing-close-color: $iron;\n// $clearing-close-size: 30px;\n\n// We use these to style the arrows\n// $clearing-arrow-size: 12px;\n// $clearing-arrow-color: $clearing-close-color;\n\n// We use these to style captions\n// $clearing-caption-font-color: $iron;\n// $clearing-caption-font-size: 0.875em;\n// $clearing-caption-padding: 10px 30px 20px;\n\n// We use these to make the image and carousel height and style\n// $clearing-active-img-height: 85%;\n// $clearing-carousel-height: 120px;\n// $clearing-carousel-thumb-width: 120px;\n// $clearing-carousel-thumb-active-border: 1px solid rgb(255,255,255);\n\n// 08. Dropdown\n// - - - - - - - - - - - - - - - - - - - - - - - - -\n\n// $include-html-dropdown-classes: $include-html-classes;\n\n// We use these to controls height and width styles.\n// $f-dropdown-max-width: 200px;\n// $f-dropdown-height: auto;\n// $f-dropdown-max-height: none;\n\n// Used for bottom position\n// $f-dropdown-margin-top: 2px;\n\n// Used for right position\n// $f-dropdown-margin-left: $f-dropdown-margin-top;\n\n// Used for left position\n// $f-dropdown-margin-right: $f-dropdown-margin-top;\n\n// Used for top position\n// $f-dropdown-margin-bottom: $f-dropdown-margin-top;\n\n// We use this to control the background color\n// $f-dropdown-bg: $white;\n\n// We use this to set the border styles for dropdowns.\n// $f-dropdown-border-style: solid;\n// $f-dropdown-border-width: 1px;\n// $f-dropdown-border-color: scale-color($white, $lightness: -20%);\n\n// We use these to style the triangle pip.\n// $f-dropdown-triangle-size: 6px;\n// $f-dropdown-triangle-color: $white;\n// $f-dropdown-triangle-side-offset: 10px;\n\n// We use these to control styles for the list elements.\n// $f-dropdown-list-style: none;\n// $f-dropdown-font-color: $charcoal;\n// $f-dropdown-font-size: rem-calc(14);\n// $f-dropdown-list-padding: rem-calc(5, 10);\n// $f-dropdown-line-height: rem-calc(18);\n// $f-dropdown-list-hover-bg: $smoke ;\n// $dropdown-mobile-default-float: 0;\n\n// We use this to control the styles for when the dropdown has custom content.\n// $f-dropdown-content-padding: rem-calc(20);\n\n// Default radius for dropdown.\n// $f-dropdown-radius: $global-radius;\n\n\n// 09. Dropdown Buttons\n// - - - - - - - - - - - - - - - - - - - - - - - - -\n\n// $include-html-button-classes: $include-html-classes;\n\n// We use these to set the color of the pip in dropdown buttons\n// $dropdown-button-pip-color: $white;\n// $dropdown-button-pip-color-alt: $oil;\n\n// $button-pip-tny: rem-calc(6);\n// $button-pip-sml: rem-calc(7);\n// $button-pip-med: rem-calc(9);\n// $button-pip-lrg: rem-calc(11);\n\n// We use these to style tiny dropdown buttons\n// $dropdown-button-padding-tny: $button-pip-tny * 7;\n// $dropdown-button-pip-size-tny: $button-pip-tny;\n// $dropdown-button-pip-opposite-tny: $button-pip-tny * 3;\n// $dropdown-button-pip-top-tny: -$button-pip-tny / 2 + rem-calc(1);\n\n// We use these to style small dropdown buttons\n// $dropdown-button-padding-sml: $button-pip-sml * 7;\n// $dropdown-button-pip-size-sml: $button-pip-sml;\n// $dropdown-button-pip-opposite-sml: $button-pip-sml * 3;\n// $dropdown-button-pip-top-sml: -$button-pip-sml / 2 + rem-calc(1);\n\n// We use these to style medium dropdown buttons\n// $dropdown-button-padding-med: $button-pip-med * 6 + rem-calc(3);\n// $dropdown-button-pip-size-med: $button-pip-med - rem-calc(3);\n// $dropdown-button-pip-opposite-med: $button-pip-med * 2.5;\n// $dropdown-button-pip-top-med: -$button-pip-med / 2 + rem-calc(2);\n\n// We use these to style large dropdown buttons\n// $dropdown-button-padding-lrg: $button-pip-lrg * 5 + rem-calc(3);\n// $dropdown-button-pip-size-lrg: $button-pip-lrg - rem-calc(6);\n// $dropdown-button-pip-opposite-lrg: $button-pip-lrg * 2.5;\n// $dropdown-button-pip-top-lrg: -$button-pip-lrg / 2 + rem-calc(3);\n\n// 10. Flex Video\n// - - - - - - - - - - - - - - - - - - - - - - - - -\n\n// $include-html-media-classes: $include-html-classes;\n\n// We use these to control video container padding and margins\n// $flex-video-padding-top: rem-calc(25);\n// $flex-video-padding-bottom: 67.5%;\n// $flex-video-margin-bottom: rem-calc(16);\n\n// We use this to control widescreen bottom padding\n// $flex-video-widescreen-padding-bottom: 56.34%;\n\n// 11. Forms\n// - - - - - - - - - - - - - - - - - - - - - - - - -\n\n// $include-html-form-classes: $include-html-classes;\n\n// We use this to set the base for lots of form spacing and positioning styles\n// $form-spacing: rem-calc(16);\n\n// We use these to style the labels in different ways\n// $form-label-pointer: pointer;\n// $form-label-font-size: rem-calc(14);\n// $form-label-font-weight: $font-weight-normal;\n// $form-label-line-height: 1.5;\n// $form-label-font-color: scale-color($black, $lightness: 30%);\n// $form-label-small-transform: capitalize;\n// $form-label-bottom-margin: 0;\n// $input-font-family: inherit;\n// $input-font-color: rgba(0,0,0,0.75);\n// $input-font-size: rem-calc(14);\n// $input-bg-color: $white;\n// $input-focus-bg-color: scale-color($white, $lightness: -2%);\n// $input-border-color: scale-color($white, $lightness: -20%);\n// $input-focus-border-color: scale-color($white, $lightness: -40%);\n// $input-border-style: solid;\n// $input-border-width: 1px;\n// $input-border-radius: $global-radius;\n// $input-disabled-bg: $gainsboro;\n// $input-disabled-cursor: $cursor-default-value;\n// $input-box-shadow: inset 0 1px 2px rgba(0,0,0,0.1);\n\n// We use these to style the fieldset border and spacing.\n// $fieldset-border-style: solid;\n// $fieldset-border-width: 1px;\n// $fieldset-border-color: $gainsboro;\n// $fieldset-padding: rem-calc(20);\n// $fieldset-margin: rem-calc(18 0);\n\n// We use these to style the legends when you use them\n// $legend-bg: $white;\n// $legend-font-weight: $font-weight-bold;\n// $legend-padding: rem-calc(0 3);\n\n// We use these to style the prefix and postfix input elements\n// $input-prefix-bg: scale-color($white, $lightness: -5%);\n// $input-prefix-border-color: scale-color($white, $lightness: -20%);\n// $input-prefix-border-size: 1px;\n// $input-prefix-border-type: solid;\n// $input-prefix-overflow: hidden;\n// $input-prefix-font-color: $oil;\n// $input-prefix-font-color-alt: $white;\n\n// We use this setting to turn on/off HTML5 number spinners (the up/down arrows)\n// $input-number-spinners: true;\n\n// We use these to style the error states for inputs and labels\n// $input-error-message-padding: rem-calc(6 9 9);\n// $input-error-message-top: -1px;\n// $input-error-message-font-size: rem-calc(12);\n// $input-error-message-font-weight: $font-weight-normal;\n// $input-error-message-font-style: italic;\n// $input-error-message-font-color: $white;\n// $input-error-message-font-color-alt: $oil;\n\n// We use this to style the glowing effect of inputs when focused\n// $input-include-glowing-effect: true;\n// $glowing-effect-fade-time: 0.45s;\n// $glowing-effect-color: $input-focus-border-color;\n\n// Select variables\n// $select-bg-color: $ghost;\n// $select-hover-bg-color: scale-color($select-bg-color, $lightness: -3%);\n\n// 12. Icon Bar\n// - - - - - - - - - - - - - - - - - - - - - - - - -\n\n// We use these to style the icon-bar and items\n// $include-html-icon-bar-classes: $include-html-classes;\n// $icon-bar-bg: $oil;\n// $icon-bar-font-color: $white;\n// $icon-bar-font-size: 1rem;\n// $icon-bar-hover-color: $primary-color;\n// $icon-bar-icon-color: $white;\n// $icon-bar-icon-size: 1.875rem;\n// $icon-bar-image-width: 1.875rem;\n// $icon-bar-image-height: 1.875rem;\n// $icon-bar-active-color: $primary-color;\n// $icon-bar-item-padding: 1.25rem;\n\n// 13. Inline Lists\n// - - - - - - - - - - - - - - - - - - - - - - - - -\n\n// $include-html-inline-list-classes: $include-html-classes;\n\n// We use this to control the margins and padding of the inline list.\n// $inline-list-top-margin: 0;\n// $inline-list-opposite-margin: 0;\n// $inline-list-bottom-margin: rem-calc(17);\n// $inline-list-default-float-margin: rem-calc(-22);\n// $inline-list-default-float-list-margin: rem-calc(22);\n\n// $inline-list-padding: 0;\n\n// We use this to control the overflow of the inline list.\n// $inline-list-overflow: hidden;\n\n// We use this to control the list items\n// $inline-list-display: block;\n\n// We use this to control any elements within list items\n// $inline-list-children-display: block;\n\n// 14. Joyride\n// - - - - - - - - - - - - - - - - - - - - - - - - -\n\n// $include-html-joyride-classes: $include-html-classes;\n\n// Controlling default Joyride styles\n// $joyride-tip-bg: $oil;\n// $joyride-tip-default-width: 300px;\n// $joyride-tip-padding: rem-calc(18 20 24);\n// $joyride-tip-border: solid 1px $charcoal;\n// $joyride-tip-radius: 4px;\n// $joyride-tip-position-offset: 22px;\n\n// Here, we're setting the tip font styles\n// $joyride-tip-font-color: $white;\n// $joyride-tip-font-size: rem-calc(14);\n// $joyride-tip-header-weight: $font-weight-bold;\n\n// This changes the nub size\n// $joyride-tip-nub-size: 10px;\n\n// This adjusts the styles for the timer when its enabled\n// $joyride-tip-timer-width: 50px;\n// $joyride-tip-timer-height: 3px;\n// $joyride-tip-timer-color: $steel;\n\n// This changes up the styles for the close button\n// $joyride-tip-close-color: $monsoon;\n// $joyride-tip-close-size: 24px;\n// $joyride-tip-close-weight: $font-weight-normal;\n\n// When Joyride is filling the screen, we use this style for the bg\n// $joyride-screenfill: rgba(0,0,0,0.5);\n\n// 15. Keystrokes\n// - - - - - - - - - - - - - - - - - - - - - - - - -\n\n// $include-html-keystroke-classes: $include-html-classes;\n\n// We use these to control text styles.\n// $keystroke-font: \"Consolas\", \"Menlo\", \"Courier\", monospace;\n// $keystroke-font-size: inherit;\n// $keystroke-font-color: $jet;\n// $keystroke-font-color-alt: $white;\n// $keystroke-function-factor: -7%;\n\n// We use this to control keystroke padding.\n// $keystroke-padding: rem-calc(2 4 0);\n\n// We use these to control background and border styles.\n// $keystroke-bg: scale-color($white, $lightness: $keystroke-function-factor);\n// $keystroke-border-style: solid;\n// $keystroke-border-width: 1px;\n// $keystroke-border-color: scale-color($keystroke-bg, $lightness: $keystroke-function-factor);\n// $keystroke-radius: $global-radius;\n\n// 16. Labels\n// - - - - - - - - - - - - - - - - - - - - - - - - -\n\n// $include-html-label-classes: $include-html-classes;\n\n// We use these to style the labels\n// $label-padding: rem-calc(4 8 4);\n// $label-radius: $global-radius;\n\n// We use these to style the label text\n// $label-font-sizing: rem-calc(11);\n// $label-font-weight: $font-weight-normal;\n// $label-font-color: $oil;\n// $label-font-color-alt: $white;\n// $label-font-family: $body-font-family;\n\n// 17. Magellan\n// - - - - - - - - - - - - - - - - - - - - - - - - -\n\n// $include-html-magellan-classes: $include-html-classes;\n\n// $magellan-bg: $white;\n// $magellan-padding: 0 !important;\n\n// 18. Off-canvas\n// - - - - - - - - - - - - - - - - - - - - - - - - -\n\n// $include-html-off-canvas-classes: $include-html-classes;\n\n// $tabbar-bg: $oil;\n// $tabbar-height: rem-calc(45);\n// $tabbar-icon-width: $tabbar-height;\n// $tabbar-line-height: $tabbar-height;\n// $tabbar-color: $white;\n// $tabbar-middle-padding: 0 rem-calc(10);\n\n// Off Canvas Divider Styles\n// $tabbar-right-section-border: solid 1px scale-color($tabbar-bg, $lightness: 13%);\n// $tabbar-left-section-border: solid 1px scale-color($tabbar-bg, $lightness: -50%);\n\n// Off Canvas Tab Bar Headers\n// $tabbar-header-color: $white;\n// $tabbar-header-weight: $font-weight-bold;\n// $tabbar-header-line-height: $tabbar-height;\n// $tabbar-header-margin: 0;\n\n// Off Canvas Menu Variables\n// $off-canvas-width: rem-calc(250);\n// $off-canvas-bg: $oil;\n// $off-canvas-bg-hover: scale-color($tabbar-bg, $lightness: -30%);\n\n// Off Canvas Menu List Variables\n// $off-canvas-label-padding: 0.3rem rem-calc(15);\n// $off-canvas-label-color: $aluminum;\n// $off-canvas-label-text-transform: uppercase;\n// $off-canvas-label-font-size: rem-calc(12);\n// $off-canvas-label-font-weight: $font-weight-bold;\n// $off-canvas-label-bg: $tuatara;\n// $off-canvas-label-border-top: 1px solid scale-color($tuatara, $lightness: 14%);\n// $off-canvas-label-border-bottom: none;\n// $off-canvas-label-margin:0;\n// $off-canvas-link-padding: rem-calc(10, 15);\n// $off-canvas-link-color: rgba($white, 0.7);\n// $off-canvas-link-border-bottom: 1px solid scale-color($off-canvas-bg, $lightness: -25%);\n// $off-canvas-back-bg: $tuatara;\n// $off-canvas-back-border-top: $off-canvas-label-border-top;\n// $off-canvas-back-border-bottom: $off-canvas-label-border-bottom;\n// $off-canvas-back-hover-bg: scale-color($off-canvas-back-bg, $lightness: -30%);\n// $off-canvas-back-hover-border-top: 1px solid scale-color($off-canvas-label-bg, $lightness: 14%);\n// $off-canvas-back-hover-border-bottom: none;\n\n// Off Canvas Menu Icon Variables\n// $tabbar-menu-icon-color: $white;\n// $tabbar-menu-icon-hover: scale-color($tabbar-menu-icon-color, $lightness: -30%);\n\n// $tabbar-menu-icon-text-indent: rem-calc(35);\n// $tabbar-menu-icon-width: $tabbar-height;\n// $tabbar-menu-icon-height: $tabbar-height;\n// $tabbar-menu-icon-padding: 0;\n\n// $tabbar-hamburger-icon-width: rem-calc(16);\n// $tabbar-hamburger-icon-left: false;\n// $tabbar-hamburger-icon-top: false;\n// $tabbar-hamburger-icon-thickness: 1px;\n// $tabbar-hamburger-icon-gap: 6px;\n\n// Off Canvas Back-Link Overlay\n// $off-canvas-overlay-transition: background 300ms ease;\n// $off-canvas-overlay-cursor: pointer;\n// $off-canvas-overlay-box-shadow: -4px 0 4px rgba($black, 0.5), 4px 0 4px rgba($black, 0.5);\n// $off-canvas-overlay-background: rgba($white, 0.2);\n// $off-canvas-overlay-background-hover: rgba($white, 0.05);\n\n// Transition Variables\n// $menu-slide: \"transform 500ms ease\";\n\n// 19. Orbit\n// - - - - - - - - - - - - - - - - - - - - - - - - -\n\n// $include-html-orbit-classes: $include-html-classes;\n\n// We use these to control the caption styles\n// $orbit-container-bg: none;\n// $orbit-caption-bg: rgba(51,51,51, 0.8);\n// $orbit-caption-font-color: $white;\n// $orbit-caption-font-size: rem-calc(14);\n// $orbit-caption-position: \"bottom\"; // Supported values: \"bottom\", \"under\"\n// $orbit-caption-padding: rem-calc(10 14);\n// $orbit-caption-height: auto;\n\n// We use these to control the left/right nav styles\n// $orbit-nav-bg: transparent;\n// $orbit-nav-bg-hover: rgba(0,0,0,0.3);\n// $orbit-nav-arrow-color: $white;\n// $orbit-nav-arrow-color-hover: $white;\n\n// We use these to control the timer styles\n// $orbit-timer-bg: rgba(255,255,255,0.3);\n// $orbit-timer-show-progress-bar: true;\n\n// We use these to control the bullet nav styles\n// $orbit-bullet-nav-color: $iron;\n// $orbit-bullet-nav-color-active: $aluminum;\n// $orbit-bullet-radius: rem-calc(9);\n\n// We use these to controls the style of slide numbers\n// $orbit-slide-number-bg: rgba(0,0,0,0);\n// $orbit-slide-number-font-color: $white;\n// $orbit-slide-number-padding: rem-calc(5);\n\n// Hide controls on small\n// $orbit-nav-hide-for-small: true;\n// $orbit-bullet-hide-for-small: true;\n// $orbit-timer-hide-for-small: true;\n\n// Graceful Loading Wrapper and preloader\n// $wrapper-class: \"slideshow-wrapper\";\n// $preloader-class: \"preloader\";\n\n// 20. Pagination\n// - - - - - - - - - - - - - - - - - - - - - - - - -\n\n// $include-pagination-classes: $include-html-classes;\n\n// We use these to control the pagination container\n// $pagination-height: rem-calc(24);\n// $pagination-margin: rem-calc(-5);\n\n// We use these to set the list-item properties\n// $pagination-li-float: $default-float;\n// $pagination-li-height: rem-calc(24);\n// $pagination-li-font-color: $jet;\n// $pagination-li-font-size: rem-calc(14);\n// $pagination-li-margin: rem-calc(5);\n\n// We use these for the pagination anchor links\n// $pagination-link-pad: rem-calc(1 10 1);\n// $pagination-link-font-color: $aluminum;\n// $pagination-link-active-bg: scale-color($white, $lightness: -10%);\n\n// We use these for disabled anchor links\n// $pagination-link-unavailable-cursor: default;\n// $pagination-link-unavailable-font-color: $aluminum;\n// $pagination-link-unavailable-bg-active: transparent;\n\n// We use these for currently selected anchor links\n// $pagination-link-current-background: $primary-color;\n// $pagination-link-current-font-color: $white;\n// $pagination-link-current-font-weight: $font-weight-bold;\n// $pagination-link-current-cursor: default;\n// $pagination-link-current-active-bg: $primary-color;\n\n// 21. Panels\n// - - - - - - - - - - - - - - - - - - - - - - - - -\n\n// $include-html-panel-classes: $include-html-classes;\n\n// We use these to control the background and border styles\n$panel-bg: $grey-1;\n// $panel-border-style: solid;\n// $panel-border-size: 1px;\n\n// We use this % to control how much we darken things on hover\n// $panel-function-factor: -11%;\n// $panel-border-color: scale-color($panel-bg, $lightness: $panel-function-factor);\n\n// We use these to set default inner padding and bottom margin\n// $panel-margin-bottom: rem-calc(20);\n// $panel-padding: rem-calc(20);\n\n// We use these to set default font colors\n// $panel-font-color: $oil;\n// $panel-font-color-alt: $white;\n\n// $panel-header-adjust: true;\n// $callout-panel-link-color: $primary-color;\n\n// 22. Pricing Tables\n// - - - - - - - - - - - - - - - - - - - - - - - - -\n\n// $include-html-pricing-classes: $include-html-classes;\n\n// We use this to control the border color\n// $price-table-border: solid 1px $gainsboro;\n\n// We use this to control the bottom margin of the pricing table\n// $price-table-margin-bottom: rem-calc(20);\n\n// We use these to control the title styles\n// $price-title-bg: $oil;\n// $price-title-padding: rem-calc(15 20);\n// $price-title-align: center;\n// $price-title-color: $smoke;\n// $price-title-weight: $font-weight-normal;\n// $price-title-size: rem-calc(16);\n// $price-title-font-family: $body-font-family;\n\n// We use these to control the price styles\n// $price-money-bg: $vapor ;\n// $price-money-padding: rem-calc(15 20);\n// $price-money-align: center;\n// $price-money-color: $oil;\n// $price-money-weight: $font-weight-normal;\n// $price-money-size: rem-calc(32);\n// $price-money-font-family: $body-font-family;\n\n// We use these to control the description styles\n// $price-bg: $white;\n// $price-desc-color: $monsoon;\n// $price-desc-padding: rem-calc(15);\n// $price-desc-align: center;\n// $price-desc-font-size: rem-calc(12);\n// $price-desc-weight: $font-weight-normal;\n// $price-desc-line-height: 1.4;\n// $price-desc-bottom-border: dotted 1px $gainsboro;\n\n// We use these to control the list item styles\n// $price-item-color: $oil;\n// $price-item-padding: rem-calc(15);\n// $price-item-align: center;\n// $price-item-font-size: rem-calc(14);\n// $price-item-weight: $font-weight-normal;\n// $price-item-bottom-border: dotted 1px $gainsboro;\n\n// We use these to control the CTA area styles\n// $price-cta-bg: $white;\n// $price-cta-align: center;\n// $price-cta-padding: rem-calc(20 20 0);\n\n// 23. Progress Bar\n// - - - - - - - - - - - - - - - - - - - - - - - - -\n\n// $include-html-media-classes: $include-html-classes;\n\n// We use this to set the progress bar height\n// $progress-bar-height: rem-calc(25);\n// $progress-bar-color: $vapor ;\n\n// We use these to control the border styles\n// $progress-bar-border-color: scale-color($white, $lightness: 20%);\n// $progress-bar-border-size: 1px;\n// $progress-bar-border-style: solid;\n// $progress-bar-border-radius: $global-radius;\n\n// We use these to control the margin & padding\n// $progress-bar-pad: rem-calc(2);\n// $progress-bar-margin-bottom: rem-calc(10);\n\n// We use these to set the meter colors\n// $progress-meter-color: $primary-color;\n// $progress-meter-secondary-color: $secondary-color;\n// $progress-meter-success-color: $success-color;\n// $progress-meter-alert-color: $alert-color;\n\n// 24. Range Slider\n// - - - - - - - - - - - - - - - - - - - - - - - - -\n\n// $include-html-range-slider-classes: $include-html-classes;\n\n// These variables define the slider bar styles\n// $range-slider-bar-width: 100%;\n// $range-slider-bar-height: rem-calc(16);\n\n// $range-slider-bar-border-width: 1px;\n// $range-slider-bar-border-style: solid;\n// $range-slider-bar-border-color: $gainsboro;\n// $range-slider-radius: $global-radius;\n// $range-slider-round: $global-rounded;\n// $range-slider-bar-bg-color: $ghost;\n\n// Vertical bar styles\n// $range-slider-vertical-bar-width: rem-calc(16);\n// $range-slider-vertical-bar-height: rem-calc(200);\n\n// These variables define the slider handle styles\n// $range-slider-handle-width: rem-calc(32);\n// $range-slider-handle-height: rem-calc(22);\n// $range-slider-handle-position-top: rem-calc(-5);\n// $range-slider-handle-bg-color: $primary-color;\n// $range-slider-handle-border-width: 1px;\n// $range-slider-handle-border-style: solid;\n// $range-slider-handle-border-color: none;\n// $range-slider-handle-radius: $global-radius;\n// $range-slider-handle-round: $global-rounded;\n// $range-slider-handle-bg-hover-color: scale-color($primary-color, $lightness: -12%);\n// $range-slider-handle-cursor: pointer;\n\n// 25. Reveal\n// - - - - - - - - - - - - - - - - - - - - - - - - -\n\n// $include-html-reveal-classes: $include-html-classes;\n\n// We use these to control the style of the reveal overlay.\n// $reveal-overlay-bg: rgba($black, .45);\n// $reveal-overlay-bg-old: $black;\n\n// We use these to control the style of the modal itself.\n// $reveal-modal-bg: $white;\n// $reveal-position-top: rem-calc(100);\n// $reveal-default-width: 80%;\n// $reveal-max-width: $row-width;\n// $reveal-modal-padding: rem-calc(20);\n// $reveal-box-shadow: 0 0 10px rgba($black,.4);\n\n// We use these to style the reveal close button\n// $reveal-close-font-size: rem-calc(40);\n// $reveal-close-top: rem-calc(8);\n// $reveal-close-side: rem-calc(11);\n// $reveal-close-color: $base;\n// $reveal-close-weight: $font-weight-bold;\n\n// We use this to set the default radius used throughout the core.\n// $reveal-radius: $global-radius;\n// $reveal-round: $global-rounded;\n\n// We use these to control the modal border\n// $reveal-border-style: solid;\n// $reveal-border-width: 1px;\n// $reveal-border-color: $steel;\n\n// $reveal-modal-class: \"reveal-modal\";\n// $close-reveal-modal-class: \"close-reveal-modal\";\n\n// 26. Side Nav\n// - - - - - - - - - - - - - - - - - - - - - - - - -\n\n// $include-html-nav-classes: $include-html-classes;\n\n// We use this to control padding.\n$side-nav-padding: rem-calc(0 0 0 0);\n\n// We use these to control list styles.\n// $side-nav-list-type: none;\n// $side-nav-list-position: inside;\n$side-nav-list-margin: rem-calc(0 0 0 0);\n\n// We use these to control link styles.\n$side-nav-link-color: $primary-color;\n$side-nav-link-color-active: scale-color($side-nav-link-color, $lightness: -40%);\n$side-nav-link-color-hover: scale-color($side-nav-link-color, $lightness: -40%);\n$side-nav-font-size: rem-calc(16);\n\n// $side-nav-link-bg-hover: hsla(0, 0, 0, 0.025);\n// $side-nav-link-margin: 0;\n// $side-nav-link-padding: rem-calc(7 14);\n// $side-nav-font-size: rem-calc(14);\n// $side-nav-font-weight: $font-weight-normal;\n// $side-nav-font-weight-active: $side-nav-font-weight;\n// $side-nav-font-family: $body-font-family;\n// $side-nav-font-family-active: $side-nav-font-family;\n\n// We use these to control heading styles.\n// $side-nav-heading-color: $side-nav-link-color;\n// $side-nav-heading-font-size: $side-nav-font-size;\n// $side-nav-heading-font-weight: bold;\n// $side-nav-heading-text-transform: uppercase;\n\n// We use these to control border styles\n$side-nav-divider-size: 1px;\n$side-nav-divider-style: solid;\n$side-nav-divider-color: $grey-1;\n\n\n\n// 27. Split Buttons\n// - - - - - - - - - - - - - - - - - - - - - - - - -\n\n// $include-html-button-classes: $include-html-classes;\n\n// We use these to control different shared styles for Split Buttons\n// $split-button-function-factor: 10%;\n// $split-button-pip-color: $white;\n// $split-button-pip-color-alt: $oil;\n// $split-button-active-bg-tint: rgba(0,0,0,0.1);\n\n// We use these to control tiny split buttons\n// $split-button-padding-tny: $button-pip-tny * 10;\n// $split-button-span-width-tny: $button-pip-tny * 6;\n// $split-button-pip-size-tny: $button-pip-tny;\n// $split-button-pip-top-tny: $button-pip-tny * 2;\n// $split-button-pip-default-float-tny: rem-calc(-6);\n\n// We use these to control small split buttons\n// $split-button-padding-sml: $button-pip-sml * 10;\n// $split-button-span-width-sml: $button-pip-sml * 6;\n// $split-button-pip-size-sml: $button-pip-sml;\n// $split-button-pip-top-sml: $button-pip-sml * 1.5;\n// $split-button-pip-default-float-sml: rem-calc(-6);\n\n// We use these to control medium split buttons\n// $split-button-padding-med: $button-pip-med * 9;\n// $split-button-span-width-med: $button-pip-med * 5.5;\n// $split-button-pip-size-med: $button-pip-med - rem-calc(3);\n// $split-button-pip-top-med: $button-pip-med * 1.5;\n// $split-button-pip-default-float-med: rem-calc(-6);\n\n// We use these to control large split buttons\n// $split-button-padding-lrg: $button-pip-lrg * 8;\n// $split-button-span-width-lrg: $button-pip-lrg * 5;\n// $split-button-pip-size-lrg: $button-pip-lrg - rem-calc(6);\n// $split-button-pip-top-lrg: $button-pip-lrg + rem-calc(5);\n// $split-button-pip-default-float-lrg: rem-calc(-6);\n\n// 28. Sub Nav\n// - - - - - - - - - - - - - - - - - - - - - - - - -\n\n// $include-html-nav-classes: $include-html-classes;\n\n// We use these to control margin and padding\n// $sub-nav-list-margin: rem-calc(-4 0 18);\n// $sub-nav-list-padding-top: rem-calc(4);\n\n// We use this to control the definition\n// $sub-nav-font-family: $body-font-family;\n// $sub-nav-font-size: rem-calc(14);\n// $sub-nav-font-color: $aluminum;\n// $sub-nav-font-weight: $font-weight-normal;\n// $sub-nav-text-decoration: none;\n// $sub-nav-padding: rem-calc(3 16);\n// $sub-nav-border-radius: 3px;\n// $sub-nav-font-color-hover: scale-color($sub-nav-font-color, $lightness: -25%);\n\n// We use these to control the active item styles\n// $sub-nav-active-font-weight: $font-weight-normal;\n// $sub-nav-active-bg: $primary-color;\n// $sub-nav-active-bg-hover: scale-color($sub-nav-active-bg, $lightness: -14%);\n// $sub-nav-active-color: $white;\n// $sub-nav-active-padding: $sub-nav-padding;\n// $sub-nav-active-cursor: default;\n\n// $sub-nav-item-divider: \"\";\n// $sub-nav-item-divider-margin: rem-calc(12);\n\n// 29. Switch\n// - - - - - - - - - - - - - - - - - - - - - - - - -\n\n// $include-html-form-classes: $include-html-classes;\n\n// Controlling border styles and background colors for the switch container\n// $switch-border-color: scale-color($white, $lightness: -20%);\n// $switch-border-style: solid;\n// $switch-border-width: 1px;\n// $switch-bg: $white;\n\n// We use these to control the switch heights for our default classes\n// $switch-height-tny: rem-calc(22);\n// $switch-height-sml: rem-calc(28);\n// $switch-height-med: rem-calc(36);\n// $switch-height-lrg: rem-calc(44);\n// $switch-bottom-margin: rem-calc(20);\n\n// We use these to control default font sizes for our classes.\n// $switch-font-size-tny: 11px;\n// $switch-font-size-sml: 12px;\n// $switch-font-size-med: 14px;\n// $switch-font-size-lrg: 17px;\n// $switch-label-side-padding: 6px;\n\n// We use these to style the switch-paddle\n// $switch-paddle-bg: $white;\n// $switch-paddle-fade-to-color: scale-color($switch-paddle-bg, $lightness: -10%);\n// $switch-paddle-border-color: scale-color($switch-paddle-bg, $lightness: -35%);\n// $switch-paddle-border-width: 1px;\n// $switch-paddle-border-style: solid;\n// $switch-paddle-transition-speed: .1s;\n// $switch-paddle-transition-ease: ease-out;\n// $switch-positive-color: scale-color($success-color, $lightness: 94%);\n// $switch-negative-color: $white-smoke;\n\n// Outline Style for tabbing through switches\n// $switch-label-outline: 1px dotted $jumbo;\n\n// 30. Tables\n// - - - - - - - - - - - - - - - - - - - - - - - - -\n\n// $include-html-table-classes: $include-html-classes;\n\n// These control the background color for the table and even rows\n// $table-bg: $white;\n$table-even-row-bg: $grey-1;\n\n// These control the table cell border style\n// $table-border-style: solid;\n// $table-border-size: 1px;\n// $table-border-color: $gainsboro;\n\n// These control the table head styles\n$table-head-bg: $grey-2;\n// $table-head-font-size: rem-calc(14);\n// $table-head-font-color: $jet;\n// $table-head-font-weight: $font-weight-bold;\n// $table-head-padding: rem-calc(8 10 10);\n\n// These control the row padding and font styles\n// $table-row-padding: rem-calc(9 10);\n// $table-row-font-size: rem-calc(14);\n// $table-row-font-color: $jet;\n// $table-line-height: rem-calc(18);\n\n// These are for controlling the layout, display and margin of tables\n// $table-layout: auto;\n// $table-display: table-cell;\n// $table-margin-bottom: rem-calc(20);\n\n// 31. Tabs\n// - - - - - - - - - - - - - - - - - - - - - - - - -\n\n// $include-html-tabs-classes: $include-html-classes;\n\n// $tabs-navigation-padding: rem-calc(16);\n// $tabs-navigation-bg-color: $silver ;\n// $tabs-navigation-active-bg-color: $white;\n// $tabs-navigation-hover-bg-color: scale-color($tabs-navigation-bg-color, $lightness: -6%);\n// $tabs-navigation-font-color: $jet;\n// $tabs-navigation-active-font-color: $tabs-navigation-font-color;\n// $tabs-navigation-font-size: rem-calc(16);\n// $tabs-navigation-font-family: $body-font-family;\n\n// $tabs-content-margin-bottom: rem-calc(24);\n// $tabs-content-padding: $column-gutter/2;\n\n// $tabs-vertical-navigation-margin-bottom: 1.25rem;\n\n// 32. Thumbnails\n// - - - - - - - - - - - - - - - - - - - - - - - - -\n\n// $include-html-media-classes: $include-html-classes;\n\n// We use these to control border styles\n// $thumb-border-style: solid;\n// $thumb-border-width: 4px;\n// $thumb-border-color: $white;\n// $thumb-box-shadow: 0 0 0 1px rgba($black,.2);\n// $thumb-box-shadow-hover: 0 0 6px 1px rgba($primary-color,0.5);\n\n// Radius and transition speed for thumbs\n// $thumb-radius: $global-radius;\n// $thumb-transition-speed: 200ms;\n\n// 33. Tooltips\n// - - - - - - - - - - - - - - - - - - - - - - - - -\n\n// $include-html-tooltip-classes: $include-html-classes;\n\n// $has-tip-border-bottom: dotted 1px $iron;\n// $has-tip-font-weight: $font-weight-bold;\n// $has-tip-font-color: $oil;\n// $has-tip-border-bottom-hover: dotted 1px scale-color($primary-color, $lightness: -55%);\n// $has-tip-font-color-hover: $primary-color;\n// $has-tip-cursor-type: help;\n\n// $tooltip-padding: rem-calc(12);\n// $tooltip-bg: $oil;\n// $tooltip-font-size: rem-calc(14);\n// $tooltip-font-weight: $font-weight-normal;\n// $tooltip-font-color: $white;\n// $tooltip-line-height: 1.3;\n// $tooltip-close-font-size: rem-calc(10);\n// $tooltip-close-font-weight: $font-weight-normal;\n// $tooltip-close-font-color: $monsoon;\n// $tooltip-font-size-sml: rem-calc(14);\n// $tooltip-radius: $global-radius;\n// $tooltip-rounded: $global-rounded;\n// $tooltip-pip-size: 5px;\n// $tooltip-max-width: 300px;\n\n// 34. Top Bar\n// - - - - - - - - - - - - - - - - - - - - - - - - -\n\n// $include-html-top-bar-classes: $include-html-classes;\n\n// Height and margin\n$topbar-height: rem-calc(50);\n// $topbar-margin-bottom: 0;\n\n// Controlling the styles for the title in the top bar\n$topbar-title-weight: $font-weight-bold;\n$topbar-title-font-size: rem-calc(19);\n\n// Style the top bar dropdown elements\n// $topbar-dropdown-bg: $oil;\n// $topbar-dropdown-link-color: $white;\n// $topbar-dropdown-link-bg: $ci-2;\n// $topbar-dropdown-link-weight: $font-weight-normal;\n// $topbar-dropdown-toggle-size: 5px;\n// $topbar-dropdown-toggle-color: $ci-2;\n// $topbar-dropdown-toggle-alpha: 0.4;\n\n// Set the link colors and styles for top-level nav\n// $topbar-link-color: #000;\n// $topbar-link-color-hover: #000;\n// $topbar-link-color-active: #000;\n// $topbar-link-color-active-hover: #000;\n// $topbar-link-weight: $font-weight-normal;\n$topbar-link-font-size: rem-calc(15);\n// $topbar-link-hover-lightness: -10%; // Darken by 10%\n// $topbar-link-bg: $topbar-bg;\n// $topbar-link-bg-color-hover: #ff0;\n// $topbar-link-bg-hover: #f00;\n// $topbar-link-bg-active: $primary-color;\n// $topbar-link-bg-active-hover: scale-color($primary-color, $lightness: -14%);\n// $topbar-link-font-family: $body-font-family;\n$topbar-link-text-transform: uppercase;\n// $topbar-link-padding: $topbar-height / 3;\n// $topbar-back-link-size: $h5-font-size;\n// $topbar-link-dropdown-padding: 20px;\n\n// $topbar-button-font-size: 0.75rem;\n// $topbar-button-top: 7px;\n\n// $topbar-dropdown-label-color: #f77;\n// $topbar-dropdown-label-text-transform: uppercase;\n// $topbar-dropdown-label-font-weight: $font-weight-bold;\n// $topbar-dropdown-label-font-size: rem-calc(10);\n// $topbar-dropdown-label-bg: $oil;\n\n// Top menu icon styles\n$topbar-menu-link-transform: uppercase;\n// $topbar-menu-link-font-size: rem-calc(13);\n// $topbar-menu-link-weight: $font-weight-bold;\n// $topbar-menu-link-color: $white;\n// $topbar-menu-icon-color: $white;\n// $topbar-menu-link-color-toggled: $ci-6;\n// $topbar-menu-icon-color-toggled: $ci-6;\n\n// Transitions and breakpoint styles\n// $topbar-transition-speed: 300ms;\n// Using rem-calc for the below breakpoint causes issues with top bar\n$topbar-breakpoint: #{lower-bound($large-range)}; // Change to 9999px for always mobile layout\n$topbar-media-query: \"only screen and (min-width: #{$topbar-breakpoint})\" !default;\n\n// Divider Styles\n$topbar-divider-border-bottom: solid 0px scale-color($topbar-bg-color, $lightness: 23%);\n$topbar-divider-border-top: solid 0px scale-color($topbar-bg-color, $lightness: -50%);\n\n// Sticky Class\n// $topbar-sticky-class: \".sticky\";\n// $topbar-arrows: true; //Set false to remove the triangle icon from the menu item\n\n// 36. Visibility Classes\n// - - - - - - - - - - - - - - - - - - - - - - - - -\n\n// $include-html-visibility-classes: $include-html-classes;\n// $include-table-visibility-classes: true;\n// $include-legacy-visibility-classes: true;\n// $include-accessibility-classes: true;\n","// Foundation by ZURB\n// foundation.zurb.com\n// Licensed under MIT Open Source\n\n@import \"global\";\n@import \"buttons\";\n\n//\n// @variables\n//\n$include-html-form-classes: $include-html-classes !default;\n\n// We use this to set the base for lots of form spacing and positioning styles\n$form-spacing: rem-calc(16) !default;\n\n// We use these to style the labels in different ways\n$form-label-pointer: pointer !default;\n$form-label-font-size: rem-calc(14) !default;\n$form-label-font-weight: $font-weight-normal !default;\n$form-label-line-height: 1.5 !default;\n$form-label-font-color: scale-color($black, $lightness: 30%) !default;\n$form-label-small-transform: capitalize !default;\n$form-label-bottom-margin: 0 !default;\n$input-font-family: inherit !default;\n$input-font-color: rgba(0, 0, 0, 0.75) !default;\n$input-font-size: rem-calc(14) !default;\n$input-bg-color: $white !default;\n$input-focus-bg-color: scale-color($white, $lightness: -2%) !default;\n$input-border-color: scale-color($white, $lightness: -20%) !default;\n$input-focus-border-color: scale-color($white, $lightness: -40%) !default;\n$input-border-style: solid !default;\n$input-border-width: 1px !default;\n$input-border-radius: $global-radius !default;\n$input-disabled-bg: $gainsboro !default;\n$input-disabled-cursor: $cursor-default-value !default;\n$input-box-shadow: inset 0 1px 2px rgba(0, 0, 0, 0.1) !default;\n$input-include-glowing-effect: true !default;\n\n// We use these to style the fieldset border and spacing.\n$fieldset-border-style: solid !default;\n$fieldset-border-width: 1px !default;\n$fieldset-border-color: $gainsboro !default;\n$fieldset-padding: rem-calc(20) !default;\n$fieldset-margin: rem-calc(18 0) !default;\n\n// We use these to style the legends when you use them\n$legend-bg: $white !default;\n$legend-font-weight: $font-weight-bold !default;\n$legend-padding: rem-calc(0 3) !default;\n\n// We use these to style the prefix and postfix input elements\n$input-prefix-bg: scale-color($white, $lightness: -5%) !default;\n$input-prefix-border-color: scale-color($white, $lightness: -20%) !default;\n$input-prefix-border-size: 1px !default;\n$input-prefix-border-type: solid !default;\n$input-prefix-overflow: hidden !default;\n$input-prefix-font-color: $oil !default;\n$input-prefix-font-color-alt: $white !default;\n\n// We use this setting to turn on/off HTML5 number spinners (the up/down arrows)\n$input-number-spinners: true !default;\n\n// We use these to style the error states for inputs and labels\n$input-error-message-padding: rem-calc(6 9 9) !default;\n$input-error-message-top: -1px !default;\n$input-error-message-font-size: rem-calc(12) !default;\n$input-error-message-font-weight: $font-weight-normal !default;\n$input-error-message-font-style: italic !default;\n$input-error-message-font-color: $white !default;\n$input-error-message-bg-color: $alert-color !default;\n$input-error-message-font-color-alt: $oil !default;\n\n// We use this to style the glowing effect of inputs when focused\n$glowing-effect-fade-time: 0.45s !default;\n$glowing-effect-color: $input-focus-border-color !default;\n\n// Select variables\n$select-bg-color: $ghost !default;\n$select-hover-bg-color: scale-color($select-bg-color, $lightness: -3%) !default;\n\n//\n// @MIXINS\n//\n\n// We use this mixin to give us form styles for rows inside of forms\n@mixin form-row-base {\n .row {\n margin: 0 calc((-1 * $form-spacing) / 2);\n\n .column,\n .columns {\n padding: 0 calc($form-spacing / 2);\n }\n\n // Use this to collapse the margins of a form row\n &.collapse {\n margin: 0;\n\n .column,\n .columns {\n padding: 0;\n }\n\n input {\n @include side-radius($opposite-direction, 0);\n }\n\n }\n }\n\n input.column,\n input.columns,\n textarea.column,\n textarea.columns {\n padding-#{$default-float}: calc($form-spacing / 2);\n }\n}\n\n// @MIXIN\n//\n// We use this mixin to give all basic form elements their style\n@mixin form-element {\n background-color: $input-bg-color;\n font-family: $input-font-family;\n\n border: {\n style: $input-border-style;\n width: $input-border-width;\n color: $input-border-color;\n }\n\n box-shadow: $input-box-shadow;\n color: $input-font-color;\n display: block;\n font-size: $input-font-size;\n margin: 0 0 $form-spacing 0;\n padding: calc($form-spacing / 2);\n height: ($input-font-size + ($form-spacing * 1.5) - rem-calc(1));\n width: 100%;\n @include box-sizing(border-box);\n\n @if $input-include-glowing-effect {\n @include block-glowing-effect(focus, $glowing-effect-fade-time, $glowing-effect-color);\n }\n\n // Basic focus styles\n &:focus {\n background: $input-focus-bg-color;\n border-color: $input-focus-border-color;\n outline: none;\n }\n\n // Disabled Styles\n &:disabled {\n background-color: $input-disabled-bg;\n cursor: $input-disabled-cursor;\n }\n\n // Disabled background input background color\n &[disabled],\n &[readonly],\n fieldset[disabled] & {\n background-color: $input-disabled-bg;\n cursor: $input-disabled-cursor;\n }\n}\n\n// @MIXIN\n//\n// We use this mixin to create form labels\n//\n// $alignment - Alignment options. Default: false. Options: [right, inline, false]\n// $base-style - Control whether or not the base styles come through. Default: true.\n@mixin form-label($alignment: false, $base-style: true) {\n\n // Control whether or not the base styles come through.\n @if $base-style {\n font-size: $form-label-font-size;\n color: $form-label-font-color;\n cursor: $form-label-pointer;\n display: block;\n font-weight: $form-label-font-weight;\n line-height: $form-label-line-height;\n margin-bottom: $form-label-bottom-margin;\n }\n\n // Alignment options\n @if $alignment ==right {\n float: none !important;\n text-align: right;\n }\n\n @else if $alignment ==inline {\n margin: 0 0 $form-spacing 0;\n padding: calc($form-spacing / 2) + rem-calc($input-border-width) 0;\n }\n}\n\n// We use this mixin to create postfix/prefix form Labels\n@mixin prefix-postfix-base {\n display: block;\n position: relative;\n z-index: 2;\n text-align: center;\n width: 100%;\n padding-top: 0;\n padding-bottom: 0;\n border-style: $input-prefix-border-type;\n border-width: $input-prefix-border-size;\n overflow: $input-prefix-overflow;\n font-size: $form-label-font-size;\n height: ($input-font-size + ($form-spacing * 1.5) - rem-calc(1));\n line-height: ($input-font-size + ($form-spacing * 1.5) - rem-calc(1));\n}\n\n// @MIXIN\n//\n// We use this mixin to create prefix label styles\n// $bg - Default:$input-prefix-bg || scale-color($white, $lightness: -5%) !default;\n// $is-button - Toggle position settings if prefix is a button. Default:false\n//\n@mixin prefix($bg: $input-prefix-bg, $border: $input-prefix-border-color, $is-button: false) {\n\n @if $bg {\n $bg-lightness: lightness($bg);\n background: $bg;\n border-#{$opposite-direction}: none;\n\n // Control the font color based on background brightness\n @if $bg-lightness >70% or $bg ==yellow {\n color: $input-prefix-font-color;\n }\n\n @else {\n color: $input-prefix-font-color-alt;\n }\n }\n\n @if $border {\n border-color: $border;\n }\n\n @if $is-button {\n padding-#{$default-float}: 0;\n padding-#{$opposite-direction}: 0;\n padding-top: 0;\n padding-bottom: 0;\n text-align: center;\n border: none;\n }\n\n}\n\n// @MIXIN\n//\n// We use this mixin to create postfix label styles\n// $bg - Default:$input-prefix-bg || scale-color($white, $lightness: -5%) !default;\n// $is-button - Toggle position settings if prefix is a button. Default: false\n@mixin postfix($bg: $input-prefix-bg, $border: $input-prefix-border-color, $is-button: false) {\n\n @if $bg {\n $bg-lightness: lightness($bg);\n background: $bg;\n border-#{$default-float}: none;\n\n // Control the font color based on background brightness\n @if $bg-lightness >70% or $bg ==yellow {\n color: $input-prefix-font-color;\n }\n\n @else {\n color: $input-prefix-font-color-alt;\n }\n }\n\n @if $border {\n border-color: $border;\n }\n\n @if $is-button {\n padding-#{$default-float}: 0;\n padding-#{$opposite-direction}: 0;\n padding-top: 0;\n padding-bottom: 0;\n text-align: center;\n border: none;\n }\n\n}\n\n// We use this mixin to style fieldsets\n@mixin fieldset {\n border: $fieldset-border-width $fieldset-border-style $fieldset-border-color;\n padding: $fieldset-padding;\n margin: $fieldset-margin;\n\n // and legend styles\n legend {\n font-weight: $legend-font-weight;\n background: $legend-bg;\n padding: $legend-padding;\n margin: 0;\n margin-#{$default-float}: rem-calc(-3);\n }\n}\n\n// @MIXIN\n//\n// We use this mixin to control border and background color of error inputs\n// $color - Default: $alert-color (found in settings file)\n@mixin form-error-color($color: $alert-color) {\n border-color: $color;\n background-color: rgba($color, 0.1);\n\n // Go back to normal on focus\n &:focus {\n background: $input-focus-bg-color;\n border-color: $input-focus-border-color;\n }\n}\n\n// @MIXIN\n//\n// We use this simple mixin to style labels for error inputs\n// $color - Default:$alert-color. Found in settings file\n@mixin form-label-error-color($color: $alert-color) {\n color: $color;\n}\n\n// @MIXIN\n//\n// We use this mixin to create error message styles\n// $bg - Default: $alert-color (Found in settings file)\n@mixin form-error-message($bg: $input-error-message-bg-color) {\n display: block;\n padding: $input-error-message-padding;\n margin-top: $input-error-message-top;\n margin-bottom: $form-spacing;\n font-size: $input-error-message-font-size;\n font-weight: $input-error-message-font-weight;\n font-style: $input-error-message-font-style;\n\n // We can control the text color based on the brightness of the background.\n $bg-lightness: lightness($bg);\n background: $bg;\n\n @if $bg-lightness < 70% or $bg ==yellow {\n color: $input-error-message-font-color;\n }\n\n @else {\n color: $input-error-message-font-color-alt;\n }\n}\n\n// We use this mixin to style select elements\n@mixin form-select {\n -webkit-appearance: none !important;\n border-radius: 0;\n background-color: $select-bg-color;\n\n // Hide the dropdown arrow shown in newer IE versions\n &::-ms-expand {\n display: none;\n }\n\n // The custom arrow has some fake horizontal padding so we can align it\n // from the right side of the element without relying on CSS3\n background-image: url();\n\n // We can safely use leftmost and rightmost now\n background-position: if($text-direction =='rtl', 0%, 100%) center;\n\n background-repeat: no-repeat;\n\n border: {\n style: $input-border-style;\n width: $input-border-width;\n color: $input-border-color;\n }\n\n padding: calc($form-spacing / 2);\n font-size: $input-font-size;\n font-family: $body-font-family;\n color: $input-font-color;\n line-height: normal;\n @include radius(0);\n\n &.radius {\n @include radius($global-radius);\n }\n\n &:hover {\n background-color: $select-hover-bg-color;\n border-color: $input-focus-border-color;\n }\n\n // Disabled Styles\n &:disabled {\n background-color: $input-disabled-bg;\n cursor: $input-disabled-cursor;\n }\n}\n\n// We use this mixin to turn on/off HTML5 number spinners\n@mixin html5number($browser, $on: true) {\n @if $on==false {\n @if $browser==webkit {\n -webkit-appearance: none;\n margin: 0;\n }\n\n @else if $browser==moz {\n -moz-appearance: textfield;\n }\n }\n}\n\n@include exports(\"form\") {\n @if $include-html-form-classes {\n\n /* Standard Forms */\n form {\n margin: 0 0 $form-spacing;\n }\n\n /* Using forms within rows, we need to set some defaults */\n form .row {\n @include form-row-base;\n }\n\n /* Label Styles */\n label {\n @include form-label;\n\n &.right {\n @include form-label(right, false);\n }\n\n &.inline {\n @include form-label(inline, false);\n }\n\n /* Styles for required inputs */\n small {\n text-transform: $form-label-small-transform;\n color: scale-color($form-label-font-color, $lightness: 15%);\n }\n }\n\n /* Attach elements to the beginning or end of an input */\n .prefix,\n .postfix {\n @include prefix-postfix-base;\n }\n\n /* Adjust padding, alignment and radius if pre/post element is a button */\n .postfix.button {\n @include button-size(false, false);\n @include postfix(false, false, true);\n }\n\n .prefix.button {\n @include button-size(false, false);\n @include prefix(false, false, true);\n }\n\n .prefix.button.radius {\n @include radius(0);\n @include side-radius($default-float, $button-radius);\n }\n\n .postfix.button.radius {\n @include radius(0);\n @include side-radius($opposite-direction, $button-radius);\n }\n\n .prefix.button.round {\n @include radius(0);\n @include side-radius($default-float, $button-round);\n }\n\n .postfix.button.round {\n @include radius(0);\n @include side-radius($opposite-direction, $button-round);\n }\n\n /* Separate prefix and postfix styles when on span or label so buttons keep their own */\n span.prefix,\n label.prefix {\n @include prefix();\n }\n\n span.postfix,\n label.postfix {\n @include postfix();\n }\n\n /* We use this to get basic styling on all basic form elements */\n #{text-inputs(all, 'input')} {\n -webkit-appearance: none;\n border-radius: 0;\n @include form-element;\n\n @if $input-include-glowing-effect ==false {\n @include single-transition(all, 0.15s, linear);\n }\n\n &.radius {\n @include radius($input-border-radius);\n }\n }\n\n form {\n .row {\n .prefix-radius.row.collapse {\n\n input,\n textarea,\n select {\n @include radius(0);\n @include side-radius($opposite-direction, $button-radius);\n }\n\n .prefix {\n @include radius(0);\n @include side-radius($default-float, $button-radius);\n }\n }\n\n .postfix-radius.row.collapse {\n\n input,\n textarea,\n select {\n @include radius(0);\n @include side-radius($default-float, $button-radius);\n }\n\n .postfix {\n @include radius(0);\n @include side-radius($opposite-direction, $button-radius);\n }\n }\n\n .prefix-round.row.collapse {\n\n input,\n textarea,\n select {\n @include radius(0);\n @include side-radius($opposite-direction, $button-round);\n }\n\n .prefix {\n @include radius(0);\n @include side-radius($default-float, $button-round);\n }\n }\n\n .postfix-round.row.collapse {\n\n input,\n textarea,\n select {\n @include radius(0);\n @include side-radius($default-float, $button-round);\n }\n\n .postfix {\n @include radius(0);\n @include side-radius($opposite-direction, $button-round);\n }\n }\n }\n }\n\n input[type=\"submit\"] {\n -webkit-appearance: none;\n border-radius: 0;\n }\n\n /* Respect enforced amount of rows for textarea */\n textarea[rows] {\n height: auto;\n }\n\n /* Not allow resize out of parent */\n textarea {\n max-width: 100%;\n }\n\n /* Add height value for select elements to match text input height */\n select {\n @include form-select;\n height: ($input-font-size + ($form-spacing * 1.5) - rem-calc(1));\n }\n\n /* Adjust margin for form elements below */\n input[type=\"file\"],\n input[type=\"checkbox\"],\n input[type=\"radio\"],\n select {\n margin: 0 0 $form-spacing 0;\n }\n\n input[type=\"checkbox\"]+label,\n input[type=\"radio\"]+label {\n display: inline-block;\n margin-#{$default-float}: $form-spacing * .5;\n margin-#{$opposite-direction}: $form-spacing;\n margin-bottom: 0;\n vertical-align: baseline;\n }\n\n /* Normalize file input width */\n input[type=\"file\"] {\n width: 100%;\n }\n\n /* HTML5 Number spinners settings */\n input[type=number] {\n @include html5number(moz, $input-number-spinners)\n }\n\n input[type=\"number\"]::-webkit-inner-spin-button,\n input[type=\"number\"]::-webkit-outer-spin-button {\n @include html5number(webkit, $input-number-spinners);\n }\n\n /* We add basic fieldset styling */\n fieldset {\n @include fieldset;\n }\n\n /* Error Handling */\n\n #{data('abide')} {\n\n .error small.error,\n .error span.error,\n span.error,\n small.error {\n @include form-error-message;\n }\n\n span.error,\n small.error {\n display: none;\n }\n }\n\n span.error,\n small.error {\n @include form-error-message;\n }\n\n .error {\n\n input,\n textarea,\n select {\n margin-bottom: 0;\n }\n\n input[type=\"checkbox\"],\n input[type=\"radio\"] {\n margin-bottom: $form-spacing\n }\n\n label,\n label.error {\n @include form-label-error-color;\n }\n\n small.error {\n @include form-error-message;\n }\n\n >label {\n >small {\n color: scale-color($form-label-font-color, $lightness: 15%);\n background: transparent;\n padding: 0;\n text-transform: $form-label-small-transform;\n font-style: normal;\n font-size: 60%;\n margin: 0;\n display: inline;\n }\n }\n\n span.error-message {\n display: block;\n }\n }\n\n input.error,\n textarea.error,\n select.error {\n margin-bottom: 0;\n }\n\n label.error {\n @include form-label-error-color;\n }\n }\n}","// Foundation by ZURB\n// foundation.zurb.com\n// Licensed under MIT Open Source\n\n@import \"global\";\n@import \"grid\";\n@import \"buttons\";\n@import \"forms\";\n\n//\n// Top Bar Variables\n//\n$include-html-top-bar-classes: $include-html-classes !default;\n\n// Background color for the top bar\n$topbar-bg-color: $oil !default;\n$topbar-bg: $topbar-bg-color !default;\n\n// Height and margin\n$topbar-height: rem-calc(45) !default;\n$topbar-margin-bottom: 0 !default;\n\n// Controlling the styles for the title in the top bar\n$topbar-title-weight: $font-weight-normal !default;\n$topbar-title-font-size: rem-calc(17) !default;\n\n// Set the link colors and styles for top-level nav\n$topbar-link-color: $white !default;\n$topbar-link-color-hover: $white !default;\n$topbar-link-color-active: $white !default;\n$topbar-link-color-active-hover: $white !default;\n$topbar-link-weight: $font-weight-normal !default;\n$topbar-link-font-size: rem-calc(13) !default;\n$topbar-link-hover-lightness: -10% !default; // Darken by 10%\n$topbar-link-bg: $topbar-bg !default;\n$topbar-link-bg-hover: $oil !default;\n$topbar-link-bg-color-hover: $charcoal !default;\n$topbar-link-bg-active: $primary-color !default;\n$topbar-link-bg-active-hover: scale-color($primary-color, $lightness: -14%) !default;\n$topbar-link-font-family: $body-font-family !default;\n$topbar-link-text-transform: none !default;\n$topbar-link-padding: calc($topbar-height / 3) !default;\n$topbar-back-link-size: rem-calc(18) !default;\n$topbar-link-dropdown-padding: rem-calc(20) !default;\n$topbar-button-font-size: 0.75rem !default;\n$topbar-button-top: 7px !default;\n\n// Style the top bar dropdown elements\n$topbar-dropdown-bg: $oil !default;\n$topbar-dropdown-link-color: $white !default;\n$topbar-dropdown-link-color-hover: $topbar-link-color-hover !default;\n$topbar-dropdown-link-bg: $oil !default;\n$topbar-dropdown-link-bg-hover: $oil !default;\n$topbar-dropdown-link-weight: $font-weight-normal !default;\n$topbar-dropdown-toggle-size: 5px !default;\n$topbar-dropdown-toggle-color: $white !default;\n$topbar-dropdown-toggle-alpha: 0.4 !default;\n\n$topbar-dropdown-label-color: $monsoon !default;\n$topbar-dropdown-label-text-transform: uppercase !default;\n$topbar-dropdown-label-font-weight: $font-weight-bold !default;\n$topbar-dropdown-label-font-size: rem-calc(10) !default;\n$topbar-dropdown-label-bg: $oil !default;\n\n// Top menu icon styles\n$topbar-menu-link-transform: uppercase !default;\n$topbar-menu-link-font-size: rem-calc(13) !default;\n$topbar-menu-link-weight: $font-weight-bold !default;\n$topbar-menu-link-color: $white !default;\n$topbar-menu-icon-color: $white !default;\n$topbar-menu-link-color-toggled: $jumbo !default;\n$topbar-menu-icon-color-toggled: $jumbo !default;\n\n// Transitions and breakpoint styles\n$topbar-transition-speed: 300ms !default;\n// Using rem-calc for the below breakpoint causes issues with top bar\n$topbar-breakpoint: #{lower-bound($medium-range)} !default; // Change to 9999px for always mobile layout\n$topbar-media-query: $medium-up !default;\n\n// Top-bar input styles\n$topbar-input-height: rem-calc(28) !default;\n\n// Divider Styles\n$topbar-divider-border-bottom: solid 1px scale-color($topbar-bg-color, $lightness: 13%) !default;\n$topbar-divider-border-top: solid 1px scale-color($topbar-bg-color, $lightness: -50%) !default;\n\n// Sticky Class\n$topbar-sticky-class: \".sticky\" !default;\n$topbar-arrows: true !default; //Set false to remove the triangle icon from the menu item\n$topbar-dropdown-arrows: true !default; //Set false to remove the \\00bb >> text from dropdown subnavigation li\n\n// Accessibility mixins for hiding and showing the menu dropdown items\n@mixin topbar-hide-dropdown {\n // Makes an element visually hidden by default, but visible when focused.\n display: block;\n @include element-invisible();\n}\n\n@mixin topbar-show-dropdown {\n display: block;\n @include element-invisible-off();\n position: absolute !important; // Reset the position from static to absolute\n}\n\n@include exports(\"top-bar\") {\n\n @if $include-html-top-bar-classes {\n\n // Used to provide media query values for javascript components.\n // This class is generated despite the value of $include-html-top-bar-classes\n // to ensure width calculations work correctly.\n meta.foundation-mq-topbar {\n font-family: \"/\" + unquote($topbar-media-query) + \"/\";\n width: $topbar-breakpoint;\n }\n\n /* Wrapped around .top-bar to contain to grid width */\n .contain-to-grid {\n width: 100%;\n background: $topbar-bg;\n\n .top-bar {\n margin-bottom: $topbar-margin-bottom;\n }\n }\n\n // Wrapped around .top-bar to make it stick to the top\n .fixed {\n width: 100%;\n #{$default-float}: 0;\n position: fixed;\n top: 0;\n z-index: 99;\n\n &.expanded:not(.top-bar) {\n overflow-y: auto;\n height: auto;\n width: 100%;\n max-height: 100%;\n\n .title-area {\n position: fixed;\n width: 100%;\n z-index: 99;\n }\n\n // Ensure you can scroll the menu on small screens\n .top-bar-section {\n z-index: 98;\n margin-top: $topbar-height;\n }\n }\n }\n\n .top-bar {\n overflow: hidden;\n height: $topbar-height;\n line-height: $topbar-height;\n position: relative;\n background: $topbar-bg;\n margin-bottom: $topbar-margin-bottom;\n\n // Topbar Global list Styles\n ul {\n margin-bottom: 0;\n list-style: none;\n }\n\n .row {\n max-width: none;\n }\n\n form,\n input {\n margin-bottom: 0;\n }\n\n input {\n height: $topbar-input-height;\n padding-top: .35rem;\n padding-bottom: .35rem;\n font-size: $topbar-button-font-size;\n }\n\n .button,\n button {\n padding-top: .35rem + rem-calc(1);\n padding-bottom: .35rem + rem-calc(1);\n margin-bottom: 0;\n font-size: $topbar-button-font-size;\n // position: relative;\n // top: -1px;\n\n // Corrects a slight misalignment when put next to an input field\n @media #{$small-only} {\n position: relative;\n top: -1px;\n }\n }\n\n // Title Area\n .title-area {\n position: relative;\n margin: 0;\n }\n\n .name {\n height: $topbar-height;\n margin: 0;\n font-size: $rem-base;\n\n h1,\n h2,\n h3,\n h4,\n p,\n span {\n line-height: $topbar-height;\n font-size: $topbar-title-font-size;\n margin: 0;\n\n a {\n font-weight: $topbar-title-weight;\n color: $topbar-link-color;\n width: 75%;\n display: block;\n padding: 0 $topbar-link-padding;\n }\n }\n }\n\n // Menu toggle button on small devices\n .toggle-topbar {\n position: absolute;\n #{$opposite-direction}: 0;\n top: 0;\n\n a {\n color: $topbar-link-color;\n text-transform: $topbar-menu-link-transform;\n font-size: $topbar-menu-link-font-size;\n font-weight: $topbar-menu-link-weight;\n position: relative;\n display: block;\n padding: 0 $topbar-link-padding;\n height: $topbar-height;\n line-height: $topbar-height;\n }\n\n // Adding the class \"menu-icon\" will add the 3-line icon people love and adore.\n &.menu-icon {\n top: 50%;\n margin-top: -16px;\n\n a {\n @if $text-direction ==rtl {\n text-indent: -58px;\n }\n\n height: 34px;\n line-height: 33px;\n padding: 0 $topbar-link-padding+rem-calc(25) 0 $topbar-link-padding;\n color: $topbar-menu-link-color;\n position: relative;\n\n & {\n // @include hamburger icon\n //\n // We use this to create the icon with three lines aka the hamburger icon, the menu-icon or the navicon\n // $width - Width of hamburger icon\n // $left - If false, icon will be centered horizontally || explicitly set value in rem\n // $top - If false, icon will be centered vertically || explicitly set value in rem\n // $thickness - thickness of lines in hamburger icon, set value in px\n // $gap - spacing between the lines in hamburger icon, set value in px\n // $color - icon color\n // $hover-color - icon color during hover, here it isn't set b/c it would override $topbar-menu-icon-color-toggled\n // $offcanvas - Set to false of @include in topbar\n @include hamburger(16px, false, 0, 1px, 6px, $topbar-menu-icon-color, \"\", false);\n }\n }\n }\n }\n\n // Change things up when the top-bar is expanded\n &.expanded {\n height: auto;\n background: transparent;\n\n .title-area {\n background: $topbar-bg;\n }\n\n .toggle-topbar {\n a {\n color: $topbar-menu-link-color-toggled;\n\n span::after {\n // Shh, don't tell, but box-shadows create the menu icon :)\n // Change the color of the bars when the menu is expanded, using given thickness from hamburger() above\n box-shadow: 0 0 0 1px $topbar-menu-icon-color-toggled,\n 0 7px 0 1px $topbar-menu-icon-color-toggled,\n 0 14px 0 1px $topbar-menu-icon-color-toggled;\n }\n }\n }\n }\n }\n\n // Right and Left Navigation that stacked by default\n .top-bar-section {\n #{$default-float}: 0;\n position: relative;\n width: auto;\n @include single-transition($default-float, $topbar-transition-speed);\n\n ul {\n padding: 0;\n width: 100%;\n height: auto;\n display: block;\n font-size: $rem-base;\n margin: 0;\n }\n\n .divider,\n [role=\"separator\"] {\n border-top: $topbar-divider-border-top;\n clear: both;\n height: 1px;\n width: 100%;\n }\n\n ul li {\n background: $topbar-dropdown-bg;\n\n &>a {\n display: block;\n width: 100%;\n color: $topbar-link-color;\n padding: 12px 0 12px 0;\n padding-#{$default-float}: $topbar-link-padding;\n font-family: $topbar-link-font-family;\n font-size: $topbar-link-font-size;\n font-weight: $topbar-link-weight;\n text-transform: $topbar-link-text-transform;\n\n &.button {\n font-size: $topbar-link-font-size;\n padding-#{$opposite-direction}: $topbar-link-padding;\n padding-#{$default-float}: $topbar-link-padding;\n @include button-style($bg: $primary-color);\n }\n\n &.button.secondary {\n @include button-style($bg: $secondary-color);\n }\n\n &.button.success {\n @include button-style($bg: $success-color);\n }\n\n &.button.alert {\n @include button-style($bg: $alert-color);\n }\n\n &.button.warning {\n @include button-style($bg: $warning-color);\n }\n }\n\n >button {\n font-size: $topbar-link-font-size;\n padding-#{$opposite-direction}: $topbar-link-padding;\n padding-#{$default-float}: $topbar-link-padding;\n @include button-style($bg: $primary-color);\n\n &.secondary {\n @include button-style($bg: $secondary-color);\n }\n\n &.success {\n @include button-style($bg: $success-color);\n }\n\n &.alert {\n @include button-style($bg: $alert-color);\n }\n\n &.warning {\n @include button-style($bg: $warning-color);\n }\n }\n\n // Apply the hover link color when it has that class\n &:hover:not(.has-form)>a {\n background-color: $topbar-link-bg-color-hover;\n\n @if ($topbar-link-bg-hover) {\n background: $topbar-link-bg-hover;\n }\n\n color: $topbar-link-color-hover;\n }\n\n // Apply the active link color when it has that class\n &.active>a {\n background: $topbar-link-bg-active;\n color: $topbar-link-color-active;\n\n &:hover {\n background: $topbar-link-bg-active-hover;\n color: $topbar-link-color-active-hover;\n }\n }\n }\n\n // Add some extra padding for list items contains buttons\n .has-form {\n padding: $topbar-link-padding;\n }\n\n // Styling for list items that have a dropdown within them.\n .has-dropdown {\n position: relative;\n\n &>a {\n &:after {\n @if ($topbar-arrows) {\n @include css-triangle($topbar-dropdown-toggle-size, rgba($topbar-dropdown-toggle-color, $topbar-dropdown-toggle-alpha), $default-float);\n }\n\n margin-#{$opposite-direction}: $topbar-link-padding;\n margin-top: -(calc($topbar-dropdown-toggle-size / 2)) - 2;\n position: absolute;\n top: 50%;\n #{$opposite-direction}: 0;\n }\n }\n\n &.moved {\n position: static;\n\n &>.dropdown {\n @include topbar-show-dropdown();\n width: 100%;\n }\n\n &>a:after {\n display: none;\n }\n }\n }\n\n // Styling elements inside of dropdowns\n .dropdown {\n padding: 0;\n position: absolute;\n #{$default-float}: 100%;\n top: 0;\n z-index: 99;\n @include topbar-hide-dropdown();\n\n li {\n width: 100%;\n height: auto;\n\n a {\n font-weight: $topbar-dropdown-link-weight;\n padding: 8px $topbar-link-padding;\n\n &.parent-link {\n font-weight: $topbar-link-weight;\n }\n }\n\n &.title h5,\n &.parent-link {\n // Back Button\n margin-bottom: 0;\n margin-top: 0;\n font-size: $topbar-back-link-size;\n\n a {\n color: $topbar-link-color;\n // line-height: ($topbar-height / 2);\n display: block;\n\n &:hover {\n background: none;\n }\n }\n }\n\n &.has-form {\n padding: 8px $topbar-link-padding;\n }\n\n .button,\n button {\n top: auto;\n }\n }\n\n label {\n padding: 8px $topbar-link-padding 2px;\n margin-bottom: 0;\n text-transform: $topbar-dropdown-label-text-transform;\n color: $topbar-dropdown-label-color;\n font-weight: $topbar-dropdown-label-font-weight;\n font-size: $topbar-dropdown-label-font-size;\n }\n }\n }\n\n .js-generated {\n display: block;\n }\n\n\n // Top Bar styles intended for screen sizes above the breakpoint.\n @media #{$topbar-media-query} {\n .top-bar {\n background: $topbar-bg;\n @include clearfix;\n overflow: visible;\n\n .toggle-topbar {\n display: none;\n }\n\n .title-area {\n float: $default-float;\n }\n\n .name h1 a {\n width: auto;\n }\n\n input,\n .button,\n button {\n font-size: rem-calc(14);\n position: relative;\n height: $topbar-input-height;\n top: calc(($topbar-height - $topbar-input-height) / 2);\n }\n\n &.expanded {\n background: $topbar-bg;\n }\n }\n\n .contain-to-grid .top-bar {\n max-width: $row-width;\n margin: 0 auto;\n margin-bottom: $topbar-margin-bottom;\n }\n\n .top-bar-section {\n @include single-transition(none, 0, 0);\n #{$default-float}: 0 !important;\n\n ul {\n width: auto;\n height: auto !important;\n display: inline;\n\n li {\n float: $default-float;\n\n .js-generated {\n display: none;\n }\n }\n }\n\n li {\n &.hover {\n >a:not(.button) {\n background-color: $topbar-link-bg-color-hover;\n\n @if ($topbar-link-bg-hover) {\n background: $topbar-link-bg-hover;\n }\n\n color: $topbar-link-color-hover;\n }\n }\n\n &:not(.has-form) {\n a:not(.button) {\n padding: 0 $topbar-link-padding;\n line-height: $topbar-height;\n background: $topbar-link-bg;\n\n &:hover {\n background-color: $topbar-link-bg-color-hover;\n\n @if ($topbar-link-bg-hover) {\n background: $topbar-link-bg-hover;\n }\n }\n }\n }\n\n &.active:not(.has-form) {\n a:not(.button) {\n padding: 0 $topbar-link-padding;\n line-height: $topbar-height;\n color: $topbar-link-color-active;\n background: $topbar-link-bg-active;\n\n &:hover {\n background: $topbar-link-bg-active-hover;\n color: $topbar-link-color-active-hover;\n }\n }\n }\n }\n\n .has-dropdown {\n @if($topbar-arrows) {\n &>a {\n padding-#{$opposite-direction}: $topbar-link-padding + $topbar-link-dropdown-padding !important;\n\n &:after {\n @include css-triangle($topbar-dropdown-toggle-size, rgba($topbar-dropdown-toggle-color, $topbar-dropdown-toggle-alpha), top);\n margin-top: -(calc($topbar-dropdown-toggle-size / 2));\n top: calc($topbar-height / 2);\n }\n }\n }\n\n &.moved {\n position: relative;\n\n &>.dropdown {\n @include topbar-hide-dropdown();\n }\n }\n\n &.hover,\n &.not-click:hover {\n &>.dropdown {\n @include topbar-show-dropdown();\n }\n }\n\n >a:focus+.dropdown {\n @include topbar-show-dropdown();\n }\n\n .dropdown li.has-dropdown {\n &>a {\n @if ($topbar-dropdown-arrows) {\n &:after {\n border: none;\n content: \"\\00bb\";\n top: 1rem;\n margin-top: -1px;\n #{$opposite-direction}: 5px;\n line-height: 1.2;\n }\n }\n }\n }\n }\n\n .dropdown {\n #{$default-float}: 0;\n top: auto;\n background: transparent;\n min-width: 100%;\n\n li {\n a {\n color: $topbar-dropdown-link-color;\n line-height: $topbar-height;\n white-space: nowrap;\n padding: 12px $topbar-link-padding;\n background: $topbar-dropdown-link-bg;\n }\n\n &:not(.has-form):not(.active) {\n &>a:not(.button) {\n color: $topbar-dropdown-link-color;\n background: $topbar-dropdown-link-bg;\n }\n\n &:hover>a:not(.button) {\n color: $topbar-dropdown-link-color-hover;\n background-color: $topbar-link-bg-color-hover;\n\n @if ($topbar-dropdown-link-bg-hover) {\n background: $topbar-dropdown-link-bg-hover;\n }\n }\n }\n\n label {\n white-space: nowrap;\n background: $topbar-dropdown-label-bg;\n }\n\n // Second Level Dropdowns\n .dropdown {\n #{$default-float}: 100%;\n top: 0;\n }\n }\n }\n\n &>ul>.divider,\n &>ul>[role=\"separator\"] {\n border-bottom: none;\n border-top: none;\n border-#{$opposite-direction}: $topbar-divider-border-bottom;\n clear: none;\n height: $topbar-height;\n width: 0;\n }\n\n .has-form {\n background: $topbar-link-bg;\n padding: 0 calc($topbar-height / 3);\n height: $topbar-height;\n }\n\n // Position overrides for ul.right and ul.left\n .#{$opposite-direction} {\n li .dropdown {\n #{$default-float}: auto;\n #{$opposite-direction}: 0;\n\n li .dropdown {\n #{$opposite-direction}: 100%;\n }\n }\n }\n\n .#{$default-float} {\n li .dropdown {\n #{$opposite-direction}: auto;\n #{$default-float}: 0;\n\n li .dropdown {\n #{$default-float}: 100%;\n }\n }\n }\n }\n\n // Degrade gracefully when Javascript is disabled. Displays dropdown and changes\n // background & text color on hover.\n .no-js .top-bar-section {\n ul li {\n\n // Apply the hover link color when it has that class\n &:hover>a {\n background-color: $topbar-link-bg-color-hover;\n\n @if ($topbar-link-bg-hover) {\n background: $topbar-link-bg-hover;\n }\n\n color: $topbar-link-color-hover;\n }\n\n // Apply the active link color when it has that class\n &:active>a {\n background: $topbar-link-bg-active;\n color: $topbar-link-color-active;\n }\n }\n\n .has-dropdown {\n &:hover {\n &>.dropdown {\n @include topbar-show-dropdown();\n }\n }\n\n >a:focus+.dropdown {\n @include topbar-show-dropdown();\n }\n }\n }\n }\n }\n}","// Foundation by ZURB\n// foundation.zurb.com\n// Licensed under MIT Open Source\n\n@import \"global\";\n\n//\n// @variables\n//\n\n$include-html-accordion-classes: $include-html-classes !default;\n\n$accordion-navigation-padding: rem-calc(16) !default;\n$accordion-navigation-bg-color: $silver !default;\n$accordion-navigation-hover-bg-color: scale-color($accordion-navigation-bg-color, $lightness: -5%) !default;\n$accordion-navigation-active-bg-color: scale-color($accordion-navigation-bg-color, $lightness: -3%) !default;\n$accordion-navigation-font-color: $jet !default;\n$accordion-navigation-font-size: rem-calc(16) !default;\n$accordion-navigation-font-family: $body-font-family !default;\n\n$accordion-content-padding: calc($column-gutter / 2) !default;\n$accordion-content-active-bg-color: $white !default;\n\n\n// Mixin: accordion-container()\n// Description: Responsible for the container component of accordions, generating styles relating to a margin of zero and a clearfix\n// Explicit Dependencies: a clearfix mixin *is* defined.\n// Implicit Dependencies: None\n\n@mixin accordion-container() {\n @include clearfix;\n margin-bottom: 0;\n}\n\n// Mixin: accordion-navigation( $bg, $hover-bg, $active-bg, $padding, $active_class, $font-color, $font-size, $font-family){\n// @params $bg-color: [ color or string ]: Specify the background color for the navigation element\n// @params $hover-bg-color [ color or string ]: Specify the background color for the navigation element when hovered\n// @params $active-bg [ color or string ]: Specify the background color for the navigation element when clicked and not released.\n// @params $active_class [ string ]: Specify the class name used to keep track of which accordion tab should be visible\n// @params $font-color [ color or string ]: Color of the font for accordion\n// @params $font-size [ number ]: Specify the font-size of the text inside the navigation element\n// @params $font-family [ string ]: Specify the font family for the text of the navigation of the accordion\n\n@mixin accordion-navigation($bg: $accordion-navigation-bg-color, $hover-bg: $accordion-navigation-hover-bg-color, $active-bg: $accordion-navigation-active-bg-color, $padding: $accordion-navigation-padding, $active_class: 'active', $font-color: $accordion-navigation-font-color, $font-size: $accordion-navigation-font-size, $font-family: $accordion-navigation-font-family ) {\n display: block;\n margin-bottom: 0 !important;\n\n @if type-of($active_class) !=\"string\" {\n @warn \"`#{$active_class}` isn't a valid string. A valid string is needed to correctly be interpolated as a CSS class. CSS classes cannot start with a number or consist of only numbers. CSS will not be generated for the active state of this navigation component.\"\n }\n\n @else {\n &.#{ $active_class }>a {\n background: $active-bg;\n }\n }\n\n >a {\n background: $bg;\n color: $font-color;\n\n @if type-of($padding) !=number {\n @warn \"`#{$padding}` was read as #{type-of($padding)}\";\n\n @if $accordion-navigation-padding !=null {\n @warn \"#{$padding} was read as a #{type-of($padding)}\";\n @warn \"`#{$padding}` isn't a valid number. $accordion-navigation-padding (#{$accordion-navigation-padding}) will be used instead.)\";\n padding: $accordion-navigation-padding;\n }\n\n @else {\n @warn \"`#{$padding}` isn't a valid number and $accordion-navigation-padding is missing. A value of `null` is returned to not output an invalid value for padding\";\n padding: null;\n }\n }\n\n @else {\n padding: $padding;\n }\n\n display: block;\n font-family: $font-family;\n\n @if type-of($font-size) !=number {\n @warn \"`#{$font-size}` was read as a #{type-of($font-size)}\";\n\n @if $accordion-navigation-font-size !=null {\n @warn \"`#{$font-size}` is not a valid number. The value of $accordion-navigation-font-size will be used instead (#{$accordion-navigation-font-size}).\";\n font-size: $accordion-navigation-font-size;\n }\n\n @else {\n @warn \"`#{$font-size}` is not a valid number and the default value of $accordion-navigation-font-size is not defined. A value of `null` will be returned to not generate an invalid value for font-size.\";\n font-size: null;\n\n }\n }\n\n @else {\n font-size: $font-size;\n }\n\n &:hover {\n background: $hover-bg;\n }\n }\n}\n\n// Mixin: accordion-content($bg, $padding, $active-class)\n// @params $padding [ number ]: Padding for the content of the container\n// @params $bg [ color ]: Background color for the content when it's visible\n// @params $active_class [ string ]: Class name used to keep track of which accordion tab should be visible.\n\n@mixin accordion-content($bg: $accordion-content-active-bg-color, $padding: $accordion-content-padding, $active_class: 'active') {\n display: none;\n\n @if type-of($padding) !=\"number\" {\n @warn \"#{$padding} was read as a #{type-of($padding)}\";\n\n @if $accordion-content-padding !=null {\n @warn \"`#{$padding}` isn't a valid number. $accordion-content-padding used instead\";\n padding: $accordion-content-padding;\n }\n\n @else {\n @warn \"`#{$padding}` isn't a valid number and the default value of $accordion-content-padding is not defined. A value of `null` is returned to not output an invalid value for padding.\";\n padding: null;\n }\n }\n\n @else {\n padding: $padding;\n }\n\n @if type-of($active_class) !=\"string\" {\n @warn \"`#{$active_class}` isn't a valid string. A valid string is needed to correctly be interpolated as a CSS class. CSS classes cannot start with a number or consist of only numbers. CSS will not be generated for the active state of the content. \"\n }\n\n @else {\n &.#{$active_class} {\n display: block;\n background: $bg;\n }\n }\n}\n\n@include exports(\"accordion\") {\n @if $include-html-accordion-classes {\n .accordion {\n @include clearfix;\n margin-bottom: 0;\n\n .accordion-navigation,\n dd {\n display: block;\n margin-bottom: 0 !important;\n\n &.active>a {\n background: $accordion-navigation-active-bg-color;\n }\n\n >a {\n background: $accordion-navigation-bg-color;\n color: $accordion-navigation-font-color;\n padding: $accordion-navigation-padding;\n display: block;\n font-family: $accordion-navigation-font-family;\n font-size: $accordion-navigation-font-size;\n\n &:hover {\n background: $accordion-navigation-hover-bg-color;\n }\n }\n\n >.content {\n display: none;\n padding: $accordion-content-padding;\n\n &.active {\n display: block;\n background: $accordion-content-active-bg-color;\n }\n }\n }\n }\n }\n}","// Foundation by ZURB\n// foundation.zurb.com\n// Licensed under MIT Open Source\n\n@import \"global\";\n\n//\n// Alert Box Variables\n//\n$include-html-alert-classes: $include-html-classes !default;\n\n// We use this to control alert padding.\n$alert-padding-top: rem-calc(14) !default;\n$alert-padding-default-float: $alert-padding-top !default;\n$alert-padding-opposite-direction: $alert-padding-top + rem-calc(10) !default;\n$alert-padding-bottom: $alert-padding-top !default;\n\n// We use these to control text style.\n$alert-font-weight: $font-weight-normal !default;\n$alert-font-size: rem-calc(13) !default;\n$alert-font-color: $white !default;\n$alert-font-color-alt: scale-color($secondary-color, $lightness: -66%) !default;\n\n// We use this for close hover effect.\n$alert-function-factor: -14% !default;\n\n// We use these to control border styles.\n$alert-border-style: solid !default;\n$alert-border-width: 1px !default;\n$alert-border-color: scale-color($primary-color, $lightness: $alert-function-factor) !default;\n$alert-bottom-margin: rem-calc(20) !default;\n\n// We use these to style the close buttons\n$alert-close-color: $oil !default;\n$alert-close-top: 50% !default;\n$alert-close-position: rem-calc(4) !default;\n$alert-close-font-size: rem-calc(22) !default;\n$alert-close-opacity: 0.3 !default;\n$alert-close-opacity-hover: 0.5 !default;\n$alert-close-padding: 9px 6px 4px !default;\n$alert-close-background: inherit !default;\n\n// We use this to control border radius\n$alert-radius: $global-radius !default;\n\n$alert-transition-speed: 300ms !default;\n$alert-transition-ease: ease-out !default;\n\n//\n// Alert Mixins\n//\n\n// We use this mixin to create a default alert base.\n@mixin alert-base {\n border-style: $alert-border-style;\n border-width: $alert-border-width;\n display: block;\n font-weight: $alert-font-weight;\n margin-bottom: $alert-bottom-margin;\n position: relative;\n padding: $alert-padding-top $alert-padding-opposite-direction $alert-padding-bottom $alert-padding-default-float;\n font-size: $alert-font-size;\n @include single-transition(opacity, $alert-transition-speed, $alert-transition-ease)\n}\n\n// We use this mixin to add alert styles\n//\n// $bg - The background of the alert. Default: $primary-color.\n@mixin alert-style($bg: $primary-color) {\n\n // This finds the lightness percentage of the background color.\n $bg-lightness: lightness($bg);\n\n // We control which background color and border come through.\n background-color: $bg;\n border-color: scale-color($bg, $lightness: $alert-function-factor);\n\n // We control the text color for you based on the background color.\n @if $bg-lightness >70% {\n color: $alert-font-color-alt;\n }\n\n @else {\n color: $alert-font-color;\n }\n\n}\n\n// We use this to create the close button.\n@mixin alert-close {\n font-size: $alert-close-font-size;\n padding: $alert-close-padding;\n line-height: 0;\n position: absolute;\n top: $alert-close-top;\n margin-top: -(calc($alert-close-font-size / 2));\n #{$opposite-direction}: $alert-close-position;\n color: $alert-close-color;\n opacity: $alert-close-opacity;\n background: $alert-close-background;\n\n &:hover,\n &:focus {\n opacity: $alert-close-opacity-hover;\n }\n}\n\n// We use this to quickly create alerts with a single mixin.\n//\n// $bg - Background of alert. Default: $primary-color.\n// $radius - Radius of alert box. Default: false.\n@mixin alert($bg: $primary-color, $radius: false) {\n @include alert-base;\n @include alert-style($bg);\n @include radius($radius);\n}\n\n@include exports(\"alert-box\") {\n @if $include-html-alert-classes {\n .alert-box {\n @include alert;\n\n .close {\n @include alert-close;\n }\n\n &.radius {\n @include radius($alert-radius);\n }\n\n &.round {\n @include radius($global-rounded);\n }\n\n &.success {\n @include alert-style($success-color);\n }\n\n &.alert {\n @include alert-style($alert-color);\n }\n\n &.secondary {\n @include alert-style($secondary-color);\n }\n\n &.warning {\n @include alert-style($warning-color);\n }\n\n &.info {\n @include alert-style($info-color);\n }\n\n &.alert-close {\n opacity: 0\n }\n }\n }\n}","// Foundation by ZURB\n// foundation.zurb.com\n// Licensed under MIT Open Source\n\n@import \"global\";\n\n//\n// Breadcrumb Variables\n//\n$include-html-nav-classes: $include-html-classes !default;\n\n// We use this to set the background color for the breadcrumb container.\n$crumb-bg: scale-color($secondary-color, $lightness: 55%) !default;\n\n// We use these to set the padding around the breadcrumbs.\n$crumb-padding: rem-calc(9 14 9) !default;\n$crumb-side-padding: rem-calc(12) !default;\n\n// We use these to control border styles.\n$crumb-function-factor: -10% !default;\n$crumb-border-size: 1px !default;\n$crumb-border-style: solid !default;\n$crumb-border-color: scale-color($crumb-bg, $lightness: $crumb-function-factor) !default;\n$crumb-radius: $global-radius !default;\n\n// We use these to set various text styles for breadcrumbs.\n$crumb-font-size: rem-calc(11) !default;\n$crumb-font-color: $primary-color !default;\n$crumb-font-color-current: $oil !default;\n$crumb-font-color-unavailable: $aluminum !default;\n$crumb-font-transform: uppercase !default;\n$crumb-link-decor: underline !default;\n\n// We use these to control the slash between breadcrumbs\n$crumb-slash-color: $base !default;\n$crumb-slash: \"/\" !default;\n\n//\n// Breadcrumb Mixins\n//\n\n// We use this mixin to create a container around our breadcrumbs\n@mixin crumb-container {\n display: block;\n padding: $crumb-padding;\n overflow: hidden;\n margin-#{$default-float}: 0;\n list-style: none;\n border-style: $crumb-border-style;\n border-width: $crumb-border-size;\n\n // We control which background color and border come through.\n background-color: $crumb-bg;\n border-color: $crumb-border-color;\n}\n\n// We use this mixin to create breadcrumb styles from list items.\n@mixin crumbs {\n\n // A normal state will make the links look and act like clickable breadcrumbs.\n margin: 0;\n float: $default-float;\n font-size: $crumb-font-size;\n line-height: $crumb-font-size;\n text-transform: $crumb-font-transform;\n color: $crumb-font-color;\n\n &:hover a, &:focus a { text-decoration: $crumb-link-decor; }\n\n a {\n color: $crumb-font-color;\n }\n\n // Current is for the link of the current page\n &.current {\n cursor: $cursor-default-value;\n color: $crumb-font-color-current;\n a {\n cursor: $cursor-default-value;\n color: $crumb-font-color-current;\n }\n\n &:hover, &:hover a,\n &:focus, &:focus a { text-decoration: none; }\n }\n\n // Unavailable removed color and link styles so it looks inactive.\n &.unavailable {\n color: $crumb-font-color-unavailable;\n a { color: $crumb-font-color-unavailable; }\n\n &:hover,\n &:hover a,\n &:focus,\n a:focus {\n text-decoration: none;\n color: $crumb-font-color-unavailable;\n cursor: $cursor-default-value;\n }\n }\n\n &:before {\n content: \"#{$crumb-slash}\";\n color: $crumb-slash-color;\n margin: 0 $crumb-side-padding;\n position: relative;\n top: 1px;\n }\n\n &:first-child:before {\n content: \" \";\n margin: 0;\n }\n}\n\n@include exports(\"breadcrumbs\") {\n @if $include-html-nav-classes {\n .breadcrumbs {\n @include crumb-container;\n @include radius($crumb-radius);\n\n &>* {\n @include crumbs;\n }\n }\n }\n}\n\n/* Accessibility - hides the forward slash */\n[aria-label=\"breadcrumbs\"] [aria-hidden=\"true\"]:after {\n content: \"/\";\n }\n","// Foundation by ZURB\n// foundation.zurb.com\n// Licensed under MIT Open Source\n\n@import \"global\";\n\n//\n// Block Grid Variables\n//\n$include-html-block-grid-classes: $include-html-classes !default;\n$include-xl-html-block-grid-classes: false !default;\n\n// We use this to control the maximum number of block grid elements per row\n$block-grid-elements: 12 !default;\n$block-grid-default-spacing: rem-calc(20) !default;\n\n$align-block-grid-to-grid: false !default;\n\n@if $align-block-grid-to-grid {\n $block-grid-default-spacing: $column-gutter;\n}\n\n// Enables media queries for block-grid classes. Set to false if writing semantic HTML.\n$block-grid-media-queries: true !default;\n\n//\n// Block Grid Mixins\n//\n\n// Create a custom block grid\n//\n// $per-row - # of items to display per row. Default: false.\n// $spacing - # of ems to use as padding on each block item. Default: rem-calc(20).\n// $base-style - Apply a base style to block grid. Default: true.\n@mixin block-grid($per-row: false,\n $spacing: $block-grid-default-spacing,\n $include-spacing: true,\n $base-style: true) {\n\n @if $base-style {\n display: block;\n padding: 0;\n\n @if $align-block-grid-to-grid {\n margin: 0;\n }\n\n @else {\n margin: 0 calc(-1 * $spacing / 2);\n }\n\n @include clearfix;\n\n &>li {\n display: block;\n height: auto;\n float: $default-float;\n\n @if $include-spacing {\n padding: 0 calc($spacing / 2) $spacing;\n }\n }\n }\n\n @if $per-row {\n &>li {\n width: calc(100% / $per-row);\n\n @if $include-spacing {\n padding: 0 ($spacing/2) $spacing;\n }\n\n list-style: none;\n\n &:nth-of-type(1n) {\n clear: none;\n }\n\n &:nth-of-type(#{$per-row}n+1) {\n clear: both;\n }\n\n @if $align-block-grid-to-grid {\n @include block-grid-aligned($per-row, $spacing);\n }\n }\n }\n}\n\n@mixin block-grid-aligned($per-row, $spacing) {\n @for $i from 1 through $block-grid-elements {\n @if $per-row >=$i {\n $grid-column: '+'+$i;\n\n @if $per-row ==$i {\n $grid-column: '';\n }\n\n &:nth-of-type(#{$per-row}n#{unquote($grid-column)}) {\n padding-left: ($spacing - (($spacing / $per-row) * ($per-row - ($i - 1))));\n padding-right: ($spacing - (($spacing / $per-row) * $i));\n }\n }\n }\n}\n\n// Generate presentational markup for block grid.\n//\n// $size - Name of class to use, i.e. \"large\" will generate .large-block-grid-1, .large-block-grid-2, etc.\n@mixin block-grid-html-classes($size, $include-spacing) {\n @for $i from 1 through $block-grid-elements {\n .#{$size}-block-grid-#{($i)} {\n @include block-grid($i, $block-grid-default-spacing, $include-spacing, false);\n }\n }\n}\n\n@include exports(\"block-grid\") {\n @if $include-html-block-grid-classes {\n\n [class*=\"block-grid-\"] {\n @include block-grid;\n }\n\n @if $block-grid-media-queries {\n @media #{$small-up} {\n @include block-grid-html-classes($size: small, $include-spacing: false);\n }\n\n @media #{$medium-up} {\n @include block-grid-html-classes($size: medium, $include-spacing: false);\n }\n\n @media #{$large-up} {\n @include block-grid-html-classes($size: large, $include-spacing: false);\n }\n\n @if $include-xl-html-block-grid-classes {\n @media #{$xlarge-up} {\n @include block-grid-html-classes($size: xlarge, $include-spacing: false);\n }\n\n @media #{$xxlarge-up} {\n @include block-grid-html-classes($size: xxlarge, $include-spacing: false);\n }\n }\n }\n }\n}","// Foundation by ZURB\n// foundation.zurb.com\n// Licensed under MIT Open Source\n\n@import \"global\";\n@import \"buttons\";\n\n//\n// Button Group Variables\n//\n$include-html-button-classes: $include-html-classes !default;\n\n// Sets the margin for the right side by default, and the left margin if right-to-left direction is used\n$button-bar-margin-opposite: rem-calc(10) !default;\n$button-group-border-width: 1px !default;\n\n//\n// Button Group Mixins\n//\n\n// We use this to add styles for a button group container\n@mixin button-group-container($styles: true, $float: false) {\n @if $styles {\n list-style: none;\n margin: 0;\n #{$default-float}: 0;\n @include clearfix();\n }\n\n @if $float {\n float: #{$default-float};\n margin-#{$opposite-direction}: $button-bar-margin-opposite;\n\n & div {\n overflow: hidden;\n }\n }\n}\n\n// We use this to control styles for button groups\n@mixin button-group-style($radius: false, $even: false, $float: false, $orientation: horizontal) {\n\n >button,\n .button {\n border-#{$default-float}: $button-group-border-width solid;\n border-color: rgba(255, 255, 255, 0.5);\n }\n\n &:first-child {\n\n button,\n .button {\n border-#{$default-float}: 0;\n }\n }\n\n // We use this to control the flow, or remove those styles completely.\n @if $float {\n margin: 0;\n float: $float;\n display: list-item;\n\n // Make sure the first child doesn't get the negative margin.\n &:first-child {\n margin-#{$default-float}: 0;\n }\n }\n\n @else {\n margin: 0 -2px;\n display: inline-block;\n }\n\n @if $orientation ==vertical {\n display: block;\n margin: 0;\n\n >button,\n .button {\n border-top: $button-group-border-width solid;\n border-color: rgba(255, 255, 255, 0.5);\n border-left-width: 0;\n margin: 0;\n display: block;\n }\n\n &:first-child {\n\n button,\n .button {\n border-top: 0;\n }\n }\n }\n\n // We use these to control left and right radius on first/last buttons in the group.\n @if $radius ==true {\n\n &,\n &>a,\n &>button,\n &>.button {\n @include radius(0);\n }\n\n &:first-child,\n &:first-child>a,\n &:first-child>button,\n &:first-child>.button {\n @if $orientation ==vertical {\n @include side-radius(top, $button-radius);\n }\n\n @else {\n @include side-radius($default-float, $button-radius);\n }\n }\n\n &:last-child,\n &:last-child>a,\n &:last-child>button,\n &:last-child>.button {\n @if $orientation ==vertical {\n @include side-radius(bottom, $button-radius);\n }\n\n @else {\n @include side-radius($opposite-direction, $button-radius);\n }\n }\n }\n\n @else if $radius {\n\n &,\n &>a,\n &>button,\n &>.button {\n @include radius(0);\n }\n\n &:first-child,\n &:first-child>a,\n &:first-child>button,\n &:first-child>.button {\n @if $orientation ==vertical {\n @include side-radius(top, $radius);\n }\n\n @else {\n @include side-radius($default-float, $radius);\n }\n }\n\n &:last-child,\n &:last-child>a,\n &:last-child>button,\n &:last-child>.button {\n @if $orientation ==vertical {\n @include side-radius(bottom, $radius);\n }\n\n @else {\n @include side-radius($opposite-direction, $radius);\n }\n }\n }\n\n // We use this to make the buttons even width across their container\n @if $even {\n width: percentage(calc((100/$even) / 100));\n\n button,\n .button {\n width: 100%;\n }\n }\n}\n\n@include exports(\"button-group\") {\n @if $include-html-button-classes {\n .button-group {\n @include button-group-container;\n\n &>li {\n @include button-group-style();\n }\n\n &.stack {\n &>li {\n @include button-group-style($orientation: vertical);\n float: none;\n }\n }\n\n &.stack-for-small {\n &>li {\n @include button-group-style($orientation: horizontal);\n\n @media #{$small-only} {\n @include button-group-style($orientation: vertical);\n }\n }\n }\n\n &.radius>* {\n @include button-group-style($radius: $button-radius, $float: null);\n }\n\n &.radius.stack>* {\n @include button-group-style($radius: $button-radius, $float: null, $orientation: vertical);\n }\n\n &.radius.stack-for-small>* {\n @media #{$medium-up} {\n @include button-group-style($radius: $button-radius, $orientation: horizontal);\n }\n\n @media #{$small-only} {\n @include button-group-style($radius: $button-radius, $orientation: vertical);\n }\n }\n\n &.round>* {\n @include button-group-style($radius: $button-round, $float: null);\n }\n\n &.round.stack>* {\n @include button-group-style($radius: $button-med, $float: null, $orientation: vertical);\n }\n\n &.round.stack-for-small>* {\n @media #{$medium-up} {\n @include button-group-style($radius: $button-round, $orientation: horizontal);\n }\n\n @media #{$small-only} {\n @include button-group-style($radius: $button-med, $orientation: vertical);\n }\n }\n\n @for $i from 2 through 8 {\n &.even-#{$i} li {\n @include button-group-style($even: $i, $float: null);\n }\n }\n }\n\n .button-bar {\n @include clearfix;\n\n .button-group {\n @include button-group-container($styles: false, $float: true);\n }\n }\n }\n}","// Foundation by ZURB\n// foundation.zurb.com\n// Licensed under MIT Open Source\n\n@import \"global\";\n\n//\n// @variables\n//\n$include-html-clearing-classes: $include-html-classes !default;\n\n// We use these to set the background colors for parts of Clearing.\n$clearing-bg: $oil !default;\n$clearing-caption-bg: $clearing-bg !default;\n$clearing-carousel-bg: rgba(51,51,51,0.8) !default;\n$clearing-img-bg: $clearing-bg !default;\n\n// We use these to style the close button\n$clearing-close-color: $iron !default;\n$clearing-close-size: 30px !default;\n\n// We use these to style the arrows\n$clearing-arrow-size: 12px !default;\n$clearing-arrow-color: $clearing-close-color !default;\n\n// We use these to style captions\n$clearing-caption-font-color: $iron !default;\n$clearing-caption-font-size: 0.875em !default;\n$clearing-caption-padding: 10px 30px 20px !default;\n\n// We use these to make the image and carousel height and style\n$clearing-active-img-height: 85% !default;\n$clearing-carousel-height: 120px !default;\n$clearing-carousel-thumb-width: 120px !default;\n$clearing-carousel-thumb-active-border: 1px solid rgb(255,255,255) !default;\n\n@include exports(\"clearing\") {\n @if $include-html-clearing-classes {\n // We decided to not create a mixin for Clearing because it relies\n // on predefined classes and structure to work properly.\n // The variables above should give enough control.\n\n /* Clearing Styles */\n .clearing-thumbs, #{data('clearing')} {\n @include clearfix;\n margin-bottom: 0;\n margin-#{$default-float}: 0;\n list-style: none;\n\n li {\n float: $default-float;\n margin-#{$opposite-direction}: 10px;\n }\n\n &[class*=\"block-grid-\"] li {\n margin-#{$opposite-direction}: 0;\n }\n }\n\n .clearing-blackout {\n background: $clearing-bg;\n position: fixed;\n width: 100%;\n height: 100%;\n top: 0;\n #{$default-float}: 0;\n z-index: 998;\n\n .clearing-close { display: block; }\n }\n\n .clearing-container {\n position: relative;\n z-index: 998;\n height: 100%;\n overflow: hidden;\n margin: 0;\n }\n\n .clearing-touch-label {\n position: absolute;\n top: 50%;\n left: 50%;\n color: $base;\n font-size: 0.6em;\n }\n\n .visible-img {\n height: 95%;\n position: relative;\n\n img {\n position: absolute;\n #{$default-float}: 50%;\n top: 50%;\n margin-#{$default-float}: -50%;\n max-height: 100%;\n max-width: 100%;\n }\n }\n\n .clearing-caption {\n color: $clearing-caption-font-color;\n font-size: $clearing-caption-font-size;\n line-height: 1.3;\n margin-bottom: 0;\n text-align: center;\n bottom: 0;\n background: $clearing-caption-bg;\n width: 100%;\n padding: $clearing-caption-padding;\n position: absolute;\n #{$default-float}: 0;\n }\n\n .clearing-close {\n z-index: 999;\n padding-#{$default-float}: 20px;\n padding-top: 10px;\n font-size: $clearing-close-size;\n line-height: 1;\n color: $clearing-close-color;\n display: none;\n\n &:hover,\n &:focus { color: $iron; }\n }\n\n .clearing-assembled .clearing-container { height: 100%;\n .carousel > ul { display: none; }\n }\n\n // If you want to show a lightbox, but only have a single image come through as the thumbnail\n .clearing-feature li {\n display: none;\n &.clearing-featured-img {\n display: block;\n }\n }\n\n // Large screen overrides\n @media #{$medium-up} {\n .clearing-main-prev,\n .clearing-main-next {\n position: absolute;\n height: 100%;\n width: 40px;\n top: 0;\n & > span {\n position: absolute;\n top: 50%;\n display: block;\n width: 0;\n height: 0;\n border: solid $clearing-arrow-size;\n &:hover { opacity: 0.8; }\n }\n }\n .clearing-main-prev {\n #{$default-float}: 0;\n & > span {\n #{$default-float}: 5px;\n border-color: transparent;\n border-#{$opposite-direction}-color: $clearing-arrow-color;\n }\n }\n .clearing-main-next {\n #{$opposite-direction}: 0;\n & > span {\n border-color: transparent;\n border-#{$default-float}-color: $clearing-arrow-color;\n }\n }\n \n .clearing-main-prev.disabled,\n .clearing-main-next.disabled { opacity: 0.3; }\n\n .clearing-assembled .clearing-container {\n\n .carousel {\n background: $clearing-carousel-bg;\n height: $clearing-carousel-height;\n margin-top: 10px;\n text-align: center;\n\n & > ul {\n display: inline-block;\n z-index: 999;\n height: 100%;\n position: relative;\n float: none;\n\n li {\n display: block;\n width: $clearing-carousel-thumb-width;\n min-height: inherit;\n float: $default-float;\n overflow: hidden;\n margin-#{$opposite-direction}: 0;\n padding: 0;\n position: relative;\n cursor: $cursor-pointer-value;\n opacity: 0.4;\n clear: none;\n\n &.fix-height {\n img {\n height: 100%;\n max-width: none;\n }\n }\n\n a.th {\n border: none;\n box-shadow: none;\n display: block;\n }\n\n img {\n cursor: $cursor-pointer-value !important;\n width: 100% !important;\n }\n\n &.visible { opacity: 1; }\n &:hover { opacity: 0.8; }\n }\n }\n }\n\n .visible-img {\n background: $clearing-img-bg;\n overflow: hidden;\n height: $clearing-active-img-height;\n }\n }\n\n .clearing-close {\n position: absolute;\n top: 10px;\n #{$opposite-direction}: 20px;\n padding-#{$default-float}: 0;\n padding-top: 0;\n }\n }\n\n }\n}\n","// Foundation by ZURB\n// foundation.zurb.com\n// Licensed under MIT Open Source\n\n@import \"global\";\n\n//\n// @variables\n//\n$include-html-dropdown-classes: $include-html-classes !default;\n\n// We use these to controls height and width styles.\n$f-dropdown-max-width: 200px !default;\n$f-dropdown-height: auto !default;\n$f-dropdown-max-height: none !default;\n\n// Used for bottom position\n$f-dropdown-margin-top: 2px !default;\n\n// Used for right position\n$f-dropdown-margin-left: $f-dropdown-margin-top !default;\n\n// Used for left position\n$f-dropdown-margin-right: $f-dropdown-margin-top !default;\n\n// Used for top position\n$f-dropdown-margin-bottom: $f-dropdown-margin-top !default;\n\n// We use this to control the background color\n$f-dropdown-bg: $white !default;\n\n// We use this to set the border styles for dropdowns.\n$f-dropdown-border-style: solid !default;\n$f-dropdown-border-width: 1px !default;\n$f-dropdown-border-color: scale-color($white, $lightness: -20%) !default;\n\n// We use these to style the triangle pip.\n$f-dropdown-triangle-size: 6px !default;\n$f-dropdown-triangle-color: $white !default;\n$f-dropdown-triangle-side-offset: 10px !default;\n\n// We use these to control styles for the list elements.\n$f-dropdown-list-style: none !default;\n$f-dropdown-font-color: $charcoal !default;\n$f-dropdown-font-size: rem-calc(14) !default;\n$f-dropdown-list-padding: rem-calc(5, 10) !default;\n$f-dropdown-line-height: rem-calc(18) !default;\n$f-dropdown-list-hover-bg: $smoke !default;\n$dropdown-mobile-default-float: 0 !default;\n\n// We use this to control the styles for when the dropdown has custom content.\n$f-dropdown-content-padding: rem-calc(20) !default;\n\n// Default radius for dropdown.\n$f-dropdown-radius: $global-radius !default;\n\n//\n// @mixins\n//\n//\n// NOTE: Make default max-width change between list and content types. Can add more width with classes, maybe .small, .medium, .large, etc.;\n// We use this to style the dropdown container element.\n// $content-list - Sets list-style. Default: list. Options: [list, content]\n// $triangle - Sets if dropdown has triangle. Default:true.\n// $max-width - Default: $f-dropdown-max-width || 200px.\n@mixin dropdown-container($content:list, $triangle:true, $max-width:$f-dropdown-max-width) {\n position: absolute;\n left: -9999px;\n list-style: $f-dropdown-list-style;\n margin-#{$default-float}: 0;\n outline: none;\n\n > *:first-child { margin-top: 0; }\n > *:last-child { margin-bottom: 0; }\n\n @if $content == list {\n width: 100%;\n max-height: $f-dropdown-max-height;\n height: $f-dropdown-height;\n background: $f-dropdown-bg;\n border: $f-dropdown-border-style $f-dropdown-border-width $f-dropdown-border-color;\n font-size: $f-dropdown-font-size;\n z-index: 89;\n }\n @else if $content == content {\n padding: $f-dropdown-content-padding;\n width: 100%;\n height: $f-dropdown-height;\n max-height: $f-dropdown-max-height;\n background: $f-dropdown-bg;\n border: $f-dropdown-border-style $f-dropdown-border-width $f-dropdown-border-color;\n font-size: $f-dropdown-font-size;\n z-index: 89;\n }\n\n @if $triangle == bottom {\n margin-top: $f-dropdown-margin-top;\n\n &:before {\n @include css-triangle($f-dropdown-triangle-size, $f-dropdown-triangle-color, bottom);\n position: absolute;\n top: -($f-dropdown-triangle-size * 2);\n #{$default-float}: $f-dropdown-triangle-side-offset;\n z-index: 89;\n }\n &:after {\n @include css-triangle($f-dropdown-triangle-size + 1, $f-dropdown-border-color, bottom);\n position: absolute;\n top: -(($f-dropdown-triangle-size + 1) * 2);\n #{$default-float}: $f-dropdown-triangle-side-offset - 1;\n z-index: 88;\n }\n\n &.right:before {\n #{$default-float}: auto;\n #{$opposite-direction}: $f-dropdown-triangle-side-offset;\n }\n &.right:after {\n #{$default-float}: auto;\n #{$opposite-direction}: $f-dropdown-triangle-side-offset - 1;\n }\n }\n\n @if $triangle == $default-float {\n margin-top: 0;\n margin-#{$default-float}: $f-dropdown-margin-right;\n\n &:before {\n @include css-triangle($f-dropdown-triangle-size, $f-dropdown-triangle-color, #{$opposite-direction});\n position: absolute;\n top: $f-dropdown-triangle-side-offset;\n #{$default-float}: -($f-dropdown-triangle-size * 2);\n z-index: 89;\n }\n &:after {\n @include css-triangle($f-dropdown-triangle-size + 1, $f-dropdown-border-color, #{$opposite-direction});\n position: absolute;\n top: $f-dropdown-triangle-side-offset - 1;\n #{$default-float}: -($f-dropdown-triangle-size * 2) - 2;\n z-index: 88;\n }\n\n }\n\n @if $triangle == $opposite-direction {\n margin-top: 0;\n margin-#{$default-float}: -$f-dropdown-margin-right;\n\n &:before {\n @include css-triangle($f-dropdown-triangle-size, $f-dropdown-triangle-color, #{$default-float});\n position: absolute;\n top: $f-dropdown-triangle-side-offset;\n #{$opposite-direction}: -($f-dropdown-triangle-size * 2);\n #{$default-float}: auto;\n z-index: 89;\n }\n &:after {\n @include css-triangle($f-dropdown-triangle-size + 1, $f-dropdown-border-color, #{$default-float});\n position: absolute;\n top: $f-dropdown-triangle-side-offset - 1;\n #{$opposite-direction}: -($f-dropdown-triangle-size * 2) - 2;\n #{$default-float}: auto;\n z-index: 88;\n }\n\n }\n\n @if $triangle == top {\n margin-top: -$f-dropdown-margin-bottom;\n margin-left: 0;\n\n &:before {\n @include css-triangle($f-dropdown-triangle-size, $f-dropdown-triangle-color, top);\n position: absolute;\n top: auto;\n bottom: -($f-dropdown-triangle-size * 2);\n #{$default-float}: $f-dropdown-triangle-side-offset;\n #{$opposite-direction}: auto;\n z-index: 89;\n }\n &:after {\n @include css-triangle($f-dropdown-triangle-size + 1, $f-dropdown-border-color, top);\n position: absolute;\n top: auto;\n bottom: -($f-dropdown-triangle-size * 2) - 2;\n #{$default-float}: $f-dropdown-triangle-side-offset - 1;\n #{$opposite-direction}: auto;\n z-index: 88;\n }\n\n }\n\n @if $max-width { max-width: $max-width; }\n @else { max-width: $f-dropdown-max-width; }\n\n}\n\n// @MIXIN\n//\n// We use this to style the list elements or content inside the dropdown.\n\n@mixin dropdown-style {\n font-size: $f-dropdown-font-size;\n cursor: $cursor-pointer-value;\n\n line-height: $f-dropdown-line-height;\n margin: 0;\n\n &:hover,\n &:focus { background: $f-dropdown-list-hover-bg; }\n\n &.radius { @include radius($f-dropdown-radius); }\n\n a {\n display: block;\n padding: $f-dropdown-list-padding;\n color: $f-dropdown-font-color;\n }\n}\n\n@include exports(\"dropdown\") {\n @if $include-html-dropdown-classes {\n\n /* Foundation Dropdowns */\n .f-dropdown {\n @include dropdown-container(list, bottom);\n\n &.drop-#{$opposite-direction} {\n @include dropdown-container(list, #{$default-float});\n }\n\n &.drop-#{$default-float} {\n @include dropdown-container(list, #{$opposite-direction});\n }\n\n &.drop-top {\n @include dropdown-container(list, top);\n }\n // max-width: none;\n\n li { @include dropdown-style; }\n\n // You can also put custom content in these dropdowns\n &.content { @include dropdown-container(content, $triangle:false); }\n\n // Sizes\n &.tiny { max-width: 200px; }\n &.small { max-width: 300px; }\n &.medium { max-width: 500px; }\n &.large { max-width: 800px; }\n &.mega {\n width:100%!important;\n max-width:100%!important;\n\n &.open{\n left:0!important;\n }\n }\n }\n\n }\n}\n","// Foundation by ZURB\n// foundation.zurb.com\n// Licensed under MIT Open Source\n\n@import \"global\";\n\n//\n// @variables\n//\n$include-html-button-classes: $include-html-classes !default;\n\n// We use these to set the color of the pip in dropdown buttons\n$dropdown-button-pip-color: $white !default;\n$dropdown-button-pip-color-alt: $oil !default;\n\n$button-pip-tny: rem-calc(6) !default;\n$button-pip-sml: rem-calc(7) !default;\n$button-pip-med: rem-calc(9) !default;\n$button-pip-lrg: rem-calc(11) !default;\n\n// We use these to style tiny dropdown buttons\n$dropdown-button-padding-tny: $button-pip-tny * 7 !default;\n$dropdown-button-pip-size-tny: $button-pip-tny !default;\n$dropdown-button-pip-opposite-tny: $button-pip-tny * 3 !default;\n$dropdown-button-pip-top-tny: calc(-1 * $button-pip-tny / 2) + rem-calc(1) !default;\n\n// We use these to style small dropdown buttons\n$dropdown-button-padding-sml: $button-pip-sml * 7 !default;\n$dropdown-button-pip-size-sml: $button-pip-sml !default;\n$dropdown-button-pip-opposite-sml: $button-pip-sml * 3 !default;\n$dropdown-button-pip-top-sml: calc(-1 * $button-pip-sml / 2) + rem-calc(1) !default;\n\n// We use these to style medium dropdown buttons\n$dropdown-button-padding-med: $button-pip-med * 6 + rem-calc(3) !default;\n$dropdown-button-pip-size-med: $button-pip-med - rem-calc(3) !default;\n$dropdown-button-pip-opposite-med: $button-pip-med * 2.5 !default;\n$dropdown-button-pip-top-med: calc(-1 * $button-pip-med / 2) + rem-calc(2) !default;\n\n// We use these to style large dropdown buttons\n$dropdown-button-padding-lrg: $button-pip-lrg * 5 + rem-calc(3) !default;\n$dropdown-button-pip-size-lrg: $button-pip-lrg - rem-calc(6) !default;\n$dropdown-button-pip-opposite-lrg: $button-pip-lrg * 2.5 !default;\n$dropdown-button-pip-top-lrg: calc(-1 * $button-pip-lrg / 2) + rem-calc(3) !default;\n\n// @mixins\n//\n// Dropdown Button Mixin\n//\n// We use this mixin to build off of the button mixin and add dropdown button styles\n//\n// $padding - Determines the size of button you're working with. Default: medium. Options [tiny, small, medium, large]\n// $pip-color - Color of the little triangle that points to the dropdown. Default: $white.\n// $base-style - Add in base-styles. This can be set to false. Default:true\n\n@mixin dropdown-button($padding: medium, $pip-color: $white, $base-style: true) {\n\n // We add in base styles, but they can be negated by setting to 'false'.\n @if $base-style {\n position: relative;\n outline: none;\n\n // This creates the base styles for the triangle pip\n &::after {\n position: absolute;\n content: \"\";\n width: 0;\n height: 0;\n display: block;\n border-style: solid;\n border-color: $dropdown-button-pip-color transparent transparent transparent;\n top: 50%;\n }\n }\n\n // If we're dealing with tiny buttons, use these styles\n @if $padding ==tiny {\n padding-#{$opposite-direction}: $dropdown-button-padding-tny;\n\n &:after {\n border-width: $dropdown-button-pip-size-tny;\n #{$opposite-direction}: $dropdown-button-pip-opposite-tny;\n margin-top: $dropdown-button-pip-top-tny;\n }\n }\n\n // If we're dealing with small buttons, use these styles\n @if $padding ==small {\n padding-#{$opposite-direction}: $dropdown-button-padding-sml;\n\n &::after {\n border-width: $dropdown-button-pip-size-sml;\n #{$opposite-direction}: $dropdown-button-pip-opposite-sml;\n margin-top: $dropdown-button-pip-top-sml;\n }\n }\n\n // If we're dealing with default (medium) buttons, use these styles\n @if $padding ==medium {\n padding-#{$opposite-direction}: $dropdown-button-padding-med;\n\n &::after {\n border-width: $dropdown-button-pip-size-med;\n #{$opposite-direction}: $dropdown-button-pip-opposite-med;\n margin-top: $dropdown-button-pip-top-med;\n }\n }\n\n // If we're dealing with large buttons, use these styles\n @if $padding ==large {\n padding-#{$opposite-direction}: $dropdown-button-padding-lrg;\n\n &::after {\n border-width: $dropdown-button-pip-size-lrg;\n #{$opposite-direction}: $dropdown-button-pip-opposite-lrg;\n margin-top: $dropdown-button-pip-top-lrg;\n }\n }\n\n // We can control the pip color. We didn't use logic in this case, just set it and forget it.\n @if $pip-color {\n &::after {\n border-color: $pip-color transparent transparent transparent;\n }\n }\n}\n\n@include exports(\"dropdown-button\") {\n @if $include-html-button-classes {\n\n .dropdown.button,\n button.dropdown {\n @include dropdown-button;\n\n &.tiny {\n @include dropdown-button(tiny, $base-style: false);\n }\n\n &.small {\n @include dropdown-button(small, $base-style: false);\n }\n\n &.large {\n @include dropdown-button(large, $base-style: false);\n }\n\n &.secondary:after {\n border-color: $dropdown-button-pip-color-alt transparent transparent transparent;\n }\n }\n }\n}","// Foundation by ZURB\n// foundation.zurb.com\n// Licensed under MIT Open Source\n\n@import \"global\";\n\n//\n// @variables\n//\n$include-html-media-classes: $include-html-classes !default;\n\n// We use these to control video container padding and margins\n$flex-video-padding-top: rem-calc(25) !default;\n$flex-video-padding-bottom: 67.5% !default;\n$flex-video-margin-bottom: rem-calc(16) !default;\n\n// We use this to control widescreen bottom padding\n$flex-video-widescreen-padding-bottom: 56.34% !default;\n\n//\n// @mixins\n//\n\n@mixin flex-video-container {\n position: relative;\n padding-top: $flex-video-padding-top;\n padding-bottom: $flex-video-padding-bottom;\n height: 0;\n margin-bottom: $flex-video-margin-bottom;\n overflow: hidden;\n\n &.widescreen { padding-bottom: $flex-video-widescreen-padding-bottom; }\n &.vimeo { padding-top: 0; }\n\n iframe,\n object,\n embed,\n video {\n position: absolute;\n top: 0;\n #{$default-float}: 0;\n width: 100%;\n height: 100%;\n }\n}\n\n@include exports(\"flex-video\") {\n @if $include-html-media-classes {\n .flex-video { @include flex-video-container; }\n }\n}","// Foundation by ZURB\n// foundation.zurb.com\n// Licensed under MIT Open Source\n\n@import \"global\";\n\n//\n// @variables\n//\n$include-html-inline-list-classes: $include-html-classes !default;\n\n// We use this to control the margins and padding of the inline list.\n$inline-list-top-margin: 0 !default;\n$inline-list-opposite-margin: 0 !default;\n$inline-list-bottom-margin: rem-calc(17) !default;\n$inline-list-default-float-margin: rem-calc(-22) !default;\n$inline-list-default-float-list-margin: rem-calc(22) !default;\n\n$inline-list-padding: 0 !default;\n\n// We use this to control the overflow of the inline list.\n$inline-list-overflow: hidden !default;\n\n// We use this to control the list items\n$inline-list-display: block !default;\n\n// We use this to control any elements within list items\n$inline-list-children-display: block !default;\n\n//\n// @mixins\n//\n// We use this mixin to create inline lists\n@mixin inline-list {\n margin: $inline-list-top-margin auto $inline-list-bottom-margin auto;\n margin-#{$default-float}: $inline-list-default-float-margin;\n margin-#{$opposite-direction}: $inline-list-opposite-margin;\n padding: $inline-list-padding;\n list-style: none;\n overflow: $inline-list-overflow;\n\n & > li {\n list-style: none;\n float: $default-float;\n margin-#{$default-float}: $inline-list-default-float-list-margin;\n display: $inline-list-display;\n &>* { display: $inline-list-children-display; }\n }\n}\n\n@include exports(\"inline-list\") {\n @if $include-html-inline-list-classes {\n .inline-list {\n @include inline-list();\n }\n }\n}\n","// Foundation by ZURB\n// foundation.zurb.com\n// Licensed under MIT Open Source\n\n@import \"global\";\n\n//\n// @variables\n//\n$include-html-keystroke-classes: $include-html-classes !default;\n\n// We use these to control text styles.\n$keystroke-font: \"Consolas\", \"Menlo\", \"Courier\", monospace !default;\n$keystroke-font-size: inherit !default;\n$keystroke-font-color: $jet !default;\n$keystroke-font-color-alt: $white !default;\n$keystroke-function-factor: -7% !default;\n\n// We use this to control keystroke padding.\n$keystroke-padding: rem-calc(2 4 0) !default;\n\n// We use these to control background and border styles.\n$keystroke-bg: scale-color($white, $lightness: $keystroke-function-factor) !default;\n$keystroke-border-style: solid !default;\n$keystroke-border-width: 1px !default;\n$keystroke-border-color: scale-color($keystroke-bg, $lightness: $keystroke-function-factor) !default;\n$keystroke-radius: $global-radius !default;\n\n//\n// @mixins\n//\n// We use this mixin to create keystroke styles.\n// $bg - Default: $keystroke-bg || scale-color($white, $lightness: $keystroke-function-factor) !default;\n@mixin keystroke($bg:$keystroke-bg) {\n // This find the lightness percentage of the background color.\n $bg-lightness: lightness($bg);\n\n background-color: $bg;\n border-color: scale-color($bg, $lightness: $keystroke-function-factor);\n\n // We adjust the font color based on the brightness of the background.\n @if $bg-lightness > 70% { color: $keystroke-font-color; }\n @else { color: $keystroke-font-color-alt; }\n\n border-style: $keystroke-border-style;\n border-width: $keystroke-border-width;\n margin: 0;\n font-family: $keystroke-font;\n font-size: $keystroke-font-size;\n padding: $keystroke-padding;\n}\n\n@include exports(\"keystroke\") {\n @if $include-html-keystroke-classes {\n .keystroke,\n kbd {\n @include keystroke;\n @include radius($keystroke-radius);\n }\n }\n}\n","// Foundation by ZURB\n// foundation.zurb.com\n// Licensed under MIT Open Source\n\n@import \"global\";\n\n//\n// @variables\n//\n$include-html-panel-classes: $include-html-classes !default;\n\n// We use these to control the background and border styles\n$panel-bg: scale-color($white, $lightness: -5%) !default;\n$panel-border-style: solid !default;\n$panel-border-size: 1px !default;\n\n// We use this % to control how much we darken things on hover\n$panel-function-factor: -11% !default;\n$panel-border-color: scale-color($panel-bg, $lightness: $panel-function-factor) !default;\n\n// We use these to set default inner padding and bottom margin\n$panel-margin-bottom: rem-calc(20) !default;\n$panel-padding: rem-calc(20) !default;\n\n// We use these to set default font colors\n$panel-font-color: $oil !default;\n$panel-font-color-alt: $white !default;\n\n$panel-header-adjust: true !default;\n$callout-panel-link-color: $primary-color !default;\n$callout-panel-link-color-hover: scale-color($callout-panel-link-color, $lightness: -14%) !default;\n\n//\n// @mixins\n//\n// We use this mixin to create panels.\n// $bg - Sets the panel background color. Default: $panel-pg || scale-color($white, $lightness: -5%) !default\n// $padding - Sets the panel padding amount. Default: $panel-padding || rem-calc(20)\n// $adjust - Sets the font color based on the darkness of the bg & resets header line-heights for panels. Default: $panel-header-adjust || true\n@mixin panel($bg: $panel-bg, $padding: $panel-padding, $adjust: $panel-header-adjust) {\n\n @if $bg {\n $bg-lightness: lightness($bg);\n\n border-style: $panel-border-style;\n border-width: $panel-border-size;\n border-color: scale-color($bg, $lightness: $panel-function-factor);\n margin-bottom: $panel-margin-bottom;\n padding: $padding;\n\n background: $bg;\n\n @if $bg-lightness >=50% {\n color: $panel-font-color;\n }\n\n @else {\n color: $panel-font-color-alt;\n }\n\n // Respect the padding, fool.\n &>:first-child {\n margin-top: 0;\n }\n\n &>:last-child {\n margin-bottom: 0;\n }\n\n @if $adjust {\n\n // We set the font color based on the darkness of the bg.\n @if $bg-lightness >=50% {\n\n h1,\n h2,\n h3,\n h4,\n h5,\n h6,\n p,\n li,\n dl {\n color: $panel-font-color;\n }\n }\n\n @else {\n\n h1,\n h2,\n h3,\n h4,\n h5,\n h6,\n p,\n li,\n dl {\n color: $panel-font-color-alt;\n }\n }\n\n // reset header line-heights for panels\n h1,\n h2,\n h3,\n h4,\n h5,\n h6 {\n line-height: 1;\n margin-bottom: calc(rem-calc(20) / 2);\n\n &.subheader {\n line-height: 1.4;\n }\n }\n }\n }\n}\n\n@include exports(\"panel\") {\n @if $include-html-panel-classes {\n\n /* Panels */\n .panel {\n @include panel;\n\n &.callout {\n @include panel(scale-color($primary-color, $lightness: 94%));\n\n a:not(.button) {\n color: $callout-panel-link-color;\n\n &:hover,\n &:focus {\n color: $callout-panel-link-color-hover;\n }\n }\n }\n\n &.radius {\n @include radius;\n }\n\n }\n\n }\n}","// Foundation by ZURB\n// foundation.zurb.com\n// Licensed under MIT Open Source\n\n@import \"global\";\n@import \"grid\";\n\n//\n// @name _reveal.scss\n// @dependencies _global.scss\n//\n\n$include-html-reveal-classes: $include-html-classes !default;\n\n// We use these to control the style of the reveal overlay.\n$reveal-overlay-bg: rgba($black, .45) !default;\n$reveal-overlay-bg-old: $black !default;\n\n// We use these to control the style of the modal itself.\n$reveal-modal-bg: $white !default;\n$reveal-position-top: rem-calc(100) !default;\n$reveal-default-width: 80% !default;\n$reveal-max-width: $row-width !default;\n$reveal-modal-padding: rem-calc(20) !default;\n$reveal-box-shadow: 0 0 10px rgba($black,.4) !default;\n\n// We use these to style the reveal close button\n$reveal-close-font-size: rem-calc(40) !default;\n$reveal-close-top: rem-calc(10) !default;\n$reveal-close-side: rem-calc(22) !default;\n$reveal-close-color: $base !default;\n$reveal-close-weight: $font-weight-bold !default;\n\n// We use this to set the default radius used throughout the core.\n$reveal-radius: $global-radius !default;\n$reveal-round: $global-rounded !default;\n\n// We use these to control the modal border\n$reveal-border-style: solid !default;\n$reveal-border-width: 1px !default;\n$reveal-border-color: $steel !default;\n\n$reveal-modal-class: \"reveal-modal\" !default;\n$close-reveal-modal-class: \"close-reveal-modal\" !default;\n\n//\n// @mixins\n//\n\n// We use this to create the reveal background overlay styles\n@mixin reveal-bg( $include-z-index-value: true ) {\n //position: fixed;\n position: absolute; // allows modal background to extend beyond window position\n top: 0;\n bottom: 0;\n left: 0;\n right: 0;\n background: $reveal-overlay-bg-old; // Autoprefixer should be used to avoid such variables needed when Foundation for Sites can do so in the near future.\n background: $reveal-overlay-bg;\n z-index: if( $include-z-index-value, 1004, auto );\n display: none;\n #{$default-float}: 0;\n}\n\n// We use this mixin to create the structure of a reveal modal\n//\n// $base-style - Provides reveal base styles, can be set to false to override. Default: true, Options: false\n// $width - Sets reveal width Default: $reveal-default-width || 80%\n//\n@mixin reveal-modal-base( $base-style: true, $width:$reveal-default-width, $max-width:$reveal-max-width, $border-radius: $reveal-radius) {\n @if $base-style {\n visibility: hidden;\n display: none;\n position: absolute;\n z-index: 1005;\n width: 100vw;\n top:0;\n border-radius: $border-radius;\n #{$default-float}: 0;\n\n @media #{$small-only} {\n min-height:100vh;\n }\n\n // Make sure rows don't have a min-width on them\n .column, .columns { min-width: 0; }\n\n // Get rid of margin from first and last element inside modal\n & > :first-child { margin-top: 0; }\n\n & > :last-child { margin-bottom: 0; }\n }\n\n @if $width {\n @media #{$medium-up} {\n width: $width;\n max-width: $max-width;\n left: 0;\n right: 0;\n margin: 0 auto;\n }\n }\n}\n\n// We use this to style the reveal modal defaults\n//\n// $bg - Sets background color of reveal modal. Default: $reveal-modal-bg || $white\n// $padding - Padding to apply to reveal modal. Default: $reveal-modal-padding.\n// $border - Choose whether reveal uses a border. Default: true, Options: false\n// $border-style - Set reveal border style. Default: $reveal-border-style || solid\n// $border-width - Width of border (i.e. 1px). Default: $reveal-border-width.\n// $border-color - Color of border. Default: $reveal-border-color.\n// $box-shadow - Choose whether or not to include the default box-shadow. Default: true, Options: false\n// $radius - If true, set to modal radius which is $global-radius || explicitly set radius amount in px (ex. $radius:10px). Default: false\n// $top-offset - Default: $reveal-position-top || 50px\n@mixin reveal-modal-style(\n $bg:false,\n $padding:false,\n $border:false,\n $border-style:$reveal-border-style,\n $border-width:$reveal-border-width,\n $border-color:$reveal-border-color,\n $box-shadow:false,\n $radius:false,\n $top-offset:false) {\n\n @if $bg { background-color: $bg; }\n @if $padding != false { padding: $padding; }\n\n @if $border { border: $border-style $border-width $border-color; }\n\n // We can choose whether or not to include the default box-shadow.\n @if $box-shadow {\n box-shadow: $reveal-box-shadow;\n }\n\n // We can control how much radius is used on the modal\n @if $radius == true { @include radius($reveal-radius); }\n @else if $radius { @include radius($radius); }\n\n @if $top-offset {\n @media #{$medium-up} {\n top: $top-offset;\n }\n }\n}\n\n// We use this to create a close button for the reveal modal\n//\n// $color - Default: $reveal-close-color || $base\n@mixin reveal-close($color:$reveal-close-color) {\n font-size: $reveal-close-font-size;\n line-height: 1;\n position: absolute;\n top: $reveal-close-top;\n #{$opposite-direction}: $reveal-close-side;\n color: $color;\n font-weight: $reveal-close-weight;\n cursor: $cursor-pointer-value;\n}\n\n@include exports(\"reveal\") {\n @if $include-html-reveal-classes {\n\n // Reveal Modals\n .reveal-modal-bg { @include reveal-bg; }\n\n .#{$reveal-modal-class} {\n @include reveal-modal-base;\n @include reveal-modal-style(\n $bg:$reveal-modal-bg,\n $padding:$reveal-modal-padding,\n $border:true,\n $box-shadow:true,\n $radius:false,\n $top-offset:$reveal-position-top\n );\n @include reveal-modal-style($padding:$reveal-modal-padding * 1.5);\n\n &.radius { @include reveal-modal-style($radius:true); }\n &.round { @include reveal-modal-style($radius:$reveal-round); }\n &.collapse { @include reveal-modal-style($padding:0); }\n &.tiny { @include reveal-modal-base(false, 30%); }\n &.small { @include reveal-modal-base(false, 40%); }\n &.medium { @include reveal-modal-base(false, 60%); }\n &.large { @include reveal-modal-base(false, 70%); }\n &.xlarge { @include reveal-modal-base(false, 95%); }\n &.full {\n @include reveal-modal-base(false, 100vw);\n top:0;\n left:0;\n height:100%;\n height: 100vh;\n min-height:100vh;\n max-width: none !important;\n margin-left: 0 !important;\n }\n\n .#{$close-reveal-modal-class} { @include reveal-close; }\n }\n\n dialog {\n @extend .#{$reveal-modal-class};\n display: none;\n\n &::backdrop, & + .backdrop {\n @include reveal-bg(false);\n }\n\n &[open]{\n display: block;\n }\n }\n\n // Reveal Print Styles: It should be invisible, adds no value being printed.\n @media print {\n dialog, .#{$reveal-modal-class} { \n display: none;\n background: $white !important;\n }\n }\n }\n}\n","// Foundation by ZURB\n// foundation.zurb.com\n// Licensed under MIT Open Source\n\n@import \"global\";\n\n//\n// @variables\n//\n\n$include-html-nav-classes: $include-html-classes !default;\n\n// We use this to control padding.\n$side-nav-padding: rem-calc(14 0) !default;\n\n// We use these to control list styles.\n$side-nav-list-type: none !default;\n$side-nav-list-position: outside !default;\n$side-nav-list-margin: rem-calc(0 0 7 0) !default;\n\n// We use these to control link styles.\n$side-nav-link-color: $primary-color !default;\n$side-nav-link-color-active: scale-color($side-nav-link-color, $lightness: 30%) !default;\n$side-nav-link-color-hover: scale-color($side-nav-link-color, $lightness: 30%) !default;\n$side-nav-link-bg-hover: hsla(0deg, 0%, 0%, 0.025) !default;\n$side-nav-link-margin: 0 !default;\n$side-nav-link-padding: rem-calc(7 14) !default;\n$side-nav-font-size: rem-calc(14) !default;\n$side-nav-font-weight: $font-weight-normal !default;\n$side-nav-font-weight-active: $side-nav-font-weight !default;\n$side-nav-font-family: $body-font-family !default;\n$side-nav-font-family-active: $side-nav-font-family !default;\n\n// We use these to control heading styles.\n$side-nav-heading-color: $side-nav-link-color !default;\n$side-nav-heading-font-size: $side-nav-font-size !default;\n$side-nav-heading-font-weight: bold !default;\n$side-nav-heading-text-transform: uppercase !default;\n\n// We use these to control border styles\n$side-nav-divider-size: 1px !default;\n$side-nav-divider-style: solid !default;\n$side-nav-divider-color: scale-color($white, $lightness: 10%) !default;\n\n\n//\n// @mixins\n//\n\n\n// We use this to style the side-nav\n//\n// $divider-color - Border color of divider. Default: $side-nav-divider-color.\n// $font-size - Font size of nav items. Default: $side-nav-font-size.\n// $link-color - Color of navigation links. Default: $side-nav-link-color.\n// $link-color-hover - Color of navigation links when hovered. Default: $side-nav-link-color-hover.\n@mixin side-nav($divider-color: $side-nav-divider-color,\n $font-size: $side-nav-font-size,\n $link-color: $side-nav-link-color,\n $link-color-hover: $side-nav-link-color-hover,\n $link-bg-hover: $side-nav-link-bg-hover) {\n display: block;\n margin: 0;\n padding: $side-nav-padding;\n list-style-type: $side-nav-list-type;\n list-style-position: $side-nav-list-position;\n font-family: $side-nav-font-family;\n\n li {\n margin: $side-nav-list-margin;\n font-size: $font-size;\n font-weight: $side-nav-font-weight;\n\n a:not(.button) {\n display: block;\n color: $link-color;\n margin: $side-nav-link-margin;\n padding: $side-nav-link-padding;\n\n &:hover,\n &:focus {\n background: $link-bg-hover;\n color: $link-color-hover;\n }\n }\n\n &.active>a:first-child:not(.button) {\n color: $side-nav-link-color-active;\n font-weight: $side-nav-font-weight-active;\n font-family: $side-nav-font-family-active;\n }\n\n &.divider {\n border-top: $side-nav-divider-size $side-nav-divider-style;\n height: 0;\n padding: 0;\n list-style: none;\n border-top-color: $divider-color;\n }\n\n &.heading {\n color: $side-nav-heading-color;\n\n font: {\n size: $side-nav-heading-font-size;\n weight: $side-nav-heading-font-weight;\n }\n\n text-transform: $side-nav-heading-text-transform;\n }\n }\n}\n\n@include exports(\"side-nav\") {\n @if $include-html-nav-classes {\n .side-nav {\n @include side-nav;\n }\n }\n}","// Foundation by ZURB\n// foundation.zurb.com\n// Licensed under MIT Open Source\n\n@import \"global\";\n\n//\n// @name _sub-nav.scss\n// @dependencies _global.scss\n//\n\n//\n// @variables\n//\n\n$include-html-nav-classes: $include-html-classes !default;\n\n// We use these to control margin and padding\n$sub-nav-list-margin: rem-calc(-4 0 18) !default;\n$sub-nav-list-padding-top: rem-calc(4) !default;\n\n// We use this to control the definition\n$sub-nav-font-family: $body-font-family !default;\n$sub-nav-font-size: rem-calc(14) !default;\n$sub-nav-font-color: $aluminum !default;\n$sub-nav-font-weight: $font-weight-normal !default;\n$sub-nav-text-decoration: none !default;\n$sub-nav-padding: rem-calc(3 16) !default;\n$sub-nav-border-radius: 3px !default;\n$sub-nav-font-color-hover: scale-color($sub-nav-font-color, $lightness: -25%) !default;\n\n\n// We use these to control the active item styles\n\n$sub-nav-active-font-weight: $font-weight-normal !default;\n$sub-nav-active-bg: $primary-color !default;\n$sub-nav-active-bg-hover: scale-color($sub-nav-active-bg, $lightness: -14%) !default;\n$sub-nav-active-color: $white !default;\n$sub-nav-active-padding: $sub-nav-padding !default;\n$sub-nav-active-cursor: default !default;\n\n$sub-nav-item-divider: \"\" !default;\n$sub-nav-item-divider-margin: rem-calc(12) !default;\n\n//\n// @mixins\n//\n\n\n// Create a sub-nav item\n//\n// $font-color - Font color. Default: $sub-nav-font-color.\n// $font-size - Font size. Default: $sub-nav-font-size.\n// $active-bg - Background of active nav item. Default: $sub-nav-active-bg.\n// $active-bg-hover - Background of active nav item, when hovered. Default: $sub-nav-active-bg-hover.\n@mixin sub-nav(\n $font-color: $sub-nav-font-color,\n $font-size: $sub-nav-font-size,\n $active-bg: $sub-nav-active-bg,\n $active-bg-hover: $sub-nav-active-bg-hover) {\n display: block;\n width: auto;\n overflow: hidden;\n margin: $sub-nav-list-margin;\n padding-top: $sub-nav-list-padding-top;\n\n dt {\n text-transform: uppercase;\n }\n\n dt,\n dd,\n li {\n float: $default-float;\n display: inline;\n margin-#{$default-float}: rem-calc(16);\n margin-bottom: 0;\n font-family: $sub-nav-font-family;\n font-weight: $sub-nav-font-weight;\n font-size: $font-size;\n color: $font-color;\n\n a {\n text-decoration: $sub-nav-text-decoration;\n color: $sub-nav-font-color;\n padding: $sub-nav-padding;\n &:hover {\n color: $sub-nav-font-color-hover;\n }\n }\n\n &.active a {\n @include radius($sub-nav-border-radius);\n font-weight: $sub-nav-active-font-weight;\n background: $active-bg;\n padding: $sub-nav-active-padding;\n cursor: $sub-nav-active-cursor;\n color: $sub-nav-active-color;\n &:hover {\n background: $active-bg-hover;\n }\n }\n @if $sub-nav-item-divider != \"\" {\n margin-#{$default-float}: 0;\n\n &:before {\n content: \"#{$sub-nav-item-divider}\";\n margin: 0 $sub-nav-item-divider-margin;\n }\n\n &:first-child:before {\n content: \"\";\n margin: 0;\n }\n }\n }\n}\n\n@include exports(\"sub-nav\") {\n @if $include-html-nav-classes {\n .sub-nav { @include sub-nav; }\n }\n}\n","// Foundation by ZURB\n// foundation.zurb.com\n// Licensed under MIT Open Source\n\n@import \"global\";\n\n//\n// @name _tables.scss\n// @dependencies _global.scss\n//\n\n//\n// @variables\n//\n\n$include-html-table-classes: $include-html-classes !default;\n\n// These control the background color for the table and even rows\n$table-bg: $white !default;\n$table-even-row-bg: $snow !default;\n\n// These control the table cell border style\n$table-border-style: solid !default;\n$table-border-size: 1px !default;\n$table-border-color: $gainsboro !default;\n\n// These control the table head styles\n$table-head-bg: $white-smoke !default;\n$table-head-font-size: rem-calc(14) !default;\n$table-head-font-color: $jet !default;\n$table-head-font-weight: $font-weight-bold !default;\n$table-head-padding: rem-calc(8 10 10) !default;\n\n// These control the table foot styles\n$table-foot-bg: $table-head-bg !default;\n$table-foot-font-size: $table-head-font-size !default;\n$table-foot-font-color: $table-head-font-color !default;\n$table-foot-font-weight: $table-head-font-weight !default;\n$table-foot-padding: $table-head-padding !default;\n\n// These control the caption\n$table-caption-bg: transparent !default;\n$table-caption-font-color: $table-head-font-color !default;\n$table-caption-font-size: rem-calc(16) !default;\n$table-caption-font-weight: bold !default;\n\n// These control the row padding and font styles\n$table-row-padding: rem-calc(9 10) !default;\n$table-row-font-size: rem-calc(14) !default;\n$table-row-font-color: $jet !default;\n$table-line-height: rem-calc(18) !default;\n\n// These are for controlling the layout, display and margin of tables\n$table-layout: auto !default;\n$table-display: table-cell !default;\n$table-margin-bottom: rem-calc(20) !default;\n\n\n//\n// @mixins\n//\n\n@mixin table {\n background: $table-bg;\n margin-bottom: $table-margin-bottom;\n border: $table-border-style $table-border-size $table-border-color;\n table-layout: $table-layout;\n\n caption {\n background: $table-caption-bg;\n color: $table-caption-font-color;\n font: {\n size: $table-caption-font-size;\n weight: $table-caption-font-weight;\n }\n }\n\n thead {\n background: $table-head-bg;\n\n tr {\n th,\n td {\n padding: $table-head-padding;\n font-size: $table-head-font-size;\n font-weight: $table-head-font-weight;\n color: $table-head-font-color;\n }\n }\n }\n\n tfoot {\n background: $table-foot-bg;\n\n tr {\n th,\n td {\n padding: $table-foot-padding;\n font-size: $table-foot-font-size;\n font-weight: $table-foot-font-weight;\n color: $table-foot-font-color;\n }\n }\n }\n\n tr {\n th,\n td {\n padding: $table-row-padding;\n font-size: $table-row-font-size;\n color: $table-row-font-color;\n text-align: $default-float;\n }\n\n &.even,\n &.alt,\n &:nth-of-type(even) { background: $table-even-row-bg; }\n }\n\n thead tr th,\n tfoot tr th,\n tfoot tr td,\n tbody tr th,\n tbody tr td,\n tr td { display: $table-display; line-height: $table-line-height; }\n}\n\n\n@include exports(\"table\") {\n @if $include-html-table-classes {\n table {\n @include table;\n }\n }\n}\n","// Foundation by ZURB\n// foundation.zurb.com\n// Licensed under MIT Open Source\n\n@import \"global\";\n\n//\n// @name _thumbs.scss\n// @dependencies _globals.scss\n//\n\n//\n// @variables\n//\n\n$include-html-media-classes: $include-html-classes !default;\n\n// We use these to control border styles\n$thumb-border-style: solid !default;\n$thumb-border-width: 4px !default;\n$thumb-border-color: $white !default;\n$thumb-box-shadow: 0 0 0 1px rgba($black,.2) !default;\n$thumb-box-shadow-hover: 0 0 6px 1px rgba($primary-color,0.5) !default;\n\n// Radius and transition speed for thumbs\n$thumb-radius: $global-radius !default;\n$thumb-transition-speed: 200ms !default;\n\n//\n// @mixins\n//\n\n// We use this to create image thumbnail styles.\n//\n// $border-width - Width of border around thumbnail. Default: $thumb-border-width.\n// $box-shadow - Box shadow to apply to thumbnail. Default: $thumb-box-shadow.\n// $box-shadow-hover - Box shadow to apply on hover. Default: $thumb-box-shadow-hover.\n@mixin thumb(\n $border-width:$thumb-border-width, \n $box-shadow:$thumb-box-shadow, \n $box-shadow-hover:$thumb-box-shadow-hover) {\n line-height: 0;\n display: inline-block;\n border: $thumb-border-style $border-width $thumb-border-color;\n max-width: 100%;\n box-shadow: $box-shadow;\n\n &:hover,\n &:focus {\n box-shadow: $box-shadow-hover;\n }\n}\n\n\n@include exports(\"thumb\") {\n @if $include-html-media-classes {\n\n /* Image Thumbnails */\n .th {\n @include thumb;\n @include single-transition(all,$thumb-transition-speed,ease-out);\n\n &.radius { @include radius($thumb-radius); }\n }\n }\n}","// Foundation by ZURB\n// foundation.zurb.com\n// Licensed under MIT Open Source\n\n@import \"global\";\n\n$include-html-type-classes: $include-html-classes !default;\n\n// We use these to control header font styles\n$header-font-family: $body-font-family !default;\n$header-font-weight: $font-weight-normal !default;\n$header-font-style: $font-weight-normal !default;\n$header-font-color: $jet !default;\n$header-line-height: 1.4 !default;\n$header-top-margin: .2rem !default;\n$header-bottom-margin: .5rem !default;\n$header-text-rendering: optimizeLegibility !default;\n\n// We use these to control header font sizes\n$h1-font-size: rem-calc(44) !default;\n$h2-font-size: rem-calc(37) !default;\n$h3-font-size: rem-calc(27) !default;\n$h4-font-size: rem-calc(23) !default;\n$h5-font-size: rem-calc(18) !default;\n$h6-font-size: 1rem !default;\n\n// We use these to control header size reduction on small screens\n$h1-font-reduction: rem-calc(10) !default;\n$h2-font-reduction: rem-calc(10) !default;\n$h3-font-reduction: rem-calc(5) !default;\n$h4-font-reduction: rem-calc(5) !default;\n$h5-font-reduction: 0 !default;\n$h6-font-reduction: 0 !default;\n\n// These control how subheaders are styled.\n$subheader-line-height: 1.4 !default;\n$subheader-font-color: scale-color($header-font-color, $lightness: 35%) !default;\n$subheader-font-weight: $font-weight-normal !default;\n$subheader-top-margin: .2rem !default;\n$subheader-bottom-margin: .5rem !default;\n\n// A general styling\n$small-font-size: 60% !default;\n$small-font-color: scale-color($header-font-color, $lightness: 35%) !default;\n\n// We use these to style paragraphs\n$paragraph-font-family: inherit !default;\n$paragraph-font-weight: $font-weight-normal !default;\n$paragraph-font-size: 1rem !default;\n$paragraph-line-height: 1.6 !default;\n$paragraph-margin-bottom: rem-calc(20) !default;\n$paragraph-aside-font-size: rem-calc(14) !default;\n$paragraph-aside-line-height: 1.35 !default;\n$paragraph-aside-font-style: italic !default;\n$paragraph-text-rendering: optimizeLegibility !default;\n\n// We use these to style tags\n$code-color: $oil !default;\n$code-font-family: $font-family-monospace !default;\n$code-font-weight: $font-weight-normal !default;\n$code-background-color: scale-color($secondary-color, $lightness: 70%) !default;\n$code-border-size: 0px !default;\n$code-border-style: solid !default;\n$code-border-color: scale-color($code-background-color, $lightness: -10%) !default;\n$code-padding: rem-calc(2) rem-calc(5) rem-calc(1) !default;\n\n// We use these to style anchors\n$anchor-text-decoration: none !default;\n$anchor-text-decoration-hover: none !default;\n$anchor-font-color: $primary-color !default;\n$anchor-font-color-hover: scale-color($anchor-font-color, $lightness: -14%) !default;\n\n// We use these to style the
element\n$hr-border-width: 1px !default;\n$hr-border-style: solid !default;\n$hr-border-color: $gainsboro !default;\n$hr-margin: rem-calc(20) !default;\n\n// We use these to style lists\n$list-font-family: $paragraph-font-family !default;\n$list-font-size: $paragraph-font-size !default;\n$list-line-height: $paragraph-line-height !default;\n$list-margin-bottom: $paragraph-margin-bottom !default;\n$list-style-position: outside !default;\n$list-side-margin: 1.1rem !default;\n$list-ordered-side-margin: 1.4rem !default;\n$list-side-margin-no-bullet: 0 !default;\n$list-nested-margin: rem-calc(20) !default;\n$definition-list-header-weight: $font-weight-bold !default;\n$definition-list-header-margin-bottom: .3rem !default;\n$definition-list-margin-bottom: rem-calc(12) !default;\n\n// We use these to style blockquotes\n$blockquote-font-color: scale-color($header-font-color, $lightness: 35%) !default;\n$blockquote-padding: rem-calc(9 20 0 19) !default;\n$blockquote-border: 1px solid $gainsboro !default;\n$blockquote-cite-font-size: rem-calc(13) !default;\n$blockquote-cite-font-color: scale-color($header-font-color, $lightness: 23%) !default;\n$blockquote-cite-link-color: $blockquote-cite-font-color !default;\n\n// Acronym styles\n$acronym-underline: 1px dotted $gainsboro !default;\n\n// We use these to control padding and margin\n$microformat-padding: rem-calc(10 12) !default;\n$microformat-margin: rem-calc(0 0 20 0) !default;\n\n// We use these to control the border styles\n$microformat-border-width: 1px !default;\n$microformat-border-style: solid !default;\n$microformat-border-color: $gainsboro !default;\n\n// We use these to control full name font styles\n$microformat-fullname-font-weight: $font-weight-bold !default;\n$microformat-fullname-font-size: rem-calc(15) !default;\n\n// We use this to control the summary font styles\n$microformat-summary-font-weight: $font-weight-bold !default;\n\n// We use this to control abbr padding\n$microformat-abbr-padding: rem-calc(0 1) !default;\n\n// We use this to control abbr font styles\n$microformat-abbr-font-weight: $font-weight-bold !default;\n$microformat-abbr-font-decoration: none !default;\n\n// Text alignment class names\n$align-class-names:\n small-only,\n small,\n medium-only,\n medium,\n large-only,\n large,\n xlarge-only,\n xlarge,\n xxlarge-only,\n xxlarge;\n\n// Text alignment breakpoints\n$align-class-breakpoints:\n $small-only,\n $small-up,\n $medium-only,\n $medium-up,\n $large-only,\n $large-up,\n $xlarge-only,\n $xlarge-up,\n $xxlarge-only,\n $xxlarge-up;\n\n// Generates text align and justify classes\n@mixin align-classes{\n .text-left { text-align: left !important; }\n .text-right { text-align: right !important; }\n .text-center { text-align: center !important; }\n .text-justify { text-align: justify !important; }\n\n @for $i from 1 through length($align-class-names) {\n @media #{(nth($align-class-breakpoints, $i))} {\n .#{(nth($align-class-names, $i))}-text-left { text-align: left !important; }\n .#{(nth($align-class-names, $i))}-text-right { text-align: right !important; }\n .#{(nth($align-class-names, $i))}-text-center { text-align: center !important; }\n .#{(nth($align-class-names, $i))}-text-justify { text-align: justify !important; }\n }\n }\n}\n\n//\n// Typography Placeholders\n//\n\n// These will throw a deprecation warning if used within a media query.\n@mixin lead {\n font-size: $paragraph-font-size + rem-calc(3.5);\n line-height: 1.6;\n}\n\n@mixin subheader {\n line-height: $subheader-line-height;\n color: $subheader-font-color;\n font-weight: $subheader-font-weight;\n margin-top: $subheader-top-margin;\n margin-bottom: $subheader-bottom-margin;\n}\n@include exports(\"type\") {\n @if $include-html-type-classes {\n // Responsive Text alignment\n @include align-classes;\n\n /* Typography resets */\n div,\n dl,\n dt,\n dd,\n ul,\n ol,\n li,\n h1,\n h2,\n h3,\n h4,\n h5,\n h6,\n pre,\n form,\n p,\n blockquote,\n th,\n td {\n margin:0;\n padding:0;\n }\n\n /* Default Link Styles */\n a {\n color: $anchor-font-color;\n text-decoration: $anchor-text-decoration;\n line-height: inherit;\n\n &:hover,\n &:focus {\n color: $anchor-font-color-hover;\n @if $anchor-text-decoration-hover != $anchor-text-decoration {\n \ttext-decoration: $anchor-text-decoration-hover;\n }\n }\n\n img { border:none; }\n }\n\n /* Default paragraph styles */\n p {\n font-family: $paragraph-font-family;\n font-weight: $paragraph-font-weight;\n font-size: $paragraph-font-size;\n line-height: $paragraph-line-height;\n margin-bottom: $paragraph-margin-bottom;\n text-rendering: $paragraph-text-rendering;\n\n &.lead { @include lead; }\n\n & aside {\n font-size: $paragraph-aside-font-size;\n line-height: $paragraph-aside-line-height;\n font-style: $paragraph-aside-font-style;\n }\n }\n\n /* Default header styles */\n h1, h2, h3, h4, h5, h6 {\n font-family: $header-font-family;\n font-weight: $header-font-weight;\n font-style: $header-font-style;\n color: $header-font-color;\n text-rendering: $header-text-rendering;\n margin-top: $header-top-margin;\n margin-bottom: $header-bottom-margin;\n line-height: $header-line-height;\n\n small {\n font-size: $small-font-size;\n color: $small-font-color;\n line-height: 0;\n }\n }\n\n h1 { font-size: $h1-font-size - $h1-font-reduction; }\n h2 { font-size: $h2-font-size - $h2-font-reduction; }\n h3 { font-size: $h3-font-size - $h3-font-reduction; }\n h4 { font-size: $h4-font-size - $h4-font-reduction; }\n h5 { font-size: $h5-font-size - $h5-font-reduction; }\n h6 { font-size: $h6-font-size - $h6-font-reduction; }\n\n .subheader { @include subheader; }\n\n hr {\n border: $hr-border-style $hr-border-color;\n border-width: $hr-border-width 0 0;\n clear: both;\n margin: $hr-margin 0 ($hr-margin - rem-calc($hr-border-width));\n height: 0;\n }\n\n /* Helpful Typography Defaults */\n em,\n i {\n font-style: italic;\n line-height: inherit;\n }\n\n strong,\n b {\n font-weight: $font-weight-bold;\n line-height: inherit;\n }\n\n small {\n font-size: $small-font-size;\n line-height: inherit;\n }\n\n code {\n font-family: $code-font-family;\n font-weight: $code-font-weight;\n color: $code-color;\n background-color: $code-background-color;\n border-width: $code-border-size;\n border-style: $code-border-style;\n border-color: $code-border-color;\n padding: $code-padding;\n }\n\n /* Lists */\n ul,\n ol,\n dl {\n font-size: $list-font-size;\n line-height: $list-line-height;\n margin-bottom: $list-margin-bottom;\n list-style-position: $list-style-position;\n font-family: $list-font-family;\n }\n\n ul {\n margin-#{$default-float}: $list-side-margin;\n &.no-bullet {\n margin-#{$default-float}: $list-side-margin-no-bullet;\n li {\n ul,\n ol {\n margin-#{$default-float}: $list-nested-margin;\n margin-bottom: 0;\n list-style: none;\n }\n }\n }\n }\n\n /* Unordered Lists */\n ul {\n li {\n ul,\n ol {\n margin-#{$default-float}: $list-nested-margin;\n margin-bottom: 0;\n }\n }\n &.square,\n &.circle,\n &.disc {\n li ul { list-style: inherit; }\n }\n\n &.square { list-style-type: square; margin-#{$default-float}: $list-side-margin;}\n &.circle { list-style-type: circle; margin-#{$default-float}: $list-side-margin;}\n &.disc { list-style-type: disc; margin-#{$default-float}: $list-side-margin;}\n &.no-bullet { list-style: none; }\n }\n\n /* Ordered Lists */\n ol {\n margin-#{$default-float}: $list-ordered-side-margin;\n li {\n ul,\n ol {\n margin-#{$default-float}: $list-nested-margin;\n margin-bottom: 0;\n }\n }\n }\n\n /* Definition Lists */\n dl {\n dt {\n margin-bottom: $definition-list-header-margin-bottom;\n font-weight: $definition-list-header-weight;\n }\n dd { margin-bottom: $definition-list-margin-bottom; }\n }\n\n /* Abbreviations */\n abbr,\n acronym {\n text-transform: uppercase;\n font-size: 90%;\n color: $body-font-color;\n cursor: $cursor-help-value;\n }\n abbr {\n text-transform: none;\n &[title] {\n border-bottom: $acronym-underline;\n }\n }\n\n /* Blockquotes */\n blockquote {\n margin: 0 0 $paragraph-margin-bottom;\n padding: $blockquote-padding;\n border-#{$default-float}: $blockquote-border;\n\n cite {\n display: block;\n font-size: $blockquote-cite-font-size;\n color: $blockquote-cite-font-color;\n &:before {\n content: \"\\2014 \\0020\";\n }\n\n a,\n a:visited {\n color: $blockquote-cite-link-color;\n }\n }\n }\n blockquote,\n blockquote p {\n line-height: $paragraph-line-height;\n color: $blockquote-font-color;\n }\n\n /* Microformats */\n .vcard {\n display: inline-block;\n margin: $microformat-margin;\n border: $microformat-border-width $microformat-border-style $microformat-border-color;\n padding: $microformat-padding;\n\n li {\n margin: 0;\n display: block;\n }\n .fn {\n font-weight: $microformat-fullname-font-weight;\n font-size: $microformat-fullname-font-size;\n }\n }\n\n .vevent {\n .summary { font-weight: $microformat-summary-font-weight; }\n\n abbr {\n cursor: $cursor-default-value;\n text-decoration: $microformat-abbr-font-decoration;\n font-weight: $microformat-abbr-font-weight;\n border: none;\n padding: $microformat-abbr-padding;\n }\n }\n\n\n @media #{$medium-up} {\n h1,h2,h3,h4,h5,h6 { line-height: $header-line-height; }\n h1 { font-size: $h1-font-size; }\n h2 { font-size: $h2-font-size; }\n h3 { font-size: $h3-font-size; }\n h4 { font-size: $h4-font-size; }\n h5 { font-size: $h5-font-size; }\n h6 { font-size: $h6-font-size; }\n }\n\n // Only include these styles if you want them.\n @if $include-print-styles {\n /*\n * Print styles.\n *\n * Inlined to avoid required HTTP connection: www.phpied.com/delay-loading-your-print-css/\n * Credit to Paul Irish and HTML5 Boilerplate (html5boilerplate.com)\n */\n .print-only { display: none !important; }\n @media print {\n * {\n background: transparent !important;\n color: $black !important; /* Black prints faster: h5bp.com/s */\n box-shadow: none !important;\n text-shadow: none !important;\n }\n\n a,\n a:visited { text-decoration: underline;}\n a[href]:after { content: \" (\" attr(href) \")\"; }\n\n abbr[title]:after { content: \" (\" attr(title) \")\"; }\n\n // Don't show links for images, or javascript/internal links\n .ir a:after,\n a[href^=\"javascript:\"]:after,\n a[href^=\"#\"]:after { content: \"\"; }\n\n pre,\n blockquote {\n border: 1px solid $aluminum;\n page-break-inside: avoid;\n }\n\n thead { display: table-header-group; /* h5bp.com/t */ }\n\n tr,\n img { page-break-inside: avoid; }\n\n img { max-width: 100% !important; }\n\n @page { margin: 0.5cm; }\n\n p,\n h2,\n h3 {\n orphans: 3;\n widows: 3;\n }\n\n h2,\n h3 { page-break-after: avoid; }\n\n .hide-on-print { display: none !important; }\n .print-only { display: block !important; }\n .hide-for-print { display: none !important; }\n .show-for-print { display: inherit !important; }\n }\n }\n\n }\n}\n","// Foundation by ZURB\n// foundation.zurb.com\n// Licensed under MIT Open Source\n\n@import \"global\";\n\n//\n// Foundation Visibility Classes\n//\n$include-html-visibility-classes: $include-html-classes !default;\n$include-accessibility-classes: true !default;\n$include-table-visibility-classes: true !default;\n$include-legacy-visibility-classes: true !default;\n\n//\n// Media Class Names\n//\n// Visibility Breakpoints\n$visibility-breakpoint-sizes:\n small,\n medium,\n large,\n xlarge,\n xxlarge;\n\n$visibility-breakpoint-queries:\n unquote($small-up),\n unquote($medium-up),\n unquote($large-up),\n unquote($xlarge-up),\n unquote($xxlarge-up);\n\n@mixin visibility-loop {\n @each $current-visibility-breakpoint in $visibility-breakpoint-sizes {\n $visibility-inherit-list: ();\n $visibility-none-list: ();\n\n $visibility-visible-list: ();\n $visibility-hidden-list: ();\n\n $visibility-table-list: ();\n $visibility-table-header-group-list: ();\n $visibility-table-row-group-list: ();\n $visibility-table-row-list: ();\n $visibility-table-cell-list: ();\n\n @each $visibility-comparison-breakpoint in $visibility-breakpoint-sizes {\n @if index($visibility-breakpoint-sizes, $visibility-comparison-breakpoint) < index($visibility-breakpoint-sizes, $current-visibility-breakpoint) {\n // Smaller than current breakpoint\n\n $visibility-inherit-list: append($visibility-inherit-list, unquote(\n '.hide-for-#{$visibility-comparison-breakpoint}-only, .show-for-#{$visibility-comparison-breakpoint}-up'\n ), comma);\n $visibility-none-list: append($visibility-none-list, unquote(\n '.show-for-#{$visibility-comparison-breakpoint}-only, .hide-for-#{$visibility-comparison-breakpoint}-up'\n ), comma);\n $visibility-visible-list: append($visibility-visible-list, unquote(\n '.hidden-for-#{$visibility-comparison-breakpoint}-only, .visible-for-#{$visibility-comparison-breakpoint}-up'\n ), comma);\n $visibility-hidden-list: append($visibility-hidden-list, unquote(\n '.visible-for-#{$visibility-comparison-breakpoint}-only, .hidden-for-#{$visibility-comparison-breakpoint}-up'\n ), comma);\n $visibility-table-list: append($visibility-table-list, unquote(\n 'table.hide-for-#{$visibility-comparison-breakpoint}-only, table.show-for-#{$visibility-comparison-breakpoint}-up'\n ), comma);\n $visibility-table-header-group-list: append($visibility-table-header-group-list, unquote(\n 'thead.hide-for-#{$visibility-comparison-breakpoint}-only, thead.show-for-#{$visibility-comparison-breakpoint}-up'\n ), comma);\n $visibility-table-row-group-list: append($visibility-table-row-group-list, unquote(\n 'tbody.hide-for-#{$visibility-comparison-breakpoint}-only, tbody.show-for-#{$visibility-comparison-breakpoint}-up'\n ), comma);\n $visibility-table-row-list: append($visibility-table-row-list, unquote(\n 'tr.hide-for-#{$visibility-comparison-breakpoint}-only, tr.show-for-#{$visibility-comparison-breakpoint}-up'\n ), comma);\n $visibility-table-cell-list: append($visibility-table-cell-list, unquote(\n 'th.hide-for-#{$visibility-comparison-breakpoint}-only, td.hide-for-#{$visibility-comparison-breakpoint}-only, th.show-for-#{$visibility-comparison-breakpoint}-up, td.show-for-#{$visibility-comparison-breakpoint}-up'\n ), comma);\n\n // Foundation 4 compatibility:\n // Include .show/hide-for-[size] and .show/hide-for-[size]-down classes\n // for small, medium, and large breakpoints only\n @if $include-legacy-visibility-classes and index((small, medium, large), $visibility-comparison-breakpoint) != false {\n $visibility-inherit-list: append($visibility-inherit-list, unquote(\n '.hide-for-#{$visibility-comparison-breakpoint}, .hide-for-#{$visibility-comparison-breakpoint}-down'\n ), comma);\n $visibility-none-list: append($visibility-none-list, unquote(\n '.show-for-#{$visibility-comparison-breakpoint}, .show-for-#{$visibility-comparison-breakpoint}-down'\n ), comma);\n $visibility-visible-list: append($visibility-visible-list, unquote(\n '.hidden-for-#{$visibility-comparison-breakpoint}, .hidden-for-#{$visibility-comparison-breakpoint}-down'\n ), comma);\n $visibility-hidden-list: append($visibility-hidden-list, unquote(\n '.visible-for-#{$visibility-comparison-breakpoint}, .visible-for-#{$visibility-comparison-breakpoint}-down'\n ), comma);\n $visibility-table-list: append($visibility-table-list, unquote(\n 'table.hide-for-#{$visibility-comparison-breakpoint}, table.hide-for-#{$visibility-comparison-breakpoint}-down'\n ), comma);\n $visibility-table-header-group-list: append($visibility-table-header-group-list, unquote(\n 'thead.hide-for-#{$visibility-comparison-breakpoint}, thead.hide-for-#{$visibility-comparison-breakpoint}-down'\n ), comma);\n $visibility-table-row-group-list: append($visibility-table-row-group-list, unquote(\n 'tbody.hide-for-#{$visibility-comparison-breakpoint}, tbody.hide-for-#{$visibility-comparison-breakpoint}-down'\n ), comma);\n $visibility-table-row-list: append($visibility-table-row-list, unquote(\n 'tr.hide-for-#{$visibility-comparison-breakpoint}, tr.hide-for-#{$visibility-comparison-breakpoint}-down'\n ), comma);\n $visibility-table-cell-list: append($visibility-table-cell-list, unquote(\n 'th.hide-for-#{$visibility-comparison-breakpoint}, td.hide-for-#{$visibility-comparison-breakpoint}, th.hide-for-#{$visibility-comparison-breakpoint}-down, td.hide-for-#{$visibility-comparison-breakpoint}-down'\n ), comma);\n }\n\n } @else if index($visibility-breakpoint-sizes, $visibility-comparison-breakpoint) > index($visibility-breakpoint-sizes, $current-visibility-breakpoint) {\n // Larger than current breakpoint\n\n $visibility-inherit-list: append($visibility-inherit-list, unquote(\n '.hide-for-#{$visibility-comparison-breakpoint}-only, .hide-for-#{$visibility-comparison-breakpoint}-up'\n ), comma);\n $visibility-none-list: append($visibility-none-list, unquote(\n '.show-for-#{$visibility-comparison-breakpoint}-only, .show-for-#{$visibility-comparison-breakpoint}-up'\n ), comma);\n $visibility-visible-list: append($visibility-visible-list, unquote(\n '.hidden-for-#{$visibility-comparison-breakpoint}-only, .hidden-for-#{$visibility-comparison-breakpoint}-up'\n ), comma);\n $visibility-hidden-list: append($visibility-hidden-list, unquote(\n '.visible-for-#{$visibility-comparison-breakpoint}-only, .visible-for-#{$visibility-comparison-breakpoint}-up'\n ), comma);\n $visibility-table-list: append($visibility-table-list, unquote(\n 'table.hide-for-#{$visibility-comparison-breakpoint}-only, table.hide-for-#{$visibility-comparison-breakpoint}-up'\n ), comma);\n $visibility-table-header-group-list: append($visibility-table-header-group-list, unquote(\n 'thead.hide-for-#{$visibility-comparison-breakpoint}-only, thead.hide-for-#{$visibility-comparison-breakpoint}-up'\n ), comma);\n $visibility-table-row-group-list: append($visibility-table-row-group-list, unquote(\n 'tbody.hide-for-#{$visibility-comparison-breakpoint}-only, tbody.hide-for-#{$visibility-comparison-breakpoint}-up'\n ), comma);\n $visibility-table-row-list: append($visibility-table-row-list, unquote(\n 'tr.hide-for-#{$visibility-comparison-breakpoint}-only, tr.hide-for-#{$visibility-comparison-breakpoint}-up'\n ), comma);\n $visibility-table-cell-list: append($visibility-table-cell-list, unquote(\n 'th.hide-for-#{$visibility-comparison-breakpoint}-only, td.hide-for-#{$visibility-comparison-breakpoint}-only, th.hide-for-#{$visibility-comparison-breakpoint}-up, td.hide-for-#{$visibility-comparison-breakpoint}-up'\n ), comma);\n\n // Foundation 4 compatibility:\n // Include .show/hide-for-[size] and .show/hide-for-[size]-down classes\n // for small, medium, and large breakpoints only\n @if $include-legacy-visibility-classes and index((small, medium, large), $visibility-comparison-breakpoint) != false {\n $visibility-inherit-list: append($visibility-inherit-list, unquote(\n '.hide-for-#{$visibility-comparison-breakpoint}, .show-for-#{$visibility-comparison-breakpoint}-down'\n ), comma);\n $visibility-none-list: append($visibility-none-list, unquote(\n '.show-for-#{$visibility-comparison-breakpoint}, .hide-for-#{$visibility-comparison-breakpoint}-down'\n ), comma);\n $visibility-visible-list: append($visibility-visible-list, unquote(\n '.hidden-for-#{$visibility-comparison-breakpoint}, .visible-for-#{$visibility-comparison-breakpoint}-down'\n ), comma);\n $visibility-hidden-list: append($visibility-hidden-list, unquote(\n '.visible-for-#{$visibility-comparison-breakpoint}, .hidden-for-#{$visibility-comparison-breakpoint}-down'\n ), comma);\n $visibility-table-list: append($visibility-table-list, unquote(\n 'table.hide-for-#{$visibility-comparison-breakpoint}, table.show-for-#{$visibility-comparison-breakpoint}-down'\n ), comma);\n $visibility-table-header-group-list: append($visibility-table-header-group-list, unquote(\n 'thead.hide-for-#{$visibility-comparison-breakpoint}, thead.show-for-#{$visibility-comparison-breakpoint}-down'\n ), comma);\n $visibility-table-row-group-list: append($visibility-table-row-group-list, unquote(\n 'tbody.hide-for-#{$visibility-comparison-breakpoint}, tbody.show-for-#{$visibility-comparison-breakpoint}-down'\n ), comma);\n $visibility-table-row-list: append($visibility-table-row-list, unquote(\n 'tr.hide-for-#{$visibility-comparison-breakpoint}, tr.show-for-#{$visibility-comparison-breakpoint}-down'\n ), comma);\n $visibility-table-cell-list: append($visibility-table-cell-list, unquote(\n 'th.hide-for-#{$visibility-comparison-breakpoint}, td.hide-for-#{$visibility-comparison-breakpoint}, th.show-for-#{$visibility-comparison-breakpoint}-down, td.show-for-#{$visibility-comparison-breakpoint}-down'\n ), comma);\n }\n\n } @else {\n // Current breakpoint\n\n $visibility-inherit-list: append($visibility-inherit-list, unquote(\n '.show-for-#{$visibility-comparison-breakpoint}-only, .show-for-#{$visibility-comparison-breakpoint}-up'\n ), comma);\n $visibility-none-list: append($visibility-none-list, unquote(\n '.hide-for-#{$visibility-comparison-breakpoint}-only, .hide-for-#{$visibility-comparison-breakpoint}-up'\n ), comma);\n $visibility-visible-list: append($visibility-visible-list, unquote(\n '.visible-for-#{$visibility-comparison-breakpoint}-only, .visible-for-#{$visibility-comparison-breakpoint}-up'\n ), comma);\n $visibility-hidden-list: append($visibility-hidden-list, unquote(\n '.hidden-for-#{$visibility-comparison-breakpoint}-only, .hidden-for-#{$visibility-comparison-breakpoint}-up'\n ), comma);\n $visibility-table-list: append($visibility-table-list, unquote(\n 'table.show-for-#{$visibility-comparison-breakpoint}-only, table.show-for-#{$visibility-comparison-breakpoint}-up'\n ), comma);\n $visibility-table-header-group-list: append($visibility-table-header-group-list, unquote(\n 'thead.show-for-#{$visibility-comparison-breakpoint}-only, thead.show-for-#{$visibility-comparison-breakpoint}-up'\n ), comma);\n $visibility-table-row-group-list: append($visibility-table-row-group-list, unquote(\n 'tbody.show-for-#{$visibility-comparison-breakpoint}-only, tbody.show-for-#{$visibility-comparison-breakpoint}-up'\n ), comma);\n $visibility-table-row-list: append($visibility-table-row-list, unquote(\n 'tr.show-for-#{$visibility-comparison-breakpoint}-only, tr.show-for-#{$visibility-comparison-breakpoint}-up'\n ), comma);\n $visibility-table-cell-list: append($visibility-table-cell-list, unquote(\n 'th.show-for-#{$visibility-comparison-breakpoint}-only, td.show-for-#{$visibility-comparison-breakpoint}-only, th.show-for-#{$visibility-comparison-breakpoint}-up, td.show-for-#{$visibility-comparison-breakpoint}-up'\n ), comma);\n\n // Foundation 4 compatibility:\n // Include .show/hide-for-[size] and .show/hide-for-[size]-down classes\n // for small, medium, and large breakpoints only\n @if $include-legacy-visibility-classes and index((small, medium, large), $visibility-comparison-breakpoint) != false {\n $visibility-inherit-list: append($visibility-inherit-list, unquote(\n '.show-for-#{$visibility-comparison-breakpoint}, .show-for-#{$visibility-comparison-breakpoint}-down'\n ), comma);\n $visibility-none-list: append($visibility-none-list, unquote(\n '.hide-for-#{$visibility-comparison-breakpoint}, .hide-for-#{$visibility-comparison-breakpoint}-down'\n ), comma);\n $visibility-visible-list: append($visibility-visible-list, unquote(\n '.visible-for-#{$visibility-comparison-breakpoint}, .visible-for-#{$visibility-comparison-breakpoint}-down'\n ), comma);\n $visibility-hidden-list: append($visibility-hidden-list, unquote(\n '.hidden-for-#{$visibility-comparison-breakpoint}, .hidden-for-#{$visibility-comparison-breakpoint}-down'\n ), comma);\n $visibility-table-list: append($visibility-table-list, unquote(\n 'table.show-for-#{$visibility-comparison-breakpoint}, table.show-for-#{$visibility-comparison-breakpoint}-down'\n ), comma);\n $visibility-table-header-group-list: append($visibility-table-header-group-list, unquote(\n 'thead.show-for-#{$visibility-comparison-breakpoint}, thead.show-for-#{$visibility-comparison-breakpoint}-down'\n ), comma);\n $visibility-table-row-group-list: append($visibility-table-row-group-list, unquote(\n 'tbody.show-for-#{$visibility-comparison-breakpoint}, tbody.show-for-#{$visibility-comparison-breakpoint}-down'\n ), comma);\n $visibility-table-row-list: append($visibility-table-row-list, unquote(\n 'tr.show-for-#{$visibility-comparison-breakpoint}, tr.show-for-#{$visibility-comparison-breakpoint}-down'\n ), comma);\n $visibility-table-cell-list: append($visibility-table-cell-list, unquote(\n 'th.show-for-#{$visibility-comparison-breakpoint}, td.show-for-#{$visibility-comparison-breakpoint}, th.show-for-#{$visibility-comparison-breakpoint}-down, td.show-for-#{$visibility-comparison-breakpoint}-down'\n ), comma);\n }\n }\n }\n\n /* #{$current-visibility-breakpoint} displays */\n @media #{nth($visibility-breakpoint-queries, index($visibility-breakpoint-sizes, $current-visibility-breakpoint))} {\n #{$visibility-inherit-list} {\n display: inherit !important;\n }\n #{$visibility-none-list} {\n display: none !important;\n }\n @if $include-accessibility-classes != false {\n #{$visibility-visible-list} {\n @include element-invisible-off;\n }\n #{$visibility-hidden-list} {\n @include element-invisible;\n }\n }\n @if $include-table-visibility-classes != false {\n #{$visibility-table-list} {\n display: table !important;\n }\n #{$visibility-table-header-group-list} {\n display: table-header-group !important;\n }\n #{$visibility-table-row-group-list} {\n display: table-row-group !important;\n }\n #{$visibility-table-row-list} {\n display: table-row !important;\n }\n #{$visibility-table-cell-list} {\n display: table-cell !important;\n }\n }\n }\n }\n}\n\n\n@if $include-html-visibility-classes != false {\n\n @include visibility-loop;\n\n /* Orientation targeting */\n .show-for-landscape,\n .hide-for-portrait { display: inherit !important; }\n .hide-for-landscape,\n .show-for-portrait { display: none !important; }\n\n /* Specific visibility for tables */\n table {\n &.hide-for-landscape,\n &.show-for-portrait { display: table !important; }\n }\n thead {\n &.hide-for-landscape,\n &.show-for-portrait { display: table-header-group !important; }\n }\n tbody {\n &.hide-for-landscape,\n &.show-for-portrait { display: table-row-group !important; }\n }\n tr {\n &.hide-for-landscape,\n &.show-for-portrait { display: table-row !important; }\n }\n td,\n th {\n &.hide-for-landscape,\n &.show-for-portrait { display: table-cell !important; }\n }\n\n @media #{$landscape} {\n .show-for-landscape,\n .hide-for-portrait { display: inherit !important; }\n .hide-for-landscape,\n .show-for-portrait { display: none !important; }\n\n /* Specific visibility for tables */\n table {\n &.show-for-landscape,\n &.hide-for-portrait { display: table !important; }\n }\n thead {\n &.show-for-landscape,\n &.hide-for-portrait { display: table-header-group !important; }\n }\n tbody {\n &.show-for-landscape,\n &.hide-for-portrait { display: table-row-group !important; }\n }\n tr {\n &.show-for-landscape,\n &.hide-for-portrait { display: table-row !important; }\n }\n td,\n th {\n &.show-for-landscape,\n &.hide-for-portrait { display: table-cell !important; }\n }\n }\n\n @media #{$portrait} {\n .show-for-portrait,\n .hide-for-landscape { display: inherit !important; }\n .hide-for-portrait,\n .show-for-landscape { display: none !important; }\n\n /* Specific visibility for tables */\n table {\n &.show-for-portrait,\n &.hide-for-landscape { display: table !important; }\n }\n thead {\n &.show-for-portrait,\n &.hide-for-landscape { display: table-header-group !important; }\n }\n tbody {\n &.show-for-portrait,\n &.hide-for-landscape { display: table-row-group !important; }\n }\n tr {\n &.show-for-portrait,\n &.hide-for-landscape { display: table-row !important; }\n }\n td,\n th {\n &.show-for-portrait,\n &.hide-for-landscape { display: table-cell !important; }\n }\n }\n\n /* Touch-enabled device targeting */\n .show-for-touch { display: none !important; }\n .hide-for-touch { display: inherit !important; }\n .touch .show-for-touch { display: inherit !important; }\n .touch .hide-for-touch { display: none !important; }\n\n /* Specific visibility for tables */\n table.hide-for-touch { display: table !important; }\n .touch table.show-for-touch { display: table !important; }\n thead.hide-for-touch { display: table-header-group !important; }\n .touch thead.show-for-touch { display: table-header-group !important; }\n tbody.hide-for-touch { display: table-row-group !important; }\n .touch tbody.show-for-touch { display: table-row-group !important; }\n tr.hide-for-touch { display: table-row !important; }\n .touch tr.show-for-touch { display: table-row !important; }\n td.hide-for-touch { display: table-cell !important; }\n .touch td.show-for-touch { display: table-cell !important; }\n th.hide-for-touch { display: table-cell !important; }\n .touch th.show-for-touch { display: table-cell !important; }\n\n\n /* Print visibility */\n @media print {\n .show-for-print { display: block; }\n .hide-for-print { display: none; }\n\n table.show-for-print { display: table !important; }\n thead.show-for-print { display: table-header-group !important; }\n tbody.show-for-print { display: table-row-group !important; }\n tr.show-for-print { display: table-row !important; }\n td.show-for-print { display: table-cell !important; }\n th.show-for-print { display: table-cell !important; }\n\n }\n\n}\n","@charset \"utf-8\";\n/* TOC – Typography\n\nCheck typography variables › _3_typography_settings.scss\n\n- Links\n- Customize Foundation Typography\n- Headlines\n- Images\n- Lists\n- Tables\n- Code\n- Quotes\n- Typography for Articles\n- Smaller Fontsize for Bigteaser on small devices\n- Additional typographical elements\n- Footnotes\n- Icon Font\n\n*/\n\n\n\n/* Links\n------------------------------------------------------------------- */\n\na,\na:link {\n transition: all .4s;\n}\n\na:visited {\n border-bottom: $grey-2;\n}\n\na:hover {\n color: darken( $ci-1, 10% );\n}\n\na:focus {\n color: lighten( $ci-1, 20% );\n}\n\na:active {\n color: darken( $ci-1, 20% );\n}\n\n\n\n/* Customize Foundation Typography\n------------------------------------------------------------------- */\n\np {\n -webkit-hyphens: auto;\n -moz-hyphens: auto;\n -ms-hyphens: auto;\n hyphens: auto;\n -ms-word-break: normal;\n /* Non standard for webkit */\n word-break: normal;\n}\np a,\narticle a {\n font-weight: bold;\n border-bottom: 1px dotted;\n}\np a:hover,\narticle a:hover {\n border-bottom: 2px solid;\n}\np a.button,\n.button,\n.button:hover {\n border: 0;\n color: #fff;\n}\np.button a {\n border: 0;\n color: #fff;\n text-shadow: 0 1px 3px rgba(0, 0, 0, 0.5);\n}\n\n\n\n/* Headlines\n The hK::before logic is to accomodate a vert. offset for persistent\n top of page menu. The logic is copied from\n https://css-tricks.com/hash-tag-links-padding/\n------------------------------------------------------------------- */\n\nh1, h2, h3, h4, h5, h6 {\n font-family: $header-font-family;\n font-weight: normal;\n padding: 0;\n}\nh1 {\n font-size: $font-size-h1;\n margin-top: 0;\n}\nh2 {\n font-size: $font-size-h2;\n margin: 1.563em 0 0 0;\n}\n .blog-index h2 {\n margin-top: 0;\n }\nh3 {\n font-size: $font-size-h3;\n margin: 1.152em 0 0 0;\n}\nh4 {\n font-size: $font-size-h4;\n margin: 1.152em 0 0 0;\n}\nh5 {\n font-size: $font-size-h5;\n margin: 1em 0 0 0;\n}\n\n\n\n/* Images\n------------------------------------------------------------------- */\n\nimg { border-radius: $global-radius;}\n img.alignleft,\n img.left { float: left; margin:5px 15px 5px 0; }\n img.alignright,\n img.right { float: right; margin:5px 0 5px 15px; }\n img.aligncenter,\n img.center { display: block; margin:0 auto 10px; }\n\nfigure {\n margin: 0 0 rem-calc(30) 0;\n}\n#masthead-with-background-color figure,\n#masthead-with-pattern figure {\n margin: 0;\n}\nfigcaption,\n.masthead-caption {\n color: $grey-10;\n font-family: $font-family-sans-serif;\n font-size: rem-calc(13);\n padding-top: rem-calc(2);\n}\nfigcaption a,\n.masthead-caption a {\n border-bottom: 1px dotted $grey-4;\n color: $grey-10;\n}\nfigcaption a:hover,\n.masthead-caption a:hover {\n border-bottom: 2px solid $primary-color;\n color: $primary-color;\n}\n.masthead-caption {\n padding-right: 10px;\n text-align: right;\n}\n\n\n\n/* Tables\n------------------------------------------------------------------- */\n\ntd {\n vertical-align: top;\n}\n\n\n\n/* Code\n------------------------------------------------------------------- */\n\npre {\n overflow: auto;\n margin-bottom: rem-calc(20);\n padding: 5px;\n background-color: $code-background-color;\n border-radius: $global-radius;\n}\npre code {\n padding: rem-calc(2) rem-calc(5) rem-calc(1) rem-calc(0);\n border: 0;\n}\n\ncode {\n font-size: rem-calc(14);\n line-height: 1.5;\n}\n\n\n\n/* Lists\n------------------------------------------------------------------- */\n\nul, ol {\n margin-left: 20px;\n padding: 0;\n}\nli {\n margin-left: 0;\n}\n\n.no-bullet {\n list-style: none;\n margin-left: 0;\n}\n\nli {\n > ul,\n > ol {\n margin-bottom: 0;\n }\n}\n\ndl {\n\n}\ndt:first-child {\n padding-top: 0px;\n}\ndt {\n font-weight: bold;\n padding-top: 30px;\n}\ndd {\n}\narticle dl dt { line-height: 1.3; }\narticle dl dd { line-height: 1.6; margin-bottom: rem-calc(12); margin-left: rem-calc(24); }\n\n\n\n/* Quotes\n------------------------------------------------------------------- */\n\nblockquote {\n font-style: italic;\n position: relative;\n border: none;\n margin: 0 30px 30px 30px;\n color: $grey-11;\n}\n\n blockquote p {font-style: italic; color: $grey-10; }\n\n blockquote:before {\n display:block;content:\"\\00BB\";\n font-size:80px;\n line-height: 0;\n position:absolute;\n left:-25px;\n top: auto;\n color: $grey-11;\n }\n blockquote:after {\n display:block;\n content:\"\\00AB\";\n font-size:80px;\n line-height: 0;\n position:absolute;\n right:-10px;\n bottom: 20px;\n color: $grey-11;\n }\n blockquote cite:before {\n content:\"\\2014 \\0020\"\n }\n blockquote cite a,blockquote cite a:visited {\n color: $grey-10;\n }\ncite {\n padding-top: 5px;\n}\n\nbutton, .button {\n letter-spacing: 1px;\n}\n\nmark {\n background-color: scale-color($warning-color, $lightness: 60%);\n}\n\n\n\n/* Typography for Articles\n------------------------------------------------------------------- */\n\n.subheadline {\n font-size: rem-calc(16);\n margin: 0;\n text-transform: uppercase;\n}\n.teaser {\n font-size: rem-calc(20);\n}\n.big-teaser {\n font-style: italic; font-weight: 300;\n}\n.big-teaser a {\n font-style: italic; font-weight: 400;\n}\n\n/* Smaller Fontsize for Bigteaser on small devices */\n@media only screen {\n .big-teaser {\n font-size: rem-calc(20);\n }\n}\n@media only screen and (min-width: 40.063em) {\n .big-teaser {\n font-size: rem-calc(29);\n }\n}\n\n\n\n/* Additional typographical elements\n------------------------------------------------------------------- */\n\n.sans { font-family: $font-family-sans-serif; }\n.serif { font-family: $font-family-serif; }\n\n.font-size-h1 { font-size: $font-size-h1; }\n.font-size-h2 { font-size: $font-size-h2; }\n.font-size-h3 { font-size: $font-size-h3; }\n.font-size-h4 { font-size: $font-size-h4; }\n.font-size-h5 { font-size: $font-size-h5; }\n.font-size-p { font-size: $font-size-p; }\n\n\n\n/* Footnotes\n------------------------------------------------------------------- */\n\n.footnotes:before {\n content: \"\";\n position: absolute;\n height: 1px;\n width: 60px;\n margin-top: -10px;\n border-bottom: 1px solid $grey-2;\n}\n.footnotes {\n margin-top: 60px;\n}\n.footnotes ol {\n font-size: $font-size-small;\n}\n.footnotes p {\n font-size: inherit;\n margin-bottom: 0;\n}\n\n\n\n\n/* Icon Font\n See the icon-set/preview in /assets/fonts/iconfont-preview.html\n------------------------------------------------------------------- */\n\n@font-face {\n font-family: 'iconfont';\n src: url('../fonts/iconfont.eot'); /* IE9 Compat Modes */\n src: url('../fonts/iconfont.eot?#iefix') format('embedded-opentype'), /* IE6-IE8 */\n url('../fonts/iconfont.woff') format('woff'), /* Pretty Modern Browsers */\n url('../fonts/iconfont.ttf') format('truetype'), /* Safari, Android, iOS */\n url('../fonts/iconfont.svg#svgFontName') format('svg'); /* Legacy iOS */\n}\n\n.iconfont { font-family: iconfont; }\n.iconfont-48 { font-size: 48px; }\n\n\n[data-icon]:before { content: attr(data-icon); }\n\n[data-icon]:before,\n.icon-archive:before,\n.icon-browser:before,\n.icon-calendar:before,\n.icon-camera:before,\n.icon-chat:before,\n.icon-check:before,\n.icon-chevron-down:before,\n.icon-chevron-left:before,\n.icon-chevron-right:before,\n.icon-chevron-up:before,\n.icon-circle-with-cross:before,\n.icon-circle-with-minus:before,\n.icon-circle-with-plus:before,\n.icon-cloud:before,\n.icon-code:before,\n.icon-cog:before,\n.icon-dropbox:before,\n.icon-edit:before,\n.icon-export:before,\n.icon-eye:before,\n.icon-facebook:before,\n.icon-feather:before,\n.icon-github:before,\n.icon-globe:before,\n.icon-googleplus:before,\n.icon-heart:before,\n.icon-heart-outlined:before,\n.icon-home:before,\n.icon-instagram:before,\n.icon-lab-flask:before,\n.icon-leaf:before,\n.icon-linkedin:before,\n.icon-mail:before,\n.icon-message:before,\n.icon-mic:before,\n.icon-network:before,\n.icon-paper-plane:before,\n.icon-pinterest:before,\n.icon-price-tag:before,\n.icon-rocket:before,\n.icon-rss:before,\n.icon-soundcloud:before,\n.icon-star:before,\n.icon-star-outlined:before,\n.icon-thumbs-down:before,\n.icon-thumbs-up:before,\n.icon-tree:before,\n.icon-tumblr:before,\n.icon-twitter:before,\n.icon-upload-to-cloud:before,\n.icon-video:before,\n.icon-vimeo:before,\n.icon-warning:before,\n.icon-xing:before,\n.icon-youtube:before {\n display: inline-block;\nfont-family: \"iconfont\";\nfont-style: normal;\nfont-weight: normal;\nfont-variant: normal;\nline-height: 1;\ntext-decoration: inherit;\ntext-rendering: optimizeLegibility;\ntext-transform: none;\n-moz-osx-font-smoothing: grayscale;\n-webkit-font-smoothing: antialiased;\nfont-smoothing: antialiased;\n}\n\n.icon-archive:before { content: \"\\f100\"; }\n.icon-browser:before { content: \"\\f101\"; }\n.icon-calendar:before { content: \"\\f133\"; }\n.icon-camera:before { content: \"\\f102\"; }\n.icon-chat:before { content: \"\\f103\"; }\n.icon-check:before { content: \"\\f104\"; }\n.icon-chevron-down:before { content: \"\\f105\"; }\n.icon-chevron-left:before { content: \"\\f106\"; }\n.icon-chevron-right:before { content: \"\\f107\"; }\n.icon-chevron-up:before { content: \"\\f108\"; }\n.icon-circle-with-cross:before { content: \"\\f109\"; }\n.icon-circle-with-minus:before { content: \"\\f10a\"; }\n.icon-circle-with-plus:before { content: \"\\f10b\"; }\n.icon-cloud:before { content: \"\\f10c\"; }\n.icon-code:before { content: \"\\f10d\"; }\n.icon-cog:before { content: \"\\f10e\"; }\n.icon-dropbox:before { content: \"\\f10f\"; }\n.icon-edit:before { content: \"\\f110\"; }\n.icon-export:before { content: \"\\f111\"; }\n.icon-eye:before { content: \"\\f112\"; }\n.icon-facebook:before { content: \"\\f113\"; }\n.icon-feather:before { content: \"\\f114\"; }\n.icon-github:before { content: \"\\f115\"; }\n.icon-globe:before { content: \"\\f116\"; }\n.icon-googleplus:before { content: \"\\f136\"; }\n.icon-heart:before { content: \"\\f117\"; }\n.icon-heart-outlined:before { content: \"\\f118\"; }\n.icon-home:before { content: \"\\f119\"; }\n.icon-instagram:before { content: \"\\f11a\"; }\n.icon-lab-flask:before { content: \"\\f11b\"; }\n.icon-leaf:before { content: \"\\f11c\"; }\n.icon-linkedin:before { content: \"\\f11d\"; }\n.icon-mail:before { content: \"\\f11e\"; }\n.icon-message:before { content: \"\\f11f\"; }\n.icon-mic:before { content: \"\\f120\"; }\n.icon-network:before { content: \"\\f121\"; }\n.icon-paper-plane:before { content: \"\\f122\"; }\n.icon-pinterest:before { content: \"\\f123\"; }\n.icon-price-tag:before { content: \"\\f124\"; }\n.icon-rocket:before { content: \"\\f125\"; }\n.icon-rss:before { content: \"\\f126\"; }\n.icon-soundcloud:before { content: \"\\f127\"; }\n.icon-star:before { content: \"\\f128\"; }\n.icon-star-outlined:before { content: \"\\f129\"; }\n.icon-thumbs-down:before { content: \"\\f12a\"; }\n.icon-thumbs-up:before { content: \"\\f12b\"; }\n.icon-tree:before { content: \"\\f134\"; }\n.icon-tumblr:before { content: \"\\f12c\"; }\n.icon-twitter:before { content: \"\\f12d\"; }\n.icon-upload-to-cloud:before { content: \"\\f12e\"; }\n.icon-video:before { content: \"\\f12f\"; }\n.icon-vimeo:before { content: \"\\f130\"; }\n.icon-warning:before { content: \"\\f131\"; }\n.icon-xing:before { content: \"\\f135\"; }\n.icon-youtube:before { content: \"\\f132\"; }\n","@charset \"utf-8\";\n/* TOC\n\n- Adjustments: Video Layout\n- Navigation\n- Search\n- Masthead\n- Masthead › small-only\n- Masthead › medium-only\n- Masthead › large-only\n- Masthead › xlarge-up\n- Breadcrumb\n- Meta\n- Jump to top\n- Footer\n- Subfooter\n- CSS-Classes to add margin at top or bottom\n\n*/\n\n\n\n/* Adjustments: Video Layout\n------------------------------------------------------------------- */\n\nbody.video,\nbody.video #masthead-no-image-header { background: #000; }\nbody.video #masthead-no-image-header { margin-bottom: 60px; }\nbody.video h1,\nbody.video h2,\nbody.video h3,\nbody.video h4,\nbody.video h5,\nbody.video h6,\nbody.video p,\nbody.video a,\nbody.video blockquote:before,\nbody.video blockquote:after,\nbody.video cite a, { color: #fff; }\nbody.video cite a:visited, { color: #fff; }\nbody.video cite { color: #fff; }\n\n\n\n/* Navigation\n------------------------------------------------------------------- */\n\n#navigation {\n -webkit-box-shadow: 0 2px 2px 0 rgba(0,0,0,.2);\n box-shadow: 0 2px 3px 0 rgba(0,0,0,.2);\n\n [class^='icon-']:before, [class*=' icon-']:before {\n margin-right: rem-calc(8);\n }\n}\n\n\n\n/* Search\n------------------------------------------------------------------- */\n\n.no-js form#search {\n display: none;\n}\n\n\n\n/* Masthead\n------------------------------------------------------------------- */\n\n#masthead {\n background-color: $primary-color;\n}\n#masthead-no-image-header {\n background-color: $primary-color;\n}\n#masthead-with-text {\n text-align: center;\n font-size: rem-calc(54);\n font-family: $header-font-family;\n color: #fff;\n text-transform: uppercase;\n text-shadow: 0 2px 3px rgba(0,0,0,.4);\n}\n#masthead-no-image-header {\n height: 175px;\n}\n#masthead-no-image-header #logo img {\n margin-top: 60px;\n}\n\n/* Masthead › small-only\n------------------------------------------------------------------- */\n\n@media #{$small-only} {\n #logo img {\n display: none;\n }\n #masthead {\n height: 200px;\n }\n #masthead-with-pattern {\n padding: 15px 0;\n }\n #masthead-with-background-color {\n padding: 15px 0;\n }\n #masthead-with-text {\n height: 220px;\n padding: 30px 0;\n font-size: rem-calc(36);\n }\n #masthead-no-image-header {\n display: none;\n }\n}\n\n\n/* Masthead › medium-only\n------------------------------------------------------------------- */\n\n@media #{$medium-only} {\n #logo img {\n margin-top: 60px;\n }\n #masthead {\n height: 280px;\n }\n #masthead-with-pattern {\n padding: 20px 0;\n }\n #masthead-with-background-color {\n padding: 20px 0;\n }\n #masthead-with-text {\n padding: 60px 0;\n height: 300px;\n }\n}\n\n\n/* Masthead › large-only\n------------------------------------------------------------------- */\n\n@media #{$large-only} {\n #logo img {\n margin-top: 80px;\n }\n #masthead {\n height: 310px;\n }\n #masthead-with-pattern {\n padding: 30px 0;\n }\n #masthead-with-background-color {\n padding: 30px 0;\n }\n #masthead-with-text {\n height: 330px;\n padding: 60px 0;\n }\n}\n\n\n/* Masthead › xlarge-up\n------------------------------------------------------------------- */\n\n@media #{$xlarge-up} {\n #logo img {\n margin-top: 110px;\n }\n #masthead {\n height: 380px;\n }\n #masthead-with-pattern {\n padding: 45px 0;\n }\n #masthead-with-background-color {\n padding: 45px 0;\n }\n #masthead-with-text {\n padding: 95px 0;\n height: 400px;\n }\n}\n\n\n#title-image-small {\n height: 240px;\n}\n#title-image-large {\n height: 520px;\n}\n#title-image-index-small {\n height: 120px;\n}\n#title-image-index-large {\n height: 260px;\n}\n\n\n\n/* Breadcrumb\n------------------------------------------------------------------- */\n\n#breadcrumb {\n background: scale-color($grey-1, $lightness: 55%);\n border-top: 1px solid scale-color($grey-1, $lightness: 45%);\n border-bottom: 1px solid scale-color($grey-1, $lightness: 45%);\n}\n.breadcrumbs>.current {\n font-weight: bold;\n}\n\n\n/* Meta\n------------------------------------------------------------------- */\n\n#page-meta, #page-meta a {\n color: $grey-5;\n}\n\n#page-meta .button {\n background: $grey-5;\n border: 0;\n}\n#page-meta .button {\n color: #fff;\n}\n#page-meta .button:hover {\n background: $primary-color;\n}\n.meta-info p {\n font-size: rem-calc(13);\n color: scale-color($grey-1, $lightness: 40%);\n}\n .meta-info a {\n text-decoration: underline;\n color: scale-color($grey-1, $lightness: 40%);\n }\n .meta-info a:hover {\n text-decoration: none;\n color: $secondary-color;\n }\n\n\n\n/* Jump to top\n------------------------------------------------------------------- */\n\n#up-to-top {\n padding: 160px 0 10px 0;\n}\n#up-to-top a {\n font-size: 24px;\n padding: 5px;\n border-radius: 3px;\n}\n#up-to-top a:hover {\n background: $grey-2;\n}\n\n\n\n/* Footer\n------------------------------------------------------------------- */\n\n#footer-content p,\n#footer-content li {\n font-size: rem-calc(13);\n font-weight: 300;\n}\n\n#footer {\n padding-top: 30px;\n padding-bottom: 20px;\n background: $footer-bg;\n color: $footer-color;\n }\n\n #footer a {\n color: $footer-link-color;\n }\n #footer h4,\n #footer h5 {\n letter-spacing: 1px;\n color: #fff;\n text-transform: uppercase;\n }\n\n\n\n/* Subfooter\n------------------------------------------------------------------- */\n\n#subfooter {\n background: $subfooter-bg;\n color: $subfooter-color;\n padding-top: 30px;\n}\n\n#subfooter-left ul.inline-list {\n float: left;\n}\n\n.credits a {\n color: $subfooter-link-color;\n border: 0;\n text-transform: uppercase;\n &:hover {\n color: #fff;\n }\n}\n\n.social-icons {\n margin-bottom: 10px !important;\n\n// Beware of SCSS-Syntax here\n li {\n padding: 0 0 20px 0;\n }\n a {\n font-size: rem-calc(23);\n display: block;\n width: 36px;\n border-radius: 50%;\n color: $subfooter-bg;\n background: $subfooter-color;\n text-align: center;\n &:hover {\n background: $subfooter-bg;\n color: #fff;\n }\n }\n}\n\n\n\n/* CSS-Classes to add margin at top or bottom\n------------------------------------------------------------------- */\n\n.t10 { margin-top: 10px !important; }\n.t15 { margin-top: 15px !important; }\n.t20 { margin-top: 20px !important; }\n.t30 { margin-top: 30px !important; }\n.t50 { margin-top: 50px !important; }\n.t60 { margin-top: 60px !important; }\n.t70 { margin-top: 70px !important; }\n.t80 { margin-top: 80px !important; }\n.t90 { margin-top: 90px !important; }\n\n.b15 { margin-bottom: 15px !important; }\n.b20 { margin-bottom: 20px !important; }\n.b30 { margin-bottom: 30px !important; }\n.b60 { margin-bottom: 60px !important; }\n\n.l15 { margin-left: 15px !important; }\n.r15 { margin-right: 15px !important; }\n\n.pl20 { padding-left: 20px !important; }\n.pr5 { padding-right: 5px !important; }\n.pr10 { padding-right: 10px !important; }\n.pr20 { padding-right: 20px !important; }\n","@charset \"utf-8\";\n/* TOC\n\n- Table of Contents (Index)\n- Panel\n- Shadows\n- Alerts\n- Breadcrumb\n- Button\n- Side-Nav\n- Accordion\n- Lazy Load XT\n- Frontpage Widget\n\n*/\n\n\n\n/* Table of Contents (Index)\n------------------------------------------------------------------- */\n\n#toc ul,\n#toc ul ul,\n#toc ul ul ul, {\n list-style: none;\n margin-left: 30px;\n}\n#toc ul {\n margin-left: 0;\n margin-top: $spacing-unit;\n}\n\n\n\n/* Panel\n------------------------------------------------------------------- */\n\n.border-dotted {\n border: 1px dotted $grey-5;\n padding: rem-calc(20);\n border-radius: $global-radius;\n}\n\n\n\n/* Shadows\n------------------------------------------------------------------- */\n\n.shadow-no {text-shadow: rgba(0, 0, 0, 0) 0 0 0;}\n.shadow-black {text-shadow: rgba(0, 0, 0, 0.498039) 0px 1px 2px;}\n.shadow-white {text-shadow: rgba(255, 255, 255, 0.498039) 0px 1px 2px;}\n\n\n\n/* Alerts\n------------------------------------------------------------------- */\n\n.alert-box {\n font-family: $font-family-sans-serif;\n text-shadow: 0px 1px 1px rgba(0,0,0,0.9);\n}\n .alert-box p {\n margin-bottom: 0;\n }\n .alert-box a {\n text-shadow: 1px 1px 0px rgba(0, 0, 0, 1);\n color: #fff;\n border-bottom: 1px dotted #fff;\n }\n .alert-box a:hover {\n border-bottom: 1px solid #fff;\n }\n .alert-box.terminal {\n background: $grey-12; \n color: #fff; \n border-color: scale-color($grey-12, $lightness: -14%);\n font-family: $font-family-monospace;\n }\n .alert-box.terminal::before {\n content: \"$ \";\n color: $ci-6;\n float: left;\n margin: .25em .5em 0 0;\n }\n .alert-box.text {\n background-color: $grey-2;\n text-shadow: 0px 0px 0px rgba(0,0,0,0.9);\n border-color: scale-color($grey-2, $lightness: -14%);\n color: $grey-12;\n }\n\n\n\n/* Button\n------------------------------------------------------------------- */\n\nbutton, .button { letter-spacing: 1px; }\n button.grey, .button.grey { background: $grey-10; }\n button.grey:hover,\n button.grey:focus,\n .button.grey:hover,\n .button.grey:focus { background-color: $grey-16; }\n\n\n\n/* Side-Nav\n------------------------------------------------------------------- */\n\n.side-nav li.title { text-transform: uppercase;}\n.side-nav li { border-top: 1px solid $grey-3;}\n.side-nav li a:not(.button) { border-bottom: 0; padding: 0.4375rem 0rem; }\n.side-nav li a:not(.button):hover, .side-nav li a:not(.button):focus { background: $grey-1; }\n\n.homepage p { margin: 0; padding: 0; color: $grey-10; }\n\n\n\n/* Accordion\n------------------------------------------------------------------- */\n\ndl.accordion { border-top: 1px solid $grey-2; }\n.accordion dd { border-bottom: 1px solid $grey-2; }\ndd.accordion-navigation span { padding-right: 12px; }\ndd.accordion-navigation span:before { content: \"\\F107\" }\ndd.accordion-navigation.active span:before { content: \"\\F105\" }\ndd.accordion-navigation.active span:before { content: \"\\F105\" }\n\n\n\n/* Lazy Load XT\n------------------------------------------------------------------- */\n\n/*! Lazy Load XT v1.0.6 2014-11-19\n * http://ressio.github.io/lazy-load-xt\n * (C) 2014 RESS.io\n * Licensed under MIT */\nimg.lazy {\n display: none;\n}\n.lazy-hidden {\n opacity: 0;\n}\n.lazy-loaded {\n -webkit-transition: opacity 0.7s;\n -moz-transition: opacity 0.7s;\n -ms-transition: opacity 0.7s;\n -o-transition: opacity 0.7s;\n transition: opacity 0.7s;\n opacity: 1;\n}\n\n*:target:not([id^='fn:']):not([id^='fnref:']) {\n &::before {\n content: \" \";\n width: 0;\n height: 0;\n\n display: block;\n padding-top: 50px;\n margin-top: -50px;\n }\n}\n","@charset \"utf-8\";\n/* Syntax highlighting styles\n------------------------------------------------------------------- */\n\n.highlight {\n background: #fff;\n [data-lang]::before {\n content: attr(data-lang);\n display: block;\n text-align: right;\n margin-right: 5px;\n text-transform: uppercase;\n }\n .c { color: #998; font-style: italic } // Comment\n .err { color: #a61717; background-color: #e3d2d2 } // Error\n .k { font-weight: bold } // Keyword\n .o { font-weight: bold } // Operator\n .cm { color: #998; font-style: italic } // Comment.Multiline\n .cp { color: #999; font-weight: bold } // Comment.Preproc\n .c1 { color: #998; font-style: italic } // Comment.Single\n .cs { color: #999; font-weight: bold; font-style: italic } // Comment.Special\n .gd { color: #000; background-color: #fdd } // Generic.Deleted\n .gd .x { color: #000; background-color: #faa } // Generic.Deleted.Specific\n .ge { font-style: italic } // Generic.Emph\n .gr { color: #a00 } // Generic.Error\n .gh { color: #999 } // Generic.Heading\n .gi { color: #000; background-color: #dfd } // Generic.Inserted\n .gi .x { color: #000; background-color: #afa } // Generic.Inserted.Specific\n .go { color: #888 } // Generic.Output\n .gp { color: #555 } // Generic.Prompt\n .gs { font-weight: bold } // Generic.Strong\n .gu { color: #aaa } // Generic.Subheading\n .gt { color: #a00 } // Generic.Traceback\n .kc { font-weight: bold } // Keyword.Constant\n .kd { font-weight: bold } // Keyword.Declaration\n .kp { font-weight: bold } // Keyword.Pseudo\n .kr { font-weight: bold } // Keyword.Reserved\n .kt { color: #458; font-weight: bold } // Keyword.Type\n .m { color: #099 } // Literal.Number\n .s { color: #d14 } // Literal.String\n .na { color: #008080 } // Name.Attribute\n .nb { color: #0086B3 } // Name.Builtin\n .nc { color: #458; font-weight: bold } // Name.Class\n .no { color: #008080 } // Name.Constant\n .ni { color: #800080 } // Name.Entity\n .ne { color: #900; font-weight: bold } // Name.Exception\n .nf { color: #900; font-weight: bold } // Name.Function\n .nn { color: #555 } // Name.Namespace\n .nt { color: #000080 } // Name.Tag\n .nv { color: #008080 } // Name.Variable\n .ow { font-weight: bold } // Operator.Word\n .w { color: #bbb } // Text.Whitespace\n .mf { color: #099 } // Literal.Number.Float\n .mh { color: #099 } // Literal.Number.Hex\n .mi { color: #099 } // Literal.Number.Integer\n .mo { color: #099 } // Literal.Number.Oct\n .sb { color: #d14 } // Literal.String.Backtick\n .sc { color: #d14 } // Literal.String.Char\n .sd { color: #d14 } // Literal.String.Doc\n .s2 { color: #d14 } // Literal.String.Double\n .se { color: #d14 } // Literal.String.Escape\n .sh { color: #d14 } // Literal.String.Heredoc\n .si { color: #d14 } // Literal.String.Interpol\n .sx { color: #d14 } // Literal.String.Other\n .sr { color: #009926 } // Literal.String.Regex\n .s1 { color: #d14 } // Literal.String.Single\n .ss { color: #990073 } // Literal.String.Symbol\n .bp { color: #999 } // Name.Builtin.Pseudo\n .vc { color: #008080 } // Name.Variable.Class\n .vg { color: #008080 } // Name.Variable.Global\n .vi { color: #008080 } // Name.Variable.Instance\n .il { color: #099 } // Literal.Number.Integer.Long\n}\n"],"file":"styles_feeling_responsive.css"} \ No newline at end of file diff --git a/v24.2.0/.buildinfo b/v24.2.0/.buildinfo new file mode 100644 index 0000000000..7224c1461d --- /dev/null +++ b/v24.2.0/.buildinfo @@ -0,0 +1,4 @@ +# Sphinx build info version 1 +# This file hashes the configuration used when building these files. When it is not found, a full rebuild will be done. +config: 3be58c54183f71a0ee0545a00867922b +tags: d77d1c0d9ca2f4c8421862c7c5a0d620 diff --git a/v24.2.0/.doctrees/demos.doctree b/v24.2.0/.doctrees/demos.doctree new file mode 100644 index 0000000000..6b73434978 Binary files /dev/null and b/v24.2.0/.doctrees/demos.doctree differ diff --git a/v24.2.0/.doctrees/demos/00_CIL_geometry.doctree b/v24.2.0/.doctrees/demos/00_CIL_geometry.doctree new file mode 100644 index 0000000000..9a9f3fb9bc Binary files /dev/null and b/v24.2.0/.doctrees/demos/00_CIL_geometry.doctree differ diff --git a/v24.2.0/.doctrees/demos/callback_demonstration.doctree b/v24.2.0/.doctrees/demos/callback_demonstration.doctree new file mode 100644 index 0000000000..94978e6599 Binary files /dev/null and b/v24.2.0/.doctrees/demos/callback_demonstration.doctree differ diff --git a/v24.2.0/.doctrees/demos/deriv2_cgls.doctree b/v24.2.0/.doctrees/demos/deriv2_cgls.doctree new file mode 100644 index 0000000000..f804df67bb Binary files /dev/null and b/v24.2.0/.doctrees/demos/deriv2_cgls.doctree differ diff --git a/v24.2.0/.doctrees/developer_guide.doctree b/v24.2.0/.doctrees/developer_guide.doctree new file mode 100644 index 0000000000..1ba87e7810 Binary files /dev/null and b/v24.2.0/.doctrees/developer_guide.doctree differ diff --git a/v24.2.0/.doctrees/environment.pickle b/v24.2.0/.doctrees/environment.pickle new file mode 100644 index 0000000000..a28d15da2d Binary files /dev/null and b/v24.2.0/.doctrees/environment.pickle differ diff --git a/v24.2.0/.doctrees/framework.doctree b/v24.2.0/.doctrees/framework.doctree new file mode 100644 index 0000000000..41f00ce46b Binary files /dev/null and b/v24.2.0/.doctrees/framework.doctree differ diff --git a/v24.2.0/.doctrees/index.doctree b/v24.2.0/.doctrees/index.doctree new file mode 100644 index 0000000000..e21551954b Binary files /dev/null and b/v24.2.0/.doctrees/index.doctree differ diff --git a/v24.2.0/.doctrees/introduction.doctree b/v24.2.0/.doctrees/introduction.doctree new file mode 100644 index 0000000000..e33bc92ddc Binary files /dev/null and b/v24.2.0/.doctrees/introduction.doctree differ diff --git a/v24.2.0/.doctrees/io.doctree b/v24.2.0/.doctrees/io.doctree new file mode 100644 index 0000000000..1eb1101802 Binary files /dev/null and b/v24.2.0/.doctrees/io.doctree differ diff --git a/v24.2.0/.doctrees/nbsphinx/demos/00_CIL_geometry.ipynb b/v24.2.0/.doctrees/nbsphinx/demos/00_CIL_geometry.ipynb new file mode 100644 index 0000000000..d4257af729 --- /dev/null +++ b/v24.2.0/.doctrees/nbsphinx/demos/00_CIL_geometry.ipynb @@ -0,0 +1,858 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "execution": { + "iopub.execute_input": "2024-10-10T15:02:38.139092Z", + "iopub.status.busy": "2024-10-10T15:02:38.138702Z", + "iopub.status.idle": "2024-10-10T15:02:38.141748Z", + "shell.execute_reply": "2024-10-10T15:02:38.141395Z" + } + }, + "outputs": [], + "source": [ + "# -*- coding: utf-8 -*-\n", + "# Copyright 2021 - 2022 United Kingdom Research and Innovation\n", + "# Copyright 2021 - 2022 The University of Manchester\n", + "#\n", + "# Licensed under the Apache License, Version 2.0 (the \"License\");\n", + "# you may not use this file except in compliance with the License.\n", + "# You may obtain a copy of the License at\n", + "#\n", + "# http://www.apache.org/licenses/LICENSE-2.0\n", + "#\n", + "# Unless required by applicable law or agreed to in writing, software\n", + "# distributed under the License is distributed on an \"AS IS\" BASIS,\n", + "# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n", + "# See the License for the specific language governing permissions and\n", + "# limitations under the License.\n", + "#\n", + "# Authored by: Gemma Fardell (UKRI-STFC)\n", + "# Edoardo Pasca (UKRI-STFC)\n", + "# Laura Murgatroyd (UKRI-STFC)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# A detailed look at CIL geometry\n", + "CIL holds your CT data in specialised data-containers, `AcquisitionData` and `ImageData`.\n", + "\n", + "Each of these has an associated `geometry` which contains the meta-data describing your set-up.\n", + "\n", + " - `AcquisitionGeometry` describes the acquisition data and parameters\n", + "\n", + " - `ImageGeometry` describes the image data (i.e., the reconstruction volume)\n", + "\n", + "The data-readers provided by CIL (Nikon, Zeiss and diamond nexus readers) will read in your data and return you a fully configured acquisition data with the acquisition geometry already configured, however if you read in a stack of tiffs or want to tweak the parameters this is simple to create by hand." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## The structure of an AcquisitionGeometry\n", + "\n", + "An instance of an `AcquisitionGeometry`, `ag`, holds the configuration of the system, in `config` which is subdivided in to:\n", + " - `ag.config.system` - The position and orientations of the `source`/`ray`, `rotation_axis` and `detector`\n", + " - `ag.config.panel` - The number of pixels, the size of pixels, and the position of pixel 0\n", + " - `ag.config.angles` - The number of angles, the unit of the angles (default is degrees)\n", + " - `ag.config.channels` - The number of channels" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Create a simple AcquisitionGeometry\n", + "\n", + "You can use the `AcquisitionGeometry` methods to describe circular trajectory parallel-beam or cone-beam 2D or 3D data.\n", + "\n", + " - `ag = AcquisitionGeometry.create_Parallel2D()`\n", + " - `ag = AcquisitionGeometry.create_Parallel3D()`\n", + " - `ag = AcquisitionGeometry.create_Cone2D(source_position, detector_position)`\n", + " - `ag = AcquisitionGeometry.create_Cone3D(source_position, detector_position)`\n", + "\n", + "This notebook will step though each in turn and show you how to describe both simple and complex geometries with offsets and rotations.\n", + "\n", + "No matter which type of geometry you create you will also need to describe the panel and projection angles.\n", + " - `ag.set_panel(num_pixels, pixel_size)`\n", + " - `ag.set_angles(angles, angle_unit)`\n", + "\n", + "For multi-channel data you need to add the number of channels.\n", + " - `ag.set_channels(num_channels)`\n", + "\n", + "And you will also need to describe the order your data is stored in using the relavent labels from the CIL default labels: `channel`, `angle`, `vertical` and `horizontal`\n", + " - `ag.set_labels(['angle','vertical','horizontal'])`" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### A Note on CIL AcquisitionGeometry:\n", + " - The geometry is described by a right-handed cooridinate system\n", + " - Positive angles describe the object rotating anti-clockwise when viewed from above\n", + "\n", + "\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Parallel geometry\n", + "\n", + "Parallel beams of X-rays are emitted onto 1D (single pixel row) or 2D detector array. This geometry is common for synchrotron sources.\n", + "\n", + "We describe the system, and then set the panel and angle data. Note that for 3D geometry we need to describe a 2D panel where `num_pixels=[X,Y]`\n", + "\n", + "```python\n", + "parallel_2D_geometry = AcquisitionGeometry.create_Parallel2D()\\\n", + " \n", + " .set_panel(num_pixels=10)\\\n", + " \n", + " .set_angles(angles=range(0,180))\n", + "\n", + "\n", + "parallel_3D_geometry = AcquisitionGeometry.create_Parallel3D()\\\n", + " \n", + " .set_panel(num_pixels=[10,10])\\\n", + " \n", + " .set_angles(angles=range(0,180))\n", + "```\n", + "Both 2D and 3D parallel-beam geometries are displayed below. Note that the detector position has been set, this is not necessary to describe and reconstruct the data, but it makes the displayed images clearer.\n", + "\n", + "`show_geometry()` can be used to display the configured geometry and will be used here extensively. You can also print the geometry to obtain a detailed description. If `show_geometry` is not passed an `ImageGeometry` it will show the default geometry associated with the `AcquisitionGeometry` \n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "An example creating a 2D parallel-beam geometry:" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "execution": { + "iopub.execute_input": "2024-10-10T15:02:38.143400Z", + "iopub.status.busy": "2024-10-10T15:02:38.143145Z", + "iopub.status.idle": "2024-10-10T15:02:38.997275Z", + "shell.execute_reply": "2024-10-10T15:02:38.996701Z" + } + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA90AAAPdCAYAAACXzguGAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACx4klEQVR4nOzdd3xUVfrH8e+kTXqBQOighqpUEQXUoILY0d1VV5GiiAoqYAErgqLrCqLg2n66Lliw7QIWLKAoiCIQutRQBRUNJZT09vz+GDNhIAmhTCbMfN6v17xy5t5z733m5p4795l75ozDzEwAAAAAAOCEC/J1AAAAAAAA+CuSbgAAAAAAvISkGwAAAAAALyHpBgAAAADAS0i6AQAAAADwEpJuAAAAAAC8hKQbAAAAAAAvIekGAAAAAMBLSLoBAAAAAPASkm4AAAAAALyEpBsAAAAAAC8h6QYAAAAAwEtIugEAAAAA8BKSbgAAAAAAvISkGwAAAAAALyHpPk5bt26Vw+HQ8uXLy60zZ84cORwO7d27t8riOh5NmjTRhAkT3M8dDoc++ugjn8UDVLXKtOvqolu3bho2bJivwyjXoeeTsowePVrt2rWrknhwZNX9mDpZVPY8wv4GAP9H0o0j2rFjhy699NITus6T4SKjMskCqo9jPab69++vq6++2mNaw4YNtWPHDp1xxhknJjgvmjZtmsaMGePrMMqVmpqq2267zf28rA/x7r//fs2ePbuKI8OJMnnyZMXHx5/w9Z4M7xMVOfQ8Ut4H8NW9DQMAjl+IrwM4meXn5/s6hGNWVFQkh8OhoKAjf+5Sp06dKogI1VpamrRpk5ScLDVtWqWbzs/PV1hYWJVuMzg4+KQ57mvUqOHrECpUq1atI9aJjo5WdHR0FURzcvBhc/NLvjiHSJU/j1T3NgwAOH7HfKfbzJSVlVXlDzOrVHyffvqp4uPjVVxcLElavny5HA6Hhg8f7q5z++2364YbbnA/nzp1qk4//XQ5nU41adJE48eP91hnkyZN9OSTT6p///6Ki4vTwIEDy9z2559/rmbNmikiIkIXXHCBtm7desR49+7dq9tuu01JSUkKDw/XGWecoRkzZlQ6toyMDPXt21cJCQmKjIzUpZdeqg0bNrjnl9yJmDFjhlq1aiWn06mff/5Z6enpuvLKKxUREaFTTjlFU6ZMOSy2g+9MlXSXmzZtmi644AJFRkaqbdu2+vHHH931d+/erRtuuEENGjRQZGSkWrdurffee889v3///po7d64mTpwoh8Mhh8Ph3kdr1qzRZZddpujoaCUlJalPnz7atWtXufvt559/1pVXXqmEhARFRUXp9NNP1+effy4zU3Jysp599lmP+qtWrVJQUJA2bdokydWttVGjRnI6napXr56GDBkiyXWH5eeff9Y999zjjrHE/Pnzdf755ysiIkINGzbUkCFDlJWV5Z5fcpz07dtX0dHRaty4sT7++GPt3LlTvXr1UnR0tFq3bq3FixeX+7qqjT17pEsukZo3ly67TGrWzPU8I8Nrm+zWrZvuuusu3XvvvUpMTFSPHj0kSXPnzlWnTp3kdDpVt25dPfjggyosLJRU/jFVVFSkAQMG6JRTTlFERISaN2+uiRMnurc1evRovfnmm/r444/dy82ZM6fMbqEVbb8k7iFDhmjEiBGqUaOG6tSpo9GjR1f4WlNTU9WjRw8lJiYqLi5OKSkpWrp0qXv+nDlzFBYWpnnz5rmnjR8/XomJidqxY4d7uwffDXz55ZfVtGlThYeHKykpSX/729/K3X7JeeGjjz5Ss2bNFB4erh49emj79u0e9V555RWddtppCgsLU/PmzfX22297zC+vHUmePUaaNGkiSbrmmmvkcDjczw/tXl5cXKwnnnhCDRo0kNPpVLt27fTll1+651fmPHQy8kFzU1ZWlvtcVbdu3cPeWyRX0jpixAjVr19fUVFROvvsszVnzhxJrmP05ptv1r59+9xtqOS4r2i5Ej/88INSUlIUGRmphIQE9ezZUxkZGRW+T1SmLZZ1DjlUSS+Xxx9/XLVr11ZsbKxuv/12jw/U8/LyNGTIENWuXVvh4eE699xzlZqa6p6fkZGh3r17q1atWoqIiFDTpk01adIkSZ7dy7du3aoLLrhAkpSQkCCHw6H+/fu74z24DVf2/XzmzJlq2bKloqOjdckll7jPCQCAasiOUWZmpkmq8kdmZmal4tu7d68FBQXZ4sWLzcxswoQJlpiYaGeddZa7TrNmzeyVV14xM7PFixdbUFCQPfHEE7Z+/XqbNGmSRURE2KRJk9z1GzdubLGxsTZu3DjbsGGDbdiwwbZs2WKSbNmyZWZmtm3bNnM6nTZ06FBbt26dvfPOO5aUlGSSLCMjo8xYi4qK7JxzzrHTTz/dZs2aZZs2bbJPP/3UPv/880rHdtVVV1nLli3tu+++s+XLl1vPnj0tOTnZ8vPzzcxs0qRJFhoaal26dLEffvjB1q1bZ5mZmXbppZfaGWecYfPnz7fFixdbly5dLCIiwp5//nn3uiXZ9OnTzczcr7dFixY2Y8YMW79+vf3tb3+zxo0bW0FBgZmZ/fLLLzZu3DhbtmyZbdq0yV544QULDg62BQsWuP83nTt3toEDB9qOHTtsx44dVlhYaL/99pslJibaQw89ZGvXrrWlS5dajx497IILLij3/3z55Zdbjx49bOXKle79NnfuXDMze+qpp6xVq1Ye9e+55x47//zzzczsv//9r8XGxtrnn39uP//8sy1cuNBee+01MzPbvXu3NWjQwJ544gl3jGZmK1eutOjoaHv++ectLS3NfvjhB2vfvr3179/f4zipUaOGvfrqq5aWlmaDBg2ymJgYu+SSS+zDDz+09evX29VXX20tW7a04uLicl9btdCzp1lwsJlU+ggOdk33kpSUFIuOjrbhw4fbunXrbO3atfbLL79YZGSkDR482NauXWvTp0+3xMREGzVqlJmVf0zl5+fbY489ZosWLbLNmzfbO++8Y5GRkfbBBx+YmdmBAwfsuuuus0suucS9XF5e3mHt+kjbL4k7NjbWRo8ebWlpafbmm2+aw+GwWbNmlftaZ8+ebW+//batWbPG1qxZYwMGDLCkpCTbv3+/u87w4cOtcePGtnfvXlu+fLk5nU6bNm2ax3aHDh1qZmapqakWHBxs7777rm3dutWWLl1qEydOLHf7JeeFjh07us8BnTp1si5durjrTJs2zUJDQ+2ll16y9evX2/jx4y04ONi++eYbM6u4HZm52kPJ+SQ9Pd0k2aRJk2zHjh2Wnp5uZmajRo2ytm3bupd57rnnLDY21t577z1bt26djRgxwkJDQy0tLc3MKnceOhn5oLnZoEGDrEGDBjZr1ixbuXKlXXHFFRYdHe0+pszMbrzxRuvSpYt99913tnHjRhs3bpw5nU5LS0uzvLw8mzBhgsXGxrrb0IEDB464nJnZsmXLzOl02qBBg2z58uW2atUq+9e//mU7d+4st01Xti0eeg4pS79+/Sw6Otquv/56W7Vqlc2YMcNq1aplDz/8sLvOkCFDrF69evb555/b6tWrrV+/fpaQkGC7d+82M7M777zT2rVrZ6mpqbZlyxb76quv7JNPPjEz8ziPFBYW2tSpU02SrV+/3nbs2GF79+51x3vw/q7s+3n37t0tNTXVlixZYi1btrQbb7zx+A4GAIDX+G3SbWbWoUMHe/bZZ83M7Oqrr7annnrKwsLCbP/+/bZjxw6T5H4zvvHGG61Hjx4eyw8fPtwjaWvcuLFdffXVHnUOvTh/6KGHDkumHnjggQqT7pkzZ1pQUJCtX7++zPlHii0tLc0k2Q8//OCev2vXLouIiLAPP/zQzFxv0pJs+fLl7jrr1683Se5k2Mxs7dq1JumISfe///1v9/zVq1d77MuyXHbZZXbfffe5nx96kWFmNnLkSLv44os9pm3fvt19kVKW1q1b2+jRo8uc99tvv1lwcLAtXLjQzMzy8/OtVq1aNnnyZDMzGz9+vDVr1sx9IXOog5OFEn369LHbbrvNY9q8efMsKCjIcnJy3MvddNNN7vklx9rIkSPd03788UeT5E7mq6X16z2v/g99/HnhfKKlpKRYu3btPKY9/PDD1rx5c4929dJLL1l0dLQVFRW5lzv0mCrL4MGD7a9//av7eb9+/axXr14edQ5t15Xd/rnnnuuxnrPOOsseeOCBI8ZUorCw0GJiYuzTTz91T8vLy7P27dvbddddZ6effrrdeuutHssc/LqnTp1qsbGxHkl7RUrOC2WdA0raTZcuXWzgwIEey1177bV22WWXmdnRt6ODzyclDk2669WrZ0899ZRHnbPOOssGDx5sZsd+HqrOfNHcDhw4YGFhYfb++++7p+3evdsiIiLcx9TGjRvN4XDYr7/+6rHsRRddZA899JCZuY6juLg4j/mVWe6GG26wrl27lhtfWW26sm3x0HNIWfr162c1atSwrKws97RXXnnFva7MzEwLDQ21KVOmuOfn5+dbvXr1bOzYsWZmduWVV9rNN99c5voPPY98++23ZV4LHPw6j+b9fOPGjR77ICkp6YivGQDgG8fcvTwyMlKZmZlV/oiMjKx0jN26ddOcOXNkZpo3b5569eqlM844Q99//72+/fZbJSUlqUWLFpKktWvXqmvXrh7Ld+3aVRs2bFBRUZF7WseOHSvc5tq1a3XOOed4dEfu3LlzhcssX75cDRo0ULNmzcpdZ0WxrV27ViEhITr77LPd82vWrKnmzZtr7dq17mlhYWFq06aNx3pDQkI8XlOLFi0qNSDOweupW7euJCk9PV2S6/viTz31lNq0aaOaNWsqOjpas2bN0rZt2ypc55IlS/Ttt9+6v98ZHR3t/v+UdAc/1JAhQ/Tkk0+qa9euGjVqlFauXOkR1+WXX67//Oc/kqQZM2YoNzdX1157rSTp2muvVU5Ojk499VQNHDhQ06dP9+iiWF6MkydP9oixZ8+eKi4u1pYtW8rcP0lJSZKk1q1bHzatZJ9VS+Xsc7eNG7226UPb2dq1a9W5c2ePdtW1a1dlZmbql19+qXBdr776qjp27KhatWopOjpar7/++hGPxUNVdvsH/98l1zFY0f84PT1dd9xxh5o1a6a4uDjFxcUpMzPTI76wsDC98847mjp1qnJycioc3K9Hjx5q3LixTj31VPXp00dTpkxRdnZ2ha+tvHNAybmjvPNPyfxjaUcV2b9/v3777bcKt1miovPQycYXzW3Tpk3Kz8/3eI+qUaOGmjdv7n6+dOlSmZmaNWvmcd6bO3duueflyi63fPlyXXTRRUcVc2Xb4pHeq0u0bdvW47qic+fOyszM1Pbt27Vp0yYVFBR4HIuhoaHq1KmT+1gcNGiQ3n//fbVr104jRozQ/Pnzj+r1lPX6KvN+HhkZqdNOO839/EjnGgCAbx3zQGoOh0NRUVEnMpYTrlu3bnrjjTe0YsUKBQUFqVWrVkpJSdHcuXOVkZGhlJQUd10z83gTL5l2qCO95rKWOZKIiIgjrrOi2Mrb5qHLRUREeDwvWe7QdVdGaGiou1yyfMn358ePH6/nn39eEyZMUOvWrRUVFaVhw4YdceC54uJiXXnllXrmmWcOm1dyQX2oW2+9VT179tRnn32mWbNm6emnn9b48eN19913u+f36dNHzz//vCZNmqTrr7/efYHVsGFDrV+/Xl999ZW+/vprDR48WOPGjdPcuXM9Xt+hMd5+++0e31kt0ahRowr3T0X7rFo66IKuTMnJXtv0oe2sojZQ0fH74Ycf6p577tH48ePVuXNnxcTEaNy4cVq4cOFRxVPZ7R963Dgcjgr/x/3799fOnTs1YcIENW7cWE6nU507dz6srZRcyO/Zs0d79uwp9zwUExOjpUuXas6cOZo1a5Yee+wxjR49WqmpqRV+mFbWPjx4WlmvvWTasbSjyqhomyVOujZVAV80t8q8XxUXFys4OFhLlixRcHCwx7yKBr+rzHJHeu8rL+bKtMXjvT5xOBzlnmMOjuHSSy/Vzz//rM8++0xff/21LrroIt15552HjSdSWZV9Py/rXHMs1x8AgKrh1z8Zdv755+vAgQOaMGGCUlJS5HA4lJKSojlz5mjOnDkeSXerVq30/fffeyw/f/58NWvW7LALhoq0atVKCxYs8Jh26PNDtWnTRr/88ovS0tLKXWdFsbVq1UqFhYUeicTu3buVlpamli1blrvdli1bqrCw0GNAr/Xr1x/374mX9Cq46aab1LZtW5166qkeg8BIrrt3B/cgkKQOHTpo9erVatKkiZKTkz0eFV1ANWzYUHfccYemTZum++67T6+//rp73mWXXaaoqCi98sor+uKLL3TLLbd4LBsREaGrrrpKL7zwgubMmaMff/xRP/300xFjPDS+5ORkn4yO61XNmkk9e0qHHv/Bwa7pVTiscqtWrTR//nyPi8r58+crJiZG9evXl1T2/2vevHnq0qWLBg8erPbt2ys5Ofmwu3NlLXcs2z8W8+bN05AhQ3TZZZe5B0o8dODATZs26Z577tHrr7+uc845R3379q0wsQwJCVH37t01duxYrVy5Ulu3btU333xTbv3yzgElvUxatmxZ5vnn4HNLRe3oUKGhoRXu79jYWNWrV++I2/Q3vmhuycnJCg0N9XiPysjI8Hgvat++vYqKipSenn7YOa9kZO6y2lBllmvTpk2FPxVX1npPdFtcsWKFcnJy3M8XLFig6OhoNWjQwH1eP/hYLCgo0OLFiz2OxVq1aql///565513NGHCBL322mvlvh5JFR7/x/p+DgCo3vw66Y6Li1O7du30zjvvqFu3bpJcifjSpUuVlpbmniZJ9913n2bPnq0xY8YoLS1Nb775pl588UXdf//9R7XNO+64Q5s2bdK9996r9evX691339XkyZMrXCYlJUXnn3++/vrXv+qrr77Sli1b9MUXX7hH6z1SbE2bNlWvXr00cOBAff/991qxYoVuuukm1a9fX7169Sp3u82bN9cll1yigQMHauHChVqyZIluvfXWY7r7cLDk5GR99dVXmj9/vtauXavbb79dv//+u0edJk2aaOHChdq6dat27dql4uJi3XnnndqzZ49uuOEGLVq0SJs3b9asWbN0yy23lHuRMmzYMM2cOVNbtmzR0qVL9c0333hcmAQHB6t///566KGHlJyc7NGNcvLkyXrjjTe0atUqbd68WW+//bYiIiLUuHFjd4zfffedfv31V3ci9MADD+jHH3/UnXfeqeXLl2vDhg365JNP3HfW/c5770ndu3tO697dNb0KDR48WNu3b9fdd9+tdevW6eOPP9aoUaN07733un/2rqxjKjk5WYsXL9bMmTOVlpamkSNHeow8XLLcypUrtX79eu3atUsFBQXHtP1jkZycrLfffltr167VwoUL1bt3b4/2V1RUpD59+ujiiy/WzTffrEmTJmnVqlVljjAtub5C8cILL2j58uX6+eef9dZbb6m4uNiju/ChQkNDdffdd2vhwoVaunSpbr75Zp1zzjnq1KmTJGn48OGaPHmyXn31VW3YsEHPPfecpk2b5j7/HKkdHapJkyaaPXu2fv/9d2WUMyz38OHD9cwzz+iDDz7Q+vXr9eCDD2r58uUaOnRopfbryaqqm1t0dLQGDBig4cOHa/bs2Vq1apX69+/vcUw3a9ZMvXv3Vt++fTVt2jRt2bJFqampeuaZZ/T5559Lcv1PMzMzNXv2bO3atUvZ2dmVWu6hhx5SamqqBg8erJUrV2rdunV65ZVX3Ofbstr0iW6L+fn5GjBggNasWaMvvvhCo0aN0l133aWgoCBFRUVp0KBBGj58uL788kutWbNGAwcOVHZ2tgYMGCBJeuyxx/Txxx9r48aNWr16tWbMmFFucty4cWM5HA7NmDFDO3fuVGZm5mF1jvX9HABQzVXNV8d957777jNJtmrVKve0tm3bWq1atQ4bOfp///uftWrVykJDQ61Ro0Y2btw4j/llDax16EApZmaffvqpJScnm9PptPPOO8/+85//VDiQmplr8Jqbb77ZatasaeHh4XbGGWfYjBkzKh3bnj17rE+fPhYXF2cRERHWs2dP9wixZmUPdGPmGuTr8ssvN6fTaY0aNbK33nqrwoGPynq9GRkZJsm+/fZb92vp1auXRUdHW+3ate3RRx+1vn37egxWtX79ejvnnHMsIiLCJNmWLVvMzDWIzDXXXGPx8fEWERFhLVq0sGHDhpU7yvddd91lp512mjmdTqtVq5b16dPHdu3a5VFn06ZNJsk98E2J6dOn29lnn22xsbEWFRVl55xzjn399dfu+T/++KO1adPGnE6nHdxUFi1aZD169LDo6GiLioqyNm3aeAz6VNZxcvA+LG8/VmtpaWaff+61wdMOVt6AaHPmzLGzzjrLwsLCrE6dOvbAAw94jFRd1jGVm5tr/fv3t7i4OIuPj7dBgwbZgw8+6DFoV3p6uvv/WXIcl/X/OdL2y4q7V69e1q9fv3Jf69KlS61jx47mdDqtadOm9t///tfj+Hn88cetbt26Hsf0Rx99ZGFhYe7YDt7uvHnzLCUlxRISEiwiIsLatGnjHqm9LCXnhalTp9qpp55qYWFhduGFF9rWrVs96r388st26qmnWmhoqDVr1szeeust97wjtaND28Mnn3xiycnJFhISYo0bNzazwwdSKyoqsscff9zq169voaGh1rZtW/viiy/c8ytzHjqZVWFzswMHDthNN91kkZGRlpSUZGPHjj3sWC75FYAmTZpYaGio1alTx6655hpbuXKlu84dd9xhNWvWNEnukcQrs9ycOXOsS5cu5nQ6LT4+3nr27Ol+ryzvfeJY2mJZSgZRfOyxx6xmzZoWHR1tt956q+Xm5rrr5OTk2N13322JiYnmdDqta9eutmjRIvf8MWPGWMuWLS0iIsJq1KhhvXr1ss2bN5tZ2cfpE088YXXq1DGHw+E+Nxwa77G8n0+fPt0C4JIOAE5aDjO+BAT/9sMPP6hbt2765Zdf3AOYAXDdpR42bNhxf6UEOBn1799fe/fu1UcffeTrUAAAfu6YB1IDqru8vDxt375dI0eO1HXXXUfCDQAAAKDK+fV3uhHY3nvvPTVv3lz79u3T2LFjfR0OAAAAgABE93IAAAAAALyEO90AAAAAAHgJSTcAAAAAAF5C0g0AAAAAgJeQdAMAAAAA4CUk3QAAAAAAeAlJtxd169ZNw4YNcz9v0qSJJkyY4JNYfLlt4GSzdetWORwOLV++3NehHNGh55njNXnyZMXHx7ufjx49Wu3atTth6z8avtx2IDvRx9TJpH///rr66qvdz325LwL5/wAA/oakuwqlpqbqtttu8+o2Dr1grsptA750rBeoh15kS1LDhg21Y8cOnXHGGScmOC+aNm2axowZ47X133///Zo9e7bX1l/C4XDoo48+8sm2cXzKe985XtUh6fR2+5KkOXPmyOFwaO/evVW+bQBA1QjxdQBVKT8/X2FhYT7bfq1atSqcX1BQoNDQUJ9sG6iufNFug4ODVadOnSrd5rGqUaOGV9cfHR2t6Ojocud78/9zpG0DlXE8x+iR2pc3j39vt20AQNXx6zvd3bp101133aV7771XiYmJ6tGjhyTpueeeU+vWrRUVFaWGDRtq8ODByszMlCRlZWUpNjZW//vf/zzW9emnnyoqKkoHDhwoc1tZWVnq27evoqOjVbduXY0fP/6wOod28XY4HHr11VfVq1cvRUVF6cknn3Rv68wzz1R4eLhOPfVUPf744yosLHQvt3fvXt12221KSkpSeHi4zjjjDM2YMUNz5szRzTffrH379snhcMjhcGj06NFlbnvbtm3q1auXoqOjFRsbq+uuu05//PGHe35Jt863335bTZo0UVxcnP7+97+X+/qBE6W8djt37lx16tRJTqdTdevW1YMPPuhuF/3799fcuXM1ceJE97G/detWFRUVacCAATrllFMUERGh5s2ba+LEie5tjR49Wm+++aY+/vhj93Jz5swps3t5RdsviXvIkCEaMWKEatSooTp16rjbX3lSU1PVo0cPJSYmKi4uTikpKVq6dKl7/pw5cxQWFqZ58+a5p40fP16JiYnasWOHe7sH3w18+eWX1bRpU4WHhyspKUl/+9vfKoxh8uTJatSokSIjI3XNNddo9+7dHvMP7eJd0jPg6aefVr169dSsWTNJ0q+//qrrr79eCQkJqlmzpnr16qWtW7d6rOs///mPTj/9dPc+vOuuuyS5zk+SdM0118jhcLifH7rt4uJiPfHEE2rQoIGcTqfatWunL7/80j2/5P82bdo0XXDBBYqMjFTbtm31448/VrgPAlll3rvy8/M1YsQI1a9fX1FRUTr77LM1Z84cSarwfaei5Ur88MMPSklJUWRkpBISEtSzZ09lZGSU26alyrXFss4hhyoqKtK9996r+Ph41axZUyNGjJCZedQp62tiTz75pPr376+4uDgNHDhQkjR//nydf/75ioiIUMOGDTVkyBBlZWW5l8vLy9OIESPUsGFDOZ1ONW3aVG+88Ya2bt2qCy64QJKUkJAgh8Oh/v37l7ntjIwM9e3bVwkJCYqMjNSll16qDRs2uOeX9DiYOXOmWrZsqejoaF1yySXucwUAwIfsOBUXFZb/KC6qfN2iwiPWPVopKSkWHR1tw4cPt3Xr1tnatWvNzOz555+3b775xjZv3myzZ8+25s2b26BBg9zLDRw40C677DKPdV1zzTXWt2/fcrc1aNAga9Cggc2aNctWrlxpV1xxhUVHR9vQoUPddRo3bmzPP/+8+7kkq127tr3xxhu2adMm27p1q3355ZcWGxtrkydPtk2bNtmsWbOsSZMmNnr0aDMzKyoqsnPOOcdOP/10mzVrlm3atMk+/fRT+/zzzy0vL88mTJhgsbGxtmPHDtuxY4cdOHDgsG0XFxdb+/bt7dxzz7XFixfbggULrEOHDpaSkuKObdSoURYdHW1/+ctf7KeffrLvvvvO6tSpYw8//PBR/x9QjRQXm2VmVv2juLjSIZbVbn/55ReLjIy0wYMH29q1a2369OmWmJhoo0aNMjOzvXv3WufOnW3gwIHuY7+wsNDy8/Ptscces0WLFtnmzZvtnXfescjISPvggw/MzOzAgQN23XXX2SWXXOJeLi8vz7Zs2WKSbNmyZWZmR9x+SdyxsbE2evRoS0tLszfffNMcDofNmjWr3Nc6e/Zse/vtt23NmjW2Zs0aGzBggCUlJdn+/fvddYYPH26NGze2vXv32vLly83pdNq0adM8tltynklNTbXg4GB79913bevWrbZ06VKbOHFiudtfsGCBORwOe/rpp239+vU2ceJEi4+Pt7i4OHedUaNGWdu2bd3P+/XrZ9HR0danTx9btWqV/fTTT5aVlWVNmza1W265xVauXGlr1qyxG2+80Zo3b255eXlmZvbyyy9beHi4TZgwwdavX2+LFi1yn5PS09NNkk2aNMl27Nhh6enpZW77ueees9jYWHvvvfds3bp1NmLECAsNDbW0tDQzM/f/rUWLFjZjxgxbv369/e1vf7PGjRtbQUFBufvBG06CpmZmlXvvuvHGG61Lly723Xff2caNG23cuHHmdDotLS2twvedipYzM1u2bJk5nU4bNGiQLV++3FatWmX/+te/bOfOneW26cq2xbLe+w/1zDPPWFxcnP3vf/9zt7+YmBjr1auXx7oOfR+PjY21cePG2YYNG2zDhg22cuVKi46Otueff97S0tLshx9+sPbt21v//v3dy1133XXWsGFDmzZtmm3atMm+/vpre//9962wsNCmTp1qkmz9+vW2Y8cO27t3b5nbvuqqq6xly5b23Xff2fLly61nz56WnJxs+fn5ZmY2adIkCw0Nte7du1tqaqotWbLEWrZsaTfeeOPRHRQAgBPuuJPu3b/ML/exf5fnG92eXxeUX3fnKo+6Gb+lHlbnaKWkpFi7du2OWO/DDz+0mjVrup8vXLjQgoOD7ddffzUzs507d1poaKjNmTOnzOUPHDhgYWFh9v7777un7d692yIiIo6YdA8bNsxjXeedd5794x//8Jj29ttvW926dc3MbObMmRYUFGTr168vM5ZJkyZ5XDCXte1Zs2ZZcHCwbdu2zT1/9erVJskWLVpkZq6L3cjIyMMu/s8+++wyt4uTRGammVT1j8zMSodYVrt9+OGHrXnz5lZ8UEbx0ksvWXR0tBUVFbmXO7i9lWfw4MH217/+1f28X79+HhfZZnZY0l3Z7Z977rke6znrrLPsgQceOGJMJQoLCy0mJsY+/fRT97S8vDxr3769XXfddXb66afbrbfe6rHMwa976tSpFhsb69FuK3LDDTfYJZdc4jHt+uuvP2LSnZSU5E6mzczeeOONw/ZPXl6eRURE2MyZM83MrF69evbII4+UG4skmz59use0Q7ddr149e+qppzzqnHXWWTZ48GAzK/2//fvf/3bPLzm3lZd4ectJ0NQq9d61ceNGczgc7vfDEhdddJE99NBDZlb2+05llrvhhhusa9eu5cZXVpuubFuszHt/3bp17Z///Kf7eUFBgTVo0OCISffVV1/tsZ4+ffrYbbfd5jFt3rx5FhQUZDk5ObZ+/XqTZF999VWZcXz77bcmyTIyMjymH7zttLQ0k2Q//PCDe/6uXbssIiLCPvzwQzNz/R8k2caNG911XnrpJUtKSjrivgAAeJdfdy+XpI4dOx427dtvv1WPHj1Uv359xcTEqG/fvtq9e7e7K1inTp10+umn66233pIkvf3222rUqJHOP//8MrexadMm5efnq3Pnzu5pNWrUUPPmzY86viVLluiJJ55wf5cxOjpaAwcO1I4dO5Sdna3ly5erQYMG7i6dx2Lt2rVq2LChGjZs6J7WqlUrxcfHa+3ate5pTZo0UUxMjPt53bp1lZ6efszbBSrr0Haxdu1ade7cWQ6Hwz2ta9euyszM1C+//FLhul599VV17NhRtWrVUnR0tF5//XVt27btqOKp7PbbtGnjsdyR2kx6erruuOMONWvWTHFxcYqLi1NmZqZHfGFhYXrnnXc0depU5eTkVPgrBD169FDjxo116qmnqk+fPpoyZYqys7OP+LoOdujzsrRu3drje6xLlizRxo0bFRMT4z5v1ahRQ7m5udq0aZPS09P122+/6aKLLjriusuzf/9+/fbbb+ratavH9K5du3qctyTP/0PdunUliXNXGSrz3rV06VKZmZo1a+bxvjR37lxt2rSp3HVXZrnly5cf9TFR2bZY1nv/wfbt26cdO3Z4vPaQkJAjLlfWupcsWaLJkyd7vM6ePXuquLhYW7Zs0fLlyxUcHKyUlJTKvszDrF27ViEhITr77LPd02rWrKnmzZt7HP+RkZE67bTT3M953waA6uG4B1JLqNup/JkHvSlKUnydI7+ZlYhLan+sIXmIioryeP7zzz/rsssu0x133KExY8aoRo0a+v777zVgwAAVFBS4691666168cUX9eCDD2rSpEm6+eabPd7kD2aHfAfseOIrLi7W448/rr/85S+H1Q0PD1dERMQxb6uEmZX5Wg6dfuigbg6HQ8XFxce9ffhQZKT05/gFVb7do3BouyjrmC1pd+W1S0n68MMPdc8992j8+PHq3LmzYmJiNG7cOC1cuPCo4qns9o+2zfTv3187d+7UhAkT1LhxYzmdTnXu3Fn5+fke9ebPny9J2rNnj/bs2XPY/ikRExOjpUuXas6cOZo1a5Yee+wxjR49WqmpqWWOLn2s566yzltnnnmmpkyZcljdWrVqKSjoxH2+W9b/4dBpB/8fSuZV9bnrZGhqlfn/FxcXKzg4WEuWLFFwcLDHvIoGuavMcsfyflbZtlheGzkRyjr+b7/9dg0ZMuSwuo0aNdLGjRuPe5vl/a8q8759PNcoAIAT47iTbkdQ8JErebnu0Vi8eLEKCws1fvx494Xghx9+eFi9m266SSNGjNALL7yg1atXq1+/fuWuMzk5WaGhoVqwYIEaNWokyTXgSVpa2lF/st2hQwetX79eycnJZc5v06aNfvnlF6WlpZV5tzssLExFRUUVbqNVq1batm2btm/f7r7bvWbNGu3bt08tW7Y8qnhxknE4JC9ejHpLq1atNHXqVI8LzPnz5ysmJkb169eXVPaxP2/ePHXp0kWDBw92Tzv07lxl28yRtn8s5s2bp5dfflmXXXaZJGn79u3atWuXR51Nmzbpnnvu0euvv64PP/xQffv21ezZs8tNZENCQtS9e3d1795do0aNUnx8vL755psyP8hr1aqVFixY4DHt0OeV0aFDB33wwQeqXbu2YmNjy6zTpEkTzZ492z1o1KFCQ0Mr/D/ExsaqXr16+v777z16Hc2fP1+dOlXw4a+PnAxNrTLvXe3bt1dRUZHS09N13nnnlbmestpQZZZr06aNZs+erccff7zS6z1RbTEuLk5169bVggUL3MdTYWGhlixZog4dOlR6PZLr+F+9enW579utW7dWcXGx5s6dq+7dux82v6TXSEXHf6tWrVRYWKiFCxeqS5cukqTdu3crLS2N920AOAn4fffyQ5122mkqLCzUv/71L23evFlvv/22Xn311cPqJSQk6C9/+YuGDx+uiy++WA0aNCh3ndHR0RowYICGDx+u2bNna9WqVerfv/8x3d157LHH9NZbb2n06NFavXq11q5dqw8++ECPPvqoJCklJUXnn3++/vrXv+qrr77Sli1b9MUXX7hH8G3SpIkyMzM1e/Zs7dq1q8yupd27d1ebNm3Uu3dvLV26VIsWLVLfvn2VkpJSqa51QFUbPHiwtm/frrvvvlvr1q3Txx9/rFGjRunee+91t7MmTZpo4cKF2rp1q3bt2qXi4mIlJydr8eLFmjlzptLS0jRy5EilpqZ6rLtJkyZauXKl1q9fr127dnn0eDma7R+L5ORkvf3221q7dq0WLlyo3r17e9z9KyoqUp8+fXTxxRfr5ptv1qRJk7Rq1aoyR5iWpBkzZuiFF17Q8uXL9fPPP+utt95ScXFxuV91GTJkiL788kuNHTtWaWlpevHFFz1GA6+s3r17KzExUb169dK8efO0ZcsWzZ07V0OHDnV3+R09erTGjx+vF154QRs2bNDSpUv1r3/9y72OkqT8999/V0ZGRpnbGT58uJ555hl98MEHWr9+vR588EEtX75cQ4cOPeqYUbn3rmbNmql3797q27evpk2bpi1btig1NVXPPPOMPv/8c0llv+9UZrmHHnpIqampGjx4sFauXKl169bplVdecX/wVFabPpFtcejQofrnP/+p6dOna926dRo8ePBhv5VdGQ888IB+/PFH3XnnnVq+fLk2bNigTz75RHfffbf7dfTr10+33HKLPvroI23ZskVz5sxxf+DfuHFjORwOzZgxQzt37nT/msrBmjZtql69emngwIH6/vvvtWLFCt10002qX7++evXqddQxAwCqWNV+hbxqlTew0nPPPWd169a1iIgI69mzp7311ltlDmIye/Zsk+QepKQiBw4csJtuuskiIyMtKSnJxo4dW+YALIcOpHbowEFmZl9++aV16dLFIiIiLDY21jp16mSvvfaae/7u3bvt5ptvtpo1a1p4eLidccYZNmPGDPf8O+64w2rWrGmS3CO6Hrrtn3/+2a666iqLioqymJgYu/baa+333393zz90ACMz16jvjRs3PuK+AI5Hee12zpw5dtZZZ1lYWJjVqVPHHnjgAY8RqdevX2/nnHOORUREmCTbsmWL5ebmWv/+/S0uLs7i4+Nt0KBB9uCDD3oc2+np6dajRw+Ljo42Sfbtt98eNpBaZbZfVty9evWyfv36lftaly5dah07djSn02lNmza1//73vx5t9fHHH7e6devarl273Mt89NFHFhYW5o7t4O3OmzfPUlJSLCEhwSIiIqxNmzbukdrL88Ybb1iDBg0sIiLCrrzySnv22WePOJDaoQPPmZnt2LHD+vbta4mJieZ0Ou3UU0+1gQMH2r59+9x1Xn31VWvevLmFhoZa3bp17e6773bP++STTyw5OdlCQkLc55lDt11UVGSPP/641a9f30JDQ61t27b2xRdfuOeX9X/LyMhw/19xuMq8d5X8CkCTJk0sNDTU6tSpY9dcc42tXLnSXaes953KLDdnzhzr0qWLOZ1Oi4+Pt549e7rfi8tq0yXLHG1bLEtBQYENHTrUYmNjLT4+3u69917r27fvEQdSO/i9tMSiRYvc55GoqChr06aNx6B/OTk5ds8991jdunUtLCzMkpOT7T//+Y97/hNPPGF16tQxh8PhPmccuu09e/ZYnz59LC4uzn39UjISvFnZA9pNnz7d/PxSDwBOCg4zvuxTnilTpmjo0KH67bffPAYNAgAAAACgMo77O93+KDs7W1u2bNHTTz+t22+/nYQbAAAAAHBMAu473ZUxduxYtWvXTklJSXrooYd8HQ4AAAAA4CRF93IAAAAAALyEO90AAAAAAHgJSTcAAAAAAF5C0g0AAAAAgJeQdAMAAAAA4CUk3QAAAAAAeAlJNwAAAAAAXkLSDaBa6datm4YNG+brMICARRsEAODEIukGUK1MmzZNY8aM8XUYAWnr1q1yOBxavny5r0PBSWLy5MmKj48/4esl8QcA+JMQXwcAAAerUaOGr0PAEeTn5yssLMzXYQBHxLEKAKgOuNMNoFo59A5XkyZN9OSTT6pv376Kjo5W48aN9fHHH2vnzp3q1auXoqOj1bp1ay1evNi9zO7du3XDDTeoQYMGioyMVOvWrfXee+95bOfAgQPq3bu3oqKiVLduXT3//POHbTs/P18jRoxQ/fr1FRUVpbPPPltz5sypMP5169bp3HPPVXh4uFq1aqWvv/5aDodDH330kbvOr7/+quuvv14JCQmqWbOmevXqpa1bt7rnFxcX64knnlCDBg3kdDrVrl07ffnll+75JXekP/zwQ5133nmKiIjQWWedpbS0NKWmpqpjx46Kjo7WJZdcop07d3rEN2nSJLVs2VLh4eFq0aKFXn75Zfe8U045RZLUvn17ORwOdevWTZLUv39/XX311Xr66adVr149NWvWTE888YRat2592Os/88wz9dhjj1W4j1B9ZGVludtW3bp1NX78eI/5FbWBOXPm6Oabb9a+ffvkcDjkcDg0evToIy5X4ocfflBKSooiIyOVkJCgnj17KiMjQ/3799fcuXM1ceJE93pL2sfcuXPVqVMnOZ1O1a1bVw8++KAKCwvd6+zWrZvuuusu3XvvvUpMTFSPHj28tesAAKg8AxB4MjNdj+Li0ml5ea5publl1y0qKp2Wn++alpNz5LpHKSUlxYYOHep+3rhxY6tRo4a9+uqrlpaWZoMGDbKYmBi75JJL7MMPP7T169fb1VdfbS1btrTiP1/PL7/8YuPGjbNly5bZpk2b7IUXXrDg4GBbsGCBe7233nqrNW7c2L7++mv76aef7JprrrGYmBiPbd94443WpUsX++6772zjxo02btw4czqdlpaWVmbsRUVF1rx5c+vRo4ctX77c5s2bZ506dTJJNn36dDMzy8rKsqZNm9ott9xiK1eutDVr1tiNN95ozZs3t7y8PDMze+655yw2Ntbee+89W7dunY0YMcJCQ0Pd292yZYtJshYtWtiXX35pa9assXPOOcc6dOhg3bp1s++//96WLl1qycnJdscdd7jje+2116xu3bo2depU27x5s02dOtVq1KhhkydPNjOzRYsWmST7+uuvbceOHbZ7924zM+vXr59FR0dbnz59bNWqVfbTTz/Z9u3bLSgoyBYtWuRe/4oVK8zhcNimTZuO8b/vf6pxUzMzs0GDBlmDBg1s1qxZtnLlSrviiissOjra3Q4qagN5eXk2YcIEi42NtR07dtiOHTvswIEDR1zOzGzZsmXmdDpt0KBBtnz5clu1apX961//sp07d9revXutc+fONnDgQPd6CwsL7ZdffrHIyEgbPHiwrV271qZPn26JiYk2atQo9+tJSUmx6OhoGz58uK1bt87Wrl17fDsIAIATgKQbCESS65GeXjrtySdd02691bNuZKRr+pYtpdOef9417cYbPesmJrqmr1p1zKGVlXTfdNNN7uc7duwwSTZy5Ej3tB9//NEk2Y4dO8pd72WXXWb33XefmZnt37/fQkND7b///a97/t69ey0yMtK97Y0bN5rD4bBff/3VYz0XXXSRPfTQQ2Vu44svvrCQkBCPOL766iuPpPuNN96w5s2buz8gMDPLy8uziIgImzlzppmZ1atXz5566imPdZ911lk2ePBgMytNuv/973+757/33nsmyWbPnu2e9vTTT1vz5s3dzxs2bGjvvvuux3rHjBljnTt39ljvsmXLPOr069fPkpKS3B8KlLj00ktt0KBB7ufDhg2zbt26lblvAlU1bmp24MABCwsLs/fff989bffu3RYREWFDhw6tVBuYNGmSxcXFecyvzHI33HCDde3atdzYDj0PmJk9/PDDh7Wdl156yaKjo63oz08fUlJSrF27dpXbAQAAVBG+0w2g2mvTpo27nJSUJEkeXZtLpqWnp6tOnToqKirSP//5T33wwQf69ddflZeXp7y8PEVFRUmSNm/erIKCAnXq1Mm9jri4ODVv3tz9fOnSpTIzNWvWzCOWvLw81axZs8w4169fr4YNG6pOnTruaQdvQ5KWLFmijRs3KiYmxmN6bm6uNm3apP379+u3335T165dPeZ37dpVK1asOOr9kp6eLknauXOntm/frgEDBmjgwIHuOoWFhYqLiyvz9RysdevWh303duDAgbrlllv03HPPKTg4WFOmTDmsezKqr02bNik/P1+dO3d2T6tRo4a7HRxLG6jscsuXL9e11157VPGuXbtWnTt3lsPhcE/r2rWrMjMz9csvv6hRo0aSpI4dOx7VegEA8DaSbiAQZWa6/kZGlk4bPlwaNkwKOeS08GfSpoiI0ml33ikNHCgFB3vWLfle8sF1T4DQ0FB3ueSCu6xpxcXFkqTx48fr+eef14QJE9S6dWtFRUVp2LBhys/PlySZmcdyJUqml6wrODhYS5YsUfAhrzM6OrrMOM3ssHUeqri4WGeeeaamTJly2LxatWod9poqWndl9kvJPin5+/rrr+vss8/2WM+hr68sJR9YHOzKK6+U0+nU9OnT5XQ6lZeXp7/+9a9HXFcgqc5N7eDjvSzH0gYqu1zEMQReVhsoqy2XdawCAOBLJN1AICrrojQszPWoTN3QUNejMnV9YN68eerVq5duuukmSa4kYMOGDWrZsqUk6bTTTlNoaKgWLVqkhg0bSpL279+vDRs2KCUlRZJrMLGioiKlp6frvPPOq9R2W7RooW3btumPP/5w33lOTU31qNOhQwd98MEHql27tmJjY8tcT7169fT999/r/PPPd0+bP3/+YXfNj0ZSUpLq16+vzZs3q3fv3mXWKbmTXVRUVKl1hoSEqF+/fpo0aZKcTqf+/ve/K/Lg7BLVuqklJycrNDRUCxYscN8lzsjIUFpamlJSUirVBsLCwg47XiqzXJs2bTR79mw9/vjjlV5vq1atNHXqVI/ke/78+YqJiVH9+vWP6rUDAFCVGL0cgN9JTk7WV199pfnz52vt2rW6/fbb9fvvv7vnx8TEqF+/fho+fLi+/fZbrV69WrfccouCgoLcF/PNmjVT79691bdvX02bNk1btmxRamqqnnnmGX3++edlbrdHjx467bTT1K9fP61cuVI//PCDHnnkEUmld+J69+6txMRE9erVS/PmzdOWLVs0d+5cDR06VL/88oskafjw4XrmmWf0wQcfaP369XrwwQe1fPlyDR069Lj2y+jRo/X0009r4sSJSktL008//aRJkybpueeekyTVrl1bERER+vLLL/XHH39o3759R1znrbfeqm+++UZffPGFbrnlluOKD1UrOjpaAwYM0PDhwzV79mytWrVK/fv3V1CQ69KgMm2gSZMmyszM1OzZs7Vr1y5lZ2dXarmHHnpIqampGjx4sFauXKl169bplVde0a5du9zrXbhwobZu3apdu3apuLhYgwcP1vbt23X33Xdr3bp1+vjjjzVq1Cjde++97pgBAKiOeJcC4HdGjhypDh06qGfPnurWrZvq1Kmjq6++2qPOc889p86dO+uKK65Q9+7d1bVrV/dPaZWYNGmS+vbtq/vuu0/NmzfXVVddpYULF7rvjh8qODhYH330kTIzM3XWWWfp1ltv1aOPPipJ7vVGRkbqu+++U6NGjfSXv/xFLVu21C233KKcnBz3ne8hQ4bovvvu03333afWrVvryy+/1CeffKKmTZse13659dZb9e9//1uTJ09W69atlZKSosmTJ7t/KiwkJEQvvPCC/u///k/16tVTr169jrjOpk2bqkuXLmrevPlh3dZR/Y0bN07nn3++rrrqKnXv3l3nnnuuzjzzTPf8I7WBLl266I477tD111+vWrVqaezYsZVarlmzZpo1a5ZWrFihTp06qXPnzvr4448V8mef+/vvv1/BwcFq1aqVatWqpW3btql+/fr6/PPPtWjRIrVt21Z33HGHBgwY4G5jAABUVw470pe6ACAAZGVlqX79+ho/frwGDBhwwtb7ww8/6Nxzz9XGjRt12mmnnbD1VhdmphYtWuj222/Xvffe6+twAAAAqh2+0w0gIC1btkzr1q1Tp06dtG/fPj3xxBOSVKm7uxWZPn26oqOj1bRpU23cuFFDhw5V165d/TLhTk9P19tvv61ff/1VN998s6/DAQAAqJZIugEErGeffVbr169XWFiYzjzzTM2bN0+JiYnHtc4DBw5oxIgR2r59uxITE9W9e3e//RmtpKQkJSYm6rXXXlNCQoKvwwEAAKiW6F4OAAAAAICXMJAaAAAAAABeQtINAAAAAICXkHQDAAAAAOAlJN0AAAAAAHgJSTcAAAAAAF5C0g0AAAAAgJeQdAOo9rp166Zhw4b5OoyjMnr0aLVr1+6oljlRr3P37t2qXbu2tm7detzrOlGOZX8casaMGWrfvr2Ki4tPTFAoE+3t6BxLe5s8ebLi4+OPe9sltm7dKofDoeXLlx/zOvLy8tSoUSMtWbLkhMUFAHAh6Qbgd+bMmSOHw6G9e/f6LIb7779fs2fPPqplpk2bpjFjxhz3tp9++mldeeWVatKkyXGvqypt27ZNV155paKiopSYmKghQ4YoPz/fPf+KK66Qw+HQu+++68MocSja29G3t+uvv15paWnHve2jYWYaPXq06tWrp4iICHXr1k2rV692z3c6nbr//vv1wAMPVGlcABAISLoBHO6DD6Snnqq4zlNPuerBg5mpsLBQ0dHRqlmz5lEtW6NGDcXExBzX9nNycvTGG2/o1ltvPa71VLWioiJdfvnlysrK0vfff6/3339fU6dO1X333edR7+abb9a//vUvH0XpHTS3Y3eytreIiAjVrl37uLZ9tMaOHavnnntOL774olJTU1WnTh316NFDBw4ccNfp3bu35s2bp7Vr11ZpbADg70i6ARxu40bp0Uel8u4CjRnjmr9x4wnfdFZWlvr27avo6GjVrVtX48ePP6zOO++8o44dOyomJkZ16tTRjTfeqPT0dEmubpYXXHCBJCkhIUEOh0P9+/eXJH355Zc699xzFR8fr5o1a+qKK67Qpk2bKownLy9PQ4YMUe3atRUeHq5zzz1Xqamp7vkld/lmzpypjh07yul0at68eYd1dy0sLNSQIUPc237ggQfUr18/XX311e46h3Z3bdKkif7xj3/olltuUUxMjBo1aqTXXnutwni/+OILhYSEqHPnzpKk4uJiNWjQQK+++qpHvaVLl8rhcGjz5s2SXHeZe/XqpejoaMXGxuq6667TH3/8IUlat26dIiMjPe4wT5s2TeHh4frpp58kSfv27dNtt92m2rVrKzY2VhdeeKFWrFhRYawHmzVrltasWaN33nlH7du3V/fu3TV+/Hi9/vrr2r9/v7veVVddpUWLFrnj9gc+bG60txPc3g6O8bPPPlPbtm0VHh6us88+291WJM/u5Wam7t2765JLLpGZSZL27t2rRo0a6ZFHHnEvM2nSJLVs2VLh4eFq0aKFXn755QpjO5iZacKECXrkkUf0l7/8RWeccYbefPNNZWdne7TrmjVrqkuXLnrvvfcqvW4AwJGRdAM43COPSE88IT322OGZwJgxrulPPOGqd4INHz5c3377raZPn65Zs2Zpzpw5h33HMD8/X2PGjNGKFSv00UcfacuWLe4L/YYNG2rq1KmSpPXr12vHjh2aOHGiJFeCce+99yo1NVWzZ89WUFCQrrnmmgq/IzxixAhNnTpVb775ppYuXark5GT17NlTe/bsOaze008/rbVr16pNmzaHreeZZ57RlClTNGnSJP3www/av3+/PvrooyPuj/Hjx6tjx45atmyZBg8erEGDBmndunXl1v/uu+/UsWNH9/OgoCD9/e9/15QpUzzqvfvuu+rcubNOPfVUmZmuvvpq7dmzR3PnztVXX32lTZs26frrr5cktWjRQs8++6wGDx6sn3/+Wb/99psGDhyof/7zn2rdurXMTJdffrl+//13ff7551qyZIk6dOigiy666LD9VJ4ff/xRZ5xxhurVq+ee1rNnT+Xl5Xn8/xs3bqzatWtr3rx5lVrvycCHzY32dojjbW8HGz58uJ599lmlpqaqdu3auuqqq1RQUHBYPYfDoTfffFOLFi3SCy+8IEm64447lJSUpNGjR0uSXn/9dT3yyCN66qmntHbtWv3jH//QyJEj9eabbx7xNUnSli1b9Pvvv+viiy92T3M6nUpJSdH8+fM96nbq1Mmv2hcAVAsGAOV54gkzyfW3rOcn2IEDBywsLMzef/9997Tdu3dbRESEDR06tNzlFi1aZJLswIEDZmb27bffmiTLyMiocHvp6ekmyX766acy52dmZlpoaKhNmTLFPS0/P9/q1atnY8eO9djWRx995LHsqFGjrG3btu7nSUlJNm7cOPfzwsJCa9SokfXq1cs9LSUlxeN1Nm7c2G666Sb38+LiYqtdu7a98sor5b6mXr162S233OIxbenSpeZwOGzr1q1mZlZUVGT169e3l156yczMZs2aZcHBwbZt2zb3MqtXrzZJtmjRIve0yy+/3M477zy76KKLrEePHlZcXGxmZrNnz7bY2FjLzc312O5pp51m//d//1fm/jjUwIEDrUePHodNDwsLs3fffddjWvv27W306NHlrutkVcXNjfbmpfZWEmNZ+/WDDz4wM7NJkyZZXFycx3IffvihOZ1Oe+ihhywyMtLWr1/vntewYcPD2sGYMWOsc+fOZma2ZcsWk2TLli0rM84ffvjBJNmvv/7qMX3gwIF28cUXe0ybOHGiNWnSpNzXDAA4etzpBlC+kSNLb8E5naW33EaO9MrmNm3apPz8fI+umjVq1FDz5s096i1btky9evVS48aNFRMTo27duklydZE+0vpvvPFGnXrqqYqNjdUpp5xS4XKbNm1SQUGBunbt6p4WGhqqTp06Hfadx/Ludkmurtd//PGHOnXq5J4WHBysM888s8J4JXncxXM4HKpTp467a29ZcnJyFB4e7jGtffv2atGihbvL6Ny5c5Wenq7rrrtOkrR27Vo1bNhQDRs2dC/TqlUrxcfHe7zO//znP1q5cqWWLl2qyZMny+FwSJKWLFmizMxM1axZU9HR0e7Hli1bjtid+GAl6zuYmR02PSIiQtnZ2ZVe78miipsb7a0MJ6K9lShrv1b0Xelrr71Wf/nLX/T0009r/PjxatasmSRp586d2r59uwYMGODRvp588smjal8lr+lggdS+AMCXQnwdAIBqbuRI6cknpfx8KSzMexmA5P4+Y0WysrJ08cUX6+KLL9Y777yjWrVqadu2berZs6fHSNdlufLKK9WwYUO9/vrrqlevnoqLi3XGGWeUu1xJPJW5UI2Kijpi7GWt50hCQ0MPW0dF3XMTExOVkZFx2PTevXvr3Xff1YMPPqh3331XPXv2VGJiojuOyiS8K1asUFZWloKCgvT777+7u4IXFxerbt26mjNnzmHrqOzPItWpU0cLFy70mJaRkaGCggIlJSV5TN+zZ49q1apVqfWebKqwudHeynCi2ltlYzpYdna2lixZouDgYG3YsME9vWT7r7/+us4++2yPZYKDgyu13Tp16kiSfv/9d9WtW9c9PT09PaDaFwD4Cne6AVRszJjSDCA/v/zRnk6A5ORkhYaGasGCBe5pGRkZHj+ts27dOu3atUv//Oc/dd5556lFixaH3YkKCwuT5BoRu8Tu3bu1du1aPfroo7rooovUsmXLI14sJycnKywsTN9//717WkFBgRYvXqyWLVtW+nXFxcUpKSlJixYtck8rKirSsmXLKr2Oymrfvr3WrFlz2PQbb7xRP/30k5YsWaL//e9/6t27t3teq1attG3bNm3fvt09bc2aNdq3b5/7de7Zs0f9+/fXI488optvvlm9e/dWTk6OJKlDhw76/fffFRISouTkZI9HSWJ/JJ07d9aqVau0Y8cO97RZs2bJ6XR63KHMzc3Vpk2b1L59+6PbMSeJKmxutLcToLz2JqnM/dqiRYty13XfffcpKChIX3zxhV544QV98803kqSkpCTVr19fmzdvPqx9lfQeOJJTTjlFderU0VdffeWelp+fr7lz56pLly4edVetWuW37QsAfIWkG0D5Dh7FKS+v/NGeTpDo6GgNGDBAw4cP1+zZs7Vq1Sr1799fQUGlp6pGjRopLCxM//rXv7R582Z98sknh/3WbuPGjeVwODRjxgzt3LlTmZmZSkhIUM2aNfXaa69p48aN+uabb3TvvfdWGE9UVJQGDRqk4cOH68svv9SaNWs0cOBAZWdna8CAAUf12u6++249/fTT+vjjj7V+/XoNHTpUGRkZFd75OhY9e/bU6tWrD0twTjnlFHXp0kUDBgxQYWGhevXq5Z7XvXt3tWnTRr1799bSpUu1aNEi9e3bVykpKe5uvHfccYcaNmyoRx99VM8995zMTPfff797+c6dO+vqq6/WzJkztXXrVs2fP1+PPvqoFi9eXKm4L774YrVq1Up9+vTRsmXLNHv2bN1///0aOHCgYmNj3fUWLFggp9Pp0XXXX1Rxc6O9nQDltTdJeuKJJzz2a2Jiosfo6Qf77LPP9J///EdTpkxRjx499OCDD6pfv37u9Y4ePVpPP/20Jk6cqLS0NP3000+aNGmSnnvuuUrF6XA4NGzYMP3jH//Q9OnT3TFFRkbqxhtv9Kg7b948jwHXAAAngE++SQ6g+itvFKcqGEztpptussjISEtKSrKxY8ceNuDRu+++a02aNDGn02mdO3e2Tz755LBBhJ544gmrU6eOORwO69evn5mZffXVV9ayZUtzOp3Wpk0bmzNnjkmy6dOnlxtPTk6O3X333ZaYmGhOp9O6du3qMbhYeYNIHTqwU0FBgd11110WGxtrCQkJ9sADD9i1115rf//73911yhrY6fnnn/dYb9u2bW3UqFEV7sNzzjnHXn311cOmv/TSSybJ+vbte9i8n3/+2a666iqLioqymJgYu/baa+333383M7M333zToqKiLC0tzV1/8eLFFhYWZp999pmZme3fv9/uvvtuq1evnoWGhlrDhg2td+/e7sHZjjSQWkkMl19+uUVERFiNGjXsrrvuOmxwtttuu81uv/32CtdzMvJRc6O9eaG9lcT46aef2umnn25hYWF21lln2fLly911Dh5ILT093ZKSkuwf//iHR/ydOnWy6667zj1typQp1q5dOwsLC7OEhAQ7//zzbdq0aWZ25IHUzFwDw40aNcrq1KljTqfTzj///MMGtZs/f77Fx8dbdnZ2ha8ZAHB0HGaV+JITgMDy1FOuHwYubxSnkltyTz7pnd8xCgDFxcVq2bKlrrvuusPuHB6vzz//XPfff79WrVrlcdfyZLdz5061aNFCixcvrnS32pMBzc37qrK9zZkzRxdccIEyMjIqPaZBdXHttdeqffv2evjhh30dCgD4FQZSA3C45OSKr/BHjpSCglz1UCk///yzZs2apZSUFOXl5enFF1/Uli1bDuvaeSJcdtll2rBhg3799VePEclPdlu2bNHLL7/sVwm3RHPzBtrb0cvLy1Pbtm11zz33+DoUAPA73OkGgCqwfft2/f3vf9eqVatkZjrjjDP0z3/+U+eff76vQwP8ji/b28l8pxsA4B0k3QAAAAAAeIn/fNkPAAAAAIBqhqQbAAAAAAAvIekGAAAAAMBLSLoBAAAAAPASkm4AAAAAALyEpBsAAAAAAC8h6QYAAAAAwEtIugGgDN26ddOwYcN8vm1fxlHV2584caJOOeUURUZG6uqrr9a+ffuqZLsAAADeFOLrAADgROnWrZvatWunCRMmHPdy06ZNU2ho6IkN8BhUVRzl7buq2v7DDz+s//73v3rzzTcVHR2ta665Ro8//riee+45r28bAADAm7jTDaDay8/Pr/Jt1qhRQzExMVW+3aONw9v7pir2Q2pqqp555hl98MEHOv/889WhQwfdfvvtmjFjhle3CwAAUBVIuoFAlJVV/iM3t/J1c3KOXPcYdOvWTXfddZfuvfdeJSYmqkePHsrLy9OQIUNUu3ZthYeH69xzz1Vqaqp7mf79+2vu3LmaOHGiHA6HHA6Htm7dqi+//FLnnnuu4uPjVbNmTV1xxRXatGnTEZc7tFv1kbbfrVs3DRkyRCNGjFCNGjVUp04djR49+oivNSsrS3379lV0dLTq1q2r8ePHH7YvDo6jrH0jSWamsWPH6tRTT1VERITatm2r//3vfx7rKi4u1jPPPKPk5GQ5nU41atRITz31VLn7oKzte2M/PPvss7rwwgvVoUMH97RatWpp165dR9x/AAAA1R1JNxCIoqPLf/z1r551a9cuv+6ll3rWbdLk8DrH6M0331RISIh++OEH/d///Z9GjBihqVOn6s0339TSpUuVnJysnj17as+ePZJc3wfu3LmzBg4cqB07dmjHjh1q2LChsrKydO+99yo1NVWzZ89WUFCQrrnmGhUXF1e43KGOtP2SmKOiorRw4UKNHTtWTzzxhL766qsKX+fw4cP17bffavr06Zo1a5bmzJmjJUuWHNW+kaRHH31UkyZN0iuvvKLVq1frnnvu0U033aS5c+e6l3vooYf0zDPPaOTIkVqzZo3effddJSUlVXofeGM/5OXl6dNPP9U111zjMT0nJ0dxcXEV7gcAAICTggEIPFL5j8su86wbGVl+3ZQUz7qJiYfXOQYpKSnWrl079/PMzEwLDQ21KVOmuKfl5+dbvXr1bOzYsR7LDR06tMJ1p6enmyT76aefKlzu4GmV2X5KSoqde+65Hus466yz7IEHHig3lgMHDlhYWJi9//777mm7d++2iIgI97YPje3QfVMSX3h4uM2fP99j+oABA+yGG24wM7P9+/eb0+m0119/vcxYytt33t4P8+fPN0kWHh5uUVFR7kdYWJj17NmzzGUAAABOJgykBgSizMzy5wUHez5PTy+/btAhnWX+7JJ8InTs2NFd3rRpkwoKCtS1a1f3tNDQUHXq1Elr166tcD2bNm3SyJEjtWDBAu3atct9h3vbtm0644wzKhVLZbffpk0bj+Xq1q2r9Ar236ZNm5Sfn6/OnTu7p9WoUUPNmzevMJ6D940krVmzRrm5ue6u5iXy8/PVvn17SdLatWuVl5eniy66qMJ1V8Qb+yEtLU3h4eH66aefPKZfddVVHtsBAAA4WZF0A4EoKsr3dY+4qtJ1mZkkyeFweNQxs8OmHerKK69Uw4YN9frrr6tevXoqLi7WGWeccVQDkFV2+4eO8u1wONxJfkXrPVpRh+znkm189tlnql+/vsc8p9MpSYqIiDimbR3MG/th//79ql27tpKTk93Ttm3bpnXr1umvh37VAQAA4CTEd7oBVHvJyckKCwvT999/755WUFCgxYsXq2XLlu5pYWFhKioqcj/fvXu31q5dq0cffVQXXXSRWrZsqYyMjMPWf+hyx7r9Y3ldoaGhWrBggXtaRkaG0tLSjmo9rVq1ktPp1LZt25ScnOzxKPludtOmTRUREaHZs2eXuY4j7YOSeE/0fkhMTNT+/fs9PoB46qmndNlll6lVq1bHtE4AAIDqhDvdAKq9qKgoDRo0SMOHD1eNGjXUqFEjjR07VtnZ2RowYIC7XpMmTbRw4UJt3bpV0dHRqlGjhmrWrKnXXntNdevW1bZt2/Tggw8etv6yljuW7R+t6OhoDRgwQMOHD1fNmjWVlJSkRx55REGHdts/gpiYGN1///265557VFxcrHPPPVf79+/X/PnzFR0drX79+ik8PFwPPPCARowYobCwMHXt2lU7d+7U6tWrNWDAgDL3waFxeGM/XHjhhcrNzdU///lP3XDDDXr33Xf1ySefaNGiRce0PgAAgOqGpBvASeGf//yniouL1adPHx04cEAdO3bUzJkzlZCQ4K5z//33q1+/fmrVqpVycnK0ZcsWvf/++xoyZIjOOOMMNW/eXC+88IK6devmse6yljuW7R+LcePGKTMzU1dddZViYmJ03333ad++fUe9njFjxqh27dp6+umntXnzZsXHx6tDhw56+OGH3XVGjhypkJAQPfbYY/rtt99Ut25d3XHHHZLK3gdNmjQ5bDsnej8kJSVp8uTJGj58uMaMGaMLL7xQ33//fbmjpwMAAJxsHHasXyoEAAAAAAAV4jvdAAAAAAB4CUk3AAAAAABeQtINAAAAAICXkHQDAAAAAOAlJN0AAAAAAHgJSTcAAAAAAF5C0g0AAAAAgJeQdAMAAAAA4CUk3QAAAAAAeAlJNwAAAAAAXkLSDQAAAACAl5B0AwAAAADgJSTdAAAAAAB4CUk3AAAAAABeQtINAAAAAICXkHQDAAAAAOAlJN0AAAAAAHgJSTcAAAAAAF5C0g0AAAAAgJeQdAMAAAAA4CUk3QAAAAAAeAlJNwAAAAAAXkLSDQAAAACAl5B0AwAAAADgJSTdAAAAAAB4CUk3AAAAAABeQtINAAAAAICXkHQDAAAAAOAlJN0AAAAAAHgJSTcAAAAAAF5C0g0AAAAAgJeQdAMAAAAA4CUk3QAAAAAAeAlJNwAAAAAAXkLSDQAAAACAl5B0AwAAAADgJSTdAAAAAAB4CUk3AAAAAABeQtINAAAAAICXkHQDAAAAAOAlJN0AAAAAAHgJSTcAAAAAAF5C0g0AAAAAgJeQdAMAAAAA4CUk3QAAAAAAeAlJNwAAAAAAXkLSDQAAAACAl5B0AwAAAADgJSTdAAAAAAB4CUk3AAAAAABeQtINAAAAAICXkHQDAAAAAOAlJN0AAAAAAHgJSTcAAAAAAF5C0g0AAAAAgJeQdAMAAAAA4CUk3QAAAAAAeAlJNwAAAAAAXkLSDQAAAACAl5B0AwAAAADgJSTdAAAAAAB4CUk3AAAAAABeQtINAAAAAICXkHQDAAAAAOAlJN0AAAAAAHgJSTcAAAAAAF5C0g0AAAAAgJeQdAMAAAAA4CUk3QAAAAAAeAlJNwAAAAAAXkLSDQAAAACAl5B0AwAAAADgJSTdAAAAAAB4CUk3AAAAAABeQtINAAAAAICXkHQDAAAAAOAlJN0AAAAAAHgJSTcAAAAAAF5C0g0AAAAAgJeQdAMAAAAA4CUk3QAAAAAAeAlJNwAAAAAAXkLSDQAAAACAl5B0AwAAAADgJSTdAAAAAAB4CUk3AAAAAABeQtINAAAAAICXkHQDAAAAAOAlJN0AAAAAAHgJSTcAAAAAAF5C0g0AAAAAgJeQdAMAAAAA4CUk3QAAAAAAeAlJNwAAAAAAXkLSDQAAAACAl5B0AwAAAADgJSTdAAAAAAB4CUk3AAAAAABeQtINAAAAAICXkHQDAAAAAOAlJN0AAAAAAHgJSTcAAAAAAF5C0g0AAAAAgJeQdAMAAAAA4CUk3QAAAAAAeAlJNwAAAAAAXkLSDQAAAACAl5B0AwAAAADgJSTdAAAAAAB4CUk3AAAAAABeQtINAAAAAICXkHQDAAAAAOAlJN0AAAAAAHgJSTcAAAAAAF5C0g0AAAAAgJeQdAMAAAAA4CUk3QAAAAAAeAlJNwAAAAAAXkLSDQAAAACAl5B0AwAAAADgJSTdAAAAAAB4CUk3AAAAAABeQtINAAAAAICXkHQDAAAAAOAlJN0AAAAAAHgJSTcAAAAAAF5C0g0AAAAAgJeQdAMAAAAA4CUk3QAAAAAAeAlJNwAAAAAAXkLSDQAAAACAl5B0AwAAAADgJSTdAAAAAAB4CUk3AAAAAABeQtINAAAAAICXkHQDAAAAAOAlJN0AAAAAAHgJSTcAAAAAAF5C0g0AAAAAgJeQdAMAAAAA4CUk3QAAAAAAeAlJNwAAAAAAXkLSDQAAAACAl5B0AwAAAADgJSTdAAAAAAB4CUk3AAAAAABeQtINAAAAAICXkHQDAAAAAOAlJN0AAAAAAHgJSTcAAAAAAF5C0g0AAAAAgJeQdAMAAAAA4CUk3QAAAAAAeAlJNwAAAAAAXkLSDQAAAACAl5B0AwAAAADgJSTdAAAAAAB4CUk3AAAAAABeQtINAAAAAICXkHQDAAAAAOAlJN0AAAAAAHgJSTcAAAAAAF5C0g0AAAAAgJeQdAMAAAAA4CUk3QAAAAAAeAlJNwAAAAAAXkLSDQAAAACAl5B0w6/kHPhFhQVZvg4DAAAAACRJIb4OADhRzIq1efELcjiCVLPh+arZKEUhoVG+DgsAAABAAONON/yLFcmKC7Tr52+U9sMY/bHpc+58B5IPPpCeeqriOk895aoHAAAQILhE8i2SbvgpI/kORBs3So8+Ko0ZU/b8MWNc8zdurNq4AAAAfIhLJN+iezn8XGnyvXv7d3Q793ePPCIVF0uPPeZ6PnJk6bwxY1zTn3jCVQ8AACBAcInkWyTdfsqKi8qf6XDI4QiqXF1JjqDgk6KuWXEFazgk+W5wnmo0PE+hzljP5c0qF4OP6soRJIfDcRLVLT3WqqzuIw9LVizHY4+55t17rxzPjJWefFL2+OOu+bk5UkGBFBIiOZ2ly2Znu9YbESFzOCQrdtXLz5eCg6Xw8GOrm5MjhxxSeLgsKMhVt7BQysuTglzrKKuugoNdx3t5dXNz5TC5XkNIiKtuUZGUm3t0dR0OKTKytG5enhzFJoWFSaGhFdctWe/BdYuLpZwc1/yoqMPXGxoqhYUdfV0zKTvbNT8y0hWLJOXny1FUfHR1//zfu88nWX/2hImIcO27suqWHGtl1S0okKOwyP2/d9fNznb9/fP/edR1CwvlKCh0/z/ddXNyXPvukLrKL5AjOLjsun/+7yW5/p95+XIEBUmRkcdWNzfXNe/P/70k17K5ea5zRFRUJermutrRwXXz8lyv5c//pyR3bEddNzJSJnNNy8+vuN1HRsokV/s8Ul3OESf/OaICx3x9wnWEF+r64Dqiwrrmap8nSV3J8xh+9BHJzKHHHguSWbEeeyzII+E+OBHHieUwq+gow8lqz68/SpIy96xX7oFfPOY5HMEKCil9oy0qyCx3PYfXzZJUziHjCFJwSOSx1S3MruAE4lDwQXemy6trZirM21vOOspWt/lfVaN+F0nSgd3rVJCbUW7dGvU7u8uZe9KUn7O73LoJdTu53wSzMjYqL3tnuXXj63RUULDrIjRr72blZf1Rbt24pPYKDnFdqGXv+1m5mb+VX7d2WwWHuvZxzv7tyjnkODhYbK3WCgmLliTlHvhN2ft/LrduTGIrhTrjXHUzf1f2vi3l1o2u2UJh4QmSpLzsncrKKL/PUnSNZgqLqClJys/Zrcw9aeXWjUpIljOylqtuboYyd687rE74hEmKfPb10gkPPKCCxx/SgV1rFP7CZEWOfU25N1yp7HEPuaskNLtIjuwcacsWFdZL1P6dP8n57w8UNXqi8q6+WFkvji6t2/YKOXbvkVatUlGzU7QvfYWcUz5W1APPKL/necp84xl33fjO1ypo+6/SokUqat9a+/5YprBpMxU95HEVnHeWDrw3sbRu934KWrdB+vZbFZ/XVXt/X6zQL+cq5taHVNCxtQ589H/uunFX3q7gZT9JM2bILr1EGTsWKeS7RYq9cZgKWzXV/llvlta9fpiCf1gkffihdO212vPrjwpJXanYa+5QUZMG2vf9h+66sf0fVMjX30mTJkn9+yvjt4UKWrVOcT37qzgpUXuXfOKuGzNotEI/nSW9+KJ0553au2OxtHGz4s+/XsWx0dq7Zlbp//i+fyrsg0+ksWOl4cO19/elsl9+UcJZvWQhwcrYOq/0fzxygpyTPpRGjZJGj9a+9BUq3vWHEk7vKUnas+U7KdSVFEY+9YrCX3lbuv9+adw47d/5kwqz9qrGKedLkjJWz5TFxbjqPjdJ4c+9Lg0eLL30kg7sWq2CvP1KaHKeHIVFykj9WFbXdWyFv/quIp98UerXT5o82X2OiG91sYL2Z2rvdx+o+NSGkiTn5KmKenS89Le/Sf/9r/scEX/mVQr6Y5f2zZysotObSZLCPvxM0fc+JV12mfTZZ+5zRNy51yl46y/aP/1VFZ7VRpIUOuMbxdzxqJSSIs2Z4z5HxF7cTyFrNmj/uxNUeH4nV93ZPyim33CpY0cpNdV9joi5+naFLv5JB/79tAouSZEkhcxfqtjr7pJatZJWr3afI2JuGKrQeanKfGGU8v/i2tfBy9co7opbpcaNpa1b3eeI6AEPKGzmPGU984Dyevdy1V2/WXEX3SQlJko7d7rPEVF3jZbzo1nKGj1UebdeL0kK2r5D8Z3/6kqOsrLc54jI4U8r/L1PlT3iNuUO6S9JcuzOUELby10Hh5n7HBE5aoLC3/hQOXf3Vc4Dd7jmZ+eoRrOLXOXMTOUH5ytz9zpFPPOqIv71lnIHXKfsx4e5j7UaDVzvAUpPV0FsGOeIQDlH5Jd97RMUFKr4uh3dz0vOEWVxOIKUUO/s0rpcR0jyn+uIEpFxpyg8uo4kqSBvnw7sWlN+3djGCo+pJ0kqzM/U/p0/lVs3IqaBImJd7yFFBdnal76i3Lrh0fUUGdfYVbcwV/v+WFZuXWdUkqLiT5UkFRcVaO/viw+r8+yE+nr62UYKC3N9DkjC7X3c6fZzIaHRCnXGe0wLCnYqNLx0Wl52ermf8AUFhyn0z5Odq+7OcpNjR3CowsJrHFR3l2Rlf0LsCApxnxgl18nRigvLfhGOYDkjE0vr5u6RFRUcVu1ok25HUKhCw2seuSJOSrnDblbEC5PlyP/zWLnvPt8GBAAAUA3cP+xXjX+hgfLzgxQWRsJdFbjT7acCtXv52rkPVrQWSaawyNqqfUpPxSSe7v5kuGR5uoX5Ubewx0bJcfAwnY8/Lhs5kq6jgdJ1lO7ldC+neznniLLafVCQq25ISOn8Q9C9vDrVpXv58dSVyj6GR4926IkxQQoOdjVd7nR7H0k3/IZZsdZ8O7yMOaXJdtKplyqm1hkeJyP4oZIvKJV49FHpySd5VwGAQJaVJUW7ukArM9MziQcCxKGXSA88ID3zDJdI3kb3cvixkmS7Fsl2ICl5N3n8calvX9e0Ro1cd1nKGrITAAAgAJRcIj30kPT0065pDzzg+vyJSyTvIumG3yLZDkBPPVX+EJwlzx97zNWtkt/EAIDAEhkpZWSUloEAcvAl0qOPSiNGuKbHxXGJVBVIuuFXgkIiFBIWQ7IdqJKTXd3Iy3u3GDnS9W6SnFy1cQEAfM/hkOLjfR0F4BOHXiId2hS4RPIuvtMNv1JUmKeg4FCSbbgGLHrpJVf5zjtLB28CAAAIYGau8RelCscUxAlE0g3APzFgDgDgYPn50j/+4So//HDpiPdAgMnIkGr8+Su/e/ZICQkV18fxI+kG4J9yc6UBA1zlN97w/HkeAEDg4cNYQJKUni4lJbnKf/wh1a7t23gCAd/pBuCfwsOlKVN8HQUAoLoICZEGDy4tAwEqNla68cbSMryPO90AAAAAAHgJo00BAAAAAOAlJN0A/FNWllSrluuRleXraAAAAKqF/Hxp9GjXIz/f19EEBrqXA/BPDJgDADhYVlbpjxPv3cv7AgIWA6lVPUaRAOCfIiKkVatKywAAlPw4MRDADh5HkDEFqwZ3ugEAAOD/ioulHTtc5bp1pSC+ZYnARFOoeiTdAAAAAAB4CR0KAPinggJp8mRXuX9/KTTUl9EAAAAgQHGnG4B/YiA1AMDB8vOliRNd5aFDpbAw38YD+MjevVJCgquckVE6viC8h6QbgH/KzZX+/ndX+f33pfBw38YDAPAtPowFJDF6uS/QvRyAfwoPlz76yNdRAACqi5AQqV+/0jIQoGJipO7dS8vwPu50AwAAAADgJQwQDwAAAACAl5B0A/BP2dlSkyauR3a2r6MBAACoFvLzpXHjXI/8fF9HExjoXg7APzFgDgDgYFlZUv36rvKvv/K+gIDFQGpVj1EkAPin8HBp0aLSMgAA+/b5OgLA5w4eR5AxBasGd7oBAADg/4qLpU2bXOXTTpOC+JYlAhNNoeqRdAMAAAAA4CV0KADgnwoLpQ8+cJWvv57+UwAAAPAJ7nQD8E8MpAYAOFhBgfTaa67ybbdJoaG+jQfwkX37pPh4V3nvXikuzpfRBAZu/QDwT0FBUvfupWUAQGDLz5fuustV7t+fpBsBKy+v7DK8h6QbgH+KiJC++srXUQAAqovgYOlvfystAwEqJkZq27a0DO+jezkAAAAAAF5Cn0sAAAAAALyEpBuAf8rOlk4/3fXIzvZ1NAAAANVCQYH00kuuR0GBr6MJDHQvB+CfGL0cAHCw7GypaVNXecMGKTLSt/EAPrJzp1S7tqucni7VquXbeAIBA6kB8E/h4dK335aWAQCBzUz67bfSMhCgDv5RF37gpWpwpxsAAAD+r6hI+uknV7l1a0YwR8CiKVQ9km4AAAAAALyE7uUA/FNhoTRjhqt8xRVSCKc7AAAAVD3udAPwTwykBgA4WEGBNGWKq9y7txQa6tt4AB/Zv1+Ki3OV9+2TYmN9G08g4NYPAP8UFCR16VJaBgAEtvx86eabXeVrryXpRsDKzfUsk3R7H0k3AP8UESH98IOvowAAVBfBwdJll5WWgQAVHS3Vq1dahvfRvRwAAAAAAC+hzyUAAAAAAF5C0g3AP+XkSGed5Xrk5Pg6GgAAgGqhoECaPNn1KCjwdTSBge7lAPwTo5cDAA6WnS21besqr1ghRUb6Nh7AR3bulGrXdpXT06VatXwbTyBgIDUA/snpLP2dbqfTt7EAAHzPTNq4sbQMBKiDf9SFH3ipGtzpBgAAgP8rKpIWLHCVzzmHEcwRsGgKVY+kGwAAAAAAL6F7OQD/VFQkffONq3zhhXyMCwAAAJ/gTjcA/8RAagCAgxUWStOnu8rXXCOFcO8JgWn/fikuzlXet0+KjfVtPIGAsw0A/xQUVDpKLaOEAADy8qTrrnOVMzNJuhGwcnM9yyTd3sfZBoB/ioiQli/3dRQAgOoiKEhKSSktAwEqKqr0Myc6AlYNupcDAAAAAOAlfMwHAAAAAICXkHQD8E85OVK3bq5HTo6vowEAAKgWCgul//7X9Sgs9HU0gYHu5QD8E6OXAwAOlpMjde7sKv/4o2vsDyAA7dol1arlKu/cKSUm+jaeQMBAagD8k9MpffhhaRkAENiKi6UVK0rLAFBFuNMNAAAA/1dUJH3zjat84YVScLBv4wF8hKZQ9Ui6AQAAAADwErqXA/BPRUXSggWu8jnn8DEuAAAAfII73QD8EwOpAQAOVlgozZzpKvfsKYVw7wmB6cABKTbWVd6/X4qJ8W08gYCzDQD/5HBIycmlZQBAYMvLk664wlXOzCTpRsA6+JdUc3JIuqsCZxsA/ikyUtqwwddRAACqi6AgqWPH0jIQoCIjyy7De+heDgAAAACAl/AxHwAAAAAAXkLSDcA/5eZKl1/ueuTm+joaAACAaqGwUPrsM9ejsNDX0QQGupcD8E+MXg4AOFhOjtS9u6v89ddSRIRv4wF8ZNcuqVYtV3nnTikx0bfxBAIGUgPgn8LCpEmTSssAgMBWXCzNn19aBoAqQtINwD+Fhkr9+/s6CgBAdeF0StOnl5aBABUfX9oU4uN9GUngoHs5AAAAAABewp1uAP6pqEj66SdXuXVrKTjYt/EAAAAgIHGnG4B/YiA1AMDBioqkefNc5fPO48NYBKzMTCkmxlU+cKD0cgnew51uAP7J4ZDq1SstAwACW26udMEFrjIfxiKAZWd7lkm6vY+kG4B/ioyUfv3V11EAAKoLh0Nq1aq0DASog38tj1/Oqxp0LwcAAAAAwEuCfB0AAAAAAAD+iqQbgH/KzZWuvdb1yM31dTQAAADVQlGRNGeO61FU5OtoAgPdywH4J0YvBwAcLCdHuuoqV/mTT/gyKwLWrl1SrVqu8s6dUmKib+MJBAykBsA/hYVJL75YWgYABLbiYunrr0vLQIA6+JYrt1+rBkk3AP8UGirdeaevowAAVBdOp/TOO6VlIEAlJJQ2hYQE38YSKOheDgAAAACAl3CnG4B/Ki6WNm1ylU87TQpi3EgAAABUPe50A/BPDKQGADhYUZG0dKmr3KGDFBzs23gAH8nKkurXd5V//ZVLpKrAnW4A/isuztcRAACqi9xcqVMnV5kPYxHAsrKkfftKyzQF7yPpBuCfoqKkvXt9HQUAoLpwOKTGjUvLQIAKDy+7DO+hezkAAAAAAF7CyEIAAAAAAHgJSTcA/5SXJ/Xv73rk5fk6GgAAgGqhqEhKTXU9iop8HU1goHs5AP/E6OUAgIPl5kp//7ur/P77fJkVAWv3bikx0VXetUuqWdO38QQCBlID4J9CQ6WxY0vLAIDAVlQkffxxaRkIUMXFZZfhPSTdAPxTWJg0fLivowAAVBdhYdJrr5WWgQAVH1/aFOLjfRlJ4KB7OQAAAAAAXsKdbgD+qbhY2rHDVa5bVwpi3EgAAABUPe50A/BPDKQGADhYcbG0dq2r3LIlH8YiYGVnS23busorVkiRkb6NJxBwpxuA/wrhFAcA+FNOjnTGGa4yH8YigGVmShs3lpZJur2PK1IA/ikqSioo8HUUAIDqpOR3koAA5nSWXYb30L0cAAAAAAAv4cssAAAAAAB4CUk3AP+UlyfdeafrkZfn62gAAACqheJiafVq16O42NfRBAa6lwPwT4xeDgA4WG6uNGCAq/zGG1J4uG/jAXxk9+7S4Q127ZJq1vRtPIGAgdQA+KfQUGnUqNIyACCwFRVJ777rKr/2mm9jAXyoqKjsMryHpBuAfwoLk0aP9nUUAIDqIixMev750jIQoBISSptCQoJvYwkUdC8HAAAAAMBLuNMNwD+ZSfv2ucpxcZLD4dt4AAAAEJAYvRyAf8rOdvWZSkhwlQEAga24WNq61fVgyGYEsJwcqWtX1yMnx9fRBAbudAMAAMD/5eRIp5ziKvOrFghgBw5I8+eXliMifBtPICDpBuCfIiOl/HxXOYRTHQBArvcGIMAdPI4gYwpWDQZSAwAAAADAS/hONwAAAAAAXkLSDcA/5edLw4e7HiXdzAEAAAIcYwpWPbqXA/BPWVlSdLSrzIA5AIC8POmuu1zlF1+UnE7fxgP4yJ49Us2arvLu3VKNGr6NJxAwuhAA/xQaKt1/f2kZABDYCgulf//bVZ4wgaQbAauwsOwyvIekG4B/CguTxo3zdRQAgOoiNFR68snSMhCg4uNLm0J8vC8jCRx0LwcAAAAAwEu40w3AP5mV9pkKCZEcDt/GAwAAgIDE6OUA/FN2tquLeViYqwwACGxm0s6drgcdPRHAcnOlq692PXJzfR1NYOBONwAAAPxfdrZUu7arzK9aIIDt3y99/HFpOTzct/EEApJuAP4pMlLKyCgtAwAAwGMcQcYUrBoMpAYAAAAAgJfwnW4AAAAAALyE7uUA/FN+vvSPf7jKDz/sGlANAAAgwJlJu3a5yomJ/MBLVaB7OQD/lJUlRUe7ygyYAwDIy5MeeMBVfuYZyen0bTyAj+zZI9Ws6Srv3i3VqOHbeAIBd7oB+KeQEGnw4NIyACCwFRZKEye6yk89RdKNgFVYWHYZ3sOVKAD/5HRKL73k6ygAANVFaKjr60YlZSBAxceXNoX4eF9GEjjoXg4AAAAAgJcwejkAAAAAAF5C0g3AP2VluboPhoa6ygCAwGbmej/IynKVgQCVlycNHOh65OX5OprAQPdyAP6J0csBAAfjfQGQJKWnS0lJrvIff0i1a/s2nkDAQGoA/FNEhPTLL6VlAAAAeIwjyJiCVYM73QAAAPB/ZlJ2tqscGSk5HL6NB/ARmkLVI+kGAAAAAMBL6F4OwD/l50sTJ7rKQ4dKYWG+jQcAAKAa4E531eNONwD/xIA5AICD5edLjz/uKo8axYexCFgZGVKNGq7ynj1SQoJv4wkEJN0A/FNennT77a7y//2f5HT6Nh4AgG/xYSwgidHLfYHu5QD8k9MpTZ7s6ygAANVFSIjr60YlZSBAxcVJt95aWob3cacbAAAAAAAvCfJ1AAAAAAAA+CuSbgD+KStLio93PbKyfB0NAABAtZCfLz3yiOuRn+/raAID3csB+CcGzAEAHIz3BUASA6n5AqNIAPBPERFSWlppGQAAAB7jCDKmYNXgTjcAAAD8n5m0a5ernJgoORy+jQfwEZpC1SPpBgAAAADAS+hQAMA/FRRIr73mKt92mxQa6tt4AAAAEJC40w3APzFgDgDgYPn50rhxrvLw4VJYmG/jAXwkI0OqUcNV3rNHSkjwbTyBgKQbgH/KzZX69HGV335bCg/3bTwAAN/iw1hAEqOX+wLdywH4p/Bw6b//9XUUAIDqIiREuvXW0jIQoGJjpV69SsvwPu50AwAAAADgJUG+DgAAAAAAAH9F0g3AP2VnS/Xrux7Z2b6OBgAAoFrIz5eeesr1yM/3dTSBge7lAPwTA+YAAA6WlVU6YlR6Ou8LCFgMpFb1GEUCgH8KD5eWLSstAwBAzyfAYxxBxhSsGtzpBgAAgP8rLpa2bXOVGzWSgviWJQITTaHqkXQDAODP8vKkXbukwkIpMVGKjJQcDl9HBQBAwCDpBuCfCgqkKVNc5d69pdBQ38YDeNNvv0nz5rkemzdLn3xS2mfwhhuk998vrRse7kq+Sx7vvFP65T4AAHDC0YsfgH/Kz5duvtlVvvZakm74l19/lWbNkr77zpVob9rkOT8jQ6pVy1VOTJSCg12P/HwpN1f65RfXQ5KcztLlnnlGWrxYOu886aKLpNNPr5rXA1SFggLppZdc5Tvv5H0BAWvvXikhwVXOyJDi430ZTWDgTjcA/5SbK/31r67y1KkMpgb/0qeP6w51CYdDatfOlSy3bStdd13p6P15eVJYmKucleXqal7y2LnT1ROk5At9XbpIP/5Yut7OnaXBg6W//Y02hJMfv2oBSGL0cl8g6QYAoDrLyJAmT5YuuURq2dI17ccfpXvukS64QDr/fFeyHBd3/Nv68Udpzhxp7lxp9mzX98Al193ywYOlxx8//m0AvpKbKw0Y4Cq/8QYfJCFg5eRI3bu7yl9/LUVE+DaeQEDSDQBAdZSdLT35pDRhgusKafDg0q6xVeH336V//1v6v/9zdUXv3dvz7joAAKgUkm4AAKqbTz+V7r5b+vln1/M2baT77pP69q36WAoLpRkzpFNPdcUhuZLw6dOlQYP4kVcAAI6ApBuAf8rOdn23VZJWrHD9TBJQ3f38szRkiGv0ccn1A6ovvCBddVX1+pmvv/3NNVZC+/bSK69IZ5/t64gAAJXEmIJVj59CB+CfzKSNG10PPlvEyeKVV0p/7uuBB6Q1a6RevapXwm0mXXyxa+jbZctcg63ddZdrZHSgOsvKco3qX6uWqwwEqIwM17Ag99zjKsP7uNMNwD8VFUkLFrjK55zj+rkkoLrLzJRuvVUaObL6/1xXero0YoT05puu5ykp0rRpUo0avo0LKA+jlwOSpN27XeNjSq4fsqhZ07fxBAKSbgAAfGXfPtfd7REjSn+262TzxRfS9ddLBw5ITZtKM2dKp5zi66iAwxUXS2vXusotW568bQ44TjSFqsfoJwAA+MLWrdIVV0irV7vuwI0Z4+uIjs2ll0rz50uXX+66couP93VEQNmCgqp/DxKgCtAUqh53ugH4p8JC1+jKknTNNYywjOplxQrX96LT06V69VyjlXfo4Ouojs/vv7t+2oy73AAAeCDpBuCf+O4eqqtff5U6dZJ++801wv6MGVKDBr6O6sT73/+kpCTpvPN8HQngUlAgTZ7sKvfvz5DNCFj79pV2Stq7V4qL82U0gYFbPwD8U1CQa2CnkjJQHWRmSlde6Uq4W7WS5s71z6ud6dOla691Daq2cKGUnOzriADXCPu33eYq33gjSTcCVl5e2WV4D0k3AP8UESHNmePrKIBSZtJNN7l+Zqt2bemzz/wz4Zaknj1dd/MXLXJ91/vHHxnVHL4XHOz6Cb6SMhCgoqNLPwst6RQI76J7OQAAVWXqVNedts8+c/2UnT/7/Xfp7LOlbdtcvU5mzZLCwnwdFQAAVY6kGwCAqnTggBQT4+soqsaqVVKXLq7XfOed0osv+joiAACqHEk3AP+UkyN17uwq//ijq7s54At797r+BupPaX3xhXTZZZLDIS1Y4Op2DgDwGcYUrHqMLgTAPxUXu36WacUKVxnwleHDpRYtpM8/93UkvnHppVLfvq7vtAfqPkD1kJ0tNWniemRn+zoawGf27nV90+m220o/F4Z3MZAaAP8UHu76DmlJGfCF+fOlf//bVY6N9W0svjRunNSnj9S9u68jQSAzk37+ubQMBKiDf9SFH3ipGnQvBwDAGwoLpTPPlFaulG6+WfrPf3wdERDYioqkpUtd5Q4dGMEcAYumUPVIugEA8IaJE6Vhw1w/lbV+vZSY6OuIqodffpE++ki66y5fRwIAQJUg6QbgnwoLpZkzXeWePaUQvk2DKlRYKJ1yiivBfPVV6fbbfR1R9ZCRITVuLGVmSps3u75bCwCAn6MXPwD/lJcnXXGF65GX5+toEGhmzHAl3ImJrqFh4ZKQ4PrtbjPptdd8HQ0CTWGhNGWK61FY6OtoAJ/Zv9/1gxIOh6sM7yPpBuCfgoKkjh1dD0YJQVVbvNj1d8AAyen0bSzVzeDBrr///jcfiKFq5eVJN93kenDsIYDl5pZdhvfQvRwAAG/YsEGKiZHq1PF1JNVLYaGrW/mvv7ruON54o68jQqDIyZGuuspV/uQTKSLCt/EAPpKVJdWv7yr/+qsUFeXbeAIBSTcAAKhaY8ZIjz0mdeki/fCDr6MBAMCrSLoBADhRiopc3VYjI30dSfW2Y4fUqJHrrvfq1VKrVr6OCAAAr+GLjgD8U06O1LWr65GT4+toECiWLJHi46Urr/R1JNVb3brShRdKYWGupBsAUGUYU7Dq8Rs6APxTcbE0f35pGagK330nFRQweF9lvPGGa3T38HBfR4JAkZ0tnXWWq5yaSo8UBKyMDNd4gpJ08cVSrVq+jScQkHQD8E9OpzR9emkZqArz5rn+nn++b+M4GTRo4OsIEGjMpDVrSstAgHI4yi7De0i6AfinkBDp6qt9HQUCSXFxadJ93nm+jQXA4cLDpW+/LS0DASohobQpJCT4NpZAwUBqAACcCKtWSa1bu357JSNDCg31dUTV3wsvuLqZDxsm3Xyzr6MBAMAr+NIZ/ErO/u0qzM/0dRioDoqKpDlzXI+iIl9Hg0BQ8tNXnTuTcFfWH39IK1eW9hBAtbFo0SLt3r3b12EAgF8g6YbfMCvW5iUvKG3+GP2+cQbJd6DLzZUuuMD1yM31dTQIBL/84vrbvLlv4ziZlOyrkn2HasHMdN1116lJkyZ65JFH/Cf5LiyUPvrI9WDIZgSwAwdc3+V2OFxleB9JN/yLFcuKC7V72xyS70DncLh++7dVK0YJQdVo3Vq68Ubp7LN9HcnJo2TI3F27fBsHPDgcDqWmpmrw4MGaMGFClSTfDRo00Msvv+wxbf78+YqMjNTPP/98YjaSlyddc43rkZd3YtYJnIQO/iVVflW1avCdbvgNs2Kt+Xb4IVMdcgQFq0aD85TYqJtCwqJ9EhsA+NKWmTO1a+FC1ercWU169PB1OKVSU6VOnaSGDaVt23wdDcqwc+dOPfvss3rxxRcVFBSkIUOG6N5771XNmjVP6Hb+9re/KSYmRpMmTZLkutt+9tlnq3v37vrHP/5xYjaSkyN17+4qf/21FBFxYtYLnGQyM6WYGFd52TKpXTufhhMQSLrhN8pOukuQfAMIPBmbNmnT2Wer40F3KBfXrKnk1FTFn3KKDyP705Yt0qmnupKf7GxfR4MKeDv5fvbZZzV58mStWrVKkvTWW29pxIgR2rBhg2JKsgMAx23PHlenrJkzS6f17Cm99x4jmXsTSbefsuIKBo5yOORwBFWuriRHUPBJUdesWGvnPljhetzJd/1zVbPh+QoNj/NYvqLf7fSIwUd15QiS48+u0idH3dJjrXrUNcmKT5q60glsy96qq5PnHHHcdY/UljP2SrGxUmhotTlHLKlVW+127/b4fdBCSctr1tSZO3f6/hyRmSlHXLyrbuaBiu88co44rK5U9e1+586denb8c3rppZfcyfc9w4ZWmHxXps19//336nbBhdq3b5+CgoLUrFkzjXrsMd1664DjWm+V1uU6wgt1uY44nrrS4cfwpZcG6evZUlFR6VfvgoNdnUC+/LL81eL4kHT7qT2//ihJytyzXjn7t3vMcwSFKDik9Pcpi/KzZCr7MHAEBSs4pPQiqKggS+UdMg5HsIJDD66b7TqRlVk3SMGhkcdYN0dmh78JmpmK8veVuY7y1G32F9Vo0FWSdGD3OhXkZpRbt0b9zu5y5p405eeU/922hLqd3G+CWRkblZe9s9y68XU6KijYNdJx1t7Nysv6o9y6cUnt3f+77H0/Kzfzt/Lr1m7r3m85+7cr50D5AxXF1mrtvvufe+A3Ze8v//tzMYmtFOp0fViRm/m7svdtKbdudM0WCgt3fWyal71TWRkby69bo5nCIlwXbfk5u5W5J63culEJyXJGur4Lmp+boczd6w6vlJOnmFtGKCgkQsGffSlFRKggb58O7FpT7nojYxsrPKaeJKkwP1P7d/5Ubt2ImAaKiG0oyXX87ktfUW7d8Oh6ioxr7KpbmKt9fywrt64zKklR8adKkoqLCrT398Xl142spaiEZEmuN9WMHYvKrRsWUVPRNZq5n5ecI8oSGp6gmJot3M8zfltYbvsMdcYqJvF09/O9OxaruLigzLohYdGKrdW6tO7vS1VcVPb3KoNDIxVXu637+b70FSoqKPtOaFCwU/F1Orif79/5U7ljOQQFhSq+bkf38wO7Vqsgb3+ZdR2OICXUK/1+9hHPEWde4xqNe8UKZTYI9/k5Yu20t9Tyr/3KrXvpaacpPc7VlouL8mXl/N8kKSgkovSCr7hAxUX5FdQNl8MRXLm6weFyrFotBQXJmp6m4qDyLySDgp1yBIX8ud7Cco+dw+pakYoLyx9MMSg4TI6g0GOoW6ziwvK/DOkIClVQcJj+DFhFla5rKios/66/IyhEQcHOP59Zue3i8Lqu9/ATUtcRrCIL1h9//KH09HQFBQVpwrgH1fv6Kw6rW9lzRG5unpq07KGvv56tr7/+Wh9//LG+/eINyco+Lk/KcwTXEZJOouuIP0XGnaLw6DqSdNJfR2zcHK6zz29f7rJpaVLTpuXOxnEIOXIVnMxCQmMUFlHDY1pQsFOh4aX9R1wn57IT6aDgMIWGly6fn5UuUznJcVCo+2QnSfnZO8tMjl11QxQWkVhaN2eXrLjskUQdjmCF/XlidNXdXebFoZkp5yiSbkdQmMIia1e6Pk4yVqzQeamucnEFnwgDJ0rIn2+p+fmSwiusWhUyliyvcP5ZCXHadZYrYSjMz1RhQfmDToaF13Rf1BflZ6mgoPzhbsPCa7gTyKKCbBXkl52wSK4PeII7d3HVLcxRQV755/BQZ7w7WSgqzFVB3t4K6sa5PzAuKsqrMBEKDYt1JxbFRfnKz91Tft3QGAWHRf1Zt0D5ueUnTSGh0e4kxIoLlZdT/mBxIaFRCgmL+bNukfJyyk+wgkMiFeqMddW1YuVlp1dQN8Kd3JiZ8rLLT8aCg8MVGh7vfp6b9Xu5dR1BYdq1J0e7/hwAr0ZCnE5t0rDc+pURHu7UGac317Rp0/Taa6/p008/VVBQkI5wo/no5ORI55+vqMIc7fvvi1KE88jLAH5k69aK35s2biTp9hbudPupQOw6euTu5Q5JJmdkkmqd0lMxia3cF5Ely9MtzI+6hRUWSh98KDkkx99vkEJCqkVXr+redfSo6+rkOUccd90jteUOZ0orVkhffCHrebHPzxGbv/xCp156WblVt8ycqVMuvvio1+s354gy6/q+3Vfnc4SZac6cOXr8iTH67rvvdOaZZ2r06NG67NJL3P/zMlddyTZ395Chevnll3XFFVfok08+OfFtOStLiv7zg5D9+6SoqBOz3pK6XEd4oS7niOOpK3kew2lpUouWwWUt5Z5P0u0d3On2UwefgAOmrpX3hv9nsh2VpNqnXqKYxNM9TkbuWo4gV9XKxEDd6l83LFjq0+eQug7JUbljrTrUlap5mwu0ukc6LhP/7L2za1e1aBunXnKpFtesWe53ujv+mXB7M4aTr67v2311PEeUJNujR492J9uffvqpLr/88gqT7aONoX379goJCdG4ceOOK95yOZ3SjBmu+hGRUiWWOaHnCOr6QV3ft/vjOUc0b+EaNO3rr6Wigz5PKvlONwm39/A73fBjrjOoM6q2Grbur9M63afYWq3LTLgB4LhVw9+cTk5N1fJDBrha/ufo5cCRmJm+/fZbdevWTRdeeKGysrL06aefKjU1VVdcccVRJ9xHMmXKFA0ePFjNmzc/oet1CwmRLr/c9QjhvhMC03vvlf5yXonu3V3T4T2cceC3nFG1VfvUS8u9sw0/V1QkLV3qKnfo4PoYF/Cmg+50Vxfxp5yijrt26d4rr9S+JUs08s031bE6/U43qq3vv/9ejzzyiL777rv/b+/Ow+wq63zRf3eNqaqQFLMMCijSqK04gSKKyNGeVBSP0n3FAWmc0L6OeI5oXxxAbafWvtA4XvX0RVT6qmiLA7YojghBOLSKgO2ICgSoQM3Tvn8skp00iQ02b62w1ufzPOvhl5034Zek9qr9Xe+73pWHPvSh+dznPlckaC8vL+eGG27Ihz/84fzkJz/JZz7zmbv09we2tOOO1S7lxxyT/O//nXz+82a4V4LQTaP0DYxkcHiNsE0yO5scckhVT05u8949uMtsDN03bHsTrLrM3vOeuew3v8m+Ajd3QLfbzTHHHJM99tijWNje6MILL8yRRx6ZAw88MJ/+9Kezdu3a//wX/aGWlpKvfa2qjzzSxVhaa3IyOeecqt5jj3p7aQuhm8bodPryR4f9X+n0DQjbJJ1Oss8+vRpKe9CDkqc8JXnc4+ruBP5LOp1OrrnmmoyMjBQL2xsdccQRWV6pJ0zMziYb9zJwMZYWm57esr5tf0EKErpplE3POYXR0eTnP6+7C9rk6KOrAxpgdHS07hbuen19yUEH9WpoqZGRrdeUI3QDANB8IyPJZZfV3QXUbocdkhNOSK64oqopz2U+ALirdLvVCovLL6+7EwBgOyF0A800O5s89anVMTtbdze0xf/6X8l++yWveEXdnQDAVi0tJddem2zYsOXzuinH8nKgmZaWknPP7dWwEjbumP+97yUzM26Wg+3JzEzy539e1V/8ovcnrXXzzdVbYGO98eEblCN0A800NJR84AO9GlbCgQcm++5bLTH/5CeT446ruSFgk+Xl5Bvf6NUAK8TycqCZBgeT5z+/OgYH6+6Gtuh0khe9qKr/8R/r7QXY0vBw8qlPVcfwcN3dQG3Gx6tH1d/3vlVNeUI3ANyVjj++Wl1x8cXVAWwfBgaSZzyjOgYs9qS9BgaSe9872Wknb4WVInQDzbS8nPzwh9VhGSEradddk2OOqeozz6y3FwCgdkI30EwzM8kf/3F1zMzU3Q1tc+KJ1X/PPz9ZWKi3F6CytJR8+9vVYYNNWmxqKvnwh5OLLqpqyrOgAGgu23FSl0c+Mvn0p6udku0pANuH2dnk0Y+u6snJZGys3n6gJlNTSbfbq70VyhO6gWYaG0tuuKHuLmirTic5+ui6uwA21+kk++/fq6GlVq3aek05lpcDQEmLi8knPtGbVgDqMTqaXH11dYyO1t0N1GbNmuSEE5JHPKKqKc9MNwCUsrycHH548t3vVuH7Wc+quyMAYIWZ6QaaaXY2OfbY6pidrbsb2qqvL3nyk6v6Va9Kbr653n4AaL2lpeS665Jbb7Wn4EoRuoFmWlpKPv7x6vAdhTq96lXJ/e6XXH998qIXeYQd1GV2NnniE6vDxVhabGIi+fznkx/9qKopz/JyoJmGhpK///teDXUZGko++MHkiCOST30qOeCA5M1vrrsraJ+lpeS883o1tNTm135dB14ZQjfQTIODyctfXncXUDnssOQDH0iOPz459dRqB+XnPrfurqBdhoaSj3ykV0NLjY9X2438+tdVTXmWlwPASnje85LXvraqX/vaZHq63n6gbQYHk+OOq47Bwbq7gdoMDlaLrnbd1VthpZjpBpppeTn55S+r+l73qja0grqdemqysJC84AXNfWTRxEQyMJCsXl13JwCwXRC6gWaamUn226+qJyeTsbF6+4Gkuvjzjnds+dr11ye77VZPP3e1n/2s2qTqPvdJPvvZpL+/7o6gZ2kpueKKqn7gA3190lrT09U+swsLVd3Ua8DbE1M/QHONjvpOwvbtK19J9t03+djH6u7kv+67300OOST58Y+TH/ygulkQtiezs8lDHlIddi+nxSYnq7C9sFDVlCd0A800NpZMTVWHWW62V+ecU63KOO645PWvv3tuI7uwUP05DjssWb++CjQXXZTss0/dncGWOp1kzz2ro9OpuxuozapVW68px/JyAKjL+99fLS1/y1uS005Lrr46ed/7kh13rLuzbZufTy65JPnGN5KvfS351rd6s4aHHlrN3rufm+3R6Ghy7bV1dwG1W7MmOeGE6m6LNWvq7qYdhG4AqEtfXxW299+/2lztU59Kvv715J3vTJ71rO1jNm5uLrn44ipk/+u/VsvIZ2er3rvd6uh0kmOPTT76UffJAsB/IHQDzTQ3l7z0pVV9+unJ8HC9/cDv87znVc9vef7zq3uin/OcKogfemg9/czMJO9+d3L++cn3vle9n/r7q+Xv3W41ZvOl8N1u8rKXCdwAdwNLS8mNN1b3dS8tOXWvhE63u/G7J0CDTE31lrjavZy7i/n55F3vSq66KvnIR3qv/xf3JjjxxBNz0UUXZd26dXfsF1x0UfLIR96xsX191X3cl1zyB/cHK2J2Nnn2s6v6n/7Jzay01o03JrvsUtXr1yc771xvP21gIzWgmQYHq2cin3pqVcPdwdBQ8trXbhm4f/7z6r7v446rlnmvhEc8IjnppDs2dnk5efnLi7YDd4mlpeSf/7k6lpbq7gZqs/lCpbvj/p13R5aXA800NJS87nV1dwH/dZ/9bLUG8GMfq46HPzw58cTkr/4qGRkp9/9929uqjd3OPbe3pHxrdtopecYzyvUBd5Whoep2o401tNT4ePKoRyW/+U1VU56ZbgDYnr3sZdXmZc9+dhUULrkkOf74aj3g4x5XfWr6r1pYqJaUv/OdyVFHVTPXfX3JWWclD37wtjd06++vLgDYM4G7g8HB5CUvqQ4roGixwcHk/vdPdt/dW2GlmOkGmqnbrW5USqobl7aHXaDhD9HpVPdXP/KR1f3eH/lIcuaZ1bLz73+/d2Nekrz97ck11yS77lq9vvG4/vreY702eu97q3vHf/KTKtRPT/d+7t73Tt7znuoRS+edlzzsYcl1191+SW63m7zwhaX+5ADQCDZSA5rJRmo0WbdbheWrr06e/OTe6/e7X3LllbcbfmKSi4aGsm5urvfiIYdseY/4Tjslj350cvjhyWMekxx8cO9i1RVXVKF/Zqa31HxgIHnKU6r7Y+HuYHk5+elPq/o+96lWc0ALzcwke+9dXYtdv77snUpUhG6gmYRu2qbbTc4+u5rpXr++Om64IVm/PidefXUuWlzMus1nu08/vZoB32uvKmzf736/P4R86UvJE5+45a473/hGFdLh7sD3BUhSnfp3372qr7uu2quTsoRuAGi4O/3IsG0588zqHu6kuiHw3/7NrRvcfUxNVReZkuTaa4VuWmvDht4GahMTydq1dXbTDtbVAAB3zItfXG3sllT/Fbi5OxkbqxLGxITATautXZuccEL1dEiBe2XYSA0AuOPe9a7kz/4sefzj6+4EAO4WzHQDzTQ3Vz326OUvr2rgrtHfX4XuAdftAe6OlperJeazs1tu00E5QjfQTIuL1SOR3vveqgag3ebmkuOOqw4XY2mxiYnknHOSyy+vaspzmRpopsHB5OSTezUA7ba4mHzsY1V9xhnJ8HC9/UBNNp+LMC+xMoRuoJmGhpLTTqu7CwC2F4ODydvf3quhpcbHk0MOSX73u94u5pQldAMA0HxDQ8lJJ9XdBdRuaCh50IOqB1AMDdXdTTsI3UAzdbvJ9HRVj456tBEAALUQuoFmmp5OVq+u6slJz2QFaLvl5eS3v63qPfZI+uwnTDvNzCTnnVd9PJqZSUZG6u6o+YRuAACab2Ym2XvvqnYxlha79dbkN7/p1UJ3eUI30Eyjo9WHqo01AHi+PGxxH7d7uleGMw/QTJ2OWQwAesbGkoWFuruA2o2PJyeckFxxhd3LV4qbWQAAAKAQoRtopvn55HWvq475+bq7AQDYLiwvJ1NT1cej5eW6u2kHy8uBZlpYSN7ylqo++WQ3LQG03dxc8spXVvW7350MD9fbD9RkYiI5++xevdNOdXbTDkI30EwDA8nLXtarAWi3xcXkH/+xqt/+dqGb1lpc3HpNOT6JAs00PJy85z11dwHA9mJwMDnllF4NLTU+njzkIcn119tIbaUI3QAANN/QUPKGN9TdBdRuaCh52MOq3cvdfbcybKQGAAAAhQjdQDNNTVXP6u50qhqAdut2q12jJiaqGlpqdja54ILkmmuqmvIsLwcAoPmmp5Mdd6zqyclkbKzefmCFXHFFcuONvR/ffHPy059W9Re/2HtbJMnISHLIIdWcBXcdoRtoptHRaoeQjTUAQMtMTCQPetC2f/5pT7v9a9/8ZvLoRxdrqZUsLweaqdNJdt21OlyuBWB0NJmfrw4XY2mJ8fHk8Y9P+u5g6tt772qmm7uW0A0AQPN1OtWjwgYHXYylVd70pmR5+Y6NPeUUO5qXIHQDzTQ/n5x2WnXMz9fdDQBALQ49tJrt7u/f9phOp5rlfs5zVq6vNhG6gWZaWEhe//rqWFiouxsA6jY/n5x0UnW4GEvLvOlNydLStn++2zXLXZKN1IBmGhhITjihVwPQbgsLyTvfWdVveIN0QatsnO2+4ILbh+9OJ9lrL7PcJfkkCjTT8HDywQ/W3QUA24vBweTVr+7V0DJvelPyqEfd/nWz3OUJ3QAANN/QUPKOd9TdBdRma7PdZrlXhnu6AQAAWuA/3tttlntlCN1AM01NJWNj1TE1VXc3ANSt263u615YqGpooUMPTY48svdjs9wrQ+gGmmt6ujoAYHq6ms4bGvK9gVZ75Su3rM1yl+eebqCZRkaSn/2sVwMAsMVmasceW18fbSJ0A83U15fsu2/dXQCwvRgdTW6+uVdDS42PJ1ddldxyS7LbbnV30w5CNwAAzdfpVGkDWq7TSe5737q7aBehG2imhYXkjDOq+iUv8UxWAIBU+wguLlb1wEAVwinLRmpAM83PJ694RXXMz9fdDQB1m59P3vCG6vB9gRabmOjtKTgxUXc37WCmG2im/v7kmc/s1QC028JC8sY3VvVJJ9mymdZaWNh6TTlCN9BMq1YlZ51VdxcAbC8GBpITT+zV0FJr1vTmJdasqbeXtnDGAQCg+YaHe3t9QIuZl1h57ukGAACAQoRuoJmmppJdd62Oqam6uwEA2C7YU3DlWV4ONNf69XV3AMD2Ymqq95zuiYlkbKzObqA2ExO9PQVPPDHZbbda22kFoRtoppGR5N/+rVcDwMaHE0OLbb6PoD0FV4a/ZqCZ+vqSBzyg7i4A2F6MjCS//nWvhpYaH++9FTYu/qAsoRsAgObr60v22qvuLqB23gorT+gGmmlhIfnoR6v6uOOSwcE6uwEAoKXsXg400/x88oIXVIetOQGYn0/e8Y7q8H2BFjn88MPT6XTS6XQyMDCQe9xjj3Q6R6fT+U4mJururh2EbqCZ+vuTpzylOvr76+4GgLotLCSveU11LCzU3Q2siG63m8suuyxve9vb8tvf/jbXXHNNzjzz7CRDSQ7PeeedV3eLrWB5OdBMq1Yln/1s3V0AsL0YGEie+9xeDS1w9dVX59Zbb83hhx+ee9zjHkmS3XffN49//BFZt+7I/N3fvS7PfOZf1Nxl85npBgCg+YaHq70+PvrRqoYWWLduXfr7+3PQQQdtem1kJDn//OSkk56QH/7wiiwvL9fYYTsI3QAAAA106aWX5sADD8zo6Ojtfm5wcDD9/f3p6xMJS/M3DDTT9HSy777VMT1ddzcAACtu3bp1eehDH7rFaxv3FDznnKvyR390YE2dtYvQDTRTt5v84hfV0e3W3Q0AdZuaSsbHq2Nqqu5uYEX84Ac/uF3onphIXvOamXz/++fmz//8vydJHvGIR+SSSy5Jkjz3uc/NmWeeudKtNppdJIBmWrUq+f73ezUAbNhQdwewYv793/89ExMTtwvdfX3LSV6cZCAvfOHfJEn+9m//Nm95y1ty2GGHZfXq1Xnxi1+88g03mNANNFN/f3LwwXV3AcD2YmQkueqqXg0Nt27duiTJHnvskd/97ne55ZZbsm7duvzDP/xDdtvtF3nf+z6ffffdMUnypCc9Ka9//eszOTnpMWIFCN0AADRfX19y3/vW3QWsmEsvvTRJcsABB6S/vz9r167NgQcemCc96Ul58YtfnJ122mnT2O9///uZmJjIAQcckAGP1LvL+RsFmmlxMfnkJ6v6L//SM1kBgFZ561vfmre+9a3/6bhrr702J5xwQi644II87WlPy49//OPc7373W4EO28NGakAzzc0lz3pWdczN1d0NAHVbWEjOOKM6Fhbq7gZqs2FD0ulUx+9+N5OnP/3pOf3007PffvvlNa95TU499dS6W2ycTrdrW1+ggWZmkqOOqurPfc79e7TaiSeemIsuumjT/X3QSlNTyerVVT05mYyN1dsP1OT665Pdd6/q665Ldtut3n7awHpLoJlGRpLzz6+7CwC2F/39ydOf3quhpXbYITnooF5NeUI3AADNt2pVcs45dXcBtRsZSS67rO4u2sU93QAAAFCI0A000/R08oAHVMf0dN3dAABsF+wpuPIsLweaqdtNfvSjXg1Au01P957TffXVyehovf1ATSYmkpe+tKqPOSbZddda22kFoRtoplWrkgsu6NUAtFu3m/zmN70aWqqvb+s15QjdQDP19ydHHFF3FwBsL1atSn7wg14NLTU+3nsrjI/X2Ul7CN0AADRff3/y4AfX3QXUzlth5QndQDMtLib/8i9V/aQnJQNOdwAArDyfQoFmmptLjj66qicnhW6AtltYSM46q6qPPTYZHKy3H6jJLbcka9dW9YYNyZo19fbTBj6FAs3U15c86lG9GoB2m59Pnve8qn7GM4RuWmt2dsta6C5P6AaaaWQk+fa36+4CgO1Ff3/yF3/Rq6GlVq9O9tyzV1Oe0A0AQPOtWpV84Qt1dwG1Gx1Nrr227i7axZpLAAAAKEToBpppZiY5+ODqmJmpuxsAgO3CwkLy0Y9Wx8JC3d20g+XlQDMtLyeXXNKrAWi36enkoIOq+vLLqzW20EITE709BZ/4xGTXXWttpxWEbqCZhod7z+keHq63FwDq1+0m11zTq6GlNn+oiwe8rAyhG2imgYHq8i0AJNVGat/6Vq+Glhof770Vxsfr7KQ9hG4AAJqvvz857LC6u4DaeSusPKEbaKalpeRrX6vqI4/0TFYAAGohdAPNNDub/MmfVPXkZDI2Vm8/ANRrcTH5zGeq+uijq9uQoIVuuSVZu7aqN2xI1qypt582cLYBmqmvr7dLrV1CAJibS445pqonJ4VuWmt2dsta6C7P2QZoppGR5LLL6u4CgO1FX1/y2Mf2amipsbHeNScLAVeG0A0AQPONjCRf/3rdXUDtxsaShYW6u2gXl/kAAACgEKEbaKaZmeSII6pjZqbubgAAtguLi8k551TH4mLd3bSD5eVAMy0vJ9/4Rq8GoN1mZpJDD63q7363Wm4OLTQx0dtT8IYbkl12qbWdVhC6gWYaHk4+9aleDUC7LS8nl1/eqwFWiNANNNPAQPKMZ9TdBQDbi1Wrkq98pVdDS+24Y++tsOOO9fbSFkI3AADN19+fPOEJdXcBtfNWWHlCN9BMS0vJ975X1Y98ZPUdBgAAVpjQDTTT7Gzy6EdX9eRk9VBKANprcTH58per+k//tLoNCVro1luTNWuq+pZbkh12qLefNnC2AZqp00n2379XA9Buc3PJk55U1ZOTQjettfmTVGdmhO6V4GwDNNPoaHL11XV3AcD2oq8vefjDezW01Ojo1mvKEboBAGi+kZHk4ovr7gJqt3p10u3W3UW7uMwHAAAAhQjdQDPNziZPfGJ1zM7W3Q0AwHZhcTH5wheqY3Gx7m7awfJyoJmWlpLzzuvVALTbzEzy+MdX9Ve/Wi03hxaamOjtKXjDDckuu9TaTisI3UAzDQ0lH/lIr4aW+OUvf5l73eted2jsr371q+y1117ps6kUbbC8nHznO70aYIUI3UAzDQ4mxx1XdxewoqamprLPPvvkrLPOyjOf+czfO/bKK6/MAx/4wJx//vk54ogjVqZBqNPwcPKZz/RqaKnx8d5bYXy8zk7ao9Pt2rsOAJriqKOOyk9+8pP86Ec/Sn9/f5LkxBNPzEUXXZR169ZtGnfsscfmwgsvzDXXXJNhAQQAirGeDGimpaXkssuqwz3dtMgpp5ySq666Kp/4xCe2OebKK6/M2WefnZNPPlngBoDChG6gmWZnk4c8pDrsXk6LPOxhD8uTn/zkvOlNb8rSNi44vfnNb85ee+2V448/foW7gxotLSVf/3p1uBhLi01OJp1OdUxO1t1NOwjdQDN1Osmee1ZHp1N3N7Cift9st1luWmt2Nnnc46rDxVhabHp66zXlCN1AM42OJtdeWx2jo3V3Aytq89nuxf/wEFaz3LRWp5Pc//7V4WIsLbb50/I8OW9l2L0cABrolFNOycMf/vAtZrs3znKfccYZZrlpn9HR5Ic/rLsLqN0OOyS20l5Zdi8HgIbauJP54x73uFx88cU58MAD7VgOACvMTDfQTLOzybOfXdX/9E/JqlX19gM12Djbfc973jOzs7NmuQHI0lLyzW9W9WMek9z2dEkKMtMNNNPUVLJ6dVVPTiZjY/X2AzU56qijcuGFF6avry9jY2NmuWmvmZnkqKOq+nOfczMrrbV+fbLrrlV9ww3JLrvU208bmOkGmmloKDn99F4NLbVxtjtJTjvtNIGb9lpeTr761V4NLbX5lKvp15VhphsAGu6AAw7Ir371q0xMTAjdtNfiYvLJT1b1X/5lMmDuiXbyVlh5QjcANNxNN92Um266Kfvvv3/drQBA6wjdQDMtLyc//WlV3+c+SV9fvf0AANBKQjfQTDZSA2BzS0vJpZdW9UMfastmWmtqKtlrr6q+9lofkVaCFfxAc61dW3cHAGwvZmeTQw6pahdjabGpqWTDhl7trVCe0A0009hYMjFRdxcAbC86nWSffXo1tNSqVVuvKcfycgAAACjEzkIAAABQiNANNNPcXHLccdUxN1d3NwAA24WlpeTii6tjaanubtrB8nKgmexeDsDmZmeTv/qrqv7EJ9zMSmvdeGOyyy5VvX59svPO9fbTBjZSA5ppcDB5+9t7NQDttrSUnHtur4aWWl7eek05QjfQTENDyUkn1d0FANuLoaHkAx/o1dBS4+O9t8L4eJ2dtIfl5QAAAFCImW6gmZaXk9/+tqr32CPps28kAAArz0w30Ew2UgNgc8vLyY9/XNX3u5+LsbTW9HRy0EFVffnlyehovf20gZluoLkGnOIAuM3MTPLHf1zVLsbSYpOTyTXX9GqhuzyfSIFmGhtLFhbq7gKA7cnG5yRBiw0Pb72mHOtqAKChzj777KxatSrXXnvtptdOOOGEPOhBD8qGDRtq7AxqMDaW3HBDdZjlpsXWrk263epYu7bubtrBPd0A0FDdbjcPfvCD85jHPCann3563vjGN+ZDH/pQvve972Wvvfaquz0AaAXLy4FmmptLXvnKqn73u62fopU6nU5OO+20PP3pT8+ee+6Z9773vfnmN78pcAO0mD0FV56ZbqCZ7F4Omzz0oQ/ND3/4w3zlK1/JYx/72LrbgXrMziZ//ddV/eEPJ6tW1dsP1OTGG3vbG6xfn+y8c739tIGZbqCZBgeTU07p1dBSX/7yl3PllVdmaWkpu+++e93tQH2WlpKPf7yqP/CBenuBGi0tbb2mHDPdANBQl156aY444oicccYZ+cQnPpHR0dGcc845dbcF9VhYSM44o6pf8hIXZGktb4WVJ3QDQAP9/Oc/z6GHHpq/+Zu/ycknn5x169bl4IMPzsUXX5yHPexhdbcHAK0hdAPN1O0mGx+JtHZt0unU2w+soJtuuimHHXZYDj/88Lz//e/f9PpTnvKUzM3N5Utf+lKN3QFAuwjdQDPZSA2AzS0vJ7/8ZVXf6162bKa1ZmaSxz++qr/61WRkpN5+2sBGagAANN/MTLLfflXtYiwtduutyXe+06uF7vKEbqCZRkeT+fmqHnCqAyDV9wZouaGhrdeUY3k5AAAAFOJmFgAAAChE6AaaaX4+Oemk6ti4zBwAoOWWl5Of/7w6lpfr7qYdLC8Hmsnu5QBsbm4ueelLq/r005Ph4Xr7gZrcdFOy885VfeONyU471dtPG9hdCGimwcHk1a/u1QC02+Ji8qEPVfV73iN001qLi1uvKUfoBpppaCh5xzvq7gKA7cXgYHLqqb0aWmp8vPdWGB+vs5P2sLwcAAAACjHTDTRTt9tbMzUwkHQ69fYDAEAr2b0caKbp6WqJ+dBQVQPQbt1ucsMN1WGhJy02O5s89anVMTtbdzftYKabRpne8IsMjeyUgaEd6m4FANieTE8nu+1W1Z5qQYvdckty7rm9etWqevtpA6Gbxuh2l/OzS09Pp9OXnfY6LLvs8zjhu81GR5Obb+7VAABssY+gPQVXho3UaIxudzk/uuCk237USaevX/gGAABqZaabhuqmu7yYG391YW669tvCNwAAUAuhm4YTvltrfj55y1uq+uSTqw3VAABarttN1q+v6l128YCXlWB5eUN1l5e2/ZOdTjqdvjs2Nkmnr/9uMbbbXc6Pv/E/f+/vk3TS6fRnx70elV3udUQGV63d4tf/vt1Mt+ihprHp9KVz25nx7jG297W24mOnptJZc9u/720b5nQnJ5PucjIykvTd9h6Yn08WFqrHiq1a1ft9tzZ2YaEa39+fjIz0xk5NJctL1U4k/f13fuziYjI3V/1/Rkd778+ZmXQXF+7c2OHh6s+SJEtL1baknU4yNvaHjZ2dTXdhvrposfHGr+XlZGamqsfGel/Dd2bs3Fy683PVuI0XRLrd3k7zd2bs6Gg6/QOb/j27c7PVn2t4eIuvhzs9dmQknYHBTf+e3bnZ6u998x1n7szY6emq71Wr0hkc2vTv2Z2dqf7eR0b+sLEzM9Xf8/BwMjhUvT+XltKdmb5zY2/7+9lkdrb6uhgaSoaG7/zY5eV0p6eqP8fmG1bNzVVfx4ODyfBw9bV2Z8Z2u+lOTVZjR0d7nxY3vpfvzNg78r53jvj9Y+9O54i5ueQVr0h3cDB521u3fN9v5g/+fOJzRIGxNX6O2OrYbvW+v5uMTbb+NXzTTckuu1ZfNzfemOy007Z/O+4aQndD3XTtd5MkkzdemZlbf7XFz3U6/ekf6H0QXFyYTrL1L4P/OHZpYTrdbY7tS//AyGZjZ9LN1k8Ktxu7OFOd9LY2Nn3pH/zPx3a73SzN37LV32Nb7nHfo7PzPR+dJLn1xiuzMHvzNsfutNehm+rJm67K/MyN2xy74x6HbPomOHXzNZmbvmGbY8fv8fD09VcfPqYm/j1zU9dtc+za3R+y6d9jesMvMjv5m22P3e2g9A9WH4pnbvlVZm799TbHrtn1gRkYWp0kmb31N5m+5RfbHLvDLvfP4HAVZmcnf5fpDT/b5tjVOx+YoVU7Jknmpm/I1M3XbHvsTgdkaGTnJMn8zI2ZvOmqbY4d23H/DI/uWo2dvTmTN155+0Fz8xl90z9kYGhNBv7v9yXDw+kODqazuJibLz433T2qX7/qzLMyetoZmXvGX6T74Q9m1Q57Jkm64+PpbNiQiQs/meV73zNJMvzR/y9jr39X5p/4uCx9/GMZWVO93t1rz3R+89ts+PJHs/SAA5IkQ5/6Qla/8rTMH3loFj99dkbX7lONve/+6Vzz09zymfdl8eAHJUkG/+Vr2eFFr8/CIx+S+S/+c8bG712NffBB6Vz+v3PLx9+TxcMPqcb+67ezw3NPyuJBB2bugs9nbMf9q7GHPSqd73w3t37orVn4s8cmSQa+c2nWHPPSLB6wX2a/+6Ws3qnqLU94QvLVr2byH07J/NP+NEnSf9mPsvZJJ2Rp73tk+rILssPOB1Zjn/rU5NxzM/V3/yNzxz6lGvuTf8/a//asLO80nqmffCs77PKAauyxxyYf/3im3vCyzJ3wl0mSvl/9NuOH/vd0R1bl1l98P2t2fWA19vnPTz70oUy/5gWZ/T+PS5J0brw5Ox70xCTJhusuy9rdDqrGvvzlyXvfm5m/eU5m/seLqtemZ7LTAf8tSTLx029l/N6HVa+/7nXJW96S2b8+JtNvfPmmL4ed9n5U9fte8ZWs/eMnVC+edlry+tdn9v94cqbf8dpNY3e875HpzMxmw/c+nbWPOLp68T3vSV7xisw99U8ydfobNo0df9BfpO+miWz41/83a488tnrxgx9MXvCCzP/pYzL54b/bNHbtI5+W/l//Lhv+5UNZ8+fHVeeIs85KnvWsLDzm4Nx69ns3jV1z5LEZuOpnueVTp2f1015QnSM++9nk6KOz8PAH5tbPvr839onHZ+DyK3Prx96R0We+tDpHnH9+8id/ksX73ze3fOVjm8bu8PSXZPB7P8it7zs1o8e/ojpHfPvbyaMfnaV9986Gb31q09jVz3lVhr723Uy++3VZ9ZL/WZ0jLrssechDsrz7LplY97ne2Be+LkNfuCBTp74qQ6/+2+occfXVyQEHZHnN6kz86Cubxo694tQMn3Nepl/3kgy8/s3VOeLaa5O99053oD83//ybm8aOvu6dWfWxT2fmFcen/7S3V+eIiYlkx+q8ctPPLkwGq1A48ubTM/L+j2fmhc9M37vfU50jFhY2hbCbf/jldNdWq5xG3vWhjPz9/5PZ5z4tOf2MrFp9jyRxjmj6OWJqKhkfTxYXc9NV/5qMbnZB6jZ9fYMZ3+Phm3586/ofZmFu658tOp2+7LjnI3pjfY5I0qDPEbcZXbvfpnPEwtyG3Lr+R9seu2afTeeIxfnJ3HLDFdscO7LD3pvOEUsL09lw/eXbHLtq9Z6bzhFLi7PZcN0Ptjl2eGz3TeeI5aWFTPzuktuNuWH9QA588MFJkuuu623qTzmWlzfcwPCaDC3ussVrff3DGRrZcdOP5yav22aQ7usfytBI7/LX3NT12wzHff2Dm0521dgb0u1u/Qpxp28gw6O9vuam16e7vLj1sZ3+DI/tuunH8zM3Znlp4Xbjut1uZu5E6O70DWV4bPc7PJ67meGhTJ/26oyu3S8D25jNAKBFxsaS17wmi1/9YjLiGUm01667LObGX393iwtBlGWmu6EsL9/q75Kkm+Gxe2S3/f40q3e+f/r6e9edLAtrwbIwS0fv/Ni709LR2/49LS+3vNzycueI33uO6O/7vTexWl6+PY3dzj5HbAdLxu+K5eWbhm72tUNZQjeNseUjwza3MWzvkd3u/WfZYZcHbDrZAwAAlGR5OQ222cy2sA0AANRA6KaxhG0AAKBuQjeN0jcwksHhcWEbAADYLrinm0ZZXlpIp29A2AYAALYLQjcAAAAU0vefDwEAAAD+EEI3AAAAFCJ0AwAAQCFCNwAAABQidAMAAEAhQjcAAAAUInQDAABAIUI3AAAAFCJ0AwAAQCFCNwAAABQidAMAAEAhQjcAAAAUInQDAABAIUI3AAAAFCJ0AwAAQCFCNwAAABQidAMAAEAhQjcAAAAUInQDAABAIUI3AAAAFCJ0AwAAQCFCNwAAABQidAMAAEAhQjcAAAAUInQDAABAIUI3AAAAFCJ0AwAAQCFCNwAAABQidAMAAEAhQjcAAAAUInQDAABAIUI3AAAAFCJ0AwAAQCFCNwAAABQidAMAAEAhQjcAAAAUInQDAABAIUI3AAAAFCJ0AwAAQCFCNwAAABQidAMAAEAhQjcAAAAUInQDAABAIUI3AAAAFCJ0AwAAQCFCNwAAABQidAMAAEAhQjcAAAAUInQDAABAIUI3AAAAFCJ0AwAAQCFCNwAAABQidAMAAEAhQjcAAAAUInQDAABAIUI3AAAAFCJ0AwAAQCFCNwAAABQidAMAAEAhQjcAAAAUInQDAABAIUI3AAAAFCJ0AwAAQCFCNwAAABQidAMAAEAhQjcAAAAUInQDAABAIUI3AAAAFCJ0AwAAQCFCNwAAABQidAMAAEAhQjcAAAAUInQDAABAIUI3AAAAFCJ0AwAAQCFCNwAAABQidAMAAEAhQjcAAAAUInQDAABAIUI3AAAAFCJ0AwAAQCFCNwAAABQidAMAAEAhQjcAAAAUInQDAABAIUI3AAAAFCJ0AwAAQCFCNwAAABQidAMAAEAhQjcAAAAUInQDAABAIUI3AAAAFCJ0AwAAQCFCNwAAABQidAMAAEAhQjcAAAAUInQDAABAIUI3AAAAFCJ0AwAAQCFCNwAAABQidAMAAEAhQjcAAAAUInQDAABAIUI3AAAAFCJ0AwAAQCFCNwAAABQidAMAAEAhQjcAAAAUInQDAABAIUI3AAAAFCJ0AwAAQCFCNwAAABQidAMAAEAhQjcAAAAUInQDAABAIUI3AAAAFCJ0AwAAQCFCNwAAABQidAMAAEAhQjcAAAAUInQDAABAIUI3AAAAFCJ0AwAAQCFCNwAAABQidAMAAEAhQjcAAAAUInQDAABAIUI3AAAAFCJ0AwAAQCFCNwAAABQidAMAAEAhQjcAAAAUInQDAABAIUI3AAAAFCJ0AwAAQCFCNwAAABQidAMAAEAhQjcAAAAUInQDAABAIUI3AAAAFCJ0AwAAQCFCNwAAABQidAMAAEAhQjcAAAAUInQDAABAIUI3AAAAFCJ0AwAAQCFCNwAAABQidAMAAEAhQjcAAAAUInQDAABAIUI3AAAAFCJ0AwAAQCFCNwAAABQidAMAAEAhQjcAAAAUInQDAABAIUI3AAAAFCJ0AwAAQCFCNwAAABQidAMAAEAhQjcAAAAUInQDAABAIUI3AAAAFCJ0AwAAQCFCNwAAABQidAMAAEAhQjcAAAAUInQDAABAIUI3AAAAFCJ0AwAAQCFCNwAAABQidAMAAEAhQjcAAAAUInQDAABAIUI3AAAAFCJ0AwAAQCFCNwAAABQidAMAAEAhQjcAAAAUInQDAABAIUI3AAAAFCJ0AwAAQCFCNwAAABQidAMAAEAhQjcAAAAUInQDAABAIUI3AAAAFCJ0AwAAQCFCNwAAABQidAMAAEAhQjcAAAAUInQDAABAIUI3AAAAFCJ0AwAAQCFCNwAAABQidAMAAEAhQjcAAAAUInQDAABAIUI3AAAAFCJ0AwAAQCFCNwAAABQidAMAAEAhQjcAAAAUInQDAABAIUI3AAAAFCJ0AwAAQCFCNwAAABQidAMAAEAhQjcAAAAUInQDAABAIUI3AAAAFCJ0AwAAQCFCNwAAABQidAMAAEAhQjcAAAAUInQDAABAIUI3AAAAFCJ0AwAAQCFCNwAAABQidAMAAEAhQjcAAAAUInQDAABAIUI3AAAAFCJ0AwAAQCFCNwAAABQidAMAAEAhQjcAAAAUInQDAABAIUI3AAAAFCJ0AwAAQCFCNwAAABQidAMAAEAhQjcAAAAUInQDAABAIUI3AAAAFCJ0AwAAQCFCNwAAABQidAMAAEAhQjcAAAAUInQDAABAIUI3AAAAFCJ0AwAAQCFCNwAAABQidAMAAEAhQjcAAAAUInQDAABAIUI3AAAAFCJ0AwAAQCFCNwAAABQidAMAAEAhQjcAAAAUInQDAABAIUI3AAAAFCJ0AwAAQCFCNwAAABQidAMAAEAhQjcAAAAUInQDAABAIUI3AAAAFCJ0AwAAQCFCNwAAABQidAMAAEAhQjcAAAAUInQDAABAIUI3AAAAFCJ0AwAAQCFCNwAAABQidAMAAEAhQjcAAAAUInQDAABAIUI3AAAAFCJ0AwAAQCFCNwAAABQidAMAAEAhQjcAAAAUInQDAABAIUI3AAAAFCJ0AwAAQCFCNwAAABQidAMAAEAhQjcAAAAUInQDAABAIUI3AAAAFCJ0AwAAQCFCNwAAABQidAMAAEAhQjcAAAAUInQDAABAIUI3AAAAFCJ0AwAAQCFCNwAAABQidAMAAEAhQjcAAAAUInQDAABAIUI3AAAAFCJ0AwAAQCFCNwAAABQidAMAAEAhQjcAAAAUInQDAABAIUI3AAAAFCJ0AwAAQCFCNwAAABQidAMAAEAh/z8F9HD+Djix2gAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2D Parallel-beam tomography\n", + "System configuration:\n", + "\tRay direction: [0., 1.]\n", + "\tRotation axis position: [0., 0.]\n", + "\tDetector position: [ 0., 10.]\n", + "\tDetector direction x: [1., 0.]\n", + "Panel configuration:\n", + "\tNumber of pixels: [10 1]\n", + "\tPixel size: [1. 1.]\n", + "\tPixel origin: bottom-left\n", + "Channel configuration:\n", + "\tNumber of channels: 1\n", + "Acquisition description:\n", + "\tNumber of positions: 180\n", + "\tAngles 0-9 in degrees: [0., 1., 2., 3., 4., 5., 6., 7., 8., 9.]\n", + "\tAngles 170-179 in degrees: [170., 171., 172., 173., 174., 175., 176., 177., 178., 179.]\n", + "\tFull angular array can be accessed with acquisition_data.geometry.angles\n", + "Distances in units: units distance\n" + ] + } + ], + "source": [ + "from cil.framework import AcquisitionGeometry\n", + "from cil.utilities.display import show_geometry\n", + "\n", + "ag = AcquisitionGeometry.create_Parallel2D(detector_position=[0,10])\\\n", + " .set_panel(num_pixels=10)\\\n", + " .set_angles(angles=range(0,180))\n", + "\n", + "show_geometry(ag)\n", + "\n", + "print(ag)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "An example creating a 3D parallel-beam geometry:" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "execution": { + "iopub.execute_input": "2024-10-10T15:02:39.026342Z", + "iopub.status.busy": "2024-10-10T15:02:39.026068Z", + "iopub.status.idle": "2024-10-10T15:02:39.261809Z", + "shell.execute_reply": "2024-10-10T15:02:39.261326Z" + } + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA90AAAPdCAYAAACXzguGAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeXxM1/sH8M/smWSyChFraOy7oraKFtVqNXTRxU61aC3V0lUp3VBK91/7bVF0RxdVS1XUUsQSayRE7CGWIPtkZp7fH7e5yWQTZDJJfN6v17yYc5fzzM2cO/PMOfdcjYgIiIiIiIiIiKjEad0dABEREREREVFFxaSbiIiIiIiIyEWYdBMRERERERG5CJNuIiIiIiIiIhdh0k1ERERERETkIky6iYiIiIiIiFyESTcRERERERGRizDpJiIiIiIiInIRJt1ERERERERELsKkm4iIiIiIiMhFmHQTERERERERuQiTbiIiIiIiIiIXYdJNRERERERE5CJMuomIiIiIiIhchEk3ERERERERkYsw6b5Jx44dg0ajQVRUVKHrREREQKPR4PLly6UW180ICQnB3Llz1ecajQa//PKL2+IhKm3FaddlRdeuXTF+/Hh3h1GovOeTgkydOhUtW7YslXjo2sr6e6q8KO55hMebiKjiY9JN15SQkID77ruvRPdZHr5kFCdZoLLjRt9TQ4YMQZ8+fZzKatasiYSEBDRt2rRkgnOhZcuWYfr06e4Oo1CRkZF4+umn1ecF/Yj34osvYt26daUcGZWUBQsWwM/Pr8T3Wx4+J4qS9zxS2A/wZb0NExHRzdO7O4DyzGq1ujuEG2a326HRaKDVXvt3l6pVq5ZCRFSmxcYCcXFAaChQr16pVm21WmE0Gku1Tp1OV27e9wEBAe4OoUiVK1e+5joWiwUWi6UUoikf3NjcKiR3nEOA4p9HynobJiKim3fDPd0igtTU1FJ/iEix4vv999/h5+cHh8MBAIiKioJGo8HEiRPVdZ555hk88cQT6vOlS5eiSZMmMJlMCAkJwezZs532GRISgrfeegtDhgyBr68vRowYUWDdK1euRP369WE2m3HXXXfh2LFj14z38uXLePrppxEUFAQPDw80bdoUK1asKHZsSUlJGDRoEPz9/eHp6Yn77rsPhw8fVpdn90SsWLECjRs3hslkwvHjx5GYmIjevXvDbDajTp06WLJkSb7YcvdMZQ+XW7ZsGe666y54enqiRYsW+Pfff9X1L168iCeeeAI1atSAp6cnmjVrhu+++05dPmTIEGzYsAHz5s2DRqOBRqNRj9HBgwfRq1cvWCwWBAUFYeDAgbhw4UKhx+348ePo3bs3/P394eXlhSZNmmDlypUQEYSGhuL99993Wn///v3QarWIi4sDoAxrrVWrFkwmE6pVq4axY8cCUHpYjh8/jueff16NMduWLVvQpUsXmM1m1KxZE2PHjkVqaqq6PPt9MmjQIFgsFtSuXRu//vorzp8/j/DwcFgsFjRr1gw7duwo9HWVGZcuAffeCzRoAPTqBdSvrzxPSnJZlV27dsVzzz2HCRMmIDAwED169AAAbNiwAe3atYPJZEJwcDBefvll2Gw2AIW/p+x2O4YPH446derAbDajQYMGmDdvnlrX1KlTsXDhQvz666/qdhEREQUOCy2q/uy4x44di0mTJiEgIABVq1bF1KlTi3ytkZGR6NGjBwIDA+Hr64uwsDDs2rVLXR4REQGj0YiNGzeqZbNnz0ZgYCASEhLUenP3Bn766aeoV68ePDw8EBQUhEceeaTQ+rPPC7/88gvq168PDw8P9OjRAydPnnRa77PPPsNtt90Go9GIBg0aYNGiRU7LC2tHgPOIkZCQEABA3759odFo1Od5h5c7HA5MmzYNNWrUgMlkQsuWLbFq1Sp1eXHOQ+WRG5obUlNT1XNVcHBwvs8WQElaJ02ahOrVq8PLywt33HEHIiIiACjv0aFDh+LKlStqG8p+3xe1XbbNmzcjLCwMnp6e8Pf3R8+ePZGUlFTk50Rx2mJB55C8ske5vPnmm6hSpQp8fHzwzDPPOP2gnpmZibFjx6JKlSrw8PBA586dERkZqS5PSkpC//79UblyZZjNZtSrVw/z588H4Dy8/NixY7jrrrsAAP7+/tBoNBgyZIgab+42XNzP89WrV6NRo0awWCy499571XMCERGVQXKDUlJSBECpP1JSUooV3+XLl0Wr1cqOHTtERGTu3LkSGBgobdu2VdepX7++fPbZZyIismPHDtFqtTJt2jSJiYmR+fPni9lslvnz56vr165dW3x8fGTWrFly+PBhOXz4sMTHxwsA2b17t4iInDhxQkwmk4wbN04OHTokixcvlqCgIAEgSUlJBcZqt9ulffv20qRJE1mzZo3ExcXJ77//LitXrix2bA8++KA0atRI/vnnH4mKipKePXtKaGioWK1WERGZP3++GAwG6dixo2zevFkOHTokKSkpct9990nTpk1ly5YtsmPHDunYsaOYzWb54IMP1H0DkOXLl4uIqK+3YcOGsmLFComJiZFHHnlEateuLVlZWSIicurUKZk1a5bs3r1b4uLi5MMPPxSdTidbt25V/zYdOnSQESNGSEJCgiQkJIjNZpMzZ85IYGCgvPLKKxIdHS27du2SHj16yF133VXo3/n++++XHj16yN69e9XjtmHDBhERefvtt6Vx48ZO6z///PPSpUsXERH56aefxMfHR1auXCnHjx+Xbdu2yRdffCEiIhcvXpQaNWrItGnT1BhFRPbu3SsWi0U++OADiY2Nlc2bN0urVq1kyJAhTu+TgIAA+fzzzyU2NlZGjRol3t7ecu+998qPP/4oMTEx0qdPH2nUqJE4HI5CX1uZ0LOniE4nAuQ8dDql3EXCwsLEYrHIxIkT5dChQxIdHS2nTp0ST09PGT16tERHR8vy5cslMDBQpkyZIiKFv6esVqu88cYbsn37djl69KgsXrxYPD095YcffhARkeTkZOnXr5/ce++96naZmZn52vW16s+O28fHR6ZOnSqxsbGycOFC0Wg0smbNmkJf67p162TRokVy8OBBOXjwoAwfPlyCgoLk6tWr6joTJ06U2rVry+XLlyUqKkpMJpMsW7bMqd5x48aJiEhkZKTodDr59ttv5dixY7Jr1y6ZN29eofVnnxfatGmjngPatWsnHTt2VNdZtmyZGAwG+eSTTyQmJkZmz54tOp1O/v77bxEpuh2JKO0h+3ySmJgoAGT+/PmSkJAgiYmJIiIyZcoUadGihbrNnDlzxMfHR7777js5dOiQTJo0SQwGg8TGxopI8c5D5ZEbmpuMGjVKatSoIWvWrJG9e/fKAw88IBaLRX1PiYg8+eST0rFjR/nnn3/kyJEjMmvWLDGZTBIbGyuZmZkyd+5c8fHxUdtQcnLyNbcTEdm9e7eYTCYZNWqUREVFyf79++Wjjz6S8+fPF9qmi9sW855DCjJ48GCxWCzy2GOPyf79+2XFihVSuXJlefXVV9V1xo4dK9WqVZOVK1fKgQMHZPDgweLv7y8XL14UEZFnn31WWrZsKZGRkRIfHy9r166V3377TUTE6Txis9lk6dKlAkBiYmIkISFBLl++rMab+3gX9/O8e/fuEhkZKTt37pRGjRrJk08+eXNvBiIicpkKm3SLiLRu3Vref/99ERHp06ePvP3222I0GuXq1auSkJAgANQP4yeffFJ69OjhtP3EiROdkrbatWtLnz59nNbJ++X8lVdeyZdMvfTSS0Um3atXrxatVisxMTEFLr9WbLGxsQJANm/erC6/cOGCmM1m+fHHH0VE+ZAGIFFRUeo6MTExAkBNhkVEoqOjBcA1k+7//e9/6vIDBw44HcuC9OrVS1544QX1ed4vGSIikydPlnvuucep7OTJk+qXlII0a9ZMpk6dWuCyM2fOiE6nk23btomIiNVqlcqVK8uCBQtERGT27NlSv3599YtMXrmThWwDBw6Up59+2qls48aNotVqJT09Xd1uwIAB6vLs99rkyZPVsn///VcAqMl8mRQT4/ztP+/jvy/OJS0sLExatmzpVPbqq69KgwYNnNrVJ598IhaLRex2u7pd3vdUQUaPHi0PP/yw+nzw4MESHh7utE7edl3c+jt37uy0n7Zt28pLL710zZiy2Ww28fb2lt9//10ty8zMlFatWkm/fv2kSZMm8tRTTzltk/t1L126VHx8fJyS9qJknxcKOgdkt5uOHTvKiBEjnLZ79NFHpVevXiJy/e0o9/kkW96ku1q1avL22287rdO2bVsZPXq0iNz4eagsc0dzS05OFqPRKN9//71advHiRTGbzep76siRI6LRaOT06dNO23br1k1eeeUVEVHeR76+vk7Li7PdE088IZ06dSo0voLadHHbYt5zSEEGDx4sAQEBkpqaqpZ99tln6r5SUlLEYDDIkiVL1OVWq1WqVasmM2fOFBGR3r17y9ChQwvcf97zyPr16wv8LpD7dV7P5/mRI0ecjkFQUNA1XzMREbnHDQ8v9/T0REpKSqk/PD09ix1j165dERERARHBxo0bER4ejqZNm2LTpk1Yv349goKC0LBhQwBAdHQ0OnXq5LR9p06dcPjwYdjtdrWsTZs2RdYZHR2N9u3bOw1H7tChQ5HbREVFoUaNGqhfv36h+ywqtujoaOj1etxxxx3q8kqVKqFBgwaIjo5Wy4xGI5o3b+60X71e7/SaGjZsWKwJcXLvJzg4GACQmJgIQLle/O2330bz5s1RqVIlWCwWrFmzBidOnChynzt37sT69evV6zstFov698keDp7X2LFj8dZbb6FTp06YMmUK9u7d6xTX/fffj6+//hoAsGLFCmRkZODRRx8FADz66KNIT09H3bp1MWLECCxfvtxpiGJhMS5YsMApxp49e8LhcCA+Pr7A4xMUFAQAaNasWb6y7GNWJhVyzFVHjris6rztLDo6Gh06dHBqV506dUJKSgpOnTpV5L4+//xztGnTBpUrV4bFYsGXX355zfdiXsWtP/ffHVDeg0X9jRMTEzFy5EjUr18fvr6+8PX1RUpKilN8RqMRixcvxtKlS5Genl7k5H49evRA7dq1UbduXQwcOBBLlixBWlpaka+tsHNA9rmjsPNP9vIbaUdFuXr1Ks6cOVNkndmKOg+VN+5obnFxcbBarU6fUQEBAWjQoIH6fNeuXRAR1K9f3+m8t2HDhkLPy8XdLioqCt26dbuumIvbFq/1WZ2tRYsWTt8rOnTogJSUFJw8eRJxcXHIyspyei8aDAa0a9dOfS+OGjUK33//PVq2bIlJkyZhy5Yt1/V6Cnp9xfk89/T0xG233aY+v9a5hoiI3OuGJ1LTaDTw8vIqyVhKXNeuXfHVV19hz5490Gq1aNy4McLCwrBhwwYkJSUhLCxMXVdEnD7Es8vyutZrLmibazGbzdfcZ1GxFVZn3u3MZrPT8+zt8u67OAwGg/r/7O2zr5+fPXs2PvjgA8ydOxfNmjWDl5cXxo8ff82J5xwOB3r37o0ZM2bkW5b9hTqvp556Cj179sQff/yBNWvW4N1338Xs2bMxZswYdfnAgQPxwQcfYP78+XjsscfUL1g1a9ZETEwM1q5di7/++gujR4/GrFmzsGHDBqfXlzfGZ555xuma1Wy1atUq8vgUdczKpFxf6AoUGuqyqvO2s6LaQFHv3x9//BHPP/88Zs+ejQ4dOsDb2xuzZs3Ctm3briue4taf932j0WiK/BsPGTIE58+fx9y5c1G7dm2YTCZ06NAhX1vJ/iJ/6dIlXLp0qdDzkLe3N3bt2oWIiAisWbMGb7zxBqZOnYrIyMgif0wr6BjmLivotWeX3Ug7Ko6i6sxW7tpUEdzR3IrzeeVwOKDT6bBz507odDqnZUVNflec7a712VdYzMVpizf7/USj0RR6jskdw3333Yfjx4/jjz/+wF9//YVu3brh2WefzTefSHEV9/O8oHPNjXz/ICKi0lGhbxnWpUsXJCcnY+7cuQgLC4NGo0FYWBgiIiIQERHhlHQ3btwYmzZtctp+y5YtqF+/fr4vDEVp3Lgxtm7d6lSW93lezZs3x6lTpxAbG1voPouKrXHjxrDZbE6JxMWLFxEbG4tGjRoVWm+jRo1gs9mcJvSKiYm56fuJZ48qGDBgAFq0aIG6des6TQIDKL13uUcQAEDr1q1x4MABhISEIDQ01OlR1BeomjVrYuTIkVi2bBleeOEFfPnll+qyXr16wcvLC5999hn+/PNPDBs2zGlbs9mMBx98EB9++CEiIiLw77//Yt++fdeMMW98oaGhbpkd16Xq1wd69gTyvv91OqW8FKdVbty4MbZs2eL0pXLLli3w9vZG9erVART899q4cSM6duyI0aNHo1WrVggNDc3XO1fQdjdS/43YuHEjxo4di169eqkTJeadODAuLg7PP/88vvzyS7Rv3x6DBg0qMrHU6/Xo3r07Zs6cib179+LYsWP4+++/C12/sHNA9iiTRo0aFXj+yX1uKaod5WUwGIo83j4+PqhWrdo166xo3NHcQkNDYTAYnD6jkpKSnD6LWrVqBbvdjsTExHznvOyZuQtqQ8XZrnnz5kXeKq6g/ZZ0W9yzZw/S09PV51u3boXFYkGNGjXU83ru92JWVhZ27Njh9F6sXLkyhgwZgsWLF2Pu3Ln44osvCn09AIp8/9/o5zkREZVtFTrp9vX1RcuWLbF48WJ07doVgJKI79q1C7GxsWoZALzwwgtYt24dpk+fjtjYWCxcuBAff/wxXnzxxeuqc+TIkYiLi8OECRMQExODb7/9FgsWLChym7CwMHTp0gUPP/ww1q5di/j4ePz555/qbL3Xiq1evXoIDw/HiBEjsGnTJuzZswcDBgxA9erVER4eXmi9DRo0wL333osRI0Zg27Zt2LlzJ5566qkb6n3ILTQ0FGvXrsWWLVsQHR2NZ555BmfPnnVaJyQkBNu2bcOxY8dw4cIFOBwOPPvss7h06RKeeOIJbN++HUePHsWaNWswbNiwQr+kjB8/HqtXr0Z8fDx27dqFv//+2+mLiU6nw5AhQ/DKK68gNDTUaRjlggUL8NVXX2H//v04evQoFi1aBLPZjNq1a6sx/vPPPzh9+rSaCL300kv4999/8eyzzyIqKgqHDx/Gb7/9pvasVzjffQd07+5c1r27Ul6KRo8ejZMnT2LMmDE4dOgQfv31V0yZMgUTJkxQb3tX0HsqNDQUO3bswOrVqxEbG4vJkyc7zTycvd3evXsRExODCxcuICsr64bqvxGhoaFYtGgRoqOjsW3bNvTv39+p/dntdgwcOBD33HMPhg4divnz52P//v0FzjANKJdQfPjhh4iKisLx48fxzTffwOFwOA0XzstgMGDMmDHYtm0bdu3ahaFDh6J9+/Zo164dAGDixIlYsGABPv/8cxw+fBhz5szBsmXL1PPPtdpRXiEhIVi3bh3Onj2LpEKm5Z44cSJmzJiBH374ATExMXj55ZcRFRWFcePGFeu4llel3dwsFguGDx+OiRMnYt26ddi/fz+GDBni9J6uX78++vfvj0GDBmHZsmWIj49HZGQkZsyYgZUrVwJQ/qYpKSlYt24dLly4gLS0tGJt98orryAyMhKjR4/G3r17cejQIXz22Wfq+bagNl3SbdFqtWL48OE4ePAg/vzzT0yZMgXPPfcctFotvLy8MGrUKEycOBGrVq3CwYMHMWLECKSlpWH48OEAgDfeeAO//vorjhw5ggMHDmDFihWFJse1a9eGRqPBihUrcP78eaSkpORb50Y/z4mIqIwrnUvH3eeFF14QALJ//361rEWLFlK5cuV8M0f//PPP0rhxYzEYDFKrVi2ZNWuW0/KCJtbKO1GKiMjvv/8uoaGhYjKZ5M4775Svv/66yInURJTJa4YOHSqVKlUSDw8Padq0qaxYsaLYsV26dEkGDhwovr6+YjabpWfPnuoMsSIFT3Qjokzydf/994vJZJJatWrJN998U+TERwW93qSkJAEg69evV19LeHi4WCwWqVKlirz++usyaNAgp8mqYmJipH379mI2mwWAxMfHi4gyiUzfvn3Fz89PzGazNGzYUMaPH1/oLN/PPfec3HbbbWIymaRy5coycOBAuXDhgtM6cXFxAkCd+Cbb8uXL5Y477hAfHx/x8vKS9u3by19//aUu//fff6V58+ZiMpkkd1PZvn279OjRQywWi3h5eUnz5s2dJn0q6H2S+xgWdhzLtNhYkZUrXTZ5Wm6FTYgWEREhbdu2FaPRKFWrVpWXXnrJaabqgt5TGRkZMmTIEPH19RU/Pz8ZNWqUvPzyy06TdiUmJqp/z+z3cUF/n2vVX1Dc4eHhMnjw4EJf665du6RNmzZiMpmkXr168tNPPzm9f958800JDg52ek//8ssvYjQa1dhy17tx40YJCwsTf39/MZvN0rx5c3Wm9oJknxeWLl0qdevWFaPRKHfffbccO3bMab1PP/1U6tatKwaDQerXry/ffPONuuxa7Shve/jtt98kNDRU9Hq91K5dW0TyT6Rmt9vlzTfflOrVq4vBYJAWLVrIn3/+qS4vznmoPCvF5ibJyckyYMAA8fT0lKCgIJk5c2a+93L2XQBCQkLEYDBI1apVpW/fvrJ37151nZEjR0qlSpUEgDqTeHG2i4iIkI4dO4rJZBI/Pz/p2bOn+llZ2OfEjbTFgmRPovjGG29IpUqVxGKxyFNPPSUZGRnqOunp6TJmzBgJDAwUk8kknTp1ku3bt6vLp0+fLo0aNRKz2SwBAQESHh4uR48eFZGC36fTpk2TqlWrikajUc8NeeO9kc/z5cuXyy3wlY6IqNzSiPAiIKrYNm/ejK5du+LUqVPqBGZEpPRSjx8//qYvKSEqj4YMGYLLly/jl19+cXcoRERUwd3wRGpEZV1mZiZOnjyJyZMno1+/fky4iYiIiIio1FXoa7rp1vbdd9+hQYMGuHLlCmbOnOnucIiIiIiI6BbE4eVERERERERELsKebiIiIiIiIiIXYdJNRERERERE5CJMuomIiIiIiIhchEk3ERERERERkYsw6SYiIiIiIiJyESbdLtS1a1eMHz9efR4SEoK5c+e6JRZ31k1U3hw7dgwajQZRUVHuDuWa8p5nbtaCBQvg5+enPp86dSpatmxZYvu/Hu6s+1ZW0u+p8mTIkCHo06eP+tydx+JW/jsQEVU0TLpLUWRkJJ5++mmX1pH3C3Np1k3kTjf6BTXvl2wAqFmzJhISEtC0adOSCc6Fli1bhunTp7ts/y+++CLWrVvnsv1n02g0+OWXX9xSN92cwj53blZZSDpd3b4AICIiAhqNBpcvXy71uomIqHTo3R1AabJarTAajW6rv3LlykUuz8rKgsFgcEvdRGWVO9qtTqdD1apVS7XOGxUQEODS/VssFlgslkKXu/Lvc626iYrjZt6j12pfrnz/u7ptExFR6anQPd1du3bFc889hwkTJiAwMBA9evQAAMyZMwfNmjWDl5cXatasidGjRyMlJQUAkJqaCh8fH/z8889O+/r999/h5eWF5OTkAutKTU3FoEGDYLFYEBwcjNmzZ+dbJ+8Qb41Gg88//xzh4eHw8vLCW2+9pdZ1++23w8PDA3Xr1sWbb74Jm82mbnf58mU8/fTTCAoKgoeHB5o2bYoVK1YgIiICQ4cOxZUrV6DRaKDRaDB16tQC6z5x4gTCw8NhsVjg4+ODfv364dy5c+ry7GGdixYtQkhICHx9ffH4448X+vqJSkph7XbDhg1o164dTCYTgoOD8fLLL6vtYsiQIdiwYQPmzZunvvePHTsGu92O4cOHo06dOjCbzWjQoAHmzZun1jV16lQsXLgQv/76q7pdREREgcPLi6o/O+6xY8di0qRJCAgIQNWqVdX2V5jIyEj06NEDgYGB8PX1RVhYGHbt2qUuj4iIgNFoxMaNG9Wy2bNnIzAwEAkJCWq9uXsDP/30U9SrVw8eHh4ICgrCI488UmQMCxYsQK1ateDp6Ym+ffvi4sWLTsvzDvHOHhnw7rvvolq1aqhfvz4A4PTp03jsscfg7++PSpUqITw8HMeOHXPa19dff40mTZqox/C5554DoJyfAKBv377QaDTq87x1OxwOTJs2DTVq1IDJZELLli2xatUqdXn2323ZsmW466674OnpiRYtWuDff/8t8hjcyorz2WW1WjFp0iRUr14dXl5euOOOOxAREQEARX7uFLVdts2bNyMsLAyenp7w9/dHz549kZSUVGibBorXFgs6h+Rlt9sxYcIE+Pn5oVKlSpg0aRJExGmdgi4Te+uttzBkyBD4+vpixIgRAIAtW7agS5cuMJvNqFmzJsaOHYvU1FR1u8zMTEyaNAk1a9aEyWRCvXr18NVXX+HYsWO46667AAD+/v7QaDQYMmRIgXUnJSVh0KBB8Pf3h6enJ+677z4cPnxYXZ494mD16tVo1KgRLBYL7r33XvVcQUREbiQ3yWG3Ff5w2Iu/rt12zXWvV1hYmFgsFpk4caIcOnRIoqOjRUTkgw8+kL///luOHj0q69atkwYNGsioUaPU7UaMGCG9evVy2lffvn1l0KBBhdY1atQoqVGjhqxZs0b27t0rDzzwgFgsFhk3bpy6Tu3ateWDDz5QnwOQKlWqyFdffSVxcXFy7NgxWbVqlfj4+MiCBQskLi5O1qxZIyEhITJ16lQREbHb7dK+fXtp0qSJrFmzRuLi4uT333+XlStXSmZmpsydO1d8fHwkISFBEhISJDk5OV/dDodDWrVqJZ07d5YdO3bI1q1bpXXr1hIWFqbGNmXKFLFYLPLQQw/Jvn375J9//pGqVavKq6++et1/BypDHA6RlJTSfzgcxQ6xoHZ76tQp8fT0lNGjR0t0dLQsX75cAgMDZcqUKSIicvnyZenQoYOMGDFCfe/bbDaxWq3yxhtvyPbt2+Xo0aOyePFi8fT0lB9++EFERJKTk6Vfv35y7733qttlZmZKfHy8AJDdu3eLiFyz/uy4fXx8ZOrUqRIbGysLFy4UjUYja9asKfS1rlu3ThYtWiQHDx6UgwcPyvDhwyUoKEiuXr2qrjNx4kSpXbu2XL58WaKiosRkMsmyZcuc6s0+z0RGRopOp5Nvv/1Wjh07Jrt27ZJ58+YVWv/WrVtFo9HIu+++KzExMTJv3jzx8/MTX19fdZ0pU6ZIixYt1OeDBw8Wi8UiAwcOlP3798u+ffskNTVV6tWrJ8OGDZO9e/fKwYMH5cknn5QGDRpIZmamiIh8+umn4uHhIXPnzpWYmBjZvn27ek5KTEwUADJ//nxJSEiQxMTEAuueM2eO+Pj4yHfffSeHDh2SSZMmicFgkNjYWBER9e/WsGFDWbFihcTExMgjjzwitWvXlqysrEKPgyuUg6YmIsX77HryySelY8eO8s8//8iRI0dk1qxZYjKZJDY2tsjPnaK2ExHZvXu3mEwmGTVqlERFRcn+/fvlo48+kvPnzxfapovbFgv67M9rxowZ4uvrKz///LPa/ry9vSU8PNxpX3k/x318fGTWrFly+PBhOXz4sOzdu1csFot88MEHEhsbK5s3b5ZWrVrJkCFD1O369esnNWvWlGXLlklcXJz89ddf8v3334vNZpOlS5cKAImJiZGEhAS5fPlygXU/+OCD0qhRI/nnn38kKipKevbsKaGhoWK1WkVEZP78+WIwGKR79+4SGRkpO3fulEaNGsmTTz55fW8KIiIqcTeddF88taXQx9ULzh90l05vLXzd8/ud1k06E5lvnesVFhYmLVu2vOZ6P/74o1SqVEl9vm3bNtHpdHL69GkRETl//rwYDAaJiIgocPvk5GQxGo3y/fffq2UXL14Us9l8zaR7/PjxTvu688475Z133nEqW7RokQQHB4uIyOrVq0Wr1UpMTEyBscyfP9/pC3NBda9Zs0Z0Op2cOHFCXX7gwAEBINu3bxcR5cuup6dnvi//d9xxR4H1UjmRkiIClP4jJaXYIRbUbl999VVp0KCBOHJlFJ988olYLBax2+3qdrnbW2FGjx4tDz/8sPp88ODBTl+yRSRf0l3c+jt37uy0n7Zt28pLL710zZiy2Ww28fb2lt9//10ty8zMlFatWkm/fv2kSZMm8tRTTzltk/t1L126VHx8fJzabVGeeOIJuffee53KHnvssWsm3UFBQWoyLSLy1Vdf5Ts+mZmZYjabZfXq1SIiUq1aNXnttdcKjQWALF++3Kksb93VqlWTt99+22mdtm3byujRo0Uk5+/2v//9T12efW4rLPFylXLQ1Ir12XXkyBHRaDTq52G2bt26ySuvvCIiBX/uFGe7J554Qjp16lRofAW16eK2xeJ89gcHB8t7772nPs/KypIaNWpcM+nu06eP034GDhwoTz/9tFPZxo0bRavVSnp6usTExAgAWbt2bYFxrF+/XgBIUlKSU3nuumNjYwWAbN68WV1+4cIFMZvN8uOPP4qI8ncAIEeOHFHX+eSTTyQoKOiax4KIiFyrQg8vB4A2bdrkK1u/fj169OiB6tWrw9vbG4MGDcLFixfVoWDt2rVDkyZN8M033wAAFi1ahFq1aqFLly4F1hEXFwer1YoOHTqoZQEBAWjQoMF1x7dz505MmzZNvZbRYrFgxIgRSEhIQFpaGqKiolCjRg11SOeNiI6ORs2aNVGzZk21rHHjxvDz80N0dLRaFhISAm9vb/V5cHAwEhMTb7heouLK2y6io6PRoUMHaDQataxTp05ISUnBqVOnitzX559/jjZt2qBy5cqwWCz48ssvceLEieuKp7j1N2/e3Gm7a7WZxMREjBw5EvXr14evry98fX2RkpLiFJ/RaMTixYuxdOlSpKenF3kXgh49eqB27dqoW7cuBg4ciCVLliAtLe2aryu3vM8L0qxZM6frWHfu3IkjR47A29tbPW8FBAQgIyMDcXFxSExMxJkzZ9CtW7dr7rswV69exZkzZ9CpUyen8k6dOjmdtwDnv0NwcDAA8NxVgOJ8du3atQsigvr16zt9Lm3YsAFxcXGF7rs420VFRV33e6K4bbGgz/7crly5goSEBKfXrtfrr7ldQfveuXMnFixY4PQ6e/bsCYfDgfj4eERFRUGn0yEsLKy4LzOf6Oho6PV63HHHHWpZpUqV0KBBA6f3v6enJ2677Tb1OT+3iYjKhpueSM0/uF3hC3N9KAKAX9Vrf5hl8w1qdaMhOfHy8nJ6fvz4cfTq1QsjR47E9OnTERAQgE2bNmH48OHIyspS13vqqafw8ccf4+WXX8b8+fMxdOhQpw/53CTPNWA3E5/D4cCbb76Jhx56KN+6Hh4eMJvNN1xXNhEp8LXkLc87qZtGo4HD4bjp+smNPD2B/+YvKPV6r0PedlHQeza73RXWLgHgxx9/xPPPP4/Zs2ejQ4cO8Pb2xqxZs7Bt27briqe49V9vmxkyZAjOnz+PuXPnonbt2jCZTOjQoQOsVqvTelu2bAEAXLp0CZcuXcp3fLJ5e3tj165diIiIwJo1a/DGG29g6tSpiIyMLHB26Rs9dxV03rr99tuxZMmSfOtWrlwZWm3J/b5b0N8hb1nuv0P2stI+d5WHplacv7/D4YBOp8POnTuh0+mclhU1yV1xtruRz7PitsXC2khJKOj9/8wzz2Ds2LH51q1VqxaOHDly03UW9rcqzuf2zXxHISKiknHTSbdGq7v2Si5e93rs2LEDNpsNs2fPVr8I/vjjj/nWGzBgACZNmoQPP/wQBw4cwODBgwvdZ2hoKAwGA7Zu3YpatWoBUCY8iY2Nve5ftlu3bo2YmBiEhoYWuLx58+Y4deoUYmNjC+ztNhqNsNvtRdbRuHFjnDhxAidPnlR7uw8ePIgrV66gUaNG1xUvlTMaDeDCL6Ou0rhxYyxdutTpC+aWLVvg7e2N6tWrAyj4vb9x40Z07NgRo0ePVsvy9s4Vt81cq/4bsXHjRnz66afo1asXAODkyZO4cOGC0zpxcXF4/vnn8eWXX+LHH3/EoEGDsG7dukITWb1ej+7du6N79+6YMmUK/Pz88Pfffxf4Q17jxo2xdetWp7K8z4ujdevW+OGHH1ClShX4+PgUuE5ISAjWrVunThqVl8FgKPLv4OPjg2rVqmHTpk1Oo462bNmCdu2K+PHXTcpDUyvOZ1erVq1gt9uRmJiIO++8s8D9FNSGirNd8+bNsW7dOrz55pvF3m9JtUVfX18EBwdj69at6vvJZrNh586daN26dbH3Ayjv/wMHDhT6ud2sWTM4HA5s2LAB3bt3z7c8e9RIUe//xo0bw2azYdu2bejYsSMA4OLFi4iNjeXnNhFROVDhh5fnddttt8Fms+Gjjz7C0aNHsWjRInz++ef51vP398dDDz2EiRMn4p577kGNGjUK3afFYsHw4cMxceJErFu3Dvv378eQIUNuqHfnjTfewDfffIOpU6fiwIEDiI6Oxg8//IDXX38dABAWFoYuXbrg4Ycfxtq1axEfH48///xTncE3JCQEKSkpWLduHS5cuFDg0NLu3bujefPm6N+/P3bt2oXt27dj0KBBCAsLK9bQOqLSNnr0aJw8eRJjxozBoUOH8Ouvv2LKlCmYMGGC2s5CQkKwbds2HDt2DBcuXIDD4UBoaCh27NiB1atXIzY2FpMnT0ZkZKTTvkNCQrB3717ExMTgwoULTiNerqf+GxEaGopFixYhOjoa27ZtQ//+/Z16/+x2OwYOHIh77rkHQ4cOxfz587F///4CZ5gGgBUrVuDDDz9EVFQUjh8/jm+++QYOh6PQS13Gjh2LVatWYebMmYiNjcXHH3/sNBt4cfXv3x+BgYEIDw/Hxo0bER8fjw0bNmDcuHHqkN+pU6di9uzZ+PDDD3H48GHs2rULH330kbqP7KT87NmzSEpKKrCeiRMnYsaMGfjhhx8QExODl19+GVFRURg3btx1x0zF++yqX78++vfvj0GDBmHZsmWIj49HZGQkZsyYgZUrVwIo+HOnONu98soriIyMxOjRo7F3714cOnQIn332mfrDU0FtuiTb4rhx4/Dee+9h+fLlOHToEEaPHp3vXtnF8dJLL+Hff//Fs88+i6ioKBw+fBi//fYbxowZo76OwYMHY9iwYfjll18QHx+PiIgI9Qf/2rVrQ6PRYMWKFTh//rx6N5Xc6tWrh/DwcIwYMQKbNm3Cnj17MGDAAFSvXh3h4eHXHTMREZWy0r2EvHQVNrHSnDlzJDg4WMxms/Ts2VO++eabAicxWbdunQBQJykpSnJysgwYMEA8PT0lKChIZs6cWeAELHknUss7cZCIyKpVq6Rjx45iNpvFx8dH2rVrJ1988YW6/OLFizJ06FCpVKmSeHh4SNOmTWXFihXq8pEjR0qlSpUEgDqja966jx8/Lg8++KB4eXmJt7e3PProo3L27Fl1ed4JjESUWd9r1659zWNBdDMKa7cRERHStm1bMRqNUrVqVXnppZecZqSOiYmR9u3bi9lsFgASHx8vGRkZMmTIEPH19RU/Pz8ZNWqUvPzyy07v7cTEROnRo4dYLBYBIOvXr883kVpx6i8o7vDwcBk8eHChr3XXrl3Spk0bMZlMUq9ePfnpp5+c2uqbb74pwcHBcuHCBXWbX375RYxGoxpb7no3btwoYWFh4u/vL2azWZo3b67O1F6Yr776SmrUqCFms1l69+4t77///jUnUss78ZyISEJCggwaNEgCAwPFZDJJ3bp1ZcSIEXLlyhV1nc8//1waNGggBoNBgoODZcyYMeqy3377TUJDQ0Wv16vnmbx12+12efPNN6V69epiMBikRYsW8ueff6rLC/q7JSUlqX9Xyq84n13ZdwEICQkRg8EgVatWlb59+8revXvVdQr63CnOdhEREdKxY0cxmUzi5+cnPXv2VD+LC2rT2dtcb1ssSFZWlowbN058fHzEz89PJkyYIIMGDbrmRGq5P0uzbd++XT2PeHl5SfPmzZ0m/UtPT5fnn39egoODxWg0SmhoqHz99dfq8mnTpknVqlVFo9Go54y8dV+6dEkGDhwovr6+6veX7JngRQqe0G758uVSwb/qERGVCxoRXuxTmCVLlmDcuHE4c+aM06RBRERERERERMVx09d0V0RpaWmIj4/Hu+++i2eeeYYJNxEREREREd2QW+6a7uKYOXMmWrZsiaCgILzyyivuDoeIiIiIiIjKKQ4vJyIiIiIiInIR9nQTERERERERuQiTbiIiIiIiIiIXYdJNRERERERE5CJMuomIiIiIiIhchEk3ERERERERkYsw6SYiIiIiIiJyESbdRFSmdO3aFePHj3d3GES3LLZBIiKiksWkm4jKlGXLlmH69OnuDuOWdOzYMWg0GkRFRbk7FConFixYAD8/vxLfLxN/IiKqSPTuDoCIKLeAgAB3h0DXYLVaYTQa3R0G0TXxvUpERGUBe7qJqEzJ28MVEhKCt956C4MGDYLFYkHt2rXx66+/4vz58wgPD4fFYkGzZs2wY8cOdZuLFy/iiSeeQI0aNeDp6YlmzZrhu+++c6onOTkZ/fv3h5eXF4KDg/HBBx/kq9tqtWLSpEmoXr06vLy8cMcddyAiIqLI+A8dOoTOnTvDw8MDjRs3xl9//QWNRoNffvlFXef06dN47LHH4O/vj0qVKiE8PBzHjh1TlzscDkybNg01atSAyWRCy5YtsWrVKnV5do/0jz/+iDvvvBNmsxlt27ZFbGwsIiMj0aZNG1gsFtx77704f/68U3zz589Ho0aN4OHhgYYNG+LTTz9Vl9WpUwcA0KpVK2g0GnTt2hUAMGTIEPTp0wfvvvsuqlWrhvr162PatGlo1qxZvtd/++2344033ijyGFHZkZqaqrat4OBgzJ4922l5UW0gIiICQ4cOxZUrV6DRaKDRaDB16tRrbpdt8+bNCAsLg6enJ/z9/dGzZ08kJSVhyJAh2LBhA+bNm6fuN7t9bNiwAe3atYPJZEJwcDBefvll2Gw2dZ9du3bFc889hwkTJiAwMBA9evRw1aEjIiIqPiGiW09KivJwOHLKMjOVsoyMgte123PKrFalLD392utep7CwMBk3bpz6vHbt2hIQECCff/65xMbGyqhRo8Tb21vuvfde+fHHHyUmJkb69OkjjRo1Esd/r+fUqVMya9Ys2b17t8TFxcmHH34oOp1Otm7dqu73qaeektq1a8tff/0l+/btk759+4q3t7dT3U8++aR07NhR/vnnHzly5IjMmjVLTCaTxMbGFhi73W6XBg0aSI8ePSQqKko2btwo7dq1EwCyfPlyERFJTU2VevXqybBhw2Tv3r1y8OBBefLJJ6VBgwaSmZkpIiJz5swRHx8f+e677+TQoUMyadIkMRgMar3x8fECQBo2bCirVq2SgwcPSvv27aV169bStWtX2bRpk+zatUtCQ0Nl5MiRanxffPGFBAcHy9KlS+Xo0aOydOlSCQgIkAULFoiIyPbt2wWA/PXXX5KQkCAXL14UEZHBgweLxWKRgQMHyv79+2Xfvn1y8uRJ0Wq1sn37dnX/e/bsEY1GI3FxcTf41694ynBTExGRUaNGSY0aNWTNmjWyd+9eeeCBB8RisajtoKg2kJmZKXPnzhUfHx9JSEiQhIQESU5OvuZ2IiK7d+8Wk8kko0aNkqioKNm/f7989NFHcv78ebl8+bJ06NBBRowYoe7XZrPJqVOnxNPTU0aPHi3R0dGyfPlyCQwMlClTpqivJywsTCwWi0ycOFEOHTok0dHRN3eAiIiISgCTbqJbEaA8EhNzyt56Syl76inndT09lfL4+JyyDz5Qyp580nndwEClfP/+Gw6toKR7wIAB6vOEhAQBIJMnT1bL/v33XwEgCQkJhe63V69e8sILL4iIyNWrV8VgMMhPP/2kLr98+bJ4enqqdR85ckQ0Go2cPn3aaT/dunWTV155pcA6/vzzT9Hr9U5xrF271inp/uqrr6RBgwbqDwQiIpmZmWI2m2X16tUiIlKtWjV5++23nfbdtm1bGT16tIjkJN3/+9//1OXfffedAJB169apZe+++640aNBAfV6zZk359ttvnfY7ffp06dChg9N+d+/e7bTO4MGDJSgoSP1RINt9990no0aNUp+PHz9eunbtWuCxuVWV4aYmycnJYjQa5fvvv1fLLl68KGazWcaNG1esNjB//nzx9fV1Wl6c7Z544gnp1KlTobHlPQ+IiLz66qv52s4nn3wiFotF7P/9+hAWFiYtW7Ys3gEgIiIqJbymm4jKvObNm6v/DwoKAgCnoc3ZZYmJiahatSrsdjvee+89/PDDDzh9+jQyMzORmZkJLy8vAMDRo0eRlZWFdu3aqfvw9fVFgwYN1Oe7du2CiKB+/fpOsWRmZqJSpUoFxhkTE4OaNWuiatWqalnuOgBg586dOHLkCLy9vZ3KMzIyEBcXh6tXr+LMmTPo1KmT0/JOnTphz549131cEhMTAQDnz5/HyZMnMXz4cIwYMUJdx2azwdfXt8DXk1uzZs3yXRs7YsQIDBs2DHPmzIFOp8OSJUvyDU+msisuLg5WqxUdOnRQywICAtR2cCNtoLjbRUVF4dFHH72ueKOjo9GhQwdoNBq1rFOnTkhJScGpU6dQq1YtAECbNm2ua79ERESuxqSb6FaUkqL86+mZUzZxIjB+PKDPc1r4L2mD2ZxT9uyzwIgRgE7nvG72dcm51y0BBoNB/X/2F+6CyhwOBwBg9uzZ+OCDDzB37lw0a9YMXl5eGD9+PKxWKwBARJy2y5Zdnr0vnU6HnTt3QpfndVoslgLjFJF8+8zL4XDg9ttvx5IlS/Itq1y5cr7XVNS+i3Ncso9J9r9ffvkl7rjjDqf95H19Bcn+wSK33r17w2QyYfny5TCZTMjMzMTDDz98zX3dSspyU8v9fi/IjbSB4m5nvoHAC2oDBbXlgt6rRERE7sSkm+hWVNCXUqNReRRnXYNBeRRnXTfYuHEjwsPDMWDAAABKEnD48GE0atQIAHDbbbfBYDBg+/btqFmzJgDg6tWrOHz4MMLCwgAok4nZ7XYkJibizjvvLFa9DRs2xIkTJ3Du3Dm15zkyMtJpndatW+OHH35AlSpV4OPjU+B+qlWrhk2bNqFLly5q2ZYtW/L1ml+PoKAgVK9eHUePHkX//v0LXCe7J9tutxdrn3q9HoMHD8b8+fNhMpnw+OOPwzN3dklluqmFhobCYDBg69atai9xUlISYmNjERYWVqw2YDQa871firNd8+bNsW7dOrz55pvF3m/jxo2xdOlSp+R7y5Yt8Pb2RvXq1a/rtRMREZUmzl5ORBVOaGgo1q5diy1btiA6OhrPPPMMzp49qy739vbG4MGDMXHiRKxfvx4HDhzAsGHDoNVq1S/z9evXR//+/TFo0CAsW7YM8fHxiIyMxIwZM7By5coC6+3Rowduu+02DB48GHv37sXmzZvx2muvAcjpievfvz8CAwMRHh6OjRs3Ij4+Hhs2bMC4ceNw6tQpAMDEiRMxY8YM/PDDD4iJicHLL7+MqKgojBs37qaOy9SpU/Huu+9i3rx5iI2Nxb59+zB//nzMmTMHAFClShWYzWasWrUK586dw5UrV665z6eeegp///03/vzzTwwbNuym4qPSZbFYMHz4cEycOBHr1q3D/v37MWTIEGi1yleD4rSBkJAQpKSkYN26dbhw4QLS0tKKtd0rr7yCyMhIjB49Gnv37sWhQ4fw2Wef4cKFC+p+t23bhmPHjuHChQtwOBwYPXo0Tp48iTFjxuDQoUP49ddfMWXKFEyYMEGNmYiIqCzipxQRVTiTJ09G69at0bNnT3Tt2hVVq1ZFnz59nNaZM2cOOnTogAceeADdu3dHp06d1FtpZZs/fz4GDRqEF154AQ0aNMCDDz6Ibdu2qb3jeel0Ovzyyy9ISUlB27Zt8dRTT+H1118HAHW/np6e+Oeff1CrVi089NBDaNSoEYYNG4b09HS153vs2LF44YUX8MILL6BZs2ZYtWoVfvvtN9SrV++mjstTTz2F//3vf1iwYAGaNWuGsLAwLFiwQL1VmF6vx4cffoj/+7//Q7Vq1RAeHn7NfdarVw8dO3ZEgwYN8g1bp7Jv1qxZ6NKlCx588EF0794dnTt3xu23364uv1Yb6NixI0aOHInHHnsMlStXxsyZM4u1Xf369bFmzRrs2bMH7dq1Q4cOHfDrr79C/9+Y+xdffBE6nQ6NGzdG5cqVceLECVSvXh0rV67E9u3b0aJFC4wcORLDhw9X2xgREVFZpZFrXdRFRHQLSE1NRfXq1TF79mwMHz68xPa7efNmdO7cGUeOHMFtt91WYvstK0QEDRs2xDPPPIMJEya4OxwiIiKiMofXdBPRLWn37t04dOgQ2rVrhytXrmDatGkAUKze3aIsX74cFosF9erVw5EjRzBu3Dh06tSpQibciYmJWLRoEU6fPo2hQ4e6OxwiIiKiMolJNxHdst5//33ExMTAaDTi9ttvx8aNGxEYGHhT+0xOTsakSZNw8uRJBAYGonv37hX2NlpBQUEIDAzEF198AX9/f3eHQ0RERFQmcXg5ERERERERkYtwIjUiIiIiIiIiF2HSTUREREREROQiTLqJiIiIiIiIXIRJNxEREREREZGLMOkmIiIiIiIichEm3UREREREREQuwqSbiMq8rl27Yvz48e4O47pMnToVLVu2vK5tSup1Xrx4EVWqVMGxY8duel8l5UaOR14rVqxAq1at4HA4SiYoKhDb2/W5kfa2YMEC+Pn53XTd2Y4dOwaNRoOoqKgb3kdmZiZq1aqFnTt3llhcRESkYNJNRBVOREQENBoNLl++7LYYXnzxRaxbt+66tlm2bBmmT59+03W/++676N27N0JCQm56X6XpxIkT6N27N7y8vBAYGIixY8fCarWqyx944AFoNBp8++23boyS8mJ7u/729thjjyE2Nvam674eIoKpU6eiWrVqMJvN6Nq1Kw4cOKAuN5lMePHFF/HSSy+ValxERLcCJt1ElN8PPwBvv130Om+/raxHTkQENpsNFosFlSpVuq5tAwIC4O3tfVP1p6en46uvvsJTTz11U/spbXa7Hffffz9SU1OxadMmfP/991i6dCleeOEFp/WGDh2Kjz76yE1Rugab240rr+3NbDajSpUqN1X39Zo5cybmzJmDjz/+GJGRkahatSp69OiB5ORkdZ3+/ftj48aNiI6OLtXYiIgqOibdRJTfkSPA668DhfUCTZ+uLD9ypMSrTk1NxaBBg2CxWBAcHIzZs2fnW2fx4sVo06YNvL29UbVqVTz55JNITEwEoAyzvOuuuwAA/v7+0Gg0GDJkCABg1apV6Ny5M/z8/FCpUiU88MADiIuLKzKezMxMjB07FlWqVIGHhwc6d+6MyMhIdXl2L9/q1avRpk0bmEwmbNy4Md9wV5vNhrFjx6p1v/TSSxg8eDD69OmjrpN3uGtISAjeeecdDBs2DN7e3qhVqxa++OKLIuP9888/odfr0aFDBwCAw+FAjRo18Pnnnzutt2vXLmg0Ghw9ehSA0sscHh4Oi8UCHx8f9OvXD+fOnQMAHDp0CJ6enk49zMuWLYOHhwf27dsHALhy5QqefvppVKlSBT4+Prj77ruxZ8+eImPNbc2aNTh48CAWL16MVq1aoXv37pg9eza+/PJLXL16VV3vwQcfxPbt29W4KwI3Nje2txJub7lj/OOPP9CiRQt4eHjgjjvuUNsK4Dy8XETQvXt33HvvvRARAMDly5dRq1YtvPbaa+o28+fPR6NGjeDh4YGGDRvi008/LTK23EQEc+fOxWuvvYaHHnoITZs2xcKFC5GWlubUritVqoSOHTviu+++K/a+iYjo2ph0E1F+r70GTJsGvPFG/kxg+nSlfNo0Zb0SNnHiRKxfvx7Lly/HmjVrEBERke8aQ6vViunTp2PPnj345ZdfEB8fr37Rr1mzJpYuXQoAiImJQUJCAubNmwdASTAmTJiAyMhIrFu3DlqtFn379i3yGuFJkyZh6dKlWLhwIXbt2oXQ0FD07NkTly5dyrfeu+++i+joaDRv3jzffmbMmIElS5Zg/vz52Lx5M65evYpffvnlmsdj9uzZaNOmDXbv3o3Ro0dj1KhROHToUKHr//PPP2jTpo36XKvV4vHHH8eSJUuc1vv222/RoUMH1K1bFyKCPn364NKlS9iwYQPWrl2LuLg4PPbYYwCAhg0b4v3338fo0aNx/PhxnDlzBiNGjMB7772HZs2aQURw//334+zZs1i5ciV27tyJ1q1bo1u3bvmOU2H+/fdfNG3aFNWqVVPLevbsiczMTKe/f+3atVGlShVs3LixWPstD9zY3Nje8rjZ9pbbxIkT8f777yMyMhJVqlTBgw8+iKysrHzraTQaLFy4ENu3b8eHH34IABg5ciSCgoIwdepUAMCXX36J1157DW+//Taio6PxzjvvYPLkyVi4cOE1XxMAxMfH4+zZs7jnnnvUMpPJhLCwMGzZssVp3Xbt2lWo9kVEVCYIEVFhpk0TAZR/C3pewpKTk8VoNMr333+vll28eFHMZrOMGzeu0O22b98uACQ5OVlERNavXy8AJCkpqcj6EhMTBYDs27evwOUpKSliMBhkyZIlapnVapVq1arJzJkzner65ZdfnLadMmWKtGjRQn0eFBQks2bNUp/bbDapVauWhIeHq2VhYWFOr7N27doyYMAA9bnD4ZAqVarIZ599VuhrCg8Pl2HDhjmV7dq1SzQajRw7dkxEROx2u1SvXl0++eQTERFZs2aN6HQ6OXHihLrNgQMHBIBs375dLbv//vvlzjvvlG7dukmPHj3E4XCIiMi6devEx8dHMjIynOq97bbb5P/+7/8KPB55jRgxQnr06JGv3Gg0yrfffutU1qpVK5k6dWqh+yqvSrm5sb25qL1lx1jQcf3hhx9ERGT+/Pni6+vrtN2PP/4oJpNJXnnlFfH09JSYmBh1Wc2aNfO1g+nTp0uHDh1ERCQ+Pl4AyO7duwuMc/PmzQJATp8+7VQ+YsQIueeee5zK5s2bJyEhIYW+ZiIiun7s6Saiwk2enNMFZzLldLlNnuyS6uLi4mC1Wp2GagYEBKBBgwZO6+3evRvh4eGoXbs2vL290bVrVwDKEOlr7f/JJ59E3bp14ePjgzp16hS5XVxcHLKystCpUye1zGAwoF27dvmueSystwtQhl6fO3cO7dq1U8t0Oh1uv/32IuMF4NSLp9FoULVqVXVob0HS09Ph4eHhVNaqVSs0bNhQHTK6YcMGJCYmol+/fgCA6Oho1KxZEzVr1lS3ady4Mfz8/Jxe59dff429e/di165dWLBgATQaDQBg586dSElJQaVKlWCxWNRHfHz8NYcT55a9v9xEJF+52WxGWlpasfdbXpRyc2N7K0BJtLdsBR3Xoq6VfvTRR/HQQw/h3XffxezZs1G/fn0AwPnz53Hy5EkMHz7cqX299dZb19W+sl9TbrdS+yIicie9uwMgojJu8mTgrbcAqxUwGl2XAQDq9YxFSU1NxT333IN77rkHixcvRuXKlXHixAn07NnTaabrgvTu3Rs1a9bEl19+iWrVqsHhcKBp06aFbpcdT3G+qHp5eV0z9oL2cy0GgyHfPooanhsYGIikpKR85f3798e3336Ll19+Gd9++y169uyJwMBANY7iJLx79uxBamoqtFotzp49qw4FdzgcCA4ORkRERL59FPe2SFWrVsW2bducypKSkpCVlYWgoCCn8kuXLqFy5crF2m95U4rNje2tACXV3oobU25paWnYuXMndDodDh8+rJZn1//ll1/ijjvucNpGp9MVq96qVasCAM6ePYvg4GC1PDEx8ZZqX0RE7sKebiIq2vTpORmA1Vr4bE8lIDQ0FAaDAVu3blXLkpKSnG6tc+jQIVy4cAHvvfce7rzzTjRs2DBfT5TRaASgzIid7eLFi4iOjsbrr7+Obt26oVGjRtf8shwaGgqj0YhNmzapZVlZWdixYwcaNWpU7Nfl6+uLoKAgbN++XS2z2+3YvXt3sfdRXK1atcLBgwfzlT/55JPYt28fdu7ciZ9//hn9+/dXlzVu3BgnTpzAyZMn1bKDBw/iypUr6uu8dOkShgwZgtdeew1Dhw5F//79kZ6eDgBo3bo1zp49C71ej9DQUKdHdmJ/LR06dMD+/fuRkJCglq1ZswYmk8mphzIjIwNxcXFo1arV9R2YcqIUmxvbWwkorL0BKPC4NmzYsNB9vfDCC9Bqtfjzzz/x4Ycf4u+//wYABAUFoXr16jh69Gi+9pU9euBa6tSpg6pVq2Lt2rVqmdVqxYYNG9CxY0endffv319h2xcRkbsw6SaiwuWexSkzs/DZnkqIxWLB8OHDMXHiRKxbtw779+/HkCFDoNXmnKpq1aoFo9GIjz76CEePHsVvv/2W7167tWvXhkajwYoVK3D+/HmkpKTA398flSpVwhdffIEjR47g77//xoQJE4qMx8vLC6NGjcLEiROxatUqHDx4ECNGjEBaWhqGDx9+Xa9tzJgxePfdd/Hrr78iJiYG48aNQ1JSUpE9XzeiZ8+eOHDgQL4Ep06dOujYsSOGDx8Om82G8PBwdVn37t3RvHlz9O/fH7t27cL27dsxaNAghIWFqcN4R44ciZo1a+L111/HnDlzICJ48cUX1e07dOiAPn36YPXq1Th27Bi2bNmC119/HTt27ChW3Pfccw8aN26MgQMHYvfu3Vi3bh1efPFFjBgxAj4+Pup6W7duhclkchq6W1GUcnNjeysBhbU3AJg2bZrTcQ0MDHSaPT23P/74A19//TWWLFmCHj164OWXX8bgwYPV/U6dOhXvvvsu5s2bh9jYWOzbtw/z58/HnDlzihWnRqPB+PHj8c4772D58uVqTJ6ennjyySed1t24caPThGtERFQC3HIlORGVfYXN4lQKk6kNGDBAPD09JSgoSGbOnJlvwqNvv/1WQkJCxGQySYcOHeS3337LN4nQtGnTpGrVqqLRaGTw4MEiIrJ27Vpp1KiRmEwmad68uURERAgAWb58eaHxpKeny5gxYyQwMFBMJpN06tTJaXKxwiaRyjuxU1ZWljz33HPi4+Mj/v7+8tJLL8mjjz4qjz/+uLpOQRM7ffDBB077bdGihUyZMqXIY9i+fXv5/PPP85V/8sknAkAGDRqUb9nx48flwQcfFC8vL/H29pZHH31Uzp49KyIiCxcuFC8vL4mNjVXX37FjhxiNRvnjjz9EROTq1asyZswYqVatmhgMBqlZs6b0799fnZztWhOpZcdw//33i9lsloCAAHnuuefyTc729NNPyzPPPFPkfsojNzU3tjcXtLfsGH///Xdp0qSJGI1Gadu2rURFRanr5J5ILTExUYKCguSdd95xir9du3bSr18/tWzJkiXSsmVLMRqN4u/vL126dJFly5aJyLUnUhNRJoabMmWKVK1aVUwmk3Tp0iXfpHZbtmwRPz8/SUtLK/I1ExHR9dGIFOMiJyK6tbz9tnJj4MJmccruknvrLdfcx+gW4HA40KhRI/Tr1y9fz+HNWrlyJV588UXs37/fqdeyvDt//jwaNmyIHTt2FHtYbXnA5uZ6pdneIiIicNdddyEpKanYcxqUFY8++ihatWqFV1991d2hEBFVKJxIjYjyCw0t+hv+5MmAVqusR8Vy/PhxrFmzBmFhYcjMzMTHH3+M+Pj4fEM7S0KvXr1w+PBhnD592mlG8vIuPj4en376aYVKuAE2N1dge7t+mZmZaNGiBZ5//nl3h0JEVOGwp5uIqBScPHkSjz/+OPbv3w8RQdOmTfHee++hS5cu7g6NqMJxZ3srzz3dRETkGky6iYiIiIiIiFyk4lzsR0RERERERFTGMOkmIiIiIiIichEm3UREREREREQuwqSbiIiIiIiIyEWYdBMRERERERG5CJNuIiIiIiIiIhdh0k1ERERERETkIky6iYgK0LVrV4wfP97tdbszjtKuf968eahTpw48PT3Rp08fXLlypVTqJSIiInIlvbsDICIqKV27dkXLli0xd+7cm95u2bJlMBgMJRvgDSitOAo7dqVV/6uvvoqffvoJCxcuhMViQd++ffHmm29izpw5Lq+biIiIyJXY001EZZ7Vai31OgMCAuDt7V3q9V5vHK4+NqVxHCIjIzFjxgz88MMP6NKlC1q3bo1nnnkGK1ascGm9RERERKWBSTfRrSg1tfBHRkbx101Pv/a6N6Br16547rnnMGHCBAQGBqJHjx7IzMzE2LFjUaVKFXh4eKBz586IjIxUtxkyZAg2bNiAefPmQaPRQKPR4NixY1i1ahU6d+4MPz8/VKpUCQ888ADi4uKuuV3eYdXXqr9r164YO3YsJk2ahICAAFStWhVTp0695mtNTU3FoEGDYLFYEBwcjNmzZ+c7FrnjKOjYAICIYObMmahbty7MZjNatGiBn3/+2WlfDocDM2bMQGhoKEwmE2rVqoW333670GNQUP2uOA7vv/8+7r77brRu3Votq1y5Mi5cuHDN40dERERU1jHpJroVWSyFPx5+2HndKlUKX/e++5zXDQnJv84NWrhwIfR6PTZv3oz/+7//w6RJk7B06VIsXLgQu3btQmhoKHr27IlLly4BUK4H7tChA0aMGIGEhAQkJCSgZs2aSE1NxYQJExAZGYl169ZBq9Wib9++cDgcRW6X17Xqz47Zy8sL27Ztw8yZMzFt2jSsXbu2yNc5ceJErF+/HsuXL8eaNWsQERGBnTt3XtexAYDXX38d8+fPx2effYYDBw7g+eefx4ABA7BhwwZ1u1deeQUzZszA5MmTcfDgQXz77bcICgoq9jFwxXHIzMzE77//jr59+zqVp6enw9fXt8jjQERERFQuCBHdeoDCH716Oa/r6Vn4umFhzusGBuZf5waEhYVJy5Yt1ecpKSliMBhkyZIlapnVapVq1arJzJkznbYbN25ckftOTEwUALJv374it8tdVpz6w8LCpHPnzk77aNu2rbz00kuFxpKcnCxGo1G+//57tezixYtiNpvVuvPGlvfYZMfn4eEhW7ZscSofPny4PPHEEyIicvXqVTGZTPLll18WGEthx87Vx2HLli0CQDw8PMTLy0t9GI1G6dmzZ4HbEBEREZUnnEiN6FaUklL4Mp3O+XliYuHravMMlvlvSHJJaNOmjfr/uLg4ZGVloVOnTmqZwWBAu3btEB0dXeR+4uLiMHnyZGzduhUXLlxQe7hPnDiBpk2bFiuW4tbfvHlzp+2Cg4ORWMTxi4uLg9VqRYcOHdSygIAANGjQoMh4ch8bADh48CAyMjLUoebZrFYrWrVqBQCIjo5GZmYmunXrVuS+i+KK4xAbGwsPDw/s27fPqfzBBx90qoeIiIiovGLSTXQr8vJy/7rX3FXOvkQEAKDRaJzWEZF8ZXn17t0bNWvWxJdffolq1arB4XCgadOm1zUBWXHrzzvLt0ajUZP8ovZ7vbzyHOfsOv744w9Ur17daZnJZAIAmM3mG6orN1cch6tXr6JKlSoIDQ1Vy06cOIFDhw7h4byXOhARERGVQ7ymm4jKvNDQUBiNRmzatEkty8rKwo4dO9CoUSO1zGg0wm63q88vXryI6OhovP766+jWrRsaNWqEpKSkfPvPu92N1n8jr8tgMGDr1q1qWVJSEmJjY69rP40bN4bJZMKJEycQGhrq9Mi+NrtevXowm81Yt25dgfu41jHIjrekj0NgYCCuXr3q9APE22+/jV69eqFx48Y3tE8iIiKisoQ93URU5nl5eWHUqFGYOHEiAgICUKtWLcycORNpaWkYPny4ul5ISAi2bduGY8eOwWKxICAgAJUqVcIXX3yB4OBgnDhxAi+//HK+/Re03Y3Uf70sFguGDx+OiRMnolKlSggKCsJrr70Gbd5h+9fg7e2NF198Ec8//zwcDgc6d+6Mq1evYsuWLbBYLBg8eDA8PDzw0ksvYdKkSTAajejUqRPOnz+PAwcOYPjw4QUeg7xxuOI43H333cjIyMB7772HJ554At9++y1+++03bN++/Yb2R0RERFTWMOkmonLhvffeg8PhwMCBA5GcnIw2bdpg9erV8Pf3V9d58cUXMXjwYDRu3Bjp6emIj4/H999/j7Fjx6Jp06Zo0KABPvzwQ3Tt2tVp3wVtdyP134hZs2YhJSUFDz74ILy9vfHCCy/gypUr172f6dOno0qVKnj33Xdx9OhR+Pn5oXXr1nj11VfVdSZPngy9Xo833ngDZ86cQXBwMEaOHAmg4GMQEhKSr56SPg5BQUFYsGABJk6ciOnTp+Puu+/Gpk2bCp09nYiIiKi80ciNXlRIREREREREREXiNd1ERERERERELsKkm4iIiIiIiMhFmHQTERERERERuQiTbiIiIiIiIiIXYdJNRERERERE5CJMuomIiIiIiIhchEk3ERERERERkYsw6SYiIiIiIiJyESbdRERERERERC7CpJuIiIiIiIjIRZh0ExEREREREbkIk24iIiIiIiIiF2HSTUREREREROQiTLqJiIiIiIiIXIRJNxEREREREZGLMOkmIiIiIiIichEm3UREREREREQuwqSbiIiIiIiIyEWYdBMRERERERG5CJNuIiIiIiIiIhdh0k1ERERERETkIky6iYiIiIiIiFyESTcRERERERGRizDpJiIiIiIiInIRJt1ERERERERELsKkm4iIiIiIiMhFmHQTERERERERuQiTbiIiIiIiIiIXYdJNRERERERE5CJMuomIiIiIiIhchEk3ERERERERkYsw6SYiIiIiIiJyESbdRERERERERC7CpJuIiIiIiIjIRZh0ExEREREREbkIk24iIiIiIiIiF2HSTUREREREROQiTLqJiIiIiIiIXIRJNxEREREREZGLMOkmIiIiIiIichEm3UREREREREQuwqSbiIiIiIiIyEWYdBMRERERERG5CJNuIiIiIiIiIhdh0k1ERERERETkIky6iYiIiIiIiFyESTcRERERERGRizDpJiIiIiIiInIRJt1ERERERERELsKkm4iIiIiIiMhFmHQTERERERERuQiTbiIiIiIiIiIXYdJNRERERERE5CJMuomIiIiIiIhchEk3ERERERERkYsw6SYiIiIiIiJyESbdRERERERERC7CpJuIiIiIiIjIRZh0ExEREREREbkIk24iIiIiIiIiF2HSTUREREREROQiTLqJiIiIiIiIXIRJNxEREREREZGLMOkmIiIiIiIichEm3UREREREREQuwqSbiIiIiIiIyEWYdBMRERERERG5CJNuIiIiIiIiIhdh0k1ERERERETkIky6iYiIiIiIiFyESTcRERERERGRizDpJiIiIiIiInIRJt1ERERERERELsKkm4iIiIiIiMhFmHQTERERERERuQiTbiIiIiIiIiIXYdJNRERERERE5CJMuomIiIiIiIhchEk3ERERERERkYsw6SYiIiIiIiJyESbdRERERERERC7CpJuIiIiIiIjIRZh0ExEREREREbkIk24iIiIiIiIiF2HSTUREREREROQiTLqJiIiIiIiIXIRJNxEREREREZGLMOkmIiIiIiIichEm3UREREREREQuwqSbiIiIiIiIyEWYdBMRERERERG5CJNuIiIiIiIiIhdh0k1ERERERETkIky6iYiIiIiIiFyESTcRERERERGRi+jdHQARERERUUFEBA5bOmxZqdBotDCaK8FmAzQaQKtV/iUiKuvY001EREREZYLdlglr+kWkXTmO5AsHcTkhElcS9yA16QgyUs4AAIYOBfR6YM4cZZuICGDYMCAy0n1xExEVhT3dRERERFTqHA4bHLYM6I0WtSz5wn447Fan9TQaLXQGLxhMPgAAu10p1+mUfz/9FPjpJ8DTE2jbtlRCJyK6LhoREXcHQUREREQVlzjssNvSYLOmwGZNgT0rBXZbBrRaA/yC26jrpVyKhcOWAZ3RAr3BCzqjN3R6D2g0OYMzU1OBjAzAbFYS7X//Bf7v/4AJE4DmzZV14uOB6dOBp58G2rcv7VdLROSMSTcRERERlRgRgSbXxdapSXGwpp9HQV85dXoPeAc2hVZnKNEYXnsNeOcdoHt3YO3aEt01EdF14/ByIiIiIrphdlsG7Fmpag+2zZoK36qtodUqXzM1Wj1EBFqtAXqj5b9ebOXf7HVKWp8+wOnTQN++OWVpaUpv+JAhwB13cBI2Iio97OkmIiIioutiTb+EzLRE2K0pcDiy8i33DmwMg8kXAOCwZ0IE0OlNJVL3t98CR44ADz4ItGxZ/O0WLlQS7jp1lO21nE6YiEoJe7qJiIiIKB9x2GHLSv2v9zoFZu8a0Bk8AQAOhxVZGUkAAI1GA53BCzqDF/RGb+gNXtDqzep+tLqSSbazLV4M/PknUKvW9SXdLVoAgwcr/2Yn3CLA668DvXuz95uIXIc93UREREQEh11JpJVh4qmwZaUByPma6OVXFyavIADKkPKsjCRluLjBy2miM1f76CPgwAElge7Q4eb2tWUL0KmTMilbQgLg61syMRIR5caebiIiIqJbjN2WAbs1BVqDGXqDl1KWlYbUy0ed1tPqjP9df630YmfT6T2gswSXaszZxowpuX35+yvJu6enc8L98cdAmzbs/SaiksGebiIiIqIKzGHPgi0rBXZryn//pqrXYXtYqsHTt7aynsOG1Eux6kRneqNXiQ8NLw8SEoCaNZX7gcfEAPXruzsiIirv2NNNREREVEGIww4Rm5os222ZuHJuV771sq/D1uqMaplWq4d3YONSi7WsslqB/v2BM2ecE+6ff1aS8Xbt2PtNRNeHPd1ERERE5ZCIA/asNLX32paVAntWOoxmf1gCGqjrXU7YAY3OAL3BK+d2XQbPUr0OuyR16QJs26Ykwb17u64ekZzk2moFatQAzp8HVq8G7rnHdfUSUcXDnm4iIiKicib5wkHYrMkQceRb5rBbnZ77Vm1dbhPsgmRmKkmwq+Xuzb56FbjvPmDzZuDuu3PK//kHMJnY+01ERWNPNxEREVEZ47Bb/5tFPAU2ayoAcRr6ffX8PtisKdBoddAbvKE3ekFnsEBvtDgNGa+IEhOBjAwgMFCZAK002WyAPleXVbt2QGQk8MUXwIgRpRsLEZUf7OkmIiIiKgMyU88hK/MybNaUfL3VgAbisEOj1QEAPH3rQKPVQZfrfti3iipV3Fd37oQ7IwNo1AiIjQXCw3PKo6OVnnH2fhNRNvZ0ExEREZWSvNdhe/rVhea/zCzl0mFY0y+o6+oMnjm36zJk3w+bWVxZk56u3Oc724ABwJIlwBtvAG++6b64iKjsYE83ERERkYvYbRmwWZNzbteVlYrc/R0elmrQGZSMzegZmDNM3OCl9mqTs6+/BpKSgH79lNnE3S13wi0CeHkBHh7Ok7ydOwccO8beb6JbFXu6iYiIiEqAw54JmzUVepMPtFqlXyP96kmkJ59yWk+r1auziBs9q0Cnv/XuhX0zGjRQhnRv2KDMZF4WXb4M+PrmJNhvvglMnQo89RTw5ZfujIyI3IE93URERETXyeGwwZ6V+l8vtnK7ruzrsC2VGsLo4Q8A0Bu9/3v8d6suowU6vYc7Qy/3+vRR7qEdFOTuSArn5+f8PD1d6f2+666csowMYM8e9n4T3QrY001ERERUBBEHIKIO97amX0TKpdgC1tRAb/CEh3cNGM0BpRsklXmXLilDz03/DWz47jvgySeB++8HVqxwb2xE5Frs6SYiIiL6j4jAYUuHTe3FToHdlgazT214WIIBADq953//ekBn8ILe6K38y+uwqQgBeX6HOXlSScDbts0pEwH27gWaN2fvN1FFwp5uIiIiuuXZbZlIuxwHmzUFIvZ8y02eVeDlfxsAJTEXhw1anaG0w6QK5tIlJbn2V65GwI4dShJ+xx3A5s2Ajr/hEFUI7OkmIiKiW4LDYcuZRdyaAp3BC2YfZfprrVaPrMyrAAQajRZ6o0WZRfy/f3NPdqbRaKBhwu029esDFy4AmzYBjRu7O5qbk7f3e+9epfc7NNQ54Y6LA+rWZe83UXnFnm4iIiKqkEQEmalnYbOmwJ6VArstw2m53miBT+Vm6nNr+kVo9Wbo9GbeD7sMCwwELl4E9u8HmjRxdzQl79IlICUFqFVLeZ6YCNSoofzAEBGRf5I2Iir72NNNRERE5ZqIwG5Lh92aDBGHeu21RqNBRkoCHPZMdV3lOmylB1tvtDjtx2iuVKpx043Ztg2wWpWe34ooIMC5BzwyEtBqAaPROeE+e1aZwZ2/DxGVfezpJiIionLFbsuEPStF7cFWrsN2AAC0WgP8gtuo66YnnwYg6u26su+fTVSeXLqk3CataVPluc0G1K4NVK4MLFtWcX+AIKoo+MlDREREZZbDngW7LQ0Gk69alnY5DlmZV5zW02h0/11/7QURBzQaLQDA7F29VOMlcoW8vd979ypD7LOylKHn2S5fBnx92ftNVNYw6SYiIqIyQRx22NIuwy4ZsGWlKrfr+m9ouF9wW7WXWm/0hohdvV2X3mCBVu/B67BvEZ9/rvw7YABgsRS9bkXVurXS833woDLsPFvv3kByMvC//wFt2hS+PRGVLg4vJyIiolIn4gDijkLz999ArVpI79gEGYejYFr4M0x/rEf6xKdh7d0NAKDTm2EJqA+dwdPNUVNZYDAow6tPnQKqcyCD6uxZoE4dpff7xAmgWjWlPD0d8PBg7zeRO7Gnm4iIiFzOHnMQjn83IeuezrAZHLBnpcLnp7XQvToZePhhaO/8BJ6zvoDphxUAAGOqBqbAxtAZvHgdNjl56CElsfTkbzBOqlYFTp9WbqWWnXADwLPPArt2AbNnA926uS8+olsZP8WIiIioZJ07ByQmIqt+bWQkn4Y9KwU+Xe+H4ex5pC/9FLY7WgIA7O1aQte9O9CxIwzmSkCTNsDtCUCjRjCOGAOYfJT9rVkDzJwJvPACcN997ntdVCb88IO7Iyi7AgKABx/MeZ6ZCfz6qzIRm9mcU26zKfcBZ+83Uelg0k1EREQ3TK5egc2WBrtBYMtKgUfELugffgJo2RLYGoGszMsAANsdLaE7mQCjzhsm/1DlOuxqHkC3BwAAWgCYPEV55PXxx8C6dcrUzUy6iYrNZAIOHwZ++QXo0CGnfNYs4McfgalTgfBwd0VHdOtg0k1ERETF43DAAQes6Rdgt6bCMOp5GH5cgcz3X4H1MSV51jUMgV6jARwO6LQe8PSro9yua9mf0Gh10N1IvR9+CDRuDAwbllMWFwdMnw489xxnjCIqQkCAc9MRARYvViZhu3zZuRxg7zeRK2jdHQARERGVPSICuy0dmWnnkRV/SOkmq1YNYrMi7XI8MtMSYff3gUYE+qOnYTQHwOxTC4bbmijf5PfsgdZggodXVeiNFmi0N5RuK0JCgPfeA+rXzyn79FNg4ULgjTdu9qVSOZKWplyvXLOm8n+6fhoNsHEjMG8e8OijOeVLlyqzoi9Z4r7YiCoqzl5OREREcNitsFlTIMt+hu5/C2Ht0BIZzw4AABj1PrDUaatMg3zwIFKCdNDpzdBdSIbeZIG2eq2SCWLaNGDlSmDMGKB//6LXjYxUsoaBA4GePZWylBRl3OxTTylZGVU4V68q96EGcmblppLRqxfw55/Aq68Cb7/t7miIKhb2dBMREd1iHA4b7NY0ZXKyhx6CnDuLK+d2I+VSDGwnj0AfsQWGzZHQaLTQG72h8/QFli9XLg5t2BCWgPow+9SEsW7jkku4AeDIEWDbNiAh4drrtm2rjJHNTrgBpYtu2jTgnntyxspSheLlpczEvWOH8/2p6eYtWgR88AEwYkRO2d69yvQM//uf28IiqhDY001ERFSBiThgjz8M+WUZHGJFxoBw2G3p0Bk84dv1CSA6GlixAlfb1YaIHYYzSTD8EwlN5y7QtWoLjaYUf5/ftUu5+XLjxkBo6PVv/9dfShddeDgwfrxSln0Ba9++gMVSouESVXRjxijzGD7yCPDTT+6Ohqj8YtJNRERUkRw+DPz7L9CpE1L87cjKuATdhm3weXI87LWr4crmnwEAOr0HfH7eAk16utLbXacONBVlBiWRnNmg1q8H7r5buRD4+HFAzzlkiYrr4kWlB7xdO6BjR6Xs0iXg/vuBQYOAp59Wbj1GREXjJw8REVF5JALHiaOwH9iLrM63w25Ngd2WDt8JU6FZsUK53nnAfRARSKvmsHXrDGnbBhb/+tCbfKDVGYBnW6m7qyDptiL3jwfp6coEbN26OSfc27cDt9/OjKGcSU1VelwNhmtf9k83r1KlnEEj2RYtArZuVZrWyJFuCYuo3GFPNxERUXlw+TKQkQGrrwHWtAtwHI2FT7sHIQY9kg79BZiUC1z9Fq+HdsWfwMiRsD/2EAANdPpyMtvUgQPAuXNAvXolOxGaw6FMdZ09vPz4caBuXaB2bSAqCvDxKbm6yKVOnFD+bCYTkJHh7mhuTdm939Wr58x+brcrV3Xcfz8wdCgnuCPKixOpERERlTGSngZb5lVkpCQgNekIHNPeBPz9gXfegT0rDdaMS7AFV4KjSiU46t8Gj2TAy68ufKq0gGbSy8r9gPr3V2YYLy8JN6Bcj92tm3LvopKk1Tpfz33wIODnpyTeuRPuc+dKtl4qcSYTcN99ylx55B7Zvd+5bze2ejXwxx/Aa6+5LSyiMo3Dy4mIiNzMYc9EVsYV2KzJMPV8BLrd+5Cy/js46tQAAJhqV1N+JT9zBgYPf2i0eugMXtCcOAWtyQOebo2+BNWsCTRponyrd6X77lMmbEtMzClLT1cmcGvQAPj5Z+UacCpzgoKUu8pR2dK+vTLzud3u3Mv97LNAs2bAgAGcx5BubRxeTkREVIrstkzYs1Kgi9wL3RtvAkFByJz/MVKTjgAAfB54Cvqog0j9/B04HukLvdECo80EnUPr+mT0VhYRoXSfVqsGxMXlXOudlaVcQExE1yU2VvkNS6sF4uOBWiV4d0Gi8oY93URERC7isGfBnpUC+fxzaP9cg/SRTyCrXTMAgJc9DboNG4DAQOgNXjCYfKAzWCCffgx7lerwqlvPeUIwcq2uXZULho8ezUm4RZQpm0NCgPffVy4mJqJiqVJF6f0+etQ54Z45U7mq48knOZ0C3TrY001ERFQCxGGHXLoI7eJvgePHYZsxHVfP7wMAeD03FaZf1iBt4ghkjh8Gnd4TJp0fTL+tU+7F07gxE+yyaM8eoGVLZbzs6dNAQIC7I7rlHToE9O6tDDPftMnd0dD1Sk5WBpOkpCh38+va1d0REZUOJt1ERETXScQBe8xByLo1sNWuiqx2TWHLSoNHhgGeoW2UdS5ewOWMw9DqTDBu3A19/Glo7rkXumatodHyNlUFmj5dGeY9ZgzQp4+7o1Hs26fMcD5wYE7Z008Dnp7ACy+U7CzrdE27dwOtWyuJ2+nT7o6GrldKCvDll8DffwO//ZbzW+N33wFXrrD3myouJt1ERERFEQGOHQO2b4f0CUfy1SOwZ6XCY+b/wTxvPjL79ULqnNcBAAYPP3i/PEcZjjxqFMTPlwn29ejXT7kJ80cfAc895+5oCnbmjDLM3GZTkvEWLdwd0S0lJUUZgKDTKZN3UfknAjRsqFwD/n//p/ymRVTRMOkmIiLKxXH2DGznTsJepxpsWanQiAaWeu2V+2Tv2oXLwQKHPROGjTtg/mQxHA/cB4wdA73RAq3O5O7wy7fNm5Xrqm+/Hahf393RFMzhANasUXrk33svp/zjj5UbRw8bxmHoRNfBagU+/RT49ltg3TrA21sp/+cf5e5+7P2mioBJNxER3bpSUwGtFhmOK7BlXoX252XwfOYVZLVrgeRlnwEAtFo9/Ea8qdxeas4cZLVtBq3WCK3eAxpeh00AkJmpzBSVmKj01D/yiLsjIir3HnhAuff3pEnAjBnujobo5mjdHQAREVFpEIcdNmsKMlPPIe3qCeCJJ5TukxUrkJV+Cdb0i7DWV2an1mRYYTIHwtO3DiyVGkJ++w3Yvh3o3BkGky90BjMTbnL2zjvAvfcC4eE5ZatXKxerWq3ui6uCOX9e+V1j7Vp3R0Kuds89QKNGwPDhOWWHDytD0K9edV9cRDeCPd1ERFQh2W0ZsFlT4DhyCIanxkCTeB5XNv2oztzjP30BNP/3BTB1KjInjobDboVe7wldhgNaf94P2y1iY4FLl4A6dZTpqcu7O+5QfqyZNQt48UV3R1MhREQAd92lJGMHD7o7GnI1EecbO0yYoNyG7NFHgR9/dF9cRNeLPd1ERFTuOexWWNMvQX74HujZE/jkE2Qkn0Zq0mGkm63Q7doH3fHT0J67CIPJF2bv6pCXJgGnTgFTpsDkWRlm7+owmP2ZcLvTyy8DHToAy5e7O5KbZ7MBvXopk+oNGpRTHh0NbNyoZBN03Xx9gbAwoE0bd0dCpSHvgKLGjZVJ14YMySm7ckXp/U5OLtXQiK4Le7qJiKhcEYcdtowrwOw50ERGImXO63CY9QAA30V/Q/fK68BDDyFz0efITD0LvdECw5pN0DZpAW2DJtDoOJt4mTVqlDIke/p0oH9/d0dTMhwOQJurj2PgQGDxYuDVV4G333ZfXETllIjyyG5Wn30GjB4NtGsHbNvm3tiICqN3dwBERESFEXEAJ05As/JPwGxG5qP3IfXyUQCA7+f/g+7MOWgHhcPRoRV0Bk84et0DnW8A0KkTTJ6VYfKsrOzo0TpufBVUbJ995u4ISl7uhFsE8PcHzGagb9+c8osXgaQkIDS09OMjKmc0GucecH9/pff7ySdzyhwOYNEi4KGHcmZDJ3In9nQTEVGZICJwxByAY/M/sLVvgawqPrBnpcHyzyEYnhgCtGiBrG0bkHzhILQ6E8xf/ACtxgA89hj0oY15P2wqP65edb4H0vTpwJQpwMSJnKaZ6AaIKFd0GAzK87/+Anr0AKpVA44fB/TsZiQ341uQiIjc48wZ4OhR2O5ojfQrx2DLSoFl2CgY/t2FzPdfhe3xBwAAtpaNYOjZE+jQAXqDBX5Vb4dWZwTeaO3mF0B0g/LedPj4cSVraNEipywrC0hJUbrxSPX338pkWq1bA19/7e5oqKzQaHISbkC5i1+DBkC3bs4J9++/A127svebSh+TbiIicjlH0kXY067A5mOC3ZoCw9GzMLXrCnh7Q3PhHLIyrwAAbO1bQWNzwBBYDQb/etAbLdBV9wBWrQIAaABowB7tCuvtt5WLMp97Trlf0K3if/9TJpGrVSunbOlSYNgw4Pnnee13LklJwJ49+X+3IMrt/vuVeQzT03PK4uOVO/pZLMrvXPw9i0oTk24iIipZmZkQgx6Zaedhz0qB7s334DHvK2SOGYT0l0Yq69QKhMnbGwgJgS7pKrz8boPO4And7C+g0Wj54XSr2rZN6Yp68EF3R1L68l7PvWaNkjHk7r4DlDG0t/BY2c6dlbn2fH3dHQmVdRoN4OmZ8/zMGaB+feW3rdwJ9+bNQPPm7P0m1+I13UREdMNEBA5bBmxZKYDNDlOPcGD3bsjxY7gsJyHigGnxL/B6eSasD90H65dzoTdaoDd6Qy9GwGRy90ugsmTtWqUL6s47lbGhtzIRYNMmJUvIvmf5rl3AAw8AY8YAr7zi3viIyiERZbREQIDyPC1Nue7bZgO2b1duSUbkCrfuT6VERHTd7LZM2LNS4Pj7L+jfmwN7rWCkznwJAKAzeMKUkgJkZUGzazdMnZtCo9FCN2Q0HIPHwVi1Goxujp/KuB493B1B2aHRKD8+5LZgAZCQAOzf75aQiMo7jSYn4QaAY8eAqlUBq1WZAT3bgQNKjzh7v6mksKebiIgK5HDY4LBlQP/lQmWo6+TJuFJTD7stHfpNO+Dz+FjYa1XD1X+XQWfwgt7oDc+Yc0DlykBIiPM9XYjo5lmtwLJlSnbQsqVSdv480Ls38NRTyjXguW9RVgGdPAns26d0/t9+u7ujoYpARBl6Xr16zvPmzZVrwH//HbjrLvfGRxUDe7qJiAjisMN+9iRk8SLIuQSkTxoBuy0DGo0OfqtXQ/PfNw/94N5K73WHLsj6eDY07TvBL7gtNJr/vui3q+3eF0Ll27FjQHIyUKMGZzkqiNEIPP64c9nXXyvXwttswPDh7omrFK1Zo/y+8MADSkJEdLM0mpyEG1B+x8rKUu713apVTvmJE8ppib3fdCOYdBMR3WJEBJqjR4F//gEaNUJaoyBkpp6D5sQZ+L30BsSgR8rofoCHCVqdATJkIDR33w3cey+8/G/L2dGzLQqvhOhGjB4N/PknMH8+MGSIu6MpH0aMAHQ64LbbckaX2GxKZvr448os8BWo97tSJaWHu149d0dCFVWVKkB0NHD4MODnl1M+frzyo89XXwGPPeau6Ki8YtJNRFSRicB+9DAc27cg676usNtSYbOmwO+jb6GZ9yHw3HPQvD1JScRr1UTWQ/cDjRrC27sudJWCodUZgIdaXbseopLg76984zWb3R1J+REQALz4onPZ778DCxcCK1cq3XMeHu6JzQX69FEeRK6k0ShzGGazWpUkPDUVaNo0p/zSJeUGA+z9pmth0k1EVJFcvAhcvoys6gHISD0He0oSfJt0hS7TitSNP8JRpwYAwNb+dhiiwoCGDWHyCoLRswp0ehOwdIWbXwDd0pYscXcEFUPLlkq3XJUqzgn3++8rPd/Nm7srMqJyyWgE9u5VbiDQpElO+YwZwCefAO+9Bzz3nPvio7KPE6kREZVTkpIMm2TCrsmCzZoC87J10I0YBdx3HzJ/XojUpCMAAO+HR0ObngnrnLehbd8JeqMFWr0ZGk50RnTr2L8faNZMGYp+5oySkBPRTenSBdi4EVi+PGcERkaGck04e78pt4pzkQ8RUUUmAoc9C5mp55CaFIesXncDfv7I+HUR0q4cgzX9Amz1ainrXr4Mg8kHnr4h8KncFPrNkdDtOQhzt74weVWBzuDJhJvoVqPTAY88Ajz6qHPCvWIFcPas++K6Tt99B3TqBLz1lrsjIQI2bFAeDzyQU7Z4MRAcDEyb5r64qOzh8HIiojLIbsuA3ZoCbdwJ6EePA1JS4Nj2D1IvHwUA6M1GaOx26GPiobmvF3RGL+jaNVEuMPP3hxaAhyXYvS+C6Hq9844yhvPZZ/Pfo5puTqNGwE8/KVMyZ0tKAvr1UyZe27vX+UbFZdTJk8CWLZxIjcoGjUbp7c5t7Vrl2u/cU1OIACkp7P2+lXF4ORGRmznsWbBlpQBLFkP7/U/IfOBuZD7SEwBgyjTC67Y2AAC5eAEpjnPQGS3Qn7oAvcUP2lp13Rk6Ucm65x7lG+uiRcCAAe6OpuKLjlZuM5aSAuzZkzP7+f79ymzoZXBCu8OHlfBq1gTatHF3NET5iShDzhs3BgIDlbJ//gF69QKefhqYM8e98ZF7sKebiKgUicMOR3oqdJ99AezcCcf8r3D54h4AgHl/FIx/bYTdzwLro/dCZ/CCzrcS8OOPQLNm0Pj5w1tbSdlR41pufBVELjJ6tDJOk9lU6WjUSOk2vnw5J+G224HwcKVs1SqgbVt3RphPvXrs5aayraDe719/VXq/k5OdyzMzAZOp9GIj92FPNxGRi4g4YD9yCPLnH7B7mZDZOwz2rHQYjD7wrt9J+VK7cyeuVAOg0cJ46Dj0Ow9C0/Vu6Fq1hUbDaTeIqJTFxwN33w1cuQKcOgV4eirlFy8qt3SrQPf8JiotIkpvd9WqQIMGStmpU8rtxx57TJkBXc+u0AqNf14iopISFwds2wZ0745k3UXYMq/CsPIPWMZPB9o2h/1epcfIIVnA888r9yCpXBk+QdWVBDuoJRAW7t7XQES3tjp1gCNHgNjYnIQbAJ54Ajh+HPjqK6BzZ7eFd/Socl13jRrKCHii8kCjAcLCnMt+/ln5bSsmxjnhttuVeQ+pYmHSTUR0AxynT8AeFwNby4awWVMgYoPPY0OBnTuV4eB3NVF6uts0h61rR6BzB1gCGii369IZgTdaqPviPOJE/zlzRrnfTpUqgMXi7mhuXTqdMvQ826VLwPbtwNWrQPXqOeVuyA6++kqZb2/cOGDu3FKtmqhEjRsHtGrlnHBnZChN7557gJkzAV9f98VHJYtJNxHRtVy9CtjtyDTZkJVxCbJtG7x7DQYqByB51+/qtZByZ2doDAbAYIDZtzY8NVpoq7WHZv0jbn4BROXEgAHA+vXKfaEef9zd0VC2gABlLOyGDUpPeLbx44EDB5T7d3XsWCqhBAYqSUnVqqVSHZHLFNT7/eefwLFjwMqVwKef5pSL5Ey7QOUTk24iolwkywq7WGHLSoHdmgrPaR9DM28e8PbbsI3sB2v6JaBeLYjRAAnwh8lmhq5yMPQGCzDnDuC/67B5ciW6AWYz4OXFixvLIosFuP/+nOeZmcCSJcptx9LTSy2M559XHkQVUZ8+QESEMoVC9iASEaBrV+WOflOmANWquTFAumH8VCOiW5rdlgmb9Srsl8/D1PsxaA8extWoFYDFCwDgUbUydCLA0aMwegZCpzdDF+gFXLwIncUbXm6On6hC+eMPd0dAxWUyKbcZ++EHZeK1bJ9/DmzaBLzwgjJ2loiKraDe76goZRK2bduUSyuofOLs5UR0y3DYrbBZU6CP2Art7DlA8+bIePNFpF09DgDwvaMvdKfPIeXnzyBhYdAbLTCma6GDHggKcnP0RERlnIjSHRcbq0zHPHq0uyMiKveyZz4/cMC5SY0YodxMYNIkTipYHjDpJqIKyeGwwZ6VCpk7F9p/NiHtpWdgu02ZAMh702EYHh8MNG+OrO0bkX71BPRGC/SR+6GrWRe6+o148RQR0Y2IjAS+/BKYPRvw9lbK/v4bWLMGGDkSCAm5qd3Pm6cMiBg0SJkCgOhWdP68MqdhVhawezfQsqW7I6Jr4fByIir3RByQswnQLl0OXL2KrAmjkHzxEADA+7ffoN+yC9q72gK31YDOYIZ0uAP44gugXTsYTD4wVG6q7Kh7iPteBBEBM2YovaSjRgFt2rg7GroRbdsqj9zmzFEy5YyMm55y/OBBYO1at961jMjtAgOVdrB2rXPCPWOGclu9ceOAxo3dFh4VgD3dRFSuiAgch/bD8U8EbI3rIKthbdizUmE+mQKP9j0AiwX2C+dw5cIe6PQeMP22Hrrzl4He4dA3aQmNlje/JCqzunQBNm4EfvoJeISz/lcYv/0GfPSRMuS8fn2lLC5OmaJ58GDAx6fYu9q+Xfldpnlz5UFECpsNqFULSEhQplro18/dEVFuTLqJqOwSUW5TExUFR697kZp0GDZrCswT34bHt78h/dmBSH9lFADAaPSH5elXlJ98J06Ew2SAVmdwb/xEdH2WLAFOnAD69lWuDaaKa8IE4IMPlL/1smXujoao3Mu+9nvJEuDjjwGjUSn/6Sfgr7+AZ5/lD1XuxOHlRFRmOC4kwn7xLGzVAmC3pkCb4YBnSDPA4YDm9CnYkAwRB+ztW8F29BR0oQ1hCagPncELOr0HsHy5ui+tG18HEd2g/v3dHQGVlubNlR9WRozIKUtJUcbL9u7N28YRXafsmc/zzn4+bx6webPSC86k233Y001E7pGeDhgMyMg4D5s1Bbov58P88rvIfOBupH7+FgBAZ/CEb88hyifJggWw1qsBrd4DOr0HNBqm1URE5Vr2V9DsiSs//1y5nv/uu4F16wrc5MgR5dbgtWsDVaqUUpxE5diGDco0Nu+/DwQHK2XbtwNffaXMbcg7+5UOfmslIpcThwO2rDRkpp5DRsoZoFcv5Rq+bduQmXoO1vQLyKqjfBLokq7CaA6Ep28IvPzqAjt2ALt2Ac2bw2gOgN7gyYSbqKK6eBE4e1aZcIsqPo3G+U4RDocyQ1Tv3jllIsr0zP95/XWgXTvg++9LMU6iciwsTBlynp1wA8BnnymJ+Lx57ovrVsNvrkRU4uy2TFjTLyJ98yrYOraFrVMbXE3cg9TLR5F+9STEaFBm/Ni9GyavIJh9asLcsx8ciWeh3xQJS0A9eFiCoTd6AzpOfEZ0y+jdW/lmuGqVuyMhdxg9Gjh5EnjmmZyy9euB1q2Bbt0AEVSqpAyT9fV1X5hE5d2wYcATTyg93SIO2KzJOBZ3FmPGOJCe7u7oKiZeMENEN8Vhz4I9KxWGH35VZusYOhRpXZsgKyMJWn0azP/ugOh10GRkQe8bCJ3BC3j3XeDDj4CaNeHB+2ETUbbsnk+eF25dHh7Ozw8eVGaEatgQ0GjwySfKJOi4eBFAJXdESFSuOexZuKNNMm7/LBk2azIuJ6RARPDm1DpYsFiLXr2A++5zd5QVD5NuIio2cdhhu3Ie+PwzYO8+pM15DXaHFQDgH7Ubmj/+AEJCoL+nPcRuha5+C2T97xNo29wBv5CW0GT3WrOHgogKsnmzuyOgsua554DHHlNGR2U7dky59dgDDyjjzLOnaSYiJyICuy0NOp2HesvUjJQzyqV+uWi1Bhw45IvQ2+wwmTjC0BU4kRoRFUjEARw7Ds1ffwFBQUi/63akXz0JZGXBv2F3aDKtuPzP93DUrQWd3gyv2EvQRx0AunYFmjVzd/hERFRR/d//KeNiu3dXZjvPZrfzkiS6pTkcNtitKbBZk2H7718RO7wDG8NgUno8rOmXkJ58Enqjt/rQ6T2usWe6WezpJiIAgD02GvLvJli73gGbpxb2rFT4/L4JunEvAvfeC233RQAEWg9PZD0zGBo/f3jVbAld8G3QavVAEIA773b3yyAiogrszTeBqKhnMG5+T3RteTlnQVoa0KSJ0vv9zjuAt7fbYiQqbVmZV5F2JR72rLR8yzQaHRx2q/rcaA6A0RxQmuERmHQT3dJs1mSkJ5+CPSMZ3vc9Av3Rk8h4/1XYHn9AWd6mOXTdugFhYTB4+MGvamtodSZg3hdujpyIKqTZs4Hjx5WJtJo0cXc0VAZt2gT89RfwyCMhQMtcC379VRl2vmIFMHeuW2IjciURB+xZqUovdmYyjOZKMHoGAgA0Wp2acOt0JuiM3tCbsnuxPaHhPBlux+HlRBWcOOywZaXCnpUCmzVFOUmblclnbNZkXD2/H97hT8Owcz9ErwccDth+/AbaBx+CVu/BEzURlZ527YDISCVxuv9+d0dDZdDKlcoE53ffDdSrl2uBiHJv75QUoE+fnLLwcKBjR2VmdB8fd4RMdEPEYUdW5mV1mLg9S5nwLJvJszK8/EOVdUWQlXEJeqM3tLobm+OgXz+l+XzyCVCnTom8BMqFSTdRBeNw2JCVflE5SWelwJ6VDiDXSdorSLn/NZRfTTNTE6FPSoMuKRmaFycq98U+fjxnaF5aGuDp6YZXQkS3nM8/B06fBgYMABo0cHc0VN5t2gTceSdgNgOnTgEBHFJLZVP2hGcQh3K7VCjf5y4nRDqtp9Uacq7FNvlAb7SUWAwBAUBSEhAdrdwsgEoWk26icsxuS4fNmgqNVgejhz8A5VYQl8/ucFpPqzNBb/SCzmCBweRb9En6/HmgcuWc5w8+CFy+DHz4IdCyZcm/CCIiIldITwd++AE4dw546aWc8ilTlG7yRx8FTCb3xUe3LOcJz5RJz0TsMJh84B2Yc2lNyqUYaHIl2q6c8OzHH4HUVODhhzkoxBWYdBOVEw67FTZryn/DxFNhy0qGOOwAAIPJD96BjdR1U5OOQKszQWfwgt5oueGhRjh7FqhdG8jKUn76ZM8TERG5UVwckJkJ1KoFWG6kk+/0aeVzzW4H9uwBmjcv8RiJipJ84SCyMq/kK9dodDCYfGCpxG7miogTqRGVQQ6HTbnPtUEZ1i0iuJIYpSbZ2TQarZpY55Z9jU+xLVsGxMYC990HtGiRU161KnD0qDJrTe6Ee+5cZcj54MHsJSCikpOaCjgcynBgPb+iUH6PP65cBXXDl/17eipToO/f75xwf/89EBSk3PaSc5nQTRBxKJ0k//VkO+yZ8KmS817TaLQAAJ3eQ+m9NlqgN/pApzdzHp0KjD3dRG6mzEaZlqsXOwV2Wzp0eg/4BrVS10u+EA2Hwwq9wQK90QKdwQs6g6d68r4p4eHAb78BX3wBjBhR9LqXLytdDMnJnOyIiEpW69bA7t3AqlVAz57ujobKoB49lLfI998rt+kuEZmZQM2ayuVV/FyjG5CVeQVZGZdhs16FPSsVedMr36DW0OmVTgq7LR0aje7GRyG6gN2u/JhlMim/RWlL4KslOePPyERulJp0BNb0C/lOzoDSuy0OOzRaHQDAUqmh634B7dZNmUHDaSrYQhiNwLRpwOrVSs94tl27lC8tua8HJyIiKkFr17pgp6mpwCOPAOvXO//Ys20b4OfHS6tIlT3hmc2aDJO5svodLSvjEjJSzqrrqROe/XfbLq3OoC7T6c2lHve1JCcD7dsr/8/MVL7qUcliTzeRCznsmf9df60MM7JnpcG3amu1dzr18lFkpp6DVqtXhhcZLOq/uU/QZZ7DodxT9/hxpce8xLofiOiWkpmpnE+MRkCnc3c0dKux253fd9m3sFu8GOjf331xkds4T3im/CuiXOrnHdgEBpMy41hWxmVY/7tll6snPHOFixeB228HrFZl2gOOci957OkmKmHW9Euwpp2HLSsFDrs133J7Vqp6OwgPSzV4WKqVu5NzPomJyow2RqPyJSWbzcbrMomo+DhHBLlT7oQ7NVWZ18RsBu65J6f85EnluvBKlUo/PnI5EYfaMZKZdh6pSUfyraPR6NTvcdkMHn4wePiVRoguUakScOyYu6Oo2NjTTXQDlOuwU/+7DjsVHt411MQ5I/kM0q4e/29NDXQGc8512EbLfxNlVMCLZUSUM3adOjllDz+slL/7LofnERHRTXv+eeXS6zfeAOrXL4UKL11yvr/3gAHA0qXAJ58Aw4aVQgDkKnknPLNZk2H2rQ2Tp3KZnM2agqvn93HCMyoRTLqJisFhtyIr8wps1mRlmLgtzek6bC//ejB5BgIA7FlpyMq8DJ3BAr3BS73ep0wbPx74+mvg9deBSZNKZp+nTim3ZREBDhwAGjW69jZEdGubO1e5VeFTTwGh13kXBrol1K0LxMcDW7YAHTqUcuV2O9C5M7B1qzLr1O23K+UpKcpIL14IW+Y57FZkpCQUOuGZybMKvPxvA6Ak5eKwlakJz6j84rhPojzstkzYs1Kg03tCZ1Amu7BZk/MNMdJqDf/96mmB/r9bewGAzuCp3uqr3MjMVGbRSE8vuX3WqKHckuWvv5wT7i++AAIDgT59OD0mETn76ivlvNGjB5NuKtDkycpNNEJC3FC5Tqdk+3v2AC1b5pTPmQN8+qkyqmvoUDcERnnlnvBMqzXAaM6+HECDjJQz6np5JzzTGbzUZRqNFppbJOE+fBh48UWgenXlrUwljz3ddEtTJ8jIyh5elAKHIwsAYPapCbN3DWU9eyZSk44ovddGC3QGi3rrhwrh3Dkl6a5UCfD3d109V/6fvfsOb6u8Hjj+1ZZly9vZe++9E8IMBAhQ9t4zZW9KCC0QNhRKmQUKLfsHCSMUCDuTTCcEyCJ7b29r3fH747UtO84klq8kn8/z6IktXUvHIUj33Pc95xSpcWPFxfDFFzW7nwshxBNPqJXu666rp73DQtSByoZr772nBomDaghos0lHqnpSs+GZanpW2fDM5cnAn9ut6thA8QbslVvGE72nTh2ZNQuGD4f27WFl7TJ2UQck6RYNhmnomKZR1RVcj5RTtP3nWsfZbDYcTh/u1EZ4U5vUd5jJragInnpKjWWZNi260r10qUrGU1P3//NCCCFEvIlEYPJkGDMmusX8vffgkUfg3nvh/POtjS8JGXqkxpSXwi3zMAytxjGVDc9cngy8/mb1HWJC2bpV/RP2+aRRf6xI0i2SktpWFEAPl6BFyipWs8vx+HJJzepQcYxB4ZZ52B3uqhVspzsNh9OXGHXYicw0o1f/DQN69lSr7Z98ourlhBBCiL1YV9GntFkzcMXzZM3jjoPvvoO//Q3++lero0loe2t4ZrM7yGjct+qYkp1LMfRgdGSX2y8Nz0RckZpukVRM06B017KKOYpGrccNPVT1tc1mJ7PJAEmwAebOVbcePeCoo2L/etU/BDdtUjXlkYhKvitVT8yFEA2DUfG+LdtyxT707QsFBbBkSZz35/zoI3jzTTj33Oh9+fkwbhzcfDOMHm1ZaIkiWLqFcGDnXhue2Uwdw9Cw21Uqk5bTOTknw4ikIUm3iAktUsaW5RPxpDYmNasjvvTWdZbcGnoEPaLqr7VIGTZspOWocVQ2mx1DD1fMWXRU1F+n7rMOWxLuCv/7Hzz4IPz5z/WTdFfXsiUsW6bOoDIyovdfdJHa5zR+vNp6LoRIfj16qHKTH3+EI4+0OhoRh1JSVM9PZ7yfwWZmqskg1T3/PHz1lRpBJkk3ULPhmR4uxZfZrip51rUAWrgUqGh4VtHsrLLhWfUkWxLuw1NQAJs3q3+2zZtbHU1yive3LJGg9HApxRX10jvWfI3N7sSX2YG07E6kZXXEk9bkkN4gQ2XbiISK1LiuaqvVoN5oVZKtns+X2Q673YldthUdvJ494ZxzoF8/a17f6YRevaLfr1un6uFMs/ZJixAieUnFmziATZusjuAw3Hefalh69tnR+3bsUHXf119fsyN6ktpfwzMAT2pjnG6/+tqXF02ypeFZTP3vf3DxxWpwxNdfWx1NcpKkW8SE25eHze7CrOgEbhoaZbuXU7Z7OdswsTtTSMvuRGpWJ9KyO+JOycE0jYo67FJ0LYAvo03V84WDBUSCBVXfO5wpVavXTncqEE2uXZ70+vo1k8dZZ6lbvGjdGqZPh6lToXv36P1vv61GkR15pGw9FSIZ/fSTmoWcLu/jIgm1awdPPlnzvtdfh9deg4UL1ezvJKNrQWx2Z9U28HDZdsqL19U4prLhmdOdhs0eLdSvTLhF7DkcapprLAfYNHTSSE3EzJr8FygvXL2fI2yA+udns7txutPIbnkk9oot35lN+mF3qO3g4cAudC1YtV288s1bNCDFxSoZLyxUl2FHjbI6IiGEEOLwzJ0LzzyjOp9Xto3WNDXp45JLVMe4BGEaerR5bcVKtmFESM3qiMeXC0AkVEx54aqKZmdpON3p0vBMNAiSdIuY2bbyc3ZumAp7aWi2VzY7TTr+Cbc3C4c7DW9qE+wOd2yDFIlj5064/341TDI/PzpubO1aVYAU121shRBC1IWrr1YbnZ58smYbkKQyaRKceaZKuNevV8uQcUyLlFNeuGrvDc9sNlL8rWRkl2jwZLlQ1Dl1pbMUm8150Am319+Slt0vxpWSLVc7rfCf/8A998DJJ6ttbvEoNxdefFFtPa1MuE0TTj0VSkrgww9hwABrYxRCHJ4XXoDdu+Gyy1STRSGqMc3oR9SECdbGElNZWXDEEepWPeH+5BO1yys1td5DqiwB1EJqBdvp8eNNbQKA3e486IZnQjRUknSLw1I5lsvQQwSKN1CyaxllBb8TCRZgaIGDeo6cVkfTuP1J8qZspWAQtm6FXbusjuTAqp+ArFmj4g4EoH1762ISQtSNZ5+FlSvhmGMk6RZ79cgj6tprWprVkcTQ0Uermx5tMMYvv8Dpp6sL0GvXxjzxNk0DLVSkJsXspeGZaWrRpNvhJi27Ew5XqjQ8S1Affqiu6YwerRqqibonSbc4aKZpYuhBIsEiAsVrKS9aT6hsK1q4hEhwN6DeeJ2eDHwZbfGmNWP3xhkYenAvz2bHZrfTvNsFZDTqXb+/iKjtzDNhyBA1KyKRtGunOp0vXFiz+8c116iRLLffDnl51sUnhDg0550H27dD48ZWRyLikM0Gf/mL1VHUo+oXmbdtU595/fvXTLh//RW6dYvuAPuDdC2AoUdqNKMt3b2ianEF1JhVp8tfsZJds9mhOyXnsF5fWGvhQnj3XXXKJEl3bEhNt9gv0zQIlGygaOsigmWbiQR2EQkWohqg2XB5M/H6W5Ce24OU9Ja4UnLANKpqsdf9/Dqlu5ZS2TBNUT/XqteVeNOa1v8vJZLb6tXQsSMYBixerMahCSGEEInOMKCoKHqRefduNdGjWTOYMQOaNDmop6nZ8KwYLVyKYURwOFPIaNyn6riygpUAFU3P/NLwLInNmgVz5qipdUcfbXU0yUlWugWg5iZq4VJCpVsJFK0lEi4kEiggULIBo2IutsPtx+3NJjW7M770lqSkt8HlzcDhTNnn8/oyWlck3VFp2Z1p0f0iHK59/5wQf1ibNvDxx2r0UPWE++OPoUMHScKFECJBGYYaa+1wqHHXDS7/s9tr7upavBg8HrXyXX13SGHhPneule7+nUhw114antmx2Z2YplFV7pea1aGOfwERr4YNUzcRO7LS3UCZpkF50XoCRWsIlGwgVL6dSKCgaiu4w+XDl9meFH9LUtJbYXd6VVdxl++Qaq9Ldy9n3aJ/VX2f22YUjdoeL/Xb8WbdOvj+e7WvaMwYq6Ope6Wl0KoVFBTAjz+qOd9CCCESSmFhNOcMhcAtA06grAw2bIAuXQAwg6rHiZnuJ/DuS2jNsklv1KvqvKusYBWh8u3S8EyIeiYr3UnONE0MLUg4VECodBt6pIRA8XoCxRsIB3YCYLO7cHmzSM1qj9ffAl9GG7xpTXG6/Yf9+in+lhWv4aZlj4vw53Y/7OcUMZCfD1dcoS5zJmPSXVwMxx2nVgVGjIjev327utDQ4JZLhIhTXbuqBonTpsGgQVZHI+JM9b5icT5Fq/5EImgZKUSKN6CFS7C//T6pm7fA5i1EdmzEaJSCHinH6Vad57z+5nj9zaXhmahh61Z1ISsnJ8mbFFpIku4kY+ghIqHKxHo9wdLNhAO70EJFgInN7sSb1py0nK44XD48qU3w+lvgcvuxO+p+zrHD5aNlj0vxpDXD48ut8+cXdaRpUzUurGtXqyOJjWbN4P/+T3U5rzxTM004/nj19VtvybZzIeJBMKjO/GQTntiLnBz1T8MwGui1UtNE14No4VJcnkzs99wLTz+NOe4OAtedro457ThSJvwTs0VzPN0G4MxtXqMMUJJtsTc336xOk/7xD7jpJqujSU6SdCcww9DQI+WYhlaVZJfuWkY4sLNqrIPTnY4rJRt/TldSMlqT0ahPTJLr/Ulv1KteX0/8AUOGwOefWx1F7KVU6yPw++9qNBFA8+bWxCOEqGnGDLWcKd3LxX4cZqPuhFHZ8Ewr3YXroquwL1hE8Y/vYWb4ScvuhLt1azBNHBu24PHlVTU8s23fhd1uRzrniIPldILXq24iNqSmO0GYpoEeKSNUtp3yorUESzaqOuxgQVWjM5c3C7c3B6cngxR/C3yZbXCl5OJweqVOR4i92b0bFiyAUaOi991yi0rCr7sO/IdfYiGEEEIcDNM0sf36K/z73+hZaRRfdXJVw7OM4WfjWLeJkrefwTz+OLxpzXAHbRCJQKNGlsQ7cuRIpk+fDoDD4SAvL48hQ4Zw5513Mky6cglRgyTdCaC8aB2hsi0ESjZTsGkmoGqk3SlZuH2NyGjUh9Ss9nVSgy1Eg7ZqFXTqpPYuLlyoZmcIkcAeeeQRxo0bV+v+p59+mttuu82CiIT443btggceUJuWHn/c6mgOj2ka6PlzMX/8nvDRg4k0y8KT2piUaYtgzBjMzp0o+O5N7A43Tnca7h/nYc9rimPgMGzeA6xhL12qSsaaNoWZM2MUv0lGRgbjxo3j0ksvJRgMsnbtWl566SUmTpzIZ599xkknnRST1xYiEUnSnQCCpZspL1oHpkkkXEyKvwXetGY4Y1SHLRqg/Hw45xw17/PHH62OxjrhMLzzjlr9fv756P1Tpqh691atrItNiD+gpKSEsrKyqu8ffPBBvvjiC2bMmEGLFi0sjGwfXn0VSkrgwgtli7moZdUqNfkxLU39M0kohYUYS38j1L0VWrgELVxC2vk34po2j7JH7iB0yRm4vVmk2RrB+PEwfDj62af/sfGqCxbAgAHqM33Dhrr/XYAVK1bQuXNnZs2axdChQ2s8dswxx1BQUMDChQtj8tpCJCKp6U4A7pQ8XN4cHE6P1aGIZBWJqLMZTbM6Emu53XD55epWqaxMJQBFRaredPBg6+IT4hD5/X78FWUSDzzwAF988QVTp06Nz4Qb4MEHYeNGNdZPkm6xh8xMGDcOXPG+3mCa6KUFaA7VX8ezpRg6dsTm9RJc+g2mU5X8RY4cgs3pwdmmM+7cbjhdaWB3wAsvAPCHG7R36QI//RTTFu8LFizA4XDQu3fvWo+NGjWK8ePHYxgG9oZSgJ/gHngANm9WTdS6y6ChmJCkOwHIaraIuW7d1BY0n8/qSOLPzp3Qu7eaZd6/f/T+khKp+RYJ44EHHuCNN95g6tSptG7d2upw9u2MM1SvhZwcqyMRcSgnByZMsDqK2qoanoVLsL/0Mq7Hnyd89kkExt+gJsW07QmZmdhyckgpsWNr2w6H24/jgSHYbLa6PxlPTVUNUmMoPz+fLl264NvLeYPL5cLhcEjCnUAmToRffoGzz5akO1Yk6RZCqORRmp7sXevW8N13UFCg2nuCmllz1FFq2eWll1QduBBxKmESblDzaoSIc4ahYbc54K67YNo0Sl55CC1PXYR1u8GzuxDnz0txuv04Pemq3fratZCeTrI0h16wYAH9+vXb62MrVqygS5cu9RyROBw33QRbtqjyDREbcglKCCEORlZW9OslS2DxYpg9G7KzrYtJiANIqIRbiAPQdbXJKBCov9c0TQNt7e9Enn6E0CPjKNyaT9HWfExQF2TnzsWdvwy7w407JRvnn85Fm/Ytzh9mkp7XA196RS+Q9PT6C3rLFnj/ffjmm5i9xMKFC/eadAcCAT799FPOPPNM8vPzGT16dNVjEydO5Prrr49ZTOKPu+oq1UqgTRurI0lestIthIDSUvjiC/X1OedYG0si6N5dzfhesAByc6P333cftG+vasDdbuviEwKYMGECzz//PJ9//jkej4etW7cCkJWVhccjPUJE4lm0KOb9wdSuptmzCbXKJdw4FS1cgiM/n/Q7xmE0yqHskpPBZsfQgjjuuQc0Dc/RR+Ft0kz9fDbQpkeMgjtIP/8M558P/frVHIlZR1avXk1hYWGtpNswDMaOHYvT6eTGG2/E7/ezZMkSACKRCA8//DBffvllnccjRCKQpFsIATt2wLnnqppuSboPTuvW6lZpzRp47DG1FNO7tzrZEcIipmny5JNPUlxczJA9ajtnz57N4HhtCNi9O2zdClOnQg+LExcRd3TVl4w6KxU2TfTVK9CaZqOFiklJb4X96qth4kTsf7uHyFWnqtft0x3tuCMwBw/Cn9ERZ2o2Nruj6vPSVkfh1JnMTDjmGOjYMSZPv2DBAgCaNm3K1q1bKS4uZsGCBTz33HOsW7eOyZMnk1WxO6xFixZs2LCBjz/+mD/96U80lgaJcWnLFtWgMCsrpv33GjRJuoUQqunKUUep4afij8nNVUn3L7/UTLinT1eJhGxDF/XIZrNRVFRkdRiHbvdudavMroSoZsAANVDijw67NXUNTStHC5egb9+Ib+AJ2ItKKFv6NaT6cHmzcA8bBosXY0/PITWzouGZMwXbN9Pq9peJpSFD1Nb3GMnPzwegU6dOOBwOMjIy6NKlC2PGjGHs2LFkV/u8GzRoEN9//z2vvvoqs2fPjllM4vB07Kj+31q1Ctq1szqa5CRzuoUQIlbKy9VqeCCgku++fa2OSIj49vvvanRh27bgTZaWU8Iqhh4C7Nj/9yU8/DB63x4Ujb+q6vGMwadj31lA2eT/Yh80BLcvD6czBWxxt3adsN59911uvPFGHnnkEa699lqrwxH74PVCKKQmNjZvbnU0yUlWuoUQIlYqP72Ki6Fnz+j94bDUfAuxNzHaDiuSn2ka6JFyzH+9Aj/8QOC2K9HaNMGX0RqvrsPcudjLyrA7/qy6irv9mN9MgXadSfPIBZ5Y6dSpE40aNeKqq6468MHCMsGg2mAkU95iR1a6hRAilkwTNm+OXjo2TTWerWVLePLJmnXhQggh9mnlSnj9dWjWDG68ogymTcPYtIGyP41AC5dgmgb+s67HNXshpU/+hfD5p+JNa4pP98NXX6n33obQnvmTT1Qr6iOPhOeftzSUyy+/nDPPPJMxY8ZYGocQVpPrGUIItf25d29Ve1xebnU0ycVmq7lX6+ef1aixyZOlhl6IPb35Jrz8sqrrFqKSaaL/tpjl01by2GPw6qthlYGfdBK22+5ACxRgmgY2uwPtorOJjLsdz7GnktV0IL6M1qqnxgUXNIyEG2DXLvj1V1i3zrIQVq1aRefOnfH7/ZJwC4GsdAshQBXyVNZPFhZCRoal4SS9xYtV8n3xxdH7Hn1UXfQYM0b2d4mGKy8Pdu5UCUP37lZHI6wSDBKxhVXDs3AJrtvH4/nPRyy68G5eSbmJZs1sjL+/EQwcCL16EX70rzhyG2N3pmCTemy1u2rpUnWxQXqJiAMoKoJ771XrAE89ZXU0yUuSbiEEGIbqdOp0wogRam6EqD/r1qn53roO+flykiQarssuUz0Q/vEPVYIhGgRDD6FrIVz2FBg5EhYsoHjB/9Cy0wDwvPsZvvF/J3zxWehPP4rT7cftzbI4aiGSw/r1qtLN41G13SI2JOkWQgir7dwJTz8NK1bAxInR+/PzoWtX2YYuhEgalQ3P9J9mYH/uefScDMr/egM2u4PMJgOx9eoFv/5K6L1XiRw/UjU90x04vOnYpOGZEHWuoACeeUZ9/eCD1saSzCTpFkKIeBQIROsPv/9ettoKIRLX99/D998TGHMkwVbpmKaBc+Z80s+9Cb15Y4rmfILT5SMtpyv2BQuhcWNo1arW6C7TVDepwDmAFStg2TL1GdKrl9XRCCGQRmpCiEpffaU6npaWWh2JAFi1Cnw+tcrdqVP0fsOwLiYhhNgf00T/9WciH/yHsoJVFG3/GUOPqHKBhx/G8cP0qoZntsFDidx3B+Zr/yKryQDSG/XC7nDBoEFqr+tearM/+ggcDjjqqPr/1RLKRx/BaafBc89ZHYkQooLM6RZCKOeeq2opV6yQWbnxoEcP9d9izZpojb1pwrHHqi3nf/2rWg0SIpn07Km6+vzwg+pzIOJbeTl60S7CaXY1smvVCtIHn4bd5aRkyTeQ4kGLlOI+7TTIzsbRbwgZjXpHG549NOCQXk7X1Z+y0n0ATZvC4MHQrp3VkYgEEImowTVer6rrFrEh28uFEMpxx0FZGbz3XsMZq5Jo5s5VJ1JeL6xdK0m3SD5ZWWqCwrJl0Lmz1dGIPRh6CC1cisOViuMfL8A996BfcQlF91+lDjBNMkacg9m0MZFX/4mjfRecnnTs9rpZ4wmF1LVhh0M15hZCHL4ffoBjjoFu3eC336yOJnnJSrcQQvn2W6sjEAcycCD8+CMsWVIz4f7nP6FfPxg+3LLQRHybM24c5QsWcPRXX1kdyv798INazmzd2upIGrzKhmdauATHNTfgmDaL4vf+gdGuJb6MNjhatQJNw75mPe6UHNXwzJ2GfdVabA5nTE4wPR41VU4IUXfCYfWn221tHMlOVrqFECKRbdigthBqmpr/3bOn1RGJOKOHw5R4vaSbJjt//plG0lhJ7IVpmtjWroXXX8eIBCm6+WxMU/WQ8J9+Ha55iyl9djzG+WfhSWuKR/fC7t17bXgmhEgcpql2kWgapKVZHU3ykqRbCCES2aZN8Le/qeS7+irm8uWqJtYpG5oaulk338yw557DBKb27ctR+flWhyTigL7sN4wfvyXSsxORDk1xebPw/b4DBg7EzMqi4OfPsTmdaib2zEU43Kk4hh2JLT3Dspjz8+GLL6BLFzjrLMvCiH9PPw0ffgiXXw7XXmt1NEIIpHu5EKLSeeeprrGLFlkdiTgUzZvDq6+qM9FKwaBq79uli2rGJhosPRym6csvYwI2YOjChWxfvNjqsPbtvffgrbegpMTqSJJLeTnm7J8IlGyiZNcyCrfMQxt3O66xt2Cb+BG6FkALF0Pv3nDlldgef5yMnB5kNhmIP6crnlPPxzn6VEsTblBtLcaPh3fftTSM+LdmDcyZA5s31+vLrl6tSgDeeKNeX1aIhCBLIEIIZfFiWLpUdQ4Wiad6O98lS1Q70nBYmuI1cHPuvJNhlQV7gANYctllNIrX1e5rrlFjC1euBL/f6mgSllFejGaLYBoaHj0FcnOxRSKEf/sWPcMHgDZ8AI7NO7B36Epadmecbj84XPDaa4D6txJvunSBq6+Gvn2tjiTOXXcdHH98vU8i+dvf1MfOE0+oRXaRGGbPho8/ViPdL7zQ6miSl2wvF0Io33+vZkYMHQo5OVZHIw5XWRn8/jv06aO+N0049VT1/W23qS7RIqnp4TDr/X5ah8M1trWFgKJ4re0+/XT1PvTmm2rskTig6g3PzA//D899jxIZ2peyf9yP3e4is+kAla2WlBD64N+YfXrhdKfhcKVis8mGR1E3Vq2CTp3AUG0AmDYNjjjC2pjEwXnxRbj+ejjzTDXiXcSGJN1CCNEQzJqlupt7PGrroSQ0SW/WTTcx7J//rHW/BsyQ2u6EZRiaGsH1+OPw1VeU3X8DoU7NAHD9OBv/Rbeht2tF2U+Tcbr9pKS3wlZcAhkZ0vBMxMyFF8IHH6jhA3a7mkI6ZYrVUYmDMXMmTJqk+rBedpnV0SQvSbqFEKIh0HX49FNVdHfHHdH733xTzf7u2tWy0ETd08NhNqSl0SoS2Wvzlrhe7RY16Ns2YUz6EHPLRgLXX4SuBclsOgD7mFPhyy8JP/43yi4+UY3sCttxLV6BY+hIy+uvhYUWL4YdO9Ss+xYtYv5yv/6qtibvmVHk50spgBCVJOkWQigLF8KuXepSZ/UZ0CJ5bdoEbduq+u+lS9UWVJEU9rXKXUlWu+NUeTnMm0c4w0OoZSZ6uARWriZz5HmYHjcFS74Gjxt/bndcX0+Fbdswjz0G2rTF1gBWsZ96SjVSu+wyeOklq6OJY2efrfYJP/+82jccY6edpnp5alr0PqdT3S/blYVQpJhHCKHceiuMGqUKsUTDEArBmDHRTueVNm6svWQhEoYeDtPs5Zcx9nOMkzjtZN6nj/q3uGmT1ZHUC33dasJlOygvWoMeCcCdd8JRR2F//Q0iwQIMQ8Ns1xpt1Ei0P19FWkorMpsMwOVJh1NOgauuwta2XYNIuEG9ZQWDNZM7sRctW0L37pCbG/OXmjMHPvus9n8TTVNblpcvj3kI4jBFImoznIgtSbqFEEr79mp/mHQMbjjatVNnRdUL70Ihtd180CBYu9ay0MQfN+eOO2izj23l1VV2Mo8ry5erWxJmVaZpoIVLCZZuoXTHUvQ2LXC0aU/5r9MJlm4lEi6CYcOgWTPs/ix8GW1Iz+tJZrNBOL+eiuvvL+Bu2ha7w2X1r2KZG29Ub0uPPGJ1JHHu739Xe77PPTfmL3XPPeDYR6t7ux0eeyzmIYjDdM89amfCPfdYHUlyk5FhQgjl9detjkBYxe2Ofp2fDwUFquGSNFtLOJWr3JVzufen+mp33NR2f/ONan+cBCUuhh4BwP7THBg/HrNxLsVP31b1uDczHXPjVtyrtkCXvjhdqXD++XDBBdhtNrxWBR7H0tPVTcSH776DH3/c9+O6Dm+9BQ88AK1a1VtY4hCFQupPV8O9nlcvpKZbCCFETTt2wIoVqtt5pQsuUKvfV18NqanWxSb2K7B7N8WNG5Nns2GvtuXYiETANLFXu8BiAmWaxqZ336VzPayIJTs9EsD44F2YMoXQBacQ7tUBb1ozfEs2w7BhmHl5FC36HIfHr5qebdiBs0U7aXgmEpJpwsCBsGjR/rcmOxwwdizsp8WEsFgwqKaMejyQlmZ1NMlLkm4hhBD7VzluzO1W48aaNbM6InGIpvXoQd7q1XQtL7c6lOQQDsOsWRhLl1B2zjHo4RIMQyN17Hg8k7+j/K5rCN50Ge6UHNJSW8N//6v+H+raVcZ2HYZp02DBAujfH0aOtDqaOHbTTfDbb/C3v8VsWPann8Kf/nRwx3o8sH49NGoUk1CESAhS0y2EUCZMgKOPVjW+QlTXrx+88grce2/NhPujjxpMwytRTz7+WL0HBQJWR1KDsXYl4SULKC9aQ3nxejXp4eijsV9/A/rOrRiGhs1mxzhjDJFb/4zrpDPJbDKAtOxOKuO4+mro1k0S7sM0eTLcdptq3CX2Y8EC+P579e80RipXru12tZrtdEZru51OtVXZ5VL3hULwr3/FLBQhEoLUdAshlCVLVHHWwV66Fg2H1wvXXFPzvs2b4cIL1R7DJUugQwdrYhPJ5ZxzVBO1TZsgJcWaGCIRND2AppWhhUtwPP4sKU+8hHHeKQSf+gt2hxtf0/4wYgQ0a4bPlo09rx0Olw/bZYOtibmB6NtXVbr062d1JHHuwQdh+3YYMCBmL/HYYzB3rup8XXlbvBjef19tJ3e5aj4mOxPi1zvvwOrVaiBCnz5WR5O8JOkWQig33KCGavbta3UkIhEUFsKQIaqYr3rCXVgImZkWBSUS3vDh6t9U9eZ+MWboEXQtEB3D9d13BL98i3AHtavD1bUtpsOBozyEN60JTpcf0zSxTZ8OQP1FKi64QN3EARx7bMxfYsCA2jn9hx+qpPvBB+VjIJG88w58+aWaNCdJd+xI0i2EUIYNszoCkUi6dYOpU6GkJHpfOAw9e6r5sK+/Ds2bWxefSEz7a4VcB0zTxNCC6L/mY3v6WUw9QulTdwM2spoOxBYIQCCA++eVmD2643Sn4TzjUjjzWlz+dKS5rxD7VjnpT7pgJ5aTTlIJd5cuVkeS3CTpFkII8cdVn+v+00+wZYtaqczNtS4mIaqbNw+++YbQoB4EujfFMDQcBWvJeOcjzBQvPHY7Dq8fQw/jeOIJSEnB3bkzbru0vREJKj9f7enu1q3me3SMRdSUPEm6E8wNN1gdQcMgnyhCCGXdOpU0rVtndSQiUR15pBo19t//quZRla65Rg1rrTwjEyJG9DUriXzwX8qL1lC8fTF6JKA6OI0bh+N/U6oantl79CJy101ob79BZuP+ZDTug8OVooqFu3ZV3aFE3Ln1VnU975lnrI4kzp17rir/Wby4Xl9Wkm4h9k1WuoUQyt//Ds89pzpUP/yw1dGIRNWunbpV+uknePVVePNN1R2/RQvLQhMJYMAA1Zzvm28gO3v/x0Yi6Du3EfE70MIlaAXbyOh0FA7DoHT+p5hN8tDCxThOPBGKi7EPPYL0vJ6q4ZnNDo//o35+J1FniopUQ+5g0OpI4lyLFmqvt89Xry8biahu5dKkX4jaJOkWQiiNGkH79tL9RNStbt3gkUdUg7XqCfdXX6mVGPn3JqpbsED9WVkcWo2hR9AipTgcXhwfTFQ7KE48nvLn7lYHeJ3oPTtjw4a33IEjqyNOTwaccQaccQZ2ZHtfonv4YbjjDsjLszqSOPfDD5a8bCQiq9yJqFs3WLMGvv1W9bIUsSFJtxBCGTdO3YSoSxkZ8Je/1Lxv61Y1ms7jUdsfW7e2JDQRh778EkwTMz0dIxJACxdju/d+HF9+Q9kTd6MN7EWKvzkprVpBIIB9+e+4vJk43X6cbj+OeYuwudxYNGxMxFjTpuom4pMk3YmpvFztHnFKVhhT8tcrhBCifm3erMaM+f3QqlX0/kDAutnMwnrbt0N+PubWzRT1ycUw1Gp32u8rcPy+Bue8xZhDB2OzO2HwYFiyBFvnzvil/lqIuCBJd2KaO1d9/DZpYnUkyc1mmqZpdRBCCCEaGMOAnTtVWQOos7UuXdSW82eeid4v6sS0Hj3IW72aruXlVocCgL5uNeaP36G1zCPcox0Ol4/UMi+0bInpcFC07DtMnxenOw3X/KU4yjUcRxyNPa+x1aELC339tdoGe8QRakus2IezzlLvqS+/XK9bAyZMgOefV5uZhBA1yUq3EEL58EP4z3/guOPgllusjkYkO7u9ZmL9/fewejWUlUF6unVxiboXicCiRQQ7N0fTStHCJXgefZqUV95Du/h0tEfvVKvazdvDiSdia90af1o77I2bq4Zno7tb/RuIOPHKKzBpErz4oiTd+/XFF2rp8h/12yxQVrqF2DdJuoUQyurV8L//SYcaYY0TTlCzZTdsAK83ev8dd8Axx8CJJ0pL3ARhBMvRCGFoIbwpeWqlbdcutBmfEG6jLrRog/uiz1mMvWNn0rI64nD71Xz3L78EwPHww2CTbeOipkGD1D+T6gMSxF68/DKEw2q+Wj2SpDsxPf44uN2qN2VqqtXRJC/ZXi6EUBYvhvnzoVMnGDHC6miEUIVmgwer7i5r1si4scMQq+3lpmliaAG0cAnGt9/gvmM8evPGlL7zDDabjcymg7AddTT8+ivhf7+AfswI1fTMlYbN7qj5ZJqmsipQ3ZczMuo0ViFEbN15J3z2GSxfbnUk4mDperSB2o4d9X6dpkGRlW4hhNKrl7oJES9atYLbb1dtVasn3DNnQv/+NVfERb0wDV0ly6++Cp98QvDqcwkM7AiAI0UnZeVabNt34rB7cHoz1PGTJkFWFu4DNTxzOtVuByFEQpKV7sRjGHD55RAK1ftY9wZHkm4hhBDxqUkTeOqpmvdt3676DmRmqp0ZzZtbElpDoRcXYH78EebSXwncdiVapJyMxn1wzJoFX3yBq3sHgoM6q9XrAUcQmfgejhFHkdGoWhvcnBzrfgEhGhrDUDvXnE7o2hUcjgP/TB2RpDvxuFzw739bHUXDIEm3EEIpKFD1tKmp0L691dEIsXcrV6r9b82aqVslXa/Xk8ukVNHwLEKYUPs8tHAJ5u5dZF12DQCl5x8Pudno4VIcF10EffviOPYYMpt2Uw3PAM6QYlsRO+edBz/9pDpkn3KK1dHEqfJy6NtXfV1WVq/Ll5J0C7Fv0qVECKF88gn07g033WR1JELs27BhsGoV/N//RRuraZoqjbjpJnXxSBwUY9sWwqU7KC9ejxYuhcceg0GDsD/1DOHALgw9jJmRTuRPo4lcexmpqa3IaNwPty8Xjj0WbroJW/ce0YT7cEUiMHKkupWV1c1ziqSydSusX68ac4t90HV1QbJRo2ixbj2RpFuIfZOVbiGEkpamtvNmZlodiRD753ZD69bR77/4ApYsUV1gHn/curjiWGXP1FDZNrRwKZ4TzsQ572cCk19D79sNGzacQ4dCdjZ2fwYp6S2jDc8+/rJ+gtR1mD49+rUQe/jXv6CoSLqX71dGBmzaZMlLS9KdeFauVBsj8vLUEBsRO5J0CyGUs89WNyESzSmnwDffwM6dkJISvf/BB2H06GhH7AbENHRMU8e+dAXcfTesW4dpGpQVqrMqV0aa+vP3DTiHH4XT7Yejj4YdO7DZ7aTs78ljxeWCjz5SX6dYEoGIc506WR2B2B9JuhNPMAilpfKWWx9kZJgQQojks2ABDBig6rw3bFCzopOYroUwvpwMkycTPm4ooeF98PhySS2wQ/v2TAXyvB5absjH6U7DsWkXztxm2PMaWx26ECJJnHGGSuK++MLqSMTBCofVR6Suy0WtWJOVbiGEEMknOxsuu0zVfVdPuBcvhh494EDjq+KZrsOCBZhz51J2/ii0SCmGHsb3yf/h/feH6Fo5DO+NoYegbTd46SVsTz6JbcsW/Lnd1HOkt7L2dxDiD/j8c7W9/Oija/ZRFNVs3Qo33gh+f723pZaV7sTjdkvv3PoiK91CCGXRInj0UVUr+8QTVkcjRN0wzWjDtR071L/vVq1g6lRonBirvMa2LWg7NqG1agSmjs/TVNVthsOUzJlMpHkOYMPz0y+4v5sFY07BfsLJOJyequeY1qMHeatX07W83Lpf5EB0HWbNUl8PGybd6EUtffrAzz/DV1/BCSdYHU2cWr4cunRR/VnqubHk6NGqPUxllYgQIkpWuoUQyrZtqiN0796SdIvkUZlwA/zyC3g86qywUaPo/dUTc6sZBnq4HE0vQwuXYHvzLXy3PQjHDiP4n6ew2eykpLfGNmoUAF5HFt7c7jhdqdjOGgJnXW3xL3AYAgHVuRzqfdSRSAxDh6qGT7m5VkcSxxo1UjPV6rlzOchKdyJauxYmT4bmzVV5gIgdSbqFEErXrvDcczWTESGSyTHHqHlDmzfXHDc2fDicdBLcfrtKyOuRaehokTJcnnS4+mr46CPCrz9NYHBXABwd1TZwe0k5Hl8j1fDMNNU+WyCpzm9ttmhRYbxcBBFx5aWXrI4gAWRlwfXXW/LSknQnnsWL1bTNwYMl6Y41SbqFEEqrVqoOTIhk5vdD587R7z/7DObOVbNS7rwz5i+vayG0tSuwP/EUbNtKyYsPACYZjfvhKC+HwkKc+UtxjRyiGp4d1QFj+1aceY2T/wM7NVVtjRVCJCRJuhNPkyZwzjnQoYPVkSQ/qekWQgjRcOm6KkAMBFTjtUrPPqtWvw+3neuSJfD114Q7tKB8QFsMPYxtVwFZvU8GoODXr7Dl5JGW3RHnsjXqrLVXrzo/c02Imm4hxOErL4eNG9UMqJYt6/WlBwyA/v3hlVfq9WWFSAgJ3L5VCFGnQiFYuVLdhGgoHA4499yaCffChXDrrarL+Y4dB/1UxrYtRD56l/LdqynZ+RuRUDG89x7ceiuODyaqhNtmw9G0JeG/3IL21mtktBpEZpN+att4r17qjFWWioTYq2OPhW7d1JZYsQ8LFqjdPMcdV+8vLSvdQuxb0u9WE0IcpCVLoF8/NV5p82aroxHCOm43jBkD6emqa1OlNWugTRtVb2wYGDu2EUmzo4VL0IJF+Lschau4lPKv3kDv0RmnpxjXMcfAokXYRhyJv7Lhmd0Bjzxj2a8Xt8rK4Mwz1d/vZ5/J2buoZcUKtYgbiVgdSZzLyFDvX/VMkm4h9k2SbiGE4narJlKpqVZHIoS1undX7Vw1reouc8d26NkTenTHdtvtcO212Hp2p+y9J6uO0fr1wLFpG+6gE3tme5yedDi6BRx9NHZka9kBRSIwZYr6WirfxF5UVoIcbtVHUjviCCgstOSlJelOPC+/DA88oOq6//EPq6NJbpJ0CyGU7t2hpMTqKISIC7oWQguXoJeWqNFdX31DWiSMsXsnDr9fndQuXY7L6ceZko7D7cc55Qfsbi8pVgefqHw++M9/1Ncyo1vsxeDBVkcg9keS7sRTVARbt0JxsdWRJD9JuoUQQogKpqFTtH0Rhh6u+cCxwyie9znuYp2U4aNhwQJsvXrht2AWbtJyu+GSS6yOQgjxB0nSnXiuuAJGj1YVCSK25GxBCCFEg2LoEVWHHSlFCxVjszvx53QBwGZ3YLM5VMMzVypOt7/iloa9uSf6JP36WRS9EA3XZ5+pgQOjRqlqKLEXc+fCiy+qjnN33VWvLy1Jd+LJy6vZukTEjiTdQgilsBBuuw0MA9580+pohKhTofKdaKFCtWVcC9Z4zGazY5oGNpuquk7L6Yzd7lYNz0T90bRoW+q+fVVDNSGquegiVQX1++8yV3ifVq9WZRpHHy1JtxBxRJJuIYQSCsEbb6iv33hDTnhFQjINHS1Sih4px5vWtOr+cGAHkWBh1fcOlw+nK61qJbsy4QZwOPdRlT1/Ppx1FrRtCz/8EKtfoeEqLFQj00AtZ8p7kNjDkCFQWqrK/8U+9O4Njz8OLVrU+0tL0p14ZsxQF7H691dTK0XsSNIthFDS0+HRR8HpVJ2D5YRXJICqhmfhkoot4+WA6nztTsnB7nBXfJ1XkWSn4XD7sdv/wMdfKATr1slZZazY7dFEQd5/xF58/bXVESSArl3VzQKSdCee//4XXn0VHnpIku5Yk6RbCKGkpMA991gdhRD7ZJoGYMNWkZCVF60jWFp7przd4cHp9lccr3h8uYcfQK9eMGcOeL2H/1yituxs2LDB6iiEEH+QJN2Jp3t3OOkkGcNXHyTpFkIIEZf2bHimR8rw53bD6fYD4HCl7r3hmcNzgGf+g/x+GDQoNs8thBB1oaREzX9KS6vXltS6rjbJSdKdWG6+Wd1E7EnSLYRQTBO2bVPNjJo2lTm5whJapJxQ6ea9NjwD0MKlVUm325uFu8lAaXgmRANgGDBggPpo+uYbyMy0OqI49cYbKos691x4//16e9lIRP0pSbcQeydJtxAiqmlF46nt22WGhIipyoZnWrgEp9uPy1OxImPqhMp3VB23Z8Mzhyva5Kzek+1du+CrryA1Ff70p/p97YagsBCuvFLVc3/0kdXRiDij67BwofraNK2NJa6ZpurNUs/ZryTdQuyfJN1CCMVmU5+WNpta7RaiDulaEC1cuteGZ57UxlVJt8OVSoq/xeE1PIuVVavUzKLWrSXpjoVgECZNkiZqYq8cDvjyS5V8y4zu/ajcL1zPVyYk6U5MF1wA8+bBs8/CySdbHU1yi6OzGSGE5cJhqyMQScA0DUxDq+ocbugRirYtrHVcZcOzqlVu1MzslPSW9RbrIUlPh+OOg8aNrY4kOaWnw4svWh2FiFN2O4webXUUCaSeL15J0p2Y1q+HlSvVcA4RW5J0CyGEOCxVDc8qbnqkDKc7HX+uGltjd7hwOFOw2R310/AsVrp0UcWkIjZ8Phg71uoohBB/gCTdienVV2H3bujc2epIkp8k3UIIIf6Q8sI1REKFe214Zug170tv1Ltq1JcQQhyqcBi++05tMx81SqoQ9unTT9VA82OOgTPPrLeXlaQ7MVk00r1BkqRbCBE1bpy65HnffdC8udXRiDhQveGZoYVIzWpf9ZiuBaoS7qqGZ550VY/tTKnxPJJwiwOKRFTdvN0uQ2NFLUVFap4wqLpueUvZh59+UmUaXq8k3ULEEUm6hRBRb7wBW7bAdddJ0t1A6VqoYpt4MXq4tEbDM4CU9FbYHeqsyutvjjetafw1PIuVJUvg7LOhSRO15Cbq1rZtatnF5ZL+EqIWux369VOjw+x2q6OJY8cdBx4PDB1ary8rSXdi+vhj9d9u1CjIyrI6muTWAM6ShBAH7bbboKwMGjWyOhJRD0zTQI+U4XClYrOps9hgyUZC5dtrHFfZ8Mzp9tdYXqreAK1BCAZV4l1UZHUkyclmU2d9brfVkYg4lJMDCxZYHUUCOO44datnknQnpj//GbZuVeP4JOmOLUm6hRBRd9xhdQQihvbW8Mw0DdLzeuJ0qxk8Tk8Gulae2A3PYqVjR/j+e7WKJOpe8+aqvEUIkXDWr1d/bt++/+NEfBk+HHbsgMxMqyNJfjbTrOdBfkIIIepVOFhAoGjtXhue2e0ufJntcKdkWxCZqC/TevQgb/VqupaXWx2KECKWSktB09Q0gHrYNbJ7t5r1PGVK9L4TToD33pOVUyGqk6oYIURUWRkUFEg9ZYyVF61jw6//Zef6qQSKN2Aa+mE/p2noREJFBEo2UrJzKeFAdMXQZnPUaHjm8TUiNasDGY37kNl0gCTcQoi4t2EDjBgBJ59sdSRx7sYbVbb7zDP18nIXXADffltz/e7bb+H88+vl5YVIGLK9XAgRNXw4/PyzGjcyapTV0SStYOkWirf/TPH2nwGwVaw2p2a2JzWrPSn+ltjsjv0+h2FoRIKF+2x45nB5q5JppysVf06XhtPwLFaKi6Pby0880epoks+OHaqvhMcDr71mdTQizpSVwcyZsnp6QJqm/nTG/r3+5/kbmDKlJVCzlbyuq5Xv339XVTlCCEm6hRDVVX5IV35oi5jwZbSp8b1pRCjbvYKy3SsAE5vdSUp6a1KzOpKa2Q6vvwWmoXYfON3+ih/SKSv4vcbzOBweHBW12NWbnNnsDlxeOVM9bOvWwemnq0aD27ZZHU3yKSuDt9+GlBRJukUtzZrBRx/VSy6Z2P7zH/X/Tx21eDdNE10LoIWLMbQQvozWVY+tXLn/CtXHHoOnn5Z64XgVDKqJAG43zJqlKhJE7MhblxAiauZMcDjUTcSMJ7URdocbQ6++jT968mIaGuWFqygvXM2Oivsdbj/Nu56HP6cLoDqKu71Z2J3eqqZndod0fY4pn0+N4cmW7fgxkZUFTz0lWZXYq/T0eh07nbjs9sNq9lg51UILqdGRWrgEw4heiPemNasaG9mle+Z+n+utt+CDD+Cyy+Dmm2XVO94Eg7B0qfpa3nZjT/6KhRBR0pW5XthsdlLS21BWsOIAR1bbLu701toanlaRgIt60r69Wg4QsZGRAbffbnUUQjQopqGDzY6tYhxkeeGaWmMjbTa7urjrSa9xf/ee6Zxwgqrh1qu1JnE41NSyN9+El15StxdfVPX4t94KRx9dY/qksEhqKvzwg2rjI6PeYk+6lwshRD0yDZ1IuIRtKz+nePvCg/gJG43bn0xOq6OqToqEOFTSvVwkupISNUvY54MBA6yOJo69+qoqpj7vPLV3eA+GoaGFiitGRxajR8rw5/aoGhsZKttOoHh9RZLtx+lOx+HyYbPtfbt6QYFqmra/7uXBILz7Ljz7LPzyC/TqBbfcon7O663j31+IOCVJtxAi6vXX1V6j886Ts5o6FCzfQdnuFQSK1xEs3UoksBNDDx3gp+zYHS5a9ryMtOxO9RKnSF4JkXRHIrB1q9oe27y51dGIODNnDgwZAm3bwurVVkcTx044QTVDfestuOgiALRIOaGyrWjhEvRI7feA1Mx2eFIbA2p7OdgO+SLv77/DypXQocO+t5GbpupF+cwz8L//qfYYY8eqW+PGh/RyQiQc2V4uhIiaOBG+/BJ69pSk+w+orIULlm5D18oIFK2jvGgtgZINYBrYbA5cKdmkZnXAk9acnWu/3scz2XCn5NC691W4fbn1+juI/VizBs45R22D/vZbq6NJPuvWqbN1v191iheiGrcbOneGli2tjiS+GaefitGlHXRsU3WSbxoRQmXR5o8OZ0rVdnGnOx2HM1patq8V7QPp2PHANds2Gxx7rLqtWAH/+Ac8+SQ8+qgaPXbLLdC79x96efEHFBWp7eV+v/pvImJLVrqFEFGvvw7Ll6vEQpLuAzL0CJFQkUqsi9YSLN1MOLATPVIGgMubhS+jDe6UPFwpWfgy2uLyZFQ1PFs550lCZVtrPW9adhda9LgYh1P23cWVpUuhWzfVSG3XLqujOSQJsdK9apX6+01PV+PDhBD7ZZqmanoWLlG3UDGGEQHAm9a0alKGaegESjZUNN1Mr2qEFg8KCtSO+H/+EzZuVPXet9wCY8YcfAP2mTNh8mR4+GHpA3so8vOhf3+1sWjjRqujSX6y0i2EiLrySqsjiFvq+qSJoYcIFK2neMcvlBWuIhLcjWlogA2XNxOvvwUp/hakN+pNin//W2RTM9urhjWmUXVfTqtjaNz+xD+82iBiqGVL+Pxz6TgTK+3bQ+hAZRdCCFAXfYu2L1SN0Kqx2ew4XKnYq120tdkdtUZVxousLLjrLtVgbdIkVfd92mlqm/pNN8Hll0Na2r5/3jTh+uvh559VM7cnn6y30BOe16sGcuTlWR1JwyAr3UIIsReGoaGFSwkWb6C8aA2Bko1o4RLC5TsAE7szBZcnE09aE3zpbfBltsOdkoXDmXLQr1G4NZ9NS95B1c/Zad71PDKa1G58I8ThSoiVbiFEDaahVzU808Il2Oxu0rKje7gLty7ANPSKhmdqFdtpurA5XWrJN0Gbb86erZLvjz5SCfdVV8GNN0Lr1rWPnTEDjjgi+v2bb8Kll9ZXpEIcPEm6hRBRhqGaGdntDXI1LxIuoXj7YgJF6wiWbSES2FXV8MzpTiclvSX+vB5qm7g3GzBrjfE6FOHAbn7/6WEcrjRa976KlHQpVhSxIUm3SHTz58O4cdCpk9qKnKzCgd0qyQ4Vo0XKqT460m53kdk0Wvqla0HsDk/Npmd9+qhl3ylT4Pjj6y/wGFi/Hp5/Xm0/Ly6GM85QK+JDh0avJ5x+utpaXjmyzOmEqVNh2DDr4hZib2R7uRAi6oor4D//gSeegDvvtDqamIk2PNtKuHwH4cBOyovWEizZiGnq1RqedSQlvRW+rPZ4fHk4nCl1uu3bnZJNy56XkZLeGtce809FHCovV8WDTqcqPBR1a+tW+Nvf1PDYp5+2OhoRZ7ZvV025E6ydwn7pWgg9UoY7JbvqvmDpZrRwSdX3DoenouGZWsmubq99PzRN/ZkEF85btVKnI/ffD//9r1r9Hj4cBg1Sdd/9+8Onn6ot5pUMA045RdUr721lXAirSNIthIhyVrwlVH5oJ4naDc82EQ7sqtXwLKNJPxwOLykZrWs0PIul9LyeMX8NUUc2b1YrR9JdOzYKC+GVV1SRpyTdYg+9e6vEq3L2cyLSIwG0cDGRijnZlTupMpsOrNo15U7JxeHyqa3ibn+NzuIHZfZstWNtf4XQCSYtDf78Z7juOjVg5ZlnVLfz1NTaxxqG6sp90klqzFwS/TXUuW++gXvvhcGD1Y4CEVuSdAshop59Vp3sphx8XXK8MU0T04hgmjqBovWUFa2hePvP+2h41pK07I6kZnWwOmyRCNxu6NVr72d64vDl5sIDD6juPkLsoXlzuPhiq6P4Y4KlWwiWbKrqLB5lw+lOxdQjUJF0e9OaHN6LJXGWabfDySer208/wciRNVe5K+m6GsRy4YXw8ccH3wW9odm2TZVtJPKFrEQiSbcQIioBP6wNQ0MLlRAs2UhZ0RqCJRuJBHYTCRUCJg5XKi5vNv68XvgyWquGZ95sGcclDl2rVqpWUsRGbq7aRypEAjINHS1SVlGPXYIvozUOlw9QHcUNI4LNZq/YJl4xI9uVhs0uM67+iLlzo3Xce6Pr8NlncN998Mgj9RdXIjn6aFUPn5194GPF4ZNGakKIhBSoSK5Ldq+geFt+jYZnbl8umU0GVHQUzwVMGcElGjRppCYS3e7dsGYNZGSocVJWMw2dSEVXcS1UjB4ppfoptS+zLd5UtWpt6BEMPYjDlRr7z6InnoBAQO3Fbtw4tq9lEV2Htm1hw4aDO/7tt9WqtxBWkpVuIUTUt9/C9OkwZAiceKLV0eyXHgmgRcpwOFNIzepESnrL/TQ8S8yxKUI0KJqmijEdDsjMtDoaEWe++kolTsceqz6q6puhRwCzqteHFi6hdNeyGsfYHe6qhmcuT2a1+13YHfXU2OzJJ2HnTjjrrKRNuidPPviEG+CSS9Rqbpyf1ogkJ0m3ECLq++/h0UdVW9A4/3TypDbGnZKN0+2vl4ZnQrB1K5x3nqo5/uorq6NJPsuWQc+e0KiRKjYUohqvF1q0UP886oOuBatWsbVwMboWxJvWDF+Gaomtmpx5o/OxPenxUbZ0xRWq0WNOjtWRxMzf/17ze7td3SrHiBlGza3nhqH+WrZsqf1cI0eOZPr06QA4HA7y8vIYMmQId955J8OSfO7YqlWwerWqnOrc2epokp8k3UKIqCFDVIvQESOsjuSAZMSWqHfBoBoAm8CNBoVIVGecoW6xZBo6ZYWrKjqLh/fyeLQRms3uIKNx39gG9Ec8/rjVEcRcy5aqp2V6uio38Pujt7S02l/b7dClS+3nMU2TRYsW8dhjj3HppZcSDAZZu3YtL730EiNHjuSzzz7jpJNOqv9fsJ68/baa0njttfDyy1ZHk/wk6RZCRJ16qroJIWrLy4MPPoiO1hN1q3t3tcVcWs2IGDNNAz1ShhZS87C9/maASqS1UHFF0zMbDldatOmZ21811ktY65136uZ5fv/9d0pKShg5ciRNmqj6+zZt2nDUUUdxzDHHMG7cuKROuvPy1MWLVq2sjqRhkHcPIYQQ4mCkpsI551gdRfKy2VQ9txB1THUWL63YKl6CFi7BNA1A1WFXJt2gGqDZ7E7pLN4ALFiwAIfDQe/evWs9NmrUKMaPH49hGNiTdObYn/+sbqJ+JOe/IiGEEEIIkTS+/FJtL3/66QMfaxo1Z0mV7FpKyc4laupFqAjTNLDbnbi9WXjTmlYl4ADulBxcnozETLhNU1248nhUMzWxX/n5+XTp0gWfz1frMZfLhcPhSNqEW9Q/WekWQkT9859w661w7rl1t39LiGQRCsH8+WpFNskb7Fhi0ybVISkjQ+Z1i1pWroSPPwbXXpqAG3q4ahU7Ei7G0AJkNhlYlTg73X4MPVTR8MyPy52O3ZmCzZZkky00TXUNC4elDOYgLFiwgH79+u31sRUrVtBlb4XgQvxBcvlGCBFls6mWn5HIgY8VoqHZuVM1GTzySKsjSU47dqik+5VXrI5ExKGjjoIXX4Qrr1TfR0JFlBWspGjbQgq3LqC04HeCZVvRI+WYpokWKav62ZT0lmQ26U9adke8qU1wuHzJl3CDSrS3bFHztNKl2eiBLFy4cK9JdyAQ4NNPP+XMM88EYPDgwcyfPx+ASy+9lJdeeqle44yVCRPg6KPho4+sjqRhkMtgQoioSy+F009XtatCiJqcTujQQeqOY6VRI7jrLkkWRA2maaJr5XRsW0y3rtk4nB4A9EiAUPmOiqNsOF0+nJ6K8V3u9BpzsW22BrLGZLNBRUMwsX+rV6+msLCwVtJtGAZjx47F6XRy4403AjB+/HgeeeQRhg8fTlpaGmPHjrUi5Dr366/w44/qtE/Ens00pU2oEEIIkcym9ehB3urVdC0vtzoUIfbLNA20cGlVwzMtXFxVo52a2Q5PamMAdE0l3S63H4d0FheH6MMPP+Scc85hxYoV+P1+iouLWbBgAc899xzr1q1j8uTJ9O/fv+r4Pn360KhRI7744gucSbJ1f84cWLsW+vaFTp2sjib5Jce/GiGEEEIIkdC0cAklO5fUaGwGYLM5KCrJZOMOD42bQuPG4HCm4EuXWUc1lJbC88+rwvfbb7c6mriWn58PQKdOnXA4HGRkZNClSxfGjBnD2LFjyc7Orjp27ty5FBYW0qlTp6RJuAEGD1Y3UT9kpVsIEbVsGXz2GbRoARdcYHU0Qog6khAr3ZUNoOx2cLutjkbEiKFHqlawtXAJLk8mKekt1WOGRuGWedjtrmpbxf04XD4mTLBz//1wzTVS9r9PGzdCy5aqFEZ6s9SJTZs2ceKJJ/Lpp59yxhln8O6779K1a1erwxIJKHku1wghDt/PP8Pdd6tGUZJ0C1FTQQFcdJH6+n//szaWZJSfDwMHQqtWsG6d1dGIOmKaBuHA7qokW4/seeHHRgoq6bbbnWQ07ovD6a31PF4vZGVBWlo9BJ2oUlLgiitUbbc4bIFAgLPOOovnn3+etm3bctdddzFhwgTeSZLpLgsXQjAIXbqo/7dEbMlKtxAiat48eOEF9Q58zz1WRyNEfNm2LdqkKME+OhNipXvePBg0SJLuBKdHAhhGGJcnA1CN0Iq2zscwtKpjHC4fTne1leyK5mhCiPozcKCagjl5MowZY3U0yU9WuoUQUQMHwptvWh2FEPEpPR3+/W9ZRYqVfv2gqEj+fhOIaRrokfLodvFQCYYRwe7wkNlEdYW22Wy4fY0AKhJtf43O4kIIa7RoAbt3Q0aG1ZE0DLLSLYQQQiS5hFjpFgmlvGgNobIdmKZe436bzY7T7SctuzM2u4zXE0IIgAYyuFAIIYQQQhwKw9CIBAsoL16vuoobNRNs09Sx2R24vFmkpLciPa8HmU0H4s/tVucJ9zvvwMUXw//9X50+bXJZtAj8fujRw+pIhBB7kKRbCBE1YwZkZsKAAVZHIkT80TR1UrtoUcLVdCeEDRtg/Hh45hmrI0l4LVq04MUXX6xx36xZs/D5fKzbT728oUcIB3ZRXrSG4u2LKdwyn5JdywiWbCISKkKLlFUd60ltSnqjXmQ2GYg/pwsp/uY43X5stticWs6bB2+/rZo/iX0Ih9XYsNJSqyMRQuxBarqFEFGmqWoqi4utjkSI+FNcDH37qq8jETWWR9SdjRthwgRo1w5uvdXqaBLakCFDmDdvXtX3pmlyyy23cMstt9C6deuq+3UtiM3uxG5X/5bDgZ2UF62t8VwOp7eq6ZnDmVLj/vr0pz+paVgDB9bryyaWXr1g5UqroxAJ4qyzIBSCl15S9d0ituSMQQgR1b8/LF+uxo4IIWqy26FpU9XoS1a6616TJnDDDZCTY3UkCW/IkCG8Wa0p5ltvvcX69eu5646bCZZtRQupxmeGHiY1qwMeXx5A1UxsV0VXcacnHbsjPmamH3WUuon98HqhfXuroxAJ4quvoKwM/vEPqyNpGKSRmhBCCJHkpJFawzJjxgyOPPJIioqKMI0wXbp04+7bruSi82vOBbLZbHj9LUjxyzKXEA3Nu+9CIADnngtpaVZHk/xkpVsIIYQQop6Ul5fjcDjweOp2NrVp6GiRUrRwCT27tcHhcJCfn883X08hK9PPBeeeVNVZvHIV2+lKS5gO4zt3qgQhM1P1ChN7sXatGrrcpAmcfbbV0Yg4d8EFVkfQsEjSLYSIKihQlz6dTrj2WqujEUKIpDNy5Eh+/fVXBg0axPDhwxkxYgTDhg0jKyvrkJ7HMDQ1HztUjBYuQY+UUrl50eXJoHfv3kyaNIl//etfTPy//5LZuBcOV2rMGp3F2h13wH/+A489BnffbXU0cerXX+Gmm1ThuyTdQsSVxHznFULExvbtqqZSzmiEqK28XJ3Inn226hIs6tbMmeBwQNeuVkcSU++//z6PPfYYjRo14s0332TMmDFkZ2fTo0cPrrvuOt566y3WrFnDntV/1cd1maZJ0bZ8SnctI1i6GS1cgmma2B1u3Ck5uFNyGTJkCM899xzHHXccJ445K6adxeuD0wluN7hcVkcSx5o0gXPOgeOOszoSEec0DebPh19+kRYl9UVquoUQUVu3wo03quKeN96wOhoh4ktxMWRkqK8DAdW0KEEkRE339OkwciR06qQaOjYApmmyevVqZs6cyYwZM5g5cyZLliwBoGnTJgwa2I+mTXK4/trzadm8CRmN+1b9bMmupRhaEKc7XW0Vd/trdBR//fXXGTt2LL/88gudO3eu999NCBG/tm1T12gADEP1BxWxJUm3EEIIcTDCYXj1VfX1tdcm1MiwhEi6w2HYtUutdjdqZHU0lti68Xc+//wTPvnsC+Yv+IVt23cBcPbpJ/DyP/9GZpP+2B1qqdc0jf2uXB9zzDH06tWLZ599tj5CF0IkkC1bYPBgtcq9YYPV0TQMiXPGIIQQQljJ7Ybrr7c6iuTldquRbA2AaRrokTLWrl7O3PzlTJ8+g+nTp/Pbb78B0LRJHn5/Ktu27+Lss07lzX+/ijc1u2qeNrDXhNswDHbs2MHrr7/O8uXL+fjjj+vtdxJCJI6mTWH9equjaFgSt7hHCCGEECIBmIZOOFjI4vypPP/Mg1xwzim079CZjl0HcuGFF/HDDz8wdOhQ/v36y8z76Rt69+nLmrWbeP755/m/Dz/F529UI+Hel2nTptG0aVPefvttJk2aREZlOUQSePFFuO46mDHD6kji2Lvvqj3Dl19udSRCiD3ISrcQIqq4WDUx0jS138jttjoiIeKHYcCqVerr9u3BLtet69T69SppyMuDK6+0OprDpus6ixcv5vtvv2Dqj98xe+4iduwswG6307N7R0464UhGjBjG0ceOoVmLtgCsXbuWU045hfXr1/PFF19w/PHHH9JrHnXUURiGEYtfx3JffaWmYQ0YACNGWB1NnCopUcW6hYVWRyKE2IMk3UKIKLsdNm9WX2uaJN1CVBcKqSZfoC5QybDgurVqFfzlL9CtW8Il3boWoqxkJ3Nmq4Zos+f9xuw58ykuLsbtdtO/b1cuvuB0jhgxnOEjRpKd2xyHK6XGc8ycOZPTTz8dv9/P7Nmz6ZrkXdwP1YUXqoS7f3+rI4ljZ58NQ4bIe5M4oKVL4d57oXVrkLYP9UOSbiFElM8HCxeqBlEej9XRCBF/0tOtjiB5NW2qtsU2a2Z1JAdkGBq7t69j5oxpzJgxk1mzF7Bg0RJCoTBpaT6GDO7P3XffzRFHHMGAAf1xuxw4nPt+T3377be58sorGTJkCBMnTiQ3N7cef5vEcO65VkeQALKz1U2IA9i2DT75JOknNMYV6V4uhBBCJLmE6F4ep0zTRI+UsWPHDmbPXcS0adOYPn0aCxcuwjAMcnMyGTKoDyOGD2LEiCPo228QXl9WVZfx/TEMg/Hjx/PII49w+eWX8/LLL+OWHUZCiBjbtEmVa6SnwwUXWB1NwyBJtxBCCJHkJOk+eKZpoIVLWb1yCdOmTWXmzNnMmrOQ31euA6BNmzYcccQRDOzXiZFHjKBrt964POnY7I5Dep1QKMSFF17IpEmTePzxx7njjjuwybDcfSosBF1XO6flusQ+LFyobl27wtChVkcjhKhGtpcLIWp66y1Vu3reeZCWZnU0QggRc6ZpsmzZMr7+4gNmzprNT3MWsXHTNgA6d2rLiGH9uefOGxl14jm0bNmyTl5z6dKl/Pjjj3z88cecdtppdfKcyezUU2H6dPjwQzjrLKujiVOTJ8Nf/wrXXCNJtxBxRpJuIURN114LgQAcd5wk3UJUp2lw9dVgmvDCC5CaanVEyeWHH1Rm1bMnzJoVs5cx9AjB8t3kL5jNjJlzmDN/KTNmzGDnzp04HA569ejEn8Ycx/ARwxgxYiRNmrXB4Uqt81XoPn36sGPHDlndPki6rv50HNqGgoalQwc4+WTo1cvqSEScKyiArVshM1O10xCxJ0m3EKKmk06CSEQaqQmxJ9OEN99UXz/zjCTddU3ToLQUysrq9Gl1LURJ0TZm/zSjounZfObO/5WysnK8HjdDhgxl7NixjBw5kgH9euBPz8DhTDnwE9cBSbgP3owZKvGWSX37ccEFUqArDsqkSXDVVeoazeefWx1NwyBJtxCipo8+sjoCIeKTwwGPP66+TqmfpKxBGT4cVq48rIJd0zQxtAAlZSF++mk206ZNY+oP37Bg4WLC4Qjp6WkMGdiLO2+9mhEjhjN48HBS0xsfcj22qH82mxqsIYQ4fA4HZGVBRobVkTQc0khNCCGESHLJ2kjNNA30SBmbNq5m+tQfmTHzJ2bNzue3paswDIMmTZowYvhgBg/oxogRR9C7zwA8vizsdsnehBBC1B/51BFCCCGShabB7t1QXAxeL7RoEX3MMOCnn9T9lbeUFLVNPi1NLSUmANM0WbFsMT989z/V9Gz2Ilat2QBA29bNGTK4DzfeeCNHH3si7du3ly3cSeKJJ9Rs4euug44drY4mTv31r/DOO3DTTeomhIgbknQLIWo6+mhYuxY+/hj69LE6GiHiy+bNqra7SZP67+gUCKia57w89X1xMVx0kcpEdu1St8LC6PGnngqffhr9PhSCYcP2/twjRqjW0JXuvlvtO+zUSWU4HTrEvoZ93Tr47DP1+513HgCGoREOFvHL4nxmz13MrJ/mM336dDZt2oTNZqNbl/YcfeRgxt97C0eMPIpWbTpWND2Twt9k85//wJIlMGaMJN37tG0brFpV831ACBEXJOkWQtS0YYNKupNsG6oQdaJ5c/Xntm3QqFHsXqesTM3bnT8fFixQt2XL4Oyz4YMP1DFpaTBlCoTDtX/e76/dDNFmg3btVPIeDEb/NE1V3FfJNOGf/1SPV9eihboQN3o0XH99nf66gMqobrqJUO+ezM71MG36NGb9NJ/Zc3+msKgEp9PJwIEDufDCCxkxYjgD+nQir0krHM4UWc1uAK66SnVbbtXK6kji2N13w6WXRt+nhNiH99+H//1P9c49/3yro2kYJOkWQtT0wQdqi2q3blZHIkT8cThU8hqrdijhMJxwgmrVrGm1H9+6Nfq13Q5vvKFWoHNzISdH/ZmVtfdVeK9XNSqrzjRVgh8MRu8zDLjnHrVitmKFuu3eDRs3qpvTWTPpfvRRNRN4+HBwuQ7p1zUNnUAwxOzZs5n68SSm5WYx97cllI86A1+KlwH9ezD2GpVkDxtxNJnZkkw0VLfeanUECaBtW3UT4gDmz4e331bjwiTprh/SSE0IIYSwys8/w+LFcPHF0fv69FH3N2sGAwZA//7RW+PGf6j2+rAbqe3apVba589Xq+WnnKLuX7VKbT0HNfB19Gj1u5xwQq3E3zRNdC3A9i3rmDFjKjNmzuKnOT+z6OclaJpGdnY2gwf2ZNiQ/owceQT9BwwhJTUbu+OPdzMXQghR29SpMG8eDBwIRx5pdTQNgyTdQgghRH0KBtW879deU9vGvV7YskUlrQCzZ6ut6+3a1dlLxqx7+e+/w8MPq32KO3dG72/TBq69Fq68klUFG5g29QdmzvyJn+YsYsmyVQA0bZLHsCH9OPb40zjiiCPo1q0bNhtSjy32KhBQ15vcbpnVvU/Tp6u+EwMGQPv2VkcjhKhGkm4hRE3ffQfbt8MRR9TsfCyEODyaBm+9pToMb1DdtnG54LTT4KmnoHXrmL10zEeG6TrmT7PQP3iX1f99h+nFJUwHpjdqxOrt2wFo364VQwf3ZsTwYYwcOZL2HbvjcqfJjGxxUJo3V/lkfj707Wt1NHHqjDNUE9SXXlJt3oUQcUNquoUQNY0fr8YKffKJJN1C7OnGG1XN88MPR1emD8Yvv6jCud9+U983bw633662YufmxiTUWDMMjVB5AYsWzmPGjOnMmDmH2XN/ZntxCXabjd5+P2POPpuhw/ozdEg/mrdoj8Pl2/dK9tdfwyWXQL9+8MUX9fvLiLin6+pPWeXej+7doaBAPrvFAW3bplqI5OSAz2d1NA2DJN1CiJr691eze7OzrY5EiPjz0kvq7H/cuENLul0uNRIrOxv+8hfViCwlJWZhxkooFGL+/Pl8981kZkyfxpz5v1BcXIrb7aJfn25ceN5pjBgxjKOOPZXsnEPs7h4KRcefCbGHVavUZpG0NKsjiWMPPWR1BCJBXHedWluRTRH1R5JuIURN//yn1REIEb/Gj1cr3Yd65t+lC0yeDD17qqWFBKBHAhTs2sysmdOYPmMmc/OXM3fufILBIGlpqQzs352b/nwpI0aMYMjQ4aSlN8Lh9Bz4ifflyCNVA7kEvBghYi/WY+KFaEgcDtUfweu1OpKGQ2q6hRBCiFiYMUOthvfoYXUkfNumDU03bSL1iy9oM2rUXo8x9BCb1v/O9Ok/MnPmT8yak88vv/6OruvkZGcyfPhQjjp6FCNHjqRnz+44HQ7sjkMbESaEEEI0RJJ0CyGEEHXNMFQH71274JtvYNgwS8IoWLWKVYMHo+3aRRA4Cpifk0P7uXNIa57Hxo1bmTV7HtOmTWPatKksW7YcgJYtmjB0UB+GDx/MEUccQfce/XB50qXpmbDMAw+oyo5bb1Wj6MVeXHyxGkH4zDNwzDFWRyOEqEaSbiFETbfeqpKE+++Hc86xOhoh4ktxsUqo09P339Fp9mwYOlQdt3mzZXtj5+fm0mfXrhq1ZBowze3i0rxsNm7aBkDXrl0ZMWIEg/p1ZOTII2nbvgtOd1r9ju9au1ZNT2jcGMaMqb/XFQkhJUVN21u3Dlq1sjqaODVkCMyZA599BqecYnU0QohqpKZbCFHThg2qw7I0MxKitsaN1Zn/2rX7H/H1ww/qz1GjLEu410yZwoC9/H/sBI4JRzi7d1cGPf4gxx5/Onl5efUf4J4WLoSrrlK7AiTpFnv4859Vrz2/3+pI4tjzz0NhIfTubXUkIs799a9qOuwtt0DnzlZH0zBI0i2EqGn8eBg7VjV+EkLUZLMd3HGVnc2DwZiFUp2uhdDCxWihYmx2B76MNuycM4e2exxnAv8ABgHnDz6agRdeUy/xHZQmTVSy3bWr1ZGIOPT001ZHkAAGDLA6ApEgPvgAli9Xkywl6a4fknQLIWqSK+RC7FtBgUq8XQdoINa9u/pz5kzYubPOZ3HrkQBauJhIqBgtXIKhh6oes9td+DLakDt4cO2fA94HbgWGffwxD48cyZFHHontYC8mHC7DgP/+Fy66CJx7nIIMHao6vAshhIipW25RExrb7nllVsSM1HQLIYQQdU3ToF8/+OUXuOACePvtg18l34NpGhhaEIfLV3Vf8Y5f0MKl1Y6y4XSn4nSn43T7cXmzsNlse63pDgPPpqXxXocOLFq0iBEjRjB+/HhGjRoV++T7xhvVFtjjjoOvv/7DfyeiYak8U5V/LgfwzTdqD/7w4dJtTog4U48dUoQQCeHXX9Vq0/LlVkciROJyOuFf/1JZwqZNEIkc9I+ahk4kVESgZCMlO5dSuGU+RdsXYxha1TEuTyYuTwYp/hb4c7uR1XQg6Xk98WW0xp2SXZU8d5g3j0V7zAVfnJPDNYsXk5+fz+TJkwmHw5xwwgkMHTqUzz//nJhci1+7VnVTfv559f3ZZ0sGJQ5aOKz6FjocUFRkdTRx7JprVAO1FSusjkQIsQdJuoUQNb34Ipx6Krz/vtWRCBF/xo+HO+9UW8YPZMgQeOcd+PhjcLvVfftJaMPlOyne8SuFW+dRsnMJgeINREKFmKaOzW7H0KL14SnpLfHndiMlvSUuT8Y+R3lltm3LgJ07Wfv118x74AHWfv01A3buJLNtW2w2G2PGjGH27NlMmTIFl8vFKaecQv/+/Zk0aRKGYRzSX81ebdgA114LHTrAtGkVQWXC1VfXPvbLL6F9e1VkKEQ1uq7+NAyVeIt96NMHBg5UUxOE2I+tW1W1VF28zYuDI9vLhRA1PfkkTJwIV1659xNjIRoyvx9KS2HlSpUgHqoLLsBs15bIrdehOTU8qU1xOL0ABMu2Ul64BgC7w43T7VfbxT3pOJwpMd/6bZomU6dO5cEHH+SHH36gR48ejBs3jrPPPhvHoWY6W7bAww/Dyy+r7yuzJqcTLrsMXn219s98+KEaUzhyJEydeli/i0gupqk6LRuGGiCwv2l9QogDc7lUFdTGjdC8udXRNAySdAshhBAH6777VM3k3XcfdHM0XQuqZmczp5Fy/FkAGFkZhM4bg/2Gm/F0G1hxnOpA7nT7qxJxq8ycOZOHHnqIKVOm0LlzZ+69914uuOACnHs2P9vT9u3wt7+prfWViXZ1Nhv84x+qtntPu3apbbF+P/ToUSe/hxBCiJoMQ13/NE3YsaPO+3yKfZCkWwghhKgjpmmCaVRt944ECynZtbTyQVxfTsU34Xkc6zeru2w2bCefrFZ4x4yJu+ZHc+fOZcKECUyePJl27drxl7/8hUsuuQR35Xb5Sps3w623ql0ye0u2q/v+ezj66NgFLYQQYr9MU610O53SXqO+SNIthBBC/EGmaaBHytBCJUTCxejhEtypjfGltwLAMDSKti7A4UrF6VGdxZ0OH/YvvoIXXlDdhit99RWccIL6urAQUlMPPJqsnixatIgJEyYwceJEWrVqxd13380VV1yB1+uFzz9XzZsO1vbtkJcXu2BF0iktheeeUwnCXXdZHU0cGzlSZVITJ0LTplZHI4SoRpJuIURN//632hp6+ulqC60QIioSwTQNgoFtaJFStHAJplmzE43Lk4E/t1vV96ZpYLPtowh1+XI1Tuy77+CHH8DjUfffcIP6f3HAANWQbdAg6NJFNSTz1vPWc8NQDdEWLeK3L7/k4c8+44MtW2jSrBl33XUXV48ciW/gwAOvcANkZ6tt5Huzbh389JMq2pWVcFHN5s2q7tThUDml2AePR7V637ABWrSwOhohRDUHKM4SQjQ4mzfDnDnQq5fVkQhhOcPQ0ELFmKaBx5cLjRtjKyggMu1DtHaq+4zd7lIr2B7V+Kz6PG1g3wk3QOfO8NBD6lbdb79BIADTp6tb9MmgTRtYtizaEf2776C8HBo1UglrRoZKzL3e/e8bNAy1hLhrl+rGXl4ORx4Zffy66+DHH2HNGnUiD3QH3gX+lprKI8cdx+23384jOTnccfPNjF20iLTvv9/v3+d+31dmzVIzzY85RpJuUUNKiurtKdtgD+Djj9X/q3uMCRSiut274a9/hbQ0ePRRq6NpOGSlWwhR0/LlqplR69aSeIsGx9BDVVvFtXAJeqQcUN3EM5v0Vyu1BQWE5k/F7NIJlzsdeyw6ixuG+v9w9mx1y89X/28WF0PLlrB+ffTYkSNrJubV5eWp7dyVTjxRJdKRSO2V6YwMta290ujRMGWK+trphK5d1cp7tdvqtWt57LHHePPNN0lPT+fWgQO54euvybDZaj+/ywV//jM8++zeY/3+e5gwAfr1g6eeOoi/JCGEEIdq5Uro2FH1rCwutjqahkOSbiGEEAIo3bWccHB3rfsdzhScbj++jDbYiirOUNLT639gcGWr2W3boGfP6P1jx8L8+er+bduqVqUBtfq9bVv0++OOUyvj1Xm9qn1tXp56nsp5TDNmqE7t7durRH8/v+/69et54okneO211/C6XNxst3NzaSnZew6BffVVuOqqP/gXIIQQ4nDt2KGGSDidatiEqB+SdAshhGgQTNNE18rRQmoVWwuXktGod1Wn8fKitQRLt+J0+aJNz9zp2B3x0czsoFS2pA0EIBhUK9rVh7Bu3qzuc7nU9nSfT93qyObNm3nyySd55ZVXcEQi3KBp3AZUtU2bPRsGD66z1xNCVNA01RfC6VS7X+r7oqAQYr8k6RZC1LR5MyxdqmrC+vSxOhohDoseCRAO7kar2C5uGjW3PPtzu+HyZABg6BGw2bDbpd3J4dq+fTtPP/UULzz3HGYoxHXAHUDT4mK1p1GIQ7BsGfTvrzZurFljdTRxqrAwOnIwFIr2fBBCxIX9dHcRQjRIn3+utqDKniORYExDJxIsVMlzhUiokEDxeiLBQkxDx2Zz4PJmkpLeEn9ud5zuaAJod7gOnHA/9ZT6f6N6nbSopVGjRjz+xBOs27SJ2665htfsdtrabNx4771s2LBh7z80ebLaNj92bP0GK+JeJKL6/JWXWx1JnOvVS/VecMqFQ7FvkYjqoRmJHPhYUXck6RZC1JSbCz16QKtWVkcixH4ZeoRwYDflRWsp3r6Ygi3zKNm1lEiwoOoYpycDd0o2vow2pOf1JLPpQPw5XUnxt8DlSd9/Z/G9eeIJeOABSboPUk5ODg+98grrtmxh3F/+wjvvvEP79u259tprWbPnkmVhIfz6qyxlilo6d4bVq1V1gtiHzEz4+WdYsiTal0GIvfj+e7XhaNAgqyNpWGR7uRBCiISiRcop270CXQvUeszh8OD1N8eT2jg2L3733VBSAvfdB82axeY1klhJSQkvvvgiTz/9NLt37+biiy/m3nvvpWPHjrBli0oYsrOhb1+rQxVCiKT02Wdw2mkq6Z4zx+poGg5JuoUQQsQlPRKoqsV2uFLxpjUF1Ap34db5ADhcvqqGZ063H4fTY2XI4iCVlZXxr3/9iyeeeILt27dz3nnnMW7cOLp162Z1aEIIkdQMQ/XZ1HVpsVGfJOkWQghhOdM00SNlqqt4RXdxw4gWnLk8GfhzowlZJFiIw5WaWJ3FRS3BYJDXX3+dxx57jE2bNnHmmWdy33330bt3b6tDE3Fk82b48EO1CeLii62OJk5t2KD+crKy4OOPrY5GCLEHSbqFEDXNmgXjx6siuhdftDoakaRMQ8fQwzhcKep706Rw67wa3cVtNnvFKrYfpye9qsu4SD6hUIj/PPMMjz7zDGu3b+fUU09l/PjxDBgwwOrQRByYPl1NwerYEVassDqaOPXbb6ofS26uGsQshIgr0t5QCFHT7t2qy0ZJidWRiCRiGBp6uIRIxUq2HinFbneT0aQfADabDZcnC9PUcbr9uDzpOFyph97oLNbatIFNm2DePBmpV4c8Hg/XNG7M5du3806vXjyydCkDBw5k9OjRjB8/nmHDhlkdorBQbi6cfz40jlGrhqTQogW8/750LhcHNGuWGhbRty+cc47V0TQccXY2I4SwXL9+8N578MgjVkcikkCwdDPF2xdTuGU+JbuWESzZpOZlmyYmJoahVR2blt0Rf04XUvzNcbr98Zdwg5qxomkgm8TqXl4erkGDuOzYY1m6dCnvvPMO69evZ/jw4Rx77LFMnTrV6giFRbp2hXffhWeesTqSOJaRAeeeC2eeaXUkIs7NnQuPPQaffGJ1JA2LbC8XQghx2HQtWFWP7ctsW5UwlxeuIVi2FQCH0xtteuZJx+H0WhnyH7Nli+pCk5cHbrfV0SQ9wzCYNGkSEyZM4Oeff+aII47gvvvuY9SoUdhsNqvDE0KIhPPjj/Dpp2qNRXok1B9JuoUQQhwS0zTRtYrO4pVNz/Rw1eP+3O64POkAaOFSDD2E0+3H7pAkVfwxpmkyefJkHnroIebPn8/gwYO57777OPnkkyX5FgKgqEjVdaelQa9eVkcjhNhDHO7dE0JYqrQUZs+G+fOtjkTECdM0ME2j6vtQ2VaKt/9MeeEawoFdGHoYm82G0+3Hm9asRkdxpzsNd0qOJNzisNhsNk499VTmzp3Ll19+icPh4JRTTqF///5MmjQJwzAO/CQiYU2ZAo0awUknWR1JHMvPh+HDVfG7ECLuSNIthKhpyRIYOhTOOsvqSIRFTEMnEioiULyBkp1LKNwyj3BgV9XjTncaNpsdlyeDlPSW+HO7kdlkIOl5PfBltMbhTLEw+hh75RV48km1zVzUrU8/hSFD4O6793mIzWZj9OjRzJgxg++++46MjAzOPPNMevfuzQcffICu6/v8WZG4AgHVkLugwOpI4pjbDe3bQ6tWVkci4py0JbGGJN1CiJpSU6FtW/ngbmAMPUx50TqKd/xC4dZ5lOxcQqBkI5FQEaZpoIdLq451uNLIbDoQf243UvwtcHkysNkdFkZfjx55BO66CzZutDqS5LNtG8yZA8uXH/BQm83GMcccww8//MD06dNp1qwZ5513Ht27d+ett95C07QDPodIHMccA7/8Am+9ZXUkcWz4cFi5Er780upIRJy79Vaw2+Gvf7U6koZFkm4hRE3du8Pq1TBtmtWRiBgx9DDh8p1EgtWXjWwESzejhUsxTRO7w407JRdfZlsyGvUmJaNN9EibLT47i9eHs86CSy6BnByrI0k+J5ygVrvvvfeQfmzEiBFMmTKF2bNn07FjRy655BK6dOnC66+/TjgcPvATABMnTuS2225D2tzEp/R0NYK6QwerIxEi8YVC6k+Xa//HiboljdSEECLJ6VoALVSiGp+FS9C1IAAuTyb+3K5Vx5UXr8fhTMHp9idmZ3EhgIULFzJhwgQmTZpEq1atuOeee7jiiivweDz7/JkpU6YwevRonn76aW677bZ6jFYIIepXeTmUlYHXC36/1dE0HJJ0CyFEEivatrAqyY6y4XT5cHoz8aVLGYFITr/88gsPP/ww//d//0fTpk256667uPrqq/H5fHs9/q677uLvf/87P/74IyNGjKjnaMX+/P47TJ0KLVuqDRFiL6ZOVf0m+vaFhx6yOhohxB4k6RZC1LR9O1x1lSr4+eQTq6MRB2CaBnqkjEjF6C7TiJCe17Pq8ZKdS9HCRThcaTg96bjcfhxuP3a708KohdiLjRtVPXejRtCz54GPP0jLli3jkUce4d133yUnJ4c77riDsWPHkpaWVuO4SCTCsccey6pVq1i4cCGNGjWqsxjE4fnPf+Cyy2D0aClZ3qe331ZDl487Dr75xupohBB7kKRbCFHTxo1qOcHlgoOshxT1SwuXEAkWVmwXL60xzgsgs0n/qhFdhh7CZnc13Brsuta/P6xaBV9/DYMGWR1NcnnxRbj+ejjzTPjoozp/+lWrVvHYY4/x5ptvkpGRwa233soNN9xARkZG1TGbN2+mb9++9OzZkylTpuBwNJAGgXHuu+/gueegXz9p/rRPq1apXixNmsCJJ1odjYhjb78N69bBaaepXgmifkjSLYSoqbwc3ntPJd2XXGJ1NA2eoUfQwiW4vJlViXNZ4WpCZduqjrHbXTjdfpyedFWP7UrFZrNZFXJy69BBndzOnAnDhlkdTXJ5/314+GG1UvfMMzF7mfXr1/P444/z2muv4fP5uPnmm7n55pvJysoC4Pvvv2fUqFGMGzeOBx98MGZxCCGEFY49Fr7/Ht55By64wOpoGg5JuoUQIo7oWggtXK3pWaQcgPS8HjjdquNJOLCbSHC3SrTd6ThcSTwXO96sWQORiNoNkiJ/74ls06ZNPPnkk7zyyiu4XC5uuOEGbr31VvLy8nj44YcZP348X3zxBaNHj7Y6VCGEqDN//zssXQrXXAMDB1odTcMhSbcQQsSBcGA35UVrMfRQrcccLh++9Na4vJn1H5gQSW7btm08/fTTvPjii5imydixY7ntttu46qqrmDt3Lvn5+bRqJQ0HRZzbvh22bFHjDFu0sDoaIcQepMhPCFGTYcAvv8DChaDrVkeTVEzTQAuXEizdQunu5YQDu6ses9mdFQm3Dac7DW9aM9KyO5PZZAAZjXpLwi1EjDRu3JgnnniCtWvXcuutt/Lqq6/Svn17mjdvjtfr5Zxzzjnoed8iNt54A9q2hVtusTqSOPb229CnD9xzj9WRCCH2QpJuIURNmga9eqmONSUlVkeT0EzTIBIqJlCykZKdSyncMp/iHb9QXrRWbREPFVYd63Sn4c/pSlbTgaTn9cSX0Rp3SjZ2h8u6X0DU9u678MILsHmz1ZEkn48/VsWGFo07ys3NZcKECaxbt46//OUvTJw4kW3btjFv3jyuvfZaS2ISSkEBrF0LO3daHUkcS0lRTdQqehMIIeKLbC8XQtRkGOqD2+VSK97Z2VZHlDAMQ8M0NBxOr/peD1G4Nb/GMTa7A6dbNTxzeTJwutP29lQiXnXposZaTZ0KI0daHU1yee45uPlmOPdc1VQtRmbMmMG1115LOBzGMAwMw0DX9Rp/GoaBpmkEg0GCQTXnftKkSZx++ukxi0vs29atqttydjZ07Gh1NEIkto4d1XXjqVNhwACro2k4ZFCrEKImu13VhokDUp3Fi9UtVIIWKcflzcSf0wUAu8OD0+3H7nBXdRd3OH3SWTyRjR6tZkjn5lodSfIZPVrtJIhx/XTLli055ZRTME0Th8OB3W7Hbrfv82td11mzZg1HHnlkTOMSNX3wAaxcCePGqevATZrUPubhh9VAgXPPrf/4hEhUZWVqUI1TssB6JSvdQghxiMqL1hAJFqFrgVqPOV2ppDfqZUFUQgiRPB5+GO67Dx58EMaPr/34Qw/B/ffDhAkqMRdCHJwtWyAYhGbNwOOxOpqGQ65xCCHEXpimiaEFiISLMbQQvozWVY/pkUBVwu1w+dRWcXc6Tk86dofbqpCFECJpjBunqp3uv19tLx8xAjp1gv79own3gw9Kwl3l7bdh8mQ45RS46CKroxFxrGlTqyNomCTpFkLUduWVUFSkaiybNbM6mnphmgZ6pEzNyA6pGdmGoVU97k1rVtXUzJvWDE9qE5Vk2+VtVIg6sWWLKtzNzVV7hhPQe++9x+WXX86qVato3rw5QNXosenTp5ORkWFxhImlcoX7/vvhxRfhz3+GL76IJtx7WwFvsBYuhP/7P2jd+sDHCiHqnWwvF0LUlpsLu3bBb79Bt25WRxMTpqGDzV5VX11WsIpQec1adpvNrmqx3X48qU2kk7hQ3bWXLVMFpyNGWB1Ncvn73+H22+HCC9WqXQIyTZM+ffpwxBFH8Pzzz/PAAw/w2muvMXv27KokXByacGAXZ53tZvL//DgcapKlJNx7MXOmSrz79oXhw62ORsQpw4CnnlLbyq+9FrxeqyNqOGSJRghR26OPQjgMjRtbHUmdMQytxiq2HinFn9ujqnu40+0nEtxd1fDM6fbjcKVis8lkRVHN9u2q7WsoZHUkyScjQw1jzsuzOpI/zGaz8fDDD3PWWWfRrFkz/vGPfzB9+nRJuA+SHgkQCRfhScnDZncAoIVLefOVzTRtN4Rw2IbbDaeeCuvXx7znXmIZPlySbXFA4TDcfbf6+vLLJemuT7LSLYRIWnqknFDZNiLhYvRIea3HfZlt8aaqlrimaQA26Swu9m/pUtWBpkMH8PutjkbEqX79+vHbb7/x9ddfS9fz/ahMsrVQMVqoGMOIAODP6YrLmwmAFi7hwQcNHno4A7dbJQ3Nm8O2bfDee3DWWRb+AkIkmGAQrrtOXTf+z3/ALW1o6o2sdAshkoKuBdFCxRWNzdTqtWFECJZtrTrG4fSqGdmVK9nO6CVeWdEWB6VrV6sjEHFuypQpLFu2DF3XaZxEu4XqUiRYQFnBqqoku1JlSQ/VLn4++rifhx6ObikfNw4eeUSNOxo5MvqzmtbARyBt2aJmQeXlqV0jQuyF1wtvvml1FA2TrHQLIWrbuBECAbWc4PNZHU0tpmmia+VqNna4oumZHgbAm9YUX0YbdZyhEyhZrxLtinnZQggRK/n5+Rx11FG88MILvP/++/h8Pj788EOrw7KMHgmghYuJhIpwp+TgTskBQIuUU7z952jfDE96xft0Wo0LoNW7lFev4d7b/Vdcoao/HnsMevSoz98yTlxyCbz1lirYvf12q6MRQuyhIV8TFELsy/HHq220P/4IcbY10tAjFG1fqBqhVWOz2XC40rBXX722O/BltK3vEEUymzxZNRkcNUpdlBJ1Z9IkeOMN1azullusjuaQrV27lpNPPpl77rmHiy++mG7dujFw4EAWLFhA//79rQ6vXuhaAC2kkuzqF0NBrWJXJt0OZwr+3O61kuzqHn54313Kq3c1t9th7Fh49121ZbbBNljzeFTJixTpChGXJOkWQtSWnm7p9jTT0NEipVVNz2x2F2nZHQGwO1zYbA6wmRVbxf3qT1dqVeMdIWLm/vth0SL46itJuuvaypXw+eeQk2N1JIds9+7dnHjiiZx66qnce++9APTv359TTjmFcePG8dVXX1kcYWwYhlY1NtEwNIq2LarxePUJEJU12up+Gy5P+n6fu0MHmDBh33O4x49XCXeHDpCdDb/8Ap9+CoMHR4957z21WeuUU9SxSe3VV9VNiP1YuhSGDlXTYJcssTqahkW2lwsh4kI4WFCRZBejhcuA6FuT3e4io0n/qiZnuhbE7nBLHbaofzfeCKtWqf2tDWT1st4sXgzz5kHHjjWLdUXciK5kq/dqh9OLP7d71ePFO37BZnNUbBnP2O9KdqwFg9CmjWq49sEHcM45loQhRFzJz1cfXc2bq0pCUX8k6RZC1DtdC6Fr5bi9WVX3Fe/4FS1cUvW93eHBVdHwzOlOx+FKsSJUIYRo0ELlO4kEC9DCxTW2iwPYbA4ymw6IywugJSVq+uXnn8OCBeByqfvXrYMmTdRubCEammBQjdszDOjSxepoGhZJuoUQMVfZTKdyTrauqxnHmU0HVm1NDJZuQdcCVU3PHE45IxJCiPqka0G0cAkeX3RWeumuZYSDBYDaFl55IdTpScfpSov7sh7DiG4tN00YNkwlHe+/D0ccYW1sderJJ9Xe4auvVvuHhRBxRWq6hRC1Pfkk/Pab6k5TvUDuEAVLtxAs2VRrLAzYcLp8mHoEKpJub1rTwwhYCJHwtm9Xe4GzsqBFC6ujaRDUqMWiqu3ilSvZ1Ucqun15OFypCZNk76l6Lfe2bbBhg+qF2LGjdTHFxFdfwfffqyaPknQLEXck6RaigTBN4+C3AE6ZAt99p7qYHyDpNk0DLVyqVrJDJfgyWuNwqTFjNpsdw4hUNNNJq1rFdrr9CXfiJgQAZ50FP/8M//oXHH201dEkl9deU12zrrxSfS1iJlS+g0Dx+r1sF1dTIExDq7rPnZIDKYnX3G5vmjRRLRnmz1dfV7rtNnC71Z+NGlkX32G55hqVcPfpY3UkIo6tXq2uz7RoAaeeanU0DYsk3UI0AOFgAStnP4bLk4kvsz2pme3wZbTBlZJT1ZyshquughNO2OuHt2noapt4WDXT0SNlmKZR9XgknFWVdLu82fhzUyxtpiNEnVq/XnXZLiuzOpLkk5qqMp70/Xe1FgdPrWSrVWxPamOcbj9QcUFUD1cl2S5PRsKuZB8qjweGD49+v2kTPP88RCJw2mkJnHSfe67VEYgEsGABXH+9Kq2QpLt+SU23EA2ArgVYNu0+9Y3NDhVJssPlw5fZgdTMtvgy2uJNa1brhMvQI4CJ3eEGIBIspGTX0hrH2O0udcLm9uPyZlVtSxQi6fz8M5SWQteuak6REHGkepIdCRVjVPTPAEhJb0mKX23bNwwNPVLWIJLsAzEM+N//4Ntv4R//iN7/9deq+3mnTpaFJkSdmzkTnnlGfYQ99JDV0TQsknQL0UCsnPMkobKte3mkcqXbxGZ34vW3VCsizlQ8aU0x9CDetGb4Mlqrowyd4h2Lq7aJOz3pOJzSWVwIIepb9bIhLVxK8Y5fajweXclOx+XNxulOsyLMhBMMQrt2sHUrfPMNHHus1REdhK1bVae4nBy1V14IEVdke7kQDURqVkdC5durVrmjotfdTEMjULSGQNEaALJzB+PJaVmj7s9md5DRuG99hCyEEKKayu7ilc3PXJ4MUrPaA2rnkt3uwu70qnGLngxZyf6DCgpgwABYtKhmh/OSEvD7LQtr/0aNgl9/Vf1YjjnG6miEEHuQpFuIBsKX2ZbdG6cf3MGmSe47c8jpmoP99jOqxnoJ0eB9/71qfTxsGDRvbnU0yWXiRPjwQzjuONVXQgCq6Vllkl19uziAFi6p+tpms5PRpJ/0z6gDTZvCZ59BUVHNReOTTgKHA156SW3PjSs2m2rV7pTPayHikbwzC5HETEMnHCykeMevlO5acRA/YcPmcNP622IavzUXpzNFEm4hqrvvPjjnHJg71+pIks9vv8EHH6jW0g2UroWIBAtr3Bcs2USofAeGHqqak+31N8ef05X0vJ41jpWEu25lZES/XrkS5syBn36qeX/cWLwYdD3Jho+Luvb886pz+V13WR1JwyNn00IkEdPQwWYjVLaN8sLVFG1bSLBsC4YWrDjCRvXt5DXZcHkyad3najxHNoZHZWSPELX07Qsul6qbFHVr9GjIzIQePayOpN7oWqhi3GIRWqgYXQ9hs9nJbDqwKoH2pDbCMDRcFSMXZbu4NTp0UOPGfvoJmjWL3v/oo9CqlWoeHheLzHubSCJEhd27Vcf+4mKrI2l4pJGaEAnM0MNEgoWUFa6ivHA1wbItRIKFGFoAbHY8vka4vFmkpLciNbsjuzfOonj7or3UddtIyWhNq15X4HSlWvGrCCFEgxEs3UKodAv6HtvFwYbTnUpqViccTo8lsYmDt2mTargWDsOsWTB0qNURCbF/27apf7fZ2ao7v6g/8XBNTghxCELlOynZ+RvlRWsIlW0lEtiNaerYbA5cKdlkNR1EWk5XfBmtsNldNbYbRsp3Urwtv9ZzZjYZQNMuZ8lWciGEqEPRlexiUtJbVo1eNE2jIuFWSbbTkyEr2QnI74e//U3NPq6ecOfnQ+fOavR8vbnzTtV2/d57VVG6EHvRuLG6ifonK91CxCnTNNG1AKGybURCRQRLNlBeuIZAyQYwDWx2F+6UXLz+Zvgy2pKa2R6XN7PqpG5vwoFd/P7TIzXua9x+DDmtjsJWfUvapEmqA+pxx8Hpp8fqVxRCiKjdu1Xb6IwMyM21Opo/pHqSrYWL0atKe9QECY8vt+K4IIYWwOlOlyQ7yYRC0L69yn+/+UZVpNSL7Gz1/8/SpdClSz29qBDiYMmylhBxwjQN9EgZwZLNlBasJFCynnDZDrRwEQBOTwa+jLakN+qF05NOSnobXJ70Q1qddnmzcbjS0COl2OxOWnS/mPS8vdRPzpoFL76oLtNL0i1E1FVXqUZfTz6pRvSIuvPss/DQQ3D99arbTwIwTbPqgmU4sJvS3cv3OKJiJdudjsPlq7rX4fTicHrrMVJRX9auBa9Xjczu1i16v2nGuNz67ruhtBTy8mL4IiLRTZ8Oq1erkXjdu1sdTcMiSbcQFjJNk3BgJyU7l1C8fTHhwA70SBkADlcaHl8e6Y16k57XA19mu5qr0X+AzWbDn9ed0p1Lad37arz+Zns/cNQoSEtTY5GEEFG//w4//wyFhVZHknzcbvW+443fZNTQQ0RCak62Fi7G7WtEfw1l9QAAYGtJREFUil+NjnO606ieZLs86TjcfinbaWA6d4Zly1Ri46lWln/SSaoZ2333xWh77913x+BJRbJ57TX473/h8ccl6a5vsr1ciHpiGBqRYCHlRWspL1xNJLibUNnWijmrNpyeDDy+RqrpWVYHvGlNcbh8dT4CxjA0bNhkS6MQf8S8eWoLZ69e0KSJ1dGIGDNNg3Bgd1WSXX27OIDLm4k/Jzqw2TR0eW8VteTnQ//+avDB6tVqZJMQVnjqKfj2W7j6ajjzTKujaVgk6RYiRkzTIFS2XXUWL1pDqHQL4cAuTCMCNjvulNyqFWxfRhvAht3hOezVbCGEEH+MoYcx9HDFqrV6Hy/cMg+zauJDdCXb6VGNz2QlWxyIacIPP8Avv8DNN0fv//e/oV8/6NOnDl6goEDNLPP7ZWyYEHFIkm4h6oiuBdBCJUSCBZQVraa8cDXlRevA1LHZnLhScvCmNcGX3gZfdgfc3uz4rekLh6G8XH2Ap6VZHY0QQsSEoYeJhIprrGQ7nClkNO5TdUx54Rqw2SXJFnVqyxY1sikchkWLoHfvw3gyTVPL6KAaEmZl1UGEQoi6JJ8cQvwBpmmiR8oIlW2jrGAl5cXrCJdvJxIsBEwcrlR8me3Ibj4Mb1pTfJntcHkysTtcVod+cJ59VtWHXXopvPmm1dEIET/mzoUdO9TSVPPmVkeTXCZNgv/9T01NOP/8mL5UoHgD4cDOWtvFqSi9MU2jqrTHl9k2prGIhikSgTPOUDOTe/WK3r9pEzRrdoiL1ZoW/dopp/ZCxCP5P1OIQ1RetIZQ+Q7KClZStHUBAA6nD7cvl7ScrmQ3G4onrWlibxOv/NCu/kEuhFAzcL/7Dt55By64wOpoksv8+Wq/rd9fZ0m3oYcrxneVkJLRuiqRNvRwRcJtw+ny4fRkyEq2qFetWsF776nku/J0IRxW874bN4YPPoB27Q7yyTwe9USaVrN7mxB7OOcc1Qv0hRfU9U1Rf+STRYg/wDR0PKlNyWl1NL7MdqT4W+B0p9V50zPL3HQT3HCDXDEXYk+dOkFRkZqJK+rWCSeohHvgwD/8FJVJdqRiVrauBaoec/vyqmq1PamNcXmzcB7i2EUh6pqr2ga4hQth506VOzfbx3CRvbLZ1Oe1fGaLA1i7FlasUHPkRf2Smm4hDpGuBTANHYcrNbFXs4UQIokES7dQXrS21v1OV6qaDpHaOH77aAhRYccOWL4cRoyI3nfFFTB4sKr4iuOJeiIB/Pqr6rnXrRvk5FgdTcMiSbcQQgghEoKhR9BCRVUr2SnpLXGnqDPHSKiYkp2/VSTZ6VUdxmUlWySy2bPVlnOnE1atUtvSaykshIceUhn5ww/Xd4hCiIMgSbcQorYFC1RBWYcOcM01VkcjhGgISkqgrAxSU9U2c1QpTyRUSCRUVGu7OKAmQmSoRmemaWCahiTZIqmUl8Nrr8HWrfDII9H7v/wShgypaFS+bp1qhe71QiCwr6cSQlgoSQpQhRB1aulSePJJ+OgjqyMRIr7cdhsMHw5ffWV1JMnnoYegaVOMv46vusswIpTuXkGobFtVwu10peJNa0padme8/pZVx9psdkm4RdLx+VSbleoJ97ZtqvN569awZg3qItVdd8Ett1gVpkgQH38MEydCcbHVkTQ88ukkhKite3e4/Xbo3NnqSISIL0uWwKxZsH271ZEkBUOPoIWLiYSKcC+arU5KPvsELr8SevbE4fTi8mbicHpxujNku7gQwObN0LGjSsjbtAFs2fD444RCIL3Lxf5cdZUa5b5kCaSnWx1NwyLby4UQQoiDNXOmSrj7999HcaU4GOHxd+L4cBLl9/6ZyLHDAHAsX43/vJuw79gN118Pzz9vcZRCxC/DUJ3OGzVS30ci6nr58OHwxBOQl2dtfCI+nXqqaqT23nvQooXV0TQsknQLIYQQIiaM0mL0zybC4sW4Hnum6v7wxWfhfnsigWsvIPzgXbg86Thd6Tjn/YL9lX+p8pbmzdXBW7aopZnu3S36LYSIc4bBl5/rnHSai0aN1FiolBSrgxJCVCdJtxCiNtNUg0INAzyyWU0IcXCMrZvRdm9Ba5ZNJFyMsXMbmT1PxGYYGBvWYW+hdgdEZnwHGzfhOOZ47I2a7P9Jr78eXnoJJkyAe++th99CiAQzbx4MGsScxqey+aVPOf306EP33w8nnKBWwIUQ1pFGakKI2r79FtxuNRhUCBH166/w449q9VXUEH56AvamzTHvuZtg2Vb0SDlmhp/IaccTueZS0CJVx7pGHIvrvEsOnHCbptoLaZqSNQixL5oGwOC032ok3PPmqf6ERx6p6sCFENaRpFsIUZuzolFRxQe5EKLCX/4CRx8NX3xhdSSWMPQI4cAuInfdhN6tE9rMqdEHe/YEwFFQgje1CWnZnchsMgD3pC9xvfIm9jbtD/0FbTZ4911YsUJlDpX+9S+48EJYvvwwfyMhksCgQWpW97x5Ne5u1AiuvhquuAKaNYve/+uvaiObaFhKSqBHD9WSJBI58PGibkkLUCFEbSNGqBpKl8vqSISILy1bQteukJlpdST1wigpQv/fp5grlxO45hz0SDkAab8sxrH0dyLfToHhKhl2Hnk8xpZNOJs0q/uTi44do19rmtpqvmEDDB0qUxaEcDggI6PW3a1bq+tT1QtJd+xQOXrbtvDDD9FGbCL5BQLw22/qa6dkgPVOarqFEEIIAYCxfSsEA9hbtQUgsnwxri69MR0OCpZMgVQfDpcPz9wlOIqDOI4djb1x0/oPND9fdTd/8UXwetV9S5aospgOHeo/HiESxDffwFlnQadOMHeu2kwiGoZQSA3gCIdh9Giro2l4JOkWQgghGijD0NBCxWjhIuxPPov34eeIXHkRrtfeAsA0dPTjRmK2a4d53704W3bA7ojTHTDHHgtTp8Lrr8Oll1odjRD1Z9kyNQOqVSu48soDHl5UpNpSdOmivtc0VTXzpz/Bn/8snc+FiAXZXCCEqG3bNnj5ZbWCdPfdVkcjhKhDpqGj3X499m9+pOSlBzDaqY7irnbN8AK2TdGOSza7A+f3My2K9BCUl6v3K7sdjjoqer9pylKeSH7LlsGDD6pyi4NIujMyau5GnzgRZsxQTzN2bAzjFKIBk5VuIURtv/2mum3k5cH27VZHI0T8eOABdXZ6yy1w8slWR3NARnEh+lefw7atuG68o+p+bVh/nD/lU/bYXWiXnY/Tk47LcOMMgr1ZCwsjPkzr16vVvkp33KEaTI0frwpchUhGixbBa69Bmzbq3/whCofhrbfUNaqrrore/9prMGYMNDnAkAGRGAoKYPp0dcGlel9KUT8k6RZC1LZ1q0ou0tPh8cetjkaI+HH66fDJJ2onyLXXWh1NLcauHWhlBWgZbrRQMebCfDJGX46ZloqtoLCqe05k4jvYAkHso06ypia7PuzaBc2bq0LGb76B446zOiIhEsaCBTBgAKSlqZ6FDaR3ZFL76ScYNkw10Vu92upoGh7ZXi6EqK1JE3jpJaujECL+3HKL6kI0aJDVkdQSvuPPuP7+MvqNlxC8q+KCQNcOaH17YPbphbO4CFt2DgCuMy+0MNJ6kpOj2jNPnKjqvSvNmKFWw6uviAshatB1GDJE9SWsnnAXFEBWlmVhicOQkgKDB9ccHyfqj6x0CyGEEAnCMDS0QCG2e+7FPm0G9q+/x9ZY7f0MvfAknhvuInz6aCL/fgGXOx2nJx27w21x1HEkHFZtmzdvhi+/rJmMCyFqME01ZsrnU9/v3Ant2qnO16+/Dn6/tfEJkUjsVgcghBBCiL0zigqITHyP0GvPUbx9MYVb5lFa+Du2b77DsXgp+vdTqo51nX8Zxoa1uCd9SWpmO9y+XEm497Rzp1q6y8lR+ywryfqDSGSvvqpKR84+u06f1maLJtwAX30FJSWwapXadi6EOHiyvVwIUduOHdCihZojomnS/VeISqtWwe7damty48Z1/vRGwS5sJlXbwLXp3+A+6wL0Zo0pGz0AbDYcTi/anTdhOlJwHHN81c/as/Mgu85DSi7NmsG336oJDdXnIv3pT9CypWq4FoP/rkLEVDis9oPH2EUXQe/eUFYWPS3QNLj8crj4Yhg1Sk4XhNgX2V4uhKitoACyK87eI5Gq5ktCNHjnnAMffgj//CfccMNhP51haGjhErRQMY4778X9+vvoj/wV5933A6AX7YRBgzGGDMR45ilcGY1k9bquLV6sMgmnE5YvV/tnhUgk5eWqS7/bDbm59frS778P55+vNo+sWwepqfX68uIQfPml6pE7fDg8/bTV0TQ8ciYthKgtI0O1K3U6weGwOhoh4kdurlrlPoxiRqOsBP0vd2D7aQ7F7z0LKR4AvI2ysBkG5rJlVcc6MnJh+Srk/8IY6tVLNVzLz6+ZcH/6KQwcKF2HRPzz+WruA69HI0ao/pLNm9dMuL/9Fo46Sq7Zx5P/b+++w+wqy72Pf9eu02fSAwFC7xACojTpXRQFEbBgOygq+nIUQUVROIj1KMUKoh7FXlFRmnQiVaRDCL2kJ9Nn9t5rr/X+sZKZDAQIZHbWlO/nunKZWXvPzD2Smdm/dT/P/cyfD7fdts7vy2gFO92SJNVI1LGc6nVXE4Qhube/M7lWrcCM9cksXELnby4k3mdPcoUWcl0hefJkNrLTmroFC5IAHsdw992w9dZpVySNGv/5D8yenYxPuPfeoTs5lJ6nn07+20yePHSkhdYN7z9JkjRMovZlhNVewlyVsNxJ5g+X0fSRL1DdbitYEboz2TzlMz5N0NhC075vITN1RSfVY3hGjuXLk9RQrcJWWw1er1Zd/aOR5+abYc4c2HnnEXEe/VNPwZQpyUKRVQO33z7p8qTEdDm9XNLq/e//wle/mkxMkfSKyu85hmDyVMo//yH93c8Tlrup7Dab6sYbEO0yC6Jo4LmFj59G/gMnDQZujSzbbJMEmX/8Y+jEqNmz4dRToaMj3fqkVV19NZx+OvzpT2lXAsCRR8KTT8K3vz14bdky2GwzOPvsZO6bNN7Y6Za0eqefntyWPuEEJ6NIK8T/+03ia64iKuSgo53ctTdDZsX960kTCKpV8g8/SdAwlVyxhdy0FrJPPOOe7NEoCGDCKssP/vY3uO++ZOn5WWelV5f0QjvtBO97H+y2W9qVDHjhNvOf/jTpgP/xj8khAVr35s1L/hvMnJks/de65Z5uSav3wQ8m//uNbwxOMpfGmbijneoN1xBSprz7DhRP/BTFy64mzucJKhWqd91OduddAag+OQ+imOymW6RctWoijpODijs64LjjBq//+Mfw5jcn62klrVa1Cr//fXIf6+CDB6+dfTZ84ANJEFRtnXEGnHsufPzjcMEFaVcz/hi6JUlaIe7sgEKBoC7ZiFj+1jkUPvUFKnvsTNdvv0PuljvJPb2Q3JMLCGbtRPaoY8lMMmyNW7ffDm94Q3Liw5NPQltb2hVJo8ZvfwvHHgvTpiUHpuTzaVc0tp13HvzoR8kCxtNOS7ua8cfl5ZKkcSuOqoTlLirlTvLvP4ncZVdR/e2l5I5a0cnc7wCijX4AW29N44TNyR21M9lcMd2iNXJEEeyyC2y33dDAXamYIKRXMHNmMvdtr72Gfrs8/vjQ0/s0PE45JfmjdDhITZI0rlQXPEvlUydTecvBtC+4g66lD9Hf9RzV+gJBtUp8550Dzy3stBuZp54lf8kvKDZMMXBrqN12gzvugO9+d/Da4sVJmjjjDCiV0qtN48cppySrLb7+9bQreVXe8IZkBtyqe7zvvTcZuPbmNyezC6WxwtAtafW23Raam5PfgNIoFXd1Ev7tj4Q3/nPwWi5D7rzvk//r1QTPLSCbLVJsmELwuc9TffRh8ud+c/ADrJxcvdJzz8EDD8CSJevoK9CIFwTQ1DT49s9/DvPnw5VXQqGQXl0aP7q7obMzWWExCmVWSSM3r5hN2dAAOdfjagxxT7ek1dtoo2ST1R13wOtel3Y10hqJuzoJgzJh1Eul1En+m9+h/us/JHzLoeQu+0fynDim8tlTCDbZnMzb30F20rQ1/wTvfS/87GdJR+nTn67RV6FRLY7hssuSiVH77JNcq1bh/PPh/e8fOhFdGg6LF0N7ezL0dNKktKtZa/PmJfeyNtsseXv5cjjqqGQA2FvfOjSka8196Utw003wiU8kx7pp3fIekqTVu/765MXjBhukXYn0iuI4Ijz8QHL/vIm+332X8HU7JA/sPpvijOnEMwbPww6CgMJXz39tn6i5GSZPhvr6YahaY1IQJMlgVb/+NXzqU8ky9LlzIeshchpGU6aMqen5LzzO6nvfS16SLF364m8trbl774Vrr4Vjjkm7kvHJ0C1p9ZxiohEojqqET8+D730XFi8h/5NfAhAEGchlCSoh+f88Qnbv/ckVWsi9aScyR36IzAuXib9W3/lO8kd6NaZMge23h3e+c2jg7uvzBo70Cj70Iejvh513HuxyRxH84hdJgKyrS7e+0eJTn4K3vx123TXtSsYnl5dLkkasuLuL6k3XEbbWUd5ifaqVboLnFtD2+rcRZ7OwdAlBaxsA4T13EtQ3kt1i6xfvxZbSFkXJZKiV+7zvvhsOOABOPRU++1n/zeq1+9vfkiPr9t8/mccyDvzhD0mA3HZbuO8+l5xr5POfqKTV+93v4MIL4amn0q5E40jc25Nsa1ihctonyB1+JHz/+4TlLuI4hg03pPKR9xNe+M0hQSU363Vkt9zG8KKRKZMZOljtxz9ONqs+8ID/ZrV2Lroo2fA8Z07alawzUZTsfjv66KGBu7c3vZqkl+Pyckmr97WvwV13JZNMZs5MuxqNUXFUJax0E/Z3kH/r8WTn3EH133eR3W7Fnux99yH689/JTJ5GY9um5IqtZHN18L0fp1PwxRcnmwuPPRbe8pZ0atDYcN55sMceyTnfKy1blvwb++hHk/kB0prYay8oFsfVtrBjjkmGga06sP2BB5JvqY9+FM4913tZL3T33VAuw9ZbJyfMad0ydEtavYMOSqaZTHsVk52lNVB9bC7Rxd8j6u2i9zMnsnKXU67cT1CuEN94LawI3fmj301wzHspjJRXT7feCr/8ZbI/19CttZHNwvHHD7327W/DOeckx41de206dWn0Oe20tCtIRaEwdPHIpZcmJ6c9+qiBe3Xe975kmNpVVyUv8bRuGbolrd5XvpJ2BRoD4t4eqjdfR7DhxmS32R6AaMl88l87n7ixgZ5Pvo9MXQO5Qgvx179KddL65LYa3JMYZEfYr6njjksC9557pl2JxqJZs2CLLZKlwitFUTJwrbExvbqkUeDcc5MfzRtvPHitvT25J/HJTyYd3vFsxgzo6ICmprQrGZ8cpCZJGjZxf19yTnapk7DcSeHkz1D8zd+ofOpj5L+ZTP2OKiWqH3g37LY7mfe+n2yT5xZLA8Iw2aS6cqPqb36ThPCzzoKPfCTd2qRR5txz4YwzYIcd4J577IArPQ5SkySttai/h/CNb4AJE+h++Gb6up6lUuqk8oZZRNMmQ3HwTJdMvkj+578j/7FPGrilF8rlhk6GuvRSWLwYlixJryaNbIcfDuuvD1dfnXYlI84hhyR7vz/zmcHAHUVw++3p1qXxx9AtafVOOAGmT4df/zrtSjSCxHFE5aF7qHzuk1S+9LmB60GxHpYuI+gvUbjzQQr1k2ls25T6j5xOZv4i8l/+ZopVD6OlS5Ojedrb065E48Wf/gQ/+Ql84hOD1+6/P9n/3deXXl0aORYuhPnzh04VE5DMKfzzn+Gd7xy89pe/wBvekIzlcL2v1pURtllO0ojR3p78Iu/qSrsSpSju76N68/VUNphMOLmRsNxF9r7bafnKt4nWmwpf/DIEAUGQIf7uhVSnrU/jNjuM3TV8Z5wBP/xhstT3zDPTrkbjQS6XTEBa1Vlnwe9/n4xr/tGPUilLI8hvfgPd3bDJJmlXMirMm5cMYNvhBb+q4njs/uoCeNvbki7/RRc5IzcNdrolrd555yUboI4+Ou1KtA7FL+iUhEe9idxBhxP/8mdUSh3EcUS0685Ujj6C6mdOhWp14Ln5/Q4lu+2OY/tVS6EA9fVJEJLScthhyfFQp5wyeK2nB/r7UytJKdp8c9hpJ8+BWkOnngqPPw6f+tTgtYceSkL4pZemV1etXX550uV3QUQ6HKQmSeNYHEeE5W7CJc+RP/79ZO95AJ6fT9CYjDctnfM58hf8kMrHPginfopcoYVsvj7lqiURRUP3fp91VtLC+ta3knPkJa2xD384+fY58shkOfpY9LOfQakE73oXNDSkXc34Y+iWpHEmfPBe4l/+jGpLPX3vPoI4jiCOadv1rWQWLKZ65d/IHvwmIFleHhTrxnb3Whrtoghmz04O4f3Nb+Ad70i7Iq1Lv/51ssrhiCNg8uS0qxmVOjrg+99Pzq/eZZfkWmcnXHIJnHiix2xp7Rm6Ja3eLbfAI4/Azjsny9Y0KsWlfqpzbiSz3Y5kpk4HoPTzH1I84STCrTej85qfk8nkyRVbKMz5D9mNtiC7w06GbGm0KZXgd79LJkat7IBfcUWyjvaDH4RiMd36VDsbbgjPPgt33jmYGLXWvva1ZOr5HnskL4mkteGmNEmr95OfJLd4zznH0D2KxNWQMOwlLHcSljqpO/IE8nPuIvzBBWQ+/HEAsvsfTOWth8E++9A6ZRbZwop1ZkdsmWLlo8SvfgXXXpt0lI48Mu1qpEHFIrz73YNvRxGcdhrcd1/SxvvsZ9OrTbV1wAGwaBG0taVdyZiyySawxRbwoQ8NXoui5AS/0TaIrFJJfhQUi7DddmlXMz45SE3S6s2aBW96UzKgRSNe+OwThPvuQbzB+nQtuo++zmeolDoId9mOaNIE4u7BKfS5GZuQ/9PfyZ9y+mDg1pq55ZZkWvRdd6VdifTyoihJC9tsAyedNHh96VIol9OrS8Pvpz+Fv/8dNtss7UrGlHe8Ixmw9q53DV67/HKYORNOPz29ul6LBQuSRRA775x2JeOXy8slaRSJ44jqfXcT/+F3BBtvTO79yYvpan8PmclTCXp66brqUoJddiVXaCEf5ck2T3S5+HC58spkCedee8E++6RdjfTKXngO0vHHw7/+BRdfnGxglbTGPvrRZO/3aacly89Hi6eegj33hHwenngi7WrGJ0O3JI1gcblE9dabqGy+IWEhIix3Uvj5H2n8zNcJ99iV3C23Dzy38tufEWy5LdkddybIuJBJ0gt0dcHWW8Pzz8Pdd7t1SHqV4hhuvDH5Nlq5xHzuXDjjjGQHh51kvRT3dEvSSLJKVyqOY6qv24ncfQ/Td8lXqRyyNwDVvd5A+OaDiV/Qpcq/44R1Xq6kUaS5GebNg6uuGhq4L744OXv+Pe/xDPrRaOutk+0EN9wA662XdjVjWhC8eJHTV78Kv/99MkD+r39Npy6NfP5klbR63/oWfPe7cMIJ8MUvpl3NmBXHEdVKD+Ej95P7f6cRLFxE9oFHAAiCgGjnHYmenU++p0q+dWNyxVay6+9G8JejUq58nOruhr6+5JDTxsa0q5Fevfr6oUMAOzuTDarLlyfnIh1zTHq16bWZOze5YatUfPKTyZiEk08evNbdnYwAOfhgd3cp4fpDSavX0ZEcNbNoUdqVjDnhPXdSOftz9P7ie7TPv4POxffTW+ghe+O/yD44l+jxeQPPzZ33fYLFS6n7+Oeoa1qPXL6BwN/g6fnCF2Dq1GSqvzQW5PPJ2ti994ajVrmZ98wzEIbp1aU1969/wc03w6RJaVcyLm2/PVx6Key22+C1H/wADj0UjjsuvbpWdf/9cPTR8OlPp13J+GXolrR6H/wgzJnjT+i1FFfKhDdfS1wqDVyL/vBr8l/8Crlf/I44jshkchQmb0jl4gsI77qNYOYmA8/NtE0kyGbTKF0vx66Sxor6evjUp+D662Hlz5o4Trrh227rpP7R4A1vSKZkFQppV6IVyuVkQdQhhwxei+Pk6K40PP88/PGPcPXV6Xx+OUhNkobVwHLxUheVcgcNrzuY7JPPEl57Jbn9DgagcvM1BF/5GvGbDiM48SSyuXq716PFyl+Z/vfSWPbYY0mQK5WSUceTJ6ddkTTqLFkCLS2D90L+8Y9k+vmZZ8L7379ua3n6afjb32DChOQAA6177umWpGFQ+c/tBJ8+lbivj67fXDBwPdx+S4L2Tnj2mYFr+b0OhMsPTKNMrS3DtsaDzTaDJ59MutyrBu4zz0yGdh177GBXXOkql+EPf0gG4B19NHhyxYjxwntVP/hB8m314IPrvpaNNkoCv9Jjp1vS6s2bl7zgmjEjOZNYwIpO9n/uJL78r2TesDvZgw4HoPL4Q+Q325Y4k6H9wavJT55BrthCrrdKdtJ6LhGXNLrNnQvbbJNMyfa4sZFj6dLBdFetGrpHsN5euOQSePvbB4fMz5uX7Af/xCdg4sR061Nt2emWtHpXXpmM4jzmmHEduuNKmepdtxFutymVchdhuZO6H55H/Q9/Rfje42BF6M5tvCWVC79B8IY9adv89YMhuynF4jX8/vIXuPZa2G+/oROgpbFu+nQ4+2x49NGhgXvuXNh8c8NeWjIZOOCAZOid/w1GtIYG+PjHh177+teTE/vuuy9ZsFAry5fD4sXQ1pbMAtW6Z+iWtHobbAD77psM0hmnonI/bLgBuUVL6b7ul0RbbAxAuN8ehE8tJN5z8GZEkMmSP/nUlCrVOnPTTXD++cnEZ0O3xpOWlmTK+aq6u5MBXtOmJRtGN944ldLGtQkT4Jpr0q5Cr9Ghh8IddyTHjq3U05ME5OH8dvr1r5Pl5UcdVdtwr5dm6Ja0ekceOS5CRRzHVCs9VO+YQ/asc6Ghgdyf/w5AplBHZavNoL9EcX4Hwes2JldoJvuO3QiOPfkVPrLGpP33TwL3G9+YdiVS+u65JxnHXColN2olvSpHHQVve9vQcSEXXwynngqf+czwnU6ZzUJrKzQ3D8/H06vnnm5J40549+3EV1xOedcdKG+3EXFUJfvQY7Qe9B7ihnpY3k6wYtxo9flnyExdjyDnPUpJepH29mTC+ezZydtxDB/4ALz5zfDWt7rkWXqV3vc++L//g4sughNPTLsaDRd/Ekoa0+IwpPrvO4Zci77xFfKfO5vMny4jjqoEmSyZWTtT+dpZVK+9ashU3uz6Gxq4JemltLUNBm5IzkX66U/h3e9OhnyptubNg+23T7aDaUz46U/h9tvhhBMGr111FRx2GMyZk1pZWku+kpS0eldfnaxvmj07+Q0wSqxcLh6WOwmXL6Rh1r5kl3cSPfcMmfWT5Y/xoYcSLm0nu+setEzZgWy+MTkn+7QzU65eI16lkhzRk8tBsZh2NdLIs9tu8PnPJ98jU6YMXv/Pf2DWLI/dG269vfDAA8m+eo0Zu+469O2vfhWuuy45QGCPPdKpSWvHTrek1evuhnvvTe6ijwLh9VcSHnYA5fe9nc7F99Hb8RTlTD/R+tOImxuJHrxv4LnFEz5M7srrKLzvI+QKTUngltbEF78ITU1w+ulpVyKNTBMnwv/8T/K9stJjj8HrXpckia6u9GobizbdFP75T/jNb9KuRDV08cXw4Q/Dpz41eO3JJ5OhaFH0yu//i18ky9YdopYeQ7ek1dtzz6Tbff75aVcyRBzHhP++jcrXzqb6wL0D16O+HnJXXEv+yhsJyJCvm0BD60z4699g6TJyBx6WYtWSNI7dcw/U1SWdbyc5Da+mpmTA4z77pF2JamizzeAHP4AZMwavffWryZnfJ530yu9/663JPvG7765djXp5Li+XtHpTp8KBB6ZdBXG1SvWR+wk3mkpY6iQsd9Lw2VMpXHUzlTAku92OAGTfeACV//k8wf4H0rbe6wgynpOtGvjSl5Jjk9znL625o46CvfeGzs7Ba7298I53JOcYHXaYy86lV2nDDZORCu95z+C1UimZZVhXN/S5b31r8vzdd1+XFWpVTi+XNGKFzz1BZvudCHp6Wf7AldBQD0Dx0ssoXjOH+AMfIH/8+9ItUpL06n3728nhxBtvDHPnJkfx6dVbvBj+9a8kfe29d9rVaB3r7k4WO6x0wQXwla8kf973vtTK0mp4q17S6i1blozJrK+HAw6o2aeJ45hq2Ed0zT/IfOcHxNtuQ/4bFwCQnb4hUUM9QSWk+MxysrtuTa7YTPa0NxCc7u4YSRq13vUueP552HHHwcAdx0mA3H13O99r6p574Mgjk/8f77kn7Wq0jjW9YDXfb38LCxYkHW+NLIZuSav30EPJOatbbJF0IYZRePcdxNdcQfnQvalMbiCKQvLPPELz36+h+sST8I3keUE2R3zdtbDJ5jTmC8Nag/SaXHNNMkJ2t92S7w9Jr83UqfCNbwy9ds01cPDByY3eq67yjO810dyc/DzafPO0K9EIcO21yUy9Y44ZvHb99fCTn8AnPgHbbpv0UrTu+dNM0uq1tiaTZnfcca0+TFytEj3x6NCLJ32I/GlnEl95JVEUEgQZ2Hc/Kl/6DPFFPxzy1NyW2xIYuDVS3HgjnHsuXHll2pVIY8+jjyabUXfYwcC9pt7whmR1wM9/nnYlGgEKhWSPd10dRFFIuW8ZZ58d8bOfJQcI/PrXaVc4ftnpljToN79Jjgg74wzYfnu4/fYXP+fLX07uqB977Go/xMrl4mGpg+rcB6g/8O0E1Sosa4dsMtwsOuQAwsYm8httSd2U7Veck52BLzrhQyPcbrsl7YI3vjHtSqSx56Mfhbe9bej+7qeegve/Pzn7e//906tNGuHiOKJa6aHS306l1EFY7iaOY/7fydsSRa385CfJMDWlw9AtadC8eckLmyiCL3zhxY//z//AmWfCOee86KHK3/5AcNFFVHbelr4T35FcnFSkPgwhrBI9+jCZrbcDoHD2NwF/AGkUOvzw5I+k2lhvvaFvf+UryZaObNbQLa1GtdJHX+fTVModxFF1yGO5fB2HHlrmyKNSKk4DfM0radAZZySB+8wzk7dXDd4rAnd81llU33QI8be+Qu69JxJMmgxA9PijFP96FfGiRQQfOo5coYVcSwvRTdeT3WYHMoXiuv96JEmj2xe+kHS+jztu8Fp/P9xxhytOAP7xj+Qow913h/POS7sa1VgUhYSlDoIgS76uDYAgk6HcvwyATCZHrthKvthKrthKNlf3Mh9N65KhW9JQK4P2mWfCxRfD5psTzZ5F5lvnUfrsJ+g78XCa9zmG3KNPEs7YkNyx7wYge9ibqSxtJzjwINrW2zVZLg4wa0ZKX4gkadSbMQMuvHDotYsvTrZ5vOc98LOfpVPXSLFoUbIVbOLEtCtRDcRxRFjuIix1DCwZB8gX2wZCdyZbpKFtE3L5phXb9Zz8PxIZuiW92Be+AMuXw7e/TfzMM2Suu47eU0+k/2PHQVShsv8exOuvB42NA++S22I7OOurKRYtrQMrt1h8+MPwgx+kXY00Pi1ZknS/99gj7UrSd8AB8Je/wOTJaVeiYda97BEq/e3EcTTkejbfQLbQOORaXeP0dVmaXoMgjuM47SIkpata6aVS7iQsdVKom0ihYTL09hK3tBBUq8RAzwM3kN1w02TZeKFpsJMtjScrQ/eHPgQ//OErP19SbTz1VLL/u7DidIvrrkv2f591VrLUWholomqFSqmDathLQ8tGA9e7ljxEpdROJpNPlozXtZEvtpDJul1vNLLTLY1D1UoflXIHYSkJ2lFUWeXRIAnd//u/SeDO5QjCkKY/3AAf3xEuvyaZLiuNR5/8ZNLl9qBTKV0zZw59+5xzkkOKt9zS0K0RLY6qhOWuZLl4qYOw0jPwWF3jdDLZ5EZSfcuG1Acbkc01uGR8DLDTLY0DURSSyeQG/t4+/44hjwdBhlyhmVyxhXyxjdzXvp10884+O1lqvrK7t+eecMst8IEPwCWXpPGlSJL0Yk8+mXS6zzwz2QcO8Pzz8MwzyVnWY9WTTyYnj8yYAdtsk3Y1egX9Xc/T1/XMi5aM5/KN5Iqt1DWtNxC6NbbY6ZbGoBd2sjO5OlqmbA+smGxZaE6CdrHlxcvFVwbslYEbhg5Xy+Xg6KNT+KokSXoJG2/84i0fX/4yfO978LnPJX8fi373OzjtNHjve+GnP027Gq0QVUtU+pPhZ3XNM8jlGwAIsgXiOCKTLSRNjhWTxjPZ/Ct8RI12hm5pjCj1LqbSv5yw3EVULQ95LA4j4jgaCNYrA/iLfPnLLw7cK60avP/978Gziv/0J7jrLjj9dGhuHs4vSRp55sxJ9o7OmgVHHJF2NZJeShxDtZqc733QQUOvj6WlupMmwfbbwwYbpF3JuBZH1RWzcdqp9HdQDfsGHsvmGwZCd76ujdapO5HNu0VpvHF5uTQKVcM+wnI3xYYpA9e6lz4ycE7jqsvFX9Xgs9/8JlmmdsYZL/2cL38ZNt8cjj0WSqVkOdsTTyTL+j7zmbX90qSR7StfSbpmbrGQRodnnoENNxx8+wc/gL//PRm4Nnt2enVpzAjL3XQtuZ+hkSogV2hMjvaqn0gu3/iS76/xwdAtjQLVsI+w1Eml1ElY7hzoZLdOm002VwdAuW8p1UovuWLrupsuHsdw2WVw3nlw+eWDR4j190NdXe0/v7Su/eMf8Mc/wl57Jcs5JY0e1Spstlky+fyCC+DjH0+7Io0i1bB/xXnZ7WRzDdS3JDdz4jiiff4dyZTxujbyxVZyxdaBWToSGLqlEa3Uu5i+zqdftFx8ZSe7vnXmyLx7+ra3QbkM55+fdMUlSRoJHnkELrwQvvnNwZvD994LUQQ77ZRqaRpZoihc0fBoJyx1UA37Bx7L5uppnbbT4HOrZQeg6WUZuqURYNVOdl3TdHKFZG90uW8p3cvmEgRBsly80LJiyXjzyD0n+4knYKutkhcw994L226bdkWSJL20Aw5Ijhv7/vfhpJPSrubV+d734Pe/h+OPhxNPTLuaMaVj4d1DgnYQBGTzTSvOy24deK0mrQnXPUgpeKnl4gDZXN3AD/JcsZXmyduSyzcRZLJplfvqbLIJ3H8/3HDD0MB9661JF8Fl55KkkaK/H6ZOhWJxcEAojJ6Ba3PnJsMdd9st7UpGpWqlb8V52e2ElV5ap80eOBM7V2gBAvJ1reQKyZTxUfNaTCOOnW5pHYij6sAP6rDcTefi+4Y8vmonO183gVyhKY0ya2fhwmSZ+eTJSRjfaKO0K5Jem/PPh89+Ft71Lrj44rSrkTRcFi1KwvdK//3f8NxzyTGaW22VXl2v5O67kyXz22yTnKqglxVVKyv2ZSd/omppyOMtU7YfaHyseuqLtLbsdEs1sHLYRljuolLqIF9so3HCZgBk841kMnkyuboVwzZaRlcn+7V47DFobYUpUzzWRKNbpQJ9fcnkfkljx6qBu6MjOfO7ry9Zsj2SQ/fs2U5hfxlxHAEMhOdSzwL6up4deDxperQMnJedXWVOjoFbw8lOtzRMSj0LB0L2CwefvXDgxri8e9rbm3S8N9kkebtaTY5e+shHYOONUy1NWmPt7bB8OTQ1JTeRJI1N99+fHKN59tmDy8yvuw6mT0+6yhqxwkpvcl52qYOw1EnjhC0o1E8EoFLqpLfjieQorxX7ssd000MjhqFbeg2qYT9R2Ee+bsLAtY5F91Ct9AKrDNsYL53s1+JHP0o6COutB08+CQWnfkqSRqhyGbbcEp5+Gv76V3jTm9KuKDF3Lixblty8nj497WpSEUUhlf7lA8vGX9j4qGtan4bWmSlVJyVcXi6tgWS5eDL0rFLqJKqWCIIMbevtOtCxLjZMJY4qyTnZhuxXtuuusP/+8OY3Dw3co2V4jSRp/OjogJ13TsL3fvsNXq9WIZvi7/svfQl+9Sv49rfhlFPSq2MdiqMqcRySyRZXvB3Ss3zewONBkCFXbFnR+Ggjl29Iq1RpgKFbehn93fPp757/okEbSSe7kahaIZtLfujXNa2XRomj16xZcM01Sche6e674YQT4Otfh8MOS6826aXcfXcyDHCrrfw3Ko0nU6bAH/+YbDFpWCXEveUtMGkSnHNOOkNCp0xJtm1NmPDKzx2l4jimWulZsVy8g7DcSb44gaZJyV77bK6OQt1EMvn6wSXj420Ln0Y8l5dLrOhkl7sISx3Ut2xEJpt0Xvu6nqOv8+lVlou32MmupaOOgj/9KTlv9Je/TLsa6cXOOy+Zauy/UUkPP5zs787lkgnim26adkVjSql38Ypl451EUWXIY9l8A61Tndau0cNOt8alalgiLHeu2P/TOaSTnSu2UWyYDEChfjK5fKODNtaVSy6BzTaDk08evNbZmQxhG6d71TTCbL11Erj32CPtSiSlbeut4c474dZbhwbu3/4Wdtkl+X2mNRJFIdVKD/li68C1lQNqAYIgu6Lx0Ua+rpVsrj6tUqXXxE63xoU4jglW7BMu9y2le9ncIY+v7GTnii0rgrb7f0aMz3wGvvvdpMP4wQ+mXY0kSS9t5Skd5XKyHWWHHdKuaESK42hgyXilv51qpZs4jmlbb1cymaQnWOpdTBT2JysMC00uGdeoZqdbY9JgJzvpZhcap1HfPANgxV6fwZCdL7TYyR6pogjmzIHubpg2Le1qJEl6ed3dsO++yUTx7bcfvF4u1+aUjs9+Fh54AD79aXjjG4f/4w+zSn87pZ6FVModxFF1yGPZXB1R2E+m0ARAscFjGTV22OlWKko9C1n+/G3UNc+goWUm+fpJA53o1yKOI8p9SwdCdvUFg8/ydW00Txo8VzOOqobs0SKK4Oqr4eCDB6eaX3tt8uJlr73SrU2SpNXp6YHGxuTvYQg77pj8zjr3XJg8efg+zz77wI03Jkvajzlm+D7uMIiikLDUQTbfNDB0ttSzkJ72xwHIZHLkiq0rpoy3ks3VpVmuVFOGbqVi2XO3Mv+R3w28nc01UN+6MQ2tG9PQOpP6lg0HjoJYnWpYIo7K5ArNQBK62+ffQRxHK54RkCs0Jj/M7WSPLaUSbLstPP54ckzKccelXZHGkx//GE4/PZlYfMklaVcjaTT4xz/g8MOTsP3kk4NhfLg+9vPPJ0dwbrLJ8H3c1yCOI8JyN2GpPZk0Xu4BYhpaNx444SWqlij1LiZfbCObb1yrhos0mri8XKlobBv6i6Ea9tK99CG6lz4ExEBAsXEaDW2bDv6wDnJUy12E5U6qYT/ZXD2t03YCkjMZi41TIciSLzSTK7QYsseq/n448ED4+9/hiCPSrkbjTV8fLFmSDPiTpDVx2GFw880wf/7QwP297yW/x9bmqLERcHRhNSzR2/EEYaljleZHIptvGLIXO5MtUt+8wbouUUqdnW6lIo5jHrnpTKph7ys8MyAJ4cnkymlbvHXFXdGkk908eTsHa4xX3d3Q1DT49oknJmd/f/jDkM+nV5fGtqVLYcECaGmBDTdMuxpJo9Udd8DrXw/19fDMM8lZ36NAVK1QKXUQBAGF+qTmOKrSvuAO4jgmk8knqwzr2sgXW1521aI0ntjpViqCIKBx4hZ0LroPiF7mmYP3hIpNM6hvnkG+2EK20Dww3VLj1KqBe84c+NGPIJuFAw5Izk2VamHSpFHz4ljSCJbPw377JTfvVv2Z0teXBPE19dBDyZ7xTTcd3mXrKyRLxruo9LcTljoIKz0A5PKNA6E7yGRpaNucbL6ebK7BJePSatjpViqiaonFT13HkievXoNnB6y31dFMnLF7zevSKBWGSeh+9lk455zB68uWwcSJ6dUlSdLL6e+HuhUDxJYsSW4aH3ccfP3raxa+t9kGHn4Yrr8+Gao2jHqWz6Pct/RFS8Zz+WRmTn3LRgZsaQ3ZKtQ6E0UhfR1P0bHoP/Qse5Ry35JXeI8MmWyODXd4P00Tt1wnNWqUyuXgpJOGXlu4ELbaCo4+Gi64oCYdAI1DDz0EN90EG2+cTNSXpLVRt8rE7t/+Ngnec+YMvf5yJk2CqVNfXXf8BaJqiUqpk7DcRWPbpgPX4zgmjiMy2cKKCeNt5IutZLJu4ZJeLUO3aiKqlin3LaNn+aP0tj9OpdRBf/dzxFFIJltHvn4irdN3oXPxvcTV8mo+QoZcsZmZO32Iusbp67x+jQF//St0dMC9967VixFpiBtvTG7wvPWthm5Jw+sjH4Gtt06OxFzZQa5Wk2PGTjwRpq/m9dDNN7/qTxNHVSrlzhVTxjupVgbn6xQbp5PLNwBQ35xs68uueFvSa2fo1rCIoyql3sX0tM+jd/lj9PfMp9y3FOKIIJOnvnkDpm56OI0TNqfYOA1Izmd85v4KnYvuZdW92xBQ17w+M2f918CRYNKr9l//Bdttl+yby6wYtletwmWXJYEp4wA+vQabbAJHHpkMQJKk4RQEydFfq/rVr+DMM+GHP0yOG8ut3Uv3/p4F9HU8yQt3l+YKTeSLrQTB4Mkvhm1p+Bi69ZpE1TLVsES5bzE9yx+jZ/lcejueHAjZhYbJtE3bmYYJm9PQugn5urbVDj5rnLA5nYvuGXKtecr2bLDtu1y+pLW3+wvmAPzf/8EHP5gMW7v66sFOgrSmDj7YDrekdWfmTNhtN3jzm4cG7s7O5BSFl1AN+wlLHVRKHRQbp5EvtgKQzdYRxzHZbHFgyniu0OJrLqnGDN1aIwPLxdvn0dv+OP3dz1PpW0YcV8nk6mhs25S29XaloXWTlw3ZL9TYttmQtydttD/TNjvMY8BUG2EIzc1w+OEGbknSyPfGNyZ7vKvVwWv/+Q/stRecfHJyhGF/P9E3v044qYlKKZkyXg37B56eyRYHQneu2ELrtNlkc2u4Z1zSsDB06yVFUUj7/NvoWf4Y/d0rl4tXk052/WRap+/CxBl7UNc84zWH5ELDVLL5BqqVPtbf+u1MWH+3Yf4qpFV86EPJ0vLW1sFr99yTdMC/8AWYMCG10iRJWq0gGNrl/uUvoacH7rorGexYKtF58tFEwQarvtPAkvF8/cRVPlTGwC2lwCPDBCSd7Erfcno7nyQsd9GzfB69HU8SRxWCTI5C/RTqmmfQ2LYZDW2brnEne010L3uETLZAQ+smw/LxpDUWx3DQQfDPf8IHPgCXXJJ2RRrpfvtbOO20ZIuC/14krStxTLVzKZVsSNi/nNxfrqLuv/47+T121lm0H7cPQWsL+WIbuWIruWLLsL1Ok7T2/G4cp6JqhUr/crpXTBfv735+oJOdyRZpaNuUqZseQrFhGoWGqcMasl+oaeJWNfm40isKAvj0p5Mp51/4wuD1SiXpKrgEXS/U3Q1PPZUcSSdJNRRVK4TlTqI//Z7C6WcR7rwtvd/7HwDCw/akeOihBM3NcPzxtGy2iSFbGsHsdI8jURTS3/UM7fPvoqf9MSp9S4nj6opO9uQVnexNaZk6i2zOI5Y0jsTx0ID92c/Cv/4F558Ps2alV5dGnsWL4YknoK0Nttwy7WokjSFxHBHM+Rdcfjm88510TosJy93kbr+HlqM+QjR9Mj33Xk+uLjkvO1doSrtkSWvI0D1Grexk9yyfR0/H44SlLvo6nyaOygSZAoX6idQ1zaBxwqY0tG1e0062NKp0d8OGG0J7O/zlL8nEWEmShlscEz76EOH6E5IBaOUu2j5yLsFll8GXv0zfye+m3L+cfKaBwi13k93/UILml55YLmnkMmWNEVEUJkdD9HfQvuB2ejueptK3JOlkBznqWzZk6iYH0zhhM4oN0yEIPB5CWp2mpmS42qWXwhFHDF5/4IHk6JYmOwuSpNcmqlaSgL3gKer3OIzs0uV03n8FNDUCUD3yMHJNTfC611HXvCH1LRsl73jkFilWLWlt2ekeIyqlDrqWPEgUhSx96lqy+QbqmtanccJmdrKltVUuw7bbQm8v/PWvsMsuaVektDzxRHJ8z3rrwf77p12NpBEujqrw4IME//czmDKF/o+eQG/HEwC07nkMmYVL6P3TT8nutTe5Yhu5fEPKFUuqBUP3GBFHVbqWPECu2Eyu0EKu0GInWxouc+fCYYclofvRR+12j2c/+xm8971wyCFwxRVpVyNphImrVap33UplagthU5aw3EXTjQ+RP/79sMUWVB+8h55ljyb7sp9aRG7zbQnqDdrSWPfaDlfWiBNksrRM3ZGG1k0o1E8ycEvDacst4cEH4aqrhgbub3wDHnkkvbq07q2/Phx4IMyenXYlkkaIOKpS6llE97K5hIfuS+4NexH95lIqpQ7iOKK8+07JsZRnn002W5e8XmvZiPwOrzNwS+OEnW5Jei1uugn23huKRXj6aZg6Ne2KJEnrQBxViTqWkv3Sl+HWW4luuoH2xf8BYurO+wn13/8F5U+eRHzaqeSLbWTznggjjXeGbkl6LR59FD71qaTz+YMfDF5/4fFjkqRRLQ4rVG+9iWrXUkqv24ZqpZtspp6WbfeD5cthzhx6tp5KJlsgV86Qa55EUKxLu2xJI4ihW5LWRqUC+RXbORYtgkMPhTPOgKOOMnxL0mgVx5T6llDpX0bwf5fS+MlzqOyyPV2XXQRANldHy59vI5gyFQ46CJqbUy5Y0kjmnm5JWhv5VeYnfPObcPfd8JWvJB1vjT1//3syyf4DH0i7EknDKIpCyn3L4Mtfhs02gz/+kUr/Msp9y6jsuTNRazNsuCGNLRvTOm02rdNmE3z4pOQGq4Fb0ivwDClJGi5nngn19cmgrcyKe5rVKsyfDxtskG5tGh4dHfDQQ8mRYZJGrbhSpnrjtcQ330DfR44nrPQCMW0Lnifz+ONw1VUUDt+PbL6R/JTtCZYsI5/zZbOk18bl5ZJUSz/5CXz0o/DFL8JnPpN2NVpbCxcmobutDXbaKe1qJK2pOIbubiqFmFL381SWL6Rtu4MIyhXab/w10aYbkc3V0/BsH/n5S2GffexgSxo23rKTpFq66iro7x+6DF2j17RpyR9JI15UrRCWOsj+82ayH/sE7LQT8W9+Srl/OdQXqBy8N0GhjoaGGWSn7Uw2VwS/vSXVgJ1uSaqlOIbLL08G7RSLybUHHoDnn0+uSZKGRRxHVK+/mvgvl1E67I2Ut9sYgIbHl1O395tg8mTi55+jv38x+WIr2XwjgQMvJa0DDlKTpFoKAjjiiMHAHcfw//4fHHwwfO1r6damV++55+DPf07OaZeUrjiGuXOJqhW6ljxE+/w7qF74LfLnfZ/s364AIJtvgFk7wZVXwlNPEeQL1DfPIFdoMnBLWmdcXi5J61IYwo47wm23wTvekXY1erXmzEn+u+29N9xwQ9rVSONOVC1TKXVAVxfFnfaEhQsJFi6kGvYQxxHhEQeRKTaS3f9w2qbvQiZbSN7x4PXTLVzSuObycklKQ3t7MoxrpXPPhVwOPvEJqKtLqyq9kuuuS85hnz0bvvvdtKuRxrw4qhLeewdc/COqDTl6T3kvAJlsgbaD3w+PPQaXX055t1lks8Wksy1JI4yhW5LS9uyzsPnmUCrB3/4Gb3pT2hVJUjqiCO6+G2bMoKeul3LvIrI33EbLO08hmjaZ9jsvI1dsJldspX5xmWCDDQe370jSCOXycklK2/rrw0UXJXsODz988HpXl0fWSBrzqmGJsNROpdRJ44c/S/D7P8C3vkXwgbcRxzHRbrtSOeFYgoMOom3qzmQKK1YDtaRbtyStKTvdkjQSlcuw/fawyy5w/vkwdWraFUnSsIiikHD5AoLPfI7MnFvp+MtFUJd0q1t/cS3Zc74Gp55K9XOnATHZXH26BUvSWjJ0S9JIdNVVcOihSdh+9FE73iPFDTfAqacmw/AuuSTtaqTRIQzh9tuhp4fSnrPpWT4P4oi21x1JZuESOn91PhywP/liKwUaydY3Qz6fdtWSNGxcXi5JI9HBB8O//52c571q4L7ySjjggGTomta95cvhzjsNBNLLiWOqlT4qlU7C/g7q/n4TuRNOhB13JHvnHCAmm6+n8qXTyUyYRtOhR5BpnZB21ZJUM3a6JWm0uOUW2Gsv2GEHuOMOhwelYcECuOsumDAB9tgj7WqkESOKQsJSB3z96+QuuZTeT36A8jHJjIpib4bG3d8E++9PfOmlRJmIbM5TGiSNH7ZKJGm0WLAAJk6E3XYzcKdl+nSny0sA1SrcfDPceCPRZ0+nfeG/gZj6JQsoPPM8+ZvuJH73ceSKreSnToBFiyCTIQCyadcuSeuYnW5JGk2WL0+O1Jk0KXl78WI4+2z4/Odh2rR0a5M0dsUx1SXzqdQHVEodBJUKTVvsAd3d8O9/0zkjS0xM4Zkl5J5ZSm7/QwhaWtOuWpJGBDvdkjSaTHjBvsezzoLvfhfuuw+uvz6VksaVxYuTM4RbWpIVB9IYFlUrVEodRFf9neJHP020yQb0/vY7AARBQPz2txOUy5DL0Tx5W4JMFqYCu6RbtySNNIZuSRrNjjsumQr8pS8NXoui5H8zmVRKGtNuuw3e/GbYddfk/3dpDInjiGDOv+Cyy+Atb6Fnm8lU+peTmVSkfv4i6OklHzSQb55Crq4VfvxjCAIAgpRrl6SRzFdkkjSa7bVXEgT33Xfw2s9/DrvvDnPmpFbWmNXaCrNmwRZbpF2JtNbiapXwP3fQ3/U8XUsepH3+HUQ//Ql84xvw+9+TL7aSyzdS2OENhFf8heD5+TSvP4u65vXJ5RsJAqO2JK0J93RL0lgSRbDttvDII/D1r8OnP512RZJGkGTJeDuVjkU07LwfmQWLab/tj0QzpgPQdMfTFC67At7xDjjssJSrlaSxweXlkjSWZDLJ3u5vfxs+/vHB608/nexDbmtLqzJJKYijKvHcR8j84CIoFAjPOp2e5fMAqFt/KkFnN4WnlpLZdjfyxVayb90d3npsylVL0thip1uSxro4hoMPTgaA/eIXcMghaVckqUbiMKR6202EExupTGkkLHfR8OBCige9FSZMIFo4n+72ucnS8YVd5DbajKDomdmSVEvu6ZaksW7ZMnjuOejqci/y2rr99mT//Iknpl2JNCCOI0o9C+leNpfKcW8ht9f+RD/+EZVSJ3EcU9lxC/jYx+Cii8iQoWXKDtS3bER+i+0M3JK0Dri8XJLGukmT4N574Y47YNNNB6//7GfJULBZs9KrbbRZvhxuuAE6OtKuRONYFIVE/d3kTv0cXHcd/GsOvb1PEcdVgl13IH/VjeTiHA1tm5AvtpHN1cF3vpN22ZI0brm8XJLGo6efhq22glIJ7rwTdt457YpGhwUL4MYbk/PSDzoo7Wo0TsTlEtVbbqC66FlK+7+esNxNNlek9Y3HwqOPwp//TN9+syHIkI+LZOtbCfKFtMuWJK1g6Jak8ei55+BTn4KFC+HaawfO2pU0AsQxVKuUyu1U+pbAXy+n6f2nUp25Ph23/B6AbK6O5useJtPQCPvtB83NKRctSXophm5JGs9KJSgWk7+Xy8kRQe99L7z73ckkdEnrRFStEJY7yX/vpwQXXACf+Qw9xx9CqWchdPfQts/xVPd4PdFF3yXXth7ZXDHtkiVJa8g93ZI0nhVXeeH+058mXe/774e3vc3O2eq0t8MDD0BDA8yenXY1GsXisEL1n1cQX3MVfae8j5AyAK09HWSffhquuYbCB95FJlskP6WV4PmF5L0RJkmjkqFbkpQ44YRkUNj66w8N3AsWwPTp6dU1ktx1Fxx4IGy/Pdx3X9rVaDSJY1i2jLC5QF/Xs4R97bQe/x4yyzvo22M7eP0ssvkGonccTfb1e8Dee5MvNpAvtqRduSRpLRm6JUmJujo4/fSh1+bMSY7I+sQn4BvfcO93QwNsvjlstFHalWgUiKplKqUOsrf+m9y73w8bbgg3XUOlvx0CqBx1KNmufuqmb0lu+i5ksgWYCmztiQKSNJYYuiVJL+2yy6BSSY7IGu+BG2D33ZNp0dJqxFGV6g3XEP/xD5TfOJvSnjsBUDetidz8+dDVRbaSoaF1Y3LFVnI/+nW6BUuS1glDtyTppX3ta3DAAbDDDoPXFi9OOuBveYtBXONbFMG99xLvsD3dy+cSlruo/9VPqLv4N1SXvBn23IlcvpHMzMlw882wyy4EdXXU0Zh25ZKkdcjp5ZKkV+fkk+G734WPfQy+8520q5HWqWpYIix1EFdK1O24JzzzDDz0EB0T+qmGfeRvf4C6P1wJR72N7JHHkMnm0y5ZkpQyO92SpFdn0qRk//fRR6ddybp3//1w2mnJ3twf/jDtarQOxFGVyoN3E1z4HaJyHz3nnAJAEGQobrklwfLlMHcuDYfsSyaTJ/u23eFt/5Vu0ZKkEcVOtyTp1Vu0CKZOHXz717+Ghx+GT38aGsfw0tkbb4R99oGttkq+Xo09YQh33glTptA7OUupZwGZBx6l9eATiOvrWH7/leSaJ5AvtlHsjMlMWw/ydrMlSS/NTrck6dVbNXD39cGpp8Jzz0FbG5xySlpV1d5WW8FPfgItHuM0llTDfiqldsJSB42nfZ3gkh/D6acTnPFx4jiGHbaj8rEPwl5707b+68jUNSTv6D8DSdIasNMtSVo7cQx/+AN8//tw+eXJ0nNIwnh9fbq1SasRRSFh33KCj59C5rob6fzTD4inTASg+Yr/kD/1c3DSSUTnnE0cV8nm6lKuWJI0mhm6JUm1ceihUCzCeefBJpukXY3Gs3IZbr0VFi2ifMQBdC99BIhpOeS95B54lJ4Lv0R03NvJFVspZJvJFpsgm027aknSGGHoliQNv4cfhu23h0wGHnoINtss7YqGR09Pck53oQDbbpt2NXopcUy1r4tK1EOl1EHx1vspHHEMTJ9O9MyTtC/8N9lcPXXX3kGm2EzuwMMIWlrTrlqSNEa5p1uSNPy23jqZ9H3rrUMD95w5sMsuSQd8NLrnHthzT9h0U3jssbSr0SqiaoVKqQMuuID8hRdR+sAx9J/0zuTBnbagMHMm7LEHmd4SbdN3IZMtwPE7pVqzJGl8MHRLkmpj662TPys98wwccADMmAE33wzTp6dX22tVLMJ66w0dJKd0RBFcey1ccw3xFz5PR8cDxHFEsdRJ8fmF5G+5k+r/+wj5Yhu5ulZ44gkIAgAyKZcuSRpfXF4uSVo3brgBjjsOttwSrr9+IABJaySOCZ97krCtSKW/gziq0LLLm+DZZ+GKK+jaZSPiqEJ+aR/5x54ju9/BBI1NaVctSZKdbknSOrLPPsl+6KVLBwN3pQKf/Sx84hOw0Ubp1qcRJ6qWqZQ6qN5yA3Xv+jBMbKX3n78YeDw+/jiChYtg8mSaJm1FEGRgKrBNejVLkvRCdrolSem58MIkcM+cCfPmQc57weNZHFXh1tsIfvc72G8/et64LaXexQTLO2jb8XCor6P73mvJT5tJvthKNt+QdsmSJL0iX91IktKz556w997wzncODdxxPDKXn8+bl3Tmp0yB730v7WpGvTgMqd4xh8q2mxBWugjLnbT+7TKC886DhQvJH3gB1bCP/EYzqN70T7K77EZznWe/S5JGFzvdkqR0xXHyJ7NivNW//gUnnQTf/CYcdFC6tb3QHXfA61+fLIV/6qm0qxmVomqFSv8yKv3t1O+8P9mnn6fj7z+mumMydK9xXjvFX/wJjjwS3vSmlKuVJGnt2emWJKUrCIZ2tf/nf+Dee+HXvx55oXvmTPjOd6C5Oe1KRo0oCuHxx8l8+3zo6aH6w/PpaX8cgMI2m5FZ3kFhfifB3pskS8Zn1MM+h6VctSRJw8dOtyRpZFm2DM49Fz75SVh//eTa8uUQhsmybo1ocaVMdc6NhI1ZyjOnEJa7qV/UR/3O+0M+T7x0Cd2lZ8kVmsl3VshO24AgX0i7bEmSasajKiVJI8vEicnS8pWBG+CLX4TNN4dLL02vLq1eHBPHMf09C+he+gilj7yH3L4HwXe/R1juAmLCDafB5z4Hv/0tQaFI8+RtqW/ZkNwGmxq4JUljnsvLJUkjWxjC7bdDZyest166tZRKyV7uXA423TTdWlIURSFRpZfcJz8Ll19OcP319NctI6qWiHebTeGPV5BpbKGxbVNyxTayuSJ8+ctply1JUipcXi5JGvmiCP75z6F7vK+4AtraYLfd1l0d//kPzJ6dhP/nn193nzdlcamf6g3XED39GP1H7k9Y7ibIZGk75pMEt9wCF11E//FHEMcR+Wwj2UITgce/SZIEGLolSaNRby9suSU89xz86U/w1reum897333wxjfCtGnwyCPr5nOmIY6hXKYcdVPqXUz8r1toefN/EbU2037P5ZDLkc030HTnM2SDbHLsW2Nj2lVLkjQieRtakjT6lEpwyCFw/fVw6KHr7vPusAO0t6+7z7cORdUKlVIH+Z/8isy5X4UTT6T6yQ9S6V8OO25FdfONiXbakcbMVPLTNyGTLcDhs9IuW5KkEc9OtyRp9OrpGdphPeEE2H13OPHEZN+1XlJcDan+4y/EV11J38nvIWzMAtDy59vInfzfsO++hFddTlhqJ1dsI5dvSLliSZJGJ0O3JGls+Oc/4cADIZ+Hhx8e14POViuKYP58wqkT6Ot4krDcRcs+x5Kd9xRdF51L5fB9yeUbqesrUnj0GdhrL6irS7tqSZJGPdsAkqSxYe+94cILkzO9Vw3cy5Ylx5ANh2efhc9/Hlpa4IILhudj1lBULVHp7yDzwCPkjzgaGhsJ5j5IpdQBQPmow8g9u4TiVrvQOP11ZLL55B1nbpVi1ZIkjS12uiVJY9ezz8I228A73wnnnQf19Wv38e6/P9nXPWUKLFo0LCUOpziqEt70T/jVr6jM3or+I/YBoFAt0rT5blAowLx5lJoDcoUWsvm1/P9DkiS9IjvdkqSx67LLoLsbHnxweJZKT58OX/saNIyQ/c3VKtx1F/GsWXR3PUZY7qR4xZ9o+OFPiQ/aC47Yl1yhkWzdRLjjjuQGRKFAMe26JUkaR+x0S5LGtptvhuZmmLVi0nalAn/7W3LMWBCkWtprUQ37CUsdVMN+GnY7NNm/fv31dG47ibDcRf7RZ6j7vz/DEUeQfds7yGS8vy5JUpr8TSxJGtv22mvo2xddBCefDEccAX/9azo1vQpRFBLOe4Dgq1+HRQvp+uH/DDxWv9Msgvnz4dlnadh9F4JMjuyM3WHfd6RYsSRJWpWhW5I0vkRRcszY4Ye/+vcNQ1i4MOmQr7/+8NcGSSf+ttugpYW+jSfQ1/UcQfdiJvzkl8RBQGb5p8lMm0G+ro34/PMIfj4Zcjl/oUuSNEK5vFySNP4sWACTJw+e5X3bbfCHP8DnPgdtbS/9fo88AltvnTxn+fLhqSWOqVb6qJQ7CEsdNHztEjLf+Ca8//2ULvwqPe2Pkc3VU3/hzwl22oXc4UcSNDS+8seVJEkjgjfGJUnjz/Tpg3+PY/jv/4Z//Qt6e+E733np9wuCJKjn82v16aNqhbDUQXDKJ8lefhXdP/9fqlslx5wV9tyZwo8nQUsL+fqJtBZbyeaKcM5Oa/U5JUlSOgzdkiR9/vPwpS8lne6VKpUkYK86bG3LLZPrr1apBLfcAk8+SeVdb6dryQMANM99hMzzC8nfeDuZHWeTK7aSPXQHWHQsZDJkAByEJknSqObyckmSIOl4rxqwTzklOZf7/PNhu+1e9ccKu5YRZkpU+jvIz3uOut0Pgvp64iWLaW+/n0yujuLtD5GL82T3O5igqXlYvxxJkjQyePtckiQYGrjb2+GSS5IzvufPX6PQHVXLVEodcPHF5M/9FpW3HULfF04GIN5kCnU77wzbbUfQ1U3r9F2So7yOmFWjL0aSJI0Uhm5Jkl6orQ3uvRd+9zs48MDB69dfD7/8JTQ1Ef/vNwmuvgauvBI+/Wk6eY6oWqaQq1BctJT87fcQ1rWRL7aSK7bBXXcNfJjMuv56JElSalxeLknSGoh7e2HzzQjmLyCur6Pj8VtoPeJDBHfdBT/7GT1H7E610kuuL6Dw0BNk9z2IoK4+7bIlSVLK7HRLkvQSomqJSn87lVIH0b130xhEBM2N9J94HFG1RHTs28nutBNssQUNbZsRrFyiPnOHVOuWJEkjh51uSZJWiKKQIMgQBMkC8N6Op+jvfn7g8aAUUpzfTmbWruTrWsnm7GRLkqSXZ+iWJI1bcRxRrfRQKXVQ6W+nWummaeJW5OsmAFApddDX+cyKfdmt5ApNA4FckiRpTRi6JUnjSlStUO5fStjfQaXcQRxVhzxe37Ih9c0bpFSdJEkaa9zTLUka06IoJI5Csrk6AOIopLf9iYHHM5kcuWLrQDd75fMkSZKGg6FbkjSmxHFEWO4mLCUD0MJyD4X6iTRN3BKAbL6eQv1EsvlG8sVWsvmmwQFokiRJw8zQLUkaE/q7F1AptROWOojjaMhjUbU85O2miVuty9IkSdI4ZuiWJI06UbVCtdJDvq5t4Fq5bzFhuRuATCafLBmvayNfbCGTLaZUqSRJGu8cpCZJGvHiqEpY7kqWi5c6CCs9BEFA2/RdCTJZAEq9i4mrFXJ1rWRzDS4ZlyRJI4KdbknSiFXuW0apZyFhufNFS8azuQaiaplsJjkru9gwJY0SJUmSXpahW5I0IkTVEpVS55Dl4FFUplJqByCTLayYMN5GvthKJptPsVpJkqQ14/JySVIq4qhKpdy5Ysp4J9VKLwANbZtQ1zgdgGpYotK/bMWU8YY0y5UkSXpN7HRLktapathHb/sTK5aMD73vmys0EQSDv5qyuSLZpvXWdYmSJEnDxtAtSaqZathPWOogyOQo1E8CIMjkqZQ6gZhstjgwZTxXbCWT8deSJEkaW3x1I0kaNlEUEpY6B87Lrob9QNLBXhm6M5kcTRO3IJtvJJurS7NcSZKkmjN0S5KGRdfSh6n0twOrLhkPyBWahpynDQwEcEmSpLHO0C1JelWqYR+V/g6qlR4aJ2w2cD0IMkBMNldHvpgsF88VW1wyLkmSxjWnl0uSXlZUrRCWO6n0t1MpdRBVSwOPtU7diWw+OSe7WumDIEM2V0yrVEmSpBHH9oMk6SX1dz1Pb+dTQ64FQUCu0EKu2EqQyQ5cXxm+JUmSNMjQLUkirPQSljqolNqpa5pBvtgCQGZFkM7mG8gXW8kXW8kVWoaEbUmSJL00l5dL0jgUVctUSh0rgnYHUbU88Fhd8wwaWjYCII4j4igkky2kVaokSdKoZqdbksaZaqWXjkX3DLkWBBlyhRbyda3kixOGXA8M3JIkSa+ZoVuSxqA4jqlWega62ZlcHY1tmwKQydWTyeTJZAvk6tpWLBlvXjF9XJIkScPJ0C1JKYrjiEWPX0Gu0ERd8wbUNc14zdO/q2FpYF92WOokiioDj2XCvoG/B0FA67TZ7suWJElaBwzdkpSiKCyx5Kl/DrlWqJ9MfetM6ps3pL4lCeKr21Mdx9GQ7nT3soepVnoH3g6CLPliMmU8X2wb8r4GbkmSpHXD0C1JKcrm6yk2rkepZ/7AtXLfEsr9y+hY8G8gBgIKDZOpb5lJsWEqmVwd2XwzcbWftum7DATofLGNIMiQL7aRK7aSKzS5ZFySJCllhm5JSlnz5G0o9S6EOBq8uOrfiSn3Lqbcu3iV99mepklbE1a6yRdbAWhonbmOKpYkSdKasgUiSSlrnLDlC0L2yys0TGPyxgfSOm32QOCWJEnSyGSnW5JSFMcRubqJEGTWKHhP3GBvpm/xZpeNS5IkjRKGbklax6IopK/jKbqXPkxvxxOUehauUeCetvlbmLzRPuugQkmSJA2XII7jOO0iJGksi6oVqmE/pZ4F9CyfS/fSR+jvfg6AXKGFYuN0CAJ6ls0lGZy2qgCCgA22fSet02av89olSZK0dgzdkjTM4jiiUuqkt/1xepY9Ql/XM5R7lxLHIdl8E00TtyBXN4HGts2ob96AbL6RUs8CHrv9my/4SAGZbJ6NdvwgjRM2T+VrkSRJ0tpxebkkDZPu5fPoXvIgvR1PUupZSFTthyBDoX4yLdN2YtIGb6Suef3V7scuNk4nm2+kWulJLgQZsrkGNp59EnVN663jr0SSJEnDxdAtSa9BVC1T7ltGWGqne9lcupfNHThrO1dspaFtExrbNqNx0tYU6yeTyeZf9uMFQUDTxK3oWHg3EFCom8TGsz9Mvm7COvhqJEmSVCuGbklaA3FUpVLqoKd9Ht3L5tLf9SzlvqUQR+QKLTRN3JK29V5PXfP61DetTzbf8Ko/R9OkrelY+G/qW2Yyc9YHX9PHkCRJ0sjinm5Jehm9HU/SsfA/9HY8Sbl3IVG1TBBkKTRMob5lQ9rWez0NrZsQBMFaf64oCulceDctU3d6xc64JEmSRgdDtyStUA1LlHsXUupdSl/nk3Qve4Ry72IA8nUTKDatT1Pb5jRN2pp83QSDsSRJkl6RoVvSuBVFIZX+dnqWP0rPsrn0dT9HpW8ZEJOvm0jTxC1paNuMfHECdc3Tyebq0y5ZkiRJo4yhW9K409+9gGXP3kxf59OUehcRRxWCTI5Cw1TqWzaiZeosmiZsMSxLxiVJkjS+GboljWnVsJ/+ngX0dz5NqWcR3cvmUulfCgTk6ydS3zSDhgmb0zRxK/J1bWQyzpeUJEnS8DF0SxpTkiXjy+le+jA9y+fR3/08lf5lABQaptA0YUsaJ25JoX4y+bo2srm6lCuWJEnSWGboljRmdC+bS7lvKV1LH6J7yQMEmQLFxqk0tMykcdLWNE/amiDIpF2mJEmSxhFDt6Qxo6f9cUo9CwmCLAQBDW2bUii2EWSyaZcmSZKkccrQLWnMqIYlggAy2WLapUiSJEmAoVuSJEmSpJpxc6MkSZIkSTVi6JYkSZIkqUYM3ZIkSZIk1YihW5IkSZKkGjF0S5IkSZJUI4ZuSZIkSZJqxNAtSZIkSVKNGLolSZIkSaoRQ7ckSZIkSTVi6JYkSZIkqUYM3ZIkSZIk1YihW5IkSZKkGjF0S5IkSZJUI4ZuSZIkSZJqxNAtSZIkSVKNGLolSZIkSaoRQ7ckSZIkSTVi6JYkSZIkqUYM3ZIkSZIk1YihW5IkSZKkGjF0S5IkSZJUI4ZuSZIkSZJqxNAtSZIkSVKNGLolSZIkSaoRQ7ckSZIkSTVi6JYkSZIkqUYM3ZIkSZIk1YihW5IkSZKkGjF0S5IkSZJUI4ZuSZIkSZJqxNAtSZIkSVKNGLolSZIkSaoRQ7ckSZIkSTVi6JYkSZIkqUYM3ZIkSZIk1YihW5IkSZKkGjF0S5IkSZJUI4ZuSZIkSZJqxNAtSZIkSVKNGLolSZIkSaoRQ7ckSZIkSTVi6JYkSZIkqUYM3ZIkSZIk1YihW5IkSZKkGjF0S5IkSZJUI4ZuSZIkSZJqxNAtSZIkSVKNGLolSZIkSaoRQ7ckSZIkSTVi6JYkSZIkqUYM3ZIkSZIk1YihW5IkSZKkGjF0S5IkSZJUI4ZuSZIkSZJqxNAtSZIkSVKNGLolSZIkSaoRQ7ckSZIkSTVi6JYkSZIkqUYM3ZIkSZIk1YihW5IkSZKkGjF0S5IkSZJUI4ZuSZIkSZJqxNAtSZIkSVKNGLolSZIkSaoRQ7ckSZIkSTVi6JYkSZIkqUYM3ZIkSZIk1YihW5IkSZKkGjF0S5IkSZJUI4ZuSZIkSZJqxNAtSZIkSVKNGLolSZIkSaoRQ7ckSZIkSTVi6JYkSZIkqUYM3ZIkSZIk1YihW5IkSZKkGjF0S5IkSZJUI4ZuSZIkSZJqxNAtSZIkSVKNGLolSZIkSaoRQ7ckSZIkSTVi6JYkSZIkqUYM3ZIkSZIk1YihW5IkSZKkGjF0S5IkSZJUI4ZuSZIkSZJqxNAtSZIkSVKNGLolSZIkSaoRQ7ckSZIkSTVi6JYkSZIkqUYM3ZIkSZIk1YihW5IkSZKkGjF0S5IkSZJUI4ZuSZIkSZJqxNAtSZIkSVKNGLolSZIkSaoRQ7ckSZIkSTVi6JYkSZIkqUYM3ZIkSZIk1YihW5IkSZKkGjF0S5IkSZJUI4ZuSZIkSZJqxNAtSZIkSVKNGLolSZIkSaoRQ7ckSZIkSTVi6JYkSZIkqUYM3ZIkSZIk1YihW5IkSZKkGjF0S5IkSZJUI4ZuSZIkSZJqxNAtSZIkSVKNGLolSZIkSaoRQ7ckSZIkSTVi6JYkSZIkqUYM3ZIkSZIk1YihW5IkSZKkGjF0S5IkSZJUI4ZuSZIkSZJqxNAtSZIkSVKNGLolSZIkSaoRQ7ckSZIkSTVi6JYkSZIkqUYM3ZIkSZIk1YihW5IkSZKkGjF0S5IkSZJUI4ZuSZIkSZJqxNAtSZIkSVKNGLolSZIkSaoRQ7ckSZIkSTVi6JYkSZIkqUYM3ZIkSZIk1YihW5IkSZKkGjF0S5IkSZJUI4ZuSZIkSZJqxNAtSZIkSVKNGLolSZIkSaoRQ7ckSZIkSTVi6JYkSZIkqUYM3ZIkSZIk1YihW5IkSZKkGjF0S5IkSZJUI4ZuSZIkSZJqxNAtSZIkSVKNGLolSZIkSaoRQ7ckSZIkSTVi6JYkSZIkqUYM3ZIkSZIk1YihW5IkSZKkGjF0S5IkSZJUI4ZuSZIkSZJqxNAtSZIkSVKNGLolSZIkSaoRQ7ckSZIkSTVi6JYkSZIkqUYM3ZIkSZIk1YihW5IkSZKkGjF0S5IkSZJUI4ZuSZIkSZJqxNAtSZIkSVKNGLolSZIkSaoRQ7ckSZIkSTVi6JYkSZIkqUYM3ZIkSZIk1YihW5IkSZKkGjF0S5IkSZJUI4ZuSZIkSZJqxNAtSZIkSVKNGLolSZIkSaoRQ7ckSZIkSTVi6JYkSZIkqUYM3ZIkSZIk1YihW5IkSZKkGjF0S5IkSZJUI4ZuSZIkSZJqxNAtSZIkSVKNGLolSZIkSaoRQ7ckSZIkSTVi6JYkSZIkqUYM3ZIkSZIk1YihW5IkSZKkGjF0S5IkSZJUI4ZuSZIkSZJqxNAtSZIkSVKNGLolSZIkSaoRQ7ckSZIkSTVi6JYkSZIkqUYM3ZIkSZIk1YihW5IkSZKkGjF0S5IkSZJUI4ZuSZIkSZJqxNAtSZIkSVKNGLolSZIkSaoRQ7ckSZIkSTVi6JYkSZIkqUYM3ZIkSZIk1YihW5IkSZKkGjF0S5IkSZJUI4ZuSZIkSZJqxNAtSZIkSVKNGLolSZIkSaoRQ7ckSZIkSTVi6JYkSZIkqUYM3ZIkSZIk1cj/B26aLDWIRlvoAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ag = AcquisitionGeometry.create_Parallel3D(detector_position=[0,10,0])\\\n", + " .set_panel(num_pixels=[10,10])\\\n", + " .set_angles(angles=range(0,180))\n", + " \n", + "show_geometry(ag)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Fan-beam geometry\n", + "\n", + "A single point-like X-ray source emits a cone-beam onto a single row of detector pixels. The beam is typically collimated to imaging field of view. Collimation greatly reduce amount of scatter radiation reaching the detector. Fan-beam geometry is used when scattering has significant influence on image quality or single-slice reconstruction is sufficient.\n", + "\n", + "We describe the system, and then set the panel and angle data.\n", + "\n", + "For fan-beam data the source and detector positions are required. As default we place them along the Y-axis where the rotation-axis is on the origin. They are specified as `[x,y]` coordinates.\n", + "\n", + "```python\n", + "cone_2D_geometry = AcquisitionGeometry.create_Cone2D(source_position=[0,-10],detector_position=[0,10])\\\n", + " \n", + " .set_panel(num_pixels=10)\\\n", + " \n", + " .set_angles(angles=range(0,180))\n", + "```" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "execution": { + "iopub.execute_input": "2024-10-10T15:02:39.263396Z", + "iopub.status.busy": "2024-10-10T15:02:39.263217Z", + "iopub.status.idle": "2024-10-10T15:02:39.456876Z", + "shell.execute_reply": "2024-10-10T15:02:39.456392Z" + } + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA90AAAPdCAYAAACXzguGAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAADCOUlEQVR4nOzdeXxTVf7/8XeaJmnadINC2UEt68jmIAqo4CjiMor+ZtRRZFHEBRVXcEVRdFwY3GYc/eo44Lg7A6jDuKAoiKKsIiKFArK4oGUp0IVuyef3R2zadKMgaQp9PR+PPjg599x7Ty45N/nknJzjMDMTAAAAAAA46GKiXQEAAAAAAA5XBN0AAAAAAEQIQTcAAAAAABFC0A0AAAAAQIQQdAMAAAAAECEE3QAAAAAARAhBNwAAAAAAEULQDQAAAABAhBB0AwAAAAAQIQTdAAAAAABECEE3AAAAAAARQtANAAAAAECEEHQDAAAAABAhBN0AAAAAAEQIQTcAAAAAABFC0P0rbdq0SQ6HQytWrKixzLx58+RwOLRr1656q9ev0aFDBz3++OOhxw6HQ2+++WbU6gPUt7q064Zi0KBBuuGGG6JdjRpVvp9UZ9KkSerVq1e91Af71tBfU4eKut5HuN4AcPgj6MY+bd26VWecccZBPeah8CGjLsECGo4DfU2NGjVK5557blhe27ZttXXrVh199NEHp3IRNHPmTE2ePDna1ajRkiVLdMUVV4QeV/cl3i233KK5c+fWc81wsEyfPl0pKSkH/biHwvtEbSrfR2r6Ar6ht2EAwK8XG+0KHMqKi4ujXYUD5vf75XA4FBOz7+9dWrRoUQ81QoOWlSVt2CBlZEgdO9brqYuLi+V2u+v1nE6n85B53Tdp0iTaVahVs2bN9lnG5/PJ5/PVQ20ODVFsboelaNxDpLrfRxp6GwYA/HoH3NNtZsrPz6/3PzOrU/3++9//KiUlRYFAQJK0YsUKORwOjR8/PlTmyiuv1EUXXRR6PGPGDP3mN7+Rx+NRhw4dNHXq1LBjdujQQffff79GjRql5ORkjRkzptpzv/POO+rUqZO8Xq9OPvlkbdq0aZ/13bVrl6644gqlp6crLi5ORx99tGbPnl3nuuXk5GjEiBFKTU1VfHy8zjjjDK1bty60vawnYvbs2erWrZs8Ho82b96s7OxsnX322fJ6vTriiCP08ssvV6lbxZ6psuFyM2fO1Mknn6z4+Hj17NlTn3/+eaj8jh07dNFFF6lNmzaKj49X9+7d9eqrr4a2jxo1SvPnz9cTTzwhh8Mhh8MRukarV6/WmWeeKZ/Pp/T0dA0fPlzbt2+v8bpt3rxZZ599tlJTU5WQkKDf/OY3euedd2RmysjI0F/+8pew8qtWrVJMTIw2bNggKTistV27dvJ4PGrVqpXGjRsnKdjDsnnzZt14442hOpZZuHChTjrpJHm9XrVt21bjxo1Tfn5+aHvZ62TEiBHy+Xxq37693nrrLW3btk1Dhw6Vz+dT9+7dtXTp0hqfV4Oxc6d0+ulS587SmWdKnToFH+fkROyUgwYN0rXXXqubbrpJaWlpGjx4sCRp/vz56tu3rzwej1q2bKnbbrtNpaWlkmp+Tfn9fo0ePVpHHHGEvF6vOnfurCeeeCJ0rkmTJumFF17QW2+9Fdpv3rx51Q4Lre38ZfUeN26cJkyYoCZNmqhFixaaNGlSrc91yZIlGjx4sNLS0pScnKyBAwdq+fLloe3z5s2T2+3WggULQnlTp05VWlqatm7dGjpvxd7Av//97+rYsaPi4uKUnp6uP/7xjzWev+y+8Oabb6pTp06Ki4vT4MGD9d1334WVe/rpp3XUUUfJ7Xarc+fOevHFF8O219SOpPARIx06dJAknXfeeXI4HKHHlYeXBwIB3XfffWrTpo08Ho969eql9957L7S9LvehQ1EUmpvy8/ND96qWLVtWeW+RgkHrhAkT1Lp1ayUkJOi4447TvHnzJAVfo5deeql2794dakNlr/va9ivz2WefaeDAgYqPj1dqaqqGDBminJycWt8n6tIWq7uHVFY2yuXee+9V8+bNlZSUpCuvvDLsC/WioiKNGzdOzZs3V1xcnE444QQtWbIktD0nJ0fDhg1Ts2bN5PV61bFjR02bNk1S+PDyTZs26eSTT5YkpaamyuFwaNSoUaH6VmzDdX0/f//999W1a1f5fD6dfvrpoXsCAKABsgOUl5dnkur9Ly8vr07127Vrl8XExNjSpUvNzOzxxx+3tLQ0O/bYY0NlOnXqZE8//bSZmS1dutRiYmLsvvvus7Vr19q0adPM6/XatGnTQuXbt29vSUlJNmXKFFu3bp2tW7fONm7caJLsyy+/NDOzLVu2mMfjseuvv97WrFljL730kqWnp5sky8nJqbaufr/fjj/+ePvNb35jc+bMsQ0bNth///tfe+edd+pct3POOce6du1qn3zyia1YscKGDBliGRkZVlxcbGZm06ZNM5fLZf3797fPPvvM1qxZY3l5eXbGGWfY0UcfbQsXLrSlS5da//79zev12mOPPRY6tiSbNWuWmVno+Xbp0sVmz55ta9eutT/+8Y/Wvn17KykpMTOz77//3qZMmWJffvmlbdiwwZ588klzOp32xRdfhP5v+vXrZ2PGjLGtW7fa1q1brbS01H788UdLS0uz22+/3TIzM2358uU2ePBgO/nkk2v8fz7rrLNs8ODBtnLlytB1mz9/vpmZPfDAA9atW7ew8jfeeKOddNJJZmb273//25KSkuydd96xzZs326JFi+zZZ581M7MdO3ZYmzZt7L777gvV0cxs5cqV5vP57LHHHrOsrCz77LPPrHfv3jZq1Kiw10mTJk3smWeesaysLLv66qstMTHRTj/9dHvjjTds7dq1du6551rXrl0tEAjU+NwahCFDzJxOM6n8z+kM5kfIwIEDzefz2fjx423NmjWWmZlp33//vcXHx9vYsWMtMzPTZs2aZWlpaXbPPfeYWc2vqeLiYrv77rtt8eLF9u2339pLL71k8fHx9vrrr5uZWW5url1wwQV2+umnh/YrKiqq0q73df6yeiclJdmkSZMsKyvLXnjhBXM4HDZnzpwan+vcuXPtxRdftNWrV9vq1att9OjRlp6ebnv27AmVGT9+vLVv39527dplK1asMI/HYzNnzgw77/XXX29mZkuWLDGn02mvvPKKbdq0yZYvX25PPPFEjecvuy/06dMndA/o27ev9e/fP1Rm5syZ5nK57KmnnrK1a9fa1KlTzel02kcffWRmtbcjs2B7KLufZGdnmySbNm2abd261bKzs83M7J577rGePXuG9nn00UctKSnJXn31VVuzZo1NmDDBXC6XZWVlmVnd7kOHoig0N7v66qutTZs2NmfOHFu5cqX9/ve/N5/PF3pNmZldfPHF1r9/f/vkk09s/fr1NmXKFPN4PJaVlWVFRUX2+OOPW1JSUqgN5ebm7nM/M7Mvv/zSPB6PXX311bZixQpbtWqV/fWvf7Vt27bV2Kbr2hYr30OqM3LkSPP5fHbhhRfaqlWrbPbs2dasWTO74447QmXGjRtnrVq1snfeece++eYbGzlypKWmptqOHTvMzOyaa66xXr162ZIlS2zjxo32wQcf2Ntvv21mFnYfKS0ttRkzZpgkW7t2rW3dutV27doVqm/F613X9/NTTz3VlixZYsuWLbOuXbvaxRdf/OteDACAiDlsg24zs2OOOcb+8pe/mJnZueeeaw888IC53W7bs2ePbd261SSF3owvvvhiGzx4cNj+48ePDwva2rdvb+eee25Ymcofzm+//fYqwdStt95aa9D9/vvvW0xMjK1du7ba7fuqW1ZWlkmyzz77LLR9+/bt5vV67Y033jCz4Ju0JFuxYkWozNq1a01SKBg2M8vMzDRJ+wy6//GPf4S2f/PNN2HXsjpnnnmm3XzzzaHHlT9kmJlNnDjRTjvttLC87777LvQhpTrdu3e3SZMmVbvtxx9/NKfTaYsWLTIzs+LiYmvWrJlNnz7dzMymTp1qnTp1Cn2QqaxisFBm+PDhdsUVV4TlLViwwGJiYmzv3r2h/S655JLQ9rLX2sSJE0N5n3/+uUkKBfMN0tq14Z/+K//98sH5YBs4cKD16tUrLO+OO+6wzp07h7Wrp556ynw+n/n9/tB+lV9T1Rk7dqz94Q9/CD0eOXKkDR06NKxM5XZd1/OfcMIJYcc59thj7dZbb91nncqUlpZaYmKi/fe//w3lFRUVWe/eve2CCy6w3/zmN3b55ZeH7VPxec+YMcOSkpLCgvbalN0XqrsHlLWb/v3725gxY8L2O//88+3MM880s/1vRxXvJ2UqB92tWrWyBx54IKzMsccea2PHjjWzA78PNWTRaG65ubnmdrvttddeC+Xt2LHDvF5v6DW1fv16czgc9sMPP4Tte8opp9jtt99uZsHXUXJyctj2uux30UUX2YABA2qsX3Vtuq5tsfI9pDojR460Jk2aWH5+fijv6aefDh0rLy/PXC6Xvfzyy6HtxcXF1qpVK3vkkUfMzOzss8+2Sy+9tNrjV76PfPzxx9V+Fqj4PPfn/Xz9+vVh1yA9PX2fzxkAEB0HPLw8Pj5eeXl59f4XHx9f5zoOGjRI8+bNk5lpwYIFGjp0qI4++mh9+umn+vjjj5Wenq4uXbpIkjIzMzVgwICw/QcMGKB169bJ7/eH8vr06VPrOTMzM3X88ceHDUfu169frfusWLFCbdq0UadOnWo8Zm11y8zMVGxsrI477rjQ9qZNm6pz587KzMwM5bndbvXo0SPsuLGxsWHPqUuXLnWaEKficVq2bClJys7OlhT8vfgDDzygHj16qGnTpvL5fJozZ462bNlS6zGXLVumjz/+OPT7Tp/PF/r/KRsOXtm4ceN0//33a8CAAbrnnnu0cuXKsHqdddZZ+uc//ylJmj17tgoLC3X++edLks4//3zt3btXRx55pMaMGaNZs2aFDVGsqY7Tp08Pq+OQIUMUCAS0cePGaq9Penq6JKl79+5V8squWYNUwzUPWb8+Yqeu3M4yMzPVr1+/sHY1YMAA5eXl6fvvv6/1WM8884z69OmjZs2ayefz6bnnntvna7Gyup6/4v+7FHwN1vZ/nJ2drauuukqdOnVScnKykpOTlZeXF1Y/t9utl156STNmzNDevXtrndxv8ODBat++vY488kgNHz5cL7/8sgoKCmp9bjXdA8ruHTXdf8q2H0g7qs2ePXv0448/1nrOMrXdhw410WhuGzZsUHFxcdh7VJMmTdS5c+fQ4+XLl8vM1KlTp7D73vz582u8L9d1vxUrVuiUU07ZrzrXtS3u6726TM+ePcM+V/Tr1095eXn67rvvtGHDBpWUlIS9Fl0ul/r27Rt6LV599dV67bXX1KtXL02YMEELFy7cr+dT3fOry/t5fHy8jjrqqNDjfd1rAADRdcATqTkcDiUkJBzMuhx0gwYN0vPPP6+vvvpKMTEx6tatmwYOHKj58+crJydHAwcODJU1s7A38bK8yvb1nKvbZ1+8Xu8+j1lb3Wo6Z+X9vF5v2OOy/Sofuy5cLlcoXbZ/2e/np06dqscee0yPP/64unfvroSEBN1www37nHguEAjo7LPP1sMPP1xlW9kH6souv/xyDRkyRP/73/80Z84cPfjgg5o6daquu+660Pbhw4frscce07Rp03ThhReGPmC1bdtWa9eu1QcffKAPP/xQY8eO1ZQpUzR//vyw51e5jldeeWXYb1bLtGvXrtbrU9s1a5AqfKCrVkZGxE5duZ3V1gZqe/2+8cYbuvHGGzV16lT169dPiYmJmjJlihYtWrRf9anr+Su/bhwOR63/x6NGjdK2bdv0+OOPq3379vJ4POrXr1+VtlL2QX7nzp3auXNnjfehxMRELV++XPPmzdOcOXN09913a9KkSVqyZEmtX6ZVdw0r5lX33MvyDqQd1UVt5yxzyLWpWkSjudXl/SoQCMjpdGrZsmVyOp1h22qb/K4u++3rva+mOtelLf7azycOh6PGe0zFOpxxxhnavHmz/ve//+nDDz/UKaecomuuuabKfCJ1Vdf38+ruNQfy+QMAUD8O6yXDTjrpJOXm5urxxx/XwIED5XA4NHDgQM2bN0/z5s0LC7q7deumTz/9NGz/hQsXqlOnTlU+MNSmW7du+uKLL8LyKj+urEePHvr++++VlZVV4zFrq1u3bt1UWloaFkjs2LFDWVlZ6tq1a43n7dq1q0pLS8Mm9Fq7du2vXk+8bFTBJZdcop49e+rII48MmwRGCvbeVRxBIEnHHHOMvvnmG3Xo0EEZGRlhf7V9gGrbtq2uuuoqzZw5UzfffLOee+650LYzzzxTCQkJevrpp/Xuu+/qsssuC9vX6/XqnHPO0ZNPPql58+bp888/19dff73POlauX0ZGRlRmx42oTp2kIUOkyq9/pzOYX4/TKnfr1k0LFy4M+1C5cOFCJSYmqnXr1pKq//9asGCB+vfvr7Fjx6p3797KyMio0jtX3X4Hcv4DsWDBAo0bN05nnnlmaKLEyhMHbtiwQTfeeKOee+45HX/88RoxYkStgWVsbKxOPfVUPfLII1q5cqU2bdqkjz76qMbyNd0DykaZdO3atdr7T8V7S23tqDKXy1Xr9U5KSlKrVq32ec7DTTSaW0ZGhlwuV9h7VE5OTth7Ue/eveX3+5WdnV3lnlc2M3d1bagu+/Xo0aPWpeKqO+7BbotfffWV9u7dG3r8xRdfyOfzqU2bNqH7esXXYklJiZYuXRr2WmzWrJlGjRqll156SY8//rieffbZGp+PpFpf/wf6fg4AaNgO66A7OTlZvXr10ksvvaRBgwZJCgbiy5cvV1ZWVihPkm6++WbNnTtXkydPVlZWll544QX97W9/0y233LJf57zqqqu0YcMG3XTTTVq7dq1eeeUVTZ8+vdZ9Bg4cqJNOOkl/+MMf9MEHH2jjxo169913Q7P17qtuHTt21NChQzVmzBh9+umn+uqrr3TJJZeodevWGjp0aI3n7dy5s04//XSNGTNGixYt0rJly3T55ZcfUO9DRRkZGfrggw+0cOFCZWZm6sorr9RPP/0UVqZDhw5atGiRNm3apO3btysQCOiaa67Rzp07ddFFF2nx4sX69ttvNWfOHF122WU1fki54YYb9P7772vjxo1avny5Pvroo7APJk6nU6NGjdLtt9+ujIyMsGGU06dP1/PPP69Vq1bp22+/1Ysvviiv16v27duH6vjJJ5/ohx9+CAVCt956qz7//HNdc801WrFihdatW6e333471LN+2Hn1VenUU8PzTj01mF+Pxo4dq++++07XXXed1qxZo7feekv33HOPbrrpptCyd9W9pjIyMrR06VK9//77ysrK0sSJE8NmHi7bb+XKlVq7dq22b9+ukpKSAzr/gcjIyNCLL76ozMxMLVq0SMOGDQtrf36/X8OHD9dpp52mSy+9VNOmTdOqVauqnWFaCv6E4sknn9SKFSu0efNm/etf/1IgEAgbLlyZy+XSddddp0WLFmn58uW69NJLdfzxx6tv376SpPHjx2v69Ol65plntG7dOj366KOaOXNm6P6zr3ZUWYcOHTR37lz99NNPyqlhWu7x48fr4Ycf1uuvv661a9fqtttu04oVK3T99dfX6boequq7ufl8Po0ePVrjx4/X3LlztWrVKo0aNSrsNd2pUycNGzZMI0aM0MyZM7Vx40YtWbJEDz/8sN555x1Jwf/TvLw8zZ07V9u3b1dBQUGd9rv99tu1ZMkSjR07VitXrtSaNWv09NNPh+631bXpg90Wi4uLNXr0aK1evVrvvvuu7rnnHl177bWKiYlRQkKCrr76ao0fP17vvfeeVq9erTFjxqigoECjR4+WJN1999166623tH79en3zzTeaPXt2jcFx+/bt5XA4NHv2bG3btk15eXlVyhzo+zkAoIGrn5+OR8/NN99skmzVqlWhvJ49e1qzZs2qzBz9n//8x7p162Yul8vatWtnU6ZMCdte3cRalSdKMTP773//axkZGebxeOzEE0+0f/7zn7VOpGYWnLzm0ksvtaZNm1pcXJwdffTRNnv27DrXbefOnTZ8+HBLTk42r9drQ4YMCc0Qa1b9RDdmwUm+zjrrLPN4PNauXTv717/+VevER9U935ycHJNkH3/8cei5DB061Hw+nzVv3tzuuusuGzFiRNhkVWvXrrXjjz/evF6vSbKNGzeaWXASmfPOO89SUlLM6/Valy5d7IYbbqhxlu9rr73WjjrqKPN4PNasWTMbPny4bd++PazMhg0bTFJo4psys2bNsuOOO86SkpIsISHBjj/+ePvwww9D2z///HPr0aOHeTweq9hUFi9ebIMHDzafz2cJCQnWo0ePsEmfqnudVLyGNV3HBi0ry+yddyI2eVpFNU2INm/ePDv22GPN7XZbixYt7NZbbw2bqbq611RhYaGNGjXKkpOTLSUlxa6++mq77bbbwibtys7ODv1/lr2Oq/v/2df5q6v30KFDbeTIkTU+1+XLl1ufPn3M4/FYx44d7d///nfY6+fee++1li1bhr2m33zzTXO73aG6VTzvggULbODAgZaammper9d69OgRmqm9OmX3hRkzZtiRRx5pbrfbfve739mmTZvCyv3973+3I4880lwul3Xq1Mn+9a9/hbbtqx1Vbg9vv/22ZWRkWGxsrLVv397Mqk6k5vf77d5777XWrVuby+Wynj172rvvvhvaXpf70KGsHpub5ebm2iWXXGLx8fGWnp5ujzzySJXXctkqAB06dDCXy2UtWrSw8847z1auXBkqc9VVV1nTpk1NUmgm8brsN2/ePOvfv795PB5LSUmxIUOGhN4ra3qfOJC2WJ2ySRTvvvtua9q0qfl8Prv88sutsLAwVGbv3r123XXXWVpamnk8HhswYIAtXrw4tH3y5MnWtWtX83q91qRJExs6dKh9++23Zlb96/S+++6zFi1amMPhCN0bKtf3QN7PZ82aZY3gIx0AHLIcZvwICIe3zz77TIMGDdL3338fmsAMQLCX+oYbbvjVPykBDkWjRo3Srl279Oabb0a7KgCAw9wBT6QGNHRFRUX67rvvNHHiRF1wwQUE3AAAAADq3WH9m240bq+++qo6d+6s3bt365FHHol2dQAAAAA0QgwvBwAAAAAgQujpBgAAAAAgQgi6AQAAAACIEIJuAAAAAAAihKAbAAAAAIAIiUrQ7S8tjMZpAQAAAACoV/UedO/N/V5rFtytvbnf1/epUYsOHTro8ccfr7XMpEmT1KtXr3qpDxBNmzZtksPh0IoVK6JdlX0aNGiQbrjhhoN2vOnTpyslJSX0OJrtnntOdBzs19ShZNSoUTr33HNDj6N5LRrz/wMAHG7qPeje/fOXkvm1++cV9X1q1GLJkiW64oorQo8dDofefPPNsDK33HKL5s6dW881A+rmQD+gVv6QLUlt27bV1q1bdfTRRx+cykXQzJkzNXny5Igdv77aPfecQ1flL2oOloYQdEa6fUnSvHnz5HA4tGvXrno/NwCgfsTW58nMTHt+Cbb3/LxC6UedJYfDUZ9ViCi/3y+Hw6GYmEPvp/LNmjXbZxmfzyefz1cPtQHKFRcXy+121+s5nU6nWrRoUa/nPFBNmjSJ6PH31e4j+f/DPQcHw695je6rfUXy9R/ptg0AqD/1Gh0W5v2gkqJdkqSSohwV5v0Y0fP95z//Uffu3eX1etW0aVOdeuqpys/PlyQFAgHdd999atOmjTwej3r16qX33nsvtG913zyvWLFCDodDmzZtklT+7f7s2bPVrVs3eTwebd68WUVFRZowYYLatm0rj8ejjh076vnnnw8dZ/Xq1TrzzDPl8/mUnp6u4cOHa/v27TU+j7LzvPnmm+rUqZPi4uI0ePBgfffdd2Hlnn76aR111FFyu93q3LmzXnzxxbDtkyZNUrt27eTxeNSqVSuNGzcutK3i8PIOHTpIks477zw5HI7Q48pDPfd1DcuG6M6cOVMnn3yy4uPj1bNnT33++ec1Pldg0KBBuvbaa3XTTTcpLS1NgwcPliTNnz9fffv2lcfjUcuWLXXbbbeptLRUUrC3ev78+XriiSfkcDhC7dTv92v06NE64ogj5PV61blzZz3xxBOhc02aNEkvvPCC3nrrrdB+8+bNq3Z4eW3nL6v3uHHjNGHCBDVp0kQtWrTQpEmTan2uS5Ys0eDBg5WWlqbk5GQNHDhQy5cvD22fN2+e3G63FixYEMqbOnWq0tLStHXr1tB5K/YG/v3vf1fHjh0VFxen9PR0/fGPf6y1DtOnT1e7du0UHx+v8847Tzt27AjbXrndl40MePDBB9WqVSt16tRJkvTDDz/owgsvVGpqqpo2baqhQ4eG7pVl/vnPf+o3v/lN6Bpee+21krjnRFN+fr5GjBghn8+nli1baurUqVXKFBcXa8KECWrdurUSEhJ03HHHad68eZKCr9FLL71Uu3fvDrWhstd9bfuV+eyzzzRw4EDFx8crNTVVQ4YMUU5OTo1tWqpbW6zuHlKZ3+/XTTfdpJSUFDVt2lQTJkyQmYWVqdy+OnTooPvvv1+jRo1ScnKyxowZI0lauHChTjrpJHm9XrVt21bjxo0Lfd6QVOPngk2bNunkk0+WJKWmpsrhcGjUqFHVnjsnJ0cjRoxQamqq4uPjdcYZZ2jdunWh7WWfFd5//3117dpVPp9Pp59+euheAQCIIouQwryfbNdPy8P+vlv1oq2ae4utmnuTrZp7i3236qUqZQrzfjoo5//xxx8tNjbWHn30Udu4caOtXLnSnnrqKcvNzTUzs0cffdSSkpLs1VdftTVr1tiECRPM5XJZVlaWmZl9/PHHJslycnJCx/zyyy9Nkm3cuNHMzKZNm2Yul8v69+9vn332ma1Zs8by8vLsggsusLZt29rMmTNtw4YN9uGHH9prr70WqldaWprdfvvtlpmZacuXL7fBgwfbySefXONzKTtPnz59bOHChbZ06VLr27ev9e/fP1Rm5syZ5nK57KmnnrK1a9fa1KlTzel02kcffWRmZv/+978tKSnJ3nnnHdu8ebMtWrTInn322dD+7du3t8cee8zMzLKzs02STZs2zbZu3WrZ2dlmZnbPPfdYz549Q/vs6xpu3LjRJFmXLl1s9uzZtnbtWvvjH/9o7du3t5KSkgP4X8WvFgiY5eXV/18gUOcqDhw40Hw+n40fP97WrFljmZmZ9v3331t8fLyNHTvWMjMzbdasWZaWlmb33HOPmZnt2rXL+vXrZ2PGjLGtW7fa1q1brbS01IqLi+3uu++2xYsX27fffmsvvfSSxcfH2+uvv25mZrm5uXbBBRfY6aefHtqvqKgo9Nr98ssvzcz2ef6yeiclJdmkSZMsKyvLXnjhBXM4HDZnzpwan+vcuXPtxRdftNWrV9vq1att9OjRlp6ebnv27AmVGT9+vLVv39527dplK1asMI/HYzNnzgw77/XXX29mZkuWLDGn02mvvPKKbdq0yZYvX25PPPFEjef/4osvzOFw2IMPPmhr1661J554wlJSUiw5OTlUpnK7HzlypPl8Phs+fLitWrXKvv76a8vPz7eOHTvaZZddZitXrrTVq1fbxRdfbJ07d7aioiIzM/v73/9ucXFx9vjjj9vatWtt8eLFh/U95xBoamZmdvXVV1ubNm1szpw5tnLlSvv9739vPp8v9JoyM7v44outf//+9sknn9j69ettypQp5vF4LCsry4qKiuzxxx+3pKSkUBsqe5+tbT+z4Huqx+Oxq6++2lasWGGrVq2yv/71r7Zt27Ya23Rd22Lle0h1Hn74YUtOTrb//Oc/ofaXmJhoQ4cODTtWxWvRvn17S0pKsilTpti6dets3bp1tnLlSvP5fPbYY49ZVlaWffbZZ9a7d28bNWpUaL+aPheUlpbajBkzTJKtXbvWtm7dart27ar23Oecc4517drVPvnkE1uxYoUNGTLEMjIyrLi42MzKPyuceuqptmTJElu2bJl17drVLr744v17UQAADrqIBd2bV077Jbjev7/NK6cflPMvW7bMJNmmTZuq3d6qVSt74IEHwvKOPfZYGzt2rJnVPeiWZCtWrAiVWbt2rUmyDz74oNrzTpw40U477bSwvO+++y70hludsvN88cUXobzMzEyTZIsWLTIzs/79+9uYMWPC9jv//PPtzDPPNDOzqVOnWqdOnUJvzpVVDLrNzCTZrFmzwspU/gC8r2tY9gH4H//4R2j7N998Y5Jq/BCECMvLM5Pq/y8vr85VHDhwoPXq1Sss74477rDOnTtboEJE8dRTT5nP5zO/3x/ar+IH1JqMHTvW/vCHP4Qejxw5MuxDtplVCbrrev4TTjgh7DjHHnus3XrrrfusU5nS0lJLTEy0//73v6G8oqIi6927t11wwQX2m9/8xi6//PKwfSo+7xkzZlhSUlJY0F6biy66yE4//fSwvAsvvHCfQXd6enoomDYze/7556tcn6KiIvN6vfb++++bWfB+ceedd9ZYl8PtnnMINDXLzc01t9sd+lLYzGzHjh3m9XpDr6n169ebw+GwH374IWzfU045xW6//XYzC75HVXzN1HW/iy66yAYMGFBj/apr03Vti5XvIdVp2bKlPfTQQ6HHJSUl1qZNm30G3eeee27YcYYPH25XXHFFWN6CBQssJibG9u7du8/PBdV93qh87qysLJNkn332WWj79u3bzev12htvvGFm5Z8V1q9fHyrz1FNPWXp6+j6vBQAgsiI2vLx11wuV1Lznfu2T1LyXWne94KCcv2fPnjrllFPUvXt3nX/++XruueeUk5MjSdqzZ49+/PFHDRgwIGyfAQMGKDMzc7/O43a71aNHj9DjFStWyOl0auDAgdWWX7ZsmT7++OPQbxV9Pp+6dOkiSdqwYUON54mNjVWfPn1Cj7t06aKUlJRQfTMzM2t9Pueff7727t2rI488UmPGjNGsWbPChuPtr/25hhWvT8uWLSVJ2dnZB3xuHP4qvtal4Ou7X79+YXNADBgwQHl5efr++9pXQnjmmWfUp08fNWvWTD6fT88995y2bNmyX/Wp6/krvtal4Ou9ttd6dna2rrrqKnXq1EnJyclKTk5WXl5eWP3cbrdeeuklzZgxQ3v37q11lYHBgwerffv2OvLIIzV8+HC9/PLLKigo2Ofzqqjy4+p079497Hesy5Yt0/r165WYmBi6rzVp0kSFhYXasGGDsrOz9eOPP+qUU07Z57Frwj3n4NuwYYOKi4vD/s+bNGmizp07hx4vX75cZqZOnTqFvW/Nnz+/1vesuuy3YsWK/X5N1LUtVr6HVLZ7925t3bo17LlXfp+tSeUyy5Yt0/Tp08Oe55AhQxQIBLRx48Z9fi6oi8zMTMXGxuq4444L5TVt2lSdO3cOe/3Hx8frqKOOCj3e1z0IAFA/IjaRmjPWqza/Ga5dTbpoa9YMWSAgKVC1oCNGDkeMWnb+g1JaHHvQJlZzOp364IMPtHDhQs2ZM0d//etfdeedd2rRokVq2rRp8NSVzmVmobyyydCswu+7SkpKqpzH6/WGHcfr9dZar0AgoLPPPlsPP/xwlW1lHw5rUt21qZhX2/Np27at1q5dqw8++EAffvihxo4dqylTpmj+/PlyuVy1nnd/6lTxnGUqHr9sWyBQzWsBkRcfL+XlRee8+yEhISHscXWvq7K2Wds944033tCNN96oqVOnql+/fkpMTNSUKVO0aNGi/apPXc9fuS05HI5aX+ujRo3Stm3b9Pjjj6t9+/byeDzq16+fiouLw8otXLhQkrRz507t3LmzyvUpk5iYqOXLl2vevHmaM2eO7r77bk2aNElLliypdnbpive3/VH5/IFAQL/97W/18ssvVynbrFmzgzq55KFyzzkUmlpd/v8DgYCcTqeWLVsmp9MZtq22Se7qst++3i9rqnNd2mJNbeRgqO71f+WVV4bNk1KmXbt2Wr9+/a8+Z03/V5WvR3X3oANt5wCAgyeiE6k5HA6ltuqro469WY4YZw1lnDrq2JuV2rLvQZ/J3OFwaMCAAbr33nv15Zdfyu12a9asWUpKSlKrVq306aefhpVfuHChunbtKql8Nu+KE5DUZc3e7t27KxAIaP78+dVuP+aYY/TNN9+oQ4cOysjICPur7UNCaWmpli5dGnq8du1a7dq1K9RL3rVr11qfjxT8gHPOOefoySef1Lx58/T555/r66+/rvZ8LpdLfr+/xvrU5RqiAXI4pISE+v/7lW27W7duWrhwYdiHx4ULFyoxMVGtW7eWFOwRrvyaXbBggfr376+xY8eqd+/eysjIqNI7V91+B3L+A7FgwQKNGzdOZ555ZmiCscqTKm7YsEE33nijnnvuOR1//PEaMWJErQFkbGysTj31VD3yyCNauXKlNm3apI8++qjG5/XFF1+E5VV+XBfHHHOM1q1bp+bNm1e5ryUnJysxMVEdOnSodfmvw+2ecyg0tYyMDLlcrrD/85ycHGVlZYUe9+7dW36/X9nZ2VX+b8tm+K+uDdVlvx49etT6mqjuuAerLSYnJ6tly5Zhz720tFTLli2r8zHKlL2vV36eGRkZcrvd+/xcUDZqpLbXf7du3VRaWhr2heGOHTuUlZXVIF//AIBw9TN7uSNGFqjaSyxJFiiRw3Hwq7Fo0SL9+c9/1tKlS7VlyxbNnDlT27ZtC705jR8/Xg8//LBef/11rV27VrfddptWrFih66+/XlLww0jbtm01adIkZWVl6X//+1+1s7pW1qFDB40cOVKXXXaZ3nzzTW3cuFHz5s3TG2+8IUm65pprtHPnTl100UVavHixvv32W82ZM0eXXXZZrW+4LpdL1113nRYtWqTly5fr0ksv1fHHH6++ffuGns/06dP1zDPPaN26dXr00Uc1c+ZM3XLLLZKCs5o+//zzWrVqlb799lu9+OKL8nq9at++fY3PY+7cufrpp59Cw/Ir29c1BA6WsWPH6rvvvtN1112nNWvW6K233tI999yjm266KdSL2qFDBy1atEibNm3S9u3bFQgElJGRoaVLl+r9999XVlaWJk6cqCVLloQdu0OHDlq5cqXWrl2r7du3VzuipS7nPxAZGRl68cUXlZmZqUWLFmnYsGFhvX9+v1/Dhw/XaaedpksvvVTTpk3TqlWrarwXzZ49W08++aRWrFihzZs361//+pcCgUDYcOGKxo0bp/fee0+PPPKIsrKy9Le//S1sNvC6GjZsmNLS0jR06FAtWLBAGzdu1Pz583X99deHhvxOmjRJU6dO1ZNPPql169Zp+fLl+utf/xo6Bvec+ufz+TR69GiNHz9ec+fO1apVqzRq1Kiw13SnTp00bNgwjRgxQjNnztTGjRu1ZMkSPfzww3rnnXckBf/v8vLyNHfuXG3fvl0FBQV12u/222/XkiVLNHbsWK1cuVJr1qzR008/Hfriqbo2fTDb4vXXX6+HHnpIs2bN0po1azR27Ngqa2XXxa233qrPP/9c11xzjVasWKF169bp7bff1nXXXRd6HrV9Lmjfvr0cDodmz56tbdu2Ka+aIRIdO3bU0KFDNWbMGH366af66quvdMkll6h169YaOnToftcZAFDP6uOH49mb5tqquTeHZi1fNfcmW/VR2SzmN9u2TXMP+jlXr15tQ4YMsWbNmpnH47FOnTrZX//619B2v99v9957r7Vu3dpcLpf17NnT3n333bBjfPrpp9a9e3eLi4uzE0880f79739XmUit8uQxZmZ79+61G2+80Vq2bGlut9syMjLsn//8Z2h7VlaWnXfeeZaSkmJer9e6dOliN9xwQ9jEMBWVnWfGjBl25JFHmtvttt/97ndVJon7+9//bkceeaS5XC7r1KmT/etf/wptmzVrlh133HGWlJRkCQkJdvzxx9uHH34Y2l55IrW3337bMjIyLDY21tq3b29mVSc12tc1rDwZlZlZTk6OSbKPP/642ucK1DQh2rx58+zYY481t9ttLVq0sFtvvTVsRuq1a9fa8ccfb16vN9ROCwsLbdSoUZacnGwpKSl29dVX22233Rb2Os7OzrbBgwebz+cLvTare+3u6/zV1Xvo0KE2cuTIGp/r8uXLrU+fPubxeKxjx47273//O6wt3nvvvdayZUvbvn17aJ8333zT3G53qG4Vz7tgwQIbOHCgpaammtfrtR49eoRmaq/J888/b23atDGv12tnn322/eUvf9nnRGqVJ54zM9u6dauNGDHC0tLSzOPx2JFHHmljxoyx3bt3h8o888wz1rlzZ3O5XNayZUu77rrrQtu450RHbm6uXXLJJRYfH2/p6en2yCOPVHktl60C0KFDB3O5XNaiRQs777zzbOXKlaEyV111lTVt2tQkhWYSr8t+8+bNs/79+5vH47GUlBQbMmRIaEKx6tp02T772xarU1JSYtdff70lJSVZSkqK3XTTTTZixIh9TqRW8b2yzOLFi0P3kYSEBOvRo0fYpH/7+lxw3333WYsWLczhcITuGZXPvXPnThs+fLglJyeb1+u1IUOGhGaCN6v+M8msWbOsnj7qAQBq4TCL/I99Nix+VIV5P0iSElIylN7xbP207m0V7AoO84xLbKOjjr0x0tU4ZE2fPl033HDDAX0DDwAAAACInogPLy8uzPkl4HYo/aiz1L73lfImtlGH3lep+VFnSXKoMPd7lRRWP5wQAAAAAIBDVcRmLy/jkEO+Jl3U7Mghik9qV57viFGz9r9TQspR2rZxjqSDO4kaAAAAAADRVi/DywEAAAAAaIzqZ/ZyAAAAAAAaIYJuAAAAAAAihKAbAAAAAIAIIegGAAAAACBCCLoBAAAAAIgQgm4AAAAAACKEoBtAgzJo0CDdcMMN0a4G0GjRBgEAOLgIugE0KDNnztTkyZOjXY1GadOmTXI4HFqxYkW0q4JDxPTp05WSknLQj0vgDwA4nMRGuwIAUFGTJk2iXQXsQ3Fxsdxud7SrAewTr1UAQENATzeABqVyD1eHDh10//33a8SIEfL5fGrfvr3eeustbdu2TUOHDpXP51P37t21dOnS0D47duzQRRddpDZt2ig+Pl7du3fXq6++Gnae3NxcDRs2TAkJCWrZsqUee+yxKucuLi7WhAkT1Lp1ayUkJOi4447TvHnzaq3/mjVrdMIJJyguLk7dunXThx9+KIfDoTfffDNU5ocfftCFF16o1NRUNW3aVEOHDtWmTZtC2wOBgO677z61adNGHo9HvXr10nvvvRfaXtYj/cYbb+jEE0+U1+vVscceq6ysLC1ZskR9+vSRz+fT6aefrm3btoXVb9q0aeratavi4uLUpUsX/f3vfw9tO+KIIyRJvXv3lsPh0KBBgyRJo0aN0rnnnqsHH3xQrVq1UqdOnXTfffepe/fuVZ7/b3/7W9199921XiM0HPn5+aG21bJlS02dOjVse21tYN68ebr00ku1e/duORwOORwOTZo0aZ/7lfnss880cOBAxcfHKzU1VUOGDFFOTo5GjRql+fPn64knnggdt6x9zJ8/X3379pXH41HLli112223qbS0NHTMQYMG6dprr9VNN92ktLQ0DR48OFKXDgCAujMAjU9eXvAvECjPKyoK5hUWVl/W7y/PKy4O5u3du++y+2ngwIF2/fXXhx63b9/emjRpYs8884xlZWXZ1VdfbYmJiXb66afbG2+8YWvXrrVzzz3XunbtaoFfns/3339vU6ZMsS+//NI2bNhgTz75pDmdTvviiy9Cx7388sutffv29uGHH9rXX39t5513niUmJoad++KLL7b+/fvbJ598YuvXr7cpU6aYx+OxrKysauvu9/utc+fONnjwYFuxYoUtWLDA+vbta5Js1qxZZmaWn59vHTt2tMsuu8xWrlxpq1evtosvvtg6d+5sRUVFZmb26KOPWlJSkr366qu2Zs0amzBhgrlcrtB5N27caJKsS5cu9t5779nq1avt+OOPt2OOOcYGDRpkn376qS1fvtwyMjLsqquuCtXv2WeftZYtW9qMGTPs22+/tRkzZliTJk1s+vTpZma2ePFik2Qffvihbd261Xbs2GFmZiNHjjSfz2fDhw+3VatW2ddff23fffedxcTE2OLFi0PH/+qrr8zhcNiGDRsO8H//8NOAm5qZmV199dXWpk0bmzNnjq1cudJ+//vfm8/nC7WD2tpAUVGRPf7445aUlGRbt261rVu3Wm5u7j73MzP78ssvzePx2NVXX20rVqywVatW2V//+lfbtm2b7dq1y/r162djxowJHbe0tNS+//57i4+Pt7Fjx1pmZqbNmjXL0tLS7J577gk9n4EDB5rP57Px48fbmjVrLDMz89ddIAAADgKCbqAxkoJ/2dnlefffH8y7/PLwsvHxwfyNG8vzHnssmHfxxeFl09KC+atWHXDVqgu6L7nkktDjrVu3miSbOHFiKO/zzz83SbZ169Yaj3vmmWfazTffbGZme/bsMZfLZf/+979D23ft2mXx8fGhc69fv94cDof98MMPYcc55ZRT7Pbbb6/2HO+++67FxsaG1eODDz4IC7qff/5569y5c+gLAjOzoqIi83q99v7775uZWatWreyBBx4IO/axxx5rY8eONbPyoPsf//hHaPurr75qkmzu3LmhvAcffNA6d+4cety2bVt75ZVXwo47efJk69evX9hxv/zyy7AyI0eOtPT09NCXAmXOOOMMu/rqq0OPb7jhBhs0aFC116axasBNzXJzc83tdttrr70WytuxY4d5vV67/vrr69QGpk2bZsnJyWHb67LfRRddZAMGDKixbpXvA2Zmd9xxR5W289RTT5nP5zP/L98+DBw40Hr16lW3CwAAQD3hN90AGrwePXqE0unp6ZIUNrS5LC87O1stWrSQ3+/XQw89pNdff10//PCDioqKVFRUpISEBEnSt99+q5KSEvXt2zd0jOTkZHXu3Dn0ePny5TIzderUKawuRUVFatq0abX1XLt2rdq2basWLVqE8iqeQ5KWLVum9evXKzExMSy/sLBQGzZs0J49e/Tjjz9qwIABYdsHDBigr776ar+vS3Z2tiRp27Zt+u677zR69GiNGTMmVKa0tFTJycnVPp+KunfvXuW3sWPGjNFll12mRx99VE6nUy+//HKV4clouDZs2KDi4mL169cvlNekSZNQOziQNlDX/VasWKHzzz9/v+qbmZmpfv36yeFwhPIGDBigvLw8ff/992rXrp0kqU+fPvt1XAAAIo2gG2iM8vKC/8bHl+eNHy/dcIMUW+m28EvQJq+3PO+aa6QxYySnM7xs2e+SK5Y9CFwuVyhd9oG7urxAICBJmjp1qh577DE9/vjj6t69uxISEnTDDTeouLhYkmRmYfuVKcsvO5bT6dSyZcvkrPQ8fT5ftfU0syrHrCwQCOi3v/2tXn755SrbmjVrVuU51XbsulyXsmtS9u9zzz2n4447Luw4lZ9fdcq+sKjo7LPPlsfj0axZs+TxeFRUVKQ//OEP+zxWY9KQm1rF13t1DqQN1HU/7wFUvLo2UF1bru61CgBANBF0A41RdR9K3e7gX13KulzBv7qUjYIFCxZo6NChuuSSSyQFg4B169apa9eukqSjjjpKLpdLixcvVtu2bSVJe/bs0bp16zRw4EBJwcnE/H6/srOzdeKJJ9bpvF26dNGWLVv0888/h3qelyxZElbmmGOO0euvv67mzZsrKSmp2uO0atVKn376qU466aRQ3sKFC6v0mu+P9PR0tW7dWt9++62GDRtWbZmynmy/31+nY8bGxmrkyJGaNm2aPB6P/vSnPym+YnSJBt3UMjIy5HK59MUXX4R6iXNycpSVlaWBAwfWqQ243e4qr5e67NejRw/NnTtX9957b52P261bN82YMSMs+F64cKESExPVunXr/XruAADUJ2YvB3DYycjI0AcffKCFCxcqMzNTV155pX766afQ9sTERI0cOVLjx4/Xxx9/rG+++UaXXXaZYmJiQh/mO3XqpGHDhmnEiBGaOXOmNm7cqCVLlujhhx/WO++8U+15Bw8erKOOOkojR47UypUr9dlnn+nOO++UVN4TN2zYMKWlpWno0KFasGCBNm7cqPnz5+v666/X999/L0kaP368Hn74Yb3++utau3atbrvtNq1YsULXX3/9r7oukyZN0oMPPqgnnnhCWVlZ+vrrrzVt2jQ9+uijkqTmzZvL6/Xqvffe088//6zdu3fv85iXX365PvroI7377ru67LLLflX9UL98Pp9Gjx6t8ePHa+7cuVq1apVGjRqlmJjgR4O6tIEOHTooLy9Pc+fO1fbt21VQUFCn/W6//XYtWbJEY8eO1cqVK7VmzRo9/fTT2r59e+i4ixYt0qZNm7R9+3YFAgGNHTtW3333na677jqtWbNGb731lu655x7ddNNNoToDANAQ8S4F4LAzceJEHXPMMRoyZIgGDRqkFi1a6Nxzzw0r8+ijj6pfv376/e9/r1NPPVUDBgwILaVVZtq0aRoxYoRuvvlmde7cWeecc44WLVoU6h2vzOl06s0331ReXp6OPfZYXX755brrrrskKXTc+Ph4ffLJJ2rXrp3+3//7f+ratasuu+wy7d27N9TzPW7cON188826+eab1b17d7333nt6++231bFjx191XS6//HL94x//0PTp09W9e3cNHDhQ06dPDy0VFhsbqyeffFL/93//p1atWmno0KH7PGbHjh3Vv39/de7cucqwdTR8U6ZM0UknnaRzzjlHp556qk444QT99re/DW3fVxvo37+/rrrqKl144YVq1qyZHnnkkTrt16lTJ82ZM0dfffWV+vbtq379+umtt95S7C9j7m+55RY5nU5169ZNzZo105YtW9S6dWu98847Wrx4sXr27KmrrrpKo0ePDrUxAAAaKoft60ddANAI5Ofnq3Xr1po6dapGjx590I772Wef6YQTTtD69et11FFHHbTjNhRmpi5duujKK6/UTTfdFO3qAAAANDj8phtAo/Tll19qzZo16tu3r3bv3q377rtPkurUu1ubWbNmyefzqWPHjlq/fr2uv/56DRgw4LAMuLOzs/Xiiy/qhx9+0KWXXhrt6gAAADRIBN0AGq2//OUvWrt2rdxut377299qwYIFSktL+1XHzM3N1YQJE/Tdd98pLS1Np5566mG7jFZ6errS0tL07LPPKjU1NdrVAQAAaJAYXg4AAAAAQIQwkRoAAAAAABFC0A0AAAAAQIQQdAMAAAAAECEE3QAAAAAARAhBNwAAAAAAEULQDQAAAABAhBB0A2jwBg0apBtuuCHa1dgvkyZNUq9evfZrn4P1PHfs2KHmzZtr06ZNv/pYB8uBXI/KZs+erd69eysQCBycSqFatLf9cyDtbfr06UpJSfnV5y6zadMmORwOrVix4oCPUVRUpHbt2mnZsmUHrV4AgCCCbgCHnXnz5snhcGjXrl1Rq8Mtt9yiuXPn7tc+M2fO1OTJk3/1uR988EGdffbZ6tChw68+Vn3asmWLzj77bCUkJCgtLU3jxo1TcXFxaPvvf/97ORwOvfLKK1GsJSqjve1/e7vwwguVlZX1q8+9P8xMkyZNUqtWreT1ejVo0CB98803oe0ej0e33HKLbr311nqtFwA0BgTdAKp6/XXpgQdqL/PAA8FyCGNmKi0tlc/nU9OmTfdr3yZNmigxMfFXnX/v3r16/vnndfnll/+q49Q3v9+vs846S/n5+fr000/12muvacaMGbr55pvDyl166aX661//GqVaRgbN7cAdqu3N6/WqefPmv+rc++uRRx7Ro48+qr/97W9asmSJWrRoocGDBys3NzdUZtiwYVqwYIEyMzPrtW4AcLgj6AZQ1fr10l13STX1Ak2eHNy+fv1BP3V+fr5GjBghn8+nli1baurUqVXKvPTSS+rTp48SExPVokULXXzxxcrOzpYUHGZ58sknS5JSU1PlcDg0atQoSdJ7772nE044QSkpKWratKl+//vfa8OGDbXWp6ioSOPGjVPz5s0VFxenE044QUuWLAltL+vle//999WnTx95PB4tWLCgynDX0tJSjRs3LnTuW2+9VSNHjtS5554bKlN5uGuHDh305z//WZdddpkSExPVrl07Pfvss7XW991331VsbKz69esnSQoEAmrTpo2eeeaZsHLLly+Xw+HQt99+KynYyzx06FD5fD4lJSXpggsu0M8//yxJWrNmjeLj48N6mGfOnKm4uDh9/fXXkqTdu3friiuuUPPmzZWUlKTf/e53+uqrr2qta0Vz5szR6tWr9dJLL6l379469dRTNXXqVD333HPas2dPqNw555yjxYsXh+p9OIhic6O9HeT2VrGO//vf/9SzZ0/FxcXpuOOOC7UVKXx4uZnp1FNP1emnny4zkyTt2rVL7dq105133hnaZ9q0aeratavi4uLUpUsX/f3vf6+1bhWZmR5//HHdeeed+n//7//p6KOP1gsvvKCCgoKwdt20aVP1799fr776ap2PDQDYN4JuAFXdead0333S3XdXjQQmTw7m33dfsNxBNn78eH388ceaNWuW5syZo3nz5lX5jWFxcbEmT56sr776Sm+++aY2btwY+qDftm1bzZgxQ5K0du1abd26VU888YSkYIBx0003acmSJZo7d65iYmJ03nnn1fob4QkTJmjGjBl64YUXtHz5cmVkZGjIkCHauXNnlXIPPvigMjMz1aNHjyrHefjhh/Xyyy9r2rRp+uyzz7Rnzx69+eab+7weU6dOVZ8+ffTll19q7Nixuvrqq7VmzZoay3/yySfq06dP6HFMTIz+9Kc/6eWXXw4r98orr6hfv3468sgjZWY699xztXPnTs2fP18ffPCBNmzYoAsvvFCS1KVLF/3lL3/R2LFjtXnzZv34448aM2aMHnroIXXv3l1mprPOOks//fST3nnnHS1btkzHHHOMTjnllCrXqSaff/65jj76aLVq1SqUN2TIEBUVFYX9/7dv317NmzfXggUL6nTcQ0EUmxvtrZJf294qGj9+vP7yl79oyZIlat68uc455xyVlJRUKedwOPTCCy9o8eLFevLJJyVJV111ldLT0zVp0iRJ0nPPPac777xTDzzwgDIzM/XnP/9ZEydO1AsvvLDP5yRJGzdu1E8//aTTTjstlOfxeDRw4EAtXLgwrGzfvn0Pq/YFAA2CAUBN7rvPTAr+W93jgyw3N9fcbre99tprobwdO3aY1+u166+/vsb9Fi9ebJIsNzfXzMw+/vhjk2Q5OTm1ni87O9sk2ddff13t9ry8PHO5XPbyyy+H8oqLi61Vq1b2yCOPhJ3rzTffDNv3nnvusZ49e4Yep6en25QpU0KPS0tLrV27djZ06NBQ3sCBA8OeZ/v27e2SSy4JPQ4EAta8eXN7+umna3xOQ4cOtcsuuywsb/ny5eZwOGzTpk1mZub3+61169b21FNPmZnZnDlzzOl02pYtW0L7fPPNNybJFi9eHMo766yz7MQTT7RTTjnFBg8ebIFAwMzM5s6da0lJSVZYWBh23qOOOsr+7//+r9rrUdmYMWNs8ODBVfLdbre98sorYXm9e/e2SZMm1XisQ1U9NzfaW4TaW1kdq7uur7/+upmZTZs2zZKTk8P2e+ONN8zj8djtt99u8fHxtnbt2tC2tm3bVmkHkydPtn79+pmZ2caNG02Sffnll9XW87PPPjNJ9sMPP4Tljxkzxk477bSwvCeeeMI6dOhQ43MGAOw/eroB1GzixPIuOI+nvMtt4sSInG7Dhg0qLi4OG6rZpEkTde7cOazcl19+qaFDh6p9+/ZKTEzUoEGDJAWHSO/r+BdffLGOPPJIJSUl6Ygjjqh1vw0bNqikpEQDBgwI5blcLvXt27fKbx5r6u2SgkOvf/75Z/Xt2zeU53Q69dvf/rbW+koK68VzOBxq0aJFaGhvdfbu3au4uLiwvN69e6tLly6hIaPz589Xdna2LrjgAklSZmam2rZtq7Zt24b26datm1JSUsKe5z//+U+tXLlSy5cv1/Tp0+VwOCRJy5YtU15enpo2bSqfzxf627hx4z6HE1dUdryKzKxKvtfrVUFBQZ2Pe6io5+ZGe6vGwWhvZaq7rrX9Vvr888/X//t//08PPvigpk6dqk6dOkmStm3bpu+++06jR48Oa1/333//frWvsudUUWNqXwAQTbHRrgCABm7iROn++6XiYsntjlwEIIV+z1ib/Px8nXbaaTrttNP00ksvqVmzZtqyZYuGDBkSNtN1dc4++2y1bdtWzz33nFq1aqVAIKCjjz66xv3K6lOXD6oJCQn7rHt1x9kXl8tV5Ri1Dc9NS0tTTk5Olfxhw4bplVde0W233aZXXnlFQ4YMUVpaWqgedQl4v/rqK+Xn5ysmJkY//fRTaCh4IBBQy5YtNW/evCrHqOuySC1atNCiRYvC8nJyclRSUqL09PSw/J07d6pZs2Z1Ou6hph6bG+2tGgervdW1ThUVFBRo2bJlcjqdWrduXSi/7PzPPfecjjvuuLB9nE5nnc7bokULSdJPP/2kli1bhvKzs7MbVfsCgGihpxtA7SZPLo8Aiotrnu3pIMjIyJDL5dIXX3wRysvJyQlbWmfNmjXavn27HnroIZ144onq0qVLlZ4ot9stKTgjdpkdO3YoMzNTd911l0455RR17dp1nx+WMzIy5Ha79emnn4bySkpKtHTpUnXt2rXOzys5OVnp6elavHhxKM/v9+vLL7+s8zHqqnfv3lq9enWV/Isvvlhff/21li1bpv/85z8aNmxYaFu3bt20ZcsWfffdd6G81atXa/fu3aHnuXPnTo0aNUp33nmnLr30Ug0bNkx79+6VJB1zzDH66aefFBsbq4yMjLC/ssB+X/r166dVq1Zp69atobw5c+bI4/GE9VAWFhZqw4YN6t279/5dmENEPTY32ttBUFN7k1Ttde3SpUuNx7r55psVExOjd999V08++aQ++ugjSVJ6erpat26tb7/9tkr7Khs9sC9HHHGEWrRooQ8++CCUV1xcrPnz56t///5hZVetWnXYti8AiBaCbgA1qziLU1FRzbM9HSQ+n0+jR4/W+PHjNXfuXK1atUqjRo1STEz5rapdu3Zyu93661//qm+//VZvv/12lbV227dvL4fDodmzZ2vbtm3Ky8tTamqqmjZtqmeffVbr16/XRx99pJtuuqnW+iQkJOjqq6/W+PHj9d5772n16tUaM2aMCgoKNHr06P16btddd50efPBBvfXWW1q7dq2uv/565eTk1NrzdSCGDBmib775pkqAc8QRR6h///4aPXq0SktLNXTo0NC2U089VT169NCwYcO0fPlyLV68WCNGjNDAgQNDw3ivuuoqtW3bVnfddZceffRRmZluueWW0P79+vXTueeeq/fff1+bNm3SwoULddddd2np0qV1qvdpp52mbt26afjw4fryyy81d+5c3XLLLRozZoySkpJC5b744gt5PJ6wobuHi3pubrS3g6Cm9iZJ9913X9h1TUtLC5s9vaL//e9/+uc//6mXX35ZgwcP1m233aaRI0eGjjtp0iQ9+OCDeuKJJ5SVlaWvv/5a06ZN06OPPlqnejocDt1www3685//rFmzZoXqFB8fr4svvjis7IIFC8ImXAMAHARR+SU5gIavplmc6mEytUsuucTi4+MtPT3dHnnkkSoTHr3yyivWoUMH83g81q9fP3v77berTCJ03333WYsWLczhcNjIkSPNzOyDDz6wrl27msfjsR49eti8efNMks2aNavG+uzdu9euu+46S0tLM4/HYwMGDAibXKymSaQqT+xUUlJi1157rSUlJVlqaqrdeuutdv7559uf/vSnUJnqJnZ67LHHwo7bs2dPu+eee2q9hscff7w988wzVfKfeuopk2QjRoyosm3z5s12zjnnWEJCgiUmJtr5559vP/30k5mZvfDCC5aQkGBZWVmh8kuXLjW3223/+9//zMxsz549dt1111mrVq3M5XJZ27ZtbdiwYaHJ2fY1kVpZHc466yzzer3WpEkTu/baa6tMznbFFVfYlVdeWetxDkVRam60twi0t7I6/ve//7Xf/OY35na77dhjj7UVK1aEylScSC07O9vS09Ptz3/+c1j9+/btaxdccEEo7+WXX7ZevXqZ2+221NRUO+mkk2zmzJlmtu+J1MyCE8Pdc8891qJFC/N4PHbSSSdVmdRu4cKFlpKSYgUFBbU+ZwDA/nGY1eFHTgAalwceCC4MXNMsTmVdcvffH5l1jBqBQCCgrl276oILLqjSc/hrvfPOO7rlllu0atWqsF7LQ922bdvUpUsXLV26tM7Dag8FNLfIq8/2Nm/ePJ188snKycmp85wGDcX555+v3r1764477oh2VQDgsMJEagCqysio/RP+xIlSTEywHOpk8+bNmjNnjgYOHKiioiL97W9/08aNG6sM7TwYzjzzTK1bt04//PBD2Izkh7qNGzfq73//+2EVcEs0t0igve2/oqIi9ezZUzfeeGO0qwIAhx16ugGgHnz33Xf605/+pFWrVsnMdPTRR+uhhx7SSSedFO2qAYedaLa3Q7mnGwAQGQTdAAAAAABEyOHzYz8AAAAAABoYgm4AAAAAACKEoBsAAAAAgAgh6AYAAAAAIEIIugEAAAAAiBCCbgAAAAAAIoSgGwAAAACACCHoBoBqDBo0SDfccEPUzx3NetT3+Z944gkdccQRio+P17nnnqvdu3fXy3kBAAAiKTbaFQCAg2XQoEHq1auXHn/88V+938yZM+VyuQ5uBQ9AfdWjpmtXX+e/44479O9//1svvPCCfD6fzjvvPN1777169NFHI35uAACASKKnG0CDV1xcXO/nbNKkiRITE+v9vPtbj0hfm/q4DkuWLNHDDz+s119/XSeddJKOOeYYXXnllZo9e3ZEzwsAAFAfCLqBxig/v+a/wsK6l927d99lD8CgQYN07bXX6qabblJaWpoGDx6soqIijRs3Ts2bN1dcXJxOOOEELVmyJLTPqFGjNH/+fD3xxBNyOBxyOBzatGmT3nvvPZ1wwglKSUlR06ZN9fvf/14bNmzY536Vh1Xv6/yDBg3SuHHjNGHCBDVp0kQtWrTQpEmT9vlc8/PzNWLECPl8PrVs2VJTp06tci0q1qO6ayNJZqZHHnlERx55pLxer3r27Kn//Oc/YccKBAJ6+OGHlZGRIY/Ho3bt2umBBx6o8RpUd/5IXIe//OUv+t3vfqdjjjkmlNesWTNt3759n9cPAACgoSPoBhojn6/mvz/8Ibxs8+Y1lz3jjPCyHTpULXOAXnjhBcXGxuqzzz7T//3f/2nChAmaMWOGXnjhBS1fvlwZGRkaMmSIdu7cKSn4e+B+/fppzJgx2rp1q7Zu3aq2bdsqPz9fN910k5YsWaK5c+cqJiZG5513ngKBQK37Vbav85fVOSEhQYsWLdIjjzyi++67Tx988EGtz3P8+PH6+OOPNWvWLM2ZM0fz5s3TsmXL9uvaSNJdd92ladOm6emnn9Y333yjG2+8UZdcconmz58f2u/222/Xww8/rIkTJ2r16tV65ZVXlJ6eXudrEInrUFRUpP/+978677zzwvL37t2r5OTkWq8DAADAIcEAND5SzX9nnhleNj6+5rIDB4aXTUurWuYADBw40Hr16hV6nJeXZy6Xy15++eVQXnFxsbVq1coeeeSRsP2uv/76Wo+dnZ1tkuzrr7+udb+KeXU5/8CBA+2EE04IO8axxx5rt956a411yc3NNbfbba+99loob8eOHeb1ekPnrly3ytemrH5xcXG2cOHCsPzRo0fbRRddZGZme/bsMY/HY88991y1danp2kX6OixcuNAkWVxcnCUkJIT+3G63DRkypNp9AAAADiVMpAY0Rnl5NW9zOsMfZ2fXXDam0mCZX4YkHwx9+vQJpTds2KCSkhINGDAglOdyudS3b19lZmbWepwNGzZo4sSJ+uKLL7R9+/ZQD/eWLVt09NFH16kudT1/jx49wvZr2bKlsmu5fhs2bFBxcbH69esXymvSpIk6d+5ca30qXhtJWr16tQoLC0NDzcsUFxerd+/ekqTMzEwVFRXplFNOqfXYtYnEdcjKylJcXJy+/vrrsPxzzjkn7DwAAACHKoJuoDFKSIh+2X0eqvxYZiZJcjgcYWXMrEpeZWeffbbatm2r5557Tq1atVIgENDRRx+9XxOQ1fX8lWf5djgcoSC/tuPur4RK17nsHP/73//UunXrsG0ej0eS5PV6D+hcFUXiOuzZs0fNmzdXRkZGKG/Lli1as2aN/lD5pw4AAACHIH7TDaDBy8jIkNvt1qeffhrKKykp0dKlS9W1a9dQntvtlt/vDz3esWOHMjMzddddd+mUU05R165dlZOTU+X4lfc70PMfyPNyuVz64osvQnk5OTnKysrar+N069ZNHo9HW7ZsUUZGRthf2W+zO3bsKK/Xq7lz51Z7jH1dg7L6HuzrkJaWpj179oR9AfHAAw/ozDPPVLdu3Q7omAAAAA0JPd0AGryEhARdffXVGj9+vJo0aaJ27drpkUceUUFBgUaPHh0q16FDBy1atEibNm2Sz+dTkyZN1LRpUz377LNq2bKltmzZottuu63K8avb70DOv798Pp9Gjx6t8ePHq2nTpkpPT9edd96pmMrD9vchMTFRt9xyi2688UYFAgGdcMIJ2rNnjxYuXCifz6eRI0cqLi5Ot956qyZMmCC3260BAwZo27Zt+uabbzR69Ohqr0HlekTiOvzud79TYWGhHnroIV100UV65ZVX9Pbbb2vx4sUHdDwAAICGhqAbwCHhoYceUiAQ0PDhw5Wbm6s+ffro/fffV2pqaqjMLbfcopEjR6pbt27au3evNm7cqNdee03jxo3T0Ucfrc6dO+vJJ5/UoEGDwo5d3X4Hcv4DMWXKFOXl5emcc85RYmKibr75Zu3evXu/jzN58mQ1b95cDz74oL799lulpKTomGOO0R133BEqM3HiRMXGxuruu+/Wjz/+qJYtW+qqq66SVP016NChQ5XzHOzrkJ6erunTp2v8+PGaPHmyfve73+nTTz+tcfZ0AACAQ43DDvRHhQAAAAAAoFb8phsAAAAAgAgh6AYAAAAAIEIIugEAAAAAiBCCbgAAAAAAIoSgGwAAAACACCHoBgAAAAAgQgi6AQAAAACIEIJuAAAAAAAihKAbAAAAAIAIIegGAAAAACBCCLoBAAAAAIgQgm4AAAAAACKEoBsAAAAAgAgh6AYAAAAAIEIIugEAAAAAiBCCbgAAAAAAIoSgGwAAAACACCHoBgAAAAAgQgi6AQAAAACIEIJuAAAAAAAihKAbAAAAAIAIIegGAAAAACBCCLoBAAAAAIgQgm4AAAAAACKEoBsAAAAAgAgh6AYAAAAAIEIIugEAAAAAiBCCbgAAAAAAIoSgGwAAAACACCHoBgAAAAAgQgi6AQAAAACIEIJuAAAAAAAihKAbAAAAAIAIIegGAAAAACBCCLoBAAAAAIgQgm4AAAAAACKEoBsAAAAAgAgh6AYAAAAAIEIIugEAAAAAiBCCbgAAAAAAIoSgGwAAAACACCHoBgAAAAAgQgi6AQAAAACIEIJuAAAAAAAihKAbAAAAAIAIIegGAAAAACBCCLoBAAAAAIgQgm4AAAAAACKEoBsAAAAAgAgh6AYAAAAAIEIIugEAAAAAiBCCbgAAAAAAIoSgGwAAAACACCHoBgAAAAAgQgi6AQAAAACIEIJuAAAAAAAihKAbAAAAAIAIIegGAAAAACBCCLoBAAAAAIgQgm4AAAAAACKEoBsAAAAAgAgh6AYAAAAAIEIIugEAAAAAiBCCbgAAAAAAIoSgGwAAAACACCHoBgAAAAAgQgi6AQAAAACIEIJuAAAAAAAihKAbAAAAAIAIIegGAAAAACBCCLoBAAAAAIgQgm4AAAAAACKEoBsAAAAAgAgh6AYAAAAAIEIIugEAAAAAiBCCbgAAAAAAIoSgGwAAAACACCHoBgAAAAAgQgi6AQAAAACIEIJuAAAAAAAihKAbAAAAAIAIIegGAAAAACBCCLoBAAAAAIgQgm4AAAAAACKEoBsAAAAAgAgh6AYAAAAAIEIIugEAAAAAiBCCbgAAAAAAIoSgGwAAAACACCHoBgAAAAAgQgi6AQAAAACIEIJuAAAAAAAihKAbAAAAAIAIIegGAAAAACBCCLoBAAAAAIgQgm4AAAAAACKEoBsAAAAAgAgh6AYAAAAAIEIIugEAAAAAiBCCbgAAAAAAIoSgGwAAAACACCHoBgAAAAAgQgi6AQAAAACIEIJuAAAAAAAihKAbAAAAAIAIIegGAAAAACBCCLoBAAAAAIgQgm4AAAAAACKEoBsAAAAAgAgh6AYAAAAAIEIIugEAAAAAiBCCbgAAAAAAIoSgGwAAAACACCHoBgAAAAAgQgi6AQAAAACIEIJuAAAAAAAihKAbAAAAAIAIIegGAAAAACBCCLoBAAAAAIgQgm4AAAAAACKEoBsAAAAAgAgh6AYAAAAAIEIIugEAAAAAiBCCbgAAAAAAIoSgGwAAAACACCHoBgAAAAAgQgi6AQAAAACIEIJuAAAAAAAihKAbAAAAAIAIIegGAAAAACBCCLoBAAAAAIgQgm4AAAAAACKEoBsAAAAAgAgh6AYAAAAAIEIIugEAAAAAiBCCbgAAAAAAIoSgGwAAAACACCHoBgAAAAAgQgi6AQAAAACIEIJuAAAAAAAihKAbAAAAAIAIIegGAAAAACBCCLoBAAAAAIgQgm4AAAAAACKEoBsAAAAAgAgh6AYAAAAAIEIIugEAAAAAiBCCbgAAAAAAIoSgGwAAAACACCHoBgAAAAAgQgi6AQAAAACIEIJuAAAAAAAihKAbAAAAAIAIIegGAAAAACBCCLoBAAAAAIgQgm4AAAAAACKEoBsAAAAAgAgh6AYAAAAAIEIIugEAAAAAiBCCbgAAAAAAIoSgGwAAAACACCHoBgAAAAAgQgi6AQAAAACIEIJuAAAAAAAihKAbAAAAAIAIIegGAAAAACBCCLoBAAAAAIgQgm4AAAAAACKEoBsAAAAAgAgh6AYAAACAw9jrr0sPPFB7mQceCJbDwUfQDQAAAACHsfXrpbvukiZPrn775MnB7evX12+9GovYaFcAAAAAABA5d94pBQLS3XcHH0+cWL5t8uRg/n33Bcvh4CPoBgAAAIDDXFmgXTHwrhhwVwzEcXA5zMyiXQkAAAAAQGRYwK/S4lyVFO/RQ48kafIDKXK7peJiAu76QNANAAAAAIeRikF2adFulRbnSwqGfY4Yp1p0OFbFxQ653VJRUXTr2hgwkRoAAAAAHMIs4A97nLdzrXJ3ZKow9weVFudJMjmdHnnim2nqX3+j4mKHnM5gT3dNk6vh4OE33QAAAABwCKnck+0vyVdyiz6KiQmGd7HuRAVKCxXrSVKsJ1mx7kQ5Y+M0ebL0wIPBY/j90q23Vj+5Gg4ugm4AAAAAaOBKS/JVvHdHleHioe3FuXLHpUqS4hJby5vUNmx72aRpt98uPfhL4H3rrVJCAoF3pBF0AwAAAEADUtaT7XR5FeP0SJL8xXkqzP0hVMbp9FTpyS7jcIT/iviBB8pnKb/rLmnChGB+cnL4rOYxMSwbFgkE3QAAAAAQRTVNfBaf3EFxvpaSpFhPsjzxzaoNsvclI0O6//7ygDolJXz7xInBgDsj4+A8H4Rj9nIAAAAAiAJ/aaHyc9ZVO1zc6fTI42ulOF+Lg3pOM6m0NJiOjZUcjoN6eFSDnm4AAAAAiKCKPdkxMe5QIB0T45K/JBhw1zZc/GDatUtq0iSY3rlTSk2NyGlQAUE3AAAAABxEta2THetKCAXdjhinEpp0ljPWG7Egu7KSkurTiByCbgAAAAD4FcwCYZOX7c7+SgF/UViZij3ZFZXNOF5fkpKkiy8uTyPy+E03AAAAAOyHyj3ZAX+xUlr8NrQ9b+c6+Ytz62W4OBo+eroBAAAAYB9Ki3NVXJhT4zrZ/pK9crq8kqSE1KOqLNuFxougGwAAAAAqKOvJjnUnyhHjlCQVF+Yc8DrZDUlxsfTnPwfTd9whud3RrU9jwPByAAAAAI1a5eHi/pJ8mZkSm3aR65ffXJcU7VFxQfYhP1w8O1tKTw+mf/5Zat48uvVpDOjpBgAAANAolRbnqmD3plCQXZHT6ZFZIPTY5UmSy3PozzwWG1t9GpHDZQYAAABwWKvYkx3r8sntDS5U7XA4VVqcJ6n24eKHk5QU6fvvy9OIPIaXAwAAADis1DRcXJLc3qbyNekUKltUsO2wDrIRfQTdAAAAAA5pZiaHwxFMB/za9dPSsKHhUnlPtisuVW5v02hUE40Uw8sBAAAAHFIq92Q7HDFKTPuNJMkR45TTFS/zlzSK4eL7a9cuKTU4N5xychhiXh8IugEAAAA0eCVFe1RStKvKcHFJcjgcsoA/tLyXr2lXxcQQ6lSnuLj6NCKHVyIAAACABsUCfpWW5MnlSQ7lFeVvVfHenaHHlSc+Kwu4JRFw1yIxUTr11PI0Io/fdAMAAACIqpomPktO7x0aFl5UsE2lRbsZLo5DDkE3AAAAgKgoLsxRYe73Ki3Ol1R1nez41IzDYm1sNG6MuwAAAAAQURV7st1xTRTr9v2ywRrdOtnRVlwsPfFEMH399ZLbHd36NAb0dAMAAAA4qCoPF6/Yk+1NbCNvUltJUiBQqpLCHILsepSdLaWnB9M//yw1bx7d+jQG9HQDAAAAOGj8pXu1++evVN1w8VhPUnkvt4ITnnnim9VzDRu32Njq04gcLjMAAACA/VK5J9sZG6+E1KMkSTHOOMXEOOVwOBku3gClpEhZWeVpRB7DywEAAADsU0nhrmqHi0tSjNOjlBbHhB4H/CWKcbqiUEug4aGnGwAAAEAYC/jlLy1QrLt8IeeCPZvlLykIPa488VlFBNxAOYJuAAAAoJGrbuIzh8OhlJbHyuGIkSS5vU0VcCUwXPwQt3t3+bDyXbuk5ORo1qZxIOgGAAAAGqmigm0qyv+p2nWyY2LcCviL5Iz1SgrOOo5DX1FR9WlEDkE3AAAAcJir2JMdl5CuGKfnl/wS1sluZBITpZ49y9OIPCZSAwAAAA4zlYeL+0vyVfaxPyE1I7RMl7+0UKXFuQTZQATR0w0AAAAcRkoKdylv5xpV7lsr68ku6+WWJGdsHME2EGEE3QAAAMAhJrwne49ccanyJraWJDldCTIzhoujWiUl0rPPBtNXXCG5mGg+4hheDgAAADRwZgGVFu2pdri4JLk8yUpM6xZ6HPAXhfVoA2W2bZOaNw+ms7OlZs2iW5/GgJ5uAAAAoIGxgD84c7grPpSXtzNLZv7Q4/Ce7KSw/Qm4UZOYmOrTiByCbgAAACDKqlsn2xnrUXJ6b0mSwxEjt7epJGO4OH6VlBTpyy/L04g8hpcDAAAAUVKYt1XFe7dXGS4uBXuyE5v3UEwM/WTAoYwWDAAAAERYWU92afEexSW2kcMRHNfrL93LOtnAYY6gGwAAADjIalsn2xWXqlh3oiTJE99Mse5EgmzUmz17pOTkYHr3bikpqfby+PUIugEAAICDqCg/W/m7vpVU/TrZcjhDeWUBN1BfCgvD0wTdkUfQDQAAAOynyj3Zcb5Wv0x0JjldXkmsk42GyeeTWrUqTyPymEgNAAAA2IfK62SXFuerYk+2JyFdCSlHhsoG/MUE2QAk0dMNAAAAVGEBvwKBUjljg+tdB/wlyt2RGVampnWyHY4YAm4AIQTdAAAAaPSqWyfbFZeixKZdJEnOWI9cnmTFON0MF8chraREevnlYHrYMMnlim59GgOGlwMAAKDR2pv7vUoKc6oMF5ckpyteyc17RqdiQIRs2yY1bx5MZ2dLzZpFtz6NAT3dAAAAOOyV9WT7SwsU52sVyi8t2sM62WhUYmKqTyNyCLoBAABw2KluuHhZT7bb20wxzuCYWk9CC7l/WSubIBuNQUqK9Omn5WlEHsPLAQAAcFjZm/u99u75XjWtkx2X2DY0QRoARBo93QAAADjkVO7Jjk85UrGuBElSjNMj1skG0FDQ0w0AAIAGr3KQ7S/JV8WPsfHJHRTnaylJCgRKZYFSgmygGnv2SMnJwfTu3VJSUu3l8evR0w0AAIAGxwJ+mQVCv70uLcmrdZ1slyc5lB8TEyvF8DEXqE5hYXiaoDvyuBsBAAAg6qrryfYkpCs++QhJ+mV4uFexbh/DxYFfISFBio0tTyPyGF4OAACAqDALaG/u99UOF5ckV1yqEpt2iVLtAODgoKcbAAAAEVfWkx0IlMgT30yS5HDEqLhguwL+Ikmskw3g8ETQDQAAgIOupnWyY2Ji5famyeFwSJK8ia0lRwxBNlBPSkulWbOC6fPOKx9qjshheDkAAAAOqvxd36q4ILvKcPGynmxvcofgZGcA6t327VKz4GATbdsmpaVFtz6NAXc7AAAA7Lfwnuw98jXtEgqkY2JiZcY62QAgEXQDAACgDva1TnZpca7ccamSJE9CC7njmxNkAw1Qaqo0Z055GpHH8HIAAABUYQG/JMkR45QkFeX/rPxd34aVCV8nOyW0pjYAoBw93QAAAKh24rP45A6K87WQJMV6khguDgAHgJ5uAACARirgL1Fh/taw2cUr8iSkKyHlyOhUDkBE5OZKSUnB9J49UmJidOvTGNDTDQAA0AiU9WRLJtcvv712OGJUmPujyoJterKBw9/eveFpgu7II+gGAAA4DNU08Vms21cedMc45U1qoxinhyAbaCTi46tPI3IYXg4AAHCYyduxRsWFu1R5uHiwJztZCalHRaVeANAY0dMNAABwCKrYk+0vKVBi0y7lGx0xklgnGwAaAnq6AQAADgHVzS5esSc7uXkvOV1eSZK/ZK/kcBBkA6iitFR6//1gesgQKZZu2Igj6AYAAGiALOCXHA45HDGSpILdm1WY92NYmbB1suNSFRPDp2cAtdu+XWrWLJjetk1KS4tufRoD7swAAAANQHUTn/madJErLkXSL+tk793BcHEAOMQQdAMAAESJv7RIRQU/q7Roj/wleao8ALG0JD8UdLvjUuVukRqFWgI4nKSkSLNmlacReQwvBwAAqAdlPdmOGKdi3cGFcUtLCrQn+6tQGSY+A4DDDz3dAAAAEVDTxGdub5p8TYJBtzPWK09CumLdiQTZAHCYIugGAAA4iMwCyt2+WqXFeapunewYpzv02OFwKCHlyHquIYDGLC9PSgx+76fcXMnni259GgOCbgAAgANQsSfbAqWh4NnhiJEsINbJBtAQFRSEpwm6I4+gGwAAoA5qWyfb4XAoPqm9HDFOSVJ8ypFyxMQSZANocLze6tOIHCZSAwAAqIYF/KEgWpLydqxVceHOsDIVe7LdcU3CygMAINHTDQAAIKn6dbKTmvcK9VbHepLkL8lnuDgAYL/Q0w0AABotf0mBivZurzJcvExCakd54tMkSWYmh8MRhVoCwMHj90sLFgTTJ54oORmgE3EE3QAAoFEo68mOiY0L9VAX792pvJ1rQ2WY+AzA4W77dqlZs2B62zYpLS269WkMGF4OAAAOSzVNfOZNbCNvUltJUqw7UZ74ZgTZABqNil2udL/WD4JuAABwWAn4i5W3c638JfmqPKDP6fTI4SgfSxnjdCkhNaO+qwgAUZOaKr30UnkakcfwcgAAcEiq2JPtcDjlTWwdzDfTrp+WyAJ+hosDAKKOoBsAABwSalsn2+n0KLnFMaGyJUW7FeP0EGQDAKKO4eUAAKBBMgvI4YgJPd6zfZX8JQVhZSr2ZFecXdzlSa7XugLAoSI/X2odHBikH36QEhKiW5/GgKAbAAA0CFXWyS7dq5QWfUKBd6w7UQr4GS4OAL9Cfr60e3d5mqA78gi6AQBA1JQW56m4cGeN62T7S/KDwbak+OQOcqTEVHMUAEBdxcVVn0bk8JtuAABQL8p6sp2uBMU4XZKkwtwfVbBnc6gME58BAA439HQDAICIqGnis4TUjvLEp0mSYuOS5SllnWwAwOGLoBsAABxUpSUFKti1odrh4k6nR7JA6HGsK0GxrJMNAPXG75eWLw+mjzlGcjqjW5/GgKAbAAAckIo92c5YrzzxzSRJMTGxKi3Ok8RwcQBoaHbtkvr2Daa3b5eaNo1qdRoFgm4AAFAnta2T7fKklAfdTrd8TTrJ6UogyAaABiYQqD6NyCHoBgAcXK+/Lq1fL915Z81lHnhAysiQLryw/uqF/VZx3Wsz066fl8kC/rAyZT3ZLk9KWL7bS9cJADREKSnSs8+WpxF5BN0AgINr/XrprruCX59PnFh1++TJ0t13S/ffX/91Q60q92SbBZTcvKckyeFwKNaVqEDpXoaLA8AhzOWSxoyJdi0aF4JuAMDBdeedwYD77ruDjysG3mUB93331d4TjnpTUrRHJUW7VFq0W/6SfFVeSTTgLwkt7+Vr0kmOGGbcAQBgfxB0AwAOvrJAuyzwvukm6aGHgr3b990X3F5cLJWUSLGxksdTvm9+fvBfr1eKiQmmS0qC5Z1OKS7uwMoWFEhmwbyyqVpLS6WiouC+Xu+Bld27N/glg8cTfC5ScGrYwsL9K+twSPHx5WULC4Pb3O5gt8T+lg0EgueTpIQESb/0ZOduV6wzXg63R3K7VVywTUV5P0mFRZIkZ2JKeU+2uRVTWCy5THK7gwG3WfD6SME6/DL8PPT/6XIF6yHtu2xd/u8Pxuukuv/Pg/E6Kfv/3J+yFa8DAERBQYHUMziISV99Ff52gsiIiXYFAACHqYkTgwH23XdLPl8w4L711vKAfMqUYP6114bv17x5MH/LlvK8p54K5o0eHV62Q4dgfmZmed706cG8P/0pvGy3bsH8snVSpODvz30+6Zxzwssee2wwf8GC8rzZs4N5p54aXvakk4L5779fnvfRR8G8fv3Cy55xRjB/1qzyvC++COaVfQIq84c/BPNffrk87+uvg3kdO4aXHT48mF/2Iz1J2rBB8vlkrVupYM8W7dn2tXb9tESBMZfJkZgkPfGEJMkVl6q4PaYmnU5RarchSm5xjBJSM+SJbybnhDuCx/3zn8uPu3t3MM/nCwaYZe68M5hXcQRDaWl52d27y/P//Odg3k03hT+PlJRg/tat5XlPPBHMu/LK8LKtWwfzN2woz3v22WDe8OHhZTt2DOZ//XV53ssvB/P+8Ifwsj17BvO/+KI8b9asYN4ZZ4SX7dcvmP/RR+V5778fzDvppPCyp54azD/xxGBQDwBRkpcX/CXY+vXBNCKPoBsAEDmVg6qbb45OPRqZkqLdytu5VpJkFlBh7g8qLc77ZWK08Ld+t7eJ4lOOkCTR/xpBpaXBIP2WW4KjEgAgSioOGqqYRuQ4rPKPtwAAOFjuuSfY2x0TExxae++95UPOGV4eXvYAhpeHJj7bky1XrE+uxGaSy6WSoj3Kzf5aKiwKzi6eml4+8ZnfEXwuFYeBVzMUXVLw+VYuy/Dyqv+f+1O24vUFADQKBN0AgMioOGnaxIlVH2O/1bZOdlxCi1CPtVlAxXt3MLs4AAANABOpAQAOvuoC7MqTqxF475eAv0S7f15WZXbxsnWyYz3JoTyHI0ae+Gb1XUXUxu8vnyPgxBPLe8YBoJ4FAuVToXTtWj5YCJFD0A0AOLgeeKDmHu2KgXdMDMuGVVK5JzvG6ZavSWdJUozTpZiY4LBt1sk+BBUWSiefHEzn5THMHEDU5ORIRx8dTG/fLjVtGt36NAYE3QCAgysjIzhT+Z13Bn936/MF88sCjYkTgwF3RkZ069lAlBTtVknR7irDxSXJEeP8ZfKz4G+hE5v3UEwMb92HJIcjOIN+WRoAoqTiXI7M61g/+E03ACByqgu6GzEL+FVaki+XJymUl7v9G5UU7Qk9rjhcnJ5sAMDBVlISXIlTkq65pnyuTkQOQTcAIHLMgmPXJCktrdH18NU08VlKiz6KcQY/5RTm/SR/SR5BNgAAhymCbgAADrLivTtUmPdjleHiUrAnO6FJJ8W6fdGpHAAAqFf8MAwAgANUsSfb420mp8tbIT9PEsPF8Yu9e6Vzzgmm3347fA1vAKhHe/dKp54aTH/4Ibej+kBPNwAgcoqLpSlTgunx4yW3O7r1+ZVqWyc7PrmD4nwtJUkBf7FKinYTZKMc8xsAaCCys6X09GD655+l5s2jW5/GgKAbABA5h1GgUVqcqz3bvlF1w8VjPUlyxzeTq8Ja2UCY0lLp9deD6QsvlGIZbAggOnbtklJTg+mcHCklJZq1aRy44wMAIic2Vrr88vJ0A1e5JzvWnaT45PaSJGdsvBwOKSaG4eI4ALGx0rBh0a4FACglJTjPKeoPPd0AgEbLzFRatLva4eKSFOtKUFLzHqHHAX+xYpyH9hB5AABQvxp+twMAAAeJBfzy+wsV6woOc3c4HMrftUEBf3GoTOWJzyoi4MYB8/ul5cuD6WOOkZzO6NYHQKMVCEhbtgTT7dpJMTHRrU9jQE83AOCwVXm4uL8kXw5HrFJa9gmVKdi9WRYoYbg4Iuswmt8AwKFt506padNgescOqUmT6NanMaCnGwAQOfn55dOiZmfXW6BRlP+zigqy5S/JV+XvlmNiYsKGiZf9ZhuIKIdDat++PA0AUVJaWn0akUPQDQCIrIKCiB26Yk92nK+VYmKCb2t+fxHrZKNhiY+XNm2Kdi0AQCkp0v33l6cReQwvBwBEzkH+4Vh1w8XL3sZ8TbvIHRdcA6W0pED+knyCbAAAEHUE3QCAQ0Lx3h3K27lONa2T7UlooVi3LzqVAwAAqAHDywEADUblnmxPfHN5EtIlBdfJlozh4jg0FRZKf/pTMP3aa1Icr1sA0cHtqP7R0w0AiJySEumpp4Lpa66RXK6wzWYBlRbtqXa4uCS5vU3la9Ip9NhfWkiQjUMTs5cDaCCys6X04PfZ+vnn8vlOETkE3QCAyKkUaJg3ToFASShwDgRKtWvrUlUcMh7ek50kZ6wnChUHDrKSEmn69GB61KgqX0ABQH3JySlfJmznTik1Nbr1aQwYXg4AiBhzSHbhHxUIlKhgZ6b8zlI5XT4lNTtakhQTEyu3N1UOh5Ph4ji8uVzSmDHRrgUAKDVVotu1ftHTDQA46Pbm/qCSwp0qLc5XlYnPYuOU1LynHI5fN5M5AADAoYCebgDAASub+Ky0JE/exDahfH9JHutkAxUFAlJmZjDdteuvXj4PAA6UmbR9ezCdliY5HNGtT2NATzcAoM4qzy5esSc7Ob2XnLFeSVJJ0W4F/MUE2UAZJlID0EDs3Ck1bRpM79hR/vtuRA493QCAOinM26qC3ZtV0zrZFbk8ycFEfr7UslkwvWkTgQYat7S0aNcAAFRaWn0akUPQDQAIqdyT7U1qFwqgY5weHdA62WVj2IDGLCFB2rYt2rUAAKWkSHfcUZ5G5DG8HAAasdqGi0uSN7GNvEltQ2UrLvdVJ/yOFQAANHIE3QDQiFjALzO/YpxuSVJpSb72ZK8MK1OxJ9vlSfqlhxsAAAAHguHlAHAYq64n2xOfpoTUDEmSMzZesa4EOV3xzC4ORFJhoTR6dDD9/PNSHO0MQHQUFUnXXhtM/+1vkofv1iOOnm4AOAwV7NlS7XBxSYp1Jyqp2dH1U5GSEmn69GB61CjJ5aqf8wINDbOXA2ggsrOl9PRg+uefpebNo1ufxoCebgA4hJX1ZAf8RfIkpIfySwpz5C8pkBTldbKLi6UrrgimL76YoBuNl9stPfZYeRoAoqTiWzFvy/WDnm4AOIRUHi7uL8mXmcnhiFFKy2PlcAQnKisq2C7Joj9cvLBQ+tOfgunXXmNILQAAUWYmFQS/l1d8vORwRLc+jQFBNwAcIgp2b1ZR/lZVvm2X9WR7k9orxslX1gAAAA0Jw8sBoAEJ78neo4TUjnLGBmc4iXG6ZHYA62QDiL5AQNqyJZhu147l8wBEDT3d9Y+ebgCIopqGi5dJSM2QJ76ZJCngL5GZnyAbOBQxkRqABiInR2rSJJjeuVNKTY1ufRoDeroBoB5ZwC+TKSYmePstKdqlvJ1ZYWXC18lODuUHh44fYsPHCwqkbt2C6dWrg1+pA40Vr38ADUBJSfVpRA5BNwBEUHXrZHuT2sib2EaSFOtOOryHi5tJmzeXp4HGKiEh2NsNAFGWnCxdfnl5GpHH8HIAOMgs4NfevB+qHS4uSW5vmnxNOkapdvXM75eWLw+mjzlGcjqjWx8AAIB6RtANAL9CWU+2mV9ub9NgngW0a+tSmfklRXmdbAAAAEQVw8sBYD/UNPGZMzYuFHQ7HDHyJrWRI8ZFkA0gqKhIuvbaYPpvf5M8nujWB0CjVVws3XtvMH3PPZLbHd36NAb0dANAHeXtXKfivTskVb9OdnzKkXI4WAYoTGmp9PrrwfSFF0qxfNeLRorZywE0ENnZUnp6MP3zz1Lz5tGtT2PApx8AqKBiT7a/OFe+pl1DgbQjximJdbL3S1GRdMklwfS55xJ0o/FyuaT77y9PA0CUVHwr5m25ftDTDaBRq2528Yo92UnNjlasO1GS5C8tlCSC7P2xd690zjnB9NtvS15vdOsDAEAjZyZt3x5Mp6VJDkd069MYEHQDaFQsEJzcLNhrLe3N/UF792wJKxO+TnbKL+tjAwAAAPuPAQUADmvV9WT7UjPkjk+TJLk8SSpmuDiASKNrCQAaLXq6ARx2Av5iFeb/VO1wcUmKS2yt+KR20akcgMaJidQANBA5OVKTJsH0zp1Samp069MY0NMN4JBW1pMtR4xcnqSyXBXm/hAqw8RnUVRQIB17bDC9ZIkUHx/d+gAA0MiVlFSfRuQQdAM4pNQ08ZkrLiUUdMc4PYrztZLTFU+QHW1m0urV5WmgsUpIoA0AaBCSkqShQ8vTiDyGlwM4ZORuX62Soj2qbp1sV1yq4lOOiE7FUDO/X1qwIJg+8UTJ6YxufQAAAOoZQTeABqViT3agtEi+Jh1D24JB926GiwMAAOCQwfByAFFVebi4vyRfFb8LDPg7hJbs8iZ3ULwjhiAbwKGnqEi69dZg+uGHJY8nuvUB0GgVF0tTpgTT48dLbnd069MY0NMNoF5ZwC85YuT4Zbmc/JwNKirIDitTsSfbHdcktKY2DkGlpdLs2cH0738vxfJdLxopZi8H0EBkZ0vp6cH0zz9LzZtHtz6NAZ9+AERUdT3ZiWlHK9Yd/PAZ60lSadFuhosfroqKpPPOC6bz8gi60Xi5XNIdd5SnASBKKr4V87ZcP+jpBnDQ+Uv3qqhgW7XDxSUpPuUIxSW0kCSZWajXG4ehvXulU08Npj/8UPJ6o1sfAAAauUBA2rIlmG7XToqJiW59GgOCbgC/SllPtsPpVqwruAZzSdFu5W5fHSrDxGdAFBUVSdu3B4f6p6UF10rniy4AAOoNQTeA/VLTOtlxvhaKTw4u2WUWUMGujcFAmyAbiLwffwwuzbZggfTtt9Lbb5ePGbzoIum118rLxsUFg++yv5deKv9xHyLHTCooCKb54gMAGhVG8QOok0CgVHk7MqsdLu50euRwlN9OHI4YJaQeVd9VBBqPH36Q5syRPvkkGGhv2BC+PSdHatYsmE5LC66P7nQGp6wtLJS+/z74J4XPov3ww9LSpcE11U85RfrNb+rn+TQGBQVMpAagQdi1S0pNDaZzcqSUlGjWpnGgpxtAmIo92ZIUn9QutG3XT8sV8BcxXBx1t3evdNJJwfQnn/Cb7oNl+PBgD3UZh0Pq1SsYLPfsKV1wQXmAV1RUvh5Mfn5wqHnZ37Zt0rBh5T/o699f+vzz8uP26yeNHSv98Y/BHnIcOGYvB9BAMHt5/SPoBhq52tbJjomJVXKLPqGJzkqK9ijG6SbIRt0RaPx6OTnS9OnS6adLXbsG8z7/XLrxRunkk4NfavTvLyUn//pzff65NG+eNH++NHdu8HfgUrC3fOxY6d57f/05GiuGlwNoIJjjtP4RdAONjAX8Yete527/RiVFe8LKhK2T7W0qh4NpLXGASkul998PpocMYW2S/VFQIN1/v/T448FPSGPHSk89VX/n/+kn6R//kP7v/4JD0YcNC+9dBwAAdULQDRzmquvJTm7RRzExweBn757vVFywjeHiQEPy3/9K110nbd4cfNyjh3TzzdKIEfVfl9JSafZs6cgjg/WQgkH4rFnS1VfzRQoAAPtA0A0chkpL8lW8d0fY7OIVJTbtIldccAYNswA92UBDsXmzNG5ccPZxKbiA6pNPSuec07CGI//xj9KMGVLv3tLTT0vHHRftGjV8xcXlw/Pvuaf8d/YAUM9KSsoHTl1zjeRyRbc+jQFBN3CIK+vJdrq8inEGZyEuyv9Z+bu+DZVh4jNEjd8vffRRMP273wVn0EbNbrstOIN4bGywZ3vixIb3O3gz6bnngnXNyQl+GTB2rPToowSStWF+AwANBBOp1T+CbuAQU9PEZ/HJRyjO10KS5C8tVGHu9wTZiD4Cjf2Tlyddfnkw2G7oy3VlZ0sTJkgvvBB8PHCgNHOm1KRJdOvVUBUVSbfeGkw//HD4Um0AUI927AjOjykFF7Jo2jS69WkMCLqBQ4S/tFD5OeuqHS7udHrk8bUKBd1Ag7F3b3DZKSk4MzZTpIbbvTs4PHvChPJluw41774rXXihlJsrdewYnDjviCOiXSsAQA0CASkzM5ju2vXQffs5lDD7CdDAVOzJjnG6FZcQDKRjYlzylwQDboaL45Dh9UorVkS7Fg3Tpk3S738vffNNcETA5MnRrtGBOeMMaeFC6ayzgp/cUlKiXSMAQC1iYhr+YKrDDT3dQJRVHi5esSc71u1TUrPuobLFhTlyxnoJsoFD3VdfSaedFhyi3apVcLbyY46Jdq1+nZ9+Co5soJcbAIAwBN1APas8W/iun5Yp4C8OK1OxJ9sT36y+qwggkn74QerbV/rxR6lnz+ByXG3aRLtWB99//hOcqefEE6Ndk4aB+Q0ANBC7d5cPStq1S0pOjmZtGgeGlwMRVrknO+AvVkqL34a2x7oT5S/OY7g4Dk979waHH0vB3/429t905+VJZ58dDLi7dZPmzz88P+3MmiWdf35wUrVFi6SMjGjXCADwi6Ki6tOIHHq6gQgoLc5VcWGOSov2yF+Sp8rNLDm9l5yxweCDdbJxWKN3r5yZdN550ltvBddnWbRI6tAh2rWKjIIC6eSTpcWLpU6dgpPoNfZZzc2C0wRLwWmDG9K66wAalYKC4EArKfhrp/j46NanMSDoBn6lsp7sWHeiHDHBNYgLdm9WYd6PoTJMfIZGq7Q02OspBQPO2EY+wGrGDOmKK6T//U86/vho1yayfvpJOu44acuW4HJic+awjjcAoFEi6Ab2U00TnyU27SpXXIokqaRoj4oLsgmyAVSVmyslJka7FvVj1Sqpf//gc77mGulvf4t2jQAAqHcE3UAdlRbnqmD3phrXyfYmt5fb2zQ6lQPQcO3aFfy3sS6l9e670plnBodTf/FFcBK5xqi4WJoyJZgeP55efwBRU1IiTZ8eTI8aJblc0axN40DQDVRSsSc71uWT2xv8HWJpSYH2ZH8lieHiQJ35/cFASwoOp3Y6o1ufaBgzJrgk2D//GQw+G6ORI6V//Uu65x5p0qRo1yY6mN8AQAOxbVtwahEpuHJlMxbKibhG/uM6oOpwcX9JfmjiM7c3LRR0x7rilZCaQZAN7I/CQumEE4LpxhhoLFwo/eMfwXRSUnTrEk1TpkjDh0unnhrtmkRPbKx0+eXlaQCIkpiY6tOIHHq60eiYmRy/zBprAb92/bSkyuziZT3ZrrhUhowDv0ZjniK1tFT67W+llSulSy8N9nQDABBlfr+0fHkwfcwxjXMQWn0j6MZhr3JPtsPhVGJat9D2PdkrZYFShosDOLieeEK64YbgUllr1waXiYL0/ffSm29K114b7ZoAAFAvCLpxWCop2q2Sot1hs4uXcTgcSmlxbGh5r0CgVDExDPUDcBCVlkpHHBEMMJ95RrryymjXqGHIyZHatw/+1ODbbw/fdcoBAKiAUfw45FnAr5Ki3WF5RXk/qTD3B5UW50kyOZ0eeeKbKSE1Q0nNe4UCbkkE3AAOvtmzgwF3WlpwalgEpaYG1+42k559Ntq1qV/5+cE5DRISgmkAiJI9e4ILSjgcwTQij2gDh5ya1slOTu8dGhbu8jaRI8bJcHEg2goLpT/8IZieMUOKayRtcenS4L+jR0seT3Tr0tCMHSt9+GFwgrl77mlc16egINo1AAAVFoanG/M8n/WF4eU4ZBQX5qgw9/uw2cXLOJ0exadmyOXhrgE0KI15maR166TERKlFi2jXpGEpLQ0OK//hB+nll6WLL452jepHICBt2RJMt2vHlMEAoiY/X2rdOpj+4YfG9dYcLQTdaHAq9mS745oo1h38wF68d6fydq6VxDrZwCGjpCQYWEnSsGGSyxXd+qBhmDxZuvtuqX9/6bPPol0bAAAiiqAbUVfTcHFJ8ia2kTepraTghGclhTkE2QAaLr9fKipqXEujHYitW4O9vaWl0jffSN267XsfAAAOUYxtQlT5S/YqZ+sS5e7IrHbis1h3YqhsTEysPPHNCLgBNFzLlkkpKdLZZ0e7Jg1by5bS734nud3BoLsxKCmRHn88+FdSEu3aAGjESkuDg9BefjmYRuTR042Iq9yT7YyNV0LqUcFtZtr10xLFOGIZLg4cjvx+6euvg+nu3SWns/byh7q//EUaP1465xzprbeiXZuGrWx298YyuV5jnt8AQIOybZvUvHkwnZ0tNWsW3fo0BsxejogoKdxV7XBxSTJ/+Tf8DodDyc17K8bJ7zyBw1JhodS7dzDdGAKNBQuC/550UnTrcSho0ybaNahfTmf5pHGH+5dPABo0h6P6NCKHoBu/mgX88pcWhA0FL9izWf6S8qVRKk98VhEBN3AYczikVq3K04ezQKA86D7xxOjWBQ1PXFz5pIIAEEWpqdLHH5enEXkMLz9M+UsLIzZEu7qJzxwOh1JaHiuHIzhNwN7c7xUoLWS4OIDGY9Wq4BD6hAQpJ4eZ2uviySel55+XbrhBuvTSaNcGAICIYCK1w9De3O+1ZsHd2pv7/UE9blHBNu3Z9nW1E5/FxLgU8BeFynoT2yghNYOJzwA0HmVLX/XrR8BdVz//LK1cWT5C4P+3d+dhlp51nfC/Z6m1q6sr3elOmoQQAmRBCUsSENGIGMZBAg4OApeIIjIgEccRR2fUcViUjAr4ynUREUZf0RmICq+4DbIoaGCUEBqiQROSsGbt9FbdXXud5f3jSdWp6q6qbP3Uqarz+VzXuXL3c+6u/lVXp+p8z30/948N43Of+1wOHTrU7TIAtgShews6uv+LSbuZo/tvfFi/v91qZn5mPFPHvplWc65zvTl/0uni2057fHac8dTsOPNpqdWHTs0nALAZ3Xn/G50XXNDdOjaThb+rO0/tm8Qb0uRkcVrR7t3FeANrt9t5yUteknPPPTe/9Eu/JHzDFnP8eHHHV6VSjCmf0L3FtNvtHLs/bB/bf2MezN0DS0P2iSvZ87PHFuf1De1cFrKtZAMPaGYm+cEfLB4zM92uplxPelJxUNYzntHtSjaPhSNzDx7sbh3r5eDBTfG5ViqV3HDDDbnqqqvyW7/1W+sSvs8+++z89m//9rJr//AP/5Dh4eF84xvfKO3PhV40Pb3ymPK4p3uLmT5+Z756w/+z+OvzLntDhrafter8+ZnxHD90S5aeLp50Dj7rH96TvoHRssoFtjptkjaEr33sYzl4/fXZ/cxn5tznPrfb5XTccEPy9Kcnj3508s1vdruacrVayc03F+OLLkqqm2Pd48CBA3n729+ed73rXalWq/mP//E/5g1veEN27dp1Sv+cF7/4xdm+fXt+//d/P0mxiPCMZzwjV1xxRa6++upT+mdBr5uYSLbff67xF7+YPOUpXS2nJwjdm9js5P7MTNy97Nrxg/+So/v/KUkrSTU7znhKRnZdmFZjJo3GdFrzUxne8diM7nlSkqTVnMv4vftOOl3c6jVwSszPJ+99bzF+zWvc67zOjnzlK/nKM56RS5esUH5+1648/oYbMvbYx3axsvt97WvJeeclQ0PJ1NQDz6dryg7fb3/72/O+970vX/rSl5Ikf/iHf5if//mfz2233Zbt27c/wO8GHqzDh4tNWR/7WOfa935vcu21TjIvk9C9iX3zpvfl+IGbHvLvGxx9TB771Ncu/rrVnEu11n8qSwPoPYcOJaOjG+qNhX1nnJWnHjq0rD9oI8kXd+3KJfvv6lZZHcePp3pascW8dexwMjzc5YJ4IAcOHMg73vFbuea3351qtZqfev1V+Zmf+elHHL4/85n/m+9+znNz5PB9qVarufCiJ+W///dfyqt//FWnqHIgSZ73ffX87d9W02x22njWaskVVyQf/WgXC9vihO5NrNmYzt23fDDH7vunbpcC0PPOf/HvpO/IVG5/7ysy+7jd3S4nB274ep79X/901ee/51FjuXdb999wHfjqgaRayezZO5P65thy/bC0k9qx4ubJ5uhQssnb1jcarRwan8qhI1OpVip5888+Ny963rc+7I83O9fIM17wrvzu216cz+77Rj75D1/Jh97zilSrm/wvCjaQr99xeq585S+s+vyttyZPeMI6FtRD6g88hY2qVh/K2d/yiozvvDD33Pr/pd1qpdhWDrBBtNrpv3s8STL3qLFkK7+ArhWBsdJodrmQwuTN96z5/CXbB/LNC85cp2rWcNHeblewPhqt7PxIsTvt8KXnbuo3GNrtdu47NJkj97+JMLZjMOecPfaIPuZAfz0XPG53/ubTt+VD/+emvOtX/53ADafYHXefvubzt98udJdF6N7kKpVKTnvU0zO849x85YbfvD94nzinlp3nPDv1/uKeqP7B0zKys/N/1Nz04dT7t6da2zhbIoEtYnIy1R3FttPW0UNb+iC1yll/kxz85zz2nJcl3/Vvul1OBmc/kfzBC1Z9/id+6//Nuc/9nnWsqMfNzKTyQ69IkrQ/8L+Swc13dkq73c7f/d3f5y1v+dVc9w//nEsueVp+9/f+W57//OelUnnkAfnZV0znt3/7d/L8539ffuxn/vcpqBhYqra3kvzi6s8//vHrV0uvEbq3iko17db8ik+1282MnXlJqtW+NOaO3R+wB5IUW9Snjn49SbFyXh8YTV//aOoDo+7zBh65WiPZsSNJiu8793/v2ZJOL7aUV48c3RCf5+Oed2U+v2tXnrLCPd037tqVS//t93WrtN60bSD5879Isvl2lhdh++/ypje9Kdddd10uueSS/OVf/mWe//znn5KwveCpT70k9Xo9b3/7OxZfpwCnzoUXFYem/c3fJM0lm7IW7um2yl2ezbu3iWWOHfjndH6M3/9lrSx8eSuZOPgv6R/ameEd56Z/qHPYSbvVSL2vWHlqNqYzO7k/E0duy/i9+3J0/42Zmy6vJyfQA7ZtS8bHi8cWXuVOsiF7Tj/+hhty4wkHXN14/+nl8EDa7XY+9alP5dnPfnae85znZHJyMn/5l3+ZG264IVdeeeUpDdxJ8v73vz9XXXVVLrjgglP6cYGOa68tAvZSV1xRXKc8QvcWcWz/jVnotb1t7Lycd9nPZHjHQjuYdo6ucthavX97RvdcnLG9l2Vk5wUZHNm7LIQvfT++MXc8k+NfzdzUwbSac+V9MgCb0en33yu3gUL32GMfm0sPHswbrrwyP753b77+8Y/n0oMHN0a7MDa0z3zmM4the2JiIn/xF39RSthutVrZv39/rr766nz5y1/Om9/85lP2sYGTnXZacUr5D/5gcsEFxeFpH/2odmFls718C5ibOZKZibuSVHLG474vu855diqVas596k/k4Df/Lvd95SOZOX5n5meOpG9w5f+jqtV6+od2pn9oZ5Kk1WqkMXss9YHRxTnzM+OZndyf2cn9SWxHB1hmIXQfONDdOlYw8+hH58a77865z31ut0vpXVNTyROfWIz/9V83dHu0drudl7zkJdm7d2/+4i/+opRV7QXXXXddnvOc5+TCCy/Mn/7pn2bH/bejAOWZmEg++MFivLdHzrLsNqF7C6ikkpGdF2b3ed+b4dFzOtcr1ex+zHOybexxOfC1j+eh3EW2EMKXqg/syGC7mcbssTTmJ9NsTC9uSU+SHXuenFpf8SKi3W6lUrGRAnre7Gzy2tcW4/e8JxnYwvdpXnxx8v3fn3z3d3e7Ejaidjv5xjc64w2sUqnk9ttvz9DQUGlhe8Gzn/3stFY4BBYoz9TU8vHISPdq6RX6dPOwLKyEN+aOpTF7LK3mXHacecniD+fJI7enMTdhJRx63eRk56f5xMTWv697g7rqqqty/fXXZ9++fd0upXc1m8kXvlCMn/a04uQigC44fjwZvX8z67Fjyfbt3a2nF1jp5mE5cTt6u9Vc9m74/OyxtJqzy1bCF7ejD+xYdpgbsIX19SW/8RudMfSqWi257LJuVwGQ7duTV786uekmgXu9CN2cEpXq8nfsR/dcvGwlfOl29Mbc8WWhe372aGr1ISvhsBX19yc/93PdrmL9LGwhPno0efKTu10NALABCN2UYrWD2Rpzx5aF63a7lYlDt6TdbjmYDdj8/vAPk1e+sriv+5Of7HY1bCSNRvLHf1yMX/rSpO4lGNAdzWZy113F+8PNprtd1oPv+KyLE0P4glZzLrX60IoHs9XqQxkYOTOD287sRsnAqdBqJffcU4z37k2qW/yAxac/vfjvZz+bTE8nQ0PdrYeNY3Y2+eEfLsb/7t8J3UDXHDmS/PVfd8YLzTcoj+/4dFWtPpjRPRefdDDbQghPu3OiabMxm5mJu6yEw2YyPZ2cfXYx7oWD1C68MDn33OTrXy9WNV/5yi4XxIZRrSZXXNEZA9AzhG42hNW2oy+0IEuSxtwxfcJhM+qlFb1KJfmJn0j+639Nfvu3hW46hoaST3yi21UAZGwsec5zkjvuKMaUz1utbEgLIbxWH1y8VqsPZXBkb+p9xUrZwlb0iSO3ZfzefZmbObI4Vyc82CC2bUvm54vHVl/lXvCqVxUHyN1wQ/EAgA2kXk/OOy/ZubO33hfvJn/NbBr1/pHU+4t+vydvR59KvW9kce7MxF2ZmzpoJRxYf7t3Jy95SfK//3fy7ndrEwUAPU7oZlNaaTt6tdr559yYPbbiwWwLIbxvaGcqFRs9gJJcdVURuj/xiWKVX49ypqY6b8DccEMyPLz2fICSTE4mv/d7RZfLycne2YjWTVIHW8LSwJ0k23aen5GdF6y4HX1y/KvL5jbmJtJqzq1brdBTZmeTn/zJ4jE72+1q1s+3fVvyp3+a3HabwE2h3U7+9V+Lh1uggC6anOx8G5qc7G4tvcJKN1vSWn3Ck/ayVe7JI7el2ZhxMBuUodEoDhRLkt/4jWRgoLv1rJdKJXnRi7pdBRvJ4GDyqU91xgBdsvRbkG9H60Popies1ie83WqmUqklyYrb0fuHT8/Q9rPXvV7YMvr6kje+sTPuRY1G8qEPJS99aRHG6U21WvLsZ3e7CoCMjiavfnVy003FmPIJ3fS0SrW2Zp/wpdvO2+1Wpo9+I/X+7VbC4cHq70/e9KZuV9E9rVZy+eXJP/5jEb5/+Ie7XREAsM6Ebsjq29GXBuvm/GRmJu9NJu9Nok848CBUq8kLXlCE7p/92eT5z09OO63bVdENjUbyV39VjK+8Up8eoGuazWT//uT48WJcq3W7oq3PQWqwgoUQvtCiLEkqlfqafcJn7g/jwBLtdjI+Xjx69fCon/3Z5KKLkvvuS37iJ4rVb3rP7Gxxn/+LXtRbhwoCG874ePKXf1mc6zg+3u1qeoO3WeFBqvUNZXjHuUlW6hM+uRjGk2Ru6mCmj99pJRympjoruxMTvdmXpL8/+Z//s7if90/+JDn//ORXfqXbVbHeqtXk27+9MwbokqXv/XofeH0I3fAwrLQdfemJ6PNzD9AnfPC0VKr28kDPeNazkve+N3nVq5Jf/dXk8Y9PfvRHu10V62loKPm//7fbVQBkbKw4buTOO4sx5fNWK5wC1Wp9WegeGj1n1T7hE0duS7vdWJzbnJ/WJ5yta3g4mZsrHsPD3a6mu37sx5Jf+IVi/Au/UOwCAIB11tdXbLravbt3G4usNyvdUIK1+oS3GjOp1jq9iqeOfT3zM+MOZmNrqlT8RF/qV381mZ9PXvOarfsmxPh4cUjYyMgDTgWAXiB0wzpYrU94UvQKT1buE943OLZ4HzmwBVSrydvetvzaffcle/Z0p55T7WtfK05of9zjkj/7M0fiLjU9XeznTJLrriu2mwN0wdRU8oEPFO8BT01t3feANxLby6HLRnd/a8b2XrbidvTm/PLtp9PH7sjc1EHb0dk85uaSn/u54jHn3+1JPv7x5Nxzkz/4g25X8sj94z8mT396cvPNyRe/WNwsSEerlXz+88XDyUVAF01MFGF7fr4YUz4r3bABrLYdfel94q3mfKaPd17E2o7OpjA/n7z97cX4TW8qTvKm44MfLFZAX/nK5Lbbkre8ZfOdbD0/X6xqv/SlRVu4pz616EVz1lndrmxjGRjo9OkeGFh7LkCJBgdXHlMeoRs2oIUQvlw7gyN7F1uUnbgdfXD7WRkePWf9i4W19PUl//k/d8Ys9573FFvLr746eetbi+D9O7/TabO2Ec3NFau1f//3ySc/mXzmM8nMTPHcM59ZrN67n/tk9Xqx9R6gy0ZHk1e/OrnppmJM+YRu2CSqtf41+4TX6p37AxtzE5k8cruVcLqvv//ke5jpqFaLsP34xxeHq/3JnyR/93fF7oAf/uHiILpum51NbrihCNl/+7fFNvKZmaL2drt4VCrJy1+evO997uMGgBMI3bAJrdgnPJ0X540H6BNeHxxLtep/f9gwfuzHiv4t/+E/FPdE/8iPFEH8mc/sTj3T08lv/mbyiU8kn/1sEbxrteJe5Ha7mLP0vuR2O/npnxa419JsFjsDkuQ5z/F3BXRNs5kcOlTc191s+na0Hrzqhi3gxADdP7wn1drgspXwpSF8++nfkupAsZ+o1ZxNUrESTjna7aRxf1/6en1jrNxuVM96VnLjjck73pHceuvywD05mWzbtn61/PM/J//tvy2/1myuPLdaLe7jvvTS8uvazGZmkn/zb4rxxMT6fj0BlhgfTz784c54165uVtMbhG7YgtbqE96YO556f+d+y5mJuzMzca+D2SjH1FTn/l5B44H19ye/8AvLr33968m3fEvygz+Y/ORPJpddVn4dz3hGceL8g7k1oNVK/tN/Kr2kTa9aTZ785M4YoEuWblTSTGF9CN3QA9bqE95qzidZuU94fWA0wzvOXXaKOrDO/uzPijcv/uAPisellyZXXZW87GXl9nr+tV8rDnb78z/vbClfyc6dxRsCrG1oqNjJANBlY2PJt397cvfdxZjyeSUNPW5k5/mr9gmfnxlfFrhnJu/VJ5yHZng4OXKkeAwPd7uazemnf7o4vOwVryhWwj//+eRVryr2A373dxevmh6p+fnk+uuLA9xe+MJi5bpaTd7//uQpT1n9toBarXgDQAssgE2jry954hOTM87QWGS9WOkGVt2O3m539hy12+3MHLsjrVZxf67t6DwolYq30R+pSiX5tm8rHu94R/L7v5+8+93FtvPPfS45/fTO3N/4jeT225Pdu4vrC4/77uu09VrwzncW945/+ctFqJ+a6jx33nnJb/1W8UbJRz6SXHJJsn//yfd1t9vJa19b1mcOAFtCpd1ea88YQKHdamb6+B2LB7OdqH/o9IzsfEIXKoMe1G4XYfm225IXvKBz/aKLkltuOWn6VUmu7+/PvtnZzsWnP71oBbZg587kO74jufzy5Du/s7h3fGGF+6abitA/Pd3Zal6vJ9///cmHPnTqP7+taHo6ed7zivFf/3W5twYArGF6Ojn77OK92IMHfTtaD0I38JCt1Cd8aPvZGRp99OLzxw/+S+r9262E97q5ueTqq4vxL/5isT2acrTbybXXFivdBw8WjwMHkoMHc9Vtt+X6RiP7lq52v+tdxQr4WWcVYfuii9Y+4OujH02e//zlp+78/d8XIZ0HNjnpUEFgQ7jvvmJreVJsYtqzp7v19AKhG3jEWq1G0m6nWituDJqbPpyJw19eNmf5dvQdi3PZ4gSNDeGqq67K9ddfn3379j2yD/Tudxf3cCfFDYFf+pI2cA9Wo9Hp0fOiFxU7BQC64OjRzp1f4+PJjh3drKY3+I4PPGIn9gmvD4xmZOcFq/YJ3zZ2Xga2FW+xFoG9ZSV8q6rXOyFNyNj8Xve6Ylv7O99ZHPAmcD949bpT3oENYceO5NWvLu4cErjXh1dAwCm3Zp/w2WOpD4wuzp2bOpipo19zMNtWNTCQXHNNt6vgVHrHO5J/+2+TK67odiUAsCkI3UDp1u4TXhzstFqf8KHtj7YVHTaSWq0I3Tw0zWby2c8W42/7tuLvEaALWq1ii/nMTDFe6zgPTg2hG+iq4R2PyeD2s046mK3ZmE6rOZPh0ccszp2bPpS021bCgc1nZqY4sC5xvgHQVePjyQc/2BnvPHlNhFNM6Aa6brXt6K3mbCrVzmrQzMTdacxNJNEnfNOYnFx+WougQa+qVJLHP74zBuiSRmPlMeURuoENZyGEn6jeP5q02ycdzJYkfQOj2X76t6x3qTwYfqJDMjxc9FUH6LKxseTpT0/uvbfzvjjlErqBTWN4R7HVfKU+4ZXq8vu+jx34Ump9w1bCu21oKLnzzs4YAOiq/v7k4ouLTTf9Xh6tC6Eb2HRW2o7ebjUXn2/OT6cxdzyNueMnHcymT/g6q1aTs87qdhUAAF3jrDpg06tW66nVBzq/rvVnZOcFGRzZm3pfcQ/xwlb0iSO3ZWbi7sW57XYrrebcutcM9JiZmeT5zy8eMzPdrgboYdPTyUc+ktx8czGmfFa6gS2nUq2t2Se8b0mf8MbssRw/dLOD2coyN5e8853F+Kd/2j42elezWbzKXRgDdMnx48ndd3fG7v4qn9ANbHlr9QlvNqYX/7tSn/DBkb2p1f00etjm55Of//lifNVVQje9q78/+f3f74wBumTptyDfjtaH0A30tMGRvekf3r1in/BmYzqD285cnDs/eyzt5pyV8IeiXk9+9Ec7Y+hVfX3JK1/Z7SoAMjaWvPrVyU03Ob18vXgFBPS81fqEN+YnUusbXpw3O7k/c9MHk+gT/qANDCTve1+3qwAA6BqhG+AEq21Hr/UNpd7YtmKf8FrfcEZ3PymVivMpgRU0m8WyUpI86UlJrdbdeoCe1Wolk5PFsSutVtFohHIJ3QAP0tD2szO0/eyV+4SnsixwTx65PalUrYQDhZmZ5KlPLcYTE8m2bd2tB+hZ4+PJtdd2xjtPPvKGU0zoBniIVuwTvqTtWLvVzNz0wbTb7VX6hPdQCJ+c7PTpvusuQYPeVakkj3pUZwzQJY3GymPKI3QDPELVaj2pLvl2Wqlk22nnr3gw2+zk/vQP7szIrgsWp7ea86nW+rpQ+To5erTbFUD3DQ8XbzwBdNnYWLHx5r77HKS2XoRugFOsUqmu2Se8vqRPeLMxk6P7v7h1V8KHhpJbb+2MAYCu6u9PLrmkOGZCy7D1IXQDlGzNPuHzk8V/V+kTPjC8J/X+kXWt95SqVpMnPKHbVQAAdI3QDdBF/UO7Mrb3slX7hPcNjC3Obc5Ppzk/ubVWwqFXzMwkr3hFMf5f/ysZHOxuPUDPmplJPvWp4hC1mRnfjtaD0A3QZav2CZ87lnr/9sV5c9MHM338ziSb6GC2+fnkve8txq95TdK3he9dh7U0m8mHPlSM9a4H1tFNNyWHDnV+feRI8pWvFOO//uvktNM6zw0NJU9/uvMeTzWhG2CDWW07eqXWl3rfKn3C60PZfvpFqdYGulHy6ubmkte/vhi/8pVCN72rvz9517s6Y4B1MD6eXHzx6s//wA+cfO3Tn06+4ztKK6knCd0Am8TgtjMzuO3MFfuEt1pzqVQ7L+Snj92RVmu++yvhtVry4hd3xtCr+vqSn/zJblcB9JixseSKK5JPfjJptR54/tlnFyvdnFpCN8Ams9J29FZjOpUle8Hmpg6k2Zztfp/wwcHkgx9cnz8LADjJW96S/M3fPLi5b3yjzThlqHa7AAAemWq1vuze7yQZ2nFuBkf2pt63LUkWt6JPHLktxw/dvGxuq9VYt1qhZ7VayW23FY8Hs9wEcIo885nFavdaG84qlWKV+0d+ZP3q6iVWugG2oLX7hHcCervdytF796VaG9gcB7PBZjU9nZx/fjGemEi2betuPUBPectbkm//9tWfb7etcpdJ6AbY4k7cjt5utxefa85Ppd1urdonvH/o9PQNjD78P3xqqtOn+7bbkuHhh/+xYLPbsaPbFQA9amG1+1OfKpopLFWpJGedZZW7TEI3QI9Zeu93vX9kzT7htdrgYuhuNefTmD360FbC2+3k7rs7Y+hV27YVxwgDdMlqq91WucsndAP0uDX7hA+OLc6bnz2aySO3JXkIB7MNDiZf/GJnDAB0xUqr3Va514fQDcAyq/YJT9bsE77ttMen3j+y/IPVaslTnrI+hQMAazpxtdsq9/oQugF4UPqHT0//8Okr9glvNqaXrXbPTu5PY37SwWywYHY2ee1ri/F73pMMDHS3HqAnPfOZyXOeU/TtTqxyrxehG4CHZKXt6M25iWXBem76cOZnxzM7flf6P/yxVKv9af/QS9O3bZcQTm9qNJI/+INifM01QjfQNW94Qyd0v+ENVrnXg9ANwCNSrdZTXXLvd5IMjpyZWt9QGofvzcgb3pokOfx935HZucOpVGoZ23tpKpVqkqTdaqZSXaN5KGwFfX3Jb/xGZwzQJUu3l7/85d2ro5cI3QCccn2Dp6Vv8LRk4My0n/e8tFuNDI6elUZlNpVa32LgTpJjB25KEn3C2dr6+5Of+7luVwGQsbHk1luTY8eSPXu6XU1vELoBKM/gYCof+UgqSRY6dLfbrcWnW835NBvTSbJyn/CF8A4AnBKVSvKEJ3S7it4idAOwrpaucldrfWv2CU+7vRi62+1W5qcPWwlnc2q1knvuKcZ79ybV6trzAUrSbhfHTCRJvV6EcMoldAPQVWv1Ce8b2LE4rzk/mYmH2iccNorp6eTss4vxxESybVt36wF61vh4svP+rqCHDyen2VBWOqEbgPJMTSVPfnIx/qd/SoaH156f1fuEt9utNfuED+14TPptRWcjq3vZBXTf/PzKY8rjuz8A5Wm3k9tv74wfgb6BHenbc/GqfcIrlc4J6PMz45mbOWwlnI1j2zavboENYXQ0+aEf6owpn9ANQHkGB5PPfKYzPgVW245e7x9ZnDM3czizk/tPOphNCAeg1w0OJu9/f7er6C1CNwDlqdWSZz2r1D9iIYQv1T+0K5VK9aSD2RZC+NiZlywG73a7texwNwCAU0noBmDL6RvYsXgI24nb0dvt5rKV7onDt6bVmLESTrlmZ5M3vKEY/+ZvJgMD3a0H6Flzc8nVVxfjX/zFpN+PvNJV2u1HeJMdAKym0Ug+/OFi/KIXbYiDpJaubLfb7Ry99/NptRrL5ixuRx/Ykf6hXd0o85S66qqrcv3112ffvn3dLqV3TU4mI/ffAuH0cqCL7rsvOeOMYrx/f7JnT3fr6QXdf/UDwNY1O5u85CXFeGJiQ4TupVvJK5VKRs946qp9wluNmWWhe27mSOp926yE89D19SVvfGNnDNAlS38Ub4Afyz3BXzMA5alWk+/6rs54A1qrT3itPrQ4r9Wcz8ShW5I4mI2Hob8/edObul0FQMbGkjvv7Iwpn9ANQHmGhpK/+7tuV/GQrNYnvNWaX7NP+OD2szIwvLsbJQPAg1atJmed1e0qeovQDQAPQr1vOKNr9Alf2oe8OT+Vmcl7rYTT0W4nR48W4x07kkqlu/UAsG6EbgB4CFbvE759cc787FF9wlluaio57bRi7CA1YB1dfvnl+fSnP50kqdVqOf303dm//9uS/FyOHPl2W8zXwca8wQ6ArWF6OnnKU4rH9HS3qynFQgiv1jqHY9X7RzI4sjf1viJYLWxFnzhyW8bv3Zf52WOLczURAaAs7XY7N954Y37t134t99xzT26//fa8+93XJulPcnk+8pGPdLvEnmClG4DytFrJP/1TZ9wj6v3bF1e+T9yO3mxML4bxJJk+9o3Mz4xbCd/qhoeL5riJ44KBdXPbbbfl+PHjufzyy3PmmWcmSc4449xcccWzs2/fc/Lrv/5L+aEf+r4uV7n1+a4PQHkGB5OPf7wz7kEnbkdvt5qpVGuLzy8E8RMPZlsI4X1Du1Jx/+/mV6loFQasu3379qVWq+XJT37y4rWhoeQTn0j+x/94bn75l385rVYr1Q3aYWSrELoBKE+tljz3ud2uYkNZGriTZOT0J67aJ3x+5kjGhk9fnDs/eyy1+qCVcAAelC984Qu58MILMzw8fNJzfX19qdVqAvc6ELoBoIvW6hNeqXQCervdzuThW9NqzTuYbTOam0t+6ZeK8VvfWvTtBijZvn378rSnPW3Ztbm55J3vTD70oVtzwQUXdqmy3uJtDQDK02gk/+f/FI9Go9vVbAoLIXx4x7kZGn304vV2q7EYrk88mO3o/hszM3F3t0rmwZifT97+9uIxP9/taoAe8cUvfvGk0D0+nvz8z0/nc5/78zzvef8+SfKMZzwjn//855MkP/qjP5p3v/vd613qlmalG4DyzM4mV15ZjCcmigOkpqeLQ9UGBjoHSjWbycxMcd/r0i1wD2XuzEzxXH9/597ZVqtzavrSFk0PZe7sbPGGQV9fZ3Wy3S5aQD3UucPDnf7Mc3NF+KrXi89vweTkinOr8/MZ3XFBWn21znb0w/em0ZhKc7CV9tD9b2rMz6c1M5XpybvTN7o79YHRzuc3OVnczLewlXB+vqijVlt+z/3UVFH34GDxXFJ8XrOzxe8dGnp4c9f6ej6UuQ/ma38q/p2s9PV8uP9O6vXkP//nYuzebmAdfPWrX834+PhJobtabSV5XZJ6Xvvan0qS/PIv/3KuvvrqPOtZz8rIyEhe97rXrX/BW5iVbgDKU60ml15aPBaC3hVXJCMjyV/9VWfepz9dXLvssuW//4UvLK7/8R93rn3hC8W1Jz5x+dyXvay4/r73da7dfHNx7dxzl8/98R8vrl9zTefaN79ZXNuzZ/nc17++uP62t3WuHTxYXBsZWT73v/yX4tqb39y5NjXVmbsQwJJizshI8XuWWph78GDn2tveVlx7/euXrYSPfuv3ZOf535ORyW3pH9pdzL3mmlRHx1J/3X9aXAmfmzqY3HRTMjKS1pf+ufNx3/e+4uO+7GXLa3jiE4vrX/hC59of/3Fx7YUvXD73ssuK6/f3gE1SfG1HRoqv9VKXX15c/9jHOtc++cni2jOfuXzu855XXP/whzvXPvvZ4tqSA4GSJP/+3xfX3//+zrX7P9884QnL577iFcX19763c+0rXymunXXW8rmvfW1x/Z3v7Fy7557i2omNbd/whuL61Vd3rh092vl6VqvF1/Ftb7O1HFgX+/btS5Ls3bs39957b2699dZce+21ecELnpU9ez6eP/3Tv8i5556WJLnyyivz1a9+NR/72MfyzqXf8zglrHQDUJ6hoeSGG7pdxZbXPziW9A0tu1brG0q9b1sa85NptTtb+48f/JcMTp2dgSUHtAGw9Xzh/jdOzz///NRqtezYsSMXXnhhrrzyyrzuda/Lzp07F+d+7nOfy/j4eM4///zUtTU85Srtdrvd7SIA6CG2lxfjh7i9fM25a2wZb7Uaed1PvCaf++z1+fs//7006s3sOPNpqfUNJfPzmTlyR2anD6S+Y3fnYLbZhu3lq309H+6/k6VfT4AN5K677srznve8/Pmf/3l+4Ad+IB/4wAdy0UUXdbusLUXoBoAt7qqrrsr111+fffv2pdVqpFrtrGJMHL41c9OHls1f1id88LST2pwBsHkdPdq5Q+aee6bzohc9J7/+67+eyy+/PNdee23+6q/+Ku9fersOj5jQDQBb3NLQfaKlLcoW+oR3VDK299LFkN6Yn0q1WteiDGATu+++5IwzivH+/ScfZcKpZ8M+APSwtfqEt09YFZ8a/0oacxP6hANsYtu3d86j3L69u7X0CqEbAFh0YghfsHRjXLMxvdgrPCm2o/cP7czQ6DnrWisAD93QUHLjjd2uorcI3QDAA6pUKhnd/aQVt6MXIXxm2fypo99IvW+blXAAep7QDQA8aKttR68s2YbebExnZuLuxV/bjg6wcczPJ+99bzF+zWs6jRwoj9ANADxsCyF8uUoGR/aesBLe2Y4+NProDG0/e/2LBSDj48nrX1+MX/KSZPfurpbTE4RuAOCUqtUHM7zj3CQrn45eq3f6Zs/PHs3U+NeshAOsk2p15THlEboBgNKstB29Uum8ymvMHl3xYLbFED44tuwEdQAembGx5Itf7Iwpn59iAMC6OTFAD4w8KrW+kRUOZitC+OieJy/+nmZjJpVK1Uo4wCNQqyVPeUq3q+gtQjcA0DVr9Qlvzk+mVh9anDtz/M7MTh1wMBsAm4rQDQBsGKv1CU+KQJ6s3Ce8PjCa4R2PTaVSWdd6ATabY8eSHTuK8dGjyehod+vpBUI3ALApbN914ap9wiuV6rLAPTNxd6rVfivhACeYmVk+FrrLJ3QDAJvGatvRl2q3mpk+9s202+0k+oQDLDUykjzqUZ0x5RO6AYBNa6U+4e12KwPbzly1T/jAtjOybey8bpQL0HXDw8ldd3W7it4idAMAW0q11vcAfcI7h7M1G7OZOHSzlXAASiN0AwBb1krb0ZdqzB1bu0/4wI5Ua33rXjdAWebnk/e/vxi//OVJn29xpRO6AYCecWKf8L7B0zKy84JV+4SP7Dw//UO7kiSt5nyStpVwYFMbH09+7MeK8fOfn+ze3dVyeoLQDQD0rLX6hDdmj6Xe3znWd3Zqf6aP3eFgNmBTq1ZXHlMeoRsA4H5r9glvzCZZvU/40Og5J62kA2w0Y2PJZz7TGVM+PxkAAB6Ebac9LkM7HrNin/BWc27x8LYkmZ06kEoqVsKBDadWS571rG5X0VuEbgCAB2m17ejt1nwqlc4+zZnjd6bZmEmiTzhArxO6AQAeptX6hPcNnpbKKn3C+wZPy/ZdF3ajXIAcO5bs2FGMjx5NRkfXns8jJ3QDAJxClUp1zT7hS1e62+1Wjh/4Umr9I1bCgXUxM7N8LHSXT+gGACjJin3C263F55vzk2nc/9AnHFgP27Yl9XpnTPmEbgCAdXLi6ea1+vCafcKHRs/J0PazkiTtVjPtdtNKOPCIbNuWzM93u4reInQDAHRJpVpbs09430Bn3+fczJFMHrnNwWwAm4zQDQCwQazZJ7xZ3Ii5Wp/wwZGzUqsPrGu9wObTaCQf/nAxftGLOlvNKY+/YgCATWBo+9kZ2Hbmin3Cm43pDG0/e3Hu/Mx42q2GlXDgJOPjyUteUowPHEhOP72r5fQEoRsAYJNYrU94szG1LFzPTN6T+ZnxJPqEA3Sb0A0AsEl1+oQv345e7xtJuzm/Yp/wet+2jO65uAvVAhvBaaclH/94Z0z5hG4AgC1maPTRGRp99Ip9wisnnKA+ceiWVGr9VsKhR9RqyXOf2+0qeovQDQCwRa20Hb3d6vQKajXnMzdzJElW6RMuhAM8UtVuFwAAwPqoVuup1YcWf12pVDOy84IMjuxNvW9bkixuRZ84clumj92xOLfdbqfVnFv3moFT6/jxpFIpHsePd7ua3mClGwCgRz1Qn/D6wI7Fuc35yRw7cJOVcNjkpqeXj7dv714tvULoBgAgydp9wpuN6cX/rtQnfGDbman3Da9rvcBDNzy88pjyCN0AADyggeHd6Rs8bdU+4f1DnWa/jbmJtBozVsJhAxoZSdrtblfRW4RuAAAelNX6hDfmjqXeP7I4b276QGYm7k3iYDYAoRsAgIdlte3o1dpA6n3bVuwTXqsPZfvub0216mUodEOjkXzsY8X4e783qftfsXT+igEAOKUGRx6VwZFHrdgnvN1uLQvcU0e/lna7bSUc1sn4eHLllcX4wIHk9NPXnM4pIHQDwBbyzW9+M+ecc86DmnvHHXfkrLPOSrWqgyjlWGk7eqsxs/h8u93O3NTBtFoNfcKBLctPWQDYIiYnJ/OYxzwmH/jABx5w7i233JLzzjsv11133TpUBoVqtb7s3u+kneGxx63aJ3zi8K3Lfn+rOb+O1cLWNDaWfPjDxWNsrNvV9IZKu+3sOgDYKl74whfmy1/+cv71X/81tVotSXLVVVfl+uuvz759+xbnvfzlL891112X22+/PQMDA90qF5Y5cTt63+BpGRp99OJz4/d8PrX6oJVwYFOxvRwAtpA3vvGNufTSS/NHf/RHefnLX77inFtuuSXXXnttrrnmGoGbDWXNPuHzk0naq/cJH96dev/2da4Y4IHZXg4AW8gll1ySF7zgBXnLW96SZrO54pxf+ZVfyVlnnZVXvepV61wdPHx9AzsytveyjOy8YMXt6M35qcW5zcZsca94c65b5cKGNTGRVCrFY2Ki29X0BivdALDFrLXabZWbzWzNPuEDOxbnzc8cztTRrydxMBucaGpq+XhkZPW5nBpWugFgi1m62t1oNJY9Z5WbrWQhhA/vODe1+uDi9Uq1vuLBbOP37svR/TemOT/drZKh64aGVh5THivdALAFLV3tXmCVm14xMLw7A8O7V+wT3mrOLFvtnpm4J83GtJVwesb27YmjtNeX08sBYItaOMn8u7/7u3PDDTfkwgsvdGI5Pa3VaqQ5P5W+gdHFa8cO3JTGXOfGVtvRgVNN6AaALWrfvn259NJL8z3f8z255557cvPNN+eaa67J6173um6XBhvG3MyRNGaPLq6EL1Wt9WfszEsWf91uNVOp1ta7RDilms3k058uxt/5nUnNP+nSCd0AsIW98IUvzHXXXZdqtZpt27ZZ5YY1nLgdvVofysjOJyw+P37P54v7xa2Es4kdPJjs3l2MDxxITj+9u/X0Avd0A8AWtnBvd5K89a1vFbhhDSeejr50barZmEmrNZ+05lfsE94/tCt9S05Qh41q6ZKr5df1YaUbALa4888/P3fccUfGx8eFbngEVjqYbcHgyKMyvOMxSYpt6PMzR6yEsyE1Gskf/3ExfulLk7pl2NIJ3QCwxR0+fDiHDx/O4x//+G6XAlvK0hDeN7hz8YC2+ZkjOX7oliQOZgOEbgAAOKXmZo5k5tgdJx3MlhQhfHjsvGUnqANbm80EAABwCvUPnpb+wdNW3I7ebEynWu28BJ+bPpT52aNWwlk3k5PJWWcV47vuSrZt6249vUDoBgCAEpx4MNtCCK/1DS/OmZs+nLnpgycdzCaEU5bJyeTo0c5Y6C6f7eUAANAl8zPjmZ8dX7FPeFLJ2N5LF1fG2+1WKpXq+hfJlnLsWLLj/oP2jx5NRt3pUDqhGwAANoATt6OnUsno7ictPn/swJfSbjWshMMmI3QDAMAGtHRlu91uZfyez+XEl+6L29EHxha3sQMbi9ANAACbwFp9wvsHd2Zk1wWLv56bPpR6/3Yr4Zyk2Uy+8IVi/LSnJbVad+vpBUI3AABsQktDeL1vJP3DpydJmo2ZHN3/xSQOZuNkhw4lpxf/VHLwYLJrV3fr6QVOLwcAgE3oxNPRF7Rb86n3bVtsUdZsTC87HX1o9NHpH5K0elWrtfKY8gjdAACwhdT7t2d0z8Wr9glPKotzG3PHMzt1wEp4DxkbS9773s6Y8tleDgAAPWAhhNcHRhfbkE0fuyPTx+9cnGM7Opx6QjcAAPSo+dljmZ85vEqf8GR0z5NT7xtOok84PFy2lwMAQI/qGxhN38BokpNPR281Z1OrDy3OnRr/ahpzE1bCN7mpqeTJTy7G//RPyfBwd+vpBVa6AQCAk7RbzVSqnX5SR+/9QprN2WVzlm5HXzg9nY3tvvuSM84oxvv3J3v2dLeeXmClGwAAOMnSwJ0k2/dcvOLBbM3GdBpzx5eF7vnZo6nVh6yEb0ADAyuPKY+bMgBgi7r22mszODiYu+66a/Haq1/96lx88cU5evRoFysDNqOFFmXDO87N6J6LM7b3sozsvCCDI3szMLx7cV673crEoVsyfu++HN1/YybHv5q5qYNpNee6WD0LduxI2u3isWNHt6vpDbaXA8AW1W6385SnPCXf+Z3fmXe9611585vfnN/93d/NZz/72Zx11lndLg/YopqNmUwevnXFg9lq9aEMjJyZwW1ndqEy6A7bywFgi6pUKnnrW9+aF7/4xXnUox6Vd77znfn0pz8tcAOlqtUH1+4T3m4tzm01ZzN9/C4Hs62jViu5+eZifNFFSdXe59JZ6QaALe5pT3ta/uVf/iUf//jH813f9V3dLgfoUQshvNY3nFp9MEkyO3Ugk0duX5yjT3j5Dh1KTr//9vuDB5Ndu7pbTy+w0g0AW9jHPvax3HLLLWk2mzlj4bhagC5YuCd8qVp9KIMje086mG12cn+SZGTXhekfPC1JcctMpVJZ97q3mmZz5THlsdINAFvUF77whTz72c/ONddckz/6oz/K8PBwPvjBD3a7LIAVnbwdfSpjZ16Saq0vSTJ9/M7MTR20Ev4Izc8n11xTjH/yJ5O+vu7W0wuEbgDYgr7+9a/nmc98Zn7qp34qv/iLv5h9+/blsssuyw033JBLLrmk2+UBPKBWq5FqtbMx9/jBmzM/O75sztLt6H1DO1OpuEGZjUfoBoAt5vDhw3nWs56Vyy+/PO95z3sWr3//939/Zmdn89GPfrSL1QE8PCsdzLagUqlmbO9li6G7MTeRaq3fSjgbgtANAABsOktDeNrtDI89dvG5o/u/mGZjxsFsK5ieTq64ohj/zd8kQ0PdracXCN0AAMCW0W41c/zgv6zaJ7x/+PQMbT+7C5VtDPfdlyycq7l/f7JnT3fr6QVOLwcAALaMSrW2Zp/wVnNucW673cr00W+k3r+9Z1bC+/tXHlMeK90AAMCWtxDCq7X+1PtHkiSNueM5duBLi3NsR6cMQjcAANCTFnqCn3gw24LhHY/N4MiZXaiMrcT2cgAAoCfV6kMZ3nFukpVPR6/1DS/OnZs+lOljd2z6lfBWK/nmN4vxOeckVV3WSmelGwAA4AStViOVSnWxDdnk+FczO7l/2ZxlfcIHT0ulWutGqQ/J4cPJrl3F+NChZOfO7tbTC7yvAQAAcIJqtb4YuJNkaPScjOy8IIMje1Pv25aksz194shtabUai3Ob88sPbNtIGo2Vx5TH9nIAAIAHUK3W0z+0M/1DxdLw0u3orcZMavWBxblTx76R+ZkjG/JgtrGx5Fd/tTOmfLaXAwAAnELHD/5r5mePnnS9Vh9K3+DY4n3k9AYr3QAAAKfQ9tOfuGqf8Or88tXu6WN3LK6Ib4SVcE49oRsAAOAUW207+tL7xFvN+Uwfv3Px1+uxHX1mJnnZy4rxH/1RMjh4yv8ITmB7OQAAQBe0mnOZmbh71T7hgyOPyvCOx5zSP/O++5IzzijG+/cne/ac0g/PCqx0AwAAdEG11v+g+4Q35iczefi2R7wS3te38pjyWOkGAADYYFqtRiqpLPb+npm4J1NHv75szrLt6INjqVatqW5EQjcAAMAGt9JK+FLbT39i+gZ2FHObs0kqDmbbILwVAgAAsMGt1Se8MXc89b6RxbkzE/dkZuKeFQ9ma7eTgweLeaefnlQq3fhseouVbgAAgC1k4vBtmZs+eNL1Wn0ox6bGcs555yZJDh1Kdu5c5+J6kJVuAACALWRk5xPSaj12xT7hM5Odpe1Go4tF9hAr3QAAAFvcwnb0druZgeHd3S6npwjdAAAAUJJqtwsAAACArUroBgAAgJII3QAAAFASoRsAAABKInQDAABASYRuAAAAKInQDQAAACURugEAAKAkQjcAAACUROgGAACAkgjdAAAAUBKhGwAAAEoidAMAAEBJhG4AAAAoidANAAAAJRG6AQAAoCRCNwAAAJRE6AYAAICSCN0AAABQEqEbAAAASiJ0AwAAQEmEbgAAACiJ0A0AAAAlEboBAACgJEI3AAAAlEToBgAAgJII3QAAAFASoRsAAABKInQDAABASYRuAAAAKInQDQAAACURugEAAKAkQjcAAACUROgGAACAkgjdAAAAUBKhGwAAAEoidAMAAEBJhG4AAAAoidANAAAAJRG6AQAAoCRCNwAAAJRE6AYAAICSCN0AAABQEqEbAAAASiJ0AwAAQEmEbgAAACiJ0A0AAAAlEboBAACgJEI3AAAAlEToBgAAgJII3QAAAFASoRsAAABKInQDAABASYRuAAAAKInQDQAAACURugEAAKAkQjcAAACUROgGAACAkgjdAAAAUBKhGwAAAEoidAMAAEBJhG4AAAAoidANAAAAJRG6AQAAoCRCNwAAAJRE6AYAAICSCN0AAABQEqEbAAAASiJ0AwAAQEmEbgAAACiJ0A0AAAAlEboBAACgJEI3AAAAlEToBgAAgJII3QAAAFASoRsAAABKInQDAABASYRuAAAAKInQDQAAACURugEAAKAkQjcAAACUROgGAACAkgjdAAAAUBKhGwAAAEoidAMAAEBJhG4AAAAoidANAAAAJRG6AQAAoCRCNwAAAJRE6AYAAICSCN0AAABQEqEbAAAASiJ0AwAAQEmEbgAAACiJ0A0AAAAlEboBAACgJEI3AAAAlEToBgAAgJII3QAAAFASoRsAAABKInQDAABASYRuAAAAKInQDQAAACURugEAAKAkQjcAAACUROgGAACAkgjdAAAAUBKhGwAAAEoidAMAAEBJhG4AAAAoidANAAAAJRG6AQAAoCRCNwAAAJRE6AYAAICSCN0AAABQEqEbAAAASiJ0AwAAQEmEbgAAACiJ0A0AAAAlEboBAACgJEI3AAAAlEToBgAAgJII3QAAAFASoRsAAABKInQDAABASYRuAAAAKInQDQAAACURugEAAKAkQjcAAACUROgGAACAkgjdAAAAUBKhGwAAAEoidAMAAEBJhG4AAAAoidANAAAAJRG6AQAAoCRCNwAAAJRE6AYAAICSCN0AAABQEqEbAAAASiJ0AwAAQEmEbgAAACiJ0A0AAAAlEboBAACgJEI3AAAAlEToBgAAgJII3QAAAFASoRsAAABKInQDAABASYRuAAAAKInQDQAAACURugEAAKAkQjcAAACUROgGAACAkgjdAAAAUBKhGwAAAEoidAMAAEBJhG4AAAAoidANAAAAJRG6AQAAoCRCNwAAAJRE6AYAAICSCN0AAABQEqEbAAAASiJ0AwAAQEmEbgAAACiJ0A0AAAAlEboBAACgJEI3AAAAlEToBgAAgJII3QAAAFASoRsAAABKInQDAABASYRuAAAAKInQDQAAACURugEAAKAkQjcAAACUROgGAACAkgjdAAAAUBKhGwAAAEoidAMAAEBJhG4AAAAoidANAAAAJRG6AQAAoCRCNwAAAJRE6AYAAICSCN0AAABQEqEbAAAASiJ0AwAAQEmEbgAAACiJ0A0AAAAlEboBAACgJEI3AAAAlEToBgAAgJII3QAAAFASoRsAAABKInQDAABASYRuAAAAKInQDQAAACURugEAAKAkQjcAAACUROgGAACAkgjdAAAAUBKhGwAAAEoidAMAAEBJhG4AAAAoidANAAAAJRG6AQAAoCRCNwAAAJRE6AYAAICSCN0AAABQEqEbAAAASiJ0AwAAQEmEbgAAACiJ0A0AAAAlEboBAACgJEI3AAAAlEToBgAAgJII3QAAAFASoRsAAABKInQDAABASYRuAAAAKInQDQAAACURugEAAKAkQjcAAACUROgGAACAkgjdAAAAUBKhGwAAAEoidAMAAEBJhG4AAAAoidANAAAAJRG6AQAAoCRCNwAAAJRE6AYAAICSCN0AAABQEqEbAAAASiJ0AwAAQEmEbgAAACiJ0A0AAAAlEboBAACgJEI3AAAAlEToBgAAgJII3QAAAFASoRsAAABKInQDAABASYRuAAAAKInQDQAAACURugEAAKAkQjcAAACUROgGAACAkgjdAAAAUBKhGwAAAEoidAMAAEBJhG4AAAAoidANAAAAJRG6AQAAoCRCNwAAAJRE6AYAAICSCN0AAABQEqEbAAAASiJ0AwAAQEmEbgAAACiJ0A0AAAAlEboBAACgJEI3AAAAlEToBgAAgJII3QAAAFASoRsAAABKInQDAABASYRuAAAAKInQDQAAACURugEAAKAkQjcAAACUROgGAACAkgjdAAAAUBKhGwAAAEoidAMAAEBJhG4AAAAoidANAAAAJRG6AQAAoCRCNwAAAJRE6AYAAICSCN0AAABQEqEbAAAASiJ0AwAAQEmEbgAAACiJ0A0AAAAlEboBAACgJEI3AAAAlEToBgAAgJII3QAAAFASoRsAAABKInQDAABASYRuAAAAKInQDQAAACURugEAAKAkQjcAAACUROgGAACAkgjdAAAAUBKhGwAAAEoidAMAAEBJhG4AAAAoidANAAAAJRG6AQAAoCRCNwAAAJRE6AYAAICSCN0AAABQEqEbAAAASiJ0AwAAQEmEbgAAACiJ0A0AAAAl+f8BkwGRpAkA7+kAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ag = AcquisitionGeometry.create_Cone2D(source_position=[0,-10],detector_position=[0,10])\\\n", + " .set_panel(num_pixels=10)\\\n", + " .set_angles(angles=range(0,180))\n", + " \n", + "show_geometry(ag)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Cone-beam geometry\n", + "\n", + "A single point-like X-ray source emits a cone-beam onto 2D detector array. Cone-beam geometry is mainly used in lab-based CT instruments.\n", + "\n", + "We describe the system, and then set the panel and angle data.\n", + "\n", + "For cone-beam data the source and detector positions are required. As default we place them along the Y-axis where the rotation-axis is on the origin and aligned in the Z-direction. They are specified as `[X,Y,Z]` coordinates.\n", + "\n", + "```python\n", + "cone_3D_geometry = AcquisitionGeometry.create_Cone3D(source_position=[0,-10,0], detector_position=[0,10,0])\\\n", + " \n", + " .set_panel(num_pixels=[10,10])\\\n", + " \n", + " .set_angles(angles=range(0,180))\n", + "```" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "execution": { + "iopub.execute_input": "2024-10-10T15:02:39.458382Z", + "iopub.status.busy": "2024-10-10T15:02:39.458191Z", + "iopub.status.idle": "2024-10-10T15:02:39.676360Z", + "shell.execute_reply": "2024-10-10T15:02:39.675872Z" + } + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA90AAAPdCAYAAACXzguGAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeXgT1foH8O8kTdKk6d7SsrZCaSmyC8jipbggbgjee9UryCKICsoiAq4o4goIgvuVnxe8Cm4XcEFUEC2yCBRKZSstlLIXW6Cle9Ik7++P2IF0B5qmLd/P8+SBnNnemc6Z5M05c0YREQERERERERER1TqNpwMgIiIiIiIiaqyYdBMRERERERG5CZNuIiIiIiIiIjdh0k1ERERERETkJky6iYiIiIiIiNyESTcRERERERGRmzDpJiIiIiIiInITJt1EREREREREbsKkm4iIiIiIiMhNmHQTERERERERuQmTbiIiIiIiIiI3YdJNRERERERE5CZMuomIiIiIiIjchEk3ERERERERkZsw6SYiIiIiIiJyEybdl+nw4cNQFAVJSUmVzhMfHw9FUZCTk1NncV2OyMhILFiwQH2vKAq+/vprj8VDVNdqUq/ri/79+2Py5MmeDqNSZa8nFZk5cya6dOlSJ/FQ9er7OdVQ1PQ6wuNNRNT4MemmamVkZODWW2+t1XU2hC8ZNUkWqP641HNq1KhRGDJkiEtZy5YtkZGRgQ4dOtROcG60YsUKvPTSS54Oo1IJCQl46KGH1PcV/Yg3depUrFu3ro4jo9qyZMkSBAQE1Pp6G8LnRFXKXkcq+wG+vtdhIiK6fF6eDqAhs1qtng7hktntdiiKAo2m+t9dwsPD6yAiqtdSU4G0NCAqCmjbtk43bbVaodfr63SbWq22wZz3QUFBng6hSqGhodXOYzabYTab6yCahsGD1a1R8sQ1BKj5daS+12EiIrp8l9zSLSIoKCio85eI1Ci+7777DgEBAXA4HACApKQkKIqCadOmqfM8/PDDuO+++9T3y5cvx9VXXw2DwYDIyEjMmzfPZZ2RkZF4+eWXMWrUKPj7+2Ps2LEVbnv16tWIjo6G0WjE9ddfj8OHD1cbb05ODh566CGEhYXB29sbHTp0wKpVq2ocW3Z2NkaMGIHAwECYTCbceuutOHDggDq9tCVi1apVaN++PQwGA44cOYLMzEwMGjQIRqMRV111FZYuXVoutgtbpkq7y61YsQLXX389TCYTOnfujN9//12d/8yZM7jvvvvQokULmEwmdOzYEZ999pk6fdSoUVi/fj0WLlwIRVGgKIp6jPbt24fbbrsNZrMZYWFhGD58OE6fPl3pcTty5AgGDRqEwMBA+Pj44Oqrr8bq1ashIoiKisIbb7zhMv+ePXug0WiQlpYGwNmttVWrVjAYDGjWrBkmTpwIwNnCcuTIETz++ONqjKU2b96Mfv36wWg0omXLlpg4cSIKCgrU6aXnyYgRI2A2mxEREYFvvvkGWVlZGDx4MMxmMzp27Ijt27dXul/1xtmzwC23ADExwG23AdHRzvfZ2W7bZP/+/fHYY49hypQpCAkJwYABAwAA69evR8+ePWEwGNC0aVM89dRTsNlsACo/p+x2O8aMGYOrrroKRqMRMTExWLhwobqtmTNn4uOPP8Y333yjLhcfH19ht9Cqtl8a98SJEzF9+nQEBQUhPDwcM2fOrHJfExISMGDAAISEhMDf3x9xcXFITExUp8fHx0Ov12PDhg1q2bx58xASEoKMjAx1uxe2Br733nto27YtvL29ERYWhn/+85+Vbr/0uvD1118jOjoa3t7eGDBgAI4dO+Yy3/vvv482bdpAr9cjJiYGn3zyicv0yuoR4NpjJDIyEgBw1113QVEU9X3Z7uUOhwOzZs1CixYtYDAY0KVLF/z444/q9JpchxoiD1Q3FBQUqNeqpk2blvtsAZxJ6/Tp09G8eXP4+Pjg2muvRXx8PADnOfrAAw/g3Llzah0qPe+rWq7Upk2bEBcXB5PJhMDAQAwcOBDZ2dlVfk7UpC5WdA0pq7SXy4svvogmTZrAz88PDz/8sMsP6haLBRMnTkSTJk3g7e2N6667DgkJCer07OxsDBs2DKGhoTAajWjbti0WL14MwLV7+eHDh3H99dcDAAIDA6EoCkaNGqXGe2Edrunn+U8//YTY2FiYzWbccsst6jWBiIjqIblE+fn5AqDOX/n5+TWKLycnRzQajWzfvl1ERBYsWCAhISHSo0cPdZ7o6Gh5//33RURk+/btotFoZNasWZKSkiKLFy8Wo9EoixcvVuePiIgQPz8/mTt3rhw4cEAOHDgg6enpAkB27twpIiJHjx4Vg8EgkyZNkv3798unn34qYWFhAkCys7MrjNVut0uvXr3k6quvljVr1khaWpp89913snr16hrHduedd0psbKz89ttvkpSUJAMHDpSoqCixWq0iIrJ48WLR6XTSp08f2bRpk+zfv1/y8/Pl1ltvlQ4dOsjmzZtl+/bt0qdPHzEajfLmm2+q6wYgK1euFBFR97ddu3ayatUqSUlJkX/+858SEREhJSUlIiJy/PhxmTt3ruzcuVPS0tLkrbfeEq1WK1u2bFH/Nr1795axY8dKRkaGZGRkiM1mk5MnT0pISIg8/fTTkpycLImJiTJgwAC5/vrrK/0733777TJgwADZtWuXetzWr18vIiKvvPKKtG/f3mX+xx9/XPr16yciIl999ZX4+fnJ6tWr5ciRI7J161b58MMPRUTkzJkz0qJFC5k1a5Yao4jIrl27xGw2y5tvvimpqamyadMm6dq1q4waNcrlPAkKCpIPPvhAUlNTZdy4ceLr6yu33HKLfPnll5KSkiJDhgyR2NhYcTgcle5bvTBwoIhWKwKcf2m1znI3iYuLE7PZLNOmTZP9+/dLcnKyHD9+XEwmk4wfP16Sk5Nl5cqVEhISIi+88IKIVH5OWa1Wef7552Xbtm1y6NAh+fTTT8VkMskXX3whIiJ5eXlyzz33yC233KIuZ7FYytXr6rZfGrefn5/MnDlTUlNT5eOPPxZFUWTNmjWV7uu6devkk08+kX379sm+fftkzJgxEhYWJrm5ueo806ZNk4iICMnJyZGkpCQxGAyyYsUKl+1OmjRJREQSEhJEq9XKsmXL5PDhw5KYmCgLFy6sdPul14Xu3bur14CePXtKnz591HlWrFghOp1O3n33XUlJSZF58+aJVquVX375RUSqrkcizvpQej3JzMwUALJ48WLJyMiQzMxMERF54YUXpHPnzuoy8+fPFz8/P/nss89k//79Mn36dNHpdJKamioiNbsONUQeqG4ybtw4adGihaxZs0Z27dold9xxh5jNZvWcEhEZOnSo9OnTR3777Tc5ePCgzJ07VwwGg6SmporFYpEFCxaIn5+fWofy8vKqXU5EZOfOnWIwGGTcuHGSlJQke/bskbfffluysrIqrdM1rYtlryEVGTlypJjNZrn33ntlz549smrVKgkNDZVnnnlGnWfixInSrFkzWb16tezdu1dGjhwpgYGBcubMGRERefTRR6VLly6SkJAg6enpsnbtWvn2229FRFyuIzabTZYvXy4AJCUlRTIyMiQnJ0eN98LjXdPP85tuukkSEhJkx44dEhsbK0OHDr28k4GIiNym0SbdIiLdunWTN954Q0REhgwZIq+88oro9XrJzc2VjIwMAaB+GA8dOlQGDBjgsvy0adNckraIiAgZMmSIyzxlv5w//fTT5ZKpJ598ssqk+6effhKNRiMpKSkVTq8uttTUVAEgmzZtUqefPn1ajEajfPnllyLi/JAGIElJSeo8KSkpAkBNhkVEkpOTBUC1Sff//d//qdP37t3rciwrctttt8kTTzyhvi/7JUNEZMaMGXLzzTe7lB07dkz9klKRjh07ysyZMyucdvLkSdFqtbJ161YREbFarRIaGipLliwREZF58+ZJdHS0+kWmrAuThVLDhw+Xhx56yKVsw4YNotFopKioSF3u/vvvV6eXnmszZsxQy37//XcBoCbz9VJKiuu3/7Kvv74417a4uDjp0qWLS9kzzzwjMTExLvXq3XffFbPZLHa7XV2u7DlVkfHjx8s//vEP9f3IkSNl8ODBLvOUrdc13f51113nsp4ePXrIk08+WW1MpWw2m/j6+sp3332nllksFunatavcc889cvXVV8uDDz7ossyF+718+XLx8/NzSdqrUnpdqOgaUFpv+vTpI2PHjnVZ7u6775bbbrtNRC6+Hl14PSlVNulu1qyZvPLKKy7z9OjRQ8aPHy8il34dqs88Ud3y8vJEr9fL559/rpadOXNGjEajek4dPHhQFEWREydOuCx74403ytNPPy0izvPI39/fZXpNlrvvvvukb9++lcZXUZ2uaV0sew2pyMiRIyUoKEgKCgrUsvfff19dV35+vuh0Olm6dKk63Wq1SrNmzWTOnDkiIjJo0CB54IEHKlx/2evIr7/+WuF3gQv382I+zw8ePOhyDMLCwqrdZyIi8oxL7l5uMpmQn59f5y+TyVTjGPv374/4+HiICDZs2IDBgwejQ4cO2LhxI3799VeEhYWhXbt2AIDk5GT07dvXZfm+ffviwIEDsNvtaln37t2r3GZycjJ69erl0h25d+/eVS6TlJSEFi1aIDo6utJ1VhVbcnIyvLy8cO2116rTg4ODERMTg+TkZLVMr9ejU6dOLuv18vJy2ad27drVaECcC9fTtGlTAEBmZiYA5/3ir7zyCjp16oTg4GCYzWasWbMGR48erXKdO3bswK+//qre32k2m9W/T2l38LImTpyIl19+GX379sULL7yAXbt2ucR1++234z//+Q8AYNWqVSguLsbdd98NALj77rtRVFSE1q1bY+zYsVi5cqVLF8XKYlyyZIlLjAMHDoTD4UB6enqFxycsLAwA0LFjx3JlpcesXqrkmKsOHnTbpsvWs+TkZPTu3dulXvXt2xf5+fk4fvx4lev64IMP0L17d4SGhsJsNmPRokXVnotl1XT7F/7dAec5WNXfODMzE4888giio6Ph7+8Pf39/5Ofnu8Sn1+vx6aefYvny5SgqKqpycL8BAwYgIiICrVu3xvDhw7F06VIUFhZWuW+VXQNKrx2VXX9Kp19KPapKbm4uTp48WeU2S1V1HWpoPFHd0tLSYLVaXT6jgoKCEBMTo75PTEyEiCA6Otrlurd+/fpKr8s1XS4pKQk33njjRcVc07pY3Wd1qc6dO7t8r+jduzfy8/Nx7NgxpKWloaSkxOVc1Ol06Nmzp3oujhs3Dp9//jm6dOmC6dOnY/PmzRe1PxXtX00+z00mE9q0aaO+r+5aQ0REnnXJA6kpigIfH5/ajKXW9e/fHx999BH++OMPaDQatG/fHnFxcVi/fj2ys7MRFxenzisiLh/ipWVlVbfPFS1THaPRWO06q4qtsm2WXc5oNLq8L12u7LprQqfTqf8vXb70/vl58+bhzTffxIIFC9CxY0f4+Phg8uTJ1Q4853A4MGjQIMyePbvctNIv1GU9+OCDGDhwIL7//nusWbMGr732GubNm4cJEyao04cPH44333wTixcvxr333qt+wWrZsiVSUlKwdu1a/Pzzzxg/fjzmzp2L9evXu+xf2Rgffvhhl3tWS7Vq1arK41PVMauXLvhCV6GoKLdtumw9q6oOVHX+fvnll3j88ccxb9489O7dG76+vpg7dy62bt16UfHUdPtlzxtFUar8G48aNQpZWVlYsGABIiIiYDAY0Lt373J1pfSL/NmzZ3H27NlKr0O+vr5ITExEfHw81qxZg+effx4zZ85EQkJClT+mVXQMLyyraN9Lyy6lHtVEVdss1eDqVBU8Ud1q8nnlcDig1WqxY8cOaLVal2lVDX5Xk+Wq++yrLOaa1MXL/X6iKEql15gLY7j11ltx5MgRfP/99/j5559x44034tFHHy03nkhN1fTzvKJrzaV8/yAiorrRqB8Z1q9fP+Tl5WHBggWIi4uDoiiIi4tDfHw84uPjXZLu9u3bY+PGjS7Lb968GdHR0eW+MFSlffv22LJli0tZ2fdlderUCcePH0dqamql66wqtvbt28Nms7kkEmfOnEFqaipiY2Mr3W5sbCxsNpvLgF4pKSmX/Tzx0l4F999/Pzp37ozWrVu7DAIDOFvvLuxBAADdunXD3r17ERkZiaioKJdXVV+gWrZsiUceeQQrVqzAE088gUWLFqnTbrvtNvj4+OD999/HDz/8gNGjR7ssazQaceedd+Ktt95CfHw8fv/9d+zevbvaGMvGFxUV5ZHRcd0qOhoYOBAoe/5rtc7yOhxWuX379ti8ebPLl8rNmzfD19cXzZs3B1Dx32vDhg3o06cPxo8fj65duyIqKqpc61xFy13K9i/Fhg0bMHHiRNx2223qQIllBw5MS0vD448/jkWLFqFXr14YMWJElYmll5cXbrrpJsyZMwe7du3C4cOH8csvv1Q6f2XXgNJeJrGxsRVefy68tlRVj8rS6XRVHm8/Pz80a9as2m02Np6oblFRUdDpdC6fUdnZ2S6fRV27doXdbkdmZma5a17pyNwV1aGaLNepU6cqHxVX0Xpruy7+8ccfKCoqUt9v2bIFZrMZLVq0UK/rF56LJSUl2L59u8u5GBoailGjRuHTTz/FggUL8OGHH1a6PwCqPP8v9fOciIjqt0addPv7+6NLly749NNP0b9/fwDORDwxMRGpqalqGQA88cQTWLduHV566SWkpqbi448/xjvvvIOpU6de1DYfeeQRpKWlYcqUKUhJScGyZcuwZMmSKpeJi4tDv3798I9//ANr165Feno6fvjhB3W03upia9u2LQYPHoyxY8di48aN+OOPP3D//fejefPmGDx4cKXbjYmJwS233IKxY8di69at2LFjBx588MFLan24UFRUFNauXYvNmzcjOTkZDz/8ME6dOuUyT2RkJLZu3YrDhw/j9OnTcDgcePTRR3H27Fncd9992LZtGw4dOoQ1a9Zg9OjRlX5JmTx5Mn766Sekp6cjMTERv/zyi8sXE61Wi1GjRuHpp59GVFSUSzfKJUuW4KOPPsKePXtw6NAhfPLJJzAajYiIiFBj/O2333DixAk1EXryySfx+++/49FHH0VSUhIOHDiAb7/9Vm1Zb3Q++wy46SbXsptucpbXofHjx+PYsWOYMGEC9u/fj2+++QYvvPACpkyZoj72rqJzKioqCtu3b8dPP/2E1NRUzJgxw2Xk4dLldu3ahZSUFJw+fRolJSWXtP1LERUVhU8++QTJycnYunUrhg0b5lL/7HY7hg8fjptvvhkPPPAAFi9ejD179lQ4wjTgvIXirbfeQlJSEo4cOYL//ve/cDgcLt2Fy9LpdJgwYQK2bt2KxMREPPDAA+jVqxd69uwJAJg2bRqWLFmCDz74AAcOHMD8+fOxYsUK9fpTXT0qKzIyEuvWrcOpU6eQXcmw3NOmTcPs2bPxxRdfICUlBU899RSSkpIwadKkGh3Xhqquq5vZbMaYMWMwbdo0rFu3Dnv27MGoUaNczuno6GgMGzYMI0aMwIoVK5Ceno6EhATMnj0bq1evBuD8m+bn52PdunU4ffo0CgsLa7Tc008/jYSEBIwfPx67du3C/v378f7776vX24rqdG3XRavVijFjxmDfvn344Ycf8MILL+Cxxx6DRqOBj48Pxo0bh2nTpuHHH3/Evn37MHbsWBQWFmLMmDEAgOeffx7ffPMNDh48iL1792LVqlWVJscRERFQFAWrVq1CVlYW8vPzy81zqZ/nRERUz9XNreOe88QTTwgA2bNnj1rWuXNnCQ0NLTdy9P/+9z9p37696HQ6adWqlcydO9dlekUDa5UdKEVE5LvvvpOoqCgxGAzyt7/9Tf7zn/9UOZCaiHPwmgceeECCg4PF29tbOnToIKtWrapxbGfPnpXhw4eLv7+/GI1GGThwoDpCrEjFA92IOAf5uv3228VgMEirVq3kv//9b5UDH1W0v9nZ2QJAfv31V3VfBg8eLGazWZo0aSLPPfecjBgxwmWwqpSUFOnVq5cYjUYBIOnp6SLiHETmrrvukoCAADEajdKuXTuZPHlypaN8P/bYY9KmTRsxGAwSGhoqw4cPl9OnT7vMk5aWJgDUgW9KrVy5Uq699lrx8/MTHx8f6dWrl/z888/q9N9//106deokBoNBLqwq27ZtkwEDBojZbBYfHx/p1KmTy6BPFZ0nFx7Dyo5jvZaaKrJ6tdsGT7tQZQOixcfHS48ePUSv10t4eLg8+eSTLiNVV3ROFRcXy6hRo8Tf318CAgJk3Lhx8tRTT7kM2pWZman+PUvP44r+PtVtv6K4Bw8eLCNHjqx0XxMTE6V79+5iMBikbdu28tVXX7mcPy+++KI0bdrU5Zz++uuvRa/Xq7FduN0NGzZIXFycBAYGitFolE6dOqkjtVek9LqwfPlyad26tej1ernhhhvk8OHDLvO999570rp1a9HpdBIdHS3//e9/1WnV1aOy9eHbb7+VqKgo8fLykoiICBEpP5Ca3W6XF198UZo3by46nU46d+4sP/zwgzq9JtehhqwOq5vk5eXJ/fffLyaTScLCwmTOnDnlzuXSpwBERkaKTqeT8PBwueuuu2TXrl3qPI888ogEBwcLAHUk8ZosFx8fL3369BGDwSABAQEycOBA9bOyss+JS6mLFSkdRPH555+X4OBgMZvN8uCDD0pxcbE6T1FRkUyYMEFCQkLEYDBI3759Zdu2ber0l156SWJjY8VoNEpQUJAMHjxYDh06JCIVn6ezZs2S8PBwURRFvTaUjfdSPs9XrlwpV8BXOiKiBksR4U1A1Lht2rQJ/fv3x/Hjx9UBzIjI2Uo9efLky76lhKghGjVqFHJycvD11197OhQiImrkLnkgNaL6zmKx4NixY5gxYwbuueceJtxERERERFTnGvU93XRl++yzzxATE4Nz585hzpw5ng6HiIiIiIiuQOxeTkREREREROQmbOkmIiIiIiIichMm3URERERERERuwqSbiIiIiIiIyE2YdBMRERERERG5iUeSbrut2BObJSIiIiIiIqpTdZ50F+Udx/4Nz6Mo73hdb5qqEBkZiQULFlQ5z8yZM9GlS5c6iYfIkw4fPgxFUZCUlOTpUKrVv39/TJ48udbWt2TJEgQEBKjvPVnvec3xjNo+pxqSUaNGYciQIep7Tx6LK/nvQETU2NR50n3uz52A2HHuz6S63jRVISEhAQ899JD6XlEUfP311y7zTJ06FevWravjyIhq5lK/oJb9kg0ALVu2REZGBjp06FA7wbnRihUr8NJLL7lt/XVV73nNabjK/lBTW+pD0unu+gUA8fHxUBQFOTk5db5tIiKqG151uTERQe5fyXbun0kIa3M7FEWpyxDcym63Q1EUaDQN71b50NDQaucxm80wm811EA3ReVarFXq9vk63qdVqER4eXqfbvFRBQUFuXX919d6dfx9ec6g2XM45Wl39cuf57+66TUREdadOs8Pi/BMoseQAAEos2SjOP+nW7f3vf/9Dx44dYTQaERwcjJtuugkFBQUAAIfDgVmzZqFFixYwGAzo0qULfvzxR3XZin55TkpKgqIoOHz4MIDzv+6vWrUK7du3h8FgwJEjR2CxWDB9+nS0bNkSBoMBbdu2xUcffaSuZ9++fbjttttgNpsRFhaG4cOH4/Tp05XuR+l2vv76a0RHR8Pb2xsDBgzAsWPHXOZ7//330aZNG+j1esTExOCTTz5xmT5z5ky0atUKBoMBzZo1w8SJE9VpF3Yvj4yMBADcddddUBRFfV+2q2d1x7C0i+6KFStw/fXXw2QyoXPnzvj9998r3Vei/v3747HHHsOUKVMQEhKCAQMGAADWr1+Pnj17wmAwoGnTpnjqqadgs9kAOFur169fj4ULF0JRFLWe2u12jBkzBldddRWMRiNiYmKwcOFCdVszZ87Exx9/jG+++UZdLj4+vsLu5VVtvzTuiRMnYvr06QgKCkJ4eDhmzpxZ5b4mJCRgwIABCAkJgb+/P+Li4pCYmKhOj4+Ph16vx4YNG9SyefPmISQkBBkZGep2L2wNfO+999C2bVt4e3sjLCwM//znP6uMYcmSJWjVqhVMJhPuuusunDlzxmV62Xpf2jPgtddeQ7NmzRAdHQ0AOHHiBO69914EBgYiODgYgwcPVq+Vpf7zn//g6quvVo/hY489BoDXHE8qKCjAiBEjYDab0bRpU8ybN6/cPFarFdOnT0fz5s3h4+ODa6+9FvHx8QCc5+gDDzyAc+fOqXWo9LyvarlSmzZtQlxcHEwmEwIDAzFw4EBkZ2dXWqeBmtXFiq4hZdntdkyZMgUBAQEIDg7G9OnTISIu85StX5GRkXj55ZcxatQo+Pv7Y+zYsQCAzZs3o1+/fjAajWjZsiUmTpyoft8AUOn3gsOHD+P6668HAAQGBkJRFIwaNarCbWdnZ2PEiBEIDAyEyWTCrbfeigMHDqjTS78r/PTTT4iNjYXZbMYtt9yiXiuIiMiDxE2K809JzqlEl9exPZ/InnVTZc+6KbJn3VQ5tufTcvMU55+qle2fPHlSvLy8ZP78+ZKeni67du2Sd999V/Ly8kREZP78+eLn5yefffaZ7N+/X6ZPny46nU5SU1NFROTXX38VAJKdna2uc+fOnQJA0tPTRURk8eLFotPppE+fPrJp0ybZv3+/5Ofnyz333CMtW7aUFStWSFpamvz888/y+eefq3GFhITI008/LcnJyZKYmCgDBgyQ66+/vtJ9Kd1O9+7dZfPmzbJ9+3bp2bOn9OnTR51nxYoVotPp5N1335WUlBSZN2+eaLVa+eWXX0RE5KuvvhI/Pz9ZvXq1HDlyRLZu3SoffvihunxERIS8+eabIiKSmZkpAGTx4sWSkZEhmZmZIiLywgsvSOfOndVlqjuG6enpAkDatWsnq1atkpSUFPnnP/8pERERUlJScgl/VbpsDodIfn7dvxyOGocYFxcnZrNZpk2bJvv375fk5GQ5fvy4mEwmGT9+vCQnJ8vKlSslJCREXnjhBRERycnJkd69e8vYsWMlIyNDMjIyxGazidVqleeff162bdsmhw4dkk8//VRMJpN88cUXIiKSl5cn99xzj9xyyy3qchaLRT13d+7cKSJS7fZL4/bz85OZM2dKamqqfPzxx6IoiqxZs6bSfV23bp188sknsm/fPtm3b5+MGTNGwsLCJDc3V51n2rRpEhERITk5OZKUlCQGg0FWrFjhst1JkyaJiEhCQoJotVpZtmyZHD58WBITE2XhwoWVbn/Lli2iKIq89tprkpKSIgsXLpSAgADx9/dX5ylb70eOHClms1mGDx8ue/bskd27d0tBQYG0bdtWRo8eLbt27ZJ9+/bJ0KFDJSYmRiwWi4iIvPfee+Lt7S0LFiyQlJQU2bZtW6O+5jSAqiYiIuPGjZMWLVrImjVrZNeuXXLHHXeI2WxWzykRkaFDh0qfPn3kt99+k4MHD8rcuXPFYDBIamqqWCwWWbBggfj5+al1qPRztqrlRJyfqQaDQcaNGydJSUmyZ88eefvttyUrK6vSOl3Tulj2GlKR2bNni7+/v/zvf/9T65+vr68MHjzYZV0XHouIiAjx8/OTuXPnyoEDB+TAgQOya9cuMZvN8uabb0pqaqps2rRJunbtKqNGjVKXq+x7gc1mk+XLlwsASUlJkYyMDMnJyalw23feeafExsbKb7/9JklJSTJw4ECJiooSq9UqIue/K9x0002SkJAgO3bskNjYWBk6dOjFnRRERFTr3JZ0H9m1+K/k+uJeR3YtqZXt79ixQwDI4cOHK5zerFkzeeWVV1zKevToIePHjxeRmifdACQpKUmdJyUlRQDI2rVrK9zujBkz5Oabb3YpO3bsmPqBW5HS7WzZskUtS05OFgCydetWERHp06ePjB071mW5u+++W2677TYREZk3b55ER0erH85lXZh0i4gAkJUrV7rMU/YLcHXHsPQL8P/93/+p0/fu3SsAKv0SRG6Wny8C1P0rP7/GIcbFxUmXLl1cyp555hmJiYkRxwUZxbvvvitms1nsdru63IVfUCszfvx4+cc//qG+HzlypMuXbBEpl3TXdPvXXXedy3p69OghTz75ZLUxlbLZbOLr6yvfffedWmaxWKRr165yzz33yNVXXy0PPvigyzIX7vfy5cvFz8/PJWmvyn333Se33HKLS9m9995bbdIdFhamJtMiIh999FG542OxWMRoNMpPP/0kIs7rxbPPPltpLI3tmtMAqprk5eWJXq9XfxQWETlz5owYjUb1nDp48KAoiiInTpxwWfbGG2+Up59+WkScn1EXnjM1Xe6+++6Tvn37VhpfRXW6pnWx7DWkIk2bNpXXX39dfV9SUiItWrSoNukeMmSIy3qGDx8uDz30kEvZhg0bRKPRSFFRUbXfCyr6vlF226mpqQJANm3apE4/ffq0GI1G+fLLL0Xk/HeFgwcPqvO8++67EhYWVu2xICIi93Jb9/LmsffCr0nni1rGr0kXNI+9p1a237lzZ9x4443o2LEj7r77bixatAjZ2dkAgNzcXJw8eRJ9+/Z1WaZv375ITk6+qO3o9Xp06tRJfZ+UlAStVou4uLgK59+xYwd+/fVX9V5Fs9mMdu3aAQDS0tIq3Y6Xlxe6d++uvm/Xrh0CAgLUeJOTk6vcn7vvvhtFRUVo3bo1xo4di5UrV7p0x7tYF3MMLzw+TZs2BQBkZmZe8rap8bvwXAec53fv3r1dxoDo27cv8vPzcfx41U9C+OCDD9C9e3eEhobCbDZj0aJFOHr06EXFU9PtX3iuA87zvapzPTMzE4888giio6Ph7+8Pf39/5Ofnu8Sn1+vx6aefYvny5SgqKqryKQMDBgxAREQEWrdujeHDh2Pp0qUoLCysdr8uVPZ9RTp27OhyH+uOHTtw8OBB+Pr6qte1oKAgFBcXIy0tDZmZmTh58iRuvPHGatddGV5zal9aWhqsVqvL3zwoKAgxMTHq+8TERIgIoqOjXT631q9fX+VnVk2WS0pKuuhzoqZ1sew1pKxz584hIyPDZd/Lfs5Wpuw8O3bswJIlS1z2c+DAgXA4HEhPT6/2e0FNJCcnw8vLC9dee61aFhwcjJiYGJfz32QyoU2bNur76q5BRERUN9w2kJrWy4gWVw9HTlA7ZKQuhzgcABzlZ1Q0UBQNmsb8AwHhPWptYDWtVou1a9di8+bNWLNmDd5++208++yz2Lp1K4KDg52bLrMtEVHLSgdDkwvu7yopKSm3HaPR6LIeo9FYZVwOhwODBg3C7Nmzy00r/XJYmYqOzYVlVe1Py5YtkZKSgrVr1+Lnn3/G+PHjMXfuXKxfvx46na7K7V5MTBdus9SF6y+d5nBUcC6Q+5lMQH6+Z7Z7EXx8fFzeV3ReldbNqq4ZX375JR5//HHMmzcPvXv3hq+vL+bOnYutW7deVDw13X7ZuqQoSpXn+qhRo5CVlYUFCxYgIiICBoMBvXv3htVqdZlv8+bNAICzZ8/i7Nmz5Y5PKV9fXyQmJiI+Ph5r1qzB888/j5kzZyIhIaHC0aUvvL5djLLbdzgcuOaaa7B06dJy84aGhtbq4JIN5ZrTEKpaTf7+DocDWq0WO3bsgFardZlW1SB3NVmuus/LymKuSV2srI7UhorO/4cffthlnJRSrVq1wsGDBy97m5X9rcoej4quQZdaz4mIqPa4dSA1RVEQ2Kwn2vR4AopGW8k8WrTp8QQCm/as9ZHMFUVB37598eKLL2Lnzp3Q6/VYuXIl/Pz80KxZM2zcuNFl/s2bNyM2NhbA+dG8LxyApCbP7O3YsSMcDgfWr19f4fRu3bph7969iIyMRFRUlMurqi8JNpsN27dvV9+npKQgJydHbSWPjY2tcn8A5xecO++8E2+99Rbi4+Px+++/Y/fu3RVuT6fTwW63VxpPTY4h1UOKAvj41P3rMut2+/btsXnzZpcvj5s3b4avry+aN28OwNkiXPac3bBhA/r06YPx48eja9euiIqKKtc6V9Fyl7L9S7FhwwZMnDgRt912mzrAWNlBFdPS0vD4449j0aJF6NWrF0aMGFFlAunl5YWbbroJc+bMwa5du3D48GH88ssvle7Xli1bXMrKvq+Jbt264cCBA2jSpEm565q/vz98fX0RGRlZ5eO/Gts1pyFUtaioKOh0Ope/eXZ2NlJTU9X3Xbt2hd1uR2ZmZrm/bekI/xXVoZos16lTpyrPiYrWW1t10d/fH02bNnXZd5vNhh07dtR4HaVKP9fL7mdUVBT0en213wtKe41Udf63b98eNpvN5QfDM2fOIDU1tV6e/0RE5KpuRi9XNBBH+VZiABBHCRSl9sPYunUrXn31VWzfvh1Hjx7FihUrkJWVpX44TZs2DbNnz8YXX3yBlJQUPPXUU0hKSsKkSZMAOL+MtGzZEjNnzkRqaiq+//77Ckd1LSsyMhIjR47E6NGj8fXXXyM9PR3x8fH48ssvAQCPPvoozp49i/vuuw/btm3DoUOHsGbNGowePbrKD1ydTocJEyZg69atSExMxAMPPIBevXqhZ8+e6v4sWbIEH3zwAQ4cOID58+djxYoVmDp1KgDnqKYfffQR9uzZg0OHDuGTTz6B0WhEREREpfuxbt06nDp1Su2WX1Z1x5CotowfPx7Hjh3DhAkTsH//fnzzzTd44YUXMGXKFLUVNTIyElu3bsXhw4dx+vRpOBwOREVFYfv27fjpp5+QmpqKGTNmICEhwWXdkZGR2LVrF1JSUnD69OkKe7TUZPuXIioqCp988gmSk5OxdetWDBs2zKX1z263Y/jw4bj55pvxwAMPYPHixdizZ0+l16JVq1bhrbfeQlJSEo4cOYL//ve/cDgcLt2FLzRx4kT8+OOPmDNnDlJTU/HOO++4jAZeU8OGDUNISAgGDx6MDRs2ID09HevXr8ekSZPULr8zZ87EvHnz8NZbb+HAgQNITEzE22+/ra6D15y6ZzabMWbMGEybNg3r1q3Dnj17MGrUKJdzOjo6GsOGDcOIESOwYsUKpKenIyEhAbNnz8bq1asBOP92+fn5WLduHU6fPo3CwsIaLff0008jISEB48ePx65du7B//368//776g9PFdXp2qyLkyZNwuuvv46VK1di//79GD9+fLlnZdfEk08+id9//x2PPvookpKScODAAXz77beYMGGCuh9VfS+IiIiAoihYtWoVsrKykF9BF4m2bdti8ODBGDt2LDZu3Ig//vgD999/P5o3b47BgwdfdMxERFTH6uLG8czD62TPuifUUcv3rJsie34pHcX8Cck6vK7Wt7lv3z4ZOHCghIaGisFgkOjoaHn77bfV6Xa7XV588UVp3ry56HQ66dy5s/zwww8u69i4caN07NhRvL295W9/+5t89dVX5QZSKzt4jIhIUVGRPP7449K0aVPR6/USFRUl//nPf9Tpqampctddd0lAQIAYjUZp166dTJ482WVgmAuVbmf58uXSunVr0ev1csMNN5QbJO69996T1q1bi06nk+joaPnvf/+rTlu5cqVce+214ufnJz4+PtKrVy/5+eef1ellB1L79ttvJSoqSry8vCQiIkJEyg9qVN0xLDsYlYhIdna2AJBff/21wn0lqmxAtPj4eOnRo4fo9XoJDw+XJ5980mVE6pSUFOnVq5cYjUa1nhYXF8uoUaPE399fAgICZNy4cfLUU0+5nMeZmZkyYMAAMZvN6rlZ0blb3fYrinvw4MEycuTISvc1MTFRunfvLgaDQdq2bStfffWVS1188cUXpWnTpnL69Gl1ma+//lr0er0a24Xb3bBhg8TFxUlgYKAYjUbp1KmTOlJ7ZT766CNp0aKFGI1GGTRokLzxxhvVDqRWduA5EZGMjAwZMWKEhISEiMFgkNatW8vYsWPl3Llz6jwffPCBxMTEiE6nk6ZNm8qECRPUabzmeEZeXp7cf//9YjKZJCwsTObMmVPuXC59CkBkZKTodDoJDw+Xu+66S3bt2qXO88gjj0hwcLAAUEcSr8ly8fHx0qdPHzEYDBIQECADBw5UBxSrqE6XLnOxdbEiJSUlMmnSJPHz85OAgACZMmWKjBgxotqB1C78rCy1bds29Tri4+MjnTp1chn0r7rvBbNmzZLw8HBRFEW9ZpTd9tmzZ2X48OHi7+8vRqNRBg4cqI4EL1Lxd5KVK1dKHX3VIyKiKigi7r/ZJ23bfBTnnwAA+AREIaztIJw68C0Kc5zdPL19W6BNj8fdHUaDtWTJEkyePPmSfoEnIiIiIiIiz3F793JrcfZfCbeCsDa3I6LrwzD6tkBk10fQpM3tABQU5x1HSXHF3QmJiIiIiIiIGiq3jV5eSoECc1A7hLYeCJNfq/PligahETfAJ6ANstLXAKjdQdSIiIiIiIiIPK1OupcTERERERERXYnqZvRyIiIiIiIioisQk24iIiIiIiIiN2HSTUREREREROQmTLqJiIiIiIiI3IRJNxEREREREZGbMOkmIiIiIiIichMm3URUr/Tv3x+TJ0/2dBhEVyzWQSIiotrFpJuI6pUVK1bgpZde8nQYV6TDhw9DURQkJSV5OhRqIJYsWYKAgIBaXy8TfyIiaky8PB0AEdGFgoKCPB0CVcNqtUKv13s6DKJq8VwlIqL6gC3dRFSvlG3hioyMxMsvv4wRI0bAbDYjIiIC33zzDbKysjB48GCYzWZ07NgR27dvV5c5c+YM7rvvPrRo0QImkwkdO3bEZ5995rKdvLw8DBs2DD4+PmjatCnefPPNctu2Wq2YPn06mjdvDh8fH1x77bWIj4+vMv79+/fjuuuug7e3N9q3b4+ff/4ZiqLg66+/Vuc5ceIE7r33XgQGBiI4OBiDBw/G4cOH1ekOhwOzZs1CixYtYDAY0KVLF/z444/q9NIW6S+//BJ/+9vfYDQa0aNHD6SmpiIhIQHdu3eH2WzGLbfcgqysLJf4Fi9ejNjYWHh7e6Ndu3Z477331GlXXXUVAKBr165QFAX9+/cHAIwaNQpDhgzBa6+9hmbNmiE6OhqzZs1Cx44dy+3/Nddcg+eff77KY0T1R0FBgVq3mjZtinnz5rlMr6oOxMfH44EHHsC5c+egKAoURcHMmTOrXa7Upk2bEBcXB5PJhMDAQAwcOBDZ2dkYNWoU1q9fj4ULF6rrLa0f69evR8+ePWEwGNC0aVM89dRTsNls6jr79++Pxx57DFOmTEFISAgGDBjgrkNHRERUc0JEV578fOfL4ThfZrE4y4qLK57Xbj9fZrU6y4qKqp/3IsXFxcmkSZPU9xERERIUFCQffPCBpKamyrhx48TX11duueUW+fLLLyUlJUWGDBkisbGx4vhrf44fPy5z586VnTt3Slpamrz11lui1Wply5Yt6noffPBBiYiIkJ9//ll2794td911l/j6+rpse+jQodKnTx/57bff5ODBgzJ37lwxGAySmppaYex2u11iYmJkwIABkpSUJBs2bJCePXsKAFm5cqWIiBQUFEjbtm1l9OjRsmvXLtm3b58MHTpUYmJixGKxiIjI/Pnzxc/PTz777DPZv3+/TJ8+XXQ6nbrd9PR0ASDt2rWTH3/8Ufbt2ye9evWSbt26Sf/+/WXjxo2SmJgoUVFR8sgjj6jxffjhh9K0aVNZvny5HDp0SJYvXy5BQUGyZMkSERHZtm2bAJCff/5ZMjIy5MyZMyIiMnLkSDGbzTJ8+HDZs2eP7N69W44dOyYajUa2bdumrv+PP/4QRVEkLS3tEv/6jU89rmoiIjJu3Dhp0aKFrFmzRnbt2iV33HGHmM1mtR5UVQcsFossWLBA/Pz8JCMjQzIyMiQvL6/a5UREdu7cKQaDQcaNGydJSUmyZ88eefvttyUrK0tycnKkd+/eMnbsWHW9NptNjh8/LiaTScaPHy/JycmycuVKCQkJkRdeeEHdn7i4ODGbzTJt2jTZv3+/JCcnX94BIiIiqgVMuomuRIDzlZl5vuzll51lDz7oOq/J5CxPTz9f9uabzrKhQ13nDQlxlu/Zc8mhVZR033///er7jIwMASAzZsxQy37//XcBIBkZGZWu97bbbpMnnnhCRERyc3NFp9PJV199pU7PyckRk8mkbvvgwYOiKIqcOHHCZT033nijPP300xVu44cffhAvLy+XONauXeuSdH/00UcSExOj/kAgImKxWMRoNMpPP/0kIiLNmjWTV155xWXdPXr0kPHjx4vI+aT7//7v/9Tpn332mQCQdevWqWWvvfaaxMTEqO9btmwpy5Ytc1nvSy+9JL1793ZZ786dO13mGTlypISFhak/CpS69dZbZdy4cer7yZMnS//+/Ss8NleqelzVJC8vT/R6vXz++edq2ZkzZ8RoNMqkSZNqVAcWL14s/v7+LtNrstx9990nffv2rTS2stcBEZFnnnmmXN159913xWw2i/2vXx/i4uKkS5cuNTsAREREdYT3dBNRvdepUyf1/2FhYQDg0rW5tCwzMxPh4eGw2+14/fXX8cUXX+DEiROwWCywWCzw8fEBABw6dAglJSXo2bOnug5/f3/ExMSo7xMTEyEiiI6OdonFYrEgODi4wjhTUlLQsmVLhIeHq2UXbgMAduzYgYMHD8LX19elvLi4GGlpacjNzcXJkyfRt29fl+l9+/bFH3/8cdHHJTMzEwCQlZWFY8eOYcyYMRg7dqw6j81mg7+/f4X7c6GOHTuWuzd27NixGD16NObPnw+tVoulS5eW655M9VdaWhqsVit69+6tlgUFBan14FLqQE2XS0pKwt13331R8SYnJ6N3795QFEUt69u3L/Lz83H8+HG0atUKANC9e/eLWi8REZG7MekmuhLl5zv/NZnOl02bBkyeDHiVuSz8lbTBaDxf9uijwNixgFbrOm/pfckXzlsLdDqd+v/SL9wVlTkcDgDAvHnz8Oabb2LBggXo2LEjfHx8MHnyZFitVgCAiLgsV6q0vHRdWq0WO3bsgLbMfprN5grjFJFy6yzL4XDgmmuuwdKlS8tNCw0NLbdPVa27Jsel9JiU/rto0SJce+21Luspu38VKf3B4kKDBg2CwWDAypUrYTAYYLFY8I9//KPadV1J6nNVu/B8r8il1IGaLme8hMArqgMV1eWKzlUiIiJPYtJNdCWq6EupXu981WRenc75qsm8HrBhwwYMHjwY999/PwBnEnDgwAHExsYCANq0aQOdTodt27ahZcuWAIDc3FwcOHAAcXFxAJyDidntdmRmZuJvf/tbjbbbrl07HD16FH/++afa8pyQkOAyT7du3fDFF1+gSZMm8PPzq3A9zZo1w8aNG9GvXz+1bPPmzeVazS9GWFgYmjdvjkOHDmHYsGEVzlPakm2322u0Ti8vL4wcORKLFy+GwWDAv/71L5guzC6pXle1qKgo6HQ6bNmyRW0lzs7ORmpqKuLi4mpUB/R6fbnzpSbLderUCevWrcOLL75Y4/W2b98ey5cvd0m+N2/eDF9fXzRv3vyi9p2IiKgucfRyImp0oqKisHbtWmzevBnJycl4+OGHcerUKXW6r68vRo4ciWnTpuHXX3/F3r17MXr0aGg0GvXLfHR0NIYNG4YRI0ZgxYoVSE9PR0JCAmbPno3Vq1dXuN0BAwagTZs2GDlyJHbt2oVNmzbh2WefBXC+JW7YsGEICQnB4MGDsWHDBqSnp2P9+vWYNGkSjh8/DgCYNm0aZs+ejS+++AIpKSl46qmnkJSUhEmTJl3WcZk5cyZee+01LFy4EKmpqdi9ezcWL16M+fPnAwCaNGkCo9GIH3/8EX/++SfOnTtX7ToffPBB/PLLL/jhhx8wevToy4qP6pbZbMaYMWMwbdo0rFu3Dnv27MGoUaOg0Ti/GtSkDkRGRiI/Px/r1q3D6dOnUVhYWKPlnn76aSQkJGD8+PHYtWsX9u/fj/fffx+nT59W17t161YcPnwYp0+fhsPhwPjx43Hs2DFMmDAB+/fvxzfffIMXXngBU6ZMUWMmIiKqj/gpRUSNzowZM9CtWzcMHDgQ/fv3R3h4OIYMGeIyz/z589G7d2/ccccduOmmm9C3b1/1UVqlFi9ejBEjRuCJJ55ATEwM7rzzTmzdulVtHS9Lq9Xi66+/Rn5+Pnr06IEHH3wQzz33HACo6zWZTPjtt9/QqlUr/P3vf0dsbCxGjx6NoqIiteV74sSJeOKJJ/DEE0+gY8eO+PHHH/Htt9+ibdu2l3VcHnzwQfzf//0flixZgo4dOyIuLg5LlixRHxXm5eWFt956C//+97/RrFkzDB48uNp1tm3bFn369EFMTEy5butU/82dOxf9+vXDnXfeiZtuugnXXXcdrrnmGnV6dXWgT58+eOSRR3DvvfciNDQUc+bMqdFy0dHRWLNmDf744w/07NkTvXv3xjfffAOvv/rcT506FVqtFu3bt0doaCiOHj2K5s2bY/Xq1di2bRs6d+6MRx55BGPGjFHrGBERUX2lSHU3dRERXQEKCgrQvHlzzJs3D2PGjKm19W7atAnXXXcdDh48iDZt2tTaeusLEUG7du3w8MMPY8qUKZ4Oh4iIiKje4T3dRHRF2rlzJ/bv34+ePXvi3LlzmDVrFgDUqHW3KitXroTZbEbbtm1x8OBBTJo0CX379m2UCXdmZiY++eQTnDhxAg888ICnwyEiIiKql5h0E9EV64033kBKSgr0ej2uueYabNiwASEhIZe1zry8PEyfPh3Hjh1DSEgIbrrppkb7GK2wsDCEhITgww8/RGBgoKfDISIiIqqX2L2ciIiIiIiIyE04kBoRERERERGRmzDpJiIiIiIiInITJt1EREREREREbsKkm4iIiIiIiMhNmHQTERERERERuQmTbiIiIiIiIiI3YdJNRPVe//79MXnyZE+HcVFmzpyJLl26XNQytbWfZ86cQZMmTXD48OHLXldtuZTjUdaqVavQtWtXOByO2gmKKsT6dnEupb4tWbIEAQEBl73tUocPH4aiKEhKSrrkdVgsFrRq1Qo7duyotbiIiMiJSTcRNTrx8fFQFAU5OTkei2Hq1KlYt27dRS2zYsUKvPTSS5e97ddeew2DBg1CZGTkZa+rLh09ehSDBg2Cj48PQkJCMHHiRFitVnX6HXfcAUVRsGzZMg9GSWWxvl18fbv33nuRmpp62du+GCKCmTNnolmzZjAajejfvz/27t2rTjcYDJg6dSqefPLJOo2LiOhKwKSbiMr74gvglVeqnueVV5zzkQsRgc1mg9lsRnBw8EUtGxQUBF9f38vaflFRET766CM8+OCDl7Weuma323H77bejoKAAGzduxOeff47ly5fjiSeecJnvgQcewNtvv+2hKN2D1e3SNdT6ZjQa0aRJk8va9sWaM2cO5s+fj3feeQcJCQkIDw/HgAEDkJeXp84zbNgwbNiwAcnJyXUaGxFRY8ekm4jKO3gQeO45oLJWoJdeck4/eLDWN11QUIARI0bAbDajadOmmDdvXrl5Pv30U3Tv3h2+vr4IDw/H0KFDkZmZCcDZzfL6668HAAQGBkJRFIwaNQoA8OOPP+K6665DQEAAgoODcccddyAtLa3KeCwWCyZOnIgmTZrA29sb1113HRISEtTppa18P/30E7p37w6DwYANGzaU6+5qs9kwceJEddtPPvkkRo4ciSFDhqjzlO3uGhkZiVdffRWjR4+Gr68vWrVqhQ8//LDKeH/44Qd4eXmhd+/eAACHw4EWLVrggw8+cJkvMTERiqLg0KFDAJytzIMHD4bZbIafnx/uuece/PnnnwCA/fv3w2QyubQwr1ixAt7e3ti9ezcA4Ny5c3jooYfQpEkT+Pn54YYbbsAff/xRZawXWrNmDfbt24dPP/0UXbt2xU033YR58+Zh0aJFyM3NVee78847sW3bNjXuxsCD1Y31rZbr24Uxfv/99+jcuTO8vb1x7bXXqnUFcO1eLiK46aabcMstt0BEAAA5OTlo1aoVnn32WXWZxYsXIzY2Ft7e3mjXrh3ee++9KmO7kIhgwYIFePbZZ/H3v/8dHTp0wMcff4zCwkKXeh0cHIw+ffrgs88+q/G6iYioeky6iai8Z58FZs0Cnn++fCbw0kvO8lmznPPVsmnTpuHXX3/FypUrsWbNGsTHx5e7x9BqteKll17CH3/8ga+//hrp6enqF/2WLVti+fLlAICUlBRkZGRg4cKFAJwJxpQpU5CQkIB169ZBo9HgrrvuqvIe4enTp2P58uX4+OOPkZiYiKioKAwcOBBnz54tN99rr72G5ORkdOrUqdx6Zs+ejaVLl2Lx4sXYtGkTcnNz8fXXX1d7PObNm4fu3btj586dGD9+PMaNG4f9+/dXOv9vv/2G7t27q+81Gg3+9a9/YenSpS7zLVu2DL1790br1q0hIhgyZAjOnj2L9evXY+3atUhLS8O9994LAGjXrh3eeOMNjB8/HkeOHMHJkycxduxYvP766+jYsSNEBLfffjtOnTqF1atXY8eOHejWrRtuvPHGcsepMr///js6dOiAZs2aqWUDBw6ExWJx+ftHRESgSZMm2LBhQ43W2xB4sLqxvpVxufXtQtOmTcMbb7yBhIQENGnSBHfeeSdKSkrKzacoCj7++GNs27YNb731FgDgkUceQVhYGGbOnAkAWLRoEZ599lm88sorSE5OxquvvooZM2bg448/rnafACA9PR2nTp3CzTffrJYZDAbExcVh8+bNLvP27NmzUdUvIqJ6QYiIKjNrlgjg/Lei97UsLy9P9Hq9fP7552rZmTNnxGg0yqRJkypdbtu2bQJA8vLyRETk119/FQCSnZ1d5fYyMzMFgOzevbvC6fn5+aLT6WTp0qVqmdVqlWbNmsmcOXNctvX111+7LPvCCy9I586d1fdhYWEyd+5c9b3NZpNWrVrJ4MGD1bK4uDiX/YyIiJD7779ffe9wOKRJkyby/vvvV7pPgwcPltGjR7uUJSYmiqIocvjwYRERsdvt0rx5c3n33XdFRGTNmjWi1Wrl6NGj6jJ79+4VALJt2za17Pbbb5e//e1vcuONN8qAAQPE4XCIiMi6devEz89PiouLXbbbpk0b+fe//13h8Shr7NixMmDAgHLler1eli1b5lLWtWtXmTlzZqXraqjquLqxvrmpvpXGWNFx/eKLL0REZPHixeLv7++y3JdffikGg0GefvppMZlMkpKSok5r2bJluXrw0ksvSe/evUVEJD09XQDIzp07K4xz06ZNAkBOnDjhUj527Fi5+eabXcoWLlwokZGRle4zERFdPLZ0E1HlZsw43wRnMJxvcpsxwy2bS0tLg9VqdemqGRQUhJiYGJf5du7cicGDByMiIgK+vr7o378/AGcX6erWP3ToULRu3Rp+fn646qqrqlwuLS0NJSUl6Nu3r1qm0+nQs2fPcvc8VtbaBTi7Xv/555/o2bOnWqbVanHNNddUGS8Al1Y8RVEQHh6udu2tSFFREby9vV3Kunbtinbt2qldRtevX4/MzEzcc889AIDk5GS0bNkSLVu2VJdp3749AgICXPbzP//5D3bt2oXExEQsWbIEiqIAAHbs2IH8/HwEBwfDbDarr/T09Gq7E1+odH0XEpFy5UajEYWFhTVeb0NRx9WN9a0CtVHfSlV0XKu6V/ruu+/G3//+d7z22muYN28eoqOjAQBZWVk4duwYxowZ41K/Xn755YuqX6X7dKErqX4REXmSl6cDIKJ6bsYM4OWXAasV0OvdlwEA6v2MVSkoKMDNN9+Mm2++GZ9++ilCQ0Nx9OhRDBw40GWk64oMGjQILVu2xKJFi9CsWTM4HA506NCh0uVK46nJF1UfH59qY69oPdXR6XTl1lFV99yQkBBkZ2eXKx82bBiWLVuGp556CsuWLcPAgQMREhKixlGThPePP/5AQUEBNBoNTp06pXYFdzgcaNq0KeLj48uto6aPRQoPD8fWrVtdyrKzs1FSUoKwsDCX8rNnzyI0NLRG621o6rC6sb5VoLbqW01julBhYSF27NgBrVaLAwcOqOWl21+0aBGuvfZal2W0Wm2NthseHg4AOHXqFJo2baqWZ2ZmXlH1i4jIU9jSTURVe+ml8xmA1Vr5aE+1ICoqCjqdDlu2bFHLsrOzXR6ts3//fpw+fRqvv/46/va3v6Fdu3blWqL0ej0A54jYpc6cOYPk5GQ899xzuPHGGxEbG1vtl+WoqCjo9Xps3LhRLSspKcH27dsRGxtb4/3y9/dHWFgYtm3bppbZ7Xbs3Lmzxuuoqa5du2Lfvn3lyocOHYrdu3djx44d+N///odhw4ap09q3b4+jR4/i2LFjatm+fftw7tw5dT/Pnj2LUaNG4dlnn8UDDzyAYcOGoaioCADQrVs3nDp1Cl5eXoiKinJ5lSb21enduzf27NmDjIwMtWzNmjUwGAwuLZTFxcVIS0tD165dL+7ANBB1WN1Y32pBZfUNQIXHtV27dpWu64knnoBGo8EPP/yAt956C7/88gsAICwsDM2bN8ehQ4fK1a/S3gPVueqqqxAeHo61a9eqZVarFevXr0efPn1c5t2zZ0+jrV9ERJ7CpJuIKnfhKE4WS+WjPdUSs9mMMWPGYNq0aVi3bh327NmDUaNGQaM5f6lq1aoV9Ho93n77bRw6dAjffvttuWftRkREQFEUrFq1CllZWcjPz0dgYCCCg4Px4Ycf4uDBg/jll18wZcqUKuPx8fHBuHHjMG3aNPz444/Yt28fxo4di8LCQowZM+ai9m3ChAl47bXX8M033yAlJQWTJk1CdnZ2lS1fl2LgwIHYu3dvuQTnqquuQp8+fTBmzBjYbDYMHjxYnXbTTTehU6dOGDZsGBITE7Ft2zaMGDECcXFxajfeRx55BC1btsRzzz2H+fPnQ0QwdepUdfnevXtjyJAh+Omnn3D48GFs3rwZzz33HLZv316juG+++Wa0b98ew4cPx86dO7Fu3TpMnToVY8eOhZ+fnzrfli1bYDAYXLruNhZ1XN1Y32pBZfUNAGbNmuVyXENCQlxGT7/Q999/j//85z9YunQpBgwYgKeeegojR45U1ztz5ky89tprWLhwIVJTU7F7924sXrwY8+fPr1GciqJg8uTJePXVV7Fy5Uo1JpPJhKFDh7rMu2HDBpcB14iIqBZ45E5yIqr/KhvFqQ4GU7v//vvFZDJJWFiYzJkzp9yAR8uWLZPIyEgxGAzSu3dv+fbbb8sNIjRr1iwJDw8XRVFk5MiRIiKydu1aiY2NFYPBIJ06dZL4+HgBICtXrqw0nqKiIpkwYYKEhISIwWCQvn37ugwuVtkgUmUHdiopKZHHHntM/Pz8JDAwUJ588km5++675V//+pc6T0UDO7355psu6+3cubO88MILVR7DXr16yQcffFCu/N133xUAMmLEiHLTjhw5Infeeaf4+PiIr6+v3H333XLq1CkREfn444/Fx8dHUlNT1fm3b98uer1evv/+exERyc3NlQkTJkizZs1Ep9NJy5YtZdiwYergbNUNpFYaw+233y5Go1GCgoLkscceKzc420MPPSQPP/xwletpiDxU3Vjf3FDfSmP87rvv5Oqrrxa9Xi89evSQpKQkdZ4LB1LLzMyUsLAwefXVV13i79mzp9xzzz1q2dKlS6VLly6i1+slMDBQ+vXrJytWrBCR6gdSE3EODPfCCy9IeHi4GAwG6devX7lB7TZv3iwBAQFSWFhY5T4TEdHFUURqcJMTEV1ZXnnF+WDgykZxKm2Se/ll9zzH6ArgcDgQGxuLe+65p1zL4eVavXo1pk6dij179ri0WjZ0WVlZaNeuHbZv317jbrUNAaub+9VlfYuPj8f111+P7OzsGo9pUF/cfffd6Nq1K5555hlPh0JE1KhwIDUiKi8qqupv+DNmABqNcz6qkSNHjmDNmjWIi4uDxWLBO++8g/T09HJdO2vDbbfdhgMHDuDEiRMuI5I3dOnp6XjvvfcaVcINsLq5A+vbxbNYLOjcuTMef/xxT4dCRNTosKWbiKgOHDt2DP/617+wZ88eiAg6dOiA119/Hf369fN0aESNjifrW0Nu6SYiIvdg0k1ERERERETkJo3nZj8iIiIiIiKieoZJNxEREREREZGbMOkmIiIiIiIichMm3URERERERERuwqSbiIiIiIiIyE2YdBMRERERERG5CZNuIiIiIiIiIjdh0k1EVIH+/ftj8uTJHt+2J+Oo6+0vXLgQV111FUwmE4YMGYJz587VyXaJiIiI3MnL0wEQEdWW/v37o0uXLliwYMFlL7dixQrodLraDfAS1FUclR27utr+M888g6+++goff/wxzGYz7rrrLrz44ouYP3++27dNRERE5E5s6Saies9qtdb5NoOCguDr61vn273YONx9bOriOCQkJGD27Nn44osv0K9fP3Tr1g0PP/wwVq1a5dbtEhEREdUFJt1EV6KCgspfxcU1n7eoqPp5L0H//v3x2GOPYcqUKQgJCcGAAQNgsVgwceJENGnSBN7e3rjuuuuQkJCgLjNq1CisX78eCxcuhKIoUBQFhw8fxo8//ojrrrsOAQEBCA4Oxh133IG0tLRqlyvbrbq67ffv3x8TJ07E9OnTERQUhPDwcMycObPafS0oKMCIESNgNpvRtGlTzJs3r9yxuDCOio4NAIgI5syZg9atW8NoNKJz58743//+57Iuh8OB2bNnIyoqCgaDAa1atcIrr7xS6TGoaPvuOA5vvPEGbrjhBnTr1k0tCw0NxenTp6s9fkRERET1HZNuoiuR2Vz56x//cJ23SZPK5731Vtd5IyPLz3OJPv74Y3h5eWHTpk3497//jenTp2P58uX4+OOPkZiYiKioKAwcOBBnz54F4LwfuHfv3hg7diwyMjKQkZGBli1boqCgAFOmTEFCQgLWrVsHjUaDu+66Cw6Ho8rlyqpu+6Ux+/j4YOvWrZgzZw5mzZqFtWvXVrmf06ZNw6+//oqVK1dizZo1iI+Px44dOy7q2ADAc889h8WLF+P999/H3r178fjjj+P+++/H+vXr1eWefvppzJ49GzNmzMC+ffuwbNkyhIWF1fgYuOM4WCwWfPfdd7jrrrtcyouKiuDv71/lcSAiIiJqEISIrjxA5a/bbnOd12SqfN64ONd5Q0LKz3MJ4uLipEuXLur7/Px80el0snTpUrXMarVKs2bNZM6cOS7LTZo0qcp1Z2ZmCgDZvXt3lctdWFaT7cfFxcl1113nso4ePXrIk08+WWkseXl5otfr5fPPP1fLzpw5I0ajUd122djKHpvS+Ly9vWXz5s0u5WPGjJH77rtPRERyc3PFYDDIokWLKoylsmPn7uOwefNmASDe3t7i4+OjvvR6vQwcOLDCZYiIiIgaEg6kRnQlys+vfJpW6/o+M7PyeTVlOsv81SW5NnTv3l39f1paGkpKStC3b1+1TKfToWfPnkhOTq5yPWlpaZgxYwa2bNmC06dPqy3cR48eRYcOHWoUS02336lTJ5flmjZtiswqjl9aWhqsVit69+6tlgUFBSEmJqbKeC48NgCwb98+FBcXq13NS1mtVnTt2hUAkJycDIvFghtvvLHKdVfFHcchNTUV3t7e2L17t0v5nXfe6bIdIiIiooaKSTfRlcjHx/PzVruq8+sSEQCAoigu84hIubKyBg0ahJYtW2LRokVo1qwZHA4HOnTocFEDkNV0+2VH+VYURU3yq1rvxfIpc5xLt/H999+jefPmLtMMBgMAwGg0XtK2LuSO45Cbm4smTZogKipKLTt69Cj279+Pf5S91YGIiIioAeI93URU70VFRUGv12Pjxo1qWUlJCbZv347Y2Fi1TK/Xw263q+/PnDmD5ORkPPfcc7jxxhsRGxuL7Ozscusvu9ylbv9S9kun02HLli1qWXZ2NlJTUy9qPe3bt4fBYMDRo0cRFRXl8iq9N7tt27YwGo1Yt25dheuo7hiUxlvbxyEkJAS5ubkuP0C88soruO2229C+fftLWicRERFRfcKWbiKq93x8fDBu3DhMmzYNQUFBaNWqFebMmYPCwkKMGTNGnS8yMhJbt27F4cOHYTabERQUhODgYHz44Ydo2rQpjh49iqeeeqrc+ita7lK2f7HMZjPGjBmDadOmITg4GGFhYXj22WehKdttvxq+vr6YOnUqHn/8cTgcDlx33XXIzc3F5s2bYTabMXLkSHh7e+PJJ5/E9OnTodfr0bdvX2RlZWHv3r0YM2ZMhcegbBzuOA433HADiouL8frrr+O+++7DsmXL8O2332Lbtm2XtD4iIiKi+oZJNxE1CK+//jocDgeGDx+OvLw8dO/eHT/99BMCAwPVeaZOnYqRI0eiffv2KCoqQnp6Oj7//HNMnDgRHTp0QExMDN566y3079/fZd0VLXcp278Uc+fORX5+Pu688074+vriiSeewLlz5y56PS+99BKaNGmC1157DYcOHUJAQAC6deuGZ555Rp1nxowZ8PLywvPPP4+TJ0+iadOmeOSRRwBUfAwiIyPLbae2j0NYWBiWLFmCadOm4aWXXsINN9yAjRs3Vjp6OhEREVFDo8il3lRIRERERERERFXiPd1EREREREREbsKkm4iIiIiIiMhNmHQTERERERERuQmTbiIiIiIiIiI3YdJNRERERERE5CZMuomIiIiIiIjchEk3ERERERERkZsw6SYiIiIiIiJyEybdRERERERERG7CpJuIiIiIiIjITZh0ExEREREREbkJk24iIiIiIiIiN2HSTUREREREROQmTLqJiIiIiIiI3IRJNxEREREREZGbMOkmIiIiIiIichMm3URERERERERuwqSbiIiIiIiIyE2YdBMRERERERG5CZNuIiIiIiIiIjdh0k1ERERERETkJky6iYiIiIiIiNyESTcRERERERGRmzDpJiIiIiIiInITJt1EREREREREbsKkm4iIiIiIiMhNmHQTERERERERuQmTbiIiIiIiIiI3YdJNRERERERE5CZMuomIiIiIiIjchEk3ERERERERkZsw6SYiIiIiIiJyEybdRERERERERG7CpJuIiIiIiIjITZh0ExEREREREbkJk24iIiIiIiIiN2HSTUREREREROQmTLqJiIiIiIiI3IRJNxEREREREZGbMOkmIiIiIiIichMm3URERERERERuwqSbiIiIiIiIyE2YdBMRERERERG5CZNuIiIiIiIiIjdh0k1ERERERETkJky6iYiIiIiIiNyESTcRERERERGRmzDpJiIiIiIiInITJt1EREREREREbsKkm4iIiIiIiMhNmHQTERERERERuQmTbiIiIiIiIiI3YdJNRERERERE5CZMuomIiIiIiIjchEk3ERERERERkZsw6SYiIiIiIiJyEybdRERERERERG7CpJuIiIiIiIjITZh0ExEREREREbkJk24iIiIiIiIiN2HSTUREREREROQmTLqJiIiIiIiI3IRJNxEREREREZGbMOkmIiIiIiIichMm3URERERERERuwqSbiIiIiIiIyE2YdBMRERERERG5CZNuIiIiIiIiIjdh0k1ERERERETkJky6iYiIiIiIiNyESTcRERERERGRmzDpJiIiIiIiInITJt1EREREREREbsKkm4iIiIiIiMhNmHQTERERERERuQmTbiIiIiIiIiI3YdJNRERERERE5CZMuomIiIiIiIjchEk3ERERERERkZsw6SYiIiIiIiJyEybdRERERERERG7CpJuIiIiIiIjITZh0ExEREREREbkJk24iIiIiIiIiN2HSTUREREREROQmTLqJiIiIiIiI3IRJNxEREREREZGbMOkmIiIiIiIichMm3URERERERERuwqSbiIiIiIiIyE2YdBMRERERERG5CZNuIiIiIiIiIjdh0k1ERERERETkJky6iYiIiIiIiNyESTcRERERERGRmzDpJiIiIqIGwW6zwGopgd0OiHg6GiKimmHSTURERET1nrXoDHKz/sCI4YXw8gLmz3eWx8cDo0cDCQkeDY+IqFJeng6AiIiIiKgy4rCj8NxhWAozAQB2u7OJW6t1Tn/vPeCrrwCTCejRw1NREhFVThFh5xwiIiIiqn9s1nwUZB+A3VYMADD6Nodd0wIWiwZGozPR/v134N//BqZMATp1ci6Xng689BLw0ENAr14e3AEiIjDpJiIiIqJ6RkRQnH8SxXnHICLQaPXwCWwLncGvRss/+yzw6qvATTcBa9e6OVgiomqwezkRERER1S/igLUwEyICvTEYpoDW0Ghq/rV1yBDgxAngrrvOlxUWOlvDR40Crr0WUJRaj5qIqEJs6SYiIiKiesdmzYO9pAgGnyYu5cuWAQcPAnfeCXTpUvP1ffyxM+G+6irn8hoOJ0xEdYQt3URERETkUaWDpWn1PvD2CQcAeOl94aX3LTfvp58CP/wAtGp1cUl3587AyJHOf0sTbhHgueeAQYPY+k1E7sOWbiIiIiLymAsHS1MUDfzDukGj1VU6/9tvA3v3OhPo3r0vb9ubNwN9+wJGI5CRAfj7X976iIgqwpZuIiIiIqpzIgJLfgaK8o5eMFhaVJUJNwBMmFB7MQQGOpN3k8k14X7nHaB7d7Z+E1HtYEs3EREREdUph92Cguw0lFjOAQD0xiCY/FtXm3DXhYwMoGVLwG4HUlKA6GhPR0REDR1buomIiIiozojDjtzM3XA4SqAoGpj8I2HwCfN0WCqrFRg2DDh50jXh/t//nMl4z55s/Saii8OWbiIiIiKqU0V5x1FSdBY+gW2h1Rkvatl+/YCtW51J8KBBbgoQzkHWSpNrqxVo0QLIygJ++gm4+Wb3bZeIGh8+LIGIiIiI3MpmzYe9pFB9721uDt/QDhedcAOAxeJMgt3twtbs3Fzg1luBNm2AG244X/7bb84fANiERURVYUs3EREREbmFiMBSkIGi3KPQeBnhF9oRinJ5bT6ZmUBxMRAS4hwArS7ZbIDXBTdn9uwJJCQAH34IjB1bt7EQUcPBe7qJiIiIqNY57FYUZB9UB0vTar0h4rjspLtJk9qI7tJcmHAXFwOxsUBqKjB48Pny5GRnyzjv/SaiUmzpJiIiIqJaZS06i8KcQ/V2sLTaVFTkfM53qfvvB5YuBZ5/HnjxRc/FRUT1B1u6iYiIiKhWiDhQeO4wLAV/AgC8dD6XNFhaVf7zHyA7G7jnHudo4p52YcItAvj4AN7eroO8/fkncPgwW7+JrlQcSI2IiIiIaomiDpjmbW52yYOlVWX2bGDqVCA9vVZXWysUBfj3v53P+r7mmvPlH3wA9OoFPPSQ52IjIs9hSzcRERERXTLnnYoCRdFAURT4BLaFw14MncHfLdsbMsT5DO2wetxbPSDA9X1RkbP1+/rrz5cVFwN//MHWb6IrAe/pJiIiIqJL4hwsLQ1anTdM/ld5Opx67exZZ9dzg8H5/rPPgKFDgdtvB1at8mxsRORe7F5ORERERBfNWnQWuZm7UGLJgaUgEw57HTw8uwELCjqfcAPAsWPO9z16nC8TcbZ+s0mMqHFhSzcRERER1Zg47CjMPeLWwdKuFGfPOruWBwY632/f7kzCr70W2LQJ0Go9Gx8R1Q62dBMRERFRjdhKCpCbtVtNuN01WFpVoqOdrcb79tXZJt0mKOh8wg0Au3Y5W7+jolwT7rQ0tn4TNWRs6SYiIiKiaok4cO5UIhyOEmi0evgEtIHOO6DO4wgJAc6cAfbsAa6+us4373ZnzwL5+UCrVs73mZlAixZA+/ZAfHz5QdqIqP7j6OVEREREVC1F0cDkHwlr0WmYAtpAo9V5JI6tWwGrFWjd2iObd7ugIOerVEICoNEAer1rwn3qlHMEd458TlT/saWbiIiIiCpkLc6GAsUjLdp03tmzzsekdejgfG+zARERQGgosGJF4/0BgqixYEs3EREREbkQhx1FuUdRXHAKGo0Ofk06e6xlm8q3fu/a5exiX1Li7HpeKicH8Pdn6zdRfcOkm4iIiIhUtpJCFGQfgL2kEACgN4VA0dSfYbQ/+MD57/33A2azZ2PxlG7dnC3f+/Y5u52XGjQIyMsD/u//gO7dPRcfEbli93IiIiIiAgAU52egKPcoRBzQaHTwCYyqd13LdTpn9+rjx4HmzT0dTf1x6hRw1VXO1u+jR4FmzZzlRUWAtzdbv4k8iS3dRERERFc4EQfyz6agpDgHAKDzDoSPBwdLq8rf/+5MLE0mT0dSv4SHAydOABs3nk+4AeDRR4HERGDePODGGz0XH9GVjC3dRERERISC7IOwFp2B0S8C3uZwT4dDtcBicSbgZ88CmzYBffo4y20253PA2fpNVDc0ng6AiIiIiOqeiAMOh019b/K/Cn6hHZlwNyIGA3DgAPDRR0Dv3ufL58513hf+zTeei43oSsLu5URERERXmNLB0jRaA3yD2wEAFI0WWg37bDc2QUHA6NHn34sAn37qHIQtJ8e1HGDrN5E7sKWbiIiI6ApSnH8KeVm7YS8phN2aD7ut2NMh1VhhobO7dMuWzv/TxVMUYMMGYOFC4O67z5cvX+5s/V661HOxETVWbOkmIiIiugI47CUoyElDSXE2gPo9WFplbDYgI8P5fw2bji5ZUBAwcaJr2X/+AyQlOVvAiah28XJFRERE1MiVFGcjN/MPlBRnQ1E0MPlHwje4XYNKuAHAx8c5Evf27a7Pp6bL98knwJtvAmPHni/btQvo0sX53G8iunQcvZyIiIioERNxIDfzD9htxdDqTPAJbAsvHe/dpupNmAC88w7wz38CX33l6WiIGi4m3URERESNnM2aB2vRaRh9W0HRaD0dDjUQZ844W8B79jz/uLGzZ4HbbwdGjAAeesj56DEiqhqTbiIiIqJGprjgFADA26dxPf6roMDZ4qrTAcOGeTqaK9PChcDkyUDnzsDOnRztnKgmmHQTERERNRIOewkKc9Jg/evebb8mnaH18vZ0WLXm6FEgIsL5/OnihjPoeqNS2vrdvPn50c/tdmDwYGcL+AMPAN6N55QjqhVMuomIiIgagZLiHBTkpMFht0JRNDD6tYK3uamnw6pVf/7pTOq8vIBvv/V0NFRq9Wpnwh0YCJw8yaSbqCwm3UREREQNmIgDRblHUZzvfJYWB0ujunb2LPDf/zpbvJ944nz5o48CHTsC998PmM2ei4/I05h0ExERETVQIg7knd4LmzUfgPMebqMfB0sjz0tNBWJinM9TT08HWrXydEREnuPl6QCIiIiI6NIoigY670A4bBaYAttA7x3o6ZCIAABNmjif+33okGvCPWcO4OcHDB3q/JfoSsCWbiIiIqIGxGEvgYgNWi8jAEBEIA4bNFqdhyNzv/37gUGDgLAwYONGT0dDFysvD2jWDMjPB379Fejf39MREdUNtnQTERERNRClg6UpGi/4hXSAotFCURQoV0DCDQBFRcDBg0BhoacjoUuhKMCsWcAvvwBxcefLP/sMOHeOrd/UeLGlm4iIiKiecw6WdgzF+ScBAFovI8zB7RrV48BqIj8f+OMPQKsFevXydDRUG0SAdu2c94D/+9/AQw95OiKi2sekm4iIiKges5cUoSD7AGwlBQAAg08YTH4RHCyNGgWrFXjvPWDZMmDdOsDX11n+22/Avn1s/abGgUk3ERERUT1lKfgThecOQ8QBjUYHU0Br6I1Bng6LyO3uuAP4/ntg+nRg9mxPR0N0eTSeDoCIiIiIyhMRWItOQ8QBnSEAfk06XfEJd1YW8NVXwNq1no6E3O3mm4HYWGDMmPNlBw44u6Dn5nouLqJLwZZuIiIionrKbrOgpPgsDD7hUBTF0+F4XHw8cP31zmRs3z5PR0PuJuIcfK3UlCnOx5DdfTfw5Zeei4voYrGlm4iIiKgeEHGg8NwRFJ5LV8u0XgZ4m5sy4f6Lv79z1Ovu3T0dCdWFsqd9+/bOQddGjTpfdu6cs/U7L69OQyO6KGzpJiIiIvKwsoOl+TXpDC+dycNREdU/Is6X5q+mw/ffB8aPB3r2BLZu9WxsRJVhSzcRERGRB1kK/kRu1i7YSgqg0XjBHBTDhJuoEopyPuEGgMBAZ+v30KHnyxwO4OOP2fpN9QdbuomIiIg8wOGwoTAnDdaiswAAncEfPoFR0Gj1Ho6MqGERAWw2QKdzvv/5Z2DAAKBZM+DIEcDLy7PxEbGlm4iIiKiOiQjyTu+FtegsFEWByS8C5uBYJtzV+OUXoEsXYPRoT0dC9YminE+4AcBiAWJigCFDXBPu775j6zd5Bn/3ISIiIqpjiqLA6NsCRblH4RPYFl56s6dDahCys4E//gD8/DwdCdVnt98O3HYbUFR0viw9HRg8GDCbna3fgYGei4+uPEy6iYiIiOqA3VYEh90KncEfAKA3BkPnHQhFYcfDmrruOuCnn5yjmBNVRVEA0wVDI5w8CURHA61auSbcmzYBnToBvr51HyNdOXhPNxEREZGbWQr+ROG5w1AULfyadGI3ciIPEHH2lggKcr4vLHTe922zAdu2OR9JRuQObOkmIiIicpOyg6V56dmcRuQpinI+4QaAw4eB8HDAanWOgF5q715nizhbv6m2sKWbiIiIyA1KLOdQkH0QDrv1r3u4W8FgbgpFUTwdWoN17BiwezcQFgZcc42no6HGQMTZ9bx58/PvO3Vy3gP+3XfA9dd7Nj5qHHgTEREREVEtK8w9irzT++CwW6H18oZvSAd4+zZjwn2Z1qxxDpI1c6anI6HGQlHOJ9wAkJUFlJQ4n/Xdtev58qNHOfI5XTom3URERES1TOwlAACDqQn8QjtxdPJaEhzsbOFu29bTkVBj1aQJkJwMJCUBAQHnyydPBpo2Bb74wkOBUYPG7uVEREREtUAcdigarfr/Ess56I1B1SxFRPWd1er8sWfPHufr6qud5WfPOp8Pznu/qTps6SYiIiK6DA6HDflnU5F/NhWlbRmKRsuEm6iR0OuBXbuA7dvPJ9wAMHu2s/X7nXc8Fxs1DBy9nIiIiOgSlVhy/xoszQJFUWAvKWBXcqJGSFHKD973++9AQQHQosX5suJi5z3hbP2mC7Glm4iIiOgiiThQlHsUeaf3wmG3qIOlMeF2r88+A/r2BV5+2dOREAHr1ztfd9xxvuzTT52t37NmeS4uqn/Y0k1ERER0Eey2YhRkH4DNmg/AOViayT9SvZ+b3OfYMWDzZg6kRvWDogD9+rmWrV3rbP02Gs+XiQD5+Wz9vpJxIDUiIiKii5CbuQu2kgIoGi18AtpAbwz2dEhXjAMHnANZtWwJdO/u6WiIyhMBNmwA2rcHQkKcZb/9Btx2G/DQQ8D8+Z6NjzyDLd1EREREF8EU0BpFuUdhCmgDrZfB0+FcUdq2ZSs31W8VtX5/842z9bvsc74tFsDAS8gVgS3dRERERFUoseTCYSuGwaeJp0MhogZIxNnaHR4OxMQ4y44fBzp0AO69F3j3XcCLTaGNGv+8RERERBUQcaA47wSK8k5AUQCt3gwvncnTYV3RDh1y3tfdogXQpo2noyGqGUUB4uJcy/73P+DcOSAlxTXhttsBLYeHaHQ4ejkRERFRGXZbMfJO70VR3nEAAr0xBFot+4F62kcfAf37A2+/7elIiC7PpElAfDzwyivny4qLgago4OGHnQk5NR5s6SYiIiK6gKUwC4U56RCxOwdL828NvSnE02ERnANTxcY6u+kSNWQVtX7/8ANw+DCwejXw3nvny0Wc81PDxXu6iYiIiP5SkH0QlsIsAICX3hc+gW05WBoR1YnSe7/PnAH+/vfzZf37A+3aAS+8ADRr5tEQ6RIx6SYiIiL6S1HeCRTlHoPRrwW8zc2hsHmJiDxo506gWzfnKOcnTgDBfEJhg8Tu5URERHTFEnFAHCXQ/HW/tre5GXTegRwwjYjqhS5dnPd+793rmnCPHQtoNMD06RxUsCFgSzcRERFdkey2YhRkH4Q4bPAL7QhFwyGD67uFC4HvvwdGjADuv9/T0RB5RlYW0Lw5UFLibAnv0sXTEVF1OHo5ERERXXEshVnIzdwFmzUPDocVdluhp0OiGti3D1i71vnoMKIrVUiIsx48+6xrwj17tnPk8337PBYaVYIt3URERHTFcDhsKMxJh7XoNIDSwdKioPXy9nBkVBPbtgGpqUCnTs4XETnZbECrVkBGBvDFF8A993g6IroQk24iIiK6ItiseSg4ewB2uwWA8tdgac2gKOz4R0QNW+nI50uXAu+8A+j1zvKvvgJ+/hl49FH+UOVJHEiNiIiIrghFucdht1ug1RrgE9QWXnpfT4dERFQrSp/7XfbZ3wsXAps2OVvBmXR7Dn/aJSIioiuCT2BrGHzC4NukExPuBurgQSAhAcjM9HQkRA3DK68AQ4cCo0efL9u2zXnv986dnovrSsPu5URERNQoWQpPw15SAJN/hKdDoVryr38571dduBCYONHT0RA1TA88ACxZAowc6fyX3I8t3URERNSoOBw2FGQfREH2ARTnn0SJ5ZynQ6JaEhzs7Cbr7+/pSIgartGjgfvuAx55xPleHHYcOXQaEyYIioo8G1tjxZZuIiIiajRs1jwUZB+E3VYMQIHRtzm8fZtzsDQiojJKLLmwFmbCWnQGU56MwJJPw7F6NXDrrZ6OrPHhQGpERETU4IkIivNPoCj3OADhYGlERNUoKToDS2EWAGBvsi/atLHDYNB6OKrGiS3dRERE1ODln0mBtfgsAEBvDIEp4CpoNGxbICJyOGxqgm30awWdwQ8AYLPmw1KYCYMplD9Quhk/jYiIiKjB05tCUWI5B1PAVTCYQj0dDrnJiy8CSUnApElA//6ejoao/hIR2Cw5sBRmoaQ4GyIOAIC1MEtNur30ZnjpzZ4M84rBpJuIiIgaHHHYYbcVqV8Y9cYgeOm7QqPVeTgycqeNG4Gffwb++U9PR0JUP4nDjqK847AWnYbDblXLtToTDKZQ6I0hHozuysXu5URERNSglA6WJg47/Jp0gkar93RIVEdWrwaOHQNuuAFo29bT0RDVDyIOdbBIEUHunztht1ug0XhBbwqB3hhabYv2PfcA+fnAu+8CV11VF1FfWZh0ExERUYNQdrA0jdYAc1A0u0cS0RVHxIESyzlYCzNhs+bDP6yrmnhbC08DigY674AaP7khKAjIzgaSk4F27dwZ+ZWJ3cuJiIio3rPbLCjMOYgSSy4AQG8MhimgNQdLI6Iriq2kENbCLFgLs+BwlJwvt+RC5x0AANCbLr4L+QcfAAUFQLNmtRUpXYgt3URERFSvWYvOoCAnDeKwQ1G0HCztCpaWBlgsQKtWgJkdHOgKUmLJRdG5w7CVFKhlGo3O2X3cFAovnY8Ho6Pq8OdhIiIiqtdKinMgDju89Gb4BLaF1svb0yGRh/zrX8D27cCqVcDtt3s6GiL3EXFAHHZ1cEiNxgu2kgIoigKddyD0xtCL6j5OnsWkm4iIiOodEYGiKAAAk38ktDojDD7h/IJ5hQsIAIKDAYPB05EQuYfNmg9rURashWfgZfCDOSgagHP0cZ/AttAZ/Gv9KQ12u/PHLIMB6NQJ0PAyW+vYvZyIiIjqDedgaSdhs+bBHBSjJt5ERI2Vw26Fteg0LIVZsJcUquVarQF+YV3c/mNjTg4QGOj8v8UC6PlAiFrHlm4iIiKqF8oOllZSnA29McjDURERuU/huXQU5/8JwNkOqiga6LwDYTCFwsvgXye9e+x2ICICsFoBXe02otNf2NJNREREHmctOoPCnENwOGxQFA1M/lfB4NPE02EREdUqmzUPWi8TFI0WAFCcdxKFuUfgpTdDbwqF3hjCpzI0Qky6iYiIyGPEYUfhucOwFGYCwF+DpUVB62X0cGRUHz3+OJCVBTz/PBAd7eloiGrGYbfAUnga1sIs2G1F8AmMUp/A4LCXQBw2aHW85jVm/BmFiIiIPCY/+wBKirMBAN6+zWH0bcHB0qhS33wDpKcDjz7q6UiIqiYOO0qKs2EpzEKJ5Rwu7D7usFvV+TRaHVDLA6NR/cOkm4iIiDzG6NsCDlsRTAGtoTP4ezocqudmzHAO+hQZ6elIiCrncNhw7s9EiMOulnnpfWEwhUJnDK533ccPHACmTgWaNwfee8/T0TRO7F5OREREdcZht8BmzYfeGKyWiTjYuk1EDZbdZoHdmge9KUQtyzu9F3abBQZTKPSmUGi9vD0YYdU2bwb69gXatAEOHvR0NI1T/fqZhYiIiBqt0sHSROzQaA3w0psBgAk3ETU44rDDWnwW1r+6jyuKAq8LnqHtExgNRePVIB572Lo18OGHgMnk6UgaL7Z0ExERkVtxsDSqLUeOOP9t1oyPNiLPKLHkwlqYBWvRGYic7z6uM/jD5B8JrY6ZK5XHpJuIiIjcxmbNR0H2AdhtxQA4WBpdnqAgIDsb2LcPiI31dDR0pbEUZKIgJ019r/XyVh/zVZ+7j5PnsXs5ERERuUVxfgaKco9ARKDR6uETGMXB0uiyGI1AURHgxW+w5Gal3ccVjRf03oEAAJ0xCJrco9B5B0JvCoXO4OfhKGtHdjZw8iQQEOAcTI1qHy9ZRERE5CYCEYHeGARTQJt6N2IvNTwnTng6AmrMRAQ264Xdxx3w0pvVpFuj8YJ/eLdG11Pn+++B4cOBAQOANWs8HU3jxE8/IiIiqjXisEPRaAEABp+m0Gi9oTcGeTgqIqLK2W3FsBZmwVKYBYfdopZrvbyh8w6EiKgDojW2hBsAtFogJAQIDPR0JI0X7+kmIiKiyyYOOwpzj8BmyYVfaEc18SYiqu/yzuxHSXE2AEDRaKE3hsBgCoWX3tfDkVFjwZZuIiIiuizOwdIOwm4rAgCUWHJcnsNNVFvGjgUUBZg7F/Dn8AB0kUQENss5WAqzYPRrBa2XAQBgMIUCEBiModB5B/JHQ6p1bOkmIiKiSyIisBRkoCj3KAdLI7cTATR/9ez980+gSRPPxkMNh72kCJaiLFgLs+CwWwEARr+WMPq28HBkdKVgSzcRERFdNIfdioLsNJRYcgAAeu8gmAJaQ6Plw5PJfV59FbDbAbPZ05FQfScOu5po26z5arlG4wWdMRg6b97AXOqrr4CvvwZuucU5oBrVPibdREREdNEKzx1GiSUHiqKByT8SBp8wT4dEjZyiAE8/7ekoqCEpOncEIg4ACnTeATCY/uo+3ggHQ7scO3cCy5YBoaFMut2FSTcRERFdNJN/JMRhh8k/Elqd0dPhENEVzFZSCGthFuwlhfANiQXgHBDN27c5FEUDvTGUvXCqcMcdzoS7SxdPR9J48Z5uIiIiqpatpAAlxdm8B5I8xuEAsrKcjzcKDna2fNOVy2EvgbXoDKyFmbCVFKjlfqEd4aXn/QdUv7Clm4iIiCpVdrA0rZeJz90mj8jNBcLDnf+3WAC93rPxkGfYrHkozjuJEks2StsOFUWBzhAIvSkUWp3JwxESlcekm4iIiCpUfrC0QD63ljzGbj//fy2f6HRFEXGo92E7HDZYi88CALx0PtCbQqE3hrD7+GU4dcr5Q1ZwMAcpdBd2LyciIqJyrMXZKMxOg8NRAkXRwOgfAW+fcE+HRQSHw9m1nN3LGzdn9/HTsBZmwcs7ACa/VgCcCXhx3nHojCHwYqt2rbj3XuDLL4GFC4GJEz0dTePElm4iIiJyUZR7FEV5JwA4W5J8AttysDSqNzQceLrREnGgpDgb1sIslFhy1O7jInbgr6RbUTQw/vV/qh1eXoC3t/NF7sGWbiIiInJhLTqL/LMp8DY3g9GvJR+vQ0Tl9OvXDxs2bAAAaLVahIaGolevXpg2bRr69Olz0esryj0KS8GfcDhsapmX3ny++7iGbYXUcPFTlIiIqJF69dVXoShKudf8+fNd5hMR2G3F6nu9MQj+TbrA5B/BhJvqjTNnnF1fn3zS05GQiCApKQmvv/46MjIycPDgQXz22WfQ6/Xo168fVq9eXe06HHar63uHDQ6HDRqtHt6+zeHfpAv8QjvC2yecCTc1eGzpJiIiaqTy8vJQUHD+UTqzZs3C6tWrsXHjRrRo4Xz0V+lgafaSfPg16QSN1uCpcImqlJYGREU5B3rKy/N0NFe21NRUxMTEYPPmzejdu7fLtBtuuAHZ2dnYuXNnueVKu49bCjNRUnwOviHtoTP4AQDsJUVw2C3wMvhD4Q371MjwZyMiIqJGytfXF76+ztHGX3zxRaxevRrr169XE+6yg6XZrAXQG5l0U/0UEAA8+yyg4yDVHrdjxw5otVp07ty53LQBAwZgxowZcDgc0Px1A77NmgdLYRasRachjvPD0NuseWrSrdUZOXaEh7z4InDypLMnydVXezqaxolJNxERUSP34osvYvHixVi/fj0iIiIgDjuKco+iuOAUAECrM8Ec2JbPt6V6LTgYePllT0dBAJCYmIh27drBZCp/zdDpdNBqtdBoNHDYLcg7nQy7rUidrtEaYDCFOJ+p7cUkuz5YvhzYvRu4+24m3e7CpJuIiKgRK5tw20oKUZB9APaSQgCAt7kpjH6teO82EdXYjh070K1bt3Ll4rBjf/JetGvXDgCgaPTqM7b1xmDoTaHw0vux+3g9M3EikJHhvH2D3IOfsERERI1U2YQbAKwFf8JeUgiNRgff4HYw+Ucy4aYGwW533stdVFT9vOReO3fudEm6Syy5KMhOQ0b6Jnz77bf4+9//jsTERNx6660wB0XDP/wa/PjLH5g85Rkm3PXQgw8CM2YAkZGejqTxYks3ERFRI/Tyyy/jnXfewapVq2AwGHDqlLMreYB/GLwBePu2gEbLm2Op4UhKArp3B1q0AI4d83Q0V65Dhw4hJycHnTt3QFHecVgLs2C3FcPhcOCJp2fDy0uLR8eNRUBQE+zbtw9eejNKSkrwyiuv4IcffvB0+EQewaSbiIiokRERzJ07F7m5uejVq5fLtC1btuDaa6/1UGREl87+1/hbGnbM8KgdO3YAAMxeZ3H4YBLy8guwa3cqFi1egWMnTuHb71YjpEkzAECLFi1w7NgxrFy5EkOGDEFYWJgnQ6dKZGQ4BygMDAS0Wk9H0zgx6SYiImpkFEVBTk42inKPoDjf2cLtE9AaBh9+4aWGq3t3oKAA4MNu65aIwGbNhaLRwUtnQmJiIgCgZ797odVq4e/vh3bt2uHOIf/EuHHjEBQUpC7bs2dP/PLLL1i0aBG2bNniqV2garRt66xbaWlA69aejqZx4nO6iYiIGpnyg6WFw+gXwXu3iajG7LZiWAuznN3H7RbojSEwB7VVpzvsVmi0+irXsWzZMkyYMAGvvvoqHn74YXeHTJfI2xuwWIDjx4HmzT0dTePElm4iIqJGpDj/FIpyj0DEAY1GB5/ANtB5B3o6LCJqABwOG0qKzsBSmAWbNU8tVzRaaLSuaUN1CTcAREdHo0mTJnjwwQdrPVaqPcXFzts3eOuG+zDpJiIiaiQKz6Wr3cl13oHwCWjDwdKo0Th4EPjoI6BZM2DCBE9H0zjln94HW0mB+l5nCIDeFAq9dyAUzcXf7Pvuu+9i7ty50PJG4XqPfyL34u8ZREREjYTe1ASKRguTfyR8g9sx4aZGJT0deP11Z+JNl89uK0JR7jGIw66W6YzB0HoZYfRrhYDwbvANiYXBFHLRCXdaWhpiYmLg6+uLO+64o7ZDJ2pweE83ERFRAyXigM2aB53BXy1zOGzQaNiRjRqf/fuBf//b2dI9bZqno2mYKuo+7hPYFgZTCADnNYVjP1xZzp0DnnkGMBqBN97wdDSNF5NuIiKiBsheUoj87ANw2IrgG9IBXnqzp0MionpIRGCz5MBSmIWS4myIOP6aokDnHQBvczPoDH4ejZE85+hRICICMBic93aTe/CncCIiogamuOAUis6dHyxNxF79QkR0RXLYLcg7s199r9WZYDCFQm8MqdFgaNS4+foCM2Z4OorGjy3dREREDYTDXoLCnDRYi7MBADrvgL8GS+MXZ2r8RJwvjrBcOYfDBmvhaTgcVpj8Wqnl+WdSoNHqoTeFslcMkQcw6SYiImoASopzUJCTBofdCkVRYPSLgMEnHIqieDo0ojrx1VfAPfcAcXFAfLyno6k/RBwosZyDtTDzr+7jAkVR4B92DQdTJKon2L2ciIioAbDbiuCwW6HVmeATGAUvnY+nQyKqU/a/7qJgS7eTvaQIlsJMWAuz4HCUqOVeOh/oTaEAf5CjGigpAQoLAW9v533d5B5s6SYiIqqnSlusSv9vKfgTBlPoJT0vl6ihs1iA3Fzn84SDgjwdjecV52eg8NxhAIBGo4PeFOLsPs4f5Ogi/PorcMMNQPv2wN69no6m8WJLNxERUT1UXHAK1oJM+IZcDUWjhaIo8DaHX9K6tj77LAp37MD1P/5Yy1ES1R2DAQgN9XQUdU/EgZLiHFgLs6AzBsFgch4EvTEENmse9MYQ6LwD+KgvuiRWq/NfPYcGcSu2dBMREdUjzsHSDsFafBYAYPKPhLe56SWvz261Is/bG34iOP3HH2jSqVNthUpEbmSz5sNalAVr4Rm1+7iX3hd+oR08HBk1JiLOXiQ2G2DmGHtuw5ZuIiKieqLEcg4F2QfLDZZ2ObZOm4Y+IhAA+0aNQpPExNoJlqiOJSYCq1cD7doB//ynp6Nxn+L8DFgKM2EvKVTLNFo99MYQtZWbqLYoivN+bnIv9kMhIiLyMBEHCs8dQd7pfc7B0ryM8A3tCG9z08sandxutaLpBx9AACgAeu/cicxdu2otbqK6tG2b83nCy5Z5OpLaJeJweV9iyYG9pBCKooHeGAzf4HbwD+sKk38EtDqTh6Ks3qFDzlsAFi/2dCRE9Q+TbiIiIg8ryj2C4vyTAACDTxj8QjvWymBIW6dNw1VWK0rTdi2crd1EDVG7dsDYscCAAZ6OpHbYrPkoyDmEc6cS4bBb1HJvczP4BLSGf/g1MAdFQ+cd2CDu154503l/8Jw5no6ELsaWLcCTTwJLl3o6ksaN93QTERF5mMNuRd7pfTD6tYLeWDvDMtutVhz19UWE1eryC7sFwDne203kEQ67FdbC087u47YitdzkHwFvczMPRnZ50tKA6GjA8Vej/W+/AX/7m2djopp57z3g0UeBf/wD+N//PB1N41X/fzYjIiJqZBz2EhQXnFLfa7R6+DXpXGsJNwBsnToVV5VJuIFabu22WJyj8BBRley2YuSdSUbOqUQU5h6B3Vb0V/fxEPgGx8Lgc+mDJdYHzz9//rHgGg3w8suejYdqrnNnYMoU4I47PB1J48aWbiIiojp04WBp5qBo6I3Btb4Nu9WKY2YzWpWUVPjr+iW1dhcUAAcPOr+hlXr3XeCdd4CnngJGjrzcsIkaFYe9BBqtDgAgDjtyTm2HiANeel8YTKHQGYOh0TT8MY337AE6dSr/+1tiItC1q2diIqpv2NJNRERUByoaLE2jNbhlW1unTkVkJQk3UIPWbpHzD28FgAMHAH9/4LrrALv9fPk33wD79wO//loLURNV7Y03AKMRGDfO05FUzm6zoCjvOM79uRP5Z5LVckWjhU9gFPzDusIvtAMMPmGNIuEGgGefBbRa1zIvL+CVVzwTD1F9xKSbiIjIzewlRcjL2lN+sDR97T8U1W61otkHH8BRxTxeqGIk8/feA5o1c46KVKp1a8BkAgICgBMnnGVZWcALLzi/cU+bdn7eP/8EJk1yDmVMVIssFqC42Pk84fpEHHZYCrOQd3ofzv2ZiKLcY7DbimG3FbkMkKY3BkPr1biezbR1K/Dtt+X/JjYbsGIFkJLimbio5kpKXH9LJfdg0k1ERORGlsLTyM3aBVtJATQaL5iDYuAT0BqKRlv9wpegulbuUloA+wYMAHr1Ak6dv78cBoPz/ZYtF8ysdSbRx44BrVo5y5YudbZ8HzoEXH31+XnffRd46y1g+PDa2iUiAMCECcDhw8Crr3o6kvOKC04h59QOFGQfRInlHABAZ/CHT2AUAsK7u603S33x1FPlW7lLaTTA66/XbTx08Z56ytkz4amnPB1J48akm4iIyI0UjRYiDugM/rU+WFpZpa3cNRmsxQtA78xMZG7dCvz++/kJgwYBGzYA33/vukBIiOt7kwkID3e2fl/oppuAW25xjsxTqqQEWL36/NDGRJfAzw+IiABCQz0Xg91WDIf9/K0XGo0eInZovbxh9GsJ/7Cu8A1pD4Mp1G0/rNUX69YB8fGVt5La7cAnnwBHj9ZpWHSRLH91xtDpPBtHY8eB1IiIiGqZw2FzuV+zxHIOXno/KKXD+7pJ0dmzyA0LQ6gINBqNOpyw46/7szUAoNcDAARAQUkJTowfj5gZM4CwMPcFtmwZMGwY0L8/7/+mBkccdliLz8JamIkSSy6Mvs1h9HP2+BBxwGbNh87g5+Eo65YI0KMHkJRUdddkrdZ5D/7bb9dZaHSRioud42QaDIC59u94or+wpZuIiKiWiDhQmHsUuX8mwW47fy+nzuDvnoTbZnO5adIYFISw22+Hxm4HXnvN2YRhsWBjbCxSSp/jU1AAWCxQLBaYHQ7EvPOOexNuADh3zjkQ2003uZbn5rp3u9So/PYb8Oabzn/dTUTUJw3knNr+V/dx5/l6YUu3omiuuIQbcN7HvWNH9fcC2+3AokVAZmbdxEUXz9sbCA5mwu1uTLqJiIhqgd1WhLzTe1GcdwIORwlKis/W/kYu7J6dmQkEBgIdOgBFRefL+/Z13mPt43O+TKNxNmM8+6zz5r26Nm6c837wiRPPl23fDjRtCjz+OJ/1TTXy3XfOuxa+/db928rL2o280/tgKcyCiOOv7uOt4B/WDT6BUe4PoJ4rbbnWaJyt2V5e5+/t9vJydlXW6ZxlFgvw4Yeei5WoPmgczyogIiLyIEtBJgrPpUPEAY3GC6aA/2fvvsPjqK6Hj39nZvtKWnX3IrlgbGwwBmzAhWYgdAihBQg1tBBK+JFQ89IJoQRCT0jo4EAgAUIvBgwYY4wNBoOL5N4kq2v7zLx/XGlXa8m2bEtarXQ+z7OPtKPR7pWtsmfOueeUduz87RkzVDfxQw5JvtotKoLsbPWqd+lSGDtWHb/qqtRu4p3lf/+Dp59WzdQuvXTb52dnp95/+WUIBqGyMlEGL8TWjB8Pp50Ge+7ZsY9rWXFi4RrcvmTfAsOVhWmGcXkLcfuKcLiyt/IIvc+dd8KcOapdQ/Pt22/hxRfVNTanM/VjU6eme8ViS557TvXDPPpo2GOPdK+m55KgWwghhNhBlhUnWFNGNLQJaO5aPGznOhbfdRd8+CE8+CAMb8qo6bqah+31Js/TNDWvp3//1PbBXRXA/vQT/Otf6tV1e4Luzd1xBxx6qFp/s4oKFVVdeql6BSjBuGjhtNPUrSPYtk08UkskWEEsXNWUzXYngmtv9iB8OUN6fDO0HbXXXurW0ksvqaD75ptb91cU3ddzz8Fbb8GgQRJ0dyYJuoUQQogdFGlYSzS0CU3T8GQPwpPVv/17tzdtgjfeUPuaWwatr70Gn32mbs1B90EHqdraSZNSH2PQoI75QnbEgQeqrPvIkTv2+Zqmvq6WHn4Y3n8fampU0C1EBzNjISKhCqLBipS92YbTh20lNyjrhrRy3l7Ns7qlC3ZmOeII9adk1Kh0r6Rnk+7lQgghxA6yLZPG6qV4sgfgcG2lC01jI3z1lXplM2yYOvb11ypVlJurAnC9qc3KCy+o+0ceCSUlHbLOT3bbjaKyMnYNBjvk8TrN2rUqkJ80CY49Vh2Lx+H+++FXv2o9tkyI7RCP1lNXsTBxX9cduLyFuHxFW//5Fe3y9NPqxzQSSQxJEEI0kUZqQgghRDuZ8XDT3m11vVrTDbIKdkl9wW7bsHp16idefLHKDD/9dPLYuHHq2HnnpTZCO/VU+M1vOizgzij9+6uy8+aAG9Te76uuUhcoZM53r3bFFeq6y333bftc27aIhauJBCsSxwxnFobDg9OTR1b+SAJ9J+DLLZGAu4PEYuqtZLqFaE3Ky4UQQoh2SG2W5saT3bQX2baTe49DIVUSvnatahBW0NRMbd994YMPUtM/Tqfau52pqqtVRj47u3NHjuXnqw5axx2XrAYA+OEHGD26855XdDu1tepbLhze8jnxWJBosIJoqBLLjKLrTlzeAjRNR9M0cop3R9Mk59QZYjHVXkJaMQjRmvzWEUIIIbbCsuI0VC2msWYZtm3hdAdwegvgnXdUMH3++cmTvV7IyVEzc77/Pnn8/PNV9vu667r+C+gsTzwBI0Z0fqf0Qw9VpfjXXJM89s03aizagQcmN5KKHu+229SP1XnnpR63zBjhhvXUbfyWuo0LCDesTQbcvgJsO1khIQF354nFJMudiUaPVn+6Pvss3Svp2STTLYQQQmxBLFJHY/VSHM/9m6xP5mD94WrckyapZmmaBrNnq47bLb3+OgwYkNpp3OiBHZBdLnWBoeXX2Vk0LfXV/Ny56n6/fqlzxy0rNRsuepR+/dRtc+GGtYQb1gKgaRpOdx4uXxFOT64E2V1Igu7MFAyq6hGHRIWdSv55hRBCiGYNDaoMfPVqwmf9nGBNOQDutz7B+cEsOOQY2He6OnfSJHjmGZXtbqm543hP99vfqls6nH++ajTXvIkUVN3xXnvB2WfDH/4gnZx6qHiskWhwI05PAU53DgAuXxHxSC0uXxEub6F0Hk8TCboz05w5amdU377pXknPJkG3EEKI3sk0YeFC8PuTgfL69WrvsNuN41enoWk6Lm8hjnMvhgMOgwMOSH5+Tg6cfno6Vi4gdb43wFNPwfLl8J//wA03pGNFopNYZoxoqJK33gxRXm4zaZ96dt/DTATdDqePnOJxaV6lkKA7MxUXp3sFvYME3UIIIXqH6mo1nqu5y8/vfqdGUV1+eaIdcnxwPxxTpsCoUTgiFjnFu2M4PHDqsLQtW7TTb3+rAvG8vOT/sWmqTvBnntm6IkF0a7ZtEwtXEQ1WEIvUYNs2/3hyJG+8VcB9f97A3vu6071EsRkJuoXYMgm6hRBC9GyWpbpff/stlJfD0KHq+D77qM7bloVlxQnWlBELV5H9/puJEUI9cCd2x3nrLfjXv2DyZDj33HSvRm1IPOWU1GOvvgqPPgovvaQa2Xk86Vmb2G6aphGqW4UZV+P0HK4sJu7rQnda7Dq2D075r+x2JOjOTH/6k9qN8+tfq8Iv0Tkk6BZCCNFzzJ4NN90ERUXJmdi6ngy25s9PBt0nnggnn0ws3kjjxm+xzAigYcYaZW5ve3z3HTz5pHq/OwTdbRk7Fs45B0pLUwPu11+HQw7pmiZwYpssM0o0WEk0XEV2wa5ourrc5cnqh2lGcHuLMJxerpddA92aBN2ZxzRVCwyAM86QoLszSdAthBAiM/3nP/D22yqo2mef5PG334bCwtT52f/4h9q4VlSUOM12OgjXryFUvwawMRwe/HnDcbiyu/TLyFjTpsGdd6rAtrvaZRc12qylb7+FY45RXYOWLpVXmWli2xaxcDWR4EZi4VrABiAWrsblKwTA7e/E+e+iw0nQnXksS/WejETA50v3ano2CbqFEEJ0b9EofPEF/PSTqn9rNmMGvPgiDBqUDLrHj4e//hX22y/1McaMSblrxsM0Vi8hHm0AwO0rwhcoSWTYRDtMnKhumWbDBlXtsM8+qQF3dbXaDy46lRkPE25YSzRUiW2ZieMOVzZuXxEOT276Fid2igTdmcfpVNekReeToFsIIUT3YduwcqWqeSstVceqq1XXcE2Dk0+GQEAdP/FENQ+7ZUdxt1s1ztqGWLiGeLQBTTfwB0oTmTXRC0yfDkuWQG1t8lhVlQrEDzlElczn5KRrdT2Sbdtqtr26R6RxAwC64cbtK8TlK8JwbLvU/5RT1PW3Bx+Eo4/uxAWLHSJBtxBbJkG3EEKI9AmHVQcXXVf3b78drr9elYw3lwX36QNTpqi3tbXJoPvnP1e3HeDJ6otlRXH7+mA4pAvyDmlogPp6tS86Nzfdq9k+DgcUFCTvv/uu+lrKylRzPbHTbMskGq4mGqxA03Wy8ncBwHB48eYMwuHKxuHKaRGMb9v69eqaXCjUWasWO0OCbiG2TE/3AoQQQvRShx+uAuiFC5PHdt9dBUSNjannfvKJ6kA9ePAOPVUsUkd95Q8p5ay+nMEScO+MBx9UI7p+97t0r2TnnXIKfP89PPxw6rixI45Q3c/D4fSuL4PEInU0Vi+jZv3XNFYvIRapIRauxrLiiXO82QNxugPbFXADPP44zJkDBx/c0asWHUGC7syzdKm6zthcWCY6j2S6hRBCdK4ffoBbblHZ7OeeSx43TbVfe84cGDdOHZs+XWWzO6iji21bKc3SQvWr8QWGdMhj93qaBoaRrFLIdKNHp95/7TU1Fm32bNXWV2xVJFhBuH41Zjx5gcIw3Lh8Rbh8Rej6zr/kHDlypx9CdCIJujNPOKyKlmSQQ+eToFsIIUTH+fhj1T38iCNUSXizF19UgXTLV2V33w1ZWamX2N0dl3lWzdKWEo/Wq4f2FeHJHtBhj9/r/f736tZTTZ8ODzyg+gy0bLj24INw2GEwYkT61tYNNFeNNDcftK04ZjyMpum4vAW4fMU4XNnbnc0WmUuC7swzcqTKdpvmts8VO0eCbiGEENvPstSc5nnz1LyRZs8/r2pATTMZdI8aBXfcobpFt3wBvvvunba8SLCSYG0ZtmWi6Qa+QCluaZYmtkdWFlx6aeqx779XxxwOWL1a9RnoRWzbJh6tIxqsIBrahC8wNDHWy+UtRNMduDz5nTYF4I03VCHMgQeqnQ2ie5GgO/O4XDBsWLpX0TtI0C2EEGLbqqvVq92hQ9X9YBD23FMF34ceqrqIAxx1lDrWsqO4rsMf/tBlSw03rCNYuxxQY4j8ecMxHJ4ue37Rwx19tKrIaBlwf/edKk83eubIOTMeVoF2sALTjCSOxyK1iaBbN5y4fUWduo7rr4cFC1QxjQTd3U8spq5VCSFak6BbCCFEKstSb5v36j7+OFxwgeoU/vLL6lhWFkyerC6T19Ymg+6jj077LB+Xt5Bww1rc/j54svqjaT1kz3F388478Prraib6aaelezVdY8wYtdc7nmwKRk2N+jfo00dtrxjQc7Yw2LZFw6YfiUWS49U0zWgqHy/C6e7a0Wr77gtFRVAoRSvdkmS6M8/y5erX+IABcMIJ6V5NzyZBtxBCiKSzzoL//lcFFs3l4bvuqt5WVKSe+/HHXbq0LbFti1i4Bpc3H1AZt0DxHp1W4iqafP01PPQQRCK9J+hu5mjx8um771Sk4fWmpl9NM+My37ZtY8YacbhUulJdsFJbQpzuXNUUzZOXtp+tRx5Jy9OKdpKgO/N8+y389rcwcaIE3Z1Ngm4hhOiNVqxQHcUbGlSTs2b19Spz98UXyaB74kTYuFGlmLqZls3SsvJH4vKq2csScHeByZPhxhvVNoPebMoUWLVKDZBu7llgWTBhAkyapH7OuuHPTktmPEQ0WEEkWIllRsntOx7dUE0NfYEhaHpp4r4QWyJBd+bp2xdOOgmGD0/3Sno+zbZtO92LEEII0YUaGtTs4f/7P3V/5kyYNk29/803KmAYN67bv3pKaZamGfjzhiWCbpHqk912o6isjF2DwXQvpXf48EM1TDoQUAF5dna6V9SKZcWJhTYRCVYkOvyDumCVlTcSpyc3fYsTGWmvvdS1psceS/dKhOh+JNMthBC9TTAI772nsnK2ndr5Zvz49K2rnSwrTqh2OZGgKneXZmmi2znwQLX9YuXK1ID7mmtUZHLccWktPY9FamnY9CO23dS/AQ2nJxe3rwinJ6/b9kE4+GBYt04V54wbl+7ViM1JpluILZOgWwghepviYtUEa+NG1QZ4woTkxx55RDVHO+MM9babiUfraaxeihkPAxre7AF4sgd02yChRwuH1X5ul0vtZxZJmgZTp6Ye++EHuPNO9bGffurSOd9mLIhlxRONzwynv+mtD7evCJe3EN3ofj/vm1u8WE1qi8XSvRLRFgm6hdgyeZUihBC9VXExnHlm8n5dHVx7LZx3Hvzvf+lb11bYVhwzHkY33GQXjsabM0gC7nS5+27IzYXLL0/3SjJDcbGaeXX22akBd/MFsA5mWXHCjeupq/iO2o0LCDWN0QPQdQc5xXsQKN4dT1b/jAi4QQ1P+OgjGDky3SsRbZGgO/M8+ij06weXXZbulfR8kukWQgihOBwqKPjf/+CYY5LHFy1S80RyunY8UDPbthKBtdOThz9vOE5PHrouf8JEBiksVE3VWqqthV/8AqJRmDsXdtttp57Cti1ikVqiwQpi4Sqa2/ZomoZuuFT/g6Ymg4Yj8xqjTZyY7hWIrZGgO/PU1sL69eqau+hc0khNCCF6m6oq2Htv1TCtrCzZcbkttg177KH2pr76KhxwQFetEoBosJJQ3UqyCsdkZJDQXXRKI7V4XI3F0nV5pb2jfvpJVZs0NKjRY3pT1UZlJRQUbP1nsw2N1UsTvQ4AHE6/GvPlLUQ35P9IdK4BA+D88+H//b90r0S0V0UFrF2rej4OHZru1fRskiYQQojexrZVsN38/tZe2K9bp/btxuOpnYu29Xk7u0TLJFhbngggIo1r8QVKOu35xA5wOFLnVYvtt8suMHs2bNqUDLgtS40hCwTgqafUOW2wzBjRUCVOT16iiaDTk69m1vsKcfmKcDTt3e4pXntNXeeZPj21/6PoHiTTnXmKirr9RMMeQ/5aCiFEbxMIqDncmrbtwLl/f/j+e1Vinp+fPH7OOeDzqT3gAwZ06PK21CxNiB5J01TpebPvv4fycnC71WbLFmzbIhauUeXjkWps28ZrxfHmDALA6ckl0HfPHtvn4PTTob4eliyRucLdkQTdQmyZBN1CCNHbOBwwaVL7zzeM1L2my5erDJxtw69/3WFBt23bhBvWEKpbDdjohlvt33anZy+52Ib331ej5yZOhBNOSPdqeo6xY2HFCpg/P9FHIR5tgHPPIV6YTeicE7HzcwFVPq47kp3je2qw3WzSJFWJ7/OleyWiLRJ0Z55Zs9RFrAkTZAxfZ5OgWwghxPYZMgQ++EDNId599+TxV16B0lK1B3wHRBrXE6pbBYDLW4Avt1SapXVnn38Od90FF14oQXdH69MHDjsMUNntxq/eJue5l3HYNtETjsAxeDRuXxGGs3dFn+++m+4ViK2RoDvzPP00/O1vqsejBN2dS17NCCFEbxOPq9k7tg0nnrj9r5I0DQ48UN2aNTSoDjpVVWqmzw40XHP7+xANbcLt74PbJ5vMur1994Xf/U69FR1ClY9XE4vU4s8tBVT22rnrHoT/cT+uH8rJnnx8MqP9zDPqItiUKZ3aY0GI9pCgO/OMGQNHHCFj+LqCdC8XQojeJhwGb1NJam1tx4wCW7cOrrxSlcQuXKhK0kEF4Xl5bQYEtmUSblyPJ6s/mgQMnapTupeLDhOP1hMJVhALbcKy4gDkFO2Gw5W95U+qr4dBg9TP8AcfwEEHddFqhWjNNNXOpSeeUC0/hBCpJNMthBC9jWGoLLWuJzsm76x+/eCFFyAUSgbctg2HHKIaQv3jH7DrronT49EGGquXNDVLs/FmD+yYdQiRISwzRiS4kWiwAjMeShzXDRcuXxGa7tr6A4TDcPLJMGdOamXJokUweDD4e1bncsuCvfZSv17eew9yc9O9ItFSLKbeSqZbiLZJ0C2EEL2N0wkfftg5j+1NNnXixx9VAGAYUFwMNDdLW0u4fhW2rZqlOVzSKC0jWZa6aVryQotoNzMeJFS3EmgqIffk4/YV4XAH2lf5UVQEjz2WnJUO6kLXL36hKk9efbVHlZ2bJnzzjXpfajS7Hwm6hdi6nt3mUgghRPrsuqsafTRjBhQUYMYjNGz6Aa67FueLr+Ny5JBTPE66k2eqm29Wr7B/+9t0r6Tbi0fraawpSzQKBHC4cnB58/HnlhLoO4Gs/BE4Pbnbv9Wi5QWPtWtVBryuDk46SV306iEMA956C954Q2Z0d0cSdGem006DESPgf/9L90p6Psl0CyGE6Dx9+8KRRxIL19BYvQSWLSfroWfRLAsO+gX0kT9Domcy4xGioYqm8vEwALruxJM9AE3T0TSNrPxddu5JVq5Um2hDIdVJfsAA+Okn1dzuq69g6lR4/nk49NAO+IrSS9fh8MPTvQqxJRJ0Z6aVK2HpUohE0r2Snk9e7QghRG+0xx6qi/lHH6ky1U6mGy5s28IYMAj79lvQflySOlps9mzVRjV7K42jRPfy+9/DZZeBaxt7j3uZaKiKSON6YpHaxDFN03F5C3D5ioAdLPdetw4+/VRVkIwdq47V1qqKA78fbr9ddbIyDLjnHrjoIvj+e5X5FqKTSdCdmf72N9XvdJedvP4ntk2CbiGE6I2+/14F3dFopz2FZcbQDfUKzHD6yC4cjeH0o/1+UuqJjY1w1FFqf/Ann8Buu3XamkQH8npT9/ALAOLRukTA7XQHcPmKcHny0fTt2PduWbBkSeor4euvVw0J//AHuOMOdWzMGNUqep991M+zo+ll3ZQp8K9/qVF+I0Z00FeWXtGoatJuGDB9eo/Zqt5jSNCdmVr0NxWdTIJuIYTojd55R71qLSjo8IdONktbTXbh6MTYoy2OP1q+HPLzVaekUaOSxy2r47qrC9HBzHiYaKiSaLACX24pTncAALevGE134PIWYjg87Xsw205GkeGwGgVWWamy2337quPTpqlOYv36JT9P11V5eVtGj97Br6x7qq1V84RB/aqQoLt7kaBbiK2ToFsIIXqjTprpa5kRGquXJTJ90dCmrc8aBpWtW7RIbS5rztTZthqDtPvucOONXVICL7bTRx+pyoR99oGf/Szdq+kStmUSDVcRDW4kFqlLHI8GKxNBt+H04XX62veAH3ygvr+HD4ennlLHPB7o3x+CQbU/uznoPvNMdeuldB323FOuxXVXEnRnpldfVf9306dDXl66V9OzSdAthBCiQ0RDmwjWlGFZcTRNxxcYitvfp32fbBhQUpK8/9lnav/q11+roER0Px99BLfcAr/5TY8Pum3LJFhbTjS0Cdu2EsdV+XgxLk87Xq2+8oqqMLn4YnUxCdT3/eefw4oVqdnuN95QwfbORDD/+59KDx94YGp2PEMVFKhfB6J7kqA7M118Maxfr4poJOjuXBJ0CyFEb/TWW2qT5MEH7/T8HRWQLCcS3AiAw+nHnz8Cw7ET+3333x/ef1+1VW2Z5X70UfWx5kZSIn323hsuvBAmT073SjqFZcXRdfUySdMN4tF61QzQ4VH7tL1FGA5360+Mx2HBAli8GE49NXn86afhv/9Ve6ybg+599oF//rP1v+GgQTv/BVxzDXz3Hbz3Xo8IukX3tlKNnGfjxvSuQ2yf/feHigrIzU33Sno+zbZtO92LEEII0cVyc1UW7KefYOTInXqoSLCCxuqlAHiyB+DNHoimdUL9Z1mZWqtpqoCmhzSI6gqf7LYbRWVl7BoMpnsp3ZplxYmFNhEJVmDGg+T23SvxvRwNV6PrjtbbJRoaVDPAPk1VHcuXq6oNh0P9jPmaSs1ffBHmzYOf/xwmTuz8L+bXv4bycjVKbPz4zn8+0StVValZz++8kzx22GHwwguSORWiJcl0CyFEb7T33ipYcLeRqdtObl8R8UgdLl9hYl9rpznhBKivTw2416xRe2Cls5LYAbZtE4/UEglWEAtXtSgf14hH6xPf022WkN99t+omfsEF8NBD6tiQIapPwZAhsGlTMug+5RR16yqPP951z9UFVq1ShQOBgKqcF93DaafB++/btByF9/776v/q7bfTty4huhsJuoUQojd6770d/lTLjBCqW4U3MDRRfuvPG9ZRK9uy0lI1BikeTx4LBlUWb8QI9bEBAzp/HaLHiIVraKxZhmUmR+cZDi9uXzEuXyG60WIG+QUXqGji7beTF31KSlTlRVlZ8jxNU2XdchGoQzU2qlYPkj1NL9u2iYU20VhbxsL5FbzzzpFsPnveNFXme8kSKUgSopkE3UIIIdotGqoiWLMMy4oDWtcE25tztPjT9eWXUFcHa9dCcXHXr6U3++Mf4c474ZJL4N57072adrGsOLYVT4zy0h1uLDOKrjtwegtw+4pxVNTCw89AJJLaxO+HH1RwPWtWMpI47DC1mXXzPdgScHe4/v3h5ZdTf/xF57Nti0jjehprygjWlBOsKSMeVZ37v58/aqufe+edcM89sl+4uwqH1UQAl0v1c/S1c+iC2DHyq0sIIcQ22ZZJsG4FkcYNgGqW5snqn+ZVoTozl5erW3PbXNtWo5WmT1c1jtJOt3OYpmrGZ5rpXslW2bZFLFJLtKl83OnJIyt/FwCMuhA5c1Zi7DoOrV+p+oT1P6mS8UAArr8+OZ/qxhvVvKp9900+eFbWTjci7DSHHqq2Xjz/fLJxWwbLyVHb4UXnsqw44frVBGvKaKwpJ1hbjhUPpZyjaQaenEGM22v4Vh/rmWdgxgw46yy47DLJenc34bCa1glyMasrSCM1IYTojY4+GjZsUK+Kdtllq6fGow00Vi/FbHrh5cnqjzdnUOc0S+sI77+vAm6PRzW16tPOsWU9WKc0UqutVfvr/f5uWfMbjwWJBiuIhipV+bhto6/biD50GNmFu6Fpmro488wzcMMNcPPNTZ8Yh9NPV83OLrpIfR9lopIS9f3/5ZeqS7oQbbDMCMHaFQSbM9l1K7CtWMo5uuHCmzMEX+4w/LkleHMGJ7ZeHH64+pXb8tqbYcAhh8CTT8Ijj6hbZSUceSRccYW6VirFIOkXi6ktG9Go+pMp/yedS65rCCFEbzR/PqxerZqpbUU0VEVj9WJs20Y3XPjzhnd+s7Sdtc8+qq4xHE4NuN9+G6ZMUUGi2HmBgLp1Q43VS4kEKxL39bBJztRfoK9dr+bjNL+6nDwZ5sxJ/TocDtVpPNO98AKEQjBq6yXAmaK+Xs0S9vlgr73SvZrMFY8FVYBdq0rFQ/WrocXseQDD6cMXKMGXW4o/txRP1gA03Wjz8V54QRUUtexefsghye7lN92kptc9/zz85S9qSuW4cXD55erzMvWaVk/gdMIBB6R7Fb2HZLqFEKI3eu89tWd18uStbrizzBh1GxfgcGXjyy1FNzK0VHvFChg+XAVX33/f67LfPXlkmG1bxMI1ON0BFRjMnIl5yx+JDSwkfu/tuHxFOD25aGN2U3Pf33sPpk1r/mRJ72SIL7+ESZNUAr9l3zqxdbFwjSoVbwqyI43rW53jcAfw55bia7q5fcXbXcm0ZIn68Ro+fMtl5LYNH34I992nOtAXF6tikosu6nW/kkUvJJluIYTojaZP3+KH4tEGHC61T1U3nGQXjcVw7PxosbRavRqGDlVjnFq+uovHZTPbjvr0UxUJTZig6kW7WDzWSPzVGfD++4RPPQrvPofg9hdDNIrx4SfoJSV4Clpsnfjvf1V3+5bdgiTgzhgul9oJs3nPOpFk2zbRUCXBmmVqP3ZNGbFwVavzXL4i/LnDEtlspydPbbfYCSNGbHvPtqapTPfBB8PixXD//fDnP8Mdd6jRY5df3iPaD2SM2lr46CPIzlb/J6JzSaZbCCEEkNoszZ83ArevMN1L6ljxuJqb3Bx0h0Kw225w1FFwyy2qU1MP1SmZ7muuUWX8l1+uUledybbhxx+xfvyB6PT9iAYriMcayTrzd7g+/ILgzVdiXHk1bn8fVYf8zDOw//69+xX8m2+qTZsHHtijv7d7M9u2CDesTXQVD9aWE4/Wb3aWhid7AL5ASVM2uwSHKzst621LdTX87W/w17+qa6MHHqh+pRx1VLKH4bZ89hm8/jrcdpvaTy7aZ948dc10wAD1by86l1zeF0KI3mj2bLWfe8IEyMsjHmuksWpJolna5t1qewSHIzXL/Z//qDrV//wH7r47XavKXHvuqRqRdcYG20hEzWBvbtC2dCmMHo3mchL84V3wuNE0Dev4YzBHjMZ7wLFo/qb/2+xsuPjijl9TpvnVr1T3qoULYcyYdK9GdADLihOqW6mC7NoygjXLscxwyjma7sCbPRhfrgqyvYGhiRF53VFeHlx9tWqw9sorat/3sceqMvXf/hbOPnvrAwJsW00tXLBANXP785+7bOkZz+NRwxiKitK9kt5BMt1CCNEbjRoFP/2EPXMmkQkjCdWtSDZLyx2G05Ob7hV2PtuGDz5Qwd0xxySP3XQT/OIXPSpQyag93ffdB9dei3XeOUTvvAGPv6/6fykpIT6gmNBDt+EcMRaXtxBdl9zBFh1xBNTUwHPPqY3QIuOY8TCh2uVNo7vKCNWtxLbiKefohrupTFyVinuzB2Vu740ms2er4Pvll1XAfd55cOmlanfQ5mbNUv0xmz35pLreJER3I3+thBCiN9plF2yXk2BsI5FaNfrF5cnDlzss41+wtZumqTa7Lc2cqYLuu+6CtWu32mRO7CTbVnWkH30Er70GQ4dimVHiATeucBhz/hyCNctxefLVeKKyMgxssrfQRVls5s03072CDjV3Llx3HYwcqUqRe6J4tIFgbTmNNWUEa8oI168BUnNjhjMrkcX25Zbi8ffbYmfxTDVpkhogsHIlPPigKj+/7z444QSVEd9332Q7hnvuUSXlzSPLzjtP7S3fb7/0rV+ItkimWwgheqlYuIb6TYvQNB1vYIjKKPZ2ixbBjTdC376pr+yb2/JmqLRnutetg3//W41xu+qq5PFJk+DLL4k/8TChYw8gFq5Fq6tHq9iEPWwoTm8+3pzB3bo8VnSNN99Uc54nTFABeE8QDVUlRnc11pQRDW5sdY7Tk58MsgOluHxFO930LNM0NMDTT6vs95Ilairk5Zer74VRo9T1u2a6rq6VzpvXdmZciHSRoFsIIXqxcMM6nO4AhtO37ZN7E8tKdvFZtQqGDYOJE+Gtt7a+wbCb6pSg+//9P9V++JJL4NZbk8cbG9Xs6yFDoLRUHZs9W6WnCgpS52S//jqxhkoaxvbHzlPNvhyubNy+IpzeAikfFwlr1qhxU3l5qslWprFtm0hwQ7LpWU05sUh1q/Pc/r6qVDxQij+3BKcnLw2r7Z4sS/0Kvu8+tTPI71e7gzaPZAxDdbr/8suM/HXdZd57D669Vv1pe/DBdK+m55O/ZkII0UvEY0GCNWX484YnMoeerH5pXlU31bJt7hdfqCDR4ZBXcC2FQmrPcPVmgcP558MLL8DNN8MNN6hje+4JRx6Jtc9eRCrLMPwBXL5COPpoDCuOXvEdLm8BLl8RhsPb5V9KjzR5MkSjqlFg//7pXs1OGzAAzjgj3atoP9syCTesTZSKB2vLMWONqSdpOt7sgYnRXb7cEhxOf3oWnAF0XVU7HHmk+rU8dWrrgBtUqflPP8Evfwmvvtr+Lui9zYYNqmokT67rdAkJuoUQohcIN6xTTXhsi1DdCrKu+wv8+KMakDppUrqX172ddJIKYGprk8fCYTj6aNWx55RTeues74sughkz4OGH1aye5v3v++2nZng7VW8A2zKJxuuIPvlnYpEaiG7EQVAF3YCuOwj0GZ+er6EnmztXdYGPx7d9rthplhlr6iyuSsVDdSuwzEjKOZruwJszJLEf25szBMPhTtOKM9ucOcl93G0xTdUq4vrr4fbbu25dmeTAA9Wotfz8dK+kd5DyciGE6MEsM0ZjzVJi4RoAnJ48/LnD0Cftp16Uv/GGShuI7fPYY3DhhTBwICxbBi5Xule0VTtdXv7pp6pj0bBh6m2zESPU1//RRzBtmjpmmmAYxKP1RBo3Eg1vwraSr46d7hxc3iLc/uKd+IrENr39tvq/OOgg8GZ+9UBVFZSXQyDQPdormPEQwZrlTaO7ygjVrcK2U6NA3eFJZLH9uaV4sgfKlokOYJqqIf+qVe07/9lnVdZbiHSSn3whhOihouFqgtXLsKxY62Zpt92myoLHS4Zxh5xyiooC+vVLDbhfeEGNH/NncInoBx+ozbNnnaWCaoC6Ovjvf9X9lkH3K6/AoEGpXd4N1Uk5XL+GaLi66ZAbl6+oqXxcmqJ1icMPT/cKOtTbb6vA6eCD4f33u/75Y5G6RNOzYE0Z4YZ1bN5Z3OHKSYzu8gdKcWf1RdOktrmjvf56+wNugDPPVNncn/2s89YkxLZI0C2EED1QNFRFQ9VPABhOH1l5I1KbpR16aJpW1kMEAnDNNanHPvkETjtNZb+XLgV3BpSNrlypNj9On5489qc/qQ47AwYkg+7994c//1mV2Tf74guYPx977G5E9xxFNFiBL7c0EVS7/H3QdCcuXxEOV3av67gsOpbHo360irugQMK2bWLhqkSpeLCmjGiostV5Lm+B2osdUOXiLm+BfJ93gXvvTb2v6+rW/E9vWaml55YF55yjhihsburUqXz66acAGIZBUVERkyZN4v/+7//Yr4fPHVu2DMrKYPBg1XhOdC4JuoUQogdyenJxOP043Dl4cwZLtqUrBIOqW/f06akBdyjUfcp7GxqSzeB+/BF23VWtrbY2sQeb449XAfeuuyY/Lzc3ZdSXbdtYL72Acd9fiVz4S4IllwAQDVbgzRkEqLnvLum8nB62De++qyKRadO6/faH9jjhBHXrDLZtEWnckBJkx6N1m52l4c7qi78pwPblluB0BzpnQWKrBg2CceMgJ0dd/8zOTt6yslq/r+tqtNjmbNtm/vz53HnnnfzqV78iHA6zfPlyHnnkEaZOncprr73GEUcc0fVfYBd59lk1hOKCC+DRR9O9mp5P9nQLIUQPEQ1W4vTmJwJs27a2HGz/8IPqPD1yJBQWdt0ie7p4XAXfOWr8FWvWwNixqlT7T39KBrZd7JN+/Shav55dr7pKZaxBpX/691dpjldeUWnEbbCsOJGGdUSDFRgz/oPr3U+JHjoF85TjVfm4t0gaQ3UHppls7ldZqUa1iQTbMgnVr27qKq7Gd5nxUMo5mmbgyR6Y2I/tCwyV0Yo9zOLFi9lll134/PPP2XfffVM+dtBBB1FdXc0333yTptV1vocfVu1JTj5ZjQ4TnUsy3UIIkeFaNkvzxgcmMo1bzW5ffDF8/LHqPn3SSV200l7A4UgG3ADPP6/2zs+d2zUBt23DH/6g/m///W+VsYbEPmu+/jp5rq6rjZHbWJdt24mSWQ2NcMM6bNvEOukotDN/pWZqu3O2+hiii9k27LGHurCSpgs93YllRgnWrkgG2bUrsa1oyjma7sIXGJIIsr05g9GNzK8QEFv29ddfYxgGu+++e6uPTZ8+nRtuuAHLstB76Myxiy9WN9E1JOgWQogMtnmzNM1o5wvsAQNUJ2qfZG461VVXqTrIQIsy1EgE/u//1MitliXc22vjRtV9PhxOvnLSNNVlat48mDVLpTBA1Vi63arkuKUtBGS2bROP1hENVmDGQ+QUjVUPrxt4cwapvdqePDTd2PH1i87jcEAPy9C99Rb87W+qvcDvfrf1c+OxIKHa8kSpeKh+NdhWyjmGw5doeubLLcWbNUC+n3uZefPmMWrUKHxt/B10Op0YhtFjA27R9SToFkKIDNQ8bzvcsB5QzdL8eSNwtLf88bnnOnF1IkHT4LDDUo89/TT89a/w6qtqBlJ7ZnxHoyqI6t9fbWgE1QDt3HOhb18VwDd3Efr979X5BxyQ/HzDUJntbTyXGQ8RDVYQCVamzBiORxtwuNRecE9Wv22vV4gOtnSp+pFp6zpRLFKbsh870ri+1TkOdyAxH9sXKMXtL5ZeF73c119/zZ577tnmxxYvXsyotjaCC7GDJOgWQogMY8ZCNFQvxoypmcuerL54c4bIC8hMsffeqlnZtGmpQfCCBdBc5tjYmDp27Mwz1VaAO+5Q5ePNj3PAAbDvvirIbm7etgPbBWKRWkJ1q4hH6xPHNN3A5S3E7StKBNwpbr4ZHn9cZdllQ6DoZAccoPaglpbaRIKVidFdjTXlxMKbWp3v8hXhC5QmAm2nJ086i4sU33zzDcccc0yr46FQiP/+979ccolqEDlx4kQeeugh9tprL371q18xadIkLrrooq5eboe79VY1IfKSS+DEE9O9mp5Pgm4hhMg4NlY8jK478ecNwykdojPLHnuoxmUt+5h+9pkax3XggbBpEyxapN5mZ6uPT5qkxnjF48nP8Xjgo492aAm2bYNtJctpbbsp4NZwenLVPm1P3tYv5NTWqkZxdZt3eRZp19gIRxyhqhveeSeju5fbtkW4YR39c8s4anIZwdpyls6u3+wsDU9W/2TTs9wSHK7stKxXZIaysjJqampaZboty+Kiiy7C4XBw6aWXAnDDDTdw++23s//++5OVldUjAm6AhQth5kx1DVh0Pgm6hRAiA7TsRG44ffjzR+JwZqG3dw/35m6+GebMgcsuS53RLLpOy6zb/PmqbnbYMDU4NRZT5eRTp6qPX3QR/Pa3KojaCWYsSCRYQTRUictbiC8wBFClt77AUFzegvY3j7rySjj99K4ZnCy2Tyym5sZnIMuKE65bpUrFa8sJ1pZjxcMp52iagTdncGI/ti8wNDEfXoj2+LqpqWS/fv1Yv349dXV1fP311zzwwAOsWLGC119/nbw8dUH7qKOO4vrrr6ehoYE333wzncvuUFdcoQLu8ePTvZLeQYJuIYTo5mLhGhprlpGVPzKRvdnp+cdffQX/+59c4u4uLrkEjj1WBdXnn6/GePXtm/y4e8fHcFlmDMuKY2NTu3FB4ngsUgOooFvTtO3fqz1gQLI7uuhefD546SXVvbw9PQPSyIyHCdWuoLFpdFeobgW2FU85RzfchK1dCFkj6DuwP0OHD9jxC45CoJqoAYwcORLDMAgEAowaNYqjjjqKiy66iPz8/MS5c+bMoaamhpEjR+Lo5j9P22PiRHUTXUPmdAshRDelmqWtJNywDgCnJ4/sgg5q7PLee2pc1OTJala36JEaa8qIBjfyzYGn0XflWvotm4nTnYvLV4zTkyt9AESXi0cbVAa7aT92uGFN687iTn+L+dgleLL6c+ttBjfeCL/+tZotLERXWLNmDT/72c/473//ywknnMDzzz/PrjszdUL0Wj3nco0QQvQgZixIY/VS4rFGADz+vnhzBnfcE0hJeffz1lsqmthvP7j66h16CDMWRHd4k3O1Na1pzraOpmkE+kzouAzhV1/BDz/A2LGwhQ7AQkTD1U1Nz1SgHQluaHWO05OHL1DaFGiX4PIVt2p65vFAXh5ktdHTT4jOEAqFOPHEE3nwwQcpKSnh6quv5tZbb+W5HjL945tv1MTJUaPUz5boXJLpFkKIbibcuJ5Q7Qps20LXnfjyhu18Obno/h5+ONlG9qWX2v1plhkjGqokGqwgHmsku3A0TreaC27Gw9i2yefjJ1JUVsauwWDHrfeKK+Avf4FrroHbb++4xxU7LxJRF0UMQ3W37yK2bRMNbmwa3aWC7FikutV5bn+fpiBbzcmW329CdL2994a5c+H11+Goo9K9mp5PMt1CCNGNqKxQOQBOTy7+3GHtb2y1PVauhOpqNfe5qKjjH19sv2nTVKa7pGSbp9q2RSxcQzRYQSxSTfP1c03TMGOhRNDdqc2lRo2Cww+X7QndUWUlTJmimvNFo532NLZlEm5Ym2x6VlOOGWtIPUnT8WYNaGp6VoIvUNL2CDohRJcaOBCqqiAQSPdKegfJdAshRDfTULUYhysbt79v582VPfVUePFFuP9+1RVbZAwzHqa+YiGWFUscc7iycHmLmrqPty4f/2S33To+0y26r3XrknPgf/ihwx7WMmOE6lYSrC2nsWYZodoVWGYk5RxNd+DNGZIY3eXNGYrh2PFGgEII0RNIplsIIdJIzaBdi9vfF11Xv5Kz8rsgc5ibq7pje72d/1xip1hmDDMeTMlea7qBrmm4vIW4fUUYTl+aVym6lX79YPHinX4YMx4iWLu8qVR8GaG6Vdi2mXKO7vDgC6gMtj+vFE/2oMTvso703HPw9ttw9NFw0kkd/vBCCNGpJOgWQog0MWMhGquXEI81YsZCZOWP6Lonf+QRdRPdR1UVrF8P2dnYAwcQC1cTCVYQC9eg6waBvhMS3cazCnZFN1zSfVy0aeDAgVx77bVcfPHFiWOff/45hxxyCIsWLWLIkCFtfl48Wp+yHzvcsBZILYh0uLKbZmOr/dierH5d8n341Vfw7LOqJFaCbiFEppGgWwgh0mDzZmkub0G6lyTS7V//gosuIn70YTQ8dgtWi1nFusODZUYTe7Q7da92e912Gzz9NFx4oWqqJrqNSZMm8dVXXyXu27bN5ZdfzuWXX54IuG3bJhauIlijSsWDteVEgxWtHsvpKUiUivtyS3F5Cztv28tWHHccDBqkmj8JIXbeiSeqnouPPKIuZonOJUG3EEJ0IcuMEawpIxquAsDpzsWf10nN0kRGiRHCyM/F9BhYVhzdcOHyFeH2FmE4u+E2gI0bVQnzpk3pXonYzKRRo3jy/vshGIQZM3jmmWdYuXIlV1x6NlWrP08E2fFI7WafqeH298WXW9IUaJcmtjWk2wEHqJsQomO8/TY0NqrWLqLzSSM1IYToIvFoAw1VP2GZUTRNw5szGLe/X1qyRjz+OHzwAZxyChx/fNc/fy9nWybRcDWGw43DlQ2o7QZ1Fd/i9OTj9hXhcAc67HujUxqplZXB2rUqRTJ0aMc9rthps559lmlnnEFNboDq2S8wceovufhX+3HC4buknqjpeLMHNQXZw/AFhkp/ACF6ieefh1AITj4ZsmSgQKeTTLcQQnQR3VAdfA2HF3/+CBxOf/oWM3euKmceO1aC7i4Uj9YTadxINLwJ2zJxeQvIyldBt+H0ktt3LzTdSPMq26m0VN3EdgkGgxiGgdvdsR29LTNKsHYFwdoyivuswdA13jlqFB/cehM5WQbHHToSTXfhCwxpGt1Vii8wOPF7qburrFQBQm4uZGenezVCZL7TTkv3CnoXCbqFEKITWWY0UTquG06yCnbFMNzpD6xOOQXGjYOJE9O7jl7AjEeIhiqIBisw4+HEcd1wt8oqpv37QnS6qVOnsnDhQvbZZx/2339/Jk+ezH777UdeXt52PY4ZCxKsXa5KxWvKCdevTnYWN2DkiGJeC1u89MYCnnvidobtfSLe7IEZ+z121VXw1FNw553w+9+nezVCCLF9JOgWQohOEmncQLB2Ob7cUty+IgAc3aV086CD1E10usaqn4jHGgHQNB2XtwCXrwiHKye1fPzDD+GJJ2CvvTKjMdk338CyZbDrrjBmTLpXkzFefPFF3njjDWbNmsWTTz7JnXfeCcCYMWOYPHlyIhAfOnRoyvdHLFJLsKmzeGNNGZHG9bTqLO4OqNFducOYckA1jz3+JEcddRQnnPa7rvwSO4XDAS4XOFuPoRdCbKd4HObPB7cbdtsN0rHLrbeRPd1CCNHBNm+W5vLmk5W/yzY+S/QEsUgd0VAlvpwhiYxiuGEdsXA1Ll8RLk/+ljONjz8OF1yg2jS/+mqHrqtT9nRfeik8+CDccAPcfHPHPW4vYts2ZWVlfPbZZ8yaNYvPPvuMH374AYB+ffswYfwoivI9/Orn4ygMmK0+3+Uragqym5qeefJVoB4M8sSf/sRFt9/OdwsXsssu8vtHCJG0YQP07avetywJuruCZLqFEKIDxSK1NFYvbdUsrduprISaGrVBsrAw3avJaGY8TDRYQTRUmSgfd7iyE9UNnqx+eLLa8T2w775w330wbFhnLrfjDB8OU6fCFmY+i23TNI1hw4ZRWlrCSccfwurl3/C//73GG29+woLvV/HGWx8DsHH9Cv507ZF4svrhyx3WtCe7BKc7p+0HXrSI526+mYuzsiTgFkK0YllqBJ9tS8DdVSToFkKIDmDbFqG6VYQb1gJNzdLyhuNwddOWoLfdBn/5C1xzDdx+e7pXk3FU9/EqosGNxCJ1ieOaZuDyFuxYB+ixY9UtU1x2mbqJ7WZZccL1q1iyaA4fz3yfz7/4mq+/XcnS5Wr8WnGhnyy/m4qqRo47ahpP/O0BAoUjMBxbHx1nWRYVFRU88eST/KTrvDpiRFd8OUKIDNOvH6xcme5V9C4SdAshRAeIRxsSAbfb3yelvLhb8npVC2DZILlDLCtOY/XSxH2nO7Dt8nHRa5nxCMHachbOn8XHMz/iizkL+PrbVaxZry7YlAzKY8K4wVx07tFM2Gtfbr/3eT74cBYPPvggl1xySbuf55NPPuGggw5i1KhRvPL55wR6UKPEhx+Gb7+F00+HyZPTvRohhNg+sqdbCCE6SKh+NYbDh8ubn+6liA7UXD5uWTH8uckRWY3Vy9AdblzeIgxHB4xdqq+HTZvUBZE+fXb+8VrolD3dYovi0Qbqq5Yy98uZfPLJx3w593u+/nYNVTVBdF1j1LAiJuw+lP3325up0w5h6PAJeLL6s2LlKo4++mhWrlzJSy+9xKGHHpruL6XbOOYYeP11+Nvf4Lzz0r0aIYTYPpLpFkKIHWBZcUK1y/FkD8RweADwZg9M86pER7GsOLHQJiLBCuLR+qajGt7sgYkRcP68Dt57PWMGnH8+HH00vPZaxz52Z7jjDjXr/YIL4MIL072atIqFq6na8BNfzHqPWZ99zpdzf2T+D2tpaIzidBqMG9WXk47ei/32n8SUadPpN2gsLl9xSnfyzz77jOOPP57s7Gxmz57NrrvumsavqPv55S9VY/8JE9K9EiEy36JFcO21qiXHX/6S7tX0DhJ0CyHEdmrZLM0yI2QXyrikniIerSfcsJ5YuArbtpqOajg9AdzeIjS9E/9sOhwqy+1ydd5zdKTVq9XMmfXr072SLmXbNtHgRtavXsinH7/HZ5/PZu43S/l20XqiMRO/z8UeY/rx69MPZPLk/dh38iHk990Vl2fLc7ifffZZzj33XCZNmsS///1vCne2ueH338Mf/6g6Jd133849Vjdx8snpXoEQPceGDfCf/6iJj6JrSHm5EEK0k21bhOpXE65fA4Dh8ODPG9F9m6VtzauvqlrNgw9WKSQBQLhxPcGackA1w3P7inH5ChPZ7UzVKeXlP/wAq1apbuvDh3fc43Yztm0RbljLymXz+Hjme3z2+VfMXbCcH5duxLJs8nO97Dl2IJP2HsOUKVPYa+KB5BS07/eCZVnccMMN3H777Zx99tk8+uijuDriostHH8FBB8Ho0SoAF0KIFtasUS8BcnLgtNPSvZreQTLdQgjRDmY8RGPVEuKxRgDcvmJ8gaGZ2zTrm2/gn/8Ev79XBt2WFScaqiQarMDlK8LjVwNLXd5CrFgIl68oMy+mdKXRo9Wth7HMGKH6Vfy08As++fgDPv/yG+YuWEn5yioABvTNYcLYQZz+i4OZesABjNtjCr7coYltJu0ViUT45S9/ySuvvMJdd93FVVddlVJuvlNGjoSHHlIjAXuImhowTdX/MVOKQYTorgYM6PW7grqcBN1CCLEN8Wg99ZU/YNsWuu7Al1uKy1uQ7mXtnOnTVcC9557pXkmXsW2LWKSWaLCCWLg6pXy8OehW/78l6Vuk6HJmPExjTTkLvv6YTz6eyeyvvuXrb1ezbqPayz9sSAH77DGEyy88nqnTDmbk6El4cgah7+RWg0WLFjFz5kxeffVVjj322I74UpIGDICLL+7Yx0yzY46BTz+Fl16CE09M92qEEGL7SNAthBDbYDj9GA4vmu7AnzcM3eiATtXpNmWKuvUSwbqVqgO5GU0cM5w+3L4iXN6iNK6shc8+g6eeUrO6L7003avZtoULVXn58OGQQfOg49F66iqXMOeLD/l01ixmf/U93yxcQ3VtCEPX2HVEMYcftBv777s3U6YdwqDSPfFk9UPT9A5dxx577EFFRUXHZbd7ONNUb40MLS4SojuprlbtOHJz1cxu0fkk6BZCiDbEo/UYTj+apqNpOlkFu6LpDnmBnCEsK56SiTRjQSwziq47cfkKcHm7Yfn4Tz+peUhHHpkZQfdDD8Gjj8JNN8GNN6Z7NW2ybZtYuJpN637gs1nv89lnnzNn3mLmf7+WYCiG22Uwbtd+nHr8RKZM3pf9p06neMBuuLyFXfKz3mnP0dCgNm36fKqZWg8wa5YKvPWOvfYhRK/0yitq9N6RR8Ibb6R7Nb2DBN1CCNGCbVuE61cTql+DN3sg3hz1glU3nGleWQdrbIS6OvB4IG/LXZUziW1bxMI1qnw8UkNO8e4txrkNwO0rxunJ7fCMZYfZc0+49dbMaUo2eLCa39SN0iS2bRFp3Mj6Vd/y6cfv8elns5k7v4yFP20gFjPJ9rsZv1t/Lj77ECZP3p/9Jk8nt3gXnO5AupfesWbOVKPn9t4b5sxJ92o6hKapBv9CiJ1nGOpPf6CH/errzqR7uRBCNDHjYRqrlxCPNgCqWVqHz2LuLv70J/jDH+Dss+Ef/0j3anZKPNZINFhBNFiJZcUSx325JYm92r1dp3Qv7wZsyyTUsIblS+by8cz3+eKLuXy1YDmLyyqxLJvCfD8Txg1k0t67MWXKVCbscwBZ+cNxOH3pXnrneust1ZJ4zz3hgw/SvRohhOj15JqhEEIAkWAFwZpybNtE0w38ucMyv1na1hhGxm+ONGMhdZGkqaM80FQ+XqS6j/f0wKot8ThUVSWrGAYOTH7MsuCLL9Tx5pvXqxrqZWWpVGI3Z5lRgrUr+OG7z/n04w/54sv5zF2wkhVragAY1D/AhHGDOOeXhzN16oGM3n0//LlDe0Yfhu3xs5+pTZs9yF13qdnCF16YUS0EhBACkEy3EKKXs6w4wZoyoqFNADjdOfhyh2M4etmL9Axg2xaWGU2UjNuWSc36rwELpycfl68IpzvQfcvHtyUchvp6NQ+prZq/UEjt1S1qavxWVwenn64ikU2b1K2mJnn+McfAf/8LNGW6v/+eXbf03JMnq9bQzX7/e7WGkSNVhDN8uArOu5gZC9FQvYxv5jZ3Fl/IvO9Ws6GyAU2DESWF7LX7EPabNIFpBxxC6S774MkesNOdxUX3M2aMGg3/4Ydw4IHpXo0QQmwf+askhOjVbDNGLFyNpml4sgfiyRogzdK6mXi0QZWPhyrRDBeB4t0B0HSDrIJdMJz+nhFkzZgBZ52lspQvvaRmqc+dC19/rW4//gi/+IU6D1R2+p13IBpt/VjZ2eDe7MKRpkFpqQrew+HkW9tO3ddv2/DXv6qPtzRwIOyxBxx+OFxyiUo9vvaa6sZz1lkd8k8Qi9RRW/ETX37xAZ98Mos5Xy9i3sI11NVHcBg6Y3bpw9GH7s5+++3DtGnT6T90D9z+Ppl7oUW023nnqW7LgweneyVCZL4XX4T//Q+OOAJOPTXdq+kdesCrFCGE2HGG04s/dxi6w43DlZ3u5YgmlhklGqokEqzAjCX3IeuarrqQGy6AntcAC+DLL9Ucl3i89cfWr0++r+vwz3+qDHRhIRQUqLd5eW1vHfB4YOnS1GO2rZrqhcPJY5al9vsvWwaLF6tbVRWsXq1uDocKupctU2POvF4YOhT23x+c7W84aNs20dAmKtf9wGefvMuns77gq2+W8O2idYTCcbweB7uP7s9ZJ09m//33Y/8ph1DUfwxOT75cGNuW2bPhkUdg9GhVtdADXHFFulcgRM8xdy48+6zqgylBd9eQ8nIhRK+imqUtxZszGKc7J93LSZ9PPoF//QvGj4dzz033alKE6tcQqlsFqD9Pmqbj9OTh9hXjcAd6VsC1YAF8+y2ccYYKgDVNZZMXLID+/WGvvVSH8OZbnz47tPd6pxupbdqkMu1z56ps+dFHq0z87Nlw8cXqnNxclQU/4ww47LBWgb/qLL6e1eXz+eTj9/j88zl8Nb+MHxZvJG5aBLI97Dl2ABMn7MqUqVPYZ9+DCBSO7N0/pzvqhRdUI7WDD4b330/3aoQQ3czHH8NXX6kBB9OmpXs1vYME3UKIXqNlszSH009O8bh0Lyl9Hn5YZStPPFGVMqdRPFqPprsS++hj4WrqN/2Iw5WN21eE01vQM8rHm4XD8OST8Pe/q7JxjwfWrVNBK6hAtrhYBbcdpNO6ly9ZArfdpuoUKyuTx4cOxfr1+YRPOoxllUuZOfMDvpg9j7kLVrCkXJ3XpzCLCeMGMWmf3ZgydRrjJxxAVl4phtPbsWvsjRYtUsN3Bw+Gk09O92o6RCikrje5XDKrWwiReSToFkL0eNIsrQ1z5qgX5WPGpOVFuWVGiAQriQYrMOMhPFn98QWGAKrs2DLDGI4eFnzF4/DMM/DHP8KqVeqY0wnHHgt33w1DhnTaU3f6yDDTxPr8U2LP/ZPlz73MrIYgnwIf5fpYWaOec+jAPCaMG8S+k/Zk6rQD2XW3/fAFhqAb7S9JF73XgAGwdi3Mm6cKdIQQIpP0oNSBEEK0FovU0Vi9FMuMABreHGmWBsA++6hbF7Itk2i4mmiwglikJnF88yZYmqb1vID7u+/Uxrnvv1f3BwyA3/1OlWIXFqpjX30Fzz0Ho0apuUjdXHzhNwQXz2Nu1Uo+/mkhs+cs5OvvVrOpIYiuwVivi2kHjma/yfswddohlIyYoH729MweVSfSwzTVW8lyC7HzNmxQPTgLCsDXC6drpoME3UKIHisebaC+8gfAxnB48OcNl2ZpaVS3cQGmGUncd7pzcHmLcHrze1b5eFucTlixAvLz4ZprVGm/d7MLCz/+CPffr/ZDd8OgOxauoXrDj3zx+fvMmvU5C176lDkVDdQCTqfB2F36cuJRE9h/v0lMmTadvoPH4vYVS2fxdGhoUOPjfD71PdcDLFumikWystK9EiEy34UXwn/+o/otdsM/Nz1SD3+VI4TozRyuLFyePDTdwBcokQxbS7GY2iRpGJ0yf9mMR4iFq3D7+yaqCpyePAhX4/IV4fIVJeZt9wqjRsHrr8PYsSq10JbddlMB+YgRXbu2Nti2TTRYwYY13/Hpx+/x2Wdf8tX8pXy3aB2RqInP62SfXB9X5vqYcNxBTPjjNeT3GYXL2zMCvIz34otw/vkps9ozXRrGxAvRYxmG6o/g6UV/htNNgm4hRI8SDVbi8OQmMqf+/BGSaWvL888nZ0K/+WaHPKQqH69qKh+vBcBw+hPdp705g/EGhvae0v5Zs1RztN12U/cPOGDr548f32mbVY36eryxGMvfe4+h06e3+rhtW4Qb1rJy2Tw+mfk+n30xh7kLlvPjko2Ylk1ewMueYwfwu4uPYurUKew98UByCkdI5Uh3pWmqusIhL/OEEK29/HK6V9D7SCM1IUSPoJqllRMNVeLyFpCVPzLdS+rennkGzjxTlTK//fYOP4xt28SjdUSDFURDm7BtK/ExpzuAJ3tg7xz5ZFlqdvWmTfDee7DffmlZRvWyZSybOJG9Nm1KHJtbUEDpl1/gLjBY/P1sPvn4Qz6b/TVfL1hJ2coqAPr3yWHCuIFM2mccU6YcwB4TpuLLLeld1QmiW7npJrWv+4or1Ch6IYTIJBJ0CyEyXixSR7B6adN+YWmW1i7xuHoFaxg7lQ2LReqor/w+cd9weFT5uLeod3eHnz0b9t0XcnJUy+X21MbG46qzja53WM3f3MJC9ti0KaWsLQ584tQ5Pc/Puo31AJQOzmfC7oPZf9IEpk47iJFjJuHNGdzz99qLjOH1qml7K1aoSWhCCJFJ5K+pECJj2bZFuH4Nofo1gI1huPHnS8lruzgc2x1s25aZyGZ7svqqh3Fl43D6MZx+XL6i3pnVbstHH6m306e3fzPqjBlw+unqc959d6eePh5t4KdXn0nJcDdzAAfFLI4fNYA9rpnO1AOmM3jYeDxZ/bdvK8a998I778DZZ8Mpp+zUeoXYlosvhkgEsuXXuxA77Y9/hI0b4fLLYZdd0r2a3kGCbiFERrLMCA1VS4hHVabO7SvCGxgqmbkO1lb5uK47cPtVV2pN08gpHpfuZXY/ubnqbTjcJU8XDVURrCkjWFtOY00Z0eBGlr/1BWM2O88G7gf2Ac46+FT2vvzGHX/ShQvVxYEDD9zxxxCd48MP1abNffZRvRt6gHvuSfcKhOg5ZsyAn35Skywl6O4a8upUCJGhdCwz0tSZvBS3rzDdC8os330Hzz4LQ4aoFNJmzHiIaLCCSLCyaca5Yji8uHxFYNsg1ftbNqYp3P3sM6isTM7i3pqTToLjjtvmIGLbtokENxCsKSdYs4xgTXnK3PNmueNHw1NfpBwzgReBK4D9Xn2V26ZOZdq0aTu2FeP88+Ggg2CPPdr/OZYFTz+tMvrS5KvzLFigZgHV1fWYoFsI0XEuv1zN6i4pSfdKeg/Z0y2EyBi2ZaaM/YpH69F0pzR32hGvvAI//znsv7/qsr2ZYO0Kwg1rAdB0A5e3ELevSEr32ysehz33VBc3TjtNXeDYwR4DtmUSblhDY015Uza7DDMWTD1J0/FmD8SXW4ovUIIvtwSH09/mnu4o8JesLF4YPpz58+czefJkbrjhBqZPn975fRAuvRQefBAOOURlyaXvQuf44gv17zt2LJxwQrpXs9OaX6nKt4sQIlNJ0C2EyAjxaD2NVUvw5AzC7StK93Iy33ffwZNPYpeUED/vl0SCFbh9xTg9uQCYsSDBupW4fUU4PXkydm1HzJ6tupZPnaoCIJerXZ9mmTFCdSsSQXaobjmWGU05R9Od+HKG4MstaQq0h6AbrRvX1ZSXs3TvvVt1Lx/+1VcEhg7lf//7H7fccgtz5sxh4sSJXH/99Rx55JEdH3wvXw7nnJPc6/7YY/DrX3fsc4geKxJRvQV1HaqqIBBI94qEEGL7SNAthOjWbNsm3LCGUN1qwMZw+sgpGiedyXeSGQsSCVYQDVUmAjoZtdYJXngBDj88OePItlul68xYiGDtcqJfvI/+6huECjSqf5a6G1t3ePEFSvA3Bdme7IHb1b9g+XvvUfHFFxTtu2+rOd22bfPee+9xyy23MGvWLMaPH8/111/Pcccdh761UvfycjUSbeBA6Nu37XNWrYJbb4Unnmj6Yk21372qStKWot2CwWQ/wvp6yMpK73qEyHTr14PbrS5gbWNHk+ggEnQLIbotMx6hsTrZLM3lLcSXWyLN0naQbdtEGjcQDVUQjzYkjuu6E5evAJe3CIdLXs12qtNOwxw6iIZfH08wuo5gTRnhhnWATc6HPzLotjdpGD+INQ+cm8hi+3NLcfv7dnq1gW3bfPzxx9x888189NFH7Lbbblx33XX84he/wDCM1p9w1lnw1FPwpz/B1VenfmzdOrjtNnj0UXXfNNVbh0N93t/+1plfigiFVBM/txt8vnSvZqfZtuq0bFnQp48ECULsLKdT7YJavRoGDEj3anoH+bUlhOiWosFK6ioWqH3bmoE/bwRZ+SMk4N4JmqYRCW4gHm1AA1yObLKySwn03RNfoEQC7k5g2zbRYCXV6+aw8cVb4YUXMO64C//uB+K88XbMpYsAW+2ZHz+Z8Lkn4znjEkbufyODdjuTgoGTt3+U1w7SNI0DDjiADz/8kFmzZjFgwABOPfVUxowZw9NPP008Hk/9hIICNTA5p8WYuI0bVWO+QYPgoYdUsN0ccIN6f5x0u+90d98N+flwxRXpXkmH0DQVbPfrJwG3EDvLspK/lt2tdyWJTiKZbiFEt2PGgtRuXACoOdD+vOHSLG07xWNBosEKYuEqVY7f1IAuEqzEtmK4PpmHfuRRqvP0N9+kd7E9iG1bRBo30NjUVTxYU0Y8Wtf8QbJnLaXvY5/gWlerDmka9s8OQz/lNDjqqGQZejcxZ84cbr31Vl5//XVKS0u55pprOPPMM3Ftvj997VoV4P3736lBdls+/FDGjHW2m26C//f/4MILVRdzIYRowbZVptvhkJ0+XUWCbiFEtxSqWwloeLIHSBOvdrLMGNFQJdFgBfFYY+K4P29E65Fq770Hhx4Ku+8O8+d37UJ7EMuKE65fQ7CmjMaaMkK15ZjxUMo5mmbgyR6IP7dUNT3LGozxzgcqE/zee8kT334bDjtMvV9TozaxOp1d98Vsxfz587n11lv597//zeDBg/n973/POeecg8fjgTfegKOPbv+DbdwIRdIMsVNZlrpBjxjN1tAADzygvpTNdzIIIUQmkKBbCJF2qlnaWlzeAslo7wAzFiJUt5JYpJrmX+mapuH05OHyFuH05La+cBGNqleyTidkyxiw9rLMCMHaFYksdrBuBbYVSzlHN1x4c4Yk9mN7cwajG1voXP7TT2qc2AcfqM7ezbV+v/kN/OMfsNdeMGkS7LMPjBoFw4erNs5dybJUQ7T58/n+rbe47bXXmLFuHX379+fqq6/m/KlT8e2997Yz3KBKnlt0UheiPdauVftODUNl54QQItNI0C2ESKuWzdIcriyyC8dIZrsdWs4sN+NhajeoEnGHKwuXtwiXtwDd6B5Z0kwWjwWbZmM3je+qXw22lXKO4fQ1zcZWQbYna0DKPPl2mzEDTjkFDjhA3Z85s/U5mgZDh8KPPyZHkH3wgWrvXFysNr4GAiow93i2XjdoWerCy6ZNUFmpHmPatOTHL7xQraG8XF2kaWGx38/to0fz7Ny5FOTkcNW553LR/Plkffjh1r/GAw5Ijg0Top2qq+H//k99O0sPPiF2TlUV/PGPagrAHXekezW9hwTdQoi0iQYraawtUwGkZuDLLZEZ3FthmVGioUoiwQp0w012wajEx8KN63G6cjCcmd+pOJ1ikdpEqXiwpoxI4/pW5zjcgWSpeKAUt7+4Yy4UtQy6P/gAFi9Ws75nz4Z581RWvK5ONSlbuTL5eVOnwqeftv2YRUWqnLvZz36mAulYrHVmOhBQZe3NDj8c3nmn6Yt2wK67qsx78+2vf6Xs2We5c+JEnpw3j5ycHK7Ye29+8+67BDSt9eM7narJ2l/+smP/PqL9/vc/dXFj2rTtK/0XQvR4S5fCiBGqyK2uLt2r6T0yf6OPECLj2JZJsLacSLACUNlZf94IKS1vg21bxMLVRIIVxMI1gLpOasXDKdluj38Lc5K3ZNUq+Oc/VeOuSy/t2EVnCNu2iYYqU4LsWLiq1XkuXxG+QGki0HZ68jpnTvyxx8KGDSo41XVVTj5qlBqxpRYMFRXqnJbGjFEjojZsULeWWenN1xmLqVFSLXk8UFioAnTLSraHvv56lV4cNkwF+puPDTv7bEonT+bxSZO4Pi+Pu+66i1v+/nf+7PNxma5zWUMD+VaLqoBYDHbbbYf/ecR2+PhjuOce9b4E3UKIFgIBuO66HtHuIaNIplsI0aXMeJiGTYsw42FAw5s9QJqlbUG4YR3h+tVYVnITo8OVhdtXjNNbsHPj0z7/HPbfX+0RXrKkA1bb/dm2RbhhbXI/dm15YgZ8kmre5wuUNAXZJThcGbTnvbklbfOc5lgsdQjr2rXqmNOpytN9vg6d47x27Vr+/Oc/89hjj2HEYvwmHudKIFG/Mns2TJzYYc8ntuDNN1VFw9Spqiu+EEKItJKgWwjRpWzbor5iIZYVx583HKc7Z9uf1EtYZgRNcySy1+HG9QRrytENFy5fEW5vEYbT2zFPVlYGf/6zym7efHPHPGY3Y1lxQnUrVZBdW0awZjmWmZrl1TSjqelZSVO5+FCpuOgAGzdu5J677+ahBx7AjkS4ELgK6FdXJ437xHb78UeYMEG1LSgvT/dqhBBi+0nQLYTodJYZQdOdiWy2GY+g6cbOZWp7CNsyk+XjkVr8uSW4/X0AFTSa0QYc7kDnlDP3MGY8TKh2hSoVry0jVLcS20ptdawbbnyBoSrAzi3Fmz2o+zScW7QIXn0VBg+G009P92q2bc0atSGwuBgKCto8ZdOmTfzl2mt54O9/J2LbnH/JJVx99dUMGjSoixcrMtl338G4cepbbfPdFUKI7ROLQSSihmV0k6mUvYIE3UKIThUNbaKxZhkef1+8OYPTvZxuIx6tJxKsIBqqxLaSDafc/j74c0vTuLLMEY82JLqKN9aUEW5Y20Zn8Sx8uSWJ/dgef78d6yzeFV5+GX7xC1US/PHH6V7Ntp1+Ojz3HNx7L1xxxVZPrdm4kb/efz/3PfIIDQ0NnH322fzhD3+gpKSkixbby8RiaquBYbTei5+BolF1jQdAvmWE2DnvvKP6ZO6xB3zzTbpX03tImkkI0SlUs7TlRIKqc3IsUovHtnr93m3btqjb+C1mPJQ4phtu3L4iXL4iKW3eimioKhFkB2vKiQRbp7ycnnxVKt7U+MzlK8qcKoGhQ+G881Rb2UyQlaUy3O2YG55bXMwNt93G5X/4Aw8//DD33HMPTzzxBGeccQbXXnstIzLla84Ul18ODz8MN94IN92U7tXsNJdLgm0hOkokot42T50UXUMy3UKIDhePNtBYvaSpWRpNzdIG9sqA27ZM4tF6nJ7cxLH6TT8Sj9Ti8hbg8hXhcOV0fWD43Xdq7FOfPqnjp7oJ27aJBjcmuooHa8qJRapbnef290mM7vLnluD05KVhtWJ7NTY28vjjj3PXXXexceNGTjnlFK677jpGjx6d7qX1DBddBI8+Cv/v/6mBvEII0cSyVJ9N05QWG11Jgm4hRIexbZtww1rC9auwbRvdcOHPG9Erm6XFInVEgxVEQ5uwbZNAnz0xHG5A7T3WdWd6y5ybN0n26QPrW8+i7mq2ZRJuWNu0H1tls81YY+pJmo43a0BiP7YvMBSHKys9CxYdIhwO88QTT3DnnXeyZs0afv7zn3P99dez++67p3tpmS0UUjXZLhd4O6j5YhqtXQsvvQT5+XDGGelejRBCbD8JuoUQHcaMh6nbuADbtnB5C/DllvaqZmlmPEw0VEk0WJHI8gMYDg++3GHd6+JDNKo6Ejkc0K9flz+9ZcaaOouX0VhbRqh2BZYZSTlH0x14c4Yk9mN7c4YkLlyIniUSifDUU09xxx13sHz5co455hhuuOEG9tprr3QvTXQDn36qWh2MGAGLF6d7NUIIsf0k6BZCdKhIsAJsG7e/ON1L6VLRcDUNm35M3Nc0I1E+3q2C7TQx4yGCtcubSsXLCNWtwrbNlHN0hwdfQI3u8ueW4Mke1Ksu2vDf/8Jpp8F++8F776V7Ndv20EPwxReqodrhh3fIQ8ZiMZ577jluv/12lixZwuGHH84NN9zAfvvt1yGPLzLTokVwyy2qMOe++9K9GiEy2+efw+uvw/jxcNJJ6V5N79GLXs0IITpac7O0loGl21eU5lV1Ptu2iUfrwLYTe7Wdrhw0zcDhysblK8Llyeu+XbK7QDxa37Qfu5xgzTLCDeuA1Gu8Dld2olTcHyjFndW3V+77TzBNCAbVZrtM8Nln8MILsPfeHRZ0O51OzjrrLM444wxmzJjBbbfdxv77789BBx3EjTfeyLRp0zrkeXq8V16BBQvg0ENh//3TvZqdtuuu8Pzz6V6FED3DnDlw551w6qkSdHclyXQLIXZIy2ZpuuEm0GePHh8wmfEw0WAFkWAFlhnBcPoIFCf3nlpWPHMyszU18MQTqrz8sst26qFs2yYWrkqM7grWlBENVbY6z+UtwBcoTQTaLm9B5nQW7wqNjVBRoYanpqHkf7u9+Sb89BNMmwZ77tkpT2FZFq+88gq33norCxYsYMqUKVx//fVMnz5dvne25swz4Zln4O674Xe/S/dqhBDdyMyZqrBqzz2lR0JXkqBbCLFd2m6WNhynO5DupXUKy4oTC20iEqwgHq1PHNd0A5e3EF9gaGZebCgrg2HDwO+Hhobt+lTbtog0bkgG2bXlxCO1m52l4c7qiz9QqkZ45Zb22O8R0fls2+b111/nlltuYe7cuUycOJHrr7+eI488UoLvtjz1lEpnnXACHHxwulcjhBC9ngTdQoh2s8wIjdXLiDUFWC5vPr7cYZmT3d0BDVVLWmRtNZyeAG5vEc5MLx+vqFAZMI8HHn98q6falkmofrXaj12rSsZbzhkHVGfx7EFN+7FVZ3HD6evEL0D0RrZt884773DLLbfw+eefM378eK6//nqOO+44dD0DL36JdnnnHZWR22svVWAhhBCZRoJuIUS7mPEI9RXfYllxNE3HFxiK298n3cvqUGYsRCRUgdtXhOFQY3ai4WpCdStxe4tw+QrRDVeaV9n5LDNKsHZFU4BdRrB2JbYVTTlH0134AkMSQbY3Z3Cv+LfpVMuWqe42/frBySenezXbVlGh9qDn5UFO1zYLtG2bjz76iFtuuYWZM2ey2267cf3113PiiSdiGBl8MUy06T//geOPh0mTVO8+IcSOi8fBMECKhLqWBN1CiHZrqFqMFQ/jzx+RCEoznWXFE2O+4lFVZu3JHoAvZ3CaV9Z1zFiQYG15ovFZqH4V2FbKOYbD11QmXoIvdxjerAGZnenvjpoji/32U03KurtTToEZM+CBB+DSS9O2jFmzZnHLLbfw7rvvsssuu3Dddddx6qmn4nD03Aqc3qauDlauVIU5w4enezVCZLZLL4UHH4Qbb4Sbbkr3anoP+YskhNiieLQB3eFJlI/7ckvRND0z9zC3YNs28UgNkWAFsXA1diLA1HB6cnG6stO6vs4Wi9S2aHpWTqRxPa06i7sDTWXiqumZ21+c8f/v3d7Agaqd7IgR6V5J+zidKgpKc2Z58uTJvPPOO3z55ZfceuutnHnmmdx0001cc801nHHGGbhc267A+Pe//81nn33GPffc0zP2iP/iF+oizkMPwa9/ne7V7LScHNhtt3SvQoieIRJRb53O9K6jt5FMtxCiFdu2iTSsI1S/Eqcnn6z8keleUoeybYva9V9jWXEADKcPt68Il7cI3ehZf4Vs2yYaqkzMx26sKScW3oRRE2T4Wf9Es+DH1y7B5SvCF2jaj51bgtOT3zOCD9HrfPPNN9x666288sorDB48mD/84Q+cc845uN3uLX7OO++8w+GHH84999zDlVde2YWr7STHH6+C7sce6xFBtxCi4wSDaliGxwPZPTvH0K1I0C2ESNGqWZonH3/+iIzNclpmjGiokni0jqz8XRLHQ3WrsO04Lm8RDldWGlfYsWzbItywrmkvdjnBmrKUruuKhi+WQ8nhfwQgHq7F4e7aPblCdLbvvvuO2267jX/961/069ePq6++mvPPPx+fr+0Gf1dffTX33nsvM2fOZPLkyV282g5WXa1eWQcCkJX5v9+WLIGPP4ZBg+Cww9K9GiGE2H4SdAshEqKhKoI1yzK+WZptW8TCNUSDFcQi1TT/mssuHIOzhwWXlhUnXLcqMborWFuOFQ+nnKNpBt6cwU3zsUtUZ3GcqnGXpqlyZslqix7qxx9/5Pbbb+f555+noKCAq666iosuuoiszYLRWCzGwQcfzLJly/jmm28oLi5O04rF5p56Cs46Cw4/HN56K92rEUKI7SdBtxAC2zIJ1q0g0rgBAIfTjz9vBIYzs5qlmfEwkcb1RIOVWFYscdzh9OPyFeHyFWX8eDMzHiFUtzzZ9KxuBXZTmXwz3XDjCwxVQXagpKmzeM8qm++R3n4bzjwTJkzIjMji8cfh669VQ7UDD0z3arZp2bJl3HnnnTz55JMEAgGuuOIKfvOb3xAIJOfHr127lvHjxzN27Fjeeecd6YTeTXzwgerXt+ee8Mc/pns1QmS2Z5+FFSvg2GOlV0JXkqBbCIFlxanbuADLjOLJ6o83Z1BGlpPHIrXUV/4AgK47E4G2I4PnRcejDU1l4qq7eLhhTevO4k5/i/nYJXiy+ktn8Uz02mvqVdDEiTB7drpXs20nnQQvvaTa4F5ySbpX024rV67kT3/6E3//+9/x+XxcdtllXHbZZeTl5QHw4YcfMn36dK677jpuvvnmNK92B82YoV5VH3kkjBmT7tUIIbqRgw+GDz+E556D005L92p6Dwm6heilbNtOaZQVi9QBNk53YMuf1E2o8vFqosEKdIcXX2BI03GbYG05Tk8eTncgIy8cRMPVTU3P1H7sSHBDq3OcnrymruIl+HNLcfmKt7/pWSwGf/87WJZqtCRtTNOvrg5WrQKvF0pL072abfv3v2HRIrXJdu+9072a7bZmzRr+/Oc/89hjj+F0OvnNb37DFVdcQVFREbfddhs33HADb775Jocffni6l7r9Dj0U3ntPpbR++ct0r0YI0Y3ce6/61f3rX2fkr+6MJUG3EL2QZUZprF6Ky1uI2585+xbj0QaiwQqiocpE53FddxLou2dGBti2bRMNbkyUigdry4iFq1ud5/b3SQTZvtxSXJ68nX/yYBD8fvV+fX2PaLYkxI7YsGED99xzDw8//DC2bXPRRRdx5ZVXct555zFnzhzmzZvH4MGD073M7XP33bBwIVxwAey7b7pXI4QQvZ4E3UL0MqpZWhmWFVMBa5/x3b4UOdK4gXDjesxYMHFMN1y4fEW4vUUZs/fctkzCDWsJ1pYnAm0z1pB6kqbjyRqQGN3lC5R0Tnf1aFTNhNZ11aVoCx2dhegtKisr+ctf/sJf//pXotEop59+Om+99RYDBw7kk08+ade8b9E5/vlPuPlmtfviL39J92qEEGL7SdAtRC+RSc3SbNsCtETJdLB2BeGGtWiajtOTj9tXhMMd6PZzpC0zRqhuZVOQvYxQ7QosM5JyjqY78OYMSZSKe3OGYDg8aVqxSKuVK+Gdd6CoCI47Lt2r2ba6OnXxxu9XJfE9RE1NDQ888AB/+ctfqK+vx7IszjzzTP75z3+me2m91r33wu9+pyrln3023asRQojtJ0G3EL1APNZIY9USzHgIoNs2S4tH64k0lY9n5Y3E6ckFwIyHiEfqcHoLunX3cTMeJli7vGlPdhmhupXYtplyju7w4AuoDLY/txRPzqBu/TWJLvTGG3D00WqT3Zw56V7Ntp14otrX/fDDcNFF6V5Nu82aNYsLLriAaDSKZVlYloVpmilvLcsiHo8TDocJh9UIvldeeYXjjz8+zavvndavV33h8vPVhEMhxI4bMQLWroWPP4a99kr3anoPeaUnRA9nmVHqKxZi2xa64cKfOywRzHYHlhkhEqwkGqxIXBQAiIarEus0HF4MR/fLpMWj9Ymu4sGaMsINa4HU65gOV3ZidJcvtxRPVr9ud7FDdBN9+qj62eHD072SLVuxAmpqYPfdk8eefx5+9jMYOjRdq9ougwYN4uijj8a2bQzDQNd1dF3f4vumaVJeXs60adPSvfT2O+QQ+Oor9X9z5JHpXs0OmTEDli6F666Dvn3VbXO33aZ+XE4+uevXJ0SmamxUbV0cEgV2KfnnFqKH0w0X7qx+WLEgvtxh3WZes2XFaaxaQixSkzimaToub4Ea8+XKSd/i2mDbNrFwVTLIri0jGqxodZ7TU4C/qeGZL7cUl7ew+5bBDx4Mpgnz56uSZpFee+8N//lPuleRZNvqpjddJHr6afjVr2DaNJg5E158EUaOhFmz4OWX4aqr0rrc9hoyZAh33nlnupfRuRoaVPm/aW773G5q6VK4/no1YOGGG1p//JZb4MYb4dZbu35tQmSyr7+GcBj690/3SnoXCbqF6IGi4WoMhyeRHfZmD+oWgZ8ZDyf2K+u6I7G/2enOweUtwuUt6DZN3WzbItK4UZWK15bRWFNGPFLb6jy3v19iP7YvtzQjRq4lrF2rXpTH4+leiehurrlGBdkPP6yy7wD77AOGAZqmgnGHQzXhe+CB1PLyn35SI+gyYexZT/XyyxAKQb9+6V7JDrvuOhVw33ijKi+fPFld45kwIRlw33yzOk8I0X4Z/Gsho8mebiF6kJbN0hyuLLILx6S9lNmMR4iGKogGK7DMGLl9JyQC61ikDt1wdYvGYbZlEmpYQ7BmWdOM7HLMeDD1JE3Hmz0o2fQsUILDmcFdv+fNU1nMMWNkTndvVV8PTz4J338Pjz6aPH7hhfDYY3DllXDPPeqYbau6xG2NlzvySNUQ7vHH4ZxzOm3p3dELL7zA2WefzbJlyxgwYABAYvTYp59+SiCQQRfluonmABvg4otVmXlzwN1WBlwIIbojCbqF6CHisSCN1UsSY7U8Wf3w5gxOS9BtWybRcBXRYAWxFtlhTdPJLhyNw5Xd5WvanGVGCdWtTOzHDtauwLaiKedougtfYHDTnuxSfIHB6IY7TSsWPd7MmXDWWTB2LLz+esc/vmnCggUqUz1+vDpWXw95eepjK1aoLQcA334LmzbBpEnb15k8HIbjj4f33oMff0zuT7dt9bw9nG3b7LHHHkyZMoUHH3yQm266ib///e/Mnj07EYT3ZrZtY9smtmU2vY2rm23h9hUmzos0biAWqU2c+8uzBvLGm7kYhvpWlYBbiB1jWXD33eB2wwUXgCf9OY9eQ4JuIXqAcMO6pk7ZFrruxJ83PG3N0qKhKhqrlzSN/VKc7gAuXxEuT37aysfNWJBg7fJk07P61a06ixsOr5qN3RRke7MHdptyd9ELvPUWHHGEqp+dO3fnHy8WU5UMRtP38F13we9/DyecoLqON/vtb1UTt/POU287Qnk5lJQk7197LaxaBX/8Y/duFNcB3njjDU488URuvPFG7r77bj799FPGjBnTtYt4/nmoqlJbAwYN6pCHbA6YW05biEfrMeMRbDveZiCdXTAqcW5D1RKiocotPn5ev30Sv28bq5cS2axnRr/SSUSjGi6Xau6fl5e8RiSEaJ9wOHkdtbYWcrpX+5weTfZ0C5HBLCtOY/USYuEaAJyePPxd3CzNjIfBtjCayqwNpw/btjAcHhVoe4swHF2fHY5FaptGd5XTWFtGpGE9rTqLuwOJ0V2+3FLc/j5pL8fvUi+8AJEI/PznkJ3+6oNeb9994csvwdcBWxZ++Uv473/h7bfVZlhQb3Ny1Fztlh54YOefb3MtA+66OvUcjY2qzXQPD7qPOuooRo8ezU033cS7777b9QE3wB13wMKFsOuuMGhQ2xnmpvvYFm5/ceJTQ/WriUcbUs5pDqo1TSOv/6TEueH6tUTDVVtchm2ZiUC6ZV8RTdPQNAeabqDpDjTNwMam+QyXtxDD6UfTDDTd4PY7/YmAOxpVOxg2bFC/wk48sWP/6YTo6X71K/WnX7LcXUuCbiEymKbp2FYcTdPx5gzBk9XGTJVOYFlxYqFNRIIVxKP1uDx5ZDVlNAyHh5zicTic/m08SsexbZtoaFNiPnawtoxoaFOr81zeQny5pcmmZ578btFgLm0uuECVF0+eLEF3d5Cbq5qVbY8NG+CRR1SnqZZ7sqNRFeR+9lky6J40SWU/jS6u3sjJUQNhNx9f9cknUFgIo0d37Xo62TvvvMOPP/6IaZr06YDKgeaAmaaxj81i4WpMM7JZhlm97566N65dd01ULjRsWpSy1aclTdNSgm4z2kgsXL3ltbQIpA2XH6et7ieCaC0ZSLfcUuDNGYI3Z0jTOVu/uOn05OIkF1B7um+6OVlSft11cPvtqo/f1KnJz4nHZQSSENvi8ag2HqLrSXm5EBnGtkzQtMSLls0zzZ32vLZNPFpHNFhBNLQptXzck0dW/i5dFsDatkWkYT2NtWWJQDserd/sLA1PVj98ucNUyXigBKdb6qhSnHii6nD8+OMg+027v4YGFUQXFyf3ZK9ZAwMHqjLyqipobtT17bcq4BkzJjnyqzuJx1WwvXQpvPIKHHdculfUIebNm8cBBxzAQw89xIsvvojP5+NfM17ESmSNU7PHGhpufzIwD9aWE482tsowA+i6k9x+eyXOra/8nlikrs11bJ6Rbtj0E9FwVZsZZk038OeNSPxNiYVrsMxoq3OSQXXXfT+17FLecg93W8fPOQc2boQ774TdduuyJQohRLvINUEhMkhzszSnJw9fjtrM1lWdvxurfiLaIvthOLy4fEW4fYWd3lzMsuKE61fRWFPelMkux4qHU87RNANvzqDEfGxfYGhiZJrYgpdfTvcKREvr1sFHH6nNqj/7WXLDXfPFrJtuUh1wzjsP/vY3dWzAALUne/To1OB63LiuX//2qK1VDeNqauCQQ5LHY7Fu00m/ZUk22Cm/ayPBSiwzkpJhXr5iJUf87BSu+O25nHHGGYwePZq9996bTz54ibGjh7T5HLruTAm6zViwjQuIzeuxUu47XDktAujWmWbbthMXQn15w/BrI9oVMKerH8jmbrtty13Km+/feKP6tr/oIlVIEYlIgzUhRPckmW4hMkRKszTDRU7x7ikNbTpSc/m401uQeI5ww3pC9StxeQtx+4o6tQO5GY8QqltBsEbNxw7VrcS2Yinn6IYbb2AI/oAKsr05g7t0L7sQHe6dd+Dww1UW2+eDzz9X+3Kby6/feAMuvRROO01FJD1BdbW6yNDsuONU+fuf/tQhe78tM4Jltc4wq/3JRsqWnIaqxZjxUKsMM6iLm4E+4xP3azcuSEyKUF9GHT87/gL2m7gHf/nz9YmM9LHHHktj/SZeevbuNsuvNcOJPzc5zzwWrsG2zTayy0ava+o4Y4YqhNjaHO7bblPfJiefDEuWqDYGV12V/PgLL6gfpaOP7p4FH0J0tUWLVPuQ/v3hhx/SvZreRYJuIbo5y4zRWLO005ul2bZNPFJDJFhBLFyNbVv4m5qLQeuy9o4UjzU2zcZWpeKhhjWwWVbHcPqbMtiq8Zknq3+vexEqeqAlS+D++9UcpHPPhWuuUVHE4sXw4Yfw1FNw5pnq3J4+dmv5chg2DAB74XfYI4clAt+W22fCDeuwrFjKHubmoNowPGQV7JI4t2b9PCwz0ubTbSuQbqZpGrrhIdBnj8SxUN3KZAn25sG07sDpTs7jtm2r6xs0TpyousW/8QbsuWfXPnc3EQ7D0KGq7cGMGXDSSelekRDpN2+eGpAxYACsXp3u1fQuUl4uRDcWC1fTWL0My4p1WrM0MxYkEqwgGqrEMpNzqg2nTzXCadKRAW4sXK1KxZv2ZEcaN7Q6x+nOS4zv8ueW4vIV9+6mZ51hyhTVgOu111SXY9G51q5Vs7jHjlU3UJHBQw+pjuIPPKDmWwN8/73KAPfvn/z8DPv+N2PBVg2+mvc267or5XdZXcVCLE8U7YPncHw2l0hOLayfB4Dn9Y/x7T1dvVKkKejeQiC9+cU6XXeAbbXOMOtGq20xvsBQsO12ZZi9Oe2fVZWWiQgbNqjtCqa57XN7qFhM7fN+4w01Or7ZihXQt6+aUyxEbzN6NPz0k5rXLbqWZLqF6KYsK07t+nkqe+P04c8bgaODm6VZZoya9V/TPEpL1x24fIW4vEU4XFkd8hy2bRMNVqj52LVqhFesjREzbl+fFjOyS3B58zvk+cVWDByoGnHNm5dszCU6hm2rNELLGcnnnAP//KealX3nneqYZan7kyapGliXq+3H6yItS6tt2wRNT5lEEKpbqQLnNkZPOVxZZOWPTJxbvW5OSol2Sw5XFjlFYxP328pIa5qGXtNIzsRj0RqaOrHvt1/TNhuz7XJt3dFhv7sy2qJFaoPziBGtR8T1MpaVLC23bdhvP1i5El58UV13FEKIriCZbiG6KV134MstwYw1qDErO5ktsW2LWKQWM9aIN3ugeg7DiaupaY7LV4zTk9shzxNuWJvYjx2sKceMNWx2loYne0BidJcvUCIvlNPhlVdUOmjEiHSvpGeJRGCXXVRKbd06lVYDOOgg1VW8ZSCu6/DnP3fo09u2jRlr2Kz8OhlM6w5vSpa5dsM32FYcq6lhWEtOdy7ZhckqiHDDehWMt8EyU7e8GIYHWzdbZZhVljm1AWRWvvoebJVh1tbBcccnNyLSlGWuq1NN5kTbpHIloeVe7g0bVNX9pk3ya08I0bUk0y1ENxJuWI/h9KbsB9xZ8VhQjfkKVmA1NSML9NkTw6Fq61p2uN0RlhkjVL+qxYzs5a0zVroDb85gfAFVKu4NDOmyrutCdKq5c1VH8eJiVR7ebI89VIn4m2/C9OnbfBjbMrE/+xTtgouxRw7HfPEpNN2ZuBhl2xah2hWtx041ve9w5yYCV9u2qV47e4vPtXkgXb12zmaBtIbeFPg63Dn485INzUJ1q9QZbZRra7qz836uo9FkFYBpqplQQ4bAY4+pt0K0UySifmz33z957Mor1bfXlVeqH2UheqqyMnj7bVXodswx6V5N7yKZbiG6AdUsbRmxcHWHdCa3zBjRUCXRYAXxWGPiuK47cfkKU7aGbm/AbcbDBGuXNwXZ5YTqV2Jb8ZRzdMODL3doIsj25AzqtE7rQnSZ779Xzc0OPVRlskHNzp4xA/r1g/vvx8YmHqnFfvox7L5F2F4Pdt3KRMbZcGXh8asss2XFqdvwTSLD7Fi9gJxFizC1OPWbfsTlLWhRrq0Rbly/xaXZdvJnUNM01ZMBrVWGWdMc6JuN0ssuHN2iW/bWu2R7cwZt8WOdqmXZ/dy5qgHd+vWQm5ue9XR3zz+vLlQce2xqd3iB250acK9ZAw8+qIp+jj1Wgm7Rs339NVxyidpaIUF315JXwUKk2ebN0jxZ/Xc6QI2FqwnWLgfUC3CnJw+Xt2iHysfj0XqCNeVNe7LLCdevYfMSVMOZlSwVzy1RncXT0TxIbJ+334b6ejjwQCgsTPdq0qKt8mvbNtFtHceK9bDrrlhWnFDtctz/dxmOtz4gfMPlRC4+QzUGG6SRdc3luA47DmwbG4v6TT9CARDbAKmT7nDZFjQF3ZqmY7W4YGWOHUXDy4+A34/D6U9p9KVpGt6cQWia3jrDrKmO2S0Findv979Bxm3tmDhRdQL64QcItKgKuu02mDpVNuoCXHYZVFaqkXMSdG9Vv37w73/D++8ndjAA8O67qvv5yJFb/FQhMk7//vDzn8sOlHSQ8nIh0sS2LUJ1Kwk3rAPY4WZp8WgD0VAFhsOXMt6rftMiXN5CXN6Cdo8Xs21bBezN+7Fry4gGK1qd5/TkJ7qK+3JLcXkLpbN4Jho5UmUMP/0UJk9O92q2W3OTrubMrGXFVZa5jfJr24rj9OQlfkbMeJi6jfNp60+gVllF7pRT0EJhqKnB8rioWT8X9zOv4nz7EyKnHk3sqIMS57fMSNu2RX3FwrbLrzWH2j7iSQZBZiyEpuuJvcxiB337Ley+u+rwvmwZlJSke0XpddppUFsLjz6a2kNAtEs4DKWlqpjivffg4IPTvSIhRKaTTLcQaWBZceorv0/MhPX4++LNGdzuF92WGSUaqiQSrEg8hsPpTwQUmm6QU7TbNh/Hti0ijRsTo7saa8qIR2pbnef2900Jsjtyz7lIo332UZe9s7O7/Km3lGG2rTiG04fDpdZkxsOEape3CqKbS7I92QPwNY1vsq04DVWLt/icmuGiOXesaQa2beP4+Eu8jz6PudsuRG68QgXJ/bMhkAO6AUuWoO0+Dl/OELRLfwe/vRqPbuDdLJhOPIemk1M8rt3/DobTu+2TxLbl58Ovfw3BYGrAvXKlCjp720XB559P9woyWnU17LUXzJ+fWjhRX5+WX5dCiB5AMt1CpElD1WLikTp8ecNwedpX/hcNVREJbiQWrqG5xFvTdJXB8xWlZNDaYlsm4YY1TV3FVbl4c9CeoOl4swcmuor7cktSRgYJ0XKcVPNWCMuMEQtXtQ6km851+Ypw+4oAVZ1RV/HdFh+/ZSBtxsPUbvhmi+e6/X3w55aqNVhxGjb9iKY70FuVXxsYX8zD8ckXcO652IMHY1tRtFdfR/vFL2DMGFWK22zVKnVBwujC7HNFhRqLlZOjOp2L7WfbyQC7ulrVB+++O7z8smzWFduttjZ1B8OUKepXwiOPSHmuEGL7SKZbiC5imTHQtESQ4sstBdtCN9o/lzcaqiAWrgbUPky3rxint2CLe8AtM0aobgWNNeUEa5YRqluBZUZTztF0J76cIYn92L7AkJS9pKJnsW2rxSip1vOWHa6cxB7feCyosswty7XteKIk25szGG/2AAAsM0JjTdkWn9dosW84uf9YSymt1jQDXXdgtGj0petO/LmlLZqBtQ6mk+c6khUe9fWweDFMmJBcxE23w6xZMGQI2rnnohluFdw++CBMm5a64HSU5H77LRx/vOrM/d2WL0qIrWiZ0f78c1UnXF3da3sWiJ3TMuBeuhS+/FJ9iwWk2EtkqAcfhDvvVDtQ7ror3avpXSToFqILxMI1NNYsw+HKIitfdT3eWrM0y4wQCVYSDVWSlT8yEYS4/X3RHV7c3qI2y1LNWIhgbbkqFa8tJ1y3qtVMXd3hxRcoSZSKe7IHSGfxDNGyJFsznIn/NzMeVlnmNjLMthXHk9Ufl08FHfFoPfWVP2zxOXw5Q5KNtZpmu7dNo2VDPd1w4vTktZlh1jQDo0WvAt1wk9dvn3Ztp9B0I7FtYqtaZjh/+AHGjYOsLDWQtzlb/fOfq/FSw4YlPy8/X7Vy7Q4CAdXJqbQ03SvpGY48Uu3v3rAhOazZsuCcc+DUU1UX+p5adj5mjOpePnMmDBiQ7tX0CMOHq2+nL75QRTDN7rgDBg+Gk08Gh/wpFd1cVZXq2F9Xl+6V9D5SXi5EJ1LN0lYRblgLgOHwkl04ps3GZrZlEgtXEwlWNAU6TdnE7AF4m0ptNxeL1DWViavxXaopW+qPtMOVk8hi+3OH4fb3kc7iaWJbJpYZbTPDbFsmTk9eIuCNRepS9zK3yDAD+HNLE8FoLFK7zUDak61eJTaXdmu6gf+SGzEWlxO+83qsffdG0wxc3gJc3nxAlWvHwjUpWei2Msxp9dxz8Oc/q1k/N92kjsXjKpguLISPP5ZGUiLp5ZfhF79QFzhWrOi5KUuPRw2kbt7TLjrFmjXqGlk0qgorWnY/F6I72rBBfd/m56vdN6LryDU5ITqJGQvRWL0kMSfb7e+jmjFtFqxYZoxQ/SqiocpEN2YAhytb7dP2FgBNncVDm2hsanoWrCknGqps9bwub2EyyA6U4vQWSGfxnbR5SbZueBIXTuKxILHQpjYzzLZt4s0ZkghiY5GarTb60g1Xi/FNdsqM9ZY03cBOyTK7VAf5LZRftyzXNpx+8vpPUt8TKyrg+8X4jUIoGNV6PboDt6+blOXaNrz0kgqib7opWS4cCsGCBWofdHPQ7XBAeTkUFKRvvaJ72n9/uOIKtb+7ZcA9bx6MH99zMt8ffwymKfvYO1l2Nvy//6dmH7cMuOfNg112Ab+0QxHdTJ8+6ia6nmS6hdhOZjyM4fBs9Zxw43pCtSuwbQtddzaN1cpPfNy2zETwbdsWNevnYlsmuuHG7SvC5StCN1xEGtc3NT1TJePx6Ob1QBqerH5NQbZqfOZ053T0l9wjWFYcKx5OBsSbBccuX3FiXFs0VEWobkWbGWaArPyRuJouhkRDm7YaSG+ekW6o+iml7LplkOzyFib+/ywzRjzW0MbYKaPjLqJ88YXa+7znnt1vz+uqVeq2337JY2PGqNLxV15Re58B1q5V+7SnTFEDd4XYXt9/D2PHqnbVn3yissRC7KBIRO1gCYfVuLHx49O9IiFEdyCZbiG2Q6h+NWVzH6B0r9/izR7Y5jm2ZRKuX4ttWzjdufjzhqEbLmzLJBquIhqswDKjBPrsAaju475ACZpmEIvU0li9hI3l7xKsLceKh1IeW9MMPDmD8AdK8OUOwxcY2qNHDqkMc2rDL8PpT+xljkfriYY2bbaXOVmu7c8fkRhvFgtt2mqjL4crGxL7jm3MeLjVOZuPhwK1R97t79NmhlnTUrPMTneAvH77tOtr1w0nLqN9Xe13WHephbRtlZVr3hA5cyYceKDaf718efK8M89UQXbLPc/9+8NJJ3XlajvP3Llw8cVq5NWMGeleTe/x7bfg9aoybAm4xU5avlx9G9k2jB6dPN6y7YQQ6fLpp1BWpq4xjhmT7tX0LhJ0C7Edajd8A7ZJ7Yb5Wwy6Nd3AnzccM9aA29+PeLSeUN0qFRy2aGoWDdcQDW5MlIoH61ZgW7GUx9INF96coU0zskvw5gxpcz94d2eZEcx4uM0Ms22ZeLL7J4LTSOMGQnWr2swwA2QX7IruyQXAjAWb9rG3zbbiifc13YluuNvMMGu6A71F9YLDlUN24Zh2ZZgdTh+OXGl8tcPuvhvuvx+uugouu0wd22sv9aq1uDh1MO7vf5++XVXcTQAANhBJREFUdXaF+nr46itobHtbgegkp54KhxyiZnw3q61V1RSXXqr6BegZ1AfDttVFG11Xa3fLNIqutMsu8OOPKrBp+U9/xBGqGdv110t5r0ifv/8dnn4a/vQnCbq7mgTdQrSTbdvUbZgPQN2G+fQZdiSapiWapRkOT6KM2OnOwbbi1G2cn8iYWmaUeKSWeLSBSHAD6xa/AraV8hyG04cvUJoIsj1ZA9LSsKqtDLNtxXG4A4kscyxcTTRU1bopWNP72YVjEvuTo8FNBOtWbPH5XN6ClIywtdnFh5bBcctUgeH048ke0GaGWdMdGC1Gn7m8+Skl/lujG86MvLix3b78EiorVXl5Z5dmx2Lw+OOqFPyf/0xmFONxWL1alfU2B91ZWarFqrfnVnG0aexYeOMN9fWLrlVUlHr/oYfgo49g3To45pj0rGlHmaa6kACqe78E3V3O4YCRI5P3582Dt98Gp7PnXzsU3dvYsXDYYalDPETXkD3dQrRTqH41ZV/dl7hfuveVuDz5Kc3Scop3T+wLDtatonrN50RDm4iFq4mFq1o9ptOdq2Zj5w7Dl1uC21e8053FbdsCtERW1oyFMOPBNjPMth3HFxiamMsdql9NuH5N02O0llM0NhFIh+vXbjWQzi4cnSjtjgQrCTesSc0a645EJlkF3SoIs8wYlhXrnD3MItW0aSrYfeklOPHEjntc01Qlu/X1MHWqOmbbKrDfsEE1eWo+vmKFGoC7777g8235MYXoSps2wX33qQ25P/+5Ombb8NZbcPjh3TvzHYupV9W2Da+9lqwUEWlj2+oaznffJa8tAvzjH+qa5x57pG1pQoguIkG3EG2ING5IjPlqVl/5PbUbFgAWoJNVMAqHKwfLimDFI9jYTRluk2BNWZtBtstXrOZjB0paNVeDlhnmzYNjE5cnP5H1jgQriYU3tZlhtm2LQJ/xiSA2WLeScP2aLX6tWwukW2aYNc3Al1uCw6nascaj9cQidW1mmDXNQDecMpqsu7vgApWCueMOVV67o+JxFWg3Z9RmzIBTTlGvJr/+Onne7berOcmnny6zSkTm+e9/4bjj1AWizz6TDbpip6xbp34NRqMwfz7svnu6VySE6ExSXi5EGzaUvUV9xXdbOcOiYdOW5yIrGu6sfniy+jfd+qEb7kQwHWncgMOdkyjXDtaWE25Yv8VHc/QZj9EUdJvxINFQ66C+Wcu9zIbhweHK3vJeZsOVONflL1YjxtqRYXa4slXzMZE5ZsxQWeXrrlP3H3us9Tm33aY2Hp58cvse88or4W9/g4cfhjPOUMemTFHZtf79VTBuNG2RuPbanf8aerLqatVMze9P7douuodNm9SYsQMPTA24pUOW2AGxGJxwgpqZPG5c8viaNepXp3xLCdGzSNAtRBsG7HoyazWduo0LtuvznJ58cop3JytvON7AUMINa4k0bgDUaKnN2VYcmoJutOTe7c0zzJvv63Z58tB112al2qlBdTO3vxi3v32zWnXdkVyP6HmWLlVdfCwLbrih9cdvuQVuvBFuvbX1x+rrVbntvHlqZFdzea3DAQ0NMHt2Muju318FkEbX9yPIaN99B4ceCqNGwaJF6V6N2Nw556goqWU09NNP6ti118Ivf5m+tYmMM3gwvPCCCr6bv6WiUVVI0aePukZaKj06RQc76SRYsEC1rdiZAjex/eTVtRBtMBxeBo45g5r8Uaxb/G9sy0KVlbfN5euD298Xw3CSP3AKLo/ay2zbFjY2huFGNzwYDjea4UFvDpJbBLjNGfH27GGWLLPYIdddpwLuG29U91sG3s0B9803w+WXw/vvq4D6gAPUxz0e1e40GFSzsnfbTR2/6CJVLt58v5kE3NvP71c1plJ6333l5qbev+ce9fPwr391n6C7oUFVSmia6obvcm37c0TaOFv07PzmG9XbMh5X1y6F6GjLl8PixWqOvOhasqdbiG2ING5k2Vf3thrnBSojXTh0erLztqaT339iIjPdWL2MSHDj5p/V1B3bRVb+Lony7nisEduKqwy24UyUnQvR4ZoD7P33V6WxgwaptMrNN6tA/KGH4De/UZfB33sv+Xm33Qb5+arp2ubdnoXojerq4MEH4Wc/U03XQAW9r7wCp52WnD3flaqr1c8pqNSpsxdMYuhBKipUAcXkyclj55wDEyfCr34lo+TFzlm4UP2KGD0aCgrSvZreRYJuIbYhEqxk6ew7tvjxEZOuweUrxLLi2GYUw5nswBxuWE88UotlRbHMKJYZA5I/cnn99tligN7cjEw33Gped2BoIhC3zAi2jTQrEzuuOfBudvrp8Mwz6v2FC9VQ2SOOgEcfTc/6hMhUf/oT/OEPqsv5W291/fPHYmoqgWWpC2eyOTijzZ6tSs4dDli2TJWlCyEyj6TShNiGuopvAQ0VLOuABZreNGNbo67iWwqHHNTmfmhPVl/I6pu4r7qTxxIBeMu92prhxHB4saxoohO5GTcTc759gZLEuaG61YkAXddV1lwzXOhNN4+/X+KxbduSwFy0dsMNKvCONVVwfPGFGvM1bhyMGaNGecmLdSG2XyCgKkGaZ2WDqiiJx7sm6+x0wsEHd/7ziC4xbhzcfz+sX58acL/1FkyaBHl56VubEKL9JNMtxDYsm3Mv4QY1csufO5w+I45m/ZLXCNYsA8CTPZBhe1/Roc9pW2ZKdty2Yniy+iU+3li9lGioki39+G6eQY+GKtF1Z0pgrhsuNN2Fy5svQXlv1JzpdjqTgfesWarkXKTHd9/BpZeqcv/mqgORmRob1Qi95vLyN95QWzZuvhnOPDO9axMZb8MG1frB6VRNsUpKtvkpQgDw6quqCGb6dMjJSfdqehfJdAuxFdFwdVPArdFn2BEUDD4ATdMZOv5CKlfOZOOyNwnXryYWrsbp6bjLzZpuYOje5F7xzfjzhuPLHYZtxRPBuW02vbXjKRl0dczCNCNgRlo9lsuzj0rko8aWxSJ16HqLwNxwJu4bTp8E6D1By6ZpN9ygxn7ddx98+GEy6H7/fdU6V9rndp3aWvj4Yxg5Mt0rETvL70+9/8gjqnpk4cLOf+5wWPViMAy1RUT0OGvXwogR4POl9l2MRNS1HiG25LzzoKpK9X+UoLtrSdAtxFZoaGTlj6Ko9DB8Ocm6Lk3TKRpyEP7cYVSUv0siau3KtWmaCogNJzj9Wzwvq2CXpox5tEVpe3OAbqYE6GYsjBkLYhJs87Hy+k9MvB+qX40ZbWxV2i6N4Lq5zQNugHvvVTWKzXu8r7xS7fHetAk++ACmTk3fenuTUaNUQ7usrHSvRHS0l15S8+xblpwvXQrvvgvnntuxkVJlJRxzjEqDRqMd97ii2xg/HubPV//VzbuAYjEYO1ZdN73rLul1Kdq2//6qkVq2DMDpclJeLoRIMONhrHgYy4phmZGmDHpM7TO3LQLFuyfOra9cRCxSs8XHyus/MZEVjzRuwIyHW5W2SyO4LnbbbWpOd8uAu6XmgPz//k/t7168GH78MTlyyLZln7cQHeXss+HJJ1W5+VNPddzjbtgAxx6rSttnzeq4xxXd2ltvqcKG4mI1FsrbdqGcECJNJBUlhEgwHB4MR/vmkXiy++P05GG32HuuSt0jaOgpwXQ0tIlYpLbNx9F1J4G+eybOj4aqsK1YMoPeFJyLDjB8ONx6q5rX3ZYbbgBdV+fddZfKdLcMuI8+GvbZR2XCJRsrxM6ZOFGVgV9ySfJYOKx+1nYmYurTR7W8Fr3Kz36m/tvXrk399rnxRjjsMGnXIUS6SaZbCNHhNu+YHmnciBlvVIF5otQ9im3b6LqT3H57Jc6tr/yhVYCuaVpT2bqL7MIxaE3Z1ni0Xj2G4VKN4lqUyosONnMmHHigKoNdtgwGDEj3inqeujq159fjgT33TPdqRFeIxVI7mt99t9rucdddaouHEDvhq6/UdVLDgJUroX//dK9IiN5LMt1CiA63ecm421/c6hzbtrGtOLYVTznucGWDpicaw1lWDNu2Mc0Ium0lAm6AUN2qlABd0w0117yp8Zs/b1jiY2Y8jKbpaLoz5TFEO02dCi++CGvWpAbcn38Oe+/dNaOQerqFC1U6avhwWLIk3asRXaHlz41tw7/+BevWyV5s0SGKi+H889X7LQPuhQth9GhV2CR6j/p6NfPd7VZVEfJnu2tJplsI0a3ZtpVoAmdbJk5PbuJjjdVLiUfrEx3aW9pyBl1DN5yJpm/NZeze7GQgKbPN22nFCtVCd+hQNee7oCDdK8ps8+bBySfDkCGqe7zofaJReOEFOO205Cvijz6Cr7+Giy5q3RW9LStWqO+jQADeeadz1ysyQst2HBUV6ldMSYn61ipufU1c9FAbN6rdJ6DGhkn+oWtJplsI0a1pmt60z7z1XnN/3vDE+5YVV9nxpg7tbBaEg43qMm8nStyb6bozJehu2PQj8Wh9U9M3N5ruTGkC5/JKcAmoRmu5ueoVnATcO2/PPSXD3du5XPCrXyXv2zZce61KS1VVwe23b/sxgkH48kvIz++8dYqM0jK4mj9fXc/x+aTDeW8TCKiBJNGoBNzpIJluIUSvoUraW4xNs9R8c9Dw5gxKnFe7YT5mPNTmY2yeQW+oWowVDzc1fXO2mG+uAnaH09fZX1Z6NTSoYGBw00i9cBjOOAN+8xuYNi29axMi01mW6mx+772q6Vrfvup4RYXa+9/W3J/6epXCdDhkTrdoU22t2sUwapS6H4+rlh3HHQcXXyydz4XoDBJ0CyHEZmzLbOrErrqy200BumVG0TQ9JcNeu+EbzHi4zcfZPEAP1pZjmbHNxqa5elYjuPvvh8svV/u+y8qS3c+FEDtu83F9550Hr74KjzwCJ52UvnWJHmHGDDjlFCgsVLsTfD38WrEQ6SDl5UIIsRlNNzB0L4Zj25f7/fm7YJmRZOO35uZvZhRNT+1SEgvXbDlAN1zk9p2QuB+qXwO22WJsWnOg3s0bwZ10kio732uv1IB7+XK191ts2Y8/wu9+p7KZTzyR7tWI7qTlz3w0miw3HzgwfWsSPcbxx8Pf/66u7bQMuP/+dzjqqGSBhchs1dXw6aeqzFwK0bqeZLqFEKKLRENVWGakxdi0WOK+4fCSUzwuce6WM+gaDqcv5dxIsAIgUd6uAvVudE31o4/gkEPgnHPg8cdlM9mWzJ6tWsuWlKgqASG2JB6HDz+EQw9NHnviCTVd4KyzYOlSVSO8775pW6LIbF9/ra6dZmXBqlWqfYfIbF98AfvtJ39i0qUbvSoTQoiezeXdcmMj2zJT7rv9fbDikcTe8+ZSd9UQLlW4fnWrAF3TdHTDheH0k5U/MnE8FqltGp3mQjecXdOlfeZMtTfV5ZKAe2uGDYN//lO9yhViaxyO1IA7HIYbblAbdcNhuOMO1WdhxYr0rVFkNNOESZPUBMOWAXd1NeTlpW1ZYid4vTBxosxrTxfJdAshRIZobgRn21ZTR3elsaZMBehWVJW6twjgHa4scorGJu5vnkFvmR03nD58OYMTH1OzzQ003bHzJe1ffQWDBiXrFNesgYcegquuki7LQuws04SXX4a774bychV477uvar4mxA6ybQiFkiXnlZVQWgqHH64KK9rq4yeEaJtkuoUQIkNomoZmtG5M5s8tTbmvGsHFUsaiNdMNN9i26txu2+o8KwaxRmwrlnJuw6ZFTYG3ltr0zXBiOHy4/X2Sz7mt2eZ77516/9Zb4dFH1fyaN9/c9hcvhEj1n//Av/+tyskPPljN5t5jD9WSOi8P3norzQsUmU7TUvd4v/22ao6/bJkU5AixvSToFkKIHkY1gjNSsuHNsgtHJ963zFhibJrqzJ7aPb25EMq2bWwzgmVGEh9zuLJSgu66jQuwrBi64W41Os0wPDg9uakLOeoo+PxzuOaa5LFYTGXsPK3X3Ss0Nqo53S4XjB697fNF77F6tdrzf+KJyWNvvw3PPquGLR98sDo2cqTqlLT33qoEXYgOdPrpsPvu6ldVc/FTPA5nn60mRU6fLjuIhNgSKS8XQgixRbZtqbFpVovu7GYU3XDhyeqXOK967ZfYttXmY2xe4l5XsRCw0XGgOd1NAbobxz+eRb/rXrQ/362ydr3NnDlqw92QIarbu+i9YjFwNk0/aGhQm2pNE1auVNs0QDVS+/BDOPpo9X0jRBq8+CKceioUFKgWAn5/ulcktuStt+Cmm2D//eGee9K9mt5HLoMKIYTYIk3TMRxuwL3V8wJ9J2A3Zc4T3dmbA3Rn6ug1M9aYDNCbK+Btm5wn/o62ajVs3Jg4t6FqMaC1KG1XY9MS73dFI7iu4nRCv35QXJzulYh0eecd+P/t3XmQpVV98PHf3Xqbnn0YGUAQBEGJoESMIlFcUDRugJoyZSyJr1S5QYImksRgjAYxmmhIokFcX5cyGIwxlho1msIlgPIqioKyBIZVmGHWnl5u3+d5/zi379Izw9pnenr686mawn7m9r2XBIb+3nOe3znnnLTT4QtfSNdGR1NUN5vp342Z6H7Ws9IvmEcnnhjxh38YceCB/cH9rW9FnHSSDRd7kzvvjLjiinQeO3uelW4A9piyLKPVHOtMZS9bze4K+tjWGPrC12PwzedGDKbI3/qfn4rK3Ruj+cyn7LRvcfYK+o4tt3SmtldmIr06MDeD4GCuffObaZ7Bq18d8cQnpms/+EFahtpvv4hf/7p/D696YYH4yU/SP9KHHx7x05+mqdnMv/Xr0/9v1qxJR4exZ/kTHIA9plKpRH1gNxN41kTEW7vbZMuiFaPnXxzVy74fU+f9cUyd/X+6K+hFM6qzhspNjt0Zu/ocuVKpRGNwZYyuPrJzbWLsrqhU6lGtNXrivLbT98Kc2LYt1cfTnta99pGPpInjq1d3o/v449NwtGc8o/9DJsHNAnLLLelzo+OP7w/uViui5o/ZeXPwwekX88Of4gDslSqtIipPfmrE1dfEwGvfFAOr2j8tFEVEtdp3NFpZFjG09KCdtrYXRTOFeE+/lGUZ41tu3inQK9VaVKsD0RhaHiPLD+1cb05sikq13tnavk9taSe/e+5JB+MWRcS990YsX56uv+xlKbhPPLH72EYj4rTT5ud9whx5yUvSULVt27rX7r034rjjIv7gDyLOPTfNi4TFxPZyAPZuY2P9Nwuec07ErbdG/PVfp2nN92FmEFxE2ZnmXhatGNt8U5RFM4rWZIr0niFwA8OrY3TVY9rfX8bmO6/oCfRKz+p4I+qDy2Jo9IDO97amx9M959WH8Jn2TTeln0ZXr4748Icf/Pcz//7zPyPOPz/imGMi/uEfutcPPzxF95e+lH4PFpm/+7uIt7wlTT//8Y9NOZ8PN9yQdiEcckj6I4k9y0o3AHu33uDetCmd7z0+HnHmmfcb3d1BcD3XqrUYXXVE37WimO4Mgus7Oq0sotZY0l5BT/E+s5refrLuQ8sytt59dZRl2bm3PK2Op7/WB0ZjYHh1z+NnnW2+aVManjUzKIu925VXpvuyf+/3Ig5t74xoNiMuuyzijjv6H/ujH6UJ5LBInX12Gra2cmU3uFutiL/6q7T6fcgh8/v+FoNPfCJ9JvjmN0dceOF8v5vFR3QDsHCsXJnGr15yScRzntO9fvnlKXwe8Yjdf+99qFbrEdV61KJ/4k+lWusMayvLsr06PtUZBFetdYO+LKajUqlFWU5HWRbRmp6I1vRE5/cHhld3ojutoF8ZlUo9KjMr50tb0Xj/u6KydFlUprZFfWDpQ/p7IYPp6bQTofdDnnPPjfjOdyJWrYp4/evTtac/PeKiiyKe+cz+7xfcLHK12s4nQV56aYruiy5Km5dmTskjj/32izj66IiDDprvd7I42V4OwMI2ORlx5JHp3tmvfz3it397Xt9OWbSiaMd52Y7zotWMWmMkBkf2i4iIotWMzXf9aLfPMXuL+9a7f9I+Kq3Rt3qefg3ttJrPHLr55rQnttVKuxFmyuDCC9Oq9uteF/G8583rW4SF6IorIt7+9jTW4B3v6F6/6aaIww6bv/cFOYhuABa29esjXv7yiNtuSzetLZDzaYpWMw16a99XXvSsojcGl8fQ6Lr246Zi811X7fZ5Zgf69o3XRbXWSMemdeK8YRDcA/Ff/xXxoQ+lscvnnpuuFUU6O316Ou2oOOqo+X2PsI9pz8aMiDTk/9hjI174woh/+zeD+9l3+EcZgIXt4INTDN16a39wn3FGGpd75pmdc7/3JimEGxGNkXRhcjJ9gFAfjDh0XedxlWo9lu33Gz3b2pvd6eytqc6AuIiIsmhGc3Lzbl9zdqDv2PK/nSPT+s83XwQ/Hlx/fcS3vx1x+unp4NqI9MHNF78Ycfvt3eiuVtP924cc4rwjyKDa8zng976Xvh4ZEdzsW6x0A7Dv+cEP0pnI9XrEdddFPPrR8/2O7t+Pf5w+JDjwwBR/D0FZtGJq4t60tb3ohvnMILih0XUxsjxNLLqvFfRKpRqDS9Z2jk4ryzImx+5M55nXulvbF9Sq+caNaTL8jCc8IeLqqyM+//nuzaZ33BHxyU9GPPvZEb/1W7t6FiCzG25Iw9Zm/tjetCmdpPfmN0e89KX9kc4D95d/GfHd70acdVY61o09y2dIAOx7nvSkdOzWHXf0B/c110Q87nF7509ttVo6w3npQx+gVqnWOveNz1aWZUTP0WgRlRjuOdu8KGbuQZ9uH6HWM5m9aMaOLbfs9JzVaiMqtUYMDK+J4aUHtl+niObklqhWG1GtDUalWo/KfJ4PdN11EaecEjE1lVawZ97L85+fBpyNjnYfe8ABEX/2Z/PyNoFk9nFWH/pQxH//d/rc7KUvnY93tG/46U/T5p6Xv3y+38niZKUbgMXhzjtTgD/2sek85ZktxfRJZ5tPdY49i4goWpOxY8st7RX05k5nmw+NHtCzgj4Zm+/6f53fq1Qq7cFv6b7yxtCqzgcDZVlGMT3Rvt98DrZuX3ZZxGc+E3HCCRGveU26Nj6ept63WhE33phuRwAWjHvuSXMLjzsu4tRT07WiiPjsZ1NADg3d9/eTfP/76Zzu44+POOKI+388c0t0A7A4fPWraRvx4x+ffvqYz9XXfUBRTHcmtFdrA1Fr35vemh6PsXuv7wyGm213gV6p1noGv6Vt7I2BZdEYWtH53r6zzTdsSMtfL3hBugE0IuIDH4g455y0iv3Vr3Zf9Ior0lk5vavawIJ16aURL3tZ2rj0s5/tnZuXoJft5QAsDi94QTqLZuPGbnA3mxFvelM6Z/kJT5jXt7fQVKv1NHBtZhBcW60+HMvWHhMRM6vmzb77y2uNJZ3HFkWrfbZ5K8qiFa1iPFrT490nGy070d0a3x5b7v1Ze9BbI0Z/85So3nZnTP775yKe/eyoDYxG/fnPTwP1Tjml/826Pxv2KUWRzps+/fT+4N6xo/sZHOxNrHQDsHh99KPpnOW1a9Pk8Pmccr5+fcR556X7jD/4wfl7H/OgLFqd+8pn4rwspqI+uCIGrr8t4owzomxOxaavXtT5niV/+K6o/ey6GD/39dE8+cSdVtC3bfhF+2zzgajWBtP29vYguFp9qLN1HliYpqbS56ZL2p/j/fzn6c6SN7wh4vzzbWaa7cc/Tv83O+qoND6EPctKNwCL10knRbzylWkltDe4Z0+63hM2bYr41Kci1q1bdNFdqdaiVh2O2g+vSYfzPu1pEb/zO+k317UirroqKhGxonFoFCtG07FpH704mpUiqq2paBSzVtBbU9GanoiIiV2+3tDSA2Nk2cGdx45tvrF/a3sn1mfONvfTO+xtBgbSrxmf+UzE1q3pNED/yu7sNa9Jw9S+8Y2Ik0+e73ez+IhuABavww+P+NznIno3fV15ZcTTnx7xxjdGvP/9e+6nt3XrIt773u6yzb5uYiLda33iid3zr//93yPe856IV72qG91r1qTrT3pSVNfu352pPrRyt09dq4/E0jVHt6exp+PSitZkZxBc7yp30ZqM5sTm3T5Xf6A3Y2L7be3BcAP9Z5zPxSA44CE7//z0ed2jHtW9tnlzxJ/8SRr1cNRR8/XO9g4HHhixZYvRFvNFdANAb1hfemnE5GTEvffu2eWStWvTT4eLQVmmn4x//euIq65KY4kj0n33t94a8eIX9z9+9tf3o1KtRWNw2QN6bLU2GEtWPLqztb3sHKGWBsFVq43OY4vWRExsv2vXr1mpxfCyg2Jo9ID2Y5sxNb6hZ8U8TXBfUGebwwJSqUS88IX91z70oYiLL464/PKIq69e3CvgvbMl2fNENwD0uuCCiOc8J+Ixj+le27Ah4hOfSKvfpvQ8OFdfHfG2t0XU6xFf+Uq6Vqmks9SvuiqdpT4T3SeckH7tQdXaQAwuWbvL3yv7zjWPqFQbMbT0wG6Yz5xvXrSiLFvRe7Z50ZqIHVtu3vn12lvXB0fXdY5OK4rpaE1ti0ptsP37jZ2+D3jwnve8tHnpFa/oBndRRPzoRxFPfvL8vjcWF4PUAOD+vPWtEX/7tzsfRTWXms2Iu+9Oo3jXrcvzGrn94hcRX/96CuenPCVdu/769AHGwEDa6zk8nK5v2RKxbNk+sfRUFq0oiqmoVOqdYJ5ujsXEttvacZ4muPf+yDWy/NAYGt0/IiKak1tj24afd35v5oz0mXvLB0b2i4H2dvr0WmmLvFVzePC+9KV03veLXpTuXNkH/ghiAbDSDQD350lPStuhzzqre63VSn+tzdG9vNddF3HMMRGPeETEXbvewrxXKcuIX/6y/0bJf/zHiA9/OOLss7vRffjh6doJJ/QPq9uHxufODILrVW8sidFVR3a+LssyymI63VteNKNW7398rTESZauZhsSVRd8guPpAd6v8dHOsE+jVaj0qPfeVV2sD0RhaEfWBpZ3XjAiD4KDHDTekzwAf//j+4C7LfTvATz01rfJ/5CPpPzPsWVa6AeCBmJqKaDS6P5V9+tNpK/rf/E136NfDcc01EU98Yvpp6LbbHv7z5dRspg8h7rgj4uabIw5JR3XFl78ccdFFaSL8q141n+9wwUpnm091hr4VramoDy6Pevs89KmJTTF276922vo+Y+cV9F+k49J6h761A70+sDRq9aE99vcGe4vbb0+bblatSl9fe23Ey18ece65++4fXQMD6Y/uW29NZ5yzZ1npBoAHYmDWuc4XXpi2U//sZ3MT3b/xG+knor3N1VdHvO99EUuXphXriPThwyGHpGPOrr22G90vfvGDHnpGv0qlGrX60G5jeGBoZQwc8FtRFNOzBr+lv9YHutPvy9ZURJSdiJ9tZMWhUaunQJ+e2hZjm27sDn6rDXTuP6/WBqJaH45q1Y+N7BsOPLD/6w9+MJ3z/a//uu9G90c/mmaEznzQwJ5lpRsAHorNm9N26j/6o+4xX9dem64/9anz+c4euttui/j2t9OEoZlt45dfnv5+Vq5MA+Wq7fuI169Pq/K9W8bZq5Rl0VktT8emtQe/tSN8aOmB0RhM2/yndmyI7Zuu3+1zjaw4NIaWzAT69hjfdlvPsWmNdqgbBMfCtGVL+kzx5JMjfvM307WtWyM+9rGI173OMVs8fKIbAObKi16UJnS/731p+NrebuPGiNWru1//7u9GXHJJxDvfGXHeeena9HTEu94VcdJJ6fzyubqHnb1K0WpGa3pHe/W8GUUx2Q311lSMrDi0M8xtcseGGHuAgd5qjsfkjrvTFvdqd2t7tdpwtjl7tfe+N203P+GEiO9/f77fDQudfUIAMBempyP23z+t/D6ULdZ33hnx7nenJZX3vnfu31+v7dsjjj8+4le/SuG9YkW6fvLJ6R7tAw7oPrZeTxHOPi3d9/3AhtvVB0ZjyYrD+o5N68Z6M6rV7q0Y082xmNh+x65fs1qPkeWHxsDImoiIaE1PRHNyc99guEq1YRAc8+LQQyOOOCLizDO714oi4p57Ft4gsmYz3Qk1OBhx9NHz/W4WJyvdADCX7rknYr/9ul+/851pas9559339Jqf/zzd171mTXqOuXLNNelmvjVrIt7+9u71I49Mx3l961sRz3rW3L0ei9rMgLeZ48ymp7bH1PjG9mC47vnmM48bXXVkDAynm0x3vYJe6QyCG176yGgMrYiIiKI1Fa3p8fbqecP95mTRaqWp5vX2P17/8R9p4NrZZ+f/bHQu3XprxMEHp9Ekk5Pz/W4WJ39CAcBc6g3uzZvTVvOxsYgXvOC+o3u//SLe8Y6IkZGH/trbtkV897sRxx7bnRS0fn3E3/99xGGH9Uf3JZdEPPKRpuowp2afHV4fGI36wM43xBbFdJStqajUuqvi1VojBoZWdVbOi1YzegfBldFdJ2pObu0L9Jmzzau1wahUGzE0un/n6LSimI6yaEW11nC2OQ/K7Ltpvva1hRmtRZH+k9AwbmHeWOkGgJy+972Iz30u4p/+qXvc2DXXpOB9uGdVN5v9P0U997kR3/xmGvD2xjema1u3RrztbRHPfGZaorFVlwWiOwiufXTawNLOkLap8Y0xvvXWNBiuaO30vaOrj9rlPejdoW/dLewDQ6uj1hhuv2ZpOzu7VZYRl12W5kzObDH/1a8i/vzPI/70TyOOO25+3x97LyvdAJDTiSemXzOmpyNe9rK0hfzLX4542tMe/HNu3Bhx6qkp3u+6q3uc2UknRdx4Y3fCeETEsmXdo75gAalUqmkiem3nCfkDw6tjYDgNASyLVt/qeNmailq9u2OkLKejUqlEWZZRFOm+82iOdX6/1ljSie6p8Y2xY/ONadBbT5in+8sHojG4LKq1WccHsmhUKhHPeEb/tQsuSEeNTUyk7eewK1a6AWBPuvnmiOc/P0X3TTelKI5INw9u25Z+qutdAf/lLyO+8IWIdesiXvvadK0o0jLLhg0R//M/EU95Svc5TBeHnZRlGWUx3TP0rXt/+dDSAzvnok9suyN2bL1lt8/Tu4I+Nb4xHZ1WHejcd57ON0+RXqsPm9C+CFxzTQrvN72p+0fx9u1p4vlzn2tzEYnoBoA9bXo6xXTvGNkzzoj45CdThN9yS3ei+Kc/HfHqV6dp41de2X38t76Vxusedpif6mCOlGXRHvrWPS6tc0950YyR5Yd2VsXHt90e41vX7/a5egO9ObEpJsfu3mlre2dF3SC4fcr73x/xx38c8YpXRPzLv8z3u0kfDLzjHek/F+9733y/m8XJv+EAsKfV6/3BfdVVKbgj0j3YX/taxCtfmb5+1rPSdvTnPKf/OWZ/DTxslUq1veo9dL+PHRzZL+qNJWnLemuy59i0FOm92+KnmztiauLe3T7X0tVHRWMm0Ce3RnNi005b2w2CWzimptJMzOc9r3utLNPnrfMxzOyOOyK++MU0Y5P5YaUbAObb2FjEhRdG/O//ppsC3/727iA0YMGbbu6I6amtPdvaZ+J8MsqiFcvWHhv1RroP/b5W0KvVRixZ9ZhoDC5rP+9YtKa2d1fP23HO/NuwIW1cmhm58bWvRbzhDen0yDPO2LPvZf36iK98JWLlyu7nuexZohsA9iZlabs4LCJl0YqoVDqr2M3JLdGc2DRra/tUzPzIfn+BXqlU2ueXD8TIikOj3lgSERGt6Yn2Cnx7W7v7zfeol7wkzc5861tt8V6MRDcAAOzFegfB1erDnUCf3LEhpsY3dFfQi2bf9/UH+m0xvvXWzu9VqrWo1gY7q+NDSw/qDJSbOSO9Um04Qm2O7NgR8bGPpbuF1q1L1264IeIzn4k466yIVavm9/2Rl+gGAIB9QBoE14yyfV95Y3BFZ0V7YvudMTl2V1o5L4udvnfXgV7pTGZPq+fpfw+OrO0cneZs84fuzDMjLr444rTTIi69NN/rbNqUDsxYsSJi7dp8r8PuGaQGAAD7gDQIbjAidj7bfGh0XQyNpiXWopjuWx0vWpNR6xn8lqK8EhFlZ4t7r4GhVRHt6J7YfntMbLu9PfRtMCrVRt8QuPrgctPZd+OUUyJ++MOIc87pXhsbS4H8qEfN3et8/vPpfvLccc/u+TcAAAAWkWq1HlGtR629sj3byLKDY3jpI/uPTiu655tX2sEdEZ2V89b0RLSmJ3Z6ruVrj41oR/fE9jtjasc97WPSunE+Mwiud+v8YnDaaRGnnto/xuPii9N93+eeG/Hud8/N69RqEcuXRyxdOjfPx4MnugEAgD6VSqUTw/dlZNkhMTR6QN/Qt94hcL2B3poej+nmWERzbJfPtXztsZ0PAiZ33NM+Oq0R1epg+730bHXfRwbBzd6Z/5OfRLRaEYccMnevceaZ6Rfzxz3dAABAdmk1fHzW1vbuCvqyRzyhsxV9bPNNMTn2690+1/K1T4haYzgiIqbG741Ws310WrX3fPOFOQjuhz+MOOaYiMH2jv9vfCPiAx+I+Iu/iDjhhPl9bzw0VroBAIDsavWhzoT0+zMwvCZq9eGeFfR07/nMdvZKz3nkzcnNuwn0NAhu6ZqjO6/bnNwaRWuys709hfrelUTHH9//9QUXRHznOxGPfazoXqj2rn/CAACARa8xuCwag8t2+XtFMd0Xyo3B5VGJSufe8xTq6dizojUVlZ7HTo1v2CnQK5VqZ3V8ycojOlvqW80d6bVmVs7n6X7ziy9OZ3u/5S3dazffHHHVVeme8Or9vK3Pfjbim9+MeNGLIk4/PetbZTdENwAAsGDMXpkeGF4dA8Or+66ls83T9vXex9fqw9EYXNEdDFdM9w2Cq1S694pPbL8zJnfc3fO6vavjjRhefkjnuVPkR1Sq9Tnf0v7oR0f88z/3X7vggoiLLop43esiPvKR+/7+yy+P+NSnIg46SHTPF9ENAADsU3Y3CK736LSIiLJo9d1b3jugrVKtR602mAK9LNPjimZnENzI8kd1Hju+dX1M7rg7vW7PfeUzg+AGlzyi89xzcbb5Ix+Zzt3+/d/vXpucjCjLiKFZO/hf+tL0+Kc+9WG9JA+DQWoAAAD3oWil4C7b95UXRTOGlx7U+f3t914fU+Mbdvv9K9c9uRPdY5tujKmJjVGtDfYfndaO9cbQige0lX379ojR0e7XF14Y8Z73pF+vec1D/lslAyvdAAAA9yEdV9aI2M3Z5qOrjoiyfHQUreZOx6aVxXTfCnpRTEVZtKJV7IjWLp5r5bonR7QXwndsuSWmp7ZGtdrorNzPTGgfHhyIshzurJpfcknEXXelFW/2Lla6AQAA9pCyaM0a+tY9Nq0sW7F0zeM6j9228dpoTmze7XP1rqBv3XhH/Msl1Tj9tMkYWZLC/LLvDsX//fRQnHV2JY4+uhrDw7n/7tgV0Q0AALAXajV3RGt6oj34rdldQS+mIopWLN//uM5jdxXoL3nF4+J7P1geEREf/3jEGWfsyXfPDNvLAQAA9kK1xkjUdrOlfbahJftHY3B5J8xb01Nx1hvuibKsxMc/HnHY4bs+go38rHQDAADsw+ZiYjoP3fyc8A4AAMAeIbjnl+gGAACATEQ3AAAAZCK6AQAAIBPRDQAAAJmIbgAAAMhEdAMAAEAmohsAAAAyEd0AAACQiegGAACATEQ3AAAAZCK6AQAAIBPRDQAAAJmIbgAAAMhEdAMAAEAmohsAAAAyEd0AAACQiegGAACATEQ3AAAAZCK6AQAAIBPRDQAAAJmIbgAAAMhEdAMAAEAmohsAAAAyEd0AAACQiegGAACATEQ3AAAAZCK6AQAAIBPRDQAAAJmIbgAAAMhEdAMAAEAmohsAAAAyEd0AAACQiegGAACATEQ3AAAAZCK6AQAAIBPRDQAAAJmIbgAAAMhEdAMAAEAmohsAAAAyEd0AAACQiegGAACATEQ3AAAAZCK6AQAAIBPRDQAAAJmIbgAAAMhEdAMAAEAmohsAAAAyEd0AAACQiegGAACATEQ3AAAAZCK6AQAAIBPRDQAAAJmIbgAAAMhEdAMAAEAmohsAAAAyEd0AAACQiegGAACATEQ3AAAAZCK6AQAAIBPRDQAAAJmIbgAAAMhEdAMAAEAmohsAAAAyEd0AAACQiegGAACATEQ3AAAAZCK6AQAAIBPRDQAAAJmIbgAAAMhEdAMAAEAmohsAAAAyEd0AAACQiegGAACATEQ3AAAAZCK6AQAAIBPRDQAAAJmIbgAAAMhEdAMAAEAmohsAAAAyEd0AAACQiegGAACATEQ3AAAAZCK6AQAAIBPRDQAAAJmIbgAAAMhEdAMAAEAmohsAAAAyEd0AAACQiegGAACATEQ3AAAAZCK6AQAAIBPRDQAAAJmIbgAAAMhEdAMAAEAmohsAAAAyEd0AAACQiegGAACATEQ3AAAAZCK6AQAAIBPRDQAAAJmIbgAAAMhEdAMAAEAmohsAAAAyEd0AAACQiegGAACATEQ3AAAAZCK6AQAAIBPRDQAAAJmIbgAAAMhEdAMAAEAmohsAAAAyEd0AAACQiegGAACATEQ3AAAAZCK6AQAAIBPRDQAAAJmIbgAAAMhEdAMAAEAmohsAAAAyEd0AAACQiegGAACATEQ3AAAAZCK6AQAAIBPRDQAAAJmIbgAAAMhEdAMAAEAmohsAAAAyEd0AAACQiegGAACATEQ3AAAAZCK6AQAAIBPRDQAAAJmIbgAAAMhEdAMAAEAmohsAAAAyEd0AAACQiegGAACATEQ3AAAAZCK6AQAAIBPRDQAAAJmIbgAAAMhEdAMAAEAmohsAAAAyEd0AAACQiegGAACATEQ3AAAAZCK6AQAAIBPRDQAAAJmIbgAAAMhEdAMAAEAmohsAAAAyEd0AAACQiegGAACATEQ3AAAAZCK6AQAAIBPRDQAAAJmIbgAAAMhEdAMAAEAmohsAAAAyEd0AAACQiegGAACATEQ3AAAAZCK6AQAAIBPRDQAAAJmIbgAAAMhEdAMAAEAmohsAAAAyEd0AAACQiegGAACATEQ3AAAAZCK6AQAAIBPRDQAAAJmIbgAAAMhEdAMAAEAmohsAAAAyEd0AAACQiegGAACATEQ3AAAAZCK6AQAAIBPRDQAAAJmIbgAAAMhEdAMAAEAmohsAAAAyEd0AAACQiegGAACATEQ3AAAAZCK6AQAAIBPRDQAAAJmIbgAAAMhEdAMAAEAmohsAAAAyEd0AAACQiegGAACATEQ3AAAAZCK6AQAAIBPRDQAAAJmIbgAAAMhEdAMAAEAmohsAAAAyEd0AAACQiegGAACATEQ3AAAAZCK6AQAAIBPRDQAAAJmIbgAAAMhEdAMAAEAmohsAAAAyEd0AAACQiegGAACATEQ3AAAAZCK6AQAAIBPRDQAAAJmIbgAAAMhEdAMAAEAmohsAAAAyEd0AAACQiegGAACATEQ3AAAAZCK6AQAAIBPRDQAAAJmIbgAAAMhEdAMAAEAmohsAAAAyEd0AAACQiegGAACATEQ3AAAAZCK6AQAAIBPRDQAAAJmIbgAAAMhEdAMAAEAmohsAAAAyEd0AAACQiegGAACATEQ3AAAAZCK6AQAAIBPRDQAAAJmIbgAAAMhEdAMAAEAmohsAAAAyEd0AAACQiegGAACATEQ3AAAAZCK6AQAAIBPRDQAAAJmIbgAAAMhEdAMAAEAmohsAAAAyEd0AAACQiegGAACATEQ3AAAAZCK6AQAAIBPRDQAAAJmIbgAAAMhEdAMAAEAmohsAAAAyEd0AAACQiegGAACATEQ3AAAAZCK6AQAAIBPRDQAAAJmIbgAAAMhEdAMAAEAmohsAAAAyEd0AAACQiegGAACATEQ3AAAAZCK6AQAAIBPRDQAAAJmIbgAAAMhEdAMAAEAmohsAAAAyEd0AAACQiegGAACATEQ3AAAAZCK6AQAAIBPRDQAAAJmIbgAAAMhEdAMAAEAmohsAAAAyEd0AAACQiegGAACATEQ3AAAAZCK6AQAAIBPRDQAAAJmIbgAAAMhEdAMAAEAmohsAAAAyEd0AAACQiegGAACATEQ3AAAAZCK6AQAAIBPRDQAAAJmIbgAAAMhEdAMAAEAmohsAAAAyEd0AAACQiegGAACATEQ3AAAAZCK6AQAAIBPRDQAAAJmIbgAAAMhEdAMAAEAmohsAAAAyEd0AAACQiegGAACATEQ3AAAAZCK6AQAAIBPRDQAAAJmIbgAAAMhEdAMAAEAmohsAAAAyEd0AAACQiegGAACATEQ3AAAAZCK6AQAAIBPRDQAAAJmIbgAAAMhEdAMAAEAmohsAAAAyEd0AAACQiegGAACATEQ3AAAAZCK6AQAAIBPRDQAAAJmIbgAAAMhEdAMAAEAmohsAAAAyEd0AAACQiegGAACATEQ3AAAAZCK6AQAAIBPRDQAAAJmIbgAAAMhEdAMAAEAmohsAAAAyEd0AAACQiegGAACATEQ3AAAAZCK6AQAAIBPRDQAAAJmIbgAAAMhEdAMAAEAmohsAAAAyEd0AAACQiegGAACATEQ3AAAAZCK6AQAAIBPRDQAAAJmIbgAAAMhEdAMAAEAmohsAAAAyEd0AAACQiegGAACATEQ3AAAAZCK6AQAAIBPRDQAAAJmIbgAAAMhEdAMAAEAmohsAAAAyEd0AAACQiegGAACATP4/kHBh5ecrjUgAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ag = AcquisitionGeometry.create_Cone3D(source_position=[0,-10,0],detector_position=[0,10,0])\\\n", + " .set_panel(num_pixels=[10,10])\\\n", + " .set_angles(angles=range(0,180))\n", + " \n", + "show_geometry(ag)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Create an offset AcquisitionGeometry\n", + "\n", + "It is unusual to have a perfectly aligned CT system. One of the most common offsets is the rotation-axis. If this offset is described by the `AcquisitionGeometry` then it will be accounted for in the reconstruction. This saves having to pad your data to account for this.\n", + "\n", + "To specify the offset, you could either add an x-component to the `source_position` and `detector_position` or you can offset the rotation axis from the origin using `rotation_axis_position`.\n", + "\n", + "As with the `source_position` and `detector_position` this is the `rotation_axis_position` is specified in 2D with a 2D vector `[X,Y]` or 3D with a 3D vector `[X,Y,Z]`" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Below we offset the rotation axis by -0.5 in X by setting `rotation_axis_position=[-0.5,0]`. You can see the rotation axis position is no longer a point on the source-to-detector vector." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "execution": { + "iopub.execute_input": "2024-10-10T15:02:39.678070Z", + "iopub.status.busy": "2024-10-10T15:02:39.677748Z", + "iopub.status.idle": "2024-10-10T15:02:39.870076Z", + "shell.execute_reply": "2024-10-10T15:02:39.869592Z" + } + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA90AAAPdCAYAAACXzguGAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAADDBElEQVR4nOzdeXxTVf7/8XeaJmnadINC2UEtqwLiIAqo4Aiijor+5quOIosio6KCG+4oio4Lg4qOy+g44Lg7A6jjuKAoiKLsiEihgCwuaNmhe5t8fn/Epk03CpKm0Nfz8eijJ+eee+/Jbc5NPj0n5zjMzAQAAAAAAA66mGhXAAAAAACAwxVBNwAAAAAAEULQDQAAAABAhBB0AwAAAAAQIQTdAAAAAABECEE3AAAAAAARQtANAAAAAECEEHQDAAAAABAhBN0AAAAAAEQIQTcAAAAAABFC0A0AAAAAQIQQdAMAAAAAECEE3QAAAAAARAhBNwAAAAAAEULQDQAAAABAhBB0/0YbN26Uw+HQ8uXLqy0zZ84cORwO7dq1q87q9Vu0a9dOjz/+eOixw+HQW2+9FbX6AHWtNu26vujfv7+uv/76aFejWhXvJ1WZMGGCjj322DqpD/atvr+mDhW1vY9wvQHg8EfQjX3asmWLzjzzzIN6zEPhQ0ZtggXUHwf6mhoxYoTOO++8sLzWrVtry5YtOuaYYw5O5SJoxowZmjhxYrSrUa1Fixbpz3/+c+hxVf/Eu/nmmzV79uw6rhkOlmnTpiklJeWgH/dQeJ+oScX7SHX/gK/vbRgA8NvFRrsCh7KioqJoV+GA+f1+ORwOxcTs+/8uzZo1q4MaoV7LypLWr5cyMqT27ev01EVFRXK73XV6TqfTeci87hs1ahTtKtSoSZMm+yzj8/nk8/nqoDaHhig2t8NSNO4hUu3vI/W9DQMAfrsD7uk2M+Xm5tb5j5nVqn7//e9/lZKSokAgIElavny5HA6Hxo0bFypz5ZVX6uKLLw49nj59uo4++mh5PB61a9dOkydPDjtmu3btdP/992vEiBFKTk7WqFGjqjz3e++9pw4dOsjr9erUU0/Vxo0b91nfXbt26c9//rPS09MVFxenY445Ru+++26t67Zz504NGzZMqampio+P15lnnqm1a9eGtpf2RLz77rvq0qWLPB6PNm3apOzsbJ1zzjnyer064ogj9Morr1SqW/meqdLhcjNmzNCpp56q+Ph4de/eXV9++WWo/Pbt23XxxRerVatWio+PV9euXfXaa6+Fto8YMUJz587VlClT5HA45HA4Qtdo1apVOuuss+Tz+ZSenq6hQ4dq27Zt1V63TZs26ZxzzlFqaqoSEhJ09NFH67333pOZKSMjQ3/961/Dyq9cuVIxMTFav369pOCw1jZt2sjj8ahFixYaM2aMpGAPy6ZNm3TDDTeE6lhq/vz5OuWUU+T1etW6dWuNGTNGubm5oe2lr5Nhw4bJ5/Opbdu2evvtt7V161YNHjxYPp9PXbt21eLFi6t9XvXGjh3SGWdIHTtKZ50ldegQfLxzZ8RO2b9/f1177bW68cYblZaWpoEDB0qS5s6dq169esnj8ah58+a67bbbVFJSIqn615Tf79fIkSN1xBFHyOv1qmPHjpoyZUroXBMmTNCLL76ot99+O7TfnDlzqhwWWtP5S+s9ZswY3XLLLWrUqJGaNWumCRMm1PhcFy1apIEDByotLU3Jycnq16+fli5dGto+Z84cud1uzZs3L5Q3efJkpaWlacuWLaHzlu8NfPrpp9W+fXvFxcUpPT1d//d//1ft+UvvC2+99ZY6dOiguLg4DRw4UN9//31YuWeeeUZHHXWU3G63OnbsqJdeeilse3XtSAofMdKuXTtJ0vnnny+HwxF6XHF4eSAQ0H333adWrVrJ4/Ho2GOP1QcffBDaXpv70KEoCs1Nubm5oXtV8+bNK723SMGg9ZZbblHLli2VkJCgE044QXPmzJEUfI1edtll2r17d6gNlb7ua9qv1BdffKF+/fopPj5eqampGjRokHbu3Fnj+0Rt2mJV95CKSke53HvvvWratKmSkpJ05ZVXhv1DvbCwUGPGjFHTpk0VFxenk046SYsWLQpt37lzp4YMGaImTZrI6/Wqffv2mjp1qqTw4eUbN27UqaeeKklKTU2Vw+HQiBEjQvUt34Zr+37+4YcfqnPnzvL5fDrjjDNC9wQAQD1kBygnJ8ck1flPTk5Oreq3a9cui4mJscWLF5uZ2eOPP25paWl2/PHHh8p06NDBnnnmGTMzW7x4scXExNh9991na9assalTp5rX67WpU6eGyrdt29aSkpJs0qRJtnbtWlu7dq1t2LDBJNmyZcvMzGzz5s3m8Xhs7Nixtnr1anv55ZctPT3dJNnOnTurrKvf77cTTzzRjj76aJs1a5atX7/e/vvf/9p7771X67qde+651rlzZ/vss89s+fLlNmjQIMvIyLCioiIzM5s6daq5XC7r06ePffHFF7Z69WrLycmxM88804455hibP3++LV682Pr06WNer9cee+yx0LEl2cyZM83MQs+3U6dO9u6779qaNWvs//7v/6xt27ZWXFxsZmY//PCDTZo0yZYtW2br16+3J554wpxOp3311Vehv03v3r1t1KhRtmXLFtuyZYuVlJTYTz/9ZGlpaXb77bdbZmamLV261AYOHGinnnpqtX/nP/zhDzZw4EBbsWJF6LrNnTvXzMweeOAB69KlS1j5G264wU455RQzM/v3v/9tSUlJ9t5779mmTZtswYIF9txzz5mZ2fbt261Vq1Z23333hepoZrZixQrz+Xz22GOPWVZWln3xxRfWo0cPGzFiRNjrpFGjRvbss89aVlaWXX311ZaYmGhnnHGGvfnmm7ZmzRo777zzrHPnzhYIBKp9bvXCoEFmTqeZVPbjdAbzI6Rfv37m8/ls3Lhxtnr1asvMzLQffvjB4uPjbfTo0ZaZmWkzZ860tLQ0u+eee8ys+tdUUVGR3X333bZw4UL77rvv7OWXX7b4+Hh74403zMxs7969duGFF9oZZ5wR2q+wsLBSu97X+UvrnZSUZBMmTLCsrCx78cUXzeFw2KxZs6p9rrNnz7aXXnrJVq1aZatWrbKRI0daenq67dmzJ1Rm3Lhx1rZtW9u1a5ctX77cPB6PzZgxI+y8Y8eONTOzRYsWmdPptFdffdU2btxoS5cutSlTplR7/tL7Qs+ePUP3gF69elmfPn1CZWbMmGEul8ueeuopW7NmjU2ePNmcTqd98sknZlZzOzILtofS+0l2drZJsqlTp9qWLVssOzvbzMzuuece6969e2ifRx991JKSkuy1116z1atX2y233GIul8uysrLMrHb3oUNRFJqbXX311daqVSubNWuWrVixws4++2zz+Xyh15SZ2SWXXGJ9+vSxzz77zNatW2eTJk0yj8djWVlZVlhYaI8//rglJSWF2tDevXv3uZ+Z2bJly8zj8djVV19ty5cvt5UrV9qTTz5pW7durbZN17YtVryHVGX48OHm8/nsoosuspUrV9q7775rTZo0sTvuuCNUZsyYMdaiRQt777337Ntvv7Xhw4dbamqqbd++3czMrrnmGjv22GNt0aJFtmHDBvvoo4/snXfeMTMLu4+UlJTY9OnTTZKtWbPGtmzZYrt27QrVt/z1ru37+YABA2zRokW2ZMkS69y5s11yySW/7cUAAIiYwzboNjM77rjj7K9//auZmZ133nn2wAMPmNvttj179tiWLVtMUujN+JJLLrGBAweG7T9u3LiwoK1t27Z23nnnhZWp+OH89ttvrxRM3XrrrTUG3R9++KHFxMTYmjVrqty+r7plZWWZJPviiy9C27dt22Zer9fefPNNMwu+SUuy5cuXh8qsWbPGJIWCYTOzzMxMk7TPoPsf//hHaPu3334bdi2rctZZZ9lNN90UelzxQ4aZ2fjx4+30008Py/v+++9DH1Kq0rVrV5swYUKV23766SdzOp22YMECMzMrKiqyJk2a2LRp08zMbPLkydahQ4fQB5mKygcLpYYOHWp//vOfw/LmzZtnMTExlp+fH9rv0ksvDW0vfa2NHz8+lPfll1+apFAwXy+tWRP+6b/iz68fnA+2fv362bHHHhuWd8cdd1jHjh3D2tVTTz1lPp/P/H5/aL+Kr6mqjB492v74xz+GHg8fPtwGDx4cVqZiu67t+U866aSw4xx//PF266237rNOpUpKSiwxMdH++9//hvIKCwutR48eduGFF9rRRx9tV1xxRdg+5Z/39OnTLSkpKSxor0npfaGqe0Bpu+nTp4+NGjUqbL8LLrjAzjrrLDPb/3ZU/n5SqmLQ3aJFC3vggQfCyhx//PE2evRoMzvw+1B9Fo3mtnfvXnO73fb666+H8rZv325erzf0mlq3bp05HA778ccfw/Y97bTT7Pbbbzez4OsoOTk5bHtt9rv44outb9++1davqjZd27ZY8R5SleHDh1ujRo0sNzc3lPfMM8+EjpWTk2Mul8teeeWV0PaioiJr0aKFPfLII2Zmds4559hll11W5fEr3kc+/fTTKj8LlH+e+/N+vm7durBrkJ6evs/nDACIjgMeXh4fH6+cnJw6/4mPj691Hfv37685c+bIzDRv3jwNHjxYxxxzjD7//HN9+umnSk9PV6dOnSRJmZmZ6tu3b9j+ffv21dq1a+X3+0N5PXv2rPGcmZmZOvHEE8OGI/fu3bvGfZYvX65WrVqpQ4cO1R6zprplZmYqNjZWJ5xwQmh748aN1bFjR2VmZoby3G63unXrFnbc2NjYsOfUqVOnWk2IU/44zZs3lyRlZ2dLCn5f/IEHHlC3bt3UuHFj+Xw+zZo1S5s3b67xmEuWLNGnn34a+n6nz+cL/X1Kh4NXNGbMGN1///3q27ev7rnnHq1YsSKsXn/4wx/0z3/+U5L07rvvqqCgQBdccIEk6YILLlB+fr6OPPJIjRo1SjNnzgwbolhdHadNmxZWx0GDBikQCGjDhg1VXp/09HRJUteuXSvllV6zeqmaax6ybl3ETl2xnWVmZqp3795h7apv377KycnRDz/8UOOxnn32WfXs2VNNmjSRz+fT888/v8/XYkW1PX/5v7sUfA3W9DfOzs7WVVddpQ4dOig5OVnJycnKyckJq5/b7dbLL7+s6dOnKz8/v8bJ/QYOHKi2bdvqyCOP1NChQ/XKK68oLy+vxudW3T2g9N5R3f2ndPuBtKOa7NmzRz/99FON5yxV033oUBON5rZ+/XoVFRWFvUc1atRIHTt2DD1eunSpzEwdOnQIu+/NnTu32vtybfdbvny5TjvttP2qc23b4r7eq0t179497HNF7969lZOTo++//17r169XcXFx2GvR5XKpV69eodfi1Vdfrddff13HHnusbrnlFs2fP3+/nk9Vz6827+fx8fE66qijQo/3da8BAETXAU+k5nA4lJCQcDDrctD1799fL7zwgr7++mvFxMSoS5cu6tevn+bOnaudO3eqX79+obJmFvYmXppX0b6ec1X77IvX693nMWuqW3XnrLif1+sNe1y6X8Vj14bL5QqlS/cv/f785MmT9dhjj+nxxx9X165dlZCQoOuvv36fE88FAgGdc845evjhhyttK/1AXdEVV1yhQYMG6X//+59mzZqlBx98UJMnT9Z1110X2j506FA99thjmjp1qi666KLQB6zWrVtrzZo1+uijj/Txxx9r9OjRmjRpkubOnRv2/CrW8corrwz7zmqpNm3a1Hh9arpm9VK5D3RVysiI2KkrtrOa2kBNr98333xTN9xwgyZPnqzevXsrMTFRkyZN0oIFC/arPrU9f8XXjcPhqPFvPGLECG3dulWPP/642rZtK4/Ho969e1dqK6Uf5Hfs2KEdO3ZUex9KTEzU0qVLNWfOHM2aNUt33323JkyYoEWLFtX4z7SqrmH5vKqee2negbSj2qjpnKUOuTZVg2g0t9q8XwUCATmdTi1ZskROpzNsW02T39Vmv32991VX59q0xd/6+cThcFR7jylfhzPPPFObNm3S//73P3388cc67bTTdM0111SaT6S2avt+XtW95kA+fwAA6sZhvWTYKaecor179+rxxx9Xv3795HA41K9fP82ZM0dz5swJC7q7dOmizz//PGz/+fPnq0OHDpU+MNSkS5cu+uqrr8LyKj6uqFu3bvrhhx+UlZVV7TFrqluXLl1UUlISFkhs375dWVlZ6ty5c7Xn7dy5s0pKSsIm9FqzZs1vXk+8dFTBpZdequ7du+vII48MmwRGCvbelR9BIEnHHXecvv32W7Vr104ZGRlhPzV9gGrdurWuuuoqzZgxQzfddJOef/750LazzjpLCQkJeuaZZ/T+++/r8ssvD9vX6/Xq3HPP1RNPPKE5c+boyy+/1DfffLPPOlasX0ZGRlRmx42oDh2kQYOkiq9/pzOYX4fTKnfp0kXz588P+1A5f/58JSYmqmXLlpKq/nvNmzdPffr00ejRo9WjRw9lZGRU6p2rar8DOf+BmDdvnsaMGaOzzjorNFFixYkD169frxtuuEHPP/+8TjzxRA0bNqzGwDI2NlYDBgzQI488ohUrVmjjxo365JNPqi1f3T2gdJRJ586dq7z/lL+31NSOKnK5XDVe76SkJLVo0WKf5zzcRKO5ZWRkyOVyhb1H7dy5M+y9qEePHvL7/crOzq50zyudmbuqNlSb/bp161bjUnFVHfdgt8Wvv/5a+fn5ocdfffWVfD6fWrVqFbqvl38tFhcXa/HixWGvxSZNmmjEiBF6+eWX9fjjj+u5556r9vlIqvH1f6Dv5wCA+u2wDrqTk5N17LHH6uWXX1b//v0lBQPxpUuXKisrK5QnSTfddJNmz56tiRMnKisrSy+++KL+9re/6eabb96vc1511VVav369brzxRq1Zs0avvvqqpk2bVuM+/fr10ymnnKI//vGP+uijj7Rhwwa9//77odl691W39u3ba/DgwRo1apQ+//xzff3117r00kvVsmVLDR48uNrzduzYUWeccYZGjRqlBQsWaMmSJbriiisOqPehvIyMDH300UeaP3++MjMzdeWVV+rnn38OK9OuXTstWLBAGzdu1LZt2xQIBHTNNddox44duvjii7Vw4UJ99913mjVrli6//PJqP6Rcf/31+vDDD7VhwwYtXbpUn3zySdgHE6fTqREjRuj2229XRkZG2DDKadOm6YUXXtDKlSv13Xff6aWXXpLX61Xbtm1Ddfzss8/0448/hgKhW2+9VV9++aWuueYaLV++XGvXrtU777wT6lk/7Lz2mjRgQHjegAHB/Do0evRoff/997ruuuu0evVqvf3227rnnnt04403hpa9q+o1lZGRocWLF+vDDz9UVlaWxo8fHzbzcOl+K1as0Jo1a7Rt2zYVFxcf0PkPREZGhl566SVlZmZqwYIFGjJkSFj78/v9Gjp0qE4//XRddtllmjp1qlauXFnlDNNS8CsUTzzxhJYvX65NmzbpX//6lwKBQNhw4YpcLpeuu+46LViwQEuXLtVll12mE088Ub169ZIkjRs3TtOmTdOzzz6rtWvX6tFHH9WMGTNC9599taOK2rVrp9mzZ+vnn3/Wzmqm5R43bpwefvhhvfHGG1qzZo1uu+02LV++XGPHjq3VdT1U1XVz8/l8GjlypMaNG6fZs2dr5cqVGjFiRNhrukOHDhoyZIiGDRumGTNmaMOGDVq0aJEefvhhvffee5KCf9OcnBzNnj1b27ZtU15eXq32u/3227Vo0SKNHj1aK1as0OrVq/XMM8+E7rdVtemD3RaLioo0cuRIrVq1Su+//77uueceXXvttYqJiVFCQoKuvvpqjRs3Th988IFWrVqlUaNGKS8vTyNHjpQk3X333Xr77be1bt06ffvtt3r33XerDY7btm0rh8Ohd999V1u3blVOTk6lMgf6fg4AqOfq5qvj0XPTTTeZJFu5cmUor3v37takSZNKM0f/5z//sS5dupjL5bI2bdrYpEmTwrZXNbFWxYlSzMz++9//WkZGhnk8Hjv55JPtn//8Z40TqZkFJ6+57LLLrHHjxhYXF2fHHHOMvfvuu7Wu244dO2zo0KGWnJxsXq/XBg0aFJoh1qzqiW7MgpN8/eEPfzCPx2Nt2rSxf/3rXzVOfFTV8925c6dJsk8//TT0XAYPHmw+n8+aNm1qd911lw0bNixssqo1a9bYiSeeaF6v1yTZhg0bzCw4icz5559vKSkp5vV6rVOnTnb99ddXO8v3tddea0cddZR5PB5r0qSJDR061LZt2xZWZv369SYpNPFNqZkzZ9oJJ5xgSUlJlpCQYCeeeKJ9/PHHoe1ffvmldevWzTwej5VvKgsXLrSBAweaz+ezhIQE69atW9ikT1W9Tspfw+quY72WlWX23nsRmzytvOomRJszZ44df/zx5na7rVmzZnbrrbeGzVRd1WuqoKDARowYYcnJyZaSkmJXX3213XbbbWGTdmVnZ4f+nqWv46r+Pvs6f1X1Hjx4sA0fPrza57p06VLr2bOneTwea9++vf373/8Oe/3ce++91rx587DX9FtvvWVutztUt/LnnTdvnvXr189SU1PN6/Vat27dQjO1V6X0vjB9+nQ78sgjze122+9//3vbuHFjWLmnn37ajjzySHO5XNahQwf717/+Fdq2r3ZUsT288847lpGRYbGxsda2bVszqzyRmt/vt3vvvddatmxpLpfLunfvbu+//35oe23uQ4eyOmxutnfvXrv00kstPj7e0tPT7ZFHHqn0Wi5dBaBdu3bmcrmsWbNmdv7559uKFStCZa666ipr3LixSQrNJF6b/ebMmWN9+vQxj8djKSkpNmjQoNB7ZXXvEwfSFqtSOoni3XffbY0bNzafz2dXXHGFFRQUhMrk5+fbddddZ2lpaebxeKxv3762cOHC0PaJEyda586dzev1WqNGjWzw4MH23XffmVnVr9P77rvPmjVrZg6HI3RvqFjfA3k/nzlzpjWAj3QAcMhymPElIBzevvjiC/Xv318//PBDaAIzAMFe6uuvv/43f6UEOBSNGDFCu3bt0ltvvRXtqgAADnMHPJEaUN8VFhbq+++/1/jx43XhhRcScAMAAACoc4f1d7rRsL322mvq2LGjdu/erUceeSTa1QEAAADQADG8HAAAAACACKGnGwAAAACACCHoBgAAAAAgQgi6AQAAAACIEIJuAAAAAAAiJCpBt7+kIBqnBQAAAACgTtV50J2/9wetnne38vf+UNenRg3atWunxx9/vMYyEyZM0LHHHlsn9QGiaePGjXI4HFq+fHm0q7JP/fv31/XXX3/Qjjdt2jSlpKSEHkez3XPPiY6D/Zo6lIwYMULnnXde6HE0r0VD/jsAwOGmzoPu3b8sk8yv3b8sr+tTowaLFi3Sn//859Bjh8Oht956K6zMzTffrNmzZ9dxzYDaOdAPqBU/ZEtS69attWXLFh1zzDEHp3IRNGPGDE2cODFix6+rds8959BV8R81B0t9CDoj3b4kac6cOXI4HNq1a1ednxsAUDdi6/JkZqY9vwbbe35ZrvSj/iCHw1GXVYgov98vh8OhmJhD76vyTZo02WcZn88nn89XB7UByhQVFcntdtfpOZ1Op5o1a1an5zxQjRo1iujx99XuI/n34Z6Dg+G3vEb31b4i+fqPdNsGANSdOo0OC3J+VHHhLklSceFOFeT8FNHz/ec//1HXrl3l9XrVuHFjDRgwQLm5uZKkQCCg++67T61atZLH49Gxxx6rDz74ILRvVf95Xr58uRwOhzZu3Cip7L/77777rrp06SKPx6NNmzapsLBQt9xyi1q3bi2Px6P27dvrhRdeCB1n1apVOuuss+Tz+ZSenq6hQ4dq27Zt1T6P0vO89dZb6tChg+Li4jRw4EB9//33YeWeeeYZHXXUUXK73erYsaNeeumlsO0TJkxQmzZt5PF41KJFC40ZMya0rfzw8nbt2kmSzj//fDkcjtDjikM993UNS4fozpgxQ6eeeqri4+PVvXt3ffnll9U+V6B///669tprdeONNyotLU0DBw6UJM2dO1e9evWSx+NR8+bNddttt6mkpERSsLd67ty5mjJlihwOR6id+v1+jRw5UkcccYS8Xq86duyoKVOmhM41YcIEvfjii3r77bdD+82ZM6fK4eU1nb+03mPGjNEtt9yiRo0aqVmzZpowYUKNz3XRokUaOHCg0tLSlJycrH79+mnp0qWh7XPmzJHb7da8efNCeZMnT1ZaWpq2bNkSOm/53sCnn35a7du3V1xcnNLT0/V///d/NdZh2rRpatOmjeLj43X++edr+/btYdsrtvvSkQEPPvigWrRooQ4dOkiSfvzxR1100UVKTU1V48aNNXjw4NC9stQ///lPHX300aFreO2110rinhNNubm5GjZsmHw+n5o3b67JkydXKlNUVKRbbrlFLVu2VEJCgk444QTNmTNHUvA1etlll2n37t2hNlT6uq9pv1JffPGF+vXrp/j4eKWmpmrQoEHauXNntW1aql1brOoeUpHf79eNN96olJQUNW7cWLfccovMLKxMxfbVrl073X///RoxYoSSk5M1atQoSdL8+fN1yimnyOv1qnXr1hozZkzo84akaj8XbNy4UaeeeqokKTU1VQ6HQyNGjKjy3Dt37tSwYcOUmpqq+Ph4nXnmmVq7dm1oe+lnhQ8//FCdO3eWz+fTGWecEbpXAACiyCKkIOdn2/Xz0rCf71e+ZCtn32wrZ99oK2ffbN+vfLlSmYKcnw/K+X/66SeLjY21Rx991DZs2GArVqywp556yvbu3WtmZo8++qglJSXZa6+9ZqtXr7ZbbrnFXC6XZWVlmZnZp59+apJs586doWMuW7bMJNmGDRvMzGzq1KnmcrmsT58+9sUXX9jq1astJyfHLrzwQmvdurXNmDHD1q9fbx9//LG9/vrroXqlpaXZ7bffbpmZmbZ06VIbOHCgnXrqqdU+l9Lz9OzZ0+bPn2+LFy+2Xr16WZ8+fUJlZsyYYS6Xy5566ilbs2aNTZ482ZxOp33yySdmZvbvf//bkpKS7L333rNNmzbZggUL7Lnnngvt37ZtW3vsscfMzCw7O9sk2dSpU23Lli2WnZ1tZmb33HOPde/ePbTPvq7hhg0bTJJ16tTJ3n33XVuzZo393//9n7Vt29aKi4sP4K+K3ywQMMvJqfufQKDWVezXr5/5fD4bN26crV692jIzM+2HH36w+Ph4Gz16tGVmZtrMmTMtLS3N7rnnHjMz27Vrl/Xu3dtGjRplW7ZssS1btlhJSYkVFRXZ3XffbQsXLrTvvvvOXn75ZYuPj7c33njDzMz27t1rF154oZ1xxhmh/QoLC0Ov3WXLlpmZ7fP8pfVOSkqyCRMmWFZWlr344ovmcDhs1qxZ1T7X2bNn20svvWSrVq2yVatW2ciRIy09Pd327NkTKjNu3Dhr27at7dq1y5YvX24ej8dmzJgRdt6xY8eamdmiRYvM6XTaq6++ahs3brSlS5falClTqj3/V199ZQ6Hwx588EFbs2aNTZkyxVJSUiw5OTlUpmK7Hz58uPl8Phs6dKitXLnSvvnmG8vNzbX27dvb5ZdfbitWrLBVq1bZJZdcYh07drTCwkIzM3v66actLi7OHn/8cVuzZo0tXLjwsL7nHAJNzczMrr76amvVqpXNmjXLVqxYYWeffbb5fL7Qa8rM7JJLLrE+ffrYZ599ZuvWrbNJkyaZx+OxrKwsKywstMcff9ySkpJCbaj0fbam/cyC76kej8euvvpqW758ua1cudKefPJJ27p1a7VturZtseI9pCoPP/ywJScn23/+859Q+0tMTLTBgweHHav8tWjbtq0lJSXZpEmTbO3atbZ27VpbsWKF+Xw+e+yxxywrK8u++OIL69Gjh40YMSK0X3WfC0pKSmz69OkmydasWWNbtmyxXbt2VXnuc8891zp37myfffaZLV++3AYNGmQZGRlWVFRkZmWfFQYMGGCLFi2yJUuWWOfOne2SSy7ZvxcFAOCgi1jQvWnF1F+D6/372bRi2kE5/5IlS0ySbdy4scrtLVq0sAceeCAs7/jjj7fRo0ebWe2Dbkm2fPnyUJk1a9aYJPvoo4+qPO/48ePt9NNPD8v7/vvvQ2+4VSk9z1dffRXKy8zMNEm2YMECMzPr06ePjRo1Kmy/Cy64wM466ywzM5s8ebJ16NAh9OZcUfmg28xMks2cOTOsTMUPwPu6hqUfgP/xj3+Etn/77bcmqdoPQYiwnBwzqe5/cnJqXcV+/frZscceG5Z3xx13WMeOHS1QLqJ46qmnzOfzmd/vD+1X/gNqdUaPHm1//OMfQ4+HDx8e9iHbzCoF3bU9/0knnRR2nOOPP95uvfXWfdapVElJiSUmJtp///vfUF5hYaH16NHDLrzwQjv66KPtiiuuCNun/POePn26JSUlhQXtNbn44ovtjDPOCMu76KKL9hl0p6enh4JpM7MXXnih0vUpLCw0r9drH374oZkF7xd33nlntXU53O45h0BTs71795rb7Q79U9jMbPv27eb1ekOvqXXr1pnD4bAff/wxbN/TTjvNbr/9djMLvkeVf83Udr+LL77Y+vbtW239qmrTtW2LFe8hVWnevLk99NBDocfFxcXWqlWrfQbd5513Xthxhg4dan/+85/D8ubNm2cxMTGWn5+/z88FVX3eqHjurKwsk2RffPFFaPu2bdvM6/Xam2++aWZlnxXWrVsXKvPUU09Zenr6Pq8FACCyIja8vGXni5TUtPt+7ZPU9Fi17HzhQTl/9+7dddppp6lr16664IIL9Pzzz2vnzp2SpD179uinn35S3759w/bp27evMjMz9+s8brdb3bp1Cz1evny5nE6n+vXrV2X5JUuW6NNPPw19V9Hn86lTp06SpPXr11d7ntjYWPXs2TP0uFOnTkpJSQnVNzMzs8bnc8EFFyg/P19HHnmkRo0apZkzZ4YNx9tf+3MNy1+f5s2bS5Kys7MP+Nw4/JV/rUvB13fv3r3D5oDo27evcnJy9MMPNa+E8Oyzz6pnz55q0qSJfD6fnn/+eW3evHm/6lPb85d/rUvB13tNr/Xs7GxdddVV6tChg5KTk5WcnKycnJyw+rndbr388suaPn268vPza1xlYODAgWrbtq2OPPJIDR06VK+88ory8vL2+bzKq/i4Kl27dg37HuuSJUu0bt06JSYmhu5rjRo1UkFBgdavX6/s7Gz99NNPOu200/Z57Opwzzn41q9fr6KiorC/eaNGjdSxY8fQ46VLl8rM1KFDh7D3rblz59b4nlWb/ZYvX77fr4natsWK95CKdu/erS1btoQ994rvs9WpWGbJkiWaNm1a2PMcNGiQAoGANmzYsM/PBbWRmZmp2NhYnXDCCaG8xo0bq2PHjmGv//j4eB111FGhx/u6BwEA6kbEJlJzxnrV6uih2tWok7ZkTZcFApIClQs6YuRwxKh5xz8qpdnxB21iNafTqY8++kjz58/XrFmz9OSTT+rOO+/UggUL1Lhx4+CpK5zLzEJ5pZOhWbnvdxUXF1c6j9frDTuO1+utsV6BQEDnnHOOHn744UrbSj8cVqeqa1M+r6bn07p1a61Zs0YfffSRPv74Y40ePVqTJk3S3Llz5XK5ajzv/tSp/DlLlT9+6bZAoIrXAiIvPl7KyYnOefdDQkJC2OOqXlelbbOme8abb76pG264QZMnT1bv3r2VmJioSZMmacGCBftVn9qev2JbcjgcNb7WR4wYoa1bt+rxxx9X27Zt5fF41Lt3bxUVFYWVmz9/viRpx44d2rFjR6XrUyoxMVFLly7VnDlzNGvWLN19992aMGGCFi1aVOXs0uXvb/uj4vkDgYB+97vf6ZVXXqlUtkmTJgd1cslD5Z5zKDS12vz9A4GAnE6nlixZIqfTGbatpknuarPfvt4vq6tzbdpidW3kYKjq9X/llVeGzZNSqk2bNlq3bt1vPmd1f6uK16Oqe9CBtnMAwMET0YnUHA6HUlv00lHH3yRHjLOaMk4ddfxNSm3e66DPZO5wONS3b1/de++9WrZsmdxut2bOnKmkpCS1aNFCn3/+eVj5+fPnq3PnzpLKZvMuPwFJbdbs7dq1qwKBgObOnVvl9uOOO07ffvut2rVrp4yMjLCfmj4klJSUaPHixaHHa9as0a5du0K95J07d67x+UjBDzjnnnuunnjiCc2ZM0dffvmlvvnmmyrP53K55Pf7q61Pba4h6iGHQ0pIqPuf39i2u3Tpovnz54d9eJw/f74SExPVsmVLScEe4Yqv2Xnz5qlPnz4aPXq0evTooYyMjEq9c1XtdyDnPxDz5s3TmDFjdNZZZ4UmGKs4qeL69et1ww036Pnnn9eJJ56oYcOG1RhAxsbGasCAAXrkkUe0YsUKbdy4UZ988km1z+urr74Ky6v4uDaOO+44rV27Vk2bNq10X0tOTlZiYqLatWtX4/Jfh9s951BoahkZGXK5XGF/8507dyorKyv0uEePHvL7/crOzq70ty2d4b+qNlSb/bp161bja6Kq4x6stpicnKzmzZuHPfeSkhItWbKk1scoVfq+XvF5ZmRkyO127/NzQemokZpe/126dFFJSUnYPwy3b9+urKysevn6BwCEq5vZyx0xskDlXmJJskCxHI6DX40FCxboL3/5ixYvXqzNmzdrxowZ2rp1a+jNady4cXr44Yf1xhtvaM2aNbrtttu0fPlyjR07VlLww0jr1q01YcIEZWVl6X//+1+Vs7pW1K5dOw0fPlyXX3653nrrLW3YsEFz5szRm2++KUm65pprtGPHDl188cVauHChvvvuO82aNUuXX355jW+4LpdL1113nRYsWKClS5fqsssu04knnqhevXqFns+0adP07LPPau3atXr00Uc1Y8YM3XzzzZKCs5q+8MILWrlypb777ju99NJL8nq9atu2bbXPY/bs2fr5559Dw/Ir2tc1BA6W0aNH6/vvv9d1112n1atX6+2339Y999yjG2+8MdSL2q5dOy1YsEAbN27Utm3bFAgElJGRocWLF+vDDz9UVlaWxo8fr0WLFoUdu127dlqxYoXWrFmjbdu2VTmipTbnPxAZGRl66aWXlJmZqQULFmjIkCFhvX9+v19Dhw7V6aefrssuu0xTp07VypUrq70Xvfvuu3riiSe0fPlybdq0Sf/6178UCATChguXN2bMGH3wwQd65JFHlJWVpb/97W9hs4HX1pAhQ5SWlqbBgwdr3rx52rBhg+bOnauxY8eGhvxOmDBBkydP1hNPPKG1a9dq6dKlevLJJ0PH4J5T93w+n0aOHKlx48Zp9uzZWrlypUaMGBH2mu7QoYOGDBmiYcOGacaMGdqwYYMWLVqkhx9+WO+9956k4N8uJydHs2fP1rZt25SXl1er/W6//XYtWrRIo0eP1ooVK7R69Wo988wzoX88VdWmD2ZbHDt2rB566CHNnDlTq1ev1ujRoyutlV0bt956q7788ktdc801Wr58udauXat33nlH1113Xeh51PS5oG3btnI4HHr33Xe1detW5VQxRKJ9+/YaPHiwRo0apc8//1xff/21Lr30UrVs2VKDBw/e7zoDAOpYXXxxPHvjbFs5+6bQrOUrZ99oKz8pncX8Jtu6cfZBP+eqVats0KBB1qRJE/N4PNahQwd78sknQ9v9fr/de++91rJlS3O5XNa9e3d7//33w47x+eefW9euXS0uLs5OPvlk+/e//11pIrWKk8eYmeXn59sNN9xgzZs3N7fbbRkZGfbPf/4ztD0rK8vOP/98S0lJMa/Xa506dbLrr78+bGKY8krPM336dDvyyCPN7Xbb73//+0qTxD399NN25JFHmsvlsg4dOti//vWv0LaZM2faCSecYElJSZaQkGAnnniiffzxx6HtFSdSe+eddywjI8NiY2Otbdu2ZlZ5UqN9XcOKk1GZme3cudMk2aefflrlcwWqmxBtzpw5dvzxx5vb7bZmzZrZrbfeGjYj9Zo1a+zEE080r9cbaqcFBQU2YsQIS05OtpSUFLv66qvttttuC3sdZ2dn28CBA83n84Vem1W9dvd1/qrqPXjwYBs+fHi1z3Xp0qXWs2dP83g81r59e/v3v/8d1hbvvfdea968uW3bti20z1tvvWVutztUt/LnnTdvnvXr189SU1PN6/Vat27dQjO1V+eFF16wVq1amdfrtXPOOcf++te/7nMitYoTz5mZbdmyxYYNG2ZpaWnm8XjsyCOPtFGjRtnu3btDZZ599lnr2LGjuVwua968uV133XWhbdxzomPv3r126aWXWnx8vKWnp9sjjzxS6bVcugpAu3btzOVyWbNmzez888+3FStWhMpcddVV1rhxY5MUmkm8NvvNmTPH+vTpYx6Px1JSUmzQoEGhCcWqatOl++xvW6xKcXGxjR071pKSkiwlJcVuvPFGGzZs2D4nUiv/Xllq4cKFoftIQkKCdevWLWzSv319LrjvvvusWbNm5nA4QveMiufesWOHDR061JKTk83r9dqgQYNCM8GbVf2ZZObMmVZHH/UAADVwmEX+yz7rFz6qgpwfJUkJKRlKb3+Ofl77jvJ2BYd5xiW20lHH3xDpahyypk2bpuuvv/6A/gMPAAAAAIieiA8vLyrY+WvA7VD6UX9Q2x5XypvYSu16XKWmR/1BkkMFe39QcUHVwwkBAAAAADhURWz28lIOOeRr1ElNjhyk+KQ2ZfmOGDVp+3slpBylrRtmSTq4k6gBAAAAABBtdTK8HAAAAACAhqhuZi8HAAAAAKABIugGAAAAACBCCLoBAAAAAIgQgm4AAAAAACKEoBsAAAAAgAgh6AYAAAAAIEIIugHUK/3799f1118f7WoADRZtEACAg4ugG0C9MmPGDE2cODHa1WiQNm7cKIfDoeXLl0e7KjhETJs2TSkpKQf9uAT+AIDDSWy0KwAA5TVq1CjaVcA+FBUVye12R7sawD7xWgUA1Af0dAOoVyr2cLVr107333+/hg0bJp/Pp7Zt2+rtt9/W1q1bNXjwYPl8PnXt2lWLFy8O7bN9+3ZdfPHFatWqleLj49W1a1e99tprYefZu3evhgwZooSEBDVv3lyPPfZYpXMXFRXplltuUcuWLZWQkKATTjhBc+bMqbH+q1ev1kknnaS4uDh16dJFH3/8sRwOh956661QmR9//FEXXXSRUlNT1bhxYw0ePFgbN24MbQ8EArrvvvvUqlUreTweHXvssfrggw9C20t7pN98802dfPLJ8nq9Ov7445WVlaVFixapZ8+e8vl8OuOMM7R169aw+k2dOlWdO3dWXFycOnXqpKeffjq07YgjjpAk9ejRQw6HQ/3795ckjRgxQuedd54efPBBtWjRQh06dNB9992nrl27Vnr+v/vd73T33XfXeI1Qf+Tm5obaVvPmzTV58uSw7TW1gTlz5uiyyy7T7t275XA45HA4NGHChH3uV+qLL75Qv379FB8fr9TUVA0aNEg7d+7UiBEjNHfuXE2ZMiV03NL2MXfuXPXq1Usej0fNmzfXbbfdppKSktAx+/fvr2uvvVY33nij0tLSNHDgwEhdOgAAas8ANDw5OcGfQKAsr7AwmFdQUHVZv78sr6gomJefv++y+6lfv342duzY0OO2bdtao0aN7Nlnn7WsrCy7+uqrLTEx0c444wx78803bc2aNXbeeedZ586dLfDr8/nhhx9s0qRJtmzZMlu/fr098cQT5nQ67auvvgod94orrrC2bdvaxx9/bN98842df/75lpiYGHbuSy65xPr06WOfffaZrVu3ziZNmmQej8eysrKqrLvf77eOHTvawIEDbfny5TZv3jzr1auXSbKZM2eamVlubq61b9/eLr/8cluxYoWtWrXKLrnkEuvYsaMVFhaamdmjjz5qSUlJ9tprr9nq1avtlltuMZfLFTrvhg0bTJJ16tTJPvjgA1u1apWdeOKJdtxxx1n//v3t888/t6VLl1pGRoZdddVVofo999xz1rx5c5s+fbp99913Nn36dGvUqJFNmzbNzMwWLlxokuzjjz+2LVu22Pbt283MbPjw4ebz+Wzo0KG2cuVK++abb+z777+3mJgYW7hwYej4X3/9tTkcDlu/fv0B/vUPP/W4qZmZ2dVXX22tWrWyWbNm2YoVK+zss882n88Xagc1tYHCwkJ7/PHHLSkpybZs2WJbtmyxvXv37nM/M7Nly5aZx+Oxq6++2pYvX24rV660J5980rZu3Wq7du2y3r1726hRo0LHLSkpsR9++MHi4+Nt9OjRlpmZaTNnzrS0tDS75557Qs+nX79+5vP5bNy4cbZ69WrLzMz8bRcIAICDgKAbaIik4E92dlne/fcH8664IrxsfHwwf8OGsrzHHgvmXXJJeNm0tGD+ypUHXLWqgu5LL7009HjLli0mycaPHx/K+/LLL02SbdmypdrjnnXWWXbTTTeZmdmePXvM5XLZv//979D2Xbt2WXx8fOjc69atM4fDYT/++GPYcU477TS7/fbbqzzH+++/b7GxsWH1+Oijj8KC7hdeeME6duwY+geBmVlhYaF5vV778MMPzcysRYsW9sADD4Qd+/jjj7fRo0ebWVnQ/Y9//CO0/bXXXjNJNnv27FDegw8+aB07dgw9bt26tb366qthx504caL17t077LjLli0LKzN8+HBLT08P/VOg1JlnnmlXX3116PH1119v/fv3r/LaNFT1uKnZ3r17ze122+uvvx7K2759u3m9Xhs7dmyt2sDUqVMtOTk5bHtt9rv44outb9++1dat4n3AzOyOO+6o1Haeeuop8/l85v/1vw/9+vWzY489tnYXAACAOsJ3ugHUe926dQul09PTJSlsaHNpXnZ2tpo1aya/36+HHnpIb7zxhn788UcVFhaqsLBQCQkJkqTvvvtOxcXF6tWrV+gYycnJ6tixY+jx0qVLZWbq0KFDWF0KCwvVuHHjKuu5Zs0atW7dWs2aNQvllT+HJC1ZskTr1q1TYmJiWH5BQYHWr1+vPXv26KefflLfvn3Dtvft21dff/31fl+X7OxsSdLWrVv1/fffa+TIkRo1alSoTElJiZKTk6t8PuV17dq10ndjR40apcsvv1yPPvqonE6nXnnllUrDk1F/rV+/XkVFRerdu3cor1GjRqF2cCBtoLb7LV++XBdccMF+1TczM1O9e/eWw+EI5fXt21c5OTn64Ycf1KZNG0lSz5499+u4AABEGkE30BDl5AR/x8eX5Y0bJ11/vRRb4bbwa9Amr7cs75prpFGjJKczvGzp95LLlz0IXC5XKF36gbuqvEAgIEmaPHmyHnvsMT3++OPq2rWrEhISdP3116uoqEiSZGZh+5UqzS89ltPp1JIlS+Ss8Dx9Pl+V9TSzSsesKBAI6He/+51eeeWVStuaNGlS6TnVdOzaXJfSa1L6+/nnn9cJJ5wQdpyKz68qpf+wKO+cc86Rx+PRzJkz5fF4VFhYqD/+8Y/7PFZDUp+bWvnXe1UOpA3Udj/vAVS8qjZQVVuu6rUKAEA0EXQDDVFVH0rd7uBPbcq6XMGf2pSNgnnz5mnw4MG69NJLJQWDgLVr16pz586SpKOOOkoul0sLFy5U69atJUl79uzR2rVr1a9fP0nBycT8fr+ys7N18skn1+q8nTp10ubNm/XLL7+Eep4XLVoUVua4447TG2+8oaZNmyopKanK47Ro0UKff/65TjnllFDe/PnzK/Wa74/09HS1bNlS3333nYYMGVJlmdKebL/fX6tjxsbGavjw4Zo6dao8Ho/+9Kc/Kb58dIl63dQyMjLkcrn01VdfhXqJd+7cqaysLPXr169WbcDtdld6vdRmv27dumn27Nm69957a33cLl26aPr06WHB9/z585WYmKiWLVvu13MHAKAuMXs5gMNORkaGPvroI82fP1+ZmZm68sor9fPPP4e2JyYmavjw4Ro3bpw+/fRTffvtt7r88ssVExMT+jDfoUMHDRkyRMOGDdOMGTO0YcMGLVq0SA8//LDee++9Ks87cOBAHXXUURo+fLhWrFihL774Qnfeeaeksp64IUOGKC0tTYMHD9a8efO0YcMGzZ07V2PHjtUPP/wgSRo3bpwefvhhvfHGG1qzZo1uu+02LV++XGPHjv1N12XChAl68MEHNWXKFGVlZembb77R1KlT9eijj0qSmjZtKq/Xqw8++EC//PKLdu/evc9jXnHFFfrkk0/0/vvv6/LLL/9N9UPd8vl8GjlypMaNG6fZs2dr5cqVGjFihGJigh8NatMG2rVrp5ycHM2ePVvbtm1TXl5erfa7/fbbtWjRIo0ePVorVqzQ6tWr9cwzz2jbtm2h4y5YsEAbN27Utm3bFAgENHr0aH3//fe67rrrtHr1ar399tu65557dOONN4bqDABAfcS7FIDDzvjx43Xcccdp0KBB6t+/v5o1a6bzzjsvrMyjjz6q3r176+yzz9aAAQPUt2/f0FJapaZOnaphw4bppptuUseOHXXuuedqwYIFod7xipxOp9566y3l5OTo+OOP1xVXXKG77rpLkkLHjY+P12effaY2bdro//2//6fOnTvr8ssvV35+fqjne8yYMbrpppt00003qWvXrvrggw/0zjvvqH379r/pulxxxRX6xz/+oWnTpqlr167q16+fpk2bFloqLDY2Vk888YT+/ve/q0WLFho8ePA+j9m+fXv16dNHHTt2rDRsHfXfpEmTdMopp+jcc8/VgAEDdNJJJ+l3v/tdaPu+2kCfPn101VVX6aKLLlKTJk30yCOP1Gq/Dh06aNasWfr666/Vq1cv9e7dW2+//bZifx1zf/PNN8vpdKpLly5q0qSJNm/erJYtW+q9997TwoUL1b17d1111VUaOXJkqI0BAFBfOWxfX+oCgAYgNzdXLVu21OTJkzVy5MiDdtwvvvhCJ510ktatW6ejjjrqoB23vjAzderUSVdeeaVuvPHGaFcHAACg3uE73QAapGXLlmn16tXq1auXdu/erfvuu0+SatW7W5OZM2fK5/Opffv2WrduncaOHau+ffselgF3dna2XnrpJf3444+67LLLol0dAACAeomgG0CD9de//lVr1qyR2+3W7373O82bN09paWm/6Zh79+7VLbfcou+//15paWkaMGDAYbuMVnp6utLS0vTcc88pNTU12tUBAAColxheDgAAAABAhDCRGgAAAAAAEULQDQAAAABAhBB0AwAAAAAQIQTdAAAAAABECEE3AAAAAAARQtANAAAAAECEEHQDqPf69++v66+/PtrV2C8TJkzQscceu1/7HKznuX37djVt2lQbN278zcc6WA7kelT07rvvqkePHgoEAgenUqgS7W3/HEh7mzZtmlJSUn7zuUtt3LhRDodDy5cvP+BjFBYWqk2bNlqyZMlBqxcAIIigG8BhZ86cOXI4HNq1a1fU6nDzzTdr9uzZ+7XPjBkzNHHixN987gcffFDnnHOO2rVr95uPVZc2b96sc845RwkJCUpLS9OYMWNUVFQU2n722WfL4XDo1VdfjWItURHtbf/b20UXXaSsrKzffO79YWaaMGGCWrRoIa/Xq/79++vbb78Nbfd4PLr55pt166231mm9AKAhIOgGUNkbb0gPPFBzmQceCJZDGDNTSUmJfD6fGjduvF/7NmrUSImJib/p/Pn5+XrhhRd0xRVX/Kbj1DW/368//OEPys3N1eeff67XX39d06dP10033RRW7rLLLtOTTz4ZpVpGBs3twB2q7c3r9app06a/6dz765FHHtGjjz6qv/3tb1q0aJGaNWumgQMHau/evaEyQ4YM0bx585SZmVmndQOAwx1BN4DK1q2T7rpLqq4XaOLE4PZ16w76qXNzczVs2DD5fD41b95ckydPrlTm5ZdfVs+ePZWYmKhmzZrpkksuUXZ2tqTgMMtTTz1VkpSamiqHw6ERI0ZIkj744AOddNJJSklJUePGjXX22Wdr/fr1NdansLBQY8aMUdOmTRUXF6eTTjpJixYtCm0v7eX78MMP1bNnT3k8Hs2bN6/ScNeSkhKNGTMmdO5bb71Vw4cP13nnnRcqU3G4a7t27fSXv/xFl19+uRITE9WmTRs999xzNdb3/fffV2xsrHr37i1JCgQCatWqlZ599tmwckuXLpXD4dB3330nKdjLPHjwYPl8PiUlJenCCy/UL7/8IklavXq14uPjw3qYZ8yYobi4OH3zzTeSpN27d+vPf/6zmjZtqqSkJP3+97/X119/XWNdy5s1a5ZWrVqll19+WT169NCAAQM0efJkPf/889qzZ0+o3LnnnquFCxeG6n04iGJzo70d5PZWvo7/+9//1L17d8XFxemEE04ItRUpfHi5mWnAgAE644wzZGaSpF27dqlNmza68847Q/tMnTpVnTt3VlxcnDp16qSnn366xrqVZ2Z6/PHHdeedd+r//b//p2OOOUYvvvii8vLywtp148aN1adPH7322mu1PjYAYN8IugFUdued0n33SXffXTkSmDgxmH/ffcFyB9m4ceP06aefaubMmZo1a5bmzJlT6TuGRUVFmjhxor7++mu99dZb2rBhQ+iDfuvWrTV9+nRJ0po1a7RlyxZNmTJFUjDAuPHGG7Vo0SLNnj1bMTExOv/882v8jvAtt9yi6dOn68UXX9TSpUuVkZGhQYMGaceOHZXKPfjgg8rMzFS3bt0qHefhhx/WK6+8oqlTp+qLL77Qnj179NZbb+3zekyePFk9e/bUsmXLNHr0aF199dVavXp1teU/++wz9ezZM/Q4JiZGf/rTn/TKK6+ElXv11VfVu3dvHXnkkTIznXfeedqxY4fmzp2rjz76SOvXr9dFF10kSerUqZP++te/avTo0dq0aZN++uknjRo1Sg899JC6du0qM9Mf/vAH/fzzz3rvvfe0ZMkSHXfccTrttNMqXafqfPnllzrmmGPUokWLUN6gQYNUWFgY9vdv27atmjZtqnnz5tXquIeCKDY32lsFv7W9lTdu3Dj99a9/1aJFi9S0aVOde+65Ki4urlTO4XDoxRdf1MKFC/XEE09Ikq666iqlp6drwoQJkqTnn39ed955px544AFlZmbqL3/5i8aPH68XX3xxn89JkjZs2KCff/5Zp59+eijP4/GoX79+mj9/fljZXr16HVbtCwDqBQOA6tx3n5kU/F3V44Ns79695na77fXXXw/lbd++3bxer40dO7ba/RYuXGiSbO/evWZm9umnn5ok27lzZ43ny87ONkn2zTffVLk9JyfHXC6XvfLKK6G8oqIia9GihT3yyCNh53rrrbfC9r3nnnuse/fuocfp6ek2adKk0OOSkhJr06aNDR48OJTXr1+/sOfZtm1bu/TSS0OPA4GANW3a1J555plqn9PgwYPt8ssvD8tbunSpORwO27hxo5mZ+f1+a9mypT311FNmZjZr1ixzOp22efPm0D7ffvutSbKFCxeG8v7whz/YySefbKeddpoNHDjQAoGAmZnNnj3bkpKSrKCgIOy8Rx11lP3973+v8npUNGrUKBs4cGClfLfbba+++mpYXo8ePWzChAnVHutQVcfNjfYWofZWWseqrusbb7xhZmZTp0615OTksP3efPNN83g8dvvtt1t8fLytWbMmtK1169aV2sHEiROtd+/eZma2YcMGk2TLli2rsp5ffPGFSbIff/wxLH/UqFF2+umnh+VNmTLF2rVrV+1zBgDsP3q6AVRv/PiyLjiPp6zLbfz4iJxu/fr1KioqChuq2ahRI3Xs2DGs3LJlyzR48GC1bdtWiYmJ6t+/v6TgEOl9Hf+SSy7RkUceqaSkJB1xxBE17rd+/XoVFxerb9++oTyXy6VevXpV+s5jdb1dUnDo9S+//KJevXqF8pxOp373u9/VWF9JYb14DodDzZo1Cw3trUp+fr7i4uLC8nr06KFOnTqFhozOnTtX2dnZuvDCCyVJmZmZat26tVq3bh3ap0uXLkpJSQl7nv/85z+1YsUKLV26VNOmTZPD4ZAkLVmyRDk5OWrcuLF8Pl/oZ8OGDfscTlxe6fHKM7NK+V6vV3l5ebU+7qGijpsb7a0KB6O9larqutb0XekLLrhA/+///T89+OCDmjx5sjp06CBJ2rp1q77//nuNHDkyrH3df//9+9W+Sp9TeQ2pfQFANMVGuwIA6rnx46X775eKiiS3O3IRgBT6PmNNcnNzdfrpp+v000/Xyy+/rCZNmmjz5s0aNGhQ2EzXVTnnnHPUunVrPf/882rRooUCgYCOOeaYavcrrU9tPqgmJCTss+5VHWdfXC5XpWPUNDw3LS1NO3furJQ/ZMgQvfrqq7rtttv06quvatCgQUpLSwvVozYB79dff63c3FzFxMTo559/Dg0FDwQCat68uebMmVPpGLVdFqlZs2ZasGBBWN7OnTtVXFys9PT0sPwdO3aoSZMmtTruoaYOmxvtrQoHq73Vtk7l5eXlacmSJXI6nVq7dm0ov/T8zz//vE444YSwfZxOZ63O26xZM0nSzz//rObNm4fys7OzG1T7AoBooacbQM0mTiyLAIqKqp/t6SDIyMiQy+XSV199FcrbuXNn2NI6q1ev1rZt2/TQQw/p5JNPVqdOnSr1RLndbknBGbFLbd++XZmZmbrrrrt02mmnqXPnzvv8sJyRkSG3263PP/88lFdcXKzFixerc+fOtX5eycnJSk9P18KFC0N5fr9fy5Ytq/UxaqtHjx5atWpVpfxLLrlE33zzjZYsWaL//Oc/GjJkSGhbly5dtHnzZn3//fehvFWrVmn37t2h57ljxw6NGDFCd955py677DINGTJE+fn5kqTjjjtOP//8s2JjY5WRkRH2UxrY70vv3r21cuVKbdmyJZQ3a9YseTyesB7KgoICrV+/Xj169Ni/C3OIqMPmRns7CKprb5KqvK6dOnWq9lg33XSTYmJi9P777+uJJ57QJ598IklKT09Xy5Yt9d1331VqX6WjB/bliCOOULNmzfTRRx+F8oqKijR37lz16dMnrOzKlSsP2/YFANFC0A2geuVncSosrH62p4PE5/Np5MiRGjdunGbPnq2VK1dqxIgRiokpu1W1adNGbrdbTz75pL777ju98847ldbabdu2rRwOh959911t3bpVOTk5Sk1NVePGjfXcc89p3bp1+uSTT3TjjTfWWJ+EhARdffXVGjdunD744AOtWrVKo0aNUl5enkaOHLlfz+26667Tgw8+qLfffltr1qzR2LFjtXPnzhp7vg7EoEGD9O2331YKcI444gj16dNHI0eOVElJiQYPHhzaNmDAAHXr1k1DhgzR0qVLtXDhQg0bNkz9+vULDeO96qqr1Lp1a91111169NFHZWa6+eabQ/v37t1b5513nj788ENt3LhR8+fP11133aXFixfXqt6nn366unTpoqFDh2rZsmWaPXu2br75Zo0aNUpJSUmhcl999ZU8Hk/Y0N3DRR03N9rbQVBde5Ok++67L+y6pqWlhc2eXt7//vc//fOf/9Qrr7yigQMH6rbbbtPw4cNDx50wYYIefPBBTZkyRVlZWfrmm280depUPfroo7Wqp8Ph0PXXX6+//OUvmjlzZqhO8fHxuuSSS8LKzps3L2zCNQDAQRCVb5IDqP+qm8WpDiZTu/TSSy0+Pt7S09PtkUceqTTh0auvvmrt2rUzj8djvXv3tnfeeafSJEL33XefNWvWzBwOhw0fPtzMzD766CPr3LmzeTwe69atm82ZM8ck2cyZM6utT35+vl133XWWlpZmHo/H+vbtGza5WHWTSFWc2Km4uNiuvfZaS0pKstTUVLv11lvtggsusD/96U+hMlVN7PTYY4+FHbd79+52zz331HgNTzzxRHv22Wcr5T/11FMmyYYNG1Zp26ZNm+zcc8+1hIQES0xMtAsuuMB+/vlnMzN78cUXLSEhwbKyskLlFy9ebG632/73v/+ZmdmePXvsuuuusxYtWpjL5bLWrVvbkCFDQpOz7WsitdI6/OEPfzCv12uNGjWya6+9ttLkbH/+85/tyiuvrPE4h6IoNTfaWwTaW2kd//vf/9rRRx9tbrfbjj/+eFu+fHmoTPmJ1LKzsy09Pd3+8pe/hNW/V69eduGFF4byXnnlFTv22GPN7XZbamqqnXLKKTZjxgwz2/dEambBieHuuecea9asmXk8HjvllFMqTWo3f/58S0lJsby8vBqfMwBg/zjMavElJwANywMPBBcGrm4Wp9Iuufvvj8w6Rg1AIBBQ586ddeGFF1bqOfyt3nvvPd18881auXJlWK/loW7r1q3q1KmTFi9eXOthtYcCmlvk1WV7mzNnjk499VTt3Lmz1nMa1BcXXHCBevTooTvuuCPaVQGAwwoTqQGoLCOj5k/448dLMTHBcqiVTZs2adasWerXr58KCwv1t7/9TRs2bKg0tPNgOOuss7R27Vr9+OOPYTOSH+o2bNigp59++rAKuCWaWyTQ3vZfYWGhunfvrhtuuCHaVQGAww493QBQB77//nv96U9/0sqVK2VmOuaYY/TQQw/plFNOiXbVgMNONNvbodzTDQCIDIJuAAAAAAAi5PD5sh8AAAAAAPUMQTcAAAAAABFC0A0AAAAAQIQQdAMAAAAAECEE3QAAAAAARAhBNwAAAAAAEULQDQAAAABAhBB0A0AV+vfvr+uvvz7q545mPer6/FOmTNERRxyh+Ph4nXfeedq9e3ednBcAACCSYqNdAQA4WPr3769jjz1Wjz/++G/eb8aMGXK5XAe3ggegrupR3bWrq/Pfcccd+ve//60XX3xRPp9P559/vu699149+uijET83AABAJNHTDaDeKyoqqvNzNmrUSImJiXV+3v2tR6SvTV1ch0WLFunhhx/WG2+8oVNOOUXHHXecrrzySr377rsRPS8AAEBdIOgGGqLc3Op/CgpqXzY/f99lD0D//v117bXX6sYbb1RaWpoGDhyowsJCjRkzRk2bNlVcXJxOOukkLVq0KLTPiBEjNHfuXE2ZMkUOh0MOh0MbN27UBx98oJNOOkkpKSlq3Lixzj77bK1fv36f+1UcVr2v8/fv319jxozRLbfcokaNGqlZs2aaMGHCPp9rbm6uhg0bJp/Pp+bNm2vy5MmVrkX5elR1bSTJzPTII4/oyCOPlNfrVffu3fWf//wn7FiBQEAPP/ywMjIy5PF41KZNGz3wwAPVXoOqzh+J6/DXv/5Vv//973XccceF8po0aaJt27bt8/oBAADUdwTdQEPk81X/88c/hpdt2rT6smeeGV62XbvKZQ7Qiy++qNjYWH3xxRf6+9//rltuuUXTp0/Xiy++qKVLlyojI0ODBg3Sjh07JAW/D9y7d2+NGjVKW7Zs0ZYtW9S6dWvl5ubqxhtv1KJFizR79mzFxMTo/PPPVyAQqHG/ivZ1/tI6JyQkaMGCBXrkkUd033336aOPPqrxeY4bN06ffvqpZs6cqVmzZmnOnDlasmTJfl0bSbrrrrs0depUPfPMM/r22291ww036NJLL9XcuXND+91+++16+OGHNX78eK1atUqvvvqq0tPTa30NInEdCgsL9d///lfnn39+WH5+fr6Sk5NrvA4AAACHBAPQ8EjV/5x1VnjZ+Pjqy/brF142La1ymQPQr18/O/bYY0OPc3JyzOVy2SuvvBLKKyoqshYtWtgjjzwStt/YsWNrPHZ2drZJsm+++abG/crn1eb8/fr1s5NOOinsGMcff7zdeuut1dZl79695na77fXXXw/lbd++3bxeb+jcFetW8dqU1i8uLs7mz58flj9y5Ei7+OKLzcxsz5495vF47Pnnn6+yLtVdu0hfh/nz55ski4uLs4SEhNCP2+22QYMGVbkPAADAoYSJ1ICGKCen+m1OZ/jj7Ozqy8ZUGCzz65Dkg6Fnz56h9Pr161VcXKy+ffuG8lwul3r16qXMzMwaj7N+/XqNHz9eX331lbZt2xbq4d68ebOOOeaYWtWltufv1q1b2H7NmzdXdg3Xb/369SoqKlLv3r1DeY0aNVLHjh1rrE/5ayNJq1atUkFBQWioeamioiL16NFDkpSZmanCwkKddtppNR67JpG4DllZWYqLi9M333wTln/uueeGnQcAAOBQRdANNEQJCdEvu89DlR3LzCRJDocjrIyZVcqr6JxzzlHr1q31/PPPq0WLFgoEAjrmmGP2awKy2p6/4izfDocjFOTXdNz9lVDhOpee43//+59atmwZts3j8UiSvF7vAZ2rvEhchz179qhp06bKyMgI5W3evFmrV6/WHyt+1QEAAOAQxHe6AdR7GRkZcrvd+vzzz0N5xcXFWrx4sTp37hzKc7vd8vv9ocfbt29XZmam7rrrLp122mnq3Lmzdu7cWen4Ffc70PMfyPNyuVz66quvQnk7d+5UVlbWfh2nS5cu8ng82rx5szIyMsJ+Sr+b3b59e3m9Xs2ePbvKY+zrGpTW92Bfh7S0NO3ZsyfsHxAPPPCAzjrrLHXp0uWAjgkAAFCf0NMNoN5LSEjQ1VdfrXHjxqlRo0Zq06aNHnnkEeXl5WnkyJGhcu3atdOCBQu0ceNG+Xw+NWrUSI0bN9Zzzz2n5s2ba/PmzbrtttsqHb+q/Q7k/PvL5/Np5MiRGjdunBo3bqz09HTdeeediqk4bH8fEhMTdfPNN+uGG25QIBDQSSedpD179mj+/Pny+XwaPny44uLidOutt+qWW26R2+1W3759tXXrVn377bcaOXJkldegYj0icR1+//vfq6CgQA899JAuvvhivfrqq3rnnXe0cOHCAzoeAABAfUPQDeCQ8NBDDykQCGjo0KHau3evevbsqQ8//FCpqamhMjfffLOGDx+uLl26KD8/Xxs2bNDrr7+uMWPG6JhjjlHHjh31xBNPqH///mHHrmq/Azn/gZg0aZJycnJ07rnnKjExUTfddJN2796938eZOHGimjZtqgcffFDfffedUlJSdNxxx+mOO+4IlRk/frxiY2N1991366efflLz5s111VVXSar6GrRr167SeQ72dUhPT9e0adM0btw4TZw4Ub///e/1+eefVzt7OgAAwKHGYQf6pUIAAAAAAFAjvtMNAAAAAECEEHQDAAAAABAhBN0AAAAAAEQIQTcAAAAAABFC0A0AAAAAQIQQdAMAAAAAECEE3QAAAAAARAhBNwAAAAAAEULQDQAAAABAhBB0AwAAAAAQIQTdAAAAAABECEE3AAAAAAARQtANAAAAAECEEHQDAAAAABAhBN0AAAAAAEQIQTcAAAAAABFC0A0AAAAAQIQQdAMAAAAAECEE3QAAAAAARAhBNwAAAAAAEULQDQAAAABAhBB0AwAAAAAQIQTdAAAAAABECEE3AAAAAAARQtANAAAAAECEEHQDAAAAABAhBN0AAAAAAEQIQTcAAAAAABFC0A0AAAAAQIQQdAMAAAAAECEE3QAAAAAARAhBNwAAAAAAEULQDQAAAABAhBB0AwAAAAAQIQTdAAAAAABECEE3AAAAAAARQtANAAAAAECEEHQDAAAAABAhBN0AAAAAAEQIQTcAAAAAABFC0A0AAAAAQIQQdAMAAAAAECEE3QAAAAAARAhBNwAAAAAAEULQDQAAAABAhBB0AwAAAAAQIQTdAAAAAABECEE3AAAAAAARQtANAAAAAECEEHQDAAAAABAhBN0AAAAAAEQIQTcAAAAAABFC0A0AAAAAQIQQdAMAAAAAECEE3QAAAAAARAhBNwAAAAAAEULQDQAAAABAhBB0AwAAAAAQIQTdAAAAAABECEE3AAAAAAARQtANAAAAAECEEHQDAAAAABAhBN0AAAAAAEQIQTcAAAAAABFC0A0AAAAAQIQQdAMAAAAAECEE3QAAAAAARAhBNwAAAAAAEULQDQAAAABAhBB0AwAAAAAQIQTdAAAAAABECEE3AAAAAAARQtANAAAAAECEEHQDAAAAABAhBN0AAAAAAEQIQTcAAAAAABFC0A0AAAAAQIQQdAMAAAAAECEE3QAAAAAARAhBNwAAAAAAEULQDQAAAABAhBB0AwAAAAAQIQTdAAAAAABECEE3AAAAAAARQtANAAAAAECEEHQDAAAAABAhBN0AAAAAAEQIQTcAAAAAABFC0A0AAAAAQIQQdAMAAAAAECEE3QAAAAAARAhBNwAAAAAAEULQDQAAAABAhBB0AwAAAAAQIQTdAAAAAABECEE3AAAAAAARQtANAAAAAECEEHQDAAAAABAhBN0AAAAAAEQIQTcAAAAAABFC0A0AAAAAQIQQdAMAAAAAECEE3QAAAAAARAhBNwAAAAAAEULQDQAAAABAhBB0AwAAAAAQIQTdAAAAAABECEE3AAAAAAARQtANAAAAAECEEHQDAAAAABAhBN0AAAAAAEQIQTcAAAAAABFC0A0AAAAAQIQQdAMAAAAAECEE3QAAAAAARAhBNwAAAAAAEULQDQAAAABAhBB0AwAAAAAQIQTdAAAAAABECEE3AAAAAAARQtANAAAAAECEEHQDAAAAABAhBN0AAAAAAEQIQTcAAAAAABFC0A0AAAAAQIQQdAMAAAAAECEE3QAAAAAARAhBNwAAAAAAEULQDQAAAABAhBB0AwAAAAAQIQTdAAAAAABECEE3AAAAAAARQtANAAAAAECEEHQDAAAAABAhBN0AAAAAAEQIQTcAAAAAABFC0A0AAAAAQIQQdAMAAAAAECEE3QAAAAAARAhBNwAAAAAAEULQDQAAAABAhBB0AwAAAAAQIQTdAAAAAABECEE3AAAAAAARQtANAAAAAECEEHQDAAAAABAhBN0AAAAAAEQIQTcAAAAAABFC0A0AAAAAQIQQdAMAAAAAECEE3QAAAAAARAhBNwAAAAAAEULQDQAAAABAhBB0AwAAAAAQIQTdAAAAAABECEE3AAAAAAARQtANAAAAAECEEHQDAAAAABAhBN0AAAAAAEQIQTcAAAAAABFC0A0AAAAAQIQQdAMAAAAAECEE3QAAAAAARAhBNwAAAAAAEULQDQAAAABAhBB0AwAAAAAQIQTdAAAAAABECEE3AAAAAAARQtANAAAAAECEEHQDAAAAwGHsjTekBx6oucwDDwTL4eAj6AYAAACAw9i6ddJdd0kTJ1a9feLE4PZ16+q2Xg1FbLQrAAAAAACInDvvlAIB6e67g4/Hjy/bNnFiMP+++4LlcPARdAMAAADAYa400C4feJcPuMsH4ji4HGZm0a4EAAAAACAyLOBXSdFeFRft0UOPJGniAylyu6WiIgLuukDQDQAAAACHkfJBdknhbpUU5UoKhn2OGKeatTteRUUOud1SYWF069oQMJEaAAAAABzCLOAPe5yzY432bs9Uwd4fVVKUI8nkdHrkiW+iyU8eraIih5zOYE93dZOr4eDhO90AAAAAcAip2JPtL85VcrOeiokJhnex7kQFSgoU60lSrCdZse5EOWPjNHGi9MCDwWP4/dKtt1Y9uRoOLoJuAAAAAKjnSopzVZS/vdJw8dD2or1yx6VKkuISW8qb1Dpse+mkabffLj34a+B9661SQgKBd6QRdAMAAABAPVLak+10eRXj9EiS/EU5Ktj7Y6iM0+mp1JNdyuEI/xbxAw+UzVJ+113SLbcE85OTw2c1j4lh2bBIIOgGAAAAgCiqbuKz+OR2ivM1lyTFepLliW9SZZC9LxkZ0v33lwXUKSnh28ePDwbcGRkH5/kgHLOXAwAAAEAU+EsKlLtzbZXDxZ1Ojzy+ForzNTuo5zSTSkqC6dhYyeE4qIdHFejpBgAAAIAIKt+THRPjDgXSMTEu+YuDAXdNw8UPpl27pEaNgukdO6TU1IicBuUQdAMAAADAQVTTOtmxroRQ0O2IcSqhUUc5Y70RC7IrKi6uOo3IIegGAAAAgN/ALBA2ednu7K8V8BeGlSnfk11e6YzjdSUpSbrkkrI0Io/vdAMAAADAfqjYkx3wFyml2e9C23N2rJW/aG+dDBdH/UdPNwAAAADsQ0nRXhUV7Kx2nWx/cb6cLq8kKSH1qErLdqHhIugGAAAAgHJKe7Jj3YlyxDglSUUFOw94nez6pKhI+stfguk77pDc7ujWpyFgeDkAAACABq3icHF/ca7MTImNO8n163euiwv3qCgv+5AfLp6dLaWnB9O//CI1bRrd+jQE9HQDAAAAaJBKivYqb/fGUJBdntPpkVkg9NjlSZLLc+jPPBYbW3UakcNlBgAAAHBYK9+THevyye0NLlTtcDhVUpQjqebh4oeTlBTphx/K0og8hpcDAAAAOKxUN1xcktzexvI16hAqW5i39bAOshF9BN0AAAAADmlmJofDEUwH/Nr18+KwoeFSWU+2Ky5Vbm/jaFQTDRTDywEAAAAcUir2ZDscMUpMO1qS5IhxyumKl/mLG8Rw8f21a5eUGpwbTjt3MsS8LhB0AwAAAKj3igv3qLhwV6Xh4pLkcDhkAX9oeS9f486KiSHUqUpRUdVpRA6vRAAAAAD1igX8KinOkcuTHMorzN2iovwdoccVJz4rDbglEXDXIDFRGjCgLI3I4zvdAAAAAKKquonPktN7hIaFF+ZtVUnhboaL45BD0A0AAAAgKooKdqpg7w8qKcqVVHmd7PjUjMNibWw0bIy7AAAAABBR5Xuy3XGNFOv2/brBGtw62dFWVCRNmRJMjx0rud3RrU9DQE83AAAAgIOq4nDx8j3Z3sRW8ia1liQFAiUqLthJkF2HsrOl9PRg+pdfpKZNo1ufhoCebgAAAAAHjb8kX7t/+VpVDReP9SSV9XIrOOGZJ75JHdewYYuNrTqNyOEyAwAAANgvFXuynbHxSkg9SpIU44xTTIxTDoeT4eL1UEqKlJVVlkbkMbwcAAAAwD4VF+yqcri4JMU4PUppdlzoccBfrBinKwq1BOoferoBAAAAhLGAX/6SPMW6yxZyztuzSf7ivNDjihOflUfADZQh6AYAAAAauKomPnM4HEppfrwcjhhJktvbWAFXAsPFD3G7d5cNK9+1S0pOjmZtGgaCbgAAAKCBKszbqsLcn6tcJzsmxq2Av1DOWK+k4KzjOPQVFladRuQQdAMAAACHufI92XEJ6Ypxen7NL2ad7AYmMVHq3r0sjchjIjUAAADgMFNxuLi/OFelH/sTUjNCy3T5SwpUUrSXIBuIIHq6AQAAgMNIccEu5exYrYp9a6U92aW93JLkjI0j2AYijKAbAAAAOMSE92TvkSsuVd7ElpIkpytBZsZwcVSpuFh67rlg+s9/llxMNB9xDC8HAAAA6jmzgEoK91Q5XFySXJ5kJaZ1CT0O+AvDerSBUlu3Sk2bBtPZ2VKTJtGtT0NATzcAAABQz1jAH5w53BUfysvZkSUzf+hxeE92Utj+BNyoTkxM1WlEDkE3AAAAEGVVrZPtjPUoOb2HJMnhiJHb21iSMVwcv0lKirRsWVkakcfwcgAAACBKCnK2qCh/W6Xh4lKwJzuxaTfFxNBPBhzKaMEAAABAhJX2ZJcU7VFcYis5HMFxvf6SfNbJBg5zBN0AAADAQVbTOtmuuFTFuhMlSZ74Jop1JxJko87s2SMlJwfTu3dLSUk1l8dvR9ANAAAAHESFudnK3fWdpKrXyZbDGcorDbiBulJQEJ4m6I48gm4AAABgP1XsyY7ztfh1ojPJ6fJKYp1s1E8+n9SiRVkakcdEagAAAMA+VFwnu6QoV+V7sj0J6UpIOTJUNuAvIsgGIImebgAAAKASC/gVCJTIGRtc7zrgL9be7ZlhZapbJ9vhiCHgBhBC0A0AAIAGr6p1sl1xKUps3EmS5Iz1yOVJVozTzXBxHNKKi6VXXgmmhwyRXK7o1qchYHg5AAAAGqz8vT+ouGBnpeHikuR0xSu5affoVAyIkK1bpaZNg+nsbKlJk+jWpyGgpxsAAACHvdKebH9JnuJ8LUL5JYV7WCcbDUpMTNVpRA5BNwAAAA47VQ0XL+3JdnubKMYZHFPrSWgm969rZRNkoyFISZE+/7wsjchjeDkAAAAOK/l7f1D+nh9U3TrZcYmtQxOkAUCk0dMNAACAQ07Fnuz4lCMV60qQJMU4PWKdbAD1BT3dAAAAqPcqBtn+4lyV/xgbn9xOcb7mkqRAoEQWKCHIBqqwZ4+UnBxM794tJSXVXB6/HT3dAAAAqHcs4JdZIPTd65LinBrXyXZ5kkP5MTGxUgwfc4GqFBSEpwm6I4+7EQAAAKKuqp5sT0K64pOPkKRfh4d7Fev2MVwc+A0SEqTY2LI0Io/h5QAAAIgKs4Dy9/5Q5XBxSXLFpSqxcaco1Q4ADg56ugEAABBxpT3ZgUCxPPFNJEkOR4yK8rYp4C+UxDrZAA5PBN0AAAA46KpbJzsmJlZub5ocDockyZvYUnLEEGQDdaSkRJo5M5g+//yyoeaIHIaXAwAA4KDK3fWdivKyKw0XL+3J9ia3C052BqDObdsmNQkONtHWrVJaWnTr0xBwtwMAAMB+C+/J3iNf406hQDomJlZmrJMNABJBNwAAAGphX+tklxTtlTsuVZLkSWgmd3xTgmygHkpNlWbNKksj8hheDgAAgEos4JckOWKckqTC3F+Uu+u7sDLh62SnhNbUBgCUoacbAAAAVU58Fp/cTnG+ZpKkWE8Sw8UB4ADQ0w0AANBABfzFKsjdEja7eHmehHQlpBwZncoBiIi9e6WkpGB6zx4pMTG69WkI6OkGAABoAEp7siWT69fvXjscMSrY+5NKg216soHDX35+eJqgO/IIugEAAA5D1U18Fuv2lQXdMU55k1opxukhyAYaiPj4qtOIHIaXAwAAHGZytq9WUcEuVRwuHuzJTlZC6lFRqRcANET0dAMAAByCyvdk+4vzlNi4U9lGR4wk1skGgPqAnm4AAIBDQFWzi5fvyU5ueqycLq8kyV+cLzkcBNkAKikpkT78MJgeNEiKpRs24gi6AQAA6iEL+CWHQw5HjCQpb/cmFeT8FFYmbJ3suFTFxPDpGUDNtm2TmjQJprduldLSolufhoA7MwAAQD1Q1cRnvkad5IpLkfTrOtn52xkuDgCHGIJuAACAKPGXFKow7xeVFO6RvzhHFQcglhTnhoJud1yq3M1So1BLAIeTlBRp5syyNCKP4eUAAAB1oLQn2xHjVKw7uDBuSXGe9mR/HSrDxGcAcPihpxsAACACqpv4zO1Nk69RMOh2xnrlSUhXrDuRIBsADlME3QCAg+uNN6R166Q776y+zAMPSBkZ0kUX1V29gDpiFtDebatUUpSjqtbJjnG6Q48dDocSUo6s4xoCaMhycqTE4P/9tHev5PNFtz4NAUE3AODgWrdOuusuKRCQxo+vvH3iROnuu6X776/7ugEHUfmebAuUhIJnhyNGsoBYJxtAfZSXF54m6I48gm4AwMF1553BgPvuu4OPywfepQH3fffV3BMO1EM1rZPtcDgUn9RWjhinJCk+5Ug5YmIJsgHUO15v1WlEDkE3AODgKw20SwPvG2+UHnoo2Lt9333B7UVFUnGxFBsreTxl++bmBn97vVJMcH1iFRcHyzudUlzcgZXNy5PMgnnOYGCkkhKpsDC4b/lPHvtTNj8/+E8Gjyf4XCTJ75cKCvavrMMhxceXlS0oCG5zuyWXa//LBgLB80lSQkJZ2cLC4HNxuYLl97esWVk3SXx8sC5S2d9zf8rW5m9/MF4nVf09a1HWHAoG0b/+7XN3rlORo1wXUX6hnDEuxSalKTa+UTDv17KxMU7JXe64pX/78tcBAKIgMTF4m0PdiYl2BQAAh6nx44MB9t13B8eu3X+/dOutZQH5pEnB/GuvDd+vadNg/ubNZXlPPRXMGzkyvGy7dsH8zMyyvGnTgnl/+lN42S5dgvlLl5blvfFGMO/cc8PLHn98MH/evLK8d98N5g0YEF72lFOC+R9+WJb3ySfBvN69w8ueeWYwv3StFkn66qtgXvfu4WX/+Mdg/iuvlOV9800wr3378LJDhwbzn3uuLG/9+mBey5bhZa+8Mpg/ZUpZ3pYtwbyKa8fceGMw/y9/KcvbvTuY5/MFA8xSd94ZzCs/gqGkpKzs7t1l+X/5SzDvxhvDz5eSEszfsqUsb8qUYN6VV4aXbdkymL9+fVnec88F84YODS/bvn0w/5tvyvJeeSWY98c/hrIs4Jd16yr5fMp9/xXt+nmR/CUFwb+Xz6f4i6+W0+mRJ76JElIzlPrHsUo+6iQlLNssT3yTYID+4YfB455ySngdBgwI5p98Mp92AaCBIegGAEROxaDqppuiUw+gGmZ+5e3ZrD1bv9HOLYsU8BdJkvwl+TKzXydDC3I43UpudpwSUjOCQfb+9FiXlAT/CXPzzcFRCQAQJX6/NGdO8IfbUd1gnW4AQOTcc0+wtzsmJji09t57y4acM7w8vCzDyyM+vNzcLpX48xQTGyenOaWiIhUV7VZO3qZQUWdhILh8V3JTxXpTgt/J3tfffn9eJ+WvLwBEwbZtUpMmwfTWrVJaWnTr0xAQdAMAIqP8pGnjx1d+DERYdROfeRNbyZvUWpIU8Bcrf88mZhcH0GBs3Rr8JpckZWeXBeCIHCZSAwAcfFUF2BUnVyPwRoQE/EXK2bFG/uJcVexbcDo9cjicoccxTpcSUjMiXym/v2yOgJNPLusZB4A6lpoqvfxyWRqRR9ANADi4Hnig+h7t8oF3TAzLhuE3Kd+T7XA45U0MThrniHGFvpNdb9bJLiiQTj01mM7JYZg5gKiJjZWGDIl2LRoWgm4AwMGVkRGcqfzOO4Pfu/X5gvmlgcb48cGAO6MOehdxWKlpnWyn01MWdDsc8jXqqBinp/4MF3c4gjPol6YBAA0G3+kGAEROVUE3UEtmATkcZQut7M7+Wv7ivLAy5Xuy3d60/ZtRHAAaoNzcstUkf/yRt+a6QE83ACBy4uODs7SUpoEaVOzJ9pfkK6VZz1DgHetOlAL++jFcHAAOUbm50u7dZWmC7sgj6AYARI7DwbSoqFFJUY6KCnZUGi5eyl+cGwy2JcUnt5MjJaaKowAAaqv8iopx/N+yTjC8HAAA1InSnmynK0ExzuB64gV7f1LennLrZNeXic8Otvx86dxzg+l33glfwxsAcFgj6AYARE5RkTRpUjA9bpzkdke3PqhT1U18lpDaXp74NElSSXGuCnO2HH5BdkXMbwAADRZBNwAgcgg0GqSS4jzl7Vpf5XBxp9OjuMRW8iQ0jU7loqWkRHrjjWD6oouCa/YAQBT4/dLSpcH0ccdJTmd069MQcMcHAERObKx0xRVlaRxWyvdkO2O98sQHv78fExOrkqIcSYfxcPH9xcK4AOqJXbukXr2C6W3bpMaNo1qdBoGebgAAUCs1rZPt8qQoMa1zqGxR/nY5XQkNN8gGgHpq61ap6a+DjbKzme+0LtDtAAAAqmRmoXWvzUy7flkiC/jDypT2ZLs8KWH5bi9dJ2EYzwmgnkhJkZ57riyNyKOnGwAASKrck20WUHLT7qHte7dlKlCSz3DxA8H8BgDQYNHTDQCInNzc8DFsBBr1TnHhHhUX7lJJ4W75i3NV8X/xAX9xaHkvX6MOcsTQQ3tAHA6pbduyNACgwSDoBgBEVl5etGuAX5X2ZMd6kuRwxEiSivK2qjAvO1Sm4sRnpQG3JALu3yI+Xtq4Mdq1AADl5Undfx3E9PXXwdsTIougGwAQOV6vtGFDWRp1quJw8dKe7KQmXRXrDg51dsWlSjKGiwNAA5GTI61bV5Ym6I48gm4AQOTExEjt2kW7Fg1OceFu5e/ZXO062YFAceix29tIbm+jOq4hACBaPJ6q04gcgm4AAA5R5XuyXZ5kuTzJv25xsE52fVNQIP3pT8H0669LcfwdAERHcrLEVNp1i9nLAQCRU1wsPfVUMH3NNZLLVXN51KimdbLjEpopPuWIYDkLqCh/O0F2fcLs5QDQYBF0AwAih0DjoAn4i7X7lyWVZhcPrZMdxzDxeq24WJo2LZgeMYJ/QAGImkBAyswMpjt3Dn4TDJHF8HIAQOQ4ndIll5SlUaOKPdkxTrd8jTpKkmKcLsXEuCWJ4eKHIpdLGjUq2rUAAO3cKR1zTDC9bZvUuHF069MQ0NMNAEAUFRfuVnHh7krDxaXgEl0pzY6X49d1nQOBEsXE8P9yAMCBy86W0tOD6V9+kZo2jW59GgLeuQEAqCMW8KukOFcuT1Ior2DvDyou3BN6XHHis9KAWxIB96GM8ZwA6onUVOmxx8rSiDx6ugEAiJDqJj5LadZTMc7gd3oLcn6WvziH4eKHO+Y3AIAGi3+ZAwAiJze3bJ3ujRsbTKBRlL9dBTk/Vb9Otr8wFHTH+ZpFoYaIirS0aNcAABAFBN0AgMjati3aNYiY8j3ZHm8TOV3ecvmsk41yEhKkrVujXQsAUH6+NGBAMP3xx5LXG936NAQE3QCAyPF6pZUry9KHuJrWyY6JcYWCbldcihJSMwiyAQD1zt690vz5ZenD4O253iPoBgBETkyMdPTR0a7FQVFStFd7tn6rqoaLx3qS5HTFh/JinG554pvUcQ0BANg3t7vqNCKHoBsAgF9V7MmOdScpPrmtJMkZGy+HQ4qJYbg4DkBBgTRyZDD9wgtSHK8bANGRkiIxlXbdYvZyAEDkFBdL06YF0yNGSC5XNGtTiZmppHB3lcPFJSnWlaCkpt1CjwP+IsU46RbAAWD2cgBosAi6AQCRU88CDQv45fcXKNZVVo9dPy9RwF8UeszEZ4iI4mLpqaeC6WuuqXf/gALQcAQC0ubNwXSbNsFvgiGyCLoBAJFTUCD96U/B9Ouv1/mQ2orDxf3FuXI4YpXSvGeoTN7uTbJAMUE2AKBB2LFDatw4mN6+XWrUKLr1aQj4TjcAIHLi4qS33qrz0xbm/qLCvGz5i3NV8X/LMTExYcPES7+zDQBAQ1BSUnUakUPQDQA4ZJXvyY7ztVBMTPBtze8vZJ1s1C+M5wRQT6SkSPffX5ZG5DG8HABwyKhquHjp25ivcSe541IlSSXFefIX5xJko/6oZ/MbAADqDj3dAIDIycuTunQJpletkuLjay5fg6L87crZsVbVrZMdE1M2MVWsK16xrgM/FxARv+H1DwA4dBF0AwAix0zatKksva/iFXqyPfFN5UlIlxRcJ1syhovj0JSQEOztBoAoi/Icpw0Sw8sBAJHj90tLlwbTxx0nOZ1hm80CKincU+VwcUlyexvL16hD2eFKCgiyAQD4DbKzpfTg/7P1yy9S06bRrU9DQE83ACBynE7p+ONDDy3gVyBQHAqczQLau321yg8ZD+/JTgo/HAE3AAC/ictVdRqRQ083ACBiqpr4zOnyKanJMaEyOTvWyOFwMlwch7fCQunaa4Ppv/1N8niiWx8AQJ0h6AYAHHT5e39UccEOleTtlvudjyVJReeeJsXGyhkbp6Sm3eVwsGQSGhBmLweABovh5QCAA1bak11SnCNvYqtQvr84J7hOdlGRfGPulSQV/mmEYlOb0ZONhsnlKlsYl/GcAKLITNq2LZhOS5McjujWpyGgpxsAUGsVh4uXFOWq9PvYyenHyhnrlSQVF+5WwF+kWH+snP/vwuDO77wjeb1RqjkAAJCkHTukxo2D6e3bpUaNolufhoCebgBArRTkbFHe7k2qbp3s8lye5LIHH31UB7UDAAC1UVJSdRqRQ9ANAAip2JPtTWoTCqBjnB6xTjZwgBjPCaCeSEmR7rijLI3IY3g5ADRgNQ0XlyRvYit5k1qHypZf7gvAfmAiNQBosOjpBoAGxAJ+mfkV43RLkvz+Au3dnhlWpnxPtqvcsHFHjFPOGOf+nTAvr2yd7kWLpPj431R/AACAQw1BNwAcxqrqyfbEpykhNUOS5IyNV6wrQU5XfGSGi5tJq1aVpYGGKiGBNgCgXigslK69Npj+298kjye69WkIGF4OAIehvD2bqxwuLkmx7kQlNTmmbiri90vz5gXTJ58sOfezpxwAABxU2dlSenow/csvUtOm0a1PQ0BPNwAcwkp7sgP+QnkS0kP5xQU75S/Ok6ToTnzmdEr9+9fd+QAAQI1crqrTiByCbgA4hFQcLu4vzpWZyeGIkTu+iRyOGElSnK+lJGN2caC+KCyUbr01mH74YcZzAoialJTgfI4SU63UFYaXA8AhIm/3JhXmblHF23ZpT7Y3qa1inPXsX9YlJdK77wbTZ58txfK/XjRQzF4OAA0Wn34AoB4J78neo4TU9nLGBnvEYpwumR1i62QXFkrnnx9M5+QQdKPhcrnKFsZlPCeAKDILLi4iBXu6HY7o1qchoKcbAKKouuHipRJSM+SJbyJJCviLZeav30F2Rfn50oABwfTHH0teb3TrAwBAA7dzp9SoUTC9Y4eUmhrd+jQEdDkAQB2ygF8mU0xM8PZbXLhLOTuywsqEr5OdHMoPDh0/xHrIvF7piy+iXYuGY9s26bvvgmujl3ZdvPSS9NlnwaH+aWllP02aBH//7nd8vxgAGpDi4qrTiByCbgCIoKrWyfYmtZI3sZUkKdaddGgNF0f9smlTcEm20p/MzGB++e8Mz5kj/fOf1R/jxx+lFi2C6W+/Df7u3FmKiYlYtRskxnMCqCeSk6UrrihLI/IYXg4AB5kF/MrP+bHK4eKS5PamydeofZRqh8PCgw9Kzz4rbd5ceVvr1tKCBVLz5sHH77wjff118Pv027cHe8O3bZO2bg3+ZGaW9XRffLH0+uvBcYe//700alTw6wEE4L8dE6kBQINFTzcA/AalPdlmfrm9jYOZDocKc36WmV9SlNfJjrb8fOmUU4Lpzz7jO90HqrAw2DPqdgcfJyQEA26nMzg8/OSTg9e5b1+pcePwfc89N/hTG05n8G+0Y4f0n/8Ef9q3l66+Whoxgi/+AQBwAOjpBoD9UN3EZ87YOCWn9wiVK8j5SY4YV8MLsiuid++3+eUXacoU6R//kB55JBj4StLu3dKXX0onnVR2fQ+W4mJpyRLp1VelF1+U9uwJ5h97rLRs2cE9V0PC8HIA9URRkXTvvcH0PfeU/T8XkUPQDQC1lLNjrYryt0uqep3s+JQj5XAwDDdMSYn04YfB9KBBLBlWW36/9Pe/B5eY2r07mHf22dJ//1u39cjJCQbfTz0lXX65NHZsML80gOSfKABwyMnOltLTg+lffpGaNo1ufRoCgm4AKKd8T7a/aK98jTuHAuncXd+pMPeXhj1cHJG3eHFwOPfixcHHxx0n3XlncIh4tP5pYRb8R0Dp+V96KfgPgSlTguuw02sLAIeMHTvKvom0fXvZ8mGIHIJuAA1aVbOLl+/JTmpyjGLdiZIkf0mBJBFkI3ImTZJuvTUY5CYlSQ88EAzAnc5o16yMmdSnj/TVV8HHZ50lPfmkdOSR0a1Xfcd4TgD1hFlwPk0puHIk/zeNPIJuAA2KBYKTmzligkFM/t4flb8nfAbo8HWyU35dHxsHxO+XPvkkmP797+tX8FgfffaZ1K+fdMkl0uTJUrNm0a5R1fLypL/8Jfg98+Li4PfK33gjGICjasxvAAANFkE3gMNaVT3ZvtQMuePTJEklRXuVu2Mtw8UjhUBj3/bulRITyx6vWiV16RK9+uyPNWuCi71+/nlwWbEnnpCuuSbataqfCguDoxgk6eGHy5ZpAwAc9gi6ARx2Av4iFeT+XOVwcUmKS2yp+KQ20alcQ5OfL/XuHUx/+SVLhlX0wgvSbbdJc+ceOoF2RUVFwSHw//xn8PGSJcHvoQMA6qWdO8u+x71jB6tB1gWmkQVwSCvtyZYjRi5PUmmuCvb+GCrDxGdR5PVKy5dHuxb1TyAQnIjs4YeDj//5T+mvf41unQ6U2x1c0qx9++DXCQi4AaBeKy6uOo3IoacbwCGluonPXHEpSmzcOVQub/cmOV3xBNmon8aODQ7FlqS775YmTDj8ZrLJywt+h59h1ABQrxQUSH/6UzD9+utSHB+TIo6gG8AhY++2VSou3KOq1sl2xaUqPuWI6FQM2B9PPimNGRNMT50qjRgR1epExM8/B5c469hR+te/Dr9/KBwI5jcAgAaL4eUA6pXyPdmBkkL5GrWvWILh4oeS/HzpzDOD6fff5zvd//ufdP31wfTDDx+eAbcUnAxu6VJp0aLgsPO77452jQAAiBp6ugFEVcXh4v7iXJW/LaU06xlasqukOE8ORwxB9qGE3r0yZtLpp0sffyyNHCk9//zh3QP83HPSlVcG06+8ElwGrSFjYVwA9URRkTRpUjA9blxwag5EFkE3gDplAb/kiJHj1w+cuTvXqzAvO6xM+Z5sd1yj0JraOASVlEgzZwbT558vxTbwAVb5+dKjjzacTznjxgUniHO7g+u19+0b7RoBQIOXnS2lpwfTv/wiNW0a3fo0BATdACKqqp7sxLRjFOsO9n4W5m1VwZ7vGS4OHI78fun//k966y3pyCOllSv5igEARNmOHVLjxsH09u1ly4chcgi6ARx0/pJ8FeZtrXK4uCTFpxyhuIRmkiQzC/V6A4el996TvvlGuuGGhtG7XdHevVLnztKPP0p33SVNnBjtGkUH4zkB1BOBgLR5czDdpo0UExPd+jQEBN0AfpPSnmyH061YV7wkqbhwt/ZuWxUqw8RnDZjfL331VTB94onBJaQakrw86eijpY0bgxOn3XJLtGsUHdOnS1OmSE8/LR1zTLRrEx3MbwAADRZBN4D9Ut062XG+ZopPDi7ZZRZQ3q4NwUCbILtha+iBxh13SA8+KLVuHZzRu/RaNDSlHzUa8qiWwkLp2muD6b/9jfXLAaABIegGUCuBQIlytmdWOVzc6fTIHd9E3qTWUaod6q28PKl792D666+l+Pjo1qcuZWYGn3txcXAyufPOi3aN6o/c3Ib3DxgAqCd27ZJSU4PpnTullJRo1qZhaODTyAKoqHxPtiTFJ7WRJMXExCrgL5YZ62RjP8THS2vXRrsW0XH77cGA++yzpcGDo12b+iEvT7rzzuDEamvXMps9AERBUVHVaUQOPd1AA1fTOtkxMbFKbtYzNNFZceEexTjdBNnAvmzaFJytOxAIDivv3DnaNaofCguDQ+23bpVmzAguIwcAqFP5+dKAAcH0xx+zqERdYK46oIGxgD/scc6O1dq7PVMFe39USVFOqCfbE99E3uR2ksr+L+fyJBFwA7Xx3HPBgPv3vyfgLs/jka64Iph++uno1qWulQ6pT0gIpgEgSrxe6Ysvgj8E3HWDnm7gMFdVT3Zys56KiQkO68zf872K8rYyXByRUVAg/fGPwfT06VJcA3ltLVokPflk8LkztDzcpk3SEUcEJ1dbvVrq2DHaNaobDX1SQQBowAi6gcNQSXGuivK3h80uXl5i405yxQVn0DALyOFg0AsihEADVTn3XOm//5XGjpUefzzatakbLIwLoJ4oLpaeeiqYvuYayeWKbn0aAoJu4BBX2pPtdHkV4wwuQVOY+4tyd30XKsPEZ4ia4mLplVeC6SFDeGdH0AcfSGeeKSUnSz/+yD9jAKAOZWdL6enB9C+/SE2bRrc+DQFBN3CIqW7is/jkIxTnayZJ8pcUqGDvDwTZQF3Lzg4OK+/Xr2yWGlQWCEhHHSVt3BicyZwh+ABQZ7Zvl9LSgult26TGjaNbn4aAtTqAQ4S/pEC5O9dWOVzc+WsPd+hxbJwSUjPqsHYAJElz50r33y+9+660bFm0a1N/xcQEh5bv2tVwJppjPCeAeiI1VVq5siyNyCPoBuqZ8j3ZMU634hKCvdcxMS75i4MBN8PFccjw+6Vvvgmmu3aVnM7o1ifSPvss+Pvkk6Nbj0PB9ddHuwZ1q6hIuuGGYHrUKIJuAFETEyMdfXS0a9GwEHQDUVZxuHj5nuxYty8UdDtinEpo1FHOWC9BNg4dBQVSjx7BdEOYSG3evOBvgm5U5HRKl1xSlgYANBh8pxuoYxVnC9/18xIF/EVhZcr3ZHvim9R1FYGDJy9Pat8+mF67VoqPj259ImnXLqlRo+BSWFu2SM2aRbtG9d+2bdLnn0udOgV/AAARt3u3lJISTO/aFZzTEpFFTzcQYRV7sgP+IqU0+11oe6w7Uf6iHIaL4/AUHx+cnboh+OKLYMDdvj0Bd21df31wdvvx46X77ot2bQCgQSgsrDqNyCHoBiKgpGivigp2qqRwj/zFOao4oMRfki9nrFeSlJCawTrZwOFgxYrg7xNOiG49DiUnnhgMukuvHQAg4nw+KSOjLI3II+gGfqPSnuxYd6IcMcHv6RXl71BBzk+hMjVNfEbADRwmtm0L/m7ePLr1OJSUjggovXaHs9xcqV27YHrjxsN/fgMA9VZ8fPAbX6g7BN3Afqpu4rPExp3likuRJLniUmWBYoaLAwUF0tChwfRLL0lxh3FbmDBBuuqq+hlMZWVJ69cHuzZKv2NfHzT5dc6KhhB0Sw3neQIAwjCRGlBLJUV7lbd7Y7XrZHuT28rtbRydygH1VW5u2di1hjB7eX2zY0dwxuwPPyzLGzRIeu21+rE467ffSsccIzVufPgHpIGAlJkZTHfuHFyzBwCioLhYmjYtmB4xghUM6wJBN1BB+Z7sWJdPbm8jSVJJcZ72ZH8tqebh4gDKKS6WnnsumP7zn3lnr2tnnCF9/HFwvfRSTqc0YID0wQfRq1epX34JDjF3OIKvFZbSAoCI27pVato0mM7OLht0hMgh6EaDV3G4uL84NzTxmdubJl+jsqGYhXlbCbIBVO2uu4LB4+jR9eN73VlZUseONW+P9lDz4mLJ7Q6mt26V0tKiWx8AaAC2by+73W7bFhxshMjiO91ocMxMDocjmA74tevnRZVmFy/tyXbFhQ+/ZM1sANX6+9+Dn14uuKB+BN3r19e8fd266AfdLpf05JPBRWK93ujWJdIYzwmgnkhJkRYuLEsj8ujpxmGvYk+2w+FUYlqX0PY92StkgRKGiwOREAiUBX9HHXV4f4+1Q4fgdLBz50qnnBLt2hwaPd0NCfMbAECDRU83DkvFhbtVXLg7bHbxUg6HQxbwh5b38qV1UUwMTQGIiPz8YDAqHf6BRlpaMOiuLxOCdegQnDStuu90E3DXLadTGjy4LA0AaDCINHDIs4BfJcU5cnmSQ3mFOT+rqGBH6HHFic9KA25JBNxApCUn77vM4aD8F+Tqi9deky6+OHz28gEDgvmoW3Fx0ltvRbsWAKA9e8remnfvlpKSolufhoBoA4ec6tbJTk7vERoW7vI2kiPGyXBxINoSEqRdu6Jdi7pRH9ecTk0NzlK+dm3wO9z1bZ1uAECdKygITxN0Rx5BNw4ZRQU7VbD3h7DZxUs5nR4F/EWh4NoT34RJzwDUrfrY012qfXuCbQCApOD/w0t7ug/nb33VJwTdqHfK92S74xop1v3rxDNmKinKkcQ62QDqofT04O9ffoluPVA/5eVJXX6dxHPVKik+Prr1AdBgNaRBaPUFs5cj6qobLi5J3sRW8ia1liQFAiUqLthJkA0cSgoLpSuvDKb//nfJ44lufSLphx/+f3v3HmXpWdeJ/rsvde3q6upOd5JOQgi3JKAkkBABkYAxDgIRR0V0ES+oOXKIiIqK64CMwAiMwDgyh4AyuobxCAFRGeUaRWASRoHQAQyQTBIQCLl0+lZdXfd9O3+86bp0V3U6Sb+1u2p/Pmvt1U+9+6mqX6c6Vftbz/M+v6LX9AUXOCiLozm9HKBnCd10Vasxk4P3fSVLTxdPFley+4e2p29wrCu1ASeAoAGFViu56aZifNFFfjEDdE2zmXzgA8X4p386qdv7XDqhm9IduZJdqw9n09bHFM91Ohm/98ZUK3XbxWEjmp9P3v72Yvzrv57093e3HgDocXv2JKeeWozvu2/xHFDKI3RTisbs+IrbxZNiFXvL6RctvN1uNVKt9XWhSoAT7ItfTN7xjuSMM5I3vanb1QDAUfbuXQzae/YsngNKeYRuHrZOu5VWczr1/s0L1w7e95W0GtMLbzv4DOgJn/hE8tznJo9+dPKNb3S7Gk4m9nMCJ4lWK7nhhmL8zGe622UtCN0bVKs5W1qwXengs0qlkrGdl6RSqSZJZg59N+3mrJANva7dTu65pxjv3JlUq92tp2wTE8m2bcUrmptvTr73e7tdEScL5xsA9KwN/uqnN80c+m5uveE/ZObQd0/ox52b3pOJPTfnwD035tC+WzJ76K77W3h1Uq32pd2aW5g7tPmsbNr62AwM7xC4oZfNzCRnnVU8Zma6XU35RkeTH/uxYvyud3W3Fk4u1Wpy+eXFYx388ukLX/hC9u3b1+0yADaEk/+7Pg/awd1fSjqtHNz95Yf0/p12K43Z8UxPfCft1vzi9VZjIWTXagMZGN6RTVsfmy2nPTlbTr8otfrQifkLABtLvd5bW2mvvrr48y/+Ijl0qLu1cPIYGkr+8R+Lx9DJ/fOy0+nkRS96Uc4555y85jWvEb5hgzl0KKlUiocfU2tD6N5gOp1OJu4P2xO7v5zjuXtgacg+ciW7MTexMK9vaNuykG0lG3hAmzYljUbx6JXttJddlpx3XrGF+C//stvVwINWqVRy44035uqrr84f//Efr0n4Puuss/LOd75z2bV//ud/zvDwcL797W+X9nmhFy3deNYLm9BOBkL3BjM7eVcac+NJksbcgcxO3n3M+Y3Z8RW3ix9eya7WFtv71OqDQjbAA6lUFle73/nO5CQ4OuW2227Lxz/+8dx+++3dLoV1YseOHfnDP/zDfOtb31qT8P20pz0tN95448LbnU4nv/Ebv5Hf+I3fyCMf+cgT/vmglw0PL47vPnZU4ARxkNo6Nje1+6hQfWjv13Jw91eStJNUs+W0J2XklPPTbs6m2ZxJuzGd4S2PyuipT0yStFvzGb93l9PFAU6k8fHkWc9Kfu7niv7kfd1pi7h///68+MUvznXXXbdw7TnPeU6uvfbabN26tSs19azp6eSSS4rxjTcuf9W7DuzZsydve9vb8o53vCPVajWveMUr8spXvjKnnHLKCfn4b3vb2/Ke97wnX/3qV5Mkf/EXf5FXvepVuf3227N58+YHeG/geO3fn7z4xcmSHwt5znOSa69N/Fgoj9C9jn3n5vfk0J6bH/T7DY4+Mo968ksX3m635petaAOcMHNzqfz2q5Iknbe9JRkY6HJBveW5z/vR/NM/fSqtVmvhWq1Wyw/90GX5+Mc+3MXKetDUVKpbioDaPrhv3d5usWfPnvzn//zHuead70q1Ws2vvfzq/OZv/vrDDt+f/ez/zg9e9sM5sP++VKvVnP/4J+Y//IfX5Kpf/qUTVDmQJM99Xj3/9E/VtFqVhWu1WnHG4yc+0cXCNjihex1rNWdy960fzMR9X+l2KQArqsw08oQr/t8kydc/8mvpDHVnxbfr2p2kWnngeSfQt+48kCte8t9Xff4xjzwlA/2as66ZTlKdLQ4nbQ/2J2v7z+GEazbb2Tc+nX0HplOtVPL63/rh/PhzH3qLvLn5Zp76o+/In731hfncrm/nU//8jfz1n/5cqmv8/w1sZN+6c3uueMn/s+rzt92WPO5xa1hQD+mh42Q3nlp9KGd9z89lfNv5uee2v0mn3U6xrRzgJFGv5r6ff9rCuOd0Ohm9/vac+p5/zrfe8pNp7li7bbJ33j1+zOfPPH00O08bXZti2FA6nU7u2zeVAxPFCUxjWwZz9lljD+tjDvTXc95jduSTN9yev/7ozXnHH/x7gRtOsDvv3n7M5++4Q+gui5XuDWJu6r5848Y/SqfdOOq5SqWWbWc/O/X+4sVe/+DWjGxb/D9qfmZ/6v2bU6316AoUQFna7VSedVkq//K5dH7yJ9L5wPvW7FPfdtvtefwTnrjq87fe8tU87nGPXbN6WP86nU4+85n/lTe84Q9y/Q2fzcUXX5T/8Nrfy/Of/9xUKg8/IL/i138z73znn+T5z39e/u5//s0JqBhY6rbbKnn8E1a/pdRKd3msdG8UleqKgTtJOp1Wxk6/ONVqX5rzE/cH7OK+ylZzJtMHv5WkWDmvD4ymr3809YFR93kDPFy1JH/yp8lFF6XyN3+byic+mTz/+Wvyqc9//PfmOc95Tj75yU8edU/35ZdfnvPO/541qYP7NZvJRz5SjK+4Yl31ri/C9mfyute9Ltdff30uvvjifPjDH87zn//8ExK2D3vyky9OvV7P2972nxdepwAnzvmPLw5N++QnkyU/Fhbu6Ra4y9ODe/02pok9/5rFG8Tu/7JWDn95K5nc+7X0D23L8JZz0j+0eNhJp91Mva84zKXVnMnc1O5MHrg94/fuysHdX878THk9OYEe0OkUJ3mPj58UrbO64oILihPMk+Rnfza59dY1+9TXXnttLr/88mXXLr/88lx77bVrVgP3m5tLfvzHi8fcXLerOS6dTief/vSn8+xnPzuXXXZZpqam8uEPfzg33nhjrrjiihMauJPkve99b66++uqcd955J/TjAouuvbYI2EtdfnlxnfLYXr5BfOMLf5TZybuSJJvGHpvTHvejuff2v8/0+DeSJIObz8pjLvnNVd+/3W6mOTeR5vxE8WdjKkkysu289A9tS5I05w9lbnqPlXDg+E1NJSMjxXhyct2e2Pywzc4ml12W/Mu/JI9+dPL5zyfbj31v3Yl05ZVX5gtf+EI+9rGP5XGWMrpjZmbxle4nP5kMDXW3ngfw2c9+Nq95zWty/fXX56KLLsrrXve6UoJ2u93Onj178ud//ue55ppr8vWvfz1btmw5oZ8DONqLXpT8678mH/6wFe61sH72NrGq+dkD9wfuSk57zPNyytnPTqVSzTlP/r+z9zufyX3f+FhmD303jdkD6RtcuQFftVpP/9C2hYB9OITXBxYP2WnMjmduanfmpnYnsR0d4LgNDiZ/93fJU5+afPObyb//90XwGhxck0+/ZcuWjI6OCtzdNDSU/O//3e0qjkun08mLXvSi7Ny5M3//939fStg+7Prrr89ll12W888/P3/7t38rcMMamJxMPvjBYrxzZ3dr6RVC9wZQSSUj287Pjkc/J8OjZy9er1Sz45GXZdPYY7Ln3/4hD6Y/yeEQvlR9YEsGO62FlfBWc2ZhS3qSbDn1wtT6hpMknU47lYq7F6DnDQ8n80WbpPV0D2spduxIPvrR5OlPTy6+OOlzeCUnp0qlkjvuuCNDQ0Olhe3Dnv3sZ6fd1nkF1tL09PLx4Q1plKfHXwFtDH2DY3nkk/6vVZ8f3vLIYz5/3J9nYDR99698H7kdvd2aT7W+uFVuevybac5PWgmHXlepCJdLPf7xyVe/mpx1VrcrKc9/+2/F0skVV3S7Eh6G4eHhbpcAlGTp3S0n+Z0uG4bQzUNy5Hb0Tru17LfhjbmJtFtzy1bCF7ajD2xZdpgbQE9ZGrinp5PXvS557WuTzWvXw7sU7Xbyu7+bvO1txb37N9+cPOpR3a7q5DEzk1x6aTG+/nqvdIGu2bw5ueqq4tv0ev/Rs14I3ZwQlWpt2dujp15w1MFsh7ejN+cPLQvdjbmDqdWHrITDRjQ/n7zmNcX4jW9M+v1/vsxLX5r85V8m111XtJN6xCO6XdFDMz2dPO95yf/6X8Xbv/M7yTnndLWkk067nXzxi4tjAHqG0E0pVjuYrTk/sSxcdzrtTO67NZ1O28FssBE1GsXKZ1Ks6Ardy73iFcWBav/6r8n3fV9xjOxTntLtqo5Po5Hs2pV85jPJ//yfxYnslUry//1/yZVXdru6k8/AwGKf7gE9qIHuabWSu+5KDh4sxrXaA78PD4/QzZo4MoQf1m7Np1YfWvFgtlp9KAMjp2dw0+ndKBk4Efr6kt/+7cUxy11ySRFWr7ii2Of3zGcWW81/+7dPvl9QzM8nN95YrGZ/+tPJZz9btEKr1YpXbdu3J3/1V8kP/mC3Kz051evJ85/f7SoAcuBA8vGPL47XsINlzxK66apafTCjp16wYp/wVnMm6SxuwWs15zI7eZeVcFhP+vuTt76121Wc3M4+uwiwL35xcbr5a15TrBb/zd8kT3hC9+qam0u+8IUiZP/TPxU9xufmipDdbiedTjGv1SpWuF/3OoEbAFYgdHNSWG07+uEWZEnSnJ/QJxzYmEZHi63l731v8lu/VSw9nHFG9+r5139Nnva04vCvlUL2kYaGkp//+bWtcb1ptZJPfaoYX3aZ/ZxA14yNFd+G7ryzGFM+jZQ5KR0O4bX64MK1Wn0ogyM7U+/blCQLW9EnD9ye8Xt3ZX72wMLczuEXh0B3dTrFvb+NxmJoY2WVSvKzP5vcemvyd3+3+Eqo2Uze8Ibk3/5t7Wo588xk27akWi3C4rG+drVa8ku/5AjcBzI7m/y7f1c8Zme7XQ3Qw+r15NGPLr7N1y3Brgmhm3Wj3j+S4S3nZPTUCzK285KMbDtvSQivpN43sjB3dvKuHNz95UyNfzPz03vTbs13r3DoZdPTxRbz/v5izAPbujV56lMX3/7wh5Pf//3kMY8p7v3+6EdXXm0+kU45pThRfWio+GXAsbRayctfXm49G0G1mlx4YfGoevkF0Ev8boN1aaXt6NXq4j/n5tzEigezHd6O3je0LZWKFz3AOnDaaclznlOE4I9+tHicc07ykpckz3528vSnn7hD11qt5CtfKQ5Ne9rTkg99KPmRH1l9pbtWK2o477wT8/k3sqGh5Mtf7nYVAJmaSv78z4tv7VNTyaZN3a5o45M62BCWBu4k2bTt3CNWwhe3o0+Nf3PZ3Ob8pJVwKMvwcHF/8oEDxZgH7/u/P/nEJ5Lbbivu9966NfnWt4qDy5797GTfvsW53/xmcvfdRWh+IK1WsmdPcYjbm9+cPPe5xV7Diy9OXv3qYs4P/3Dyrncd+2P8+q8/jL8cAGttamrxd6lTU92tpVdUOm5+pQcsPR096WR4y6MWnju4+0tpNWcdzAasDzMzyQc+UPR7ufvu5IYbFp/7kR8pVsST4nC2HTuS7dtz9T335PMzM9l1332Lc5/4xOSrXz3644+OFmH7gx9c3Fr+W7+V/Jf/cvSK9yMeUdxr7lAwgHVjYiLZsqUYHzxYfNunXLaX0xNW6xPeabdSqRQvFlfajt4/vD1Dm89a83oBVjU0VGwtf8lLll/vdIqV62q1OG18YqJ4fOMbxfNHnpZzyinFn6efnjzjGcmllxZ9wi+44OgQ/Za3JHfckXzkI8XHTorP84pXCNzHa2am2E2QFL8wGRrqbj1AzxodTa66Krn5ZoF7rQjd9LRKtXbMPuFLt513Ou3MHPx26v2brYTD8ZqfT970pmL86lefuHuPOVqlkuzaVYTi8fFk794ihO/dm/zxHxdbz5f6+78vtvwfz9G1tVryvvcV4fxrXytOVO/rK04t5/i020XP88NjAHqG0A1ZvU/40mDdakxldureZOreJPqEw3FpNJLXv74Y/87vCN1roVot7s3eti0599zi2nXXFaveSz3Y5Y1Nm5KPfay45/vee4v2Ztu2PfD7URgYSP7qrxbHAF3SaiW7dyeHDhVjG5bKJ3TDCg6H8KUqlXoGR3YuWwlfuh19eOxRGdx0ejfKhZNXvZ5cffXimPXtjDOKQ92uuqq4z5vjV68nP/VT3a4CIOPjRTfKw+PDdxtRHq+A4DjV+oYyvOWcJFlxO/rhU9KTZH56b2YOfddKOAwMJNdc0+0qOJEuvDC58cZuVwHAQ7T0Dhd3u6wNoRsegpW2oy/t+92Yf4A+4YNbU6naywPQM1qt5HOfK8ZPe5r9nEDXjI0VZ2d+97vFmPIJ3XACHNknfGj07PQNjB11MNvhED52+kWp5P5T0xszqVRrVsIBNrLZ2eQHfqAYT04W98gDdEFfX3Hkx9xcMaZ8QjeUYLWD2ZrzE2k3Z1OtLR6iMz3xrTRmxx3MxsY0NbX4a/TxcUGD3lWpJI997OIYgJ4hdMMaWK1PeFL0Ck9W7hPeNzi2cB85rFvNZrcrgO4bHk5uv73bVQBkerroAtloFOPh4W5XtPEJ3dBlozu+d9U+4dXG8tXumYk7F1bErYSzLgwNFTeNHR4DAF01OVmE7cNjobt8QjecBFbbjr70cLZ2q5GZQ99deNt2dNaFajU588xuVwEA3G9wcOUx5RG64SS0Up/wpHPMPuGDm8/M8OjZa18sAA9sdjb5yZ8sxn/zN17pAl0zOppcdVVy883FmPIJ3bBOVGv9x+wTXqsvbt1tzk9m6sAdVsLpvvn55O1vL8a//utJv3+H9KhWK/nYxxbHAPQMoRvWoRX7hGfxNNzmA/QJrw+OHdXmDErRaCSvelUxvvpqoZve1d+f/Pf/vjgG6JJWK9m3r7ivu9VKarVuV7TxedUNG8CRAbp/+NRUa4Or9gnfvP17Uh0o9hO1W3NJKlbCKUe9nvzCLyyOoVf19SUveUm3qwDI+HjyoQ8tjk85pZvV9AavgGADOlaf8Ob8odT7Rxbmzk7endnJex3MRjkGBpL3vKfbVQAA92u3Vx5THqEbesCx+oS3W40kK/cJrw+MZnjLOctOUQfgIWi1ilOLkuSJT7SfE+iasbHk+78/ufvuYkz5hG7ocSPbzl21T3in005lbDFwz07dm2qlbiUc4MGanU2e/ORiPDmZbNrU3XqAntXXlzzhCcXvAvv6ul1NbxC6gVW3o3c6i3uOOp1OZifuTLvdTKJPOMdpamqxT/dddwka9K5KJTnjjMUxAD1D6AaOsmKf8E47/cM7Vu0T3j+0PSPbHteFajnpHTzY7Qqg+4aHi188AXTZzEzyt39bbMCZmUmGhh74fXh4hG7guFSqtQfoEz64MLfdbubQ3q+l3r/ZSnivGxpKbrttcQwAdNWhQ8n+/YtjP57LJ3QDD9pK29HT6Sw835ybSKsxnVZjeuU+4QNbUq25iagnVKvJ4+yAAICTxcDAymPK40hi4GGrVuvLQnR9YDQj287L4MjO1PuKe3gPb0WfPHB7GrP7F+a22820W/NrXjPAmpqdTX7qp4rH7Gy3qwF62JYtyVVXJU99ajGmfFa6gRPumH3C5yZSHxhdmDs/vTfTB//NwWwbVaORvPvdxfhXfsUxqfSuViv5678uxnrXA/QUoRso3bH7hM8lWb1P+NDmR9iKvp7Nzycvf3kxfslLhG56V39/8o53LI4BuqTdLs44nZ0txlV7n0sndANdNbzlkRncfOaKfcLbrdkMjz5yYe78zL6k07ESvp7UaskLX7g4hl7V15f86q92uwqAjI8nH/zg4njb0WsinGBCN9B1q21Hb7fmUqkuBrXZybvTnJ9Mok/4ujE4uPiTHQDoumZz5THlEbqBk86KfcKT1PtHk05nxT7hfQOj2bz9e9a6VIDj024n3/hGMX7MY+znBLpmbCz5vu9L7r23GFM+oRtYN4a3FFvNV+oTXqkuv1d4Ys9XU+sbthIOnBxmZpJzzy3Gk5PJpk3drQfoWf39yQUXJJWKIybWitANrDsrbUfvtFsLz7caM2nOH0pz/pA+4d02Pb3Yp/v225Ph4e7WA92kNw9ATxK6gXWvWq0n1cVvZ9Vaf0a2nXfUwWyHt6MPjpyxsGre6bTTaTethJel00nuvntxDL1q06bixCKALpuZST72sWLTzcxMMjTU7Yo2PqEb2HAq1dox+4T3LekT3pybyKF9tziYrSyDg8mXvrQ4BgC66tChxd+HHzokdK8FoRvY8I7VJ7zVnFn4c6U+4YMjO1Or+2n0kNVqyZOe1O0qAID7Lb2P2z3da0PoBnra4MjO9A/vWLFPeKs5k8FNpy/MbcxNpNOatxIOPHhzc8lLX1qM//RPk4GB7tYD9KyxseSqq5Kbb3Z6+VoRuoGet1qf8GZjMrW+xYO/5qZ2Z35mbxJ9wo9bo5G8973F+Morkz4H2NGjms3kf/yPYnzNNUI3QA8RugGOsNp29FrfUOrNTSv2Ca/1DWd0xxNTqei9u8z8fPKLv1iMf+qnhG56V19f8pa3LI4BuqTdTqamih/R7XZS9dKldEI3wHEa2nxWhjaftXKf8FSWBe6pA3cklaqV8Foted7zFsfQq/r7k9/5nW5XAZDx8eTaaxfH244+8oYTTOgGeJBW7BPeml94vtNuZX5mbzqdzip9wnsohA8OJh/9aLerAADu12yuPKY8QjfAw3Rkn/BUKtm09dxV+4T3D27LyCnnLUxvtxqp1mw3hQ2t3U7uuacY79xpPyfQNWNjyZOfnNx3n4PU1orQDXCCVSrVY/YJry/pE95qzubg7i/17ko49IqZmeSss4rx5GSyaVN36wF6Vn9/cvHFxenlWoatDaEboGTH7BPemCr+XKVP+MDwqan3j6xpvSfU9HRy4YXF+CtfSYaHjz0fNrK6l10Avch3f4Au6h86JWM7L1m1T3jfwNjC3FZjJq3G1PpaCe90kjvuWBxDr9q0qWihB9Bls7PJpz9dHKI2O1scv0K5hG6ALlu1T/j8ROr9mxfmzc/szcyh7yZZRwezDQ4mn/3s4hgAWFM335zs27f49oEDyTe+UYw//vFk69bF54aGku/7vqRSWdsaNzqhG+Aks9p29EqtL/W+VfqE14eyefvjU60NdKPk1dVqyTOe0e0qAKAnjY8nF1yw+vM/8RNHX7vhhuQHfqC0knqS0A2wTgxuOj2Dm05fsU94uz2fSnVxtXtm4s60242TfyUcesXcXPLKVxbjP/qjZOAk+wUZsCGNjSWXX5586lNFE4UHctZZxUo3J5bQDbDOrLQdvd2cSWXJXrD56T1ptea63ye82Uw+9KFi/OM/7iApelezmbzzncX4LW8RuoE184Y3JJ/85PHN/f3fd6J5Gbz6AVjnqtV6qkvu/U6SoS3nrNonvNY3nC2nXrgwt91uFr3GyzA3l7zoRcV4clLopnf19RWvZg+PAdbI059erHZ/+tNJq7XynEolOfPM5Od/fm1r6xVe/QBsQMfuE74Y0Duddg7euyvV2kA5K+HVavKsZy2OoVf19yeve123qwB61BvekHz/96/+fKdjlbtMQjfABnfkdvTOktZdrcZ0Op32qn3C+4e2p29g9KF/8qGh5DOfeTjlAwAP07FWu61yl8+yA0CPWXrvd71/JGM7L8nItvMyOLIz9b5NSbIQwFvzkwtz261G5qf3pt2aX/OaYd3rdIpjhMfH9awHuuINb1h5e7lV7vJZ6QboccfsEz44tjCvMXcwUwduT7KO+oTDyWJ6erEZ7uRksmlTd+sBes5Kq91WudeG0A3AMqv2CU+O2Sd809bHpt4/svyDzcwUP+WT5F/+pdhuDgB0xZH3dlvlXhtCNwDHpX94e/qHt6/YJ7zVnFm22j03tTvNxlT6GrX0f+UrxcXjaRAKG9XwcDJ//60ZTvEHuuTpT08uu6zo251Y5V4rvusD8KCstB29NT+5LHTPz+xPY248c61W6u/749RqA8ns3emrbLUdnd5UqWgVBpwUXvnKxdD9ylda5V4LQjcAD0u1Wk91yb3fSTI4cnpqfUPFSvil35dmkszuzdzs3lQqtYztfEoqleIsz067lUq1tuZ1A0AvWrq9/Moru1dHLxG6ATjh+ga3pm+wODTqyO3olVrfQuBOkok9NyeJg9nY2Obnk9e8phi/8Y2WloCuGRtLbrstmZhITj2129X0BqEbgPI0m6led136k/Q/5znJlno6ncV7u9utRlrNmSRZuU/4kvAO61qjkbztbcX4da8TuoGuqVSSxz2u21X0FqEbgPLMzSVXXFGMJyeTej2V2bniULWBgVTrfRnbeUma0wfSnNiT5vyhNPvaC6ejZ3omfVv6k4GBdGrVNGb2p17flGqjXbxqGB5e/Fyzs0UPlP7+xXtn2+3iBPVkeYumBzN3bi5pNot5h4NSp1O0gHqwc4eHi7qTYuWz0SgO1RoYWPwYU1MPfu7QUFK9f/dAo1HMr9WSwcHFue12Mf945k5PF3UPDhbPJcXfa26ueN+lp9A/mLkzMwtf+4XDxFqt4uvxYOYez9f+wcx9MF/7h/rvpF5Pfvu3i7F7u4Eu6nSKb1dJ8a3p8I8aylN94CkA8BBVq8lTnlI8Dge9yy9PRkaSj3zk/in19H/xaxk+83sy+vxfytjOSzKy7bwMjuzM0M/9ajH3Ax9IqzGVyQO359A/vi8ZGUn7/HMzP7037db9J0L/zM8Uc9/znsXPf8stxbVzzlle1y//cnH9mmsWr33nO8W1I/favfzlxfW3vnXx2t69xbWRI1qk/e7vFtde//rFa9PTi3MPB7CkmDMyUrzPUofn7t27eO2tby2uvfzly+eeempx/TvfWbx2zTXFtV/+5eVzb765uH7LLYvX3vOe4trP/MzyuU94QnH9ppsWr33gA8W1F7xg+dxLLimu33DD4rWPfKS4dvnly+deemlx/brrFq996lPFtcOt5Q577nOL6x/60OK1z32uuHbhhcvn/uRPFtff+96j/75HLuf83M8V19/97sVr3/hGce3MM5fPfelLi+tvf/vitXvuKa6NjS2f+8pXFtff9KbFawcPLn49q9Xi6/jWt1rlBrpqfLz4NtTfX4wpn5VuAMozNJTceOODepdlp6NXF1cEO5126n2b0ll4u5XJA7cnKbajb241/CYZAB5Ao7HymPJUOp1O54GnAcAJ8mC2Da8wt92YS/PgfWk2JtOsNdJsFFusN488Jn31TUl/fxqtqczP7k9ffST1dl9xMFsPby+/+uqr8/l/+Zfs+uxnbS/v1vbypV9PgC6anV3cDPXnf7782z/lELoBWNcOn47eNzi2cCr61Pg3Fw5lSxYPZuvV09GvvvrqfP7zn8+uXbu6XQoA9BzbywFY1w5vR1+qf+iUVCrVolVZY2rhYLbDQXzs9IsXgnen017WwgwA4EQSugHYcPoGtqRvYEuSo/uEdzqtZSvdk/tvS7s529Mr4QD0jvn5xTMfX/1qZzuuBaEbgA1t2cFsybI+4Z1OJ635Q2m3myv2Ce8b2JL+oVO6UjcAlGF8fLHJxtVXH920gxNP6AagpyzdSl6pVDJ62pOXrYQv3Y7ebs4uC93zswdS79tkJRyAdateX3lMefxnBqCnHbkSvnQ7eq2+eJp2u9XI5L5bkziYDYD1a2ws+e53F8eUT+gGgCWODOGHtduN1Ps2rXgwW60+lMHNZ2ZgeEc3SgaA41atJmee2e0qeovQDQDHod43nNFTLzjqYLbDITxLOnC2GtOZnbrXSjgAIHQDwIOx2nb0ev/mhTmNuYOZm9p99MFsQjgAa+zSSy/NDTfckCSp1WrZvn1Hdu9+WpLfyYED32+L+RrQmBQAHobDIbxa61u4Vu8fyeDIztT7NiXJwlb0yQO3Z/zeXWnMTSzM7SxZIQeAE6nT6eTLX/5y/tN/+k+55557cscdd+Rd77o2SX+SS/Oxj32s2yX2BCvdAHCC1fs3L6x8H7kdvdWcWQjjSTIz8e00ZsethANwwt1+++05dOhQLr300px++ulJktNOOyeXX/7s7Np1Wf7wD1+TF7/4eV2ucuMTugGgREf1CW+3UqnWFp4/HMRX7BPeP5q+oVNSqVS6UjsA69uuXbtSq9Vy4YUXLlwbGkr+8R+TN7/5h/Pa17427XY71aoN0GUSugFgDS0N3Ekysv0Jq/YJb8weyNjw9oW5jbmJ1OqDVsIBOC433XRTzj///AwPDx/1XF9fX2q1msC9BoRuAOiiY/UJr1QWA3qn08nU/tvSbjcczAbAcdm1a1cuuuiiZdfm55O3vz3567++Leedd36XKustfq0BACeRwyF8eMs5GRp9xML1Tru5EK6PPJjt4O4vZ3by7m6VDMBJ6ktf+tJRoXt8PHnVq2byhS/8XZ773J9Mkjz1qU/NF7/4xSTJL/zCL+Rd73rXWpe6oVnpBoB1oFrrO2af8E67uTC33W5mZuI7CyvhAPSeb37zmxkfHz8qdFer7SQvS1LPS1/6a0mS1772tXnTm96UZzzjGRkZGcnLXvaytS94AxO6AWAdWW07eq0+tDCnOX9oWZ/w+em9abfmMj+913Z0gB6xa9euJMnOnTtz7733ZmJiIrt27cp//a//Naee+u38yZ98OOecszVJcsUVV+T3fu/3Mjk5qY1YCYRuAFjHDofwZddqAxkc2bmwEt7uNNNpNzN54PYkyaatj8vAkgPaANh4brrppiTJueeem1qtli1btuT888/PFVdckZe97GXZtm3xZ8cXvvCFjI+P59xzz029LiKeaP6LAsAGU+8bTn3LOUmKlfC+gbFUqn2p921KszG1rE/47NS9mZu818FsABvMm9/85rz5zW9+wHl33XVXrrrqqnz605/OT/zET+SWW27J4x//+DWosHcI3QCwgVWr9YU2Y4fvCa9WF3/8P2Cf8MGtR7U5A2D9OngwGRsrxvfcM5MXvvCFecc73pFHPepRedWrXpU/+IM/yHvf+96u1rjRVDqdTqfbRQAA5bn66qvz+c9/fuH+vqVWOphtUSVjO5+yENKbjelUq3Ur4QDr2H33JaedVox3705OPbW79fQCK90A0MOO1Se8c8Sq+PT4N9Kcn9QnHGAd27w5ufDCxTHlE7oBgAVHhvDDlm6MW2k7ev/QtgyNnr2mtQLw4A0NJV/+crer6C1CNwDwgCqVSkZ3PHHVPuGt5uyy+dMHv5163yYr4QD0PKEbADhuq21HryzZht5qzmR28u6Ft21HBzh5NBrJu99djH/lV5K+vu7W0wuEbgDgIVupT3hSWdYn/Mjt6EOjj8jQ5rPWvlgAMj6evPzlxfhFL0p27OhqOT1B6AYATqhafTDDS/qEH7kdvVYfXpjbmDuY6fF/sxIOsEaq1ZXHlEfoBgBKs9J29Epl8VVec+7gMfuE1wfHlp2gDsDDMzaWfOlLi2PK56cYALBmjgzQAyNnpNY3ssLBbEUIHz31woX3aTVnU6lUrYQDPAy1WvKkJ3W7it4idAMAXXOsPuGtxlRq9aGFubOHvpu56T0OZgNgXRG6AYCTxmp9wpMikCcr9wmvD4xmeMujUqlU1rRegPVmYiLZsqUYHzyYjI52t55eIHQDAOvC5lPOX7VPeKVSXRa4ZyfvTrXabyUc4Aizs8vHQnf5hG4AYN1YbTv6Up12KzMT30mn00miTzjAUiMjyRlnLI4pn9ANAKxbK/UJ73TaGdh0+qp9wgc2nZZNY4/uRrkAXTc8nNx1V7er6C1CNwCwoVRrfQ/QJ3zxcLZWcy6T+26xEg5AaYRuAGDDWmk7+lLN+Ylj9wkf2JJqrW/N6wYoS6ORvPe9xfjKK5M+3+JKJ3QDAD3jyD7hfYNbM7LtvFX7hI9sOzf9Q6ckSdqtRpKOlXBgXRsfT37xF4vx85+f7NjR1XJ6gtANAPSsY/UJb85NpN6/eKzv3PTuzEzc6WA2YF2rVlceUx6hGwDgfsfsE96cS7J6n/Ch0bOPWkkHONmMjSWf/ezimPL5yQAAcBw2bX1MhrY8csU+4e3W/MLhbUkyN70nlVSshAMnnVotecYzul1FbxG6AQCO02rb0TvtRiqVxX2as4e+m1ZzNok+4QC9TugGAHiIVusT3je4NZVV+oT3DW7N5lPO70a5AJmYSLZsKcYHDyajo8eez8MndAMAnECVSvWYfcKXrnR3Ou0c2vPV1PpHrIQDa2J2dvlY6C6f0A0AUJIV+4R32gvPtxpTad7/0CccWAubNiX1+uKY8gndAABr5MjTzWv14WP2CR8aPTtDm89MknTarXQ6LSvhwMOyaVPSaHS7it4idAMAdEmlWjtmn/C+gcV9n/OzBzJ14HYHswGsM0I3AMBJ4ph9wlvFjZir9QkfHDkztfrAmtYLrD/NZvKhDxXjH//xxa3mlMd/YgCAdWBo81kZ2HT6in3CW82ZDG0+a2FuY3Y8nXbTSjhwlPHx5EUvKsZ79iTbt3e1nJ4gdAMArBOr9QlvNaeXhevZqXvSmB1Pok84QLcJ3QAA69Rin/Dl29HrfSPptBor9gmv923K6KkXdKFa4GSwdWvyD/+wOKZ8QjcAwAYzNPqIDI0+YsU+4ZUjTlCf3HdrKrV+K+HQI2q15Id/uNtV9BahGwBgg1ppO3qnvdgrqN1qZH72QJKs0idcCAd4uKrdLgAAgLVRrdZTqw8tvF2pVDOy7bwMjuxMvW9TkixsRZ88cHtmJu5cmNvpdNJuza95zcCJdehQUqkUj0OHul1Nb7DSDQDQox6oT3h9YMvC3FZjKhN7brYSDuvczMzy8ebN3aulVwjdAAAkOXaf8FZzZuHPlfqED2w6PfW+4TWtF3jwhodXHlMeoRsAgAc0MLwjfYNbV+0T3j+02Oy3OT+ZdnPWSjichEZGkk6n21X0FqEbAIDjslqf8Ob8ROr9Iwvz5mf2ZHby3iQOZgMQugEAeEhW245erQ2k3rdpxT7htfpQNu/43lSrXoZCNzSbyXXXFePnPCep+1+xdP4TAwBwQg2OnJHBkTNW7BPe6bSXBe7pg/+WTqdjJRzWyPh4csUVxXjPnmT79mNO5wQQugFgA/nOd76Ts88++7jm3nnnnTnzzDNTreogSjlW2o7ebs4uPN/pdDI/vTftdlOfcGDD8lMWADaIqampPPKRj8z73ve+B5x766235tGPfnSuv/76NagMCtVqfdm930knw2OPWbVP+OT+25a9f7vVWMNqYWMaG0s+9KHiMTbW7Wp6Q6XTcXYdAGwUL3jBC/J//s//yde//vXUarUkydVXX53Pf/7z2bVr18K8K6+8Mtdff33uuOOODAwMdKtcWObI7eh9g1szNPqIhefG7/liavVBK+HAumJ7OQBsIL//+7+fpzzlKXn/+9+fK6+8csU5t956a6699tpcc801AjcnlWP2CW9MJems3id8eEfq/ZvXuGKAB2Z7OQBsIBdffHF+9Ed/NG94wxvSarVWnPMf/+N/zJlnnplf+qVfWuPq4KHrG9iSsZ2XZGTbeStuR281phfmtppzxb3irflulQsnrcnJpFIpHpOT3a6mN1jpBoAN5lir3Va5Wc+O2Sd8YMvCvMbs/kwf/FYSB7PBkaanl49HRlafy4lhpRsANpilq93NZnPZc1a52UgOh/DhLeekVh9cuF6p1lc8mG383l05uPvLaTVmulUydN3Q0MpjymOlGwA2oKWr3YdZ5aZXDAzvyMDwjhX7hLdbs8tWu2cn70mrOWMlnJ6xeXPiKO215fRyANigDp9k/oM/+IO58cYbc/755zuxnJ7WbjfTakynb2B04drEnpvTnF+8sdV2dOBEE7oBYIPatWtXnvKUp+SHfuiHcs899+SWW27JNddck5e97GXdLg1OGvOzB9KcO7iwEr5UtdafsdMvXni7026lUq2tdYlwQrVayQ03FONnPjOp+SddOqEbADawF7zgBbn++utTrVazadMmq9xwDEduR6/WhzKy7XELz4/f88XifnEr4axje/cmO3YU4z17ku3bu1tPL3BPNwBsYIfv7U6SN77xjQI3HMORp6MvXZtqNWfTbjeSdmPFPuH9Q6ekb8kJ6nCyWrrkavl1bVjpBoAN7txzz82dd96Z8fFxoRsehpUOZjtscOSMDG95ZJJiG3pj9oCVcE5KzWbygQ8U45/+6aRuGbZ0QjcAbHD79+/P/v3789jHPrbbpcCGsjSE9w1uWzigrTF7IIf23ZrEwWyA0A0AACfU/OyBzE7cedTBbEkRwofHHr3sBHVgY7OZAAAATqD+wa3pH9y64nb0VnMm1eriS/D5mX1pzB20Es6amZpKzjyzGN91V7JpU3fr6QVCNwAAlODIg9kOh/Ba3/DCnPmZ/Zmf2XvUwWxCOGWZmkoOHlwcC93ls70cAAC6pDE7nsbc+Ip9wpNKxnY+ZWFlvNNpp1Kprn2RbCgTE8mW+w/aP3gwGXWnQ+mEbgAAOAkcuR09lUpGdzxx4fmJPV9Np920Eg7rjNANAAAnoaUr251OO+P3fCFHvnRf2I4+MLawjR04uQjdAACwDhyrT3j/4LaMnHLewtvzM/tS799sJZyjtFrJTTcV44suSmq17tbTC4RuAABYh5aG8HrfSPqHtydJWs3ZHNz9pSQOZuNo+/Yl24t/Ktm7NznllO7W0wucXg4AAOvQkaejH9ZpN1Lv27TQoqzVnFl2OvrQ6CPSPyRp9ap2e+Ux5RG6AQBgA6n3b87oqRes2ic8qSzMbc4fytz0HivhPWRsLHn3uxfHlM/2cgAA6AGHQ3h9YHShDdnMxJ2ZOfTdhTm2o8OJJ3QDAECPasxNpDG7f5U+4cnoqRem3jecRJ9weKhsLwcAgB7VNzCavoHRJEefjt5uzaVWH1qYOz3+zTTnJ62Er3PT08mFFxbjr3wlGR7ubj29wEo3AABwlE67lUp1sZ/UwXtvSqs1t2zO0u3oh09P5+R2333JaacV4927k1NP7W49vcBKNwAAcJSlgTtJNp96wYoHs7WaM2nOH1oWuhtzB1OrD1kJPwkNDKw8pjxuygCADeraa6/N4OBg7rrrroVrV111VS644IIcPHiwi5UB69HhFmXDW87J6KkXZGznJRnZdl4GR3ZmYHjHwrxOp53Jfbdm/N5dObj7y5ka/2bmp/em3ZrvYvUctmVL0ukUjy1bul1Nb7C9HAA2qE6nkyc96Ul55jOfmXe84x15/etfnz/7sz/L5z73uZx55pndLg/YoFrN2Uztv23Fg9lq9aEMjJyewU2nd6Ey6A7bywFgg6pUKnnjG9+YF77whTnjjDPy9re/PTfccIPADZSqVh88dp/wTnthbrs1l5lDdzmYbQ2128kttxTjxz8+qdr7XDor3QCwwV100UX52te+ln/4h3/Is571rG6XA/SowyG81jecWn0wSTI3vSdTB+5YmKNPePn27Uu233/7/d69ySmndLeeXmClGwA2sOuuuy633nprWq1WTjt8XC1AFxy+J3ypWn0ogyM7jzqYbW5qd5Jk5JTz0z+4NUlxy0ylUlnzujeaVmvlMeWx0g0AG9RNN92UZz/72bnmmmvy/ve/P8PDw/ngBz/Y7bIAVnT0dvTpjJ1+caq1viTJzKHvZn56r5Xwh6nRSK65phj/6q8mfX3dracXCN0AsAF961vfytOf/vT82q/9Wl796ldn165dueSSS3LjjTfm4osv7nZ5AA+o3W6mWl3cmHto7y1pzI0vm7N0O3rf0LZUKm5Q5uQjdAPABrN///484xnPyKWXXpo//dM/Xbj+Yz/2Y5mbm8snPvGJLlYH8NCsdDDbYZVKNWM7L1kI3c35yVRr/VbCOSkI3QAAwLqzNISn08nw2KMWnju4+0tpNWcdzLaCmZnk8suL8Sc/mQwNdbeeXiB0AwAAG0an3cqhvV9btU94//D2DG0+qwuVnRzuuy85fK7m7t3Jqad2t55e4PRyAABgw6hUa8fsE95uzS/M7XTamTn47dT7N/fMSnh//8pjymOlGwAA2PAOh/BqrT/1/pEkSXP+UCb2fHVhju3olEHoBgAAetLhnuBHHsx22PCWR2Vw5PQuVMZGYns5AADQk2r1oQxvOSfJyqej1/qGF+bOz+zLzMSd634lvN1OvvOdYnz22UlVl7XSWekGAAA4QrvdTKVSXWhDNjX+zcxN7V42Z1mf8MGtqVRr3Sj1Qdm/PznllGK8b1+ybVt36+kFfq8BAABwhGq1vhC4k2Ro9OyMbDsvgyM7U+/blGRxe/rkgdvTbjcX5rYayw9sO5k0myuPKY/t5QAAAA+gWq2nf2hb+oeKpeGl29HbzdnU6gMLc6cnvp3G7IGT8mC2sbHkD/5gcUz5bC8HAAA4gQ7t/XoacwePul6rD6VvcGzhPnJ6g5VuAACAE2jz9ies2ie82li+2j0zcefCivjJsBLOiSd0AwAAnGCrbUdfep94u9XIzKHvLry9FtvRZ2eTn/mZYvz+9yeDgyf8U3AE28sBAAC6oN2az+zk3av2CR8cOSPDWx55Qj/nffclp51WjHfvTk499YR+eFZgpRsAAKALqrX+4+4T3mxMZWr/7Q97Jbyvb+Ux5bHSDQAAcJJpt5uppLLQ+3t28p5MH/zWsjnLtqMPjqVataZ6MhK6AQAATnIrrYQvtXn7E9I3sKWY25pLUnEw20nCr0IAAABOcsfqE96cP5R638jC3NnJezI7ec+KB7N1OsnevcW87duTSqUbf5veYqUbAABgA5ncf3vmZ/Yedb1WH8rE9FjOfvQ5SZJ9+5Jt29a4uB5kpRsAAGADGdn2uLTbj1qxT/js1OLSdrPZxSJ7iJVuAACADe7wdvROp5WB4R3dLqenCN0AAABQkmq3CwAAAICNSugGAACAkgjdAAAAUBKhGwAAAEoidAMAAEBJhG4AAAAoidANAAAAJRG6AQAAoCRCNwAAAJRE6AYAAICSCN0AAABQEqEbAAAASiJ0AwAAQEmEbgAAACiJ0A0AAAAlEboBAACgJEI3AAAAlEToBgAAgJII3QAAAFASoRsAAABKInQDAABASYRuAAAAKInQDQAAACURugEAAKAkQjcAAACUROgGAACAkgjdAAAAUBKhGwAAAEoidAMAAEBJhG4AAAAoidANAAAAJRG6AQAAoCRCNwAAAJRE6AYAAICSCN0AAABQEqEbAAAASiJ0AwAAQEmEbgAAACiJ0A0AAAAlEboBAACgJEI3AAAAlEToBgAAgJII3QAAAFASoRsAAABKInQDAABASYRuAAAAKInQDQAAACURugEAAKAkQjcAAACUROgGAACAkgjdAAAAUBKhGwAAAEoidAMAAEBJhG4AAAAoidANAAAAJRG6AQAAoCRCNwAAAJRE6AYAAICSCN0AAABQEqEbAAAASiJ0AwAAQEmEbgAAACiJ0A0AAAAlEboBAACgJEI3AAAAlEToBgAAgJII3QAAAFASoRsAAABKInQDAABASYRuAAAAKInQDQAAACURugEAAKAkQjcAAACUROgGAACAkgjdAAAAUBKhGwAAAEoidAMAAEBJhG4AAAAoidANAAAAJRG6AQAAoCRCNwAAAJRE6AYAAICSCN0AAABQEqEbAAAASiJ0AwAAQEmEbgAAACiJ0A0AAAAlEboBAACgJEI3AAAAlEToBgAAgJII3QAAAFASoRsAAABKInQDAABASYRuAAAAKInQDQAAACURugEAAKAkQjcAAACUROgGAACAkgjdAAAAUBKhGwAAAEoidAMAAEBJhG4AAAAoidANAAAAJRG6AQAAoCRCNwAAAJRE6AYAAICSCN0AAABQEqEbAAAASiJ0AwAAQEmEbgAAACiJ0A0AAAAlEboBAACgJEI3AAAAlEToBgAAgJII3QAAAFASoRsAAABKInQDAABASYRuAAAAKInQDQAAACURugEAAKAkQjcAAACUROgGAACAkgjdAAAAUBKhGwAAAEoidAMAAEBJhG4AAAAoidANAAAAJRG6AQAAoCRCNwAAAJRE6AYAAICSCN0AAABQEqEbAAAASiJ0AwAAQEmEbgAAACiJ0A0AAAAlEboBAACgJEI3AAAAlEToBgAAgJII3QAAAFASoRsAAABKInQDAABASYRuAAAAKInQDQAAACURugEAAKAkQjcAAACUROgGAACAkgjdAAAAUBKhGwAAAEoidAMAAEBJhG4AAAAoidANAAAAJRG6AQAAoCRCNwAAAJRE6AYAAICSCN0AAABQEqEbAAAASiJ0AwAAQEmEbgAAACiJ0A0AAAAlEboBAACgJEI3AAAAlEToBgAAgJII3QAAAFASoRsAAABKInQDAABASYRuAAAAKInQDQAAACURugEAAKAkQjcAAACUROgGAACAkgjdAAAAUBKhGwAAAEoidAMAAEBJhG4AAAAoidANAAAAJRG6AQAAoCRCNwAAAJRE6AYAAICSCN0AAABQEqEbAAAASiJ0AwAAQEmEbgAAACiJ0A0AAAAlEboBAACgJEI3AAAAlEToBgAAgJII3QAAAFASoRsAAABKInQDAABASYRuAAAAKInQDQAAACURugEAAKAkQjcAAACUROgGAACAkgjdAAAAUBKhGwAAAEoidAMAAEBJhG4AAAAoidANAAAAJRG6AQAAoCRCNwAAAJRE6AYAAICSCN0AAABQEqEbAAAASiJ0AwAAQEmEbgAAACiJ0A0AAAAlEboBAACgJEI3AAAAlEToBgAAgJII3QAAAFASoRsAAABKInQDAABASYRuAAAAKInQDQAAACURugEAAKAkQjcAAACUROgGAACAkgjdAAAAUBKhGwAAAEoidAMAAEBJhG4AAAAoidANAAAAJRG6AQAAoCRCNwAAAJRE6AYAAICSCN0AAABQEqEbAAAASiJ0AwAAQEmEbgAAACiJ0A0AAAAlEboBAACgJEI3AAAAlEToBgAAgJII3QAAAFASoRsAAABKInQDAABASYRuAAAAKInQDQAAACURugEAAKAkQjcAAACUROgGAACAkgjdAAAAUBKhGwAAAEoidAMAAEBJhG4AAAAoidANAAAAJRG6AQAAoCRCNwAAAJRE6AYAAICSCN0AAABQEqEbAAAASiJ0AwAAQEmEbgAAACiJ0A0AAAAlEboBAACgJEI3AAAAlEToBgAAgJII3QAAAFASoRsAAABKInQDAABASYRuAAAAKInQDQAAACURugEAAKAkQjcAAACUROgGAACAkgjdAAAAUBKhGwAAAEoidAMAAEBJhG4AAAAoidANAAAAJRG6AQAAoCRCNwAAAJRE6AYAAICSCN0AAABQEqEbAAAASiJ0AwAAQEmEbgAAACiJ0A0AAAAlEboBAACgJEI3AAAAlEToBgAAgJII3QAAAFASoRsAAABKInQDAABASYRuAAAAKInQDQAAACURugEAAKAkQjcAAACUROgGAACAkgjdAAAAUBKhGwAAAEoidAMAAEBJhG4AAAAoidANAAAAJRG6AQAAoCRCNwAAAJRE6AYAAICSCN0AAABQEqEbAAAASiJ0AwAAQEmEbgAAACiJ0A0AAAAlEboBAACgJEI3AAAAlEToBgAAgJII3QAAAFASoRsAAABKInQDAABASYRuAAAAKInQDQAAACX5/wEdHwQzxww7jgAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ag = AcquisitionGeometry.create_Cone2D(source_position=[0,-10],detector_position=[0,10],\n", + " rotation_axis_position=[-0.5,0])\\\n", + " .set_panel(num_pixels=10)\\\n", + " .set_angles(angles=range(0,180))\n", + " \n", + "show_geometry(ag)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Create a more complex AcquisitionGeometry\n", + "\n", + "We can also set up rotations in the system. These are configured with vectors describing the direction.\n", + "\n", + "For example a detector yaw can be described by using `detector_direction_x=[X,Y]`.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "execution": { + "iopub.execute_input": "2024-10-10T15:02:39.871906Z", + "iopub.status.busy": "2024-10-10T15:02:39.871492Z", + "iopub.status.idle": "2024-10-10T15:02:40.100625Z", + "shell.execute_reply": "2024-10-10T15:02:40.100144Z" + } + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA90AAAPdCAYAAACXzguGAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAADUA0lEQVR4nOzdeXxU1f3/8ffsmWSSsIR9FcNa2RRRwApWEWur6LdVq8iiSFWqoCguVRS3uhW31upPa8G6tNoCaq0LioIoyioisgQQFBXLTgiEWT+/P4ZcGEhCgEwC5PV8PHgwc+65937m5p6b+eSce67LzEwAAAAAAKDSuas7AAAAAAAAjlYk3QAAAAAApAlJNwAAAAAAaULSDQAAAABAmpB0AwAAAACQJiTdAAAAAACkCUk3AAAAAABpQtINAAAAAECakHQDAAAAAJAmJN0AAAAAAKQJSTcAAAAAAGlC0g0AAAAAQJqQdAMAAAAAkCYk3QAAAAAApAlJNwAAAAAAaULSfYhWr14tl8ulBQsWlFln2rRpcrlc2rJlS5XFdShatmypxx57zHnvcrn02muvVVs8QFWrSLs+XPTp00fXXXdddYdRpr2vJ6UZO3asunTpUiXxYP8O93PqSFHR6wjHGwCOfiTd2K+1a9fq5z//eaVu80j4klGRZAGHj4M9p4YMGaLzzjsvpaxZs2Zau3atjjvuuMoJLo0mTZqke+65p7rDKNOcOXP029/+1nlf2h/xbrzxRk2dOrWKI0NlmTBhgmrVqlXp2z0Sfk+UZ+/rSFl/gD/c2zAA4NB5qzuAI1kkEqnuEA5aPB6Xy+WS273/v7s0bNiwCiLCYa2gQFq5UsrPl1q3rtJdRyIR+f3+Kt2nx+M5Ys77OnXqVHcI5apXr95+64RCIYVCoSqI5shQjc3tqFQd1xCp4teRw70NAwAO3UH3dJuZtm/fXuX/zKxC8f3nP/9RrVq1lEgkJEkLFiyQy+XS6NGjnTpXXnmlLr74Yuf9xIkT9ZOf/ESBQEAtW7bUuHHjUrbZsmVL3XvvvRoyZIhyc3M1bNiwUvf91ltvqU2bNgoGgzrttNO0evXq/ca7ZcsW/fa3v1WDBg2UkZGh4447Tm+++WaFY9u8ebMGDRqk2rVrKzMzUz//+c+1fPlyZ3lJT8Sbb76pDh06KBAI6JtvvtG6det0zjnnKBgM6phjjtFLL720T2x79kyVDJebNGmSTjvtNGVmZqpz58769NNPnfobN27UxRdfrKZNmyozM1MdO3bUP/7xD2f5kCFDNH36dD3++ONyuVxyuVzOMVq8eLHOPvtshUIhNWjQQAMHDtSGDRvKPG7ffPONzjnnHNWuXVtZWVn6yU9+orfeektmpvz8fP3xj39Mqb9o0SK53W6tXLlSUnJYa/PmzRUIBNS4cWONGDFCUrKH5ZtvvtH111/vxFhi5syZOvXUUxUMBtWsWTONGDFC27dvd5aXnCeDBg1SKBRSixYt9Prrr2v9+vXq37+/QqGQOnbsqLlz55b5uQ4bmzZJZ50ltW0rnX221KZN8v3mzWnbZZ8+fXTNNddo1KhRysvLU9++fSVJ06dPV/fu3RUIBNSoUSPdcsstisVikso+p+LxuIYOHapjjjlGwWBQbdu21eOPP+7sa+zYsXr++ef1+uuvO+tNmzat1GGh5e2/JO4RI0bopptuUp06ddSwYUONHTu23M86Z84c9e3bV3l5ecrNzVXv3r01f/58Z/m0adPk9/s1Y8YMp2zcuHHKy8vT2rVrnf3u2Rv4l7/8Ra1bt1ZGRoYaNGigX//612Xuv+S68Nprr6lNmzbKyMhQ3759tWbNmpR6Tz31lI499lj5/X61bdtWL7zwQsrystqRlDpipGXLlpKk888/Xy6Xy3m/9/DyRCKhu+++W02bNlUgEFCXLl30zjvvOMsrch06ElVDc9P27duda1WjRo32+d0iJZPWm266SU2aNFFWVpZOOukkTZs2TVLyHL3sssu0detWpw2VnPflrVfik08+Ue/evZWZmanatWurX79+2rx5c7m/JyrSFku7huytZJTLXXfdpfr16ysnJ0dXXnllyh/Uw+GwRowYofr16ysjI0OnnHKK5syZ4yzfvHmzBgwYoHr16ikYDKp169YaP368pNTh5atXr9Zpp50mSapdu7ZcLpeGDBnixLtnG67o7/N3331X7du3VygU0llnneVcEwAAhyE7SEVFRSapyv8VFRVVKL4tW7aY2+22uXPnmpnZY489Znl5eXbiiSc6ddq0aWNPPfWUmZnNnTvX3G633X333bZs2TIbP368BYNBGz9+vFO/RYsWlpOTYw8//LAtX77cli9fbqtWrTJJ9vnnn5uZ2bfffmuBQMBGjhxpS5cutRdffNEaNGhgkmzz5s2lxhqPx+3kk0+2n/zkJzZlyhRbuXKl/ec//7G33nqrwrGde+651r59e/voo49swYIF1q9fP8vPz7dIJGJmZuPHjzefz2c9e/a0Tz75xJYuXWpFRUX285//3I477jibOXOmzZ0713r27GnBYNAeffRRZ9uSbPLkyWZmzudt166dvfnmm7Zs2TL79a9/bS1atLBoNGpmZt999509/PDD9vnnn9vKlSvtiSeeMI/HY5999pnzs+nRo4cNGzbM1q5da2vXrrVYLGY//PCD5eXl2a233mpLliyx+fPnW9++fe20004r8+f8i1/8wvr27WsLFy50jtv06dPNzOy+++6zDh06pNS//vrr7dRTTzUzs3/961+Wk5Njb731ln3zzTc2a9Yse+aZZ8zMbOPGjda0aVO7++67nRjNzBYuXGihUMgeffRRKygosE8++cS6du1qQ4YMSTlP6tSpY08//bQVFBTY1VdfbdnZ2XbWWWfZq6++asuWLbPzzjvP2rdvb4lEoszPdljo18/M4zGTdv/zeJLladK7d28LhUI2evRoW7p0qS1ZssS+++47y8zMtOHDh9uSJUts8uTJlpeXZ3feeaeZlX1ORSIRu+OOO2z27Nn29ddf24svvmiZmZn2yiuvmJnZtm3b7MILL7SzzjrLWS8cDu/Trve3/5K4c3JybOzYsVZQUGDPP/+8uVwumzJlSpmfderUqfbCCy/Y4sWLbfHixTZ06FBr0KCBFRYWOnVGjx5tLVq0sC1bttiCBQssEAjYpEmTUvY7cuRIMzObM2eOeTwee/nll2316tU2f/58e/zxx8vcf8l1oVu3bs41oHv37tazZ0+nzqRJk8zn89mTTz5py5Yts3HjxpnH47EPPvjAzMpvR2bJ9lByPVm3bp1JsvHjx9vatWtt3bp1ZmZ25513WufOnZ11HnnkEcvJybF//OMftnTpUrvpppvM5/NZQUGBmVXsOnQkqobmZldffbU1bdrUpkyZYgsXLrRf/vKXFgqFnHPKzOySSy6xnj172kcffWQrVqywhx9+2AKBgBUUFFg4HLbHHnvMcnJynDa0bdu2/a5nZvb5559bIBCwq6++2hYsWGCLFi2yP/3pT7Z+/foy23RF2+Le15DSDB482EKhkF100UW2aNEie/PNN61evXr2+9//3qkzYsQIa9y4sb311lv21Vdf2eDBg6127dq2ceNGMzP73e9+Z126dLE5c+bYqlWr7L333rM33njDzCzlOhKLxWzixIkmyZYtW2Zr1661LVu2OPHuebwr+vv8jDPOsDlz5ti8efOsffv2dskllxzayQAASJujNuk2Mzv++OPtj3/8o5mZnXfeeXbfffeZ3++3wsJCW7t2rUlyfhlfcskl1rdv35T1R48enZK0tWjRws4777yUOnt/Ob/11lv3SaZuvvnmcpPud99919xuty1btqzU5fuLraCgwCTZJ5984izfsGGDBYNBe/XVV80s+Utaki1YsMCps2zZMpPkJMNmZkuWLDFJ+026//rXvzrLv/rqq5RjWZqzzz7bbrjhBuf93l8yzMzGjBljZ555ZkrZmjVrnC8ppenYsaONHTu21GU//PCDeTwemzVrlpmZRSIRq1evnk2YMMHMzMaNG2dt2rRxvsjsbc9kocTAgQPtt7/9bUrZjBkzzO12W3FxsbPepZde6iwvOdfGjBnjlH366acmyUnmD0vLlqV++9/7364vzpWtd+/e1qVLl5Sy3//+99a2bduUdvXkk09aKBSyeDzurLf3OVWa4cOH269+9Svn/eDBg61///4pdfZu1xXd/ymnnJKynRNPPNFuvvnm/cZUIhaLWXZ2tv3nP/9xysLhsHXt2tUuvPBC+8lPfmJXXHFFyjp7fu6JEydaTk5OStJenpLrQmnXgJJ207NnTxs2bFjKehdccIGdffbZZnbg7WjP60mJvZPuxo0b23333ZdS58QTT7Thw4eb2cFfhw5n1dHctm3bZn6/3/75z386ZRs3brRgMOicUytWrDCXy2Xff/99yrqnn3663XrrrWaWPI9yc3NTlldkvYsvvth69epVZnyltemKtsW9ryGlGTx4sNWpU8e2b9/ulD311FPOtoqKiszn89lLL73kLI9EIta4cWN76KGHzMzsnHPOscsuu6zU7e99Hfnwww9L/S6w5+c8kN/nK1asSDkGDRo02O9nBgBUj4MeXp6ZmamioqIq/5eZmVnhGPv06aNp06bJzDRjxgz1799fxx13nD7++GN9+OGHatCggdq1aydJWrJkiXr16pWyfq9evbR8+XLF43GnrFu3buXuc8mSJTr55JNThiP36NGj3HUWLFigpk2bqk2bNmVus7zYlixZIq/Xq5NOOslZXrduXbVt21ZLlixxyvx+vzp16pSyXa/Xm/KZ2rVrV6EJcfbcTqNGjSRJ69atk5S8X/y+++5Tp06dVLduXYVCIU2ZMkXffvttuducN2+ePvzwQ+f+zlAo5Px8SoaD723EiBG699571atXL915551auHBhSly/+MUv9Le//U2S9Oabb2rnzp264IILJEkXXHCBiouL1apVKw0bNkyTJ09OGaJYVowTJkxIibFfv35KJBJatWpVqcenQYMGkqSOHTvuU1ZyzA5LZRxzx4oVadv13u1syZIl6tGjR0q76tWrl4qKivTdd9+Vu62nn35a3bp1U7169RQKhfTss8/u91zcW0X3v+fPXUqeg+X9jNetW6errrpKbdq0UW5urnJzc1VUVJQSn9/v14svvqiJEyequLi43Mn9+vbtqxYtWqhVq1YaOHCgXnrpJe3YsaPcz1bWNaDk2lHW9adk+cG0o/IUFhbqhx9+KHefJcq7Dh1pqqO5rVy5UpFIJOV3VJ06ddS2bVvn/fz582VmatOmTcp1b/r06WVelyu63oIFC3T66acfUMwVbYv7+11donPnzinfK3r06KGioiKtWbNGK1euVDQaTTkXfT6funfv7pyLV199tf75z3+qS5cuuummmzRz5swD+jylfb6K/D7PzMzUscce67zf37UGAFC9DnoiNZfLpaysrMqMpdL16dNHzz33nL744gu53W516NBBvXv31vTp07V582b17t3bqWtmKb/ES8r2tr/PXNo6+xMMBve7zfJiK2ufe68XDAZT3pest/e2K8Ln8zmvS9YvuX9+3LhxevTRR/XYY4+pY8eOysrK0nXXXbffiecSiYTOOeccPfjgg/ssK/lCvbcrrrhC/fr103//+19NmTJF999/v8aNG6drr73WWT5w4EA9+uijGj9+vC666CLnC1azZs20bNkyvffee3r//fc1fPhwPfzww5o+fXrK59s7xiuvvDLlntUSzZs3L/f4lHfMDkt7fKErVX5+2na9dzsrrw2Ud/6++uqruv766zVu3Dj16NFD2dnZevjhhzVr1qwDiqei+9/7vHG5XOX+jIcMGaL169frscceU4sWLRQIBNSjR4992krJF/lNmzZp06ZNZV6HsrOzNX/+fE2bNk1TpkzRHXfcobFjx2rOnDnl/jGttGO4Z1lpn72k7GDaUUWUt88SR1ybKkd1NLeK/L5KJBLyeDyaN2+ePB5PyrLyJr+ryHr7+91XVswVaYuH+v3E5XKVeY3ZM4af//zn+uabb/Tf//5X77//vk4//XT97ne/22c+kYqq6O/z0q41B/P9AwBQNY7qR4adeuqp2rZtmx577DH17t1bLpdLvXv31rRp0zRt2rSUpLtDhw76+OOPU9afOXOm2rRps88XhvJ06NBBn332WUrZ3u/31qlTJ3333XcqKCgoc5vlxdahQwfFYrGURGLjxo0qKChQ+/bty9xv+/btFYvFUib0WrZs2SE/T7xkVMGll16qzp07q1WrVimTwEjJ3rs9RxBI0vHHH6+vvvpKLVu2VH5+fsq/8r5ANWvWTFdddZUmTZqkG264Qc8++6yz7Oyzz1ZWVpaeeuopvf3227r88stT1g0Ggzr33HP1xBNPaNq0afr000/15Zdf7jfGvePLz8+vltlx06pNG6lfP2nv89/jSZZX4bTKHTp00MyZM1O+VM6cOVPZ2dlq0qSJpNJ/XjNmzFDPnj01fPhwde3aVfn5+fv0zpW23sHs/2DMmDFDI0aM0Nlnn+1MlLj3xIErV67U9ddfr2effVYnn3yyBg0aVG5i6fV6dcYZZ+ihhx7SwoULtXr1an3wwQdl1i/rGlAyyqR9+/alXn/2vLaU14725vP5yj3eOTk5aty48X73ebSpjuaWn58vn8+X8jtq8+bNKb+Lunbtqng8rnXr1u1zzSuZmbu0NlSR9Tp16lTuo+JK225lt8UvvvhCxcXFzvvPPvtMoVBITZs2da7re56L0WhUc+fOTTkX69WrpyFDhujFF1/UY489pmeeeabMzyOp3PP/YH+fAwAOb0d10p2bm6suXbroxRdfVJ8+fSQlE/H58+eroKDAKZOkG264QVOnTtU999yjgoICPf/88/rzn/+sG2+88YD2edVVV2nlypUaNWqUli1bppdfflkTJkwod53evXvr1FNP1a9+9Su99957WrVqld5++21ntt79xda6dWv1799fw4YN08cff6wvvvhCl156qZo0aaL+/fuXud+2bdvqrLPO0rBhwzRr1izNmzdPV1xxxUH1PuwpPz9f7733nmbOnKklS5boyiuv1I8//phSp2XLlpo1a5ZWr16tDRs2KJFI6He/+502bdqkiy++WLNnz9bXX3+tKVOm6PLLLy/zS8p1112nd999V6tWrdL8+fP1wQcfpHwx8Xg8GjJkiG699Vbl5+enDKOcMGGCnnvuOS1atEhff/21XnjhBQWDQbVo0cKJ8aOPPtL333/vJEI333yzPv30U/3ud7/TggULtHz5cr3xxhtOz/pR5x//kM44I7XsjDOS5VVo+PDhWrNmja699lotXbpUr7/+uu68806NGjXKeexdaedUfn6+5s6dq3fffVcFBQUaM2ZMyszDJestXLhQy5Yt04YNGxSNRg9q/wcjPz9fL7zwgpYsWaJZs2ZpwIABKe0vHo9r4MCBOvPMM3XZZZdp/PjxWrRoUakzTEvJWyieeOIJLViwQN98843+/ve/K5FIpAwX3pvP59O1116rWbNmaf78+brssst08sknq3v37pKk0aNHa8KECXr66ae1fPlyPfLII5o0aZJz/dlfO9pby5YtNXXqVP3444/aXMa03KNHj9aDDz6oV155RcuWLdMtt9yiBQsWaOTIkRU6rkeqqm5uoVBIQ4cO1ejRozV16lQtWrRIQ4YMSTmn27RpowEDBmjQoEGaNGmSVq1apTlz5ujBBx/UW2+9JSn5My0qKtLUqVO1YcMG7dixo0Lr3XrrrZozZ46GDx+uhQsXaunSpXrqqaec621pbbqy22IkEtHQoUO1ePFivf3227rzzjt1zTXXyO12KysrS1dffbVGjx6td955R4sXL9awYcO0Y8cODR06VJJ0xx136PXXX9eKFSv01Vdf6c033ywzOW7RooVcLpfefPNNrV+/XkVFRfvUOdjf5wCAw1zV3DpefW644QaTZIsWLXLKOnfubPXq1dtn5uh///vf1qFDB/P5fNa8eXN7+OGHU5aXNrHW3hOlmJn95z//sfz8fAsEAvbTn/7U/va3v5U7kZpZcvKayy67zOrWrWsZGRl23HHH2Ztvvlnh2DZt2mQDBw603NxcCwaD1q9fP2eGWLPSJ7oxS07y9Ytf/MICgYA1b97c/v73v5c78VFpn3fz5s0myT788EPns/Tv399CoZDVr1/fbr/9dhs0aFDKZFXLli2zk08+2YLBoEmyVatWmVlyEpnzzz/fatWqZcFg0Nq1a2fXXXddmbN8X3PNNXbsscdaIBCwevXq2cCBA23Dhg0pdVauXGmSnIlvSkyePNlOOukky8nJsaysLDv55JPt/fffd5Z/+umn1qlTJwsEArZnU5k9e7b17dvXQqGQZWVlWadOnVImfSrtPNnzGJZ1HA9rBQVmb72VtsnT9lTWhGjTpk2zE0880fx+vzVs2NBuvvnmlJmqSzundu7caUOGDLHc3FyrVauWXX311XbLLbekTNq1bt065+dZch6X9vPZ3/5Li7t///42ePDgMj/r/PnzrVu3bhYIBKx169b2r3/9K+X8ueuuu6xRo0Yp5/Rrr71mfr/fiW3P/c6YMcN69+5ttWvXtmAwaJ06dXJmai9NyXVh4sSJ1qpVK/P7/fazn/3MVq9enVLvL3/5i7Vq1cp8Pp+1adPG/v73vzvL9teO9m4Pb7zxhuXn55vX67UWLVqY2b4TqcXjcbvrrrusSZMm5vP5rHPnzvb22287yytyHTqSVWFzs23bttmll15qmZmZ1qBBA3vooYf2OZdLngLQsmVL8/l81rBhQzv//PNt4cKFTp2rrrrK6tata5KcmcQrst60adOsZ8+eFggErFatWtavXz/nd2VZvycOpi2WpmQSxTvuuMPq1q1roVDIrrjiCtu5c6dTp7i42K699lrLy8uzQCBgvXr1stmzZzvL77nnHmvfvr0Fg0GrU6eO9e/f377++mszK/08vfvuu61hw4bmcrmca8Pe8R7M7/PJkydbDfhKBwBHLJcZNwHh6PbJJ5+oT58++u6775wJzAAke6mvu+66Q76lBDgSDRkyRFu2bNFrr71W3aEAAI5yBz2RGnC4C4fDWrNmjcaMGaMLL7yQhBsAAABAlTuq7+lGzfaPf/xDbdu21datW/XQQw9VdzgAAAAAaiCGlwMAAAAAkCb0dAMAAAAAkCYk3QAAAAAApAlJNwAAAAAAaULSDQAAAABAmlRL0h2P7ayO3QIAAAAAUKWqPOku3vadls64Q8XbvqvqXaMcLVu21GOPPVZunbFjx6pLly5VEg9QnVavXi2Xy6UFCxZUdyj71adPH1133XWVtr0JEyaoVq1azvvqbPdcc6pHZZ9TR5IhQ4bovPPOc95X57GoyT8HADjaVHnSvfV/n0sW19b/LajqXaMcc+bM0W9/+1vnvcvl0muvvZZS58Ybb9TUqVOrODKgYg72C+reX7IlqVmzZlq7dq2OO+64ygkujSZNmqR77rknbduvqnbPNefItfcfairL4ZB0prt9SdK0adPkcrm0ZcuWKt83AKBqeKtyZ2amwl3JduH/FqjBsb+Qy+WqyhDSKh6Py+Vyye0+8m6Vr1ev3n7rhEIhhUKhKogG2C0Sicjv91fpPj0ejxo2bFil+zxYderUSev299fu0/nz4ZqDynAo5+j+2lc6z/90t20AQNWp0uxwZ9H3ioa3SJKi4c3aWfRDWvf373//Wx07dlQwGFTdunV1xhlnaPv27ZKkRCKhu+++W02bNlUgEFCXLl30zjvvOOuW9pfnBQsWyOVyafXq1ZJ2/3X/zTffVIcOHRQIBPTNN98oHA7rpptuUrNmzRQIBNS6dWs999xzznYWL16ss88+W6FQSA0aNNDAgQO1YcOGMj9HyX5ee+01tWnTRhkZGerbt6/WrFmTUu+pp57SscceK7/fr7Zt2+qFF15IWT527Fg1b95cgUBAjRs31ogRI5xlew4vb9mypSTp/PPPl8vlct7vPdRzf8ewZIjupEmTdNpppykzM1OdO3fWp59+WuZnBfr06aNrrrlGo0aNUl5envr27StJmj59urp3765AIKBGjRrplltuUSwWk5TsrZ4+fboef/xxuVwup53G43ENHTpUxxxzjILBoNq2bavHH3/c2dfYsWP1/PPP6/XXX3fWmzZtWqnDy8vbf0ncI0aM0E033aQ6deqoYcOGGjt2bLmfdc6cOerbt6/y8vKUm5ur3r17a/78+c7yadOmye/3a8aMGU7ZuHHjlJeXp7Vr1zr73bM38C9/+Ytat26tjIwMNWjQQL/+9a/LjWHChAlq3ry5MjMzdf7552vjxo0py/du9yUjA+6//341btxYbdq0kSR9//33uuiii1S7dm3VrVtX/fv3d66VJf72t7/pJz/5iXMMr7nmGklcc6rT9u3bNWjQIIVCITVq1Ejjxo3bp04kEtFNN92kJk2aKCsrSyeddJKmTZsmKXmOXnbZZdq6davThkrO+/LWK/HJJ5+od+/eyszMVO3atdWvXz9t3ry5zDYtVawtlnYN2Vs8HteoUaNUq1Yt1a1bVzfddJPMLKXO3u2rZcuWuvfeezVkyBDl5uZq2LBhkqSZM2fq1FNPVTAYVLNmzTRixAjn+4akMr8XrF69WqeddpokqXbt2nK5XBoyZEip+968ebMGDRqk2rVrKzMzUz//+c+1fPlyZ3nJd4V3331X7du3VygU0llnneVcKwAA1cjSZGfRj7blx/kp/9YsesEWTb3RFk0dZYum3mhrFr24T52dRT9Wyv5/+OEH83q99sgjj9iqVats4cKF9uSTT9q2bdvMzOyRRx6xnJwc+8c//mFLly61m266yXw+nxUUFJiZ2YcffmiSbPPmzc42P//8c5Nkq1atMjOz8ePHm8/ns549e9onn3xiS5cutaKiIrvwwgutWbNmNmnSJFu5cqW9//779s9//tOJKy8vz2699VZbsmSJzZ8/3/r27WunnXZamZ+lZD/dunWzmTNn2ty5c6179+7Ws2dPp86kSZPM5/PZk08+acuWLbNx48aZx+OxDz74wMzM/vWvf1lOTo699dZb9s0339isWbPsmWeecdZv0aKFPfroo2Zmtm7dOpNk48ePt7Vr19q6devMzOzOO++0zp07O+vs7xiuWrXKJFm7du3szTfftGXLltmvf/1ra9GihUWj0YP4qeKQJRJmRUVV/y+RqHCIvXv3tlAoZKNHj7alS5fakiVL7LvvvrPMzEwbPny4LVmyxCZPnmx5eXl25513mpnZli1brEePHjZs2DBbu3atrV271mKxmEUiEbvjjjts9uzZ9vXXX9uLL75omZmZ9sorr5iZ2bZt2+zCCy+0s846y1kvHA475+7nn39uZrbf/ZfEnZOTY2PHjrWCggJ7/vnnzeVy2ZQpU8r8rFOnTrUXXnjBFi9ebIsXL7ahQ4dagwYNrLCw0KkzevRoa9GihW3ZssUWLFhggUDAJk2alLLfkSNHmpnZnDlzzOPx2Msvv2yrV6+2+fPn2+OPP17m/j/77DNzuVx2//3327Jly+zxxx+3WrVqWW5urlNn73Y/ePBgC4VCNnDgQFu0aJF9+eWXtn37dmvdurVdfvnltnDhQlu8eLFdcskl1rZtWwuHw2Zm9pe//MUyMjLsscces2XLltns2bOP6mvOEdDUzMzs6quvtqZNm9qUKVNs4cKF9stf/tJCoZBzTpmZXXLJJdazZ0/76KOPbMWKFfbwww9bIBCwgoICC4fD9thjj1lOTo7Thkp+z5a3nlnyd2ogELCrr77aFixYYIsWLbI//elPtn79+jLbdEXb4t7XkNI8+OCDlpuba//+97+d9pednW39+/dP2daex6JFixaWk5NjDz/8sC1fvtyWL19uCxcutFAoZI8++qgVFBTYJ598Yl27drUhQ4Y465X1vSAWi9nEiRNNki1btszWrl1rW7ZsKXXf5557rrVv394++ugjW7BggfXr18/y8/MtEomY2e7vCmeccYbNmTPH5s2bZ+3bt7dLLrnkwE4KAEClS1vS/c3C8buS6wP7983CCZWy/3nz5pkkW716danLGzdubPfdd19K2YknnmjDhw83s4on3ZJswYIFTp1ly5aZJHvvvfdK3e+YMWPszDPPTClbs2aN8wu3NCX7+eyzz5yyJUuWmCSbNWuWmZn17NnThg0blrLeBRdcYGeffbaZmY0bN87atGnj/HLe255Jt5mZJJs8eXJKnb2/AO/vGJZ8Af7rX//qLP/qq69MUplfgpBmRUVmUtX/KyqqcIi9e/e2Ll26pJT9/ve/t7Zt21pij4ziySeftFAoZPF43Flvzy+oZRk+fLj96le/ct4PHjw45Uu2me2TdFd0/6ecckrKdk488US7+eab9xtTiVgsZtnZ2faf//zHKQuHw9a1a1e78MIL7Sc/+YldccUVKevs+bknTpxoOTk5KUl7eS6++GI766yzUsouuuii/SbdDRo0cJJpM7Pnnntun+MTDoctGAzau+++a2bJ68Vtt91WZixH2zXnCGhqtm3bNvP7/c4fhc3MNm7caMFg0DmnVqxYYS6Xy77//vuUdU8//XS79dZbzSz5O2rPc6ai61188cXWq1evMuMrrU1XtC3ufQ0pTaNGjeyBBx5w3kejUWvatOl+k+7zzjsvZTsDBw603/72tyllM2bMMLfbbcXFxfv9XlDa9429911QUGCS7JNPPnGWb9iwwYLBoL366qtmtvu7wooVK5w6Tz75pDVo0GC/xwIAkF5pG17epP1Fyqnf+YDWyanfRU3aX1gp++/cubNOP/10dezYURdccIGeffZZbd68WZJUWFioH374Qb169UpZp1evXlqyZMkB7cfv96tTp07O+wULFsjj8ah3796l1p83b54+/PBD517FUCikdu3aSZJWrlxZ5n68Xq+6devmvG/Xrp1q1arlxLtkyZJyP88FF1yg4uJitWrVSsOGDdPkyZNThuMdqAM5hnsen0aNGkmS1q1bd9D7xtFvz3NdSp7fPXr0SJkDolevXioqKtJ335X/JISnn35a3bp1U7169RQKhfTss8/q22+/PaB4Krr/Pc91KXm+l3eur1u3TldddZXatGmj3Nxc5ebmqqioKCU+v9+vF198URMnTlRxcXG5Txno27evWrRooVatWmngwIF66aWXtGPHjv1+rj3t/b40HTt2TLmPdd68eVqxYoWys7Od61qdOnW0c+dOrVy5UuvWrdMPP/yg008/fb/bLgvXnMq3cuVKRSKRlJ95nTp11LZtW+f9/PnzZWZq06ZNyu+t6dOnl/s7qyLrLViw4IDPiYq2xb2vIXvbunWr1q5dm/LZ9/49W5a968ybN08TJkxI+Zz9+vVTIpHQqlWr9vu9oCKWLFkir9erk046ySmrW7eu2rZtm3L+Z2Zm6thjj3Xe7+8aBACoGmmbSM3jDarpTwZqS512WlswUZZISErsW9HllsvlVqO2v1KthidW2sRqHo9H7733nmbOnKkpU6boT3/6k2677TbNmjVLdevWTe56r32ZmVNWMhma7XF/VzQa3Wc/wWAwZTvBYLDcuBKJhM455xw9+OCD+ywr+XJYltKOzZ5l5X2eZs2aadmyZXrvvff0/vvva/jw4Xr44Yc1ffp0+Xy+cvd7IDHtuc8Se26/ZFkiUcq5gPTLzJSKiqpnvwcgKysr5X1p51VJ2yzvmvHqq6/q+uuv17hx49SjRw9lZ2fr4Ycf1qxZsw4onoruf++25HK5yj3XhwwZovXr1+uxxx5TixYtFAgE1KNHD0UikZR6M2fOlCRt2rRJmzZt2uf4lMjOztb8+fM1bdo0TZkyRXfccYfGjh2rOXPmlDq79J7XtwOx9/4TiYROOOEEvfTSS/vUrVevXqVOLnmkXHOOhKZWkZ9/IpGQx+PRvHnz5PF4UpaVN8ldRdbb3+/LsmKuSFssq41UhtLO/yuvvDJlnpQSzZs314oVKw55n2X9rPY+HqVdgw62nQMAKk9aJ1JzuVyq3bi7jj3xBrncnjLqeHTsiTeodqPulT6TucvlUq9evXTXXXfp888/l9/v1+TJk5WTk6PGjRvr448/Tqk/c+ZMtW/fXtLu2bz3nICkIs/s7dixoxKJhKZPn17q8uOPP15fffWVWrZsqfz8/JR/5X1JiMVimjt3rvN+2bJl2rJli9NL3r59+3I/j5T8gnPuuefqiSee0LRp0/Tpp5/qyy+/LHV/Pp9P8Xi8zHgqcgxxGHK5pKysqv93iG27Q4cOmjlzZsqXx5kzZyo7O1tNmjSRlOwR3vucnTFjhnr27Knhw4era9euys/P36d3rrT1Dmb/B2PGjBkaMWKEzj77bGeCsb0nVVy5cqWuv/56Pfvsszr55JM1aNCgchNIr9erM844Qw899JAWLlyo1atX64MPPijzc3322WcpZXu/r4jjjz9ey5cvV/369fe5ruXm5io7O1stW7Ys9/FfR9s150hoavn5+fL5fCk/882bN6ugoMB537VrV8Xjca1bt26fn23JDP+ltaGKrNepU6dyz4nStltZbTE3N1eNGjVK+eyxWEzz5s2r8DZKlPxe3/tz5ufny+/37/d7QcmokfLO/w4dOigWi6X8wXDjxo0qKCg4LM9/AECqqpm93OWWJfbtJZYkS0TlclV+GLNmzdIf/vAHzZ07V99++60mTZqk9evXO7+cRo8erQcffFCvvPKKli1bpltuuUULFizQyJEjJSW/jDRr1kxjx45VQUGB/vvf/5Y6q+veWrZsqcGDB+vyyy/Xa6+9plWrVmnatGl69dVXJUm/+93vtGnTJl188cWaPXu2vv76a02ZMkWXX355ub9wfT6frr32Ws2aNUvz58/XZZddppNPPlndu3d3Ps+ECRP09NNPa/ny5XrkkUc0adIk3XjjjZKSs5o+99xzWrRokb7++mu98MILCgaDatGiRZmfY+rUqfrxxx+dYfl7298xBCrL8OHDtWbNGl177bVaunSpXn/9dd15550aNWqU04vasmVLzZo1S6tXr9aGDRuUSCSUn5+vuXPn6t1331VBQYHGjBmjOXPmpGy7ZcuWWrhwoZYtW6YNGzaUOqKlIvs/GPn5+XrhhRe0ZMkSzZo1SwMGDEjp/YvH4xo4cKDOPPNMXXbZZRo/frwWLVpU5rXozTff1BNPPKEFCxbom2++0d///nclEomU4cJ7GjFihN555x099NBDKigo0J///OeU2cArasCAAcrLy1P//v01Y8YMrVq1StOnT9fIkSOdIb9jx47VuHHj9MQTT2j58uWaP3++/vSnPznb4JpT9UKhkIYOHarRo0dr6tSpWrRokYYMGZJyTrdp00YDBgzQoEGDNGnSJK1atUpz5szRgw8+qLfeektS8mdXVFSkqVOnasOGDdqxY0eF1rv11ls1Z84cDR8+XAsXLtTSpUv11FNPOX94Kq1NV2ZbHDlypB544AFNnjxZS5cu1fDhw/d5VnZF3Hzzzfr000/1u9/9TgsWLNDy5cv1xhtv6Nprr3U+R3nfC1q0aCGXy6U333xT69evV1EpQyRat26t/v37a9iwYfr444/1xRdf6NJLL1WTJk3Uv3//A44ZAFDFquLG8XWrp9qiqTc4s5YvmjrKFn1QMov5DbZ+9dRK3+fixYutX79+Vq9ePQsEAtamTRv705/+5CyPx+N21113WZMmTczn81nnzp3t7bffTtnGxx9/bB07drSMjAz76U9/av/617/2mUht78ljzMyKi4vt+uuvt0aNGpnf77f8/Hz729/+5iwvKCiw888/32rVqmXBYNDatWtn1113XcrEMHsq2c/EiROtVatW5vf77Wc/+9k+k8T95S9/sVatWpnP57M2bdrY3//+d2fZ5MmT7aSTTrKcnBzLysqyk08+2d5//31n+d4Tqb3xxhuWn59vXq/XWrRoYWb7Tmq0v2O492RUZmabN282Sfbhhx+W+lmBsiZEmzZtmp144onm9/utYcOGdvPNN6fMSL1s2TI7+eSTLRgMOu10586dNmTIEMvNzbVatWrZ1VdfbbfcckvKebxu3Trr27evhUIh59ws7dzd3/5Li7t///42ePDgMj/r/PnzrVu3bhYIBKx169b2r3/9K6Ut3nXXXdaoUSPbsGGDs85rr71mfr/fiW3P/c6YMcN69+5ttWvXtmAwaJ06dXJmai/Lc889Z02bNrVgMGjnnHOO/fGPf9zvRGp7TzxnZrZ27VobNGiQ5eXlWSAQsFatWtmwYcNs69atTp2nn37a2rZtaz6fzxo1amTXXnuts4xrTvXYtm2bXXrppZaZmWkNGjSwhx56aJ9zueQpAC1btjSfz2cNGza0888/3xYuXOjUueqqq6xu3bomyZlJvCLrTZs2zXr27GmBQMBq1apl/fr1cyYUK61Nl6xzoG2xNNFo1EaOHGk5OTlWq1YtGzVqlA0aNGi/E6nt+buyxOzZs53rSFZWlnXq1Cll0r/9fS+4++67rWHDhuZyuZxrxt773rRpkw0cONByc3MtGAxav379nJngzUr/TjJ58mSroq96AIByuMzSf7PPytmPaGfR95KkrFr5atD6HP24/A3t2JIc5pmR3VTHnnh9usM4Yk2YMEHXXXfdQf0FHgAAAABQfdI+vDyyc/OuhNulBsf+Qi26XqlgdlO17HqV6h/7C0ku7dz2naI7Sx9OCAAAAADAkSpts5eXcMmlUJ12qteqnzJzmu8ud7lVr8XPlFXrWK1fNUVS5U6iBgAAAABAdauS4eUAAAAAANREVTN7OQAAAAAANRBJNwAAAAAAaULSDQAAAABAmpB0AwAAAACQJiTdAAAAAACkCUk3AAAAAABpQtIN4LDSp08fXXfdddUdBlBj0QYBAKhcJN0ADiuTJk3SPffcU91h1EirV6+Wy+XSggULqjsUHCEmTJigWrVqVfp2SfwBAEcTb3UHAAB7qlOnTnWHgP2IRCLy+/3VHQawX5yrAIDDAT3dAA4re/dwtWzZUvfee68GDRqkUCikFi1a6PXXX9f69evVv39/hUIhdezYUXPnznXW2bhxoy6++GI1bdpUmZmZ6tixo/7xj3+k7Gfbtm0aMGCAsrKy1KhRIz366KP77DsSieimm25SkyZNlJWVpZNOOknTpk0rN/6lS5fqlFNOUUZGhjp06KD3339fLpdLr732mlPn+++/10UXXaTatWurbt266t+/v1avXu0sTyQSuvvuu9W0aVMFAgF16dJF77zzjrO8pEf61Vdf1U9/+lMFg0GdeOKJKigo0Jw5c9StWzeFQiGdddZZWr9+fUp848ePV/v27ZWRkaF27drpL3/5i7PsmGOOkSR17dpVLpdLffr0kSQNGTJE5513nu6//341btxYbdq00d13362OHTvu8/lPOOEE3XHHHeUeIxw+tm/f7rStRo0aady4cSnLy2sD06ZN02WXXaatW7fK5XLJ5XJp7Nix+12vxCeffKLevXsrMzNTtWvXVr9+/bR582YNGTJE06dP1+OPP+5st6R9TJ8+Xd27d1cgEFCjRo10yy23KBaLOdvs06ePrrnmGo0aNUp5eXnq27dvug4dAAAVZwBqnqKi5L9EYndZOJws27mz9Lrx+O6ySCRZVly8/7oHqHfv3jZy5EjnfYsWLaxOnTr29NNPW0FBgV199dWWnZ1tZ511lr366qu2bNkyO++886x9+/aW2PV5vvvuO3v44Yft888/t5UrV9oTTzxhHo/HPvvsM2e7V1xxhbVo0cLef/99+/LLL+3888+37OzslH1fcskl1rNnT/voo49sxYoV9vDDD1sgELCCgoJSY4/H49a2bVvr27evLViwwGbMmGHdu3c3STZ58mQzM9u+fbu1bt3aLr/8clu4cKEtXrzYLrnkEmvbtq2Fw2EzM3vkkUcsJyfH/vGPf9jSpUvtpptuMp/P5+x31apVJsnatWtn77zzji1evNhOPvlkO/74461Pnz728ccf2/z58y0/P9+uuuoqJ75nnnnGGjVqZBMnTrSvv/7aJk6caHXq1LEJEyaYmdns2bNNkr3//vu2du1a27hxo5mZDR482EKhkA0cONAWLVpkX375pa1Zs8bcbrfNnj3b2f4XX3xhLpfLVq5ceZA//aPPYdzUzMzs6quvtqZNm9qUKVNs4cKF9stf/tJCoZDTDsprA+Fw2B577DHLycmxtWvX2tq1a23btm37Xc/M7PPPP7dAIGBXX321LViwwBYtWmR/+tOfbP369bZlyxbr0aOHDRs2zNluLBaz7777zjIzM2348OG2ZMkSmzx5suXl5dmdd97pfJ7evXtbKBSy0aNH29KlS23JkiWHdoAAAKgEJN1ATSQl/61bt7vs3nuTZVdckVo3MzNZvmrV7rJHH02WXXJJat28vGT5okUHHVppSfell17qvF+7dq1JsjFjxjhln376qUmytWvXlrnds88+22644QYzMyssLDSfz2f/+te/nOVbtmyxzMxMZ98rVqwwl8tl33//fcp2Tj/9dLv11ltL3cfbb79tXq83JY733nsvJel+7rnnrG3bts4fCMzMwuGwBYNBe/fdd83MrHHjxnbfffelbPvEE0+04cOHm9nupPuvf/2rs/wf//iHSbKpU6c6Zffff7+1bdvWed+sWTN7+eWXU7Z7zz33WI8ePVK2+/nnn6fUGTx4sDVo0MD5o0CJn//853b11Vc776+77jrr06dPqcempjqMm5pt27bN/H6//fOf/3TKNm7caMFg0EaOHFmhNjB+/HjLzc1NWV6R9S6++GLr1atXmbHtfR0wM/v973+/T9t58sknLRQKWXzXXx969+5tXbp0qdgBAACginBPN4DDXqdOnZzXDRo0kKSUoc0lZevWrVPDhg0Vj8f1wAMP6JVXXtH333+vcDiscDisrKwsSdLXX3+taDSq7t27O9vIzc1V27Ztnffz58+XmalNmzYpsYTDYdWtW7fUOJctW6ZmzZqpYcOGTtme+5CkefPmacWKFcrOzk4p37lzp1auXKnCwkL98MMP6tWrV8ryXr166Ysvvjjg47Ju3TpJ0vr167VmzRoNHTpUw4YNc+rEYjHl5uaW+nn21LFjx33ujR02bJguv/xyPfLII/J4PHrppZf2GZ6Mw9fKlSsViUTUo0cPp6xOnTpOOziYNlDR9RYsWKALLrjggOJdsmSJevToIZfL5ZT16tVLRUVF+u6779S8eXNJUrdu3Q5ouwAApBtJN1ATFRUl/8/M3F02erR03XWSd6/Lwq6kTcHg7rLf/U4aNkzyeFLrltyXvGfdSuDz+ZzXJV+4SytLJBKSpHHjxunRRx/VY489po4dOyorK0vXXXedIpGIJMnMUtYrUVJesi2Px6N58+bJs9fnDIVCpcZpZvtsc2+JREInnHCCXnrppX2W1atXb5/PVN62K3JcSo5Jyf/PPvusTjrppJTt7P35SlPyB4s9nXPOOQoEApo8ebICgYDC4bB+9atf7XdbNcnh3NT2PN9LczBtoKLrBQ8i8NLaQGltubRzFQCA6kTSDdREpX0p9fuT/ypS1+dL/qtI3WowY8YM9e/fX5deeqmkZBKwfPlytW/fXpJ07LHHyufzafbs2WrWrJkkqbCwUMuXL1fv3r0lJScTi8fjWrdunX76059WaL/t2rXTt99+q//9739Oz/OcOXNS6hx//PF65ZVXVL9+feXk5JS6ncaNG+vjjz/Wqaee6pTNnDlzn17zA9GgQQM1adJEX3/9tQYMGFBqnZKe7Hg8XqFter1eDR48WOPHj1cgENBvfvMbZe6ZXeKwbmr5+fny+Xz67LPPnF7izZs3q6CgQL17965QG/D7/fucLxVZr1OnTpo6daruuuuuCm+3Q4cOmjhxYkryPXPmTGVnZ6tJkyYH9NkBAKhKzF4O4KiTn5+v9957TzNnztSSJUt05ZVX6scff3SWZ2dna/DgwRo9erQ+/PBDffXVV7r88svldrudL/Nt2rTRgAEDNGjQIE2aNEmrVq3SnDlz9OCDD+qtt94qdb99+/bVscceq8GDB2vhwoX65JNPdNttt0na3RM3YMAA5eXlqX///poxY4ZWrVql6dOna+TIkfruu+8kSaNHj9aDDz6oV155RcuWLdMtt9yiBQsWaOTIkYd0XMaOHav7779fjz/+uAoKCvTll19q/PjxeuSRRyRJ9evXVzAY1DvvvKP//e9/2rp16363ecUVV+iDDz7Q22+/rcsvv/yQ4kPVCoVCGjp0qEaPHq2pU6dq0aJFGjJkiNzu5FeDirSBli1bqqioSFOnTtWGDRu0Y8eOCq136623as6cORo+fLgWLlyopUuX6qmnntKGDRuc7c6aNUurV6/Whg0blEgkNHz4cK1Zs0bXXnutli5dqtdff1133nmnRo0a5cQMAMDhiN9SAI46Y8aM0fHHH69+/fqpT58+atiwoc4777yUOo888oh69OihX/7ylzrjjDPUq1cv51FaJcaPH69BgwbphhtuUNu2bXXuuedq1qxZTu/43jwej1577TUVFRXpxBNP1BVXXKHbb79dkpztZmZm6qOPPlLz5s31f//3f2rfvr0uv/xyFRcXOz3fI0aM0A033KAbbrhBHTt21DvvvKM33nhDrVu3PqTjcsUVV+ivf/2rJkyYoI4dO6p3796aMGGC86gwr9erJ554Qv/v//0/NW7cWP3799/vNlu3bq2ePXuqbdu2+wxbx+Hv4Ycf1qmnnqpzzz1XZ5xxhk455RSdcMIJzvL9tYGePXvqqquu0kUXXaR69erpoYceqtB6bdq00ZQpU/TFF1+oe/fu6tGjh15//XV5d425v/HGG+XxeNShQwfVq1dP3377rZo0aaK33npLs2fPVufOnXXVVVdp6NChThsDAOBw5bL93dQFADXA9u3b1aRJE40bN05Dhw6ttO1+8sknOuWUU7RixQode+yxlbbdw4WZqV27drryyis1atSo6g4HAADgsMM93QBqpM8//1xLly5V9+7dtXXrVt19992SVKHe3fJMnjxZoVBIrVu31ooVKzRy5Ej16tXrqEy4161bpxdeeEHff/+9LrvssuoOBwAA4LBE0g2gxvrjH/+oZcuWye/364QTTtCMGTOUl5d3SNvctm2bbrrpJq1Zs0Z5eXk644wzjtrHaDVo0EB5eXl65plnVLt27eoOBwAA4LDE8HIAAAAAANKEidQAAAAAAEgTkm4AAAAAANKEpBsAAAAAgDQh6QYAAAAAIE1IugEAAAAASBOSbgAAAAAA0oSkG8Bhr0+fPrruuuuqO4wDMnbsWHXp0uWA1qmsz7lx40bVr19fq1evPuRtVZaDOR57e/PNN9W1a1clEonKCQqlor0dmINpbxMmTFCtWrUOed8lVq9eLZfLpQULFhz0NsLhsJo3b6558+ZVWlwAgCSSbgBHnWnTpsnlcmnLli3VFsONN96oqVOnHtA6kyZN0j333HPI+77//vt1zjnnqGXLloe8rar07bff6pxzzlFWVpby8vI0YsQIRSIRZ/kvf/lLuVwuvfzyy9UYJfZGezvw9nbRRRepoKDgkPd9IMxMY8eOVePGjRUMBtWnTx999dVXzvJAIKAbb7xRN998c5XGBQA1AUk3gH298op0333l17nvvmQ9pDAzxWIxhUIh1a1b94DWrVOnjrKzsw9p/8XFxXruued0xRVXHNJ2qlo8HtcvfvELbd++XR9//LH++c9/auLEibrhhhtS6l122WX605/+VE1RpgfN7eAdqe0tGAyqfv36h7TvA/XQQw/pkUce0Z///GfNmTNHDRs2VN++fbVt2zanzoABAzRjxgwtWbKkSmMDgKMdSTeAfa1YId1+u1RWL9A99ySXr1hR6bvevn27Bg0apFAopEaNGmncuHH71HnxxRfVrVs3ZWdnq2HDhrrkkku0bt06SclhlqeddpokqXbt2nK5XBoyZIgk6Z133tEpp5yiWrVqqW7duvrlL3+plStXlhtPOBzWiBEjVL9+fWVkZOiUU07RnDlznOUlvXzvvvuuunXrpkAgoBkzZuwz3DUWi2nEiBHOvm+++WYNHjxY5513nlNn7+GuLVu21B/+8Addfvnlys7OVvPmzfXMM8+UG+/bb78tr9erHj16SJISiYSaNm2qp59+OqXe/Pnz5XK59PXXX0tK9jL3799foVBIOTk5uvDCC/W///1PkrR06VJlZmam9DBPmjRJGRkZ+vLLLyVJW7du1W9/+1vVr19fOTk5+tnPfqYvvvii3Fj3NGXKFC1evFgvvviiunbtqjPOOEPjxo3Ts88+q8LCQqfeueeeq9mzZztxHw2qsbnR3iq5ve0Z43//+1917txZGRkZOumkk5y2IqUOLzcznXHGGTrrrLNkZpKkLVu2qHnz5rrtttucdcaPH6/27dsrIyND7dq101/+8pdyY9uTmemxxx7Tbbfdpv/7v//Tcccdp+eff147duxIadd169ZVz5499Y9//KPC2wYA7B9JN4B93XabdPfd0h137JsJ3HNPsvzuu5P1Ktno0aP14YcfavLkyZoyZYqmTZu2zz2GkUhE99xzj7744gu99tprWrVqlfNFv1mzZpo4caIkadmyZVq7dq0ef/xxSckEY9SoUZozZ46mTp0qt9ut888/v9x7hG+66SZNnDhRzz//vObPn6/8/Hz169dPmzZt2qfe/fffryVLlqhTp077bOfBBx/USy+9pPHjx+uTTz5RYWGhXnvttf0ej3Hjxqlbt276/PPPNXz4cF199dVaunRpmfU/+ugjdevWzXnvdrv1m9/8Ri+99FJKvZdfflk9evRQq1atZGY677zztGnTJk2fPl3vvfeeVq5cqYsuukiS1K5dO/3xj3/U8OHD9c033+iHH37QsGHD9MADD6hjx44yM/3iF7/Qjz/+qLfeekvz5s3T8ccfr9NPP32f41SWTz/9VMcdd5waN27slPXr10/hcDjl59+iRQvVr19fM2bMqNB2jwTV2Nxob3s51Pa2p9GjR+uPf/yj5syZo/r16+vcc89VNBrdp57L5dLzzz+v2bNn64knnpAkXXXVVWrQoIHGjh0rSXr22Wd122236b777tOSJUv0hz/8QWPGjNHzzz+/388kSatWrdKPP/6oM8880ykLBALq3bu3Zs6cmVK3e/fuR1X7AoDDggFAWe6+20xK/l/a+0q2bds28/v99s9//tMp27hxowWDQRs5cmSZ682ePdsk2bZt28zM7MMPPzRJtnnz5nL3t27dOpNkX375ZanLi4qKzOfz2UsvveSURSIRa9y4sT300EMp+3rttddS1r3zzjutc+fOzvsGDRrYww8/7LyPxWLWvHlz69+/v1PWu3fvlM/ZokULu/TSS533iUTC6tevb0899VSZn6l///52+eWXp5TNnz/fXC6XrV692szM4vG4NWnSxJ588kkzM5syZYp5PB779ttvnXW++uork2SzZ892yn7xi1/YT3/6Uzv99NOtb9++lkgkzMxs6tSplpOTYzt37kzZ77HHHmv/7//9v1KPx96GDRtmffv23afc7/fbyy+/nFLWtWtXGzt2bJnbOlJVcXOjvaWpvZXEWNpxfeWVV8zMbPz48Zabm5uy3quvvmqBQMBuvfVWy8zMtGXLljnLmjVrtk87uOeee6xHjx5mZrZq1SqTZJ9//nmpcX7yyScmyb7//vuU8mHDhtmZZ56ZUvb4449by5Yty/zMAIADR083gLKNGbO7Cy4Q2N3lNmZMWna3cuVKRSKRlKGaderUUdu2bVPqff755+rfv79atGih7Oxs9enTR1JyiPT+tn/JJZeoVatWysnJ0THHHFPueitXrlQ0GlWvXr2cMp/Pp+7du+9zz2NZvV1Scuj1//73P3Xv3t0p83g8OuGEE8qNV1JKL57L5VLDhg2dob2lKS4uVkZGRkpZ165d1a5dO2fI6PTp07Vu3TpdeOGFkqQlS5aoWbNmatasmbNOhw4dVKtWrZTP+be//U0LFy7U/PnzNWHCBLlcLknSvHnzVFRUpLp16yoUCjn/Vq1atd/hxHsq2d6ezGyf8mAwqB07dlR4u0eKKm5utLdSVEZ7K1HacS3vXukLLrhA//d//6f7779f48aNU5s2bSRJ69ev15o1azR06NCU9nXvvfceUPsq+Ux7qkntCwCqk7e6AwBwmBszRrr3XikSkfz+9GUAknM/Y3m2b9+uM888U2eeeaZefPFF1atXT99++6369euXMtN1ac455xw1a9ZMzz77rBo3bqxEIqHjjjuuzPVK4qnIF9WsrKz9xl7advbH5/Pts43yhufm5eVp8+bN+5QPGDBAL7/8sm655Ra9/PLL6tevn/Ly8pw4KpLwfvHFF9q+fbvcbrd+/PFHZyh4IpFQo0aNNG3atH22UdHHIjVs2FCzZs1KKdu8ebOi0agaNGiQUr5p0ybVq1evQts90lRhc6O9laKy2ltFY9rTjh07NG/ePHk8Hi1fvtwpL9n/s88+q5NOOillHY/HU6H9NmzYUJL0448/qlGjRk75unXralT7AoDqQk83gPLdc8/uDCASKXu2p0qQn58vn8+nzz77zCnbvHlzyqN1li5dqg0bNuiBBx7QT3/6U7Vr126fnii/3y8pOSN2iY0bN2rJkiW6/fbbdfrpp6t9+/b7/bKcn58vv9+vjz/+2CmLRqOaO3eu2rdvX+HPlZubqwYNGmj27NlOWTwe1+eff17hbVRU165dtXjx4n3KL7nkEn355ZeaN2+e/v3vf2vAgAHOsg4dOujbb7/VmjVrnLLFixdr69atzufctGmThgwZottuu02XXXaZBgwYoOLiYknS8ccfrx9//FFer1f5+fkp/0oS+/3p0aOHFi1apLVr1zplU6ZMUSAQSOmh3Llzp1auXKmuXbse2IE5QlRhc6O9VYKy2pukUo9ru3btytzWDTfcILfbrbfffltPPPGEPvjgA0lSgwYN1KRJE3399df7tK+S0QP7c8wxx6hhw4Z67733nLJIJKLp06erZ8+eKXUXLVp01LYvAKguJN0AyrbnLE7hcNmzPVWSUCikoUOHavTo0Zo6daoWLVqkIUOGyO3efalq3ry5/H6//vSnP+nrr7/WG2+8sc+zdlu0aCGXy6U333xT69evV1FRkWrXrq26devqmWee0YoVK/TBBx9o1KhR5caTlZWlq6++WqNHj9Y777yjxYsXa9iwYdqxY4eGDh16QJ/t2muv1f3336/XX39dy5Yt08iRI7V58+Zye74ORr9+/fTVV1/tk+Acc8wx6tmzp4YOHapYLKb+/fs7y8444wx16tRJAwYM0Pz58zV79mwNGjRIvXv3dobxXnXVVWrWrJluv/12PfLIIzIz3Xjjjc76PXr00Hnnnad3331Xq1ev1syZM3X77bdr7ty5FYr7zDPPVIcOHTRw4EB9/vnnmjp1qm688UYNGzZMOTk5Tr3PPvtMgUAgZeju0aKKmxvtrRKU1d4k6e677045rnl5eSmzp+/pv//9r/72t7/ppZdeUt++fXXLLbdo8ODBznbHjh2r+++/X48//rgKCgr05Zdfavz48XrkkUcqFKfL5dJ1112nP/zhD5o8ebITU2Zmpi655JKUujNmzEiZcA0AUAmq5U5yAIe/smZxqoLJ1C699FLLzMy0Bg0a2EMPPbTPhEcvv/yytWzZ0gKBgPXo0cPeeOONfSYRuvvuu61hw4bmcrls8ODBZmb23nvvWfv27S0QCFinTp1s2rRpJskmT55cZjzFxcV27bXXWl5engUCAevVq1fK5GJlTSK198RO0WjUrrnmGsvJybHatWvbzTffbBdccIH95je/ceqUNrHTo48+mrLdzp0725133lnuMTz55JPt6aef3qf8ySefNEk2aNCgfZZ98803du6551pWVpZlZ2fbBRdcYD/++KOZmT3//POWlZVlBQUFTv25c+ea3++3//73v2ZmVlhYaNdee601btzYfD6fNWvWzAYMGOBMzra/idRKYvjFL35hwWDQ6tSpY9dcc80+k7P99re/tSuvvLLc7RyJqqm50d7S0N5KYvzPf/5jP/nJT8zv99uJJ55oCxYscOrsOZHaunXrrEGDBvaHP/whJf7u3bvbhRde6JS99NJL1qVLF/P7/Va7dm079dRTbdKkSWa2/4nUzJITw915553WsGFDCwQCduqpp+4zqd3MmTOtVq1atmPHjnI/MwDgwLjMKnCTE4Ca5b77kg8GLmsWp5IuuXvvTc9zjGqARCKh9u3b68ILL9yn5/BQvfXWW7rxxhu1aNGilF7LI9369evVrl07zZ07t8LDao8ENLf0q8r2Nm3aNJ122mnavHlzhec0OFxccMEF6tq1q37/+99XdygAcFRhIjUA+8rPL/8b/pgxktudrIcK+eabbzRlyhT17t1b4XBYf/7zn7Vq1ap9hnZWhrPPPlvLly/X999/nzIj+ZFu1apV+stf/nJUJdwSzS0daG8HLhwOq3Pnzrr++uurOxQAOOrQ0w0AVWDNmjX6zW9+o0WLFsnMdNxxx+mBBx7QqaeeWt2hAUed6mxvR3JPNwAgPUi6AQAAAABIk6PnZj8AAAAAAA4zJN0AAAAAAKQJSTcAAAAAAGlC0g0AAAAAQJqQdAMAAAAAkCYk3QAAAAAApAlJNwAAAAAAaULSDQCl6NOnj6677rpq33d1xlHV+3/88cd1zDHHKDMzU+edd562bt1aJfsFAABIJ291BwAAlaVPnz7q0qWLHnvssUNeb9KkSfL5fJUb4EGoqjjKOnZVtf/f//73+te//qXnn39eoVBI559/vu666y498sgjad83AABAOtHTDeCwF4lEqnyfderUUXZ2dpXv90DjSPexqYrjMGfOHD344IN65ZVXdOqpp+r444/XlVdeqTfffDOt+wUAAKgKJN1ATbR9e9n/du6seN3i4v3XPQh9+vTRNddco1GjRikvL099+/ZVOBzWiBEjVL9+fWVkZOiUU07RnDlznHWGDBmi6dOn6/HHH5fL5ZLL5dLq1av1zjvv6JRTTlGtWrVUt25d/fKXv9TKlSv3u97ew6r3t/8+ffpoxIgRuummm1SnTh01bNhQY8eO3e9n3b59uwYNGqRQKKRGjRpp3Lhx+xyLPeMo7dhIkpnpoYceUqtWrRQMBtW5c2f9+9//TtlWIpHQgw8+qPz8fAUCATVv3lz33XdfmcegtP2n4zj88Y9/1M9+9jMdf/zxTlm9evW0YcOG/R4/AACAwx1JN1AThUJl//vVr1Lr1q9fdt2f/zy1bsuW+9Y5SM8//7y8Xq8++eQT/b//9/900003aeLEiXr++ec1f/585efnq1+/ftq0aZOk5P3APXr00LBhw7R27VqtXbtWzZo10/bt2zVq1CjNmTNHU6dOldvt1vnnn69EIlHuenvb3/5LYs7KytKsWbP00EMP6e6779Z7771X7uccPXq0PvzwQ02ePFlTpkzRtGnTNG/evAM6NpJ0++23a/z48Xrqqaf01Vdf6frrr9ell16q6dOnO+vdeuutevDBBzVmzBgtXrxYL7/8sho0aFDhY5CO4xAOh/Wf//xH559/fkp5cXGxcnNzyz0OAAAARwQDUPNIZf87++zUupmZZdft3Tu1bl7evnUOQu/eva1Lly7O+6KiIvP5fPbSSy85ZZFIxBo3bmwPPfRQynojR44sd9vr1q0zSfbll1+Wu96eZRXZf+/eve2UU05J2caJJ55oN998c5mxbNu2zfx+v/3zn/90yjZu3GjBYNDZ996x7X1sSuLLyMiwmTNnppQPHTrULr74YjMzKywstEAgYM8++2ypsZR17NJ9HGbOnGmSLCMjw7Kyspx/fr/f+vXrV+o6AAAARxImUgNqoqKispd5PKnv160ru657r8Eyu4YkV4Zu3bo5r1euXKloNKpevXo5ZT6fT927d9eSJUvK3c7KlSs1ZswYffbZZ9qwYYPTw/3tt9/quOOOq1AsFd1/p06dUtZr1KiR1pVz/FauXKlIJKIePXo4ZXXq1FHbtm3LjWfPYyNJixcv1s6dO52h5iUikYi6du0qSVqyZInC4bBOP/30crddnnQch4KCAmVkZOjLL79MKT/33HNT9gMAAHCkIukGaqKsrOqvu99N7d6WmUmSXC5XSh0z26dsb+ecc46aNWumZ599Vo0bN1YikdBxxx13QBOQVXT/e8/y7XK5nCS/vO0eqKy9jnPJPv773/+qSZMmKcsCgYAkKRgMHtS+9pSO41BYWKj69esrPz/fKfv222+1dOlS/WrvWx0AAACOQNzTDeCwl5+fL7/fr48//tgpi0ajmjt3rtq3b++U+f1+xeNx5/3GjRu1ZMkS3X777Tr99NPVvn17bd68eZ/t773ewe7/YD6Xz+fTZ5995pRt3rxZBQUFB7SdDh06KBAI6Ntvv1V+fn7Kv5J7s1u3bq1gMKipU6eWuo39HYOSeCv7OOTl5amwsDDlDxD33Xefzj77bHXo0OGgtgkAAHA4oacbwGEvKytLV199tUaPHq06deqoefPmeuihh7Rjxw4NHTrUqdeyZUvNmjVLq1evVigUUp06dVS3bl0988wzatSokb799lvdcsst+2y/tPUOZv8HKhQKaejQoRo9erTq1q2rBg0a6LbbbpN772H7+5Gdna0bb7xR119/vRKJhE455RQVFhZq5syZCoVCGjx4sDIyMnTzzTfrpptukt/vV69evbR+/Xp99dVXGjp0aKnHYO840nEcfvazn2nnzp164IEHdPHFF+vll1/WG2+8odmzZx/U9gAAAA43JN0AjggPPPCAEomEBg4cqG3btqlbt2569913Vbt2bafOjTfeqMGDB6tDhw4qLi7WqlWr9M9//lMjRozQcccdp7Zt2+qJJ55Qnz59UrZd2noHs/+D8fDDD6uoqEjnnnuusrOzdcMNN2jr1q0HvJ177rlH9evX1/3336+vv/5atWrV0vHHH6/f//73Tp0xY8bI6/Xqjjvu0A8//KBGjRrpqquuklT6MWjZsuU++6ns49CgQQNNmDBBo0eP1j333KOf/exn+vjjj8ucPR0AAOBI47KDvakQAAAAAACUi3u6AQAAAABIE5JuAAAAAADShKQbAAAAAIA0IekGAAAAACBNSLoBAAAAAEgTkm4AAAAAANKEpBsAAAAAgDQh6QYAAAAAIE1IugEAAAAASBOSbgAAAAAA0oSkGwAAAACANCHpBgAAAAAgTUi6AQAAAABIE5JuAAAAAADShKQbAAAAAIA0IekGAAAAACBNSLoBAAAAAEgTkm4AAAAAANKEpBsAAAAAgDQh6QYAAAAAIE1IugEAAAAASBOSbgAAAAAA0oSkGwAAAACANCHpBgAAAAAgTUi6AQAAAABIE5JuAAAAAADShKQbAAAAAIA0IekGAAAAACBNSLoBAAAAAEgTkm4AAAAAANKEpBsAAAAAgDQh6QYAAAAAIE1IugEAAAAASBOSbgAAAAAA0oSkGwAAAACANCHpBgAAAAAgTUi6AQAAAABIE5JuAAAAAADShKQbAAAAAIA0IekGAAAAACBNSLoBAAAAAEgTkm4AAAAAANKEpBsAAAAAgDQh6QYAAAAAIE1IugEAAAAASBOSbgAAAAAA0oSkGwAAAACANCHpBgAAAAAgTUi6AQAAAABIE5JuAAAAAADShKQbAAAAAIA0IekGAAAAACBNSLoBAAAAAEgTkm4AAAAAANKEpBsAAAAAgDQh6QYAAAAAIE1IugEAAAAASBOSbgAAAAAA0oSkGwAAAACANCHpBgAAAAAgTUi6AQAAAABIE5JuAAAAAADShKQbAAAAAIA0IekGAAAAACBNSLoBAAAAAEgTkm4AAAAAANKEpBsAAAAAgDQh6QYAAAAAIE1IugEAAAAASBOSbgAAAAAA0oSkGwAAAACANCHpBgAAAAAgTUi6AQAAAABIE5JuAAAAAADShKQbAAAAAIA0IekGAAAAACBNSLoBAAAAAEgTkm4AAAAAANKEpBsAAAAAgDQh6QYAAAAAIE1IugEAAAAASBOSbgAAAAAA0oSkGwAAAACANCHpBgAAAAAgTUi6AQAAAABIE5JuAAAAAADShKQbAAAAAIA0IekGAAAAACBNSLoBAAAAAEgTkm4AAAAAANKEpBsAAAAAgDQh6QYAAAAAIE1IugEAAAAASBOSbgAAAAAA0oSkGwAAAACANCHpBgAAAAAgTUi6AQAAAABIE5JuAAAAAADShKQbAAAAAIA0IekGAAAAACBNSLoBAAAAAEgTkm4AAAAAANKEpBsAAAAAgDQh6QYAAAAAIE1IugEAAAAASBOSbgAAAAAA0oSkGwAAAACANCHpBgAAAAAgTUi6AQAAAABIE5JuAAAAAADShKQbAAAAAIA0IekGAAAAACBNSLoBAAAAAEgTkm4AAAAAANKEpBsAAAAAgDQh6QYAAAAAIE1IugEAAAAASBOSbgAAAAAA0oSkGwAAAACANCHpBgAAAAAgTUi6AQAAAABIE5JuAAAAAADShKQbAAAAAIA0IekGAAAAACBNSLoBAAAAAEgTkm4AAAAAANKEpBsAAAAAgDQh6QYAAAAAIE1IugEAAAAASBOSbgAAAAAA0oSkGwAAAACANCHpBgAAAAAgTUi6AQAAAABIE5JuAAAAAADShKQbAAAAAIA0IekGAAAAACBNSLoBAAAAAEgTkm4AAAAAANKEpBsAAAAAgDQh6QYAAAAAIE1IugEAAAAASBOSbgAAAAAA0oSkGwAAAACANCHpBgAAAAAgTUi6AQAAAABIE5JuAAAAAADShKQbAAAAAIA0IekGAAAAACBNSLoBAAAAAEgTkm4AAAAAANKEpBsAAAAAgDQh6QYAAAAAIE1IugEAAAAASBOSbgAAAAAA0oSkGwAAAACANCHpBgAAAAAgTUi6AQAAAABIE5JuAAAAAADShKQbAAAAAIA0IekGAAAAACBNSLoBAAAAAEgTkm4AAAAAANKEpBsAAAAAgDQh6QYAAAAAIE1IugEAAAAASBOSbgAAAAAA0oSkGwAAAACANCHpBgAAAAAgTUi6AQAAAABIE5JuAAAAAADShKQbAAAAAIA0IekGAAAAACBNSLoBAAAAAEgTkm4AAAAAANKEpBsAAAAADsErr0j33Vd+nfvuS9ZDzUPSDQAAAACHYMUK6fbbpXvuKX35Pfckl69YUbVx4fDgre4AAAAAAOBIdtttUiIh3XFH8v2YMbuX3XNPsvzuu5P1UPOQdAMAAADAISpJtPdMvPdMuPdMxFGzuMzMqjsIAAAAADiSmSUUi2zTPfdI99yXK8kkuUi4QdINAAAAAIcivGODdmxZKbOEJKlu0x7OMrItMJEaAAAAAOxHsie7SMXbvte2DUsUKd7oLPN4M2SWkNvj16NPtpEk+XzJbLusydVQc3BPNwAAAADsxcwUj+1QLFyoWHiropFCWSLuLHd7/PIH60qSPL4s5dbvoj88ENS995fcw+1y7umWGGJek5F0AwAAAICkRCImtzuZIlkipsJ1C1OWu9we+fy58gZy5AvU2l3ucukPDwT3mTSttMnVUPOQdAMAAACokeKxYsXChYqGtyoWLpTHl6nsvA6SJLfHJ68/JJfbK18gV15/jjy+LLlcrn22c999qbOUb90qnXCCtHKlFI0m69xxh+R289iwmoikGwAAAECNEdmxQdHwFkXDW5WIR1IXRrfLzJzEOqdexwptMz9fuvfe3Ql1RkYy4ZakL79MJuJud7Ieah5mLwcAAABwVErEI4pFiuQP1nHKtm1Yomh4i6TksHCvP1tef468gdxkz7arcuaaLukQ/+ILqVOnStkkjlAk3QAAAACOCol4VLHI7uHi8VixJKlWwxPk9vglJR/vlYjtSCbZvpBcbk91howagOHlAAAAAI5okR0bVFz0veLRHfss8/qylIhHnKQ7kJlX1eGhhiPpBgAAAHBEsERc0UihYuFC+TPryevLTJZLTsLt8WXKF8iRd9cs4yWzkVeHWEzatEmqX7/aQsBhgKQbAAAAwGHJEnHFokXJ52SHtyoW2a5kii253F4n6fYFchWq00Zef47cHl81RrzbiSdKc+cmX3NDb81G0g0AAADgsBOL7tC29Qu19xRUHm9GcuIzf8gpc3t88gfrVnWI5WrZcnfSjZqNidQAAAAAVAuzhOLR7Xs8JztLmbktnGVb1s7Z/ZzskmdlewPVHHXFrF0rrV4tde2afIQYai6SbgAAAABVJhYp2mOG8W0yizvLPN6gcht0cd7vOQEacKRieDkAAACAtDAzJeKRlN7p7ZuXKx7b6bx3u73y7pr4zBfISVmfhBtHA5JuAAAAAJUmHi1WNJIcLh4LF8qUUK2G3eRyuSVJvow68sSKk8PFAznyeDPlcrmqOer06NNHmj5devtt6ayzqjsaVBeGlwMAAAA4JNGdmxXesUGxSKES8UjKMpfLrZx6neTxBaspuupT8reEAQOkF1+s3lhQfejpBgAAAFBh8VhYsUihfBm1nWdgx6LbFSneICmZZHv92buGjCdnGS/p5a5pmjSRvv9e+tnPqjsSVCd6ugEAAACUKRGPKBbeNfFZpNC5HztUp43zmK5YdLuixZt2JdrZNTbJBkpDTzcAAACAfcQi27R980rFY8V7LXHJ68+StPs+bK8vS15fVpXGBxwpSLoBAACAGiyRiCUnPYsUyuMLKZCZJ0lyuf1Owu31ZSV7sQO58vqznWHl2L9oNPm87tatqzsSVBeGlwMAAAA1iCXiikW2OcPFY5HtkpIpgT+jtkJ12zl1Izs3y+sLye3xVVO0R7ZnnpGuvDL5mqyr5uJPVAAAAEANYZbQlh/nySyeUu7xZsgbyJUvUCul3J9RuwqjO/p07Lj7dSwmecm+aiR6ugEAAICjiFlCsUhRshc7XCizuHLq7c7+tm34SvFYWL5dz8n2BXLk9gSqMeKjVywmzZ0rde0qBTjENRZJNwAAAHCEi0W3K7pzi3NvtlkiZXmtht2cIeKWiMvl9lRHmECNxAAHAAAA4AhiZorHdsjjzZTLlZxBPFy0VuEd6506brdv18RnOfL5c1PuySbhBqoWD9ADAAAADnPx6A7tLPpRRRuXaeuPc1W4bqHisR3Ocl+glvwZdZSZ21I59Tsrt+EJCtVpo4yshvL4gtUYOUaMkFwuaeTI6o4E1YXh5QAAAMBhKBbZpp1FaxULFyqRiKYsc7k8yqqdL3+wTjVFh4py7X6cOTOY11D0dAMAAADVLB4LK7x9nWKRIqfMLKFI8UYlElG5XG75ArkK5jRXTr3jVKtRNxLuI8TVVyf//93vqjcOVB96ugEAAIAqlohHFA0XKhbeqlh4q+LxsCQpI9RYmbktJCUnPNtZ9IO8gVx5/SG5XPSXAUciJlIDAAAAqkgiHt31yK7ivZa45PWH5Pbufq6Uy+1RMKdZ1QYIoNKRdAMAAACVLJGI7Xp811ZJbqf32u3xySwuySWvL1PeQK58gRx5/TnMKn4Ui0alhQulLl0kDz/mGofh5QAAAMAhSiRiikW2JRPt8FbFotudZW63T7kNT3Ae7xWLFMntzZDbTf9XTRCNSn5/8vXcudIJJ1RvPKh6tHQAAADgAJklUu6xLtq4VLHItpQ6Hm8w+ZzsQK4kk5RMur3+UBVGiurm2/2IdC1YQNJdE5F0AwAAAPthllAsUqRYeKui4a2KR7crt+EJTm+1N5AjS0Tl9ec4Q8bdHn81R43DxVdfScceKwUC+6+Low/DywEAAIBSxKPFiuzcuOve7G0yS6Qsz67bXr6MWpL27fkGgBL0dAMAAKDGMzPFo9vl9gTk9iTHA0cjW1VcuMap43b7nOHi3kCuPN4MZxkJN4CykHQDAACgxjEzxWPFznOyo5FCWSKuzFrHKCOroSTJF8iVP1hHXn+ufIFceXzBao4aR6q//U0aOjQ5xHzFiuqOBlWNpBsAAAA1RjwWVnHhN4qFC5VIRFOWudweKbF7CLnHG1SoTtuqDhFHoXfeSf6/cmX1xoHqQdINAACAo1I8tlOx8Fa53F75g3UlJRPrSPEmSSaXyy2vv2S4eI48vkyGiSMtBg6U/vUv6ac/re5IUB2YSA0AAABHhXgsrFikcNcM44VKxMOSJK8/Wzn1jnPqhbf/T25vUF5/iCQbQNrR0w0AAIAjXuH6LxWLFKWUuVwueXwhZ4bxEoGsBlUYGYCajqQbAAAAR4REPLqrJ7tQ8VixsvM6OMuSz8R2yevPSj4n258jrz87eZ82cBiIRqWFC6WmTaUG/N2nRmF4OQAAAA5LiURs1zOyk4l2LLo9ZXlugy7yeJMzisdjYbncHrnd9Cnh8ORyJf8fMEB68cXqjQVVi6sSAAAADguWiEsul3Of9c5t32ln0dqUOh5fZrIXO5Art9u/u9wbqNJYgYPFI8NqHpJuAAAAVAtLxBWLFjkTn8WjRQrVbS9fIFeS5PXnyOPdvHu4eCBXbo+vmqMGDs5330l5eVKAvw/VOAwvBwAAQJWJx8KKFK9XLLxVscg27f1VNJjTXMHsJtUUHQBUPnq6AQAAkBZmCcWj2yWXR15f5q6ymIoL1zh13B5/6rOyvRnVFS4ApAVJNwAAACqFmSke3a5YpFDRcHLyM7O4Apn15K2dL0nyeDMVyKwnjz8kXyDXmQgNONp98YXUpUvyNWONaxaSbgAAABwSs4S2b16uWLhQiUQsZZnb7ZV2TYwmJZ+dnbUrAQdqkuLi3a+jUcnH9AQ1Bkk3AAAAKiweK1Y0vFUWjyqY00yS5HK5FY/tVCIRk8vlkTeQI18gJzkRmi9LrpJnJQE1WNeuyf9btJB27iTprklIugEAAFCmeGyn86zsaHirEvGIpGSPdUaosVxujyQpM7elXC73riTbXd4mgRopEGBYeU1F0g0AAIBSbd+8UuEd61LKXC6XvP5seQO5MplK+rBLHvMFAEhF0g0AAFCDJeJRpxc7Ft6qUN0O8niTDxL2+IJyuVzy+ELJ4eKBXHl9Iad3G8CBiUSSE6plZEgdO1Z3NKgqPKcbAACgBkkkYruGi29VNFyoeHRHyvKs2vkKZNZz6rrkIskGKsme0xuQhdUc9HQDAAAcxUpmE3e7k1/7YuGtKtpUkFLH48tMPifbnyNvIMcpL1kHQOVo2lT67rvqjgJVjZ5uAACAo4gl4opFtikaKVQsvFWxyHYFc5oqmN1UUnI4+baNi+X1ZzuJttvDNMpAVSgsTA4t9/urOxJUJZJuAACAI5wl4tpZ9IOi4a2KR4u099c7fzBPoTqtqyk6AKjZGDMEAABwBDFLKB7drkQiJn9G7WShy6WdRWtlFpckuT2B3ROf+XOcidEAAFWPpBsAAOAwZmaKR7crFi5UNLJVsXChzBLyeDOcpNvlciuY3VQut0feQK483oxqjhpAWUomU/vqK6lDh+qNBVWDpBsAAOAwtWPrKoV3rJcl4inlbrdPHl+mzBJyudySpIzsxtURIoCD9OGHJN01BUk3AABANYtHi51e7Kza+U4ibWayRFwut0c+/67h4oEcebyZcu357CEAR4xWraR4XDrxxOqOBFWFidQAAACqWDy2U7Fw8jnZsUihEvGIsyyn3nHy+rOT9aLFMovL48siyQaAIxQ93QAAAFVoZ9Fa7di6OqXM5XLL68+WN5Ajl3v3s4Q8vmAVRwcAqGwk3QAAAJUsEY8ke7HDWxWLFCqY3Uz+zDxJktcfksvlkscXSj4nO5C7q8xdzVEDqAqRiLRggbR5s9SvX3VHg6rA8HIAAIBDZIm4ouEtioaT92XHY8UpywNZDZRVq1WyrplkCbncnuoIFUA1u/BC6V//Sr4mE6sZ+JMqAADAAUokYorHdjrvzWIq2lSg8Pb/OQm315eljFBjheq2UzCnuVPX5XKRcAM12MknV3cEqGr0dAMAAOyHJeKKRQp3DxmP7pAvI1fZdds7dbZtXCqPNyCvPznDuNvNXXwA9hWNJnu4/f7918XRgd8GAAAAZSje9p2iO7coHi3S3v0UFo+mvM+u264qQwNwhPL5qjsCVDWSbgAAUOOZJRSLFCke3aGMUEOnPBYuVCyyTZLk8QR2PSc7V75AttyeQHWFCwA4gpB0AwCAGscsoXh0+67h4slnZZslJEn+YF25PcmuqEBWQ/mDefIGcuTxZlRnyACOIm3bSgUF0l13SXfcUd3RIN24pxsAANQoO4vWqrhwjcziKeVut0/eQI6COc1JsAGklcuV/P/YY6UVK6o3FqQfPd0AAOCoFIvuSE56Fi5URk4zeX2ZkiSX2yuzuNxur7z+HHkDOfIFcuXZtRwA0u2KK6T330/2dOPoR083AAA4KsSjxYpGkkl2LFyoRGL3RGeZuS2UEWosKfm4r0Rspzy+LLlKupsAAEgTkm4AAHBEMkvI5XJLkqLhQm3b8FXKcpfL7fRk+zPqyOMLVkeYAIAajuHlAADgiJCIh3dPfBbeKl+wtjJzj5Ekef0hudweeX0heQM5yWTbH3KScgA4nMRi0vz50sKFyaHmOLrR0w0AAA5LZqZo8UZFI8kkOx7bmbLc68tSTv1Oe9RPkGQDOCJ8+qnUs2fydTQqeekKPaqRdAMAgMNCIh5VIr5TXn+2U7blx/lKxMO73rnk9WfJ609OfOb1Z8vl9lRPsABwCMJhKWPXQxIKCqTWras3HqQXf1MBAADVIpGIKRbZ5gwXj0W3y+32KrdhN2eCs0BmPZnFnXuz3W6+ugA48gUC9HDXJPyYAQBAlQpv/5/CO9YpFtkuKXXAncvtkyUicnkCkqRgTrNqiBAA0o+Eu+bgRw0AANLCLOH0ZAdCjZxe6kQ8olikSJLk8Wbs6sXOlS+QI7fHX50hAwBQ6Ui6AQBApUgm2UWKRXbNMB7ZJrOEJMnjy5I/WEeS5A/WlXtXsu3xBqozZACoNkOHSn/7m/STn0iLFlV3NEgnJlIDAACHLLJzs7ZvKnCS7BJuj19ef44yQg1TJkgDgJquaVPp+++Tr8nIjm70dAMAgAoxM8VjO3Y/JzujjgJZ9SVJHm9QZgm53b7kc7IDOfL5c+XxBas5agA4PP3hD9Kdd0pDhlR3JEg3eroBAECZ4tFiRcNbFYtsVSy8TYlE1FnmD9ZRqE7bPerukNsbdGYeBwAA9HQDAIA9JBIxZ8IzS8RVuP4L7fn3eZfLI28gWz5/rrwZuSnrenyZVRorAABHApJuAABqsHgsvGvis62KhrfK7fErp15HSZLL7ZHXnyNJyeHigVx5fFlyudzVGTIAHDVmz5ZmzpQuvVTKy6vuaJAuJN0AANQwkeJNiu7crFikUPHYzpRllojJEnG53B5JUnZeh+oIEQBqhJNOSv7v90vDh1dvLEgfkm4AAI5iiXhUscg253FdkhQp3qBI8cZd71zy+rOSz8n258jrz3YSbgBA1Vi/vrojQDqRdAMAKu6VV6QVK6Tbbiu7zn33Sfn50kUXVV1ccCQSsV3PyN6qaLhQ8egOSVJu/S7OTOL+YJ7cnkBylnF/tnMPNwCgaiUSEnNPHv34LQsAqLgVK6Tbb09+SxgzZt/l99wj3XGHdO+9VR9bDRfZuVk7C9coFt2+zzKPL1OJRFQelSTddVJ6vgEA1YOEu2Yg6QYAVNxttyUT7jvuSL7fM/EuSbjvvrv8nnAcEkvEFYsW7XpOdm15/dnOspKE2+MNOhOfef05cnt81RUuAAA1Hkk3AODAlCTaJYn3qFHSAw8ke7fvvju5PBKRolHJ65UCgd3rbt/VCxsMSu5dM2BHo8n6Ho+UkXFwdXfskMySZZ5d9yPHYlI4nFw3GDy4usXFyT8yBALJzyJJ8bi0c+eB1XW5pMw9Hqe1c2dymd8v+Xzl1rXiHYoVb1XMipP/Ittk8bi0MywLNZa3UTtJks+fo6zM5vJ5MuXOyEpuW0rGVHIss7J2xxAOJz+3z7e7rlny+EjJGEq6YEp+ngdStyI/+8o4T0r7eVbGeVLy86xIXQA4SC+8IA0alHy9x9MZcZThmR8AgAM3Zkwywb7jDikUSibcN9+8OyF/+OFk+TXXpK5Xv36y/Ntvd5c9+WSybOjQ1LotWybLlyzZXTZhQrLsN79JrduhQ7J8/vzdZa+8kiw799zUuieemCyfMWN32ZtvJsvOOCO17qmnJsvffXd32QcfJMt69Eit+/OfJ8snT95d9tlnybLOnVPr/upXyfKXXtpd9uWXybLWrZ2ieCys6AXnyFe3sRJP/0XRcKHMTN4161SnzekKtj/JqetyexS4/ja5c+tIjz++e7tr1ya3W6tWagyjRiXL//CH3WVbtybLQqFkglnittuSZXuOYIjFdtfdunV3+R/+kCwbNSp1f7VqJcvXrt1d9vjjybIrr0yt26RJsnzlyt1lzzyTLBs4MLVu69bJ8i+/3F320kvJsl/9KrVu587J8s8+2102eXKy7Oc/T63bo0ey/IMPdpe9+26y7NRTBQCVgQnUagaSbgDAwdk7qbrhhuqJ4whnZopFihTesU6SlLC4s8zjDTg9yF5flrJqtVJugy7KqXecJMklbgYEgCPZuedKrVpJl11W3ZEgnVxmDGQAAByEMWNSJ0y7667dQ84ZXp5ad68h47FtmxTbsVkxK1bUdsgS8WTdcERuT0C1WvVy6ia2b5Vb3tSh6IlEcn/S/oeMH0hdhpfvrsvwcgBAJSHpBgAcuJJJ066/XhoxQvr736U779x9TzdSxGPhZK/1LoXrFqbMMu5ye+T158gXyJE3kCuvL6u0zeBwUVy8+1aE998nAQcAlIuJ1AAAB2bPWcr3nFTN5Sp9VvMaKB7bqVg4+ZzsWKRQloiqVsMT5XIne0x9GbXlcvucGcY9vky5XNzxdcRIJKSZM3e/BoBDsHBhcvqIHj2kk07af30ceUi6AQAVd999+ybcJfZMwN3uGvfYsGh4qyI7Niga3qpEPJyyzOVyKx4rltcfkiQFc5pVR4ioLIHA7gnz9hwWDwAHoWSuzVatUuePxNGDpBsAUHH5+cn7uG+7LXnf7JNPJst/97vk/b5jxiQT7vz86o0zzRLxqGLhrfIGcuT2JO9xjkd3OJOhuVwueXyh5HOyAzny+rPpyT6aeL3SeedVdxQAjjIl03bg6MM93QCAg7N9e/LxSZJUVJQ6SddRJhGPKhYpVCxcqGikUPFocgKxrFrHKpBVX5IUjxUrvGO9fP5dSfauoeQAAKBmo6cbAHBwPB7pkkt2vz4KxaI7tGPzipRJz0p4fVnSHr3XHm9QmTnNqzI8VJd4fPdz3n/606P2/AcAVA56ugEANZ4l4opFtikaKZTHE1Agq4EkKZGIacvaOZIkjy8z2YsdyJHXnyO3h3GANVYNGuUBADh09HQDAGocs4RikW3J4eLhrYpHi1TyN2ivP9tJut1ur0J128nry3Lu3QbkckkdOux+DQCH4PvvpaZNk68jEe7tPhrR0w0AqHG2/DhPiXgkpcztCex6TnYtBTLzqikyAEBNEw5LGRnJ13PnSiecUL3xoPLR0w0AODjbt0stWyZfr159WA2xNUsoHt2efE52uFCJRES59Ts7y72+LMUkef05uxLtXHm8GdUXMACgxgoEpO7dpdatd/d44+hCTzcA4OAcZve1xqPFioY3JxPtSKEsEU9Zntugq5NYJxIxud383RkAAKQf3zgAAAcnGJQWLdr9uorFozvk9mY4z78Ob/9RO7f/6Cx3uT3y+Xc9JzuQK7cn4Cwj4cYhKS6Wzj03+fqNN6rl/AcAHDno6QYAHBHisWJn4rPkkPGosvN+Il8gR5IU2blZ4e0/yhfIldefI48vSy4muUI6HGajPAAc+VaskP7zH6lePenSS6s7GlQ2km4AwGErFt2hcNEPioa37jPxmcvlVmatVgpk1qum6FBjxWLSK68kX190keRl5ASAQ9O8ubRmTfI12dnRh6QbAHBwolFpwoTk6yFDDvkZJ4l4RNFwoTzegLz+bElSLFKkwvVfSpJcLpe8/mx5/cnh4l5/yBlaDgDAkWzQIOmFF5Kvyc6OPiTdAICDc4hDbBPxqGKR3cPF47FiSVIgs76yah8rSTIz7dz2XfK+bF9ILrenUj8CAABAujEeCgBwcDweqX//3a8ryBJxFW5YpHh0xz7LvL4seXy7J6VyuVwK5jQ75FCBShWPS/PnJ18ff/wBnf8AgJqHnm4AQFpYIq5oJPmcbCmhzNxjnGVb/7dA8VixPL7M5HOyd80yzqziOCIwkRoA4ADw7QYAUCksEVcssm1Xor1Vsch2Scm/67pcbgVzWjj3YGfVzpfbE5Dbc2j3gQPVwuWSWrTY/RoAKkHJ5WTCBGnw4GoNBZWMnm4AwEExS6RMZLZt4xJFd25JqePxZjgTn/mDdZj4DACAMpQk3QMGSC++WL2xoHLR0w0AqBCzhOLR7c7EZ7Gt61Xr9MFySdLixfL6cxSP7kg+J7vkWdneQHWHDQDAEeGaa6QtW6RRo6o7ElQ2eroBAGWKx3YqWrxJ0chWxcLbZBbfvXBHseq0OT35uqhIlhmkJxsAAGAv9HQDACQlH88VjxXL7fbK7fFLSj4ne0fhN04dt9ubfHyXP1e+uiFp9uzkgowMEm7UHDt3Sr/5TfL1P/8pZWRUbzwAgMMaPd0AUIPFo8W7erGTs4wnElEFc5ormN1EkpSIR7Rjy9fJ4eKBHHm8mXIxcRRqOmYvB5AG69Yl7+XetEm6997qjgaViaQbAGqYRDyqHVtXKxYpVCIeSVnmcrmVEWqkYE7zaooOOAJEo8nphSVpyBDJxyz8AA7do4/uvp+bDO3oQtINAEexeCysWKRQkhTIrCcpOSHalrVznNnHvf7sXUPGc+T1hyo+TDwWk155Jfn6ooskL3csAQBwsGbPlk46Kfk6keCJhEcTkm4AOIok4hHFwoXJGcYjhYrHdkqSPN6gcht0ceqFd6yX2+OX15998PdiM8QWAABgv+iWAICjRGnPyZZc8vqz5A3kysyc+7FLer0PidstnXHG7tdATZFISEuWJF+3b8/5DwAoFz3dAHAESSRiyUnPIoWKRYqUnfcTJ5HevnmlwjvWyevLciY+8/qz5Xbz91WgUjHKAwBwAPgmBgCHMUvEFYtsc4aLxyLbJe3+W2k8ul1ef/LLfzCnqYK5LUiygaqQl1fdEQA4CjVrJn33nXTqqdL06dUdDSoLPd0AcBixRFxyuZz7rIsL16h423cpdTzeDHkDufL5c+TNqEWSDQDAUWLPydPI0o4efFMDgGpkllAsUpTsxQ4XKhbZpqza+fIH60qSvIFcuXesl2/XcHFfIEduT6Cao95lxw7pxBOTr+fMkTIzqzceAACOcM89J02bJg0YUN2RoDLR0w0AVSwRjyq8Y51zb7ZZImV5RqixMnNbVFN0B4D7WgEAAPaLnm4ASCMzUzy6XZKce6/N4iou/Nap43b7kpOeBXLk8+fK4wtWS6wHLCND+vDD3a+BmmLnTmno0OTr557j/AcAlIuebgCoZPHojuTEZ7t6shOJmPwZtRWq286ps33zSnl8mfIGcuXxBp0ZyAEcARjlASBNIhHpT3+SPvtMevllyeer7ohQGUi6AaCSbN+8QtGdW5RIRFPKXS6PfBm1FarTupoiA1CpolHpySeTr3/3O74VA6g04fDuwTPz5knHH1+98aByMLwcAA5QPLZTsXChEvGdCuY0TylPJKJyudzy+nOcic88vixnNvKjSiwmvflm8vUvfyl5+ZWCGsLnk667rrqjAHAUCuwxV+rGjdUXByoXPd0AsB+JeFjR8K7ZxcNbFY+HnWW1Gp3oPLIrGt4qySWvP3R0Jtl7Y4gtAADAftEtAQDl2LF1tXYWrU0pc7lc8vhC8gVyUh6i6QvkVnV41cvtlnr23P0aqCkSCenbXZMhNm/O+Q8AKBc93QBqvEQitmvSs62KhguVVbu1vL7kM6fD2/+n7VtWyevPktefHC7u9efI5fZUc9QAqg2jPAAAB4CebgA1jiXiikZ2DxeP7XqkV4lYeKuTdPuDefIF6zpDyAFAkpSZWd0RADhKXXml9Mwzydd0jx4d+BYJ4KhnibjMEnJ7kjMMxyLbVLRxaUodjze4a+KzXHn9OU65y+0RD/MCkCIrK9nbDQBpsHlzdUeAykbSDeCoY5ZQLFKkWHirouGtikeLFMhqpMzcFpIkrz87mWT7s+UN5MoXyJHb46/mqI9AxcXSqacmX3/0kRQMVm88AAAcBW6+OfnYsDPPrO5IUFm4pxvAUcEsoZ1FP+y6N3ubzBIpy30ZtZRdt301RXeU4r5WAACA/aKnG8ARx8wUj25XIh6RP1hHkuRyuRXe/j8l4hFJktvtc3qxvYFcebwZ1Rny0SkQ2P2c7j0fLAoc7cJh6Zprkq///GfOfwBAuejpBnDYMzPFYzucic+ikUJZIi6326dajbo59XYWrZVcLvn8ufL4GOoMIE0Y5QEgzZ55Rnr3Xem226Tjj6/uaHCo6OkGcFgrLvxW4e3rlEhEU8pdbo+8/pASiZgzs3hGqFF1hAigpvH5pHvv3f0aACrZlVcm/8/MlF54oXpjwaEj6QZwWIjHdu6a+KxQWbVaOc/BNjMlElG5XO7k7OL+XHkDOfL4MuVyuas56houHpc++CD5+mc/kzw8uxw1hN+f7H4CgDSrW7e6I0BlYHg5gGoRj4UVixQ6iXYiHnaWZddtJ19G7V31dsoSUXl8WSTZhxuG2AIAAOwXPd0Aqlx4x3pt37wipczlcsnjC8kXyJV7j0nPkhOgMQnaYcntljp33v0aqCnMpA0bkq/z8iSXq3rjAQAc1ujpBpAWiXhUsUihouGtioULlRFqpEBWA0lSPFqsreu+kNeflZxh3J8jrz/bGVIOAIc1RnkAAA4APd0AKoVZQtGdW5xEOx7dkbI8Gt7qJN0eX1C1GnVzJkADAADAbv/9r/TLXyZf00V65OMbL4CDYom4Eomo8/xrs4SKNhVI2v2bwePLTD4ne9fkZ3si4QZwxMrK4lswgLSqU2f361hM8vK16YjGjw9AhVgirli0yJn4LB4tkscXUk694yQlk2h/sI5cbq98gVx5/Tlye3iUzlGtuFj6+c+Tr99+WwrybHQAACrD8cdLgwZJPXpUdySoDNzTDaBcO4vWKrpzk2KRbdr7cuHxZiinfmdmFa+puK+1emzeLK1enZzIa8sWKScnOZlXyb/MTCb2AgDgMEJPNwBJyeHh8eh2xSJFygg1cspj4UJFw4WSJLfH7/RiewM5ztBy1FCBgPTqq7tfo/IkEtKSJdJHH0kzZkh//KPUuHFy2YQJ0qhRZa87caL0f/+XfP2//0nff5+cZZ7nqFeecFi6+ebk6wcf5PwHAJSLpBuoocxsV5KdTKpj4UKZxSVJvozaTkIdyGogX0atXUk2w4exB69XuuCC6o7i6LFhg/Tyy9IHHyQT7U2bdi/r31+66KLk64YNpUaNkr3atWpJhYXJddevlyKRZHmJf/9buuYaKTtb6tlT6tNHGjBAatasKj/Z0ScWkx5/PPn6vvtIugGkxeuvS3//u3T22dLQodUdDQ4Fw8uBGii8/X8qLvxWiUQspdzt9srrz1FGTjN5fZnVFB1QA735pvTrXyd7UEtkZiZv5vvpT5MJd7t25W/DLDnMPyND8u2aT+HBB6X775e2bt1dz+1OJvHDh0s/+xnPWD8YkYh0113J13feKfn91RsPgKPSnncKkbEd2Ui6gaNYPFac8pxsrz9bkhQp3qSiTcvkcnnkDeTsmmE8Rx5fllzcC4qKiselzz5Lvj75ZIYvH4gdO6Qff5RatUq+X7cu2ft83HHJBLt37+QsOr5KmIwwHpe+/DLZez5xojR9erLc65XWrEn2nAMADjunnpq8dLdpIy1bVt3R4FCQdANHkXhs5657sLcqFilUIh5xlgWzmyqYkxxSaom44rEdu5JserlwkJhI7cCZSa+9Jo0cmUy4p03bvezrr6Vjjkn/JGiLF0tPPSXt3Ck9++zu8lmzpBNPpOcbAIBKRtINHMHMEk7SHIvuUOG6L1KWu1wuef3Z8gZy5cuoLa+PpAiVaMeO5ARdkvTFF8nh0CjbqlXStddK//1v8n3z5tLChVJubvXGJUmffy5165YcsfDUU1KnTtUd0eHNLHn+S8wWDwDYLyZSA44giXg0+ZzsSKFi4a3y+rOVVTtfkuTxBuV2++T2ZiSHiwdy5fWF5HIz5BdpkpkpLV9e3VEc/iKR5Ozj996bfLa5zyeNHi3ddtvh84eKgoJkLDNnJoe1jxwpjR2bnIAN+9qxg1Ee+P/t3Xl4ZGWZ///P2WpLpZLeF5q12UFZHUQUEHFUxG2UGWZQwV0RR8ZLfzPuw3wVHVHRGcXRL6gjaqs47svI4oK4fMFGEFkEuqGBht47qSS1nPX3x1OpStFNb/TJqaTer+uqKyenTtJ30yHJp57n3DcA7DJWuoEe59e3tIN2FNS6nnOcvIYWH99+f+rKN4Ae8Oij0gtfKN12m3n/9NOlK66Qjjgiy6q275FHpIsvNvd9S9L++5sGb0cfnWlZPYlbKwBMgzjutEtZudK8JoqZid/OgR4Sx6FCf6zrXH3sYTUm1rUDt+sNqFBeovLcwzS4sHsLKIEb6DEDA1IQmDFeV19txoH1YuCWpGXLzIixn/xEOuAAac0a6ZRTpJ/9LOvKek+pZML2+Hjv7FYAMOtMbbEx2bcUMxMr3UCGkjhS6I+1t4uH/oQsy9Lwkqe1A3Rj7FHFUVNuq8O47eyFbsbA3tBoSC9/uTn+n/8xo6qwrTVrzNv998+2jt2xebP0N38j3XijdNll0jvfmXVFANCXLrnEDJl4xSukefOyrgZ7itANZKBZ26TmxDpFwbge/7+g4xZUnne4HLeYUXXALmKL7baSRPrkJ81+wIsvzrqaJ6fZlL7xDenVr6ZRGAAATwKN1IAUJUms0B9X6FeVLy2U7eTM+dhvbyO3nXyn8VmuIsfNZ1kysOtyOelLX+ocwzRL+8AHTEh99rM73d1nonxeOv/8zvu1mvSVr0hvehMh3PfN8pMkffCDfP0DAHaIlW5gL0qSRFEw0TUrO0liSdLAnIOVLy2QNDlPe1RufkiOy5ZcYFb4+tel884zxx/7mNmSPVvCaRRJz3qW9LvfSZdeKr373VlXlC12eQCYJjffLH30o9LChdJ//VfW1WBPEbqBvSRoVjW+5R4lcdR13rY9ufmK8gOL5OV7YB4vgL3vppuk5zzHrIC+853mPujZ5jOfMXPGJelb35LOOSfberLUbEr//M/m+N//3ewKAIAUnHOO6XEpmTuYMDMRuoHdFAX11ir2qNxcRYXyEklmhvbIuj/Ish15uSHT+Cw/JMctypotq13AVFEk3XGHOX7KUzpzTfrN/fdLT3+6aT72speZ347sWTpJ4O1vl/7jP0zTvF/8wvy9AQCp+eIXpde9zhyT2mYuQjewE5NbwYNmVaFfVRz57ee8/JAG5x/Zfj8MaoRs9A+22EojI9JJJ0n33iudeKL0q1/N7hFSUSS99KVmfvfChWbf40zqyg4AQAZm6UvxwJ6L47B9nCSxqhtu18TIavn1TYojX5Zly8sPqVjZV8XKvl0f63olAjf6h2VJS5eaR79+3efz0rnnSoccIv3gB7M7cEtmN8OKFdKxx0obNkhvfCNLLwAA7AQr3eh7ceSbVexW4zNJGlp0XPv58c1/URwH8vJDrQ7j5fYMbQCQJIWh5PbRQJD775eOPtpsM7/1Vumgg7KuaHqxywMAsBv66DcEoCNojMhvbFHYrCoK64971lIcBbIdT5JUnnfY9BcIoLeFoVndn7yPvZ8CtyQdfLCZ4X3yydKiRVlXAwCz2uRmsvPPl7785UxLwR5ipRuzXhyHCptVeYXh9gr1xMhqNSfWt69xvQGzip2vyM0Nyrb77BdoALvn8sulq6+WPv956WlPy7oaTLckkTZtMsfz5/fv7RUApsXkt5iDDpJWrcq2FuwZkgVmnSSOFPrVzpbxoCYpUWXB0XJzg5KkXGGuLMuS2+oyTsgG9kCjIb3qVeb46qvNVuN+sHat9IEPmG3Ft91G6JZMY7X99pOe+tSsK5keliUtWJB1FQD6xIoV0uio9PznZ10J9hQr3Zg1guao6tWHFfrjkrq/rB23qNLQ/vIKc7IpDpiN+vW+1osukj77WbO1+qabZu94sF11+eXSO94hvfCFJnwDAIAuhG7MOEkSK/THFTZH5eYr8vJDkqTQH1N1458lSY6Tb20XH5KXr8h2clmWDMxOQSB94Qvm+I1vlDwv23qmw9iYtM8+5u1110lnnpl1Rdm77z7p0EPN6u/q1dIBB2RdUfp8X7rsMnP8rndJOX7GAACeGKEbPS9JYkXBxJQO42NKkliSlB9YpIHhg9rX+bVNcvMVOW6fbHMFML3+67+kt7xFOuww6e67uZd30l//tXkR4l/+RfrIR7KuJn39ussDQCYee0x661ulBx6Q/vjHrKvBnuBGVvS0OAo0uv6PSpKo67xte12r3JJkWbbyAwunu0QA/SJJpCuuMMdveQuBe6oLLzSh+8orpX/9VzO/fDZzXen1r+8cA0CK1qyRvvtdcxwE/bGxbLZhpRs9IQxqZhW7WZUsW+W5h7SfG13/RyVxKDdXaW8Xd7xShtUCkCTFcaeN6vLls//e5t/8RnrmM6VSyTRTGx7OuqLeEYamre7DD0tf/ap03nlZVwQAs0az2elVum4dkxpnIkI3MhGFdQWtkB02q4rjoP2cZTkaXnJie7xXHDVl2TlZrCoBvaXfttgGgfSDH5hgefHFWVfTez78Yel975Oe8QzzAgUAAJBE6MY0iaOmbKez3XBs010KmqPt9y3Lbq1kV1or2WVCNtDrJiZMUzHJrPzO9tCNHXv0UfP1sGiRufGwWMy6IgAAegKhG6mIo2ar8VlVQXNUcdTU8OITZTvmJpTG2KMKmiNy8xUTtnPl9so2AGCGWrXKbDOf7S+aTkxIC1s9RDZs4AUnANMmSWb/t9jZiNCNvSb0x9SsbVTYHFUUNrqesyxL5XlHdDU+A4AZ44c/NC1jX/xi6dhjs64GWeu3WysAZO6AA0xDNckEb8wstNzEHomjQKFfleOV5bhm23gUNtScWN+6wpKbG5CbMx3G3dygLNvJrmAAeDK+9jXpm980zeII3SgWzRb6yWMASFkcZ10BngxC9ywThY1UZlTHcajQH2t3GA+DCUlSaWh/OeWlkiQvX1GhvKR9b7Zt8+UFzGrNpvSmN5njz39+9o6JShLpxhvN8bOelW0tva5ely64QPr976W77pq9K8C2bZadAGCafOc7ZsPVaadlXQn2BNvLZ5H62CNa/Yf/0EEn/qOKg8v2yueMwoYmtt6n0J+Q1P2l4rhFFcpLlB9gbgHQl/pli+3q1WYkWi4njYywsrkjSSLtv7/p8H7DDdIZZ2RdUd9btWqV4jjWIYccsvOLAQCpoHPVLDK6/o9SEml0/W27/bFJEitojqpefViN8XXt87btKQpM4HbcgvIDi1Sec4iGF5+goUXHEriBfuZ50sc+Zh6el3U16XnwQfN2+XIC985YlnT00eZ48ubD2SgIpE99yjyCYGdXZ+rDH/6wDjvsMP3DP/yD7r777qzLAYC+ROieJZIkUbUVtqvrb9PONjCYkF1VfewRjW26SyOP3aKxTXepPvaImrX17ess21F57mEaWnS8hhYdp4Hhg5QrzZft5NL86wCYCXI56V3vMo/cLP6esGmTebtgQbZ1zBTz55u3k//dZiPfl/7pn8zD97OuZoc+97nP6YorrtBNN92ko446KvXwvWzZMl1xxRVd537729+qVCppzWx+IQaYBueeKy1e3GkpgZmD0D1LNMbXKmiOSJKC5lY1xh/d4fXVDX/S2KY7Va8+rKA5qiSJZTs55YrzVRhY0nWtV5jTbpYGAH1nMjxOhske8sDPfqZb/u3f9OB112VdSkc/hG7Hkf7hH8zD6e0mofl8Xm9+85t13333TUv4fvrTn65bbrml/X6SJLr44ot18cUXa//999/rfx7QT775TWn9eumyy6T77su6GuwOOl3NQM2J9duE6rFNd8q8hhJLsrX5oV+qNGe54qCmMKgriX3NWfoMFcpmO7ibKyuJQzMnO1+RlxuS47FtEsBuiGPpscfM8ZIlprnUbNSDK91bV63SqpNO0ombN+vA1rk/zJung2+5RcMHHrjDj01dP4TuQsF0tJ9BJsP3a17zGn3pS1/SpZdeqqOOOkrnnnuu3v/+9+uII47YK3/O05/+dH35y19uv3/11VfroYce0rvf/e698vmBfrVlS+f4c58zj+c9T1qxQpozJ7u6sGtopDYDPXTHlzW28Y7d/riBuYdrv6e8WpIUx5Esy5ZlWXu7PAD9YmJC9tA8SVI8unn2NlIbH5ceWycV8tK++2ZdjSRp5aJ9dNzmzV2vnIeS/jhvnk5Yvzarsowrr5L95rcqedHZSr777WxrwRNqNpv60pe/oo9+9N/1yCNr9Xd/d47e99736IgjDn9Sn/emm36jZ5/xXG3dskG2bevwI56iD3zgvXr96167lyoH+tMLznJ1ww22oqjzu7vjSGeeKf3v/2ZYGHYJoXsGisK6Hr3nGlU33J51KQD6mFUPdMRLPitJuvv7b1VSnMXN1HrIxlse1On/8p0nfP45S4e1biC7e+ztiaa89VXFpZyCxUOZ1YFdE8eJRqoNbdwyoSiK9fzTD9XH33/2Hn++ph/qpBd9Rlde9gr9fuUa/fy3q/Ttz79Kts2L/MCeevDh+Tr7gifeLXLvvRIDCnob28tnIMctatlRr9LI3MP12L3/oySOZbaVA8D0SYqe7rr24qzL6DsTdz+2w+dPGMzrocMWT1M1fSqMNXz9XZKkkTOPlNyZe2vF2HhTd923XnEcq5B3dfjBC5/U58vnXB22fIGu//V9+vaP79BnPvRSAjfwJD386I57itx/P6G71xG6ZyjLsjRn6V+pNHSAVt3yyVbwfvxFjubtd7rc3KAkaWjhMe2GaEFzrH1Pt233dhMYAMjUL34p62fXKXnaCdLL/ybralRoXif994ue8Pk3f+qLOuC5z5nGivrQ1FsrVvxyRt5acf/9q/ThSz+ib/94hRYuXKhPXf5Jvf71r1WhUHjSn/v0M+u64or/0gtfeJZe809f3QvVAv3NWWJJ73ni5w8+ePpqwZ4hdM90lq0kfoIZoUmkoQVPle14ioKavHyl/VRQf1B+w3RkcLySvJxpqObmBhkHBgBT3bxS+vgnZL32tdLf/n3W1Wj5C87WH+bN07Hbuaf7tnnzdOLzz8qqtP5R9qQ//1mSZJeHZ1QTwfvvv18f+tCH9NWvflULFy7U5Zdfrje84Q17JWxPOu64E+S6rj7+8U/Idph+AjxZhx9hmqZdd53pYTpp8p5uVrl738z5KYHtqm78k6TJbVutf05r8p/V0sTWe5UfWKTScHc3W9styHFNt/IoqKkxsU7jW+7VyLqVGt1w+07nfAOAmk3prW81j2Yz62rS04PduA++5RatHB7uOndbq3s5poFtS0cdZR4zJHDff//9uuCCC3T44Yfr2muv1eWXX67Vq1frbW97214N3JL0ta99TRdeeKEOO+ywvfp5gX62YoV02mnd584805xH72Ole4arrr9NkgnIA8MHadEhL9K6+36g2sgqSYlGN9yu+fufsc3HlYb2l4b2VxwFCv2qeTTHFAYTsiynq6v52OZ7ZFmOvHxFbq7CaDEARhhKV1xhjj/2MSk/S1e0ejB0Dx94oBasXKlDli/Xh84/Xyedd55OfO5zsy4LPWjNmjX64Ac/2F7Z/uQnP6k3vOENKhb37s/yOI61ceNGXXXVVfrLX/6i7373u3v18wP9bs4c6ec/l170ImnNGul//ocV7pmE0D2D+Y2taoyvlWRp0fKzNG+/02VZtg447s3a9NAvtWHVT9QYe0RBY6u8wvYH+NmOp1xxnnLF1r1pcagk6mxXj+NQQWOr+fPq5hdO2/bk5gfl5iry8kNyvFK6f1EAvcnzpA9+sHM8W02G7vXrs61jO+6XtODVr9YBZ2z74ipSFATS5CzqCy7o6a//9773vfr5z3+eWtiedOONN+qMM87Q4Ycfru985zsaGqJzPZCGI46Q7r6bwD3TMDJsBgsaI3r0nmu04KDnqVTZb5vna6NrtPGBa7X08HPkFYb36M9IklihP6awWTVv/TElSedmknxpgQbmHNy6NlEUjMvxBmRZM2O7HQDs1IYN0qJFkmVJmzeb5YYesHr1ai1fvlw33HCDziB0T6+JCalcNsfj4z3dSM33fVmWJa+HXxgAsOue+1zp+uvN637nn591NdhVhG7sliSJFQUTCppmS3quOF/50gJJUhjUVN1wuyzLlpsbNI98Ra5XlkWHdAAz2WGHmUGoP/yhdPaezzDemwjdGWo0pHPPNcff+Ia0l++JBoAnMnkH6P77Sw8+mGkp2A1sL8dumRqopX26noujpmzbUxwHCpqjCpqj0pgZb+Z4ZRUHl+3xijuAHpQk0uioOR4a6vwmMBs961kmdP/pTz0TupGhQkH63veyrgJAHzroIGn1aumkk7KuBLuD0I29JleYI2/xCYrDuoLJxmx+VXHkK/THuq4NmlUFjc1yc6Y5m+2w7Q2YcWq1zlbrHt9i+6S9//3S//k/0pIlWVcCAOhjv/mN+VF03nlZV4LdQejGXmVWtUumudrAYklSFDYU+mOt1XEjaGxVY3ydpHWSJMcttuaEm1nhjjtLuyADmJn23z/rCgAA0MKFpnfjI49kXQl2B6EbqXPcghy3+343rzCsJIkU+mOKgpqisK4orKs5YboDDy06rv0xSRxxTzjQi0olyffNsdtHP06CoKe7VWMa1GrSkUea47vuMv8vAMA0sG1pn32kBx7IuhLsjj76LQm9xMsPycubcSJmVvhY62G2o08N6RMjq9or5W6uIjdfkeMWu2aJA8iAZfVX+LztNuld7zLb6Lmft78liRmUO3kMANPkzjtNA7WPf1y69NL++jE8kxG6kTkzK3yucsW5ktQ1kkySQn9cceTLr2+WX99sPsZ2W93Rh1Qoc48lgGlQLJo5LbZtAhdbzvtXoSDdfHPnGACmycEHd47vuEM6/vjsasGuY5gyes7jZ3wPLTpWg/OPUrGyr7z8sCzLVhyH8htb5dc3dV3bnFivoFndJrgDSIHvm5Xfd72rs818NjvsMOk5z5HiWPr857OuBllyHOlpTzMPh9ufAEyffF466yxp332lY4/NuhrsKla60fMsy5aXr8jLV6TByVnhNYV+VZbd2VOTxJEmRh6QlLTHlHlTmrNxXziwlwWB2d8mSf/6r1Iul2k50+LCC6UbbpCuvFL64AfNbz8AAEyj5z3P/CjiTsuZg9CNGcfMCi/LzZW7zidJqFxxrkJ/rD2mzIwqWyvJUmFwqUqV/TKpGZiVPE965zs7x/3gxS+Wli6VHn1UuuYa6ZWvzLoiZCEMpW9+0xz/3d/1VyNBAJnbd1+p2ZQ2bZIWLMi6GuwKtpdj1rCdvMpzD9Xw4hM0tOhYDQwvV760QI6Tl5TItjurcFFQ1+iG2zUxslp+bZPiqA+2xgJ7Wy4nXXaZefTDKrdkwtVb3mKO3/c+aWIi23qQjWbTvODyyleaYwCYRitXmrevf322dWDX8dIsZiXHLcpxi8oPLJQkRWGza3t56FfNqLKg1h5T5riFdnd0Lz8s2+mTlTsAu+ef/kn6v//XNFP70pekiy7KuiJMN9uWzjyzcwwA0+iLXzRvf/CDbOvAriN0oy84bvd9l15xnsq2p9CvKmxWFQY1RWFDUdhQs7ZB5XmHK+fMkWQCu5JIjsccVqBLkphttpJZAe6Xm8sGBqTPfU5au1Z63euyrgZZKBal667LugoAfeoNb5D+7d/MNnPMDIRu9CXbdrvGlMVxqMgfU+CPKWxW5eYG29f6tfWqj62VbXutMWWmMZvjlbbptA70lVpNKrd6K4yPmzDaL846K+sKAAB96pJLpK98Rfr7v8+6EuwqQjcgE8Ltwhx5hTnbPJckcWtMWSC/sUV+Y4skybIcuflBDcw5RLbN/0pA3xofl+66S/qrv8q6EgBAn1i2THr44ayrwK4iKQA7URo6QMXKfoqCCYXNMQV+VaFfVRJHivwJWVbnXvH62CNSkpjVcK/MmDLMbqWStHVr57gf/eUv0nOfa1rI3nijdOKJWVeE6VCrmRndknTLLf379Q8gM/vua1qL+H7/9DKdyQjdwC4wY8oG5eYGVdBSJUmiKKwpDpuyptzH2pxYbzqhj6k1K3yg3ZzNzQ2yIo7ZxbKk4eGsq8jW8uXS0UdLP/2p9KIXSf/v/0n7MZpw1ksSs7th8hgAptmKFebtlVdKF16YbS3YOW5IBfaAZVlyvYH2PeGSlCSJioPLlC8tkO3klSSJQn9cjfFHNb75Ho1vuqvrc8RxON1lA9jbXFf6xjekpzxFWrdOOvtsqVrNuiqkrVCQfvEL8ygUsq4GQB/77W+zrgC7gmU3YC+xLEv5gUXKDyySZLqet7uj+1W5+U5ztiSONLruD7Kd/JSV8Mo2XdaBnub70qWXmuP3vKd/97dVKtKPfiSddJJ0xx3S3/2d9MMfmkCO2clxpNNPz7oKAH3skkukD35Q+sQnsq4Eu8JKEvZFAdMhSZL2VvTQH1N145+3ucaE8EHlSwvkFYanuUJgN01M9G/38u35wx+kU0+V6nXpb/9W+vKXzWiplKxevVrLly/XDTfcoDPOOCO1PwcA0HtuucX077z1Vum447KuBjvD9nJgmky999vNDWp4ydNUnne4CuWlcnNlSZbiqCm/vklRWG9fG0dNNcYfUxhMiNfI0FNc19xIduGFrOpKpona179u/lvceafZCYDZKQyl733PPEJuFQIw/SZndD/ySLZ1YNfwWxKQEdt2lSvMUa41piyJI4XBuMJmVV5+uH1d0KyqNvqgJMmyHbm5irxcRW5+UI43wKxwZCeflz772ayr6C0vfal03XXSAQdIQ0NZV/PkrF0r/cu/SKecIr35zVlX01uaTellLzPH4+O86ARg2t13n3l7wQXS5s2ZloJdwE8JoEdYtiMvPyQvP/S48668wrDC5piSOFLQ2KqgYcY0WZat8rwj5OUrWZQMYHsef6/vFVdIhxxiRov1us2bpV//WrrmGumb35SiyDSGI3R3s23pGc/oHAPANLvlFvN2y5Zs68CuIXQDPW5yNTxJYkVBTaE/1mrONqY4DuS4nXtG62OPKGiMyM1X5OUG5TCmDMjWL34hXXSROb7wQulDH+qtMWsbN5r54r/6lXT99dLdd3c/XyhIl1+eTW29rFiUfvObrKsA0MfOPDPrCrA7+G0cmCHMrPCyuf+7vERJkiiOGrIdr33NZBgP/TE1zEfJ9UrtOeFeYQ7b0bH3TEx0AuTICI3UtucZz5Be8xrpi180W/G//W3pk5+U/v7vzZzz6bZhgwnYv/qV2QZ/773mvOtu/97kr35VOuig6a0RALBTT32qdO65Zloleh+/fQMzlGVZXavcklQaPkgDcw5WvrRQjluQlCgMJtQYf0wTI6skdX7JD/0xRWFzeovG7BOGNJLakXxeuuoq6YYbpMMOk9avl847zyxR/OUv01vLj38sLVpkOqt/4QudwC1t/9/woIM69y0DAHrOvvtKDz+cdRXYFax0A7OI4xbkuAXlSwskSXHkK2xWFfhVWbK6OqhPbL1fUdiQ4+TbK+FuvrJNkAeeULHYaZua4misWeGMM6Tbb5c+/nGzxfznP5fOOku6//7pW/E+5hhp/nxzA2AQ7Phay5Le/nbuV34i9boZDyeZ7fl8/QPIwLJl5sfw5s3SvHlZV4MdYU430IeSONLY5rsU+hOSur8F2E5OueJ8lYb2z6Y4YLZbvdoE2pNPlt7zHnMuCKQrrzTbznfxnu89mtN9003Ss5+9890JhYLZszjTO7CnhRn1AHrA5Gu2BxwgPfBApqVgJ1jpBvqQZTuqLHiK4jhU5I8r9KsKmlVFwbjiyFeSRO1rkyTWxNb7zEp4riLHK3FfOPBkHHSQ9MMfSnHcOfe975lGa+98p/T850vPepZZST3mGMlx9vzPimPTHO3XvzaPn/5054Hbdc196ATuJ5bPSz/6UecYADL04INZV4CdIXQDfcy2XdmFYXmFYRU1OSt8QtaUjuehPy6/vkV+3cyksCyntRXdhHA3VyaE9yvflz79aXP89rdLuVy29cw0U7duFwrSUUdJd94pfec75iFJg4NmTvYnPiEdeaQ5t3691GhItZp53/fN/sJNm8zj2c/uBPUXvEC69truP/eAA8zn+slPtl9XGHY6rmP7XFd64QuzrgJAn/vlL82Uyu99L+NCsFNsLwewQ3HUlF/f3L43PImjrudLlf1VGFwqSe3nLPtJrMxh5mCL7d6VJNLNN5sxYzfeaEZSVavmuYceMh1zJOkd75Auv1yrJS2XdIOkrs3l69dLCxea43e9y3RNP/lks3p+2mlmBd22pTe+0TR5m/prgONIz3ym+U0OANDT4ti8ZvupT5nNUuhdrHQD2CHbyatQXiqVlypJEkVhvTWarKqwWZWbH2xf6ze2amLr/XJzA61VcNOcjVnhs5TrSuef3znGk2NZ0kknmce//IsURdKf/iT94Q+dwC2ZlehczqxwT3Jd0yRt/vzOCrgkve990qWXSl5ntGDbFVeY+8t/9SvzZ0nm7cUXp/LXm1WiyDTDk0yTvCdzCwAA7CHblvbZp9PTFL2LlW4Ae02t+pAaY2u3Oe94Jbm5QRXK+8hxuf8ReNKSRKvvuEPLjzlGN3z/+zrjRS/asy7oIyMm5K9ebcL80qXSmjW8iLIz7PIA0ANGRqQFC8y3b9/f/uur6A3ciAlgrylV9tPQouM1MOcQ5QcWtcePRUFNzYn1XSPL/MZWNWsbFYWNrMoFZi7L6oS+cnnPx44ND0v/+7/m3nFJetvbCNy7wrZNk7tjjmGsGoDMFIud3ph33JFtLdgxfrIC2KscNy/HzStfmi9JiqNAoV9VFNRkO51GW83xdQqaI5LMmDI3V5GbH5TX6pAOYJoceKDpan7JJdIb3pB1NTNDsSjddlvWVQDoc1OHJxQK2dWBnePlWQCpsh1PueI8FSv7dp033c8HZVmW4siXX9+k2sgDGt1wu0bX3SrufJkBJibMSunwsDnGzHXSSaab+bx5WVcCANgNn/60Cd9HHJF1JdgRVroBZKI4uEzFwWWtMWXjreZsYwr9MdlusWsrenXjHbJsV26uIi9fkeMNMKasV4yOZl0BAAB9a999pWbTTIxcsCDravBECN0AMmXZjrz8kLz8kCQpSWIlcdh+3mxPH5ckBY0R1SVZlm06o+cG5RWG5eYGt/epkbZiUbr33s4x0C/qdTMDXTJb8/n6B5CRZcvM25tvll74wmxrwRMjdAPoKZZly5py77dlu6osfOqUMWVjiuNAQXNUQXNUceS3Q3eSxAqao3Jzg4wpmw62LR1ySNZVANMvjs2otcljAMjIq19t3p59tsSdeb2L30oB9DTLsuR6A3K9AUlLJElRUFfoVxU0q/IKc9rXRkFN45vvkSTzMfnB1rzwimyHORoA9pJ8XvrWtzrHAJCRo46S7rkn6yqwM4RuADOO4xXleEXlBxZ1nU/iUI5bUBQ2FAYTCoMJSevMx7hFFYf2V25KSMeTFATSF75gjt/4RgaEon+4rnTOOVlXAQD63Oek3/9eetWrsq4EO0LoBjBreIVhDRWOUxz5pilbs6qgNa4sCuuyLKd9bdDYKr++uXVveEWOxz2Zu833pYsuMscXXEDoBgBgmi1YYCY/PvJI1pVgRwjdAGYd28kpV5ynXNGMP4rjUGGzKjdXbl8TNEbUrG1Us7bRfIztyc1XTAjPV+S4pa4O6tgOx5Fe8YrOMdAvosgsLUnS05/O1z+ATO27L6G71xG6Acx6tu0qV5zbdS5Xmi/Ldk1zNn9ccRzIr2+WX98sSRpadLwc19yrGUeBLNthTNnjFQrSNddkXQUw/RoN6ZnPNMfj49LAQLb1AOhrN9wgbdgg/ehHpqEaeg+hG0Bfmhw5Jpmu56E/PqU7ut8O3JJUG1nV7opuVsMrcr0BWTarW0Bfsizp4IM7xwCQoQ0bzNsVKwjdvYrQDaDvWZYtL1+Rl69I2xn5HYX19jiyoDna+hhLjleWVxhWcXDZNFcMIFOlknTffVlXAQCSpCVLpMcek045JetK8ETYKwkAO1FZeKyGFh6j0vCByhXnyXZySpKk1axttOva+tha+fUtiqMgo2qnUa0m7bOPedRqWVcDAEBf+v73zduTT862DjwxVroBYCfMqnZJjleSBhZLkhlL1qzKsjvfRuM4VL36UPt9xyu1u6N7+UHZziyb55sk0qOPdo4BAMC023df8/bhh6Xjjsu2FmwfoRsA9oDjFuS4he6TSaz8wCKF/pgZU9Z6NCfWS5IK5aUqDe2fQbUpKRSkP/6xcwz0i0ZDevnLzfH//A9f/wAytXChmdr5u99JL35x1tVgewjdALCX2E5OA8MHSTIdz0N/rNWcraowqHWF9DCY0Pjme7qaszlucWaNKXMc6dhjs64CmH5RJP3kJ51jAMjQ5z8vBYH00Y9KH/lI1tVgewjdAJAC2/GUK85tjyqL41CWOoE6bFYVR37XmDLbdk1n9PygvMK8rg7qAHpILid96UudYwDI0NQt5VFkXhNHbyF0A8A0sO3ub7f50kI53kBnJdwfUxyH8htb5De2aNAbaIfuKKgrjgO5uXJvzQoPAulrXzPH551n9rYB/cDzpAsuyLoKAJAknXii9MIXSuPjBO5eRegGgAxYttM1pixJYkXBhMKm2ZLueuX2tc3aBjXGH5Vl2XJzZbMa3poznumscN+XXvMac3zOOYRuAAAy4PvS4sXmrpf//m/pkUdMU7WHHzb9Tj/1Kem007Kusr8RugGgB5hAbYK0tPRxz1mybU9xHChoVhU0q5PPyM0NqDzviG1W0qeF40hnndU5BvpFFEl33GGOn/IUvv4BTKtPf1q69lrpgQektWularXz3AUXSK4rWZbZkCZJExOZlIkpCN0A0OOKlf1UrOynKKy3t6IHzariqKk48rsCd210jZTEreZsg7KdFO83LRSkH/84vc8P9KpGo3MT5fi4NDCQbT0A+sq3vy3ddNMTPx+GneO5c6W//uv0a8KOEboBYIZw3KIct6j8wCJJUhQ2FUfNrmv82kbFcSBNrGt9TKHVnM2E8G3GnAHYfZYlLV3aOQaAafSf/ymdcIIUxzu+znWl8883b5GtHurIAwDYHY6bN/eEtyRJrNLwgSqUF8v1zMpbFDbUrG3QxNb7NbH1/q6Pj8LGtNYLzBqlktnTuXatOQaAaXTssdI///POX/MLQ+nVr56WkrATvO4BALOEZdnKFecpV5wnyYwpM7PCxxQ2q/LyQ+1r4zjU6PrbzJiy/GC7OZvjDez6rPBaTTrmGHN8++2EDwAApskHPiB961vSgw+aNhPbc+SRJqAje4RuAJilbNtVrjBHucKcbZ6Lw7osy1IcB/LrW+TXt0gyXdXd3KDypUXtGeNPKEmk++/vHAMAgGlRKJhO5c961vaft23pta+d3prwxNheDgB9yM0NanjJ01RZcLSKlf3kFYZlWY6SOFLQGFEc++1ro7ChevVhBc1RJfGUl9MLBdPJ5aabzDHQLxoNMybvnHPMMQBk4JRTpLe8xQTsx0sS6R/+YfprwvZZScLyBABASpLEzAr3x+QV5rSbrjUm1qk28oAkM77M8crtxmxubjCbcWXQ6tWrtXz5ct1www0644wzsi6nv0xMSOWyOaZ7OYAMjY1Jhx0mrV/faaxm29JznmPGiqE38JsSAECSCdRuriw3V+4677hF5YrzFfpVxZHfvk980uD8o9oN3ZIk2fV7woGZKpeTPvOZzjEAZGRwULrqKumsszrn4pit5b2G0A0A2CEvP9RuwhaFjXZjtrC2RfaPrpUzvEZ6+Ssk11V97GEF9S2tlfDJMWX5jP8GwF7medJb35p1FQAgSXrBC8xW8hUrzLbygQHpJS/JuipMRegGAOwyxy3IcQvKlxZIucXSm//KPDH+Isl1FTarisK6orCu5sR68zFOvr0dPVdaIMuinQgAAHvTpz8t/eAH5o6Xl7xEKhazrghT8ZsPAGDP2LZ02mnm0eriUp53uMpzD1OhvLS1Td1SFDXVrG1UvfpwV+AOGlsVBjXRWgQzThxL991nHpM3UQJAhubPly65xBy/4hXZ1oJtsdINANgzxaL0y192nbJtV7ni3Pa4sSSOtrkHfNLEyGrFkd8aU1aRl6vIzU/OCuc1YfSwel069FBzTCM1AD1icnX7ooukl70s21rQjdANAEiNZTvyCsPyCsNd5+M4lOOWlMRha0zZVgWNreZjLFv50kKVhg/MoGJgFw0NZV0BAHT5xS/M20cfzbYObIvQDQCYdrbtanD+EUqSWFFQU+hXTXM2f0xxHEpTVrqTONL4lntaI8rMveGW7WRYPfrewIA0MpJ1FQDQ5YILpGuu6e5kjt5A6AYA7Jl6XTr5ZHP8u9/tUdcWy7I7Y8rKS82s8LDetb08DMYVNKsKmlVJayVZcnMD7QDu5ivMCgcA9L2zzjLdy9F7+C0FALBn4li6/fbO8V5gWZZcr9R1znFLGhheblbD/bHW2LJxhf64JKk0dIAK5SWtMkIpiWQ7jCkDAAC9gdANANgzhYJ07bWd45TYjqf8wELlBxZKkuKoqaA51g7hbr7Svjaob9bEyGo5bqFrJdxx06sPfajZlN70JnP8+c9LeV7kAdAbqlXp5pulI46Q9tkn62owidANANgzjiM997nT/sfaTl75Ul750vxtnosjX5KlKGwoChtq1ja0PiYnNzeoYmV/OS4BCU9SGEr//d/m+LOfJXQD6BmTPR7PO0/66lezrQUdhG4AwKxRrOyrfHmJIn9MgT+msFlVFIwrjnz59c0qDR/UvrZZ26Qk9uXmKnK8EmPKsOs8T/rYxzrHANBjHn446wowFaEbALBnwlD62c/M8fOeJ7m98SPFtl3ZhTnyCnMktWaFB+OKgnpXwzW/tr7VnE2yLKe1FX2yQ3qZEI4nlstJ73pX1lUAwDa2bJGGhyXLyroSTNUbvyEBAGaeZlM6+2xzPD7eM6H78SzbkZcfkpfvnqvsFeZKlqPQr5pZ4c0RBc0RSWY7+vDiE9rXJklMCAcA9Lw5c7KuANvTm78hAQB6n21LJ57YOZ5hCuUlKpSXtMaU1dpzwsNmVY430HVtdcPtsmyXMWUw4lh67DFzvGTJjPz6BwBMH35jAADsmWJRuuWWrKt40syYsgG53oCkKaPHWqKwqShsSFJ7TJkkOV5JXq4irzh3m1V0zHL1urRsmTkeH5cGBnZ8PQBMk1tvlU5obdRiZnfvIHQDAPA4U1exHTevoUXHmxFlzclZ4XVFQU1RUJMstUN3ksTy65tNcza6pM9uPXo7BYD+5vud4yCg12Ov4CcGAAA74bh5Oe4C5UsLJElxFLTmhFfNveEtoT+uia33SzKjzdzcoLx8pdUhvZhJ7UjBwID5bRYAMnbqqafq17/+tSTJcRwtWLBA0tO1fPm71Gw+g9DdI7gJCQCwZ+p16ZRTzKNez7qaaWU7nnLFeSoNHfi4reVJq/O5pThqyq9v0sTIao1uuE0jj/1Bfn1LZjUDAGaXJEl022236aMf/agee+wx3X///VqxYoX+9m9zevDBU3XjjT/JukS0sNINANgzcSz99redY5gu6Que0h5T1m7O5o8pjgPZTq59rV/frGZtY3s13PEG6JAOANhl9913n8bGxnTqqadq8eLFkqQDDjhAp59+us444wy9973v1VlnnZVxlZAI3QCAPZXPS9/9bucYbY8fU5YksaJgQo5Xal8TNEYUNLYqaGxVXZJl2aYzeqs7upsbJIT3qmZTesc7zPEnP8nXP4BMrFy5Uo7j6Jhjjuk6X61KBx74XN144/sVx7FsJixkjtANANgzriu99KVZVzEjTAbqqfLlJXK8Uns1PI4DBc1RBc1RaUwaXnyiLMf8ohSFDVm2y5iyXhGG0hVXmOOPfYzQDSATt956qw4//HCVSqWu80NDkuRJcgjcPYKf3gAAZMD1SnK9ktSaFR6HdQV+VWFzTEkcyHY63W9qI6sVNKvmY/KDcnMVxRGNvDLjedIHP9g5BoAMrFy5Uscff/w255ctkx555F5Jh09/UdguXvoAAOyZKJJ++UvziKKsq5nRLMuS45VUGFis8txDNDj/yK7nkziUlCgMJtQYX6fxLfequvEOSVJjfH0GFfe5XE761381j1xuZ1cDQCr++Mc/bjd03357XQsXfl+XXPJySdJJJ52kP/zhD5Kk888/X5/73OemtU6w0g0A2FONhvTsZ5vj8XEzRgmpqCx8quLIV9ismtVwf6z9XBw1uq6tja6R4xbk5ityXMaUAcBstHr1ao2MjGwTuuM41jve8Ra5rqu3ve1tkqT3v//9uvTSS3XKKaeoXC7rLW95SxYl9zVCNwBgz1iWdOSRneN63XQxz+fN/d6SWQFvNMzzU+85azTMc7lcZ3tuHHdGj00N8LtzbbNp7rf1vM4KZJJItdruX1sqmbolyffNXGbX7b5/d2Ji968tFqXJe+yCwFzvOFKhsMNr7dhSLikqVyhLwwVVRs31Obtsri8UFCtSY/xR8/fyA9luXu7QArm5ignhfiJLMn+W45g/IwzNfwvbNn/epB39e+7Otbvyb783vk629++5p18n2/v3fPy1jz5qPufQUOdaAJgmK1eulCQtWbJE69atU7Va1cqVK/Uf//EfWrNmjX74wx9qzpw5kqSzzz5b73vf+zQ+Pq6f/IQxYllgezkAYM+UStKdd5pHqSS9+MVSuSx985uda2691Zw7snu7tM4915z/8pc75+6+25w74IDua1/3OnP+s5/tnHvoIXNu4cLuay+6yJy/7LLOuU2bzLlyufvaf/5nc+6SSzrnarXOtZMBTDLXlMvmY6aavHbTps65yy4z5y66qPvahQvN+Yce6pz77GfNude9rvvaAw4w5+++u3Puy1825849V5La93y7b2z9nW+9VZJUHNxHhZ/8RnMPfY4Gzv8n+fXNqo0+oOqG25WceJy59te/VpIkSpJY+tGPzLkzz+yu4dRTzfmf/axz7uc/N+dOPrn72he8wJyf7GYvSb//vTn3uK66evnLzfmvfa1z7o47zLlDDum+9lWvMue/8IXOuVWrzLl99um+9k1vMuc//enOucceM+eGh7uvfcc7zPlLL+2cGx3t/HuGYef8e99rzr33vd3XLlsmzZnT/XUCANPk1tb3/EMPPVTLli3TySefrM985jM6++yz9ec//1knnniCLMv8iL755ps1MjKi4eFhuS5rrlngvzoAALOE7eRUrOwnVfaVJDnegIqVfRU2xxT6VWnKCLIoGNfYprtUqD6soqQ4jmQlMWPKdsXkqvkpp3SvzAPANPnIRz6ij3zkIzu97vvfX6tvfOP1+sUvfqG/+Zu/0d13360jjjhiGirEVFaSJEnWRQAAZgG2l+/atXu4vfzx165evVrLly/XDT/+sc447bSdbhlPkliq1WTJkgoFNerrVRtd096KLsuWVSrI8cry8hXlrEE5do7t5U+0vbxW674OAHrIMcdISVKXdIY+85l/16mnnqoVK1boRz/6kb42dacRpgWhGwCAGagdum+4QWecccZuf3ySJIrCemtOeGtWeOS3nx+cf5S8fEWSFPrjiiNfbm6wa5QZAADYObaXAwDQhyzL6swK12JJmhLCx+TmOvfAN2sb1Jwwo8kcryQ3Nyiv1ZzNdhiZBQDAjhC6AQCAJMlxi3LcovIDi7rO205OjltUFNYVBTVFQa0Twt2CKgueKst2sigZALAd4+PS735n3r7sZVlXA0I3AADYoeLgMhUHlymOgtZW9KppzhaYe8+nBu6JrauUJLHcvFkNdzwajQHAdHvNa6Rvf9scczNx9gjdAABgl9iOp1xxnnLFeZKkOA677gNPkkR+Y7OSOJJfN2PUbNuTmxuUmzfb0V1vYLufGwCw95x8cid0I3vMBQEAAHvEtt3WPeEd5bmHqVjZV15+SJZlK44D+Y0tqo0+qPromq5rQ3/cdFUHAOxVb3+7GeDAKndvYKUbAADsFZZlycsPycsPSYNmTFkUTChsjinwq+1u6JIUR4GqG++QZdlmJXxyNdwrc384ADxJDt9GewqhGwAApGJqoC5oaddzcdSQbXuK40BBc1RBc1QaM8Hd8QZUKC9tb2MHAGAmY3s5AACYdm5uUMNLTtTQwmM1MHyQcsX5sp2ckiTZZtt5FNRUG31Afn2z4ijIsGoAmDn22UeyLOkDH8i6ErDSDQAAMuN4RTleZ0xZFDYU+mNmi3pL0BxVY3ydpHXmY9xiZzt6riLHzWdROgD0tEcfNW+//nXp3/4t21r6HaEbAAD0DMctyHELXefcXFmFgcUK/KqZEx7WFYV1NWsbJEmD849q3y+exBH3hAOApIsukm66SXrf+7KuBIRuAADQ0ybvC5fMmLLQH1PYNPPCo6DWNYasPvaQ/Nrm1iq4WQ133JIsy8qqfADIxH/+Z9YVYBKhGwAAzBi27SpXmKNcYY4k0yHdsjotakJ/3Iwpq2+WX98sSbJsR26uIi9XUb68uOt6AADSxk8dAAAwYz0+QA/OP0qD849SsbKfvMKwLMtREkcKGlvVmFjXdb1f26SgOaokjqa7bABIXbMpXXut9MlPZl0JWOkGAACzhmXZ8vKV1j3e+7RmhdcU+mNd1yVJotroA4rjsDWmrCw3X5GXG5STG5Rt8ysSgJnt1lul5z3PHP/jP0ou39Yyw396AAAwa5lZ4WW5uXLX+SSJ5OaHFPpjiiPf3Cfuj6lhPkr50gINzFmeRckAsFccf3zneM0aaTnf0jJD6AYAAH3Htl2V5x4qqTWmrNWYLfTHFIUN2Y7XvjaOQ41turPV0K0iLz8o22FMGYDels9LcWxmdSNbhG4AANDXJseU5QcWSpLiqCmp81tq6I+ZUWVBTc2J9eZjnHx7TrhXGCKEA+hJBO7eQCM1AACAKWwnL9vJtd93c4Mqzz1MhfLS1jZ1S1HUVLO2URMjqxQ0RtrXxlGgMKgpSZLpLxwA0JNY6QYAANgB23aVK85VrjhXktluHvnjCv2qgmZVbq7Svtavb1Zt9AHZtis3V5GbN1vSHa/EqDIA0+6886Svf1066CBp1aqsq+lfhG4AAIDdYNuu7MKwvMKwio97LklCWZatOA7lN7bIb2yRJFmWIzc3qNLwgXLcwvQXDaAv/epX5u3q1dnW0e8I3QAAAHtJcXCZCuWlioIJ0xG9WVXgV82s8OaobLvToK05sV5x1DQr4rlBWbaTYeUAZqPLLpM+9jHpla/MupL+RugGAADYi8yYskG5uUGpvFRJkigK64qDWlewbtY2KPTHJa2VZMnNDbQDuJuvMCscwJP2939vHsgW380BAABSZFmWXK8keaWu8/mBxXLcUQXNquKoqdAfb4VwyXZyGl58QvvaOA4J4QAwQ/HdGwAAIAP50gLlSwskSVHYNNvR/arCZlXO4wJ6df1tsmyn1ZzNrIZzbziAXXHdddJvfiNdeKG0cGHW1fQnQjcAAEDGHDcvx80rX5ovSUqSuP1cFDYUx4EUB4rChpq1DZLMaribqyhXnNfurA4Aj/fXf23eLlggvfWt2dbSrwjdAAAAPWbqeDHHLWh4ydNaK+GmOVsUjCuOfPn1TbKdXDt0J3GkZm2DWQn3BmRZVlZ/BQA9ZnQ06wr6F6EbAACgx9m2q1xhjnKFOZJMuA6DcYXNqrzCcPu60B9TbfRBSWptRzdzwr18pRXCmRUO9JskyboCELoBAABmGMt25OWH5OWHHv+EvMIchZNjyhojChojqsusng/MOYSt6AAwzQjdAAAAs4SXN6vaSZJ0ZoX7VYXNMcVxIHtK87XmxAY1a+u7mrPRIR0A9j6+swIAAMwylmXJzZXl5sqSlkiSoqDeFbqD5mhnTNn4o5Ik1xuQm5/ckj7cNVccwMz0xS9Kr3udOWareTa4sQcAAKAPOF6xq7FasbKfBuYcrHxpYXv8WBhMqDG+TuNb7lWizm/nYTChKGxOe80AnjwaqGWPlW4AAIA+ZMaUdWaFx5Hf7o4ex0HXVvPayAMK/THZTl5eayu6m6/IcYtZlQ9gF73kJdLVV0unnpp1Jf2L0A0AAIDW6LF5yhXnPcEVluKoqWZto5q1jeZjbE9eca4Ghg+avkIB7JaDDpJuvTXrKvoboRsAAAA7VFlwtBlTNjkr3K8q9McVx4GSKOi6dmLr/XLcktz8IGPKAECEbgAAAOwCy3bkFYbbc8GTJFboj3fdJx6FjfYquGTGlE1uRXdzFbneAM3ZgAz87nfSz34mnXmm9MxnZl1N/yF0AwAAYLdZli0vX3ncOUelof0VNs1qeByHCpqjCpqmk1OhvFiloQMlmdCeJDFjyoBp8IxnmLdXXy2tWpVtLf2I73IAAADYK2zHU6G8VCrLzAoP66054VWF/pjcXCekh/6YxjbdLdcrdVbCc4OyHS/DvwEwu1UqO78Gex+hGwAAAHudZVkmUHslaWCxJBPEJ0VBTVKiMJhQGExIekyS5HglublBFQaWyPHojg7sDcznzhadLQAA6HF33nmn7rjjjl26ds2aNfrd736XckXAnpl6/3ehvETDi4/XwJxDlB9YJMcrSTJhvDmxXkkSta8NmlU1JzYoChvTXjMAPFmsdAMA0OOuvPJKXXPNNVq1apXy+fwTXpckic455xwtW7ZM3/nOd6axQmDP2E5e+VJe+dJ8SVIcBe0O6Y430L7Or21Us7ah9TG5ruZsjlvsCvMA0GtY6QYAoMe96U1v0mOPPaarrrpqh9f99Kc/1S233KK3vvWt01QZsHfZjqdcca5KQ/t3BenJLeeWZSmOfPn1zaqNPKDqhts1um6lkjjawWcF8PDDkmWZRxDs/HrsXVaSsMMfAIBe98pXvlK//OUv26vdq1ev1vLly3XDDTfojDPOUJIkOumkk5TP53XjjTey8odZKYkjhcG4WQ1vNWez3YKGFh7TvmZ881+UJLHc/GCrOVuZWeHoe82mVCiY45UrpeOPz7aefsP2cgAAZoD3ve99WrFiha666ipdeOGF2zw/ucp9/fXXE7gxa1m2Iy8/JC8/JA2asWNx1Fm2S5JYQXOk/VaanBVeNgE8P7TNmDOgH+TzZkb3oYdK++2XdTX9h5VuAABmiKmr3WvXrm2vdD/72c9mlRvQlDFlzWp7VFkcd0K5V5ijwXmHt98PGiNycmVmhQNIFd9hAACYIaaudj//+c9vn2eVGzC6xpTJjCnrhPAxubnB9rVx1NTY5rslmXvGvVyl1ZxtULaTy6J8ALMUK90AAMwgk6vd1113nY488khdf/31eve7380qN7CbQn9ME1tXKQrr2zznuAUVBvdtd1UHZoM//1n61rekffeV3vCGrKvpL6x0AwAwg0yudl9zzTWSpJtvvplVbmAPuLlBDS06tjWmbHI7+pjCYEJR2NDU/5tCf1yN8cfkTY4p84qZ1Q3sqRe8QHrkEXNM6J5erHQDADDDvPKVr9QNN9ygdevW6bDDDtOCBQtY5Qb2kjgOzVZ0ryzb8SRJ9bG1qlcfal9j296U7uiDcrwB/v9Dz3vta6UvfckckwCnF6EbAIAZ5p577tFRRx2lOI4lSddff72e85znZFwVMHuF/riCxlYzqswfU5LEXc9XFhzdvl88jkNZls2YMgBthG4AAGagl770pfr+97+vo48+Wn/6059YZQOmSZLEioIJBa0O6VFQ09Ci49ohe2JktfzaRrm5QfPIV+R6ZVm2k3HlALJC6AYAYAa65ZZb9PSnP11f+cpXdN5552VdDoCW6sY/K/THus5ZliXHK8vNV1Qc3JcXyYA+Q+gGAGCGSpKEX96BHhQFdYV+tb0aHke+JNMVfWjRce3rGhPrzP3huUr7/nEgTZM/Mq66ytzjjelB93IAAGYoAjfQmxyvKMcrKj+wSJIUhY1tVr+TJFZ99CElSWQ+xi225oS3mrO5+WmvG/3j5z8ndE8nQjcAAACQIsctyHELXeeSJFauNF+hP6YoqCkK64rCupoT6yVJueJ8lecekkW5mMX+v/9PqtWkt7wl60r6C9vLAQAAgAyZWeFjrUdVoT+hYmWZioPL2s9XN/6p1ZytIjdfkeMW2e0CzBCEbgAAAKCHJHGkRIls22xK9eubNb7l3q5rbNtth3CvOHeblXQAvYPQDQAAAPSwJIkV+uNmFbxpVsOnzgofmHOw8qUFkqQobCqOmnJzZWaFYxtr10pf+II0Oip96lNZV9M/CN0AAADADGJmhddaIbyq4tCB7cZrjfFHVRtd0x5T5k1pzsascFx+ufSOd5hjUuD0oZEaAAAAMINYli03V5abK0vlpds8bzs5xZHfvk9cWivJkpsb0MCcQ9iK3see+czOcZJ0RoghXax0AwAAALNMFDYUtuaEh82qoqgpy7I1vORp7W3njbFHFUUNebmK3PygbIcxZUAaCN0AAADALBdHTUVBXV5huH1udMPtioJa+33HLbS7o5tZ4ayIA3sDoRsAAADoQ359S3slPAxqkjqxwHbyGl58fPv9OGqyEg7sIe7pBgAAAPpQrjhXueJcSVIch4r8MQX+mMJmVY5bbF+XJIlGN9wuS7YZUza5Eu6V6JA+A82dK23dKp18svTb32ZdTX9gpRsAAADAE4rChqobbu8aUyZJluXIzQ0qV1qgfGl+RtVhd01tnkYSnB6sdAMAAAB4Qo5b0PCSpykKJhQ2xxT4pkFbEkcKmiOmi3pLHIdqjj9mVsO9MmPKetBXvyr9/vfSOedkXUn/YKUbAAAAwG5JkkRRWFPYrLYC9oAkc5/4+Ja/SFJrVvhAV3M222bND/2H0A0AAABgrwj9MTUn1itoVhVHzW2eL889VLnivAwqA7JD5wMAAGaQFStWqFAoaO3ate1zr3/96/XUpz5Vo6OjGVYGAJKbG9TAnIM1vPh4DS06XgNzDla+tLDdmM1prYhLUmP8MY2u/6Mmtq5Ss7ZRUbhtSMfe12xK73+/dOaZUhBkXU1/YKUbAIAZJEkSHXvssXrWs56lz3zmM7rkkkt05ZVX6ve//7322WefrMsDgCcUR4Fsx2u/P77lL/LrW7qusZ28vNZW9FxxPveEp6DZlAqtEewrV0rHH7/j6/HkcVMFAAAziGVZ+vCHP6xXvOIVWrp0qT796U/r17/+NYEbQM+bGrglqTS8XLnSQjMn3K8qCiYUR001axvl1zcpV+x0RA+aVVm2I8ctyZrafhu7LT9l3DobpKYHK90AAMxAxx9/vO68805de+21Ou2007IuBwCetCSOFAbjCptVxXGggeGD2s9VN96h0B+XZTtycxV5uYrc/KAcb4BZ4eh5rHQDADDD/OxnP9M999yjKIq0aNGirMsBgL3Csh15+SF5+aGu80mSyLI9WZZjxpQ1tipobDUfY9nyCnNVnntIFiUDu4SVbgAAZpBbb71Vp59+uj772c/qG9/4hkqlkq655pqsywKA1CVJrCioKfTHWlvSxxTHgXLFeSrPPbR93djmu+V4A/Jyg3IYU4YeQOgGAGCGePDBB3XyySfrbW97m97znvdo5cqVetrTnqZbbrlFJ5xwQtblAcC0SpJEcViXJDleSZIUBXWNbrhtylWWXK/UmhPemhX+uHvL+9EFF0j//d/mmDSYPkI3AAAzwJYtW3TKKafo1FNP1ec///n2+Ze85CVqNpv63//93wyrA4DeEMehgsbWTnO2sNH1fGFwH5Uq+0ky95DHcSjHzW/vU81q55wjffvb5pg0mD5CNwAAAIBZKY58hc2qAt9sRy9V9pNXmCNJChpbNbb5HjlOvrUSPig3X2nPFJ/Nbr9duuoqM6v7xS/OuprZj9ANAAAAoO80xh9TbXSNpO44ZDs5ublBFQaXyW1tWweeDEI3AAAAgL4Ux6Eif1yhX1XQrCoKxjUZj4YWHtO+VzxobFUU1uXmKnK8EmPKsFsI3QAAAAAg0yE99McV+mMqDu7TPj++5T759U2SJMtyWlvRB1vN2cozMoR/4hPST38qXXqp9Fd/lXU1sxuhGwAAAAB2oDmx3swH96tK4qjrOcuyNbz4RFm2I6k1V9yysihzt0yW+MpXSldfnW0tsx1D6wAAAABgB/IDi5QfWKQkSRSF9XZ39LBZle3k2oFbksY23SkpaY8oc/OVnp4VvnRp1hXMfqx0AwAAAMAeiuOwHaqTONLIulv0+IjleCW5uUF5+WHlinOzKBMZInQDAAAAwF4ShU2F/lh7JTwK6+3ncsW5Ks89rP1+s7ZJbq4sxy1kUSqmCaEbAAAAAFISR4EJ4H5VrjeoXGm+JCkKGxpd/0dJk2PKKnLzg/JaHdIxexC6AQAAAGCahf64aqMPdo0pm2TbnoqV/ZQfWJjan/+970kve5k5JhGmq3fv6AcAAACAWcrNlVVZcLSSOFIYjLeas40p9McUx4GsKc3XgmZVjfG1neZse2FM2aJFneMwlFySYWr4TwsAAAAAGbFsR15+SF5+SJKZFR4FE7LdYvuasDmqoDGioDFiPsayW+HbdEd3vXJXB/Vdcfzx0j/+o3TyyZ3xYUgH28sBAAAAoIdFQV1Bc6TVnM2shE9VWfhUud6AJCmOmpLl9PSYsn7DvwQAAAAA9DDHK8rxipKWSDIhPPSrCppVRWFNjttpvFavPqxmbaNcb0BufrC1Jb0i2/Eyqh6sdAMAAADALDG26S4FzdFtzjtuUW6+otLQgbJa+8lXrJCuvFJ6+culCy+c7kr7B6EbAAAAAGaROPJNU7ZmVYFfVRTUJEmOV9LQwmPa1029l5tUmB62lwMAAADALGI7OeWK85QrzpMkxXGosFntuiZJYp32zDH96qYhHX98FlX2D1a6AQAAAKDPxHGo5vhjcrxSO5wjHYRuAAAAAABS8uQmqgMAAAAAgCdE6AYAAAAAICWEbgAAAAAAUkLoBgAAAAAgJYRuAAAAAABSQugGAAAAACAlhG4AAAAAAFJC6AYAAAAAICWEbgAAAAAAUkLoBgAAAAAgJYRuAAAAAABSQugGAAAAACAlhG4AAAAAAFJC6AYAAAAAICWEbgAAAAAAUkLoBgAAAAAgJYRuAAAAAABSQugGAAAAACAlhG4AAAAAAFJC6AYAAAAAICWEbgAAAAAAUkLoBgAAAAAgJYRuAAAAAABSQugGAAAAACAlhG4AAAAAAFJC6AYAAAAAICWEbgAAAAAAUkLoBgAAAAAgJYRuAAAAAABSQugGAAAAACAlhG4AAAAAAFJC6AYAAAAAICWEbgAAAAAAUkLoBgAAAAAgJYRuAAAAAABSQugGAAAAACAlhG4AAAAAAFJC6AYAAAAAICWEbgAAAAAAUkLoBgAAAAAgJYRuAAAAAABSQugGAAAAACAlhG4AAAAAAFJC6AYAAAAAICWEbgAAAAAAUkLoBgAAAAAgJYRuAAAAAABSQugGAAAAACAlhG4AAAAAAFJC6AYAAAAAICWEbgAAAAAAUkLoBgAAAAAgJYRuAAAAAABSQugGAAAAACAlhG4AAAAAAFJC6AYAAAAAICWEbgAAAAAAUkLoBgAAAAAgJYRuAAAAAABSQugGAAAAACAlhG4AAAAAAFJC6AYAAAAAICWEbgAAAAAAUkLoBgAAAAAgJYRuAAAAAABSQugGAAAAACAlhG4AAAAAAFJC6AYAAAAAICWEbgAAAAAAUkLoBgAAAAAgJYRuAAAAAABSQugGAAAAACAlhG4AAAAAAFJC6AYAAAAAICWEbgAAAAAAUkLoBgAAAAAgJYRuAAAAAABSQugGAAAAACAlhG4AAAAAAFJC6AYAAAAAICWEbgAAAAAAUkLoBgAAAAAgJYRuAAAAAABSQugGAAAAACAlhG4AAAAAAFJC6AYAAAAAICWEbgAAAAAAUkLoBgAAAAAgJYRuAAAAAABSQugGAAAAACAlhG4AAAAAAFJC6AYAAAAAICWEbgAAAAAAUkLoBgAAAAAgJYRuAAAAAABSQugGAAAAACAlhG4AAAAAAFJC6AYAAAAAICWEbgAAAAAAUkLoBgAAAAAgJYRuAAAAAABSQugGAAAAACAlhG4AAAAAAFJC6AYAAAAAICWEbgAAAAAAUkLoBgAAAAAgJYRuAAAAAABSQugGAAAAACAlhG4AAAAAAFJC6AYAAAAAICWEbgAAAAAAUkLoBgAAAAAgJYRuAAAAAABSQugGAAAAACAlhG4AAAAAAFJC6AYAAAAAICWEbgAAAAAAUkLoBgAAAAAgJYRuAAAAAABSQugGAAAAACAlhG4AAAAAAFJC6AYAAAAAICWEbgAAAAAAUkLoBgAAAAAgJYRuAAAAAABSQugGAAAAACAlhG4AAAAAAFJC6AYAAAAAICWEbgAAAAAAUkLoBgAAAAAgJYRuAAAAAABSQugGAAAAACAlhG4AAAAAAFJC6AYAAAAAICWEbgAAAAAAUkLoBgAAAAAgJYRuAAAAAABSQugGAAAAACAlhG4AAAAAAFJC6AYAAAAAICWEbgAAAAAAUkLoBgAAAAAgJYRuAAAAAABSQugGAAAAACAlhG4AAAAAAFJC6AYAAAAAICWEbgAAAAAAUkLoBgAAAAAgJYRuAAAAAABSQugGAAAAACAlhG4AAAAAAFJC6AYAAAAAICWEbgAAAAAAUkLoBgAAAAAgJYRuAAAAAABSQugGAAAAACAlhG4AAAAAAFJC6AYAAAAAICWEbgAAAAAAUkLoBgAAAAAgJYRuAAAAAABSQugGAAAAACAlhG4AAAAAAFJC6AYAAAAAICWEbgAAAAAAUkLoBgAAAAAgJYRuAAAAAABSQugGAAAAACAlhG4AAAAAAFJC6AYAAAAAICWEbgAAAAAAUkLoBgAAAAAgJYRuAAAAAABSQugGAAAAACAlhG4AAAAAAFJC6AYAAAAAICWEbgAAAAAAUkLoBgAAAAAgJYRuAAAAAABSQugGAAAAACAlhG4AAAAAAFJC6AYAAAAAICWEbgAAAAAAUkLoBgAAAAAgJYRuAAAAAABSQugGAAAAACAlhG4AAAAAAFJC6AYAAAAAICWEbgAAAAAAUkLoBgAAAAAgJYRuAAAAAABSQugGAAAAACAlhG4AAAAAAFJC6AYAAAAAICWEbgAAAAAAUkLoBgAAAAAgJYRuAAAAAABSQugGAAAAACAlhG4AAAAAAFJC6AYAAAAAICWEbgAAAAAAUkLoBgAAAAAgJYRuAAAAAABSQugGAAAAACAlhG4AAAAAAFJC6AYAAAAAICWEbgAAAAAAUkLoBgAAAAAgJYRuAAAAAABSQugGAAAAACAlhG4AAAAAAFJC6AYAAAAAICWEbgAAAAAAUkLoBgAAAAAgJYRuAAAAAABSQugGAAAAACAlhG4AAAAAAFJC6AYAAAAAICWEbgAAAAAAUkLoBgAAAAAgJYRuAAAAAABSQugGAAAAACAlhG4AAAAAAFJC6AYAAAAAICWEbgAAAAAAUkLoBgAAAAAgJYRuAAAAAABSQugGAAAAACAlhG4AAAAAAFJC6AYAAAAAICWEbgAAAAAAUkLoBgAAAAAgJYRuAAAAAABSQugGAAAAACAlhG4AAAAAAFJC6AYAAAAAICWEbgAAAAAAUkLoBgAAAAAgJYRuAAAAAABSQugGAAAAACAlhG4AAAAAAFJC6AYAAAAAICWEbgAAAAAAUkLoBgAAAAAgJYRuAAAAAABSQugGAAAAACAlhG4AAAAAAFJC6AYAAAAAICWEbgAAAAAAUkLoBgAAAAAgJYRuAAAAAABSQugGAAAAACAlhG4AAAAAAFJC6AYAAAAAICWEbgAAAAAAUkLoBgAAAAAgJYRuAAAAAABSQugGAAAAACAlhG4AAAAAAFJC6AYAAAAAICWEbgAAAAAAUkLoBgAAAAAgJYRuAAAAAABSQugGAAAAACAlhG4AAAAAAFJC6AYAAAAAICWEbgAAAAAAUkLoBgAAAAAgJYRuAAAAAABSQugGAAAAACAlhG4AAAAAAFJC6AYAAAAAICWEbgAAAAAAUkLoBgAAAAAgJYRuAAAAAABSQugGAAAAACAlhG4AAAAAAFJC6AYAAAAAICWEbgAAAAAAUkLoBgAAAAAgJYRuAAAAAABSQugGAAAAACAlhG4AAAAAAFJC6AYAAAAAICWEbgAAAAAAUkLoBgAAAAAgJYRuAAAAAABSQugGAAAAACAlhG4AAAAAAFJC6AYAAAAAICWEbgAAAAAAUkLoBgAAAAAgJYRuAAAAAABSQugGAAAAACAlhG4AAAAAAFJC6AYAAAAAICWEbgAAAAAAUkLoBgAAAAAgJYRuAAAAAABSQugGAAAAACAlhG4AAAAAAFJC6AYAAAAAICWEbgAAAAAAUkLoBgAAAAAgJYRuAAAAAABSQugGAAAAACAlhG4AAAAAAFJC6AYAAAAAICWEbgAAAAAAUkLoBgAAAAAgJYRuAAAAAABSQugGAAAAACAlhG4AAAAAAFJC6AYAAAAAICWEbgAAAAAAUkLoBgAAAAAgJf8/+fQUj0dESvkAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ag = AcquisitionGeometry.create_Cone2D(source_position=[0,-10],detector_position=[0,10],\n", + " detector_direction_x=[0.9,0.1]\n", + " )\\\n", + " .set_panel(num_pixels=10)\\\n", + " .set_angles(angles=range(0,180))\n", + " \n", + "show_geometry(ag)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "You can set `rotation_axis_direction`, `detector_direction_x` and `detector_direction_y` by specifying a 3D directional vector `[X,Y,Z]`.\n", + "\n", + "For 3D datasets detector roll is commonly corrected with a dual-slice centre of rotation algorithm. You can specify `detector_direction_x` and `detector_direction_y` - ensuring they are ortogonal vectors." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "execution": { + "iopub.execute_input": "2024-10-10T15:02:40.102173Z", + "iopub.status.busy": "2024-10-10T15:02:40.102009Z", + "iopub.status.idle": "2024-10-10T15:02:40.322852Z", + "shell.execute_reply": "2024-10-10T15:02:40.322354Z" + } + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA90AAAPdCAYAAACXzguGAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3xT5f4H8E+aJmnadJcOVguUQpEtIEuLAuLFAfy86lVkKKKCMmS6EMQJCIJex5Wr4MB5GSqigijIECiUAoXSQmmZxQLdK0mT7++P0EPTDTRNx+f9euUFec54vuf0PCf55jznOSoRERARERERERFRjXNxdgBEREREREREDRWTbiIiIiIiIiIHYdJNRERERERE5CBMuomIiIiIiIgchEk3ERERERERkYMw6SYiIiIiIiJyECbdRERERERERA7CpJuIiIiIiIjIQZh0ExERERERETkIk24iIiIiIiIiB2HSTUREREREROQgTLqJiIiIiIiIHIRJNxEREREREZGDMOkmIiIiIiIichAm3UREREREREQOwqT7OqWkpEClUiE2NrbCebZs2QKVSoXMzMxai+t6hIWFYenSpcp7lUqFdevWOS0eotpWnXZdVwwYMABTp051dhgVKn0+Kc+8efPQtWvXWomHqlbXj6n6orrnEe5vIqKGj0k3VSk1NRX/+Mc/anSd9eFLRnWSBao7rvWYGjt2LIYPH25X1qJFC6SmpqJjx441E5wDrVmzBq+88oqzw6hQdHQ0Hn/8ceV9eT/izZgxA5s3b67lyKimrFy5Ej4+PjW+3vrwOVGZ0ueRin6Ar+ttmIiIrp+rswOoz0wmk7NDuGYWiwUqlQouLlX/7hIcHFwLEVGdlpgIJCUB4eFA27a1WrXJZIJWq63VOtVqdb057v38/JwdQqWaNGlS5TwGgwEGg6EWoqkfnNjcGiRnnEOA6p9H6nobJiKi63fNV7pFBHl5ebX+EpFqxffjjz/Cx8cHVqsVABAbGwuVSoWZM2cq8zzxxBN48MEHlferV6/GDTfcAJ1Oh7CwMCxevNhunWFhYXj11VcxduxYeHt7Y/z48eXWvWHDBkRERECv1+PWW29FSkpKlfFmZmbi8ccfR1BQENzc3NCxY0esX7++2rFlZGRg9OjR8PX1hbu7O/7xj3/g2LFjyvTiKxHr169Hhw4doNPpcPLkSaSlpeHuu++GXq9Hq1atsGrVqjKxlbwyVdxdbs2aNbj11lvh7u6OLl264K+//lLmv3TpEh588EE0b94c7u7u6NSpE7766itl+tixY7F161YsW7YMKpUKKpVK2UdHjhzB0KFDYTAYEBQUhFGjRuHixYsV7reTJ0/i7rvvhq+vLzw8PHDDDTdgw4YNEBGEh4fjrbfesps/Li4OLi4uSEpKAmDr1tqyZUvodDo0bdoUkydPBmC7wnLy5Ek888wzSozFdu7ciVtuuQV6vR4tWrTA5MmTkZeXp0wvPk5Gjx4Ng8GA0NBQfP/997hw4QKGDRsGg8GATp06Ye/evRVuV52Rng7ccQfQrh0wdCgQEWF7n5HhsCoHDBiAp59+GtOmTUNAQAAGDx4MANi6dSt69eoFnU6HkJAQPPvssygqKgJQ8TFlsVgwbtw4tGrVCnq9Hu3atcOyZcuUuubNm4dPP/0U33//vbLcli1byu0WWln9xXFPnjwZs2bNgp+fH4KDgzFv3rxKtzU6OhqDBw9GQEAAvL29ERUVhZiYGGX6li1boNVqsW3bNqVs8eLFCAgIQGpqqlJvyauB77//Ptq2bQs3NzcEBQXhn//8Z4X1F58X1q1bh4iICLi5uWHw4ME4ffq03XwffPAB2rRpA61Wi3bt2uHzzz+3m15ROwLse4yEhYUBAEaMGAGVSqW8L9293Gq1Yv78+WjevDl0Oh26du2KX375RZlenfNQfeSE5oa8vDzlXBUSElLmswWwJa2zZs1Cs2bN4OHhgZtuuglbtmwBYDtGH3nkEWRlZSltqPi4r2y5Yjt27EBUVBTc3d3h6+uLIUOGICMjo9LPieq0xfLOIaUV93J5+eWXERgYCC8vLzzxxBN2P6gbjUZMnjwZgYGBcHNzQ//+/REdHa1Mz8jIwMiRI9GkSRPo9Xq0bdsWK1asAGDfvTwlJQW33norAMDX1xcqlQpjx45V4i3Zhqv7ef7rr78iMjISBoMBd9xxh3JOICKiOkiuUW5urgCo9Vdubm614svMzBQXFxfZu3eviIgsXbpUAgICpGfPnso8ERER8sEHH4iIyN69e8XFxUXmz58vCQkJsmLFCtHr9bJixQpl/tDQUPHy8pJFixbJsWPH5NixY5KcnCwAZP/+/SIicurUKdHpdDJlyhQ5evSofPHFFxIUFCQAJCMjo9xYLRaL9O7dW2644QbZuHGjJCUlyY8//igbNmyodmz33HOPREZGyp9//imxsbEyZMgQCQ8PF5PJJCIiK1asEI1GI3379pUdO3bI0aNHJTc3V/7xj39Ix44dZefOnbJ3717p27ev6PV6efvtt5V1A5C1a9eKiCjb2759e1m/fr0kJCTIP//5TwkNDRWz2SwiImfOnJFFixbJ/v37JSkpSd555x1Rq9Wya9cu5W/Tp08fGT9+vKSmpkpqaqoUFRXJuXPnJCAgQJ577jmJj4+XmJgYGTx4sNx6660V/p3vvPNOGTx4sBw8eFDZb1u3bhURkddee006dOhgN/8zzzwjt9xyi4iIfPfdd+Ll5SUbNmyQkydPyu7du+Wjjz4SEZFLly5J8+bNZf78+UqMIiIHDx4Ug8Egb7/9tiQmJsqOHTukW7duMnbsWLvjxM/PTz788ENJTEyUCRMmiKenp9xxxx3y7bffSkJCggwfPlwiIyPFarVWuG11wpAhImq1CHDlpVbbyh0kKipKDAaDzJw5U44ePSrx8fFy5swZcXd3l4kTJ0p8fLysXbtWAgICZO7cuSJS8TFlMpnkpZdekj179siJEyfkiy++EHd3d/nmm29ERCQnJ0fuv/9+ueOOO5TljEZjmXZdVf3FcXt5ecm8efMkMTFRPv30U1GpVLJx48YKt3Xz5s3y+eefy5EjR+TIkSMybtw4CQoKkuzsbGWemTNnSmhoqGRmZkpsbKzodDpZs2aNXb1TpkwREZHo6GhRq9Xy5ZdfSkpKisTExMiyZcsqrL/4vNCjRw/lHNCrVy/p27evMs+aNWtEo9HIe++9JwkJCbJ48WJRq9Xy+++/i0jl7UjE1h6KzydpaWkCQFasWCGpqamSlpYmIiJz586VLl26KMssWbJEvLy85KuvvpKjR4/KrFmzRKPRSGJioohU7zxUHzmhucmECROkefPmsnHjRjl48KDcddddYjAYlGNKROShhx6Svn37yp9//inHjx+XRYsWiU6nk8TERDEajbJ06VLx8vJS2lBOTk6Vy4mI7N+/X3Q6nUyYMEFiY2MlLi5O3n33Xblw4UKFbbq6bbH0OaQ8Y8aMEYPBIA888IDExcXJ+vXrpUmTJvL8888r80yePFmaNm0qGzZskMOHD8uYMWPE19dXLl26JCIiTz31lHTt2lWio6MlOTlZNm3aJD/88IOIiN15pKioSFavXi0AJCEhQVJTUyUzM1OJt+T+ru7n+aBBgyQ6Olr27dsnkZGR8tBDD13fwUBERA7TYJNuEZHu3bvLW2+9JSIiw4cPl9dee020Wq1kZ2dLamqqAFA+jB966CEZPHiw3fIzZ860S9pCQ0Nl+PDhdvOU/nL+3HPPlUmmZs+eXWnS/euvv4qLi4skJCSUO72q2BITEwWA7NixQ5l+8eJF0ev18u2334qI7UMagMTGxirzJCQkCAAlGRYRiY+PFwBVJt3//e9/lemHDx+225flGTp0qEyfPl15X/pLhojInDlz5Pbbb7crO336tPIlpTydOnWSefPmlTvt3LlzolarZffu3SIiYjKZpEmTJrJy5UoREVm8eLFEREQoX2RKK5ksFBs1apQ8/vjjdmXbtm0TFxcXKSgoUJZ7+OGHlenFx9qcOXOUsr/++ksAKMl8nZSQYP/tv/Tr8hfnmhYVFSVdu3a1K3v++eelXbt2du3qvffeE4PBIBaLRVmu9DFVnokTJ8q9996rvB8zZowMGzbMbp7S7bq69ffv399uPT179pTZs2dXGVOxoqIi8fT0lB9//FEpMxqN0q1bN7n//vvlhhtukMcee8xumZLbvXr1avHy8rJL2itTfF4o7xxQ3G769u0r48ePt1vuvvvuk6FDh4rI1bejkueTYqWT7qZNm8prr71mN0/Pnj1l4sSJInLt56G6zBnNLScnR7RarXz99ddK2aVLl0Sv1yvH1PHjx0WlUsnZs2ftlh04cKA899xzImI7jry9ve2mV2e5Bx98UPr161dhfOW16eq2xdLnkPKMGTNG/Pz8JC8vTyn74IMPlHXl5uaKRqORVatWKdNNJpM0bdpUFi5cKCIid999tzzyyCPlrr/0eeSPP/4o97tAye28ms/z48eP2+2DoKCgKreZiIic45q7l7u7uyM3N7fWX+7u7tWOccCAAdiyZQtEBNu2bcOwYcPQsWNHbN++HX/88QeCgoLQvn17AEB8fDz69etnt3y/fv1w7NgxWCwWpaxHjx6V1hkfH4/evXvbdUfu06dPpcvExsaiefPmiIiIqHCdlcUWHx8PV1dX3HTTTcp0f39/tGvXDvHx8UqZVqtF586d7dbr6upqt03t27ev1oA4JdcTEhICAEhLSwNgu1/8tddeQ+fOneHv7w+DwYCNGzfi1KlTla5z3759+OOPP5T7Ow0Gg/L3Ke4OXtrkyZPx6quvol+/fpg7dy4OHjxoF9edd96JTz75BACwfv16FBYW4r777gMA3HfffSgoKEDr1q0xfvx4rF271q6LYkUxrly50i7GIUOGwGq1Ijk5udz9ExQUBADo1KlTmbLifVYnVbDPFcePO6zq0u0sPj4effr0sWtX/fr1Q25uLs6cOVPpuj788EP06NEDTZo0gcFgwPLly6s8Fkurbv0l/+6A7Ris7G+clpaGJ598EhEREfD29oa3tzdyc3Pt4tNqtfjiiy+wevVqFBQUVDq43+DBgxEaGorWrVtj1KhRWLVqFfLz8yvdtorOAcXnjorOP8XTr6UdVSY7Oxvnzp2rtM5ilZ2H6htnNLekpCSYTCa7zyg/Pz+0a9dOeR8TEwMRQUREhN15b+vWrRWel6u7XGxsLAYOHHhVMVe3LVb1WV2sS5cudt8r+vTpg9zcXJw+fRpJSUkwm812x6JGo0GvXr2UY3HChAn4+uuv0bVrV8yaNQs7d+68qu0pb/uq83nu7u6ONm3aKO+rOtcQEZFzXfNAaiqVCh4eHjUZS40bMGAAPv74Yxw4cAAuLi7o0KEDoqKisHXrVmRkZCAqKkqZV0TsPsSLy0qrapvLW6Yqer2+ynVWFltFdZZeTq/X270vXq70uqtDo9Eo/y9evvj++cWLF+Ptt9/G0qVL0alTJ3h4eGDq1KlVDjxntVpx9913Y8GCBWWmFX+hLu2xxx7DkCFD8NNPP2Hjxo144403sHjxYkyaNEmZPmrUKLz99ttYsWIFHnjgAeULVosWLZCQkIBNmzbht99+w8SJE7Fo0SJs3brVbvtKx/jEE0/Y3bNarGXLlpXun8r2WZ1U4gtducLDHVZ16XZWWRuo7Pj99ttv8cwzz2Dx4sXo06cPPD09sWjRIuzevfuq4qlu/aWPG5VKVenfeOzYsbhw4QKWLl2K0NBQ6HQ69OnTp0xbKf4in56ejvT09ArPQ56enoiJicGWLVuwceNGvPTSS5g3bx6io6Mr/TGtvH1Ysqy8bS8uu5Z2VB2V1Vms3rWpSjijuVXn88pqtUKtVmPfvn1Qq9V20yob/K46y1X12VdRzNVpi9f7/USlUlV4jikZwz/+8Q+cPHkSP/30E3777TcMHDgQTz31VJnxRKqrup/n5Z1rruX7BxER1Y4G/ciwW265BTk5OVi6dCmioqKgUqkQFRWFLVu2YMuWLXZJd4cOHbB9+3a75Xfu3ImIiIgyXxgq06FDB+zatcuurPT70jp37owzZ84gMTGxwnVWFluHDh1QVFRkl0hcunQJiYmJiIyMrLDeyMhIFBUV2Q3olZCQcN3PEy/uVfDwww+jS5cuaN26td0gMIDt6l3JHgQA0L17dxw+fBhhYWEIDw+3e1X2BapFixZ48sknsWbNGkyfPh3Lly9Xpg0dOhQeHh744IMP8PPPP+PRRx+1W1av1+Oee+7BO++8gy1btuCvv/7CoUOHqoyxdHzh4eFOGR3XoSIigCFDgNLHv1ptK6/FYZU7dOiAnTt32n2p3LlzJzw9PdGsWTMA5f+9tm3bhr59+2LixIno1q0bwsPDy1ydK2+5a6n/Wmzbtg2TJ0/G0KFDlYESSw8cmJSUhGeeeQbLly9H7969MXr06EoTS1dXVwwaNAgLFy7EwYMHkZKSgt9//73C+Ss6BxT3MomMjCz3/FPy3FJZOypNo9FUur+9vLzQtGnTKutsaJzR3MLDw6HRaOw+ozIyMuw+i7p16waLxYK0tLQy57zikbnLa0PVWa5z586VPiquvPXWdFs8cOAACgoKlPe7du2CwWBA8+bNlfN6yWPRbDZj7969dsdikyZNMHbsWHzxxRdYunQpPvroowq3B0Clx/+1fp4TEVHd1qCTbm9vb3Tt2hVffPEFBgwYAMCWiMfExCAxMVEpA4Dp06dj8+bNeOWVV5CYmIhPP/0U//73vzFjxoyrqvPJJ59EUlISpk2bhoSEBHz55ZdYuXJlpctERUXhlltuwb333otNmzYhOTkZP//8szJab1WxtW3bFsOGDcP48eOxfft2HDhwAA8//DCaNWuGYcOGVVhvu3btcMcdd2D8+PHYvXs39u3bh8cee+yarj6UFB4ejk2bNmHnzp2Ij4/HE088gfPnz9vNExYWht27dyMlJQUXL16E1WrFU089hfT0dDz44IPYs2cPTpw4gY0bN+LRRx+t8EvK1KlT8euvvyI5ORkxMTH4/fff7b6YqNVqjB07Fs899xzCw8PtulGuXLkSH3/8MeLi4nDixAl8/vnn0Ov1CA0NVWL8888/cfbsWSURmj17Nv766y889dRTiI2NxbFjx/DDDz8oV9YbnK++AgYNsi8bNMhWXosmTpyI06dPY9KkSTh69Ci+//57zJ07F9OmTVMee1feMRUeHo69e/fi119/RWJiIubMmWM38nDxcgcPHkRCQgIuXrwIs9l8TfVfi/DwcHz++eeIj4/H7t27MXLkSLv2Z7FYMGrUKNx+++145JFHsGLFCsTFxZU7wjRgu4XinXfeQWxsLE6ePInPPvsMVqvVrrtwaRqNBpMmTcLu3bsRExODRx55BL1790avXr0AADNnzsTKlSvx4Ycf4tixY1iyZAnWrFmjnH+qakelhYWFYfPmzTh//jwyKhiWe+bMmViwYAG++eYbJCQk4Nlnn0VsbCymTJlSrf1aX9V2czMYDBg3bhxmzpyJzZs3Iy4uDmPHjrU7piMiIjBy5EiMHj0aa9asQXJyMqKjo7FgwQJs2LABgO1vmpubi82bN+PixYvIz8+v1nLPPfccoqOjMXHiRBw8eBBHjx7FBx98oJxvy2vTNd0WTSYTxo0bhyNHjuDnn3/G3Llz8fTTT8PFxQUeHh6YMGECZs6ciV9++QVHjhzB+PHjkZ+fj3HjxgEAXnrpJXz//fc4fvw4Dh8+jPXr11eYHIeGhkKlUmH9+vW4cOECcnNzy8xzrZ/nRERUx9XOrePOM336dAEgcXFxSlmXLl2kSZMmZUaO/t///icdOnQQjUYjLVu2lEWLFtlNL29grdIDpYiI/PjjjxIeHi46nU5uvvlm+eSTTyodSE3ENnjNI488Iv7+/uLm5iYdO3aU9evXVzu29PR0GTVqlHh7e4ter5chQ4YoI8SKlD/QjYhtkK8777xTdDqdtGzZUj777LNKBz4qb3szMjIEgPzxxx/KtgwbNkwMBoMEBgbKiy++KKNHj7YbrCohIUF69+4ter1eAEhycrKI2AaRGTFihPj4+Iher5f27dvL1KlTKxzl++mnn5Y2bdqITqeTJk2ayKhRo+TixYt28yQlJQkAZeCbYmvXrpWbbrpJvLy8xMPDQ3r37i2//fabMv2vv/6Szp07i06nk5JNZc+ePTJ48GAxGAzi4eEhnTt3thv0qbzjpOQ+rGg/1mmJiSIbNjhs8LSSKhoQbcuWLdKzZ0/RarUSHBwss2fPthupurxjqrCwUMaOHSve3t7i4+MjEyZMkGeffdZu0K60tDTl71l8HJf396mq/vLiHjZsmIwZM6bCbY2JiZEePXqITqeTtm3bynfffWd3/Lz88ssSEhJid0yvW7dOtFqtElvJerdt2yZRUVHi6+srer1eOnfurIzUXp7i88Lq1auldevWotVq5bbbbpOUlBS7+d5//31p3bq1aDQaiYiIkM8++0yZVlU7Kt0efvjhBwkPDxdXV1cJDQ0VkbIDqVksFnn55ZelWbNmotFopEuXLvLzzz8r06tzHqrParG5SU5Ojjz88MPi7u4uQUFBsnDhwjLHcvFTAMLCwkSj0UhwcLCMGDFCDh48qMzz5JNPir+/vwBQRhKvznJbtmyRvn37ik6nEx8fHxkyZIjyWVnR58S1tMXyFA+i+NJLL4m/v78YDAZ57LHHpLCwUJmnoKBAJk2aJAEBAaLT6aRfv36yZ88eZforr7wikZGRotfrxc/PT4YNGyYnTpwQkfKP0/nz50twcLCoVCrl3FA63mv5PF+7dq00gq90RET1lkqENwFRw7Zjxw4MGDAAZ86cUQYwIyLbVeqpU6de9y0lRPXR2LFjkZmZiXXr1jk7FCIiauCueSA1orrOaDTi9OnTmDNnDu6//34m3EREREREVOsa9D3d1Lh99dVXaNeuHbKysrBw4UJnh0NERERERI0Qu5cTEREREREROQivdBMRERERERE5CJNuIiIiIiIiIgdh0k1ERERERETkIEy6iYiIiIiIiBzEKUm3pajQGdUSERERERER1apaT7oLcs7g6LaXUJBzprarpkqEhYVh6dKllc4zb948dO3atVbiIXKmlJQUqFQqxMbGOjuUKg0YMABTp06tsfWtXLkSPj4+yntntnuec5yjpo+p+mTs2LEYPny48t6Z+6Ix/x2IiBqaWk+6s/7eD4gFWX/H1nbVVIno6Gg8/vjjynuVSoV169bZzTNjxgxs3ry5liMjqp5r/YJa+ks2ALRo0QKpqano2LFjzQTnQGvWrMErr7zisPXXVrvnOaf+Kv1DTU2pC0mno9sXAGzZsgUqlQqZmZm1XjcREdUO19qsTESQfTnZzv47FkFt7oRKparNEBzKYrFApVLBxaX+3SrfpEmTKucxGAwwGAy1EA3RFSaTCVqttlbrVKvVCA4OrtU6r5Wfn59D119Vu3fk34fnHKoJ13OMVtW+HHn8O7ptExFR7anV7LAw9yzMxkwAgNmYgcLccw6t73//+x86deoEvV4Pf39/DBo0CHl5eQAAq9WK+fPno3nz5tDpdOjatSt++eUXZdnyfnmOjY2FSqVCSkoKgCu/7q9fvx4dOnSATqfDyZMnYTQaMWvWLLRo0QI6nQ5t27bFxx9/rKznyJEjGDp0KAwGA4KCgjBq1ChcvHixwu0ormfdunWIiIiAm5sbBg8ejNOnT9vN98EHH6BNmzbQarVo164dPv/8c7vp8+bNQ8uWLaHT6dC0aVNMnjxZmVaye3lYWBgAYMSIEVCpVMr70l09q9qHxV1016xZg1tvvRXu7u7o0qUL/vrrrwq3lWjAgAF4+umnMW3aNAQEBGDw4MEAgK1bt6JXr17Q6XQICQnBs88+i6KiIgC2q9Vbt27FsmXLoFKplHZqsVgwbtw4tGrVCnq9Hu3atcOyZcuUuubNm4dPP/0U33//vbLcli1byu1eXln9xXFPnjwZs2bNgp+fH4KDgzFv3rxKtzU6OhqDBw9GQEAAvL29ERUVhZiYGGX6li1boNVqsW3bNqVs8eLFCAgIQGpqqlJvyauB77//Ptq2bQs3NzcEBQXhn//8Z6UxrFy5Ei1btoS7uztGjBiBS5cu2U0v3e6Lewa88cYbaNq0KSIiIgAAZ8+exQMPPABfX1/4+/tj2LBhyrmy2CeffIIbbrhB2YdPP/00AJ5znCkvLw+jR4+GwWBASEgIFi9eXGYek8mEWbNmoVmzZvDw8MBNN92ELVu2ALAdo4888giysrKUNlR83Fe2XLEdO3YgKioK7u7u8PX1xZAhQ5CRkVFhmwaq1xbLO4eUZrFYMG3aNPj4+MDf3x+zZs2CiNjNU7p9hYWF4dVXX8XYsWPh7e2N8ePHAwB27tyJW265BXq9Hi1atMDkyZOV7xsAKvxekJKSgltvvRUA4OvrC5VKhbFjx5Zbd0ZGBkaPHg1fX1+4u7vjH//4B44dO6ZML/6u8OuvvyIyMhIGgwF33HGHcq4gIiInEgcpzD0vmedj7F6n4z6XuM0zJG7zNInbPENOx31RZp7C3PM1Uv+5c+fE1dVVlixZIsnJyXLw4EF57733JCcnR0RElixZIl5eXvLVV1/J0aNHZdasWaLRaCQxMVFERP744w8BIBkZGco69+/fLwAkOTlZRERWrFghGo1G+vbtKzt27JCjR49Kbm6u3H///dKiRQtZs2aNJCUlyW+//SZff/21EldAQIA899xzEh8fLzExMTJ48GC59dZbK9yW4np69OghO3fulL1790qvXr2kb9++yjxr1qwRjUYj7733niQkJMjixYtFrVbL77//LiIi3333nXh5ecmGDRvk5MmTsnv3bvnoo4+U5UNDQ+Xtt98WEZG0tDQBICtWrJDU1FRJS0sTEZG5c+dKly5dlGWq2ofJyckCQNq3by/r16+XhIQE+ec//ymhoaFiNpuv4a9K181qFcnNrf2X1VrtEKOiosRgMMjMmTPl6NGjEh8fL2fOnBF3d3eZOHGixMfHy9q1ayUgIEDmzp0rIiKZmZnSp08fGT9+vKSmpkpqaqoUFRWJyWSSl156Sfbs2SMnTpyQL774Qtzd3eWbb74REZGcnBy5//775Y477lCWMxqNyrG7f/9+EZEq6y+O28vLS+bNmyeJiYny6aefikqlko0bN1a4rZs3b5bPP/9cjhw5IkeOHJFx48ZJUFCQZGdnK/PMnDlTQkNDJTMzU2JjY0Wn08maNWvs6p0yZYqIiERHR4tarZYvv/xSUlJSJCYmRpYtW1Zh/bt27RKVSiVvvPGGJCQkyLJly8THx0e8vb2VeUq3+zFjxojBYJBRo0ZJXFycHDp0SPLy8qRt27by6KOPysGDB+XIkSPy0EMPSbt27cRoNIqIyPvvvy9ubm6ydOlSSUhIkD179jToc049aGoiIjJhwgRp3ry5bNy4UQ4ePCh33XWXGAwG5ZgSEXnooYekb9++8ueff8rx48dl0aJFotPpJDExUYxGoyxdulS8vLyUNlT8OVvZciK2z1SdTicTJkyQ2NhYiYuLk3fffVcuXLhQYZuublssfQ4pz4IFC8Tb21v+97//Ke3P09NThg0bZreukvsiNDRUvLy8ZNGiRXLs2DE5duyYHDx4UAwGg7z99tuSmJgoO3bskG7dusnYsWOV5Sr6XlBUVCSrV68WAJKQkCCpqamSmZlZbt333HOPREZGyp9//imxsbEyZMgQCQ8PF5PJJCJXvisMGjRIoqOjZd++fRIZGSkPPfTQ1R0URERU4xyWdJ88uOJycn11r5MHV9ZI/fv27RMAkpKSUu70pk2bymuvvWZX1rNnT5k4caKIVD/pBiCxsbHKPAkJCQJANm3aVG69c+bMkdtvv92u7PTp08oHbnmK69m1a5dSFh8fLwBk9+7dIiLSt29fGT9+vN1y9913nwwdOlRERBYvXiwRERHKh3NpJZNuEREAsnbtWrt5Sn8BrmofFn8B/u9//6tMP3z4sACo8EsQOVhurghQ+6/c3GqHGBUVJV27drUre/7556Vdu3ZiLZFRvPfee2IwGMRisSjLlfyCWpGJEyfKvffeq7wfM2aM3ZdsESmTdFe3/v79+9utp2fPnjJ79uwqYypWVFQknp6e8uOPPyplRqNRunXrJvfff7/ccMMN8thjj9ktU3K7V69eLV5eXnZJe2UefPBBueOOO+zKHnjggSqT7qCgICWZFhH5+OOPy+wfo9Eoer1efv31VxGxnS9eeOGFCmNpaOecetDUJCcnR7RarfKjsIjIpUuXRK/XK8fU8ePHRaVSydmzZ+2WHThwoDz33HMiYvuMKnnMVHe5Bx98UPr161dhfOW16eq2xdLnkPKEhITIm2++qbw3m83SvHnzKpPu4cOH261n1KhR8vjjj9uVbdu2TVxcXKSgoKDK7wXlfd8oXXdiYqIAkB07dijTL168KHq9Xr799lsRufJd4fjx48o87733ngQFBVW5L4iIyLEc1r28WeQD8ArsclXLeAV2RbPI+2uk/i5dumDgwIHo1KkT7rvvPixfvhwZGRkAgOzsbJw7dw79+vWzW6Zfv36Ij4+/qnq0Wi06d+6svI+NjYVarUZUVFS58+/btw9//PGHcq+iwWBA+/btAQBJSUkV1uPq6ooePXoo79u3bw8fHx8l3vj4+Eq357777kNBQQFat26N8ePHY+3atXbd8a7W1ezDkvsnJCQEAJCWlnbNdVPDV/JYB2zHd58+fezGgOjXrx9yc3Nx5kzlT0L48MMP0aNHDzRp0gQGgwHLly/HqVOnriqe6tZf8lgHbMd7Zcd6WloannzySURERMDb2xve3t7Izc21i0+r1eKLL77A6tWrUVBQUOlTBgYPHozQ0FC0bt0ao0aNwqpVq5Cfn1/ldpVU+n15OnXqZHcf6759+3D8+HF4enoq5zU/Pz8UFhYiKSkJaWlpOHfuHAYOHFjluivCc07NS0pKgslksvub+/n5oV27dsr7mJgYiAgiIiLsPre2bt1a6WdWdZaLjY296mOium2x9DmktKysLKSmptpte+nP2YqUnmffvn1YuXKl3XYOGTIEVqsVycnJVX4vqI74+Hi4urripptuUsr8/f3Rrl07u+Pf3d0dbdq0Ud5XdQ4iIqLa4bCB1NSuejS/YRQy/dojNXE1xGoFYC07o8oFKpULQtrdC5/gnjU2sJparcamTZuwc+dObNy4Ee+++y5eeOEF7N69G/7+/raqS9UlIkpZ8WBoUuL+LrPZXKYevV5vtx69Xl9pXFarFXfffTcWLFhQZlrxl8OKlLdvSpZVtj0tWrRAQkICNm3ahN9++w0TJ07EokWLsHXrVmg0mkrrvZqYStZZrOT6i6dZreUcC+R47u5Abq5z6r0KHh4edu/LO66K22Zl54xvv/0WzzzzDBYvXow+ffrA09MTixYtwu7du68qnurWX7otqVSqSo/1sWPH4sKFC1i6dClCQ0Oh0+nQp08fmEwmu/l27twJAEhPT0d6enqZ/VPM09MTMTEx2LJlCzZu3IiXXnoJ8+bNQ3R0dLmjS5c8v12N0vVbrVbceOONWLVqVZl5mzRpUqODS9aXc059aGrV+ftbrVao1Wrs27cParXablplg9xVZ7mqPi8rirk6bbGiNlITyjv+n3jiCbtxUoq1bNkSx48fv+46K/pbld4f5Z2DrrWdExFRzXHoQGoqlQq+TXuhTc/pULmoK5hHjTY9p8M3pFeNj2SuUqnQr18/vPzyy9i/fz+0Wi3Wrl0LLy8vNG3aFNu3b7ebf+fOnYiMjARwZTTvkgOQVOeZvZ06dYLVasXWrVvLnd69e3ccPnwYYWFhCA8Pt3tV9iWhqKgIe/fuVd4nJCQgMzNTuUoeGRlZ6fYAti8499xzD9555x1s2bIFf/31Fw4dOlRufRqNBhaLpcJ4qrMPqQ5SqQAPj9p/XWfb7tChA3bu3Gn35XHnzp3w9PREs2bNANiuCJc+Zrdt24a+ffti4sSJ6NatG8LDw8tcnStvuWup/1ps27YNkydPxtChQ5UBxkoPqpiUlIRnnnkGy5cvR+/evTF69OhKE0hXV1cMGjQICxcuxMGDB5GSkoLff/+9wu3atWuXXVnp99XRvXt3HDt2DIGBgWXOa97e3vD09ERYWFilj/9qaOec+tDUwsPDodFo7P7mGRkZSExMVN5369YNFosFaWlpZf62xSP8l9eGqrNc586dKz0myltvTbVFb29vhISE2G17UVER9u3bV+11FCv+XC+9neHh4dBqtVV+LyjuNVLZ8d+hQwcUFRXZ/WB46dIlJCYm1snjn4iI7NXO6OUqF4i17FViABCrGSpVzYexe/duvP7669i7dy9OnTqFNWvW4MKFC8qH08yZM7FgwQJ88803SEhIwLPPPovY2FhMmTIFgO3LSIsWLTBv3jwkJibip59+KndU19LCwsIwZswYPProo1i3bh2Sk5OxZcsWfPvttwCAp556Cunp6XjwwQexZ88enDhxAhs3bsSjjz5a6QeuRqPBpEmTsHv3bsTExOCRRx5B79690atXL2V7Vq5ciQ8//BDHjh3DkiVLsGbNGsyYMQOAbVTTjz/+GHFxcThx4gQ+//xz6PV6hIaGVrgdmzdvxvnz55Vu+aVVtQ+JasrEiRNx+vRpTJo0CUePHsX333+PuXPnYtq0acpV1LCwMOzevRspKSm4ePEirFYrwsPDsXfvXvz6669ITEzEnDlzEB0dbbfusLAwHDx4EAkJCbh48WK5PVqqU/+1CA8Px+eff474+Hjs3r0bI0eOtLv6Z7FYMGrUKNx+++145JFHsGLFCsTFxVV4Llq/fj3eeecdxMbG4uTJk/jss89gtVrtuguXNHnyZPzyyy9YuHAhEhMT8e9//9tuNPDqGjlyJAICAjBs2DBs27YNycnJ2Lp1K6ZMmaJ0+Z03bx4WL16Md955B8eOHUNMTAzeffddZR0859Q+g8GAcePGYebMmdi8eTPi4uIwduxYu2M6IiICI0eOxOjRo7FmzRokJycjOjoaCxYswIYNGwDY/na5ubnYvHkzLl68iPz8/Got99xzzyE6OhoTJ07EwYMHcfToUXzwwQfKD0/ltemabItTpkzBm2++ibVr1+Lo0aOYOHFimWdlV8fs2bPx119/4amnnkJsbCyOHTuGH374AZMmTVK2o7LvBaGhoVCpVFi/fj0uXLiA3HK6SLRt2xbDhg3D+PHjsX37dhw4cAAPP/wwmjVrhmHDhl11zEREVMtq48bxtJTNErd5ujJqedzmaRL3e/Eo5tPlQsrmGq/zyJEjMmTIEGnSpInodDqJiIiQd999V5lusVjk5ZdflmbNmolGo5EuXbrIzz//bLeO7du3S6dOncTNzU1uvvlm+e6778oMpFZ68BgRkYKCAnnmmWckJCREtFqthIeHyyeffKJMT0xMlBEjRoiPj4/o9Xpp3769TJ061W5gmJKK61m9erW0bt1atFqt3HbbbWUGiXv//feldevWotFoJCIiQj777DNl2tq1a+Wmm24SLy8v8fDwkN69e8tvv/2mTC89kNoPP/wg4eHh4urqKqGhoSJSdlCjqvZh6cGoREQyMjIEgPzxxx/lbitRRQOibdmyRXr27ClarVaCg4Nl9uzZdiNSJyQkSO/evUWv1yvttLCwUMaOHSve3t7i4+MjEyZMkGeffdbuOE5LS5PBgweLwWBQjs3yjt2q6i8v7mHDhsmYMWMq3NaYmBjp0aOH6HQ6adu2rXz33Xd2bfHll1+WkJAQuXjxorLMunXrRKvVKrGVrHfbtm0SFRUlvr6+otfrpXPnzspI7RX5+OOPpXnz5qLX6+Xuu++Wt956q8qB1EoPPCcikpqaKqNHj5aAgADR6XTSunVrGT9+vGRlZSnzfPjhh9KuXTvRaDQSEhIikyZNUqbxnOMcOTk58vDDD4u7u7sEBQXJwoULyxzLxU8BCAsLE41GI8HBwTJixAg5ePCgMs+TTz4p/v7+AkAZSbw6y23ZskX69u0rOp1OfHx8ZMiQIcqAYuW16eJlrrYtlsdsNsuUKVPEy8tLfHx8ZNq0aTJ69OgqB1Ir+VlZbM+ePcp5xMPDQzp37mw36F9V3wvmz58vwcHBolKplHNG6brT09Nl1KhR4u3tLXq9XoYMGaKMBC9S/neStWvXSi191SMiokqoRBx/s0/SniUozD0LAPDwCUdQ27tx/tgPyM+0dfN082yONj2fcXQY9dbKlSsxderUa/oFnoiIiIiIiJzH4d3LTYUZlxNuFYLa3InQbk9A79kcYd2eRGCbOwGoUJhzBubC8rsTEhEREREREdVXDhu9vJgKKhj82qNJ6yFw92p5pVzlgiaht8HDpw0uJG8EULODqBERERERERE5W610LyciIiIiIiJqjGpn9HIiIiIiIiKiRohJNxEREREREZGDMOkmIiIiIiIichAm3UREREREREQOwqSbiIiIiIiIyEGYdBMRERERERE5CJNuIqpTBgwYgKlTpzo7DKJGi22QiIioZjHpJqI6Zc2aNXjllVecHUajlJKSApVKhdjYWGeHQvXEypUr4ePjU+PrZeJPREQNiauzAyAiKsnPz8/ZIVAVTCYTtFqts8MgqhKPVSIiqgt4pZuI6pTSV7jCwsLw6quvYvTo0TAYDAgNDcX333+PCxcuYNiwYTAYDOjUqRP27t2rLHPp0iU8+OCDaN68Odzd3dGpUyd89dVXdvXk5ORg5MiR8PDwQEhICN5+++0ydZtMJsyaNQvNmjWDh4cHbrrpJmzZsqXS+I8ePYr+/fvDzc0NHTp0wG+//QaVSoV169Yp85w9exYPPPAAfH194e/vj2HDhiElJUWZbrVaMX/+fDRv3hw6nQ5du3bFL7/8okwvviL97bff4uabb4Zer0fPnj2RmJiI6Oho9OjRAwaDAXfccQcuXLhgF9+KFSsQGRkJNzc3tG/fHu+//74yrVWrVgCAbt26QaVSYcCAAQCAsWPHYvjw4XjjjTfQtGlTREREYP78+ejUqVOZ7b/xxhvx0ksvVbqPqO7Iy8tT2lZISAgWL15sN72yNrBlyxY88sgjyMrKgkqlgkqlwrx586pcrtiOHTsQFRUFd3d3+Pr6YsiQIcjIyMDYsWOxdetWLFu2TFlvcfvYunUrevXqBZ1Oh5CQEDz77LMoKipS1jlgwAA8/fTTmDZtGgICAjB48GBH7ToiIqLqEyJqfHJzbS+r9UqZ0WgrKywsf16L5UqZyWQrKyioet6rFBUVJVOmTFHeh4aGip+fn3z44YeSmJgoEyZMEE9PT7njjjvk22+/lYSEBBk+fLhERkaK9fL2nDlzRhYtWiT79++XpKQkeeedd0StVsuuXbuU9T722GMSGhoqv/32mxw6dEhGjBghnp6ednU/9NBD0rdvX/nzzz/l+PHjsmjRItHpdJKYmFhu7BaLRdq1ayeDBw+W2NhY2bZtm/Tq1UsAyNq1a0VEJC8vT9q2bSuPPvqoHDx4UI4cOSIPPfSQtGvXToxGo4iILFmyRLy8vOSrr76So0ePyqxZs0Sj0Sj1JicnCwBp3769/PLLL3LkyBHp3bu3dO/eXQYMGCDbt2+XmJgYCQ8PlyeffFKJ76OPPpKQkBBZvXq1nDhxQlavXi1+fn6ycuVKERHZs2ePAJDffvtNUlNT5dKlSyIiMmbMGDEYDDJq1CiJi4uTQ4cOyenTp8XFxUX27NmjrP/AgQOiUqkkKSnpGv/6DU8dbmoiIjJhwgRp3ry5bNy4UQ4ePCh33XWXGAwGpR1U1gaMRqMsXbpUvLy8JDU1VVJTUyUnJ6fK5URE9u/fLzqdTiZMmCCxsbESFxcn7777rly4cEEyMzOlT58+Mn78eGW9RUVFcubMGXF3d5eJEydKfHy8rF27VgICAmTu3LnK9kRFRYnBYJCZM2fK0aNHJT4+/vp2EBERUQ1g0k3UGAG2V1ralbJXX7WVPfaY/bzu7rby5OQrZW+/bSt76CH7eQMCbOVxcdccWnlJ98MPP6y8T01NFQAyZ84cpeyvv/4SAJKamlrheocOHSrTp08XEZHs7GzRaDTy3XffKdMzMzPF3d1dqfv48eOiUqnk7NmzdusZOHCgPPfcc+XW8fPPP4urq6tdHJs2bbJLuj/++GNp166d8gOBiIjRaBS9Xi+//vqriIg0bdpUXnvtNbt19+zZUyZOnCgiV5Lu//73v8r0r776SgDI5s2blbI33nhD2rVrp7xv0aKFfPnll3brfeWVV6RPnz52692/f7/dPGPGjJGgoCDlR4Fi//jHP2TChAnK+6lTp8qAAQPK3TeNVR1uapKTkyNarVa+/vprpezSpUui1+tlypQp1WoDK1asEG9vb7vp1VnuwQcflH79+lUYW+nzgIjI888/X6btvPfee2IwGMRy+deHqKgo6dq1a/V2ABERUS3hPd1EVOd17txZ+X9QUBAA2HVtLi5LS0tDcHAwLBYL3nzzTXzzzTc4e/YsjEYjjEYjPDw8AAAnTpyA2WxGr169lHV4e3ujXbt2yvuYmBiICCIiIuxiMRqN8Pf3LzfOhIQEtGjRAsHBwUpZyToAYN++fTh+/Dg8PT3tygsLC5GUlITs7GycO3cO/fr1s5ver18/HDhw4Kr3S1paGgDgwoULOH36NMaNG4fx48cr8xQVFcHb27vc7SmpU6dOZe6NHT9+PB599FEsWbIEarUaq1atKtM9mequpKQkmEwm9OnTRynz8/NT2sG1tIHqLhcbG4v77rvvquKNj49Hnz59oFKplLJ+/fohNzcXZ86cQcuWLQEAPXr0uKr1EhERORqTbqLGKDfX9q+7+5WymTOBqVMB11KnhctJG/T6K2VPPQWMHw+o1fbzFt+XXHLeGqDRaJT/F3/hLq/MarUCABYvXoy3334bS5cuRadOneDh4YGpU6fCZDIBAETEbrlixeXF61Kr1di3bx/UpbbTYDCUG6eIlFlnaVarFTfeeCNWrVpVZlqTJk3KbFNl667OfineJ8X/Ll++HDfddJPdekpvX3mKf7Ao6e6774ZOp8PatWuh0+lgNBpx7733VrmuxqQuN7WSx3t5rqUNVHc5/TUEXl4bKK8tl3esEhEROROTbqLGqLwvpVqt7VWdeTUa26s68zrBtm3bMGzYMDz88MMAbEnAsWPHEBkZCQBo06YNNBoN9uzZgxYtWgAAsrOzcezYMURFRQGwDSZmsViQlpaGm2++uVr1tm/fHqdOncLff/+tXHmOjo62m6d79+745ptvEBgYCC8vr3LX07RpU2zfvh233HKLUrZz584yV82vRlBQEJo1a4YTJ05g5MiR5c5TfCXbYrFUa52urq4YM2YMVqxYAZ1Oh3/9619wL5ldUp1uauHh4dBoNNi1a5dylTgjIwOJiYmIioqqVhvQarVljpfqLNe5c2ds3rwZL7/8crXX26FDB6xevdou+d65cyc8PT3RrFmzq9p2IiKi2sTRy4mowQkPD8emTZuwc+dOxMfH44knnsD58+eV6Z6enhgzZgxmzpyJP/74A4cPH8ajjz4KFxcX5ct8REQERo4cidGjR2PNmjVITk5GdHQ0FixYgA0bNpRb7+DBg9GmTRuMGTMGBw8exI4dO/DCCy8AuHIlbuTIkQgICMCwYcOwbds2JCcnY+vWrZgyZQrOnDkDAJg5cyYWLFiAb775BgkJCXj22WcRGxuLKVOmXNd+mTdvHt544w0sW7YMiYmJOHToEFasWIElS5YAAAIDA6HX6/HLL7/g77//RlZWVpXrfOyxx/D777/j559/xqOPPnpd8VHtMhgMGDduHGbOnInNmzcjLi4OY8eOhYuL7atBddpAWFgYcnNzsXnzZly8eBH5+fnVWu65555DdHQ0Jk6ciIMHD+Lo0aP44IMPcPHiRWW9u3fvRkpKCi5evAir1YqJEyfi9OnTmDRpEo4ePYrvv/8ec+fOxbRp05SYiYiI6iJ+ShFRgzNnzhx0794dQ4YMwYABAxAcHIzhw4fbzbNkyRL06dMHd911FwYNGoR+/fopj9IqtmLFCowePRrTp09Hu3btcM8992D37t3K1fHS1Go11q1bh9zcXPTs2ROPPfYYXnzxRQBQ1uvu7o4///wTLVu2xP/93/8hMjISjz76KAoKCpQr35MnT8b06dMxffp0dOrUCb/88gt++OEHtG3b9rr2y2OPPYb//ve/WLlyJTp16oSoqCisXLlSeVSYq6sr3nnnHfznP/9B06ZNMWzYsCrX2bZtW/Tt2xft2rUr022d6r5FixbhlltuwT333INBgwahf//+uPHGG5XpVbWBvn374sknn8QDDzyAJk2aYOHChdVaLiIiAhs3bsSBAwfQq1cv9OnTB99//z1cL/e5nzFjBtRqNTp06IAmTZrg1KlTaNasGTZs2IA9e/agS5cuePLJJzFu3DiljREREdVVKqnqpi4iokYgLy8PzZo1w+LFizFu3LgaW++OHTvQv39/HD9+HG3atKmx9dYVIoL27dvjiSeewLRp05wdDhEREVGdw3u6iahR2r9/P44ePYpevXohKysL8+fPB4BqXd2tzNq1a2EwGNC2bVscP34cU6ZMQb9+/Rpkwp2WlobPP/8cZ8+exSOPPOLscIiIiIjqJCbdRNRovfXWW0hISIBWq8WNN96Ibdu2ISAg4LrWmZOTg1mzZuH06dMICAjAoEGDGuxjtIKCghAQEICPPvoIvr6+zg6HiIiIqE5i93IiIiIiIiIiB+FAakREREREREQOwqSbiIiIiIiIyEGYdBMRERERERE5CJNuIiIiIiIiIgdh0k1ERERERETkIEy6iYiIiIiIiByESTcR1XkDBgzA1KlTnR3GVZk3bx66du16VcvU1HZeunQJgYGBSElJue511ZRr2R+lrV+/Ht26dYPVaq2ZoKhcbG9X51ra28qVK+Hj43PddRdLSUmBSqVCbGzsNa/DaDSiZcuW2LdvX43FRURENky6iajB2bJlC1QqFTIzM50Ww4wZM7B58+arWmbNmjV45ZVXrrvuN954A3fffTfCwsKue1216dSpU7j77rvh4eGBgIAATJ48GSaTSZl+1113QaVS4csvv3RilFQa29vVt7cHHngAiYmJ11331RARzJs3D02bNoVer8eAAQNw+PBhZbpOp8OMGTMwe/bsWo2LiKgxYNJNRGV98w3w2muVz/Paa7b5yI6IoKioCAaDAf7+/le1rJ+fHzw9Pa+r/oKCAnz88cd47LHHrms9tc1iseDOO+9EXl4etm/fjq+//hqrV6/G9OnT7eZ75JFH8O677zopSsdgc7t29bW96fV6BAYGXlfdV2vhwoVYsmQJ/v3vfyM6OhrBwcEYPHgwcnJylHlGjhyJbdu2IT4+vlZjIyJq6Jh0E1FZx48DL74IVHQV6JVXbNOPH6/xqvPy8jB69GgYDAaEhIRg8eLFZeb54osv0KNHD3h6eiI4OBgPPfQQ0tLSANi6Wd56660AAF9fX6hUKowdOxYA8Msvv6B///7w8fGBv78/7rrrLiQlJVUaj9FoxOTJkxEYGAg3Nzf0798f0dHRyvTiq3y//vorevToAZ1Oh23btpXp7lpUVITJkycrdc+ePRtjxozB8OHDlXlKd3cNCwvD66+/jkcffRSenp5o2bIlPvroo0rj/fnnn+Hq6oo+ffoAAKxWK5o3b44PP/zQbr6YmBioVCqcOHECgO0q87Bhw2AwGODl5YX7778ff//9NwDg6NGjcHd3t7vCvGbNGri5ueHQoUMAgKysLDz++OMIDAyEl5cXbrvtNhw4cKDSWEvauHEjjhw5gi+++ALdunXDoEGDsHjxYixfvhzZ2dnKfPfccw/27NmjxN0QOLG5sb3VcHsrGeNPP/2ELl26wM3NDTfddJPSVgD77uUigkGDBuGOO+6AiAAAMjMz0bJlS7zwwgvKMitWrEBkZCTc3NzQvn17vP/++5XGVpKIYOnSpXjhhRfwf//3f+jYsSM+/fRT5Ofn27Vrf39/9O3bF1999VW1101ERFVj0k1EZb3wAjB/PvDSS2UzgVdesZXPn2+br4bNnDkTf/zxB9auXYuNGzdiy5YtZe4xNJlMeOWVV3DgwAGsW7cOycnJyhf9Fi1aYPXq1QCAhIQEpKamYtmyZQBsCca0adMQHR2NzZs3w8XFBSNGjKj0HuFZs2Zh9erV+PTTTxETE4Pw8HAMGTIE6enpZeZ74403EB8fj86dO5dZz4IFC7Bq1SqsWLECO3bsQHZ2NtatW1fl/li8eDF69OiB/fv3Y+LEiZgwYQKOHj1a4fx//vknevToobx3cXHBv/71L6xatcpuvi+//BJ9+vRB69atISIYPnw40tPTsXXrVmzatAlJSUl44IEHAADt27fHW2+9hYkTJ+LkyZM4d+4cxo8fjzfffBOdOnWCiODOO+/E+fPnsWHDBuzbtw/du3fHwIEDy+ynivz111/o2LEjmjZtqpQNGTIERqPR7u8fGhqKwMBAbNu2rVrrrQ+c2NzY3kq53vZW0syZM/HWW28hOjoagYGBuOeee2A2m8vMp1Kp8Omnn2LPnj145513AABPPvkkgoKCMG/ePADA8uXL8cILL+C1115DfHw8Xn/9dcyZMweffvppldsEAMnJyTh//jxuv/12pUyn0yEqKgo7d+60m7dXr14Nqn0REdUJQkRUkfnzRQDbv+W9r2E5OTmi1Wrl66+/VsouXboker1epkyZUuFye/bsEQCSk5MjIiJ//PGHAJCMjIxK60tLSxMAcujQoXKn5+bmikajkVWrVillJpNJmjZtKgsXLrSra926dXbLzp07V7p06aK8DwoKkkWLFinvi4qKpGXLljJs2DClLCoqym47Q0ND5eGHH1beW61WCQwMlA8++KDCbRo2bJg8+uijdmUxMTGiUqkkJSVFREQsFos0a9ZM3nvvPRER2bhxo6jVajl16pSyzOHDhwWA7NmzRym788475eabb5aBAwfK4MGDxWq1iojI5s2bxcvLSwoLC+3qbdOmjfznP/8pd3+UNn78eBk8eHCZcq1WK19++aVdWbdu3WTevHkVrqu+quXmxvbmoPZWHGN5+/Wbb74REZEVK1aIt7e33XLffvut6HQ6ee6558Td3V0SEhKUaS1atCjTDl555RXp06ePiIgkJycLANm/f3+5ce7YsUMAyNmzZ+3Kx48fL7fffrtd2bJlyyQsLKzCbSYioqvHK91EVLE5c65cgtPprlxymzPHIdUlJSXBZDLZddX08/NDu3bt7Obbv38/hg0bhtDQUHh6emLAgAEAbF2kq1r/Qw89hNatW8PLywutWrWqdLmkpCSYzWb069dPKdNoNOjVq1eZex4rutoF2Lpe//333+jVq5dSplarceONN1YaLwC7q3gqlQrBwcFK197yFBQUwM3Nza6sW7duaN++vdJldOvWrUhLS8P9998PAIiPj0eLFi3QokULZZkOHTrAx8fHbjs/+eQTHDx4EDExMVi5ciVUKhUAYN++fcjNzYW/vz8MBoPySk5OrrI7cUnF6ytJRMqU6/V65OfnV3u99UUtNze2t3LURHsrVt5+rexe6fvuuw//93//hzfeeAOLFy9GREQEAODChQs4ffo0xo0bZ9e+Xn311atqX8XbVFJjal9ERM7k6uwAiKiOmzMHePVVwGQCtFrHZQCAcj9jZfLy8nD77bfj9ttvxxdffIEmTZrg1KlTGDJkiN1I1+W5++670aJFCyxfvhxNmzaF1WpFx44dK1yuOJ7qfFH18PCoMvby1lMVjUZTZh2Vdc8NCAhARkZGmfKRI0fiyy+/xLPPPosvv/wSQ4YMQUBAgBJHdRLeAwcOIC8vDy4uLjh//rzSFdxqtSIkJARbtmwps47qPhYpODgYu3fvtivLyMiA2WxGUFCQXXl6ejqaNGlSrfXWN7XY3NjeylFT7a26MZWUn5+Pffv2Qa1W49ixY0p5cf3Lly/HTTfdZLeMWq2uVr3BwcEAgPPnzyMkJEQpT0tLa1Tti4jIWXilm4gq98orVzIAk6ni0Z5qQHh4ODQaDXbt2qWUZWRk2D1a5+jRo7h48SLefPNN3HzzzWjfvn2ZK1FarRaAbUTsYpcuXUJ8fDxefPFFDBw4EJGRkVV+WQ4PD4dWq8X27duVMrPZjL179yIyMrLa2+Xt7Y2goCDs2bNHKbNYLNi/f3+111Fd3bp1w5EjR8qUP/TQQzh06BD27duH//3vfxg5cqQyrUOHDjh16hROnz6tlB05cgRZWVnKdqanp2Ps2LF44YUX8Mgjj2DkyJEoKCgAAHTv3h3nz5+Hq6srwsPD7V7FiX1V+vTpg7i4OKSmpiplGzduhE6ns7tCWVhYiKSkJHTr1u3qdkw9UYvNje2tBlTU3gCUu1/bt29f4bqmT58OFxcX/Pzzz3jnnXfw+++/AwCCgoLQrFkznDhxokz7Ku49UJVWrVohODgYmzZtUspMJhO2bt2Kvn372s0bFxfXYNsXEZGzMOkmooqVHMXJaKx4tKcaYjAYMG7cOMycORObN29GXFwcxo4dCxeXK6eqli1bQqvV4t1338WJEyfwww8/lHnWbmhoKFQqFdavX48LFy4gNzcXvr6+8Pf3x0cffYTjx4/j999/x7Rp0yqNx8PDAxMmTMDMmTPxyy+/4MiRIxg/fjzy8/Mxbty4q9q2SZMm4Y033sD333+PhIQETJkyBRkZGZVe+boWQ4YMweHDh8skOK1atULfvn0xbtw4FBUVYdiwYcq0QYMGoXPnzhg5ciRiYmKwZ88ejB49GlFRUUo33ieffBItWrTAiy++iCVLlkBEMGPGDGX5Pn36YPjw4fj111+RkpKCnTt34sUXX8TevXurFfftt9+ODh06YNSoUdi/fz82b96MGTNmYPz48fDy8lLm27VrF3Q6nV3X3Yailpsb21sNqKi9AcD8+fPt9mtAQIDd6Okl/fTTT/jkk0+watUqDB48GM8++yzGjBmjrHfevHl44403sGzZMiQmJuLQoUNYsWIFlixZUq04VSoVpk6ditdffx1r165VYnJ3d8dDDz1kN++2bdvsBlwjIqIa4JQ7yYmo7qtoFKdaGEzt4YcfFnd3dwkKCpKFCxeWGfDoyy+/lLCwMNHpdNKnTx/54YcfygwiNH/+fAkODhaVSiVjxowREZFNmzZJZGSk6HQ66dy5s2zZskUAyNq1ayuMp6CgQCZNmiQBAQGi0+mkX79+doOLVTSIVOmBncxmszz99NPi5eUlvr6+Mnv2bLnvvvvkX//6lzJPeQM7vf3223br7dKli8ydO7fSfdi7d2/58MMPy5S/9957AkBGjx5dZtrJkyflnnvuEQ8PD/H09JT77rtPzp8/LyIin376qXh4eEhiYqIy/969e0Wr1cpPP/0kIiLZ2dkyadIkadq0qWg0GmnRooWMHDlSGZytqoHUimO48847Ra/Xi5+fnzz99NNlBmd7/PHH5Yknnqh0PfWRk5ob25sD2ltxjD/++KPccMMNotVqpWfPnhIbG6vMU3IgtbS0NAkKCpLXX3/dLv5evXrJ/fffr5StWrVKunbtKlqtVnx9feWWW26RNWvWiEjVA6mJ2AaGmzt3rgQHB4tOp5NbbrmlzKB2O3fuFB8fH8nPz690m4mI6OqoRKpxkxMRNS6vvWZ7MHBFozgVX5J79VXHPMeoEbBarYiMjMT9999f5srh9dqwYQNmzJiBuLg4u6uW9d2FCxfQvn177N27t9rdausDNjfHq832tmXLFtx6663IyMio9pgGdcV9992Hbt264fnnn3d2KEREDQoHUiOissLDK/+GP2cO4OJim4+q5eTJk9i4cSOioqJgNBrx73//G8nJyWW6dtaEoUOH4tixYzh79qzdiOT1XXJyMt5///0GlXADbG6OwPZ29YxGI7p06YJnnnnG2aEQETU4vNJNRFQLTp8+jX/961+Ii4uDiKBjx4548803ccsttzg7NKIGx5ntrT5f6SYiIsdg0k1ERERERETkIA3nZj8iIiIiIiKiOoZJNxEREREREZGDMOkmIiIiIiIichAm3UREREREREQOwqSbiIiIiIiIyEGYdBMRERERERE5CJNuIiIiIiIiIgdh0k1EVI4BAwZg6tSpTq/bmXHUdv3Lli1Dq1at4O7ujuHDhyMrK6tW6iUiIiJyJFdnB0BEVFMGDBiArl27YunSpde93Jo1a6DRaGo2wGtQW3FUtO9qq/7nn38e3333HT799FMYDAaMGDECL7/8MpYsWeLwuomIiIgciVe6iajOM5lMtV6nn58fPD09a73eq43D0fumNvZDdHQ0FixYgG+++Qa33HILunfvjieeeALr1693aL1EREREtYFJN1FjlJdX8auwsPrzFhRUPe81GDBgAJ5++mlMmzYNAQEBGDx4MIxGIyZPnozAwEC4ubmhf//+iI6OVpYZO3Ystm7dimXLlkGlUkGlUiElJQW//PIL+vfvDx8fH/j7++Ouu+5CUlJSlcuV7lZdVf0DBgzA5MmTMWvWLPj5+SE4OBjz5s2rclvz8vIwevRoGAwGhISEYPHixWX2Rck4yts3ACAiWLhwIVq3bg29Xo8uXbrgf//7n926rFYrFixYgPDwcOh0OrRs2RKvvfZahfugvPodsR/eeust3HbbbejevbtS1qRJE1y8eLHK/UdERERU1zHpJmqMDIaKX/feaz9vYGDF8/7jH/bzhoWVnecaffrpp3B1dcWOHTvwn//8B7NmzcLq1avx6aefIiYmBuHh4RgyZAjS09MB2O4H7tOnD8aPH4/U1FSkpqaiRYsWyMvLw7Rp0xAdHY3NmzfDxcUFI0aMgNVqrXS50qqqvzhmDw8P7N69GwsXLsT8+fOxadOmSrdz5syZ+OOPP7B27Vps3LgRW7Zswb59+65q3wDAiy++iBUrVuCDDz7A4cOH8cwzz+Dhhx/G1q1bleWee+45LFiwAHPmzMGRI0fw5ZdfIigoqNr7wBH7wWg04scff8SIESPsygsKCuDt7V3pfiAiIiKqF4SIGh+g4tfQofbzurtXPG9UlP28AQFl57kGUVFR0rVrV+V9bm6uaDQaWbVqlVJmMpmkadOmsnDhQrvlpkyZUum609LSBIAcOnSo0uVKllWn/qioKOnfv7/dOnr27CmzZ8+uMJacnBzRarXy9ddfK2WXLl0SvV6v1F06ttL7pjg+Nzc32blzp135uHHj5MEHHxQRkezsbNHpdLJ8+fJyY6lo3zl6P+zcuVMAiJubm3h4eCgvrVYrQ4YMKXcZIiIiovqEA6kRNUa5uRVPU6vt36elVTyvS6nOMpe7JNeEHj16KP9PSkqC2WxGv379lDKNRoNevXohPj6+0vUkJSVhzpw52LVrFy5evKhc4T516hQ6duxYrViqW3/nzp3tlgsJCUFaJfsvKSkJJpMJffr0Ucr8/PzQrl27SuMpuW8A4MiRIygsLFS6mhczmUzo1q0bACA+Ph5GoxEDBw6sdN2VccR+SExMhJubGw4dOmRXfs8999jVQ0RERFRfMekmaow8PJw/b5WrurIuEQEAqFQqu3lEpExZaXfffTdatGiB5cuXo2nTprBarejYseNVDUBW3fpLj/KtUqmUJL+y9V4tj1L7ubiOn376Cc2aNbObptPpAAB6vf6a6irJEfshOzsbgYGBCA8PV8pOnTqFo0eP4t7StzoQERER1UO8p5uI6rzw8HBotVps375dKTObzdi7dy8iIyOVMq1WC4vFory/dOkS4uPj8eKLL2LgwIGIjIxERkZGmfWXXu5a67+W7dJoNNi1a5dSlpGRgcTExKtaT4cOHaDT6XDq1CmEh4fbvYrvzW7bti30ej02b95c7jqq2gfF8db0fggICEB2drbdDxCvvfYahg4dig4dOlzTOomIiIjqEl7pJqI6z8PDAxMmTMDMmTPh5+eHli1bYuHChcjPz8e4ceOU+cLCwrB7926kpKTAYDDAz88P/v7++OijjxASEoJTp07h2WefLbP+8pa7lvqvlsFgwLhx4zBz5kz4+/sjKCgIL7zwAlxKd9uvgqenJ2bMmIFnnnkGVqsV/fv3R3Z2Nnbu3AmDwYAxY8bAzc0Ns2fPxqxZs6DVatGvXz9cuHABhw8fxrhx48rdB6XjcMR+uO2221BYWIg333wTDz74IL788kv88MMP2LNnzzWtj4iIiKiuYdJNRPXCm2++CavVilGjRiEnJwc9evTAr7/+Cl9fX2WeGTNmYMyYMejQoQMKCgqQnJyMr7/+GpMnT0bHjh3Rrl07vPPOOxgwYIDdustb7lrqvxaLFi1Cbm4u7rnnHnh6emL69OnIysq66vW88sorCAwMxBtvvIETJ07Ax8cH3bt3x/PPP6/MM2fOHLi6uuKll17CuXPnEBISgieffBJA+fsgLCysTD01vR+CgoKwcuVKzJw5E6+88gpuu+02bN++vcLR04mIiIjqG5Vc602FRERERERERFQp3tNNRERERERE5CBMuomIiIiIiIgchEk3ERERERERkYMw6SYiIiIiIiJyECbdRERERERERA7CpJuIiIiIiIjIQZh0ExERERERETkIk24iIiIiIiIiB2HSTUREREREROQgTLqJiIiIiIiIHIRJNxEREREREZGDMOkmIiIiIiIichAm3UREREREREQOwqSbiIiIiIiIyEGYdBMRERERERE5CJNuIiIiIiIiIgdh0k1ERERERETkIEy6iYiIiIiIiByESTcRERERERGRgzDpJiIiIiIiInIQJt1EREREREREDsKkm4iIiIiIiMhBmHQTEREREREROQiTbiIiIiIiIiIHYdJNRERERERE5CBMuomIiIiIiIgchEk3ERERERERkYMw6SYiIiIiIiJyECbdRERERERERA7CpJuIiIiIiIjIQZh0ExERERERETkIk24iIiIiIiIiB2HSTUREREREROQgTLqJiIiIiIiIHIRJNxEREREREZGDMOkmIiIiIiIichAm3UREREREREQOwqSbiIiIiIiIyEGYdBMRERERERE5CJNuIiIiIiIiIgdh0k1ERERERETkIEy6iYiIiIiIiByESTcRERERERGRgzDpJiIiIiIiInIQJt1EREREREREDsKkm4iIiIiIiMhBmHQTEREREREROQiTbiIiIiIiIiIHYdJNRERERERE5CBMuomIiIiIiIgchEk3ERERERERkYMw6SYiIiIiIiJyECbdRERERERERA7CpJuIiIiIiIjIQZh0ExERERERETkIk24iIiIiIiIiB2HSTUREREREROQgTLqJiIiIiIiIHIRJNxEREREREZGDMOkmIiIiIiIichAm3UREREREREQOwqSbiIiIiIiIyEGYdBMRERERERE5CJNuIiIiIiIiIgdh0k1ERERERETkIEy6iYiIiIiIiByESTcRERERERGRgzDpJiIiIiIiInIQJt1EREREREREDsKkm4iIiIiIiMhBmHQTEREREREROQiTbiIiIiIiIiIHYdJNRERERERE5CBMuomIiIiIiIgchEk3ERERERERkYMw6SYiIiIiIiJyECbdRERERERERA7CpJuIiIiIiIjIQZh0ExERERERETkIk24iIiIiIiIiB2HSTUREREREROQgTLqJiIiIiIiIHIRJNxEREREREZGDMOkmIiIiIiIichAm3UREREREREQOwqSbiIiIiIiIyEGYdBMRERERERE5CJNuIiIiIiIiIgdh0k1ERERERETkIEy6iYiIiIiIiByESTcRERERERGRgzDpJiIiIiIiInIQJt1EREREREREDsKkm4iIiIiIiMhBmHQTEREREREROQiTbiIiIiIiIiIHYdJNRERERERE5CBMuomIiIiIiIgchEk3ERERERERkYMw6SYiIiIiIiJyECbdRERERERERA7CpJuIiIiIiIjIQZh0ExERERERETkIk24iIiIiIiIiB2HSTUREREREROQgTLqJiIiIiIiIHIRJNxEREREREZGDMOkmIiIiIiIichAm3UREREREREQOwqSbiIiIiIiIyEGYdBMRERERERE5CJNuIiIiIiIiIgdh0k1ERERERETkIEy6iYiIiIiIiByESTcRERER0VUqMuXCbMxydhhEVA8w6SYiIiIiqiaxWpCfdRLZF+KQl5EEsVrw5JPAZ58BVquzoyOiukglIuLsIIiIiIiI6gOrtQjZaQdgtZig1ftjd0xrDBrsCrUaiI8H2rZ1doREVNcw6SYiIiIiqoTVYoKLWqu8Nxdm4ONPtPjsCw+MGGEry8oCXn31yjJGI6DT1XKgRFQnsXs5EREREVE5RKwozE1F1t+xMOZfUMo1br5IPO6Bv/4CLlwAZs60T7jPnQPCwoDXXwfM5tqPm4jqFibdRERERESlFJlykXMhDvlZKRCxwFxwyW76E08Aa9YAI0eWXfaTT4Dz54EffgDU6loKmIjqLHYvJyIiIiK6zGotQmHOaRTm/g1AoHJRw90rFFr3QKhUqmqtQwT46isgIgLo0cNWZrEACQlAhw6Oi52I6iYm3UREREREAMyFmcjLTILVYgIAaPUBcPcOg4tac93r/s9/gIkTgdmzbd3OiajxcHV2AEREREREdYHKRQ2rxQS1qxvcvVtB4+ZT4bw//QT4+AA33gi4uVW97thY2yPFQkJqKloiqi94pZuIiIiIGiURKyzmPLhqPZUyU0E6NDpvqFwqvhnbagW0WluX8bNngaZNq1ffjh1Ar16A5vKF84MHgb//BgYPvp6tIKK6jgOpEREREVGjU2TKQfaFQ8i5eASWokKlXKv3qzThBoC8PFvy3KYNEBBQ/Tr79buScIsATz8N3H47sGTJtWwBEdUX7F5ORERERI2G1VqEguxTMOb9DQBwcXGFtagQatdq9BG/zNMT2Lnz+uIwmWxd0w8cAO677/rWRUR1G7uXExEREVGjYMq/iPzsk8pAaTr3JtB7hdbIQGnXKjPTdm94sQULgKAgYPRowIV9UokaBCbdRERERNTg5V5KgKkwHQBsA6X5tIZG5+3kqOwdP257pJjZDPzxBzBggLMjIqKawN/PiIiIiKjBU2s9oFKpoPdsDq/ALteVcH/+OdCnD7BwYQ0GCKBlS+CNN4AHHrBPuC2Wmq2HiGoX7+kmIiIiogbHbMyGSuUCV60BAOBmaAqt3h9qV/11rzshAdi1y3ZPdk3SaoHp0+3LCguBnj1tifiMGdV7PBkR1S3sXk5EREREDYbVWoSCrJMw5qdBrXGHV5NOUKlqtnPn8eNAXBzQokXNJ96lrVgBPPoo0KyZLdn38HBsfURU83ilm4iIiIgaBGP+RRRkpcBqNQMAXDUG27O5VDVbT3i47VUbxo4F9Hrbq2TCnZIChIXVTgxEdH14pZuIiIiI6jVLUQHyM5NhNmYBANSu+ssDpXk5OTLH+P13YPBgYMIE4N13AVUN/6hARDWLV7qJiIiIqN4qMuch50IcRKxQqVzg5tkMboamNd6lvKRffgEMBlvXcv313yJ+1TZvBqxWW7LNhJuo7uOVbiIiIiKq17IvxEGlUsPdpxXUro4facxgAPLygGPHaq+beWl//gnccAPg7297f/48cOAAMGSIc+IhoorxkWFEREREVG9YLWbkZ6VArFeeo2Xwbw/PgMhaSbhNJqBLF1uyHRjo8OoqdMstVxJuAHjhBeCOO4DZs50XExGVj93LiYiIiKheMOZfQEHWSWWgNHfvMACAi0vtfaXVaoEdO2qtumoRAXx9AY0GGD7c2dEQUWnsXk5EREREdZrFXID8rBIDpWnc4eHTGq5aTydHVrekpgIhIVfef/21rRv8I48ALuzfSuQ0TLqJiIiIqE4SsaIw5ywKc89CRKBSuUDv2QI6Q7BDB0prCLKygLZtgQsXgJUrgTFjnB0RUePFsxURERER1UkF2adQkHMGIgKNmy+8ArvAzdOxI5NX5bvvgN69gVdecVoI1aLXA88+C9x0E/DQQ1fKebmNqPYx6SYiIiKiOsnN0BRqVz0MfhHw9G9fKwOlVeXYMWD3biAlxdmRVE6rBaZNA/76y3avN2BLuO++2/aDQUGBc+MjakzYvZyIiIiInE5EYMpPQ5E5Dx4+re3KVXXoYdQnTgAHDwJNmwK9ejk7mqvz22/A4MGAmxtw9CgQGursiIgaBybdRERERORUFnM+8jJPoMiUAwDwDOgAjc7byVE1PCK27vF//w1MmnSlPC3NuY8/I2romHQTERERkVOI1YLC3LMozD13ZaA0rxbQeXCgtNqSlAR06gQ8/DDw7ruATufsiIgaHj6nm4iIiIhqnbkwE/lZybAUFQIAtG6+0Hu3gtq1bmd9v/5qG6TsxhsBDw9nR3P9fvzRdn/3yZO2+8CJqObxSjcRERER1SoRK7L+joXVYoSLWgt371bQ6v2cHVa1BAbaHsN14ADQubOzo6kZ27bZtqtdO9t7oxH480/b/d9EdP3Yb4eIiIiIHE5EUHytR6Vygbt3GNwMIfAO7FpvEm4RoH172/Ovg4OdHU3NufnmKwk3ACxbBtx+OzBunPNiImpI2L2ciIiIiByqyJyP/MwT0Lk3gc4jCACg1fvVm2S7mEpluwLc0OXn2x4zNmCAsyMhahjYvZyIiIiIHEKsFhTknEFhbioAgYtaB++grhwkrR44cQIICwNcLv+ptm8H4uOBRx8F1GqnhkZU7/BKNxERERHVOFNhBvIzk2G1GAHYrmy7e4cx4a4nWl95VDosFuDpp233sf/9N/Dii86Li6g+4lmPiIiIiGqM1WJCbnoici8dvTxQmg4Gv3Yw+LWDi7puj0xelR9+AG66qfElnSLA2LG2K99PPOHsaIjqHybdRERERFRjrBYjTAWXAKjgZmgK78Au9e7e7YokJQF79tj+bUxcXYGpU4Fjx4AmTa6UP/MMMG+e7R5wIqoY7+kmIiIioutitZjhotYo7wtzU+Gq84KrpgE8yLqEkyeB2Fhb4tm3r7Ojca6jR4EOHWxXwbdvB/r1c3ZERHUXk24iIiIiuia2gdJOw5j3N7yadIZao3d2SFRLRIDVq4Fdu4C33rpSnp0NeHk5Ly6iuohJNxERERFdNVNBOvKzUpSB0vReLaH3bObkqMiZsrNtzzEfOhRYvBjw9nZ2RER1A0cvJyIiIqJqsxQZUZCVAlNhOgBArdbB3acVNG6+To7M8X77DdBqgW7dAE9PZ0dT9/z0E5CaanuWuZ6dHogUvNJNRERERNVSmHceBVmnIGKBSqWCztAUekMzqFwax4ObQ0OBU6eAv/4Cevd2djR1044dtkeM3XKL7b0IsHOn7R54lcq5sRE5C690ExEREVG1iNUCEQtctZ5w92kNV427s0OqVRERgJsbEBLi7EjqrtIDqn3/PTBiBDB8OLBmDRNvapyYdBMRERFRuazWIojFrAyQ5mYIgYtaB63eH6pGmD1t2uTsCOqf5GRAowFuuIEJNzVe7F5ORERERGWYCi4hPysFKhdXeDXpBJXKxdkhUT117Jitd4DBYHufkgL8+ivw2GOAunHcmUCNHK90ExEREZHCUlSI/KwUmAszAABqlQusFhPUrm5Ojozqq7Zt7d/PmGF73NiBA8D77zsnJqLaxJ8siYiIiAgiVhTmnEN22gGYCzOgUqmg92xue/42E25s2gT06mVLGOnaidgGWQsIACZOdHY0RLWDV7qJiIiIGjmrxYycS0dgMecDADQ6L7h7t1bu5SbgxAkgOpqDqF0vlQqYPBkYP97+sWL//jeQlgbMng14eDgvPiJH4D3dRERERISci0dgMedB7xUKnUegs8Opc06fBvbvB3x9gZtvdnY0DculS0Dr1kB2NvDZZ8CoUc6OiKhmMekmIiIiaoRMBZfgqvOGi4ut46OlyAiVygUuao2TI6PGRsT2OLGvvgK+/RZwuXwDrNEI6HTOjY2oJjDpJiIiImpEbAOlJcNcmAk3j2C4+7RydkhEZVgsQO/eQOfOwIIFtnvAieorDqRGRERE1AiIWFGQc/byQGmZUKlUUPGqdrX98QewdSuQleXsSBqHbduAvXuB//0PsFqdHQ3R9eGVbiIiIqIGzmzMRn5WcomB0rzh7tMKalcOlFZdkZHA0aPA5s3Abbc5O5rGYdcu4ORJ4IEHrpQdOgR07GgbkI2ovuDo5UREREQNmDEvDXmZSQAAFxcN9N6h0Lk3cXJU9U94uO2Ka9Omzo6k8ejd2/YqdvAg0K0bMGgQ8MMPvN+b6g8m3UREREQNmMbNFy4urtC4+UHvHaoMnEZX58cfnR0B7dsHuLoC3t5MuKl+YfdyIiIiogbEUlQAU8El6D2bK2VWi5mjklODkJRkS7ibXz68c3OBr78Gxo61JeREdREHUiMiIiJqAGwDpZ1BdtpBFGSfhqkgXZnGhJsaijZtriTcAPDGG8D48cB99zkvJqKqMOkmIiIiqufMxmwl2RaxQqPzgVrj7uywGoxt24CePYHJk50dCZXWsiXg62u70k1UV7ETBhEREVE9ZbWYUZB9Csb8NAC2gdLcvcOgdedDjWtSSort8VU+Ps6OhEp74gnb6Obe3lfKfvoJ+Osv4LnnAA8P58VGVIxJNxEREVE9lZt+FEWmXACAziMIeq+WHCjNAQYOtI2W7enp7EioPCV/DDGZgKlTgePHbfd+z5njrKiIruBAakRERET1lLkwA/nZp+Dh0xquWmaERCLAunXAW28Bv/xy5YcSiwVQq50aGjViTLqJiIiI6gERKwpzzsJFrYXOI6hEuUClUjkxMqK678EHATc328BrwcHOjoYaGybdRERERHWc2ZiF/MwTsBQVQuWihndgN45IXov+/BOwWoEuXWyDdlH9kpgItG8PqFRATIzt70hUm5h0ExEREdVRtoHSTsKYfwEA4KLW2gZK0/s7ObLG5cYbbcna+vXAnXc6Oxq6Frt3Azt2ANOmXSlLSQFCQ23JOJEjcaQNIiIiojpGRGDKT0NB9ilYrUUAADePYLh5teBAaU7QujWQlwc0bersSOha3XST7VXswgWga1egVy/gq68Af/6ORQ7EszYRERFRHWMtKkReZjIAgavGA+4+rThQmhN9952zI6CatnMnUFBgS775KDhyNHYvJyIiIqoDSg+IVpB9GioXNXQewVCpXJwYGVHDdOIEkJNz5R5vqxX45hvgvvsAV16apBrEpJuIiIjIycyFmcjPSoHBLwJqjbuzwyFqlFauBB55BOjbF9i+nfd6U83hz6ZERERETmK1mJCbnoicS/GwFBWgIOeMs0OiUqKjgR49gMcfd3Yk5GhqNeDnBwwfzoSbahY7ThARERHVMhGBMf9vFGSfglgtAFRwMwRD79nC2aFRKadOAfv2ATqdsyMhRxs1yjY6vYfHlbLDh4FVq4DnnwcMBufFRvUbk24iIiKiWlRkzkd+5gkUmXIA4PJAaa3hquU3+rqoXz/gxx8BNzdnR0K1wc/vyv9FgGeeATZtAtLSgP/+13lxUf3Ge7qJiIiIalFh7jnkZ52ESqWG3qvF5YHS2JeVqK4RAX74wXaV+8cfbY+OKy5nk6WrwaSbiIiIyMGs1iLl+doiVhRkn4abIRguavZZJqrrSifZc+cCKSnAG2/w2e1UPUy6iYiIiBzEajEhPysFFnM+vAI789Ff9dCOHYDJBHTuDPj7Ozsacrb0dKB5c9szvv/3P+Dee50dEdUHPPMTERER1TARQWHueWT9HQtTwSVYigpRZMx2dlh0DZ59FrjtNuD3350dCdUFfn7A1q22e73/7/+ulF+4YLsiTlQeDqRGREREVIOKzHmXB0rLBQC4ag22gdI0HlUsSXVRWBhw8SLQrJmzI6G6omdP26uYyQT07w+0aAGsWGH7l6gkdi8nIiIiqgHF92oX5qYCEKhc1NB7tYTOPYgDpRE1YDt2AAMHAt7ewLFjgJeXsyOiuoZXuomIiIhqgErlAos5H4BAq/eHu3cYXNRaZ4dFRA7Wrx8QHw+cOGGfcP/yCzBoEODKjKvR45VuIiIiomtkKTJC5aJWRia3FBXCWlQAjZuvkyMjImfascPW5bxTJ2DPHj7nvbHjQGpEREREV0nEisLcVGSnHUBB1kmlXO3qxoS7ATl0CLjxRmD0aGdHQvVNWppttPvevZlwE7uXExEREV2VIlOubaA0cx4AwFJUABErHwfWAJ0+DcTEAFarsyOh+mbECGDAAPsRzS9dApYuBWbNAjw9nRUZOQO7lxMRERFVg9VahMKc0yjM/RvFA6W5e4VC6x7IgdIaqAsXbF2DXV2BIUOcHQ3Vd089Bbz/PnD77cCvvzo7GqpNTLqJiIiIqlBkykVuegKsFhMAQKsPuDxQmsbJkRFRfbF+ve353h99BNx6q7OjodrEpJuIiIioClaLGdlpB2xXt71bQePm4+yQiKgeKiqyH838iy9sV73ffJPPgm/ImHQTERERlSJihbkwA1q9v1JWZMqF2lUPlYvaiZFRbdq1C8jPt41A3aSJs6OhhsZsBlq1As6etSXds2c7OyJyFI74QURERFRCkSkH2RcOITc9EaaCS0q5q9bAhLuRmTsXGDgQ2LDB2ZFQQ6TRAOvWAf/6FzBlypXynBz7Adio/mPSTURERATbQGl5mSeQfSEOFnO+8uxtarxatgQiI4HmzZ0dCTVUPXoAX3115bFiIsB999l+7ElMdG5sVHPYvZyIiIgaPVP+ReRnn1QGStO5N4HeK5QDpRFRrTp+3HY7g9UKHD4MhIc7OyKqCfwJl4iIiBq1vMwTMOb9DQBQu7rB3ac1NDpvJ0dFRI1ReDhw9Ciwc6d9wr17N9C9u61LOtU/vNJNREREjZrZmIXcS0fh5tkMboamUKl49x0R1R2nTgHt2wNhYcAffwBBQc6OiK4WP1WIiIioUTEbs2HMv6i81+i84R3UDXrP5ky4SXH8uO3K4v33OzsSauyOHQM8PGwj6AcGOjsauhbsXk5ERESNgtVahIKskzDmp0GlUkOj84SLWgcAcFFrnRwd1TVnzgD799seGUbkTAMH2hLvzExApbKVmc3AkiXAhAmAl5dTw6NqYPdyIiIiavCM+RdRkJUCq9UMANC5B0LvHcoRyqlC6em253QDwNChzo2FqLRly4CpU22Drh04cCUZp7qJnzRERETUYFmKCpCfmQyzMQsAoHbVXx4ojZeGqHJ+fky2qe5q3x5o2xaYNIkJd33AK91ERETUIFmtRcg6HwMRC1QqFw6URkQNiskEqNW2F2DrmfHuu8CCBXy2fF3DK91ERETUILm4uEJnCIbFlAd3n1ZQu7o5OySqR6Kjgexs4IYbgOBgZ0dDVJa2xFAUIsAzz9gSbw8P4KOPnBcXlcWfeomIiKhBsFrMyMtIQpE5TynTezaHZ0AkE266aq+/DgwaBKxd6+xIiKqmUgH//jdwxx3A/PlXyo1GW0JOzsWkm4iIiOo9Y/4FZKcdgDE/DfmZJ5RydiWna9W8OdChAxAa6uxIiKrnxhuBn3+275kxcyZw661AXJzz4iLe001ERET1mMVcgPysEgOladzh4dMarlpPJ0dGRORcGRm2H41ycoDffrM9eoycg/d0ExERUb0jYkVhzlkU5p6FiEClcoHeswV0hmBe3SYiAuDra7vC/b//2SfcR48CbdoAGo3zYmtseKWbiIiI6h1jXhryMpMAABo3H7h7c6A0IqKq5OUB7doBnp7ADz/YHjtGjsefgomIiKje0bo3gdbNFwa/CHj6c6A0qllnzgDdugHDhjk7EqKaFR9ve9RYYSEfK1abmHQTERFRnSYiMOb9jewLhyBWCwBApVLB4N8eWr2/k6OjhujcOSA2Fti/39mRENWsHj2AY8dso/Lr9VfK//tfICvLeXE1dOxeTkRERHWWxZyPvMwTKDLlAADcvcPgZghxclTU0GVmAn/9BZjNwD33ODsaIsf68Yc83DPMA4GBgs2bVejY0dkRNTwcSI2IiIjqHLFaUJh7FoW5564MlObVAjqPIGeHRo2Ajw/wj384Owoix7Bai6BSqaFSqQAAri5ZuPOOQvTu7YKMDF8nR9cw8Uo3ERER1SnmwkzkZyXDUlQIANC6+ULv3QpqV52TIyMiqp+sFjPMhekwFWagyJgJz4AblEcrmo3ZMOZdgpshgI9bdBBe6SYiIqI6xZh3HpaiQriotXD3bgWt3s/ZIVEjExMDpKcDHToATZs6Oxqia2MpMsJcmG57GXMAXLnWajZmKQm2RucFjc7LSVE2DhxIjYiIiJxKRJQB0gBA790Kboam8A7syoSbnOKtt4DBg4GvvnJ2JETXpsich6y/Y5CflQKzMRuAwFXjAb1XC3gHdoHe88rQ5SLAgQPAhQu2/1PN45VuIiIicpoicz7yM09A7eoGD99wAIDaVQd371AnR0aNWbNmwA03AGFhzo6EqHIiAos5F6bCDNvYF5eTabWrO1zUWqhd3aBx84PGza/CW3QuXQK6drX932gEtNpaCr4R4T3dREREVOvEakFBzhkU5qYCEKhUangHdYWLmt/2iIgqI2JFkSkH5oJ0mArTYbWYAAAuLhp4B9+oDJAmVgtULuoq15eYCPTvD7i4AOfPOzT0RotJNxEREdUqU2EG8jOTYbUYAQBavR/cvcPgouZAaURElSnIPg1j3nlYrUVKmUqlhsbNB1o3P2j0flCpru0O4qIiwJX9oB2Cu5WIiIhqhdViRn5WMkwFlwAALmod3H1aQevGR9QQEZVmtRbBXJgJbYlEWsQKq7UILi4aaNx8odH7QaPzvuZEuyQm3I7DXUtERES1Q6VCkTEbgApuhhDoPZtXq+sjUW26eNE2iFpQELBhg63LLVFtUR7tVZCOIlMWRAQuLu2hufzjpM4jCBo3X7hqDTWSaFPtYNJNREREDmMxF0Ct0QMAXFxc4eEbDpVaA1eNh5MjIyrf+fNAbCzg78+Em2qH1WKGqeDC5UQ7x26a2lWPkncDq13doHZ1q9H6ly61PSZv9Ghg0KAaXTVdxlMJERER1TixWpCflYKstAMw5l9UyjVuPky4qU5r2RL4+Wdg+XJnR9Lw3HLLLVCpVFCpVHB1dUVISAhGjBiBnTt3Oju0WlfyMYlWqxn5WSeVhNtVa4DeqyW8A7vCO8jxj07ctAn4/HMgOdmh1TRqHEiNiIiIapSpIB35WSnKQGluHsFw92nl5KiIyJlEBN7e3njhhRcwZswYFBYWIiUlBR988AFWr16NH374AUOHDnV2mA6jPNqrIB3mwnSoNQYY/Noq0/MyjkOtMUCr9631QSU3bAAOHQLuusv2qDyqeUy6iYiIqEZYiowoyEqBqTAdAKC+PFCahgOlETV6iYmJaNeuHXbu3Ik+ffrYTbvtttuQkZGB/fv3Oyk6xxCxosiYDVNhOsyFGcqjvYCyj/eiho33dBMREdF1M+ZfRH7mCYhYoFKpoDM0hd7QjAOlUb1z4ACQlgZERgLNmzs7moZj3759UKvV6NKlS5lpgwcPxpw5c2C1WuHSgG6kz710FGZjlvJe5aKGRucLrd4PGp0PE+5GpOEc1UREROQ0LmotRCxw1XrCs0lnuHu1ZMJN9dK77wK33w6sXOnsSBqWmJgYtG/fHu7u7mWmaTQaqNXqeptwW61FMOZfQG56gt292q46L7i4aKBzD4Snf3v4BPeAwa8ttHr/OnN+zM+3DRx48WKVs9J14JVuIiIiumpWaxEs5jxodN4AAI3OC54BHeCq9eLVG6rXgoOBjh2BVhyGoEbt27cP3bt3L3daYmIi2rdvX8sRXR+rxWTrNl6QjiJTtjLCuFafCa3eHwDg5hECN0OzOn1OjI0F+vUDQkOBlBRnR9Nw1c+fk4iIiMhpTAWXkJ12ALmXjsJSVKiUa3TedfrLJVF1vPqqbVCpkSOdHUnDsn///nKT7oKCAnz//fe49957ERMTgzvuuEOZtnr1ajz11FO1GWaViky5yL4Qh8zz+5CfmQyz0fYsbbXGHXrP5lCXeDqDykVd58+JeXlAYCDQooWzI2nYeKWbiIiIqsVSZER+VjLMhRkAbM+LFWuRk6MiorruxIkTyMzMLJN0W61WTJgwAa6urpg0aRI8PT1x5MgRAIDZbMZrr72Gn3/+2RkhK4rMeYAIXLUGAIDKxdXu0V5aN39o9L5Qu+qdGeY1GzwY+PtvwGp1diQNG5NuIiIiqpSIFcbc8yjIOQ0RK1QqFdwMzeBmaFpn7kskorpr3759AICQkBCcP38e2dnZ2LdvH9555x2cPHkSP/74I3x9bU85aN68OU6fPo21a9di+PDhCAoKqtVYRQRFphyYL3cdt1iM0Lj5wtPf1v1d7eoGD9+20Og8a/3RXo5UT2+nrzeYdBMREVGFRAQ5Fw+jyJQLAHDVesLDpw3Umvp5VYeoMnl5tvtbAwOB9esBrdbZETUMMTExAICIiAio1Wp4e3ujffv2uOuuuzBhwgT4+fkp8/bq1Qu///47li9fjl27dtVajObCTJgKLtke7WU1K+UqlQtUKvuMVOceUGtxUcPA53QTERFRpQqyT8OYdx56r1Bo3ZvU+XsUia7ViRNAmzaAXm9LwHmo174vv/wSkyZNwuuvv44nnnjCYfXYeu1cSaZzLh6G2ZgNwHYvttbNDxo3P9tYFQ24R8/06bZH5E2fDnTt6uxoGi52JCAiImqgXn/9dahUqjKvJUuWVLqcqeCScmUbANwMTeEV2BU6j0Am3NSgBQUBv/wCfPYZE25niYiIQGBgIB577LEaX7fVYrY92uvSUWSmRsNquXJFW+seCJ1HEDz9I+ET3AMevuHQ6v0adMIN2Hp0fPEFkJVV9bx07Xilm4iIqIHKyclBXl6e8n7+/PnYsGEDtm/fjubNm5eZ31JUeHmgtEy4ajzg2aRjmW6VRESO9Mgjj+Dee+/FXXfdVSPrs1qMMBVk2O7RNmYDuJL6ePi2bfRdxb/7DkhOBsaMsf3oRI7Be7qJiIgaKE9PT3h6egIAXn75ZWzYsAFbt24tk3CLWFGYm4rCnDPKQGkaN19nhExEjVRSUhKGDh2KIUOG1FjCbSpIR256gl2Zq8YDGjdfaPT+cNW410g99dl99zk7gsaBV7qJiIgauJdffhkrVqzA1q1bERoaajfNbMxGflYyLOZ8ALZnbbt7t+JAadQoxcUB584B7dsDLVs6Oxq6GkWmXJgL0+Hi6q5cvbZazMj6ex/UGgO0ets92mpXNydHSo0Rk24iIqIGrKqEO+fiYQCAi4sGeu9Q6NybOCNMojph8mTg3XeB554DXn/d2dFQZa482usSTAUZsFqMAACNzgueATco81mtRXBxYefe8ly4AJw5A7RoAQQ07l72DscjkIiIqIGqLOEGbI//ctV6Qu2qh96rJVzUGidESVR3BAYCnToBrVs7OxKqTH5mMkwFl8o82kvj5gOtm7/dvEy4K7ZhAzB2LDB4MLBxo7Ojadh4FBIRETVAr776Kv79739j/fr10Ol0OH/+PCxFBdC75sM3sD1ULmqoVCp4BnTgYGlEl734ou1FdYfVWoQiUw60JcaZsFiMsFrNcHFxtd2f3Qge7eUIRUW2wdPKGVeTahi7lxMRETUwIgIfHx9kZ2eXmfbrD8vRP+p2uHvxhlUiqpusFjPMhekwFWagyJgJEYF3UDflfuwiUw5ErHDVevJHwxogwkfkORqvdBMRETUwKpUKWZcfumo2ZiM/8wQsRQUAAI3OBzr3QGeGR0RUhtVigqng0uVHe+Wg5KO91K5usFpMStLtqvV0UpQNExNux2PSTURE1ABZLWYUZJ+CMT8NQPFAaWGN/pm0RBUpKgJ69ACaNAHWrAE8mdc5nO0RhbYr1UWmHORnpSjTXDUe0Oj9oHXzg5qP9qJ6jkk3ERFRA1SQfRLG/AsAAJ1HkG2gNA4oRFShCxeAAwcAFxfAnTmewxSZcmAqzMDFvzPQq39HvLUYePhhWy8cjc778j3avny0Vy24/35AqwUWLACaNXN2NA0b7+kmIiJqgKwWI3LTj8HdO5RdMYmqoaAA+PNPIDMTeOABZ0fTcIhYbY/2KkiHqTAdVosJAPDM7Fb4bFUwevYE9uxxcpCNkMUC6HS2f8+eBZo2dXZEDRuTbiIionpOxIrCnLOwWkzw8G3j7HCIiBRZf++HpahQea9SqRF3NAhRg1pCRAUXF+DcOdso2lR7zGbg229tCff06YCaA787FJNuIiKiesxszLo8UJrtS61Xk05w1RqcHBURNTZWaxHMhZkoMmXDw+fKg85z04+hyJhl6zau94NK7Y0ePVwQFwdYrbbu/AsWADNmODF4Igdj0k1ERFQP2QZKu3LftotaC3fvMGj1/k6OjKh+io8HTp8GIiKAsDBnR1M/XHm0VzqKjFkoTiu8ArvA9fLgZ1aLGSoXtTJg2tKlwDPP2K8nPBxITOQo2tRwMekmIiKqR0QEpvw0FGSfgtVaBABw8wiGm1cLDpRGdB2efdZ2xXXKFFtiSBUzG7NQkH0aRaYcu3K1qx5avR+07kFQu+rKLFf8o0ZhYZlJ2LED6NvXURFTaSdPAunpQGgo4Ofn7GgaPj5NnoiIqD4RKwpyzsBqLYKrxgNeTTrC3acVE26i6xQQAHTubLvqSvaKzPmwFBmvFIgoCber1gC9V0t4B3aFd1BX6L1alptwA8BTT9nuJS7N1RX4738dETlVZPlyoHt3YM4cZ0fSOPBKNxERUR0nVgtULldGuTEVpMNqKYTOI1jpsklEVFNEBBZzLkwF6TAXpsNSVAg3Q1O4e4denm6FMS/t8qO9yk+wS1u3DhgxouLpbm62x7YZOCRFrZg3D/jPf2w9O5591tnRNHxMuomIiOowc2Em8rOS4ebZHDr3Jte0jth330VOTAxuXrGihqMjooZCRFBkzIKpMB3mwgzl0V4AoFK5QOvexG6AtKuRkwO0bQukpQGVZR4ffww8+ug1VUFUpzHpJiIiqoOsFhPys07CVHARAGxdyQM7X/V6xGpFuqsrfESQlZgIv7ZtazpUIqqnRASqy6OXiQiy/o5Rkm2VixoanS+0ej9odD52vW2u1pQpwL//bRutvCIuLkCPHsDu3ddcDVGdxaSbiIioDhERGPP/RkH2KYjVAkAFN0Mw9J4trulL7+4XXsBNr78OAbC1b18M2LGjxmMmqu9EgJ49AR8f4Ouvbfd3N1S2R3tlwFyQDktRPrwCuyqJd0H2KVgtZmj1fnDVedfI7St79wK9elV+hbukI0eAyMjrrpaoTuGoK0RERHWExZyPvMwTVwYo0njA3af1NT93W6xW+C1ZAitsI6f22rkT6ceO8Wo3USnZ2cC+fbb/u7s7NxZHsFpMtm7jBekoMmWj5DU3izkXrlpPAIDeq2WN1/3nn2UTbldXoKjI9oiw0tM++QRYtKjGw6AS8vOBO+8EmjWz7W+t1tkRNXxMuomIiOoIEQuKTDlQqdTQe7W4PFDatT+4ds+cObipxLN5dAD2jB17fVe7zWbbN2Y+UJcaEDc3YONG20BeDS3pLsxNRX5Wil2ZWuMOrZsfNG6+1/yjXnU98wzwr38B58/bXqmptqvZS5YA/fsDRiNw7pxt3xuNQGysQ8Mh2Pb3li22Y/3zz50dTePA7uVEREROZCkqhNrVTXlvzPsbGjcfuKirNyJwRcRqxXEPD7QuLETJTun5AAqre2/36dPA77/bLocMGmR7sOurr9q+FS9aBAwYcF0xElHNKjLnwVyQDledNzQ6L1uZKQfZF+LgqjVA6+YPjd4Xale9U+Pcvh24+Wbg8GGgQwdbmYhtwDWdzvYix8nMBDZsAPLygPHjnR1N48Ar3URERE5gGygtBebCDHgFdlESb51HUI2sv/RV7mIVXu0uKLD1r+3Rw3bZDwBWrQKeew745z9tSfesWcB339m+HWdm1kicRHTt5PLzsm33aF+CxWJ7lrbOalaSbrXGAJ/g7tf9Q15NOn/e9m9w8JUylQrw8nJOPI2Njw/w0EPOjqJx4cM9iYiIapGIoDD3PLL+joWp4NLlx/Rk12wdl+/ltpQzTY3L93aX7sMZGWm79LR375WyW24B+vUDbrzR9v6bb2x9QxcuBO6558p8a9YAr70GpKfX6HYQ1ZbERODXX4GkJGdHUj1itSAv8wSyzu9DzsXDKMw9B4vFaHu0l5sfNDpvZV6VSlWnEm7AlnRrtYCvr7MjIaodvNJNRERUS4pMucjPSkaRKRcA4Ko12AZK03jUaD0VXeUupgOwp39/DMjNvVJ4441AYaHtxspiffva+oGWFBQEzJx55b0IMHcuEBdnu9d79uya2QiiWvT117bDePx44KOPnB1NWWK1wFKUrwx4pnJRo8iYBavVDJWLWrk/+3of7VVbUlNtV7k5NIRzHDliO923aQN4e1c9P10/Jt1ERES1ID/7FApzzgEQqFzU0Hu1hM496LoGSitPyavcFX31VgPolZeH9EOH4Nepk63ws89so+pcbTwiti7o778PPPHElfKEBFuX9a5dr34jiGqZry/QpQtQlwb2t1rMMBszYS64BLMxC1Cp4BPcQ3mMl96rJVQqNVx1XjXyaK/adP48EBLi7Cgar5dfBr79Fli61PYMdXI8Jt1ERES1wPalWKDV+8PdOwwu6hp8RkthIfDll8D/s3ff8XHX9QPHX9/bdxmXpHs3KWUWKAXKKhRkqeyhMkVwMRRQARUoiGUoypSh/EBFBESGgogyBAqUUcpuWaVJd9ORndz63vf7/f3xvtl0pM24XPJ+Ph55pPe979190qTpvb+f93j3XeaVl292lzvND8w799xsbXdJF3bbf/1r+PBDOO88aTsM4HJJceCGBYJXXgmPPSap6Lk740r1Qz/8oXwUmm3FSUSbMGONmPFWINvv2O0OYFvxTBM0X3BIgVbZfemdblUYZWXy9z92bKFXMnho0K2UUkr1AtuK49gWbq/MHwqUjsbjK8urtdwmkQi8/bYEuwceKMfcbvjBD3CiUar8fhxgS/vVmdrurZnb/eKLMlfpy1/OBt0bY9vSftjjkXNz1+7zyXGlVCfxyDqircsztz3eEkkbDw7B4x04s8zq62GffQq9isHr3nsLvYLBp7hyUZRSSql+znFsYu2raVnzAe1Ni3AcG5Cd7m0KuFeskGA17f77ZVTX7NnZY14vfPe7RH/4Q0YmElsMuNN8QP3WzOw+91y45RbpcL45Lhf89a+y9nT6OsANN0j+7uOPd/01lRqAkol2oq3LaFn7AYloQ+a4N1CFx1dGKDyB8Ig9KB++G8HycQMq4Abd6VaDj15qVkoppXpIMtFOpLmWpNkBgGG4cewkRldTyR0nv6b6kEPg5Zfh6afhqKPk2P77w+jRMG5c/mNvu40Q4Pz2t5BM5t312l57MbSujh0bGvKOu10udg4E6LITTuj6uSBN19JsW9LNlyzZuudQqg/MmCHJGX/5i4yl72nZ0V4NJKJN2KnRXgCJaGMmVdzjDVE+bErPL6AfsSxYu1ZrutXgokG3Ukop1U22nSTWtpxY+xrSjdJC5RPwhYZ3rVHaF1/At78ts68/+CB7fOJESR2vrc0e22032UHexPMaPp+kcOeuz+XCMQxplJZ7bte+vJ7hcsG778rYseOPzx7/+9/hpZfgJz+B7bbryxUpBUAiAemEj625BtVVtp2kdc372LaZOWYYLryBCryBIXgDFT3/ov3YunVyDU53ugvj008laWmXXeDOOwu9msFDg26llFKqG6xknLb1C7CtBAC+4NBUozTvxh/w7LMSeB5+OJx6qhwbOhRefVV2uteuheHD5fgNN8Add+Q3OSvkjJ36emnaNnQolJZu/eODQfjWt7K3HQeuv14uNIwdC1dc0WNLVaqrXC54/nlYs6b7c6Md28KMNWFbCQJlo1PP70k1TnSkPjs1R7sYRnv1hvp6+axBd2HU1sKcOXKNV/UdDbqVUkqpbnB7/LjcfgzDRShcnd21sm15Z/P663DJJZK7CtIE7U9/knFa6aC7okIC8SlTJKBN62/vSs88E154Qeq1Tz+9Z57z9tvhttukI3rawoWShv6Vr0hEpFQv8njgsMO2/fG2ZWLGGknEmkjGW3AcG8Nw4S8ZkQmsS6p2wOX2Ft1or96werV81vTywthjDxl24evBARpqyzToVkoppbaC49jEO9bgDw3PvKEurZyMsWwFxspamDZNTjQM+NrXoKEBDj0U9t1Xjn/1qxJwb/gu/2tf68OvYhv5/bJb7e6hHTrDgIMOko9cs2fLRYjLLpMxZUr1Q4loA/GOesx4G3mjvTwBvMEhEnzjTh3zF2iV/U96pzu35YPqO6NGZa/3qr6jQbdSSinVRclEGx3NtVgdLdglrYSG7wCA64kn4RvfkBk4b74pJxsGnHgitLbmbylMm5YNzIvN00/3/ms4DlRXQ3l5/uzv1lb5XF7e+2tQg8rixbBoEUyaJM31N8UyIxhuHy6XvH22rURqlnZqtFewCl+gKjMmUG3c6tUwZIjutKrBRXNclFJKqS2w7SQdzbW0rluA/ye/oHLnI/A+83L2hL33lhxVr1fSytPuuQf+9rfiDbILwTCkln31ath99+zxm2+Wju2//33h1qYGpCeekEqGa67pfF8y0UakdRkta96jZe0HmNHGzH2+YBWh8MTsaK+ysRpwd0F9ff+rnBlM5s2Tnpbt7YVeyeCiO91KKaXUxqxbB5deiv3JQlr/eXem87C7JIwRi+NdsCh77sSJ0NLSqTu46obcv0vHkQ7nra1QVVW4NakBqaICpk6FHXaQ8pFkog0z2kgi1phpkAhgGEbeqC+X20+gVAuTt9bq1VrPXUjf/z68/37+JErV+wzHcZwtn6aUUkoNYB9+CP/8p7zr/sY35Fg8jlNejpFI0Pzq3zEmb0eoogbvqkYwTclDLWQn8a3wypQpDKutZadIpHtPdPPNMm/mO9+B6dN7ZnFdZdvw3HNSC+9J7Rn8/e/wwANw+eWw3359ux41INmWSXP9O6RrtGW0VyW+QBWeQEUmtVxtuwMPlOuUDzxQ6JUMTl/+svyX95//5CcTqd6lvzmUUkoNLnV1MpT3uOOgrEyOvfwyXH21XPZPB91+P86tN9NRnsQ/eSqB4ZOk83B1uGBLL7hnnoH//Q8OOaTvg26XS94t5vrNb2D+fEnv16BbbQXbTmLGmjFjjTiOTdmQHQFwub34gpUYhgdvMDXaSzuO96j6ev3nWkj//W+hVzA4adCtlFJq4IrFYOVK6ZCUdthhMqj02WfhiCPk2MEHw2mnkTzkQBKtywiVjwfAdd4FlNjWoJ2n28nZZ0vAvdtuhV6JePBBuPVWuOCC7LGPPpIxbWedBYFAwZam+p/saK/G1GivdLKngW2ZuNxeAEqrdijcIgeB1au1plsNPhp0K6WUGjgcJ5vy/eqrEmDX1MAnn2TPOfhgGD5czk2xp+xM9I5fEo+shbaVeHxl+AKVABpw5+qp2dw9Zfvt4a678o/96lcyhPadd6SRnVJApGUpsfZVecfcniC+YBVHHTcaw+Xh3nulcb7qPe3t0NGhNd1q8NF8GaWUUsXvxhtlNzs3yNppJ0gkoLERcmuZ770X3ngDjjwSgHhkPa1r3peAG/CHhuPxlfXl6lVP2m8/GD8ezjsve6y5GZYuLdiSVN9KmhGibSuwktmmZ26PZD14fKUEy8cTHj6V8IipBMrG89pcDy++mG0VoHrP6tXyWXe6C+PZZ2HmzI136le9S4NupZRSxSMSgV/8Ao4+GpLJ7PH2dkkZnzs3e2zoUKnfrq/P74Sd2gm3klHa1n9MR9MibNvE7QlSNnQXSionabOkTWlulq7usVihV7JpP/iB/CzssUf22O9+Jxdl9J3mgOQ4joz2allKy5r3aF37AdHW5Zix7Hgvb3AI4RHTKB+2K8GyMbi9wdRjpVXBgw/CiBGF+goGj/p6+aw73YXx6afwyiuwcGGhVzL46LsKpZRS/dOqVfD889Ls7MQT5VggIDW8LS3SfjU9//qMM2DGDNhnn/znmDhxo0/tOA7tDZ9iJWMYhotA2RgCpaO1YdKWnHiijO7629+yDef6I/cGJQGffAKWJd3p02xbLsAUSQd61ZltmUTblmPGmjYY7eXC6w9ndrcBuZC2kYtpLpdUoai+oTvdhXX00XJxSS8w9T0NupVSShVeNCo1uFOmyNBckPFQZ58twXQ66Ha54IorJBAfOzb7+O23l48uMgyDYPkE4h1rCFVU5705VwPQQw/BZZfJz1fa44/DDTdI1/rjjivc2lSXObaFbSdwe2SX2jBcJCLrcBwbw3DLaK9gFV5/hfZi6Kfq68Hvh/AgHgJRSJMm5fcVVX1Hg26llFJ9r7UVysuztw86SEY/PfYYnHSSHJsxAw44QBqf5br00q1+OdsyibYuw+MrxV8il/h9wSp8wapt/AIGqRdflM85TeiKxtSp+bfvuAPeew/efVeD7n5MRns1YUYbMePNuD1ByodL93zD5SZYPh63J4BnG0d7LVkiiRDV1bDjjj28eNXJ6tWSWq4JJmqw0aBbKaVU3/n0U/jKV8A0Yfny7Duv6dPldmtr9tzttoPXXuv2S8Yj64i2LMW2ZVyQLzhUd8G6ayC8Y37iCbj7bvj+97PHPvoIHn1U6sKHDy/c2gY520qQiDViRptIJnJHe4FjJ7HtZKbvQqC0e8XB//63fLtPOEF+JFTvqq/X1PJCeuEFSSabMkUnKvY1DbqVUkr1jr/9Df7v/+D44+GHP5Rj48fDihVST1tfn+2mc9NNsvPYg8GcZUaJtNRhxlsAcHtDlFTUaMCtxJAhcOWV+cduvBH++ldYvFg6a6mCiLQsJRFdn7nt9obwBarwBirx+Ep79LXKyqTn3k479ejTqk3I/bWv+pbjyH/HHR3w+ecweXKhVzS4aNCtlFKqe2xbRnW98440OSspkeMrV0o6cllZNugOhWR+9s4756eX9+Ald8exibWtJNa+EsdxMAwXwbJx+EtHaqO07rrjDvjiC/jWtzqnaw8EJ54o70Z//OPssaYmWLRIsjFUj0qaHZjRRhKxRkoqJ+PxypQBX7AK24rhCwzBG6zM1HD3hm9+Uz5U31i9Gvbfv9CrGJzicbm4tHIljB5d6NUMPhp0K6WU6h6XC370IxkjdcopcOihcvyYYySwPvDA/PP33bdXl2OlZvQCeAOVhMITtVFaT3nsMZgzR2rtB2LQfcIJ8pHr7ruled/3vw+//31h1jVApEd7SY12A5aVnaNtxhpzgu4h+IJDCrVM1Yt0p7twAgF4++1Cr2Lw0qBbKaVU9/zxj9lL6N3oKN4d0r1YdrE9vlKCZWMlJVXfuPes00+XbarB1HGqqQm83vyLR5YlHz5f4dZVZCwzQtv6j7FtM3NMRntV4A1K6rga2JJJWLtWa7rV4KR5dkoppbrnhhukWOz667NzkOvrJR334Yd7tdO14zjEO9bQsuY9LDOaOR4sH6cBd2/47nfl+7zrroVeSd/5zW+grg6+/vXssSefhJoa3fneBMe2SEQbiEeyddkuTwAHG8Plxh8aRmnV9lSM3IvSITvgDw3LNEbra1/9KhxyiPR4VL1r3Tr570B3utVgpDvdSimluuegg6TTeG5Xlttvlzy222+XlPNeYJkROpprSSbaAIh1rKakoqZXXksNcmPG5N/+85+lMHLlyoIspz+yLRMz3owZbcCMt+A4Nm5PAH9oKCC72mVDp+D2BPpVb4W5c2VowkBoyN/frV4tn3WnuzDuuUf6Q556Kpx7bqFXM/ho0K2UUqp77ruv87FLL4VgEPbZJ/tu1jTh/vslRTm47Y2RHNsi1r6SWPuqbKO08nH4S/SdXK+LxaRxns8HnkH8FuLRR+Ghh2SbNG3BArj5ZrjkEmkUOEjEI+tIRNZhxluBbFaL2xPAG6jKL/1I1Wz3J088ISnP48YVeiUD3zvvyOdodPPnqd7x4YfwyiswY0ahVzI4GY7Ti3l/SimlVNr990vX6913h/fe26atJTPWTKSlDisZA8AXqCQYrsbt8ffwYgeWV6ZMYVhtLTtFIt17ooMOku7zjz4KJ5/cM4sbKL71LfkZP+kkaTg3QFnJKC53ACP177ejuZZ4xxogZ7RXcEi/DLBVYTQ2wmmnwbPPZo8deaRUH1VqKX+f+fhj+OgjqQIbiH0w+7tBfJlaKaVUnwoGZU73aaflB9zt7VDatdm7SbMDKxnD5fYRClfjC1b10mKV2krnnQdtbXDZZdljzc0yNu+448BdvPPhk4l2zFgjiVgTlhmhfNgUPL4yAPyhYZldbZ0SoDbmtNPghRfyj73wgqQ5//e/hVnTYLTzzoMqCaff0Z1upZRS3XP88fDJJ9LF/IADNn+uaUrX5/Rc7nnz4LDD4MILYfbsTrvfjuPg2CYuty912ybWvopAySgMV/EGMX2tx3a6o1FJL/f7B3d6eVf9+tfws59J0P3PfxZ6NV2WHe3VQCLahJ0z2sswDELhavwlIwq4wp6xfLmk3FZXazDSWz7/PNtfc1P357YDUWqg0v8xlVJKdc+SJfLOqaNjy+d6vfKR9uCDsju4YkWngDtpRog01+I4FuXDdsUwXFK/XTYWVSDdqMUflHw+yZ898cTsMduWHfCq/pulYZnttK1fmLltGC68gQq8gSF4AxUF6zTe0154Ac45B778ZfjPfwq9moHDMqNEWuqINNfy2n9t4NhNnvvFFxp09wXLgqeflp6Qe+xR1Ik3RWtg/NZUSilVOPfdJzugu+yy9Y+99VbZ6d5pp8whp341ySsuJfLt47EmjMEw3FhmBI+vaynoSvUbP/qRjFnz5/QceOopOOMM+MlP4JprCrc2pCmhGWsiEWvE5fYTCk8AwO0txe0N4fGW4A1U4fWHB2RmSUkJTJumu9zdZcZbU0H2YiLNdcTaV5NuqjciPJTNBd3bbdc3axzs1q6VpDSXC+LxLZ6ueoEG3Uoppbpnzz23/bGGAccck7mZiDVhX3c5gT8+SOiDD4g/9xih8ERcbm2U1i/ccw8sXSpFmttykWUw2rBfwb/+JVkhplmQ5diWmanPTqZGewG4XF6C5eMxDAPDMAgP370g6+tLX/96/vh1tWWO42BGG+hoqSXSLLvZiej6Tuf5gkMJVVSz/041HH5Yghdf8mJZnZtnXncd3HgjDB/eF6sfvCIR2Htv2fHWyqDC0JpupZRSBefYFh3Ni0lEG/C88xHB2/4C3z8X79fPkBOSSWm7uscehV1okeqxmu4DD4TXXoPHH89PmVZd5ziS17zrrtmBxZ98AhddJKP2Dj+81166o+kL4pH1dBrtFRyCL1CZaY6mVJrj2MQ76ulozgbZyUTrBmcZBEpHEaqoJhSuIVRRg9dfnrm3qUmapuV2Lz/iCJm498tfSsXFDTdIUoimPauBSoNupZRS3fPyy7B+Pey/P4wevc1P07b+Y8x4K4HSUQTLxuansz7wAHzzm3DmmfCXv3R/zYNMjwXdt98OtbVw9tky+k31jCOOgOefhwkTpEdCD7DMKIlYI4HSUZk52ZGWpcTaV0naeLAKX6AKt472UjlsO0msbSWR5sV0NNcRbanDSuYP1jYMN4HycZSEqwlV1BAKV+P2brnfw6JFUsO93XbZOu716+GnP5U+nNOnw113dS95Sqn+ShMMlFJKdc/ll8Mbb0h35uOO6/LDkmYHLrc/05QpVFGD41h4vCWdT160SLZAcmq/Adk13IZ532obXXhhoVdQ/B5+WALsSy7JFhOfdpocs6xuPXUy0UYi1oQZbcwESlKXXQFAoHQk/pIROtor5cQTZYb0bbcN3mtIthUn0rI0s4sdaV2KY+eXPrjcPoLlEwhVTKKkoppg+fjMRImtMXly56ZpQ4dKW5BzzpGpe9Onw/nnyzCLiopufGFK9TMadCullOqeqVOlI3kXuzE7tkW0bTmx9noCJSMIVVQDbD4Q+OUv4ayzYNiw7LF33pF3Z7NmwdFHd+MLUKoXmCa8955kBpxySvb4/fdLnm1uB68TT5R59W63ZI4cfHCXX8ZKxoi3ryYRa8S2EpnjhmHg8YchtcsNaG+EDbzxBtTXS3rzYJGeCpHuLh5tWwFO/l+A2xsilNrFLqmoIVA6ptcb6R1wALz7Lvzud3DVVfDoo3DTTXI9Sq+rdt/ll0tl0I9+BCecUOjVDE4adCullOqeu+7q8qmJaCORliWZub+2beI4DkZX3lVNmpR/+ze/kTnfjzyiQbcqvNZWaQucvjC0eDHss4/MpD/xRBkfBnD66RJw779/9rHl5VKacdJJMGMGvPrqJl/GsS0cx8qfXd9RD6RHe1XiC1ThGUCjvXrLww9L0D2QO2ibsWYizbV0pILseOpnJZfHH6akQmqxQxU1+EPDMyUJfcnjkaDwa1+DH/9Ymvzfdx/ceWfnJCe1dd55R36tnHNOoVcyeOlvY6WUUr3OSsaJtiwhEWsEwO32E6qoxhuo3PYnvf12qK6WOu+09eulO/QZZ+TPA1c944AD4PXX4YkndLsk17XXwtVXS8Tw29/KsR12kI/tt5cc5nTTtNyf11xDhsDMmdJgbQO2ncSMNWPGGjFjTXgDVZRWSZ6uxxsiUDoaj79cRnsVIFgqVluRUFAUHMchEV2fqceONNdipn7n5vKFhlFSMSmzm+0NVHbtwmcfGTsW/v53+O9/4Qc/kNT/Sy6BK6+E0BZaEDgOrFol86hV1g03SMC9zz6FXsngpUG3UkqpXmXGmmlv/BzHsTAMA3/paII9ka44fLi8k8h1220SAD35pNSYq97Rj96g9ynHgW9/W1LA58yBcePkeHW15CgvXpw91zDg00+7/twzZ8rzpmRHezWmRntl+95ayfyGeOn52mpwcRybWPuqbD12Sx3JRNsGZxkEysYQClendrOri6ZL/Ze/DAsWwK9/Lb/qH3pI0s9zpkx2ctddEqg/+6z0J1Ri2jT5UIWjQbdSSqnuOe88ePNNeVf05S93utvtLcEwDNzeMkIVNXh6s1vy6NGyo/jNb2aPWRZEo53nJaut9/TTUqscDhd6Jb1v+XLJP7Zt+NnP5JhhyOi6ujopkDz1VDl+7LGwYkWPbq+1N3xC0uzI3HZ7gpmO4x6f/ix31+rVknI7cSJMmVLo1XSNbSeJti6TILullkjzEmwrlneO4fIQLBtPqEKC7GB4YlE3zgsEJInktNMkmD72WPm47Tb53uWqr5dO6CDjxz79FIJbbqquVJ/QkWFKKaW65/DDZe7wgw/CaadJKmy0AX/JiMwplhnF5Qn0TQpjNAp+P7hSabYPPyzv1q66SmYhD0I9NjJsoGpqkq5aO+4INTVybO5cqa8ePlzezad/dv/zH2l4tt9+UNb9HcOkGcmkjZcN2TmTARJtW5FJJZfRXho99KRHHpH+dgcdJEkL/ZGVjBFtWSKp4i21RFuX4djJvHNcbn8qTVxSxYNl43C5B2ZpjePA44/Lr/GmJumh+ZOfZNslnHaapKVblvz6/+lP4frrC7vm/qC5WZJoJkyAPfYo9GoGL93pVkop1T3XXy8Fd7vuSiLakGqUlsBwefEFpaN5nwYMG25tPPKI1NS2bZh2qQat+vpsjTXA978v7ZKvvx5+/nM5ttde0ths//1ldz/9zv4rX+nWSzuOg2W2k4g2YsYasZKyU+l9YS7OTadhzDgQ7rqLQOkYgmVju/VaatOCQZkHvcsuhV5JVjLRTqSljo7mWiLNtcTaVgL5e2Nub2lmFztUUUOgZFSvdxbvLwwDTj4ZjjwSfvELCbr/8pdsL8+HH86ea9tw443St7A/fY8L4cMPpQXH5Mnw+eeFXs3gpUG3Ukqp7tl7b6xknEhLHWZjEyDjv/rNG8HHH5eAKjf1/YMP4E9/kosFYzWw6bL774eVK+Wd7/bbF3o1W6+1VXKJV66UrbLycjk+Ywa8/37+BRu/Hx57rEdf3oy30NH0xQajvVx4/WH8iQCujxbA6DGp44O0br6PpNOUC0mmOUg9dkdzLYnI2k7neANV2SA7XIMvNGzQ/2yUlck4sbPOkuqmL31Jqodcrs7j3779ben96BrE/QUNQ+afT9DWDwWl6eVKKaW2mePYxDvqibYux3FsDMMgUDqGQOno/hN0b8zXvy6B+Omnw1//WujV9LoeSy/fbz+p33/yycJHLFvy0kvSSXynnbIdxUHSx5ctg1deyY7tsu0ef1fu2BZmvAXD5cHrl+DeSsZoWfMehuGW0V7BKrz+Cvm3smqVdI2qqpJddjWgOI5DIrI2s4sdaa7DjDd1Os9fMlJSxcM1lHR3wsMgYNsyYuyJJzZ9zh/+AN/7Xt+tSamN0Z1upZRS26yjcRHWvNfxrGuE3XYntMsBxVF7+r3vwbp12a47IDufq1fDzjsXbl393bHHyk7x+PGFXkm+Z5+FF1+U72t6nntbGzzzjDQ9yw26n35a1p/bWK+HAm4Z7dWEGW3EjDfjODbeQGUm6HZ7ApQN3QWPr7TzaK/Ro+VDDQiObRFrX5UNslvqsHIa4wFguAiWjc2M7gpVVOPxlhRmwUVq2TL49783f84ll8ivrtyKEqX6mu50K6WU2mZmrAmOPQ7v86/i/N//YXznO4Ve0ra7+mqYPVs6VQ+w7jsDppGa48CSJbBoUf48oEMPlaD797+X+myQiygPPCCp4708KyfesYZEtJFkIn+0l8vtxxcaSqi8n12kUJx2mlQZ/OY3knrbXbZlpjqL19LRUku0ZSm2Fc87x3B5CJZPyNRjB8sn4Pb4u//ig9jRR8s8b8va9Dlut1TE/O1vfbcupTakO91KKaW6LBFZj4ODPzQMAG+gEmeXadAYwRgypMCr66YVKySoy23v6jiDdyZ1f7DhuLePP5ad9pISacnrSb2NOflkSRvPzVKorIQLL+yVZdlWApfbl7kdj6zLzEd2e0P4AlV4A5VbN9pr2TJJLx85Ugfq9oE335QkCNPctsdbySiR5iWp0V21qRKb/MjP5QlkdrFLKmoIlI3F5dK33j3lqae2vMsN8mvkkUfg7LOlCdtgc8opUr1y442w776FXs3gpTvdSimltshKxqRRWqwZw+UmPHxqXtAxYHzyiTQIc6fq0f/+d7j7bmmVO3NmQZfWHUW5033zzfL3fsEFMgMepIBz1ChJIX/ssT5Nx06aHZjRRhKxRiwzSsXIPTOjmRLRBqxkDF+wCrdnG8sr/vAHOPdcaTO8uQJV1SNefVUCkSOOkOszW5JMtOXUY9cSa1/Nhp3FPb7yzOiuknAN/tKRncsIVI+ZMEGuVXXVyJGweDGEQr23pv6ouloShF57DQ44oNCrGbz0cptSSqlNchybWPtqYm0rso3SSkZhDNTdmp12yr/929/C22/LkNMiDrp7zMEHy9/Ho4/CV7/aM8/pOHDZZdLY7J//lKAapKFYWxu88072XJdLcoI9vf/z5zgOyURbqka7ASsvVdggabbjc0u05gv2QJbH0KHSQC1dk6561YEHbvo+x3EwY42ZruKR5loS0fWdzvMFh0gtdljSxX3BIYO+s3hfOv10GTqwejWsXQsNDRCPdz7P7Zbd7vp6OOOMwXdN6+GH5eLEYB+dVmgD9F2TUkqp7jLjranmP7I76vWHCYWri6NRWk95/HG45Rb44Q+zxz75RAafnnxydkd8sIhGIRLZfAHl5qxdK/mg8bjs6oKk7z//vIxxmztX/l4BjjlG3lFPmZL/HH0QcAMkouvpaPoic1tGe1XgDUrqeI+nCZ90knyoPidTGNbkBdnJROsGZxn4S0dSkgqwQxXVeP3hgqxXiY213ujokF8za9dKr8z0n+vrJbthxx37fp2Ftu++mlbeH2h6uVJKqU5sK07LmvdwHAeXy0swPCFTx93JL34BL7wAF10ks1sGulNPlY48F14It91W6NV0SY+ll69aBYkEDB++5RxN05SgefRoGCOzp3n5ZTjkEDm2YkW2Xv6RRyCZhMMPl+fuQzLaq5lEtBGvvxx/yQhAGmO1rv0Ab6Ai1YG8on+PwVNdtqbe4rU5DQwpX0LNmI+INNdhJaN55xiGm0DZ2Ew9dig8Ebd3kOUlDxIHHXQQr776KgBut5thw4ax7777cumll7J/eqygUt2kO91KKaU6cbn9+EtG4dhJguXjM7WrG/XZZ7JDORgCbseRHL2qKjjnnOzxjg7Z9Q4ECre2vrC5GupoFII5WRCnny5p6L/5jczsAWkTfdBBMh/bNMGX6gvwjW/03po3wrZMzHgzZrQBM96C49gAOHYiE3S73F7CI/fUdOEBwLYSRFqWpkZ31fLv/4T4wRVnscsOMR656xEADJePUHhCJsiW33sDsG+FyuM4Du+//z6/+tWvOOuss4jFYixZsoS7776bgw46iKeeeoqv9lQpTQEsXQrvvguTJ3dOGlJ9S4NupZRSmUZpofIJmd2cUHhC1x78ox/B178Ou+7aiyvsJwwDrrxSgsjcAPvmm+Guu+Cmm2QW0WDS2iq71wsXSlFlSWrO8D77SAZELJY9NxSCOXMKs86UtoZPMWPN5DbBcnsCeANV+IJVeef2acD9yCNw++3SXvmqq/rudQegpBkh2lKXSRWPtq2A1IUVAK97B3bZYSU77xBjxHbHyPiu0jGayTAILVq0iLa2Ng466CBGpgZ5T5w4kYMPPpgvfelLXHHFFUUddL/wAnznO9KCoyud3lXv0aBbKaUGMWmUtopY20ocxybiOJQN3XnLD8zVE0Nui01uwO040pmnvl4afQ1kv/wlPP20zL6++WY5VlYmRZPxuGyppDtUXXCBXJAp4N+JlYySjLdmdq+znOxor+AQPP0hbXjlSnj9dRl9praKGW/JqceuI96xutM5Hn84Mx/7m9Nr+O5lw1Odxbfv+wWrfuOdd97B7Xaz++67d7rv8MMPZ9asWdi2jatIf7eXlcl/0bvtVuiVKA26lVJqkDLjrUSaazO1jF5/BaGK6gKvqggZBrz1loywyk2xf/ppCaJ+9CMYtol6+P5s3jzZlf7GN2D8eDn2l7/IzJ1167JBt2HIaLVx42Ds2OzjC5Rqn0y0Y8aaUqO9pIbd4w/j9sh6guXjpT7X089KAY49VgLu3L9D1YnjOCSi6zOjuzqa6zBjDZ3O84WGEQrXZAJtb6BSSwVUJ++++y477rgjoY30qPB6vbjd7qINuEGS0L7+9UKvQoEG3UopNejYlkm0dRnxyFqAVKO0ifhDQ7ftCT//XGa2VFdng7PBxufLTyt3HEkRfu898HrhmmsKt7auaGmBRYtkZFXaJZdIu98hQ7L168ceC889B+efn//4/fbru7VuhGVGiEfWkog2YueM9jIMA48vnKnZBvrHrvbGbLedfKg86bGF6SA70lJHMtG2wVkGgdLR2aZnFdV4fGUFWa8qLu+88w7Tpk3b6H2ff/45Ow7GdueqV2jQrZRSg0wiuj4TcPtLRkjDoO6MP/r1r+GPf4QbboCf/ayHVjkAXH21jBu78MLssaVLZdxWoVOIk8ns6K2PP5YOO+XlUpOdHoN29NEScOc2T0vvbheY49g4jp35ubWSUWLtklJsGK5Ux/EheAMVPT/aS/Uq204Sa10uqeItdURa6rCTsbxzDMMtGQupXeytzVw4+2xJ2Ljuus3P61YD33vvvcexxx7b6Xg0GuXJJ5/kggsuAGCfffbhzjvvZK+99uKss85i33335bzzzuvr5aoipv8TKaXUIOA4dqp+UQLtZKKdQOnIntkNGjVKhp9WVW353MHCMOC44+Qj1xVXyLix226Tmue+9oc/yMWRb35T6rMBtt8eSkslBb6+Pjve67LL+n59m+HYViZt3Iw1EygbTbBMUrG9/gr8oWF4A1V4/eHibIi1ZIl8jB4t35NBwkrGiLYspaNF6rGjrUtx7GTeOS63n1B4YibIDpaN2/xEhS14+23p+xeLbflcNXDV1tbS3Nzcaafbtm3OO+88PB4PP/zhDwGYNWsW119/PQcccAClpaVFE3BPny6JWA8+CBO62BtV9Q4NupVSagBzHJtY20oSsUbKh+2KYbgwDBelVZN77kWuvVY+1OZZFjQ3y+fc2a+Ok51X3VMcB268UdLD//Sn7HGXS3bbX3ste8zjgWXLoKKiZ9fQA2zLxIw1kog1kcwZ7QXkpRgbLjcllUWemv3Xv8KsWfDd78I99xR6Nb0mmWiXHexUPXasfWVeZ3EAt7eUUEV1aj52NYHS0T16IeWee2RM/NSpPfaUqgi98847AIwaNYr6+npaW1t55513uP3221m6dCn/+te/qKysBODoo4/myiuvpL29nWeeeaaQy+6yREIuMIEMjlCFpUG3UkoNUOmOvlYqNTMRbcAfKsKGXgOF2y3N1T7/PH8n84YbZM75L38Je+659c/b2gqvvALt7XDKKXLMMKTp2ccfSzO3tGOOgeefl3FeuboacB9+OHzwATz0EBx22NavdSs4jk3r2vexc3Y93Z4A3uAQfIFK3N7SXn39PjdkCOy0k2SODCCJWFOqHlsC7XhkTadzvIHKVJp4DSUV1fhCw3u16VnuNS81eL377rsAbL/99rjdbsLhMDvuuCNHH3005513HlU52Vvz5s2jubmZ7bffHo+nOMInl0uur65cKb9eVGEZjuM4Wz5NKaVUsZBGaUuJR9YB4HL7CIUn4gvq/7r9jmlK1+81a2Sn8/TTN3++48hOdUlJtiP688/DEUfAxIlQV5c99557IBqF44/nlaOOYlhtLTtFIt1b7157wTvvwDPPwFe+0r3nymGZURKxBiyzg9KqHTLH2xsXYSejeINV+AJVmRnyqn9yHIdEZG1mdFekuRYz3tTpPH/JCELhmlTjs2q8gcoCrFaprlm5ciVf+cpXePLJJznxxBN56KGH2GmnnQq9LFVkiuNSjVJKqS6Jd6wh2rosszsYKBlJoHxc7zaTuusuePJJ6d591lm99zoDkdcrKeD33iujudLmzIG2NvjqV/PnXH/zmxKc33ILXHyxHNtvP9kh3X9/ySf0+eT4977X8+t95BEphO2BLvXJRBuJWBNmtDEztg4gaUYyHcZLKidlehGo/sexLWLtq7JNz5rrsMz2/JMMF8HSMal67GpC4Wo8vsJlKTQ0SPLHmDGwiabVSmVEo1FOPvlk7rjjDqqrq7nsssu49tprefDBBwu9NFVkNOhWSqkBJBFtxLaTeLwlfTc259NPZYzU9Om9/1oD0eTJ0gE+zXFkXNf8+VBZCatWZWde77KL1GDX12fPLy2VNPK+MGlSt58iEVlPpHUptpXIHDMMA48/jC9QhcvtyzmuAXd/kh43GGmpo6N5MdGWpXkj2gAMl4dg+YTM6K5g+UTcHn+BVtzZ++/L5Ludd5ZmakptTjAY5I033sjcPvXUUzn11FMLuKKu+/BD6dI/ZYr8N6MKS4NupZQqYo5t4eBkdrJDFdWYsUb8JSP7LmA54wwJuKdM6ZvXG+gSCfjSlyRVfNw4qdc+4gi577zzZARZkXTFcRwbM9aM2xvE7QkC0vTMthKp0V6V+AJVeHS0l4zd+9vf4MQT4dxzC70aQEaxRVqWZFLFo63LcBwr7xyXJ0AoLDvYJZU1BMp6ObOmm9xuqZLQIEQNdA8+KP00L7oIbr210KtR/fe3olJKqc0yY81EWurw+MopqZQdSLcngLt09BYe2cOmT9dd7p7k98vO9+zZ0u08twNOOFywZQHwxBOSn/vlL8sFgY2w7SRmrBkz1ogZa8JxbAKlowmFZV6Nxx+mdMiOMtpLd7KzFi2S+vwCXrxKJtqINNelarJribWvAvJb/3h8ZammZ9WEKmoIlI4qqu/jwQdnOzorNZCNHi09M3feudArUaCN1JRSqujYVoJIy1IS0fWAzLAtH75bv95dUoX1ypQpPdNIbdo0eO89+O9/4cgjM4cdxyYRWUci1pga7ZV9a+Fy+/CXjCRYNqZ7rz3Qvfee5DvvuKNsxfYyx3EwY42pIHsxkZY6Eqnmi7m8gSGZVPFQRQ2+4NBe7SyulFIDkb5DU0qpIuE4DvGINEpzbAswCJSOIFg2vkdn2G61lSth9WoYMWKTu59qGyxcKE3LdthB6rb7g4MPliZqw4dj28mcCz0G0dbl2LYJgNsTzHQcL2TTrKKyxx7y0UscxybesUZSxVtq6WiuJRlv2eAsA3/JyOyM7IoavP4CZ1copdQAoDvdSilVBKxkjI6mL0gm2gBSjdJq+kdA89OfSuHYT34Cv/1toVczcOywg8z0fvVVmDGjW0/VUzvdSTMiaePRRmzbJDxiWmbXM9a2CgcbX2AIbm+wW6+jus+xLaLtK4k0L07VZNdhJTf4/hsugmXjUkH2JELhiQN+LNv558OCBXDVVb0+al4ppTJ0p1sppYqAYbixkzEMw02wfFyqUVo/SfGsrJQd7kLXGw80o0bJnG2fb8vn9hLHcbDMdhLRRsxYI1YylnOvgZWMZsZ7Bcr6uJfAQLNsmcxrHz1a5lltJdtKEG1dJqnizXVEWpbi2Im8cwyXj1B4Qmp0Vw2h8Hhc7v7TWbwvzJ8vNd3drbRQqj9rbYWpU+XXyUsvyXRKVVi6062UUv1UMtGWN/LLjLfg9gQG3Ztk1X3butMdbV1OtG1F5rZhuDKjvbyBSlxufSfXU8aWlXF5ezvnX345XHcdAK+//jqHHXYYn3zyCRMmTMg73zIjRFqWZJueta3o1Fnc7QlmarFD4RqCZWMLW4rSD7z1llzfmDFDrmspNRB9+instJNcC29uLvRqFOhOt1JK9TvSKG0JiWgDpVXb4wtK92qtrVS9xbEtzHgLZqwRX2hY5mfN4w9jtK/GG6jAFxyC98QzMD75BB54AA48sMCrHlj2HTeOt5ctg4oKQLIMLr74Yi6++GImTJiAGW8h0lwrjc9aaom319Ops7g/LKO7KiYRqqjGXzKiqDqL94V99pEPpQayCRNg7lzZ8Vb9gwbdSinVTziOQ7xjDdG2bKO0/HRepXqOjPZqwow2YsabcRxb7jBc2aDbV0bFqL2ygdvq1bB0qTR4Uz1q33PO4c9//jNceimO4/DHe+9i6ZLFnHXCeSx643oS0YZOj/GFhqWC7FTTs0BV/yk7UUoVTDAI++9f6FWoXBp0K6VUP5BMtBNpqSOZaAfA4yuVRmnekgKvrAv+/nf429/giCPg3HMLvZqB44c/lM7ws2fDLrv02NPadpKOxkUkExuO9vLjC1ZlMiuAVACXE8T99a9SDLvDDj22HiWdxffYbTt++sknfDrvHmKtS7ni8ts5/5v7kWxbkDrLIFA6ilBqFzsUrsbrLy/ouotNSwvMmSN1rn0wlU0ppTI06FZKqQKLta8i0rIMcDBcboLl4/GHRhTPjtWnn8I//gHDhxd6JQPL88/DZ5/BxRd362msZAw7p9bX5fJgWzEcx8HtDWXqs7vUCX/KlG6tpZg9+eSTXHbZZey5557MmDGDGTNmsMsuu+B2b32NtG0nibUtp6O5TlLGW+qotNtxueCt1//Hm+8sJVwe5IxTjqK0anIqyJ6I26Nd4btj4UI47jiYOBHq6gq9GqV6z5w50NAgF5fGjy/0ahRo0K2UUgXn9pYADr7gEELhibjchetWvU2OOkpmdO+8c6FXMrD84hfSAWe77bb6oUmzAzPaSCLWiGVGcKz8Ltahihpcbp8GcVth+vTpHHXUUcydO5dHH32UZDJJeXk5+++/PzNmzOCAAw5g+vTphEKdR25ZyTjR1iVSj91cS7R1KY6dzDtn9LOfslvQz5tPLuH+tz7kyX/+k0l7H9lXX96g4HLB3ntvU3N4pYrKbbfJtfA77oALLij0ahRo93KllOpzVjKOlYzgC1RmjiXNjuJIJVf9VjLRTiLagBltwLLiOfcYfHDYGYxcuqrbc7p55hm5EPClL8HIkd17riIWiUSYN28ec+fO5bXXXuP111+ntbUVj8fDtGnT2H//fdhjykR227GKcl8z0faVkK6ZT3F7S1JdxaUmO/Dja7jwvvu40zA4+uijeeqppwr01Smlit3Pfw4vvwzXXCOVX6rwNOhWSqk+4ji2NEprXQ5A+fDdcXt0/JfaNunGZ+kmZ7njvQzDhddfgTcoqeOv7TZ1m0aGdbLbbvDRR5L6fthh3XuuASTWsZ43Xv0vf3vkEV557R1ql64lYVr4vG7e/e9FAHj9lRJkV0iQ7QsNzy8heeUV7rv3Xs57+GE+WrCAHbRuXimlBgxNL1dKqT6QTLQTaa4laXYApOZv25t/ULFoaIC1a6G8XPM2e1JtLSQSUpCXSlmW0V7NJKKNmPEmSiomZRqf+YJDsJIxfMEqvP6K3pnHvO++UkpQVdXzz10kHMchEVlL/YoFvDrneea+/iZvv/sFH31aT8K0CAa8eL1uHAdmXfpNxux8GqGKmrzMlo066CAe/MUvOP+CCzTgVkqpAUaDbqWU6kXphkmx9jWkG6WFyid03uUqZn/8I1x2GXzzm3D//YVezcBx9NHwySfY/3sBc9/dMKMNmPGW7GgvwIy3ZIJutzdEadXk3l3TPff07vP3Q45jE2tfxbLF7/LyS8/x+hvzmf/BEj79Yi227VBVEWTarmO59AfHMGrMRK797YN4vX6eeupfTJ06dYvPb9s269at47777uOzzz7jH//4R+9/UYPUj34E8+fDz34mrSiUUqqvaNCtlFK9xLEt2tZ+mKmv9QWHphqleQu8sh4WDMrOZ4nWpPeocBinqor2li9INmWbc7k9AbyBKnzBKtzeLnQcV1vFtkyibcv5bMEbzHn5f7zx1nvM/3AZdcsaARg9opy9dhvHGV87lANnzmT3PQ4iVDGRJ596hjPOOINdd92VJ598kpFdrHl/5ZVX+NKXvsSO223HEzfdRNiytvwgtU3eew9eew3a2gq9EqV6z/vvwwknwNSp0kxN9Q9a062UUr0o0rIUM9YoM3UDFYVejurHrGSURLQRx04SCk/IHG9d+yEOjoz2Cg7B4+3cHXtLXpkypWdqugcgKxmjo7mO9+fP4dVX5vDGvA9456MV1K+VyGzShCHstft49t93GgfNPJTtd96XQPk4XC7Zt3AchxtuuIErrriCb3zjG/zpT38iGNyGrvCnnw4PPQQ33yxbsqrHzZ8PS5ZIlcTYsYVejVK946mnZDTeXnvB228XejUqTXe6lVKqh0ijtHo8/nCmE3mwbCzBsrG9U1+ril4y0Y4Za8qM9gJpgpb7M1M2dJf+8/Nz/PGwaBHcd59ELkUomWijdf0i3nr9f7z62mu8Nf9j3v1oBc2tMdwug50mD+fLh+zCjP2nc+DMwxhXM41A6ahMw7pc8Xic7373uzzwwANcffXVXH311dteNlJaCkOGSOaI6hV77SUfSg1kM2fC3Lmg26r9i+50K6VUD0gm2uhorsUyI3h8pZQNnTJwarZVj4t11BNrW4WdM9rLMAw8vjDeYCX+4LAeDbR7bKd7111hwQL43/9kbFg/5zgOZqyJhtUf89qrzzN37uvMe3cR7y9cRTRm4ve52W2nUey9x2RmHLAvM2YezvAxU/AFh27x3++6des44YQTmD9/Pn/+85855ZRT+uirUkopVWx0p1sppbrBtpNEW5cR71gDgMvlwR8aUeBV9bEXXpAGanvvDRdeWOjV9DuOY2PGW/D4yjIpyTgOthWX0V6BCrwBGe2VuR9k0OqKFfJ5550Ls/gN/fGP0NEBu+9e6JVslGSbrGX1sg94dc7zvDb3Ld5+v5YFn9WTTNqUlfjZY8poLjjnMGbMOID9DjiMyhE74vWHt+p1FixYwDHHHEM0GmXOnDnss88+vfQVqZ7S3i7XikaNgunTC70apdRgo0G3Ukpto0RkPZHWpdhWAgB/aBjB8gkDr1HalixaBH/9K0SjGnSnZEd7NWDGmnEci5KKSfhLhgMy3svl9uP1hze9o/2vf8HChXDOOf0n6N5770KvII9jW0TbV1L3+Xxeefl5Xn/zHd5+fwmf167DcWBoVQl77jqG4756AgceeBB7Tj+Y0qrttqkuPtc555xDOBxmzpw5jB8/voe+GtWbvvhCqiOGD4c1awq9GqV6z5NPgmXBjBny8676Bw26lVJqGySijbQ3LQKkm3Soomard8sGjP33h5tugsm9PK6qn3Nsi0S0gUSskeQGo71cbh/g5N32Bbcw6/rSS2UG+qRJvbTi4mNbJpGWJXz84VxemfMSb8x7n/kfLGPZymYAxo0Os+du4zjn9COZOfNL7Lz7AZRUTMDl9vfoOv7xj39QVVW1bQ3TNuWWW+Cdd+QiSxGk7hcbx5Ed7kE8Yl4NEldcIddrn3sODj+80KtRaRp0K6XUNvAGKvH4yvD6wwTKxmy0ydKgsfvu/TbduLc5jp353juOTUfz4sx9G4722uoa/7PO6sml9oz//U/mLR1wAAwb1usvZ5lR2psW897bL/PKK3N48+0FvPPhctY2dGAYMLl6KDOmT2L/ffdk5sGHUbPDdAJlY/LT9HvBmDFjev5J58yRLaqZMzXo7gV77AFvvVXoVSjV+/bZB8rLYcKELZ+r+o42UlNKqS5IJtqIta2kpHJyJh3YcRxtljYIWWaURKwBM9qI4fJQNjSb+t3RXCu72IEq3N1MYe6WhQuhthZMExIJXrnkEoatW8dO990n3bEPOwzCqcyM9nb5XNqFmd+77AIffwwvvQQHH9zjyzbjrbSs+4w3X/8fr736Gm/O/4T3Fq6ktS2Ox+1il+1HsPceNey//3Rmzjyc0ROn4i8ZMTAuej31FCxeLN+bXXct9GqUUkr1IN3pVkqpzdiwUZq7YzXBMhnwqgF3SkeHpEH7/TBiYDaRSybaSMSaMKONWMlo5rhhGNh2MrOzWlJR03Mvunq1BM3Dh0MgIMfWrZMU5M8+kwCttlY+li6FurpsAd/dd8Odd3Z+zjPPlM8ff5wNum+9FWbNglBIHj9hAmy/ffZj5szsuVOnyp/Ly7v95TmOgxltYO2qhcx95Xlem/sGb7+3iA8+Xk0sniQY8LD7zqM56+szmDFjf2YceDhDR++MN1A1MP/tHXtsoVeglFKql2jQrZRSmxCPrCfasgTbNgHwh4YPvs7kXfHoo3D22fDVr8K//13o1fS4jqYviEfWZW4bhoHHH8YXqMIbqOq9VOYjjpDxXC+8AIceChddBLffvunzGxqyQffOO0sBq9cLPh/MmyeN7g49FGKx/KC5oUE+RyKwZIl8zJmTvf+DD2C33eTPP/kJNDbKjvdWSs+xX1H3Pq/MeZ65c+cx/4NaPv58LUnLprzMz567juXi732ZGQfOYJ/9DyU8dHu8/u4H+Er9/Ofw6qvwox/BSScVejVKqcFGg26llNqAlYwRaa7FjLcA4PYEU43S9M3/Rnk8shPrLe6u7Y5jY8aaMWNNBMrG4vZI8y2Pr4xEtAFvoDI12qui9wLtZBL++1947DH49FMJmNO7ujWpXfQddpD040mT5FhNDUycmF/Ad/758pE2ZYrsiD/3XOfXvPlm+OUvYe1aqK+XHfPPP5eu9J9/Dtttlz337rvh3nslFf3II+GYY+C446CiotPT2naSWNsKFn/6Fi+//CJvvPkO8z9YwqI6CfJHDC1l2q5jOfm4AznwoJnssefBlFbW4Pb2YHOyYlJfD/E4DB0KJSWFXs2A88EHMHeu9KlTaqB67DG45BI4+mi4445Cr0bl0ppupZTaQHvjZySijRiGi0DZGAKlowdGzajqxLaTqUC7ETPWlOk4HgpPJFA6CpCu5MCmR3v1hLo6+MMfZN55fX32+B13wAUXyJ9bW+XzNqR2vzJlCsNqa9kpEuneOmfNkqA7d42hEJx6Kvb3v0NHTSUL33+NOXNe4o15H/DOh8tZsVouXk0cW8meu41jv32nMXPmIew4ZX9C4UE4Ym9TjjgCnn8eHngAzjij0KsZcN57Tyoy9tpLrlEpNRDddJME3aeeCg89VOjVqFy6062UUuQ3RQuWTwQHguEJuD2Bwi5M9QorGSPSUpca7dV5lJfHV5Y51qvB9vr1cPXVcM89sssN0hX89NNlF/mAA7Ln9kAddbd99hmMHQs33oj96cckH/s7H39eyyv33cecv97PnJCPhqYIhgE7ThrOIftvz3777c3Mgw+jevJecgGrN/8+i5nfL03uPPrWrDfssYd8KDWQfetbMsWzK30xVd/SnW6l1KBmWybR1mUAlFTqPOSBykrGcGwzE0w7tkVz/ds4joPbE8QbrMIXqMLj6+N3KmvXSpp4e7sMVD3vPDjqKEkr70E9sdNtxpoxp0zlvcVLefr4fZi7ag3vLVhFeySBzzDYfUQZ0w7fnQP235cDZx7OyPG74g+NGJhNz5RSSqmtoJdTlVKDVjyyjmjL0kyjtEDZaNyeQVpP2h3z58P//R9Mnix5bf1E0oxI2ni0kaTZgcdbQvlwaQhmuNyUVGyH21tS2Bri4cMlhXziROkSnuvaa2HFCmmgttNOfbosx3FIRNaxZuVHvDrnBebOfZO33/+Cj5auIg6E/vsuU6eM5jtnzOTAGQew34zDGDJyJ3zBqj5dp1JdEYtJq4Thw2G//bJtEpRSqq/oTrdSatCxzCiRlrpsozRviJKKmryUYrUVHn0Uvv51OOig/K7XBZBMtJOINmDGGrGSsZx7DLz+ckqH7Fj4+vzZs6UJ2fTpmz9v6lTp/vTcc7IL3g1zJ0xgzKpV8MwzTNzIczmOTax9Fctr3+WVl1/gtdfnMf+DJXy6aC2W7VAZDjJt1zHss9cuHHjggUzf70uUD5nc95kBSm2Dzz+X/oNlZdnWCEoNRH/6k1QiHXGE/Lyr/kODbqXUoOE4NrG2lcTaV6ZquF0Ey8bhLx1Z+ECsmH3yibRMnTABvvnNPn1px7HzvnftjZ+TiEp3bMNw5Yz2quwfDbuefBKOP17qd7/4QuqjN+Wee2DNGqnvrtm2+d9NixezeJ992Cs9FgyYP2QINW+9gX+Im88Xvskrc17k9TffZf4HS6ld1gjAqOFl0vRsn9048MCDmbrnTEIVE7XHQW/69a+l09e558K0aYVezYDy8cfStTwYhJdeKvRqlOodjiM/4/G49ObUhoH9iwbdSqlBw7aTtK55H9s28QYqCYU1iChGjm1hxlsyHcfLhu6C2xsCIBFtJBFdjy84BK+/ov817Tr6aJllfvHFcMstvf5y84cOZWpDQ14tWRJ4xevizKpSVq2Rbb+a8VXsuft49t93GgcddCg7TNmXYPn4zqPR5s6Ved577QWVlb2+/kHlgAPg9dfhiSfghBMKvRqlVJGJRuW698qVcnHJ7y/0ilQuDbqVUgOabSfzAodEtBFw8AWHFG5RaqvJaK+mVKDdnBntBRAsH0+wbEwBV7cVSkokaH333V5tpZxMtPPZPx5gl1PO3+Q5Fxy0I1NPOJyDDj6c8ZP26NpovB12kFzdV16BAw/s4VUPcvffD8uXw8knw447Fno1SimlepA2UlNKDUjSCGot0dZlBMPV+ENDAbTRU29IJKRQ0u3uld3PZKKNtvULNxjt5ccXrMIbqCquWvzycgm6E4ktn9vSImPEysq22M08EW0k0lJHpLmWjuZaEpG1LPnPG+yywXkOcAuwD/CtQ09l74uv2rr177ij5C+WlGzd49SWnXVWoVeglFKql2gRo1JqwLHMCG3rF9LRXIttJ0lE1hV6SQPbc8/JbOkjj+z2U1nJGLH2VcQ71mSOub0lgAu3N0SwbCzlw3alYuQ0QuGJeP3lxTWSKr27feedWz73kENg6NBORaiO4xDrqKdx5RusWPggn8+dzaI3rmPlxw/RtOpNEpG1AFTssXOnp7SAR4AZwEVPPMHLL7/MViW8PfkkvP9+12qO770XrrgiO39cqT7yyCNw3XXZ29dcI9n7Dz+cPXbddXKeUkr1Bd3pVkoNGI5tEWtfSax9VbZRWvk4/CUjC720gS0d9Nr25s/bhKTZgRltJBFrxDJljrTbE8BfMiL19C7CI/boH43Quuvqq2V20QMPwFe/CqecssWHOLZFrHUZHc2ykx1pqcMyO/JPMlwEy8YSqqghFK4mVFGN50slzJ/9z7yabg/wKnBraSkPGwaHHHIIM2bMYNasWRx++OE9dwHjL3+B735X/rzjjnDmmT3zvANZY6P8Gyov7/E57YPNF1/AlVfKX+esWfDRR1Iuf9ppcv/s2XDVVTKVT6mB4le/grvvll6MP/95oVejNqQ13UqpAcGMtxJpXpwZE+ULVBIMV+P2aCeRXpcOtg1jqwbgRttWkOhYi2XFc47KaC9vsAp/aPjA7Cp/+eWy5fbGGzCy8wUh2zKJti6jo2ERkZY6om3LsO38dHTD5SVUPkGC7IpqQuEJuNydf9ab6+r4Yu+9O3Uv3+7ttwlPnMjTTz/N7Nmzefvtt5k+fTqzZs3iqKOO2vbge+FCubDw+ONye9gwqK8H1wD8Pva0adPgvffkokwPZI0MdunA+pe/hOOOg0WLYPfd5Z9e+visWYVepVI95/vfl6EXV18Nv/hFoVejNqRBt1JqQDDjrbStX4jL7SMUrtba7X7GcWyS8VY8/nAmoOtoWkw8shbDcOH1V+ANpkZ7bdgxe6BxHFi/XgJSwEp0EP/Hg7RNG0VH6xJirctxHCvvIS5PkFC4mpKKakIVkwiUjdmqv6clzz/PujfeYNh++3Wa0+04Ds899xyzZ89m7ty57LHHHlx55ZUcf/zxuDYMls84A1asgN/9DnbdNXv8s8/gxz+G//xHavvTKeX//KdEPGrL0nPZn31WhuyqbksH3r+4Os7Vv/DnBeIacKuBZu1aqK2FESOgurrQq1Eb0qBbKVWUHMfBSkbweLMNneKR9fgClf1vTNQgJaO9mklEGzHjTTi2RfmwKZnGZ0mzAzsZ65+jvXqRGW/NND2LNNcSeOx5xvzmWeJjK2k8dneaj9wZV9XwzC52SUUN/pLenyXvOA4vv/wys2fP5qWXXmLKlClcccUVfO1rX8PtTn1/Jk+W3N3XXpMi2YULJZfxtdc2/qSrVsGoUb267gEl/ZasmPoUFJjjODh2AisZx05Gsaw4/uAw3N4gAFfPaueX15bi8zkkEgZXXinBuFJK9SUNupVSRSdpRog012KZHZQP311nbRfaF1/AXXfBiBHYl/5ERntFGzHj+aO9XC4voYrqQTWuzXEczFgjHc2LiaRqshPR9XnnVD3+LsP//AbuiKTZO8EgHHkkht8PFRVw0UWw0059uu65c+cye/Zsnn32WXbYYQcuv/xyTjvtNDzPPQfr1slO/T33yPiwTQmHoalJA0jVbenfI+kLT2a8lVj7KuxkDNuK5/2eASip3A5/aFjq3BZKy8tIJOSxEydKQkF5ed+tXymlNOhWShUNx7aItq0g1r4acDAMNyWV22kqeYE5L76IceihsPPOmO++Qdv6hZn73J4A3oCkjXt8ZcXVaXwbOI5NvGNNZnRXpLmWZKJ1g7MMAqWjpBa7YhKhcDXehAF//at0NV+4MP/0xx6Dk06SPzc2yli2Pvp7nPfWW1z7y1/yr2eeoaamhp+feCLf/O1v6VKbrwMPlHneSnWBY1tYySi2FcdKxjIBtZX6nBdIx5ppa/gk81jDMHC5/bjcAVweP77gULx+iarTKeVeL5gm7LknzJ9fkC9RqV5jmtJEbfRoOP548AzwKq1ipEG3UqooJGJNRJvrMk23fMEqQuGJG20epXqflYxK2nisEc/KBkKPPAsjRuBcdBHtDZ/g8ZXhDVblpf8PROkLQekgO9pSh5WM5p1jGG4C5eMoCVdnuounU187P6EjI7meekpGbhkGPP887LCD3L/nntIRavvtsx/bbSdFfOPGSafwbfH557KDvWyZFAUuXiyfP/0UZs7k/Z//nGuvvZbHH3+c8cBPgXOATeaYeL3S1ed3v9u29QxG118v34Mf/AAmTSr0anqFbSUyQbSdjOHxhzPB8YaB9IaCZWMJlo9LPY9JItaA2x3A5Qngcvs2Wn6xYQ33rFnSsTx9u7lZSui//nVNyFDFbdkymDBBfvXGYtq7sj/SoFsp1e+1Ny7KpOS63H5C4Ym6u10AyUQ7Zqwpb7QXgMvto2LkngVcWd+xrTiRlqWSKt5SS6RlKY5t5p3jcvsIlk8kVFFDSUU1wfIJ2z7uLBaDQCq0TSSgqgo6OjZ+7t57w7x52du77QYtLRAMgt8PliXbIYmENO36xz+y5w4ZIrvoGzN5ciaNfOHs2Vw3ezaPmCYjgcuA7wKhDR9jGPD738P3vrfVX/KgtcMO8vf8yiuSJVCEHMcGx8n0aLDMKNHWpVipIHvDNPDcQNpKxmhbtwCXJ4DbE5Cd68yfA1v9b2hTTdNyjy9fDv/3f3DBBXDHHd372pUqpKVL4dJL5dd8eniE6l80+UAp1e9Jzbak5AbLxg6qplv9Rdv6jzHjLZnbhmHg8YXxBivxBQbuBZCkGSHaUpdJFY+2rYANAge3N5SajT2JkopqAqVjeu5nNJCzl+zzSWC8eLF0C//8c/moq4M1a7K74WnLlknQvTGpzukZNTVSPz56tOyyTpokx7bbToL3lF3uv5+HTJNfTJ3K9e+/z0+A64FLgPOA0vSJjpPf3Vxt2bnnyk73uHGFXslmOY4taeDJGHYyjmWlUsGTMSwrQbB8LMGysXKyIVlKWQZut092pz0B3L7MTwxuT4CKUXv1yBqvu27TXcrTt6+6Cg47TP6Jff3rPfKyShXMhAnw978XehVqc3SnWynV7yTNDsDA45X9M8e2sKzYgE9V7g8cx8aMt2DGmgiFJ2ZSNiMtS4l31OMNVGRqtDMjq2wb4nEJtEKd9jyLihlvyavHjnfUdzrH669I1WPXEKqo6b154omE/N16vTKGa2stWACRiOyWx+PyHF6vfITD29ac7dBDJZh/5BGYM4faSy/lV7bNnx2HcuBHwA+AMEjAr92qitKGaeBub0kmu8gyo7SsfX+Tj/WHhlNSKenxjmMTj6zdYhp4T3vkEenveMUVmz7nuuvkmtIhh8Dw4dnjL74ot6dM6fVlKqUGEQ26lVL9Rm6jNI83RNmwKX3yBm2wy472asCMNWdmRJcN2QlvoAKQGkrDcG18B/fNN2G//WQwaG1tH668exzHIRFdnxnd1dFcixnrnGLtCw2nJFWLHaqo6bvShr33lo5PTz8NRx3VN6+5td5+G046iWUrV3KjbXMvEAQuKi3lomXLqKysLPQK1UY4jo3j2JkLZ7ZlykSI1K71hmngGwbSLfXv4vJI4zK3Jx1Q+1Op4F1qs9cvNTXBzjtDQ4OMnD/00EKvSCk1UGh6uVKqX0hEG4m0LMFONUpzeQI4jq1Bdy9KJtqJtq0gGW/JH+3l9slOds6b583WU6Y7ttj2ps/pBxzHJta+KjO6K9JSRzLRtsFZBoGyMVKPHa4mVFGdmSuuNmLvveGjjxj/ne9wx2OPcTnwG+DGSISbJ0zgBz/4AT/60Y8YtmE6u+qso0Nq4QOBHumC5DhONg3ciqU6gsdTf47jDw3LBNKG4SKRd8HJwOX2ZWqrPf5w9h7D1WNp4P1NIgHTp0v1xgEHFHo1SnXdt78tPTevvx7OOKPQq1EbozvdSqmCsq04keYlmTd8brefUEU13oDukPU0KxkHbNwe6ZydNCO0rv0AyI728gWrcHtLt260l2VJGrPLBSX9pwTAtpPEWpdLqnhLLZHmJdhWLO8cw+UhWDaeUEU1JRU1BMMT+8/c944OuZARDPb/+S+OI3O7L7wQEgnWXnghNwUC3HnnnTiOw3nnnccll1zCyJEjC73S/mvcOFixQrIH9upaUGtbZk5AHcPl9uMvkVxpx7ZoWj1vk4/1+isoG5otMYh3rMGVrrd2+wftBU/HkdYJQ4Zkb//f/8Gpp0KZXn9T/dShh0ppxF//CqefXujVqI3RoFspVTBJM0LbugU4joVhGPhLRxPsySZUCsuMkog1YMaaSCba8QWHUlo1OXN/rH01Hn84Uz9fzKxkjGjLUjpaUk3PWpfh2Mm8c6T7fXWmJjtYNm7bO4sPRt/+NtTXw003bXw82UcfwY9+JNst06fT0NDArbfeyu23304ikeC73/0ul112GWPHju37tfd3Y8bAqlXwzjswbRrQOQ3ccRw6mj6XBmbJWKYUJM3rD1M2dOfM7Za1H2AYrpzU71QDM48fw+Xbuotrg9Sjj0qjtUmTYOFCGQSgVH+zapV046+p6dwnU/UPGnQrpQrGcRza1i8ADEIVNQMi8OsPkol2ErFGzGhjp5nRvkAlpUO2cZZzP5NMtBNpqUvVY9cRa1+5kc7ipZld7FBFDYGSUXpRpztqaqRb+ptvwj77dPlhzc3N/O53v+OWW26ho6ODs88+m5/97GdMnDix99ZaRJJmBLu1EduMYnnBdpLYljQy8/jK8wLp5tXzsXPG1GUDaj9uXwmBEs0m6Elz5sA550jK7jXXFHo1SqlipUG3UqrP2HaSePtqAqWjM4GPbZkYLo/uuPSg1rUfpjrAp0Z7+cP4AlV4A1W9s6tbXy9DbktK4Oc/7/nnT0nEmjJNzyLNdcQjazqd4w1UZYPscA2+0LDi/dn6wx8k3fiMMzqPAyuUxx6D9nZp7LYN2yltbW3cdddd3HTTTTQ1NXHmmWdy+eWXs9122/XCYvuPbBq41FQbhotA6ejM/RsG0rncniDhEVMztxPRBjBcqY7ggzcNvC9FItL8P73LvXw5vPyy/NMs1l8vSqm+pUG3UqpPJKINqUZpCQKlowmFJxR6SUXNcWzMWDNmrAkz3kx4+NTMhYxY+yqSifbUaK+K7Giv3vLRRzLLefhwmRfdAxzHIRFZmxrdJbvZZryp03n+kpGSKh6uoWSg9QLYZx+YNw/+9S84+uhCr6ZHdXR0cM899/Cb3/yGNWvWcOqpp3LFFVew07aMMesHHMfBsZN5F7U6mhZjmR1YVgzHzk8Dd3sChEfskbndtv4THNvMzq92+1O11ekxWxrZ9ReOA8ceK0MFLr0Ubryx0CtSg119vYzJq66Wn03VP2nQrZTqVVYyTqSlDjMmAZPbEyBUUYM3pxuu6hrbTqYC7UbMWFNex/HSqu3xBYcUZmGrV8MNN0iXoeuu26ancGyLWPuqVNMzCbKt1G59huEiWDY2M7orVFE9sGe333QTLF0K3/vegB0aHIvFuO+++/j1r3/NihUrOPnkk7nyyivZbbfdCr20jbKSUSwzmplfnR6xZVtxXG5/XiDduu4jkon2zO1sN/AAbk+QQNno/Ce/9lqIRuGii/IHR6t+xbYl0L7hBnjjDRkxplQh/e9/cNhhsNNO8PHHhV6N2hQNupVSvcJxbOId9URbl6dGfxkESsfkpZarrktEG+hoWkTur2yX24cvKGnjHl9ZUaWZ2pZJtHWZ1GO31BJtWZoZF5dmuDwEyydk6rGD5RNwe7SLUUF9/LHMVdp+ewj1XA+GRCLB/fffzw033EBdXR3HHXccs2bNYs899+yx1+gK205KEJ0KqB3HJlQ+PnP/hoF0LhmlNT2zK52INYHjZOqtt/h7r6pKBkV/8snGm9SpfqW1FcrLs7cffxwmT5akH6X60vz5ciFo9Gi49dZCr0ZtigbdSqleEWlZSqx9FQAeXxklFZNwe4MFXlVxsJIxzFhTaoxXZeZYy5r3cHuCeINV+AJVeHylBV5p11nJKJGWJalU8cWpizH5KbcuTyCzi11SUUOgbGzvp8arrTNxouy+z5snM7p7mGmaPPTQQ1x33XUsWrSIr3zlK8yaNYv99tuvy8/R2NiI3++nZCPj6yQN3MybQR9tXYYZa95oGrhhGFSM2icTSKdTxl0ef2rHOtBzaeCXXy5j4i6/HEaM2PbnUX1u2TLYZReIxeC117aqx6BSapDQoFsp1StsK07buoUEysYWdzOrPpI0I5I2Hm3MNEHbsNO4lYz1nxnSW5BMtOXUYy8m1r4ayP/vxuMrz4zuKgnX4C8dWVS79YPS9OnS3O2ZZ2Dq1F57Gcuy+Pvf/861117Lxx9/zKGHHsqsWbOYOXPmFh/7rW99i3fmz+fVV54l4HNlG5il0sCBvB3p9sbPpTlZisvty3YE9wS0473aovp6uOAC+fzqq+DSX2NKqQ1o0K2U6hGJyHqSZjuh8MTMMUkr13cfmxNpXYYZbcBKxnKOGnj95fiCQ/CX9P8dL+eLL1LpxkFWvf1HIi11JCLrOp3nCw6RWuywpIv7gkP0Yszm7L+/jOb65z8HbXcc27Z54oknuPbaa/nggw846KCDmDVrFoccMhPHimNbMq/atuKEwtUYhsHChQuZPn1vjvnqwdx5y5WdfsYMwyA8Ylpmt9uMt0oTtFQDMw2w1bZqa5PWFgCWBb/9LZx7LoS1hYnqRY6jXfSLgebtKaW6xUrGUo3SmgHwBiozTdI04M7nODaWGclLC0/GW7GSMkIoO9qrsndGe/UQqddfQ6S5jo7mxZgfv0ON42BZJs2r56XOMvCXjqQkFWCHKqq1ed7Wchz5GKRsK4HL7ePkk0/mpJNO4vG/38/1v/othx9+OHtN24VLLjqbw760XyaoDpaNwXD72WWXXbj9lhv4zvcvZsaM/TnnW2fmpIH7U2ng2d9NXn/5ppbQt/Sdc9FLB9wAd90FP/sZ3H+/DHhw67Uc1UsOOkiqfh54ALqQDKQKRHe6lVLbxHFsYu2ribWtyG+UVjZGg+0cjm1hxlsyHcdt26Ji5J6ZoDrdhdzrr+i3O2yObRFtW0GkJT0jewlWMpI9wbLxtCbwl48hUL1bakb2RNzenmu0NSg1NIBpQkUFBIqjrGBr2VYcy4xk5ldLAzNJBXccO/VvRXakIy1Libat5MWX3+K3t/2JefM/YuruO/PTS37AMUd/lWDZ6LyLVd///ve5//77efPNN5nai6nwPSYYlKLgJUtggo5ULHZz5sB3vgM/+YnsdivVW8aNk6qfXmq1oXqIBt1Kqa2Wrte1TAm8vP4woXC1NkpLkdFeTalAuzlvtJfL5aWkavv+s7u2EbaVINKyNBVk1xFpWYpjJ/LOMVw+QuEJmaZnwfLxec2p1AB1/vmwfr3MS5o0aYunZ7qBp9PAk7HUz4oEx7kNFzszKB82JZMZkjQ7sJNx2bF2+Xh5zivMnj2bl19+mV133ZUrr7ySk046CXdqSzEWi7H//vvT2trK/Pnzqaio6Im/gd4TCEA8Ll25xo0r9GpUD4hGwe/P1ngvWCCB0dlna1KD6jkrV0rQPWUKbKR/pOonNOhWSm0Vx7FpWfOepH66vATDE/CHhhV6Wf1KvGMNHc21mdsut3+D0V79692WZUaItNRlGp9F25ZDzoUCALcnlGl6FqqoIVg6pt/uzKteNH48LF8Ob78Ne+0FyEUaw+XJZLjEI+uId9RjJ+PYttnpKSSQljzceMdaYh2rcbtT6d8ef/bPG6SBb8prr73G7Nmzee6559hxxx254oorOOWUU/B4PNTW1jJt2jQOOeQQnnjiiX73by/P+vUyBHrIEM1FHoAsCw44AN56C37xC7j66kKvSCnVlzToVkpttUS0ATPWnLdjNRjJaK9GEtFGfMGhBEpHAjKDuq3h40x9dn8b7WXGW2Q+dirIjnfU06mzuD+cmY8dCtfgLxm+6QCovR1+9zv5889/3ruLH0z++lfZvjjxRGlUV0C2ZWKZHTh/+Qu0tmAefSjJqpJMGnhuIB1rryfSUpd5rMvlzRux5QsN65Uu/PPmzWP27Nk8/fTTTJo0icsvv5wzzzyTZ555huOPP56bbrqJH//4xz3+ukp1RTIJt9wCN98sc5XHjCn0ipRSfUmDbqXUZlnJGJHmWnyhYbqjTWq0V7SBRKwxk14PkmJfNnTnAq5s4xzHIRFdn6rFlt1sM9bQ6TxfaBihcE0m0PYGKru+K1hfD6NGSQ6lZW35fNU1BxwAr78O//gHHH98r76UY1tYqZpqOxnHsmIESkZlSkZi7auJtCzZxKMNSqsm4wsOAeR3hsyyTjUu6+NZ6++99x7XXnstTzzxBBMmTOBnP/sZixYt4rbbbuPll19mxowZfboepXJFo1K+n/Z//yd1uMXQdkD1Px9/DM89B7vuCoceWujVqM3RoFsptVHSKG0VsbaVOI6Ny+0jPGKPQdskzXEcWtd9mBdop0d7eQNV+IKVuNz+gq0vLd3gLtJcS6SljkhzLclE2wZnGQRKR2fqsUMV1Zldym3S2go//rEE3ffc0631qxw33ABffCEDgKdN6/bT2ZaJYbgyZQFmrJlo2woJtDeSBl5SORl/aGjm3EjrUtxufyqYDuD2+DOBdX/8vbBgwQKuu+46HnnkEUaNGkUwGCQSifD+++8zfPjwQi8vn+PAddfJv6GLLtLCzEHiww9hzz3l2//BB7DLLoVekSo2v/89nHeeTJV88slCr0ZtjgbdSqlOzHgrkeZarGQUAK+/glBFda+khPZHjmOTjLeSNNsJlo3NHG9r+JRkvAWvvwJvsAqvv6Lg6fW2nSTWtpyOplSQ3VKHnTfzGwzDTbB8fKYeOxSeOGi+l4ONbSexzA7pAp5MdwOX3WvHsSitnIwvFUgnoo20N36WeazL5ckE0W5PAG9wCB7vBsFfXZ3kyY4b1y86qre3t/PGG29g2za2bWNZVqc/L1++nH/84x/MnTsXx3HYfvvt+eSTT3C5+tGFAtvO1nGvWwdDhxZ2PapP1NfDhRfKP6knnij0alQx+s9/4M9/hn32kWvfqv/SoFsplWFbJtHWZcQjawFSjdImZna7BjIZ7dVMItqIGW/CsSVNOjxiGm6P7GBbyTgul6egDcSsZJxo65JMqni0dSmOncw7x+X2EwpPzDY9KxtX8IsDqmdIGng81RFcAmtfcGimG/6GgfSGQuGJBEpHAfLvPZlolRRwT6BraeDp2TTvvNMju+/dde211zJr1qyteoxhGNTV1TGhP43lsiyZK+U4cOutUNq/+kCo3hWPS5dzkPTza6+FSy+VaYFKqYFBg26lVEYy0UbrugUA+EtGSKO0Pq7H7GtmvJV4+2rMeOfRXt5gFYHS0QXdFU4m2lNp4pIqHm1f2bmzuLeUUEV1aj52NYHS0dpZvIjZlgmGkfm3Jz8DS7CtOLaV6HR+sHw8wTLpymSZUdobP8PlSaV/pzqBS0fwbUgDt2147TV45RWJAqZNk5T3r30NfvtbGDmy219vd9i2zbJly3C73bhcrszn3D9veCx9W6n+6PLLpbJkzz1lSEB/brivlOo6DbqVGuRsO5kXWEfbVuL1l3evxrcfs6044Mrs/CYi62lvWgSA2+3HGxyS6jhemNFeZqyJjlSAHWmpJd6xptM53kBlpqt4SUU1vtDwwo5Cam2F0aMlQGtqym7ZqE1ybIuk2Z5NA0+lgFvJGI5jESqfQODks+H117Hu/yMt+2TLHAyXO2fEVkDKHXpq7ntHB6xeDdttl1qoAyNGSMrza6/B2LEyn9uy8saGKaV6xquvwne/C7/6Va/3T1QDgOPohZliMbC3sJRSm+Q4NrG2lcQ6VlM+bLfMbm56x2wgsZJRSRuPNZJMtBMsH5ep1fYGKgmWjcUbrOpcv9rLHMchEVkrQXZLLZHmWsxYU6fz/CUjCIVrUo3PqvEGKvt0nVtkGBKsgbwDUDi2hW3FUwG1pIN7/OXZDt9WjLb1H2/y8bZtQiQC7e24bIPSysmZILvXsk/+8x/pxjN1qgTUIN/bk06Cxkap4R4/Hp55Bl56KT/gfv552HFHST8vcg8//DBnn302ixcvZkxqrtN3vvMd5s2bx6uvvko4HC7wCtVAduCB8NFH4M2pCJozBz7/HL79bem1p1TayJHg88nPSE1NoVejNkd3upUahNJzmq1Uw61g2ViC5cX/ZjlXMtGOGWvqNNoLwB8aTknlpD5fk2NbxNpXEWmpy8zItsz2/JMMF8HSMal67GpC4ep+N+e7E9uGJUskQJswYdC8K7Qt6fidzpqwknE6mhZtMg3cXzKCkgp5V+TYFq3rPsxJ/c42MHO5/VIesHKlFHuOGNHz3axvvx3uv19Sxk85RY4tXy5BdXU1fPZZ/rv+zenogIkTJeNhzhzYd9+eXWsfcxyHqVOncuCBB3LHHXdwzTXXcO+99/Lmm29mgvAe19EhzdNcLskqCIV653VU0YlGYbfdpKrjppu0WZbKikazvyoaG6Gyn12PV/l0p1upQUQapS0lHlkHgMvtIxSemNl9Gygcx6Zt/cc4jjRDMwwDjy+MN1iJL1CFy+3rk3XYlkm0bXlqRnZtpi43l+HyECyfkBndFSyfmGncVjRcrgF7id1xbJKJtlQX8FQDs1RHcMe28gJpw+XOG8/WKQ08p2TDcLkJj9hj8y/eEwFePC5zZObNg9/8JpuHuHQpvPuu7Fing+5x4+T4+PFb9xrr1sGUKRK05+5+J5PgKb63GYZhcN1113HyySczevRobrvtNl599dXeC7hBLlzFUlMHBslFK9U1Ph+cf76Mhvr2twu9GtWf+P3S13LlSm26Vwx0p1upQSIeWUe0ZQl2qtN1oGQkgfJxRd0oTUZ7tZCINmIlo5QPm5K5r6NpMY6dlNFegco++TqtZIxIy5JMkB1tXZYJ/NNcngChcHUmVTxQVtzfg2LnOLbUUluxTEdwtyeEv2QEID0Pmle/vcnH+4JDKa2anLmdiDbgcvukgVkhOsYvXy47zumBv/G4vBuLxeCTTyQFHOD99+X2zJlSj98T1q/PjrpyHMmT3XFHmD0bRo3qmdfoQ9OmTWPhwoU899xzzJw5s3dfzLZh2TL5XF2tRZqqkw2vYd1wAxxxhDRcU0r1fxp0KzVIRNtWEG1djsdbQqiiumgbpWVHezVgxprzgtrw8N1xe/suLTOZaMuM7oo01xJrXwXk/0r1+MpSTc+qKamYhL905NZ3kO7vLAvuvFMCre9/v1/Mb85l20lwLFxuySBwHJv2hk9S9dad08C9gQrKhuyUud269kMMlxeXJ53+ne4I7u/dLvGPPy5bGF/5Ckye3Pl+x5GP9M7offfBd74DRx4J//1v9rz09+Sii/ouI+HNN2G//SAYlNneI0b0zev2kGeffZYTTjiBRCLBggUL2DF9sUKpfuDFF+HQQyUIX7x465NTlFJ9T4NupQYox7awbTPTIM1xbBKRdfhCw4o26Iu118tc6tzRXm4f3kAlvuCQVMfx3vnaHMfBjDURaa6VILullkQqTT+XLzgk1fSsmlDFJHzBIYXtLN4Xksls/W9DA1RVFWQZZrw1b351uoGZbSfxBiopG5INnJpWz8vMYjcMtwTTqRFbHl9p/yi5mDlTRnU9+iicfHL+fZdeCg8/DPfeC1/+shz74APZ9po5E154ofC7pa+/LrvpuTmx990nO+Dbb1+4dW3Bu+++y8EHH8ydd97J3/72N0KhEI8++mihl6VUxtq1cPHFUsN7552FXo0qlDlzpEpov/2KvpXGoKA5jUoNQGasmUhLHRguyoftimG4MAxXJmW2GFjJOGasEY8/jCe1e+3y+HEcG7cngDdQhS9Yhdtb2itBrePYxDvWZkZ3dTTXkoy3bHCWgb9kZKYeO1RRg9c/CDsbu1zwjW/I564239pKjmNngmgrGce2YlIPX5YdpdXe8GmndP7M41NlFWkllZNxuTyFSwPvikMOkXTt11+X4Pv227P3rV8vu+CvvJINunfdVUa2lfWTLJb995ePtNpa2XV3HGnFPKnvmxluyZIlSzjqqKP42c9+xplnnsnOO+/M3nvvzTvvvMOevZnHG4nAPffIhZILLyz8BRPVrw0fDg89JElGaY2NcM01cPXVBbvuqfrYU0/BzTfDJZdo0F0MdKdbqQHEthJEWpaSiK4HZBe4bMjOuL3BAq+saywzSiLWgBlrIpmQrt6B0tGEwhOAdP1trFdSyB3bItq+Mtv0rLkOK5nf9RzDRbBsHKEKSRUPhSf2aTr7QGfbSRw7mcnOAAmkk2YklQae/9+V2xsiPHz3vHMdx+n7NPCekkxKrbXXC7unvq6mJhgyRALV+vpsmvZ770FzM+yzT/F0ul60SFovm2Z++ntbW7+4UNDY2MgBBxzAQQcdxB/+8IfM8eOOO454PM5/c9fc09auzX5v9W2Z2gbnnAN/+pNcq3vxxUKvRvWFBx6Ap5+WRKivfa3Qq1FbokG3UgNAet5zpHVpKmXWIFA6gmDZ+H4fbKSDXTPVDC2Xx1eGv2QE/tCwHn9d20oQbV2WqceOti7tVN9ruHyEwhMyQXawfHyfdT4fyJKJNkn/TqbTwGPYybiUQ2wQSLeu/ZCkKTPADcOVN2LL7QniLxleqC+j+xIJcLvlA6Th2FVXwWmnwYMPZs877zzpLP7d78Kwnv+30OficWm7C7LDu912knJ+553ZRmyDTXMzXHCBBNwPPVTo1agiNHeuJJL83/9JurFSqn/R9HKlipxtmbQ3fpYZVSSN0mr67WzndJqw25PafTdcJDrWYtumjPbyh/EFqvAGqno07dcyI0RalmSbnrWt6JSK7PYEc+Zj1xAsG9vvL1r0N/L9TWTGatnJOGATCldnzuloru00Oz3Dzv+eBMMTACO1cz2ALnicfDI884wU5e29txw74AAIhzvvXN99d9+vrzf5c0bi/e9/sHo1vPWWfO2DVUVF/oUWpbbSAQfAhx/mT5x74glJovje93QSnVKFpkG3UkUuHZgahptg+Tj8JSP6XaM0x7Ex4y2Y0UbMWBMYBuER0zAMA8MwCJaPA8ONN1DRY+OzzHhrJlW8o6WWeHs9nTqL+8OZruKhiup++XfXH0mTvkT2wglgjx4JiQQtz96PMzJ/t9IwXHlBt8dXhsvlzdm19mf+vOFFjqKvkV+5UoLmpqb8jkeJBESjUq+dDrpnzpRGdOmd7xNPlPvvuQeOPbbv194XjjlGGsCtXZvtB+A4cMUVki+5xxZmmSulMnID68ZGOPdcWLdOupx/5zuFW5fqeY4jEwbdui9QNDS9XKkiZMaapVN3KkCxkjEMw8iMROoPbDtJMtZMItbYabSXy+WlbNiUvNrd7nAch0S0IdP0LNJcSyLa0Ok8X2hYXpDtDVQN/M7i3ZA0O7DMSKojeDyTEi5ZCW4qR0/PnOv4fRgJk+Z5/8AZMypTS+1K1Vb7S4YP/Asazc3w2muSCp6uya6tlYZhXq/cn97F/uADObbTTptumnXwwbIT/sgj8PWv98EX0E+88AIcfriMG1u1SnaBlVJbxbLgrrukWmHOHPANoEQhJddnR4yAUaPkv5le6mGqepDudCtVRKRR2hIS0QYCpaMIhScC9Fjw2pNibStTc6uFy+3DF5S08e6O9nIcm3h7PR0t2aZnyUTrBmcZ0oQtlS5eUlFTtLPJe8PG0sBtK0FpVXYedLR1uWQmbIRhuLDtZCYzwXrzNRwcynfcBVewf5Y29Lj0eLR00HzVVfC738EPfiCfAaqr5fbUqfkNsnbfvdPTdXLffVLzPG5cjy+9X5swQeraR4zID7iXLRu4A4mXLZNxbyUlsGRJoVejBgC3G374Q2kVkN4BdxzpZXjqqTB9+uYfr/q3lSvlwko0qgF3sdCdbqWKgOM4xDvWEG1blm2UVjaaUHnh34BayRhmrIlEtIFg+bhMOnA6vdsbrMIXqOpWjbltJ4m1rcjUY0dalmBv0HRN0uvH59RkT8xLfx6MHNvCsuKZkWsggXQiuh7birOxX/8VI/fKlCxE21aQjLfiSu1YS111ave6h8oAipJtw157SQfxL77Ijr567DG4/HL45jfhyisLu8aBwHGyFzSWLoXJk+Gww+TvuVg6tndVOiOipATa2wu9GjVA/e1vEnAHg3KdZ7D2LRwILEsGWjQ2yrRI1f8N4ndNShWHpNlBpLk2M0LL4yuVRmnekgKuKYIZa8SMNmY6SwMkog2ZoNvrLyc8Yuo2Pb+VjBNtXSr12M21RFuX4dhm3jkut59geEJqdFd1qrP44Lzca5lRkmZHqgt4uiN4PNONvWLU3pkg2XGSWMkYkOoGngmo/bjcgbxU52DZWBjsyQEffwy33CLNv+64Q465XNmg7913s0H3SSdJgzTVM3LT7l9+WS52JBIDL+AGGDsWFi4s9CrUAHfooXDGGbDDDhpwFzu3G8aMkQ9VHHSnW6l+LB5ZT0fTF4CD4ZKdXH9oRMHqkG3LpG39gkzQJgy8/nK8gUq8gSrcnq2vK5cLC3WZxmfR9pXg2HnnuFNd2aUmu4ZA6ehB0VnccZxUAB3PG7EVqpiUCaQjzXXEOuo3+niXy0PZ0F0y88QtM4JtJ3F7/BguX8/9LD3wAMRiUntcrF2oa2sluNtnH9hlFzn29tuSh1lRAevXZ7vWfPyxjO/qzRFezzwjnb0PPjgb2A9mixfLuLGdd5bbsRicfTacf76MHFNKdcmGSSTXXQc33ABDhhR2XUoNZBp0K9WP2VaClrXv4/VXEApP7NORSY5jk0y0YVuJvDnZLfXvYtsJPP6K1Givyq3eYTZjTXQ016WantUR30jA6A1UEgpn67F9oeEDtumZY1vYVhyXJ5CpdY+11xPvWL3JNPDyYbtmUvbjHWtJRNfhSnUCT8+x7tM08MpKaRT22Wew/fZ985rd4TgSxG23XfbY6adL16GrroJrrpFjyaSkis+YAV/+srQB7itf+hK89BI8/DCcckrfvW6xuOMOKVodN06+l1rYqNRWO+ooub53wgkyYkwVh8cflxKBww+HKVMKvRrVFZperlQ/YiXjmLEGAqWjAWk+Fh6+e591JXdsS0Z7xWS0l20nMVxufMEhmWCwZMgOGx3ttMnndBwSkXVEWmpTNdl1mLHGTuf5QyOy9dgVNfgClT36tfUHVjJGMtG+yTTw8uG75ZQN2Dlp4EYqoM6mgedegPGXDMdfMryvv5x8X/2q1KIWQ+pvezvU1MjO9fr10gwN5N3LsmXSyCvN44Ff/aow69xvPygthdGjC/P6/d0xx8CCBVJfnxtwv/22HCumi3RNTfDoo/Lv54wzCr0aNYjMmgVr1shOtyoef/4zPP00/OEPGnQXC93pVqofcBxbGqW1LsdxLEqH7NinQacZayIeWZsa7ZVN63a5vHgDlVtVL+04NrH2VZmu4h3NtVjmBo2BDBeB0jGUpALsULi6W43W+gNJA09kA+pUOniwfFymoVusbRWR1qUbfbzhclNatUOmJj4dkKcD7IG6y9/rXn0VbrxRguzbbsse32knyat87jnZxVYDw8svwyGHSPHqc8/lDy7uzxYulHfOw4bJzHKl+lBuujnA738vST7nn188/4QGm1tvhbfeggsvlOuzqv/TnW6lCiyZaJdGaamGZB5fWa/vbNtWAsNwZ3ark4l2ElHZfXa5/RuM9tp8sGfbSaKtyzJBdqRlCbYVyzvHcHkIlk+QVPFwDcHwhH455mxLHMfGTsYx3N5M2nYi2kC0dTm2FdtoGrgvODQTdLu9QTy+MukCnppfnd25zr+o4U51C1db4a234H//g699TTpdg4zcevppGd2VG3T/+9/SvEqH1w4sH38sTe922KG4ooXSUjjuOCgvL/RK1CCU+9/8ihXwk5/Ir86RI7U3ZH918cWFXoHaWrrTrVSByBis5cTa15BulBYqn9Brtcsy2quRRLSRZKKN0qrt8QWla4plRklE1+MNVG5xx9lKxoi2LMmkissYs2TeOS53IDW2K9X0rHxcUY2Ysq0EyXhrzvzqdCq4pIGXVu2ALygpyYloA+2NnwPpNPBUN/BUOrg3UDHoR5f1ikgEPv0Upk3LHvvyl+HZZyW4vvBCOdbWBvfcAwcdVHwpx2rbrFolDe9GjJDbK1bI3O+f/Qy+8hX9GVBqM2xbdrr/8x948sniunalVH+mQbdSBdK6bgHJRBsgu6HSKK1nGwElzQhmtIFErBHLjOTdFywbS7B83JafI9EmaeIt0l081rYSyP+14fGVEQqnUsUragiUjsrUgPc3juPg2AmspKR/pwNqf8lIvH7ZZcoNpDdkGG5CFdWZ5nK2ZWIlIxJsu/2DNw18331laOgzz2S7S/ekjc1sdruleZs/lRly113w4ovw7W9LcFXszjwT5s6VPMJjjy30aorXRRfB7bfLhZc5cwq9GqWKQu6v3GQSzjlH0s333bew61IyoxuywzRUcSierSelBphA6WiirUsJhavxBip6/PmtZIzWtR/kHEmP9qrCF6zcZAp7ItooqeItUo+diHSuL/QGhmTrsStq8AWH9qtgM5MG7vJkLmSY8VYizbWpbuB2p8d4fGWZoNvl6XoauMvtxeUu0hFZPWnFCli5UkY69aTHH4df/1rqdH/9azk2frx0S/d6YckSSSUGeUd4/vk9+/qFtHo11NVBR0ehV1LcLr9cygiOPjp7LB6Xmu+jj9adb6U2Ivefxd13y1TIf/9brnmWFncLlqL39tvSimSvveDNNwu9GtVVGnQr1QekUVo9hsub2SGVuumKbu8IO45NMt5KItYIjkNJpczzdXsCeHyluFw+vMEqvP6KTgGj4zjEI2sy87EjzXWY8eZOr+EvGZUZ3RWqqMk0+yo02zJJJlol9TvVeCzdgAwgFJ5IoHQUIKnfVjKaeqSRDaI9fvm78mdrKT3eEOXDtB3oVnnqKdkO6c64sCeflJrsn/4UxoyRY/G4vMOwcy6UGIZ0rR46dGAHTLffDq2t+WPN1NYbMQJ+85v8Y3/6E5x3nnTd//e/C7OuXB9+KNkMY8fCa68VejVK5TntNHj3XTjgAA24+4OVK2W3W1P/i4sG3Ur1snR6dtLswHC584LfbQ24ZbRXM4loI2a8Cce2Ms8XCk/MNEgrGzolbwfasS1i7StlRnbzYiItdZ3SzjFcBMvGEqqooaSihmC4Go+3MGOgbCuRHauVGrHlC1ZlatFtK7aZNHBX3o622xOibMhOqZ1rX79Nfy8ajzwCX3wBV1wht3Nrq9Ouu04Cxm98o/N9q1ZBbW1+5/Brr4X582GffWRmNsgYr7/+FQ48MP/xw4Yx4PVGmr4SsZhED0cemX/ctgvzTjYWky3EgXwRSRWtIUPkOlWu99+Hm2+Gm24aHL+O+5Pjj5fAOxrd4qmqH9GgW6leku7qHe9YA4Ar1cHb6GZDsWjrcmLtqzqP9gpWyZixvCA7SaR1aSrIriXauiTTDCzNcHkJhSekRnfVEAqP77u54I6d2pV24fbIa1pmlPamz7GTsY2mgbvc3kzQ7XIHsmng6QZmqXTwDXf1DZe7V9L4B60vvoArr5QgZdaszvfPng1XXSWBNMguuCf1s//22zB9urxTW7Mm+zN7+ukScOfulg8blg3AleopF18sNfMlJdljr74qu9/XXAMnndS369l5Z5g3L3/euFL9lOPA97+f/ZG9775Cr2hwcbth9OhCr0JtLQ26leoFich6Iq1LMwGuPzSMYPmErW6UZltxErEmfIEh2d1xlxvHsXG7/XiDQ1Idx2W0l2VGaW/4lEhzLR0tdcRSc79zuT3BVGdxSRUPlo3N7Iz3lvTOvJ2MpzqCp2dZJwCHQOkoQuGJqa/Pk7P7buB2+2R3OtUR3OMvyzyvy+3VNPBCueIKCbivukpu77GHpEIffri0vr3qKvjlLyEchgkT5B3a5ZfLubvvLruM48bB+vXZbRKdgZLv5ZelOd2++8LEiYVezcAzZEj+7ZtvlnnZzz3X90F3aSnsvXffvqZS28gw4He/g8suk4QmpdSWadCtVA+TndpFgNRVb20NtJWMStp4rJFkoh0Ao8KFv2Q4AL7gMDz+MB5viTQHa0mlijfXEWtfTefO4uWZVPFQRQ3+khE9nlq9sTRwj6+MQOlIABzH2mwaODlDFFxur6aBF4v0DvdVV0FVFTQ2yjzsujoJuGfNkndmy5bJLmKazwdr10JQR6lt1vXXw/PPS3q9Bt29709/kotH3/xm9tjq1dJn4JRTspkaSimmT5frgrmuuQYqKuAHP9DO2r3p7rsltfzEE/W/hmKi/4Mo1cPc3iCB0tEYhotA2ZguBY22ZRLvqN/oaC+PrwzD5cFxHMxoAx0t0vAs0lxLIrq+03P5gkPzgmxvoKrbncUlDVx2pdMzp207Sdv6hZtMA8exIRV0u9w+vP5yDJcvpyO4P5UK7uv0UE0DLyK5gTdIwH3UUdnjJ54IO+0E++2X/zgNuLds6lTplpOeN616V0VF9uc47de/lrnv//kPPPhg7732mjXwwguyhqOO6r3XUaqXfPyxVBVZFuy6K3zpS4Ve0cB1223w2WdyjVCD7uKhc7qV6qZ0o7SSysm4vV0LJGRWdDKTMm5bJs318wHpsu3xhfEEKnCsBNG25ZkgO5lo3eCZDEnNTgXYoXB1ZuzVtnAcGzPWnJldbSfjqT/HAQdfsIrSqh0y5zeteisTcGeDaKmt9vhK+02Xc9UH/H5IpPoF/Pvf0hVaqWJ3yy2SP/vQQ3DEEXIsmZTsnJ6sv375ZRmLt9NOEr0oVWRsG+69V3ph3nNPoVczsF11FSxaBL/6lVRvqeKgQbdS22jDRmkbBqQbktFeLanU8Sbc3hBlQ7PdiWVcVwuJ6HoiLUuJttTljLgShuEmWD4up+nZxC4H+iDBfTaglnRwl9tPsHxcao0OzavnbXTn2jBceAMVeV+jGW/F5fLi8vg1DXwwSzdN8/kk8E6nlgM8+qjM0d5tt8KuUalt1dEBoVC24d+990ogfsMNknbeE95/Xwpkx43TrlRqwIhE4Otfh5//XMaNKTWYaXq5UtsgHllPtGUJtm0C4A8NJ1g+vtN52dFeDZix5rymZna8lbaGT4m2LJUZ2a1LcVLPl+Zy+wiWT8ykigfLx2+2GVs6Ddxx7LwxX63rPsIyo52aqgF4vCWZoNswDLyBSoBsF3BPALfHj+HydUpT786uuhog0gF3OtBO3wa44AL4znekwdprr+m7LlWccjucgwTFS5ZIvXdPmTpVGrgpNYD8+teS+PTRR7Iz6+tcTabUoKFBt1IpVjKG2xPY4jmR5lrMeAuQ7gRes8ngs6NpEYlYEyDNxsx4M8l4K4nIWmId9VL3nMPtDWW6ipdU1Eht+CY6iydiTdjJaF4auG3FcRwHj6+U8mG7Zs51bCsTcG+YBp6u0U4rrdoepbpkw4Ab8mu8W1vhK1+R4rPcmu7c8WFq0849F+bOlYZqxxxT6NWotP/9D/74RzjnnOyx+fNlFN4550iphVKKiy+GFSvghBM04O4ppgkulzaqK0b6rkcpINq2gtr5t1Oz14UEy8Zu8rxEtAEz3pJpkpZumGYl45gxSRsPVUzC7fFjxpqJta+mvfHz1E53Q6fn8/orsvXYFdX4QyMwDCOTBp6INUkwnYyB4aKkoia75pYlWMlYp+eU3ej8HemSyu0wDLemgauec911nQPutNzA+9prpSu0K/VzZ9sSgO+zj7S63XBsk8pasgQWLIDm5kKvROUKhaQ9c65Zs+C//5XtvJtvLsy6lOpnKis7V0s8/7wcu/12GD68MOsqZn/7G3zrW3DyyfDII4VejdoaGnQrBbSseQ8ci5Y173cKuh3byuw2B0pHYVtxAqWjwXGIta+WYDvehmW2k4isp3HlG8Q76jFjjZ1exxcaTklFDcFwNcGysXh8pXh8pZn72xs+w0y04Nid08BdLi/kBN3eQAVuy0zNr/anOoKnx2zlB925r6FUj9huOwmor7hi4/fPmiWB9nbb5Xcqf/FF2RX8/HMJ2NWm/epXUue7006FXonaHMeBo4+GTz/ND8ZbW6XZWlc69b/yimQ27LqrvpNWA5ZlSdXRokUwfjzceGOhV1R8Vq6Ua9eBqPS85wAAJ1VJREFUzSdmqn5IG6mpQc9xHBa9fi1mvBmvv5LJ+1+R2W2Oti4jabZTPmzXzA5x0ozQ3vCpjPiKricRWU8iuh7bim/wzEZqN3wM/pKR+ENDwXClGpjFcBwHl8tLxai9Mo9oW/8JZrwZkHrubF21H5c7IM+hVLF76SXJOTzzzOyxxx6Dww+HsHa8V0XKtrMZHQCXXioz1m+7TbpJbc6//y2B+957w7x5vbtOpQro3Xclyemvf4WyskKvpvhYFqxdK9f6Ro8u9GrU1tCgWw160bYV1L59S+Z2zd4/xuX2EW1ZimUlsK0YwfIJGIZBpLmOjubFRJoX49jJvOcxDDe+khH4QyOoHLU3wfAE3J4Abes/ztSA559v4HL7KR++e15AbyB115uq5VZqwFmwQLqbV1bKDrimnKtiZ1nyM/3xx10bodfQIN2mSkthr702f65SA8z550tS1IUXarsPNXDpj7YaVOIda4i1r8o71rZ+IeACbMCgftE/cXtLMWNNWGYHthXHMiNA/vUpw+XBFxya+fAGKjOBcknldpk/e/xhDJena2ngOR3HlRo0Wlthxx1h553zA27HyY5pGozefFO2NPbYQ0ZJqeLhdsN778FTT0kzwbRHH4W6OokySnPKfoYMgYMP7vNlKlVob7wBd98tv+oPOUR+3Sk1EOlOtxpUln30Z9rWfbRNj3V7SzOjuwyXF8exU7vVvmxH8FRA7csJwJVSXWBZEnxXysg6WlokCDn/fDj77MG5/fHVr8J//gN//jOcdVahV6O6K5mUi0uLF8NNN8GPf1zoFSlVcI4jjdWWLpWBGGrzrrlGrtedfTZUVRV6NWpraNCtBhUrGWXVp4/SuvaDLj/G5QlRWrk9w7c7Bn+wAoBYez3JRBtubxCXy4fhcmO4PBiGfJZdbO0SrtQ2+/Wv4Wc/kyBlwYLBOR/lRz+SbaBZs+Coowq9GtVdliWFrH/4g8zkTu90L1sGHR3SiG3oUDjwwMKuU6kCW7dOxoxdfz0cdFChV9N/2LZMJEwmYflyGLvpYTuqH9KgWw06juPQvPptVn/+OI5tI2nlG2G4KB+2O8FwNS6Xi4qR03C5Zf5qpGVppzT1XOXDd8+kisfa60lE1kpgbng6Bei+4FBcbi8AtmXiODYul0d3ytXgFotJcDJpkjSYAtkSef55abg2mNPO1cByzDHS1T8SkQhjzpxCr0ipgvrBD+DOO2H33aXxmkv3MACIRmUS58qV8Je/DM4EsGKm3y416BiGQeXo6YTCE1n89s2pwHuDc1xeqve8EF+wCsdO4jgWhsubud/jK8VfMgLHtnAcK3OOYydx7CSunIDZtuIkzY5NrsfjD2eC7nhkDdHW5elV4NogQA+Fq3F7ZfxMMtFOMtEu97vcMofb5ck5X4N2VcQCAbjoovxj//wnnHiipJ2/+KIG3qr4tbfDO+9IwF1ZCVOmFHpFShXctdeCacK3v50NuAd7iw+Q6YO/+U2hV6G2lQbdavAyXDi2udG7HNvEnRrZtTG+4BB8wa51WPaXjMDrD2cCc7tTgJ4N5nEcDMNAElAcbDsJOV3SnZxmbma8OSdA76xs6C54/eUAJKINxDvWdtplN1xuXIYnL/B3HLkIoenxqt9Zu1ZScg84QN99qeJ0663wr39JTffUqfLz/Oc/w5FHSvvmO+8s8AKVKryKCkl0yvXgg/Dkk/C738HIkQVZllLdokG3GrRa130IGEhX8lT3csMFjnQxb133IUMnfKnbr+P2BDYZvG8oWD6OYPm4nB10C8eR4Ny2Ldyp9HZ53iC+4JANdtklqAcHw5X9520lo5n53xtTNnSX7G57x1oiLXUYhqtTgG4YHgJlYzKp81YyimVG8s9L7bJr0K563Pe/LzvdPl/22Oefy474NdfA9OmFW1tv+MlPYO5cuPLKbIq9Kg6mCfPnw6JF8M1vZo+/8IJkabz4ogTdICnln34K229fkKUq1d/F4zL2vr5eRtlfdlmhV1QY0Sh4vZpWXqz026YGrdY175MeA1ZSUcOIycdQv+gpIs2LAYeWtR/0SNC9LQyXGwM3bCZDfHO77Y5tyQWE9LmBKlxuf6cAPX07HXADOE4y9dnGsRKdnttfMiLzZzPWQqSlbuNfg+GmtGp7vIEKOTfeQiKyrlMQn959d3tCeetQaqOGDcu//ctfwn//K+9C/vWvwqypt3z2Gbz1lnQVUv1bMinN0MJhuV1XB/vvLxeIvvY1yQsFuXD01a/mz+0OBGCHHfp+zUoVCb9fBjnccov0l0wbbCnn118vH5dcIr1GVXHRoFsNSolYE7H2lYDBiElfZcj4gzEMFxP3OJf1y15m7eJniLWtwIw14Q1UFnq5W23Dem63N4S7izPAA6Vj8JeM3GSAnrtr73J58PjKsrvyqXMA+ZwT+FtmlHhk08FDadUO+IIy/yIeWU+kpRbD8HSqUzdcHnyh4ZnddtsysZLRzDnahG6QmT1bAu6LL84e6+iAFSuKP5CZNUuCtN13L/RK1ObceSf8/OdwzjmSPg4weTLstpukjDc1ZYPuY44p2DKVKmZTp8L992dvO450OD/gAAnEB8Pu76pV0sG8rKzQK1HbQruXq0HJjDWz6tNHGVZzJKHy8Z3uj7QsZV3dc4ze8WuZnVrVNY5jZ9LjXS5vJgCWxm+tqVT5ZKcmdCUVNXh88j9JrL1+kzvosGGAvo6Opi82OCPbhC4YnogvdeEkaUZktz2zy57fhM7l9mvAPhDccIOkZF95paSdK9VTfvc7Gfd1xx0wYYIc+/vf4RvfgBkz4NVXC7s+pQaJ//xHEkb8fli4UAZdDHSWJa1NfD4Y0rW2QqofGQTXhZTqzBuoYMLU727y/lB4wmbvV5tmGC4MtwvITxX3+Erx+Eq79Bz+0DC8gXCnXfZ0E7p0B/f067k9gWz9+4ZN6HKuK1pmx2ZHvZVUboc/JOnLZryFSHNtage986g3b6Ays9vu2Ba2lcgJ4rWevaA+/VS2AyZPLvRKVLGybfjoI5mhnbs7/dBD8OabcPLJcNZZcuzLX5a5RrvtVpi1KjUIffnL8Kc/yQCA3IB7IKecu90walShV6G2le50K6UGlA130F2eIK5UU7lkop1EtKHTiLd0enyoclJmVzweWU9H06JNvk5ugJ6INdHe8Gnmvg2b0AVKR2d25q1kHDPakA3itQld75g/H/bYQ96lADz7rDSx+ulPYejQwq6tqz74ANavh512gtGjC72agc22IZGQ+mqQwHq//aCqSmrq03OL/vIX2Wo64YTBsbWmVBFZvFh6bd56KxxySKFXo1Q+DbqVUmoj0rXieQF6TqDuLxmRSYdPRBvpaP5CGthtxOYC9A2FwhMJlMql7KTZQaS5LlvXntt8zpB6+vSuv+PYOI4tgftAvcy/rWwb9toL3ntPgu5f/arQK+qaY46Bp5+Ge++VgbWqd9xyi3Qn+uEP4aqr5JhpwvjxUkj6179qLqdSReD00yUZ5UtfkmusA+m/wlgMLr9crr9efPHgqGEfaPRbppRSG+Fye7vcTd0XrMIXnI7jOBsJ0C3c3pLs87q8+EPDsrXtuc3qHCtv1JttJUgm2jb5uqHwxEzQnUy007Z+IUAmKM9tQucLDcvsttuWiRlvzukkP8Cb0BkGXHuttHu95JLs8fXrpcFVScmmH1tIEyfCrrtCZfE1c+yXHEeG/778Mvz+9zIMGORnYP16Gc+W5vXCypXZHW6lVL93112SnHLRRdmA27YHxj/jVavk+mAwKNMkVfHRnW6llOonHMcGyKSXp4PubFCe24QuSaBkZKa7/tbsoJvx1kyA3pkh8+LLxgBgJWNEW5du0Hgu+2e3J9jlOfT9zre+JePG7rkHjj220KtRPclx4IsvYPVqmYOdtsMOMtv9qaeytdpr1si5e++dPwNeKVX0fvMbeOMN6X1YzFU66aDbNLNDElRx0aBbKaUGiGzn+GTnUW++skzjt2SinWjr8vzzMk3oNkhxT7TRum7BJl8zWDaWYPk4ACwzQuu6DzdoPJf9szdQmamZd2yLZKI155w+bkIXjcoorkWLZBb29Ol987qqdziOtPZN51w++6x0Wpo0SQLqtFtvhbY2OPVUGeellBqwWlth3Dj5/Mc/wtlnF3pFajDToFsppRSQbUKH4co0n7OtOIloUypATwfx2T/7S0dl6tW3NkBvWftBp3PSTej8JSMzu+22nSTaukzS33MD+nRavNvf5VKAPKYphX9f+Ur22AMPSC7iKadkm7Cp/u03v5FRXj/9KVxwgRxrbZU2v3vtJbOFQqHCrlEpVRAffSQB9803D7yUc1VctKZbKaUUkKoFJz/QdLn9BEpHdunxbm8J4RHTNtIZXj57fOWZcx3A4y1J1bUnM03oHMfGsRKQSrUHcKwE8Y41m3zdQOlIQuFqQFLyW9ctyJu/npsW7/GV4Q1UyPN63FiHHoiRjMk57RGMH/9Y6nvdbgm8C+nKK+H116WA76ijCruW/sA04eGHZRb2nXdmU8ETCVi+XGq100F3eTk0NWm6uFKD3K67Slp2mmnCzJlSXXLJJdK+oRi0tUk9tzZQK166062UUqrgNmxC53J5cLn9gATS8Y41eTvsuU3ocnfFN7WDnrZhgN5c/072zmiM4H2P4n32FSJP/wVv2Qh53qYmnHA5sY7VG4x3k4DeldNVvkcdd5zUHt9zD3z3uz373MVg5UoZz7XHHnLbtmHEiGzTs/33l+N1dTIraL/9+m9TPKVUv/Dww3DaadKf8tNPYfjwQq+oa045BR59VK43nntuoVejtoVeL1FKKVVwhmFgGB5wdf5vyeX2ZdLSt8Tl9lM+bNf83facJnR5u+2OjcvtSwX6NgQDRH9wJtELzgAnjsdOSK3wV74CHg/x6y7A3m7iRl/XHxpGSaXUCDu2Rdv6hRttPGcYHtzeEF5/dh22lcjMaM9zySVSe7z33l362oue42TzPx97DL72Nam1f+stOeZywfe/D8lk/jvl6mr5UEqpLTjlFPkV4vPl/xqxrP5dUVRfL9cddZhF8dKdbqWUUoNepgldTrq74fbh+WIpTJuGYxhE33sJe1hl52Z1jsxt3+QO+gY2DNCbVs8DshcecpvQeQNhAqXZlrvxjjU5u+wbNKvrqyZ0Pe3GG6Xo8he/yKb0L18uI9P23htee01zKpVSvWb+fNn9vvtuOPTQQq9m42wb1q2TZJ7S0kKvRm0L/V9MKaXUoGcYLgy3CzZsyLbTTvDFFxhvv01oh32yx//wB0lv3lVSn52cGnTDcFM6ZMeNNp5znCRuX/Ydk+NYgAE4qRR7E2wzc39ugzjHtuhort3k1+ALVlFatUPmdnvDp5DaQc+d2W6kUvc9eetwMNK7zL0lHpd0+XnzJNBOv96aNfDZZ/Dii9mge9w4qckuL9/08ymlVA/4xS9kkMV99/XfoNvlkuoaVbx0p1sppZTaGosXw447Sj7iJ5/I7Oducmwrr07dsZPw2We4WiN4dpgCI0Zg20kiTYszQfyGTeg2tYO+Mb5AJaVDdszcblr1FmDkpMFnA3W3tyQzQg5kJny6y3xejfuGQXtDAzQ2wuTJcjsWk9zIWEz+3nZMvf6CBfJ3etBBmjuplOpzbW0wezZceikMk2EcJJOSbt7b1yLV4KE73UoppdTWcLvhxBPlnVpuwB2Pg9+/TU9puNy4N6zpvuZG+Oc/ZVf9e9/D5fJQOqRzgJ9uQpf/hAYlFZNymtPlN6Fze7MjtCRFXnbqHcuCDZ7KF0hCTtDd0fh53s5+7tfg9VdQWrU9/OUvcNZZWIfNJP7YnzOBuffUr0EggO3EcSWjuD1BmDJFPpRSqgDKyiT5JtdPfyq733fdBWPHFmZdaUuXwq23yn832kSteGnQrZRSSm2NiRPhkUdk9kxaJAI77wxHHw3XX98zadEjR0JNjbwj3IxME7q8Yy78JV1ry2u43FSM3Gvjo95sC5cneyHBcWzc3pK8c/x33I/vX/8jcsUFcPgRcuLuu8v5DeuIta3KbhfNPi/1TBG8zbWUDd0l89wtaz8Ax+68g+7y4PYE8JdkcyuTifYNdtv7cQckpVRRWbNGgu1YDM47r/BB9yefSNC9224adBczDbqVUkqpbZE74PXJJ2U74umn4eabe+b57767Z56nC6R2fAsDa+NxjP/9j/KPPpJtoBRn1V0YCz6n9N3lOCdPlIO77oqzejVmiUVgI53kHTuZGQmXZidjG91BB/D4yvKC7vaGT7Fzat+zTegkHb60anLmvlj7KhzHkXT5jTShc21Yx6+UGtRGjJDmav/8pwyvSDPNwsz1HjdOUt+HDu3711Y9R2u6lVJKqZ7w0ksQjcJXvyq3HUc683ztaxAOF3Zt26K9HVpaYIzMQKehQQoeHUfm16S7+rz+OixbBocc0q1OP5YZyalrz0+Ld7l9eXXlLWvex7FNbNsC8t/GeHxllA/Lpqs3r56fF6DncntDhIfvnrnd1vApjp3M20F3Zeax+/CFsu96bSsOuIq7c7xSqkva22HPPeHMM+Gyy2TkmFJbQ4NupZRSqjc89xwceSSMHi2NwgKBQq+o6/7wB7jgAvjGN+DBB7PHjztOAu9Zs2DChMKtL8eGTegMw8Djy6bkR1qW4thmzi57tgmdx1uSl+K+NQF6y5r3sZJRgLwddJfLg8sdoKRyUubceGR9NnXe5d5yEzqlVL/y+99LqvmECdL7Ucd2qa2l6eVKKaVUb/B4ZOTYkUfmB9y2LfNftuSGG2QX+fzz83Mce9qNN8oor9tvh2nT5NjkydKdfcmS/HOffLL31rGNNtqELkco3PWLAyVV23cK0HPntuf7//buLsTuu87j+PecmclMMkmaNOShUboqdbdlbWlra1BhCwo+UpD1Sm9V6sWugjciXkgX3L2xKIpQRfBCFkV8WK+qF/URBR9QtLrrurbd2u1D2rRNM5mHM3Me9uJ/5pw5M7FJNJ8k07xeEJo5/WfmhJYh7/x+v+9vvGYxGPRGQ+h6VTU10514cmXh/0aBvll7arb2Hbl19PHSyYer31s9Y6C329M1Mzee8D4Y9K2yw0Vw113NhqVDhyaD+6+Yn3nOnnmmGRNyKba2c+GIbgBIeMMbqh54oJnGs+5Pf2ougv3wh6ve854Xvo/mF79ozoi//e0X5v2srjYR/8c/Vr33vePXf/Sjqh//uOr++8fR/frXVz38cDM07goyM3vuA/CuOnxLDQb9YZhPDqFr7l4fm57dW+3p2Q3b5tf/2d8yBG6t8/wLBPqO2nfk1aOPF078Z/XWTg/Ps28K9KmZ2nXVyyc+72DQH55tH18NZwgdnF2rVfWud02+dt99zd+J3ntv83erKW96U9WvflX17W83P2d7sr0cAC6WD32o6pOfbM4/f/e7L/zs/fc3w9le+9pmxfx8dTpVi4tVV1/dfPzgg1XXXdcsl5w8WbVreG3YffdVPf5486fGSz2m9wozGPRHIbxudfnZ6vdXtwZ6v1et9lRzJdvQxi3um20O9FNP/7a6qwtbnmu1WtWemq2rDt8yem154bHq9zqjiN88hG7j9n24Ut1xR9UPf9h8W7/nntzXeelLqx57rOqXv6y65ZazP8/lSXQDwMWyvNwsi7zudVXHjjWvdTpV3/lO1Z13vvDK9/n49Keb1fT3va/5eVUzAO3YsSa877mn6pprXvhzcNnbek59HOjVqpqbPzJ6dvG5B6u3tjh6ZuMQunMN9KrmOrr9R4+NPj797H83V7htOqfeHgb6zr3Xjp7trS0NV/ennWdn2zt9uuoTn2gmi8/PN6+trDTbzS/k/9b9ftXTT1ft32+A23YmugHgUvrMZ6o+8IGqd7yj6pvfPP9ff889TbR/7nNVLx9uJ/7a15qp6XfcUfX971/Id8uLSH890Af9mprZOXq9s/T08Aq3ccSvx321WrX34I2jZ88n0Bee+a9aWzm56ZnxCvregzeNInz9PUwE+sRVbzsEO5edd7+7ufTh3nubq75gnTPdAHApra01yyRvecvk64880vzp7ejR5oLWbrfZX/joo1XvfOf4uW98ozmr/b3vjaP7zW+u+t3v/rJt6Vwx2u3pqvbWPwrO7jp4zp9jfv8rm+FzZwr0Tde5rcfy+nn2qvEQula/PRHRq8sntgT6Rk3MN88vPf+/1e2cmlxtb4/Prc/OHx4NnOv3VqtqMDrXDhfKQw9Vff3rzbfq48dFN5OsdAPApfbUU1X79o33Dv7gB811XcePV332s820np//vOo1r2meO3GiamoYDF/+cvPxnXdecYPP2L7GQ+jWQ70/Mcius3i8umuLk8+sD6obDGrfNbeNnl145ve1tvLcn/1a+48eG0X36Wf/p1aXT1RVc5598xC63Vf/3SjG11ZOVq+3MnrGEDrO5ve/b75933XX+LWlpfEIjfP1059WfeUrVbff3qyis31Z6QaAS+3QocmP7767Ce7Z2aqdw22/t9zSXBJ7883NILQDB5rXN4/UhW2g1WpXa6pdVWe+B2l2/nCd601MO/deW3Pzh5uz7VsCffO1aoNqtVo1GAyGP9aqNt7NvmG1vbP09CjQz2TfkduqPdW8/5XTj9da5/mJlfb2hqCfmd03ivT1bfque3vxuf765se648ebb9nvf3/VRz5y/meyf/azqk99qtncJLq3N9ENAJebL3yh6uMfb/6k9ba3Na9NTzfXeDnHChOmZ3ZVzZzbUuL69PczD6HrTYTw9I7dVdXfMkl+fQjdxpXu7uriC26H33fktmpV8/zSqUeqs3i8+YuHiTPrzT93XfWyUcx3V09PTJI3hG57+dKXqp58supb36r66EfP/9ffemszqO3GG8/+LJc328sBAOAcNSvkvYmr3rqrC9Xrrmy4r319xb2J+90HbjjjFvcz2biCvnjyoeosHj/jc63WVO09dFNNTc9VVVVn6UR1OyeH29+ntwyhm57ZbUv8RTYYVH31q1WvfGUT0OuvLS5W7d59ad8bF5foBgCAi2Q92seBPjmEbnb+yCjQV04/XqvLz256vj/6XBsDfenkw7Wy+OSf/bpXHb65pqab4yrLpx6tlcUnhlvgp7espM/tvqbaU81e6F53pfq91WbL/Cjoxftf6otfrPrYx5oLJ9761kv9brhYbC8HAICLZH2A25kmx282t/toze0+OvHaxiF0rQ2fY2bn1dWemh2ea98a9K3W+Nn113rVq+p1tnzd2fnxnInVpadqeeGxM/4eWu1m+NzUcHv/2srJ5mz7xuvdNv58evaKPss+GDSzMR99tOq3vz17dD/5ZDO+Y+bMow/YRqx0AwDAFaTf79agtzbcBt/dMoRubs9LRtvnVxYer87S8fE5+E3pMLmC/qctgb7R3oOvqukde6qqmVC/cvqJienxG4fQ7dh1oNpTzTi9/vC9jqfHb99wX1xs7vH+4AebUR1VVadOVe3Zs3Vkx969VadPV/3hD1XXXXfx3ysXjugGAADOyXp894eBPr1j9yiC11aeq7XOqU3n2scr7nsOvuovCvSV04/X0vOPjP7d5iF0u6562XDwXTN8rrt6auvguct0CN1gUPXGNzaTzT//+aprr21eX1xsbojsdqsWFpwB3+5sLwcAAM5Jqz1VrZqqMx3rnpnbXzNz+8/p88zOH67p2X2btsGPY339THlVVQ2arzvo95oPB/0a9FareqvjB4a6q6cmAn2zPQduqJm5fVVVtbr8bHUWn9gQ5ZND6GZm945W2wf9Xg1qcMGj/YEHqn7yk6p2uwnsdfPzVZ1O1YkTgvvFQHQDAAAXVXtqdhS0ZzO352jN7TnaxPagv+XMenu4el5V1Z7eWbO7DjZb6LcEfX9iCFy/t1JrnVN/9uvuOXDD6D2uLp+oxZMPVVVrOFBuw+p5e6rmdr9ktNre665Ud3VhtLLengj6yb+tuOmmql//uuo3v6l6xSvGrz/3XNX+/VWHDhUvAraXAwAAL3rN5PfWaKW6112u3trSpnPt41jftfdvRkPiNm9x32zjCnpn8fgw0LdqtVo1v/9va8fOq6uqaq1zqjqLT06stv/xwdl6/T8cqH/+p27d/S87Rme/2b78JwQAAF70Ng9gm5reOTpjfjZzu4/W7PyRievdBv3h2fZBt6Zmxp+n1Z6pmdl9E4Pq1ofQDQaDiffR7y7X6vIzE1/r37/00lpYaNe//tuO+sd3Vr361X/Fb5rLgpVuAACAsNFVbxu2mffWlmqt8/xwG3xvGPLd+o9v7arbj83V9X9/8BK/ay4E0Q0AAAAh2/eSOwAAALjMiW4AAAAIEd0AAAAQIroBAAAgRHQDAABAiOgGAACAENENAAAAIaIbAAAAQkQ3AAAAhIhuAAAACBHdAAAAECK6AQAAIER0AwAAQIjoBgAAgBDRDQAAACGiGwAAAEJENwAAAISIbgAAAAgR3QAAABAiugEAACBEdAMAAECI6AYAAIAQ0Q0AAAAhohsAAABCRDcAAACEiG4AAAAIEd0AAAAQIroBAAAgRHQDAABAiOgGAACAENENAAAAIaIbAAAAQkQ3AAAAhIhuAAAACBHdAAAAECK6AQAAIER0AwAAQIjoBgAAgBDRDQAAACGiGwAAAEJENwAAAISIbgAAAAgR3QAAABAiugEAACBEdAMAAECI6AYAAIAQ0Q0AAAAhohsAAABCRDcAAACEiG4AAAAIEd0AAAAQIroBAAAgRHQDAABAiOgGAACAENENAAAAIaIbAAAAQkQ3AAAAhIhuAAAACBHdAAAAECK6AQAAIER0AwAAQIjoBgAAgBDRDQAAACGiGwAAAEJENwAAAISIbgAAAAgR3QAAABAiugEAACBEdAMAAECI6AYAAIAQ0Q0AAAAhohsAAABCRDcAAACEiG4AAAAIEd0AAAAQIroBAAAgRHQDAABAiOgGAACAENENAAAAIaIbAAAAQkQ3AAAAhIhuAAAACBHdAAAAECK6AQAAIER0AwAAQIjoBgAAgBDRDQAAACGiGwAAAEJENwAAAISIbgAAAAgR3QAAABAiugEAACBEdAMAAECI6AYAAIAQ0Q0AAAAhohsAAABCRDcAAACEiG4AAAAIEd0AAAAQIroBAAAgRHQDAABAiOgGAACAENENAAAAIaIbAAAAQkQ3AAAAhIhuAAAACBHdAAAAECK6AQAAIER0AwAAQIjoBgAAgBDRDQAAACGiGwAAAEJENwAAAISIbgAAAAgR3QAAABAiugEAACBEdAMAAECI6AYAAIAQ0Q0AAAAhohsAAABCRDcAAACEiG4AAAAIEd0AAAAQIroBAAAgRHQDAABAiOgGAACAENENAAAAIaIbAAAAQkQ3AAAAhIhuAAAACBHdAAAAECK6AQAAIER0AwAAQIjoBgAAgBDRDQAAACGiGwAAAEJENwAAAISIbgAAAAgR3QAAABAiugEAACBEdAMAAECI6AYAAIAQ0Q0AAAAhohsAAABCRDcAAACEiG4AAAAIEd0AAAAQIroBAAAgRHQDAABAiOgGAACAENENAAAAIaIbAAAAQkQ3AAAAhIhuAAAACBHdAAAAECK6AQAAIER0AwAAQIjoBgAAgBDRDQAAACGiGwAAAEJENwAAAISIbgAAAAgR3QAAABAiugEAACBEdAMAAECI6AYAAIAQ0Q0AAAAhohsAAABCRDcAAACEiG4AAAAIEd0AAAAQIroBAAAgRHQDAABAiOgGAACAENENAAAAIaIbAAAAQkQ3AAAAhIhuAAAACBHdAAAAECK6AQAAIER0AwAAQIjoBgAAgBDRDQAAACGiGwAAAEJENwAAAISIbgAAAAgR3QAAABAiugEAACBEdAMAAECI6AYAAIAQ0Q0AAAAhohsAAABCRDcAAACEiG4AAAAIEd0AAAAQIroBAAAgRHQDAABAiOgGAACAENENAAAAIaIbAAAAQkQ3AAAAhIhuAAAACBHdAAAAECK6AQAAIER0AwAAQIjoBgAAgBDRDQAAACGiGwAAAEJENwAAAISIbgAAAAgR3QAAABAiugEAACBEdAMAAECI6AYAAIAQ0Q0AAAAhohsAAABCRDcAAACEiG4AAAAIEd0AAAAQIroBAAAgRHQDAABAiOgGAACAENENAAAAIaIbAAAAQkQ3AAAAhIhuAAAACBHdAAAAECK6AQAAIER0AwAAQIjoBgAAgBDRDQAAACGiGwAAAEJENwAAAISIbgAAAAgR3QAAABAiugEAACBEdAMAAECI6AYAAIAQ0Q0AAAAhohsAAABCRDcAAACEiG4AAAAIEd0AAAAQIroBAAAgRHQDAABAiOgGAACAENENAAAAIaIbAAAAQkQ3AAAAhIhuAAAACBHdAAAAECK6AQAAIER0AwAAQIjoBgAAgBDRDQAAACGiGwAAAEJENwAAAISIbgAAAAgR3QAAABAiugEAACBEdAMAAECI6AYAAIAQ0Q0AAAAhohsAAABCRDcAAACEiG4AAAAIEd0AAAAQIroBAAAgRHQDAABAiOgGAACAENENAAAAIaIbAAAAQkQ3AAAAhIhuAAAACBHdAAAAECK6AQAAIER0AwAAQIjoBgAAgBDRDQAAACGiGwAAAEJENwAAAISIbgAAAAgR3QAAABAiugEAACBEdAMAAECI6AYAAIAQ0Q0AAAAhohsAAABCRDcAAACEiG4AAAAIEd0AAAAQIroBAAAgRHQDAABAiOgGAACAENENAAAAIaIbAAAAQkQ3AAAAhIhuAAAACBHdAAAAECK6AQAAIER0AwAAQIjoBgAAgBDRDQAAACGiGwAAAEJENwAAAISIbgAAAAgR3QAAABAiugEAACBEdAMAAECI6AYAAIAQ0Q0AAAAhohsAAABCRDcAAACEiG4AAAAIEd0AAAAQIroBAAAgRHQDAABAiOgGAACAENENAAAAIaIbAAAAQkQ3AAAAhIhuAAAACBHdAAAAECK6AQAAIER0AwAAQIjoBgAAgBDRDQAAACGiGwAAAEJENwAAAISIbgAAAAgR3QAAABAiugEAACBEdAMAAECI6AYAAIAQ0Q0AAAAhohsAAABCRDcAAACEiG4AAAAIEd0AAAAQIroBAAAgRHQDAABAiOgGAACAENENAAAAIaIbAAAAQkQ3AAAAhIhuAAAACBHdAAAAECK6AQAAIER0AwAAQIjoBgAAgBDRDQAAACGiGwAAAEJENwAAAISIbgAAAAgR3QAAABAiugEAACBEdAMAAECI6AYAAIAQ0Q0AAAAhohsAAABCRDcAAACEiG4AAAAIEd0AAAAQIroBAAAgRHQDAABAiOgGAACAENENAAAAIaIbAAAAQkQ3AAAAhIhuAAAACBHdAAAAECK6AQAAIER0AwAAQIjoBgAAgBDRDQAAACGiGwAAAEJENwAAAISIbgAAAAgR3QAAABAiugEAACBEdAMAAECI6AYAAIAQ0Q0AAAAhohsAAABCRDcAAACEiG4AAAAIEd0AAAAQIroBAAAg5P8BTnCkPC6JQaAAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ag = AcquisitionGeometry.create_Cone3D(source_position=[0,-500,0],detector_position=[0,500,0],\n", + " detector_direction_x=[0.9,0.0,-0.1],detector_direction_y=[0.1,0,0.9]\n", + " )\\\n", + " .set_panel(num_pixels=[2048,2048], pixel_size = 0.2)\\\n", + " .set_angles(angles=range(0,180))\n", + " \n", + "show_geometry(ag)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In 3D datasets we can tilt the rotation axis to describe laminograpy geometry by changing `rotation_axis_direction`" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "execution": { + "iopub.execute_input": "2024-10-10T15:02:40.324674Z", + "iopub.status.busy": "2024-10-10T15:02:40.324284Z", + "iopub.status.idle": "2024-10-10T15:02:40.545305Z", + "shell.execute_reply": "2024-10-10T15:02:40.544793Z" + } + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA90AAAPdCAYAAACXzguGAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeVxU5f4H8M+ZYWYYGHYENwQVQc211FxKrDTLFvV3b3XLXMqstFIztdUybdUsrWt165Zaadt1qcxKMzXTVBRxRVAEVwxB9m227++PiaPDrjIM4Of9es1L5znbdw7nOXO+c57zPIqICIiIiIiIiIio1mncHQARERERERFRY8Wkm4iIiIiIiMhFmHQTERERERERuQiTbiIiIiIiIiIXYdJNRERERERE5CJMuomIiIiIiIhchEk3ERERERERkYsw6SYiIiIiIiJyESbdRERERERERC7CpJuIiIiIiIjIRZh0ExEREREREbkIk24iIiIiIiIiF2HSTUREREREROQiTLqJiIiIiIiIXIRJNxEREREREZGLMOm+TKmpqVAUBfHx8ZXOs3HjRiiKguzs7DqL63JERERg/vz56ntFUbBq1Sq3xUNU12pSr+uLAQMGYPLkye4Oo1JlzycVmTlzJrp161Yn8VD16vsx1VDU9DzC/U1E1Pgx6aZqpaWl4dZbb63VdTaEi4yaJAtUf1zqMTVmzBgMGzbMqSwsLAxpaWno1KlT7QTnQitWrMDs2bPdHUalYmNj8fDDD6vvK/oRb+rUqVi/fn0dR0a1ZfHixfD396/19TaE74mqlD2PVPYDfH2vw0REdPk83B1AQ2Y2m90dwiWz2WxQFAUaTfW/uzRt2rQOIqJ6LSkJSE4GIiOBdu3qdNNmsxl6vb5Ot6nVahvMcR8YGOjuEKrUpEmTaucxmUwwmUx1EE3D4Mbq1ii54xwC1Pw8Ut/rMBERXb5LvtMtIigoKKjzl4jUKL4ffvgB/v7+sNvtAID4+HgoioJp06ap8zzyyCO499571ffLly/HVVddBYPBgIiICMybN89pnREREXjllVcwZswY+Pn5Ydy4cRVue82aNYiKioLRaMQNN9yA1NTUauPNzs7Gww8/jNDQUHh6eqJTp05YvXp1jWPLysrCqFGjEBAQAC8vL9x66604fPiwOr30TsTq1avRsWNHGAwGHDt2DOnp6bjjjjtgNBrRunVrLF26tFxsF96ZKm0ut2LFCtxwww3w8vJC165d8eeff6rzZ2Zm4t5770XLli3h5eWFzp0748svv1SnjxkzBps2bcKCBQugKAoURVH30cGDBzFkyBCYTCaEhoZi5MiRyMjIqHS/HTt2DHfccQcCAgLg7e2Nq666CmvWrIGIIDIyEm+99ZbT/Pv374dGo0FycjIAR7PWVq1awWAwoHnz5pg4cSIAxx2WY8eO4cknn1RjLLV161b0798fRqMRYWFhmDhxIgoKCtTppcfJqFGjYDKZEB4eju+++w5nz57F0KFDYTKZ0LlzZ+zcubPSz1VvnDsH3HILEB0NDBkCREU53mdluWyTAwYMwOOPP44pU6YgODgYgwYNAgBs2rQJvXr1gsFgQLNmzfDMM8/AarUCqPyYstlsGDt2LFq3bg2j0Yjo6GgsWLBA3dbMmTOxZMkSfPfdd+pyGzdurLBZaFXbL4174sSJmD59OgIDA9G0aVPMnDmzys8aGxuLQYMGITg4GH5+foiJiUFcXJw6fePGjdDr9di8ebNaNm/ePAQHByMtLU3d7oV3A99//320a9cOnp6eCA0NxT//+c9Kt196Xli1ahWioqLg6emJQYMG4cSJE07zffDBB2jbti30ej2io6Px+eefO02vrB4Bzi1GIiIiAADDhw+Hoijq+7LNy+12O2bNmoWWLVvCYDCgW7du+Pnnn9XpNTkPNURuqG4oKChQz1XNmjUr990COJLW6dOno0WLFvD29sa1116LjRs3AnAcow888ABycnLUOlR63Fe1XKktW7YgJiYGXl5eCAgIwODBg5GVlVXl90RN6mJF55CySlu5vPzyywgJCYGvry8eeeQRpx/US0pKMHHiRISEhMDT0xPXXXcdYmNj1elZWVkYMWIEmjRpAqPRiHbt2mHRokUAnJuXp6am4oYbbgAABAQEQFEUjBkzRo33wjpc0+/zX375BR06dIDJZMItt9yinhOIiKgekkuUn58vAOr8lZ+fX6P4srOzRaPRyM6dO0VEZP78+RIcHCw9e/ZU54mKipIPPvhARER27twpGo1GZs2aJYmJibJo0SIxGo2yaNEidf7w8HDx9fWVuXPnyuHDh+Xw4cOSkpIiAGT37t0iInL8+HExGAwyadIkOXTokHzxxRcSGhoqACQrK6vCWG02m/Tu3VuuuuoqWbt2rSQnJ8sPP/wga9asqXFsd955p3To0EF+//13iY+Pl8GDB0tkZKSYzWYREVm0aJHodDrp27evbNmyRQ4dOiT5+fly6623SqdOnWTr1q2yc+dO6du3rxiNRnnnnXfUdQOQlStXioion7d9+/ayevVqSUxMlH/+858SHh4uFotFREROnjwpc+fOld27d0tycrK8++67otVqZdu2berfpk+fPjJu3DhJS0uTtLQ0sVqtcvr0aQkODpZnn31WEhISJC4uTgYNGiQ33HBDpX/n2267TQYNGiR79+5V99umTZtEROTVV1+Vjh07Os3/5JNPSv/+/UVE5NtvvxVfX19Zs2aNHDt2TLZv3y4fffSRiIhkZmZKy5YtZdasWWqMIiJ79+4Vk8kk77zzjiQlJcmWLVuke/fuMmbMGKfjJDAwUD788ENJSkqS8ePHi4+Pj9xyyy3yzTffSGJiogwbNkw6dOggdru90s9WLwweLKLVigDnX1qto9xFYmJixGQyybRp0+TQoUOSkJAgJ0+eFC8vL5kwYYIkJCTIypUrJTg4WF566SURqfyYMpvN8uKLL8qOHTvk6NGj8sUXX4iXl5d8/fXXIiKSl5cnd999t9xyyy3qciUlJeXqdXXbL43b19dXZs6cKUlJSbJkyRJRFEXWrl1b6Wddv369fP7553Lw4EE5ePCgjB07VkJDQyU3N1edZ9q0aRIeHi7Z2dkSHx8vBoNBVqxY4bTdSZMmiYhIbGysaLVaWbZsmaSmpkpcXJwsWLCg0u2Xnhd69OihngN69eolffv2VedZsWKF6HQ6WbhwoSQmJsq8efNEq9XKb7/9JiJV1yMRR30oPZ+kp6cLAFm0aJGkpaVJenq6iIi89NJL0rVrV3WZt99+W3x9feXLL7+UQ4cOyfTp00Wn00lSUpKI1Ow81BC5obrJ+PHjpWXLlrJ27VrZu3ev3H777WIymdRjSkTkvvvuk759+8rvv/8uR44ckblz54rBYJCkpCQpKSmR+fPni6+vr1qH8vLyql1ORGT37t1iMBhk/PjxEh8fL/v375f33ntPzp49W2mdrmldLHsOqcjo0aPFZDLJPffcI/v375fVq1dLkyZN5LnnnlPnmThxojRv3lzWrFkjBw4ckNGjR0tAQIBkZmaKiMhjjz0m3bp1k9jYWElJSZF169bJ999/LyLidB6xWq2yfPlyASCJiYmSlpYm2dnZarwX7u+afp8PHDhQYmNjZdeuXdKhQwe57777Lu9gICIil2m0SbeIyNVXXy1vvfWWiIgMGzZMXn31VdHr9ZKbmytpaWkCQP0yvu+++2TQoEFOy0+bNs0paQsPD5dhw4Y5zVP24vzZZ58tl0w9/fTTVSbdv/zyi2g0GklMTKxwenWxJSUlCQDZsmWLOj0jI0OMRqN88803IuL4kgYg8fHx6jyJiYkCQE2GRUQSEhIEQLVJ93//+191+oEDB5z2ZUWGDBkiTz31lPq+7EWGiMiMGTPk5ptvdio7ceKEepFSkc6dO8vMmTMrnHb69GnRarWyfft2ERExm83SpEkTWbx4sYiIzJs3T6KiotQLmbIuTBZKjRw5Uh5++GGnss2bN4tGo5GioiJ1ufvvv1+dXnqszZgxQy37888/BYCazNdLiYnOV/9lX39fONe2mJgY6datm1PZc889J9HR0U71auHChWIymcRms6nLlT2mKjJhwgT5xz/+ob4fPXq0DB061GmesvW6ptu/7rrrnNbTs2dPefrpp6uNqZTVahUfHx/54Ycf1LKSkhLp3r273H333XLVVVfJQw895LTMhZ97+fLl4uvr65S0V6X0vFDROaC03vTt21fGjRvntNxdd90lQ4YMEZGLr0cXnk9KlU26mzdvLq+++qrTPD179pQJEyaIyKWfh+ozd1S3vLw80ev18tVXX6llmZmZYjQa1WPqyJEjoiiKnDp1ymnZm266SZ599lkRcRxHfn5+TtNrsty9994r/fr1qzS+iup0Teti2XNIRUaPHi2BgYFSUFCgln3wwQfquvLz80Wn08nSpUvV6WazWZo3by5z5swREZE77rhDHnjggQrXX/Y8smHDhgqvBS78nBfzfX7kyBGnfRAaGlrtZyYiIve45OblXl5eyM/Pr/OXl5dXjWMcMGAANm7cCBHB5s2bMXToUHTq1Al//PEHNmzYgNDQULRv3x4AkJCQgH79+jkt369fPxw+fBg2m00t69GjR5XbTEhIQO/evZ2aI/fp06fKZeLj49GyZUtERUVVus6qYktISICHhweuvfZadXpQUBCio6ORkJCglun1enTp0sVpvR4eHk6fqX379jXqEOfC9TRr1gwAkJ6eDsDxvPirr76KLl26ICgoCCaTCWvXrsXx48erXOeuXbuwYcMG9flOk8mk/n1Km4OXNXHiRLzyyivo168fXnrpJezdu9cprttuuw2ffvopAGD16tUoLi7GXXfdBQC46667UFRUhDZt2mDcuHFYuXKlUxPFymJcvHixU4yDBw+G3W5HSkpKhfsnNDQUANC5c+dyZaX7rF6qZJ+rjhxx2abL1rOEhAT06dPHqV7169cP+fn5OHnyZJXr+vDDD9GjRw80adIEJpMJH3/8cbXHYlk13f6Ff3fAcQxW9TdOT0/Ho48+iqioKPj5+cHPzw/5+flO8en1enzxxRdYvnw5ioqKquzcb9CgQQgPD0ebNm0wcuRILF26FIWFhVV+tsrOAaXnjsrOP6XTL6UeVSU3NxenT5+ucpulqjoPNTTuqG7Jyckwm81O31GBgYGIjo5W38fFxUFEEBUV5XTe27RpU6Xn5ZouFx8fj5tuuumiYq5pXazuu7pU165dna4r+vTpg/z8fJw4cQLJycmwWCxOx6JOp0OvXr3UY3H8+PH46quv0K1bN0yfPh1bt269qM9T0eeryfe5l5cX2rZtq76v7lxDRETudckdqSmKAm9v79qMpdYNGDAAn3zyCfbs2QONRoOOHTsiJiYGmzZtQlZWFmJiYtR5RcTpS7y0rKzqPnNFy1THaDRWu86qYqtsm2WXMxqNTu9Llyu77prQ6XTq/0uXL31+ft68eXjnnXcwf/58dO7cGd7e3pg8eXK1Hc/Z7XbccccdePPNN8tNK72gLuuhhx7C4MGD8eOPP2Lt2rV4/fXXMW/ePDzxxBPq9JEjR+Kdd97BokWLcM8996gXWGFhYUhMTMS6devw66+/YsKECZg7dy42bdrk9PnKxvjII484PbNaqlWrVlXun6r2Wb10wQVdhSIjXbbpsvWsqjpQ1fH7zTff4Mknn8S8efPQp08f+Pj4YO7cudi+fftFxVPT7Zc9bhRFqfJvPGbMGJw9exbz589HeHg4DAYD+vTpU66ulF7Inzt3DufOnav0POTj44O4uDhs3LgRa9euxYsvvoiZM2ciNja2yh/TKtqHF5ZV9NlLyy6lHtVEVdss1eDqVBXcUd1q8n1lt9uh1Wqxa9cuaLVap2lVdX5Xk+Wq++6rLOaa1MXLvT5RFKXSc8yFMdx66604duwYfvzxR/z666+46aab8Nhjj5XrT6Smavp9XtG55lKuP4iIqG406iHD+vfvj7y8PMyfPx8xMTFQFAUxMTHYuHEjNm7c6JR0d+zYEX/88YfT8lu3bkVUVFS5C4aqdOzYEdu2bXMqK/u+rC5duuDkyZNISkqqdJ1VxdaxY0dYrVanRCIzMxNJSUno0KFDpdvt0KEDrFarU4deiYmJlz2eeGmrgvvvvx9du3ZFmzZtnDqBARx37y5sQQAAV199NQ4cOICIiAhERkY6vaq6gAoLC8Ojjz6KFStW4KmnnsLHH3+sThsyZAi8vb3xwQcf4KeffsKDDz7otKzRaMSdd96Jd999Fxs3bsSff/6Jffv2VRtj2fgiIyPd0juuS0VFAYMHA2WPf63WUV6H3Sp37NgRW7dudbqo3Lp1K3x8fNCiRQsAFf+9Nm/ejL59+2LChAno3r07IiMjy92dq2i5S9n+pdi8eTMmTpyIIUOGqB0llu04MDk5GU8++SQ+/vhj9O7dG6NGjaoysfTw8MDAgQMxZ84c7N27F6mpqfjtt98qnb+yc0BpK5MOHTpUeP658NxSVT0qS6fTVbm/fX190bx582q32di4o7pFRkZCp9M5fUdlZWU5fRd1794dNpsN6enp5c55pT1zV1SHarJcly5dqhwqrqL11nZd3LNnD4qKitT327Ztg8lkQsuWLdXz+oXHosViwc6dO52OxSZNmmDMmDH44osvMH/+fHz00UeVfh4AVR7/l/p9TkRE9VujTrr9/PzQrVs3fPHFFxgwYAAARyIeFxeHpKQktQwAnnrqKaxfvx6zZ89GUlISlixZgn//+9+YOnXqRW3z0UcfRXJyMqZMmYLExEQsW7YMixcvrnKZmJgY9O/fH//4xz+wbt06pKSk4KefflJ7660utnbt2mHo0KEYN24c/vjjD+zZswf3338/WrRogaFDh1a63ejoaNxyyy0YN24ctm/fjl27duGhhx66pLsPF4qMjMS6deuwdetWJCQk4JFHHsGZM2ec5omIiMD27duRmpqKjIwM2O12PPbYYzh37hzuvfde7NixA0ePHsXatWvx4IMPVnqRMnnyZPzyyy9ISUlBXFwcfvvtN6cLE61WizFjxuDZZ59FZGSkUzPKxYsX45NPPsH+/ftx9OhRfP755zAajQgPD1dj/P3333Hq1Ck1EXr66afx559/4rHHHkN8fDwOHz6M77//Xr2z3uh8+SUwcKBz2cCBjvI6NGHCBJw4cQJPPPEEDh06hO+++w4vvfQSpkyZog57V9ExFRkZiZ07d+KXX35BUlISZsyY4dTzcOlye/fuRWJiIjIyMmCxWC5p+5ciMjISn3/+ORISErB9+3aMGDHCqf7ZbDaMHDkSN998Mx544AEsWrQI+/fvr7CHacDxCMW7776L+Ph4HDt2DJ999hnsdrtTc+GydDodnnjiCWzfvh1xcXF44IEH0Lt3b/Tq1QsAMG3aNCxevBgffvghDh8+jLfffhsrVqxQzz/V1aOyIiIisH79epw5cwZZlXTLPW3aNLz55pv4+uuvkZiYiGeeeQbx8fGYNGlSjfZrQ1XX1c1kMmHs2LGYNm0a1q9fj/3792PMmDFOx3RUVBRGjBiBUaNGYcWKFUhJSUFsbCzefPNNrFmzBoDjb5qfn4/169cjIyMDhYWFNVru2WefRWxsLCZMmIC9e/fi0KFD+OCDD9TzbUV1urbrotlsxtixY3Hw4EH89NNPeOmll/D4449Do9HA29sb48ePx7Rp0/Dzzz/j4MGDGDduHAoLCzF27FgAwIsvvojvvvsOR44cwYEDB7B69epKk+Pw8HAoioLVq1fj7NmzyM/PLzfPpX6fExFRPVc3j467z1NPPSUAZP/+/WpZ165dpUmTJuV6jv7f//4nHTt2FJ1OJ61atZK5c+c6Ta+oY62yHaWIiPzwww8SGRkpBoNBrr/+evn000+r7EhNxNF5zQMPPCBBQUHi6ekpnTp1ktWrV9c4tnPnzsnIkSPFz89PjEajDB48WO0hVqTijm5EHJ183XbbbWIwGKRVq1by2WefVdnxUUWfNysrSwDIhg0b1M8ydOhQMZlMEhISIi+88IKMGjXKqbOqxMRE6d27txiNRgEgKSkpIuLoRGb48OHi7+8vRqNR2rdvL5MnT660l+/HH39c2rZtKwaDQZo0aSIjR46UjIwMp3mSk5MFgNrxTamVK1fKtddeK76+vuLt7S29e/eWX3/9VZ3+559/SpcuXcRgMMiFVWXHjh0yaNAgMZlM4u3tLV26dHHq9Kmi4+TCfVjZfqzXkpJE1qxxWedpF6qsQ7SNGzdKz549Ra/XS9OmTeXpp5926qm6omOquLhYxowZI35+fuLv7y/jx4+XZ555xqnTrvT0dPXvWXocV/T3qW77FcU9dOhQGT16dKWfNS4uTnr06CEGg0HatWsn3377rdPx8/LLL0uzZs2cjulVq1aJXq9XY7twu5s3b5aYmBgJCAgQo9EoXbp0UXtqr0jpeWH58uXSpk0b0ev1cuONN0pqaqrTfO+//760adNGdDqdREVFyWeffaZOq64ela0P33//vURGRoqHh4eEh4eLSPmO1Gw2m7z88svSokUL0el00rVrV/npp5/U6TU5DzVkdVjdJC8vT+6//37x8vKS0NBQmTNnTrljuXQUgIiICNHpdNK0aVMZPny47N27V53n0UcflaCgIAGg9iRek+U2btwoffv2FYPBIP7+/jJ48GD1u7Ky74lLqYsVKe1E8cUXX5SgoCAxmUzy0EMPSXFxsTpPUVGRPPHEExIcHCwGg0H69esnO3bsUKfPnj1bOnToIEajUQIDA2Xo0KFy9OhREan4OJ01a5Y0bdpUFEVRzw1l472U7/OVK1fKFXBJR0TUYCkifAiIGrctW7ZgwIABOHnypNqBGRE57lJPnjz5sh8pIWqIxowZg+zsbKxatcrdoRARUSN3yR2pEdV3JSUlOHHiBGbMmIG7776bCTcREREREdW5Rv1MN13ZvvzyS0RHRyMnJwdz5sxxdzhERERERHQFYvNyIiIiIiIiIhfhnW4iIiIiIiIiF2HSTUREREREROQiTLqJiIiIiIiIXIRJNxEREREREZGLuCXptlmL3bFZIiIiIiIiojpV50l3Ud5JHNr8IoryTtb1pqkKERERmD9/fpXzzJw5E926dauTeIjcKTU1FYqiID4+3t2hVGvAgAGYPHlyra1v8eLF8Pf3V9+7s97znOMetX1MNSRjxozBsGHD1Pfu3BdX8t+BiKixqfOkO+ev3YDYkPNXfF1vmqoQGxuLhx9+WH2vKApWrVrlNM/UqVOxfv36Oo6MqGYu9QK17EU2AISFhSEtLQ2dOnWqneBcaMWKFZg9e7bL1l9X9Z7nnIar7A81taU+JJ2url8AsHHjRiiKguzs7DrfNhER1Q2PutyYiCD372Q79694hLa9DYqi1GUILmWz2aAoCjSahveofJMmTaqdx2QywWQy1UE0ROeZzWbo9fo63aZWq0XTpk3rdJuXKjAw0KXrr67eu/Lvw3MO1YbLOUarq1+uPP5dXbeJiKju1Gl2WJx/CpaSbACApSQLxfmnXbq9//3vf+jcuTOMRiOCgoIwcOBAFBQUAADsdjtmzZqFli1bwmAwoFu3bvj555/VZSv65Tk+Ph6KoiA1NRXA+V/3V69ejY4dO8JgMODYsWMoKSnB9OnTERYWBoPBgHbt2uGTTz5R13Pw4EEMGTIEJpMJoaGhGDlyJDIyMir9HKXbWbVqFaKiouDp6YlBgwbhxIkTTvN98MEHaNu2LfR6PaKjo/H55587TZ85cyZatWoFg8GA5s2bY+LEieq0C5uXR0REAACGDx8ORVHU92Wbela3D0ub6K5YsQI33HADvLy80LVrV/z555+VflaiAQMG4PHHH8eUKVMQHByMQYMGAQA2bdqEXr16wWAwoFmzZnjmmWdgtVoBOO5Wb9q0CQsWLICiKGo9tdlsGDt2LFq3bg2j0Yjo6GgsWLBA3dbMmTOxZMkSfPfdd+pyGzdurLB5eVXbL4174sSJmD59OgIDA9G0aVPMnDmzys8aGxuLQYMGITg4GH5+foiJiUFcXJw6fePGjdDr9di8ebNaNm/ePAQHByMtLU3d7oV3A99//320a9cOnp6eCA0NxT//+c8qY1i8eDFatWoFLy8vDB8+HJmZmU7Ty9b70pYBr7/+Opo3b46oqCgAwKlTp3DPPfcgICAAQUFBGDp0qHquLPXpp5/iqquuUvfh448/DoDnHHcqKCjAqFGjYDKZ0KxZM8ybN6/cPGazGdOnT0eLFi3g7e2Na6+9Fhs3bgTgOEYfeOAB5OTkqHWo9LivarlSW7ZsQUxMDLy8vBAQEIDBgwcjKyur0joN1KwuVnQOKctms2HKlCnw9/dHUFAQpk+fDhFxmqds/YqIiMArr7yCMWPGwM/PD+PGjQMAbN26Ff3794fRaERYWBgmTpyoXm8AqPS6IDU1FTfccAMAICAgAIqiYMyYMRVuOysrC6NGjUJAQAC8vLxw66234vDhw+r00muFX375BR06dIDJZMItt9yiniuIiMiNxEWK889I9pk4p9eJ/Z/L/vVTZf/6KbJ//VQ5sf+LcvMU55+ple2fPn1aPDw85O2335aUlBTZu3evLFy4UPLy8kRE5O233xZfX1/58ssv5dChQzJ9+nTR6XSSlJQkIiIbNmwQAJKVlaWuc/fu3QJAUlJSRERk0aJFotPppG/fvrJlyxY5dOiQ5Ofny9133y1hYWGyYsUKSU5Oll9//VW++uorNa7g4GB59tlnJSEhQeLi4mTQoEFyww03VPpZSrfTo0cP2bp1q+zcuVN69eolffv2VedZsWKF6HQ6WbhwoSQmJsq8efNEq9XKb7/9JiIi3377rfj6+sqaNWvk2LFjsn37dvnoo4/U5cPDw+Wdd94REZH09HQBIIsWLZK0tDRJT08XEZGXXnpJunbtqi5T3T5MSUkRANK+fXtZvXq1JCYmyj//+U8JDw8Xi8VyCX9Vumx2u0h+ft2/7PYahxgTEyMmk0mmTZsmhw4dkoSEBDl58qR4eXnJhAkTJCEhQVauXCnBwcHy0ksviYhIdna29OnTR8aNGydpaWmSlpYmVqtVzGazvPjii7Jjxw45evSofPHFF+Ll5SVff/21iIjk5eXJ3XffLbfccou6XElJiXrs7t69W0Sk2u2Xxu3r6yszZ86UpKQkWbJkiSiKImvXrq30s65fv14+//xzOXjwoBw8eFDGjh0roaGhkpubq84zbdo0CQ8Pl+zsbImPjxeDwSArVqxw2u6kSZNERCQ2Nla0Wq0sW7ZMUlNTJS4uThYsWFDp9rdt2yaKosjrr78uiYmJsmDBAvH39xc/Pz91nrL1fvTo0WIymWTkyJGyf/9+2bdvnxQUFEi7du3kwQcflL1798rBgwflvvvuk+joaCkpKRERkffff188PT1l/vz5kpiYKDt27GjU55wGUNVERGT8+PHSsmVLWbt2rezdu1duv/12MZlM6jElInLfffdJ37595ffff5cjR47I3LlzxWAwSFJSkpSUlMj8+fPF19dXrUOl37NVLSfi+E41GAwyfvx4iY+Pl/3798t7770nZ8+erbRO17Qulj2HVOTNN98UPz8/+d///qfWPx8fHxk6dKjTui7cF+Hh4eLr6ytz586Vw4cPy+HDh2Xv3r1iMpnknXfekaSkJNmyZYt0795dxowZoy5X2XWB1WqV5cuXCwBJTEyUtLQ0yc7OrnDbd955p3To0EF+//13iY+Pl8GDB0tkZKSYzWYROX+tMHDgQImNjZVdu3ZJhw4d5L777ru4g4KIiGqdy5LuY3sX/Z1cX9zr2N7FtbL9Xbt2CQBJTU2tcHrz5s3l1VdfdSrr2bOnTJgwQURqnnQDkPj4eHWexMREASDr1q2rcLszZsyQm2++2ansxIkT6hduRUq3s23bNrUsISFBAMj27dtFRKRv374ybtw4p+XuuusuGTJkiIiIzJs3T6KiotQv57IuTLpFRADIypUrneYpewFc3T4svQD+73//q04/cOCAAKj0IohcLD9fBKj7V35+jUOMiYmRbt26OZU999xzEh0dLfYLMoqFCxeKyWQSm82mLnfhBWplJkyYIP/4xz/U96NHj3a6yBaRckl3Tbd/3XXXOa2nZ8+e8vTTT1cbUymr1So+Pj7yww8/qGUlJSXSvXt3ufvuu+Wqq66Shx56yGmZCz/38uXLxdfX1ylpr8q9994rt9xyi1PZPffcU23SHRoaqibTIiKffPJJuf1TUlIiRqNRfvnlFxFxnC+ef/75SmNpbOecBlDVJC8vT/R6vfqjsIhIZmamGI1G9Zg6cuSIKIoip06dclr2pptukmeffVZEHN9RFx4zNV3u3nvvlX79+lUaX0V1uqZ1sew5pCLNmjWTN954Q31vsVikZcuW1Sbdw4YNc1rPyJEj5eGHH3Yq27x5s2g0GikqKqr2uqCi642y205KShIAsmXLFnV6RkaGGI1G+eabb0Tk/LXCkSNH1HkWLlwooaGh1e4LIiJyLZc1L2/R4R74hnS9qGV8Q7qhRYe7a2X7Xbt2xU033YTOnTvjrrvuwscff4ysrCwAQG5uLk6fPo1+/fo5LdOvXz8kJCRc1Hb0ej26dOmivo+Pj4dWq0VMTEyF8+/atQsbNmxQn1U0mUxo3749ACA5ObnS7Xh4eKBHjx7q+/bt28Pf31+NNyEhocrPc9ddd6GoqAht2rTBuHHjsHLlSqfmeBfrYvbhhfunWbNmAID09PRL3jY1fhce64Dj+O7Tp49THxD9+vVDfn4+Tp6seiSEDz/8ED169ECTJk1gMpnw8ccf4/jx4xcVT023f+GxDjiO96qO9fT0dDz66KOIioqCn58f/Pz8kJ+f7xSfXq/HF198geXLl6OoqKjKUQYGDRqE8PBwtGnTBiNHjsTSpUtRWFhY7ee6UNn3FencubPTc6y7du3CkSNH4OPjo57XAgMDUVxcjOTkZKSnp+P06dO46aabql13ZXjOqX3Jyckwm81Of/PAwEBER0er7+Pi4iAiiIqKcvre2rRpU5XfWTVZLj4+/qKPiZrWxbLnkLJycnKQlpbm9NnLfs9Wpuw8u3btwuLFi50+5+DBg2G325GSklLtdUFNJCQkwMPDA9dee61aFhQUhOjoaKfj38vLC23btlXfV3cOIiKiuuGyjtS0Hka0vGoksgPbIy1pOcRuB2AvP6OigaJo0Cz6H/Bv2rPWOlbTarVYt24dtm7dirVr1+K9997D888/j+3btyMoKMix6TLbEhG1rLQzNLng+S6LxVJuO0aj0Wk9RqOxyrjsdjvuuOMOvPnmm+WmlV4cVqaifXNhWVWfJywsDImJiVi3bh1+/fVXTJgwAXPnzsWmTZug0+mq3O7FxHThNktduP7SaXZ7BccCuZ6XF5Cf757tXgRvb2+n9xUdV6V1s6pzxjfffIMnn3wS8+bNQ58+feDj44O5c+di+/btFxVPTbdfti4pilLlsT5mzBicPXsW8+fPR3h4OAwGA/r06QOz2ew039atWwEA586dw7lz58rtn1I+Pj6Ii4vDxo0bsXbtWrz44ouYOXMmYmNjK+xd+sLz28Uou3273Y5rrrkGS5cuLTdvkyZNarVzyYZyzmkIVa0mf3+73Q6tVotdu3ZBq9U6Tauqk7uaLFfd92VlMdekLlZWR2pDRcf/I4884tRPSqlWrVrhyJEjl73Nyv5WZfdHReegS63nRERUe1zakZqiKAho3gttez4FRaOtZB4t2vZ8CgHNetV6T+aKoqBfv354+eWXsXv3buj1eqxcuRK+vr5o3rw5/vjjD6f5t27dig4dOgA435v3hR2Q1GTM3s6dO8Nut2PTpk0VTr/66qtx4MABREREIDIy0ulV1UWC1WrFzp071feJiYnIzs5W75J36NChys8DOC5w7rzzTrz77rvYuHEj/vzzT+zbt6/C7el0Othstkrjqck+pHpIUQBv77p/XWbd7tixI7Zu3ep08bh161b4+PigRYsWABx3hMses5s3b0bfvn0xYcIEdO/eHZGRkeXuzlW03KVs/1Js3rwZEydOxJAhQ9QOxsp2qpicnIwnn3wSH3/8MXr37o1Ro0ZVmUB6eHhg4MCBmDNnDvbu3YvU1FT89ttvlX6ubdu2OZWVfV8TV199NQ4fPoyQkJBy5zU/Pz/4+PggIiKiyuG/Gts5pyFUtcjISOh0Oqe/eVZWFpKSktT33bt3h81mQ3p6erm/bWkP/xXVoZos16VLlyqPiYrWW1t10c/PD82aNXP67FarFbt27arxOkqVfq+X/ZyRkZHQ6/XVXheUthqp6vjv2LEjrFar0w+GmZmZSEpKqpfHPxEROaub3ssVDcRe/i4xAIjdAkWp/TC2b9+O1157DTt37sTx48exYsUKnD17Vv1ymjZtGt588018/fXXSExMxDPPPIP4+HhMmjQJgONiJCwsDDNnzkRSUhJ+/PHHCnt1LSsiIgKjR4/Ggw8+iFWrViElJQUbN27EN998AwB47LHHcO7cOdx7773YsWMHjh49irVr1+LBBx+s8gtXp9PhiSeewPbt2xEXF4cHHngAvXv3Rq9evdTPs3jxYnz44Yc4fPgw3n77baxYsQJTp04F4OjV9JNPPsH+/ftx9OhRfP755zAajQgPD6/0c6xfvx5nzpxRm+WXVd0+JKotEyZMwIkTJ/DEE0/g0KFD+O677/DSSy9hypQp6l3UiIgIbN++HampqcjIyIDdbkdkZCR27tyJX375BUlJSZgxYwZiY2Od1h0REYG9e/ciMTERGRkZFbZoqcn2L0VkZCQ+//xzJCQkYPv27RgxYoTT3T+bzYaRI0fi5ptvxgMPPIBFixZh//79lZ6LVq9ejXfffRfx8fE4duwYPvvsM9jtdqfmwheaOHEifv75Z8yZMwdJSUn497//7dQbeE2NGDECwcHBGDp0KDZv3oyUlBRs2rQJkyZNUpv8zpw5E/PmzcO7776Lw4cPIy4uDu+99566Dp5z6p7JZMLYsWMxbdo0rF+/Hvv378eYMWOcjumoqCiMGDECo0aNwooVK5CSkoLY2Fi8+eabWLNmDQDH3y4/Px/r169HRkYGCgsLa7Tcs88+i9jYWEyYMAF79+7FoUOH8MEHH6g/PFVUp2uzLk6aNAlvvPEGVq5ciUOHDmHChAnlxsquiaeffhp//vknHnvsMcTHx+Pw4cP4/vvv8cQTT6ifo6rrgvDwcCiKgtWrV+Ps2bPIr6CJRLt27TB06FCMGzcOf/zxB/bs2YP7778fLVq0wNChQy86ZiIiqmN18eB4eup62b/+KbXX8v3rp8j+30p7MX9Kzqaur/VtHjx4UAYPHixNmjQRg8EgUVFR8t5776nTbTabvPzyy9KiRQvR6XTStWtX+emnn5zW8ccff0jnzp3F09NTrr/+evn222/LdaRWtvMYEZGioiJ58sknpVmzZqLX6yUyMlI+/fRTdXpSUpIMHz5c/P39xWg0Svv27WXy5MlOHcNcqHQ7y5cvlzZt2oher5cbb7yxXCdx77//vrRp00Z0Op1ERUXJZ599pk5buXKlXHvtteLr6yve3t7Su3dv+fXXX9XpZTtS+/777yUyMlI8PDwkPDxcRMp3alTdPizbGZWISFZWlgCQDRs2VPhZiSrrEG3jxo3Ss2dP0ev10rRpU3n66aedeqROTEyU3r17i9FoVOtpcXGxjBkzRvz8/MTf31/Gjx8vzzzzjNNxnJ6eLoMGDRKTyaQemxUdu9Vtv6K4hw4dKqNHj670s8bFxUmPHj3EYDBIu3bt5Ntvv3Wqiy+//LI0a9ZMMjIy1GVWrVoler1eje3C7W7evFliYmIkICBAjEajdOnSRe2pvTKffPKJtGzZUoxGo9xxxx3y1ltvVduRWtmO50RE0tLSZNSoURIcHCwGg0HatGkj48aNk5ycHHWeDz/8UKKjo0Wn00mzZs3kiSeeUKfxnOMeeXl5cv/994uXl5eEhobKnDlzyh3LpaMAREREiE6nk6ZNm8rw4cNl79696jyPPvqoBAUFCQC1J/GaLLdx40bp27evGAwG8ff3l8GDB6sdilVUp0uXudi6WBGLxSKTJk0SX19f8ff3lylTpsioUaOq7Ujtwu/KUjt27FDPI97e3tKlSxenTv+quy6YNWuWNG3aVBRFUc8ZZbd97tw5GTlypPj5+YnRaJTBgwerPcGLVHxNsnLlSqmjSz0iIqqCIuL6h32Sd7yN4vxTAABv/0iEtrsDZw5/j8JsRzNPT5+WaNvzSVeH0WAtXrwYkydPvqRf4ImIiIiIiMh9XN683Fyc9XfCrSC07W0I7/4IjD4tEdH9UYS0vQ2AguK8k7AUV9yckIiIiIiIiKihclnv5aUUKDAFtkeTNoPh5dvqfLmiQZPwG+Ht3xZnU9YCqN1O1IiIiIiIiIjcrU6alxMRERERERFdieqm93IiIiIiIiKiKxCTbiIiIiIiIiIXYdJNRERERERE5CJMuomIiIiIiIhchEk3ERERERERkYsw6SYiIiIiIiJyESbdRFSvDBgwAJMnT3Z3GERXLNZBIiKi2sWkm4jqlRUrVmD27NnuDuOKlJqaCkVREB8f7+5QqIFYvHgx/P39a329TPyJiKgx8XB3AEREFwoMDHR3CFQNs9kMvV7v7jCIqsVjlYiI6gPe6SaieqXsHa6IiAi88sorGDVqFEwmE8LDw/Hdd9/h7NmzGDp0KEwmEzp37oydO3eqy2RmZuLee+9Fy5Yt4eXlhc6dO+PLL7902k5eXh5GjBgBb29vNGvWDO+88065bZvNZkyfPh0tWrSAt7c3rr32WmzcuLHK+A8dOoTrrrsOnp6e6NixI3799VcoioJVq1ap85w6dQr33HMPAgICEBQUhKFDhyI1NVWdbrfbMWvWLLRs2RIGgwHdunXDzz//rE4vvSP9zTff4Prrr4fRaETPnj2RlJSE2NhY9OjRAyaTCbfccgvOnj3rFN+iRYvQoUMHeHp6on379nj//ffVaa1btwYAdO/eHYqiYMCAAQCAMWPGYNiwYXj99dfRvHlzREVFYdasWejcuXO5z3/NNdfgxRdfrHIfUf1RUFCg1q1mzZph3rx5TtOrqgMbN27EAw88gJycHCiKAkVRMHPmzGqXK7VlyxbExMTAy8sLAQEBGDx4MLKysjBmzBhs2rQJCxYsUNdbWj82bdqEXr16wWAwoFmzZnjmmWdgtVrVdQ4YMACPP/44pkyZguDgYAwaNMhVu46IiKjmhIiuPPn5jpfdfr6spMRRVlxc8bw22/kys9lRVlRU/bwXKSYmRiZNmqS+Dw8Pl8DAQPnwww8lKSlJxo8fLz4+PnLLLbfIN998I4mJiTJs2DDp0KGD2P/+PCdPnpS5c+fK7t27JTk5Wd59913RarWybds2db0PPfSQhIeHy6+//ir79u2T4cOHi4+Pj9O277vvPunbt6/8/vvvcuTIEZk7d64YDAZJSkqqMHabzSbR0dEyaNAgiY+Pl82bN0uvXr0EgKxcuVJERAoKCqRdu3by4IMPyt69e+XgwYNy3333SXR0tJSUlIiIyNtvvy2+vr7y5ZdfyqFDh2T69Omi0+nU7aakpAgAad++vfz8889y8OBB6d27t1x99dUyYMAA+eOPPyQuLk4iIyPl0UcfVeP76KOPpFmzZrJ8+XI5evSoLF++XAIDA2Xx4sUiIrJjxw4BIL/++qukpaVJZmamiIiMHj1aTCaTjBw5Uvbv3y/79u2TEydOiEajkR07dqjr37NnjyiKIsnJyZf412986nFVExGR8ePHS8uWLWXt2rWyd+9euf3228VkMqn1oKo6UFJSIvPnzxdfX19JS0uTtLQ0ycvLq3Y5EZHdu3eLwWCQ8ePHS3x8vOzfv1/ee+89OXv2rGRnZ0ufPn1k3Lhx6nqtVqucPHlSvLy8ZMKECZKQkCArV66U4OBgeemll9TPExMTIyaTSaZNmyaHDh2ShISEy9tBREREtYBJN9GVCHC80tPPl73yiqPsoYec5/XycpSnpJwve+cdR9l99znPGxzsKN+//5JDqyjpvv/++9X3aWlpAkBmzJihlv35558CQNLS0ipd75AhQ+Spp54SEZHc3FzR6XTy7bffqtOzs7PFy8tL3faRI0dEURQ5deqU03puuukmefbZZyvcxk8//SQeHh5Ocaxbt84p6f7kk08kOjpa/YFARKSkpESMRqP88ssvIiLSvHlzefXVV53W3bNnT5kwYYKInE+6//vf/6rTv/zySwEg69evV8tef/11iY6OVt+HhYXJsmXLnNY7e/Zs6dOnj9N6d+/e7TTP6NGjJTQ0VP1RoNStt94q48ePV99PnjxZBgwYUOG+uVLV46omeXl5otfr5auvvlLLMjMzxWg0yqRJk2pUBxYtWiR+fn5O02uy3L333iv9+vWrNLay5wERkeeee65c3Vm4cKGYTCax/f3rQ0xMjHTr1q1mO4CIiKiO8JluIqr3unTpov4/NDQUAJyaNpeWpaeno2nTprDZbHjjjTfw9ddf49SpUygpKUFJSQm8vb0BAEePHoXFYkGvXr3Udfj5+SE6Olp9HxcXBxFBVFSUUywlJSUICgqqMM7ExESEhYWhadOmatmF2wCAXbt24ciRI/Dx8XEqLy4uRnJyMnJzc3H69Gn069fPaXq/fv2wZ8+ei94v6enpAICzZ8/ixIkTGDt2LMaNG6fOY7Va4efnV+HnuVDnzp3LPRs7btw4PPjgg3j77beh1WqxdOnScs2Tqf5KTk6G2WxGnz591LLAwEC1HlxKHajpcvHx8bjrrrsuKt6EhAT06dMHiqKoZf369UN+fj5OnjyJVq1aAQB69OhxUeslIiJyNSbdRFei/HzHv15e58umTQMmTwY8ypwW/k7aYDSeL3vsMWDcOECrdZ639LnkC+etBTqdTv1/6QV3RWV2ux0AMG/ePLzzzjuYP38+OnfuDG9vb0yePBlmsxkAICJOy5UqLS9dl1arxa5du6At8zlNJlOFcYpIuXWWZbfbcc0112Dp0qXlpjVp0qTcZ6pq3TXZL6X7pPTfjz/+GNdee63Tesp+voqU/mBxoTvuuAMGgwErV66EwWBASUkJ/vGPf1S7ritJfa5qFx7vFbmUOlDT5YyXEHhFdaCiulzRsUpEROROTLqJrkQVXZTq9Y5XTebV6RyvmszrBps3b8bQoUNx//33A3AkAYcPH0aHDh0AAG3btoVOp8OOHTsQFhYGAMjNzcXhw4cRExMDwNGZmM1mQ3p6Oq6//voabbd9+/Y4fvw4/vrrL/XOc2xsrNM8V199Nb7++muEhITA19e3wvU0b94cf/zxB/r376+Wbd26tdxd84sRGhqKFi1a4OjRoxgxYkSF85TeybbZbDVap4eHB0aPHo1FixbBYDDgX//6F7wuzC6pXle1yMhI6HQ6bNu2Tb1LnJWVhaSkJMTExNSoDuj1+nLHS02W69KlC9avX4+XX365xuvt2LEjli9f7pR8b926FT4+PmjRosVFfXYiIqK6xN7LiajRiYyMxLp167B161YkJCTgkUcewZkzZ9TpPj4+GD16NKZNm4YNGzbgwIEDePDBB6HRaNSL+aioKIwYMQKjRo3CihUrkJKSgtjYWLz55ptYs2ZNhdsdNGgQ2rZti9GjR2Pv3r3YsmULnn/+eQDn78SNGDECwcHBGDp0KDZv3oyUlBRs2rQJkyZNwsmTJwEA06ZNw5tvvomvv/4aiYmJeOaZZxAfH49JkyZd1n6ZOXMmXn/9dSxYsABJSUnYt28fFi1ahLfffhsAEBISAqPRiJ9//hl//fUXcnJyql3nQw89hN9++w0//fQTHnzwwcuKj+qWyWTC2LFjMW3aNKxfvx779+/HmDFjoNE4Lg1qUgciIiKQn5+P9evXIyMjA4WFhTVa7tlnn0VsbCwmTJiAvXv34tChQ/jggw+QkZGhrnf79u1ITU1FRkYG7HY7JkyYgBMnTuCJJ57AoUOH8N133+Gll17ClClT1JiJiIjqI35LEVGjM2PGDFx99dUYPHgwBgwYgKZNm2LYsGFO87z99tvo06cPbr/9dgwcOBD9+vVTh9IqtWjRIowaNQpPPfUUoqOjceedd2L79u3q3fGytFotVq1ahfz8fPTs2RMPPfQQXnjhBQBQ1+vl5YXff/8drVq1wv/93/+hQ4cOePDBB1FUVKTe+Z44cSKeeuopPPXUU+jcuTN+/vlnfP/992jXrt1l7ZeHHnoI//3vf7F48WJ07twZMTExWLx4sTpUmIeHB95991385z//QfPmzTF06NBq19muXTv07dsX0dHR5ZqtU/03d+5c9O/fH3feeScGDhyI6667Dtdcc406vbo60LdvXzz66KO455570KRJE8yZM6dGy0VFRWHt2rXYs2cPevXqhT59+uC7776Dx99t7qdOnQqtVouOHTuiSZMmOH78OFq0aIE1a9Zgx44d6Nq1Kx599FGMHTtWrWNERET1lSLVPdRFRHQFKCgoQIsWLTBv3jyMHTu21ta7ZcsWXHfddThy5Ajatm1ba+utL0QE7du3xyOPPIIpU6a4OxwiIiKieofPdBPRFWn37t04dOgQevXqhZycHMyaNQsAanR3tyorV66EyWRCu3btcOTIEUyaNAn9+vVrlAl3eno6Pv/8c5w6dQoPPPCAu8MhIiIiqpeYdBPRFeutt95CYmIi9Ho9rrnmGmzevBnBwcGXtc68vDxMnz4dJ06cQHBwMAYOHNhoh9EKDQ1FcHAwPvroIwQEBLg7HCIiIqJ6ic3LiYiIiIiIiFyEHakRERERERERuQiTbiIiIiIiIiIXYdJNRERERERE5CJMuomIiIiIiIhchEk3ERERERERkYsw6SYiIiIiIiJyESbdRFTvDRgwAJMnT3Z3GBdl5syZ6Nat20UtU1ufMzMzEyEhIUhNTb3sddWWS9kfZa1evRrdu3eH3W6vnaCoQqxvF+dS6tvixYvh7+9/2dsulZqaCkVREB8ff8nrKCkpQatWrbBr165ai4uIiByYdBNRo7Nx40YoioLs7Gy3xTB16lSsX7/+opZZsWIFZs+efdnbfv3113HHHXcgIiListdVl44fP4477rgD3t7eCA4OxsSJE2E2m9Xpt99+OxRFwbJly9wYJZXF+nbx9e2ee+5BUlLSZW/7YogIZs6ciebNm8NoNGLAgAE4cOCAOt1gMGDq1Kl4+umn6zQuIqIrAZNuIirv66+BV1+tep5XX3XMR05EBFarFSaTCUFBQRe1bGBgIHx8fC5r+0VFRfjkk0/w0EMPXdZ66prNZsNtt92GgoIC/PHHH/jqq6+wfPlyPPXUU07zPfDAA3jvvffcFKVrsLpduoZa34xGI0JCQi5r2xdrzpw5ePvtt/Hvf/8bsbGxaNq0KQYNGoS8vDx1nhEjRmDz5s1ISEio09iIiBo7Jt1EVN6RI8ALLwCV3QWaPdsx/ciRWt90QUEBRo0aBZPJhGbNmmHevHnl5vniiy/Qo0cP+Pj4oGnTprjvvvuQnp4OwNHM8oYbbgAABAQEQFEUjBkzBgDw888/47rrroO/vz+CgoJw++23Izk5ucp4SkpKMHHiRISEhMDT0xPXXXcdYmNj1emld/l++eUX9OjRAwaDAZs3by7X3NVqtWLixInqtp9++mmMHj0aw4YNU+cp29w1IiICr732Gh588EH4+PigVatW+Oijj6qM96effoKHhwf69OkDALDb7WjZsiU+/PBDp/ni4uKgKAqOHj0KwHGXeejQoTCZTPD19cXdd9+Nv/76CwBw6NAheHl5Od1hXrFiBTw9PbFv3z4AQE5ODh5++GGEhITA19cXN954I/bs2VNlrBdau3YtDh48iC+++ALdu3fHwIEDMW/ePHz88cfIzc1V57vzzjuxY8cONe7GwI3VjfWtluvbhTH++OOP6Nq1Kzw9PXHttdeqdQVwbl4uIhg4cCBuueUWiAgAIDs7G61atcLzzz+vLrNo0SJ06NABnp6eaN++Pd5///0qY7uQiGD+/Pl4/vnn8X//93/o1KkTlixZgsLCQqd6HRQUhL59++LLL7+s8bqJiKh6TLqJqLznnwdmzQJefLF8JjB7tqN81izHfLVs2rRp2LBhA1auXIm1a9di48aN5Z4xNJvNmD17Nvbs2YNVq1YhJSVFvdAPCwvD8uXLAQCJiYlIS0vDggULADgSjClTpiA2Nhbr16+HRqPB8OHDq3xGePr06Vi+fDmWLFmCuLg4REZGYvDgwTh37ly5+V5//XUkJCSgS5cu5dbz5ptvYunSpVi0aBG2bNmC3NxcrFq1qtr9MW/ePPTo0QO7d+/GhAkTMH78eBw6dKjS+X///Xf06NFDfa/RaPCvf/0LS5cudZpv2bJl6NOnD9q0aQMRwbBhw3Du3Dls2rQJ69atQ3JyMu655x4AQPv27fHWW29hwoQJOHbsGE6fPo1x48bhjTfeQOfOnSEiuO2223DmzBmsWbMGu3btwtVXX42bbrqp3H6qzJ9//olOnTqhefPmatngwYNRUlLi9PcPDw9HSEgINm/eXKP1NgRurG6sb2Vcbn270LRp0/DWW28hNjYWISEhuPPOO2GxWMrNpygKlixZgh07duDdd98FADz66KMIDQ3FzJkzAQAff/wxnn/+ebz66qtISEjAa6+9hhkzZmDJkiXVfiYASElJwZkzZ3DzzTerZQaDATExMdi6davTvL169WpU9YuIqF4QIqLKzJolAjj+reh9LcvLyxO9Xi9fffWVWpaZmSlGo1EmTZpU6XI7duwQAJKXlyciIhs2bBAAkpWVVeX20tPTBYDs27evwun5+fmi0+lk6dKlapnZbJbmzZvLnDlznLa1atUqp2Vfeukl6dq1q/o+NDRU5s6dq763Wq3SqlUrGTp0qFoWExPj9DnDw8Pl/vvvV9/b7XYJCQmRDz74oNLPNHToUHnwwQedyuLi4kRRFElNTRUREZvNJi1atJCFCxeKiMjatWtFq9XK8ePH1WUOHDggAGTHjh1q2W233SbXX3+93HTTTTJo0CCx2+0iIrJ+/Xrx9fWV4uJip+22bdtW/vOf/1S4P8oaN26cDBo0qFy5Xq+XZcuWOZV1795dZs6cWem6Gqo6rm6sby6qb6UxVrRfv/76axERWbRokfj5+Tkt980334jBYJBnn31WvLy8JDExUZ0WFhZWrh7Mnj1b+vTpIyIiKSkpAkB2795dYZxbtmwRAHLq1Cmn8nHjxsnNN9/sVLZgwQKJiIio9DMTEdHF451uIqrcjBnnb8EZDOdvuc2Y4ZLNJScnw2w2OzXVDAwMRHR0tNN8u3fvxtChQxEeHg4fHx8MGDAAgKOJdHXrv++++9CmTRv4+vqidevWVS6XnJwMi8WCfv36qWU6nQ69evUq98xjZXe7AEfT67/++gu9evVSy7RaLa655poq4wXgdBdPURQ0bdpUbdpbkaKiInh6ejqVde/eHe3bt1ebjG7atAnp6em4++67AQAJCQkICwtDWFiYukzHjh3h7+/v9Dk//fRT7N27F3FxcVi8eDEURQEA7Nq1C/n5+QgKCoLJZFJfKSkp1TYnvlDp+i4kIuXKjUYjCgsLa7zehqKOqxvrWwVqo76Vqmi/VvWs9F133YX/+7//w+uvv4558+YhKioKAHD27FmcOHECY8eOdapfr7zyykXVr9LPdKErqX4REbmTh7sDIKJ6bsYM4JVXALMZ0OtdlwEA6vOMVSkoKMDNN9+Mm2++GV988QWaNGmC48ePY/DgwU49XVfkjjvuQFhYGD7++GM0b94cdrsdnTp1qnS50nhqcqHq7e1dbewVrac6Op2u3Dqqap4bHByMrKyscuUjRozAsmXL8Mwzz2DZsmUYPHgwgoOD1ThqkvDu2bMHBQUF0Gg0OHPmjNoU3G63o1mzZti4cWO5ddR0WKSmTZti+/btTmVZWVmwWCwIDQ11Kj937hyaNGlSo/U2NHVY3VjfKlBb9a2mMV2osLAQu3btglarxeHDh9Xy0u1//PHHuPbaa52W0Wq1Ndpu06ZNAQBnzpxBs2bN1PL09PQrqn4REbkL73QTUdVmzz6fAZjNlff2VAsiIyOh0+mwbds2tSwrK8tpaJ1Dhw4hIyMDb7zxBq6//nq0b9++3J0ovV4PwNEjdqnMzEwkJCTghRdewE033YQOHTpUe7EcGRkJvV6PP/74Qy2zWCzYuXMnOnToUOPP5efnh9DQUOzYsUMts9ls2L17d43XUVPdu3fHwYMHy5Xfd9992LdvH3bt2oX//e9/GDFihDqtY8eOOH78OE6cOKGWHTx4EDk5OernPHfuHMaMGYPnn38eDzzwAEaMGIGioiIAwNVXX40zZ87Aw8MDkZGRTq/SxL46ffr0wf79+5GWlqaWrV27FgaDwekOZXFxMZKTk9G9e/eL2zENRB1WN9a3WlBZfQNQ4X5t3759pet66qmnoNFo8NNPP+Hdd9/Fb7/9BgAIDQ1FixYtcPTo0XL1q7T1QHVat26Npk2bYt26dWqZ2WzGpk2b0LdvX6d59+/f32jrFxGRuzDpJqLKXdiLU0lJ5b091RKTyYSxY8di2rRpWL9+Pfbv348xY8ZAozl/qmrVqhX0ej3ee+89HD16FN9//325sXbDw8OhKApWr16Ns2fPIj8/HwEBAQgKCsJHH32EI0eO4LfffsOUKVOqjMfb2xvjx4/HtGnT8PPPP+PgwYMYN24cCgsLMXbs2Iv6bE888QRef/11fPfdd0hMTMSkSZOQlZVV5Z2vSzF48GAcOHCgXILTunVr9O3bF2PHjoXVasXQoUPVaQMHDkSXLl0wYsQIxMXFYceOHRg1ahRiYmLUZryPPvoowsLC8MILL+Dtt9+GiGDq1Knq8n369MGwYcPwyy+/IDU1FVu3bsULL7yAnTt31ijum2++GR07dsTIkSOxe/durF+/HlOnTsW4cePg6+urzrdt2zYYDAanpruNRR1XN9a3WlBZfQOAWbNmOe3X4OBgp97TL/Tjjz/i008/xdKlSzFo0CA888wzGD16tLremTNn4vXXX8eCBQuQlJSEffv2YdGiRXj77bdrFKeiKJg8eTJee+01rFy5Uo3Jy8sL9913n9O8mzdvdupwjYiIaoFbniQnovqvsl6c6qAztfvvv1+8vLwkNDRU5syZU67Do2XLlklERIQYDAbp06ePfP/99+U6EZo1a5Y0bdpUFEWR0aNHi4jIunXrpEOHDmIwGKRLly6yceNGASArV66sNJ6ioiJ54oknJDg4WAwGg/Tr18+pc7HKOpEq27GTxWKRxx9/XHx9fSUgIECefvppueuuu+Rf//qXOk9FHTu98847Tuvt2rWrvPTSS1Xuw969e8uHH35YrnzhwoUCQEaNGlVu2rFjx+TOO+8Ub29v8fHxkbvuukvOnDkjIiJLliwRb29vSUpKUuffuXOn6PV6+fHHH0VEJDc3V5544glp3ry56HQ6CQsLkxEjRqids1XXkVppDLfddpsYjUYJDAyUxx9/vFznbA8//LA88sgjVa6nIXJTdWN9c0F9K43xhx9+kKuuukr0er307NlT4uPj1Xku7EgtPT1dQkND5bXXXnOKv1evXnL33XerZUuXLpVu3bqJXq+XgIAA6d+/v6xYsUJEqu9ITcTRMdxLL70kTZs2FYPBIP379y/Xqd3WrVvF399fCgsLq/zMRER0cRSRGjzkRERXlldfdQwMXFkvTqW35F55xTXjGF0B7HY7OnTogLvvvrvcncPLtWbNGkydOhX79+93umvZ0J09exbt27fHzp07a9ystiFgdXO9uqxvGzduxA033ICsrKwa92lQX9x1113o3r07nnvuOXeHQkTUqLAjNSIqLzKy6iv8GTMAjcYxH9XIsWPHsHbtWsTExKCkpAT//ve/kZKSUq5pZ20YMmQIDh8+jFOnTjn1SN7QpaSk4P33329UCTfA6uYKrG8Xr6SkBF27dsWTTz7p7lCIiBod3ukmIqoDJ06cwL/+9S/s378fIoJOnTrhjTfeQP/+/d0dGlGj48761pDvdBMRkWsw6SYiIiIiIiJykcbzsB8RERERERFRPcOkm4iIiIiIiMhFmHQTERERERERuQiTbiIiIiIiIiIXYdJNRERERERE5CJMuomIiIiIiIhchEk3ERERERERkYsw6SYiqsCAAQMwefJkt2/bnXHU9fYXLFiA1q1bw8vLC8OGDUNOTk6dbJeIiIjIlTzcHQARUW0ZMGAAunXrhvnz51/2citWrIBOp6vdAC9BXcVR2b6rq+0/99xz+Pbbb7FkyRKYTCYMHz4cL7/8Mt5++22Xb5uIiIjIlXinm4jqPbPZXOfbDAwMhI+PT51v92LjcPW+qYv9EBsbizfffBNff/01+vfvj6uvvhqPPPIIVq9e7dLtEhEREdUFJt1EV6KCgspfxcU1n7eoqPp5L8GAAQPw+OOPY8qUKQgODsagQYNQUlKCiRMnIiQkBJ6enrjuuusQGxurLjNmzBhs2rQJCxYsgKIoUBQFqamp+Pnnn3HdddfB398fQUFBuP3225GcnFztcmWbVVe3/QEDBmDixImYPn06AgMD0bRpU8ycObPaz1pQUIBRo0bBZDKhWbNmmDdvXrl9cWEcFe0bABARzJkzB23atIHRaETXrl3xv//9z2lddrsdb775JiIjI2EwGNCqVSu8+uqrle6Dirbviv3w1ltv4cYbb8TVV1+tljVp0gQZGRnV7j8iIiKi+o5JN9GVyGSq/PWPfzjPGxJS+by33uo8b0RE+Xku0ZIlS+Dh4YEtW7bgP//5D6ZPn47ly5djyZIliIuLQ2RkJAYPHoxz584BcDwP3KdPH4wbNw5paWlIS0tDWFgYCgoKMGXKFMTGxmL9+vXQaDQYPnw47HZ7lcuVVd32S2P29vbG9u3bMWfOHMyaNQvr1q2r8nNOmzYNGzZswMqVK7F27Vps3LgRu3btuqh9AwAvvPACFi1ahA8++AAHDhzAk08+ifvvvx+bNm1Sl3v22Wfx5ptvYsaMGTh48CCWLVuG0NDQGu8DV+yHkpIS/PDDDxg+fLhTeVFREfz8/KrcD0REREQNghDRlQeo/DVkiPO8Xl6VzxsT4zxvcHD5eS5BTEyMdOvWTX2fn58vOp1Oli5dqpaZzWZp3ry5zJkzx2m5SZMmVbnu9PR0ASD79u2rcrkLy2qy/ZiYGLnuuuuc1tGzZ095+umnK40lLy9P9Hq9fPXVV2pZZmamGI1GddtlYyu7b0rj8/T0lK1btzqVjx07Vu69914REcnNzRWDwSAff/xxhbFUtu9cvR+2bt0qAMTT01O8vb3Vl16vl8GDB1e4DBEREVFDwo7UiK5E+fmVT9Nqnd+np1c+r6ZMY5m/myTXhh49eqj/T05OhsViQb9+/dQynU6HXr16ISEhocr1JCcnY8aMGdi2bRsyMjLUO9zHjx9Hp06dahRLTbffpUsXp+WaNWuG9Cr2X3JyMsxmM/r06aOWBQYGIjo6usp4Ltw3AHDw4EEUFxerTc1Lmc1mdO/eHQCQkJCAkpIS3HTTTVWuuyqu2A9JSUnw9PTEvn37nMrvvPNOp+0QERERNVRMuomuRN7e7p+32lWdX5eIAAAURXGaR0TKlZV1xx13ICwsDB9//DGaN28Ou92OTp06XVQHZDXdftlevhVFUZP8qtZ7sbzL7OfSbfz4449o0aKF0zSDwQAAMBqNl7StC7liP+Tm5iIkJASRkZFq2fHjx3Ho0CH8o+yjDkREREQNEJ/pJqJ6LzIyEnq9Hn/88YdaZrFYsHPnTnTo0EEt0+v1sNls6vvMzEwkJCTghRdewE033YQOHTogKyur3PrLLnep27+Uz6XT6bBt2za1LCsrC0lJSRe1no4dO8JgMOD48eOIjIx0epU+m92uXTsYjUasX7++wnVUtw9K463t/RAcHIzc3FynHyBeffVVDBkyBB07drykdRIRERHVJ7zTTUT1nre3N8aPH49p06YhMDAQrVq1wpw5c1BYWIixY8eq80VERGD79u1ITU2FyWRCYGAggoKC8NFHH6FZs2Y4fvw4nnnmmXLrr2i5S9n+xTKZTBg7diymTZuGoKAghIaG4vnnn4embLP9avj4+GDq1Kl48sknYbfbcd111yE3Nxdbt26FyWTC6NGj4enpiaeffhrTp0+HXq9Hv379cPbsWRw4cABjx46tcB+UjcMV++HGG29EcXEx3njjDdx7771YtmwZvv/+e+zYseOS1kdERERU3zDpJqIG4Y033oDdbsfIkSORl5eHHj164JdffkFAQIA6z9SpUzF69Gh07NgRRUVFSElJwVdffYWJEyeiU6dOiI6OxrvvvosBAwY4rbui5S5l+5di7ty5yM/Px5133gkfHx889dRTyMnJuej1zJ49GyEhIXj99ddx9OhR+Pv74+qrr8Zzzz2nzjNjxgx4eHjgxRdfxOnTp9GsWTM8+uijACreBxEREeW2U9v7ITQ0FIsXL8a0adMwe/Zs3Hjjjfjjjz8q7T2diIiIqKFR5FIfKiQiIiIiIiKiKvGZbiIiIiIiIiIXYdJNRERERERE5CJMuomIiIiIiIhchEk3ERERERERkYsw6SYiIiIiIiJyESbdRERERERERC7CpJuIiIiIiIjIRZh0ExEREREREbkIk24iIiIiIiIiF2HSTUREREREROQiTLqJiIiIiIiIXIRJNxEREREREZGLMOkmIiIiIiIichEm3UREREREREQuwqSbiIiIiIiIyEWYdBMRERERERG5CJNuIiIiIiIiIhdh0k1ERERERETkIky6iYiIiIiIiFyESTcRERERERGRizDpJiIiIiIiInIRJt1ERERERERELsKkm4iIiIiIiMhFmHQTERERERERuQiTbiIiIiIiIiIXYdJNRERERERE5CJMuomIiIiIiIhchEk3ERERERERkYsw6SYiIiIiIiJyESbdRERERERERC7CpJuIiIiIiIjIRZh0ExEREREREbkIk24iIiIiIiIiF2HSTUREREREROQiTLqJiIiIiIiIXIRJNxEREREREZGLMOkmIiIiIiIichEm3UREREREREQuwqSbiIiIiIiIyEWYdBMRERERERG5CJNuIiIiIiIiIhdh0k1ERERERETkIky6iYiIiIiIiFyESTcRERERERGRizDpJiIiIiIiInIRJt1ERERERERELsKkm4iIiIiIiMhFmHQTERERERERuQiTbiIiIiIiIiIXYdJNRERERERE5CJMuomIiIiIiIhchEk3ERERERERkYsw6SYiIiIiIiJyESbdRERERERERC7CpJuIiIiIiIjIRZh0ExEREREREbkIk24iIiIiIiIiF2HSTUREREREROQiTLqJiIiIiIiIXIRJNxEREREREZGLMOkmIiIiIiIichEm3UREREREREQuwqSbiIiIiIiIyEWYdBMRERERERG5CJNuIiIiIiIiIhdh0k1ERERERETkIky6iYiIiIiIiFyESTcRERERERGRizDpJiIiIiIiInIRJt1ERERERERELsKkm4iIiIiIiMhFmHQTERERERERuQiTbiIiIiIiIiIXYdJNRERERERE5CJMuomIiIiIiIhchEk3ERERERERkYsw6SYiIiIiIiJyESbdRERERERERC7CpJuIiIiIiIjIRZh0ExEREREREbkIk24iIiIiIiIiF2HSTUREREREROQiTLqJiIiIiIiIXIRJNxEREREREZGLMOkmIiIiIiIichEm3UREREREREQuwqSbiIiIiIiIyEWYdBMRERERERG5CJNuIiIiIiIiIhdh0k1ERERERETkIky6iYiIiIiIiFyESTcRERERERGRizDpJiIiIiIiInIRJt1ERERERERELsKkm4iIiIiIiMhFmHQTERERERERuQiTbiIiIiIiIiIXYdJNRERERERE5CJMuomIiIiIiIhchEk3ERERERERkYsw6SYiIiIiIiJyESbdRERERERERC7CpJuIiIiIiIjIRZh0ExEREREREbkIk24iIiIiIiIiF2HSTUREREREROQiTLqJiIiIiIiIXIRJNxEREREREZGLMOkmIiIiIiIichEm3UREREREREQuwqSbiIiIiIiIyEWYdBMRERERERG5CJNuIiIiIiIiIhdh0k1ERERERETkIky6iYiIiIiIiFyESTcRERERERGRizDpJiIiIiIiInIRJt1ERERERERELsKkm4iIiIioCn+l5WLQQAtOnnR3JETUEDHpJiIiIiKqgN1mRv65w9i47hSOH7Piu+/s6rQdO4CcHDcGR0QNBpNuIiIiIqILiAiK888gJz0e5qIMWKwaJB0xYulSBQBgsQDDhgHNmwOxse6NlYjqPw93B0BEREREVJ+I3YrivBMQuw0eehPu/L8WOHoDoNM5ku6TJ4HAQMBmA7p2Pb9cUhLQrBng4+OmwImoXlJERNwdBBERERGRO4ndBkWjVd+XFJ6F2G0weIdCUZTy84sj+Q4LO1923XVAfDzwzTfAkCF1EDQRNQhsXk5EREREVzRzYcbfTcnPqWUGrybwNDWtMOEGAEVxTrhzcoCMDKCkBOje/Xz5mTNAQYGrIieihoBJNxERERFdkWzWYuRlJCA/6zDsNjNKCs5UON+BA8CCBcAPP1S+Lj8/ICHBcae7WbPz5c8+63j2+/PPazd2Imo4mHQTERER0RVFxI6ivJPITd8DS0k2FEUDo28YTEHtK5x/+3Zg8mTgP/+per2KAlx11fn3NhsQFwfk5gKRkefL8/KAwsLL/xxE1DAw6SYiIiKiK4alJBe56XtQlHsCInboDP7wDekKo09LKErFl8atWwP/+hfQv//FbUurBXbvBjZvBnr3Pl/+3nuOu9/vvXcZH4SIGgz2Xk5EREREVw6xwWYthkarh5dvOPRewdUucsMNjtel0GgcHaxd6NdfHc+A+/qeL7NaHS9Pz0vbDhHVX7zTTURERESNlojAajnfllvnGQBv/7bwDelao4TbFX79Ffj5Z+Duu8+XrVoFtGgBvPaaW0IiIhfinW4iIiIiapSs5nwU5qTAZi2CX0g3aLR6AIDBO8StcWk0wODBzmUrVwLnzpV/1ttiAXS6uouNiGof73QTERERUaNit1tRmJ2C3LP7YTXnAwBslkvvuWzhQiAkBJg0qbYiLO+zz4DVq4FHHjlftmeP49nvF15w3XaJyPV4p5uIiIiIGg1zYQYKc4/BbjMDAPTGYHj5hat3uS9FXh5w9iyQn19bUZan1QK33eZctnSpY+zvpCTnchFHT+lE1DAoIiLuDoKIiIiI6HKICPLPHYKlOBsAoPXwhJd/G+gMfpe97owM4MwZx1jcYWGXvboas1qBNWuAli2Bq692lGVmAtdcA9x7L/Dyy4D+0n9LIKI6wqSbiIiIiBqFwpxUlBT8BU+fFvA0Na90CLCGbOFC4PHHgW7dHGOA8443Uf3HpJuIiIiIGiRLcTY0Wj20Oi8AgNhtsNst0Ho03nG3LBbghx8Ag+F8c3SbzTEs2cCBwLRpzkOREZH7MekmIiIiogbFbjOjMCcV5qJMeOh94Nukk0u3t307sG8f0KUL0KuXSzd1SdascSTggYHAqVMc65uovmFHakRERETUIIgISgrOoCjvBMRuA6DAQ+8NEbtLm5IvXw7MnQtMnVo/k+6BA4Gvvways50T7vvvB9q1Ax57DAh2z5DkRAQm3URERETUAFjN+SjMPgqrpQAA4KE3wcuvNTz0Jpdvu0MH4I47gKuucvmmLoleD9x9t3NZYqKj93ONBnjgAffERUQObF5ORERERPWapSQHeRkHAQCKRgujbysYvEKhsBexSpWUACtWAAcOAK+8cr785ZcBDw9g3DjH2ONE5HpMuomIiIioXhOxI+/sfmg8jJc95vaVLC8PaN7cMd74hg3AgAHujojoysCkm4iIiIjqFZu1CMV5p+Hl31p9VlvsNigarZsja9hKSoBvvgF+/hn44ovzw40tWQKkpTmaoYeGujdGosaISTcRERER1Qtit6E4/zSK809BRGD0DYPRp6W7w8L06cD//uf499FH3R1N7RIBoqOBw4eBjz5yNDsnotrlum4eiYiIiIhqyFKcjdyze1GUdxIiAp2nP/TG+tHldno6kJLiaJ7d2NhswHPPATfeCNx77/nyDRuAt94CMjLcFxtRY8E73URERETkNheOuQ0AGq0eXn4R0BuD3BzZeSkpjsS7ZUugRQt3R1M3brvNMf731KmO4dKI6NJxyDAiIiIicpvCnBSYi84BUOBpCoWnTxg0mvp1idq6teN1JfnHPxw/NDz88PmypCRHIj5qFBAY6L7YiBoa3ukmIiIiIrexWYtRmJ0Mo294nYy5TZdu8mRgwQJHQv6//7k7GqKGg890ExEREVGdsNutKMg+ioLso2qZ1sMTPsFX1euEe+NG4MsvgaNHq521UbvmGqBrV2Ds2PNlOTnAv/8NZGe7LSyieo93uomIiIjI5UoKM1CUkwq73QIA8AvtBq2H0c1R1cwddwCrVwP//a9zwnklKs0cSocbW7gQePxxoEcPIDbWfXER1Wf164EZIiIiImpUbJYiFOakwFKSAwDQehjh5d+6wSTcANCtG1BUdOV0olaV0mS7VEgI0KkTMHLk+TK7Hfj8c2D4cMDXt27jI6qPeKebiIiIiGpd2TG3FUUDT58W8DQ1h6LwCcfGRMQx9JjH37fz1q0Dbr7Z8SPFsWOAVuve+IjcjWc8IiIiIqp1InaUFPyljrntG9IVRp+WTLgbIUU5n3ADgNkMtG8PDBvmnHD/+COQn1/n4RG5He90ExEREVGtsNss0Gh16vvSsbfr05jbVDdEHE3yvbwc748eBSIjHc3NU1MBf393RkdUt/hTIxERERFdFhE7ivPTkPPXbjXRBhzJdmNIuO+7z/Hc8m+/uTuShkNRzifcAHDqlCPpvvZa54R7+3agsLDOwyOqU+xIjYiIiIgumdWch8LsFFgtBQAAc1FGo0i0L5ScDBw4ABQUuDuShuv664FDh4CsrPNlhYXA4MGO/2/fDkRHuyc2Ildj0k1EREREF81ut6Io9zhKCv4CAGg0HjD6toLeK8TNkdW+Dz5wjEPdubO7I2nYNBog6ILfY5KTgcBAx13xdu3OlycmAq1aAcaG08E9UZX4TDcRERERXRRz0TkUZh9Vx9w2eDWB0Tfc6Xluopqw24ETJ4DwcMd7EUdT/rQ04Pvvgeuuc298RLWBd7qJiIiI6KIoGi3sdsvfY263gc7AwZjp0mg05xNuwJFs5+cDJSXOLQtOn3bcJTcY6j5GosvFO91EREREVCWx22CzFsJD76OWmYvOQefpf0UMAbZunaMn7uuuczSHJtey2YCDB52T7mHDgC1bgE8+Ae68022hEV0SJt1EREREVClLcRYKc1Jht1ngF9oVGu2Vd6uxXTvgyBHgjz+Afv3cHc2Vp7gY6NDBMdTYgQNAx46O8txcwNMT0OvdGh5RtRr/T5NEREREdNHsthLkn0tCXuYh2KzFjiblNrO7w3KL7t2B3r0BPz93R3Jl8vQEDh8GNm06n3ADwCuvAGFhwGefuS82oprgnW4iIiIiUonYUVLwF4pyT0DEBkCBp6kZjD4toWi07g6PCICjw7Xu3YE9e4BVq4ChQx3lZrOjN3Qd+/SjeoR3uomIiIgIgCPhzss4gMKcVIjY4KE3wTekM7z8wplwU72iKEBsrCPhvu228+WffebomG3hQreFRlQOey8nIiIiIgCAomjgofeF3VqsjrmtKIq7wyKqkE53/g53qeXLHT2gFxaeLxNxdM7mwcyH3IR3uomIiIiuYCWFZ2G1FKjvjT4t4RvSDQbvUCbcf7vpJuDaax0deVH99t13wDffAGPGnC/7/XcgIgKYO9ddUdGVjr/3EBEREV2BbJYiFOakwFKSAw+9CT7BnaAoChSNFgrYlPxCO3c6esq2WNwdCVVHrwfuusu57IsvgFOnHJ2xXUjE0UydyNWYdBMRERFdQcRuQ3H+KRTnn4aIQFE00HkGAhAAzEAq8u23QEkJ0Ly5uyOhS/HvfztaK3Tpcr7sxAlgwADgwQeBZ58FNGz/Sy7E3suJiIiIrhDm4iwUZafAZisBAOg8A+DlFwGth6ebIyOqW6+8AsyY4Ui8N2xwdzTU2PFONxEREdEVwFychfzMQwAAjVYPL7/W0BsD3RwVkXtMnep4zrtZs/NlxcVA//7A8OHA5MmA0eiu6Kix4Z1uIiIioiuAiCAvYz889L4cc/siiABr1zp6vr7+esczw9Q4LVsGjBgBhIUBKSmAllWEagmTbiIiIqJGyGrOQ3HeaXgHRKoJtogdisKHVy/GhUNNZWQAQUHujYdcp7DQ0fO5RgOMGuUoEwHuvhvo1Qt45BHA19e9MVLDxKSbiIiIqBGx260oyj2OkoK/AABG3zAYfVq6OaqGy2JxJFw2G7BlC+Dj4+6IqC7Fxjr+/gaDowd0/uhCl4LPdBMRERE1EiWFZ1GUcwx2u2NsK4NXExi8Qt0cVcOm0wG7d7s7CnKXjh2B//4XOH3aOeF+5hkgNNQxHnhAgNvCowaCd7qJiIiIGrgLx9wGAK3OC15+raEzsC0sUW1LTwdatnS0gti9G+jWzd0RUX3HO91EREREDVxR3nFYSnKgKBp4+rSEp6kZn90mchFvb+Ddd4Ht250T7g8/BMxmYORI3v0mZ7zTTURERNQAXdgpms1ajKLc4zD6tuKY27UsKwsYNszRk/X69YCiuDsiqo8sFqBVK+DMGUdnbHfd5e6IqD5h0k1ERETUgNhtJSjMSYWiaOEdEOnucBq9tDSgeXNHj9Y2m7ujofqquNjx7PfKlcBPP50fWm7NGuDYMcdQZOz5/MrFpJuIiIioARCxo6TgDIpyT/x9l1uBb0h3aD0M7g6tUSsqAn780ZFw33OPu6OhhqZfP2DrVuC114Bnn3V3NOQufKabiIiIqJ6zmvNQkH0UNkshAMBD7wMv/zZMuOuA0Qj885/ujoIaIrvdMcZ3fj7wwAPny+PjgR07gPvuA0wmt4VHdYh3uomIiIjqKbvdiqKcYygpTAcAaDQeMPq2gt4rBAofLiZqkMaMAZYsAR56CPj4Y3dHQ3WB3VoSERER1WOW4iwAgMErBL4h3WDwDmXCXYcKC4E//gB27nR3JNRY9OwJREUBDz54vuzMGeDTT4GCAvfFRa7DO91ERERE9YjNWuzUA7m5OAuKouWY225y4ADQqRPQpIljfGai2lCagZX+fvbaa8DzzwM33wz88ov74iLX4J1uIiIionpA7DYU5h5Hbno8Sgoz1HK9ZwATbjfSaoF27YA2bdwdCTUmiuI8/FxoqOMYGzHifJnZDCxd6ujMjxo23ukmIiIicjNzcRaKslNgs5UAcDQl9w5o6+aoiKgu2e2Ol8ffXV1/+62jI7aOHYH9+zlGfEPGO91EREREbmKzliA/MxH5mYdgs5VAozXAFBjNhJvoCqTRnE+4AccwdeHhwPDhzgn3jz86xgWnhoN3uomIiIjcoKTwLAqzj6pjbhu8m8Ho0xKKRuvu0IionrDZgJISwMvL8T4+HujeHWjWDDh6FPD0rHJxqid4p5uIiIjIDTRaA0Ts8ND7wKdJF3j5hTPhrof27QNuvRUYP97dkdCVSKs9n3ADwOnTQMuWwPXXOyfc27Y5ngGn+ol3uomIiIjqgN1mgc2SD51ngFpmKcmFh96HQ4DVYxs2ADfeCFx1leO5WiJ3s9mA7GwgKMjxPjMTaNEC8PV13Alv3tyd0VFFPKqfhYiIiIguR0nhWRTlHIOIDb4h3aD1MAAAeyVvANq3BxYvdiQ0RPWBVns+4QaApCTH+5AQR7PzUomJjh7Rdbq6j5Gc8U43ERERkYvYLIUoyD4KqzkPAKDVecE7IBIeOm83R0ZEjYnVCpw65eh4DXDcDW/dGrBYgJ9/Brp2dW98Vzre6SYiIiKqZWK3oSj/FEryT0NEoCgaGH3CYDA1haKwSx0iql0eHucTbgBITnY84221AtHR58tPn3bcEfdgFlineKebiIiIqBaJ2JGbvgc2q2NMH71nIIx+EWqTcmpYsrKA1FRH8/K2HMmNGhCLBTh0COjc+XzZDTcAhw8Dn3/u+D/VDf7USkRERFSLFEUDvTFYHXPbFBTNhLsBW78euPpq4IEH3B0J0cXR6ZwT7uxs4OBBIC0NiIw8X56T42iOTq7DpJuIiIjoMojYUZx/GlZzvlrm6dMCfiFdoTcGujEyqg0Gg6M36OBgd0dCdHn8/YHjx4HffgPCws6XT5vmeP575Uq3hdbosXk5ERER0SWylOSiMCcFNkshPHTe8GnSmcN/EVGDYbMBbdsKjh1TsGGDYMAAnr9cgY/QExEREV0ku82CotzjKClMBwBoNDoYvJu6OSoiopqx262wFGfBXJiBretzsXa9P/r2bgrAz92hNUq8001ERERUQyICc+FZFOUeh91uAQAYvEJg9G0FjZaD4RJR/SVih6U4G+aiDFiKsyBiV6d56E0w+raCzsCk2xX4TDcRERFRDVmKz6EgOxl2uwVanRd8gq+Cd0BbJtyN2Nq1wD//Ccyb5+5IiC6PzVKA/HOJMBdlQsQOrYcRRt8w+IV2h2+Tznhikh86dgSWL3d3pI0Pm5cTERER1ZDOMxA6gx90nv4weHPM7SvBkSNMQqjhsZrzYS7KABQNvHxbAQA89D7QGXyh1ZmgNwbBQ29yWubYMSAhAcjPr2iNdDnYvJyIiIioEuaicygpSIMpsD0Ujdbd4ZAb7N8P/P67o3fnW291dzRElbNZimAuyoC5KAM2azEAQNFo4d+0R41+IDxwADh7FoiOBpo1c3W0VxYm3URERERl2KwlKMpJgbk4CwBg9A2D0aelm6MiIiqvpPAsSvLTYLUUqGWKooHOMxB6YxB0nv5sleNmbF5ORERE9DcRO0ryz6Ao7wRE7FAUBQZTc3h687YPEdUPdrsViqJRE2m7tRhWSwEURYGHwR96YzD0ngFsnVOPMOkmIiIigvOY24Dj+Udv/zbQ6rzcHBm5U0YGcO4cEBAANGni7mjoSiV2m2OIr6IMWEqy4R0QBb0xEACg92oCRauD3jPosjp1/PlnoLgYuP56ICiotiIngL2XExEREQEASgrSYLMUQqPRwTsgEr5NOjHhJnz4oeMZ1+efd3ckdKURscNcnIWCrCPIPrMT+VmHYS7OgojAas5T59N6eMLTu+llj6IwcSIwfLijMzWqXbzTTURERFckEQHErjbB9PKLgKLRwegTxiHASKXXA/7+gLe3uyOhK4ndZkFu+h7Y7Ra1TKs1QO8VDL0x2CU/CF5zDRAc7GjVQbWLHakRERHRFcdqKURh9lFotAaYAtu5OxwiusJZLYWwWQph8ApWy3LT98JuM0NvDILeKxgeeh83RkiXg3e6iYiI6IohdhuK8k6ipCANIgJFKYDdVgKN1uDu0IjoCmOzFv89xFcmbJZCKIrGqQM078BoaLQ69jzeCDDpJiIioiuCuegcCnNSYbeVAAD0noEw+kUw4SaiOmO3WWAuyoS5KMPpuWxFUaAz+MNut0L7d9Kt9eC5qbFg0k1ERESNmt1mQWF2sjrmtlZrgNG/NfSefHCRqrd0KbB2LXDnncA//uHuaKihMxeeRWHuMfW9zuAHvTEYOmMgNBr3pmbduwM6HbBmjePZbqo9TLqJiIiocVMUdQxbg6k5jKYWHL+Wamz7duCzz4BWrZh0U82J2GEpzoa5KMPxTLbRMQaXzhgEj+JMx1jaxiBotHo3R+pgtQLx8Y7/K4pbQ2mUmHQTERFRo2M158NDbwIAaDQe8A6IhEaj4xBgdNGGDgXCwoDevd0dCdV3jqG8cmEuzIC5OBNit/1dblOTbq2HAb5NOrszzAppNI4WHSUlgK+vu6NpfNh7ORERETUadpsFRbnHUVKYDu+ASBi8mrg7JCJq5EQERbnHYS7KgN1mVss1Wr16R7v0R0C6MvFONxERETV4IgJzYTqKco/DbrcCAGzWIjdHRUSN1YWjHiiKAqs5D3abGRqNB3SegX8P8eULhW21CbzTTURERA1c6ZjbpT0Ba3Ve8PZvwzFtqVZkZgLFxYC/P+Dt7e5oyJ3sthJHz+OFGbBZC+EXeg00Wh0AwFKSA7HboPP0b5BDfBUUABs2AF5ewI03ujuaxodJNxERETVYxflnUJiTCkCgKBoYfcNg8G7aIC96qX66/35HD+Zvvw08+aS7o6G6ZrdbYSnKhLkoE5aSnAumKDAFRkFvDHRbbLUpKQmIjgb8/IDsbHdH0/iweTkRERE1WI6O0QR6YyCMvhEc15ZqnaIAHh6OF11ZLMVZyD+XiAvvUXrofaD3CobeM0i9y90YeHgAPXqwNYer8E43ERERNRg2azFslgK1J2DA0bzcg72SE9FlELHDWpIDKBroDH4AHB0z5vy1CxoP498dogXzhz26JPzNjoiIiOo9ETuK89NQnHcSAKDVeUPr4QkATLiJ6JI4hvjKg7koA5aic7DbLfDQ+0DXxJF0a7Q6+IZ0Z6JNl41JNxEREdVrlpJcFOakwGYpBADoDBxElogundVSCHNRBsyFGbDbStRyjUYHD703RETtdZwJN9UGJt1ERERULznG3D6GksKzABwXxEa/cI69TXXqvfeAhARg9Gjg2mvdHQ3VhqLc47AUZwEAFEULvTEQemMwPAy+V2wnjFu3AlOnAp07A//5j7ujaXyYdBMREVG9I2JH7tm9sNvMAACDdyiMvq2g0fDSherW998Dv/4K9OvHpLuhsdssjiG+ijLgHdBOvWtt8GoCBQr0XsHQGfyhaLRujtT90tOBP/8E2NuXa/Cbi4iIiOodRdHA4B0KS9E5ePm35pjb5DajRjkS7i5d3B0J1YTYbTAXn3M8p12cA8CRRZqLMmD0aQEA0BuDnDpjJMcPSitXAr58escl2Hs5ERERuZ3YbSjKOwm9MVBNsEXsAHDFNvckopqz20pQmHMMluIs9dwBAB560989jwdBo9W7MUK6kvFONxEREbmVuegcCnNSYLeZYS3JgU+TzlAUhck2EVVKRCB2MzRaR5NxRfFQE26th9ExlrYxCFoPo5sjJQL4bUZERERuYbMWIy/zEPLPJcJuM0OrNcDTN0ztNZioPsjOdrysVndH0rj079//7x/XFHh4eKBZs2YYPnw4tm7dWuVyVnM+CnNSkfNXHPIyD6nlikYLL/828G3SGX6h3WD0acmE+yKcOAFs3AgkJbk7ksaJSTcRERHVKRE7ivJOITd9DyzFWVAUBUafFvAN6Qq9Z4C7wyNyctNNQEAAsG6duyNpPEQE8fHxeOONN5CWloYjR47gyy+/hF6vR//+/bFmzRqn+W2WIhTlnkDOX7uRe3YfivPTYLeZITaz2tki4OggzUNvquuP0yh8+y1www3ArFnujqRxYvNyIiIiqlOWonMoyj0OANAZ/ODl1xpaHe9IUf1kszn+1bKD61pz+PBh5OXloX///mjatCkAICIiAgMGDMCNN96I559/HkOGDAEAFOYeR3HeKXVZRdFA5xkAvTEYOk9/PoZSS/z8gA4dgLAwd0fSODHpJiIiIpcTEbXZuM4YBH1xJnSegRxzm+q9XbsciTeT7tqza9cuaLVadO3a1ancbrfihpg+eHn2m7Db7dBoNPDQmQAo0Hn6O3od9wzkEF8uMHas40WuwaSbiIiIXEZEYC5MR3HBGfgGd4Ki0UJRFJgCo90dGlGNaLVMuGtbXFwc2rdvDy8vL4jdBktxFsxFmbCUZEGsudBqtdBoHHewdZ7+8G96DTRanZujJrp0TLqJiIjIJayWAhRmp8BqzgMAlBT8BU+f5m6OiojcbdeuXejWtRMKso7AXHQOIjZ12tHU04iOilTfK4oGipZNyKlh4xFMREREtUrsNhTmpCI3fR+s5jwoihZefhEwmJq6OzSii/bKK8D06Y7enal27N69G1dFN0dJ4VmI2KDVGmD0aQGdTxR+WvsH/nnXPYiLi8Mtt9yiLrN8+XI89thjboy6cZs/H7j5ZmDZMndH0jjxTjcRERHVGnNRJgpzUtUehfXGIHj5hatj6RI1NP/5D3DyJHDPPexk6lJYLYUwF2XAZs6HT3BHHD16FNnZ2bimZx94ejeF3isYHnof2O12jH/wQXh4eOCJJ56Aj48PDh48CACwWCx49dVX8dNPP7n50zRe+/c7eugfMMDdkTROTLqJiIio1piLMtUxt738W0PHIcCogRs/HsjKApqyoUaN2azFMBdlOpJtS6FabjXnYdeuXQCA1pHdkFtsRG56GnbtWo13330Xx44dww8//ICAAMd5o2XLljhx4gRWrlyJYcOGITQ01C2f50owbpwj4S7Ttx3VEibdREREdMlE7BCxQ6NxXFJ4+UVA62GEp6k5eximRuG559wdQcNhKclBUe4JtR8HAFAUBTpDAPRewdB6eCEuLg4AEBUVBa1WCz8/P7Rv3x633347xo8fj8DAQHXZXr164bfffsPHH3+Mbdu21fnnuZJce63jRa6hiIi4OwgiIiJqeCwlOSjMToFW5wVTYJS7wyGiOiZ2m+NHt797FreU5CAvw9EkXGfwc4ylbQxUf5S7WMuWLcMTTzyB1157DY888kitxU1U13inm4iIiC6K3WZBUe4xlBSeBQCI3Qq7zcIhfahRKioCPDwcr7+Hmr+iidhhKc6GuSgDluIsGLxD4OXXGgDgofeFl39r6D0DodHqL3tbUVFRCAkJwUMPPXTZ66KqHTwIFBYCbdsCAXwqqNax93IiIiKqERFBScFfyEnfrSbcBu9Q+IZ2Y8JNjVZwMKDXA6mp7o7EfUQElpIcFGQlI/vMTuSfS4S5KBMidqdnthVFgad301pJuAFg4cKFmDt3LrQcKN3lHnsM6NkTWLvW3ZE0TrzTTURERNWyWUtQkJUEqzkfAOCh84aXf2t46H3cHBmRa9n+HkLa4wq+as7L2K/WfQDQaPXQG4OhNwbBQ2+q9e0lJydjyJAhGDx4MG6//fZaXz+VFxLi6J3f19fdkTROfKabiIiokXrttdfw/PPPlyufN28epkyZclHrErsNOel7IHYrjL5hMHiHQlHYYI4av7w8R+Lt6wtoroBD3mYtgrko09EZ4t91vDDnGMyF6dAZg6A3Oob4UtjWnqjGmHQTERE1Unl5eSgoKFDfz5o1C2vWrMEff/yBli1bVru8pTgbHgY/9eLaas6DRmuotaajRFQ/2G0ljiG+CjNgtTjOGT5BHaDz9HdMt1uhKBr+0EZ0ia7ghjJERESNm4+PD3x8HM2/X375ZaxZswabNm2qNuG2WYtRmJMCS3E2vP3bwODtGBuXTcmJGg+73QpLUSbMRZmwlORcMEWBztPfaci/S+19nIgcWIOIiIgauZdffhmLFi3Cpk2bEB4eXul8InYU559Gcd4piNihKApEbHUYKVH9YrEAL7/seJ772WcBg8HdEdUeu7UYBdlH1fceeh/ovYKh9wxix4hXoDFjgJwc4K23HD2YU+1i83IiIqJGrKYJd+mY2zZrEQDHGLtefq2h1RnrKlSieqegADD93U9Yfj7g7e3eeC6FiB3WkhyYizKhKFp4+bdWp+VnJkKrN0FvDIbWoxH9okAXLTQUSE8H9uwBunRxdzSND+90ExERNVI1TbiL8k6iKPcEAECj0cHoFwGDV3BdhUlUb2m1wOOPOzpS0zegrgxEBFZznmMs7aJzsNstAABF0cLo20ptOm4KinZnmFSPvPMOkJsL1KC7D7oEvNNNRETUCL3yyitYsGABVq9e7ZRwBwQEwFCmjazVnI+8jP3Qe4XA6NuKz28SNWDF+Wkozk+D3Vailmk0OuiNQdB7BbNvBiI3YNJNRER0KcaNA/r3B/71L0BXv55/FBH4+/sjNze33LRt27bhmqs7wWYugME7RC23WUvYvJSoAbJZi6HR6tWexUtbriiKFnpjoGOIL4Nvg+h5PDsb8PMDOBoZNTZMuomIiC5GZiaQlAT07etItpOSgIgId0dVI2K3oSjvBIrzz0BRAN8mXfnMNlEDZLdZHEN8FWXAas6DKTAKemMQAMcPaDZLPnQG5x7I67tTp4CwMGD8eGDhQndHc2Wx24F9+xyPUERFOR6roNpV/3/yIiIiqi+++srRrWtiIvDaa8D//R8waBCQkOCYvmqVoyeaeshclImc9HgU56cBEOg8AxvUBTmRO5w4AWg05ztTcyex21BSeBZ5mQnIPrMLhTkpsJrzAAA2S6E6n9bDAL0xqMHV71mzABHgiy8As9nd0VxZCguBbt2Ajh2B4mJ3R9M4MekmIiKqCRFgyRLHmCopKcAzzzj+PXIEePtt4MwZ4J57gFatgKNHq19fHbFZi5GXmYD8c0mw28zQenjCJ6gDTIFR0GgbUM9QRG5gtTqqvrvbhdptFmSf2YmCrCOwFGcDEHjoTfDyi4B/02tg9A1zb4CXKTkZ+OQTx/9zc4HPP3dvPFcaqxVo2hQIDGxcw+LVJ2xeTkREVFMWi+PK8KGHHAP3ZmQAr74KvPGGo5l5afmWLeeXycwEgoLcEq7Ybcj5Kw52uxWKosDT1AKePi0axLOdRPWBzQacPetoftu8ed1s09HzeC5s1iJ4ejdVy3PP7oPYbY6xtI1B0Ho0nkdD7rsP+OYbx/4GgNatgcOH2cyZGg8m3URERLVFBNi5E+jZ0/HebHY0R2/XznGXPKzu70YV5Z2CtSQHXv6tG9VFOlFjYzXnw1yUAXNRJuw2MxRFA7+m16ijCdhtFmi09avTxtqwbx/QtWv51gRffw3cfbd7YiKqbfypm4iIqCobNgDvv1+z9qUffAD07g18+qnj/Y4djmbnCQlAkyaujROOi/KCrCOwlJzvtdzT1Bw+wR2ZcBPVQzZrMYpyTyDnr93IPbvv76G+zNBoPKA3BgNiV+dtjAk3ADz3XPk72hoNMHu2+5v1E9UWDsRJRERUmaws4P77gdOnHe8nTKh8XhFgzx5HO9TUVEfZddc5nu8+fBjw9Dw/78iRQI8ejubo3t6XHaaIoKTwLxTlHofYbbBaCuDbpAsURYHCsXeILtlffzl+Q/P3d/SqXdssxVkoyjsJAFAUDXSeAdAbg6Hz9L8iHgP5809g9ery5XY7sH8/8MsvwC231H1cV5rUVODpp4GQEOC999wdTePE5uVERESVEQHefRdYtMjxnHZ1CbII8P33wJ13Vj7Q7I4dwLXXOp79TkkBWra8rBCt5vy/ezHOBwB46Lzh5d8GHvp60N0yUQO3a5fj97GWLR09mV8qu90KS1EmzEWZ0Hs1gcHL0fLFbjOjIPso9MZg6D0DGlyP45dDBIiJAbZuPf8s94W0Wsep8sIuMsg1YmOBXr0c/YAeO+buaBonJt1ERETVsVodSfLFstkcCfsDD5xvP1lcDHz2meMKfvbs8/N+9ZXjWfC2bWu0arvdiuK8EyjO/wuAQNFoYfRpBYN3KO9uE9WSlBTglVccd7rnzbu4ZcVug6UkG+bCDFhKslB6ya0z+MEnuGPtB9vArFsH3Hxz9fNt3uxoNESuc+YM8O23gNHoaIBFtY9JNxERUVmnTzva2V1Kon2hxx8HFi4E7r0XWLas8vn++gsID3f0jr5vn2Ow1GqYCzOQn3UYAKA3BsHLL4JDgBHVAyKCwuxkmIvOQeT8LVytzstxR9sYDK3HlT0ukwhw9dWO011Fd7lLabXAwIHAzz/XXWxErtD4HxYhIiK6GIWFjqu8G28ETp26vHXdcIPjWe6hQ6ueLy/Psb1evYAOHc6Xnzrl1JOQXNCpkt4rGAavkBqNub1s2TI8//zzl/wxiKhyIgKrpVB9rygK7DYzRGzQag0w+rSAb0hX+IV0hdGnxRWfcAPAypVAfHzVCTfgmP7LL455iRoy3ukmIiK60LZtjjaPJhOwdy8QHHx560tLA5o1q9m8hYWAl5fj/xYLEBkJBARAvv0GxU29YC5Ih09IF3UIoZqwWq0IDg5Gbm4ujh07hjA3DFtG1BhZLYWOIb4KM2C3meHf9Gr1xy+rOQ8A4KH3cWeI9db//Z8j8a6K5u9bg3Y78OijjsEhyDXy8hwNrnx8gNBQd0fTOLH3ciIiogv17g3s3g2kp19+wg04J9x5eY4e0F9/veIO1EoTbsCR8GdmQoqLkKs/B1tuJgDAXHgWnqYaJvFw3OXOycmBRqPBG2+8gYULF17qJyG64vz2m6OhSrdujmeLbdZimIsyYS7KgM3p7rYWNkuhmnQz2a7af/4DPPaY47dFiwUwmx2DP8yeDbz2GhAQcH6axQIMGuTuiBu3H390PAU1YIBjlEyqfUy6iYiIymrbtsYdml2UCROAL74ADh1y9GJeRYdn9m6dUbhnA+z74mDzEGi0enj5hkM/ZoKjCfqkSUBgYJWbs1qtmD17NiIiImA2m/Hf//4XzzzzDO92E9VQSQmQn+9ohGIuOof8c4nqNEVRoDMEQO8VDJ3B/4rqefxyNWkC3HSTc5mvr+Pfe+8FIiLqPKQrnsnkeJFr8JluIiIiqxV4+GHg4EHXbueVVxzjD334/+ydd3xUZfbGnzu9ZiYkobcERVBRwQaKvfe+trVgW8W+1lWwIdbVtbvWn66rrn3tirqiNBFQEURpCR3SM5NMu+39/XFmbmZIgIRMy+R8P598YG5u5r5JhuE+7znnef65VcEdDW1CoOYXyA4V6t67weHui6Leu8O2dC1ZzN53HymBbfDGG29gxYoV2GuvvVBWVgaPx4MHHnggnd8RwxQkQtcQC9di3D4NWLECeP99wGIvoixtuw9ufwV8ffeCp2Qn2JwlLLjTgKLQnzb2g8w6Z51FjVgff5zrlRQuPNPNMAzDMA88APztb0DfvpQR5HBk7lpCpApuWW5zlxlqXIFYuLZt5ram0SDkH38Akya1fsErrwC77UZ2wHFUVcXIkSOxyy67oH///pg7dy5OP/103HXXXVixYgVXuxlmM4TQoUSbIEfqoEQbIYQOi82DorJRxjm6rnbKU4HpOB9+CJx8Mk32lJXlejUMk1640s0wDMMwEyYARx0FPPpoZgU3kCq4q6qAkSOhf/hf6JpiHHYWDYHLXw5v2ahWwQ1Qfs7pp6cK7tpaalvfc0/gp5+Mw4kq95133mkcu+qqq7jazTCbocSCCDWuRNOm+WhpWAo5Ug8hdJgtDlgdxUiuT7HgzhyJSrfVmtt1MEwmYNHNMAzDMH36AJ9/TsOE2eTRR4HKSuiTbkG4frlx2GS2wuHuC2krLegGsRhZAY8bB4weDSA+y33HHTjpxBMxOn4MALxeL2688Ua8+OKLWLt2bdq/HYbpjsRaNiIWroHQNZjMNjg8/VFUNgq+PqOxZsNAPPWUhI8+yvUqCx9Zpj9ZdGefDz8ELrqILEeYzMCim2EYhumZCAH8/nvr444I3DSiqVE033YpIleci+ZXHoYmYinV7g4zcCDdKX3/vfE9vPHaa1ixejXunDcPWLQo5XSudjM9FU2NIBJci0D1z9DUqHHc5iqjzPvSneHrMwYu3xCjw2T+fOCaa4CnnsrVqnsOPNOdOxYsAP7v/4A5c3K9ksKFRTfDMAzTM3nuOWDUKOChh7J6WSF0RIJrEaxZCEUPITrpajh2HI2i3rvDZLbSvPb22K1YqO1VVVVMuesunGyzYbSqUtZ368W52s30KHRNRrRlI4K1ixCo/gWR5nXx2K864xybsxfcxcNgtfvadJcMHgyceSZw0EHZXnnPIyG6LdzBn3WOPJKSLE88MdcrKVz4Zc0wDMP0TObPJ2OyLN7haWoELfV/GFU2q90Pl38ozBYnnfD99zRbftFFwJNPAqbO742/8cYbWLFmDd6eNYtKRk5n6ydPPRUYOBBXXXMN/v73v3NuN1OwaGoU4aZKKLFA0lEJVocPNmcpbI6tx+0lOOAA+mAyj6LQ23GWm44YAOPH0weTObjSzTAMw/RMXniB5rivuy5rlzSZbICgzG1P8Y7wlo5sFdwAsHw5zWivWUMbAp1E0zRMmTIFJ598Mkbvtx/FkyWIRoH//hd49ll4rVaj2r1u3bquf2MMk2OErkFTIsZjk8kKVaZYPYvNC5e/HP6+e8JbMhJ2VxlHfOUh7QQ5MEzBwJVuhmEYpmciScDRR2f0EkIIyJF6yvGVJEgmM9wlI2Ay29p3Qb74YmDQICqtbYebkKIo6N27N6ZMmdL2kw4H8PXX5HA+dCiuuuoqTJs2DU3PP4+BBx4IHHYYl5iYboUQOtRYAHKkHnKkASazDb4+ewAA/Vsr3gFmqwtmS4YTCZi0oChsopYr6uvp5+/zpTZHMemDK90MwzBMz+HDD6myHYtl/FKq3ILmusUINS5HLFxtHLdYXVuPHTryyNS7njfeABobO3RNh8OBWbNmYdddd23/hMMOA266CQA5mX/7zjvY9e9/B444Apg9u0PXYJhco8rNCDdVIbDpJzTX/4FYuBZCaBBCTzEjtDl7dVlwv/AC0LcvpfIxmYVFd+649lqgXz/g2WdzvZLChSvdDMMwTM8gGKRKcn09VZNvuCEjl9F1FdHgWkRD1QAEJJMZ0vbucb/6KnDhhcCuuwI//AC43elcKhm2XXIJ8MsvwH77tR5fvBioqABcrvRej2G6SDhQhWjLJuOxyWSFzVkCm6sUFps37ddrbgaqq+ntg8ksLLpzhxDU6GS353olhQuLboZhGKZnUFREIvbpp4Grr87IJeRwHcLB1dA1Cpy1OUvh8g2Bybydg4pjxlCZ7bjj0i+4AaCsDHjiCUDXW1vLVRU46SRSGZ99Buy9d/qvyzAdgFzG62FzFMNspQ0gq92PWKgWNmcv2JwlsNh9kKTMNW6efz5w+OHUdstkFp7pzh2vv07Jk9sTnMF0DBbdDMMwTM/huOPoIwOEA6sRbdkAADBbHHD5K2C1d/FOfdQoqkL37t31BW6NZJf01atJhAsB7Lxz63FNA8xsPsVkFl1T4jPadVDlZgCA0FW4fEMAABa7D/6+e2bNCK20lD6YzMOV7twiSWzrkUl4ppthGIYpbJYsyUpvKJmlmeAsGoSi3rt3XXAn6NOn9U5I14Grrsrs/PWwYeSi/t13qdX1k08Gzj0XqKrK3LWZHokQOmLhWjTX/46mTQsQDlQZgttq98Fi8xjnSpKJnccLFBbdTCHDopthGIYpXJqagGOPBUaPBv74I61PrUSbEG3ZaDy22Dzw9d0TTu/AzLW7PvUUtccfcwzQ0JCZawAUlrvLLq2PV64EPvkE+M9/uP+QyQiRwGoo0SYAAhabBy7fUPj7joG3dGfYnCU5W9f8+cBLL5GlApNZWHTnjgcfBK65huw8mMzA7eUMwzBM4bJ+fevf+/dPy1PqmoxwYBXkSD0kSYLV7jPmTbfqSp4OLrkEmDYNOOssoFevzF4rmWHDgAULgFmzyGAtwZNPUiX+tNO49ZzZJkIIqHIQcrgOmhKCt2wURelJJtg9/QChw+YqTc2uzzH//S8wdSrZQIwdm+vVFDY805073noL+Pln2qPeUvgF0zVYdDMMwzCFyy670Ez0xo1kpNYFhBCIhaoRaV4DoWsAJNjdfSBtr0na9uByAR9/nDp4l6071TFj6CNBQwPwt78BoRDlfx92WObXwHRLVLnFmNNOmAzS8WZY7fTv0ukdkKvlbZWddgKOP56FSDbgSnfuuOwyYN06YIcdcr2SwoVFN8MwDFPY+P300QVUuQXhpkqoSggA4u2v5SmzplkjWXCHQmStfMwxwOTJ2XXBMZuBG28EZs4EDj209fiCBUB5eXYr8UxeIkcbEQmsgqZGjWOSyQybI3MRX+nmvPPog8k8LLpzx+WX53oFhQ/PdDMMwzCFRSwGHH008MUXaXk6XVfRXL8EqhKCZDLD5S+Ht3TX3Ajuzfnvf2nY9LHHqJqfTXw+4K67qMqdEPuaRq3vgweTERvTo9A1GZoaMx5LkhmaGoUkmWBzlsDTayf4++4Fd/EwWO0+SGyVzCShKNxezhQuXOlmGIZhCot//AP48ksaUFu5EvB0TRybTBY4vQOhyqGuZW5ngnPPJbO4MWPSNrPeJTZuJMdzux3Ya6/W4zysWbDougolUg85Ug8lFoDd3QduP839W2xeeIp3hNVRzI7jzDaRZa5054rGRvrZu1ypCZJM+mDRzTAMwxQW111HBmpHH71dgltTIwg3VcHhHWDEfjk8eSBot8SVV6Y+rqoC+vYFnDkwoxo4kDY7qqpS48ZOPZWq4I88kpr9zXRLhK5BiTVBDtdBiTVCJDnai6SZbUmSYHN175DryZOBN96gt5Wrr871agobbi/PHUOHUrLm0qXA8OG5Xk1hwqKbYRiGKSwcDnLV7iRC6Ig2r0e0ZT2EEBC6Cmvv3TKwwAyyZg1w0EE0U/3RR9QCnm0kKdXhfN06avUXgqvdBUKwbjE0JWw8NltdsDlLYXOWwGxx5HBl6ae6GqisBAKBXK+k8FGULjcmMduJHN8rs9tzu45ChkU3wzAM0/3RdeCrr4CjjtquL1eiTQgHqgzDJ6vdD5e/PJ0rzA7r15M6qKmhO9h8YOBAKp98+22qNe6jj1I1/Pzzc1OVZzqEKjdDjjTAWTTIyJ+3OoohdA02VylszlJY4pF5hcjf/gZMmEAvYyaz8Ex37mhpITsUR2HtmeUVLLoZhmGY7s/DDwO33koWrM8+2+EvS87cBgCT2QaXbyhszpJMrTSzjBtHBmYlJUBpHrX1DhtGHwkaG4E776Q7vcGDyX2dyRtUJQw5UgclXAdNI2M0i70INkcxAMDpGQBX0eBcLjFrlJfTB5N5eKY7d5jNNM/NZA4W3QzDMEz3R9PI/WXvvTv1ZVTFqwcgweHpA4d3EEymbv5f4x57pD7+5hvK1M4n7HZg6lRg2jSavU8wZw4wYAAJcSar6JqCWLgGcqQupXVcksywOXvBZGpVQ2yKxmQCnulmChlJJLtfMAzDMEx3ZckSYOTIbWZV67qaIqzDgdWwOUvyIwIs3cybBxx8MCZqGuYOG4YFv/2W6xVtGV2n319lJc2jc/U7q6hKGMGahQDIAM1qL4bNVQqr3d+jRfbMmWRLsNdeqdMRTPrZc09gn3061azEpIGWFmo8SuyFcpJfZujm2/kMwzBMjyWxZ5y4Q9iGK7auq4gE10CJNKCozx6G8Hb5hmRylbmlogIYNQrYsCH/HXLq6qjKXVMDjB8P1NYCZWW5XlXBIXQNcrQBcqQOJpMV7mJSkharC3ZXb1hsHlidJd2/4yNNPPYY8N57wDPPsOjONJwsmBuCQbLYMJuB++7L9WoKF05iYxiGYbonr70GHH88ibRtEAvXIVj9C2Khaui6AiWSZ+3WmaKkBPj6azKYy/fyRe/ewP/+B/z+O0WODR0K3HUXjQ4wXUIIHXKkAS0Ny9C0aT5CjSugRJsgR+oh9Nafr7t4GOzuPiy4k9h1V+CQQ9hILRtwe3lucLmAm28Grr8+1yspbPhdlWEYhul+hMPADTdQdfRf/wJuvLHd0xKZ20qM8n7MFidc/nIjf7tH4PGk3sk++SRZ1F56ae7WtDX69gX++U/6HS9YQLP6ABCJsMv5dhBpXodYy0boumocM1scFPHlKu3RreMd4a67cr2CngOL7tzg9wMPPpjrVRQ+LLoZhmGY7ofLRVXRp57a4vZ8JLjWyNyWJBMc3gFwePobsUc9kjlzgGuuob/vvDOw//65Xc+WuOsumu8+9FCq0H/xBXDxxTTrveeeuV5dXqPKLTBbnCliWtdVmMw2I0u7IP0LmG4PR4YxhQyLboZhGKZ7MmoU8NxzW/y0rskQQsDq8MPlK4fZwgGkGDuWgofDYWC//XK9mq1z5pn0pxDA/ffTXPo//wm88EJu15WHaGoEcriOnMfVKDzFO8Lmosg4mtP2wmIrgpTvIwZMj4Yjw3KDptGGh92e/1NI3ZkevN3PMAzDdDtmzaJ533bQNRmaGjMeO4sGw9NrOLwlI1lwJ5Akcsr5xz9a7640DVDVrX9dNli3jgYLI5HU45IEfPwxMGkS8PTTuVlbHqJrMqItGxGsXYRA9S+INK+DpkYhSSbommycZzLbYLX7WHBvJxMmALvtBnz5Za5XUvhwe3lumD2bJndGjMj1SgobrnQzDMMw3YPqauDUU4FoFPjqK8qWAZlExULViATXwmL3wlsyEgBgMlthc5bkcsX5S0KACQH85S9AfT3w5ps0650LhADOPx/49ltg0yaa00+mqAiYMiX12OLF5HLVA9E1GU2bfgKQSH2VYHX4qH3c0YvntNPIypXAokVAc3OuV1L4sOjODbH4XjW39mcWFt0MwzBM90CWKbOnuZlaywGocjPCTVVQlRAAQOhqmxxuZiv89hu5wKsq8MMPwMEH52YdkgTccguwdi0wefK2z3/sMeCvf6Ucp8svz/jyconQNSixJmhqFE7vAABUvU7MZdtcpbA5SmAys1rJBI8/DjQ09Nj9nazCM9254ZBDgECAgyIyDd+VMAzDMN2DQYOA774Damqg262INFUiFqoGAEgmM1xFQ2Bz9eY22s6w665kUrZmTe4Ed4KjjqK4MMs2bk2EoPKjEFShL0CE0KHGgpAjdZAjDRBCgyRJsLt6G+LaW7pzzzYFzBKjR+d6BT0HnunODWYzNRMxmYVFN8MwDJPfqGqrELNYoJb50VL9C3RdAQDYXWVwFg3hSt/2csghqY8DASAYpE2OTBMMArpOmTXAtgU3QFXxJ54AjjuOhHoBoSohyKEayJF64/UNACaz3TBGS8CCmykkhKC3gj/+AJYvB3bcMdcrYpj0wu/YDMMwTP7S3EylpiefpLsyUMawZDLDbHHCW7oz3MU7sOBOF5EIcMIJFCW2dGlmryUEcMUVwB57AHPndu5rJQk4+ujW2XRVJSf7btgfKYQw/q7GmhENbYKuKzCZrHC4+6KobFf4+46Bq2gwv85zwP/+Rz5+dXW5Xknh0tAAHHMM/f2xx4Dhw+mfd2NjTpfVY1iwALjjDuCtt3K9ksKGRTfDMAyTv7z8MrB4McRDD0AEmgBQhc9TMhJFvXeD1e7L7foKjcZGoKaGqt3hcGavVV9Pc+Tr1lGJqytccQXNdk+YkJ61ZRhNjSHSvB6BmoWQwzXGcZuzBHZXGbwlI+DrOwYufzksNm8OV8pcfTVw4onAr7/meiWFyznnCHz9tUg59vXXwNln52hBPYwFC8in8s03c72SwobbyxmGYZi8RbnsPKgtG6CMHAqbJYqEtzZHgGWI/v2BGTOAysrMD7OWlgI//wxMnw6MG9e15zrqKOD118ndPk/RNQVytB5yuA6q3GqFLUfqYXf3AUCO++7iHXK1RKYddtsN8HhaJyCYriN0DdGW9Qg1VWHxL3X48svT2pyjaRTTxq3mmWfkSGDiRHqtM5mDRTfDMAyTd+haDOHAasiReuDCk2Ey22Ay23O9rJ5BWRl9JFixggzOTjgh/dcqKqIyYlc5/XTggAOAPn26/lxpRgiBUMNSyNEmtEZ8AVa7DzZnCawca5fXcPWv6+iagkhwDUJNlQg3VSISXA1do5yqP37bejj0r7+y6M40BxxAH0xmYdHNMAzD5A1C6Ig1rYP23DOQzz4OsFjh8PSD0zuQs4dzQU0NcMQR5G7+7rvAKad0/TkfeIBc048/vuvPlUyy4G5qor7gv/8960JcCB2q3AKrneyAJUmKz20LWGweytJ2lsBk5mwkpjDR1AjCTasQDlQi1FSJaHAthEj1WzBZnHD7yzF67C5bfa4LLgBmzwauugooL8/kqhkms7DoZhiGYfKGcFMVTJPvhvvp12D7dg6kTz6DxerO9bJ6Lr16kbv59993vQUcAGbOBG67jUzUFi7MXD/jJZcA770HrF5NMXMZjpETQkCVg5DDdVCiDdB1Ff6+Y4zuDKdvMFzSUJgtzoyug2FygRILIhyoQjheyY62bERyVwcAWGxFcPkr4PZXwOWvgN3dB5JkwmDQdMjXX6f6IJrNwPjx9Lbz3HNksHbyycB119FxToZMH0LwzzMbsOhmGIZh8ga7px9iu4yAKPLCcunVkFhw5xaLBXjpJTI9Ky3d9vnbYq+9gGuvJZf0TA4QPvAAzaU/+WRG7yZVuQVypB5ypA66JhvHTWYbNDVqiG7eOOq+HHMMNU689hqwA4/bQwgBJdqAUNNKhJtIaMuRttbuNmcpXP4KuPzlcPuHweroBWkL/xbffJNM0778svXY4YfT8eJiYNIk4N//JuF94IHAmDH0NnLmmYC9k1NHkQjg5L2vFG69FXjkEeDGG+mtk8kMkkjOqmAYhmGYLBIL10LXYnB6BxrHhNAhNTQCJTzrmi4mTpyIuXPnYsGCBV1/sm+/Bd5/n+6AzdvZ8p+N0srm10jOe08DcqQeLQ3LjMeSyQybowQ2VykstqItCgyme1FWRnFhixbRVERPQwgdsVA1wk2Vxky2Kgc3O0uCw9MvLrIr4PKVG+MVnWH5crKQ2GGH9ue4dR346it66/niC5ocmTiRggt699728zc3A8OGUcX8uee4upvguuuAxx8H/vY34L77cr2awoVFN8MwDJN1NCWCcKAKSiwAQEJR2ShYdDPgYFfyTJA20d3YSIOVgQDw6KPA9dd37OuWLaO76Fzd5S5fDhx3HPDCC8BBB3X6y3VNhhyph2Sywu6iir+uqwhW/wyL3QebsxRWhx+SxEmshca0aVQdPeQQ8v0rdISuIdK8zhDZkUAVNDWSco4kmeEoGkSt4r4KuHxDYbZmt3z8++/AE08Ar75KbennnkvV79133/LXPPUUWT0AnXv7KnSam4FgEHC5qLOAyQwsuhmGYZisQVExGxBtWQ8hBCTJBId3IBwvvwvphReA//ynZ5aTMkxaK93vvEP56R980LFNkkWLgL33Bk47DXjxxdz0dp5/PvUHjxsHzJrVIfGv6yqUSD3kSH18c4jaxIt6t7bFC6Gz0Ga6NYmkiHBTFcKBSoQDqyF0JeUck9kGZ9FQYybbWTQYJrM1RytOpaGB3laefBJYtw44+GCq3B5/fGojjq5TlXvVKnosScAnnwDHHpuDRTM9Ep7pZhiGYbKCEm1EOLAKmhoFAFgdxVQh0STgH/8g06vp07smuoUA+vWjqupllwFHHpmXMVLdmjPOoIiuZOEai215uPLHH6m1u7Exd50Mzz1HQcuTJm1TcMuRBsjhWiixRiTXJSw2L2zO0vhmET0HC26mu6EqYUQCVa3xXc3rAKGnnGO2uqiC7a+A218Oh2dA3qZH9OoF3HwzVa0/+KDVcK2iArjmGmDCBOpQ+OyzVsGd4Iwz6O1pl60bqDNMWuBKN8MwDJNxdF1FoPonCF2DyWyDyzcUtuR84poaav297bautSALQXdYLS2tx0aNorLH0UdTpdOaHxWabJLWSvfmPPcc9W1++SXQv3/758yZQ2WmjgxeZotVq4ChQ1NENAC0NCyjfHiQ+EhEfJktPPrQE/nmG3pL2n//zpt25QNKLJAyjx0LbWpzjtXub53H9pfD7urdrTeU5s6lGeV33qHGmosvpreg+fPbOqT37w/89FN6fCK7K+++S76TRx+dWX/Lng6LboZhGCYjbC5moqFN0NVY5jO3H3iAHGGSsVio2upyUe70McfQHcaQIZlbRx6RMdEdCgEjRwJr11Im9g03pPf5M8U330AceyyUW65B+PI/wVu2qzGTqkSboMhB2JylsFhdOV4ok2vMZmpN3rCBmmjyGSEE5EidEd0VaqqEEm1oc57N1duI7nL5ymFz9srBajPPunXAM88ATz9NM8vtYTYD++5L/pA2W3bXly+ccAK12r/wAqUtMpmB28sZhmGYtKPKzQg3VcFZNBhWhx8A4HD3TT3p44+pN3D//dN78QsvBG6/ne6UjQWp9Gc4THcXH31EVfFhw4BTTgHuvpsEOdM53G7K8H7tNeCvf209vn495c/84x9A375b/vosoyphyJE6mKa9B4csA/PnQ9dOhhyth9NKDvpWh994zTI9GyGoUUZV81OQCaEj2rLBiO4KB6qgys2bnSXB4R1AreK+crj85bDYvDlZb7YZOJDcuNevp8gxXW97jqYBP/xADugvvdQzHc0PP5zCQnbaKdcrKWy40s0wDMOkDV1XEQmuQSxUDQCw2DwoKhvV9sTVq8lmtrmZMmAOPTS9CznxRBriS+4l3BJmM7lrV1Skdw15REbbyzdH18nq+fvvqZvg888zf81toKkRtDQsg6aEjWO2T6ZDOulE2Pz9YbH7unU7LdMz0HUV0eBaahUPVCLctAq6Fk05RzJZ4PQONuaxnb6hPXo0orYWGDAAUJRtn/vII6l7hwyTTrjSzTAMw6SFWLgWkcBq6HHnW7urDM6iLbRvFxdTT9uKFcABB6R/MZdeSpX0jvDqqwUtuLOKEJTJM3cuMGIEuRrlAF1ToGsxWGweAIDJbIeuxSBJEqz2YthcpbBeuk/qmMP779Psfz6WNJkeiaZGEQmsRigQNz0LroHQ1ZRzTGY7XPEKtstfAad3UN44i+cDzz/fsb1XgKZjdtqJ0gUZJt2w6GYYhmG6RGrmdsL5thxW+1ZCbYuKqCW5pSUzxmbHHAOUlVGZY2s8+igFvDLpQVGoi0GWgTvuyGq/otA1yNEGyJE6KNEAzBY7fH1GAyCXcU+vETBbXTCZ2rn1eeYZ4MorgaOOovEDC98eMdlHlVsQDlTF57GrEG1Z346zuCc+j00i2+Hpz10aW0CWyVCtvbbyLXHiiZQqOHZs6vEDDzwQM2bMAACYzWaUlZVh7NixuOmmm7DffvulcdVMocL/qzAMwzBdQlMjUGKB1sxtT78t3wQ2NVF0UwKPJzOLsljIEeahh7Zc5kjkzDDpIRikTY4PPgC++44GBTOMEDqUaFNcaDdCJAkUSTJD1xSj6rfVTaAddqCZ/n33ZcHNGIRCVPU0m4Evvkj//qAcbTRMz8JNVYiFq9ucY3X0MlrFXb4K2FxlKQaVzJb59ttt77sClGToctHvWVGA6s1+DUII/PLLL3jggQdwwQUXIBqNYtWqVXj22Wdx4IEH4qOPPsKx3Tjwe6+9qOnsk0+A8eNzvZrChWe6GYZhmE6jazJM5tY23EjzOticpVufHayvB/bYg0JUH34485nNK1ZQXnd72O3AzJl0t9EDyMpM9/nnk+B+9VXg1FNbjzc3A2++SS3/aRYLoaZKwz8AAMwWB0V8uUphtjg792SVlUB5ec90UmLapaGBDKYAMlMzdyF0QQgBOVxjRHeFm6qgxBrbnGd3900yPatgU78uEAgAb79NEyNeL30UFbX+3eulfd9t7bMtW7YMO+20E2bPno1x48alfO7QQw9FY2Mjfv755wx+J5llhx2AlSupws9F+8zB27kMwzBMh9G1GMKBVVBjQRT13sOoIjq9A7f9xZ9+Shku06YB99+f4ZWC7iQOOIDuJBL9hSYTmXwFg/Tn++9ThBjTNcJhyr0Oh4E+fVqPaxq5w3/zDbWdT5263ZdQ5RbIkXrYXKWwWN0AAJuzBEq0ETZnCUV82brQOZE8169pwK23Aldd1WNi5Zi2uN3AW2+R4DZ1soNb6BqiLRvipmfUMq4podSTJBOc3oHxmWxqGU+8tpmu4/PRXl9XWbBgAcxmM3bfffc2nzviiCMwefJk6LoOU2dfJHnC9On01j1oUK5XUtiw6GYYhmG2iRA6YqFNiATXQQgNgARVDsLmLOn4k5x/Ps1Z9+2bubbyzbnsMiA+hwezGRgzpjUu7IwzqHf0X/8CzjorO+spVFwu6uWcOTM1As5sJtE9bx51OHQSTY1ADtdBjtRBUxMuzQIWHwkTi60Ivj5j0t9ue/fdlDv+/vvAkiXUGcH0OOx24E9/6ti5uqYgElxD89iBSjKV1GIp50gmC1xFQ1tNz4qGwGzh11a+89NPP2HEiBFwtRMrabVaYTabu63gBihajck8LLoZhmGYraLKzQg1VRpxSxabFy5/BSzW7ci1PuaYNK9uG5x2GnDFFWTYVlFB8VWJG6cPPwQuvhg4+2ygpga45prsrq3QMJuBgw5qe/zKK4EzzwRKSzv0NLTBUw05UgdVbjGOS5IJVkcxrHZ/0rEMtYL/5S/UKn/HHSy4mXbR1AjCgVXGTHYkuDa+IdmKyeKEy1dO89j+Cji8A9s38mPymgULFmDMmDHtfm7ZsmUYMWJEllfEdEf4Xz7DMAyzRZJnZk0mC5xFg2Fz9e642AmHqWp4223U65dtnE7g8suB//yHWpxLkirzVivwyivUDn3tteSec++9PNPbGe6+m4Ykr7126/23yYJ71SoysXv+ecNUTwg9yXxPQrRlA3RNBiDB6vDRnLajV2rEVyYZMAD46adU5ywh+LXRw4hEgJ9/ppngPXZrjs9jVyHctBLRlo0AUm2RLLYio4rt9lfA7u7LzuIFwM8//4wTTzyxzfFIJIIPP/wQV155JQBg3333xdNPP4299toLF1xwAcaOHYsrrrgi28vtNI8/Tm9155+fvSa0ngiLboZhGGabJDK3O53/etNNFMc0YwbNVudCtDz4IHDffe1bD5tMZOrWpw+ttboa+Oc/2cG6IyxcSKJbCGD0aODgg7f9NUJQ1fvHHyFMJij/9zTkcB00JYSiPqMhSRIkSYLDMwAAzWznLHM4+fUSDFKG9y23cIhvD0AIASXagCU/rcf+43eDxx3FDx/d1eY8m7OURLaPRLbVWcLO4gVGZWUlmpqa2lS6dV3HFVdcAYvFgquvvhoAMHnyZNx3333Yf//94fF4uoXgFgK47jr6+2mnsejOJHxXwTAMwxhoShiQTIYLubNoMGzO0q3HLW2N886jrJ277spdldBk2rYL0o03kvC+6CLKmPnPf6hKzmyZ3XYDnn4a+O23jgluAAIC6lOPwHTlNWi+6c/QG5YZn1PlZuN15vD0zcSKt59HH6WNo+XLyea3ndlOpvuSGGkIN1Uh1LQS4UAV1FgAtRt6YfCAfnA5qevC4elniGyXv2L73xeZbkMi8aFfv37YtGkTgsEgFixYgCeeeAKrV6/Gxx9/jOLiYgDA8ccfj0mTJqGlpQWfffZZLpfdYXQdOOccIBYj40Amc7DoZhiGYSB0DZGW9Yi1bIDFVgRv6c4AqKXc1JUby7Fjgd9/p/7MfOe886gN+vTTgSOPJMO1+M0U0w6SRPPyHUSO1CPcVAW9vxl4/ylAkmAy22FzlcImeWDJZwFz++3Apk1khcyCu9sjdA2R5nUIBxLxXaugqeGUcyTJjOEjvPhx+lxyFvdNgdnKG3E9jZ9++gkAMHz4cJjNZvh8PowYMQLHH388rrjiCvTq1cs498cff0RTUxOGDx8OSzfpljKbgddfz/Uqegac080wDNPDkaONiDRVQYs77VodxfAU77j987OaRpncvXuncZVZ5IcfqIW4f3+q0g8YkOsVdZm05nTPnUsu8O216ydBXROSkZetys0I1i6GyWSF1dkrHvHlhTRrFrnHv/MOsFkGbl5TW0ubNNxOnPfomoxwYHVcZFchHFgNocsp55jMNjiLhhjz2M6iwTCZu8FmIZMXrF+/Hscccww+/PBDnHrqqXjjjTcwcuTIXC+LySO6xzYMwzAMk3Y0NYZIYBXkaAMAwGS2w+UbCpuz1za+chvcdx/w5JMUxXX00WlYaZYZO5air446CthvP+DLLwF2pyUSreS77w589hnQK/W1oqkxyJF4xJcSht3VG+7iYQDI9d5bujMJ7WRzqfvuA9avB/7xj+4juisrgfHjgXPPBR56iIV3nqEpYYQDVYbxWaR5LSD0lHPMVpeRj+32V8DhGZA9oz6moIhEIjj99NPx1FNPoby8HDfffDPuvfdevM4lZCYJFt0MwzA9EFVuRnPdkrhrtAS7ux+c3oFdv+lUFIriqq2lj+7KyJHA7NkkvMePJ4G5zz65XlXuWbuWIrT8fsN5XNcUyNF6yOE6qHKzcSoZSqU201nt7TjYv/MOMHUqMGlS5tadbr79Fti4kToh7rgD8HpzvaIejRILUD52XGTHQpvQxlnc7oPbXxFvFa+A3d17m87if/wB3HADNbs8/3wGvwGmW+N0OjFnzhzj8dlnn42zzz47hyvqOKtWAXvvTfunS5fmejWFDYtuhmGYHojZ6obJbIdksmx/5nZ7WK1UJX7nHZqR7s4MHEjmWSecABxyCPDee92zcp9Ojj6aXMsdDsOcrrnuN2hqxDjFavfB5iyB1VnSsUxit5uq3cn8+isZteUrF19Ms90HH8yCO8sIISBH6uKz2FTNVqL1bc6zucoMV3GXvwJWR3GnncXr62m/bYcd0rV6hskvIhGgro6mwpjMwqKbYRimB6DrKmItG+HwDoAkmSBJJnhLd4ZksqY/4sbh6P6CO0GvXsBXX1HM1QknUK73uefmelU5QQgdSrQJSpECl38QEq8am7MESrSRDNGcJTCZ7V270P/9H7nI33EHfZjztOV380rWrFnAHnuwBXCaEUJHtGUjiexAFcJNlSkdFYQEh3cAXL7yuMguh8XW9c2QHXaglyP/SplCpaICWLyYRXc2YNHNMAxT4MTCtYgEVkPXFUiSGQ5vfwBIr0nQq69S5bNQxHYyLhfwwQfAZZcBf/4zUFMDXH99rleVFYQQUFcvh+nc8xC6+xqoIysAAFZHL2P23+EdCGfRoPRdtKqK/nznHeouePxx4LDD0vf8meC776gLYMwY4PPPgaI8dmLPc3RdRbR5LUKNcZEdqIKuRlPOkSRz3PSsPN4uPtSIOUwnffoAF16Y9qdlmLzBbgd22SXXq+gZsOhmGIYpUBJmQkosCICMg8w2T/ovtHIlRUdFIjTne8IJ6b9GrrFYgJdeorvwv/6V4qMeeKBgDbQ0NYZYaBPkSB2c198G6+wf4br5frR8+gpsrlLDkRxA+jsl7rkHCIfJWE3Xu8fP2GajDo+SEs537ySaGkMkuMpoFY8EV0Poaso5CZNHV7xV3OkdBJN56+75DMMw+QSLboZhmAIjOXNbCAFJMsHpHQS7p+82jYO2i6FDgdtuI+Ox445L//PnC5IE3H8/Ce/rrweqq4EXXthmdFZ3gUz14q8PoSPasgEAEJnyV5hhgbjrTvj67pl+kd0ef/87cPPNlJV+yCGtx197jZzOr7gC8LVjypYrxo0D5syhfwsF8nrIFKrcEm8Tp1bxSMv6dpzFPXD5y415bIe7X06cxQMBarzweoFhw7J+eYbJOGvXUnNO377AiSfmejWFDed0MwzDFBihxhWIhck53OboBadvKMyWLs7ZdgRdN8y1Cp433gAuuIDczd9+m1rQ85gt5XTrmgw5Ug85UgeT2Q5Pr+HG58KB1bDYvLA6/JnZrNmcQIB6HR1baBNWFGDHHYHVq4GnnwYmTsz8mrrCc88BBx5ITvg9GCXaaLiKhwOViIWq25xjdRQbruJufzlsrt7Z2dzZBh9/TEJkn30onp5hCo1PPwWOPx7Yay9g3rxcr6aw4Uo3wzBMgeHwDIAqN8NZNKTrmdtbY+VKoLy8VWj3FMENAOecA5SWAqeeChx+OPDJJ20yq/MVXVehRBogR+riowe09y5JkdZqd3MzXIvXAfvvn51FCQFMmAAsXw689Raw885tz5EkYMoUavOfMKH1+JIltOkxdGh21toR3noLuPxyajdfvJjKSD0AIQTkcA1C8Sp2OFAJJdrY5jy7u0+KyLY6inOw2m1jtdKvrrQ01ythmMxQWkobS+zQn3m40s0wDNONEUJHLLQJuq7CVTQ46bjIbKVowwaKdNp7b6r6FufnTXPGmTcPOPZYoKwM+PJLYFAaDcXSSKLSPeN/7yMW2ojk//otNi9szoTzeLw1esIE4F//Ah55BLjuuswvcO1aKrU0NgI//ECGZB3liCMoN/vll4Hzz8/cGjtDXR29Lg49lGb/CxSha4i2bEA4UGVUszWlJfUkyQSnZ4Axj+3yDYUlE94SDMMweQxXuhmGYbopqtyMUFMlNCUMQILdWQpzPG87462ZP/0EhEI015znrdUZZe+9KSrqyCOB/fYDpk3Lm3ZiIXSosWBKdJLJZIUQAmaryxDabVyf1SQTqz33zM5iBw2ibO45czonuCMR6rCQJGrlTqCqZH6XK0pLgenTC85UTdcURIJrjOiucGAVdC2Wco5kssBZNMSI7nIWZWm8hWEYJo/hSjfDMEw3I3HjGwvXACAh5SwaDJurLLtzkL/9Rq7NO+6YvWvmKxs2UGTU+vXUaj5uXM6WosrNkCN1kMP10HUF7uIdcP2Nd2Lu3LmY9+MP0HUFFmsHNkp++637ZMmsXg0MGdL6+NprScQ/+CAN5OYaXafIuUMPpdGEboKmRhEOrCKB3VSJSHANhEgN9DVZHHD5KLrL7S+HwzsIJhPXdBiGYZLhd0WGYZhuRCxUg0hwDXRdAQDYXb3hLBqcm/ic7iLIskH//sD339Nw3GGHUcZ0Fp3cNSUcF9p10JIqj1TZbhVJJrN1y68VIVLjubLx+73/fuCgg6hLoCskC+5IhHLjAwH6yAfeeINm0f/1L2D8eGDw4G1/TQ5Q5WYjuivcVBl3sE+tzVhsXqNV3O2ryFwqQh4wfTrwzDPU8HHLLbleDcOkn5deIquMU06hlEYmc7DoZhiG6SbomoJwcBWErsFsdcHlK4fVXpS9BQQCVK27/36goiJ71+0u+P00133OOcBJJ9HdzAUXZPyyuiYjULPQeCxJJticJbA5S2Cx+zouiO68E6itBR59NDtt0dOmUdScxQIsXZq+15TTCSxaBLz5JpncJXjnHSAYBM47jzo0ssk55wA//khV9zwR3EIIKNGGVpEdqIQcTz1IxuYsgctHreIu/zDYnCV54SyeDVaupJdNNJrrlTBMZmhooEahhoZcr6TwYdHNMAyTxyRnJ5vMVriKhkIIFXZ3DqpLN91E8Vh//AH88ktqVZQhnE66S584EbjwQqCmBrjxxrT9rHRNgRyth67G4PJRdddktsEaF9c2ZymsjuLOZxqvWgXcdx+gadQmf9JJaVnvVhk7Fjj3XHL4TvcmzqBBlPOdQFWpVFlVRdFjl1+e3uttC5MJeOKJ1GMtLYDbnbV/R2S6WGO4ioeaKqHGNu8EkGD39IXbENkVsNrzKA89y4wbBzz5ZH4Z4zNMOjnvPGo26qleqNmERTfDMEyeIkcaEA6sgss31Ij+srt7525BkyZRpNN997Hg3hoWC2U09+1Lwm/TJuDhh7c7Uk3oGuRoI+RIHdRYU9x5XILD099oFfeUjOxa9XHoUODzz4GvvsqO4AaAoiLg3/8moZ9pNA248krgtddSHc4rK6lDIdtxby0t5Lq+yy70WjF3cpOkAwhdQ6RlPcJNKykju6kKmhpOPUkywekdFJ/HJmdxc0fm/XsIO+/cfnodwxQKffv2mETDnMNGagzDMHmGpsYQCayCHKV+L6u9CN7SPJmf3nzul9k6Tz0FXHMNtRe//HKn2pqVWBCx0CYo0UYIoRvHLVY3bK5S2Fy9O2xYlYgMW7BgQae/hbSzZk3uWqw3f/0efTQwcybNWp96avbW8fnnwPHHAz4fMH9+m0r/wIEDcdttt2HixInGsdmzZ+Pwww/H77//jiHJM+xxdE1GJLjGmMcOB1ZD6HLKOZLJBpdvCFz+crj9w+J+EFlutWcYhumBcKWbYRgmTxBCR6xlEyLNa+Nt5RLsnv5wegbkblGxGFW3d92VHrPg7hxXXQX07g38+c+U3fzuu4Cn/Yxi2gMXxtiArkYgR+oBAGaLIx7xVQqzNY3z1l9/TfnYfn/6nnNr/PQT9exefjllgGc71iv59dvSQpF3kQiwxx6tx7OxsXTMMTSG0L9/u631Y8eOxbx585KWJHDdddfhuuuuMwS3poQRDqxqNT1rXtfGWdxsccXbxGke2+kZ0PnRgx5MQwNQX097I71z2GTEMJli7lzyLth9d/ZGzTQsuhmGYfKA1Mxtcgh2+yty3+p5221UrX3qKeDSS3O7lu7Kn/5Ec8snn0zO5p9+SjnOcVS5BXKkHnKkDg7PADg81OtndfSCwxOBzVkKi619od4lfv+d3NbLyqjaO2hQ+q+xOf/7HyDLVO3OQEt1p/B4aBPg119The9NNwFr15KxXCZ7izevrK9YQa+T4mKMHTsWr7zyivGp1157DWvWrMbEi4/FxqXvIxSoRKxlE9o4i9t98TZxmsm2u/sUrLN4NnjpJZoQueACIOnXwTAFw//9H0243H03i+5Mw6KbYRgmD9B1FZoSpsxt3xDYXWW5XhLNwa5cSSKpT59cr6Z7c9hhwHffUYVz/Hhon34IubebIr7UiHGaEm00RLfJbIXLNzRza4rFWiutA5K6KX75hdy/S0upDXzwYMDrTc81b7wRGDWKquv50DUhSVTiSdDcDPzzn0AoBFx0UfYGetesAQ45hGbLp03Dvvvui1tuuQVrl09HLLgaN994Da44b18EVn+Q8mU2VxlcPmoVd/nLYXX06jHO4tnAYiHrARePuTMFyk470X9Pw4bleiWFD4tuhmGYHCCEgK5GjVZhm6MYLn85bI6S3GRut4fZDHzwATBjBnDggbleTfdnzBiImTMhjjgU0v7jIb/+D2gjhkGSTLA6iuPO4/7srKW2lirdhxxC/YUtLaQuAIraeuih1PMrKqhif+aZJFK7IuyOOmr7vzbTeL3A7Nn0MzjyyNbjH39Mfx5/PCBJePfdd1FTU4P9998fu+66K8xdrNqLQBOgyNDCAVQvexc+eSNMJuB/nz6LHxashs9rw6nHjILDM6DV9MxfDostTZshTLtcfz19MEyhwq/x7MFGagzDMFlGVcIIN1VCU8Pw9R6dPyKbSTu6rkKNBQ33eQBoWTIDjjMuhnl9NZR3/w3Locd02BBte5k4cSLm/vADFtx9N/XMfvopxWgl+PLLVpH52mvAq6/SDPqaNUBjY+qTLVwI7LZbxy++Zg1w773k4O7rhvFTmkbloJUryQxvwgRMnDgRL774IhRFQVFREcaNG4fx48dj//33xz777AO3273Vp9R1FdHmtQg1VcVNz6pgWb0Rus0CtYyE9JkT38DeY0bgrQ/m4K03nsGxJ5wNsyUL+ekMwzBM2mHRzTAMkyWEriHSvA6x0EYIQYZZ7l7DYXPkWUDmo4+Sg9Bdd2Xf6KoAELoGJdYEOVwHJdYIIQR8fUbDbHEAADQ1AikYgum0M4AffgDeeotmqzPIxGOOwdyvv8aCZKG9xx7AwQcD++9P/YVbCmoNBkmU/+c/ZKq3cGHHK91C0HN/+y1Vyt96q6vfSvYJhYB77iHjs0WLKFsbQHjFCsyrqsKsefMwc+ZMzJ49G4FAABaLBaNHjzZE+P7774+y0mJEgqsRbqJ87EhwDYSupFzGZLbD6RtCreK+ctxy4fV45uNPcPzxx+Ojjz7KxXfOMAzDpAkW3QzDMFkgkbmtazEAgM3RC07fUJgt9hyvbDNWrQKGDwcUhUTG6afnekXdAiF0qLEg5Egd5EhDiou02eqC21/RthU4GiVX8w8+AJ5/Hrj44oytb+K552LuG29ggdNJbt3DhwO//db5TRVN67wB2pw55Fb+wQftOnV3Gzb/3o87DliwgLoCjjoKuq7jt99+w6xZs/D999Mxa+YMrFm7AQDgclpx6dn74NJz9zW+3Gx1w+WviM9kV8Dh6d/qLL5gAV7abz9cIctY9OGH2CnDmzJM+7z9NqW7HXMM7RkxTKExYQIwbx5NFB17bK5XU9hwCYNhGCaDCCEQalwGOUKZ2yazPT67nWfV7QRDhwL//jdVNk87Lder6TYokQa0NC43HpvMdsrSdpbCsiUHeoeDKr9XXQVccglQUwPcemt6DMbee4/upB54gB77fNQiPW8etXpfcMH2dTFsz+zyuHFkztbdDb6Sv/dAgDYtamuBYcOgRBvRUL0UKxd9hRW/zsa6lX+goaHOOD0SVeD2+uDrs2c8I7sCNlfvLZue7bgjXne5MLFvX+x09NEZ/saYLfHjj+RaXlbGopspTFaupLeyUCjXKyl8WHQzDMNkEEmSYDLbUjK38z4n909/4jvMraApYciROpjMdtjd5OpudRTDZLbD6vDHI768HXORNpuBZ54B+valeLZNm4B//AMwbWfMU0MDcOWV1AouScC555JbOEBt0V4v8OCD2/fcnSEQoIp6X3Ji7/aCOwkhBGRLDJs+eR5zX30F3957Ceb/vAK//r4JsqLBYzFhj53747Tj9sYX3y6Bqgu8986bOOiQbYtnXddRW1uLl156CUudTnwwZw5gs2Xhu2La47jjSHDvs0+uV8IwmeHJJymLnuPCMg+LboZhmDSjxIIwmayGM7nDOwh2V5/cZ25vjR9+IHMszsZpF02NxVvH64wsdbPVZYhuyWSGv++Y7XtySaJM6D59gIkTqeL96qudF1uffkoV802bSMz/7W/ADjtQCWPFiu1b2/YgBPCXv9Ac9xtv0Ex3N0YIHdGWDViz8id8N/0rzJo9D/MXrsLSFTXQdIFefifGjBqIWy49Gie+/BX2iMr48uQLcM5jT2Lw4MH4+OOPMXTo0A5d6/vvv8ehhx6KESNG4P0PPoCvf//WTz7xBHUnTJyYmW+UacMhh9AHwxQqyYmJTGZh0c0wDJMmdE1BJLgGsXANrPYieEtp69hksgAZdqfuEitXAkccQXnMX31F2c0MACAWqkEsXANVbjaOSZIEq50q2mSIl6Yq7uWXU1ntnHPIOfz99zuWj61pwM03kwEeAIwYAfzrX8Dee9Pjiy+m32vv3ulZ57YIBIAlS6h8sg0X73xE1xREmtdi6eI5+P67bzB77s+Yv3ANqtbQiMiAvkXYc9Qg/PmMw3DgwQdjtz0OgMs/FGazHTjtWzx155249t77ccwxx+CNN95A0Y8/AtXVwL77buPKwMEHHwxd19t+Yu5c4Npr6e+jRgEHHJDOb5lhGIbJMHl8F8gwDNM9EEJADtcgElwDXSd3aJPZASF0SNJ2tglnk+pqwOMBSkqyJ8zyFKFrKe3/SixgCG6r3QebswRWZ0nmIr5OO43m6U86CTj0UKpeb+13IgRlZ7/3Hj3+619pZtvpbP38jjtSu3q24rr8fhqGnTEDGDs2O9fsApoaRaipCr/M/w4zvv8OP8z7FQt+XYuNNfR7HzakBPvsMQTXXX4qDjzoUAzfeSwcRYPavAYURcF1772HZ2bOxPXXX4+HH34YZoAq08uXU9X/7LO3b5H77ANMngw0NwPjx3ftG2Y6TEMDEItRhH033D9imG3y2WeUHnnggfTWzWQOdi9nGIbpAonM7YQw26JTdb5TWwvIMjBgQK5XknWE0KFEmyBH6qBEG+EtG2WYnymxIDSlBTZnCUzmLDrNL1wIHH00Vbq//BIoL9/yua+/Dlx6KTk+bWEWf+KFF2LuokVYsGBBZtbbjVDlZgTrluPHOf/D9zNmYO78Jfh58Xo0BiIwmySM3LE39tqjHOP32wcHHHQ4BlWMgcPTb6sbaE1NTTjjjDMwffp0PPPMM7j00kvpE4EAcP31dGe7fHlr50J9PUW0dXZ2X4jW+Xgt7pC/PeZ2TIe46CLg//4PuP9+8jhkmEJj4EBg/XoKYhiznRNSTMfgSjfDMMx2osSCaK5bAoAyt51Fg2B39+0e1W0g9Qa+rCy3a8kyQgiocjMJ7Ui90aEAAEq00RDdVnsRrPai7C9w992BWbOAo44C9tsP+OKLLQ/fnXsuDZ4mjwVoGv1uE6IuG7P699xDmwPnnZf5a3UQIQSUaCPqNy7BrJlfY9as2Zi7YBkWLtmAcESB3WbGbiP74exTxmL8/mMx/qAj0HvArrA5Szs8NrBixQocf/zxqKmpwbRp03BI8hCwzwe8/DIQDqf+DiZMAJYtA158sXOV68SaEnPzgQClDdjzLHqwQJAk2tPgfQ2mUNlzTxLe2WqE6slwpZthGGY7EUJHsHYRzBYHnEV5mLm9NWprgeOPBx5+mPrKehCaEkFz/RLommwcM5ltsDlL4s7jnhyubjNqaig8dfly4KOPgIMOApYupfnv11/f8vz93XeTaH/1VaBfP0ycOBFz587NXKX7hx8oGgyg1vLEPHmWEUJHLFSDTWt/xffTp2Hm7LmY/0slFi+thqJo8LrtGL1rf+yz50iMH78fxu1/OIr7jIDVvn13nBs2bMCoUaNQWlqKTz75BDvuuOO2v6ihgQzumpqAP/6gzPTO8uuv9DNWVeB//6PXBcMwDJO3cKWbYRimg2hqDLGWDXD6hkCSTJAkE7ylu2RuvjeT3HEHiaOrrqIM5e2NqOoGaGoUuhYzhJXJYgeEDslkhs1RApurFBZbUfoM0dJJ797kAn7KKVT1fuQR4L77gA0bgGuuAd59t+3X1NfTec3NwHffAWedlfl17r03Cf2amqwKbqFriLSsR9Wy+fh++leY/cMCchZfWQshgNJebuw5agBuu24cDjjgQOy5z8Hw9Nphy9npncThcODKK6/E9ddfj+Li4o59Ua9ewKpV9HtNFtz33w8oCv2b7NVr68+x227AJ5/Q64AFN8MwTN7DlW6GYZhtQJFBGxFtXgchdDiLBsHpHZjrZXWN5mYy3brmmtYc5wJC12TIkXrIkTqocgvMZjt8SZFeqhKC2eLsPqMAsRhw+ukktAAKVZ0+HSgtbf/8P/4A3nmHzLeAzFe6EySPLGQAXVMQDqzCkkVz8P30bzDnx1+wYOEarF7fBAAY1N+HPXcbhHH77IGDDj4UO++2P9z+Idmdx98empooPaC5Gfj4Y+pC6SyBABCNUvQcwzAMk1d0w/IMwzBM9lBiQYQDVUY2s9VeBJujJMerSgNeL/DCC7leRVrRdRVKpIHmtGNBAIk9ZQkmixO6rhpdCRZrN7MiVlWqjiY49lhym98SI0YYgjujLFxIVdeE0E6z4NaUCFoaV+LnedPx/Yzv8cOPi7Dg17WoqQ9BkoAdhpZi/32G4aaxe+Kggw9HxU77wOkdmOJA3y3weIDnnwc+/BA47rjW47NnU7fDDjts/esjEeDEE6ny/fXXwJAhmV1vD+HZZ4HffqMUv/32y/VqGCa9yDIlGdrtwDffsEN/pmHRzTAM0w6Uub0asXAtAMBkssLpGwK7qxsbjoVCFON09NG5XklGiATXIBaqNh5bbF7YnKVx53FrDlfWRYQgG+XFi0mAXXgh8NBD9Pt84olWl6ePPgJGjqSIsGywaBHdsR16KPD224DVSvPmu+223U+pxIII1C7FD7O/wcwZMzF3we/4afF6BJtjsJhN2GV4H5xw5O7Yf/99cdBBR6D/0D1gd/fpPh0LW8JioTGA5FEAXaeM9WXLKLP9pJO2/PW1tcCaNTQv3tjIojtNfPopfYwZw6KbKTyiUZouA9gsMBuw6GYYhmmHcKAKcqQeAGB394GzaHD3nN1O5tprgZdeAu68E7jrrlyvZrsRQocaC0KO1MHu7mPEs9mcpVDlZkNomy2OHK80TTz+OIlai4XyuMePJ2H9l7/QDPW//01V8LPPptn82bOzMzKwZAlVtiWJSiSnngr897+0SdABhBBQIvWo3bgEs76fhhkz52Dez8vx6+8bEYmqcDos2H3n/rjgT+Mxfvx+GH/AESjtvzOsjl75OX+fbhobgWHDgE2byJ0+weZO6AC1ps+cCaxdC+yxR1aXWcicfTYJbv6RMoWI00nBGLEYYLPlejWFTze/g2QYhskMzqJB0LUYXL6h3S9zuz10nXKBzWbg4INzvZrtIhHxJYfroesKAECSzMbvx2ovgq/3FmK1ujOnnAL861/AJZe0xktdcgnFvJ11FnDMMcDTT5OBmcVC897Z4Mwz6Vq9e9Nd29y5dHzBAsqh2QxyFt+EdVW/4PvvvsasWXMxf2ElliyrgarpKPLaseeogbj20qMx/oDx2He/w+ArHZ6byLZ8oKSEZvjr6oCipJ/BuedSZfuJJ1KDdQcMoI8EK1dSAG8PSydIJ+eem+sVMEzmsFrJn5PJDmykxjBMj0foGiLN6wChw+Uvz/VyMktlJVBRketVdBiha4i2rIccroOmxYzjJpMVVmcv2F1lhbEpsi0SpYjNK7wzZgAnnED52J98QhVnv7/Nl2fcSO3uu+lDkoALLgBefhm6riLavA4r/5iL6dP/hzlxZ/HlVdRB0qfUgzGjBmLcvqNwwIEHYfSeB8NTXAGz1ZmZNRYCNTXUOh6LUafBiBHtn7dxI/VDb9xI/dGHHZbddTIMwzApcKWbYZgejRxpQDhQZWQ22919C+umX9dbW4CBbiG4ha61GmFJJsTCtdA1GZJkimdpl8Bi93X/Od5tsXp162yufQvu23vvTcL7qKOoojltWruiO22sX09t7U880fpaWrkSmDqV2sqFgP76v/F4WQjfLVyCBb+uxbqNAQDA0IHF2HO3QfjLhcfjoIMPxYhd94PLN6R7z9tnm969aeNs2rRUwf3EE7Qpc+GFgMNBXS277ZbdzocCJBikl7XbTT9KhikkgkFg1izycTzggFyvpvDhtxCGYXokmhpFOLAKSrQRAGA22+H0lxeW4AZofnvpUnJGzqQY6yK6pkCO1kMO10FXo/D1HRPPQpfgLBoMCRKsjuLu50q9vcyYQXO8V18NPPpo+67gNTXAXnvRrP7MmdRmvt9+NKQ3enRm1nX11VQ5DYWgTvsUzXXLoJ1+FopVBcZvRlaw9KG3sXSHMhyy33CMG7c3DjzoMFQM3xsOT/+e8zvMFP36UTdBgkCAnOqDQaB/f3Ixdzgow72uDujbN3dr7eYcfTQwZw5ZFWzNx45huiMrV1IQRr9+FHzAZBYW3QzD9Cg2z9yWJAkOT384PAMKTwxs2AA8/DC1op51Fhld5RFC1yBHGylLO9aE5GknTQkZbePd2jF+e4jFaGZb04CWli3HcL38MhlnvfIKcOWVJLyPOw446CBSCYcemtZlKdEmNN1wPhatXIQv+2mYM34XDFy4Dm/E1JTzJABPDC+HvmAW7O6+PcP0LJfYbMC99wKffZaa7714ceqM97ff0tz9LbdkNEu9kFDjL212dmYKEZuNbCFKS3O9kp4Bz3QzDNOj0DUFwZpfoOsqrHYfXL4CrG4n8+OPNOt7zz25XkkKsXAdwk0rIYRuHLNY3bC5EhFfW2in7gk8/TRw1VVUofz99y13KAhBWev77Qfsuisda2kBTjsNmD6dXM3POANA52e6hRCQI3WoXvcrZnz3NWbN+gHzflmBRb9vREzW4HJaMXZEX7y/tBpFERlSe3cS8+ZRJZ7JPrpODvZVVZT9vcsuwE470evj1VeB88/P9Qq7BapKe18WCwtvhmG6Ble6GYYpeHRdNeK+TGYrXL5yCIieUUHdZx/6yCFCCKhyMySTBRYrRR2ZLQ4IocNsccQjvkoLe/Ojo0QiwH330d8nT976SIAkAZddlnrM4wE+/hiYMIHcxWtrgYkT4VizBnts3IhVX32FoUcc0eapqANkA9ZW/oTvp3+NmbN/xPyFq/DH8hpoukCxx44xewzCDROPxwEHHIB9xh0K/6OvwbTwcaA9wW2xAP/8J/Dii9v9o2C6QG0tDSJbrfTv3+ejjbdPPwX+9Kdcr67bYLHwLDfDMOmBK90MwxQsQgjI4RpEgmvg8lfA5izJ9ZKyw0cfUYWxf/+cLkOVWyBH6iFH6qBrMuyuMriLd0j5vMXmyeEK85DHHweuuw4YNAhYvrytgVooBDz7LM1xW7diQKbrwA03AI89htVuN4aEQsan5peUoGLuHNhLzFj22w/4/rv/YfYPP2H+wtWoXNMAAOjX24u9dh+EsfvshmPmrsbu380D/vksTBddQk+yZAkZdWnaltfgcADV1alxV0z2EILy28uTEhlOP51+Zw88QJVvXadsd4ZhGCajsOhmGKYgUZUwwk2VUOVmAIDVUQxvyRbidQqJRYvI0drjodbyLLuVa2qEhHa4DpoaMY5LJjPsrjK4fAUeydYVwmH6fVVXk/HdpZe2Peeyy6il/OSTgQ8+2PrzCYFVXi8GhUJI7oxVAXxvNeG8Xh5sqA4CACoG98Keuw/G/mP3xIEHHYrhu4yFs2gwTIpGQu2zz4DvvqOccCFobnz27K2LbkkCnnkGuPzyzv4kmEywYQMweDD9zhYvJrO+//4XeO89qoozbXjwQaChAbjiCmDo0FyvhmHSy7ffAnfcAey5J/DYY7leTeHDTTMMwxQUicztaMtGAAKSZIazaBDs7j65Xlp2sNuBkSPJQMnvp6HELPZHttQvNcS2JJlgdRTD5iyF1eEv/IivrvLTTzRzO2QIRT+1x1FHAe+/Ty7iW0GVW7D0g9ewS1KFO4EFwKGKjpN36o89br0ABx58BAYPG03O4pv/juwW6pyYN691TOHNN0mwdYSnn6aIMTbuyj39+9Om3FdfUfTYzTcDzc3A66+3HVNgAND+1sqV5FzOopspNDZuJP/NLSVSMumFRTfDMAWDEm1CqGmlkbltc5bEc4B70P8ow4cDP/xAVdNzz6W4sJdeAg4+OK2X0XUVSqQBcrQBnuIdDed3m6sUaqwZNlcprI5iY5ae6QDjxwObNpH51ZZax087DTjySMDrTTmcyJsPN1Ui1FQJOVyDVZ/PweYJzQLA4wD2BnDhYWdj7+vu2Pa6JCnVF+DRR+lPk4ncpYSg6unmjXNCUEU1WbAzuWXkSPoAqFvhk0/ovYJpl0suofH4ZBN4hikUDjiAkgVLesjkXa7huyGGYQoKXZNhtjjg8g2F1VGc6+XkBrsdWLYM+PJLmtlUlLQ8rdA1KLEmyOE6KLFGI+JLiTUZ8/JO70DAu7VnYbaKx0Ou08loGhCNGi3AwuNBLLQJ4SYS2eGmSiixpjZP5R+9M/DqnNSnAvAmgOsBjHv/fdx34IE46KCD2sZ63XUXvXbuuKNtp8Sbb5KQrqwEmpqoWlpbS2WT6mqgvp4yoxN89x2L7nxDVelO22SizCCmXW69NdcrYJjMMWgQfTDZgWe6GYbptgihQ1PCKWZccrgOVkdx4WVud5aFC6kV2W4Hfv2V3IsBynb2eGhOt4MGSpoaRbR5HeRoA4TeOsNrtrpgc5bA5iyD2dKDugkyQV0diaB22rDFPXdD/Ps1BB67Fc0DzQgHqqApm7WNSyY4vQPh8lfA5SuHy18Oi9WN+aWl2KO+PmWHXQbwmMeDN4YNw8KFCzF+/HhMnjwZRxxxBInvpUupGioEzXIfc0z7a77kEpoHfvZZyoFPRlVJfNfXU/cFW0DnJ4sXt8bNMQzDMBmDRTfDMN0SJRZAuKkKuibD12cPmMy2XC8p/1i1isTOwIH0OBAgJ+PGRjLhOvnkLX5pcsyapkYQqP4FAGAy2+NZ2qVG/BeTBnbfnUTuf/4DfacdEQmuQaipEpGNf6D/qZNgrQ5i3a1HI3DEzgAAyWSFq2gIiWx/+RbHKJqqqrBi772xV329cWx+SQl2mDcPvqFD8cknn2DKlCmYN28e9tlnH0yePBnHHXccpLfeAubMITf19li5ktyvNY0M1caNy8iPhUkzQvB8fSeIxWiCwmzmHxtTeKxeDaxZQ3YPw4blejWFD4tuhmG6FbqmIBJcjVi4FgBgMlnh7jUcVjvHEm2TN98kE67168kIyxzvBqiuBnr3jjuP10EO18FsdcNTspPxpZHm9bDYvLDYvG1bkZkuodVthKn3AEhCYPWX9yJkDUCIpI6CQAT+b1cidvGf4PaXw+UfBod3QKfm5Vd99RVq58xB2bhxbXK6hRCYNm0apkyZglmzZmH06NGYNGkSTj75ZJja64YQAjjlFODDD4GjjwY+/3y7v3cmy0ydSi7mDz8MuHjTbFsUF9MExe+/AyN6QPgF07OYMoUmiC67DHjuuVyvpvDhfi+GYboFyZnbuq4CAOzuPhRrxGZd22bJEuCii2g2+IsvDMGtKVFIRx4GITS0PDYJ2k4UMSaEBiF0w83a6WUnoXShxIKG6Vm4qRKWb2ZhiBCIDfCjxdIACMBiKzKq2G5/Bewn9+2S+/vQI45oI7YTSJKEo446Cke6XJje0oJ7HnoIp512GnbddVfcfvvtOOOMM2A2J41rvPsuCW6LBXjooe1eE5Nl1q4F7r6bPB4OOYRGTJitkkjE4+kIphApLqbpn379cr2SngFXuhmGyXuEEGiu+83I3LZY3TSzamPHrg6j68ANNwArVlBrucWCUFMllF/mwnf8JYAEBOa8D0u/IfGIL56LTwdCCCjRBoSaVhrGZ3KkLuWc3i/OQNmb8xA65WDITz8It68C1k/+B6msjMRRNvjjDwprHToU+OYbzFyxAvfeey++/PJL7LTTTrjttttwzjnnwBIM0rx3TQ0weTJwzz3ZWR+THqZNAz79lEJ5uWNlmwSDZE/g87U2BjEMw2wPLLoZhukWhAOrEQtVG5nbnPncOYSuQY42wmp2w2R3AgCizRsQrlsBm2yCbel6WI47FSZzPKrqvvvI1fioo/jmvBMIoSMWqjaiu8JNlVDl4GZnSXB4+tEstn8YvOf+Faav/0ehwJdcAixfDoweTVFO335L0U6ZZuZM4IwzyFTryy8Nk70ff/wR9957Lz7++GNUVFTgb3374vzZs2EbORL4+WcOeGUYhmGYDsCim2GYvESO1MNkcRpmXULXIITaszK3u4gQOpRoE+RIHZRoI4TQ4fYPg93dGwCg338fpI8+hvTxx0BpaesXLl0K7LwzVccXLwZ22TztmUkgdA2R5nWGyI4EqqCpkZRzJMkMR9EguH3lhru42epsPWG33YBFi0jsHnkk0NICXHcdmZV9/XX2Smw1NfQ779u3zad++eUX3HvvvXjvvfcwGMAtN9yAi+69Fw6HIztrY7afmTNpM8Xvz/VKGIZheiwsuhmGySs0NYpwoApKtAkWmxfe0l3YuKsTCCGgys0ktCP1xvw7AJgtDji8A2F3lbVGOTU0UIzYhAmtT1JbCzz4IBmuvflm6/H168nmtAf/PnQthnBgNbWKByoRDqyG0FNz0E1mG5xFQ+HyV8DtL4ezaEhrB0F79OlDgveXX8jFPEE0CmRa1HbSzXrx4sWYessteOvzz9GvXz/cfPPNuPTSS+FiU678ZNUqek35/dQ1UVGR6xV1G4QA7ryT5rlvvJF955jC48EH6W3hssuAU0/N9WoKHxbdDMPkBULoiLZsQLR5fdzAS4LDMwAO7wBuJe8EuiajadNPAOit3WS2xbO0S1PyzAGQJe+HHwK33tr+kyULsuZmihvbZRfgP//pMc4rqhJGJFBltIpHmtcBQk85x2x1xbOxh8HtL4fDM6Dj8/BCAH/+MzlKP/tsdi2Sq6uBE08EHnkEGD9+y+c1NpL4d7ZW55cuXYr77rsPr7/+OkpKSnDjjTfiiiuugMfj2fLzMNln4UK6m+7bF/juO3YE6wSqCljje2X19UCvXrldD8Okm3POoX31f/yDmquYzMKim2GYnJPI3E605VrtvrYtuEwbNDUKOVIHXZPh9rdWsFoalkKSLLC5SmGxFXW8U0CWgXnzgP33b/u5adOAE04AhgwhJ/QCvXmn12LrPHYstKnNORa7D25/RdxdvAJ2V++ubwzV1lKb+Ykn0h1QNspqf/kL8PzzwB57AAsWGHPcKcgycOyxlJv0/vvA4MEpn66srMQDDzyAV155BUVFRbj++utx1VVXwefzZX79TMdobqaP/v1zvZJuhaqSENE04NFHU/acGKYgmDmTppj23psmypjMwqKbYZicokSb0Fz/OwDK3Hb6hsLuKt3GV/VcdE2GHKmHHKmDKrfEj0rw9x0Dk9m2/U8sBHD++bTt/cILqe3mCdato4+xY1u/5rrrgLPOAsaN2/5r5wghBORInRHdFWqqhBJtaHOezVUGt39YvJpdQc7u6W6xf+014IILyBl83rzsiO7mZuCvf6XfYXtz+6pKv9v33gPcbmDOHGDUqHafas2aNXjooYfw4osvwul04pprrsG1116LXlwezA2dHBtgGIZhMguLboZhcooQOpprF8Ns83Dm9lZQok2ItmyAEgsi0ToOSLDafbC5SmFz9OpaxJeqApdeSuLvk0+Ao4/e9td88glVv10umvfOc6OmxAhDIrorHKgyYuhakeDwDoDLVx6vZmcpmk7XyTStX78tCtusomnU9v6f/wA2G40hdOA1sWHDBjz88MN47rnnYLFYcOWVV+Kvf/0rysrKsrBoBgAQCABHHEGRbieckOvVMAzDMGDRzTBMllGVEKLN6+Eu3sFoyaUZbp7bTkYIHRDCENKxUA1CTSsBABabBzZnKWzO0q0bdHX+osBPP1Fec0dYvRq4916gd29g6tTW42vWtGlDzgW6riIaXEut4oFKhJtWQdeiKedIJguc3sFw+UlkO31DYbZk2ZH7oIOoz+/TTzu22dEVQiFg1ixySd8Suk6dDv/6F40RvP9+p8VbTU0NHnnkETz99NMQQuDyyy/HjTfeiH49xAsgp9x+O0X+VVTQKAjHujEM0w6//QbEYsCwYZRFz2QWFt0Mw2QFilZai2jLJgACzqJBcHoH5npZeYUQOtRYEHKkDnK0AU7vIDg8JFJ0XUUstAk2Z2n2RGFdHTBpEvDww4B3K9Xe5FbWFSuoRfqYY4B33snqDb+mRhEJrEYoEDc9C66BSHJvBwCT2R5vE6dWcad3UHo3LjpDOEw/3zVrqIV70iRgypTMXvOyy2h84M47gbvuavv5SAS48ELg7bcpquztt7tka1tfX4/HHnsMTzzxBGKxGC699FLccsstGDiQ/+1njFiMhPcZZwD77pvr1XRbampoDN5ioX8W3K3PFBr77gv8+CPw0UfcFJMNuI+TYZiMI0fqEQ6sgq7JAACbswR2V+8cryp/SER8yeF66EnxU2osAMRFt8lkyf4mxTnnAF99BWzaBPz3v1s+L/lu9NtvqVKqqhkX3KrcgnCgKj6PXYVoy/p2nMU9RhXb5a+Aw92va2346eSmm4BnniFXeIByujMpunWdNk9MJuCAA9o/p7kZmDuXbJtfe63LOTIlJSWYMmUKbrjhBjz55JN47LHH8Pzzz2PChAm49dZbMXTo0C49P9MOdjvw97/nehXdHlWlKQuABTdTmJSVAQMGbH1PnUkfXOlmGCZjJGduA5QT7fKVw+rw53Rd+YIQOoK1i6ApYeOYyWSF1dkrHvHlzW1G+fz5NNf7/vudszZdupSq34n4q3AYuPpq4PrrgV133e7lyNFGw/Qs3FSFWLi6zTlWR69Wke2rgM1Vlr857/PnA+eeC9x9N3D22XRnv2EDxTtlkhUrgB122PLnFy+mjKSDDkr7pZubm/HMM8/gkUceQWNjI8477zzcdttt2GFr62G2jaIAn31G7vf5+nrvZmgapeppGjBoUK5XwzBMd4dFN8MwGaOlYSnkSENr5ranf/5UGXOApsagykHYXa2mUi31S6HEmmB19ILNVQqr3Zdf8+2aRm3GCcLhzjtrP/IIcOONNDi2bFn70VSbIYSAHK4xorvCTVVQYo1tzrO7+1KruK8Cbn85rI7izq0t16gq9a+OGwf88ANw7bXAY4+l9xq6TkKsPTGm68A//0l/XnVVeq+7FUKhEJ5//nk8/PDDqK6uxtlnn43bb78dI0eOzNoaCopJk8hX4S9/od8nwzAMk1ew6GYYJq0IIYzKIlW6V8HlGwKzpWeGnOqaAjlaDzlcZzhl+/qMNuayNTUGk8nSPTYjfv8dOOww4PHHaV60o/z2G1Vzjz2W5oUBqoSvWmW0VgtdQ7RlQ9z0jFrGNSWU+jySCU7vQCO6y+Uvh8XqTsu3ljU0jYZFNzcU++orMjez2ahTIJ1t11OnAosWkRhLdphfswa46CLgm2+oJfm332hjJItEo1G89NJLePDBB7Fu3TqcfvrpmDRpEnbbbbesrqPb88AD5Fb++uvAn/6U69UwDMMwm8Gim2GYtKBrCiLB1QAkuIuze+OebwhdgxxtpCztWBOS32at9iI4i4bAYvPkcIXbyVVXAU8/Dey/P/D99x2qWG8J/fPPIB1/AqJ/OgrVt5yESGA1dC2Wco5kssBZNMSYx3YWDYHZ0s2dmKdOBR59FPi//6NW4GQOP5wE8OOPA9dck57rVVeTgI9GKYP9rLNI+L/8MnDDDTTD7XSSaLvqqi79TruCLMt49dVXcf/996OqqgonnXQSJk+ejD076qTPAJWV5FjOpIW6OuCllwCPB7jyylyvhmHSz7nnku/iY48B7G2ZeVh0MwzTJYQQiIWr407RGgAJvj57ZD92KY+QI/VoaVhmPLZY3dQ67ijp3qJR0yiK6IorgNLSzn2pGkE4sMqYyfb84w2Uvf4D6k4bg+qJBwMATPGZf5e/Am5/BRzegYWV266qwPjxZFT2yivABRekfv7XX8lG9vbb0zuXO3cuzeXffz/lbU+aRFFSALW1v/IKMHx4+q7XBRRFwRtvvIGpU6di+fLlOOaYYzB58mSMGzcu10vLP4SgjxxtlBQib71Flge3307WBqNGUSJidZJ9xNSpZIlw5pm5WyfDpAOvF2hpAZYv37rNB5MeWHQzDLPdJNyjVbkFAIlLl7+ie1ZxtwMhhOE8brY4jXgvoWtorvsNVkcxRXxZC7i1/n//A/bbD3CkbrKocnN8HrsK4aaViLZsBJD63427qgXWHUbBMWwPuH0VsNdFId13P3Dbba2O3oWGLFOU2jnnbFtYr10LuN1Ar17puXZNDVW9IxGguJjaka+5JnVmP0/QNA1vv/027r33XixZsgSHHXYYJk+ejIM6Ye62fv16eL1eFBUVZXClOeTll0klvvJK23EFZruYOpX2pO65hyZh7riDhMkTT9Dnp0yhY/feS8KcYbozr7xCNi1//jNQqG+T+QSLboZhOs3mmduSZIazaBDs7r756xSdRlQlBDlcBzlSZ8SgmS1O+PrskduFZZtp04DjjoMYOxbK+/9GWK0xZrLlcG2b023OEprF9lG7uM1Zkvp6ufRS4MUXgaOOAr74IovfSB6i68Ahh5Dx3JNPAqec0jlx/NVX1DY+ezZFkyV+zvfeS/2EN94I+HyZWXsa0XUd77//Pu69914sXLgQBxxwACZPnozDDz98m+81p556KqqqqjB79mw4nQW28RUO0wZKbS0ZFf71r7leUcGQENb33EP7Uts6zjAM0xFYdDMM02l0XUWw+hfoukJCyjcUJrMt18vKONGWjYiFqqGpEeOYZDLD5igxnMd7AkLoiIWqIX/+HjwX34Lm/XbAupsO26xyK8Hu6Qt3XGC7/OXb/vnMnUt3tXfeSdVzgGaRa2u7d2bPG2+QSLr44o63jW/cCBx6KPDHH/S4f3+KFTv1VGoFLylJfa6EMd2cOcDnn9M19Xhm+axZrT/PbooQAp988gmmTJmCefPmYd9998XkyZNx7LHHblF8//rrr9h3333x5z//GS+88EKWV5wFfv+dPBaeeIJbzNPM5gKbBTfDMF2FRTfDMB1C12IwmVvnkSkKzFTQmdu6psBkthqPQ40rEAvXxr9vah23Ovz5FfGVAaizYR3CgUR81ypoKmWL29Y2QulbBNhscHgHGvPYLt9QmK2djBZrj8cfB26+mXo+u+Pd7po1wC670ODc2293zvU9GqXK9DPPAI2bxaX9/e9khAYA//0vcNpprSI7mWOOIef4vffe7m8hnxBCYNq0aZgyZQpmzZqFMWPGYNKkSTjppJNgakd4/t///R8uuugivPLKK7hg8xl6pseiqTEIXYauKdB1GUJToGsydF2ByWyD219hCG1Joj2tO+6gf0oMUwioKu3b2e3Ajjum10aEaR8W3QzDbBUhdERbNiDavB5u/zDYXJ0z0Opu6LoKJdIAOVIHJRZEUe9RRiyVKrdAUyOwOooLy+BrM3RNRjiwOi6yqxAOrIbQ5ZRzJJMNLt8QQ2Q7iwZTt8Ndd1FV9cgj07OYs88G/vMf4LnngMsuS89zZhNdJ4H81VfUMr8989OxGFWvX3+d2sU3bEgV8NOmUUu+1QqMHk0//732AnbfHdh11/R+P3mCEALTp0/HPffcg+nTp2PUqFGYNGkSTjvtNJg3+xlffPHFePPNNzF37lyMGjUqRytOEz/8AJSVZT3arTug6yqJ54SI1klIC12BZLLC5RtinNu0cT50XWn3ecxWF3y9dwdA/6RUlY4HAjz3yhQOtbVkEgiQRyo3y2QeFt0Mw2wRJRagvGQ1CgCwu8rgLi48i0shdCjxiC8l2gQhWiuGLt9QwyCtUNGUMMKBKsP4LNK8FhCpVVOzxQWXP5GPXQGnZ0DbbPH33gNOP53uVP/4I33xRd99Ry7btvgIw/Tp5MJ9yy1A377puUam0fX03dVEo1SWsMc7TyIRoKmJFIG7m+WWp4GZM2diypQpmDZtGkaMGIHbb78dZ511FiwW2hiLRCIYO3YsIpEI5s+f332N1errgd12A4JB2sDZf/9cryjjCCEgdDUupFMr0xQp2Dp2slUhvZnnRrB2kdHJZDLZIJmtMJltMJmsMJntsDr8RqXbYiHhndxa/sortM/F/nVMd2XjRmCPPaiLo6Ym16vpGbDoZhimDYlKpxypAwCYzDa4ioYUZJVbVcJorlscjzsjzFYXbM4Sch4vwOizxGZKQmTHQmSIl4zF7jPysV2+CtjdvbfdRi/LwEUXASNHZs7aVwjgwAOBmTPJefvxxzNzna5SVQUMGZK98kFdHcWR/e1vwPnn98hewR9//BFTpkzBJ598gmHDhuG2227DeeedB6vViuXLl2OvvfbCUUcdhbfeeqt7Gj5u2ECu95s2AQsWdOsNFiF06JrSpsVbMpnh8PQ3zmvatMAwq9yczYV0oGYhdDVGQtpsg2RKCGkbTBY7bM6SDq9vazPdp55KDSROJ02PdDI9kWGYHgqLboZhUpAj9Qg1rTREqMPdF46iQQXTTq3KzdA1BTYnxTAJoSOw6SdAMsHmKoXNWQpLOmaR8wQhBORIXXwWm6rZSrS+zXk2VxlcvgpDaFsdxdsnTBL/pSS+NhKhyrclTa8fIahV+777yCysf/wGvbaWrpkPd8B1dVSRHDmSWuPLyjJ/zTvvJEWw007AL7+0iXDrSfz888+499578f7772PIkCG49dZbMWHCBHz66ac47bTT8Pjjj+Oaa67J9TK3D00j0T1gQK5X0i7JLd4JUQ3JBIe7tSMlUP1LihllMm0q0jW/QlVC8Qp0QkhbIZltMJvtsLv7GOcKoafFX2Nb7uWXXw4sWkRNNu++2/r5mprWdl2GYZjNYdHNMEwKSiyA5rolBZW5rSkRyBGK+NLUKExmG3x9xhiiko7Zu2f1azNoBn8jiexAFcJNlVDl5s3OkuDw9G81PfOXw2Lzpn8xqkplIU2jPGFPBl9LEycCr71GTs4TJmTuOh3hq6+Ak08GBg8G5s/PTkVS04AHHyTjtNGjM3+9bsDixYsxdepUvPXWW+jfvz9uvvlmrFixAs8++yxmzJiBsWPH5nqJHUPTcpqlTi3eNCOdaPGGJMHuat1MCtYugqaEU0ZzEpgtDvj6tL4mE0JakiRIJltKi7fZ4kipdOu6CkkyZc2sMjmnuz3fxuSc7uuvB1zx/dlAgBpbxo4l64WSjhfVGYbpIbDoZpgejq6r0JRQSpyTEm2Cxe7r1iJUU2NQIvWQI3VQlZBxnJzHe8HlLy+I6r2uq4g2r0WoMS6yA1XQ4zP4CShHfbAxj+3yDYHZkoXc4p9/prlTIYAZM8jcKxNoGnDAARSXNX06cNBBmblOZ1i6FFCUgjUy604sXboU9913H15//XWUlJTA6XRC0zT8/PPPKM2HzoitEYvROMWZZwLXXZfWcQVq8SajMWrhlowOIABorv8dmhImkb3Z+MmWhDRAMYomky1embbAbHHAWTTYOFdTY/Fz8u/99623gBUrtj4dM3UqsMMO9CtJ8NFHwCmnUHPLr7+yKRWT/yxbRg1SgwYBDz2U69X0DFh0M0wPRg7XIRxcDaGrKOq9B8wW+7a/qJsQbqpCNLQJACBJEqx2fzziq7itAVg3QlNjiARXGa3ikfjvLxmT2Q6Xb2hcYJfHncWtW3jGDDN3LrXDnnRSZq+TEPYHHth67NVXabb6uusAvz+z188F0SiV1SZM6PF3+bW1tZgxYwZ0XYemadB1vc3fN23ahM8++wxz5syBruvYaaed8Pvvv+f35uLLL1O+e2kp8NtvHepfTm7xhhApsY4tDctISOtyio8FsHUhDaC1xdtshdnsgMtfbnxOU8KAZILJZO3W769dobKSWswTDRS6TgEDJ51EIQzWHL0FM0x7fPcdcPDBwIgRFB3GZB4W3QzTA9HUKMJNVVBiTQDoZstdvGO3bCUXugY57jzu8PSH1U7OxKrcjEhwDQltZ0leVlU6giq3xNvEqVU80rK+rbN4fBTAHRfZDk///L3xXb8eWLu29c40U0SjFD66bh3w1FPAlVdm9nqRCHDppdR7Onx4Zq+V4JprgCefBM47D/jXv7JzzTzltttuw/3337/N80wmE8xmM3Rdh8lkQl1dXX67mQsBPP88RP/+EMceFa9Ii5RxkFBTJbV2x3Omk1u8tyWkU1q8zQ54eu1ofI7GUiSjYp2tFu9C4cMPacqkqIgM13y+bX4Jw2SNtWuB99+n1+WFF+Z6NT0DFt0M04MQQke0eT2iLRvipjMSHJ4BcHgHdKsbKiF0KLEA5HAdlGiDcZNpd/eB25+mmKocoUQbDVfxcKASsVB1m3OsjmK4fBVxoV0Om6t3flfrEgQCVIletgz44APg6KMzdy1dpwizF1+ku9+EsdiqVTRw6U3zDPtNN1Ee97BhFJeWLuO4rfH88zRY+t57mf1ZdgOEEGhoaIDZbDaEdfKfiY98w2jxFnqKgWM4sBqaGjGEdHKLdxshXbsIqtyS8rxGi7fFAW/JCOO4EgsAoKq1ZLZ1283I7kAgAPzznzSOf+ONrcfffhs44giguDh3a2MYJvuw6GaYHoIQumF2AwBWux8u/9DszPamCaFrCAdXQ4nUQ09qqTZbHLA5yXncbO1G348QkMM1CMWr2OFAJZRoY5vz7O4+cZFNOdk2Rze9WwuFgLPOInOxOXOAoUOzv4ZDD6Why9dfp6DddLF+PXDBBSS+0/m826K2Njvu6Eyn0HUVQldTIgcjzeupIh2foU5u8U4R0kIg8tRURE44CLAmi2IpXpG2o6is1StAjjYCQm919+7BLd75zh9/ADvvTHt+lZVsuMYwPQne4mSYHgIZiBVD6Gq3ytzWNRkmsw0AVW/UaBN0XYXJbDOytLtLW7zQNURbNiAcqDKq2ZqSWqGCZILTMyBuelYOl6+823x/28Ttpgr32rW5Edz19SSOg0FyPEonAwaQa3mmOw50nYzjEgOiLLgzxptvvokJEyZg5cqVGDBgAITQcckll2DevPmYMWMGfD4foi2boKnhzWKyqMXbbLbD13eM8XxKtKFNRRqg92Ykdxo98wyc10yG/a1xUKd9DJPFvtUW7267CdcDaWwERo0CKipSBXcwSG3oDJMtgkFKtywqyo+kzZ4Ai26GKVCEEIiFqmGxeQzR5vQMgMPTP+9bCjU1ShFf4ToIXYGv757GzabTNwSSyQKLrSjvW6p1TUEkuMaI7goHVkHXYinnSCYLnEVDjOguZ9HQgjK0a4PFApS3GjBh/nzqwXz6acCe4e+7pITMqBYsoDivBPfcQ3Fml1/emgHUETSNXMp33pkeZ+P1+MgjwDvvAG++Sa3sTJfZPN85Fq6FrkZwwlF7Y8cdhuLuO27AQ/feiAf+/hy+/OIzzP1xAXzxAV05UtuukAYAsZnjt93VBzZnSZuYrDbvx/36AX4/TGecCZuLS6GFxLhxwC+/UOt5gmCQ3hIPO4wmRgrR85HJP959lzwajz0W+PTTXK+mZ5Dfd94Mw2wXCfMtVW6BxeaBt3TXuGGOGfkqU3VNhpyI+Eq6iZUkEzQlbGwc2Jz5exOqqVGEA6tIYDdVIhJcAyFSHYJNFgdcPqpgu4sr4PAOyvtNkIwRjVLOzrp1QJ8+lMWTaSwWYN99Wx+vXw/cdx9FM+2+O935dpSHHybjtL//nUzNMk0oRKK7uhr49lsW3Z1AjjRAV6PxanQiJouq05JkgT+pIh0LbTLeg2676RJM+Mvt6F3mx3MvvYVPP3gOAwYMMM61Octgtfvj4pnEtJRw+d6sKm13b9t5HABl2++3H/2bYAoOSUoV1tOmAQ0NwKJFXO1msovLRQ1oTHbgmW6GKSB0XUU0uBbRUDUAAclkhtM7GHZ3n7yuCsdC1Qg1VaE1C1aC1e6DzUURX/kqSlW52YjuCjdVItqyAZvn2VpsXiO6y+WvgMPTr1uZ1mWcr74C7r0X+OST9JubdQRFIefvb78FXnuttVq9ZAmJ2i1V34UAzj2XKs4vvQRcdFF21rt2LfDKK8CkSdmprOcxSiwQF9I0I53c4i1J0jbNxhJIkgnF/Vs3YqLNG6BrMUNIjx1/BJYs+QNffP4ZDj7k0My9l6pqdgz4mLzj11+p9fygg+ixrpOj9KmnAiee2OMTARmmIGDRzTAFQiJzmyJlAJuzFC7fEGMeOl8QQocSbYTJbDeq16oSRrBmISw2j2GIlrNc6S0ghIASbWgV2YFKyOHaNudZHSVGq7jLXwGbszSvNzzyAiFSBWRjY26tfWWZ4sZ0nfrudtut/fOEAL75hqrj/DtOC6rcAl2LxY3GFHLvTlSkIaGod+vvIli7OB5r1RZJklDcvzWWLhJcS0LaZI1Xo7fR4h3nyy+/xCmnnAJZlrF48WKMGDGi3fO6zGefkcX1668Do0dv+3ymoPn4YxLbXi/FjXHLOcN0f1h0M0wBIEca0NKwFAC54Lr8FbDa8ycUVAgdaixIc9rRBghdg81ZmpIJq6mxvJplFkJHLFRjuIqHmiqhxgKbnSXB7u4Ll788LrTz6+feLXnnHeCyyygG69BDc7OGJUuAI4+kme3KSsCZY0f8zz4D+vcH9tgjt+vYTjQ1Al2NxUW0ktLiDQDe0l2MczsjpBOxWqZEO3dKi7ety+8nP/30Ew4++GA8/fTT+M9//gOXy4V33nmnS8/ZLkIAY8bQsO/11wOPPpr+azDdiupq4PHHqf130qTW459+ChxySOesJxiGyQ9YdDNMASCEQEv9EljsPjg8/fOmfVmVm+OGaPXQ4zfYAGAy22F3lcFZNCiHq0tF6BoiLesRblpJGdlNVdDUcOpJkglO76C4yB4Gl28ozFa++0kbQlDe9LRpwLXXAo89lru1RKOUJ55c5b7sMvrT6wXuvx+wZaGLZNUqEtuRCPC//wH775/5a3YAXZONj9YILBLVAiIlG3pbQtrfb1+jGyTcVAVVCcFkTpqPTghpsw1miysrnSOrVq3CuHHjcPXVV+O2227DggULsPfee2PevHnYc88903/Bujp6TU2d2popzzBJLFsGjBhBTtNLl3LON9M13n0X+OILSrg844xcr6ZnwKKbYbohSrQJ0ZaN8PQabuSxCiHyro05ULPQyAU3maywOnvFI768OV+rrsmIBNcY89jhwGoIXU45RzLZ4PINiUd3VcDlGwyTOX+q8QVJLAY8+yxw9dWAOY+yhmfPThW8zz5LbueZpq6OLGZraoDvv2+NCssAQtda56NThLQMIURKZ0pnhHSocSVUpaW1Ih3/02SyQjJb8y6JoKGhAfvvvz8OPPBAPPfcc8bxk046CbFYDF988UUOV8f0VKZPp7eCXXYBPvqo9Xg0yvs0TOe56SbyAL3xRvIEZTIPi26G6UbomoxwYBXkSD0AwFk0CE7vwByvilrDlUg95GgDvCUjjY2AaMtGqHILGaLZfTmtwGtKGOHAqlbTs+Z1bZzFzRanMYvt8lXA6R1ofC9MjhCCzMrOPDO3Ijwcpmiz9euBvfcGTj89e6ZXQlCukG/7RhdoJjo+H22IahLSbn+FcV5nhHRLw3KocjAunG1tWrytjuK8EtJ5yebuWQyzDVSVXjJlZfS4uRkYPhw4/ngKNmD3c6aj/O9/wJw5wNixnQvtYLYfFt0M0w1IZG5HmtdA6BoACQ5Pn5zGTemaAjlaDzlcl3Kj7i7eEXZXaU7WlIwSC8Sju6oQClQi1rIJbZzF7T6K7vIPg8tfHnd5z4/WfCbOlCkUy3XKKTTnnU9CrrkZ+OMPEuHpJhze6uCmEDp0TTEq0safQofLN6R1iXVLoLTxIkggobh/spBeFjc5TKpGG6ZjNsqY5n8f6SEcBvbai14/r71GTvgM00lefx34859JeC9Zkl/NQQzDpMLZFAyT56hyC8JNlVCVEADAYvPA5Ss3nL+zjaaEEQ6ugRprQvKendVeBJuzFFaHP+trEkJAjtQb+djhQKXRDZCMzVUWF9lx0zNHL67G5Ts770yxXUcckV+CW1Go2v3998Bbb5HVcBoQuga9vhqmffaDfsYpUP52PYTFlNLR0lL/B+Ro4xaeQYKzaLDxupbim3KJVu7Ns6RpI4rOdRfvwKI6WwgBjBtHZcsjj8z1aphuyrnnAkOH0h5OQnALAVx5Jb09HXJIfr1tMkxPhivdDJPntDQshRxpoMztosGwu7KbuS2EDqGrRvSYpkYRqP4ZAGCxuuNZ2iVZdR4XQkesZRNCgUpDaLdti5Xg8PSDK17FdvnKYbVz7123ZM0aYPDgXK8ilUiEWt6/+YYyvvfZZ4unCiEgdDWlxVvoKhyefsY5LQ3LoUQbIIQO++sfwn3Lg9CGDEDgy1cAj6dNRVqO1EOSpM3mo+lPh3eAIZ51XYUkmVhM5yu1ta29wgyTBj77DDjuOMDjAdau5bgxpn0aGmhcweejfW0m87DoZpg8ROiaMUusqTFEm9fBWTQoa5nbQgjDeVyJ1MNs86a4EUdDm2C1+WC2ZidKSddVRJvXItRUFa9kV0FXoynnSJIZzqJBNI/tryBncUuOo56Y9BOLUT/ljTcC++6b06UIRYb+60KIUSOo1VtosLtaBVSoqRJKtBFCV9D2v9q2rd2J7gxJMsH26XcQgwcBe+8Jk9kKp3ew8Z6gazIACZLJwp0a3Q1Zzo7rPdNjWb2ajLGKi2k6J8H06eQFmUEvRqYbceqpwAcfZM8TlOH2cobJKzQ1gnBTFUxmG9zFOwAAzBY73MXDsnJ9VQlBDtdBjtTFb+zjKGEIoRvVMoe7b0bXoakxRIKrEW6ifOxIcI2R6ZvAZLbD6RsCt49EtrNoMExmvpsoeKZOpayTmTMzlqFNLt6yMTNtc5YYnwsHVkOJNcXzphWgL4DaxQAA07qNsP1nBqSHHgKsVnqepH9Hm7d4Q+iARELaWTSYNtZMNhLXl255QyFbm29MmtF1cryqqKAsbg5bZjLAkCHAU0+lHluxgsyyBg4k/77t9GRkCghVpT+5yp09WHQzTB4ghI5o83pEW9bHo79McHgHZbVlO9S4ArFwrfFYMplhc5TA5irNeKSPqoTi2djUKh5pWU+CJAmz1R2vYNNMtsPTn53FeyI33wwsXEiRYp0Q3Ckt3roCq731rjPSvA5KtCnFjCwZqkjH27U12YjBA9Da4g0z3Bf9DdKSZXQ38+STcHoHwOHpF28Bt261xdusScDfHwGuv57FWKEycybw1Vf0ur3+emCnnXK9IqaHUFkJ9O4N7LprquBW1eyFMDD5xUcf0T4g9ztnD24vZ5gco0SbEA5UQYu3S1sdfrh85TBbMhe8qWsy5Eg9bM5SozocbdmESHA1rI5iwxAtU3OgSrSRWsXjM9mxUHWbc6z2YiO+y+2vgM3Vm1tpmTYIoUPftAGilw8Wu9c4Hm3ZCCUWSHH3Tv7vLllItzQshxypS3leSTLDZKZ5aXevnYyUAFVugdBVY346pcX788+Bv/6VhNXATkb53XgjZf4ccADw3XfsflSofPMNUF0NnHNOrlfC9DCiUZrj7d+fHre0UOb3aacB99xDM+AMw2QOFt0MkyN0TUE4UGXMcZrMNrh8Q1NaWdN6PV2FEmmgOe1YEABl9NrdfQBQS62ASHsEmRACcriW8rEDFOGlRBvanGd39UnKyC6Hzdkrretguhe6rkLoSspcfixUDVVuhp4wI9NkiJoaFJ30F6h77wbbv9+HZKfNqs07NxIkWry9JTsbG05KLAihK6mmZNvbRbF56SgW61j/3tdfA+efTwN2J520fddmGIbpIK+8AkyYAAwbBixdynFjDJNpuKmEYXKFJMUdtzOXuS2EDiXaSEI72pTSNmuxeSCZWmegJZMZ6aitCaEj2rLBmMcON1VBU1o2O0uCwzsQ7iSRnasINCZ7JFq8k2fvEznvyTPUyS3eyRVpVW5uI6StCxbDtG4TLAIQjQ2Q+lIZx+Yqg8Xm3Sxvuv0W77S62icL7tmzyeH8nXeAsWO3/nWHHw4sXw643elbC5MfvPAC5TcVF+d6JQxjcMEFQN++tE+YHDd2yy30trXnnrldH5NZpk6l8IQrrwR23DHXq+kZcKWbYbKIpoRhtrbOayrRJkgmS8YEp64paNq0AJTFC5gtTthcpbA5S9PWvq5rCiLNa5MysldB12Ip50gmC5xFg6lV3FcBp29IRtvnmeySbLIHAHK0EZrcklKR1nUFuqYAEClCeksVaYA2gny99zCMw+RoI3QlQmZkyTFZ074Gysvzb0b2mGOAL74AzjgDePvttp8XAggG2dWokHnvPRLcQ4YAixdzDy+T13z5JXD00bT3t2EDUMQpmwXLiBHU4fDdd8CBB+Z6NT0DrnQzTBbQdRXR4FpEQ5vgLt7BiBWyOvxpu0Yi4kvXFHh6DQcAmMxW2F1lkEwWMkSzdr2KpqlRhAOr4iK7CpHmNRC6mnKOyeyAyz8ULh/NYzuK0l/FZ7KLEgtAU0LQtdYZaeNPXU0R0kqkfotCGqCNmoRJoNVRbMxHm8y2rbZ42xzFgKOdauHRR6c+/v57oKSEBhZzybvvUmbP5Mntf/7JJynb5/XX+a6nUBk6lMpIp53GgpvJe8rLgfPOowp4suD+8Udgr70AU2ZsXpgcMHEisGkT7Qcy2YEr3QyTYWLhOkQCqyheCIDD0w8u39C0PLemRCBHKOJLS8qt9vUZkzbnc1VuRripKj6TXYVo83okKucJLDYvXL5yIyPb4emXMRM2Jn2ocgs0JQxdl+MRWPEW73hl2t93L0P4bq0iDQC+PqON7oVYuBaq3JxajTZEtSWzr43ffqMwWkmiLfzddsvctbaHGTOA8eMBTQPGjAEWLQKeeILc2JnCpKWFsrk5n5vpJgjR6uVYWUn7RsOHA3PncvWbYbYXLj0xTIZIZG4rsQAAau12+ctTooq2FzlSj2jzeqhKyDgmSSZYHb1gc5Vud161EAJKtLF1HjtQCbkdoWV19II7LrBd/grYnKXsLJ4naEoEmhqOz0eTiE5u8fb13sMQ0rHQpq1XpHUF5vi5FpsXQogkIb1Zi3dSJ4PdVWZ0c2Sdvn2pwm0y0V1iPvHaa2SWduGFwEsv0cz3yy8DV12V65Ux6SYaBRzxERqucDPdjOT/zn/7DfB6qSKaLLiThTnDMNuGRTfDZIBYqBrhQFVS5vYAypXezgqfrimAJBnCRggdqhKCJEmw2P2wOUthcxR32nFZCB2xUI0R3RVqqoQa3yRIxu7ua0R3ufwVadk4YDqOpsaga9FUIZ3U4l1UNsr43UdbNiAWrtnicyULabPVA6tDgcmUMBprNRwj87HWypzd3cdwus9rSkrICTxZ9OQLskybAaWl9KfHA1xzTa5XxaSbefOAE08kFTB92QAAM+9JREFUJ/qTT871ahimS5xwArBmDcWNJQiHyWjtrLOAm2+m6Hmme9HURM03TidvnmQLFt0MkwFMFieEEF3K3Ba6BjnuPK7GmuAsGgyHJ+7M7OgF4S+HzVHSqaq20DVEW9bHXcWpXVxTwqknSSY4vQMNke30lcOSZP7GpAcSzrHNjMYSQlqBt2Rkq5BuXtcJIe2ExeaByWRrpxptTRHSDk9fODx9M/uN5gKnM/Uu8MUXqY370Udzm4tz8cVknMZDdIXNww/TsOQbb7DoZgqCoqLUKvebbwJ//AH861/A7bfnbl3M9lNWRs7169YBAwbkejU9A57pZpg0oGsyVLklJVtalVs67UouhA4lFoAcroMSbUiJ+LI5S+Hp1blcB11TEAmuRqipCuGmlYgEV0PX5JRzJJMVLt8QuHwVlJPtGwKTOT3z4D0NoWskouMCOrXFW4aneHjSjPTKrQrp5BnpSPN6yOHaVKOxpMq0xerZ/lzpQmf1amCHHeju4s03qTSTKzZsAEaNopLR+++TILvtNuCiizizpZCQZeDBB2lsgGPCmAJE08gn0moFTj2VjgkB3H03vcWOGJHb9TFbR9db959rakiAM5mHRTfDdAEhBGKhTYgE1wIQKOq9+3ZHYQmhI1D9c4ooNlsc1DruLEmJGtsSmhJBOFBFreKBKkSDayGElnKOyeKkfGxf3PTMO4CdxbeBrqspsVfJLd5uf8X2CengWsTCNa3z0Zu1eFvsPv69pIu33gK+/ZbafXPZRyfLwKRJwPTpwMyZwOOPU29m377AihWc0c0wTLfl66+BI46gqZmNG9nKIJ8RgvahYzHA5WJX+mzBopththNVbkG4qdIwM7PYPHD7d4DZ2rHhJlUJQY0FjJZxAGhpWAY1FoTNVQKbsxQWm3erz6HEgvE2cYrvirZsRFtn8aKUeWy7uw87i4M2OYSutpMlLcNVNKRVSDdVIhaq3uLz+PrsAbOFfueR4FpEWza0tnPHxTSJaiuszhIW0vmArlP7b//+2z43E8RigN0OVFcDxx9P2S0TJuRmLUx6WLMG+OYbMsnjAUmmB/Lrr5SOWF4OPPZY6/ElS4CRI/mfBcOw6GaYTqLrKiLBNYYQk0xmuIqGwObqvU0Hb02NUsRXuA6aGgEA+HrvYQh1XVMgmcztimIhBJRIPUJx07NwUxXkSF2b82zO0rireDnc/mGwOnr1KGfxRIt38ny00GU4PAMMIR0OrEa0ZcMWn2NzIR1pXgfJZI5Xo1NbvG3OMmOuXgidNzS6A9dfT/O2n35K4bOZpraWzNPa+3eoqoAlaSNGljlaqruhacAhh1Ac3J13AnfdlesVMUzO0PXWyumqVTTdM3o0NRtx9ZvpyXDJhWE6gRA6gjW/QtdiACgayVk0ZKtmZrqmGFnaqtxiHKeILz9EUmU6+XnIWXxT3PSMWsZVObjZs0uU+52I7/KVw2ovzBDN1BZvypW2u/sYQjoSXItoaCOErrX79TZnGcwmEtKtwliKV6M3y5KWWuejHZ7+5DzfgZlpFtzdgJYWuvurqaGW7kyL7mAQGDuWrH6ffx7w+1M/nyy4IxHg8MOpR/POO7k01F2QJOC44yhb6fzzc70ahskpya3K8+fTHmJxcarg5rix3NLYCNx3H/1O7rwz16vpOXClm2E6SSS4FnKkvsOZ23KkAS0NS+OPJFjtPthcpbA6ilNajXVdRbR5XTy6qwrhQBX0eDU8gSSZ4SgaRK3ivgq4fEM73M6ej7TX4m1zlrYK6eb1iIWqIXQlxVQuQXKXQKIiDZD43bzF2+7pD7OFDOJ0TQEgIJmsPaoLgIkTDAJffgmccUbmr/Xpp2SYNmAA8MsvbUV3Mm++CZxzDp2zaBEwcGDm18ekj2Aw1eKZYRjU1ACBQKtXZCQCHHAAcO65NFljZ9/WrLNiBf0+vF5622KyA1e6GWYrUMTWBlgdfmO+2uEdAId3QJuqphA6lHjEl9nqhtNLN8xWhx9Wuw9WRzFszhIjsknXYmhpaG0VDwdXQ+hKynOazDY4i4bGZ7LLt1lVzxc2b/G22v1JOdKbIIdrDKG9ORZbkVGRhtCNrgIAMJksRkVaMllTtsrt7j4k2M3Wbc5Nd4efIZNBiopSBXdLC/DvfwN/+Uv6yy/HHQfMnk09l1sT3ABw9tl0B7Tzziy4uwORCCmGRGmPBTfDtKF3b/pI8O9/AwsWAPX1wNVX525dPZmiIuDGG1MbrZjMw5VuhtkCSrQR4cAqaGoUFqsb3rJRbaqiQgiochByuA5ytN5obTZbHPD1GZ1yrqqE4wKb8rEjzeuAzaq3ZqvLcBV3+8tT5pDzAYq+okis5JiqWKgGcqS2NSZrM8d0X+/dDff1SPO6uNt7gtQWb1fREKN6ralRCF0xHL25fZtJO7oOnHAC8NlnwA03AH//e65XlMqyZSTWk+9amfzgvPPIpvnVVznolmE6SCwGvPYatTYnEhyFAB59FPjTn4BBg3K7PobJFCy6GWYzdC2GcGA15Eg9AKo2u3xDYXOWpJwXCa5FLFSdUq01me2wOUtgc5VCaIoR3RVuqkQstKnNtax2P2Vj+4fB5S+H3dU768KSWrzJcMxsdRnXl8M0h54ck5X8drF1IR1v8Y6bjrn8FbDEz9XUCHQ1Gq9Y2yCZLNzizeSW554DbroJ+OorYN99u/58ikJRYDfe2DUxtmEDMG4cheFOmwZUVHR9bUx6qKykzPVoFPj+e2D//XO9Iobptnz7LXDooVSB3bCB0xOZwoQbC5geg6ZGt5qhTcZl1YgY2dYSHJ6+cHoHQTKZoakRw9EagNEebTJZYHH0giSZEAtVo2H9bISbKqFEG9pcw+bqHZ/HLofLXwGbs1cmvlX6fuIt3mQMFhfSkQYo0YZ4xZrMyJI3DZKFtKZFIUcb2zxvosU7ecba6ugFs9nR2vq9lRZvs8WZ8nNkmJzzl78Ap51GDuMJuuL0c++9lJnz8cfAH39sfw9fKEStyyYTty7nGxUVwE8/AbNmseBmmC7i8QAHHwzsskuq4F69GhgyJGfLKlg0jZq8LBY2tMsmXOlmegSR5nWonP8EKva6xpi13hw5Uo+WhmUAKHPb5a+AJFmgROshh+ugKiEUlY2CxeaBEDpCTZUINa5ELLQR4aYqaErLZs8oweEdQK3ivnK4/OXbzN3eFkIICF1NiRVTYgFDSIv4HHVyi3dR792NKnN7FWkAkCQJkskKT6/hxhpVuQWq0hKPybJyizfTc1izhgzNXnwRGDGi81+/dCnNZ996K/VLdoVNm2h2uLy8a8/DMAyT5ygKNfYA9DY8bBhw0EHARx8BLldu11ZIfPklcPTRFOX200+5Xk3PgSvdTI8gUP0zIDQEqn/Zoui2OnrB6iiGxeaFJJkRCayCEiNbR6FrUGJNqF31DeRwDcKBVdC1aMrXSyYLnN7BraZnvqFbrawnQ1VjyWizVmJBqLGA4eidbEomhEgR0qrcjGhL29Z1gFq8ha62fo92H1AkUcZ0UkxWey3eFpsHFhuHajI9kGuuoQrmZZcB333X+VLATjsBP/6YHpeavn1TH3/5JfVfTpjQ9edmOs9LL5H18vDhuV4JwxQc1iSP0xkz6E8hWHCnm1jcn9Zmy+06ehosupmCRwiBYPUvAIBg9S/oM+w4SJKEWLgWsdAmeEt2jleOJTiLBqG5dhE0TYYSoQq3EmuCHK5tYw5mMtvjbeLUKu70DtqqK7Yqt0CVmw3xvHmL9+ZCOhF/1e73lNQSbrEVweHpnyqk4zFZm5uwWWzeLlfbGabgeeEFaul+7LGOC24hgPXrW13HM2ELW1lJbfChEAXfnnxy+q/BbJmZM2kjxukEFi8Ghg7N9YoYpmA591za32pJaiKMRoGjjgLOP58+rBxEsl0ceyzQ0ED/bTHZg0U3U/BEW9ZDiTUBAJRYI8JNVdC1KORoUzwHW4LLNzSej12J5rrfoEQbAaS+G5mtHprHjotsh6c/dDUGVWmBrsmItqwjIW2Iahnesl1hsbrj1w4gElyzxXUKTQbiotti88Du7gOTyWqYkW2pxdtqL4LVzvOeDJM2ysqA999PPVZVtfUW7xdeAP76V+CZZ+huMBOUlwPXXgvMnUt3TUx2GTqUel0HDWLBzTBZYPDg1Mevvkq+hVVVmXub7QlYLLRvy2QXFt1MQRELVSPasiHlWHPdbwBMAKiFe9Py/8JkcUKNBaltW41C1yJtnsti98Hh6Q+7qw/srjKYrC4IXYGnZKRRkZajDR0Q0iS6LVZXPKc7IZ7btngnsNp91ArOMEzu+eEHstY99FBg7Fhg0qTUzwtBQ4ehEPDmm5TdfOaZ6V+HJAFTp6YOPgJtHzOZYeBAcriX5VyvhGF6JOecQ5Xv0tLWtzwhgOefb+uFyTD5BotupqCorvwczbWLtnKGQLRlfbufsbv7wuWvgNXuBwDDxZu+SkBTQvR3LWZUpM1WF6x2PwnpuHhOrkybzHbjOayOYlgdvLXIMN2OefPIzGz5cuDTT+kub/Lk1s9LEvDhhxQ6++67wPjxmV1PssB+8kng9dfJKb2sLLPX7akEg63u8WYztZczDJN1vF7ghhtSj33/PXD55cBttwHr1vE/z47www9kD7LbbsApp+R6NT0HFt1MQTFg5JnYIJkQrFnY4a8xWz3oN+J0+MpGAQAiwTVoaVwOXVdhMttgNttgsjhgMtvjH63v6Fa7D1ZbUZvZaYZhCoirr6Z24kMOAf7xD+COO+h4svC+7z4S3PfcA9x+e3bW1dRE16urA955B5g4MTvX7UmsWEHZ7bfeSnf7Jk5vYJh8wmQCxowB9tknVXBXVwN9+uRuXfnMnDnAXXdR5wCL7uzBopspKMwWJwbuch6aeo3AxmXvQeg6qK28PUzwlu4Mh3cQHO5+rUfNdpgt8Sq30KGpUWhqq1O52eKA2Uqu5EqkAS2NywFIkEwmSJKZPkz0p8M7wGgT15QI5Eid8TlIFPuVeEyCnltEGSYvOeEE+jMhtO+4A/j5Z2DcOKqC33knCeBkIZ5p/H4q87z1FnDFFdm7bk/i1VfJcejTT2lmn2GYvOKAA4D588lkLcHatcAOO5D1xRtvcPV7c3bbjboD9t471yvpWXBON1OwxEI1WDnv0RSn7wSSyYqho6+AzdkLQtdgtroNwavKLVCiDRBCg9B1+lNoELoGCB1O31DDuCwWqkaoqXKLa/D0Gg6bswRAag54e7j9FbC7aVtWiTahpWGpIeAhJQt6E+yuPrA6/AAAXYtBjjTEY79McUFvMh7TvDhX4hkmbbzzTtv87WwL7i2hqsAvvwB77ZXrlRQGQgAvvwwceSQZqDEMk/e8/DJw8cXkezh9eq5XwzAEV7qZwkUytSu4AYrcsljd7cZndSaf2ubqDZuzNEWYC0FCHboGs7X1eUxmO4lqocfPS3zQY8nUWuU2jgsdaOd7SMydA1RBDwdWbXGNLt8QODz9AdCGQrKYl+LVdsQf2xy9WsW8rkKJNqVU4xOiH4m/dza/mGEKgbFjgV12AZYsIVFms2WvpXxrCAFcdRVlSb/0Etv7pgNJort3hmG6DRddRE1IiTxqgP5+6qnAhRfSn2auRTBZhkU3U7AEa38FIIGiv+Lu5ZIJEORiHqz9FaVDDu3SNSRJIgGKbb97d0bMW+1++PqMJtFtiPlWgW6xtUaESSYLbM6S+OdUEvXGuSpVvuMIoUHXtuy8a7Y4YIUfAKCrEYQal2/xXKd3IJxFVPnR1GirmDcEvSlepTfDaisyxLzQNahy0BD6xtckzmeYfGfQIMrI/u03EtyyTM7mHg9w//3AqFG5WZemkbWvptFamO2joYGi326+mX6/DMN0O0aOTH38r38Bn30GLFwInHQSi24m+7DoZgqWYPUvSGRtu/0V6LPjCdi0/COEm1YCEAjULOyy6M4UkskMcwcFqMXmgafX8I6da/WgqGxUSjW+taqupVb+JTOsdl+K2IdRnRepYl5XoSnhLX8/XiS1w8torv9jS2fC4ekHl29I/FwFocblKdX4ZIFutrqNmXkhdGhKeLNqvCkl05xh0sKUKRTdlWgpv+MOOgZQVTRXottioTvLiROB/fbLzRoKgb/8hUzxfvuNIuAYhun2nHIKsH49MGBA6l7av/9NItzbtvGxYLnmGuCf/6T/vvJhKqqnwKKbKUjkaGM8GkxCn2HHomTwwZAkE4aOvhx1a6ajZuVniDavgxJt7FExXpLJ3OFqu8Xqgrd053Y/J0SqOZ3J4oC3ZKQh3pNn4IVQ27TxW6zupHZ8Len5RErLuhAqlFhgi2t0uPu2im5dQ7CduLjEnLvNVWaIeSH0uJiPm9olKvPxx2arM2XNmhrlajxDTJlCIjt5hvueeyhW6vHHgUWLWu1gf/gB6NULGN6xTbG0YDKlCu5AgNZ8zz2Ay7Xlr2NaOftsYMaMttlEDMN0W0pLybE7mZkzgfPOA/r2BaqqAIcjJ0vLOtEooCg0PcNkDxbdTEEiQYKn1wiUVRwFV9Hg1uOSCWVDDoXbPwy1VdNA7edMZ9m8emwyWWCKV7K3hdnqRFHv3VKOCSGMtngkPbdkssJTvGNKNT4h1CF0mJM2EITQKRc9qRqfOG5U9hPn6hrkSMMW12h3lRmiWwgdgeqfk7/7FKd6q6PYEPMAEGqqTBHoyU71JrMtZdND11Wuxncnpk5tK7gTPPYYUFJCnzebKWLqoouAZcuoanryyblYMXDuueS8XVkJvP9+btbQ3Tj1VOCYY9jymGEKnEiE9kQPOihVcAcCgM+Xu3Vlmocfpv/CelJ1Px9g93KGYQoSYRjWkeCWJDPMFjt9TtcQC9ca4l0INcmpXofVXmSYz+magkD1T22q+wlszlJ4eu1oXLNxw9wtrsnmKIanZITxuHHDXAihJ1XZTfGquxkWmzdFzEea1wFAm7l5SGaYzFaYLSwQMs5bb1Fu89ZM06ZOpayaww8nx57Zs0nwJu7ghMhueWHGDODPfwb++19g9OjsXbe7IctU+nG7c70ShmGyiKYBoRBQFLfK2bCBhPjpp1MLdk+pfjOZh0U3wzBMB0iuxic71UsmCyxWV/wcHdGWDSnV+GSneoutKKXFfWsC3eoohrcdgd7uufYieEt3MR43bfr/9u49xtK6Pvz455wzM2dnZu+7XBbcysVy84IirKAWLAJSrVibxlvrDbWNib1YjTHUWtuqaYJRtNUmpjW0KdTWNkraqD8UKxpRQUBEAoqCgOzCLnuf+5zL749nzm1mdhnc/czs5fVKiDvjM2eeNXGY9/k+38/39vYbDbMn1Zf7h3qe/pgcfTya0YxSqa9rdX7mTYByX5QrBkkdkK1bI449tvPxG99YrIhfdVXv5zNNTfVuYqzViv3fdLzvfRE33FDs4T7nnKW+G2CJ/OM/FmMxXvzi4j1LOFhEN8ASmb0aH7NivnUefETE2O4H5z03vjUAb3jNM9rX7i/Q+wZWxMpjntX+eNdjt+9zon2lfyhWHXt2++M9234czfpUezW+NbSuVKpEuVJtT7OPiJnH95vzDME7ivfG33dfMVK3VCpG6C7FwLUHHoh42cuK3ywvuWTxv/+haO/e4gi4Rx6J+OIXl24rAHBIuPXW4j83bSr+c3KyOIHxbW+LuPTSw38v9H/8R/Hj7hWvmDvlnTze6gZYIqVSOUqVhe3nHlp18oJftzhubu658c1m73nwEcWKerM+Pefc+GjWozzr2kZ9sgj0esxR6R/qie7xPQ9HvTY+7/2VK9VYfXxnNXFkx0+jUZuIUrkvYmaPe3uFvtwfgytObF9bm9rb9Uj+zPXlw2RS/emnR9x4YzFgrTu4v/WtiLPPXpxNhB/9aOcR+YsvLgavHe1WrIi4807BDUREJ7Zbrrsu4j//s1j5fvDBiGp1ae7rYPnsZyO+8Y1ikrvoXjyiG+AI81QeCR9efcqCry0m1PfGfOvjcrn3Xyd9A8ujXOmfc8Z8Ef69q9z16bH9BPpAT3SP7f5F1KZG5r+23B+rN5zbc219erxn8F1nUn1fLFt+fNc9jEczGrmr8aVSsUxy6aWdz+3cGXHFFUX83nJLxBln7PvrD4ZPf7qIzPe9T3B3W7cu4u1vX+q7AA5Bl10W8e53R5x6am9wf+lLxczFwy3CL7usCO5TT13qOzm6eLwcgEXT2hvfHbS1qb3RaNTmnBvfbBSBPrjiae1rR3bcH/Xa2Jxz4yOKQF99/PPb1+7Zdvc+A71UrsSaDZ3ljL1P3BvTk7vmXjez4t79uhN7N0dtenQmzDt74aN1PN3guvaqe6M+VZxrv6/V+Lvvjnjta4s91j/84dKE8O23Rzz3ucXU9aPJdddFbNhQrPgDPAW33BLxohdFnHRSsXPocAtvFp+VbgAWTalUiij1xt3sc9z3pzUpvlv7kfjo3cc+uPLXZqK399z4ZqMxZ1NeqVyJcmWgMwSv/dr1iEbve9PTU7tjemLXPu9xYHB9+89ju38RU+PbO99n1qT6lc98VpTuvjti8+aYHH8i6tOjEVGK6muujMZvXRqNt7wxSssGo1QqR191VTvai79vHPhq/Le+Vay8//ZvFxF6tIzqve++iHe8oziw9uabI37jN5b6joDDyPbtxWrxxRf3Bvf4uNMGmZ/oBuCwtq+98f3Vhe+RXr72tPaf50yqn/VAWHX4+Oivrp5zbnyzUZ+ZBD8r6EulOefGR0SxN75UKla3N26M6R0/janx7dH/5W9G5Wv/F6Xv3Rojl54TzTXFQL3VG85rR/fYnodicvTx6D03vrMXfnjNaVGuFHvyp8Z3RH16tGs1vrM6X97ycJQjotRsRvT37uE/om3cWByl9tBDxXIVwFPwylcWMylHuh6meuyxiLPOKn60fOxjvYdGgOgGgC6t1fhSzL+KPLBszYJfqxXzrdjuRHq9PRCu/bqD66LSNxjNV/1uTO6ajKjXo2/D09tT7UvfuSXihS+KqFTaK90RzZnYn2e63YzpyV0zgT6PF58aq/7v61F53rkRlUqM7X4oJkcfm3NufGtS/eDKk9rn3U9P7ilifta58a1J9eXKwKE73G54uJgmNDVlbzvwKxkYiFi7tvPx5z9fjOm4/fZD+z3MZz4zYsuWiK9/3QmJi8mebgA41N1zTzHx/KyzIr7//WgODc17bnxrUn3/4Np28E6NPRHTU3vmnBvfehNg5THPbq+Kj+56IOKTn4raC8+J+llzH+VfddzzotJXPII+tufhmNj76D5veeWxz4m+/uGIiJgY2RwTI1u6htT1TqpftuLE9uvWpsfmxHypVJl19NyveGbPE09ErF//5NcBPEXNZjEVfHAw4oUvLD43NRXxzncWu1nOP39p769lw4ZiVf7OO4txHiwOK90AcKi7//6I1auL6ebDw1GK2O9qfLeBofUxMLSw0Bz6f7dF6UOfjObKlVG/67ZobjiuJ9S7j5Gr9A3FwOC64nH5rkftWzFf6tq732jU9nkefEREdfi49p+nJ3bG+J6H93ntivXPbJ9hPzm2LSZGNs85N741qb46dExU+ooNlvXNj0T5nHOj+fLLo/GJj0VpeMXRfW48cFCVShEvfWnv5/793yM+97mIL3+52M1yKDxy/t3vFuMsTjppqe/k6CK6AeBQ9zu/E/Gbv9m7gXDPnojXva44y+aSS+YMh/tVlF72soiLLorSi14UfSedtt9rq0Pro7rAmF82vCEGlq2dc2586+NypTOJqFypRn911axz42eG4DWbPY+sN+pTUZ8e2+f37a+u6kT3V26I8tZt0bjl27Fn2z0RI73jhpevO6O9dWB6YmdMjGwu3tjoPjd+Juj7B9e0X7dRn45GfWLWavxhcG48kO6CCyKuvDLiWc/qDe6bbop4yUuW5tAIsb00PF4OAIejv/3biA9+MOL004vHzw/Wb29TU8WGxFbE12rFax+EqD9QxRC6Uvvx8nptMhr1iZ7V+Gh0HruvDh/ffmx9cuyJqH31S9FYuzLqZ5w6Z1L9ivVntYfvTYw+FmO7HtznfSxfe3oMDK5tv+7ozvvnXNOK9aHVJ8fA4LqIKI7H616Zj67H50ulSvRVV7RjvtmoR6MxbTUejjDf/37xqPmZZxYnRR4Kq9/ks9INAIejd7yjOLfmwgs7wd1sRtx114Ft1Ov+DbDRiHjjGyOOOy7i4x9f8qFjs1ePK33V9mC3J1MdWh/V3317z+e6J9WXyp1fifqrq2P52tOi2ah1zo1vNqLZqEU0G1Hu+p6lUqlYqZ817b5nUv2MRm0ypsZ37PMeh9c8ox3d01N7YmT7fd1/+55J9ctWbGw/aVCfHi9ivms1Proeta/0D7XffGjdl9V4WBoPPxyxbl3EC17Q++O2VovoSy6zRiPi7/++OObsrW91vvhistINAEeKL30p4tWvjnj96yOuv/7AX++b3ywea+/ri7j11ojnPe/AX3MxjY9HfOADEVddVfyWuwi6J9VHsx6lykCUZ4K+XhuP6cndPavx3Xvhly3f0F5tnxrfEaM7f9azGt9tePWpUR0+NiKKx+H39gR6r6FVJ8Wy5Rsiolht37PtxxEx99z4UqkS1eHjojp0TEQUj+9PjD7WsxrfPam+0lft2RoALMzoaPHPscX/hePxx4v3Sq+8MuJDH8qbfj4+HjE0VPx5z56IFStyvg9zWekGgCPF3XcXq9GnnHJwXu8lLykmAdXrh19wR0S8//0Rn/pUxM03R9x226I8It9eQS7P/RWr0jfYXsl+MgODa2NgcNOsc+Mb7dX31sp1RES5b1kMrtzYsxrfmWhfi3Kls5zWOW5unnPjI9qPwkdENOqT+51QP7jiaTG4cmPx5dNjsXvrXXOmzhfnw1diYHBdJ+YbtZga3dqzGt/7Nf3tifpwJBoeLv5p+dd/LSaK33RTxIc/nPu9X/vaYhfRsmVPfi0Hj5VuADiS/OQnxfLJmpnzxH/60+K3uA9+MOIZzzjw19+6NWJyMmLjxgN/rWx33BHxhjdEXHNNxOWXL/XdHDJmr8Z3D62r9HfeGKjXJmJy9LGe1fjuSfXLlp/QnjzfvYI+n95AH4/dW3+4z2uXLd8QQ6tOiohitX3P1h/Ne258sQ9+dfsx+2azEVNj27qOpOscUdfzJgAcYhqNiBtuKM79vuii4nPT0xHvfW/EH/5hcbY2hzfRDQBHst///eJR8yuuKH6rOxCjo8Xj5ps3R3z1q8VI3kPd9HTes5q0da/Cd++Fj5mPK/3D0TewPCKKAXgTex+Z99z4aDaiuvz4GFzxtOLaJw3042No1ckRUQT6rsdu3+e11aFjY3jNqcX9NuqxZ9uPelbju8O8r395z1F7U+M79nFuvL3x5Pi3fytGahx/fLEP3I+xw5vHywHgSPbnfx6xa1exUbBldDRi9+6IE054aq+1e3fxtePjh+5vgI1GxLZtxfC3iEP3Po8wpVI5SpWFjWGu9FVjeM3Cnroo91Vj1bFn94R596T6ysBwz/X9y9bMe258MSyvE8fNZj3qtYl9ft/q0DHt6G426jGy4yf7vHZgcF0sX9s5Ym/Pth/3Tp3vivlK32DPI/y1qb1RDMmzGk+v5zwn4vd+L+K883p/jH3ve8UQtkPgQAmeAivdAHC0+bu/i/jrvy4eO3/Pe57a1+7YEfHQQ4fuHu9rron4m7+J+NznivPNIWYm1UfnnPdmsxG1qZGe1fjuSfV9/cPtOG40ajGy/b6uM+Y710UUgd56E6HZqMfOLbfu8z4Glq2N5etOb3+8c/P3Yr5fxUulSvQvW90T8yM77p/5O1TmTKqvVKrFGw4z6rXxiChbjT8CNJudwL7ttohNmyLOPTfillue+nuK995bjOo44YSIO+886LfKfljpBoCjzS23RExMdEbnPhVr1xb/tPz4x8WU83e966Dd3q+s0Yj4r/+K2LkzYsuWpb4bDiHF2e6lro/L0V9duaCvLZf7YuUxc7dSzHcsXJRKsXzt6fOeG1/smR/u+fpypdqzGt/574o3A7pNT2yfN9AjIvqrq3qie++2e6LRmO75+7cei+8bWN4T82O7H2ofm9c90b5UqkSpMtDzv1OjPu3c+EXWvaJ9773FALYzz+wN7kZjYSc6jo0VYzk8ALT4rHQDwNGm2Yz4xjeKJY/WGd9f+1rEd78b8Wd/FrFyYTESO3dGPPvZEY8+GvGZz0S8851Zd7xwU1PFxPU3vcnzlxxWZk+qjyj1nEM/Obq1Zw98dD1qX+kbag+qi4jY9djt7dX72fqrK2PF+s5krl1bftAT6N36+odj5bHPaX+8+/E724/lz546X+4bjOVrf7197cTI5mg26nPOjW+t0rf2+Lf+7iX/f12QHTuK90xbu4O2bo244IKIP/qjYjfR/s76Hh+P+NnPij8/+9n590qH6AaAo12zWTyveMcdxZnWH/nIwr/u6qsj/uVfIr797d4VcGDJzTepPkrl6OtacZ8Y2TIT6PU5k+rLlWXt4XMRRcw36lPzfq/9BfpslUo1Vh1/TvvjPdvujvr0aJRKM5Pnu2O+MtAzA2BybFs0G7X2ZPrZk+q7j9M7Gnz0oxF/8RfFj/Bbb/Ve46FKdAPA0a7RiPjCFyI+9rGIr3wlYv3M1Obt24tnGZ/sQNeJid5r6vXOCvpi+J//iXj88Yi3vc1vnJCs2bOvvd4O+iiVo7+6qn3d+N5fRrM+3XVd52vKlYFYse7M9rW7H//hzD70ucqVaqyeFei1qZH5ry33xeoN57U/Htl+X9SmR+ecG98K9OHVp7SvnZ7YGY1Gbc4KfmtSfbl8aO7KnZoqDqg48cSISy8tPlerRfzVX0W8/e0RJ5+8tPdHQXQDAPN761uLx84/+9mIl798YV/zv/8b8Zd/WYTw056We38RxbOVZ51VvEFw7bURb35z/vcEDqpGozbvufHNZj1KUeo5vm18zyNRr43POTe+2WxEqVSJVcc9t33t/gK9VK7Emg2b2h/vfeLemJ7ctY87LMXaE89vfzS664GoTe2dCfO+OZPqB1dubA+vq03t7cR8exW/86h9huuvL06L3LChOG6s9cj5L34RcdNNRaBffnnKt2YfDs23bACApTU+XgxIe/TRzsr3k5mejnj3u4tNg5/8ZPHoebb16yPe//6I//7viNe/Pv/7AQddudwXscCV5O69609meM1p0Wx2B/3coXUtrePnOkPwOiv6s5+gadQmoz49tp97/LX2nydGtsTU+PZ9Xrtmw6Z2fI/v/WXUJnfPOTe+FenV4ePa19Zr4zOP2c89N/7UU4tV74su6t3jfe21xcEVF14ouheblW4AYH4TExE33hhxxRWdz113XfHo+GteM/+43IceKmL7E59Y3BG5i/1IO3DUKFbROz/v6tNj0WhMzzk3vrXiPrTq6e1rx3Y/FLXJ3Z0V/NYj+TPWnHB+e4jcyI6f7jfQV284r/2Y++jOn8fk2NY517Qm1a889uyI0kCUyxGTo4/Hbd8fj9946UkREfHe9y7Oe6J0WOkGAOa3bFlvcI+MFONxt878ove61839mqc/PeIf/qH3c3fdFXH22Qf33jZvjjjuuE5oC24gyexzziv9Q7HQnzjdAd6ttTe+e2r7suUnxMDgup6Y755UXyp1vmup3BeV1pFzXefGN5vNaDZrEaVy+33R2tRI/OAHEf39jXj1q0bi6qsXeEIFB42VbgBgYUZHixXsG24ozvpurWTv2BGxZs38Q8w+/vFiWeWaayL+5E8O3n2cc05xZs711xcbFwGOYrMn1Zf7BttBPz25J+q1sXj0lxGNWBa/fvrqpb3Zo5CVbgBgYYaHIz7wgeJ8mlZgN5sRr3hF8fE//VMx1Kyl2Swm9zSbEZOTB+8+7rij2Gs+OhpRrT759QBHuNZ+7vn2xvdXV0Z/dWWcevoS3BgRYaUbADgQP/lJxHOfW0T3z38+d9W52Yz4+tcjLrnk4B7ndf/9xcTy889/8msBYAmJbgDgwGzZEnHrrRGvelXnc5/5TMSmTRHnntt77fR0xIc/HPGe90SstK8QgCOf6AYADq4HHog4/fSIWi3innt6Hzl/17siPv3piAsuiPjOdxa++l2vR/zpn0b88R8Xrw0Ah4l5zvoAADgAAwMRb3hDsde7O7hHRyOuvDLixBMjrrrqqT1u/olPFLF+4YXFGeIAcJiw0g0A5Og+O3t8vFihvvjiiI98pAjvlkZj/jO/u23eHPGmN0X8wR9EvOUtabcMAAeblW4AIEf32dlf/WrEI49EfPObEevXdz6/c2ex9/uLX9z/a51wQsSNN0a8+c0ptwoAWax0AwCL47bbisi+7LLi42Yz4vLLi5jeuLGYhD442Ps1Dz4YcfLJi3+vAHCQWOkGABbHeed1gjsi4qabiuCuViO+8IW5wf35z0ecdlrE1Vcv7n0CwEE09/R0AIDFsGJFcc72pk0RL3hB5/M/+lHEGWcU53vXahF79y7dPQLAAfJ4OQCwdJrNiKmpYrU7otjzffHFEaecUpz9ffPNEa98ZUSfdQIADk/+DQYALJ1SqRPcERH//M9FiG/dWhw99upXL929AcBBILoBgEPHtddGnHlmxPOfH7F8+VLfDQAcMI+XAwAAQBLTywEAACCJ6AYAAIAkohsAAACSiG4AAABIIroBAAAgiegGAACAJKIbAAAAkohuAAAASCK6AQAAIInoBgAAgCSiGwAAAJKIbgAAAEgiugEAACCJ6AYAAIAkohsAAACSiG4AAABIIroBAAAgiegGAACAJKIbAAAAkohuAAAASCK6AQAAIInoBgAAgCSiGwAAAJKIbgAAAEgiugEAACCJ6AYAAIAkohsAAACSiG4AAABIIroBAAAgiegGAACAJKIbAAAAkohuAAAASCK6AQAAIInoBgAAgCSiGwAAAJKIbgAAAEgiugEAACCJ6AYAAIAkohsAAACSiG4AAABIIroBAAAgiegGAACAJKIbAAAAkohuAAAASCK6AQAAIInoBgAAgCSiGwAAAJKIbgAAAEgiugEAACCJ6AYAAIAkohsAAACSiG4AAABIIroBAAAgiegGAACAJKIbAAAAkohuAAAASCK6AQAAIInoBgAAgCSiGwAAAJKIbgAAAEgiugEAACCJ6AYAAIAkohsAAACSiG4AAABIIroBAAAgiegGAACAJKIbAAAAkohuAAAASCK6AQAAIInoBgAAgCSiGwAAAJKIbgAAAEgiugEAACCJ6AYAAIAkohsAAACSiG4AAABIIroBAAAgiegGAACAJKIbAAAAkohuAAAASCK6AQAAIInoBgAAgCSiGwAAAJKIbgAAAEgiugEAACCJ6AYAAIAkohsAAACSiG4AAABIIroBAAAgiegGAACAJKIbAAAAkohuAAAASCK6AQAAIInoBgAAgCSiGwAAAJKIbgAAAEgiugEAACCJ6AYAAIAkohsAAACSiG4AAABIIroBAAAgiegGAACAJKIbAAAAkohuAAAASCK6AQAAIInoBgAAgCSiGwAAAJKIbgAAAEgiugEAACCJ6AYAAIAkohsAAACSiG4AAABIIroBAAAgiegGAACAJKIbAAAAkohuAAAASCK6AQAAIInoBgAAgCSiGwAAAJKIbgAAAEgiugEAACCJ6AYAAIAkohsAAACSiG4AAABIIroBAAAgiegGAACAJKIbAAAAkohuAAAASCK6AQAAIInoBgAAgCSiGwAAAJKIbgAAAEgiugEAACCJ6AYAAIAkohsAAACSiG4AAABIIroBAAAgiegGAACAJKIbAAAAkohuAAAASCK6AQAAIInoBgAAgCSiGwAAAJKIbgAAAEgiugEAACCJ6AYAAIAkohsAAACSiG4AAABIIroBAAAgiegGAACAJKIbAAAAkohuAAAASCK6AQAAIInoBgAAgCSiGwAAAJKIbgAAAEgiugEAACCJ6AYAAIAkohsAAACSiG4AAABIIroBAAAgiegGAACAJKIbAAAAkohuAAAASCK6AQAAIInoBgAAgCSiGwAAAJKIbgAAAEgiugEAACCJ6AYAAIAkohsAAACSiG4AAABIIroBAAAgiegGAACAJKIbAAAAkohuAAAASCK6AQAAIInoBgAAgCSiGwAAAJKIbgAAAEgiugEAACCJ6AYAAIAkohsAAACSiG4AAABIIroBAAAgiegGAACAJKIbAAAAkohuAAAASCK6AQAAIInoBgAAgCSiGwAAAJKIbgAAAEgiugEAACCJ6AYAAIAkohsAAACSiG4AAABIIroBAAAgiegGAACAJKIbAAAAkohuAAAASCK6AQAAIInoBgAAgCSiGwAAAJKIbgAAAEgiugEAACCJ6AYAAIAkohsAAACSiG4AAABIIroBAAAgiegGAACAJKIbAAAAkohuAAAASCK6AQAAIInoBgAAgCSiGwAAAJKIbgAAAEgiugEAACCJ6AYAAIAkohsAAACSiG4AAABIIroBAAAgiegGAACAJKIbAAAAkohuAAAASCK6AQAAIInoBgAAgCSiGwAAAJKIbgAAAEgiugEAACCJ6AYAAIAkohsAAACSiG4AAABIIroBAAAgiegGAACAJKIbAAAAkohuAAAASCK6AQAAIInoBgAAgCSiGwAAAJKIbgAAAEgiugEAACCJ6AYAAIAkohsAAACSiG4AAABIIroBAAAgiegGAACAJKIbAAAAkohuAAAASCK6AQAAIInoBgAAgCSiGwAAAJKIbgAAAEgiugEAACCJ6AYAAIAkohsAAACSiG4AAABIIroBAAAgiegGAACAJKIbAAAAkohuAAAASCK6AQAAIInoBgAAgCSiGwAAAJKIbgAAAEgiugEAACCJ6AYAAIAkohsAAACSiG4AAABIIroBAAAgiegGAACAJKIbAAAAkohuAAAASCK6AQAAIInoBgAAgCSiGwAAAJKIbgAAAEgiugEAACCJ6AYAAIAkohsAAACSiG4AAABIIroBAAAgiegGAACAJKIbAAAAkohuAAAASCK6AQAAIInoBgAAgCSiGwAAAJKIbgAAAEgiugEAACCJ6AYAAIAkohsAAACSiG4AAABIIroBAAAgiegGAACAJKIbAAAAkohuAAAASCK6AQAAIInoBgAAgCSiGwAAAJKIbgAAAEgiugEAACCJ6AYAAIAkohsAAACSiG4AAABIIroBAAAgiegGAACAJKIbAAAAkohuAAAASCK6AQAAIInoBgAAgCSiGwAAAJKIbgAAAEgiugEAACCJ6AYAAIAkohsAAACSiG4AAABIIroBAAAgiegGAACAJKIbAAAAkohuAAAASCK6AQAAIInoBgAAgCSiGwAAAJKIbgAAAEgiugEAACCJ6AYAAIAkohsAAACSiG4AAABIIroBAAAgiegGAACAJKIbAAAAkohuAAAASCK6AQAAIInoBgAAgCSiGwAAAJKIbgAAAEgiugEAACCJ6AYAAIAkohsAAACSiG4AAABIIroBAAAgiegGAACAJKIbAAAAkohuAAAASCK6AQAAIInoBgAAgCSiGwAAAJKIbgAAAEgiugEAACCJ6AYAAIAkohsAAACSiG4AAABIIroBAAAgiegGAACAJKIbAAAAkohuAAAASCK6AQAAIInoBgAAgCSiGwAAAJKIbgAAAEgiugEAACCJ6AYAAIAkohsAAACSiG4AAABIIroBAAAgiegGAACAJKIbAAAAkohuAAAASCK6AQAAIInoBgAAgCSiGwAAAJKIbgAAAEgiugEAACCJ6AYAAIAkohsAAACSiG4AAABIIroBAAAgiegGAACAJKIbAAAAkohuAAAASCK6AQAAIMn/B++I5lMGZewjAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ag = AcquisitionGeometry.create_Cone3D(source_position=[0,-500,0],detector_position=[0,500,0],rotation_axis_direction=[0,-1,1])\\\n", + " .set_panel(num_pixels=[2048,2048], pixel_size = 0.2)\\\n", + " .set_angles(angles=range(0,180))\n", + " \n", + "show_geometry(ag)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## The structure of an ImageGeometry\n", + "\n", + "ImageGeometry holds the description of the reconstruction volume. It holds:\n", + "\n", + " - The number of voxels in X, Y, Z: `voxel_num_x`, `voxel_num_y`, `voxel_num_z`\n", + " - The size of voxels in X, Y, Z: `voxel_size_x`, `voxel_size_y`, `voxel_size_z`\n", + " - The offset of the volume from the rotation axis in voxels: `center_x`, `center_y`, `center_z`\n", + " - The number of channels for multi-channel data\n", + "\n", + "You will also need to describe the order your data is stored in using the relevent labels from the CIL. The default labels are: `channel`, `vertical`, `horizontal_y` and `horizontal_x`\n", + " - `ig.set_labels(['vertical','horizontal_y','horizontal_x'])`" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Create a simple ImageGeometry\n", + "\n", + "To create a default ImageGeometry you can use:\n", + " `ig = ag.get_ImageGeometry()`\n", + "\n", + "This creates an ImageGeometry with:\n", + " - `voxel_num_x`, `voxel_num_y` equal to the number of horizontal pixels of the panel\n", + " - `voxel_num_z` equal to the number of vertical pixels of the panel\n", + " - `voxel_size_x`, `voxel_size_y` is given by the horizontal pixel size divided by magnification\n", + " - `voxel_size_z` is given by the vertical pixel size divided by magnification\n", + "\n", + "\n", + " You can pass a resolution argument:\n", + " `ig = ag.get_ImageGeometry(resolution)` \n", + "\n", + " - `resolution=0.5` double the size of your voxels, and half the number of voxels in each dimension\n", + " - `resolution=2` half the size of your voxels, and double the number of voxels in each dimension" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### A Note on CIL ImageGeometry:\n", + "At 0 degrees `horizontal_y` is aligned with the Y axis, and `horizontal_x` with the X axis." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "execution": { + "iopub.execute_input": "2024-10-10T15:02:40.546856Z", + "iopub.status.busy": "2024-10-10T15:02:40.546684Z", + "iopub.status.idle": "2024-10-10T15:02:40.551654Z", + "shell.execute_reply": "2024-10-10T15:02:40.551245Z" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ImageGeometry - default\n", + "Number of channels: 1\n", + "channel_spacing: 1.0\n", + "voxel_num : x2048,y2048,z2048\n", + "voxel_size : x0.1,y0.1,z0.1\n", + "center : x0,y0,z0\n", + "\n", + "ImageGeometry - 0.5x resolution\n", + "Number of channels: 1\n", + "channel_spacing: 1.0\n", + "voxel_num : x1024,y1024,z1024\n", + "voxel_size : x0.2,y0.2,z0.2\n", + "center : x0,y0,z0\n", + "\n", + "ImageGeometry - 2x resolution\n", + "Number of channels: 1\n", + "channel_spacing: 1.0\n", + "voxel_num : x4096,y4096,z4096\n", + "voxel_size : x0.05,y0.05,z0.05\n", + "center : x0,y0,z0\n", + "\n" + ] + } + ], + "source": [ + "ag = AcquisitionGeometry.create_Cone3D(source_position=[0,-500,0],detector_position=[0,500,0])\\\n", + " .set_panel(num_pixels=[2048,2048], pixel_size = 0.2)\\\n", + " .set_angles(angles=range(0,180))\n", + "\n", + "print(\"ImageGeometry - default\")\n", + "ig = ag.get_ImageGeometry()\n", + "print(ig)\n", + "\n", + "print(\"ImageGeometry - 0.5x resolution\")\n", + "ig = ag.get_ImageGeometry(resolution=0.5)\n", + "print(ig)\n", + "\n", + "print(\"ImageGeometry - 2x resolution\")\n", + "ig = ag.get_ImageGeometry(resolution=2)\n", + "print(ig)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Create a custom ImageGeometry\n", + "You can create your own ImageGeometry with:\n", + "`ig = ImageGeometry(...)`\n", + "\n", + "Giving you full control over the parameters.\n", + "\n", + "You can also change the members directly to reduce the reconstructed volume to exclude empty space.\n", + "\n", + "Using the previous example, we now can specify a smaller region of interest to reconstruct. We can offset the region of interest from the origin by specifiying the physical distance." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "execution": { + "iopub.execute_input": "2024-10-10T15:02:40.553118Z", + "iopub.status.busy": "2024-10-10T15:02:40.552816Z", + "iopub.status.idle": "2024-10-10T15:02:41.195828Z", + "shell.execute_reply": "2024-10-10T15:02:41.195317Z" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ImageGeometry - default\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA90AAAPdCAYAAACXzguGAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3gU1foH8O/sZnezm00PJAFCAoYEkKqAUiSoIIoF+N2rXkWKIiqogAhYUcQOoqDXcvUqWLBewIKoIBKkCARCpIUEQkINhkB62/b+/lgzsOlANpuE7+d59oE9096dzJmdd8/MOYqICIiIiIiIiIio3mk8HQARERERERFRc8Wkm4iIiIiIiMhNmHQTERERERERuQmTbiIiIiIiIiI3YdJNRERERERE5CZMuomIiIiIiIjchEk3ERERERERkZsw6SYiIiIiIiJyEybdRERERERERG7CpJuIiIiIiIjITZh0ExEREREREbkJk24iIiIiIiIiN2HSTUREREREROQmTLqJiIiIiIiI3IRJNxEREREREZGbMOm+QBkZGVAUBUlJSdXOEx8fD0VRkJub22BxXYioqCgsWLBAfa8oCr799luPxUPU0OpSrxuLQYMGYerUqZ4Oo1oVzydVmT17Nnr06NEg8VDtGvsx1VTU9TzC/U1E1Pwx6aZaZWZm4oYbbqjXdTaFi4y6JAvUeJzvMTVu3DiMGDHCpSwiIgKZmZno0qVL/QTnRsuWLcPzzz/v6TCqlZCQgPvuu099X9WPeNOnT8eaNWsaODKqL4sXL0ZAQEC9r7cpfE/UpOJ5pLof4Bt7HSYiogvn5ekAmjKLxeLpEM6b3W6HoijQaGr/3SUsLKwBIqJGLTUVSEsDoqOBDh0adNMWiwV6vb5Bt6nVapvMcR8UFOTpEGrUokWLWucxm80wm80NEE3T4MHq1ix54hwC1P080tjrMBERXbjzbukWERQVFTX4S0TqFN8PP/yAgIAAOBwOAEBSUhIURcGMGTPUee6//37ccccd6vulS5fi0ksvhcFgQFRUFObPn++yzqioKLzwwgsYN24c/P39MWHChCq3vXLlSsTExMBoNOLqq69GRkZGrfHm5ubivvvuQ2hoKLy9vdGlSxesWLGizrHl5ORgzJgxCAwMhMlkwg033ID9+/er08tbIlasWIHOnTvDYDDg0KFDyMrKws033wyj0Yh27dphyZIllWI7u2Wq/Ha5ZcuW4eqrr4bJZEL37t3xxx9/qPOfOnUKd9xxB9q0aQOTyYSuXbviiy++UKePGzcO69atw8KFC6EoChRFUffR3r17MWzYMJjNZoSGhmL06NHIzs6udr8dOnQIN998MwIDA+Hj44NLL70UK1euhIggOjoar732msv8u3fvhkajQVpaGgDnba1t27aFwWBAq1atMHnyZADOFpZDhw7hkUceUWMst2nTJgwcOBBGoxERERGYPHkyioqK1Onlx8mYMWNgNpsRGRmJ7777DidPnsTw4cNhNpvRtWtXbNu2rdrP1WicPg1cfz0QGwsMGwbExDjf5+S4bZODBg3CQw89hGnTpiEkJARDhgwBAKxbtw59+vSBwWBAeHg4Hn/8cdhsNgDVH1N2ux3jx49Hu3btYDQaERsbi4ULF6rbmj17Nj7++GN899136nLx8fFV3hZa0/bL4548eTJmzpyJoKAghIWFYfbs2TV+1oSEBAwZMgQhISHw9/dHXFwcEhMT1enx8fHQ6/VYv369WjZ//nyEhIQgMzNT3e7ZrYHvvPMOOnToAG9vb4SGhuKf//xntdsvPy98++23iImJgbe3N4YMGYIjR464zPfuu+/ikksugV6vR2xsLD799FOX6dXVI8D1jpGoqCgAwMiRI6Eoivq+4u3lDocDc+bMQZs2bWAwGNCjRw/8/PPP6vS6nIeaIg9UNxQVFannqvDw8ErfLYAzaZ05cyZat24NHx8fXHHFFYiPjwfgPEbvvvtu5OXlqXWo/LivablyGzduRFxcHEwmEwIDAzF06FDk5OTU+D1Rl7pY1TmkovK7XJ577jm0bNkSfn5+uP/++11+UC8rK8PkyZPRsmVLeHt7Y8CAAUhISFCn5+TkYNSoUWjRogWMRiM6dOiARYsWAXC9vTwjIwNXX301ACAwMBCKomDcuHFqvGfX4bp+n//yyy/o1KkTzGYzrr/+evWcQEREjZCcp8LCQgHQ4K/CwsI6xZebmysajUa2bdsmIiILFiyQkJAQ6d27tzpPTEyMvPvuuyIism3bNtFoNDJnzhxJSUmRRYsWidFolEWLFqnzR0ZGip+fn8ybN0/2798v+/fvl/T0dAEgO3bsEBGRw4cPi8FgkClTpsi+ffvks88+k9DQUAEgOTk5VcZqt9vlyiuvlEsvvVRWrVolaWlp8sMPP8jKlSvrHNstt9winTp1kt9//12SkpJk6NChEh0dLRaLRUREFi1aJDqdTvr16ycbN26Uffv2SWFhodxwww3SpUsX2bRpk2zbtk369esnRqNR3njjDXXdAGT58uUiIurn7dixo6xYsUJSUlLkn//8p0RGRorVahURkaNHj8q8efNkx44dkpaWJm+++aZotVrZvHmz+rfp27evTJgwQTIzMyUzM1NsNpscP35cQkJC5IknnpDk5GRJTEyUIUOGyNVXX13t3/nGG2+UIUOGyM6dO9X9tm7dOhERefHFF6Vz584u8z/yyCMycOBAERH55ptvxM/PT1auXCmHDh2SLVu2yPvvvy8iIqdOnZI2bdrInDlz1BhFRHbu3Clms1neeOMNSU1NlY0bN0rPnj1l3LhxLsdJUFCQvPfee5KamioTJ04UX19fuf766+Xrr7+WlJQUGTFihHTq1EkcDke1n61RGDpURKsVAc68tFpnuZvExcWJ2WyWGTNmyL59+yQ5OVmOHj0qJpNJJk2aJMnJybJ8+XIJCQmRZ599VkSqP6YsFos888wzsnXrVjl48KB89tlnYjKZ5KuvvhIRkYKCArntttvk+uuvV5crKyurVK9r23553H5+fjJ79mxJTU2Vjz/+WBRFkVWrVlX7WdesWSOffvqp7N27V/bu3Svjx4+X0NBQyc/PV+eZMWOGREZGSm5uriQlJYnBYJBly5a5bHfKlCkiIpKQkCBarVY+//xzycjIkMTERFm4cGG12y8/L/Tq1Us9B/Tp00f69eunzrNs2TLR6XTy9ttvS0pKisyfP1+0Wq389ttvIlJzPRJx1ofy80lWVpYAkEWLFklmZqZkZWWJiMizzz4r3bt3V5d5/fXXxc/PT7744gvZt2+fzJw5U3Q6naSmpopI3c5DTZEHqptMnDhR2rRpI6tWrZKdO3fKTTfdJGazWT2mRETuvPNO6devn/z+++9y4MABmTdvnhgMBklNTZWysjJZsGCB+Pn5qXWooKCg1uVERHbs2CEGg0EmTpwoSUlJsnv3bnnrrbfk5MmT1dbputbFiueQqowdO1bMZrPcfvvtsnv3blmxYoW0aNFCnnzySXWeyZMnS6tWrWTlypWyZ88eGTt2rAQGBsqpU6dEROTBBx+UHj16SEJCgqSnp8vq1avl+++/FxFxOY/YbDZZunSpAJCUlBTJzMyU3NxcNd6z93ddv88HDx4sCQkJsn37dunUqZPceeedF3YwEBGR2zTbpFtE5LLLLpPXXntNRERGjBghL774ouj1esnPz5fMzEwBoH4Z33nnnTJkyBCX5WfMmOGStEVGRsqIESNc5ql4cf7EE09USqYee+yxGpPuX375RTQajaSkpFQ5vbbYUlNTBYBs3LhRnZ6dnS1Go1G+/vprEXF+SQOQpKQkdZ6UlBQBoCbDIiLJyckCoNak+7///a86fc+ePS77sirDhg2TRx99VH1f8SJDRGTWrFly3XXXuZQdOXJEvUipSteuXWX27NlVTjt+/LhotVrZsmWLiIhYLBZp0aKFLF68WERE5s+fLzExMeqFTEVnJwvlRo8eLffdd59L2fr160Wj0UhJSYm63F133aVOLz/WZs2apZb98ccfAkBN5hullBTXq/+Kr78vnOtbXFyc9OjRw6XsySeflNjYWJd69fbbb4vZbBa73a4uV/GYqsqkSZPkH//4h/p+7NixMnz4cJd5Ktbrum5/wIABLuvp3bu3PPbYY7XGVM5ms4mvr6/88MMPallZWZn07NlTbrvtNrn00kvl3nvvdVnm7M+9dOlS8fPzc0naa1J+XqjqHFBeb/r16ycTJkxwWe7WW2+VYcOGici516OzzyflKibdrVq1khdffNFlnt69e8ukSZNE5PzPQ42ZJ6pbQUGB6PV6+fLLL9WyU6dOidFoVI+pAwcOiKIocuzYMZdlr732WnniiSdExHkc+fv7u0yvy3J33HGH9O/fv9r4qqrTda2LFc8hVRk7dqwEBQVJUVGRWvbuu++q6yosLBSdTidLlixRp1ssFmnVqpXMnTtXRERuvvlmufvuu6tcf8XzyNq1a6u8Fjj7c57L9/mBAwdc9kFoaGitn5mIiDzjvG8vN5lMKCwsbPCXyWSqc4yDBg1CfHw8RATr16/H8OHD0aVLF2zYsAFr165FaGgoOnbsCABITk5G//79XZbv378/9u/fD7vdrpb16tWrxm0mJyfjyiuvdLkduW/fvjUuk5SUhDZt2iAmJqbaddYUW3JyMry8vHDFFVeo04ODgxEbG4vk5GS1TK/Xo1u3bi7r9fLycvlMHTt2rFOHOGevJzw8HACQlZUFwPm8+Isvvohu3bohODgYZrMZq1atwuHDh2tc5/bt27F27Vr1+U6z2az+fcpvB69o8uTJeOGFF9C/f388++yz2Llzp0tcN954Iz766CMAwIoVK1BaWopbb70VAHDrrbeipKQE7du3x4QJE7B8+XKXWxSri3Hx4sUuMQ4dOhQOhwPp6elV7p/Q0FAAQNeuXSuVle+zRqmafa46cMBtm65Yz5KTk9G3b1+XetW/f38UFhbi6NGjNa7rvffeQ69evdCiRQuYzWZ88MEHtR6LFdV1+2f/3QHnMVjT3zgrKwsPPPAAYmJi4O/vD39/fxQWFrrEp9fr8dlnn2Hp0qUoKSmpsXO/IUOGIDIyEu3bt8fo0aOxZMkSFBcX1/jZqjsHlJ87qjv/lE8/n3pUk/z8fBw/frzGbZar6TzU1HiiuqWlpcFisbh8RwUFBSE2NlZ9n5iYCBFBTEyMy3lv3bp11Z6X67pcUlISrr322nOKua51sbbv6nLdu3d3ua7o27cvCgsLceTIEaSlpcFqtbocizqdDn369FGPxYkTJ+LLL79Ejx49MHPmTGzatOmcPk9Vn68u3+cmkwmXXHKJ+r62cw0REXnWeXekpigKfHx86jOWejdo0CB8+OGH+PPPP6HRaNC5c2fExcVh3bp1yMnJQVxcnDqviLh8iZeXVVTbZ65qmdoYjcZa11lTbNVts+JyRqPR5X35chXXXRc6nU79f/ny5c/Pz58/H2+88QYWLFiArl27wsfHB1OnTq214zmHw4Gbb74Zr776aqVp5RfUFd17770YOnQofvzxR6xatQovv/wy5s+fj4cfflidPnr0aLzxxhtYtGgRbr/9dvUCKyIiAikpKVi9ejV+/fVXTJo0CfPmzcO6detcPl/FGO+//36XZ1bLtW3btsb9U9M+a5TOuqCrUnS02zZdsZ7VVAdqOn6//vprPPLII5g/fz769u0LX19fzJs3D1u2bDmneOq6/YrHjaIoNf6Nx40bh5MnT2LBggWIjIyEwWBA3759K9WV8gv506dP4/Tp09Weh3x9fZGYmIj4+HisWrUKzzzzDGbPno2EhIQaf0yrah+eXVbVZy8vO596VBc1bbNck6tTNfBEdavL95XD4YBWq8X27duh1WpdptXU+V1dlqvtu6+6mOtSFy/0+kRRlGrPMWfHcMMNN+DQoUP48ccf8euvv+Laa6/Fgw8+WKk/kbqq6/d5Veea87n+ICKihtGshwwbOHAgCgoKsGDBAsTFxUFRFMTFxSE+Ph7x8fEuSXfnzp2xYcMGl+U3bdqEmJiYShcMNencuTM2b97sUlbxfUXdunXD0aNHkZqaWu06a4qtc+fOsNlsLonEqVOnkJqaik6dOlW73U6dOsFms7l06JWSknLB44mX31Vw1113oXv37mjfvr1LJzCAs/Xu7DsIAOCyyy7Dnj17EBUVhejoaJdXTRdQEREReOCBB7Bs2TI8+uij+OCDD9Rpw4YNg4+PD95991389NNPuOeee1yWNRqNuOWWW/Dmm28iPj4ef/zxB3bt2lVrjBXji46O9kjvuG4VEwMMHQpUPP61Wmd5A3ar3LlzZ2zatMnlonLTpk3w9fVF69atAVT991q/fj369euHSZMmoWfPnoiOjq7UOlfVcuez/fOxfv16TJ48GcOGDVM7SqzYcWBaWhoeeeQRfPDBB7jyyisxZsyYGhNLLy8vDB48GHPnzsXOnTuRkZGB3377rdr5qzsHlN9l0qlTpyrPP2efW2qqRxXpdLoa97efnx9atWpV6zabG09Ut+joaOh0OpfvqJycHJfvop49e8JutyMrK6vSOa+8Z+6q6lBdluvWrVuNQ8VVtd76rot//vknSkpK1PebN2+G2WxGmzZt1PP62cei1WrFtm3bXI7FFi1aYNy4cfjss8+wYMECvP/++9V+HgA1Hv/n+31ORESNW7NOuv39/dGjRw989tlnGDRoEABnIp6YmIjU1FS1DAAeffRRrFmzBs8//zxSU1Px8ccf49///jemT59+Ttt84IEHkJaWhmnTpiElJQWff/45Fi9eXOMycXFxGDhwIP7xj39g9erVSE9Px08//aT21ltbbB06dMDw4cMxYcIEbNiwAX/++SfuuusutG7dGsOHD692u7Gxsbj++usxYcIEbNmyBdu3b8e99957Xq0PZ4uOjsbq1auxadMmJCcn4/7778eJEydc5omKisKWLVuQkZGB7OxsOBwOPPjggzh9+jTuuOMObN26FQcPHsSqVatwzz33VHuRMnXqVPzyyy9IT09HYmIifvvtN5cLE61Wi3HjxuGJJ55AdHS0y22Uixcvxocffojdu3fj4MGD+PTTT2E0GhEZGanG+Pvvv+PYsWNqIvTYY4/hjz/+wIMPPoikpCTs378f33//vdqy3ux88QUweLBr2eDBzvIGNGnSJBw5cgQPP/ww9u3bh++++w7PPvsspk2bpg57V9UxFR0djW3btuGXX35BamoqZs2a5dLzcPlyO3fuREpKCrKzs2G1Ws9r++cjOjoan376KZKTk7FlyxaMGjXKpf7Z7XaMHj0a1113He6++24sWrQIu3fvrrKHacD5CMWbb76JpKQkHDp0CJ988gkcDofL7cIV6XQ6PPzww9iyZQsSExNx991348orr0SfPn0AADNmzMDixYvx3nvvYf/+/Xj99dexbNky9fxTWz2qKCoqCmvWrMGJEyeQU0233DNmzMCrr76Kr776CikpKXj88ceRlJSEKVOm1Gm/NlUNXd3MZjPGjx+PGTNmYM2aNdi9ezfGjRvnckzHxMRg1KhRGDNmDJYtW4b09HQkJCTg1VdfxcqVKwE4/6aFhYVYs2YNsrOzUVxcXKflnnjiCSQkJGDSpEnYuXMn9u3bh3fffVc931ZVp+u7LlosFowfPx579+7FTz/9hGeffRYPPfQQNBoNfHx8MHHiRMyYMQM///wz9u7diwkTJqC4uBjjx48HADzzzDP47rvvcODAAezZswcrVqyoNjmOjIyEoihYsWIFTp48icLCwkrznO/3ORERNXIN8+i45zz66KMCQHbv3q2Wde/eXVq0aFGp5+j//e9/0rlzZ9HpdNK2bVuZN2+ey/SqOtaq2FGKiMgPP/wg0dHRYjAY5KqrrpKPPvqoxo7URJyd19x9990SHBws3t7e0qVLF1mxYkWdYzt9+rSMHj1a/P39xWg0ytChQ9UeYkWq7uhGxNnJ14033igGg0Hatm0rn3zySY0dH1X1eXNycgSArF27Vv0sw4cPF7PZLC1btpSnn35axowZ49JZVUpKilx55ZViNBoFgKSnp4uIsxOZkSNHSkBAgBiNRunYsaNMnTq12l6+H3roIbnkkkvEYDBIixYtZPTo0ZKdne0yT1pamgBQO74pt3z5crniiivEz89PfHx85Morr5Rff/1Vnf7HH39It27dxGAwyNlVZevWrTJkyBAxm83i4+Mj3bp1c+n0qarj5Ox9WN1+bNRSU0VWrnRb52lnq65DtPj4eOndu7fo9XoJCwuTxx57zKWn6qqOqdLSUhk3bpz4+/tLQECATJw4UR5//HGXTruysrLUv2f5cVzV36e27VcV9/Dhw2Xs2LHVftbExETp1auXGAwG6dChg3zzzTcux89zzz0n4eHhLsf0t99+K3q9Xo3t7O2uX79e4uLiJDAwUIxGo3Tr1k3tqb0q5eeFpUuXSvv27UWv18s111wjGRkZLvO988470r59e9HpdBITEyOffPKJOq22elSxPnz//fcSHR0tXl5eEhkZKSKVO1Kz2+3y3HPPSevWrUWn00n37t3lp59+UqfX5TzUlDVgdZOCggK56667xGQySWhoqMydO7fSsVw+CkBUVJTodDoJCwuTkSNHys6dO9V5HnjgAQkODhYAak/idVkuPj5e+vXrJwaDQQICAmTo0KHqd2V13xPnUxerUt6J4jPPPCPBwcFiNpvl3nvvldLSUnWekpISefjhhyUkJEQMBoP0799ftm7dqk5//vnnpVOnTmI0GiUoKEiGDx8uBw8eFJGqj9M5c+ZIWFiYKIqinhsqxns+3+fLly+Xi+CSjoioyVJE+BAQNW8bN27EoEGDcPToUbUDMyJytlJPnTr1gh8pIWqKxo0bh9zcXHz77beeDoWIiJq58+5IjaixKysrw5EjRzBr1izcdtttTLiJiIiIiKjBNetnuuni9sUXXyA2NhZ5eXmYO3eup8MhIiIiIqKLEG8vJyIiIiIiInITtnQTERERERERuQmTbiIiIiIiIiI3YdJNRERERERE5CZMuomIiIiIiIjcxCNJt91W6onNEhERERERETWoBk+6SwqOYt/6Z1BScLShN001iIqKwoIFC2qcZ/bs2ejRo0eDxEPkSRkZGVAUBUlJSZ4OpVaDBg3C1KlT6219ixcvRkBAgPrek/We5xzPqO9jqikZN24cRowYob735L64mP8ORETNTYMn3Xl/7QDEjry/khp601SDhIQE3Hfffep7RVHw7bffuswzffp0rFmzpoEjI6qb871ArXiRDQARERHIzMxEly5d6ic4N1q2bBmef/55t62/oeo9zzlNV8UfaupLY0g63V2/ACA+Ph6KoiA3N7fBt01ERA3DqyE3JiLI/zvZzv8rCaGX3AhFURoyBLey2+1QFAUaTdN7VL5Fixa1zmM2m2E2mxsgGqIzLBYL9Hp9g25Tq9UiLCysQbd5voKCgty6/trqvTv/PjznUH24kGO0tvrlzuPf3XWbiIgaToNmh6WFx2AtywUAWMtyUFp43K3b+9///oeuXbvCaDQiODgYgwcPRlFREQDA4XBgzpw5aNOmDQwGA3r06IGff/5ZXbaqX56TkpKgKAoyMjIAnPl1f8WKFejcuTMMBgMOHTqEsrIyzJw5ExERETAYDOjQoQM+/PBDdT179+7FsGHDYDabERoaitGjRyM7O7vaz1G+nW+//RYxMTHw9vbGkCFDcOTIEZf53n33XVxyySXQ6/WIjY3Fp59+6jJ99uzZaNu2LQwGA1q1aoXJkyer086+vTwqKgoAMHLkSCiKor6veKtnbfuw/BbdZcuW4eqrr4bJZEL37t3xxx9/VPtZiQYNGoSHHnoI06ZNQ0hICIYMGQIAWLduHfr06QODwYDw8HA8/vjjsNlsAJyt1evWrcPChQuhKIpaT+12O8aPH4927drBaDQiNjYWCxcuVLc1e/ZsfPzxx/juu+/U5eLj46u8vbym7ZfHPXnyZMycORNBQUEICwvD7Nmza/ysCQkJGDJkCEJCQuDv74+4uDgkJiaq0+Pj46HX67F+/Xq1bP78+QgJCUFmZqa63bNbA9955x106NAB3t7eCA0NxT//+c8aY1i8eDHatm0Lk8mEkSNH4tSpUy7TK9b78jsDXn75ZbRq1QoxMTEAgGPHjuH2229HYGAggoODMXz4cPVcWe6jjz7CpZdequ7Dhx56CADPOZ5UVFSEMWPGwGw2Izw8HPPnz680j8ViwcyZM9G6dWv4+PjgiiuuQHx8PADnMXr33XcjLy9PrUPlx31Ny5XbuHEj4uLiYDKZEBgYiKFDhyInJ6faOg3UrS5WdQ6pyG63Y9q0aQgICEBwcDBmzpwJEXGZp2L9ioqKwgsvvIBx48bB398fEyZMAABs2rQJAwcOhNFoREREBCZPnqxebwCo9rogIyMDV199NQAgMDAQiqJg3LhxVW47JycHY8aMQWBgIEwmE2644Qbs379fnV5+rfDLL7+gU6dOMJvNuP7669VzBREReZC4SWnhCck9kejyOrL7U9m9ZrrsXjNNdq+ZLkd2f1ZpntLCE/Wy/ePHj4uXl5e8/vrrkp6eLjt37pS3335bCgoKRETk9ddfFz8/P/niiy9k3759MnPmTNHpdJKamioiImvXrhUAkpOTo65zx44dAkDS09NFRGTRokWi0+mkX79+snHjRtm3b58UFhbKbbfdJhEREbJs2TJJS0uTX3/9Vb788ks1rpCQEHniiSckOTlZEhMTZciQIXL11VdX+1nKt9OrVy/ZtGmTbNu2Tfr06SP9+vVT51m2bJnodDp5++23JSUlRebPny9arVZ+++03ERH55ptvxM/PT1auXCmHDh2SLVu2yPvvv68uHxkZKW+88YaIiGRlZQkAWbRokWRmZkpWVpaIiDz77LPSvXt3dZna9mF6eroAkI4dO8qKFSskJSVF/vnPf0pkZKRYrdbz+KvSBXM4RAoLG/7lcNQ5xLi4ODGbzTJjxgzZt2+fJCcny9GjR8VkMsmkSZMkOTlZli9fLiEhIfLss8+KiEhubq707dtXJkyYIJmZmZKZmSk2m00sFos888wzsnXrVjl48KB89tlnYjKZ5KuvvhIRkYKCArntttvk+uuvV5crKytTj90dO3aIiNS6/fK4/fz8ZPbs2ZKamioff/yxKIoiq1atqvazrlmzRj799FPZu3ev7N27V8aPHy+hoaGSn5+vzjNjxgyJjIyU3NxcSUpKEoPBIMuWLXPZ7pQpU0REJCEhQbRarXz++eeSkZEhiYmJsnDhwmq3v3nzZlEURV5++WVJSUmRhQsXSkBAgPj7+6vzVKz3Y8eOFbPZLKNHj5bdu3fLrl27pKioSDp06CD33HOP7Ny5U/bu3St33nmnxMbGSllZmYiIvPPOO+Lt7S0LFiyQlJQU2bp1a7M+5zSBqiYiIhMnTpQ2bdrIqlWrZOfOnXLTTTeJ2WxWjykRkTvvvFP69esnv//+uxw4cEDmzZsnBoNBUlNTpaysTBYsWCB+fn5qHSr/nq1pORHnd6rBYJCJEydKUlKS7N69W9566y05efJktXW6rnWx4jmkKq+++qr4+/vL//73P7X++fr6yvDhw13Wdfa+iIyMFD8/P5k3b57s379f9u/fLzt37hSz2SxvvPGGpKamysaNG6Vnz54ybtw4dbnqrgtsNpssXbpUAEhKSopkZmZKbm5uldu+5ZZbpFOnTvL7779LUlKSDB06VKKjo8VisYjImWuFwYMHS0JCgmzfvl06deokd95557kdFEREVO/clnQf2rno7+T63F6Hdi6ul+1v375dAEhGRkaV01u1aiUvvviiS1nv3r1l0qRJIlL3pBuAJCUlqfOkpKQIAFm9enWV2501a5Zcd911LmVHjhxRv3CrUr6dzZs3q2XJyckCQLZs2SIiIv369ZMJEya4LHfrrbfKsGHDRERk/vz5EhMTo345V3R20i0iAkCWL1/uMk/FC+Da9mH5BfB///tfdfqePXsEQLUXQeRmhYUiQMO/CgvrHGJcXJz06NHDpezJJ5+U2NhYcZyVUbz99ttiNpvFbrery519gVqdSZMmyT/+8Q/1/dixY10uskWkUtJd1+0PGDDAZT29e/eWxx57rNaYytlsNvH19ZUffvhBLSsrK5OePXvKbbfdJpdeeqnce++9Lsuc/bmXLl0qfn5+Lkl7Te644w65/vrrXcpuv/32WpPu0NBQNZkWEfnwww8r7Z+ysjIxGo3yyy+/iIjzfPHUU09VG0tzO+c0gaomBQUFotfr1R+FRUROnTolRqNRPaYOHDggiqLIsWPHXJa99tpr5YknnhAR53fU2cdMXZe74447pH///tXGV1WdrmtdrHgOqUp4eLi88sor6nur1Spt2rSpNekeMWKEy3pGjx4t9913n0vZ+vXrRaPRSElJSa3XBVVdb1TcdmpqqgCQjRs3qtOzs7PFaDTK119/LSJnrhUOHDigzvP2229LaGhorfuCiIjcy223l7fudDv8WnY/p2X8WvZA60631cv2u3fvjmuvvRZdu3bFrbfeig8++AA5OTkAgPz8fBw/fhz9+/d3WaZ///5ITk4+p+3o9Xp069ZNfZ+UlAStVou4uLgq59++fTvWrl2rPqtoNpvRsWNHAEBaWlq12/Hy8kKvXr3U9x07dkRAQIAab3Jyco2f59Zbb0VJSQnat2+PCRMmYPny5S63452rc9mHZ++f8PBwAEBWVtZ5b5uav7OPdcB5fPft29elD4j+/fujsLAQR4/WPBLCe++9h169eqFFixYwm8344IMPcPjw4XOKp67bP/tYB5zHe03HelZWFh544AHExMTA398f/v7+KCwsdIlPr9fjs88+w9KlS1FSUlLjKANDhgxBZGQk2rdvj9GjR2PJkiUoLi6u9XOdreL7qnTt2tXlOdbt27fjwIED8PX1Vc9rQUFBKC0tRVpaGrKysnD8+HFce+21ta67Ojzn1L+0tDRYLBaXv3lQUBBiY2PV94mJiRARxMTEuHxvrVu3rsbvrLosl5SUdM7HRF3rYsVzSEV5eXnIzMx0+ewVv2erU3Ge7du3Y/HixS6fc+jQoXA4HEhPT6/1uqAukpOT4eXlhSuuuEItCw4ORmxsrMvxbzKZcMkll6jvazsHERFRw3BbR2paLyPaXDoauUEdkZm6FOJwAHBUnlHRQFE0CI/9BwLCetdbx2parRarV6/Gpk2bsGrVKrz11lt46qmnsGXLFgQHBzs3XWFbIqKWlXeGJmc932W1Wittx2g0uqzHaDTWGJfD4cDNN9+MV199tdK08ovD6lS1b84uq+nzREREICUlBatXr8avv/6KSZMmYd68eVi3bh10Ol2N2z2XmM7eZrmz118+zeGo4lgg9zOZgMJCz2z3HPj4+Li8r+q4Kq+bNZ0zvv76azzyyCOYP38++vbtC19fX8ybNw9btmw5p3jquv2KdUlRlBqP9XHjxuHkyZNYsGABIiMjYTAY0LdvX1gsFpf5Nm3aBAA4ffo0Tp8+XWn/lPP19UViYiLi4+OxatUqPPPMM5g9ezYSEhKq7F367PPbuai4fYfDgcsvvxxLliypNG+LFi3qtXPJpnLOaQpVrS5/f4fDAa1Wi+3bt0Or1bpMq6mTu7osV9v3ZXUx16UuVldH6kNVx//999/v0k9KubZt2+LAgQMXvM3q/lYV90dV56DzredERFR/3NqRmqIoCGzVB5f0fhSKRlvNPFpc0vtRBIb3qfeezBVFQf/+/fHcc89hx44d0Ov1WL58Ofz8/NCqVSts2LDBZf5NmzahU6dOAM705n12ByR1GbO3a9eucDgcWLduXZXTL7vsMuzZswdRUVGIjo52edV0kWCz2bBt2zb1fUpKCnJzc9VW8k6dOtX4eQDnBc4tt9yCN998E/Hx8fjjjz+wa9euKren0+lgt9urjacu+5AaIUUBfHwa/nWBdbtz587YtGmTy8Xjpk2b4Ovri9atWwNwtghXPGbXr1+Pfv36YdKkSejZsyeio6Mrtc5Vtdz5bP98rF+/HpMnT8awYcPUDsYqdqqYlpaGRx55BB988AGuvPJKjBkzpsYE0svLC4MHD8bcuXOxc+dOZGRk4Lfffqv2c23evNmlrOL7urjsssuwf/9+tGzZstJ5zd/fH76+voiKiqpx+K/mds5pClUtOjoaOp3O5W+ek5OD1NRU9X3Pnj1ht9uRlZVV6W9b3sN/VXWoLst169atxmOiqvXWV1309/dHeHi4y2e32WzYvn17nddRrvx7veLnjI6Ohl6vr/W6oPyukZqO/86dO8Nms7n8YHjq1CmkpqY2yuOfiIhcNUzv5YoG4qjcSgwA4rBCUeo/jC1btuCll17Ctm3bcPjwYSxbtgwnT55Uv5xmzJiBV199FV999RVSUlLw+OOPIykpCVOmTAHgvBiJiIjA7NmzkZqaih9//LHKXl0rioqKwtixY3HPPffg22+/RXp6OuLj4/H1118DAB588EGcPn0ad9xxB7Zu3YqDBw9i1apVuOeee2r8wtXpdHj44YexZcsWJCYm4u6778aVV16JPn36qJ9n8eLFeO+997B//368/vrrWLZsGaZPnw7A2avphx9+iN27d+PgwYP49NNPYTQaERkZWe3nWLNmDU6cOKHell9RbfuQqL5MmjQJR44cwcMPP4x9+/bhu+++w7PPPotp06aprahRUVHYsmULMjIykJ2dDYfDgejoaGzbtg2//PILUlNTMWvWLCQkJLisOyoqCjt37kRKSgqys7OrvKOlLts/H9HR0fj000+RnJyMLVu2YNSoUS6tf3a7HaNHj8Z1112Hu+++G4sWLcLu3burPRetWLECb775JpKSknDo0CF88skncDgcLrcLn23y5Mn4+eefMXfuXKSmpuLf//63S2/gdTVq1CiEhIRg+PDhWL9+PdLT07Fu3TpMmTJFveV39uzZmD9/Pt58803s378fiYmJeOutt9R18JzT8MxmM8aPH48ZM2ZgzZo12L17N8aNG+dyTMfExGDUqFEYM2YMli1bhvT0dCQkJODVV1/FypUrATj/doWFhVizZg2ys7NRXFxcp+WeeOIJJCQkYNKkSdi5cyf27duHd999V/3hqao6XZ91ccqUKXjllVewfPly7Nu3D5MmTao0VnZdPPbYY/jjjz/w4IMPIikpCfv378f333+Phx9+WP0cNV0XREZGQlEUrFixAidPnkRhFbdIdOjQAcOHD8eECROwYcMG/Pnnn7jrrrvQunVrDB8+/JxjJiKiBtYQD45nZayR3WseVXst371mmuz+rbwX80flZMaaet/m3r17ZejQodKiRQsxGAwSExMjb731ljrdbrfLc889J61btxadTifdu3eXn376yWUdGzZskK5du4q3t7dcddVV8s0331TqSK1i5zEiIiUlJfLII49IeHi46PV6iY6Olo8++kidnpqaKiNHjpSAgAAxGo3SsWNHmTp1qkvHMGcr387SpUulffv2otfr5ZprrqnUSdw777wj7du3F51OJzExMfLJJ5+o05YvXy5XXHGF+Pn5iY+Pj1x55ZXy66+/qtMrdqT2/fffS3R0tHh5eUlkZKSIVO7UqLZ9WLEzKhGRnJwcASBr166t8rMSVdchWnx8vPTu3Vv0er2EhYXJY4895tIjdUpKilx55ZViNBrVelpaWirjxo0Tf39/CQgIkIkTJ8rjjz/uchxnZWXJkCFDxGw2q8dmVcdubduvKu7hw4fL2LFjq/2siYmJ0qtXLzEYDNKhQwf55ptvXOric889J+Hh4ZKdna0u8+2334per1djO3u769evl7i4OAkMDBSj0SjdunVTe2qvzocffiht2rQRo9EoN998s7z22mu1dqRWseM5EZHMzEwZM2aMhISEiMFgkPbt28uECRMkLy9Pnee9996T2NhY0el0Eh4eLg8//LA6jecczygoKJC77rpLTCaThIaGyty5cysdy+WjAERFRYlOp5OwsDAZOXKk7Ny5U53ngQcekODgYAGg9iRel+Xi4+OlX79+YjAYJCAgQIYOHap2KFZVnS5f5lzrYlWsVqtMmTJF/Pz8JCAgQKZNmyZjxoyptSO1s78ry23dulU9j/j4+Ei3bt1cOv2r7bpgzpw5EhYWJoqiqOeMits+ffq0jB49Wvz9/cVoNMrQoUPVnuBFqr4mWb58uTTQpR4REdVAEXH/wz5pW19HaeExAIBPQDRCO9yME/u/R3Gu8zZPb982uKT3I+4Oo8lavHgxpk6del6/wBMREREREZHnuP32cktpzt8Jt4LQS25EZM/7YfRtg6ieD6DlJTcCUFBacBTW0qpvJyQiIiIiIiJqqtzWe3k5BQrMQR3Rov1QmPzanilXNGgReQ18Ai7ByfRVAOq3EzUiIiIiIiIiT2uQ28uJiIiIiIiILkYN03s5ERERERER0UWISTcRERERERGRmzDpJiIiIiIiInITJt1EREREREREbsKkm4iIiIiIiMhNmHQTERERERERuQmTbiJqVAYNGoSpU6d6OgyiixbrIBERUf1i0k1EjcqyZcvw/PPPezqMi1JGRgYURUFSUpKnQ6EmYvHixQgICKj39TLxJyKi5sTL0wEQEZ0tKCjI0yFQLSwWC/R6vafDIKoVj1UiImoM2NJNRI1KxRauqKgovPDCCxgzZgzMZjMiIyPx3Xff4eTJkxg+fDjMZjO6du2Kbdu2qcucOnUKd9xxB9q0aQOTyYSuXbviiy++cNlOQUEBRo0aBR8fH4SHh+ONN96otG2LxYKZM2eidevW8PHxwRVXXIH4+Pga49+3bx8GDBgAb29vdO7cGb/++isURcG3336rznPs2DHcfvvtCAwMRHBwMIYPH46MjAx1usPhwJw5c9CmTRsYDAb06NEDP//8szq9vEX666+/xlVXXQWj0YjevXsjNTUVCQkJ6NWrF8xmM66//nqcPHnSJb5FixahU6dO8Pb2RseOHfHOO++o09q1awcA6NmzJxRFwaBBgwAA48aNw4gRI/Dyyy+jVatWiImJwZw5c9C1a9dKn//yyy/HM888U+M+osajqKhIrVvh4eGYP3++y/Sa6kB8fDzuvvtu5OXlQVEUKIqC2bNn17pcuY0bNyIuLg4mkwmBgYEYOnQocnJyMG7cOKxbtw4LFy5U11teP9atW4c+ffrAYDAgPDwcjz/+OGw2m7rOQYMG4aGHHsK0adMQEhKCIUOGuGvXERER1Z0Q0cWnsND5cjjOlJWVOctKS6ue124/U2axOMtKSmqf9xzFxcXJlClT1PeRkZESFBQk7733nqSmpsrEiRPF19dXrr/+evn6668lJSVFRowYIZ06dRLH35/n6NGjMm/ePNmxY4ekpaXJm2++KVqtVjZv3qyu995775XIyEj59ddfZdeuXTJy5Ejx9fV12fadd94p/fr1k99//10OHDgg8+bNE4PBIKmpqVXGbrfbJTY2VoYMGSJJSUmyfv166dOnjwCQ5cuXi4hIUVGRdOjQQe655x7ZuXOn7N27V+68806JjY2VsrIyERF5/fXXxc/PT7744gvZt2+fzJw5U3Q6nbrd9PR0ASAdO3aUn3/+Wfbu3StXXnmlXHbZZTJo0CDZsGGDJCYmSnR0tDzwwANqfO+//76Eh4fL0qVL5eDBg7J06VIJCgqSxYsXi4jI1q1bBYD8+uuvkpmZKadOnRIRkbFjx4rZbJbRo0fL7t27ZdeuXXLkyBHRaDSydetWdf1//vmnKIoiaWlp5/nXb34acVUTEZGJEydKmzZtZNWqVbJz50656aabxGw2q/WgpjpQVlYmCxYsED8/P8nMzJTMzEwpKCiodTkRkR07dojBYJCJEydKUlKS7N69W9566y05efKk5ObmSt++fWXChAnqem02mxw9elRMJpNMmjRJkpOTZfny5RISEiLPPvus+nni4uLEbDbLjBkzZN++fZKcnHxhO4iIiKgeMOkmuhgBzldW1pmyF15wlt17r+u8JpOzPD39TNkbbzjL7rzTdd6QEGf57t3nHVpVSfddd92lvs/MzBQAMmvWLLXsjz/+EACSmZlZ7XqHDRsmjz76qIiI5Ofni06nk2+++UadnpubKyaTSd32gQMHRFEUOXbsmMt6rr32WnniiSeq3MZPP/0kXl5eLnGsXr3aJen+8MMPJTY2Vv2BQESkrKxMjEaj/PLLLyIi0qpVK3nxxRdd1t27d2+ZNGmSiJxJuv/73/+q07/44gsBIGvWrFHLXn75ZYmNjVXfR0REyOeff+6y3ueff1769u3rst4dO3a4zDN27FgJDQ1VfxQod8MNN8jEiRPV91OnTpVBgwZVuW8uVo24qklBQYHo9Xr58ssv1bJTp06J0WiUKVOm1KkOLFq0SPz9/V2m12W5O+64Q/r3719tbBXPAyIiTz75ZKW68/bbb4vZbBb7378+xMXFSY8ePeq2A4iIiBoIn+kmokavW7du6v9DQ0MBwOXW5vKyrKwshIWFwW6345VXXsFXX32FY8eOoaysDGVlZfDx8QEAHDx4EFarFX369FHX4e/vj9jYWPV9YmIiRAQxMTEusZSVlSE4OLjKOFNSUhAREYGwsDC17OxtAMD27dtx4MAB+Pr6upSXlpYiLS0N+fn5OH78OPr37+8yvX///vjzzz/Peb9kZWUBAE6ePIkjR45g/PjxmDBhgjqPzWaDv79/lZ/nbF27dq30bOyECRNwzz334PXXX4dWq8WSJUsq3Z5MjVdaWhosFgv69u2rlgUFBan14HzqQF2XS0pKwq233npO8SYnJ6Nv375QFEUt69+/PwoLC3H06FG0bdsWANCrV69zWi8REZG7MekmuhgVFjr/NZnOlM2YAUydCnhVOC38nbTBaDxT9uCDwIQJgFbrOm/5c8lnz1sPdDqd+v/yC+6qyhwOBwBg/vz5eOONN7BgwQJ07doVPj4+mDp1KiwWCwBARFyWK1deXr4urVaL7du3Q1vhc5rN5irjFJFK66zI4XDg8ssvx5IlSypNa9GiRaXPVNO667JfyvdJ+b8ffPABrrjiCpf1VPx8VSn/weJsN998MwwGA5YvXw6DwYCysjL84x//qHVdF5PGXNXOPt6rcj51oK7LGc8j8KrqQFV1uapjlYiIyJOYdBNdjKq6KNXrna+6zKvTOV91mdcD1q9fj+HDh+Ouu+4C4EwC9u/fj06dOgEALrnkEuh0OmzduhUREREAgPz8fOzfvx9xcXEAnJ2J2e12ZGVl4aqrrqrTdjt27IjDhw/jr7/+UlueExISXOa57LLL8NVXX6Fly5bw8/Orcj2tWrXChg0bMHDgQLVs06ZNlVrNz0VoaChat26NgwcPYtSoUVXOU96Sbbfb67ROLy8vjB07FosWLYLBYMC//vUvmM7OLqlRV7Xo6GjodDps3rxZbSXOyclBamoq4uLi6lQH9Hp9peOlLst169YNa9aswXPPPVfn9Xbu3BlLly51Sb43bdoEX19ftG7d+pw+OxERUUNi7+VE1OxER0dj9erV2LRpE5KTk3H//ffjxIkT6nRfX1+MHTsWM2bMwNq1a7Fnzx7cc8890Gg06sV8TEwMRo0ahTFjxmDZsmVIT09HQkICXn31VaxcubLK7Q4ZMgSXXHIJxo4di507d2Ljxo146qmnAJxpiRs1ahRCQkIwfPhwrF+/Hunp6Vi3bh2mTJmCo0ePAgBmzJiBV199FV999RVSUlLw+OOPIykpCVOmTLmg/TJ79my8/PLLWLhwIVJTU7Fr1y4sWrQIr7/+OgCgZcuWMBqN+Pnnn/HXX38hLy+v1nXee++9+O233/DTTz/hnnvuuaD4qGGZzWaMHz8eM2bMwJo1a7B7926MGzcOGo3z0qAudSAqKgqFhYVYs2YNsrOzUVxcXKflnnjiCSQkJGDSpEnYuXMn9u3bh3fffRfZ2dnqerds2YKMjAxkZ2fD4XBg0qRJOHLkCB5++GHs27cP3333HZ599llMmzZNjZmIiKgx4rcUETU7s2bNwmWXXYahQ4di0KBBCAsLw4gRI1zmef3119G3b1/cdNNNGDx4MPr3768OpVVu0aJFGDNmDB599FHExsbilltuwZYtW9TW8Yq0Wi2+/fZbFBYWonfv3rj33nvx9NNPA4C6XpPJhN9//x1t27bF//3f/6FTp0645557UFJSorZ8T548GY8++igeffRRdO3aFT///DO+//57dOjQ4YL2y7333ov//ve/WLx4Mbp27Yq4uDgsXrxYHSrMy8sLb775Jv7zn/+gVatWGD58eK3r7NChA/r164fY2NhKt61T4zdv3jwMHDgQt9xyCwYPHowBAwbg8ssvV6fXVgf69euHBx54ALfffjtatGiBuXPn1mm5mJgYrFq1Cn/++Sf69OmDvn374rvvvoPX3/fcT58+HVqtFp07d0aLFi1w+PBhtG7dGitXrsTWrVvRvXt3PPDAAxg/frxax4iIiBorRWp7qIuI6CJQVFSE1q1bY/78+Rg/fny9rXfjxo0YMGAADhw4gEsuuaTe1ttYiAg6duyI+++/H9OmTfN0OERERESNDp/pJqKL0o4dO7Bv3z706dMHeXl5mDNnDgDUqXW3JsuXL4fZbEaHDh1w4MABTJkyBf3792+WCXdWVhY+/fRTHDt2DHfffbenwyEiIiJqlJh0E9FF67XXXkNKSgr0ej0uv/xyrF+/HiEhIRe0zoKCAsycORNHjhxBSEgIBg8e3GyH0QoNDUVISAjef/99BAYGejocIiIiokaJt5cTERERERERuQk7UiMiIiIiIiJyEybdRERERERERG7CpJuIiIiIiIjITZh0ExEREREREbkJk24iIiIiIiIiN2HSTUREREREROQmTLqJqNEbNGgQpk6d6ukwzsns2bPRo0ePc1qmvj7nqVOn0LJlS2RkZFzwuurL+eyPilasWIGePXvC4XDUT1BUJda3c3M+9W3x4sUICAi44G2Xy8jIgKIoSEpKOu91lJWVoW3btti+fXu9xUVERE5Muomo2YmPj4eiKMjNzfVYDNOnT8eaNWvOaZlly5bh+eefv+Btv/zyy7j55psRFRV1wetqSIcPH8bNN98MHx8fhISEYPLkybBYLOr0m266CYqi4PPPP/dglFQR69u517fbb78dqampF7ztcyEimD17Nlq1agWj0YhBgwZhz5496nSDwYDp06fjsccea9C4iIguBky6iaiyr74CXnyx5nlefNE5H7kQEdhsNpjNZgQHB5/TskFBQfD19b2g7ZeUlODDDz/Evffee0HraWh2ux033ngjioqKsGHDBnz55ZdYunQpHn30UZf57r77brz11lseitI9WN3OX1Otb0ajES1btrygbZ+ruXPn4vXXX8e///1vJCQkICwsDEOGDEFBQYE6z6hRo7B+/XokJyc3aGxERM0dk24iquzAAeDpp4HqWoGef945/cCBet90UVERxowZA7PZjPDwcMyfP7/SPJ999hl69eoFX19fhIWF4c4770RWVhYA522WV199NQAgMDAQiqJg3LhxAICff/4ZAwYMQEBAAIKDg3HTTTchLS2txnjKysowefJktGzZEt7e3hgwYAASEhLU6eWtfL/88gt69eoFg8GA9evXV7rd1WazYfLkyeq2H3vsMYwdOxYjRoxQ56l4u2tUVBReeukl3HPPPfD19UXbtm3x/vvv1xjvTz/9BC8vL/Tt2xcA4HA40KZNG7z33nsu8yUmJkJRFBw8eBCAs5V5+PDhMJvN8PPzw2233Ya//voLALBv3z6YTCaXFuZly5bB29sbu3btAgDk5eXhvvvuQ8uWLeHn54drrrkGf/75Z42xnm3VqlXYu3cvPvvsM/Ts2RODBw/G/Pnz8cEHHyA/P1+d75ZbbsHWrVvVuJsDD1Y31rd6rm9nx/jjjz+ie/fu8Pb2xhVXXKHWFcD19nIRweDBg3H99ddDRAAAubm5aNu2LZ566il1mUWLFqFTp07w9vZGx44d8c4779QY29lEBAsWLMBTTz2F//u//0OXLl3w8ccfo7i42KVeBwcHo1+/fvjiiy/qvG4iIqodk24iquypp4A5c4BnnqmcCTz/vLN8zhznfPVsxowZWLt2LZYvX45Vq1YhPj6+0jOGFosFzz//PP788098++23SE9PVy/0IyIisHTpUgBASkoKMjMzsXDhQgDOBGPatGlISEjAmjVroNFoMHLkyBqfEZ45cyaWLl2Kjz/+GImJiYiOjsbQoUNx+vTpSvO9/PLLSE5ORrdu3Sqt59VXX8WSJUuwaNEibNy4Efn5+fj2229r3R/z589Hr169sGPHDkyaNAkTJ07Evn37qp3/999/R69evdT3Go0G//rXv7BkyRKX+T7//HP07dsX7du3h4hgxIgROH36NNatW4fVq1cjLS0Nt99+OwCgY8eOeO211zBp0iQcOnQIx48fx4QJE/DKK6+ga9euEBHceOONOHHiBFauXInt27fjsssuw7XXXltpP1Xnjz/+QJcuXdCqVSu1bOjQoSgrK3P5+0dGRqJly5ZYv359ndbbFHiwurG+VXCh9e1sM2bMwGuvvYaEhAS0bNkSt9xyC6xWa6X5FEXBxx9/jK1bt+LNN98EADzwwAMIDQ3F7NmzAQAffPABnnrqKbz44otITk7GSy+9hFmzZuHjjz+u9TMBQHp6Ok6cOIHrrrtOLTMYDIiLi8OmTZtc5u3Tp0+zql9ERI2CEBFVZ84cEcD5b1Xv61lBQYHo9Xr58ssv1bJTp06J0WiUKVOmVLvc1q1bBYAUFBSIiMjatWsFgOTk5NS4vaysLAEgu3btqnJ6YWGh6HQ6WbJkiVpmsVikVatWMnfuXJdtffvtty7LPvvss9K9e3f1fWhoqMybN099b7PZpG3btjJ8+HC1LC4uzuVzRkZGyl133aW+dzgc0rJlS3n33Xer/UzDhw+Xe+65x6UsMTFRFEWRjIwMERGx2+3SunVrefvtt0VEZNWqVaLVauXw4cPqMnv27BEAsnXrVrXsxhtvlKuuukquvfZaGTJkiDgcDhERWbNmjfj5+UlpaanLdi+55BL5z3/+U+X+qGjChAkyZMiQSuV6vV4+//xzl7KePXvK7Nmzq11XU9XA1Y31zU31rTzGqvbrV199JSIiixYtEn9/f5flvv76azEYDPLEE0+IyWSSlJQUdVpERESlevD8889L3759RUQkPT1dAMiOHTuqjHPjxo0CQI4dO+ZSPmHCBLnuuutcyhYuXChRUVHVfmYiIjp3bOkmourNmnWmCc5gONPkNmuWWzaXlpYGi8XicqtmUFAQYmNjXebbsWMHhg8fjsjISPj6+mLQoEEAnLdI17b+O++8E+3bt4efnx/atWtX43JpaWmwWq3o37+/WqbT6dCnT59KzzxW19oFOG+9/uuvv9CnTx+1TKvV4vLLL68xXgAurXiKoiAsLEy9tbcqJSUl8Pb2dinr2bMnOnbsqN4yum7dOmRlZeG2224DACQnJyMiIgIRERHqMp07d0ZAQIDL5/zoo4+wc+dOJCYmYvHixVAUBQCwfft2FBYWIjg4GGazWX2lp6fXejvx2crXdzYRqVRuNBpRXFxc5/U2FQ1c3VjfqlAf9a1cVfu1pmelb731Vvzf//0fXn75ZcyfPx8xMTEAgJMnT+LIkSMYP368S/164YUXzql+lX+ms11M9YuIyJO8PB0AETVys2YBL7wAWCyAXu++DABQn2esSVFREa677jpcd911+Oyzz9CiRQscPnwYQ4cOdenpuio333wzIiIi8MEHH6BVq1ZwOBzo0qVLtcuVx1OXC1UfH59aY69qPbXR6XSV1lHT7bkhISHIycmpVD5q1Ch8/vnnePzxx/H5559j6NChCAkJUeOoS8L7559/oqioCBqNBidOnFBvBXc4HAgPD0d8fHylddR1WKSwsDBs2bLFpSwnJwdWqxWhoaEu5adPn0aLFi3qtN6mpgGrG+tbFeqrvtU1prMVFxdj+/bt0Gq12L9/v1pevv0PPvgAV1xxhcsyWq22TtsNCwsDAJw4cQLh4eFqeVZW1kVVv4iIPIUt3URUs+efP5MBWCzV9/ZUD6Kjo6HT6bB582a1LCcnx2VonX379iE7OxuvvPIKrrrqKnTs2LFSS5Rerwfg7BG73KlTp5CcnIynn34a1157LTp16lTrxXJ0dDT0ej02bNigllmtVmzbtg2dOnWq8+fy9/dHaGgotm7dqpbZ7Xbs2LGjzuuoq549e2Lv3r2Vyu+8807s2rUL27dvx//+9z+MGjVKnda5c2ccPnwYR44cUcv27t2LvLw89XOePn0a48aNw1NPPYW7774bo0aNQklJCQDgsssuw4kTJ+Dl5YXo6GiXV3liX5u+ffti9+7dyMzMVMtWrVoFg8Hg0kJZWlqKtLQ09OzZ89x2TBPRgNWN9a0eVFffAFS5Xzt27Fjtuh599FFoNBr89NNPePPNN/Hbb78BAEJDQ9G6dWscPHiwUv0qv3ugNu3atUNYWBhWr16tllksFqxbtw79+vVzmXf37t3Ntn4REXkKk24iqt7ZvTiVlVXf21M9MZvNGD9+PGbMmIE1a9Zg9+7dGDduHDSaM6eqtm3bQq/X46233sLBgwfx/fffVxprNzIyEoqiYMWKFTh58iQKCwsRGBiI4OBgvP/++zhw4AB+++03TJs2rcZ4fHx8MHHiRMyYMQM///wz9u7diwkTJqC4uBjjx48/p8/28MMP4+WXX8Z3332HlJQUTJkyBTk5OTW2fJ2PoUOHYs+ePZUSnHbt2qFfv34YP348bDYbhg8frk4bPHgwunXrhlGjRiExMRFbt27FmDFjEBcXp97G+8ADDyAiIgJPP/00Xn/9dYgIpk+fri7ft29fjBgxAr/88gsyMjKwadMmPP3009i2bVud4r7uuuvQuXNnjB49Gjt27MCaNWswffp0TJgwAX5+fup8mzdvhsFgcLl1t7lo4OrG+lYPqqtvADBnzhyX/RoSEuLSe/rZfvzxR3z00UdYsmQJhgwZgscffxxjx45V1zt79my8/PLLWLhwIVJTU7Fr1y4sWrQIr7/+ep3iVBQFU6dOxUsvvYTly5erMZlMJtx5550u865fv96lwzUiIqoHHnmSnIgav+p6cWqAztTuuusuMZlMEhoaKnPnzq3U4dHnn38uUVFRYjAYpG/fvvL9999X6kRozpw5EhYWJoqiyNixY0VEZPXq1dKpUycxGAzSrVs3iY+PFwCyfPnyauMpKSmRhx9+WEJCQsRgMEj//v1dOherrhOpih07Wa1Weeihh8TPz08CAwPlsccek1tvvVX+9a9/qfNU1bHTG2+84bLe7t27y7PPPlvjPrzyyivlvffeq1T+9ttvCwAZM2ZMpWmHDh2SW265RXx8fMTX11duvfVWOXHihIiIfPzxx+Lj4yOpqanq/Nu2bRO9Xi8//vijiIjk5+fLww8/LK1atRKdTicREREyatQotXO22jpSK4/hxhtvFKPRKEFBQfLQQw9V6pztvvvuk/vvv7/G9TRFHqpurG9uqG/lMf7www9y6aWXil6vl969e0tSUpI6z9kdqWVlZUloaKi89NJLLvH36dNHbrvtNrVsyZIl0qNHD9Hr9RIYGCgDBw6UZcuWiUjtHamJODuGe/bZZyUsLEwMBoMMHDiwUqd2mzZtkoCAACkuLq7xMxMR0blRROrwkBMRXVxefNE5MHB1vTiVN8m98IJ7xjG6CDgcDnTq1Am33XZbpZbDC7Vy5UpMnz4du3fvdmm1bOpOnjyJjh07Ytu2bXW+rbYpYHVzv4asb/Hx8bj66quRk5NT5z4NGotbb70VPXv2xJNPPunpUIiImhV2pEZElUVH13yFP2sWoNE456M6OXToEFatWoW4uDiUlZXh3//+N9LT0yvd2lkfhg0bhv379+PYsWMuPZI3denp6XjnnXeaVcINsLq5A+vbuSsrK0P37t3xyCOPeDoUIqJmhy3dREQN4MiRI/jXv/6F3bt3Q0TQpUsXvPLKKxg4cKCnQyNqdjxZ35pySzcREbkHk24iIiIiIiIiN2k+D/sRERERERERNTJMuomIiIiIiIjchEk3ERERERERkZsw6SYiIiIiIiJyEybdRERERERERG7CpJuIiIiIiIjITZh0ExEREREREbkJk24ioioMGjQIU6dO9fi2PRlHQ29/4cKFaNeuHUwmE0aMGIG8vLwG2S4RERGRO3l5OgAiovoyaNAg9OjRAwsWLLjg5ZYtWwadTle/AZ6Hhoqjun3XUNt/8skn8c033+Djjz+G2WzGyJEj8dxzz+H11193+7aJiIiI3Ikt3UTU6FkslgbfZlBQEHx9fRt8u+cah7v3TUPsh4SEBLz66qv46quvMHDgQFx22WW4//77sWLFCrdul4iIiKghMOkmuhgVFVX/Ki2t+7wlJbXPex4GDRqEhx56CNOmTUNISAiGDBmCsrIyTJ48GS1btoS3tzcGDBiAhIQEdZlx48Zh3bp1WLhwIRRFgaIoyMjIwM8//4wBAwYgICAAwcHBuOmmm5CWllbrchVvq65t+4MGDcLkyZMxc+ZMBAUFISwsDLNnz671sxYVFWHMmDEwm80IDw/H/PnzK+2Ls+Ooat8AgIhg7ty5aN++PYxGI7p3747//e9/LutyOBx49dVXER0dDYPBgLZt2+LFF1+sdh9UtX137IfXXnsN11xzDS677DK1rEWLFsjOzq51/xERERE1dky6iS5GZnP1r3/8w3Xeli2rn/eGG1znjYqqPM95+vjjj+Hl5YWNGzfiP//5D2bOnImlS5fi448/RmJiIqKjozF06FCcPn0agPN54L59+2LChAnIzMxEZmYmIiIiUFRUhGnTpiEhIQFr1qyBRqPByJEj4XA4alyuotq2Xx6zj48PtmzZgrlz52LOnDlYvXp1jZ9zxowZWLt2LZYvX45Vq1YhPj4e27dvP6d9AwBPP/00Fi1ahHfffRd79uzBI488grvuugvr1q1Tl3viiSfw6quvYtasWdi7dy8+//xzhIaG1nkfuGM/lJWV4YcffsDIkSNdyktKSuDv71/jfiAiIiJqEoSILj5A9a9hw1znNZmqnzcuznXekJDK85yHuLg46dGjh/q+sLBQdDqdLFmyRC2zWCzSqlUrmTt3rstyU6ZMqXHdWVlZAkB27dpV43Jnl9Vl+3FxcTJgwACXdfTu3Vsee+yxamMpKCgQvV4vX375pVp26tQpMRqN6rYrxlZx35TH5+3tLZs2bXIpHz9+vNxxxx0iIpKfny8Gg0E++OCDKmOpbt+5ez9s2rRJAIi3t7f4+PioL71eL0OHDq1yGSIiIqKmhB2pEV2MCgurn6bVur7Pyqp+Xk2Fm2X+viW5PvTq1Uv9f1paGqxWK/r376+W6XQ69OnTB8nJyTWuJy0tDbNmzcLmzZuRnZ2ttnAfPnwYXbp0qVMsdd1+t27dXJYLDw9HVg37Ly0tDRaLBX379lXLgoKCEBsbW2M8Z+8bANi7dy9KS0vVW83LWSwW9OzZEwCQnJyMsrIyXHvttTWuuybu2A+pqanw9vbGrl27XMpvueUWl+0QERERNVVMuokuRj4+np+31lWdWZeIAAAURXGZR0QqlVV08803IyIiAh988AFatWoFh8OBLl26nFMHZHXdfsVevhVFUZP8mtZ7rnwq7Ofybfz4449o3bq1yzSDwQAAMBqN57Wts7ljP+Tn56Nly5aIjo5Wyw4fPox9+/bhHxUfdSAiIiJqgvhMNxE1etHR0dDr9diwYYNaZrVasW3bNnTq1Ekt0+v1sNvt6vtTp04hOTkZTz/9NK699lp06tQJOTk5ldZfcbnz3f75fC6dTofNmzerZTk5OUhNTT2n9XTu3BkGgwGHDx9GdHS0y6v82ewOHTrAaDRizZo1Va6jtn1QHm9974eQkBDk5+e7/ADx4osvYtiwYejcufN5rZOIiIioMWFLNxE1ej4+Ppg4cSJmzJiBoKAgtG3bFnPnzkVxcTHGjx+vzhcVFYUtW7YgIyMDZrMZQUFBCA4Oxvvvv4/w8HAcPnwYjz/+eKX1V7Xc+Wz/XJnNZowfPx4zZsxAcHAwQkND8dRTT0FT8bb9Wvj6+mL69Ol45JFH4HA4MGDAAOTn52PTpk0wm80YO3YsvL298dhjj2HmzJnQ6/Xo378/Tp48iT179mD8+PFV7oOKcbhjP1xzzTUoLS3FK6+8gjvuuAOff/45vv/+e2zduvW81kdERETU2DDpJqIm4ZVXXoHD4cDo0aNRUFCAXr164ZdffkFgYKA6z/Tp0zF27Fh07twZJSUlSE9Px5dffonJkyejS5cuiI2NxZtvvolBgwa5rLuq5c5n++dj3rx5KCwsxC233AJfX188+uijyMvLO+f1PP/882jZsiVefvllHDx4EAEBAbjsssvw5JNPqvPMmjULXl5eeOaZZ3D8+HGEh4fjgQceAFD1PoiKiqq0nfreD6GhoVi8eDFmzJiB559/Htdccw02bNhQbe/pRERERE2NIuf7UCERERERERER1YjPdBMRERERERG5CZNuIiIiIiIiIjdh0k1ERERERETkJky6iYiIiIiIiNyESTcRERERERGRmzDpJiIiIiIiInITJt1EREREREREbsKkm4iIiIiIiMhNmHQTERERERERuQmTbiIiIiIiIiI3YdJNRERERERE5CZMuomIiIiIiIjchEk3ERERERERkZsw6SYiIiIiIiJyEybdRERERERERG7CpJuIiIiIiIjITZh0ExEREREREbkJk24iIiIiIiIiN2HSTUREREREROQmTLqJiIiIiIiI3IRJNxEREREREZGbMOkmIiIiIiIichMm3URERERERERuwqSbiIiIiIiIyE2YdBMRERERERG5CZNuIiIiIiIiIjdh0k1ERERERETkJky6iYiIiIiIiNyESTcRERERERGRmzDpJiIiIiIiInITJt1EREREREREbsKkm4iIiIiIiMhNmHQTERERERERuQmTbiIiIiIiIiI3YdJNRERERERE5CZMuomIiIiIiIjchEk3ERERERERkZsw6SYiIiIiIiJyEybdRERERERERG7CpJuIiIiIiIjITZh0ExEREREREbkJk24iIiIiIiIiN2HSTUREREREROQmTLqJiIiIiIiI3IRJNxEREREREZGbMOkmIiIiIiIichMm3URERERERERuwqSbiIiIiIiIyE2YdBMRERERERG5CZNuIiIiIiIiIjdh0k1ERERERETkJky6iYiIiIiIiNyESTcRERERERGRmzDpJiIiIiIiInITJt1EREREREREbsKkm4iIiIiIiMhNmHQTERERERERuQmTbiIiIiIiIiI3YdJNRERERERE5CZMuomIiIiIiIjchEk3ERERERERkZsw6SYiIiIiIiJyEybdRERERERERG7CpJuIiIiIiIjITZh0ExEREREREbkJk24iIiIiIiIiN2HSTUREREREROQmTLqJiIiIiIiI3IRJNxEREREREZGbMOkmIiIiIiIichMm3URERERERERuwqSbiIiIiIiIyE2YdBMRERERERG5CZNuIiIiIiIiIjdh0k1ERERERETkJky6iYiIiIiIiNyESTcRERERERGRmzDpJiIiIiIiInITJt1EREREREREbsKkm4iIiIiIiMhNmHQTERERERERuQmTbiIiIiIiIiI3YdJNRERERERE5CZMuomIiIiIiIjchEk3ERERERERkZsw6SYiIiIiIiJyEybdRERERERERG7CpJuIiIiIiIjITZh0ExEREREREbkJk24iIiIiIiIiN2HSTUREREREROQmTLqJiIiIiIiI3IRJNxEREREREZGbMOkmIiIiIiIichMm3URERERERERuwqSbiIiIiIiIyE2YdBMRERERERG5CZNuIiIiIiIiIjdh0k1ERERERETkJky6iYiIiIiIiNyESTcRERERERGRmzDpJiIiIiIiInITJt1EREREREREbsKkm4iIiIiIiMhNmHQTERERERERuQmTbiIiIiIiIiI3YdJNRERERERE5CZMuomIiIiIiIjchEk3ERERERERkZsw6SYiIiIiIiJyEybdRERERERERG7CpJuIiIiIiIjITZh0ExEREREREbkJk24iIiIiIiIiN2HSTUREREREROQmTLqJiIiIiIiI3IRJNxEREREREZGbMOkmIiIiIiIichMm3URERERENfgrMx9DBltx9KinIyGipohJNxERERFRFRx2CwpP70f86mM4fMiG775zqNO2bgXy8jwYHBE1GUy6iYiIiIjOIiIoLTyBvKwkWEqyYbVpkHrAiCVLFACA1QqMGAG0agUkJHg2ViJq/Lw8HQARERERUWMiDhtKC45AHHZ46c245f9a4+DVgE7nTLqPHgWCggC7Heje/cxyqalAeDjg6+uhwImoUVJERDwdBBERERGRJ4nDDkWjVd+XFZ+EOOww+IRCUZTK84sz+Y6IOFM2YACQlAR8/TUwbFgDBE1ETQJvLyciIiKii5qlOPvvW8lPq2UGUwt4m8OqTLgBQFFcE+68PCA7GygrA3r2PFN+4gRQVOSuyImoKWDSTUREREQXJbutFAXZySjM2Q+H3YKyohNVzrdnD7BwIfDDD9Wvy98fSE52tnSHh58pf+IJ57Pfn35av7ETUdPBpJuIiIiILioiDpQUHEV+1p+wluVCUTQw+kXAHNyxyvm3bAGmTgX+85+a16sowKWXnnlvtwOJiUB+PhAdfaa8oAAoLr7wz0FETQOTbiIiIiK6aFjL8pGf9SdK8o9AxAGdIQB+LbvD6NsGilL1pXG7dsC//gUMHHhu29JqgR07gPXrgSuvPFP+1lvO1u+33rqAD0JETQZ7LyciIiKii4fYYbeVQqPVw+QXCb0ppNZFrr7a+TofGo2zg7Wz/fqr8xlwP78zZTab8+XtfX7bIaLGiy3dRERERNRsiQhs1jP3cuu8A+ETcAn8WnavU8LtDr/+Cvz8M3DbbWfKvv0WaN0aeOklj4RERG7Elm4iIiIiapZslkIU56XDbiuBf8se0Gj1AACDT0uPxqXRAEOHupYtXw6cPl35WW+rFdDpGi42Iqp/bOkmIiIiombF4bChODcd+Sd3w2YpBADYreffc9nbbwMtWwJTptRXhJV98gmwYgVw//1nyv780/ns99NPu2+7ROR+bOkmIiIiombDUpyN4vxDcNgtAAC9MQQm/0i1lft8FBQAJ08ChYX1FWVlWi1w442uZUuWOMf+Tk11LRdx9pRORE2DIiLi6SCIiIiIiC6EiKDw9D5YS3MBAFovb5gC2kNn8L/gdWdnAydOOMfijoi44NXVmc0GrFwJtGkDXHaZs+zUKeDyy4E77gCeew7Qn/9vCUTUQJh0ExEREVGzUJyXgbKiv+Dt2xre5lbVDgHWlL39NvDQQ0CPHs4xwNniTdT4MekmIiIioibJWpoLjVYPrc4EABCHHQ6HFVqv5jvultUK/PADYDCcuR3dbncOSzZ4MDBjhutQZETkeUy6iYiIiKhJcdgtKM7LgKXkFLz0vvBr0cWt29uyBdi1C+jWDejTx62bOi8rVzoT8KAg4NgxjvVN1NiwIzUiIiIiahJEBGVFJ1BScATisANQ4KX3gYjDrbeSL10KzJsHTJ/eOJPuwYOBr74CcnNdE+677gI6dAAefBAI8cyQ5EQEJt1ERERE1ATYLIUozj0Im7UIAOClN8Pk3w5eerPbt92pE3DzzcCll7p9U+dFrwduu821LCXF2fu5RgPcfbdn4iIiJ95eTkRERESNmrUsDwXZewEAikYLo19bGEyhUNiLWLXKyoBly4A9e4AXXjhT/txzgJcXMGGCc+xxInI/Jt1ERERE1KiJOFBwcjc0XsYLHnP7YlZQALRq5RxvfO1aYNAgT0dEdHFg0k1EREREjYrdVoLSguMwBbRTn9UWhx2KRuvhyJq2sjLg66+Bn38GPvvszHBjH38MZGY6b0MPDfVsjETNEZNuIiIiImoUxGFHaeFxlBYeg4jA6BcBo28bT4eFmTOB//3P+e8DD3g6mvolAsTGAvv3A++/77ztnIjql/u6eSQiIiIiqiNraS7yT+5EScFRiAh03gHQGxtHl9tZWUB6uvP27ObGbgeefBK45hrgjjvOlK9dC7z2GpCd7bnYiJoLtnQTERERkcecPeY2AGi0epj8o6A3Bns4sjPS052Jd5s2QOvWno6mYdx4o3P87+nTncOlEdH545BhREREROQxxXnpsJScBqDA2xwKb98IaDSN6xK1XTvn62Lyj384f2i4774zZampzkR8zBggKMhzsRE1NWzpJiIiIiKPsdtKUZybBqNfZIOMuU3nb+pUYOFCZ0L+v/95OhqipoPPdBMRERFRg3A4bCjKPYii3INqmdbLG74hlzbqhDs+HvjiC+DgwVpnbdYuvxzo3h0YP/5MWV4e8O9/A7m5HguLqNFjSzcRERERuV1ZcTZK8jLgcFgBAP6hPaD1Mno4qrq5+WZgxQrgv/91TTgvRuWZQ/lwY2+/DTz0ENCrF5CQ4Lm4iBqzxvXADBERERE1K3ZrCYrz0mEtywMAaL2MMAW0azIJNwD06AGUlFw8najVpDzZLteyJdClCzB69JkyhwP49FNg5EjAz69h4yNqjNjSTURERET1ruKY24qigbdva3ibW0FR+IRjcyLiHHrM6+/mvNWrgeuuc/5IcegQoNV6Nj4iT+MZj4iIiIjqnYgDZUV/qWNu+7XsDqNvGybczZCinEm4AcBiATp2BEaMcE24f/wRKCxs8PCIPI4t3URERERULxx2KzRanfq+fOztxjTmNjUMEect+SaT8/3Bg0B0tPN284wMICDAk9ERNSz+1EhEREREF0TEgdLCTOT9tUNNtAFnst0cEu4773Q+t/zbb56OpOlQlDMJNwAcO+ZMuq+4wjXh3rIFKC5u8PCIGhQ7UiMiIiKi82azFKA4Nx02axEAwFKS3SwS7bOlpQF79gBFRZ6OpOm66ipg3z4gJ+dMWXExMHSo8/9btgCxsZ6JjcjdmHQTERER0TlzOGwoyT+MsqK/AAAajReMfm2hN7X0cGT17913neNQd+3q6UiaNo0GCD7r95i0NCAoyNkq3qHDmfKUFKBtW8DYdDq4J6oRn+kmIiIionNiKTmN4tyD6pjbBlMLGP0iXZ7nJqoLhwM4cgSIjHS+F3Heyp+ZCXz/PTBggGfjI6oPbOkmIiIionOiaLRwOKx/j7ndHjoDB2Om86PRnEm4AWeyXVgIlJW53llw/LizldxgaPgYiS4UW7qJiIiIqEbisMNuK4aX3lcts5Schs474KIYAmz1amdP3AMGOG+HJvey24G9e12T7hEjgI0bgQ8/BG65xWOhEZ0XJt1EREREVC1raQ6K8zLgsFvhH9odGu3F19TYoQNw4ACwYQPQv7+no7n4lJYCnTo5hxrbswfo3NlZnp8PeHsDer1HwyOqVfP/aZKIiIiIzpnDXobC06koOLUPdlup85Zyu8XTYXlEz57AlVcC/v6ejuTi5O0N7N8PrFt3JuEGgBdeACIigE8+8VxsRHXBlm4iIiIiUok4UFb0F0ryj0DEDkCBtzkcRt82UDRaT4dHBMDZ4VrPnsCffwLffgsMH+4st1icvaHr2KcfNSJs6SYiIiIiAM6EuyB7D4rzMiBih5feDL+WXWHyj2TCTY2KogAJCc6E+8Ybz5R/8omzY7a33/ZYaESVsPdyIiIiIgIAKIoGXno/OGyl6pjbiqJ4OiyiKul0Z1q4yy1d6uwBvbj4TJmIs3M2L2Y+5CFs6SYiIiK6iJUVn4TNWqS+N/q2gV/LHjD4hDLh/tu11wJXXOHsyIsat+++A77+Ghg37kzZ778DUVHAvHmeiooudvy9h4iIiOgiZLeWoDgvHdayPHjpzfAN6QJFUaBotFDAW8nPtm2bs6dsq9XTkVBt9Hrg1ltdyz77DDh2zNkZ29lEnLepE7kbk24iIiKii4g47CgtPIbSwuMQESiKBjrvIAACgBlIVb75BigrA1q18nQkdD7+/W/n3Qrdup0pO3IEGDQIuOce4IknAA3v/yU3Yu/lRERERBcJS2kOSnLTYbeXAQB03oEw+UdB6+Xt4ciIGtYLLwCzZjkT77VrPR0NNXds6SYiIiK6CFhKc1B4ah8AQKPVw+TfDnpjkIejIvKM6dOdz3mHh58pKy0FBg4ERo4Epk4FjEZPRUfNDVu6iYiIiC4CIoKC7N3w0vtxzO1zIAKsWuXs+fqqq5zPDFPz9PnnwKhRQEQEkJ4OaFlFqJ4w6SYiIiJqhmyWApQWHIdPYLSaYIs4oCh8ePVcnD3UVHY2EBzs2XjIfYqLnT2fazTAmDHOMhHgttuAPn2A++8H/Pw8GyM1TUy6iYiIiJoRh8OGkvzDKCv6CwBg9IuA0beNh6NquqxWZ8JltwMbNwK+vp6OiBpSQoLz728wOHtA548udD74TDcRERFRM1FWfBIleYfgcDjHtjKYWsBgCvVwVE2bTgfs2OHpKMhTOncG/vtf4Phx14T78ceB0FDneOCBgR4Lj5oItnQTERERNXFnj7kNAFqdCSb/dtAZeC8sUX3LygLatHHeBbFjB9Cjh6cjosaOLd1ERERETVxJwWFYy/KgKBp4+7aBtzmcz24TuYmPD/Dmm8CWLa4J93vvARYLMHo0W7/JFVu6iYiIiJqgsztFs9tKUZJ/GEa/thxzu57l5AAjRjh7sl6zBlAUT0dEjZHVCrRtC5w44eyM7dZbPR0RNSZMuomIiIiaEIe9DMV5GVAULXwCoz0dTrOXmQm0auXs0dpu93Q01FiVljqf/V6+HPjppzNDy61cCRw65ByKjD2fX7yYdBMRERE1ASIOlBWdQEn+kb9buRX4tewJrZfB06E1ayUlwI8/OhPu22/3dDTU1PTvD2zaBLz0EvDEE56OhjyFz3QTERERNXI2SwGKcg/Cbi0GAHjpfWEKaM+EuwEYjcA//+npKKgpcjicY3wXFgJ3332mPCkJ2LoVuPNOwGz2WHjUgNjSTURERNRIORw2lOQdQllxFgBAo/GC0a8t9KaWUPhwMVGTNG4c8PHHwL33Ah984OloqCGwW0siIiKiRsxamgMAMJhawq9lDxh8QplwN6DiYmDDBmDbNk9HQs1F795ATAxwzz1nyk6cAD76CCgq8lxc5D5s6SYiIiJqROy2UpceyC2lOVAULcfc9pA9e4AuXYAWLZzjMxPVh/IMrPz3s5deAp56CrjuOuCXXzwXF7kHW7qJiIiIGgFx2FGcfxj5WUkoK85Wy/XegUy4PUirBTp0ANq393Qk1Jwoiuvwc6GhzmNs1KgzZRYLsGSJszM/atrY0k1ERETkYZbSHJTkpsNuLwPgvJXcJ/ASD0dFRA3J4XC+vP7u6vqbb5wdsXXuDOzezTHimzK2dBMRERF5iN1WhsJTKSg8tQ92exk0WgPMQbFMuIkuQhrNmYQbcA5TFxkJjBzpmnD/+KNzXHBqOtjSTUREROQBZcUnUZx7UB1z2+ATDqNvGygaradDI6JGwm4HysoAk8n5PikJ6NkTCA8HDh4EvL1rXJwaCbZ0ExEREXmARmuAiANeel/4tugGk38kE+5GaNcu4IYbgIkTPR0JXYy02jMJNwAcPw60aQNcdZVrwr15s/MZcGqc2NJNRERE1AAcdivs1kLovAPVMmtZPrz0vhwCrBFbuxa45hrg0kudz9USeZrdDuTmAsHBzvenTgGtWwN+fs6W8FatPBkdVcWr9lmIiIiI6EKUFZ9ESd4hiNjh17IHtF4GAGCv5E1Ax47A4sXOhIaoMdBqzyTcAJCa6nzfsqXztvNyKSnOHtF1uoaPkVyxpZuIiIjITezWYhTlHoTNUgAA0OpM8AmMhpfOx8OREVFzYrMBx445O14DnK3h7doBVivw889A9+6eje9ix5ZuIiIionomDjtKCo+hrPA4RASKooHRNwIGcxgUhV3qEFH98vI6k3ADQFqa8xlvmw2IjT1Tfvy4s0Xci1lgg2JLNxEREVE9EnEgP+tP2G3OMX303kEw+kept5RT05KTA2RkOG8vv4QjuVETYrUC+/YBXbueKbv6amD/fuDTT53/p4bBn1qJiIiI6pGiaKA3hqhjbpuDY5lwN2Fr1gCXXQbcfbenIyE6Nzqda8Kdmwvs3QtkZgLR0WfK8/Kct6OT+zDpJiIiIroAIg6UFh6HzVKolnn7toZ/y+7QG4M8GBnVB4PB2Rt0SIinIyG6MAEBwOHDwG+/ARERZ8pnzHA+/718ucdCa/Z4ezkRERHRebKW5aM4Lx12azG8dD7wbdGVw38RUZNhtwOXXCI4dEjB2rWCQYN4/nIHPkJPREREdI4cditK8g+jrDgLAKDR6GDwCfNwVEREdeNw2GAtzYGlOBub1uRj1ZoA9LsyDIC/p0NrltjSTURERFRHIgJL8UmU5B+Gw2EFABhMLWH0awuNloPhElHjJeKAtTQXlpJsWEtzIOJQp3npzTD6tYXOwKTbHfhMNxEREVEdWUtPoyg3DQ6HFVqdCb4hl8In8BIm3M3YqlXAP/8JzJ/v6UiILozdWoTC0ymwlJyCiANaLyOMfhHwD+0JvxZd8fAUf3TuDCxd6ulImx/eXk5ERERURzrvIOgM/tB5B8DgwzG3LwYHDjAJoabHZimEpSQbUDQw+bUFAHjpfaEz+EGrM0NvDIaX3uyyzKFDQHIyUFhY1RrpQvD2ciIiIqJqWEpOo6woE+agjlA0Wk+HQx6wezfw++/O3p1vuMHT0RBVz24tgaUkG5aSbNhtpQAARaNFQFivOv1AuGcPcPIkEBsLhIe7O9qLC5NuIiIiogrstjKU5KXDUpoDADD6RcDo28bDURERVVZWfBJlhZmwWYvUMkXRQOcdBL0xGDrvAN6V42G8vZyIiIjobyIOlBWeQEnBEYg4oCgKDOZW8PZhsw8RNQ4Ohw2KolETaYetFDZrERRFgZchAHpjCPTegbw7pxFh0k1EREQE1zG3Aefzjz4B7aHVmTwcGXlSdjZw+jQQGAi0aOHpaOhiJQ67c4ivkmxYy3LhExgDvTEIAKA3tYCi1UHvHXxBnTr+/DNQWgpcdRUQHFxfkRPA3suJiIiIAABlRZmwW4uh0ejgExgNvxZdmHAT3nvP+YzrU095OhK62Ig4YCnNQVHOAeSe2IbCnP2wlOZARGCzFKjzab284e0TdsGjKEyeDIwc6exMjeoXW7qJiIjooiQigDjUWzBN/lFQNDoYfSM4BBip9HogIADw8fF0JHQxcdityM/6Ew6HVS3Tag3Qm0KgN4a45QfByy8HQkKcd3VQ/WJHakRERHTRsVmLUZx7EBqtAeagDp4Oh4gucjZrMezWYhhMIWpZftZOOOwW6I3B0JtC4KX39WCEdCHY0k1EREQXDXHYUVJwFGVFmRARKEoRHPYyaLQGT4dGRBcZu6307yG+TsFuLYaiaFw6QPMJioVGq2PP480Ak24iIiK6KFhKTqM4LwMOexkAQO8dBKN/FBNuImowDrsVlpJTsJRkuzyXrSgKdIYAOBw2aP9OurVePDc1F0y6iYiIqFlz2K0ozk1Tx9zWag0wBrSD3psPLlLtliwBVq0CbrkF+Mc/PB0NNXWW4pMozj+kvtcZ/KE3hkBnDIJG49nUrGdPQKcDVq50PttN9YdJNxERETVviqKOYWswt4LR3Jrj11KdbdkCfPIJ0LYtk26qOxEHrKW5sJRkO5/JNjrH4NIZg+FVeso5lrYxGBqt3sOROtlsQFKS8/+K4tFQmiUm3URERNTs2CyF8NKbAQAajRd8AqOh0eg4BBids+HDgYgI4MorPR0JNXbOobzyYSnOhqX0FMRh/7vcribdWi8D/Fp09WSYVdJonHd0lJUBfn6ejqb5Ye/lRERE1Gw47FaU5B9GWXEWfAKjYTC18HRIRNTMiQhK8g/DUpINh92ilmu0erVFu/xHQLo4saWbiIiImjwRgaU4CyX5h+Fw2AAAdluJh6Mioubq7FEPFEWBzVIAh90CjcYLOu+gv4f48oPCe7UJbOkmIiKiJq58zO3ynoC1OhN8AtpzTFuqF6dOAaWlQEAA4OPj6WjIkxz2MmfP48XZsNuK4R96OTRaHQDAWpYHcdih8w5okkN8FRUBa9cCJhNwzTWejqb5YdJNRERETVZp4QkU52UAECiKBka/CBh8wprkRS81Tnfd5ezB/PXXgUce8XQ01NAcDhusJadgKTkFa1neWVMUmINioDcGeSy2+pSaCsTGAv7+QG6up6Npfnh7ORERETVZzo7RBHpjEIx+URzXluqdogBeXs4XXVyspTkoPJ2Cs9sovfS+0JtCoPcOVlu5mwMvL6BXL97N4S5s6SYiIqImw24rhd1apPYEDDhvL/dir+REdAFEHLCV5QGKBjqDPwBnx4x5f22Hxsv4d4doIfxhj84Lf7MjIiKiRk/EgdLCTJQWHAUAaHU+0Hp5AwATbiI6L84hvgpgKcmGteQ0HA4rvPS+0LVwJt0arQ5+LXsy0aYLxqSbiIiIGjVrWT6K89JhtxYDAHQGDiJLROfPZi2GpSQbluJsOOxlarlGo4OX3gciovY6zoSb6gOTbiIiImqUnGNuH0JZ8UkAzgtio38kx96mBvXWW0ByMjB2LHDFFZ6OhupDSf5hWEtzAACKooXeGAS9MQReBr+LthPGTZuA6dOBrl2B//zH09E0P0y6iYiIqNERcSD/5E447BYAgMEnFEa/ttBoeOlCDev774FffwX692fS3dQ47FbnEF8l2fAJ7KC2WhtMLaBAgd4UAp0hAIpG6+FIPS8rC/jjD4C9fbkHv7mIiIio0VEUDQw+obCWnIYpoB3H3CaPGTPGmXB36+bpSKguxGGHpfS08znt0jwAzizSUpINo29rAIDeGOzSGSM5f1Bavhzw49M7bsHey4mIiMjjxGFHScFR6I1BaoIt4gCAi/Z2TyKqO4e9DMV5h2AtzVHPHQDgpTf/3fN4MDRavQcjpIsZW7qJiIjIoywlp1Gclw6H3QJbWR58W3SFoihMtomoWiICcVig0TpvGVcULzXh1noZnWNpG4Oh9TJ6OFIigN9mRERE5BF2WykKTu1D4ekUOOwWaLUGePtFqL0GEzUGubnOl83m6Uial4EDB/7945oCLy8vhIeHY+TIkdi0aVONy9kshSjOy0DeX4koOLVPLVc0WpgC2sOvRVf4h/aA0bcNE+5zcOQIEB8PpKZ6OpLmiUk3ERERNSgRB0oKjiE/609YS3OgKAqMvq3h17I79N6Bng6PyMW11wKBgcDq1Z6OpPkQESQlJeGVV15BZmYmDhw4gC+++AJ6vR4DBw7EypUrXea3W0tQkn8EeX/tQP7JXSgtzITDboHYLWpni4CzgzQvvbmhP06z8M03wNVXA3PmeDqS5om3lxMREVGDspacRkn+YQCAzuAPk387aHVskaLGyW53/qtlB9f1Zv/+/SgoKMDAgQMRFhYGAIiKisKgQYNwzTXX4KmnnsKwYcMAAMX5h1FacExdVlE00HkHQm8Mgc47gI+h1BN/f6BTJyAiwtORNE9MuomIiMjtRES9bVxnDIa+9BR03kEcc5save3bnYk3k+76s337dmi1WnTv3t2l3OGw4eq4vnju+VfhcDig0WjgpTMDUKDzDnD2Ou4dxCG+3GD8eOeL3INJNxEREbmNiMBSnIXSohPwC+kCRaOFoigwB8V6OjSiOtFqmXDXt8TERHTs2BEmkwnisMNamgNLySlYy3IgtnxotVpoNM4WbJ13AALCLodGq/Nw1ETnj0k3ERERuYXNWoTi3HTYLAUAgLKiv+Dt28rDURGRp23fvh09undBUc4BWEpOQ8SuTjuYcRyxMdHqe0XRQNHyFnJq2ngEExERUb0Shx3FeRnIz9oFm6UAiqKFyT8KBnOYp0MjOmcvvADMnOns3Znqx44dO3BpbCuUFZ+EiB1arQFG39bQ+cbgp1Ub8M9bb0diYiKuv/56dZmlS5fiwQcf9GDUzduCBcB11wGff+7pSJontnQTERFRvbGUnEJxXobao7DeGAyTf6Q6li5RU/Of/wBHjwK3385Ops6HzVoMS0k27JZC+IZ0xsGDB5Gbm4vLe/eFt08Y9KYQeOl94XA4MPGee+Dl5YWHH34Yvr6+2Lt3LwDAarXixRdfxE8//eThT9N87d7t7KF/0CBPR9I8MekmIiKiemMpOaWOuW0KaAcdhwCjJm7iRCAnBwjjjRp1ZreVwlJyyplsW4vVcpulANu3bwcAtIvugfxSI/KzMrF9+wq8+eabOHToEH744QcEBjrPG23atMGRI0ewfPlyjBgxAqGhoR75PBeDCROcCXeFvu2onjDpJiIiovMm4oCIAxqN85LC5B8FrZcR3uZW7GGYmoUnn/R0BE2HtSwPJflH1H4cAEBRFOgMgdCbQqD1MiExMREAEBMTA61WC39/f3Ts2BE33XQTJk6ciKCgIHXZPn364LfffsMHH3yAzZs3N/jnuZhccYXzRe6hiIh4OggiIiJqeqxleSjOTYdWZ4I5KMbT4RBRAxOH3fmj2989i1vL8lCQ7bwlXGfwd46lbQxSf5Q7V59//jkefvhhvPTSS7j//vvrLW6ihsaWbiIiIjonDrsVJfmHUFZ8EgAgDhscdiuH9KFmqaQE8PJyvv4eav6iJuKAtTQXlpJsWEtzYPBpCZN/OwCAl94PpoB20HsHQaPVX/C2YmJi0LJlS9x7770XvC6q2d69QHExcMklQCCfCqp37L2ciIiI6kREUFb0F/KydqgJt8EnFH6hPZhwU7MVEgLo9UBGhqcj8RwRgbUsD0U5acg9sQ2Fp1NgKTkFEYfLM9uKosDbJ6xeEm4AePvttzFv3jxoOVC62z34INC7N7BqlacjaZ7Y0k1ERES1stvKUJSTCpulEADgpfOBKaAdvPS+Ho6MyL3sfw8h7XURXzUXZO9W6z4AaLR66I0h0BuD4aU31/v20tLSMGzYMAwdOhQ33XRTva+fKmvZ0tk7v5+fpyNpnvhMNxERUTP10ksv4amnnqpUPn/+fEybNu2c1iUOO/Ky/oQ4bDD6RcDgEwpF4Q1z1PwVFDgTbz8/QHMRHPJ2WwksJaecnSH+XceL8w7BUpwFnTEYeqNziC+F99oT1RmTbiIiomaqoKAARUVF6vs5c+Zg5cqV2LBhA9q0aVPr8tbSXHgZ/NWLa5ulABqtod5uHSWixsFhL3MO8VWcDZvVec7wDe4EnXeAc7rDBkXR8Ic2ovN0Ed8oQ0RE1Lz5+vrC19d5+/dzzz2HlStXYt26dbUm3HZbKYrz0mEtzYVPQHsYfJxj4/JWcqLmw+GwwVpyCpaSU7CW5Z01RYHOO8BlyL/z7X2ciJxYg4iIiJq55557DosWLcK6desQGRlZ7XwiDpQWHkdpwTGIOKAoCkTsDRgpUeNitQLPPed8nvuJJwCDwdMR1R+HrRRFuQfV9156X+hNIdB7B7NjxIvQuHFAXh7w2mvOHsypfvH2ciIiomasrgl3+ZjbdlsJAOcYuyb/dtDqjA0VKlGjU1QEmP/uJ6ywEPDx8Ww850PEAVtZHiwlp6AoWpgC2qnTCk+lQKs3Q28MgdarGf2iQOcsNBTIygL+/BPo1s3T0TQ/bOkmIiJqpuqacJcUHEVJ/hEAgEajg9E/CgZTSEOFSdRoabXAQw85O1LTN6GuDEQENkuBcyztktNwOKwAAEXRwujXVr113Bwc68kwqRF54w0gPx+oQ3cfdB7Y0k1ERNQMvfDCC1i4cCFWrFjhknAHBgbCUOEeWZulEAXZu6E3tYTRry2f3yRqwkoLM1FamAmHvUwt02h00BuDoTeFsG8GIg9g0k1ERNTMiAgCAgKQn59fadrmzZtx+WVdYLcUweDTUi2328p4eylRE2S3lUKj1as9i5ffuaIoWuiNQc4hvgx+TaLn8dxcwN8f4Ghk1Nww6SYiIrpIiMOOkoIjKC08AUUB/Fp05zPbRE2Qw251DvFVkg2bpQDmoBjojcEAnD+g2a2F0BlceyBv7I4dAyIigIkTgbff9nQ0FxeHA9i1y/kIRUyM87EKql9MuomIiC4ClpJTKM7LgMNuAQDojcEw+UdxzG2iGhw5AkRGAiaTsyM1TxKHHZbS087ntEvzAJy5hDf6toHRL8JzwdWD++8H3n8f8PMDTp5sWs/QN3WFhcDfo0s22Q4DGzs+tEVERNSMnT3mNgBovbxh8m8HnXeAR+MiagpsNkDE+fIkh92KvL8SIeJQy7z+7nVcbwxu8j+epaUBH37o/H9+PvDpp8D48Z6N6WJiswFhYYDF0ryGxWtM2NJNRETUTInDjry/EuFw2KAoCrzNreHt27pJPNtJ1BjY7c5WV4cDaNWqYbbp7Hk8H3ZbCbx9wtTy/JO7IA67cyxtYzC0Xs3n0ZA77wS+/tq5vwGgXTtg/37e5kzNB5NuIiKiZqyk4BhsZXkwBbRrVhfpRM2NzVIIS0k2LCWn4LBboCga+Iddro4m4LBbodHqPBxl/du1C+jevfLdBF99Bdx2m2diIqpvTLqJiIiaCYfdipL8Q9CbWkJn8APgbDVT2BUwUaNkt5XCUnwSlpJs2G2larlG4wWddxCMfhFN/tbx2tx8M/Dzz85bnMtpNEDnzsDOnezJnJoHJt1ERERNnIigrPgvlOQfhjjs0OpM8GvRjck20QX66y/go4+AgABnr9r1rbQwE8V5GQAARdFA5x0IvTEEOu+Ai+IxkD/+APr1q376Tz8B11/fcPFcrDIygMceA1q2BN56y9PRNE9MuomIiJowm6UQxXnpsFmcXSt76XxgCmgPL73Zw5ERNX3btwO9egFt2jh7Mj9fDocN1pJTsJScgt7UAgZTC2e53YKi3IPODtG8A5vUEF8XSgSIiwM2bTrzLPfZtFrgiiuAjRsbPraLTUIC0KcP0LYtcOiQp6Npnth7ORERURPkcNhQWnAEpYV/ARAoGi2Mvm1h8AllCzdRPQkKAu65x9nSfa7EYYe1LBeW4mxYy3JwdjtXedKt0erhG9yxnqJtWn79FVi/vvrpdrszId+wARgwoOHiuhhFRABvvgkY2e2H27Clm4iIqAmyFGejMGc/AI65TdSYiAiKc9NgKTkNkTNNuFqd6e8hvkKg9bq4x2USAS67zNmJWlWt3OW0WmDwYOcz30RNGVu6iYiImggRh/qcp94UAkNZHvTG4FrH3N7w4IOwJiXhat6nSVTvRAR2Wwm8dCYAgKIocNgtELFDqzVAbwqBzhiiTidg+XIgKan2+ex24JdfnPP26OHmoIjciC3dREREjZyIA6WFx2EpyoJvy27qEEJ1YSstRYnRCB8AJzZvRqsrrnBfoEQXEZu12DnEV3E2HHYLAsIuU+82sVkKAABeel9Phtho/d//ORPvmmj+7kfO4QAeeAB49133x3WxKihwdhro6wuEhno6muaJLd1ERESNmLUsD8W5B9XhhCzFJ+FtDq/z8psnT8YAAAJg//jxaLV7t3sCJWqGfvsNGD7c2cq6fv3fQ3yVnHIO8WUtVudTFC3s1mI16WayXbP//Ad48EHAanW+LBbgzz+B558HXnoJCAw8M81qBYYM8XTEzduPPwJ33AEMGgSsXevpaJonJt1ERESNkMNuQXHeIVhKsgE4O1wy+UVCbwqp8zpspaWIWrQIAkAB0G/PHhzfsoWt3UR1VFYGFBYCxcWApeQ0Ck+nqNMURYHOEOi8fdwQcFH1PH6hWrQArr3WtczPz/nvHXcAUVENHtJFz2x2vsg9mHQTERE1MqVFJ9QxtwHA2ycM3n4R53RbOfB3K7fNpr5XwNZuoroQhx2W0tPo20eLAweC4OUFeBn8oCgaeOl9nX0pGIPPuU5S9axW57969gfZ4P71L+eL3Efj6QCIiIjIld1SCHHY4aXzgV+LrjAFtDvni/vyVm7HWWVeONPafW4B2YHHH3cOqvvXX84mqk8/Bc5K6ImaOhHH363Zqcg9sQ1FOQegcRzDJZcAkZGARuMF/7DL4RvSGQafUCbc9aw86dbpPBsHkTvwbEFERORhDocNEIFG67zaNPpFQqs3w2A6/zG3K7Zyl6u1tfvYMecDfl5ezgGKAee4PV9/DaSnOx+4/O034OBB532gRE2ctSwfluKTsJSeUu8uAQCtlzd03oEQEbUeMtF2Hybd1JzxzEFERORBluJsFOcfgpfODHNwLABAo9XB2yfsvNd5dit3xVvazm7tbtWpE7B1K3DppUD4352zbd8O3H8/0KnTmaQbAJ580pl89+sHhIUBrVo5E3PAOejum28Ct912Zj1ETURZYSYspacBOPtOcI6lHQwvvRkpKcCqVc6W7ltu8XCgzZzF4vyXSXfD++475+uaa4C77vJ0NM0Tby8nIiLyALutFAXZySjM2Q+H3QK7rRgOu7Ve1r158mS0sdmq/ZIvb+3G//2fs1vgH344M7FvX+Dqq4H/Z+++w9sqrweOf6+25CE7dva0E5JABoQACRAIs5RdRkvZo9ACLaulC0j7K6u7pS2lhZZOZmlZBUqhrJAQQggrzITY2dN2LA/te+/vj6MZZzmxLVs+n+fRk+j6WnqVeOjcc95zzjxTgum0Sy+F006DNWukxe2FF2Y/9vLLcO21sM8+0nFKqV7ITEaItKwmtPHtzDQAAE9gIN7AIMqq9yE4eH8CwdG4PNJR6s034eqr4c47C7Xq/kP3dBfO4sXw5z/DggWFXknx0ky3Ukop1YNs2yLaupZo2zps28IwHPhKh+ErG45h7Pm18B1ludMy2e4DD2RYTU1+cD1woJSPb8sHH8Axx8Bee8HSpdnjXi8ceijsuy8EAtnjy5bBuHGwmyXySu0py4xnRnwl422Z4/FIA/6yEQB4/APw+Ads8/NHjYKzzoIpU3pkuf1aOuh2aXTS4z7zGfnRPW1aoVdSvPTLWimllOohZjJCW+PHmSyb21tBoGIMTpe/y57j9ZNO2uZe7q0ZwLJFixhWV7frDx4ISPQxalT+8UMOgXnzsvWhAKtWSeb7wAPh+eehpGTXn0epPWQmo4Sb60jEQjlHDdy+oJSP+7YdZG/tsMPkprpfIiEBt16j63mzZslNdR8NupVSSqke4nB4Ug3TOj9ze5t+/3t49VX42c9g6FDMeJwxL72Umcu9I+ls9/pFixh64IG79nzTpsF7723/47l1oa+/LnvA/f78gNu29V216nK2ZWKZcZxuuYDlcLgzmW2XpwxPoBqPryrTrFD1PvG4lpar4qVBt1JKKdVNbNsmHmnE46/CMAwMh5OSqok4nJ7OdUFua5NMcnNz/jDV3/8e3n1X9mafcQaJcBjT48ECnB6PBL1AIhTCYVk4Kyvz1hYKh2lbvVqy0V3tC1+Aww+XNadFo3DQQfKxr389vxRdqU6ybYtkLJQqH2/C4fQQHLwfgHyvVY7D6Q7gdPkKu1C1SxIJbaJWKI2N8u8fDMp1UtX1NOhWSimlukEy3kY4VE8y3oZtJzPdyF3unQSati37pYNB6RIO0uXm+OOlY/hZZ2UzxZddBg0N0n0c8FVUMDoS6fCQCyZPZmBdHXs3NWWOGUB16tZthgzJvgaAhx6CJUskEP/2t7vzmVURS8ZbiYcbiEcasaxs80HbtrDMRCabvb192p3xhz/AnDlyXeuuu/b44dQOaNBdONdcA/ffDz//uVwPVV1Pg26llFKqC1lWkmjLaqLtGwEbw+HE2NGwkFhMGpGlXXAB3Hcf/PSncP31cuzAA2HiRJgxQ873pTJ3X/1qt72ObVqyRN6djRwJf/1r5z//3HPlXbXTmX13bdvwve9JVKNdfNROhEP1RNs2ZO47HG48/io8gWpcnrIuf77WVti4EVpauvyh1VY06C6c9K6f3F9Fqmtp0K2UUkp1kfTMbcuUhmIefzWB4Ggczm1sVGxtlaGo778v2er0vud994V//hO2bMmeGwjARx/1wCvYieZmeOklmDBh9z7f7ZbAO9err8Ktt8q+9PXroaJiT1epioSZjMr2DF8lzlSFiNtbQax9c6rjeBUub7BLuv5vzwUXSMP+YLDbnkKl6J7uwrn/frnWmzvIQnUtDbqVUkqpLhAOrSTatg4Ap8tHoKIWtzf1Tn3uXPjtbyVb/YMfyLGyMtiwQfY5v/VWtkXy5ZfLYODe+O5z4kR48EFZe1cZPBjOOQcqK/MD7tdekwy/pr76FctM5Iz4agXAtpIEgqMBcHmDVAyZjuFw9sh6qqvlprqfZroLyzC0x2V30qBbKaWU6gIefxWx9g0EXl+K540PML7yFahJBd2bN8M//iFZ7HTQDbLHeeRIuaWVlvbswjtj4MD8Rm5dYcIESbPkpljWrIHZs2UP+1tvQVVV1z6n6lVs28oE2oloCMh+Lbi9QVye7PeEYTh23ppf9UkadKtipkG3UkoptRsS4SasD97DuzkMJ5yAy1NKcMh0HHd8U0qmJ0yAmho5+bDD4Lbb4NBD8x9k6/v9WW6K5ZNPYMAA+ffLDbi1/rRoRUIrM03RXJ5SmaXtH4DDWdhNpm++KQMCJk2CmTMLupSip0F34fz4x7B2LXz5yzB5cqFXU5w06FZKKaV2RWsrxONYFWWEQyswF71G8LMXY5eXY2zZAg6HjAE74wwYPx722iv7uYMGwQ03FG7tXaWlBT78UBq57bdf9z3P0UfDypXSwSotFpPy9mOPlXeIOePPVN9g2zbJeAvxcANmop2ygVNklJ7hwFs6FGwLT6Aap6v3zCx6/HG5XnbVVRp0dze9plY4Dz8Mb78NJ5ygQXd30aBbKaWU2lq6lWvanDnYt9+Oef3VtF57NrZlwsRx2IOqYdJkaGrKbvy85prCrLknvP02HHGEBL/d3djN54PRo7P3n3kGVqyQP++8s3ufW3WpZLwtUz6ebjIox1txe8sB8JcNL9TydmjCBDjpJA1EeoJmugvny1+WXT3jxhV6JcVLg26llFIqzTRlDvb8+fDee7KHGTCHDsRpWZifvI9tmbg8pQQG1mCs3wiO7uuc3Ov4fFBbCyNG9Pxzn3YazJsnnd5z02Ff+5pkv08+uX/9X/QB8egWIqEVmMlo5pjhcOLxdd+Ir652/vlyU91Pg+7CufzyQq+g+GnQrZRSqn/68EP4059kFtCcOXLM6ZQM7oYNsGABnHIKlpWk9ahJ2G8+AcOGECgfhTcwGKM/tnmdMQOWLy/c82+9B37+fOkK/4c/SDn6kCGFWZcCwDLj2LaN0yX7sA3DiZmMYhgO3L5KPP5q3L6Kbh3xpfquRELLy1Xx0qBbKaVU8Xv/fRnbdeyx2b3W69bBz38uzbrSQTfIsbIymD4dAIfDhW/E3iTj7dufua0KY9w4+O53ZTNobsD91FMSoOu+725nWUkSkUbikUYSsRDeksGUVNQC4PKUUVq5F25fZY+N+FJ9Vzyume5C2bJF/u0DAS0Y6i76z6qUUqq4NDdLljrXd78LX/2q7AdOO+gg+MpXZIRXzrgq85jZtE6oJGHEMsd8pcMoHbCXBty9zeDBcPvt8LOfZY+tWwennw6jRsHq1YVbWxGzLZN4pJG2xk8IbXiT9uY6ErGQfCxnz7ZhGHgC1X064J4zB8aOhd/8ptArKX5aXl44Y8bIteZPPy30SoqXZrqVUkr1XbYNkYhcngdYtUqab3k8EArJHmSQDHc8DsNzmjWVl8Pvf5/zUBbR1rVE29Zi2za2lcQ9aGoPvpg+4L334MYbJaD97W8LvZptW79eGr0Fg/nzz7ds0cx3F2lpeB8zEc7cd7oDqRFfVThdvgKurOtt3Ah1dfLjRHWvRAJKS3d+nup68dS1Mm9hJ/QVNQ26lVJK9U333CNjuM49F371Kzk2cqSM5yovz2/FevXVctuORLSZcKg+0/DJ7a0gUFHT3a+g72lslNLtffYp9Eq2b/p0Gazc1JQ9Fo/DlCmy7j//Of/ii9qhZLyVeKQJf/nIzF5st68S2zLxBKrx+KtxuQMFXmX3+e534eKLC9M7sL/RPd2F09YmUxl9xXXNrFfRoFsppVTv961vwcsvw0MPSfdskMC6sREWLcqeZxhSH1e2a12RLTNOOLSCeKQRAIfTQyA4Bo+/qotfQJGYOBHuvRcqKgq9kh0zDKjK+T987TXJgNt2piO92r5kIkw80kAi3IBpyjYLl7ccj08qBfylwwmUjyrkEntMTY3cVPfTPd2F43RmC8ZU99CgWymlVO+xfj088ghEoxJop736qgTXr72WDbqPOw5efx2mTct/jF0MuCGdxWsEDHylg/GVjcTh0F+N2zV0KFxySaFX0XlHHCEXY+rq8lNp550ne/u/9CUoKSnY8noDy0wQC28iHmnIKx03DCce/wAcjmw01Jf3aKveS/d0q2Jm2HZO9xillFKqpzQ0SMOzCRNg/Hg59sYbMpZqwAD5eHos12OPSSB+1FHSPGsPWFYyL7AOh1bi8Vfh8hTvZsK5kyczsK6OvcPhnZ/cX7z+Ohx8sLzLX7EChg0r9IoKKpkI07LpXUAaoLm9lXgC1bi9Ff06yJ43T3aqHHBAdreK6h7Tp8s1sN/9rtAr6V/a2uD735f93Lfdlv21q7qWXs5XSinV/SxL5junx3UBXHMNPPCAdA//3vfk2H77wSmnSOCdu8HstNO6YAlJIi2rSESaKB+8XybwDgRH7/Fj9xttbZIt9vmyF0r6qn33lUZ669blB9z33Sfv/Pv669sO2zKJR5uIRxpwONyUVEok6XIH8AYG4fKU4vZXacVHyh13wL/+BXfdpUF3d4vHdU93IbS0wC9+ISXmt99e6NUUL/2JqpRSquvZdvZyeWurdLtubpYO0un9wIccAm+9JXuz0zweeOKJLl9OLNxAJLQCy0oAkIg04S0Z1OXPU/TeeAOOPhomT4YlSwq9mj3j98vIuFwbNkipeSIBH34oe9iLgG1bJKLNsk87ugXbtgAwDAeBYE0mk11SObaQy+yVJk+WnnzaSK37aXl5YQQCspvLsgq9kuKmQbdSSqmu89RTkrXef3/44x/lWFkZVFdLGuPjj2HmTDl+5ZUyO7sbmckI4eb6zAxhp8tPoKIGtzfYrc9btDweKe+vKtJGc21t8JnPSJSVG3CvWCEXjhyOgi1td0Va1xBrW49lJTPHnC6fjPjq4zO0e8L//V+hV9B/aNBdGBUV8OMfF3oVxU+DbqWUUrvn7rvh+eflXenkyXLM6YS335bgJdf//iclvLnvqLp541ikZXVm5rZhOPCVDcdXOiwz9kjthlmzJBtcrMaNg3//W/oHpMXjcNhhcvHo8cd7fdl5Mt6G0+XPC6YtK4nD6cnM0i7m/gWq79KRYaqYadCtlFKq8+bOlU2O770ne2NraqT786GHwj/+IQ2qco3u+X3TlhnHtm3cvgoCwRqcLh1AqnZR7rDaDz6QTY/JZP7Xce4WigIzkxHi4QbpPJ6MUlq5F55ANUBqn3YZLk85Ri9Zr1LboiPDCsM05YKH19trfqQVJb3cr5RSqvPuvFNKbs89V0rKR4+G556T/dmf/3xBNkBaZhwzGcvc95ePonTAeMqq9taAW+2+adNg9WrJcnu92eOnnALf+AZs2lSQZVlmnGjbelo2LyG08R0irWswk1EMw4FlxjPnOZwe3N6gBty76eKLYepU+O9/C72S4qfl5YXx2mvS4qJIWlj0WprpVkop1Xn/+If82dQknZ5bWmCffQqyFNu2iLVvJNKyGpe3jLKqvQFwON14/EW697hQliyRmTKjRsFPflLo1fSc8nLpqJ/21ltyscnlguuu6/HlWGac5g1vAemprwZuX1DKx30DdJ92F1q+XL7sW1sLvZLip0F3YcRS16q1tL97adCtlFJq9w0YIM3RFi/Oz25/61vyDuqb3+zW+cfJeCvh5nqSiXYAbCvZYQ636kIbN8LDD0vqrz8F3VubNg2eflo6nOd+3d91l6SLjjyyy+o0bcskEWvGTEbxlw0HJHud3pftCVTj8VXhcGq00h1+9Su5tphuW6G6j+7pLowjj4RQSMrMVfcxbNu2d36aUkoptYs2bZJMaCwGL70ERxzR5U+Rnrkda98IgOFwEigfjScwSMtot2Hu5MkMrKtj73B4zx4oXWZdVQXnnNMlaysaGzfKNotYDBYulAqQ3WTbFslYC/FIA/FIE7ZtYhgGwcHTM8G1bVvaFFAVFadTrlttPclPqWKgqQCllFKd98tfwqJFMtP46KPzPzZwoARmTz8Ns2dnj7/wgmS99957j546mQjT1vBhZua2NzAQf/lozfT1hJEj4aqrCr2K3uvSSyX7feCB2WPvvitd0UtKdvrpyUQ78fZNxCONma9vAIfTm2mMlqYBtyomti1zoj/+GJYtg732KvSKlOpamulWSinVeaefDo89Br///a6lJRIJCTxWr5Zg/Pjjd/upbduiZdO7gKEzt3dRl2W61c7ldjVPJGDsWGhvl0aD06dv43Q7U50RbdtAOFQPgMMhPQk8gWpcnrIeW77K9+KL8t938MFQXb3z81XnNTVJ4Uxus7rjjoMHH4TKysKtq79YvBieeAImTYKzzir0aoqXZrqVUkp13sUXw+GHdxwNtj1btsg+2EQiv9y8vX2nGUDbMomFN+EtGYxhODAMB6VVe+NwejTb19PCYVi/Xrp4F6BDfZ+Qu71h5UrpDOVyyTvaFDPaTjzRTDzSgK9kCN6SwQB4/FWYiTaZpe0N6td3L3DVVVK88MILcNRRhV5NcTrnHJv//Q8g+73zv//B2WfDs88WbFn9xuLFcMstcOqpGnR3Jw26lVJKdd7JJ3fu/EGDpOQ8FJLZJGmnnio1hXfeuc3u54noFsKhFZjJKAC+0qEAOgKsUObNkxTUfvvB228XejW937hxsHQpfPoplttJvH0D8XAD/jMuwVlWgn3DlcQnuDNBt8PppqRyXIEXrXJNnQqlpVBRUeiVFA/bMom2raW9uZ7332ngv/89o8M5pimZby0173577w1XXilf66r7aNCtlFKq5wRzSsFXrIBXXpG/b5XttswY4dBK4pFGQLo1O5xeVIE5nVBWBoFAoVfSZ9gOB+3VNvENiwEbR91q3K8uwnY68f/8Z7gHjC/0EtUOPPhgoVfQ91lmgkjLKtqb6wg31xFpWYllypyqjz/Y8XDo997ToLu7HXaY3FT30qBbKaVU5zU0QFubbLgL7uae6jFjZAjuq69K12dSXZt/dDOxAV7ixx8GThe+0qH4y0bo7OHe4OijZSa72i7btkjG23B7ywEwDANpn2Pj8pTimXYY1jtv4Vi4CO/EnD3eP/mJNCE85xwp31eqjzKTEcLNKwiH6mhvriPashrbzp9H5XD5KamoYdrMSdt5FHHhhfDaa/C1r0FNTXeuWqnupY3UlFJKdd6558IDD0gX82uv7bKHbf9kIYF9D8eIxWl//E94T/gCLvfOuz6rHdNGat3Ltm2S8Rbi4QYS0SYsK0nFkP0z1RnJRDuG4cDp8m/7ATZvljF70Wi3jdlTqrskYi2EQ/WEU5nsaNt6ID+8cHnKCVTUUlJRS6CiNtOjA+Czn5U93Llzop1OmDVL2obcfbfsTPrc5+TXzaxZ+a0T1J7J7f2ouo9mupVSSnWe1yslxs6uzT57q0YR++qFeJZ8SuDkCzEcqUZSH34ItbXg073cqvdIxtuIRxqJRxqwzHjmuMPpwUxGM0H3Ti8c+f1w882yZ94w4PLLZc73JZd05/LVLjj+eGhuhr//Xbbo93e2bZOINtHevJxwswTa8UhDh/M8/moCFbUEKmooqRiL2zcg06V/aw8+KE3TcruXH3NMtnv5TTfBfffBHXdI/87994drrpGmX50tColE8tuKKPjOd+DnP4frr4cf/ajQqylemulWSilVMLHwZiwzhr8s2wnbtq38rs2JBIwfD7EYPPOMNPFSndJlme4lS6S6YfRo+P73u2ZxfVQ80khb09LMfcPhxONLj/gq326AkWHb8M47MH8+XHSRdOsCiSyuu06ijSuvhFtv7a6XoHbBwIGym2bJEpg8udCr6Xm2bRFr30i4uS6zJzsZ33qLiYGvdGgqyK4lEKzJbK/ojGXL4NNP5eLGtvZxWxY8/7x8izz7LAweLN8il18uvTp3prVVJvh97nOSPdfsrrj2WvjVr+C734Xbby/0aoqXBt1KKaV6nJmIEA7Vk4iFAIPyQVNxubfTnOuTTyTtEY9L8zVNU3RalwXdzz4rqb/995c5M/2EZcaJRxoxHG68ARnWbFlJWja+jcsbxOOvxu2r2PGIr3AY1qyRC0hpNTXyNf388/I1DlLVcfXVMqPqzDPhkUe674WpnXruOcmOHnkklHc+juxzbMsk0romE2RHQvWYyUjeOYbhxFc+UkrFg7UEgmNwunv25/JHH8Gvfw1//auUpZ97rmS/9913+59z550yAg7gF7+Qa1tKLka0tEjxms5F7z4adCullOoxMipmHdG2tdi2jWE48JWNwFc6dMcBSzwOH3+cP9PkrLMkJfKNb8CAAd2/+D6sy4Luujr4xz8kxXTxxV2zuF7KspIkIo3EI42pi0NSJl4+KPs12KEqI1fuRsmXX4Zjj5WA+4MPsudceaX8m373uzB7dvZ4XZ1kwYcNg5kzu/aFKZUjPSki3FxPOFRHOLQS20rkneNwevCXj8nsyfaXj8LhdBdoxfmamuCPf4Tf/EauaR1xhGRuTzopf/eTZUmWe8UKuW8Y8NRTcMIJBVi06pc06FZKKdV5f/87zJ0rdXonnrhLn7L1zG23r1IyJLszc/udd2DaNHlXtWyZtrXdCW2ktuvikSbi4c0kYlvIfYvk8pTh8VenGkDtoC715z+He+6RDZKXXSbHNm+W+teRI6VyQ6s1VIEkE2Eiofrs+K7WNWBbeec43QHJYFfUUlJRg690eK+fHpFIwGOPSen5ggXSAuTqq+XaYHm5BNgnn5w93zDk2/CNN2DSjhuoK9UltJGaUkqpzps3T9ILo0fvUtBtWUnatizDtkwcTg+B4Bg8/qrdf/6pU+Ud1vvv5wfc//wnTJ+uQbjaZVJxkQ2i45EG4tEmQIIPj78aj7+q48WhaBR+/3tYuFAuQrlSb6lCIVi6VL5H0kH3wIGwejUMH64bSfuYF16Q/7JDD+2bk9wSsVDefuxY+4YO57i9Fdn92BU1eAODdlx51Au53fCFL8ht4ULZo3z99TBnDnzpSxKIO53ZDum2LW1Cjj8e3noLqqsLu/5C+uc/pbjms5/NLyZTXUsz3UoppTrvmWck23z44TK/ZRu2Dmai7RuwkrHum7m9ebNcBIjHZW39sevRdnRZpjsWgy1bJMDs4+9Sk/FW4uEG4pFGyqonZfakJqLNJOItePzV2T4DbW3yrt0wsnuvTROqqiTIXrxY9rmDZLI//VRmHe3utofVq6G+Xsr4J0zYw1eq9oTTKaXJ69bB0KGFXs2O2bZNPNKQGd3V3lxHInUBKZcnMCgzuisQrMHjL87tOWvWwF13wW9/K3uWt8XphBkzZFKfx9Oz6+stTj5ZKgH+8Ae49NJCr6Z4aaZbKaVU551wwg43wyXjrYSb6/GXj8LtqwDAVzKke9cUCsFhh8kmv9x6wZaW/tEBqSe88IJUNkyfDm++WejVdFoyESYeaSARbsA0Y5nj8Wgjfrd00Hf7KnA3hcFpQ3rb6j/+Iemyww7LBt1Op3Ri8vnyWydPmLDngfLDD8M3vwkXXCCdolRB2DZMmQLJZO8MyGzbItq2LjO6KxyqJxlv3eosA1/ZcCkVD9YQqKjB5SkryHp72ogR0o177VoZOWZZHc8xTXj9demAfu+9/bMQ5Zhj5PqhXt/rXhp0K6WU6jKWlSTSsopY+0YAIq2rM0F3txs3Tga9trVl3zklk5KBnDBBSoFHjuyZtRQzh6PPvTM1kxHampZiJrKZfsNw4vEPwOOvwuUNZk8+6SR4+mn417/g9NPl2GGHwZgx+Z3HofvGplVWwsSJvT+1WuQMQ4pmegvLShJtWS2l4qE6ws0rsMxo3jmGw4W/bFRmP7Z/d/tmFInNm2Xe97YC7jTLgj//WYqjvv71nltbb3HNNYVeQf+gQbdSSqnOa2uTEUiBQGa+cCy8mUhoJVaq8603MBB/+eieX1t63jFICqO+XrLg2uF8z51wQnZTZC9mmQksM4bLI18LDqcXy4xhGAZubyWeQDXuzW0YF10NK1fC229nP3n0aIm2Pv00e2yvveTrqKd86UtyU/2amYwSCa2kPZRqetayCttK5p3jcHoJpDLYgYpa/GUje01n8d7gnnt2/UfWN74h12d3sTeoUp2ie7qVUkp13rXXSqeaG27A/L+bcmZupzvf1uD29pKS7mXL5JZbDv/tb0v28sQT+1zWdnf0h+7ltmUSjzZJ+Xg0hNPlJTh4mnxw8WLMfzyIMW06ji+eLcfa26GiQqohVqyQYBtgwwZpaxwMbutplOo2yXgb4VB9aj92PdG2tdvoLF6a2o8tQbavdFifa3rWU+JxKTHfvHnXP8fhgPnzO07qO/zww3n11VcBcDqdDBw4kJkzZ/LNb36TQw45pAtXrYqVZrqVUkp1XjpQtSzMZIRELLTrM7d72l57yS3trbfgJz+Bn/0Mli+XsmHVJ9m2RSLanAq0t2DbFo51G/G88S7WiZ/FMhOS9XvxRZw/+bmMuEsH3SUl8Kc/Scn4sGHZBx3Szb0HVJ/R3i7X5ZxOePZZ6ZDdleLRLZmmZ+HmemLhjR3OcfsGZErFA8FaPIGBOx5ZpzJeemnXAm6fT4q2nE4ZPbZxq/8G27Z55513+NGPfsSFF15INBplxYoV/O53v+Pwww/nySef5IQ+PPD7gAOksOepp7bbF1V1Ac10K6WU6jQrEcXh8maC70jrGjz+6r6xd3DTJpmlHArJPu+0xYtlXkpXv7PuBbos0/3++3D33ZIVvv76rlncHmhv+pT4yo+xB8n4OafTS/n0EzHWbZB33EccISe+/Tb8+tdw3HHwxS8WbsG76r77ZAzZSSfBVVcVejX9VlOTNJgCKYhw7sHQBdu2iYc3ZUZ3hZvrScS2dDjPWzIkp+lZbc/1xChCoZD0QPR4oKxMbuXl2b+XlcluJNdOUpBLly5lwoQJvPbaaxx88MF5HzvqqKPYsmULb+duUeljxo2T68/z54Mm7buPZrqVUkrtMsuMEQ6tIBlroXzQfpm9g/6yEQVeWScMGgQ//nH+scZGmD1b5im/+qrUJKqOVqyAO++EAw/s8aA7GW8jHmnEE6jG5S6BefMInHQivhFDiM3/r4z48pTCEUfJnOx4PPvJ06ZJp6S+4tNP4bnnYOzYQq+kXyspkUbyyaSUHXeGbZlE29almp5JybiZaM8/yXDgLxuR2pMtJeMud0nXvYB+LhiEyy7b88dZvHgxTqeTfffdt8PHjj32WObMmYNlWTg6+0XSS7z8srRo0T6j3UuDbqWUUjtl2xax9g1EWtZg2yZgkIy34PFXFXppXeOjj+QddmUlDB+ePW7b/WLP9y7bay+YMyf/36gbmckI8XAD9j134374SawLTid+wUW4giUwdixGqAWHDQHPYPDInG3uu6/v/5+dfrqkn3K3Rage5/XCF76wa+daZoJIyyrZjx2qk6aSOWPpQDqLB8rHZJuelY/G6fJ2w8pVV3rrrbeYOHEigUCgw8fcbjdOp7PPBtyg15h7igbdSimldigZb6W9uS4zbsnlKaPktaU4X3pIssOnnVbgFXaBWbOkO/W6ddmAzTSl2doJJ0jjuNyu6P3VhAlw883d9/ixGPZDD2K+9grhm68lmZSvOX/9StxvLoGJE+CyCjl36FB4912MffbJrw/t6wE3yDaHqVMLvQq1A2YyQji0IrMnO9KyOnVBMsvh8hMI1sh+7IpafGUjcDj0rXdfs3jxYvbff/9tfmzp0qVMnDixh1ek+iL9zldKKbVd7c11mZnbDocLf/koPIFBGG88KN3Lbbs4gm6QTjrjxmXvP/EELFgAn3wiQbfqWskkvPceJBLYBx0ozfecTvjq13C1t2N//mjYexxuXxDn+ZdgH3AU7iOPhNw9rhqYqm4UiUg7AI8H9pvamtqPXU+4eTnRtvVAflskl6c8k8UuqajFWzKkdzWVVLvl7bff5pRTTulwPBKJ8MQTT/DVr34VgBkzZvDb3/6WAw44gAsvvJCZM2dyxRVX9PRyO+1Xv5JWJhdcoNeWu5MG3UoppXYqPXM7M/919mwJuIu568opp8D998tmt9x3In/8o2S/czte9xeJhEQiTqeU43dGe7tkpL1STmv/8Y8YV1xB8rCZtP/jt5QPnobhcmFceilJO45vyHjcQ6bJ11zV3jBzJ49fTNaskdFlQ4Zo7WcB2LZNItrEh2+t5dBZUyktifL6k//X4TyPv1qC7KAE2W5/lXYWLzJ1dXU0Nzd3yHRblsUVV1yBy+XiqlSzwzlz5nD77bdz6KGHUlpa2icCbtvOXlM+4wwNuruTBt1KKaUyzEQYDEemC7m/fBQef3XHmduf+YzcipnLBeeck3/s3XelM4/fD6tXZ1sb9xfPPisXI2bMgNdf3/XPO/tseOQR7H/9k+RxRxCPNJCcUEFZWQlWmQ/TjJGMt8rX2R134KKfv0H5zW9krN03viGj7VS3kp4VGwk319PevJxwqJ5kLMTmdQMYNXwoAX8cMPCVDs0E2YGK2o4/F1XRWbx4MQBDhw5lw4YNtLS0sHjxYn7961+zcuVK/v3vf1NZWQnASSedxE033URbWxvPPPNMIZe9yyxLfs3FYp2/jqo6p1//TlNKKSVsyyTStpZY2zpcnnLKqvcBpKTcoW8ss9L7vIcPzw+4t2yRJmz93bp1cNNNckHi+eezx0tLwTSJzvsPkQMGy7G9RtHy0Ut4ygZT7q/G5e7YpKjfCgYlw11RUeiVFCXbMom0riEcSo/vWoGZzB+nZxhOxk8s442XF0pn8eAtON3+Aq1YFcpbb70FwPjx43E6nQSDQSZOnMhJJ53EFVdcwYABAzLnvvHGGzQ3NzN+/HhcO5tD1ks4nVLQpbqfzulWSql+Lh7dQqS5HjPVadftq6S0ci8Mxw6G0iYScnM6M+XC/UokItlukGG+NTWS+f/jHyVg6mW6bE63acr/u2FI47lnnpHmaieeKB9vaZGLD5aFWb8MRgzH6fJDfT1JM0KLP4TD4cbtH5Aa8VWm5biq21lmnHBoZSrIriccWoltxfPOcTg9+MtHZ/Zj+8tH4XB6CrRi1desXbuW448/nieeeILTTz+dBx54gL333rvQy1K9SN+4DKOUUqrLmckYkdAK4tEmABxOL4HgGDz+ATv5TGTO9Zw5Ump9zz3dvNJeyJ+T8frvfyXYXLoUyou0KqClRcrJZ88Gn2w94NFH4cYb4fOfzwTdZsCLefv3SIysIpZcg7fVoKRyLNTU4ALKYqFUoK3NpVT3MRNhwqH6TOOzSOtqsK28c5zuQGY+dklFLb7S4Tu+0KjUdkQiEc4880zuvPNOampq+Na3vsWtt97K/ZpCVjk06FZKqX4oGW+lteFDbNvCMAy8JUPxl43Y9Ted6ZmklrXj8/qDs8+GKVMkMM0dN3bZZXDeeXDkkX1vjFV7e3aDn23DxImwfj3Mn59tnnfUUXDyyVhHHUm8fQPxcAPJeCucJ3v9JYOdX0zn9va+KgDV9yViIZmPnQqyY+0b6NBZ3BukpKI2VSpei7dk0E4v/nz8sWyrHz68f15bVLvG7/ezYMGCzP2zzz6bs88+u4Ar2nUrVsCBB8KAATKoQ3UfLS9XSql+yLYtWja9h+FwEaio7fx+2nhcyozdbpmno/I98gh84QtSar1qVcFbwu5yefmCBXDuubJffdGi7PEzzpDZSddfL69n1Ci48koAQhvfwUxGMqe6vUE8/irc/iqdSby7/vAHaVr3+c/DF79Y6NX0KrZtE480pPZiSzY7EW3scJ4nMDDTVTxQUYvbV9nprQzz58OsWTJJcNmyrnoFSvUeH30E++wjv6qamgq9muKmvw2VUqofsKwksbb1+MqGYxgODMNBWfU+GA737u2p9Xg02N6RmTPhqqtkrFhuwD1vHhx8sOyFL7T774eHH4aLL87OWh8xQvZqr12bv2/9gQewPW6SjzyA+6s/xj74YIxU0O3xV5GIbsETqMbjr8Lh7Id7/LvaO+9I+f7kyYVeScHZtkW0bb0E2aF6ws11UlGRx8BXNpxAsCYVZNfg8pTt8XOPGwd//rN2dVbFq7YW3n9firNU99KgWymlilwsvJlIaCWWlcAwnPjKZL60NgnqRiNHwq9/nX9syRLpfL733rB4cf6+8O6USEBrq/xp29lS97fegn//W2pn00H3yJHwwgtwwAHg92PbNsl4K/FIA4mmRowq8Hz5i7jHT828gfCVjcBfPrJnXkt/8cUvypaF6dMLvZIeZ1lJoq2rad+SCrJD9VjJaN45huFMNT2rSZWLj8mMOexKgwfDRRd1+cMq1Wt4vTBpUqFX0T9o0K2UUkUq3UwoEWsBpHGQ09NFZc7z50vn6qlT4ayzuuYxi92yZVLDN3lyfsCdGwh3hVWrJMhOv5OybRnhZduyaW/iRDn+hS9IwH3MMfmff9RRmMkYsdBK4pEGLDPb5dkxaW/sn8zCCAzOHNPu493gsMPk1g+YyRiRlhWZUvFIy0psK5l3TrrJYyBVKu4vG4nD6S7QipVSqvN0T7dSShWZ3Jnbtm1jGA78ZSPxlg7puq7Rd9wB110nTcQeeKBrHrM/aG2V2zCpNqC5WRqTXXqplKO7OxlImKYE0+mZsH/8ozRwO+442ROcMreigoFtbez9wQcy4msbpKmefH2YiQihTe8AYDiceHxVeALVuDzlGmSrPZKMt6XKxKVUPNK2dhudxUsJVNRk9mP7SoYWpLN4KCS7LcrKYOzYHn96pbrd6tXwn//AkCFwyimFXk1x00y3UkoVmXConlh4MwAe3wD8wTE4XV28z3baNLjmmn5Z/rpHysrklnbvvdLJ5k9/gmuv7dxjfeUrsif7oYfgs5+VYwccIAH41hv0RoyAuroOAbdlxolHGolHGnA4vZQOGA+A0+3HVzoMl6cMt68ie7HGtuWxDSPbwV51vXXrpBv+wIHS1K4PS0S3ZLqKh0N1xNo3djjH7avMdBUvqajBExjUKy7uzJ0rgchBB8HChYVejVJd77335FfJAQdo0N3dNOhWSqki4ysdTjLeir989K7N3N4ds2fLTe2Zq66CigpJM+SOYfvlL+GCCyTo2rgRfv5zKRt/6KHs58bjkop77bVs0D11qmTPd9D5ybKSJCJNsk871kJ6tJJhRPKy3YHg6I6f/PjjcPrpcOih0hROdY+bbpIOXj/6EXz724VezS6zbZt4eBPtqSx2OFRHIrqlw3neksF5QbbbV1mA1e6c2y3fmtXVhV6JUt2julqC7XHjCr2S4qfl5Uop1YfZtkWsfQOWlSRQPirnuN0rMkVqNzz6qIzoGjZMhqi2tckQVZAAfNAg+fsHH0AsJoG2a8fX0NMjw0av/4hY+3pyf/W7PGV4/OnO4zspb3/sMQ26e8JVV8m2je9/H66+utCr2S7bMom2rSMcqs9ks81EW/5JhgN/6fDMfuxAcAyuruotoZRSfYRmupVSqo9Kxltpb67DTIQBA6+/Gmdq3naPBNy2LTctM+5aAwZIrd9nPyuptspK+N73JBWR24BtJy1nbdsiGWvJG53kcLixbRunO5AJtDvV9fnEE6GxsXeMPCtmv/mN3HoZy0wQaVmVGd0VDq3AMmN55xgOF/7y0ZnRXf7ybtjeopRSfYxmupVSqo9Jv/GNhTcBEkj5y0fhCQzsuez2PffIRrDPfU6yn6pr2baM+NqNWejpEV/xcCOWlaCkchwLDzqSgXV1TGgNYVkJXKmLM0rtiJmMEg6tkAC7uY5IyypsO79fgMPlIxCU0V0lFTX4ykbicGhORymlculPRaWU6kNi7ZuItKzCshIAeAOD8JeP6vnxOengXq/bdo///hd++lOYORNuu22np5uJcCrQbsDMyTxKZjsbJDmcbh21pLYrGW/NjO4KN9cRbVtHes9/mstTlikVLwnWdu1UhF7m5ZfhrrukX2Qf2lqv1C6791645RY47TRpJaK6jwbdSinVR1hmgnDLCmzLxOkOEAjW4PaWF2Yx554Lp54KXi0b7Rbr18OLL+aXk2+HZcYJbXo3c98wHHj8VXj8Vbi8wa4NiD76CB55BEaNgosu6rrHVfnuvFPaZV9wARx7bLc8hW3bJKJN2SA7VEc8NfUgl8dfRSAopeKBirF4/FX9pl/E8uXy5R6NFnolSnWPpiZYuVL+VN1Lg26llOrFcrtJO5xuAuVjsO0k3pICZ5cCAbmp7jF7Njz4IAwdmnfYMhPEo41YyVimu7jD6cGdCq49/mrcvsrum2n84YfS3GvWLA26u9PcuRLtzZzZZUG3NF3clOkq3t5cRzIW2uosA2/pEEoyQXYtbm+wS56/Lzr4YNlaP2ZMoVeiVPc4/3z5dVPZOwcIFBUNupVSqpeKR5oIh1YQCI7JjP7ylgwq8KpUj6itlRvSIToe3UI80kAy1pzqPG7gKx2WKRUvrdq7Z7KPNTWyl1/ny3SvCy6AGTPgkEN2+yFsyyTStpZw83KZkd1cj5kM559kOPCXjUztx5bO4k7d75+xzz5yU6pYDRkiN9X9NOhWSqlexkzGiIRWEI9KvVesfX33zdveXe+/D08+KSmgc84p9GqKUiLWQqx9A4noFmzbyhx3uUvwBKqz++rpoW71APvvD7//fc88Vz824vLLueGGG7hy2rTMsddee41jjjmGjz76iNGjO85Qt8w4kZZVmf3Y4dBKbCued47h8BAIjiZQUUNJxdhUP4jON+tTSinVORp0K6VUL2HbFrG2DURaV6fKyg28pcPwlw4v9NI6evdduPFGKX3VoLtLSAbblm0Dmzdjv7+IpCOEPW4MTpcvNeKrGqd75/u8Vd82c+ZMFi1alLlv2zbXXnst1157bSbgNhNhwqEV2aZnrWs6dBZ3ugKpMnHZj+0vHd59Ww+KUFOTTMgLBmGQFhmpIrRwofQu2HffnU6hVHtIg26llOoF8mduS4fgkora3lvqOW4cXHqp1l52gWS8jXikkXikAV/pcHylQ+CZZ/BcdBHOY4/AfurfuDylhV6m6kEzJ0/mLw8+CG1tUFrK3//+d1atWsmVXzqB9Z88SnuojljbBjp0FvcGU2XisifbWzK4aDuL94R774VvfQsuvBD+8pdCr0aprvfnP8Pdd8MPfqBBd3fToFsppXoBy0piJsIyczs4Gm9gYKGXtGMzZshN7RYzGZFAO9yAmYxkjieiWyToLiuDmhqcw8dAbwq4H31UKhsOOwyef77QqylaM557jm8vXcrG39xM62cm8a3rr+aK82cQWvlY3nmewEACQSkVD1TU4PYN6DedxXuCywXl5dozUhWvCRPg6KNh7NhCr6T4adCtlFIFYNs2VjKaKRX2+CoJVNTg8VXpHOUiZts2rQ0fkIy3Zo4ZhgO3rzLVebxCDp5+utx6G9OEWAzi8Z2fW8T++c9/smnTJg499FAmT56M07lnJdvprSXtISkVn+hoxAm8uuRlXvhwLsEyD6cfPwVf6fBs07OKGlyesi55PWrbrrtObkoVK/0a7zkadCulVA9LJsKEm+swk2GCg6ZlgmxfibYQLTaWlSQZa8k0wjMMA8PhAgzc3iCegIz4cjj6yK/jE0+EVavA07+bb7344ov88Y9/JJFIUF5ezsEHH8ysWbM49NBDOeiggygpKdnh51tWkmjratqb61NNz+qxktlh0C03n8T4Kx/gaUp4+J8LePiBu9jniLNxunQ/v1JK9UWGLZ1blFJKdTPbMom0riHWvh7bloZZJQPG4/H1wQGZTz4JZ58tJeYvvljo1fQqtmWSiDUTDzeQiG3Btm2Cg6fhdPkAKS03DFePVjTMnTyZgXV17B0O7/xktUvC4TCLFi1i/vz5zJs3j9dee41QKITL5WLatGmZIPzQQw9lYHUlkZaVhJtlPnakZRW2lch7PIfTiz84WkrFgzV8e84vuOuu33HSSSfx5JNPFuhVKqWU6gp95NK6Ukr1bemZ25YZA8DjG4A/OAany1vgle0my4JwGKLRnZ/bD9i2RTLWQjzSQDzSlNdF2ukOpAIsCbp3KVv50kvwy1/KiK7/+7/uWbTaI4FAgNmzZzN79mwALMvigw8+YP78+cyd+zL/+ufD/PKXv5Rz/W4uO/sgLjs32wfB6S4hUFGb2pNdi690WF5n8WnT9sflcvHTn/60Z1+YyvjHP+A//4Hjj4cvfKHQq1Gq6118MSxaBD/5CZxwQqFXU9w06FZKqW5k2zbtW5YSj8jMbYfTm9q73Qez27mOPRbq68HnK/RKeoVEpIm2Lcsy9x1OL56AjPhy7U4H+jVr4N//7n17pz/5BJ56CkaO1CgkRyK6haaNn7B8yfN8+t5rrFn+MU1NDZmPR6IJSsqCBAdPT83IrsUTGLT9pme/+AX3//znXHnGGUyYMKGHXoXa2htvSNfygQP1y10Vp+XL4YMPoL290Cspfhp0K6VUNzIMA4fTkzdzuyjm5JaUyK0fMhNh4pEGHE4v3pLBALIv2+nF7auQQNtTtmddpGfOhD/+EYb3shnt774L118PRxzRb6MQ27aJhzezYc0S5s19nnnzX+fNtz/lvY82EE+YlAQ87DdpKGeceCDPvvQhScvmX488yOwjP7vTx7Ysi82bN3PvnXfyybp1PHbccT3witT2nHiiBNwHHVTolSjVPX7zG5lFr+PCup8G3Uop1cUSsRYcDnemM7mvbCTewODeO3Nb7ZSZjKVKxxsys9Sd7kAm6DYcTiqG7N91T7jXXnLrbUaPhvPPh4kTC72SHmPbFtG2daxa/havvPw8819bxJvvruCTTzdhWjYDKvzsP2UE37rqZA477DAOmHEkC95cwTnnXcSoUaP497//zZgxY3bpuebOnctRRx3FxKFDefSyywgeeGD3vji1Q0ceKTelitW++xZ6Bf2HNlJTSqkuYpkJIi2riIU34faWU1ZdxJeOV66Exx6D6mo477xCr6bbxNo3EQtv2mrEl4HbKxltt7+qT8xF1kZqu84yE0RaV/PJ+wuY+8oLvLbwbd58dxX1q2SLyPAh5UyfMpKZB+3L4UccwdT9DiNQMSbTKO/OO+/kmmuu4fjjj+eBBx6gvLy8kC9HKaVUL6CZbqWU2kNSbrqJSMsqLCsJgMPpw7YtDMNR4NV1k08+keGe++1XVEG3bZl55f+JWCgTcLu9QTz+Ktz+qu4f8dXcDKtXQ2kp1NR073P1c2YySntzPe+8+Qqvzn2F1xe9x+L3VrN+k/y/jx1dxUH7jebay0/n8NlHMX6fmfjKR3b4GkgkElx77bXcddddXHfddfz0pz/d4/ndqrCammQsfXl5v91No4rcM89AMgmHHw4VFYVeTXHToFsppfZAeuZ2OjBzugOUVNTi8pQVeGXdbOhQGRk2enShV7LHbNsiEW0mHmkgEd1C2cApmeZn3pLBuDwlePxVOJw92Gn+6aflYsaxx8Jzz/Xc8/YDyXgrLQ3LeGPBi8x99VUWvvkhb7+/li2hCE6Hwd57DeK4Iycx65CDOGz2MYys3R9f6dAdXkBrbm7m85//PC+//DL33HMPl1122Z4tsrkZTBPKyvr9TPRCuv56+POf4Yc/hO98p9CrUarrffnLsHYtLF4swzJU99GgWymldlMi1kJrw4eAzNz2l4/EWzKkeLPbuaZMgQceKPQqdptt2yTjrRJoRxozFQognajTQbfbW47bW4DyYJ8PBg/ufamHRx+FSy+VtMjjjxd6NTtl2zaJ6BYa13/I/Hn/Y/7811i4eCnvfriOcCSB1+Nk6t5DOfu0mcw6dCazZh/LoOGT8fird3nbwKeffspJJ53Epk2beO655ziyKzYBH3ectM5+8kk4+eQ9fzy1WwwDnE65KVWMpk+HESMgGCz0SoqfBt1KKbWbXJ5SnG4/TpcPf3kfnrndz5iJCK2NH2KZ2XFcDqcHj78q1Xm8tICrSznjDLn1NvE4bNkCra07P7cAbNsi1r6JDavfY+7LzzHvtYW8+U4d73+ykUTCpKzEy7TJw7jy4mOZNesQDj70GCoHT8Tt3b13nOvWrWPGjBlUV1ezcOFC9uqq5neWJX/2gX4Bxezee+WmVLF64olCr6D/0KBbKaV2kZmMEWtbhz84GsNwYBgOyqondf/+XrVHzGQUy4xlAiuHywu2heFw4vFV4QlU4/KU94mGaAV3wgnw0UcQ6B2d+G3LJNK2lvqlbzL35ed57fXF0ll8+WZsG6oHlDB9ynBuuPZgDjvscKYfdASlA8bt3uz0bfD5fHz1q1/luuuuo7KyskseE5Ast/a5VUqpoqHdy5VSaidkZNB6oq1rsG0Lf/lI/GUjCr2swlq4UMpea2rk772MZcaJRxqJRxpIxttwOr0Ec0Z6JRPtOF3+/rEVgOLpXm6ZCcKhFXy4ZAFzX36BBW+8w+J3V7FybTMAI4cFmT51JAcftB+zjziKfaYeSknF6J7dj6+UUkptRdMzSim1A4lYC+FQfWY2s9tbjsdXVeBV9QLJJGze3Ks2gllWkkSkSfZpx1qA9DVlA4fLj2UlM1UJLncvb0U8fz785jcweTLcdFOhV1MwZiJC25blvL3oZea+OpfX31jC4vdWs6mxHcOAcWOqOfSgsXxz5nRmH3EMtRMOwl82Iq8DvVK763e/gw8+gHPOgUMOKfRqlOpa8TjMmAFeL7zwgnbo724adCul1DbIzO2VxMKbAXA43PiDo/EGBhZ4Zb3EtGnw/vvy27qXiLSsIta+MXPf5SnD469OdR53F3Blu2HVKnj4YWho2HHQnUjIaLG1a6XbU25kMGcObNok56xZI++wzj8f/H7pnPO972XPnTtX/hw8GIYNk67Z27Jsmbw7Gz68Wxp8JWIthDZ/wuuvvcC8V+excPFHvPX+WlpaY7icDiaNH8zJn9mXQw+dwezZxzJszH54SwYXX8XCT34CGzbAFVdAV+0TV5329NNy239/DbpV8YlG4Z135O/aLLD7aXm5UkptQ1vTUuKRRkDGRvnLR+ne7V7Cti2SsRbikYbUSC8JENNVCelA2+nyFXile+CTT+C//4WRI+G00+SYbcM998i7pE8/heXLJTg3Tfn4gQfKXuC0mhpYsQKAucBAYO/0x/beGz78MHvulClyESVtyBAYP15uEyfC178uTb0eeADOPReOOQaef36PXqJt2yQijWxe/yHz5z7Hq/MWsOjtZbz30Xoi0SR+n4t99xnGgdP2YtasQ5h12LFUD9sHt29A8e+/nzxZUqwvvABHHVXo1fRb998v34qf+5yOU1LFJ5GAF1+UWfQnnQSOIrt22dvoO0illNoGf/lILDNGIDim+Gdu9xHpEV/xcCOWlQDAMJyZ/x+3t5zgoH0LucSuM2YM7LOPZDvTDANuv10C7Vw+nwTnW89Mv/ZaaGmROc+//CU0NcnA4UgEtm76VVsr77w2bpTP2bBBbnPnSoD+jW/IeSNHSkAYDMos6U6MNJPO4htYU/8Oc1/5H/PnL+TNd+v4cOkmkqZFeZmX6VNGcM1ln2XWYbOYccjRBKvHF2ZkW6Fdeqn8+2/9f6p61LnnFnoFSnUft1umE6qeoZlupVS/Z1smkdY1YFsEKmoKvZy+oaEBHntMulh34ztT2zKJtq0lHm7ANGOZ4w6HG7d/AN7AwOK5KBKLyVzmv/9dMpzhMAwYICXi6dq/W26R4xMnwtixEiwPGbLTFEWnGqmFQlJGvnSp3AYNgiuvlI8lkxJwh8PgcsFhh8Gpp8J550FVfq8Dy0oSbV3D8o8X8vLLL7Ig1Vl8Wb1UkAyuLmX/KSM4eMYUDjt8NtOmH0FpZS1Ot7/T/3RKKaVUb6ZBt1KqX4tHmgiH6jMzm4OD9tM3/bvi7bel3nL4cNkv3IVsy8w0wrJtm9DGt7DMOIbhSM3SrsLlDRbPPt4VKyQTfd99ko1OGzgQjjwS7r67Uxnlbemy7uWtrXDzzbLR9aOPsse9XuwvnEn4wtNYQjOvvPISC954l8XvrWbN+hAAY0ZUSmfxGdOYfcRRTJx8CIHg6L633171Gy0tsqujpESuMSlVTFpapGdnaalcP1XdS4NupVS/ZCajhEMrSES3AOB0evFX1ODxdeGs3WJWXw/XXSfZzXvv3eOHs8wE8Wgj8XADVjJKcMj+maA6Ft6MgYHbV1mcXakvv1wCa5CLGBddJI3MvvMdCbpffHGPn6I7RoYlP36f2D/+yod/fZAFdWt5FXjF52ZzNIFhwISxAzlw3zEcfPCBHD77aGrHH4ivdFhx/h92tUhEthN4PLrRsoAOOQQWLIDHH5eCDqWKSfra+dChsG5doVdT/PS6nVKqX9l65rZhGPhKh+ErHa7BQGfU1Mg70T1gWybx6BaZpR1rJvcasJloz5SNF2XHeMvKBlNz5kgH8quugmOPlVLyf/5T0g/+3lN1kYg20/qX3/P+jT/kpaoSXqj08vYH62hrj+NxOZhW6uWMo6dyyDGHc9jsYxkyagrewODib3rWHSZNkgtbCxbAzJmFXk2/lUzKn9rZWRUjj0eC7urqQq+kf9BMt1KqX7HMBC2b3sGykri9QQLBGi0nL4BYuIFw83Js28occ7lL8ATSI756zyiyLmXbEmTX10s5eQ8FpJ3NdNu2TTzSwMY17/HqK/9j/vzXWfTOpyz5YB2xpEWpw2Dq/qM4aP/xHDbrUA6edQxVQ/bG4x/Qza+kn0h3nl+4EA46qNCr6beSSRkO4HJp4K2U2jMadCulip5lJfPGfcXDDdjYxZlB7YVs2yYZb8VwuHC5AwAk4220bF6C0+VLjfiq7h8XP+66C776Vfn7K6/A4Yf3yNPOHz2a4evWwTPPMObYYzt8XCpA1rG67i3mvvw/5r32Bm++u4KPl23CtGwqg372nzKcmZP3YvbYCRx48BGUHng0Lk9pj6y/32lvl2oIv183EyulVBHQoFspVbRs2yYe3kSkZRWBilo8/qqdf5LaNcuXw9FHy97jJUu2eUoy3kY80kg80oBlxvEGBlJSOS7v4/0qaPvwQ9hvPxmO+pOfwDe/2e1PuWX5cpbPmMEBjY2ZY29WVVG7cAHeKidLP3idua+8yGuvv8Wb766kbpU0chs6qIwD9h3JzIOmcthhR7Df9NkEKsb07dnnSimlVIHo5VOlVFFKJsKEm+tIxlsBacalQXcXMk1YuVLGR+UeTkYk0A43YCYjmeOGw9lhz3y/CrgB7r9fAu7PfAauv37H5y5aBL//PUyYAN/61m4/5fIZM9gvJ+AG2K+xkbl7T+T8AaWs29gCQO2oAUzfdxRXf+U0Dp99FOMnzcRfPiqvQkSp/ubHP5aBAldcAWPGFHo1SnWtl16C730Ppk+HO+4o9GqKn/42VUoVlfTM7WjbesDGMJz4y0fiLRlc6KUVl1GjZL/pVqWvbY2fZIJtw3Dg9lXi8Vfj9lUUz4iv3ZXuQn7uuTvfy11fD3/6E8yevVtBdzLexieP/T0vw53mAo5KWHxuwjD2+86FHH7EsYwaO006i+/s/2j5cpkxM2wYHHNMp9eldtGPfiQl5l/9qsxhVwXxhz/Il/ypp2rQrYrP+vUwbx54i7SFSm+jQbdSqmgkos20Ny/PzNz2+KtSc4D1N0pXszwuEpPGEI82UZozV9sTqCYZa8UTqMbtq9RMaa7ycvkzFtv5uVOmwA9/KBc3dkF63ny4uY725jri4U2s+M8CJm11ng38CjgQuOjosznw2u914gUgAfeFF8Jxx2nQ3Z1++UvYtAm+8AUNugvo0kth82aZ5KdUsTnsMBmUUaVFgD1C3w0ppYqKZcZxunwEgmNw68ztLmVbJolYM/FwA4nYlsyIr0SsOVO67y8bAWWFXGUvtt9+8Nxz8NBDcNllOz53773ltg22bRMLbyTcLEF2uLmORKy5w3kV0/aBvy7IO2YCDwLXAQc/+ii3H344s2fP3vWxXsOGScA9ffqunf/978PkyfD5z+/a+Upceim0tuq74QL7zncKvQKlus/IkXJTPUMbqSml+izbtjAT4by9wfFwA25fpc7c7kJmMkq0dQ3xaBO2ZcrBcATf86/j8pbhvPDLOF1aTbBT69bJXu4f/7hT73RsyyTatpb2dJAdqsdMtOefZDjwl40gUFFLIFhDoKIGl7uEN6ur2a+xMe8Kexy4o7SUB8aO5d1332XWrFnMmTOHY489tmtnan//+3DzzfL3d9+FqVO77rGVUkqpPkSDbqVUn5SIhQg312OZcYKD98Ph9BR6SUUld8yamYwQ2vgOAA6nV2ZpN8Zw1Y4Hj2fXyqVVR9GoNFYryy8NsMwEkU3LiKxeQrh9De2ORiwz/9/YcLgJlI+WILuiZrvbKJrr6/n0wAM7dC8ft2gRwTFjeOqpp7jllltYtGgRBx10EHPmzOHEE0/cs+B74ULZt758udw//HAZj6ZUHxOLyXxup3PnbRiU6mtWroRVq6SAaezYQq+m+GnQrZTqUywzQaRlJbHwZgAcDjclA8bj9pYXeGV9n5kIE480EA834HSXUFo1IfOxSOtaXJ4yXJ4yCcgaGuDss8HthmeeKeCq+7DbboPf/hbrh7fSfsJMwi31tDfXEW1ZTdnLHzHy5qdonzKcFXechcPlJxCsoaSihkDFWHxlwzu1X37F88+zecECBh58cIc53bZt89xzz3HLLbcwf/58pk2bxk033cTnPvc5HI5ONL97+2245hp49dX846tXw4gRu/44SvUSlZXQ3AwffQQTJxZ6NUp1rVtuke7lX/4y3H13oVdT/HRPt1KqT8iduW1ZSQC8JYN1rNEeMpMxEqlZ2smckmXbNrFtK9PN2l+2VSeh6mp4/vmeXGrRSMRaCDd9SuDvf8C9fj2Oi76Ee0wV5qn7ETt2b2y/B4c7gG0YeALVjD3oG3hLhuxR9/cxxx7bIdhOMwyD4447js985jO8/PLL3HzzzZxxxhlMnjyZG2+8kc9//vM4nantGo89Bt/9rmSv77lHji1ZIu/cHn9cUoK5Kis14N4d5eXQ1gbLlmkKqoDM1G4al/6KUUWoshLGj4ehQwu9kv5BM91KqV7Ptm1aGz7IzNx2uUtkz6pHO3btifbmOmLtGzP3DcPA7a1IjfjSffFdwbZtEtEm2puXZxqfxSMNABjxJFX/eovq+xfijCTk/NIA1umfw3HhlzCOOqpg6543bx633nor//3vf5kwYQI33HAD55xzDq777oOLL5ZmauefL3u2ly6VqCSZ7PhAWlq+e0pLZWRYXR3U1BR6Nf1WS4t8WQeDHa8nKaVUZ2jQrZTqE8KhlcTaN2Zmbvf7mc+dZFsm8egW3L6KTGVAtG094dAK3N7yVKA9AIfTXeCV9m22bRFr35gZ3RVuriMZb9nqLANf6VDZi10xloBdifuhx+CuuySABfj2t2VWM0AoJI3Ipk+HkpIefT1vvPEGt956K//+97+pHTGC7x58MBesWIHn7be3HWTncrvhiivgV7/qmcUWk02bwLKkokTTrEop1edp0K2U6pXikUYcLj8udwCQoNG2kzpzuxNs2yIRbSYeaSAR3YJtW5RUjMVbMgiQZmnY5u79mzY3w6GHSmDw/vv9Ng1kWyaR1jWZIDsSqsdMRvLOMQwnvvKRlARrMt3FnW5/xwezLMkKP/aYzMJOj+V64gn43Ofk33jKFJg0CSZMkLrACRNks6nP1zUvKJ1dXb4cjjgCKioAeOfcc7n1gQf4FzAK+DZwCbDTZ/3DH2T8lVJKKdWPadCtlOpVzGSUcKieRLQZl6eMsupJXTvGqMjZtk0y3iqBdqQxs/8dwOny4SsbgTcwcM+faMsWGDBA/h6PS1azH7DMGOHQSikVD9URDq3EthJ55zicHvzlYwhU1FJSUYO/fHTnKwjefRfuvRdqayXb+e1vy8ixbfn3v+Gkk+Tv//kP/OY30hHd75dg3OcDr1c2qH7lK7DXXnLuU09Jdr2xURrjNTZKVj3txRfhyCPl7/fdB1/7Gu9PmMBtq1fz8Pr1DAW+BVwGBLb3Ol5/HWbM6NxrV6oXsG2ZeudyyaS/wHa/yJXqm378Y3jpJWmkdvrphV5N8dOaJaVUr2DbFtG2dURb16YaeBm4vUHABjTo3lW2laC14UPk300CQI+/Co+/Om+e+R4rK5Pf1oZR1FnuZCJMJFSfKRWPtK4B28o7x+kOpGZjj6WkogZf6fA93w+/fLkEz4ceCvPmwXnnSRfwRYukBD19++QTGDw4+3kffCCB9/Z85jPZoHvjxm2fO2CANO/KvSZ/1llwzjlMXrWKBxcv5v+WLuX222/nG21t3A5cD1wBdPgKmzRpt15+v5feWvC1r8n+btXjTFO6O4P8N2jQrYrNu+/Cf/8Ln/1soVfSP2imWylVcOmZ2+myXLc3uP0SXJVhJqPEIw1YZpySitrM8bamTzAMF55ANS5PuVYKdIJ8LWb3Y8faN3Q4x+UNUlJRm5qRXYs3MKjrewx8+CE8+CCMGgWXXda5z3v9dSkTj0RkFngkkh04/KUvZWcfLVsmAX11NVRVyZ+DBmVKyrfpz3+GSy6BE0+EBx+k7rzz+NGTT/IXoBy4DvgaEATpWr569e69/v7O4ZCLHuvXw5AhhV5Nv5RMwrXXSvD9i19I4YhSxWTePLm+e+CBsM8+hV5N8dOgWylVUIloM62NHwEyc9sfHIM3UF3gVfVelhknnh7xFW9LHTWoGLI/DqenoGvra2zbJh5pIJwKsNub60hEmzqc5wkMpKRibCqbXSud3fvrhYxnnpEs7MEHS22ibcNf/8qqyy/nJ/E4f7Rt/MDVwDXHHceAZ58t9Ir7pksvlX/bX/5SxocppZTq0zToVkoVlG1btG5+H6enVGdu70Ai2ky0bR2JWAvp0nGQEnxPoBqPb0DPjvgyTdlLbNuyn7gP7OlOb2FIj+4Kh+ozY+iyDHxlwwkEa1LZbB1Nt0s++gjOOIN1H3/MT22buwGXx8NXv/51vv71rzNwYBf0EVBKKaX6KA26lVI9KploJ9q6lpLKcZmSXNnDrSPActm2BbadCaRj7Ztob14OgMtTisdfjcdfXbgRX7FYtmN2KNQrs3GWlSTaslpKxUN1hJtXYJnRvHMMhwt/2SgCFRJk+4NjcLq6qBP4nkgmpSzc4ejxMWG7LRKB666Du+9mE/Dzk0/mty++iG3bXH755Vx//fUMHTq00KtUSimFtACJxaSFRzBY6NUUPw26lVI9QkYrrSbatgGw8ZePxF82otDL6lVs2yIZayEeaSAebcJfNhJfqQQplpUk1r4Bj7+69wSFhx8uQeF//iON1QrMTEaJhFbSHko1PWtZhW3lz5J2OL2pMnEpFfeXjeyds8kffxxOOw0OOQTmzy/0ajrnkUfgJz+BJ56g0evljjvu4Ne//jWxWIzLLruMb3/724wYod/7qnfbtAmGDZPu5ZGI9IxUqpjMmAFvvAFPPgknn1zo1RQ/DbqVUt0uHmkkHFqBZcYB8PirCATH6B7klPSIr3i4EStn/JTHV0lp1cQCrqx3S8bbCIfqU/ux64m2rd1GZ/HSTBY7UFGLr2Roz5bh767eGnQ//jjcfLNccLnjjl3+tObmZn7zm99wxx130NbWxsUXX8x3vvMdxowZ010r7btiMekg73DA2rW9soqkP1i3DoYPl/6DyeTOz1eqrznpJHjnHZkIecQRhV5N8dOgWynVbXJnboPMiQ4Ea3D7Kgq6rt7Cti1aNi/BTIQzxxwON27/gNSIr7L+27BrG+LRLZmmZ+HmemLhjR3OcfsGZIPsYC2ewMC++W9ompBISHrN6y30arLuvVeafJ18sqRHOqm1tZW77rqLn//852zZsoXzzz+fG264gXHjxnXDYvuoSCQ7n6q1VUeGFYhpylQ904SRIwu9GqVUX6dBt1Kq27Q1fUI80oRhGPhKh+MrHdY3sozdxEzGSMZb8AayTaXaGj8hEWvG7RuAJ1CN2xvU/e2kOouHN2VGd4Wb60nEtnQ4z1syRErFg7WUVNTg9lUWYLX9yJo18P77MHAgTJ++2w/T3t7OPffcw09/+lM2btzI2WefzY033sjee+/dhYvtoywLVq6UJoVjxkjGWymlVJ+mQbdSqkvZtp3JLEqmewWB4Gicrv455NQyE8SjjcTDDZlO2cHB0zL7ss1kDIfD1TcvRsyYIWmgZ5+VGc97wLZMom3rUk3PpGTcTLTnn2Q48JeNyIzuClTU4HL3kSZjapui0Sj33nsvP/7xj1mzZg1nnnkmN910E1OnTi300pRSSqkuo0G3UqpLWGaCSMtKwKCkcmyhl1NQtmUSj26RWdqxZnJ/zLq95fjLR+PyFEHJqMslQffatdJxqBPk62WV7McO1REJrcQyY3nnGA4X/vLRmf3Y/vLROF29qNS6O334IfztbzBqFFx5ZaFX0+3i8Th//etf+eEPf0h9fT2nnnoqc+bMYfoeZNOV2hMNDbKborQUvvrVQq9Gqa537rnSQuKOO0B7W3Y/DbqVUnvEtm1i4Y2pTtEmYBAcvF/v6LBdIPFII21NSzP3Xe4SKR33VRVX0Pj007Ln+KijsuPDtsNMRgiHVmT2ZEdaVmPbZt45jtSe/0BFLSUVtfjKRvTfue1PPgmnngozZ8KCBYVeTdbq1TJnZtAg2H//Ln/4RCLBAw88wG233cayZcs4/vjjmTNnDgcffHCXP1evFY3C3XfL99bXvqbl5T3o4Yfh00/hxhtlF8WUKfKlvjGnfcRtt8G4cXDWWYVbp1JdoawM2tpg2TL5mlbdq5++m1FKdYV09+hkvA2Q4DJQUdtvAm7btjOdx50uf2a8l9tbgctdgttXKSO+3EVaWn/iidv9UDLemtqPXU+4eTnRtvVA/jVel6c8M7qrJFiLt3SI7mdPGztWZl6PHl3oleR79ln48pflgsDjj3f5w7vdbi688ELOO+88/vGPf3DrrbdyyCGHcPTRRzNnzhxmz569y4+1du1aysrKKO9r3b/b2+Haa+XvX/taQZfS33z6Kdx0k2yrv+giueVOQ7zlFvje9+DWWwu1QqW6zm9+A+GwXFhS3U8z3UqpTtt65rZhOPGXj8RbMqRvdorupGSinXi4gXikITMGzenyExy8X2EXViC2bZOINqVGd8me7Hh4c4fzPP4q2YsdlHJxj7+qX3y9FJXHHpOIY/Zs+MUvuv3pLMvi0Ucf5dZbb+Xdd9/lsMMOY86cORxzzDE7/do5/fTTqa+v57XXXsPv70MXvlpa4PLLJfJ78EEdEN3D0oH1zTfDnDk7P66UUrtCg26lVKdZVpKWje9gWYl+NXM72raeWPtGzGQkc8xwOPH4qjKdx/sD27aItW8k/sw/iTavpnmsh4QR2eosA2/pEEpSAXagoqbf/PuormfbNk899RS33HILixYtYsaMGcyZM4cTTjhhu8H3e++9x4wZMzjvvPP4wx/+0MMrVn3Z1gG2BtxKqT2lQbdSapdYZgyHM7sfWUaBOYp65rZlJnA43Zn77Vs+JRbenHrdUjru9lUUfUm0VDasIRxKj+9agZkMM/HkO3GG4yz9+yUkh1fhKxuR2Y8dCI7B6Q4Ueul9l23LDXRPbw7btnnuuee45ZZbmD9/Pvvvvz833XQTp556Ko5t/Dv9+c9/5pJLLuEvf/kLF154YQFWrHojMxnDtuJYZgLLimObCSwzjmUlcDg9lFTUZgJtw5Bvxe99D37wg0KvXKmukUzCRx+B1wt77aUFNT1Bg26l1A7ZtkW0bR3R1rWUVIzFE9iz0VC9nWUlSUSaiEcaSMRaKB80JTOWKhlvw0xGcPsqi7rBl2XGCYdWpoLsesKhldhWPO8cw+Gh9rpHcMYh8dCf8O0zs19UO/SYp56Ck0+Ggw6ChQsLvZpex7ZtXn75ZW6++WZefvllpkyZwk033cQZZ5yB05k/fu9LX/oSDz74IAsXLmTKlCkFWrHqbpaVlOA5HURbEkjbVgLD4SYQzPZHaF7/JpaV2ObjON0BgoP2BcDtluAEIBSCvtYeQKnt2bw5u5fbNPXabk8o3neNSqk9loiFZF5yMpq631yUQbdtWyRSI74S0WZs28p8LBlryQTdLk9pcYz62oqZCBMO1Wcan0VaV0POvwGA0xXIND0LVNTiLx2O8fYPAXBv60FVcXriCfjZz+Dww6WNc4EYhsGRRx7JkUceybx587jllls466yzmDhxIjfeeCNf/OIXcbnkLc6dd97Jm2++yRlnnMGbb77Z+xurrV0L06bJRIBVqwq9moKybRvbSqYC6fzMtIwUHJk5N73laVucLj/kBN0OlxdMBw6nG4fDg+F043B6cDjcmYquW26RgNvlkj9/9atsaflf/gLHHQdDh3bbS1eqWyWTEnTbtgbcPUUz3UqpDtKZznikAQCH00OgfHRRBtzJRJjWhvdT486E0x3A46+SzuNF2Ik9fTElHWTH2qUhXi6XN5iZjx0I1uItGVT0ZfS9SjwOra3yjj/Yi/bC3323NPk67TR49NFCrybPG2+8wS233MJTTz3F2LFjueGGGzj//PNxu90sW7aMAw44gOOOO46HH364dzfwW7kSxoyRoDuyda+E4mDbFpaZ6FDibTic+EqHZc5r3rA406xya1s3rwxtehcrGZNA2unBcKQDaQ8OlxePv2qX17ejPd2nnw6TJ4PfL9dEqovv16JSqhto0K2UyhOPNNLevDwThPpKhuArH1k05dTJeCuWmcDjHwDIm7/QhrfAcOAJVOPxV+Mqor3Itm0TjzSk9mJLNjsRbexwnicwkECwNhNou32VvTswUYVRXw9vvy0pvl46O/vtt9/m1ltv5dFHH2X06NF85zvf4eKLL+bpp5/mjDPO4Fe/+hVXX311oZe5ffE4LF0qKag+Vg6fW+KdDqoxHPhKhmTOCW18J68ZZa6tA+mWTe+RTLSnMtDpQNqN4fTgdHrxlgzOnGvbVpdcGNxZ9/LLL4clS2DIEPjnP7Mf37RJRy8ppbZPg26lVJ5ELERrw4eZmdvFUE5tJiLEIzLiy0xGcTg9BAfvnwkq5Zi3KIJM2YO/XoLsUD3h5jqS8datzjLwlQ7LNj2rqMHlKdvm4+3Q6adDYyP86U8yV1qpXuT999/ntttu4+GHH2bYsGF861vf4tNPP+V3v/sdr776KjNnziz0EvsEKfGWPdLpEm8MA29gYOacls1LMBPhvK05aU6Xj+DgadlzU4G0YRgYDk9eibfT5cvLdFtWEsNw9FiVzW23yZzu7XUpz53Tfd11EEhdnw2FYPRomDkT7r8fqnY9qa6U6ic06Faqn7OsJGaiPW+cUyLajMsb7NNBqJmMkYg0Eo80kEy0Z45L5/EBBCpqiiJ7b1lJoq2rad+SCrJD9VipPfhpMkd9VGY/diA4WvY47qmhQ2HDBnjnHdh33z1/PJX16acyo3noULj00kKvpk/75JNPuP3227n//vupqqrC7/djmiZvv/021f24NlhKvKXRmJRwG5kKIIDWxo8wE2EJsrfafrK9QBpkjKLD4Ullpl04XT785aMy55rJWOqc3vfz9+GH5Vvvxhu3f85tt8G4cXDWWdljTz4pOy723hvee0/3yKreb+lS+P73YeRI+MlPCr2a/kGDbqX6sXi4gXDLSmwrSfmg/XC6vDv/pD4i3FxPtH0DIE2X3N6K1IivSgyHcyef3XuZyRiRlhWZUvFI6v8vl8PpJRAckwqwa/CXj8obfdZlnnxSSmGPOQYqKrr+8fuzZ56BE0+EAw6ARYsKvZqsdeskKqmuhn32KfRqMjZv3syrr76KZVmYpollWR3+vmHDBp555hkWLFiAZVlMmDCBjz76qPddXGxulrplnw/OO6/Tn55b4o1t5411bGtaKoG0Fc/rYwE7DqSBbIm3043T6SNQUZP5mJkIg+HA4XD36Z+ve6KuTkrM0wUUlgWf/zyceiqcfbZ0Qleqt3jlFTjiCJg4UUaHqe6nQbdS/ZCZjBJuricRawbkzVZJ5V59spTctkziqc7jvtJhuL3SmTgZbyXSskoCbX9Vr8yq7IpkvC1VJi6l4pG2tR07i6e2ApSkgmxf6bB++8a3aCxZAr/9rdSsfve7hV5N1m9/C1/7Wq9rpHbDDTfwwx/+cKfnORwOnE4nlmXhcDhoaGjofd3MP/5YUqYDBsj2DXJKvM04YOdtB2lvrpPS7tSc6dwS750F0nkl3k4fpQP2ynxMtqUYmYy1NlLsnCeegM99TsaMrVrVu/ohKrV6tfwIDwbhoosKvZr+QYNupfoR27aItq4l2rYu1XTGwFc6HF/Z8D71hsq2LRKxEPFwA4loU+ZNprdkMCUVtQVe3Z5JRLdkuoqHQ3XE2jd2OMftqyQQrE0F2jV4AoN6X7ZOFZ9//hPOPx88HmnydccdcMklhV4VIEFpU1MTTqczE1jn/pm+9TaZEm/byjZwXL2a5FcuwQ74iNx1W2redLbEu0MgvXkJyXhb3uNmSrxdPsqqJmaOJ2IhQLLWhtPTZy9G9gWhEPz+9+B0wvXXZ4//4x9w7LFQWVm4tSmlep4G3Ur1E7ZtZZrdALi9FQQqxnTN3t4eYlsm4ZaVJCKNWDkl1U6XD49fOo873X3o9dg28fAm2lNZ7HCojkR0S4fzvCWDU0G2zMn2+HrJu7XFi2Wk0dSpks5RxeO3v4XHHoP/+z+YNUuOvfEGzJgBgwfDxo0SgP/tbwVdZm9lWUlsK5k3cjDSulYy0qmMdW6J964E0pJ1ljnS5QMnZ47Go1vAtrLdvftxiXdv9/HHsiujrEzK0bXhmlL9h17iVKqfkAZildhWsk/N3LbMOA6nB5DsTTLajGUlcTg9mVnafaUs3rZMom3rCIfqM9lsM7HVG2vDgb90eKrpWQ2BYE3vfX1f+IK8c1ywILuRUfUtsRi8+qps6rvqquzxefPghRfgsMOyQfe0afDWW9JF6t574YQTsuc3NEgK75JLZC9yEXjwwQe5+OKLWb58OcOHD8e2LS699FIWLXqTV199lWAwSLRtA2YyvNWYLCnxdjq9BIfsn3m8RLRpG4G0/Gxmq0ojX+kwbMvEcLpzxmVtu8S711yEUzu1ZYtMgautzQ+4W1r0uqXqWS0t8mO7vFxnzfcUzXQrVaRs2ybWvhGXpzQTtNmWiY3d60sKzWRURnyFG7CtBMEh0zNvNuORRgyHC5envNeXVFtmgkjLqszornBoBZYZyzvHcLjwl4/OjO7yl4/pOw3tjj5aNoY99BDsv//Oz1e77rnn4JRTJNBdsKDrHjcUgrY2GD5c7m/YIB3SDUP2D6drXp9/HpYtg+OO27VxcN/9LvzoR9L87amnum69PWDr+c6x8GasZAQzGefgw0/i4Bn78ZNbr+dHP7ub+x76NwvfWMzw1L/ftjPSwuH0UDFkevZx2zdh28kOY7J6+89j1bVsW74N070nW1qgpkZ+nN5zj/akVD3jT3+CL31Jrp0+/XShV9M/6E96pYpQuvlWMt6Gy1NKWfXkVMMcJ701TLXMOPH0iK+cN7GG4cBMhDMXDjz+3luPZyajhEMrJMBuriPSsgrbzu8Q7HD5CAQlg11SWYuvbGTffdP9wguFXkHxsizJQsfjXfeYv/oVfP3rcOGF8o4LYMgQebc/dCi0tmaD7mOPlduu2msvGDECLrsse8w0Zf3+wm/5iEeasJLRVDY6PSZLstOG4aIiJyMda9+Q+Rl0wzcv5eKv3MiggRXcfe/DPP3Y3ZmAG8DjH4jbW5EKniWYNtKZ6a2y0t6SQbu22Pffh5NPhmHDYP78PX/xqlcxjPzA+rnnoKlJeidqtlv1pEAASkoKvYr+QzPdShURy0oSbVlNtH0jYGM4nPjLRuEtGdyrs8Kx9o20N9eTnQVr4PYG8QRkxFdvDUqT8dbM6K5wcx3RtnVsPc/W5SnLjO4KVNTiKx3ap5rWqQKJRGDzZpkzNHRo5z//O9+RsWP33y/1rAD/+Y+kNY4+Gv73v65dL8hFAo9HogqQ5/7GN+CWW/KD8S6SiIVSgbTskc4t8TYMYxf2SAvDcFA5bEbmfrR1HZYZywTSM2cdy4cffsyz/3mGI448qvt/lr75Jhx4oAzQXbWqe59L9QrvvSel57Nny33Lko7Sp58uBS+9sAegUqqTeuc7WaVUp6VnbstIGfD4qwkER2f2Q/cWtm2RiG7B4fRmstdOTxkyBqc00xCtW+ZK7wHbtklEm7JBdqiOeHhzh/PcvqpMqXigohaPv7pXX/BQvZTfD6NG7fy85mapDdy4UbLYaW+9JamzV17JBt1HHglr1mRLy7uad6ttEX//u6xrc8fvk+1JxtuwzFiq0VhCxmClM9IYlA+amjk30rI6Ndaqo62/59zeCpwufyoL7e5Q4p3LVzYs8/f//ve/fPLJMkzTZOiw4T3zvbz33rBwIbj0LVp/MXVq/v2nn5Zvn8cfl+suWnKuVN+nmW6likA80kRb0yeAdMENVNTi9vaeoaC2bZGMtcg+7WgTtmXi8VfnzYQ1k7FetZfZti1i7ZsyXcXbm+tIpsbtZBl4S4YQqKhJBdq969+92331q1BfD7ffDvvtV+jVFD/bln9vlysbkH/4IUyaJEF6c7NkmkFqVlta4IgjCtclJ5GAv/8d83MnYgW8WFYC3nkH47n/Eb/4LOwS+X4vq56U+ZSWze/vMJCuHJZt2BcOrcRMRrKNxvJKvD17/PPkrbfe4ogjjuC3v/0tDz30EIFAgEceeWSPHlOpXbFxo+wGCQTgppuyx59+Wq6dBQKFW5tSavdo0K1UEbBtm7bGD3F5g/hKh/Wa8uVkvDXVEK1R3nCnOJxevIGB+MtHFnB1+WzLJNK2lnDzcpmR3VyPmQznn2Q48JeNTAXZYwkEx+B09+N3P1OnSjb1+efhmGMKvZrismIF/OtfMGiQjOYCGfb785/Lnz/9qRyzbWl2NnWqvDvvoZSYZcYzt+wIrAS2mcDGzpsNnRtIl176XTzPvkL07JMJ//S7GIZBxdAZmQxyuLmeZKIdhzNnf3Q6kHZ6cLoCPZJtXrFiBQcffDBXXXUVN9xwA4sXL+bAAw9k0aJFTJ8+fecPoFQXW7oUJk6Ua2iffKJzvtWe+ec/4dln5dfH5z9f6NX0D1q7pFQflIg2E21bT+mA8dIczTAordqn15UxtzfXZeaCOxxu3P4BqRFfZQVfq2XGibSsyuzHDodWYlv5TasMh4dAcHRqdFctgeAoHM7ek40vuJtvlja8++xT6JUUl/SGzldekSx2Oujebz/Z4x3KqbgwDMlqdwHbMrP7o/MC6Ti2bedVprQ1Ld1hRtq27cz3uNPlx7ZNHA439qknYS1fjfH16ymt3EtKu1ta5BODQQIVNV3yWvZEU1MTxx9/PKeccgo33HADANOnT+fkk0/mxhtv5Nlnn+3eBWzaJHvug0HpBq8UsG6ddDmfNCk/4I5Gi2ZKn+pBCxfK5MfKSg26e4pmupXqQywzTji0gnikEQB/+Uj8ZSMKvCopDU9EGolHmyir2hvD4QQg2raeZLxNGqJ5gwXNwJuJMOHQimzTs9Y1HTqLO13+zF7sQLAWf9mIzGtRqlusXQsPPyydvr/5zezxSZOkdPzUU2VjJ0hzNdvudG2p7IlO7Y/OBNUSSJdU1GbO21lpd25Guq1pGcl4Cw6HZKC3LvF2+yq3f2HNtrPN1gDmzIE774Sf/Uxm2PR3r74Khx8OEybAxx8XejWqF0kmpeHawIFyv7UVxo+Hk06SIhjtfq521YsvyjTKmTOlt6bqfprpVqoPSM/cjrSuwrZMwMBXOhhvyZCCrckyE8SjjcTDDXlv1OPRLXgDsofUV7obXZe7SCIWSo3uqqc9VEesbQMdOot7gzK6q2IsgYqaVJf33lGar4pQIiGdqYcPz+7JrquTDt+DBknZeDoYveMOSV8ddFD283NGb9m2hWUmMhnpzJ+2RSA4OnNea8OHJDr0IkgzCARrMsFxesyVw+nJjL3KNh3zIN8/cm5u1rvTcgNu25bRc83N2i0qLRiUd8EjCn9BVfUuLlc24AZ48knYsAHmztXRT6pzjjpKbqrnaKZbqV4uGW8j3FxHMtEOgMtTSiBYk+n83dPMRJhwyyqSsWZyf3y4veV4/NW4/VU9PuLLtm3ikcbMfOxwqC5TDZDLExiYCrJTTc98Awpe5t6nLVsGbW1QWyuBgsqXSEg5eNoXvyhZ7dtvh+9+V47FYvCFL8Chh8K112K7nJmxV+nMtG2beRUtbY0fE49u2c6TGlQOy81ILyUeaUxlpDvOks690GTbVmEuOpmmjDc78cTsbKTHH5cLFNddB1VVPb8mpfqI+fMhHIZjj5X7ti09Ls88U5qu6a84pXoHzXQr1ctF29aSTLTLzO3yUXgDPTtz27YtbCuZHT1mOEik3vC73CWpWdpVPdp53LYtYm0baA/VZQLtjmWxBr7SoQRSWexAsAa3V2vvutT558vGsCefhJNPLvRqeo9wGI4/HhYvhvXrsUtLsa0k9owDcPzvecxoC8m29VIJ4vXCE0/Q1rSMRMPb2La1jQc08JXmjKtKBcaGYWQz0jll3rkZ6UBFLSWV43YpmC5YlYfTmf/1Y1nSFO6DDyTbn9u+WSmV59BD8+//5z/wu9/JyLHVq7WARG1bU5NsVwgGO057VN1Dg26leiHbMjN7if3lYzAMF/7ykT02c9u27Uzn8USkEaenLNONWEaS1eD2BHG6/Tt5pK5hWUmiratpb65PZbLrsZLRvHMMw4m/fKTsx66olc7irp5ZX781aJCUSnt61yz4nmLbFtaS9zD+/jesARWY11yBNzBQ9lyvXg3t7bQ98zcSh02XqpBTD4Qzn5Rsbmgl3pIhORfQ7EzAbRgO3K+/R+DSb2JP3IvYf/4BtgWG/EwIBMdIWbjDtdMLcD1dddJlbrlFZiZ97WvZY6tWSRA+aFDh1qVULzdpkmS6KyvzA+6XX5YA3e3e3meq/uTSS+Gxx+QCzeWXF3o1/UMf/W2sVHEykxHCzfU4nB5KKscB4HR5Kakc2yPPn0y0Ew83EI80YJk5nbwT4bzSU1837yU3kzEiLSsJN8t87EjLKuyckWMgY8f8wdGUBCXI9pePwuHUdxM96sknC72CbiFdvOOZPdMef6q8ubGR2H8fJTZ5DNbASiwrgfvNuZT97JfYe42h/YJj8fir5Pvkz3+m3R8jPqxU6j0Bh78kr8Q7N5D2l4+SC2sOj1xwK2uBLSFojxMI5nf07qmLbwXjcMBpp8kt1ze+IWXo99wD555bmLX1hHnz5F3wpEmyHUGpThg9WvoS5vr002ybgPfe091ASrLcoFnunqRBt1K9gG1bRFvXEm1bmxq148BXNrJHS7bbt3xKLLw5c99wOPH4qvAEqnF5yru1pD2ZaE/NxpZS8UjbWglIcjjdJakMtuzJ9pUO087iapfZto1tJWWPtJXA7c2+64y0riERbc5rRgZgtLRhl5em9kg74Mwz8b78MskffYvkeZ8DwJyxH7GzT8E65CA83orsxanZs/ElwnhtK1UC7t5h+bbTtdXMn0MOgY8+0ndEabGYZLrDYZlJXsxaW7Ol9Up1gbo6KRCZPDk/4E4mpTmb6n+efFJ28mhnr56j32pKFVgi2kw4VI+ZKpd2+yoIBGu6NeC2zDjxSCMef3UmO+x0l2IYjbh9ldIQzVfRbXs8E9EtUiqe2pMda9/Y4Ry3tzIzvqukohZPYJA2PVMd5Hbxzm0uGG1bTyIWyuvundv4LxNIA2YiktcTwNiwmfKzrsaxsYG2ZfOzgfThh2NvWI+3YiTeQfvKPuphLowHjtvm2pzuzo32ylNSAhMn7v7nFxuvF15/Hd56C6ZMyR7/yU9k7Nq3vw3DhhVufV3poINkno+2o1Zd5DOfgfp62ceb1tYmxRRnnAE33wylhenNqgrIocNaepR2L1eqQCwzQThUn+my7XB6CATHZEtZu/r5rCSJSJPs0461ADKj11syGJCSWhu7y/eA2rZNPLxZ5mOHZIRXItrU4TxvYHDOjOwaPP4BXboO1Q1+8ANYsgSuvRZmzerSh7asJLaVyNuXH2vfSDLeipXu6m3Gsaxk5uO5gfTWlRtp6S7eZVX7yAWnefOw7vk91pS9sa++SpqS2Q6MQYMhFIJ3380GeZal71J6k9ZWGb3W3AwPPQRnnVXoFSnVZ/zlL3DxxTB2LHzyifQzVEp1H810K1UohpHKrsnMbV/ZyG4IeC0S0S0SaEeb8zojuzylGI7sHmjD4aQr8si2bRFtW5fZjx1ursdMtG11loGvbAQlOUF2oUagqT0wd65k5M44Y5dOT5d45+69T895z91DnVvinRtIJ+Ot2wykpYu3RxoQOuVcT2AgLk9Z/rzpZXUYc1+V9abXsGwZjr/fj+PQQ+GbN2Yf9NlnYfx46UaU1pMB95o18NRTMGCAjBRTHZWWwiOPSJvmM8/MHl+8WIYZp2ehK6U6uPBCGDJESszTAbdtS9HIWWfB9OmFXZ/qXrfdBps3S9O9vfYq9Gr6B810K9WDzEQ4r+Q0EW3GcLi6LeC0zATNGxYjI4TA6fLjCVTj8Vd33EO6B88RaV2dMyN7BZYZyzvHcLjwl4+SUvFgLf7g6C57flVATzwB69ZhH30UxvgJmcPx6BbMeNtWGekElpkA7F3KSINcCAoO2i/TOCwe3YKViEgzsrwxWdu4WGVZsG6ddA5KmzpVMvOPPJIN0latkvatRx2VHXTbG7zwAhxzjGzCXLKk0KvpOywLpk2T/fD//CecckqhV9R569bBokUyn7yLK0iU2pH//hc++1nZ2bBuHZTrlM2iNXGiVDi88gocfnihV9M/aKZbqR5gWUmiLauJtm+gpHKcjBVC9m93lfSIL8tMUDpgPAAOpxtvYCCGwyUN0dx7vkfQTEYJh1akgux6Iq2rsHNKfOV5fQQqxhAIyn5sX3nXZ/FVz0rEQpiJdiwzu0famjka2xqGZTVRmdPdPhFp3G4gDXKhJt2zwO2rzMyXdjg9+XOnt2qU5/FVgq9yWw+Z77334Mgjwe+X0V3pXgCf/awEMoGcvdajRsEPf9i5f4yeMHCgdO/WbG3nbNki/8c+X37AatvZr4PebsECuSg0axa8+mqhV6P6kZoaOP98yYDnBtxvvAEHHKC7a4rJlVfChg3S7V71DM10K9XNYuEGIqEVWKmRV77SoQSCY7rksc1EhHhERnyZOXOrg4P377JGbMl4K+Hm+tSe7HqirWtJZ87TXJ4yAsGazIxsX+nQbmvCprpOMt6GmQhjWXFsM5Et8U5lpiuGHJAJfHeUkQYIDp6WqV6IhTeTjLdulY1OB9Wurv3a+Ne/4N57JaOZHjYaDsuAWo9HZuUM6d4Rd6oXWr0aRo7M3r/wQqmh/b//6/0XMl58EW66SSozfv/7Qq9G9UO516jq6qT8ePx4WLhQs99K7S5NPSnVTdIztxOxECCl3YGKmrxRRbsrHmkk2rqWZKI9c8wwHLh9A/AEqnd7XrVt2ySiW7L7sUN1xLcRaLl9AyhJBdiBilo8/mrtLN5LmIkIZjKc2h8tQXRuiXdw0H6ZQDrWvmHHGWkrgTN1rstThm3bOYG0G8eGBhzhGMawEThytgt4AwMz1RxdxrZlD/ncuTKvOZ2trq+H//xH5t6kg+5AAN5+W94lunV2e7+UG3CvWgX33Sel51df3fuD7qOOgtdeK/QqVD+W++v8gw+grEwyorkBd18qHlGqN9CgW6luEGvfSDhUnzNze7jMld7NDJ9lJsAwMiXatm2RTLRjGAYubwUefzUeX2Wn51bbtkWsfVNmdFd7cx3J1EWCXN6SIZnRXYGK2i65cKB2nZmMYZnR/EA6XeJtxikfOCXzfx9tW0csvGm7j5UbSDvdpbh9CRyOVKOxzJ/p5mOezOd5SwZnOt1nXHOJNPu691645JKufdHt7TIKavz47LFzzpGNhrNmSfk4wMknS2Cdvp82aVLXrkf1XaNGwbx5kkHeb7/s8X//GyZMyP8aU0rlOflkuW6VO24sHJZGa1/8InzrW7KTR/Utzc1SDOb368WTnqJBt1LdwOHyY9t2zsztzjcNsy2TeKrzeDLWjL98FL5SmUPr8Q3ArqjB46vqVFbbtkyibWtTXcWlXNxMhPNPMhz4y0Zkgmx/sAbXnswbVtskgXNsq0Zj6UA6QVnV3tlAunVNJwJpPy5PKQ6HZxsNx9x5gbSvdAi+0j0ovS4tlTLurs4m/+9/cPzxsM8+MrIL5F3BmWfCxo35A2UnTJBbsXntNXlHu9de0lRN7ZmDD5ZbWmsrXHSRvPOcOxcOPbRQK1Oq1ysvz89yP/ggfPwx/O1vcOON2/881XsNHCid69esgeHDC72a/kGDbqW6gGXGScbbMrOl3d5yygdO6XRXctu2SMRCxMMNJKJNeSO+kvGcUnKHE1/JzoMly0wQaVlJe3M94eblRFpWYpnxvHMMh5tAcDSBYK3MyQ6OxuHsmv3g/Y1tmRJEpwLo/BLvOKWV4zOBdKRl1S4H0g6XD6fLn99oLCcz7cgZ/eYrHZa5ONPlHn5Y9kin32U9+GDHc267DcaN2/WZyb/9Lfz5z1L2e8EFcmzKFHk3EApBNCpNsQB+9as9fw19RSwm+5LLygq9kuIUCkmgvXQpzJyZPR6LgbfAP//+8x/4/vflIkF/+ppXfcZFF8m1T7dbdvaAlJv/4AdyrXDixIIuT+2EZcmvWJBst+oZGnQrtQds2ybWvoFIy2rAxuneN5PV3p2AO7Tx7byg2OnySem4vypv1Nj2mIkI4VC9lIqH6om2rMa2zbxzHC6/zMcOppqelQ3XzuI7YVnJvLFXuSXeJRW1mUA6HFqx64F0qnw7sz+6Q4l39v/EXzYcf1kvuBT96afS4MmyYM6cjh+/5Rb43vfg1ls7fiwelxFjCxbAz36WbYO7dq3MVX7ppWzQPXiwBJy54776mwMOgDffzF5wUF1rxAh48knJeOcOKZ41C2pr5Ws0d194T9q8OTsyTKleyOnseF31hRck6P75z2H9+vyCJNW7GIb8So7F8od5qO6l77SV2k3JeBvh5rpMMzOXp1TetO3q5yfaScZCmaykYThwecpIxlrwBKrw+KtxeXac5UrEWlJl4jK+K9q2no6dxcvz9mN7SwZrZ3HkIodtJbcxSzpOoHx0tmt3cx2x9o3bfRx/+QicDtnQ5nB6MAxHtpw7FUwbqWx0XiBdPhJ/eYHe1O+uG2+UgPt735P7uYF3OuC++WY5b80aGd80ZYp83OGQfd9tbdJJet995fg558g5s2fnP1d/DrhBMtzTpxd6FcUvt5LgzTfl9tFHUoFRKEcdJfvNq6sLtwalOmnQIBkiUVOTH3B/+CHsvbfuG+5NDEOqFLTPaM/SkWFKdZJlJaU0OBWIGQ4ngfLReAKDdtrB20xGZcRXuAEzGQEgOGg/nG4J2iwzgeFwbjMotm2bRKSR9lTTs3BzPfFIQ4fzPP7qVFfxGkoqxuL2DehXncXTJd65+6NtK46vdHhORnol0bZ1232M4OD9cLrk/yTSsppI6xoMhzOVjc4v8fb4B2b21ds5s6qLWjrAPukkGCBbKvjb3yTgnjMH/v53yVofeaQ0r0r72tck+L76ailBV6q3WbIE3n8fzj47e+zOO6UUfdq0wq1LqT7CsrKFTCtWyI/6adOkmEmz36o/00y3Up1g2xYtm97DMmOAjEbyl4/eYTMzy0xkZmkn422Z4zLiqwI7JzOd+zjSWXxDqumZlIwn4y1bPbohc7/T47uCNbi9xTlEM7/EW+ZKe0sG5+yRXk20fT22ZW7z8z3+gZmMdDYwNjJ7ovNmSRvZLvDpPdK70hm+XwTckM1wpzPeIBnr9PEDD5T6Q9PMnytz5509u86+bONGeO456V506qmFXk3/MWVKtjoDYNkyuOYaiSSWLpXGdkqp7XLk/Bp8803ZM1xZmR9w67ixwtqyBW6/Xf5Pvv/9Qq+m/9BMt1KdFGlZTTzSuMszt+ORJtqaPkndM3B7g3gC1bh9lXl7qS0rSbR1TWp0Vz3hUD1WKhueZhhOfOUjpVQ8WEsgOCaTJe+LtlXi7fFXZwPp1rXE2jdiW4m8pnJpuVUC6Yw0sM0Sb2/pMJwuaZBkmQnAxnC4+1UVQJdzu7PdWL7+dfjOd6Qlqm1LGbk2Adt9r7wCRxwhHYk++qjQq+m/VqyQ7RJtbdKTIK2hofvKv1evltbQgwfD1Knd8xxK9ZBNm6RvYfp6VSQChx0G554LV15Z+L6F/dGnn8r/R1kZtGydy1HdRjPdSu2AjNhah9tXkdlf7Ssbjq9seIespm1bJFIjvpzuEvxlsifV7avA7Q3i9lXi8VdlRjZZZoy2pmypeLhlJbaVyHtMh9ODv3xMak92zU6z6r3F1iXebm9FzhzpDcTDmzKB9tZcnvJMRhrbylQVADgcrkxG2nC48y6Ve0sGS8DudO+0MVxf+Dfs9W65RQJutxsSCfnNPWIEfPnL8Otfa8C9pyor4bjjCtfMS4kxY+D++6VqI629XcbZHXAA/OUvspm1Kz39NFxxBZx2Gjz6aNc+tlI9bNCg/G+R++6T3pmNjXDVVYVbV39WXg7XX5/tPK96hv5zK7UdiegWwqEVmMkoiegWygZOwTCMvGDbtm2S8Rbi4Qbi0cZMabMzEc4E3YbhoKx6H5KJMG1NSzPzsSOta2Cr7K3THch0FS+pqMnbh9wbyOgrGYnlcpdm1hZr30Q8sjk7JmurjunBQfvidEiLTNtOZprPifwS71yewEDcvopsR+8dlG87nB7oPf9UxS23adqcOdn7IHOPtXpgz02dCs8+W+hVqDRnzg+XuXOhqUnKzdM9DbrSgAHy/z96dNc/tlIFdsEF8iuitDR/3NgvfgFf+IJeZ+wJgwbBT39a6FX0P1pertRWLDNGOLSSeKQRkGAuEByDx58/viXSsppY+8a8bK3D6cXjr8ITqMY2E5nRXeHmOmLtGzo8l9tbIbOxK8YSqKjBGxjU4/uCpcRbGo453YHM88fDsg89d0xW7o+L4KB9M2PMIq1rUmPTsgzDkWk6FqioxZU610xGsJLRVMbag+FwaYl3X7J1wL318euuk3dPIKmM3/wGrr0WKioKsVqlusfy5bBundTJgkQN114LZ56ZPaaU2iUvvSRN+8vL5duqpKTQK1Kq62mmW/UbZjKamaG9LdK4bCORzGxrA1/pEPxlIzEcTsxkJNPRGsiURzscLly+ARiGg1j7RprWvka4uY5EtKnDc3gCg1L7sWsIVNTi8XdDliT9elIl3ukxViD7yxPRplTGWpqR5V40yA2kTTNKPLqlw+OmS7xz91i7fQNwOn3Z0u8dlHg7Xf68f0fVh9x227YDbshvrlZVJftgf/ITuc2dm9/FXKm+buxYuaU9+6xsq/jDH2RcXndkwJUqUqWl0sJi0qT8gHvlSi346A6mKb0hXS4tTOtJGnSrfiHSuoa6N39N7QFXZ8q+t5YuJweZuR2oqMUwXMTCG4mHG0gm2ikfOAWXp1Syw9gkYi3E2tcTbq7HTLRt9YgGvrLhUioerCFQUbPTuds7Y9s2tpXMGyuWiIUygbSd2kedW+JdPmjfnCxzmFh4c4fHNQwDw+HOKwt3eyswKlypMVnuHZZ4u9wBc0texQAAKX5JREFUSD2HKmLjxsGtt0pAvS1z5kjr2vQ4sEMPlb2vX/969hzLkj3g2j1nx958E847T4be/uc/hV6N2plJk+ArX5FgOzfg/vhjmDBB39kqtQMHHijZ7kROm5dVq+RXyezZ8OSTENC3GF3mf/+Dz35WRrm99VahV9N/aNCt+oXQxrfBNgltfGe7QbfbNwC3rxKXpwzDcBIJrSARk7aOtmWSiDWzecULxMObCIdWYJnRvM83HC78ZaOyTc+CY3aYWc8lWWMjU2adiLWQjIUyHb1zm5LZtp0XSCfjrUTbOpaug5R421Yy+xq9QSg3ZMZ0zpisbZV4uzyluDw6VFPlOOusnZ+TG5CfcgqceGL+DJmHHpIu5z/8obSvVdsWicAnn+z8PNU7jBoFv/99/rG6Opg8GQ4+WDLhu1oz+8gjcNddcOyxcMMNXb9WpXopd06P01dflT9tWwPurhZL9af1eHZ8nupaGnSromfbNi0b3wGgZeM7DB57IoZhEAtvJta+gbKqfVKZYwN/+UhaNy/BNOMkIo3Eww0kYs3Ew5s7NAdzOL2pMnEpFfeXjdxhV+xkvI1kvDUTPG9d4r11IJ0ef7XN15RTEu7ylOMrHZYfSKfGZG3dhM3lKdvjbLtSneLcqrvdH/4gI5FWrizMevqKqVNlbJhft2L0WQsXSv1mSUnnNqmuWgUvv6wdpVS/du650h6hLaeIMBqVoQ4XXCA3tw4i2S0nnCC9ILWrV8/SRmqq6EVa11C36JeZ+2OmfRXLjBKPNmMlI3hLBhMIjknNx66jteEDEtEtQP63htNdKvuxU0G2r3QYVjJGMtGWCqSlrDsbVMcpGzgZl7sktY61RFpWbXedZVV74/ZVAFIyHo804nC4M83IdlbirVSfEI1K4H3xxbKRD+DDDyWr+7nPaRmuKi7r1smIsfSQ4nBYKkauuAKOP37bX++ffALvvivZ85kze3a9SvVid98Nl18u16OWL9egW/UtGnSrohJr30i0bV3esdaGDwhtfBeQEm5f6TAcLj/JWIuUbSejWGakw2O5vEF8pcPwBgbjDQzE4Q5gWwlKq/bOZKR3HkhPxO2rBGTPeCy8OSd43nmJt1L9wqmnyqa9dNm5UsXqV7+SLudjxsjIMY0alNplra1wzz1QXQ0XXijHbFuOnXGGHFeqt9KgWxWVVUv+QuvmJbv1ud6SIQQqanF7KwAyXby3lhtIx6NbiLVtkEA6FTznZqYdTq9mpZXaEcuC739fOj8vXAgTJ2aPO/rx905jo5SXl5bCZz5T6NWorrJxI/zsZzBlitTHgkQNL78s7Zv1wqtSnfLKK/KtM2CADA7QHTk79/rr8N//yi6m004r9Gr6Dw26VVExkxHWffwILZve3eXPcbpLGTrxTIIDpwAQaVlF25ZlmWy00+nB4fLhcHplDrevCqdbGqTZtgW23WHvtFKqk9rb8/e9fv/78MYb8KMfwb77Fm5dhTJ/PsyaJWXJS5cWejWqO/3vf9I07eCDYd48WLtW+h4MGQK1tYVenVK92quvSvHIQQfB736XPb5xIwweXLBl9Wq//KUMFTnnHLj//kKvpv/QRmqqqDhdfkZMOp/mARNZv/Rf2JaFlJVvi4Oy6n3wlY3EVzI0e9TpxelKZbltCzMZxUxmO5U7Xb5M0J2INNG2ZRlgYDgcGIZTbg7501c2XDqGA2YiQjzSkPkYhoz9St+XoF5LDVU/lRtwRyJw553S6eXSS/tn0F1eLkH3iG1PW1BFZOVKqWg48ECp7vjTn+D//k9GkG3dEV0pleeww2TCYjRnoMzq1TJu7IQT4IEHNPu9talTZW/8gQcWeiX9iwbdqugYhkHlsIMIBMewfNEvUoH3Vuc43IyZdgUe/wBsy8Tpzr7hd7pL8JcNx7ZNbMuSP20T2zLBtjAc2cA429HcxrZMbPI7nHtLspdZzWR4hx3JSypqM+cnos20NX2SCeAxcgN6B97A4EzTNcuMEY80pfaEO1IBvSNzX/aLayZe9SF+v2S5//zn/Nq3hQuhqio7B7yYTZmSnZmjituXviRNBAFuvVWqO6qrYdCggi5Lqb7CMPID6+efh3gctmzRgHtbjj5abqpnadCtipfhyButlcu2ErjcJdscn9WZ+dSewCA8/uq8wNy2JVDHMnG6s4/jcHolqLat1Hnpm9zfOpiXx7FgG68hve8cJIMeDq3Y7hoDwdH4SocBMrYsN5g3Utl2Uvc9vgHZYN5Kkog252Xj00E/6b/r/kPVXcaOlQAkzTSl4/nSpfCvf0nzNaX6qmRSqjnmzoX77pOLSSADiaNRmW9/882FXaNSfdQll8hujfQ8apC/n346XHSR/Ln1NEulupsG3apotWx+DzCQ0V8OwALDAbZ0MW/Z/B7Vo4/ao+cwDEMCUHb+07szwbzbW0Fw8LTUnnEzJ0iXAN3lKc+uweHC469KfSwpQX3m3KRkvlNs28Qy49t9XqfLh5sKAKxkhPYty7Z7rr9sBP5ymSNrJqPZYD4T0DtSWXonbk95Jpi3LZNkvCUT6Gc+J32+UtvS3Aw1NbBhg3TNUaqvsCwZi9fUBIcfLsecTvj5z6Xz02uvwTHHyPGzz4bZs2G//Qq2XKWKwd5759//29/gmWdkGt+pp2rQrXqeBt2qaLVsfIf0rO2SiloG73UyG5Y9Sbh5OWAT2vTuHgfd3cVwOHHuYgDq8pRSOmD8rp3rLqV84JS8bHw2q27mZ/4NJ25vMC/YJ5Odt/ODeSuJmQhv//WUkVMOH6e18ePtnYmvdCiB4OjUuQnatyzLy8bnBuhOd0lmz7xtW5iJ8FbZeId2jy8WVVXw9NMSdAeD2eNf+pJ0y/nmN6GysnDr62rvvSeZ/REj4IknCr0a1Rm2LZUZrtRbrCeekNTa5MmwJDVdwzCk+1MymZ3hDTB0qNyUUl3qtNOkR+Hw4eDxZI/fd58E4WUdCx+L1tVXS7uIOXPkpnqGBt2qKMWjW4i2rQUMBo89gapRR2AYDsZMu5yGVS+zafkzRFvXkIhuyYz/6g8Mh3OXs+0ud4Cy6n22+THbzt8n73D5KKvaOxO85+6Bt+1khzJ+l7skpxzfzHk8O69k3baTJGKh7a7RVzIkG3RbJi3bGBeX3ufuCQzMBPO2baWC+VRTu3RmPnXf6fbnrdlMRjUb31sMGZL9+0cfSdMpw5AMYTEF3e3t8NZbENr+17/qhW6+WVoo33ab1LiCdHoqKYFhw2Sjafod/ze+Ubh1KtXPVFdLf8Jc8+bB+efLr5X6evD5CrK0HheNQiKhEwp7mgbdqigZGJQOmMjA2uMIlI/KHjccDBx9FCUVY9lc/xxSfq46a+vsscPhwpHKZO+M0+2nfNDUvGO2bWfK4sl5bMPhprRyr7xsfDpQx7Zw5lxAsG0Lh9Obl41PH89k9tPnWibxSNN21+gNDMwE3bZtEdr4du6rz+tU7/ZVZoJ5gPbmurwAPbdTvcPpybvoYVlJzcbviYkT4fHHpXXtlCnZ42+8Iff7cgediRPhP//p26+hmEWjkiJbsADuuSdbqxqPSzXG3LnZoLu6WrZHuPQtl1K9SSQC48fLjo7cgDsUyi+oKjY//alkuPtTdr830DndSqmiZGca1knAbRhOnC6vfMwyiYU3Z4J3207mdKq3cHvLM83nLDNBaONbHbL7aR5/NaUD9so855Z1C7e7Jo+vktKqiZn7W9YtxLatnCy7I5V1d+LylOUF8+nO91vvm8dw4nC6cbo0OAOkXW1NjWQW586VhmxK7akVKyRwTu+1TiZhwABobZWKhGnT5Pinn8K6dTBjBni9BVqsUmpXmaYUFpWnWuWsWyeB+JlnSgl2f8l+q+6nl12VUkXJMBwYzm1nkA2HE1/pkG1+bGsOp5vKYTPysvG5neoNR/6PUX/5yLxsfG6nekdOYJzpTr/V39NT57Z+3Gjr2u0G/m5vOWXVkzL3mzcszlxo2LpTvcMdyKv+iLVvxMbGMFw52fnURQCHC4fTs62n7L2WL5cURXm5BN9K7Q7bztZe/u1vcOGFkg57+WU55nLBlVdKqfiAAdnPGzeuf4y0U6pIOJ3ZgBukBUN7u/wq0YBbdSUNupVSahfsSqd6w3DgLxuxi4/nkGA+d8zcDoJ5b8mgbc6Nt21Tyupz2FZSHnOrufEALiuZdz/Suma7He2d7gDBQftm7rdsfh/bjGey8emmdYbhxOH0ZrrZA6nyfXsbTfC6eW/8AQfIWLE1a8CRuuhiWXDOOZK6OP307PHerLkZXn9dystnzy70avqPH/xAguxf/CI7lm7mTAmyHY78YPxHPyrcOpVS3eKKK2D69PxjsRhccIH07Tz22L6/F/rhh2H1aplMuHWXd9V9NOhWSqkC2VE2fmuB4K5nbWXcXMe58badPw8ewO2rxDYTHebGY5s4tjrXMmMSoHeM5XG6A3lBd6RlFWYyss31OZxeKobsn7nf1rQUKxmVCw2pPe6ZDL3Djb9seObcZLw1pyQ/db5jq071Xm9+Wfm//iXvMp55Bo46Kj8z2Vt98gkcf7xk6+vqCr2a4hOJSErrnXfyg+cNG+Tf+6WXskH3XnvJtoXSXWtCqZTq2w46KP/+/ffDP/4Br74qDdf6+s6Re+6BF1+UTu4adPccDbqVUqrIdKYkvKSidpfPlQ71+cF8+r5jq8y8y1OKw+nuMGNeAv/8LLeZCO8gQPfkBd3h0AqS8bZtn+twUzH0gLxzzUQE48AaPN/8GpSVkXS1YbSGMQwXvjXN0rAMMBMRbKzeMze+pET2CQ8bVrg1FJNNm6ClJVv6nUzCeefJhs4rroDRqf4JX/kKnHwyzJqV/VzD0IBbqX7sM5+B666Ta7m5Affjj8u10b4WhH/mMxJwa8uTnqWN1JRSSvWY9N743IA2GW/FspId5sbblgTouSX7bU3LMJPhDnPjQQL0iiHZusCWzUu2G6A7P11J8Mhz4Oij4amnaG2tIxFr7nBeOuOe+7jR1nUkE+2pwDy7F570eDp/VSbrbplxmWu/dTZe9Zy774bLL5dBvY8+mj1+ySUyZu6aa2DUqO1/vlJKbeW11+DQQ2HMGPj4474XeKuep5lupZRSPSa9Nz7X1nPcdyTdKT5XpiSe/EZz/vJRqaA3f268bVm43n9V9umWlYHXi9HuxOH0ZJvgZR7bBCv/2nQiHiIRbd7uGj3+6szfw6EVxCONmftbd6ovr56cuQARa9+EmWjvMDc+HbC7vMFM0C6vF50bv7Uf/EC2E/zud/KOGGDfVF+C5ub8c//0px5dmlKqeDQ2Srb4qKPyA+5IRCc9qm3ToFsppVSftr298W7vDgatfvVbcOIXpDEWUDpgvIx/uu467Ouvh/F75exzzw+6vSVDcHsrOsyNty0z1Qk+v8uOYRgd5sYDsjc+59xErDkvQN9axdADM0F3uGUlsfaN5M+Nz+6FL6kcj8Mpe/LjkSbMRHtONj6/U73TXdL3MvCRCPzvf9I07xvfyB7/4ANYskQ2LKaD7gMOgM2bZV62Ukp1gZNPhuOOg7acYqoNG2CffWTnys9+JsMNlErToFsppVT/NGZM/v077oB778VYsADef3+7WWSPr3KXn6J0wHggG2xng3Qz0xAu87j+Kpwuv3z8o0/wfv0mrEHVRP/4Mym1zzk3nekGOxXsb6O7XUoi1pwK0LctOHgaTpfMxgmHVhJr39Bhbny6U72/fExm3n0i1iLB/FZz49Od6h1OT9cF8y0t8u42vce9qQlOOUU6in/pS1BRIce/9jX4/OfhiCOyn+tyacCtlOpyW08MfOgh6bm4eDG43dv/vEKbNAnWr5frlvvvv/PzVdfQoFsppZQCCeIWLYJzz81moG1bsqSDBu3RQ2f2czu2/2vX468Cf5XccW6GBW/iHD0ad84M9rSSynGUVNR2mBuf7lSfe8HA7UkNod1qbnz6IoCRU+6f3VOfPzc+zV8+OvP3RKyZaOva7b6e8kFTcblLAIi2rSPatj6nSV1+p3pf2fBM4J9MhPOCecedv8fx7RuxLzgf/vgHOT58OHz2s7IXOxzOBt2HH77d9SilVHe65hqYMkXKy9O/QuJx6dV42WUyfbA3aGqSiwN9YXpmMdFGakoppdT2PPEEnH02fPvb8P3v99zzNjXJ2KpAQNrj9hDbMqWpnd2x67xtm3j9A7N70MMNJKJNEqDnlNqnP6d80NRsBr1l1Y4D9IFTcHlK4dZbMZ96gtYffR1rrzEAuF+YT9mF3yQx6wBaH/o1ZdWTcHvLU2vYTLRtXYe58YbhBIcTb2AgTpdssDSTMaxkuGfnxiul+rW//hUuugiGDIGVK3tHyfmKFRCNSrGXz1fo1fQfmulWSimltufJJ2X/cCzWs887YACccUbPPifSmM25iwGoN1CNN7BrZdu+kqF4fAOy2fhIGF57HWP1apLnnonDmepE9PLLOBe+ie+ND4lPmoxtW5iHHULojX9jDa8G284rWbfMOGYivN3ndXuDmaA7EdtCuLl+u+eWVk3MbB1IRLcQbVsnAXru3PhUoO72/397dxpjd10ucPw5c2bmdGa6TlnaIhdqlYoi4lURjAZfuBCMW4IxkagxGkzUqDFq1DeCIRAlMTFGXxiNQJDE+MJEiff6oqDGgF5BAZeiuIN0o+u0ne0s98VvzjZLW6RPp8XPJyHpOfnPOf8pCZzv+W3rOq/bbMxGszFVQr9nqv0Zt04eOOmuvLIclHDJJf3BvW1bWQVTXYbv++avrOLUMNINAEtptSJ+9KPyyam9eO+xxyK+//2yfnh0dHnv70wxNVW+vFg3tx7+t7+NuPTS8ve3f3/30+gPfxjx1FNlh6JFzigv094rnc3qGvXpaDam+kbjo9k9Q742tqEz2j599KmYPvzkghH8tlVnvbCz+d7UkZ3HDvTxrTE8Mt553SP7H1twTTvWR9duLksHohyP1zsyP3+n+sHaqk7Ml1kHs0bj4Vnml78sU80vvjjioYdOj9Fv8hnpBoClVCoRb3pT/3M33BBx110RjzwSceedOe87MVE+jdVqEZdfnvMep8qXvlSm5n/0oxFf/GJ57kUvKtF9ySURBw9GnH12ef7Nbz7mS80fPa4O1jobux3PYiPz7XPjW61GWWc+Z6i2NlaOXxStZr17bnyrGa1mPaLVjIGe96xUKmWkft5u931r4+c069MxM7lvyXscW/e87sj8zKE4vPfR3t++b6f6FavO7/w+jdnJEvM9o/HRM9W+OjTa+fKhfV9G42F5/POfEevXR7zylf3BXa+XfR8zNZsRX/1q+V/L+97nfPFTSXQDwNNx9dUR99/ff1TV9HSZJ3iyPjH96U9lU7Dzzy+f0M4ErVYJ7G3bykLGjRvL8xs3lpHuRx7pXjswEPHww8tznz3a58ZXon8UuTq4ohOpxzM8sr4zkh3Rv1N9tBpRqXY/VVeHx2J07ea+0fjetfADPdeWqfTVntH4eTvV9wR9szEV00d3L3mPo2sujOrK8u+jMXskDu353dzv339ufKVSjdrYuVEbPXvudWdi6sjORc+Nj0o1qoO17tIA4IS84x0R11wTceRI97lduyIuu6xMRb/hhrzdz6enIz7+8fLn664T3aeS6AaAp+Pd745417v6F+N95SsR3/pWxJe/vHBk/N9Rq0Vs3Vp23zkd1esRv/51OZj2LW8pz1UqEd/9bsRvfhPxk5+UDegiyuj1H/4Q8YIXLNvtnkrH2qm+OjjSGck+nuGR8RgeubxvNL492t5qNfu+FBgYXBEjq8/vG43v7mhf74v57nFzi5wbH9H3BUKzMX3MDfBGVj0nRlafX3589mgc3P1wX5i3/xyVagyPrO/GfLMeM0d2943G9//MUOeceXg2Ghsr/7TdcUf5z+m2bRE33ZT73u98Z9lV3SZqp5Y13QDwTDSbES98YcQf/xhx220R733vct/RyddolE9pI3PB+NOfll2ANmyIePLJ7vk4t99eztR+61vLcV6cluaPxveuc68OjfTs+D4V00d29o3G9+5Uv2LlpqiNnRsRZb16ewR9Mf2BPhkHdz+05LUrVm6M0TUXRkQZbT+0+5FFz40v6+DXdqbZt1rNmDm6p+dIuu4RdX1fAsBpptksh2WMj0dcdVV5bnY24pOfjLj++rIihzOb6AaAZ2piIuLb34748Ie7I+D33VfmD77udd0oPRPdfHOZNv65z0V8+tPluampiOc+t6w3v+OOiNWrl/ceWXa9o/C9a+Fj7nF1aKwcCxdlA7ypiccXPTc+Ws2ordwQI6ueU649bqBviNE1myOiBPqBnQ8ueW1t9JwYW7el3G+zEYf2PNI3Gt8b5oNDK2O4Zw+Amcl9faPxdqon2513lolVGzaUVUZZU845NUwvB4BnatWqslFYW6tVHj/4YNm15iMfWb57O1GNRsTXvlZGse+4ozv3cXS0bHZ2//3da1esiPjXv87sLxM4qSqVgb7168dSHazF2LrnndC1A4O1WHPOSxY9Nz6azagOj/VdP7Ri3aLnxpfN8rpx3Go1olGfWvJ9a6Nnd6K71WzE4X1/XPLa4ZH1sXL8os7jQ3t+17/rfE/MVwdH+qbw12cmomySZzSefpdeGnHttRGveEV/cP/iF2UTNv/5PbMY6QaAk21yMuIzn4n4zncitm/v7s7daJzYwax//nMJ9bPOytkhvdUq66z37i0btrWfu/DCMqTy4x9HvOEN5fmdOyOeeCLipS9dnkNl4SQoH3e757y3Ws2ozxzuG43v3al+cGisE8fNZj0O7310LvQbfddFlEBvf4nQajZi/47/W/I+hleMx8r1WzuP9z/5i1jso3ilUo2hFWv7Yv7wvsfmfofqgp3qq9Va+cJhTqM+GREDRuOfBVqtbmD/6ldlgtHLX14mUz3d0e/t28vKoE2byvYbnDpGugHgZBsZKZur3Xxz/245119f1jzfckvE844x0jcxUcL3vPNOzv20WiX427ur/+AHEW97W1mL/vvfl+cqlYiPfays3b6o+0E/Nmw4fTd0gxNUznav9DweiKHaiS2LGBgYjNVnX7Lg+cWOhYtKJVaOb1303PiyZn6s7+cHqrVFz41vfxnQa3Zq76KBHhExVFvTF90Te34fzeZs3+/fnhY/OLyyL+aPHvxH59i83h3tK5VqVKrDfX9Pzcasc+NPsd4R7e3by/9SLr64P7ibzXIoxPEcPRqxe7ep6svBSDcAnAq7dpUjwGZnu/MDl7JvX8Tdd5ep3dde+8ze96abIr7+9YgvfCHiAx8oz+3dG3HBBRGvelV5n+ETmxYM5Jm/U31Epe8c+ukju/vWwEfPVPvq4Ghno7qIiAM7H+yM3s83VFsdq87q7sx1YMcDfYHea3BoLFafc2nn8cFdv+lMy5+/6/zA4EisHH9+59qpw09Gq9lYcG58e5S+vca//btXzJc+Ifv2lW01Nm0qj3fvjrjyyogPfjDiE5849smVk5NlIlVExItfnH+vdBnpBoBT4dxzyzFbd9/dH9z33FOOB+sd1R4fj3jPe57e609Pl6no990X8Y1vdKeCz8xE7NhR1mq3o3v9+oj9+w13wGlkqXPj22pj55zwa63d8LKIWHyn+pg31XzFqvPmAr2xYKf6gWr/uVK9Ed9qNaLV6I7Oz4+K6SO7llw3X63WYs2G/+48nnjqd9GYPRKVytzO870xXx3u2wNg+uieaDXrnZ3p5+9U33uc3rPR+Hj/429+M+Kvf4343vciPvWpY//syIjYXi5GugFguRw+HLFlS9mo7N57y3DFifrHP0o4X3ZZedxolE9jhw5FPPBAxMvKh+74y18iHn884oorHMwKPGOtvnXtjU7QR2UghmprOtdNTjwRrcZsz3XdnxmoDseq9Rd3rj2466G5degLDVRrsbYn0A/t+W3UZw4vfu3AYKzd+IrO48N7H4367JEF58a3A31s7XM7185O7Y9ms75gBL+9U/3AwOk5VjkzE3HXXeV729e/vjxXr0d8/vPle9bNm5f3/ihENwAsl7/9rYxo79hRFuu1R56PHo149NHyuD0s0bubTvssmde8JuJnP+u+3mc/W+YWvv/9ZVM0gDNAs1lf9Nz4VqsRlaj0Hd82eejxaNQnF5wb32o1o1KpxppzL+tce6xArwxUY93GyzuPJ57aHrPTB5a4w0qMn3dF59GRA3+N+szEXJgPLtipfmT1+Z3N6+ozE92Y74zid6faZ7jrrojrrovYuLHsjdmecv73v0ds21YC/eqrU96aJZyeX9kAwH+CzZtLNO/Z0w3uVivijW+M+PnPywZmH/pQxO23R9x6a8Tb316uueKKMn28UunfQeeWW5bn9wB4BgYGBiNOcCS5d+368Yytuyhard6gX7hpXVv7+LnuJnjdEf3553M169PRmD16jHv8r86fpw7viJnJvUteu27j5Z34npx4IurTBxecG9+O9NrYuZ1rG/XJuWn2C8+N37KljHpfdVX/Gu/bbou48cZyaIXoPrVENwAsp0ol4pyetZr33FOCO6I8v3NnmSJ+773d6N6yJeLAgYiVKxe8HABF2YiudtzrIiJGe0J5vvkb0o2uuSCazU0Lzo3vjrh3I32gWovBobHuCH57Sn5bzxr7xuzRmJ0+tOR9DI+d09mDf2riyZg+unvBNZVKJbb+VzX+939eElEpm2ROH9kVv/rlZNx444URUY4d49QS3QBwOnnta8v08V27yla0Dz8ccc01Ea9+dfeaSkVwA5wi8885rw6NLrHd3UKjay5Y9Pn22vjeQF+xclMMj6zvi/neneorle67VgYGo9o+cq7n3PhWqxWtVj2iMtCZBFWfORwPPBAxNNSMt7/1cNx664kdl8fJY003AADAGWz+TvUDgyOdoJ+dPhSN+tH41xMRzVgRz9+6dnlv9j+Q6AYAAIAkA8e/BAAAAPh3iG4AAABIIroBAAAgiegGAACAJKIbAAAAkohuAAAASCK6AQAAIInoBgAAgCSiGwAAAJKIbgAAAEgiugEAACCJ6AYAAIAkohsAAACSiG4AAABIIroBAAAgiegGAACAJKIbAAAAkohuAAAASCK6AQAAIInoBgAAgCSiGwAAAJKIbgAAAEgiugEAACCJ6AYAAIAkohsAAACSiG4AAABIIroBAAAgiegGAACAJKIbAAAAkohuAAAASCK6AQAAIInoBgAAgCSiGwAAAJKIbgAAAEgiugEAACCJ6AYAAIAkohsAAACSiG4AAABIIroBAAAgiegGAACAJKIbAAAAkohuAAAASCK6AQAAIInoBgAAgCSiGwAAAJKIbgAAAEgiugEAACCJ6AYAAIAkohsAAACSiG4AAABIIroBAAAgiegGAACAJKIbAAAAkohuAAAASCK6AQAAIInoBgAAgCSiGwAAAJKIbgAAAEgiugEAACCJ6AYAAIAkohsAAACSiG4AAABIIroBAAAgiegGAACAJKIbAAAAkohuAAAASCK6AQAAIInoBgAAgCSiGwAAAJKIbgAAAEgiugEAACCJ6AYAAIAkohsAAACSiG4AAABIIroBAAAgiegGAACAJKIbAAAAkohuAAAASCK6AQAAIInoBgAAgCSiGwAAAJKIbgAAAEgiugEAACCJ6AYAAIAkohsAAACSiG4AAABIIroBAAAgiegGAACAJKIbAAAAkohuAAAASCK6AQAAIInoBgAAgCSiGwAAAJKIbgAAAEgiugEAACCJ6AYAAIAkohsAAACSiG4AAABIIroBAAAgiegGAACAJKIbAAAAkohuAAAASCK6AQAAIInoBgAAgCSiGwAAAJKIbgAAAEgiugEAACCJ6AYAAIAkohsAAACSiG4AAABIIroBAAAgiegGAACAJKIbAAAAkohuAAAASCK6AQAAIInoBgAAgCSiGwAAAJKIbgAAAEgiugEAACCJ6AYAAIAkohsAAACSiG4AAABIIroBAAAgiegGAACAJKIbAAAAkohuAAAASCK6AQAAIInoBgAAgCSiGwAAAJKIbgAAAEgiugEAACCJ6AYAAIAkohsAAACSiG4AAABIIroBAAAgiegGAACAJKIbAAAAkohuAAAASCK6AQAAIInoBgAAgCSiGwAAAJKIbgAAAEgiugEAACCJ6AYAAIAkohsAAACSiG4AAABIIroBAAAgiegGAACAJKIbAAAAkohuAAAASCK6AQAAIInoBgAAgCSiGwAAAJKIbgAAAEgiugEAACCJ6AYAAIAkohsAAACSiG4AAABIIroBAAAgiegGAACAJKIbAAAAkohuAAAASCK6AQAAIInoBgAAgCSiGwAAAJKIbgAAAEgiugEAACCJ6AYAAIAkohsAAACSiG4AAABIIroBAAAgiegGAACAJKIbAAAAkohuAAAASCK6AQAAIInoBgAAgCSiGwAAAJKIbgAAAEgiugEAACCJ6AYAAIAkohsAAACSiG4AAABIIroBAAAgiegGAACAJKIbAAAAkohuAAAASCK6AQAAIInoBgAAgCSiGwAAAJKIbgAAAEgiugEAACCJ6AYAAIAkohsAAACSiG4AAABIIroBAAAgiegGAACAJKIbAAAAkohuAAAASCK6AQAAIInoBgAAgCSiGwAAAJKIbgAAAEgiugEAACCJ6AYAAIAkohsAAACSiG4AAABIIroBAAAgiegGAACAJKIbAAAAkohuAAAASCK6AQAAIInoBgAAgCSiGwAAAJKIbgAAAEgiugEAACCJ6AYAAIAkohsAAACSiG4AAABIIroBAAAgiegGAACAJKIbAAAAkohuAAAASCK6AQAAIInoBgAAgCSiGwAAAJKIbgAAAEgiugEAACCJ6AYAAIAkohsAAACSiG4AAABIIroBAAAgiegGAACAJKIbAAAAkohuAAAASCK6AQAAIInoBgAAgCSiGwAAAJKIbgAAAEgiugEAACCJ6AYAAIAkohsAAACSiG4AAABIIroBAAAgiegGAACAJKIbAAAAkohuAAAASCK6AQAAIInoBgAAgCSiGwAAAJKIbgAAAEgiugEAACCJ6AYAAIAkohsAAACSiG4AAABIIroBAAAgiegGAACAJKIbAAAAkohuAAAASCK6AQAAIInoBgAAgCSiGwAAAJKIbgAAAEgiugEAACCJ6AYAAIAkohsAAACSiG4AAABIIroBAAAgiegGAACAJKIbAAAAkohuAAAASCK6AQAAIInoBgAAgCSiGwAAAJKIbgAAAEgiugEAACCJ6AYAAIAkohsAAACSiG4AAABIIroBAAAgiegGAACAJKIbAAAAkohuAAAASCK6AQAAIInoBgAAgCSiGwAAAJKIbgAAAEgiugEAACCJ6AYAAIAkohsAAACSiG4AAABIIroBAAAgiegGAACAJKIbAAAAkohuAAAASCK6AQAAIInoBgAAgCSiGwAAAJKIbgAAAEgiugEAACCJ6AYAAIAkohsAAACSiG4AAABIIroBAAAgiegGAACAJKIbAAAAkohuAAAASCK6AQAAIInoBgAAgCSiGwAAAJKIbgAAAEgiugEAACCJ6AYAAIAkohsAAACSiG4AAABIIroBAAAgiegGAACAJKIbAAAAkohuAAAASCK6AQAAIInoBgAAgCSiGwAAAJKIbgAAAEgiugEAACCJ6AYAAIAkohsAAACSiG4AAABIIroBAAAgiegGAACAJKIbAAAAkohuAAAASCK6AQAAIInoBgAAgCSiGwAAAJKIbgAAAEgiugEAACCJ6AYAAIAkohsAAACSiG4AAABIIroBAAAgiegGAACAJKIbAAAAkohuAAAASCK6AQAAIInoBgAAgCSiGwAAAJKIbgAAAEgiugEAACCJ6AYAAIAkohsAAACSiG4AAABIIroBAAAgiegGAACAJKIbAAAAkohuAAAASCK6AQAAIInoBgAAgCSiGwAAAJKIbgAAAEgiugEAACCJ6AYAAIAkohsAAACSiG4AAABIIroBAAAgiegGAACAJKIbAAAAkohuAAAASCK6AQAAIInoBgAAgCSiGwAAAJKIbgAAAEgiugEAACCJ6AYAAIAkohsAAACSiG4AAABIIroBAAAgiegGAACAJKIbAAAAkohuAAAASCK6AQAAIInoBgAAgCSiGwAAAJKIbgAAAEgiugEAACCJ6AYAAIAkohsAAACSiG4AAABIIroBAAAgiegGAACAJKIbAAAAkohuAAAASCK6AQAAIInoBgAAgCSiGwAAAJKIbgAAAEjy/wfdurG0sN/sAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ImageGeometry - RoI\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA90AAAPdCAYAAACXzguGAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3gU1foH8O/sZnezm00PJJSQgCEBpAsoRYIFUSzA7171KlIEUUEFRMCKInYQBb2Wq1fBgvUCFkQFEZAiEAihhgRCQg2GQHrb9v7+WDOw6UA2m/L9PM8+sGfaO5M5s/vumTlHEREBEREREREREdU6jacDICIiIiIiImqsmHQTERERERERuQmTbiIiIiIiIiI3YdJNRERERERE5CZMuomIiIiIiIjchEk3ERERERERkZsw6SYiIiIiIiJyEybdRERERERERG7CpJuIiIiIiIjITZh0ExEREREREbkJk24iIiIiIiIiN2HSTUREREREROQmTLqJiIiIiIiI3IRJNxEREREREZGbMOkmIiIiIiIichMm3ZcoLS0NiqIgISGh0nnWrVsHRVGQnZ1dZ3FdisjISCxYsEB9rygKvvvuO4/FQ1TXalKv64tBgwZh6tSpng6jUmWvJxWZPXs2unfvXifxUPXq+znVUNT0OsLjTUTU+DHppmqlp6fjpptuqtV1NoQvGTVJFqj+uNhzauzYsRg+fLhLWXh4ONLT09G5c+faCc6Nli1bhhdeeMHTYVQqLi4O999/v/q+oh/xpk+fjjVr1tRxZFRbFi9ejICAgFpfb0P4nKhK2etIZT/A1/c6TEREl87L0wE0ZBaLxdMhXDS73Q5FUaDRVP+7S1hYWB1ERPVacjKQkgJERQHt29fppi0WC/R6fZ1uU6vVNpjzPigoyNMhVKlZs2bVzmM2m2E2m+sgmobBg9WtUfLENQSo+XWkvtdhIiK6dBfd0i0iKCgoqPOXiNQovh9//BEBAQFwOBwAgISEBCiKghkzZqjzPPDAA7jrrrvU90uXLsXll18Og8GAyMhIzJ8/32WdkZGRePHFFzF27Fj4+/tjwoQJFW575cqViI6OhtFoxDXXXIO0tLRq483Ozsb999+P0NBQeHt7o3PnzlixYkWNY8vKysLo0aMRGBgIk8mEm266CQcPHlSnl7ZErFixAp06dYLBYMCRI0eQkZGBW2+9FUajEW3btsWSJUvKxXZ+y1Tp7XLLli3DNddcA5PJhG7duuHPP/9U5z9z5gzuuusutG7dGiaTCV26dMGXX36pTh87dizWr1+PhQsXQlEUKIqiHqP9+/dj6NChMJvNCA0NxahRo5CZmVnpcTty5AhuvfVWBAYGwsfHB5dffjlWrlwJEUFUVBRef/11l/n37t0LjUaDlJQUAM7bWtu0aQODwYCWLVti8uTJAJwtLEeOHMGjjz6qxlhq8+bNGDhwIIxGI8LDwzF58mQUFBSo00vPk9GjR8NsNiMiIgLff/89Tp8+jWHDhsFsNqNLly7Yvn17pftVb5w9C9x4IxATAwwdCkRHO99nZbltk4MGDcLDDz+MadOmISQkBIMHDwYArF+/Hn369IHBYECLFi3wxBNPwGazAaj8nLLb7Rg/fjzatm0Lo9GImJgYLFy4UN3W7Nmz8cknn+D7779Xl1u3bl2Ft4VWtf3SuCdPnoyZM2ciKCgIYWFhmD17dpX7GhcXh8GDByMkJAT+/v6IjY1FfHy8On3dunXQ6/XYsGGDWjZ//nyEhIQgPT1d3e75rYHvvvsu2rdvD29vb4SGhuKf//xnpdsvvS589913iI6Ohre3NwYPHoxjx465zPfee+/hsssug16vR0xMDD777DOX6ZXVI8D1jpHIyEgAwIgRI6Aoivq+7O3lDocDc+bMQevWrWEwGNC9e3f88ssv6vSaXIcaIg9UNxQUFKjXqhYtWpT7bAGcSevMmTPRqlUr+Pj44Morr8S6desAOM/Re++9Fzk5OWodKj3vq1qu1KZNmxAbGwuTyYTAwEAMGTIEWVlZVX5O1KQuVnQNKav0Lpfnn38ezZs3h5+fHx544AGXH9RLSkowefJkNG/eHN7e3hgwYADi4uLU6VlZWRg5ciSaNWsGo9GI9u3bY9GiRQBcby9PS0vDNddcAwAIDAyEoigYO3asGu/5dbimn+e//vorOnbsCLPZjBtvvFG9JhARUT0kFyk/P18A1PkrPz+/RvFlZ2eLRqOR7du3i4jIggULJCQkRHr37q3OEx0dLe+9956IiGzfvl00Go3MmTNHkpKSZNGiRWI0GmXRokXq/BEREeLn5yfz5s2TgwcPysGDByU1NVUAyM6dO0VE5OjRo2IwGGTKlCly4MAB+fzzzyU0NFQASFZWVoWx2u12ueqqq+Tyyy+XVatWSUpKivz444+ycuXKGsd22223SceOHeWPP/6QhIQEGTJkiERFRYnFYhERkUWLFolOp5N+/frJpk2b5MCBA5Kfny833XSTdO7cWTZv3izbt2+Xfv36idFolDfffFNdNwBZvny5iIi6vx06dJAVK1ZIUlKS/POf/5SIiAixWq0iInL8+HGZN2+e7Ny5U1JSUuStt94SrVYrW7ZsUf82ffv2lQkTJkh6erqkp6eLzWaTkydPSkhIiDz55JOSmJgo8fHxMnjwYLnmmmsq/TvffPPNMnjwYNm9e7d63NavXy8iIi+99JJ06tTJZf5HH31UBg4cKCIi3377rfj5+cnKlSvlyJEjsnXrVvnggw9EROTMmTPSunVrmTNnjhqjiMju3bvFbDbLm2++KcnJybJp0ybp0aOHjB071uU8CQoKkvfff1+Sk5Nl4sSJ4uvrKzfeeKN88803kpSUJMOHD5eOHTuKw+GodN/qhSFDRLRaEeDcS6t1lrtJbGysmM1mmTFjhhw4cEASExPl+PHjYjKZZNKkSZKYmCjLly+XkJAQee6550Sk8nPKYrHIs88+K9u2bZPDhw/L559/LiaTSb7++msREcnLy5M77rhDbrzxRnW5kpKScvW6uu2Xxu3n5yezZ8+W5ORk+eSTT0RRFFm1alWl+7pmzRr57LPPZP/+/bJ//34ZP368hIaGSm5urjrPjBkzJCIiQrKzsyUhIUEMBoMsW7bMZbtTpkwREZG4uDjRarXyxRdfSFpamsTHx8vChQsr3X7pdaFXr17qNaBPnz7Sr18/dZ5ly5aJTqeTd955R5KSkmT+/Pmi1Wrl999/F5Gq65GIsz6UXk8yMjIEgCxatEjS09MlIyNDRESee+456datm7rMG2+8IX5+fvLll1/KgQMHZObMmaLT6SQ5OVlEanYdaog8UN1k4sSJ0rp1a1m1apXs3r1bbrnlFjGbzeo5JSJy9913S79+/eSPP/6QQ4cOybx588RgMEhycrKUlJTIggULxM/PT61DeXl51S4nIrJz504xGAwyceJESUhIkL1798rbb78tp0+frrRO17Qulr2GVGTMmDFiNpvlzjvvlL1798qKFSukWbNm8tRTT6nzTJ48WVq2bCkrV66Uffv2yZgxYyQwMFDOnDkjIiIPPfSQdO/eXeLi4iQ1NVVWr14tP/zwg4iIy3XEZrPJ0qVLBYAkJSVJenq6ZGdnq/Gef7xr+nl+/fXXS1xcnOzYsUM6duwod99996WdDERE5DaNNukWEenZs6e8/vrrIiIyfPhweemll0Sv10tubq6kp6cLAPXD+O6775bBgwe7LD9jxgyXpC0iIkKGDx/uMk/ZL+dPPvlkuWTq8ccfrzLp/vXXX0Wj0UhSUlKF06uLLTk5WQDIpk2b1OmZmZliNBrlm2++ERHnhzQASUhIUOdJSkoSAGoyLCKSmJgoAKpNuv/73/+q0/ft2+dyLCsydOhQeeyxx9T3Zb9kiIjMmjVLbrjhBpeyY8eOqV9SKtKlSxeZPXt2hdNOnjwpWq1Wtm7dKiIiFotFmjVrJosXLxYRkfnz50t0dLT6Raas85OFUqNGjZL777/fpWzDhg2i0WikqKhIXe6ee+5Rp5eea7NmzVLL/vzzTwGgJvP1UlKS67f/sq+/vzjXttjYWOnevbtL2VNPPSUxMTEu9eqdd94Rs9ksdrtdXa7sOVWRSZMmyT/+8Q/1/ZgxY2TYsGEu85St1zXd/oABA1zW07t3b3n88cerjamUzWYTX19f+fHHH9WykpIS6dGjh9xxxx1y+eWXy3333eeyzPn7vXTpUvHz83NJ2qtSel2o6BpQWm/69esnEyZMcFnu9ttvl6FDh4rIhdej868npcom3S1btpSXXnrJZZ7evXvLpEmTROTir0P1mSeqW15enuj1evnqq6/UsjNnzojRaFTPqUOHDomiKHLixAmXZa+77jp58sknRcR5Hvn7+7tMr8lyd911l/Tv37/S+Cqq0zWti2WvIRUZM2aMBAUFSUFBgVr23nvvqevKz88XnU4nS5YsUadbLBZp2bKlzJ07V0REbr31Vrn33nsrXH/Z68jatWsr/C5w/n5eyOf5oUOHXI5BaGhotftMRESecdG3l5tMJuTn59f5y2Qy1TjGQYMGYd26dRARbNiwAcOGDUPnzp2xceNGrF27FqGhoejQoQMAIDExEf3793dZvn///jh48CDsdrta1qtXryq3mZiYiKuuusrlduS+fftWuUxCQgJat26N6OjoStdZVWyJiYnw8vLClVdeqU4PDg5GTEwMEhMT1TK9Xo+uXbu6rNfLy8tlnzp06FCjDnHOX0+LFi0AABkZGQCcz4u/9NJL6Nq1K4KDg2E2m7Fq1SocPXq0ynXu2LEDa9euVZ/vNJvN6t+n9HbwsiZPnowXX3wR/fv3x3PPPYfdu3e7xHXzzTfj448/BgCsWLECxcXFuP322wEAt99+O4qKitCuXTtMmDABy5cvd7lFsbIYFy9e7BLjkCFD4HA4kJqaWuHxCQ0NBQB06dKlXFnpMauXKjnmqkOH3LbpsvUsMTERffv2dalX/fv3R35+Po4fP17lut5//3306tULzZo1g9lsxocffljtuVhWTbd//t8dcJ6DVf2NMzIy8OCDDyI6Ohr+/v7w9/dHfn6+S3x6vR6ff/45li5diqKioio79xs8eDAiIiLQrl07jBo1CkuWLEFhYWGV+1bZNaD02lHZ9ad0+sXUo6rk5ubi5MmTVW6zVFXXoYbGE9UtJSUFFovF5TMqKCgIMTEx6vv4+HiICKKjo12ue+vXr6/0ulzT5RISEnDdddddUMw1rYvVfVaX6tatm8v3ir59+yI/Px/Hjh1DSkoKrFary7mo0+nQp08f9VycOHEivvrqK3Tv3h0zZ87E5s2bL2h/Ktq/mnyem0wmXHbZZer76q41RETkWRfdkZqiKPDx8anNWGrdoEGD8NFHH2HXrl3QaDTo1KkTYmNjsX79emRlZSE2NladV0RcPsRLy8qqbp8rWqY6RqOx2nVWFVtl2yy7nNFodHlfulzZddeETqdT/1+6fOnz8/Pnz8ebb76JBQsWoEuXLvDx8cHUqVOr7XjO4XDg1ltvxWuvvVZuWukX6rLuu+8+DBkyBD/99BNWrVqFV155BfPnz8cjjzyiTh81ahTefPNNLFq0CHfeeaf6BSs8PBxJSUlYvXo1fvvtN0yaNAnz5s3D+vXrXfavbIwPPPCAyzOrpdq0aVPl8anqmNVL532hq1BUlNs2XbaeVVUHqjp/v/nmGzz66KOYP38++vbtC19fX8ybNw9bt269oHhquv2y542iKFX+jceOHYvTp09jwYIFiIiIgMFgQN++fcvVldIv8mfPnsXZs2crvQ75+voiPj4e69atw6pVq/Dss89i9uzZiIuLq/LHtIqO4fllFe17adnF1KOaqGqbpRpcnaqCJ6pbTT6vHA4HtFotduzYAa1W6zKtqs7varJcdZ99lcVck7p4qd9PFEWp9Bpzfgw33XQTjhw5gp9++gm//fYbrrvuOjz00EPl+hOpqZp+nld0rbmY7x9ERFQ3GvWQYQMHDkReXh4WLFiA2NhYKIqC2NhYrFu3DuvWrXNJujt16oSNGze6LL9582ZER0eX+8JQlU6dOmHLli0uZWXfl9W1a1ccP34cycnJla6zqtg6deoEm83mkkicOXMGycnJ6NixY6Xb7dixI2w2m0uHXklJSZc8nnjpXQX33HMPunXrhnbt2rl0AgM4W+/Ov4MAAHr27Il9+/YhMjISUVFRLq+qvkCFh4fjwQcfxLJly/DYY4/hww8/VKcNHToUPj4+eO+99/Dzzz9j3LhxLssajUbcdttteOutt7Bu3Tr8+eef2LNnT7Uxlo0vKirKI73julV0NDBkCFD2/NdqneV12K1yp06dsHnzZpcvlZs3b4avry9atWoFoOK/14YNG9CvXz9MmjQJPXr0QFRUVLnWuYqWu5jtX4wNGzZg8uTJGDp0qNpRYtmOA1NSUvDoo4/iww8/xFVXXYXRo0dXmVh6eXnh+uuvx9y5c7F7926kpaXh999/r3T+yq4BpXeZdOzYscLrz/nXlqrqUVk6na7K4+3n54eWLVtWu83GxhPVLSoqCjqdzuUzKisry+WzqEePHrDb7cjIyCh3zSvtmbuiOlST5bp27VrlUHEVrbe26+KuXbtQVFSkvt+yZQvMZjNat26tXtfPPxetViu2b9/uci42a9YMY8eOxeeff44FCxbggw8+qHR/AFR5/l/s5zkREdVvjTrp9vf3R/fu3fH5559j0KBBAJyJeHx8PJKTk9UyAHjsscewZs0avPDCC0hOTsYnn3yCf//735g+ffoFbfPBBx9ESkoKpk2bhqSkJHzxxRdYvHhxlcvExsZi4MCB+Mc//oHVq1cjNTUVP//8s9pbb3WxtW/fHsOGDcOECROwceNG7Nq1C/fccw9atWqFYcOGVbrdmJgY3HjjjZgwYQK2bt2KHTt24L777ruo1ofzRUVFYfXq1di8eTMSExPxwAMP4NSpUy7zREZGYuvWrUhLS0NmZiYcDgceeughnD17FnfddRe2bduGw4cPY9WqVRg3blylX1KmTp2KX3/9FampqYiPj8fvv//u8sVEq9Vi7NixePLJJxEVFeVyG+XixYvx0UcfYe/evTh8+DA+++wzGI1GREREqDH+8ccfOHHihJoIPf744/jzzz/x0EMPISEhAQcPHsQPP/ygtqw3Ol9+CVx/vWvZ9dc7y+vQpEmTcOzYMTzyyCM4cOAAvv/+ezz33HOYNm2aOuxdRedUVFQUtm/fjl9//RXJycmYNWuWS8/Dpcvt3r0bSUlJyMzMhNVqvajtX4yoqCh89tlnSExMxNatWzFy5EiX+me32zFq1CjccMMNuPfee7Fo0SLs3bu3wh6mAecjFG+99RYSEhJw5MgRfPrpp3A4HC63C5el0+nwyCOPYOvWrYiPj8e9996Lq666Cn369AEAzJgxA4sXL8b777+PgwcP4o033sCyZcvU60919aisyMhIrFmzBqdOnUJWJd1yz5gxA6+99hq+/vprJCUl4YknnkBCQgKmTJlSo+PaUNV1dTObzRg/fjxmzJiBNWvWYO/evRg7dqzLOR0dHY2RI0di9OjRWLZsGVJTUxEXF4fXXnsNK1euBOD8m+bn52PNmjXIzMxEYWFhjZZ78sknERcXh0mTJmH37t04cOAA3nvvPfV6W1Gdru26aLFYMH78eOzfvx8///wznnvuOTz88MPQaDTw8fHBxIkTMWPGDPzyyy/Yv38/JkyYgMLCQowfPx4A8Oyzz+L777/HoUOHsG/fPqxYsaLS5DgiIgKKomDFihU4ffo08vPzy81zsZ/nRERUz9XNo+Oe89hjjwkA2bt3r1rWrVs3adasWbmeo//3v/9Jp06dRKfTSZs2bWTevHku0yvqWKtsRykiIj/++KNERUWJwWCQq6++Wj7++OMqO1ITcXZec++990pwcLB4e3tL586dZcWKFTWO7ezZszJq1Cjx9/cXo9EoQ4YMUXuIFam4oxsRZydfN998sxgMBmnTpo18+umnVXZ8VNH+ZmVlCQBZu3atui/Dhg0Ts9kszZs3l2eeeUZGjx7t0llVUlKSXHXVVWI0GgWApKamioizE5kRI0ZIQECAGI1G6dChg0ydOrXSXr4ffvhhueyyy8RgMEizZs1k1KhRkpmZ6TJPSkqKAFA7vim1fPlyufLKK8XPz098fHzkqquukt9++02d/ueff0rXrl3FYDDI+VVl27ZtMnjwYDGbzeLj4yNdu3Z16fSpovPk/GNY2XGs15KTRVaudFvnaeerrEO0devWSe/evUWv10tYWJg8/vjjLj1VV3ROFRcXy9ixY8Xf318CAgJk4sSJ8sQTT7h02pWRkaH+PUvP44r+PtVtv6K4hw0bJmPGjKl0X+Pj46VXr15iMBikffv28u2337qcP88//7y0aNHC5Zz+7rvvRK/Xq7Gdv90NGzZIbGysBAYGitFolK5du6o9tVek9LqwdOlSadeunej1ern22mslLS3NZb53331X2rVrJzqdTqKjo+XTTz9Vp1VXj8rWhx9++EGioqLEy8tLIiIiRKR8R2p2u12ef/55adWqleh0OunWrZv8/PPP6vSaXIcasjqsbpKXlyf33HOPmEwmCQ0Nlblz55Y7l0tHAYiMjBSdTidhYWEyYsQI2b17tzrPgw8+KMHBwQJA7Um8JsutW7dO+vXrJwaDQQICAmTIkCHqZ2VlnxMXUxcrUtqJ4rPPPivBwcFiNpvlvvvuk+LiYnWeoqIieeSRRyQkJEQMBoP0799ftm3bpk5/4YUXpGPHjmI0GiUoKEiGDRsmhw8fFpGKz9M5c+ZIWFiYKIqiXhvKxnsxn+fLly+XJvCVjoiowVJE+BAQNW6bNm3CoEGDcPz4cbUDMyJytlJPnTr1kh8pIWqIxo4di+zsbHz33XeeDoWIiBq5i+5Ijai+KykpwbFjxzBr1izccccdTLiJiIiIiKjONepnuqlp+/LLLxETE4OcnBzMnTvX0+EQEREREVETxNvLiYiIiIiIiNyELd1EREREREREbsKkm4iIiIiIiMhNmHQTERERERERuQmTbiIiIiIiIiI38UjSbbcVe2KzRERERERERHWqzpPuorzjOLDhWRTlHa/rTVMVIiMjsWDBgirnmT17Nrp3714n8RB5UlpaGhRFQUJCgqdDqdagQYMwderUWlvf4sWLERAQoL73ZL3nNcczavucakjGjh2L4cOHq+89eSya8t+BiKixqfOkO+evnYDYkfNXQl1vmqoQFxeH+++/X32vKAq+++47l3mmT5+ONWvW1HFkRDVzsV9Qy37JBoDw8HCkp6ejc+fOtROcGy1btgwvvPCC29ZfV/We15yGq+wPNbWlPiSd7q5fALBu3TooioLs7Ow63zYREdUNr7rcmIgg9+9kO/evBIRedjMURanLENzKbrdDURRoNA3vUflmzZpVO4/ZbIbZbK6DaIjOsVgs0Ov1dbpNrVaLsLCwOt3mxQoKCnLr+qur9+78+/CaQ7XhUs7R6uqXO89/d9dtIiKqO3WaHRbnn4C1JBsAYC3JQnH+Sbdu73//+x+6dOkCo9GI4OBgXH/99SgoKAAAOBwOzJkzB61bt4bBYED37t3xyy+/qMtW9MtzQkICFEVBWloagHO/7q9YsQKdOnWCwWDAkSNHUFJSgpkzZyI8PBwGgwHt27fHRx99pK5n//79GDp0KMxmM0JDQzFq1ChkZmZWuh+l2/nuu+8QHR0Nb29vDB48GMeOHXOZ77333sNll10GvV6PmJgYfPbZZy7TZ8+ejTZt2sBgMKBly5aYPHmyOu3828sjIyMBACNGjICiKOr7srd6VncMS2/RXbZsGa655hqYTCZ069YNf/75Z6X7SjRo0CA8/PDDmDZtGkJCQjB48GAAwPr169GnTx8YDAa0aNECTzzxBGw2GwBna/X69euxcOFCKIqi1lO73Y7x48ejbdu2MBqNiImJwcKFC9VtzZ49G5988gm+//57dbl169ZVeHt5VdsvjXvy5MmYOXMmgoKCEBYWhtmzZ1e5r3FxcRg8eDBCQkLg7++P2NhYxMfHq9PXrVsHvV6PDRs2qGXz589HSEgI0tPT1e2e3xr47rvvon379vD29kZoaCj++c9/VhnD4sWL0aZNG5hMJowYMQJnzpxxmV623pfeGfDKK6+gZcuWiI6OBgCcOHECd955JwIDAxEcHIxhw4ap18pSH3/8MS6//HL1GD788MMAeM3xpIKCAowePRpmsxktWrTA/Pnzy81jsVgwc+ZMtGrVCj4+Prjyyiuxbt06AM5z9N5770VOTo5ah0rP+6qWK7Vp0ybExsbCZDIhMDAQQ4YMQVZWVqV1GqhZXazoGlKW3W7HtGnTEBAQgODgYMycORMi4jJP2foVGRmJF198EWPHjoW/vz8mTJgAANi8eTMGDhwIo9GI8PBwTJ48Wf2+AaDS7wVpaWm45pprAACBgYFQFAVjx46tcNtZWVkYPXo0AgMDYTKZcNNNN+HgwYPq9NLvCr/++is6duwIs9mMG2+8Ub1WEBGRB4mbFOefkuxT8S6vY3s/k71rpsveNdNk75rpcmzv5+XmKc4/VSvbP3nypHh5eckbb7whqampsnv3bnnnnXckLy9PRETeeOMN8fPzky+//FIOHDggM2fOFJ1OJ8nJySIisnbtWgEgWVlZ6jp37twpACQ1NVVERBYtWiQ6nU769esnmzZtkgMHDkh+fr7ccccdEh4eLsuWLZOUlBT57bff5KuvvlLjCgkJkSeffFISExMlPj5eBg8eLNdcc02l+1K6nV69esnmzZtl+/bt0qdPH+nXr586z7Jly0Sn08k777wjSUlJMn/+fNFqtfL777+LiMi3334rfn5+snLlSjly5Ihs3bpVPvjgA3X5iIgIefPNN0VEJCMjQwDIokWLJD09XTIyMkRE5LnnnpNu3bqpy1R3DFNTUwWAdOjQQVasWCFJSUnyz3/+UyIiIsRqtV7EX5UumcMhkp9f9y+Ho8YhxsbGitlslhkzZsiBAwckMTFRjh8/LiaTSSZNmiSJiYmyfPlyCQkJkeeee05ERLKzs6Vv374yYcIESU9Pl/T0dLHZbGKxWOTZZ5+Vbdu2yeHDh+Xzzz8Xk8kkX3/9tYiI5OXlyR133CE33nijulxJSYl67u7cuVNEpNrtl8bt5+cns2fPluTkZPnkk09EURRZtWpVpfu6Zs0a+eyzz2T//v2yf/9+GT9+vISGhkpubq46z4wZMyQiIkKys7MlISFBDAaDLFu2zGW7U6ZMERGRuLg40Wq18sUXX0haWprEx8fLwoULK93+li1bRFEUeeWVVyQpKUkWLlwoAQEB4u/vr85Ttt6PGTNGzGazjBo1Svbu3St79uyRgoICad++vYwbN052794t+/fvl7vvvltiYmKkpKRERETeffdd8fb2lgULFkhSUpJs27atUV9zGkBVExGRiRMnSuvWrWXVqlWye/duueWWW8RsNqvnlIjI3XffLf369ZM//vhDDh06JPPmzRODwSDJyclSUlIiCxYsED8/P7UOlX7OVrWciPMz1WAwyMSJEyUhIUH27t0rb7/9tpw+fbrSOl3Tulj2GlKR1157Tfz9/eV///ufWv98fX1l2LBhLus6/1hERESIn5+fzJs3Tw4ePCgHDx6U3bt3i9lsljfffFOSk5Nl06ZN0qNHDxk7dqy6XGXfC2w2myxdulQASFJSkqSnp0t2dnaF277tttukY8eO8scff0hCQoIMGTJEoqKixGKxiMi57wrXX3+9xMXFyY4dO6Rjx45y9913X9hJQUREtc5tSfeR3Yv+Tq4v7HVk9+Ja2f6OHTsEgKSlpVU4vWXLlvLSSy+5lPXu3VsmTZokIjVPugFIQkKCOk9SUpIAkNWrV1e43VmzZskNN9zgUnbs2DH1A7cipdvZsmWLWpaYmCgAZOvWrSIi0q9fP5kwYYLLcrfffrsMHTpURETmz58v0dHR6odzWecn3SIiAGT58uUu85T9AlzdMSz9Avzf//5Xnb5v3z4BUOmXIHKz/HwRoO5f+fk1DjE2Nla6d+/uUvbUU09JTEyMOM7LKN555x0xm81it9vV5c7/glqZSZMmyT/+8Q/1/ZgxY1y+ZItIuaS7ptsfMGCAy3p69+4tjz/+eLUxlbLZbOLr6ys//vijWlZSUiI9evSQO+64Qy6//HK57777XJY5f7+XLl0qfn5+Lkl7Ve666y658cYbXcruvPPOapPu0NBQNZkWEfnoo4/KHZ+SkhIxGo3y66+/iojzevH0009XGktju+Y0gKomeXl5otfr1R+FRUTOnDkjRqNRPacOHTokiqLIiRMnXJa97rrr5MknnxQR52fU+edMTZe76667pH///pXGV1GdrmldLHsNqUiLFi3k1VdfVd9brVZp3bp1tUn38OHDXdYzatQouf/++13KNmzYIBqNRoqKiqr9XlDR942y205OThYAsmnTJnV6ZmamGI1G+eabb0Tk3HeFQ4cOqfO88847EhoaWu2xICIi93Lb7eWtOt4Jv+bdLmgZv+bd0arjHbWy/W7duuG6665Dly5dcPvtt+PDDz9EVlYWACA3NxcnT55E//79XZbp378/EhMTL2g7er0eXbt2Vd8nJCRAq9UiNja2wvl37NiBtWvXqs8qms1mdOjQAQCQkpJS6Xa8vLzQq1cv9X2HDh0QEBCgxpuYmFjl/tx+++0oKipCu3btMGHCBCxfvtzldrwLdSHH8Pzj06JFCwBARkbGRW+bGr/zz3XAeX737dvXpQ+I/v37Iz8/H8ePVz0Swvvvv49evXqhWbNmMJvN+PDDD3H06NELiqem2z//XAec53tV53pGRgYefPBBREdHw9/fH/7+/sjPz3eJT6/X4/PPP8fSpUtRVFRU5SgDgwcPRkREBNq1a4dRo0ZhyZIlKCwsrHa/zlf2fUW6dOni8hzrjh07cOjQIfj6+qrXtaCgIBQXFyMlJQUZGRk4efIkrrvuumrXXRlec2pfSkoKLBaLy988KCgIMTEx6vv4+HiICKKjo10+t9avX1/lZ1ZNlktISLjgc6KmdbHsNaSsnJwcpKenu+x72c/ZypSdZ8eOHVi8eLHLfg4ZMgQOhwOpqanVfi+oicTERHh5eeHKK69Uy4KDgxETE+Ny/ptMJlx22WXq++quQUREVDfc1pGa1suI1pePQnZQB6QnL4U4HAAc5WdUNFAUDVrE/AMBYb1rrWM1rVaL1atXY/PmzVi1ahXefvttPP3009i6dSuCg4Odmy6zLRFRy0o7Q5Pznu+yWq3ltmM0Gl3WYzQaq4zL4XDg1ltvxWuvvVZuWumXw8pUdGzOL6tqf8LDw5GUlITVq1fjt99+w6RJkzBv3jysX78eOp2uyu1eSEznb7PU+esvneZwVHAukPuZTEB+vme2ewF8fHxc3ld0XpXWzaquGd988w0effRRzJ8/H3379oWvry/mzZuHrVu3XlA8Nd1+2bqkKEqV5/rYsWNx+vRpLFiwABERETAYDOjbty8sFovLfJs3bwYAnD17FmfPni13fEr5+voiPj4e69atw6pVq/Dss89i9uzZiIuLq7B36fOvbxei7PYdDgeuuOIKLFmypNy8zZo1q9XOJRvKNachVLWa/P0dDge0Wi127NgBrVbrMq2qTu5qslx1n5eVxVyTulhZHakNFZ3/DzzwgEs/KaXatGmDQ4cOXfI2K/tblT0eFV2DLraeExFR7XFrR2qKoiCwZR9c1vsxKBptJfNocVnvxxDYok+t92SuKAr69++P559/Hjt37oRer8fy5cvh5+eHli1bYuPGjS7zb968GR07dgRwrjfv8zsgqcmYvV26dIHD4cD69esrnN6zZ0/s27cPkZGRiIqKcnlV9SXBZrNh+/bt6vukpCRkZ2erreQdO3ascn8A5xec2267DW+99RbWrVuHP//8E3v27KlwezqdDna7vdJ4anIMqR5SFMDHp+5fl1i3O3XqhM2bN7t8edy8eTN8fX3RqlUrAM4W4bLn7IYNG9CvXz9MmjQJPXr0QFRUVLnWuYqWu5jtX4wNGzZg8uTJGDp0qNrBWNlOFVNSUvDoo4/iww8/xFVXXYXRo0dXmUB6eXnh+uuvx9y5c7F7926kpaXh999/r3S/tmzZ4lJW9n1N9OzZEwcPHkTz5s3LXdf8/f3h6+uLyMjIKof/amzXnIZQ1aKioqDT6Vz+5llZWUhOTlbf9+jRA3a7HRkZGeX+tqU9/FdUh2qyXNeuXas8Jypab23VRX9/f7Ro0cJl3202G3bs2FHjdZQq/Vwvu59RUVHQ6/XVfi8ovWukqvO/U6dOsNlsLj8YnjlzBsnJyfXy/CciIld103u5ooE4yrcSA4A4rFCU2g9j69atePnll7F9+3YcPXoUy5Ytw+nTp9UPpxkzZuC1117D119/jaSkJDzxxBNISEjAlClTADi/jISHh2P27NlITk7GTz/9VGGvrmVFRkZizJgxGDduHL777jukpqZi3bp1+OabbwAADz30EM6ePYu77roL27Ztw+HDh7Fq1SqMGzeuyg9cnU6HRx55BFu3bkV8fDzuvfdeXHXVVejTp4+6P4sXL8b777+PgwcP4o033sCyZcswffp0AM5eTT/66CPs3bsXhw8fxmeffQaj0YiIiIhK92PNmjU4deqUelt+WdUdQ6LaMmnSJBw7dgyPPPIIDhw4gO+//x7PPfccpk2bpraiRkZGYuvWrUhLS0NmZiYcDgeioqKwfft2/Prrr0hOTsasWbMQFxfnsu7IyEjs3r0bSUlJyMzMrPCOlpps/2JERUXhs88+Q2JiIrZu3YqRI0e6tP7Z7XaMGjUKN9xwA+69914sWrQIe/furfRatGLFCrz11ltISEjAkSNH8Omnn8LhcLjcLny+yZMn45dffsHcuXORnJyMf//73y69gdfUyJEjERISgmHDhmHDhg1ITU3F+vXrMWXKFPWW39mzZ2P+/Pl46623cPDgQcTHx+Ptt99W18FrTt0zm80YP348ZsyYgTVr1mDv3r0YO3asyzkdHR2NkSNHYvTo0Vi2bBlSU1MRFxeH1157DStXrgTg/Nvl5+djzZo1yMzMRGFhYY2We/LJJxEXF4dJkyZh9+7dOHDgAN577z31h6eK6nRt1sUpU6bg1VdfxfLly3HgwAFMmjSp3FjZNfH444/jzz//xEMPPYSEhAQcPHgQP/zwAx555BF1P6r6XhAREQFFUbBixQqcPn0a+RXcItG+fXsMGzYMEyZMwMaNG7Fr1y7cc889aNWqFYYNG3bBMRMRUR2riwfHM9LWyN41j6m9lu9dM032/l7ai/ljcjptTa1vc//+/TJkyBBp1qyZGAwGiY6Olrfffludbrfb5fnnn5dWrVqJTqeTbt26yc8//+yyjo0bN0qXLl3E29tbrr76avn222/LdaRWtvMYEZGioiJ59NFHpUWLFqLX6yUqKko+/vhjdXpycrKMGDFCAgICxGg0SocOHWTq1KkuHcOcr3Q7S5culXbt2oler5drr722XCdx7777rrRr1050Op1ER0fLp59+qk5bvny5XHnlleLn5yc+Pj5y1VVXyW+//aZOL9uR2g8//CBRUVHi5eUlERERIlK+U6PqjmHZzqhERLKysgSArF27tsJ9JaqsQ7R169ZJ7969Ra/XS1hYmDz++OMuPVInJSXJVVddJUajUa2nxcXFMnbsWPH395eAgACZOHGiPPHEEy7ncUZGhgwePFjMZrN6blZ07la3/YriHjZsmIwZM6bSfY2Pj5devXqJwWCQ9u3by7fffutSF59//nlp0aKFZGZmqst89913otfr1djO3+6GDRskNjZWAgMDxWg0SteuXdWe2ivz0UcfSevWrcVoNMqtt94qr7/+erUdqZXteE5EJD09XUaPHi0hISFiMBikXbt2MmHCBMnJyVHnef/99yUmJkZ0Op20aNFCHnnkEXUarzmekZeXJ/fcc4+YTCYJDQ2VuXPnljuXS0cBiIyMFJ1OJ2FhYTJixAjZvXu3Os+DDz4owcHBAkDtSbwmy61bt0769esnBoNBAgICZMiQIWqHYhXV6dJlLrQuVsRqtcqUKVPEz89PAgICZNq0aTJ69OhqO1I7/7Oy1LZt29TriI+Pj3Tt2tWl07/qvhfMmTNHwsLCRFEU9ZpRdttnz56VUaNGib+/vxiNRhkyZIjaE7xIxd9Jli9fLnX0VY+IiKqgiLj/YZ+UbW+gOP8EAMAnIAqh7W/FqYM/oDDbeZunt29rXNb7UXeH0WAtXrwYU6dOvahf4ImIiIiIiMhz3H57uaU46++EW0HoZTcjoscDMPq2RmSPB9H8spsBKCjOOw5rccW3ExIRERERERE1VG7rvbyUAgXmoA5o1m4ITH5tzpUrGjSLuBY+AZfhdOoqALXbiRoRERERERGRp9XJ7eVERERERERETVHd9F5ORERERERE1AQx6SYiIiIiIiJyEybdRERERERERG7CpJuIiIiIiIjITZh0ExEREREREbkJk24iIiIiIiIiN2HSTUT1yqBBgzB16lRPh0HUZLEOEhER1S4m3URUryxbtgwvvPCCp8NoktLS0qAoChISEjwdCjUQixcvRkBAQK2vl4k/ERE1Jl6eDoCI6HxBQUGeDoGqYbFYoNfrPR0GUbV4rhIRUX3Alm4iqlfKtnBFRkbixRdfxOjRo2E2mxEREYHvv/8ep0+fxrBhw2A2m9GlSxds375dXebMmTO466670Lp1a5hMJnTp0gVffvmly3by8vIwcuRI+Pj4oEWLFnjzzTfLbdtisWDmzJlo1aoVfHx8cOWVV2LdunVVxn/gwAEMGDAA3t7e6NSpE3777TcoioLvvvtOnefEiRO48847ERgYiODgYAwbNgxpaWnqdIfDgTlz5qB169YwGAzo3r07fvnlF3V6aYv0N998g6uvvhpGoxG9e/dGcnIy4uLi0KtXL5jNZtx44404ffq0S3yLFi1Cx44d4e3tjQ4dOuDdd99Vp7Vt2xYA0KNHDyiKgkGDBgEAxo4di+HDh+OVV15By5YtER0djTlz5qBLly7l9v+KK67As88+W+UxovqjoKBArVstWrTA/PnzXaZXVQfWrVuHe++9Fzk5OVAUBYqiYPbs2dUuV2rTpk2IjY2FyWRCYGAghgwZgqysLIwdOxbr16/HwoUL1fWW1o/169ejT58+MBgMaNGiBZ544gnYbDZ1nYMGDcLDDz+MadOmISQkBIMHD3bXoSMiIqo5IaKmJz/f+XI4zpWVlDjLiosrntduP1dmsTjLioqqn/cCxcbGypQpU9T3EREREhQUJO+//74kJyfLxIkTxdfXV2688Ub55ptvJCkpSYYPHy4dO3YUx9/7c/z4cZk3b57s3LlTUlJS5K233hKtVitbtmxR13vfffdJRESE/Pbbb7Jnzx4ZMWKE+Pr6umz77rvvln79+skff/whhw4dknnz5onBYJDk5OQKY7fb7RITEyODBw+WhIQE2bBhg/Tp00cAyPLly0VEpKCgQNq3by/jxo2T3bt3y/79++Xuu++WmJgYKSkpERGRN954Q/z8/OTLL7+UAwcOyMyZM0Wn06nbTU1NFQDSoUMH+eWXX2T//v1y1VVXSc+ePWXQoEGyceNGiY+Pl6ioKHnwwQfV+D744ANp0aKFLF26VA4fPixLly6VoKAgWbx4sYiIbNu2TQDIb7/9Junp6XLmzBkRERkzZoyYzWYZNWqU7N27V/bs2SPHjh0TjUYj27ZtU9e/a9cuURRFUlJSLvKv3/jU46omIiITJ06U1q1by6pVq2T37t1yyy23iNlsVutBVXWgpKREFixYIH5+fpKeni7p6emSl5dX7XIiIjt37hSDwSATJ06UhIQE2bt3r7z99tty+vRpyc7Olr59+8qECRPU9dpsNjl+/LiYTCaZNGmSJCYmyvLlyyUkJESee+45dX9iY2PFbDbLjBkz5MCBA5KYmHhpB4iIiKgWMOkmaooA5ysj41zZiy86y+67z3Vek8lZnpp6ruzNN51ld9/tOm9IiLN8796LDq2ipPuee+5R36enpwsAmTVrllr2559/CgBJT0+vdL1Dhw6Vxx57TEREcnNzRafTybfffqtOz87OFpPJpG770KFDoiiKnDhxwmU91113nTz55JMVbuPnn38WLy8vlzhWr17tknR/9NFHEhMTo/5AICJSUlIiRqNRfv31VxERadmypbz00ksu6+7du7dMmjRJRM4l3f/973/V6V9++aUAkDVr1qhlr7zyisTExKjvw8PD5YsvvnBZ7wsvvCB9+/Z1We/OnTtd5hkzZoyEhoaqPwqUuummm2TixInq+6lTp8qgQYMqPDZNVT2uapKXlyd6vV6++uortezMmTNiNBplypQpNaoDixYtEn9/f5fpNVnurrvukv79+1caW9nrgIjIU089Va7uvPPOO2I2m8X+968PsbGx0r1795odACIiojrCZ7qJqN7r2rWr+v/Q0FAAcLm1ubQsIyMDYWFhsNvtePXVV/H111/jxIkTKCkpQUlJCXx8fAAAhw8fhtVqRZ8+fdR1+Pv7IyYmRn0fHx8PEUF0dLRLLCUlJQgODq4wzqSkJISHhyMsLEwtO38bALBjxw4cOnQIvr6+LuXFxcVISUlBbm4uTp48if79+7tM79+/P3bt2nXBxyUjIwMAcPr0aRw7dgzjx4/HhAkT1HlsNhv8/f0r3J/zdenSpdyzsRMmTMC4cePwxhtvQKvVYsmSJeVuT6b6KyUlBRaLBX379lXLgoKC1HpwMXWgpsslJCTg9ttvv6B4ExMT0bdvXyiKopb1798f+fn5OH78ONq0aQMA6NWr1wWtl4iIyN2YdBM1Rfn5zn9NpnNlM2YAU6cCXmUuC38nbTAaz5U99BAwYQKg1brOW/pc8vnz1gKdTqf+v/QLd0VlDocDADB//ny8+eabWLBgAbp06QIfHx9MnToVFosFACAiLsuVKi0vXZdWq8WOHTugLbOfZrO5wjhFpNw6y3I4HLjiiiuwZMmSctOaNWtWbp+qWndNjkvpMSn998MPP8SVV17psp6y+1eR0h8sznfrrbfCYDBg+fLlMBgMKCkpwT/+8Y9q19WU1Oeqdv75XpGLqQM1Xc54EYFXVAcqqssVnatERESexKSbqCmq6EupXu981WRenc75qsm8HrBhwwYMGzYM99xzDwBnEnDw4EF07NgRAHDZZZdBp9Nh27ZtCA8PBwDk5ubi4MGDiI2NBeDsTMxutyMjIwNXX311jbbboUMHHD16FH/99Zfa8hwXF+cyT8+ePfH111+jefPm8PPzq3A9LVu2xMaNGzFw4EC1bPPmzeVazS9EaGgoWrVqhcOHD2PkyJEVzlPakm2322u0Ti8vL4wZMwaLFi2CwWDAv/71L5jOzy6pXle1qKgo6HQ6bNmyRW0lzsrKQnJyMmJjY2tUB/R6fbnzpSbLde3aFWvWrMHzzz9f4/V26tQJS5cudUm+N2/eDF9fX7Rq1eqC9p2IiKgusfdyImp0oqKisHr1amzevBmJiYl44IEHcOrUKXW6r68vxowZgxkzZmDt2rXYt28fxo0bB41Go36Zj46OxsiRIzF69GgsW7YMqampiIuLw2uvvYaVK1dWuN3Bgwfjsssuw5gxY7B7925s2rQJTz/9NIBzLXEjR45ESEgIhg0bhg0bNiA1NRXr16/HlClTcPz4cQDAjBkz8Nprr+Hrr79GUlISnnjiCSQkJGDKlCmXdFxmz56NV155BQsXLkRycjL27NmDRYsW4Y033gAANG/eHEajEb/88gv++usv5OTkVLvO++67D7///jt+/vlnjBs37pLio7plNpsxfvx4zJgxA2vWrMHevXsxduxYaDTOrwY1qQORkZHIz8/HmjVrkJmZicLCwhot9+STTyIuLg6TJk3C7t27ceDAAbz33nvIzMxU17t161akpaUhMzMTDocDkyZNwrFjx/DII4/gwIED+P777/Hcc89h2rRpasxERET1ET+liKjRmTVrFnr27IkhQ4Zg0KBBCAsLw/Dhw13meeONN9C3b1/ccsstuP7669G/f391KK1SixYtwujRo/HYY48hJiYGt912G7Zu3aq2jpel1Wrx3XffIT8/H71798Z9992HZ555BgDU9ZpMJvzxxx9o06YN/u///g8dO3bEuHHjUFRUpLZ8T548GY899hgee+wxdOnSBb/88gt++OEHtG/f/pKOy3333Yf//ve/WLx4Mbp06YLY2FgsXrxYHSrMy8sLb731Fv7zn/+gZcuWGDZsWLXrbN++Pfr164eYmJhyt61T/Tdv3jwMHDgQt912G66//noMGDAAV1xxhTq9ujrQr18/PPjgg7jzzjvRrFkzzJ07t0bLRUdHY9WqVdi1axf69OmDvn374vvvv4fX3/fcT58+HVqtFp06dUKzZs1w9OhRtGrVCitXrsS2bdvQrVs3PPjggxg/frxax4iIiOorRap7qIuIqAkoKChAq1atMH/+fIwfP77W1rtp0yYMGDAAhw4dwmWXXVZr660vRAQdOnTAAw88gGnTpnk6HCIiIqJ6h890E1GTtHPnThw4cAB9+vRBTk4O5syZAwA1at2tyvLly2E2m9G+fXscOnQIU6ZMQf/+/Rtlwp2RkYHPPvsMJ06cwL333uvpcIiIiIjqJSbdRNRkvf7660hKSoJer8cVV1yBDRs2ICQk5JLWmZeXh5kzZ+LYsWMICQnB9ddf32iH0QoNDUVISAg++OADBAYGejocIiIionqJt5cTERERERERuQk7UiMiIiIiIiJyEybdRERERERERG7CpJuIiIiIiIjITZh0ExEREREREbkJk24iIiIiIiIiN2HSTUREREREROQmTLqJqN4bNGgQpk6d6ukwLsjs2bPRvXv3C1qmtvbzzJkzaN68OdLS0i55XbXlYo5HWStWrECPHj3gcDhqJyiqEOvbhbmY+rZ48WIEBARc8rZLpaWlQVEUJCQkXPQ6SkpK0KZNG+zYsaPW4iIiIicm3UTU6Kxbtw6KoiA7O9tjMUyfPh1r1qy5oGWWLVuGF1544ZK3/corr+DWW29FZGTkJa+rLh09ehS33norfHx8EBISgsmTJ8NisajTb7nlFiiKgi+++MKDUVJZrG8XXt/uvPNOJCcnX/K2L4SIYPbs2WjZsiWMRiMGDRqEffv2qdMNBgOmT5+Oxx9/vE7jIiJqCph0E1F5X38NvPRS1fO89JJzPnIhIrDZbDCbzQgODr6gZYOCguDr63tJ2y8qKsJHH32E++6775LWU9fsdjtuvvlmFBQUYOPGjfjqq6+wdOlSPPbYYy7z3XvvvXj77bc9FKV7sLpdvIZa34xGI5o3b35J275Qc+fOxRtvvIF///vfiIuLQ1hYGAYPHoy8vDx1npEjR2LDhg1ITEys09iIiBo7Jt1EVN6hQ8AzzwCVtQK98IJz+qFDtb7pgoICjB49GmazGS1atMD8+fPLzfP555+jV69e8PX1RVhYGO6++25kZGQAcN5mec011wAAAgMDoSgKxo4dCwD45ZdfMGDAAAQEBCA4OBi33HILUlJSqoynpKQEkydPRvPmzeHt7Y0BAwYgLi5OnV7ayvfrr7+iV69eMBgM2LBhQ7nbXW02GyZPnqxu+/HHH8eYMWMwfPhwdZ6yt7tGRkbi5Zdfxrhx4+Dr64s2bdrggw8+qDLen3/+GV5eXujbty8AwOFwoHXr1nj//fdd5ouPj4eiKDh8+DAAZyvzsGHDYDab4efnhzvuuAN//fUXAODAgQMwmUwuLczLli2Dt7c39uzZAwDIycnB/fffj+bNm8PPzw/XXnstdu3aVWWs51u1ahX279+Pzz//HD169MD111+P+fPn48MPP0Rubq4632233YZt27apcTcGHqxurG+1XN/Oj/Gnn35Ct27d4O3tjSuvvFKtK4Dr7eUiguuvvx433ngjRAQAkJ2djTZt2uDpp59Wl1m0aBE6duwIb29vdOjQAe+++26VsZ1PRLBgwQI8/fTT+L//+z907twZn3zyCQoLC13qdXBwMPr164cvv/yyxusmIqLqMekmovKefhqYMwd49tnymcALLzjL58xxzlfLZsyYgbVr12L58uVYtWoV1q1bV+4ZQ4vFghdeeAG7du3Cd999h9TUVPWLfnh4OJYuXQoASEpKQnp6OhYuXAjAmWBMmzYNcXFxWLNmDTQaDUaMGFHlM8IzZ87E0qVL8cknnyA+Ph5RUVEYMmQIzp49W26+V155BYmJiejatWu59bz22mtYsmQJFi1ahE2bNiE3Nxffffddtcdj/vz56NWrF3bu3IlJkyZh4sSJOHDgQKXz//HHH+jVq5f6XqPR4F//+heWLFniMt8XX3yBvn37ol27dhARDB8+HGfPnsX69euxevVqpKSk4M477wQAdOjQAa+//jomTZqEI0eO4OTJk5gwYQJeffVVdOnSBSKCm2++GadOncLKlSuxY8cO9OzZE9ddd12541SZP//8E507d0bLli3VsiFDhqCkpMTl7x8REYHmzZtjw4YNNVpvQ+DB6sb6Vsal1rfzzZgxA6+//jri4uLQvHlz3HbbbbBareXmUxQFn3zyCbZt24a33noLAPDggw8iNDQUs2fPBgB8+OGHePrpp/HSSy8hMTERL7/8MmbNmoVPPvmk2n0CgNTUVJw6dQo33HCDWmYwGBAbG4vNmze7zNunT59GVb+IiOoFISKqzJw5IoDz34re17K8vDzR6/Xy1VdfqWVnzpwRo9EoU6ZMqXS5bdu2CQDJy8sTEZG1a9cKAMnKyqpyexkZGQJA9uzZU+H0/Px80el0smTJErXMYrFIy5YtZe7cuS7b+u6771yWfe6556Rbt27q+9DQUJk3b5763mazSZs2bWTYsGFqWWxsrMt+RkREyD333KO+dzgc0rx5c3nvvfcq3adhw4bJuHHjXMri4+NFURRJS0sTERG73S6tWrWSd955R0REVq1aJVqtVo4ePaous2/fPgEg27ZtU8tuvvlmufrqq+W6666TwYMHi8PhEBGRNWvWiJ+fnxQXF7ts97LLLpP//Oc/FR6PsiZMmCCDBw8uV67X6+WLL75wKevRo4fMnj270nU1VHVc3Vjf3FTfSmOs6Lh+/fXXIiKyaNEi8ff3d1num2++EYPBIE8++aSYTCZJSkpSp4WHh5erBy+88IL07dtXRERSU1MFgOzcubPCODdt2iQA5MSJEy7lEyZMkBtuuMGlbOHChRIZGVnpPhMR0YVjSzcRVW7WrHNNcAbDuSa3WbPcsrmUlBRYLBaXWzWDgoIQExPjMt/OnTsxbNgwREREwNfXF4MGDQLgvEW6uvXffffdaNeuHfz8/NC2bdsql0tJSYHVakX//v3VMp1Ohz59+pR75rGy1i7Aeev1X3/9hT59+qhlWq0WV1xxRZXxAnBpxVMUBWFhYeqtvRUpKiqCt7e3S1mPHj3QoUMH9ZbR9evXIyMjA3fccQcAIDExEeHh4QgPD1eX6dSpEwICAlz28+OPP8bu3bsRHx+PxYsXQ1EUAMCOHTuQn5+P4OBgmM1m9ZWamlrt7cTnK13f+USkXLnRaERhYWGN19tQ1HF1Y32rQG3Ut1IVHdeqnpW+/fbb8X//93945ZVXMH/+fERHRwMATp8+jWPHjmH8+PEu9evFF1+8oPpVuk/na0r1i4jIk7w8HQAR1XOzZgEvvghYLIBe774MAFCfZ6xKQUEBbrjhBtxwww34/PPP0axZMxw9ehRDhgxx6em6IrfeeivCw8Px4YcfomXLlnA4HOjcuXOly5XGU5Mvqj4+PtXGXtF6qqPT6cqto6rbc0NCQpCVlVWufOTIkfjiiy/wxBNP4IsvvsCQIUMQEhKixlGThHfXrl0oKCiARqPBqVOn1FvBHQ4HWrRogXXr1pVbR02HRQoLC8PWrVtdyrKysmC1WhEaGupSfvbsWTRr1qxG621o6rC6sb5VoLbqW01jOl9hYSF27NgBrVaLgwcPquWl2//www9x5ZVXuiyj1WprtN2wsDAAwKlTp9CiRQu1PCMjo0nVLyIiT2FLNxFV7YUXzmUAFkvlvT3VgqioKOh0OmzZskUty8rKchla58CBA8jMzMSrr76Kq6++Gh06dCjXEqXX6wE4e8QudebMGSQmJuKZZ57Bddddh44dO1b7ZTkqKgp6vR4bN25Uy6xWK7Zv346OHTvWeL/8/f0RGhqKbdu2qWV2ux07d+6s8TpqqkePHti/f3+58rvvvht79uzBjh078L///Q8jR45Up3Xq1AlHjx7FsWPH1LL9+/cjJydH3c+zZ89i7NixePrpp3Hvvfdi5MiRKCoqAgD07NkTp06dgpeXF6KiolxepYl9dfr27Yu9e/ciPT1dLVu1ahUMBoNLC2VxcTFSUlLQo0ePCzswDUQdVjfWt1pQWX0DUOFx7dChQ6Xreuyxx6DRaPDzzz/jrbfewu+//w4ACA0NRatWrXD48OFy9av07oHqtG3bFmFhYVi9erVaZrFYsH79evTr189l3r179zba+kVE5ClMuomocuf34lRSUnlvT7XEbDZj/PjxmDFjBtasWYO9e/di7Nix0GjOXaratGkDvV6Pt99+G4cPH8YPP/xQbqzdiIgIKIqCFStW4PTp08jPz0dgYCCCg4PxwQcf4NChQ/j9998xbdq0KuPx8fHBxIkTMWPGDPzyyy/Yv38/JkyYgMLCQowfP/6C9u2RRx7BK6+8gu+//x5JSUmYMmUKsrKyqmz5uhhDhgzBvn37yiU4bdu2Rb9+/TB+/HjYbDYMGzZMnXb99deja9euGDlyJOLj47Ft2zaMHj0asbGx6m28Dz74IMLDw/HMM8/gjTfegIhg+vTp6vJ9+/bF8OHD8euvvyItLQ2bN2/GM888g+3bt9co7htuuAGdOnXCqFGjsHPnTqxZswbTp0/HhAkT4Ofnp863ZcsWGAwGl1t3G4s6rm6sb7WgsvoGAHPmzHE5riEhIS69p5/vp59+wscff4wlS5Zg8ODBeOKJJzBmzBh1vbNnz8Yrr7yChQsXIjk5GXv27MGiRYvwxhtv1ChORVEwdepUvPzyy1i+fLkak8lkwt133+0y74YNG1w6XCMiolrgkSfJiaj+q6wXpzroTO2ee+4Rk8kkoaGhMnfu3HIdHn3xxRcSGRkpBoNB+vbtKz/88EO5ToTmzJkjYWFhoiiKjBkzRkREVq9eLR07dhSDwSBdu3aVdevWCQBZvnx5pfEUFRXJI488IiEhIWIwGKR///4unYtV1olU2Y6drFarPPzww+Ln5yeBgYHy+OOPy+233y7/+te/1Hkq6tjpzTffdFlvt27d5LnnnqvyGF511VXy/vvvlyt/5513BICMHj263LQjR47IbbfdJj4+PuLr6yu33367nDp1SkREPvnkE/Hx8ZHk5GR1/u3bt4ter5effvpJRERyc3PlkUcekZYtW4pOp5Pw8HAZOXKk2jlbdR2plcZw8803i9FolKCgIHn44YfLdc52//33ywMPPFDlehoiD1U31jc31LfSGH/88Ue5/PLLRa/XS+/evSUhIUGd5/yO1DIyMiQ0NFRefvlll/j79Okjd9xxh1q2ZMkS6d69u+j1egkMDJSBAwfKsmXLRKT6jtREnB3DPffccxIWFiYGg0EGDhxYrlO7zZs3S0BAgBQWFla5z0REdGEUkRo85ERETctLLzkHBq6sF6fSJrkXX3TPOEZNgMPhQMeOHXHHHXeUazm8VCtXrsT06dOxd+9el1bLhu706dPo0KEDtm/fXuPbahsCVjf3q8v6tm7dOlxzzTXIysqqcZ8G9cXtt9+OHj164KmnnvJ0KEREjQo7UiOi8qKiqv6GP2sWoNE456MaOXLkCFatWoXY2FiUlJTg3//+N1JTU8vd2lkbhg4dioMHD+LEiRMuPZI3dKmpqXj33XcbVcINsLq5A+vbhSspKUG3bt3w6KOPejoUIqJGhy3dRER14NixY/jXv/6FvXv3QkTQuXNnvPrqqxg4cKCnQyNqdDxZ3xpySzcREbkHk24iIiIiIiIiN2k8D/sRERERERER1TNMuomIiIiIiIjchEk3ERERERERkZsw6SYiIiIiIiJyEybdRERERERERG7CpJuIiIiIiIjITZh0ExEREREREbkJk24iogoMGjQIU6dO9fi2PRlHXW9/4cKFaNu2LUwmE4YPH46cnJw62S4RERGRO3l5OgAiotoyaNAgdO/eHQsWLLjk5ZYtWwadTle7AV6EuoqjsmNXV9t/6qmn8O233+KTTz6B2WzGiBEj8Pzzz+ONN95w+7aJiIiI3Ikt3URU71ksljrfZlBQEHx9fet8uxcah7uPTV0ch7i4OLz22mv4+uuvMXDgQPTs2RMPPPAAVqxY4dbtEhEREdUFJt1ETVFBQeWv4uKaz1tUVP28F2HQoEF4+OGHMW3aNISEhGDw4MEoKSnB5MmT0bx5c3h7e2PAgAGIi4tTlxk7dizWr1+PhQsXQlEUKIqCtLQ0/PLLLxgwYAACAgIQHByMW265BSkpKdUuV/a26uq2P2jQIEyePBkzZ85EUFAQwsLCMHv27Gr3taCgAKNHj4bZbEaLFi0wf/78csfi/DgqOjYAICKYO3cu2rVrB6PRiG7duuF///ufy7ocDgdee+01REVFwWAwoE2bNnjppZcqPQYVbd8dx+H111/Htddei549e6plzZo1Q2ZmZrXHj4iIiKi+Y9JN1BSZzZW//vEP13mbN6983ptucp03MrL8PBfpk08+gZeXFzZt2oT//Oc/mDlzJpYuXYpPPvkE8fHxiIqKwpAhQ3D27FkAzueB+/btiwkTJiA9PR3p6ekIDw9HQUEBpk2bhri4OKxZswYajQYjRoyAw+Gocrmyqtt+acw+Pj7YunUr5s6dizlz5mD16tVV7ueMGTOwdu1aLF++HKtWrcK6deuwY8eOCzo2APDMM89g0aJFeO+997Bv3z48+uijuOeee7B+/Xp1uSeffBKvvfYaZs2ahf379+OLL75AaGhojY+BO45DSUkJfvzxR4wYMcKlvKioCP7+/lUeByIiIqIGQYio6QEqfw0d6jqvyVT5vLGxrvOGhJSf5yLExsZK9+7d1ff5+fmi0+lkyZIlapnFYpGWLVvK3LlzXZabMmVKlevOyMgQALJnz54qlzu/rCbbj42NlQEDBriso3fv3vL4449XGkteXp7o9Xr56quv1LIzZ86I0WhUt102trLHpjQ+b29v2bx5s0v5+PHj5a677hIRkdzcXDEYDPLhhx9WGEtlx87dx2Hz5s0CQLy9vcXHx0d96fV6GTJkSIXLEBERETUk7EiNqCnKz698mlbr+j4jo/J5NWVulvn7luTa0KtXL/X/KSkpsFqt6N+/v1qm0+nQp08fJCYmVrmelJQUzJo1C1u2bEFmZqbawn306FF07ty5RrHUdPtdu3Z1Wa5FixbIqOL4paSkwGKxoG/fvmpZUFAQYmJiqozn/GMDAPv370dxcbF6q3kpi8WCHj16AAASExNRUlKC6667rsp1V8UdxyE5ORne3t7Ys2ePS/ltt93msh0iIiKihopJN1FT5OPj+XmrXdW5dYkIAEBRFJd5RKRcWVm33norwsPD8eGHH6Jly5ZwOBzo3LnzBXVAVtPtl+3lW1EUNcmvar0XyqfMcS7dxk8//YRWrVq5TDMYDAAAo9F4Uds6nzuOQ25uLpo3b46oqCi17OjRozhw4AD+UfZRByIiIqIGiM90E1G9FxUVBb1ej40bN6plVqsV27dvR8eOHdUyvV4Pu92uvj9z5gwSExPxzDPP4LrrrkPHjh2RlZVVbv1ll7vY7V/Mful0OmzZskUty8rKQnJy8gWtp1OnTjAYDDh69CiioqJcXqXPZrdv3x5GoxFr1qypcB3VHYPSeGv7OISEhCA3N9flB4iXXnoJQ4cORadOnS5qnURERET1CVu6iaje8/HxwcSJEzFjxgwEBQWhTZs2mDt3LgoLCzF+/Hh1vsjISGzduhVpaWkwm80ICgpCcHAwPvjgA7Ro0QJHjx7FE088UW79FS13Mdu/UGazGePHj8eMGTMQHByM0NBQPP3009CUvW2/Gr6+vpg+fToeffRROBwODBgwALm5udi8eTPMZjPGjBkDb29vPP7445g5cyb0ej369++P06dPY9++fRg/fnyFx6BsHO44Dtdeey2Ki4vx6quv4q677sIXX3yBH374Adu2bbuo9RERERHVN0y6iahBePXVV+FwODBq1Cjk5eWhV69e+PXXXxEYGKjOM336dIwZMwadOnVCUVERUlNT8dVXX2Hy5Mno3LkzYmJi8NZbb2HQoEEu665ouYvZ/sWYN28e8vPzcdttt8HX1xePPfYYcnJyLng9L7zwApo3b45XXnkFhw8fRkBAAHr27ImnnnpKnWfWrFnw8vLCs88+i5MnT6JFixZ48MEHAVR8DCIjI8ttp7aPQ2hoKBYvXowZM2bghRdewLXXXouNGzdW2ns6ERERUUOjyMU+VEhEREREREREVeIz3URERERERERuwqSbiIiIiIiIyE2YdBMRERERERG5CZNuIiIiIiIiIjdh0k1ERERERETkJky6iYiIiIiIiNyESTcRERERERGRmzDpJiIiIiIiInITJt1EREREREREbsKkm4iIiIiIiMhNmHQTERERERERuQmTbiIiIiIiIiI3YdJNRERERERE5CZMuomIiIiIiIjchEk3ERERERERkZsw6SYiIiIiIiJyEybdRERERERERG7CpJuIiIiIiIjITZh0ExEREREREbkJk24iIiIiIiIiN2HSTUREREREROQmTLqJiIiIiIiI3IRJNxEREREREZGbMOkmIiIiIiIichMm3URERERERERuwqSbiIiIiIiIyE2YdBMRERERERG5CZNuIiIiIiIiIjdh0k1ERERERETkJky6iYiIiIiIiNyESTcRERERERGRmzDpJiIiIiIiInITJt1EREREREREbsKkm4iIiIiIiMhNmHQTERERERERuQmTbiIiIiIiIiI3YdJNRERERERE5CZMuomIiIiIiIjchEk3ERERERERkZsw6SYiIiIiIiJyEybdRERERERERG7CpJuIiIiIiIjITZh0ExEREREREbkJk24iIiIiIiIiN2HSTUREREREROQmTLqJiIiIiIiI3IRJNxEREREREZGbMOkmIiIiIiIichMm3URERERERERuwqSbiIiIiIiIyE2YdBMRERERERG5CZNuIiIiIiIiIjdh0k1ERERERETkJky6iYiIiIiIiNyESTcRERERERGRmzDpJiIiIiIiInITJt1EREREREREbsKkm4iIiIiIiMhNmHQTERERERERuQmTbiIiIiIiIiI3YdJNRERERERE5CZMuomIiIiIiIjchEk3ERERERERkZsw6SYiIiIiIiJyEybdRERERERERG7CpJuIiIiIiIjITZh0ExEREREREbkJk24iIiIiIiIiN2HSTUREREREROQmTLqJiIiIiIiI3IRJNxEREREREZGbMOkmIiIiIiIichMm3URERERERERuwqSbiIiIiIiIyE2YdBMRERERERG5CZNuIiIiIiIiIjdh0k1ERERERETkJky6iYiIiIiIiNyESTcRERERERGRmzDpJiIiIiIiInITJt1EREREREREbsKkm4iIiIiIiMhNmHQTERERERERuQmTbiIiIiIiIiI3YdJNRERERERE5CZMuomIiIiIiIjchEk3ERERERERkZsw6SYiIiIiIiJyEybdRERERERERG7CpJuIiIiIiIjITZh0ExEREREREbkJk24iIiIiIiIiN2HSTUREREREROQmTLqJiIiIiIiI3IRJNxEREREREZGbMOkmIiIiIiIichMm3URERERERERuwqSbiIiIiIiIyE2YdBMRERERERG5CZNuIiIiIiIiIjdh0k1ERERERETkJky6iYiIiIiIiNyESTcRERERERGRmzDpJiIiIiIiInITJt1EREREREREbsKkm4iIiIiIiMhNmHQTERERERERuQmTbiIiIiIiIiI3YdJNRERERERE5CZMuomIiIiIiIjchEk3ERERERERkZsw6SYiIiIiIiJyEybdRERERERERG7CpJuIiIiIiIjITZh0ExEREREREbkJk24iIiIiIiIiN2HSTUREREREROQmTLqJiIiIiIiI3IRJNxERERFRFf5Kz8Xg6604ftzTkRBRQ8Skm4iIiIioAg67BflnD2Ld6hM4esSG7793qNO2bQNycjwYHBE1GEy6iYiIiIjOIyIozj+FnIwEWIoyYbVpkHzIiCVLFACA1QoMHw60bAnExXk2ViKq/7w8HQARERERUX0iDhuK845BHHZ46c247f9a4fA1gE7nTLqPHweCggC7HejW7dxyyclAixaAr6+HAieiekkREfF0EEREREREniQOOxSNVn1fUnga4rDD4BMKRVHKzy/O5Ds8/FzZgAFAQgLwzTfA0KF1EDQRNQi8vZyIiIiImjRLYebft5KfVcsMpmbwNodVmHADgKK4Jtw5OUBmJlBSAvToca781CmgoMBdkRNRQ8Ckm4iIiIiaJLutGHmZicjPOgiH3YKSglMVzrdvH7BwIfDjj5Wvy98fSEx0tnS3aHGu/Mknnc9+f/ZZ7cZORA0Hk24iIiIialJEHCjKO47cjF2wlmRDUTQw+oXDHNyhwvm3bgWmTgX+85+q16sowOWXn3tvtwPx8UBuLhAVda48Lw8oLLz0/SCihoFJNxERERE1GdaSXORm7EJR7jGIOKAzBMCveTcYfVtDUSr+aty2LfCvfwEDB17YtrRaYOdOYMMG4KqrzpW//baz9fvtty9hR4iowWDv5URERETUdIgddlsxNFo9TH4R0JtCql3kmmucr4uh0Tg7WDvfb785nwH38ztXZrM5X97eF7cdIqq/2NJNRERERI2WiMBmPXcvt847ED4Bl8GvebcaJdzu8NtvwC+/AHfcca7su++AVq2Al1/2SEhE5EZs6SYiIiKiRslmyUdhTirstiL4N+8OjVYPADD4NPdoXBoNMGSIa9ny5cDZs+Wf9bZaAZ2u7mIjotrHlm4iIiIialQcDhsKs1ORe3ovbJZ8AIDdevE9l73zDtC8OTBlSm1FWN6nnwIrVgAPPHCubNcu57Pfzzzjvu0SkfuxpZuIiIiIGg1LYSYKc4/AYbcAAPTGEJj8I9RW7ouRlwecPg3k59dWlOVptcDNN7uWLVniHPs7Odm1XMTZUzoRNQyKiIingyAiIiIiuhQigvyzB2AtzgYAaL28YQpoB53B/5LXnZkJnDrlHIs7PPySV1djNhuwciXQujXQs6ez7MwZ4IorgLvuAp5/HtBf/G8JRFRHmHQTERERUaNQmJOGkoK/4O3bCt7mlpUOAdaQvfMO8PDDQPfuzjHA2eJNVP8x6SYiIiKiBslanA2NVg+tzgQAEIcdDocVWq/GO+6W1Qr8+CNgMJy7Hd1udw5Ldv31wIwZrkOREZHnMekmIiIiogbFYbegMCcNlqIz8NL7wq9ZZ7dub+tWYM8eoGtXoE8ft27qoqxc6UzAg4KAEyc41jdRfcOO1IiIiIioQRARlBScQlHeMYjDDkCBl94HIg633kq+dCkwbx4wfXr9TLqvvx74+msgO9s14b7nHqB9e+Chh4AQzwxJTkRg0k1EREREDYDNko/C7MOwWQsAAF56M0z+beGlN7t92x07ArfeClx+uds3dVH0euCOO1zLkpKcvZ9rNMC993omLiJy4u3lRERERFSvWUtykJe5HwCgaLQw+rWBwRQKhb2IVaqkBFi2DNi3D3jxxXPlzz8PeHkBEyY4xx4nIvdj0k1ERERE9ZqIA3mn90LjZbzkMbebsrw8oGVL53jja9cCgwZ5OiKipoFJNxERERHVK3ZbEYrzTsIU0FZ9VlscdigarYcja9hKSoBvvgF++QX4/PNzw4198gmQnu68DT001LMxEjVGTLqJiIiIqF4Qhx3F+SdRnH8CIgKjXziMvq09HRZmzgT+9z/nvw8+6OloapcIEBMDHDwIfPCB87ZzIqpd7uvmkYiIiIiohqzF2cg9vRtFecchItB5B0BvrB9dbmdkAKmpztuzGxu7HXjqKeDaa4G77jpXvnYt8PrrQGam52IjaizY0k1EREREHnP+mNsAoNHqYfKPhN4Y7OHIzklNdSberVsDrVp5Opq6cfPNzvG/p093DpdGRBePQ4YRERERkccU5qTCUnQWgAJvcyi8fcOh0dSvr6ht2zpfTck//uH8oeH++8+VJSc7E/HRo4GgIM/FRtTQsKWbiIiIiDzGbitGYXYKjH4RdTLmNl28qVOBhQudCfn//ufpaIgaDj7TTURERER1wuGwoSD7MAqyD6tlWi9v+IZcXq8T7nXrgC+/BA4frnbWRu2KK4Bu3YDx48+V5eQA//43kJ3tsbCI6j22dBMRERGR25UUZqIoJw0OhxUA4B/aHVovo4ejqplbbwVWrAD++1/XhLMpKs0cSocbe+cd4OGHgV69gLg4z8VFVJ/VrwdmiIiIiKhRsVuLUJiTCmtJDgBA62WEKaBtg0m4AaB7d6CoqOl0olaV0mS7VPPmQOfOwKhR58ocDuCzz4ARIwA/v7qNj6g+Yks3EREREdW6smNuK4oG3r6t4G1uCUXhE46NiYhz6DGvv5vzVq8GbrjB+SPFkSOAVuvZ+Ig8jVc8IiIiIqp1Ig6UFPyljrnt17wbjL6tmXA3QopyLuEGAIsF6NABGD7cNeH+6ScgP7/OwyPyOLZ0ExEREVGtcNit0Gh16vvSsbfr05jbVDdEnLfkm0zO94cPA1FRztvN09KAgABPRkdUt/hTIxERERFdEhEHivPTkfPXTjXRBpzJdmNIuO++2/nc8u+/ezqShkNRziXcAHDihDPpvvJK14R761agsLDOwyOqU+xIjYiIiIgums2Sh8LsVNisBQAAS1Fmo0i0z5eSAuzbBxQUeDqShuvqq4EDB4CsrHNlhYXAkCHO/2/dCsTEeCY2Indj0k1EREREF8zhsKEo9yhKCv4CAGg0XjD6tYHe1NzDkdW+995zjkPdpYunI2nYNBog+LzfY1JSgKAgZ6t4+/bnypOSgDZtAGPD6eCeqEp8ppuIiIiILoil6CwKsw+rY24bTM1g9ItweZ6bqCYcDuDYMSAiwvlexHkrf3o68MMPwIABno2PqDawpZuIiIiILoii0cLhsP495nY76AwcjJkujkZzLuEGnMl2fj5QUuJ6Z8HJk85WcoOh7mMkulRs6SYiIiKiKonDDrutEF56X7XMUnQWOu+AJjEE2OrVzp64Bwxw3g5N7mW3A/v3uybdw4cDmzYBH30E3Habx0IjuihMuomIiIioUtbiLBTmpMFht8I/tBs02qbX1Ni+PXDoELBxI9C/v6ejaXqKi4GOHZ1Dje3bB3Tq5CzPzQW8vQG93qPhEVWr8f80SUREREQXzGEvQf7ZZOSdOQC7rdh5S7nd4umwPKJHD+CqqwB/f09H0jR5ewMHDwLr159LuAHgxReB8HDg0089FxtRTbClm4iIiIhUIg6UFPyFotxjELEDUOBtbgGjb2soGq2nwyMC4OxwrUcPYNcu4LvvgGHDnOUWi7M3dB379KN6hC3dRERERATAmXDnZe5DYU4aROzw0pvh17wLTP4RTLipXlEUIC7OmXDffPO58k8/dXbM9s47HguNqBz2Xk5EREREAABF0cBL7weHrVgdc1tRFE+HRVQhne5cC3eppUudPaAXFp4rE3F2zubFzIc8hC3dRERERE1YSeFp2KwF6nujb2v4Ne8Og08oE+6/XXcdcOWVzo68qH77/nvgm2+AsWPPlf3xBxAZCcyb56moqKnj7z1ERERETZDdWoTCnFRYS3LgpTfDN6QzFEWBotFCAW8lP9/27c6esq1WT0dC1dHrgdtvdy37/HPgxAlnZ2znE3Hepk7kbky6iYiIiJoQcdhRnH8CxfknISJQFA103kEABAAzkIp8+y1QUgK0bOnpSOhi/PvfzrsVunY9V3bsGDBoEDBuHPDkk4CG9/+SG7H3ciIiIqImwlKchaLsVNjtJQAAnXcgTP6R0Hp5ezgyorr14ovArFnOxHvtWk9HQ40dW7qJiIiImgBLcRbyzxwAAGi0epj820JvDPJwVESeMX268znvFi3OlRUXAwMHAiNGAFOnAkajp6KjxoYt3URERERNgIggL3MvvPR+HHP7AogAq1Y5e76++mrnM8PUOH3xBTByJBAeDqSmAlpWEaolTLqJiIiIGiGbJQ/FeSfhExilJtgiDigKH169EOcPNZWZCQQHezYecp/CQmfP5xoNMHq0s0wEuOMOoE8f4IEHAD8/z8ZIDROTbiIiIqJGxOGwoSj3KEoK/gIAGP3CYfRt7eGoGi6r1Zlw2e3Apk2Ar6+nI6K6FBfn/PsbDM4e0PmjC10MPtNNRERE1EiUFJ5GUc4ROBzOsa0MpmYwmEI9HFXDptMBO3d6OgrylE6dgP/+Fzh50jXhfuIJIDTUOR54YKDHwqMGgi3dRERERA3c+WNuA4BWZ4LJvy10Bt4LS1TbMjKA1q2dd0Hs3Al07+7piKi+Y0s3ERERUQNXlHcU1pIcKIoG3r6t4W1uwWe3idzExwd46y1g61bXhPv99wGLBRg1iq3f5Iot3UREREQN0PmdotltxSjKPQqjXxuOuV3LsrKA4cOdPVmvWQMoiqcjovrIagXatAFOnXJ2xnb77Z6OiOoTJt1EREREDYjDXoLCnDQoihY+gVGeDqfRS08HWrZ09mhtt3s6Gqqvioudz34vXw78/PO5oeVWrgSOHHEORcaez5suJt1EREREDYCIAyUFp1CUe+zvVm4Ffs17QOtl8HRojVpREfDTT86E+847PR0NNTT9+wObNwMvvww8+aSnoyFP4TPdRERERPWczZKHguzDsFsLAQBeel+YAtox4a4DRiPwz396OgpqiBwO5xjf+fnAvfeeK09IALZtA+6+GzCbPRYe1SG2dBMRERHVUw6HDUU5R1BSmAEA0Gi8YPRrA72pORQ+XEzUII0dC3zyCXDffcCHH3o6GqoL7NaSiIiIqB6zFmcBAAym5vBr3h0Gn1Am3HWosBDYuBHYvt3TkVBj0bs3EB0NjBt3ruzUKeDjj4GCAs/FRe7Dlm4iIiKiesRuK3bpgdxSnAVF0XLMbQ/Ztw/o3Blo1sw5PjNRbSjNwEp/P3v5ZeDpp4EbbgB+/dVzcZF7sKWbiIiIqB4Qhx2FuUeRm5GAksJMtVzvHciE24O0WqB9e6BdO09HQo2JorgOPxca6jzHRo48V2axAEuWODvzo4aNLd1EREREHmYpzkJRdirs9hIAzlvJfQIv83BURFSXHA7ny+vvrq6//dbZEVunTsDevRwjviFjSzcRERGRh9htJcg/k4T8Mwdgt5dAozXAHBTDhJuoCdJoziXcgHOYuogIYMQI14T7p5+c44JTw8GWbiIiIiIPKCk8jcLsw+qY2wafFjD6toai0Xo6NCKqJ+x2oKQEMJmc7xMSgB49gBYtgMOHAW/vKheneoIt3UREREQeoNEaIOKAl94Xvs26wuQfwYS7HtqzB7jpJmDiRE9HQk2RVnsu4QaAkyeB1q2Bq692Tbi3bHE+A071E1u6iYiIiOqAw26F3ZoPnXegWmYtyYWX3pdDgNVja9cC114LXH6587laIk+z24HsbCA42Pn+zBmgVSvAz8/ZEt6ypSejo4p4VT8LEREREV2KksLTKMo5AhE7/Jp3h9bLAADslbwB6NABWLzYmdAQ1Qda7bmEGwCSk53vmzd33nZeKinJ2SO6Tlf3MZIrtnQTERERuYndWoiC7MOwWfIAAFqdCT6BUfDS+Xg4MiJqTGw24MQJZ8drgLM1vG1bwGoFfvkF6NbNs/E1dWzpJiIiIqpl4rCjKP8ESvJPQkSgKBoYfcNhMIdBUdilDhHVLi+vcwk3AKSkOJ/xttmAmJhz5SdPOlvEvZgF1im2dBMRERHVIhEHcjN2wW5zjumj9w6C0T9SvaWcGpasLCAtzXl7+WUcyY0aEKsVOHAA6NLlXNk11wAHDwKffeb8P9UN/tRKREREVIsURQO9MUQdc9scHMOEuwFbswbo2RO4915PR0J0YXQ614Q7OxvYvx9ITweios6V5+Q4b0cn92HSTURERHQJRBwozj8JmyVfLfP2bQX/5t2gNwZ5MDKqDQaDszfokBBPR0J0aQICgKNHgd9/B8LDz5XPmOF8/nv5co+F1ujx9nIiIiKii2QtyUVhTirs1kJ46Xzg26wLh/8iogbDbgcuu0xw5IiCtWsFgwbx+uUOfISeiIiI6AI57FYU5R5FSWEGAECj0cHgE+bhqIiIasbhsMFanAVLYSY2r8nFqjUB6HdVGAB/T4fWKLGlm4iIiKiGRASWwtMoyj0Kh8MKADCYmsPo1wYaLQfDJaL6S8QBa3E2LEWZsBZnQcShTvPSm2H0awOdgUm3O/CZbiIiIqIashafRUF2ChwOK7Q6E3xDLodP4GVMuBuxVauAf/4TmD/f05EQXRq7tQD5Z5NgKToDEQe0XkYY/cLhH9oDfs264JEp/ujUCVi61NORNj68vZyIiIiohnTeQdAZ/KHzDoDBh2NuNwWHDjEJoYbHZsmHpSgTUDQw+bUBAHjpfaEz+EGrM0NvDIaX3uyyzJEjQGIikJ9f0RrpUvD2ciIiIqJKWIrOoqQgHeagDlA0Wk+HQx6wdy/wxx/O3p1vusnT0RBVzm4tgqUoE5aiTNhtxQAARaNFQFivGv1AuG8fcPo0EBMDtGjh7mibFibdRERERGXYbSUoykmFpTgLAGD0C4fRt7WHoyIiKq+k8DRK8tNhsxaoZYqigc47CHpjMHTeAbwrx8N4ezkRERHR30QcKMk/haK8YxBxQFEUGMwt4e3DZh8iqh8cDhsURaMm0g5bMWzWAiiKAi9DAPTGEOi9A3l3Tj3CpJuIiIgIrmNuA87nH30C2kGrM3k4MvKkzEzg7FkgMBBo1szT0VBTJQ67c4ivokxYS7LhExgNvTEIAKA3NYOi1UHvHXxJnTr+8gtQXAxcfTUQHFxbkRPA3suJiIiIAAAlBemwWwuh0ejgExgFv2admXAT3n/f+Yzr0097OhJqakQcsBRnoSDrELJPbUd+1kFYirMgIrBZ8tT5tF7e8PYJu+RRFCZPBkaMcHamRrWLLd1ERETUJIkIIA71FkyTfyQUjQ5G33AOAUYqvR4ICAB8fDwdCTUlDrsVuRm74HBY1TKt1gC9KQR6Y4hbfhC84gogJMR5VwfVLnakRkRERE2OzVqIwuzD0GgNMAe193Q4RNTE2ayFsFsLYTCFqGW5GbvhsFugNwZDbwqBl97XgxHSpWBLNxERETUZ4rCjKO84SgrSISJQlAI47CXQaA2eDo2Imhi7rfjvIb7OwG4thKJoXDpA8wmKgUarY8/jjQCTbiIiImoSLEVnUZiTBoe9BACg9w6C0T+SCTcR1RmH3QpL0RlYijJdnstWFAU6QwAcDhu0fyfdWi9emxoLJt1ERETUqDnsVhRmp6hjbmu1BhgD2kLvzQcXqXpLlgCrVgG33Qb84x+ejoYaOkvhaRTmHlHf6wz+0BtDoDMGQaPxbGrWoweg0wErVzqf7abaw6SbiIiIGjdFUcewNZhbwmhuxfFrqca2bgU+/RRo04ZJN9WciAPW4mxYijKdz2QbnWNw6YzB8Co+4xxL2xgMjVbv4UidbDYgIcH5f0XxaCiNEpNuIiIianRslnx46c0AAI3GCz6BUdBodBwCjC7YsGFAeDhw1VWejoTqO+dQXrmwFGbCUnwG4rD/XW5Xk26tlwF+zbp4MswKaTTOOzpKSgA/P09H0/iw93IiIiJqNBx2K4pyj6KkMAM+gVEwmJp5OiQiauREBEW5R2EpyoTDblHLNVq92qJd+iMgNU1s6SYiIqIGT0RgKcxAUe5ROBw2AIDdVuThqIiosTp/1ANFUWCz5MFht0Cj8YLOO+jvIb78oPBebQJbuomIiKiBKx1zu7QnYK3OBJ+AdhzTlmrFmTNAcTEQEAD4+Hg6GvIkh73E2fN4YSbstkL4h14BjVYHALCW5EAcdui8AxrkEF8FBcDatYDJBFx7raejaXyYdBMREVGDVZx/CoU5aQAEiqKB0S8cBp+wBvmll+qne+5x9mD+xhvAo496Ohqqaw6HDdaiM7AUnYG1JOe8KQrMQdHQG4M8FlttSk4GYmIAf38gO9vT0TQ+vL2ciIiIGixnx2gCvTEIRr9IjmtLtU5RAC8v54uaFmtxFvLPJuH8NkovvS/0phDovYPVVu7GwMsL6NWLd3O4C1u6iYiIqMGw24phtxaoPQEDztvLvdgrORFdAhEHbCU5gKKBzuAPwNkxY85fO6DxMv7dIVoIf9iji8Lf7IiIiKjeE3GgOD8dxXnHAQBanQ+0Xt4AwISbiC6Kc4ivPFiKMmEtOguHwwovvS90zZxJt0arg1/zHky06ZIx6SYiIqJ6zVqSi8KcVNithQAAnYGDyBLRxbNZC2EpyoSlMBMOe4lartHo4KX3gYiovY4z4abawKSbiIiI6iXnmNtHUFJ4GoDzC7HRP4Jjb1OdevttIDERGDMGuPJKT0dDtaEo9yisxVkAAEXRQm8Mgt4YAi+DX5PthHHzZmD6dKBLF+A///F0NI0Pk24iIiKqd0QcyD29Gw67BQBg8AmF0a8NNBp+daG69cMPwG+/Af37M+luaBx2q3OIr6JM+AS2V1utDaZmUKBAbwqBzhAARaP1cKSel5EB/PknwN6+3IOfXERERFTvKIoGBp9QWIvOwhTQlmNuk8eMHu1MuLt29XQkVBPisMNSfNb5nHZxDgBnFmkpyoTRtxUAQG8MdumMkZw/KC1fDvjx6R23YO/lRERE5HHisKMo7zj0xiA1wRZxAECTvd2TiGrOYS9BYc4RWIuz1GsHAHjpzX/3PB4MjVbvwQipKWNLNxEREXmUpegsCnNS4bBbYCvJgW+zLlAUhck2EVVKRCAOCzRa5y3jiuKlJtxaL6NzLG1jMLReRg9HSgTw04yIiIg8wm4rRt6ZA8g/mwSH3QKt1gBvv3C112Ci+iA72/my2TwdSeMycODAv39cU+Dl5YUWLVpgxIgR2Lx5c5XL2Sz5KMxJQ85f8cg7c0AtVzRamALawa9ZF/iHdofRtzUT7gtw7Biwbh2QnOzpSBonJt1ERERUp0QcKMo7gdyMXbAWZ0FRFBh9W8GveTfovQM9HR6Ri+uuAwIDgdWrPR1J4yEiSEhIwKuvvor09HQcOnQIX375JfR6PQYOHIiVK1e6zG+3FqEo9xhy/tqJ3NN7UJyfDofdArFb1M4WAWcHaV56c13vTqPw7bfANdcAc+Z4OpLGibeXExERUZ2yFp1FUe5RAIDO4A+Tf1todWyRovrJbnf+q2UH17Xm4MGDyMvLw8CBAxEWFgYAiIyMxKBBg3Dttdfi6aefxtChQwEAhblHUZx3Ql1WUTTQeQdCbwyBzjuAj6HUEn9/oGNHIDzc05E0Tky6iYiIyO1ERL1tXGcMhr74DHTeQRxzm+q9HTuciTeT7tqzY8cOaLVadOvWzaXc4bDhmti+eP6F1+BwOKDRaOClMwNQoPMOcPY67h3EIb7cYPx454vcg0k3ERERuY2IwFKYgeKCU/AL6QxFo4WiKDAHxXg6NKIa0WqZcNe2+Ph4dOjQASaTCeKww1qcBUvRGVhLsiC2XGi1Wmg0zhZsnXcAAsKugEar83DURBePSTcRERG5hc1agMLsVNgseQCAkoK/4O3b0sNREZGn7dixA927dUZB1iFYis5CxK5OO5x2EjHRUep7RdFA0fIWcmrYeAYTERFRrRKHHYU5acjN2AObJQ+KooXJPxIGc5inQyO6YC++CMyc6ezdmWrHzp07cXlMS5QUnoaIHVqtAUbfVtD5RuPnVRvxz9vvRHx8PG688UZ1maVLl+Khhx7yYNSN24IFwA03AF984elIGie2dBMREVGtsRSdQWFOmtqjsN4YDJN/hDqWLlFD85//AMePA3feyU6mLobNWghLUSbslnz4hnTC4cOHkZ2djSt694W3Txj0phB46X3hcDgwcdw4eHl54ZFHHoGvry/2798PALBarXjppZfw888/e3hvGq+9e5099A8a5OlIGicm3URERFRrLEVn1DG3TQFtoeMQYNTATZwIZGUBYbxRo8bstmJYis44k21roVpus+Rhx44dAIC2Ud2RW2xEbkY6duxYgbfeegtHjhzBjz/+iMBA53WjdevWOHbsGJYvX47hw4cjNDTUI/vTFEyY4Ey4y/RtR7WESTcRERFdNBEHRBzQaJxfKUz+kdB6GeFtbskehqlReOopT0fQcFhLclCUe0ztxwEAFEWBzhAIvSkEWi8T4uPjAQDR0dHQarXw9/dHhw4dcMstt2DixIkICgpSl+3Tpw9+//13fPjhh9iyZUud709TcuWVzhe5hyIi4ukgiIiIqOGxluSgMDsVWp0J5qBoT4dDRHVMHHbnj25/9yxuLclBXqbzlnCdwd85lrYxSP1R7kJ98cUXeOSRR/Dyyy/jgQceqLW4ieoaW7qJiIjogjjsVhTlHkFJ4WkAgDhscNitHNKHGqWiIsDLy/n6e6j5Jk3EAWtxNixFmbAWZ8Hg0xwm/7YAAC+9H0wBbaH3DoJGq7/kbUVHR6N58+a47777LnldVLX9+4HCQuCyy4BAPhVU69h7OREREdWIiKCk4C/kZOxUE26DTyj8Qrsz4aZGKyQE0OuBtDRPR+I5IgJrSQ4KslKQfWo78s8mwVJ0BiIOl2e2FUWBt09YrSTcAPDOO+9g3rx50HKgdLd76CGgd29g1SpPR9I4saWbiIiIqmW3laAgKxk2Sz4AwEvnA1NAW3jpfT0cGZF72f8eQtqrCX9rzsvcq9Z9ANBo9dAbQ6A3BsNLb6717aWkpGDo0KEYMmQIbrnlllpfP5XXvLmzd34/P09H0jjxmW4iIqJG6uWXX8bTTz9drnz+/PmYNm3aBa1LHHbkZOyCOGww+oXD4BMKReENc9T45eU5E28/P0DTBE55u60IlqIzzs4Q/67jhTlHYCnMgM4YDL3ROcSXwnvtiWqMSTcREVEjlZeXh4KCAvX9nDlzsHLlSmzcuBGtW7eudnlrcTa8DP7ql2ubJQ8araHWbh0lovrBYS9xDvFVmAmb1XnN8A3uCJ13gHO6wwZF0fCHNqKL1IRvlCEiImrcfH194evrvP37+eefx8qVK7F+/fpqE267rRiFOamwFmfDJ6AdDD7OsXF5KzlR4+Fw2GAtOgNL0RlYS3LOm6JA5x3gMuTfxfY+TkROrEFERESN3PPPP49FixZh/fr1iIiIqHQ+EQeK80+iOO8ERBxQFAUi9jqMlKh+sVqB5593Ps/95JOAweDpiGqPw1aMguzD6nsvvS/0phDovYPZMWITNHYskJMDvP66swdzql28vZyIiKgRq2nCXTrmtt1WBMA5xq7Jvy20OmNdhUpU7xQUAOa/+wnLzwd8fDwbz8UQccBWkgNL0RkoihamgLbqtPwzSdDqzdAbQ6D1akS/KNAFCw0FMjKAXbuArl09HU3jw5ZuIiKiRqqmCXdR3nEU5R4DAGg0Ohj9I2EwhdRVmET1llYLPPywsyM1fQPqykBEYLPkOcfSLjoLh8MKAFAULYx+bdRbx83BMZ4Mk+qRN98EcnOBGnT3QReBLd1ERESN0IsvvoiFCxdixYoVLgl3YGAgDGXukbVZ8pGXuRd6U3MY/drw+U2iBqw4Px3F+elw2EvUMo1GB70xGHpTCPtmIPIAJt1ERESNjIggICAAubm55aZt2bIFV/TsDLulAAaf5mq53VbC20uJGiC7rRgarV7tWbz0zhVF0UJvDHIO8WXwaxA9j2dnA/7+AEcjo8aGSTcREVETIQ47ivKOoTj/FBQF8GvWjc9sEzVADrvVOcRXUSZsljyYg6KhNwYDcP6AZrfmQ2dw7YG8vjtxAggPByZOBN55x9PRNC0OB7Bnj/MRiuho52MVVLuYdBMRETUBlqIzKMxJg8NuAQDojcEw+UdyzG2iKhw7BkREACaTsyM1TxKHHZbis87ntItzAJz7Cm/0bQ2jX7jngqsFDzwAfPAB4OcHnD7dsJ6hb+jy84G/R5dssB0G1nd8aIuIiKgRO3/MbQDQennD5N8WOu8Aj8ZF1BDYbICI8+VJDrsVOX/FQ8Shlnn93eu43hjc4H88S0kBPvrI+f/cXOCzz4Dx4z0bU1NiswFhYYDF0riGxatP2NJNRETUSInDjpy/4uFw2KAoCrzNreDt26pBPNtJVB/Y7c5WV4cDaNmybrbp7Hk8F3ZbEbx9wtTy3NN7IA67cyxtYzC0Xo3n0ZC77wa++cZ5vAGgbVvg4EHe5kyNB5NuIiKiRqwo7wRsJTkwBbRtVF/SiRobmyUflqJMWIrOwGG3QFE08A+7Qh1NwGG3QqPVeTjK2rdnD9CtW/m7Cb7+GrjjDs/ERFTbmHQTERE1Eg67FUW5R6A3NYfO4AfA2WqmsCtgonrJbiuGpfA0LEWZsNuK1XKNxgs67yAY/cIb/K3j1bn1VuCXX5y3OJfSaIBOnYDdu9mTOTUOTLqJiIgaOBFBSeFfKMo9CnHYodWZ4NesK5Ntokv011/Axx8DAQHOXrVrW3F+Ogpz0gAAiqKBzjsQemMIdN4BTeIxkD//BPr1q3z6zz8DN95Yd/E0VWlpwOOPA82bA2+/7eloGicm3URERA2YzZKPwpxU2CzOrpW9dD4wBbSDl97s4ciIGr4dO4BevYDWrZ09mV8sh8MGa9EZWIrOQG9qBoOpmbPcbkFB9mFnh2jegQ1qiK9LJQLExgKbN597lvt8Wi1w5ZXApk11H1tTExcH9OkDtGkDHDni6WgaJ/ZeTkRE1AA5HDYU5x1Dcf5fAASKRgujbxsYfELZwk1US4KCgHHjnC3dF0ocdlhLsmEpzIS1JAvnt3OVJt0arR6+wR1qKdqG5bffgA0bKp9utzsT8o0bgQED6i6upig8HHjrLcDIbj/chi3dREREDZClMBP5WQcBcMxtovpERFCYnQJL0VmInGvC1epMfw/xFQKtV9Mel0kE6NnT2YlaRa3cpbRa4Prrnc98EzVkbOkmIiJqIEQc6nOeelMIDCU50BuDqx1ze+NDD8GakIBreJ8mUa0TEdhtRfDSmQAAiqLAYbdAxA6t1gC9KQQ6Y4g6nYDly4GEhOrns9uBX391ztu9u5uDInIjtnQTERHVcyIOFOefhKUgA77Nu6pDCNWErbgYRUYjfACc2rIFLa+80n2BEjUhNmuhc4ivwkw47BYEhPVU7zaxWfIAAF56X0+GWG/93/85E++qaP7uR87hAB58EHjvPffH1VTl5Tk7DfT1BUJDPR1N48SWbiIionrMWpKDwuzD6nBClsLT8Da3qPHyWyZPxgAAAuDg+PFouXevewIlaoR+/x0YNszZyrphw99DfBWdcQ7xZS1U51MULezWQjXpZrJdtf/8B3joIcBqdb4sFmDXLuCFF4CXXwYCA89Ns1qBwYM9HXHj9tNPwF13AYMGAWvXejqaxolJNxERUT3ksFtQmHMElqJMAM4Ol0x+EdCbQmq8DltxMSIXLYIAUAD027cPJ7duZWs3UQ2VlAD5+UBhIWApOov8s0nqNEVRoDMEOm8fNwQ0qZ7HL1WzZsB117mW+fk5/73rLiAyss5DavLMZueL3INJNxERUT1TXHBKHXMbALx9wuDtF35Bt5UDf7dy22zqewVs7SaqCXHYYSk+i759tDh0KAheXoCXwQ+KooGX3tfZl4Ix+ILrJFXOanX+q2d/kHXuX/9yvsh9eKUgIiKqZ+yWfIjDfkljbpe2cjsA/P1oJLzA1m6iyog4YC3OhqUoE9biLIg44KU347LLgv6ewwv+YVcw0XaT0qRbp/NsHETuwKsGERGRhzkcNkAEGq3z26bRLwJavRkG08WPuV22lbsUW7uJXFlLcmEpPA1L8Rn17hIA0Hp5Q+cdCBFR6yETbvdh0k2Nmab6WYiIiMhdLIWZyM3YhcLsw2qZRquDt0/YRSfc57dyl3V+azcRASX56SgpzIA47NBo9fA2t4Rfsy7wD+2Boydb49//VvDDD56OsvGzWJz/Mumue99/D4wbB3z+uacjabyYdBMREXmA3VaMvMxE5GcdhMNugd1WCIfdWivr3jJ5MlrbbJV+yJe2dhM1JXZbEYpyjyHnr53qaAAAoDc1g8HUHL4hneAf2hMm/wj1kY7t24HJk4F//9tTUTcdfKbbc3bsABYtAv7809ORNF68R4aIiKgOiThQnHcCxfknIeKAomjgbW4Jb99WUJRL/y28ome5y+Kz3dRUOOwWdYgvmyVfLf9/9u47PrKyevz45947fZJMssn2mixtgaUtsEtdQBGQpiii0hWUYgOx/MAVpdkVROEriogFRewIAiIgvS1LE1hgk+01bZJMve33xzNzZybZbM1kksl5v1557c7NnZlnstlkzj3nOSebaidcOw2AQHgcgfC4zd5/xgw44wyYO3dYljum5YNun0Qnw+5974NIBPbfv9IrqV7ybS2EEEIME9tK0dfxlpdl8wfridTPwvCFh+w5BtvL3Z/s7RbVzLbSJLtbMTPxoqMa/lCMQLiJQGjzQXZ/RxyhPkT5maYKuHdwV43YCYcfrj5E+UjQLYQQQgwTXQ/kGqZt/8ztbWFnsyVzubckn+1e98ILTD7ooCFdhxDDzXVsHDuL4VcXsHTd72W2fYFaApEmAqFGr1mhGHmyWSktF9VLgm4hhBCiTFzXJZvqIBBuRNM0NN0g2rgHuhEoSxdkM5nE9vlwIhEMwygcj8fRHQejoaFkbfFkkr5Vq0CCbjEKua6DlYnnysc70Y0AsYn7Aaj/aw27YPgjGL5QZRcqtolpShO1SunoUF//WAzCQ1d4JYpIIzUhhBCiDKxsH73tr5PoeodMcoN33OePlG3sUKi+npmpFEY8Dp2d3sczc+bwdjhcckzr6qIpk2HX004ry1qEKBcr20uyu434+pfo7XiLTHITrmvjuk5JM8JAeNxOB9w//zlMmgSXXLKzqxZbI0F35Xz+8zB5Mtx6a6VXUr0k0y2EEEIMIcexSPesIp3YALhouoEm17iFGBLJeBvpvvXebV33Ewg3Eog04QvUDvnz9fbChg3Q0zPkDy36kaC7clxX7aUPBiu9kuolQbcQQggxRLLJdpI9K3BsNXA2EG4iEpuJbshGRSG2l22l1faMUAOGPwKo5oOZxKZcx/FGfMHYkHT9H8w558B736vKbkV5yZ7uyvnd79SMbtet9EqqlwTdQgghxBBIxleQ7lsLgOELEalvwR+Ud+pCbA/HNotGfPUC4DoWkdhMAHzBGPWT5qHpxpYeZsg0NakPUX6S6a4sTZPO8eUkQbcQQggxBALhRjKJ9YRqpxKqmVLW7JsQ1cR1HS/QNtNxoJBu8wdj+AI13m1N07feml+MShJ0i2omQbcQQgixA8x0N7aVIlQzGQBfoIbYpHlla5ImRDVLxVfgOKoJmi9Qo2Zph8ehG5XdZPrii/DKK7DXXrBgQUWXUvUk6K6c73wH1qyBT30K9t670qupTvLOQAghhNgOjp0lGV9ONtWBpmn4gzFvv6kE3EIMznVdrGwP2WQ7tpmgdvxcNUpP0wnWTAbXIRBpwvCNnJlFf/sbXH89fPazEnSXm+zprpy774YlS+D975egu1zk3YEQQgixDVzXJZPYQKp3Ja5jAxrB6EQ0aZImxBZZ2T6vfDzfZFAd78UfrAMgXDu1Usvbot13h5NOkkBkOEimu3I+9SlYvRp22aXSK6leEnQLIYQQW2Fl+0h2t2KZCUCVv0ZizSV7TYUQpbLpLlLx5dhW2jum6QaBUPlGfA21s89WH6L8JOiunIsuqvQKqp8E3UIIIcQWOI5Fb8cbuI6NphuE62YQjExEkzavQpRw7Cyu62L41D5sTTOwrTSapuMPNRAIN+EP1UuTQbFZpinl5aJ6SdAthBBCbIGu+wjXTsPKJmTmthD9OI6Fmeogm+rAzMQJRicSrW8BwBeopaZhV/yhhmEb8SVGr2xWMt2V0tWlvvaRCOhyTaws5MsqhBBCFLGtFL3tb2Bm4t6xUM0UasbtKgG3EIDr2GRTHfR1LCW+/kUS3a3e/xe3aM+2pmkEIk2jOuBetAhmz4abb670SqqflJdXzqxZUFsL775b6ZVUL8l0CyGEEKhZweneNaT71uC6Lq5j4Z+wT6WXJcSI09P+OraZ9G4b/khuxFcjhi9UwZUNvQ0boLUV4vGtnyt2jmlCjbTJqIhs7lpZsLIT+qqaBN1CCCHGPDPdTTLe5jV88gfridQ3V3hVQlSele0lm+okXDfd24vtDzXgOjaBSBOBcBO+3Mi8avT//h+cfz5Mm1bplVQ/2dNdOX19kMlAqLqumY0oEnQLIYQYs4pnbgPoRoBIbBaBcGOFVyZE5VhmkmyqHTPZjm1nAPAF6wiEGgAI10wlUjejkkscNs3N6kOUn+zprhzDUPu5RflI0C2EEGLMUlm8DkAjVDORUO10dF1+NYqxx7FNMsmNZFPtJaXjmmYQCI9D1wvR0Gjeoy1GLtnTLaqZvLMQQggxpjiO5QXWgXAjoZopBMKNMnNbjGmOY5LqWQmoBmj+YAOBSBP+YP2YDrKffBJWr4YDD4Rddqn0aqqbBN2V0dcHV1+t9nNffz3INMzykKBbCCHEmOA4FqmelZipTuom7ucF3pHYzAqvTIjh4zo22XQn2VQ7uu4n2qAiSZ8/QjAyAV+gBn+4USo+cm68Ef78Z7jlFgm6yy2blT3dldDTAz/8oSoxv+GGSq+meslPVCGEEFUvk2wnFV+O45gAmKlOgtEJFV6VEMPDdR3MdLfap53uwnUdADRNJxJr9jLZ0YbZlVzmiLT33tDZKY3UhoNkuisjEoEvfxkcp9IrqW4SdAshhKhatpUi2d3mzRA2fGEi9c34g7EKr0yI4ZHqXU2mbx2OY3nHDF9Ijfga5TO0h8M3vlHpFYwdEnRXRn09fOc7lV5F9ZOgWwghRFVK9azyZm5rmk6odiqhmine2CMhqpGV7cPwhUuCacex0I2AN0tb+heIkUhGholqJkG3EEKIquTYWVzXxR+qJxJrxvDJAFJRnWwrRTbZrjqPW2lqGnYlEGkCyO3TrsUXqEOTDkliBJORYZVh2+qCRzAoTdTKSS73CyGEqAqOncW2Mt7tcN0MasbtRm3jHAm4RdVx7CzpvnX0bHqN+IaXSfWuxrbSaJqOY2e983QjgD8Yk4B7B51/PuyzDzz4YKVXUv2kvLwynn4awmHYY49Kr6S6SaZbCCHEqOa6DpnEBlI9q/AFa6ltnAOAbvgJhBsrvDohhp5jZ+le/xLg5o5o+EMxVT4eGif7tIfQsmXw2mvQ21vplVQ/CborI5O7Vi2l/eUlQbcQQohRy8r2kuxuwzITALiOVTKHW4jRznVszEw3tpUmXDsVUNnr/L7sQKSJQKgR3ZBopRxuukl1L99770qvpPrJnu7KOPpoiMdVmbkoH3lXIoQQYtTJz9zOJDYAoOkGkbqZBCITpIxWjHqu62Blesim2smmOnFdG03TCEYmeMF1bdOe0hRwGOy/f6VXMHbInu7KMAyoq6v0KqqfBN1CCCFGFctM0tf+hjdzOxgZT7hupmT6xKhnmQmyiY1kUx3e9zeAbgS9xmh5EnCLauK6ak70W2/BO+/ArrtWekVCDC35iS2EEGJUMXwhNN3A8IWpbdqTaMMuEnCLUct1Xe/vVqaXdGI9jmOi635C0UnUjd+b+kkHEKmbId/nFfDII3DvvdDeXumVVK/OTjjhBPX3G2+E3XaD44+Hrq6KLmvMWLwYvv51uPvuSq+kuknQLYQQYkRzHZt03zpc1wFUhq+mcQ51E/bBH4xVeHVCbD/bypDqXUN84ytkkxu944FwI8HIeGob9yA26QAi9c34ArUVXKn47GfhlFPg1VcrvZLq9fGPuzz8sFty7OGH4WMfq9CCxpjFi+Haa+H3v6/0SqqblJcLIYQYscx0F8n4cmwrDUCoZjKAjAATo45jm2TTHWST7VjZQivsbKqDYHQioDruRxt2qdQSxWbssw/U1EB9faVXUj3UhdQ1JLrbeP3ldh588EMDzrFtNaZNSs3Lb84cuOQS9b0uykeCbiGEECOOY2dIxleQTXUAqluzbgQrvCohtp/ruiQ6l5JNd1MY8QX+YIxAuBG/jLUb0ST7t/Mc2yTVs5JEdyvJ7lZSPStwbDWn6q3/bXk49KuvStBdbkccoT5EeUnQLYQQYsQonrntujagEaqZTLh2msweFqOC6zpY2T78QdUOWNO03L5tF1+gRs3SDjeiGzIbSVQn20qR7F5OMt5KoruVtPfzvED3hYnWN7P/gr22+FjnngtPPw2f+Qw0N5dz1UKUlwTdQgghRoxkdxuZ3B5XX6CGSH0LPn+0wqsSYstc18XK9pBNtmOmO3Eci/pJB3jVGeHYDCLaLAxfuMIrFWLomZkekvE2krlMdrpvHcVVHQC+QB2R+hai9S1E6lsIRieiaTozgOOOU3u4i+dEGwYcfjgccgj87GeqwdoHPgBf+II6LpMhh47rytdzOGhucdtMIYQQooLy48DCddNl5vYQenzvvRnf2sqcZLLSS6kqVraPbKqDbKodx856x3UjQLRhF2n0VwVOOAG6u+E3v4FdZLs9rutipjtJdC8j2a0C7WxqYGv3QLiJSH0LkfpmovWz8YfGDfrzvKtLNU178MHCseOOU6X9DQ2QSMBvf6sC77feggMOgM9/Hs44A4LbuesolYKwXPsq8ZWvwA9+AFdcAd/+dqVXU70k0y2EEKJiMslNOHaGcO00AHz+CLFJB8gMYjHiZVMd9HW+7d3WdINAqJFApAlfoE4uGFWJF19U48LS6UqvpDLyW36S3a3enmwr29PvLLUNKJLLYkdizd72im3R0AAPPKCapr37rrq4UbyPOxqFT38aLrwQ/v1vFXyfey58+cuqAdhFF8GECVt/nt5emD1bZcx/9jPJ7uZlMqrKQJdfu2UlmW4hhBDDzjZTJONtmJk4oFE3YR98/kill1W1JNO9cxw7SzbVgab7CUaa1DHHomfDEnzBGIFwE/5QvVwsqkIPPaSyo0cfDXXbHkeOWq5jk+pd7QXZqXgbtpUqOUfTDEJ101WpeKyFSGwWhn9408dvvgk//jHceacKGM88U2W/99138Pv85CdqBBzAD38Il102PGsd6Xp7oacHIhF1AUSUhwTdQgghho0aFbOWdN8aXNdF03RCtdMI1UyWgKWMJOjefo5jYaY6yKY6cheHwOePUjehMFfHdR35vhWjWn5SRLK7jWS8lWR8Ba5jlpyjGwHCdbO8Pdnhuhnohr9CKy7V2Qm/+AXcfDOsXg1HHaX2fZ90ktoXnuc4Ksu9fLm6rWnwz3/C+99fgUWLMUmCbiGEEMOi/8xtf6hBZUhk5nbZSdC97bKpTrLJTZiZLorfIvkCtQTCTbkGUFKXKkYny0ySircVxnf1rgbXKTnH8EdUBru+hWh9M6GaqSN+eoRpwl//qkrPn3kGWlrgc5+D889XFQr//CecfHLhfE1Te7uffx722nIDdSGGhATdQgghys5xLOIbXsJ1bHQjQCQ2i4DMJx42EnQPTlVcFILovs63vfnwhj/ijfiSi0Nj03/+owK0ww7b/qZdI4GZiZfsx84k1g84xx+sL+zHrm8mGJkwqis4nnsObroJ7rlHBdaf/KQKxF98cWCH9ClT4KWXoKmpcuuttD/9CVpb4fjjYZ99tn6+2DESdAshhCiL/sFMOrEex8rIzO0KkKB7ICvbSzbZTjbVQW3TXt6eVDPdjZntIRBukj4DAsNQpclr18LkyZVezZa5rks21e6N7kp0t2KmOwecF4hM8EZ3RWLNBMLjKrDa8lu9Gm65BX76U7VneXMMA+bPh0cfhUBgeNc3Upx8sqoE+PnP4YILKr2a6iXdy4UQQgw5K9tLsruNcN0M/KF6AELRSZVdlBjzLDNJNtWOmWzHtjPe8Wy6g7BfddD3h+q971kxtrkuzJ0LljUyAzLXdUj3rfVGdyXjbVjZ3n5naYRqp6pS8VgzkfpmfIHaiqx3uE2bBjfcAGvWqJFjjjPwHNuGZ59VHdBvv31sdjR/73uhsRF2373SK6lukukWQggxZBzHItWzkkxiAwC+QA114+dWeFVirGe6bStFX+fb2Gbh9WuaQSA8jkC4EV8wNqrLacXY4DgW6Z5VqlQ83kqyezmOXTrLTNN9hGtnePuxw2O8b8amTTB1qtrzvTU/+AFcfnn51yTGJsl0CyGEGBKZ5CZS8RU4uc63wch4wnUzK7wqMRY5toljZ/AFagDQjSCOnUHTNPzBBgKRJvzBetnmIEY020qTiq8gEc81PetZietYJefoRpBILoMdqW8hXDt9xHQWHwluu610H/eWfPGLKtt74onlXZMYmyTTLYQQYqeUztzOd75txh8cA0NtR4mxkOl2HZtsulOVj6fjGL4gsYn7e583Mz0Y/gi6LvkGMTJZ2T6S8bbcfuw20n1rNtNZvCa3H1sF2aGaKVKlMYhsVpWYb9q07ffRdXjqKViwoPT4kUceyRNPPAGAYRiMHz+eBQsW8KUvfYlDDz10CFctqpX85hFCCLFTbCuFmYnLzG0x7FzXwUx35wLtLtyiAEXTDBzb9LJ+chFIbK9EQmU9DQMeeAD8Q5xAzqa7vKZnye42MskNA87xh8Z5peKRWAuByHgZWbeNHn102wLuUAgiEfXvbJqwod8/g+u6vPzyy3z729/m3HPPJZ1Os3z5cm699VaOPPJI/vGPf/D+UTzw+8AD4d13VTO1ww+v9Gqql2S6hRBCbDfHzqIbhc5Cqd7VBMJNY3rv4EhWrZnuRHer1z8AwPCF1IivSBOGL1zBlYlq0NmpGkyBaqZm7MRuBNd1ySY3eqO7kt1tmJmuAecFo5OKmp61SFO/nRCPwx//qJrg1daqj7q6wt9ra6GmBnxbSUG+/fbb7L777jz99NMccsghJZ875phj6OrqYsmSJWV8JeW1yy6wbJnK8EvSvnwk0y2EEGKbOXaGZHw5VqaHugn7eVnEcO20Cq9MVDsr20c21UEg0oTPHwUgEG7ETHcRCDeqEV+5PdxCDIVoFO6+WwXc+nYW77iOTbpvba7pmSoZt81E6UmaTrh2Wm5PtioZz39vi50Xi8GFF+784yxevBjDMNh3330HfO7YY49l0aJFOI6Dvr3fJCPEY49BMgnTp1d6JdVNgm4hhBBb5boOmcR6Uj2rcV0b0LCyPQTCjZVemqhitpXKzdJux7byXZpdfDEVmPgCdcQmHiDltqIsgkH4yEe27VzHNkn1rFT7seOtqqlk0Vg6UJ3FI3WzCk3P6mZi+IJlWLkYSi+99BJ77LEHkUhkwOf8fj+GYYzagBvUvndRfhJ0CyGE2CIr20uiu9Ubt+QL1BKpb8HnH/gGRIidpS7wbCCbasfK9nnHNU3HH2rAH6wvOibBtqgM20qRjC/39mSnelblLkgW6L4wkViz2o9d30Kodpo08huFFi9ezAEHHLDZz7399tvssccew7wiMRrJ/3whhBCDKt4zq+s+wnUzCEQmSLAjhpTrOkXN9zTSfWtx7Cyg4Q/F1D7t0DgZ8SWGVSoFS5aoPcH77dOb24/dRrJ7Gem+dUBpWyRfoM7LYkfrWwhGJ0lTySqwZMkSTjnllAHHU6kUf//737n00ksBmD9/Pj/96U858MADOffcc1mwYAEXX3zxcC93u910k2oSeM45ao+7KA8JuoUQQmxVfua2zH8VQ8V1bMxMN9lkO7aZoG7i/miahqZphGqmAmrPtnzPieHmui5mupM3XlrDYYfvQ000zbP/+MaA8wLhJhVkx1SQ7Q83ygXJKtPa2kp3d/eATLfjOFx88cX4fD4++9nPArBo0SJuuOEGDjvsMGpqakZFwO268IUvqL9/6EMSdJeTBN1CCCE8tpkETfe6kIfrZhAIN8m4JTEkXNfByvSQTbWTTXWWlONa2V7v+yxUM6lSSxRjUH5LQ7K7jUT3MpLxNqxMnE1rxzFj6mQiYVV1EaqZ7AXZkfoW+bk4BixevBiAyZMns379enp6eli8eDE//vGPWbFiBffeey8NDQ0AnHTSSXzta1+jr6+P+++/v5LL3maOAx//OGQyqnGgKB8JuoUQQuA6Nqm+NWT61uIL1FHbtCegSsp1eWMphkA21UGyuw3HMb1juhEkEGlSncelR4AYJq5jk+pdTTKeH9+1HNsqHaenaQa77VHL8489pzqLx67F8MsYurHmpZdeAmC33XbDMAxisRh77LEHJ510EhdffDHjxo3zzn3++efp7u5mt912w7e1OWQjhGHA735X6VWMDTKnWwghxrhsuotUdxt2rtOuP9RATcOusn+2ilRiTreqmtC8edlWtpeeTa+j63784XG5EV+1Uo4rys6xsyTjK3JBdhvJ+ApcJ1tyjm4ECNfN9PZjh+tmoBuBCq1YjDZr1qzhhBNO4O9//zunnXYad911F3PmzKn0ssQIMjouwwghhBhytpUhFV9ONt0JqKxjJDaLQHjcVu4pxObZViZXOt6ObSYJRiYQbZgNqK73tU175gJtaS4lysc2kyTjbV7js1TvKnCdknMMf8Sbjx2tbyFUM1UuNIodkkql+PCHP8xPfvITmpub+fKXv8x1113H7ySFLIpIplsIIcYgK9tLb/sbua7RGsHoZMK10+RNZ5UqZ6bbsU2y6Q6yyXasbK93XNM0AuEmog27DPlzClHMzMTVfOxckJ1JrGdAZ/FgjGh9S65UvIVgdMJWL/689RZ88YswdSrcdlsZX4AQFbJ8ORx0EIwbB0uXVno11U0y3UIIMQYZ/ii6EUTTfTJzW+yU3vb/YVsp77Y/GCMQbsQfbpSZxGLIua5LNtWe24utstlmumPAeYHIeK+reKS+BX+oYbu3MnR0wP33wy5y3UhUqVQK2tvBtrd+rtg58ttQCCHGAMexyPStI1Q7FU3T0TSd2qY90XS/7KkV28R1Hcx0N2a6k0h9i5clDIQbMdNduYZojehGsMIrFdXEdR3SfetUkB1vI9ndWlJRoWiEaqcSiTXnguxmfIHanX7uXXaBO+6Qrs6ierW0wOuvS9A9HKS8XAghqlwmuYlUfAWOYxKpm0modkqllySG2Y6Wl7uui5XtJZtqx0x14DgWADXjdvf2/ruuKxduxJBxHIt07yoSXbkgO96GY6VLztE0I9f0rDlXLj7LG3MohBAjkWS6hRCiSuWbCZmZHkA1DjICNRVelRgNbCtDJrGebKodxy50edaNAIFwo9eRHJCAW+wU28qQ6lnulYqnelbg5i7u5OWbPEZypeLh2unohr9CKxZCiO0nQbcQQlSZ4pnbKgupE66dTrBmknSNFoNSTfVy3x+uQ7pvLQCabhAINRJ8rQ3j0YfQjj8envgTfOITqvuOENvByvblysRVqXiqb81mOovXEKlv9vZjh6KTK9LkMR6HtjaorYXZs4f96YUou1Wr4F//gkmT4JRTKr2a6iZBtxBCVJlkvI1MchMAgdA4wrFZGD7ZZysGcuws2VQH2VQ7uhGkZtxuABjdfUSefxf9+BPxh+pVMP7zb8Bvfwu33gobNsDPfqba3epyIUcMzkx3eV3Fk/FWMokNA87xhxq8ruLR+mYCkQkjooLi8cdVIHLwwfDcc5VejRBD79VX4dOfhgMPlKC73CToFkKIKhOqmYqV7SVcN1NmbosBHMfCTHWqfdqZHpVlTGfQIlGV7e7qhgkTCIFqaxvOBdUnnghr10JrKzQ2woUXlgbc69bB5MkVeEVipHBdl2xyI4lcFjsZb8VMdw04LxidWBJk+0MNFVjt1vn9KgPY1FTplQhRHk1NKtiWDv3lJ43UhBBiFHNdh0xiPY5jEambUXRcmluJgnwjtZnr3iSTWEf+V3/g7/8m8s2bcd9zFNpv7irsk91zTxVQ33UX7LPPwAd0XbAsFZUAPP88HHoonH02/PKXIN97Y4Lr2KT71pKMt3nZbNvsKz1J0wnXTPX2Y0dis/BJbwkhxBgjmW4hhBilrGwvie5WbDMJaATDTRi5edsScAvXdbAyPYXRSZZF8IPnYP6/T8K++xIINxFoPgB9Yzu89BoUN6ZasgSCW9iSoGmFgBvgwQfVzBnXlYC7ijm2SapnpTe6KxlfjmNnSs7RdB/hupne6K5wnWxvEUIICbqFEGKUyb/xzSQ3AqDrfsJ1M9CLOkqLscvqXId9/9+xly8jff5pRBtydYO2jfHo49ScfDLGsfuqY0fWq42rBx1U+iBbCrg3Z9EieP/7oaGoTHjjRtVs7fLL4eijJRgfhWwrTTK+XAXY3a2kelbiuqUDfXVfiEhMje6K1jcTqp2OrsvbSyGEKCY/FYUQYhTJJDaS6lmJ45gABCMTVMAt43PGJteFd9/FxiI7MUo22Y77zjvUn30xbjBA9qwPFoIknw9+9COM448v3D8ahSOO2Pbn+89/VBC9//7wq1+Vfm7evNLbN94I990HmzbBs8/uyKsTw8zK9nqju5LdrbkO9qW7EH2BWq9UPBprqeqpCI89Brfcor61v/KVSq9GiKF3++1w7bXwwQ/Cj35U6dVUNwm6hRBilHBsk2TPclzHxvBHiMSa8QfrKr0sMZwsSwXPeV/+Mnz/+5gXnkHq6s8DoLXMxD7sYNhrb2I1u6JFx6tzDQMuuWTHn/vJJ1Xn8ldfVbOU2tu33GHq05+G3l44/vhCltuy4K9/Ve/wfPIWpJJc18VMdxaC7Hgr2dzUg2KBcCORmCoVj9TPJhBuHDPbV5Ytg3vugXS60isRojw6O2HFCvWnKC/5jSeEECNY8exk3fATqZuF61oEo9WbXRKb4Thw0km4jz9O5oVHcaZMIBKbCQccAIEAetomEGogEG7CH2pAe3In5xutXQsvvACnnlo49utfw5//rNJ+ixfDYYfBW28NXjY+cybcfHPpsT/8QTVbW7AAnn5aSs6HkWq6uNHrKp7obsXKxPudpRGsmUTUC7Jb8AdjFVnvSHDIIepbeNasSq9EiPI4+2xYuLB0Z5AoDwm6hRBihMqmOknGlxOJzfJGfwWjEyq8KlF2S5fC//2falT23e/iOjbZdBe+DWswEgmsh+8je9rxhGqmoH/wg/DBD+IPBgnsaADruiojXZermujrg+nTVaC/ejVMnaqOn3QSZLPQ0qJun3VWadC8apW635Zks4UZNcX3TachFNqx9YvNch2bVN8akt3L1Izs7jZsK1l6kqYTrp2e24+tOovnmzEK1cR/zz0rvQohymfSJPUhyk9GhgkhxAhjWxlS8eVk06reyx+so7ZprwqvSpRFayv8978wf37h3f0zz8Chh+I2jiOx9GnMTDeu6+B78TXcmgjaXnsTqJlAIDJhmxtW5UeGzUn2C7ruuUeVnB91lPp73kEHqW7kt9+u9m/357rq8/kS8SefVOmSs8+GO+7YcgY7kVB/RqPqzxdfhOOOU3vFr7pqm15PtZs2bRpXXnkllxRtB3j66ad573vfy5tvvsnMmTMH3Mexs6R6Vnr7sZPxFbhOtuQcTQ8Qic0kUt9MtH52rh9EoOyvRwghxjrJdAshxAjhug6ZvvWkelflyso1gjVTCNdMrfTSxFAwTVWOPXdu4diVV8Ldd8O11+LOmQO4aPPmwaWXYs3bm2zfRvD5MHwh/EefQCDchOHfwS71lgXHHAM33KDKu0GlONrbVbl4sWee2fKea00r/fwjj6jMeCCw9ZLxfLCd96tfqQ2FS5du80updgsWLOCFF17wbruuyxe+8AW+8IUveAG3bSZJxpcXmp71rh7QWdzwRXJl4mo/drhmKppuDOtrGc06O6GjA2IxmCBFRqIKPfec6l2w776wl1zbLysJuoUQYgQonbmtOgRH61uk1HM0K55Z3d0N06ZBMgldXepdPMB73oO7eiXZcSFSG14iVDOVUM0k+MlPMGyTUN8aAuEmfIGabX/evj41N7utDa64onDcceDRR1VmPR90H3ywCrAPOKD0Mba3ydnXvw4nnwyNjYVj69apkWFf+tKWR4bddBMceaR615fX3g5XXw1f/GKhnH0MWbBgAb8q6g7/m9/8hpUrV3DJJ9/PuqV/IRFvJdO3ngGdxYOxXJm42pMdjE6U3g874fbbVa/Cc88d2KxfiGpwxx3ws5/BN78pQXe5SdAthBAjgONY2GZSzdyOzSQYGV/pJYkd9c9/wje+AQceqPZmA9TXq6xyZye88w72fnuRTXWQPeUg7Pfvrc6xs5jpLhV0k2ucF5u15edyXXjnHdB12CU3j7urCz78YdWt/KKLoCYXsPt88NOfwvveV7h/MFgIwHdW/zL0H/4QHnhA7Rd/4onB72cY8JGPlB676SY1q2nx4jE5bmz+/Pl85StfYdU7j5HpWcGXr/gcF589n/iKv5acF4iMJxJTpeKR+mb8oXFjprP4cPD5VKuDiFz7FFVq993hPe+B2bMrvZLqJ0G3EEJUgOu6OFbaKxUOhBqI1DcTCDXKzO3R5K674N//hq9+Vb17AZXRXbxYZZyLPfEE7oQJ9Ha+ibXhZe+wpun4vc7j9Vt+PstSQWo+sPr61+G669R4rnyAP306nHCCyhAnEoWgW9fVecPls59VDdJOOqmw3mwW/v73rY8MO/54tdf7wgsLxywLXn5ZXcyosD/96U9s3LiRww47jL333hvD2LmS7fzWkkRclYrHsm+j6/DIfbfy7OIVxGoDnHbCXEI1UwtNz+qb8QVqh+gVic257DL1IUS1ku/x4SNBtxBCDDPLTJLsbsW2ksQm7O8F2aGotBAdsUwTliyB5ctLs7J33AEPP6zKtPNB9+GHq2D88MNxHAsr06O6z0+ejAZoug/Q8AdjBCJqxNdWG6K5rhrf9cgjKhjdYw91fN48la3OZErPv//+IXrhO2HGjIEjw377W/jkJ+GII+Dxxwe/72GHwb/+VXrsnnvg4x+HM85Qo8cq6JFHHuEXv/gFpmlSV1fHIYccwuGHH85hhx3GwQcfTLT/vvV+HMci3buKRHdbrulZG45VGAZtaLD77Ak89vxG7v7ry9x91y3sedTHMHw7uJ9fCCFERUnQLYQQw8R1bFK9q8kk1uG6LpqmY5l9BAwZkDni9PaqQLapSd1++23VYTwSUVlaf64a4eyzVcBdVKLt1tZgfuB9ZJPtmOtfxHVdYhP3x/CpkViR2Ey0+tmDVzQsW6ZKqx0HfvQjdUzToKdHZa6feqoQdJ9wgtovPlrGbdm22vddPP8btm1k2LJlKjte3IgOSvfOD5NbbrmF73//+7zwwgs89dRTPPnkk3z/+99n0aJF+Hw+9t9/fy8IP+ywwxjf1ECqZwXJbjUfO9WzEtcxSx5TN4KEYzNVqXismaPem+aWW27lpJNO4uQPfmJYX58QQoihJSPDhBBiGORnbju2ykgGQuMIx2Zh+IIVXpkY4Jpr1Mfll8N3v6uOOY7KZM+ZAz//OUycWHIX13WwMj1kU+1kU50lXaQNf4RofcvmS4GXL1eNzfbfH/bZRx17+WV1u7ZW7c/Oly4//zyEw6rbjb59zbEGHRlWCYmECpLzG2WfeUbN7f7Sl1TXqi1ZuVI1ocs3oluyBM45R3WB/9jHyrvurXAch//973889dRTPP74Yzz15BOsXLUWgEjYz4UfO5gLz5zvnW/4o0TqW3J7slsI1Uwp6Sx+++23c/HFF/Paa6+xe76KQgyrP/5RFVyccMLAtgNCVIPzz4cXXlC/6t7//kqvprpJplsIIcrIdV0SXW+TTamZ27oRzO3dlux2xbkuXHCBCnr/+1+YmhvNNnOmysi++27hXF1X2e5BMqpmqpO+rncKpxtBApEm1Xk834HetuHNN2HvvQt3/OY3VVvkK68sBN1z58JnPqOy57ZdCLoPPniIXniF9S+9/uUvVbfyt9/e+n1nzCi9/aMfweuvq+Z1FQy6zXQXnRuWsuy1f/Puq0+zetlbdHa2e59PpU2itTFiE+flZmS3EIhM2GLTs9/97ndccsklEnBX0PPPq/+e48dL0C2q07Jl8L//qWuhorwk6BZCiDLSNA3dCJTM3JY5uRWwerWah+26hTFamqYypcuWqZLt/LvqD3wAVq1SI76K5QIk20ySTbWjG0GCUZXx9oca0I0g/lB9bsRXLVrRfUgmYcoUiMdhw4bC0N9jjlHBZm72MqCC7P57oavZrbeqkWLFFxXWr4dvf1uNDJs+ffD7/vjHqtT+lFMKxzo64M474VOfKjSRG0Ku65JNbmL96td48vF/8+RTz/Liknd59c31ZE2baCTAfntN5kMnHsQDj76B5bj8+Z7fs/Do47f62I7jsGnTJm6//XaWLl3KX//6163eR5TPiSeqgLtarncJ0d/NN6sfmTIurPykvFwIIYaYmelB1/1eZ3LHsXDtrMzcHi49PWrM1G67waxZ6tjjj8PChTB5MqxZUwiG77tPBbmHHqpmAw3CtjK50vF2b5a64Y8Qm7DvwJMffhgWLVLl6MXDfefOVeXR992nmq0NoxFVXr4tvvIVVe+4tYZrm/ONb6gKgqOPVo3ndpLrOqT71rJy2Uv897F/89TTL/DiK8tZ+u5GbMdlXH2YA+ZOY8FBe3HEEUdw4PyjeebF5Xz8rPOYMWMG9957L7Py34db8dhjj3HMMcewxx57cMcddzB//vyt30kIIcSIJ5luIYQYIo5tkupZSSa5EX+wjtomdelY132wte7UYse1txcanoHapPaXv8B3vlPYI3zwwSqDfeihavRUvhHaiSdu8aEziY1kkhuxsr3eMU3T8AdVRtv985/R/v1vuOSSQnm4rqugf82a0gd78EG1F3wnx0uNCSecoDYaFs+yMU1Vnp//Og9mjz3UBZeLLy4cs23YuFFddNkKxzZJ9a5i6evP8Ph//8PTzy3hxVdW0rZSbRGZOqmOeXOnc9bp7+HIo45in/2OIFI/y2uU95Of/ITPf/7znHDCCdx1113UbeFiTn9HHXUUjuNs8/lCCCFGB3kXKIQQO0mVm24k1bMSx7EA0I0QruugadvX8Epsh3gcDjgAVqxQHbzzpcSHH67Kxv1F3cFDIdiGUl3XsUvK/81MXAXcjkOwdSOBle0YZ55fGPF1551w770qyMsHg/Pnq+NHHFHaWXvKlCF40WPEUUepj+JivLvugvPOUxdVfvnLwe/70Y/C6aeX7r//059Uw7XLLlNl60VsK02iu42XX/wvTzz+X5594VUWv7qKdRvVhZbZMxs5eL+ZfOGi0zhy4THstucCQnXTB4x5M02TL3zhC9xyyy1cdtllfO9739vp+d2isjo71RCDurqBrQiEqAb336+uQx95JNTXV3o11U2CbiGE2An5mdv5TOgWO1WLHffYY3DjjbDnnnDDDepYLKbeLbguvPYaHHKIOv75z5dmSLfCdR3MdDfZVDtmuova8XPx2TokEgRrJuILRAms70E/6nAVyH/4LAjnfn1+9KMq4D700MIDRqMqwBM7rzhwXrpUVRHkx6XlbW5kWP9g9z//gWwWwmGsbC897e/w/DOP8PgTT/Dci2+w5PU1dMVTGLrGnF0ncNzRe3H4oQdzxML3Mr3lAEI1k7d4Aa27u5vTTz+dxx57jNtuu40LL7xwJ1+4GAmuuALuuAO+9S346lcrvRohht6nPqWKshYvVtewRflI0C2EEDvIzPTQ2/4GoGZuh+umE4xOkuz2znrkEXj0UfjEJ6C5WR3r6oK//111FM8H3aCyzDNnFkZIwTaN03JdFyvbqwLtVIdXoQDgfP+78I1vwac+hf/mm/EH62D2ZLVHe8YM2LSp0EX74x9XH6L8brhBZbknTSoce/55uPRStYe+uJlajuu6mOkuOr56Ds+PN/lv62M8e+gdvPLGWpIpk5Cuse/s8Xzsgws4/LAFHL7wWCZM3ZtAuGmLncWLvfvuu5x00kls3LiRhx56iKOPPnqoXrGoME1T12+kYEFUq3nzVM/Q4l+hojykkZoQQuwg13Xo2fQahi9EuE5mbu+QtWvhnXdUk7O8hQtV86yf/1yN9AK1b/tXv1Kl4wsW7NRT2maK3o43cOwskW/chO/JF0ne8QN8c/ZVncf//i/VyfyYY1SGNG9zGdVRYtQ1UttWH/kI3HMPnHsu/OpXuK5DJrGR9ate5fHHHuLJp5/jxZdbeX3pBkzTpjYaZP+9p3DwvDmcsGQVhz3zGv7TT0P/45936OnXrl3L3LlzaWpq4p///Ce77rrrEL9AIYQQ1UAy3UIIsY1sK0Omby3h2Ew0TUfTdGqb9hqwt1MMwnUhnYaw6urO66+rjt61tSqTnU8nnXaaynAXBzBNTYVRX9vJttI461bjv+9hSCTQL78MXAdNN/C/+g7GW8uofbMTbcEsdYfjj1cXAmbPLn2gURpwVzP3xzdhzZjAsgW78ej3L+bpZxezeHErby3vwAWaxkWZN3cqV37hEI444kjmHXwUNeN2UbPTly5VzfY+97nCA3Z2qgs+p5yyTRUToVCISy+9lMsuu4yGhobyvVAhhBCjmmS6hRBiK9TIoHWke1fjug7huumEa6dt/Y6i4Mc/hmuugYsuguuuU8dsWw3BnTUL/vnPoWs0lsngPP8sZkOIzMQIVraPwGvvUnPCOdDQAO3tWHYKwxdGu+9+tdd34UJobBya5x+BqiXT7dgmyfhy3njtGR5/7D888/zLLH5lJSvWdAMwfUqMw0IBjm3dxIJD9mX6vX8kWj8T3djGKpRrroGrr1YZ9LvvLt8LEUIIMaZIekYIIbbAzPSQjLd5s5n9wToCoeoNznaa68LXv66yhffcAxMmqOPRKHR0wHPPFc41DFVeHgrt3HP29UFNDY5jYaY60T9xIf4//gPnsk9gffECQMPdbz/c449Hmz8fMhl84Vwr4pNO2rnnFmVlmyn6upax5IXHePyJx3n2+ddY/OoqNnYk0DTYZVYThx08my8tmMfCo95Ly+4HE777QbRrr4WvfBMad1MPZFnQ26suumxJMKhaVX/wg4VjjqMuzOzs96kYdW69Ff73P9W2obhXohDVIJtVwzaCQbWTSjr0l5dkuoUQYjPUzO0VZJKbANB1P+HYTIKR8RVe2QjS2Qn//rcqGT/33MLxuXNV6fhf/lIIXjZtgtZW1R61eJTXzkinVcfy116DjRtJ6N1kEhsI/uavhL//c7Kf+Dh8fRGBcCO6MUTPOdKYJqxapdrPGkZpZLBokZpNbZo8/pe/ML6vjzkf+5gq7582TV0cyXv8cfXnxImq4qC2Mt33zUwP8U1Lefbp//DkE0/y3OI3een1NfT0ZvAZOnvtNpED92vmsMPms3DhsUyZtR/B6MSBzQuzWfD5CiXiv/mNmqV+1VVbb0OdHz/ny+Ul/vxn+MxnVAb8oouG/DWLkeukk+C+++D221VfRyGqSU9PoYFaKiXXFctNMt1CCLEZyXgb2VQHAMHoRMJ1M2TvdrFsFh58UKWAZswoDbqvuEIFg/PnF46NH68+dtQLL8DNN8PUqbg3XI+V6SGbaieSTKDZNrz4IoGFC7CyveifugT3i98k5A/v+PONRK4Lt90GL7+surgvWwYrV6oyfYCDDlLdvPN++1tYvrz0MX77W/XnnDmlQfell6oLJXmTJqlRaLvtpkZ0XX75kO9pd10XM9XBpnVv8NTjD/HEk8/wwpJ3ePXNdaTSFuGQj333nMK5Hzmcww8/lMOPOJamKXviD43bemfxQKD09r33qoqIbckz9B9We+edsH49rFu3Xa9PjH4f+5i6TrjffpVeiRBDLxyGBx5Qs+j7/8gUQ08y3UIIsRm2lSLR9S6R2CyZub05L7wABx+sflN/6lPw6qtw6qlw8cWFRmk7avFiNZf7lFMKzdQeeABOOAFn1gx6nv4zjmMCEH5nE+HdD4LJk3fuOUeaTAaeeEIFe2edVTg+c6YKtIuFQjB9Ouy7ryrpz7vpJpXKCAR4/Ec/YnxnJ3O+9S2V0mhoUIF23qmnwptvwoYN6j7F5syBN94o3P7ud9WFluOPHxigboHqLL6e1W0v8/h/H+app57jxVdaeePtjVi2Q11tkHlzpzF/3hwOP+Jw5h/6HmJNu6mRbTvLdVXK8ogjCqmdl15SvQa++tWBs7+LZbPwu9/BySerhn6gLlDccYe6GDF16s6vTwghRFWToFsIMea5jk2qdzW4DpH65kovZ3TYsAF+/3u1/7WuDk4/XQVyy5er29uqtxfeektlafNOOEEF2T/+Me6ll5DuW0N2w3ICP70D66B9MBfORzcC+MPjCEbGV89FkUwG/vEPVQr9n/9AMgnjxqkS8Xxn92uvVcf32EN1V29pUVnprXTa3q5GavG46t7+9tvqY8IEVZoNam90LKbW4POpIPbUU9WFgX6N6BzHIt27mmVvPcdjjz3CM88u5sVXlvNOm6ogmdhUwwFzp3HI/LkcceRC9p93FDUNLRjDVaHw4Q+r0vGzzlJf8+1x1lkqED/jDPjDH8qzPiGEEFVDgm4hxJiWTXWSjLfh2FkAYhP2G743/aPN3Xersuarrio9bpoqaLEstXd7l11UMPK3v8H73geRSOFc2y4EkCtWqKDR71eBXlB1mHZ/fBPafx6BCy7APekk4htewrGzaJpOINxIINyILxgbuI93tFq+HH70I1X63dlZOD5pksom/+hH25VR3pwh617e26s6fN93n8qM5wWDuB/5MMlzP8hrdPPf/z7KM8+/wuJXV7F6XRyAWdMamLfPdA6Zvz8LjzqGPfY+lEhsZuX22z//PNxwA1x/Pey1lzrW0aFe1+GHb/m+Dz6o7nfjjar+GNT38MqVqqeBqAo9PapIIhotbPEXolr09MBTT6kWFkccUenVVD8JuoUQY5JtpUnGl2OmuwAwjCDh+mYCIZm1O6jrr4evfU0FXYsWDfz8tdeqfcLXXQcnngj776/KvpcuVQH4NdeoEt0f/lCd77qqcVc0ivOv+8hOH0c22Y5jpYlNOsALqjPJTWho+EMNaLoxfK93uFx0EfzsZ+rvU6fCeeepyoF99hmyfdTlGBlmvfU6mT/eyRt3/p5nWtfwBPDfkJ9NaRNNg91nj+egfWdxyCEHceTC99Cy20GEaqaM7H/DRYvU9+/FF8Mtt2zffW+4QV2Quvxy+MEPyrM+MawOPRSeeUb9+Dr11EqvRoihtWSJumY4ebIaJCLKS67bCSHGlP4ztzVNI1QzhVDN1JEdDIwEV12lxid9/esqY33eeSoonDmzEHBfc40qP/7sZ9U+48MOU52wDUNlyZ94wns413XILnmabMjCynTjdse9z9lmwisbr8qO8Y5TKAlftEh1IP/sZ+HYYwuVACOMme6ma8NbPPP0f3jyyad47sU3WfK/tfQlsgR8OvvXBPnQe/bh0PceyRELj2XSjLkEIxO33vRsJMl3FHrvewvHbFt9n2+lhJ81a9R58+YVjuXzGqPpayA8lqX+HKH/JYXYKYGACrrzrSpEeUmmWwgxpji2Sc/Gl3EcC38wRiTWLOXk2ysfYIMqez72WNXAK58BP/hg1WjtzjtVxruxEdrb1T7lq66Ciy8mc8HHSSZW4rqO97A+f5RApCk34itYmddWbq6rvkZtbaqcfJiCse3NdLuuSzbVzobVr/LEfx/mqaee5YWX3+W1N9eRydpEwn7222sKBx+wG0ccfhiHHP5eGifNIRAeV+ZXMgzWri3dJ//736vv7WuvVfvAt+Ttt9WWiXwt8l//Ct/6FnzjG/D+95d12WLoWZa65uLzSeAthNg5kukWQlQ9x7G8cV+64ScSa8bFrc4M6nBYtEjt3b75ZjXT+J574JvfLJScf/rT8KEPqRnajY24rotVG0Bvexdj2TK4806MSy/E7XMwfCEC4SYC4aaxcfHj1ltVmT6or9ORRw7L0xq9vYRNk+X//jezjj12wOdVBchaVrW+xOOPPcyTTz/Pi68s5613NmI7Lg2xMAfMncoXLzmJI444goMPOYa6xl3xBWqGZf3DasqU0tu33qqa/b311tbvu9tupbdvvFFdgHr6aQm6RyGfT/ZyCyGGhmS6hRBVy3VdssmNpHpWEqlvIRBu3PqdxLYLBtU4JV1XA22PPFKVnOcGflrZPrKpDrKpdhw7S9BfT/S+Z1VQc9xxWNk+fL4I3H67mvcdjVb29ZTbG2+ogb+mqcZufelLZX/KrmXLWDZ/Pgd2dHjHXmxspOW5Zwg2Grz9v2d5/L+P8PSzL/HiKytoXakauU2eUMuB+05nwcH7cMQRR7HfvIVE6mdh+EJlX/OI09Oj9txfeGGhod2rr8JDD6kLJ7Vb6J6/caMaS/b5zxfm1L/1Fjz6KJx/vhr3JoQQoupJ0C2EqEqWmSTZ3YqV7QXAH2qgtnELs3jF9smXmAcCKvAG8Pux33yN7IQo2WQ7tpXyTtd0g2BkPJFYv5Fs99wDH/mIyhC++ebW982OZlddpZptve99aiTaMJSWv9jUxH4dHSVlbRbwuF/n7HE1rN2gZnK3zBjHvH1ncNiCeRy58Bh222sB4boZXoWI6OcjH1Hfu5/8JPziF9t333PPhV//Wl2guuOOsixPDI3vfEcNFLj4Ypg1q9KrEWJoPfqo+jU+b54qyhHlJb9NhRBVJT9zO923DnDRNINw3XSC0YmVXlr1KG6atmiR+vu118Khh9JXk8LuUdlS30tvoB+8gEDdZPyh+s2P+AoE1B7Yj3+8NOA2TTVKrJo88oj688wzyx5wW9k+lv71NyUZ7jwfcIzp8IHdp7DfV8/lyKOOZcbs/VVn8WoZw1ZuJ56ost2f/3zhWHc3pFKqFfCWHHIIPPYYXHpp4VhfH6TT0tFohPn5z2HZMtW5XIJuUW3WrYMnn/SmdYoyk6BbCFE1zHQ3ie5l3sztQLgxNwdYfqMMmVzA7XzzG5iXf5psx1vUfONqNL8fvv51Ijf/lvQXPkkgbhE4/VK0yZPh2WchPEgwd+qpaq9rvk0wwOuvq+7RX/qSGr9ULZ2f6+rUn5nMkD90ft58sruVRHcr2eRGlv/rGfbqd54L3AQcBJz3no9x0Be+PuRrGRPOPRfOOaf0e/PGG+Hb31b/R7a0deCii+CCC0o3C//kJ+p+110Hl11WtmWL7XPBBap9xdSplV6JEEPviCPgT39SvU5F+UnQLYSoKo6dxfCFiMRm4ZeZ20PKve5atK9/ncxXP0fyguNwu5cBYGa6CeSaqPm//nX84QY1Kqy+Xr1bnTBhyw/s95dmtX/2M9iwQQXr1RJwg9rP/dBD8Ic/qP3BO8h1XTLJDSS7VZCd7G7FzHQPOK9+/z3hzmdKjtnA74HLgEP+8hduOPJIFi5cWL6xXldfDXvvreaOV5v+X7OXXlIXVGbO3Pp9+3fn+u9/IZksZLq7uwv7x0XFfPWrlV6BEOUzfbr6EMND9nQLIUYt13WwzWRJB+Vssh1/qEFmbg8h20qrueZ3343etpL0584DwPBHCIQbCYTHY/hy1QTXXw+77AJnnKGCiI0bC3WZ2SyccIIqrz777MHLx01TjdM6+GDYK5erjcdVw7VPf3r0NlxbuxauuEJtFN2OdzquY5PuW0MiH2TH27DNROlJmk64dhqR+hYisWYi9c34/NHN7unOAjfW1HDX7Nm88sorHH744SxatIhjjz12aIPvq69WWxAAXnkF9tln6B57JHJd1aV8wYLCfKl77lEjx666qnR+9+bu+/DDamjukUfC0qXw/PPqgkWuMaEQQojRS4JuIcSoZGbiJLvbcOwssYn7oRvyxnQoFY9Zs60U8Q0vA6Abwdws7SZ8/sj2Pegdd8AnPgETJ0JrK0S24/75feQLF6r9sNUgnVYXGPp1v3Zsk1TPShK5LHaqZwWOXVqSrul+InUzVZBd3zzoNorutjbePeigAd3Ld3nhBWKzZvHPf/6Ta6+9lhdeeIGDDz6YRYsWceKJJ+5c8P3cc+rCyjJVCcGRR6pM7ljjuirQXrJEzem++urSzz//PPzf/6mLUl8vKvOfNQtWrFB/X7p04BgyMWwyGXX9xDCqq+hGCFA/ZlauVANFZs+u9GqqnwTdQohRRQUkK8gkNwGg636i43bDH6yr8MpGP9tMkk21k022Y/ij1DTu7n0u1bsGX6AWX6B2xwOyREIFGQ0NKvjOe+ABtYd7SwNx774brrxSdf8+4wx1zHFU46rRmvm+/nr46U9xvnUdifcvINnTRqK7lXTPKlzXLjlV94WJxJqJ1jcTqZ9NqHbqdnUWX/7vf7PpmWcYf8ghA+Z0u67LQw89xLXXXstTTz3F/vvvz9e+9jU+8IEPoG9PN/klS1RjsSeeKD2+ahVMm7btj1NN3ngDfvhDtZ3g5ZdV/4JEQl10ymTgtNNgzz3hf/8r3Oell1TTPZ9P7R1vkG0yldLQoCr933wT9pDhF6LK5K9lf+pTaleXKC8JuoUQo0LxzG3HUU23gtGJMtZoJ9lWBjM3S9sqKlnWdR+xSfPK3836mWfg0EPVO9qXX95yG1XTVCmnfCD417+qcvOrry7tBD3CmZkekp3vEjn6NPxLVUYzPauRzlP3I37sHJxwAF+gzstiR+tbCEYnlf3fwnVdHnvsMa655hoee+wx9t57b6666ipOP/10DGML2zVee029c/vb39S/j110waChQc1cGktsW6WPmovG4x11lMr233abCqj/8Af4zGegpkZVbxx/fMWWKwZXVwe9vfDOO2rXjBDV5Cc/gZtvho99TBXjiPKSd6pCiBHPdV162//nzdz2+aNqz2qgdiv3FFuS6G4lk9jg3dY0DX+wnkC4Se2LH47xUevWwfjxKvAuDrhdd2A9Z/894HfeqVoLr1tX/nXuINd1MdOdJLqXeY3Psql2ALQbT6Xxzy/R9LvnCC3vYMpN/2Hy7c/gnPYB9HNPRNv7mGFdq6ZpHH300Rx99NE8+eSTXHfddXzsYx/jG9/4BldeeSUf//jH8eWrESxLVR9ccw28/XahSsEuzdAzd+6wvoaKa2tT+7JtW11syH9djjtOXSwaN041WqupUa2x991XfT6ZHNhQUFTc6tXqWz0Wq/RKhBh6n/mM+hDDQzLdQohRIRlfQSaxwZu5LfOEt4/r2GTTXfhD9V5lQLpvHcn4cvzBulygPQ7dqMCb/kRCBR3jx6vbGzaoIOXyy+Gss0rndxczTfjd7+DkkwszT956C+69Fy65pCJl567rkEls8EZ3JbtbsbI9/c7SCNVMVnux62cTcRvw/+GvcMstKoAF+MpX1PgpUE3kXnlF7Q8e5tf0/PPPc91113HvvffSMm0a/+/oozln40YCjzyivv5b4vfDxRfDTTcNz2KH2z/+odJERx2lGqWBCrYbG9WfL70Eu+66+fv29pbu5b/2WvjFL+D731ed3tva1EWnadO2vO1CCCHEqCBBtxBiRMqmOtB9Ya9Zl+vYuK4lM7e3g+s6mOlusql2zHQXrusQrZ9NMKpGeDmOBa498r6mV14J3/oWzJ+vys+3Zw/5mWfCXXep7ui//nX51pjjOjap3tVekJ2Kt2FbqZJzNM0gVDedaKzZ6y5u+MMDH8xxVAnyX/+q9vLmu13//e/wgQ+o0u25c1VH9913Vw22dt9dleaHQkPzgvL7jZctU8FkbmzVy2eeyXV33cWfgRnAV4BPAFt91p//XGV0R7uHH1YN/D7/+cLFoV/+Ej75STj88NJ97O++q5qhbWuw7Lqqs/vrr6tO5x/9qKr6yGZVmbrM9BFCiFFPLp8KIUYU20qTjLdhprvxBWqpbdoLTdPQdAMNGQO2Na7rYmV7VaCd6vD2vwMYvlBJAKsy3iPw18CVV6p6zgMPLKzXsuAvf1GNp7YUzBx/vOoKfdllhWPJpApshiBL7NgZkvEVqlQ83koyvgLXKc346kaAcN0sIvUtROubCdfN3LYKAl2Ho49WH8V6e1V72bVr1b73l18u/fy998JJJ6m//+tfKvtaWwvhsArGQyEVxNm22gOfz77+858qu97RAe3t6s94vPC4jzzirWW/E07gT/fdx+u77871q1bxmXXruB74MnAhMGgf+tFYXt7VBcuXw/77F45dfrnau77//vChD6lj73uf2hS5cGHp/bd386+mwQsvqH3eCxeqpoKmqbr7b08jOzGkXFe1i/D51KS/7Rm2IMRo8J3vwKOPqkZqp51W6dVUP8l0CyFGBNd1SPetJd27Btd10DSNUM1UQrVTpZR8Ozh2lu71LwHqR7tuBHKztJtK5pmPOnfeCeedp7KKjz++5ey345QGK9/6luog/b3vqcfYDpaZJBVvK4zv6l0NrlNyjuGP5GZjzyZa30yoZmp55sSvWqWCs7ffLnwsXQr33w8HHaTO+f734UtfGvwxHnxQBYug5p5vLgs9bpyaH/Ptb8MxuX3l/ZrYLf3b37jh7LP5XV8fjcAVwMXAgO+w3l61f3kkK+4f8Oyzqr/AlCnq650/fs01KoN90UXq80Phtdfgj3+ElhY4/3x1zLbV17+nR5WnFwf+YlhZVmGLfUeH+mcRopp8/OOquOZHP4IvfKHSq6l+IzDFIYQYa/Izt/Nluf5gbPASXOGxrTTZVDuOnSVa3wLkg+wGNM1HINKEL1C3czOXRwrLUu96TzmlNODuH2BD6W3XVeXZ7e3bVO6rvhcL+7EzifUDzvEFY0TrW3LdxVsIRiYMz4Wh6dO3Xmr8/verr1MiocappdPqz/zA4RkzCuceeaQqkW5qUvuQm5pgwgSvpLxEvwZfu3/gA9y5di1Xn3UW3/7HP7gK+A5wGfAZIAZqP/JIDrhvuUVVBVx4ocpkgyrz9vlUWrOrqxBpFc/R3hHd3fDUU3DYYYWv73PPwXXXqX+HfNBtGKpPQXMzzJmzc88pdtqll6rrIGH5VSSq0CWXqPYp+Wu2orwk0y2EqCgz3U1vx5uAmrkdjs0iGGmq8KpGLsfOks2P+Mr25Y5q1E86AN0IVHRtZdfbq4KSfJ3nCy/AOeeoGtCPfnTw+1kW/PnPqiw4H3g/9BDuSy+R/cQZJK2NXqBtpgeOtwpExhOtn53LZrfkOrtXwYWMoeC6cOedrLzoIr6bzfIL1yUMfA74/HHHMe6BByq9QhU1/frXat/1T39aiKC+9z348pfVhZy//71wfkdHoTHfjkqlSiO1ffZRme2//AU++EF1bNky+OY34dhjVQ8CIYQQVUuCbiFERbmuQ++m1zECNTJzewvMdDfpvrWYmR7ypeOg4Q/GCESaCITGlaekeST76EfV2KpzzlHl51uR38KQ7Gql9oRzCbyxnI1nzWfT+YcVnaURqp1KJNacy2bLaLpt8uab8KEPsfatt/ie6/IzwBcIcOnll3P55ZczPt98rNxcV62ls1NtRcgfmzZN7Yl/9FHVIA5Uh/DXXlPnDVXt8NKl6uJOX5/aF553ySWqGds112z5ApEQQoiqJEG3EGJYWWaCdO8aog27eCW5ag+37Nsu5roOuK4XSGcSG0l0LwPAF6ghEG4iEG6qzIivkaKnRzWyOv30QnOw9nb497/hIx/B0VzSPatUqXi8lWT3chw7DY5L7OE3afzzYlZ+7wwC0/cgUt9MjRkjNGl3jHqptNghqZRqYPezn7ER+MHJJ/PTRx7BdV0uuugirrjiCiZPnjy0z2nb6iOQq/L4y19U0LvvvqUN5665RpXan3/+4GO8ttcjj6hO+QsXFjLViYQqH7csNeR56lR13LJk9JcQYkT53//UzqPZs2UW/XCQoFsIMSzUaKVVpPvWAy7huumEa6dVelkjius6WJkesql2sulOwrXTCdWoIMVxLDKJ9QTCTaoLuRjAttLYV3yOwE0/p++4eaz86ntwi7q3A+hGMFcm3kwk1qyqK/IXLs47T3X0vu02aeW6M+65B777Xfj73+kIBrnxxhv58Y9/TCaT4cILL+QrX/kK06YNwf/9r3wFfvYzNQf83HPVsQ0bVGOyQw9VndyHItB1XdVE7fHH1Ui6/Hi2735XreEDH1Bj3vIefVR1bW+Sizej2caNqp+ez6euJ8mOElFt5s9Xwz7+8Q84+eRKr6b6yWVXIUTZZVMdJOPLcewsAIFwI8HIhAqvauTIj/jKJjtwisZPWZk45IJuXffJRYp+rGwfyXhbbj92G+m+NTRm3mZ8TZCOw6fhOhaGv4ZI7Uyi9c1EGnclFJ28+TL8TEY1turokLnIO+v009UH0Ahce+21fPGLX+Tmm2/mxhtv5LbbbuP888/nq1/9KrNmzdr64/X1qfa6ixerTHa+UZ6uqxFnTz9dCLonTlRNy/w7UQHiOKpiYkLRz6gjj4T161WW/Mgj1bETTlDfL/lu8Hn9R76JUcmyVBEFSMAtqtP48aoYp1Z2UA0LyXQLIcqmeOY2qDnRkVgz/lB9Rdc1UriuQ8+m17DNpHdM1/34w+NyI75qpWFXkWy6i2Suq3iyu41McsOAc/yhcUR9E4lM3YtI/WwCkfFod90FN9ygRoedcsrgT2BZKkt57LGFYz/7mQriLr10ZHfiHiV6e3u55ZZb+MEPfkBXVxdnn302V155JbvkZ1v39akg2ucrjCuzLFWynUjAK6+opmQAra3q32bffVWDvaHwxBOq0dmMGWpkV95556k94N/8ZmFPuKhqtq0KJ2xbrsMJIXaeBN1CiLLp61xKNtVZmLldM2XsNfsqYlsZrGwPwUihqVRfx1LMTDf+0DgCkSb8wZjsbwdc1yWb3OiN7kp2t2FmugacF4xOypWKtxCtb8Yfahj4YAsWqCz29dfDlVdu+yISCTW6adMm+NWvCtlUsdMSiQS33XYb3/vud9mwcSMf+9jHuOqqq5jz+ONqFvbRR6s903k33KAC79NPV+mZoXDXXerj3HO9zDxr16rUT02NirjynfKLZ3kLIYQQ20nKy4UQQ8p1XS87G66bieu6RGIzMXxjc9CpY5tk0x1kk+1Y2V4AfIFab192ODaLqO4b0xcjQO35T/etzTU9UyXjtpkoPUnTCddO80Z3Reqb8fmjW3/wBx5QM5k/+9nCsddf9zpuD5jznRcMwg9+oOYmn3lm4fi776oyZqnJ22HRaJTLnniCi9ev5/ZPfYrv/Otf3HXXXXz4fe/ja1OmsM9uu5XeYXsulvRn2yp7/vTT8KUvFf69X34Z7rsPJk0qBN1TpqhRdPvsU2jOBhJwCyGE2CmS6RZCDAnHNkn1rAA0og2zK72cinIdm2y6S83SznRT/GPWH6wjXDcTX2Bslyqr75eVaj92vJVUfAWOnSk5R9N9hOtm5kZ3tRCum4nhCw7NAj74Qfjb31QQ9t3vbvv9XBcOOUQF3n/8Y6EEWgxu3Tr4xjfUCK0HHywc/9Sn4Oc/h+uvJ3vFFdx5551861vfoq2tjVNPPZVFixYxb9687X++REJVJ+T3i5umypInk2pE2N57q+MvvqjKyY89tnBMiJz2drj9dlX0cOmllV6NEEPvzDNVO5Mbb1RTFUV5SdAthNgpruuSSW4g1bMS17EBjdjE/cZ0h+1sqoO+zre92z5/VJWOhxqHLmgcZWwrRTK+3NuTnepZhevaJefouT3/kfoWovUthGqnlWduu+uqEVI33aSyn3vsoY5nMqoB12CZb1DNtI48Uo2DamtTGW9RsGqVmkc9fTq8973qWE8PNDSoBmWrVhXe3a1cqaoJir6Gpmly1113cf311/POO+9wwgknsGjRIg455JBte/577oGPf1ztu/73vwvHzzxTBd+LFqnO4kJsxt13q+tpV12limHmzlX99DYUtY+4/nrYZRc444zKrVOIoVBbq9povPOO+p4W5SXl5UKIHZbvHm1l+wAVXEbqW8ZMwO26rtd53PCFvfFe/mA9Pn8Uf6hBjfjyj73Seivbm9uP3UayexnpvnVA6TVeX6BO7ceubyEaayFYM2l49rNrGlx9NXz5yxAu+re57jo1O+WHP4T3vGfz9500Cd54QzX0Kg64v/xlGDdOpcTGStm566oS/V12KZRi/+Y3KmL58IcLQXddHXzve+q8ceMK958xY8BD+v1+zj33XM466yz++Mc/ct1113HooYfynve8h0WLFrFw4cLCyd/7HvzhD+rf7YQT1LE5c7wZ2WtWr6a2ro66ujq1RUCIrXj3Xfja19T1ofPOUx/F/52vvRa+/nX1LSfEaHfzzaoAaIIMkxkWkukWQmy3/jO3Nc0gXDedYHTSmOi2bZkJssl2sql2bwya4QsTm7hfZRdWIa7rYqY7c6O71J7sbHLTgPMC4Ua1FzumysUD4caR8/1iWapp2urV8Oc/b9+c7uXL1Sgpy1KZ823Nyo52e+2lLkA8+SQcdpg69swz6gLEKaeo0v2d5DgOf/n977nuqqt4ZcUKjjjiCBYtWsR73/tetAsvVPW/xVsEHEdl0GfN4rTTTqOtrY2nn36acHjsXfgSOyYfWF9zjSqM2NpxIYTYFhJ0CyG2m+NY9Gx4GccxVSAVm4VuBLZ+x1Eu3beOTGIDtpXyjmm6QSDU6HUeHwtc1yGT2ECyu41E9zJV7ZCJ9ztLI1gziWguwI7UN4/8r09Xl8rUfuYzhRLzhx5Se4RPPXXwsnPLUhnXJ5+E//u/wvEXXlCl66M98/3GGyqwzWZLS7Y/9CH417/gttvgrLOG7vlWrYJUCvLN1OJx3Pp6/glcu99+vPDyy8yfP59Fp5/O+ydPRjv6aJg8ecDDvPrqq8yfP5+zzjqLn//850O3PlH1+gfYEnALIXaWBN1CiG3i2Bl0o7AfWY0C06t65rZjm+iG37ud6HqXTHJT7nWr0nF/qL7qR3ypyobVJOP58V3Lsa1kyTmaZhCqnebtx47EZmH4IxVa8RCxbdXF+o034Cc/2b5uSqkUtLSoQPWRR9Qs6dFg8WLV0fvwwwtN4latUqXghqEuTOQvImzYoPZqB3biglv+LUi+4uFHP4LLL4ePfERtsM0780xoasL94hd56M03ufbaa3nqqac44IAD+NrXvsapp56KvpmLInfccQef+MQn+NWvfsW5MvJN5NhWBtfJ4tgmjpPFtU0cO4vjmOhGgGh9ixdoa5r6Nv3619WYdiGqgWWp3UHBoCrUGilFZ9VMgm4hxBa5rkO6by3p3jVE62cTiDRVekll5TgWZqqTbKodM9ND3YS53lgqK9uHbaXwhxrK0+BrhHDsLMn4ilyQ3UYyvgLXyZaco+kBIrGZXpAdrptRfdUO6bTqmvTrX6s93PX16nhPjwo8t/Qu5c034QMfUEH30qU7F5iWS28vPPus2nudfy1XXKHGpH3606VZ+9tugwMPVBcPjCEab3fppaqD/J//rGapAzz+uAr2TzgB7r130Lu6rstjjz3GNddcw2OPPcbcuXP52te+xoc+9CGMfuv75Cc/ye9//3uee+455koTtarlOJYKnvNBtKMCadcx0XQ/kdhM79zudS/iOOZmH8fwR4hNUBfJ/H4VnADE46o9gRDVYNOmwl5u295y/1AxNCToFkIMyszE1bxkKw1AMDKeaEP1tbh0XQczN+LLTHfjuo73uUhsltcgrVrZZpJkvM1rfJbqXQVFXwMAwxfxmp5F6lsI10wdO7PFLQt8RRdZPvIR1XHp1lth/vzB72fbar/37NwIPddVo8oOPljNDB/usvPi12FZKkvd16cuEOQ7uD/8MPziF2pP+0c+MjTP29GhGpmtXQvf/nbh+GmnwV//qo595SvqmGmqix3b8bV58sknufbaa3nooYfYY489uOqqq/joRz+KL/daU6kUCxYsIJVK8eKLL6rGamJUcF0X17FygXRpZlqNFJzunbvFQLpfz42eTa95lUy6HkAz/OhGAF33oxtB/KF6L9Pt86n/LsWl5b/6FRx33GZ3NQgxKqxbB/vtp34tbdxY6dWMDRJ0CyEGyGc6s6l2AHQjQKRuZlVmuS0zSW/767lxZ4rhjxAIN6rO41XYiT1/MSUfZGcSqiFeMV8w5s3HjsRaCEYnVH0Z/Tbp6FBl47298Oqr2zff+b//VaOsgkFobYUpU8q2zAHP+9nPqlFd999fOH700eqiwC9/qf4+FEwTlixRQfOcOerYihVqZrZhQHe3GnwMKsueTqsLF0PQ6Oz555/n2muv5Z///CezZ8/myiuv5Oyzz8bv9/POO+9w4IEHctxxx3H33XePnAZ+Y5TrOji2OaDEW9MNQjWF/xfd6xd7zSr76x9Ixze+gmNlVCBtBND0fCAdQPcFCYQbt3l9W9rTfdpp6r99OKx69jVV369FIUQZSNAthCiRTXWQ6F7mBaGh6CRCddOrppzayvbi2CaBsBpd5LoO8fUvgaYTiDQRCDfhG+17kYu4rks21Z7bi62y2Wa6Y8B5gch4IrEWL9D2hxokMBlMRwc8+KCaB513xx3Q2Agnnzx42bltq4Zra9eWdvb+179U9++hyMDee6/6OOcctS8bVGn8fvupQLirq1AenkhANLpzz5fJqNL5/uXpF18Mt9xSOO+cc1QQfvHFhTL9MlmyZAnXXXcdf/nLX5g5cyZf/epXOf/887nvvvv40Ic+xE033cTnPve5sq5hrCou8c4H1Wg6oegk75z4hpdLmlEWG5CR3vgqlpnIZaDzgbQfzQhgGEGC0cLYPtd1huTC4Na6l190Ebz2mpoe+Kc/FT6/caOMXhJCDE6CbiFECTMTp7f9DW/mti9QU+kl7TTbTJFNqRFftpVGNwLEJh7gBZXqWLAqgky1B3+dCrLjbSS7W7Gyvf3O0gjVTCk0PatvxhcY5R22K6m7W40b6+6Gf/4TTjxx2++7cqWaX11bq97Jb2v223VViftLL8EZZxSOn3++qn39f/8PbrhBHXMc+Mtf4IgjSmeL7wzXhfe/Hx57TAX1+U7jf/sbfOITcPbZcNNNQ/NcO+j111/n+uuv5+6772bKlCl8+ctf5t133+XWW2/liSeeYEF+H7nYIlXirfZI50u80TSCkfHeOT2bXsM2kyVbc/IMX4jYxP0L5+YCaU3T0PRASYm34QuVZLodx0LT9GGrsrn+ejWne7Au5cVzui+7DCK567PxOMycqVoT/O536vqbEEIUk6BbiDHOcSxsM1EyzslMd+MLxkZ1EGpbGcxUB9lUO5aZ8I6rzuPjiNQ3V0X23nEs0r2rSHTlgux4G05uD36emqM+w9uPHYnNxPDJ3OIhE4+rfcmPPqrmdOc70mzcCOPHb7nh2nPPwbnnwtSp8J//FI67bun9HEftv85nwzs7C+/s168vBNP33acC4Q98oDA7e2e1talGapYF3/te4fjCharx2S9/qYJ9UOfo+ojqyrN06VJuuOEGfve739HY2Eg4HMa2bZYsWULTGK4NViXeqtGYKuHWvAoggN6ON7HNpAqy+20/GSyQBjVGUdcDucy0D8MXIlw3wzvXtjK5c0bez9+771bXsq66avBzrr9eXScrvtb1j3+odg1z5qhdJyPo21+IzXr7bbj6apg+Hb773UqvZmyQoFuIMSybbCfZswLXsaibsB+GL7j1O40Sye420on1AGiahj9Ynxvx1TCqG4DZVoZUz3KvVDyV+/crphtBIrFZuQC7OddZ3D/II4oh4ziFd9uOo0q6g0HV/Ty/v3lzbBva2wuBc36f8xlnqHTa3/6m9mQfd5xKo+UdfDCEQqqh2157Dc1r6OxU88Z3263QXG3JEjjgAJWN7+wsNGN78UW1P3v33Ss+b2bTpk088cQTOI6Dbds4jjPg7+vXr+f+++/nmWeewXEcdt99d958881RfXFxc4pLvHHdkrGOfZ1vq0DayZb0sYAtB9JAocTb8GMYISL1zd7nbDMJmo6u+0f1z9ed0dqqrrPlCygcB04/HU49FT72MdUJXYiRIt9iZI89VC9NUX4j7zKjEKLsbCtNsrsNM9MNqDdbrmMCoy/odh2bbK7zeKhmCv6gygQGIk3YVlIF2uHGEZlV2RZWti9XJq5KxVN9awZ2Fs9tBYjmguxQzZQx+8a3oorTW2++CcuWqQB1ayXdhlF6zh/+oNJl69erPeITJ6p95C++WHq/Z5/d+ZRaR0dpLewXvgC/+Y1K9V13nTq2zz7wqU+paMK2C0H3gQfu3HMPoR/96Ed861vf2up5uq5jGAaaptHa2kpvb++o6GbulXjbWcAt2Q6S6G5Vpd25OdPFJd6GL0QsVAikHStdsp+6pMTbKG0aqYJqzctYb6nE26iiPhg7qqVFfeTde6/a1fHwwyrwjsUGv68Qw62lBW68Ub4vh5NkuoUYQ1zXId27hnTf2lzTGY1QzVRCtVNHVWdq13UwM3GyyXbMdKf3JjMYnUi0vmUr9x7ZzHSX11U8GW8lk9gw4Bx/qIFIrCUXaDcTiEyoumxdVdi0SWWJ3/e+wrFrrlHB6gknbLnh2v/7f6qUe948eOIJtW963ryhS5el0yp7/eabhTJ4UKXi3/seXHABfPGLQ/Ncw8B1XTo7OzEMwwusi//Mf4w0Xom365Q0cEzGV2BbKS+QLi7xHpCR3vQaVrav5HG9Em9fiNrGPbzjZiYOqKy1ZgRG7cXI0SAeV6PuDUP1F8z74x/h2GPVxD4hxNghQbcQY4TrOl6zGwB/sJ5I/axRtbfXdWySPSswUx04RSXVhi9EIKw6jxv+UfR6XJdsciOJXBY7GW/FTHcNOC8YnZgLstWc7EBI3q2NSm++qcrAXRf+9z/Yc8/Bz33nHfjtb1VjtU9/euee96WX4OabVWvl73yncHzvveGNN1T39OOOU8f67yUXO8RxLFzHKhk5mOpdozLSuYx1cYn3tgTSKuus5kjXjS+Mqsumu8B1Ct29x3CJ90j31lvqv31trSpHl4ZrQowdcolTiDFCNRBrwHWsUTVz27Gz6EYAUNkbK92N41joRsCbpT1aOqy7jk26by3JeJuXzbbNfm+sNZ1wzdRc07NmIrHmUfP6xFaMH6+yx+vWlQbcy5er1sfFwe6uu8I3v7n9z/H226qh23veo7o9gdqH/atfqY453/524Xl+/3vVwG1coXmWBNwFv//97zn//PNZtmwZU6dOxXUdLrjgAl544UWeeOIJYrEY6b712Fay35gsVeJtGEFikw7wHs9Md24mkFY/m+lXaRSqmYLr2GiGv2hc1uZLvOUi3OjR1QVz56rS3uKAu6dnaCYGCrGtenpUK5G6Opk1P1wk0y1ElXJdl0xiA75AjRe0uY6NizviSwptK61GfCXbcR2T2KR53pvNbKoDTffhC9SN+JJqxzZJ9az0Rncl48tx7EzJOZruI1w30xvdFa6bVVUN7cRmFGeTe3rUuLHddoM//3nbR4aB6tTU1gazZxeOnXSS6mD+gx/A5ZerY4mE2p+9cKHKaI/w/zfDrf9850xyE46VwrayHHLkSRwyfz++e90VfPv7P+O3f7iX555fzNSpU4HBMtKKbgSonzSv8LiJjbiuNWBM1kj/eSyGluuq0vP8uPr8j4D3vEcNCSjzGHshALWT6JOfVJMf77uv0qsZG+QnvRBVKN98y8r24QvUUNu0d65hjsFIfbvt2Fmy+RFfRW9iNU3HNpPehYNAeOTW49lWmmR8uQqwu1tJ9azEdUs7BOu+EJGYymBHG1oI1U6XN91jTXHQ+/zzkEqpbHRxMzXThGRSNUqr3cwM9fXrVbY8kVDzwcO5bRXve586Vhy8R6OwDU3Gqlk21YljpXPZ6PyYLJWd1jQf9UUZ6Uxivfcz6MovXcD5n76KCePr+dntd3PfX3/mBdwAgfB4/MH6XPCsgmktn5nul5UORicMz4sVI5qmlQbWDz2k/vu/9ppku8XwikTUrwcxPCTTLUQVcRyLdM8q0okNgIumG4RrZxCMThzRWeFMYgOJ7jYKs2A1/MEYgYga8TVSg1Ir2+uN7kp2t5LuW0v/eba+QK03uitS30KoZvKoalonhsH69bB6daEbuOuqRmsPPgj7769Kwn/0I9VILd9R3HVVaXhPDzz1FOy7b+XWXyFmJp4LpNUe6eISb03TtmGPtKJpOg1T5nu3071rceyMF0gvOPxY3njjLR741/0cdfQxI/pnqRidXn1VlZ4vXKhuOw6cdx6cdhqccorM/RaiGozMd7JCiO2Wn7mtRspAINxEJDbT2w89Uriug5nuQjeCXvbaCNSixuDUeA3RRtpcadd1MdOdhSA73ko2uWnAef5Qo1cqHqlvIRBukjfpYssmTVIfeffeqwJuUJ3Mu7vhgQdUcJ4PujVNzdOeMaMwwqsKWNk+HDuTazRmqu7d+Yw0GnUT9vHOTfWswsr2bvZx+v+f8wfrMXzhXBbaP6DEu1iotlAl8OCDD7J06TvYts3kKVPl/7Ioi332Kb19331qct/f/gYrV0rJuRDVQDLdQlSBbKqTvs6lgOqCG6lvwR8cOcMXXdfByvSofdrpTlzHJhBuombcrt45tpUZUXuZXdchk9jodRVPdLdi5cbtFGgEo5OI1DfnAu2R9XUXo9T69arLeG0tLFqkgu7f/16lwUZhRtu2UjhWJhdEmyUl3gC1TXt55/Zsen2LgXTDlAXe7fxYLa/RWEmJd2Cnf5689NJLHHXUUfz0pz/lD3/4A5FIhHvuuWenHlOIbbFhA9x0kyr//drXCsfvuw+OPlodF0KMLhJ0C1EFXNelr+MNfMEYoZopI6Z82cr25hqideDk3mAD6EaQYGQ84brpFVxdKdexSfWtIdm9TM3I7m7DtpKlJ2k64drpuSB7NpHYLAy/vPsRY49jZ72PwggsFVS7uCWzobcWSNdPnu9lkJPdbVhmAt0o2h+dD6SNAIYvMizZ5uXLl3PIIYfw2c9+liuvvJLFixdz0EEH8cILLzBv3rytP4AQQ+ztt2GPPVSn6aVLZc632Dl/+pMqoDruODj99EqvZmyonpo0IcYQM91Num8dNeN2U83RNI2axj1HXOljorvVmwuu63784XG5EV+1FV+rY2dJ9az09mMn4ytwnWzJOZoeIBKbmRvd1UIkNgPdGDnZeCGGkuvYhf3RJYF0Ftd1SypT+jrf3mIg7bqu93/c8IVxXbto9JX6U9f9A0q7I/XN5XuB26izs5MTTjiBU045hSuvvBKAefPmcfLJJ3PVVVfxwAMPVHiFYixau1Z1Od9rr9KAO52GUGjw+wmxOc89B7ffrr6XJOgeHpLpFmIUcewsyfhysqkOAMJ10wnXTqvwqlRpuJnqIJvupLZxDppuAJDuW4eV7VMN0YKximbgbTNJMr680PSsd/WAzuKGL+ztxY7EWgjXTvNeixCjldoTndsf7QXVKpCO1rd4521PRrqv8x2sbE8ucA4MKPH2hxoqfmFNiGpjWarh2vjx6nZvr5o2eNJJakqgdD8X2+qRR+CZZ2DBAjWuTpSfBN1CjAL5mdup3pW4jg1ohGomVnTclGObZNMdZJPtJW/Uow27Eow0VWRNxcxMPDe6q41EvJVM33oGdBYPxtTorvrZROqbc13eR0ZpvhBb4roOjm16GWnvT9chEpvpndfb/gbmgF4EeRoNU4oD6bdzTQ6LstFe07EAgXCj/P8QYgT53e/grLNU4P3GG2DINWIhRiwpLxdihLOyfSS7W7HMBAC+QA2RWLPX+Xu42WaSZM9KrEw3xdfs/ME6AuEm/KH6YV+T67pkUx3efOxkvNWrBigWiIzPBdm5pmehcZKNEyOKKvFWHbvzmWnXtUsqWvo63iKb7hrkETTCdTO872std1EuX8rdf5a0uhClzo027CJBtRCjyJlnwqxZkEwWAm7XhUsvhQ9/WDVdk19xQowMkukWYoTr61xKNtWpZm7XzSAYGd6Z267r4DqWN3rMttLENywBwOeP5mZpNw5r53HXdcj0rScRb/UC7YFlsRqhmslEclnsSKwZf1Bq78Twc10X17FKSrxdxyJUM9k7p6/zHcx0J67rbOYRBmaks6kONE3rtz9a/RmqneoFz45joWm6BNNCjBH33w8nngg1NbBqlYwbE5vX2am2K8RiEJRWNcNCMt1CjECuY3t7icN1s9A0H+G66cM2c9t1Xa/zuJnqwAjUet2I1UiyZvyBGIY/PCzrcRyLdO8qEt1tuUx2G46VLjlH0wzCddPVfuz6FtVZ3Dc86xNjU6HEO5eZdm2CkfHe5xPdrZjpLlzHZOD1bTVurnABzfUCbk3TB5R44zqgqZ8JkdgsIrFmNN231Qtwldp+IoSojL32UpnuhobSgPuxx+Cww8DvH+yeYiy54AL461/h1lvhoosqvZqxQX4bCzGC2FaKZHcbuhEg2rALAIYvSLRh9rA8v2UmyCbbyabaceyiTt5mEtd1vGxZKDqprOuwrQypnhUku9V87FTPSm+mb55uBAnHZhKNqSA7XDdDBSdC7KSSEm/HJBBu9D6XjK/AzHTn5k2bA+5bvO/ZdeyS/0f9S7yLA+lw3Qx1YU0PbLV533BdfBNCjD4zZ8JPflJ67N13VbOsadPg1VdVdlOMbZal/pQs9/CRoFuIEcB1HdK9a0j3rcmN2tEJ1U4f1pLtRNe7ZJKbvNuabhAINRKINOEL1JW1pN0yE7nZ2KpUPNW3RgUkRQx/NJfBVnuyQzVTpLO42GYlJd6OiT9YeNeZ6l2Nme4uaUZWTJV258q17aw3Bg8YUOJdfHEqXDuVUM3k3Of9WyzxNnwy80cIUR6trTBhAuy9d2nAbVngk0hgTPrHP8BxVA8AMTxkT7cQFWamu0nG27Bz5dL+UD2RWHNZ34Q7dpZsqoNAuMnLDqf71pPqWYE/1OA1RCvXPlAz3aVKxXN7sjOJDQPO8QcbvPFd0foWApEJ0vRMDFDcxbu4uWC6bx1mJl7S3bv4111xIN3X+Q7ZVHvJ42qagW6oYDo6bnevTNvK9uE6lrd/eltKvIUQotLSabWPd8oUdbuvT5Wif+hDcM01ag+4EKJ8JOgWokIc2yQZb/O6bOtGgEhsVkkp65A+n2NhpjrVPu1MD6Bm9AajEwFVCuviDvkeUNd1ySY3qfnYcTXCy0x3DjgvGJlYNCO7mUB43JCuQ4wujmPhOmbJvvxMYgNWthcn34zMzuI4lvf54kC6f+VGXr7Eu7ZxT++Ck5npwXXM0qZkUkUhhKhiv/oVnH8+zJ4NS5fKuDEhyk2KSoSoFE3Lddwu38xt13Uw010q0E53l5TN+gI1aHphD7SmGwxFvs51HdJ9a7392MnuNmyzr99ZGqHaaUSLguxKjUATwydf4l289z4/5714D3VxiXdxIG1lezcbSKsS74BqQGiocwOR8fgCtf3mTW++xFu62gshxppzz4VJk1SJefG4sa98Bc44A+bNq+z6RHldfz1s2qSa7u26a6VXMzZIpluIYWSbSQx/xLttprvRdF/ZAk7HNulevxg1ixcMX5hApIlAuGnIytcd2yTVu6poRvZyHDtTco6m+wjXzVCl4rEWwrGZsoe1ihTvYwbIpruws339MtImjm0C7jZlpEFdCIpN2M9rHJZNd+GYKdWMrGRMllw/FkKInfXgg3D88RCNwtq1UCfXI6vWHnuoCof//heOPLLSqxkb5J2KEMPAcSzSPatIJ9YTbdjFGyvkD9UP2XPkR3w5tknNuN0A0A0/wch4NN2nGqL5ozv9PLaVJhlfnguy20j1rsQtKvFVzxsiUj+LSEztxw7VDX0WXwwvMxPHNhM4dmGPtPenY5UE0maqY9BAGtSFmnyTQH+owdsfXTImazMl3oFQA4QayvcihRBiDGtuhrPPVhnw4oD7+efhwANBL0+bF1EBl1wC69erbvdieEimW4gyyyTbScWXe+OFQjWTicRmDclj22aKbEqN+LKL5lbHJh4wZJ3PrWwvye623J7sNtK9a8hnzvN8gVoisWZvRnaoZnLZmrCJoWNl+7DNJI6TzY3AypV45zLT9ZMO9ALfLWWkAWIT9/eqFzLJTVjZ3n7Z6HxQ7ZPvDSGEGMFcF/L9IVtbVfnxbrvBc89J9luIHSWpJyHKJD9z28zEAVXaHalvLhlVtKOyqQ7SvWuwzIR3TNN0/KFxBCJNOzyv2nVdzHRXYT92vJXsZgItf2gc0VyAHalvIRBukg7OI4RtprCtZG5/tAqii0u8YxP28wLpTGL9ljPSjomRO9cXqMV13aJAevAS72BkvFfNIYQQYnQp/nX+v/9Bba3KiBYH3MWBuRBi6yToFqIMMokNJONtRTO3p6q50juY4XNsEzTNC2xc18EyE2iahi9YTyDcRCDUsN0dl13XIZPY6I3uSnS3YuUuEhQLRid5o7si9S1DcuFAbDvbyuDY6dJAuqjEu278XO/fPt23lkxy46CPVRxIG/4a/CETXc83Gis0HFPNxwLe/YLRiV6neyGEEGPDySfDypVq3FheMqkarX30o/DlL0M4PPj9xcjU3Q2BgPq3k4snw0PKy4UoAzPTQ2/7/3Zq5rbr2GRzncetTDfhuhmEaqZ4n8ukNhEINW5XVtt1bNJ9a3JdxVW5uG0mS0/SdMK107wgOxxrxlfU/E0MDRU4Z/o1GssH0ia1jXOKSruXbTGQLi7tTvetJZvqQNcDm8lG+zH8ESnvFkIIscNuvx0uuABaWlQzLp+k8EYdv191rl+9GqZOrfRqxgb5byLEEHDsLFa2z5st7Q/WUTd+7nZ3JXddBzMTJ5tsx0x3loz4srJFpeS6QSg6aRvWZZLqWUGiu41k9zJSPStw7GzJOZruJxKbSSTWouZkx2aiG0OzH3yscR1bBdG5ALq0xDtLTcNuXiCd6lm5zRlp3RfC8IVLG40VZab1otFvoZop3sUZIYQQYqiddx7U1KjALR9wuy5885sq+73HHhVdntgKx1EBN6hstxgekukWYie4rksmsZ5UzyrApW7Cvjs8Cst1HeIblpQExYYvpErHw40lo8YGY5spkvE2VSoebyPdswrXtUvO0X1hNR87lmt6VjtVOotvheNYJWOviku8o/UtO5SRTvWsIpPcWNgf3a/E2xeMyb+LEEKIUeHhh+HYY1Uwvm6d+lOMTK6rgu5MBiIR6Uo/XOQdnRA7yMr2kexu9ZqZ+QI16ifZtt7fTGBl4l5WUtN0fIFarEwPgUgjgXATvkDtFh/DzPTkysTV+K503zoGdhavK9mPHYxOlPJi1EUO17E2M0s6S6RuZiGQ7m4lk9gw6OOE66Zh6GpDm24E0DS9UM6dC6a1XDZaKwqiw3XTCddNL++LFEIIIYbBhAlwyilq7FhxwP3GGzBnjuwbHkk0TVUp+Hes567YQZLpFmI7OY6lSoNzgZimG0TqZhKITNhqB2/bSqsRX8l2bCsFQGzCfhh+FbQ5tommG5sNil3XxUx1kMg1PUt2t5FNtQ84LxBuynUVbyZaPxt/aNyY6iyeL/Eu3h/tOllCNVO9QDoZX0G6b+2gjxGbuB+GT/2bpHpWkepdjaYbuWx0aYl3IDze21fvuo5c0BBCCDFmOU4hc7p8OeyyC+y/Pzz6qGS/xdgmmW4htoPrOvRsfBXHzgBqNFK4buYWm5k5tunN0rayfd5xNeKrHrcoM138OKqz+Ppc0zNVMm5le/o9uqbmfufHd8Wa8Qerc4hmaYm3misdjE4s2iO9inRiHa5jb/b+gfB4LyNdCIw1b090ySxprdAFPr9Hels6w0vALYQQYiwrLlV+8UW1Z7ihoTTglnFjldXVBTfcoP5Nrr660qsZOyTTLcR2SvWsIpvq2OaZ29lUJ32dS3O3NPzBGIFIE/5QQ8meXcexSPeuzo3uaiMZb8PJZcPzNM0gVDddlYrHWojEZnlZ8tFocyXegXBTIZDuXUMmsQHXMUuayuUVVwnkM9LAZku8gzVTMHyqQZxjm4CLpvvHVBWAEEIIMZw2boR4HHbdVd1OpeCII+DMM+GSSyAofVuH3bvvqn+P2lro6Z/LEWUjmW4htkCN2FqLP1Tv7a8O1U4lVDt1QFbTdR3M3Igvwx8lXDsNAH+oHn8whj/UQCDc6M0+duwMfZ2FUvFkzwpcxyx5TN0IEK6blduT3bzVrPpI0b/E2x+sL5ojvZ5scqMXaPfnC9R5GWlcx6sqANB1n5eR1nR/yaXyYHSiCtgN/1YbkI2Gr6EQQggx2k2YoD7yfvtbWLwYOjrgs5+t3LrGsro6uOIKGfU23CTTLcQgzHQXyfhybCuNzx+ldvzcAVlR13Wxsj1kk+1k0x1eabPhCxGbuH/JuZaZzAXYaj52qnc19MveGv6I11U8Wt9csg95JFCjr9RILJ+/xltbJrGRbGpTYUxWv47psQn7et3XU72rc93e80pLvCN1M73stW2lcR3T6+gt5dtCCCHE6JXJwG9+o0qbP/pRdcx14Yc/hI98BKZLf1FRpSToFqIfx86QjK8gm+oAVLY5EptFINxYcl6qZxWZxIaSbK1uBAmEGwlEmnBt0xvdlexuJZNYP+C5/MF6NRu7fjaR+maCkQnDHliqEm/VcMzwR7znzybVPvTiMVnFPy62HEjnSrxzTcci9S34cufaVgrHSucy1gE03Scl3kIIIcQY9eijcMwxKgO7di1Eo5VekRBDTwoLxJhhW+ktztBWjcs2kPJmW2uEaiYRrp2OphvYVsrraA145dG67sMXGoem6WQSG+hc8zTJ7lbMdOeA5whEJuT2YzcTqW8hEB5XjpeqXk+uxDs/xgrU/nIz3ZnLWKtmZMUXDYoDadtOk013DXjcfIl38R5rf2gchhEqlH5vocTb8IVLvo5CCCGEGLtqauCoo2CvvUoD7hUrYObMii2ratm26jLv80lDu+EkmW4xJqR6V9P64o9pOfBz3l7r/rKpDvo63wbUzO1IfQua5sNMd5BNtmOZCerGz8UXqMF1HRLdrSS6lpFJrCPZ3YZt9vV7RI1Q7VRVKh5rJlLfvNW521vjui6uY5WMFTMzcS+QdnP7qItLvOsm7OtlmTeXkQbQNA1N91MzbjdvjVa2D8vsy43J8kuJtxBCCCHKxjQLs6NXroTZs2HhQvjHPyASqezaqsmDD8Lxx6tRbi+9VOnVjB2S6RZjQnzDEnBt4hteHjTo9ofG4Q814AvUomkGqfhyzIxq6+g6Nmamm03L/0M2uZFkfDmOnS65v6b7CNfOKDQ9i83aYma9mMoaa16ZtZnpwcrEvY7exU3JXNctCaStbC/pvoGl66BKvF3HKrzGYAzqNDVjumhM1uZKvH2BGnwBGaophBBCiPLzF/U4feIJ9afrSsA91DK5/rSBQGXXMdZIpltUPdd1eefp6zAz3fiDDex66FVomkYmuYlMYj21jXt6DcEsM0Hvptew7SxmSmW4zUw32eSmAc3BdCOYKxNXpeLh2ulb7IptZfuwsr1e8Ny/xLs0I72GVM/KQR+rtmlPb1yZmenBTHeVBtK5MVkjqQmbEEIIIcS2WrkS+vpgzz3V7XQajjsOzjlHffhlEMkOsSzo7VUXNMaVb5ej6Ecy3aLqpfvWYGa6ATAzXSS723DsNNl0d24OtkYkNis3H7uV3vb/Yaa7gNLrUYa/Ru3HzgXZoZopOFYGy+zDsbOk+1arQNoLqrPUjt8bnz+ae+74FgNp185CLuj2BWoIRiei636vGdlgJd7+YB3+YN2Qfs2EEEIIISppxozS23feCY8/Dm1tKugWO8bng4aGSq9i7JGgW1SVTGID6b61Jcd62/8H6IAq4V7/zt/QfWGsTI8q27bSOHZqwGP5gjFCNVMIRiYSjIxH90dwHZOaxjleRjqb7tyGQFoF3T5/JDenOx88DyzxzvMHY14mWwghhBBirPv4x1Xmu6mpkOV2XbjtNvjQh9RxIUYqKS8XVWXla7+id9NrO3TfYHQSkfoW/MF6AK+Ld3+1jXvgD6lLhNl0F5m+9SqQzgXPxZlp3QhK4zEhhBBCiDL4739V5/Nx42D1agjLcJStevZZ1Uxtn33ggx+s9GrGDsl0i6oydc4ZrNV0eja+ss33Mfw1TN7jw8TGzwUg1bOSvq53cBwL3QhgGAF0XwjdCOY+Cj/R/cEY/kCd7J0WQgghhBhmug4HHAAHH1wacG/YABMnVm5dI9kzz8A3vqEqByToHj4SdIuqYvjCTNvrbLrH7cG6t/+M6ziosvLN0alt2pNQ7XRC0cmFo0YQw5fLcrsOtpXGtgqdyg1fCMOvupKbqU76ut4BNDRdR9MM9aGrP0O1U70ycdtMkU21e59DU2O/8rdVQC9dQYQQQgghtsURR8CLL6oma3mrVsEuu8D73w933SXZ7/722QcuuggOOqjSKxlbJOgWVUfTNBqmHEwkNotlL/wwF3j3O0f3M2v/iwmEx+E6NkZu3zWA4Y8Srp2K69q4jqP+dG1cxwbXQdMLgXGho7mL69i4lHY4D0YLl1ltK0mqd/Wg647Wt3jnm+lu+jqXegE8WnFArxOMTMQfqgfAsTNkU525sV96LqDXvdtqv7hk4oUQQghRfTStNLD+978hm4WuLgm4N+c971EfYnhJ0C2ql6bjOuZmP+U6Jj5/FF+gdsDntmc+dSAygUC4qSQwd10VqOPYGP7C4+hGUAXVrpM7L/+hbvcP5tXjOLCZ15Dfdw4qg56MLx90jZHYTEI1UwA1tqw4mNdy2XZytwOhcYVg3rEw090l2fh80E/+7/1mewshhBBCVNInPgGHHFKYRw3q76edBuedp/40JBchhpkE3aJq9Wx6FdBQo79y3cs1HVzVxbxn06s0zTxmp55D0zQVgLL1n97bE8z7g/XEJu6vgm4vmC8E6L5AYUSYpvsIhBtzn7NUUO+da6nMd47r2jh2dtDnNXwh/NQD4FgpEl3vDHpuuHYa4brpANhWuhDMewG9nsvSG/gDdV4w7zo2VrbHC/S9++TPF0IIIYTYCXPmlN7+9a/h/vvhlVfg1FMl6BbDT4JuUbV6NrxMftZ2tL6FibuezPp3/kGyexngEt/4yk4H3eWi6QbGNgagvkANNeN227Zz/TXUjZ9bko0vZNXt0sy/ZuAPxkqCfbzsvFsazDsWtpkc/PXUUlQOn6W3463BziRUM5lIbGbuXJNE1zsl2fjiAN3wR709867rYJvJftl4XbrHCyGEEGPcBz8Ia9bA1KkQCBSO//a3KgivHVj4WLU+9zn4v/+DRYvUhxgeEnSLqpRNd5HuWwNoTJz9fhpnHIWm6cza/yLaVz7GxmX3k+5djZnu8sZ/jQWabmxztt3nj1DbtOdmP+e6pfvkdV+I2sY5XvBevAfeda0BZfw+f7SoHN8uejy3pGTddS3MTHzQNYaikwpBt2PTs5lxcfl97oHIeC+Yd10nF8znmtrlM/O524Y/XLJm20pLNl4IIYQYpZqaVMfuYk8+CWefDZMmQVsbhEIVWdqwS6fBNNVeeDF8JOgWVUlDo2bcHoxvOY5I3YzCcU1n/MxjiNbPZlPbQ6jyc7G9+mePdd2Hnstkb43hD1M3YZ+SY67remXxFD22pvupadi1JBufD9RxHYyiCwiu66AbwZJsfP64l9nPn+vYZFOdg64xGBnvBd2u6xDfsKT41Zd0qveHGrxgHiDR3VoSoBd3qteNQMlFD8exJBsvhBBCVEAqBbvtBgsXlgbc8TjEYpVbV7l973sqwz2Wsvsjgebm35kKIUQVcb2GdSrg1jQDwxdUn3NsMslNXvDuulZRp3oHf7DOaz7n2CbxDS8NyO7nBcJNhgPL7wAAGHZJREFU1Izb1XvOrrXPDbqmQKiBmsY9vNtda5/DdZ2iLLuey7ob+AK1JcF8vvN9/33zaAa64cfwSYtWIYQQYnvYNiQSUJdrlbN2rQrEP/xhVYI9VrLfovwk0y2EqEqapqMZm88ga7pBqGbSNj2ObvhpmDK/JBtf3Kle00t/jIbrppdk44s71etFgbHXnb7f3/NT5/o/brp3zaCBvz9YR23TXt7t7vWLvQsN/TvV6/5ISfVHJrEBFxdN8xVl53MXAXQfuhHY3FMKIYQQo55hFAJugL//XQXhy5ZJwC2GlgTdQgixDbalU72m6YRrp23j4+kqmC8eM7eFYD4YnbDZufGua6uy+iKuY6nH7Dc3HsDnWCW3U72rB+1ob/gjxCbs693u2fQ6rp31svH5pnWaZqAbQa+bPZAr33c30wRP9sYLIYQYmS6+GObNKz2WycA558AnPwnHHjv690LffTesWgUnnjiwy7soHwm6hRCiQraUje8vEmve5sdV4+YGzo133dJ58AD+UAOubQ6YG49ro/c717EzKkAfGMtj+CMlQXeqZyW2ldrs+nQjSP2kA7zbfZ1v41hpdaEht8fdy9DrfsK1U71zrWxvUUl+7nxdOtULIYQYGgcfXHr7d7+DP/4RnnhCNVwLBjd/v9HittvgkUdUJ3cJuoePBN1CCFFltqckPFrfss3nqg71pcF8/rbeLzPvC9SgG/4BM+ZV4F+a5bbN5BYC9EBJ0J2ML8fK9m3+XN1P/eQDS861zVRJ47tCp3pfyRYD20zh4kg2XgghRIn3vQ8uuwxmzy4NuP/2NzjhhNEXhL/vfSrgnj270isZW6SRmhBCiGGT3xtfHNBa2V4cxxowN951VIBeXLLf1/kOtpUcMDceVIBeP6lQF9iz6bVBA3RNN2iYXEhn9La/iZnpHnheLuNe/Ljp3rVYZiIXmBf2wpMfTxdu9LLujp1Vc+0lGy+EEFXj6afhsMNg1ix4663RF3iL4SeZbiGEEMMmvze+WP857luS7xRfzCuJp7TRXLhuRi7oLZ0b7zrOgE15mm6gG4FCEzzvsW1wSq9Nm9k4Zrp70DUGwk3e35Px5WRTHYXn6depvq5pb+8CRCaxEdtMDJgbnw/YfcGYF7Sr14tk44UQogI6OlS2+JhjSgPuVArCMkxEbIZkuoUQQogiAzrVuy4+f8T7fDbdhWOlB8yNdx0bF5faorFwfZ1vY6Y7GexXbcOU+V4g3df5dkmA3l/95IO8Mv5EdyuZxAZK58YX9sJHG3ZDN9Se/GyqE9tMFGXjSzvVG/6oZOCFEGI7ZbPQ1wfjxqnb69fDnnvCWWfB978PARn+IYpIplsIIYQosrVO9YFQwzY/Vs243YDCWLhCkG57DeG8xw03YvjCJcG86zpeV/vic/OZbnBzwf5mutvlmJnuXIC+ebGJ+2P41GycZHwFmcT6AXPj853qw3WzvHn3ZqZHBfP95sbnO9XrRkCCeSFE1QoECgE3wB/+AF1dsHgx+P2D36/S9toL1q2Dhx+GAw7Y+vliaEjQLYQQQpSZt59bH/zXbiDcCOHGbXq8aMMuROtbBsyNz3eqLy479wdyQ2j7zY3PXwTQisr9C3vqS+fG54XrZnp/NzPdpHvXDLrGugn74PNHAUj3rSXdt66oSV1pp/pQ7VQv8LfM5IBgXtOMfqPnRvnMHiFE1fn852HuXFVenv8Rlc2qMWQXXggLFlR2fXmdnerigC7XRIeVlJcLIYQQAlAZdMexiprUlQbqwfD4wh70ZHuudN4pmjFfuE/dhH0KGfSelVsO0MfPxReoASDVu4ZUz8pBz61t2gt/sC63hk2k+9YOmBuf71QfjIzH8KkNlraVwbGSMjdeCDFs7rwTzjsPJk2CFStGRsn58uWQTqsmcKFQpVczdkimWwghhBCAasxmbGMAGow0EYw0bf1EIBSdTCA0bsDc+Pxt3Sh0ItKNIP5grN/c+FwTPNctKVl37Cy2mRz0ef3BmBd0m5kukt1tg55b07iHt3XATHeR7lurAvTiufG5QN0fbvAe17FNHDvdLxsvneqFEHDIIfCJT8Dee5cG3P/5Dxx1FBgVuN43a9bwP6eQTLcQQgghRglV9q555eW2lcGx0yXZeJxCE7xgdJKXbc8k28n0rR2Qwc+rbdoTfzAGQDqxfssB+rjdCYTHeY+b6HpnwDn5YD1S36y2DqDG4xVn5vt3qvcFa71gXlUdmJKNF6LKPPecKjWfMwdefnlkZL9F+UmmWwghhBCjQv/sseELeo3dtmZzmfniTvVa0X57f7CemnG74TpWYW686+A6FrgOetFzapqmMvX95saX7I3PcawM2VTnoGuMNuxSyMxne+jreKv41Zd0qg/VTvdej22mVDBflI2nqNTe8Ee8iw/5dUk2XojKWLkSGhth/vzSgNuywFfmyMxx4Oab1Ziz88+X+eLDSTLdQgghhBBDpLhTPa6NZgS8UW+2lcLMxEuy8cV74UM1k71sezbVSaLr3ZJsfLFo/WyC0QmAKofvLQnQS0ViswjVTAZUtr1n0+vAwLnxmmYQjE4kGBkPqPL9dGL9ZufGoxkYvmDJ1gAhxLZJJNTHBPVfmA0bYL/9VCn6N75Rvu7nqRREchMwe3qgtrY8zyMGkky3EEIIIcQQ2VKnesMX9jLZWxMIjyMQPrjf3HjHy77nM9cAui9EuG56STa+0NHeQjcK6bTCuLl+2Xg7/7yFDvqOndliA7xw7TTCddPV3c0k8Y2vDOg6r+bDGwTCjYVg3rHIJjaWZONL7+P35swLUY2iUfWR9+tfqznf//kPXHddeZ/7jDNUV3Vpoja8JNMthBBCCDGG9M/GF+9zN/zhoo7vaTKJ9ZudG++6NqGaKQSjE4HSDPrmlAboKeIbXx703FDNZCKxWYDKtvdsfHWzc+PVPvh6r8zedR2yyU1FI+kKI+pKLgIIMcI4Dvz972ru98KF6phpwhVXwKc+pWZri9FNgm4hhBBCCLFTirPwxXvhyd02/FFvLJxtZUj3rtrs3Hhch2DNJMK109S5Ww3QJxGJNQMqQO9ev3jQc4ORCUQbZqv1OjY9m14tycYXB+Y+fw2Boh4A2VTnIHPjZW+8KI/f/hbOPluNG1u5snwl52J4SHm5EEIIIYTYKZqmoxnb1obZ8AWJNuyyTefqviCxCftudm48joMRiJac7w81bHZuvGqWVwiOXdfGttKDPm8wMt4Lul3Hpq9z6aDnBsKN1Izbzbvds+n10q7zRcG84QuXlPBb2V5UkzzJxotS++wDH/4wHHRQacD97LOqCVtuiIMYJSTTLYQQQgghqpp6u1uY8+66Dla2ryQbX9yp3uePesGx41j0dbxVNGO+cB6oAD1/EcF1bLrWPT/oOgKhcdQ07u7d7lr7LJt7K65pBv5QfUkw39f5Tu41GAM61RtGUF1wyLGtFKBLNr4KuG4hwH7hBTj4YDjwQHj66e3Pfr/5ppoPPmUKLFky5EsVWyCZbiGEEEIIUdXUbHet6LaOP1i3TffVdR914/cecHxzY+HQNGrG7b7ZufFqz3y05P66Edzs3Pj8xYBiZrpjswE6gD8YKwm6ezf9D8cxS15/vizeF6gpCeaT8RXe2LzijvaaZqAZgZKvk2ObMjd+mBVntN98UzVgmzOnNOB2HNC34bpKMgkbN0qpeiVIplsIIYQQQogK69+pHrSSOfSZxMaSPfAUldobvojXqA6ge/1iL3vfnz9YR21ToTNX97oXSwL0Yj5/lLoJ+3i34xuWeGX5/bvO674wNeN29c5N963FdewBc+PzWfr8Hv/8a9ekXnqbdHZCOq2y1aCC6EMOgU9/Gi6/fMuzvlMpePdd9fe5c8u/VlEgmW4hhBBCCCEqTNM01aCNzWeR83PZt0X9pHnA5jvV06/UPFQ7NReg2wM61etG6Vyp4iDedW1cu5Cd7x9UZBIbBt03bxhBYpMO8G73tr+ObSbQtFzn+eJg3giU9ADIJDfhOpbXmb5/p/ricXrVaNy40tu/+AW0tsI998CXvrTl+4bDEmxXigTdQgghhBBCVKEtzY3PC9VM3ubHq580r2gGfKFsns0E84HIeFzbLDqvcB+9X9M99ZgurpvLuBdieXQjWHJuJrEeK9u32fXpuo/6yQd5t/s63sIyEwPmxucD9Gh9i3eume7CcawBGfx8p3p9C1/DSrriCpX1njq1UIpuWXD11XDBBdDcXNn1CUXKy4UQQgghhBAV4zjWZufGu66NhlYyvi3VswrbSg2YG++6DppmEJu4n3duz6bXBg3QNd2gYfLB3u3e9jcxM92DrFBj3NQF3q1EdytWtjcXmPsGdKoP1033mtdZ2d5CMO9l8Qul9uVw111w5pkwebIaN5YvOV++HP7zHxWgH398WZ5aDGJkXrIRQgghhBBCjAm67ttiNr5Y8d71rYk27IbrFgf0A5vW5eXHzxWa4BUy+v3nczlWBttMbmGNM7y/p/vWkU11DHpuw+SDveA71bsaKxMfMDc+H6QHoxO9c20rlSuzHzg3fvZsOPZYWLiwdI/3r34F3/wmHHmkBN3DTYJuIYQQQgghRNVRjeiCWz0PIFIUKPfXvyFdJDYTx5kyYG58IeNeCNJ1I4jPHy1k8PMl+XlFZfm2mcTM9Ay6jkB0gteDP927lkxy44BzNE1j9xkGD/xrX9BUGX8msYEXnkvxzW/OAtTYMTG8JOgWQgghhBBCiEH0n3Nu+CODtLsbKBKbudnj+b3xxQF6qGYKgXBjSTBf3Kle0wrPquk+jPzIuaK58WpvvAWa7o0Rs7J9vPgi+P0OHzy1j+99b9vG5YmhI3u6hRBCCCGEEGIU69+pXveFvYDezPRgW0nWrAaHELvuXl/ZxY5BEnQLIYQQQgghhBBlom/9FCGEEEIIIYQQQuwICbqFEEIIIYQQQogykaBbCCGEEEIIIYQoEwm6hRBCCCGEEEKIMpGgWwghhBBCCCGEKBMJuoUQQgghhBBCiDKRoFsIIYQQQgghhCgTCbqFEEIIIYQQQogykaBbCCGEEEIIIYQoEwm6hRBCCCGEEEKIMpGgWwghhBBCCCGEKBMJuoUQQgghhBBCiDKRoFsIIYQQQgghhCgTCbqFEEIIIYQQQogykaBbCCGEEEIIIYQoEwm6hRBCCCGEEEKIMpGgWwghhBBCCCGEKBMJuoUQQgghhBBCiDKRoFsIIYQQQgghhCgTCbqFEEIIIYQQQogykaBbCCGEEEIIIYQoEwm6hRBCCCGEEEKIMpGgWwghhBBCCCGEKBMJuoUQQgghhBBCiDKRoFsIIYQQQgghhCgTCbqFEEIIIYQQQogykaBbCCGEEEIIIYQoEwm6hRBCCCGEEEKIMpGgWwghhBBCCCGEKBMJuoUQQgghhBBCiDKRoFsIIYQQQgghhCgTCbqFEEIIIYQQQogykaBbCCGEEEIIIYQoEwm6hRBCCCGEEEKIMpGgWwghhBBCCCGEKBMJuoUQQgghhBBCiDKRoFsIIYQQQgghhCgTCbqFEEIIIYQQQogykaBbCCGEEEIIIYQoEwm6hRBCCCGEEEKIMpGgWwghhBBCCPH/269jAQAAAIBB/taj2FcWARPpBgAAgIl0AwAAwES6AQAAYCLdAAAAMJFuAAAAmEg3AAAATKQbAAAAJtINAAAAE+kGAACAiXQDAADARLoBAABgIt0AAAAwkW4AAACYSDcAAABMpBsAAAAm0g0AAAAT6QYAAICJdAMAAMBEugEAAGAi3QAAADCRbgAAAJhINwAAAEykGwAAACbSDQAAABPpBgAAgIl0AwAAwES6AQAAYCLdAAAAMJFuAAAAmEg3AAAATKQbAAAAJtINAAAAE+kGAACAiXQDAADARLoBAABgIt0AAAAwkW4AAACYSDcAAABMpBsAAAAm0g0AAAAT6QYAAICJdAMAAMBEugEAAGAi3QAAADCRbgAAAJhINwAAAEykGwAAACbSDQAAABPpBgAAgIl0AwAAwES6AQAAYCLdAAAAMJFuAAAAmEg3AAAATKQbAAAAJtINAAAAE+kGAACAiXQDAADARLoBAABgIt0AAAAwkW4AAACYSDcAAABMpBsAAAAm0g0AAAAT6QYAAICJdAMAAMBEugEAAGAi3QAAADCRbgAAAJhINwAAAEykGwAAACbSDQAAABPpBgAAgIl0AwAAwES6AQAAYCLdAAAAMJFuAAAAmEg3AAAATKQbAAAAJtINAAAAE+kGAACAiXQDAADARLoBAABgIt0AAAAwkW4AAACYSDcAAABMpBsAAAAm0g0AAAAT6QYAAICJdAMAAMBEugEAAGAi3QAAADCRbgAAAJhINwAAAEykGwAAACbSDQAAABPpBgAAgIl0AwAAwES6AQAAYCLdAAAAMJFuAAAAmEg3AAAATKQbAAAAJtINAAAAE+kGAACAiXQDAADARLoBAABgIt0AAAAwkW4AAACYSDcAAABMpBsAAAAm0g0AAAAT6QYAAICJdAMAAMBEugEAAGAi3QAAADCRbgAAAJhINwAAAEykGwAAACbSDQAAABPpBgAAgIl0AwAAwES6AQAAYCLdAAAAMJFuAAAAmEg3AAAATKQbAAAAJtINAAAAE+kGAACAiXQDAADARLoBAABgIt0AAAAwkW4AAACYSDcAAABMpBsAAAAm0g0AAAAT6QYAAICJdAMAAMBEugEAAGAi3QAAADCRbgAAAJhINwAAAEykGwAAACbSDQAAABPpBgAAgIl0AwAAwES6AQAAYCLdAAAAMJFuAAAAmEg3AAAATKQbAAAAJtINAAAAE+kGAACAiXQDAADARLoBAABgIt0AAAAwkW4AAACYSDcAAABMpBsAAAAm0g0AAAAT6QYAAICJdAMAAMBEugEAAGAi3QAAADCRbgAAAJhINwAAAEykGwAAACbSDQAAABPpBgAAgIl0AwAAwES6AQAAYCLdAAAAMJFuAAAAmEg3AAAATKQbAAAAJtINAAAAE+kGAACAiXQDAADARLoBAABgIt0AAAAwkW4AAACYSDcAAABMpBsAAAAm0g0AAAAT6QYAAICJdAMAAMBEugEAAGAi3QAAADCRbgAAAJhINwAAAEykGwAAACbSDQAAABPpBgAAgIl0AwAAwES6AQAAYCLdAAAAMJFuAAAAmEg3AAAATKQbAAAAJtINAAAAE+kGAACAiXQDAADARLoBAABgIt0AAAAwkW4AAACYSDcAAABMpBsAAAAm0g0AAAAT6QYAAICJdAMAAMBEugEAAGAi3QAAADCRbgAAAJhINwAAAEykGwAAACbSDQAAABPpBgAAgIl0AwAAwES6AQAAYCLdAAAAMJFuAAAAmEg3AAAATKQbAAAAJtINAAAAE+kGAACAiXQDAADARLoBAABgIt0AAAAwkW4AAACYSDcAAABMpBsAAAAm0g0AAAAT6QYAAICJdAMAAMBEugEAAGAi3QAAADCRbgAAAJhINwAAAEykGwAAACbSDQAAABPpBgAAgIl0AwAAwES6AQAAYCLdAAAAMJFuAAAAmEg3AAAATKQbAAAAJtINAAAAE+kGAACAiXQDAADARLoBAABgIt0AAAAwkW4AAACYSDcAAABMpBsAAAAm0g0AAAAT6QYAAICJdAMAAMBEugEAAGAi3QAAADCRbgAAAJhINwAAAEykGwAAACbSDQAAABPpBgAAgIl0AwAAwES6AQAAYCLdAAAAMJFuAAAAmEg3AAAATKQbAAAAJtINAAAAE+kGAACAiXQDAADARLoBAABgIt0AAAAwkW4AAACYSDcAAABMpBsAAAAm0g0AAAAT6QYAAICJdAMAAMBEugEAAGAi3QAAADCRbgAAAJhINwAAAEykGwAAACbSDQAAABPpBgAAgIl0AwAAwES6AQAAYCLdAAAAMJFuAAAAmEg3AAAATKQbAAAAJtINAAAAE+kGAACAiXQDAADARLoBAABgIt0AAAAwkW4AAACYSDcAAABMpBsAAAAm0g0AAAAT6QYAAICJdAMAAMBEugEAAGAi3QAAADCRbgAAAJhINwAAAEykGwAAACbSDQAAABPpBgAAgIl0AwAAwES6AQAAYCLdAAAAMJFuAAAAmEg3AAAATKQbAAAAJtINAAAAE+kGAACAiXQDAADARLoBAABgIt0AAAAwkW4AAACYSDcAAABMpBsAAAAm0g0AAAAT6QYAAICJdAMAAMBEugEAAGAi3QAAADCRbgAAAJhINwAAAEykGwAAACbSDQAAABPpBgAAgIl0AwAAwES6AQAAYCLdAAAAMJFuAAAAmEg3AAAATKQbAAAAJtINAAAAE+kGAACAiXQDAADARLoBAABgIt0AAAAwkW4AAACYSDcAAABMpBsAAAAm0g0AAAAT6QYAAIBJbbSJF7gfei4AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ImageGeometry - Offset RoI\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA90AAAPdCAYAAACXzguGAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3gU1foH8O/sZnezm00PJJSQgCEBpAsoRYIFUSzA7171KlIEUUEFRMCKInYQBb2Wq1fBgvUCFkQFEZAiEAihhgRCQg2GQHrb9v7+WDOw6UA2m/L9PM8+sGfaO5M5s/vumTlHEREBEREREREREdU6jacDICIiIiIiImqsmHQTERERERERuQmTbiIiIiIiIiI3YdJNRERERERE5CZMuomIiIiIiIjchEk3ERERERERkZsw6SYiIiIiIiJyEybdRERERERERG7CpJuIiIiIiIjITZh0ExEREREREbkJk24iIiIiIiIiN2HSTUREREREROQmTLqJiIiIiIiI3IRJNxEREREREZGbMOkmIiIiIiIichMm3ZcoLS0NiqIgISGh0nnWrVsHRVGQnZ1dZ3FdisjISCxYsEB9rygKvvvuO4/FQ1TXalKv64tBgwZh6tSpng6jUmWvJxWZPXs2unfvXifxUPXq+znVUNT0OsLjTUTU+DHppmqlp6fjpptuqtV1NoQvGTVJFqj+uNhzauzYsRg+fLhLWXh4ONLT09G5c+faCc6Nli1bhhdeeMHTYVQqLi4O999/v/q+oh/xpk+fjjVr1tRxZFRbFi9ejICAgFpfb0P4nKhK2etIZT/A1/c6TEREl87L0wE0ZBaLxdMhXDS73Q5FUaDRVP+7S1hYWB1ERPVacjKQkgJERQHt29fppi0WC/R6fZ1uU6vVNpjzPigoyNMhVKlZs2bVzmM2m2E2m+sgmobBg9WtUfLENQSo+XWkvtdhIiK6dBfd0i0iKCgoqPOXiNQovh9//BEBAQFwOBwAgISEBCiKghkzZqjzPPDAA7jrrrvU90uXLsXll18Og8GAyMhIzJ8/32WdkZGRePHFFzF27Fj4+/tjwoQJFW575cqViI6OhtFoxDXXXIO0tLRq483Ozsb999+P0NBQeHt7o3PnzlixYkWNY8vKysLo0aMRGBgIk8mEm266CQcPHlSnl7ZErFixAp06dYLBYMCRI0eQkZGBW2+9FUajEW3btsWSJUvKxXZ+y1Tp7XLLli3DNddcA5PJhG7duuHPP/9U5z9z5gzuuusutG7dGiaTCV26dMGXX36pTh87dizWr1+PhQsXQlEUKIqiHqP9+/dj6NChMJvNCA0NxahRo5CZmVnpcTty5AhuvfVWBAYGwsfHB5dffjlWrlwJEUFUVBRef/11l/n37t0LjUaDlJQUAM7bWtu0aQODwYCWLVti8uTJAJwtLEeOHMGjjz6qxlhq8+bNGDhwIIxGI8LDwzF58mQUFBSo00vPk9GjR8NsNiMiIgLff/89Tp8+jWHDhsFsNqNLly7Yvn17pftVb5w9C9x4IxATAwwdCkRHO99nZbltk4MGDcLDDz+MadOmISQkBIMHDwYArF+/Hn369IHBYECLFi3wxBNPwGazAaj8nLLb7Rg/fjzatm0Lo9GImJgYLFy4UN3W7Nmz8cknn+D7779Xl1u3bl2Ft4VWtf3SuCdPnoyZM2ciKCgIYWFhmD17dpX7GhcXh8GDByMkJAT+/v6IjY1FfHy8On3dunXQ6/XYsGGDWjZ//nyEhIQgPT1d3e75rYHvvvsu2rdvD29vb4SGhuKf//xnpdsvvS589913iI6Ohre3NwYPHoxjx465zPfee+/hsssug16vR0xMDD777DOX6ZXVI8D1jpHIyEgAwIgRI6Aoivq+7O3lDocDc+bMQevWrWEwGNC9e3f88ssv6vSaXIcaIg9UNxQUFKjXqhYtWpT7bAGcSevMmTPRqlUr+Pj44Morr8S6desAOM/Re++9Fzk5OWodKj3vq1qu1KZNmxAbGwuTyYTAwEAMGTIEWVlZVX5O1KQuVnQNKav0Lpfnn38ezZs3h5+fHx544AGXH9RLSkowefJkNG/eHN7e3hgwYADi4uLU6VlZWRg5ciSaNWsGo9GI9u3bY9GiRQBcby9PS0vDNddcAwAIDAyEoigYO3asGu/5dbimn+e//vorOnbsCLPZjBtvvFG9JhARUT0kFyk/P18A1PkrPz+/RvFlZ2eLRqOR7du3i4jIggULJCQkRHr37q3OEx0dLe+9956IiGzfvl00Go3MmTNHkpKSZNGiRWI0GmXRokXq/BEREeLn5yfz5s2TgwcPysGDByU1NVUAyM6dO0VE5OjRo2IwGGTKlCly4MAB+fzzzyU0NFQASFZWVoWx2u12ueqqq+Tyyy+XVatWSUpKivz444+ycuXKGsd22223SceOHeWPP/6QhIQEGTJkiERFRYnFYhERkUWLFolOp5N+/frJpk2b5MCBA5Kfny833XSTdO7cWTZv3izbt2+Xfv36idFolDfffFNdNwBZvny5iIi6vx06dJAVK1ZIUlKS/POf/5SIiAixWq0iInL8+HGZN2+e7Ny5U1JSUuStt94SrVYrW7ZsUf82ffv2lQkTJkh6erqkp6eLzWaTkydPSkhIiDz55JOSmJgo8fHxMnjwYLnmmmsq/TvffPPNMnjwYNm9e7d63NavXy8iIi+99JJ06tTJZf5HH31UBg4cKCIi3377rfj5+cnKlSvlyJEjsnXrVvnggw9EROTMmTPSunVrmTNnjhqjiMju3bvFbDbLm2++KcnJybJp0ybp0aOHjB071uU8CQoKkvfff1+Sk5Nl4sSJ4uvrKzfeeKN88803kpSUJMOHD5eOHTuKw+GodN/qhSFDRLRaEeDcS6t1lrtJbGysmM1mmTFjhhw4cEASExPl+PHjYjKZZNKkSZKYmCjLly+XkJAQee6550Sk8nPKYrHIs88+K9u2bZPDhw/L559/LiaTSb7++msREcnLy5M77rhDbrzxRnW5kpKScvW6uu2Xxu3n5yezZ8+W5ORk+eSTT0RRFFm1alWl+7pmzRr57LPPZP/+/bJ//34ZP368hIaGSm5urjrPjBkzJCIiQrKzsyUhIUEMBoMsW7bMZbtTpkwREZG4uDjRarXyxRdfSFpamsTHx8vChQsr3X7pdaFXr17qNaBPnz7Sr18/dZ5ly5aJTqeTd955R5KSkmT+/Pmi1Wrl999/F5Gq65GIsz6UXk8yMjIEgCxatEjS09MlIyNDRESee+456datm7rMG2+8IX5+fvLll1/KgQMHZObMmaLT6SQ5OVlEanYdaog8UN1k4sSJ0rp1a1m1apXs3r1bbrnlFjGbzeo5JSJy9913S79+/eSPP/6QQ4cOybx588RgMEhycrKUlJTIggULxM/PT61DeXl51S4nIrJz504xGAwyceJESUhIkL1798rbb78tp0+frrRO17Qulr2GVGTMmDFiNpvlzjvvlL1798qKFSukWbNm8tRTT6nzTJ48WVq2bCkrV66Uffv2yZgxYyQwMFDOnDkjIiIPPfSQdO/eXeLi4iQ1NVVWr14tP/zwg4iIy3XEZrPJ0qVLBYAkJSVJenq6ZGdnq/Gef7xr+nl+/fXXS1xcnOzYsUM6duwod99996WdDERE5DaNNukWEenZs6e8/vrrIiIyfPhweemll0Sv10tubq6kp6cLAPXD+O6775bBgwe7LD9jxgyXpC0iIkKGDx/uMk/ZL+dPPvlkuWTq8ccfrzLp/vXXX0Wj0UhSUlKF06uLLTk5WQDIpk2b1OmZmZliNBrlm2++ERHnhzQASUhIUOdJSkoSAGoyLCKSmJgoAKpNuv/73/+q0/ft2+dyLCsydOhQeeyxx9T3Zb9kiIjMmjVLbrjhBpeyY8eOqV9SKtKlSxeZPXt2hdNOnjwpWq1Wtm7dKiIiFotFmjVrJosXLxYRkfnz50t0dLT6Raas85OFUqNGjZL777/fpWzDhg2i0WikqKhIXe6ee+5Rp5eea7NmzVLL/vzzTwGgJvP1UlKS67f/sq+/vzjXttjYWOnevbtL2VNPPSUxMTEu9eqdd94Rs9ksdrtdXa7sOVWRSZMmyT/+8Q/1/ZgxY2TYsGEu85St1zXd/oABA1zW07t3b3n88cerjamUzWYTX19f+fHHH9WykpIS6dGjh9xxxx1y+eWXy3333eeyzPn7vXTpUvHz83NJ2qtSel2o6BpQWm/69esnEyZMcFnu9ttvl6FDh4rIhdej868npcom3S1btpSXXnrJZZ7evXvLpEmTROTir0P1mSeqW15enuj1evnqq6/UsjNnzojRaFTPqUOHDomiKHLixAmXZa+77jp58sknRcR5Hvn7+7tMr8lyd911l/Tv37/S+Cqq0zWti2WvIRUZM2aMBAUFSUFBgVr23nvvqevKz88XnU4nS5YsUadbLBZp2bKlzJ07V0REbr31Vrn33nsrXH/Z68jatWsr/C5w/n5eyOf5oUOHXI5BaGhotftMRESecdG3l5tMJuTn59f5y2Qy1TjGQYMGYd26dRARbNiwAcOGDUPnzp2xceNGrF27FqGhoejQoQMAIDExEf3793dZvn///jh48CDsdrta1qtXryq3mZiYiKuuusrlduS+fftWuUxCQgJat26N6OjoStdZVWyJiYnw8vLClVdeqU4PDg5GTEwMEhMT1TK9Xo+uXbu6rNfLy8tlnzp06FCjDnHOX0+LFi0AABkZGQCcz4u/9NJL6Nq1K4KDg2E2m7Fq1SocPXq0ynXu2LEDa9euVZ/vNJvN6t+n9HbwsiZPnowXX3wR/fv3x3PPPYfdu3e7xHXzzTfj448/BgCsWLECxcXFuP322wEAt99+O4qKitCuXTtMmDABy5cvd7lFsbIYFy9e7BLjkCFD4HA4kJqaWuHxCQ0NBQB06dKlXFnpMauXKjnmqkOH3LbpsvUsMTERffv2dalX/fv3R35+Po4fP17lut5//3306tULzZo1g9lsxocffljtuVhWTbd//t8dcJ6DVf2NMzIy8OCDDyI6Ohr+/v7w9/dHfn6+S3x6vR6ff/45li5diqKioio79xs8eDAiIiLQrl07jBo1CkuWLEFhYWGV+1bZNaD02lHZ9ad0+sXUo6rk5ubi5MmTVW6zVFXXoYbGE9UtJSUFFovF5TMqKCgIMTEx6vv4+HiICKKjo12ue+vXr6/0ulzT5RISEnDdddddUMw1rYvVfVaX6tatm8v3ir59+yI/Px/Hjh1DSkoKrFary7mo0+nQp08f9VycOHEivvrqK3Tv3h0zZ87E5s2bL2h/Ktq/mnyem0wmXHbZZer76q41RETkWRfdkZqiKPDx8anNWGrdoEGD8NFHH2HXrl3QaDTo1KkTYmNjsX79emRlZSE2NladV0RcPsRLy8qqbp8rWqY6RqOx2nVWFVtl2yy7nNFodHlfulzZddeETqdT/1+6fOnz8/Pnz8ebb76JBQsWoEuXLvDx8cHUqVOr7XjO4XDg1ltvxWuvvVZuWukX6rLuu+8+DBkyBD/99BNWrVqFV155BfPnz8cjjzyiTh81ahTefPNNLFq0CHfeeaf6BSs8PBxJSUlYvXo1fvvtN0yaNAnz5s3D+vXrXfavbIwPPPCAyzOrpdq0aVPl8anqmNVL532hq1BUlNs2XbaeVVUHqjp/v/nmGzz66KOYP38++vbtC19fX8ybNw9bt269oHhquv2y542iKFX+jceOHYvTp09jwYIFiIiIgMFgQN++fcvVldIv8mfPnsXZs2crvQ75+voiPj4e69atw6pVq/Dss89i9uzZiIuLq/LHtIqO4fllFe17adnF1KOaqGqbpRpcnaqCJ6pbTT6vHA4HtFotduzYAa1W6zKtqs7varJcdZ99lcVck7p4qd9PFEWp9Bpzfgw33XQTjhw5gp9++gm//fYbrrvuOjz00EPl+hOpqZp+nld0rbmY7x9ERFQ3GvWQYQMHDkReXh4WLFiA2NhYKIqC2NhYrFu3DuvWrXNJujt16oSNGze6LL9582ZER0eX+8JQlU6dOmHLli0uZWXfl9W1a1ccP34cycnJla6zqtg6deoEm83mkkicOXMGycnJ6NixY6Xb7dixI2w2m0uHXklJSZc8nnjpXQX33HMPunXrhnbt2rl0AgM4W+/Ov4MAAHr27Il9+/YhMjISUVFRLq+qvkCFh4fjwQcfxLJly/DYY4/hww8/VKcNHToUPj4+eO+99/Dzzz9j3LhxLssajUbcdttteOutt7Bu3Tr8+eef2LNnT7Uxlo0vKirKI73julV0NDBkCFD2/NdqneV12K1yp06dsHnzZpcvlZs3b4avry9atWoFoOK/14YNG9CvXz9MmjQJPXr0QFRUVLnWuYqWu5jtX4wNGzZg8uTJGDp0qNpRYtmOA1NSUvDoo4/iww8/xFVXXYXRo0dXmVh6eXnh+uuvx9y5c7F7926kpaXh999/r3T+yq4BpXeZdOzYscLrz/nXlqrqUVk6na7K4+3n54eWLVtWu83GxhPVLSoqCjqdzuUzKisry+WzqEePHrDb7cjIyCh3zSvtmbuiOlST5bp27VrlUHEVrbe26+KuXbtQVFSkvt+yZQvMZjNat26tXtfPPxetViu2b9/uci42a9YMY8eOxeeff44FCxbggw8+qHR/AFR5/l/s5zkREdVvjTrp9vf3R/fu3fH5559j0KBBAJyJeHx8PJKTk9UyAHjsscewZs0avPDCC0hOTsYnn3yCf//735g+ffoFbfPBBx9ESkoKpk2bhqSkJHzxxRdYvHhxlcvExsZi4MCB+Mc//oHVq1cjNTUVP//8s9pbb3WxtW/fHsOGDcOECROwceNG7Nq1C/fccw9atWqFYcOGVbrdmJgY3HjjjZgwYQK2bt2KHTt24L777ruo1ofzRUVFYfXq1di8eTMSExPxwAMP4NSpUy7zREZGYuvWrUhLS0NmZiYcDgceeughnD17FnfddRe2bduGw4cPY9WqVRg3blylX1KmTp2KX3/9FampqYiPj8fvv//u8sVEq9Vi7NixePLJJxEVFeVyG+XixYvx0UcfYe/evTh8+DA+++wzGI1GREREqDH+8ccfOHHihJoIPf744/jzzz/x0EMPISEhAQcPHsQPP/ygtqw3Ol9+CVx/vWvZ9dc7y+vQpEmTcOzYMTzyyCM4cOAAvv/+ezz33HOYNm2aOuxdRedUVFQUtm/fjl9//RXJycmYNWuWS8/Dpcvt3r0bSUlJyMzMhNVqvajtX4yoqCh89tlnSExMxNatWzFy5EiX+me32zFq1CjccMMNuPfee7Fo0SLs3bu3wh6mAecjFG+99RYSEhJw5MgRfPrpp3A4HC63C5el0+nwyCOPYOvWrYiPj8e9996Lq666Cn369AEAzJgxA4sXL8b777+PgwcP4o033sCyZcvU60919aisyMhIrFmzBqdOnUJWJd1yz5gxA6+99hq+/vprJCUl4YknnkBCQgKmTJlSo+PaUNV1dTObzRg/fjxmzJiBNWvWYO/evRg7dqzLOR0dHY2RI0di9OjRWLZsGVJTUxEXF4fXXnsNK1euBOD8m+bn52PNmjXIzMxEYWFhjZZ78sknERcXh0mTJmH37t04cOAA3nvvPfV6W1Gdru26aLFYMH78eOzfvx8///wznnvuOTz88MPQaDTw8fHBxIkTMWPGDPzyyy/Yv38/JkyYgMLCQowfPx4A8Oyzz+L777/HoUOHsG/fPqxYsaLS5DgiIgKKomDFihU4ffo08vPzy81zsZ/nRERUz9XNo+Oe89hjjwkA2bt3r1rWrVs3adasWbmeo//3v/9Jp06dRKfTSZs2bWTevHku0yvqWKtsRykiIj/++KNERUWJwWCQq6++Wj7++OMqO1ITcXZec++990pwcLB4e3tL586dZcWKFTWO7ezZszJq1Cjx9/cXo9EoQ4YMUXuIFam4oxsRZydfN998sxgMBmnTpo18+umnVXZ8VNH+ZmVlCQBZu3atui/Dhg0Ts9kszZs3l2eeeUZGjx7t0llVUlKSXHXVVWI0GgWApKamioizE5kRI0ZIQECAGI1G6dChg0ydOrXSXr4ffvhhueyyy8RgMEizZs1k1KhRkpmZ6TJPSkqKAFA7vim1fPlyufLKK8XPz098fHzkqquukt9++02d/ueff0rXrl3FYDDI+VVl27ZtMnjwYDGbzeLj4yNdu3Z16fSpovPk/GNY2XGs15KTRVaudFvnaeerrEO0devWSe/evUWv10tYWJg8/vjjLj1VV3ROFRcXy9ixY8Xf318CAgJk4sSJ8sQTT7h02pWRkaH+PUvP44r+PtVtv6K4hw0bJmPGjKl0X+Pj46VXr15iMBikffv28u2337qcP88//7y0aNHC5Zz+7rvvRK/Xq7Gdv90NGzZIbGysBAYGitFolK5du6o9tVek9LqwdOlSadeunej1ern22mslLS3NZb53331X2rVrJzqdTqKjo+XTTz9Vp1VXj8rWhx9++EGioqLEy8tLIiIiRKR8R2p2u12ef/55adWqleh0OunWrZv8/PPP6vSaXIcasjqsbpKXlyf33HOPmEwmCQ0Nlblz55Y7l0tHAYiMjBSdTidhYWEyYsQI2b17tzrPgw8+KMHBwQJA7Um8JsutW7dO+vXrJwaDQQICAmTIkCHqZ2VlnxMXUxcrUtqJ4rPPPivBwcFiNpvlvvvuk+LiYnWeoqIieeSRRyQkJEQMBoP0799ftm3bpk5/4YUXpGPHjmI0GiUoKEiGDRsmhw8fFpGKz9M5c+ZIWFiYKIqiXhvKxnsxn+fLly+XJvCVjoiowVJE+BAQNW6bNm3CoEGDcPz4cbUDMyJytlJPnTr1kh8pIWqIxo4di+zsbHz33XeeDoWIiBq5i+5Ijai+KykpwbFjxzBr1izccccdTLiJiIiIiKjONepnuqlp+/LLLxETE4OcnBzMnTvX0+EQEREREVETxNvLiYiIiIiIiNyELd1EREREREREbsKkm4iIiIiIiMhNmHQTERERERERuQmTbiIiIiIiIiI38UjSbbcVe2KzRERERERERHWqzpPuorzjOLDhWRTlHa/rTVMVIiMjsWDBgirnmT17Nrp3714n8RB5UlpaGhRFQUJCgqdDqdagQYMwderUWlvf4sWLERAQoL73ZL3nNcczavucakjGjh2L4cOHq+89eSya8t+BiKixqfOkO+evnYDYkfNXQl1vmqoQFxeH+++/X32vKAq+++47l3mmT5+ONWvW1HFkRDVzsV9Qy37JBoDw8HCkp6ejc+fOtROcGy1btgwvvPCC29ZfV/We15yGq+wPNbWlPiSd7q5fALBu3TooioLs7Ow63zYREdUNr7rcmIgg9+9kO/evBIRedjMURanLENzKbrdDURRoNA3vUflmzZpVO4/ZbIbZbK6DaIjOsVgs0Ov1dbpNrVaLsLCwOt3mxQoKCnLr+qur9+78+/CaQ7XhUs7R6uqXO89/d9dtIiKqO3WaHRbnn4C1JBsAYC3JQnH+Sbdu73//+x+6dOkCo9GI4OBgXH/99SgoKAAAOBwOzJkzB61bt4bBYED37t3xyy+/qMtW9MtzQkICFEVBWloagHO/7q9YsQKdOnWCwWDAkSNHUFJSgpkzZyI8PBwGgwHt27fHRx99pK5n//79GDp0KMxmM0JDQzFq1ChkZmZWuh+l2/nuu+8QHR0Nb29vDB48GMeOHXOZ77333sNll10GvV6PmJgYfPbZZy7TZ8+ejTZt2sBgMKBly5aYPHmyOu3828sjIyMBACNGjICiKOr7srd6VncMS2/RXbZsGa655hqYTCZ069YNf/75Z6X7SjRo0CA8/PDDmDZtGkJCQjB48GAAwPr169GnTx8YDAa0aNECTzzxBGw2GwBna/X69euxcOFCKIqi1lO73Y7x48ejbdu2MBqNiImJwcKFC9VtzZ49G5988gm+//57dbl169ZVeHt5VdsvjXvy5MmYOXMmgoKCEBYWhtmzZ1e5r3FxcRg8eDBCQkLg7++P2NhYxMfHq9PXrVsHvV6PDRs2qGXz589HSEgI0tPT1e2e3xr47rvvon379vD29kZoaCj++c9/VhnD4sWL0aZNG5hMJowYMQJnzpxxmV623pfeGfDKK6+gZcuWiI6OBgCcOHECd955JwIDAxEcHIxhw4ap18pSH3/8MS6//HL1GD788MMAeM3xpIKCAowePRpmsxktWrTA/Pnzy81jsVgwc+ZMtGrVCj4+Prjyyiuxbt06AM5z9N5770VOTo5ah0rP+6qWK7Vp0ybExsbCZDIhMDAQQ4YMQVZWVqV1GqhZXazoGlKW3W7HtGnTEBAQgODgYMycORMi4jJP2foVGRmJF198EWPHjoW/vz8mTJgAANi8eTMGDhwIo9GI8PBwTJ48Wf2+AaDS7wVpaWm45pprAACBgYFQFAVjx46tcNtZWVkYPXo0AgMDYTKZcNNNN+HgwYPq9NLvCr/++is6duwIs9mMG2+8Ub1WEBGRB4mbFOefkuxT8S6vY3s/k71rpsveNdNk75rpcmzv5+XmKc4/VSvbP3nypHh5eckbb7whqampsnv3bnnnnXckLy9PRETeeOMN8fPzky+//FIOHDggM2fOFJ1OJ8nJySIisnbtWgEgWVlZ6jp37twpACQ1NVVERBYtWiQ6nU769esnmzZtkgMHDkh+fr7ccccdEh4eLsuWLZOUlBT57bff5KuvvlLjCgkJkSeffFISExMlPj5eBg8eLNdcc02l+1K6nV69esnmzZtl+/bt0qdPH+nXr586z7Jly0Sn08k777wjSUlJMn/+fNFqtfL777+LiMi3334rfn5+snLlSjly5Ihs3bpVPvjgA3X5iIgIefPNN0VEJCMjQwDIokWLJD09XTIyMkRE5LnnnpNu3bqpy1R3DFNTUwWAdOjQQVasWCFJSUnyz3/+UyIiIsRqtV7EX5UumcMhkp9f9y+Ho8YhxsbGitlslhkzZsiBAwckMTFRjh8/LiaTSSZNmiSJiYmyfPlyCQkJkeeee05ERLKzs6Vv374yYcIESU9Pl/T0dLHZbGKxWOTZZ5+Vbdu2yeHDh+Xzzz8Xk8kkX3/9tYiI5OXlyR133CE33nijulxJSYl67u7cuVNEpNrtl8bt5+cns2fPluTkZPnkk09EURRZtWpVpfu6Zs0a+eyzz2T//v2yf/9+GT9+vISGhkpubq46z4wZMyQiIkKys7MlISFBDAaDLFu2zGW7U6ZMERGRuLg40Wq18sUXX0haWprEx8fLwoULK93+li1bRFEUeeWVVyQpKUkWLlwoAQEB4u/vr85Ttt6PGTNGzGazjBo1Svbu3St79uyRgoICad++vYwbN052794t+/fvl7vvvltiYmKkpKRERETeffdd8fb2lgULFkhSUpJs27atUV9zGkBVExGRiRMnSuvWrWXVqlWye/duueWWW8RsNqvnlIjI3XffLf369ZM//vhDDh06JPPmzRODwSDJyclSUlIiCxYsED8/P7UOlX7OVrWciPMz1WAwyMSJEyUhIUH27t0rb7/9tpw+fbrSOl3Tulj2GlKR1157Tfz9/eV///ufWv98fX1l2LBhLus6/1hERESIn5+fzJs3Tw4ePCgHDx6U3bt3i9lsljfffFOSk5Nl06ZN0qNHDxk7dqy6XGXfC2w2myxdulQASFJSkqSnp0t2dnaF277tttukY8eO8scff0hCQoIMGTJEoqKixGKxiMi57wrXX3+9xMXFyY4dO6Rjx45y9913X9hJQUREtc5tSfeR3Yv+Tq4v7HVk9+Ja2f6OHTsEgKSlpVU4vWXLlvLSSy+5lPXu3VsmTZokIjVPugFIQkKCOk9SUpIAkNWrV1e43VmzZskNN9zgUnbs2DH1A7cipdvZsmWLWpaYmCgAZOvWrSIi0q9fP5kwYYLLcrfffrsMHTpURETmz58v0dHR6odzWecn3SIiAGT58uUu85T9AlzdMSz9Avzf//5Xnb5v3z4BUOmXIHKz/HwRoO5f+fk1DjE2Nla6d+/uUvbUU09JTEyMOM7LKN555x0xm81it9vV5c7/glqZSZMmyT/+8Q/1/ZgxY1y+ZItIuaS7ptsfMGCAy3p69+4tjz/+eLUxlbLZbOLr6ys//vijWlZSUiI9evSQO+64Qy6//HK57777XJY5f7+XLl0qfn5+Lkl7Ve666y658cYbXcruvPPOapPu0NBQNZkWEfnoo4/KHZ+SkhIxGo3y66+/iojzevH0009XGktju+Y0gKomeXl5otfr1R+FRUTOnDkjRqNRPacOHTokiqLIiRMnXJa97rrr5MknnxQR52fU+edMTZe76667pH///pXGV1GdrmldLHsNqUiLFi3k1VdfVd9brVZp3bp1tUn38OHDXdYzatQouf/++13KNmzYIBqNRoqKiqr9XlDR942y205OThYAsmnTJnV6ZmamGI1G+eabb0Tk3HeFQ4cOqfO88847EhoaWu2xICIi93Lb7eWtOt4Jv+bdLmgZv+bd0arjHbWy/W7duuG6665Dly5dcPvtt+PDDz9EVlYWACA3NxcnT55E//79XZbp378/EhMTL2g7er0eXbt2Vd8nJCRAq9UiNja2wvl37NiBtWvXqs8qms1mdOjQAQCQkpJS6Xa8vLzQq1cv9X2HDh0QEBCgxpuYmFjl/tx+++0oKipCu3btMGHCBCxfvtzldrwLdSHH8Pzj06JFCwBARkbGRW+bGr/zz3XAeX737dvXpQ+I/v37Iz8/H8ePVz0Swvvvv49evXqhWbNmMJvN+PDDD3H06NELiqem2z//XAec53tV53pGRgYefPBBREdHw9/fH/7+/sjPz3eJT6/X4/PPP8fSpUtRVFRU5SgDgwcPRkREBNq1a4dRo0ZhyZIlKCwsrHa/zlf2fUW6dOni8hzrjh07cOjQIfj6+qrXtaCgIBQXFyMlJQUZGRk4efIkrrvuumrXXRlec2pfSkoKLBaLy988KCgIMTEx6vv4+HiICKKjo10+t9avX1/lZ1ZNlktISLjgc6KmdbHsNaSsnJwcpKenu+x72c/ZypSdZ8eOHVi8eLHLfg4ZMgQOhwOpqanVfi+oicTERHh5eeHKK69Uy4KDgxETE+Ny/ptMJlx22WXq++quQUREVDfc1pGa1suI1pePQnZQB6QnL4U4HAAc5WdUNFAUDVrE/AMBYb1rrWM1rVaL1atXY/PmzVi1ahXefvttPP3009i6dSuCg4Odmy6zLRFRy0o7Q5Pznu+yWq3ltmM0Gl3WYzQaq4zL4XDg1ltvxWuvvVZuWumXw8pUdGzOL6tqf8LDw5GUlITVq1fjt99+w6RJkzBv3jysX78eOp2uyu1eSEznb7PU+esvneZwVHAukPuZTEB+vme2ewF8fHxc3ld0XpXWzaquGd988w0effRRzJ8/H3379oWvry/mzZuHrVu3XlA8Nd1+2bqkKEqV5/rYsWNx+vRpLFiwABERETAYDOjbty8sFovLfJs3bwYAnD17FmfPni13fEr5+voiPj4e69atw6pVq/Dss89i9uzZiIuLq7B36fOvbxei7PYdDgeuuOIKLFmypNy8zZo1q9XOJRvKNachVLWa/P0dDge0Wi127NgBrVbrMq2qTu5qslx1n5eVxVyTulhZHakNFZ3/DzzwgEs/KaXatGmDQ4cOXfI2K/tblT0eFV2DLraeExFR7XFrR2qKoiCwZR9c1vsxKBptJfNocVnvxxDYok+t92SuKAr69++P559/Hjt37oRer8fy5cvh5+eHli1bYuPGjS7zb968GR07dgRwrjfv8zsgqcmYvV26dIHD4cD69esrnN6zZ0/s27cPkZGRiIqKcnlV9SXBZrNh+/bt6vukpCRkZ2erreQdO3ascn8A5xec2267DW+99RbWrVuHP//8E3v27KlwezqdDna7vdJ4anIMqR5SFMDHp+5fl1i3O3XqhM2bN7t8edy8eTN8fX3RqlUrAM4W4bLn7IYNG9CvXz9MmjQJPXr0QFRUVLnWuYqWu5jtX4wNGzZg8uTJGDp0qNrBWNlOFVNSUvDoo4/iww8/xFVXXYXRo0dXmUB6eXnh+uuvx9y5c7F7926kpaXh999/r3S/tmzZ4lJW9n1N9OzZEwcPHkTz5s3LXdf8/f3h6+uLyMjIKof/amzXnIZQ1aKioqDT6Vz+5llZWUhOTlbf9+jRA3a7HRkZGeX+tqU9/FdUh2qyXNeuXas8Jypab23VRX9/f7Ro0cJl3202G3bs2FHjdZQq/Vwvu59RUVHQ6/XVfi8ovWukqvO/U6dOsNlsLj8YnjlzBsnJyfXy/CciIld103u5ooE4yrcSA4A4rFCU2g9j69atePnll7F9+3YcPXoUy5Ytw+nTp9UPpxkzZuC1117D119/jaSkJDzxxBNISEjAlClTADi/jISHh2P27NlITk7GTz/9VGGvrmVFRkZizJgxGDduHL777jukpqZi3bp1+OabbwAADz30EM6ePYu77roL27Ztw+HDh7Fq1SqMGzeuyg9cnU6HRx55BFu3bkV8fDzuvfdeXHXVVejTp4+6P4sXL8b777+PgwcP4o033sCyZcswffp0AM5eTT/66CPs3bsXhw8fxmeffQaj0YiIiIhK92PNmjU4deqUelt+WdUdQ6LaMmnSJBw7dgyPPPIIDhw4gO+//x7PPfccpk2bpraiRkZGYuvWrUhLS0NmZiYcDgeioqKwfft2/Prrr0hOTsasWbMQFxfnsu7IyEjs3r0bSUlJyMzMrPCOlpps/2JERUXhs88+Q2JiIrZu3YqRI0e6tP7Z7XaMGjUKN9xwA+69914sWrQIe/furfRatGLFCrz11ltISEjAkSNH8Omnn8LhcLjcLny+yZMn45dffsHcuXORnJyMf//73y69gdfUyJEjERISgmHDhmHDhg1ITU3F+vXrMWXKFPWW39mzZ2P+/Pl46623cPDgQcTHx+Ptt99W18FrTt0zm80YP348ZsyYgTVr1mDv3r0YO3asyzkdHR2NkSNHYvTo0Vi2bBlSU1MRFxeH1157DStXrgTg/Nvl5+djzZo1yMzMRGFhYY2We/LJJxEXF4dJkyZh9+7dOHDgAN577z31h6eK6nRt1sUpU6bg1VdfxfLly3HgwAFMmjSp3FjZNfH444/jzz//xEMPPYSEhAQcPHgQP/zwAx555BF1P6r6XhAREQFFUbBixQqcPn0a+RXcItG+fXsMGzYMEyZMwMaNG7Fr1y7cc889aNWqFYYNG3bBMRMRUR2riwfHM9LWyN41j6m9lu9dM032/l7ai/ljcjptTa1vc//+/TJkyBBp1qyZGAwGiY6Olrfffludbrfb5fnnn5dWrVqJTqeTbt26yc8//+yyjo0bN0qXLl3E29tbrr76avn222/LdaRWtvMYEZGioiJ59NFHpUWLFqLX6yUqKko+/vhjdXpycrKMGDFCAgICxGg0SocOHWTq1KkuHcOcr3Q7S5culXbt2oler5drr722XCdx7777rrRr1050Op1ER0fLp59+qk5bvny5XHnlleLn5yc+Pj5y1VVXyW+//aZOL9uR2g8//CBRUVHi5eUlERERIlK+U6PqjmHZzqhERLKysgSArF27tsJ9JaqsQ7R169ZJ7969Ra/XS1hYmDz++OMuPVInJSXJVVddJUajUa2nxcXFMnbsWPH395eAgACZOHGiPPHEEy7ncUZGhgwePFjMZrN6blZ07la3/YriHjZsmIwZM6bSfY2Pj5devXqJwWCQ9u3by7fffutSF59//nlp0aKFZGZmqst89913otfr1djO3+6GDRskNjZWAgMDxWg0SteuXdWe2ivz0UcfSevWrcVoNMqtt94qr7/+erUdqZXteE5EJD09XUaPHi0hISFiMBikXbt2MmHCBMnJyVHnef/99yUmJkZ0Op20aNFCHnnkEXUarzmekZeXJ/fcc4+YTCYJDQ2VuXPnljuXS0cBiIyMFJ1OJ2FhYTJixAjZvXu3Os+DDz4owcHBAkDtSbwmy61bt0769esnBoNBAgICZMiQIWqHYhXV6dJlLrQuVsRqtcqUKVPEz89PAgICZNq0aTJ69OhqO1I7/7Oy1LZt29TriI+Pj3Tt2tWl07/qvhfMmTNHwsLCRFEU9ZpRdttnz56VUaNGib+/vxiNRhkyZIjaE7xIxd9Jli9fLnX0VY+IiKqgiLj/YZ+UbW+gOP8EAMAnIAqh7W/FqYM/oDDbeZunt29rXNb7UXeH0WAtXrwYU6dOvahf4ImIiIiIiMhz3H57uaU46++EW0HoZTcjoscDMPq2RmSPB9H8spsBKCjOOw5rccW3ExIRERERERE1VG7rvbyUAgXmoA5o1m4ITH5tzpUrGjSLuBY+AZfhdOoqALXbiRoRERERERGRp9XJ7eVERERERERETVHd9F5ORERERERE1AQx6SYiIiIiIiJyEybdRERERERERG7CpJuIiIiIiIjITZh0ExEREREREbkJk24iIiIiIiIiN2HSTUT1yqBBgzB16lRPh0HUZLEOEhER1S4m3URUryxbtgwvvPCCp8NoktLS0qAoChISEjwdCjUQixcvRkBAQK2vl4k/ERE1Jl6eDoCI6HxBQUGeDoGqYbFYoNfrPR0GUbV4rhIRUX3Alm4iqlfKtnBFRkbixRdfxOjRo2E2mxEREYHvv/8ep0+fxrBhw2A2m9GlSxds375dXebMmTO466670Lp1a5hMJnTp0gVffvmly3by8vIwcuRI+Pj4oEWLFnjzzTfLbdtisWDmzJlo1aoVfHx8cOWVV2LdunVVxn/gwAEMGDAA3t7e6NSpE3777TcoioLvvvtOnefEiRO48847ERgYiODgYAwbNgxpaWnqdIfDgTlz5qB169YwGAzo3r07fvnlF3V6aYv0N998g6uvvhpGoxG9e/dGcnIy4uLi0KtXL5jNZtx44404ffq0S3yLFi1Cx44d4e3tjQ4dOuDdd99Vp7Vt2xYA0KNHDyiKgkGDBgEAxo4di+HDh+OVV15By5YtER0djTlz5qBLly7l9v+KK67As88+W+UxovqjoKBArVstWrTA/PnzXaZXVQfWrVuHe++9Fzk5OVAUBYqiYPbs2dUuV2rTpk2IjY2FyWRCYGAghgwZgqysLIwdOxbr16/HwoUL1fWW1o/169ejT58+MBgMaNGiBZ544gnYbDZ1nYMGDcLDDz+MadOmISQkBIMHD3bXoSMiIqo5IaKmJz/f+XI4zpWVlDjLiosrntduP1dmsTjLioqqn/cCxcbGypQpU9T3EREREhQUJO+//74kJyfLxIkTxdfXV2688Ub55ptvJCkpSYYPHy4dO3YUx9/7c/z4cZk3b57s3LlTUlJS5K233hKtVitbtmxR13vfffdJRESE/Pbbb7Jnzx4ZMWKE+Pr6umz77rvvln79+skff/whhw4dknnz5onBYJDk5OQKY7fb7RITEyODBw+WhIQE2bBhg/Tp00cAyPLly0VEpKCgQNq3by/jxo2T3bt3y/79++Xuu++WmJgYKSkpERGRN954Q/z8/OTLL7+UAwcOyMyZM0Wn06nbTU1NFQDSoUMH+eWXX2T//v1y1VVXSc+ePWXQoEGyceNGiY+Pl6ioKHnwwQfV+D744ANp0aKFLF26VA4fPixLly6VoKAgWbx4sYiIbNu2TQDIb7/9Junp6XLmzBkRERkzZoyYzWYZNWqU7N27V/bs2SPHjh0TjUYj27ZtU9e/a9cuURRFUlJSLvKv3/jU46omIiITJ06U1q1by6pVq2T37t1yyy23iNlsVutBVXWgpKREFixYIH5+fpKeni7p6emSl5dX7XIiIjt37hSDwSATJ06UhIQE2bt3r7z99tty+vRpyc7Olr59+8qECRPU9dpsNjl+/LiYTCaZNGmSJCYmyvLlyyUkJESee+45dX9iY2PFbDbLjBkz5MCBA5KYmHhpB4iIiKgWMOkmaooA5ysj41zZiy86y+67z3Vek8lZnpp6ruzNN51ld9/tOm9IiLN8796LDq2ipPuee+5R36enpwsAmTVrllr2559/CgBJT0+vdL1Dhw6Vxx57TEREcnNzRafTybfffqtOz87OFpPJpG770KFDoiiKnDhxwmU91113nTz55JMVbuPnn38WLy8vlzhWr17tknR/9NFHEhMTo/5AICJSUlIiRqNRfv31VxERadmypbz00ksu6+7du7dMmjRJRM4l3f/973/V6V9++aUAkDVr1qhlr7zyisTExKjvw8PD5YsvvnBZ7wsvvCB9+/Z1We/OnTtd5hkzZoyEhoaqPwqUuummm2TixInq+6lTp8qgQYMqPDZNVT2uapKXlyd6vV6++uortezMmTNiNBplypQpNaoDixYtEn9/f5fpNVnurrvukv79+1caW9nrgIjIU089Va7uvPPOO2I2m8X+968PsbGx0r1795odACIiojrCZ7qJqN7r2rWr+v/Q0FAAcLm1ubQsIyMDYWFhsNvtePXVV/H111/jxIkTKCkpQUlJCXx8fAAAhw8fhtVqRZ8+fdR1+Pv7IyYmRn0fHx8PEUF0dLRLLCUlJQgODq4wzqSkJISHhyMsLEwtO38bALBjxw4cOnQIvr6+LuXFxcVISUlBbm4uTp48if79+7tM79+/P3bt2nXBxyUjIwMAcPr0aRw7dgzjx4/HhAkT1HlsNhv8/f0r3J/zdenSpdyzsRMmTMC4cePwxhtvQKvVYsmSJeVuT6b6KyUlBRaLBX379lXLgoKC1HpwMXWgpsslJCTg9ttvv6B4ExMT0bdvXyiKopb1798f+fn5OH78ONq0aQMA6NWr1wWtl4iIyN2YdBM1Rfn5zn9NpnNlM2YAU6cCXmUuC38nbTAaz5U99BAwYQKg1brOW/pc8vnz1gKdTqf+v/QLd0VlDocDADB//ny8+eabWLBgAbp06QIfHx9MnToVFosFACAiLsuVKi0vXZdWq8WOHTugLbOfZrO5wjhFpNw6y3I4HLjiiiuwZMmSctOaNWtWbp+qWndNjkvpMSn998MPP8SVV17psp6y+1eR0h8sznfrrbfCYDBg+fLlMBgMKCkpwT/+8Y9q19WU1Oeqdv75XpGLqQM1Xc54EYFXVAcqqssVnatERESexKSbqCmq6EupXu981WRenc75qsm8HrBhwwYMGzYM99xzDwBnEnDw4EF07NgRAHDZZZdBp9Nh27ZtCA8PBwDk5ubi4MGDiI2NBeDsTMxutyMjIwNXX311jbbboUMHHD16FH/99Zfa8hwXF+cyT8+ePfH111+jefPm8PPzq3A9LVu2xMaNGzFw4EC1bPPmzeVazS9EaGgoWrVqhcOHD2PkyJEVzlPakm2322u0Ti8vL4wZMwaLFi2CwWDAv/71L5jOzy6pXle1qKgo6HQ6bNmyRW0lzsrKQnJyMmJjY2tUB/R6fbnzpSbLde3aFWvWrMHzzz9f4/V26tQJS5cudUm+N2/eDF9fX7Rq1eqC9p2IiKgusfdyImp0oqKisHr1amzevBmJiYl44IEHcOrUKXW6r68vxowZgxkzZmDt2rXYt28fxo0bB41Go36Zj46OxsiRIzF69GgsW7YMqampiIuLw2uvvYaVK1dWuN3Bgwfjsssuw5gxY7B7925s2rQJTz/9NIBzLXEjR45ESEgIhg0bhg0bNiA1NRXr16/HlClTcPz4cQDAjBkz8Nprr+Hrr79GUlISnnjiCSQkJGDKlCmXdFxmz56NV155BQsXLkRycjL27NmDRYsW4Y033gAANG/eHEajEb/88gv++usv5OTkVLvO++67D7///jt+/vlnjBs37pLio7plNpsxfvx4zJgxA2vWrMHevXsxduxYaDTOrwY1qQORkZHIz8/HmjVrkJmZicLCwhot9+STTyIuLg6TJk3C7t27ceDAAbz33nvIzMxU17t161akpaUhMzMTDocDkyZNwrFjx/DII4/gwIED+P777/Hcc89h2rRpasxERET1ET+liKjRmTVrFnr27IkhQ4Zg0KBBCAsLw/Dhw13meeONN9C3b1/ccsstuP7669G/f391KK1SixYtwujRo/HYY48hJiYGt912G7Zu3aq2jpel1Wrx3XffIT8/H71798Z9992HZ555BgDU9ZpMJvzxxx9o06YN/u///g8dO3bEuHHjUFRUpLZ8T548GY899hgee+wxdOnSBb/88gt++OEHtG/f/pKOy3333Yf//ve/WLx4Mbp06YLY2FgsXrxYHSrMy8sLb731Fv7zn/+gZcuWGDZsWLXrbN++Pfr164eYmJhyt61T/Tdv3jwMHDgQt912G66//noMGDAAV1xxhTq9ujrQr18/PPjgg7jzzjvRrFkzzJ07t0bLRUdHY9WqVdi1axf69OmDvn374vvvv4fX3/fcT58+HVqtFp06dUKzZs1w9OhRtGrVCitXrsS2bdvQrVs3PPjggxg/frxax4iIiOorRap7qIuIqAkoKChAq1atMH/+fIwfP77W1rtp0yYMGDAAhw4dwmWXXVZr660vRAQdOnTAAw88gGnTpnk6HCIiIqJ6h890E1GTtHPnThw4cAB9+vRBTk4O5syZAwA1at2tyvLly2E2m9G+fXscOnQIU6ZMQf/+/Rtlwp2RkYHPPvsMJ06cwL333uvpcIiIiIjqJSbdRNRkvf7660hKSoJer8cVV1yBDRs2ICQk5JLWmZeXh5kzZ+LYsWMICQnB9ddf32iH0QoNDUVISAg++OADBAYGejocIiIionqJt5cTERERERERuQk7UiMiIiIiIiJyEybdRERERERERG7CpJuIiIiIiIjITZh0ExEREREREbkJk24iIiIiIiIiN2HSTUREREREROQmTLqJqN4bNGgQpk6d6ukwLsjs2bPRvXv3C1qmtvbzzJkzaN68OdLS0i55XbXlYo5HWStWrECPHj3gcDhqJyiqEOvbhbmY+rZ48WIEBARc8rZLpaWlQVEUJCQkXPQ6SkpK0KZNG+zYsaPW4iIiIicm3UTU6Kxbtw6KoiA7O9tjMUyfPh1r1qy5oGWWLVuGF1544ZK3/corr+DWW29FZGTkJa+rLh09ehS33norfHx8EBISgsmTJ8NisajTb7nlFiiKgi+++MKDUVJZrG8XXt/uvPNOJCcnX/K2L4SIYPbs2WjZsiWMRiMGDRqEffv2qdMNBgOmT5+Oxx9/vE7jIiJqCph0E1F5X38NvPRS1fO89JJzPnIhIrDZbDCbzQgODr6gZYOCguDr63tJ2y8qKsJHH32E++6775LWU9fsdjtuvvlmFBQUYOPGjfjqq6+wdOlSPPbYYy7z3XvvvXj77bc9FKV7sLpdvIZa34xGI5o3b35J275Qc+fOxRtvvIF///vfiIuLQ1hYGAYPHoy8vDx1npEjR2LDhg1ITEys09iIiBo7Jt1EVN6hQ8AzzwCVtQK98IJz+qFDtb7pgoICjB49GmazGS1atMD8+fPLzfP555+jV69e8PX1RVhYGO6++25kZGQAcN5mec011wAAAgMDoSgKxo4dCwD45ZdfMGDAAAQEBCA4OBi33HILUlJSqoynpKQEkydPRvPmzeHt7Y0BAwYgLi5OnV7ayvfrr7+iV69eMBgM2LBhQ7nbXW02GyZPnqxu+/HHH8eYMWMwfPhwdZ6yt7tGRkbi5Zdfxrhx4+Dr64s2bdrggw8+qDLen3/+GV5eXujbty8AwOFwoHXr1nj//fdd5ouPj4eiKDh8+DAAZyvzsGHDYDab4efnhzvuuAN//fUXAODAgQMwmUwuLczLli2Dt7c39uzZAwDIycnB/fffj+bNm8PPzw/XXnstdu3aVWWs51u1ahX279+Pzz//HD169MD111+P+fPn48MPP0Rubq4632233YZt27apcTcGHqxurG+1XN/Oj/Gnn35Ct27d4O3tjSuvvFKtK4Dr7eUiguuvvx433ngjRAQAkJ2djTZt2uDpp59Wl1m0aBE6duwIb29vdOjQAe+++26VsZ1PRLBgwQI8/fTT+L//+z907twZn3zyCQoLC13qdXBwMPr164cvv/yyxusmIqLqMekmovKefhqYMwd49tnymcALLzjL58xxzlfLZsyYgbVr12L58uVYtWoV1q1bV+4ZQ4vFghdeeAG7du3Cd999h9TUVPWLfnh4OJYuXQoASEpKQnp6OhYuXAjAmWBMmzYNcXFxWLNmDTQaDUaMGFHlM8IzZ87E0qVL8cknnyA+Ph5RUVEYMmQIzp49W26+V155BYmJiejatWu59bz22mtYsmQJFi1ahE2bNiE3Nxffffddtcdj/vz56NWrF3bu3IlJkyZh4sSJOHDgQKXz//HHH+jVq5f6XqPR4F//+heWLFniMt8XX3yBvn37ol27dhARDB8+HGfPnsX69euxevVqpKSk4M477wQAdOjQAa+//jomTZqEI0eO4OTJk5gwYQJeffVVdOnSBSKCm2++GadOncLKlSuxY8cO9OzZE9ddd12541SZP//8E507d0bLli3VsiFDhqCkpMTl7x8REYHmzZtjw4YNNVpvQ+DB6sb6Vsal1rfzzZgxA6+//jri4uLQvHlz3HbbbbBareXmUxQFn3zyCbZt24a33noLAPDggw8iNDQUs2fPBgB8+OGHePrpp/HSSy8hMTERL7/8MmbNmoVPPvmk2n0CgNTUVJw6dQo33HCDWmYwGBAbG4vNmze7zNunT59GVb+IiOoFISKqzJw5IoDz34re17K8vDzR6/Xy1VdfqWVnzpwRo9EoU6ZMqXS5bdu2CQDJy8sTEZG1a9cKAMnKyqpyexkZGQJA9uzZU+H0/Px80el0smTJErXMYrFIy5YtZe7cuS7b+u6771yWfe6556Rbt27q+9DQUJk3b5763mazSZs2bWTYsGFqWWxsrMt+RkREyD333KO+dzgc0rx5c3nvvfcq3adhw4bJuHHjXMri4+NFURRJS0sTERG73S6tWrWSd955R0REVq1aJVqtVo4ePaous2/fPgEg27ZtU8tuvvlmufrqq+W6666TwYMHi8PhEBGRNWvWiJ+fnxQXF7ts97LLLpP//Oc/FR6PsiZMmCCDBw8uV67X6+WLL75wKevRo4fMnj270nU1VHVc3Vjf3FTfSmOs6Lh+/fXXIiKyaNEi8ff3d1num2++EYPBIE8++aSYTCZJSkpSp4WHh5erBy+88IL07dtXRERSU1MFgOzcubPCODdt2iQA5MSJEy7lEyZMkBtuuMGlbOHChRIZGVnpPhMR0YVjSzcRVW7WrHNNcAbDuSa3WbPcsrmUlBRYLBaXWzWDgoIQExPjMt/OnTsxbNgwREREwNfXF4MGDQLgvEW6uvXffffdaNeuHfz8/NC2bdsql0tJSYHVakX//v3VMp1Ohz59+pR75rGy1i7Aeev1X3/9hT59+qhlWq0WV1xxRZXxAnBpxVMUBWFhYeqtvRUpKiqCt7e3S1mPHj3QoUMH9ZbR9evXIyMjA3fccQcAIDExEeHh4QgPD1eX6dSpEwICAlz28+OPP8bu3bsRHx+PxYsXQ1EUAMCOHTuQn5+P4OBgmM1m9ZWamlrt7cTnK13f+USkXLnRaERhYWGN19tQ1HF1Y32rQG3Ut1IVHdeqnpW+/fbb8X//93945ZVXMH/+fERHRwMATp8+jWPHjmH8+PEu9evFF1+8oPpVuk/na0r1i4jIk7w8HQAR1XOzZgEvvghYLIBe774MAFCfZ6xKQUEBbrjhBtxwww34/PPP0axZMxw9ehRDhgxx6em6IrfeeivCw8Px4YcfomXLlnA4HOjcuXOly5XGU5Mvqj4+PtXGXtF6qqPT6cqto6rbc0NCQpCVlVWufOTIkfjiiy/wxBNP4IsvvsCQIUMQEhKixlGThHfXrl0oKCiARqPBqVOn1FvBHQ4HWrRogXXr1pVbR02HRQoLC8PWrVtdyrKysmC1WhEaGupSfvbsWTRr1qxG621o6rC6sb5VoLbqW01jOl9hYSF27NgBrVaLgwcPquWl2//www9x5ZVXuiyj1WprtN2wsDAAwKlTp9CiRQu1PCMjo0nVLyIiT2FLNxFV7YUXzmUAFkvlvT3VgqioKOh0OmzZskUty8rKchla58CBA8jMzMSrr76Kq6++Gh06dCjXEqXX6wE4e8QudebMGSQmJuKZZ57Bddddh44dO1b7ZTkqKgp6vR4bN25Uy6xWK7Zv346OHTvWeL/8/f0RGhqKbdu2qWV2ux07d+6s8TpqqkePHti/f3+58rvvvht79uzBjh078L///Q8jR45Up3Xq1AlHjx7FsWPH1LL9+/cjJydH3c+zZ89i7NixePrpp3Hvvfdi5MiRKCoqAgD07NkTp06dgpeXF6KiolxepYl9dfr27Yu9e/ciPT1dLVu1ahUMBoNLC2VxcTFSUlLQo0ePCzswDUQdVjfWt1pQWX0DUOFx7dChQ6Xreuyxx6DRaPDzzz/jrbfewu+//w4ACA0NRatWrXD48OFy9av07oHqtG3bFmFhYVi9erVaZrFYsH79evTr189l3r179zba+kVE5ClMuomocuf34lRSUnlvT7XEbDZj/PjxmDFjBtasWYO9e/di7Nix0GjOXaratGkDvV6Pt99+G4cPH8YPP/xQbqzdiIgIKIqCFStW4PTp08jPz0dgYCCCg4PxwQcf4NChQ/j9998xbdq0KuPx8fHBxIkTMWPGDPzyyy/Yv38/JkyYgMLCQowfP/6C9u2RRx7BK6+8gu+//x5JSUmYMmUKsrKyqmz5uhhDhgzBvn37yiU4bdu2Rb9+/TB+/HjYbDYMGzZMnXb99deja9euGDlyJOLj47Ft2zaMHj0asbGx6m28Dz74IMLDw/HMM8/gjTfegIhg+vTp6vJ9+/bF8OHD8euvvyItLQ2bN2/GM888g+3bt9co7htuuAGdOnXCqFGjsHPnTqxZswbTp0/HhAkT4Ofnp863ZcsWGAwGl1t3G4s6rm6sb7WgsvoGAHPmzHE5riEhIS69p5/vp59+wscff4wlS5Zg8ODBeOKJJzBmzBh1vbNnz8Yrr7yChQsXIjk5GXv27MGiRYvwxhtv1ChORVEwdepUvPzyy1i+fLkak8lkwt133+0y74YNG1w6XCMiolrgkSfJiaj+q6wXpzroTO2ee+4Rk8kkoaGhMnfu3HIdHn3xxRcSGRkpBoNB+vbtKz/88EO5ToTmzJkjYWFhoiiKjBkzRkREVq9eLR07dhSDwSBdu3aVdevWCQBZvnx5pfEUFRXJI488IiEhIWIwGKR///4unYtV1olU2Y6drFarPPzww+Ln5yeBgYHy+OOPy+233y7/+te/1Hkq6tjpzTffdFlvt27d5LnnnqvyGF511VXy/vvvlyt/5513BICMHj263LQjR47IbbfdJj4+PuLr6yu33367nDp1SkREPvnkE/Hx8ZHk5GR1/u3bt4ter5effvpJRERyc3PlkUcekZYtW4pOp5Pw8HAZOXKk2jlbdR2plcZw8803i9FolKCgIHn44YfLdc52//33ywMPPFDlehoiD1U31jc31LfSGH/88Ue5/PLLRa/XS+/evSUhIUGd5/yO1DIyMiQ0NFRefvlll/j79Okjd9xxh1q2ZMkS6d69u+j1egkMDJSBAwfKsmXLRKT6jtREnB3DPffccxIWFiYGg0EGDhxYrlO7zZs3S0BAgBQWFla5z0REdGEUkRo85ERETctLLzkHBq6sF6fSJrkXX3TPOEZNgMPhQMeOHXHHHXeUazm8VCtXrsT06dOxd+9el1bLhu706dPo0KEDtm/fXuPbahsCVjf3q8v6tm7dOlxzzTXIysqqcZ8G9cXtt9+OHj164KmnnvJ0KEREjQo7UiOi8qKiqv6GP2sWoNE456MaOXLkCFatWoXY2FiUlJTg3//+N1JTU8vd2lkbhg4dioMHD+LEiRMuPZI3dKmpqXj33XcbVcINsLq5A+vbhSspKUG3bt3w6KOPejoUIqJGhy3dRER14NixY/jXv/6FvXv3QkTQuXNnvPrqqxg4cKCnQyNqdDxZ3xpySzcREbkHk24iIiIiIiIiN2k8D/sRERERERER1TNMuomIiIiIiIjchEk3ERERERERkZsw6SYiIiIiIiJyEybdRERERERERG7CpJuIiIiIiIjITZh0ExEREREREbkJk24iogoMGjQIU6dO9fi2PRlHXW9/4cKFaNu2LUwmE4YPH46cnJw62S4RERGRO3l5OgAiotoyaNAgdO/eHQsWLLjk5ZYtWwadTle7AV6EuoqjsmNXV9t/6qmn8O233+KTTz6B2WzGiBEj8Pzzz+ONN95w+7aJiIiI3Ikt3URU71ksljrfZlBQEHx9fet8uxcah7uPTV0ch7i4OLz22mv4+uuvMXDgQPTs2RMPPPAAVqxY4dbtEhEREdUFJt1ETVFBQeWv4uKaz1tUVP28F2HQoEF4+OGHMW3aNISEhGDw4MEoKSnB5MmT0bx5c3h7e2PAgAGIi4tTlxk7dizWr1+PhQsXQlEUKIqCtLQ0/PLLLxgwYAACAgIQHByMW265BSkpKdUuV/a26uq2P2jQIEyePBkzZ85EUFAQwsLCMHv27Gr3taCgAKNHj4bZbEaLFi0wf/78csfi/DgqOjYAICKYO3cu2rVrB6PRiG7duuF///ufy7ocDgdee+01REVFwWAwoE2bNnjppZcqPQYVbd8dx+H111/Htddei549e6plzZo1Q2ZmZrXHj4iIiKi+Y9JN1BSZzZW//vEP13mbN6983ptucp03MrL8PBfpk08+gZeXFzZt2oT//Oc/mDlzJpYuXYpPPvkE8fHxiIqKwpAhQ3D27FkAzueB+/btiwkTJiA9PR3p6ekIDw9HQUEBpk2bhri4OKxZswYajQYjRoyAw+Gocrmyqtt+acw+Pj7YunUr5s6dizlz5mD16tVV7ueMGTOwdu1aLF++HKtWrcK6deuwY8eOCzo2APDMM89g0aJFeO+997Bv3z48+uijuOeee7B+/Xp1uSeffBKvvfYaZs2ahf379+OLL75AaGhojY+BO45DSUkJfvzxR4wYMcKlvKioCP7+/lUeByIiIqIGQYio6QEqfw0d6jqvyVT5vLGxrvOGhJSf5yLExsZK9+7d1ff5+fmi0+lkyZIlapnFYpGWLVvK3LlzXZabMmVKlevOyMgQALJnz54qlzu/rCbbj42NlQEDBriso3fv3vL4449XGkteXp7o9Xr56quv1LIzZ86I0WhUt102trLHpjQ+b29v2bx5s0v5+PHj5a677hIRkdzcXDEYDPLhhx9WGEtlx87dx2Hz5s0CQLy9vcXHx0d96fV6GTJkSIXLEBERETUk7EiNqCnKz698mlbr+j4jo/J5NWVulvn7luTa0KtXL/X/KSkpsFqt6N+/v1qm0+nQp08fJCYmVrmelJQUzJo1C1u2bEFmZqbawn306FF07ty5RrHUdPtdu3Z1Wa5FixbIqOL4paSkwGKxoG/fvmpZUFAQYmJiqozn/GMDAPv370dxcbF6q3kpi8WCHj16AAASExNRUlKC6667rsp1V8UdxyE5ORne3t7Ys2ePS/ltt93msh0iIiKihopJN1FT5OPj+XmrXdW5dYkIAEBRFJd5RKRcWVm33norwsPD8eGHH6Jly5ZwOBzo3LnzBXVAVtPtl+3lW1EUNcmvar0XyqfMcS7dxk8//YRWrVq5TDMYDAAAo9F4Uds6nzuOQ25uLpo3b46oqCi17OjRozhw4AD+UfZRByIiIqIGiM90E1G9FxUVBb1ej40bN6plVqsV27dvR8eOHdUyvV4Pu92uvj9z5gwSExPxzDPP4LrrrkPHjh2RlZVVbv1ll7vY7V/Mful0OmzZskUty8rKQnJy8gWtp1OnTjAYDDh69CiioqJcXqXPZrdv3x5GoxFr1qypcB3VHYPSeGv7OISEhCA3N9flB4iXXnoJQ4cORadOnS5qnURERET1CVu6iaje8/HxwcSJEzFjxgwEBQWhTZs2mDt3LgoLCzF+/Hh1vsjISGzduhVpaWkwm80ICgpCcHAwPvjgA7Ro0QJHjx7FE088UW79FS13Mdu/UGazGePHj8eMGTMQHByM0NBQPP3009CUvW2/Gr6+vpg+fToeffRROBwODBgwALm5udi8eTPMZjPGjBkDb29vPP7445g5cyb0ej369++P06dPY9++fRg/fnyFx6BsHO44Dtdeey2Ki4vx6quv4q677sIXX3yBH374Adu2bbuo9RERERHVN0y6iahBePXVV+FwODBq1Cjk5eWhV69e+PXXXxEYGKjOM336dIwZMwadOnVCUVERUlNT8dVXX2Hy5Mno3LkzYmJi8NZbb2HQoEEu665ouYvZ/sWYN28e8vPzcdttt8HX1xePPfYYcnJyLng9L7zwApo3b45XXnkFhw8fRkBAAHr27ImnnnpKnWfWrFnw8vLCs88+i5MnT6JFixZ48MEHAVR8DCIjI8ttp7aPQ2hoKBYvXowZM2bghRdewLXXXouNGzdW2ns6ERERUUOjyMU+VEhEREREREREVeIz3URERERERERuwqSbiIiIiIiIyE2YdBMRERERERG5CZNuIiIiIiIiIjdh0k1ERERERETkJky6iYiIiIiIiNyESTcRERERERGRmzDpJiIiIiIiInITJt1EREREREREbsKkm4iIiIiIiMhNmHQTERERERERuQmTbiIiIiIiIiI3YdJNRERERERE5CZMuomIiIiIiIjchEk3ERERERERkZsw6SYiIiIiIiJyEybdRERERERERG7CpJuIiIiIiIjITZh0ExEREREREbkJk24iIiIiIiIiN2HSTUREREREROQmTLqJiIiIiIiI3IRJNxEREREREZGbMOkmIiIiIiIichMm3URERERERERuwqSbiIiIiIiIyE2YdBMRERERERG5CZNuIiIiIiIiIjdh0k1ERERERETkJky6iYiIiIiIiNyESTcRERERERGRmzDpJiIiIiIiInITJt1EREREREREbsKkm4iIiIiIiMhNmHQTERERERERuQmTbiIiIiIiIiI3YdJNRERERERE5CZMuomIiIiIiIjchEk3ERERERERkZsw6SYiIiIiIiJyEybdRERERERERG7CpJuIiIiIiIjITZh0ExEREREREbkJk24iIiIiIiIiN2HSTUREREREROQmTLqJiIiIiIiI3IRJNxEREREREZGbMOkmIiIiIiIichMm3URERERERERuwqSbiIiIiIiIyE2YdBMRERERERG5CZNuIiIiIiIiIjdh0k1ERERERETkJky6iYiIiIiIiNyESTcRERERERGRmzDpJiIiIiIiInITJt1EREREREREbsKkm4iIiIiIiMhNmHQTERERERERuQmTbiIiIiIiIiI3YdJNRERERERE5CZMuomIiIiIiIjchEk3ERERERERkZsw6SYiIiIiIiJyEybdRERERERERG7CpJuIiIiIiIjITZh0ExEREREREbkJk24iIiIiIiIiN2HSTUREREREROQmTLqJiIiIiIiI3IRJNxEREREREZGbMOkmIiIiIiIichMm3URERERERERuwqSbiIiIiIiIyE2YdBMRERERERG5CZNuIiIiIiIiIjdh0k1ERERERETkJky6iYiIiIiIiNyESTcRERERERGRmzDpJiIiIiIiInITJt1EREREREREbsKkm4iIiIiIiMhNmHQTERERERERuQmTbiIiIiIiIiI3YdJNRERERERE5CZMuomIiIiIiIjchEk3ERERERERkZsw6SYiIiIiIiJyEybdRERERERERG7CpJuIiIiIiIjITZh0ExEREREREbkJk24iIiIiIiIiN2HSTUREREREROQmTLqJiIiIiIiI3IRJNxEREREREZGbMOkmIiIiIiIichMm3URERERERERuwqSbiIiIiIiIyE2YdBMRERERERG5CZNuIiIiIiIiIjdh0k1ERERERETkJky6iYiIiIiIiNyESTcRERERERGRmzDpJiIiIiIiInITJt1EREREREREbsKkm4iIiIiIiMhNmHQTERERERERuQmTbiIiIiIiIiI3YdJNRERERERE5CZMuomIiIiIiIjchEk3ERERERERkZsw6SYiIiIiIiJyEybdRERERERERG7CpJuIiIiIiIjITZh0ExEREREREbkJk24iIiIiIiIiN2HSTUREREREROQmTLqJiIiIiIiI3IRJNxERERFRFf5Kz8Xg6604ftzTkRBRQ8Skm4iIiIioAg67BflnD2Ld6hM4esSG7793qNO2bQNycjwYHBE1GEy6iYiIiIjOIyIozj+FnIwEWIoyYbVpkHzIiCVLFACA1QoMHw60bAnExXk2ViKq/7w8HQARERERUX0iDhuK845BHHZ46c247f9a4fA1gE7nTLqPHweCggC7HejW7dxyyclAixaAr6+HAieiekkREfF0EEREREREniQOOxSNVn1fUnga4rDD4BMKRVHKzy/O5Ds8/FzZgAFAQgLwzTfA0KF1EDQRNQi8vZyIiIiImjRLYebft5KfVcsMpmbwNodVmHADgKK4Jtw5OUBmJlBSAvToca781CmgoMBdkRNRQ8Ckm4iIiIiaJLutGHmZicjPOgiH3YKSglMVzrdvH7BwIfDjj5Wvy98fSEx0tnS3aHGu/Mknnc9+f/ZZ7cZORA0Hk24iIiIialJEHCjKO47cjF2wlmRDUTQw+oXDHNyhwvm3bgWmTgX+85+q16sowOWXn3tvtwPx8UBuLhAVda48Lw8oLLz0/SCihoFJNxERERE1GdaSXORm7EJR7jGIOKAzBMCveTcYfVtDUSr+aty2LfCvfwEDB17YtrRaYOdOYMMG4KqrzpW//baz9fvtty9hR4iowWDv5URERETUdIgddlsxNFo9TH4R0JtCql3kmmucr4uh0Tg7WDvfb785nwH38ztXZrM5X97eF7cdIqq/2NJNRERERI2WiMBmPXcvt847ED4Bl8GvebcaJdzu8NtvwC+/AHfcca7su++AVq2Al1/2SEhE5EZs6SYiIiKiRslmyUdhTirstiL4N+8OjVYPADD4NPdoXBoNMGSIa9ny5cDZs+Wf9bZaAZ2u7mIjotrHlm4iIiIialQcDhsKs1ORe3ovbJZ8AIDdevE9l73zDtC8OTBlSm1FWN6nnwIrVgAPPHCubNcu57Pfzzzjvu0SkfuxpZuIiIiIGg1LYSYKc4/AYbcAAPTGEJj8I9RW7ouRlwecPg3k59dWlOVptcDNN7uWLVniHPs7Odm1XMTZUzoRNQyKiIingyAiIiIiuhQigvyzB2AtzgYAaL28YQpoB53B/5LXnZkJnDrlHIs7PPySV1djNhuwciXQujXQs6ez7MwZ4IorgLvuAp5/HtBf/G8JRFRHmHQTERERUaNQmJOGkoK/4O3bCt7mlpUOAdaQvfMO8PDDQPfuzjHA2eJNVP8x6SYiIiKiBslanA2NVg+tzgQAEIcdDocVWq/GO+6W1Qr8+CNgMJy7Hd1udw5Ldv31wIwZrkOREZHnMekmIiIiogbFYbegMCcNlqIz8NL7wq9ZZ7dub+tWYM8eoGtXoE8ft27qoqxc6UzAg4KAEyc41jdRfcOO1IiIiIioQRARlBScQlHeMYjDDkCBl94HIg633kq+dCkwbx4wfXr9TLqvvx74+msgO9s14b7nHqB9e+Chh4AQzwxJTkRg0k1EREREDYDNko/C7MOwWQsAAF56M0z+beGlN7t92x07ArfeClx+uds3dVH0euCOO1zLkpKcvZ9rNMC993omLiJy4u3lRERERFSvWUtykJe5HwCgaLQw+rWBwRQKhb2IVaqkBFi2DNi3D3jxxXPlzz8PeHkBEyY4xx4nIvdj0k1ERERE9ZqIA3mn90LjZbzkMbebsrw8oGVL53jja9cCgwZ5OiKipoFJNxERERHVK3ZbEYrzTsIU0FZ9VlscdigarYcja9hKSoBvvgF++QX4/PNzw4198gmQnu68DT001LMxEjVGTLqJiIiIqF4Qhx3F+SdRnH8CIgKjXziMvq09HRZmzgT+9z/nvw8+6OloapcIEBMDHDwIfPCB87ZzIqpd7uvmkYiIiIiohqzF2cg9vRtFecchItB5B0BvrB9dbmdkAKmpztuzGxu7HXjqKeDaa4G77jpXvnYt8PrrQGam52IjaizY0k1EREREHnP+mNsAoNHqYfKPhN4Y7OHIzklNdSberVsDrVp5Opq6cfPNzvG/p093DpdGRBePQ4YRERERkccU5qTCUnQWgAJvcyi8fcOh0dSvr6ht2zpfTck//uH8oeH++8+VJSc7E/HRo4GgIM/FRtTQsKWbiIiIiDzGbitGYXYKjH4RdTLmNl28qVOBhQudCfn//ufpaIgaDj7TTURERER1wuGwoSD7MAqyD6tlWi9v+IZcXq8T7nXrgC+/BA4frnbWRu2KK4Bu3YDx48+V5eQA//43kJ3tsbCI6j22dBMRERGR25UUZqIoJw0OhxUA4B/aHVovo4ejqplbbwVWrAD++1/XhLMpKs0cSocbe+cd4OGHgV69gLg4z8VFVJ/VrwdmiIiIiKhRsVuLUJiTCmtJDgBA62WEKaBtg0m4AaB7d6CoqOl0olaV0mS7VPPmQOfOwKhR58ocDuCzz4ARIwA/v7qNj6g+Yks3EREREdW6smNuK4oG3r6t4G1uCUXhE46NiYhz6DGvv5vzVq8GbrjB+SPFkSOAVuvZ+Ig8jVc8IiIiIqp1Ig6UFPyljrnt17wbjL6tmXA3QopyLuEGAIsF6NABGD7cNeH+6ScgP7/OwyPyOLZ0ExEREVGtcNit0Gh16vvSsbfr05jbVDdEnLfkm0zO94cPA1FRztvN09KAgABPRkdUt/hTIxERERFdEhEHivPTkfPXTjXRBpzJdmNIuO++2/nc8u+/ezqShkNRziXcAHDihDPpvvJK14R761agsLDOwyOqU+xIjYiIiIgums2Sh8LsVNisBQAAS1Fmo0i0z5eSAuzbBxQUeDqShuvqq4EDB4CsrHNlhYXAkCHO/2/dCsTEeCY2Indj0k1EREREF8zhsKEo9yhKCv4CAGg0XjD6tYHe1NzDkdW+995zjkPdpYunI2nYNBog+LzfY1JSgKAgZ6t4+/bnypOSgDZtAGPD6eCeqEp8ppuIiIiILoil6CwKsw+rY24bTM1g9ItweZ6bqCYcDuDYMSAiwvlexHkrf3o68MMPwIABno2PqDawpZuIiIiILoii0cLhsP495nY76AwcjJkujkZzLuEGnMl2fj5QUuJ6Z8HJk85WcoOh7mMkulRs6SYiIiKiKonDDrutEF56X7XMUnQWOu+AJjEE2OrVzp64Bwxw3g5N7mW3A/v3uybdw4cDmzYBH30E3Habx0IjuihMuomIiIioUtbiLBTmpMFht8I/tBs02qbX1Ni+PXDoELBxI9C/v6ejaXqKi4GOHZ1Dje3bB3Tq5CzPzQW8vQG93qPhEVWr8f80SUREREQXzGEvQf7ZZOSdOQC7rdh5S7nd4umwPKJHD+CqqwB/f09H0jR5ewMHDwLr159LuAHgxReB8HDg0089FxtRTbClm4iIiIhUIg6UFPyFotxjELEDUOBtbgGjb2soGq2nwyMC4OxwrUcPYNcu4LvvgGHDnOUWi7M3dB379KN6hC3dRERERATAmXDnZe5DYU4aROzw0pvh17wLTP4RTLipXlEUIC7OmXDffPO58k8/dXbM9s47HguNqBz2Xk5EREREAABF0cBL7weHrVgdc1tRFE+HRVQhne5cC3eppUudPaAXFp4rE3F2zubFzIc8hC3dRERERE1YSeFp2KwF6nujb2v4Ne8Og08oE+6/XXcdcOWVzo68qH77/nvgm2+AsWPPlf3xBxAZCcyb56moqKnj7z1ERERETZDdWoTCnFRYS3LgpTfDN6QzFEWBotFCAW8lP9/27c6esq1WT0dC1dHrgdtvdy37/HPgxAlnZ2znE3Hepk7kbky6iYiIiJoQcdhRnH8CxfknISJQFA103kEABAAzkIp8+y1QUgK0bOnpSOhi/PvfzrsVunY9V3bsGDBoEDBuHPDkk4CG9/+SG7H3ciIiIqImwlKchaLsVNjtJQAAnXcgTP6R0Hp5ezgyorr14ovArFnOxHvtWk9HQ40dW7qJiIiImgBLcRbyzxwAAGi0epj820JvDPJwVESeMX268znvFi3OlRUXAwMHAiNGAFOnAkajp6KjxoYt3URERERNgIggL3MvvPR+HHP7AogAq1Y5e76++mrnM8PUOH3xBTByJBAeDqSmAlpWEaolTLqJiIiIGiGbJQ/FeSfhExilJtgiDigKH169EOcPNZWZCQQHezYecp/CQmfP5xoNMHq0s0wEuOMOoE8f4IEHAD8/z8ZIDROTbiIiIqJGxOGwoSj3KEoK/gIAGP3CYfRt7eGoGi6r1Zlw2e3Apk2Ar6+nI6K6FBfn/PsbDM4e0PmjC10MPtNNRERE1EiUFJ5GUc4ROBzOsa0MpmYwmEI9HFXDptMBO3d6OgrylE6dgP/+Fzh50jXhfuIJIDTUOR54YKDHwqMGgi3dRERERA3c+WNuA4BWZ4LJvy10Bt4LS1TbMjKA1q2dd0Hs3Al07+7piKi+Y0s3ERERUQNXlHcU1pIcKIoG3r6t4W1uwWe3idzExwd46y1g61bXhPv99wGLBRg1iq3f5Iot3UREREQN0PmdotltxSjKPQqjXxuOuV3LsrKA4cOdPVmvWQMoiqcjovrIagXatAFOnXJ2xnb77Z6OiOoTJt1EREREDYjDXoLCnDQoihY+gVGeDqfRS08HWrZ09mhtt3s6Gqqvioudz34vXw78/PO5oeVWrgSOHHEORcaez5suJt1EREREDYCIAyUFp1CUe+zvVm4Ffs17QOtl8HRojVpREfDTT86E+847PR0NNTT9+wObNwMvvww8+aSnoyFP4TPdRERERPWczZKHguzDsFsLAQBeel+YAtox4a4DRiPwz396OgpqiBwO5xjf+fnAvfeeK09IALZtA+6+GzCbPRYe1SG2dBMRERHVUw6HDUU5R1BSmAEA0Gi8YPRrA72pORQ+XEzUII0dC3zyCXDffcCHH3o6GqoL7NaSiIiIqB6zFmcBAAym5vBr3h0Gn1Am3HWosBDYuBHYvt3TkVBj0bs3EB0NjBt3ruzUKeDjj4GCAs/FRe7Dlm4iIiKiesRuK3bpgdxSnAVF0XLMbQ/Ztw/o3Blo1sw5PjNRbSjNwEp/P3v5ZeDpp4EbbgB+/dVzcZF7sKWbiIiIqB4Qhx2FuUeRm5GAksJMtVzvHciE24O0WqB9e6BdO09HQo2JorgOPxca6jzHRo48V2axAEuWODvzo4aNLd1EREREHmYpzkJRdirs9hIAzlvJfQIv83BURFSXHA7ny+vvrq6//dbZEVunTsDevRwjviFjSzcRERGRh9htJcg/k4T8Mwdgt5dAozXAHBTDhJuoCdJoziXcgHOYuogIYMQI14T7p5+c44JTw8GWbiIiIiIPKCk8jcLsw+qY2wafFjD6toai0Xo6NCKqJ+x2oKQEMJmc7xMSgB49gBYtgMOHAW/vKheneoIt3UREREQeoNEaIOKAl94Xvs26wuQfwYS7HtqzB7jpJmDiRE9HQk2RVnsu4QaAkyeB1q2Bq692Tbi3bHE+A071E1u6iYiIiOqAw26F3ZoPnXegWmYtyYWX3pdDgNVja9cC114LXH6587laIk+z24HsbCA42Pn+zBmgVSvAz8/ZEt6ypSejo4p4VT8LEREREV2KksLTKMo5AhE7/Jp3h9bLAADslbwB6NABWLzYmdAQ1Qda7bmEGwCSk53vmzd33nZeKinJ2SO6Tlf3MZIrtnQTERERuYndWoiC7MOwWfIAAFqdCT6BUfDS+Xg4MiJqTGw24MQJZ8drgLM1vG1bwGoFfvkF6NbNs/E1dWzpJiIiIqpl4rCjKP8ESvJPQkSgKBoYfcNhMIdBUdilDhHVLi+vcwk3AKSkOJ/xttmAmJhz5SdPOlvEvZgF1im2dBMRERHVIhEHcjN2wW5zjumj9w6C0T9SvaWcGpasLCAtzXl7+WUcyY0aEKsVOHAA6NLlXNk11wAHDwKffeb8P9UN/tRKREREVIsURQO9MUQdc9scHMOEuwFbswbo2RO4915PR0J0YXQ614Q7OxvYvx9ITweios6V5+Q4b0cn92HSTURERHQJRBwozj8JmyVfLfP2bQX/5t2gNwZ5MDKqDQaDszfokBBPR0J0aQICgKNHgd9/B8LDz5XPmOF8/nv5co+F1ujx9nIiIiKii2QtyUVhTirs1kJ46Xzg26wLh/8iogbDbgcuu0xw5IiCtWsFgwbx+uUOfISeiIiI6AI57FYU5R5FSWEGAECj0cHgE+bhqIiIasbhsMFanAVLYSY2r8nFqjUB6HdVGAB/T4fWKLGlm4iIiKiGRASWwtMoyj0Kh8MKADCYmsPo1wYaLQfDJaL6S8QBa3E2LEWZsBZnQcShTvPSm2H0awOdgUm3O/CZbiIiIqIashafRUF2ChwOK7Q6E3xDLodP4GVMuBuxVauAf/4TmD/f05EQXRq7tQD5Z5NgKToDEQe0XkYY/cLhH9oDfs264JEp/ujUCVi61NORNj68vZyIiIiohnTeQdAZ/KHzDoDBh2NuNwWHDjEJoYbHZsmHpSgTUDQw+bUBAHjpfaEz+EGrM0NvDIaX3uyyzJEjQGIikJ9f0RrpUvD2ciIiIqJKWIrOoqQgHeagDlA0Wk+HQx6wdy/wxx/O3p1vusnT0RBVzm4tgqUoE5aiTNhtxQAARaNFQFivGv1AuG8fcPo0EBMDtGjh7mibFibdRERERGXYbSUoykmFpTgLAGD0C4fRt7WHoyIiKq+k8DRK8tNhsxaoZYqigc47CHpjMHTeAbwrx8N4ezkRERHR30QcKMk/haK8YxBxQFEUGMwt4e3DZh8iqh8cDhsURaMm0g5bMWzWAiiKAi9DAPTGEOi9A3l3Tj3CpJuIiIgIrmNuA87nH30C2kGrM3k4MvKkzEzg7FkgMBBo1szT0VBTJQ67c4ivokxYS7LhExgNvTEIAKA3NYOi1UHvHXxJnTr+8gtQXAxcfTUQHFxbkRPA3suJiIiIAAAlBemwWwuh0ejgExgFv2admXAT3n/f+Yzr0097OhJqakQcsBRnoSDrELJPbUd+1kFYirMgIrBZ8tT5tF7e8PYJu+RRFCZPBkaMcHamRrWLLd1ERETUJIkIIA71FkyTfyQUjQ5G33AOAUYqvR4ICAB8fDwdCTUlDrsVuRm74HBY1TKt1gC9KQR6Y4hbfhC84gogJMR5VwfVLnakRkRERE2OzVqIwuzD0GgNMAe193Q4RNTE2ayFsFsLYTCFqGW5GbvhsFugNwZDbwqBl97XgxHSpWBLNxERETUZ4rCjKO84SgrSISJQlAI47CXQaA2eDo2Imhi7rfjvIb7OwG4thKJoXDpA8wmKgUarY8/jjQCTbiIiImoSLEVnUZiTBoe9BACg9w6C0T+SCTcR1RmH3QpL0RlYijJdnstWFAU6QwAcDhu0fyfdWi9emxoLJt1ERETUqDnsVhRmp6hjbmu1BhgD2kLvzQcXqXpLlgCrVgG33Qb84x+ejoYaOkvhaRTmHlHf6wz+0BtDoDMGQaPxbGrWoweg0wErVzqf7abaw6SbiIiIGjdFUcewNZhbwmhuxfFrqca2bgU+/RRo04ZJN9WciAPW4mxYijKdz2QbnWNw6YzB8Co+4xxL2xgMjVbv4UidbDYgIcH5f0XxaCiNEpNuIiIianRslnx46c0AAI3GCz6BUdBodBwCjC7YsGFAeDhw1VWejoTqO+dQXrmwFGbCUnwG4rD/XW5Xk26tlwF+zbp4MswKaTTOOzpKSgA/P09H0/iw93IiIiJqNBx2K4pyj6KkMAM+gVEwmJp5OiQiauREBEW5R2EpyoTDblHLNVq92qJd+iMgNU1s6SYiIqIGT0RgKcxAUe5ROBw2AIDdVuThqIiosTp/1ANFUWCz5MFht0Cj8YLOO+jvIb78oPBebQJbuomIiKiBKx1zu7QnYK3OBJ+AdhzTlmrFmTNAcTEQEAD4+Hg6GvIkh73E2fN4YSbstkL4h14BjVYHALCW5EAcdui8AxrkEF8FBcDatYDJBFx7raejaXyYdBMREVGDVZx/CoU5aQAEiqKB0S8cBp+wBvmll+qne+5x9mD+xhvAo496Ohqqaw6HDdaiM7AUnYG1JOe8KQrMQdHQG4M8FlttSk4GYmIAf38gO9vT0TQ+vL2ciIiIGixnx2gCvTEIRr9IjmtLtU5RAC8v54uaFmtxFvLPJuH8NkovvS/0phDovYPVVu7GwMsL6NWLd3O4C1u6iYiIqMGw24phtxaoPQEDztvLvdgrORFdAhEHbCU5gKKBzuAPwNkxY85fO6DxMv7dIVoIf9iji8Lf7IiIiKjeE3GgOD8dxXnHAQBanQ+0Xt4AwISbiC6Kc4ivPFiKMmEtOguHwwovvS90zZxJt0arg1/zHky06ZIx6SYiIqJ6zVqSi8KcVNithQAAnYGDyBLRxbNZC2EpyoSlMBMOe4lartHo4KX3gYiovY4z4abawKSbiIiI6iXnmNtHUFJ4GoDzC7HRP4Jjb1OdevttIDERGDMGuPJKT0dDtaEo9yisxVkAAEXRQm8Mgt4YAi+DX5PthHHzZmD6dKBLF+A///F0NI0Pk24iIiKqd0QcyD29Gw67BQBg8AmF0a8NNBp+daG69cMPwG+/Af37M+luaBx2q3OIr6JM+AS2V1utDaZmUKBAbwqBzhAARaP1cKSel5EB/PknwN6+3IOfXERERFTvKIoGBp9QWIvOwhTQlmNuk8eMHu1MuLt29XQkVBPisMNSfNb5nHZxDgBnFmkpyoTRtxUAQG8MdumMkZw/KC1fDvjx6R23YO/lRERE5HHisKMo7zj0xiA1wRZxAECTvd2TiGrOYS9BYc4RWIuz1GsHAHjpzX/3PB4MjVbvwQipKWNLNxEREXmUpegsCnNS4bBbYCvJgW+zLlAUhck2EVVKRCAOCzRa5y3jiuKlJtxaL6NzLG1jMLReRg9HSgTw04yIiIg8wm4rRt6ZA8g/mwSH3QKt1gBvv3C112Ci+iA72/my2TwdSeMycODAv39cU+Dl5YUWLVpgxIgR2Lx5c5XL2Sz5KMxJQ85f8cg7c0AtVzRamALawa9ZF/iHdofRtzUT7gtw7Biwbh2QnOzpSBonJt1ERERUp0QcKMo7gdyMXbAWZ0FRFBh9W8GveTfovQM9HR6Ri+uuAwIDgdWrPR1J4yEiSEhIwKuvvor09HQcOnQIX375JfR6PQYOHIiVK1e6zG+3FqEo9xhy/tqJ3NN7UJyfDofdArFb1M4WAWcHaV56c13vTqPw7bfANdcAc+Z4OpLGibeXExERUZ2yFp1FUe5RAIDO4A+Tf1todWyRovrJbnf+q2UH17Xm4MGDyMvLw8CBAxEWFgYAiIyMxKBBg3Dttdfi6aefxtChQwEAhblHUZx3Ql1WUTTQeQdCbwyBzjuAj6HUEn9/oGNHIDzc05E0Tky6iYiIyO1ERL1tXGcMhr74DHTeQRxzm+q9HTuciTeT7tqzY8cOaLVadOvWzaXc4bDhmti+eP6F1+BwOKDRaOClMwNQoPMOcPY67h3EIb7cYPx454vcg0k3ERERuY2IwFKYgeKCU/AL6QxFo4WiKDAHxXg6NKIa0WqZcNe2+Ph4dOjQASaTCeKww1qcBUvRGVhLsiC2XGi1Wmg0zhZsnXcAAsKugEar83DURBePSTcRERG5hc1agMLsVNgseQCAkoK/4O3b0sNREZGn7dixA927dUZB1iFYis5CxK5OO5x2EjHRUep7RdFA0fIWcmrYeAYTERFRrRKHHYU5acjN2AObJQ+KooXJPxIGc5inQyO6YC++CMyc6ezdmWrHzp07cXlMS5QUnoaIHVqtAUbfVtD5RuPnVRvxz9vvRHx8PG688UZ1maVLl+Khhx7yYNSN24IFwA03AF984elIGie2dBMREVGtsRSdQWFOmtqjsN4YDJN/hDqWLlFD85//AMePA3feyU6mLobNWghLUSbslnz4hnTC4cOHkZ2djSt694W3Txj0phB46X3hcDgwcdw4eHl54ZFHHoGvry/2798PALBarXjppZfw888/e3hvGq+9e5099A8a5OlIGicm3URERFRrLEVn1DG3TQFtoeMQYNTATZwIZGUBYbxRo8bstmJYis44k21roVpus+Rhx44dAIC2Ud2RW2xEbkY6duxYgbfeegtHjhzBjz/+iMBA53WjdevWOHbsGJYvX47hw4cjNDTUI/vTFEyY4Ey4y/RtR7WESTcRERFdNBEHRBzQaJxfKUz+kdB6GeFtbskehqlReOopT0fQcFhLclCUe0ztxwEAFEWBzhAIvSkEWi8T4uPjAQDR0dHQarXw9/dHhw4dcMstt2DixIkICgpSl+3Tpw9+//13fPjhh9iyZUud709TcuWVzhe5hyIi4ukgiIiIqOGxluSgMDsVWp0J5qBoT4dDRHVMHHbnj25/9yxuLclBXqbzlnCdwd85lrYxSP1R7kJ98cUXeOSRR/Dyyy/jgQceqLW4ieoaW7qJiIjogjjsVhTlHkFJ4WkAgDhscNitHNKHGqWiIsDLy/n6e6j5Jk3EAWtxNixFmbAWZ8Hg0xwm/7YAAC+9H0wBbaH3DoJGq7/kbUVHR6N58+a47777LnldVLX9+4HCQuCyy4BAPhVU69h7OREREdWIiKCk4C/kZOxUE26DTyj8Qrsz4aZGKyQE0OuBtDRPR+I5IgJrSQ4KslKQfWo78s8mwVJ0BiIOl2e2FUWBt09YrSTcAPDOO+9g3rx50HKgdLd76CGgd29g1SpPR9I4saWbiIiIqmW3laAgKxk2Sz4AwEvnA1NAW3jpfT0cGZF72f8eQtqrCX9rzsvcq9Z9ANBo9dAbQ6A3BsNLb6717aWkpGDo0KEYMmQIbrnlllpfP5XXvLmzd34/P09H0jjxmW4iIqJG6uWXX8bTTz9drnz+/PmYNm3aBa1LHHbkZOyCOGww+oXD4BMKReENc9T45eU5E28/P0DTBE55u60IlqIzzs4Q/67jhTlHYCnMgM4YDL3ROcSXwnvtiWqMSTcREVEjlZeXh4KCAvX9nDlzsHLlSmzcuBGtW7eudnlrcTa8DP7ql2ubJQ8araHWbh0lovrBYS9xDvFVmAmb1XnN8A3uCJ13gHO6wwZF0fCHNqKL1IRvlCEiImrcfH194evrvP37+eefx8qVK7F+/fpqE267rRiFOamwFmfDJ6AdDD7OsXF5KzlR4+Fw2GAtOgNL0RlYS3LOm6JA5x3gMuTfxfY+TkROrEFERESN3PPPP49FixZh/fr1iIiIqHQ+EQeK80+iOO8ERBxQFAUi9jqMlKh+sVqB5593Ps/95JOAweDpiGqPw1aMguzD6nsvvS/0phDovYPZMWITNHYskJMDvP66swdzql28vZyIiKgRq2nCXTrmtt1WBMA5xq7Jvy20OmNdhUpU7xQUAOa/+wnLzwd8fDwbz8UQccBWkgNL0RkoihamgLbqtPwzSdDqzdAbQ6D1akS/KNAFCw0FMjKAXbuArl09HU3jw5ZuIiKiRqqmCXdR3nEU5R4DAGg0Ohj9I2EwhdRVmET1llYLPPywsyM1fQPqykBEYLPkOcfSLjoLh8MKAFAULYx+bdRbx83BMZ4Mk+qRN98EcnOBGnT3QReBLd1ERESN0IsvvoiFCxdixYoVLgl3YGAgDGXukbVZ8pGXuRd6U3MY/drw+U2iBqw4Px3F+elw2EvUMo1GB70xGHpTCPtmIPIAJt1ERESNjIggICAAubm55aZt2bIFV/TsDLulAAaf5mq53VbC20uJGiC7rRgarV7tWbz0zhVF0UJvDHIO8WXwaxA9j2dnA/7+AEcjo8aGSTcREVETIQ47ivKOoTj/FBQF8GvWjc9sEzVADrvVOcRXUSZsljyYg6KhNwYDcP6AZrfmQ2dw7YG8vjtxAggPByZOBN55x9PRNC0OB7Bnj/MRiuho52MVVLuYdBMRETUBlqIzKMxJg8NuAQDojcEw+UdyzG2iKhw7BkREACaTsyM1TxKHHZbis87ntItzAJz7Cm/0bQ2jX7jngqsFDzwAfPAB4OcHnD7dsJ6hb+jy84G/R5dssB0G1nd8aIuIiKgRO3/MbQDQennD5N8WOu8Aj8ZF1BDYbICI8+VJDrsVOX/FQ8Shlnn93eu43hjc4H88S0kBPvrI+f/cXOCzz4Dx4z0bU1NiswFhYYDF0riGxatP2NJNRETUSInDjpy/4uFw2KAoCrzNreDt26pBPNtJVB/Y7c5WV4cDaNmybrbp7Hk8F3ZbEbx9wtTy3NN7IA67cyxtYzC0Xo3n0ZC77wa++cZ5vAGgbVvg4EHe5kyNB5NuIiKiRqwo7wRsJTkwBbRtVF/SiRobmyUflqJMWIrOwGG3QFE08A+7Qh1NwGG3QqPVeTjK2rdnD9CtW/m7Cb7+GrjjDs/ERFTbmHQTERE1Eg67FUW5R6A3NYfO4AfA2WqmsCtgonrJbiuGpfA0LEWZsNuK1XKNxgs67yAY/cIb/K3j1bn1VuCXX5y3OJfSaIBOnYDdu9mTOTUOTLqJiIgaOBFBSeFfKMo9CnHYodWZ4NesK5Ntokv011/Axx8DAQHOXrVrW3F+Ogpz0gAAiqKBzjsQemMIdN4BTeIxkD//BPr1q3z6zz8DN95Yd/E0VWlpwOOPA82bA2+/7eloGicm3URERA2YzZKPwpxU2CzOrpW9dD4wBbSDl97s4ciIGr4dO4BevYDWrZ09mV8sh8MGa9EZWIrOQG9qBoOpmbPcbkFB9mFnh2jegQ1qiK9LJQLExgKbN597lvt8Wi1w5ZXApk11H1tTExcH9OkDtGkDHDni6WgaJ/ZeTkRE1AA5HDYU5x1Dcf5fAASKRgujbxsYfELZwk1US4KCgHHjnC3dF0ocdlhLsmEpzIS1JAvnt3OVJt0arR6+wR1qKdqG5bffgA0bKp9utzsT8o0bgQED6i6upig8HHjrLcDIbj/chi3dREREDZClMBP5WQcBcMxtovpERFCYnQJL0VmInGvC1epMfw/xFQKtV9Mel0kE6NnT2YlaRa3cpbRa4Prrnc98EzVkbOkmIiJqIEQc6nOeelMIDCU50BuDqx1ze+NDD8GakIBreJ8mUa0TEdhtRfDSmQAAiqLAYbdAxA6t1gC9KQQ6Y4g6nYDly4GEhOrns9uBX391ztu9u5uDInIjtnQTERHVcyIOFOefhKUgA77Nu6pDCNWErbgYRUYjfACc2rIFLa+80n2BEjUhNmuhc4ivwkw47BYEhPVU7zaxWfIAAF56X0+GWG/93/85E++qaP7uR87hAB58EHjvPffH1VTl5Tk7DfT1BUJDPR1N48SWbiIionrMWpKDwuzD6nBClsLT8Da3qPHyWyZPxgAAAuDg+PFouXevewIlaoR+/x0YNszZyrphw99DfBWdcQ7xZS1U51MULezWQjXpZrJdtf/8B3joIcBqdb4sFmDXLuCFF4CXXwYCA89Ns1qBwYM9HXHj9tNPwF13AYMGAWvXejqaxolJNxERUT3ksFtQmHMElqJMAM4Ol0x+EdCbQmq8DltxMSIXLYIAUAD027cPJ7duZWs3UQ2VlAD5+UBhIWApOov8s0nqNEVRoDMEOm8fNwQ0qZ7HL1WzZsB117mW+fk5/73rLiAyss5DavLMZueL3INJNxERUT1TXHBKHXMbALx9wuDtF35Bt5UDf7dy22zqewVs7SaqCXHYYSk+i759tDh0KAheXoCXwQ+KooGX3tfZl4Ix+ILrJFXOanX+q2d/kHXuX/9yvsh9eKUgIiKqZ+yWfIjDfkljbpe2cjsA/P1oJLzA1m6iyog4YC3OhqUoE9biLIg44KU347LLgv6ewwv+YVcw0XaT0qRbp/NsHETuwKsGERGRhzkcNkAEGq3z26bRLwJavRkG08WPuV22lbsUW7uJXFlLcmEpPA1L8Rn17hIA0Hp5Q+cdCBFR6yETbvdh0k2Nmab6WYiIiMhdLIWZyM3YhcLsw2qZRquDt0/YRSfc57dyl3V+azcRASX56SgpzIA47NBo9fA2t4Rfsy7wD+2Boydb49//VvDDD56OsvGzWJz/Mumue99/D4wbB3z+uacjabyYdBMREXmA3VaMvMxE5GcdhMNugd1WCIfdWivr3jJ5MlrbbJV+yJe2dhM1JXZbEYpyjyHnr53qaAAAoDc1g8HUHL4hneAf2hMm/wj1kY7t24HJk4F//9tTUTcdfKbbc3bsABYtAv7809ORNF68R4aIiKgOiThQnHcCxfknIeKAomjgbW4Jb99WUJRL/y28ome5y+Kz3dRUOOwWdYgvmyVfLf9/9u47PrKyevz45947fZJMssn2nl22ALuUBXbpRREpilJEEERURFEUEEHBtdEUFUFAf6h8FRUUGwrYEJC6SO9tYZPtNWUmydTbfn88M3dmNlvZTCaZnPfrldfu3NzMPLObTObcc55zcukOwvWTAAiERxEIj9ri10+ZAqedBvPmDcpyR7RC0O2T6GTQve99EInAPvtUeyW1S76thRBCiEFiW2n6Ot/0smz+YCORxmkYvvCAPcbW9nJvTvZ2i1pmWxlS8TbMbKLkqIY/FCMQbiEQ2nKQvblDD1UfovJMUwXc73JXjdgFhxyiPkTlSNAthBBCDBJdD+Qbpu38zO0dYedyZXO5t6WQ7V73zDOM33//AV2HEIPNdWwcO4fhVxewdN3vZbZ9gXoCkRYCoWavWaEYenI5KS0XtUuCbiGEEKJCXNcll+4kEG5G0zQ03SDaPAfdCFSkC7KZSmH7fDiRCIZhFI8nEuiOg9HUVLa2RCpF36pVIEG3GIZc18HKJvLl413oRoDY2L0B1M9a00wMfwTDF6ruQsUOMU1polYtnZ3q3z8Wg/DAFV6JEtJITQghhKgAK9dHb8erJLvfJpva4B33+SMVGzsUamxkajqNkUhAV5f38eTcuSwNh8uOad3dtGSz7HbSSRVZixCVYuV6ScXbSax/nt7ON8mmNuG6Nq7rlDUjDIRH7XLA/fOfw7hxcP75u7pqsT0SdFfPl74E48fDT39a7ZXULsl0CyGEEAPIcSwyPavIJDcALppuoMk1biEGRCrRTqZvvXdb1/0Ews0EIi34AvUD/ni9vbBhA/T0DPhdi81I0F09rqv20geD1V5J7ZKgWwghhBgguVQHqZ4VOLYaOBsItxCJTUU3ZKOiEDvLtjJqe0aoCcMfAVTzwWxyU77jeDO+YGxAuv5vzcc/Du99ryq7FZUle7qr54471Ixu1632SmqXBN1CCCHEAEglVpDpWwuA4QsRaWzFH5R36kLsDMc2S0Z89QLgOhaR2FQAfMEYjeMWoOnGtu5mwLS0qA9ReZLpri5Nk87xlSRBtxBCCDEAAuFmssn1hOonEqqbUNHsmxC1xHUdL9A2MwmgmG7zB2P4AnXebU3Tt9+aXwxLEnSLWiZBtxBCCPEumJk4tpUmVDceAF+gjti4BRVrkiZELUsnVuA4qgmaL1CnZmmHR6Eb1d1k+uyz8NJLsMcesGhRVZdS8yTorp7vfQ/WrIHPfAb23LPaq6lN8s5ACCGE2AmOnSOVWE4u3YmmafiDMW+/qQTcQmyd67pYuR5yqQ5sM0n96HlqlJ6mE6wbD65DINKC4Rs6M4v++le4+mq44AIJuitN9nRXz113wQsvwHHHSdBdKfLuQAghhNgBruuSTW4g3bsS17EBjWB0LJo0SRNim6xcn1c+XmgyqI734g82ABCun1it5W3T7NlwwgkSiAwGyXRXz2c+A6tXw8yZ1V5J7ZKgWwghhNgOK9dHKt6GZSYBVf4aiU0v22sqhCiXy3STTizHtjLeMU03CIQqN+JroJ11lvoQlSdBd/V89rPVXkHtk6BbCCGE2AbHsejtfB3XsdF0g3DDFIKRsWjS5lWIMo6dw3VdDJ/ah61pBraVQdN0/KEmAuEW/KFGaTIotsg0pbxc1C4JuoUQQoht0HUf4fpJWLmkzNwWYjOOY2GmO8mlOzGzCYLRsUQbWwHwBeqpa9oNf6hp0EZ8ieErl5NMd7V0d6t/+0gEdLkmVhHyzyqEEEKUsK00vR2vY2YT3rFQ3QTqRu0mAbcQgOvY5NKd9HW+RWL9syTjbd7Pi1uyZ1vTNAKRlmEdcC9eDDNmwE03VXsltU/Ky6tn2jSor4d33qn2SmqXZLqFEEII1KzgTO8aMn1rcF0X17Hwj5lf7WUJMeT0dLyKbaa824Y/kh/x1YzhC1VxZQNvwwZoa4NEYvvnil1jmlAnbTKqIpe/Vhas7oS+miZBtxBCiBHPzMRJJdq9hk/+YCORxulVXpUQ1Wflesmluwg3TPb2YvtDTbiOTSDSQiDcgi8/Mq8Wfe1rcM45MGlStVdS+2RPd/X09UE2C6HaumY2pEjQLYQQYsQqnbkNoBsBIrFpBMLNVV6ZENVjmSly6Q7MVAe2nQXAF2wgEGoCIFw3kUjDlGoucdBMn64+ROXJnu7qMQy1n1tUjgTdQgghRiyVxesENEJ1YwnVT0bX5VejGHkc2ySb2kgu3VFWOq5pBoHwKHS9GA0N5z3aYuiSPd2ilsk7CyGEECOK41heYB0INxOqm0Ag3Cwzt8WI5jgm6Z6VgGqA5g82EYi04A82jugg+/HHYfVq2G8/mDmz2qupbRJ0V0dfH3zzm2o/99VXg0zDrAwJuoUQQowIjmOR7lmJme6iYezeXuAdiU2t8sqEGDyuY5PLdJFLd6DrfqJNKpL0+SMEI2PwBerwh5ul4iPvhhvgz3+Gn/xEgu5Ky+VkT3c19PTA9derEvNrrqn2amqXvKIKIYSoedlUB+nEchzHBMBMdxGMjqnyqoQYHK7rYGbiap92phvXdQDQNJ1IbLqXyY42zajmMoekPfeEri5ppDYYJNNdHZEIXHopOE61V1LbJOgWQghRs2wrTSre7s0QNnxhIo3T8QdjVV6ZEIMj3buabN86HMfyjhm+kBrxNcxnaA+Gb32r2isYOSToro7GRvje96q9itonQbcQQoialO5Z5c3c1jSdUP1EQnUTvLFHQtQiK9eH4QuXBdOOY6EbAW+WtvQvEEORjAwTtUyCbiGEEDXJsXO4ros/1EgkNh3DJwNIRW2yrTS5VIfqPG5lqGvajUCkBSC/T7seX6ABTTokiSFMRoZVh22rCx7BoDRRqyS53C+EEKImOHYO28p6t8MNU6gbNYv65rkScIua49g5Mn3r6Nn0CokNL5LuXY1tZdA0HcfOeefpRgB/MCYB97t0zjkwfz78+9/VXkntk/Ly6liyBMJhmDOn2iupbZLpFkIIMay5rkM2uYF0zyp8wXrqm+cCoBt+AuHmKq9OiIHn2Dni658H3PwRDX8opsrHQ6Nkn/YAWrYMXnkFenurvZLaJ0F3dWTz16qltL+yJOgWQggxbFm5XlLxdiwzCYDrWGVzuIUY7lzHxszGsa0M4fqJgMpeF/ZlByItBELN6IZEK5Vw442qe/mee1Z7JbVP9nRXx5FHQiKhysxF5ci7EiGEEMNOYeZ2NrkBAE03iDRMJRAZI2W0YthzXQcr20Mu3UEu3YXr2miaRjAyxguu61t2l6aAg2Cffaq9gpFD9nRXh2FAQ0O1V1H7JOgWQggxrFhmir6O172Z28HIaMINUyXTJ4Y9y0ySS24kl+70vr8BdCPoNUYrkIBb1BLXVXOi33wT3n4bdtut2isSYmDJK7YQQohhxfCF0HQDwxemvmV3ok0zJeAWw5brut7frWwvmeR6HMdE1/2EouNoGL0njeP2JdIwRb7Pq+Chh+Dee6Gjo9orqV1dXXDsservN9wAs2bB+98P3d1VXdaI8dxz8I1vwF13VXsltU2CbiGEEEOa69hk+tbhug6gMnx1zXNpGDMffzBW5dUJsfNsK0u6dw2JjS+RS230jgfCzQQjo6lvnkNs3L5EGqfjC9RXcaXiggvggx+El1+u9kpq1xlnuDzwgFt27IEH4PTTq7SgEea55+DKK+F3v6v2SmqblJcLIYQYssxMN6nEcmwrA0CobjyAjAATw45jm+QyneRSHVi5YivsXLqTYHQsoDruR5tmVmuJYgvmz4e6OmhsrPZKaoe6kLqGZLydV1/s4N//PrnfObatxrRJqXnlzZ0L55+vvtdF5UjQLYQQYshx7CypxApy6U5AdWvWjWCVVyXEznNdl2TXW+QycYojvsAfjBEIN+OXsXZDmmT/dp1jm6R7VpKMt5GKt5HuWYFjqzlVb7627eHQL78sQXelHXqo+hCVJUG3EEKIIaN05rbr2oBGqG484fpJMntYDAuu62Dl+vAHVTtgTdPy+7ZdfIE6NUs73IxuyGwkUZtsK00qvpxUoo1kvI2M93pepPvCRBuns8+iPbZ5X2efDUuWwBe+ANOnV3LVQlSWBN1CCCGGjFS8nWx+j6svUEeksRWfP1rlVQmxba7rYuV6yKU6MDNdOI5F47h9veqMcGwKEW0ahi9c5ZUKMfDMbA+pRDupfCY707eO0qoOAF+ggUhjK9HGViKNrQSjY9E0nSnAMceoPdylc6INAw45BA48EG69VTVY+9CH4MIL1XGZDDlwXFf+PQeD5pa2zRRCCCGqqDAOLNwwWWZuD6BH99yT0W1tzE2lqr2UmmLl+silO8mlO3DsnHdcNwJEm2ZKo78acOyxEI/Db34DM2W7Pa7rYma6SMaXkYqrQDuX7t/aPRBuIdLYSqRxOtHGGfhDo7b6et7drZqm/fvfxWPHHKNK+5uaIJmE3/5WBd5vvgn77gtf+hKcdhoEd3LXUToNYbn2Veayy+CHP4RLLoHvfrfaq6ldkukWQghRNdnUJhw7S7h+EgA+f4TYuH1lBrEY8nLpTvq6lnq3Nd0gEGomEGnBF2iQC0Y14tln1biwTKbaK6mOwpafVLzN25Nt5Xo2O0ttA4rks9iR2HRve8WOaGqCf/1LNU175x11caN0H3c0CuedB+eeC//5jwq+zz4bLr1UNQD77GdhzJjtP05vL8yYoTLmt94q2d2CbFZVGejya7eiJNMthBBi0NlmmlSiHTObADQaxszH549Ue1k1SzLdu8axc+TSnWi6n2CkRR1zLHo2vIAvGCMQbsEfapSLRTXo/vtVdvTII6Fhx+PIYct1bNK9q70gO51ox7bSZedomkGoYbIqFY+1EolNw/APbvr4jTfgxz+G229XAePHPqay33vttfWvuflmNQIO4Prr4aKLBmetQ11vL/T0QCSiLoCIypCgWwghxKBRo2LWkulbg+u6aJpOqH4SobrxErBUkATdO89xLMx0J7l0Z/7iEPj8URrGFOfquK4j37diWCtMikjF20kl2kglVuA6Ztk5uhEg3DDN25MdbpiCbvirtOJyXV3wi1/ATTfB6tVwxBFq3/cJJ6h94QWOo7Lcy5er25oG990Hxx1XhUWLEUmCbiGEEINi85nb/lCTypDIzO2Kk6B7x+XSXeRSmzCz3ZS+RfIF6gmEW/INoKQuVQxPlpkinWgvju/qXQ2uU3aO4Y+oDHZjK9HG6YTqJg756RGmCXffrUrPn3wSWlvhi1+Ec85RFQr33Qcf+EDxfE1Te7uffhr22HYDdSEGhATdQgghKs5xLBIbnsd1bHQjQCQ2jYDMJx40EnRvnaq4KAbRfV1Lvfnwhj/ijfiSi0Mj04MPqgDt4IN3vmnXUGBmE2X7sbPJ9f3O8Qcbi/uxG6cTjIwZ1hUcTz0FN94If/yjCqw/9SkViD/7bP8O6RMmwPPPQ0tL9dZbbX/6E7S1wfvfD/Pnb/988e5I0C2EEKIiNg9mMsn1OFZWZm5XgQTd/Vm5XnKpDnLpTupb9vD2pJqZOGauh0C4RfoMCAxDlSavXQvjx1d7Ndvmui65dIc3uisZb8PMdPU7LxAZ443uisSmEwiPqsJqK2/1avjJT+CWW9Se5S0xDFi4EP77XwgEBnd9Q8UHPqAqAX7+c/j0p6u9mtol3cuFEEIMOCvXSyreTrhhCv5QIwCh6LjqLkqMeJaZIpfuwEx1YNtZ73gu00nYrzro+0ON3vesGNlcF+bNA8samgGZ6zpk+tZ6o7tSiXasXO9mZ2mE6ieqUvHYdCKN0/EF6quy3sE2aRJccw2sWaNGjjlO/3NsG/73P9UB/bbbRmZH8/e+F5qbYfbsaq+ktkmmWwghxIBxHIt0z0qyyQ0A+AJ1NIyeV+VViZGe6batNH1dS7HN4vPXNINAeBSBcDO+YGxYl9OKkcFxLDI9q1SpeKKNVHw5jl0+y0zTfYTrp3j7scMjvG/Gpk0wcaLa8709P/whXHxx5dckRibJdAshhBgQ2dQm0okVOPnOt8HIaMINU6u8KjESObaJY2fxBeoA0I0gjp1F0zT8wSYCkRb8wUbZ5iCGNNvKkE6sIJnINz3rWYnrWGXn6EaQSD6DHWlsJVw/ech0Fh8Kfvaz8n3c2/LlL6ts7/HHV3ZNYmSSTLcQQohdUj5zu9D5djr+4AgYajtMjIRMt+vY5DJdqnw8k8DwBYmN3cf7vJntwfBH0HXJN4ihycr1kUq05/djt5PpW7OFzuJ1+f3YKsgO1U2QKo2tyOVUifmmTTv+NboOTzwBixaVHz/ssMN47LHHADAMg9GjR7No0SK+8pWvcNBBBw3gqkWtkt88QgghdoltpTGzCZm5LQad6zqYmXg+0O7GLQlQNM3AsU0v6ycXgcTOSiZV1tMw4F//Av8AJ5BzmW6v6Vkq3k42taHfOf7QKK9UPBJrJRAZLSPrdtB//7tjAXcoBJGI+n82Tdiw2X+D67q8+OKLfPe73+Xss88mk8mwfPlyfvrTn3LYYYdxzz33cNwwHvi9337wzjuqmdohh1R7NbVLMt1CCCF2mmPn0I1iZ6F072oC4ZYRvXdwKKvVTHcy3ub1DwAwfCE14ivSguELV3FlohZ0dakGU6CaqRm7sBvBdV1yqY3e6K5UvB0z293vvGB0XEnTs1Zp6rcLEgn4wx9UE7z6evXR0FD8e3091NWBbzspyKVLlzJ79myWLFnCgQceWPa5o446iu7ubl544YUKPpPKmjkTli1TGX5J2leOZLqFEELsMMfOkkosx8r20DBmby+LGK6fVOWViVpn5frIpTsJRFrw+aMABMLNmJluAuFmNeIrv4dbiIEQjcJdd6mAW9/J4h3Xscn0rc03PVMl47aZLD9J0wnXT8rvyVYl44XvbbHrYjE499xdv5/nnnsOwzDYa6+9+n3u6KOPZvHixTiOg76z3yRDxMMPQyoFkydXeyW1TYJuIYQQ2+W6DtnketI9q3FdG9Cwcj0Ews3VXpqoYbaVzs/S7sC2Cl2aXXwxFZj4Ag3Exu4r5baiIoJB+MhHduxcxzZJ96xU+7ETbaqpZMlYOlCdxSMN04pNzxqmYviCFVi5GEjPP/88c+bMIRKJ9Puc3+/HMIxhG3CD2vcuKk+CbiGEENtk5XpJxtu8cUu+QD2RxlZ8/v5vQITYVeoCzwZy6Q6sXJ93XNN0/KEm/MHGkmMSbIvqsK00qcRyb092umdV/oJkke4LE4lNV/uxG1sJ1U+SRn7D0HPPPce+++67xc8tXbqUOXPmDPKKxHAkP/lCCCG2qnTPrK77CDdMIRAZI8GOGFCu65Q039PI9K3FsXOAhj8UU/u0Q6NkxJcYVOk0vPCC2hO89/ze/H7sdlLxZWT61gHlbZF8gQYvix1tbCUYHSdNJWvACy+8wAc/+MF+x9PpNH/729/4/Oc/D8DChQu55ZZb2G+//Tj77LNZtGgRn/vc5wZ7uTvtxhtVk8CPf1ztcReVIUG3EEKI7SrM3Jb5r2KguI6NmY2TS3Vgm0kaxu6DpmlomkaobiKg9mzL95wYbK7rYma6eP35NRx8yHzqohn+d8+3+p0XCLeoIDumgmx/uFkuSNaYtrY24vF4v0y34zh87nOfw+fzccEFFwCwePFirrnmGg4++GDq6uqGRcDtunDhhervJ58sQXclSdAthBDCY5sp0HSvC3m4YQqBcIuMWxIDwnUdrGwPuXQHuXRXWTmulev1vs9CdeOqtUQxAhW2NKTi7STjy0gl2rGyCTatHcWUieOJhFXVRahuvBdkRxpb5XVxBHjuuecAGD9+POvXr6enp4fnnnuOH//4x6xYsYJ7772XpqYmAE444QS+/vWv09fXxz/+8Y9qLnuHOQ6ccQZks6pxoKgcCbqFEELgOjbpvjVk+9biCzRQ37I7oErKdXljKQZALt1JKt6O45jeMd0IEoi0qM7j0iNADBLXsUn3riaVKIzvWo5tlY/T0zSDWXPqefrhp1Rn8diVGH4ZQzfSPP/88wDMmjULwzCIxWLMmTOHE044gc997nOMGjXKO/fpp58mHo8za9YsfNubQzZEGAbccUe1VzEyyJxuIYQY4XKZbtLxdux8p11/qIm6pt1k/2wNqcacblU1oXnzsq1cLz2bXkXX/fjDo/IjvuqlHFdUnGPnSCVW5IPsdlKJFbhOruwc3QgQbpjq7ccON0xBNwJVWrEYbtasWcOxxx7L3/72N0466STuvPNO5s6dW+1liSFkeFyGEUIIMeBsK0s6sZxcpgtQWcdIbBqB8KjtfKUQW2Zb2XzpeAe2mSIYGUO0aQagut7Xt+yeD7SluZSoHNtMkUq0e43P0r2rwHXKzjH8EW8+drSxlVDdRLnQKN6VdDrNKaecws0338z06dO59NJLueqqq7hDUsiihGS6hRBiBLJyvfR2vJ7vGq0RjI4nXD9J3nTWqEpmuh3bJJfpJJfqwMr1esc1TSMQbiHaNHPAH1OIUmY2oeZj54PsbHI9/TqLB2NEG1vzpeKtBKNjtnvx58034ctfhokT4Wc/q+ATEKJKli+H/feHUaPgrbeqvZraJpluIYQYgQx/FN0Iouk+mbktdklvx2vYVtq77Q/GCISb8YebZSaxGHCu65JLd+T3Yqtstpnp7HdeIDLa6yoeaWzFH2ra6a0MnZ3wj3/ATLluJGpUOg0dHWDb2z9X7Br5bSiEECOA41hk+9YRqp+Ipulomk59y+5oul/21Iod4roOZiaOmeki0tjqZQkD4WbMTHe+IVozuhGs8kpFLXFdh0zfOhVkJ9pJxdvKKioUjVD9RCKx6fkgezq+QP0uP/bMmfDLX0pXZ1G7Wlvh1Vcl6B4MUl4uhBA1LpvaRDqxAscxiTRMJVQ/odpLEoPs3ZaXu66Llesll+7ATHfiOBYAdaNme3v/XdeVCzdiwDiORaZ3FcnufJCdaMexMmXnaJqRb3o2PV8uPs0bcyiEEEORZLqFEKJGFZoJmdkeQDUOMgJ1VV6VGA5sK0s2uZ5cugPHLnZ51o0AgXCz15EckIBb7BLbypLuWe6Viqd7VuDmL+4UFJo8RvKl4uH6yeiGv0orFkKInSdBtxBC1JjSmdsqC6kTrp9MsG6cdI0WW6Wa6uW/P1yHTN9aADTdIBBqJhBpwRdokCBb7BIr15cvE1el4um+NVvoLF5HpHG6tx87FB1flSaPiQS0t0N9PcyYMegPL0TFrVoF//wnjBsHH/xgtVdT2yToFkKIGpNKtJNNbQIgEBpFODYNwyf7bEV/jp0jl+4kl+5AN4LUjZoFgOEPE6qbgC9Qjz/UKBdrxLtmZrq9ruKpRBvZ5IZ+5/hDTV5X8WjjdAKRMUPi4s6jj6pA5IAD4Kmnqr0aIQbeyy/DeefBfvtJ0F1pEnQLIUSNCdVNxMr1Em6YKjO3RT+OY2Gmu9Q+7WwPhdFKmpYuy3ZHYlOruEoxHLmuSy61kWQ+i51KtGFmuvudF4yOLQuy/aGmKqx2+/x+lQFsaan2SoSojJYWFWxLh/7Kk0ZqQggxjLmuQza5HsexiDRMKTkuza1EUaGR2tR1b5BNrqP0V78vUE8gXOg8LvtkxY5zHZtM31pSiXYvm22bfeUnaTrhuonefuxIbBo+6S0hhBhhJNMthBDDlJXrJRlvwzZTgEYw3IKRn7ctAbdwXQcr21M2OknX/biui+GPeIG2dH0WO8qxTdI9K73RXanEchw7W3aOpvsIN0z1RneFG2R7ixBCSNAthBDDTOGNbza1EVCBVLhhCnpJR2kxchVGfOVSnTiOSbSpWDcYiIzGF2rEl784I8S22FaGVGK5CrDjbaR7VuK65QN9dV+ISEyN7oo2TidUPxldl7eXQghRSl4VhRBiGMkmN5LuWYnjmAAEI2NUwC1lwSOababygXYHdknmUWW2i0GSbvjle0VslZXr9UZ3peJt+Q725bsQfYF6r1Q8Gmut6akIDz8MP/kJLFgAl11W7dUIMfBuuw2uvBI+/GH40Y+qvZraJkG3EEIME45tkupZjuvYGP4Ikdh0/MGGai9LVJlj50hsfMm7rWk6gXAzgXAzvmCsZgMisWtc18XMdBWD7EQbufzUg1KBcDORmCoVjzTOIBBuHjHbV5Ytgz/+ETKZaq9EiMro6oIVK9SforIk6BZCiCGstJu0bviJNEzDdS2C0drNLomtc2yTXKYTx8p63cV1I4A/H1wHwi34Q01VmWkshjbVdHGj11U8GW/DyiY2O0sjWDeOqBdkt+IPxqqy3qHgwAPhpptg2rRqr0SIyjjrLDj8cGgamgMEaop0LxdCiCEql+4ilVhOJDZNRn+NYK5jk8t0k0t3YGXj+c7jGo3jFnil4tvrVl/oXj43lRqkVYtqcx2bdN8aUvFlakZ2vB3b2uz/X9MJ10/O78dWncUN2e8vhBADTjLdQggxxNhWlnRiObmMqvfKJtdJ0D0Cmdkessn1mJluXNfxjvv8UQKRFigJskdKue9IMWnSJC6//HLOP/9879iSJUt473vfyxtvvMHUqf1nqDt2jnTPSm8/diqxAtfJlZ2j6QEisalEGqcTbZyR7wcRqPjzEUKIkU6CbiGEGCJc1yHbt55076p8WblGsG4C4bqJ1V6aGAQqg+162wYcK00u3QmA4QvlR3y1YPilS32tW7RoEc8884x323VdLrzwQi688EIv4LbNFKnE8mLTs97V/TqLG75Ivkxc7ccO102UrQc7oasLOjshFoMxY6q9GiEG3lNPqd4Fe+0Fe+xR7dXUNgm6hRBiCCifua06BEcbW6XUcwSwcn3k0p3k0h2E6iYSqhsHgD80ilBdmkC4BV+grsqrFINp0aJF/OpXv/Ju/+Y3v2HlyhWc/6njWPfWX0gm2sj2radfZ/FgLF8mrvZkB6NjpffDLrjtNrj0Ujj7bCj57xCiZvzyl3DrrfDtb0vQXWkSdAshxBDgOBa2mVIzt2NTCUZGV3tJooLsfBY7l+rAttLecTPT7QXduuEnEptWpRWKalq4cCGXXXYZq95+mGzPCi695It87qyFJFbcXXZeIDKaSEyVikcap+MPjZKtBgPI54OGBojItU9Ro2bPhve8B2bMqPZKap80UhNCiCpwXRfHypSVCmeS6wmEmmWOcg1zXZfejtewcr3eMU3T8Yea8p3HGyuSmZRGagPrT3/6Exs3buTggw9mzz33xDB2rWS7sLUkmVCl4t0blrLg/dfyi++fwv+eW8FDS5bxp1s/TqRhYrHpWeN0fIH6AXpGQgghKkky3UIIMcgsM0Uq3oZtpYiN2ccLskPRcVVemRhojmNhZXu8RniapqHpPkDDH4wRiKgRX7ouv46Hk4ceeohf/OIXmKZJQ0MDBx54IIcccggHH3wwBxxwANFodJtf7zgWmd5VJOPt+aZn7ThWcRi0ocHsGWN4+OmN3HX3i9x150/Y/YjTMXyyn18IIYYjyXQLIcQgcR2bdO9qssl1+RFPOtFRswiEZEBmLXEdGzMbJ5fqwMx247ousbH7YPhCgCot1zTfoFY0SKZ74KVSKZ555hmeeOIJHn/8cZYsWUIikcDn87HPPvt4QfjBBx/M6JYm0j0rSMXVfOx0z0pcxyy7P90IEo5NVaXiselctvh6fvKTn3LCCSdwzz33VOlZCiGEGAgSdAshxCAozNx27CwAgdAowrFpGL5glVcmBoLrOljZHnLpDnLprrIu0oY/QrSxtaqlwBJ0V57jOLz22ms88cQTPProwzzx+GOsXLUWgEjYz7mnH8C5H1vonW/4o0QaW/N7slsJ1U0o6yx+22238bnPfY5XXnmF2bNnD/rzEfCHP8A//wnHHgsf+Ui1VyPEwDvnHHjmGbjuOjjuuGqvprZJPZsQQlSQ67oku5eSS6uZ27oRJNI4XbLbNcZMd9HX/bZ3WzeCBCJqxJdPOtDXPDPTTdeGt1j2yn945+UlrF72Jl1dHd7n0xmTaH2M2NgF+RnZrQQiY7bZ9OyOO+7g/PPPl4C7ip5+WnUtHz1agm5Rm5Ytg9deg2Sy2iupfRJ0CyFEBWmahm4EymZuy5zc4c02U+TSHehGkGB0LIDal20E8Yca8yO+6qWLdI1yXZdcahPrV7/C44/+h8ef+B/PvvAOL7+xnpxpE40E2HuP8Zx8/P7867+vYzkuf/7j7zj8yPdv974dx2HTpk3cdtttvPXWW9x9993b/RpROccfrwLuAw6o9kqEqIybblKz6GVcWOVJebkQQgwwM9uDrvu9zuSOY+HaOZm5PYzZVjZfOt7hzVI3/BFiY/aq8sp2jJSXv3uu65DpW8vKZc/zyMP/4Yklz/DsS8t5652N2I7LqMYw+86bxKL99+DQQw9lv4VH8uSzyznjzE8wZcoU7r33XqZNm7ZDj/Xwww9z1FFHMWfOHH75y1+ycOHC7X+REEKIIU8y3UIIMUAc2yTds5JsaiP+YAP1LerSsa77QLpTD0vZ5EayqY2bjfjS8AdVRls1xJOMdi1xbJN07yreevVJHn3kQZY89QLPvrSS9pVqi8jEcQ0smDeZM099D4cdcQTz9z6USOM0r1HezTffzJe+9CWOPfZY7rzzThoaGnb4sY844ggcx6nI8xJCCFE98i5QCCF2kSo33Ui6ZyWOYwGgGyFc16nIzGVROa5jl5X/m9mEF3D7gzEC4Wb84WYZ8VVDbCtDMt7Oi88+wmOPPsL/nnmZ515exbqN6v99xtRmDth7Khd+9iQOO/woZu2+iFDD5H7fA6ZpcuGFF/KTn/yEiy66iO9///u7PL9bVFdXF2Sz0NAA25kCJ8Sw9I9/gGXBYYdBY2O1V1Pb5F2DEELsgsLM7UJgNhQ6VYud47oOZiZOLt2BmemmfvQ8r/lZMDoWXyBKINyMbkin+Vpg5Xrp6Xibp598iEcfe4ynnn2dF15dQ3cijaFrzN1tDMccuQeHHHQAhx7+Xia37kuobvw2L6DF43FOPfVUHn74YX72s59x7rnnDuIzEpVyySXwy1/CtdfCV79a7dUIMfA+8xlYswaeew723bfaq6ltEnQLIcS7ZGZ76O14HVAzt8MNkwlGx0l2exhwXRcr16sC7XSnV6EAqhN1Iej2BxvwB3e8PFgMLa7rYma66Vz3Ok88/gBPPLGEp55bykuvryWVNgkGDObPHc/pH17EIQcv4pDDj2bMxD0JhFt2eNvAO++8wwknnMDGjRu5//77OfLIIyv8rMRg0TQwDPUhRC1asAAmTYJYrNorqX3SSE0IId4l13Xo2fQKhi9EuEFmbg8Xtpmmt/N1HDvnHdONAIFwc77zeF0VV1cZI6WRmus6ZJMbWb/qZR59+H4eX/IUz77YxqtvbcA0beqjQfbZcwIHLJjLIYccxIEHv5emsXPwB9/dO861a9cyb948WlpauO+++9htt90G+BkJIYSoBZLpFkKIHWRbWbJ9awnHpqJpOpqmU9+yh+zvHeJsK4NjZ73ASvcFwXXQdINAqJlApAVfoEEaog1DrmOT7ltD+9JnefTh/7Dkf8+pzuLLNuG60DIqyoJ5E7n8wgM59NDDWHDAEdSNmjlgs9NDoRCf//znueiii2hqahqQ+xRCCFF7JNMthBDboUYGrSPTuxrXdQg3TCZcP6nayxLb4Ng5culOcukOrFwfhhEkNq64Yc0ykxi+8IjZClArmW7HNkkllvP6K0/y6MMP8uTTL/LcSytZsSYOwOQJMRbMn8yBB+zN4Uccxe7zDybaOFX24wshhKgqSc8IIcQ2mNkeUol2bzazP9hAINRc5VWJLXEcCzPdpfZpZ3uAwjVlDd0XxnEsryrB55dWxMOBbabp617GC888zKOPPcr/nn6F515excbOJJoGM6e1cPABM/jKogUcfsR7aZ19AOH6SWUd6IV4t376U3jtNTjjDDjooGqvRoiBlcvBwoUQDMKDD0qH/kqToFsIIbZAzdxeQTa1CQBd9xOOTSUYGV3llYmtSfesJJvc4N32BeoJhFvyncf9VVxZBZkmrFql2s8aRnlksHgxbNyozlm9Wr3DOussCIdV55xvfKN47qOPqj/HjoUJE6C+Ot33zWwPiU1v8b8lD/L4Y4/z1HNv8Pyra+jpzeIzdPaYNZYPvG8vDj54IYcffjQTpu1NMDp2xFQsiMH197+rj333laBb1J5MBl58Uf1dmgVWnpSXCyHEFvR1LSWX7gTU2KhwwxTZuz1EuK6Dle0hl+7Ij/RSAWKhKqEQaBu+UJVXOsBcF372M/Uu6Z13YNkyWLkSbFt9fv/94emni+dPnw7LlwPwKDAamFv43Ny58PrrxXPnzYNXXy3eHjcOZs1SH3PmwMUXq1bOA/p0XMx0J5vWvc4Tj97PY48/yTMvvM3Lb6wjnbEIh3zstfsE9t9nNw455CAOOfRoWibsjj80Svbfi0Fxxx3w1lvwoQ/JOCVRe0wTHnpIzaI/4QTQ5dplRUnQLYQQW2BbaZLd7xCJTZOZ20NEYcRXLtWJ45gAhKLjiDROr/LKKiCbhcceg/Xr4cwzi8enTlWBdqlQCCZPhr32gj/+sXj8xhuhpwcCAR790Y8Y3dXF3GuvhXQamprg858vnnviifDGG7Bhg/qaUpsH6NddB1OmwPvfD42NO/yUVGfx9axuf5FHH3mAJ554imdfauP1pRuxbIeG+iAL5k1i4YK5HHLoISw86D3EWmbJyDYhhBDDngTdQogRz3Vs0r2rwXVqM4AbxlzHJtO3hlyqA9vOesd13Y8/PIpgZHTtXBTJZuGee+A3v1Eb7FIpGDVKlYgXav+uvFIdnzMHZsyA1laVld5OimKnGqklEvD227B0qfoYMwbOP199zrLUQNdUCnw+OPRQFbCfeSY0l/c6cByLTO9qlr35FA8//BBP5juLv92uKkjGttSx77xJHLhwHocedjj7LDiCuqZWDH94p//phBBCiKFMgm4hxIiWS3eRSrR7M5tjY/aWN/1V5jq21wjLdV0SG57HsXNomp6fpd2MLxirnX28y5fDj34Ev/0tdHUVj48bp7LJP/rRTmWUt2TAupf39sJ3vqM2ur7xRvF4MIj7kVNInf1hXiHOI4/8lyeffonnXl7F6nUJAKZNalKdxRfuw+FHHMWcPQ8iEptau/vtxbDX06N2dUSj6hqTELWkpweeeALq6tT1U1FZEnQLIUYk28qQSizHzHQDYBhBwo3TCYRk1m41OLZJLtNJLtWBY2WIjdvXC6qzqU1oaPhDTbXZlfqzn4Vbb1V/nzgRPvEJOPVUmD9/wPZRV2JkmPXmq2T/cDuv3/47nmxbw2PAIyE/mzImmgazZ4xm/72mceCB+3PY4e+hddb+hOom1Ob/oahJBx0ETz4Jf/2rKugQopa88ILqVTB+PKxdW+3V1D65bieEGFE2n7mtaRqhugmE6iZKMDDIXMcml+lWs7SzcUqvAdtm0isbr8mO8Y5TLAlfvFh1IL/gAjj66CHbRtbMxOne8CZPLnmQxx9/gqeefYMXXltLXzJHwKezT12Qk98zn4PeexiHHn4046bMIxgZK03PxLBlWerPIfojKcQuCQRU0N3SUu2VjAyS6RZCjCiObdKz8UUcx8IfjBGJTZdy8irIpjpIxZfhuo53zOePEogURnwFq7i6CnJdFWS3t6ty8kEKSHc20+26Lrl0BxtWv8xjjzzAE0/8j2defIdX3lhHNmcTCfvZe48JHLDvLA495GAOPOS9NI+bSyA8qsLPRIjBY1lqOIDPJ4G3EGLXSNAthKh5jmOVjfvKpTpwcWszgzoEua6LletF0334/BEArFwfPZtewfCF8iO+WkbGxY+f/KTYNfyRR+CwwwblYZ+YOpWJa9fCP/7BtKOP7vd5VQGyllVtz/Poww/w+JKnefal5bz59kZsx6UpFmbfeRNZuN8eHHrooRxw4FE0NO+GL1A3KOsXQgghhjMJuoUQNct1XXKpjaR7VhJpbCUQbt7+F4kBY+X6yKU7yaU7cOwcwchook0zyz4/ooK211+HvfdWw1Gvuw6+8pWKP2T3smUsW7iQ/To7vWPPNjfT+tSTBJsNlr72Px595CGW/O95nn1pBW0rVSO38WPq2W+vySw6YD6HHnoEey84nEjjtNqbfS6EEEIMAgm6hRA1yTJTpOJtWLleAPyhJuqb51R5VbXPttIq0E51YFtp77imGwQjo4nERvBItiuugGuugfe9D/71r0EpLX+2pYW9OzvLGrhYwKN+nbNG1bF2g5rJ3TplFAv2msLBixZw2OFHMWuPRYQbppRViAgx0nzve2qgwOc+B9OmVXs1Qgys//4XvvENWLAAbrih2qupffLbVAhRUwoztzN96wAXTTMIN0wmGB1b7aWNCH2db3nBtqbp+ENNBMIt+EONtTPi69166CH158c+VvGA28r18dbdvynLcBf4gKNMhw/NnsDeXz2bw444mikz9lGdxUf6/5EQJX7+c1i2THUul6Bb1Jp16+DxxyFYoy1UhhoJuoUQNcPMxEnGl3kztwPh5vwcYPmNMtAcx8JMd5HLdFHXtJvX+T0QacHK9hKItOAPNUmmtFRDg/ozmx3wuy7Mm0/F20jG28ilNrL8n0+yx2bnucCNwP7AJ95zOvtf+I0BX4sQteLTn4ZNm9QkPyFqzaGHwp/+BM2y825QSHm5EKJmmJk4vZ1vYPhCRGLT8MvM7QHlOjZmNk4u1YGZ7fZGfNWNmiX75XfEZZepvdxHHQUPPviu78Z1XbKpDaTiKshOxdsws/F+58VfSXDwhbeVHbOAg4GngQP32otrbriBww8/vHJjvb75TdhzTzV3XAghhBihJOgWQgxbrutgm6myZly5VAf+UJPM3B5AtpUh07uaXKYL17G944Y/QiDcTCA8GsMn1QTbtXYtXHKJ2ig6efIOf5nr2GT61pAsBNmJdmwzWX6SphOun0SksZVIbDqRxun4/NEt7unOATfU1XHnjBm89NJLHHLIISxevJijjz56YIPvb34TvvMd9feXXoL58wfuvoUQQohhRIJuIcSwZGYTpOLtOHaO2Ni90Y1AtZdUU0rHrNlWmsSGFwHQjWB+lnaLN/5LvEuZjOpkXl9fdtixTdI9K0nms9jpnhU4dnlJuqb7iTRMVUF24/StbqOIt7fzzv779+tePvOZZ4hNm8Z9993HlVdeyTPPPMMBBxzA4sWLOf7443ct+H7qKbVvfdkydfuww9R4NCGGmWxWzec2jEHpeyjEoFqxAlauhAkTYMaMaq+m9knQLYQYVlRAsoJsahMAuu4nOmoW/mBDlVc2/Nlmily6g1yqA8Mfpa55tve5dO8afIF6fIH6ypUijzRXXw233IJz7VUkj1tEqqedZLyNTM8qXNcuO1X3hYnEphNtnE6kcQah+ok7tV9++X/+w6Ynn2T0gQf2m9Ptui73338/V155JU888QT77LMPX//61/nQhz6Eru9EY7UXXoAvfQkee6z8+KpVMGnSjt+PEENEUxPE4/DGGzBHhl+IGnPllap7+Wc+A7feWu3V1D4JuoUQw0LpzG3HsQAIRsfKWKNdZFtZzPwsbaukZFnXfcTGLZBu1hVgZntIdb1D5MiT8L+1AoDMtGa6TtybxNFzccIBfIEGL4sdbWwlGB1X8f8L13V5+OGH+c53vsPDDz/MnnvuyRVXXMGpp56KYWxju8Yrr6h3bn/9q0oJ2iUXDJqa1MwlIYahhgbo7YW334aZM6u9GiEG1s03w003wemnw7e+Ve3V1D4JuoUQQ57ruvR2vObN3Pb5o2rPaqB+O18ptiUZbyOb3ODd1jQNf7AxP+JL9sUPBNd1MTNdJOPLvMZnuXQHAFrOovnPz9Nyx1MYaVOdXxfBOelD6Gd/Cu2oo6q27scff5yrrrqKf//738yePZvLL7+cM844A58vf4HLsuCuu9Se7aVLwedTxzYnpeViGOvpUd/WsZi6niSEEO+WBN1CiGEhlVhBNrnBm7ktGdid4zo2uUw3/lCjVxmQ6VtHKrEcf7AhH2iPQjf8VV7p8Oa6DtnkBm90VyrehpXr2ewsjVDdeLUXu3EGEbcJ/+/vhp/8RAWwoDqdf/e76u+JhGpEtmABRKOD+nyefvpprrrqKu69915aJ03ia0ceycc3biTw0ENqP/q2+P3wuc/BjTcOzmKFEEKIIUqCbiHEkJRLd6L7wl6zLtexcV1LZm7vBNd1MDNxcukOzEw3rusQbZxBMDoGUM3ScG35N90FrmOT7l3tBdnpRDu2lS47R9MMQg2Ticame93FDX+4/505jsoK3303nH22CrIB/vY3+NCHVKpt3jzYYw+YPRtmzVJ/zpkDodDAPKFkEtraVBO0I46AxkYAXvzYx7jqzjv5MzAFuAz4JLDdR/35z9WwYyGEEGIEk6BbCDGk2FaGVKIdMxPHF6invmUPady1E1zXxcr1qkA73entfwcwfCFC9ZMIRkZXcYXDm2NnSSVWqFLxRBupxApcpzzjqxsBwg3TiDS2Em2cTrhh6q5VEPz2tyrzvXbtlj9/771wwgnq7//8p9qkV18P4bAKxkMhCAbVXuvzzoPddlPn3nefyq53dkJHh/ozkSje70MPwZFHFtfwhS/w6uzZXL1qFXetW8d44FLgXGCrfez/9z9YuPDdP3chqsR11dQ7n09N+ovIsAZRY773Pfjvf1UjtZNOqvZqap90HxJCDAmu65DpW0umdw2u6+T3F8cAF5Cge0e5jklvx+uofzcVAKpZ2i1l88zFjrHMFOlEe3F8V+9qcJ2ycwx/JD8bewbRxumE6iYO7H74M89UH6tWwTPPqBL0wsdbb8HYscVzX3tNBd5b8773FYPuDRu2fO6oUWp+TOk1+dNOgzPOYE9d53fAt/76V6456yy+3NfHNcAlwOeAft9he+zxbp6xEFVn26q7M8AXviBBt6g9L70E//43vP/91V7JyCCZbiFE1RVmbhfKcv3B2NZLcIXHtjLk0h04do5oY6t3vK/rLTTNRyDSgi/QIJUCO0F9Lxb3Y2eT6/ud4wvGiDa25ruLtxKMjBk6PQZef11ll5NJSKfVLPB0ujhw+FOfKs4+evttePxxaGmB5mb155gxXkn5dvX20nbmmXz3nnv4FdAAXAR8AYiBGhO2atXAP0chBoFlwYUXquD7+utV4YgQteTxx9VOov33h913r/Zqap8E3UKIqjIzcXo73wDUzO1wbBrBSEuVVzV0OXaOXGHEV64vf1Sjcdy+6EagqmsbblzXJZfuIJUPsJPxNsxM//FWgchooo0z8tnsVtXZXS5kKK4Lt9/Oys9+lutyOX7huoSBLwJfOuYYRv3rX9VeoRBCCFF1EnQLIarKdR16N72KEaiTmdvbYGbiZPrWYmZ7KJSOgyrBD0RaCIRGyYiv7ShsYSiM7kol2r0xdEUaofqJRGLT89lsGU23Q954A04+mbVvvsn3XZdbAV8gwOcvvpiLL76Y0aOlj4AQQoiRS4JuIcSgsswkmd41RJtmeiW5ag/3ECnPHSJc1wHX9QLpbHIjyfgyAHyBOgLhFgLhFhnxtQ2OY5HpWaVKxRNtpOLLcexM2Tma7iNcP4VIowqyw7FpGL4B6gQ+0qTTcNFFcOutbAR++IEPcMtDD+G6Lp/97Ge55JJLGD9+fLVXKYQQAtUCJJtVLTxisWqvpvZJ0C2EGBRqtNIqMn3rAZdww2TC9ZOqvawhxXUdrGwPuXQHuUwX4frJhOpUkOI4FtnkegLhFgkKt8K2MqQTK0gm8k3PelbilnRvB9CNYL5MXJWKh+sny4WLgfbHP8J118Hf/kZnMMgNN9zAj3/8Y7LZLOeeey6XXXYZkybJz74Y2jZuhAkTVPfydBpkR4moNQsXwtNPwz33wAc+UO3V1D4JuoUQFZdLd5JKLMexcwAEws1EYtNkD3JeYcRXLtWJUzJ+KhBqoq55ThVXNrRZuT5Sifb8fux2Mn1rttBZvM7LYkcaWwlFx0sZfhXE43FuuukmbrjhBvr6+jjnnHP46le/yrRp06q9NCG2aO1amDhR9R+0rO2fL8Rwc8IJ8OKLaiLkEUdUezW1T4JuIUTFlM7cBjUnOhKbjj/UWNV1DRWu69Cz6RVsM+Ud03U//vCo/IivemnYVSKX6faanqXi7WRTG/qd4w+NKgbZsVYCkdHybziE9Pb28pOf/IQf/vCHdHd3c9ZZZ3H55Zczc+bMai9NiDK2rabq2TZMnlzt1QghhjsJuoUQFdPX9Ra5dBeaphGqm0iobsKIzjLaVhYr10MwUmwq1df5FmY2jj80ikCkBX8wJvvbyXcWT230Rnel4u2Y2e5+5wWj41SpeKyVaON0/KGmKqxW7KxkMsnPfvYzvv/977NhwwZOP/10rrjiCubOnVvtpQkhhBADToJuIcSAcl3XyyyqTPdyIrGpGL6ROeTUsU1ymU5yqQ6vU3Zs7D7evmzbyqLrvhF9MQLUnv9M39p80zNVMm6byfKTNJ1w/SRvdFekcTo+f7Q6CxYDIpPJcNttt/G9732P1atXc8opp/D1r3+d+fPnV3tpQgghxICRoFsIMSAc2yTdswLQiDbNqPZyqsp1bHKZbjVLOxun9GXWH2wg3DAVX6CuiiusPvX9slLtx060kU6swLGzZedouo9ww1RvP3a4YSqGL1ilFYtKyuVy3H777Vx77bW0t7dz4oknsnjxYhYsWFDtpYkRqqMDbrsN6urg85+v9mqEGHgf+5jqXn7DDSC9LStPgm4hxC5xXZdsakO+U7QNaMTG7j2iO2zn0p30dS31bvv8UVU6HmoesUGjbaVJJZZ7e7LTPatwXbvsHD2/5z/S2Eq0sZVQ/SSZ2z7CmKbJnXfeydVXX83bb7/Nsccey+LFiznwwAOrvTQxAtx1F7zzDlxxBbz6KsybB2PGqL3dBVdfDTNnwmmnVW+dQgyE+nro64O331bf06Ky5N2MEOJdK3SPtnJ9gAouI42tIybgdl3X6zxu+MLeeC9/sBGfP4o/1KRGfPlHXmm9levN78duJxVfRqZvHVB+jdcXaPBGd0VjrQTrxsl+9hHO7/dz9tlnc+aZZ/KHP/yBq666ioMOOoj3vOc9LF68mMMPP3yH72vNmjXU19fT0NBQwRWLWvLOO/D1r4PjwCc+oT7q64ufv/JK+MY34KqrqrVCIQbOTTdBKqUuLInKk0y3EGKnbT5zW9MMwg2TCUbHjYhO0ZaZJJfqIJfu8MagGb4wsbF7V3dhVeK6LmamKz+6S+3JzqU29TsvEG5We7Fjqlw8EG4eEd8v4t1zHIe//OUvXHXVVbz00ksceuihLF68mPe+973b/d456aSTaG9vZ8mSJYTDI+/Cl3h3CoH1d74Dixdv/7gQQuwICbqFEDvNcSx6NryI45gjauZ2pm8d2eQGbCvtHdN0g0Co2es8PhK4rkM2uYFUvJ1kfJmqdsgmNjtLI1g3jmg+wI40Th8x/z5i4Lmuy3333ceVV17JM888w8KFC1m8eDHHHXfcVoPvl19+mYULF3LmmWfy85//fJBXLIazzQNsCbiFELtKgm4hxA5x7Cy6UdyPrEaB6TU9c9uxTXTD791Odr9DNrUp/7xV6bg/1FjzJdGqsmE1qURhfNdybCtVdo6mGYTqJ3n7sSOxaRj+SJVWLGqV67rcf//9XHnllTzxxBPsu+++fP3rX+fEE09E1/v/HP7yl7/kk5/8JL/61a84++yzq7BiMRTZVhbXyeHYJo6Tw7VNHDuH45joRoBoY6sXaGsauK76+7e/Xe2VCzEwLAveeAOCQdhtN/V9LipLgm4hxDa5rkOmby2Z3jVEG2cQiLRUe0kV5TgWZrqLXLoDM9tDw5h53lgqK9eHbaXxh5pqusGXY+dIJVbkg+x2UokVuE6u7BxNDxCJTfWC7HDDlBFR7SBQ79Z81f3+d12Xhx9+mO985zs8/PDDzJs3j69//eucfPLJGEb5+L1PfepT/O53v+Opp55i3rx5VVqxqDTHsVTwXAiiHRVIu46JpvuJxKZ658bXPYvjmFu8H8MfITZmLwD8fvXtDpBIgLQHELVi06biXm7bhi1csxQDTIJuIcRWmdmEmpdsZQAIRkYTbaq9Fpeu62DmR3yZmTiu63ifi8SmeQ3SapVtpkgl2r3GZ+neVVDybwBg+CJe07NIYyvhuokjfrb4iHP33XDJJXDkkfDSS6rj1IknVntVPP7441x55ZXcf//9zJkzhyuuuIKPfvSj+PIXBtLpNIsWLSKdTvPss89KY7VhxHVdXMfKB9LlmWk1UnCyd+42A+nNem70bHrFq2TS9QCa4Uc3Aui6H90I4g81eplun08F3qWl5b/6FRxzDIyv7V8NooatWwd7762qODZurPZqRgYJuoUQ/RQynbl0BwC6ESDSMLUms9yWmaK349X8uDPF8EcIhJtV5/Ea7MReuJhSCLKzSdUQr5QvGPPmY0dirQSjY2q+jF6U+O1v4V//gksvhfnz1bEHHoCjj1btnHt7VcD9179WdZmlnn76aa688kruu+8+ZsyYweWXX85ZZ52F3+/n7bffZr/99uOYY47hrrvukgZ+Vea6Do5t9ivx1nSDUN0E77z4+ue8ZpWb2zyQTmx8CcfKqkDaCKDphUA6gO4LEgg37/D6trWn+6STYM89IRyGlSuhpfZ+LQohKkCCbiFEmVy6k2R8mReEhqLjCDVMrplyaivXi2ObBMKjAPXmL7H+edB0ApEWAuEWfDW0F9l1XXLpjvxebJXNNjOd/c4LREYTibV6gbY/1CSByUjgOPDKK/DWW/CRjxSPn3AC/P3vcP31cNFF6lgqBZddBjffDLNmwe9+B/vuqz7X26uC9JNOAqO6FRAvvPACV111FX/5y1+YOnUqX/3qVznnnHP4+9//zsknn8yNN97IF7/4xaqusVaVlngXgmo0nVB0nHdOYsOLZc0oS/XLSG98GctM5jPQhUDaj2YEMIwgwehY71zXdQbkwuD2upd/9rPqR2bcOPjTn4qf37hRRi8JIbZOgm4hRBkzm6C343Vv5rYvUFftJe0y20yTS6sRX7aVQTcCxMbu6wWV6liwJoJMtQd/nQqyE+2k4m1Yud7NztII1U0oNj1rnI4vUL/F+xM1xrIgmYRYvpP8O++oLjqBAMTjKn0H8Ic/wOuvw4c/DHvtVfz6f/4TbrkFDjwQrriiePy734WvfW1IZb9fffVVrr76au666y4mTJjApZdeyjvvvMNPf/pTHnvsMRYtWlTtJQ4LqsRb7ZEulHijaQQjo71zeja9gm2myrbmFBi+ELGx+xTPzQfSmqah6YGyEm/DFyrLdDuOhabpg1Zlc/XVatfE1rqUl87pvugiiOSvzyYSMHUqLFoEd9wBzTueVBdCjBASdAsxwjmOhW0my8Y5mZk4vmBsWAehtpXFTHeSS3dgmUnvuOo8PopI4/SayN47jkWmdxXJ7nyQnWjHye/BL1Bz1Kd4+7EjsakYPplbPOLcfLMKjD/5SbjxRnXMdWHOHJg+HX7+c5g8edv3sTU33gjf+hbcdBOceWbxvm276k3X3nrrLa655hruuOMOmpubCYfD2LbNCy+8QMsIrg1WJd6q0Zgq4da8CiCA3s43sM2UCrI3236ytUAa1BhFXQ/kM9M+DF+IcMMU71zbyubPGXqvv3fdpa5DlV5P2tzVV8PMmXDaacVj99yjrk/NnQsvvyxNqcTQt3QpfPOb6iX/uuuqvZqRQYJuIUawXKqDVM8KXMeiYczeGL7g9r9omEjF28kk1wOgaRr+YGN+xFfTsG4AZltZ0j3LvVLxdP7/r5RuBInEpuUD7On5zuL+rdyjqElXXQUPPgi//CVMm6aO/eEPKlI49FB49NHiua47MPNiEgmIRotB9r33qnTgd74DZ5yx6/e/DZs2beKxxx7DcRxs28ZxnH5/X79+Pf/4xz948skncRyH2bNn88Ybbwzri4tbUlrijeuWjXXs61qqAmknV9bHArYdSAPFEm/Dj2GEiDRO9z5nmynQdHTdP6xfX3dFW5sqMS8UUDgOnHqqKv44/XTVCV2IoeKRR+CII9Q11zfeqPZqRoahd5lRCFFxtpUhFW/HzMYB9WbLdUxg+AXdrmOTy3ceD9VNwB9UnYkDkRZsK6UC7XDzkMyq7Agr15cvE1el4um+Nf07i+e3AkTzQXaobsKIfeM74iSTKoDetAk+/vHi8b//Hf73P/XOqhB0H3OM6jq+557l9zFQQWcsVn77lltg2TKV+qtw0P2jH/2Ia6+9drvn6bqOYRhomkZbWxu9vb3Dopu5V+Jt5wC3bDtIMt6mSrvzc6ZLS7wNX4hYqBhIO1ambD91WYm3Ud40UgXVmpex3laJt1FDfTDerdZW9VFw773wl7+o/oMnntj/x0OIampthRtukO/LwSSZbiFGENd1yPSuIdO3Nt90RiNUN5FQ/cRh1ZnadR3MbIJcqgMz0+W9yQxGxxJtbN3OVw9tZqbb6yqeSrSRTW7od44/1EQk1poPtKcTiIypuWyd2IrOTpWZLpRFP/WUSq2NGqUC70Jd6+9/Dz09cOyx775kfEvuvFNtan3/+1W5+rb09cH/+3/qYkChw9Q776go5JxzIDhwF/lc16WrqwvDMLzAuvTPwsdQ45V4u05ZA8dUYgW2lfYC6dIS734Z6U2vYOX6yu7XK/H2hahvnuMdN7MJQGWtNSMwbC9GDgeJhPr2Nww1aa/gD39QQwCamqq3NiHE4JNXWyFGCNd1vGY3AP5gI5HGacNqb6/r2KR6VmCmO3FKSqoNX4hAWHUeH05c1yWX2kgyn8VOJdowM939zgtGx+aDbDUnOxCSd2sj0le+Aj/4AXz72yrwBdU9fN482G8/FeQWsrYf/Whl1pBIqOz1+vXbP7eurjzaAFX2fvvtKgv/q18N2LI0TaN5CHWvchwL17HKRg6me9eojHQ+Y11a4r15IG3levoF0irr7EfTy+uUQ/WTwHWK3b23UeJd2rtDVFYsppr9l3rzTfWjWV+vytGH0LesEKLCJOgWYoRQDcSacB1rWM3cduwcuhEAVPbGysRxHAvdCHiztIdLh3XXscn0rSWVaPey2ba52RtrTSdcNzHf9Gw6kdj0YfP8xACxLDj/fFU2/uSTxZRYoXZ1+fLiuX6/Kt8eLB/+MOy9t8qsvxsLF6pM9+c/XzyWzpc7h4fWBcDf/e53nHPOOSxbtoyJEyfiug6f/vSneeaZZ3nssceIxWJk+tZjW6nNxmSpEm/DCBIbt693f2amawuBtHptZrNKo1DdBFzHRjP8JeOytlziLRfhho/ubnWNrLW1PODu6SleLxNiMPT0QEeH+r4bwf0kB5WUlwtRo1zXJZvcgC9Q5wVtrmPj4g75kkLbyqgRX6kOXMckNm6B92Yzl+5E0334Ag1DvqTasU3SPSu90V2pxHIcO1t2jqb7CDdM9UZ3hRum1VRDO7Ed69er/deuC5/+dPH47Nmqvey996qZ2aCyzLkcjB695fsaLkyzvKvU978PP/yhaqFbui99kGw+3zmb2oRjpbGtHAcedgIHLtyb6666hO/+4FZ++/t7eerp55g4cSKw5dLuAt0I0DhuQfF+kxtxXavfmKyh/nosBpbrqh/lxkZ1u6dHDQ94z3vgZz8rHheikv7v/+BTn4LjjlO/gkTlySu9EDWo0HzLyvXhC9RR37JnvmGOwVANUx07R64w4qvkTaym6dhmyrtwEAgP3Xo828qQSixXAXa8jXTPSly3vEOw7gsRiakMdrSplVD9ZHnTPVI4jpp9PWZMcY/z88+rYHvGjPKg++qrIRSCww4rHquVjjelAbfrwp/+BBs2qPFiFZJLd+FYmXw2ujAmS2WnNc1HY0lGOptc770GXf6VT3POeVcwZnQjt952F3+/+1Yv4AYIhEfjDzbmg+eAV/6tG4F+WelgdEzFnp8YPjStPLC+/37o6oJXXpFstxhckYgaOCEGh2S6haghjmOR6VlFJrkBcNF0g3D9FILRsUM6K5xNbiAZb6c4C1bDH4wRiKgRX0M1KLVyvd7orlS8jUzfWjafZ+sL1HujuyKNrYTqxg+rpnViF2w+iuvkk1U745tugi98QR3r6YEPfEAF19/6luq6NJS9/ba6UDB5Mhx00MDcZy6nBiR/9KPFgPzBB+Hpp1UZ+lYiETObyAfSao90aYm3pmnbbTZWoGk6TRMWerczvWtx7KwXSC865Ghef/1N/vXPf3DEkUcN6ddSMTy9/LIqPT/8cHXbceATn4CTToIPflDmfgtRC4bmO1khxE4rzNxWI2UgEG4hEpvq7YceKlzXwcx0oxtBL3ttBOpRY3DqvIZoQ22utOu6mJmuYpCdaCOX2tTvPH+o2SsVjzS2Egi3yJv0kSYeh499TAWnK1ZAIP8zuM8+8M9/qrRWQUODGus1XPz1r3DppWpv91/+MjD3GQjAWWcBqkrHsTL4vnop+rPPk9u0kuzlX1QZaTQaxsz3vizdswor17vFu9z8Z84fbMTwhfNZaH+/Eu9SofoJ3t///e9/89Zbb2PbNuMnTJSfZVER8+eX3/773+E3v1E/bitXSsm5ELVAMt1C1IBcuou+rrcA1QU30tg6pLrUuq6Dle1R+7QzXbiOTSDcQt2o3bxzbCs7pPYyu65DNrnR6yqejLdh5cftFGkEo+OINE7PB9pD699dDII331QzgMaPh3PPVcdcV5WPd3TAE08UM8K9vWpMVmBoXQjbYX/4A5x2muq609cH3/mO6qi+HbaVxrGyaoa0l41WJd4A9S17eOf2bHoVK5MgcPf9hH7+e3p/cz3uaNW0Te/opnHKgV5jucJYLa/RWFmJd2CXX0+ef/55jjjiCG655RZ+//vfE4lE+OMf/7hL9ynEjtiwAW68UZX/fv3rxeN//zsceaQ6LoQYXiToFqIGuK5LX+fr+IIxQnUThkz5spXrzTdE68TJv8EG0I0gwchowg0DOD94F7mOTbpvDan4MjUjO96ObaXKT9J0wvWT80H2DCKxaRh+efczYvT1wZIlsGBBsfXwb3+rsrQHHKBmZhfcey9MmqRSWEO9ZHxLrrlGzeS+9lpV/g7wxhuw++6qtHzVKpzPfgbr+mtLRmCpoNrFLZsN3bPp1W1mpBvHL/QyyKl4O5aZRM/PkFazpFUgbZx/Edqf70a75RY488yKPv3ly5dz4IEHcsEFF3D55Zfz3HPPsf/++/PMM8+wYMGC7d+BEANs6VKYM0dd83rrLZnzLXbNn/4E//oXHHMMnHpqtVczMkh5uRDDkJmJk+lbR92oWao5mqZR17z7kCt9TMbbvLnguu7HHx6VH/FVX/W1OnaOdM9Kbz92KrEC18mVnaPpASKxqfnRXa1EYlPQjaGTjRcVlsmoZmYF73mP2md8551w+unq2OGHq+zvUUeVf20hUB3qUim4+2545RXca6729kfry97CeO01zPvvIXfIXFzXpW7OHFi7FsaMIXXb9WT3mYWbr7DR124g+Lt7yXzqI9AUw3Vd72fc8IVxXbtk9JU/H1T7+5V2Rxqnb3mdpgkvvaL2wM+YUdF/kq6uLo499lg++MEPcvnllwOwYMECPvCBD3DFFVfwr3/9q6KPL8SWrF2rupzvsUd5wL35y5QQO+Kpp+C229T3kgTdg0My3UIMI46dI5VYTi7dCUC4YTLh+klVXpUqDTfTneQyXdQ3z0XTVWYv07cOK9enGqIFY1XNwNtmilRiebHpWe/qfp3FDV/Y24sdibUSrp/kPRcxgrS3qz3LGzaod7qFC0QXX6wC1G9+U3U5GiZUl24T18ritC/DTSdxZk7BdV2ieot61+U49L74H8wW1crWeOkN9DUbsBbtjTuqsV9Guq/rbaxcTz5wDhC67Cr8t92BfezR2H/+Pf5Q08BfWHMceOyxYrcpgP/3/6CtDS65pNgRXogaZVmq4VphamBvL8yapaYK/vCH0v1c7LiHHoInn4RFi9T1ZFF5EnQLMQwUZm6ne1fiOjagEaobW9VxU45tkst0kkt1lJWORpt2IxhpqcqaSpnZRH50VzvJRBvZvvX06ywejKnRXY0ziDROz3d5Hxql+WKQPPYY3HGHKg//5CfVsWxWjefKZlW37pkz1fHN50tXkes6OLbplXZ7f7oOkdjUwkn0dryOmesBIPiLu4h+60Zyxx1B38+uATSaJixEO+ccaGkhefYHyTUHy7PRXtOxAIFw89Z/Pu6+G77xDdWZ/Ygj1LFsFpJJGDWqMv8ImYxK/a1frwYcF/bUCzFC3HGH2mkxa5aaRjgcd7IIMVJIebkQQ5yV6yMVb8MykwD4AnVEYtO9zt+DzTZTpHpWYmXjlF6z8wcbCIRb8IcaB31NruuSS3d687FTiTavGqBUIDI6H2Tnm56FRlW9zF0MorY21Sn81FOhLv/z8/zzcOutqst4IegOBlXHot13Vw3SCgYh4HYd2xt75Rb2Sbt2WUVLX+eb5DLdW7kHjXDDFLQvfAH+8heM/7sec/40dN2Pu2BvXJ8P3dEJ1U3ITzZw4Ve/AiDiOkTf7UWnD38YTjyxfLbR//0fXHaZarh24YXv7n63JRhU9ZG33QZnn108/tprqt1zyTxtIWrRxz4G06apXSKFgNt11aS9U05RTdfkV5wQQ4ME3UIMcZm+NVhmUs3cbphCMDK4M7dd18F1rOLoMU3HzL/h9/mj+VnazYPaedx1HbJ960km2rxAu3+jJo1Q3Xgi+Sx2JDYdf1Bq70YM11Xdwwt1mKBq6JYvhwkTVPcYUH9efDEcfXT51w9gvZ3ruriOlW80lg+kHYtQXTGg7+t6GzPThes6W7gHjVBdybiqfGCsaRp6PEnwr/9BX9+B+Z3L0XU/4KrS+PXrCT2/jPD7T1MZ6vfvDfFT8UWjW/zlv8tVHpsPE/7HP1T9a6UuVmgaHHec+ihwXfjMZ+DZZ1Ua8JRTKvPYQgwRBx9cfvuf/4Sf/lSNHFu1SsaNiS3r6lLbFWIxdf1SVJ6UlwsxBLmO7e0ltq0smd7VhBsmD9rMbdd1vc7jZroTI1Bf1o04k1yPPxDD8IcHZT2OY5HpXUUy3p7PZLfjWJmyczTNINwwWe3HbmxVncV9g7M+McQ88wwcf7xq8/v668Xj556rbn/jG8WgexcUS7zzmWnXJhgpBvnJeBtmphvXMen/qzZf2u3tkV7qVWdomt6vxDtcPwXNceHFF3FCfpi7O5ruQ1u9GqZMUWmu7m6or1d3//TTkE7DwoXV67LkOHDfffC+9xXX8MQTqrP7l79cfkFkoCQSaoPrM8+oyoYJ+ZnbrispPzEirFgB3/++atVw5ZXF4w8/rAL0IbJDRlTZSSepXUE//Sl89rPVXs3IIJluIYYQ20qTirejGwGiTWofqeELEm2qbLfeAstMkkt1kEt34NglnbzNFK7reJmwUHRcRddhW1nSPStIxdV87HTPSm+mb4FuBAnHphKNqSA73DAF3ZB3EyPOH/8Iv/616iBeGCPV2gqbNqkRX4mEupQPat/vDgReZSXejkkg3Ox9LpVYgZmN5+dNm/2+tnTfs+vYZT9HhW7dhRFYuA5o6uJauGGKurCmB4rN+3I59Q65sOavXQbXXYf+mc+oknhQ47s+/nE1S8iyigs54IAd+derLF2HD36w/Ng3vqE6+PT1wc03D/xjxmLw6KOwbFkx4Ab40pfURYivfx2mTh34xxViiJg6tf+P1jvvqOKdSZPg5ZeLL4li5Cr8upAs9+CRoFuIIcB1HTK9a8j0rcmP2tEJ1U8e1JLtZPc7ZFObvNuabhAINROItOALNFS0pN0yk/nZ2KpUPN23RgUkJQx/NJ/BVnuyQ3UTpLP4SOI4akb244+rTtW+/K+vV19V2dRYrBh0Nzer8uI99/TeUZSVeDsm/mDxXWe6dzVmJl7WjKyUykirQNqxc94YPFAl3qUjsEovToXrJxKqG5//vH+b5duGryQb7bpqf/QDD8Bzz8Hcuer4wQer57l5qur223f4n7GqXBcuukgFv5deWjze0aH+fweq+7imFZvfAWzcqLqcm6ba+y1Btxhh2trUj9eee5YH3JZVfCkVI8s996iXXal3HjxSXi5ElZmZOKlEO3a+XNofaiQSm17+JnyAOXaOXLqTQLjFyw5n+taT7lmBP9TkNUSrVCdvM9OtSsXze7KzyQ39zvEHm7zxXdHGVgKRMdL0bCRJJtW+5NZWddu2Vbl4PK5Kh/fbDwD3hedxH/gPzpGH4dvvQO/LM33rMLOJsu7epb/uSgPpvq63yaU7yh5e0wx0QwXT0VGzvSkBVq4P17HQCnOmdd+ufV+uXAm/+IXq9P297xWPH3UU/Pe/5V25LUsFlLXWovhLX4Kf/xx+9CM477zKPMYTT6iLM9deWzz2n/+o0vzZsyvzmEIMIZmM2sdbKADp61Mzv08+WfU6rKtOb1YhRgwJuoWoEsc2SSXavX2cuhEgEptWVso6oI/nWJjpLrVPO9sDuEQbWwlGxwKqFNbFHfARZK7rkkttUvOxE2qEl5np6ndeMDK2ZEb2dALhCo0ZEkPfPffgnnwyHLA/2hNLvMP2x0/HTcTJfunTWHvOzDclK5ZUlwbSm1duFBRKvOubd/cuOJnZHlzHLMtYV6SKordXZeunTSsGei+9BHvvrd7xdncX007PPAORiMpyb96grJY4jqp7ffhhFQS/972D87iZDMyYocaN/etf/RvpCVHjfvUrOOcc9WPw1lu1dy1PiKFGikqEqBZNy3fcrtzMbdd1MDPdKtDOxMvKZn2BOjS9WKaq6QYDkUd2XYdM31pvP3Yq3o5t9m12lkaofhLRkiC7WiPQxOAplHiX7r23vncV2u/vInfReZjHHqH27reYxCwLe81KdMtE8+WrMW68shhI9yvxDqgGhIYKUAOR0fgC9ZvNm95yiXfFutr39hYbm4HK6P7yl/DVrxYzrvPmwac+pRqeldZ67r9/ZdY01Oi62uO9ZAkcdFDx+O23wwsvqJFjpWPbBko8rqolnn8eDjuseDyXg8DgNKwUoprOPhvGjVMvO6Xjxi67TLXIWLCguusTlXX11ar1yec/D7vtVu3VjAyS6RZiENlmCsMf8W6bmTia7qtYwOnYJvH1zwHqx9zwhQlEWgiEWwasfN2xTdK9q0pmZC/HsbNl52i6j3DDFFUqHmslHJta0fJ5MbhK9zED5DLd2Lk+nMJ4LDuHk+rD98+HMF59i9BNv/Iyyea5Z+H/xW/JnHMKqSsvLtwh+ur1uFMmEhu7j9e1P5fpxjHTqhlZISNtBAb8YtUuy+XgwAPhxRdh7VoYq6pJ+NWv4NvfVuXil19ezRUObaap3gWuWKFKzisx47ugtNEeqLL+UaNU++fp0yv3uEIMQf/+N7z//RCNqpeuBpmyWbPmzFEVDo88Un7dUVSOBN1CDALHscj0rCKTXE+0aWbZWKGBUhjx5dgmdaNmeceT3cvQdJ9qiOaP7vLj2FaGVGJ5PshuJ927ErekxBdAN0JEGqcRian92KGGgc/ii8FlZhPYZhLHLu6R9v50rH6l3ebbr0Aqg7PbNHUH6QxNc49Gs2zspW9g7KZG0JmPP4Cz9A3cww5Fnzi58iXeA+3VV9XMlVgMrrmmeHyvvVSb4HvvVSOsQJVS13Kp+EBxXXjwQbjlFrjzTgjnR/8tXapK7idNqszjvv666jTl96vu55V6HCGGqKVL4aqrVAb8uuuKx59+WhWGyMtX7fjxj9XumvPOk96Sg0WCbiEqLJvqIJ1Y7o0XCtWNJxKbNiD3bZtpcmk14ssumVsdG7vvgHU+t3K9pOLt+T3Z7WR611DInBf4AvVEYtO9GdmhuvEVa8ImBo6V68M2UzhOLj8CKz8mK5+hbhy3nxf4bm2PNACuS2zM3hgBVcVh3vA9/Bd9Ffu4o7H+8Buv6Zhx3hegIYZ28cXD87f86tUqLbBokdoICarZ2VFHqe5Eq1cXx3s9/7x651o6tkrsmmOOUXu/f/lLOOOMyjzGa6+pCOOcc4rHfvYzte9+KIxhE2IQlI61b2tThSezZsFTT0n2W4h3S1JPQlRIYea2mU0AqrQ70ji9bFTRu5VLd5LpXYNlJr1jmqbjD40iEGl51/OqXdfFzHQX92Mn2shtIdDyh0YRzQfYkcZWAuEW6Sw+RNhmGttK5WdMqyDaK/F2TGJj9vYC6Wxy/dYDacBxTIz8ub5APa7rlpR1q4y08eWvof35brQ774QjjwTAf9CRYBgYjoGRb9QHwC9/VbHnPeBcV3VPH1cyk/7881Xm+vvfV2PLQAXgX/qSqs8rfae6776Dv+Zalkqp5meOo0r3K2WPPdRHwZo1cMEFasvACy+o4FuIGlf66/y111RriqlTywPu0pc7IcT2SdAtRAVkkxtIJdpLZm5PVHOl32X217FN0DSvRNt1HSwziaZp+IKNBMItBEJNO12O67oO2eRGb3RXMt6Glb9IUCoYHeeN7oo0tg7IhQOx42wri2NnygPpkhLvhtHzvP/7TN9asqmNW72v0kDa8NfhD5noeqHRWLHhmGo+VmwoFYyO9Trdl+mKqxq1Rx5Rm8TGj1cdeOLx4TuDprMT9tlHPa94XJU0g+qyvW6dmgNeEA7DDTdUY5UjSySivseWLi3fa/21r6k5SFdcocZ/DTTXhdNPV6Pd9tqreLyjQ42wE6LGfeAD6tu/q2ToSCqlXuY/+lG49NLiDhAxfMTjqmdkOCwXTwaLlJcLUQFmtofejtd2aea269jk8p3HrWyccMMUQnUTvM9l05sIhJp3KqvtOjaZvjX5ruKqXNwu6QINgKYTrp/kBdnh2HR8Jc3fxMBQgXO2LAtdDKRN6pvnlpR2L9tmIB0bu4/3PZbpW0su3YmuB7bQcMyP4Y8MXOn/ddepcUvHH6/qD089VTW9Kp03PdQ9/jjcfLO6YPCtb6ljrguTJ6tM95IlI6eT+HDT1aX2XafT8M9/qg5QlVLaWT6Xg5kz1cftt6vvFSFGkNtug09/GlpbVTMun6Twhh2/X72srV4NEydWezUjg/yYCDEAHDuHlevzZkv7gw00jJ63013JXdfBzCbIpTowM11lI76sXEkpuW4Qio7b0l1sti6TdM8KkvF2UvFlpHtW4Ni5snM03U8kNpVIrFXNyY5NRTcGZj/4SOM6tgqi8wF0eYl3jrqmWV4gne5ZucMZad0XwvCF0Y3AZiOw1J96yei3UN0E7+JMxT35pNrT/NGPqhnLuZz6LT5UvfKKWu9JJxWbZK1fD3fdpUZ3FYJuTVNtfKdNU218xdA0apT6f/rTn9R+74LHH1d76VtbB+6xSqOKp55S3zeWBaMHvimmEEPdJz6hCpn8/uKPhuuq4Qwf/ai6himGLscp/qqWCYmDRzLdQuwC13XJJteT7lkFuDSM2etdj8JyXYfEhhfKgmLDF1Kl4+HmslFjW2ObaVKJdlUqnmgn07MK17XLztF9YTUfO5ZvelY/UTqLb4fjWCXZ6PIS72hj67vKSKd7VpFNbSzuj96sxNsXjA39/5d//QuWL1f7mefOVfOW582DMWPU51esUGOyLrpo8LvvWJZ6/ELDM4BDDoEnnlBpmk9+Uh3r6ICf/ASOOELmptQCy1Lv+Jcvh/vuq1z2e+VKeOcd1USv4JJL4H3vg6OPlnpNMeI88ID61q+rU7twhuvuopHAddVLZTardu5IV/rBMcTf0QkxdFm5PlLxNq+ZmS9Qp17JdvTrzSRWNuFlJTVNxxeox8r2EIg0Ewi34AvUb/M+zGxPvkxcje/K9K2jf2fxhrL92MHoWOksjrrI4TpW+SzpfIY60jC1GEjH28gmN2z1fsINkzB0taFNNwJoml4s584H01o+G62VBNHhhsmEG4Z5WermAc173lN++9vfVp2mX34Z/vznwVvX22+rDYeGoYJqI9/r4Ljj1DvBwkUBUPtyv/GNwVubqKzOTnWhpacHDj20eHygx7VNmVK+h/yJJ+CHP4Qbb1QBv9RrihFmzBj44AdVy4XSgPv119U1WbkONXRomqpS8L+7nrviXZJMtxA7yXEsVRqcD8Q03SDSMJVAZMx2O3jbVkaN+Ep1YFtpADVqya+CNsc20XRji0Gx67qY6U6S+aZnqXg7uXRHv/MC4ZZ8V/HpRBtn4A+NGlGdxQsl3qX7o10nR6huohdIpxIryPSt3ep9xMbujeFT/yfpnlWke1ej6UY+G11e4h0Ij/b21buuIxc0Sv35z7B4sQq8Fy5Ux3I5FQCF3l1FSD9/+5vak/3e98Jll6ljlgVNTSrYfuGF8sZbYmTYuLH84sqHPqRmqV95ZWUarq1fr3oc2LYKvAteew12310iDjFilF7fWr5ctT7YZx+1s0ey32Ikk6BbiJ2gSsBfxLGzAAQjowk3TN1mMzPHNr1Z2lauzzuuRnw1EqqfvMVGZaqz+Pp80zNVMm7lejY7S1Nzvwvju2LT8Qdrc4hmeYm3misdjI4t2SO9ikxyHa5jb/HrSy9uFAJp0Lw90YVGY7oRIBgd63XuLtzfznaGHxHWrYNEQgU3o0Zt+ZzNM4w33qgygj/4AXzkIzv3eA89pOY0X3hh8fF+9jM47zw4/HD1uYJly9SebEP+30a8pUth9mz1ffjmm6rp32BYt07tK587V/U8KO16L8QI8Kc/wcc/rnb23H9/8biMG6uu7m645hp1EeSb36z2akYOKS8XYidomk4wMppcunOHZ25buV5SieWFe8AfjBGItOAPNZXt2XUci0zv6vzornZSiXacfDa8+PgGoYbJqlQ81kokNs0LJIejLZV4B8ItxUC6dw3Z5AZcxyxrKlfgDzV5pd1QEiBvocSbkgx0MDouH7D7t1sFIMH2Nnz5y/C738GPfqQC4S0pDbhdF37zG1i1SgXr29Lbq/Zk77ln8djnP6+CpgUL4MQT1bH3v19luo84ovzrS/dyi5Ft1ix4+mnVib404P7DH2D+/Mp1fXr+edVlKhTa+kUpIWrYKaeoVhmlL/fptNr58bGPwfnnQ1D6tg66zk513bu+XoLuwSRBtxDboEZsrcUfavT2V4fqJxKqn9ivjNh1Hcz8iC/DHyVcr7oj+0ON+IMx/KEmAuFmL4Pq2Fn6uoql4qmeFbiOWXafuhEg3DAtvyd7+naz6kPF5iXe/mBjyRzp9eRSG71Ae3O+QEMxkHYdr6oAQNd9XkZa0/1ll8qD0bEqYDf8221ANhz+DYeFujpVxr2j7U81TXWW/vWvVfvbgv/9D9asUV3FNU0FR4cdpsqA29qK5516qrpdWjY8ZYoKxoXYlv33Lx/9tmmTaqaXSsGzz8K++w78Yx5/vKqv3bSp+FplmqrU/ayz1PezVGKIGjdmTPlL9m9/C889pwK/Cy6o3rpGsoYG1fdRRr0NLikvF2IrzEw3qcRybCuDzx+lfvS8fllR13Wxcj3kUh3kMp1eptXwhYiN3afsXMtM5QNsNR873bsaNsveGv6I11U82ji9bB/yUKBGX6mRWD5/nbe2bHIjufSm4piszTqmx8bs5XVfT/euznd7Lygv8Y40TPWy97aVwXVMr6O37JeusrvuUh2br7hi6+dcfbXaxHfaaTt2nz/7GVx8MSST6msvv1xluZua1PzjF19Ue3GFGEjLl6vqjDVrVBa88NqeSql2vpXyy1+qYH/sWHUBqZKPJcQQlM2qgqe6OjVeDFQR1PXXqx1HMvZe1Cq5xiHEZhw7Syqxgly6E1DZZpXZLg+40z2ryCY3lGVrdSNIINxMINKCmYl7o7tS8TayyfX9HssfbFSzsRtnEGmcTjAyZtADS1XirRqOGf6I9/i5lNqHXjomq/QaXWzMXhi6esPoODnMbPl+c03TvaZjpVf2AuFmfP5oPmMdQNN9Wy3xVuO1Bqjhlth177wDX/+62qe9eHH/z195peoEftVV/T9n2/CXv8Cjj6q6tkJN4caNKuAOBovZ7/p6FRQVZmkLMdCmTYO//lUF2YXXH8tSGe+99oIbboDx4wf+cT/8YbW9YuzY8oD73/9W3f8l9SRqXDAIn/50+bGHH1aZ1+98B9auhWi0KksToqLk1V2MGLaV2eYMbdW4bANpb7a1RqhuHOH6yWi6gW2lvY7WgFceres+fKFRaJpONrmBrjVLSMXbMDNd/R4jEBmT3489nUhjK4Fw5fb5FUq8C2OsAHLpLsxMVz5jrZqRlV40KM1I23aGXKa73/0WSrxL91j7Q6MwjFCx9HsbJd6GL1z27yiGkSuuUAF3YcRWaeBdCLi/8x113urVKqAulO3qOnzhC+rYaaepzjqg/j5zJixaBBMmFO/v6qtVkP+DH6ggSIhKKA18H38c3npLlYNXqs1yY2P/EXVPPaV6E8yeDS+9JJtcxYhTV6facuyxR3nAvWIFTJ1atWXVLNtWv8p9PmloN5gk6BYjQrp3NW3P/pjW/b7o7bXeXKGcHNTM7UhjK5rmI5vaQC7VgWUmaRg9D1+gTmWHcTGzPWST60jF27HNvs3uUSNUP1GVisemE2mcvt2529vjui6uY5WNFTOzCS+QdvP7qEtLvBvG7OV1R7etFNnUpn73q2maykiXlIX7g41ojb78mCz/Nku8ff4IbKEDu6hBhUD7G99QjaLq61WG8He/UwH34sVw991qf/a++6rNe6B+s59zjuqiU9rFebfd+neTjsdV/WEyuf2Ga0IMlCOOUEFvW5v6vi74/vfhmGNU07VKWLNGzYs/6CAVcOdy6udEtlWIEWL//dVIMbOkzcvKlep67OGHwz33yE6MgfTAA+o63z77qF/jYnBI0C1GhMSGF8C1SWx4catBtz80Cn+oCV+gHk0zSCeWeyXTrmNjZuNsWv4gudRGUonlOHam7Os13Ue4fkqx6Vls2jYz66VU1ljzyqzNbA9WNuF19C5tSua6blkgbeV6yfT1L10HVeLtOlbxOQZj0KCpGdMlY7K2VOLtC9ThC8hQTbEFpYF3wcknF48fcIDKbPv9KiAvlMx+97s7dv+NjWq+8Z/+pBqqFdx/v9rwN3fuLj8FIbZo/vzy4PqFF+DSS+FrX1Npt4kTB/4xTzpJBfWpFHzve/Dtb6s+B1vapiFEDfOX9Dh97DH1p+tKwD3Qsvn+tDvaA1UMDGmkJmqe67q8veQqzGwcf7CJ3Q66Ak3TyKY2kU2up755d68hmGUm6d30Cradw0x3kkt1YGbj5FKb+jUH041gvkxclYqH6ydvsyu2levDyvV6wfPmJd6lgXS6dw3pnpVbva/6lt29cWVmtgcz010eSOfHZA2lJmyiBgUCxdTEuefCtdcWs9i9veXZwl2VTqu0x/r18M9/wvveN3D3LcTWFPoY+P2q+qJg0yYYPfrd36/rqgD7v/9V91to71xotLZokTo+c+aurV+IYWzlSujrg913V7czGXV96uMfVx9+GUTyrliW+hXtujLNcDBJplvUvEzfGsxsHAAz200q3o5jZ8hl4vk52BqR2LT8fOw2ejtew8x0A+XXowx/ndqPnQ+yQ3UTcKwsltmHY+fI9K1WgbQXVOeoH70nPn80/9iJbQbSrp3zSrR9gTqC0bHout9rRra1Em9/sAF/sGFA/82E2K4rr1QBt9+v/gwEVOOzM86A//f/BjbgBlVmfsABKvN4+OHF464rm9JE5cycCb//vdoEWdDVVax7/fWvVWXGtliW2maxaROccII6pmlwxx3w6ququeApp6jjJ56ostzXX68y3b/6VSWelRDDwpQp5bdvv139uLS3q6BbvDs+nxoQIgaXBN2ipmSTG8j0rS071tvxGqADqoR7/dt/RfeFsbI9qmzbyuDY6X735QvGCNVNIBgZSzAyGt0fwXVM6prnehnpXKZrBwJpFXT7/JH8nO5C8Ny/xLvAH4x5mWwhhpzSpmmLFxdvg2o9W4n0w7hxaq94IlFsNOW6cNxxMGeOat7W0jLwjysElM/TfvBBlX5buVINvN2cZakLUeF8w8hHHoH3vlddlDr++OJFoosuUn0LDjig+LWjRqnv5912Ux3OhRCeM85QP3otLcVfM66rJk+efLL8ChBDm5SXi5qy8pVf0bvplXf1tcHoOCKNrfiDjQBeF+/N1TfPwR9SlwhzmW6yfetVIJ0Pnksz07oRlNnSorZsHnBvfvwLX4CbblLH0mnVhOqCCypzWf2pp1QZbiAAb7/dPy0iRKW89Vax+gJUJvyCC9Sfv/89fPObKmMNaq92a6v6Xv3tbyvXGV2IEeiRR1QPxFGj1NCMsAxH2a7//U9NKZw/X00xFINDMt2ipkycexprNZ2ejS/t8NcY/jrGzzmF2Oh5AKR7VtLX/TaOY6EbAQwjgO4LoRvB/EfxFd0fjOEPNMjeaTEyXH31lgNuKG+uNm6cyjzfcosKPv7yF1UWPtBl4AccoN45vPFGecB9//1w4IEDX+IuREFrK9x8s+pjcOedqr3yT3+q3vGn0/Dkk8VzIxFYt062QQhRAbquBmUccEB5wL1hgxSLbM2TT8K3vqUqByToHjwSdIuaYvjCTNrjLOKj5rBu6Z9xHQdVVr4lOvUtuxOqn0woOr541Ahi+PJZbtfBtjLYVrFTueELYfhVV3Iz3UVf99uAhqbraJqhPnT1Z6h+olcmbptpcukO73NoauxX4bYK6KUriBjCZs5U+0yvuGLLn1+8WL0DKjR/2nNP9XHhhcWAw3XVSKSBmEWsaaqhWmlTtVWr4AMfUAH3iy+qkl4hdoXjqL3X3d3FfgI+n5ohv3atShstWABnn60uOJ16Kuy9tzpv6VKYNUsCbiEq5NBD4dlnVZO1glWr1K+h445T18Qk+11u/nz47GfVqDYxeKS8XNSsbHIjy565Htcx+31O0/1M2+dzBMKjcB0bwx/1Al4r14eZ6cJ1bVzHUX+6Nq5jg+sQjk3zGpdlkxtIxtu2uoa6UbMIhFU351y6k76upVs9N9rYSjCqLsuamTh9XW95ATxaaUCvE4yMxR9qBMCxs+TSXfmxX3o+oNe922q/uGTiRZU4jgq0C3ti778fPvUpVY7+iU8M/OM9/TScdRaMH686Q0uwI3aW46gy8cKm0T/9SQXS8+erOd4FP/iB+t4+7bQtb214+WXYay81EPeee3a818Edd6iPE06A88/f9ecjxAjzf/+nfs0cfjg8/HC1VyOEIpluUbs0fYsBN4DrmPj8UXyB/uWnOzOfOhAZQyDcUhaYu64K1HFsDH/xfnQjqIJq18mfV/hQtzW9+IbMO+46sIXnUNh3DiqDnkos3+oaI7GphOomAOqCQmkwr+Wz7eRvB0KjisG8Y2Fm4mXZ+ELQT+HvEtCI7dE362nw05+qjXcv7fgWkJ1ywAFqxndHRzHgzmZVNvzjH1fZSJ/86hNbsXix6r7/gx+o7xVQs+Lr6tSM7tK585dcsu37evJJdW59/c41F1y6VI3Fa219d89BiBHuk59UO4wK86hB/f2kk9S13pNOKu+NKMRgkHceomb1bHoZ0FCjv/LdyzUdXNXFvGfTy7RMPWqXHkPTNBWAsv1X750J5v3BRmJj91FBtxfMFwN0X6DYMVfTfQTCzfnPWSqo9861VOY7z3VtHDu31cc1fCH8NALgWGmS3W9v9dxw/STCDZMBsK1MMZj3Ano9n6U38AcavGDedWysXI8X6HtfUzhf1Lbf/U61mv3oR4vHVq1S9YEf+tDAZKZ9PlXmW/DrX6s5M2+/rTaxSdAt0mk1jut//1OzsQsXh2xbXbB59NFi0D1mjCot39nvm/PO6z9PPh5X7/q//GVVF7slH/oQTJ8Os2fv3OMJITxz55bf/vWv4R//UNd7TzxRgm4x+KS8XNSsZU9fT6ZvDQDRxpmM3e0DrH/7HlLxZQCE6icxY/+LqrnEQec6NraVLsvGF7PqNv5gzMv+W2aKdGJ5WbCPl513iTRMJVRfzKD3bKNrfLh+IuEGVX5pm2kSG1/cypkaobrxRGJTAXBsk2T322XZ+NIA3fBHvT3zrutgm6nNsvG6dI8fDs49F37xC/j851VzqoGWTqsMe0tL+XDXxx+Hgw+WEvRa57rqgktfn+q4BGqkV1OTGtn14ouqDBzgnXdUB6b991dd8Qfat7+tOhjtsYcqP9+8EkQIUREdHerXy8SJ6ldOwW9/q4LwkdR384tfVAU9ixf374kqKkcu94ualMt05wNujbEzjqN5yhFoms60fT5Lx8qH2bjsH2R6V2Nmur3xXyOBphs7nG33+SPUt+y+xc+5bnlzOt0Xor55rhe8l+6Bd12rXxm/zx8tKce3S+7PLStZd10LM5vY6hpD0XHFoNuxtxj4F/a5ByKjvWDedZ18MJ9valfIzOdvG/5w2ZptKyPZ+EqaMAGiUfjYx4rHXHfgguFwuDi+qeCxx1TZ8IEHqqymZL9rh+uqj0JA+8tfqg2eRx4JDz2kjvn96p1nOKxmDRXMnFlsBFgJn/gErF8PRx9dXJ/jqIz7QQdV7nGFGOFaWtT1rlKPP65agIwbB+3tEApVZWmDLpNR1x3levPgkncZoiZpaNSNmsPo1mOINBQb3GiazuipRxFtnMGm9vtR5ediZ22ePdZ1H3q+fHx7DH+YhjHzy465ruuVxVNy35rup65pt7JsfCFQx3UwSi4guK6DbgTLsvGF415mv3CuY5NLd211jcHIaC/odl2HxIYXSp99Wad6f6jJC+YBkvG2sgC9tFO9bgTKLno4jiXZeFDZv4svhliseOzmm9W+1muuKXaCHkjLlqlAf948Cbhryde+Br/5japs+MAH1LGDDlLd8oPB8os511wz+OubOlWtrdTdd8Mpp8AHPwh//avqiL5xo5p3NGHC4K9RiBEinVbDBQ4/vDzgTiTKfx3Vmu9/X2W4R1J2fyiQdxqiJvlDjUzd+9ytfj4Sm7rNz4vBtbW98bruIxBp2aH7MHxBGsft6912vYZ1KuAu3duuaTqR2HQveHddq6RTvYPhjxTvx7HRNL0sG+86Ni4qiDfsaNljZpMbtrrGQKiJuuY53u3E+udwXacky67ns+4GvkB9WTCf7l2dX3v5vnk0A93wY/iG+UyU0nc4lgXXXacarp14YmWC7k98Qs2TKbVundqHu3ixzFIZ6vr64I9/hFdegeuvLx7v6oI1a1TL4kLQPXu22pM9VOcGtberUva99lIXBG64QTVyu+QS9e5YCFERRx8Nr7+udpkUrF2rAvFTTlEl2LWY/Y7FavuiwlAlQbcQoiZpmo5mbDmDrOkGobpxW/zc5nTDT9OEhWXZ+NJO9Zpe/jIabphclo0v7VSvlwTGXnf6zf6ej+X73W+md02/sv4Cf7CB+pY9vNvx9c95Fxo271Sv+yNl1R/Z5AZcXDTNV5Kdz18E0H3oRgX2tW6Pz6fKgG+5RbWhLXjtNZWdnjZtYB5nzJjy29deC/feC5s2wZIlUns3lKxYodJSc/IXrRxHbcy0bbjoIpismjry+c+rEV6LFhW/VtOGbsANKrj+6EdVh/RvflN938di0NCw/a8VQuwSwyj/Ufvb31QQvmxZbQbconok6BZCiB2wI53qNU0nXD9pB+9PV8F86Zi5bQTzweiYLc6Nd11bldWXcB1L3Sc2m/M5VtntdO/qrXa0N/wRYmP28m73bHoV18552fhC0zpNM9CNoNfNHsiX77tbaIK3g3vjd9tNZfy8J+WqLPTTT6vy4dNO2/bXvxsXXQS9vWqTXyHgNk2ViZw1a+AfT2xdaRn4jTfChRfCySermdmg3iWfc466cFLahnj+/H53NSRlMqp7+pIlas/5pJLXjXRazQWXDkdCDLrPfQ4WLCg/ls2qHpyf+pTKjg/367F33aWGhhx/fP8u76JypHu5EELUGMfObXFuvOuqefCBcLFxVDLehmub/ebG49oY/mhZM734+ud2OEBPbHgR20pv8VzdKN8K0Ne1FMfKqAsN+T3uXoZe9xOunwg9PXDKKbiPPYb12vNokyahafnz9Qp2qv/FL1Swf/HFUuo7GC69FP7yFzXfp9BY7Ikn1KbLY49VlQjDjetCW5saF1Z4N2/b0NysNo8+8wzst5863t6uGq3tt9/OzfYWQlTM//2fCrjHj1c/osHg9r9mKHvPe1Qx2Z13wumnV3s1I4dkuoUQosbsTEl4tLF1h89VHerLg/nCbX2zzLwvUIdu+PvNmFeBf3mW2zZT2wjQAyrobmiA+++n79l/YgbjsCkOQPjan+KGgmQ+fRp6rJHG8ft5X5tKLMc202WN74qd6n1lWwxsM42L0z8b/9xzqpRZGloNrN5euO8+FYxecUXxeHu7quv873+LQffChWpP9nDq+lOaqb/jDlU9ccghqms+qOz8BReowLp0m8P06epDCDFkvO99qhBqxozygPuvf1XXAodbEP6+96nRaTNmVHslI4tkuoUQQgyawt740sDbyvXiOFa/ufGuowL00pL9vq63sa2U+tyqNTQcfBKaadHzh5txDl1E47hiXWDPplewcn1bXIemGzSNP8C73dvxBmY23v88zcD30hvUH/ERb19w9r9/R/vzXzC/dB7amLHFAL0wni7c7GXdVdWBW9ls/HCwfj3kcjAl309g1Sr1d8NQzc8KmyqXLFEZ4UMOGZ57mr/9bVU2/sMfwkknqWPLlqkazkMPhf/8R2ZzC1EDliyBgw9WLUbefHP4Bd5i8EmmWwghxKAp7I0vtfkc922pG7Vb8caYveGOO3EfeIC6kz4D5BvNvfEGzJhBuGFKWal9aaf6zTflabqBbgSKTfDyXNfG2mtOWSMu4zvX4Ht4CU53B6nrvtpvjYFwseN+KrGcXLqz5PmXd6pvaNnTuwCRTW7ENpP95sYXAnZfMOYF7a5je+se8q65RmWzP/MZuPVWdWzyZPjQh1SqJZMpBtjDZVZ1Oq3SXC+8AN/7XvH7adMmWL5cZeoLQXdrq7qQEIls5c6EEMNNZ6fKFh91VHnAnU4P7b6Nonok0y2EEKJ2ZDKqCZvfr8qXd999+1+zmX6d6l0XX8kYOfOeP2Jc9T1yt/0YZ8pEFaQnEipDXx+lvmQsXF/XUsxMF1v7Vds0YaEXSPd1LS0L0DfXOH5/r4w/GW/Lj6crnRtf3AsfbZqFbqg9wbl0F7aZLMnGl3eqN/zRgcvAf+Ur8I9/wJ//XOw0fu+9avTbhz6k9msPR5s2qf3XM2eq23190NSkxtstW6YCa4CXX1Yzhw4+eHiVwwshdloup14KRuXbpKxfr37lnHmmmvoXqMLwDzF0SaZbCCFE7XjrLdVxXNOKgdBO2l6nev8HT4UPnkrZNJmrLoHbb4ebboKPFoPuulGq63lhLFxxnJztzWgvCISbMXzhkn3z6pxCV/vScwuZ7s3nxm+JmY1vc358bOw+GD71bFKJFWST6/vNjS90qg83TMPwBaG3F+ufxNJjNwAAGsFJREFU9+CuXYVz7ieLAfwzT6G//jrOA/ejzZ6l7uPoo6Gjo/jOdLj5+c9Vlv7EE1V2G9R4r7PPVqO9fCVvpebPHz4d1IUQuyQQKH9Z+/3vVfuJ554b2n0Q99gD1q2DBx6Afffd/vliYEjQLYQQonbstZdqzvX22+VDVr/0JdXx5phjBn7ei23D/ferwDIW2+Ip3n5ufeu/dgPhZgg379BDRptmEm1s7Tc3vtCpvrTs3B/Il25vNje+cBFAKyn3L+6p32xufHcP2BbhPaaqA21t+E47EzcaoftDB4NfPS//pz8MHzsW68DZ1FtpfP4ohEJkrC4y658raVJX3qk+VD/RC/wtM6Uy8yWl9ZpmbDZ6rkIze66+Wo0lu/FGOOwwdWyvfFf+7u7yc3/xi8qsQQgxLH3pSzBvniovL7xE5XJqDNm558KiRdVdX0FXl3o5k/YSg0vKy4UQQtS2hx5SM1L8frXfthKdyC1LlbOfeGLx3dbf/qbe2Zx5Znk2dAhzHVs1tSsJzPVvXol+3fXYF38e47obVEDvODgHL8LaYxbZy78IDdF+neobxswvZtB7VpLpXbPVx20YPQ9foA6AdO8a0j0rt3pufcse+IPqQkI2tYlM39p+c+MLneqDkdEYPrXB0rayOFZKBe85E+3hx9Deehvt4ouLFylOP12lq775TfjWt9Qx21bvUkeP3sV/XSHESHP77fCJT8C4cbBixdAoOV++XO3Emjat/Nq0qKzh8S5ACCGEeLfmzYMvf1kFw6UB97p1avDqQPD51J7lAtNUs73b2iCVgvPPH5jHqSTXRfvq1zAeegj+/ncYO1Ydn7MnuC6+1ZugEJzqOvqTTxMAduQ9ZCg6nkBoVL+58YXbulHsRKQbQfzB2GZz4/NN8Fy3rMzesXPYZmqrj+sPxlTQnUxiblhGKpgEQNvQQdMHP4yracTfPx+3qYG65jkEzj8fTjwR86B9yXS8pgJ0TUfzGWiJpBfQ+8NNXjDv2CaOndksGz+CO9ULITwHHgif/CTsuWd5wP3gg3DEEWqAw2CbNm3wH1NIplsIIcRItHq1arh23HHw619DNDqw95/Nwo9/rNIcTz1VvP+eHtVgq1Ll0TsqmYRHHlFdtc84o3h8773hpZfgrrvgIx9Rx3p61IWDceO2dE+DSpW9a155uW1lcexMWdk8TrEJXjA6DuPW2+Cii7A/egrJH3zVC+ajZ1yAPbaF9MWfwp0whvqW3fEH1faATHI9qXj7VtdRN2o2gbDazJlNdZDsfrvfOYWy+EjjdLV1ADUerzQzv3mnel+w3gvmVdWBWT43Xggx7D31lCo1nzsXXnxxaGS/ReVJplsIIcTI88ADKjDetKkyo5yCQdXJ+8tfLt8497GPwcaN8P/+H+yzz8A/7tb09aky6cKe86eeguOPV5n/008vXgS4/HJ13lFHFb+2oWHIzMzePHts+IKqsVvBddepLP1PfqK6BYFqqGeaGMtX0zCmpMnZQ0vwuS7BfLZdK9lv7w82UjdqFq5jFefGuw6uY4HroJc8pqZpKlNf0u0eKN8bn+dYWXLprq0+v2jTTC/oNnM99HW+WfrsyzrVh+onE4yo8XS2mVbBfEnjO0pK7Q1/xCv1L6xLsvFCVMfKldDcDAsXlgfcllX5nUiOo/p9BoNwzjkyX3wwSaZbCCHEyPTaayrALHSbzuXUPt7Pf14NYB1oa9eq7Ho2C6+/DrNmDfxjbMlXvgI33ADXXguXXKKOpdOwYIGai/3jHw+/GdKmCU8/De3tas98wfveB//5j3pOF1ygjqXTaivB9OmDUmFQ2qke10YzAt6oN9tKY2YTZdn40r3wobrxXrY9l+4i2f1O2dz4UtHGGQSjYwAwM930lgXo5SKxaYTq1FYKK9dLz6ZXgf5z4zXNIBgdSzCi9q87do5Mcv0W58ajGRi+YNnWACHEjkkm1ccY9SPMhg2q0OiTn1S/hirV/TydLr7cFwqvxOCQTLcQQoiRqZAJLbjtNhWY/v73qvv5QG+2mzBBzXT+73/LA+7f/EbVGe63367dfy4H3/kOPPYY/POfxXdW48erFMprrxXPDYdV4D9cWJYqcS9k3JcuhUMOUc/j1FOL6ZovfAFOOQXe//7i14bD73p83LuxrU71hi/sZbK3JxAeRSB8wGZz4x0v+17IXAPovhDhhsll2fhiR3sL3Sim04rj5jbLxtuFxy120Hfs7DYb4IXrJxFumKy+3EyR2PhSv67zaj68QSDcXAzmHYtccmNZNr78a/zenHkhalE0Wr6r6de/VnO+H3wQrrqqso992mnq14U0URtckukWQgghAJYsgcsug49+VGW7C1KpymWCN25UAWEyqR7/wAN37OvSaXjySfXn8cerY64LU6ao/er/+Q+8973q+KZN6v6Ha/ecH/8Yvv51OO88+P731THXVQ3y5syBm28eEvvNh5PNs/GlTesMf7ik43uGbHL9FufGu65NqG4CwahquFeaQd+S8gA9TWLji1s9N1Q3nkhsGqCy7T0bX97i3Hi1D77RK7N3XYdcalPJSLriiLqyiwBCDDGOowZejBoFhx+ujpmmKk76zGf6XyMWw49kuoUQQghQpdaPPqoCuoInnoAPflDtdf7ylwf+MW0bTjpJZW5Lh7jmcuWb/TIZ9a6sEPz/4x8qo7vnnsWgW9NUcBoIFEvmQY26Gi7jrm66Se23/+lPi53mm5uhtxeefbZ4nqbBq1sP8MS27cjceADDF/KC3+0x/FEaxy0oy8a7br7zvGNh+EvSeppOMDJ6i3PjcZ2y/fWFhnKAl40vey66AeSDbsciGW/b6hqDkTFEm2Z499uz6eWybHxpYO7z1xHIB/Ogyv23PDde9saLXafr8OEPlx+76y51zfEPf1D7wCtVci4GhwTdQgghRIGmle/7ve02NaP5rbcq83jjx6u6wlyu+LiWBfvuq4Lwa69VtYa33qqag33yk+qcww6DSZPUJkDbLpbCn3deZdY50FxXlbevXAnHHls8fvvt8NxzqnP6xz6mjh1/PDz/fPmFBDHkaJqOZuxYG2bDFyTaNHOHztV9QWJj9ioLzEs71RuB8skD/lBTWTa+9Gu0kqaGrmtjW5mtPm4wMtoLul3Hpq9r668BgXAzdaOKW0Z6Nr1a3nW+JJg3fOGyEn4r14tqkifZeFFu/nx1bXX//csD7v/9TzVhq/YQDLFzJOgWQgghtubnP1fDVI88snhswwaVaT7rrIFrNVua1X7oIbX/ev16uP56qKtTzdeefbYYdI8erQLW4fKuy3VVrWTheS5ZovZkjx6t/j0Lz+P886Gjozzr39g4uJ3exZCiaTqGf8e2d+hGgPrmOVv8nNpNWaxi0XQf9S17lGXjSzvV+0oy8y4uvkB9yYz54nmFNXrnOnY+kN6yQGhUWdDd2/EaW9rpqWkG/lBjWTDf1/U24JbsgS92qjeMoLrgkGdbaUCXbPwwNn8+/PGP5cVXzzyjdiHtt596Gd3Z7Pcbb6hfaRMmwAsvDOhyxXZI0C2EEEJsjWHAxz9efuyaa1TN33/+A3feOfCP+b73qRnab7yh9mJ/9rNqDZt3Ox8uAfcNN6hRXhdcAF/7mjq2336qbHzvvaG7W21khOJFBSEGmJrtrpXc1vEHd2wUnq77aBi9Z7/jWxoLh6ZRN2r2FufGqz3z0bKv141gWTa++Dl1MaCUmencYoAO4A/GyoLu3k2vFcvy88+/UBbvC9SVBfOpxApvbF5pR3tNM9CMQNm/k2ObMjd+kJW+1L/xhmrANnduecDtOOXTKbcmlVKtRKRUffBJ0C2EEELsjJkzVcBYGiA6Tv/S9F1RX6+C7SuvVI3RhgPHUeXhDz+smpsVZtEYhhrZ9dhjxaA7GFQZ7oHuEC/EINpSBlnTdALhUTv89bGxxSqOzTvVl14kAIjEWsv2wFNSam/4IpvfOZqmexcFXNfFdS3AwnXKx7zlUpvKAvRSPn8Uf8l8+96OV72y/M27zuu+MHWjdvPOzfStxXXsfnPjC1l6X6Cu7Llrw+VCYhV9/ONwwgmqzUfBxo0q+33eeXDxxdsuwNp9d3j55cqvU/Qn3cuFEEKInZVMqqZmhTeJ//d/av/3976nyqZ31Ysvqo18EybAihW7fn+VsHo1rFmjNhcWtLaq2dn/+Edxr/batcVGcTKjRohBtaVO9Wh6Wfl8pm9dvrze7tepXjdCXvM5gPj653Ds3BYfy+eP0lASoCc2vLDVffOGESQ2bl/vds+mV7DNJJqW7zxfGswbgbIeANnUJlzH8jrTb96pvnSc3khwzTVwxRWqgOjpp4dPEdRII5luIYQQYmeVDlh1XTXK6s034amnBibo3ntvtQd6KHHd4ru5f/9bzcKePVs974LzzoNEonwu9oQJxU7kQohBtSOd6kN143f4/hrHLSiZAV8smycfzJcKREbj2mbJecWv0Tdruqfu08V1+3eq143yzHw2uR4r17fF9em6j8bx+3u3+zrfxDKT/ebGFwL0aGPxtcrMdOM4Vr8MfqFTvb6dbv/Vcskl6iV24sTyfpzf/CZ8+tMwfXp11ycUyXQLIYQQu2rdOrV3+VvfgrCaccwbb6h3PvPmVXNlu+7GG+H//T+46CI1MBbUPuyxY9XFgUceKT5nIYR4FxzH2uLceNe10dDKxrele1ZhW+l+c+Nd10HTDGJj9/bO7dn0ylYDdE03aBp/gHe7t+MNzGx8KyvUGDWx2OAxGW/DyvXmA3Nfv0714YbJ3tYDK9dbDOa9LH6x1L4S7rxTDYAYP1713CyUnC9fDg8+qAL097+/Ig8ttmJoXrIRQgghhpPx41VpeamLLoL771ejvj772eqsa2dYFtxzj9p7/f3vF9+ldXerbPZ//1sMupua1PFodOv3J4QQO0jXfdudG18Qbpi8w/cbbZqF65YG9P2b1hUUxs8Vm+AVM/qb12w7VhbbTG1jjVO8v2f61pFLd2713KbxB3jBd7p3NVY20W9ufCFID0bHeufaVjpfZt9/bvyMGXD00XD44eV7vH/1K/j2t9XUSQm6B5cE3UIIIcRAy2ahoUG1iH3f+3b+61evVjO6YzG1Ya8S4nHVzGz2bHVb0+BTn1LHTz8dDshngM44Q2W0Dzus/Osl4BZCDHGGLwgEt3seQKQkUN7c5l3qI7GpOM6EfnPjixn3YpCuG0F8/mgxg18oyS8oKcu3zRRmtmer6whEx3jt9TK9a8mmNvY7R9M0Zk8x+Nc/9wJNlfFnkxt45qk03/72NKD48i4GjwTdQgghxEALBuEPf1CNxiZOLB7/xjegt1d18R4zZutf39mpMuTjx1cm6L77bjjlFNXc7Ikn1DHDgE98Qu0lbygZpTRrVv9xZUIIMYJs3qXe8EfY0cLwSGzqFo8X9saXBuihugkEws1lwXxpp3pNKz6qpvswCiPnSubGe53qNd0bI2bl+nj2WfD7HT58Yh/f//6OjcsTA0f2dAshhBCDYdMmmDoV0mm47z44/vitn7t+vdpHXVenuuTsiptvht/8Br76Vfjwh9Wx9nbV7GzPPVWndBndJYQQw9rmnep1X9gL6M1sD7aVYs1qcAix2+zG6i52BJKgWwghhBgMrgv/+Q/85S/w058W9wi++ipMm6YC7F1hmvDoo2pmzFe/Wrz/L34RbroJzj8fbrmleP66dSqTLoQQQoiKkqBbCCGEqBbThLlzVcn5ffep2dw7KptVZeiFcVypFDQ2qvt85x2YkZ+t+9xz8NprcNRRMGnSgD8FIYQQQmyb7OkWQgghqmXFiuLf584t/t22VSCuaaqZ2uZ+/3s45xzVnvaee9SxSESVjwcCqhN5wYIF6kMIIYQQVaFv/xQhhBBCVMTMmWqe94MPlpeXn322Gss1ezbceisccww8/nj512UysHSpKlsvuOsutX+70JFcCCGEEFUnQbcQQghRTX6/amhW8NRTcMcd6u+2rfZp33+/+ijYZx94/XUVsG82P1YIIYQQQ4vs6RZCCCGGkt5euOEG2LgRrr8eHnlEBdjHHgu77Vbt1QkhhBBiJ0nQLYQQQgghhBBCVIiUlwshhBBCCCGEEBUiQbcQQgghhBBCCPH/269jAQAAAIBB/taj2FcWTaQbAAAAJtINAAAAE+kGAACAiXQDAADARLoBAABgIt0AAAAwkW4AAACYSDcAAABMpBsAAAAm0g0AAAAT6QYAAICJdAMAAMBEugEAAGAi3QAAADCRbgAAAJhINwAAAEykGwAAACbSDQAAABPpBgAAgIl0AwAAwES6AQAAYCLdAAAAMJFuAAAAmEg3AAAATKQbAAAAJtINAAAAE+kGAACAiXQDAADARLoBAABgIt0AAAAwkW4AAACYSDcAAABMpBsAAAAm0g0AAAAT6QYAAICJdAMAAMBEugEAAGAi3QAAADCRbgAAAJhINwAAAEykGwAAACbSDQAAABPpBgAAgIl0AwAAwES6AQAAYCLdAAAAMJFuAAAAmEg3AAAATKQbAAAAJtINAAAAE+kGAACAiXQDAADARLoBAABgIt0AAAAwkW4AAACYSDcAAABMpBsAAAAm0g0AAAAT6QYAAICJdAMAAMBEugEAAGAi3QAAADCRbgAAAJhINwAAAEykGwAAACbSDQAAABPpBgAAgIl0AwAAwES6AQAAYCLdAAAAMJFuAAAAmEg3AAAATKQbAAAAJtINAAAAE+kGAACAiXQDAADARLoBAABgIt0AAAAwkW4AAACYSDcAAABMpBsAAAAm0g0AAAAT6QYAAICJdAMAAMBEugEAAGAi3QAAADCRbgAAAJhINwAAAEykGwAAACbSDQAAABPpBgAAgIl0AwAAwES6AQAAYCLdAAAAMJFuAAAAmEg3AAAATKQbAAAAJtINAAAAE+kGAACAiXQDAADARLoBAABgIt0AAAAwkW4AAACYSDcAAABMpBsAAAAm0g0AAAAT6QYAAICJdAMAAMBEugEAAGAi3QAAADCRbgAAAJhINwAAAEykGwAAACbSDQAAABPpBgAAgIl0AwAAwES6AQAAYCLdAAAAMJFuAAAAmEg3AAAATKQbAAAAJtINAAAAE+kGAACAiXQDAADARLoBAABgIt0AAAAwkW4AAACYSDcAAABMpBsAAAAm0g0AAAAT6QYAAICJdAMAAMBEugEAAGAi3QAAADCRbgAAAJhINwAAAEykGwAAACbSDQAAABPpBgAAgIl0AwAAwES6AQAAYCLdAAAAMJFuAAAAmEg3AAAATKQbAAAAJtINAAAAE+kGAACAiXQDAADARLoBAABgIt0AAAAwkW4AAACYSDcAAABMpBsAAAAm0g0AAAAT6QYAAICJdAMAAMBEugEAAGAi3QAAADCRbgAAAJhINwAAAEykGwAAACbSDQAAABPpBgAAgIl0AwAAwES6AQAAYCLdAAAAMJFuAAAAmEg3AAAATKQbAAAAJtINAAAAE+kGAACAiXQDAADARLoBAABgIt0AAAAwkW4AAACYSDcAAABMpBsAAAAm0g0AAAAT6QYAAICJdAMAAMBEugEAAGAi3QAAADCRbgAAAJhINwAAAEykGwAAACbSDQAAABPpBgAAgIl0AwAAwES6AQAAYCLdAAAAMJFuAAAAmEg3AAAATKQbAAAAJtINAAAAE+kGAACAiXQDAADARLoBAABgIt0AAAAwkW4AAACYSDcAAABMpBsAAAAm0g0AAAAT6QYAAICJdAMAAMBEugEAAGAi3QAAADCRbgAAAJhINwAAAEykGwAAACbSDQAAABPpBgAAgIl0AwAAwES6AQAAYCLdAAAAMJFuAAAAmEg3AAAATKQbAAAAJtINAAAAE+kGAACAiXQDAADARLoBAABgIt0AAAAwkW4AAACYSDcAAABMpBsAAAAm0g0AAAAT6QYAAICJdAMAAMBEugEAAGAi3QAAADCRbgAAAJhINwAAAEykGwAAACbSDQAAABPpBgAAgIl0AwAAwES6AQAAYCLdAAAAMJFuAAAAmEg3AAAATKQbAAAAJtINAAAAE+kGAACAiXQDAADARLoBAABgIt0AAAAwkW4AAACYSDcAAABMpBsAAAAm0g0AAAAT6QYAAICJdAMAAMBEugEAAGAi3QAAADCRbgAAAJhINwAAAEykGwAAACbSDQAAABPpBgAAgIl0AwAAwES6AQAAYCLdAAAAMJFuAAAAmEg3AAAATKQbAAAAJtINAAAAE+kGAACAiXQDAADARLoBAABgIt0AAAAwkW4AAACYSDcAAABMpBsAAAAm0g0AAAAT6QYAAICJdAMAAMBEugEAAGAi3QAAADCRbgAAAJhINwAAAEykGwAAACbSDQAAABPpBgAAgIl0AwAAwES6AQAAYCLdAAAAMJFuAAAAmEg3AAAATKQbAAAAJtINAAAAE+kGAACAiXQDAADARLoBAABgIt0AAAAwkW4AAACYSDcAAABMpBsAAAAm0g0AAAAT6QYAAICJdAMAAMBEugEAAGAi3QAAADCRbgAAAJhINwAAAEykGwAAACbSDQAAABPpBgAAgIl0AwAAwES6AQAAYCLdAAAAMJFuAAAAmEg3AAAATKQbAAAAJtINAAAAE+kGAACAiXQDAADARLoBAABgIt0AAAAwkW4AAACYSDcAAABMpBsAAAAm0g0AAAAT6QYAAICJdAMAAMBEugEAAGAi3QAAADCRbgAAAJhINwAAAEykGwAAACbSDQAAABPpBgAAgIl0AwAAwES6AQAAYCLdAAAAMJFuAAAAmEg3AAAATKQbAAAAJtINAAAAE+kGAACAiXQDAADARLoBAABgIt0AAAAwkW4AAACYSDcAAABMpBsAAAAm0g0AAAAT6QYAAICJdAMAAMBEugEAAGAi3QAAADCRbgAAAJhINwAAAEykGwAAACbSDQAAABPpBgAAgIl0AwAAwES6AQAAYCLdAAAAMJFuAAAAmEg3AAAATKQbAAAAJtINAAAAE+kGAACAiXQDAADARLoBAABgIt0AAAAwkW4AAACYSDcAAABMpBsAAAAm0g0AAAAT6QYAAICJdAMAAMBEugEAAGAi3QAAADCRbgAAAJhINwAAAEykGwAAACbSDQAAABPpBgAAgIl0AwAAwES6AQAAYCLdAAAAMJFuAAAAmEg3AAAATKQbAAAAJtINAAAAkwBcNaprJSwiOwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ag = AcquisitionGeometry.create_Cone3D(source_position=[0,-500,0],detector_position=[0,500,0])\\\n", + " .set_panel(num_pixels=[2048,2048], pixel_size = 0.2)\\\n", + " .set_angles(angles=range(0,180))\n", + "\n", + "print(\"ImageGeometry - default\")\n", + "ig = ag.get_ImageGeometry()\n", + "show_geometry(ag, ig)\n", + "\n", + "print(\"ImageGeometry - RoI\")\n", + "ig = ag.get_ImageGeometry()\n", + "ig.voxel_num_z = 100\n", + "show_geometry(ag, ig)\n", + "\n", + "print(\"ImageGeometry - Offset RoI\")\n", + "ig = ag.get_ImageGeometry()\n", + "ig.voxel_num_z = 200\n", + "ig.center_z = -1024 * ig.voxel_size_z\n", + "show_geometry(ag, ig)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can also create an `ImageGeometry` directly.\n", + "\n", + "Here we create our ig independently of an `AcquisitionGeometry`, by first importing `ImageGeometry` from `cil.framework`\n" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "execution": { + "iopub.execute_input": "2024-10-10T15:02:41.197491Z", + "iopub.status.busy": "2024-10-10T15:02:41.197216Z", + "iopub.status.idle": "2024-10-10T15:02:41.199945Z", + "shell.execute_reply": "2024-10-10T15:02:41.199478Z" + } + }, + "outputs": [], + "source": [ + "from cil.framework import ImageGeometry\n", + "\n", + "ig = ImageGeometry(voxel_num_x=1000, voxel_num_y=1000, voxel_num_z=500, voxel_size_x=0.1, voxel_size_y=0.1, voxel_size_z=0.2 )" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3.8.11", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.12.7" + }, + "vscode": { + "interpreter": { + "hash": "cf07678abc5cc77bc6e1a7d19b1e87ab0c29b83e7ee41c2bc72506d16d80ed44" + } + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/v24.2.0/.doctrees/nbsphinx/demos/callback_demonstration.ipynb b/v24.2.0/.doctrees/nbsphinx/demos/callback_demonstration.ipynb new file mode 100644 index 0000000000..0fd142943d --- /dev/null +++ b/v24.2.0/.doctrees/nbsphinx/demos/callback_demonstration.ipynb @@ -0,0 +1,1255 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [], + "source": [ + "# -*- coding: utf-8 -*-\n", + "# Copyright 2024 - United Kingdom Research and Innovation\n", + "# Copyright 2024 - The University of Manchester\n", + "#\n", + "# Licensed under the Apache License, Version 2.0 (the \"License\");\n", + "# you may not use this file except in compliance with the License.\n", + "# You may obtain a copy of the License at\n", + "#\n", + "# http://www.apache.org/licenses/LICENSE-2.0\n", + "#\n", + "# Unless required by applicable law or agreed to in writing, software\n", + "# distributed under the License is distributed on an \"AS IS\" BASIS,\n", + "# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n", + "# See the License for the specific language governing permissions and\n", + "# limitations under the License.\n", + "#\n", + "# Authored by: CIL contributors " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# CIL Callback demonstration\n", + "\n", + "This notebook runs on CIL Master (built on 14/03/2024) and demonstrates the new callback functionality " + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [], + "source": [ + "from cil.utilities import dataexample\n", + "from cil.utilities.display import show2D\n", + "from cil.recon import FDK\n", + "from cil.processors import TransmissionAbsorptionConverter, Slicer\n", + "from cil.utilities.quality_measures import psnr\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt \n", + "from cil.plugins.tigre import ProjectionOperator\n", + "from cil.optimisation.algorithms import FISTA, Algorithm\n", + "from cil.optimisation.functions import LeastSquares, IndicatorBox, ZeroFunction, TotalVariation\n", + "from cil.optimisation.operators import GradientOperator\n", + "from cil.optimisation.utilities import callbacks\n", + "from cil.framework import DataContainer\n", + "\n", + "from cil.utilities.quality_measures import mse, mae, psnr\n", + "\n", + "# set up default colour map for visualisation\n", + "cmap = \"gray\"\n", + "\n", + "# set the backend for FBP and the ProjectionOperator\n", + "device = 'gpu'\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Load Data " + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "FDK recon\n", + "\n", + "Input Data:\n", + "\tangle: 60\n", + "\thorizontal: 128\n", + "\n", + "Reconstruction Volume:\n", + "\thorizontal_y: 128\n", + "\thorizontal_x: 128\n", + "\n", + "Reconstruction Options:\n", + "\tBackend: tigre\n", + "\tFilter: ram-lak\n", + "\tFilter cut-off frequency: 1.0\n", + "\tFFT order: 8\n", + "\tFilter_inplace: False\n", + "\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABdIAAAKOCAYAAACiHeulAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeXwV1f0//heiLMoiewgECAiyuQIiIJsWFNS6QPVbFWtVWgoqQq0tohasBbWWphZFaRGkimCLFGsRwaq4EBVQQUFBkU0gLGFxF6H5/eGP+8m8ziu5QwjJDbyej4ePh+dy7ixnzpw5M5n7fpfLy8vLg5mZmZmZmZmZmZmZSUeV9gaYmZmZmZmZmZmZmaUyP0g3MzMzMzMzMzMzMyuEH6SbmZmZmZmZmZmZmRXCD9LNzMzMzMzMzMzMzArhB+lmZmZmZmZmZmZmZoXwg3QzMzMzMzMzMzMzs0L4QbqZmZmZmZmZmZmZWSH8IN3MzMzMzMzMzMzMrBB+kG5mZmZmZmZmZmZmVgg/SDezMmPZsmW47rrr0KxZM1SuXBmVK1dG8+bN8fOf/xyLFy8u7c07KOXKlcOoUaMK/PcePXqgXLlySf8rbBlxfPXVVxg1ahRefvnl4N9GjRqFcuXKYfv27Qe1DjMzMzMrHlOmTClwXnjLLbck6jVp0iTx+VFHHYXq1aujVatWuPrqqzFv3jy57HLlyuGGG24IPv/tb3+LcuXK4Re/+AX+97//Fbht+ddZrlw5HHfccTj99NMxfvx45OXlHfzOp5AVK1Zg1KhRWLt2baltw6ZNmzBq1Ci8++67wb/tn8ebmdnBObq0N8DMLI5HHnkEN9xwA0488UQMHToUbdq0Qbly5fDBBx/gySefRIcOHfDxxx+jWbNmpb2ph8RDDz2Ezz77LFH+z3/+g7vvvhuTJ09Gy5YtE583bNjwoNbz1VdfYfTo0QC+f3hvZmZmZqmP54QAkJ6eHil36dIF999/PwDgiy++wMqVKzF9+nSce+656NevH5588kkcc8wxBa4jLy8PQ4cOxV/+8hf85je/wdixY5NuV/51btq0CePGjcONN96Izz77DLfddtuB7mbKWrFiBUaPHo0ePXqgSZMmpbINmzZtwujRo9GkSROceuqpkX+7/vrrcd5555XKdpmZHU78IN3MUt7rr7+OwYMH4/zzz8c///lPVKhQIfFvZ599NoYMGYJ//OMfqFy5cqHL+eqrr3Dsscce6s09JFq3bh0pf/jhhwCAtm3bon379gV+ryzvs5mZmZnFk2xOCADHH388zjzzzET5Bz/4AYYMGYJRo0Zh9OjRuP3223HvvffK7+7duxfXXnst/v73v+MPf/hD5G33A11no0aN8MgjjxxWD9IPVEnP0Rs2bHjQL9yYmZlDu5hZGTBmzBiUL18ejzzySOQhen4/+tGPIm/dXHPNNahSpQree+899O7dG1WrVsU555wDANixYwcGDx6MBg0aoEKFCmjatClGjhyJb7/9NvH9tWvXoly5cpgyZUqwLg6hsv+nksuXL8ePf/xjVK9eHfXq1cO1116L3bt3R7772WefYeDAgahVqxaqVKmC8847D6tWrTqI1vk/+7fj7bffRv/+/VGjRo3EG/o9evSQb5hfc801ibdm1q5dizp16gAARo8enfgZ7jXXXBP5zpYtW5Lup5mZmZmVDaNGjUKbNm0wfvx4fPPNN8G/f/PNN+jXrx+mTZuGv/3tb7EfoivVqlVDixYtsGXLlsjne/bswd13342WLVuiYsWKqFOnDn76059i27ZtwTKmTZuGTp06oUqVKqhSpQpOPfVUTJo0KVLn0UcfxSmnnIJKlSqhZs2auOSSS/DBBx9E6uy/X/j444/Rt29fVKlSBRkZGfjlL38ZuS8AgAkTJuCUU05BlSpVULVqVbRs2TLxh4ApU6bgRz/6EQCgZ8+eiTn0/vuIHj16oG3btnjllVfQuXNnHHvssbj22msBFBzesUmTJsEcfOPGjfjZz36GjIwMVKhQAenp6ejfvz+2bNmCl19+GR06dAAA/PSnPw3CPqrQLv/73/9w3333Jdq8bt26uPrqq/Hpp59G6u3f/kWLFqFr16449thj0bRpU9xzzz2FhvYxMzsc+UG6maW0ffv24aWXXkL79u1Rv379A/runj178MMf/hBnn302Zs+ejdGjR+Obb75Bz549MXXqVAwfPhz/+c9/cNVVV+G+++7DpZdeelDb2q9fP7Ro0QIzZ87Eb37zG0ybNg3Dhg1L/HteXh4uvvhi/P3vf8cvf/lLzJo1C2eeeSb69OlzUOtll156KU444QT84x//wMMPPxz7e/Xr18fcuXMBANdddx2ys7ORnZ2NO+64I1Iv2X6amZmZWcnat28f9u7dG/nvQFx44YX46quvgrxDn3/+Ofr06YO5c+dixowZuO666w5qO/fu3YsNGzagRYsWic/+97//4aKLLsI999yDK664Av/5z39wzz33YP78+ejRowe+/vrrRN0777wTV155JdLT0zFlyhTMmjULP/nJT7Bu3bpEnbFjx+K6665DmzZt8PTTT+PPf/4zli1bhk6dOuGjjz6KbM93332HH/7whzjnnHMwe/ZsXHvttfjTn/4UeTN/+vTpGDx4MLp3745Zs2bhX//6F4YNG4Yvv/wSAHD++edjzJgxAIAHH3wwMYc+//zzE8vYvHkzrrrqKlxxxRWYM2cOBg8efEDttnHjRnTo0AGzZs3C8OHD8dxzzyErKwvVq1fHzp07cfrpp2Py5MkAgNtvvz2xDddff32By/zFL36BX//61+jVqxeeeeYZ/O53v8PcuXPRuXPnICdSTk4OrrzySlx11VV45pln0KdPH4wYMQKPP/74Ae2HmVlZ59AuZpbStm/fjq+//hqNGzcO/m3fvn2RREXly5ePvGnx3Xff4c4778RPf/rTxGePPPIIli1bhqeeeirx5kivXr1QpUoV/PrXv8b8+fPRq1evIm3rddddh1/96lcAvv/Z6scff4xHH30UkyZNQrly5fD888/jpZdewp///GfcdNNNiXVXqFABI0eOLNI6lZ/85CeJOOcHomLFimjXrh2A73/+mf9nuPkl208zMzMzK1lq3vbdd9/h6KPj3fLvn2tv2rQp8vnUqVMBABMnTkS/fv0OeLvy8vISD/U3bdqEu+++G7m5ufjb3/6WqPPUU09h7ty5mDlzZuTFllNOOQUdOnTAlClT8Itf/AJr1qzBmDFjcOWVV0Ye4Oafu+/atQu/+93v0LdvX0ybNi3xeY8ePdC8eXOMGjUKTzzxROLzPXv2YPTo0Yn7gnPOOQeLFy/GtGnTcOeddwL4Pszk8ccfjwceeCDxvf2/dAWAOnXqoHnz5gC+D8eojsWOHTvwj3/8A2efffYBtuD37rzzTmzfvh1Lly5Fq1atEp9fdtllif9v27YtAKBZs2YFzuP3+/DDDzFx4kQMHjwYf/nLXxKfn3baaejYsSP+9Kc/4fe//33i89zcXMyZMwdnnHEGgO/vAV5++WVMmzYNV199dZH2ycysLPIb6WZWZrVr1w7HHHNM4r8//vGPQR2e8L/44os47rjj0L9//8jn+386+d///rfI2/PDH/4wUj755JPxzTffYOvWrQCAl156CQBw5ZVXRupdccUVRV6nUpSbnAORbD/NzMzMrGRNnToVixYtivwX9yE6gMjLKfl17doVxx9/PEaPHo2PP/74gLdrzpw5ibl648aN8de//hV/+ctfIm9rP/vsszj++ONx4YUXRt6oP/XUU5GWloaXX34ZADB//nzs27cPQ4YMKXB92dnZ+Prrr4OwKBkZGTj77LODuX65cuVw4YUXRj47+eSTI2+4n3HGGdi1axd+/OMfY/bs2cHb2nHUqFGjyA/RAeC5555Dz549Iw/RD8b++xJupzPOOAOtWrUK2iktLS3xEH0/biczsyOBH6SbWUqrXbs2KleuLCdp06ZNw6JFi/DMM8/I7x577LGoVq1a5LPc3FykpaUFb07XrVsXRx99NHJzc4u8rbVq1YqUK1asCACJn6Pm5ubi6KOPDuqlpaUVeZ3KgYbAOVDJ9tPMzMzMSlarVq3Qvn37yH8HYv9cO3/OIeD7h6UvvPACvvrqK3Tv3v2Ac/ucddZZWLRoEd544w38/e9/R5MmTXDDDTfgtddeS9TZsmULdu3ahQoVKkRekjnmmGOQk5OTeHC9P156YUkz98/l1Xw4PT09mOsfe+yxqFSpUuSzihUrRmLFDxgwAI8++ijWrVuHfv36oW7duujYsSPmz58fux0Odn6+bdu2Yk0WeqDtxPN/4Pt28vzfzI40fpBuZimtfPnyOPvss7F48WJs3rw58m+tW7dG+/btcdJJJ8nvqjAjtWrVwpYtW4K3brZu3Yq9e/eidu3aAJCYUHOioYN90L53795gGTk5OUVepqL2u1KlSsG+ACjSGzVmZmZmdvjIy8vDv//9bxx33HHyAXy7du3wwgsvJHINrVy5Mvayq1evjvbt26Njx4646qqrMG/ePBxzzDEYPHhwIlFl7dq1UatWreCN+v3/PfTQQwC+D6ECIEiGmd/+B7583wB8H1pm/1z/QP30pz/FwoULsXv3bvznP/9BXl4eLrjggthvZBcU/rBixYpyjs73C3Xq1Cl0vw/UoWonM7PDnR+km1nKGzFiBPbt24dBgwbhu+++O6hlnXPOOfjiiy/wr3/9K/L5/viP++Md1qtXD5UqVcKyZcsi9WbPnl3kdffs2RMAInEZAUTiNx4qTZo0wapVqyIT9dzcXCxcuDBSz2+Xm5mZmR1ZRo8ejRUrVmDo0KHB29n7nX766fjvf/+Lb7/9Fj179sSHH35YpHU1b94ct956K9577z3MmDEDAHDBBRcgNzcX+/btC96qb9++PU488UQAQO/evVG+fHlMmDChwOV36tQJlStXDpJgfvrpp3jxxRcjsc2L4rjjjkOfPn0wcuRI7NmzB8uXLwdQ9Dl0kyZNgvuNF198EV988UXksz59+uCll14q9I8YB7IN+8PMcDstWrQIH3zwwUG3k5nZ4crJRs0s5XXp0gUPPvggbrzxRpx++un42c9+hjZt2uCoo47C5s2bMXPmTAAIwrgoV199NR588EH85Cc/wdq1a3HSSSfhtddew5gxY9C3b1/84Ac/APD9WyNXXXUVHn30UTRr1gynnHIK3nrrrYN66N27d29069YNt956K7788ku0b98er7/+Ov7+978XeZlxDRgwAI888giuuuoqDBw4ELm5ubjvvvuCNqtatSoaN26M2bNn45xzzkHNmjVRu3ZtNGnS5JBvo5mZmZkdOrt27cIbb7wBAPjyyy+xcuVKTJ8+Ha+++iouu+yypMnqTz31VPz3v//FOeecg549e+LFF18sUszuW265BQ8//DBGjx6Nyy67DP/v//0/PPHEE+jbty+GDh2KM844A8cccww+/fRTvPTSS7joootwySWXoEmTJrjtttvwu9/9Dl9//TV+/OMfo3r16lixYgW2b9+O0aNH4/jjj8cdd9yB2267DVdffTV+/OMfIzc3F6NHj0alSpXw29/+9oC3d+DAgahcuTK6dOmC+vXrIycnB2PHjkX16tXRoUMHAP+X6HPixImoWrUqKlWqhMzMTBkSJb8BAwbgjjvuwJ133onu3btjxYoVGD9+PKpXrx6pd9ddd+G5555Dt27dcNttt+Gkk07Crl27MHfuXAwfPhwtW7ZEs2bNULlyZTzxxBNo1aoVqlSpgvT09CBcDwCceOKJ+NnPfoa//OUvOOqoo9CnTx+sXbsWd9xxBzIyMjBs2LADbiczsyOB30g3szJh0KBBWLx4MTp06IA//elP6Nu3L/r06YM777wTxx13HP773//iZz/7WdLlVKpUCS+99BKuvPJK/OEPf0CfPn0wZcoU3HLLLXj66acjdf/4xz/iqquuwn333YeLLroI2dnZePbZZ4u8D0cddRSeeeYZXHnllbjvvvtw8cUXY+HChZgzZ06RlxlXly5d8Nhjj2H58uW46KKLcPfdd2PEiBHo0aNHUHfSpEk49thj8cMf/hAdOnTAqFGjDvn2mZmZmdmh9frrr6NTp07o3LkzLr74YjzwwANo0qQJnn/+ecyYMSNWctJTTjkFL774Ivbu3YuePXtixYoVB7wdVapUwZ133omVK1fiiSeeQPny5fHMM8/gtttuw9NPP41LLrkEF198Me655x5UqlQpEsbxrrvuwtSpU7Fu3TpceeWVuPjiizF58mRkZmYm6owYMQJ/+9vfsHTpUlx88cW44YYb0KZNGyxcuBDNmzc/4O3t2rUr3n//fQwdOhS9evXCsGHD0KJFC7z66quJcDOZmZnIysrC0qVL0aNHD3To0AH//ve/ky77V7/6FX71q19hypQpuPDCCzFz5kw89dRTOP744yP1GjRogLfeegsXXHAB7rnnHpx33nm48cYbsXv3btSsWRPA9/HeH330UeTm5qJ3797o0KEDJk6cWOC6J0yYgHvuuQdz5szBBRdcgJEjR6J3795YuHBh0j8AmJkdqcrlFZSe28zMzMzMzMzMzMzM/Ea6mZmZmZmZmZmZmVlh/CDdzMzMzMzMzMzMzKwQfpBuZmZmZmZmZmZmZlaIw+ZB+kMPPYTMzExUqlQJ7dq1w6uvvlram2RmZmZmdkTxnNzMzMzMDleHxYP0GTNm4Oabb8bIkSPxzjvvoGvXrujTpw/Wr19f2ptmZmZmZnZE8JzczMzMzA5n5fLy8vJKeyMOVseOHXH66adjwoQJic9atWqFiy++GGPHji3FLTMzMzMzOzJ4Tm5mZmZmh7OjS3sDDtaePXuwZMkS/OY3v4l83rt3byxcuFB+59tvv8W3336bKP/vf//Djh07UKtWLZQrV+6Qbq+ZmZlZScvLy8Pnn3+O9PR0HHVUvB8kfvPNN9izZ88h3rKoChUqoFKlSiW6TisenpObmZmZFc5z8rKvzD9I3759O/bt24d69epFPq9Xrx5ycnLkd8aOHYvRo0eXxOaZmZmZpYwNGzagYcOGSet98803yMzMLHAudaikpaVhzZo1nriXQZ6Tm5mZmcXjOXnZVeYfpO/Hb63k5eUV+CbLiBEjMHz48ER59+7daNSo0SHdPjMzM7PSVrVq1Vj19uzZg5ycHGzYsAHVqlU7xFv1vc8++wwZGRnYs2ePJ+1lWHHMyXv37o1jjjkm8Rn7+uuvI+Vjjz02qMPRK7/55pugzr59+yLl//3vf0EdPmfUOVS+fPlI+fPPPw/qbN26tdDlVKlSJfgOv32m3kbj5ezatSuow/ul2ovbomLFikmXo1SuXDlS5nNZtU3+XyUA4fEFgC1btkTK1atXD+qkp6dHyk2aNAnqHH109Pb3q6++Srqu3NzcoM62bduCz/KrU6dO8Nn+Pr2fOlb8UKVChQpBnR07dkTKe/fuDepwn1RjKh+rL774otAyEPYdPnZq3Z999llQ57jjjouU1RjBy+bvAOF5rpbD/fa7776LlFWf5HVxWymqLfjYcP8DELyRqsYY7qfqLVbuX9u3b0/6HdW/GM8B+PgCYbvztgDhGKfanfNpqG3mdcXZvho1akTKO3fuDOrwGM3jCQAcf/zxkfKXX34Z1OHzU5173G/j9C8eh1TbpKWlJV0unw/q4Sz3W3U8+ZoaZ4xR1DiTn2pjvj7xcQHCvq3GoTjjB/cnflkACNuHryFAdD/37t2LxYsXH3Zz8oceegh/+MMfsHnzZrRp0wZZWVno2rVrgfUXLFiA4cOHY/ny5UhPT8ett96KQYMGRerMnDkTd9xxB1avXo1mzZrh97//PS655BK5vLFjx+K2227D0KFDkZWVFXtfi6LMP0ivXbs2ypcvHwwAW7dulZ0c+P7EU5NDMzMzs8PZgYbLqFq1auyJ/sE6DNL2HNGKc05+zDHHJG5M1YMnvrFVdbg/qTpMnR/8PfVAIc72JKujvsMPPNSDbP5enIdcal1x6sR5kM7tw2W1XH6Ir/aBHxqpOrxs9ZCQ66iH0HG2OdnP8eNsX5w6qr/F6ctx+mSy/YyzfXzs1PfUcvgz1Z5xHkIX5UE6l+NsX5w2V32Jt6+o6+LPVHslO37qO2p7DnS5QLwH6cnGBrXsOA/S42xfnHO6KOdMnPOzuK5PcdomzvZx/4+z7uJqr7jLLmw96jtx+ltRxw9ev7quFKVfFLS+wqTynHx/svmHHnoIXbp0wSOPPII+ffpgxYoV8qXlNWvWoG/fvhg4cCAef/xxvP766xg8eDDq1KmDfv36AQCys7Nx+eWX43e/+x0uueQSzJo1C5dddhlee+01dOzYMbK8RYsWYeLEiTj55JOLvtMHIF5AnhRWoUIFtGvXDvPnz498Pn/+fHTu3LmUtsrMzMzM7MjhObmZmZnZkWfcuHG47rrrcP3116NVq1bIyspCRkZGJPl8fg8//DAaNWqErKwstGrVCtdffz2uvfZa3H///Yk6WVlZ6NWrF0aMGIGWLVtixIgROOecc4K3zb/44gtceeWV+Otf/xr8+uRQKfNvpAPA8OHDMWDAALRv3x6dOnXCxIkTsX79+uBnAWZmZmYWX15eXom9Ke430su+4pqT538jvXbt2sG/80+91c/0+e2vOD8xVyFF+O09/tm+WrZaF4fE4Lfa1Jv5/LaaCu3C5416S5G/p34qz9un6vB+qe3hkBhx9pPXpULP8PdUOAD+NYR6K5DDNai3+zhER5zwJRymRbUNHxvVTzgch3oowG2hwhZxW6g4vLx+7v9xwkKokET8ZrY6r/iY16xZM6jD4XvUcWAq/AsfGw6Rob7D/UKFNuBjrI4Dt5fqF1xHvaUa581ZDlnDx0GNDRwSQ4U64u1T51Wc7eN2V+cwt6EKY8H7wWW1fdzu6pcUfK1RbxDz+K+OOZ+zanu4T6q+zdsc53xQv4pItlx1rHi/VL/lsT3Om9rcR4HwXON1q37L56NqY24f9YuqOL+G4vFBtQWPZ6p/5T82cY6TUhpzcg6Jo35JWJRk89nZ2ejdu3fks3PPPReTJk3Cd999h2OOOQbZ2dkYNmxYUIcfpA8ZMgTnn38+fvCDH+Duu++OvY8H47B4kH755ZcjNzcXd911FzZv3oy2bdtizpw5aNy4cWlvmpmZmZnZEcFzcjMzM7PDQ0ZGRqT829/+FqNGjYp8VpRk8zk5ObL+3r17sX37dtSvX7/AOvmXOX36dLz99ttYtGjRge7aQTksHqQDwODBgzF48ODS3gwzMzOzw4bfSLcD5Tm5mZmZWfEqjTk5JzgtLNfkgSSbL6g+f17YMjds2IChQ4di3rx5sROiFpfD5kG6mZmZmZmZmZmZmR2catWqyRBL+RUl2XxaWpqsf/TRR6NWrVqF1tm/zCVLlmDr1q1o165d4t/37duHV155BePHj8e3334bK6FyUZT5ZKNmZmZmdmjsf/ulpP4zMzMzM7OoVJ2TFyXZfKdOnYL68+bNQ/v27RMx7wuqs3+Z55xzDt577z28++67if/at2+PK6+8Eu++++4he4gO+I10MzMzMzNLIV988UXiRkolM+Ska+qnxrt3746UVcJDTqbIifeAMCmYSiLGN5yqDidi44RqKrEjJ1BTydz4Z88qOSUnY1UJ3zjJoEq0x3XUT7a3bt0aKfOxUfvJ61LJ3OIkreN258SdCvcltT0qISnjbVYJUzn5XZzEq2o/uQ1VwkNO0Pf5558Hdfh73NdVAj9uG5XwkOuotuA6qm/z9qnzKk4yT/5enKSS3O6qr3P7qOXwPqhjxfuukiLyfqljww+N1HjGOOGnWndRkjaqY85JC1Wf5HZXbcr9P87DMt4HNQ5xG/M1RG2POg58zVLHnMfSOGEp+PxU+83HQV33uI3VOczbXLdu3aAOt6FK2svbo5LZsjh9Pc41g/dLJfjkcVKd57xfcRIaq+XkH3fUuF7WJUs2P2LECGzcuBFTp04FAAwaNAjjx4/H8OHDMXDgQGRnZ2PSpEl48sknE8scOnQounXrhnvvvRcXXXQRZs+ejRdeeAGvvfYagO+vzW3bto1sx3HHHYdatWoFnxc3P0g3MzMzMzMzMzMzswOSLNn85s2bsX79+kT9zMxMzJkzB8OGDcODDz6I9PR0PPDAA+jXr1+iTufOnTF9+nTcfvvtuOOOO9CsWTPMmDEDHTt2LPH9Y36QbmZmZmaSk42amZmZmZWuVJ+TF5ZsfsqUKcFn3bt3x9tvv13oMvv374/+/fvH3oaXX345dt2D4RjpZmZmZmZmZmZmZmaF8BvpZmZmZial+tsvDz30EP7whz9g8+bNaNOmDbKystC1a9cC6y9YsADDhw/H8uXLkZ6ejltvvTURv3G/mTNn4o477sDq1avRrFkz/P73v8cll1yS+PcJEyZgwoQJWLt2LQCgTZs2uPPOO9GnT5/IvowePRoTJ07Ezp070bFjRzz44INo06bNAe/jkeiLL75IxECNEyNaxZpWsa9ZnDilHL9YxWtVcWgZx81VcYZZnJi4fN6oWNN16tSJlDlmOhDGmFXnI8d9VbF/OX5snFjAHMtZxTbn5XJsZ7U9ah+4DVXfYSq2LvcDjrWr2kbFe2a8HNVevD1qudwP4oyv3DZx8gpw3GtVR8UU5nWpfst9h9smbh1eNrepOr58fqrzNU58dt5PFSNaxRNnfIzVNnMsfz4O6pzh5ag6PE6qc4bbWO0nnxNqHOK2UONtsuOpYn7zsVEx0jmet+q3vOxq1aolXVecPAJqvOD+Feeaxt9Rx4rXra6DfBxUzG+uo8YLzvmg8DGOczx5m9X4xjH41RjD61ZtzPupzj3u78nypKj2jCPV5+RHEr+RbmZmZmZlzowZM3DzzTdj5MiReOedd9C1a1f06dMnEoMxvzVr1qBv377o2rUr3nnnHdx222246aabMHPmzESd7OxsXH755RgwYACWLl2KAQMG4LLLLsObb76ZqNOwYUPcc889WLx4MRYvXoyzzz4bF110EZYvX56oc99992HcuHEYP348Fi1ahLS0NPTq1UsmVzMzMzMzs7LBD9LNzMzMTNr/9ktJ/Xcgxo0bh+uuuw7XX389WrVqhaysLGRkZGDChAmy/sMPP4xGjRohKysLrVq1wvXXX49rr70W999/f6JOVlYWevXqhREjRqBly5YYMWIEzjnnHGRlZSXqXHjhhejbty9atGiBFi1a4Pe//z2qVKmCN954I9FmWVlZGDlyJC699FK0bdsWjz32GL766itMmzbtwA+CmZmZmR3RUnlOfqTxg3QzMzMzSxmfffZZ5L+Cfqa9ZMkS9O7dO/J57969sXDhQrnc7OzsoP65556LxYsXJ34mXFCdgpa5b98+TJ8+HV9++SU6deoE4Ps333NyciLLqVixIrp3717gcszMzMzMLPX5QbqZmZmZSaXx9ktGRgaqV6+e+G/s2LHBdm3fvh379u1DvXr1Ip/Xq1cPOTk5cl9ycnJk/b179yZiMhdUh5f53nvvoUqVKqhYsSIGDRqEWbNmoXXr1oll7P9e3G0zMzMzMyuI30hPHU42amZmZmYpY8OGDZEEXoUlA+SETXl5eYUmcVL1+fM4yzzxxBPx7rvvYteuXZg5cyZ+8pOfYMGCBYmH6UXZNvs/+W/iVBI2TuQVJ7GjShy3Y8eOSFklFORkaZzQDwiTmKnkbfwZJ0VUCQe5v6jt4+WoX3BwQjyVwJIT/6kkksmSwgFhe6lkfIwTMqpjxdS6eaxQDwI4kalKQBcnASkfG04wqBLDcj+NkzBSJfDjxLWcrBUIk0ZyX1ff4z6ozituU3Uc+PxUCUC5veIkW1TJPDMyMiJllZyS/4C5efPmSFklGIyT6JHXtW3btqBObm5upKzOcz5H4iRVVX00WQJj1cbcT9QyuO+kp6cHdeIkz+S+os69OHX4szjXVR7f1LnHx1i1BZ+PKjkrj8GqT8ZJlsljAZ+vamzgcSdOYkwlTtJXzvmijgN/psZ27u98DVHby9ujkntyW6hrNy9HJaHl9auxlPu7Os/zjw/quFjZ4gfpZmZmZpYyqlWrlvThW+3atVG+fPngAcnWrVuDN8H3S0tLk/WPPvpo1KpVq9A6vMwKFSrghBNOAAC0b98eixYtwp///Gc88sgjSEtLA/D9w5v69evH2jYzMzMzM0t9Du1iZmZmZlKq/oy0QoUKaNeuHebPnx/5fP78+ejcubP8TqdOnYL68+bNQ/v27RNvJRVUp6Bl5m+n/W+hZWZmIi0tLbKcPXv2YMGCBUmXY2ZmZmbGUnVOfiTyG+lmZmZmVuYMHz4cAwYMQPv27dGpUydMnDgR69evx6BBgwAAI0aMwMaNGzF16lQAwKBBgzB+/HgMHz4cAwcORHZ2NiZNmoQnn3wyscyhQ4eiW7duuPfee3HRRRdh9uzZeOGFF/Daa68l6tx2223o06cPMjIy8Pnnn2P69Ol4+eWXMXfuXADf/5T55ptvxpgxY9C8eXM0b94cY8aMwbHHHosrrriiBFvIzMzMzMyKkx+km5mZmZlUkm+lHOh6Lr/8cuTm5uKuu+7C5s2b0bZtW8yZMweNGzcG8H0c3PXr1yfqZ2ZmYs6cORg2bBgefPBBpKen44EHHkC/fv0SdTp37ozp06fj9ttvxx133IFmzZphxowZ6NixY6LOli1bMGDAAGzevBnVq1fHySefjLlz56JXr16JOrfeeiu+/vprDB48GDt37kTHjh0xb948GaPTQkcffXQi5q6KN65iwzKOJ6tivHKcYY75qtav4hfzsjleMBDGa+WYvSoeL8fCVvHPOa6vOo94v1Sc2jp16kTKKvb1rl27ImUVB5zbh4+VinnM+6lwTNnatWsHdXg/Vdxc/ky1KbdhUeJRq3UzFfOb90H1pd27dyetw8evZs2aQR2O68vxnuvWrRt8h/uOivXLy+V+A4Sxk1Vf4mOj+iT3N3V+8vZwe6ljyfupziveL7Vu3q84x0q1BcdpVv2L+wXvl4rnzVRsZ95mFQub68TJM6DO+zg5FXjs5HZX+8ltrK7F3F4qT0Sc+Oe8HNV3eHvUOMTtzMc8zpxJtQUvRx0HPq9VW/D31DHnz9T1nM8jPl9VTHK+7ql185inzk9uY7WffDxV/H/uB+ocyf+9ONcHJZXn5EcaP0g3MzMzszJp8ODBGDx4sPy3KVOmBJ91794db7/9dqHL7N+/P/r371/gv0+aNCnpdpUrVw6jRo3CqFGjktY1MzMzM7OywQ/SzczMzEzy2y9mZmZmZqXLc/LU4WSjZmZmZmZmZmZmZmaF8BvpZmZmZib57RczMzMzs9LlOXnq8IN0MzMzMzNLGV999VUi4Z5KfsfJvzgRHwDk5OREypx8FAAqV64cKatkZJwILTc3N6jDic5UAjpOosd1VPIxTkapkpzxZ6q9mFpXrVq1ImWV8JATMKqkr5xMlLdPJWHj76iEg5ykTiWe5OWoJHW879xPgDDJpkqQym1Ro0aNSHnz5s3Bd7jfquVyH1TtxQkEed2ATuqXrA6vWz1IiZMAlJer9oHrqKSlvGyVFJH7FyeiBJInwlQJQPn4qnOGt1klduQ2VMeF168ST/L5qJaTLIFhUROA8vZ9+eWXQR1O0sjJINX2qXbn8Wv79u1BnWTJgFWfZOqawful+qTar2TLUUmFeSxQYx7vV5wk27xudQ7zcVBjPS9H9Qu+fqprD18/1TnCfZm/o5Jjc9uo48L7FSdJqOo7fKxUolpelzrm+fezqMlGLXU4tIuZmZmZmZmZmZmZWSH8RrqZmZmZSf4ZqZmZmZlZ6fKcPHX4jXQzMzMzMzMzMzMzs0L4jXQzMzMzk/z2i5WGihUrJuLnqnjBHK9VxWblmL0c5xQIY0KruKUcM1XFe+ZYuip+8e7duwtdt4rHy5/FidOsto/3XcU45m1WMeXjxKbnuN+8n3xcgDCebIMGDYI6HE9Z7SfH7FX7wDF6t23bFtThuMwqhjDHlOc4vmrdHLM9Tox01cYqtjTjvqL6F8cZ5vZTYzL3E/4OELaFilXP54OKwcwxodX21KlTJ1JWcZDT0tIiZR5T1PnAy1ExmD///PNIecuWLUGdmjVrRsoqBjMfY9Wmcaj9yE+dM7xuVYf7vxqHuE+qOrwc1f/jxO/mGNrct1Ubcyxs1U+4LdT2xVkOHwe1HI6JruJu87K5/6txgMdSdTy5fdSx4vMxTpxyNVbxWKr6KC+bzzW1D/wdFWOer1dqH/jYqDwCPF6ouP3c7ioWfP59V/ORODwnTx1+I93MzMzMzMzMzMzMrBB+I93MzMzMJL/9YmZmZmZWujwnTx1+I93MzMzMzMzMzMzMrBB+I93MzMzMJL/9YmZmZmZWujwnTx1+kG5mdgTiZFYqMQ9fQFVCHV9kzcysuB111FGJ65S6PnHyL1WnRo0akbJK7sWJ4/g7QJhQUOEEZep6ydddTnwWJ/mYSrzKCedUUklOxsqJ0YAwsaPanmSJRAG978mWy4kn1fHkhHh87IAw2Z1KVMjLVnV4bqOSy3ECS/6OOg68bpUkl9tHJa3j/sbHDgiPjdpPXlecfeCkiOpY8fbx8VWfqXVxf1fHnPuFatOcnJxIOc45w8liVV/nc1jNiflcU0lLedlxktCqpL1ch5OWqu/wvqvzN05yZz42cc5PNQ6pzxjvFyfAjZPoNM51RSWN5sSXqg5/ptqrbt26kbJKcsn9i88ZtW6mjgO3sWoLpuqo85pxe9WuXTuow2MK90G1n5zEV+0nn+eqjZnq/xs2bIiU1XjLx0r14/znkeqjVrb4QbqZmZmZSX77xczMzMysdHlOnjocI93MzMzMzMzMzMzMrBB+kG5mZmZmZmZmZmZmVgiHdjGzEsUx6jjGJMdJA4Bdu3ZFylu2bAnq+OdHBeMYcUDY7hzbDQjbVMVW3Lp1a6QcJ8armZUd/hmplTYVH5WvNSpmKX9PxR3mOKXqeqnmJUVZTrL4uxz3V1HnSJzYrGp7klExXDmestpmPhYcF1nF2uXlqrj0fPzUfnK/UHHBuS1U/GJetoq/y3NTPr6qv3H8XbUPHEOb2w8Avvzyy0hZzeF4e9S6uG/zulXOAO63cXLsVKtWLahTv379SJnnk0DY7up4cqxkFeOYjxW3KccAB4oWn71evXpBHY4RreI0czx2hfddtUWy9lJ9ko+nihfP5wzvE6DPI8Yx3NWx4nNY9R3G+6XGO7XvjPu7Goe4fdT1iY+DGie5H6g+yOc534ep48BUHPM6depEyqpv8/ap6wEfKzUW8Nik+j8vh9tdLTfOWM/7pe5RuY23bdsW1ImTw4PHCx5zgOi+F3W+6zl56vAb6WZmZmZmZmZmZmZmhfAb6WZmZmZWIL+VYmZmZmZWujwnTw1+I93MzMzMzMzMzMzMrBB+I93MzMzMJMdjNDMzMzMrXZ6Tpw4/SDezQ6Zu3brBZ9dee22k3L59+0hZJWT54osvIuXXXnstqDN16tRIWSVXKQqV5KZnz56RcpMmTYI6nLzkjTfeiJTff//9g9+4mFSiNN6vOEnOVFIbTgjD+21mZnagqlevnkgUxkm8AJ10nHHCObUcTkCnkq5xEjOVXE4lpUuGk7epZJC8bpVUlROoqcSTnNRPJQbkBGqqvXg5au6QLHmhSp7Jx0q1Ba9bzc+4TVVyOf5MJSbkpIhqXTw35TmSStrIx0a1H2+P6pNMJW3k5bRo0SKow4nnOeEhJ/IEdLJAtnr16kiZ2woI+4Hqb5z8kROUAkBGRkakrOa8/D1OKBhnPFF9ifuJSkLI/ULtJ38vNzc36briJOHk8ULN47l/qfGNj59KjBlnjGHqQR3fR8Tpg7w96njy8VP9OE5ySh7rVd/mfVd9Mk4CaL6X5bZR5z33JZUwmNetxmTuB6rfcp9UYx5vs+pfvBym+hsn6FXtyf1LnVe8fTt27Ajq8DarfsvHQu1T/mTOqq2sbPGDdDMzMzOT/PaLmZmZmVnp8pw8dThGupmZmZmZmZmZmZlZIfwg3czMzMzMzMzMzMysEA7tYmbFhmM93nzzzUGdM888M1JW8foYx5q7+OKLk9b54x//GNSJE4+sZcuWkfLIkSODOhyXLY4f/vCHkfLzzz8f1JkwYUKkrGLzFYWK08afxTkOqk6yuHZmVrb5Z6RW2tQ1l2Obb968OajDcV/VNZXjmtapUyeow3GtVcxqjuGq4sDyNZTrqDjrHPc1TgxaFV+cr9UqJi63s9rP/DFeAR3jm2MP87rUfsaZk/C+q9jEvH2qvXh74sRIV30n2byJ+ygQHhu1bm53FQub62zatCmow7GlOScRADRr1ixS5vOBY/QDYb9Vsaa5bVRsfz5n1TnD8c979eoV1OH406q9GjVqFClzLP2PP/44+M67774bKau429xP4sQ/V/2G+wHHrgeAXbt2JV0X9y8+19Q5zduj4rzztVnF5ubxQ+VM4uWotuAxRZ3nPN5yLHF13vM5rOYb/Jk6h7mOigUfJ/fG9u3bI+U4eTY4tj/3YyA8p3lMBML2UuMbn1fq/OTvqTrcJ9WYwv2/Vq1akbLaBz4O6prG8c5VG3Odzz77LOn2xYnZruQfL4p6/+w5eerwExAzMzMzMzMzMzMzs0L4jXQzMzMzk/z2i5mZmZlZ6fKcPHX4jXQzMzMzMzMzMzMzs0L4jXQzMzMzk/z2i5mZmZlZ6fKcPHX4QbqZFZvTTjstUj799NODOnGSWiajEnR06dIlUp49e3ZQ58MPP4yUOYEYAIwYMSJSLkpiUYX3+7zzzgvqrFu3LlJ+9tlni2XdKgGLSvyUjPqOSjhUHDhRT4sWLYI6mZmZkbLqW+vXr4+UV65cGdQpSluYmdmhs2PHjkSCL5U8kJN91a9fP6jD1z6V/I6To3EyNyBM6qeS8XHCRZVQjZPoqYRljK9Pah/42hcnUblKUpebm5t0OZz0TSXL5Ot3jRo1ImU1h+PvqPbjBHlqOZxMLk5CN5Usk4+xmutwEkRu09q1awff4QR+av7B/ZaThqrvqaSIDRo0iJSbNm0a1GF8zNW5x4kcVT/h+ZlKBszLbtKkSVDnlFNOSbo9/LBH9Ulud6YSsXJf4mSfijoOcRIG87pUEl/eT7Ucbh9OpKjGLl6Oaj9OwnziiScGdbiNVZJQTrCp7sPiJInmbYwzBsZJNsrjhUokyuc5j5tA2M6qX3BSS5UkmsdBTlrKYysQtqlKAMrjhzqveD+3bt0a1GFqOXysVJvyvTafD+o+lo+n6m98zVDLiXN952u1andur2QJs/2Quuzzg3QzMzMzk/z2i5mZmZlZ6fKcPHU4RrqZmZmZmZmZmZmZWSH8IN3MzMzMzMzMzMzMrBAO7WJmxaZx48aRsoo7eahwTLhGjRoFdThGeqdOnYI6KhZlSbngggsi5eKKka5icHK8ShWrlX/SxfH8AB17LxmO8XfVVVcFdW644YZI+YQTTki6HIVjP3IcegD461//Gin/7W9/C+qouHpmRwL/jNRKw759+xIxRtW1h2PZqri+fI1Q1zmOY6r6IH8WJ9Z6nFjJvH0qnjfHa1V1+Dqnrvm8HLWfvA8qZi8fC9XuHLuWtydZ7FhAxySPE1Oe20f1HabWxduoYlZzTNydO3dGyiouOM9VVTxebj+Oc622T8XsrVWrVqHfAcLjx+tWfYCpPsmfqTrc31QMd467rdqC9z3OeMF9snnz5sF3WrduHSkvXbo0qMNUe/FYwDGZgTCWM5eBsL3i5GrgMYZjTwNh/POTTjopqNOhQ4dIWR0rXveWLVuCOkzlpPjoo48i5ffffz+ok6y91DnN7aXGE+5vKtY690E11vNnceLZqxjfPF7wmKPGX953de7x99S9HO+naos4seB53FFx8Rlvs8qZwedanPtRdRziXIf5WKntOdB8WypPSRyek6cOv5FuZmZmZmZmZmZmZlYIv5FuZmZmZpLffjEzMzMzK12ek6cOv5FuZmZmZmZmZmZmZlYIv5FuZsWG40irv2SqGI3FgWONxYlp3bBhw0OyLUXFcQpVjHkVW7EouH0OVQxwjjcIAA8//HCk/MMf/jCoo+LPFQXHAWzWrFlQZ+zYsZHyueeeG9S55pprImUV19HscOS3X6w0VKtWLTF+q5jkubm5kbKKYZ0sLjIQxn1V1x6OpavWxfFt1bo4fiyvK866VZxa3k9Vh+PJqjiwPOdQ8Z7jxJNNdh6ruQ1/puJcq7jHyeqomLg8L1Dbu3379kiZY+QCYQzyOPHZeXt27doV1OFcPWrex/ug5iS8fnUecbziZDG2gXj5AHhOqbaP213Nz9LT0yPlOPcQqg6fsxzbWR0rrqPms7xfKmY1t486Drz+OPvJ9wxAeC/EY8qxxx4bfKdnz56Rcps2bYI6xx9/fKRct27doA5vszpfuS9zbi0AqF27dqSs2n3RokWRck5OTqSsxq569epFyuqc5nF769atQR0+h1Wb8vUgTn4C1Xe4vbiOGt94HFLXKz6HVbxu7v9qP3msUm3K61K5yJJtj9pP7tvqmPNnajl8vVSx84uyHHUdzn8eqWXE4Tl56vAb6WZmZmZmZmZmZmZmhfAb6WZmZmYm+e0XMzMzM7PS5Tl56vAb6WZmZmZmZmZmZmZmhfAb6WZmZmYm+e0XMzMzM7PS5Tl56vCDdDMrNkuXLo2UOVkToJPjFIfNmzdHyitXrkz6nd27dx+SbSkqTs7EyVfKAk7+kpWVFdS5+OKLI+VDlYA2Ll4/J14CgL/97W+R8mWXXRYpF1cSWDMz+z5B2v5Ehyo5JSdzU2MwJ/OKc61RCfL4M5WMLNm6Fb5JVfvASc5UAjOmEsdxMkOVJJSTIqq24IRzKsEbzwO4LeIkTFVJ67i91PHkZIHqOPBnKsnfli1bImWVjLJBgwaRMref2j6e13E/VlT/5ySgKikoJ2BUSS45sSNT81BuL7Wfn3/+eaFlIGwvlXiV20clueRlq/OIl837rfZz586dkbI6DtzXOUEjEO6n2j5ev0rsyP2WEy4rvD2nn356UKdTp06RsupLvBx1zLm91H4mGxuAMDlmx44dgzo1atSIlHnMW7VqVfAdbmO1bq7D92VA2BZxxhjVt5kat5MlJOVkwUB4bNS5x9Q4zuO0GpM5Ca06RzhZrEqqzfvO47habpxrI18z1FjP55pKnly9evVC1w2E84JkY4FahpUtDu1iZmZmZmZmZmZmZlYIv5FuZmZmZpJ/RmpmZmZmVro8J08dfiPdzMzMzMzMzMzMzKwQfiPdzIrN2rVrI+UnnngiqHPNNddEyhxfLY5t27YFnz366KNJ67A33ngj+GzAgAGRsooVeKi8/vrrkXKcWKgqPh7H7YwT/zNOrMU4evfuHSn/6Ec/CuqUdkz0ojj77LMj5SuuuCJSnjx5cklujlmJ8dsvVhq+/fbbRNxUjpkLhHMHFc+bY5CqmL0cm1vFJubvqZi4Ku5rsjq8X2oZ/JnaBz5vVAx3rrNjx46gDscBV3OQOPHF+Xsc31bFAmbqOPB8R8W15li26lhxvGKVz4fbS8Wz5ZjQaWlpkXLNmjWD7/A2q1j1vH1qnszxzlUdjvW7YsWKoA4fK449rcZknhd//PHHQZ0PP/wwUlaxprn9Nm3aFNTJyMiIlNVx4DmlinGcDMdkBsLjoOJcc/9XcZGbNGkSKav5Nh9Pde/Bx0q1BR+vzMzMSLlLly7Bd3iMUf2W+6k69/i8Vm3BY57qX3w81bjYtm3bSHn9+vWRsmpj7tuq/Xg/1XnF/UBtH+97rVq1gjp8zeJY4kDYvzhnQJy+rq6NPC7yuQiE15E4baGOOX+mxgLeL47rro5VnOsy90l1beQ+GaeOihfPx0JdP/Mfzzj3+Irn5KnDb6SbmZmZmZmZmZmZmRXCb6SbmZmZmeS3X8zMzMzMSpfn5KnDb6SbmZmZmZmZmZmZmRXCb6SbmZmZmeS3X8zMzMzMSpfn5KnDD9LNDhInP+rQoUNQhxN0cFJOAFi2bFmkXNQkFMVBJT9q0aJFpNymTZugDiff4MRVQJiAND09PVKuXbt28J1PP/00Un755ZeDOqtWrQo+S2bz5s3BZ1OnTo2Ur7322qBOcSTL5MQ4gE7OyjjxEif3BMKEOmp7OdkLJzoFgHfffTfp9rCf//znkbJKRFYWcTKhn/3sZ5Hy3//+9+A7KvGNmZkll5ubmxh3VQIzTsymEr7x3IsTmgFhErOiJhjnOZtKkMpzK15XnMSdfH0HwrmWuvbwuuvWrRvU2b17d6SskoJyMk/VXvw9LqukjXzDrhLkcT/gJKZAmFyxcePGQR1O7Lhhw4agzvvvv5+0Ds9NuS3U9vFn6ljxMVd1TjrppEhZJQLkhK2qTTnBJ88N1YMUbguVuJaXq+ahvH0qkS4njVSJALlPqvOIk4lyYsBt27YF31m9enWkrNqvTp06kbI6r/g+h+fxQNheKrkit0Wc/ezYsWOkrBJa8lil7j+5TpxEnepeko+x2gc+nioRLB+LevXqRcqNGjUKvsPtp/o2jw0qMSafj/wcAAjvZVX/53FRLYfbmdfN2wvES0rL/V+N4/yZ6hfcPuq6x9cVtT3cD/j4qjGQP4uT9FXV4T6pxhj+npqT8PFU7ZV/DqIS9lrZ4tAuZmZmZmZmZmZmZmaFODxeFTQzMzOzYuefkZqZmZmZlS7PyVOH30g3MzMzMzMzMzMzMyuE30g3OwBXXXVV8NmwYcMiZRVbKw6Oxfeb3/wmqMNx1ItCxWnr27dvpHzjjTcGdZo3b550OXFwzLAPPvggUv7zn/8cfOeFF14o0rqK4l//+lekzHELAaBfv36RsorByTHhsrOzI+V//vOfwXc4fivHsAOAnj17Rsoqpnwc3E/POuusoA7v+9atW4M6HJfz9NNPL9L2lDV8PjRo0CCos27dupLaHLNDxm+/WCri2KwqHi/H4lZxYDlOaZy8Hiq2KcdrVXF9+ZquYmgn+47Cy1FtEQfHeFUxobl91D5wW/D2qDi1/B0VE5e355RTTgnqdOvWLVJu2rRpUIft3Lkz+Oy9996LlGfNmhXU4fkrL0fFs+e5l4rlnJaWFimrmNoci1vNBXl+psZXntdxvP0lS5YE3/noo48iZRULmNetYpBzrGSeNwPhMee49EB4jDkmORD2J77nWrx4cfAdjqmt9pOPA8f3BsL9VOcV30eoHFO8D59//nlQh9fP92pxYjurc4/PWdUWfJ6r+0TubxwnX22PytXAmjRpEil/8sknQR3ug2o/+ZqhYpDXqlUrUlbnHi9bnXtx4oBzm/L1QMUbZ6qNed2qT/K64vTJOH1H5RHgdub9Vv0tTpx3bnd17eHvqVj1fN6o9uL2Uccm/zlR1DxanpOnDr+RbmZmZmZmZmZmZmZWCL+RbmZmZmYF8lspZmZmZmaly3Py1OA30s3MzMzMzMzMzMzMCuE30s3MzMxMcjxGMzMzM7PS5Tl56kj5B+ljx47F008/jQ8//BCVK1dG586dce+99+LEE09M1MnLy8Po0aMxceJE7Ny5Ex07dsSDDz6INm3alOKW2+Hg6quvjpRHjhx5yNbVrFmzSHnKlClBncsuuyxS/vjjj5Mul5No/O53vwvq/OhHP4qUi5pINA5OIMLn6cMPPxx8Z+rUqZHy73//+6BOnGQ0cdSsWTNSVolm/vGPf0TK6kLDSZM4cScnSlM4oU1BnxUHlYyGEzbFSTZa1GS7ZQ0nWKtTp05Qx8lGzexwUpJz8vLlyycSW6rEXpxUTyUJ5fmPSljG4iR8U9dLTkCqEpJyojNOlqbmEpzkTCUS5eWqdVetWjVSjtOmKjEbJ1Dbvn17UIfbh9tdzTE5wZtKsspJvk899dSgDn9PJWTkeVT9+vWDOt9++22k3KdPn6AO7xcnjFfzUq5z9tlnB3XOOOOMSJnnWUA4H1P9lveB+wAAZGZmFroclTCVt2fZsmVBHdW/GLef6tt8DvM+AWHi0JycnKTbw3N7tVym2oLbVCXfrVy5cqSs5sl8rqmkpbxfKkkuJ17lexreFiAcd1RCUu5vnJRTLVv1Wx4b1BjD909qbOcxhJP2qr7EySBV8kz+TG0f9xV1XeHzSB0rbgu1nzze8rpUEl9OTqzGBk6GrY4V77vavmTJUNVy1HWOE/vu2LEjUq5Xr17wHZVclHFfVv2fz1l1DvO4vXnz5qAO39er7cv/WVGTjVrqSPnQLgsWLMCQIUPwxhtvYP78+di7dy969+4duQDed999GDduHMaPH49FixYhLS0NvXr1kpMnMzMzMzM7MJ6Tm5mZmdmRLuXfSJ87d26kPHnyZNStWxdLlixBt27dkJeXh6ysLIwcORKXXnopAOCxxx5DvXr1MG3aNPz85z8vjc02MzMzK/P8M1Lbz3NyMzMzs9LhOXnqSPk30tn+n/vs/6nSmjVrkJOTg969eyfqVKxYEd27d8fChQvlMr799lt89tlnkf/MzMzMzCwez8nNzMzM7EiT8m+k55eXl4fhw4fjrLPOQtu2bQH8X7wwjp1Ur169AuPTjh07FqNHjz60G2tljopHN2zYsFLYku9xvEgA+NWvfhUpx3m764477oiUOc56qlFx7a655ppImWO7AcAf/vCHA15XWlpa8FmTJk0iZRXvLQ4+fty/Pvzww+A7HLNR/SW4JP86HGddHAM0Tgzaw5Fj3dnhym+/mHKo5+TffPNNIraqijXK8wAV/5m/p2JW89it1sWxYVXuFL72cWxbVYe3R81/+JxQdXieouL6cnupeLccG1a1l1o2433n2LFquQ0aNIiUeS4GAKeddlqkzHGRgTDGMcfaBcI25TjSQBgzuHXr1kEdjpP73HPPRcpq/njeeedFyt26dQvqcIx71d/4OKjjwstRccC5LbgPqHwAZ555ZqSsYt6/8847kXKc+OcqNjH3UxXjmPdTzUM5VjLvl7qv4Fjd6vrE26OOOY9N6nhyG6rzk88j3j4gjAVfu3btSDlOHiPVFnxeqbbgfVBx8nm/qlWrlrSOWhe3KddRfZ334dNPPw3qcP4EFRefqb4dp3/xtUfV4b7C/VjlZ2LqWsRtrPpFnBwefK7Fyauxdu3aoA7vJy9HXTP4vFdjFZ+fqo15HFLx7Pk6ovo2r1/dF+b/rKj3jZ6Tp44y9Ub6DTfcgGXLluHJJ58M/o0H77y8vAITJo4YMQK7d+9O/Ldhw4ZDsr1mZmZmZocbz8nNzMzM7EhUZt5Iv/HGG/HMM8/glVdeQcOGDROf73+jNCcnJ5J1fevWrTLDL/D9X7zVX73NzMzM7P/47RdjnpObmZmZlSzPyVNHyr+RnpeXhxtuuAFPP/00XnzxRWRmZkb+PTMzE2lpaZg/f37isz179mDBggXo3LlzSW+umZmZmdlhx3NyMzMzMzvSpfwb6UOGDMG0adMwe/ZsVK1aNRF/sXr16qhcuTLKlSuHm2++GWPGjEHz5s3RvHlzjBkzBsceeyyuuOKKUt56MzMzs7LLb7/Yfp6Tm5mZmZUOz8lTR8o/SJ8wYQIAoEePHpHPJ0+enEhAeOutt+Lrr7/G4MGDsXPnTnTs2BHz5s2TiYfMCtKpU6fgM5W4ojTxG138c+j27dsH3zkcb14HDhwYfJb/DTgAePfdd4M63F75f5K+X1GTiybDyUczMjKCOitXroyUc3NzgzpbtmyJlFWyraL4/PPPg8/ixKrdtm1bpLx9+/ZIubi2L9XESVpkZnY4Kck5ef6bRZXYiz/jRHxAmEBNhZDhpGZxkpHFSaqtkgVy0rUvvvgiUlY3rbxfcZL8qXVz0jWVjI/3ixNuAvGSs3IbcjI+vn4C4dyhXbt2QR1OrLdr166gDid2V8nvOGGfai/ed7UcTkDKCTY50SMAtGrVKlJWuQO4n6rklOqcYPw91W95G7lPKnwc1K9NePvefvvtoA5vDx87IEz+qPot90m1n5xQls+jOOeVaptNmzZFynXr1k26HJUwlfugmlNu3bo1+IzxGMNzezVO8mcqOSX3SXXOxBnj+dxTiTqZ6hf82erVqyNlTkSp1sUJjoHwWKl187MBtS7up6q94pyf3P/VWMB4e1RSyzh9O84Yw9dYlQCX+5NaLu9nnH7Bx4GXAYTntWpjblM1JvP4r/oFt7Nq9/z7rhKoWtmS8g/S4/wlpFy5chg1ahRGjRp16DfIzMzMzOwI4zm5mZmZmR3pUv5BupmZmZmVDv+M1MzMzMysdHlOnjpSPtmomZmZmZmZmZmZmVlp8hvpZv+/GjVqlPYmJMXxuzke3c9//vPgO3HijJU1KtYcx00fMmRIUIfbi2P1lSQVX42Pr4oF+d///jdS7t27d1CH41eqPsBxE1955ZWgzo4dO4LPGMe6mzdvXqR8/fXXJ11GWbRw4cJImeO7AmFMPRU7k2M0qn7B/UDFyeR4mioOpllR+O0XKw0VKlSQcan3439TcU05NquKj8rxijnma5x1A+GYq+KAJ9s+dc3n7VExyTlWrJoj8XLU/Iev5ypePFNx5/kzjr+rjlWcONeca0a1BcedVXFoud1Ve/E9gYobzfHFmzdvHim3bNky+A73N3WtjhODmbdZtQW3oRpf+TNuYzV/5JjC/B0gzEH04YcfJt2+atWqBXV42aotmMr5w8eKjy/PmwFg1apVkbLqJ2vXro2UVQxrzhUUJ363iv/PfZDjvgPhec2xw1XuL163qsP7rs4rHhdVe3F/27lzZ1CH912de9wv+H5l48aNwXdYvXr1kn6mxkmep6v44pw/Sl0PeJxUYx63KY/javyIM5bysVFtHCfmNy9HxT/n76lY5jwu8rVHnZ98T6+uRRyzXY2TfO+t9pOp/s/7rsbb/P02znoUz8lTx+H3hM3MzMzMzMzMzMzMrBj5jXQzMzMzk/z2i5mZmZlZ6fKcPHX4jXQzMzMzMzMzMzMzs0L4jXQzMzMzk/z2i5mZmZlZ6fKcPHX4QbrZ/2/Dhg2lvQlJqYQm+XXo0KGEtiT1nHXWWZGyShCjEt+UFpVsK05iWE40+dRTTwV1OFmOSozGyTFVksuePXtGyioBESfUeeyxxyLl/v37B985/vjjg89SHSe++eMf/xgpqwR1nTp1ipTbt28f1GnSpEmkzMlzgDAx1ZYtW4I6y5cvj5QXLFgQ1OGkWGZmqSo9PT2RGEwlpFNJzRhf81ViNk7wqRInMpW8ja/fcZKW8vbESfim5jG8PWr+w+viBGtAeI2Pk5xSzS94Obw9nAAOCK9z6pjzvEnNSXJzcyNllcCV21T1JU4mp9qC94PrcDJxILzGq77E26fmBUzNH3l7VCJMnttwG6vt489U4j3ed9VPeJtVIkBuY04qCYR9WSUt5WPM/UudM5wgnue7QNi/cnJygjp87ql1xekXnMxWJRvlMYTn+ioRa5wEm3GS+PI9qjo/uS1UwsU4yZP5nv21116LlNV+ctLXE044IajTtGnTSFklueRjzvdlQJg8Ux1Pbgt1DvO4yOe0GsfVZyxOIm6+V1PjEB8/1e68X+pZBu9nnOTY/FmcBLjq+s7rVtcMrhPnfl3d5+fv20VNNmqpI3WeKpmZmZlZSvHbL2ZmZmZmpctz8tThGOlmZmZmZmZmZmZmZoXwg3QzMzMzK5MeeughZGZmolKlSmjXrh1effXVQusvWLAA7dq1Q6VKldC0aVM8/PDDQZ2ZM2eidevWqFixIlq3bo1Zs2ZF/n3s2LHo0KEDqlatirp16+Liiy/GypUrI3WuueYalCtXLvLfmWeeefA7bGZmZmZmpcahXcz+f2+++WbwGce6S0tLK6nNkZ599tlImWMQVqxYsSQ3J6VwPLX09PSgDsdWLM2fLHG8tYI+S0bFVOXYgSpW6zXXXBMpq/jdKqZlMhz77uWXXw7qnH/++ZGyiotZmlScvfvuuy9SXrp0aaR87rnnBt/p3bt3pHzqqacGdbifxolNqWKEcqxHFTvzmWeeiZTXrVsX1HHMPmOp/DPSGTNm4Oabb8ZDDz2ELl264JFHHkGfPn2wYsWKIB4qAKxZswZ9+/bFwIED8fjjj+P111/H4MGDUadOHfTr1w8AkJ2djcsvvxy/+93vcMkll2DWrFm47LLL8Nprr6Fjx44Avn8YP2TIEHTo0AF79+7FyJEj0bt3b6xYsSISg/O8887D5MmTE+U4sUvte3v37k3EGFXxSPm6oeKfMzVH4hjMyeKaAvFih6vrOa+fx3sVm5Wp5caJ562ua4zjx6oYxxxrWh0bvo5wHfWd2rVrR8qffvppUOeTTz6JlDnHCBBvPsFzG9V3ONa6ujbyNvJ1V+WDiRObmI+Vai/up6rf8mdqP7lPxunrHINcxbD+7LPPImUVX5nPPTXn5G1W5zC3l4qDzPNgPg5q3bxfarm7du2KlOPkZ1LLOfHEEyNldQ/DbaqODfdT3k+VY4ePjbpOxYlnz/1N9ds496lcRx0b/oM5/yFb9bcWLVpEytzmQDgOcRkIz5FNmzYlXY66D+Nt5nj2QNh3uA+o5SYbfxV1zPk4xLlvVWMBX9dUnWSx31UeCz4Oqg7HbFd9Sd1HM84jpr7DY7nKPZZ/rFJjdhypPCc/0vhBupmZmZmlDL5ZrFixorwBHzduHK677jpcf/31AICsrCw8//zzmDBhAsaOHRvUf/jhh9GoUSNkZWUBAFq1aoXFixfj/vvvTzxIz8rKQq9evTBixAgAwIgRI7BgwQJkZWXhySefBADMnTs3stzJkyejbt26WLJkCbp16xbZ7tL+A7yZmZmZmRUfh3YxMzMzM2n/2y8l9R8AZGRkoHr16on/1EPxPXv2YMmSJcEvP3r37o2FCxfKfcnOzg7qn3vuuVi8eHHizaqC6hS0TOD/3qzkN1Jffvll1K1bFy1atMDAgQOxdevWApdhZmZmZlaQ0piTm+Y30s3MzMwsZWzYsCESPkC9jb59+3bs27cP9erVi3xer169ICzbfjk5ObL+3r17sX37dtSvX7/AOgUtMy8vD8OHD8dZZ52Ftm3bJj7v06cPfvSjH6Fx48ZYs2YN7rjjDpx99tlYsmTJER2GzczMzMysLPMb6WZmZmYmlcbbL9WqVYv8V9iDZ44zmZeXV2jsSVWfPz+QZd5www1YtmxZIuzLfpdffjnOP/98tG3bFhdeeCGee+45rFq1Cv/5z38K3DYzMzMzMyXV30h/6KGHkJmZiUqVKqFdu3ZBPgO2YMECtGvXDpUqVULTpk3x8MMPB3VmzpyJ1q1bo2LFimjdujVmzZoV+fcJEybg5JNPTtwzdOrUCc8999wBb/uB8hvpdljit8muuuqqoM7JJ58cKXPCGAB44YUXIuXLLrssqHOokoetWbMm+GzcuHGRcsuWLQ/JussifsihEv5w3F1OdAToJI3FgZOQqJ/4F1eiR37odMsttwR1mjVrVizrYpz4RiU4e/755yPlM888M6ijEvwcKtwvVBiJ8ePHR8qnnXZapJw/LvJ+nTp1ipQbN24c1ClKQleVqIqT2qjl8mf/+te/gjrbtm2LlNU5YpYKateujfLlywdvim/dujWYA+yXlpYm6x999NGoVatWoXXUMm+88UY888wzeOWVV9CwYcNCt7d+/fpo3LgxPvroo6T7Zt8nSNufJE1dz5mqw9dUlcyTE59xcjJFJUtLtm4gecJPtX38nThju8JzVZUskJOFqz8ecXI5dY3gJHB8PVfJuTkxp0q8x+vmazcQJsKsXLlyUIePjTqe3BbqvF2+fHmkzPMf9QdAnmOqfvL1119HyipBJLeFSmzK+6XGMF4Xl1WiQu6nqt9y/1L9jZetkgVyG6rl8DnL+wCE4wOvm+c+QNgH1Pbx9qjjyX3w9NNPD+o0bdq00O0FwuOptufLL7+MlHn84H0CgLVr10bKKoElJ+/m8wwIj5W6P+b2Un2bx5T3338/qLNs2bJImefAar6dkZGRtA7vl+pvfD+n7ld4e9Ry+Hi+9957QR0eB7nfquPJ/SLOtVHdV3Ad1d+SJbcFgDp16kTKcdoiWWJuANixY0ekvHPnzqTbp/okX+fUdZrbnc8zINwHNXbmv1YXNdloKpsxYwZuvvlmPPTQQ+jSpQseeeQR9OnTBytWrAjGEOD7Z119+/bFwIED8fjjj+P111/H4MGDUadOnUTeouzsbFx++eX43e9+h0suuQSzZs3CZZddhtdeew0dO3YEADRs2BD33HMPTjjhBADAY489hosuugjvvPMO2rRpc8j212+km5mZmZmUqm+/VKhQAe3atcP8+fMjn8+fPx+dO3eW3+nUqVNQf968eWjfvn3i5q6gOvmXmZeXhxtuuAFPP/00XnzxRWRmZibd3tzcXGzYsAH169ePtX9mZmZmZvuVxpz8s88+i/yn/ngKfP/C53XXXYfrr78erVq1QlZWFjIyMjBhwgRZ/+GHH0ajRo2QlZWFVq1a4frrr8e1116L+++/P1EnKysLvXr1wogRI9CyZUuMGDEC55xzDrKyshJ1LrzwQvTt2xctWrRAixYt8Pvf/x5VqlTBG2+8UXwNL/hBupmZmZmVOcOHD8ff/vY3PProo/jggw8wbNgwrF+/HoMGDQIAjBgxAldffXWi/qBBg7Bu3ToMHz4cH3zwAR599FFMmjQp8qudoUOHYt68ebj33nvx4Ycf4t5778ULL7yAm2++OVFnyJAhePzxxzFt2jRUrVoVOTk5yMnJSbwJ+cUXX+CWW25BdnY21q5di5dffhkXXnghateujUsuuaRkGsfMzMzM7CBkZGSgevXqif/UL7f37NmDJUuWoHfv3pHPe/fujYULF8rlZmdnB/XPPfdcLF68OPGrq4LqFLTMffv2Yfr06fjyyy+DX4YXN4d2MTMzM7My5/LLL0dubi7uuusubN68GW3btsWcOXMSP9nevHkz1q9fn6ifmZmJOXPmYNiwYXjwwQeRnp6OBx54IPETUgDo3Lkzpk+fjttvvx133HEHmjVrhhkzZiR+Qgog8XZNjx49ItszefJkXHPNNShfvjzee+89TJ06Fbt27UL9+vXRs2dPzJgxA1WrVj2ELWJmZmZmVjw2bNgQCXukwpZt374d+/btC0KI1atXLwiXuF9OTo6sv3fvXmzfvh3169cvsA4v87333kOnTp3wzTffoEqVKpg1axZat259QPt5oPwg3Q4LHH+Lf0Ki4jLFwbG1VOICjovKsZOBeHEAn3322Uj5D3/4Q1CH48bl5uZGyupn8YdjDC6FY5px7DQgjGv3ySefBHX4WKk4gCruGeO+wzHRN23alHQZRXXeeedFyocqHnpRcUw/lXuA94HLAIIQCaqvc7u/+OKLQZ1JkyZFyitXrgzq8KShbdu2kXKrVq2C7/DYUJR46IraT+6nvH1AGDeU47sC4bHh2KN8Dtnhr6gJh4q6rgM1ePBgDB48WP7blClTgs+6d++Ot99+u9Bl9u/fH/379y/w35NtZ+XKlYNcEHZg8sdIV3984DFPXZd5XqBin3KsaRUjneO+qjirvH4VZ1jN/fJT/UrNZRjvl1pPnLi5HGdbjfd8/VHxgffnG9gv/x+hgPDaCIT7ruJ5x4n3nP8PZ0AYrx0Ir+cqru+nn34aKav4xevWrYuUOc612j6Ol63mmBxrV/Vbvh+IMy9V/YvXxcdXxTPm5fA5BITnkYqlz3OSzZs3B3X4/k61Kbeh6rcc05iXo2Ie85xNhTPg/WzRokVQh2P0FpTDIz/VXjwWqDklHz+uo84HXteHH34Y1Pn4448j5Q4dOgR1eCxQ7cXz60WLFgV1Nm7cGCl/9dVXQR3uc3yfo3IG8DydY6YDeixg3L/U9vFxUPm3atSoESmrOOV8D8PjuBrr69atG3zG+BxWsf15bFC5JPhaqK57TOUw4HGR89apvs5jnqrD+6Wup8niswNhX1Z1eBxS7ZW/fxV1Xl0ac/L9STzj4L6fl5dX6LMoVZ8/j7PME088Ee+++y527dqFmTNn4ic/+QkWLFhwSB+m+0G6mZmZmZmZmZmZmcVWu3ZtlC9fPnhTfOvWrQX+8TAtLU3WP/rooxN/kC+oDi+zQoUKiWSj7du3x6JFi/DnP/8ZjzzyyEHtV2EcI93MzMzMpFRNNmpmZmZmdqRI1Tl5hQoV0K5dO8yfPz/y+fz589G5c2f5nU6dOgX1582bh/bt2yd+DVVQnYKWmb+dCkqKWlz8RrqZmZmZmZmZmZmZHZDhw4djwIABaN++PTp16oSJEydi/fr1GDRoEABgxIgR2LhxI6ZOnQoAGDRoEMaPH4/hw4dj4MCByM7OxqRJk/Dkk08mljl06FB069YN9957Ly666CLMnj0bL7zwAl577bVEndtuuw19+vRBRkYGPv/8c0yfPh0vv/wy5s6de0j31w/S7bDAMZaLGhOdcXyr008/PaiTP0kZoGNeVa9ePVLesmVLUCdOXDbG8Rm3b98e1OH4goerDRs2RMqqjZmKa7dixYpIWcXZ4xhwKn7lZ599Vmi5uN68VHHHunbtWizLPlQ45ibHOgeAUaNGRcpPP/10UOfMM8+MlFWM0MWLFxdajouPeVpaWqSszjMVR/dQ4X6g4hTyOMRlIIy36Jjoluox0u3wlD8Gbpz4qOo6zJ+pawTHClfXVJ6fqfjiHItVrStZngz1HX6jSsWyTbYtQBiXVsWE5jocwxcIYyyr+NgtW7aMlDlutIodyzFnOQcQEF7X1Lrz31wDem7N7aPmgnFikPOx4W1WMb+5f6ljxXMHFZs2zrWZt1ntJx9zHoPjxDxWsZ05xrw6DtwWap84Xraat6iYy2zbtm2RMo8NcXLYqHjx3G9VW3DOgDhzQzUO8fGMk8OAzzV1jeX+peJIr1q1qtDlAmHsd3UOv/7665GyyknEsdbVfRivn8dkNXbx8YsTb1/1LR53VL9gavzguODqusL7yedjnHj7Kp43xyBXsdZ5v9Q5wueR6v9xcnhwrgHebxXbn+uoMYbXpZbDx0YdBz7X1Lq4X6jzM/+5H+darqTynPzyyy9Hbm4u7rrrLmzevBlt27bFnDlz0LhxYwDfXxPz5zHJzMzEnDlzMGzYMDz44INIT0/HAw88EHm21rlzZ0yfPh2333477rjjDjRr1gwzZsyI5F7ZsmULBgwYgM2bN6N69eo4+eSTMXfuXPTq1esgW6BwfpBuZmZmZmZmZmZmZgds8ODBGDx4sPy3KVOmBJ91794db7/9dqHL7N+/P/r371/gv0+aNOmAtrG4+EG6mZmZmRXIb4qbmZmZmZUuz8lTg5ONmpmZmZmZmZmZmZkVwg/SzczMzMzMzMzMzMwK4dAudlho3bp1iaxHJfxp2LBhpLx8+fKgDieaLC6c2OJf//pXUGfgwIGHZN2phpNRFvVnT5z8QyVwVZ+VFpXYpWbNmqWwJUWXkZERfNa2bdtIuWfPnkVadpcuXSJl1S+WLFmSdDmcZIeT8MRJNlSSVJIbTp62c+fOpHXMUjmxkR2+cnNzE8nEVOK9OInaOMmZqsOJ/1QyMl6OSiLJVF/mZXMSOJXMjZPLqSR/PBdUSTh5XSrRHu9nnOSUca59nJhNJb/j46CWy8k9uQ8AYV/hpJdA2M6qLfgzlSCSt5Hb5uOPPw6+U7du3eAzxv1UHQc+VskS2wG6X/A+8Bx4y5YtwXd43qkSKW7YsCFS3rp1a1CHEx7GSZzISQmBcB9UskzeLz6vVJ/kc02de9zuajmcPFPhc0QdT25ndY5wckU+Z1Rf4v6mxsmqVatGympM5uPJCUqBcB9atWoV1OG24OUC4f04H0+VJJfHX94nIEzCrJJK8j6o/q/apyjL4XOYy5zIFgj3QZ0P3E9Ue8VJdM19UJ2fPJbGGYfiJGXma6zq2zxWqec4fM6q/s/LVtf3ONfG4pjjek6eOvxGupmZmZmZmZmZmZlZIfxGupmZmZlJfvvFzMzMzKx0eU6eOvxGupmZmZmZmZmZmZlZIfxGuh0yHN9KxZziOhyzC9Bx4lhJxaxWcb1SKabwX//61+Cziy++OFKuU6dOCW3NoaNiXj722GOlsCWlT50fcc6ZVMKxPoEwRnpxOemkk4LP4sRI57GJ4wCqGKv8l/w4MROLixpLOc6kGjf99oExv/1ipWH37t2JWNZq7sXxblUcYo4nq+K38rJVrFiOxa3qcM6JosRQVfGVmVoux31V81KOm6visfPcIc5cQs3tky1HXfP5mqViE8eJo85xhtV1l9ev4u+yOGMTr3vNmjVBHc7pVKNGjaTrUtvH7a6OFbepisHMcb+5TdVx4PNI5YHifVfxxbkP8vkBhHHTVd9W32O8/jgxyeP0C76nUt/hz1Sb8rmv5nDc7ireM/enOOdVnDwHKkcA49wR6tw7/vjjI2U1DnFcftVvec7N45sal9RnTG0P47m0Ghu4ndU5wu21bdu2oA4fcz5WOTk5hW4rELYNEG6z2gduL5WTi88rjqsOhH1QjQXJYsGr81PtF4tzPLmfqnkCr18tl2Puqzr5rz1qXhOH5+Spw2+km5mZmZmZmZmZmZkVwm+km5mZmZnkt1/MzMzMzEqX5+Spw2+km5mZmZmZmZmZmZkVwm+km5mZmZnkt1/MzMzMzEqX5+Spww/SrVioRCANGjSIlOvWrRvU4QQPnKwJANavXx8pq+QMs2bNipR/8IMfRMpxEjjF8frrrwefbdy4sViWXRxU8sBhw4ZFyo888khQRyUQSSWcpOWmm24K6qjkIEeCr776KviME9g0adKkhLamaFavXh18phJwFYeiJvzkxEaffPJJpLxu3brgO40aNYqUVWKo4sLJ0zZt2hTUWbt2baScSmOXmVl+DRs2TCQlU9d3TjTGCeCAcG6jEvjxvFMlpOPrkarDSfTiJKLnhGoqiSkvJ06ywOrVqwd1eB6skrdxcjSVOI4TO6pEjytXroyUMzMzI2W1Dzy3V8kNd+zYESmr6y5/po45H091bebEf6q9eP7FfZC3FwiPjUpIx/dUqg63ISffBcJ+qs4jflDC7aUepPB+vvLKK0nrqASDnMRX1eF+ofaTt1klduTv8bpVAlw+r9R5z9scZ6zidas6GzZsCOrwfTQnN4xDJRblc02tm/u/6hdcR517PCar7eFjoe5zkiVCVs8leLlqH/g4qGcOnDxWPWPgfqHm5HGSAXNf4fZS/Y3vV9R+xkkSyvsVJ/muGvP4e2p7eF28ferci5MAtyjXNHV9ipPcmdel7jfzH+M47WmpzaFdzMzMzMzMzMzMzMwK4TfSzczMzEzyz0jNzMzMzEqX5+Spw2+km5mZmZmZmZmZmZkVwm+kW7FQ8QU5Rnrt2rWDOhwPTMW+43hlOTk5QZ133303Ur7rrrsi5SFDhgTfqVOnTqSs4qC9+uqrkfJ9990X1En1v9YtXLgwUv7pT38a1PnDH/4QKTdu3PiQblNhPvroo+CzX/7yl5Hy+++/X1KbUya98MILkfL1119fSluicfy+7OzsoA7HVFU5Forigw8+KNL3OB7eO++8Eym3aNEi+E7NmjUj5datWwd1eOyME8Ndxe/jmJY8JgLAokWLIuWtW7cmXZeZ336x0lCxYkUZP3c/ji/Kc0UgjNOs5nk8tqv8HFxHzXk5Xqua8/L6OUZunPitcWIcq9jJHJtbxZfla7Oab3McWJXbiK+zfF1r3rx58J309PRIWeX84e156623gjq8PWpM4TZVMY75HkHFgufjx22qYuC+9957kbKK5923b99IOS0tLajDMXvVvIDjUatjzn2S+6CKQ8/3RhxPXq1bxXnnz9Q+cJ9UfZvbQm0P90H+Dq8HCOM0qxwGvFx1fvL5kJGREdSpX79+pKzGj2TxsoHweHK/VfHZOa8S5zhQVO4l7ssq5jcfv9zc3KAOj7cqPjaf1xwrXPVbXi7ntQDC46nOYc5bocaPLVu2RMpqP/kzNf9PFhNdbR9/pq4rfJ+v+j/HlFdjfbJ1A+HxU2NyYdd6QMfbj5NLgqlcCNw+Km8cP59S6+J9UHXyz1PibK/iOXnq8BvpZmZmZmZmZmZmZmaF8BvpZmZmZib57RczMzMzs9LlOXnq8BvpZmZmZmZmZmZmZmaF8BvpZmZmZib57RczMzMzs9LlOXnq8IN0KxYqgQ0n31DJODhRhKqjkowk8/zzz0fKCxYsCOpw8h6VqEolrClruE3VPg0bNixS7t69e1CnU6dOkbJKrsjHSiVnWrFiRaT873//O1KePXt28B2VKCWVqH7LSUS4LQ7lxYkTQakkl507dz5k689PJXebNGlSpMyJe4AwWaZKynLSSSdFyipRDyd5evPNNwvc1gPx6aefRspz585N+p0dO3YEn3HSKZVIi9tQJQnl/XzllVeCOm+88UakzImXzMxSxc6dOxPJ/lQSQr5uqPGMkwWqRGh8bfnqq6+COjw/VInZOAGpSurHy+bEZ7y9QLjNaj95Dl6vXr2gDl9b1LyFr6HqmsVzFzX/5+PFCTY5CSwQJldUx4q/p/oFz0PVcnjfVZvystWxSXZ/opIt8vWcEz0C4T3LCSecENSJk6icEwqqtuCkiKtXr46U16xZE3xn1apVkbLq69xP1FxQtSnjY6XOT06ky4li1fo5MaDaFk48rNqPqb7EbaoSJ/J+qoTGXCdOskI+Nirp5bJlyyJlTl4PhO2j1s3JWNX5wQlJ1T0pJ9RUCSI5ISQnwuT5LhDul0riW6tWrUiZk0wC4fVAHc+NGzdGyqrd169fn3Q5ye5/Vb/l+wo1DnGbqv3kOuq+lbdZLYePlTqe3J/iPB9i6rrM56NKasrXHpWENk5icD4WKpG0OhZWdvlompmZmZmZmZmZmZkVwm+km5mZmZnkn5GamZmZmZUuz8lTh99INzMzMzMzMzMzMzMrhN9It2IRJ6akiqHHMf04LhqgY14dKBV3bO3atQe93FSjYm9lZmZGyo0aNQrqcMywxYsXB3WmTp0aKatjxbEyVQwxFRstlXBbdOnSJajTrl27SLlmzZpBHe7bfD5wrHgAeOmllyJlFUc0Do4JN3HixKAOx+8799xzgzoqRmOydXHMvyeeeCL4zocffph0uWzJkiWxPisp/Ff65cuXB3X4+K1cuTKow+enavM4MVXff//9SFn1Lx4HVazAs846K1Lu1q1bpNy0adPgOxwTkWNVqu2ZP39+UEe1oZU+v/1ipSH/XEHFgeWxUsXL5jkRx/AFgO3btyfdFo7fqualfI1X28NzJJ4Xc6xWIBy3VZxmXpfKo8F5WlR8YI5lq7aHY2qr8Z7jsfNxUNcwjseu5oo831DxeLkt1HHg/qT6F69LxejlPsj9QvU3PubqOszbrOKU832X6sd8HPj4AuE28/FU81C1X8mo+xM+r1TcbY5XzHMmIDw26hzhnAr8HXUc+JxWcxTeLxUjnessXbo0qMNjg8pDxeeEOp5837Vu3bpI+ZNPPgm+w+ejaj8+Rz7++OOkdRQeU1Qc9Th5GLhNuR/zvQgQ7nuDBg2COk2aNImU1bMLPkfUvS5vj3oOESd+d8uWLSNlHnPq1q0bfIf7hTouPH7EuYdR+8D3JyoXAp9HaizgduaxXS2Xc1WpfsvrUtc0dR4xPvdUTgp13WXqmnWgPCdPHX4j3czMzMzMzMzMzMysEH4j3czMzMwkv/1iZmZmZla6PCdPHX4j3czMzMzMzMzMzMysEH4j3czMzMwkv/1iZmZmZla6PCdPHX6QbsVCJV7iZJ4qISkna+BkQwV9diiohCKMkzWlGpWQhRP1cPIhIExEopLlcIITlWBKJfpIZdWrVw8+u+aaayJllZCrKDg50xlnnBHUOfnkkyPlJ598MqizatWqpOvi5CoqORMnXpo8eXJQh89rlbAmNzc3Us7JyYmUj5SLsNpPToSzadOmoA73C5XQjJPccOIeIEx2pJL5XHnllZHyr3/966BO48aNg88Ohd/+9rfBZ9nZ2ZHynXfeGdRRiZDN7PBTvXr1xDUnTjIwNS5ygjI1h+Nkd6oOJ4FT432cMZjHcp4zqblXnISMq1evjpRVAr/09PRIWSVL4+uPmrfzNUslb+N25/1W9ww8f1X7wOtWx4HbUB0HTpqnrru8D2r+w8eCt1klyOM5pToO3C9UclY+Np9//nlQh5PfqcSEyfqkSo7H92VqLs3tpc4rXjb3USBM/sj3NEC8c5iPOa87IyMj+E6ce5oNGzZEyipJLvdTlVSez4klS5YEdfh7qt15OdwHNm7cGHyHxUmYqs6HopxXcRI3q3OE+wEn242TMHXbtm1BHd53da/L+6nGZB6rVILes846K1JWCWb5nOU+oK6N3P/V8eQ+qeb+fF159913gzo8Nqn+H2cs5WPOx09d33m/1HL5mYe6ZvAxVnXiJP3mcyRZIumy9szEQg7tYmZmZmZmZmZmZmZWCL+RbmZmZmaSf0ZqZmZmZla6PCdPHX4j3czMzMzMzMzMzMysEH4j3Q4ZjlemYp1z3DMVW+tQ4dhVNWrUSPodFc9KxUAsLWr7OK4Xl4GwLVQd9VlZw3Hsrr766qBOccVELwqO88gxrQHgwQcfjJQ5/iEAnHTSSZHyueeeG9SpU6dOpKzia7766quR8ssvvxzUOVR/reaxQcXFrFevXtI6fMxVnD2O867alOPfFoWKU/jZZ58d9HKBME7ixIkTgzrnn39+pKziTpYUFbe2S5cukfLcuXODOnfddVek/MADDxTvhlnAb79Yadi3b19ijFIxaHneouKjcqxYFbOXY3Or8T9/XNOC1sXbo/LuJLseqXUzFVOY56EqXw7n6GjatGlQh+PvqnmfyrPDeD7B26fahuevKqYwL0ddz+OMITz/UTG1+frIfQDQ/TI/FQubqXlLnFjTn3zySaSs5ig851B1eNk8B1b3OByfnedQgD5+rFatWpEyz10BoH79+pGy6ttxcmlxW3CMdNVv+DN1f8D9Qp3D3BYqbxHP4VT7cTzqLVu2BHU47jcfG9V+fL6q2M58zqrta9CgQaSsxgo+Z9avXx/U4WOjng1wX+bvqBwL3AdUDog4+Ry4fdS6OLZ/t27dgjqNGjWKlNW4mOy5iPp3nl+r8YP3XeUI4PjszZs3D+q89dZbkfLrr78e1OFjXhz3U0A4vqr7CqauaXwdUcvh9lLnEX+m6uS/zhX1mZfn5KnDb6SbmZmZmZmZmZmZmRXCb6SbmZmZmeS3X8zMzMzMSpfn5KnDb6SbmZmZmZmZmZmZmRXCb6SbmZmZmeS3X8zMzMzMSpfn5KnDD9KtxKhEe6WJkzzESX5RkslQi0IlG12zZk3SOpyIRCUO4uSxcahEGz169IiUTz311EiZE+UAwAsvvBApb9iw4YC3BQA6dOgQKaenpxdpOSVFtd95550XKT/++ONBnRNPPDFSVklkOMFV9erVky6Hk8oAOtlXMpzIRSU9437Stm3boA4nCFbtFSehMSeRUf1r4cKFkfKbb74ZKatkrYeKShz05JNPRsrdu3cvqc05ZFTCK042qur88Y9/PGTbZGYl47vvvkvcxO3atSv4d05kp8YCTuCn5j/8PZWEmZNRquXESd7M1x/+jrpp5YTUKtFpnMSO3IaffvppUIevoWruwEn9VMJNTpq3c+fOSFklsOQ5iUq8x4n/1PVcJQdkPJ9Vx47nKSpxIh8vTjqoto/7kuq3vFw1z+J7KjUv4PWr+zBOisgJEFWf5GO+atWqoA73W5Wok5MZKnxvphIB8vao48n9KU5SSZ4Xc98HwsS169atC+pwEk61340bNw4+Y7zNKlEn1+H9VmMXt3HLli2DOjxPV0lyuS1Ue3GyRzV28bnG4wcAfPTRR5EyJ2KNkzxW3TNwHb6GAGEbqnuYs88+O1Ju3bp1UIePlerbnMyWj5U6ntzuu3fvDurwWKDGW77WqOsBn9fqXvKll16KlFVyYD7/uN3VceCxNE7CcfWsh7+n2pT7ikowy9uornP5x/s4cwZLbX6QbmZmZmYF8lspZmZmZmaly3Py1OAY6WZmZmZmZmZmZmZmhfCDdDMzMzMzMzMzMzOzQji0i6UUFR+MP1Oxq4qC44OpGGy87rL4UxqOjaZiOR+qNr7kkkuCz37xi19EyhyfUcWCPP300yPlUaNGBXVUXHfG8djLoubNm0fKKk4bx4BTcdri5Ajgz4qSI0DFSOzbt2+k3KtXr6AOxz8vrlhyKp4rx75TsR85ZmSXLl0i5RkzZgTf+fDDD4uwhcndfvvtwWeHQ0z0OLgfjBw5MqizePHiSHnBggWHdJsOd05sZKXhmGOOScQu5TixQJhPRcVQ5biv6jrCfU7FeK1du3akrGJNcyxWlVeG51YcH1j1f74exbnmqzkcfy9OW6hYtny9VPMLbh+OA855SYAwdnIcHJMZCOPdxomZrtYdJ85wsuWoYxUn/jnjvgWEMdFVm/I+cN4bADjzzDMjZY7lrPIW8T6ouSHnZ1J5DvhYqXOPY60nizsM6LGA24LbVMXA536s2piPg5o/xonzzucsz4GBsL24bdRy+DxX+8kxvk8++eSgDsd1V8eK+786r/h8VLG5+fipOOo8JvNY9e677wbf4TjqKj8BU/cwfIw7d+4c1OHY4Tk5OUEd3k91bJLFAVdtzNdLNcbwvqtrLLe7iinP91QnnXRSUIfvhVS/5fbidalnNLwc1RbcXjVr1gzq8Pmo2oL3U9Xhz9T9Zn5FfdbiOXnq8BvpZmZmZmZmZmZmZmaF8BvpZmZmZib57RczMzMzs9LlOXnq8BvpZmZmZmZmZmZmZmaF8BvpZmZmZib57RczMzMzs9LlOXnq8IN0SykqoQgnxFBJM4qSpIiTS3AiFSBMMqISzXAinqIkZATC/axWrVpQhxNX8PbESaqkkmSpz4qCE6f07NkzqMNJGzlRj0pg06FDh0i5bdu2QZ04CQXr1auXtE6q48QpnHAHCJMtqjrc31Xyl7feeitSjnOe8Tk8YMCAoE7Xrl0j5TgJf0obb2ObNm0i5SFDhgTfmTJlSqS8ZMmSIq37hBNOiJQHDRpUpOUcjlQyn7Fjx0bK3N+Aoo/TZlYyKleunBh349zMqYSMPCdSyb04GR/PSYAwwaG6ZvFyVLJAXn+cRJOcdE0lpOMk8iqpPM9/VIJxTgipEmzy+tUYzHMF3m+VqI3rqOPA80N1PHmOpO4ruK+opKA8L1YJInmezvut7hm4jVVySm5TdayYSorIbcGJRIEwgT0n41Pbx/1i3bp1QZ0NGzZEyuqc4XZX7cXHSt3ncN9WfYfHEO6D6pzh/sbtCYT7pcYqTnIZpy+ptli7dm2krLaZjw0n81T3Qa1atYqUGzRoENThsUr1Sb4HVPeW3IYq2Sj3i9zc3KTr4sTD3bt3D77z8ccfR8offfRRUIfbXR1zbsNGjRoFdfh8jHMNU32bx3/uO+q8T9YH1Pao5NN8jqh+y9dGde7xPbwaL5Lt16ZNm4LvcJ9U+8nHT51X3E/VNYPrqP3kbVbXlfxU4mQrW/wg3czMzMwkv/1iZmZmZla6PCdPHY6RbmZmZmZmZmZmZmZWCD9INzMzMzMzMzMzMzMrRJkK7TJ27FjcdtttGDp0KLKysgB8/5OD0aNHY+LEidi5cyc6duyIBx98MIhfa4eWin3HMWjjxOFWMbrUZ8WB46upOIBx4l1xjC4Vs45jf3FMQgA4/fTTI2UVx47jJnI8tZUrVwbf4XjZceKoF5V/AlTy1PmxcePGSPmpp54K6nD8VtUvduzYkXT9HH/u0ksvjZS7deuW9DtlEbd7WlpaUOcnP/lJpMyxUQFg9erVSdc1cODASJljJloUx4Ht0aNHUOe///1vCW1N2eefkZpyqOfk27ZtS8x5VOxTnlepuNs8D1UxXjkeqrqm8jVLxQ6PE7uWY3rHyQ/Cc2cVC55jrTZt2jSow3NTFeOYt0ddq3leoNqU59e8XJULh899tX18bOK0n4qjznHe1fbUqlUrUlb7yevnOfrOnTuD73C8ZzX34naPk58mzrxKtQXnx+HlqFj/fL+kzhmep6h7QK4TZ26jYhxzu6u4/cnOPRWvmNsmTm4ENTbwutXceunSpZGyyuPCc3u1Lv7eiSeeGCm3a9cu+A4fT9WX+JyJE1Nb9Teuo8Z2Hqv4XATC8aJhw4aRshonuX+p4xAnHwHHkFf9jc/9op4j3C95OepYxXm+wctR6+b+lZOTE9Th9atxknNyZWZmBnXefvvtSHnr1q2Rssonwn1SjR9cR7UXxztXOcOY6pNMncP5xy91fsThOXnqKDNvpC9atAgTJ07EySefHPn8vvvuw7hx4zB+/HgsWrQIaWlp6NWrl3yYaWZmZmZmRec5uZmZmZkdqcrEg/QvvvgCV155Jf76179G/jKel5eHrKwsjBw5Epdeeinatm2Lxx57DF999RWmTZtWiltsZmZmVvbtf/ulpP6z1OY5uZmZmVnJ85w8dZSJB+lDhgzB+eefjx/84AeRz9esWYOcnBz07t078VnFihXRvXt3LFy4sMDlffvtt/jss88i/5mZmZmZWcE8JzczMzOzI1nKB6qdPn063n77bSxatCj4t/2xmjiWdL169bBu3boClzl27FiMHj26eDf0MFazZs3gs1tuuSVS7t69e1CHY4898sgjQZ1nn302UlY//+XYYyqOXVHEidnOddR34vy1jn/+fM455wR1OIaZijPG+NioOM21a9eOlJ977rmgjoo9VhQcu1DFIeZ4fU2aNImUVbzIN998M1J+//33i7R9HHOtUaNGRVpOaeI+uH379qTfUedVcf3U/pRTTomUzz777Ej5cIiHXlR8Pvbr1y+o88ADD0TKKj5j3759i3fDDnMc+1G1n2Okx+d4jLZfSc7Jv/rqq8T8Tz1cj3Nt4dinKh4vx59WcUvjzAU5frKKj8rf4/7O26uWU61ataAOzynr168f1Nm8eXOkrI4J5+xQ8ah5vqjai2P0JouZDoRzPxXvNk58YI55r3D78DwUCGODq+PJ9zl8v6KOFVNtwe2u9pPncBwLGAhjaq9atSqow7GleR/Ufm/atClSVvN2ziml7ml4P1VeAT5H1PHlOhyHHgiPFS9H9Tfed1VHrYvxfauKzc37oNbF7aWulxkZGZHySSedFCmr48njoso3wWOTyhnG43SyGNGAfsbAy44TX5zHIfUd7l8qXxmPb+o48HimjgOf16q94uRC4M+4/dQ1Lc7zjTjPGPh+RI0x6pqVbHvUs4pk26zivPM5HCfevuoXvG41xvB+qjGZ+06ynHSOkV72pfQb6Rs2bMDQoUPx+OOPywFoPz4p8vLyCk1QOWLECOzevTvx34YNG4ptm83MzMzMDieek5uZmZmZpfgb6UuWLMHWrVsjGab37duHV155BePHj8fKlSsBfP8WTP63C7Zu3Rq8EZNfxYoVY/0FzczMzOxI5rdfDPCc3MzMzKw0eU6eOlL6jfRzzjkH7733Ht59993Ef+3bt8eVV16Jd999F02bNkVaWhrmz5+f+M6ePXuwYMECdO7cuRS33MzMzMzs8OA5uZmZmZlZir+RXrVqVbRt2zby2XHHHYdatWolPr/55psxZswYNG/eHM2bN8eYMWNw7LHH4oorriiNTTYzMzMzO6x4Tm5mZmZmluIP0uO49dZb8fXXX2Pw4MHYuXMnOnbsiHnz5smECBYPx7K8++67gzr9+/ePlOMkrWjVqlXwGSdKfOONN4I6nARC/QSYk6twogiV2IUTL23bti2ow4lJ4iReqlWrVlCnU6dOkbJKrlIcVFKU1q1bR8qffvppUEe1e3GYPXt28Bkfi1NPPTVSVol78r/hVlCdOJYtWxYpl8Vkox9//HGkXFyJYuNQ517v3r0jZU7CcyTjsZSTPgEIHkytXbs2qNOgQYNi3a4jDSfEtQPjn5FaXMU5Jy9fvnwi8aFK2sXXI5UgjJPd7dq1K6izc+fOSFkl2qtevXqkrBKfcUJBlfiMt5HnwKr/83J69uwZ1DnzzDOTLueEE06IlFWCTU4WuGLFiqAOz8nVseVrloqbzzg5n0q8x8nZVL/geXrdunWDOpmZmZFynTp1gjp8PFViOE5Iyu2n7o3S09MjZdUW3G95PUDYl1SyPt6v999/P6jD/Z37iUpMvz+xcGF1vv7660hZHU8+97gMhPc1aj/jJO3jczhOUlVeLn8HCJMOquPJ31Pzdh7PVOL5OIk6+bzmdccZi9U8nvdLHU/ePnXvzffI6r6CxwK1PXxseHvUOM5tUbt27aAOH0+VlJnbUCUM5nNWHfPdu3dHyiqXCI8hnMBYfYfbVNXh85PHOyDcL3VN43ZWy+FxSF17eEzmsSDONUONAxxWTrUFb7PqO9y/4iR0VfOE/OOMk42WfWXuQfrLL78cKZcrVw6jRo3CqFGjSmV7zMzMzMyONJ6Tm5mZmdmRpsw9SDczMzOzkuG3X8zMzMzMSpfn5KkjpZONmpmZmZmZmZmZmZmVNr+RbgGOJ9ijR4+gTpyY6EzFiurbt2+krGJ1c3y8zp07B3VatGgRKXN8MBW/b+nSpZHyO++8E9Th+G5x/jLH8doBHaOxpHBbnHjiiUEd3ncVm68oVJyx//73v4WWD6W33norUj7jjDOCOqV5rJiKNTd37txIWcXm43h0Kpahil2YjOrbzZs3P+DlHKkqVaoUfMaxbVXMVxWX0+JTcTAtPr/9YqWhYsWKibGP45wqqu9wDFIV1zRObG6+FqtrM4/TKv4pf49j7arlchzkxo0bJ12uWjfvp2rTli1bRsrr168P6nD7qPjiPG/n2LrqWsjxlVXeIo4zrPIWMRU7n9tdxWnmbVSxpbnP8X6rmPwc41gdK56Dqzk5H3NVh/edY7gDwJIlSyLl5cuXR8qcKwoI4yurtuGY4yo28ZYtWyJl1Sd53slxpYHwHk/li+I+yGOBiv/M9wPqeG7YsCH4jPG+q+3juZ+6z+Zt5rjSQBh/mttPjTG8XNUn+XjG6bfq3OMY5CouPp+Patzm5fB+qbk0f0fh+aK6rvCYrO7DeP18zqjvqf3k6wqX1XnFn6ljxW1Rv379oA73QXVPz+tS+Rx4zFPXMD7XeF0qxjy3qXrOxNerOOeVuvZwHXWsuL8nu66oczEOz8lTh99INzMzMzMzMzMzMzMrhN9INzMzMzPJb7+YmZmZmZUuz8lTh99INzMzMzMzMzMzMzMrhN9INzMzMzPJb7+YmZmZmZUuz8lThx+kW4ATKHCCkaKKkwhKSUtLi5SbNWsW1KlevXqhy1CJjTjp5urVq4M6KqlNMirZRZwEJyVFJX/hxDfFlWxUJUHhRClxEtfGSYQTByf2mDp1alDnpz/9aaRcq1atIq2rKHj7nnrqqaDO5s2bI2WVCIo/i5OMJs7F8oQTTgg+O+6445J+zwrWtGnTSFmNVXxs1PG0ghV1vDCz0lO1atXE3EnNQznRpEqExt9T10tOjqbWxYnj1JjCydDU/JETGqpkZIwTOebm5gZ1eN6p5nlxkqWp9mGcXFQlIec5JR8b1X7JvgOE7RUnaWmy+wMgXkJv1V68H7w9KqkkX7/VPnCyO7Uc7rc5OTlBHe63nPQP0PuVnzoO3I9Vgl4+Vir546ZNmyJlTuIIhHMkldh069atwWeMjxWfr5ykEwiTGarku5xsNM58Wx3POPh+RN2fcMJWPr4qwSH3QbUPfF+olsNJX+OMb2rM4fsKta5k478aAznZrkpWzG3Rtm3boE6c5Mnc3+MkElX3U3yM1bnGeF3qOMQ5h/laqPaT21ndS3JbqMShfPy4v6mErtx+ah94ueqY8/apsYrXpZ71MJW0NH+bFtfzNSs9Du1iZmZmZmZmZmZmZlaI1HlN1szMzMxSin9GamZmZmZWujwnTx1+I93MzMzMzMzMzMzMrBB+I90CHNPp2WefDepce+21kXKc+IIqVtTs2bOTfo9jyak4WUXBMcOKa7kcUw8I45XFiQt+qKh4h8UVQ5jjp6kYdVwnTt/h7VNx0DimWZw47yrW6Pjx4yPlHj16BHVOO+20SFnFbGTc7itXrgzqvPDCC5GyOmeY6m8cR13FFyzKX5nr168ffFaafflwwH1HHU/uyypOoRVs3bp1pb0JZZrffrHSsH379sT8QM1RuK+oaz7np1FzEo7LnCxmNADs3Lkz+Izjvqpt5s94OXHiwH7yySdBHY7vrPaB5wEq3vNHH30UKauYvbVr146UVaxY3s848zFuPxWnNs58g9fN8yEAqFu3bqS8a9euoA7HEI4Tz5avzWpuyNu3ffv2pHU4tjMQxjtXcZA5/rSKqc39n/ub6sd8bDg2NhCea2rezsdctTEfP5VzivuXmkfxZxwH/IMPPgi+w+fnjh07gjo8DsWJEa22j2Peq3OP20cdT/4e9x01NvC4E+dYKXxs4uRhUMec66j24m3kZwXqnOExUMWq53WrOnyM1XWFzyM1b+d2V/fDvD3cxmqcjPM8g88ZNUbz8VPbx+eR6ie87I8//jiow9cjHlPiXNPiXGfi5ImLUyfOfqrl5P+sqM9ePCdPHX4CYmZmZmZmZmZmZmZWCD9INzMzMzNp/9svJfXfgXrooYeQmZmJSpUqoV27dnj11VcLrb9gwQK0a9cOlSpVQtOmTfHwww8HdWbOnInWrVujYsWKaN26NWbNmhX597Fjx6JDhw6oWrUq6tati4svvjj4lVFeXh5GjRqF9PR0VK5cGT169MDy5csPeP/MzMzMzFJ9Tn4k8YN0MzMzMytzZsyYgZtvvhkjR47EO++8g65du6JPnz4ybAUArFmzBn379kXXrl3xzjvv4LbbbsNNN92EmTNnJupkZ2fj8ssvx4ABA7B06VIMGDAAl112Gd58881EnQULFmDIkCF44403MH/+fOzduxe9e/eO/Nz3vvvuw7hx4zB+/HgsWrQIaWlp6NWrlwyDYGZmZmZmZYNjpJuZmZmZlMrxGMeNG4frrrsO119/PQAgKysLzz//PCZMmICxY8cG9R9++GE0atQIWVlZAIBWrVph8eLFuP/++9GvX7/EMnr16oURI0YAAEaMGIEFCxYgKysLTz75JABg7ty5keVOnjwZdevWxZIlS9CtWzfk5eUhKysLI0eOxKWXXgoAeOyxx1CvXj1MmzYNP//5zw9oP83MzMzsyJbKc/IjjR+kH0Y44YNSlBPi7rvvDj7j5C/nnHNOUIcT6Pz1r38N6ixdujTp+jnZi0oKxMlVOCGRSrbI21dcb4lt3Lgx+IyTnnByn0OJE7moN/VUYhnG/UslUeKkU5wkBQgTrqjEQSxOslFel+oncY4xL5sfmADA888/HymrtuCkLNwH4iSuikOd03GSAhWFk1wWP+7/aqxatmxZpHzGGWcc0m063GRnZ5f2JtgB4vGyYsWKQTK9PXv2YMmSJfjNb34T+bx3795YuHChXG52djZ69+4d+ezcc8/FpEmT8N133+GYY45BdnY2hg0bFtTZ//Bd2b17N4D/u7avWbMGOTk5kXVVrFgR3bt3x8KFC/0gPYajjz46cR1V4yInH1PJFnkuqJJ7bdmyJVgv4+ssJ6JUn6nt4fkFJy9UcyY+F957772gDm9zgwYNki5HJVfctGlTpKzmKZz4L86cvHr16km/w22Rk5MT1GEq+R3Px1TSQV4/J+4EwsRxKtkd9y+eY6o+wNujkt7HSULIx0bdV/D31PH86quvImVOYKnahvdLtQ2fa+qcycjISLqctWvXBp+xDRs2RMoq6eCePXsiZW5jlRiQ7xPVfJvbRyV/jDPG1K9fP1JW9zl8PNVyuA7fu6k25n6h9oGXo+rwMefzHkiePBOId3+ukrHmpxKU8jFW50y9evUiZTVO8ljFxw4I+5fq/9yfuI+qdXF7qXOal6uuK7yu/XOY/PheUl2H+TioRKe8LpW0l48x9yW1fXw81TgZZyzlNuXEv0DY/+vUqRPUYUVNJmplh0O7mJmZmVnKyMjIQPXq1RP/qbfLt2/fjn379gU3vvXq1SvwIVxOTo6sv3fv3sTNe0F1ClpmXl4ehg8fjrPOOgtt27ZNLGP/9+Iux8zMzMzMUp/fSDczMzMzqTR+Rrphw4bIm37qzc79+E2hvLy8Qn+hp+rz5weyzBtuuAHLli3Da6+9dtDbZmZmZmamOLRL6vCDdDMzMzNLGdWqVZMhBfKrXbs2ypcvH7zhvXXr1uBN8P3S0tJk/aOPPjoR0qCgOmqZN954I5555hm88soraNiwYWQ9wPdvpuf/2Xdh22ZmZmZmZqnPD9LLMI77xLHmgDCe1aeffhopx/lLk4q3/MADDxRaLk4cP/Ctt94K6uz/OfV+HA+M46wDwNtvvx0pq5h6RcHx44EwFnznzp2DOoW9cReXin3Hx/ydd94J6sTpBxwHTcWW43h4KiYcx5SM83ZehQoVImUVq5vr8HqAsH2KGkuc20vF4Dwcqfh9dnA4vqGKQThjxoxI2THSC8dt+PTTT5fSlhw+UvGtlAoVKqBdu3aYP38+LrnkksTn8+fPx0UXXSS/06lTJ/z73/+OfDZv3jy0b98+Mafq1KkT5s+fH4mTPm/evMh1Oy8vDzfeeCNmzZqFl19+GZmZmZFlZmZmIi0tDfPnz8dpp50G4Pvxc8GCBbj33nsPbsePEBUrVkzELlXzI74eqfkPxz5V8zyep6i4pjy/iBP7V20zx4blGK9q3Rzr95NPPgnqbN26NVJW8YO5fdQ5zfMxtT28LlWH/1jEfxTjuNxAGANXbR8fcxXvtnbt2pGyOuYcd7tFixZBnTgx77lNeftUHGmeL6rjyXNTtW7u26r/cz9Q821uL+7rKhYw93W+zwDCfVfHM859D58zceJlq/sT7re8PXXr1g2+E+e+gudwKv4/9ws1fvB9jerbvH7Vpty/OD67imHN58j+PwTnx/2N2wYI913FnY+TtyJOv+UxhNuCY/0D4b6rP9bzuafO4VWrVkXKJ5xwQlCHqftEbncV1523Rx0/xsdKPZfgNlXL5b6t4rHz+aju+3n969atC+owHs9UHHreT3V+cq4BdRy4D6r+xmNKnOcQKs9BcT1rSsU5+ZHID9LNzMzMrMwZPnw4BgwYgPbt26NTp06YOHEi1q9fj0GDBgEARowYgY0bN2Lq1KkAgEGDBmH8+PEYPnw4Bg4ciOzsbEyaNAlPPvlkYplDhw5Ft27dcO+99+Kiiy7C7Nmz8cILL0RCtwwZMgTTpk3D7NmzUbVq1cQb7NWrV0flypVRrlw53HzzzRgzZgyaN2+O5s2bY8yYMTj22GNxxRVXlGALmZmZmZlZcfKDdDMzMzOTUjke4+WXX47c3Fzcdddd2Lx5M9q2bYs5c+agcePGAL5/E2r9+vWJ+pmZmZgzZw6GDRuGBx98EOnp6XjggQfQr1+/RJ3OnTtj+vTpuP3223HHHXegWbNmmDFjBjp27JioM2HCBABAjx49ItszefJkXHPNNQCAW2+9FV9//TUGDx6MnTt3omPHjpg3bx6qVq16QPtoZmZmZpbKc/IjjR+km5mZmVmZNHjwYAwePFj+25QpU4LPunfvHoR2Y/3790f//v0L/Pc4NxflypXDqFGjMGrUqKR1zczMzMysbPCDdDMzMzOT/PaLmZmZmVnp8pw8dfhBehnGSRZUgodkiRhU4ohUt3r16uAzTnTDCR9UAg+V4KQ4qDbNH1u1oDqnnHJKpKySoPDx46QV+X/Cvt8rr7wSKXPCHYX7jdoelUSG+6BKllMUnPhDLZeTH6nES5zwRyUCKYvnREnZtGlT8Bm3s0r2YgXjRD0qkda0adMi5aFDhwZ1GjVqVLwbVob985//jJRVMjczS21Vq1ZNJEBT1+o4OPmdSpjN8yiVRC8OnjuohJ+cxI8TI6vEdrzvcRK+bdu2LajDydHUPC/O9TtO0nZOHMrHQX2Hl1ujRo2gjkrkyLgNVeI4Tjinkt/x+tX2cHtxAkSV2I6Pldo+Tkap+iT3HTV3iBNGitdVlKSX6v6TqXOY783U+cnfU/vJ54Q6VvwZ93+V6D1OHW6/7du3B3U4+a5KVMjLVseOE0KqpL187nN7qbbhdcdJeqn2gcc3NcZwf1L9n89hdT/Hy+FxXB0rTkCqxpOPPvqo0DIQju37E4rnl5GRESmrfhFnm3nf49xX87rUw1AeU1QSTO4r6trDz1JUm/KzCfUcgveTnzmoBL2ciDhOIk/VJ7l91PMhNZYzPtdUAtf8Y6U63la2+ImHmZmZmZmZmZmZmVkh/Ea6mZmZmUn+GamZmZmZWenynDx1+I10MzMzMzMzMzMzM7NC+I30MoxjmK1duzaow/GsDtf4zxwXK06crENFxXtjb731VvDZBx98ECnXrl07qMOxvTgWWU5OTvAdbgsVs4v7hYp9xzHIuQwUX0z0ouB1q33gOI4VK1YM6qiYg/a9NWvWBJ/xOKTiwlrBODarisPHsQOHDx8e1Jk+fXqkrOIAHo42btwYfHbHHXeUwpYcvvz2i5WGo48+OjGOqetKspwxAHD88ccnrcNxSlU8XqbiNHPcVxV3Oz09PVLmuVec+aOaw/F8R8XUjhPjldtUzfOYutZwrGtet9oHjoEbZz9VjFn+TO0Dt7OKTc9zwQ0bNgR1uK8UJfdS/fr1ky43Nzc3qMP7pc4Rjmut6vA287FSc2LePo6NrajYydxPVBzpOMec90Eth+twH1DHN06/bdy4caSsYjnz/ZzaPj7G6lrIbaHyFvH3mjZtGimr85W3Z+fOnUGdmjVrRspFzYfEfUf1r2S5B4Dk960qDwPH1FZ1eE6p4vbzvfb8+fODOl27do2U48zJ1X0rH08uxxnfVF/i80jlPSvKfbV6FrV8+fJIWbU7tzOfr3zsCtqeZHVU/H/ub+o6HCdPS5xnDPn3q6jP5DwnTx1+I93MzMzMzMzMzMzMrBBHxitrZmZmZnbA/PaLmZmZmVnp8pw8dfiNdDMzMzMzMzMzMzOzQviNdDMzMzOT/PaLmZmZmVnp8pw8dfhB+mFEJW9IdZx8o0aNGkEdTgyhkgKVFJVo5pRTTomU27VrF9ThRDMqkcXu3bsj5WXLlgV1Fi1aFClzAhaV2KJNmzaRMiffUstRiY04eVVRE82UFJXYhfdBJeQ6HJKNcj9o2LBhUIcTuaikjVxHJU/jBKRt27aNvZ1HGpWs5o033oiU4yS6U4mNfvOb30TK9957b1CnNJMBFxdOivXjH/84qLNt27aS2hwzO0TyJxtVeA6iEo9xAjM191JJ1hgnKVVjKa9LzZE4YRrPbzlZGRDOZeIkrVNzmzh4H1Tb8H6p5G3cXnxsVJI1vodR+8BzcHXMOaGmmv9Uq1YtUlYJInl7Pv3006AO7zvP41VS2lq1ahW6LUC8uSo/4FCJTnl7VBJJXg5vj/oOt7u6r+A66oEM94OqVasGdZL1JSCct6v+xf2Cv6PmZ1xH3WfHOZ516tSJlNW9JPcVda/L88MtW7Yk3R5eNydFBsJ7BpUAl7dZJY/lNlRtwQlc1X0rj69q3OZ+wM8PeL+BcN/VcnmMVveEPE4+99xzQR1ui7POOiuow+OrGtv5msDnueqTvJw447g6r+IkhuXkogsXLgzqfPLJJ0mXw/vBx0ZdZ3hcVMec91ON9dzf1HHgz+KMF5s3by50OUVNNmqpI7WfhJmZmZlZqdn/9ktJ/WdmZmZmZlGpPid/6KGHkJmZiUqVKqFdu3Z49dVXC62/YMECtGvXDpUqVULTpk3x8MMPB3VmzpyJ1q1bo2LFimjdujVmzZoV+fexY8eiQ4cOqFq1KurWrYuLL74YK1euPOBtP1B+kG5mZmZmZmZmZmZmB2TGjBm4+eabMXLkSLzzzjvo2rUr+vTpg/Xr18v6a9asQd++fdG1a1e88847uO2223DTTTdh5syZiTrZ2dm4/PLLMWDAACxduhQDBgzAZZddhjfffDNRZ8GCBRgyZAjeeOMNzJ8/H3v37kXv3r0PebQOh3YxMzMzMzMzMzMzswMybtw4XHfddbj++usBAFlZWXj++ecxYcIEjB07Nqj/8MMPo1GjRsjKygIAtGrVCosXL8b999+Pfv36JZbRq1cvjBgxAgAwYsQILFiwAFlZWXjyyScBAHPnzo0sd/Lkyahbty6WLFmCbt26Hard9YN0Kzkctw0Arr766ki5VatWQR2Oz/ePf/wjqLN48eKD3DqN44r96Ec/Cuq0bNkyUi5q7HCO25WRkRHUOfXUUyPl6dOnR8oqTmGzZs0iZRUrjWMQckx3ANi0aVOknOox0hXe5kO5Dyr2Xn7FFcKA4z4C4XnVvn37oA7H2XvllVeCOk899VSkrGLUcbxu7m8q5uuRgo+x+pnZe++9Vyzr+utf/xop5+TkBHX+9Kc/RcoqnmAqefvtt4PPBg4cGCl//PHHJbU5RywnNrLS8M033ySuU999913w7xxfNE58cXW95PmPmhdwLFYVIz09PT3p9nD+GY47rOKucgxhjs8LxMutwfM6lZOobt26hZbVNqprGMcT5/i76jjw8VTxlfl76hrGc2c15+X5rIpZzd87/fTTky7ngw8+iJTVnJz3i/sfELa7iiPN3+PY00DYPqqfqNjI+am45ZyrRI3bvFwVd5vjgKvtW758eaSsYrZzW/A8FAAaNWoUKfO5qNrh2GOPjZTjnHtqrOLtUceTxxgVk//DDz8MPmO8Xxs2bIiU1X7y/bkaG/gYq2POfUXNQ/k+Qt1vcl9W/YLPWX7zVO0DXw9UvHjuk9wH1LrU9nFOM1Xn3HPPjZTVeMv9gvMeqP7GbaOuafyZilvO94kfffRRUIfzPKl5uzpvGI+VfI1V4yTvZ5zcICpGOvdlFbuccxioazXnDVDtnr8/FTVGemnMyVVuAzU3WbJkSZCzq3fv3jJ2PvD92+a9e/eOfHbuuedi0qRJ+O6773DMMccgOzsbw4YNC+rsf/iu7D9PatasWfDOFYOy9yTMzMzMzMzMzMzMzA6JjIwMVK9ePfGfert8+/bt2LdvH+rVqxf5vF69evKPasD3f2xT9ffu3Zv4g21BdQpaZl5eHoYPH46zzjoLbdu2jb2PReE30s3MzMxM8hvpZmZmZmalqzTm5Bs2bIj8mkr9qmY//kV+Xl5eob/SV/X58wNZ5g033IBly5bhtddeK3CdxcUP0s3MzMzMzMzMzMwMwPchyVS4tfxq166N8uXLB2+Kb926NXijfL+0tDRZ/+ijj06EnCqojlrmjTfeiGeeeQavvPIKGjZsmHS/DpYfpFuA41LFiTup4jxxHLTzzjsvqMOfqVhGHP9LxabkuF0cQywOtdxLL700Um7duvUBL7eo1F/aeFD48Y9/HCmrWPEcDy9ODDF1zLl9VLw31YaphLdZ7QPHNEtLSwvqtGjRIlLOzMwM6qicAPlxHEMAWLt2baS8atWqoM7mzZsj5VNOOSWo06NHj0i5efPmQR0+Z1WMUO5PKsY31+G/AJ999tnBd1K9nxQXjiP6z3/+M6hzqDKK//vf/w4+e/311yPlX/ziF0Gd//f//l+kzPFmk8X+LwjHWly6dGlQh+O8q3wYvBw79PxGupWGL774Iphr5sfXERXvluc/qn/xOlQsVqbGQY7frcb2ZDHbizq+cnxZNYfj+c4JJ5wQ1GnatGmkrOYxPLdXYzLPUzierJp78U26OvZ8PVI30jzHVbFsuV+o+MBxYplzHZ4Lqnkex2BW+8kPDdS6eb/UfRjvp3qLkJfDx1PF1Ob7si1btgR1OLa02k+OV7x69eqgDm+ziq/Pc9yTTjopqNO4ceNImWOtf/LJJ8F3OLaz6kv8mYqLzLGvVWx/7kuq3blfrFmzJun28Dmj4vbzOaPGUqaOJ69bjbc8Nqk25e+p8Yz7BY9LfJ4B4Zi8bt26oA6fa2ps4HFaxTbn9lF9++mnn46UO3bsGNThPGzcNiqGO/clNTZw/+cxGwi3WcU/5/ZR95LcFmr85zoc416dV3Fyg3BsczUm83keZ8yLE1NebV/+YxFn+5VUnZNXqFAB7dq1w/z583HJJZckPp8/fz4uuugi+Z1OnToF96vz5s1D+/btE32pU6dOmD9/fiRO+rx589C5c+fIdt54442YNWsWXn75Zflc5lDwg3QzMzMzMzMzMzMzOyDDhw/HgAED0L59e3Tq1AkTJ07E+vXrMWjQIADAiBEjsHHjRkydOhUAMGjQIIwfPx7Dhw/HwIEDkZ2djUmTJuHJJ59MLHPo0KHo1q0b7r33Xlx00UWYPXs2XnjhhciLe0OGDMG0adMwe/ZsVK1aNfFHx+rVq8s/xBUXP0g3MzMzMylV334xMzMzMztSpPKc/PLLL0dubi7uuusubN68GW3btsWcOXMSvwjavHkz1q9fn6ifmZmJOXPmYNiwYXjwwQeRnp6OBx54AP369UvU6dy5M6ZPn47bb78dd9xxB5o1a4YZM2ZEfsExYcIEAOEv8idPnoxrrrnmAPc6Pj9INzMzMzMzMzMzM7MDNnjwYAwePFj+25QpU4LPunfvLsMG5de/f3/079+/wH8vrZdwwoBDZmZmZmZmZmZmZmaW4DfSj3BVq1YNPktPT4+UOeEDECYm4UQNQJjgoU2bNknXrxItceKK2rVrB3WqVKkSKRcl2eiJJ54YfFaSyUWLgo+VSioZJ2kMJ2lR3+EkLSppUSolkVQJsDhZCLcfAFx55ZWRcq9evYI6bdu2jZRVQi7VPvmp5FGcBGXFihVBnXnz5kXKcRJpqaRAnLhFJVdRnzE+95966qlIWSWG4oQ6qdRvimrHjh3BZ9OmTYuUVbJWbmOVOOizzz6LlIuacJO38fe//31QZ+zYsZEyJ2zhZHRAmAhKtQUnzo0zLllqSOWfkdrha+vWrYnrlBoXeexU80eeC8a5pqmkZtwv1TWV66hrH88LeE6iErXxPDnOcnlOB4T73qhRo6AOJyDluTUA7Nq1K1JWSb142ZwUUc3R+fipRO81a9aMlFV78b7z/QoQtqmqw3Mrdc3i48f3S2p+ppLdMb7mq8S1fN1V5wi3jzpHeF2cRE8lUuT+pvZzw4YNkbLqk7x96n7ztNNOi5RVv+Cks5xYFAiTbHKbqntA/o6at3OS0rVr1wZ1eJ6sjgMnHuTjAgAfffRR0jp8LDjJvLoX5zm4Gt/4mKtEibxf6hkDb59K2sjr4ucJal2cuFadZx9//HGkvHHjxqAO75dKDMvJO1UyT9531f+5LfLHfN5v6dKlkTLfb6qEy3yNUMeK5+R8vgLA9u3bI2U1P+PP1DnMY5U65nx94rIao7lfqDZmvE9qe9QzLe4H6pjHSR6ef36hlhGH5+Spw2+km5mZmZmZmZmZmZkVwm+km5mZmZnkt1/MzMzMzEqX5+Spw2+km5mZmZmZmZmZmZkVwm+kH2E43mGzZs2COvXr14+UOUYcEMaqUjF7OXabiqGn4s0xjnnFMc6AeDEHkzn55JODz1I9djPH31LH6pVXXomUOY4cEB6rzZs3B3X4eyrWKPevkmw/jjXGsSsB4IwzzoiU+/XrF9Tp3r17pKxi8hcHjhkHhMdPnZ+dO3eOlFXcbT4/N23aFNThc++9994L6nBc0zg4fuqkSZOCOhxDm9scCPuSijVXkrh/cdvMmDEj+A7HNmzRokVQh+Ptq/i8fKyys7ODOtu2bQs+KwqOpbh69epCy3b489svVhq+/PLLxHio5o/VqlWLlNXYyddCFfuXx3YVH5WXHWduo/oyx2LlGNFqDsefqbkXxxRWsc15e1Scch7/VbvzNV7FpeX24W1WbcPLUdd8Pn4qRjQvW821uA7vExC2IcdnB4AtW7ZEyl988UWkrI4VX8/VPsSJ886fqbk911HrSja3V+3H/VbF+k0Wex0ATjrppEi5Q4cOQZ2MjIxIWeU24v1UYwHPO7kP8L0vEO6nWm6TJk0i5XfeeSeow99Tsf35nkXFBefzXMWj5uXwcVi3bl3wHT5+DRo0COpwP1FjIJ+faozh/q/6NreXGhd5nF6+fHmkvGjRouA7fG+r8kRwLGx1rJjaT47Br9qLP1PPRPgzjvGtjqfKqZCsTpxY9er6ycdP5QfjfVDjBfd3Pr7qOMTJJcHXMLUPDRs2jJRVHpI4xzNZ3H4gOp5+9913Qb+Nw3Py1OE30s3MzMzMzMzMzMzMCuE30s3MzMxM8tsvZmZmZmaly3Py1OE30s3MzMzMzMzMzMzMCuEH6WZmZmZmZmZmZmZmhXBol8McJz6oV69epJyWlhZ8hz9TyRI46YNKNsoJalasWBHU4SQQKqlNTk5OpPzss88mXU4c3DacYKQsUgmmONFkUZMFcnupBDGcfEMdT04iEyeJJP+0iBNiAWEf6NSpU1Dn+uuvj5RPOeWUoI5KRJJKatWqFSl37NgxqLNx48ZIWSU/euaZZyLlN998M6ijElMdKLWMJ554IlJW23f22WdHyieeeGJQh5PNqWPH/StO3+ExBwDeeOONSPnVV1+NlFXCYz4fObGW2j6Fk/e0b98+qPPcc88lXU5R8DmtzqvTTjstUlbXA078tGTJkqCOf0KYmvwzUisNNWvWTIw/akzhxI5qvsHjvUqkzstW14iqVatGynztAeIlpeNEjnw9V0n1OMmlmnvxNqs6nMxtw4YNQZ2dO3dGyscee2xQh5Ou8XxDLYevYaqNmbr34OUqfKxUEj1ev1ouX5vV/Jrvl7Zu3VroeoDw2MRZtzqePFaq5XAdNd/g/eJkniqROfd1lWCQE/Zx0lAA6Nu3b6Ss5kg8H+NkmgDQuHHjSFnNO7nfcv9S1x5OeKiSx3Kbqv3ksWrlypVBHU5cy8lRgTAhKvc3IEzkyOObmt/yPqi+xPulxgYeg1VCRh7z1PnJySlVnU8++SRSfuuttyJllaw1TtLjOGMTt6nqF3ytUW3B57VK3Mz3zNzu6nzg5JlqP7l/qfaKkwCavxfnHprPByA85nGuy7w9at18bNSx4vFMJfHldlfbw5+ppKr5j6dKXhyH5+Spw2+km5mZmZmZmZmZmZkVIrVfvTQzMzOzUuO3X8zMzMzMSpfn5KnDb6SbmZmZmZmZmZmZmRXCb6Qf5jjuE8cO5LL6TMUFjBMjnf+KxfHpAGDBggWRsoqjruJ2FYc4cbfLmjh/OYwTH0wdK/5MxfbiNuSYZ2r9ceKpcf9SMfFbtmwZKf/kJz8J6nAs56LGJ0slKu4ex8dr2rRpUIdjK6o4mIcKH89ly5YFdZYvXx4pqxwGHMuTY8kCYf9Ssfm4LVR8SO4rHBNUxbblsTNOPPQ4OPYoEO6nGpPj4LHg17/+daTctWvX4Dtx9uuiiy6KlOfMmRPUGT9+fKR8OIzJhwu/lWIl7aijjkqMuyoOLMeXVeMQx9ZVcdQ5DqyKR83zFjVHijPm8nWM1x0nprZaDy9H1eFlq3WtX78+UlYx5fn6qGLDc/xpnqeo6yVTcxtel5rPxrln4Ou5isfO7c7xsoFwLspzkDjxn1UcXd5PtZxPP/00UlZjNJ8TKpY5z515v2vXrh18Z926dZGyuk9s3rx5pNyhQ4egDud7UfeknOdp165dQZ3t27dHyqpNuc9x26j7Cp5rqfkjL0fdV3C7q+PJ+6nivHO/ULl5eN85JrnK78DjKx9fANi9e3fwGUuWlw0A6tatGymr+XacuR+fR3zuqTGQz3MV553HHTXWc39XYyCfR6rv8PFT1zmO1835olq1ahV8h8dF1Z7cPjz2A8Dbb78dKatzj5et+i2PnerZAF+bebnqWQHXUceT+6Qax/n4xcnFoY4VjxdqP1etWpX4fzVOxeU5eWoo0lOkNWvWFPd2mJmZmZnZAfK83MzMzMysZBTpQfoJJ5yAnj174vHHH5d/wTUzMzOzsm9/PMaS+s8OnOflZmZmZoc3z8lTR5EepC9duhSnnXYafvnLXyItLQ0///nP8dZbbxX3tpmZmZmZWSE8LzczMzMzKxlFepDetm1bjBs3Dhs3bsTkyZORk5ODs846C23atMG4ceNKNNaumZmZmR0afvsl9XlebmZmZnZ485w8dRxUstGjjz4al1xyCfr27YuHHnoII0aMwC233IIRI0bg8ssvx7333ov69esX17ZaEXDSE07WoJI3cKINVSdOgsiirKs0caIXAGjSpEnJb8hBUIlnOBmHOic5MYm66eZlx0koohIQ8bri9AFOiqISJp133nmR8qmnnhrUORySi8bB+3nWWWcFdQYMGBAp50+Asp9KLHOw26I+U0mBOAlLTk5OUEd9VhScoIaTtQJhgiYez1Q4BU56FicZWBwq6RO3l0ooxe2sEl7xedStW7cD3j6Fj/n5558f1OHERq+99lqxrNvsSHG4zsvVPIHHFJV4khPtxUlIqhLHcdIwlWiMx+A4YzsnklPf4euISqjGiRRVEjOen6lrFreFujbzNqq5PS+b21Qlv+NjrBK18dxPJRblZav95H6hcHupfsHbw8kMVdtw31GJV3m/1HHgZXPCWSDsB2ruwMtRyXYZt6nqk6ecckqknJGRkXT7VGJHnsuopIicFFeNcXyucXJD1ZfWrl0bKavjyQkG09PTgzqcaJKTDgPhPZVqC95PdR/GSTd53sn/DoT7pZbL7a7OzziJVzmR45YtW4I63AfV+cpt2Lhx46Tf4eOg5sl83xoncfOOHTuS1lHbw+2j7hEyMzMjZb6fU9cMXo5aLq9bjckfffRRpKzuueKMkzy2q23mcZHPT5UonJcTZ5xU/Zb3XSWGjfMcgsdXlcQ6//YU5f7PUstBPVVavHgxBg8ejPr162PcuHG45ZZbsHr1arz44ovYuHEjLrroouLaTjMzMzMzK4Dn5WZmZmZmh1aR3kgfN24cJk+ejJUrV6Jv376YOnUq+vbtm/jrVmZmJh555BG0bNmyWDfWzMzMzEpOSf680z8jLRrPy83MzMwOb56Tp44iPUifMGECrr32Wvz0pz9FWlqarNOoUSNMmjTpoDbOzMzMzMwK5nm5mZmZmVnJKNKDdI6ZpFSoUAFvvvkmzj//fNSuXbsoq7FiwPHnOJYVl9VnKp4U/4VKxaWKs5w4cSdLytKlS4PPOnToECmr2F+liY8DxxgGwthfhzJOOMdNVMecY6XF2R7eh+7duwd1+DMVL/VIpWK5nXvuuZHyv//976DOvHnzDnhdJ598cqR8ySWXBHU4blx2dnZQ55lnnomUVV8qLhw7k8sAULVq1UiZ+7FqYx4X33///aAOvyGqxhiO3bls2bKgDsccb9WqVVCH23DhwoVBHRVP/1BQsQG7dOkSKTtGemrw2y+p73Ccl1eoUCExzqoYzBz7VI2dPL9Q15F69eol3Raem6r5RZy40Xxt4f6u4lNzzF51feLtUTFe48yveTkqzw3H9Faxa3n+z/G748SpVXGHOYa7ii/ObarixXO/UDGh48To5c/4mv/pp58G32HqPoz7QZz7MBWDnOcOaj+3b98eKa9evTpSVrG6+TN1HDgWt7rmcz+NE8Nd9Umuo445jw/c1+PEwub43gCCP1yqsZXbR/2xk88R1Xc4b5GKu83r4u1p3rx58B2OFc5x34Fw3rl169agTpy489zuau7MddR4y5/xOaLGSV6XOq+4f6nY4TwObdy4MajDcfpVv+D+r/IccK42XreK28/nGt+/qDpqfON1q/wEcfKe8bmnjg2ff9zu6pzmY6XWrb7H+Nqtrp+8PWquym2oxts4OQaT8Zw8dRzSzHuPP/647ERmZmZmZlZyPC83MzMzMzs4B/9nkUL4rxhmZmZmZZfffjl8uH3NzMzMyibPyVPHIX0j3czMzMzMzMzMzMysrDukb6SbmZmZWdnlt1/MzMzMzEqX5+Spww/SD3OcXIiT96hkPpw4QiXa4IQdKkkLx+HkJClAmLDm4osvDuqceeaZkfInn3wS1HniiSci5dzc3KBOMmvWrAk+W7RoUaTcqVOnoI5KoFNSVq1aFSm/8847QR3uA5s3bw7qcCIQlVyoKNQArPpKMpyco2vXrkEdTopihWvUqFGkrNr0pZdeipRVsrL09PRI+Ve/+lWk3K1bt+A7PMbwOQ6E/WTWrFlBnaJQ5yv3f5W0jvsgJ7VRCWT4M5Woh5MEqsRLnICoXbt2QR1O1MnJo4BwLFfJhRo2bBh8VlJUoj0zOzLVqFEjMYbGuZlTSRs52Z1KusbjTpw5ikquyNcElfiME8XxOK3Gf078p641PGfj9ShqPzlB6hlnnBHU4USJ6j6C56K8Peo48Lo5ARwQHk+VtJGPjUooyNf4OnXqBHVU4kvGfW7lypWR8ttvvx18h7dHHXNuL06Oqtat7rE4waGa23BiPT6enIwUCOcOKukl93+VSJE/U+c57xcnqwfC/dqyZUtQh8817oPqXpfntyoBKO+DSkjKx0H1Wz4f1fHMycmJlNWcnJO8nnLKKZEyJ7gHwjm5SsDMSRvjJBlWbcpjVd26dYM63A9UXg+uw9uj+jpvjzrHefvUPvAxV8ezRYsWkbJKesljlXp2wf2W90udM9wvVNJX/p4aA5s2bRopq+ckPJ7FSWqtxn/G7a7OaT4O6prL13e1fXytUclteZxU108et9W68vd3P6Qu+xzaxczMzMzMzMzMzMysEIf0jfSrrrpKvhVnZmZmZqnPPyM9fHhebmZmZlY2eU6eOmI/SF+2bFnshZ588skAgAkTJhz4FpmZmZmZWYE8LzczMzMzK3mxH6SfeuqpKFeuXIF/mdj/b+XKlZNxoA7Gxo0b8etf/xrPPfccvv76a7Ro0QKTJk1KxInNy8vD6NGjMXHiROzcuRMdO3bEgw8+iDZt2hTrdhwOtm7dGilzTEJFxVrkGF0qDhTH5Nq0aVNQp0ePHpHybbfdFtSpUaNGpKziHZ544omR8k033RQpx+mTqm//5z//Sfq9Dh06RMoqLltRqG3+8MMPI+WZM2dGyipGKIsTpzDVcBy5tm3bBnVUTDMrGMflPOmkk4I6fO7x+AEAzZs3j5RbtWoVKXO8RiUzMzP4jM+rf/3rX0GdovylXH2HxxQVm5XPa45Tq8YlPh/V+cnneZzYtioeqYpXyTjOqnozlXNQqLiJh8qBPBi0kuO3X1JTac3LS2pOXqNGjcS4q/aRYxGrMZivc1WqVAnq8LJVPGoe/1V8VF5OnOsI11E5bHh+praP50hx2kvlwuG4viofB19/VJxhvh699tprkXKcOLoq3i3HyeX48UDy2MlAGH9XzYE5n4qKM7xx48ZImWOkq/jKcfIqcRxw1Zd4Oeoc5/mEiq+fLKa8ipHO8+0GDRoEdeL0E24fdf/E8ac53jgQbrM6P7n/83JUrHqe/6h+W79+/UhZHV8+19R+ctxozmMEhH1b3cPz8TzttNMiZRXPm+emarmcP0f1Cz7Gqr04ZvW2bduCOkzF1OZ18TFX5wPHuY5z76vGW+4rGRkZQR11/JItW7U7n/vcv9R3+DMVtz9Oniceb1UeIx5fuY2B8Nio+xy+3+TvqGs3ryvOPZZaDo9nqu/w91S7cyx/NW7nHwuKOi/znDx1xH6QrhIMlISdO3eiS5cu6NmzJ5577jnUrVsXq1evjlwo7rvvPowbNw5TpkxBixYtcPfdd6NXr15YuXJlrIQGZmZmZmZlRWnMyz0nNzMzM7MjXewH6Y0bNz6U21Gge++9FxkZGZg8eXLisyZNmiT+Py8vD1lZWRg5ciQuvfRSAMBjjz2GevXqYdq0afj5z39e0ptsZmZmdljw2y+pqTTm5Z6Tm5mZmZUOz8lTx0ElG12xYgXWr18f/JTihz/84UFtVH7PPPMMzj33XPzoRz/CggUL0KBBAwwePBgDBw4E8P0bOTk5Oejdu3fiOxUrVkT37t2xcOFCOWn/9ttvIz8D459imJmZmZmVJYd6Xu45uZmZmZkd6Yr0IP2TTz7BJZdcgvfeey8Sn3F/3KbijMX4ySefYMKECRg+fDhuu+02vPXWW7jppptQsWJFXH311cjJyQEA1KtXL/K9evXqYd26dXKZY8eOxejRo4ttG83MzMwOR377JfWV1Lzcc3IzMzOz0uE5eeoo0oP0oUOHIjMzEy+88AKaNm2Kt956C7m5ufjlL3+J+++/v1g38H//+x/at2+PMWPGAPg+acby5csxYcIEXH311Yl6nHxhf4IlZcSIERg+fHii/Nlnn8lEEWWN2l8+AfgtJRVjk5M3cAIIIF7iJU4EohKK3H777UnXxVRCmC5dukTKfBOnEp3Gwe2lEh5ygrxTTz01qJOenh4pq2PF7fPee+8FdTjZqGr3Q4WToqgELIdqezjxEif3sYOnEhBx0iKVbJTPc36bUD3A4b6jkp7x+XAoL+Y7duyIlOMkJ+N9UElleB9UnaJQD6R27doVKauEpLwP+x965ffMM89EytwviiucxAcffBB8Nm/evGJZdlFwoiXV34o7kbpZcSmpeXlJzsm/+uqrxFxTnXtxkkryXFUll+PlqHXxXFDNdZJdI9RnPG4rXEclKuREmGo/eW6v9rN9+/aRMs+9gDCxo0pSxwnEFy1aFClzEjsg3C+VbJT3U/16IU7CbO4rKvkdt1dubm5QZ+3atZEyt4U6DryfnOgOCJP6qcR2cfA2q2SBnHSczweVnI/nAZxkHgBOOOGEQrcFADZs2BApq3OG5yDqHpD7imp3TuTL66pbt27wHT73VPJMnkepfeDtU4lXuZ+qeTHfI3P/A8Ikqrwuvj8GwjmwSiTKY6A6nvw9daziJKfkdanjyf2S59cq8SQfB95vIBwX1T7w+bh69eqgDo+d6jxX5xbj48fbrM497oMqNwmP42of+JmD6v9xjhUfYzWecbvzOKmuM3Hw9qjrHh8btS5ObK3OTz6eaizI309VMmorW8IjHEN2djbuuusu1KlTB0cddRSOOuoonHXWWRg7dixuuummYt3A+vXro3Xr1pHPWrVqhfXr1wP4vwssX8i2bt0qLxbA94NitWrVIv+ZmZmZmZU1JTUv95zczMzMzI50RXqQvm/fvsRfXWrXrp1427dx48ZYuXJl8W0dvn/TmJe5atWqxF/DMzMzkZaWhvnz5yf+fc+ePViwYAE6d+5crNtiZmZmdiTZ/zPSkvrPDlxJzcs9JzczMzMrHZ6Tp44i/U6ibdu2WLZsGZo2bYqOHTvivvvuQ4UKFTBx4kQ0bdq0WDdw2LBh6Ny5M8aMGYPLLrsMb731FiZOnIiJEycC+P7nozfffDPGjBmD5s2bo3nz5hgzZgyOPfZYXHHFFcW6LWZmZmZmqaSk5uWek5uZmZnZka5ID9Jvv/32RGygu+++GxdccAG6du2KWrVqYfr06cW6gR06dMCsWbMwYsQI3HXXXcjMzERWVhauvPLKRJ1bb70VX3/9NQYPHoydO3eiY8eOmDdvnowJVVZxbCYgjIOm4iZyzDCO2csxsoB48cQ59p2KccYxEFW8Ml6XihelYkyxnTt3RsoqdlVxUH+Z47hiKs5YQbFBky27pHAbn3nmmUGd008/PVJW/Y1jEOZ/K20/FVcvGV6XillnB0e1qYqnyVasWBEpz5o1K1JW8eh4POM8A0AYq/tQ4nGQ43YCYVzCOLFQVdzV4rBq1args3//+9+Rctu2bYM6fD3Izs4O6uwP0bDfr3/960j58ssvD77Trl27SFkd8zfeeCNS/sc//hHUUW1YHFRsSn64WLNmzUhZxUDmtuHxDjg8E/M4sVHqK6l5eUnOyXfs2JEYZ+PkAFLnLMdiVWMTj9M8n1TfU7HD+bqm5rMc45uXq/o/z69V6BuO/auWw/ul2pTbIk6cdxU3l+81Pv3000hZjZ08z1Mx7zlesMoFwtc51e94P1WsYo73zDljgHDfuQ+qeyxejuon3G/5ngsIcy+pHDY8b1F5Wvgzjjuvziu+pqr8VtxPVJ8syrFSeJvV/QnnQoszh+P7VhWTn/dBHXNed5x+q+6Z+ViouQ3325deeilSXrp0afAdnv+oe3o+p9UYyPug+ja3sxpjeIyLc88Xp5/EWTf3HXU94H7A4zoQHqtmzZoFdfgeS62Lz+s4ORaaNGkSKavznu9zXnnllaTrVmMBX3tUnThx1Hmb41xP+RyOkz9E4bFJxUjnMVntJ1/PVT63/NewouaV85w8dRTpQfq5556b+P+mTZtixYoV2LFjB2rUqBHrgeGBuuCCC3DBBRcU+O/lypXDqFGj/j/27jxOq/K+//+HgIAaRdlmGBlWiYK4FSKBBMGoGGzURK0ktsTW5RdKW0WSmhC1QfNVqyaWKi61NcXEqvRbY7OUJIJRDBEXNhdEFBwclhlGkMUtonL//vDL3Tnv8565D7ez3DO8no+Hj+Q6XPdZrnOd61znnnN/PjFz5swm3zYAAABQqlpyXs6cHAAAAPuyomKkX3jhham/8HTv3j3efffduPDCC5tkxwAAANC6iMdY+piXAwAAtG/MyUtHUV+k33vvvfZnGe+991785Cc/+cQ7BQAAAKAw5uUAAABAy9ir0C47d+7M/3XirbfeSsRl+uijj2LevHnRu3fvJt9JAAAAtDziMZYu5uUAAAD7BubkpWOvvkg/5JBDokOHDtGhQ4f4zGc+k/r3Dh06xDXXXNNkO7cv06QG/fv3L1gnC01KsW7dulSdI488MlE+/fTTU3WyJAA9/vjjE+X/+I//SNW56667EmWXUOeoo45KlDXhSUTEj370o0RZExK1tlIfiMaMGZMojx8/PlUnS5zVIUOGJMouoc6Pf/zjRDlLgkFNyOGS8OCTcW3qkogV+pxe048++mjqMzp2ueSemszHJdTR/XOJ5Irhjnv79u1Nsu6m4JLuLF26NFFetmxZqk4x45AmK7vzzjv3eh0tTccqN18ZOnRooqyJs1wf0CRx7prRRF9Ac2rP8/J33nknn8jMJUvTpH4uYaQmnnfzDQ2J465rTcbnEk9qosQsiR01iZ6b32pSyX79+qXqaFIzNw7pPMrN/3/9618nyi6Bn27fJUzTRPObNm1KlDVBXUS2ZG6aBM4lf9R167ZdHdcvNBGgm89q38kyZ9JjcEnd9Y9f7nmvtrY2UXb3d503uX6rfUX3x829siTY1DZ99dVXU3W0Ldyzm14jbi6mSRpd0lK9hgsdd0S285Al6bE+M7ukiDpWuSSJei70mNzndC7oEsP27NkzUXbtp8flkh5rHTcOaV9xiR2VOze6TNvPrVfnhm4c0vPprhldt0vOqok63RiT5bsU9dprryXKK1euTNXRRJ1uOzq2u/6m++zujTp3dtvSNiwrK0vV0X6pyaaz9BOXcFmPQdsmIv1M5cZx7RfufqD3I3fOsxwH2o69OpuPPfZY5HK5+OIXvxgPPfRQYgDv3Llz9O/fPzXhAwAAQNvE2y+li3k5AADAvoE5eenYqy/Sx40bFxERVVVVUVlZWdRf0gAAAAB8MszLAQAAgJZV1O8L+vfvH9u3b49nnnkm6urqUj+J+MY3vtEkOwcAAACgYczLAQAAgJZR1Bfpv/zlL+PP//zP45133omDDjooEXOqQ4cOTNibgMaTKiYeuqMxJDW2VUTEF7/4xUS52DecevXqlSgfd9xxqTpPPfVUovwXf/EXqToaj3Hr1q2pOps3by5iD9sejaunD8tZYkS7+FwjRoxIlLPEQ8/Cxe874ogjEuUVK1YUXI/GTdxXzndLcm1aTFxw7V+uL+nYoLH1I9J93f28TGMturFh7dq1ifKGDRtSdVxMy1KicRxdW+hYsC//HE/jiLpkizo2abxP1yc0bqLGFY1onzHS+Rlp6WuP8/J333230fmnxih19xq9Ht09Tfuciwmt9yw3J9d7losnq2OGjikurrreH3UOFZGe+7nxS8c4NxfU9vrd736XqlNeXp5apqqrqxNlncdr/NuIbPNXFxNdaVxajbHttuXi6+t918Vp1vuIrtedT+1fri/puXJ9Uu/5Lr64xo12bax9RWMIuzj5Ol98+eWXU3X0HLs40i5WuNLr050H3WcXs13zCGi7u+tVt+XiZesyl3tA21jPS0S6TTUGfkR6/ur6rfYL7aMu/vmAAQMSZdd+2j5ubNYxxY1DWZJf6zWsuXoi0v1Lj9td93o9uutKj93F1NZ7jXvW1bHKPZ/oPrtxUa9rve+5NtZ+kmW8dcepfcXdY/Vcuf3JkudDj0v3z51Pjevu+qSeczcO6bG7e6OOQ1niqLu2qN+Gxc53mZOXjqK+If3Wt74VF154Ybz11luxffv22LZtW/4/N9gBAAAAaHrMywEAAICWUdQb6Rs3boxLL720yd6SBgAAQOnh7ZfSx7wcAACgfWNOXjqKeiP9tNNOiyVLljT1vgAAAADYC8zLAQAAgJZR1Bvpf/qnfxp///d/Hy+99FIcffTRqRhnZ555ZpPs3L7MxWdqChrzz8XEcrG0msKhhx5asI6LXfXSSy81x+6UHI095uKB6dtmGqNL44U5Liah21ZzcX2uEI1r+uKLL6bqTJw4MVFuyWNqizTeobvOtm3blii7+HOf+cxnEuXjjz8+US7mfGel51jjikakYz+6OIVPP/10olxTU/PJdy4jPYZzzz03VWf8+PGJsovl+fOf/zxRnj9/fqrOvvJmgR6niwtbKKa8/rtbj6vTXu0rfaetao/z8g8++CB/z3HzFr0eNVZrRPoadTGF9b7h5qoa19fNLzSesovlrJ/TYxg0aFDqM3qPdfdhnTtrTHfHxbvV9tI5QES6nd04qPFu9dlDyxE+brTS43LnXM+fO1fan1wccJ27uHjK+jm9N7vPaL9wsXb13LhY67p/7tcoGqvetbvuo8b1dc+j2gffeOONguvNEofexSDX43T9TdvU3a90W3pcro31uNzzscuVUmjbWWLVu5Bc2hauvbT/l5WVJcqVlZWN7mtERF1dXWqZjgWubxe67iPS17nrt7p9d53rudC2cNvO8lyo9wM3lg4cODBRdjHlNW/AypUrU3X0c65va3tpP3HnQcePLNeD65N6Pt1YpefPxQV350LpPmb5HkzHIbdtPefuOtc49G5/s+T/KhS3X+sUm4Mwgjl5qSjq29pLLrkkIiKuvfba1L916NAhU8IYAAAAAJ8M83IAAACgZRT1Rfq+9BYWAADAvop4jKWPeTkAAED7xpy8dBT/mwIAAAAAAAAAAPYBRX+RvnDhwjjjjDPi8MMPjyFDhsSZZ54Zv//975ty3wAAAAAUwLwcAAAAaH5FhXa577774q/+6q/i7LPPjksvvTRyuVw8+eSTcfLJJ8ecOXPi/PPPb+r93Odo4qDu3bun6hSTkFQTW7jEe7osSyKVLNavX98k6yl17rwcdNBBibJLuqPJctx6dJkm4XRJNDQ5iEvaogl1+vbtm6pTDPdz840bN+71evQY/vCHP6TqfO1rX0uUDz/88L3ezr5Ez4P7wkXj6o4ZMyZV54gjjkiUXQKW1qT748azCRMmJMpPPfVUqs7q1aubdsf+n7PPPjtR3hPruD6XtE4NHjw4Ud65c2eqjjuu9kjHwU2bNqXqaGIqTRLnkhbV1tYmyps3by5yD9uWUv8Z6R133BE333xz1NTUxFFHHRWzZs2KsWPHNlh/4cKFMX369Fi5cmVUVFTEFVdcEVOmTEnUeeihh+Lqq6+OtWvXxuDBg+O6666Lr371q/l/f+KJJ+Lmm2+OpUuXRk1NTTz88MPxla98JbGOv/zLv4x77703sWzUqFHNch3ui/NyHeNc4i6dO7vEdjq+duvWrWAdl5BU5ykuCVyhhGpuDqfL3DWix+7uGVrHJa3WhPUuuaIm2NT5bUS6nbds2ZIouyTkbsxV2l7unGd5ZtHjdOfTHZcqlCzQzYc0kaJrC00w6PZF150lIaMmnoxI3x91PS7xpD7DuHOXJSmtJgLUJI4R6evoxRdfTNXRPun6hT4vZUlWrOfBXXtr1qxJlF1CRm0fl5xS20evmYj0WOD6lx6Xfka/X4hI9xNNvhiRTtDrrjNNTun6tm7fJQCtqKhIlF1baLvrNe3GQG0bdz/o06dPonzCCSek6mhCUnfO9d7j5uSrVq1KlF1Sbd2W9h13PvX6dGO9jqVu29r/3T1Nj919v+G+a1KFkhy7BKD63UVNTU2qjra7a4ssiWr1mnBtofvsvsep3weLzV1T6nPyfUlRb6Rfd911cdNNN8XcuXPj0ksvjcsuuyzmzp0b//iP/xg/+MEPmnofAQAAgIS5c+fGtGnT4sorr4zly5fH2LFjY+LEiVFdXW3rV1VVxemnnx5jx46N5cuXx/e+97249NJL46GHHsrXWbx4cUyaNCkmT54czz33XEyePDnOO++8ePrpp/N13nnnnTj22GNj9uzZje7fl770paipqcn/N2/evKY5cMG8HAAAAGgZRX2R/tprr8UZZ5yRWn7mmWdGVVXVJ94pAAAAtL49b7+01H9745ZbbomLLrooLr744hg6dGjMmjUrKisr484777T177rrrujXr1/MmjUrhg4dGhdffHFceOGF8cMf/jBfZ9asWXHqqafGjBkz4sgjj4wZM2bEySefHLNmzcrXmThxYvyf//N/Ur8oUV26dIny8vL8f+7XhU2BeTkAAED7Vspz8n1NUV+kV1ZWxqOPPppa/uijj0ZlZeUn3ikAAADsm3bu3Jn4z/0UfteuXbF06dJUaKYJEybEk08+ade7ePHiVP3TTjstlixZkv+JckN1GlpnYx5//PHo3bt3fOYzn4lLLrnEhkloCszLAQAAgJZRVIz0b33rW3HppZfGihUrYsyYMdGhQ4dYtGhRzJkzJ/75n/+5qfdxn6Sx3FycQo3p52IxaewqfYjT+FcREb/61a8S5fpxQffQGJLuL1bPP/98orxy5cpUnfZA45f17t07VUfjxrm4bC5OnNIYYllir2scXxf77pFHHkmUzzvvvFQdt26l/WDZsmWpOq+//nrB9RTyzDPPpJYtWLAgUe7Xr1+qTpZY0+2Ri9+nX7rUD1uwx2c/+9lEWeOhR5ReTPRiaGzA0aNHp+roF3nr1q3b6+24uJ3jxo1LlIvtozoWuGPYV2KkK72fRkSUl5cnyppTwcVh1WVuLG2PWiMeo375+/3vfz9mzpyZWLZly5b46KOPUnF/y8rKUvHs96itrbX1P/zww9iyZUv06dOnwToNrbMhEydOjD/7sz+L/v37R1VVVVx99dXxxS9+MZYuXZrpfr832uO8/JBDDrGxShuic7GIdBxTNwZrbGI3L9b4ydu2bSu4/SxxwPW+4tarMXD79++fqqPPA+6er+OgxpeNSM9N3R+wssR1d3FoC/27nutC8WUboufKPT/pPF3n6I47Tr3v6jjp7hFax/1xTfuOOwat464VjTXt2l3bS/ubi0+tv6xx8yGd63/mM59J1dG2cMegx+7mSBs2bGh0vRHpOOo6d3VtrFysZ20f93yneafcedBr340f2m9dnOZCORW0HSLScaRdzHvtFy6mtp4bF9tf99nFztdlLh677rPmYXP3WB0D3TEMGjQoUXZjg95H3Fg1ZMiQRNnl6tFrX+O8R6TPV5Y478pdD9pP3D1Dz5/bPz1Xrt21Lxe6P0Skv3NwseB13HH3T20f98yqn3P9Qscmdx3tLWKkt31FfZH+13/911FeXh4/+tGP4j//8z8jImLo0KExd+7cOOuss5p0BwEAALDvWL9+feKLyca+eNYHo1wu1+gf+Fx9Xb6363QmTZqU///Dhw+PkSNHRv/+/eN//ud/CoaE2VvMywEAAICWUdQX6REfv6Xs3lQGAABA+9Aab78cfPDB9g3j+nr27BkdO3ZMvSleV1eXeqN8j/Lyclu/U6dO+TfPGqrT0Dqz6tOnT/Tv3z9effXVT7SehjAvBwAAaL94I710FBUj/cILL4x77703tXznzp1x4YUXfuKdAgAAABrSuXPnGDFiRMyfPz+xfP78+TFmzBj7mdGjR6fqP/LIIzFy5Mj8z3kbqtPQOrPaunVrrF+/Pvr06fOJ1uMwLwcAAABaRlFfpM+ZMyemTp0al156aSI20nvvvWcn8gAAAEBTmj59evzbv/1b/PjHP45Vq1bF5ZdfHtXV1TFlypSIiJgxY0Z84xvfyNefMmVKvP766zF9+vRYtWpV/PjHP4577rknvv3tb+frXHbZZfHII4/EjTfeGC+//HLceOONsWDBgpg2bVq+zttvvx0rVqyIFStWREREVVVVrFixIqqrq/P//u1vfzsWL14c69ati8cffzzOOOOM6NmzZ7O8Nc68HAAAAGgZRYd2+Z//+Z+45JJLYtWqVfGf//mfqUQ3+GQ0eYNLUvHmm28myi45gi7TskuioQmI7r777lSdXr16JcqarCaifSZic/1ck6K5n38fcsghibJLDuKSlShNTKHJLtxP4TWBjiZkiYjYuHFjovzjH/84VWfo0KGNrtete+3atak6TfEzIe37ERE//elPE+Vhw4al6owdOzZRbg+JMh1tY5dIVL9ccYmN9Jy31/ZS7lrU5J06TroEdcr1fTd2NoXmWm9boAmvJk6cmKqj44MmwNJEURHpBMYuWV97VMo/I500aVJs3bo1rr322qipqYnhw4fHvHnz8gkZa2pq8l9uR0QMHDgw5s2bF5dffnncfvvtUVFREbfeemucc845+TpjxoyJBx98MK666qq4+uqrY/DgwTF37twYNWpUvs6SJUvipJNOypenT58eEREXXHBBzJkzJzp27BgvvPBC/OQnP4nt27dHnz594qSTToq5c+faBGxNob3Ny7t165Yfi929R+dDWRKYuWSGOt92fVDX7RKNaTI0l6Bd77Oa1M/de3Qsd/MqnVO6+5Eep0vCrMflEgHqPro6elxaxyV91XPj5pia2NEla8uStFTPjTvnegxun3UfdVtu/7Qvu/3Te4tbj873XXtpW7h5gc7/tV+45wqt8/zzz6fq6Djn+ttxxx2XKNcfq/fQ43IJD7VNu3Xrlqqj7awJU934oc+x7jy4Z2+ln3v55ZdTdRYuXJgou+SPmnSzpqYmVUfHfW0/dwx63btxUvfHjTH6XYW2sePGUj0X7vmk0DjkkuRq33HX9ObNmxNldwz6OZfDRccUN05m6Tv6/YEmvHVJkF2SaKXzZHdd6XqyJLd145n2wcMPPzxVRxPyaj91Y7QmU87yHJZlTHbHqX3SnTvXhqr+tUWy0bav6C/Shw0bFk899VScc8458dnPfjZ++ctfZhowAQAAgKYwderUmDp1qv23OXPmpJaNGzculi1b1ug6zz333Dj33HMb/Pfx48c3+oCx//77x29/+9tGt9HUmJcDAAAAza+o0C57/nLTo0ePWLBgQYwfPz4+97nPxS9+8Ysm3TkAAAC0nj1vv7TUf9h7zMsBAADaN+bkpaOoN9LrN2qnTp3i3/7t32LYsGENvhEEAAAAoOkxLwcAAABaRlFfpD/22GOpn4tOnz49jjnmmPjDH/7QJDuGJPcXIY2tdMIJJ6Tq1I/pGZGOneZisGn8xQULFqTqaEy99krjTmo8LrdM48dHpOODFRtrWmOPaYwzF9dLY925OG0aB83Ft3/qqacy72dr0Djgt956a6qOts/IkSNTdVzMvFLmzufy5csT5dtuuy1V59lnn02Uv/SlL6XquDiJ+yqN0Th8+PBE2cWhV24c/+///u9E+YgjjkjVcfE+VV1dXaLsrlddjxv/Nd6h61+lTu9ze+Jl1+fiF9fn8odoXMelS5cWsXdtD/EYS197nJd37dq10RiyGrPUxanVOm7MU27M09inbr907uDGEI0Dq3VcbFvdtstzo7GJXSxsbQu3LX2ucPFud+7cmSj37t07VUc/p5/R+OMR6fmZO1caT/mwww5L1dE5uM6TI9L3c3ec2j4ulrPO7bXs+qS2sZtv6zKXF0hjQLt5Qpa4+IXyWWlcbsedB+23hcJpRUQMGjQotUzv1e58HnPMMYmyixev9xaNPf36668X/MyAAQNSdZTLnaLH/sQTT6TqvPrqq4ny4MGDU3W077hzrvus15XL0aFzffccpNtyY6BeI1nGGM0t4T7nxgKd5+k1rHPiiPRxuWdxjTvvxnHNjebGM70+Xcx2vWe7vCY6buv14GKka5u686n9wOVC0PVkiVXvnht13Zp/y+2P9mPXl3SZ3mccd650DCw2N0ifPn0SZXet1d/Whx9+aHOeFMKcvHQU9UX6uHHj7PJTTjklTjnllE+0QwAAAACyYV4OAAAAtIzMX6RPnz49fvCDH8SBBx4Y06dPb7TuLbfc8ol3DAAAAK2Lt19KE/NyAACAfQdz8tKR+Yv05cuX539as2zZsgZDUxQbsgIAAABAYczLAQAAgJaX+Yv0xx57LP//H3/88ebYFwAAAJQQ3n4pTczLAQAA9h3MyUvHXsdI//DDD6Nr166xYsWKVLI1NB/3RtFJJ52UKE+cODFVR5NlZnkzqaysLFF2yTPvvffeRNklV2lrXNtoIhCXdEeTg2ibNyfdZ5dgRxOluMQkmmjjnXfeSdUp9cFUE9j84he/SNXRY58yZUqqzoknnpgouwQsrUkTOP3+979P1fmXf/mXRPnXv/51qo72C+3raJwmxdIErxHpJEHOwoULE2U9vxERp512WqLskh5rwpqjjz46Vef4449PlF1Cus2bNyfKr732WqLsEk275D2FuHGyUIK6rPS4XDIrHS80GZNLbLRt27ai9gdoTu11Xr579+78dermHzr/cfMWvc6dLMngNWmYS+yuicZc4kSdQ2piNpfAT8dFlzBSx39XR7fl2ka35eaLmuzRJbLTMbdQwryI9H3Erbe8vLzRckR6zubuT3qOt27dmqqjx+7uI9oWOo9yiTG1jV2iU+3v7l7tEv8V4vqXrkf7hWs/fS50SfU08eTixYtTdWpraxPlCRMmpOrodeUSm+q17/qFzm30uSdLglI3P9O+tGjRolQdTf6+evXqVB1N2qvJUCPS/cmNeZqYVtvYzW30Odb1N02c69pLEzC6a0b32SUS1W25ubSOD9qP3f7ptrVPuM+5hMG6zy7pq84X3fnUvp3lmUG/b3FjtCZazTJHd8egfSXLdwOuf+n4umbNmlQdfT7Rscol99TjcnX0WcPdV3RZlrmEO06XFFrV76fFPDuhtKR7UwGdOnWK/v37Z5qcAgAAAGgezMsBAACAlrPXX6RHRFx11VUxY8aMTH95AQAAQNu052ekLfUf9h7zcgAAgPaNOXnp2OvQLhERt956a6xZsyYqKiqif//+qZ/TLFu2rEl2DgAAAEDDmJcDAAAALaOoL9K/8pWvNPFuoBCNnRYR8fnPfz5RLiZenqOxogYPHpyqM2rUqET5V7/6VZNsuzW52IEaM8zFy26qdm8uGu/NxUHTZS4mnIvDVspc3L158+YlyhpXNCI9vp1yyimpOkcccUSi7GLfuTYstH/6NuH69etTdTQW93/913+l6jz55JMFt6VxtjV+KhqncfdcjHmNTZmFxjaMiHj55ZcLfk7jhg4YMCBVR2N5ulAQGhtzw4YNifLzzz+f+ox+SediB5599tmJ8qRJk1J1NO6wS6Co8f9dDE6Nrf7oo4+m6mgsRY3xWlVVlfrMM888k1q2LyCxUelrj/Py3bt3569TF7NXudinGnPWxTbXZVliYbt8OcOGDUuU+/Xrl6pTTN4HHavcnFPHLxcjXdvQxRB2baiyxGzXdtf7pYsLrsepeVzcMo0xHJFuCzf/cfN9pfvs5v86L9bPuP6m7e7q6LlyMch1rHRjp97j3bY0Xr3G7XXXg54/Fztc4wy7c66xk59++ulUncMPPzy1rJDf/e53qWWFYny7+Moa593lT6iurk6UXSx4nUe5bemY4s657rNrU91n7ReuH+v1kCX2untmqKysTC1Tej26ZyXdR9e/dEweMmRIo/8eEVFTU5MouxjVGoPcHafus5vz6ufcnFzPp1uP7qPO9V2OOt229omIdB4Bl1dJ+4Wb/69atSpR1jaOSB+De7bVcUj7tstjsW7dukTZ9RM9dpefqZhcKm681eN0vxCsf10XGyOdOXnpKOqL9O9///tNvR8AAAAA9hLzcgAAAKBlFPVF+h5Lly6NVatWRYcOHWLYsGGpjLsAAABou3j7pe1gXg4AANA+MScvHUV9kV5XVxdf+9rX4vHHH49DDjkkcrlc7NixI0466aR48MEHo1evXk29nwAAAAAE83IAAACgZRQOhmf83d/9XezcuTNWrlwZb775Zmzbti1efPHF2LlzZ1x66aVNvY8AAABoBXvefmmp/7D3mJcDAAC0b8zJS0dRb6T/5je/iQULFsTQoUPzy4YNGxa33357TJgwocl2Dv9Lk0JE+ASHzcElM9GkGa5OsUkUWotLTKLJJVxyplJP0qjJo7IkPyo22ahuK0vbaNKdLEk/iqU3BJfE8Uc/+lGi/H//7/9N1dGkYi4hryaf1CRFLgmJJiRyiY00CZW79jQ5kztOl3QW2em5ce2ZJdmoJksbO3Zsqs4xxxyTKLtkOa6vFOL6jia40sS67jj1OnfX8Le//e1EWRMmOZo8KiJ93fz7v/97wfWsWLEitUwTDeu46BLouaR1QCloj/Py7du358eWLNeeS5SpY6VL1KkJyrIkfCsrKyu4Py5xtB6HbsuNnTpv0USeEennAZeAziU4VG4erLRNsyRd0/W6Oabej9w51ySI7r6n7ePq6D67c54lSWPfvn0TZW1jl9RU59tunqyJJ12/0OR7LimozhezJFnV8+D2T9frrj2X4FDp/ugcOCJ9zl0yQ01U6J5XdH+K6W8u8anO9d31oNen25b2QbcePefueU7Hpm3btiXKLuGxXiNujNFlro31uFzC4Cz9X9fjvu/Qa033L0syZXdN63rdtrXd3bnSNnVzyh07diTK2o8j0mNpludsPXbtoxERn/vc5xJld0/Ta2b48OGpOjoWaH+LiNiyZUuivHr16lQdbR9tP9ffdJm7rnTszHK/ypJ02z2H6X3Xjcn1x5Qs92SUtqLeSN+9e7e9Ge+33350CgAAAKCFMC8HAAAAWkZRX6R/8YtfjMsuuyw2bdqUX7Zx48a4/PLL4+STT26ynQMAAEDr4WekpY95OQAAQPvGnLx0FPVF+uzZs+Ott96KAQMGxODBg+Pwww+PAQMGxFtvvRW33nprU+8jAAAAAIN5OQAAANAyioqRXllZGcuWLYsFCxbEqlWrIpfLxbBhw+KUU05p6v3D/8NfhD4Z95NnjSvmYs1pDL0scbNKnYunpstcHY1pqbGUI9LxR7PEY9TYZC4OmsYwdbEXm+oa0RhrGku5oWWqUHx493N7jWN3/PHHp+pozEHXb7PECnQxSlG8LH3dtflxxx2XKLsYhC6ub0vRMc/l69B+qnHfIyJ69+6919t2x/3Zz342Uc4SI93RMUXL+F8t+VYKc53itMd5+VtvvZW/j7oY1hpD1Y2vGptbY9Lu2U59Loaw3s815mtEOia6yyeh8yY9BhfPWz+T5TizxJN115rOJ9w8Ru8JGrc5Ij2X0XiyLgazxrJ1x6nLND5vRPpe7I5Tz7mro/csdw8rFLvf/bseu8bhdp9zx5klBvmgQYMSZRe/WOfg2gfcfVj7kutvGh/Y5c3SOu6a0c+5/EKaj+b1119P1dFzrteai3mscaPdtpV7TtTryLWFxsd250q5di8Uv9vFbdZ9duvV52GN4++25fq2xhx3116W/FpaR+8RGzduTH1Grz3X3zQH3KGHHpqq456plF6f7hnBjYOq0D3C5U/Q8dfFqtf7isuZlCXWumsfpcfutqX3Eb1G3DWjMe7dWKX9Ikubu/6fJd+ctoU7N/WPo5jcVhHMyUtJUV+kR0Q8+uij8bvf/S7q6upi9+7dsWLFirj//vsjIuLHP/5xk+0gAAAAgIYxLwcAAACaX1FfpF9zzTVx7bXXxsiRI6NPnz5F/0UFAAAApYu3X0of83IAAID2jTl56Sjqi/S77ror5syZE5MnT27q/QEAAACQEfNyAAAAoGUU9UX6rl27YsyYMU29LwAAACgxvJVS2piXAwAAtH/MyUtDUV+kX3zxxXH//ffH1Vdf3dT7gwZoIpWIdNKTww47rFm27RI8aLJFV6cl6c+YNQmKS5ChyS9cYiNNitIeuOQXmvjSJRLVJBqujibfcAlFCm3bJQLR5DguuZVeD+44lUsYc+yxxybK/fr1S9V54403EuXly5en6mzfvr3g9pVeR64tsiRK0eQqri0KJcnC3skyBrpEnUOGDEmUNeFUqXGJtCoqKhJlNza45LqFuDZdv379Xq8HaO/a47y8U6dO+YRyLhGgPki6cDY6hrjkd5pYzK1Hxz03nul8x807dT06D3Xja5bEdnpcbu6qbeGSDuoxuKR/Ordx50aX6XG5OUmW5I+aTM499+j8x811NMmgu+/q/VoTukb4xLSF/l0Th7o5XU1NTaKsc86I9Plzc1VtL5cwVdtdk1y6JInavzTRrvucu5/rNeySP+o5dudKk/+6belzg7afJhaNSCczdAletU1dEk7tBy4RpvZT99yv15Gba+mzrJ4r15e0bVwdnedVVlam6mhfcslZsyQ91n1246K2qfZ1N37o+XTnSo/LfTeg63b9Qq9r9zys46Abq3T7+hl3v9KxyiXh1HuYu2b0ON3+6flz46RLdqr0OLKM47otV0fvYS5JqF5HWeYJbtzWc9y3b99Unfrt/OGHH0Z1dXWqDtqOzF+kT58+Pf//d+/eHXfffXcsWLAgjjnmmNTN8pZbbmm6PQQAAACQx7wcAAAAaHmZv0jXNy6PO+64iIh48cUXE8tJcAQAANA+kNioNDEvBwAA2HcwJy8dmb9If+yxx5pzPwAAAABkwLwcAAAApeKOO+6Im2++OWpqauKoo46KWbNmxdixYxusv3Dhwpg+fXqsXLkyKioq4oorrogpU6Yk6jz00ENx9dVXx9q1a2Pw4MFx3XXXxVe/+tX8vz/xxBNx8803x9KlS6OmpiYefvjh+MpXvtJch5hXVIx0tDwXr2zRokWJ8umnn56qo7HksryZpPG3XnnllVSdZ555puB6WpLGU9NYbi5epP702bWNxgV3sQI1zpiL5daadP807lhEOgabHndEOq6Yi4NWDG0vF0dO989tW9fjrhk9x6eddlqqji5zca01RujgwYNTde6///5E2cXQUxrz7/XXX0/VyRL/XOMvakzOiIgdO3YU3B80TP9Kn6U9XV/S2IFt8e1RHRteffXVVB29rv/kT/4kVUfH1+effz5V54EHHihmF/EJ8PYLWkOvXr3y44abe2lMV9d3NN6zxjmNSI+5LiauxtZ1dF7g4j1r3HTdZxeTXPdP40G7ZS7+ubaXm6vqvMnNx3SfXVxajR+rcd5dbGdtG9d+Wc6DtqGb8+r+uX6h59PFxS9Ux8XR1W25fDq6zM0Lhg0blii7OMT6ORcfWOem2n7uPGjsZHcMWcZyXY97VhsxYkSi7Pqk5k5xbbF69epEWefOLn68HoOuw9Vxx63XmnvG0ud1N7fX/uSehTS+s67XbVvPn1tvllxV+jnXb7W/uWtPxyrXb7WdNda0e+bKEi9b+6TLUaHn08VjLxTzOyJbjG8dUzTeuRvHtZ9ozoWIdPv0798/VUfvhe7eo8+t7l6t3Fiqx6F9wLWNPtu6OjpeuPbSZW7M0+Ny12eW/lV/WbG5ykp5Tj537tyYNm1a3HHHHfH5z38+/uVf/iUmTpwYL730ks3jUVVVFaeffnpccsklcd9998Uf/vCHmDp1avTq1SvOOeeciIhYvHhxTJo0KX7wgx/EV7/61Xj44YfjvPPOi0WLFsWoUaMi4uNx79hjj42/+qu/yn+uJfBFOgAAAAAAAABgr9xyyy1x0UUXxcUXXxwREbNmzYrf/va3ceedd8YNN9yQqn/XXXdFv379YtasWRERMXTo0FiyZEn88Ic/zH8hPmvWrDj11FNjxowZERExY8aMWLhwYcyaNSv/ctXEiRNj4sSJLXCESaX16iwAAABKxp63X1rqPwAAAABJrTEn37lzZ+K/hn7ptXTp0pgwYUJi+YQJE+LJJ5+0x7J48eJU/dNOOy2WLFmSf2O/oToNrbMl8UU6AAAAAAAAACAiIiorK6Nbt275/9zb5Vu2bImPPvooysrKEsvLysqitrbWrre2ttbW//DDD/OhhBqq09A6WxKhXQAAAGCVcjxGAAAAYF/QGnPy9evXJ3KUuFwye2h+gFwu12j+L1dfl+/tOlsKX6S3Ee6CWbhwYaLsEgqecMIJibIm83HJEjRR3KOPPpqq45KMtBR34WhiCE1kpMlWItIJKFxbZNm2JkpxSUdak+6fS36kCU80mUmET4LVUnTbLuGUnj+XwEaP0yU8HDp0aKLcq1evVJ233norUXaJvTQZ8Msvv5yqo/Q6d8lGNWmMGxuyJDDZtGlTonzsscem6pTCTapUaaKeN998M1VHE9i4BGuNTUbaioYmQfXddNNNibIbk7Ut3DVDklxg33DAAQfkE3xp4rGIdPIvNzboPM/dz/X+7eY/mjTMzRf17Sg3B+nbt2+irGOeS4Sm63nttdcKbjsL98yQpS30XucSx+mzhq7HrVeXufmHPnu4eakmxHMJ33SfXbu7e7rS9tL5tSbii0i3u9s/TQjpknDqMpcgT/upOyZtU+2T7plBj8Fde5pc3T0b6XF+5jOfSdXReZObb+s+u2Sjeu2vW7cuUdYknRHpvuQSqW/evDlRdnMbve7dOdf+75I2ajJg17/02HVbbtt6rWVJErpx48ZUHQ334Oa82p9c8lh9znGJYPU4tE+6cVK35e4rusyN43pduXm8HrsbJ/VZLcv3ENon3dig9Jk1IuKFF15IlJ966qlUHb0+XQJXvR7dOdftZ3m21DZ114Muc/un17W7ZvQY3DWcJcGs9n83ptTvg67/laqDDz64YLLvnj17RseOHVPzkbq6utQb5XuUl5fb+p06dcqPZQ3VaWidLYnQLgAAALCIkQ4AAAC0rlKdk3fu3DlGjBgR8+fPTyyfP39+jBkzxn5m9OjRqfqPPPJIjBw5Mv+HkobqNLTOlsQb6QAAAAAAAACAvTJ9+vSYPHlyjBw5MkaPHh133313VFdXx5QpUyIiYsaMGbFx48b4yU9+EhERU6ZMidmzZ8f06dPjkksuicWLF8c999wTDzzwQH6dl112WZx44olx4403xllnnRU///nPY8GCBYlf/r/99tuxZs2afLmqqipWrFgR3bt3j379+jXb8fJFOgAAAAAAAABgr0yaNCm2bt0a1157bdTU1MTw4cNj3rx50b9//4j4OGxTdXV1vv7AgQNj3rx5cfnll8ftt98eFRUVceutt8Y555yTrzNmzJh48MEH46qrroqrr746Bg8eHHPnzo1Ro0bl6yxZsiROOumkfHn69OkREXHBBRfEnDlzmu14+SK9DdPYWn/4wx9SdZYtW5Yoa3wjF19QY+i5+GCtycXW0thVWs7yGRebbNu2bYmyi9Glcc/ctjSWW3PFntb4XBHpY3DxDrUvtWY89CxcPEuNy+bixmk8MhebT4/dtYUuc+txy5qCnr/KyspUnWOOOSZRdnHjVqxYkSi72JkuziQ+Vn8iEOGvvSyxw/cVeh+p/+YAShvJRtEa3n///fy8zMXz1jmb6zv7779/wTo6L3DxUXU9bn/q6uoSZTd31vmY3iM0j0tE+p5fKO5qhI8jrcvcenRu4+bFui03H9PYutqmLp63rsfF3dZl2p6Om7dnyaOk7e7mgtqfdB7g2ibLc5i2X6HYtA1tS/fHHaf2OY35rbHEI9LPNC73gMY4drG5dZ7es2fPVB29RrLkS3D0eszybFRVVdXoOiLSY4M7hsGDByfKLo9Rlr6T5blVr2ttd9eXKioqEmX3/LR9+/ZE2eVK02PI0l5urNL16Hw7Ih033T3nqELXa0R6fHN9S+Nju2tY44K7OOpZciTpcen5dMeg17SLz679/ZVXXknV0WvPXSNZvt/Ich8uNF64Ns5yPej5c8eg63H9Vpe5cUjHV9d36l83xcZIL/U5+dSpU2Pq1Kn239yX2uPGjUt9X6nOPffcOPfccxv89/Hjx7fK8wMx0gEAAAAAAAAAaARvpAMAAMAq9bdfAAAAgPaOOXnp4I10AAAAAAAAAAAawRvp7ZzGcdSyi8foYkyVEhfrS2OIaTnLcbqYdRoTzsVy0zheLuaVxpvT+GoR2eKS6z7r+XQxJV0cO6VxvEo9Rrqjce00JlvEx0ku6lu1alWqTt++fRNlF0d0586difLq1atTdTZs2NDwzn4CGjvz/PPPT9U56qijEmUX762srCxRdvHJPv/5zyfKbbFfNBVtwxdffLHgZ/Qv+e761PW6saHU6ZissSEjssWvRGni7Re0htra2vw9x40fOu642L9ZYva6mMZK7/luXnDggQcmyi4mtM4P33jjjURZ7+8R6fmZi7uq++Pu1XpvcXPVLG2qNN54RET37t0TZT0ud53rfcPFRdY5uZu3a/u4NtV4vC52uLaFi62ry3R/XPvpudK2ikifqyyx/V2eG/2ci7ut15Yet2tjzZ/jYqTredi4cWOqjraFy52i8fTd9ar9ff369ak6ukw/42I7l5eXJ8qur/fp0ydR/sxnPpOqc/TRRyfK7nzqsbu20H6h8/iIdF/WNnbnQds4y3Oso2Nglhxr7vlc+5yLJa4x7vWZy/VbHcf1eS8ifc9w460+b7qcWHqu3HHq59w4VCivhutL+l2F69vaPu4Y9HMuN4jWcedct+X2p1Bsf3dP037h+q0uy5J7wG1Lz597ntP7QaFxu9jv25iTlw7eSAcAAAAAAAAAoBG8kQ4AAACLt18AAACA1sWcvHTwRjoAAAAAAAAAAI3gi3QAAAAAAAAAABpBaJd9nEue0xZpkp0sCUA1cYRrC11vbW1tqk6W5CqaREk/4/bH0YQdmpxDk5K4ZS75kUsU1NZoshDXnvoTpV/96lepOppApLKyMlVHE7guWrQoVUeTYjUVTfJ02GGHper07t07UdbkORERAwYMSJRdW7z22muJ8pAhQ7LuZpvmEsA8++yzibJLNFOIGz82b96cKLvEaC4xTynRMW/Tpk2pOi4BKdoGfkaK1vDBBx/kx2KX3FO5e77OBV0yN51XufFf55Au+Z0mOHcJyzThue6fmxvqtl3Se71uXNJqneO6ebHuj0varttybaF0Lu3m23qPcPNZTYjn7o1ax7WF7rPbH12P6xeFksVpcsOIdDJPR/ukm8Ppfdf1C00kmuWZT9vUPR9oglSXMFX7V5ZnIzdP0O27OtrO69atS9XRZJRDhw5NlN15yZIwUpONuqSceh5cm+rnNBFxRPo5p1+/fqk6Oobo84p7NtG+46577Tsu8WSWZw/l+oWO967Oq6++mijrcblkz3oMri10rHLXuK7Hjdt6Hbm20DHGrUfraF9yY6D2nbVr16bq6Hpcv9VxKMv90yVnzZIk2p2v+tz1qW3qEqa6cVHp/cC1qV57blt6b3Rt0RRzXObkpYM30gEAAAAAAAAAaARvpAMAAMDi7RcAAACgdTEnLx28kQ4AAAAAAAAAQCN4Ix3tgsYr01h4LtZilhjpGlsrS6w0F8tzy5YtibKLM5YlRnqhbbl4jOqggw4qWKc9cDHOdJnrF7/4xS8SZRfjTGM/tuRfbDXe4caNG1N1NNadi833+uuvJ8oaLy8i4sknn0yUXUw4jbVe6vG8Hb2uly1blqrzyiuvfOLtaDz0iHScx/Ly8lQdFze9tbgxUPvS6tWrU3VcTES0Dbz9gtbmxkCN4+vi+mqccjcO6ec0FmpEeu7l5ms6L3D3DI25rMfltq3zFBcvWO+7WeJRu3w5WeJ363G6ufP69esb/UyWOPQujrSODy7Ou87Z3LZ0TpRl/u+2pfujbey2XVZWlii7vqTH4PKr6LZcLOAszzna/3X+6OZ0elxu/qh90D0b6bK6urpUHb1mXezwLNvSuVWW3AgaB9zFBddrxq0ny7OkzqPctajXlcuRpHHT9TjdevUcZzkGt20dv9x4pvvj+r/GCncxvrXf6nN2Fvo8FZG+1tw46cZXpfce16Y6frhnLP2cjg2uT+r+uZxO2l5u2xq33N2H9Vy552qNQe7isRfKqeD2T++n7nld28edOz1Xbh6q/TTLs67bVv3jKHa+y5y8dJT8G+kffvhhXHXVVTFw4MDYf//9Y9CgQXHttdcmbgS5XC5mzpwZFRUVsf/++8f48eNj5cqVrbjXAAAAQPvBnBwAAAD7upL/Iv3GG2+Mu+66K2bPnh2rVq2Km266KW6++ea47bbb8nVuuummuOWWW2L27Nnx7LPPRnl5eZx66qk2szcAAACy2fP2S0v9h9LFnBwAAKB1MCcvHSX/RfrixYvjrLPOij/90z+NAQMGxLnnnhsTJkyIJUuWRMTHnWnWrFlx5ZVXxtlnnx3Dhw+Pe++9N9599924//77W3nvAQAAgLaPOTkAAAD2dSX/RfoXvvCFePTRR/OxBp977rlYtGhRnH766RERUVVVFbW1tTFhwoT8Z7p06RLjxo1Lxffd4/3334+dO3cm/gMAAADgMScHAADAvq7kk41+5zvfiR07dsSRRx4ZHTt2jI8++iiuu+66+PrXvx4R/5sUQpO3lJWVpRJ37HHDDTfENddc07w7jqK45A3F/KxEk1a4RBvNxSXz0aQeLsGJS8qiNElMlrbRBB1ZEp60RVkS/rhkUYUUmyRRE7BoUhT3M/csCWw0kYt7y+/YY49NlF3ipT1vEO7hEhDpsscffzxV5+ijj260rElmWpv7kuaZZ55JlNetW9cs23Z9afny5YmyS8Kj59MlP2quJK96zWiyq4h0ctaG7r1om0hshD1ack5+8MEH55OAuQTt3bt3T5Rd0rXt27cnyi6xnUtSqnQe5e6Xek93Y7nOC5Tub0R6/uruI3qPd/OfLEkHtX002VxE+p7gkpnrcehxu/uVnmN3rjSppaujcw53DG+++Wai7PpOlm1pm+o8XpPYRaTHOJdIVM+f7m9Eer7o+kW3bt0S5R49eqTqaLtrX9J1RKTb2CUYzJIMVZ+F3LnKkjBY67hrWvut2x+l58olM9S+7u5hWidLUlVHz4Vbj16P2jbuGLQvuX6bpb/psWd5rnDnIUvyWO0rOi92/VavT3ddvfjii6llShOtuvuTXiPu+U7HdpdQU+n5c98n6LXnvpfQbblnIx0D3TN0z549E2WXkFS35Y5T+0WW53X9jPse5aCDDkqU3Viv9Hndfc7d9/Rzbjyrf+8j2WjbV/JvpM+dOzfuu+++uP/++2PZsmVx7733xg9/+MO49957E/V0UpbL5Rr8YmHGjBmxY8eO/H/uiwEAAAAAH2NODgAAgH1dyb+R/vd///fx3e9+N772ta9FxMdvO77++utxww03xAUXXBDl5eUR8fFf9Pv06ZP/XF1dXeqNmD26dOlScm9JAgAAlBrefsEezMkBAABaB3Py0lHyb6S/++679qdye37OMXDgwCgvL4/58+fn/33Xrl2xcOHCGDNmTIvuKwAAANAeMScHAADAvq7k30g/44wz4rrrrot+/frFUUcdFcuXL49bbrklLrzwwoj4+Oej06ZNi+uvvz6GDBkSQ4YMieuvvz4OOOCAOP/881t571GI/tS3qWKklzp3TC6mZVPQ9br4YBrrzsXHK3Xapu44XZy4puDiqQ0dOjRR1rhxLqbkSy+9lCi7Y9DjdD+Db66fxrs+unbt2kRZ4x26mJwVFRWJssawi0j3QXfNaL918WV1/6qqqlJ1NBafeztSt99UfUnjGy5cuDBVR+NDHnnkkak6vXv3TpTdMej46s6nnj+Na/z888+nPvPCCy8UXG8WGlNY+0lEOuagO+cbN25MlF0sQ2TH2y/YoyXn5D169MjHUnXxxvW6djFVNYaqxnyNSMdrzTJ2uvjAOja5OLC6fR3b3XimcXxdHFjdP3d/0jlIlhju7nrUOlm2lSXGvN433LnS+MAu3rOqrq5OLdN4wO449Xy6GOmF8tq4Pqnt5eI/a8xlN4/S8+dyQWmcaHfOC8Uidn1dz6d7ZtA+6eJ5ax23f3qO3f5onSy/cNHPZInJ7+bkOmfavHlzqo7uj2tzPfYBAwak6mzatClRdn1H43frudJ1OHt+WVSfjjuvvfZaqo5eR+44tb2y5Jtwz1i6rFevXomyG5f0enDfOej5W716daqOjlXuPGgburFK28vNVQs987nzqcfu7kUa29xdw3r+XPxzHZuy3IfdudH20fHX5RXTbbk475ovwY0xep279tLnVHecej9w/bb+/hSTty2COXkpKfkv0m+77ba4+uqrY+rUqVFXVxcVFRXxzW9+M/7hH/4hX+eKK66I9957L6ZOnRrbtm2LUaNGxSOPPGK/nAEAAACwd5iTAwAAYF9X8l+kH3TQQTFr1qyYNWtWg3U6dOgQM2fOjJkzZ7bYfgEAALR3vP2CPZiTAwAAtA7m5KWj5GOkAwAAAAAAAADQmvgiHQAAAAAAAACARpR8aBe0b/qTEX5C0vS0TV3CDk3+4pLuuARXpUSTvbjjdEmKmoIm34pIJwrq27dvouz2TxOyvPHGG6k6mozMrae5fOELX0gtmzRpUqKsyVVefPHF1Gd+/OMfJ8ou8Yz2QTc2aGKeLEklXUKdgw8+uNFtR6TPjfY3lxitGO6cP/bYY4myJlCNiKisrEyUXVIgPXaXOEsTLa1bt67g/rlkUUqT97i+9MUvfjFR1gSqEeljcMnetH1++ctfFqyDxnFvRkvr2rVrPgGZu0fovU/nMRHpsUnH+oh033ZJGzUpmEtGpvcNN1bqtjQBo0uWpgnyXKx5vff16dMnVUeTELr7nMrSpo7OF7WcJTmlG9t12y5pu7axSyioc0FN7unW45JIqiwJcPc2IV1DtA+6e772HZeEs9DcxZ1vvR5dX9K+rMkDHXddaRJCdz71GNx4USjJvRsb9LhcMuCVK1cmyhs2bEjV0QSHri20nV1b6PlzCUmHDRuWKA8cODBRfuqpp1Kf0WN47rnnUnW0T7q+rcvc+KHXvjufWcYqXU+WZ1R3raksSXJ1/OjevXuqjn7OJbnUfXb9VufpOsa4Z0Bdjxvf9HxqP4lI91O9hiLS/dQ9h+l1U1VVlapTaHzVBK8R6eveXcNK+1ZExNatWxNldx6yjLf6OXed1+/Ln+R7FebkpaG0vxkDAAAAAAAAAKCV8UY6AAAALBIbAQAAAK2LOXnp4I10AAAAAAAAAAAawRvp2Ce4+GXDhw9PlF38rRdeeCFRdvEr2xoXs+7NN99MlF08Oo2x1pox011MR43B5mIZNhWN2ahxKCPSsfg0Hp2L164xoV08P91WTU1Nqo7GeyuWxoD7+te/nqrjYrHWN2bMmNSyNWvWJMouhrWL390UXN/WuJNZYqRrLEi3v031l3yNqfrKK6+k6mibah+NSF+zLsZlc+URGD9+fKJ89tlnp+q4XAOFuHN1/PHHJ8o9evRI1fnXf/3XRLm6unqvt72v4O0XtIaPPvooP2a5OM06nrlYuxrX1NXRdWeJze3mUXoPcPusY67GVHVxV3WZm29obFgXj1fraJ6PiHR8+Cz3CBcTV49dz1WvXr1Sn9HjcnPMjRs3JspbtmxJ1dF1u7l9ljjq2j7FxDt3sc41bq6LX6xt6sZF/ZzrF3oMLja9HkOWvAL6LLRp06ZUHe0n7nzqut2cV9vLzVHccSltQ30udOvVuYM7hkGDBiXKtbW1Bbft4p/rMbhY67qP5eXlqTra/3UsGDt2bOozOl984oknUnV0zHPjpLtGCtVx16duy61Xry3tt24OrO3nxknltq3jjrsfZMkRoOOOGwv0WVbvGa4vaZu670COPPLIRNnFP89yPnX7rk/qdeTm+nqNaPu5a0/bIksdF4tdz42Lka7rdv1L+6R7Pqm/rWKft5iTlw7eSAcAAAAAAAAAoBG8kQ4AAACLt18AAACA1sWcvHTwRjoAAAAAAAAAAI3gjXQAAABYvP0CAAAAtC7m5KWDL9L3cS5BiyaB0ER8EelEFi7RhkvW0FI0acaMGTNSdU444YRE2SU80YQrN954Y6rOtm3bitnFVuMGRU2c4hJ2aNIRlxRFk44Uk5DUnQdN4qXJUSPSCUSaqv+5JFSazMclM9QEMboedx6yJGTR69GtR5MAuaRiWeg5due8EDfG9OzZs6j9aQouAZwuK7ZOa9L9cQngWkpZWVlq2SmnnJIoF5NYtFiVlZWpZaeeemqi/O///u+JcqmdX2Bf86lPfSo/h3AJxrOMcVnmJLoel0RP7+cu0ZjOkdzcWZfpPd+NnZqQ0SWVzEITm7mk5Jps1M3H9BhcQjqdl2jC1GHDhqU+c9hhhyXK7jhff/31RHnZsmWpOjo/fOutt1J19LiyJH1z9wSdE+ncxvU33bZLFqj9zSX81PW4c6Xnpq6urmAdPU7tE27/XNLXQglnI7Il59PPuevzoIMOanTbEel21j7q5iS6fy4Zqj7/un7rzo3KksxQ2931W53va9klvdRr2rWFtqnbtibv1Ge3iPT5c/uTJdmorkfPp1uvnj+3Xv2cSwCt3HcgWcZb5fqO9oMs15Xe09z1oAlIXUJSPS53H9Zz7Pqt7qNLSKrP7CtWrEiU3dig16cbG3R/3LnSz7kk0foMnyVxuXv2rt8WxSYbRekgtAsAAAAAAAAAAI3gjXQAAABY/IwUAAAAaF3MyUsHb6QDAAAAAAAAANAI3kjfx2i84t69e6fqaIwuF5dK4725OFBZYlbr/rg4Xi6GWSEnnXRSojx+/PhUHY1z7eixL1y4MFXn17/+9d7tXAnSNtZzF5GOg+ZiuWlcPRcrrdC2XYwzjXHp4tI3V0x+F+dUY+ZlaYss8eL1enCxM/Uace2lcQqLjZGu/WDNmjWpOscdd1yirHHjXHzS5557rqj9aQqun2jcPzfmaLvrZ/ir/f8aOHBgallrxsV3sQyHDBmSKOs14/Iw7Kt4+wWtYfv27fl7oIvTrPFF3XxDYye7e6HGHXZxfXUe4GIeaxzrLLGIddzp06dP6jMar9Udp95n3T1s48aNiXJNTU2qjs5T3DHovc/FzdXjGjBgQKKs8dAjIgYPHpwou+cTnXu5uWqWnD8aJ9cdp8YMdn1Q91FjMLvP6DzP3Z+037p5lM79suRrcrHWta9oe7nzq8flrhltYzef1W27mMF6fbo5nLahO5/apnoNu7jIui0XO1y35XIJ6X3NHYNu37W7nvMNGzak6mhOGN2Wi9VdXV2dKLsxRq9p12/1mnH9Vs+no/3C5cPQNtXP7Ny5M/UZ7f9unNQxxvUlve6zxHl3157uo+uDepyFyo7bP/2c+/5Fc3i4bWk/cH07y/1Tr08dh9wYo/3UXXtZcqnoPmfJE+eevd010Zhivt+KYE5eSngjHQAAAAAAAACARvBGOgAAACzefgEAAABaF3Py0sEb6QAAAGiT7rjjjhg4cGB07do1RowYEb///e8brb9w4cIYMWJEdO3aNQYNGhR33XVXqs5DDz0Uw4YNiy5dusSwYcPi4YcfTvz7E088EWeccUZUVFREhw4d4r//+79T68jlcjFz5syoqKiI/fffP8aPHx8rV678RMcKAAAAoHXxRToAAACsPW+/tNR/e2Pu3Lkxbdq0uPLKK2P58uUxduzYmDhxYirm6x5VVVVx+umnx9ixY2P58uXxve99Ly699NJ46KGH8nUWL14ckyZNismTJ8dzzz0XkydPjvPOOy+efvrpfJ133nknjj322Jg9e3aD+3bTTTfFLbfcErNnz45nn302ysvL49RTT7VxYwEAAIDGlPKcfF9DaJd9jCZiyJIkMUvyBE2e47hEEZp8xiVe0GQcbj1Kk1a4hJFZjks/5xLNZKHHqQmJItKJTV3iD01uoW3RVAOeSwSiiYzclwHaXlmSjeq2XGKQ5kokmoVLtquJW1wiF/e5veUSnmTZtiascdenO8dK2/2OO+5I1ZkwYUKirAmJnn322dRnVqxYkSi7JDy6z66/FZOoxV0jmhTItXsxCX72VTr+RmS7R7SkLNcRSt8tt9wSF110UVx88cURETFr1qz47W9/G3feeWfccMMNqfp33XVX9OvXL2bNmhUREUOHDo0lS5bED3/4wzjnnHPy6zj11FNjxowZERExY8aMWLhwYcyaNSseeOCBiIiYOHFiTJw4scH9yuVyMWvWrLjyyivj7LPPjoiIe++9N8rKyuL++++Pb37zm03WBu3Vu+++mx83XBLCLPdYnSPpWO/WrQnWItLzMTee6ZzS3Uc0yb0eg5ur6rY1mWZEep7s7qk6H3PzUD0GN5brvCBLAm/dtmtjTVTo9k/HaZc8VvfHzRO0fVyS10L75/ZH26/YZKN6Pl1iO32ucM8nWZLT65xbz7lrP03G7erocbk5p/YLtx6d+7nrShNo6nXW0PYL0W278UP7gLuGlds/7cvuXKnXXnsttUzPufZtl4RT1+P6kl6Pro6Ope44lWtTPQY3P9Okpdov3POnrteNMXrPcPcevYZdktAszyeatNRtS/uTG/OUfrfjjlPb3a1X292dc20Ll0xWxyqXFFT7pZ7PLONHlnOuz6gR6THQnTu9V7tkwMqdz/rrLmZMQmnhjXQAAACUjJ07dyb+a+gPrEuXLk39MW/ChAnx5JNP2vUuXrw4Vf+0006LJUuW5B96GqrT0DqdqqqqqK2tTaynS5cuMW7cuL1aDwAAAIDSwhfpAAAAsFrjZ6SVlZXRrVu3/H/u7fItW7bERx99FGVlZYnlZWVlUVtba4+ltrbW1v/www/zb/o2VKehdTa0nT2f+yTrAQAAACII7VJKCO0CAACAkrF+/fpE+IXGfi6vIQRyuVyjodtcfV2+t+tsqn0DAAAAUNr4In0fo/GuXIzJYh7yXFwqjYHoYgVmiYGl8a3cT7y1jsZlXr16deozRx11VKPriIhYtWpVoqyxnSPSbdq/f/9UnQEDBiTKLtaiflHg9kdjmOmbbWvXrk19ZvPmzYlyU/110cUQKyZmdalz14Mua80vRppq2249GivT9Z3/+q//SpRdTDil8UkrKytTdTTuXl1dXapOc73Z6a69Uqfj0JFHHpmqo3EKX3nllVQdFz9zb7mxXsd2F+e0JWkczCy5N/ZVLflWyp7tHHzwwTbOc309e/aMjh07psaBurq61Jvge5SXl9v6nTp1ys9ZGqrT0Dob2k7Ex2NU/Ri1e7uefdmHH36Y7w+HHnpo6t/1XuPG7TfeeCO1TqVzVTc26TIXc1bvWW4+q/us912NPe22rflq3P64+Mq6LRenVuehLjaxHoPblrbzpk2bEmV3n9Hzp3PXiPQcXGNju/W4OM0aJ9ddk1lihesyvY+4ttH7o8v/osfl+qSeP1cnS4x0XabH7a4rjYPsngH3jIGNrUfbz7WxxiLu2bNnqo72bZf/S+to33bXqy5z+QD03ujiZass+R3c+dRjd7kannvuuUR5zZo1iXKWfDCuLfQ43bb1/Lk6ej269tIxzj1X6HxWy1m4fqvXnssToefGPT/pfcUdp+5zTU1Nqk6h+N3umtFz5epoX964cWOqjo5n7j6cJZa/bt+dT91n7YPu/Op6XLz9LM+xej1myb3h5gA6VrltNUWM9NaYk8MjtAsAAADalM6dO8eIESNi/vz5ieXz58+PMWPG2M+MHj06Vf+RRx6JkSNH5h+qG6rT0DqdgQMHRnl5eWI9u3btioULF+7VegAAAACUFt5IBwAAgFXKb79Mnz49Jk+eHCNHjozRo0fH3XffHdXV1TFlypSIiJgxY0Zs3LgxfvKTn0REojp4tQAAcQ9JREFUxJQpU2L27Nkxffr0uOSSS2Lx4sVxzz33xAMPPJBf52WXXRYnnnhi3HjjjXHWWWfFz3/+81iwYEEsWrQoX+ftt99OvOlXVVUVK1asiO7du0e/fv2iQ4cOMW3atLj++utjyJAhMWTIkLj++uvjgAMOiPPPP/+TNBEAAAD2QaU8J9/X8EU6AAAA2pxJkybF1q1b49prr42ampoYPnx4zJs3Lx9iraamJqqrq/P1Bw4cGPPmzYvLL788br/99qioqIhbb701zjnnnHydMWPGxIMPPhhXXXVVXH311TF48OCYO3dujBo1Kl9nyZIlcdJJJ+XL06dPj4iICy64IObMmRMREVdccUW89957MXXq1Ni2bVuMGjUqHnnkEftTcQAAAABtA1+kAwAAwCr1t1+mTp0aU6dOtf+250vt+saNGxfLli1rdJ3nnntunHvuuQ3++/jx4wvua4cOHWLmzJkxc+bMRusBAAAAhZT6nHxfwhfp+xhNbNCSSfWyJHBy+5MlqYfSh+TrrrsuVefkk09OlF0yjt/+9reJsksENXbs2ER54MCBqTpZks9koYk+KioqCm77+eefT5RfeumlVJ32mCS0qbjkQppcxdXRNs2SXEi5G5gmV3Hb1mXuutJEKSeccEKqjibgcteeJlfRZGD13wbdQ69pl5AoSx38r+OOOy5Rrv+27B6aWMklWPv1r3+dKBdzj3jttddSyzRxXN++ffd6vcVy19HLL7+cKLsEqQBaz4EHHphPMObGf70fuSScmljPJavPcj93yQtVlkTbmmRT5wUuAahydXRsd+O2tteBBx6YqqMJ3dzYqfd8l2xO57yabHThwoWpz2jbuISkL774YqLskssNHz48UXZJi/VZyCUk1cSretwR6fbRZJDuXGnyR3fv0b7kkvx17949Uc4yP3MJ+/RcaZ/UcxeR3mfXxpps0T1naD91Sb/1c66/HXbYYYmyS6hZKMmm6+s6XrjxQ/fZJbDU5IXueVh/qaTt5z7n+qQm0tXkme6ayZKoU8fF9evXF9w/9+srnXe6ttBznuU5TI8hS+Ja91ymz0au32R5ZtZ7Ru/evQtuy50HHS903Haf0T6oSbcjIiorKxNld//SNnZJOPWacOOQ9jl3Dev3K1nup4WSd0ekx2BXR8chN25rH3R9QD9X6Bm+2GSjKB0kGwUAAAAAAAAAoBG8kQ4AAACLn5ECAAAArYs5eengjXQAAAAAAAAAABrBG+n7GI1T5eKraSxKF5tS40m5eFe6bhezUeOTuZhTGn8rS8xe/QvaU089larjlimNcabx0CPSccldvLfmottyMfU09rXbP42j3pKx84vh4tppvHgX/1m5uHEbNmxIlF1MxLfeeitRdrE8C8U+dXHttN8Wu+0s8Z5HjRqVKGv7ZaUxEHW9Lh6j7l9tbW2qjraPy09QDBe/UmNKunifhWLQuvOwffv2RNmNk01Fj8HF9NU4oq4PagxajYOZZWzYsmVLapnGXp80aVKqjmv3Yuh15GK2z58/P1Eu9TGvNfH2C1pDp06d8mOUi82qfcWN7RoP1cXs1XHQjdO6fXdf0+3rmByRjrudJReIzgOy5E5xc2n9nIvPqsuKva/pfEeP090jFi9enCi75xM9zgEDBqTq9O/fv+C2NC646zvaXlnizutxujbWmMvuXq3nz9XRbevc0G3fzf91rqrzMzcP1fM7ePDgVB2Nwez6pLZ7VVVVqo5y/SJL3H5tdy1nmZ+5OnqNuDjvWsfFfx4yZEiiXF5enqqj8c7devSa0HlVTU1N6jPad1xf0n7gzqf2L82NE5GONe1ye2lbuHbv06dPo/vnjlPHehd7Xcdo18Y6FrixQe81Ov+OSJ9jF49dx1t9RnX3A922u4b1mcrdG3V/3P1J29S1l/YnPaaIiFWrViXK+lzo+pvGmHdtoblT3HOPjpMuf4jm0XDnfG9zPhSbn445eengjXQAAAAAAAAAABrBG+kAAACwePsFAAAAaF3MyUsHb6QDAAAAAAAAANAI3kjfx2icsSzxy1w86ixxFHWZi/2VJUa6xr5rrr+OudhfRx99dKLs4jG2ZEz0Ymisr2OOOSZVR2NIagy21qYx644//vhUnaFDhybKLj6pcnHaXnnllUR5yZIlqTp1dXWN7p+j1567rrLkHtB91n2JSMejc7Gne/fu3eC+fhJ6XP369UvVWbFiRaLsjqEYPXv2TC079thjE+VBgwal6mi8TzcWFOLGJR273HX13HPPJcoak7yhdatXX301Uf7617+eqnPiiScmyhpjMiI9/i9atChR/v3vf5/6jIsDq5588slE2cVRPOWUUxJlFyNUY6q6GIQvv/xyovw///M/qTqbNm1qeGeRwNsvaA07d+7Mj8VZ4ppmiYvs4sDqfdfFzdV5lMandut28wLdRz0ul7dF7yN6v3LbcuOizgtc3FxdT5ax3c21unfvnijreO/OlS5zzwzaxu586hzJ3Wv0/LlnDz3nLk6/tqnGsHbPRjpPcedT29Stx8WxVno+XVxfHXO17M6D5mNyz0Y6x3Rje5Z+q7GuXd/ROMgaOzki4tBDD02UNc+Bi6mt58Zd93oeXEx+nbdkeWbQY4rIFptb91GP231Gr3O3bW13tx7NPeDGBn0ecf1L56au3QuNKZorISJ9zl3uJW0LF5Nf7xHufOr+uTwHGh8+S+4sHavWrVuX+oyeB9fG+tzlrj3dHzcn1+9A3P1Tx06Xt0i3r8fp8pLotafHHZF+JnV1dJm7N+oy1yf12N2YV79/Zbm/OszJS0dpfwMIAAAAAAAAAEAr4410AAAAWLz9AgAAALQu5uSlgzfSAQAAAAAAAABoBF+kAwAAAAAAAADQCEK77ONc8hxN+OAS72mSkSwJE1wiC03e4BL+tBSXqFATExaThLDUuOQvQ4YMSZRd0p1ik2I0BU1kdNRRR6XqHHbYYYlylnPlknDq5zR5VEQ6maFLEKn9XbelyYci0j+hcteMJsfJkpDIJbBpqSS5LqlqU61n9OjRibImFm3K7RfiEs9osrIjjjgiVefwww9PlF0SnscffzxR3rFjR6qOnmPXL6qrqxNll3RH21STKLm+vnbt2tQypX3y6aefTtV58cUXE+VevXql6mjSJJeETZMoteZ9pT3gZ6RoDZ07d87fj11icE3s5RKq6XwnSzI3l4RZ75duvNe5g9tn3b7OwbMktnPXiEtwqDRZm7s36nG59tI2de2uifayJEnU5wE3R9Ikl25equfBJfnT7WdJZuiS6On9R9vCJXV37VWojkssqvvnEq9qskw3p9T7o5ZdIkVNOti3b99UHZ3/uHu1zmU0SW1Eer6/Zs2aVB09N65f1NbWJsqanNIlMdU+6K5p7bdu23rNuHOlfdAlVyy0f249mnjVPffrevTcRaTbxyV01WfJwYMHp+roGOfGgixju/ZL7TsuYaTOi13f1nHRJSt+9dVXE2WXJFqTvLp5qF4Tbk5+9NFHJ8p6ft3+FdN33P5pf9+0aVOqjp4r93ySZf/0XqNjp9s/3ZbrSzp2ur6k9wxXR/uOnl+3Hndfccv2FnPy0sEb6QAAAAAAAAAANII30gEAANAg3koBAAAAWhdz8tLAG+kAAAAAAAAAADSCN9KRkiWWoXJxFD/3uc8lyi4+sMaTcrG5n3jiiUQ5S/ytYmjMvwgfx66tc/G59NjdcbvYgM3Bxe7W/XNxFIuJX++2pet28VI1Pp6LO7lhw4ZEWePuudiGeq252HduWSEuvqbus4uJWAw9Bo1XnZXG9vzyl7+cquPicrY12m81xmRERFlZWaL8q1/9KlWnoqIiUXbx/zXun6uj/VKvPXc9ZImRnoXG7nSxPNHyiMeI1tCpU6f83NLlsHExq5Xed919Tu+Fbs6ry1x8cY1367alcXs17rCLI63zFJf/Qud1bp6n8cWHDRuWqqNxjzUni9tHd83qPEWP08Um1hi4rv30Hubq6Llx+6fn083HNI6vez7RPB46d3br1T7gzpUeg5urahu7WPD6Ode/NHa4cs9Geh5cPGo9566OngcXd1vPsWtT7U9uW/rsqNe9i0+tOWFcLgJ9ZnCxnPV8uvVoX3Jzfd1n1146r9N5lLumdVvumunfv3+i7J4TdU7untX0XLlnyyzx2PX61O8h3HWlddx1pdeRi3k/dOjQRDlL3G0nSz4CXXe/fv0SZXfdb968OVHOkqPOxfzWOllyNbgxRq8tfb6LSJ8vzSvgnleqqqoSZXft6TLXt7WOm1tkiSmvddw1XL9fZPl+zWFOXjp4Ix0AAAAAAAAAgEbwRjoAAAAs3n4BAAAAWhdz8tLBG+kAAAAAAAAAADSCL9IBAAAAAAAAAGgEoV3QJMaPH59a5pLmFeKSB5555pmJ8ty5c1N1siSdUprYwiXacElU2yNN5uMSOLVUslGXIEYTwrgEMU1F1+0Sxrh9VPpzKE3a4pIhNRd3faxYsSJRPuGEE1J1XFInpclSNDmTlh2XqOeMM85IlA877LCC62mvNMnOWWedlaqj7eySC2kCJ5cwT+voejTBE9o/fkaK1rDffvvl52AuaZfeN1wCMx07dXyLSI9xWeYXLmGfzhfdtjZu3Jgoa2I2N7fQ43T3S038V1lZmaqj82tNPhqRbmeX5FWTwGli9Yh0knG9b7hj0ER7LvGezsdcHZ3vuPmP3vtcgjw9xy6pn/Y5Tarn+oAmqXP3ap1XuaR0moDRJb/T/uQSeGv76DG5NtZlbp6s14Ob82rycjcn0SShLvmpHpdLEOmS9Nbnxg93bpSOF+75Sa8rN7d+9913E2XXd7QN3T5ru+v5dX1dk0hq4tOIiAEDBiTKro2zJH3Vfuv6ju7Ppk2bUnUKbdvdM/T6dPNZ7ScuCW3v3r0b3XZE+ny6/dHr2p1zXbe2e5ZExG7bWeby2pfcuJ0lYWaW5LFK98/1dU286q5XPQ/ufqDt4+7DWcY8Vahvu2soC+bkpYM30gEAAAAAAAAAaMS+8botAAAA9hpvvwAAAACtizl56eCNdAAAAAAAAAAAGsEb6SiKxoA7/PDDm21bGhdr0KBBqTovv/zyXq9XY2DtK/HQHY2x1pptkSW2oYvxlyXmWhYam8/FQnWxKNuadevWJcouXp7Gn3NxHd94441E+fXXX0+U3fnUa8/lWNiXY6IX4mJwDh48OFFevXp1qo7GH3UxXzUXwnPPPZcov/baa1l3E+0Eb7+gNdTvdy5mqcbqzpLnxsVH1Ri4GlM1Ij3ncHMAnUe59Wjs8CxxwTX+uZvraExjjT0dkW6vLLGv3TFovFsXN1fbQtvLxdXV+5OLl51lnqdxmd22NKa2i4Os7e7i3eq9WPvb1q1bU5/RPujiIutcy93zdX9crGSdO7uY1ToP0Dmbi6+s++yuK507u/bTNnbjv/YDNyfX7bu20H3Wc5Vl21lyLGS5h7l+rMelc2u3LTdv133Ua9hdD7rPZWVlqTraJ934oX3HnXPtg65v6/64/qXnOEu767azxLl269X7gY6tEek21GfLiIjq6upE2d1XdB91226c1PuBy3GmfcmN9fr9S5bY4e5c6bayxCnXvuS2rfvn5gDa7q6NtV9k2b8s3wM013yWOXnp4I10AAAAAAAAAAAase++ggsAAIBG8fYLAAAA0LqYk5cO3kgHAAAAAAAAAKARfJEOAAAAAAAAAEAjCO2ComhiHpcEorm4xCSFuGQcmnDFJZHRn7S05HG2JE3q4RJttCZNcFheXp6qo4mDDj744ILrdclfdFtr167Nsott3pYtWzItawqaxHTo0KHNsp19iSaCeuWVV1J1NClzjx49UnU0wdXy5csTZZfoF+0bPyNFa/joo4/ycy6XzE3ngi7BoCZQc/M8XebGOE3a6BKy6/zQJXbUfS4mkahL8qfbdkn0dM7rEoG7ubLSpGuu3XWZnj+3HT0uV0fb1CXz1PbSxKIR6QSpWRIeujbVfqD7l+V+6dpPt6X9JKK45Heuji7LkqBX584uAajOL1xCV72u3Pi/adOmgtvSz2VJSqt9wF2vWRLravu560qvT3ce9HOu/+vziUsEq+dLz4MbP3r37p0ou/6mbeyOQY/T9R1tQ9f/9flN+0lE+jj0XLnEk1nmFzt27EiU3XO/rsf1HU2EqeuNSPdtTcoZUXgMcedBrzXXb2tqahJld670/ukSkmo/ddvSc+OS5OozjNuW0vZyY0yW/cuSuFnruH6hn3Pbqj++ZhmzHebkpYM30gEAAAAAAAAAaARvpAMAAMDi7RcAAACgdTEnLx28kQ4AAAAAAAAAQCN4Ix1F2b59e6Ls4k662FBNYfPmzQW3dcwxxyTKFRUVqc9oTDP3VzeNP5clfmRbpPEOXezw1qQx4p566qlUHe2TGoc7Ih0jdMOGDak6q1evTpRdXDtk5+LIffazn02UXexRfDJuzLv33nsTZRfXUa8RgLdf0Bo+9alP5WOOuvitGlPYzUM1hqqLzaoxtF3cYY296uIM63pcnhaXl6K+ww47rNF/j/BzEhfTWGn8Vnet6THovCoiPQ929xFtn4EDBybK7p6vcwV3Hurq6hJlF8tW485qrOKI9Pl0MbW1f7l91n3UtnBto21cWVmZqqP93cXS1WN3seD1c67v6HF17949UXb9WLe9bt26VB29HsvKylJ19HnOPXusX78+UXb9Nsu8RfutxoLv1q1b6jN6DK6/ZclPoMtcLGytozGjI7LdH3Wf9ThdHOk+ffoU3LbbZ6Xnz52Xnj17JspZYk27Z2+99nRb7ji1jd0Yo3XctZflGVnruPuT9n+Xl0rjw2tbuOtTxy7XbzQvhIvFrrktXNxy3ZY7n3o/cHkE9Pxpu7v9y3LfU64vZbmutF+477h03HbjRf17DTHS2z7eSAcAAAAAAAAAoBG8kQ4AAACLt18AAACA1sWcvHTwRjoAAAAAAAAAAI3gjXQAAABYvP0CAAAAtC7m5KWDL9JRFE2QsHjx4lSd8ePHJ8ouAUUWa9asSZQ3btyYqjNixIhE+U/+5E8SZZd0RAeHLIlU2gOX5KO6ujpRdkmLmov2iyznyiUM0yQoLomM9tva2tpUHU3sgk9Gk9VEZEuohk/GJVjr379/ovzyyy8XXI9eny5ZnibvcQmTXLJAAGjIQQcdlE9655Jy6T3fJSPTZI9unqfrdgki9T7mEo1p8jaXaEznMlkS2+k+ZzkGt3+aTNHV0eR3br6ocyQ3X+zdu3eirO3nEr7p+dQkiRHpuZ9LtKf3Ppf8MUvyOz1/rl9on9N7n+uTmsjRnYcszyNZEgpqwkNXR+/xvXr1SpRdMlRdr0tCqO3u5tZ6Pl0SR53Lu76j58oldiyUbDfLGOPmMdpPXb/V5xp3frVP6rUYkT4G9yzkronGthORTgDq2kKXuWtGz7lrL91n3XZE+hpxz4V6bWnbuD6pbePGBr0eXcJl7V/ueVPHC3c/0PZx35NoEk7dZ3c+s9zTtI1dsl1dtzsGbR93DIceemii7K7PQok33bZ1Pa4tiklEnOV5xZ1zbVO3bXccaLs4mwAAAAAAAAAANII30gEAAGDxM1IAAACgdTEnLx28kQ4AAAAAAAAAQCN4Ix1NwsXa3bFjR6L8mc98JlVH40mtX78+VeeVV15JlF18qfLy8kRZ46lliUnl6tTV1SXKLpabi29YylzcvVdffTVRdn+BPOCAAxJlPXcR6ViZLuaZnptRo0Ylyq6fKO1bbn9cvDeN6edinOk5d3H2kF1FRUVqmes7aH79+vVLlLPESO/evXuifPTRR6fqaFzCqqqqVJ3Vq1dn2UWUIN5+QWuoP3/IEuPV0VjEbj3KzR00hqqLfapxVbPEAdf5Y5Y4ui6ur861XDzq1157LVF2sZS1fVy+C41L69bjYtXW9+abb6aWaVu4c6VzzL59+6bqaDx2F3dbz4M7nxrr2u2PxnvWssbNj0j3LxcvWPfHxYh28bGVfs7Ftdb9Of744xPlwYMHpz6jzxFuTq7bdudcrxF3nNru7rrPElNerxud27i5vl577vrUc+XiK+tx9enTJ1VH29A9P2V5htH90bZx14z2AZf3QGOSu+PU+7eLF6/HlSV/mluP9gNtC3d96PWYJdeF27b2SXcNa3876KCDUnW0D7p21/3R8XbAgAGpz2g/deO4ztPdedCxM0vMb9cvdFmWdtdrxl0P2l7uGLRPuv3Tc+OuK3ffVVn6cv2+UygufEOYk5cO3kgHAAAAAAAAAOy1O+64IwYOHBhdu3aNESNGxO9///tG6y9cuDBGjBgRXbt2jUGDBsVdd92VqvPQQw/FsGHDokuXLjFs2LB4+OGHP/F2mwJfpAMAAMDa8/ZLS/0HAAAAIKmU5+Rz586NadOmxZVXXhnLly+PsWPHxsSJE6O6utrWr6qqitNPPz3Gjh0by5cvj+9973tx6aWXxkMPPZSvs3jx4pg0aVJMnjw5nnvuuZg8eXKcd9558fTTTxe93abCF+kAAAAAAAAAgL1yyy23xEUXXRQXX3xxDB06NGbNmhWVlZVx55132vp33XVX9OvXL2bNmhVDhw6Niy++OC688ML44Q9/mK8za9asOPXUU2PGjBlx5JFHxowZM+Lkk0+OWbNmFb3dpsIX6QAAALBK+e0XAAAAYF/QGnPynTt3Jv5zOUN27doVS5cujQkTJiSWT5gwIZ588kl7LIsXL07VP+2002LJkiX5WPUN1dmzzmK221RaNdnoE088ETfffHMsXbo0ampq4uGHH46vfOUr+X/P5XJxzTXXxN133x3btm2LUaNGxe233x5HHXVUvs77778f3/72t+OBBx6I9957L04++eS44447bDINtKyamppGy8VyyS404YTWyZJs1CULWb58eaLsEicOHz48US6UZKmlaZKRpUuXpups3bo1UXbXzxFHHJEou0RamqjzxRdfTNX57Gc/myh/6UtfSpT79++f+ox+ueK+bNm+fXuivGbNmlQdTdTjjsEllimGJkrp0aNHovzpT3869Rntt3pMEemETcUmK2kpLkEvWof2wSw0oZO7ZnSZGwM1CQ9fmAKlpdTm5H/84x/z92OXJFGThrk6ek91Sc40iZhLKqbrcfNQ5e7fheambv6hdbIkPDz00ENTdTZt2pQov/HGG6k6mmQtyzjtEuQVSgSbJaG9SxKq9xGXZDJLgjztK24epefC1dEvE/QzekwR6X7rzoPeU918saysLFF2/Vb7+7p161J1NPFl/es5Ip2kPCI9r3PnSueqLoGfJrB014weg0tIqnMOtx69JrL0bX3mc18eZelL+jnXL7TvZEm8miXpsdbJMj9zSXKztLEmLXXXp+6PS1Sr63HnSvuTbsuNk9rf3P1A90+TF0ekr0/XFq6/q969exdcj+6zcv1Nk2fqdiIiamtrE2X9HiAi3T7umHT81wSqEek2dUk59Tj0HuL6uo55rp9oHZdUWK89dx/Wc+Pq6LbcuF3/uLIkJy0VlZWVifL3v//9mDlzZmLZli1b4qOPPkrdm8rKylL9bY/a2lpb/8MPP4wtW7ZEnz59GqyzZ53FbLeptOob6e+8804ce+yxMXv2bPvvN910U9xyyy0xe/bsePbZZ6O8vDxOPfXUxA172rRp8fDDD8eDDz4YixYtirfffju+/OUv2wk1AAAAgCTm5AAAAKhv/fr1sWPHjvx/M2bMaLCue3GqsT8aNPSiVf3lWda5t9ttCq36RvrEiRNj4sSJ9t9yuVzMmjUrrrzyyjj77LMjIuLee++NsrKyuP/+++Ob3/xm7NixI+6555746U9/GqecckpERNx3331RWVkZCxYsiNNOO63FjgUAAKC9acmQK/xSofUwJwcAAChdrTEnP/jgg+Pggw9utG7Pnj2jY8eOqbfA6+rqUm+L71FeXm7rd+rUKf8r6obq7FlnMdttKiUbI72qqipqa2sT8W66dOkS48aNy8e7Wbp0aXzwwQeJOhUVFTF8+PBGY+K8//77qVg/AAAAAJKYkwMAAMDp3LlzjBgxIubPn59YPn/+/BgzZoz9zOjRo1P1H3nkkRg5cmQ+DE5Ddfass5jtNpVWfSO9MXv+quDi3bz++uv5Op07d07FPSsUE+eGG26Ia665pon3GC3F/RXupZdeSpQ1ppmL06xx5FavXp2qs6ev7aExJiPScdmGDh2aqqP742IZFkPjurv9e+655xLl9evXp+poLLJBgwal6miMUxcrWeOpudh3gwcPTpQ17paLparnXGMvRqTjFLqHcY2N5sYJF++zEPcXz2HDhiXK5eXlibKLkagx4Fzcyerq6kRZ+35ExNtvv93wzrYwF+cRrUOvT/eTN73WNG7i2rVrC67XjTG8adx28UY6WmNOvmPHjvxcycVmLSb3jYsPrPMxd//UOZKLAa5zIo3zG5Gep+jY6eKuauxYFxNXY+Bmyf+iOW3cul2sdeXi+ur51jjcAwcOTH1G4z+7uZjO61xcX72vuTi1ys3JdX/0mSEiPf/XOZuLx6vH5fr2gAEDEmUXs1rPsbuf6zOBm6tqXiJ9XnExonWu6q4Hbb9t27al6uh81l17+jzizqe2qXtzUq9HnYO7bev9KEu8/c2bN6fqZKHrcfHFNfa122e9hvU8uHFTl7nj1P7mcu5kyUOl+6N5vCLSfTlLPGrdtrv2tJ+6sVTvEe7a0/Pg2nTjxo2Jsouvr9e+u460L2u/ePXVV1Of0fXo/rr1ujFQ29DNz7SOawsdQ9yYVyivhutv+h2DOwbtSy4fnt7Dsoy3WfqOu4fVH7+y5FpxSnlOPn369Jg8eXKMHDkyRo8eHXfffXdUV1fHlClTIiJixowZsXHjxvjJT34SERFTpkyJ2bNnx/Tp0+OSSy6JxYsXxz333BMPPPBAfp2XXXZZnHjiiXHjjTfGWWedFT//+c9jwYIFsWjRoszbbS4l+0X6HsXEuylUZ8aMGTF9+vR8eefOnakv8wAAAAB8jDk5AAAA1KRJk2Lr1q1x7bXXRk1NTQwfPjzmzZuX/4NtTU1N4g+oAwcOjHnz5sXll18et99+e1RUVMStt94a55xzTr7OmDFj4sEHH4yrrroqrr766hg8eHDMnTs3Ro0alXm7zaVkv0jf8/ZmbW1t4k2G+vFuysvLY9euXbFt27bEWxN1dXWNvsrfpUsX+1YKAAAAknhTfN/GnBwAAKD1lfKcfOrUqTF16lT7b3PmzEktGzduXCxbtqzRdZ577rlx7rnnFr3d5lKyMdIHDhwY5eXliXg3u3btioULF+Yn5CNGjIj99tsvUaempiZefPHFZo+JAwAAALR3zMkBAACAj7XqG+lvv/12rFmzJl+uqqqKFStWRPfu3aNfv34xbdq0uP7662PIkCExZMiQuP766+OAAw6I888/PyI+jnd20UUXxbe+9a3o0aNHdO/ePb797W/H0UcfHaecckprHRYAAEC7UMrxGNF0mJMDAACULubkpaNVv0hfsmRJnHTSSfnynhiJF1xwQcyZMyeuuOKKeO+992Lq1Kmxbdu2GDVqVDzyyCOJpAn/9E//FJ06dYrzzjsv3nvvvTj55JNjzpw5TZbMEW2DJnfRzL0uYZImDnIJT5RLkLF8+fJEWZPnRKQTavbq1StVR5MyuiQUmmhJEwlt2LAh9RmXcEVpIheXLERjnLqYp1mSf+lxaVkTxjguielTTz2VKP/hD39I1dEkIzU1Nak6WbbfvXv3RPn4449P1dFkUcX8dN0lTMqS5Eb7pEty01K4CbdtOubV/6JtDxc3GUDbUspzck3KGZFOTubusXrvc3U0YZ9LkKcJDl3ytixJzZRuy80/tO1cW+o47eZ9mgDUzaM0aak7Bm0vNy/WtnjjjTcSZTe/1QRvbr0693J1qqqqEmWXJFQTT7qk6HpuNHlgRHpOrsnlXGJM3ZZL5pllLq3759o0S7Jd7cv6PODaT/fPPQ9oe+m8NCL93OUSDmpyRZcIUMcHl5hQ21mTjWofjUgnj3XHqfN0N35kSc6q17VLsKnL3PnUNtVrOsv16p4ZdJ9dMmVN2ujmgvo87vqXtvue0GL16XHpttxYqsfuxlLtb64v6bZcUkm9rlyb6rly47Z+TvuA+4wucwlwDzvssETZfU+SJTmrnisdE93n9NqLSF/Dum133es4lCUpeZYEuO44C+1fRPq43P7Uv3+67aBtadUv0sePH9/oA3eHDh1i5syZMXPmzAbrdO3aNW677ba47bbbmmEPAQAAgPaNOTkAAABQWMkmGwUAAEDr4mekAAAAQOtiTl46SjbZKAAAAAAAAAAApYA30tEuaQxHLTsuTqGLUa00PpiLta6x91xcNo175v4KqPG0NO6eW++gQYMS5SOOOCJVR2Pdaew5t+7169en6mhMRBdTcuXKlYmyxhJ3ce20LV577bVUncWLFyfKL7/8cqpOMVxMRN3nvn37puoUExM9C+2TAwcOTNXR2O+vv/56s+xLFlmuPbQMjePYVG8a8MZC+8bbL2gNhxxySH5e5OKRasxSjW3rPqfztYh0jN6ePXum6uh91821NC6ti12rcWiz5J7ReZ6LnaxxaTUeekR6XuDmvLpuF8NV29nNdTRWbJZYthqn1sXF1/i2bv80TrOL2avx4V3/0nVv27YtVUfnq9p+Lu7wsGHDEmUX/1nbx82LtV/ocUek5+BufNV+qvNrN4fTZwb3PKCx6tetW5eqo23s8kdpX3LXnp4/dw1rf9I2dTHmdbxw51P7pIv/XCg3lNs/9/ypMe/dmKfPoDq+Zbmm3fWp17kb37LkvNIcAS4/gV6fLo665h/Q9WSJ7e9yQOg+u3uGjp1urNJrzY3tuo91dXWpOtqfdJx0Mb/1HLuxYevWrYmyy8ugbez6W58+fRLlLO3uxqE333wzUdbjdm2s41CW+aOro/3W3TO0jluPXjeub9dfT5ZcGA5z8tLBG+kAAAAAAAAAADSCN9IBAABg8fYLAAAA0LqYk5cO3kgHAAAAAAAAAKARvJGOfZbGrurevXuqjot1pzQ2n8Yvi0jHknNx49yyQjRW4OjRo1N1xo0blyhXVFSk6ugxuPh9elwaXy0i4qWXXkqUXTy1FStWJMoay83FcNe/iLr45xp7vam4+J8af9HFQWspLo6i7l91dXWqjrapi9WmdYr5y/TmzZv3+jNoHi7+IlAIb7+gNXTs2DE/x3HxZXVe5WJYa8xqF9dX46y6+7n2SxdbV+dIBx10UMFtafxdF4/axURXOo9y80ndtos1rdt316PGsXbzRY3bq/Ft3WeyxMTVeYrrFzpnczGE9Vxp/hC3P+7caLtrzho3nz3uuOMS5R49eqTq6LzJxezVc+xiX+s14WKH61z+lVdeSZRdfGVt01dffTVVR+OzZ4kR7eah+jnXJzVmtTvnheL0u/OrMdHdNa3ccWYZP/Sa0Os1In0u3HEWyh3hjlOvB/ccq8eVJc67o23hxiGlMdMj0udTrwfXb7WfuHjeuj+bNm0quH+uT+p63LOkHoO7PxXKW+G27XI+KO0Hrm/r/rlz5b5TUDoOue9WCsXyd/d3Hc/c/mmfdGOMXo+uH+t44b7f0HPhrs/617XLRZAFc/LSwRvpAAAAAAAAAAA0gjfSAQAAYPH2CwAAANC6mJOXDt5IBwAAAAAAAACgEXyRDgAAAAAAAABAIwjtgn2WJvBwyTmyJHnSz2VJ8tFUDj/88ET5pJNOStUZMGBAouwS4WShSTOOPPLIVB1d9swzz6TqaAIRTT76wgsvFNyXYhKzFsslL9FzXGybNgWXOEX3z9XRvu2OU3/S5drdJeupr6amJrUsS2IXfDLu53jr1q1r+R1Bm8fPSNEadu7cmb8vuaRcmhDv05/+dKqO3ptdkjOd27ht6bzFJY7T+1iW5G3KJfDTbbuEdJpYzyXP1H12baH7fOCBB6bqZElyqYkSNTGb23aWubO2jztOXeb2T+ctbq6vddz+aWLawYMHJ8pDhw5NfUaP3R2DtleWJJyHHXZYqk7fvn0bXW9E+tg1saNLdKreeOON1LLa2tpE2c0V9Zpxc2mXsE/pnNL1Lz1Xep1nSTDoknDqNeKOU68Zdw3r9ZklqapLHKp9RdtGz0tERGVlZaPriPDXUaFtZ0ns6JI76/jhxmRtZ+0nBx98cOozmljXPdNo8l/XJ6urqxPl3r17p+pkGSf1GNw+63Fpv3Dtp9e0JrWOSJ8H17d13VkSBmsfdfvj2kL7v+5PlvueG8d1/HJJfHVsd2NBludq3Wd3P6+/zP17FszJSwdvpAMAAAAAAAAA0AjeSAcAAIDF2y8AAABA62JOXjp4Ix0AAAAAAAAAgEbwRjr2WRrXy8UHyxIjPUucsaaiMbmGDRuWKFdUVKQ+01zxu3v16pVadtRRRyXKzz33XKpOofZpyfjnWbjYfBqrzcU5czHHm4OLNadxMLPEec+yv25beuxax8X/XLt2baKs/QafnMaCjIjYsGFDK+wJ2jrefkFrqK2tzc95XFxTjSfrYsVmieur9zB3Pz/00EMTZRcvW++7Llay7o/GOHb7q/M+NyfRGLiFcpdEpONnR6SP08Wn1vmP25buc6E4vxHpY3BzEl2m8bwjfPso3R/X7jp3dnNTbcN+/folyt27d099Rvc5S/xzR4/TXSN6Pt0zjW5L+79rT41N7PqArsflDNDz2bNnz1Qd7W+u7+gxuOcTPcda1tjYEelz5Y5T28ddMxqX3J1fPTeu3fXYXf/S9tJn1M2bN6c+o8fp1qtjnhsndT3uutJlri20r7iY93V1dYmyxth2x6DPn9qPI7LlwNJ+4M6V9m23LeVic2t7ZXlWy3Jdvfnmm4lylnj7bvzQcdH1Cz037l6t29c2dteetqkbA7X93HcQ+jl3HvQ4s+T5cPeM+suIkd728UY6AAAAAAAAAACN4I10AAAAWLz9AgAAALQu5uSlgzfSAQAAAAAAAABoBF+kAwAAAAAAAADQCEK7YJ+lCSfeeOONgnUcTZCkiV2akib6OOSQQxJllwCrubiEJ7o/hx9+eKqOJhnRZCHr1q1LfSZLwrDm4hKcaLIeTTAVkW6LpqI/s9KEMRHp/XPJrHSZq1PoM1k/p5599tlE2fUTTU6Dxmm/0DaOaN3rCG0XPyNFa+jevXt+nuHupwceeGCinGV8c4njdC7jkgXq/cjNC3Tu5+ronFITrGVJtu7mmFkS0vXu3bvRckS2JJe6btfummRcP5MlsZ1LSKfJDDWxYkT6/LnEcbp9l0RP1+OSUWq//PSnP50ou/OpSWndmKftpYl1IyI2btyYKLuEhwMGDEiU3XxRE5Jqosfq6urUZzRJnjtOreOuK13mjkGvoyz3CH0ui0ifY+23LhmqbkuThkak+2CWtnDHoP3CXSNax7Wp9ndNyun2T+u49Wpfd+sp9HwXkR5L3XimiRy1j0akxxgdG9xnNAGpS/aoY6BLYKljlTuf2i+2bNmSqqPH4BJYahtqv3CJRLVN3biu59h935ElqXCWNlVun/X607Egy3rdMej14I5Bv/9xfUfXnSUZtruv1D8Oko22fbyRDgAAAAAAAABAI/giHQAAANaet19a6r+9dccdd8TAgQOja9euMWLEiPj973/faP2FCxfGiBEjomvXrjFo0KC46667UnUeeuihGDZsWHTp0iWGDRsWDz/88F5v9y//8i+jQ4cOif8+97nP7fXxAQAAAKU+J9+X8EU6AAAA2py5c+fGtGnT4sorr4zly5fH2LFjY+LEiTYcQUREVVVVnH766TF27NhYvnx5fO9734tLL700HnrooXydxYsXx6RJk2Ly5Mnx3HPPxeTJk+O8886Lp59+eq+3+6UvfSlqamry/82bN695GgIAAABAiyBGOvD/aKyyhpa1Jo2npXHQXLytYmJYZ+H+Sqkxzo477rhUHY2hp/He3HrXrl1bxB4WR+OpuThor7/+eqKsMeIiIoYMGZIoa9tkiUXqYhBu3bo1UV69enWqjsZ7c3HatJ2z/NXZ1Snmr9UaK/CZZ55J1fnCF76QKGdpr33ZmjVrEuVVq1a10p6gvSnleIy33HJLXHTRRXHxxRdHRMSsWbPit7/9bdx5551xww03pOrfdddd0a9fv5g1a1ZERAwdOjSWLFkSP/zhD+Occ87Jr+PUU0+NGTNmRETEjBkzYuHChTFr1qx44IEH9mq7Xbp0ifLy8r1rBERERK9evfL3LhenVuc7bv6jy1w8b70/uvjAGh/VxWDWmK5u7qXr0TmmixGdJR61xn3t06dPqk7fvn0TZZdTR7fljnPnzp0F90fnOxrbWctuf1z8c13mYuLq+XTnQed5Lo66cv1C1639y8V/1vZzdMxw+6fnKkteHhf7V+O663G6ONcaK3zbtm2pOroeN4fTvuPqaExtd43oc4S7zt01UZ+7HrR/uf6m9yyNXR+RLS64xsF383Y9rixjlcbddutdv359ouz6m+akyJIzycX81u27c67jg3sO0+cu7Utu7NL1uP3LErdfj8HF3dZrpKE/7teX5R6m9wzXb/X8uWNwx660TV3/12dS7SduPa7/63cDelzumtb+5sZWPZ+u/+v5c+vRfurWo+3szk1T5LIr5Tn5voY30gEAAFAydu7cmfjPPcDt2rUrli5dGhMmTEgsnzBhQjz55JN2vYsXL07VP+2002LJkiX5h6CG6uxZ595s9/HHH4/evXvHZz7zmbjkkktSSd0AAAAAtC18kQ4AAACrNeIxVlZWRrdu3fL/ubfLt2zZEh999FGUlZUllpeVlaXeBtujtrbW1v/www/zv5RpqM6edWbd7sSJE+M//uM/4ne/+1386Ec/imeffTa++MUv2j8KAAAAAI0hRnrpILQLAAAASsb69esTP3XXn8bXpz+5zeVyjYaCcvV1eZZ1FqozadKk/P8fPnx4jBw5Mvr37x//8z//E2effXaD+wcAAACgdPFFOgAAAErGwQcfnIoZq3r27BkdO3ZMvX1eV1eXelt8j/Lyclu/U6dO0aNHj0br7FlnMduN+DhGb//+/ePVV19t9LgAAAAAlC6+SAfaEE22UVVVlSj/yZ/8Seoze74caGouEavGf3XJaDTBif5sSJNUNSXdn+HDh6fqVFRUJMruzUZNROK+GNHkR4cddlii7BKyaFu4JE+a6FT7QIRP/qW0LbIkEnXrdQlg9taSJUtSyzSR0FFHHfWJt9NeuLAV8+fPT5Rd0iKgGKWa2Khz584xYsSImD9/fnz1q1/NL58/f36cddZZ9jOjR4+OX/7yl4lljzzySIwcOTKfBGr06NExf/78uPzyyxN1xowZU/R2Iz5OyrV+/fqCSe/wsd69e+fPiUs2p4m93P1S5ykuQZje4909TbfvkvHp3MWN07puXa+7x2pyMjev0nmL+yNUocSYDa1baWgit8+Fkt25+WOhdbj9y5KE3CV30312/Us/5xLkaZ9bu3Ztwf3Re7M7V/oLnB07dhSs4xJ+aru7ZKNK28KNydoWLpmhzuFc8kc9x5oQN+LjcaA+d861fVwy2w0bNiTKWdpiT7ivPVwC3DfffDNR1uSLEZH6A6u79rRPun6riWGzzPOyrFefadatW5eqo2Nnv379UnU0aaM7Tm1DlzBV99kl89R+oAmp9VkpIlsSTj1O18bav9z1WVNTU7COPgdmufdkSVap+5dlXNfrNSJ9btwvA924qHSf9fk4It3ueq5cP8mScDzLHEC3leVZ152rLEmr6/flYp+fS3VOvi/ii3QAAAC0OdOnT4/JkyfHyJEjY/To0XH33XdHdXV1TJkyJSIiZsyYERs3boyf/OQnERExZcqUmD17dkyfPj0uueSSWLx4cdxzzz3xwAMP5Nd52WWXxYknnhg33nhjnHXWWfHzn/88FixYEIsWLcq83bfffjtmzpwZ55xzTvTp0yfWrVsX3/ve96Jnz56JL98BAAAAtC18kQ4AAACrlN9+mTRpUmzdujWuvfbaqKmpieHDh8e8efOif//+EfHxW2HV1dX5+gMHDox58+bF5ZdfHrfffntUVFTErbfeGuecc06+zpgxY+LBBx+Mq666Kq6++uoYPHhwzJ07N0aNGpV5ux07dowXXnghfvKTn8T27dujT58+cdJJJ8XcuXOb9VdXAAAAaJ9KeU6+r+GLdAAAALRJU6dOjalTp9p/mzNnTmrZuHHjYtmyZY2u89xzz41zzz236O3uv//+8dvf/rbRzwMAAABoe/giHWjDXnzxxUR54MCBqTonnHBCouziMWaJM6lxxl544YVUHY3TPGTIkFQdjQmmsdI2b95ccF+KpTH9Kisri1rPIYcckii7dtcvajR+5f7775/6jMbbdDH1XOzHQly8N41zmiWGnltPU/y12q1X+5KLkXjMMcckyi7OaXugsR5//etfp+q42J1AU+DtF7SG3bt352Oeujiseg9zMaL1ftmrV69UHY2Z6u4jGnvVxTZdv359wf0pFFva/VpB4yKXl5en6ujn3P1S1+Pu+Tofc/MNnZdobOKI9D1d54+u/XT/3HnQc+VyzejcysUU1vOQZQ7saL+o/+uXCN/GOg91sX91HHTtpcegOYoi0nH6Nd54RKRyNuhcQmOAu227fqvnyp0HvR579uyZqqNt6NpLl7lYyXoc2r9c3H6de2ksccftn16PWcYYdw3ruXHr0WtP+5KL46zn051zjRfvYk3rNezomOLGds2l5dpd62j/cvui7edipCvXt/U6d/NvXZYlfnaW2Pkap9w9S2aJW65jvTufmkfAtZd+p+DmcHpceu4i0teN9m13nFrH3Q+0LbLkSXHnSnM8ZMkx4sa8+p8jRnrbV/ibEwAAAAAAAAAA9mG8kQ4AAIAG8VYKAAAA0LqYk5cG3kgHAAAAAAAAAKARvJEOAAAAi3iMAAAAQOtiTl46+CIdaMM0Wci8efNSdbZu3ZooH3HEEak6mpTFJSpZu3ZtovzUU0+l6miyI01OE5FO1KkJflyCrqbiEhk1BT2miIgBAwYkyt27d0+UXRIqTeTSnIlXNbHL8OHDU3U0CZX2t4iIlStXJsou4dXe7ktEOtnL4sWLU3U2bNiQKI8ZMyZVR9u92KRizUX7/9KlS1N1NHFtsQlqAKCt+OMf/5hPtOaS6ukDnnvg03uzSyKm990sCeg0MXhEOvmpS3io9x+9P7kkbJqQMUtyT5dQTeccLpmh3uM1wZrblh53RLqdtZzl4dwll9O5gpurapI/d7/UZa4ttM+5OVuhBIxuvZrI8aijjiq4XreeNWvWJMqvvPJKqo4eg+uTev60D2jC0oj0eXCJOrVvO9rfXRu7Y1cuyaDSfdZz5batyQLdvmhfdvNZ5a6ZsrKyRNkdk7aX69u6PzpWuWsvS9Jj/Zyb62siUdcW2u5uvNVr+I033kjV0fbSbblj0ESdLqmqHldNTU2qzmuvvZYou3FI+78bt7MkwnTL6nPnU8fbLMmK3fOdtqG2X0PrVjqWu+cwTVqqfd0lvtZ+4vZPl7lzlSUZqn5/4NpL99Htc/22KLXnUew9QrsAAAAAAAAAANAI3kgHAACAxc9IAQAAgNbFnLx08EY6AAAAAAAAAACN4I10oB3ZsWNHatn8+fMTZRfbXOOpuTiAGitT42Q6LoaYW9ZSssRabCoad17jv7nYaBq7zcUXdLEVC3HbGj16dKLcv3//guvp0aNHalnv3r0T5d/+9reJsosle+ihhybKAwcOTNXRGHUujqLGSL///vtTdXTdRx55ZKqOxlp0cXQ1fqb+ld6dF42/qDFNIyJWr16dKLfm9QE4vP2C1ubmGzrfcfcavQ+7eK56n9XPRKTHcjfe6z66mMsaZ1W3XV5envqMy8Gi9LiyxJp288Usbapxt939UuP6attkievr4uLrHMnF/C4UC9tt382RdFmWXC47d+5stByRbmN3nDr/cTGiN27cmCi7OOW6f+460n10MYRVltjEOmdzfVLPn4vJr+3jtuXacG/ruD6gc16Xw0nbyz1naLxz18Y6D80SY96dcx1DXn/99UTZ9UmNha3zerd/ri9pTi43b9fr0Z0X7Rdu3Na42y4GudLzt27dulQdbR93DFnyamh/yvJc4dpUj1O35Z4ZtC3ctadjjBtL9Tp343aWsUDvqS52uNJ+4XKc6bjo2iLLHEDbPUsuBM2fEJHeZzem1F9PsfNd5uSlgzfSAQAAAAAAAABoBG+kAwAAwOLtFwAAAKB1MScvHbyRDgAAAAAAAABAI3gjHQAAABZvvwAAAACtizl56eCLdGAfc9xxx6WWDR06NFF+7rnnUnVcktK2pqqqKlF2CXVcohSlSVleeeWVVB1N7qKJXVzyF00c5BLYFEMTnUZEVFRUNMm6NRFOv379EmWXPKqysjJR1iRGEdmSjWoiF5c87eWXX260HJFOGuOSAmkdTU7jkkcVkxgWAPDxPXLPfVKTfUZE1NXVJcouWZo+BGrSv4j0eO+25ZJuFrMt3UdNhOYSWmZ5kM1SR5PouWPSOu4epsnC3XHq/VGTsLlzpbIck0sM21QP/i7xn9L20cR7bp6nCSwHDBiQqqMJI7MkRXSJJzWxY5Zku7rPLmGeXjMuIa7OpTURZUR6n938W9vLJafMss96PnXbWeZ9Oi+NSM9NXaJC3b8+ffqk6mhfduvR68b1L90fPS53HvRZyCVS1DbVBKUR6eeBNWvWpOpov3X7k6Xf6vOc9hM3Nuj1WVNTk6qj7efGkyzJk/V5xPVJ3Zbr24WSO7sxOsuzh67H3Xu03fX8ujruOUzvEe5aK5TA1fXJXr16pZYV2rajz28uGape+9qXItL76Pa5/rE31TM+Wg+hXQAAAAAAAAAAaARvpAMAAMDiZ6QAAABA62JOXjp4Ix0AAAAAAAAAgEbwRjrQzn3zm99MlC+77LJUHY1H52Lz/eAHP0iUH3zwwSbYu5al8boXL16cqqPxu7VtItKxWbUckY716GKuKY0VmCWOaBYuNl9z0W25GHEaZ8/Fy9O4gO4YdD0uvubbb7/d8M7+P4Vi8wH7Mt5+QWt4++238/dfl2tD5ykuFqrm33AxjjWm65YtW1J19HNujqT3I3f/dvOJ+rLEf3axsDVeq7uONG6uy+uh++diX2ss4iyxf3Xbrh10mYvZq3XctvW4CrV5Q/T8uZjp2i91LuPy04wYMSJRPvXUU1N1DjvssER57dq1BffPzXV0+y7WtC7T/uViAWt8bBcvW8+D629vvPFGopwlNrej/d3FaS4Uz95tR69Hje/tPufm+tu2bUuUXVx87V9uHqrt7GKkazvrcbo+4Npdafu5eNk6Brv+r22YZfxw4+2GDRsSZT1ul3tJxxTXb/Vcuete+4Xr23p9uvOp/dZtS5fpMbjxTbfl6rg2LcTdV3R/ssSLd/c5pfvs+qiux10P2v+zxEzP8tzozpVe+65vd+vWLf//3bWYBXPy0sEb6QAAAAAAAAAANII30gEAAGDx9gsAAADQupiTlw7eSAcAAAAAAAAAoBG8kQ4AAACLt18AAACA1sWcvHTwRTrQjrjkTOeff36inCXxklvP5MmTE+W2mGxUuaRdL7/8cpOsWxPzbNy4sUnWWwyXIEkTpGpyq6w0yc769esTZZdgR9vdJepRLimLJpHJsh4AQOn74IMP8g9xLjFa9+7dE+U+ffqk6mhizDfffDNVR5OLuqTVOm9y8yhNLOaSkennysvLE2WX/E4TqLn7nCZDdXVcIrZCddxndH6oyfnc9jUJp1uv1nEJ6XS9bl6Q5TizJPnbvn17ouyOUxMu6vl1yRYPP/zwRFn7aEQ6aZ2ro3M21yd17lc/0d0eOh/TBKBu29perr9lSZ6p15pL0KvtnuWcu/3RfpslAa5uy/VJXZYl8apbj56rT3/606k6mijR9fVNmzY1ul63bZ1Lu21rW7g21r7k9s9daypL4mEdtzVBpN4f3HqynE9H28slwiyUxNfJ8nyu7efuV7otd83ottxzotbJck/LkrQ3y7Oa9h29P7j1uvFDxx23Hr1m3XHqOOT6ti5z57N+38lyLaC0EdoFAAAAAAAAAIBG8EY6AAAALH5GCgAAALQu5uSlgzfSAQAAAAAAAABoBG+kA+2Iiw/mYqMVw8U3RNvg+sUf/vCHRPn4449P1endu3eirHEBIyJeeOGFRNnFoFXV1dWJsotJqDEaNZ5lRMSGDRsS5SwxCAHsHd5+QWvo2LFj/t7Qq1ev1L9rfGqNHxyRjnOtcXUj0nMkF0M1S1xa5eZMGjNV730u1q6uJ0veEY2xHZG+trLErHYxXLPkJtH7t67X7Z+eBzdv0TjIjsb0dnFq9di1n0SkY+JqHHq3LW2LLHF0XfxnbeMs59OtR9vdxS/eunVroqzn/JBDDkl9RuMpu76keQ3cdeX2R2XJT6DbcjkVdA6px+XO1VtvvdXoOiLS/cI9c+l50Dj0Eem+48Y8jbnv5rw1NTWJsp4bHTcj0n3dXfd67bnxNsu50rZwuQd0HMwS+1rHUncMem5cP9HPueterz13HvR6zDK3ce3lruv63NigfTvL9wAuRnqW+1wx3zG4Yyp0n3PXZ5b9KyZXg8sloevJ8rzp9rl+fyr2+xnm5KWDN9IBAAAAAAAAAGgEb6QDAADA4u0XAAAAoHUxJy8dvJEOAAAAAAAAAEAjeCMdaEdcvK1/+Zd/SZSvvPLKVB2Nmedif911112fcO9QSjQGp8ZMj0jHd3NxCouhsfhWrlyZqqMx61zfdvEqATQt3n5BazjkkEPysXJdfg6Nr+xivOoyV0fj5LoYqoceemii7GLZuljh6qCDDiq4nkLrra2tTdXR+6O7X+r9PEv8c7cejV+scZvdMt22xp523HxD2ytLXHCXg0XjMru5hB6ni5Wsy3RbLqb7a6+9ligPGjQoVUePfdOmTak6GzduTJRdW2jfccep51z7qIttrufT9RPdtutv2n5Zrocs/TZL7OtC64hIH5frAy4OcqFtu/3TPunqrFu3LlF215H2OY217vqJ7p/rbzreag6liHTfcTHwtU11bI1Ij9NuLNB+qc+x7rxkGSc19ruLBa9c38oy3up44fZH8zDoelyMdF1vz549U3X0WnNtrNeEG0t1f9wcTvuyOzc63maJH67H4O7Bui03Buo9w+2f9gM3Xij3XUr9dRMjve3jjXQAAAAAAAAAABrBG+kAAACwePsFAAAAaF3MyUsHb6QDAAAAAAAAANAIvkgHAAAAAAAAAKARhHYB2rm5c+cmyi+88EKqzuGHH54ov/TSS6k6a9asadodQ8lrquSihbiEK8UmYQHQtPgZKVrDzp0788nEXBIxTWDmkq5pMr4s95WKiorUMk2iV2wSTk1qput191w99ixJTbPcU921pskBP/3pT6fqaJJBPSZHz4NLeKiJ7FzCN00wmCWpqmsvTTjnjjNLok5NTKvJ71yyuRUrViTKLiGpJvBzSSV1mVvP1q1bE2V3rjRJY5aketpe27dvT9XR/uXWk+V8btmypdFtR6T7jutfej3q9erOlZ5Pl2xR1+POg+5PliSXTpY5eaF7qEsAqudBE59GpPfZJaHVNnbJWfV8Zjkml3hV6XrcenVscOvV43Lr0esoy/jhko26e5Yq1O5ZEvRmuR5cku3Nmzc3ui9u+25/suyjrlv32bWfLnP9Tccm1/+Vu86177j+r+fcJTev386FEiA3hDl56eCNdAAAAAAAAAAAGsEb6QAAALB4+wUAAABoXczJSwdvpAMAAAAAAAAA0AjeSAf2MS7+uVsGAABvv6A17NixIx+r1MW51ljELpatxiB1MV4rKysT5UMPPTRVR+OjuvjdGivZxTzWOnpcLmauxivWGMMRPl6r6tatW6LsrjWNGdyrV69UHT0utx6NJ67H5fZX29StV8+fay9d5uLzFjoPjquj+6zrdcepbezm3xqv2MX11Ti+Lo667rOLka7nU4/BxQvW/ckSb9+dB113ljjS7trTa9+1u+Yj0D7qjkGXuTo7duxIlF2sdRe7WWl7uXOuy9y50bbQPqDnNyIdJ1/Higgf71lp33axw7UfuNjcWsed80LbdnH7s/Rt7Ttu/5Tr29qGrl9o33Z5GPQ4dL3uGJQbu/S6LysrK7ge16Z6zbpcCNo+7j6s/bZQzPSI9PXg6mgfdHHxddvufLq+rLLkOag/byl2vsucvHTwRjoAAAAAAAAAAI3gjXQAAAA0iLdSAAAAgNbFnLw08EY6AAAAAAAAAACN4It0AAAAAAAAAAAa0aqhXZ544om4+eabY+nSpVFTUxMPP/xwfOUrX4mIj5M7XHXVVTFv3rx47bXXolu3bnHKKafEP/7jP0ZFRUV+He+//358+9vfjgceeCDee++9OPnkk+OOO+6Ivn37ttJRAQAAtA8t+RNSfq7aekptTr5z585Gk41qX3HJ+TSJniYcjIg45JBDEuUsiTtdgjdNdOYSYWrCOU3M5j6zYcOGRDlL4rgsbeGOQRPHadu4OlkSdWryNpfwUJP6ZUn+6M6VJot1yVm1nd3+FNq2o23j2ljbS89LRDopqEt4qMkfXQI/PS6XRE+3f/DBBze6vxHp5HxZEoC649R+6vp/lsSTui2XLFPbR4/L9SVN/ugSFWq/cAkHNdmoS8io++eSJ+syV0fbS5Myu36in8mSJNddD9qm7jiz9G29jlyy1kIJZvW4I7Ilj1Wu3+o+uyShPXr0KLgtl7xT6TWhx+XWq22cJVm3S7KtCTZdMmBd5sZSbR+XFFSPQ/tplrZy284yBuq2spxz1yd1Pe4+XH/77lrMgjl56WjVN9LfeeedOPbYY2P27Nmpf3v33Xdj2bJlcfXVV8eyZcviZz/7Wbzyyitx5plnJupNmzYtHn744XjwwQdj0aJF8fbbb8eXv/xle7EDAAAASGJODgAAABTWqm+kT5w4MSZOnGj/rVu3bjF//vzEsttuuy1OOOGEqK6ujn79+sWOHTvinnvuiZ/+9KdxyimnRETEfffdF5WVlbFgwYI47bTTmv0YAAAA2iveftk3MCcHAAAoXczJS0ebipG+Y8eO6NChQ/6nhkuXLo0PPvggJkyYkK9TUVERw4cPjyeffLLB9bz//vuxc+fOxH8AAAAACmNODgAAgH1Rq76Rvjf++Mc/xne/+904//zz8/Hbamtro3Pnzqm4TmVlZVFbW9vgum644Ya45pprmnV/AQAA2jrefoFqiTn5Rx99lO8Prl9o/GkXO7l79+6Jsot9qutx8YE1xqzGoI2IeOuttxJlF5tb161xfl2MaKXHFJGO/e72r5gY6S4mtLaza3eNDZslfrzGi81yDC4etZ4rFytZj9NtS489S2xdrZPlM+486DL3xyU9ThePN0vf1jbUOtu2bUt9xsU4VhpD2O3fm2++mSi7mN8a49jV0fOnuQgiCvcdN8Zo33F9Sfu/2z89Dy5Xg+6fay8Xc1wV6l9u/7LEi9dlLr6z7rOLf67bd9eenj/XFhq/W4/TXXtZ4mzrtt31mWUM1PW449RjcO2l8cX1XLl+m2Uc1/OQJSdFljwMbmzQ43L9uFAeDbdtvR5djHQ9N1nuey6mvOYLceHq9Fy5HCP1+7I731kwJy8dbeKN9A8++CC+9rWvxe7du+OOO+4oWD+Xy9lBd48ZM2bEjh078v+tX7++KXcXAAAAaHeYkwMAAGBfVvJvpH/wwQdx3nnnRVVVVfzud79LZBMvLy+PXbt2xbZt2xJvwNTV1cWYMWMaXGeXLl3sXwYBAADwv3j7BXswJwcAAGgdzMlLR0m/kb5nwv7qq6/GggULokePHol/HzFiROy3336JBEg1NTXx4osvNjppBwAAAJANc3IAAACgld9If/vtt2PNmjX5clVVVaxYsSK6d+8eFRUVce6558ayZcviV7/6VXz00Uf5GIvdu3ePzp07R7du3eKiiy6Kb33rW9GjR4/o3r17fPvb346jjz46TjnllNY6LAAAAKDNYE4OAAAAFNaqX6QvWbIkTjrppHx5+vTpERFxwQUXxMyZM+MXv/hFREQcd9xxic899thjMX78+IiI+Kd/+qfo1KlTnHfeefHee+/FySefHHPmzLHJBAAAAJAdPyPdN5TanLxjx475z7nkX5pYrKKiIlVHY7O7EDL1w9NE+D6o23LJ2zQpo9tnTdinCdZcMlRNSOe2rVxMet2WawtNfuaOQZPJZUnOqslFXeI4TQrnktbpMbj90yR/rr26deuWKLtzrp9zCQU12Z0mgnXJ7zRJnUv+mCVBXqHPOC4BY6Gkg66faJ0sfdIlANXkfFmSXLo6WWjf1kSALvGf9q+tW7em6mhf0uvVrdudK+3vbn+0DV2y3ULJYl1/U+761D6YJYlvlvu56zvaFm5/9Dj0PGjfikifGzd+aB13rvS6dtennj93PjUxd5Zk01rHrTdL0mM9f66NsySYzZLkVdejibkjCo+3Wbbtxpgs9z3tSzU1Nak6WRLMZrl/1k/CTLLRtq9Vv0gfP358oycoy8nr2rVr3HbbbXHbbbc15a4BAAAA+wTm5AAAAEBhJZ9sFAAAAK2Dt18AAACA1sWcvHSUdLJRAAAAAAAAAABaG2+kAwAAwOLtF7SGt99+Ox+H1MX8PuywwxJlFztZ4666GORZYrEqF8tWYxEfdNBBqToar1VjvGqM4YhscVc1rq+LA+tiNyuNMeviKWsbuvjAGn9X99m1se6fi5Gun9u+fXuqjrZX/Zi0e2hfcfGedSxy7af7o/3U9TddrzufGvs6S1xrF2s6S0x5jff87rvvJspuTNbjzhLzPkss+Cw5Aty1p+dc8x5EpM+NXmuu/bL0Ae1f7jh1mbs+33zzzYLr0XbOMl7oOOTOVZYxT9vC9Qvdthu3VZb4+llyNWhfypInwsWY13Pj+qTGX3d1tE3d+XT3iEJ0vW7s0mN3Y3ShsSsiPRa49tLz4PqkXjdu3NZ+oNe5i3mvXBu7mO1K+46LXa75ETTHQkS6TXfu3JmqU78Ns1x3DnPy0sEb6QAAAAAAAAAANII30gEAAGDx9gsAAADQupiTlw7eSAcAAAAAAAAANJtt27bF5MmTo1u3btGtW7eYPHmyDftTXy6Xi5kzZ0ZFRUXsv//+MX78+Fi5cmWizvvvvx9/93d/Fz179owDDzwwzjzzzNiwYUOiznXXXRdjxoyJAw44wIbpyYov0gEAAGDlcrkW/Q8AAABAUnuZk59//vmxYsWK+M1vfhO/+c1vYsWKFTF58uRGP3PTTTfFLbfcErNnz45nn302ysvL49RTT4233norX2fatGnx8MMPx4MPPhiLFi2Kt99+O7785S8n4vfv2rUr/uzP/iz++q//+hMdA6FdAAAAAJSMDz/8MJ8ErG/fvql/1ySJLhmZJlnLknjM1dGkYZp4LCKdZE33zy3TJGea7NOt1yVS1CRwLvGqrse1ly5zx6D77N4g0wR4mkjOJdnThH0uEZvuX/2H5z20fdy2XDI5pW+pufYq1O4uYaom8MuSxNQlW9yxY0fB/cuSwFX7u54rl6gwC+0D7rrSRJ2u32ZJtqt9O0sy2ywJU5U7Bl3mkj/qut051+NySVX13Lh91rbQ/SsmsWhE+rp3/UL7oEv+qH0wSyJdl8CyUAJj3d+s29LPubbQY3eJOnVscOvRY3BJaLVN9ZpxyVq1jd250rHd1dEEuK5Ojx49EuUsyYnLyspSdXQ8c/1f6X3ZXZ/aFq69dKzPkkDbnXP9nLvW6u9zsclG24NVq1bFb37zm3jqqadi1KhRERHxr//6rzF69OhYvXp1HHHEEanP5HK5mDVrVlx55ZVx9tlnR0TEvffeG2VlZXH//ffHN7/5zdixY0fcc8898dOf/jROOeWUiIi47777orKyMhYsWBCnnXZaRERcc801ERExZ86cT3QcvJEOAAAAAAAAAIiIj/8AUP8/94fbvbF48eLo1q1b/kv0iIjPfe5z0a1bt3jyySftZ6qqqqK2tjYmTJiQX9alS5cYN25c/jNLly6NDz74IFGnoqIihg8f3uB6Pwm+SAcAAIDVXn5GCgAAALRVrTEnr6yszMcy79atW9xwww2f6Bhqa2ujd+/eqeW9e/eO2traBj8Tkf5FQ1lZWf7famtro3PnznHooYc2WKcpEdoFAAAAAAAAABAREevXr0+ETXNhiCIiZs6cmQ+b0pBnn302Inx4nFwuZ5fXp/+e5TNZ6hSDL9IBAABgteRb4ryRjj0OPPDAfLxajTcbkX6Ycg9JGh/bxc3VZS4Gs8a1drFNNca3i0etn9OYvS5+a5bYxModg27bxaDVbbkY6bqPLq67bkvbxq1Xr313rjRetouJq3G2XR237kI0hm9Eul927949UXYx3Au1TUTEtm3bEmXtfxE+FrfSdbvY3No++hl3DNoHXMx5fSPQxdLPEqdc150lFry7RvRa0+uz2PjKeq25eN66bXft6fjl9keP013nGu9Z+4lrY71mXB29Ztw1lKW9tH26deuWqqNjihsvtE2z5HfQ/XHzDe3/Lq66rsedc/2i0V3n2g/cPUz7gX4my1jmtp2ljXXZG2+8kaqj91gX/1yvYfclrG5Lx0BH15sl5rhrL72OXHtliZ2vx+COs37ceddvsmiNOfnBBx9s87Oov/3bv42vfe1rjdYZMGBAPP/887F58+bUv73xxhu2D0VElJeXR8THb5336dMnv7yuri7/mfLy8ti1a1ds27YtcQ+qq6uLMWPGFNz/vUVoFwAAAAAAAADAXunZs2cceeSRjf7XtWvXGD16dOzYsSOeeeaZ/Geffvrp2LFjR4NfeA8cODDKy8tj/vz5+WW7du2KhQsX5j8zYsSI2G+//RJ1ampq4sUXX2yWL9J5Ix0AAAAWb6QDAAAAras9zMmHDh0aX/rSl+KSSy6Jf/mXf4mIiP/v//v/4stf/nIcccQR+XpHHnlk3HDDDfHVr341OnToENOmTYvrr78+hgwZEkOGDInrr78+DjjggDj//PMj4uNfuFx00UXxrW99K3r06BHdu3ePb3/723H00UfHKaeckl9vdXV1vPnmm1FdXR0fffRRrFixIiIiDj/8cPvLrYbwRToAAAAAAAAAoNn8x3/8R1x66aUxYcKEiIg488wzY/bs2Yk6q1evToRVu+KKK+K9996LqVOnxrZt22LUqFHxyCOPJEIM/dM//VN06tQpzjvvvHjvvffi5JNPjjlz5iRCfv3DP/xD3Hvvvfny8ccfHxERjz32WIwfPz7zMfBFOgAAAKz28PYLAAAA0Ja1lzl59+7d47777tur7Xfo0CFmzpwZM2fObPAzXbt2jdtuuy1uu+22BuvMmTMn5syZsze7a/FFOgAAAICS0bNnz3yiNZdsVBPkucRdWZJcapI6l8BPk8u5BHSaFM7V0eRjum2XQFLX445BE6G55I+agFHbLyKdrM0lv8vSXtoWuh6XDNLtj8qSnE3bwiV9dYkc1datWxNll/Bz8ODBje6f+4y2lybry0r7hTtX+hN118Z6bWkSQtfmmji0R48eqTp67a1fvz5VR8+NS2zqEv8pva7cT/O1z2nSRneutI7rN7rMjVWapG/Lli2pOnpu3BdYui2XOFHrZEnAqG3jtq39za1Xxya3f8UkA3bjovZLPYYsSTjdOKnjm6uj23btpX3SjZPaXq5N9RrR9WZJaKwJaCPS7e76v54rty3ty5pkOCJbolr9nF5HLjGlcv1E29jdl/XYDzjggFSdQonCXR2XbLT+2JTl2kRpI9koAAAAAAAAAACN4I10AAAAWO3lZ6QAAABAW8WcvHTwRjoAAAAAAAAAAI3gjXQAAABYvP2C1tCjR498fFMXs1Rj2bq421likGocZBcHVuu4eNQay9bFUC0Ul9nF0S0rK0uUXbzbLLFZNS6txn2PSMeTdfGBdZ9djGO9jjXWbpaYvTt27Ci4bdcv9Ny4GOl6XK6faBzwLHFzs8QX79atW6Ls4gXret3+af/SONwR6fji7hi0r2i/cLGTdX/cuK2fc8epy9x1pet229Jz7PII6DnX9nP9WMcUjZsfkY7trOfX7Z+7PvUacfGe9di1v0Wkz7kel2s/bRvXl/Scu/Op++POg27ftbuODy4+tvZTPQYXJ19j+bv2y3KcWa5P7f8udr62hd4fItJ9Ra9hl0NA7yNuvdruri2037ocC3ofdvH/9Rpx46KuW/uguzdmkSWvhq7bjXl6XWfJYZAll0oxmJOXDt5IBwAAAAAAAACgEbyRDgAAAIu3XwAAAIDWxZy8dPBGOgAAAAAAAAAAjeCNdAAAAFi8/QIAAAC0LubkpYMv0gEAANAm3XHHHXHzzTdHTU1NHHXUUTFr1qwYO3Zsg/UXLlwY06dPj5UrV0ZFRUVcccUVMWXKlESdhx56KK6++upYu3ZtDB48OK677rr46le/ulfbzeVycc0118Tdd98d27Zti1GjRsXtt98eRx11VNM2QDvVtWvXfLI6lxhTE7y5RIWa2MslXdMkay5BmCYsc9vSfXTrKZSksXfv3qnPdO/ePVF2Cfx0/1zyO02a59aTJemaS5SotH0OOuigvd62S7aobewSiWrSOnfOdf/ctnQ9blu6P9rGLuGhJgt88803U3U04a37MkPXo20ckU5w6JIF6jnWpI0uWZ9rC6Xn07WF0sSFbj3uOHV/3D7rcbo+qHSfa2trU3V0/HBtrAkhNfliRHqscmOM9pUsX3Lp/rikjbotl7hZl7nj1HEnS/JMl3xR98edKz2fum2XKFkTWLrj1PPp+mSW/q/jv+uTOl649WrSY+077rrStnDHoG3s+pImfHZ9Mku763rcOdf1aP9yyVp1/HX9TY89S7917VVorI/Ilki0/npce6JtIbQLAAAA2py5c+fGtGnT4sorr4zly5fH2LFjY+LEiVFdXW3rV1VVxemnnx5jx46N5cuXx/e+97249NJL46GHHsrXWbx4cUyaNCkmT54czz33XEyePDnOO++8ePrpp/dquzfddFPccsstMXv27Hj22WejvLw8Tj311NSXZAAAAADaDr5IBwAAQINyuVyL/Le3brnllrjooovi4osvjqFDh8asWbOisrIy7rzzTlv/rrvuin79+sWsWbNi6NChcfHFF8eFF14YP/zhD/N1Zs2aFaeeemrMmDEjjjzyyJgxY0acfPLJMWvWrMzbzeVyMWvWrLjyyivj7LPPjuHDh8e9994b7777btx///17fZwAAABAqc7J9zWEdgni/wAAgH1DW5jz7Ny5M1Hu0qVL6ifhu3btiqVLl8Z3v/vdxPIJEybEk08+ade7ePHimDBhQmLZaaedFvfcc0988MEHsd9++8XixYvj8ssvT9XZ80V6lu1WVVVFbW1tYltdunSJcePGxZNPPhnf/OY3C7TAvmtP/6z/E3EXqkR/Qp4ltIv72bmu220rS2gX5eroevRadD//d/usshyD/hTdjQP6Obc/bt1Kj12PwR2TLnPbyRIuIUvIH+XWo8uybEuPwbVxluPUbbkwQbosSygh1+6FzlWWtslyDG49yh1DofW67WcJQaF1shynO5/F9EnXXrruYtu00LbcZ7Qtslzjbj3aFm49xfTJYraV5Z6RZf+y9Ntiz3mhz2RZT7H3qyzHmWU9WfptlnuPLtNQKi68WzFjaZY6We6NTdG/9vz/tjAnh8cX6RGxdevW1t4FAACAZvfWW29Ft27dCtbr3LlzlJeX27iwzenTn/50VFZWJpZ9//vfj5kzZyaWbdmyJT766KMoKytLLC8rK2twn2tra239Dz/8MLZs2RJ9+vRpsM6edWbZ7p7/dXVef/31hg4d8b9z8nnz5rXyngBtx7Zt21LLXnvttVbYk32LhuravHlzK+3Jx1avXt2q228tDYVzQ8t6+eWXW3sX2pxSn5OXl5dnyguwL+KL9PjfRD7V1dWZOjL23s6dO6OysjLWr1+fSvaBpkEbtwzaufnRxs2PNm5+pdbGuVwu3nrrraioqMhUv2vXrlFVVWXfBGpOuVwu9eZTYwkOXdKsxt5CbSjJVv3lWdbZVHWQxJy8+ZXa2NRe0c7NjzZufrRx86ONm1+ptXFbmZN37tzZJmkFX6RHxP/+5KRbt24lcWG1ZwcffDBt3Mxo45ZBOzc/2rj50cbNr5TaeG+/mOzatWvJTqB79uwZHTt2TL2dU1dXl3oTfA/3Nk9dXV106tQpevTo0WidPevMst3y8vKI+PjN9D59+mTaN3yMOXnLKaWxqT2jnZsfbdz8aOPmRxs3v1Jq4/Y0J98XkWwUAAAAbUrnzp1jxIgRMX/+/MTy+fPnx5gxY+xnRo8enar/yCOPxMiRI2O//fZrtM6edWbZ7sCBA6O8vDxRZ9euXbFw4cIG9w0AAABA6eONdAAAALQ506dPj8mTJ8fIkSNj9OjRcffdd0d1dXVMmTIlIiJmzJgRGzdujJ/85CcRETFlypSYPXt2TJ8+PS655JJYvHhx3HPPPfHAAw/k13nZZZfFiSeeGDfeeGOcddZZ8fOf/zwWLFgQixYtyrzdDh06xLRp0+L666+PIUOGxJAhQ+L666+PAw44IM4///wWbCEAAAAATYkv0uPj2Jvf//73G43BiU+GNm5+tHHLoJ2bH23c/Gjj5kcbN79JkybF1q1b49prr42ampoYPnx4zJs3L/r37x8RETU1NYkkZAMHDox58+bF5ZdfHrfffntUVFTErbfeGuecc06+zpgxY+LBBx+Mq666Kq6++uoYPHhwzJ07N0aNGpV5uxERV1xxRbz33nsxderU2LZtW4waNSoeeeSROOigg1qgZdourpvmRxu3DNq5+dHGzY82bn60cfOjjdHUOuT2ZFkCAAAAAAAAAAApxEgHAAAAAAAAAKARfJEOAAAAAAAAAEAj+CIdAAAAAAAAAIBG8EU6AAAAAAAAAACN2Oe/SL/jjjti4MCB0bVr1xgxYkT8/ve/b+1darNuuOGG+OxnPxsHHXRQ9O7dO77yla/E6tWrE3VyuVzMnDkzKioqYv/994/x48fHypUrW2mP274bbrghOnToENOmTcsvo42bxsaNG+Mv/uIvokePHnHAAQfEcccdF0uXLs3/O+38yXz44Ydx1VVXxcCBA2P//fePQYMGxbXXXhu7d+/O16GN984TTzwRZ5xxRlRUVESHDh3iv//7vxP/nqU933///fi7v/u76NmzZxx44IFx5plnxoYNG1rwKEpbY238wQcfxHe+8504+uij48ADD4yKior4xje+EZs2bUqsgzYGGsa8vGkwJ295zMmbD3Py5sWcvOkxJ28ZzMvRWvbpL9Lnzp0b06ZNiyuvvDKWL18eY8eOjYkTJ0Z1dXVr71qbtHDhwvibv/mbeOqpp2L+/Pnx4YcfxoQJE+Kdd97J17npppvilltuidmzZ8ezzz4b5eXlceqpp8Zbb73VinveNj377LNx9913xzHHHJNYTht/ctu2bYvPf/7zsd9++8Wvf/3reOmll+JHP/pRHHLIIfk6tPMnc+ONN8Zdd90Vs2fPjlWrVsVNN90UN998c9x22235OrTx3nnnnXfi2GOPjdmzZ9t/z9Ke06ZNi4cffjgefPDBWLRoUbz99tvx5S9/OT766KOWOoyS1lgbv/vuu7Fs2bK4+uqrY9myZfGzn/0sXnnllTjzzDMT9WhjwGNe3nSYk7cs5uTNhzl582NO3vSYk7cM5uVoNbl92AknnJCbMmVKYtmRRx6Z++53v9tKe9S+1NXV5SIit3Dhwlwul8vt3r07V15envvHf/zHfJ0//vGPuW7duuXuuuuu1trNNumtt97KDRkyJDd//vzcuHHjcpdddlkul6ONm8p3vvOd3Be+8IUG/512/uT+9E//NHfhhRcmlp199tm5v/iLv8jlcrTxJxURuYcffjhfztKe27dvz+233365Bx98MF9n48aNuU996lO53/zmNy22722FtrHzzDPP5CIi9/rrr+dyOdoYaAzz8ubDnLz5MCdvXszJmx9z8ubFnLxlMC9HS9pn30jftWtXLF26NCZMmJBYPmHChHjyySdbaa/alx07dkRERPfu3SMioqqqKmpraxNt3qVLlxg3bhxtvpf+5m/+Jv70T/80TjnllMRy2rhp/OIXv4iRI0fGn/3Zn0Xv3r3j+OOPj3/913/N/zvt/Ml94QtfiEcffTReeeWViIh47rnnYtGiRXH66adHBG3c1LK059KlS+ODDz5I1KmoqIjhw4fT5kXasWNHdOjQIf/mHG0MeMzLmxdz8ubDnLx5MSdvfszJWxZz8tbDvBxNpVNr70Br2bJlS3z00UdRVlaWWF5WVha1tbWttFftRy6Xi+nTp8cXvvCFGD58eEREvl1dm7/++ustvo9t1YMPPhjLli2LZ599NvVvtHHTeO211+LOO++M6dOnx/e+97145pln4tJLL40uXbrEN77xDdq5CXznO9+JHTt2xJFHHhkdO3aMjz76KK677rr4+te/HhH05aaWpT1ra2ujc+fOceihh6bqcF/ce3/84x/ju9/9bpx//vlx8MEHRwRtDDSEeXnzYU7efJiTNz/m5M2POXnLYk7eOpiXoynts1+k79GhQ4dEOZfLpZZh7/3t3/5tPP/887Fo0aLUv9HmxVu/fn1cdtll8cgjj0TXrl0brEcbfzK7d++OkSNHxvXXXx8REccff3ysXLky7rzzzvjGN76Rr0c7F2/u3Llx3333xf333x9HHXVUrFixIqZNmxYVFRVxwQUX5OvRxk2rmPakzffeBx98EF/72tdi9+7dcccddxSsTxsDH2PMb3rMyZsHc/KWwZy8+TEnbx3MyVsO83I0tX02tEvPnj2jY8eOqb801dXVpf46iL3zd3/3d/GLX/wiHnvssejbt29+eXl5eUQEbf4JLF26NOrq6mLEiBHRqVOn6NSpUyxcuDBuvfXW6NSpU74daeNPpk+fPjFs2LDEsqFDh+YTntGXP7m///u/j+9+97vxta99LY4++uiYPHlyXH755XHDDTdEBG3c1LK0Z3l5eezatSu2bdvWYB0U9sEHH8R5550XVVVVMX/+/PxbLxG0MdAQ5uXNgzl582FO3jKYkzc/5uQtizl5y2Jejuawz36R3rlz5xgxYkTMnz8/sXz+/PkxZsyYVtqrti2Xy8Xf/u3fxs9+9rP43e9+FwMHDkz8+8CBA6O8vDzR5rt27YqFCxfS5hmdfPLJ8cILL8SKFSvy/40cOTL+/M//PFasWBGDBg2ijZvA5z//+Vi9enVi2SuvvBL9+/ePCPpyU3j33XfjU59K3oI6duwYu3fvjgjauKllac8RI0bEfvvtl6hTU1MTL774Im2e0Z7J+quvvhoLFiyIHj16JP6dNgY85uVNizl582NO3jKYkzc/5uQtizl5y2FejmbTsrlNS8uDDz6Y22+//XL33HNP7qWXXspNmzYtd+CBB+bWrVvX2rvWJv31X/91rlu3brnHH388V1NTk//v3Xffzdf5x3/8x1y3bt1yP/vZz3IvvPBC7utf/3quT58+uZ07d7binrdt48aNy1122WX5Mm38yT3zzDO5Tp065a677rrcq6++mvuP//iP3AEHHJC777778nVo50/mggsuyB122GG5X/3qV7mqqqrcz372s1zPnj1zV1xxRb4Obbx33nrrrdzy5ctzy5cvz0VE7pZbbsktX748n5k+S3tOmTIl17dv39yCBQtyy5Yty33xi1/MHXvssbkPP/ywtQ6rpDTWxh988EHuzDPPzPXt2ze3YsWKxH3w/fffz6+DNgY85uVNhzl562BO3vSYkzc/5uRNjzl5y2BejtayT3+Rnsvlcrfffnuuf//+uc6dO+f+5E/+JLdw4cLW3qU2KyLsf//+7/+er7N79+7c97///Vx5eXmuS5cuuRNPPDH3wgsvtN5OtwM6aaeNm8Yvf/nL3PDhw3NdunTJHXnkkbm777478e+08yezc+fO3GWXXZbr169frmvXrrlBgwblrrzyysTEhjbeO4899pgdgy+44IJcLpetPd97773c3/7t3+a6d++e23///XNf/vKXc9XV1a1wNKWpsTauqqpq8D742GOP5ddBGwMNY17eNJiTtw7m5M2DOXnzYk7e9JiTtwzm5WgtHXK5XK7p33MHAAAAAAAAAKB92GdjpAMAAAAAAAAAkAVfpAMAAAAAAAAA0Ai+SAcAAAAAAAAAoBF8kQ4AAAAAAAAAQCP4Ih0AAAAAAAAAgEbwRToAAAAAAAAAAI3gi3QAAAAAAAAAABrBF+kAAAAAAAAAADSCL9IBtDvjx4+PadOmtZn1NrV169ZFhw4dYsWKFa29KwAAANhHMSdnTg4A7U2n1t4BAGgrfvazn8V+++3XYtt7/PHH46STTopt27bFIYcc0mLbBQAAAEoVc3IAQGvhi3QAKOCDDz6I/fbbL7p3797auwIAAADsk5iTAwBaG6FdALRLu3fvjiuuuCK6d+8e5eXlMXPmzPy/VVdXx1lnnRWf/vSn4+CDD47zzjsvNm/enP/3mTNnxnHHHRc//vGPY9CgQdGlS5fI5XKJn5E+/vjj0aFDh9R/f/mXf5lfz5133hmDBw+Ozp07xxFHHBE//elPE/vYoUOH+Ld/+7f46le/GgcccEAMGTIkfvGLX0TExz8FPemkkyIi4tBDD02s+ze/+U184QtfiEMOOSR69OgRX/7yl2Pt2rVFtdO1114bFRUVsXXr1vyyM888M0488cTYvXt3UesEAAAAIpiTZ8WcHADaBr5IB9Au3XvvvXHggQfG008/HTfddFNce+21MX/+/MjlcvGVr3wl3nzzzVi4cGHMnz8/1q5dG5MmTUp8fs2aNfGf//mf8dBDD9m4hmPGjImampr8f7/73e+ia9euceKJJ0ZExMMPPxyXXXZZfOtb34oXX3wxvvnNb8Zf/dVfxWOPPZZYzzXXXBPnnXdePP/883H66afHn//5n8ebb74ZlZWV8dBDD0VExOrVq6Ompib++Z//OSIi3nnnnZg+fXo8++yz8eijj8anPvWp+OpXv1rUJPvKK6+MAQMGxMUXXxwREXfddVc88cQT8dOf/jQ+9SluEQAAACgec/JsmJMDQBuRA4B2Zty4cbkvfOELiWWf/exnc9/5zndyjzzySK5jx4656urq/L+tXLkyFxG5Z555JpfL5XLf//73c/vtt1+urq4utd7LLrsstb0tW7bkBg8enJs6dWp+2ZgxY3KXXHJJot6f/dmf5U4//fR8OSJyV111Vb789ttv5zp06JD79a9/ncvlcrnHHnssFxG5bdu2NXq8dXV1uYjIvfDCC7lcLperqqrKRURu+fLljX5uj7Vr1+YOOuig3He+853cAQcckLvvvvsyfQ4AAABoCHNy5uQA0N7wp00A7dIxxxyTKPfp0yfq6upi1apVUVlZGZWVlfl/GzZsWBxyyCGxatWq/LL+/ftHr169Cm7ngw8+iHPOOSf69euXfzslImLVqlXx+c9/PlH385//fGIbup8HHnhgHHTQQVFXV9foNteuXRvnn39+DBo0KA4++OAYOHBgRHz889hiDBo0KH74wx/GjTfeGGeccUb8+Z//eVHrAQAAAOpjTp4dc3IAKH0kGwXQLu23336JcocOHWL37t2Ry+WiQ4cOqfq6/MADD8y0nb/+67+O6urqePbZZ6NTp+SQqttx225oPxtzxhlnRGVlZfzrv/5rVFRUxO7du2P48OGxa9euTPvsPPHEE9GxY8dYt25dfPjhh6ljAfD/t3PHIFWuYRzA/6dBEMI4KIk4BG5Hw0FEGqICT0O6OLno0HiSA9JgOLSIUwiRQ4MuOXYWCW10aBA3V92PDiKEJI3KacpL93YPnS7cSn8/+Jb3hed9+KY/z/fyAQCtkslbI5MD/N7cSAeulP7+/tTr9RwcHFys7e3t5dOnTymVSi3VevnyZWq1WjY2NtLZ2fnNXqlUyvb29jdrOzs7LZ3R1taWJDk/P79Y+/jxY/b39/P8+fOMjo6mVCrl5OSkpb7/rlarZX19PR8+fMjBwUEWFxf/Uz0AAGhGJv8nmRzg9+fzJnCllMvlDA4OZmpqKq9evcrZ2VlmZmZy//79DA8P/3Cdra2tPHv2LK9fv05XV1eOjo6SJO3t7blx40bm5uYyOTmZoaGhjI6OZnNzM+vr69na2vrhM27dupVCoZD3799nbGws7e3tKRaL6ezszOrqanp6elKv1zM/P9/ye/jq8PAwT548yYsXL3L37t2sra1lfHw8jx49yp07d366LgAA/BuZ/FsyOcCfwY104EopFAp59+5disVi7t27l3K5nL6+vtRqtZbqbG9v5/z8PJVKJT09PRfP7OxskmRiYiLLy8tZWlrKwMBAVlZW8ubNmzx48OCHz+jt7c3CwkLm5+fT3d2darWaa9eu5e3bt9nd3c3t27fz9OnTLC0ttdT7V41GI48fP87IyEiq1WqS5OHDh6lWq5mens7nz59/qi4AADQjk/9FJgf4cxQajUbjVzcBAAAAAAC/KzfSAQAAAACgCYN0gEusUqnk+vXr330qlcqvbg8AAC49mRzgcvBrF4BL7Pj4OKenp9/d6+joyM2bN//njgAA4GqRyQEuB4N0AAAAAABowq9dAAAAAACgCYN0AAAAAABowiAdAAAAAACaMEgHAAAAAIAmDNIBAAAAAKAJg3QAAAAAAGjCIB0AAAAAAJr4Ahk2c5nrhOC8AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 17, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "\n", + "#%% Load data\n", + "ground_truth = dataexample.SIMULATED_SPHERE_VOLUME.get()\n", + "\n", + "data = dataexample.SIMULATED_CONE_BEAM_DATA.get()\n", + "twoD = True\n", + "if twoD:\n", + " data = data.get_slice(vertical='centre')\n", + " ground_truth = ground_truth.get_slice(vertical='centre')\n", + "\n", + "absorption = TransmissionAbsorptionConverter()(data)\n", + "absorption = Slicer(roi={'angle':(0, -1, 5)})(absorption)\n", + "\n", + "ig = ground_truth.geometry\n", + "\n", + "#%%\n", + "recon = FDK(absorption, image_geometry=ig).run()\n", + "#%%\n", + "show2D([ground_truth, recon], title = ['Ground Truth', 'FDK Reconstruction'], origin = 'upper', num_cols = 2)\n", + "\n", + "# %%\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Default behaviour " + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "6355b4a0be0c4297a02f41b49e6f7e3d", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + " 0%| | 0/500 [00:00" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "\n", + "\n", + "alpha=0.1\n", + "A = ProjectionOperator(image_geometry=ig, \n", + " acquisition_geometry=absorption.geometry)\n", + "\n", + "F = LeastSquares(A = A, b = absorption)\n", + "G = alpha*TotalVariation(lower=0)\n", + "\n", + "algo=FISTA(initial=ig.allocate(0), f=F, g=G)\n", + "algo.run(500)\n", + "show2D([ground_truth, recon, algo.solution], title = ['Ground Truth', 'FDK Reconstruction', 'TV solution'], origin = 'upper', num_cols = 3)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Other provided CIL callbacks " + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "43acfefb45534d8093aa0174846f19eb", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + " 0%| | 0/500 [00:00" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "algo=FISTA(initial=ig.allocate(0), f=F, g=G, update_objective_interval=10)\n", + "algo.run(500, callbacks=[callbacks.ProgressCallback(), callbacks.TextProgressCallback()])\n", + "show2D([ground_truth, recon, algo.solution], title = ['Ground Truth', 'FDK Reconstruction', 'TV solution'], origin = 'upper', num_cols = 3)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "6d4cfa5b60cf48b7acfd008e3c40655f", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + " 84%|########3 | 501/600 [00:00" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 21, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "class EarlyStopping(callbacks.Callback):\n", + " def __call__(self, algorithm):\n", + " if algorithm.objective[-1] <= 2e-1: # arbitrary stopping criterion\n", + " raise StopIteration\n", + "\n", + "algo=FISTA(initial=ig.allocate(0), f=F, g=G, update_objective_interval=10) \n", + "algo.run(500, callbacks=[callbacks.TextProgressCallback(), EarlyStopping()])\n", + "show2D([ground_truth, recon, algo.solution], title = ['Ground Truth', 'FDK Reconstruction', 'TV solution'], origin = 'upper', num_cols = 3)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 0/500 ?it/s\n", + " 10/500 23.79it/s, objective=+8.586e+01\n", + " 20/500 26.96it/s, objective=+9.047e+00\n", + " 23/500 26.89it/s\n", + "\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABdEAAAGnCAYAAABYYR7FAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9eZydVZktjq9TVWeeakxVZSrCIEMAUYIYbA2ooGDbNILihKhISwe8CPblKyCSOCHo5cZWQbAZHJrhepGmnZA4EEWiN4AIzdQODIGMVZWaTtU5p4b390d+a2edp95TqUoqSSXZ6/OpT1Wd8w5773e/+9nPetZ+diQIggAeHh4eHh4eHh4eHh4eHh4eHh4eHh4eHuNQs6cL4OHh4eHh4eHh4eHh4eHh4eHh4eHh4TFT4Ul0Dw8PDw8PDw8PDw8PDw8PDw8PDw8PjyrwJLqHh4eHh4eHh4eHh4eHh4eHh4eHh4dHFXgS3cPDw8PDw8PDw8PDw8PDw8PDw8PDw6MKPInu4eHh4eHh4eHh4eHh4eHh4eHh4eHhUQWeRPfw8PDw8PDw8PDw8PDw8PDw8PDw8PCoAk+ie3h4eHh4eHh4eHh4eHh4eHh4eHh4eFSBJ9E9PDw8PDw8PDw8PDw8PDw8PDw8PDw8qsCT6B4eHh4eHh4eHh4eHh4eHh4eHh4eHh5V4El0j30aTzzxBM477zwcdNBBSCaTSCaTOOSQQ/Dxj38cjzzyyJ4u3k4hEolg2bJlVb8/8cQTEYlEtvsz0TUmg8HBQSxbtgwPPvjguO+WLVuGSCSCzs7OnbqHh4eHh8eew+23317VhvzLv/yLO+6AAw5wn9fU1CCfz+Pwww/Hhz70ITzwwAOh145EIrjooovGfX711VcjEongn//5nzE2Nla1bHrPSCSCdDqN1772tfjGN76BIAh2vvIzCE8//TSWLVuGF154YY+VYd26dVi2bBkef/zxcd/R5nt4eHh4eCgm45NGIhF87WtfQyQSwf3331/1Wt/+9rcRiUTwwx/+cLeU/cMf/jAOOOCAHTr34YcfxrJly9DT0zPuuxNPPBEnnnjiTpXNw8Nj96NuTxfAw2NX4aabbsJFF12EQw89FBdffDEWLlyISCSCZ555BnfeeSeOO+44/OUvf8FBBx20p4u6S3DDDTegr6/P/f+Tn/wEX/jCF3DbbbfhsMMOc5/PnTt3p+4zODiI5cuXA4CfCHh4eHjsw7D2AwBmz55d8f8b3vAGfPWrXwUADAwM4LnnnsNdd92Ft73tbTjzzDNx5513IhqNVr1HEAS4+OKL8fWvfx2f/vSncc0112y3XHrPdevW4frrr8cnPvEJ9PX14YorrphqNWcsnn76aSxfvhwnnnjiDjv0O4t169Zh+fLlOOCAA3DMMcdUfPexj30Mb3/72/dIuTw8PDw8Zi5Wr15d8f/nP/95/PrXv8avfvWris/b29vx//1//x9uvfXWqvbktttuQ0tLC975znfusvJOFx5++GEsX74cH/7wh1FfX1/x3Q033LBnCuXh4bFT8CS6xz6J3/3ud1i6dCne8Y534P/+3/+LWCzmvnvzm9+MCy+8ED/4wQ+QTCYnvM7g4CBSqdSuLu4uwRFHHFHx/7PPPgsAOPLII7Fo0aKq5+3Ndfbw8PDw2HXYnv0AgPr6erz+9a93/7/1rW/FhRdeiGXLlmH58uX4zGc+g2uvvTb03JGREXz0ox/F9773PXzlK1+pULlP9Z7z58/HTTfdtE+R6FPF7rbnc+fO3enAvIeHh4fHvge10QDQ0tKCmpqacZ8DwOmnn47/+I//QFdXF5qamiq+e/bZZ7F69Wp86lOfmjAgvzfA+uoeHh57B3w6F499El/60pdQW1uLm266qYJAV7z73e+uUNB9+MMfRiaTwZNPPolTTjkF2WwWb3nLWwAA3d3dWLp0KebMmYNYLIYDDzwQV155JUqlkjv/hRdeQCQSwe233z7uXjZtCpc8P/XUU3jf+96HfD6P1tZWfPSjH0Vvb2/FuX19fTj//PPR1NSETCaDt7/97fjv//7vnWidbWA5HnvsMZx11lloaGhwyvxqS8x0SdsLL7yAlpYWAMDy5cvdUrwPf/jDFeds3Lhxu/X08PDw8Nh3sWzZMixcuBDf+MY3UCwWx31fLBZx5pln4o477sC//du/TZpAD0Mul8OrXvUqbNy4seLzcrmML3zhCzjssMMQj8fR0tKCj3zkI9i8efO4a9xxxx1YvHgxMpkMMpkMjjnmGNxyyy0Vx9x666149atfjUQigcbGRpxxxhl45plnKo7h3OIvf/kLTjvtNGQyGcybNw+f+tSnKuYQAHDjjTfi1a9+NTKZDLLZLA477DAXBLj99tvx7ne/GwBw0kknOXvLOceJJ56II488Er/5zW9wwgknIJVK4aMf/SiA6unfDjjggHH2+pVXXsE//dM/Yd68eYjFYpg9ezbOOussbNy4EQ8++CCOO+44AMBHPvKRcWnhwtK5jI2N4brrrnNtPmvWLHzoQx/Cyy+/XHEcy79mzRq88Y1vRCqVwoEHHogvf/nLE6bz8fDw8PDYt3DeeeehXC7jjjvuGPfdbbfdBgDOvlXD3/72N7z3ve/F7NmzEY/H0draire85S0Vqcgma58sJuvzL1u2DP/zf/5PAMCCBQuczWQK1DBfezKcA+9z0UUX4Xvf+x4OP/xwpFIpvPrVr8aPf/zjCcvu4eGx8/BKdI99DqOjo/j1r3+NRYsWob29fUrnlstl/MM//AM+/vGP49Of/jRGRkZQLBZx0kkn4a9//SuWL1+Oo48+Gr/97W9xzTXX4PHHH8dPfvKTHS7rmWeeibPPPhvnnXcennzySVx++eUAtjrmwNZl7f/4j/+Ihx9+GJ/97Gdx3HHH4Xe/+x1OPfXUHb5nGN71rnfhve99Ly644AIUCoVJn9fe3o77778fb3/723HeeefhYx/7GAA4Yp3YXj09PDw8PGY+RkdHMTIyUvFZXd3kp5LvfOc78eUvfxmPPPII/u7v/s593t/fj1NPPRUPP/ww7r77bpx55pk7Vc6RkRGsXbsWr3rVq9xnY2NjOP300/Hb3/4Wl112GU444QS8+OKLuPrqq3HiiSfikUcecavTPvvZz+Lzn/883vWud+FTn/oU8vk8/uu//gsvvviiu94111yDK664Au973/twzTXXoKurC8uWLcPixYuxZs0aHHLIIe7Y4eFh/MM//APOO+88fOpTn8JvfvMbfP7zn0c+n8dnP/tZAMBdd92FpUuX4hOf+AS++tWvoqamBn/5y1/w9NNPAwDe8Y534Etf+hKuuOIKfPOb38RrX/taAKhISbd+/Xp88IMfxGWXXYYvfelLqKmZmlbmlVdewXHHHYfh4WFcccUVOProo9HV1YWf//zn2LJlC1772tfitttuw0c+8hF85jOfwTve8Q4AE6eF++d//mfcfPPNuOiii/D3f//3eOGFF3DVVVfhwQcfxGOPPYbm5mZ37IYNG/CBD3wAn/rUp3D11Vfj3nvvxeWXX47Zs2fjQx/60JTq4uHh4eGxd+Ktb30rOjo6cOutt+ITn/iE+3x0dBTf+9738PrXv367Ku7TTjsNo6OjuO666zB//nx0dnbi4YcfrshNPhX7tCP42Mc+hu7ubnz961/HD3/4Q8dLVCv7VDmHn/zkJ1izZg0+97nPIZPJ4LrrrsMZZ5yB5557DgceeOBOld3Dw2MCBB4e+xg2bNgQAAje+973jvtuZGQkGB4edj9jY2Puu3PPPTcAENx6660V53zrW98KAAT/5//8n4rPr7322gBA8MADDwRBEATPP/98ACC47bbbxt0XQHD11Ve7/6+++uoAQHDddddVHLd06dIgkUi4cv3sZz8LAARf+9rXKo774he/OO6a28Ntt90WAAjWrFkzrhyf/exnxx2/ZMmSYMmSJeM+P/fcc4OOjg73/+bNm6uWZbL19PDw8PCYuaD9CPsZHh52x3V0dATveMc7ql7nxhtvDAAEd999t/tMr3XzzTdPuWwdHR3Baaed5uz6iy++GJx//vlBNBoNfvzjH7vj7rzzzgBAcM8991Scv2bNmgBAcMMNNwRBEAR/+9vfgtra2uADH/hA1Xtu2bIlSCaTwWmnnVbx+UsvvRTE4/Hg/e9/v/uMcws7hzjttNOCQw891P1/0UUXBfX19RPW9Qc/+EEAIPj1r3897rslS5YEAIJf/vKX476rZqM7OjqCc8891/3/0Y9+NIhGo8HTTz9dtQxsr7C5Dm0+8cwzzwQAgqVLl1Yc94c//CEAEFxxxRXjyv+HP/yh4tgjjjgieNvb3la1PB4eHh4eex/OPffcIJ1OV/2e9uSxxx5zn/3oRz8KAATf/va3J7x2Z2dnACBYsWJF1WOmYp+s7zsVn/8rX/lKACB4/vnnxx1rfe3Jcg68T2tra9DX1+c+27BhQ1BTUxNcc801Vevt4eGx8/DpXDz2Kxx77LGIRqPu53/9r/817hirgPvVr36FdDqNs846q+JzLoH+5S9/ucPl+Yd/+IeK/48++mgUi0Vs2rQJAPDrX/8aAPCBD3yg4rj3v//9O3zPMOys6m972F49PTw8PDxmPr773e9izZo1FT9TUaIHQRD6+Rvf+EbU19dj+fLl+Mtf/jLlcv30pz91dr2jowPf/va38fWvf90ppQHgxz/+Merr6/HOd74TIyMj7ueYY45BW1ubW169cuVKjI6O4sILL6x6v9WrV2NoaGhcKpR58+bhzW9+87h5QSQSGbcB2tFHH12hbH/d616Hnp4evO9978N9992Hzs7OKbdDQ0MD3vzmN0/5POJnP/sZTjrpJBx++OE7fA0F5zC2nV73utfh8MMPH9dObW1teN3rXlfxmW0nDw8PD499Hx/5yEdQU1NTsWr5tttuQzqdxtlnnz3huY2NjTjooIPwla98Bddffz3++Mc/jksLNlX7tDswVc7hpJNOQjabdf+3trZi1qxZ3mZ6eOxieBLdY59Dc3MzkslkqAG54447sGbNGvznf/5n6LmpVAq5XK7is66uLrS1tY3L8zlr1izU1dWhq6trh8tqN0uJx+MAgKGhIXfvurq6cce1tbXt8D3DMNW0N1PF9urp4eHh4THzcfjhh2PRokUVP1MB7bLuRwJsJUp/8YtfYHBwEEuWLJnyvh9/93d/hzVr1uD3v/89vve97+GAAw7ARRddhIceesgds3HjRvT09CAWi1UE06PRKDZs2OBIa+ZHnyhFCe1+mO2cPXv2uHlBKpVCIpGo+Cwej1fkhj/nnHNw66234sUXX8SZZ56JWbNm4fjjj8fKlSsn3Q47a8s3b948rRuDTrWd7FwB2NpOfq7g4eHhsX+ho6MDb3nLW3DHHXegVCqhs7MTP/7xj/Hud7+7gjgOQyQSwS9/+Uu87W1vw3XXXYfXvva1aGlpwf/4H/8D/f39AKZun3YHpso5eJvp4bFn4El0j30OtbW1ePOb34xHHnkE69evr/juiCOOwKJFi3DUUUeFnmuNFrDVQG3cuHGcgm7Tpk0YGRlx+dLoINuNP3aWZB8ZGRl3jQ0bNuzwNcMQVu9EIjGuLgB2SB3n4eHh4bF/IwgC/OhHP0I6nQ4l34899lj84he/cDlBn3vuuUlfO5/PY9GiRTj++OPxwQ9+EA888ACi0SiWLl3q1GfNzc1oamoap6Tnzw033ABg254eE20sRsfVzjEAYN26dTucR/UjH/kIHn74YfT29uInP/kJgiDA3//9309aVRZmy4GtTnWYPbdzi5aWlu1uqDYV7Kp28vDw8PDY93Heeeehu7sb9913H77//e+jXC7jvPPOm9S5HR0duOWWW7BhwwY899xzuOSSS3DDDTe4jT53xj7tCp+fZZoM5+Dh4bFn4Ul0j30Sl19+OUZHR3HBBRdgeHh4p671lre8BQMDA/iP//iPis+/+93vuu+BrUuoEokEnnjiiYrj7rvvvh2+90knnQQA+Pd///eKz8N2K59uHHDAAfjv//7viglCV1cXHn744YrjvKrcw8PDw2N7WL58OZ5++mlcfPHF41TZxGtf+1r88pe/RKlUwkknnYRnn312h+51yCGH4LLLLsOTTz6Ju+++GwDw93//9+jq6sLo6Og4Nf2iRYtw6KGHAgBOOeUU1NbW4sYbb6x6/cWLFyOZTOL73/9+xecvv/wyfvWrX7l5wY4inU7j1FNPxZVXXolyuYynnnoKwI7b2wMOOGDc3ORXv/oVBgYGKj479dRT8etf/3rCAMZUysDUMrad1qxZg2eeeWan28nDw8PDY9/FP/7jP6KpqQm33norbrvtNrzqVa+q2JR8snjVq16Fz3zmMzjqqKPw2GOPAdg5+zQVn38qNnOynIOHh8eexeQTWXp47EV4wxvegG9+85v4xCc+gde+9rX4p3/6JyxcuBA1NTVYv3497rnnHgAYl7olDB/60IfwzW9+E+eeey5eeOEFHHXUUXjooYfwpS99Caeddhre+ta3AtiqAPvgBz+IW2+9FQcddBBe/epX4//9v/+3U4T3Kaecgje96U247LLLUCgUsGjRIvzud7/D9773vR2+5mRxzjnn4KabbsIHP/hBnH/++ejq6sJ11103rs2y2Sw6Ojpw33334S1veQsaGxvR3NyMAw44YJeX0cPDw8NjZqGnpwe///3vAQCFQgHPPfcc7rrrLvz2t7/Fe97zHixfvnzC84855hj88pe/xFve8hacdNJJ+NWvfrVDObr/5V/+Bd/61rewfPlyvOc978F73/te/Pu//ztOO+00XHzxxXjd616HaDSKl19+Gb/+9a9x+umn44wzzsABBxyAK664Ap///OcxNDSE973vfcjn83j66afR2dmJ5cuXo76+HldddRWuuOIKfOhDH8L73vc+dHV1Yfny5UgkErj66qunXN7zzz8fyWQSb3jDG9De3o4NGzbgmmuuQT6fx3HHHQcAOPLIIwEAN998M7LZLBKJBBYsWBC6pFtxzjnn4KqrrsJnP/tZLFmyBE8//TS+8Y1vIJ/PVxz3uc99Dj/72c/wpje9CVdccQWOOuoo9PT04P7778ell16Kww47DAcddBCSyST+/d//HYcffjgymQxmz549LkUPABx66KH4p3/6J3z9619HTU0NTj31VLzwwgu46qqrMG/ePFxyySVTbicPDw8Pj/0D8XgcH/jAB/D1r38dQRDgy1/+8qTOe+KJJ3DRRRfh3e9+Nw455BDEYjH86le/whNPPIFPf/rTAHbOPk3F5+fq96997Ws499xzEY1Gceihh4ampJks5+Dh4bGHsSd3NfXw2NV4/PHHg4985CPBggULgng8HiQSieDggw8OPvShDwW//OUvK46daJfwrq6u4IILLgja29uDurq6oKOjI7j88suDYrFYcVxvb2/wsY99LGhtbQ3S6XTwzne+M3jhhRfG7dTNHcc3b95ccf5tt902bgfvnp6e4KMf/WhQX18fpFKp4OSTTw6effbZcdfcHnjtNWvWbLccxHe+853g8MMPDxKJRHDEEUcEd99997gdyoMgCH7xi18Er3nNa4J4PB4ACM4999wp19PDw8PDY2YizH6EoaOjIwAQAAgikUiQyWSCQw89NDjnnHOCn//856HnAAguvPDCcZ//6U9/Cpqbm4PW1tbgqaeemvCe73jHO0K/++Y3vxkACL7zne8EQRAEw8PDwVe/+tXg1a9+dZBIJIJMJhMcdthhwcc//vHgz3/+c8W53/3ud4PjjjvOHfea17wmuO222yqO+bd/+7fg6KOPDmKxWJDP54PTTz99XFmrzS1oH4nvfOc7wUknnRS0trYGsVgsmD17dvCe97wneOKJJyrOW7FiRbBgwYKgtrY2AODKtGTJkmDhwoWh7VAqlYLLLrssmDdvXpBMJoMlS5YEjz/+eNDR0eHsNbF27drgox/9aNDW1hZEo1FXjo0bN7pj7rzzzuCwww4LotFoxVzE1ikIgmB0dDS49tprg1e96lVBNBoNmpubgw9+8IPB2rVrK46rVv6wOYeHh4eHx96NifxuxZ/+9KcAQFBbWxusW7duUtfeuHFj8OEPfzg47LDDgnQ6HWQymeDoo48O/vf//t/ByMiIO26y9inMDk3W5w+CILj88suD2bNnBzU1NQGA4Ne//nUQBFvt3pIlSyqOnSznUG3uFGbXPTw8pheRIDBJlzw8PDw8PDw8PDw8PDw8PDw8PDw8PDw8APic6B4eHh4eHh4eHh4eHh4eHh4eHh4eHh5V4Ul0Dw8PDw8PDw8PDw8PDw8PDw8PDw8PjyrwJLqHh4eHh4eHh4eHh4eHh4eHh4eHh4dHFewzJPoNN9yABQsWIJFI4Nhjj8Vvf/vbPV0kDw8PDw8Pj+3A228PDw8PD4+9D95+e3h4eHjsb9gnSPS7774bn/zkJ3HllVfij3/8I974xjfi1FNPxUsvvbSni+bh4eHh4eFRBd5+e3h4eHh47H3w9tvDw8PDY39EJAiCYE8XYmdx/PHH47WvfS1uvPFG99nhhx+Of/zHf8Q111yzB0vm4eHh4eHhUQ3efnt4eHh4eOx98Pbbw8PDw2N/RN2eLsDOolwu49FHH8WnP/3pis9POeUUPPzww6HnlEollEol9//Y2Bi6u7vR1NSESCSyS8vr4eHhsa8iCAL09/dj9uzZqKkJX+hULBZRLpd36j6xWAyJRGKnruGx5+Htt4eHh8fMwEy13zfccAO+8pWvYP369Vi4cCFWrFiBN77xjVWPX7VqFS699FI89dRTmD17Ni677DJccMEFFcfcc889uOqqq/DXv/4VBx10EL74xS/ijDPOCL3eNddcgyuuuAIXX3wxVqxYMely7+vw9tvDw8NjZmCm2u99GXs9id7Z2YnR0VG0trZWfN7a2ooNGzaEnnPNNddg+fLlu6N4Hh4eHvsd1q5di7lz5477vFgsYsGCBVXH5smira0Nzz//vDfkezm8/fbw8PCYWZhJ9pvpQm644Qa84Q1vwE033YRTTz0VTz/9NObPnz/u+Oeffx6nnXYazj//fHz/+9/H7373OyxduhQtLS0488wzAQCrV6/G2Wefjc9//vM444wzcO+99+I973kPHnroIRx//PEV11uzZg1uvvlmHH300TtV530R3n57eHh4zCzMJPu9r2OvJ9EJG8EOgqBqVPvyyy/HpZde6v7v7e0NnYx5eHh4eEwd2Ww29PNyuYwNGzbgpZdeQi6X26Fr9/X1Yf78+SiXy96I7yOYDvt9yimnYGxsDKVSCWNjYxgeHsbo6CgikQhisRhqa2uh2ev4fRAEGBsbc/cNggA1NTWIxWKIRqOora1FPB5HbW0tIpEIIpEIgiBAqVTCyMgISqUSCoUCRkZGEI/HUVdXh7q6OkSjUUSjUYyNjWF0dLTid01NjTu2XC5jaGjIlY3f895avrq6OtTW1ro68HMiGo2irq4OkUgE0WgUNTU1GB4edm0yOjrqyjA8PIyxsTEMDQ1hYGAAQRAgkUggFoshFoshl8shHo8jm82ivr4eNTU1rg3GxsZQLpcrzh8ZGcHQ0BCKxSJGRkbQ39+PkZERV7ba2lqk02nE43FEIhHU1W2dfpZKJRSLRdTW1iKfzyOZTLq6RiIRlEolDA4OuvqyzmwHtjfLV1dX554L+8PIyEhFPxgbG6soW01NDUZHR92xfH5U8/CZj4yMYGxsDHV1dYjFYu7zsH7MvsT2HhsbQ7FYxOjoqHtOLC/bghgZGcHo6GhFnWtqalx5tFzxeBzRaBSjo6PumbKfajsODw+7fspr8DnYd43X5D35vf5mm/PdYJsPDw+jr68P/f3948qqZWb78Scej7vxvFgsumsVCgUMDw8jmUwil8uhtrYWiUQC8Xi84n0vlUoYGhpy92Sb8vnwmerz4bvHtmZd8/k8EokEamtrEY1GXdn5DvX396NYLFb0R7YV+xbHsFgsVvE+K1hu3l/LxX5YW1vr2jkej1e8h+VyGaVSyfU1he0D6XQaqVTKnc92HhgYcH1/aGgIjzzyyIyy39dffz3OO+88fOxjHwMArFixAj//+c9x4403hqYL+da3voX58+c7xfjhhx+ORx55BF/96lcdib5ixQqcfPLJuPzyywFstSmrVq3CihUrcOedd7prDQwM4AMf+AC+/e1v4wtf+MIO1Xd/gPe/px8clznm7CgSiQTS6TRqa2vdWKJzEdrXsbGxcWPIVMHrq93gWDYZ0OaMjo5O+hyP7UPtbCQSqXhGbPORkRE3p2PfmApocznXmOh82jWdU+0K0H6zz7OP0z7vTdDnZuf2FjPJfu/r2OtJ9ObmZtTW1o6LrGzatGlcdJzgZNTDw8PDY/qxvWW5uVxuh424x76D6bTfSlaR5FUikuQ4QZKb3/P3yMhIBenFc0hk0hHh95FIBCMjI6itrXUEtJLkSl7TOaTDwe/r6uoc4aqkJbCNsARQUX4lVZVk5wSbhLEeUy6XxxEco6Oj7v7qtA8PDzsnuFwuVxDVLD/blGVneekAkwxmnVk3/ZvtxjLZNmAQg+RiJBIZRxjzOZKc1nLRYeO9eP8w4pqEpBLNdAxJQmjbK4nOY+iQ0lFj/YMgcPePxWKOEOUzIxHKsnPJLf9XUtRCz2P51GHmeUqgav20/7HN+by1nxH8jvXX/s2gD8ujfVDvSXJan4c+JyWR2F58t/g578PnnEqlKsrH91nfXb4LY2NjjpDX95/twefNcrKv8V58dy0JoH1Lz2dQjs9LgyM6Tmk7su9HIhEX4NI+wHZiO/B67I/armEkPo/htfj9TLHfO5IuZPXq1TjllFMqPnvb296GW265BcPDw4hGo1i9ejUuueSSccfYVC0XXngh3vGOd+Ctb32rJ9FDMN3+t44Tu4pYmyxsQHR3gmMug5M7Q3AzQMYxQOcSatc4Du1Mu2vgmOWdSrlVzOAxPQjrx2ovaKc12L8j7a9ij8key/5ixQjTCZ03hQWb9yaw3fRZhWGm2O/9AXs9iR6LxXDsscdi5cqVFfnsVq5cidNPP30PlszDw8PDIww7M5nZmydBHpWYTvut5Bf/J4lLdbQSgpbcA7aq0y2o1gLGk6okP+mYqnJUSSmea/su/yfhx89I5FKNyuuTYCNJbpVqdEj0/nV1dRXKLlXmAtuIZxKCqoLm5yTys9ksksmkCzLo/ZU4VhLT5mBkwMESqGx/1lnbjOVgGwwPD2NoaKhClU4iWNtPCXl1LJRM5vF0StgHSNhT9QzAqa55rCoE+dx5H5IfxWLRKe1JZFLJblcc8BlZ50jrxf9JArNN9Fh+Z1dZKEnCZ6dErPYjliOMeOVvrshg2anO5nNUMp7nKLGvgQ2Wh/dlWWKxmOunLAtVc6pki0ajSCQSFUEa7cvavtoOVvHJe5CQ1uCSElp2dYIGMGyQSD/T56jKMr4/9hp6vvYTS0Ro2+k1dEzk8ao4tNeZDKbDfvf19VV8Hkau7ki6kA0bNoQePzIygs7OTrS3t1c9Rq9511134bHHHsOaNWumVsH9CNNpv+1KL2DPEulalt0559RxkbZmZ8CxuKamBslk0tkdDZJy/N/Ze+3sNTi/8Zg+VAtm0I7rnHdn+rna1+1hdz9ntZE78z4rGb+7oQEHPrOdscHe/54e7PUkOgBceumlOOecc7Bo0SIsXrwYN998M1566aVxG8l4eHh4eOx5eCPuQUyX/Wa/INFEB1QVsduDTflir23/tgrfMAWIkufV1MRKwIURqNX+tpN6EmNhaUYmqr+WUQlbOh5WWR7WDkpeKqnIYIa2l4UqhPk/yXt7niW9+YzpmCkhqu0edj/+besymTGmGtEdRgKpAl/7gC2XPv+wvmAdz2pBmWqwfdEGkey1WJeJnEdte1VS6zVsfcOeh7UJ+m7Z+tlnr+cogU1oX+L/YWWz7WHfBf1Mj+H1daWDEui2v00WLJ8lF23ZJoL2PQs9f6KVDhOdN1XwvHnz5lV8fvXVV2PZsmWh59hyaZ+c7PH284muuXbtWlx88cV44IEH/JL17WBX+N82ULe/QvvtzhKcNk2Hrqzx2P+wPzz3iez2VDEVu72rMF1l8P739GGfINHPPvtsdHV14XOf+xzWr1+PI488Ej/96U/R0dGxp4vm4eHh4WHgjbgHMV32u1wuV5DZVK5STatKayX+lGCnwnsy4DUsQUUFrqpprbpMiTGWk2UhVHlNKNmsqh++E8wjbVM3aAoWVbGoIlbrpAQd80aTjKNSXFXZqsxnSgxeT/+nCk7LrasD+GxUWauKfn1ubA8uVyd5rmk8SIzZNCfavtq2LL8eq3nmw5S7YaS3qopjsZhT/ekqBu0/WoaJ+oLNMW9TmmibaX/hvWOxWGjAgPsDaJ+bSFVG9TRXBQwPD7u0P2EpTmzfZzvo82B76LOwbR2W/1NXM2ieep5HJSYDaxaWTOLffDbDw8Pu2dq0THb1BVdnMKUSUxVp8EQJLQUDVCyPVaGr0s+OYWHPR99J/qbivVrf350k+tq1ayuWlIel+NiRdCFtbW2hx9fV1aGpqWnCY3jNRx99FJs2bcKxxx7rvh8dHcVvfvMbfOMb33DpMTymz35zFYgGX4HxK2h2F3aWdNuZ+3IM5bjD8WBn3zuO8zpPsjbEw2NPQIO409UX2efZz3fkumEB7D0BXdGn4oEdKZf3v6cP1WUoexmWLl2KF154AaVSCY8++ije9KY37ekieXh4eHjMANxwww1YsGABEokEjj32WPz2t7+d8PhVq1bh2GOPRSKRwIEHHohvfetb44655557cMQRRyAej+OII47AvffeW/H9jTfeiKOPPtrln1u8eDF+9rOfVRwTBAGWLVuG2bNnI5lM4sQTT8RTTz218xXeyzAd9psOIrAtjzhTBCQSCZdT2JK2uqmgnqOpWZSEBcZPQtX5V1Wufh+26RavyVQUJGztfTRPMkEiT/MjDg8Pu00ZNfWE5nhWQprfq2LWqryZK5wbDw4NDWFwcNClKeGmnXTMSdbZ1CXMCU1SWRHWfqrstkRiWDswnYjWn20Tpra1bUrSkeVlHTT/N89TVZ+SHiSStYx8tny+JCuV+LZpVjT9CaH3CUvFYdXZ2r9Yb62XpvFhfnlNU6MKf/2c9+X1WW9bfy0Hy6CbwIapvnU1gb4zSvaTFLfX5/urG6Wyv9j3xN43TKkMYFy9bRvpD7BtTwL2c21vGzDQa9l2VxU7y6X9xT4jfR/s2MI20dzoNnDDZ6Mbr+5q0C7yp9o+F0wXoli5ciVOOOGE0OsuXrx43PEPPPAAFi1a5OpX7Rhe8y1veQuefPJJPP744+5n0aJF+MAHPoDHH3/cE+gG0+1/61isQefdicmu9NhV96ZdU7uws+AYzc28i8WiG/s9OeaxpzHd77l9j3aEQA9LB7gnoKn/wlbbeewZ7DMkuoeHh4fH3gF1UHbkZyq4++678clPfhJXXnkl/vjHP+KNb3wjTj31VLz00kuhxz///PM47bTT8MY3vhF//OMfccUVV+B//I//gXvuuccds3r1apx99tk455xz8Kc//QnnnHMO3vOe9+APf/iDO2bu3Ln48pe/jEceeQSPPPII3vzmN+P000+vIMmvu+46XH/99fjGN76BNWvWoK2tDSeffDL6+/un2KIeJJaUNFNy0uYIVjVWGKlFqIocCE/xoNdVx5+YiKhT8HwlvbaXtsCWxZLEWh9V7VqSNYwY4nW1PS0hqd9pWZTc1OtZUjsM1nGxba3L/fl9teuwLbRsLL8tu5KXGnQII31tnWzf0TKGEUFKfoddU3+rAiksRQxh+xyPCyNT7XmWjFeldTUSWX9bZbZtAy1vWDBJn7OS9GHvokKfka2D9gu9tgYhbLtp2+k9tcx6jPYTfafsqgftb2Hkt71PWLuEEfj2WfMa1RxuG2yZ7Nhk22d32e9LL70U//Zv/4Zbb70VzzzzDC655JKKdCGXX345PvShD7njL7jgArz44ou49NJL8cwzz+DWW2/FLbfcgn/5l39xxzBVy7XXXotnn30W1157LX7xi1/gk5/8JAAgm83iyCOPrPhJp9NoamrCkUceOaXye0wetp+Hvcf7E3YViR/2Tu7P7ewxM7Ar+vvOEuB7KpBGaPntqsMdLdfutN/7OvaJdC4eHh4eHnsPdsYYT/W866+/Hueddx4+9rGPAQBWrFiBn//857jxxhtxzTXXjDv+W9/6FubPn48VK1YAAA4//HA88sgj+OpXv4ozzzzTXePkk0/G5ZdfDmCrI79q1SqsWLECd955JwDgne98Z8V1v/jFL+LGG2/E73//eyxcuBBBEGDFihW48sor8a53vQsA8J3vfAetra2444478PGPf3xK9dzfwQ0OmdLBqthILFHRXFNTg+Hh4QqnnSkyqpF8NpUIyT4qHHktS24qERiWzkQ30mSaDKumnghM86CbCDLVhl6/rq4OqVSqQpnDlBNjY1s3UGX5VfHMpfYkW6litmlOVDmnhJ6myLApTCw5bYMdbD8lp/l8WX62JaFBAUvG1NRs3XCSz17bx+a0VkW0JXRI2pIc1fJrn1P1v32O7Gv8zWszWKHkpgYzqvVP3pfPhPdmahT+UM2t9QDgVImjo6Mol8uhKyj43tTW1lYQ51wFwfta0l77Cz/TNuV92U9tO0UiEadW5jthyWJtI20rtj9TGbG+QRC4Mun7rM9Gr62ktZZVAyWsK9uc74amldF+wLJpQI+rO/ReHJ/4bGwqKT4bvs9cURGPxyvqpCl4qgVxtofdab+3ly5k/fr1FQHxBQsW4Kc//SkuueQSfPOb38Ts2bPxr//6r852A8AJJ5yAu+66C5/5zGdw1VVX4aCDDsLdd9+N448/fofq5DE9sMSQBon3N0ynAn2y198f23lvwvZEA3szrHBgurAz/XtPjz12/qxB9J21wbvLfu/r8CS6h4eHh8duxe4y4uVyGY8++ig+/elPV3x+yimn4OGHHw49Z/Xq1TjllFMqPnvb296GW265xeWbXr16NS655JJxx5B4txgdHcUPfvADFAoFLF68GMBWxfuGDRsq7hWPx7FkyRI8/PDDnkSfIlQRa1MaaI5oJcpJntk84fo9rwFUkqDaD5XItSppe+z21NdKirG8VlFbTeWu11dCn+fwmvxcyV5bNz2f3zHfO48Py93NczWfa7V2qKbu5vc2jYVVFW1Ppa/3pAOihCjbRclqqyjWNgqDLRvJTj1Xr1eNtNR+x//tWGeJfBuMCLu2loHn6UavYep4Pld7f1V723Q2umxaVzXYdrD9XOtZrR+zP2kb6/XtKhHbRjxHyXNe07ZVWPux3vousu+oelzLpEEWbaOwOtr+oc9S66EpfPTd07QvGqTQfmjLou/qVIm63e2EL126FEuXLg397vbbbx/32ZIlS/DYY49NeM2zzjoLZ5111qTL8OCDD076WI8dh7V1+zt25P2c6vU9PPYkdnWwTOc+exvC5vo721aeRJ8+eBLdw8PDw2OvQ19fX8X/zGWt6OzsxOjo6LhNyFpbW8dtLEZs2LAh9PiRkRF0dnaivb296jH2mk8++SQWL16MYrGITCaDe++9F0cccYS7D8+z13nxxRcnqrpHFSi5B1Qqfa0jqqpvnqskq5LxlgTU+4VNSFXFrLDqYlWYkNTTVBuxWMwpTxkgUOLLkmgsd7WcvWwDqmX5GcukOattyg+qaUngheV6VvJSScCwzQ+rQVOw8H+qxan4r6urc20SBIFTTetzsrnftR4anCA5GUaS2xQm+vxYvmg06tS+fCaaIobltOlAlDC36YW4qoKqYV6Pbc0862wLBfu6BgMsMcV+wmeq5dX3IawP66aovJdNP6TKc+1LqvQHKh1E9nMtI+9nN9jUuujqB/3NMoblQteNdmOxWIUqXvtcmALMbsypq0h4jirebcoVfTY6vugqF5uqhd9r2/B+3OdB08ros2DAhOrzsbExlMtlt0qFz0JXJ3h4eOwYwgjvnSGebKBzOq7psWuwLyvFdyV2ZXvt7c/CrhjZ0+p4j0p4Et3Dw8PDY7diOiLh8+bNq/j86quvxrJly0LPsU7I9tQ9YcfbzydzzUMPPRSPP/44enp6cM899+Dcc8/FqlWrHJG+I2XzCIeSXfxfVaJWBaufk7RUlTYJMCWclawOU7YqgatpQmwZgfEEIs8jUczf5XK5Qn1Lgk4JMKY2Ccu3rE64/k0CnMSakqGW8GUZleQjwa/pSrb3XGxqFw0gRCIRt6Er7xEEQUW6jng87tKIAHApaJhSRJ8x02xY0pMgcUpYFXg1ZT6P5TNLpVJIpVIViuhisYhCoeDS8pRKJdTV1SGRSIxTMzOYo32TZeP55XLZ9Se2k6bpYKBIiVENgljiWQMCuhEqny8J1draWiQSiYpy2efHclkS3eaUr7axrvYvvocaVIrH4+OCOXwGANxz1/5p1ddWmc7yMgBSV1fn+hCP0WvwPkwRw2ux7lo/lqXaigP7vNU51rRIrJf2FSX5WQ+2jz531k+DDNxwl/1kdHS0YhNjpuOZDLySzWN/w2TUrGHj2nSQXnbe6Ym0mQcb7NgVz8c/86ljb35XdlXZvf2ePngS3cPDw8Njt2I6jPjatWuRy+Xc51aFDgDNzc2ora0dpxDftGnTOAU40dbWFnp8XV0dmpqaJjzGXjMWi+Hggw8GACxatAhr1qzB1772Ndx0001oa2sDsFWR3t7ePqmyeVSHdV5tWgQiLJ2LKlzt8STSwtJbhN1fyeywFCRh51jnS89R8lIJZHuuqsF5Hf1NsB42qMB0FVYlq+Qd39tq9atWH4UlqAE4Ml6DEZqKRq9jVwRoO7H+VIOHpdiw51py3JY1TFmvx4Upi3m8rlTQHz3X9g8lfLUM9pnZ+1lof7QBAVVqh/XpiZ5n2LF2RUTYCg6tH8/TAIumGrHto2lk9Mem6NFrh9XBtv1k66hlCwtOaduGtY8G16q9I1bxbtO12BQ2tp23d029dlg5NYiyPXgn3MNjPKoJICZDwE/mul5c4eHhsbPw9nv64El0Dw8PD4/diukw4rlcroJED0MsFsOxxx6LlStX4owzznCfr1y5EqeffnroOYsXL8aPfvSjis8eeOABLFq0yKmDFy9ejJUrV1bkRX/ggQdwwgknbLfspVIJwNYN0Nra2rBy5Uq85jWvAbBVdbxq1Spce+21E17HozrYP8I2sbSKX5KtuvGjqpzHxsYqNh5U0pKkGP9WBSlBIkxV0VQLM42EvgdMtaBK6rq6OqTTaYyNbd3Qk5uAUkEOVJJs/FuVrCTvqBa2pCNVvzzWpi7RtiWRqO3E45Qk1OOrkdQ8hgQeN0xUhSzbUcE2HRsbG6dUZhuyHbkJKlX+qvLWfhIE21KbKGxwhAjLe65EB9uQwQltFw2MhJHJ2ofsddnv2D+0DOwTrB/7gm13qpJZL143Fou5uqnCmmXmvfm5vmvcxHJ0dBTxeLxiBYG2s7YBn5VVtcdiMZemhAEVprbhc6JS3gZZbLBCN8S1JLuqOsP6JsvHv1lObt6pz1pXJ7DtNMCgKzb4rmm6GdZpdHQUxWIRw8PDTi1vV51QPW+fD+vPvq9twRQurL/dUFXfie3BO+Ee+xsm02/5Hun4Yu1YtRUqk7mmrlKywVaPPQsb+PbwmKnw9nv64El0Dw8PD499FpdeeinOOeccLFq0CIsXL8bNN9+Ml156CRdccAEA4PLLL8crr7yC7373uwCACy64AN/4xjdw6aWX4vzzz8fq1atxyy234M4773TXvPjii/GmN70J1157LU4//XTcd999+MUvfoGHHnrIHXPFFVfg1FNPxbx589Df34+77roLDz74IO6//34AW4mMT37yk/jSl76EQw45BIcccgi+9KUvIZVK4f3vf/9ubKF9A9VyYCuY4kAdXJJbE6k2SViRQAMQ6ihbEl1JeP6v5bPqdlXWaooIJcpqamoc2aakIL/jZyT0rPKcP6ooJ+EejUYrCEebHkavzZzxti1UUV4N1uFU8o73YFmUfFXi2QY0SK5q2XkOSXT+JmFLcoJ1Yr14Tba5JbqVwNRUNkp22+djoXVhvTXnvN7b1lnbWlOIWGhfZluHBXt4L5tuxdYvLOWMqqLZ1zVwYYMKbHt+xnQyGhjQtEZaF5Lo7P+sk119YculZbDq/bDzLTnOv9l+GsRR8l433rUEeljf0CACn8nIyIgLAvG91ZUoDMDZFFNKiGuAi9A203bW9vU50T08dg4cI6yt4ndTJdHtNe0qKo+ZA/88PDz2L4zfScnDw8PDw2MXwi7Ln+rPVHD22WdjxYoV+NznPodjjjkGv/nNb/DTn/4UHR0dAID169fjpZdecscvWLAAP/3pT/Hggw/imGOOwec//3n867/+K84880x3zAknnIC77roLt912G44++mjcfvvtuPvuu3H88ce7YzZu3IhzzjkHhx56KN7ylrfgD3/4A+6//36cfPLJ7pjLLrsMn/zkJ7F06VIsWrQIr7zyCh544AFks9kdbdr9FiS8lWxSkFwiQcWN9jQfueZ3VtKL51FJroSXEs1h0O9UnazX5I+S7GGbGCrCSFUlyllnKngt8ci62g0JY7GY2zSUZKhV1Nk20bKrAlivSdJP01Vo0MAGJ/i3tpkulw8bCyxpXC29hSUnt5cOQzfR1MCGDdwMDw87UpTX0naw5Leer32F97OpN7QvhaXbmai+tr1sjnLN7021MwMZ2pf4LML6vPY/1tf2PyXTWe6wFQwa1NB3Tt9XPY/Ha15x3kvJYw0ShPUZ7aNhQTXb1tqXbZBB29Qqvm15tZ/bPqKrDyxBr89CgwB2HLSbjto2nwq5tzvtt4fH3oiwsXdn+74NwIfNczw8PKYPOj/cV7C77fcNN9yABQsWIJFI4Nhjj8Vvf/vbCY9ftWoVjj32WCQSCRx44IH41re+Ne6Ye+65B0cccQTi8TiOOOII3HvvvRXf33jjjTj66KPdivXFixfjZz/7WcUxH/7wh8f5T69//eunVDevRPfw8PDw2K3YGYdiR85bunQpli5dGvrd7bffPu6zJUuW4LHHHpvwmmeddRbOOuusqt/fcsst2y1XJBLBsmXLsKzKhqgekwdTFZCsJdGkKRmYKqGmpgaJRMKRhHYDRCWUgiBAsVgcpwTjfbhhpJKmBAk//lbCfHh4uEJ1q2QlyWOW3yrQmE5CSUKbNsQSa6puV9U5j2UaFRKYLEO5XHb1VyJ1cHAQkUgEiUQCyWTSEfOaOobX4HkDAwMVgQHWVYlNVYCzbGwrJZ5JjFqVdTVCWUlQS9rb/1lehRLDJJlZXtZJU3NoH9H2r6mpcRta6jPXdhoZGUGpVKogWbX92c9UqW9XN2jAREl6wm4GW1NT48qkpK8lfC1sGhC2UzQade8OSXPtixpsITRoxb4TtrqAAR4lkIIgcO+5ppthuzIVEp+fpnCy74ol1cMcSFV9B0FQEWxSspopchi0U/W5EufcgJbXZgBLr8MUOTZ4wDJaAp9ltil5NMimbTRZJfrutt8eHnsb7OoW+/eOXpM2R4OUHPc8PDymB3YViZ0T7M3Ynfb77rvvxic/+UnccMMNeMMb3oCbbroJp556Kp5++mnMnz9/3PHPP/88TjvtNJx//vn4/ve/j9/97ndYunQpWlpanJBt9erVOPvss/H5z38eZ5xxBu6991685z3vwUMPPeSEbHPnzsWXv/xltyfZd77zHZx++un44x//iIULF7r7vf3tb8dtt93m/ud8bbLwJLqHh4eHx26Fd8I9phs6wdWJr1Uuk0RlOhK77FqJOTqpJJdIFPN8uxkmz1FUU3Io+WUJTT3Xpkexk/uamhp3LQ0cKAlvVbVKplnluqZT0Q0OrQPBe1pS3JL2JFX5mabH0DJXU/yQyA1rIy2vfhb2HHhPliGsTGHXsdeyyhVeV9XPuimk9ouw1C+WZFGy3I6T2s+qlVf7e7U2smmEgG2kvP62OXzts7PtpHXT8/X94fdso2pKSl2NoWrtailSlAy219F62yBBWBtbUt22oyXv2T/tOGL7Na8RthrDrnawKyU0iKMIa3+9ryXStfxKDEzFJnv77eExOezMuxIGjoH84Zjh3ysPj+mBne/ta9id9vv666/Heeedh4997GMAgBUrVuDnP/85brzxRlxzzTXjjv/Wt76F+fPnY8WKFQCAww8/HI888gi++tWvOhJ9xYoVOPnkk3H55ZcD2JqSddWqVVixYoVLu/rOd76z4rpf/OIXceONN+L3v/99BYkej8fR1tY2pTopPInu4eHh4eHhsVdDU2OQ1NIc6KryBbYpSS0hSALNbvoZRmBSsV0qlSrIa2C8QprEYZgqmJuN6mdUpcbjcQDj82NreZXs5rFabiq5h4aGnOKcajZVsFqSEthGpqtyeHR0FKVSyV2b6n4toyqS6ehTgW1T1YTlr2aQQwlKrVOYclhTWChhattcVedKVNbW1jrSlqphzYdPdbSWlcpyJYxra2udqtuqfbXvhC3J1zZVwkTblH2G9eBvfZ68VrXN7PSd0D6qgQZNvcJztJyEBkv0fdO+xWfOz20qGRuUYB8IS2lkAz/6buv12Sb8bVd82HrY99s605bwZ5/mahKq41UtzvGmVCq594/pafT6dtUC309usMrNVjUIoP3Bpn3R8S0IAreyQdtX+zlTM3l4eEwvwlTpOwK1YxqA2xUEuh0nZyJmQvDApury2Ddg5yK7qp+FiTL03pPd7Hsmolwu49FHH8WnP/3pis9POeUUPPzww6HnrF69GqecckrFZ29729twyy23YHh4GNFoFKtXr8Yll1wy7hgS7xajo6P4wQ9+gEKhgMWLF1d89+CDD2LWrFmor6/HkiVL8MUvfhGzZs2adB09ie7h4eHhsVvhlWwe0w2SnTbdhW5SyDQbwHgHTM/l96r8VDJUVdSax1iva1WnvIaS7HSArYKcaSxGR0eRSCQcqR+LxSpSx/B6JH7ZBiwHy0dyjGlCmCqC5eD1lHDWa/FevN7w8LAj5crlsiOb2eaa0kLV7wwIKIlo01PwnkoyWgKT7abtxWeuhK5VOpNstalxlFTn9RkkCIKgYpNLSxCT6NRnGovFkEqlXOCEfYBtxf+DIHApO5QgKZfLKBQKCIIAyWSyIr+2prPh+dp+lkRXQlnbgVD1vFVSaz9m+5Jo19QCfG4aeFJyh22mqVk07Y/+re0YlgedfYnBHCXQufEon7El0PmcNDWNltEGqCYi0XU1A1CZYoZ1UrKrVCq5Z1oqlVw9lBhn+XhflplBGbvUWAMQYX1f1e5sH302TDGjaaYmA2+/PTwmh+lUoqvd0ZRXuwLVAqYzBTpWE3uinLRFYauXPPZO6CquXUli24C4FcroXkDTiemw3319fRWfx+NxN78nOjs7MTo6itbW1orPW1tbsWHDhtDrb9iwIfT4kZERdHZ2or29veox9ppPPvkkFi9ejGKxiEwmg3vvvRdHHHGE+/7UU0/Fu9/9bnR0dOD555/HVVddhTe/+c149NFHx9WlGjyJ7uHhMSMmIx77D7wT7rErUG3ppSX67OeWrFU1ri6b5jWIMKLN3m+yy0GVmNfrk8RUtZOdWKuqNqycei0qpTXPdVhKB/uO2om+vbdNURGm8FUHQZei2/ayxK2tx2QQVs4w1Q+Ps6pv264kxG06kWoII5PDYMtkFdb6HLRsumrAtulE96pWRlX9a2CFsIGOsGvZvjPROG/fnR2Fvae2C8tNgpntpMdoIEuvR1Qro125wWP1+Wgb6Dumfcim/bH30PfObkRrVymE9XndxDXsuUykxK8Gb789PPYc9neyVu2kDRjv7nLY+cSOXMNif362MwW74xnY/hM2998VmA77PW/evIrPr776aiyrsrdX2Fxxovel2jw1zNea6JqHHnooHn/8cfT09OCee+7Bueeei1WrVjki/eyzz3bHHnnkkVi0aBE6Ojrwk5/8BO9617uqlk/hSXQPj/0UHLTDyIAwIsTDY7rgnXCP6YamQCCUIONYl0wmK85Tkk1Tc9hUEnZZp6Y44fVVKRxGaFNRSyLNXlvzHuv4q+UIU8Zw/K6mmuG5VKJSXU3lLu+lhDJVwywXCUOqy5WU5DWotOa9eF41kp/XoxpXSV2rMNfUIjoGKBkaBqqJIpGIS41BZbJNKZJIJNy1rLpby071uFUraf8ZGBgYVxbdhFIV+PxhuhH2Yd6TqwxisZj7rSst9DpUGNvNRllu9hNLrmpwRjfnZXnCVM+8liqueS32H21/9h19XvxeyXu9vqqjeZw+f12Joe8kn0UqlXIqca4oUMU7+6y2hUL7l1Xka//g6g5VkGnf0XKxn2nf19UJPJYrGsICASSSbB/SPkP1OzdU5jvJ6+lz48qRycDbbw+PPYvtBSmn4/ozDWFprDRoqfOPXQk7BnPVls5hJnsdXfGnc8u9OY3HrkC1QMWueN4qWpluWPW57cdhge/pxnTY77Vr1yKXy7nPw5Tbzc3NqK2tHacQ37Rp0zglOdHW1hZ6fF1dHZqamiY8xl4zFou5jUUXLVqENWvW4Gtf+xpuuumm0Hu3t7ejo6MDf/7zn0O/D4Mn0T089kOEOWLAeFWXfubh4eExk6GqZSXnOIYpOccxzhJRACpITCBc1WxTvygpDGwjYhWqcOc5loSlY8Wc4DwPgCNHWeawcoWN15awBLbmK7QTdV6TJCgdQ1XOspxhamSSmZojXBWwlohkW2ub8bemDFFbpO2ubanpPbSt9Rkp6WzTibBMLI+mttFyBUHlZq/qxOlmmsxpr2S8rb8+Q+072ke1LTRHNq+pThnBXNdaPps2R6+rxCvbiGBbaMBdV2fYa0zk1Op5SrrbfqTzEr4LNohkFd9hxAMDJ/F4vIIkZn3YX7U9rDJb1euq0A9bscJ+EbYMW/sjgyXcI4BlUeeZz5s5121f0WCDTTPDH6YF4vvMMSWRSIzb2NQGID08PGYudrVftiOk8K6Gjntqi4BtwdTdQaIDE6uIp3I+7b71uT2JPh465wF27TuwK6+t8xv2Yw2ghM1FZhpyuVwFiR6GWCyGY489FitXrsQZZ5zhPl+5ciVOP/300HMWL16MH/3oRxWfPfDAA1i0aJETQSxevBgrV66syIv+wAMP4IQTTpiwPEEQuHl5GLq6urB27Vq0t7dPeB2FnzF5eITAGmklO9ThnMmDXBiUJKJqik4asM1wMH/m7p6YeOwf8Eo2j10BS3qqCnYiJ8cSZ8B4VXhYvnQl1ax62qZTASpJaIWOy9yIUwm/ailUlPwmEcfPdcxW1TDLynZRbI8EVXuoP/q9quJJ+qsNIdHMclp1Oh0KdZT4PR1oJf+ts6nkq6q1aes0aKKkMp8pVd/cAFXbRI9VlXY0Gq14FuVy2ZU9zBkOU39rsKGmZmt+bAYkWB8N1PB/rQPbRsup+d6tem57z9r+b4Mo+p0l0Uka671sChT9XgmRsPLbPqvvugah+FvbSB1Wgm2tqnybJ92S/HotVYWHrebTABwDL1o/u6GsBha290y0rXgu78nc+/qb19Wxis+C7+ZU5njefnvMVOwOgm1/we5uQx1nrf9dbQUOy0lxAcfbyZbdjsPA1Dd0nAqJbm1GNWGHVacr9se+rXOBXbkCY1dhoqCLFUvsjlUmu8t+X3rppTjnnHOwaNEiLF68GDfffDNeeuklXHDBBQCAyy+/HK+88gq++93vAgAuuOACfOMb38Cll16K888/H6tXr8Ytt9yCO++8013z4osvxpve9CZce+21OP3003HffffhF7/4BR566CF3zBVXXIFTTz0V8+bNQ39/P+666y48+OCDuP/++wEAAwMDWLZsGc4880y0t7fjhRdewBVXXIHm5uYKwn978CS6h4eAg1ssFkM6nXab0jFSXCqV3OZsg4ODMz5aaMHJSDwed8uE7SZzACo2jhscHKwgBTw8dhbeCffYFdDx2BLJAJyjpU4MSXIluEi4UgVLx4bXBbYpUXlf/VudPQslX21KBZJ+vFaYMtSSkUroA6jYcEyPUdCWqePJ9uH3YSpaVdxSTaspKFTNys0TlaS0ynarfmYKjkgkglKpVEH0aR2U/FMHmoRzNBpFIpFwm7HqUlMlqfWatPv62cjICIrFIorFYsWz077ClCF8fuoMadCd9+S5VAXbfhQEW9OppFIpVw6eS2KYdVJVsj4z5r3n/+q483p8jvrOaM73MNUzgxDaZrW1te5Z6OaUJI7DlPPaxrr5pyWja2pqXD2Hh4fdPIT9Th1OHs9r8YfvsaZzoUBA05zo+drP+JNIJNymvkp86BhjV1zocQy0WBKI53BeaUl5Xs8+O/te6+agAwMDFfNUS+KTWC+XyxgcHAyt+0Tw9ttjJsLaFt/X9i5w3IvFYkgmk87u6cbdhK6E4ooizhP49/ZAX9jOD8rlMoaGhibsPxzLd4RA102oOS7rvNWO/buaVN0bwLkEsG1j+r2pPaxYgH2Bz1XrtDtWmewu+3322Wejq6sLn/vc57B+/XoceeSR+OlPf4qOjg4AwPr16/HSSy+54xcsWICf/vSnuOSSS/DNb34Ts2fPxr/+67/izDPPdMeccMIJuOuuu/CZz3wGV111FQ466CDcfffdOP74490xGzduxDnnnIP169cjn8/j6KOPxv3334+TTz4ZwNb+9OSTT+K73/0uenp60N7ejpNOOgl33303stnspOvnSXQPj/8/rCOfSCScwxqLxRw5QuNMlc9UVTxh97XOvA5UVnW4M/fhb3WI6Zzb+7C+6qR7eEwXfH/y2FVQ54OEMn8DlcrvMOeFx6gSSq8LhG+CaSenEzlXNr2GVXarY6VQW2PLomS3krdh7WPrYsuvynELqwqrprbWzUsJ1issyGAVziyTBhWs4lmJan1eJGWVROexYeozq3KzqVX0b9pQq3hnve3/NqCjTnGYgxyWn9o6YZZwVsdb5xT2t62vnX/oO1LtHHtPrSvLELbSgcdaAtgq0BXV1O96H207qzzXfmbfKSXJdXzQ6ysZp3NEfW95rH2OdizQPqZtyXpoUCus7a0iU6EBK64CUZW5tgPfR1Xgc9XNZOHtt8dMw1QITY+ZBZ3/6L4fSnLbeQbJR1VwT5XUVnKW1+E4bG22PXei/6vdT+9bzRbYoLOt8/7oj+/t77YVXxATiX52JXZn/1m6dCmWLl0a+t3tt98+7rMlS5bgsccem/CaZ511Fs4666yq399yyy0Tnp9MJvHzn/98wmMmA0+ie+z3YFQ4Ho9j9uzZyOfzyGQyaGpqQjwer1CiF4tFjIyMoK+vD5s2bUKxWMTmzZvR1dVVobjbHtTJ5/3q6uocca8ERH9/PwYHBzE8POwURjsCRsA5aWC9NCetRW1trVMsqrLOw8PDYyYhHo9XqJM4bhFhJLWqv61TA2yb7KrCCcA4Ik5B4trmbuZ3On6TuFJVCr+3pCnvq6plgopiVTarwjUsEKtktJLpljTXQIR+Zo+lgow2xuab1t9KZGtqMX6mubBtWbR9ACCdTrtrpFIp54AnEgnU1NQ4BbFdacD/h4aG3AozTTWjyl5dXUDHPplMIhaLIZPJIJvNVjzndDqNZDKJkZERlMtlp6BWQrMaeB/OOZSs1WXmtNlMmWOvQdU1/6+mZmNb6PMlCctysEy6CeVETr5VAto0M3xeuqKAbc7jwwJA9jh9RlTws09xfqNKeq1fqVRyRLPNYa5BFps7n++CdXrtxqr2++HhYdemYStE9LnwXpyXajofJRO0/Xj9crmMYrGIcrns3kF9bzSApqtsdG8AD4+9FXw3qu1b4TGzkEgkEI/HUVdXh3Q67YLetOvxeNyR3ISOXQMDA261NAO3HPuq+ao6rtbX1zvlKcfYYrGIwcFBt1qH4yjnlDYAbAPS1e6r4gHdmFyDtErsW1uie2bsT9AAQzXhwUyEzjuqpQ1SMYjH3gdPonvs9+By7Hw+j4ULF2LOnDloaGjA3LlznXFnnloa0c7OTrz44osYGBjAf/3Xf6FQKDhnZjKDIY1kLBZDW1sb5syZg1gshvr6eiQSCZeTvFQqYd26dejs7EShUHDO/o6ACntOTLjcPSwnOlAZpeckwg/0HtMBvxzcY7rBtA8cg5lOxJLNqlamU2JzWgOVCmRulGlJaQu7ikfvC2AcuciNT5nyQtNhcKUQCVGSmFoOnm8Jg2rqWA0SaNvQuWMb2iCBOodhDp+Wk+RtmK3Q85WcVPJTgx1K6rG86ojW1NQgmUwim82irq4OmUzGBaIZVEkmk45EtwrusbEx9PT0oLe3d1yQRQlaEuwkM0meR6NRZLNZ5HK5iuc4NDSETCaDkZERDA4OupQhAwMDGB4erkoOs115H0uiqwPPtiEZrM8EgCMe+D+JcVWaW3W3OnTlcrniGbHP6XOvFgzQfqzlInHA1W/avrYsJNItsatpY8bGxhx5oqsCqF60RDr7MOdWbDsSJSyH5qFnP+J1WD9dAWHrrM+M/V2DKWGpazTopnXgPM2uiOE5nJOSRGcKonK5PG4+qml3rMJ+IjGFhbffHjMRYUSmTfnkMXMQiUSQSCSQz+cRjUbR3Nzs7DWFZbqSjM+WwenR0VF0dXWhp6enIi1XEGxNVzcRiU773dTU5O7PsVZJ9IGBARdo7+/vH7dht9osqyivBiXRNUjPa3AsVhLdriraX/qzvs8aUNgbAgn6nDVorvVgf9qd8PZ7+uBJdI/9Fhyck8kk8vm8+6mvr0cul0MqlXIkOkkKKtUymQzy+TxqamqQz+eRy+UcwV2NaFbHM51OI5/PIx6Po7m5GQ0NDYhGo6ivr0c8HnckOlVFQRAgkUigWCwiGo2iXC5POEnYXp2tioxGSp06G13fm5dSecwseCPuMd2walOSdCSngUqSmwSdEtskKqnMterlsHGQRFm1NCSqYFfiyqabqfaZVXvztyrqtZxh6SA0FzzLZtU9+re+Y5aQ1zLaMoWpkvUYhbU19hp8BhrUUGKWhDidXxLbVJgxCEElm1VVs3wMkgNwG4tasB50irinCBXvvCd/s81JOtfW1jrFeBgpbNXNE41xtk3D0pyEHV9Nha7XYXkmc65+Hwarsq6muta+b4M11eYlYfdSR1V/+K5r6hLdbFPJCbY9yWRe025opj8TERralva9CXs3WH67QkXbTQkc9in2Nc4bVZ2v5LxtO223MKVcNXj77TETsbeS5ZMhXvcl6LjDVV3xeByZTMap0bknmeZEZztxXjc6OursL7BthVO1AC8/V/udSqWc6j2ZTFYEYznf4BxBlemav3pn+p0l4W07WexMH6lmg2c6dM6s/+8tCLPhe1JN7+339MGT6B77JdQBX7BgAY444ghks1kceuihaGlpccZVCQk6V1QuptNplEolxONx1NfXo6enB0888QQ2b94c6gjX1dU54nzBggU46qijkE6n0dDQgGw2W6EKV4fukEMOQbFYRF9fH/7617+ir68Pa9euxV//+leUy+UpDWrqmFmHSSdyYdF1q/Dw8NhReCPusStAZ4djGFf1UFVE4kxBcpYkKNVIuvEnidAwstmmLOHnJOeUvNbVPJq6IiwHJ1VVdkNCJc95vpLAqkhl+WhPNM+3EoC8L9WrVOPayb8q4XlvYntEOf9XNY5+ZhXttryjo6NuxRdTn8ViMbS0tKC1tRXxeBwNDQ1IpVIV44uq2zUwwTagPacquaamBsPDwxX58pkzOpPJIJVKoaWlBfPnz3fLzul8k0TnxmRUGlEx3N3djWKxiEKhgN7eXqcatsoqXY6uuaqtLa6trXUEhCrNlYznD4PympKFfYD93L4XSu7zOJ7HeoWtzNA2137OwIYqyVVdZze2VRJdy6wguaHkiQofisWiuzb7Lt+PcrmMQqFQsdFobW2t61sMmLB9KFxgmfmeEDbdkx6rAgt9h5VMYhvrfjy8ji7l53OkyGJsbMypJbkZvG7Gq4GSSCRSscGttuNk4e23x66A+iXbCyaGQe1x2LVnUt8LC4KGzU/2RTD1WjQaRWtrK2bPno1EIoH29nbnCzPwrfuDqL3QFUixWAxDQ0MYGRlx41ihUKiY29B+c84wd+5cJBIJl85FSXRuyjw2NoZisYhSqeRStxaLRfT29mLLli0YHh523+tYXw3a/9jXdTN5Xd3E/q/B3p3pH7oKT8fvmZ6ilWXTtG972zti52N7enWMt9/TB0+ie+yXUOPc0tKCgw8+GNls1qVy2Z7qmlFzGltg627Af/nLX6qSzTU1NUilUkilUpgzZw6OPvpo55TbnG8WQRCgp6cHtbW16O7uRqlUwgsvvDCliWE1ZXkYmW4JG69C9/DwmOkgAcu/6+rqXBoFTVWhzlUYKR2WY1qV7kpU6jHqAOlGgUqiK/muG/pZBbaO65pKQnMsskwkvFWNSyW+OmRKJpNkVMePzprmKNe2sOlorA2ZjJJVyWx9BraNba562loNeDCY3dDQgEQi4ZaD6zJZtonWVdOlqNqMQRemAeF3JHkZXM/lcmhpaUEikajIr8qc8MPDw0gmkxUOU7FYdPlWI5EIBgYGXHszzYcSSEo+h9lfPkvOHTRVS1g/C0vnYlXQCqv+IgGuJHjY3EOJMD5rTVFk+5v+P9FcxCrVCX0PNBDDZ85+wNV7Cn6mwQcNELEfMDCi6QL4PvFeNhCmz17ryoAAf2tb6Z41+s7r+aOjoy51gSV7isXiuNy9LKOmx7H5z8PedQ+P3Q0dO3aE6Kl2jgaTZgoJpLZT5xX7AzRdVS6XQ1NTE1KpFFpbW5HL5catpuNcRffmYhCXY3dtbS1SqZQLTNsUXjU1NS7gXF9fj9bWVpcKjkr0VCpVsTqRgdPh4WEMDg4iEok4+63/2znlZKEBX7XZNgir+23saP/lGK8kupZ5prwX1TBRgGxvgM7DdyRA6DEz4Ul0j/0Smj81l8shl8shnU6PU99NBE74UqkUGhoaMDw87AyypmHR4+bOnYvGxka0tbU5tdNkiAc68PX19airq0NnZydmzZqFQqHgcrZtDzRCqsqi8baTS7vkWQ3AZNsGgHPydaMsq27kJIhkwp6O0nrsevhIuMd0g+phoJLUpaKTCmMlqUl8EVQ4qbNhV+FYUk/TuSgpRjLWqo+oEKXjZ8d/dcQ44eaGhOoYKhGmuYzplKuSld9r3mO9FslBva8uV7blsm2s1+P5YQ6P5ofUcy2xqoS/BevHNC2JRMIFovV4lp3kKlCZ1oY/mm81Ho+jXC478pRLyRn8zmazzsYrwaplU4WZ9ocgCJDNZt09+vv7K/JyW/C6YcSSEgpKsocpndiOVkFtVz7YZ8nrUhXNPLIk0ZWc1qCMEh3quNt3U+9pc3GHken6TrKuwPj860o2c17B33Y/GQ0oaN/kc9V21z6q7yKvQ0LbkikqRNBAEa9PBbp9dzTwxt8aDGF97FxNVw2wXiToeS87XkwV3n577ArYfqXvxHRdf6ZAx7GZVK5dDV1tk0gkkE6nkclk3EbdNoe0jsOck2j6PW7gHYlsTc1aLpddihfauLGxMSQSCWSzWaRSKXc/Hsf7ck8XCgk4f+C8sb6+3u030dfX5xTquv/OZJ4l7QXtM1Bpu/VaOt+cTNsC2+Z5GpjVebCSuQxGqPBAV0x6f3zHoXMBbcc93Zbefk8fPInusV8ikUigtbUVmUwGs2fPxty5cxGLxZBMJid9DRr4xsZGNyFoa2vDwMAABgYG3HIzGrSGhgYce+yxWLBgAbLZLPL5/JTyUCaTSXR0dDiD19/fj76+Pvztb3+bFIlOIzk2NubUcmFRaBp4OmpMDzCVKLsqJNk+VPDp8vTR0VH09fW5jVy6u7vdfffmqLPHxPBG3GO6wTGQTgMdIjpjVBdxLCP5p44Pxx4S7jxfFa5hZKCmxiCUfCZJqkpW/lZi0J6vy5b1vJqamgpyU+0Iy0InUsuppK+q8yy5SkdVnVV7f/1hm2gKGTpnhBKzXDHAe9v2UcLPqrIZmE2n00gkEmhsbERjY2NFgMAqihlMUCKUoBM/ODiIvr4+1+bcjBTYtvKsra0N9fX1yOfzToWu7ajtYYPxJOPHxramqaEDzoC7QtWJlmBVwladZOvAk4hlu6gzp0Fu+0yBrfMjkhpMkRONRhGLxSpU2Uwdwo06Y7FYBclr66R90QaztH/Z89i2GrAgga/BdxIHVJxTtW3JFyW/eV0GRTRVkAYfdBWGkj0sS6lUwsDAQEUdlCTnffnO8jf7mSrd9T2yYxOVlvq/DRLYoJnWifVm+YipiCS8/fbYFeA7qmPpdChQZ2Kf0/nBdAcLZio4llMNnkql0NzcjNbWVhektUFFu1m5Cq5o4+LxOAqFAvr7+918qlAoVGyunE6n0dbW5pTvjY2NzufneM7NTJXspC86PDyMVCqFcrmMWCzm1OmlUsnZocmkRuE1y+VyaCBW7wls86W3d10NnKbTaScsqK+vd2O/DSyMjo66NDi0X2NjlanBwubJHpODzm2BmfN+e/s9ffAkusd+CSrZbDR6qqocKsQBuKVi8XjcLfkCtjnEsVgM+Xwezc3N45ywyYBRdyra8vk8giDYbioYhUa6NT+nJW9U4aQGdKIBVJVWnPhwszfmjW1sbKwgpKiwpHEfGhqqcNL90qd9E96Ie0w3OGZxc0hVNFm1Lr+nw67Oj6p0+DkdM82TbWHVqYQu9VUFsFWuTwSbK5pqYJJy6ogTvJemLrFLpFlfVTsTqrq1xLPeS8nRmpqacWVl3bnqSdPthAUdeLxVYCnZS9KT6VNI7lroOarq0vpRFazKctooDRDQCSV5PlEAXFco6DyA/YhBd7ZLtWvoM9N7WaWYXaJtiVx9Rtvrv6paZs53kgskOLi5Ofs23zUS61bpbtvB3tf+HaZGVRKd5Anrreo9fmaV6Drn4XjA460CXecyfEfZrkqIa7srCWK/D6u7HZvCFIn67mldVHWuddN7a/9ln9bAjA36TQXefnvsStigsgaa9zXYcWVfhwqsuNKL9qZamiklkdkXOG4yRRhFD2rHuV8GA+8MDuueFzo26hgJbLOttPWcN/IaY2NjjjcIm/tVgwaG1HaFqZV1njTR9XW+x+AAAxNcOceALe0F52NsO/r+KqqgXdG5ncfkMRPHLW+/pw+eRPfYL1FXV4dsNotcLodUKjXhjt7bgzqd6XQa2WzWqcRqamqQz+dRX1+PtrY2ZLNZpyDc0UlTJBJBLpdDR0cH6uvr8fLLL0/qPBpIKrVYPk4mgG3EAvMI283KqtUfAHK5nEtTM3fuXLS3t7s8tdxxnTnnWA/dBGtgYABdXV0olUp45ZVXsHHjRhQKBbzyyivo7++fFkWKh4fHvokgCJzqw6pew8hM/g1UbgpK2GXEStiFOTWWrNTP6QQqkWpTmNhy6/csl45/utESy6rHaboHQsvOtqKCl/UJI9OtglsVvZaIZB35uaqrqAomsV/NBmpeU3UuSV4nk0n3Y+22Xfqs5CnbXY9VwtTWm4r+VCrlAsF0mqk+UyW4rtjSZ0eyPJ1Oo7a2FrlcDo2NjYjH4+jq6hq3kkGfmwZcdNl1uVx2xDW/50bjSsyoc81yar5+KqLj8Tiy2Syi0Sjq6+udUq+lpcWVm8p7VaqROOeGqbTlhUIBo6Oj6O/vr1AEWtKAZda+p+Vl+1rSXNXuSoBY1X4sFqtYzQCggjyx9+Y92E+VyLbKbSWzmddej1OiXAM6JJDCAgq2P2o6Fztu6P9hqxd0Cb+SQ5Zw57W8g+wxU6A+x57ol2E2YVe9I2Hzj30NHI9I8jKQrGS2rj7QZ2/bxQYfbeBbhQPcKD6dTruAsArP1Ebq2GrnjzU1NW7T8kKhgKamJiQSCXR2drrrcZzfXj9R+6VBWutnK4GvcxW1JWw/pqaNxWJOaU//m0FwkuhcXR4EQcWeGn19fRgdHUVPTw96e3vdZui094ODg5MS1Hl47C/wJLrHfglGaHO5HJLJ5LgI+FRAY84l5rlcDoVCwRnnXC6HOXPmuE1TppIyphry+TwWLFiAnp4e/OlPf5qUUoMktDplXG5sl8HrZnzbS+XCetbX1+Owww5DQ0MDjjnmGBxzzDFIJpNobm5GKpUapwgl6NAVCgX09PRgaGgIjz/+OJ5++ml0dnZiaGjIbd7iVen7Bnwk3GO6oUpQS4rRAeEYzz5UbczXPsYxkOonOjW6osbeCwjPNWzV8KpgpTOlYzGACuKRam4AFaSgkui8drXgpz2/GqHN8qvi2LY1ALepJp1kDcgyUMrzVQlMcpT312uHqX6BbTnVraJM28EqhCcTfLX30efDvK0k7WOxGCKRiAtEq+rcLsMG4EhmKtiZm7Wpqckp26sRNhb67JiyRIMu7CsqCrAKayrKGBiiwj6bzbogeGtrK9ra2hCPxyvsN59ToVDA4OBgBdFRKpVQKBQwPDyMLVu2oKenx63I4+dMW6P9k+2j/VDVhFxlYBXfJPHZ1vzR3OwAKjZeZXtp39O0N6p0VzIl7NmwX+uydxuE03bntXl/pp6xSnz9UTupKwMJq8C3Yw9JFh2v+H6FvRMTzfNs/b399tiV2FNEXViwndgV/sf+QkhqUI+rwGlPLVGssMIFO8ZZAl2J9CAI3H4m9M3T6bTbB4Xl4hjNcVHvoXOWZDLpgsiFQgGJRAKZTMapuBmk3l4/4VgeiURcMJx1tXXi/7r6isdGIhG3Aj6fz6OtrQ3JZBLt7e3u71mzZjklOleS6SbbLGuxWHQB782bN6OrqwuDg4Ooq6tDf38/BgYGKlKt7g99dl+Ft9/TB0+ie3hMM+wgw4kD8+tOB+gcheXmnGwZaTxJhqhDrMRHNXBSxPywbW1taG9vR319PZqbm5HL5Vwu9GQyGTpJstF3LpdrampCa2sr6urq0NbW5kj2LVu2jNvwzmPvgzfiHtMNqwInqagEKce0HVG4WYVrWEoEJcCs4nmiayrCykRHbyIyOEwBpWXQYAIdRf3e1kXJbHtfvYeqmlXpbZ1c/U6vY5+TXR1gn6kSgWE/Wt+JoLZIiUVbTiq1aWtJfmpA2Npfu9pB21aDPOosT0WNyLJq8NzaUlWuaZ1ZXvYpKu1JNNBmM80df5SY4LJ5bSuWqa6uzuXspnqPz41zDRLn2uYsl5LOYWmY9EfPYd30/bTvZrX3cKJ5mb43Ex2nz1yV7jZApap5vV61FRGsk9YNwLjftu/b8mr/sEGqybSDLY+33x77E7zPsXPQIOhk7LcibEy0hLJeX6+j/rdN96JzxrB5HDDeflvbHTaWT6VNwv4OK4cG64loNIpkMuk2S6VIL5vNIpPJOFueTqcr0rGpUp/txWsz2D08PIza2lpks1k3R6OAIGwut7/B8hh7E7z9nj54Et1jvwQVUOrMhTkVk4FVSOkyY6rm8vm8W1I1HYhGo0ilUhgeHnZK8qkotdVxZYoXS75MtGyLZEI+n8cJJ5yAAw88EO3t7Tj66KORzWZRX1+PhoYGpyQLS3NAkEDgZjPZbBaxWAwHHngg+vr6cNBBB6GzsxPPPvssHnroIbcrui6f9ti74I24x3SDRB/HtlKp5PZc0A0gddwL2/wQ2BYgtEE/VWBT2WoVQzZFiCqt1dZw3CPhXs0x0TJo31dirxr5pnVh+fg/lUhsCx7Lemog1X5P8LvBwUEX2GVb0+Fi+eigaWoc3kP3xtAyUH2vqm4qralypi2w+Z5J+GqeU90HRFN1UFE8NDSEgYEBlEolNx9Ip9NoaWlxdjyVSo17vtYRZxsrkVlbW1uxYSTJeSrEmBKFdpzXYv/RFQv6bO3zALblb9e2V/Ke/SGRSGD27NloamqqUKJnMhlnhzOZDFKplGs3VT8rCc76BMFW9X5DQwOGhoYQj8cxMDCA3t5ebN68GaVSyb2bWicuN+ecgQpy3qNcLmNoaKgiVRHroup6YNvGmpYA4f92nwKCiniCKyb0PJaJbc3nrO8vU/YxbYEGfmpra12AQp+ZhQ0E6Dupm4nacmmf1PtaBbv+5hg5WXj77bGvgv0zzBb7vrvjCIJtG0EXi0UUi0XU1dW5Vc9A5QogIDylDsczfkfbQPvA1CM8JplMoqGhwZHLTFnG1VWqhFfwf65aIjh/UdudSCTc/XZkbLTH6xiutks3v+aqtvnz56OxsRH5fB5z5sxxe481NDQgFou5lWS0q8C2dK1qC7m6a2xsDPl8Hn19fRgcHEQikXC2GwBKpRJ6enrQ398/pTruS7CBcQ0O7Q3w9nv64El0j/0SSnpPx8Cng6iS2SQTuORqupTo6mjSiZxKdFgdrx3JM06Dnk6ncfDBB+OYY45BW1sbFi5ciHQ6HbosLwxKFNBhBYBMJgNg67LxZDKJLVu2YHR0FI8//jhKpdI48svDw2P/Bgk8m66kWnoVHftt6gYl0cOCi5aQImFlCTs6VRMR4Ta/MTDeeZwoXYyWudoE16rCSRby+DClOUlOmydUFb+svx2P6XhqahpVrNvz2YZW6cTzWFamGKMTGI1GHaFqCXM+D+uI2tQXvMfIyIi7LtP3AHBp2pjDlelXqkGVanofOvxK3tLmqao7jEhQ+65zF34fhrAVaqpQpjKNm53ncjk0NzdXqM9JEvC5aN/ghm58hpyTBEHgFHLJZBLlctl93tfXV9HnlPgGtpHWnNtQ7MDfdPJVBMCgjfZTq0q0KkOWOUw4EdZW+iztKhSOFZpDXedmFBGw3FT/s000rZJVaGo5dI6pY4Ul9vX56vhiVel6DU2D4OHh4cmiXQEd8/mj8wwNINtVU0D4M9HgPO23zu3of1OxzbRqNs1V2MqlsOAroem6uNF2tTJOFay/XanEuQ2D5Ol0Gk1NTZg1a5bbdy2ZTCKXy7kguKas5ZyAwgPWie2fTqcxNjbmggxM28Ygf3d3NwqFAgqFwk7XcXdiornxjlzLzoN3hpT22LvhSXSP/RIjIyPo7+9HJBLB4OCgi1zT8ZgKqGjnxlqqZAPgIuXTmUfMOtyTVaBPB2pqajBr1izMmTMHLS0tmD9/Ptrb29HQ0DBtSnuitrYW+XwetbW1mD9/Po466ih0dXXh+eefx9q1a3drvT2mDz4S7jHdsES1El02wGhJJEJJpbC9IGzf4zWUxKP9sEHKSCQSGrQN2zBQ66NKclXPq9LUKmptWZXsVEJdVdth7WBzmVunjmWyhLqSclRNUU1tEfaZEpaa55zXYFtS0Ux1mDqaSpCGKb30O+b5VKeex5DAZfDBboxajbxluhUlYdnevA/JepsuRM/RdC9K4jIgEUaij42NVeRs53Pic6cTnkql0NDQgMbGRpdj3i5513ZgvWxe1DCynuQClX/AVhVbsVh0gYqRkRGnLrdEsVW7875h76B9x1k2tqOdI9k203eN5/DaNgUUP7fXZKBHVYo2bYAlbFhGVZlbqJPOe4UF4ux7wndPlfKEBlh4ju4tsD14++2xKzCdZJfHzIMNxNJ+My942Bhng/TW96Ud1Wvp3jhqr/ijG6nrvTStHElxmy9dbaAGsjnGT0T4TxY6j9K5CoPZVNSn02k0NzejpaXFfcZ88wzU0hbZubEKROwKs3g87o5rbGx0K937+/sxODjo+A7d22QmY7oCG8B40cqeJtHVjgOT29fE2+/pgyfRPfZLFItFbN68GYVCwUVXR0dH3RKvySIItqYN4HLlzs5ObNq0yTmGXMJdLBadimo6QONlN/rY1QMcHbNDDz0US5YsQVNTE173uteho6OjInXLzoIGKhaLYfbs2S4fWzKZRHd3N376059i48aNFSpEj70H3oh7TDeUqKVzpekOLHFeTdXE78vlsnOM6LwoYVqNvCZ4bzogYWomXkeX1NrvVdHN8Y5EGe1LGKGpAVYFy6vpMsLO1ba0RLE6FKomVnKXq5X42ypi1TGmw2rV90omsy14fzpzg4ODzglXApFlZX3o/NiluFSwMc0IA96aAoYbYpZKJackJiFKdXxYWwFAKpVybc3PS6WSC96PjY1V9BFNS6PP2bYZ+yptsvat4eFhDA0NVdRTSeWmpiY0Nzcjk8lgwYIFaG1tRU1NjVstx3tqWzLlDX9bAkGV39rWdMjz+TzS6TSKxaK7ZrFYxJYtW1AsFh3Zrf2WZALfjbANeK2K0QZyALj20Xfekshh+e4pgLDknr6zfKaqTOSGeez7vAd/dH8cfa+Y1ohBiGpBBe3bGqzSdE0MYjBFko5XvL8Gg9gHJwNvvz2mG7pyC/A5yPdF6Iq9wcFBjI2NObXz2NgYMpmMCxITOrdRe855Dzf5pIBtYGDA2XAAzrbX1taiVCo5clltm50jqW3TeSUJYwaDi8WiG1N1vrIjq7sVtGU6j6H/G41G0dbWhra2NmQyGRxyyCFobW1FLBZDPp93adGYUoyBcdZT7QaAioAxv2fKMW5IWiwWUV9f71Kzkfcol8vo7e3dp1Orqt1WAt2S6Hu6bLT9mqaxGrz9nj54Et1jvwQdwZqaGmcMampqkEgkpnQdOj7FYtHlYqPKit9r3tfpItGtU8nPwhCmVJvo+GrgQF1XV4dcLofW1lY0NTWhvr4e6XR6wnvtCHg/OpPcfTwejyOXy7mJwXQq/D12D7wR95huKGlG0khVS0ClE7E9KClJpSfvs71xXMkvloXXsbAK+TByXsltS8jrBlEsX5haV++nyucwkl2dSyUllSDW9tCy2/sp8a35vTWdTDW7YRXaqhCnakwVZhM9W32GLCPbUJeX25QrrH/Yqi+rOrPqaX32/J6/WWZ+ZgMI+pzCFNL2eWl5w4In6gTGYjG34RgV6DZtic0Tq2W2ZLSSX2HkdCQSwfDwMDKZDGpqatyyejrs1RT1+qxsvdmn9Ld93jaYMhHsigG9ThiJrv2d9dW62DpZRzysPvzRdyNs7NC/7eoFDTCoCl4DUVapbo/ZHrz99thVmA4lr8fMhI6tYYFnux+ItZ9KomuaLxWUqbCK51u7rrbKjsH8rXMWFWBYO2j7qSVZbSB7MtCxX++hudAzmQwymQzS6TRSqZRLwaYr/3RsDwsgA5UbufM43c8lmUyipqbG7ZMSiUTc/Rgw3x9g5wXETCHSvf3eM/Akusd+CaZzKZVKWLt2LZ5++mlks1ksWLDAbYhpFWv2fBrutWvX4qWXXkJnZyc6OzsxODjojHgQbM0Dum7dOgRB4CLX1QbkyWJgYAAbN25ET08PCoXCOHJIHSrmNtV7ctkbJyGTiZynUim0tLQgk8ng4IMPxmGHHeZ2Ad8dSKfTmDt3LnK5HA4++GCsXbsW/f39eOmll/brTU48PDwwTn0KbCOUqQ5i8BFABdEY5ghwTFUCW69LqCpbCc1IZGvKEbtBaRgpZtNg6bhMtbOWmc4hSVVLeKraSB1FDTIwQMm/tUxBEFTk6eYPHVX+zfZUJ5PPgooY5oUOgsApnfWa+szonFJFq8coSalk7+DgILq6upzilsphm6JGnVqqz0dHR9Hb24u+vj63KZnmVgWAwcFBRKNRjI6OIp/Pj0tNo32E5dP82GGqOqrjhoaGUC6XUSwWK9RvqqjPZDJIJBJuRZtuKqmqY0sOWBKdzjc3G5s7dy4SiYRbfaf5uy2JrnVlfS1RWy2wpH0wEomgWCy6ecvAwAAGBwcrlHa8t60PVe1KZGj706HnyhF9H1lOfU5KsLCPVXtmWvexsTH3HPQefA4sOze+pepbAwoaACIZxDQ3fGdYJ11doO+aXbnAfQhUPck2s0EOLdNEATUPj90F2jO1p0BlcNZjPPQd3l5QekcERztCAle7Dscl/ubcpq+vD6VSye1xwlXNSkjz/lRBDwwMYHh4GJs3b0ZXVxeGhoacXeH8IxKJYGBgwO2vMTg46MZo2prJBHA5L+FKLIrmVDhHe2DnKByHGaxXYUK1+2kQgVxEIpFALpdDIpHArFmzMHfuXKRSKdTX1ztSO5VKVWxYbufDBFcj8W/bvmoXGQDnvKVQKKCrqwv9/f0YGBhAoVBwc719kWC1AQ3+zfdtd4xN+g7Yv+3c2GP3wpPoHvsl6JDU1dVh7dq1SCQSaGhoQC6XQyqVqnBIwsBlZMViES+99BL+67/+C319feju7sbg4KA7bmxsDL29vU4xqMu/doZELxQKWL9+PXp7e93yKgWNZF1dHbLZbMWEAdhKDDCFjTqkEyGVSmHu3LloaGjAwQcfjEMPPRSJRGLCdpouMPrNncdf9apXYcOGDdi8eTM6Ozs9ib6XwUfCPaYbmgcZ2DYG0jnnOGfTRig4ESU5HKasDlPxhDlMhJLovKcqnkj6EXTaSNRZhbcqhnh/rqTSoIBVlNuys67Mm0lyOUwdy/ZiKg6uvrKpxDRPqeYU1dQbVHbZ50XneGxsrCKXNJ03XkdTjZCU7e7udilWuOklbR6vTUeD5/T19aFcLqOzsxNbtmzB8PCwc8CZYxXYaitramqcE82l4NZm0qGhkssGddQZJ4lOAr1YLLp21wBBXV0d0uk0MpmMqxfLp+1rCdCw/Nq1tbXIZDKIx+Nobm7G7NmznSKdbUN7zvqEqQbtOxaWPsc6eXwPYrEYhoeH0dPT4zYs6+npwcjICOLxuFPE2/eE7xaDMQx2sGw28MCcsCQDGEhThR3vw2to2hzt/3Z1Afsj+2Q8HndtwfdYiXkl6G37sC+MjY25nL4sD4MxVq2pxLoS85r/nM+RhIoly1WduD3iLQzefnvsCvA9VVg1rkcldOWJwgYD1UbvCWggVDf1HB4eRn9/P4rFImKxGEZGRsbZb4I2rr+/H1u2bEGpVMKGDRvQ1dWFUqnkguGWRKcggCR6NBpFqVSqGDNVYEBw/NfAu648J4muQVXdTJ22iPXicQyc2j7NeYol0RkAz+fzSKVSbk8yfsbVZOl0usIe2ACLJWLVHth2Zl/Ruc7Y2BiGhoawefNm9ww2bNjgOIh99R2dCUpz7aN8pvozlf38vP2ePngS3WOXgQO2Gir+qEOiOVV3BaziTp0JRrzpbA0ODqK3t9c5e6r00zIPDQ2ht7fXRb/7+vqcA25BR6lYLKK/vx+9vb0uajzVyCGdS96/p6enIp8s65ZMJp1BzWQyzlG2z0TVb+pwhiEajaK+vh6NjY0u4r07o59KWGUyGTQ1NaFcLruIusfeA2/EPaYbmurEOpBW3aYqkjBVuRKi+rlC05RY54REPe+p99+e4lMnxbQ5lrhXtbD9zl47LLUH2wvYpuAHKpXGSjrTPlA5psoqXitMtQ5szb2ujrt16CysSp1OZE3NtlVVuv+GbppFZS+AUKeCtnJoaMjlUieJrfuL2NQZ6lTaNCy2Lqp25v9KDDMgwZVsGoSw5DSJY9afZK8+L6sktivdlJxnrlQu+w5L96FlZlnseK1zDW2DMPJcP+NvPtNoNIpYLIZYLDaOPNOyax9mP9N78pp2nmfLqymI7Bih99Nnb3Of69/b68N63TACS0lyva79zCretG21rasRJXpcWL3D6j4RvP322FXw/WNqUJsNbBvrNJUHxwe1Nzqu7co9tTToTcV0Mpl0YjXdn4FliUS2qp/V9lDYMDo66lYxlcvlCltORbimhaFfy8CzbkKqZdS5oLYDx13Od3gdvR+P1zkZ251zFpLrFHJwHqQ/1UQdfJ5cOcZrci6k8zSdt1UT61WzWzpP1TppkJlzLwZD+KOiE4/pgbXf9jOLyb6/3n5PHzyJ7rFLEIlsWzKaz+fR1NTkHMK6ujoMDw+75Vh9fX3YsmVLaGR2Z8sQiURcLq+6ujq39InGjeqhuro6lMtl/PWvf8W6detczjGWmUR7oVDA8PAwuru78fLLL2NwcBBr167Fhg0b3GZeiiAInIMei8Xw9NNPY8uWLZgzZw4OPvhgt9R2MhgZGXEThxdffBF//OMfMTAwgK6uLgDbyOVoNIpZs2Y5pVk6nXb34b1IHpTLZaxfvx49PT0YGhpCV1dX1U1CGhoa8OpXvxqzZ89GR0fHlCKf04m6ujp0dHQgCAI8//zz+NOf/uTS5fgBfu+AN+Ie0w2urOFEnw4GMJ5sVHUzsM1RUoUmMJ4A1H6rRJYG+JRct9fRNCUkbS3xTQKdhCedPnW0qOgi0cqx2AYF6EBS7ap15LJplkmdrmg0imw26xRhqVQKACqcUCq5GczVTT5ZbyqHrUOnQQK2tzry+pNKpSrKwvraFGU1NTVuw8toNFrhhANbnVeWr1QqOVvOdC48hvMQVffReR4aGnJ9hvMGXbWmZL46tCTRSZzTbnODUT4LqumpytY5i5IdXElmCYZisegCSewHrFMymUR7ezuy2Syamprc9dUZZx+3qwe0b7JNWVcllPmj17NkDVcAMg1cPp9HJBKp2CyOzywIgopct7qJK8ugaesSiYTrW7o6hM8zbDNdDfrY91H7pQ1WKcGhbadl5v0ikW2rPDTYRPD5cWNRXS4etuJB3ye70sGCx/Fd13tqO/D+k4G33x67Avpeaz9Rm8vxZ7r9xb0VtPEcdznO5XK5CsKaY+zY2Jgjn+lT9vf3V4y/ih1tY447+Xwe9fX1iEajyOfzLojLTSsZJGbKPa52ox/KMo2MjLhNLAcHB7FlyxaMjIygu7sbPT09Tqxmg9LFYtHZAB5HhXUsFkMikXCqdw1Ws+605ZzzlEolbNmyBZs3b0axWHQ8BgC3KonKcaaNicfjFUH0YrHoNlOlKp3qeY79bEO2Vy6XQ3t7O3K5nNsUnCnQdDUhz7PCRSsM0f5j52gq9mD9OVcYHR1FJpNBQ0MDAKCxsRFjY2NOgOiJ9OkD7TZQKcYBMG6c5BgwGXj7PX3wJLrHLoFO2pmCg4YlHo+7/GckmHt7e6edBKXhIJHMXGIk1OlwcVn16Ogouru7AQCJRALZbNYZqWQy6Yx4sVjEpk2b8Le//c3lY+3p6aladjqAzGM+OjqKZDI55WV1NL7FYrFiGRWXndP5jsfjqK+vR3t7u5tEMb+clonL0uiYRiIRbNmyper9k8kk2traMH/+fNTX1++WNC4KJaIaGhpcSh0uAfeT6r0H3oh7TDdImlIlbUkvq1CtlqqFP2H9zBLjOsHV30re8R5K5NM5sQpwhaZ4UfUYSTtNbaLlCFOi29Q0lgBUR4nf0clk3k0lqblUmjlCNYUZ1em1tbUVS7M1sG5VNbad9CcajSKXy6Gurg7JZNI53FyBxPqxD1BtZwlG2m/mISd5zbzcLI/tMzyfJHi5XHbKK6AyXY+9p+1TJANInnP+o+3PuUk6nXbzJ93wXAMPqmwn8aCEk6rbGBghKa/9R0l3rb/WnXVRQlmvr+8Dn7US3rwOA13xeBwjIyNIJpNuLqKbr/PadtNXJSO0D2tOdyUT+E7Yd1/7nAaYVA3OfsM2t6luVMVvlYVad21HEidKXACVKXhUqcjPtF4697IBPkuU2LawY40GEya7ItTbb49dhYn6lrXPvi9thSVeGaSkGCyfz7tAbhAEFUHwIAic+Gu6Ur1YEjifzyMWi6G+vt75o7RBansYgGTQEagM3G/ZsgWDg4MYHBx05e/r60NfX19FYEUD2qoeLxaLbu7A1CqarkRtgbUDLANTuVDQRu5AV8WlUimkUilnv23wlmllSPyzjNbW8pq0bdlsFvl8Hul02on7bCBfz7UK5moBKtoNwq7aUvtHJXoymUSpVKrgR3YnH7C/wAZCgMoNcPV5TjaA4e339MGT6B7ThpqaGtTX1yOdTiOdTqO9vd054M3NzVWV6N3d3S6qS1X0yMgIhoaGphTVrK2tRTabdQ5oc3Ozy3Xe0NCAeDzu8oep+k5389a6cMDiRhqlUgkbN25EoVBAb28vent73bKwyQwsw8PD6OzsdClImGaFRlHVk1Z1RuXc2rVrMTg4iJdffrkiZy4V9Q0NDUin024DkjDjyvrxfrlczhErW7ZscYZcyRBOhurr610b7knE43G3O3kqlXIbr1Gx6eHhsX9DVTScbJLAIzlmUyVUW1ljSV69h5KHeg0eawljPc6mnAAq04DY6/GeQKXamfepZi/DnBurdiWxSaeoubnZqcBJopPILJfLyOVy7ncymXSKL7avEqB0jAE4u0ulM0l2YOvm0QAqnGzab1WiU8FGYoCEJctHEheACzxzMzLNmUqHlTlTVcWmbUmCkzafjjNzllN1xrQkaj/5u1gsoqury+Vw5/yH8wddsq3qPCWM2F9rarbmWmU/5jPRZdVKzOvyfvYHSypb0r0aUWXVUJr/m/2I8yf9XskBPt+xsTEX+GdQXO/J87UfsXya7oZ/6/vB87VvWPKf74ANrGldOR/T9tE+Z5f7K1luA0JA5aZu1dqVZeTx/K3Pj5/ZuZ0G2CxJxf6tey1o0KLaKkQPj5kAHZ/8PH8rOAfgSmT6RG1tbUin0xX2m+NQuVxGf38/hoeH0dXVhUwm40hqrujT1WvV7gtUpjDR1XG01c3NzWhubnYkOoV0/F6DexzfNfCv+4fQfusm4GGBP7UfXEE2NjbmlOy0jbSXTFHH1Vlqa2mji8UiNm/ejKGhoVD7bVcCcFWZrsriNbkynMp7XWXF+tDO62asJLE5xldLC6P9QtsjrJ1oqxhAVpGHrh7ToC/tN0n0RCLhNtL2mD7YZ1hN+OOx5+BJdI9pQ11dHebPn4+Ojg60trbi9a9/PVpaWpzBBLYRBGqkent70d3djd7eXqxatQpPPfUUCoUCNm3a5FTWk0EsFsPcuXPR0tKCuXPnYtGiRaivr3dOOI2PjdBapw3YuplYd3c3isUinnzySbz44ovo6+vD3/72N2zZssWp0uyy3IlQLBbxwgsvoLa2Fps2bUJnZyfS6TQOPvhgzJ8/3+Ucj8ViLvo+PDyMdevWoaurC11dXS4dzMDAAAYGBpzx4wRq3rx5aGhoQDabdcS8XQbE50DHetasWWhoaEAqlXKpYWjYOdHgBqVtbW2YM2eOIzv2BGpqatxStq6uLkfs21QCHjMXPhLusSth1ddhClQdE1WBZYl0SzZZhZIquKl4VdDBtQR62EoeJf31fCWlVY2uhKKmRbFkG50fW3bdMKqmpgapVArNzc3I5XI44IADkM1mkc1m0djYOE7VzT1Aurq6sHHjRgwODiKRSGD9+vVuhRaXjTN1GkHCk2k46CBSYUX1GoPNmUymYtynk26V4gMDAxWkMlXydJ67u7tRKBTG9QMqqeiYK5nOOQj3EKEKq6enx6VbYboZ/lYVMjcfKxQKePnll1EoFDA0NIT+/n7npPK5c/Ns3WQT2LakneWiE8vyMSigZDPrp+lnaPfphOsztasjLFmuASGFbrLJlQYaRNC+xmtQyMB5haqwtV+SXKBajyQvAw3Ms8sgiLUrLIembLHKPBukstBctpqahvVje4YRQJqbl6AgQYMtGnzQsijBb9PnWfUp53maa17THrFvkJhSkoT380p0j5kMnypiPDj/iEajaG5uxqxZs5DL5XDggQcil8shl8s5/5d+L1OvkUTfsGEDhoaG8Je//AUbN25EsVhET0/Pdkl0+ockz+vr6x2J39zc7FZF19fXu4C4KtG1TDbdGklqEueDg4Po6elBf3+/s6cca8PGftqRoaEhFItFl4qEm1n39fUhFouhsbHRzTVov3XOx/sXCgU3txkcHHT2W4OdTJ2qKWI0xR/tGlXlY2PbUsSShKYdoS3W+QBtuI7vNsgeJr6YiESnbaUN0R8NbHCOwnlafX09xsbGkM1mXVCDNs2P8TsPqz4PS7VkMdl29/Z7+jDjSfRrrrkGP/zhD/Hss88imUzihBNOwLXXXotDDz3UHRMEAZYvX46bb74ZW7ZswfHHH49vfvObWLhw4R4s+f4DDqyxWAyZTAaNjY1oampCW1sb2traXGQ2zAELgsAZiVQqhcbGRuRyOQBwecq399LSGePSNSrf29vb0dDQ4Ix4mHMYVh46qdxYVB00LgmbytJXgulYIpEICoUCtmzZ4qLrhUIBiUTCKak1+t7X1+fyznZ3d6O7u9vl3AS2OVAkFlKplDOw1ZSVOkBzAsSNQqLRKMrlsvteVeu6hKzatXcHWB792d3pZTx2Dt4Y79uYCbbbqrdVzaFqWR5jCfCJrmeJxTACHBivQCfCxk86QWFEugXvp2p6LV+1tA5KzGlZ6BAzFzsV6Vzpow4vc3hrWjAuISchrYELVb2zHVXFT7UV75VIJJDL5Zz6nKSrqrRZJl5T872qCtyWw6bZYL1sqgt1WPgZSVxViBWLRcTjcedwav3GxsZQKpUq1HNM46LkLp+LKswmsmeq5Of56ghXC5rbpcHV+qZC20v7PM/T56tBGg3Q6G+WPQiCipQyVjXH65JoDtu4jHMTBojse24DYHqevhua6oBl5OdW6a1jiKLa5wo7p7JjhQ362XdVy8Cy6XPl868mFrHtqcSO3n8y8PZ738ZMsN8e24cGRelHczU4A9DZbLZiTGCaNRJzxWLR+e9MTUr7Hvaeq+3QlWG8H/1w5vImOc35AVdwqb2yqaxoa+0+DmrDafMngtodvSZtMP3l0dFRFwDXsZIEOm037Te5CZ0Xqf224zCfFe9PEQT3jeF5ajfVVtDn1vRrYbZe51hKsIdByXe2EdtWVxSqYETrSb+bZfeYHlTjyqbT5nr7PT2Y8ST6qlWrcOGFF+K4447DyMgIrrzySpxyyil4+umnnRr2uuuuw/XXX4/bb78dr3rVq/CFL3wBJ598Mp577jlks9k9XIN9H42NjW7Di+OOOw4LFy506jUqkyYC06zE43Ecf/zxmDdvHtauXYvf/OY3Ls0Ll/kqaEQ6OjqwYMECZLNZHHnkkZgzZw7y+bxLJ8Nl38Dklr6QWG5oaEAmk8GrX/1qtLa2ore3F+3t7diwYQM2b96Mv/71rygWi5MejOh40xByI7BXXnnFkRAktEnWj4yMYNOmTejp6UGhUHB54NTokdhmtJpEw2QJZV2Kl0qlnJNVKBScsolL8HivPW0wldgn0UPi32Pmw0fC933sbtutql11MoBtY5xVhQKV+SOB6ikdNM2Wknb2HnZsVMeHoEOipB8dKSV9dQMspkHTzf80kKvl0O8secljqWJi8Dkej2PWrFmYNWsWUqmUW46saiTNR87yk0hPJpOYO3cuYrGYU7EVCgVHmKqKl+UZGxtzq8Xi8bhTwevGYwpVXinhyPalqpmqYyp8U6mUU8T39/djcHDQqdZJoIapfGwQQklNti83CCOhXldXV6Ewp8PNtDKqcqf9pjpZA9nqiNNRZZ21P+lmaHTCed9IJOLaUecHnGfYNERsX9p/BgFsP7O583lvJUQ0fYu2Jfsc09HwnryX5rXXXOnaZkqi8H1UQoDnK/TZ6TvOclG0wPLZvqfCCb5HGuzQ62vbhK0GZB/mHJCrIHh/BmjCxjD9W/u+3lOfLeeL7H+qRFfwPZgMvP3e9+F9723QQJoSk3uyL3MMYJ7sRCKBefPmYfbs2Uin02hpaUE6na4Igmu6UI6//IwrphKJRIX9LpVK49JkMqVHbW0tmpqaXOq3OXPmuD03mpqaKnxT2jjOZTi/4LjFsoyOjro0IVw5FI1GnZ1NJpNuFTbzlE8m+GeDiLTVPT09bo82zlfUtnDfsWKx6PxvtS8Ucal/zDpzPmg5EPajsbGxilV6rKOmnGFb63U10K5zBP7PNgS2pfBiWWzgVeesSsDrfM3O2xgwKZVKFSvc9BoeOw6rQAemdxWOt9/ThxlPot9///0V/992222YNWsWHn30UbzpTW9CEARYsWIFrrzySrzrXe8CAHznO99Ba2sr7rjjDnz84x/fE8Xer9DQ0IDDDjsMDQ0NeO1rX4tjjjlmnOGYSFFF48Cl40cddRSeeuop/OUvf3GbjlqymoaAKWROOOEENDQ04Oijj8bcuXPHESOTJVd5HMsUBAGampqwcOFC9PT0IJvNYt26dXj22WfxyiuvOEM1mYGFdaUB5OC4ceNGt6EpQaM9NrY1j9vg4KAzjOroKMnNpeBcRjbZ+tL4Ms94EGzNw86B3JLomuNtT4KTQtadZfbw8Njz2N222zq3uuGjOg2anxKoVEXr56r00e/o8KnKWQl0q3AnAapqJFXnqpKX59JB5HVisdg44k/zG7NcJPd4jLVLSv6xTNy3hHnQZ82a5ZxCJeSVRAdQsbEnCdBisYhUKoXOzk709/e7nKMk/tUhY/txw+9UKoV58+ahsbHRrSyjYqxQKADY5hDq33QiGQhWkp1KLy45jkQi6OvrQ09Pj9uIVjetVCcyTHWt8xrWoVAooFgsoqampmLDMLYZiWHNw642PMwJV/JV21znM0o8cD7BdiCJzneA9luXhZN8137K80lks8xclafErirSbDtpHe08jM+JG4tquhRuAEfiRtPUWBJcU8/oe6xtrn3Cnq+kOwNFfH7a91UZyDkbc+dq/Ww/0TbVcUifI58TgwXsR3w29p0mwsgTfT46xyThMzg4iEKhgCAIHPGk746qID08vO+9DWq79d3dU4SSzjXS6TRaW1sdiT137lwkk0k0NjZWrCqrqdmWOg3Y5rMyYDc0NOSC4bTfrK+mVVViNxqNorGxER0dHUin01iwYAGam5uRTCZdihS1o7pShuSx7meRTCbd3CeRSLgxPhaLOTKb5aXIi2m+JvMsaB843jKgwFQkfX19Lm0bVfgMLtA+2D1Hamtrnc1WsptCAzv+6/yEbUPiWzc51euHzRFs8FQDrmH7c6hinG2u8wj2Cc4pNb2arliiTWW76cp0T7DuPKwf4G3yzMaMJ9Etent7AWxVPwPA888/jw0bNuCUU05xx8TjcSxZsgQPP/xwqCHnBJ3o6+vbxaXeN8GXnfnPqNym8ZjKdYBKpTYj2cy72tPTU3FOLBZzm2c2NzejsbHREQE0yDtDqFqnjxOQ+vp6t0FoU1OTM+aDg4NVr6XOkBpYuzEIUBltpFGi0eNnSv7sKuxNZLQ33HsffCR8/8N02G6guv22fcoqxYHKcW2iMc6SXTo+633oHNLZ42+9tpLkqj63xF61fq3HKGFnlSl6vjo96sSq8pf2h3uWKNGqqlc6ZErU2gAD1VvJZBKlUgmpVAqpVMpt6kUnl84jlWjRaBSpVMot86ZzGLYMWgMdrL8GTuxzZZvpJovJZNLlS9dgs80FHmb/bUBFn7FdFs1+wnLoj9pv2wftfVRtbPtcWF21HCR9tSxWsVbt3dBzbZ+3ddZ2UkWb9nmtixU46HXoNJLAtxuaWSVdWPm1DTmHUuKC97HzKPZjbX9tc/uMbH/Qd8Y+F1tXvpsarKimNLP93t7flg9ABRGjOW313lZoMRW76u33/oddbb9nMnQMmQmgr8xgs9pQ2nENila7BgDnl9J+03ZTCV4ul53d4pjDnOYMUOdyOXee3RgbqExTZ+2OgjaEwW+mnWGaOa44JtlvSfRqgQ1rh6yts4FS2rzJpIvR9gyzd7RbWg7+bcunIoMw26u2L8yuEmrrqtntMJGALY+1e/b+HtOPnbGtu+MeM2UMnCnYq0j0IAhw6aWX4u/+7u9w5JFHAgA2bNgAAGhtba04trW1FS+++GLoda655hosX7581xZ2Hwejw1SCL168GI2NjWhpadmp69Kxb2lpwXHHHYcDDzwQa9aswcaNGysick1NTVi0aBGamppw9NFH4zWveQ0SiQSy2ey0D+68XiqVwqGHHoqOjg7k83mMjIxgy5YtePrpp/GXv/wl1NgyasuJBfPEceICYJwBZDswz2o8HnfLwbds2VKxgRgwPu/vdMBGptUJ2x2D/GShqkYlCzxmNrwR378wXbYbqG6/y+WyS2NFp48K2jC1qCXW6FDY9Ayq6lESKmxPDJLJlvRSItB+B1SmotGUHbwnr7u9sZ4qIjsm8v7cfyQajSKXy7mNtebMmYN4PI6WlhbU19ePG/OVsKZ6WB11/s20LNFoFH19fchms9iwYYMLgrOeqVQK7e3tyGQymD9/PhYsWOCUVrwPlcS6rNmC5DeVymwbJRrphNfU1KCtrQ3lchmZTAaRSATFYhFdXV3uGStZQMeXf+sSairDlMS3jqmq/mnDNVd7GImrS+5Vic5crWF9Tvu1VXLX1tY6kjYSiVSsWEskEuPIXSWxuYQ/LFe49i8luPn+caNRBetmCWBNv8PVDAMDAxgcHKwgi/Q5qjBBiWqqLNleLKuSImx/TfsEwOXp1euwv/Nvjg18JtpPwt5FHXvYtmNjY+jv73cbpg4ODla0P8cLJfq1vuwnHB94TfZdPU/TAmo/sGmjtJ0mA2+/9y/sDvs9k6Hjun62p8BNPJPJJGbPnu2U4LNnz0Zra2uFfea4wLFCxw/ahGw26/bkotCLK7ZqamowMDDglNI1NTXI5/OYO3cuMpkMFixYgIMOOgiJRMKlcqEt51hmg60697JkLsdX2v5cLocgCJxKvampye2bNjQ0hI0bN7pxmmOdguOvteEqYNPc7/YZ6/hOgl/rVC3AyvvSVqj94bE6V2R7MEjANFz8n+ID3QNMBQJaFrtRty2nzu1s2RU26MpVZ3qctVUeO49d3Zbefk8f9ioS/aKLLsITTzyBhx56aNx3loQMU/kQl19+OS699FL3f19fH+bNmze9hd3HoUYpn8+7ZdhTVaHba/LcdDqNuXPnIpvN4m9/+9u4wZ1Lv9va2jB//ny0tbWNy2E5naAxbG5uRhAEKBaLWLBgAXK5HF5++eUJzyVhroo/GvFqsBF8OmzM41pNhbgzg+P2Itdh3+1pzCRC32Py8EZ8/8J02W6guv3mhN9uuFjtXmGKIP5vFTdKprGMeo9qk146kXRQtG6a4kWVq6pU52dKFCoBGWYHlAxVElyvQWKX+dDpRFNJNjY25tKJkaQjOcr70CZp4CGVSqGmpgbDw8PO0e3u7q4gY0l85/N55HI5NDY2orGx0aWTsG1qSWYAFQFdVformWhJ8Egkgkwm4+rU19eHaDSKgYGBcYFsnYtY9bY+E95Ty2rVXZrz1Srsq/U7/eE8S5+nnqNg3ezGkZq/VXOq6vl6ff6tgRt9DkpM67PRnPXaJwE4AoBtoeD9WHaSv3oO51E6FwxTx2k7az/S1QZKonPOatvdtivryXvpig6ts9q2sGfNFC5MDUAVZdixSorYeld7X1g/BqKYuoVL9BnMCKufJ9E9wrA77PfegJnSd2tqtqbo4gai+XweqVQK2WzWbdip47sdwzWor4R7Op12xC3J6y1btoxbvZZIJNDQ0IBcLudyoqs6Xe2lBuGtglkDz6yXlktFaJwzMA1YT08PotGoSxsXiVSmnSF0zA5bQaRjrAbrrdghrPxhz8WKMDTgqW3Ba+v1NNjBgKcq5Xk9/V3NbmxvLNfvrd1T8QfLxOdvif99AdXs7p7Crr6/t9/Th72GRP/EJz6B//zP/8RvfvMbzJ07133e1tYGYGtUvL293X2+adOmcRFygkuWPXYcJM9puBkZ3VEC3SIajaK+vt7t6E0HjUa6tbXVbaJSX19fdXnYrgCd8fnz5yOXy+H555/H888/j3K5jKGhIUe20CiRPK/mvG4PmoOW6jHeh+QOVU1UoE12809VMnFzq8HBQbeRF4AKhVixWHQTlbBcnbsLqpijQzrZvHgeHh67D9Npu4Hq9luJbXUi6urqUCqVxpFf9jx+RnKNjsNEK1wsIRimFqYDZW0Uy6GOlKqcNCUD76HKMqqiWA49XzeT0vIzxzTtqebJZpty7LdOlTrR6ryRkFeyNplMuo3luMx8ZGTE3SedTrs9UHQTbF5Tn586kdrOWkd1WK3CWUlu2qxMJoPGxsYKm6YbdquynaQjSVxdpq4kgD67mpoaVy/rpFvQYab6bGhoqEJ1zbKEEQ1KjrIeXKmmhInaSyqSdQk7j9ENPK1zrhtWalCI91DyIKyfs07sY7pBmzp1kcjWdAHJZHKc2k7zzPI3+6g+B7aTVTrqKg9dYm/7lgZlbMCA9+J7ru1I2ABLJBKpWCGiQgi2CculbWhJe6o7w8goHXt0LLTBnLCAnbafh4did9lvj8mDfiUD3/zRVKZhubiV3OZvDU7STtM+B0GAXC6HdDqN0dFRR7bX19ejqanJpXLR/bI0JZbaR7XVNhBsf4DxabYAuDqWSiU0NTW5DcNp+2hjrc2nHVEVN2FX/lHxbcdiBuht+eh/M6/82NhYhVBON4IPG29pB+ljc8WaDYirf6+2k/VVm6H2mz9sA+0TfCZhgS8lz+2KAk25tiN7A2g/mAk2ZyaUwWPvxIwn0YMgwCc+8Qnce++9ePDBB7FgwYKK7xcsWIC2tjasXLkSr3nNawBsXcK4atUqXHvttXuiyPsFYrEY2trakM/n0dLSUrFhyXSAy9TK5bLb5TsIAsyaNQv19fU4+OCDcfTRR2POnDnj1Em7A42NjTjmmGNQKBTwyiuv4IUXXsDAwAA2btzoSBga4nQ6jfr6+oqI/2ShyjcAyOVyKJfLjkinEebGUQMDA4jFYkin0xXkxESgkR4aGkJvby96e3sxNDQEYOv7x8nJ4OCg25yKJMFU6jKd4KRiaGgI/f39rszeGO4d8JHwfR97wnaHLSslcUhnjI6EKoS0zHRelCi1JC6dEqv4odPDsgCVGzbyeEuEhZGCSmjyWlTlWsLWKmx5Dzo7dHTssuBUKuXUbCTzuOEWHWJ1xDjm6waTVPOyLPybG4z19PQgl8thdHQUqVTK7S3S0tKCfD7vUrBZh1XVtDYwwXqxbRhU0DQcmicV2EY88LhYLFaRq52BWEuKMngdjUaRTCZd/fgMlLCmU8tctUoY0NG14xefTbFYRH9/P0ZGRpBMJl2/4HPlnMISI4VCAUNDQxgYGHBpUBgQUEec7wGdcK4qYPtq8AXYFnBg39J0O1Y9x3fCrrbQeQJz0gOoCMpr/+Q5bG8lzJkXV1PqhAUxWG91/FVlSEKfS9P5TlhSmu1mAzF8HvZ9V9g5qV6Pz5ppkXQepeMBf/Md5CpGPY7X5vtiV7HoGGTfL/v8qtUlDN5+7/vwvvfMRW1tLVKpFHK5HHK5HPL5vNtTBEDFGGfHPY6f+h1XOnHPEwDOr+/v73cpzyhimzVrFubNm4dcLofm5mZks1mXzktTi+h4bGH3bOGcjJ/pOK6bbY+Ojrp6FItFd36hUKhI70axl27WrYEGQoUHHCc5V1ACH4DzfXUcpa0NggB9fX1uJZ/OL5lWkPM32jv6sfSrGRAgkR6JRNyqLIrFYrEYMpmMW6nFALYVNug8l5/x/uwjNvivtk7nTRowpw3TgP1Ee3qEQa+p9/fYPfD2e/ow40n0Cy+8EHfccQfuu+8+l18TgDMakUgEn/zkJ/GlL30JhxxyCA455BB86UtfQiqVwvvf//49XPp9FzRsdHbClhRNx/Vp+GkMmL+Ny9aYw3I67z0ZqPI+k8kglUpVLCG36rgdUaATavS4nMou1bNqNu6erWVRqGNvFWqaS5dRbl1mzSj4ngKNPMtcbWMujczrbwtV03kDsXvgjfi+j91tu8OIPQDOaVHyWUk2HmPHjzB1zkSwhLcSqyyfJVt5b/5WVe1E9aQzqTaG9dbrWXKQ52i9rX1SpzZMIRZWHlXH83qxWAzDw8NOoUabrqo1depUqaZtGtYeVuFWbTyxije2MQPakUjE7VeiBAKP1/ZWJZ9VT7Pt9Z623cKU2tpfaL91lQDPq+agatCHtltzZIcRufqjCmkti1VDa9vZfhAmYLDvggaI9B3QVXBhy8u13TQARlJEVyTwmjxfVzLoM1IlZrV8+zawFlY/TZVky8721+80xY62i+YnJ2zba0ohWyfb5mFKT36uY8LO2FFvv/d9eN97ZkNtrQa1w8brMPut4wHHH1VrM9Csq6/o8+uP3cPDqpYJnU/Z8bWaDdeyq3qe5QDgysFUfrSXLIcKJuwcS+cX9HU1SM02UaLaqqhpg9RH5nwCgBNw8Jnxfhq8VFW3VXZrIJg2hMfq3ITtRYT1BSveUDtg28O2jYJ11lVa1fzvsL81wKB21Pvguwfefk8fZjyJfuONNwIATjzxxIrPb7vtNnz4wx8GAFx22WUYGhrC0qVLsWXLFhx//PF44IEH3HJij+mHKoN2Jg/6RFAHn8b84IMPxkEHHYR58+YhlUrtdvJcQYJ/zpw5eM1rXoPNmzdjy5Yt6Ovrq3D0dJKzM9BI8uDg4DiDPDg4iFdeeQU9PT1oaWlxDhrTyLDMAJwRHh4exubNm9HX14fu7m709/dXpKShkRsb27oZ1tq1awEABxxwAOrr63eqPjuDnp4ebN68GevXr0dfXx8GBwcrHGhdWqjqNaovNOJOpT0j/lpnj10Db8T3fexu28133BKI1mlQVTkJJUva6XlKOilpp0tZlbCzTgFtpY7/qhiyv7nqis6bqoL0b32HWGYSxFZRqs6SXoPfqW0JczTV+WVQgk6QqqN12XQikUAQBMhms2hoaEAQBKivr0c6nUZDQ4NTdUciWzfEZNm1rdmuGhiwTqwSs0pgq81T5Rh/+H0ymUQul6uwG/qslPSnTWe/oK0gqKqmIt6ueEilUgC2KbHZtuy3fX19TolGQj2TyTgFvQY3+ByoUqN6jc8mkUi4uRMJ576+PndPPje2B6+pjreFHmPB+QTVeUyhxP4ZBIFrF6rvuHpuYGDA5eCPRCIVqe9ovxmA4d/RaLRCLc57kpTne8j3KKwONi2PEhv2cx1PLHlg+yqP1fFA0x1RIKIpcjT4wWfHumrfDIJt6nl9J8JS2yh0TNKVB/zOrsqZCN5+7/vwvvfMhQbXaG85ZnLcAMaT1SRgrUpZCWPajGQyidHRUWe/AVTY71wu52yTXR2lpLglwlkWDe7p3ETtE22Gjl0ky6kq574qsVgMPT09zpfjdTWnOtsobNUNy8v2ATBuTCVxrwFg2iyO3dFo1NlilpN2q1wuV9jc0dFRDA0NOXuv8zmb/nVkZAR9fX2IRCIVaXSDIHA2XvcP0We7vSA425Yr86gyZ1/jcZw/UxXPH3IGKsjQgIcGrvlsOefROQPnAGGrD/d22HnonoS339OHGU+iT+aBRSIRLFu2DMuWLdv1BfIAMF6JPt1Qo6vR8Y6ODhx11FFoaGhwy6X3BFi+uro6tLe344gjjsArr7yCJ554AgCcMeWPXRq9o/dk1J+/afTHxrZuBLdhwwa3pC+bzTo1G9tSFVt05Ddv3ozNmzc7Z9ZuzsIBv1AoYN26dQC2TqZUeb87MTY2ht7eXqxfvx6bNm1Cf38/isUigG31ZB76WCzmcvZpTnlOgMrlMgYGBpxTb0kwDw+PHcPutt2WALaqG1supsiw56gjyDKqYwhsSzfClBhEGMmuJLMSprqaib9pL4DKXMs2rYRVvurf1VSmSk5b0jBMzRY2/mmZWE51NFk3Bi+BrfnH8/k8AGDWrFnI5XIVjiWvqyowGzzQ6ytBqUp767jrMmzWh/fRNk8mk8hkMs7h1noBGGfHaV9t2hw+c9oX6xCPjY25wEJvb69zFFkW9hWq2FRZx2OURGcbaJ5UlonPknMnkugDAwPu2SWTyYpraZBZCWZdSWHJEts3NH8r0wLpCgX2KaaV0TQ0JMDZ5pxb5nI5VwfWi4ENznv4m89Ay639UvsSyQP2k7CgmJ0HWJKa76b2R0uiq9KfK2JU3anzZz5fkmKaG5/1ZxuzPFof9hFVuiu0zFZpqM/cw8P73jMXSkTqGK97VgDjV3Kp7Vc7p6SxkvLMj57P5xGJRNDS0uJSyGSzWbfXV5jqXedLdk5my2XLau0Px061b8lkEnV1dchms8jn86it3Zo6tVwuu3GQNp1Erqa4sfMo3kvnUxroBOD8ad10nXaGc4va2tqKtHk8huO6zlfohzMtCsujPr7aksHBQQBbfXumdlGFvar1VVih47vaBJ0vaRvTfttnp4H7oaEhl36mWCy6OmrgnkEE/V+P4bVGRkZcqhzdO2RfgnIw1eboHnsfZjyJ7jEzoQOuzRc7XddXh59IJBJuo7KdVXZPF+LxOHK5nNstXCcSuwKqqrTRTaZZKRQK6O3tdXlfGYnnsTSSdjNUqgP1PqoO6O3tRTwer8g/V02ZNt1QYqW/vx+bN29Gd3e3IyI48autrXWb4cRiMdTX11eQ6MC2CY8uvevv73dGvFAoOKfeLq/z2Hn4SLjHdIMqHKuengiqIlLS3Dp3YUG1aqRTGPmsBLGFHcfDHDlOwJVItfciKagKNcKOYUpU839eQwlHa3/1bzqKdA71eFXoKkmnq8o0PYVta5bF3lOdRduelkQP6wN6fSWPbf53/d4q7HTpts5RrM3X+mv76/MJIznoQFKZxo1g6cCq8ph2jOfTyVdiRYM1vK46/1axpopB23Z83qrMrtZXbBCL9hYAhoaGXA5Yu8kmgw2pVMrl7acqT9MC6YoLVdKxP9rct+rAVps7ap9gnbUv6TvGa+p9NIDDwIW2mSoCtdw6BqiSUNV71cpb7VnZgBlRTRwwlfm0t98eHrsfdny2Nt2KAPQ9tbZPA2lKKqufpfODMGHYRCus7ZilNkbH0DAbbus2UTvQ7yuVSuP2atGgps55tK6KanOKsHG6WoAS2BYk5qo0ltWmD7PXpf/KcV8V6fqMdA5i20TLZQUG1YQRnKNMZC+U82EAnHVkO3MVpa7eo2Keq+LVvlGtz3bh3EfLoqul9kaE9fM9DW+/pw+eRPfYIZDIrKurw+Dg4LS/WKr0o6Goq6tDU1MT5s2b5wboPY2amhq3lCwIggqDsSsIZnXGrMEcHd26+SeNdU9PD+rq6pDJZJwCm8aby7HUeEajUcydO3fcEmNGimOxGJ577jm8/PLLmDVrFhYuXOjU3tZh3RXg5KFYLOLPf/4zVq1ahS1btqBQKLjN6mbNmoVEIoFZs2ahqakJ8XgcDQ0NbiJCEp2TkXK5jP7+fgwPD6OnpwednZ0olUpYv349uru7USqV3Pce04fdbcRvuOEGfOUrX8H69euxcOFCrFixAm984xurHr9q1SpceumleOqppzB79mxcdtlluOCCCyqOueeee3DVVVfhr3/9Kw466CB88YtfxBlnnOG+v+aaa/DDH/4Qzz77LJLJJE444QRce+21OPTQQ90xH/7wh/Gd73yn4rrHH388fv/730+5jvs7crkcADgFDZ1ES6YqqaeEJcmvMLtSTSVlSWCShGFOiRKPFprGhEFBJSG5bFfLwuupWllTdJBw5x4ZSubG43G3+oZlVrUrFVJheS/pGNIB0o0ZeSydSG4cSeI/lUohn8+7lUIasLXEvlXoWqKRbaCBfM4VVIWlz0CfgyrVcrkcgiBwql/aPl6D7Uv1OJ1IJbWpkFbCms+K6mHNK0vVHH94DOvGtCx8fiT72R+sUo8BY5LQtPlKDJdKJQRB4BxgKvp4PfafsL7Gd4TtwSAASXDN56qqO20Pbpy6bt06vPTSS+jv73cpbGpqapDL5VwQnCvIGhsbEY/HXZ/R8g0PD6NQKLjAdzQadbaaJDb7n52HKaHA62kqp7BAVRipwrmPKhZ5r+HhYZd2xhInPF8V8kxdw2tpvmEtZ1hAQMvG91aDJduDTXszEbwT7jHd0DHZIxyaq1zHXiXQ1S7oHETHHYqFaFM4P9BNp5keS1e9MPUZ9wGjX6V+Lp8fxxO1QZZE13JxvAIq07EReg0NXqbTadTX1yMS2ZrmpFAoAIBLTaK+OO0T66djuyq6WQ9VmXNepv6xLT/TyHD+VFtb6/xT2n6er/WjYpv+qV0ZCMCtDKBynfNc5QNoK6yCnWD5+EP7yFRsnMvp89FVdqVSCcPDw9i0aRPWrVvnVoEHwdaVDY2NjYhEIm7fhEQi4bIGqP3W8nAO2t/fjy1btqBUKmHLli3O72aq1rCVAzMdOv+ZSWPb/uB/33jjjbjxxhvxwgsvAAAWLlyIz372szj11FMr6rJ8+XLcfPPNLh3ZN7/5TSxcuHDSdfMkuscOgQaDRndXDA46CQAqjbhOFvYkIpGty8Fra2uRzWYrlldZknu6lfNhkXBOeEZGRlze9MHBwQqHOhKJuKVYANyy6UQigXw+X7Gb+djYmFNlB0GA7u5u9PX1ueXomn5gV4MTlZGREXR3d2Pt2rUYGBhwuWOTyaTLtdva2oqWlpYKI87JJyc5nEDQWNPAF4tFDAwMuPbhpMxj+rA7jfjdd9+NT37yk7jhhhvwhje8ATfddBNOPfVUPP3005g/f/64459//nmcdtppOP/88/H9738fv/vd77B06VK0tLTgzDPPBACsXr0aZ599Nj7/+c/jjDPOwL333ov3vOc9eOihh3D88ccD2DoRuPDCC3HcccdhZGQEV155JU455RQ8/fTTSKfT7n5vf/vbcdttt7n/mS7CY2pgygybZgOo3ByJxCqPDQtM2rE6TIUeNp7TcbTEVZi6SgldVblawljLrE6VKly03Gp/tN6sbxAETm0etqGjOodW8aSEujriJFhZP03twXPoGJIQVUdU20fV9BZKttM5oZNH+2dVZ0qg633U2VcyIKxtldgGtm0CyuuELZ1mP7B/kwDge24DtLYP834kPFQRqH2QJCywdUVZMpl0Zea1+Jw0lYwSMGFkiLaVpsNRpZgNGKnzyB/2ieHhYQwMDKCnp8fNLRiY4bwjk8m44H8ul3MOOTeSZ/uw7UgEcCl/IpGoyBuu77fWQ+vJd4x9QttW66rPV4NYOhdSsgqo3FSWZJWq73R1gb7D+nc15SShqx3Y9+05+o7qZ0rCTAaeRPeYbthxx6MSfD+t3bT2W4MRVnXNvxmcVbsFbPO59UfV6LSVNj2Hjm18fjquqJ3ROY2tgw1y8zOtnwYNOO4mEgkUi8UKgptzHB3XOIZzbmNJftuGWiaO51pfG/hRe6Nzy+HhYbdyisF2qrKV+Na0fpwf6L11TqZBa52v6ByR0HkV60jbQxGCztWs7SfJztXrhUIBAwMDGBwcdHNKbftsNotsNotEIoGmpiYkEgkkk0mkUqkKW6b+N+eTsVjMiS9qamrcinDLd+wN0D5v56J7EvuD/z137lx8+ctfxsEHHwwA+M53voPTTz8df/zjHx1Jft111+H666/H7bffjle96lX4whe+gJNPPhnPPffcpPf18CS6xw5hZGQEvb29brML5ueyEdYdRalUwqZNm9zGFapcCzMSexLq1LKcNooLbFMO7gzshKjagKbf23xlkUgEmUwGra2tqKurQz6fd3nL8vl8hfppbGzMnU+DSye1s7MTyWQSLS0trl7TrbzXtuvp6cG6devQ29uLl19+GVu2bMHIyIgz2G1tbZg7dy5SqRRmz56NlpYWxGKxCiW6kug04tlsFuVy2anqWd94PI7+/n6MjW3NRTc8POwCRnvaCHpMHtdffz3OO+88fOxjHwMArFixAj//+c9x44034pprrhl3/Le+9S3Mnz8fK1asAAAcfvjheOSRR/DVr37VGfEVK1bg5JNPxuWXXw4AuPzyy7Fq1SqsWLECd955JwDg/vvvr7jubbfdhlmzZuHRRx/Fm970Jvd5PB5HW1vbtNd7f4M6e7QR6tSEOWXVcggrqRimftHx1TpgqlK339MmaCoOABUktJJ66ixqmVUpxHJPNO7yOzpmdXV1ToFOh0jJaNuWllxTp4Cqc3WOhoaG3IZTHEvpGDLQbG2YrUvYGKsKKtumY2Nj41S/9lxVx9EBZgoQVf+Glck6QKoGJjHBuQCvZYMt6uzyGqocU/LcKtH03Hg8jkwmg5qaGqeeZxAhCIIKJ1xztWrKI+Z11dz0Yeo/rYMlRVgH7RP2HNaB+c+LxSJ6enqcio2kAUnyaDSKfD7vnHBuXkdHXJWC6mizzUmsM7hTKBQcyW7fZZ2j2fpMpHpT0tkGrXhu2LiiajobsNB3zZLgqtK0aRTttfWdsvmRw97tsACKh8fuhp9XVyKMhOY4yLRdmsOaNp3fVWtL9U2tHeUml4ODgygUCm6VjyV7dYzUcS9szNPfai/1vhqYnSjQpyuF6MfpKira3mrBQB1XbfkAVNTPqtL1XL3e9nxwVbHzHvF4HNls1q0Eo1/K+2kdONZzBRttNOctVJBzThlWLy0Tf9t5qZZZ5zrsJ7Tb5XIZvb29KBQKbgUZN/0mR9PY2IhcLodEIuFWkiWTSaTT6Qo7Q797eHjYzQ31mlTbq/p+bxsntC33trJPB/aU//3Od76z4rpf/OIXceONN+L3v/89Fi5ciCAIsGLFClx55ZV417veBWAr0d7a2oo77rgDH//4xydVP0+ie+wQyuUyNm3ahLq6OmzcuBF9fX2oq6tDOp2eMIfjZDEwMIDnn38eW7ZsQU9PDzKZjNso0y6Z3ZOgY05imeVk1JZGlI7xzhLp1SLRFnSoI5EICoWCm4Aw0DFnzhwcfvjhjnBuaGhwdVGnWAd+Vd+lUim89NJLSKfTTvW2qwIbnLRs3LgRv//979HV1YWnnnoKr7zyCpLJJBYsWIB8Po/Zs2fj4IMPRiqVQltbG5qbm11ggESB5pZjnRhN7+npQUtLC4aGhpBKpdDU1ORyrvf29rpN2djme9vSspmE6YiE9/X1VXxOdYeiXC7j0Ucfxac//emKz0855RQ8/PDDoddfvXo1TjnllIrP3va2t+GWW25xqy9Wr16NSy65ZNwxNPxh6O3tBQA0NjZWfP7ggw9i1qxZqK+vx5IlS/DFL34Rs2bNqnodj3CoQkmJSFVgKzgman5rJUjtChtLrNKhsg4XxxhNj6BEF5W0JHt5b+uMElQu8Zqqdic5alW2ek9Vw9LJpMM8NDSELVu2oLu7G8lkclxg1ipo1QFWspKOEcs0MDCAvr4+l/M6kUggFos5WxEWZNb20XLr8+JvfVZUIJOMVYLckpRKbLOfUJFH+xiPx0MJV61fEAShARg68vxh/7LPU/tHNBp119DUOiTHtR3YD1KpFJqbm13O0UQi4ZZbWxJD7ZX23YGBAUfKcE6laji2c9i8RdtY87XbcV2VWL29vdi4cSMGBwexadMmbN682ZWVcyemxmtubkZ9fT2i0SgymYwj2VOpVIUac3h4GIlEwu3xkslknJotlUq51WTFYtGl4FHCWnPEa4pA1kPfq7BnqClw2K78remAOFboChXbv0lUqUJQ217nfkz/o8RL2JJ3TQXDc1U9SeEHn/VkN3ObDvs9FczU5eAe0wc/n94Gji0aWKutrUUqlXJpVKhwLpVKbsNJEuw67vJ6/M13l/abKuMgCBwx2tfXV7FSiPdncFaV8JYcrOaXa5ksactxMWy+oedz3B8b27ZpJ5XxtN1chWTLYW2gFUjo/EqD4GHj6vYIUbUfuiKKdaP9psiLK1PDAri0TwSPIaFcLBbdvIfPUe9ly2XLr6sA7HNRpfrAwAA2b96MwcFBdHd3o6enB6Ojoy4VTTabRUNDA6LRKGbNmoWGhoYKERttPOdptN+9vb0ol8tudVqpVEI6nUYul8PAwAAika0r5/v6+iraYrJ2JMx+7y7Y9p0pY9zust8zxf8eHR3FD37wAxQKBSxevBjAVsX7hg0bKu4Vj8exZMkSPPzww55E99h5WLWUGkGrmmFqFy4ntgZwMtAXm8t8ent7ncpNI+AzgUBXaHtw2ZY1VGFGbSrQCcdkI5uWGKIamwYtk8m4/KPqkIWBzhsdZ6q/yuWyi4TTGd9ZVZM6++VyGaOjW3Pwd3V1obOzE0NDQ65N4/E40um0q08qlUImk3Ebi3KDMiXGNDAAbFuePzQ0hLq6Orf7eblcRiqVcnXkZFUj/vtbZHk6MB1GfN68eRWfX3311Vi2bFnFZ52dnRgdHUVra2vF562trdiwYUPo9Tds2BB6/MjICDo7O9He3l71mGrXDIIAl156Kf7u7/4ORx55pPv81FNPxbvf/W50dHTg+eefx1VXXYU3v/nNePTRR8cFBDymhmrjj9omq8axk179Tn9blWg1wrfa/QmOYSS3wibZ+n2YXQ0jLvVvHfdIFHJc1WAifzTtCK+h7cVy6P15Dh1GzauqpL6q661jr9ezajVbjrCAiLZFNfsYVhd+puT69myXbQfrjAOVJGk1p5VQolX/1+NYNk2LQ3KZJDrLov1Vr81jWA597npPq4C37aRtWE35pkEOAG4Tc6odNQgTiUQcCaK/wzayU0IH2La6gnMjJdZ1dQLrrgEtLWeYOpLls+1arb5aZ/u8FUqOV2tPvaaS8Ko412Mt0WPLae+hwYSw920i7E4SfSYvB/fw2FXgGMyxjkFeBj1J8vJd1vkI33W7l4LCjnu021T96l4dYTbUjlV23LJ/h41DU4XaVhvoDCuXnbfZcStszjVR+Sbrd+vxel36yGrjmKpM7a0lijVoocFx/aEdZ72s3a5WF/07TKRn94FhShfaOBUgaO7zZDJZsXKCvzUIzrRCDIhQ0MAA+OjoKBKJhFtxwOdu0yXOZPCZzSSeYDrs92REbHva/37yySexePFiJ7C49957ccQRR7j78Dx7nRdffLFq/S08ie4RCqrfuJnnnDlzEIvFkMvlkEqlAGzbuG3u3LlYt24d+vr60NHRMc4gTBZBEGBwcBClUgmvvPIKHnvsMWzYsMGpszhpmGlQh0SVXIwKc0LCNt0R0LjRgGmKle0NhpyMNTY24rDDDkM+n8ecOXMwf/58R0BPRkVOMkYd83K5jPXr16O/v9+pt9Xx3ZHnRVKH0e/nnnsOXV1deOaZZ/Dwww+jt7cXg4ODaGxsRH19PebPn4/m5ma0t7dj3rx5SCaTaGpqQn19vVshoEEg3gPYtoELI+qxWMyp+ZLJJPL5PIaHh9HX14cNGzYgEom4iaZuyDKTDOTegOkw4mvXrnWbSQKY8N0KIzwm6pvVCKFqTsP2rnnRRRfhiSeewEMPPVTx+dlnn+3+PvLII7Fo0SJ0dHTgJz/5iVti5jE50FnQ1BgEVb+W1NK0CDqmWUVQtRQPqiYnOMnnDz/TMvKaSl6FOT28r16f9ob2V3Nqa05lEo8MKFqlNZ2U+vp6VxeuoKKiWlXTrH/YUmiOhUzX0d/fj82bNzslsLYNHShNQ8I2oGPGJeq6tJgKJk05QvJV5xtKGCvRrWQ/78XPNUivP+pU2mekfUiDETyXSmGWn/abwVpu2sY0Yfq8ta+x3qlUCrNmzXJ7f1D1xf0+NMe2Btu176h6nu3b39+PcrnsrkWbSUGEptDT/mDnAqqQ1jyrvH5XVxdefvllt6k578UgdyaTceq1+vp65PN5p3KjnSZhznoAcPNUBhb4rOLxuAt6U13J9tD0Lkq46MZqbH/2Nz5DGxxRpbgG1zRQwevoKkptT9u3Nd8996Nhf6EClc87jCjTAAHrx2diVZE61kx2NeHuJNFn6nJwD49dhZqaGpcaI5PJoL6+3m2AnU6n3VhXW1uLxsbGiv1BmOJK5zxhJDJ/qx3q7u524jWmU2V5lKDn/IJl0DGI46RVDdNusKz8ralLdCzm+GYJeb0+x9qw4KO1yWFtTPBYFRBwXsXPR0ZGXACYPuL2/G+O60y/Rvvd3Nzs0o1yE04tv66O1NR/NgUgAKfQ5mbxtJlctaW513XVEvuL1o0pegcHBx3X0NPT41K5kI/h6vZYLOZSsOVyObS0tCAej6OlpQX19fWIxWJurziS7DqX4LMhWZ5MJt2qwmQyib6+PoyNbd2XjanaOH/inGl72JO+ebXgzZ7GdNjvyYjYiD3lfx966KF4/PHH0dPTg3vuuQfnnnsuVq1a5Yj0HSmbhSfRPUJBwpf5eo866iiXR7uxsdE5hHR2Ozs70dfXh8bGRrS0tADYFgWfLMbGxlwO9E2bNuGZZ57BSy+9hPr6ejQ2Nu60unlXwirZAIxT5akTOBWoUoDLkpVg2B5oQPP5PA4//HC0trYin89PuU2VTCFKpRI6OzvR3d3tlm1xQrAzG45yktTb24unnnoKL774Ip599lk89thjGBoaQmtrK5qamtDY2Ii2tjbMmjUL7e3taGtrQyKRQH19PbLZbAVxzjoogiBwz0SXAnJ5dzqdRrlcRl9fHyKRCPr6+lzOtkhkW1qGvSkyvq+AKygmQnNzM2pra8dFqDdt2jQuAk20tbWFHs+A4kTHhF3zE5/4BP7zP/8Tv/nNbzB37twJy9ve3o6Ojg78+c9/nvA4j/GwhFKY86VjqSpaLAnGz/S3Qp20armWdZkyj9XxVpc2awBAc6rzey2nqnHUoQRQka6FDm4mk8Hs2bOdExOLxTAyMuLynWqKKxKgdN5smZRE52ckgRls7O/vx8DAALq7u93KHk3DRgecG3KrM8qxVxVQE7Ud7QwJXdpcOoY2KBH2nHht+2OdWg3Q8BztU0qaMuBsyX2q/BiE1c1XbWCC5CyVW8wvmslkkM/nkc/nK/Kca1/T6+q7oP2f7VRTU+PmJ1z1RwKb9WXKEg3SkMhmO3CewxQDDPZv2LABhUIBW7Zswfr1690ma3SsSRCl02m3sXkul6tI46L3tc8tHo87O86+QwV6IpFw8yYAzvnWVXWcI5Bw0fbTfQ3s2GDnEqoE1D7NzzT3bVg/VgEG/2Y5de6n41RtbW0FSWQDRPqZphWw5Z9orNtV2JvSsYUtB/fw2FXguMYxf+7cuY5EZ0oM2m2SpRpcr6ZADpsXcd8IBjp7enrQ19fnVvxyRZCunmEQ3OYg15UyGrSzxBSvwXqoLbXEo57LY2yguFo9tSy2PVgfS74raU7wGqrSn4z/rSR6Op1GQ0MDstksmpqanOCMe35oGRjUYPns5p/ANhHjwMAAyuUyYrFYxQamwLYNsmkb2QY6P+W1S6WSC3j39/e71D4bN25EoVBwwgjOGTn3yGazSKVSyOVyaG5uRjwedyK2WCzm7DgD7wpdGakkOu15KpVCsVhEKpVyG5Jz7jRZEn1PYyaR59OJyYjY9rT/HYvF3EqyRYsWYc2aNfja176Gm266ye1DtmHDBrS3t0+qbGHwJLpHBehAJpNJtLW1IZPJYM6cOWhpaUEqlUI+n0cmk6lYJksVEyf9fX19buCmA8bBU40hBxc6W+VyGevWrUN3dzfWrVvnNnO0DuFMgxp9a9xpEHXncCXcJ4J1eOmgkmiYLIHO5WLZbNYts1KV4c6CE6X+/n6sXbvWRaW5cQqXnav6gLATnVKphNHRUfT29qK/vx+dnZ14+eWXsX79ehclD4LAkTCpVMrVicvFSB7ppKlaPbU/qnojHo87w51OpzE2NoZUKuXUeSQbdqfTuS9hdynZYrEYjj32WKxcubIi3+nKlStx+umnh56zePFi/OhHP6r47IEHHsCiRYvcOLZ48WKsXLmywhF/4IEHcMIJJ1SU8xOf+ATuvfdePPjgg1iwYMF2y9vV1YW1a9dWGHWPyUHJKPYRdfzUQQLgnAFLiNMB0VzfSngD2whOHT9YBmCbQp02sRrUmdFjq41bVplFqEPKvKXpdNptYEW1L8diktdsAzpbJAsjkYizM5qmS51aa7+pECoUCm5T0VKpBAButQ9/eH8l73hdEog2l7N1gsP+turasGNt+1mnXH/UodWyaoDEEvz2uoQlFaodp0o/ks20b3Q61b6pil9/LIFu24P92tZbyWo+d7Wpdp5DZ7+/v99tPEbCt1Qqoaenx20qSgJb3ytd4s65CR1q9gO7SasSLOyvaov5HpBU0ICAiju0LnwWhLZxWCA+TB2lx7BteT+rYOf9NECl778G6KrNfdmWbIMwQqha2TQ4MtV54O5Sss3k5eAe04/JqAJnog84XeA4RcI8kUg4X4qEJFeC892lXbBpp8JEBDrX4Q83ESV52tfXh4GBAbc5OO20CoasfdGgIH/rOGuDxNVsdxjssZZDsPZbA/GqZrcit7Axn2Oujvs2qD/ZFeA8n+IF/ugczPrDYSsX9Vr2N89RVb7aSNpvBoTph6vPzbSlfX196Orqcv2AhDXtN0l19ZUpFlCbrelcOBe1eea1X7Bv6H4/XDGpwjbOh3STVo8dw3TY78mI2Pak/12t7PRJFixYgLa2NqxcuRKvec1rAGz1ZVatWoVrr712wusoPInuUQEOXm1tbTjppJPQ0dHh1L46IALbll5rNLO/vx/PPPOMi1BGo1Hk83k0NTVVqHronAZBgI0bN+Lll19GX18fHn30Ufz1r3916TOGhobcQErlHDD1JRe7GkqWMyUNje3AwIDb7IoOj6rSw4hYnaDQyJVKJZcjPmyjvDDU1dVh9uzZaGlpcUrtxsbGaU2NQxXkunXr8Le//Q2lUglz587FnDlzkEqlMH/+fBeVVtUEANdmIyMj6O7uxiuvvILBwUE899xzeOGFF9Df34/nn3/ebThC0iefz6O9vR2NjY1obW3FrFmz3GZkVLhZddZEIHFBxWRjYyMSiQTS6bSLgA8NDaGzs9P1Q9abzxTYtyf404ndRaIDwKWXXopzzjkHixYtwuLFi3HzzTfjpZdechuNXX755XjllVfw3e9+FwBwwQUX4Bvf+AYuvfRSnH/++Vi9ejVuueUWt8wbAC6++GK86U1vwrXXXovTTz8d9913H37xi19UpGu58MILcccdd+C+++5DNpt1DjqXbw4MDGDZsmU488wz0d7ejhdeeAFXXHEFmpubKyYcHpOH7slgVcdAZa5jjrEa9NTNk/mddXYsiaZKdP5W1TXHOOtw8lh1aqg64jVIIGrQU/t/JLItnUkkEqlw1ubOnYt0Ou02fFIicmxsDNlstqIMWmeme2EddMNOqwobHBx0DtemTZtcui06ZKqcI7HKQCiD8fa5KYlIhfNEwWd1OlVJrkStHqf2lcFbEr/8rcpikrHJZNIFBNhPwoIQujpAhQC0dVYZx/5HdVUmk3EOd1NTExoaGtz+Jfyc9WE5uGdHmNpe20LLzDZmGbnxpuY0bWtrc3M5biCuKwe2bNmCoaEh9PT0YN26dSiVSigUCs5OUgzBVEG2b9Ppzmazbol7fX296zf6bG3fY91I9LDvMNgNwK2MI9lk3zlVn+v5dNgs6UKQ8FCS3K7UU2gfJDGj/Z7PIBKJuP4eVlcd22weXJZVAwAMAPE7zj1tsCpsvKyG6bDfe0M6tsksB/eYHliRjdpL+5n+7Avge53NZpFOp5FOp7FgwQLkcjk0NDSgtbXVjb9czWID5+pTUVlMP9GSs0o2DwwMOL9yw4YNbjyn/eY7WlNT4/a0qKmpQalUGmdvbVCc3ADHNbuxtwa9Sc7qM7dBQevT0QYVi8VxP6w/STMS2ppfHIAjtNkuahcAuBRlVOzTlk3U9zjniEajaGhoQGNjo+NBuAmnphlVLuX/x96bx1h6Vmfiz7236u731q2lq6t6dbux2QwKMQyxIUBmBmdgNGIcmFjKCIkRQUEGFPBETBzCL86GRSZCrSisI2KCIsB/JIigILAzEmYAJwF7hgDGxpjeu2u9+153+f1Ret56vlPvraW7qruqfY9Uqqq7fN+7fe855znPOa9d31rqhq+pLciDZUm0AxA4gHZ6etqxwam/NXuQh4UWCgWcP3/elT6rVCouY5FrhfPI7LGRkRF3HhnXaTwex+TkJMbGxhAKhVw5mUEBbCVU0P5tNptujZdKJUQiEVSrVSwvLwPAhnr2+SaWWLAVeT7437/3e7+HN73pTTh69CgqlQq+9KUv4Zvf/Ca+/vWvA1h9nt7//vfjIx/5CG655Rbccsst+MhHPoJkMonf+I3f2HL/hitxKE6o5MhiO378OG699VakUilXX9on3AxZP6tQKDgHmYdnWCaZOuu1Wg1LS0soFAr4+c9/jp/85CeO1caNm4rMlxp2vUUVntYD5WtUuBwjGhLWAfRdl8qcIDoBha06POFwGKlUyqVXKZt6p4RzUiqV8LOf/QyVSsXVbM9kMo6RrgfiAHAKk4zFYrGIy5cvo1wu49lnn8WPfvQjNJtNV5uPUW8ajTQ2aTDQ6aehtN01ooYgT7gn2BQKhZBKpZBIJJzz6zMCh7I1uZZK/J577sHy8jL+6I/+CJcvX8Ztt92Gr33tazh+/DgA4PLlyzh37pz7/IkTJ/C1r30NH/jAB/Dxj38chw4dwl/8xV+4eqoAcOedd+JLX/oSfv/3fx8f/vCHcfLkSTz88MPuUDIA+OQnPwkAeMMb3hBoz0MPPYR3vOMdiEQi+OEPf4jPf/7zKBaLmJ2dxa/8yq/g4YcfRiaT2e6wPO+Fzzv3V91nrN4BgiA6f7S++MrKSgB8tGwrXptsJd3H6Rwos4li9Ze2iaJAmdbq9gn3Re5bzKLJZDKuhiprovN+2n8dA2VbUc+MjIwE2ELsFx10DRxXq1W3/zcaDaysrLg0Y8uUVpaYHdPR0dHAYZcWdN4KgKa/7ed1v1Ymtq3nrf0k4E8nVA/GtPOjwIWtE26zyHQO9F7Uc4lEwuk5zbTStWbbroCGD4SmQ8v+EXSpVqtu7pvNJhKJBLLZrCuXQ/2t3ymXy6jVasjn81hcXESz2US1WkW1WnU2jwaqLDNQ65mTcU8Qn+2zYm0nHU/NfrQHktp58gHpfNato673GVRGQD/rW3sETPh9HxuS37e2xSC9p5kzugdpRg5f13IxV8pCB64dk20vp4MPZWfFBkk1wKvPwY1GWNF+8+wL1kEfHx/H2NgYcrlcgMSmIDr/BhDQXQzYKnOcwr2bxLdSqYRms4lCoeBqYBM8jcViTrdYPaa6zM6T+rmafTRov7E+lE9n+8B17tuDfhSM1oxE2jRamozt5HUBBDLAtcTcZnPK/TYej7sMAhIcOI/WZrBZAnotYE0HacCe/Wy326jX6+h2u4FzRxic5G8GQIgpFAoFB1DzHJtSqYRyuexsAc2mJDGE1yJmFI/HXR/pj3MMbJCF48v+qA3OIDYDIKz1ruWDBtnCzzextu5eBNGvl/89Pz+Pt7/97bh8+TLGxsbw8pe/HF//+tfxxje+0X3mgx/8IBqNBu69914UCgW8+tWvxiOPPLIt/3sIog/FSTi8evjk9PQ0Dh8+jFwu51LCNzO0qYzS6TQmJiZQq9Xw9NNPo16vO4NAmS/cIJliefnyZdRqNczPzwdY3AAcw4ps4FarFXACrqeQPUYFxjR2jVTTgWy324H6ZVoSxPZD2f0EKKjAt7OJsRb6wYMHnSG200JFyJQu1sjnYaOlUgmTk5NIp9OYmpoKtKHT6WB5eRmNRgOLi4s4ffo0qtUqzp8/j3K57AAI3ofOMR1t/U1GwdWsCTUA2Sf+UImz/Tal8UYx6m9Euffee3Hvvfd63/vc5z637rXXv/71ePLJJze85tve9ja87W1vG/j+ZushkUjgG9/4xoafGcrWxedcKwBFp8P3rHIP1meZ4DhBXZ9Tx+8CQdBKnTQAAUBY72nbru/rawTl9WAuCzjQ+RgbG3Ol17LZrANeLYuc4Cavo/djfXPqKBtMUOCR6eD8DkuzUX/R+STLm6wpPZxSx5PjT/1O/ckxVoeS7aUDrGOljqx1VtV547xpSrgym3UOCEzYNUUwgeuINgGD6Bwrn/NtQZR+v++cbOodDQ7rPNrr2YDRoHvpWuZYMcsLgGs/Mwm63a5zZpXJ1mw2cenSJVfKhQePKUOac6Wgt9qCtswQn1kNUrA/+oxz3nl9Bbi1v3ovZhEooG7tyFAoFAjE8z0FowbNJUUDYDag77ueHSdbjo7XZJ+VUKJsdn5H9wm790UikcDBpLpefAGL6yl7OR18KDsrg+xo1am+9wcFm/aLPc7ndWRkBJlMBhMTE65uNs92SqfTgcAgEAyO+gKiBMO5T+v7BFqVid7pdFAsFp0upx/O74+MjLgSL+Fw2GUV6R6qe536tWyr7qnWHgHWdLkNgLN//L4ymNkvAskEvRXkV91h2ewayLcly2gnaXDC7tk+Yc14ZtFruVEF0HUMdA3bcfGRB3zBcfaZB4MyK7vVajlyJOeOPxcuXEClUkE+n8eFCxcclsF9juNgM52oY9Q+sSVbOHc2WGt1tNoEei+1EXhPDYizfc9X2S973fXwvz/72c9u2q5QKIQHHngADww4EHUrMgTRh+IkEolgdnYWL3nJS3DgwAHMzMwgl8utiyBaUcM9l8shHo/j5z//Of7pn/4Jp0+fDigLOksskaGKjwpbS7YAcI5rPB5HtVpFrVZzpUH2AohO5lWpVHJpzOrgWZYb08oYqdV0dg0ccExoCFnHcTPhnExNTeGmm24KpDPvpHAOWLOv2+3izJkzrj764cOHnXF49OjRQPmBZrOJixcvunpsFy5cWBcwUOOHoEIikUA6nQ6kP7KG6tWuCY4b1ytrsvFvpsxtpz7eUIJyLSPhQ3l+CEEm+/z7WL8qNohJQI77j4Louh9R7xGItvchMBkOhwN7hTX6CQADa3sKAFfSgUHXcDjsmEx0XPl99juVSuHAgQMuYJnNZtcxUBnEZh/JJOJ1qKd4WLiPIaV1OOmMcQ54XTqy7XYbtVoNoVDI1dpkiQmymhXMZ1s12KqgtY4978mxZZt0jiw4y9cJkpMxrYx03x6jwLCW2OF8KduK+lvBed7XJzbLTx1TZXhZB5IyiKVnP6Ngs65tjiODx2pnhcNh1Go1xGIxpNNpRCIRV2KuXq/jzJkz7jC6hYUFZ6sxcMO0da4tLVGk9WKVYc/1xTUSiUQCulYDKzaYovamj5VOAEbBH/bdl2HG8VFGHvuiYoECBYBsgE5ZkgpG8cfWvec9tewP588HonPe9J4abLLZMfy+ghsbybXU33s1HXwoOys28LwRIM61r75nKBRaZ49boHEvkl3UrxkfH8fs7Cyy2SwOHTqEXC7nSl0RTGSWt54vwWedwDcPhCyVSu48CpZo09JdLLdFHajBOeqsRqPh9kDWTO/3+0in04EsGAKq3Ld8vqbVU9x71a5QhrgGBDnn3AM1mECgv9FouFIu1ocMhUKBwKzaBMx0o51H/W3HZJBtYIWZ1ywJmk6nkU6nB2ZLcxx0nep4WTCd/bZBZC2b1mq1MDo6ina77ciQxExI9qvVajh37hyKxSJKpRLm5ubcGGlgn3aZnm1ndTjJGloeh2OtZw9p+7XtWlqMupiEObUpmAlOXW5tw0Gy1577nZIr6dfQ/945GYLoQwkIT5HmQWSDSrj4hBsrDfhms4lKpRLYPMkYVhCdRv0gofIie50R0kQicXWd3SFh6Rky6wf1RZ19BTSA9WwLq8RtTbvNxBqYerjnbgmdUipMGmy1Wg0jIyOOsaip+Uwb5GF0dM59YJMaXsouU4NoIxBhO+K7jo8V9nyOgl+tDJXxUHZSLEhtQS1lO6no57ReJoE7y2JW2ciAtywcH/Ocn7PX1L8JxtNpsKx1Bct0D7YlLFTn8LNsl4LTypT1pUWzDdynmRZMIF8dXbZTWXArKyuBsR0U/PAB5r73fWOm8zLIYVAHVfdz/bHza9tqGeta29QGgYE1sFydZxvA0TlRJv1mLPTNxI7DIJabAgsW0NbACPU1gyjK2BtkA/n6p32z7LxBfRikO3w624I29n9+jk67ba/vur77E5y3bdX/LcBnnxP7Wb2/BbfYPu0TECwv5LOhAKzb1zbq1yC5Vvp7L6eDD2XnZaN1NWgf178VhPd9Zq+J7kcEopn1qiUsbCYa9b4NEHCPUEC1Xq8HzqfQci8Engf5M/RbGRjXMz7U5lKw19dH+3szspNPV/n0vPrVtl02EGPBaQ0c2tcInvuutZU5VT9VbTFflpFvrGx/dT/f7BnhWIRCqyQM6jXeWwMONvBAXc/5pE6zdopli/v65+vnVm0Q3zXUbtL37HWGvuXmMhyjnZEhiD4UJ8pku9LSH2TFsA5YNptFvV5HpVJxGzuVAZ3wzR5mKoVWq4VLly7h6aefxuTkZODwp+slvV4PCwsL+PnPf46LFy+iWq1u2B/rKKkjydf4OXXIt7vhEUxhlJgHou0mc39kZATpdBoAMD4+junpaUSjURw9ehSTk5OOya0R+Hg8junpaVc6iMzGUqmESqXi7ZeOmf3ZKVEDjZkSanDwZwikX5kMI+FD2WlherKyrnWvUMBUXycL1bKjgKDusQCWijoaug+pY2z3fgXVqDcVsLZpw9SfZKhrMJIsIc3iUjBTx8KC6by2BeG5RzMQqm0hkKoguvZXdRuvMTIygkqlgkKhgHQ67eq0qwNkWUv6W51hZVQr4K3zrnOngWvVIZrOXi6XUa1WXSCXh2ySFc57af8ZMGA/lZGvB0/rfdXB1vct6MOxoC2lc6JjoTaUz/HU8VNGna4dgrRch7Qb7IGpnOdyuexK9/DsgFgshvHxcbfeOCZc0zr+DOxzbPm3lk7T7DwFcqzu8DngKoMcc7Lj2U7aJ5xfX7CIZfr4/Nj9QJ83zg9L4HAceC2Oia/tuv/wNc2EUMYeyy3q+GqWhO4Jug6uRq61/t6r6eBD2VnRfXyr68QCjRZQ1s/sRdtR20o9roFw349mwviCwATJa7VaIEOItbCpnyxJyyf8XjgcdvXTgVUfT0tDsS0U3cM2CmjofqQ2Ct/zkcharRYajQba7bazKQqFgtNLZOkP2qdUj6suVBKAfn+7+51mF9hMMhsktiQG/rb3tvs351/xAQW1lQyh55IACJxdw+yFcDjsDq5Vv1YzrvSwbdonGvRRBrlmeVm94xtXtXk1eOHzsdV+0iCIkhv28jO/FdnOHrhdGfrfOydDEH0oTkKhEJLJJHK5HLLZ7LZPQCabJxKJuNShVCoVqFHGUhjbET7wKysrWFhYwJkzZ7CysuKYKNdTer0e8vk8Tp8+jfn5eTQajQ0/zw3I1gzdaaGjynqjtibubsjIyAiSySQAIJfLudI+MzMzOHDggPfekUgEk5OTzoBkzT1mKljjayMAfaPo/pUKjU0CRfzha8BQqQxlKHtByKziXqB1OvWQKwKq1G/KDlY2J50rBvYG7dcEyXkNfZ3XoOPLvUqDo0xPJTjM71HvabvZP2DNueH1eS1gTWfSOdJ9kyVUVB9oaQxlu/E+CqITnCM4Tf3OPut+rI4cwfhiseiCAHbvpANoHSjrcHEO+bc64fp6KBQKsKs0jZrOMtPda7Wa0z8EIdjfWCwWaKvPcdU5VSeOgKYNmtu/LaOK16UjboPtPodUv6tAhAYk9G+db/6v5VZ0HXCu+/2+m0eyE0OhkHOmOT68V6PRcAC9PpMWMLfgUSwWC4DYSizwsdN8r6lYAN0GvLT9GsxS5iWBb1tixoLefJb1PdYZ5vX5WS3HQtH5oSjjUwNn0Wg0sN8piM7n3D47BKaU6b4T4PpQhnK1sl2Ax+cjaPDJfmYvCvusfpuyz21NaJIFAKzTlQSASf5hkJg+DAOBW33WeS2W8SqXy65MSDQadXuJDwDWvvE9FRsUpu7S9lk7gTqdvhgDBSwVp+XZNhpv2jxbLWG1HVEyAoOzvjNN7He0zdZe1bZrYEHtI2WCW9tLAwM8w4TjSL0Wj8edz6tBll6vF7CT1U7w/WiW/SA7RV/j377X7HfUdrLrQu2jqwGKr7fYZ2koe1eGIPoNLD6HYqONhRv2RnVBNxMbLd1Jpm6320WpVML8/DySyWQANNlNhrVPOE6tVgvlchmLi4soFotXFCTYTbleG/Do6Kirw7aVMjKh0Go9Opbo8WUY+BgXul4VuLha0XtpKqOyyfi5oWxfhpHwoey0WGeITgUdasv2tcxqfl4NV5u2qnrRgqoWrOL3fSxkgopsm7LKN1vfBNcGOaa2fxaEViDVJz42s72uAnJ2LPi6DcITkKRzr3upz+nxMaxtYGFQ2+1rdkzYHi0RR7DWZ0twfpXlbuef17SOMO/LgIy2w9pGmkWh7dQ1p0Cqz9aybGhlkvN/vYY6pcpwptOvzrAy2dk/rmP+73s+9PvU1ZppYcu52GwOO6fKWNWxJECkqfjU21xzBBQYhLLsQwDu+1qeZpDOsvOlwRGdQ83C5G/f3qB/65zzx5YEsm3R8fG12wZZBj0fG8lQfw9lr4jdE20wcj+sN33eKaoTB/34/CH1Wbh3KdB+JUEKXpMZudSX3FuVcODTbb5AJ6+t7+vnFWBXe6Pf7wfaoSXFrhS32C3x6S2fWLtM17KuC9Xt1lbSYD6zEq0eUb1IIRgOrPrdlp2vbfStJ/bT/igrXK+ha1df00C1/ug685URste2f+9n2a0+DPX3zskQRL8BRZkqdiPcrL4XDwHj4SXbFW5sdE5ZF3snHrx2u41nn30Wi4uLqFareNnLXoZkMumY1psBtTspZErXajX87Gc/w/e//30Xpd8LMsjouhb37PV6SKVSmJmZcZH4rUgikcD09DSazSaWl5fXGcBcV4ye03CiQWdTva90PdBYIODDMi48iIVM+aEyuXIZKvGh7LTYLCBlxqRSqQCgTaO93++vY+Fq/Ug6AtFo1DmRZJNaINnWjrQMd7vmlUnGlFoFlX2MYorqZmWT8j1tm5ad0ANFbZkNXsN3xoTPGVQ7wrKmBoHvtVrNtW16etqxZsm0tk4Qr6eHqPJa6jDzfj5AUj9HxjzncmVlBYVCAcvLy46BruxwtoEHYiYSCXemiwK2FAv6a991rFRfcW6oK3UNqr3GPlv2uoImTGNn4JrjyzWgLEQfgK1rhjaVlhriOiVZgOx+ZVP3ej0HaPC67EOr1cLIyIjT2byH1o7VsjXWGecYarq+jjHHi6n+PDSP2QbVajVQCkDtZAZ5dP3pmCrwwMCBgue2XjFFgwYW2NDAjI+9p0xA+8xvFGzgPA8K6ugBcTq+W7WZhvp7KHtF+JxaXbVf1hn3ALU3NgLNuRcpu1jPG1G/hf6Rnte1Xb++1+u5/b5YLLp2VioVR35KJpNOvxDI1fG3NhGvS9F5415sQXTaSZ1OB9VqFcvLy2g2m1hcXMT8/Dyq1arTO3tNfIEACsdB7T+1wfTQXOp7a8dyzKmL1aZTO0hL+QBr5DVelxmTalcoI53Zh1xbiUQC/X4/oI9UL6l+UeCbfryOB+v3d7td1Go1p6/t37quLXDuKyu0H+VaYTVX+t2hrMkQRL+BxW5mQDBqbx8GBQ+VbbtdUafhSpT2RtctlUpoNpuYnZ11jhAdvmspTPduNBooFotYXFx0juFekeux2fGeNKzUMdxMwuGwA1MG1bpXAECj4lT0O9VnvY+NitMQGcqVy1CJD2WnRWuEWqEDoiUMBjF/LBCsDF0fO4q6VMuy+L6vzBsFzQjmWeaq3m+r4mPi+Bxx/bGs9s3uOcgZ3Oh77BvrQzOtnI79Ru3l9xWsHzQPCqArEG7LrDAQy9/c1+3aUXadpjDTEfWx7ig+wMACPPZ+mg6tojabrk87VnTElanGNus4a/q9Zlpo+RZf4ETnjJ+xbGpgLVihosC0At46X/Y6di54HeplHT+1N1VnE1jSH2VP8v4+W1VtDN7b2s5sF4Mfek2dd7XFbdBHA3z8jD6rvnU5SOx6p9j7+4CtrWZ0DvX3UPaSaIDSrmGfr7vXZFA29UZgus8XUva57oNXm12ugCrPhaLO5LW536mdA6y3KWzZEn7GflbnTfd8BgV4YCqJTXsVQNfg76B909pmuhZ0bej5JbSJqOup5zudjtP3vDbbYQMpLDvD99lWtQO0bQxW+bAdG8Ty2RFqf/hsMtXZSpizbHQb1NZrD2VzGervnZMhiH4DSSgUcgc8EJBURlm/33ebkbKFdHPP5/M4d+4cGo0GbrrpJuRyOa9h4pNer+cO51paWkK5XEatVvM6p1cibH+/38fi4iL+3//7f5ifn8eJEydw8uRJ1+/tAg/buT8Vx8LCAn784x+jUCjgwoULgVpze0HU6KGxwfHZKqi9XSFDoF6ve9lPVyt04sPhsDusdnR0FNVq1R3corV5t9tPNTaYJqhRcDLaNqqPPJShDOX6SDqddiAdEATdaIBriRF1AugcrKysuAAe90t1apihZUE8dRiUWUpwju8psEVdRQYy26PMXZ8jSqdJwTX2u16vu1qXExMTgQNNFbizDFfqVTrHxWLR1Rjlftfvr9VsDYVCAfYZ2fkUdZQ59nT6ms0mIpEIFhYWUK/XXfBBy35pmxU41tIkfE8PaOS99RoKOND2qVarKBQK7hBrHpDJ77Of/X4/cBiYzp/W2ecc0J7aCKhkv+x7ergt1+zIyIgbP3VuFYzmnHF+WGvc2kNWD/NevKZlXVugQ7MkFCzRedFSMRx7LZ2ibDfbFo6hDaj4Usj5Y58Lrg2Oj03/5vzqOQk6pvb6CvZrO/m6fl/HhEEzHVPdL9RO1MCBXSe+dce1qffl3uUrlWOfGTtnCrYM7Zqh7GexgaOr8cd8z56K7qc+H0f3XmWY8zd/uGd2u100m03H8K7X6+6MBj1LgjYF9xVmx3U6HRSLRZRKJSwvL6NQKKBYLKLRaAQymrYr/E6323X1xsPhMBYWFtBsNh3uwCwq9kl1ggVXbbkyO76qS8msp3/ZarWQz+dx6dIlNBoNFAoF9/peAdHV/6YOULvOVzoMCGYCanaXT3errlX7RkugWD2qukEBewXfVU/YPlE/WLBb/45EIutqtut3NLhjCQBskwXPFURXvTYEzodyvWUIot8gwk01Ho8jlUphZGQE6XR6XT1qpsJwg2V6Djf1+fl5hEIhVCoVvOxlL3Ob4iB2kEq328Xy8jLm5uZw8eJFLC8vo1wu79hGRxC93W7jwoUL+Na3voVsNotf+ZVfweHDhwHApS7vhigYc+7cOfzv//2/sbi46IIOe2lDpyJaWVlxKc3xeNwZOrsh7XYbpVIJ1WrVpehvF0DfKAjCPgGrp4vn83kAqymGPBSs2Wyi3++7eq7bFSrxRqOBcrmMYrGIYrGIQqGAUqmEUqnkShQN5cplGAkfyk5LJpNxOsIa6gR5o9GoWz9q6FPoUITDYSQSCefEWqYYwWCCwxTqSa0pTeDWx0y1QW46M7yHArJsMx0OBcH5eqVSweLiotv3Y7GYA9d4TQWkeU06oKVSyR3Ulc/nUalUAgBzPB4PHGYIwDnSFrTWtvL+9XrdAcPRaBSZTAa9Xs854Rb0VVCU80CAkk4mmfzsH9tgGe4MjnY6HRQKBae39TBRDRTowbMKRBI8JZDJ+VInlQA822nLdOia4hxrSj8DG2Ttt9ttN+7aPwILjUbDHewdiUTceA6y2zQ4pO1Q29ACvra0DIMXegAp50ZBZTr1uqY1sKQ/lrGnwIA68QoA6JrRcwuUdc5nUJ9PBsu0XA0/R9BG17OCP/oa76vPFpmZZG5aRjvHwoJMui8QLNOa8zZAo+ucovuBBgt8ATmuBd1ftiJD/T2UvSo7sb64R/AZ9K13u3fZ97RMlg3wKZjJZ7Pb7bogeK/XcyQh6hvrG/FajUYDlUoFrVYL8/PzDkBfWFhAqVRyOu9qxoX6vFQqoVKpYGVlBel02tlcWpKNOk9LtNlSH2p/6J6oNgT3Yj2zpFQqoV6vY25uDqdPnw4Q9rjX7wVhcCMSiTjMhXqB86kYTLfbdeXiNBAOBO1AitUBvDb1t5abU13Ktay6yM4N26JiQW6C2nrGDecoFAohFosF7D+1WWmjK4iuGJSWAtYf2vXabksmGcrWZKi/d06GIPoNIKpgmVJKJ0HZSFSEdMS0rhawBlLXarXATzQadQpRDQZ1TqnsarWaU7Q+kOJqhfekQu12uw7gXFlZcYzkQcbNlYiCAox4E1gtFosOuN1rm4s6oc1m05tGt5P36na7Ls2OzDa+t1XZKO1QDQKNVKuRRaa6jahvtA7sOqYzzeuxT1T8V5oWOZQ1GSrxoey0EGwiuOerVa3lXJQhy89oHUkNIGspBAJ1BM4s22wjsUCW77ub6Sy2S/dyOji+eqj2gE+KMpDpgBJQVmdsIyaegn76urKQ9Pscb+qkkZER5yT1eqtnaXAPt2w1C/zp3/qe2jO8N50vOnwsxcZ9XVnEel0fK0vnUD+n/bWOr4KYGhCwOkrXhAWhOa4KNms/eQ0LVtj9Uu+v31fmnL2mr2+9Xi/wvPju4XNw9RrqmCvAQGfesuZ0XNgGG9zSa3H8VGcPeu7UIbf3s9+zov3h2FvA7Er0lgIl/J/tVjvcx771gX6D7rFdGervoTzfxYLo9ocgvOoyDcLqfqSBSfoyCr4yIM/9QPcqBTBVf9N/2Ul/hXsq2zcyMoJ6ve5IZM1m0xEVBpUlG0SU4h5m93DaNARWme3M++5Vv8zqbx72Sd900B5qfdZBvjB/qx615ctUbNUBazPYQKyvfYNAb64z2m56f8VPtISLxQd4LftjM9H20hzvVxnq752TIYh+A0g4HHZKNpVKIZPJBJjo6kyNjo4GDmMk04mbW7lcdsr3n//5n3Hu3DkcOnQIJ0+eDLDQgLXNsVwuY3l5GbVaDU8++SSeeeYZlEqlXT1ks9ls4vLly4hGo/iXf/kXNBoNjI2N4Rd+4Rdw9OjRQE3uq5F+v++UdbFYxJNPPonLly/j7NmzOHPmjFPoe3Vj6XQ6mJubQyKRwNTUFDKZzI7Wj6dy7PVWS/lcunQJxWLRsRTi8bhjwG8mPFC02WwGDqCz9yNjcm5uDq1WCzMzM279MoiSy+WQyWQCzFJgvcOoxihLuLTbbSwsLGB5eRmLi4u4ePEiCoUClpaWUK1WAyy1oVyZDJX4UHZatCyDOlT6f6fTcUFPZePws9RvCrSTGcTXlJWubCG+pywqAp/2HAUFn/UgRWU9K8hJB4IOMgFaOiPcw2q1mvtcLBZDPp9HIpFANpt1Z4fQyeUP99uVlRXMz88jn8+7tHKWfFMQXNvOoEIymQzoAjpAykSj9HqrJUjy+Tyq1aoD7xOJBNrtNiYnJzE6OupYWcpSVjBRmeLKBOY92BaC9K1WC5cvX0atVkOlUsHS0lLA0eQaURDajj9tJjLV2T89+NSmHCsrXbMCKHoty6oGgFqthqWlJcRiMbRaLZd1RTtMU/6ZIWDZ7+q4KoObfep2u6hUKsjn84Hye5xb1ljVzEW2lSUEdZ0r85FjwPFhAKjVamF0dBSVSsUFrTiWsVgMo6OjbjwV2Ob64VrUswVoy5bLZWe3abBEgQOtba97hDr6+kPbgmNqQR89D4djo9kwumYp9lBXXlt/83pst/62n9d1x73FZqPqOtPAgD7nm8lQfw/lRhbuOzZgSbEZI9y/uRcyG4h7ML9Pv5v7n+419KXpc0ajUedL5XI5x+7mvkgbo1KpODLXhQsXsLCw4MpQcr/eyXGhzbCwsIByuexAYurviYkJxONxZLNZZ09paTzqJto9ar9wr2QJUpao4X5+9uxZFItF5PN5XLhwwR0e3Ww2vYHw6yXUkSsrK6hUKi5LemRkBIlEAslkEqlUKpCxwDHherJl+1R/K7BcrVbdfZaWlgLnzQBAIpFwuk51nNoBJIZY4Jr3tiSAVqvl9PbS0pIb+0gkgng8jkajgXQ6PdCO1XIzSsJklnehUEC5XEalUkGlUnEHilodt1fme7/JUH/vnAxB9BtA6OTT+WA5l1QqFTjoiA4iN2vWrqZT0uv1HPt8ZWUFTz31FObm5tBoNHDgwAF0u12k02nnFCrwfunSJZRKJTz99NP4wQ9+4NJYd0va7TaWl5edA1AsFjE1NYXJyUmMj48jkUi4mvBXI1QY5XIZCwsLePLJJ/GTn/wE5XIZly9f3vNlPbrdLorFIi5dugTAf+DXTtyD9XiXlpaQz+ddCmEqlcKBAwe2dJ2VlRVXR9/W2KVw3dVqNadEl5aW3DOQy+WQTCYDNfqsk2qvpyC6ZhosLy8jn89jaWkJy8vLrr7gXqp9P5ShDGVVNLNKmeQ2nVTLbyizBoAL9mlZDa2d7EtHVmassoWVjU2HVw8PVAeGrxPkVgdd6yor4GUBW2C1XAozZ2KxGCqVCjKZDDqdDkZHR5HNZp0twDbxfIl2u42lpSUsLCy41HJlC7FPylpiOxlMUJBYmdaWrc1MMpavaTabSKVSzmZhaRfaKhYQ1jrlCtbzM/xNgJ565dKlSygUCm6v73a7AbCD7bUMcjqcWr6Hfda1wnXGObJALB1U1Um+wzz1/Xq9jlAo5DLsotGos/HYDq5PWzuXc2cZa9pHgs/VahXlchnNZtOtJ2Yz0gn31RcnUKvPmDppFkhi8IcMw1qtFqilS7BISwbZ50zZ+VxDjUYDtVrN2SJ8Dkga4VrWzE2uH90jdO54L36PAQsCYT6AgMLnxRf44Xf0MFcfkM4x1nar6P05PxaU4f6lfdYyUnx22u32wKyVoQzl+SabAXTco7V0GwHScHi1tKr6ysrC1n1YdTh1bqvVQjweR61WQzabdWe1pNNpJBIJ57MzYMjA9/z8PObm5lw5t90i+/DcFNULqVTKBRm1rBj3VtWxuucpuMu9mKx63ocEpnPnzrm/WbZOyRB7RXQ/Zgm7TqeDZDLpbAjiE1wTlkDhy0rjulHmOXUcy48ywExdACBw5g6vR1Fbg/rbx/xWIJ3zMzIygmKx6NqcSCQQi8Vc25SAor62lo3ja7RDGRCoVqvu0FiS2wZllA1lKNdLhhbTDSI+41iNbv1fN+pBAGOn00G5XEYoFMLly5fx7LPPuuhpIpEIOPBLS0u4ePEiarWaO9TsWqRWsU+MYtZqNVy+fBmZTAapVMpF8/mjEV7dgNXJ5EatRsjCwgIWFxexvLyMpaWlABtwN/pk/77aqGGj0UCpVEI6nXZRcYLMVyNcA8ViEbVazYETmqrf76/W6aUzZ1P8OOa93uphb5VKBfV6fVOwn4ZmvV5HuVx2zMVSqYR2u+1AGDLk1JHUeys7sFqtuhqCrIVOFgRZmVT4QxD96mQYCR/KTot1MPj3VlJ9dd+l06tlPsLhtVqRBJp0f97IiVNHQX+AIAjN/Yp/K1CswLRNvbV9YHsYxCY4T9CXICf1Nw9QJqipQQVlQylL2o6XtsfaGhTf35wj1g/lHsx63gRw7f5NNn0oFAqUndE6quxTuVx2TLZareYCocoC5JgqOcD209pUCkbzdYIK1hnm9RUk9x0cZsF79onANutrE2hWcoS950bzwfkn+EzmHxnb2oZWq+XsLAWEeR99zuyPrnvtuwLhtVrNXYfj0ul03BpQ1jxFSwVyHgiakzGvALqWN7CMPhXeh6AYAzb9fj/A6OZz61sjXDv6zAJrGQf6zFhbXD8/6FlT0flQQJ72j9pbvjWh7dyOXh3q76E838Xu+xq04mtaugPYuHwUsJbpRf3FvY12gWbSkclOti73cC3JtVuiNo+WC61UKq4eNlno8XjclfkgS390dNS9poAt+0Sftd1uo1AouMND6R9qhtzV9NPqS72WtQGs7eb7joplWIfDYUdc1Ex5jom9t72fsrapXzn2tGuYcacgOgPcvnaqHag1zvnaoEAS1+HIyIg7CJdZa8QVaC/bc9i4djUDjHYowXIt10MdrgETa2/65tXXV9/fe1XUlthpGervnZMhiH4DiLKQNIVTDWhl1dEJU4VvN51ms4nz58/j8uXLOH/+PH74wx+6EjHJZNIBzf1+3zm+dFhZH203U200cqusuccffxxPPfUUcrkcjh8/jlQqhampKRw4cADRaBS5XM6liWtNWCqRfD7vGNWnT59GrVbD6dOncfbsWTSbTSwuLqJer+9K9Fv7xP8B/wF4WxUGAYrFItrtNmZmZlCtVjE1NYXp6emBDO3NhMZLrVbDT3/6U1y4cAGLi4uBgzfL5bIb62KxiFQq5VL12TeOeaPRwNLSEi5cuLAu9dqKRrJXVlbw85//HIuLi6hUKuj1VtOuq9UqJicnEY1GMTY2hmg0GkhtVmOEhidPtW80Gjhz5gzm5uZQKBTw85//3Blve63u3n6VoRIfyk5LvV53bGHuEa1WK6CLyIhSwNSyXRnAW1lZcXsyy3hoGQ0t5eKrHW5ZZwCc7gXW9nsyi/k3GbgE05mVQzaafl/Zuxo4YGmsSCTiDnuORqOBkhTcyxiMZCBRy2pwnNh+PZCR40VmGdukLFiKD5Tm99m/VquFCxcuoFwuI5lMOl2hY8IfpouzNAj1Mffyer2OQqHgmGy0S+bm5lCtVgNzpGxjZd5rAIG2gtpUXCfULQBcFpQCx9YO49goCK4gswqZhrVaDbFYzAWIuY7UCVcwxwYweB8CMdSdrVbL6U4lQWhbOd6WNc3r0z6hM09gnqUE+KP2JoESjjdty7GxMZdFSSZnIpFw9+aa9KWDM6CugYFms+mC++w359uyz32gmAqfVwXAuVb4vBAEsyVc1C7X7+g9NUCjdiA/z/bbZ0ozEngvjpkCdcp+1SwOe5DsVmSov4fyfBa7V3Cvon4lK5d7gmYxKXDMfUhLVmlZqtHRUeTzecf6VqYvQUWeQ8YyGNVqdUMAdCeEepv7WygUcszkSqWCZDKJcrnsQHSOiZa9SafTTn9ThzPwXa1Wsby8jFar5UprsoQrM8hsxtN2RPdALR2m2Yka+KDPSGKFZYn7gptsH20PBovj8bgD0kdHR5FKpVzAmDpB2flKDuEPr9dqtTA3N+cCKQsLC27tEMRmCThmTADB7DfqFJbwI0Cuh4Gr9Pt9B3aTqJFMJrG8vIxyuYxYLIbx8XFks1mMjIy4sj6cf9rLWvqPc88DYovFoiuVS3yA+tzqMdtGxVF0HjWT7WqDL7stXHO7haMN9ffOyRBEvwHEsqEsK4mfsSmc+jkrvd5qaRcATqGFw2FkMhmXTkaFQudpN5W2r8/KyqMzRsCYCpx1x1SZay1TOhJUHEwjIqBbLpfx3HPP4bnnnnOKe6f7adlNmsrli0Zv19khmERFSwPGGgPbESp3MtEXFxcdUK8Bhl6v52qnhUIhZLNZ1+dQKOSiztVq1f0Q+NpINC2eB8ymUikHArCOK+ebzAgttUBDlHXONR1OmehkQAya+80i4YMYAM9nGSrxoey0qLPK/UlZlgpaUQbpPn6H/6suVUfYpiPT6FX9ooYwHSQLoBFgJBBG1hY/T0DMZlGpWGYU2cvUf9TXdJo4NtyDqUd9LB8fY1b3Qo6F9onfs23kmGjpDLaNjibLrMRiMedw2WAHa61qQJTOH3WK6j0y9RqNhgOf+V2ray0LWJ1un3PD+VamsYKzeg3OJ8EHH+Ch+6MCndFoFL3e6gGsCkDb9tn1YW1EBaI5LiyBwrEmQLKysuLADp+9yHZwnjQd3DdOarMp01IDQhw/CxDrmCj5AUCAiU6bRw8dt8C5HXO1lclE1/7qXmKdXM6jMua5jvTsAC1tY8fT7i8WRFfR/YTf0bISBE0s2KT7jj6Hg4I4g2Sov4fyfBef/lagmK/xGfMFxhTQ457IvaRWq7nv83os80L/u9/vuzM+qP+uRYlRJSAwGMu2qP4eHR11h3mrfxuLxZw9w/53Oh3ni1UqFRf8LBQK7qwOMq6vVlRfKlvb53MrGULtOmvj6bV1jOgTh8Nh1Go1dLurZXE5ZpxP6+f7shc1mEp9x8NWOTbqg6udo2Xf2C9gTZdQR6pu1T6pjlBdylKA4XA4UIaNNhoAx0bXsn+qv5WJThKEMuv1kFy1n9kPa7PpOTnWprPzuxflSnGZrcpQf++cDEH0G0CsQmMEUZ0hboKasqMb00ZCkKDX6zn2kDoi16NGNJlLjP5ns1mnnMnGIQBaKpVw+vRpx9DxHWzCH9YEZc1zHoCmqclXI5yLRCLhDoBNJpOOOaSnsFP05Gut+VmpVLYE7LPN1Wo1wNputVqIxWKujrgyz3zXYJp0t9t19cIrlQrOnz8fYOircEwJVrO0i77PtrBvWx1jNbzo6IfDYSSTSceqi8fjGB8fd2A6I/66dlmHrVAoYH5+3h3Qwz5xzdPpDYfDyGazSCQSGB0dxdjYmKvjy7JByl7gvRhJJ+udBg9T9IcylKFcufD5tGUYLChOXagsKN8eqvug1hb1BR+VkU0HSw/T4v0VsOK+0G630Ww2Xf32lZUVp5u4V/I3g8FkgfHe1BGDQE4CxwQYtc109BT4VUdDgeZB+kHHn84Z66Fqn/X7TPvVNG+OC3Udx8UCr7FYDJlMJhBUIEOL57EwHZzBWfZND1u3YsFzYK2kDRl0dAa51xOwVIdQWcO0SdRm0nVK9p1PVBeyzJiy+UZHR5HJZALrUgEcnWeCEJ1OJ3DwXLlcdn+rnlMwp9VquX7r2lfWNu1NGzhRp10BafaNfaeu1YxH9k8zyTgWDLyobUobhHpWSzJp22gH8hlTMEXtSLab48j1XK1WXVkFzrkG0zTIr+OhmQ4UG6BSe51l6/i37kPc4whUKIBng/i6tylLkvajztNQhjKUjYXPFJ8f7p3c1zUTSwN2Ct6q3aH7Aa+tQUYAgT1fdSEzyfidayFsC/dKBjmpuxuNhtNVNnjY769mRDG7Se0Y6kLNJGM5Nrv/bVc0OMqsPAK/tEUUvLY+me716ncT6LU2E9cD93LqWpZBob8IrOoFDVhrwIW2HXEJ+o/0m/P5PMrlciBYrIF52kSRSATNZjOwBjWwQWBb7TUF9a1wjAh808YYGRlBuVxGNpt1+AL1qZ4pwudCx5FZFNSvHFfaiBTNitMsQbWXbSYk54z4Cdugh6GrXtwLYPFeaMNQNpYhiH4DiALZeiqzbjoUAud08rjpbvSwUmEDa8A8X9fPXAuhgxGNRt0mnclknEOtJV6WlpbQ7XYdo5gKns6NGjnq/FiHaCdLtygIe/ToUcTjcczMzGByctIB6nTqgDXFTcbYwsIC6vU65ufnce7cOQfAMHAySPr91bSyH//4xxgZGcHi4iKq1SrS6TROnjyJgwcPDiztQ8OABk2r1cKzzz6LZ555BvV6HZcuXUK5XPYy6jqdjjsAVh1EFU2x2i7Ln+B3KBRyaY3RaBRLS0uYmppCPB53p8VrCr2C6JoKSRB9YWEBhUIhEDjg3EWjUUxPT2NqagpjY2M4duyYW4O5XC5QWonskE6ng0KhgOXlZdTrdTz33HPugBwq8+eTDCPhQ9lpsUxLLRvlc764H9FpG8RM5b6kepCvKyvJMtIURGfb9DlXp5CHK7JcB/cPtp//U3/ReVAGdrfbDdQ+Z/sJmoZCIdTrdefQKhOcomUsVP+pQ2jBco6Fgv4cf2YBkankGx91hKi7CVBqkJuOFh01spvoFBNQoH2jgCoDB9y/2UYVC6BbMJj3JMhr93oFyTknOqaqA9knAg4Eki34qa/1eqtZXVxLbA/nQtni6rDSflFCQKlUckEGppsrMEAbpNvtunvq/LJ9kUjEHXLKuWBftf0KELMvykDjPQmWZzIZVxpnYmLCgUdk1REkZ9/owNPp1vc0I4DjlMvlXDkB3jMejwcOxNOyONwn+LOwsOCC7zwrRVnfPia+PWPBrke1Sfk9ZlKwj3aPisfjbp+zz5ReR/dGBpvsnjhkog9lKFsX7ivcA6g3ycDVTDKK6gDdL6zw2Q+FQo5oYxm2vr3mWj1brHWtYDD1D8Fc1klnP+l/E0OwzP1+f61MJw+6pu1gz2q50jYnEglEo1FkMhmMj4+7EjlaLg5YO/ycovYb20lbBIDTmzbTiXqQ7xHMBtbsCfrW1EG+0mUEq8nILxaLLsiQz+ddcJwl1Ci8r48cwLXIgLLVFfyMXVP6P0lwAFAsFjE/P+/0K/EZ+t8kHlCXcv3yN9eM4lgcT+o2PlPZbDbg00ciEVdpQEvc6ZwS71pZWXFEQpLoSDTRM1Wup0++28/xUH/vnAxB9BtANPqpzBJ1fLkZajROHZDt3ut6izrkZCipQ25ZdqyZTiWtrOtBqcc7KWwXN/lUKuXqfvJvKnQFItQh5PcikQhqtRpSqZRzKrfSfp/CikQijsFFkMYC6bx+q9VyB2+SHcBo8UYMAbZpt5QSjQRldbMGMBl0jP6zHjDXB5UowQRGwDUwQeUdi8Uca4F19sfGxjA9PY1UKoVsNouxsbGBIDqdctZuJQuCxo8ai3slEr5bMlTiQ9kN4T67HdEyDoOAJGUZUZRVzM8QNNfrWDAWQEBX85q8FvdS1UvaPwX2tO32PryeBe/1foOeJcve189Tz6hdoeOgbeWPL4CqIKV9n3pPHS5lGCvTl4x36jWC0/YQSQ0AqChbzLZffys4raUz1OHV+VJWFG0NTalWe0UBmEFinXTqFDqHyphXUZCZn2WZk41sQY4J76drU4XtUGddbRE+E5p2zXtp0IH3VEYbAAcmEYQA4PSzsqo12KJ90fEneKM2F+v1JpNJx06kXalrl+uu3W4jlUoF2mP/ts+JPnP8rUE6jo3OtTIi9X9dkxRLaFFighIU7N/2WlvVrUP9PZTnu+izpAFpZbVquRLfc7zZs8B7EHjWZ1p9vt3yWweJ6i0bIGWfuKdb/U09ocQD7oX0lbQu/Fay5TdrK9vL81XIhOf+b0F06jvd59QGpD4iuMtMNN3z9d4UzhNtlFBo9RBZLTVKbEJBdAZq6G8T8FUi5CCfcaO92qe3rS6x1xp0bT4H4XDY+dudTgfxeBzdbtcdJgusseupt3VMbBBCS+1Qf6fTaYeV8Hc8HncZ/UoGsSA6/W22k2vM2jk+G/hGkaH+3jkZgug3gNDpCIfD7tAsblgKLjOCSgeEKbxXAtipI0jRzW+3RBWMgppMLdPUYTqUsVjMMbYYqVUnb7cDA1Sy6XQaN998M3K5HDKZDKamptwp3WRIWwBbxzkcDmNmZgYrKyvI5XKYnZ1Fs9l0h2CylpzP0aUyymQyLiJM1tazzz6L8+fPu7Hg5/k/nW2C6Dz4o1AoOIPneguNjXK5jEhk9TCVpaUl5zBzDsjSpOGpILdNB+92V2vXHTlyBOl0GjfddBNuvfVWJBIJHDx40B1YqmPKdQisGSh8vljDjkxAgunnz59HrVbDz372M/z0pz91h6HV6/XrOaS7KkMlPpSdFh66pbWmuc8TUAWCrCI6Z3TkrEOqALn9UVFHQoOGDHJS/yq7nIcVaxkJlvYi2EpHi8JAG4OqZGAPcqTte9a5UBazBeItEMo++QA8zdSx4DPBXUq32w2A0Qq2c2y5L/Nvzp8yaHn9RCIROCxVQdRer+fGV5nWBN8V5FdwQseITrYeUp1MJpFOpx0IoOxAzjf3feqdSCTiStBx7dGpjMfjjpVOUNjOp3XqOSZLS0solUrramLb1GkGv2n7lcvlAEjhcxoVgFCHV+dVgzR0RqnnuAb1ukwdpy1GMFz7SHa3HrLLeVVGo6+tbBvnmOVgEomEswWy2azL+mNGg9qRvmdJ95JMJuPKzyijv1QqOVvCBp0U8FKiB0WDJATh7FpQxrlmBtCWIWNVnzWboq7tUUa8DbZtJEP9PZTdkisJ6lxr0WeZzx7BN5Zj6/V6rnwkpV6vB7JoeK2t3Mt+dhAQ7wsI76ToHkQ9o9nTGkSg30OcgSCmb69W/MACm1fTVtoHsVgMk5OTiMfjyGQy7hBrMtFVtM67+sRsK4FszjX1tx7MrmNlM+44Lt3uamlUnhvG9UKbotcLMvtZzoUkNup1X1mgrYjaszZIv9VAj71er7dWlod1/G0ZONV9antqiTWurXQ67YIeDHzzbD6+TpIbcR69F3+rTp2ZmUG9XketVsPy8jLa7bYrUUumP20xEtuupQzyM3b6+lf63aGsyRBEvwGERncoFHI1r7SGKrC2kWgEk2D6lTxQPhCdbdltEJ1OPxnCjCwrGMDILB0wLW2z26C5FTq1qVQKN910E2ZmZpxDN4g1qSC2Tf8CgImJCczOzrp6bASAybi31+KaYIo06691u13n+KlDq+BRrVZzzACC9Nd6DLcitjwC1woVK4MvCrDRsNPUb416x2IxHDlyBFNTU3jFK16B17zmNUilUi4dfBBzdTPh+BUKBZw9exaVSgWJRAKFQsEdEnMjg+hDGcpOC41u67jyGbdsTAb/CHTaWpLcJ1Ts+/y+BdGVZUqxgC2BQgvEUn/REdcyD8o6UmdDgTLLdlMgjdfjXqj/b7SX6XvKsFNWsQIL1omx4DwABy5bphadOQYylaHEci2DgAXbDraFOpTgLpnGlq2kY8R2EzSPxWIujZigrM6dBmsIxHNtEaSl/uV92De2jfPq61+n03FgMv/n2uZ4EhBm7XwNghM873Q67nwS3/q2wvWqWY7sm44z+w+ssQ/1GgqG0/5kP3hvri0CGAzOjIyMuEwzfp/gil6bup5tHB0dxeTkJJLJJMbGxjA5OYnR0VGXBagletRO1Pbr8802xeNxNJtN1Go1xGIx1956vY5QKOTaqWPK71qQS8eJ99Iyixp84G+uKX2u7HWAIEN+UIBQ6xVfa0brUIZiRffi3QaEr0b0+dY9jEFigur0Q4BgSYntPGv6PG8kqnN3Y9w0K4uBYfZVbR4GwRn4Zoawr3Sl2gd2r90Joe/N+typVMqdo6ZMdL2/ZnbxdWYOUz8lEgmX8Qas6e9WqxVov4K6SjKgvak6lfpHbQqC9SxxQ7Ce9cOvdpx8IPrVXFcDJxwrDbgDa3aarqNYLOZY5fyJx+OYnJxEIpFANpt1JXgymYwDzxkMp/0/aO1rxloul3MgeiqVcsx5BvDpL5DIcj1A9KHsDxmC6DeY0Gi2rC2KpkldyUapSlTTsIAgI223QFYbOVVHju0j+KE/18tBiEQiLurNAzwJYlvWuU9876tyjkQiyGazmJ6eduVIFIggEEzHkfXJ0uk00uk0AARYAgTJ9eAuBl24rrYzt2o42EwBLUXAfuncKtDtA0w2EwUqlGWqjEdlLeqYTk1NuXG99dZbMTk5idnZWaRSqQBT9EpAdAXpyZSLRCI4evQoXvayl6FcLmNkZAQLCwuOfbBRuZz9KMNI+FB2WpT9AwTLqJD9Gw6HAwA0P6s1kHktmxGk19R9TfcB60jyWjbbi8Y8AVsFs/v9vgsKE1RUcM+e60GnXa9PcBsIHhiobCgbCFcdqQ6Vjq0CzwrqUQYFGSiWkcXXeE0y7zkGHA8FztkvC+IrgKAlUvh5DUzwfzsn2nb2lQwogukM1DBYYxlPVuyYWyHo3e/3XZBcdRK/q+uA7VAbQjMOlUHFwANtPwabLePT7qu6bjSQA6wFQBRYYCk4rn27Hn3rkNfu9XrOcaYoI5FBL1t7Vp8/zW7gwaTJZBLj4+PuIHd1uH1ANMdC51PZc/yf80XAhYEstjMcDrsD1/TgcHst3U/UJtFxUltJ1wOvxb3AOvvcdxTg4z7DMbfrcau6dai/h7Ibos+z6p6dBlZ3S3Tv07OUuNdxL7b7wZX060oJPFcq1pfT13VvJzhKHADApniD7rkKOOt7Pjtqo7bSBiBhjX5vIpFwGX/UvdQ71Iu6RwJrB1lSX2i5FQbHw+GwIzGqnaKZ5NSZZL/zddtXtfMURCcJwOpXX//tjzK9dR4ZeKfNYDMJ1KbbLoZiyQAWRFchaD46OoqxsTE3Z9Tf6XQamUwmQAZk4FxJlfa54P+0/UiY4XxqVhzxDmaRUnfr4eE3ggz1987JEES/gUQZLGTDWMdN2bZXWsaFmzEZPHp/IMgG2+kHTh1prX1KoJSOlabu8HNa52q3heM+OjqK48eP45ZbbkE8HsfBgweRTCavGIClUDEnk0mcOHECMzMz7tDRUCjk2OnhcNixpicmJnDy5EnnTKZSqYBzWi6XcfHiRRehXVhYCKwXy3DcyhhQSdPp1oO79EAtgiGcI9Z+63a7jl2v5Rc2EyqJUCjkmHp2zHW9ckxHR0eRTqfxmte8Bi9/+csxNTWFl770pRgfHw+k8G/G3NxsXHjvZDKJI0eOoNPp4MCBA3jVq16FQqGAb33rWzh9+jQuXLiAH/zgB+7wlhtFhkp8KDstui7UcVGgmntIr7dWUoGlnsh+1oDbRkxdBf3oBOkepqUVuN71fe6rup9UKhW3PzLoSiAXCGbbaN1m3oPlXoCNnWwyrLWvBF/VPrDfYfqsBdktU50BAJ0b6kPLQNcMK50TspapyBdKygABAABJREFUDywbWnW9nnNC+8SW6OHY6DUBOGeM16SjRVbU5OSkYzDncjnntGnNblu3VZ1H6hU7Vxw3zi1ru2upNZ1nsrU4d/ybwQYekMsx0gPJCKDzfQ3EU/+rQ88267wymKDAgzrmzWYTpVLJ9UGzHK1tyLXA/lkgW8FosvoZCNAAF58bzlcul0M8HseRI0ccg21iYsKVatko3dsC2BYw4rNHuyuRSKDT6SCTyaDT6WB6ehqHDx9Gs9nEpUuXUCwWUS6XcenSJRe443pUwondI9TGov2k86Dt9z2n+jm2mfudPnMWnN8uQWGov4ey06L7CWUQYWovimaJ8SwH7ZNmuHDf0oD7duVqQPgrEeohO0cE0TU4SMAYWGNd+9qpvprqFO576vP7Mq0HtZNkp8nJSRw4cMD53yzvQuBb26B2IvdZDbbq+Rq8D8vC0J4gC5uMdOpKEtn4N1nT1LftdjtwQCj1cq1Wc8FvArybPQeaIaC2Aw/TJvisY95qtdz96X/3ej3nh2uJna0K9bhdp74AezKZxMTEBBKJBA4dOoSpqSkkEglMTk46ljrnjDaP2rE6pnptxRc4bul02hEHp6enAyVq6/U6zpw5g+XlZSwvL7tAhs7pfpeh/t45GYLoN5jo5mqj3Xz/ah4CjWyqI8lrXy04vJmoU2bZ5myfBUEGASKDxOdc6f23KlSOqVTKOeGMtF6NaPtCoZBjXbVaLZeapoYa09lYhiSbzbrovDLVGFW36WlXsl7UAaXRQMOFoJBG4oE1hUvQSwESy0rZDcaUgkQHDx7EzTffjMnJSRw/fhxjY2MAdo79oUYYGQ2pVArT09MoFAo4c+aMK9FDY/RqFN9ek6ESH8pui2U0+Vjmyt4lG8c6hBZwU4fPgujKurHgVr/fd0FfDWLzWsAaE7vdbjtwlfqCoBhBRbu/KuuN/VG2LtugTDFtt2Wu8vMqCvirLWH3RctG1+/zR8fUN+b837LcfL/V9uD1qV9sppGypXUNWOeLYDEdOJZI4XW5b1NHbWb7+BjPvA/nj6CK1sKnnUWmFv+mXtBzADTYQGCfADp/U7+y/WpPKTNa11gotJrRRhBAU6f1GdOa7hQbhOe1tR3K+rP2HV/TAJKuXf7N8WHNW4LnrGPvK+dm58OnW9Tm5f9au1UZbqOjo2g2m6hWq24OtGQQx8rWi+c69QVZFLQZtL50zHg9G3Ti6wpMXSkgOdTfQ9kt8e2jm63/vSL6XGi5KT7bBCN1D7lS0UCaEnPYjo2+d6XPoOpX+7rvs5StErAUV7BBfgYwtyI+vzORSDggVsv+KT6gOsXaJ1Yncl/nPfr9vjujhvqK7zMoQGBfdRGvqTXyCaSzPIyWZNvKnq2EAr0/M7FYI15tMa5T1Rea5edbZ1uRzdqrdiwPB81msy4gPjY25oLgPARc50HPB+GY+uZOCYG0fWgXqO1cr9cdGaDdbiMWiwWy924E/TXU3zsnQxD9BhZf1G8nrqmsOlVqVB7bBTq3e386mawPxvtoqtXKygpqtRp6vR6q1apLg/KxdrjpMo2IjjJZx/weD9ako6hsMSvxeNyB1WQUUnnuhoTDqylis7OziMfjWFhYQKPRcBHe8fFxd6BpOp12hgUAl97U7XYxNjaGSCSC5eVlB95sFUjXE88zmYw7cJPKkGA+lR3Zh+o4ap1Xgvs8DK1Wq6FYLLqarvV6fR0j8krHLhQK4dixY3jxi1+M8fFxvPzlL8dNN93kaulpO3dD1MGOx+O49dZbMTY2homJCXf4ydzcHObn54dKbChD8YiyZQg0K8MYWHOuCCTzNxAMQDOg59NjdLbUkVKxhjb3KAtaKbimbaATw/2NbGHqKF95D9XHBPV8DpeC2ARhbc10vZ4FQ9kO3/u8vvZL76nODXU4dQ8DtzpOlrGvoLMFfXk/gt0EfPWznM9arRYAm9kWBd5Z81xTvXkdLQuj60rHQufBzi3XHNvG9djr9VxpFJ07zdyifiUgoCC0jiXtHc6VBmt0jjU7g0w11d/K+iI4beuH81p0ZrWWN8eWa0eZhBrM8j1DlqXNPqqwdEs0GsXU1BQOHTqEeDyO6elpTE5OOsdcbUOKJZvY+3PsNOilKfrqqDOYQcZft9t1hIV+f7VWerFYdOfP8L6a9aEAjg0caeBL7exBLFadY17X7hu8ngba9jpIOZQbW+gD+AJXQDAQ7vu9F4XPtwbv2Dc+59v1m/ldux/oXj/oOtsdK9/Y675D5jL7B8D5y5zPje7JfZ4HPmsglMHWfr/v6pCTFUz7yNdeZj1r4NuyyPXz1o7QuVF7RvuhtbwpzF6rVqsuI5DlVAkQ23Jwej0GXdXOUjtlI1Fdx1Jm/Jvv0ScniK7C4K9m7nc6HVdOhhnqypRn+zYL2gDr2ed2zqempjA7O4tkMokDBw44BjoPFmUfdG+wc6f2mLUfBs0tAXa2hwEL4iXEmhYXF7G0tORsmb2cETOUaydDEP0Glt0EsbmxqxJQx3q3jBpeu91uu9rR1jGlI6eHaCngaoXfi8fjmJ2dxcTEBMbGxjAzM+PqYvEQqWeffdal/NgUbpVkMulKt0xMTDiHdDecFCqEVCrl0pj7/T7m5+cRiazWTJ+cnHRAOmuNJRIJF41lP8jeWlxcDBy2slEZFSomHtzCwzgPHz6MRCKBgwcPOkeX6VisR2bXj84vWZulUgnNZhOLi4u4cOECGo0GLl++7JxQRuyvRKhQI5EIbrnlFvyn//SfMDk5iRe84AU4dOhQYE3ttnAc0+k0Xvayl+ElL3kJDh8+jJWVFSwsLOCJJ57A4uLiFfd1L8kwEj6UnRatXUhQCwga1HzWda/h51WHsCQFdYs+cz42lDJAgaDjwD1KM2zUCVbRMhx0phQo5VkWBET1QG06WppSruVZgLXSJbwm2fd6kCP74yt/RnBWRfuk7HwNbtuMNX7PAnj8jpZis2VjLGud/4fDYVdyi8FrrRVP4DwajaJarbogLfvPwC6dXK27yfkk2GlrilvAR4M17BedU64tjomC0clk0hEAOBd0Hqk/R0dHkclkkM1mA+uH61XPMrFjThBdHV+2LZVKOYeWZ7iwpiyZgQQ26NTyu71ez7Wt11srx8NUaNphy8vLLmDi0wHqBOv64m8y/dgnAv60t2666SbE43HMzMwgl8sFrm1BYgs8aVlAPiNMZ9e9Qh13/ZvPaL/fRyaTQa/Xw9LSkgNVzp8/HziIjiALU8S1xAr/1gAXxyAUCrl9Tp9RCybYsdRAAoNFFnjbqp0z1N9D2Q3RbBVftokG3ix4vFdlkP/kC5ZtBjhTqGs142QrgOaVigUkNSAMrGWCUdQvYxByULu438ViMUxMTDgbZ3x8HKOjo+67rVYL8/PzKJfLqFQqzqay40IwVP1c6nXafzYIyr9pR1Hf2UAvbTgNYNAmINnB6l9tA/1gZoZzj+92uw7A1dIwvKeC6IMCJASkWQpwbGzM2QoEzVnORQ9T5TOnILrOY6VSwcrKCiqVCpaXl9Fut12pMn0G2batCMeLmEE6ncbMzAyOHTuGeDyOQ4cOuUNEGZy2dqQVZcvz87Z9yrpXO7/f77vDx9vtNpLJJBqNBqamphAKhRzWpIeOUn/vRxnq752TIYg+lCsSdSrsa9fCqFFAnAdDqGFBEFZr0A4yMDTVKZfLYWJiwgHPCqJzw6eSIdPdd00qKqZv+VLgdkJUaWntXN5To7W+v/m/NVy3ogzVYGHEW51w/p1Op93BbJqOZe+ja0dZdTQwePApQRBGyOkAX0l6MtvNtO+JiQlX/9x3SMluihp1NHDS6TQmJyfR6/WcMUSQbb9HwofKeCg7LaqX7J6vwJd1RHysaRUa5IPup9fhfqr38u2/Pha7j0GjThQdcmVY+9pg9/fNAm9sM6+rfQGwTs/rvSwj3NoFCn5YppyyzlUUILTt4TV0PrXOKPUuGVjaHu6f7XbbvWfHRufOt2aoK22as7bPAkB2DfCaKnoNHzNO3+OPggF0HHmfQbaYrlFldytDjb+1hIwGYNRJ1T4TpOdccN0yO1APIeWcE1QGgllv1l7SfvJ+Oufadh0Xu151THwgPteksjw11Z5rxM6fnbd+v+9S+DXLQNcz9wGuIdtnvTeDYry/j4Gue48dNxVduzYYtVUZ6u+h7JbY4I5vrV1L23y3ZKefIdUvu/F86r7JPYQBe9VreobVRsA+9z8GrukvptNpZLPZQMbX6OgoKpWKA+YJsKvfp22wgLky6XVt2faoftU++3xnfU31ogZINvos7Qiru63+tuNng8z0GQmOM9OcjHx9XTPbgGD2nz3njq/T52w0GhgZGXFMdOqmrZAnLVbBYDznXfW3Zg1Ym8cnPhxqo/917LiOtRRMIpEAAEfK6PV6LhACrJat2+8y1N87I0MQ/Xko1onbDuitn+UhbDYCfS0eTjKECBDwEDe2hxu/phP7JBwOY3p6GocOHUIul8Mv/uIv4tChQ8hkMg5EZ2mRWq2G6elp5PN5nD17Fv/3//5fl7aljiCAAAM7lUpdE4OPpVNWVlZcRBoI1hOlcaMAE40d/uhhVIPmkkowFovh0KFDDoA+duyYC0bwwBUNJFAxWtaTGso0btRxZ6mZAwcOoN1u49ixY1heXkalUsHp06ddmR1Gx7cqY2Nj+IVf+AVMTU3hla98pTt4NZ1OX8VM7JwcOHAAv/RLv4RKpeLY+PV6HfPz86jVate7eVcsw0j4UHZafLUlLbNzs2AmA5GDjHAtwcC0T+uU6b4LwDkvvL5lUvNvMmtZa5qOhAqDxWRLcS+3dad1D1X9R4dXwXF1QulcKeNay1ioY6kMWL7Ow7C0f8pOtyno1N/2wCbVQWyLOpc6l5lMBmNjY0gkEjhy5Aiy2Syy2SympqYcu6vdbjsmeiqVcsAm2Vc8kJtjxZrk1HH2YFc6gKq3COpyjslw4g9f0wwE2ie8L9cqAW0dD1smh9clK5yf4fhyLhhgVjBA9XA2m0UoFMLY2JgrB0cggyA6+6o6m/OjQV3OCdcR20cHnePOkjqtVguFQiFQ93UQqMv1rOOczWZx9OhRZDIZHDhwwLHver3VMn4KWPC7Ou56bX0O1G6kHal2i5IOFPywqf+pVAoHDhxAOp1GpVJBoVAIsNm4Jtg3Dexw/prNZmAP0n2D37FBG5spQaEtqOVjLGizFRnq76HstvA5sP6qruuN1uGg9b8XRINjqr+38/zZ72hQTvexnWir7n98DVg7mNoXROcet1G5rHA4jLGxMYyPjyORSOAFL3iBy9yenp52JU5YViQej6NcLmN5eRnAKgZRqVRQrVYD11egmAC9lrnTwLfu37RTqIPVP97MdgyF1g7LZrkWjr8NJqhdo2W2KOqHW73N9tE+ZImYdDqN6elpRwhjadZMJuPY3HqYKYPfqg80uM6/k8kker2eI8a1221MTk66bIClpSVXYqfRaAxcc2qz0QbL5XIOPzh48CDGx8dd1oC1wdVusYETPeuEQRw+G3xObJBa17T6CZz3WCyGfn+1FBttxEql4g5qJ4FvP5LZhvp752QIoj/PxEaMlY2ynYeDToYFRLmh7PaDxs0fWGUyMTJonfzN2kHn8ejRo5icnMSLXvQiHD9+3NURJwjBFOvR0VGnwJ999lnnoFoQnfXVyR6+FkJWdb/fdynYPiVugRNuqJb9NygKDgRT8A4cOICZmRkcOHAAt956q0ujszXfgI3ZIzZSzbYx+tvv9zE1NYVut4vx8XEUCgUUCgVUKhX3vWq1ui2llkwmcfLkSRw9ehQveMELHIhwvVkuvH82m0U6nUaz2cRPf/pTzM7OolAooFgs7msQfShD2WmxrGnqB61N7Tt8SPc5ZRD5mJmaHaMHHXL/9JWo0uCuAmW619LRZL3tQUJd0+/316Xj2v1aWTZsC0EJfoYprRSCk+pYDXIWFPjn+PocZnXCCSZzXAbZC5oGTufJXptzxQwolk6jE37w4EGMjo6iXq+j0Wi4g5o5vtTneni1zquCpARmOffqwCkozr81HdwC76rb+Jv2A+/J71v97RtXAsR6UDfvO2jueI9IJOJSzBl4YLq5HgLOQDadUw1waLafBkv4N9cp69QzkMG6tgQ19Hnw6V+OXzgcdsw6kh0YtGe5OBIrNJihoDHbrs+mBbYYrGKAR7NE+F0NivlAdAIarEdLhpseKse/OSdKeND9RgEpvRftLN3/+LwoyUX7Z8f1ets7QxmKFd0fKRYI20ws6LuXxOeLbUd8GSeWSKa6/mrbqvuyAru+NtkyVD5R/T0+Po50Oo2DBw+6YKiWU6X/vbKy4va7SqUSqNdtAwrcW1VvWL1tx4z90Qwt1icHEABrbTlbYM1mZDkzBc19fnWv1wsQzCzIa4PffJ8ZWHqOWzabxYEDBxCLxRyRgGVtFDzX+bNECNt/MrD5Ox6Po9PpIJlMIpPJoF6vOzIjsDFDW+2pRCKBdDqNTCbjysyyrIvayL451Xb79gPFfvRvq/85X8p41xIwtHmmpqaQTCYxPz/vSgQuLS15s76G8vyTIYj+PBPLWLGO7FYjVNxkNYoHBJlt2yk5oZu3ZTxZxWPbp5usGg6b9YN9IHOamzhBYD3EjY5ZOp3GysoKMpkMUqmUYwtZ5UHFTebZtRKNJFMJtlotVCoVRCIRx85S5UwGWK1WQ7VadQex+ow7Zf8R4KXhw3roFqQCrjz10q4DrjPWd+v1eg74jsViLmuA9W4HCdl7mUwGMzMzOHLkCHK53LrMir0gNB4mJiZw8803Y2lpCfPz88jn89e7aVcsw0j4UHZarBNi910a1IPO8gCC+kcBaLuXqZNG59KuS2Wr8scy0QnIDWqzbR8DnfyeMtD5vi84yh/2g+0gqM1+WXaqvk5wlsKxssELO446fuyLtkftEe0zP6t1zdXZ4T1YK5x1Runsse64Hgwdj8ed000nifrKzq3qgkE2je2fLzjjIxmwHz6GlI4FwWXqPtaB1XNMCEI3m033Q7tEf7SNyorneOlBbFwbuoa0XRwPnWddO/os2oNEySTv9XqBw0o1KGSz5VQYjNID2nh4mzLVrC631/MBJ9pvdbTtPNr9wwbDlLDAPhPoGBkZQbFYdNeza04deT0TwD6//JtguY6T2koKfvn6zM9tFLyzMtTfQ7leMsj/20ion68WVPb5pvqb72/l+dB940qFz/lG+nY7YnW+3sfuV6rL9HPb8b2Z6URAlT/U49zTyXZPpVLOV43H467Up5bJAoJMbe6N1k7y7ZtWZ+g+aj+rY6YBVV1n1DnUgTxThv1n1lA4HHZlY63+tiXOwuG1g88JkicSCRf4JpOb/ecYKOtd7S8fRqPf4edoSzHQy9cnJiacvaXBe/rfVucqNsIyLlpyRtut7bDrUNf8Zj6775nVOeL/NtgRCoVcWxOJBMbGxpwdSQLG1T7D10OG+nvnZAiiP49EnSfdhMj6UmbRRtfghqpKjgY4N/1Op4N6vR5IqxkkagRwE9XNUVO7B5Vm2e6mQEeOTOqTJ09iYmIChw4dwvT0tHN61CCKxWJotVrIZDIoFouYnZ11h3lVKpXA/UdHR11KtB4ctttCZUE2WavVQqlUQq1WQ71eRyaTQa1Wc6ADsKrYV1ZWkM/ncf78eVSrVeTzeZemrQqQ83P06FHccsstSKfTOHnypEudTyQSAaW3k4C0romxsTGkUimMj48jlUqh0WjgzJkzLlCwuLiIQqHgvQ6DAOl0GkePHsUrXvEKvPjFL3Y15PaaUJG/8IUvRDwex4ULF3D27FlcvHjxqpTh9ZShEh/KTouyjlQIbnEvs0AXEAziElTWPUzZqnyPIKR1lugwKTuZzoAylKh7qeMAuD2U7eM12XYt/UFwWO9F3Wu/r1lbZLvTibOlSfijjimdKQ1C2PIi2pZwOOwYYzrmWmqHfWLKNYFPtp1AqpYysbUyR0ZGkM1mcfDgQVc6I5fLIR6PI5VKOSY1mcmNRsOB5/l8HuFwGJVKxfVPy4Uw0Eq7Q3+zjQShuT5ou+g46nqjY0m7yQYtlMnN8eI9WcpH2diRSMRlBFarVRQKBVfWjAd6kq2njjud71gshqmpKaTTaUcm4Fywn1w7uk44hxrU4NyzHxxnrkm1E9mPRCKBRCLhbCiWdmGKfq8XTL/nvQi+ZzIZ5HI5jI+PO8dWwXsFRZRVrmtN206ghCCGrnMVddy19BHHRdcvx3t8fDzQT5YQUhCb5Qs435pNoCCI2licfxXa+GyPBdtsbXtecyPbX2Wov4ey06K6dJBsZ93p5xTcvto2cg/TQJkG4dmPjZjYGhS72jbRFtkqeO8TG1TjnsX90BeYZ/90D1ObaiPAmfhBNBrF5OSkK6F66NAhTE1NIZVKYWJiIrAfsmQIy6Tooc32EFCytJXEZgkF2l/ajHo4NL/T7a6dQaP7I20G1eNKLOQY0eYiMY0lYqmfOG71et0d3Kn629psIyMjSKfTjrTGcmGpVMplklGXqC0TiUScTWZLtg6y4dQGIzjf6/UciY2lY9vtNgqFAhYWFtBqtZDP51EqlQL6m/YH9T5LzkxOTmJiYsL59Govaxk2nRefbc7/dZ71s5xP33PCMVE7l21mRt7BgwfRbDZRLBaxsLDgsui2ehjwbst29pKh/t452fmTDndRHnzwQYRCIbz//e93r/X7fTzwwAM4dOgQEokE3vCGN+DHP/7x9WvkHhdVkrpZbSWaR1FFyE1Rf9TR3co16ajo4WD6w2tqZPlqwVl1RFhPLJlMusMj7InQGjnl58jg8jF4NNJuWWa7JRqh1TmmI00gXdPbNc290Wg4JjoZbzZKT0c6nU5jYmIikErNgAH7vJMAuu0fa8YyhX9qasqlBJJRN+j+6sBrP9Lp9I63+WpFAwfZbBaHDh3CwYMHXdr6tVpbOy0KMl3Jz1D2n+y2/lY2kP5Yw9qeAaE/usYsK8Ua3dzjVU8oc0ZBq0F6l6KAHp0gftY6AVraQR15ba9tOxB0+vV1bZ/V2fqegonKvlLhNdhHgq62Dwru2xJitq38zqD2ks1GvU27gWNHBpX9jNYvV4DWspy0PRYg9R1+quOjOovXsfVR9fOWdQWsAekrKyuuFicd606n4w5KZY1xy0Ln2rYseNprZINxfBSIts+DDZDrWrFrXYEry0ajTcUD3RnUTqVSzo4YZD/qs0dGujLY7Nir+AAUO/7Wyfb1SedZ17TvjAJ+nxkTekaMbZ9db/Y5ULDLPk/aN2Wt2+vbffJK7NSh/n7+ydD/Xn/wpNUV9r2NZKeehUH703b9ebVNqLt9vrfukRY03+wZ1/2L9yHLl/40f1NPq35SPUVdZRnX1h7TcdB26X7JNlk9YPW5XsOn+3y2TqfTcZnRzJKmzqbepu7mZ1Rn+5jcOi4cO2Vzq21jbTJrn1q9rTaR/bxmgNH/ZlY6M9NZPsZiNTo+ihuxvUrItLiUHX/fmtd22nnyzZ+uWZ/9zM+xTcyYIPlAM9/2imy1LUP9vXOyb5jo3/ve9/CZz3wGL3/5ywOv/9mf/Rk+9rGP4XOf+xxuvfVW/Mmf/Ane+MY34plnnkEmk7lOrb32YjeOrS506zBvJqpgqeSU/UfHLRxePXAECLLjKCyjwt+shUUAVDdHKpZer4dyuewUUaVSCRyUeb1kL28q/X7fMc37/T5Onz4dULoAnPImg7vZbLoac8CaEkqlUpidnUUqlcKxY8dw+PBhd53dAM03EypOpphNT0/j1ltvdYfMEHBoNBrrSibMzs7ixIkTuPnmm130ey8pQyuh0OqJ4ePj46hWq5idncWRI0dQq9VQKBTWPV9DGcpekmuhv5vN5roD84D15SGAYE1IdRp8wKCCYvpdC7L6nCiKGupkrvCaWspC9Z6yvsmIVnBMy1XZ/ZftILuaTi+FJSN4fV+7rfPZ7/cDjhava+vMK2jINvD7Wk+eOp0MIwUKNVhAFvOg/VkdIALMbJd1pmm32PZyPLTvNhjDudI1wbFX543v27kIhUKBuffNnzp6BM1p40QiETdmZM/rmNTrdRSLRbTbbdTrdXcgJb8fi8WQyWQQjUYxMTGBAwcOIBqNulriNvDgWxc+RiL7AyBQe5b2n8160LFlP5WVyZJs1N9qP7JNdGjJEuPzQqa52oQK+qhofXErDA7Rth0EMKvjzfmyoBLfJ/uy0+m4jEAeWE/GIUkPTPvn88vfmkngA3t87VQ2PL9nAQ4NAgxlKFauhf7eDR/OPvNX66tZnQGsgWx2n9SDkul/WQBvs/ZuVXwBWe4Pel8FRZWpTIayZQBrQJH9oO6ivcUfG3zcTHwkIO5BmoGj/VLdpP1mP/m66m0fUGzHyOqAQYChBkY3+ozu4SzPovYe/VK1FRqNBgqFgtPfmoFFFvnY2JjT3zxEdGJiwgHoJPWpTWKz3mwfLUjPeeBnbMYcsIbf0K5QFreWo+EcttvtwJwwkyydTgfarXNqgX0F49n2Qfa277uD1iWvpVUTfEF/trnT6WBsbAzlchmRyGrm+17Qm3sZh7qRZV+A6NVqFf/1v/5X/K//9b/wJ3/yJ+71fr+PU6dO4UMf+hB+7dd+DQDw13/91zh48CC+8IUv4Ld+67euV5Ovqagi2CydatD3N9pkVOhUMBJKBpCWc+GGSieOr/NeAJzzxnRilkZJJpMO3GWf6FR1Oh0sLS2hUqmgXC67FC86L9datmIwXE9gloZFs9l0LPRareaUGA885di2223UarV1TDmur2w2i5MnTyKXy+Hmm2/G8ePH1zmZ17q/4XAYiUQC/X4fMzMzSCQS7iTtcrnsAgiq5EZGRnDs2DG84hWvwOzsLDKZzHVr/1YlFAo5Flur1cKRI0cwNzeHxcVFF0zaT3I1Ee2hsbC/5Frp71qt5j2TwWcgA0FwTY1uigXn1EmjYa16l4C8T/8qiKxGO1NjuQdpLUkV3Z/YDrKR1ZEgM4ufZT1xZYwTVAMQ2Dcsy0yF/yvri+VEqEvU0bEsJ44RHSzWJadDroArsBZ417bqnFD4Nx152goE/LWdBNFpt/jaalnKNmuAc6wHr2o/tU06rgrSa4CA1+X8aH+ouzT4w3qkfF/np9VqoVgsOoCD9hd138jICHK5HJLJJKanp93Bq0yrV4fTArTaLo6DzezQceD8MZhisxjo9BOY6fV6zpYkiFCv1xGJrNbDteuADm0qlXLPu2aT+ERfp31jA2a8h4LVXD++62maPsed19Lr8prJZBK9Xg/ZbBbNZhOlUgnLy8uBA2A5l3oYLYEUPtPMlPSBeVoCQO9Pm11fswGurdrRQ/39/JFrpb93c13s1LXVTuAewb1Ig6vdbtcdhMn9y7KKd6JdviC+/eF9uFeQBUwSG7N/FDi3tgD1CHUSD4VmljP3wK1iCapjVHdqhhr1gtpZyoqn8Bo++8yy6H1kCR9ZwALkauMpkUHBXPabfeBYNRoNV9OdZdV4qLmuASUGqh2o9tb4+DgSiQRmZmYwMzPjDgQnMzoej7t+csx8WU++QK+dBwZGtIQbhQFZrgmWexkdHQ2w6vm3klW45shcZ/a/gugWBLf2kc+2tjaYfpfft+tSSS0+21tt52QyibGxMQDAxMSEOwdvaWlpw/PXdlJ8wZ4rkaH+3jnZFyD6e97zHvzH//gf8e///b8PKPHTp09jbm4Od911l3stFovh9a9/Pb773e8OVOJkMlPK5fLuNX6HRZUPNx4a1eHwWg0r1n/UWp5A8OHh5qmG9Hbbsdn7NnrIDY1pvCypwXrUykRXZlckslr7k05Ip9NxtWMBbKn2uooqD40W08H3MXUINGs6ltZIVVEHcxCLaafFKhZlYPJ/KnP9PKPkBJsVcFbDhXXQMplMoB6+L5J/rUTvy2hxr9dz2Q3hcBilUinAEAuFVlndVOJ7nYVOoaGopWiq1eo1W187KUMl/vyRa6W/lREFrD8E0e7TdBxU/+na4t6t+6cCwoPAcorPaVFgMhaLod/vu7TYSCSCZrOJSCTiwEA9RJRt0X7wupZhr/f36WodI59jwu8wKKAMLy2joaVSrBNjfxTQ5bXYdusUW1H2lzq0ANY53QrA87OaiWBtHtpTyor3zRsdNV53kN7wlfQYtN/ZNelbh/oZBWm4NpSooH3n6xxbzR7UdG+bicH5U/vLtlnbafvnW2s28GFBFN7HlhKgzehjE1oARufLB5AoIOQbZ/28PvM+GRRkUrGBeXXstWYtv2/HUfcKW67AZ1/z87SV9f583fdsWZ9gKzLU388fGfrfq8JnTMFzZpdkMhkXXNUSZXxWfWeODXoOBgVjKaqzBul13V/VbtEyGlouhdnEFrDUPZP7E+9LTEFZ+NwvBwHpbLv6p9RZqsdZC5335p7mK1Gm9/SBjINsEmC9btN+2t/2c3YONdig39XgLvdlu3/yPe2XzrOWP7MHcPI9DTb4SAw6Jz49OMiO1XVFUV2i7WPNdNoY3W53XbkdDUJpmzeyHX1tUNuXdp6di4302iC7n6LPjupt2r5KWLkecjV6dKi/d072PIj+pS99CU8++SS+973vrXtvbm4OAHDw4MHA6wcPHsTZs2cHXvPBBx/EH/7hH+5sQ6+RUAGm02m85CUvwfT0tDtYi4qHjOKf/vSnWFxcRLFYxKVLl9wmzQOqlEVHEHqrKXWbPYS+zSkSibja2ZlMBidOnHCHb2az2UCkUjfMeDzu2pdIJNBut1GpVNyBknNzc7h8+XLAgdxK+2kELC4u4uc//zmKxSImJycD6UbqhNdqNVy6dAnFYhEXL17E/Pw88vk8arXaurHgwarhcNiVqrlWwqBJrVZzh5Pw9Xa7jVAo5AIHAALOvh27SCTiao0fPXoUJ06ccIeADHLKrocwYp5OpxGNRnHTTTchFAqhUCigVqsF2CAjIyOYmZnBC1/4QmSz2UAwZq9LKLR6+O6RI0dcOuDPfvaz692sbctQiT8/5Frqb3vAjw8gtuAd3/fVqaZQP6pTzH2POsQHumkaKV/XOpDj4+OOkUsnnGdTrKysuNJljUbDMZT0kFEb8ATgmOdk0apTRVCegQYLTCrY1u12MTo6GmBdMfjIeqTZbNaxnxKJRMBJY1BWnVj2n8x+jl+r1QoEDth+dcxZooWHqar+Ylow7QjeQ0uGMABeqVRQq9VcKQ0GVwnY6txxvKlbtG9cX/zNOeb12C/bF107Cm6w/6yHaplNurZJlrBgCvvIOeb9WEOWKeCpVMrpPAIUvlRqZTrTDrKMaT4bTNdWh1OfNZ9TbJ83gucAkM1m0e123bPAdqizTuabz/nW4D7/1uCJAjB6cKodB2Xx6z3sOudccn3abBh+F1g79J1n0bBt+jkG2OiwK/DAsWOJHw0G8h56eLEy2Pl5rieucQV8tiJD/f38kKH/HWSfEzCPxWKYmZlxhKJcLueyZvhTLBbdOVPMNuHhmGpTqAxiTVO4b9l91QbsqP91nw6Hw6698XgcU1NTiMVijpCjewX3SPUL6X9T94bDqyVbCYTqfu3zJYG1Z5/lQ0dGRlAoFLC0tIRms4lcLodQKOT0oJYmaTabLvM2n8+7w6e17IvqILWP7Nksqh8s2QKA02m23RxjHRN+h6xszZwnHtNsNgP6iXpMdRfvqbo9Eok4fT0+Po7p6WnHiOZB2rS/OOc26Mq1pGC+luGxB5dutKYsSE9dxfXMzLCJiQl0u11Uq1XXdz2/hARKBgRsXXQb5Ld2vLVBtH36Oa6DQbpYdSFtIX6PzwHHLplMumc2l8u58+R8WWo7Kb5g2tXq0KH+3jnZ0yD6+fPn8du//dt45JFHXBqiTzaKPvrk/vvvx3333ef+L5fLOHr06NU3+BpIJBJxB2HefPPNOHnyJKampnDzzTcjFou5KH8+n0ev13MM9fn5ebdBq/NmFcJmouD4VgF3Sii0msaby+UwPj6OmZkZZLNZt6lSBgGzvV4PiUTCMY37/b5L+11aWgKAbTkB/GylUsHc3Bw6nQ6KxSLGxsbQ6XRcGjIVIWuO5vN55PN5FItFB3T42tpqtRCNRq9pqQ117qjMlaXIPm+1TeFwGKlUCrlczjnhPDX9ejLQfaJBmKmpKfT7fXdojWU9jo2NYXZ21jHq95OMjIxgcnIStVoNS0tLu67EhzKUK5Frrb9p4Npa1SoKJOn+xT1S2SmWAUxR0NQCYPyuOiI+oJBObC6XC6SD12o15xiOjIyg0Wi4GppkMfkyhpSprfdSR8qOrwarrZOhzoRen04320xAnXYGx4KAAUt62PvQKbb31Dqg1tHRNjNI3e/33ZgBa+d78DO8FgHuZrPpgAwteWEdR3XC6ZQqsMBr6hyznXSG6/W6s8EIBtg6s3TS+Jo60nZNKTCujiznWGvIazvpZKfTaYyNjSGVSgXGne1S9ryCNGy7zWZUVr+1K60Dzr8V+FFHTsHvfr8feCZisVggO9Ay23RNK0iiZU44X/ysMgQJwtBZ1nWsNd7tM8K1yR9dn76DOknyIJjAMjr2mjq3zPRgIIdtJMCja5HrkOPIvmuJBh177b8CQUMZCjD0v1X4PPK5TSaTOHjwoKtHPT4+7jLJCKRGo1HU63WMjo4GyoxZRrq9j5aSss+sBsF9+xGwNh+qV6gnqAdSqRTGx8edbkilUu7+oVAokJmsgGU0GnXgNm0U1Xv6HWuPULQfkUgEtVoNlUrF6XKW51QAlfYCS7mSIKZnR1jdQ52k/dLfvhIhyhgn8cqSxdQuUT3OflnGPF9TYdktbZMlAfI9ZgqQfMgSKAS9CT5r4EVL3nA9sX1WZ/Nv1R8+wNmOn64zPhvUVel02pE14/G4WysKpNsDwW22lQZQrM2kNgjtPJ+da/tk7VDFvnz902eHWRvtdhvJZBKpVMplYO6W+OZhP4LYn/jEJ/A//+f/xOXLl/HSl74Up06dwi//8i8P/Pxjjz2G++67Dz/+8Y9x6NAhfPCDH8S73/3uwGf+9m//Fh/+8Ifx3HPP4eTJk/jTP/1T3H333e79Bx98EH/3d3+Hp59+GolEAnfeeSc++tGP4oUvfKH7zDve8Q789V//deC6r371q/FP//RPW+7bngbRn3jiCSwsLOD22293r3W7XXzrW9/CX/7lX+KZZ54BsBoRn52ddZ9ZWFhYFx1XodO33yQcDmNiYgKzs7OYmJjA8ePHcfjwYYyNjbkDo3QjO3HiBFKpFEZHR7GwsIBKpRJgXwHrD3FQNg43EgUmuLEoA0kBeCoQ/tZI8OjoqANkM5mMi6Ruh6XNdrL0SyQSQTabRSaTcYDxdhwBKu7FxUV0u12cPXsW3W4X6XQalUrF1ehkDbgzZ85geXkZ8/Pzgai7FWYDhEKha8Z0pnPFQ9tsWvd2hco4m81iamrKsfz2EgPdJwR71OhIp9OuRptNi9vLffEJDROySvZb+4FhJPz5INdaf1sWijojGmjS9/WgR76nILwa3hY853sKRtuSMrw/P59MJpHNZpFMJjE5OYlcLuccc7aTDhYA93zXajUAcE6q3depu7m38W91QgAEdK3dNzQAq2xdYA2UJIjOOaATNAikJwBpn1m2T8dNmcHKRrJ9tKxcMp76/T7y+bwDYRV4JWsun8+jWq2iXC4HghHqBHOctTbpoHJx6tDpGLL/FgzwfUe/p/Ni2W/sK+dRx1VBUQYuFITVuudq62m7uP4040LBZ3W8FSSgA61OL6+n68D3HClwoY6sBQcYJKC91e/3A6xNuyZ0PXLMfGQRjoOdJwWhdT7sPOv1LLign6UzThCK4BUDUrY0Aa9jM1/4nq+Uns6lrisNHhCsUeCAa2k7MtTfN74M/e9V4b7CWs4TExNIpVKYmprC5OSkKw0ZiUScf03APB6Po9/vo1wuIxQKBc6x0Osrq5cBaV8gjhlSFGvrKLjI55z7GoP3qVQqwAT2nSOje4rVkQCcXgHgcAfuJZr5PMj/VFCTGWK9Xg9LS0tu3JrNptOh/f7qORGLi4uoVquO5a+HWCqIrmVZlYCgGUUK9Ov46bwM2tMtgK7jrXv5oP4P2pf5WWvP8dwZ6lnqRtUDCqIrGUAD3tpGBex1DQ6yXe37FtD2tbvVagUY7rw/dZgF0PV/DVbYoLudJw3c2d/6+UFzYdelTxRIt/pbAye7JTupN6+l/n744Yfx/ve/H5/4xCfwmte8Bp/+9Kfxpje9CU899RSOHTu27vOnT5/Gm9/8ZrzrXe/C3/zN3+A73/kO7r33Xhw4cABvfetbAQCPP/447rnnHvzxH/8x7r77bnz5y1/Gr//6r+Pb3/42Xv3qVwNYBeLf85734FWvehU6nQ4+9KEP4a677sJTTz3lgoYA8B/+w3/AQw895P6PRqPb6t+eBtH/3b/7d/jhD38YeO2//bf/hhe96EX4H//jf+Dmm2/GzMwMHn30UbziFa8AsApePvbYY/joRz96PZq8a0IFdeutt+KXfumXMDU1hVe84hU4fPhwIOWTm/bKygqmp6fRaDTw5JNPolgsYnFxEQsLC1hcXPQ6EuHwaroX66Nx8yODi+laPLCKIDI3FyDofBLIpfKOx+OYnZ3FsWPHnOFBwJ/t2EiUEUQmH1PLmAZPAHmr0uv1XIAhlUqhXq/jwIEDyGaz7uAO9pklcpaWllAqlVAoFAaC6M1mE/Pz86hWq46psBE7Yyek0+mgVCqh2Ww6hvyVHriqzIXDhw/j5MmTrqyLjz21F0SVJ9PdAGB2dha9Xg/1eh2lUgmpVAqZTAZjY2PrDqnZD0ImOgCMj49f17psVypDJ/zGl2utvwn4aXkGIHhwJMWmtpLRxP/p0HJ/4FkLvEav1wvUoeSeSCYaRYGqkZERHDhwAEeOHEEqlcLx48dd+jKvq4yuYrGIZrOJubk5dzA0GdTqcFH/Un+n0+lA/1UIkipIrg6dvkfdRidudHQU2WwWY2NjLhvOHo7Fa3H8+v2+c2g5R3SgMpkMer2eK4fmc+r6/b43m4v3p3M9Pz+PWCzmAuAEO+jU65iSJV6r1QLnnHD8e72eYxH2equHl/NAbmUF6phZ1p3uybStdM9TwNRmOVjmleparlF1NAm2MgtRD/li2R2W0aMzax1wvbcVOt0EI/i8kGlma61rX5VR6eu/gujK7I9Go+49tpnEBNZd1SCOgkQcJ65vTfe3DrNlJOp46riEQqEAw1/Z5/ycElAUROH86jkCfO6bzSYmJiYQj8fRarXWgWwKQLD9JGYouKPPHoAA6GWfHQV+lKnOsdqKDPX3jS9D/3tV6AdFo1HMzMzg5ptvRjqdxote9CIcOHDAlWcieEudMj4+jlqthnQ67fQNDyMEgjXWVX8zc1b1hmYQ60GIuo9anc73k8mkO2ssl8s54H98fDwQcAeCwCj3MrKyqXc064X7EDO9eE97Jon1kRWUJQudGUdzc3OIx+PI5XIOf+C1l5eXXYkc+t8sq0EdQZ3Dg0/JGKYdp0C/ZR2r3rKEAwuKK3iuP9xztTa+FSUosB02SMEARy6XQy6Xc6VHNXuAtp/WR9cgNu/FtcP5YfCBn9OANF/T9an/s+8cQ+0LiRGJRCKw/ogL8fngM6WBAQb7LSFDSZE6Tmor+sSSEdhenw3Az9t765ywMkEoFML4+LgL/kxMTCASiaBarbqMyO2IL/Dt+3sn5Vrq74997GN45zvfid/8zd8EAJw6dQrf+MY38MlPfhIPPvjgus9/6lOfwrFjx3Dq1CkAwItf/GJ8//vfx5//+Z87EP3UqVN44xvfiPvvvx/AanbTY489hlOnTuGLX/wiAODrX/964LoPPfQQpqen8cQTT+B1r3ude52lua5U9jT6kslkcNtttwVeS6VSmJycdK+///3vx0c+8hHccsstuOWWW/CRj3wEyWQSv/Ebv3E9mryrEgqFkMlkMDs7i/HxcUxNTQXAWX0Y6Xx0Oh2cO3cO2WwWjUYDhULBe11uoHrCMxUsnQytE8ZN1Dp69nAMKlJ1clgH9koATN3kCHIwvY5Kfruiqd1LS0suWEBnjkq6Wq26OugMIAxives17Oa9kwC0bmi9Xs85YsrYstHjrQjnLBKJIJlMuuCKjx2x10TZoVTUrGdG4EtBhL0YENhIuC4HpYPvBxk64Te+XE/9raAcxQd+0uHj/k+nyLI/uY8qC53XtAwgOlwqyjQjyMsMGV4fWAP3CVhSv0WjUXeehS31ofe1dS0V3LXPjW2jgoPK0lfQVtNwuZf6GFd6f7Ke+Dp/W/YRsMZ802CFbTPn1bLUer0eqtWq+4yWY9OzYhhctuxfm5mg9UKVke9zeqzDxf5x7nX9bbZ/+RhUSpDQ9ilLW98H1gBYnS8NKFkms86brhl1WvVH729Bfb2eBkSUfacMcTt2vmtyftTp1fcVELGljuxeoH31Mdgso16vxX741rs++/a5o33NwJBmcxCgV+DGt056vV6gNJC2T8fTd/9BbHMNImynHOJQf9/YMvS/V4X7DIFNnr2RyWRcBjgzyWKxmCNy0f8rlUqIxWIO4KX4dCEDktRvFILXFLt/6uu6V2ug3eoC/q2BRPsdvmbvr5lkvLay3rnf+nwTu992Oh00Gg10u13HSCfOMDo66vQ1z4nRkmxaQobXo56grlCGsOIVvoC27k2+ufKJ1f9WRwza7zYCS3XNEWD2lT7RLC/Vf757abuUbMJ5HNRHawtTFw+ye6wtyjarbtH31RahPvfZH9vxc30BZmD9s2KDBhvhJLwm8QMlDtDW3K4Mej52W0fuhP62B0L7Moza7TaeeOIJ/O7v/m7g9bvuugvf/e53vdd//PHHA4dVA8Cv/uqv4rOf/aw7dPjxxx/HBz7wgXWfIfDuk1KpBACYmJgIvP7Nb34T09PTyOVyeP3rX48//dM/xfT09MDrWNnTIPpW5IMf/CAajQbuvfdeFAoFvPrVr8YjjzyCTCZzvZu2Y8I06ng8jsnJSRw5csRFJX0AOv+n05TL5XD06FHE43GUy2Vcvnw5sIGwPtro6ChyuZw7NJLf1/qmy8vL7pAzrS1KJpdNZQLgDnxkHalkMumufTXC7+vBLow4q8O2mfBzrVbLsdITiQTm5uZc7TcaRktLS6jX6wMZ6JRGo+FSzw4ePIh6ve7GdKeZw9zUGo0GLl++jFKphHw+D2CNpahjopHyQRKLxVzpgbGxMVe7d7+wtrk2YrGYq4/O2oSsJ7cfwWdg7XDR/QyiD2UowM7qb2VvUWyaq4plAvnYsnTEtJyZsj1pWCsrlQd6URg8ZjmzbDbrAtWWpaUsKKZ1ZzIZ5HI5x66qVCoBFv3o6GjgYCn21TKI+HmtiwkEWbsWjKXzok63AujKlgPWDjblWFkQmO1mkL7f77uDw9k2LRnCcbaMO8433+dnC4UCqtUqSqUSyuVygI3U7XYdO01BCDseBBPr9boLhrM2PbP0eE9eZ5AzZF9ne9QOYL8IFPC3z8nRa2rGRSi0xpQGVvXe2NiY+53NZl0GFu0By6znOFnH2NZOZX8tKE/wQx1SDT6oKKNbbSkbaCAwpQehako1iR6ayQGskTk0yGTH0Y6nfU3bouuYz5Yy0O13fONE4HxkZMRlUTBTkWOhTEadZwVVNKCg7dc5IsDEMdM9RudM269g2lCGshW5Ef1vuw+wdGg8Hkc2m3XlSJPJpHue9dwB7kdkp2cyGWSzWYRCIUceA9bsD54JxvuQiW59FAaLtVQq9wAFRjVLDVjDD7QsCNuhoCzvoffTfZh7NZnE7HsymXQBgkaj4Uq8DvJLLIhNXccsmFKpFAhMqN6p1WpOP+oBrbwu91wGzNvtNtLp9LrSsdTh1Ju2nI1lJfM1tlkJBLQTlMTG/Zc2wnaFmXaJRMKV6+WP1X0aDCfJQ/d7tRV1fSj4DgQPcNeAMPWP6lENGLCPaqPZoBAzIRiIsix06iCuG18wwwatbZDb6rmN7CcNPijZQa+la18DB51OxxE3ORdcbz4CzUbis5WvVDYKAOyG2HMs/uAP/gAPPPBA4DWSUn2HT/Ngaitzc3Pez5PkOjs7O/Azg67Z7/dx33334bWvfW0gMPymN70J/+W//BccP34cp0+fxoc//GH823/7b/HEE09sueTYvgPRv/nNbwb+D4VCeOCBB9ZN3o0kyrY+cOAAjh075lKUBikqOtSjo6MYHx/HTTfdhHQ6jfPnzwMIRgzT6bQ7ZHFiYgK5XM458gTRqbji8TiWl5fdgZ6angb4a08xDZzsOzqiVwOic7NiWhAPdiHQu1kU2LaZSnpubm5dVFL7s9XrEmiPxWI4cuSIS0PeDSeFm3atVsOFCxewuLiIer0OYC0tjOUI6LDy9PNB/YhGowEAnUGWvc5CB4JrO5lMYnp62oHNpVLJHSZqjYj9IgSgut1uoBzSfpIhk+35Kbupv6nzNhKCjD6WKN/XvZ7OloLolqGurFwGuKhT6FDQYSCLjQ6QgolsBx1xBsnS6TQmJiYQi8Ucq00daDqcWi6CY6GsIACBkhx0dtlvgqDKzNZx1TNX1AG3YkFZZaoxS0pBfnWmyRCnQ61toQNDB5B7OseQ7D+ydZWxy/uz79SLvLZlFpMk0OmsHmDKOvCabqxnjhAYUEaVgss6t6FQKHCYG7PayKpjaSGOpa47DYZzjOjkapZgNBp1Jc0IoieTSYyNjTk2tLbLMrUUPFYnXGuacvw1kMJyJOoYK7jBsVPAVzP6LJgTDoddzXB+VwEGXe8EYvhbD26zATLV/YOAdIquDc4BATT9rILgfF3Zgspcy2azCIfDqFarLhvFghxakoW2rh0/y57j9zQbUcdTA1g2sKj7xGYy1N/PT7nR/W/dD7hHMEidSqUwNjaGyclJRwbT+uX6LDJQNjIyEgDRmc0LrO21sVgMqVTK7WvJZNLpdetv6WGarLuu56QoOUoDfhZAJwjLoLvNmlK9pnqMe5EeuEy9PTIygmq16kgEG/klun/w+wBQrVYDuk73Y/VffTiD/t9qtVxbqtVqIIhAu0sBc9ZMV/2t42HXh44JbSr61fV63e2/g8q5bCQMHJMoST+c64gBEK4PBYTt3FEf6NpQEF1FiQR2/LvdrrM9FFC2VQesLcRzBGi7cc0Rv9KSiT4Q3QL3Gmz3rS9fn+zYMgBEX4Fjp9fXta82CXU8CaHcB9rtdoDRv10dtxM6kffeSjbZTujv8+fPI5vNutc3Ap3tXHGNbOfz9vXtXPO9730v/vVf/xXf/va3A6/fc8897u/bbrsNr3zlK3H8+HH8wz/8A37t135tYPtU9h2I/nwV3bzVQdvsO7qhWeYRr8VooRr5NB7UQKdiJ3NMN59BSg1Y25BtyvvVigLpTLHxAeDbke0qvEGikd9Go4FKpRI4yPJqAVwdb9aMo4HFKLhV+ECQNTVIuF4YhFFAYr8AtmogcX1rDWP7uf0m+xH8Vxk64UPZabEsdF0nCp5blonux8qktnu0BRqVAaXpzvo5Opwqtg1sh/1N4E/TYpV9o46K/cwgkJC6eBBjRx0G3kuZq749Z9BrOo6WNaR9UMCCjop9xqnr6STwf72uOvoWSLB2iu23bZuC1HSG7djrurCApm3PIPBWHV2Wy9uoTNxGe76OszIMaRsp0LPZHso28W/2UcFb+3m7nn3Pjn02BoEg9hnls8lAjmZB2LHUn0Egue4Vti+6h9C+VAfNAgzq5POZtezurdpOvjWp97br165ZghpaetGKfc4UUNrqwWhD/T2UG1m2s775bFu/QgPidp+yn7GlL/S72ibu5776zrym7nXWB7S6WN/na+yTBSz1s6p7rW1gdd5GOse+xu9qYFf3vo2IX/Y69IEJ0pMQoUAtgVteX19X/e27Pn/7DiEfpN82E59dp6VHdW1spk9UbyuYbudnIzvUdz1rv1qd5LOvdR0rcG6zuDYaFyB4iKhdU742WZKHxUMsFqUkBbVLdZ3sZdnqetsJ/Z3NZgMguk+mpqYQiUTWMcQ3Onx6ZmbG+/mRkbWz4AZ9xnfN973vffj7v/97fOtb38KRI0c2bO/s7CyOHz+OZ599dsPPqQxB9H0gujFth2Gt39dDL6ikmGIzNjbmDjdi9BMIGgdkcvGwrlgshuXl5YACGdQmTSdTBvBOCUuWqIOlKd5bFZ8BYkXHfqNNlWPebrdx/vx51Ot15HI5vOhFL8L4+HjgRPPtiq6FlZUVnDt3DgsLCygUClhcXESlUnF9UDBcjQamXQ+aM7L7x8fHkUqldmXeroVEIhFks1mMjIygVCoFQCZg84joXhTOvT2cZj/J0Akfyk4L2ZVAsL61T38Ca4c/ku0KrD9wVEWdEQDuYEWCe9Yh1WeTGSM8BLvX6wWcCctkU0NeHSk1+FkSJpVKuUO46GypEHjm39SPwBpoxuCBjh/HgYFzzaRSB4NjaPciO9ZkiFvAmfYF9WWtVnNjEAqtlcNgaRU6qWS0c/7IBLPzYFlnnHe1D9guddTJvmLmUjKZdIdI0QZi6Qw66QpQarCF7PdsNuscNbLXarUaqtUq6vU6yuWyY7LpOCtDTOdVRdcxmZOs4Uumo7ZPx8WykrWsD8dDMwWsI8//SWTgWuQ88od2ooIZHE8tNaQZE7xuNBp15Wh4qK0G+rUUkHWmeR+2k7aodfopCsKrHewjIajDztd1b9E5I+FBD8tju5XVx/baNmmGhg1s6GF2ms3AdnCctK886I0yBNGH8nwWfe65P9pyGGSdqv2t2TgKxtrnRJ9x7hGJRALpdNqVvWCGue6vfNapp/icKugMIFAChr+1frMl4PkATJ9e0ZrnbIuWE+P+S4a8ljHhXmbxC8t6VtvKZ39tR1ZWVlCtVh32EAqFXCa89QG5f9qAh2YMKFnPgvrlchnlchnVahX5fB71eh3VatVbWmcj4T2ZuUiWM8uwMdtwEClBRe1Y6lSuXR1jGzTQUoCW6Kg2jepYBZk1kMvPUnfz+tTfXJP87euXfQ40yGCDNoOwMdXfg8iEvt9Wx9Mm0Rr9anNcaeBkp2Q7WMC10t/RaBS33347Hn30Udx9993u9UcffRRvectbvN+544478NWvfjXw2iOPPIJXvvKVzqa844478Oijjwbqoj/yyCO48847A+183/vehy9/+cv45je/iRMnTmza3uXlZZw/fx6zs7Nb7uMQRN8nYqNs230AfIqLzjGVuKZ4qaiySSaTbkMmCKDGvU9owGu91p0ELjWSz43SpgVtJr7ova+NNoq90fWpZJeXl52jfOTIEaTTaTf+VyrcrFdWVpDP53H+/HlUq1VUKhU0m03nxFJx0QjSCOtGwnREOt/7tYa4GlFaB3A/9kVlkPO/X2TohA9lp0Uzp+jQ6mGhQHDtKDNLS4twn7QAkzrSAJzOi0QiATDagl8ECFm6QllRCsCpE8728bdlsyooxoOTtXTERjqZ+7+9lwXR2WfLkLPX0fG06bDUk9YpstfgtQlK65xovwgu2wAF7RCtC66iAQm2RdnqOh7qdEYiEVcTXRnJbJO9hwYIeD2f4wqsAdUMrDQajUAquG/eNtJbHINQKOTsOAIorLNL0SDNIFtASw3xGSJQwr5bhhZtDq4ZBUM0MMPngUF+BVmsI65kANqoTMvX9Htf4ExtObaLNgEDL1quSceH4BTXDG0qXWf6DCnwYoMS+h1Nq/eNsc61PpNq/3NsuKdwv2q32+j3V8vqaAkdfc5sP/mdzex43/hciQz191D2uuizpsCYllzS1/lsbQU05fe07Br3NQKKdu8gyMv72D0BCAKO+rpmJClIqSxbvmbFBqRtph5/633t3mj1oQ1w8hoWCL2afYIB9XB4tU47y+6ofaB6mJlmHGclHnCutVysBj0JmtdqNdRqNdTr9U3LpfqEek6D9FqGh3pyIwDdrlvqRNXfqq/VnuT/ahNb3Eh/W7a2vq5tUR3PPtFms2fr2H5Z/c2/1WbgPFj7U8cUQIBgYvW29p1tVn+An9Wx1D1gv/ni11J/33fffXj729+OV77ylbjjjjvwmc98BufOncO73/1uAMD999+Pixcv4vOf/zwA4N3vfjf+8i//Evfddx/e9a534fHHH8dnP/tZfPGLX3TX/O3f/m287nWvw0c/+lG85S1vwVe+8hX84z/+Y6Bcy3ve8x584QtfwFe+8hVkMhnHXB8bG0MikUC1WsUDDzyAt771rZidncWZM2fwe7/3e5iamgoA/pvJEETfB0JmTrvdRqlUwsLCAtLptGMzA/76QHzgq9UqFhcXsbi4GKhhrsrPboaDxDq9W/mOGv27sdGowtjOhuYzAuyY+IwZAAGHx5cipd+ho8ODP1utFtLptGMPUkH62Ee8BgDH1CMjr1qtotlsOvZ5s9kMKBG2kaCNVaiDhM6g1szbz6AzAwgA1o2BMiv3i/T7a/V/6QAPZWP5xCc+gf/5P/8nLl++jJe+9KU4deoUfvmXf3ng5x977DHcd999+PGPf4xDhw7hgx/8oFP6lL/927/Fhz/8YTz33HM4efIk/vRP/zSgfB988EH83d/9HZ5++mkkEgnceeed+OhHP4oXvvCF7jP9fh9/+Id/iM985jPuYK6Pf/zjeOlLX7rzg3CDC/c5BUNtzUYr6jDwu7qv87eCXRZYJ9jG/y2bMxKJoNlsOnCrXq+7+1inUp0WMrropPEAK7aZwU0tVaWsIMsO1+tbEM86FLa/LA2hh0gRvLOMOfujtoVlwlJ888RsKQKTnBe7ZxOE4PskAeiebh001X/KbFKmujpQGlihg2wP1OL46HjzNQKaPCtFnc5isYharebAc8vkssxD9sdXUkQZdbb0iQU5lBCgc6WOqZ1LvZfOrbIJNdCgNpN1jrXN9nnQ6ypwpLaZOumW6ch1ps+2XsfaNdpv21adT7se9HnVYIQPhFMAvdlsOsCFARQ9DFSvo2PI13xBQY457RqfXc/vtdvtAKBg1/5QhjKUVeG+zyBuvV5HKBRybNRwOOx0IffNdruNer3uyFP8YZDKAqZ2b7P35z6ge4j90b1C9zX1AS2gau+lezKAdXs+26jEARv4tACjXkftDLUJGJzkPu4Tq4u2ClJrBgEJZsoqV2Bd/W8fU502iZZvKRQKgQwyPdR6O6LYimYfaikXnV8Fsa0dae2pQRiFxTx0jrT/XEeqd9WG4W/fta3OtSQKnQvFYSwGo6+pvU79xUAI/9c2WLHjxeurDaQguq5xnltDvd1sNtdlfg1lTe655x4sLy/jj/7oj3D58mXcdttt+NrXvobjx48DAC5fvoxz5865z584cQJf+9rX8IEPfAAf//jHcejQIfzFX/wF3vrWt7rP3HnnnfjSl76E3//938eHP/xhnDx5Eg8//DBe/epXu8988pOfBAC84Q1vCLTnoYcewjve8Q5EIhH88Ic/xOc//3kUi0XMzs7iV37lV/Dwww9v62DsocW0D4TRzk6ng4sXL+InP/kJJiYmkMlkkE6nvZHkXq/nDqyan5/HM888g/n5eSwtLa0zmm0dtkGiG54ygDYDIOkEWuWyU8ClVeCDAG0VZRhprWyt/e0bC91QabhQmWqwQIWMxna7jR/84AcYHR3F9PQ0jh49ikQigampKZcmDqyv48X7NZtN5PN5NJtNzM/P4/z582i1WigUCqhWq+ucba2tygPjbIrXIInH4+4gE81M2E9gM7CWcaGGH41ezt9+Y6Z3u6un1BcKBdRqtatKe7xeci0j4Q8//DDe//734xOf+ARe85rX4NOf/jTe9KY34amnnsKxY8fWff706dN485vfjHe96134m7/5G3znO9/BvffeiwMHDjhF/vjjj+Oee+7BH//xH+Puu+/Gl7/8Zfz6r/86vv3tbztF/thjj+E973kPXvWqV6HT6eBDH/oQ7rrrLjz11FPuUME/+7M/w8c+9jF87nOfw6233oo/+ZM/wRvf+EY888wz21LkQ1k9WFlBQR8IboEl7vl6YKR+l3u3ski511PPkAVLUXBPnZ3R0VEUCgV3yPbExIQ7dInf4TWZjtxsNlEoFFyaMFPJR0ZGXDm2VCrlUn1tsMA+K5pyzR9gPcCpY9ZqtVCpVBCNRpFMJpFMJgM6nDaEtl9FdSnTdi0gaQ+94rj3+31XNkXHVVnFiUQC8Xh8nV6zgADBEHVCe72ec1iZXUdGvNad5bVZakaBXLZdx53OlgoBeDp8DIgTQNcAr7ZZDy7jmDBwoPaYArmcK7LYotFogLWszriPdWXXOduiTi3nQ+efr9Nptuta1wRBAQaC7XPKPpEooqw1tXmZLq4OutqzGiDhbwYXdMw1KKJBF+0vP6PAiwJO2i4CDxxHfqfRaKBYLLrnWoMofB4pNoBnn28de51LflfZ52yLBnU0g9OXRTNIrqX+HspQrqcwkN3pdFAsFrG8vOx0IrNZuN9w32w0GlheXkalUsHi4iIWFhYcUxkIZmfb85qsDaPPPgE8/rC8mWaTqH8fCoUCB25rlhODwdw/uV8BfjYw20z9pfslAwpaE9z6+vrccw8Oh8OOmQwEM8wsgY12kYLi1oe1/3Pfpd4tlUpYWVkJlOBje7V9NnCpbWB/Ofblchm1Ws3ZBz4MYCvCPZi6PZlMOtuGpQptuyz7Wu1HnQdrW6hOs8QBYK1EjwWVaRPp9zW7jPfnNVV/a3BAg7ycC9XVqotscFqBfyUChEKhAEGB3/XhOb75pahtp+NG+63RaKBcLiOfz6NQKKBYLKJSqbiDfveDXGv9fe+99+Lee+/1vve5z31u3Wuvf/3r8eSTT254zbe97W1429veNvD9zdqZSCTwjW98Y8PPbEWGIPo+EI1A12o1V9u52Ww6Rok6QgACjjJrbfJBp1wpcGij5ZtdxzpIOw2iq5GhhsRm7deougXRfQEFVVI2RdmyGO33qGDK5bIzIHK5HLrdLtLptJtHa2wAayw9Gmc8qLRQKKDVaqFWq61zvtR5VdaSGmUbCQ0mW6t3P4oqZxtV3o/9opHUarU2PItgL8u1VOIf+9jH8M53vhO/+Zu/CQA4deoUvvGNb+CTn/wkHnzwwXWf/9SnPoVjx47h1KlTAIAXv/jF+P73v48///M/dyD6qVOn8MY3vhH3338/gNWUtMceewynTp1yaWdf//rXA9d96KGHMD09jSeeeAKve93r0O/3cerUKXzoQx9yJ4H/9V//NQ4ePIgvfOEL+K3f+q1t9fP5Lpad6dsDAawDvS2TluCTTw9YHaOOFcFXHxOMrC8a4gRt1cnhZ+n48bOtVsvpenXYFSi0zB3LatN22oCzFTon+nlNd+Z31OFW55/vW7BVP2uff5/+1n2a92f7lL2k6e0atOCPBSJsyRd+Th07q/PUoSL7kOPhY20ryKBrgWNDXU5QlUx/Xbs6/hpoABBwenXOFTi160PHQcffjrneV/uv46UyaE430q2+dalABq9p17rOi64z3p/rQMF2Hytbr+Obb1/7feNl17vNCFB7Q9ez1lbVw2R9QTALUijIb/cxtlGDCQqi6z6lAMxm82VlCKIP5fki3M/JRG42m4hGo87+JiknEokEwGQFuhkg89kddi8a1AbFAQaxvnWP0n2SJbi4/zBjRYOV2gartxSw3Eg36l5u26+iQKiWRtMggB0L9lHbZ9sxaOw0Q4Dl9fhdvsd78LfPl2ffyERmgIW6fDNy2iCxukjHRXWf9tNiHVZ/+/72jdFG62+Q7+/T3z47T+fYZ5MC/koAimn55tgX5LbttPdT0bFQ/T3IJrKsfn3OleSwX2Sov3dOhiD6PpJer4eLFy/in//5nzE+Po5ut4tjx445VhsP91hZWUG9Xsfp06dRKBTw9NNP4+LFiygWi2g0Gu4BYmoSlb0y04H1GyWVEIFcjTxvJCsrK6jVak75tFotF328mrFg28gKYJBAU9tUGOFkPxn9jEajLsKuB2j6Nl9VSAQwR0ZGAqnt3HBtSpc6QqVSCWfPnkU0GsXi4qKracuIs0ZD9fDWarWKdrvt+quMOSsaUFHjQH8PEqvI9qtYo48GcblcxtLSEuLxOMbHxx0TYj9Ip9NBPp/HpUuXkM/nn7dM9HK5HHhdGS2UdruNJ554Ar/7u78beP2uu+7Cd7/7Xe/1H3/8cdx1112B1371V38Vn/3sZ7GysoLR0VE8/vjjgUNN+BkC7z4plUoAgImJCQCrjPe5ubnAvWKxGF7/+tfju9/97hBE36bwOdd9l/ucLQGipSc6nQ4ajca6fU6fK2WJKetWjXkAruwanVN+h7qC+06j0UAqlXIOeSqVckw2AuhLS0suaF4ulx3oRgeQwDwBOXVGgDXmrrJh6dwz+Moa49ofCzhS7wNwoD7Hz4J5OmZ8j7XFAT8YQKCBTB79ng1kU2dTV1vgktfUDDuC7dTPZKLxO5qBwH4pMzAWi7k288Aw9q/X67lSO2obqF7W8WSbaXNper4Ge5Xdzs+yjRwHW6KFwrmwgRYrCkiwzZZ9znlQBxII1tklo5LCsSawoBmIvj2fIIYC3rx2p9NxLHoGlZQgwmdGy7cAQRBdbSmuT80S0H3A2kd83tXBphOtDHYLjtl0cwVy+LxyXvlc6zjrNS073FfGh/die3W/0+wEBcfss25B9Y1k6IQP5fki1FFkoi8sLKBeryOVSqHRaLisXYLo9JEvXbrk9H2hUHBnXlAfcg/i5/UgZvVZdA9tNpvOBySIP2hvJejN/QaAa4PqSBuY03tb+4b6VUk8jUYjUI5sEGCre5P63/ZMDO7jesYNQX/aM7RHFNzUvVb3NO7txAlY2oY2gAVBdb/Wvut7DKb0er0AmWmn9kTrt6pdx8/7fHrVIdbW0td8rG+rKzWDytdO/azqqn6/HziTRfWlYhkkk/A1Yi+KPaio/WFLCWmwmUKbgj98HlTXa9tpg6ntrmPKZ456m+XYqMP3UzmXof7eORmC6NdRBkXIBkm328W5c+cwPz+PXC6HTqeDCxcu4MCBAzh58iRisZiLehcKBXzve9/DxYsXsbCwgPPnz7u6rMDawRv9fj8AomtqlwKPVFZkttPp3coBGgR/lXVF8Nnn3G1HFESvVqsDNzP2h4bD6OioS+EniA4Ena9BiovjoXXceFo7gIADbMeFnyEwYiPPFkQH4JS0AvM2Cr3R+GikfSvC9vgOk9uPoiACx69cLmNhYcGVRNpvIPry8jIuXryIQqGwr5T3TsrRo0cD///BH/wBHnjggcBrS0tL6Ha7OHjwYOD1gwcPuoNGrMzNzXk/3+l0sLS0hNnZ2YGfGXTNfr+P++67D6997Wtx2223ufvwe/Y6Z8+e9V5nKINlo3qaFkSnUa0sT76uoCyvR2dTAXTqLzW0aaCrrgHWnM9KpYKRkRHUajWMjo6iWq0iHo9jbGwMkUjEAWqtVsulgNfrdRSLxXUlJHgfGvaq2xRkJmuGjhFTUvmjwJmCmHoYlx5Y2Gw2A6XHlNWlTqwNRKtz0ul0nBNKEJ06zs4VrwvA2Sc6p8qyVrY2dSn1mOpq2gnWEWX/WQ6FbeYc0mnSdpVKJVQqlYCdxPnxjWkkEnFghjrukcjqwWUcHwIknCe1SbgW+bedQ46LBUo5rpZpxTHkPNugM4kJZDDTVlQQXe9BYIjzS/aj79A8Ovlqe7FUkTrHpVLJXYvX16CI9pfzrGuHfVWn3o6pfpZzwuvps0ewjH+rM89nzwYwuCYI6ND5ZuCN1+h2u259cv+wAJfaqD4wXO1IfZasLad95hgMZShDWRPuYZFIBIVCwZV/Gx0dRblcRiKRcPqbz3Sz2cTFixdRqVRcCRgtAaLgJAFZteM1EEe/u9vtujMUaCMQTPaJBgepa+v1OpLJpPNf9fBIq7NtZrQCjppJQ12mfqrPDqNe5X21hIeSGjTgrBlVHCuC6Rr4pS5ne3X8gLWzXCqViqtpT4Cdc6b+vfZV91AlS1wtcD5ovnQ/Vv3ks4dU99usBL5Pu1E/Sx2iwXDOuV5LbRoNPGhbqLMU+GableihGfOa0aHEB10P2hY7Rpq5pe/ZtcfnR7O0FBPh+Nj1zzWna0FBdD6HCqIPweXnpwxB9Osk+qACa5vioBRrCjcl1lVMJBLo9XqubhbB7VKp5OotMvKsDzk3Bhr1BNF5GJU6RFTENO418rYVJWKdB6a1xWKxAGtqq6KRQ25uDB7YlH6OtQLVdNY0VVijsoOY6Pyfjj77rsCKRtRVUdsx8r2mwIRGebU+7LVycm4kZ8qOM1lyLK2zX5jcahixRJMCMftJdiISfv78eWSzWff6RoEQ+ywrULTVz9vXt3PN9773vfjXf/3XwOnhV9q2ofjFOjsEwXyfUX1DI1v3d/28rc2obFcCnvwegWzLhOL60fqctVrNgYD8PAFvAt0s42Kzm/h3KLTGFFcH1I6DAoiaDq4gLgDnDPn2TH5X2co+ve1z9vi3jjH7wGtqvWbrSPrmzzr9Vs/7WE0EJjlnqlN1jAY5Z/ZARnXCtM36vwLP2n47dnxN7S5tj87roAyxQQ63jreuIc4F1wLnXtlbliVo2zooYOKbN9+eb6/FudNDaNkmtf14PoCPhWjnlf+T/Ul7VEEKnTNrP1rygo6hZf3RcVcAitfQta7sc7sWFeRQIN3qIR0TtTtt+wEE/A3bt+3KTujvoQzleojdl3zPvIra3czkCoVCqFQqCIVCDkBjEJw/tVrN6XAlVvEZ1Ywy7ku6PyvxR31ovdZWxOp+2htkxPP6gwKtVhda8Jp78UYAOq+p+61Pd/D+Pp+cc6DgrG2XnTOrB+jvqW+u52NZW0nbrT+74Yv79Lm2Rd/XsbP2qs2AsgEKtRPt2Ovfvv7rNew99XNq+1rbmmPOQLSC/OyzXXvWFrKZfr7PUwaB7VZ38z0dE/vscJ1r27W9+0WG+nvnZAiiX2NRJy+VSrlUYT7MZB0NWuTKpP3Rj36E5557DtFoFOl02ilEKjYeQuljZ/f7fQecFwoFVwphcnLSRd2ZXkPDgYeU5vN5105uIhsJy4+0220sLi4iFoshlUohGo06Nvggh9yKRsJrtZq75sWLF12E0AdO6yFkZE7pwVzKpPIB6Dpu/K0pxBoJV+aeghZb6RtLAQBrSnWjVOjdEN7LKrf9KlYR9no9nD9/HslkEocOHcLhw4cxNjZ2vZu5qXBeGo0Gzpw5gx/96EdYWlpad4DdfpGrXc/ZbDYAovtkamoKkUhkHUN8YWFhHQOcMjMz4/38yMgIJicnN/yM75rve9/78Pd///f41re+hSNHjgTuA6wy0mdnZ7fUtqEMFjpe0Wh0IBiqjiL3A1/tRSDoqMTj8QCwpc4dg9DdbhfRaBTxeBxAcP+m/qVDPTIy4lLBeUio6hGy3zR9mm0mUEd2sjJ5eBCVBmSpjwi2U5crOED9pCCqMo/4frVaRb/fD9yDn1MHSp9tnQdeW0HEarWKfD6PTqfjGOm8rs6DDUj4MsY49tTpZOXy4FGmD9PesuVGFARguRCKrhEFPhRYVva/1fnhcBiJRMIRFZjdYPvK8bY/XHO0WTjmqqMVkGZ/OOftdtsdgKYOL9OYR0ZGHBOe40oQnUCDZhEyU0FBfzsW2sZBTq4erMdnigei0i7UMizdbhfFYtGtocnJSVfeRq+twBTnWokXHAfLuNS5VsBcRZ8dXUv8m+1WEJyAWrVaRbFYRLFYdAfCq4RCIaRSqXXPoHXstU/8m23imPPgQt2v7B6o47MdnTx0poey30SDdTaTzIKnKnyvUqm4kn5kdY+MjLhybAoss7wo913VNXx+dW9jcJf7MbNJWDpiZWUFlUoF5XJ5W9nFGmSvVqvOD1bsQfcaBV2B4B7H/ZNtarfbKJfL7sBO3kdFMQ8lrmn2EPc4zQjXcqsk3HGMaAMRRLaBbLbVAu4MgKitp/rT7rF27VCf7Zao3mE/qb+1fZq1RV2j9ofOHe0tq7+V+a02FLBmSytobn84TpqJxh+9Jq9F+67X66FQKLi+zczMBA6ZVQa61XW03dgfC3hbHe57jTIo0AKslYvhGHa7XZTLZRQKBUdQ5cHBW8HA9qLsxzbvRRmC6NdYVKHE43HHJFeQT8uuWOFm0u12cfny5StuBzdpAC5dPBaLuXQrghFkx7GWW6lUQqFQCKSgbibdbtf1qVqtolQqodfrYXJy0hn4W1FMei8qckb8WTPWByiqccB0cD0lmn/zs5RBkWHeX8ECGkPKRGL9tq0aO+oIXW/ZyKDcb2Kj1J3Oam3DixcvYmRkZMOUyL0iqvBXVlawvLyMS5cuOVBkv8m1ioRHo1HcfvvtePTRR3H33Xe71x999FG85S1v8X7njjvuwFe/+tXAa4888ghe+cpXun3ijjvuwKOPPhqoi/7II4/gzjvvDLTzfe97H7785S/jm9/8Jk6cOBG45okTJzAzM4NHH30Ur3jFKwCsBhwfe+wxfPSjH91yH4eyKtzLuT5077WsGspGABk/qw6H1srmbzom3Pstc1fBODoydLjZZi1z4QMabUBVGWsUgsaRSMTpH35H2TsKvNl9Xp00XkvbRBa9jq9lSFmwW8eV99Ngvx7SRXBTgxUK+tn50SwwBUSVDUXAV8F3EhV0TvT6BI41k0F1iNaZpT2hIDfBZ64Jjg1BTR0PdZz1NQVmuZaUEKCBBWWQqUOsfSRDkiCNgsc6VgpucK40eMDPK7PZOqwcC65DgrqWcRYKhZwTrgEAtsOCGewL7UmCKpZJSQeb7Vcm5yAQXYWv0dG3dpCCKRZUYL/sc6XnCWlZBttHu89YtqD2hX0F1sAuAhZcL/o8cD3rnOja3ipAdK3091CGspOizzv3UV8A1Sf9ft+B4nzGuPczyK4BLZZgYcBV9yJej89lo9EInOOhz6nWP9dM7q0+R2yP7kEEVjkWLE2qe6jaUYpPUF9qeQsS6ny+iCWn6V5kg3tWbxNEJzGCukeD9j4QdFDAdjNhO3wg+m6Kjg11h+pu4hpW56he0BJi/IzagQAC19EAuCUwWjKEMsCtnWLLhimITp3C96lLWVInGo2uO1hb7WB9LvU50rP4dM5sHzRgZduogWQdL/6trxHDqtfrqNVq7odlkq616Dq4Ehnq752TIYh+jcUqEnV4dLPxbQq7JZ3Oaq1PRtjpxDK6SCa6Rte3m04GrCrjarWKpaUldDodZLNZtNttxONxx8TTjV2/zx8aELVaDYuLi67+ux5qQtEN3TK41Fn0OQ6bOROqICy7AcA6FtZ2WT7XW6g0YrHYuvT6/SRqiKhBsrS0BGCVuVipVNBoNAJrfq9Jv7+afVIulzE3N4dSqeRqzO2ndXU95L777sPb3/52vPKVr8Qdd9yBz3zmMzh37hze/e53AwDuv/9+XLx4EZ///OcBAO9+97vxl3/5l7jvvvvwrne9C48//jg++9nP4otf/KK75m//9m/jda97HT760Y/iLW95C77yla/gH//xHwPlWt7znvfgC1/4Ar7yla8gk8k45vrY2BgSiQRCoRDe//734yMf+QhuueUW3HLLLfjIRz6CZDKJ3/iN37iGI3RjCIE46gBfdpOCxgpOAn5Hgs4y9bE6buoE0slTIF/Ba7ZLwXZ1FphivR1RB8c6XBwDrdOqTFxgrc67NciVDa1tYl+03Eyv13Pngagjp220JUTojGsNVY631uZUAFCBe36W17cgvpbB4DV1/vh9BYJ5X8uat1lg/J8ggoo69hbs1r7ZgIX2g2OvgRqWLFGQRdcOx9vaIhz3lZUVhMPBOuuaIm+fCRt84hohsQIIHmzqs6F07Lg+fUEVBd/tXBGUURYmD3bl+tGMDj10Vp9tZl1o8Ij2gA3QUDTzg9/RdagOvAYcbDCBzzaAwFkEBOM4H7r+lcCi86PzYUF3C4CzDeyz2tUE+/Rz3M9uBNLEUPanXC0wtBWxwSLua3wG9DnRfcu3d+nBi9xLdL+zwLnvGrwPn8d2ux1gyIfDYXcOiQYBtwOCcR8A1g4+HxkZCRyGzX7TjuHYAAjsm7Qj9DBwAqM+H1H1wyD7in8roK7Z4VbPKEhrA646rlciG13D6rSdEh0f1aU2YGGDqTZwa0Fgu044v/1+PwC4+zIxrR7zjYW+b+0A2hAkYDIDi2fjaRCnUqk4BjpJpWyvtcVUf/tsVyAIiuucaWBAr8172YAyv8uswnq97mwQgui+zItrIb57Xov9cyjrZQiiX2NR58063/ytDt+1eCAIQIfDYZTLZQdGKAhMRakHamxHkXDjW1xcdGkx/X4f6XQa4+PjmJqacoqTjpo6itxAy+Uyms0misUizp49i1qthkKhgEqlso75w02d7C+Ot/7ti8RuBGboRqUOLxkN3W43kI5kmX/7wUmhsVSpVBwjT9/biyDzIOGatbUKz549i/Pnz6PVamF+fh6Tk5MuNXMv9q/f72N+fh7PPfccLl68iIsXLyKfz7tnY7/JtYyE33PPPVheXsYf/dEf4fLly7jtttvwta99DcePHwcAXL58GefOnXOfP3HiBL72ta/hAx/4AD7+8Y/j0KFD+Iu/+Au89a1vdZ+588478aUvfQm///u/jw9/+MM4efIkHn74Ybz61a92n/nkJz8JAHjDG94QaM9DDz2Ed7zjHQCAD37wg2g0Grj33ntRKBTw6le/Go888ggymcy2+jgUBA7C5BpRsAtYcyIV5FZQSZ0KILjfUUdTTyuQqAApjXY6nAQy1enR1G46pbzHIAa2FeoSst4saAvAOStk3qrRz6wzssns3q4AHx08ZcGVSiXHwmMZEIKZKtp/jgkD82QFs62WjafABOeTc8XSLQpwUrdrQFTBbZ1LLaeipfCUzcz2qxPHseGcKWOKZAAeXG7tBP08HTr9nzYJ5xOAO2ST/WM/CH5omryyyDnmDARRD2r5ALaHdh6BHx1nZSuSRa/30TXHfZ3ft842bTIFg3gPXp8OLUGa5eVlNBoNLCwsYHFxEZ1Ox5WA6XZXS7uwJBLnmuAO26KOt7ZJx0+fT1vvVJ8BfobjQHuZwJnOsYIblUoFhUIBtVrNOeMaBFdiB/u3srISyJqwAD37wPnT9hGsYNlGBry0/QrKcA62ItdSfw/l+SHcj3fTntVnBljbj3z6W9mxlgTV662eqwSsJ7/ZPcKCmxTdKzUzRnUSsKZrlN2+HdE+2L2g0WggkUg44hxtAu2XnlVCrICgqLZNWcc6DpYcpyCpAufc9zSQSMCctpcNkhMQ5hhrabYr2aM2A441+LhTorpbdREz3ZiloPpWdb7qGF27uubUtlIMSsdfxZIJfGOhoLMGN4C1g1d5dh9JjwsLC66EXzweR7vdxvz8vGs/yxvaewHBzFIFxn12sm8dsM/8Pr+npWgUeCfuxSD+8vIy5ufnUS6Xsby8jGKxeN2Y6D7hfG6lvOtQf++cDEH0PSj6QF8LUeWgrDhu0uoQXQ2jmtemAq/VagiFVlN6MpnMOmaQjYQzjZfpsIwI6iGnKqrQraKyUd3tAqcWTKeCZ3qxKqoruf71FnWkbTrUfhNl16lyZEYDDwBSNsNeEXWYG42Gq8mmtYP3o1xrJX7vvffi3nvv9b73uc99bt1rr3/96/Hkk09ueM23ve1teNvb3jbw/a20MxQK4YEHHsADDzyw6WeHsrGoQa0Olz5DwHrmjrJSCEYpO426mAa8gqvqEKoQvPQ50ha4tw6fBe1VfKC69s86P8r8VtBSx0aDwCrqFPNvy3oH4BhFBGuVMcZxsiU16JSr822/p6xiX1/5v4/5pqyuQYEI/YwC9soq5D3UIbNlSahfrP6woL1eX+fJgqEKHNh1of1hO30sNl0PnBNtM6+n48r1wmdAAyjaLt/9fPaqruvN9kLbR11jLBvA38qS5+vtdtsRUth+tVk5Fur4D7q/AhK+z9i+abt1PPg5nQc9kMw+kxTfXOra84ne137PrjOda03/344MnfCh7LTYtbtb4lu7uu8QmLTPtBXfs2gzPnz309f52+oSvT4BSZuBciV91n2Qfqpe37eP6PvMnmFQVgPt/J7tv46jHctBn9U90Df+9nN6Hdpzu7HP7NbeZcdIAx+cKwuaa5vsvm7baq+vY2t11lb6a21jK6rzSOLQcnK0bev1eiA7a1BpUvbL9pVtph1vP2/7YPW8jo+vfyQWaOkini+jgfa9IlvdP4f6e+dkCKJfY+HG0u/3XWqqKjdGda9mkV9t+7g5qTM5yPnYjugD3mq1sLS05EpUkE3Eg7d0o1cmXblcdrWoCoWCSwm3ykUBbD20StPFNnKwt9MnGl7AGnsgGo06I0XrpO6Wct9paTabKJVKCIVCLpWQfdlP0u12AzXMNP2w1+theXkZ3/ve9zA/P48Xv/jF+MVf/EVX33AvBA20lu2zzz6L73znO8jn88jn89e7aVclQyU+lJ0W3fP7/b5LgaX+4r7PQ6p8bBvr4AJBVo6C5lrHlAxa1ZWaxu0LRFJXqOPe7wcD2myTBWNVLJCpgLV1PHyZNloGx+pQ3lPTp9lmtV2oH+r1eqCcC8dBAU2t5cy+p1KpwLjTgaRjT3actoPvaw1ZdX443nTa2GY6XLQ1dC34HDk9JFTBcFu2hnu1Or/sHwOe9Xrd9d3W2o7FYshkMu4sFdot6hDqmPMAeI6XMtHr9bqr18vPh8NhZDIZN54cU/aPwWX206bTb+Rk6zpge3T+9TngWtW2EaDhwW8EahqNhiu3xvJB1Om89/nz51GtVjExMeECYGTh6z11Tdvnne/xR7MUfUI7SEkZGjRTAKper7s2k1XP8omajaLriESWQba3LQ3EZ1sDX3b8dZ0o6GQzb7YiQ/09lJ0W7mWWsbwb0u/3AwE5C3irHtW1vpVgoK/dui/YfUX3V83aov5QzEB9MAsoDhLVC/qsa1mNer2OcDjsmOpAsA42s3qo31gClvflwd2+vV7tB+ok+sOKMfA3v0u/XgMcbFMoFHIHTzMbjkx52hgaeNjNtXS1ojqRc6+H0TabTddH2gfRaBSJRAJAUAdzPIGgfUlRW9EHpOtaUv3DsVcSpbV3tR0sIWhLoLB2Pg9t73Q6OH36tMN1QqGQqxbgsz82AvzZJj4jPoCf31OCxSAAnbqYeFM+n8fc3Byq1SrK5TIajcZVkUp3Wrazzof6e+dkfyFiN4Dopq41jfWhvZ4b/m7d225U7XYbS0tLgU0zEokglUq5lGUqAUYAmQZEZ4qKXQ0Tjq1N+9JDRKnEd4ohboGRUCjklDuwlqarjvVel1arhVKp5AwrZRvuBXB5q0LnlUqaEWQaesvLy/j+97+P5557DuFwGLfddptLWd8L/ex2u+4wE4Lo9XodpVLpejdtKEPZU0JnUQ1E6lMFl/hc63sWJFdRJ9Z3eFYsFkM2m3Ug2kY6VJmfupfSqRzEOFNd5QtkKmubekZBAk3dJWjOsWi1Wu7+OiYKvCuITeeEYxEOh13qMUXHwResUBkdHXUgOu+rZSwUBGAJHY4VsL6uLe/F930gIUF0fY0lRDgGGozQcVbnUb+rAWc7hwT9ae8xMEownqBAKBRy+oe/ec+VlRV3kDTvofOhGRhMt9dU7UQigXQ6HTjE02Zo8eDYeDweSHPeCltNx4yf5TipIw6sL4GnWYihUMiRJqj7WFeVAIky186fP++ysxgc8IH+egaOL2hmSQI2GKQsUXsQqgZWGKRgoE1B9Hw+7w4o0zIJdm/hWubaV1EwTP0FzrOCdHYfYT+1LJCCLXsZbBrKjS3qwymouhtCoNKea7HV72703maAtt1XVLerDtbgLUX3KAWrNyrxwtIoSh7TewHrWfXUwfyML6tHg+Asrca9TIF39bltuQ7NplIQnfexIDqvz2v1+30XCGcAVcvWqZ2wV0VtBYLozLhnsDwWiwV+eNgqv8PvczyVWKBzqzrCgui6/+sa1uCFPpu0N1Tvc/4ajUagDnqlUnFgNIPHBNOz2Szy+Tza7TZisZgLFqRSqcDaJX6jtojqeLaJa1Lfs0EwxX8G2TQaLKrX68jn85ifn3eBAZZz2isy1N3XR66OhjuUKxZVfvp7tx8EBZc32kR24j7RaBTxeBypVApjY2PI5XIYHx93P7lcDmNjY8hkMkgmk0gkEgFmFQ9iYlRTD2Lq9/uufnosFkMikXC1WVmX1YLlNgq5G322zqYv2ns9hAqGgIiy8y0zgsaKpkpT6e2HAIBlk9Bp9Z1qz+yGUqmE5eVlLC4uYmlpydUIvh791b2hVqthbm4Oly5dcgfosh/7WSyLZrs/QxmKFWtcc89ThjqdUNWBym62B04PMrAt+KhlSuyPOheq5wcBy4OA/I3Wvu8evs9aoJkOkYL5Og7UFVbH8u9UKoV4PO6YQ1q7c9C9lSWu9gidJBvsHmSvqKOjjpktW6Lzo6xfvZfqQ22L/tiMNm2X7edW5odtYdv1IDoFeX3j4mMV6rriuFi7ktdQJrI+K3ovCxBzvO0ask70RmKfSY4pgW912PU+Onc6fmSKlctl56xXq9VAtpm2ye4Lg1hovs/qc+FbA3pNLUVDIF3tWF9fLCjm20Os2OdDMy19bVXQnHOnYzsond7Ktdbfn/jEJ3DixAnE43Hcfvvt+D//5/9s+PnHHnsMt99+O+LxOG6++WZ86lOfWveZv/3bv8VLXvISxGIxvOQlL8GXv/zlwPsPPvggXvWqVyGTyWB6ehr/+T//ZzzzzDPbbvtQtiaDwLEbRXz6zuoPtS10D9zsGRq0j1N3q29M/U3/nHXIN7J9rN5Su8FnL1hdyf1HRftiMRD2z2Ik2nefnvaN7W7iHFsR35zbtqmo/taAvl5L14yyqn36yAZVdXwHrSmLY2ykQ9UW0fnkfaztpT8kBlQqFZRKJZRKJcfypq5UO2Yj/aH2iW2zrgGrq+332S7V3RrIv5JzCfaaDP3vnZMrYqKfPn0aJ06c2Om2PK+Em4svFWanRRk+BJ55f900dkJ4n3g8jsnJSUSjUeRyOUxMTLjoMVkwFHUouYEy8sdyLYwsc3xYR539YZ80es6oLtlrg5zenRQ6KZ1Ox9VH16jw9VDk7PPo6Kg7fEuVHTMigDUAh+VcACCfz2N5edkdcGaNob0oVOKNRgNzc3NYWFjA8vLyukyPZrOJCxcuYH5+Hslk0q3b22+/HbfccsuGDLzdkn6/7xiNzz33HL7xjW9gfn4eTz31FEqlkpcNu9/kapTxUIlfndyo+ltZXnTyyFrWPY/PjjpWZP2qKPCo4K81oMmMVSY4gEDJMGvAs41sx2aioCX7anWodbYsy1T7ro4P2UtkiOmBnGRsp9NpB3oyq0sPctWgnx5CrmVC+v1+oIQJdQnZVZaJzOytQQ49nRm+z/Yzq4390P1S50TvSVY259sy8ZPJZMA5XFlZce3jazqv1LdcH8pq19rYlvFORr4Cy7SZ1KbQoDZZi+yDzYZLJBJurhj8YI1Ptpsp4slk0tkrPLBNAWmOEUkKHIteL1hGRNltlkTAOSeTjs+BpuDzGv1+P0CmYL+55qrVKs6cOYNIJIJyuYxWq4VEIoGDBw9ifHzczYO2Qe1Atbs5jiqW/cZ2kWmuomABn4NSqYSLFy+iXq/j0qVLWFxcdNllWi9Wx09tc31ObXYA76+2pZI37GsaTFGgnow6PstbkWupvx9++GG8//3vxyc+8Qm85jWvwac//Wm86U1vwlNPPYVjx46t+/zp06fx5je/Ge9617vwN3/zN/jOd76De++9FwcOHHCHgz/++OO455578Md//Me4++678eUvfxm//uu/jm9/+9vucPDHHnsM73nPe/CqV70KnU4HH/rQh3DXXXfhqaeecs/p9ZAbWX/fiLad6hjuez59BiDgnwwCOq3doHpegeR4PI5IJIJkMun0txLM+D6FrGdbvox+NT/T7XYdSY561wZmyTLm/q/2CG0O+ucs28LvK2uebGdfn+0hyNx7tRQW91Be51oTwUKhkAtYAOuztnSvp84GECjnwvmgLUL7i6IBVM6J6hLqtEEAs5YK0qA5f6voPOp8cR7ZVuo26m4FobXUWr1ex9mzZzE6OuqC36lUCsePH8f09DSi0Siy2azDeHzBAdVp2l7aYT79raA/v8exXllZQT6fd+XXTp8+jWq1ivPnz2Nubs71az/L0P/eObkiEP0FL3gBXve61+Gd73wn3va2t7lUnqFsT64lm5SbqoLobMOgDfNK70PHJZ1OI5lM4sCBAzh06JBz0rheuLExtZmONg15TXulEqfzMjIyglQq5aLpTO2ik9Vut1Gv150jqQpit8WyrVSJXw8QXdkCVOhqtDFQYRVro9FALBZzQQ2CC/tBqBRXVlZQLpdRKBTcelDpdDooFosIhUI4d+4cfvrTn2JqagonT550z8X1aDvX8NLSEn70ox/hwoULWFxcdAz5/S5DJX795EbV3xbE42865zSY6ayo7vMFBhUgVdBKnTN+jo6bsjm73a4Ddmm0+1jaPmDdij4v6qxqW/mbuoa6UvuuQDCvofucOkkEuVOplKvFqYxzOuHKpKZoAIK16bWtypbjjzpnbLeysm0fbOkbW5ue16TzrCCugqMEHjqdjgOONWjB6yngDcCB2rQ51KnTgI4SJSwTi8Atg+3tdnsdQEvnWEFyXS96f77OudB7AnD2Hx1ndZ55H94/EokE2q6Ov9bl5Zq3DqsFz9kXjjkBYbaZAI4+A5w7PYxTQXSmW3O90+bMZDLIZDJunim6vjU4pgEwG/iyWRC6ZvTZtEGWer2OarWKYrHo2HYsF6SAu4IYOqf6nNCmtsCR7l3KSFSgndfVe3GclUCzHVvnWurvj33sY3jnO9+J3/zN3wQAnDp1Ct/4xjfwyU9+Eg8++OC6z3/qU5/CsWPHcOrUKQDAi1/8Ynz/+9/Hn//5nzsQ/dSpU3jjG9+I+++/HwBw//3347HHHsOpU6fwxS9+EQDw9a9/PXDdhx56CNPT03jiiSfwute9blt92Em50fX3RiDefhTV+9xj+ToQPOdCdZUNkvO32iPW5lFGeCKRcKXSSDhT5jmDzZblTfBRy8ro3sQ54b5EnaFtYh90/uz+orqb11M9omPi25d9Ze2ULGF1LdtwrUF0jjsQzMZTHWwDJtyXOSa0ezSoCgRLdzHwbZnntAf1+tamUluV7eZvG7hRjIfX4G8GTjhvXD+2kgBlZWUFxWIRwFpZv3Q6jbGxMaRSKXS7XVfmTvEHBfstluXrg/1RTEafLYL/LNlSLpeRz+edHq9UKoH1tF9l6H/vnFwRiP6DH/wAf/VXf4X//t//O9773vfinnvuwTvf+U78m3/zb3a6fUO5QlHjP51OY2JiAiMjI0in00in027D63RW64wvLy+7OqTbjbJxU4pEIhgfH0c6nUYikcDhw4eRTCaRzWbXOeH8HoWb8uTkpKuJFYlE0Gg0UCqVkM/n0e/3XRQ9mUw6QJ5MNnUoCQCoE66ym2x027eNXtvN+9MYmZycRCaTQSKRwNTUlBt/Ko3FxUWUy2V3WKvWk2u32ygWi1hYWEC328Xk5KS3Vupekn5/7WCTSqXilCFrzA36TrVaxdmzZ1Eul/HDH/4QAJBOp906puO9G33m88haeM899xyWlpbw9NNPY2Fhwc3PUIZytXKj6m86WsD6siUq1qm17/n+V9YNZZAO0dcJjlpj337egqY2TZbtZNkz7ePKygqazWbACSCgbzOglDVtnVI6fAQeWV6NTDZto36H/QuFQq7mNstosS10BKn/6VgqyMn7E6BU517ZQgSveUAsx0EZcQoeqlPO8eLrtgwGwWoFzNkWPeBcGdHKGqZ9wuA+ABdoYBu4Jgjckl3O8VBHmuzFdDqNXq+HRCIRyNxjtpUSEOhsc40wwEFWGIAAcMrx1rNpdF3oAV+6BhjE4FhoyRB1ojlHfI/vEyRQIJ3vazkTLeHH9UxwgdcCVkH4YrGIVquFTCaDcHi1Vu/ExESACcr55rzyGgpkW/vGBwDpM0ibg3OxvLyMarWKQqGA5eVllxJuS7PYPUjJFvyta9S3X/lAfr5nnx3NDNE6x9x3rqWDXC6XA//Tjldpt9t44okn8Lu/+7uB1++66y5897vf9V738ccfx1133RV47Vd/9Vfx2c9+FisrKxgdHcXjjz+OD3zgA+s+Q+DdJ8zMnJiY2LBfuy03sv7eStmG/SChUMjpEuoC6tRkMgkgmPVbrVYD/ec1gMElN7Q8k2aNESTPZrMu+5j7oZbqUh+ZWUWpVAqjo6MOzNZgJfdQm4mm+5IGpFUPUBQE5T3ZV99epu/x+9QDNnCse6naPxyzzcpVqV2o11I9ZkvKDBIlCTCIwfFR8Lbb7TqdQZ2o+ptgOg/WrtfrgSA07ROrJ3S8NTtR9Zwy4flb7QbVHTpGFF+WIL9LW4kEPQue+6TZbGJ5eRm1Wg3ZbBahUMjVRafNyzWrILqPHKJriHaUtl8DWFzjxAqazSYWFxdRLBaxvLyMpaUlx6S34zGUoVwRiH7bbbfhYx/7GP7sz/4MX/3qV/G5z30Or33ta3HLLbfgne98J97+9rfjwIEDO93WoWxDQqG19M9Dhw7hZS97mQPTx8fHnfO1srKCixcv4plnnkGtVsP8/Py2QXR1wG666SYcO3YMyWQS09PTzhHfCHglAN7v95HL5ZwDfvjwYbRaLfz85z93BgbT0VKpFKamppxTbg/Z6HQ67iAqKiBVkrstvujntQScOeaJRAIveMELcOzYMWQyGRw6dAjJZNIpnFarhbNnz2JpaQmLi4v4yU9+4pQrlfeFCxfc3zMzMwGgY68J1xEd2Lm5OVy+fBmXL1/etJb4/Pw8isUiEokEyuUyfvzjH+Omm27CG9/4RszOzrqMh90C0SuViqvJ/g//8A/40Y9+hGKxiHPnzrm1fKMo8GEk/PrJjaq/6YBYo9qWZFBw0DJs+T6AdQ4mAU+WAVGHkc8nAOeoKYBIUUfCrmPq7GQy6QBA3o9BvFQq5UqLkMnKfaPdbrvsLSCY2q01p5VJxs/QMWa5D5tGS3CLzoQGzjme0WjUpY23Wi2Uy2XHNCJDiUCxpptz7NnneDzugGYLGDebzQDoqv1REFvnm32kLaAOnXXCCXDQ8dNATLPZdGxiAtLKKKNejMViznEOh8Oo1+sOtCRgTsa59k+Z88oMSyaTmJycdI6yruFer+cCxI1Gw5Eh9H0eFhqJRFAqldxBsgoWEBRJJBLrWOZc0/ps8X50/DmHfKa4Nq0jTudWMwlsFgK/X6/X3VhTd2upIZ3HXm+1tMuFCxcQj8fd/7lcDslk0s0NnXLeS8sC6fPJ9mjg3AIIlkFaLpdRLBbRbDZx/vx5FAoFlEolXLhwwTHQ7ZrimtexYf8ZmLHglbaDGSHWptVsCQ2waAkXzc4YFCwYJDuhv48ePRp4/Q/+4A/wwAMPBF5bWlpCt9vFwYMHA68fPHgQc3Nz3uvPzc15P9/pdLC0tITZ2dmBnxl0zX6/j/vuuw+vfe1rcdttt23ax92UG1l/W128H4X7UyqVcrpgYmICo6OjyGQyjsRG4JRMXIKO7L+C6IPuwX2bNsPY2JjT4ePj4w7ATyQSCIVCbs9UEFzBR+o/EpBYasWWQVGbQgFL2izM6lL9pnsQ93zLcNZArO0rSV1WP2rwnBnpWp6Udg4DyYPA3FAo5ILIOmYEgmnn6b4/SLgvR6NRTE1NuflX/Qqs6hEeit1oNNwBm9SD/X4/YM+VSiWsrKw4EqHN5mP7LWFDbViuPRt49wXBVX/bYAb1k9pafJ21zqnDaXdt9FyXSiXU63WXKVcoFDA+Pg4AyOVy6PV6gawHtZU0SMz+cgw10A4E6/ur7c6ytY1GA2fOnEE+n0c+n8eZM2dcKZrdKgfkC0Tspgz9752TKwLR3ZdHRnD33XfjzW9+Mz7xiU/g/vvvx+/8zu/g/vvvxz333IOPfvSjmJ2d3am2DmUboqljqVQKuVwO2WwWU1NTDkRnXcZ6vY5UKhVwUrbzoNDAZ7mWbDbr6qgSdNyqcU4njE4va2TRseYm6vvRtBzdYK/kBPYrFU2dogxiNPki7b7XVHTzs3/rb84/U6RyuRwymQwmJyeRSCSccmy1Wk4xNxoNlw6miolMCa4XTTNWY+96ixoOPBSEjHRmXWy0rgmctNttLC4uOkCrVCohk8kEnFrrWG/H+eRvZRzS6S+VSigUCpifn8elS5dQq9WcAXIjyVCJX3+5EfW3Mm+UgekLnm7l2VVmqAYN1eHTPVDTRFUGOcUKpvG6unfrwWBklaVSqYATrvXDlTWmzo/uO9zHeD91iBU0pxPIdhDo9rF66EgT6Ov3+y6wrSA2nRtbR9XWqfcB5Wy3zof2SwFHK8pKso69jpOW6LCsLb6u19C5VFBaU7gVsGdwgH3mfPnK2fA7WgdVAWCOKRlhdIS1rby/LYWiY6Ljpgx+3p+fsQ6pZZrbH22HtWt8NowKx5fghQXi9Vr8W0uT1Ot11Ot1xGIxVyfdx6obZJdZ4oO+r8A520lbShmDBBGYym77oPYExQIg9nnTfUbbNQhw02dH172uG73eVmUn9Pf58+eRzWbd675zKSg+kGGjfXsQKOGzv7dyzfe+973413/9V3z7298eeM9rLTea/r5RGOjcL+kT049gkJlZRZqxFY1G3fNufbnN7kP9QBBVDwBndoc9h0z1jG+fY0AUWAOpqXf5fQVP9ZoaYAfWbJxBeyyAde0YJApea3so3FfZZupb6kr7ee037SDiJmQ/833qb733oDny2W/ERxQEVnY8cQ9rg1BnE/hmpoBtgx1fBb7VntLx8+ltBdF94tPf9jX2S3XNRkEHAIHPspzKyMgIGo2Gmw8C8Vxran+oTtOx0eeKP5pFxyAJa7fzd7Vadf/vJoB+PWTof++cXBWI/v3vfx9/9Vd/hS996UtIpVL4nd/5Hbzzne/EpUuX8P/9f/8f3vKWt+Bf/uVfdqqtz2uxDg8QNHytsRyLxXDo0CFks1mcOHECJ0+eRCaTQTabDUTCGZVeWVlBtVp1zDE6JFtR5OPj4zhy5AgSiQSOHj3qSoaosthuXxnJj8fjOHz4MAAE2sh6b1SWqnx4P3VebRR1t9joVBQ+sFSVHQ0spsszBS+VSgXq2qkwws7fZMIxSkpWVa/XQzKZdIGTI0eO4NixY0in05iZmXEOJQGYTqfjGFrnzp0DAOcEdrtdFItFp7wvXLiAarWKiYkJTE5OBpzr6y0MmLRaLVy4cAFnzpxBsVh0jMjNlLheZ2FhAc1mE/l8Hs1mE7lcDocPH8ZNN92ERCKB2dlZjI+PO8aBXXs+UXCB5VlKpRLOnz+PWq2Gs2fP4syZMyiVSvjJT37iSuvs9/prPhkq8esvN5r+brVa3pIEZDADCDgTvgCkAlg+oW7i5y2rGVgLBCtAbnW1gvB04Pgaf8bGxhwjKpfLOf3AICiBObKsWD6l0Wi4fcbuR6or2S469yz3RjYZWd3qVLGNGmjVFGLel4BuKLSakqssQ46LHgCm86QlJywTnY4ZsHagogK/2lYFLNWJUiYZnX0LXgNrB2bVajU3thxDsqJ6vZ4bu0QigenpaVf+ZmxsDKFQyLGp2+22O/ySTjH7ZIEGtolMRtoFtBNoH1hWIUtksDQYx7fVaiEcDqNWq7m260FdoVDIBZ7t86GMNF8AQcETfZ9i1zY/pyAB1zNB81qt5phpfI2OOa/P54bsSQ3MsAwdS8akUilMTk6iWq06RihZi1qbVp8JtpU/Wsec64EHwJHlzIyQfD7v7DKuMwtk2KAP7+nbf3SetM1siw2aUXR96TjasgTWbt1MdkJ/Z7PZAIjuk6mpKUQikXUM8YWFhXVMcsrMzIz38yMjq6UNN/qM75rve9/78Pd///f41re+hSNHjmzcuWsoN5r+3m8MdO4P+mxSn0SjUUxOTiKZTGJsbAzT09OuTCmD4GRFj4yMuP2aWV6bjQP3UwKzuVwOo6OjrpzqyMiIq4OuJdPoU24EeHMfJKvZnkFhg7QKvGsmuP6t+5XqDQ3A20AgwWXdMxV09tVd179tyS72yQYlCXBHo1HkcjkXiEin0wDgiFgsfUubz2Yi6Z7I4AlL1E5OTiIWiyGbzQbWDUF+frZSqQBY099cW2TW53I557PT9iPew/aoXWQZ2L5AlQZuqL8VRPcB8fZatB+oF1V/c+y2+nwTc1hZWXHjkU6nceDAAZRKJUSjUYyNjSGZTAbapM+i6jW1N9kOltChD07iHM8dm5+fR6VSQbVade3fKn5wJXKt972h/71zckUg+sc+9jE89NBDeOaZZ/DmN78Zn//85/HmN7/ZLeYTJ07g05/+NF70ohftaGOfr6KbmEaAdcPghkaFFYvFcPDgQczMzOCmm27CTTfd5GqVkyHFjYEnOpfLZVy+fBlnz551imIjAI9tGBsbw4kTJ5BOp3Hw4EFMTExcEXiuYsuFpFIptFotXLp0Cfl8PpAW7oveAmtOtk0PA3YXSGc7fOAMx4UMcSpZ1iyfmJgIRK213QTMO52OSx1m/c1KpRJgWyeTSUxNTSGXy2F2dhZHjhwJlMDRiGy/33eHeExMTLh1QRC9VCqhUqlgdHQUFy9eRL1ex8jICMbHx696nndKuPZpiM7NzeHZZ59Fo9Fwhs9WpdvturIq58+fx3PPPYdoNIqXvOQluP3225HL5QLGD4MhW2kjjcpSqYRisYgLFy7ge9/7HvL5PJ5++mk888wzjhFvmXNDGcpOyI2qv23QV4E9ApbqUAJrgDZ1mY+Bo/sbgTo6wfp5y+LdaF/k3qHlVJQ5E4/Hkc1mHSCr6cAMgnKPIGjI80NsEFkBQs2gof3Amts8mDGRSLjPckyUhcNr0D7Q/U8BVjrwWj6sVqt563dz7fFwSQvYKtCp4Ley8eikW6aapiir3iOwTOa9toNtp2i5Hq4hAhLU3alUCjMzMy5bIJfLIRwOB0qSjI6OOvDEprgr4Ml+kYHFA8EJprPNbBPbks/nHbDKwBGBmkgkglqt5saGfWEwAEAARFegl/NtSyZx3fO3Zblx/DVYoYEOrmNemz+NRsPVJ1XQgmtH16KWFWBblF3WarUQi8VQLpfRbrcRj8cxNTW1DsBVEJ5jrM8PSQqdTse1rV6vY2lpCe12GwsLC5ifn0en0wkAB2ynOvY6ZvocWsaoTzjGCmzxdQ10cZx1naldYYFzH7Pzeks0GsXtt9+ORx99FHfffbd7/dFHH8Vb3vIW73fuuOMOfPWrXw289sgjj+CVr3yle07uuOMOPProo4G66I888gjuvPNO93+/38f73vc+fPnLX8Y3v/lNnDhxYie7dsVyo+rv3QSpdlq4r/GHzxv1QiwWw8TEBDKZDHK5HA4dOuRKpJGJTnZrKBRypKWlpaVtgei0CbLZLOLxuCNOhcNr5eD4ecDv9yqIrgca23PFmLVOX4p7i/rf6ruonlf7gXaYEghU5wwKINpMKu5XCqTqd6jXWM6Mr2nwgPgFyQn/P3tvHmRpWp13Pjf3mzdv7ktVdVdVd7OZZWQzoGgDlpA8EgyyLNwGiwl7ZEtIHdPTsllaY41bhhAGSwyCIWoUEi0xg0EEI2hHMAxWGI8Aj9QaRGsUNNJIogE13Q1dS1Zl5XJv3i33O39k/N587snvZmVmZWVVZ+eJyMjMu3zf+73bOec5zznvxMREqls/MDCgXC6XbBIPzHppLuwV14mQ5Hp6ejQ6OqrR0VH19vZqeHg44S08E4SDZrOZMu5dfzebzRQQx+enj/zweMaa54r4h9tPWZgE+oJ7uh3CdV0/xOth4xBYpvSdg/67kY2NjYQ5lMtlLS0tqa+vT1NTU6rX6+rr69PExISGhoaS/vfMDw8Q+VqiT/G/wQbm5ua0vLysK1eu6PLly1pdXU0kN57pKBLZjuVgZF8g+kMPPaS3vvWt+pmf+RmdOHEi8zNnzpzRxz72setq3HNdXEG4cR+dBt/IYN6QQsThm7C2/TvOEGLD99TrnQxqNi2vH8Z9Dgqc5v4wsKStw4ecsYMi539+PKUIhXCjwXMXj+rTrzhmAwMDSaGOjY1peHg4GUGk4cVal17LEmMMpxBl09vbq5WVlQTAxLH3uqMOrMQ0cVdAKL+VlZUE0gwPD6ter7coLh+zwxKf+0SV6/W6qtVqUoIOlLkxsZOh6qxFFG+pVNKVK1dUr9c1ODio9fV19fb2amRkpCXdXmplT3A9DK+VlRVduXJFi4uLunz5smZmZlQqlVLUm/l6lAH040j4zZOjqr+duRQdAgQwzCV+Pkvivobz53uo75V+Xf+uv4a+dYdHagVpvbwKzrmDns4qBtDmb2mL3cee4iVoeA70k9sH7nTHwETc611HOZPJD/Hy1GoPVqCXY8A5i+nlbYiOsLc3MuX4jjOr3AFkX/bnWV9fTyXifF75waHYJOhaDnADRMcJx9Hr7u7WyspKYrg7oE+7PTDjgQifdz6n/FkIFvmhpz4+MK/oG8adcXGQg2sznvSJz3Ef9/hdF/98nHduYwCSoyO9lAvf8UwTZ1FGVnecEwDbBHG8fIITGwA4pK39hP6lTIs72dgay8vLiXXnwRAAo6izvE9oswNLWbZKu771NQ4Axu8sJiJ9F/esrHa2k8PU3w888IB+6qd+Sq985Sv1qle9Sh/96Ef1zDPP6L777pMkPfjgg7p48aI++clPSpLuu+8+/cZv/IYeeOAB3XvvvXr00Uf1sY99TJ/+9KfTNd/+9rfrB3/wB/WBD3xAb3zjG/X5z39eX/7yl1vKtfz8z/+8fvd3f1ef//znVSwWE3OdutM3S46q/r7VxPfZyF52kNl9Ji8Hgg/npVX47boPnU1Zthj0bSfsHdwPHcM1fG9jL4G5HK8TwVH/zT0ktdQ5j4Arf7v+lrbKdHibvV1+b3/ma/lnHkx0WyM+E+1nz3MyRWdnpwYHB1Nm0sjISMIy0N/41AQPPCOJvd7/BltB7zNPPMuQdnngku/79biftAkC12q1NI7UDvfa9j4n8Hv9XtHuiuMd+9zBdMdO/DseDAdEBzj34In3/7XG2G0CWPj1ej1l8pGF5xmTYEPcAzuL63ltdnACvyaYgdsfe82OycI/bkV/9dj/PjjZF4j+xBNPXPMzPT09+n//3/9Xf+/v/T2Nj4/v5zbPaUEhA7xGBpIzrKStjZYNbGhoSCdOnNDk5GRiNzv47A4orOe1tbV0urekHQ8YhYnc19enyclJTU1NpbIkBy1Ej/v6+hJTik2baDfCxk1KEWwkDuvAUbhRYK8bESgXjKS+vj6dOHFChUJBExMTOnPmTIqqcggMKXgeLEGcteUM65mZGZXLZZXL5XQIBsqaiDoGlvcBisrTwx1w9/tubGwegPPtb3871Sbj+hMTE+n0celwgXSYBuvr65qentZf//Vfq1qt6qmnntKVK1dS2yPIjYPezjn168MCePLJJzU7O6uuri599atfTQzB0dHRtEYHBgZaAhMYARsbmwePcVhPqVRKZQKoSU9a+PUouGeLHCvxmydHVX9Xq9WWMgweMGSNAzRK2rbPOTDp4o5IZKX79SPDxxlBfiAi7fL64XyX92CiF4vFdJYFuh8AkOAe4CtMdPRCpVJpqTOJRHAZNps7fAT9AFt5dvSD2x+uSzxwyTPlcrl02CNOiTPWvF3OPnemPfd3oD8647DfYhYdIAZtATim7+r1egsQ6QAzfcR+PjQ01MI27Ojo0MDAQApYc+YIBIZcLtcCDE9MTCSiA6xYL18D0w1mIuPjoESWTcC5JQsLC1pcXEylRCSlmus8f3d3t4aHh1N2A23wMY2BHcbH5zYZbbE0i68Vxpq28h62rOvvWq2WyqfNz8+rXC63lBLwOvNZjEVnjzOPIIRI0sLCQkqRn5mZSfYwjjfj5qCUg9iLi4tJV5dKpcRyr1QqSc97EATbCvvVGZfMbScvsB84KBfZ//G56TfWa7RpvGyP7wGejeN7wW7Zgoepv9/ylrdobm5O733vezU9Pa2Xvexl+sIXvqCzZ89Kkqanp1MZQmmTif2FL3xB73znO/Wbv/mbOnXqlH79139db3rTm9JnXv3qV+szn/mM3vWud+nd7363nve85+nhhx/W3XffnT7z0EMPSZJ+6Id+qKU9H//4x/XTP/3Te3zqg5Ojqr9vJWGf9L0qBpuj/SApBbvRBYODgxoZGdHExEQqzZXP51OQlsAmrNqBgQEVCoVEmGrHgMVvp/TI4OBgy/VdL7qujLpfai3B5nrfAWHwAb4fz6pwtroHRH3Pj22KDHLfw6StPR6bLisg2Gw2E2Ab+8cBZQhpkMoAybu6ujQ8PKyBgYFEiMJXR9f4WVlgCi7oGsccsEW6urpSkJ3rOgGQfRkdjo/o5eM8MNpsNlOWQ61WS2VcCoVCyloDMyIgHIlziGfv7RSo5b0sm2BjY6MFmL569aqWl5e1sLCQfF2e0+1dB6izgkXckxJ4nZ2dWllZSXXS/cBwxhGsw8vj+LWq1WrKRltYWEg2Eux+6qAzdj6/kbiGXHxeu016K5apOva/D06uqyb6teRTn/qU/of/4X84VuL7EDY/r3uGMgBER4m7cU1NaOpokmrsBnpkMXnEFCc5KqUoKCTuQy3VG8HyxnBBmaPQ2OhcGXvtTN6PKaw3chPwe6CQaDvp3qT3veAFL1A+n9fU1FRiMxMscVYS4sD80tJSCg5MTEyoVCppYWFBHR2bdVG9rI/XPo1AEH87myuyA+ivRqOhq1evqqenJ9UnW1tb0/Dw8A0NTOwkGF6ARjC85+fnVa1WW4xhjAvGZjcpWlxf2nTCFxYWJG0xUgDRqXc3MjKS1lNnZ2cK4qytbZ42Pjc3l9LBdwpSHXU5VuK3vjzb9DfgOOBUljgYGXVV3Puiw5kFrrsj4rpY2qqZ6k44elbaSsV1oAxdh8NFoA4nDB3NfdDDMCMBbwFV4zPDOvZgujOls4Bx7yt3fiPQ586zg344jg4aRuaag7CxdIen7DooEBnx8RrMBwes/Vlog9sH7vTxfBALcNRwsIvForq6turU44T7IbBcH9Chp6dHq6uriZXI+FCCpaenJx2k5e1tB2468ICuwTlcWVlpYbnlcpvp4Nh42JKcd4LT5yxlnwve1z6OPk+c6RwDTKwFXzsAM4wXbG5Sr52Rhy53lqbf29cWfUL7IR6Q2k8Wndtc1MFlvrC2+SmVSpqfn0/BDljpBL8ZDx8b5q9nl9CvZFB6UCqrNE1kffp4sFb8J5I4mMs48+7s+5jGv3eSw9bf999/v+6///7M9z7xiU9se+21r32tvv71r+94zTe/+c1685vf3Pb9Z7ud8WzT37eaAMASMMV/iAFx1puzyl1v4yP7oZ/oTJjOgKGA8Ny/nY/CGnZbAV8vK0AWdaX7zJ61hvj+6np3aWmpRX9HYDtLf/u+3y4I7vflJwZkuQf60EF/B4l9z3VAmVraBBuoIz80NKRisdjyPmMubQUM1tbWEkju9gd7LYAvgRECtuAvfoYb+tCDnuhASpHFPva+JIi9srKSgvWMXyRKOoM8zh/a4X3HfXjdMROfPx4k55ldf3t52SxSy7WAe/oWnU0fd3Z2phIvjBlgOu9ngeiUUF1dXdXc3Fyyk8BLCIJ7AClL2gHpWUGiW1WHHPvfByc3FEQ/7uy9izuIOGZs+n7Sc9yUMJCXlpYSswwl7Owu3/z4gdVcrVbTJnitQ0W7ujYPISPKmgUyHLTwzKS+weTFeJCUDmIERHAmU0fH1kEevtlx7f0K/eRsRAybjo6OVKeuWCzq+c9/voaHhzU+Pq7bbrtNvb29GhoaSs4bxhrP6uLGA22HYdff359q4dEvjUZDXV1dGh0dVT6fV1dXV+ofj+JXq1WVy2UtLi6m06izxt+Vy+zsrJ5++unEvGYcABaio3YQQnucfcAhILVaTefPn9fMzEw6WM9BDmeVSErsQD+s1sGm3baHOoG0h4wHd1xhZJAu5k7xsRzLrSrPNv3toNlOGR3uvPke225NtgPkkaygHOsfpwnWMk6v62/X4x7M9MwjdzjQ6V7+IoKNHoSPz+YsbTf8cVTY+x10889yPd+P0aM8HyABn3WnhAwdB/v435+Fz/t+iv73sXOQlkCF6x0viYKzCbvbMxS4v+vvrq6upJ/dyc7n80m/AGD4OScOgPi4AHLgVNMfjL2kVDqMuRyzBDwI4IAD9h0sRcQzJjw1nPNVKC/A2GUBLlFi2Z4sxha/ndHPHCa1enl5WaVSScvLy1pcXNTVq1eT4+xMQvrJzw7woIkD0/RNnNs+Fl53n++Sih5tF+5VqVQS67xSqbTYUvG5fT04ecVtROZ/lmBDAVCwLp3p6QE77sG4eyDPSTcOkNAmt4efbXv+sbSX47Hcu/jaADAHFMffQv+wRqWt9eblXHy9+17JOvbSF/gi7TLGssTXr5Ou2PsQX988o7eZa9F+1/3uD7lN4TaJ+03sifxADPD2Oojuz+r6y9uP7icIjy/vweW4B4NPwFouFoupJnlvb6/6+/sTcY0SbFF/owexVwDrIUy4Hqav8vl8yiIgQ8gPd2Wfjnacj387oh8gMgHhcrmcAvpra2sJC2AM6Tv0f9SFPsYR0I44Efd34gF6emFhQY1GI5HXYNXTdx4Y4nrMIfeP3YaOwWgna/D8HmihtA0+ADiKj48z0cnWo61OBNlp3V3rvRiIuNGkTZdIDjmWw5EbCqIfy97FWWHUvYb1RBqSl3Nx9luz2UyKGQDXGSoeocZh3NjYUL1e1/z8vBYXF1s2l52YuhyIyeGVWaltBy04ofl8XrVaLdWRJsosKYGZOGVra2stLDtPxZOu/4BRVzAooY2NDQ0MDKTU7uc///k6e/ZsC4hOCp6n80Ylt5OQBSBJo6OjSRndddddSUnMz8+r2WymqCzBBTdyOJV6bm5OMzMzmp2dTUoxbv58P5fL6ZlnntHc3JwKhYIajYZOnDihkZERnT179sBr48f+3tjYSKlX5XJZf/VXf5Xaf/HiRa2vr6tYLGp8fDwdSMJ6cDCBVOjz58+nwMNuU6/4DKy0yB6LDrjUGmR5riu640j4sRy0ONiEAevMTqk1zTdm+rgj4evYS11E4fNenoE93JnjOOFeDoXf0VmVNvUrQUIOEnXQjfdgLuGIO5iMo+LPht6P6dHoH/ZFvuPvsXdKW8A44Kufj0IGTtQzgO1dXV0tQUt3htzu8IACDqjrFvoaIAJ2Fs+Gc+hOHO31lHXPVuN/QPLe3l6dPHlSExMTqQwKbP9isbjNOaZNDn4ydh0dHYmdzneYY/yGNTo7O5sYi3zOSwkwv529xjx1tl+c19hHZGmRmcWBXQQGsKfi2qGtznpmDB0A8b99ntMfBOvr9bouXbqkarWqWq2mxcXFZD+xZgD247V8HdAXDqjH4I876QAiPBf9CwDh6wDxci1eQsDH0YEX5q0HMTxF3wM4zE3GjfYxt7mnz1P2A9rvZxp5P8VgmI8lICFt3a1dcqy/j+UoigdrIbH19PQkQNYze7NAdNYVILqT2NxOgNXMOQ2RuXutNeKANvuW+7QxgJhl69Amf2ZJLfoR0JpnwKZw/Q3pDl0EkEk73ZZysJ/f7LXsUQT7vD0Omjtw7oEK1zmFQiH5fydOnND4+Lh6e3s1NjaWfOfBwcGEJ+AfYlv4Hot9QL/xLHHeuG9XqVRUKpVa+tnF7Q6Y224zZY0/4LHrCLISyXbY2NhI2W7YDh58Z85GXzS2z3W963zmQaVSUb1eV6PR0PT0tGq1mmq1msrlcponzKtCodAS8PDnX19fT8F89FzWs0c7g77o6upK5WsJKLgN4raPEwdYc74mr0en0Ua3GQ47KM3aIoCxkxzr74OTYxD9FhMUAZufM9lcWboy8o3QI30eJaYOpzvTztqGGZTFrmnXTgxwNyZutPjmjqOKOFsHYAGF7lF67yte2w8j3QEFb5+0WRuPWqkjIyMaHx9XsVjU6OiohoaGUome/QLNbpxgPGHc8cyMI33GfCDqjQKn/ioM9FirNj5zs7mZ8cDf5XI5seUajUYLGyuLAZH1LN6fWfeUWoEbDlkhukyNcZxcnG8UKylvbhBwPTIb9sJC97Y5qzMLcPB+82d+LiujYyV+LDdCHATH+fM9tp1DGRlgAJLSFkjmujPe08WBendQI2PMHUP0tV8vspXQ385o81IhkcUU9+Eo/rrbDrEdWc9JHxE4iP1LvzsbyD/j7XF97DrLJQsUzXqmOL6u/3hmBxmcFe9ACAwqdAc1R722KQEDJxBwLwdOstoWg+a8RtCH67tu8b7nuow7jreD5zvVPPVMAVKgsR0kpTGMfez9uhfH0+1UGGw44TjgjUYjOYD+3E40yApkxbT6rPbGfuN/v5c/U1a9ftZadOgjQB3npoP4XCsrkO7Bq7iH+e+4Tn0uO6jG3OaasV1xb/I96FpyrL+P5SiK78W+nnxdeRCX4Fhci7zuwT1/Dd8VANrPaNrt2vKgra/tLKA3S1fGdnNNaaskHnucX8f1KddgP0QXuS/kz5RlU2S9F/V9BGG9zVkBA4gL+Xw+AcyU60KnExghWOJjyr7ZDtSN947PRECBsUcHu13Ae7EUl49h1pihu8E+lpaW0vykHAmBcPQItoHrItd3UbIIFh5cXllZSZiR4wcA4T5P3ObJEuxav098Zm8X9hVCv2URY/z7fli5Z3Xtlji3VzlsPdfOJs6SY/19cHIMot9CQgTbHTYYOdRtpLwLm1NkovvBkJSPQCEAxBNNhnHuBzJevnw5ORA7AemwwmjrYYDoPDO1yhqNhiqVSkvU0dPDfUOnzZGB7k6n1HoKe5bEDZ3fACFjY2Pq7e3Vbbfdphe96EUaGBjQ2bNnU+mWkZGRNA4H3Wcw8XDEYZnBcKBcT71e1+zsbCp9AqucQ8lgte0kOMLNZlNPP/205ubmNDw8rNnZWfX392tsbExjY2MpRQ4jhbZlGX3+txsatKdarabU78uXL2t2dlb1el0XLlxI6dXcY2hoSJOTky0HrEQHUlLLwajUSdsrmM61i8Viqs9WLBZVKBRangfA308Hf67KsRI/loMWAmXuiLCWnQ2aBZplpZHiLLOv5nJbdVCzhL0H5o+X4YBV66yqCOxKW6CopFSzEaMfYIysIvR3vV5PBx6Wy+UWnQ+rLIL0Xku1o6Nj20FP7pB4P/J9gu9uJ7g+dX1MgJJr0w7XvVklQTxDy8EHv5/UWp4GvepOW7RlvHwKY+rv5XI5TU1N6a677lJ/f79Onjyp8fHxFv3hhATG1+0Pr2sa50wEUKPjl8vlUmk0ZzIy1swHnEIfc0r9OYM5BkZon89n0po5DK2/vz8F+X3O0ldcBzvDASKfI4yPpMS6XF1d1dWrV7WwsJDSweNcijZBBHMceHH2v2djMAcAdbzsAP0c5wzfJUDi96PuK+sj2gkOGjkgFsE23nc2ebwGgi0b+5T2egDHwT5szPX19Zb0/ii+hvZikx7r72M5iuLZToCwEKIA0TnLImtduw7D75K2dK6ziMvlspaXl1Uul3XlypW0F9br9Wv63+zFlK1gb/N9z3WgB0SjLgWAlLYIWTxXT09P8vOy2sC+GgFj96P99Vwul/okSz+30zUxmBxLoHE9DgidnJzUHXfcob6+Pp06dUrj4+Mt+yIl2Sj7QoYY1/fMLvqCtnjQNAYVED7vGYMAz15ClZrcMKOzgp1Zwlkcy8vLqUwrNkBPT4+KxWKqX09ZOi+H5uMXbSz3WV0gW1JTHP09Ozub7g2wz1qhj9zG8vGKmQ5Z54TFwIID895fHgTxswGcMMmYMPd3Yv4fZTnW3wcnxyD6LSJsBChvFHehUEiR092A6LBKNjY2WtJkcKT94FDqQ128eFHf+ta3UjptPH06q60AC/l8vqX+5o0WT1WFjXytKK4rXk/rZtPNKj3im26WuLPnjObR0VENDg7qzjvv1Pd93/dpcHBQU1NTmpiYaEmnuhHCmEhqccIXFxcTy4vAw8WLF/XEE0+kciZzc3NaXl5ONT+vJSgfnO+Ojg4Vi0XNzs4qn8/rzJkzWl5eVl9fnyYmJrSx0VpawQGUyGqQWg+IrVarWl5e1tzcnM6fP696va5nnnlG09PTLTXNAYZIvxwbG9sWJPG+4vWRkRFtbGymS1+5cmXP/c4zFYtFnTx5Uvl8XidPntTw8HB6ro2NDV25ckXT09Pp3IFGo5HeP5ZjOZbrE/Sis0k9tdgZMWSzUGbEDWmcSs8Ek5Sc3wh6OtCIk+3OeE9PT3J2PW06gpsOQnoJFM4soU1emgs9T+kyAucOVDvgi/heCegaQWIcLwfRHQT0YCvP5SUlnDGUxbKj33DAos6NwQb26Hb6k+vxA6AM45nPSK2lNxjfzs7OVBt1ampKZ8+eVaFQ0NTUlMbGxrS2tlULGxuLMS8UCi0BX2nrwFLsNPqP35GxR7skpWviWGLjuB7H9kE/bmxspLnnfe8kA34ImjBW2Ifo8sHBwZQO7sxLP+DVWX/MSeasO+T8rlaryfG+dOmSrly5kuYx6yqCJ3HeuoPPe67LWfPeRmwuLx/k7zP2ADzMHWwp7kkpO77vpRki4ODBsFjqkO9EJpyzA/2+EfRwEMHtYWfrQ6bwwEE7YG63wM2xHMtRF3xs9Dg/HhD34HrWvor/zF5K8NP3qfX1dVUqFS0tLalSqWh2djaV4XT93U7Y1whgoktcn/h6jlk1vm/5nub7Jd/Dz+MacZ8AY3BA0vcUQPVcLpdA0iyd5/dmHLBNYqDRmfLsrz09PamE6okTJ1r0N2XSuI7bZIVCQQMDAy26iqApOtKDxJGl7fo92i+ui9CPAOfz8/PJ5+ZcLb63GxAdn5fyeNizZFbzPsECz1ByXQEm5HMikk2azWayM1dWVnT58mVdvXpVq6urySaK44M4GSLOSeYutp33odsR/prPd/73Z+KZ/XwQt0Xoo2sRBZ+NcqzDD19uKIj+3/63/60GBwdv5C2OjLgC9HItKF53wP01vseG4k46AtDorwOir66uqlQqpQjpXli4N2PBZrGR4ntu2HiEFUXmysG/lwW2tpPIIEIpDw0NaWRkRCMjI4mNjGO7G+V4UBLnkx94A5hNOiE/1zpMNkvc8MBY3NjYUKlUSgboxsZGOrAFRqZnBUSGBMochxglXSqVkuHpLDsH5uM6uVZ/0z/R8d5tPxCs6Onp0dTUlE6cOKG+vj6Nj49rcHBwW7BF2sygADSAlXAUFfpOchwJv/Xl2aq/fW5l7e3Otsla674POFvKrx8B5yyHOuom3+diO7K+w+s4X9KmLvcggJdjc8DMnw+ALYv9HB0bdwajjovtchZTll7OYg7x3P53O4nOvrfPJeo61+sONLozxbWijhwcHFRvb286j6a/vz8FQ+IYOpPJ07S5f5Z9FsfF7RNJCbj2Z3PAxkENT0920BaHP5YBifd1hrzPs46OjpQijo7ykh/0qetZAiuul/2ZpK10ai8946xxb1N8bu9zt/N4Xn/dgSqADGmrDqu0FThxYMGBFcr2+FykPTj/gBdx3Lk3fcoZDf4etraDNnE/iGCN/477RtzHfNzj9aNN5ADgTusx6zv7kWP9fTjybNXfN1t8P3K/wv/mc1nfdRAR/RXX6+rqavK/CXx7SZed2iYpsx2uj7mXpEwdHvfdqL/9b9eTXiIqspazCAH43EhWuQ3X015OzNtBn/q1PJBA4BOfe2hoKB0Y2t/fr97e3qSjPGDg7Y1tctumXR+3kzhvYiCdTADX4R6A2I1k+c348NQLJ0vBQXQC//H9rOwot+WySg+5fsmaT+3mmNtx3Nuxqzhn45z0+ejZngMDAykwQiZ+1M2Oc+VyuURGebZLtBmu9dlj/X0wsmsQ/S/+4i92fdHv+77vkyQ99NBDe2/Rc1BcWZNijUEPEEkaEu9LW2mocaPI5XIJhGw2m6rVapqbm0us5Gq1mlhNMMpqtVoLwLyTXMvxv5Hi90ZQptKWY+zGC9FH3ltbW0uMdI/ExuDETvf3OnfFYlEDAwMaHR3VS1/6Ut122206ceKEzpw5k8Zup2veCMEo6ejoSED++vq6RkdHkzNcr9dVqVRUrVZVrVZ3BE12EowlMh86Ozs1Pz+vp556KgET9AOHsXFATwSqnH0JQ40UcOYqzjrzn2dzpoinaF+rnzAmfA64UZglfG5sbEwvf/nLNTo6qlOnTun2229Pa9RPJJeUDpBpNBp64okndOXKFV25ckV/9Vd/pUql8pxTTs+1572Z8lzS3w4mRiM+AqkczCS1AmW5XC6VZZHU4jhG6erqSqWbYP+wl3If9hd3PBxE89/umEhqCU4uLS0lox/9HYMCEYSNTFhJKcXXnRH/Tfuy1ih7KiAj+6eDtzG1m8NRPcPI/3dGO9eH0RfPPkEcWMQx7OjYPLwTRwtGG2BqtVpNtgBtJvMPBtvAwIAmJiZ09uzZlBGYz+cTg4xxjoeZOnAtbQZYYcq5ndZsNluCyACtPDtzwBl3PCd2XaPRSNkHADA8M44xc4Zx9L7wLATagEMvbbIoOXw0rqOOjo5kl1L6pbe3N7Hh4hpDCNpjN+Xz+RbgljYBiMCydJ3s7O5IFgEoiDVmHdDm3tzHg+BDQ0MaHh5uyaiQtta8z11S8Wu1mq5evdoyJ/jOxsZGS8aZM/xoX8yOiXPb78/zOZDvYLmDIk6KcFCL7xEU8iBVrVbLXGft5Fh/H548l/T3rSARQPfzv7ICuVkAlgcxYTVTTtPJQfg1rMWdBKAxi1FMYI99y4FCL+fCbw+MZgUr0cu53GZ5MQ/+oYv4Pwbs/LsRm9ipnznsE1vM/XonWDl4DmCez+d1xx13pFKeZ8+eTQeEkylGCTxsFQ908uwI7eB1/9v9Vg8Y8JpnbXEdz3rkTBAOu6Scy26BdB97Sck2JFMP+8BJmW4LcpgqGZOQLDyTzMdIUjpDDd2VFVzwjEz0t1dHQJzwQLtWV1fV29vbMq/imMR79fX1aXR0VPl8XsPDwwnfwP92/Y/tvLKyoqtXr6bDX7FZDhvLOmhxksBu5Nn8rLeS7BpE/1t/629tYzu48F6MPB7LtSUr6u3AHhuTv46z5P3uikbaAhFgnVO/an5+Pm3ke1l0UW529M6Bg9iHMbXMgQvEN3FJLUpbanXoY1TfnSA27YGBAY2Pj+vkyZMaGxtLrLbDBM+j5HK5BCpT4w9mmR+yca0SPtcS+pb+pfwAABPA8tDQUFJ+1OP1eYqxWavVVK/Xtb6+nuqwudKOLEIUMT+7AdDpH1gPzhzczfdyuZz6+/t12223aWpqSqdOndKZM2faluxhLpL1wcEvXqfuuaLYjiPhhyvPBf3Nvu8SmUPOGnVn2IEp3wccGI7AuAsOozvOPsdpQwS1/LrSdmeNz1AmhKAn4Glk1rKnck9+R8c/sqSdDQYQB2s4q5+j4x6fz5+N62ZlALQLVnqfUEuU1/k+v91Jc+CfNjnY6k44thS6m7M8hoaG0gHgBHu7u7tbGMU8X0dHR8uBk87KAliPuiA+gz+rzwPXdXzHmejMCQf03bF3p50xdzvS9SSf89T5rLWEDAwMJAYb855xaueQemAlEh+YQ67DHWB2sN/7xSULCIKdF9eZZ8H5+UOA6F7iz1mlDnQRgIvBj8j+dkY+9/dSPw7MxX3J7+//s1/R9zGgEAkxMVjHmon9xDq7lhzr78OV54L+vhXE97joF7qv4pIF8vE6+zMB73K5nEpmAqJnAfDtxPVulv7Osll8bkQ/Oe6v0va9wnVo9I+y9rwIPHuG3E7PBJDa1dWV2h7xDNe70femhCdg6vDwcDpjrq+vryVTyseOa8b1xf7oe3nEWyS19LP3EX3mmc4+L6iTnnUw/LX2SB9DHzMP4hIscKyI73DQqvc5WIDvHz7PnPDgQZEIpLerluD2uc9hB9JjAOhaz8/4u/72AIvPT0ipBPPpL9pyLeLcrS57afux/j442TWI/vTTT9/IdjznJW7AzsBhE8xSnG5MZ11HagUcXa5nMbjTtNPBRQctRO3daSVNyZUFkVJ33AB63dHF+XYWT1RQ8f4Izgy1sCcnJzU+Pq6RkZGUVnSrCM7iyMiIenp6dNttt+nOO+9Mh4lWKpUW4GOv10b8ux51d+VLdD4ecuKf8Ug0n3fl7AaJHybmSjwLwIjCnHAAxgH1aBDi+A4PD2tgYEAnTpzQ5OSkJicnNTAwkGlkx37q6urS6OioOjo6tLKyoomJCXV2dqbAwbGSOpaDlueK/m4HrLkejQ4PoGoE0fmOA5v+O0u8dFbcoyK7J4JnEXhzYM4dkHh/B8uzHHKukwXOeWkNB7rdofC/fQ+OzrTbJXzWU4kd3HYHFeYSzxb72ccr6/lwUDc2NtJhzevr69scKXcC6YtcLpdYTKQDeykPd9q9ra53YBu74wib2XUJeo32LC0tpXu4g+4gp6Tk2HLGyPr6emKSAdLw/Fw/1pmPmXDOZnTbkJq1zkr3sXDbyNvY1dWV2HVZjLNox1Kv3gH7GJjxWuwOoNB+5hA2g89TwH139r0vIBQMDg5qfHxchUIhgS2+B9A27snvfD6f+qm7uzvNwSzyhku0131O+32zCBxZwTHe9+ACr8X7+xhm7Qd+zWO5teS5or9vtrD3xHXo+jn61v6es7/xFbzkE/t1LOW0G3Gfn/0sZotxjwhq+96XhQNkYQj87WCn4xDuV2M7ZO191woQOJBNsMEJVvSz+/Lu76O/C4WCisViYqVzVofjJoD1Dpx7FpjfMytg4GMOYO1+oetD75NcbrN8KhlbnG0H9hDH71pzwkujYud4RoOfB5SFGTkJkNJtXr3Anx1GuQtZXJ2dW+epRNzKMx3Q1T6e6H+fd3yO7L6o16VN/UsQYHh4WGNjYxoYGNDg4KAKhUILScAD58wHDxavra2lzEWCGsdyLHuRXYPoZ8+evZHteM5LdE6k7QBAVgSZz0lqUZTtAAHkeoE6UqMWFxdb0p5upOCwkgaFsiHajAGEYkTxukPpNURxfEg9yuVy25RuZCNFh6ejY7Okxwtf+EKNj4/r9OnTOnXqVEtJkZsttKG/v18nT55MLAhSkWdmZjQ7O5vYjXs16tzZywKd3ZFtZ6AgPodRhqRbw2D38XEww8d0t/3uIL+nlntUHCWO4dvV1aUTJ06k8i133XVXAsKvFTghmHHq1ClNTU2pq6tL3/ve9zQwMKDp6Wk1Go3nBIh+HAk/XHku6e+4x7hecAYun3Xw0Z0oByE9eNpu/qFL8vl82rtwPgFCAS+lrXIofl1nbfEdHLS4t/p9PejndUUdPOT5ePYISuJcRdZuZN/GTB93mLMC/wRMeZ9SctIWeNrX16dms5mcwAgwAMi7PvHfjGFHR0fK9EGv00bPumLcJalYLKazLEZHR9Xf3698Pt/Sn/QVziPj1Gw2057d3d2dAqlxztF+dI0HTL0vGWsOtmMeMC6FQiHNTZy+5eXllnIBa2tryUaSlNK1XTeRIRYDIgQhuKYHlz044muFQ/P8oHd/dg5r7e7uVn9/f5ob/f39Wl9fV39/f3o+2P5eBg8n3uc24iUGGCfWFvYf7fCgzdDQkAqFgsbGxnT69GkVi8UW29vXJHNX2gLHsDsBfDY2tsor+dyItne05yOA5Yx8t5d8vvs68/XgayGLfe++AIceRqBptyD6sf4+XHku6e+bJexLHCzqdgL7v68h1qoD1Q4O+h7APuolrXy/upZkYQFRH0qt2UPRXvD9m2eKgXdf/56p4v3j9hFMeievXStrL4oHQhcXF5XL5RKwGbPc8NHY3/EPp6am0n4+NDSkgYGBVG7Mx4y9zol42ByMvT+/970TGyjNGfU3fUEQmPdh1w8MDEhSAoElpWA247cbFnZfX58GBwdbMrfARADTYVvTLtdBhUIh6W36Mo4nOobzzLB98GHRP3yXOc77tMvLIvqY0yaC9b6mGAdsJp+DlPAZHBzU6Oiobr/99kR+ILDgdjzCmmMOYeNdvXpVnZ2dqlQq+zoX7tkox/r74OS6DhZ9/PHH9cwzz2yL3vzET/zEdTXqWG59QaH5QVKHIR7Jd2aNR8idVRiNFN+8aTdKIBoq8fsYFM52YsMvFArpEDKUxq0AoLvQViK5g4ODWl5ebjnJ+lptdoAki7HJuDhA087I20kIajA+biy4gmQsuC5KPMt5jMJcYE5JWww20vjdGMTgpDSOs9fc+LqWYGRISqloAA3PFTlW4jdfjqL+Zj+KAJb/eCkHfrvO4PvSFsvZg6n+PenaKdZS63zndd+XPEibxdrx7yF+X3f4diMe4IzryduZtdbiXhqddP+cP6t/Jmv9Z13X25e170utKeU4gs7EQjxl2nUSQK07fg5w+n3ajSsASxxj15Xci/dphzvp3ibmqdsb/oOT7iADOjgLcI0BDp6TOYQzDyvN+zSOnQesuWZMB/c14+xBb6+kBGxkleLh854x6AF6H39fM/58Pp4EQvz8FMbe52Cc03HcPcjvIHSWxP2C53MAhueMz+335BniPkB7vT+ygmF+X77DuO8WzPP7HevvmytHUX/fbInrHPH9IK5RzyKK9kOWuI6I+tq/55/Luob7Wb4e97q+/Nmyvut+sOu7qJ+zrrmfdkit9Z3dpnP9zRj4Xg7YmxXo51rxNa7L87fb9/3H7acs/Y3Owl/0drn+9jKlu8ELHOPAl0dvO6s964BvFy8Bh80ZQXT0G33jQDg+OQFzxizLVs16rjjX+DtmBLgdgrj+5oca6JERn3VfaRNfWF1dbZk3t1LlgBstx/r74GRfIPpTTz2le+65R3/5l3/ZshiYoMc12fYuKAWcIDY10kO9PElMgXFlxvvtfmK6135ldXVV8/PziYlz6tSpFiDhoAXHbX5+XrOzs5qbm8us4x03znbKyaOm/jebeJaBw/eazWZKGxsYGNDJkyd19uzZxG66VRjoUfz5RkdHdeedd6pYLOrMmTOan59XuVxuqYkapbe3V0NDQ+ru7tbExIQmJydblHi9Xtfc3Fw6uGN2drYtUHOtdsLEQ0HCKtiJie6p8qSVww508N3XydLSkubm5hIz684771RHR4cGBwc1MDDQsl7K5bLm5ubU3d2t06dP6/Tp0xofH9/GKN3tM0pb2QE9PT0ql8uZgZ+jKMdK/ObJUdXfOC5+aDTP5OsfYxm96YCl6wtYKV7Ow5lCfIcgKmAsgg5xNk53d3c63JE2xVJX7jTwHs/EtZrNZstzZpVD8X3XnWAAT5hKpBjTHljh/l1PicVhA/R01lKWDeBlNzhYjfMuEO7nOpd+dpZcf39/6jNn/fJZ9BcMK5xA2gtTGqYafcrhog784uB66r1nKwFie0CZ7zog6szimO3g/egAMhkNbvPBZHM7cXl5WZVKJR2YBdNR2qqPT2o7h9V3d3dreHhYIyMjLU59vV5PZVlKpVIaA2eIO/vSD2jl2fgbBiBrKx74zdpzIIpABH2QVb7IQRxY6LVaLT0zWSA41eh4t307O7fKsRUKhZYshmi3+di5zU3QDUZgZ2enVlZWVKlUtgEOWYB4BAb8fv6ZOLeyPod4MClmdNDnvj4BKbB99mJ3HOvvmydHVX/fLHFdjK6KwTzWIfsZe7TvXTEIHzN22Af7+/sTEzYGnz3Qi66hPQ72coizpHToNe3BFsjyQb2EJu3O0lM8uwdMV1dXValUUhYzjHoAWQds3T9zaRcQiMK94j7HZyFZYa9QExvyk9t4Wez4rGCH2zl+zywMAb0dSXYOBjuxKjLRBwcHNTw8rO7ubhWLxZRB1g5w5pnxZcfHxzUxMZHA9K6uLjUaDfX392tlZUULCwvpebN8es+8pL/8+bmv6xDvK58v3J+5wPvYNVn7kdtkVAro6OhI/cM10d9+/66urnTm3NDQ0LYDTKXWzA23Twii9/f3S9rMQhwdHVVX12ZteA6OP+pyrL8PTvYFor/97W/XnXfeqS9/+cu666679Kd/+qeam5vTL/zCL+hDH/rQQbfxyItHlVnoHnF1dq8rPmlL0fnnI3DuzuZ+QM0sWVtbS6DryMiI1tbWkoI+aACZtq6vbx6sdvXqVS0uLm6rBxdlp3bEzd0Nhxh19u/wgwM2NDSkiYkJ3XbbbYmJfitHNDEehoaGdPvttyufz+vUqVO6dOmSOjs7NTs72/a7PT09Gh4eVn9/v57//OfrBS94QUsUeG5uTufPn1e1Wk2gcwQIdisoZxx/lKrXcXX2B3PaTyev1+stmQHOIgUYWFpaUqlUUr1e19jYmG677Tb19fVpYmJCQ0NDLQby5cuXU9Saci7FYvG6GOS9vb2amJhQd3e3zp8/f0sGX47laMlR1d/OCpVaWS1ZTG0/c8EBVAQQDn2LLvYyYLncZtaKl3BB3LAHqORwIxwQZwBFEB0HjWsAnHtpFBx8XnM7INZi9XYBtLFn4vyw50qtTK3oHLudAdvKrx+D0Hyekh9eNsyfledpx6pjP8dx9ywiHGbPKurs7EwlXDyLjfIqtB0d5s431yE12ucUQCpgiesj13dZjhyv8TmfU/SfB4zRbWtrayoUCqltHIrlmW9ZIDrP1t3dnVKzi8ViOoSL99HbzEWAZcAa2kbbKYuDDuY3Y+ilSegD/gaU533mrgMbWSA6gj27srKier2eMuogMWCLkQ7uwZbOzs4UJO/t7U1968ENB8y9hAEBDED03t7eBGwsLi62ZBognoWQxTz154zMwXj/uKbc1nRgh2fN6ju+x328/NOx3PpyVPX3zRIP+vn6cj3mQHjcz1hz7jtGPxKdhr/Eff1e6GzP5vH1LKlF77LPu37irAkP4vpzup7iOm5f+P7lnyVg22g0EoiOLvWDtfnubvzynT7jgfGs9lPWjMAE5VEInKNHIgDs93Rdw2exCaJOd4lYjAcqPeDv2U3YkgRtBwYGUgkxdBXBzKz+yuU2s5eLxaL6+vo0NjaWQHSymGu1mjo7OxMoDTAP/uPiZe3QZzybB7YdL4p6yW08WPVxDP13fA8bg2BMX19fIqMwll5+hXZ0dXVpeHg41UD3M4hisDoGu5jLBLDAcDo7O7W4uLitncdyLNeSfYHojz76qP7v//v/1sTERJq4f+fv/B29//3v19ve9jb92Z/92UG388iLG9CkyGD4o6iJ7nmE251BV4xcx/+WNp3k4eFhSa21vtjUGo1Gcq53YjSwAeZyOS0tLaVamji5BynOumo0GqpWqy010XmfjRLH2Z//WuJsnfh61v/UFKUWF+CDgwm3shApJ4o/ODioRqORjAd/bozLQqGgiYmJVINucnIygdwYlysrKxoYGFCpVNLc3JyWl5dVrVb3dGBHVNBuPEXjNH6H9eCGaKVSaWHNOXBEuwATYChi2LghQQkcPhsPR92PeLufS3IcCb95clT1t5c2iUFRxBnZ/r7vN+2cBQfnJW1zvCPQzN+0KTq27oxFxk8E1LgG9bhxzNzRbzabqZY1ezjXdBDOn6VdYN732Ahy+/0cPMhix0pbAcvV1VXV6/VUD9zrkvq4OGPMf2P3eHCB9gFocz9py1FbXV1NIAPX4/sROInOYpwPDnjGPgVgdTAi7nP870EY+t/HzB161xGeygwAjB5fWVlJjifCfciAwDnN5/Pq7+9PrG1A4WKxmIBpCAHoSGcq+hz2PomAsTvjnlEZAw1RfJx9jniAyMErwBTa7LYY68TXr/9kARdZASRvG/ekXwHIYv/Tbz5P/DXaw3U9sMJ9fQ9oZ8t6f/pa9f/5DPMUWynud7uRY/198+So6u/rkXbzdqc9pp2NkPV9JK4l1il7tQOOTlZjjQNys5/HfZSzQmKb3Z5wENxZ4gCiiO83/pqv/+hHEeT1Z8Hv5jyyWq2mRqPR1seOgeR2Eglq1xL/DIEPz3iK4xjtCm+bE6ri80eg3YO7/n4Mhvs94z2w39AX6O+1tbX0t2dr+fd5RkBmfg8MDKSMNWwJDi+t1WrJ74VskDUmHjzIsuH8fXAiD7RkBSe8j7EJvC8iTuX6GzKLl9dzjAs8zMvjOFkm2t5x7tA2xsLLwnDNg6jUcKvLYevvj3zkI/rgBz+o6elpvfSlL9W5c+f0Az/wA20//8gjj+iBBx7QN77xDZ06dUq/+Iu/qPvuu6/lM5/97Gf17ne/W08++aSe97zn6Vd+5Vd0zz33pPff//736//4P/4Pfetb31I+n9erX/1qfeADH9CLXvSilmf5N//m3+ijH/2oFhYWdPfdd+s3f/M39dKXvnTXz7YvxM/TUsbHx3Xp0iW96EUv0tmzZ/Xtb397P5d8TotvOCsrK2o0GtrY2EgHPzSbmww0Tyt2x96Nb6LSsL74gV00MTGRNuLJyUkVCoUUXV5eXtaTTz6pCxcuaG1t8/CvdkD6+vp6Yt7MzMzowoUL6u/v14kTJzQyMiJp9wb5tfqm0WioXC6rWq1qenpaly5dSo7xxsZGywEfbKiA7h5A2M29uE6WOLDQ39+vM2fOaHx8XCdOnNDo6OizCkSHDSFJp0+f1uLiojo6OvTEE0+oVqslI5BIeW9vr26//Xa96lWv0vj4uM6ePauzZ8+2sMOr1aruuOMO1et1FQoF5XI5VSoVPfXUU5qfn99Vu6LR4UCVpzZjHKIQ3SiUNtkZtVpNkhK73tO9MAC7u7tTGZ4TJ07ojjvuaAHRpS3DilTMzs5OnTx5UsPDw6ku3X7FwZHnEpB+7ITfPDmq+jufz2/bfx14wggn4OqMMn7Y89wp9H0Dcf3rDo/rZq/R6eVcuJY7wehn2uksbwBzgnfj4+Pq7OxMLBx03fr6uubm5lQqlVqeNbKCHbQjkEjgHFYTgD19gR3gNkdkvfK+P4O0GcQsl8taXl7W9PS0SqVSSuOlv5GsGpgOnhI8h9WPkwnTy4OnPNPS0lIC0d1GAEgmHRhwwQMDjFN0JhlL7s88wHbDWeZzPT09LXYabHAY2a7HGI96vZ6uwxyinAtt6+vrU6PRSGO7uLiYAHHmDs84MDCgyclJ9fb2amxsTGNjY6l9lHGhTX4AW3d3d3ouB4UYI/odkD4CNxFs8aCSrxkHH3D+IUQg9B/AQC63echaPp9Pqdnx2sydlZWVxPbL5/MpEI4z7pIVbHP7kHJzHR0daf1Vq1VVKpVtGZ9ZwJaDJQ5+015YhKwJ+pxxd+agfy6WWHKfgT3KGXn+TFn7Zzs51t83T46q/nbdsZc54sE9vi+1AqJZ4FoE3SIQGAFz/mY9+2/KmUTiGkFDSntQ+gm2LfobvTYzM6OFhYV0cCX6IZapkJQYx9VqNRGV2AslbdvXHGjkOdzWkLSt/evr6yqXy5qfn9fS0pIuXryo+fn5VEbLs+R3Iz4ebofsRNiL3282m2kPdwa6kwpovwf9ec33dO8b8JNms9mSceB2kBMO0OmMPf3X0dGR9BftwV4ZGBhQZ2dnwmnIesammJ+fV0dHR0vNcjKmhoeHdfr0aeXzeU1NTenEiRPq7Nw8oLura/Ng0eHhYa2srKRx5/By5mk8ONPtxCxGN7rW54UHLhg/ru9BbgI7y8vLLX3tdhD92NHRoWKxmErMYfO4HvXsOyoBsIZihjpjSrtc7+HLQxBgTRaLRRUKhZShvlvc6Nkoh6m/H374Yb3jHe/QRz7yEb3mNa/Rb//2b+sNb3iDHn/8cZ05c2bb559++mn92I/9mO6991596lOf0h//8R/r/vvv18TEhN70pjdJ2gwkv+Utb9H73vc+3XPPPfrc5z6nn/zJn9RXvvIV3X333ZI2gfif//mf1/d///drbW1N//pf/2u97nWv0+OPP54yWX7t135NH/7wh/WJT3xCL3zhC/Vv/+2/1Y/+6I/q29/+torF4q6eb1+I38te9jL9xV/8he666y7dfffd+rVf+zX19PToox/9qO666679XHJHuXjxov7H//F/1H/6T/9JjUZDL3zhC/Wxj31Mr3jFKyQdTDThZotvdM46X11dTSnfUivDB1atbzRew5K/PbKWz+c1Pj6ugYGBVMe7Wq1qfn4+1bSemZmR1FqXMgrKI5fLqVaraXFxsUWhHASAjqyurqbyHLVaLaUde3QyMgZdYexWwSPtNgmcE2mT0V8sFlvSglEGzwYhsr2ystLyHFn1PwEBisWiTp48mUqZnDx5sgUAJjJer9d18eJFjY+PJ+d/LxJZnDHK7EYwjqF/zh1bDFyMFAfRSa8bHh5OKYGDg4PpoFAv0+JAjhvA18tE5zkiI+Soy7ETfvPkMPX3YerunQ4HciYOutBZ674G3dHjt7NvImPbnQd0n/9EFnoE9xwwd4kgAAxb9p1isaienp7EHPY6ovQtDoQHIt05cYawO+oO+HsgmuvgaLrjGfW+A56UcAFo5J7cjzZlAfKeds7z8EzYQA7E8h0cZkBpdBni5X9oNyBvtHu4B21xINhtDk+ddvvMQRjew15YXl5uYdX7nJDUUvMTUB3QGhC5v79fy8vLiQkdAzB8LzLZAHT5ja25uLiYUqsJdjjw2o5F6Mxu7zMHLhxE9nXWLqOS/nY7zsvy+HkplFVyIM3FA2hZDEZ/Fg+oOaDmzwB7LpfLpb/pQ98PXLyvs+YYz8U6cN8gK/Dg33Ww3JmS/hm/Fs/m19qNHOvvmydHVX/HQNVegfS4hv377EluZ7suaydx724XjGJfjPsWa4q9DnJOV1eXBgYGWvT32tpa8m/Rc4jbIg6CS0r6DR2Ej4LO8GvE/SNrj3YglMA17HMPFHrgfy/iNtJ+BWB6JyY6bXN94OMXfXX6IRIoYhZcBOGz7uu4g48FwX5KlG5sbNbG96AuZ96gB8gcy+fzCTweHBxsyYpGF0mb82F+fl6FQkEdHR1aWFho6YMorkN8jiCOs3gQIo5fDDSBy8S57H1EMBqcgEAuNosD357lhv3Qbuyz7BO3xfgO/c2ZQNi0R90XP0z9/eEPf1g/+7M/q5/7uZ+TJJ07d06///u/r4ceekjvf//7t33+t37rt3TmzBmdO3dOkvTiF79YX/va1/ShD30ogejnzp3Tj/7oj+rBBx+UJD344IN65JFHdO7cOX3605+WJP1f/9f/1XLdj3/845qcnNRjjz2mH/zBH1Sz2dS5c+f0r//1v9Y//If/UJL0O7/zO5qamtLv/u7v6r/77/67XT3fvkD0d73rXYnl+W//7b/Vj//4j+sHfuAHNDY2ps985jP7uWRbWVhY0Gte8xr98A//sP7Tf/pPmpyc1JNPPplKkkgHE024VcQZWvV6PSk6jG6UtDvG7pB7jSmi07lcLgGaL3jBC3TnnXcqn8/rxIkTiYlerVZTOY/+/n6Vy2U98cQT6YCKLOH1Wq2m6enpxHjCccsCZa8lHtElEn/58mVdunQppShFZRajzpHVdFCC4gZEHRoa0vDwcAJU40Z+KwvKkrI0o6Ojmp2dbak5i6MFy2toaEhDQ0MtgQMHoqi52tm5eXDX+Ph4ci53K+4MukHq5XrckPS53+7HrxfvQ/swRPx5ouD85nKbB/vA2N8LgyvK6uqqyuWySqWSGo3GsYN5LDdcDkt/H7bu9kwg3z8ktewFOD8Y6tGZcvDJAUEEnRLZqg7EehAP3eSMd3eKHUR38JdMKq+P7XUgs5xw2uQs73aBXW8v2VxLS0stdUWz9rXoeLuO9eeALby4uJgy3QDcs9ohbTmcUW9nOUUOuvqY0u5YWkXaAuxJg+YHXdbOuWBOxBIq3rdum0lKrKkYGHAw3zPmyHTCIfbx8bnszyBtAjNkDvq8pc2Au/39/elMEw7W9MAO83J1dVX9/f3pENdKpaKenp6WYFG7ebRT2TaAGV9TkEW4r9dKxXbN0sWuv7FZCoVCYuX5PEF4nTXhNkIWecCDXTEI4O/DGvX15mcURLDb/3egC9uGQJevpRgU8D7xUkYxgOFBDdY01+F+Pj5HmX13VOSo6m8Oama9RUAzS7IC3/zv/oK/F+e8v859c7lcy14GwOYlID3rmbb6HoYPhX/htZzJDOrt7U1ZR+iJjY0N1Wo11Wq1tO87g9j3PvbKarWa6koDvEpbAVj2N9/7HBwFMPfnoGTL/Py85ufnUzv9wNPrkf2Aley96MoIQLPHZV3XdVxkUmfNH2deR4KEB9F5jzmSRaxy8NZLjzWbzXQoaq1WS9dwwpbr76GhIQ0MDCQ/3DPBIY9hG5KtQraapBbWfBRsNicG0Nesp5jZxLNJagmsUP2APvUx8H6mHwGzHVBHX7uudGG9OMnCbZmoC11oP89Mv/Dcfu+dsiS4l183zqmjKrGGPIEhl5WVFT322GP6V//qX7W8/rrXvU5f/epXM6/76KOP6nWve13La69//ev1sY99LGVJPvroo3rnO9+57TMA71lSLpclSaOjo5I2Ge+XL19uuVdvb69e+9rX6qtf/eqNBdFf//rXp7/vuusuPf7445qfn9fIyMiBg4gf+MAHdPr0aX384x9Pr91xxx3p74OKJtwK0mw2Ww51glVEKrIr8QiioxCpibqysqJKpaKlpaV0YGKxWNTdd9+tl7/85YmVhHNEeZTJyUmdPn1aFy9e1NzcnMrl8o5gdLPZTAAg5S9WV1dVKBR02223pbIeeylVwXPMzc1paWlJ3/3ud/XXf/3XKSIeDf0sh4DrHKTgkMICnJiY0OTkpIrF4o7K+1YUlAWHhU5NTWlubk4DAwMpHRCHd2BgQGNjYxofH9fk5KQmJyc1NDSUUrddMXZ0bJZ/mZyc1KlTp9TV1aV8Pp/J9GonDiahuP2MgOjEOvMjKlZ3lCVtU4gdHR0t5VtII4sK25kEklKJgPX19RanYq+yvLys2dlZzc3NqVqtHnnFixxmJPxYWuWw9Pdh626CmdIWMJzF7HVD2Q9/cqcOBzWyid0J99ec4cW+iU4iZdsBbcqlOOAHiO0HZpItMzg4qN7eXk1OTmp8fFzd3d0JcCX9dHV1NbF5cKo9yM5z0Qe0b319PTnM7nzTdhw7Byvc4fb1iEO+urqqxcXFFifcAeOsNezOG4BeFmjIe6S6+/dpv7ePgzHdee7r60uBYc41kbaCD4wJ1+W7OKyAtvQfbfIsQEqH4Owz7vyGaeXOMgdV+1zxgAR6iJRn0pA7OjpUr9dbru/PSubc1NSUisVii5PtYC32IEy37u7uxDzk+Xhm5j7Oa7PZTGfjxDFhTLFd3Tmlv5k3fC7qal97zu5j/CA1xMAP36E8Dvd2QJ+2xrJHXmrBgQU+t7GxkbIkASAAUTxAEIEHbBUP5Pm68CALfe4608s88FlsJOYu98MuZx37fPKgD3vXbuRYf988Oar6mwClE8J2AtGjH4DEfYK2+nvxO66/0TsA6exJrG3WKyUh3P+mfKq/Bumqr69PJ06c0IkTJ9TT05N0OmeKsX90dXWpXC6rXC5rfX29pRwr10Wv53KbmeC+dwGmr6+vJ3IQ2TIO/PKcnkHF8y4tLalcLidW89WrV7W6upqIeQcBoPvv3Yjvu66/KcPhZT2yiAPYMw7eSsrUa07M86wp5orPKydjkcHsQHpkU3tWWGfn5iHXZOtxwCjthdSYz+c1ODioiYmJ9Ht8fLzFNiEbYXV1VcPDwxoeHk5zD4LWTvsDc41n9Of0DD63af35vMQuOFS0nf372CfOQmccwVlcANbZE3heGPusWdYpui5Lp9Em9Huj0Ujj7WvbgwZZwmdjwD2WzbnV5CD09+nTp1te/+Vf/mW95z3vaXltdnZW6+vrmpqaanl9ampKly9fzrz+5cuXMz+/tram2dlZnTx5su1n2l2z2WzqgQce0N/5O39HL3vZy9J9+F68zve+973M62TJvmpPvPWtb1WlUml5bXR0VPV6XW9961v3c8m28h/+w3/QK1/5Sv2jf/SPNDk5qZe//OX6X//X/zW9f61oQpYsLy9rcXGx5edWEXf4ccaI8AGg42zwNwd0xdf5vqS0QaF4YBP39/en1N5isajh4WGNjIxoaGiopVboTrK+vp4OH/GDw7wee6yL6T8OfsJWw7DgWlxvJ6YMG8P1bBDXEndiiZ56BPTZJig0lFZkSvKZGMWP0eoYnffDP/bTL25M+zxxReUAuoMmzjrd7VzY62dhZaB89xp5dkceJb5bB/YoSFyre/05lv3LYenvG6G7pfb6OzJJs8TBSf9MuznmYJS/F/ec+DnWdtTXUTej+6Ku529Y6R7Eo3QYToUfjgRD2oOBDsDFoKK0BUpzb//xtjqQ6v9nPQcZceh/ByPaiTPlGCOe28GPnRhG/n3XTf5DP/qBUjE9eCcmW9bBVn4/2oYdR99k6YgYhIlzUlLLddwhdaDcGXDt2u62S7usCP87q9RJ1trw9sa54W2OAa04d+JzZs0zZ2vG+8d+dCDAfzw44c/k34/9E8kCPI8DT1lAXgz+0E9xP4nzImu+cw3vz3hPH7OsZ8/6TLz+buRYf988Oar6W2plqu5V2s2tuEdl/fb3WWPsNehuDxBn6cWox11/RwYyP66v/bWov+MzRlvDsQD3u6P+bffj3+en0Wio0WgkwpAfULkbydK9cU/b6zi7DkNvR/0d+yzet91P7OcsvzJL57XTuVl7tZMYou72AID3j7cxS3+7fRT3ddd3u+nrLBs3qy92Iq5FAlt8Pev9KO3mDH9HOyHOy/hdns2fMcsO2atE2ynLjrsV5SD09/nz51Owr1wup9IqWRL7w9fCbj8fX9/LNf/5P//n+ou/+ItU6uV62hZlX0z03/md39H/9D/9T9vStRqNhj75yU/q3/27f7efy2bKU089pYceekgPPPCAfumXfkl/+qd/qre97W3q7e3VP/2n/3Rf0YT3v//9+jf/5t8cWBsPUljcklStVrW8vJxqYJLWzQnfHlXmOyjNtbW1dDrz1NSUTp06lQ6TIuWVKKOnr4yOjurMmTOJYVsoFNJhp+2UpyvyS5cuqVKpKJ/Pa25uLtXxGhoaaqnf5YLTvb6+eYgJ4PnMzIyWlpYS03036X3tJBpn+zHmAZxhLsPm8tTrZ5sQ1feDOkgxlLYOHgEU8XJBzhLM5TbZVhhlBEEAmbnWbqTZbKZ0QthxGxsbKd3TlVWz2UwRb+7pQNS1xnl9fV3ValWSUkmjZrPZwhJFKJuwtLSky5cvq1QqpZJIo6OjLWtzJ1lfX09ZItPT03rqqac0MzOjUqm07/ktaZvybuco3ApyPc70rfg8zyY5LP19I3S31F5/sw+4kQwATTAvpnnGoKx/35k27QxsBzSlbJCeQxtjIJIDoDxAiAMrbR2y6WwyLyMSnTNYS8PDw8rlcmkPw7F2MN73CpxnWD2kFRcKhcR4dpujq6urJQXc/8b+WF5e1sLCQnLgYSixL9NX/js6jDGdF8HmoZ8c6OR/vsczE3DgzIuRkRGNj49raGhIo6OjGh0dVbPZbNEfHMpFP9G/AO/o/Y6OjhY2N+ymWq2W+oxsKtLtY5/xd61Wa5lLPmfQiTCm8vl8Yo81m81UE5wx4FqkuvNcS0tLifWJ/nS9TWkYnEyCvN4nPr/pYweNPOuDec7cwQmOLE6fz9gaPva+tjY2tkqwlMvlxKBjzvucILjgIDZzXlJibZINEMEHatc6iELd4oWFBc3NzSVbhxR2+gi7mP3E5z5rmL6Mzj7suixxQgGZDK77I+iP0H76yFnueyECHOvvmydHVX/7GVb83kl8DsJClbJLfyFZAUOf985ABsTu7u5OexhAOH4TupB1CIDtgo/oRDavBe16eHBwMO2xMSvWn8X1PnsL67laraYMIu5DfWz2YGeio4vISENHzM/PJ53DwdI7kdikVp3lJbKiTcS1fP+LIF0cO/Rvb2+vBgcHNTIyotHRUY2MjKQMJM/q8T6iDa6z4z0j6Eu2j7P+2WejrmP+kZ3sr/HjQQgY4rnc5sHf9Xo9Mc7JfOL6Pr+cNBkJHF5ux1ngDlzvJO0CAdzP5z794/rbXwOUjuArfe7lYsmapAwNLHc/OB77xzPVuAe2saT0221qno3+W1/fLDHYaDQ0Nzen2dlZVSoVVavV9L4H63cSnzuRAOLZ87eaHIT+JltxJxkfH1dnZ+c2hvjMzMw2vYGcOHEi8/NdXV0aGxvb8TNZ1/wX/+Jf6D/8h/+gP/qjP9Ltt9/ech9pk5F+8uTJXbUtS/YEoi8uLqbOr1QqKU1Q2jTqvvCFL2hycnIvl7ymbGxs6JWvfKV+9Vd/VZL08pe/XN/4xjf00EMP6Z/+03+aPreXaMKDDz6oBx54IP2/uLi4LTXhMKQd4OWGREdHR0ttVBxiV/LOLnMQvVarpc10fHxcU1NTGh4ezgT6MBaGhoYkbQKKxWKxJc15JxCdNl+9ejXV1i6Xy+rt7dX4+HhKYfNr0gZPZ7t8+bLm5+fVaDQSiL4TiLGXfnaF5o7eXq7jDDaU3l5K1dxqksu11pdzhiPiILozMKJidBCBz++Uvr+TcP2NjY0WxRijvShk5j7O/25ZE+vr6ykFvV6vJzAJg1namt9+wO358+d14cIFNRoNPf/5z0+Ouu+J7QSwZHFxUVevXtWlS5c0MzNz3SlgbqzGcTmWYzls/X0jdLfUXn/HsgduQEfWERINXC+H4E5SdNilVvB3J0OZMmyRUbS+vp4cWvS0O0C0hcPF2ZspWRIDBZLSmOJcAFRSi9wdwcia6ejoSGc9dHV1qVqtJmeP+tg4qjhMzrjf2NhIeyhOuB+aybPwXK5jvA0RPM4SHH3sImd24eQh3m7qZg8ODqaU5+HhYQ0NDSVwcXV1Ndkja2trLeB8b29vKmMW2++gBMQDnpMgMP97+90Z5lwarunjBDiPTvSDyfw1guBLS0vpeZw17aVSHFAGeCcjEMfbGY1e+9vnESA684C1g/PqJWiiHeZrB3uWNrkt7MCMr0PIJl4OJ2YVsA74DsBRR0dHeiZSyWOQyUvAMMYwNDnPpF6vt4xjZOr5M2Fre+3bLDak91MUrs/cJEgTszboA9ZMXHtuC+/HTjuWw5Ojrr9jAG43AFbW37sVX3O0GRvC9130HfsPP6w5B6QdRGctQgRCd0Biw8/yYDsg+/Ly8o6lSdweWV9fT0F69Hd3d7cajUYC0TmfzPcd35fYtynXsrS0lILge9kXPADOOSOuKyS1BITjGDsonBUAoQxKPKOrWCy26Ad0mF/D/TrHW9hHfS+MAU9sLEB6/GBvp5O3HMDn2g5mY0tIStkJrr/Rw3GcPdOBucr90PlegYDv7bS/R50T5xkZ0u5/u63tvnrUf1zDr+dt6ujoSM/a39+vWq3WUlfbsRUPbvCcBJsA3bkmY+p7EW3lDIFKpaJSqaSFhYUUBI/s9Gv5zz5/mCv0oz/rc1Wv9vT06BWveIW+9KUv6Z577kmvf+lLX9Ib3/jGzO+86lWv0u/93u+1vPbFL35Rr3zlK5MN/apXvUpf+tKXWuqif/GLX9SrX/3q9H+z2dS/+Bf/Qp/73Of0h3/4h7rzzjtbrnnnnXfqxIkT+tKXvqSXv/zlkjZtpEceeUQf+MAHdv2MewLRYTjlcjm98IUv3PZ+Lpc7cIb3yZMn9ZKXvKTltRe/+MX67Gc/K2l/0YSsAvg3WnyRufMaWSBsRP46jow7L85WkloPNPCN1g15jw62M3J8A/RNcbcSFTsGH1F1WFDuHPjmT4TQy2Tsh52LkiL6HCPQbMYon+iwZUl0TrJAmWejZIFMPCcAT6PRUK1WU6lUSszEgYGBFkd1aWlJi4uLKXtgfn4+1cXdq/jchxGAcR3BFYAZL4Ow23nL8xERL5VKLUwAPkOWxMLCQjqId2lpSZVKRZcuXdLKyorGxsZaGG0xuIKxury8rEuXLqlUKml2djYBFnuZ5zy/G46eXeJBDWcM7Gct3Qg5iEj4sexNDlt/3wjdLbXX3+wzroMig1RqZdBKrWUWXOe0C7TG/T4LYM/6TlyjMN68fc5A8teiLo4BeA9ke9o54Cj7Ig50ZIhhW7DXARLAmsY5cUASWwKnG7A+BjH5ro+JA9PRiUOnZLGCuSYgINd2wIPvoN/jfuGMPAceo7PnNpnvq26f0XfO9OIZMPgdHHW7KjLfcNR9DvFM3D+y7n3sfQ64rcOcWFpaSudu+LiTWcY4evkC5mhMM/c1kOUsEyTy9Pp2c5ZroOPbASg8R7wW+poMRphpHgiHjBJLKwHo5HK5tFY8Zd5tcvqI2sD8+DkG0Y5n/vsYO0vOwWz62fuSuedAmwNAHmyKwTH/zZjE/QlgiHHarW491t+HL0ddf8d95EbMk3aAIfPZAXV+s0ewR7GOstY6a9t9Rd/joy0SwVz0Pz48vs1u+wJ7X1LKKvKgvzPbnekcM8n2WrqF/nTdTdaVnz1DW9yn873R7a+4V/n1PZgRdUwc1530jo8f93N/2PfRaDe6vuW72ACMo++96F10Y3y2dsL4kN0mKWU9+57tOAp6ivvEAO1+xJ/X10jWOtit4H+DH5AJ6P4tz0CAan1965yAZrOZSATgRh7ccF3L+ysrK1pcXFS5XE4Z4U4+zfIZ2onbp25veD9EXIn/b6Ycpv5+4IEH9FM/9VN65StfqVe96lX66Ec/qmeeeUb33XefpM2g6sWLF/XJT35SknTffffpN37jN/TAAw/o3nvv1aOPPqqPfexjLaVY3v72t+sHf/AH9YEPfEBvfOMb9fnPf15f/vKX9ZWvfCV95ud//uf1u7/7u/r85z+vYrGYmOuc55fL5fSOd7xDv/qrv6oXvOAFesELXqBf/dVfVX9/v/7xP/7Hu36+PYHof/AHf6Bms6m/+3f/rj772c+mU06lzYjD2bNnderUqb1c8prymte8Rt/+9rdbXvvrv/5rnT17VtLBRRNupHgEEwPCjV4M9GazmeqPReeZDZnPefQSp1XaVE6VSiVtTihGSqzADM5iuOAQE5VrNBrJwdorkL66uqpSqaSOjg6VSiVNT09vCwAgbHQeAHCQey/CMxUKBU1OTqqvr09jY2MaHR1tYaqhkFZXVzU9Pa0rV660pDO3E98s+Xk2g+jMw/hM7vTDtMrn83r88cc1MzOTUp+8llulUtHVq1dVq9X0zW9+U9/4xje0uLi4rX7jbsTnfqVS2cZkc+YA8wTQiPm0G1ldXdXCwkILkNLX15cOcPG5OTMzo0uXLmlpaUkzMzPp4J1Go6F8Pq877rhDL3jBC5TP5zU+Pq7BwcEWo43UsWq1qm9+85uanp5WtVrVwsLCnlnozOO+vj4NDQ2ltH1OfMdwADhZW1tLpWhuBSf22Ak/fDls/X3Yujvu3e7c8Hcs0YTjho6LZSRwFjy1NO73HrhzfeWAN9/zOua0y/cIapH6HAf8o11ZziLrfXl5ObFsyuWyFhcXU9aLg5ruUDtDlnJe3jbYbDCQAK7RE2QASWo53Mz7EXCYfvKa4t7PXjd2eHhY3d3dyufzyufzyRHCQazX6y32EdeJP7TZS4qQXs9htLE/uSaMft5zwAHxmrPoUwAESS1ngzhYQF/4dz2wQrCBMmvs9z7mTo5wkIa+lJT6SpK+973vtTDyHUTF/tnY2MyUqlQqia1N9mLWPI/2EvMrpmPHQET8HmPFs/m1uA8sT+YrthzsfmwSzvzxecraWl9fT+A3mYTOmuTgeJxzxrter6fvnT9/PmVMlkqlVBom2qtZARPGRFI6cND3Br8ONitjyjoiWJUFjDgZgvke+xfxey4tLe06q/JYfx++HHX9zR54I+dHO1C0HbmMPc8Zruzj7CuuZ9B70paNjk3hJSicLYuv62Uw6/W6KpVKIiHtpk/whWBh1+v1ln1AamXKIg40OoC4V58EOwnG/cjISDoAnexzD7KzFwP88rfbDjGg7OXl2DsJtnv5GJ6LPvYgPO8hziD3wKQHrmOg3fuJMXVbBz3kutNJFJ4J5r9jf+LD8fnz58+rr69PpVJJc3NzKVMQsgMgdKlUSroKnebg9F4kzhXae62f3cja2mbZ4Vqtlvq0t7dXw8PDSX+zXsFsCJivrKykknaw0SkLA1DqNhJramlpSc8884zm5+dVrVZ15cqVNC+dOLebZ8DW8ywP7x/PiHAbDZxiL/1/kPviYervt7zlLZqbm9N73/teTU9P62Uve5m+8IUvJD0yPT2tZ555Jn3+zjvv1Be+8AW9853v1G/+5m/q1KlT+vVf/3W96U1vSp959atfrc985jN617vepXe/+9163vOep4cfflh33313+sxDDz0kSfqhH/qhlvZ8/OMf10//9E9Lkn7xF39RjUZD999/vxYWFnT33Xfri1/84rZSaTvJnkD01772tZI2DxQ5ffr0oYCH73znO/XqV79av/qrv6qf/Mmf1J/+6Z/qox/9qD760Y9K0oFFE26kOJMHloynOLmhHsFjj6ihpNyR9QinO5QOQnrkLpbhcHFDgDZkRYR3IziH7foj3vcgBfYWNcvHx8c1OTnZwjojsLC8vKxaraaFhQVJatvm2HZn8l1vhPdmi4MyEaBhHNfW1lStVjU/Py9pkxUzNjaWytuQ/o/ynp+fT7VCr9Wn7YT5CFPcDd0sEJ15uxcFQZApl8upUqloYWEhGWYe4FpfX0/seuaMK16CCSMjI+rv72+p/Y9CLpfLunr1qhYXF3XhwgVduHChJctkt+JzD5CJ34AsrFvAEYx5vn+zHdljJ/zw5bD192Hr7pjxEpkz/hpr241dfkcHzhlPSGQMu16NQLrrB5yC1dXVdNYDbUNnuzMntQaZ2+lu7oX9wF7oAHwE0dkfvA67G+wwfbq7u1Pfcm0HST2Fnb0zspK87fztjqoHHGBxQxLg4HPsHNoDWO/sO6+1GfuG63swPytd3tsZnSn6mPnDuGUx0Z1NxX3jdd0J53kAacgEyOfz6f6erp7Vp95WZ6KjQxcXF9XZ2Zkc0q6urlTnnexBnDxPaae+JxkKzkLz/o3z3O3c6IzH7zgL3ee4j4/bAA7Me3DEfzwwwTzHsQWIdyY6gAUAOu1kjjHXCVI5MB8BataYj5F/xu165qGDXXHPcrY48yZKtI/iNWNZG8B7xmQnAkm8z7H+Plw56vpbuvFzgzXB39xzJ/CP11grrFnWdtRzrC32SPYOB9HivsDegN72wOxeGOGuk64l7kPtx8eP4rqbIHVvb2/ywwGEsX1oL74JerBd++M+6TXQYxkrafseFe0zD374GMbrRB/frxkxEnQ2QtaCz6GdgPMovs+jd9yfpl5/X19f0k/ocS/r4mz965GseR5tgL3oBuzMXC6XMrxXV1dTJpn7upA18Nnd5tzY2Eglk9D92FPMKzLVGo2GFhcXEzmQOvL70WkERvjB54/jzZ7Bd/YyDu3mXnx/L20/bP19//336/7778987xOf+MS211772tfq61//+o7XfPOb36w3v/nNbd/fTTtzuZze85736D3vec81P9tO9nWw6NmzZ1UqlfSnf/qnmpmZ2bYBe72065Xv//7v1+c+9zk9+OCDeu9736s777xT586d0z/5J/8kfeYgogk3QpzZQh00P6SLTQ3nhIXG4od1BUDW1dWliYkJjY+PJ7YMETgUQaFQ0MjISGLL1mo1VatVPf300yqVShoZGdHY2Fiqg029N8CD7373u3rqqad04cKFxLTdKxP9WnKjDKXOzs6Wg8Nuu+22VP8Uto9HpSUldn5HR4cajYYuXLigUqnU1rCIhs9uI5a3ssTniUYbz7i4uKjvfOc7GhwcVKVS0dzcXEttP5jo9XpdzzzzTKqvhwPoG/deN3x38NzIcSMoC0jYyz04aISyQ7Ozsy39sri4qMXFxWTo0jeAbjMzM/rWt76l3t5eXbx4UYVCoeV5KQdDuZt25QauJZ2dnSoUCslAhfHhIDprloAdhpdnfByE4Xwszz45LP192LrbnTCp1dB3sNbZSOwrgMw4sHwHx80Z5DCTnX3k4CKGMw4w7GyAZ2wB1rAHztHFBNfW1zcPQbp06ZL6+/uTU4ajyv84C1evXk2HFOMk8DwOHkfDmzZ7W9hL3RnjM+4o8h5ssJ6engR4ZwUw+GwMRHs2TW9vb2JI4zT5Xu/3w3H313Fm6X9nDUYwg/8JFJOBByDJfonDJ22lzQMMeO1Yd+rpnxgk4G8AeYBcB7593vB5/9v1InPNgYy4FmD5MQ9hy1ML3OeD230eDO7t7U2sN9eBvodEcM8B78gI9M8QKOf/KNjScf5wPZjq6+ubB3fTH85k94PJWGMcxAdI0dXVpVKplA4cJWCBw022pmdN8ps5k1Xv39ce85ZD6pmjgEt8LwL5zNcIlLcT70dvE2PHHGw3dsdy68lR1d83UlgrDnQhMUCN+J7tmWQwTzkwFP3g+4DrlXq9nvwiCC/47z09PS1nTszMzOjy5cvJT3B9d9CyH18sSxzUpuZ7oVBQoVBoCWbG4HJfX1+LzRRBdA8Y0s4YkHTdLW0Bul7Ghj006k5+YrZ9DD4iWXut23nYI25nOZM6itt7BE2ygjA8CweFwyonS255eTmdj8JnPSiB3mTuYiu6Tef382fLItbxXhZ4HmUvYDrB7Y2NjYQ9ed95ligBJuwtfPZqtaquri7Nzc1ty8qu1WqJ/DY/P58CEh68343kcrlkB7n+xmZ1WVvbqtXuQfp2WR6xL73ffXwiUedYbp7sC0T/vd/7Pf2Tf/JPVKvVVCwWWxZXLpc7UBBdkn78x39cP/7jP972/YOIJhy0REN5cHAwOeIoFT7nioFomkeu8/m8JiYm1NfXpzvuuENnz55tcbB8QdVqNdXrdZXL5cREK5VK+ou/+AsNDAxoaGgosWUnJyfV39+fUr8ajYb+6q/+Sn/2Z3+m+fl5Xb169ZYp/7Ab6ezs1NjYWCrfcuedd6ZTyaMig+kmSf39/ZqamlK5XE4brTvOLlnK+9kMRjqo4OBCBNElaX5+XvV6PfXz6OhoywEyjUYjlSahH7mOH87FNffDrtiJKXW9kVWi1LlcLpUf8ve9b9xAg9V2/vx5Xbp0aZux6M+BwnYm4V6Ea5OuXiwWNTk5mQwkZ3gQGOjr62sxPmL64c2Qw46EH8uWHKb+PkzdTcAuBgQBwZ11CiDqTofvgblcLh20zPf5wVD2vT+rTAxsIHfeC4WCBgcHW4LgpDZ7YAvHenl5Oe2prON6va6enp4UHGatr66u6sKFCzp//nzKBlpcXEztcYDV+4lxAFAjMycClNGp4tlwLkldLhQKLWxtBwGxW/zgR69zihMOowgGNLoksrrczkK3kBrvta39QDEHnXk2SAvUyfQ+4dlxWt0BZ4+FTcV8cUCUw1Zx5HGye3t70zyMWRTMXYAbJwAANtO32HkEDpyQwfs4i5RrIVjR2dmZMqeYG359AuCuC9fX19OZNcwP2uoZkQ50E8Sg/9y2ygJuPdjgn8Nm8yxO1j0Ho7LOK5XKNmZi/M0z+lzFSY5rmnnFfHS2KHsBY8AY0x88D+PjAFMsqxODMLQVG53+ZGwceGdOOqCPYKsxVm6LILsF0Y/1982To6q/b5S4fsK/Zr0z/7Nse/9+9OVdfzsDmLnNuQmrq6sql8s6f/58KpMG03Z4eFj5fL4FRL1w4YK++93vqlqtpgMXb5RkreFrsV6zxDOAYJ339/enIAH7GUFYB7QBFAGGHQz3rBkHDz1I4cx9aatcjOsP10e+9zFe2Gm+Z2Ovof/5vu/PXB8bxQPF6DrXfbHvHUD3kjYR1PbAb6PRUEdHRyJHMg+dmCkp2STYXMw9t3UiWa7deHvA1j8b10m81k7zx0lwvmYIFEAedfExY0xhpPvYQBKI/e411Tm7LYs0eC1xm6mvr0/FYjH1setiSS0Bi2q1muzmrOzzrIBRJFH4e9ejR4/198HJvkD0X/iFX9Bb3/rWlLp1LNniEc0YnYyfc2cUh9A3dBYsdTwjE0dqZdmxCeG0AAxzmGGhUFBXV1cCAAHfFxYWVCqV9lSL7VYRZ/o5my0rCixtAR8w55aXl5PyjE6t1Lp5RTbbs1mc5bQToxsnvLOzU7VaLYEcq6urKRLsUX3mHvdw5y4LUN/Nxn4j52Mcy+h8X6tNONk3SnyPcFasg3socfrZUycBknDqb6YcK/GbJ0dVf3tgKwa64mdwnh388r0vgsNuoLtz5iCjM5ec3ekgrq9Zaii6w+jMai/fAMuWuszsvZEx7meZOEDuJUVwaHFiYpZQlvB+tDf4P/YR1+X+OHOeXhztnmgrueNGf7bTE34dv160k9wJdwfHy8LAjnMQ1+dGdOoj0837g2eN/eNtov95jjh/shxw16Fui0QnPLKXPHDgfertj/ZMnJs8H30EcOzzLLL4mCs+brHP4nPGz2f1G7/dlsBR9e/Fe/h1vTQQYw+w49/3eRKD0L4Osp6F1xh/yjr6mTK87p+LfRVtfu/beK8o7ZjrPj92K8f6++bJUdXfN0qiXojBOV8Tbhv7+x4YZc1G/Q1gil/p+ptyadRlxj9nLwFEJ1C2l5rJBy17AdLZj1y3efk7twHYp103R/vDMRK3D2IANOox9F4M6EqtdqGz27N+/Ln4ftTrPp/8e/5c8Rm8PyOGkPUT9aTre7ddAfnJMIv95O1iDudyucTyjuPbLqgS+8f/34sv6WOatc54Ts8MiLZWHLN4TfokBqIBr51EsVcim5MC4j7gZ9/4Z6Xt9vFu+yzL7j4IOdbfByf7AtEvXryot73tbccKfAchEslBGxjMOzE9WJzSFiC8vr6u4eFhnT59OpVu2GkROpNocnJS0mZ0lgMe/+RP/kQXL15MB27m8/lUa2p5eVnf+9730uGJHEZ1M8SVWARisz5Lf4+MjOjUqVMpxWY3mw+fKxQKGh0dTc8+Pz/fwgRoNptJ+VBT9EazBW60NJvNlmdhHmSBwRGckLbmKcGL4eHhFgDLx8uBej9ox1ld1Dy73kjrtSRLiV/LoLjZgiKmdMvAwEA6dM5rCEuttWM3NjZS+mm1WlVnZ2divt4sOVbiN0+Oqv6OjoE7tH5gHywQ9jl3TnD2YApTLxrnmfci0O6McBwkPzxwZGREvb29GhkZ0cjISHJoHNQGaO7v70/MKg4ZxWGcm5vT0tJSOjwJNrO0ueanp6dVKpW0traW0s7dmc0C0Eijja8DTMYAAa9FwA9WbATTPV0WpxdAwp1u7CUyatxeQqc4g9zPbXEnGiAk1g/HeYSJNDs7mwLAAKcwuGAQc+9ms7U8jY+9s4/cAab9zA/6LYKkXv6G7zQaDdXr9ZZ7EShhXqA3q9VqOkyW32730GZvB4xMDuGMe4EHuRGcUgesmd9Z4sEd+pS+wklGNwFi03fcy+dPVhDCMwrdsY4liKRW+xrgAYIKAE901OM8iuCEs/ezmHPeT6xt73NKPUbAhT7xbMdYIogf5kQ7go7bAbTH5/Z+wLpj/X3z5Kjq7xsl7DsenEbYf/g7ApXr6+sp66unp0ejo6OpfCIlHbgm4C3ZZZJSJjf70fT0tCqVinp7ezU0NJRKRrHOL1y4oLm5ueQbHbbErCPvlwgysx95ll488NNLufA9AN8s8NNBeWeCIwQaarWaSqWSJKlUKqWMjKg//DVvgwPsWUFs3/fJ+vH3vX8gi3nGo/eXB/CZU/jc1AHnBzIjQZQsXYQ95/YHfp/bKnyG87lcz2Jv+T7u+tPXgRMFsogp8RnjPHGd5pkJWQQHvu/l8bLayN8e0PB2+PgjTqDAjtyLeCCNjIu+vj4NDQ211EWXtuxsbMq1tbWWoJv3YQxOxNecDBP7YL9yrL8PTvYFor/+9a/X1772Nd11110H3Z4jJc428QW2k7iC7+np0dramgYGBjQ1NZXSyLLYKNIWcE+Ee2hoSBsbG5qdndXMzExKd33yySfV09OjkZER9fX1JRCdlBOct5spMQqdtdHEz3d1dWloaEjj4+O77m9pC2xZXV1VsVjU8PCwJCUl7ffFaaHP6LcbES08DEFhNRqNlFIG0JAlMYCDEYWipvZ8ljHmDC5AgtXV1VQmhnqjNxpAp91Z43Wz5/1OgsFA6hhZKfS9p5O5AQKAAUAlHdc+fS7LUdXfDmD6OpFaU2MjiO77jZf/IPsLZ5D3AIedlYLeZn8DVFtfX08pn/l8XsPDwxoZGdmm16itygGP7sAvLy+rWq2q2dw8V6FcLqu7uzs549IWGLawsJDSRr1+Kw5hFvOGUiSuwwg24Bx6H0tKQQYPptLnzhD2tgFYxNRnZ/E4S9/72h0OBx1iloEzhN0Jxnnh/JNaraZyuaxms5mCkOglmMntGNnMJ/5nvnjbpC0QnffcMXUn0vsOQJf2xmw3vo/O5jfAAvabl/lwEJ0xwS6lnMjAwEALCw6WG88agQdPvc/S9V4j2EvNIG4z0S5P5WceuVMPYBAdZubKyspKqmXvTHufD1yPDEz6yEsHME/oA+7pY88949++z0TggTXT09OjQqGQyhbl8/mW+/vcASAHoHNHmj50MIc5T79GwMHXvz8vcivbP8eyKUdVf98IYR2wRh1E9/XsATvWCX8T/EKPDw8Pt4CUrvvZdynz1NHRkYBffPFSqaSurq4EzEtbumtubk7lcjntnb7vHFZfxYB5Fis46i1wBz/YEZvJWduA1s745zf3jpl9vi/Sp2TkdXV1JQA6fi/6qu7z+B5JexC3IeM1om8ar4P+BifwPdb1EvWxwRD44bWs87Kc4BGZ/9iP6FDX17zH99y3j+A09/QSZZTIiX3oNnAWThPtB8hfTpzwYIwf0o2dvt8g740Q9g9spv7+/kRm8wNupa1+ou88kOe20rWwjqw+PdbRt5bsC0T/e3/v7+lf/st/qccff1z/xX/xX2xjYPzET/zEgTTu2Swx6rkXgDWmBcUUp93eP0bH2JDYaOv1egsojOK+mYs0KiVXvv47fic6pPsFtCPT2sX7z1PnHfh9NgHpKHWMPC/H4tFPN0Bh+A8MDKSgDgxon6uuxBGPEqOUKYFCNJ1IuR/WtteaZVG4L4eAdHZ2ppPjHZwhAwGmgJ+CfitJFnNgt9+5VeQ4En7z5Kjq7yz2hgfw/LfUqjcckAOMwiHkf9/fms1mZpAWkBg91dPTo2KxqEKhkAD5CDg64M41CHrxGQKbzup2tjCv4aB4wC0ydeL64XPejw6YZulCZ2q5reKAta9xPofzHO2ZrDXtjjafddY4dgzti/o/2gr+HK7HPc2btkeHyB0/tw/cXnGd6T9+f5+HPF/W9aId4ePm+z5zALstttWf1+cDAdWurq4URACIjkwpbxvjBlDkYxOdaWdPuz3ggYUYTPF7ss4cDHAmm48FwAr2gx8Y5s/j/e+kiJ3A5HZrgM94poePTwTR241tlCywJ97T51zc2/w9B9IdzOJz/owx/X0nOdbfN0+Oqv4+aHGQ24k9HvxEIuDHvrOxsZGIKuyX0T90IND3aD8Akut7UJSazKyl6H9n7RUH4QdFnev7cwxeej/43t4O1/A2R92Lfs3lcingkHWPeI2o79DdsZY494ltcb0Tx8nv2U543uhv+f4fdV3cW73tXnqNMfd66NEmQAhSEGz3Q2qZy+2eg+vxWQ7ddEzFf7gOfZ2lM+J88ueOc6qjo0P5fF6FQqElmEzbcrmcarWapK0DwG9lyVqHWXaf/x8zCw7qvvu9zs1uw1GRfYHo9957ryTpve9977b32CCPJTuSeS3xxZdVg203Rjjfh+XiZU1Q6pTPQHn5Rn8zxDdd3/C9faThZKUSxYDDXhwCxKO6WaVgms2tk7wXFxc1MzMjSTpz5kxKC9/PfW+GuDGysLCgK1euaHZ2NtXk87qwQ0ND6bT1ycnJVL6Fw0wcqHHF70AM/+PYEx3f2NjQyMhIMio5jOfq1auam5tL5V72q1TdiJ6cnNRdd92lQqGgU6dOaWxsTNKWYTs9Pa3vfve7qtVqunjxomZnZ29ZheFrVtoOqEcGxPUozRslt1p7nityVPU3zqrrSGcA+W9pi3UOKAi4iKMCe9wBOwfMPIWbfT+CcbncZpmwqampFkDe1ydBPRf2X1jo7NXLy8sJvISx42uea7nt4Q5ZZG/TD15mI7LE4rVwKHH6HFz2Wu20zYF+ByFcV9KP7rByfa4rbaVOE/SHmcZ30THOapa2Z96sr6+3gK7OKnZbJJfLtTDjAVJin7vjSTuy5iK/ncnNPIyHZmY5rogD6BwMv7y8nILdzGP/rgfBOfiNuQ2AnsvlWg66c/3Z0dGRSkig9xknB+mlzXIz9LOfyQGr2+cU18fGRTwgQP9gzxKYct22uLio+fl5raysaHZ2dttBw/Rbs9ncZv/6OPhYRXGQDcY8tqLfK+vwXsajHTjmYFwEK6IdTN+4foeQ4HPXbTK/rtu3DvLvNnuTNh/L4ctR1d8HKXHf9gOfmeOsN/6WtgJtvhYHBwc1Pj6u3t5eFQqFtEc5iMoaQ/d1d3drZWUlXR9yDmVaOjo6ks/ouoRMGqk16OWg717Xne85Wdldvoc5iO6B2Qgiu58e2+h6kD2SPqN/YGvHfdN9dwecPVicy+XSIeAbGxspg9ntOcT1iu+Lfi0H9F0cUPZAR9zX/b7YNZHc4GA5dhw/ZJFR+odxiJhIb29vOsRycHBQw8PDLTaJl0iTtgdVfc+HTb2xsdESOEdgxUd70Od9nGMxaELfc4j2wMCAhoeHUynCQqHQMk/K5XIqVwiR7lbVMe386ZjFkWUD+rjczOe7Vfv22Sb7AtFvlfSKZ4vsB1SNjlw743un72cxknzx3yrGlj+XK6LIVsPBa/f9/fRTFGcsRPGoLWnUnnqFEfBskeiEE9V3oMVZayhByofsdGirS1afROaWpBZjgFpxEZjfjzCn8vm8xsfHNTAwoNtvv10nT55sMXByuZwWFxfV09Oj2dnZFmPwVpEs5R1Zt/6av369UfCDlMOOhH/kIx/RBz/4QU1PT+ulL32pzp07px/4gR9o+/lHHnlEDzzwgL7xjW/o1KlT+sVf/EXdd999LZ/57Gc/q3e/+9168skn9bznPU+/8iu/onvuuSe9/0d/9Ef64Ac/qMcee0zT09P63Oc+p3/wD/5ByzV++qd/Wr/zO7/T8trdd9+tP/mTP9nzM+5Wjqr+Zn+O6dru/ERDH2AXJ9sZurEOOk6oA23RQaEN7ggNDAwon8+31Af1NRsBZdqG4+mHHLr+c+DZn8sPRHQ7ot26ieAZTr4HC3gf3ejOF7rAAU+c08j0yrJp6Ie4f7kOikFab2O0H7hPuz3Gr5FVVsTHlb6JtTwjaOBAJ9eLuis+n6de89pOY+TvOaARGYy00x1xSYlU0d3drWKxqMHBwZY558/t/3tf0N9kSTAPeI+55+cT+LzwPs0Cenk22uUp8jDZKNtXLBbT83uZOF873q++73m2CMDztaTdZ3xN+FqLYEsWoWYnPZj1uj8DczU+m98rrjfe8znv39mtbj1s/X0sW3JU9fdBiu/nWSCntGUXeJDZs07IroWF7mWbkKx15MHlWIPdA7/Rn3Xg2tfIfn3Z2B8OyEY7KJIEPGDne5oH3KL+juL6kf7hOt7vMUAfbQK34xxQp2QOLO74XL7fYb/QDgfH/bNZQHp83/d2qTVjLuuzkaSYFRhwNr33l+tKP5SeOYnOdV2btT9wzRgA4jf2lNtGXrrPfcedwN8sHIfScejvnp4eDQ0NaXBwsGWera+vJza6B7puJdlJ7/mYIXE+Rx/8ZgHpx/r74GRfIPqxXFvcufFN6Fqbgn+PdCV+YHllsaSjwOytVCq3RESPzcQdqZjq66+5E+gpt1m1Ll0Z0Wd7ZYWzwXHgR7s+Q2E2Gg1dvXpV6+vrmp+fV7VaTUyjmF55KwrlaCqVimZnZzU9PZ0OtCQCcuwAAQAASURBVJGUanb29PRoYmJCxWJxR2PyegRFgsG6vr6usbExdXV1pUP0YBtw0N5upbe3V1NTUyoUCnr+85+vv/E3/oYKhYImJiY0NDQkqRWw6erqUqVSScGElZUVLS4u3hKHxzL3iNJT+7ZQKGxjptNeLznkBwjfKgG0w5CHH35Y73jHO/SRj3xEr3nNa/Tbv/3besMb3qDHH39cZ86c2fb5p59+Wj/2Yz+me++9V5/61Kf0x3/8x7r//vs1MTGhN73pTZKkRx99VG95y1v0vve9T/fcc48+97nP6Sd/8if1la98RXfffbckqVar6W/+zb+pn/mZn0nfy5L/+r/+r/Xxj388/e8HFR7L3oV9KbKB2GO8TIe0VesQsBQmugPogKjoq2azmdimrr+yBN3i5Ufaga3O7OIZcLxhduNUSZv7uOtUdxIdIPaSbln7p4PctINndufKnUfPKiJAQFsisBsdB97nf/QJzxmZYxFo9uci2OH7I4EKnO2lpaU01nzGHVtnrsdxIYDMPOns7NTy8rJqtVpi3GexwACSvd84MIzn9DlC1oHXBvXnxTb0vd6fj309Bi88iArLkvs7iME8o2+cAcf6gC2PHbq+vp5KETmI3tnZqf7+fq2trSmfz6eAC/aFr4UI2vA671EGqVgsanR0NAUB+vv7W0B01gV9wTMSLHGAzINGPre8XdH55XUXHxO/Ht+JoB1jVK1Wtba2ls40iOuM34ztxsZGOogO/Q/wQp96sM/b7u/7GuWZ2wV6juVYnm3iQLH/eDk21kZkpUut7GPXq67HvDxL1N9RB/jhv16yw/VG/D7i19rrunTw1ff4rB+AWde3WQBxBFDZdz1g4YdIsydHIJwfHxva7HuT6zK+Cw5AuU1+YPBn1aYGdPZnRj8gsZ+xn3ycGXv/zT06OjoSw9z1qOM5zkT3H56B9nh/RkzE+ycryECf+XWwWTwTDPsWEoQf9iop+d4ciEkb0UV+Hxe3nbhnPp9Xf3+/RkZGNDU1pd7eXg0PD2tgYKBFf4L3QKBDx2EL3WzxuQ7GlMvlkh0ibc/CwOd2LI994DgYejRk3yD6I488og996EP65je/qVwupxe/+MX6l//yX+7I7nuuCRskTjOOxk7gI4uLDdkPmyCat5uUS4zuSqWiRqNxUxesKwI/oM3ZXc56841cUlKSKCdnFXp0b3V1NR1QieKMTk+WuINaq9W0uLjYts94rVKp6MKFC6rVapqZmVG5XE51tp8NIPry8rIqlYrK5bKmp6f1ve99T1evXk0p0MViUSdOnFBfX18C0SNQc5DCHCHFrK+vT2NjY2o0Gurs7NTi4qIqlcqeT63P5/O68847NT4+rhe96EX6L//L/1L9/f0JFHAZHR3VmTNn0vh7EOpWAdExPonYS0rzjgCTg0MYJCsrK+kAHg9E3Sw5zEj4hz/8Yf3sz/6sfu7nfk6SdO7cOf3+7/++HnroIb3//e/f9vnf+q3f0pkzZ3Tu3DlJ0otf/GJ97Wtf04c+9KEEhp87d04/+qM/qgcffFCS9OCDD+qRRx7RuXPn9OlPf1qS9IY3vEFveMMbrtm+3t5enThxYk/PdL3yXNDfXjIDAXDFkWAPcJ3E2QzOrob140CfS2Tg4IR57eUs1ok7TO7ourOGYwroiX5xQxyD3kFiHHdPGfd0UsRBeZ7B04QjIAfri6Cxlw7hs36wFt+NAAHOkZeT8ZIUDog4MAkgShCDsy54rqWlpeTEc95LtVpNDjXOPmPp88QDkfRDoVDQyMhIC2OvVCq19HFkleP8eWo3wAn39DM3nLFGqrsDLs5ii+A6gD5ZcV5bFfFnZXywTZn7zu4DXGXuU8O0v78/gRA41OhkJz4Ui8UE1hMAr9VqWlhYaNFTPnd9jrBGsQnIIjt16lRaoz09PS39MzAwoEKh0OK4kiofwWKe2fvEM9LcPoiMvAg6M195/gioOzufPs/lclpaWmoJSjj4w9iRJbi6uppsoPX19ZZUewfiYjCuXfDN2bEOqO/WTzhmst1ceS7o7/2I61InZnnJMddT7a7hAqjM/kvg2n3VGJRiP4sgqe97gKa+b7rsBWjz+/M/ZIAYyON9/G/PJON5fU/0vdmxDC+t6uA0pVXcR3f7w/0YxsrbGW0IBF3n+qe3tzeBkxsbG8l28yys3t5eDQwMpHZyLQhZWe30ILiPgYPt6FjXrWRCeVCYcXdbgb/5cVDf+4X5gb3aLmBD22KZOEgAHgRnbjB+YCs+/1y39PX1Jf8xBgCyBJ2HPT04OJiIa6dPn1ZfX58GBwdbguAbGxsaGBhQX19fIvcxrticN1uwdZrNpur1uiSlueikBT7bbDYThrC6uqparZbKOjnB5GbIsf4+ONkXGvapT31KP/IjP6L+/n697W1v0z//5/9c+Xxe/9V/9V/pd3/3dw+6jc9KcYCXzYgN41rfY1PBYQJQ98MWsxaBO92+Od8sANAjkm7IeFqS/wBAOxvQf/wazrhxJY/TlnW6dTuJ9crcEd3pO41GIzmvMHxvBbD1WoJxF08HX15eTkaVp4xllTXYyQjdr8T5wrygHcyJvbDgSQPHweaQIIwKn0+ku8PC7+/vT0bZrSJxX8H4cSfaDWYUP3ObPeVmK8Is43UvP5K0uLjY8rO8vLztPisrK3rsscf0ute9ruX1173udfrqV7+a2bZHH3102+df//rX62tf+1oydNt9pt01d5I//MM/1OTkpF74whfq3nvvTWct3Cg5qvqbvUPa7ghHhy1Lp7RjPbtDFOdg1D/+4wFx1ysOVjnTSWpN+fR77gXc8r/jz16D6VmMO2eQERTPAi8iS8/37Kx2Oes+i4Ud+90D8A4gIhEkj9f0e3lgMc4Dv48zGuN9/MdtN//tDHJvh9sggNJxnnh/+v/txqvd3Ig6hPbGeR6/4/eI68j7xfsJ24HghY9Tlg6KY+2sObcZo/7mB1sBu8Xvu5Psxan0/olztB1z1Ne3tMWyjJkFWfrd54Sz6uP94n4RA+p8Nut+/jy7kYPQ38eyPzmq+vtGSJxvcX22ywDhs3GPdD/er521dn2dul7P+vxBr5Goq6OuZI/O2kfj57KC/E4IiLrE96ioVyJ2EfWUf2enMfXMc/dvsnz+LNslBkKzxiWOTdbeHu21LF0fP5NlJ0Z70sfLdXqWHttpP3eJcyELU+E3+hYbzzGAvfjD4Al+jhoBcNfp/r77+7stGXvY4uMdbSPej3r8qPnfx7Ip+2Ki/8qv/Ip+7dd+Te985zvTa29/+9v14Q9/WO973/v0j//xPz6wBj5bpdncYm01m0319PRobW2tJVU/Ro+JCvrBCisrK1pYWNCTTz6pfD6vU6dO6fbbb29JLXYFUKlUVK1WValUdOXKlcQuPuxInjP5AEI9NddT6GPKGcJzoShJHcah8KgeDujly5e1srKisbGxxFBDOURhQ6hUKonlMzs7m1hmOynyer2uy5cvq1qt6umnn9btt9+ukZGRFE3NcupvBWFTX1hY0NNPP63Z2Vl997vf1fnz57WxsXnIJ2lXExMTSQFKh1ufjL7r6+vT1NSUhoaGND8/nwJKHIC6k8BCOHXqlM6cOaOJiYmWEgXxs0To19fXNTExoTNnzqi3t1cXLly4Yc+5H2Gf6OjoSGnt+Xxeg4ODKhaLWltbU6lUSmntc3NzqtfrKpfLiX2xVzDtoOV6lDHfO336dMvrv/zLv6z3vOc9La/Nzs5qfX1dU1NTLa9PTU3p8uXLmde/fPly5ufX1tY0OzurkydPtv1Mu2u2kze84Q36R//oH+ns2bN6+umn9e53v1t/9+/+XT322GNp3R20HFX9HQ/RRtBFAHKeusz7/h2YpQBYpG9GwNaZnZGhtLGxkfR4b2+vVlZW1N3dnQ5HdFa0f9+BVJgrMLtgOLnDxfdho/KD4c61fb1ngcRxLcYAHf2KswND2J3seK9Y9stZWZGRt7y8rK6uLvX29qZ79/T0JKZ61oGT2FK0Hwee/vMU5Eajka5PGZJyuazV1VWVSqV04BVZSlkZAj7mzt7GFnFxRj3zIqu/m81mam/WnCQIzEHcgDhkGNA3sLIpwUagmLbEOe5MO+4NI837kT7gdQ8gcE8Y2szJOI9oi6+Jer2e5ix97CAI14TVPjg4mNhrbjdubGyk/uTsgZWVFZXLZa2tbR4AX6vVWtYEwIX/7fOqnd3mNjTj6SVs/FoOsjkg4oe9RiCOoEOzuZXFwrP4AXS01bNOpNZDgZlLjAt/e4mhrEDjbv2Eg9Dfx7I/Oar6+yDEfWl0uO9dzrpmT4rfZ277fgS7loOVWTvoRc+Cwu6uVqvprKkY7HLhXu2eZTey05py+8eJBByazv9+X3Q/PjdsW4hi7LvoP77DXttsNhMYmlX6gz7t6OhI+g/sg5IXOz3/ysqKSqWSVldXtbCwoPn5+UR8orwYz+C6yVndnukeQWhvo9tbUY/yPuSancaR6zio6hls2CdOJHOJZAW3BZ0k5dcnqy3qA66/sbGRsqci6M/3mQPob/rLswR8XHkenomz1IaHhzU4OKje3t5EUIt9lsvlVK/XNTExoXq9rsXFRS0sLGQSpA5bPPjgWQJOHEB/e2m9Wq2WSYK9mXKsvw9O9gWiP/XUU/r7f//vb3v9J37iJ/RLv/RL192ooyJsarncZupmNNYRj0ZSwsWZ0bVaTdPT02nzmZyczCxH0WxupigtLCyoUqloYWFBCwsL6b3DFDZQnEAOhMIhJM2Iz2UB6PQJCg/DCKfbN3L6emFhIRktt9122zUjmRsbmyUvqGtOEOJa/bW8vKz5+Xk1Gg3NzMxoenpaq6uruuOOO1ocl1tJPHpaqVR0+fJlXb16Nf2QMt3T06ORkRENDw9vG5fDEjf4hoeH03gABJMuv9P3MXxHR0cTEM+czBLu19vbq6GhIU1MTCRw51YSjG5Sy3p7e1UoFFQsFjU8PJzS2EkRLJfLLYDcUZHz589rcHAw/b8T6BznsINau/18fH2v18ySt7zlLenvl73sZXrlK1+ps2fP6j/+x/+of/gP/+GerrVbOar620FpF5wTjF1Ar8gil1od2sj0zeVyLeVestjjzir2up3U+R4aGtp22Ji05WjhTHoNxfX1rTJwEURH3EmNKch+fX+udkFrv6YD9eyn9GF/f/+2vdFT1HFm3SmPGWKQDdbW1tTV1aVGo5Hal1Vr0sFlB1KzWP8OqHOmDNdYX19XvV7XxsaGqtWqarVaqn3OoZl81oMO7jShLwA7fR7RjhisoARNBGsYP77vDhkBA4AgnNrIkAewhqzhgY2Yrh0ZlgABWSA6zwbQDhDFsziIHoNJzJnu7m6trq6m9rlTTL86+56fjo7NA8GLxaIKhUJLiSG+R18yVisrKxoeHk518PP5fLIZI8jgwIkD09E+53cERHh+5oEDJT5vuX5cXzG4xTgyH1ZXV1M5NvYTzwJgrbH3UO7Ag1fMA+7nAGCUWyFt/lh2lqOqvw9CWKMEl+Jegs/pgXAX/zzELa7HOvIa03Hfw3/PAoTbMTk9+HY9z91OfF/zDG9IB84ujkzw9fX19J4HJFwnug6hhFkul1OhUGhpVyTKeTDRS9Z5ffB2wr64sbGhSqWiSqWSdJiPYezzyMb28WsHovN3u/ZHfe4BAu6ZxVCO+z+60u0zJAaw47V8fHjNX3ddKW2dB4D+ygoso9PQuZR2yeVyyU6LfZQ19zwT3IP82DdebhBbZ3h4WIuLi+m5bwVplx3gBAv6kr5DJ/s5LcdytGRf6NDp06f1n//zf9bzn//8ltf/83/+z9vYgc91YUPLiqyyGH0zjFFTNlUc+3K5rMuXL7coQf/+3NycFhYWUk1I2nBY4sYJCps0HdJtcfC8Jno7EJ1NFGeZ/+kTdxCInMMCuHr1qmq1WmLqOlPP02tmZ2c1Pz+fQMbd9BeOJkyhK1euaGNjQ6VSKTnihULhlgLSYYARvb9y5Yrm5+dTDVlq7juL7WYA6FkCgDUwMJDAllqtlsnsiBKNnJ0+x2//zq0kBJ0AFYaGhtL8Zr1tbGykmndeL/1WiOYjBxEJh524k4yPj6uzs3MbQ3xmZmYbkxw5ceJE5ue7uro0Nja242faXXO3cvLkSZ09e1ZPPPHEdV1nJzmq+rtdgMwdRPRINPyj8+RgU9b+AvvVnfCowyVt0++AYbTTSy8RRHcmtYPCDnpmPR/3ciA07mP+bHzPmVRup3AfHGW/T5Ze8PXsTqADg4DADkJ40Bm9HMkEMLQiiO5sQwKrgBheq9xtCPQ2NT4rlYpKpVLaK539jp2xsrKSxqqrqyuNTUzFpn1edsydb67B/Il7YHTQvW/X17dqYdNmZzdxX77vDC8HDzx45HMiBiwcYKB/s2p5xs/53OH67iT7/HGyhLMaCZBwX//BcY/2IrZhnFNZoIQD1vQT7d9p3SORPeeBpixww8EGzyL1w9qdTOKsN4LDO7HIvS38zgoEeL/zDBGs2Y0chP4+lv3JUdXfByVZQS90GPqU9e/rMq4p9tK4PpaXl1v0t+t99I8f9uy6+2bNfQ8Ax/Itvn/xWYLargvI4KLP2Cs9SAHWsbKyks4VizZHBJ9dZ7vu3qmv1tfXE4mKTHIAddpB0BxiggOcsfSL20L873u665CoH7ydce7RTxAImBucVxcxh2hP0hb/ycq29EBwtG/5cXa6M9ld/8fgutuAbndxjZ0CQ349rhV/svrPgxCOD12PzjkIcb3M+TBklnrJG+wQ/INYgvhW0H/H+vvgZF8g+i/8wi/obW97m/78z/9cr371q5XL5fSVr3xFn/jEJ/S//C//y0G38VkrTLbV1VVVKpUWVo6zRfxH2jL8Yxpss9nUU089pYsXL6qrq0uFQiGxvXBuOFgTh+swJzxAJ+nFQ0NDKeoI+OlMdC+t4Q46fecbMCwpDrkgxR2mPg4Xaa/8Jqo5MjLSwl5bWlrS4uKi1tbWUjoY7MHdCEp8dXVVTz/9tJrNpk6ePKkTJ05oY2OzLMqtVNOr2dw85IISNN/61rf09a9/XeVyWZVKRT09PYmJTkrcrRAAcGdwYGBAt99+ezKyqtVqmhvR+XNjxmvi7lZgF97sA0BcWCf5fF5nzpzR5OSkxsbGdOrUqZZac52dnRoZGVE+n9fS0pJGRkbU1dWVgku3wvMclhLv6enRK17xCn3pS1/SPffck17/0pe+pDe+8Y2Z33nVq16l3/u932t57Ytf/KJe+cpXpuDSq171Kn3pS19qSan+4he/qFe/+tV7eZRtMjc3p/Pnz+vkyZPXdZ2d5Kjqb+Y/EsFj9gIH4Zy17Z+VlBw516+Ut0J/xRqi0Vlm73KnDTAMIA3HM4KJOFiR6Ux7nRGTBRw40Oef5X/2E/ZH17k4allAQjtmlb8vKYEUOH7e9x70pg30udeP95qcXCfaDOztZN0QYCVgLCmVWEPH8xt7DJZVvV7XwMCABgcHNT4+rlxuM72Y50Av1mq1bYdeMSe8xA3sx3gIpn+PMY8gN+IBlrm5uaTHL1y4kLKOcJzz+XzS9dgyzFMCA9yDtnitTgfYmY+A9JHRyaGYCGPg84g5hH2WBUIAhmTZXxyaylqhBIHbzHFuR12P3ecBFeZ1rN3rwHJcW7Sdz9EXTgYBePFggINXzInBwUHl83nl8/lUSgjxcaFMG9mVniXDZyMYEbM0PKDAd7LsGubEbuTYCb95clT190EK+5ekBGB6gMszuyB3ObAota4jrolOdoCPoC97NExqzulxhu9h++MR+MQf55kdKOaZsXPINEI3AsD29PSkw1W9LAn97D6Zn1MhqWVfoj8ozbm8vJwIgFlkAZelpSXNzc2pu7tbhUJBnZ2dKhaL6ujo0NDQkEZHR5Oewsbq7OxMRCM/dwQd5brEdbGTMxg/H9OYaeCfk7b281qtptnZWdXrdU1PT+v8+fNaXl5WpVJJ+zqYAZlT2Dzobp7HgXS+6+Cz60MPDnNN1wsOsvvB53HOeilEB4yzAh5uA3hAiXVCG7yfXQ/T714zHbvwZgn2X29vr4aHhzUwMKChoaGE9TBOPi9g4Xd2dqper6dgwG717I2SY/19cLIvEP2//+//e504cUL/8//8P+vf//t/L0l68YtfrIcffrgtMPFcFncoPELpDGw2RY+ASptKjcjuxsZm6nG1WlVnZ6cajUaqG+onLd9Mximbvm9+fiikH/aEQ+eOFeLGDAra+5EgAxsrThFGDP3sjrw7uY1GQ6VSKdVWK5fLe9pY3EirVquam5tTT09PAqXz+XwCAaSby+h2AIkIeKlU0uzsrKrVajKIfLyiIr6ZQjtgynt5Bim7Dh3COGUZsu2eL0bkbxVhfyCANjw8nGqiO6DXbDYTmEggrl2pi5slh6nEH3jgAf3UT/2UXvnKV+pVr3qVPvrRj+qZZ57RfffdJ0l68MEHdfHiRX3yk5+UJN133336jd/4DT3wwAO699579eijj+pjH/uYPv3pT6drvv3tb9cP/uAP6gMf+IDe+MY36vOf/7y+/OUv6ytf+Ur6TLVa1Xe+8530/9NPP60///M/1+joqM6cOaNqtar3vOc9etOb3qSTJ0/qu9/9rn7pl35J4+PjLYD/QctR1d+Rie76NoLpbsjH16XWtG50TGTI8D1nYcXrRDAOx80Z2V6ayRlBAK1eO9OZOs4EQ1wvOQvPgV7+d4Z4ZK3H60fDPwvkjesSh4HPY+fwLBGgcGcO5rez1d2hdKCZ/onsPwdTHTTxMh6rq6tJJ66vr6ea0ziI2FaMOX0SA6wOWDiIzjN7TXOeJUsiocLnGMQIggSQADw44aAI/exkhchQZp44YOH39znNPPHAi7fT5xH6Nsu2i8/n68xZ4XH9tWOiO/AvbWVTZOluPpfVLvqa+2d91z/nrHtfa7zmmRfMPeYGzjgAkwPcPo7Y0s1ms2W9ZEkEUOLeENvn6zUGDK4lx074zZOjqr8PWrIAzbjHIL4/Zq0L11Mxw4fgHzob3eO+6M2a804WcEDY9VT8vNTad45LOGEJXeCfdx99aWmpJVPeA6q+v8NEBzjeTclJsA50Nnq7Wq0m4N7P/ICJ7jYAui2L5e3zgSyhaN/FPT+rjdKWLoCdz9kW+N4EHqQtckOcY25TxKCx9/9OPjt6Ht2VFRhoF1D2+ePgd9a8jrZ2OzZ6DOBEW93HxckFN3MtMQZeVYHf0eZD36PDYxmYm6kHj/X3wcm+i/3ec889N9TRP4rimwolGSifQb1mjwCz+SwtLaVo5eLiohYXF5MD6Gw5N+wPUzwgwGGelDMB+KS0CWxB/460PZUubjLuELhSQ6k7Wx0ljhPNIVPOrFtbW1Oj0Whh7O9nc9jY2EhZBhsbG/rWt76ler2uM2fOpL4oFAoqFAo3BZReX19XtVrV0tKSZmZm9Pjjj2thYUFPPPGELl++nOqUjo+Pq1gsZhpWt4pg0EibrPTR0dHEXsia983mJjPk0qVLkjbHanx8vK1DirNer9c1Pz+vK1euqFQqSdo6RM2NxcM2jmFS9PX1pRroZA04w9BLJQG2d3Z2an5+/tDaei05TCX+lre8RXNzc3rve9+r6elpvexlL9MXvvAFnT17VpI0PT2tZ555Jn3+zjvv1Be+8AW9853v1G/+5m/q1KlT+vVf/3W96U1vSp959atfrc985jN617vepXe/+9163vOep4cfflh33313+szXvvY1/fAP/3D6/4EHHpAk/bN/9s/0iU98Qp2dnfrLv/xLffKTn1SpVNLJkyf1wz/8w3r44YdVLBb31Te7laOov71OsKQE6GHsR0fDX4vgGc6ys5Xi/o0uI7UzOqboZv9x0BNWDg6WO5bNZjM55oCTiOtGng+dirPq9oOLM61gJXkQ3lnLBCzZXwh883d0bNqB7c7ExfZxRxbgwZ04+g9wnP3ag6cIJIP19c2zPrgefeTZYMwPLzEHOMB5MmTycYgqtTyddez1ztHv3j4Hw71MDAdq0tcbGxupzmgErz1IT93Xixcvql6va2ZmRvPz8+k60SGmLfydNRZe05fgK9dwXZtVwx/7yu0yZ6J7urZfn7bS757x5QEcBPuXQHC9Xk8AtM957GHa0Gg0Uj1iHF4PZtAnPAP2swNEUXx/IRgU+9b3n8g+5/69vb3p/BLmF2xJngVyDGBUd3d3ChD5GPg68r2KPc9BLl8Dfj4AYxv3mZ3k2Am/uXIU9be0PVB10OIMcg9ikSnt+tv1EX+TBc3f6HN8Sf/szWCfs7/jd/teGUlsPK/rbX57sJW9i/fJ3OK3n1Hm+/jS0pJyuVzKCuc63JO9hprRUWdcS5grS0tL6ZDwy5cvp4Mc2ffJyoK1HkuVeoZWLKmFHqTN2BnoMw8OeIDe5wn+9+Lioi5cuKBaraaZmRnNzc212IixTV7CzgF0grAOQkfihD+LH5TuQVY+678ZPw+WeCAF+8fP5MvCNTwAjs7u7+9XpVLZ9lzMN68djg2HfdPf399CJnU7+bAwL9fhxWIx/eCDewAEjGFpaUl9fX1Jp6PXYzmhw5Zj/X1wsi8Q/a1vfate+9rX6p/9s3/W8vri4qLe8Y536N/9u393II07isLk7ejYPDBxdHRUQ0NDuv3225OzReoTSqXRaGhubk7Ly8t65plndP78+ZZ0sXj9wxZXjv39/RoYGFBfX5+KxWIqEwLIkLX57gQuN5vNFoWF84IT4Cx1TwP3FHiAVr9XBFCuZ0PxgxsHBwc1PT2tcrmcTqQ+ceJEqsl+mAA1fVIqlbSwsKDz58/rz//8z3XlyhV95zvf0fnz59XZ2am77rpLJ06cSKDBrcJAj+IlCIaGhlIqO0ZTljQaDX3ve9/T4uKiurq6dMcdd6Tn89IP0lbN+EqloqtXr+rChQvpAJW+vr4Wxe0sx8Nac6TzsbaGhoZUKBRSCiDi7S0Wi6mcy/T09E2PgN8suf/++3X//fdnvveJT3xi22uvfe1r9fWvf33Ha775zW/Wm9/85rbv/9AP/dCOfZ3P5/X7v//7O97jRshR1d8RRJe2H/Dnjm0745t1jpPMtaXWgy3RbQTBfX1KagG3cL7IJIO9FsuXZO0x3lavq8j7ZHrh6OGYxAC7pKRD3WF1VrHXaI7OgYPozhBy0JznyOVy24Ll6PL4TF7Xm1Irq6urKYjgjiHAgAOe1BnFVnImGw4fbUEok4Fj6oAI/wO0cFgz/+O80h+QBjy7zoUSdl7Cxeck77ssLS0lwL1UKqlarapUKum73/2uqtWqFhYWNDc3p1wup9HR0XSIG+PM/KQP3NnHEaQfOzo6UrkD2tTX15fGkfFzkNzXiQeIPB2cvqQNtAkgxkEQ7k/b6R+YirzuWVcxi8FrznJYLAEYytw42MAPbXLndnl5eRvTHvtIUssc9tIFvk/ARMPuo9/7+vo0OjqqsbGxBJY4q4++5Pt+2HCWve9kG9LdfS7ENeqlHFgbPueO5daWo6q/Y6DuoEEm9jdnkg4MDLSUVKLGMfsJv9mLFxcXk67ykl4EXqVsBvxhCIAva5q9kj2HwCp/+yGWZA15ppSzntmf8L+dfAa7mr0aXYr+djY/AL4Dzk4G3Eufuf6Ym5tTrVbTxsaG8vl8Oi+rr68vlYrp7u7W4OBg8pfYA7Hh6D8nBzh7nz0/Ygj04/r6egomAKKvrKxodnZW5XJZCwsLevrpp7W4uKhSqaS5ubkURPdydZ6JFFnoDqCjt+gL198O8Lv95fZHzG5EZ3swiDYwB/ycu53OTUMvUXZV2rQpyuVyS3a0YyJLS0tJZwOmM4bSpm1JhiD62W2QGylu8xMEHx0dTSRJt4lZP9j9+Xxe0hbpJtrjkehyLM8u2ReI/olPfEIPP/ywHnvsMZ07dy4tgkajod/5nd951irxwxBfiADOMJ1wYDHUiWbDGuvq6tLAwIAGBgaSwXuz08Wk7Wku/MTUZmev8b3dXNv/ZjPzUincFyc9sqpudN9gEFBzure3V+VyObGYGeNYk/RGCM/qKe6VSkULCwtaWFhQqVRSqVRKRg+KO6Yb3arihg2HZ+4UmABY6erqUrVaTVkJAwMDLQzTGAln3XV2diaj00GuyJxknu1FIca+3u08dSMvXidr/KKBdSvIcST85slzRX+3Y7XFAGpcF+708dsdCU/RbPfD9xzURnc5e5t9OpbBkFoB//gc8fX4DFnOhTtYWX3letp1uDtwcR9x9ho/7J38dlaXO030AaA+febtjBk/XNPvzee8rIaPH/fycfXn9GtRk7uvr0+1Wi3VgwUkd3DUn4M54iW1on7x54/94W3lu4AR9Xo9gcL8uI6Kz8c1Ijud+RVBVR+f2Hc+L+inLCcwzoH4LHE8pE27zdnc8TusBV8jgO1elgHBDnOwg2AOz8zajFkP/nfU4w7ue7/wTHzebc/ILIzr1temj7+TbHy/8P/92jyns0WjDcL1eM4ocV3sRo71982To6y/bxTJw9ePBxL9DC9+E1QC7GW/8f0dAC+yz2+m8HzYIO6L03b+bueDsq59v/LP+h7hmWWA666H6B//3/fLWD5kv4KO4MDO9fV15fP5lL0/MDCg/v7+lF2GoAsccN7JT4rzMgZLnJwBHgAL3/U3NeCzytZ4P2f9ndWOLP/Xn8OJF3w/6uiok9qJB+R3M488oE4QOJfLJfKI67asMjK5XK4lo47AOs/l+juOQ3yW6DNn+d97wY0iQceDTVm28rH/fTRl3+Vc/uN//I+699579c1vflP//t//e42MjBxku46kwD6fnJxUoVDQC17wAk1MTKivr0/Dw8MtwLO0NdH7+/uTEujv79fIyIiq1aq+/e1v6+rVqynqe7MmN2ysrq6uFBjo6elRoVBIxolH6vazmbjDzSaOwnLmYDzg5TBAdJTF0tKSvve972lmZiYxF4aGhvSSl7xEz3/+85XP5zU5OZn6iqjzQYmnYVHzvFar6a/+6q/0ve99T1euXNH/9//9f1pYWNDS0lIK5nimwLNF+vv7JW2VOGnnQC4vL2t6elpzc3Mp7bK/v1+33XabxsfHW8oWUCt+aWlJHR0dmpqa0tramqamppKxh/HMoXUETvi70WjsCkz3tEHmQBYw4ALrDYYD7AoMCNaErwvYeY1Go6WG782WYyV+c+Wo6u/oHDhY7UCffxa95PufM4GcIcRe2d3drZGRkcRCLhaLLU4rhjRgJsY/+4SkxObCwaA9DhhHkN+dBWdJuYMRyzvAXvJruOPlrCzSU2FoeWDVHR4AZ3caI4OXPQ49kxWc8O/7uHmg0q/ln0GcuQXTjWswfvSjs8/iuRocTErmWrVaTay2kydPtqSDU4YDgAUGMLZOrN/twQVnYfvcdFlYWNClS5e0tLSk6elpzc/Pq1qt6uLFiyk7ij4kdd/HByfVwXgYlR0dHek8GWdY0RbvU64Ps4p57XXHI6DEs7BmGGMfO67bbDaTDnNAhXWxtraWguWsS9hcKysrLSA5afsAXl6qgTZEJxn9yBzkGTic3vcJZ2Y6OzFmpUUA3QM0vO8EC9rvTrgHYXzf4toO6HNfxow2+T7ia4b+lZRYfh5w2I0c6++bK0dRf/vclw5unjgDmsMAe3t7NTo6qmKxmPxvZ3FLarGhAYkBR1nb7LM3c057UBhCXrRJ/DB0bAH2Nd+3Y0DAdXUut1XaJDLX2XP9YOgIjudyuVSn3Pez/QLozBV8/lwup3K5rI6OjqQv0d/1ej2VdqG8LHgCfeHBBg+qRvvNA7uuV/AvV1dXNTc3p+npaTUaDZ0/f16zs7OqVCo6f/58Cs6vra2l+6NjYya4A8LcI/YrgZN2wHH0610PuN6O12Q9+nfQE+AGnZ2d6Zld6BP8Y57VMzVZV6xNMjsgxpF12N3dnXxfxtozB8kC8Uw4z8qiP53ECGbgfcb1sJm8xBt6mDbUarVkP8byPq6vfa44VuW63v32w9pHjvX3wcm+QfSXvOQl+pM/+RO96U1v0vd///fr937v9zQ6OnqQbTtSwuYzMDCgqakpFYtF3XbbbTpx4kTaSHYCVGHOAlSXy2VNT0+rUqm0nHp82OJOmB8m6r/ZvK4XMI6RPZyp3t7eFNXF4cJRO6x6WSiMmZmZdF9ACRROsVjUwMBAMmJi6YGDaANKZHFxUZcvX1a5XNa3v/1tPfHEE5qbm9PTTz+tSqWS0hZ9nG4kQ/4gBWMQI84BlmiQra2taX5+PoEdKysr6u/vTzVTe3t703kEi4uLmp+fT2y34eHhFuYkipyyDBzy1tHRkRxu0vl2YtSwZiLLLDr6UdzIjYrZjRyUuBsWfnjNrSDHSvzmylHU3850iq/HUinxfQ9outEtbWU6AcwBpJJh5DXRs4xj3z/cKXCWjutvB1hhuDogxx4XA3ERRHcgmWfxABvfxckm6yafzyeQMzoatMP3QnfCANHZm2l7ZLS7AHSzb/qYra2ttaQNZ7Gu/D0Hbl0XeD94xkBnZ2fLQXBzc3OqVqtqNBra2NhIqd6MOUAjARX6gmd1kJcxcGfbGcc+Ru7wNZtNVSoVzc7Oql6v68KFC5qbm0u10JeXlxMQwDyIJXb48QAF4+M63pmZzlJ3woMTOwhqOFDrQRSeyZ3wrOA27cZO8mAGdgx/k6bvIJCX1OF+BJaZR16/1QMZLsvLy6nUjgMKzJUYAGC+kpLuY+d61udpFmOtVqul5/b3ncmGxLniQT/Wva9RDxKyt/lzeD/wnFxvtzbpsf6+uXIU9fdObNvrEddl+XxeAwMDCWQeHBxM5REBIz3rhvUjbZV7pFQie/vNZqA7Q97ru2OTeJkp+sH1k//tIB96PIt9zP4EiMj+GTNqYt+4XXS9/RaD7Q5+or8plQJRoKurK+3X7OHsfxsbGy3AaCwLJ7WW8fIgCzoQQLlcLuvq1auq1Wq6dOmSZmZmUi30paWlbXut2yYxkz4e5iq1z36LWVj+OcbY9YmPf9TT6CY+5+uTtqKror/LdQlSb2xs1oanHJKXv4PEBjmMeUfJGAL8TkChz7kW5DKvre9ZEASAuC92O20Fv3HwXNpOyuG6ZK1T9s6Bce9LJxq4XR4D5j4mhyHH+vvgZF8oHhNzbGxMX/7yl3Xffffpb//tv60PfehDB9q4oyK+0fX392twcDCBq1kpolHcgWXTWV1d1eDgoCqVSoq0HrYy903aWXgxbayd43u993ZFHlPL6FdXHochbIaNRkPz8/NaWVnR+fPn1dfXp8HBQXV0dCQGI+CtBxki8y/r+lJruj5KltItq6urunjxop555hktLi7qypUrmpubU6lUSp/FISUKfCPG6EaKO5LO/tsJvKaPurq6Uh0/gjAcOOblduLBbM64Q+nDvFhZWUljSGYIRhgKNovFKm2BdRwghxEGc82dYgwHAP+NjY3EPKE/YNKtrKyoXC6rXC6nYNuxHMtR1d8RbPLXpe2lFdBfscyY7x8ONOOkUmvUM3gczEYiuMX1AM9cbwFMuuxGd3oWC0ChG+oOUHpQ2QFnZwPhtDiw7tfzsl+RZcaz+v3Q0zuVhaHNBCMJjOIYOqBLUMHHyfsJu8MdkyzQnj5zEDiypVdXV9XZ2al6va7FxcXUR7DFcPI8iLu4uJiylNi/PTvBgyfx4FleX1/fPCC1XC6n1G+vG0+feBkCZ9HFeZw1j3weZs1ddA3jyljwHM604lred8wlD2A5MI2+Bfzu6OhoqefNnGLMcbBxksmk8+xNxg8AHV3u70dWNu3u6+trYbf5eQI+n7kW5/44yMBYAeI4uOPj66ntBOK5D/YqznytVks1fZ39T7+4HexzKc511qr/7yAUfXbsIN/6cpT19/WAO+2EvRIgFXsZ1rYH5rJ8Iddh+Gr+W9I2Ju5hCPOAwC163MFH3wPdjnF9Dcteai3fEkFYqbXMF3uQ17eOmXFRHBy+HvF54oxhXiPgsbGxoXK53FIyl70d/9f3eX57oNEDlbzmrGeux1kcKysr6RyyRqOharWqer2e7AJAYp9X8UfafvAnEgPl7ZjrTiqJ4+bBcn892m48s9sU2IFeZ5/+iusAO6qjo6PlYGwHrLGBPUAAwO36FUIF11xfX0/zDp+7s7Mz2VARR8Fe7+rq0uDgYCIhMGcYIzLcsEXd7sJWpJxyb29vyizw7DSy09HfZMi5PRD3u2Pd++yUfYHoPthdXV363/63/00veclL2h7c9lwXwPOenh5NTEzojjvuSCAqm8C1GMB8huv09vbqtttuU2dnp65evZpqPR+WOODrDHQiv85Cd2D4IO/vDhkgIpFBWH9svofFwkXhlUolNRoNdXd3a35+Xt/61rc0PDysl770pRobG9Pk5KTOnDmjvr4+jYyMJCaEB1ay0rBwoojK4nADCl++fFn1el1PPfWU/vqv/1rValVPPPGErly50nIATnd3t4rFYmKjH/T43EjBCHCGAens7VIrUbyU2VlYWEjfldRSziACYfx2w8oPzymVSlpZWdH8/HxiCs7MzGhxcbHlO5OTk7rzzjtVLBb1ohe9SCdOnEjAgiRdunQpHUr7l3/5l7p48WIyTHwe53K5dMr7+Ph4aj/rbW1tLZWlIZjCgam3iqI+joTfPDmq+tvZLzsJe7QHe71khX+f9zC+h4eHNTExoZ6enhQIczbqTm3jegCIHFQYGdPevqg73XF2MJtgnus6Z4H7Z3G+cIIAFjo7O9NhxQQMokMJSMv/0SmAhc17vObOfAR8cWbZU7ke+5k/N33pwWTGyD8XHV53cnAs/VBXZznh1OH0zszMaGVlRX19fclxGh4elrSVDce4LSwsJHCT9kR2I23yQzolpeAogffvfve7Wlpa0vz8fDpwi/6BVUl6NPrPg/HOsvc+i06wByycOQW4ynzp6enRwMBAC8jiaeDMFQexYXgxTvQD2Rgc2AqgXK1WW4DuXC7Xck4J3+U6zmZHOjq2UsF9bWMXOuDSbDY1PDysZrOZAG2CJzDgCYZ7AG1iYiLZCoz1/Py85ufnt42Zs9xpJ/V6AQYIzABu4MzXajXNzc1pdXW1JRDO2BCs8LHw/SQGUNxHYJwj83Q3cqy/b54cVf0dA1zXK6xLWNns25OTk+rr69PExEQiNqGLfD1nBcDYA6RNUC6fz7cAgoclHvyHSY99UiwWWw4W9WeKAXD2C/elI8BHAMIDdtL2YOfKykoqG8l+H0lNBxUkcf1OG/zajUZDV69eTfZDvV5Xf3+/6vW6BgYGNDIykpjElLCLPnAElOkvB1M9ML68vKz5+flUQvR73/teKscGgQ3/00l+nh0HjpHVx/zP2HsGEfotBmt5DvASnpO+AsT2TDpJLTYBZXF9/Ai+oN+6u7tTgNv1DwFvdGqpVEp2LzYF96PtuVxOhUIhgdx+rVhOh34HuAbQ7u3t3XZI9vDwsIaGhtTX16epqSkNDQ2lvmw2m1pYWEjjd/nyZS0uLmppaUnlcrnlWTY2Nsvl0gaCWPTf2tpaCqaUy2XNzc2lsjbo77gmDluO9ffByb5A9D/4gz/Yljr2wAMP6Pu+7/v0x3/8xwfSsKMkbGDUhILF4s7Atb4vKW1cRP+oP16pVG4KCOoOFptuZILfCADd7+/RXJhNDhrsJkBxI2RlZSVFYFE2tVpNw8PDySkbHBxMzl508KPxIW0ZDig2IqW1Wi0pEJy3ubk5Xb16NR2mWalUtkXXvVb9s008C4F5t9Na8qg6oBcOPAo+yzCJ33ewaG1tLRmdMMXq9XoLs1PaYqL39/drdHRUg4ODuu2223T69OkWEB1lztoGGHIQBDC9Vqul/aRer6dng5FPBJwsFQChW0WOlfjNk6OsvyO7Y6e939lVkRkdP+csNJwAfmKdyp2YJa4z22Vqsf9fq93u1Ebg2plFWTqQ+7ruiWVOIlNeaq3FnKWruKf3hetjz1BzQJ69ztmAzpDLksiEp020x+2mOKbuhDu4Gt8HxIXV1tfXl/Z79DggPBlogJE8H44W15VaQXTGh0PIsBXq9XpioDuAznN61p+DKj4G9L+z87MYhnF+uK3ANf0+/MBy4/oeuPHsQC8NwL25Xm9vb4tD77rWQWEPcNHn/M1zeUZCLOeCg8vzZWVuelAGoJ+2UJYPAgIAHPck+6CzszM5zM7wZK4BOGF74JhzLTLJSIXnOg6SO7AT51b829crIL0D9mSxOBPxWnKsv2+eHFX9fSPmhfuH7AkEHr0+s+vIqD8ia9h9XC8Pctjia5Zn47cz0fmsP4t/3+2PCIBKatErvt8xXtyfrCTf510HH7TsBERScgNfCXJdtVqVpLSHx9Jb7LFus7hN4eCz+2UQGSqVSmKkU+MbHU5A220071efY94e16+If8fFg8NRv3Fdx0WyfH/uhw2BHkdvgEOht5lz7dYBz4v+7ujoaDlYNNp47n/HsYHp7SA6eoxnXllZSf65P69jb0NDQxoZGUl2DXOITPW+vr6Ww9u9ZAtgPuVgySSj3WRBQFqk3PKtUPoJOdbfByf7AtFf+9rXZr7+Iz/yI/qRH/mR62rQURRYXfx4GY29im+0lIYpl8vb0pgPQ3yzjYaFK94bAWK7cvYN39uDImzHEPB2ZbVxJzBkN8JYAHJyYOX58+c1NjamZ555Rn19fZqcnNTw8LB6eno0ODjYYgzF63nNN04ih6lFTdeVlRUtLCwkp7ZQKCTQuFKpJGfVa6E/2wRlTjQbJZ4FFtGfIyMjmpqaUl9fn06cOKGxsbFUG9FPtG9noHBfaatsgLMamXsoVZQzCvYFL3iB/tbf+lsqFou68847NT4+3hIJ7+jo0MDAQIqId3V1qVwu68KFCy2lWNbX1xNjEfDezx6Atba0tKTFxcXEiDtMpsy15FiJ3zw5qvobNnYWG9PXsjtHOJk4ABjoLrBkEPYe1iQGvYN+/rf/OGDLHux7RTtDm/cjU52927/jhzDiJLitgV7ge17mwgHzCGK6OOPJxUF7BzQjAOsMYXfOcXa9X3G4aJ+XyYiAYtae7fse4+vBfT9fwoMBtN/TtHO5XHKMcLhgJDorKvaJl3Phnuirvr6+lJEAGO8ZVTh1Xs6DvvD5klWuBP0H+9A/j87CkfU+9XnsYAE6LgZNshx8b38kU8TrMZezdC/XwV5xXd2OpOE15t0ucIc7K9DG3HX7ETtseHhY4+Pj6unp0djYWDqwlJ+hoaEEpiwtLaW+aTQaLWO+traWWOXMZV8LXIM6/bVaLQUNvE6vz22+58Er1gbCmiMDgPnC2vIU+GvJsf6+eXJU9fdBzwv33yLgHAkufM6/4/ugtL18KRlAfo3DkhiMRxx8jGB5lsR920lV0ddpB7oTWEaXsZ8QUPSA52EKY8hh2ktLS+rq6kpnnnAeRn9/v/r7+9vaOxFEl1p1rWcx4pNzZpaf0RH1ogvve5Ac3QipAVvNA/E+zm53evsiYz8SDB1c57cHXqPtiR0DwO7YT1aAhvZ7cKed7o6YWFYgwOdntIWwaWCx0/6Ojg5NTU3pxIkTyf+Hie5YAvME/Z3L5VStVtMz05ew1L0kjWd5kHFABvjNWgPt5Fh/H5zsGkR/4IEH9L73vU+FQkEPPPDAjp/98Ic/fN0NO0oCiM5BZJTQ2Ct46RHyrq4uDQwMaG1tLaVfu4NwoyUrMu914rIiiTeiDVKrk+oOlkfHd/q+KxTEN5nr6dONjY3EKuvo6NDVq1fV2blZU3N4eFi9vb2amJjQyMiI+vr6NDY2lpxqDnhD2JRR1pQLob04RzjjDsxKSrW56Cfus59gzq0g0aDNqvnd0dGR0hrHxsZ0+vTppERHR0e3scZ3MoazjAyYqc1mMx32Rh/zOsyGF7/4xbr77rtVKBRaaqKzrkdGRnT69GktLCyktLcLFy6kEjEI5VpyuZzm5+d15cqVFmYiQRYcdD+Y5liem/Jc0N8cmhhBTAfQWCfOvIa9EtNg0QG+N7DunenE3gvg6IC0O+UE2/gOe7CD6OwX0ZHBQKdtrnv9e3w3Auhxf3M2mesL3ycc9HVxNpY/I044fev6y1lr7hw6GAAgTZ8zHjB13Ymk/7lmfK6oz93RxJnxsfRDUhHaCdgJINDVtXkIdalUamH+OUjtZYU82Eqf8X5HR0cq54Ye6+joSPNRUgubkPnJPI9BG/rH5wzEjbW1tXTIFwF5nPB42C194c/E3MWepQSJ2w+ROeYgvs8d2uosRp+jzmRHIKFEO5Pr+nj7OnRg3A8ZdXDD5wl9h43OfaampnTy5MlU1gYAzfVrV1fXNie8XC6nvgQEpx/dNvSAmNdk97+dGb+xsZEAfmz/rGdCvDQSqfcA86y5Ywf51pTngv6+EeJ6x7PJ2FMdtOR/B+b8N5/Dzs7n82k/PkwikgOUWcCln1uS9b0YJHeA3EHbrCzlnfwjCFv0V39/f0u21n6ek3buR9gza7WalpeXU6C6r69PpVJJpVKpheDodpzrbwe/3Z5DZ1EqiM82m5sHg+Or+57sPx7o5lkdJGcM2eOxedz+Qtej09y+8PIubnt0dHS0EOiy7CcfA9eZsYQN9o9n23mfua7OKvPr9mvW/JRa12gMGGFjeMCru7s72Uis066uLp06dUpnz55NpZyKxWJL/1COmMxtnqNUKrUEnJ0AQb17D0yg5/kcuvZYtx5N2TWI/md/9mdpU/n617/edjM97Ijss0Wic7dTdHgnaRe5O8x+z1II8fXDbIvfu137/D1+u/HQDkRHSUWDai8bojs9KAsUDPXEms2tenQoGmrSIjjBGAYw3D2A4iwrdwBhasdnfjay0KO4Ast6D6AbYwmjJx66s99564xL6h3DUkG6urpSAI2U8Bi8wLCnjQMDA9tq5CHRsIcJAfjkAN+tCKAfR8IPV54L+htnNgv49UwlFwenIhM3vu/OCcayXyf+HVletAPHwR0MdybcoXBGkgPBvrdnsZdwiH2/5zO72Q+yAsc8Mw6l67MsJ9zbnOUwRolAqLclMmzpP9en7SQLWI9BcsY3tsc/w9zK5XKJWcT3ADpxcr1cSxZbjHnU2dnZUjcb1lQWGy7LwcUZp488MyAriODP744wDmm0b7JsBbdn+ExMFc+aw4AJPq/oz2h7OfDNe36gn8/tOGb0c1b/RVss67s8RySJeImErAN2+Qx62LPVvO/iGGCXuTC36KM4JvE5PZASmaJZ6yqyTbn+bnXrsf4+XHku6O8bKe7PeXC4nc6JOjxLHzt5LO4vByVZbfO2xL+9ze2eKf7t3/egu/uVLjuR0nzfvJZPFcHkrOeO77f7eyfxADzBcDK3PVsYve2sZm9n1j3jvs7/7nu1a2e0CfzH7xX1uL/vgdMImsf7uMR52o58wHvcl/ngeq3dHHVyRNTd7fS392XsB1+rPtdie2KwDJ1N+UUy18Fd6Dc+C1HCffTYTtbE2tpaCxkBe8Brt9+KAPqx/j442TWI/gd/8Afp7z/8wz+8EW05lltUXDm4sxwVbhZAfVjtk7aYY/66t1VSiwMWmXB+rRjBdWfZHda9bihsvl5Hq1KppHb19va2RGm9D53JxPN2dHRodHQ0ZSM4MEzbicrCXMJx9jS9Z6v4GPuz0DdEnQcGBnTy5EmdOHFCvb29KhQKLYfuXE8f8F0A797e3sR8gKnQ3d2t22+/XYODg2mMo7CG+vv7NTExkWrsZX0W8Tnhxk4WKHQrybESP1x5Luhvym04kOgsHQeyvaQBZRNwstjjXSeQppvP59N+zTrGUYhApTserGH2aPZ+SoJgjHtpGG8vugphz+N5SRuG5QMDGD2QFfx1Vjg6p9lspnrNcU91Zy+WG+G+BCh9X23n+NImr/lN3zMu7oz4d8jE6+jYqq/J9enzGEyIwnccEHcnGic7Bjl4v9FoqKOjQ41GI/WJp+4CjEemH2AF45PP51vGGGDdbRPAZmwR7BdY3GQ/uXMXwW93rr2eKI6oZy35/Pe5G9nSHsxx2ckWjPrJgQjawXxiTkEq4IBf2PX+fX++rHnrgHIExyS1tAndzb1gWRJ89/Rt5htMR3Q4NVMdaI/2KZkWPrfdsWeuuI3qgT4Povlvv1ace5Aqurq60r6RxbrdSY719+HKc0F/3yjBRu7o6EgHGDebzVRuhPXQDqx0gLyvry/tjYVCQc3mZnYZ/he1r3eSaCdkraWd9Ja0ZRPQdvakLDJV7AvfC9m/YSVD8In7tbczBvDcR45gcFbgj/bjL8X9is/z7G7Dobf8Ga8lrlecRcx+yPXJ8OYzZOhk6TIA187OThWLxZR1R99RgsvLpHmfOLgsqcWecpKCt9P35kgUof9jRmF8Tp/LkE484HGtYKu3Df2T5Ts7eY3DPAcGBjQ0NNRy6G0kiGCTuW7lWR3QjvOk2Wy24B/FYjHZCAMDA+ru7tbIyEgippFJ52PidmR/f39aC1L7agScP5YFsl8riHIz5Vh/H5zsuSb62trmCdV//ud/rpe97GU3ok3HcouJb7AokRit9k36ekHJ/YgznbwdsW2eSsQmjqPi4pu3H2IhqQWY5rO7FT7rNbIqlUrLZ3YCdt3JQxF51BVgh02S58SQ9PplWey2Z6NEthev8eyDg4MaGhrS8PBwArExgK53nvr3vUwEh45Rc723t1cjIyNtWej+HLR5bGxMxWIx87MIxtCzTY6V+M2Ro6y/vbZvBKH531NA+ayDtdS6xtFBNwAY4oQ7q9ZrfqOHIsvHgTDawHc3NjZSymksJ0P7uX5WQJtyI9yL3+wzALBxzUXHCkctMl/9O+7Euo6hzEZ/f/+21GjEnS+pFfTLqiuflSHgfQqgurS0lOpOu3NHnwEwxPZ7kNwZQ/7+2tpaS7DZHXKvo09QZmFhIdWzBqyJwRDajnPnTHTa7U6wj7mPHfbXxsZGZikzhHngDiPPRhCC53AAiHbH0oOMKf3lrC4fnyyH3J3laEcxfsw/5jD600vcZelQL8eDfeMBnwjox9/tUulZm1kAuoMAnolG6rrblW4bezsIgsc5KW2dJ8D32V88SBKB77jO4hp3ezcSQ45B9FtbjrL+vlHiezx+F4FJD856uaMsPSkpgaeS0hoHrGPd7QSi+57j6zdrTVwLRPcfD2RGAN2v7UC3t8lJXAQDs8DtLNvA95uo79utdXwz7JNo8zj460Cpt2Eve5XbFOydjUYjBaYBUcvlcgqEkFXm/YQtQKYxvjbZR/QjBA1vo+tfruWBXim7nAq/Y396Vhz96DaM97XjNogTEnzu8zvqb+aqB9+z/GfGC1yCmvPFYjEFm9CN8T70jZdp8ef2eeDAPraTzxnWZ7FYVE9PjwqFQgLP3Wbhh8+vra21lJ2hXVlyLdvrVpVj/X1wsmcQvaurS2fPns1MmT6WbGk2t079ZYPG+N4JIMu6Dr8BRTk0sF3keb/ikXBPTY2ANMqQTclZRYctMfLtLAM2V5x9d2izFIJHEQE3HEQnmo1i3ini6EwgGE7cn+txHRiRURHG55S21++LzpM/Q1Y0fC9O060sce5joBBUoFa5s/xvVPCAsebekSVyrTXqhjgH0xwrrWM5KDnK+juCU0jWHu97X7uDJbP0gdR6YGfUIe7I8rezjHHe2ev5joOQzvYBzI+sLKnVoY3vO3AfnR/2P8BR36NwoiNDiPvwXdc7fMfthCxQDkc1OvfYRLC/CWR4dgBOtjP/0aPc2/ssBjfRtd42rzvuAXHXjT6u9I87yx0dHYlFLynVRuXaros9cO/BbMbSmVaMC9eFKed9Sf/7wZk+hxx88CASr0Xw2FnRDsx4DWHE66vSjgiiRxabg8P+mQgISVtglZdicwIE8zXaNFyf9Rsdbtoc53UUX09OFvE5Evs6K3vDr+HBkawAvgNRHqDzvvT15MGZCCjw/Rig8OcCOAQA9Dl4LLemHGX9faMkBkajXvL9yXWb75Pxb973NejrvJ3/5t+Jewht8eB93EscVHZd5OUy0DEx2E47aRt7BPtsZCTHvRUdEX1Kz6Dzv2Pw27EDZ3LH/bRdnzmI7u24lk+FrgUkxS8jSwgCBToaQLrdXMoC5QlEup6JOsCDmC583/dxt1d8Drht6G2KTHTv62h/Zkmcq1n6ye0rSduu5//7XKSMqgPTDtyjc/y53H4hWBDtiXhft225RiQN+n18jOM8j8SKYx/8WNrJnkF0SXrXu96lBx98UJ/61Kc0Ojp60G06csKBkF7LGgM2OifXEgfZFhcXtbCwkFKID8qwwiEg0spGGBU7AAJ1nj0l/DDFN3c3EFAcbng4iO7swSzQJBpfsEBgnVGShVOa2xlOKGZKi1Abm3T0er2u1dVVNRoNXblyRY1GI4EIO0VAvV0O5kdwPb7uP0dBObhBh1CyZWhoSGNjYxodHU1pZVkR8IMU1gSGbV9fX/o7shHic7C2q9WqyuVy2jeOohyFufdslKOqv33Pd2dYamWB8roDne30ZwwKoxsBVDkIMoLXfFbaXo4FMJn7+/kX7Nd8BgcCR8NBcWcOO7AYgwYeYEUcCMbZoURKsViUtD0w6zrf9W2hUEi6jPe9LArXkpTOaqDPpa0gBuVQIAagF2Fqs6/ikBEUpRyK76fOJItkhVwul95bX19vsVuy9KKXDxkcHEx9BSORA7t7enpSKZLV1dVUtodng6nP9fxQb5xoxo2yARsbG1paWkpOOgF9+pSyMhxkiXjdbgd3+/r60mdgaNMX9PnGxkZij3V2bpYx6e/vb5m/nrHhDHCfX+78EwTwYAilaLx2KfZVf39/spOGhoZaSt4wzwCl6Rtfw+50u03KGDNfIgjjfcg6p30ekPAgC/YErzu73vcL1o+L34/x8D51sMEDMhEokNRywK0fYOwBDwe0PAglbc9EuJYcpv7+yEc+og9+8IOanp7WS1/6Up07d04/8AM/0PbzjzzyiB544AF94xvf0KlTp/SLv/iLuu+++1o+89nPflbvfve79eSTT+p5z3uefuVXfkX33HNPev+P/uiP9MEPflCPPfaYpqen9bnPfU7/4B/8gxv1iLuWo6q/b5QA/nZ0dCQmumenRckCGj2oxZ7gwKZnobCGHVj1z3KtrAwZ9rXoa7sPC1iIzQBRqKurK+3V7QDbLHAUVrUzeaUt39GZ386w5vk88L20tJT0N3uQkwHwhSjpEYPJ3Nt1hQvXw/d29nWW5HK5dK/e3l4NDw+nNqAL8d87OztTRptn78W5RL/wHXw0z3bzsiS+f3swxgMTjUYj6XZsNnSOj38EnNnfmW9kSRJ8zuVyLYeAM7cBiGlXJBNkkVF8zvIMPicdxO7r61OhUEg+OH8PDAwkm41yKtzbfXifu+3WqOsz1ibj5TqR8XYbz2uZZ4Hr7BPM8cMC0iMZ4kbKsf99MLIvEP3Xf/3X9Z3vfCeddlsoFFre//rXv34gjTsqkqXEnUWD7ATquRPgYBvKKwu83Y/4xugGQ5aDzv/+nm9+NwNMd3FDydPenA0mZR/a5ZsmihoFhiKJtdWk7amAXB8HsFAoqFgsqr+/X0NDQ4lRQH2+UqnUouCu9bzudDnLzt+PoLm//myPssYIso+3O+ekYt9oFjrCnHAwoR1Igzi7AYMUoOKoyfXMu6PYH4cpR1V/O0NcamWSRXEHJMsRy/pOfN/3fge1+JwD664j2AdcX0YdFMGv2Cbfv90Jd1DPQfys++GkOTPI01yzADV3lJxV6/d0JzzqIvraS6Q5oyv+eADYGXoOOLPPR+YX13UQnb50fenjGceZ97L6CBDdGUu8JinZB4yV21P+DFFH+zMwx3wexMAODntkMwJSO4gR2YnuhMea9Fzfs+b8O15+x8c42kBZ5AQHreMa8DF2+9PnmQM+Wexzv663J/7Oes3b62uLOQ3I4QCZP0OcR75XZOmuCKRzfbdVrmVTu32bRaLIkrjv7IWFfpj6++GHH9Y73vEOfeQjH9FrXvMa/fZv/7be8IY36PHHH9eZM2e2ff7pp5/Wj/3Yj+nee+/Vpz71Kf3xH/+x7r//fk1MTOhNb3qTJOnRRx/VW97yFr3vfe/TPffco8997nP6yZ/8SX3lK1/R3XffLUmq1Wr6m3/zb+pnfuZn0vduBTmq+vtGigNk7WzwrPXvEvWbf4f30Y8RPPfvR/Av7h9ZvoMzfN3O8R++6yWkdmq/r/ssYpHvHa6fvHwZdgL9mkXo8ntH5rzrVO97svazcA3umcXKzhK/J+Ayv6XWTPCYTZTlz9MGxtiDjwTLsyQC4t7P6F/aG311t/O8P6OP78FXt0OjnRptM38u9E+WuL3gEgFv5lS0mTxo4viM28Tt7r3TuvTn9Gs6XkX7vZ/cP8ia43EMbqTsNN8OWo7974OTfYHot0I0/tkksJXX1tY0Nzen6enpFPn1qHM7h9+N/EajoUajocXFRV25ckXT09MqlUoHxlb1jY8DEb0WZVTyuVwupet0dHSkA1qyGHwHLVzbNz360llN3m5PW4vRb5csAyj2EQqUz2JY+Fh0dnZqdHQ01eO+8847NTg4qP7+fg0ODiqX26zNtry8rFqtpv7+flUqFc3OzurSpUst9SpdPHWrVqu1ZDV4ra/19XVVKhXV63XV6/WWA9woJ3BQAZibIRgfMBylLfYBrAzYixFouZHCHNvY2Eg1752FMTQ0pP7+fklbwFutVlO1WlWpVNKTTz6p73znO5qenm45TPaoyLESv3lyVPV3Pp9PKcLS9hTVCP7539L28gjO1HYGD8xdWNKdndsPJuN68TWvy4ouJ1jWLkXZa4a6oQ3Q7MA9z5XlkPszwWADbIXV5iBwdPa9Tx2IIGvKgwCUBnHWNH3mTHRnzXoJK2fpkbXV1dWlwcHBlE3kB1N5Cr33He8zPoAN0iaD3NlhERCJaeD5fF7j4+Mth3g3m011d3er0WhobW1N3d3dWl1dVb1eT88NyN7V1ZXqcwL+N5ubrO5qtdpiQ7l+x8nP5XLJ8fcUfJ/fMYCDU+nnoUhb7HoHAgARmF8EARqNxjYn3EsJOejO3OPZfe75nFleXlaj0UhryIkDHgRwID3ayw4sZYHifi1vExIDS3ze5+v6+rrq9XpLlkhnZ2c6oKyzszMB39Tmr9frLWvaxyHL1mKdRXYd7aBfYrkpvuvPx71gxfp4xO/5HuFzfjdymPr7wx/+sH72Z39WP/dzPydJOnfunH7/939fDz30kN7//vdv+/xv/dZv6cyZMzp37pwk6cUvfrG+9rWv6UMf+lACw8+dO6cf/dEf1YMPPihJevDBB/XII4/o3Llz+vSnPy1JesMb3qA3vOEN+3rGGylHVX/fKGEPlpSY0hwGyj4sbWdpR7Ac/5v1TVY5es7BZAfRfd3zuq8fB5qj7pbUshd6uRbX2fztmS4eeHMglvuzr8DK9X0QO8cBZtffXlIFvR3L4tFu6mJ3dnYmTAG96hl0tJW204+RHe86xHWkC/sg94S4NjExkc6ZQpfWarXkg0ub2XJe4opnimA0bcSO6+7ubgHRYz9LarEpvRSg61Z/Bu8H5gJz1ecT40T7/N6Mi4+v20kRUPf5mRVUwZ5wolfMuojlXLy0qZMufZ5GENnvnxUEj30Sn5vP+plBkBlWV1cTO5++LJfLWlxcVLVa1eLiYsqK9HI/hyHRZ7jWfT1A1dHRsasa7cf+98HJvkD0X/7lXz7odhxpWV9fT47I/Py8Lly4oIGBgQSmOqtmJyCdDXthYUGlUklXrlzRpUuXkrK7XmHzY8PjIAY2wrjhs3hJB/OF7JvfjQQu6RffxHG2ANE9eu8KebeM5Mi6A8CITDY3onits7NT4+PjOnv2rAYHB/U3/sbf0OjoqPr6+lQsFpPztbKyokqlov7+fi0uLurpp5/W/Py8JKVnc3GntVqtSlICQNwgWV9fV6lUSkYCAIWnyD8by4W4AcqzALzA7iclnNR0gJTDANJZA5Rdwoj3kkA4zsyp+fl5Xb16VVevXtW3v/1tffOb30ypkcdyLAclR1V/s8Yxit3wdYOafSIr48f1hGevIATENzY205ijQ8S92GeizsHhpBxYvV5P2WSeKot0dHQkZ8XZyP5MHkDmgCsA82az2QI8ehkRd8IB1KNDg86nL3G+0LnN5ma5FGpp0y5AdNeH3ufOWnPAERDdv5fP51UsFlO6uh8ILmlb3zOmgOP+fMyPjY0NVavVZDO4OIjrZXsKhYLGx8dTBhnX6e7uVq1Wa9nbITbQR4DtxWKxBehAP5TL5URUQI9nAaY8OzZaDHR4sMUD/T6faHtn59YBt9gu7pyjd8iScxAh3tPL9zA/sJGySqFQooYxx8aJ7EhfX7zWjtEXA0zuZDvY72vUg2SMe1xXBEQIFsX0fP5fWlpKoBpr2kEx2tJubOkv/nfwXNrKgOR7kdnu+4y3MQIn3p7IbD1MQsXi4mLL/5RocllZWdFjjz2mf/Wv/lXL66973ev01a9+NfO6jz76qF73ute1vPb6179eH/vYx1KZpUcffVTvfOc7t30G4P1WlqOqv2+UsL81m00tLS2pUqmor6+vhdzixChpe2YSQGOj0VClUtHy8rIqlYqq1WoiJ8XyJVzH9WY7cf0dQXZskc7OzkQIwu92EN0Zt0i8VgT0437AZ/ARY6ae62/27KWlpW0gugO62BzYH85EbhcE93b7HuvSaDTSvhnF9XehUNDw8LAKhYJOnDihwcHBBPI2m00tLi4m/xhbhtIqnu3PNV1HuP3S3d2dgtUe8HV9he738z2yMBPGDgGcp1/58f3a9TdtQ49A9vB7uF7x4ATf5X3X+a6/swggDqJ77Xl+mLMOovvvCIJH/MjnsttptI+xcbsHUHl9fT3p75WVlbSO+E65XFapVFK9XlepVNLi4mIqKei69zDE7YSd7uvziyDFs/Gg02ezXFddg8cee0yf+tSn9L//7/+7/uzP/uyg2nQkhc1nZWVF1WpVtVotMU/ZwD3K6xFEHG+i30TL3BE5qAXuDpanwvjG7WVddgIlIyvsIMWj6xEo8Y0lpsQ5MLAXiQEE7xdXmvEzGEAR0IUh7f/7Z7yOdrv+dcfQI8PxB+ajzxOcXHc2n20S06/8OVDkMTXvMMWdVwJp8/Pzmpub0+zsbALM+ZmZmdHMzIzm5uZUqVSeE+Vc9vtzLNcvR01/R50U132cN1HHuc6I10BYy16rm73VHUhnpHnQkj3a64i68+1Oa7QDnP3FZ730iZfiiHuhP6sH7aPz7Nd2Fpbvte5wuQ7Kar/3QXwOfiLI4IFwL53iTCa3RSLYsRNo4e11J82vF517LykSS7HwOX77AW/8nwX4ep8xB5aXl1v0tge9nd0YbQwHQts5nD4X+B3tI3/eGJTAhvA5v9O8YIz9c7Et0cb1611rn8/SBdE2y3pe/36c8xG8cAAMGwv2KbY7tjyv1ev1dKaNAwuRLZcF/sf/I9kj7ku+/ujzuPZj/7SbI3vVqQehv0+fPq2hoaH0k8Uqn52d1fr6uqamplpen5qa0uXLlzPbdvny5czPr62taXZ2dsfPtLvmrShHTX/fKIl6ynVx1o9ni8V9jz0Zv4rX4164H5s1rmfE17wHvNxm4ftSa1nIWDbN9WMWGznL/siyCRynyNIxnkHkZ66g072sh++3/hxIO1899ovbe35/gFwHdL20iNsVsa3u08exytJ50baJQZWIHUQ7M45nnDtZ+EK0AyIo74S7mC3Qbs5Gm67dZ/y6UYdm/ewk7fT3TjZ8OzvA70X7yPZHd1cqFVUqlcQ6JyiGHndiy2HJ9dxrLxjHYfvfH/nIR3TnnXeqr69Pr3jFK/T//D//z46ff+SRR/SKV7xCfX19uuuuu/Rbv/Vb2z7z2c9+Vi95yUvU29url7zkJfrc5z7X8v4f/dEf6e///b+vU6dOKZfL6f/8P//Pbdf46Z/+6W1z9G//7b+9p2fbFxN9ZmZG/81/89/oD//wDzU8PKxmczOK88M//MP6zGc+o4mJif1c9shLs9lMNa/7+vq0trammZkZFYtFTU5Ops3dmUjN5mb0fHFxUSsrK7pw4YKmp6fVaDQ0MzOjWq2WNrjrlRhBJIIcT/xmg3OmT5bQLthIBwliNptbh1y4o48ClZRSWvcDml9LYPJ5xBbjy53Snp4ejY2N6bbbbtPg4KCmpqY0MjKSmG0dHR3JIOvv79fS0pIKhYIWFxc1MjKS0sqy6tOiyGq1WoqiV6vVbVFMAjQOHqysrCSGdFZJg1tdMFhIna/X69tYeJ5CFg22Gyk43y7NZlPPPPOM5ufnlcvlVCwWU/YGLIu5uTldvXpVjUZD58+f18LCQnrOoybXA4Yfg+jXJ0dVf+P8uMBUckfAnQzYSOyB7jhxPQ+GUXoDFlCtVlNvb29iN2WB+O6sYLCvrq6qVColhnkMZnqb/MAo2se+zp4HGOwOIpk3Du4CRnuwwNm2tDmWY3H96c/k//veGtPB+XFwMWbYwKZxJziXy6UDJmGyOZObfuLH28w1/f4w/UjBhuE1MDCg9fX1lJJN4Lunp0cjIyOamJhIQe7e3t4WXeqgBn3hDGuIErlcLtV5dTB6fn5epVJJXV1dqTSbMyP9ntgyjKMDKcwTdMby8nKaE35Nd7yxmWDRMfYO2lN2xfdsrsP8jDpqaWlJzWYzfcZT15kftLdcLqvRaCSHPLYh2rdRvzqwwGFlzA3/23+znjc2NlLZGi+J5/OLMSuXyy19yrqC0eYg3OLiYhp/zwhwOy7aItitzCkvM0GfsSc4yMW4YXtibzvQTj95lqIDY1lA0U5yEPr7/PnzGhwcTK9HFrpLFoi1U3uzPh9f3+s1bxU5qvp7p5JH1yO+R9VqtRbmM9m/S0tLLcFZaWt+sG7JMEJvz8/PJ7CNgy4dSMzac64lXAN/2bOqY9YY+zh2iaSW19z/jkQBBP0Y20rwwP0sSS0BA/S3f9/tL7ex/BBU2og4SO+lM9ApPIN/lrWKzcBex3d7e3s1MDCg7u5ujY6OanJyUv39/YmR/v+z9+9Bsp/1fSf+7rl399zOnLuIBEJAjCHxelGVSmRtQRxw5GyicAnsuopiE0OhUlWC0O6yVkBrQQIU2KWcsgUmVJEI4gX0h4u4XKFiib3IS1BtRVyyGzubNS5ZEtI5Ope59HWu3b8/5vd65v39zNMzPefMmTPnqD9VXT3T/e3n+9y+n8v7c3mibkbf4aedzla2FJ+xPg6W++/5TQTFOUQTvgx2gNzwTDoHqtFVoqPe8YVut5uizeH/DpBLW5Hm/hl7ITpt2BsEb3mf3UlDYAiBneBQnunl7UXHretO/rxF/Z21937yt+vljMnbQvcH//CMzqirS1Kr1VKj0dDKyoouXLiQAlVzmQ5Xg/wZ7OU0yP2GudiLTD5I+/uwn2nyN//m39S//Jf/Mv3vJS37ocsC0f/hP/yHqtVq+pM/+RO98Y1vlCT96Z/+qT74wQ/qH/2jf5Rqyg2oSN1uN6V7ktqyurqq2dnZdII0wKy0xVCbzaYuXbqk5eVlnT17Vs8//3wq/7FfpR7cg+te2l6HivqDHhXP+EDvN4AtbfcEw8BhnjBfBzT2g1zYoYhhuCFwuDdALulk09PTmpmZ0dTUVALRJaU6qkNDQylVfHp6WtVqVRsbG9sES5wHjLdSqZSEON/5PDkhXIaHhw9MSOwXMSYMcQS6gzo5wOAgDaR4r06no0uXLuknP/lJcqLxTLG+RKmvr68ngOdGpQGIfu3oRpXfPOvsLf5GHrijFZkAaApP4XmMDmNpy3igvIWkBIQ6v+F5dlkBkF+r1ZIjnWyTHLnhD39zebqxsXXOCuN1eRxBb+9fBAnon/92fX09OSaZJ++bR274b32ucNz6/LpDF93F58xL0WB4xxI0OD4cGGd+MZYiYOgGuTuW19fX072QHxsbG4XDqCm9Rmk75DXjikYzOgE1N1kv3gE8SRVuNpuq1+upVqeD5DESjve4T30/Msa1tbX0eYxccxDc5SZ6DXtO2gJUWFNJyUHtzh7fd6wJOiS6pRvEXNNut9VsNgvgQC5q0sfvz2ucEw+siAY3e4B+RuArZv6xd9bX11OtVBxxPFeUZHTgyfeHAzY7kc+fj8mfV3cK0X/aBXRh/iKg5eChO99ywMRutB/ye3p6ugCi5+jYsWMaHh7eFiF+/vz5bZHk0KlTp7LXj4yM6OjRozte06vNw0Q3qvx23rCfxDOM/Gk2m8mmxYaIdm8vh/Di4qIWFhYKzlG3P65UN42BaQ6ke6ZQdNJ7zefh4eHEg+AD2KUOGjrvjDiC/94jqldWVpIuFYOvXOZ64JyXxUOOO3m5UtrNUQRSua+XWKGtsbGxBF5PTU1peno6ZX6Xy+XCfHMGydDQUCp70m63ValUUvkPB9zhnzGwzfkqxDz4Ie5eosxB9Ij70CfG6Wvu8tvX0mUrssF5PX+zl+Kzxtrs5Fz19fcMOignQ6LcRo5F3cmdIchpB4nj8+GfeW195os9sba2pnq9rqWlpYKTxnV8AivA1ni24547CNrLvS7HWXeQ9vdhP9NkfHxcp06d2tOYnC4LRP+3//bf6rvf/W4S4JL0sz/7s/riF7+4rRbdgIrE5sUrPjQ0lAwngPWJiYl0Ld7N+fl5ra6uanFxsWCI7jftBjq7EHbGRjRPzhspbU+1v1xyYQuwkEtP8v5eTWI8GCeurLjh6qBDTpHJfXc54D/3RlAjxL3mHPeNwtD7etjJawvHVDLoajwfV0LsVQxyBw0kXZNDTAb0yqMbVX5HI8T/57McP/XoHjdSPeqb9pA7XI+sIzqd37lxgEGKEz2e3+Ayyw2oXCo2Ts8o4+DZMeIYAzoC6JKSQeWRZh4FRVQzRrnLIwf3okLugKFHL8U+M7de3xOHNA7oWGIlt94OKHsELnPJfEfyOtsYlBiPXj7GM5rcqIzGvJPvF+QrYwU4BkQHgHEnD2MCDHDDn7476Bnn3+dofX2rTr7/hnlifh2IYY+7QRvB5ahL+Jq4gwMACucHe851xUjxvlF/dHDa18TX2cfnfY5z5kEhvkdz4DfjYs2Gh4fTXPk6e1kVB7n9M0ACB8n5259TjzjkGYhAlPfXnWP+HveoAxRcd9j0jrGxMb3lLW/Rk08+qXe9613p8yeffFL33HNP9jd33nmn/vAP/7Dw2RNPPKHbb789OQPvvPNOPfnkk4W66E888YTe+ta3XoVR7C/dyPL7au4/5JpHGktbtaRddkrFSHQiWB04j6Wq9qPvPL8eeQyPc9vMAVHXD9xx71HtyG93vO5E3qa/+M7nx//29nsB/y4vnAfze++/tOWQjeTgs/NTnNjxIMuoR7hTwW11B69djrvDcbe19jmYmJhQpVIplLJxx3K0+yG/F31C5jDnvqa+X12eu6x1eZazjz3YwPUnnyvwHs/w9PmI8xQxDpfl/h73lstl2kJnzO0d779f49kUZG8SgOLzRqkmsvgcV7oeKGa6HQa6Hs40+T/+j/9DJ06c0OzsrO666y595jOf0YkTJ/r+/WWB6DDmSCj2A+pNrmC//PLLunjxokZHR/Xcc8+ldC1AdB5wUsh5+EmV3e+5jkLRDebICJ1cyMVoQEmFiCwE2eWQg+Qxddm9rs5cXbHYT3Km70KMFC0XIP7Kgevx89x3/c4PgpJ0NsrJzMzMFGqXEVFBnb92u11IGzzM1OlsHvCztLSUDvmJStZhFHyACpyLQGo45KVbbnQ+epCe8AEV6UaV30RiOhjIu8uEKA8cDPcyGYCsPLe0TWkOFLp2u11wikWDkt8DvmG8YyBIW8++A+cO/tLnCAjHaFPKkAD+UootHujkQCDGRafTSXXafd5cLkUweWhoK7ra++lzzj1cJkrbazy7QUjUeTS2+I23Tb8wMHF0tFqtBIDg5HfZSjkt9BJkOeVcyuWyRkdH0zklnnbN+rnT2vUTj4DiEK5Saevg13q9njIScJ46MDI0NJQOUSWLDfnOukfHBPvJgxtYn5WVleTk5x1djTIaXMf88TcZCRidroOxZgA1MbDBn0v25tDQUOEw3QikOwDkzhsHnKM+Rf+ZR3823NEBCMB94zMb7+egFf3hMFjW1EFoxpJz+uQCFGL6ecxiyenbrCtr73vG++JOIcYAwBLL67Bfe2XGRDpI+f3AAw/oAx/4gG6//Xbdeeed+spXvqLnn39e9957r6TNKLQXX3xRX//61yVJ9957rx599FE98MAD+vCHP6ynn35aX/3qVwsR2h/96Ef1i7/4i/r85z+ve+65R3/wB3+g7373u/re976Xrmk0GvrJT36S/n/22Wf14x//WHNzc9k09IOiG1V+93Ko7SfBc3B6Ic/q9XrBcS5pG1/B7mi1WklWwqf2a95xKEfw1/m1tGVLOE9y+04qAtuA2Mi06HCOjkK3pWPpkl4OW3i8B3G5QyACqV7Sg3Fx8LefE+Oyx0F4Dzakb/BCgGsy/IlKZ05dN/QMHeeNPs+uE3HPnchLz83OzqaD0b0Uj+s/cS6dxyOTojM7AvBRz/TsAWSwr5/Pveup0Qns2A76cDwbJQYUOCbjay5tBWBEXMQBeXcou+6ObsPYIj4S1wc9hZJL4AVLS0tqNpvpd76HJBXGdD3Ymzg7+q1MsR/yu5+Dwa/GmSanT5/etzNN7r77bv29v/f39OpXv1rPPvusHnroIf31v/7X9YMf/GDH8nJOlwWi//W//tf10Y9+VN/85jd10003SZJefPFFfexjH9Mv/dIvXU6Trzhi00tbHjCMQQedS6VSwSDcKd3pWlH0UntKkKTEeKWdo7d2Imdybhw4s44eSunqlJJxcsPOo/1yBq73L9ff6M2Nn+2FSJ0bGxvT5OSkZmZmkvADWIjCdy/rca2JCDfGs9OeutK5vFKK6+3A1SuVBiD6taMbVX5jbDiQmdsrziNcYY9GRc5p7KBUNEyiMRRBdICqnMHtvIFrHehzwzj3ewcZc69eoCAGKvdyED22DcgXI5p8Hv09ji0a37noJJehzF/8jbfra+bz7ynMHqFDvUOPSvP5wUj1fuTmLu6tKHdyugrADWvrQEEcI3PhB6PlQIzYn9365HqUOz742+ufYqQCOjho7XPfa13oixvhnkrthrqkwj34P0fxGXWwy5+THPjMs+vfOWC9k2zxucMwd2ItS6VSmsf4+1iaL2Z4+B6O/c+BETEy0e/lYBigleuqccwOQu1GBym/3//+9+vSpUv69Kc/rbNnz+rNb36zvvOd7+jVr361JKUSl9Ctt96q73znO/rYxz6mL37xi7rpppv027/924W6qG9961v1rW99S5/85Cf10EMP6bbbbtPjjz+e6qlK0jPPPKO3v/3t6f8HHnhAkvTBD35Qjz322OUMfV/oRpXfB0HwHmSxy9MYvORAKs65eL5Ujh9fCbksy4GljMGBTmSJRwg7n+D6oaGtrHf/nDE6ub2ey/KmPQ9Sc8DcZWfkWTuNG/6Z01MA/nPgqQOgUlG+R77Z6/7xmohZ7IXnITeR4V7TPq7vbsQe66XTenusC9dER3Hunjn5He/lf7uDO2Iv3gZ9j33lnnEe6L/rFXxOm75HvP/xvi6rc7quB6PeKPbkXsaxH/L75ptvLnz+G7/xG3r44Yezv8npojvt/9z18fO9tpmj97///envN7/5zbr99tv16le/Wv/m3/wbvfvd7+6rjcsC0R999FHdc889es1rXqObb75ZpVJJzz33nP7qX/2r+lf/6l9dTpOvaHKByN8uyD1t5mpGGnBv99QjEPnbmbRHf6NkREDBAQC8vPFgs5wnNjJt2vbT03EsxKg36GoD6FAEAbyfklSv1zU/P6/19fVUk5EohlKplICLRqOhhYUF1Wq1FGVNlFo/5CDEiRMn9JrXvEblclmnTp3S7OxsUrI6nY5mZ2dVLpfT/F24cCFFvkUF5bCQ77d6va6LFy+mKEOIfUP0gO8XB3muJrlwcoObyMQInLwSaQCiXzu6UeU3h2M6UM3z7jW3I8AaAWi+Q+56hC1t0KZHu2KYU2OV1F1X7B2E9HTsKEPoG4Qs83tCDvqWy+UUAeWRVx7BwxwhW6hp6SCBGziefuz3AijMGfgOMjh46X33z2L0vwMaPn8Al64zOblDwA0oDG/uQXS+g7HR+YJO02g00sGfXiPV55/f+2GinFkTswkkpQj39fX1VAudz0ZGRjQ7O6sjR45ofHxcR48e1ZEjRwqGPNljfk/nqW6wE92HLsbvmRO+d/2gVCql6H7AV/rqc+T7NjeX0Xhn/ZrNZipnwz1dd/TIR3dcRVDEgQ/2JG3EtHe+Jzovlm2IFPdXBJL82fQgEl/nCEjEaFvXrb0mvs8b4/Co/d1sAeczjJM57aUH5bICetFBy+/77rtP9913X/a7HKB911136Yc//OGObb73ve/Ve9/73p7fv+1tbzuUusaNKr8PkiLI5s8F5LW2ed7Q43vxgislB1/5WyqWXsMhRia2B+QQGez80TOMPSrdx+r2s4OO8N8Y4R5tfdeJXJ9yvYD+cZ9c6Q3XubwvUNQ/+B3XUabDHR/NZlOLi4spch25z9wyPjAFghZbrVaK4u6H39G3UqmUAtfGx8d1/Phxzc7OJt0D+Ybc4x6+F30P+NkoMWDRHba+JtLW/vVIdpdVDla749p1RZcVzG+ns1nWqNlsFkoT+l7y/RPXNDqK3akTP4vOJMZJ7Xqu8XsjZ31deacEbC/w/5VC+yG/+zkY/Ho70+T06dN69atfrT/7sz/r+zeXBaLffPPN+uEPf6jvfve7+k//6T+p2+3qZ3/2Z/U3/sbfuJzmXvHkxi0Rtu7VzXkGr0YfXGD2AtF5OYjupx5jFCGkYOLdbjelaMMsMfKkrbqPTghZT6eDCTqITv/d6IDpHxSQHkF0r5lXr9fTgZELCwuSlADsUqmUxtRoNDQ/P69arZbA9Ha7vScQHeDk5MmT+pmf+RlVq1WdPHkygegItKmpKY2NjandbuvcuXMJ5D9y5Mi22q+HidgLgOjsNyeep5gyftDANc+Ig+iAPK9U4T2ga083qvxuNpsJ/HRDwQFtZIIbbCMjIwm89Igej5ql9InXTfWa6S4LKfNACnGMcHJDBrkPr3WZ6YAWxocbjxAlaIaHh9Ph5EQ/xYhYxszhSfBIQHQ3ljEyOQTZQVNPMWeeJRWMpfju/XfHOEa+G4xuWLth6AdIOw9lzTyt3UFnZC2APaVFPNLc65MzV51OR81mMwEQ7XY76TGVSqUQLECpn+Xl5XQIpTtVuA7Dt1KpqNPZPNiM0gKTk5MaHx9PIPrExISOHj2ajAfGvLS0lEAdygl5Cr2X8PG9z/iQj0NDQ2l9WT9pK5ONuScDwcvORMDVozeZbwdWHLznMFUvRRB1T3eI056vdwTToxPBQXbmxPdijP72Zw1DO4LocS97Xxzc8LY8RT7qVYyX5831Yd7hS96fmCrva+B9YJyAL16SJ4L9hzHLdUDb6UaV3wdNDuQ6XwM8jLJIUrLr+P1+EjzFdQsHGN1u8DJgvc7VwA4G3EJmewYddrfLb+cVHsHL9Q64djqd7CGZOce662ZRrjtwuxMf8rlBZ/DgQ3e+MiccJEupKspOIL/9MGhKrzWbzQQSe4mwnciDAKrVqo4ePaqxsbEEorO20mbAR6PRKGSGMw8+TtqMgRXMJbpiDKwAt0G/YJ58vXP718H4KBfp5/r6etI5cvYs+8LxpLW1tXQQua+5v9DVu92tEoIuv33f4IhgLnyfsYfd3sbRRJCIZ68P6PKon4PBr7czTS5duqQXXnhBp0+f7vs3lwWiS9L/+r/+r/rf/rf/TefPn1en09GPf/xjfeMb35Ak/Yt/8S8ut9lXPOU8ei6EDuL+XibFI4EiE3bveKy/5Yo6xjEGcwTm3SvugpexexqOR/TGAy8kbRMmB0kxMkraHAdG9dDQkOr1eqq7ihEEUI7hXavVCnVI+1XWXAkjEnFiYiIpDazfxsZG+s7BH+bWD1w7TOTlBhwcj8+FK1QxMpHvr7aDIAI4uQjJVzLthyd8QJdPN6L8dmDWn78oU3oR17pSnuMvMQKGduNz3Sttt5dD3KNH+dudyzHCK34eHca58bpR4YdDeYRrjj/mQMudyOcw16de4+91bTTMeq1lLpLNo9d6lbqJ0Vh+f5wMyEPeAQ64n8smd5pKW6Cuv2JdcwB+jGbeHexlP3h7rn+xPjGb0UvMuY7n0XM+p+hvHrHFtb3WbX19PUV6ewk/N4JzMjkC1b7OroO6Ie1lF3aTB3HvMtc5Z4wT9+VZ8f7G59qfV4+0Y/5zADtz4/ejXXdQOMjg/YrtOJAfn69cH6LOvRcayO9rSzei/L4W5HpCBHZzMn03nrEf/eGd5xwHbXS+R/ntMtJ5Xo4n9AJSc7zX+Y1HM8d2c/Lbx+Igf+T7XOdyO8ojl2UeUR/5pTsaut1uyrTrdDopewugVlLi71y3vLycwFYAdJczvdY+2t8eaBCz6xwrQMa4TAEs9HVkfXwdaTNSzJCkrRj1HcfDnLvcct2gl00dyfdQLpiC9d9JfvfSMyLOEvd17K/rYvTnlS6DDlJ+H9YzTRqNhh5++GG95z3v0enTp/UXf/EX+sf/+B/r2LFjBcB/N7oslOxTn/qUPv3pT+v222/X6dOnD2XE6vVOCBRXnvn8at6TtHXAVDyI6+vrBWHgAg/hs76+rlarpeXl5QScDw0NqVwup98vLy9rfHy8kG6cA59dgXGPop+M3mw2kyfca6DFg2GuNkXBFCOyXn75ZTUaDU1OTmplZSWVUpmZmdHQ0FAheu3ZZ59VrVbTpUuX1Gg0etbQ7dUPoh+npqY0MzOjarWq6elpTU5OFgTbzMxM8o6vr6+rVqupVCppfn5ey8vLqlarqlarWQF90IRAbDabevnll7W8vKyFhYWkEOWUseXl5eSwaDQaqYRQuVwu1D++WuTACmV5ms1moabiK5kGRvi1oxtVfsPfOETRPwfUc/ngUZ4uzzwax5V9ZFo8MGt9fT3JP0mFCCLKS0jFzBSpGE3qEegOnmNAYXwRHRdB9AgKI5e9/AnyHflJJFF8Fl2G0TeMQQd24WEO8kUjORo4yHI3kONa+ffdbrdgsHlkmN8rgiDePpFhZBzESPT4W9bIswMbjYZGRkZULpc1Njamcrms1dVVDQ0NpT6trKxofn5eKysrWlhY0OLioiRpcnJSlUolrRV9IjKLMh4TExMpQ2xycjIdAidtGvpe9sYj4Tc2NtIhWTEFnN8AfrshTEo0bfs+o3QLe4ZoNw5jzUWieyQg5er8OeJAL7II2+12mhPfP5KSTkmQAc8TgAb94fNojMfnNjqliJpkf/lvNzY2UmBDu93W4uKiVlZWUvkZgkHIJGAPEyjilANrojPfgxUiUMNYfZ48et8JHTjeH8pF3ke9O7bZiwby+9rRjSq/D5Kc1+RklV/TS65cjT65/IMHuc7iYLYfbBrHAlAJT48Bb/CeCN56CRfP6opRv/63Z8dFhyhz6HKBPnqb7riI5OVfy+VyIUgM/Yu2aDcC/61WS6Ojo2o2mylLq1qtamhoKJVDW15e1sWLF9Vut7W0tKSlpaW0/siK6FSB0M1cfk9OTiZ9Udoq1QPPJ7uLLHTaYaxkksGjvQSMO1hWV1cL8huZgazzjMt4GGuce+bOZTL69MrKSjoMvdFoJMdETuYh44eHh9VqtVL/PHuR++QOuHVHkAc5cN34+HhaG39G2ffI7kajoaWlpRT5TwmkfuXcjUoHKb8P65kmw8PD+n/+n/9HX//617W4uKjTp0/r7W9/ux5//HFNTU31Pb7LAtG//OUv67HHHtMHPvCBy/n5nmh9fV0PP/yw/pf/5X/RuXPndPr0af13/91/p09+8pMF8PJTn/qUvvKVr2hhYUF33HGHvvjFL+pNb3rTVe/f1aQr2eiXS+6l84MPvSame6IxjohA5/RyvOeenoMiAPNECOQi6bx9DD7SiYj0giEehILTLwHWuDe0Xq+nGmLValWtVkvVajWl/QOi1+t1vfTSS6rVaglw3ct4EEhEnk9MTCRQnYPJEKjlclmVSiUpSsvLyxobG0slEajPehiIOVhdXU1R+hi0vQhgi6iC5eXlVEroapMDBx7hAIC+l+yCG5UGRvi1o4OS3wctu3nuYqQJwJODvQ6qScVaxtEghWIkuLfHc42cc1A7yqW492kzOn2j7PQILNrh9x6VxXduODMWZKen5uai2Jk3nyevd+oRbjEyPWeg8bnPrX8ef+eRS56R5Q51N5ZzRhH9B0SmFjrODU9z9qgo2iOggNInZHEBlrIPcFbgMF1eXlaz2Uwp2pRoiWONewHjHpAfhwVrGCPxCHJABwMUoZ9x7dz5gP7EHvMyMFEP43cxsi4Horv+w+/8AD/0N97RWXzfAtITyLG6upqACH9Out2tiPRcdghtQXGf+xjcIeR7lfq46Lhc7882/MbbdudUBKj8Nz5fOR7BnnQHhwNTkdhLcdzxmXCKkfP90EB+Xzu6UeX3QZM/h5GXucx2WXoQfXL+6ZHoUtEuJhM7yhJ+L21loPh3jAuA3uU38gQQ3eWv31/aysiLzlK3fZm7XGkYt4Ncl4C8BJrXQUcOITcYmwPMyGwIWYKzk8C+UqlUANEXFxdTQBtBWrkSc5EAxpHhZID7eSQxmt4d1t7XUqmUnO78z/rA91kf5IfPD7KEfro+3Ku2enz33/o+QG5jy/Yi5Ldn5rkOEgNOIsU9hix0Z7nLTJ4TrkNvcYc9+u4gEv3g5fdhPNOkXC7rj/7oj3a8Rz90WSD66urqFdee6Zc+//nP68tf/rK+9rWv6U1vepOeeeYZ/f2///c1MzOjj370o5KkL3zhC3rkkUf02GOP6Q1veIP+6T/9p3rHO96h//yf//OePAoD2nq4YOxuzMZIdAwF6nI6w+V7jwaC4SO8EQIOZnjaEsyO6DmYOMoFHlKiug4LuVEibQmxdrudPN0TExMpUg2hBJDebrcLB9n1Sz63tDc8PJwMQAfRcXYQ2c98Li0tpQiw8fHxQmraQZILcQDzpaUl1Wq1FPm302/ZvwAaOBIQ4p7Gv999Zs/yXDSbzVT/rlckw4AGdFB0UPL7WsjuGLEK+ET2U8xU4vnPfQY5mCypoLi7nOt0trKiMA5i5KhHYntb3MdrTLoxLOXTbvkd1/pBln4tffW0VgckdxtzBLj5ztNjc4Ys8wPfdeDfnQf+igY9xli3W4xwdsPeDSsHj1l/L7NBPxxAcQM/piHTB9bWDVAH0d3I7Ha7CTj3kjw+jwA37gxw4MbnG4MfMD/Kb/Yjf7darST30NdcN8sBAr7WHimIbhXr3cZ6uj73XOtGv697BFriPscxMDKydZirR6tF51YvcuPbQXQPvvAItwg2MQ8OCPhvYj9iJHgEi7wcT5wz359Ovo/jPf36uK60vZvD3gHEQVTz4acbWX4fJO0EivJ55DVXm1wOuA7jukeu3714ADyMZxzHJXwk8l2X5zEDzNunPy4zvC13vnoEtdejdlkXyWV2lN/eV5cx/vJSLMg+ZNLY2Fj63uU30cuewcdYot0W+5wDJRkj/XOdAbuQQC/kCtcQKc8YpaIT1u1jP2CVNUWXZI3cCUsfIujM57w7fhHLme1mw/IbbGB0J/rE3NM/KMpAxu/6QlwTd4Qz16wnMpsgT3+2BjSg/aDLQsY+9KEP6Rvf+IYeeuih/e7PNnr66ad1zz336G/9rb8lSXrNa16jb37zm3rmmWckbT5sZ86c0Sc+8Qm9+93vliR97Wtf08mTJ/WNb3xDH/nIR656H28kcuOBOt4jIyPJGHNvoBufDrgTBeWCm5RcP+zMgY0oJCOIjhAGRHdB4vU+DyPBzAF0UQr8wChXVvoVVJE6nU5yZlBfnahzBCWCuFaraXFxMR1eSnQiRjqe47GxMU1PT29bn4MgDOkLFy6o2Wxqfn5eFy5cKKTa5wiwhShLDnUdGhrS9PR0AtT7jbraC/FcNBoNtVqt1Od6va56vT6IQv//00F7wge0RQclv6+F7PZIbaJzcAhGQ4JnNYLeHq2OEzj+jqwrIoj8npVKpRAd3u12UxSMR3VJW5FitOPGXayJHSkCmJK2pdi6keHAMenCXhva23SA26NfHah1486NQGSXR7zxPS8ynTy63vULdArAaeQiEVAOxrrOQTtRZ4lR+hh53Mvvxz38EE6ivYhMGx4eVr1eTxGD7pxm3Mhdj3hmvdxZwhhpPwK5OIzpR6lU0tLSkhYWFlKGE9dxWCflXoiar1QqSSbGNYpzw71Y46mpqaSzMZc4qnxP+R7CSPdDa7vd7rZa5Dmdgjnhu0ajUZjTqDNJxYNM4z5mHA6iMwcOYkcHiuttfuAc7fFbL6PiaevsDe7F2PlNzqnDvMNvCGJwMAme5c+k8wAn2vD/41xHJ0g/NJDf145uZPl9kLSbHn4tbEqXZWQX5Qgw2EFs3vkb3QVQmXadP8NLc5HmHgznmTXIb9cfuJfzMnQR5Buy1LOkuA9jkrbK7CFzXG/LOWDh07z7Yem+fiMjIynj2kvQ+JkXzWazALbSv5y9GfeGy24H+ZFlRL1L0uLiYpLfBM65HuU6jGMt7pigfV8zx16Qd5SFc5nlEfxRfniAA3IQGdhPJDdrgqyr1+tpz3mJOpfPHkzh+zi3Xxln7APz51gLAWweid7PM90reOVGoYH83j/qG0Snnoy0ySy+8pWv6Lvf/a7+6l/9q+mhgB555JF96+B/9V/9V/ryl7+s/+//+//0hje8Qf/hP/wHfe9739OZM2ckbRaLP3funN75znem34yPj+uuu+7S97///awgJzIXqtVq+9bfG4U8+kkqejNjJHqMnpOKDynfOQCP0eHGQiR+57Ukc5F2hx2UjFFNUjEiK4Iel0tuiKFMEMnlgAAKDgY48wyIPjQ0lL6TVFAo9jt6OzcGqXgwCfVIPWJgN6K/UbCS/eCCXLqyCKxc5IeDMnGeBzQQ4gdN10J+Xw3ZLe0uv12mOKiaM8IcZHMDg2ugaHhIWymrHl0alX2pyP+d18P7HTRFlhLN65RzrLrxSp/cIPbfuXzuFQHrsjQXpe7go/NYlyERUPXoH95j5lmk6KTPRWv7b2MEVXQCsC+8ffrjwGksueFRbow1Gq4xSssBffrkcs3Hx99xnTy631OVGZ8DBy5/vL9E07n+tBsw5G2xB3wv5uY8RxG0djnrn+eIvcVYGCtz7FGUZFTkwOG4T/3Z9e/jvnAng//va+zgDvPuz2t03MTITdej2S9xXWLUoPOm3PzH567XNREgcD7YLw3k98HSK0l+v5Ip8t/dyGVL7rdR7sPHpC1eBJ+N9rvLd2wulwsuo2k78k+X4f5/BGwZS8x0ygHoubG5UzW+O7CNTMS5IG3Jb3c2RF4c+elu6xP75lgK98Qedeetl0Dz/vmZJt52XH/v114zjLzdqFPEKPR+xu9z6gER7gSXtmdj8hmYkct8yPvowLrrbLn/+wXQByD6zr8d0Bb1DaL/6Ec/Kvz/X/wX/4Uk6T/+x/9Y+Hy/Abb/6X/6n7S0tKSf+ZmfSZ6xz3zmM/pv/9v/VpJ07tw5SdLJkycLvzt58qSee+65bJuf+9zn9KlPfWpf+3kjUgTBpeIhUNHI6PVg+jW05572nFHlQjwKSI86in251hQN4BzwwXU54w7y6Ed3Priyk/OEI6hefvll/b//7/+rcrms+fl5zc7OJk92p9PRSy+9pBdeeEGtVit5ir3PtVpNzz//vCYmJtRutzU1NZUOLPWD+faTXOjVarXkQT5//nxKfevXYcK8c9gbJWomJyc1MTGh2dnZNM87RWrtRr52lI9ZXV3VxYsXtbCwoIWFBS0tLaUa94dhjx4GGgjxg6VrIb+vhuyWesvvsbGxVL/Ss56koiyLQLHXMI+UA8Rpg2wq7gXYyPUYRH5myE5RX25wIQ9jhLbLSowQB3lxGEraBi46sIuDgSwuN6xzRqxnTRFZDI/1CCru48+3G0x878bo2trmIeH++crKiprNZjIs3bgEsIyOkVKplKLMPNLNsxM8eg9+TPuA0l4KzPtN330v5MDhqMu4YyE6ywE1+Y0f9IYOQFk11rrb7arZbKrVahWcyqVS8eCuVquV9hJrRl98XBGkj3uzF6gQwRMHAfyAegxoAO9ut1uoSc8z6/VPO51O6vP8/LzGx8cL5WV4tv0sAObL5zwCJzlQn/H7c4ocZ7/RHvfxkkgOiGPwU7N3aGgoRRMODQ2l9fVnc7d6u96u/8YzQfx3sf3IY6Ju6df2C6YP5PfB0itBfu8H3ejgl5TPGHH7LcpX5/seHBXlc5wvl1lRDsLDh4eHtby8nHgrfAkZ6k5d74cfku182bMH4Xf+mdf0RsZ4SRQHayMmga4iFWWB4wtRh/F58Pn3d78eWePBG8vLy4nH069ms6larab19fUUIOb9pZY3Y/fyJ5HQSd0Z4bY8GXe99oyP38vmoRdxIKcfCtuvE4EyrMhy5P76+roqlcq28oexjZzuyJrF9aHE3erqajqHzvu+U/Z6JO9PxKFuBBrI7/2jvkH0//1//9+vZj960uOPP67f+73f0ze+8Q296U1v0o9//GPdf//9uummm/TBD34wXbdbxIXTgw8+WPDs12o13XzzzVdnAIeM9qJkOCPeCwPKtQPz8dShGD3W6/65Bz6Cy26gsfaXE2FzueReeP7fSdjsxsQckPFarK6Y5EB0HBPnz5/X6uqqxsbGtLi4qCNHjiQjd2NjQ+fOndPZs2dTHbgokBYXF1Wv15PAa7fb6YC0GL21X+ROgEuXLun8+fMJBKeP/TJwruX3jUZDw8PDmpycTCe8O+B2JePxe3Gw3MWLF3XhwgXVarV0Oni/DoABDWi/6VrI76shu6Xe8pvDlAG2y+WyJiYmEl8hcgdjIILEDuJJW9FWLgdpi+/hIdzTQXsvQeKHYGMAACy63PBoWzca/X1sbKxg4LrxhcFQKpUSsO9y1kE/XtGpEME1r0nq5ca8zilArpepyEUL5aJ8HAh24JPSZB5FhDFOn/ywMV8PZB19GhsbS7J0aKhYZsQNRk8LZ80w8pgnjz72eQMc8HWR1FN3clmGnuJlb9ijfiiXp5ujAziIPj4+XgBM3OlA37mfG4lEu7H2bjByP++zv/MCLPGoOpwu9JH7O4hOWQAHNQBFaI96qqzl1NRU4fA19itgRXTyRGdF/J206VRpt9spSpB94XMBQOGlmTyjkL7inAJEj3Oee/b61bM5A8idG1EvYlwOkLFnfA9IW4BBqVS6Ij1/QFePXgny+0opZmr0A/Zdb9QLQM+N1e3gmE0DP/DvpGKQnLeTuz/yP/I0+BoO1Rg4ALlO4wenR+efH5iJ7uIOzuXl5XRulmdd5xy/7gyN+ySHMeScE3F/xwhz/x7HPvILncIdtn4GGn3gQGuXTa7HxEymuE6ur7qMyu0Z9oGXsAOM9oO1PRtsN6IvgOjuPAdDkFQorertuk6cy+D2MTMOQHMH0VutVpLl/fIC9G50OddJbxQQfUD7Rwd7WuBl0P/4P/6P+vVf/3X9N//NfyNJ+it/5a/oueee0+c+9zl98IMf1KlTpyQpnR4OnT9/fpuHHOLBHdC1IxdMvZSuXp7gXDvSdmG431kRvSjH/HdyAOxEHmkUI7XcEYFylGsfIw/BQW179zRjLPYqMcI4NjY2CqVhqPmKkPGIAan/SCbvu4NK9CsKbl/Tvcwnc1EqlVKdNJQEotkcrHJv/k5t+p4DzPDDYjj0zQ/C69XvqITG+0fHDH24nmngCb/x6WrIbqm3/HZjrFdkuRN70MFyaTuPif/DSyMYJRV5s0dhecq0GwA5OZGLPOeV64tUrCu6U2RpzgCP3+cMLq/L7fVN3TB3WR5BZu8v0b/83vvozgTvj68DkcOMFeM7GvE5WbHT/27wu8yJUXa9ZBDGbdxHOYM77jfmgfn06DHAeWR6rE9L35i/CELEufexApx6eT13zHh/fL4iUI2cdceKOz8iEBHXzPdddPSw1wC3O52OxsfHk+z2yMo49vhs+fywz7jWDyBzZ0BcX/6OjqHY91wmiMt6f/fnN9d39oHrALTtfXJngQea9Mok8PnvFcySo4H8vvHpoOW3tD1Lyd93o1fivorPYZwz+IGXzoivnfijt+XkDm3nZfA/5zc5Gc5n6GwuW/0MkX7GHu3tXs4TH2evveJ9jTogY+w1P1HvQy7BZ8nYQ556IBw6aHSqRj0u5yiKz4tjA1LxEE9vGx3HZR0gup8NQz+j3OmHfEzI7253M3CBA8vBKVzfcv0jOkR8jV0P5dySWD6mF04SyfVHMsmYq157zef9eqKB/N4/OvQgeqvV2mYIOpO+9dZbderUKT355JP6+Z//eUmbyvBTTz2lz3/+8wfe38NMrvRLh+NhuFxGBEPDCHQjH+MwV2f9alIETqIxvhs5mDs5OanZ2VmNjIyk6Eo82evr66rX61pYWMimoklK0ZZDQ0NqNBqFg8AQYp6WH8kFVK1W0+rqqhqNRhJ+pFQPDw+nA8wQPjlFw9sElEFA035MccNgBkSgDea6H484wpUSKxsbm4euLS8vq1araWJiQkePHtX4+Hgak3v6c+254sG8rK2taX5+XhcvXtTy8rJeeuklLSwsJGWkl2JHVBkH/XFwmkeS8XsOR3EF6HqlgRC/8emgZXelUlGlUknPsFQ0tKLh6MYBRow7sqSiYcS+y9WH9mhXfuMlIShNEvvlQGW3203K+/DwcDqEyc9w8DrbGCHwaZ9jlyWRTyI3ATwlbQPdfHycSYFx5b9z4NLTsJlfN+x83ESREfVMtJSDkF6ug98CcpJ1QBYAEVq+ZoyV+eVevRwMnU4nHUTlcnF0dDRlL3m5FPaRG97MQQSNeTG/7lTxSG9kebvdVr1eT/f3Q76Qh4DIHNCKLGIv4Pgm2pv+SUop8MwX+yk6Nbrdrur1ulqtVmFOfO96vXX2cS59mj3pUdpO6DpcG+Uf14+Ojqa5GB0d1erqajrojsNcacOfsyg36DMylYPIuKdnSNBv5ogUe3+2uD+HC/vzGSk6UZgb+uQHAfpeJiAAAIqsFI82dzCK/Rb1bPabA/A7HWK8U//3SgP5fX3QQcvv6Pz2LIp+dH3pyvblYabosJOUtfty4N5OTlD/LH6eI2SaR6G7w5DSYx4E5jIcvoOtxXWxrj/3cHuPz+N+gO/5a6c55DcRFI59dceo89SoE7ojFrt/ZWUl1fqPmUquF0hKstx1AklpzQikw0YE8/BzWmjTdT4+W11dTc8tbXuJHeSrBxAQhe59dhkcHfI77RdkVqPRkLQlv8ESyJifmJhQtVotOIGjXuG6O3okZevq9XrCD2q1WiGbbad9zVqUy2WVy2UNDw+rWq0WZKu0pTMxPx5Ecr3xnYH83j869CD63/7bf1uf+cxndMstt+hNb3qTfvSjH+mRRx7RP/gH/0DS5gNw//3367Of/axe//rX6/Wvf70++9nPqlKp6Fd/9Vevce8PD+3Fe3g9UQ4kccP+WvTDlZte4GmOHDwdGxvT5ORkEi6A6KOjo0kAYmRHBUMq1u9qtVqXPSaEnafkYSRivHpasBtl0RiPIDqGaq1WSzVeL126VAC3IrDj4ES/Y6DfzWZTkhIAgwNgYmIirZlHRDAO3n1NMXKp3buysqKlpaUEoi8uLmppaWlXwBuwCNAMQMTLDhCFCIglXf+pqgMhfuPTQctunHtEuWGE9Xq5zHDALwIH/hsMFI/ejM5S2iaSxw2SGO0ZjULnB14v0kFi72cuciryTAfSHQT1e8ZIJyc/2BEnrt/P+b4bw26AxM+Yd8DI1dXVZCxiVGI4ukOR9pgbnA6sOX2LBjPjjZHiPo/ICnisG9Ge5ZCbIwfJ43fRCCcqLRrrDoYyJz6/Lj9JgWYOKN3DweBuJDN/EVB1kIJ58vrr7gzya9hHyDY/BI25Rrb7fva587JHnsnA5w4mMBZqyzJeStwAHnS73cJ+8bHS5zgOP+ANB4rrH75/AVicX/hzRN98//r4HCSPYErOcR/5CX8DVrF36Zf3KTpunGdFAC0+B/3QQH7f+HTQ8pvnNpZRgDe8kvdNtEekfBTyTk7D/SJfF+8f/JaALZyIninlwLEHXsWoX2878i76kHMg7MUu8utygDnvMes6OsH9MFJkqsvf3D2RER6N79HoDiD7c+EyiPZiRkC8l8sFL9HmEdz0n3fkt8sRX2fXWXYj+kpkPvoa8tsd0lF+s5703bM5YxCbg+h+XsxuAWfuxEavqFQqhdJ4/ntvL+fIuh5oIL/3jw49iP47v/M7euihh3Tffffp/Pnzuummm/SRj3xE//P//D+naz7+8Y+r3W7rvvvu08LCgu644w498cQTmpqauoY9P1zkhuON8hBgADjA63UqMVr6ja65HIpAjL8c1O+XEJZjY2MpmqlarSaglxrl1FLD6+3C2wGiy6VyuZwO/jh27FgC9AF5XWEhag7hxzhykX4upDG+6/V6qkFLm55m7AaxC1Rvt5859nS1xcVFSUo1kycmJlSpVFL0DWCOtP0wExQP+kzE+cLCghYXF5ODwBUACCWkWq1qfHxc5XJZc3NzaW4nJycL0R2s78bG5mGr9XpdKysrWlxcTOvvh/oNaECHhQ5adrshJ23xG4C+6NDyCCp4lQNkUYGHUO6dv3tqLKA6gHPuntKWIgvgRjRMpVJJ0cPxzAbnJ/S7n9TnGF3uhpjPXzSMpWLUkht5ETRm/C4PvXSNVOShLq98PA64el/cuehR4W6AxnWDHEB3AJMILQeCXW75/nDjOgKyDopLKhjGMboesJgDJ3GybGxsqNVqJTkFeO31OX08PjcOAgCGk8kwNTWl6enpFLVfKpW0uLiooaGhBCKjQ9Xr9W1OmHhPN2jZH9FJE/sWHT45R4TvJZe9ExMTaX59niSl2uAeXOAOD997rif4HkWOItP53Pc6+84zDjx4oVQqqVKpJPk9MTGRotaZJ69R7387D/E9xf09ujwGJ7iDhX2Uc6rxuwhQ5nSsAQ1IOnj5HWWJy4nrfV/2E7UbyZ3g/vzvBpwftrlyvglPhJ8iw31MvubY764/cB3kEei7jT0H/uaclQ5y4xj1mu2u//mB5K7v7dSXXk4I+DDBIKOjo5qentb09LRGR0dVqVQ0PDycyoUiv4iMRn75/V02u6zhf88kc70M2Rd1MZ/HuBY7kctVl9+dTkdjY2Mpe80dC74P+L0HsTmITiCeYyKuq3oQhMtz/p6amtLU1FQKrsMZxFxNTEyk9oeHhwu4i8/ntaIbCdu7nujQg+hTU1M6c+aMzpw50/OaUqmkhx9+WA8//PCB9et6pRvtIYOBATQSuesA+kEA6ZQn4cCQWI+rH3Kv/OTkpI4cOaKxsTHNzMyoXC4n8BkwXVISHtwPg5j+XM56l0olzc7O6vTp05qamtIb3/hGnT59OhmHpVIpAcb1el3/9//9f+vcuXMFxSACP8xTTGF34e3XkuKH8PMIKrz/rG2/41xfX1ez2UwR3pcuXdL4+LguXryoiYkJTU5OampqKkW6cX/2jqe7Ufu83W5rYWEhlTxoNBqF6+K8Dg1tHjR26tQpzc3N6ciRI3rNa16jarWaylG40uwKw+LiohYXF9VsNvVnf/ZnunDhglqtlhYXF7elzl8PdKPxogEV6aBlN5FNbtxg2MRDPN2Aox8R1HWjDIPB66y7oi4pORQ5NwIQPQf+0j4GJYA5PMiVewi+FyPB/XupCAJHuedGpDucuS4HfEtbhhgyLde/HN+LBgb/x/r18HgHxx384z4Az4DEbuSy5hjU0aBxUJS1BKQEQHWgkfmLfYk1X6ODodvtqlwup0h6ZNnw8LDGx8cL0W6S0r1brVYy0ig3xlgBv732uRvKbnhKW6WNxsbGdPLkSU1NTalcLmt2dlbDw8M6d+6cxsfHtbKyovPnzyd5trCwoE6nU2grOj4AbHvJHM+qipF2DgzF6Mo4916GgGcY4xsZPDIyomq1qpGRkZSOjbOA58wdZIzBDwzlGfbSazFFHjABZxeZAP5sV6vVFGTgkXQe8QfgghMcvSFGLdJXdFp37Dug4VkY7Xa7ADxE8J2yR65z0SZ93otMHsjvG5sOWn6jb0Ps/+uVnL/xd7QHewFf7thyp7JHZHs5iWtdUiIC+K5nOQ9lDPAtxjY6OlrgldEmZB+4LcY9kA25yO9ILoNyQDNzC4jt5VTpp8t/dD4OpUb36wdEZ0wRqO52u5qcnNT09LQmJiZ08uRJzc7Oanx8XDMzMxoeHtbS0pIWFxdTmVLs/VqtVgDFc4ENvka5d/rk+o47cLrdbpqDONadgHXPOFtfX9fS0pLGxsZSuVnPxHb5TXvr6+vJ1uewUJwIGxsbarfbqeyg63/MLzojOgP3wOaemppK84vu5ror+tna2pouXryYHBnovbG820HTXoJqpIH83i869CD6gA4P5aKHpGtfh86jdWBoBwWe+/1zCs1e58WVJq8XNz4+XgAhvGwBwEKpVEpGp0dA7bUPpVIplZOZmprSkSNHNDc3tw0AQnBLKhyYgpCNc+/ghqfm+31jxJWDKD6nGxsbPfdjL3Kgw/tDdD+RWaSXAVy44obx3Wg0Uo00nBgoU70cJw6iEbU2PT2t2dlZVSqVBKT72NnPrhCgBFC/1RXr64WuhGdcT+Mc0MGRG6qQK/lxz/mzHSOb+K07BXnGHODyqHV+C5AMSO0GSHQu8jxHg82jkpyfINt2MoB6zY2DlQ4m+1y53PA57XUvnxPGHyNyHID1uXU+HvvpTlPvRwRhcyUwdopI8/aiwd/LCREjAHvpQDGaK655fAF40l8MdNbX9Qj4PO1GY83774Cvlzgi24pIK87fcGeIR0e748T7gUFLuZkIiK+vryd9pV/9y9vg/263WwDzXQ561N3IyEhBH4jnp+RAdD/wO0a3uY7iafzuDMAAdxC9lxM8gtOASO4Qi+P2efNnNbf3XEeK/CJeF/ex85nL0aUuhwbye0A5cgDuWtuUV0r92Ca7fe/PNEBm1AngMYdJ/+/VDweLo33nv3V9gs+ibhf3R5Thve4feaB/5/dCjiCnY+Q8FKOj++WjrnvkwGtsf2Q3ADA1u1dWVtL5Ie5Y9Wh45JuD6v0GW7nNvRPtRWb4eD3AkBrpfl/mk898bJ1OpxB97wGU4A/+fPgzRJDixMREyhbDCT81NbXN8e/YDnOxurqasuPIfHNd9lo9h3sB0Qfye/9oAKIPaFdyD+zk5KTK5bKkrQex3W4XInAP2hvn0cgrKyuJkXk0OobVfoHqbjCTek1qNB7SfplNFJwYaLwQ4kQ1ElVEyhEgzPr6ehJIy8vLBWHUj/D0qL5Tp07pZ37mZ1StVnXixAlNT08XvPhzc3MaHx/X5ORkikKv1+t6+eWXE6CeA2lySpLPgwu8XH1TXp6azzj3Qu6VX1pa0vDwsBqNhpaWlgpRX8yLVHQCsMaeDo+y0suAnZmZ0dzcnKrVqt7whjfo5MmTqlarOnbsWHKW+KGFrmx2u13NzMxofHxc09PT6nQ6OnXqlF5++eXkJWfvXQ80EOID2m/yyDX2VzScckBSBFMdGM9FM3Od11vkvh7x7rwb4wfDKEZXR3Az3ssBwPjuKcSx7AzvXkPbo5k92hV+BvCPEzGOnXmLjj4pH5Xtcx3rpHrtdzeWcveRVEjDjdFGbvD4uhGFJKkAkALCuuOTveFlYqIcdmeoAxnMgzsB6LMfGE2fJiYmtgG909PTyanbaDS27b8YHSYpZTxgUNI+533gnC2Xy8lZMzc3p+HhYbXbbUmb5ds44HtlZSUZ327w+h70qLJoPJZKpXRYGP33NGrWwZ9R32Nc79FuXkLOI8MA0IeHh5P8Q4/y6EfmmH56Fok/79GBxlzjuJ6amkoZI+wp7uFlmWIwgLRZOg5Df2hoSO12W81mM821Z4YA4NMX5xfMn88Z6xAd6j63vmcw/L3OLvpyPzSQ3wO6GhSdh9cD+fMO35K2y2+uzf0+Aqkuq8fGxlLWFfzb+bJnwOYOdD4ociCxVNo6GNSzi+AzQ0NDiddJKugysRxqzDBE98LuypXNc4o2Za48CX3zyHleHBjtv3UnODoCPH10dLTA23Pkcgm57fcfHx/X1NSUJiYmND09rZmZmfQ39vD4+HgaO2NcWlpKc4Ecd7t7L2vJnvVDruN6xTZdn2Ff52SK28lkh5PZHfXU2L5nDroTw4F57wfY1dTUlI4eParR0dFkh5PBhj7G2TKuj0KVSiXpGKXS5oHu9Xo9YUBEpvuzeZDkAYC70UB+7x8NQPQB7UowmNHRUR09elRHjhyRtMVoKSfhXsCDJGecGJGAGAjh/SaYOcY4woxyLrt5xZ1cyLv32Q13DB3AWg4c5TsUDwfb3djtF0Tn/idOnNAb3vAGVSqVVE7GidSyyclJvepVr9LGxoZefvllvfzyy5etxO0EoscoFY/uiqBFP+SeeYRiBDm81AP3jiCCA3C7jW1qakqvetWrND09rdtuu0033XRTyjLo5dzxz8fGxjQ9Pa21tTVNTEyo3W6rUqno4sWLaT6uFxB9QAPab8oBzLkITucz/M/z67wyB2LDZ7k2AsYYHNIW4OupwUQVDQ1t1TwnMgawlwMJ44FVDgBLxajvmHXkkVvwdAxC5CHXuLGHAeAAdy/HhEfxR8eDg7BeBsN5OjINByJtxTI6/O3gqI+Z9pDHHoXF917GgijmZrNZ0FsicE9Kr0cdMyeSCnLOo65j5DDr62PDCPbrSqVSAmcpzZGLbooRfNRO971BSRUAAAB0xjI0tFl+hFIiABWLi4uFLDPfe3HMOWLs/D5meHnUZJTf/nuM6LiezCGHeXMfgAc/aNSd4HyG4wNj2NckggTMI0Z1tVpNJfZItfdn358pvyfrzGGx6GfLy8saHR1NgAB6CHpHfLZjpHm3u1UH3SMno/7tgL5HgvLd5YDoAxrQ1SAPbrlewBqeHZdlbiN4hm4OvI0AuoPoOGBx3sHTaXdjYyMBefDpa1na0UuUMGbs8JwT352mrl/FoAHmhDGurKyo2WwWApp2AtEBRT3rJkZa7wSiV6vVdI07TPmM9uHp3e5m3e+d9jBtMV50DXQDAhap1U3JUfSgarWaSpi43kYgx5WclcXvfD2jbNqJfH57ge2sLaCv64Ruf+faJBLd+9qrH6zj5OSk5ubmNDExoRMnThTm0vemj9MdJ+VyOekc6E/Uco86WL8lVfaT2N8DOlgagOjXAcXIuUjOpPZT8YB5wHzGx8d14sQJHTt2TNKWkk/qLocrNhqNAwXTfewoEcPDw0mZ4O8IVO4lKj2OJabtexT+XhVAZ+AuSJwhe5qWgwpSsZZgrC3rwEVuHE4e5eZKRG6e4rUxze16Ixf2DppL20F0KR+lmiOfJxQigJJ4qE4/bUlFUKhcLmtycjJ55/fqTLhWNPCED+hqEc/lbnIxRsC6UefAeXSWxb2LfHblG4Ma0BXA3EF0/z7WjKYPzv/53w2QOF7e3VHg9wdMdYMRw8RBvtiX6CzgvjvxG9p1A9ZlUQ7Uc6Mtt0a91tsNbwf9fS09kwjw3EFa5+eM3+eJz2OfHHzN9d2vBwR1Yx7wstPpJMDBjchcVHMvYk18LPE58D6jc8S/e+mcXnO71719LXMZA7k9s5N+yz7yPUnggBP6H/pelN9u2PpzFOW+t8e46EfUjRyEj/OSa5sxeLo+DiYABa5x5wPj8HWNkX5Rb+lXv805Nnajgfwe0NWiXsDbtSSX8ZFPuFzLyYf46vd+MRIdR165XE7PPc8+4B66AnzpoMn7leOH8XPP/OHdX5Bn2rkt7KVLetljcd1yfDLKd3iny0LXBdDb0G8IXiPoYDfe63vE28+B+n6998OdArn77dfz43J0Jz14P+7jGew5HQG52G+Qos+V698eWBIDPHJ7ge/R1cgWpD2AffS7fm36/aSB/L42NADRDzE5w9wJEHVPd7/g3m40PDysarWq0dFR3Xrrrfov/8v/UlNTUzp9+rSOHz8uaetBfPnll/XCCy+kQyb//M//PEX4HiSQ7qldpFVjbBHpRxSWGyT9GKbcw4U39+LACU+L75fwOnt9Lg4xIV3Nvfq+vihTrjwxXgRHTMXe6RBOj5r0914gurSVpVCtVlMq1OVSTuF0I3Sn7/eLvM3c3t0JlMsRafWjo6M6deqUXve616lcLqeItpxS3k+bzPfKyope+9rXJscVkYSHXdANhPiA9pvgEV7rOCrcOaPIjT4HrD01mmfUQVo3mgG6OHgZpxmRaR5p7iC2Z77QJ+7RbrdTpC2yIEbNOpAWQWDuPT09rePHj6cDq6nbDJjfbDbTIVUvv/xyOlwSWSepUFfT9Q6p+Dz6XAOekzUVjb04dtpizvmNr2vOucFaIQujoY6sdv2AsywccIj7hP77uxu7/Abw2fvHb3xc7jSgRAztwss5RJLocdclfJ5idDHz4KnNzAGR90NDQyk6zR3tDgp7STH2PVGEPhe+F3mP68g9cQoQ3AA5SOxGagSHXefl3nzO+Hw/OMji5KWUIkDjzzPz5hFlgCWVSqVQnxbdm2c2ljXy/ru+STt8vrKyovn5+YITC/ISOL4uOf3O9bKoW8T9mAPg+6WB/B7QftNOAOy1JOxv3uFRUm+HaYyqjuWX/NoccOq8Zm5uTqdPn04ZMJOTk4Vne3FxUefPn9fy8rJ++tOfJr7AmUkHQe6oRF7k5E90BEpKkcjOy339kaedTqcgvylh44eKxrZdz3J9zdv3aGN3bPuhy/wW+YF97BgDWUXDw8NqtVrb5EyuXznw1uXEToByLE0TAfcrJfQEiHVhDd0299/4tbm+9yJv38F0yP/vd1/7Wlar1VQWZ3Z2VtPT05KKNeWj08f3jGNwGxsbSX4TiY7OXiqVrklG+F4cZwP5vX80ANEPMbmhH6O5pO1MrV/vXD+EwjA+Pq5jx47p1ltv1ezsrF71qlfpxIkTkrYexJmZGY2NjWlpaUkvvPBCUvpJtzkocsOW+2PAETUEU40RA73IAfQYyeZpU9xrLwCmG8Gkh2HEIkgYR2TyMHUMJ4/6wmD1NCWPZurVPxfMMSptp/7HGqT7QVEA50Dzq6lo71fb/hyR0UFK5uVG7pdKpVTyYXJyUkePHk3RKrmIhsNIAyE+oP2mKAcdkPVrchFJEaT1khZu8ESwineyghyQJOMEkHRoaCg5S3vxSe8LMoYIcR+byzGpmGHkxqGnI2OEV6vVBPJ7CvHKykoBuPcyLxG43ukZxPjwOfHSJdG4dGcGMjam1UZHqvfDAXD/nN8A3noEOq8Y2Q8AQD9zaeD0h/66fPXo8eg0iFFRHgEOEdHmae/cq5fD1T/PORh8XtETPPNhpxcAAWsRHb8R2HWj3nUx11NdPkWngH/mDg0HUnLgMUR/crWB/Z7MfW4f93LYO4jmelrOqeT7IwIpzCvlaiqVikZGRtRoNNJe83n1PcRauBPFHYD005+d3J5xHYr+5WrQ9qKB/B7QflN07BwWcrvIzz2Iunbsf3QKROrFe3i+cb5XKpVUzmN2dlZTU1MFXgsfabfbWlxcVL1e18rKSsHheFCUk88O7jm/jrZ1/N7nB34PYI7N7ZHpO5GDodGx7XPpIHoE3l0mIgOkLaAWmxsbfDdbzPdQ7toITjvP9b4eJOXscPoTx3k5fH6/bXpfNz9QFBvc5z63N32e3eGPzry2tpaCUsgsd/vgIGkvczeQ3/tHAxD9EBIPNQ8lRqjXE5VUUJ5RvDG4c0xO2u5p60UjIyM6cuSIJicndeLECZ04cUIzMzOanZ1N9cH4/ezsrI4fP67x8XEdP35cc3Nzqc7jtRDiklLdNBeupVIppbW7F3c3hufRahjeq6urarfb2zzhewHQnbl7apEfZLZTH3OGp9fhBUSnfYCDXsScSSocVsMedELgrK6uqtFoaHFx8YojH1wBRTlyQMOFN5Fmhy1qJVKsTQuI5obx5RLKW7VaVbfbTW1Ti/awGSMDGtDVJJy21CfsxZPhZfCPyNd5duDRTr0iUzzCGCPLD3L0Ei7xcEVpS2nn2V1bW1O73S4cYByBR4+8hR+7YU20LIdKEo1DLUhSxBnjysqKarVaOugJQN3nLxfxjozhOkBgdBbG7ICfUwwW4LMYvcfvkQXuUIjgtv/O5YUD6C5DWItoxDsIzdgA46PD3PeLl2dzsNbBeI+0djDZHdn0w9fdr/M5ZZzdbjcddNXpbGWfOcDBs7KyspIy6fiMCG9fS8ZECSKvPd6rjw4u5VLc3THibTE+3xdcR9/YT4DKUe/wttzxFZ0b7sCJ/eb7XsEE7MUYnRodRL4n2Qvckz3Ps+ttx4j0OEeR4vMS55z7+hjpG46Ja2H8D2hAkrLZI9eKetnfPOtO/nx7ibDLCWxzOeiA3+TkpCYmJjQ1NaWZmZnEd7iejOiLFy+qXq9rZGQkZUfvh32Uww96Xcf9yNDhtwCMO8mMqF9wHTw+OsB3KuPiv48ZfNFujLIBGRzLm8XP+C17Y3R0NJ1Z5jKqV4R8nFcPAHQ9lheyHCcCsrvZbKrdbhdknWeo7XUdfe56Aft+Te6znRwIB0XITJ7lXoEC0laWqffd5aXrDFEnYl9HR81B0n4G0Q6ofxqA6IeMnFm7EU7kKgzemSOe2U6nkw6ZiILDmacz7F4P3fj4uF71qlfp+PHjuu222/Ta175W09PTmpqaSieFc38OP6nVanruued06dIlLS4uqlarHXhaSzSAS6WtA50w/mCogBke3e/tuCGJgueecISWe8L3AqJzX6KISXv3ul2e4szvIDfMnclHcGhiYiIZVCsrKz0V1Y2NDbVaLa2trWlxcVGXLl1K0ZQTExOF+yPQUdzOnj2r+fn5KwbRPR2QfRsNVBS0a3WQ7V5odHQ0HcA6MzOTIkL3EvW1E42Pj+vIkSOamJhIqWo8m4d5Xg7aE/6lL31Jv/mbv6mzZ8/qTW96k86cOaNf+IVf6Hn9U089pQceeEB/8id/optuukkf//jHde+99xau+f3f/3099NBD+vM//3Pddttt+sxnPqN3vetd6fs//uM/1m/+5m/qBz/4gc6ePatvf/vb+rt/9+9uG8unPvUpfeUrX9HCwoLuuOMOffGLX9Sb3vSmPY/xlU7Ly8vqdDqJx/kz4OAyvN7LvgA4xnJcHgnN/yjLfqYBPAq+TRkVB5I9ojlGj8LHOChqbW1N9Xo9GVLIcWSGA7wOirrRz4FUMzMzqS+zs7OamZlJkfIjIyOamppStVpNh3UtLy+r1WqpVqsV5hfANgKo3M+N1NHRUVWr1W0lQqjdCkVj1EEKeLw7KZgPJ86XkPIgv5cdoWSK15BFP/D1Rn5iBAN+OpjuaegeqeTZRxhqgKQuz4mQ94h0r4PrkU2Qg7EY6X7oLAZ7q9XS0tKSVldXNTs7W4hGL5VKaZ8Tvbi4uKhWq5XmgP74eMfHx1PU1crKSvqesUC+n1nXGPXtIIZHQgPkso7ovv7M0UfG5HoY68g8+jp5JL33lT56333/sB7RkR/XwZ07gD6uJ8foRJ4h+sRe8bWMxj77MwZDRJ2e3+ykH0XnwV7ooOX3gG58uhYlEHrR0NBmySV4D/a3l5aK2TDIxlivey/kgCw2w9zcnI4cOaJyuazjx4/ryJEjKYNseHg42RTNZjPZ3I1GQ7VaLVtOZq/kzuF+gDr4N2c0wYOR7w5GSlu8WsrzFa7DPvXsvN34EPzPA66cj7vzGh4LT/dANq5x57hHMUtKMr/T6SRbvpeN6uCtj5s+LS8vq16vJ/lWqVTS58PDw2o2m2q1Wmq325qfn9elS5fUaDRS4CJz7ToBe4t17Jf3x7mK69Rr/g8DnydwhQAz1hU9zANcPPisVwYZMhN9AEeXpPTZfgTIXQ7tRZYP5Pf+0bVZ7QHtSG6Q+cPuirQbXP5yQR+jeWJ60k7eslKplMDdGEXrIDRRzn7NxMREQVj2O+YolK6E3Gh0L66nc8cDSuIhJf65t5FTlPbKlHysbnzHF9f2M2fuIff0tFg7rRcBEmCMeoSazxfzsLy8nOqBcVr2fjDYCBB5NKD/vx8RFleb3BPuKYL75amm/Rj5eNgjylxpvJzXXujxxx/X/fffr0984hP60Y9+pF/4hV/Q3Xffreeffz57/bPPPqtf+ZVf0S/8wi/oRz/6kf7xP/7H+kf/6B/p93//99M1Tz/9tN7//vfrAx/4gP7Df/gP+sAHPqD3ve99+r/+r/8rXdNsNvVzP/dzevTRR3v27Qtf+IIeeeQRPfroo/r3//7f69SpU3rHO96her2+pzEOSNv4d+QTUel3Pp8zNF1u5nh1LzmNfPSyWG5854wR53kut3K8jr6gNLvj2PvuukIsQ4Ec5x3wP/KQnZ61GLkV333sOfnTSz9wh6k7g6OM9lcvuRDnNBcl6MDATgZhlEu5NfS94uCDj62XMcr3UYbnIuJy7UCMl2i1qK8gv1dWVpJTwbMGXZ/opVvG9xgxHcn3qjuQcjLe6+JGZ1OcJwc+vB++L30ud9Mz4z16zXUE0nP6tUexORARX7HvzFMEX7zNyEviWHzuesnPyDcuB1g5CPk9oAEdJLlcj/a18xuu9Xdpd4CqHxs39sHlNi+CrbC5CcDC9t7NDsjxop34U782BXqDy9toP8eMsJxsjzLBr9mL/ZfTsXZyBjiwHv/eSXZEHTHiMLF9n6v4inPljgNe2N8EBMTMS9cleq33Xul64+FxD+e+z8ntXns+ZwdEnfmw297SQH7vJw0i0Q8ZecoYAhIhGhlBZAoICbxlnk7lCj0CxOus5gCEGBHlhrAb2L2E/U6CJgK98dpo5PbjAY/EA483uFQqRn/l6p7FuUSgIbj9EClPk94r5YzUXgZrPwqXVEzxJuJe0jYl0D3xcb7wXL/44ov60Y9+pGq1qvn5eR07diztzVKplKLXGo2Gnn32Wb388sspatCj1pm/fpUeB7h8zRijK0Neg/SwUoxq2G+AO6fsXw9p2VcijPf6u0ceeUS/9mu/pg996EOSpDNnzuiP/uiP9Lu/+7v63Oc+t+36L3/5y7rlllt05swZSdIb3/hGPfPMM/qt3/otvec970ltvOMd79CDDz4oSXrwwQf11FNP6cyZM/rmN78pSbr77rt199137ziOM2fO6BOf+ITe/e53S5K+9rWv6eTJk/rGN76hj3zkI3sa5yudMCI8KjaC4P59DpD1Mho58qwlf/bIAIlOZqKOna8tLy+r2+0m44d2pO3goEfzSkqylSjdHFgMz6S/1IL0AxGR7Q6wE+GeS5nmeaWfY2NjqZazOwjGx8e1sbGRysU4mIn8ZMxukLjh7SVTfA0jgOFj94PF0IG8X8w9Uf7uoPD5dRDRf98L+JWUnMfO65GxvfSWTqeTzjoh4thrj+ey43yuqJ3OejFv0PLyspaWlrS8vKyxsTG1Wi2Nj49renpaIyMjyQhfW1vTxYsXtbS0lMbnc87fDgCzzz1SnTmIJYpcJ+HZcxlO+7nnjDWJ2RquC3Q6xTIosQSKy1v6G41d+uTt8NzyPMMTvAwOzwvXsv7MlfMVPvOIQPR0nvMIzPGbuP7xuomJicKz4+PmXsxjDjjnPnuRqwcpvwc0oKtNOcchMjPqBJ51DP/zjDTnB5G38dw7r4yOLeQT/YKv4Oj2Q8qHhoYSmE7pLeSkn9vgz5zz8ByG4Nf5351OZ1smWY5oA77i0dE5oNEj0V0eu17AfHH/veABLmti+9JWVhk6Ua/M9Pi/7wNkG/IOPS3+1m11t1/jPiBDDPndbrdTdt/Q0FAKcFteXtb58+e1uLiYdCtkDHPKfov9937vNJc5+XCQPNx1937v68+zl9aJjh2fG8865dpoT9Auei96ULTtB/b3K4cGIPohoxjh7Q9pZOxOKOT8DUiO0eDGoBuA0bPr7dGPHIgubYGkbvh5JF4vEN0FjRvZUhFE9dQaF8z9EtfiwUag+z1jFFA00BDenhJ+OYD+TvMQIxkjwN8PQ46OCdrCyOs3wpC9cf78eTWbTZXLZa2srGhxcVEjI5snxkvSuXPn9PLLL6vVaumnP/2pFhYWCoAM4/N9tpd589Tz6Nzw98NOKLQoZ3uN6tiNXPH3/XTYhfh+UCw3gTHhtLq6qh/84Af69V//9cLn73znO/X9738/2+7TTz+td77znYXPfvmXf1lf/epXk3Pq6aef1sc+9rFt1wC890PPPvuszp07V7jX+Pi47rrrLn3/+98fgOh7JAfo4HvRSHTDhXrjbtBiPEfqFU2EnAREz0WhQwCeKysrBYMUAzlGDOUyytAJIqALMM08uPOcMXm0mvMkd9p61HeM2gKwxME/OTmZHLU+T7xHwwJ+Hq+NDg5KjUQQXVLquxvG7tBmHYeGhtLBUT5XAMcRxMhRDD7AAcLcMhbmC53NAdJefNgN17iveul7nsLvY87VZ19dXVWtVkvGY7PZ1Pj4uBqNhkZGRlIE+traWkoFdweAA0eAAT5nADDc241O10NZ/5GRkUIJNh+vA+EO1nuKv+91D8Tw+/D8Ropp8zh5WKMYge171/Vv1pr1o0SBG+F+L/YOwAb382fO9fMIujmw7uC7A/6slY8rgns5ED3OB3/3G4k+oAHdSAQ/8fOpcrav26M8T/7sOg/g+Xb+zvcx08Tt3mjzwvfdGQ6AB48aGxsrgOhui9Nu5K0E6DlFDIDP6GuudGnOPvP/HXCO9pzbwX4veDBzTjs4jPdCbsvTP9pnbsAHHLzvRa5T8HsPYPCMRL5n7p2fu7x0J4q0CaIPDQ2lkjjNZjOt//DwcKqBvrq6qosXL6rRaGyTvcypOyi4V8SDdpvTa2Vv+3rsBT/wtXTHFmNlzZGd0paO7/uafctzznfMaQxQjPt7QDc+DUD0Q0bONGI0kF/jFL+LirQ/3P7yCLFIGPntdjsdcOa1pJzZrK+vp7Si5eXldKioCw4MS4/IjcBivD/Gh9c/c4Nxr2C2KwPMVfQAx2sjcH4lHrxIETTp9f1+3acfiqDH+vq66vV6Wrdms6lSqZRq3scoA3egRKVzr95k6eCFtyuZUZlyZ8pe057j/tmvtY17er/36NWi/fCE33zzzYXPf+M3fkMPP/xw4bOLFy9qY2NDJ0+eLHx+8uRJnTt3Ltv+uXPnstevr6/r4sWLOn36dM9rerXZ6z78Lrbz3HPP9d3OgDbJjUQ3WCI5cB5LWER5C+jlgB2U49tRbkTjJDqt3Wnr7w4++v8uy+O1Th717enRfh94mct5L/3h7fNy2Y1h3wsY93lzZ3s03J2nYqRHYHMn4yQatBiJLnO4zuUR//s8x3HQhvNvDKqoq/G7nPMjt0beL/rpBm0E4qMe59/znYOr/I7oaQDb4eHhQnk7NxR9/+bkVNyn3NMPjnXHuf/Ox+m6T+45Zf4cQPE57qUv5UDsqM9A3tcoRx30jmNgjQDUqT3rcxNfce7iZznK7cGYKcGa0i8HBSIw421G8O5y9LIrld8DGtBhpF4yXVKBP/u1vqfddo/Z2x7IFKOj/X7IQs8KGxsbKzjCAH6xjwkKcN3CA9akLd4JIAu/zI0j9mdjYyPxOgdk90q9gPbcXPv3l8tzcr/J4SG8YgZ4lFHenvct8tToXPH7ugyEfzu4zXfocehmyHtKqLqO12uscS7iNYzvamAbe23P58R1mlKplOT3XmzcuHfYt+g9BAJw7xwm1OuZ8L+vN5k2kN/7RwMQ/ZCRe84iA5bygKgLbZihp3VHYJT3breY2u5CcXV1VS+//LJWV1d15MgRnT9/XisrKwVGL20+UPV6XRcuXNDS0pLOnj2rl156Sc1mU51OJx066oeYkQbu9dsYoysWlJtZXl5Ws9nU+vq6arWa2u221tc3D8WKEVi7EULIPce95nWvRs9+kfflSsHWfttiD1GGB+VqZWVFzz33nH7605+m67rdblLamBuigKenpwtlejqdTjrwBMB9r3N4UEybfTg8PKzZ2VlVq9UCQNFoNLS0tKSNjY1CDdmdyJ1RXj5pvzzWPMNeK2+39LzDQPshxF944QVNT0+nz2MUulPOMNrtecjdc6fnabc296tvA8pTp9NJUVn8Hwknr7Ql84hazkWPw8vgi7l1cUe0R2ktLy8XQDvuD6jpzmM3gpwXe2YR7x5Blcv04UU0U6VSUbvdTvoAPIPfLCwspKwiDpj0w1lz5WpGR0c1NTVVqLVO/6OsjCm0GEReGo13zuDwtdstVdb5sGedObCLToSj3/k6afJOPsc+DtonYtGNPU+5d+PP9Tn64euUA3Ppg4/Vs/f43KPeI+hKMMXS0lKKUmSfu8EYgXR/h4aGtg5oRX5xn3K5nNrxLAs/BNbXyOcMis+W6w/INHRGj7bz/RAj6aNDgQNz2Q/xzAGPRmQvUQIGw5txEAk4Pj6eSgHwHNBWdKI50ILuGUF618Ejb/B183GyZ+BD3e5WiR+/p0fBMnbuy5r3K5MHRviAbnTiOXF713mAOzNdP+Q5JWI8Olnd+ekZ1/5cbGxspHNxqtWqarWaNjY2kv3svPLSpUs6f/68Wq2WGo1Gkqtkm5G5Bt+AD2CTO690nsA4vR758PBw0ms40LmfSGYoB6D7vXzuc3yp3+Cl3e7rYLlnDoJJeLAf37POUafz8nPuxHcdIuosLn9z5LrL4uKipGJ0udeHp0Sd771eNkS0P9kT7ijZC0gdKTfOfttxDIvz9wjMK5U2qwiw53AY9SLHedwpRQk98Knx8XF1u90ku7EhY+BJ7hWv26tzaS9zs980kN/7RwMQ/ZBR9GLH6KOdfidt1XVyIDRGz/EQoIDHNBSEWqvV0vDwsOr1ekonmpycLBj83e5mJFuz2VSz2VS9Xle9Xi8A7hxQOjY2ppmZmZQGXqlUCuVMIO6PMc29Pc0coyiOqR86SEB8r7RfoPleQFr3/sbMgE6ns+2Ud5+3UqmUDpL1g+rYx6wjbR1mcJA+Dw9v1nWfmpqSVARUWq1WAqP6URwjYOVCeb9A9MsV4teS9kOIT09PF0D0HFHLP0aInz9/flsEOHTq1Kns9SMjIzp69OiO1/Rqs9d9pM2I9NOnT192OwPaJAcPMVDd6HLA2cHMXlFjUIwsdt7oz3E09LiP82LAYwfC/DfRGOf+bvABjkrF0hOxHUrH4PBzPkFfOp2O2u226vX6tmh01xMwvuH11GaF77vxwf097Z0xx9IYGDjIeqLqGJuvXa8IZO4Hr3XgMH7vQL4HKrgDLvJmny9eucPbfH38M3/F/uwEoscI7bgHHUCVlEATnyvkb6vV0sjIiJaXlwul4+IcRTBeUnYuXIZ5NCNzHEuLxLb70WcdSO8nEtHLLnhGnM9FBKZjFCHzHL+Pz7aXciGajcjOHCAR59jf499x7ZlnwJhcVCP/M1+Afw5w5cpbxXv0C1INjPAB3UiU25POF/y91/PENc6f/X+343me/XdOyESc/isrKxoZGUkORfrX7W46y3Hq4cSEL0XdxUvV+JkmHnjgNoU7jomMh1e4Xbffcy8VdYmrwTPievBiTnzdooPaMYRod7mTlzWINlkEY6PeyX273W5hzX3vIF9wmOac004uZ3rhBFEPvZK5vZx2GAM6pZctcrt7t7r83Dv34vc8n2RXeDR+Tnb7eFxu838/Okqcn2sFpA/k9/7RAEQ/ZJTzdu3Hpu3FWHsB9HjCV1dX9eKLL+o//af/pOnpaS0sLOjYsWMFL9/58+f1/PPPq16v6+LFiwlAn52dlSRNTU1pdnY2Ra+Vy+UCc8wZmBhhnU4nXQvjm5yc1PLyskZHR1NENIe1XU8PuAtgxuvezxhx1Q+5wdoLXEXBkjYNz2q1mmrNYgjmhDjOEk8z7KWISHkl5TDT+Pi4pqamND4+rpMnT2pubq4ArhHFt7Kyovn5+b4ivonYkDaj19inRHZeKa2urqrRaKjZbKYozlh39pVMY2Njestb3qInn3xS73rXu9LnTz75pO65557sb+6880794R/+YeGzJ554QrfffnuKuL3zzjv15JNPFuqiP/HEE3rrW9/ad99uvfVWnTp1Sk8++aR+/ud/XtLmej711FP6/Oc/33c7A9okN36i4eNpoF7yIBrHbmT0OlsgKs7SFqiGMg5Q6aBhNGx5d3I+GUH0OCY3cvmb3xOtI22eHXDhwoVUIxxZQMTapUuXdOHCBS0vL6dINmkzAq5arRYi0T3itlwup4gtjHCPvsV4BHR38AHQPJZn89Jf6AV+f4+8zhmhgJh+Lc4EAHo3oBiPR6LnQHTazAHfABN+KJnvn7jGsQ0fN//7oVdugDsQ7FkSDphGg5E+RvKyMXGf+972DCqMea8VzN/MFSC0G/4OvBAlmXP8ePQj+4c9EAGhuE4Y3zhFuAdODfb+xsZGymKMzjPa9owUwCKeHwfkHVQDaILf+B7xfeTPN2UQPUAkOv98v8R6xL0I3Tk6B9iPXpc5BtkMaECvRIL/xKwcvnMewXvkP07RYQjPis9zDoQmYKfT2cwUO3fuXLKbY5ms+fl5Xbx4MZX44HsC1xzMhReOjY0l2e4l1txOdCe4y3Xsbvjc8vJy35Hoe6V+QMZc+ZUIckdMhe/gf17bOupnLmuiE1Ta0nnc2ZDj335vl2PuzHfZgPwbGRnZFvjRa0x+P+9nTs/gflEPdSeKdHlOksuxP8F5hoeHValUUpBlPG8olnTJZbe708pL16EjA6TjAOf+yPyIw0TAnO955sgw9Qyw3ebnWgHoA9pfGoDoh5Ai8OlR2nshZ8yuAMBA+TsnfNbW1nTx4sVkyC0vL6tareo1r3mNbrrppkI/X3rpJf3kJz9Ru91OaWXlclknTpxQtVrV1NSUjhw5kpgkQFQEXKEo6FyYz83NaWVlRY1GQxMTE1peXtbi4uK2WrOHnRz0cK8/whhAXeovqjwa5syHp325gY3iNDY2ppMnT2p2djYdFheNTiIZG42Gzp07l8CW6B2PAFAOTD/MVK1WderUKZXLZd166606efJkUnIk6cKFC5qcnExgdaPRkLSzwrC2tqalpSUtLy9raWlJjUYjOUxyh6DthbrdzSwQDobjPtEIP4x0kJ7wBx54QB/4wAd0++23684779RXvvIVPf/887r33nslSQ8++KBefPFFff3rX5ck3XvvvXr00Uf1wAMP6MMf/rCefvppffWrX9U3v/nN1OZHP/pR/eIv/qI+//nP65577tEf/MEf6Lvf/a6+973vpWsajYZ+8pOfpP+fffZZ/fjHP9bc3JxuueUWlUol3X///frsZz+r17/+9Xr961+vz372s6pUKvrVX/3Vy5qbVzL5AUJu6Dov7Ha7CWiNYBifAeBFgE1S1lh0w9uN1fHx8W0AVS5KWdr+PHAtsjJmasGX4fUAfW4ItFqtdBDm+vq6xsbGEu/GANjY2EhG+traWnL0jY+Pa3Z2NqWDc/ApfSQrzY3PCIpLWzXlmWMyygAxARCjM8Db5UBU12dygDt7QNoCtllPeDbReqwPv6lWq9vWlzVx48tBBeT0yMhIcih4GjgZWb0cMVHuu2MDvYzfsicB19kbGJkRJHdjfmJiIpXnabVa6na7hYh/LzXjY6dPjUZDKysrBVDII8XiQfIxEGR4eDj73MR7uk7EeHle6WcsGxSBCdaAwAD6R5+HhoaSPsOYPJLeS8AwJsoXsEcgeAd8ZXh4eNthr/F6xocBv7KyolarlZ7hXMSif+aOh5wc5Hlgnnj+HAQARON7B0v6ifDz+b8cuh708wG9ssidlPDgiYmJxIfj8xf/9s+iQ1cqnsvgNlqUlxBBbPBrSQV7V9riAbVaTRcvXtTa2loqnTk8PKypqamki0Sbm+ApB9GRCzEamff19XWVy+UEHMK/JKXAuWtBOOljkAEvz6xzG5i1BZdAZ/A5i45efpOT3zgU3NkZfw95+5VKpXDIuztb0POQD8jxiHVEPcNBdi+jGvcj93R91+WX63H90JXsAXS90dFRTU9Pa2pqKulmIyOb57GVy+WCnMyVQnLHgDvuKQGDDgCRvefzEh3Q0THOnFJ5gVJxfi7B1ZyrK6WB/N4/GoDoh4x28phCbqz4NZF44Hul+Oz0MMA0JKVaqaurq5qenk4KOEx+fn4+AXikSg8Nbda1KpfLKpfLPWvO5ij2FWPLI5M2NjY0MTEhSUkA5ebqICgXfe0UjUr/PDpMcl7Pfryafq23k/tfUsEQZ53Gx8dTJLqD6AAgHG6Dd9zHmhtbr37uZV79fbfxX849nDC4mYdyuVwwsqvVaqr/yp7zue3VNxfcKysrKpVKqlaryeC9HHIlwiNQduvPYaGDFOLvf//7denSJX3605/W2bNn9eY3v1nf+c539OpXv1qSdPbsWT3//PPp+ltvvVXf+c539LGPfUxf/OIXddNNN+m3f/u39Z73vCdd89a3vlXf+ta39MlPflIPPfSQbrvtNj3++OO644470jXPPPOM3v72t6f/H3jgAUnSBz/4QT322GOSpI9//ONqt9u67777tLCwoDvuuENPPPFEKiU0oP7JgbyoxObkp0cL7xSJC+2kGLsSnvstbfp9dnv2Y+RbjGRzoJM+5ObAjbtWq6VWq5WicfkM2e36Aoall+iCt3gZtghuO/AQr6H+Zi5aO+opfo9eWQG9eGh0yveSgbTtpe96ydPYZlzn6LzxdfPfxb9jxFguEtnH4fPDnMbSAr4HABhWV1c1OjqajPBemVB+HwcIPCADYNz3JH3a2NhIc4pDxHUJN3Jdv4jUb3SjAwMRBPGMR/QXnzvfq+7sj89RBC120tN78Qk3zLkOgAegpNd9+L1nJ/Tak8wFL9+HuXX3Pd9rT+TmfGCED+hGo373da/nJAfo9brHTrwC3R4QlKh0gse8nUajoeXl5QIA7k547BonZIbLZ79vrzFzDxzIHnBwLewO+JsHT+T0JOY65yTfqe2cXigVI/ZdbqOTRdke94Rn2fn5KsjxiAe4M10qOmvcyeN99H720odjvyK25PIkXh+vy81Vr/nLEXLX5wR8AszHD/MG8O+l/7n8jvsg6lquQ/tv4hhj1gHBCMjvgf39yqMBiH7ICEaB8IzpqDHtRto6AIW/3dON4u1C0j2o7nHsBYQ2m0299NJLGh0d1eLiov7sz/6s0Od2u52icqvVqubm5lSpVHTy5MlCyncufb0fcq+pe4ulzVRbNxKXlpbUbrev+oPuAptDNYeHh9M7xDoSbQfYiUEjbUYrU+YDDylKkIO4fB4FmgsEPKQAtn5yOyl4pVJJk5OTOnr0qMbGxnTkyBFNT08XouegoaGhdDANwN7q6mohJR/PbKm0eWCHgyYeBbhbmRE3/Ijwc8UiF7np+9yfnZzisNt6EtXnL6/dz/0bjYYuXryoer2utbW1BErlxsaar62t6fz58/rzP/9zTU5ObgNw9gKmb2xsqNlspsN//+Iv/kJLS0taWFi4LgS4dPBC/L777tN9992X/Q5A2+muu+7SD3/4wx3bfO9736v3vve9Pb9/29vetmtfS6WSHn74YT388MM7Xjeg3SkXRYK88yhTyA1LeCzXw2eQwSjvzvddDnkEK985r/Y0Wigq5/Sdz3IGikevAXyjxDOOCEoDoq+vr+vixYsJPEdWkI7a7XZTNtLY2FiKRHfDEHDRy3nEseT2fIyuYv673W4C6jGUmD8i+Z0/xpIXAInoOawFkcasIb8j4q5cLmtmZkajo6OanZ3V9PR0kskOqHa73VQqi/VlnZDpKysraS/5PqHfrvc4OM18IcNoi7XxzwCxmZ+JiQlVKpUUdU3UpMtk5oQIanQl1hw9yeeSMm2+Lz3yy3UP9ICNjY10IFu5XE4ZbtVqtSCf19bWtjmP0X1i5F7c9y734z7zZ4p9U6lUUqYE8psSL5RQwQgmKwJycIP2GW+73S44dthvXkoK53oEcZjLbreb9JRms6mFhQWtrq5qfn5e9Xq9MGc+dvaj63lRH3QHBjoGWSS9smh8vQcg+oBeyZRzeHpGMJ/nnObR7sjZ0162KRdF69fCl1utlhYWFpK8xNaG3H70zKRqtVrI3JGK+olnEHk5rqgnoU8gX2iPCGGAd9dJrpR20yfcLpyamtLU1FTBPvR2Wq1WsrvJoHbQmzVhLmnfHQSsrdeBZ+34vetZXqIL/SyC58in6enp5BiBvH8cfulOcNYtznmc+6hz5uaZ33jZPPraa2/zmcui2G4OgI8vJzL6xsfHNT09rSNHjmh8fFwzMzMaGRlJFQ7QjUqlUtKXYgafZ5IhJ8n68gwDdywDkPv6+lgpG4wzC7zp7NmzKdOcTIG9YA87kdsbOco5afqhgfzePxqA6IeMYAgwt5gm7saiP+ReizHWjIrCBQbtaUE7gW9Er5VKJZ09e3bb90Tvjo2N6dixYzpx4oQmJiY0NzeXFPjLAc+dYCJEEpG268KDQ1g4cPRqPuwuEMvlchKIABAQShA1s9xh4UIc4U2kMoC2CzSfR1cyXClDcLuH1D2l/K5SqejEiRNJYFUqlZ5jdXBifHw8zfXi4mKh3qy0VZfYIxMBkXsBzfFeREHikCCLwR0KrmQiuDBQLxdI9kh07s/8+EFylUpFs7OzqTY/gtzXBaJ/a2trmp+f1wsvvKDp6WkdPXpU09PTBeO7H2LcPJOXLl3Siy++qFqtplqttm/Ce0ADut7IU1Hj84gR6AaiO+oAo7wWs4PbtOVpr/5b7uGRrDFCK/ImZLmDnrkoVDdCcIa6wRad6N4PeLD/DqAOnow+MDQ0pMnJSU1OThbOhyBVlTHG6HKfn5zxxN/R+Qs/B/gksk3aStH2KPSo3/i8xjWQtgziCEgS3cT4MMKlLWcH40RHwkiLEXsYX+4Y57f0y/+PkcasGSAEa+IgOn975LaklAY+OTmpcrmc9MYYXYWMWVtbS3NMGxj5zCNzxpjiM+C/Y3wY+F5Dn8AJ2nT9xJ9Rj57kGWbPAhbksityzigc/mNjY6pUKqpWqxobG0tp4Tg1lpeXVavVtLy8rFKptA1E933uIARgFfvVgzv8efB192faHRI8u5xXQIlCADJ+5zzKx4ueF6MvuRfXOzCSczywX3cDWwY0oFcKRVnlDqhof0Euf13W+7XwPXjAbmAb3wGQw7vr9XqhLxCAMoFrgOjuKIv6i5eygm8AREKux1ACrdvtJrsMvu5g8n7QTjac6w7ValUzMzOFwDPG5IAzTtBY2gVZJxXLpvGd14uPZVHc8YzNzRq7LU75LtoaHh5O8rtarapSqRTapx+MVVJBR2J/ea1v//1u8+dzzG+wfV1+ezs+T9xrfX1dzWZzWxmwnA3uz0bOoeul+6rVqqanp1UulzU3N6exsTE1m02NjY0VSqCNjIykYADHN1wu0lcO6t3Y2DoY3jPnfHz+DKMDesY3+sP8/HzhPCECN/aLsCViVoSPM9ooAzpYGoDoh4z8wYUBYzgh0D36C2UbBuKArLcJubHuIHq8rlff4jUewTs2NpaYIFFk8eHfL/J5wGgiKpzTlp2p7ud9pS2GPzw8nIAH+hFrqQHOEv2EQQtgjjAExOHgM94dEHEg3Q0h3y8IDAS6C1nWhD71U17HCcHjdegcvMY4diPSgQM3eN1ZEFOwAbCJumMeXKFxDzFRAg6o8+zw7p7mHKFsEjWAUkF9VdqSpNnZWR09ejSlWQJS9aoNSD8bjYZKpZIWFxdVqVRSlIFHjvlec2CKtSRqzeugM+7rhQae8AHtN/Xa/zmD1o0wJ3iWpG2y1n/nkS5uzDqfhie7Y9wJ3u/glxtCbmBHQC6246BZ7FuMtuF/b4vf+HsO9I1AOfItyvgIcrp8QC67/Ib3eu1zN4LghZF20y+iUUU0H/LFy9VIW44YjxjjewfIvV/uhHBQ0ufC5bzv0zi3Li89UjGOI4KqMYqKz6PewH73EjC5CKx4X3dUsF8AeT3a3u9D6Te/ltr53BPj1Wv2+r6LOk+vfRDX3KPJ0QnZX9KmAwIQHRkuFWsWR37izip3Jnj0Yi9QzJ9x189cR3MHgYMptO02QATKc/fyfjvI7tddiQweyO8B3ajk4KrLGOdJUj4S3YFW3+t+3V6eH5edbjfmSqH1kg+85/oUI12js9vlif8Wnk35y+Hh4WSLRUB3v4gxYn878Mrn7lDHLiSC3APvIr91hzgYAp8xfq+lzWdRZnipj6iz5dYo6o/ed//f7UNkKXoUbXhf+5lHt7/9TBdkplPUTd3Wj7qK6xS+j3xPxAwP1/voB/J7fHw86YgEspHRjQ0dx+8vB9I7nU4hMM+z/13njOP07H6C2PxA0avlhO6FJ/g4L6fNgfzeHxqA6IeM/OFttVpaW1srMHRPI+VagDVXzqNh44YfL37D/3sl2q5Wqyn6/NixY5qbm0tMOXrL94uc0c7MzGh4eDilKDMPHOK43/fF43/8+HGNj4/ryJEjmp2dTanDLnyIOoLZXrx4Uc1mU/V6XRcuXCgwdiLF/CAUStgAsjtg4eAqwhtPabPZTKlrpOtjWA4Pbx4qA/AfjbCdxi5tCptyuazZ2dmU4kS0uQNQUPTeSyocWHf06FFVKhWVy+UU9Q1w4aBObJc5cIMTkKLRaKSDPvzk+mazmQWiut2u2u22Ll68mITq1NSUpqendcstt6hSqWhpaUkzMzOpfMvc3JxqtZpeeOEFtVotXbx4US+//HI2wqTb7aZ0r3K5rE6no7Nnz2p2dla33HJLOjugXC5viyIFgFtaWkqHDf3kJz/RxYsXtbi4mPo8ANEH9EqmlZWVbaW0XBF2JzQGl0dWRZAsB9A6X/K6jB7BDK9CFvsz7FGrvHukM05w+oPcd8dp5Kc4j3E4Ur4jAmn8NkZt0w8itAGy4SkR+HWDxaNxHdiTVPgd42m320k/8ayycrmcMmz8wFTmlggfly85ueWGZ3R8SEr8dWZmJmXKzczMaHJycttv4tqOjIyoXq8X+oX8Zhzoat43N6qJ2nIHTgTZiZgi+p/xeqSd64CeQuxguPNJD3ZwIIi9hiHsmQ1uMLuxTj/4nxIuOCVIy47ZbTHiz41TDwRwp3Tcb9GId8Pbxw24QtYYQR6Uoet2N8sRkJXBgbqNRqNgWHuEOevnpWHQyyj7xly708GdIhjhi4uLSS8juMIdTDw7DtZ59ou/Ytk75xHYDzkwL6f37wXYG8jvAd2o1O1203PJ/5Hvufz2ZzxmgsNrI+DaLyH/kBHLy8sFHuQBTR6IlLufv/tz6CAs13tEOXwF/gzfB8gGnB4eHk64RbPZ3OaEvxJy+VetVnXs2DGNjo5qbm5Os7OzSYdxW7HT6aT5wQYfGhpKmIm0lcW+sbGRHL/wdKLSWWcvreYyB9mNfoP8jsAxcp+Xlwyjz7y7buX6qMtnB+tdd9yNfJ+AWUxMTKTSKZVKpVDaxbEj3yfoh67jOA7l+pPruQDPbuuydugPU1NTqlarOnr0aNJrq9Vq0gWr1apqtVrCO+r1egpic70T2dlutwvOB3TdTmczwwKdxXV+ZHan00mZYisrK7pw4YIajYaazaaWlpa26cj7RTw7Pk+Mi/cBiH5taQCiHzJy4QtDdOPbgQGux/Byr6sLHI9gceUZgXilHjRSx2BCHk12NYn28UQODQ2lKHg3YvaL3IPsY56ZmUkgOgalk5eZoY6olw1g3SQlT+vw8HC61sfLuKKH1QWqCzQXbJKSIelA9V7mCWUKoYtCJW0/0XqnecQ5QLmUqakpTU5Oam5urtA37tlPtKFH3S8tLaVatu12O32/UzsoUwBSY2NjqVQP6f7r6+saGxvT0aNHtbGxebhts9nU6OhoMsA98svJo9XPnz+flIojR44UlHQH+nxMrVZLtVpN9Xpd58+f1/nz5wuOo+uJBkJ8QPtNXt5AKkZ+wZu8Zrin/jqQ6CAYYCV8A97pDm0Hu2J/ovFAhhZ8MwJaboR7tK6XNKG/EOCaG9GxXdcZIK+J6jXO3eHuRpDPqUcdScXDCbnODS3+RiYBAvg8Olgbo7iibIm6RS+548apO96JnvPDU31e2R+sGdHygCjOb5G9Xv4lOjBw8gKi5pzNtOXynL54lHeM/HegZyf565FvfpgZDnaPqnRAPuqcEdB3UID+ObDjUZwRpGF+0WMxWH18DsLEZ43nyA19dEGeBYxlQAbK7tGPiYmJQpmFaPg7wOS6FPdGTydqLhq7/iwzbpz68UAyfpOL5ItnOOQcCJH3+V70PuWe4d32j9NAfg/oRqCcni4V5Rf/93p3oNQdfRFEl/JlLnYj2sXpiR6DbuJlPyIv5N3J+0D/YuSz39t/A99AZ/DvVldXC05a6kf3muPLIeQLthnnX5TL5UJgg4/Vy40SkOZ2tDtkHTB3vgnvpwyXz7/LJneGOn7jekUMDPM2uJ//7TrtyMhIAvvjIdl7wVtcbtMW2Ik7oN0WdX3a97if84EzAp3CnyMPDvH59TlhLPQLPY3gB+Ts5ORkaoMADOx85tP3njuxPfNNkiYmJrbZ36yBB6g6jkOQYrvdvupZ4Mxz3C9XKoMH8nt/aACiH2KKSnRM6XGG5nUnYR4eteMCtZdhuhcaGhpKNUsBGqnFthvoud9EXzqdTqpTPTQ0lCLR91OAY3hPTk6mCCc8pgADMRpS2gJfAMbX1ta0tLRUOPQTTzagKfccHx8vgOtOCK8YiQ547EqdVPRwX8kauUHfz7VES1I7nui/8fFxzc3NFcoAebbFXvaSAwwcJkaaH6VU5ufntbGxoVqtplarVVAIXFlBeGLsYiwDEMzMzKjb3TwUr91ua3JyUisrK1pcXEzR+b3KKq2vb9UlxquOp31ycrIQHYrhv7GxocXFRdVqNbXbbc3Pz6eoxoFQG9CAthx8MYLWwSEAZ1fYpa1oYM/MyUWje61IaQso9/vwN99hVEUiEge5DS/PpYZ6P+gzBqNnGAFGS9sNfcbZ6XQKBiBGKW24vsGc5aLXPcIu6hRuUPoYHKwHcHSjiv4ApLuBSl8ieAgP9z5H0Jf++gGY1CRl7G7wudHH77rdzcO1SVsn0syjDN1gQw9x8BQnAnvV9xBRblFmR6AaANWd6cgaX2ePXvKoNt4B/T2yMhrMvleo30r0WrlclrQF6HqJGO+D7xUPBkFnY34wYD2rw8n1XFKp/flCT3JnBr/xTInh4c0SfPSl2WwmfcEPXwdA973tUYhuiLIniBh1WQ+YxPd+Xo0D34AiudIu/gw4QMa4fG5df/AMHAd+IpDm7wMa0I1GEZiU8kASz1sOfIb8eXNeKW1F6EJRh3DH+V4pyjS33wE/o3z0QADvj0dre7uuy7gTgGsdpI5zCv+E4MP7aX/j0MZWIoI4loHztQUglpTOoaKOdgRa0VtWV1fVarUKchoe7s50aSvT2kF2P//M++UBD+5Y8f0Q593n2Hm7r8tONj2f4VAmkr9cLicbGXyCz9CJ3Kb2OaVNAsk6nU7hoHHPtPPsM2xZl98u13wc0fYH5xka2qwEwPW1Wi2Ve6FWuj+HnsXvmQUexc/Y2+124Z5gMrRNpiQAOvrCQdBAXh9OGoDoh5QwDhDoCCdnLO4l7qUURyMqRrxcLgEoj46OampqKqVG4xE+SHLjbXZ2NvVvfn4+Mcn9YDhDQ5sHr5FKdvz4cU1MTKRIalesnKinTYYAwCkpxJcuXUqpb4AIGFsO3LsAddDGvd+A6IC/cW8gnHIA0V7nwo22nYg+T01N6S/9pb+kcrms48eP69ixYwmUdkPbFbx+yAECB5iYo+PHj6vT6aher+vSpUtaXV3Vc889p/Pnz6e5chC9VCqluRwZGdHS0lIyRlGAjh8/rqmpKc3Ozmp4eDilklE6BhAmEsrWxYsXNT8/r9HRUb3wwgsJmKDOG/OL95yUNUrJ+EGx16MwHXjCB7TfhALvKZ2AVG4QUA/RAT83NFzGuixz3olBhYHgkSvOl2NUsUc8RwOTqB7kROTV3McdmBhpHpmak3c8bw7QYuTgCMcwxLDsBZjzG9cpPBIPWYQh6WNwYxeZRv8AUjFSMIgcSPRzPPh9jA52/ccBD09TplQXBrYDum5QswcqlUraX5OTk2o0GoU9BhiNAel1Nj312oMcMMJxuHpqNG16VBaRzm6Is+dykVA5AId7eqScG/nUfvcoeE+hn5ub08jIiGZnZzU7O1vQU/2ektKcRAc1gC6OCy/r4sA+pZa87A37F+cEzzsZYisrK8n5TNushUdw4gjHad1qtdK6eTafz6G/4CteAoZ95PsQYMX1MKLa0A+YGxw6zIfPjT+//kwzFu9b5HeAQa5H7gS29EMD+T2g64Gi3HQ5luOZbh/nngfnjRHw899HsNOdu/DDy7FLPUMFPgivjA5W5/tRz4k8IBcEwP8e0ORyn3fkE7wKfl2r1bY5FZwijrEbDQ8Pb8v+5mDwarVaAMMdIEfnAGitVCqq1WoFx7Y7XKWiM8XtLB8j4/QgNiKxkSOSEvCL3Pbfcq+crRjnKTpNo27m/D8C3kNDm+V3jhw5kkrYTU9PF3QC1ysINnBbNK45fWF+/OBOypS5Lub6Ta1WS0GO4BRRT3F7Hn0VuV8qlTQ5OalKpaK1tTU1Gg11Optl2VZWVtJ7qbR18CZ9wK5mHVx+42zxQApAdDCZ9fX1VNblSgJR90r7aesP5Pf+0QBEP+QUPcLuoXQG5akxHo0SQXSP+PKUnL2SG6YxQuqgKTJf96JG4/9K7xPrmWHcMte58TsYQc1UfoehJuXrexORRzueXuyeVgSUKwRxfXPAyuWSK1k7EYY54BURbLz6BeL7JQfUvQ/SJnBApgJgSjSYXWHwMToYJG2B9KQw4pFHmdztOWB9PNqPv/0ZdjCq3W6n6Pn9cgxdS7re+z+g64scfO7lRHRwM0bG5N5z5NHYLm8dXJe2InSc/JmI5TLidVzLNbk+OSDguoT/Nhr8ubFHfpYzwiNPyxlyMVLW25O2IqQZr+s6ERRwgCIHNDpI4vd3A815uo8lgikOMjsY20t/iuvs8+Iv+hmjp6JcjVFZ9JPfR2fMTvvTnR+57/wZ4d6u95Bi7WXzes1FLx7vxr6vI88epXR8b/O/OxZyB73FccW1dJ2QlHF0Mu7r0eDIfgdmKN/T6xlhLR1E79VHBz8gHDbMj4MMtOE8JY4r7mnGFLNsroQG8ntANzL14us5XcCfpchDczLGHbY73a+fvrl8inpNToeRtpdDi7pB5JcOpMffYrs40LmTjpWbs37G7g5C1xP4W9oqaZWT3djsHkme46vO46Xth03HvnrJzWh37+S0gGIfuD5HUcZGfS63N5GfRKITOBDP32Ku4mc5XS3uA3cscM+o37o+AXbiTozc/o3zEe1vAgvW1tZSZQSXy76evn70jX0b78f3ZCQgyz1gMeeEu55oIL/3hwYg+nVCzpRzHlwY0MzMjGZmZlKEeIw8iYdcErmMN7FfwrNJGQpOUHbw8iAJxk59q+Xl5VTrcj9OTkYwULoGLyjR+DuBpu69pQ4sUcfDw8NaWlra5uRgXRyEdiEjbe0Jj1xzED1mHHS73W0He0jFWpv9EidU43mOhIIzPj6um266KUXrcxhrrnb81SLWZmJiQkeOHEkR/kePHlWz2dRPf/pTNZtNTU1NpdrslUolpQ76qeVEz7Eu3W43RbPx+6GhIS0tLfXVN4Qz64X3nHVmXd2w30+P9LWigSd8QPtNpVIpRf1EoBJeE+s2O2jmEWJS8QwK58+efuoZLw6Sx0h19iwZJP4ZbUlbfHN0dFTT09Mpat6jrv0gKY8a9zYdTHZDyB113Meju71cTTyki3a73a1DJjFEo6PP55gX/XAnZaQIcPtYXKZEIw4eSfS6t4/B5oZ3qVQqRIczjuj4YOy+fwAL+I2DzMhjMoiQuTFlmTlD1ke+7/uJuUSvGRrajFquVCrJse5ygr3LPDJ2SUnmU3IMnSE62tHnkHMjIyOqVquanZ1N5ewqlUqaC+bS656ivzgI7lGcPF+Qr6mDQvTfjeBOZ7OWOinkOLPjvohAcy7YgYyExcXFVP4tHkInbYElQ0ND2w4kZp29LBCfMc8e2MFecmKeuZbfupMIcuPfwXM+Y08zl+44yf3G56sfGsjvAV1rcrncy77L7e2c/dwvuVyFHPhD1g0Pb5aMIjMFvkDpTmQlMtwzudxui33mc5ffHtTFyx3WOXL+6jwsHpzpgXKRb3imX7zWwW2fr52cwb0oguB+uHvOgRH/9iw9gOOVlZVCJhztRL6NPI9r7vdxfcEzESO5zkYAF/OfA5y9jIr/vtvtprOwPHDOHdqu04FRVCqVdBjrzMxMOufL9WTulcNxXI66nHWnkQP29IfrXDdmLYjqXl9fTwF29DeWh/P5QCcjM5D2+CzqAJLS3KMzuQ5bKm1mo8U6/5zTEoNDeunw/jwdZjpo+f2lL31Jv/mbv6mzZ8/qTW96k86cOaNf+IVf6Hn9U089pQceeEB/8id/optuukkf//jHde+99xau+f3f/3099NBD+vM//3Pddttt+sxnPqN3vetd6fs//uM/1m/+5m/qBz/4gc6ePatvf/vb+rt/9+9uG8unPvUpfeUrX9HCwoLuuOMOffGLX9Sb3vSmvsc2ANGvM8ptfvcYTk1N6fTp0xobG9OJEyeSoQXzIU2adBRPWdoLAVhPTk4m7+ZuYPLVJvokqcCIET6XS+6lxWkAsyeNbreoHn6PQUhUtqQEMLiCRgSyAw9uZEvFFP2YXZAjF+JuEEZP807kwmWnQzUQ5OVyWadPn9aJEydSGl4/87WfxL0ABogaP3HihBYWFtRoNCQpnf7ttXK9VjBeb1c0NjY2VC6X1e12ValUVKlUkoDuh1gzTyUc0IAGtHdyIy6C6FIxotadk64cO/Fbj0znOUWJhwfElFHPDIogfASm/W9kCocXV6vVZDxKW05wTx2GUN4ZSxw7Y4nArwPXPj8O3vqcuBzCIEGeLC8vJ2OE8y/go9EwdPDWI41y8ghZR3tuzPu8c8aIz6s7Thgva+nr50B0BF6ZBwdFIlDhMtz5uddBp+9ucDebzQQGk53ljgPmGeBdUjJAAXnpL3PqAC1jcEOQskE+bl9nXzN0HBz/9NMj0dEjI6Dg6ecOorszJUbCxf3qz7Qb5xMTEwn0oRRMLorNAWfu6bV9GVOlUkmRit5Xd+Z0Op1ClKU74HjWJRXaAIxxMArnmO999BPGubGxkQAGgBx3Cvjed6DFn0ufC3eg+X6NTsMBDeh6IGRUP4DV5TiKerWT+70De9ienJnlgCOBR/BunOruEI9lGqN8gcdFUNkBdXecu13pwLPjAg7ir66upnZpD7nHbz3ozuWN61Uxu43fR4e/y/EcIWddFuwW6e7zhgNDUnJ+ItOcl/K38253gvucuZ7V735y+5t190ANnxP0NPqY0y3YR57FxtwSbT4yMpIwGpzgBFhWq1VJW2dweBS9z6vrWq4T+/o5kM7+iIETMfO6XC4nx/Pa2lphL0f9yvVR7jk8vFmWhXEw3vX19ayjhvH1cjL7c+p4CsEOu5GD6FcCUt9o9Pjjj+v+++/Xl770Jf21v/bX9M//+T/X3XffrT/90z/VLbfcsu36Z599Vr/yK7+iD3/4w/q93/s9/bt/9+9033336fjx43rPe94jSXr66af1/ve/X//kn/wTvetd79K3v/1tve9979P3vvc93XHHHZI2yyX/3M/9nP7+3//76XeRvvCFL+iRRx7RY489pje84Q36p//0n+od73iH/vN//s/JybQbDUD0G4DcACBCKJYZgakABK6vr6c63hhxOwGwkZw55rzL14pc4MbUnv2gnYT2XiinXPRSztygzwncvQhz2iJNydOodgPSHXzHCI9R/sxPuVxOghpg6FocOpsjwCJpU5manp5OfY6pgVFZco99BKx6gXED2k4H7Qkf0I1Pzlecl7mS7yAqtBOPlbbXIfWoYj7DmQiIi6GDQh8NMEkFAwGjgTRbyky4QcpvuNYdqDHl2KN+6CvjjCC4/83cuYzJGRC0Fet9ex9dP+g15zzLzGnuXrn5i8BmBMJ9DA4oeFs5Z0YEz92xwNx4VJzPk+sG3i9fBzeI+Z9x5xw+uX75b3h3I7Hb7W5z4sZ+ed88+pFxoye649/X0tfQDWjAbu+f1yf3dY7O9/jcuUEbnUX0AYd47lny/eXPeM5BE+/pn8fnHZDbgQWAASjuY+5PlHkE9bytbnerHItncXiJlwioeztxj++k30WQvd8U9YH8HtC1oshnr3Vf4JcERxERiwyXVOBXUjGrBZAOJ2SvMfnz7XI7gp1xfnZqz+0Wd6Y5v/D7RJ4a7R+fF3+P98297zbPrqNEOzzuB5cdELzfZVWUm57plAPKXW/Zq83t8+e6W7TpfQxxfl3XiqVFfF84iO6BGZ4pQftR5kU5DODseoLLCtfF+F3cmy5DXYeQthwagOjoG1E25TASl4H98oIoN+Pn3G+v7dIG44yfHSY6SPn9yCOP6Nd+7df0oQ99SJJ05swZ/dEf/ZF+93d/V5/73Oe2Xf/lL39Zt9xyi86cOSNJeuMb36hnnnlGv/Vbv5XA8DNnzugd73iHHnzwQUnSgw8+qKeeekpnzpzRN7/5TUnS3XffrbvvvnvHcZw5c0af+MQn9O53v1uS9LWvfU0nT57UN77xDX3kIx/pa3wDEP0GoMnJSd18880ql8s6duyYjh49mgR7BC0pUwG4ubq6qhdffFHtdrtwANJOhOJAWQ5Pr76WAKkrNM6Qiei+EmYWFZReUU97bStGsjm5ERejinLX7TY+F9y1Wk1nz57VxMSETp06lRSKnSKoOcBjZWVFi4uLWlxcTFEUkgrKyenTp3XLLbdoYmJCR48eTaVrrmWmAoRBirH9ute9LjkEiMKQlCJJGaN7mvkuvjh8pB/P9SuZBkb4gPabouLtTlQMB+pCStuBzmgUQA5Mx8+lzdIYRIwCorux5NHVvDugjzymTEa1Wi2UY6Ov0lYJmU6no3K5rE6nk+4vbRo8HNREtJPPgzu/Heh2ABLwNoLzzE2UpZQGwdApl8sJhPVUc6l4FkR0TPj9IrBJVDRz4fIQvh0Ba36TS3d3UNiNOvpA+rM74z3Fmyy86ECAfB3YBw7Eu1HsY42ANGOOe5OoNqKqYvRcjLLiRX/jIWDUy6YkH6XJ/Hlypw7zHvtKBB1ys9vtFmqCe6R0jPryZ8JLDHqpG08X99RvL4vgkW8xSy/ePxrhLuMdWGG8PD+dTifxEecX0fHha+s8xNcWYgz+fHY6Hc3Ozm6LFvQ95/Vd43NKO3yW09PZj5Qg6ocG8ntA14LcuejOo2vVl1KplA5qJIhtenpaIyMjBflNP+FVGxsbqZZzq9VSqVQs1RadbFJRNiDH4oGiEaB0Hcf7jVMT+eHl7DwC3fUEabusph10jVxAVQRDI+22fh4Y505S16cchMZRyXUetNBut5P8rlQqWl1dLYDUzAMBEb1A870Atj739GV1dVXtdrvgqPC5GR8fTwEDLm85kLrdbqvZbKYADiK50Vmmp6c1OzubssbQez2z0QMF6BsR5i5TWF+XkY5ZuO7DWkTHBNfyfaVSSddVKpUE5vvejnLKdSUHudl36Bz9BIO6rIxOKNZtL44SfuP6BevXr2P6IGk/5HetVit8Tiad0+rqqn7wgx/o13/91wufv/Od79T3v//9bPtPP/203vnOdxY+++Vf/mV99atfTfv86aef1sc+9rFt1wC890PPPvuszp07V7jX+Pi47rrrLn3/+98fgOivJPL0HE/TyRHCCCa6sbGher2+TeDsRtGoudYAOhQj0fuJsL5cyikJ/f4u996L9iq4d2ur2+1uOzADIZaL1GJPILAxwL1WGMS8VyoVzc3NaWxsLNXMP0yEYjI2NqaZmRl1Oh01Gg3VarUCcBGBpBgZ4IZtjGYYUG8aGOED2m9CDsXoHoyGoaGt+s7SVhqrP+Movk5uUGF48Htpy7iJIDr398hd+ukKPNFCY2NjKpfLydABtPSoUzeQnd/4uN2ocF7EvXLRbHzvICJ9joZgBHa9FnY0eP3v2CZ/u/GauyZGL0WAwYECByBiNG6M0vX3aIQDTjhAjGx0Z70D+z4nLhegXk6YHD9jrfzaqGv0ckLENiNgnQNj3dkyPDycItl8jh288H7xOf319WA/RkPbjVj/LhecwJii08NLo3BIu5d1cXnt/fJnZTc55Ne4HjQ2NlYo68S4fO57AS+9dGzWWFKhhBygENkt0Rnjv49t06c4r72e+b0ABgP5PaCDJufh/kxeq7448MeBy0Siw5ek7RHG8F8chjjmdgr2cidflGe9gMB4b2/L9R130ubkpsvv2Lbz2egQ7hUYdjlzHdvy/5m3nK4TQWIH312m9RrTlfbf59plCZkIufYpS+KlCV1e47QANEZGxL3oeqRXJ/D75iLRcUJLxZrv7EHu5zLH2/X1cic5FDEa5LLL9tgn15v9PfKBfmRTLydV3Ed7oZzOdVhl3X7I75tvvrnw+W/8xm/o4YcfLnx28eJFbWxs6OTJk4XPT548qXPnzmXbP3fuXPb69fV1Xbx4UadPn+55Ta82e92H38V2nnvuub7bGYDo1zGhGE9MTCTwvF+w0oUMUVVDQ0OpZttOv+PdI9gOE+WUiyslGDVRb7xQMpzp79QGAs+B6AggHAQRVb66uqoLFy5oeXk5eavd4Op2t2rCtdttLS4upsjHCKATdT4+Pq65ublUlmCn6PbDQCgDHEo7NLRZZ7ZWqyVP+erqagIWut1uOnisXq+nuuqLi4taWlpKB74MqDcNjPABXU2CJ6OoE2HrIDoGgEd9uuHkUUkeqRWNRq9THkFrB1zpE/3CyCmXy6kcG2C6R+VGx4Ab2h656iCctD2axkH9CHJH48qdgT4nfBYjWalV7VH2frgVBoVHDjGnngUQjeA4nw6QejtuqDm47c7O6PAkmh1ezb0YQzzQ2w2/TqdTMGTjQVMOUqMjRL7lKdJe35x++zz7XmIuqY/O3kM/Ye9i6EpbWVVcm4t4dECa2u0O1OaAVo/aZkxx3nPPRE4v870Wx+7vfj/fz4AH9Js5bbVayclDu+12W6Ojo0mX8br1nrHC2kbewLhygQeuE9Mev2XPRYc84wLAiI4FeNTY2Fh65t1x77plfI4iSML+vBIgciC/B3RQ5HwvOlOv1V4qlbay2wAseQes5D060QAhiQQn8pZnfyeHlsuh6OTFnodyTlrn5T6WmLkUQU7IgVx33Dov8jb9Fce0F4dddPpih5dKpWSHx3Yd/I881jOy/HBOH9d+7a2oh0kqZP1EkFrazO7zcixk1Lv8dvub9eda5LjrYegC7jj1/rFmOUcs37sOivzzceb2XJTf8Z7oxu7ckLYOQW80Gin7EmI/NJtNLS0tJR38Wssl1w+gnKPkWsvA/ZinF154QdPT0+nznbDHnDNtJ2yul/MtOs720uZ+9S3SAES/TslBgkqloiNHjiQgvF9CeFcqFc3OzqZDjXYC0bl3NOoOC8Vos/2IkHfBu7Kykk7GRnj74R+7teNlPyihkzNorzYB4A8PDyeBPT4+nlLAPPoOI7PdbmthYaGQNgWVSiVVq1W96lWv0tTUlE6cOKGZmZlD6WRx8v2LQixtpiFdvHgxGducMwCIzvrXajWdO3dOjUZD58+f1/z8fIrWH9CABnRwFPmnH47FeQcOaqGIw8MBM+FtzudcKcaYIMV1eXk5lXPx9OIIKDuIPzIykkq4VCoVTU1NFUpUOIjrRjiGdwQyGRP3dAAT0M4N21y6thvhEQD18XsEFbKWtPUYqe1lPtyBHCOVcym/yFUHTgDRu91uckCzTpJSP2JkEuvM9f4bwGfGSf/ZO5ADOaw7xizzzBx4dL7/PoIMcU4djM85K1gjxo8hSckU7lkul5NjfGNj8/Br5h4DPkZpc7YOtXy5lwdL+F6IGQmsuVN0QPkcRco5RPyda4aGhtK8Dw0NFQ7p9LIDzA/glK8ve2x9fb2QRcJe47Bwvmcc7nBZW1vbpv+6oyo6ctxp5M+xAw9cy3dDQ0NJJ2EtiISP2QfuxIvgurfvffX1v9aG/YAGlCN3grsjrVe08EHQ0NBQKhfKgctejg1AMwZXwV94VuFl8cDq3LjgWx4cEGV4BEYjIOqfOc+M8tz1A/+dA7i7ldGIekZ0kvZLHoWNI5hSOPSZuXWHtdv+LnuwwwmEWllZKZxpk8vouRJi3O4cwebvdDqpHIvPz8TERJJryGTvX7vdLpTPYT8SSIkeybPjNr3PlYP7rh96EJg70iPG4fMUo8OhXiA6c0I54NhHL43qugcBDKzhwsJCwlOulB/sF5BOP3MYlMvn65mmp6cLIHqOjh07puHh4W0R4ufPn98WAQ6dOnUqe/3IyIiOHj264zW92ux1H2kzIv306dOX3c7hRbcGtCu5oZ7zGvdLOSE8oO2EAeQnqjvI0ouBO1ONKdSxjtxBjoX+AOpT2xaPd3wBDqNEQR6553VK3QA/zOSOF54DBDXCudFoqNVqFV7NZlONRkPNZjNlcLAnrsWaXk8UozP2+hrQgHqRR7S4EptTZnP7if89uipG1sa/vZ0ol6Ph67I69s9fkDuFc7zU+VfOiez38Hb8b287F00U5ybXN3+5MyFGx+VeuXWIjnDvo1/v7fjvcn33V1zLXLRLjvfkItr9/jnD0vvTy9j0eXBwMzcnse/uAPLoOs+c8zrl3h7vcW/mjN9cn/wzX6dcO7lI0rjnfd/spDtEGet6LN+j33j2oAdCRL0G8j7k5sT3QgT04l7OjcF/16uduC8jn6Bvrrv7GkZ+0GvN6ONe9LSB/B7QQVAOBOXva72XcrIvyqmcDJO0TV7mZHQEtnP3is9tBM93e6Z7BZ314h1RF+olu/fKy3ciHxP3y8neyH9z+kE8PyS247x4PynKdB9DxAPcYZCT325fxj0R5cFe5j/uhV6/cUfNbtRLh/DfR32ZZ9uDLqghj8x2O9wzQS/HSXM1qJf+dljooOT32NiY3vKWt+jJJ58sfP7kk0/qrW99a/Y3d95557brn3jiCd1+++0pSKPXNb3azNGtt96qU6dOFdpZXV3VU089tad2BpHo1ym5Ar0Tw+u3La8bm/t+p8ghTz291hQB6/30+G1sbKSIw5GREU1PTxcOzQJIjnPlxi2pR/Pz81pYWCikIV0LwhNOdNrKykphP3W73UK0nQsqaXPMRFQeOXJEx44d0+TkpCqVynXnkHGPOwK7Xq9rcXExlV8gQq3VamllZUW1Wk0vvPCCWq1WilyPkasD2k5XougcVsVkQNeWut1uQSYSvYZR4fzMZZdHwAKoEWlMRonL1qjkd7tb9aLJ7iqVSqksC9Fq0cDxmp0O0kVQLRfpKmkbeOtGkEdScy/6l0vVpi0ilD0yKFez2kvARDAuOvW73a1oc68ZH8F6N96o5en941rmPhqlfp3PFXJLKh4Ouby8nCK1ck5fZCFtr6ysqF6vp0O9KNvFWtFv5IjLSF5EGbsslbYOQWVsjIv9kHNw+BwS3chhY+g/RPMvLy8X9pyk9F25XJakQhR6zIBwGhraqulLW9Fp4qVw2u12us73ONHYfmis34/7+EHd0ZHEOB2MZw7ZZxy662CJP7v87ee80C+egW63myLdIC//UiqVkuPdnxP2IZkufJbTmWmP62iDa91BQJtxvmLUv+8dn7+4brTpz89ONJDfA7qaFJ1x7rzy5/ZqAJ47US8ncfwsNx6Xzf5cwpc7nU7ivz4+B+DHx8dTmRiP2oVnAbYin6Pc8H7mbNUciI+c8TNf+L/XOsCf0MkITHJ9pV/iHqVSKR0yPTw8rHq9nkA1+u3lvDiwFf6O/KYECBnWBD9FvWK/CZkXZV0u6Mr5uJ/zwW99X7APJicnUxAbZVTjGroDnzn1Z8zlgu8FqSh7XTf1fchvpa2zf6KsQEYzPpffXOcH1dIGDoVOp5Ps79XV1YTJ1Gq1QlnFa03uxMlRdDAcJPh/kPL7gQce0Ac+8AHdfvvtuvPOO/WVr3xFzz//vO69915J0oMPPqgXX3xRX//61yVJ9957rx599FE98MAD+vCHP6ynn35aX/3qV/XNb34ztfnRj35Uv/iLv6jPf/7zuueee/QHf/AH+u53v6vvfe976ZpGo6Gf/OQn6f9nn31WP/7xjzU3N6dbbrlFpVJJ999/vz772c/q9a9/vV7/+tfrs5/9rCqVin71V3+17/ENQPTrlGB8MQ37csgN5n5AdGcOMHs3JK8luXEZQYYrJZg36Xe1Wi0B6ig1btzwG5g/9TdbrZbq9bpqtVrysl5LwuMtSc1mc0+/HRoaSiedT01NaXZ2VpOTk5J2j4I4bMQzhUOhXq8X9jjj7Ha7KYW+Xq/rxRdfVKvVUrvdTob7gHamgRE+oP0mlHpAOTc0MQhyQJo/4xiKgOiArjlHtRs/bpjG0i3j4+MJRPcoUal3qisAGC8v/cE1bvR535DV1E92wz9GKLlRJikZ4V7P3IFd1ztyB2vmoul8vplfJ++7/w45Stp7LhLGgd4o56McZp3p58rKyrZSNm54UnOVeywvL6vdbidej8HG/R148L64oclc4sCJQLuvbXSg+Dj9XdoqFYNhyffMAWd6cOgdv5GUgAhKusWSLBFM9yAFH5uvPXuEsfkY3Qnl8x/Hx37odb4I80QZJeaLvgH2rK6uJjDenUW06+Pj+7jP+Y65dSMdZ4CTz4nzIAi90AEM5pVr6Qft+3ry7OWCZ2jH28iB6bzH56QfGsjvAV0tclmQywCJkdAH3bdcpsdugWwum308/AYQnRJ0zsvcUedyOWaO+3y4TepzlONLOfLx+Vxjy0Y51GueOp3Otn7u9fl3XQeZPDIykkqaoG+5LEGHk7bKXK2srKSsYWQ44zmIQMDocMgFBEDoppJS7fQYWMA6IrMB0L0UW3xu/Pnh/r53c85u39PunHUgPO4j11ddDkX9CPnm+5R9Rhk1L7fWarXU6WyWmOVzriMI8KAdaztRLzkZ9V1JBwr8H6T8fv/7369Lly7p05/+tM6ePas3v/nN+s53vqNXv/rVkqSzZ8/q+eefT9ffeuut+s53vqOPfexj+uIXv6ibbrpJv/3bv633vOc96Zq3vvWt+ta3vqVPfvKTeuihh3Tbbbfp8ccf1x133JGueeaZZ/T2t789/f/AAw9Ikj74wQ/qsccekyR9/OMfV7vd1n333aeFhQXdcccdeuKJJzQ1NdX3+AYg+nVKMF+iT64ExPaoPGeqXquKmm08fBhjVwrg7yc5eM6ceG3I/Wofhk7Ul9e5RWlw8pIo9Xo9CfFoSF+PNDQ0pHK5nLzg0XC+HgkFcGxsTCsrK2q1WimdrNVqpai0a13XfkADGtB28mhfB0EBdL3muQO8blzECLAcP/PoIGSg1wDFuIml0qJB0Ut+5gDimHrskWYOPDow7Ia7R6J7217r2Y3mCI678e6R5hHI9xqocX59LJK2RcT5uCM/zRnvHmnuIALkkeBuVAKuxu8Zk0d9A7wix73eeS+ez3x5HzxCLxruuX0Qo8EcFPV9GnW/6GhgzrwPtMX+5DBRf2a8nWj4+h7wfRDXKxrz8T0a4YBH0bDPjQd9y59j/96fc49kYw1z8x7X3sfFvSLAlRt/dILEZ77XeqFjxr3p8+Jt+3pFik66HM/JgesDGtC1InciO49n3++nTXc5FHmw85sc/+M30tZZCr1sBecnyLAciB7tbnem+32lYlS/O9R5j/2IMiDqA9EhnRuvz9V+kPNLd5LiOObsD5eFnn1GYJSfZ7bfmeq7EXPna7SXe/v1rCV6JhkMngGWuw9zxDtt7XQvqVjCpdd+iZ/l3qNclZSyHZGt6Ea8cHgTxEDGHVUAopP8WvKGK6Gd5Pj1Tvfdd5/uu+++7HcA2k533XWXfvjDH+7Y5nvf+169973v7fn92972tl3ns1Qq6eGHH9bDDz+843U70QBEv07JjUA8qX6w2V5ofX09efaIDhofH9fRo0dVrVY1MTGharWagAkUeNJ+PVrNo+yuBVHf2w8M2S8vM3NeKpW0uLiojY3NA54ajUZKLZuZmUnpeLwAzpeXl3XhwoVCTe3rvfTHyMiIjh07ppMnT6bD8WLU1fVI5XI5KWLnzp3T4uKipGJUBMrc1TiM5kang/SED+iVQR6FyjPqYJ+kpHRLKji//LBLTy8lPdhLKyBPPF3aU1ilTb44OTmpiYmJAphKrUsHtHPjgNwx3O12U8kJ7oXi7UAyBvjk5GQh8ozv3CBi7DEql7nC6ANgdRDeS5DA+zyCiZfX+fQSOtxzaGgzm4n7u6HuzgLaimuMgRUBW49MK5fLhbGjG0jS5OSkVldXC9GADvy7MTc/P5/WYCenqe85L6nDYV8Y/3FNctFgcZ0jYM7+8nX1/cPce7Q9xD6hdIkfzOplZfiMNWNeHMyJGRb0mbFHcJrfeOmB6CCgrRitBTDC5yMjI4V9wJ4m2MGN8E6nUzgYnn4Tvcl9XJ4zDvY//IIybwSzRF0zAhExMjTOL38zDvrk5RC8NFU/EZ5c47p6dKpI2paBsBMN5PeAria5DHBA1J1vB7mPHAR0Bx3An0fTuqMr2gU4YiMg6s5fgtfgKzHy3R3a8AHsUi+d4jwWHuAgKzy3F/ifc0RiW7szwEvY+Zij/LjcNYtORKKT4V/oVMgAMofoB3oeh1AiB/zg6YMg5jL3+V7bIWNhdHRUs7OzqlQqhYxHd5rwG3Qnd0a5kz9eH2Vw7D+6n8vQCJbnHMXeF5fffh0Ba2trayljv9FopNItgOjeR3dkHXYZs5/9i9ko/d5/IL/3hwYg+nVKUcjxupxIEpQAoqtQ9qvVaqpvPTU1lQRWFARuSF9LAJU++IEh+x0dDJOiXurKykryAHsqHv3Z2NhQq9VKTgrKufiJ3NcrIXRxsqD0Xe8AOvsfAI3yOzwn14OQPuw0EOIDulrksshBcXcCO0jqmUvR6PWIHzd2+Q7l340A/h8dHdX4+Hj6zJX93XhkBMdcznuN5BidxW8BueFhuWghL8XmIHicSweEvSSNRyB7v93g8jG7PI5Rw/SvH6M2RhvFNXag2NfPDUVAgFKpVADQcQygD+FkAJQFQN8tg4z7xGt83nK/2el/5pFxxkiyXnsqGsP0g/1LmRcHaNzgzd0fANtLGvla+r1zxrX/xu/r4LCDRhHQduDK95NHsqEL+gFtrB3nHXjEp6fKu94Y93dcI2/DwQf/XQTAfE1yaxVLRfHO2GON9X7In9d47/jc7EYD+T2gq029eNC1oujgi895BPFyAF/MeIuErIIve+mWnAyXVODHtBF5D7/PAfIxOhqKsjpGorsT3B1w0Vl6pfZS1F+YR2qFe5326AQG+Iffk0mGI+CgA5/2ay+7c2VsbEwTExPb6uTnHKw5x7QD6dHhsVN/cejSnus8O+kivqf4LOrkHmhBwINHooOhRLqRo7lzlNMZ+xn/QH7vHw1A9OuYeBDa7XY61HBmZkZTU1O7Ktd4aFdXV9NhG8vLy6m2VrlcTodEjo2NqVqtJuMzKhAY6teSEKwA1UQa+aFUl0s5o5foCKIAYjpS9IRT9sON8OuZUPTwfler1YIRer0TysH4+Liq1WoS4jutG2mWkgrG+GE6Nfyw0ECID2i/yQ/SlIpAGOngOFgBRx1sQ4bwGwc8vcakR0bFzKsY8R1lJRG0bhgODw+r3W4nI4j7e7o1csz7hxGwaI4ZAADKeUlEQVTrcs6jr0nzdXAs8iF3HLhhhlOYzCKPfotRz240OWhAn3AYO3jJ/T2KOuoXOYPO19MzgCJPIIsAfYZMughuxN/B3702PiC67x36Htc+RuFFvcidO27oRyeGg92sJ2268UpfPQiCa9jTnjEBMe/sEzIBIJ6FaJR5O/SH/ewH+Ppz4tGR0UnlffXa6G6Qe2RlnDccLx4FGUHvmLbv/CFG/UcwvxfYz8FtXr6J69AJvQ/SVmZE7hnMUXRGDQ8Pp3laW1srgB7uSHHeQ59y4+0FnvVDA/k9oFcaRZmEfBgZGUnlOf1gUHQGtwH8DCyiu2kH5+HExETKWsKpS1uxDy43nAfDlyII77JcUpZH0C7yhD57JLr3IfKbXs7BvTz3zmup8+16F9e4PPI++98OnKOH5CLCrxblorGvtD0cFwDogOieHej38vVyucK7t+0vZESUJy43mG+3/dEvPLDT5bPrSNyD58TbpX+egdgr0ML3Ru4ZOazUSxfth6L838vvBvJ7f2gAol/HxMPXbDb10ksvqVwuS9pMT97todrY2FCtVlO73dbCwoKWlpa0vr6uEydO6NixY6pUKjp16pSmpqYKUbluAGAkX+voY2e2rVZLtVpNjUbjiqO93ZCNkYYwfI/ix6DzCDsH9r0mG/2+Xgklj3ro09PTPSPsrjdysGhiYkJTU1NJ4DebzW3rxj4ZHR0tpGAODQ1pbW0tKdiuOAxoQAPaXwLYcnkQDQUHogFGo0GBUu+HbfPuEVcOoHNPj+5xY8WjmjEUnBd4JlOlUkmgGeApBrfLFngKTlkisXAmYFh5DXSvG0n/POrV04TdKHMgMAegO+jIHJMuvby8rFarpY2NjZRG7Qaxz2sOKODdjTBkrmcHSUUwoVwua3x8XNPT05qZmVG32y2kcANeeFQWRrbXz0aPcGOOuYAcQM+B+m4UMj9eQshBjJhi7WVGfG4wUj1Cnjl0JwZR5j6f7Gn2CQdmu37ne83H6PuaOfN94I4R5sn1xTgvfjCnO6tYF9+7HqHmDg/PLvA14R7R8M7J8JxTDMcbf8NfmGM/84A2eE69L6wjbbuzyJ0Ruf3E/Hg5FvrgbdJ/nAqRuJfvK5+Lax0IM6BXNl2uQ+cgKMfPAZdLpZLq9XoC0MvlcgLX4R9+yLE7Pf2d3/CqVquFQ8o9cCvyZ9dZYma08zW31XNjciclfSaACFmOE8DBVJehUX7HVz/k/G5yclKTk5OF9nK2FHIBOc2cUkrV62sfZBkX14+u9J6OSaDrESRA9gI4RAzggFx/dJnl5QVdjkcHscsL339SMfrdnTbSFmYiFQ9OjSB+1EPi87ITiB6dTYc9eC3OZ84B0k8bub8HdDB0/SNeA0oCz6OdqQPmpV4c8PX0GISlG+5uSGM4e/SSH0wiFT3YB00OBDC2eHhL9LDuZjBETy/R+f4aHx9PJ2HDwHNe/1wq3vXO7DztMBrNNwL5PuF56JXq7AY4ig0vPwjoRpqfK6Wccr2X14AG1A/FvYLx5YBnLA8SZUQvedEPP3dlPheByzUOCsdo29zL64vHKNv46tXn2BcHlF2e5dKDfWzx5XMbx+HzFKPi4jz2I6dz8+48GxnNy/mx15vO1RTPgQFOveY4UoxujnPF/EfHQZwHB0Fiqnbkjf0YkB4l7uVucvO+k27XD192oNfvz+/j3oj6k69PDpRwUMWfhTiW+FmcU/a875NeJXi8HZ+bXns2jo9316V7PRMRPIqvverefv9efdyJDlp+f+lLX9Ktt96qiYkJveUtb9H/+X/+nzte/9RTT+ktb3mLJiYm9NrXvlZf/vKXt13z+7//+/rZn/1ZjY+P62d/9mf17W9/+4rvO6BXDjmY7UAfL5fRLqvjGSExE8n5gL/gFTk7NgfGOR/p5VTbTXbvJL8jb3V5433pdf+daGhoKNlQZDtT99ttK3diRgdobqz8nev/1aK94A67UVzjXHm9nXSSHO/dTW7vtoa9ZI/rLDv1K+6buHe8vV79jfLbszFyMvWw0uXatnv93cD+3j8aRKLfALSysqJLly6lqLVarabR0VFNT08nzyQMxEuKnD9/PkVGE6EyPj6uqampJLA8nRtyYxtlAO/0+Ph4AuMPinFR64yo+osXLybPuVQ83ZwXXtHIGOh3tVrV0aNH0zxSzgZhQSSZtHkIJVF/U1NTGhsbKxg8eHw5LMNLCFyPVCqV0j6ZnJxMWQrXi6DaC7H+Q0NDarVahT0gbe4XDtidmZnR7OxsQXivrKxocXFRa2tr6VCUgRAapJMNaP8JuZQr3SBtr/fp0TDO/91ZHKM1o8EAP+C5Rn7EiN1e0TP8dnl5WSMjI6rVatrY2EgRwiMjIymCCmc5Tm+P7HWjyiNjJaWo2G63mIaLkYzRj2zESEWm+b1ykcQO6rpsI+qOiD2y1uCXnqqei5rCaUmksfffHbjLy8tpvvm8Wq3q5MmTqlQqOnLkiGZmZtTpdBIPXl1dVbvdVrfbTeniDmzQjkeWDw0NFWQ2/cutrctDDH7WO6Yl07ZHYcW5dbA/l13h/WQu0HMcICE6mjFTygW9zTMmHCCOIL8bpu6YYuxODob7OGnLMxr9YHIi2Im+JoPBs7pclyuVSmkf+3PIYa4cMErbvg9HRkY0NTWVZD1ElD9ZFI1Go8AP2Etx7Rg36+ROquhQ8P9HR0cL2Q7sSa5jnvifPcpzFIF2b78XKAHlojt70UHK78cff1z333+/vvSlL+mv/bW/pn/+z/+57r77bv3pn/6pbrnllm3XP/vss/qVX/kVffjDH9bv/d7v6d/9u3+n++67T8ePH9d73vMeSdLTTz+t97///fon/+Sf6F3vepe+/e1v633ve5++973v6Y477ris+w7oyuh61es46HBlZSU9o5R4cfkpKUVEw2OdN/tzHYE/f5aRAdL2qGJpy4YFZIZyzsoozx3Y9+h55DftR2DY5b5f1+12C+WuXE7sRJVKRSdOnNDExITm5uY0MzMjSYVIc+bUx4mc8uA+1+M8strnZKc+xWhqftfvfu0VbHg5Wcmu57js9gxol685Z3OUOznw2mUD+zHKL36L7utOHg+8QA76oeTcz3UM9hH39HJz0ubaeyYY7aMH4mjxPq6vryd8i9r5h5WulP/t5fcD+3v/6JqGRv7xH/+x/vbf/tu66aabVCqV9K//9b8ufN/tdvXwww/rpptuUrlc1tve9jb9yZ/8SeGalZUV/cN/+A917NgxVatV/Z2/83f005/+9ABHce1pbW1N9Xpdi4uLevnll/X888/rpz/9qS5cuKDFxUUtLS2pVqtpcXFRFy5c0NmzZ/XSSy/p3LlzOnv2rBYXFxNzJZ3cU8FzRpEr5qR5Ef1+uQLicggmDoheq9VSjXcUBhgtkWdeOzcKCzfCjx8/rtOnT+uWW27R6173Ot1222163etep9e97nV67Wtfq9e85jW65ZZbdOrUKc3NzWl2djYdxFoul1Ot8KmpqfRdr3tfb0St2Z32yY1Aw8PDKV0u1o2VtgxfaqfPzc3pyJEjOnLkSNoT0dkwoIEn/Eagwya/HbB2Q86jT1HoY4SVg1yeQeIGlAPP/orppjHizEHGCLQ74EzZk2azqUajoXq9rnq9ng6lJtus1WqlV7PZTM7cGLUGYQgDxPvnXnrCDyx1WRmjtD0aPkbHx4w3P5QTR70fugrA6evgIHqMBHa9w402d5pQygUePDc3p6NHj6a/cXbyQmZXKpVt94vRXrz6yTCij17f1ufdgfBIvjaMk3JhlUqlUOfcnQ/+yoHrDq7Gsj0xqs/7EoF0Hx99cCM8XpOLquR3noXhTgDWn0xAB/4dbPdx8fyVSqVCJqGfD+B7i33I3FI6AEB9amoqyX6AmDgP8dmPjnL2tUeqQswHffFnzvmEj41nCp6Qq9nvr35pp/2Yu/ag5PcjjzyiX/u1X9OHPvQhvfGNb9SZM2d0880363d/93ez13/5y1/WLbfcojNnzuiNb3yjPvShD+kf/IN/oN/6rd9K15w5c0bveMc79OCDD+pnfuZn9OCDD+qXfumXdObMmcu+7/VGh01+X6+E/Ys8XlxcTHY3tner1VKj0Ujv/A347g4455EO3sbvc3oM33s0LtfSV+eVMeI8RtTn6og7zwLAjBkxzsP91S+Nj4/r2LFjOn78uE6cOKGTJ0/q5MmTOn78ePocmT4zM6NqtZrO5cLGZuy9ssP7jVDOXd+vHZeLGL/crGTnn+4kiRnPMXPK10Ta7jjZjS9H+e2UCwqI46Zvfs5OdKhHmYXexO920gO5Bzb45ORkwl2q1WrCY3Jnw7xSaWB/7x9dUxC92Wzq537u5/Too49mv//CF76gRx55RI8++qj+/b//9zp16pTe8Y53qF6vp2vuv/9+ffvb39a3vvUtfe9731Oj0dB//V//1wcG4h4mwiBBwa7X61paWtLCwkIS6vV6vVAjzB8KF8rRUMgRDG9lZSUpBs1mM7VP9NvVeOjc+PI66Aj9brebGGulUklG0czMjKanpzU9PZ0MJg4tGR4eTtdOTU0lI/zIkSPJ4ObvI0eO6OjRozp69KhmZ2dTtDrGXc5bH1+7kSsrXm/PXxiIsezO1aaoRN3I5ApZbqxxXaOydT2lkw1oQP3SYZPfEUh0WRajZaVihGwugtvbzYGIboi6QSr1jlx35T9G65BJhvyOB1JTjzSWcYnj8zHnDsOMIKaPKbbnbfn1Psfx97nyEs4fHfgmSs9B/ggGuAHmpVjiQbLSVlQaYDNGlL8wuHkB5HvbcTzMYzTEe6UOY9j1KgPmhl+urra/fJ59/fxvN0h7Aei+J33fRdnl5UV8n/hv4l6JQIw/i/F5cEeMR+P7POd+62Czg+MOksS9KalgiO+ms8TnxKPholMtB1g738k9o35N/D/2wamX3iFpG3geeac7ytzp53q+z/FBUa1WK7xyUYKrq6v6wQ9+oHe+852Fz9/5znfq+9//frbdp59+etv1v/zLv6xnnnkmOTB6XUObl3Pf640Om/y+nskjsskWwxmOTYwsx/HlpV9y5V+iIz4nq5138uzHtnK8NhcM4PzIr4n39eh4d+xxNksObM+VuIzZ6jg+sXMnJyc1MzOT7PGcDT81NZXs4Ng2FPEM10NiKRQfY9QJ4qvXOPrZJ1dKvexM1ytz94nym/e4j3J6nesROVkWwfp4X59zn8cYpOH3i+uQ01lyuIrrMFfiuBjQgHaja1rO5e6779bdd9+d/a7b7erMmTP6xCc+oXe/+92SpK997Ws6efKkvvGNb+gjH/mIlpaW9NWvflX/6l/9K/2Nv/E3JEm/93u/p5tvvlnf/e539cu//MsHNpbDQtQDHxoaUr1e38bco4EN04IJIoQ9lTnHfPzaRqOhs2fPqtPpFCJ3jh49Kml7CtV+EGm26+vrmp+f17lz57S8vKyFhYWURjc5OamRkRHNzMxoZmYmCfShoSGtrq6m1G6cDGNjYzpx4oSmpqZ04sQJ/eW//JdVrVbT7yPw4BFGgBsYAwiATqdTAAH6FbjeVz+lPZ6+3e12k/JCRH4OxNhvYn7L5fK+r+1hIqIamfu4bjnFgDV2RYEoTAT9K92beyXOtVf63B0WOmzy29M9pe2ptxFkIppHKh7YFCPWacPfva3Ia5GXRHYTOeREtA2GY6VS0dDQ5kHES0tLBTDT++yAeASp3UByoyUCsETkIKd8/Mh0Sen7aHxHIN35WQRJ0THol4OYrkNwTzcI6SdRSfDQ1dVVbWxsHoSF/sGYK5WKJicndeTIEZ08eVKTk5PJyd3pdFSpVJLznTIwDuCj73Q6ncL3lPKiX/B79gxjabfb6nQ62w5l9WhAaatMWC8HDXPt84RMYV0d5B0bGyukuvteQDdgDpFRMZIeGceY/Vna2NgolNBhT9I/1mx5eTmVSOG63DPDuqM7IEMp2eKGNTQ8vHnQd6fTSX+j/0Qw2vckB/Wypr6HuL/rVOhsbrQTbUq5FfYQe5M14zn1PerABtcxNzkQJK6/rwO/dT7i0ffOD4aHhxOo53PIde6U8M/6of2Q3zfffHPh89/4jd/Qww8/XPjs4sWL2tjY0MmTJwufnzx5UufOncu2f+7cuez16+vrunjxok6fPt3zGtq8nPteb3TY5Pf1Sv7sctaY22/+XDqP4j2CfPAf+LE7CXmupS0Q27PIVlZWksyHVzm4GO8d+UmuXnuMMOZ33JNzyGiXtuGdRAEjgygNE516Q0NDKZr8+PHj+kt/6S9pamoqBbJJW3yVe25sbBQOPm21WimIrtVqpT4hI7xf7jhkzmIAHvzd18Z1H58z/72T60k7Adx7IfZXdASwT5D1UW64s91lhuvEyCXkTtTtPFCD8SBrXG77nHEN9x4aGkol5KKTKILx6FHLy8tJr4jPg+MqPjesM9jIgDZpYH/vHx3amujPPvuszp07V4gEGB8f11133aXvf//7+shHPqIf/OAHWltbK1xz00036c1vfrO+//3v9xTieIqhWq129QZywOTMhzTvfilGCOW80H4t31NfFAPNGTOMNgrryyVn6G4MkxYHmI2XOJ5eDfMdHR1Vt7tZp6vZbCahQUqvR6vj+Y79YA7YTxjbzLt72HN/70RuSCLQMU7da+vCr1QqJSF+NQF07ocBdiN7eN0T3q+zIBrN+xV9cCPRQIjf2HQt5Lfz5F7/R7DbFXxp+7Pr7URycNu/B/zi7xxx7xj9i5GIIesgaryP94/7uNHrIL6TjzGOzQ0YDFxvIwLo0ckejSBvO0YLca2fqRIjwxykROZEx4bLVs/aIhp9YmIiga8AxBjGzGs0sH39fCxuqEXQk/5zXZQZLgMYJ+OP68s9WX8Hh3NgaQ4o8cjs3D6I7fnfuXlwUCiC49HZEyMafX/49+iMbpxzf653oN4N41KpVHhWXPf1+zIW5jz3fOZ+50Z6nOc4r/Ql6tBx/egPAL7rx+yLeF3cO/49fY+OjZjtgeOB9vjbQZN+gjt8Ha9Ufr/wwgsFvZratzmK/drNnshdHz/vp8293vdGoYH9vTeCL7hDC2CY7yNFvjw0NJR+LymBknznFCN/4QHOD7l/zv6Iz2/kFTGzpRcw7Ha4P2MO9kOMDx7pfeZ3XuaNTDHKc0ibgKoH+jmPRY+Ar/lcuWxwGdftdrM813WyHIge58DHvhtf3A970PXGOCbeo67l+pf32WVQ1B1yQRMR5I770PsRyeU6cx11ntxv3FnAmvu4c/PjzmmXbwP7cWB/7ycdWhAdb38uEuC5555L14yNjSUvpV+zU7TA5z73OX3qU5/a5x5f3wQjbLfbmp+fTxFdHlXlBr1HXVMmBmHaaDRSZB2pVpOTk9sMy70o7AhzvO4cIrqysqKLFy+qVqsV6q4SKc29p6amCgIRJQ4P5fLyssbHxwvpYkTVI8RdIEXDzY0nPO1832w21Ww21W63UxpfBBikrUgw5o1IeiL78d66IHIQn7lfW1tTu91Ws9ncJtz2g6K390Y3KtzDH8cKKEMUBNkfzA1llYh2vBLhdSPRQIjf2HQt5DdRWLlUcvZbr8gq/sYpLCnL2yIfAAiFvwLiOpDlfeC9VColXu51x2nbo7jdmMk58wBhMVLb7XYqTeZ1n/kdsjTWPy2VNiPpPGI5Vxfe36NxGY3vWAeadiNQz/3J+vEIMDfKAR/jQaVEuyGrvT4q79zLDfwYNODnq7gsZW95uTaPlKdffA8QwJ7AYBwZGUkgCeTZBexdStz43OeIeaYN+hANWwdd2P+9QFM3PNnP7HU30iNQQdSzA0c5B058Hrw/njnhTiZ/972BjkWEox9s52CBA8w+Lgeq2+12GifPkD/rGxsb6TmK4IuD1LQZo0NjdL1Hwsd1oG/uSIlz4PcGROKZYH74Pwem8H+MKuyH9kN+E6iyEx07dkzDw8Pb5MH58+e3yRbo1KlT2etHRkZSdmyva2jzcu57I9HA/t6dckBeBFUjcOvXQc6bsOdwLC4vLydnsMtgeC0R2RxuDP9EB/GsqZ3sNHiFl4LxqG8/xwF555lP6Ex+PpZnTbnzm6ypHICOvY3tTTm2arWqbreb7um/9zM1CKpz+Y3t7Q6wCPK7zOt0OoU5p2wccx9tae5NVDzzyJztZ5nVHGjv2ZM+PoBx1oHP+D7KAP9dBM99nvx3UZ/wLLjYH2lLX2Q/uP7o80jb6EHRmeNj4fPl5eVtuovjMJ6V8Uq3IQf29/7RoQXRocuJBNjtmgcffFAPPPBA+r9Wq21LLXwlUqfTUb1eV6fTSQczIJABkTHIlpeXNT8/n0D3xcVFra+vJxCRFNpyuazZ2VlJSrVK3Uu4G8FMAQoajUYSkGfPnk3AZa1WSwbH8PDmydUzMzPp/tPT0wXvMgAGgm91dVXj4+OFOugcWAKg7szXo+8RqiggXl5lfX29cJgMik8vjytgwPT0tE6cOJGAARfoCEderkwtLCxodXVVi4uLBQVnP0F0+hrTwW9EQhmMyogDAKRvOoDuIPri4mKhfMCABvRKoYOU3ysrK9sMs0gOskXnGJHggNfIE3gABL9zUBrymtoeDRqjUkdGtg6bjKVBkEscGOhGDlHVkSJgOjIyorW1tcJB4bk0cJy6bgTHd15xPj2yx6NwPSUcYxKnNQYOctfBXjLBcIIjWwAnmWeAagDb8fFxTU5OanR0tHCINw78GIlO6jH98Og9z2xbWlpK+2FtbS0Z+fB25ghCP6KGNoArwAIBCR7BxXt0lgDo+n7rteb0j/bZ5+6sd7DdnwH6HaOa/dmgHniMpkYueg10fk+7uZdHvZVKpQQ2RyDDI8C5n5dHcSA7Rsb5eTxedsAdIB41z/xgiHt6vIPtXoef+QXAAhR3AIA19rrA3BOKzjbuPTY2lp7LCIbz7s+8O//Yh4Ab3M/Xh77yu8N48PnY2Jje8pa36Mknn9S73vWu9PmTTz6pe+65J/ubO++8U3/4h39Y+OyJJ57Q7bffnp6PO++8U08++aQ+9rGPFa5561vfetn3vRFpYH/3JudnEViUemeh9WpL2nTkASivr6+nwxIdiPbSnchW5CvPM85aP3wyOvZdP3E7O5YGdfkNP8PO9eA27H70pejwRz7BZ2mH+cNm5+Bvr4U+OTkpScmWRfbn9Jh2u50wgdXV1VSTPgYsuO7noLGklL0+PDycbPIcIV+Qq9h4BLG58zMGUeyVonyNDtUod1lj9A/WIF4TAXP2X5T3Ebdx+e19iiC6v/vf3p8ow1yPdMeO98cz+WgD50oOX2KP+pgHNKArpUMLop86dUrSprf79OnT6XOPBDh16pRWV1e1sLBQ8IafP38+KUM5wsAZ0HaCaSGM3GOI0MLr54eduZELM8Mg4UCVmIbj0Uw5ZY32XLC32+304t54MDGqnIl6anh8YWTEelqR4Uva1k9XmiJYAIhOv6jZhlDo5d1F4BHFRgQdfyM4EIhudNM/r9+N4hQj3/aD9uIIudHJ96nX+RsZGSk4VAYAepEGSsyNS9dCfueiKyIAieLNd67QeztQlAW5692p1kumeVRpr2ggB5QdkM6N08llCkCptGU0IJu9ZAifxbFGg9rvF8HQaAwiC71Oa6zZCsDnoKu3H989mjb2wfsdDXeX6bm+x7Vk3tB9eHltWN87vq7ejjtcAVv9XAyPwvd19/0jKQEg3vcYzZaTvX5dLyO5X74b58gdVL3uCfjNHotghZcnyD13uX66LhhBA9d94rhzzomd5oBrGEd8Zr0PrCslF9gf6Lj+jPBceNkaqJeDhLFwj/hscA3j517eto/Rx+LtR9qLTD4o+f3AAw/oAx/4gG6//Xbdeeed+spXvqLnn39e9957r6RNUPbFF1/U17/+dUnSvffeq0cffVQPPPCAPvzhD+vpp5/WV7/6VX3zm99MbX70ox/VL/7iL+rzn/+87rnnHv3BH/yBvvvd7+p73/te3/e9kWlgf/dPEdy83Db8b2Q/zjoccp7NlLMnc45V52suF+mz80SXeR7djd0PecZZdMjyHnUlbNEoE1zH8rIdOeA28jzG4VngBJX5ga3RiRh1g9hPHLZuk8d1ijKJvrF28Huu2Yvs3Yl2a8N1CdeddvpdDn+J+p3PU5S18Xc8E+48oI2oP8ZXbC+nL0b9QCqWV4x6At8PbM4tGszF/tChBdFvvfVWnTp1Sk8++aR+/ud/XtKmF/Kpp57S5z//eUnSW97yFo2OjurJJ5/U+973PknS2bNn9R//43/UF77whWvW9+uVut1uOqwDjyAgLh5mhOfq6mqK1ML76srE8vKyLly4oOHhYS0uLmp+fl4jIyOanp5WuVxOkXjuFYZoCyUA0Hx9fV1LS0spvbper28T8FEoR2aaM9TjHERmTZ/cOMObvrq6qkuXLmlhYUG1Wk3PP/+8FhYWCuluS0tLajabCWSPzJxogXK5rBMnTqhSqWh6elpHjx4tRDBFxQQhTqo6kYe8j4yMpIyBWq2W+r1fe2W/lILrmXyvtFqtZPCy9zzFbwCib9GV7J1X+p67Huhaye9Y2zwCkA5MA7i6IeoGHkaUR6O6DImGJfeP5VYgN9QcaERWdDqbmWDwEd6JbI739XJiUV7xOzcgiWYD0EXWS0rR7S7jieqBSqVSmgdPEXcQr9lspgi5Vqu1LR3c071p04FvIvKjXHYgF57rJW8YF+VbvOyKpEI6emyLklv1el3nzp3T4uKiWq2WlpaWtjkxOHDTo6l9XzCPRL9jhLMWBCIwLxDgM3PKeHxPuk4To7T9b65HZyGbodvtqlKpFMq9RFDAnwVvD31MUkGHYE+4bkRbzJUf8kWEWwRxHbyOxjX/e3aCAxg8Oz7XvofRET3gwoM+fPzxWWItSqVSAv/oC/V5eY7cOcWc0wfGyB7w8grxsFg+c0eD66XsYZ49L4HjawOw78AH7zwfrLM/T/3QQcrv97///bp06ZI+/elP6+zZs3rzm9+s73znO3r1q18taVNmPP/88+n6W2+9Vd/5znf0sY99TF/84hd100036bd/+7f1nve8J13z1re+Vd/61rf0yU9+Ug899JBuu+02Pf7447rjjjv6vu+NTAP7e3eKIDSf7QdtbGyWh0SWwjfGxsZSNLcHj7lu4DZ41IHgj/A158Nuw3hUtUcBx5JUfEZb8EXeXReCP7nck7aiipF5UUdwh74HBMDbG42G5ufn1Wg09OKLL2pxcVHtdlu1Wq3gbGBe4JFkNTmvpQ+UgR0ZGVG5XNb4+HjqfwR23aFQLpe1sbGRsgzj/fk9utVeeWF0lvjeixmY0cHvfYdcl4j3wQmOrHBZ4/fxthwDQp77PsmVNPNyMPTFwX8cOzhHYmAGxPz2cmb5nHn/X4n25MD+3j+6piB6o9HQT37yk/T/s88+qx//+Meam5vTLbfcovvvv1+f/exn9frXv16vf/3r9dnPflaVSkW/+qu/KkmamZnRr/3ar+m//+//ex09elRzc3P6H/6H/0F/5a/8lXRa+ID2Rl4PbW1tLZVGKZfLSQChbAMMO7myDxDfarXUbDYTqFutVlNqdKzZxu+JCKOEC/XNANEB+qNAiOBJzsPZC0CPY8iB6ZCnf9frdZ0/f17NZlMXLlzQ/Px8wZCq1+sptSue3o0Q5wDUmZmZlMI2PT1dABh2I6IUEEooQs1mc1sE4ID2RjsJHb7ztMpXsoDuhwZC/Pqnwyi/I//3+pzSFnAegUh4tTtgMagAsaPB6QaZ3ztmCjkQKBUNUfgxhtby8rJarZY6nU7KYpGUANkI1AEiR2MaWetlaAAZAVHdmeBlubw/HuUFSAyQ7kA1zgicAIzFo7sBAWI5FNqKQHE0BiEH0Zl/N8QBCmK6uvMNN+QA/JvNpmq1mhYWFpLcBJx18NsNP9cvPHV6dHQ0lWCjTxh+jMX3Dv2n3B3z4PpHnBuPNHOD2V/SVs183wtRt3HAIhdhB7nhSp8ckPXUam/HnVu+v+LedZCANv2Zc4eCP3e+jxwscX3WM8JiWSfu7fotY/HvGSvr7KWfPAqUcgzc2/cg65Y734D7+f6lnw78R0eQzz1zxbuvO7/hHh6ZGVPmd6KDlt/33Xef7rvvvux3jz322LbP7rrrLv3whz/csc33vve9eu9733vZ973e6TDK7+uNonNrP9vFloCvYItHJ2gMrIoOPefx7mB2HgNParVaye72ci3If5fT0WnreoRHlCNHclHC/O8Aa+TvLkt8vr2ESqPR0NLSUgrYW1lZUbvd3oYPeCQ8c+IOfAL8/EwyQHR3vroOkIuUhq/TP+aS8URHxJXsE1/f+L/PswcC+uceFBDbhOivlyvz63JyO+dYyul39Cenx7gj2isS5Jzg8V4+R5Fcpr8S7cmB/b1/dE1B9GeeeUZvf/vb0//USfvgBz+oxx57TB//+MfVbrd13333aWFhQXfccYeeeOIJTU1Npd/8s3/2zzQyMqL3ve99arfb+qVf+iU99thjfYGOA+pN0bhxzyKvGP0Uf++ALdFCzWYzRclRuw2BHu+NMAdYcO+7pJRihZGKkT48PJwOLSIiDIPdI/+ohe7gZ6vV0tjYmFqtllqtVoq0wmvNeNrtdooUIIoNsB8QBEOt10Gi0taBKghqSrd49FYvsD/XFkoLGQTME15x1vRKKUYC3sjkNV/7HeuNPicDGtBhk98eOe6KuLQVoQ6Y6M9nlGnwXgd8c4aGR77konmk7WUUolGDYxUZQYm0nGEefxt5ko85GqLRMUzfeHfAGXLA2GtNYigxdgd8W61WyhpDVruByf0wTgEGqIWem3PvD3IV+R0PnvK0bsrJucFGHzyyiTmn72S64fB2kMLnNoL8DqJ77dWcwezRdTF1PToTmDu/Z1xrL7vnZUVcj4tyzAEAj6ZjD7jBzB7KEX3OPVO9jPpoJPu44lpB6C8+596Wr00OWIiAtvc1jgWwxQEc9p0/L94Xd5IRLVoqbUXK77QPfN7jegOa0R8o52TxEkx8xrji+vnz6HtnQK8MOmzye0B5cmA8p2c473Ee4plq8fOoI8AD/Mwu5B/392sJLPAgA5zs8TPvJ+PxkjFuS7psb7Va6X7RIY68puY5djf972XnRjkDj/UoeN5dn3QnRZxr1w/4jnakrUM0XRfKrdluFEFrl+E5wHqn9r3vUUfKgeixzxETivPpv3c57Ne6vkPfXY/x9l0P3QuG0es679uABnQldE1B9Le97W07buJSqaSHH35YDz/8cM9rJiYm9Du/8zv6nd/5navQw1cuYdxjBHAQCEQ0DsLCU3qlrXRehCMCEWAaQRzBDu6NsMcI9DTjbrer8fFxTU1NpUM4Z2ZmNDQ0VCgVMzs7W4gMI1KOGuUcPLK4uKilpaUEZmN8HzlyJNUyJ4KM/dpsNjU/P6/l5WW99NJL+ou/+Au1Wi2dPXtWtVqtMI7oSYcYe7Va1dzcnKrVajoUzYH7fkF0QIhut5tOM/eyN4zlSqMmGBOnyO93FMZhIgS4R30OBO+V08ATfv3TYZPflFtAlviBjsgQvnPw2uUL5UAAdz2yStoClqUtUM2duNHQwPCNBhf3h4/iXG40Gmo2mz2jvpzXOqjnMjXKVZel3je/jr9dzvphXTiZ44GfTjjJ/dAwKDo0yuWyjh07lrLcOLjcKRpxUjFqHFmOjjA0NJT6TBkzDh2NB3Mj/zmMm5Jn8/PzKZOM/jNX9N0PWnXAe2RkJJVL4boYHcYLmSKpALh7iSHuGecBcJT557DKoaGhQg1Y31/s09XV1VSGxB0SDmawTxxEjw4b/5v9732kpjz7IpYW4TcY1dFI5zc+fs4YQd/0jAPWyY16MikZp2cXeFkYXh6h6KWQcNI44CKpUNpFUsGpVK1WUzCGl2PwPc5zyWGCnvkSSwzEOY8AiUc5uu7t5PprdGjFdnejgfy+/umwye+rSfCG61F/Jyo8Oh3dPnT9BN7pgHguCjxnW0bHp7T1rJMphZ185MiR5ACn3Ks7hGN0PPIUmQMI7vdrtVpJNly4cEETExPJye16UKPR0KVLl7SysqKzZ8/qpZdeUqvVUq1WU6vV6rnO0fns0f1gCuiAjMnLy8DjY5m8qAu5E4NrWAv+9/Xsd086n3fHN/hEdO7m1jJSL13O5S/yGZmJ455rkY8xg8Dvmcv+Qk9yvdwdy8hzgh4IUOyFOVwOuL5XZ8Z+07W4/0B+7x8d2proA7r25A9aTFv3aCuEngvlWIPMa4HRhnu2cwa0exx596gjhF+1Wk2lTwDR/VTzCNAj0AEHPEJpeXlZo6Oj6eBShGys+4lg5xTuRqNRiGLrlzCevI4c0Xh7AdAhB5AA1DH6+03V7YdceN/IILpUjFQd0P7QQIgPaL/Js5qQUTj5YiSoK/ju7IztRLnmPCA6SGM0kkfgRKDQwVQvNwH46OBZL3CZe7vx1CsrLI7VI4fc8IpAG9G/sVSE39NlNeeE8HuMb+bHgUEA9EqlkgxWB2xzkcxuZHmtdZ8Pn9NSqaSVlZVCRBkAKXNNJhp9RxfwaG4oBxI4kOGp4R5hFXmW7zdvI65LvC4af/G+HoUOeYR+nCcA4AjyR91jN54b91yMasPwzv1mJ4PYn1P67EB5nDvXKV2vjMa59yUXvefPUdxXPi6/N84NSenZxWkTHWxOsaxP3C+5CPbcXEWewue5OY6AfC/esdv9LocG8ntAB017taMOE7ksdIdk5D/xN873o0PtcvvhTneypiuVSnKC5/gHDm7nRbFklvMtZDvOeM9OQzdDXmODe/34ncYa54u/vX0PDnSAmfHlnJNR96Mtsu5ddvm9L3cdXKdz/TY6Q/u5R67/OXkBuf7jeyLqkLGPjgn5vb0PritCce/vlx2+V8fx1aK96Fn7RQP5vX80ANEHtCeKRjDCJp62jhHhqcQxZdhB9pwSEA3G4eFhzczMJKF9+vTpdAjn7OxsIUoMkN8FC3XS/MBPopOI1FtcXEzp9HjYZ2dnNTs7WzCo6/W6Ll26pOXlZZ09ezbVYYs14nuRG7+UXimXy4Xowyth7kTddTqdVNImAklXQkRQxejIG42IYGPfDATI/tBAiA9ovykacUTjen1PJz+cCDDRo8+h6ExGjsFjR0dHUzkSj+b1Ule7GbnIRZdbHq3kpSzoD8alpARoE8UqbT+cUNqKPPVILP8+GjUYgET0MgfSVqQ5ssqjmx0A92ivqakpTU5Oanp6WseOHSuA6JJ6ppOznryzpkQmM2aMb2qkctA2gDpZBh7Jtri4qEajkWq4M8ceJc04fY48Iou18Dqz0ThiTDgZ0JmYm14lgeKe8TlhzemPR7N7VDXfeU1RBy08gtGjriOIH/UHjN7oIHLwmkju+LlHTXNPnkPXEyGiFx0Aj2AwffTnx+/pIDpgfJRF7hTze3n5uvX19cLz48A+EZvs/Tjn/gzSL+7ne7vT6RQyXOIY43q4Qw8Ah89xrng2TtzfPKf90EB+D+h6Igf0chSd24eN3HZzEDPKmuiMvZxArEjwObK+JycnNTk5qePHjycb2Z3g7qx1cBx9ybPqHJB2m1LaKkPabrfVaDQK/Nbt7wsXLmhhYWGbU303Yl4iluFy3Ofc9TWXVfFsC/i+A8JRN+X/yIP7JfQsly0R6M5Fosd+5GSLj0PaCoj09l1n5W90IZftsc8ENEhK+EScE5zRrg/tVxnaSNcKQM8563O67tWigfzePxqA6APaE7lApf6Zlx6BPBUHQ2poaCgZkFL/DzLMdXR0NB1gc+TIEb32ta9VtVrV5OSkpqamCsaT3wPBt7KyUjCW3XhGACPsqes6MTGhubk5zc7OFoRPrVbThQsXkhC/ePFiEmz9EP1EgFcqlZQqF+fycggwRlICKjD8cvObo53Whlp0pVJpXyPcDxt1u1v19ygdMKABDejwUYz2RPaQCur1lN0IgQfDM+G/OSPEozwxokgFhhe6k5g02+gUjeCdA1mcZeFAH6XVuBaD1AExd3BHoA7yMiMO0HGdO7T9OzfKHOCkLxhPHsmNIUDE2tjYmGZmZtLrxIkTqlQqKpfLKpfL6nQ6ajQaKTsMINHvyXzw/crKikqlUpJ1q6urqTzG/Py8RkZGEv92xwFGOOVc6vV6OrCcOY6R6DlAgnlk/0QQPUZjEWUHoM+7ZzzkHC8xEsuNWi/F404VZD39Yn9S8oZSQBFI97Gzt3z/+F7u5YTxfe4lZjyaj/GQhQHAEsEY5gWHWHyW/Dni2caB4GsBYO9z5nPrzyFgeKyNjh6L7usOB36HrsqzxrqT6cCeAdj2+eVvP0fH18/7FvkdvIm94OOJTgL67X/v5sQZ0ICuV9pJb3f5HMHCw0AewS0Vo3Zz2SMOnu9HkBM6CfL7yJEjmp6e1qlTp5L8xgkOL6d+dbfbLciaWBolZrj7eWLSJp+u1+sJpGeszWYzye/z58/r0qVLfa1d/B49Cv2Edy+L5+QOAS/phv7DeJxn57KQrtTB4boEc+3ZCb0C5vwa/u/HcR+BdtfJ6IPrk66vuXxCX8uR79moc3LP/aS4HlfjHjvdOzrCXCZfDsh90GMY0CYNQPQB7ZlcMLiREpm2R2556s9eCSOdWmyTk5OqVqvJA46Aj4yXF/3DyIw1J91whYGtra0lozpGiXW73XSIKIeg5Ly1/cxjFBz7ZcS48IrOhRwQEIl56zUeB6F83DeaEcY4iZYb0P7QwBM+oP0mjwLnf4/idgMDijIqUi5C1X/rMhDQzX/rfYkgtEeh5yJqo1yIn8cyLKVSaRuI6xTlTe6aHLAfv4uA426EwUmJMWrXe03rGOUdjcwYfeeyPgeougNjdXW1sEZDQ5s10TlY3B3oMTIqp9v0Y/xGozP3fa92/Ltea+CfMy4vX+TrG/eKRwdyva95TvbH+8U5ye2Z+Dx5lFWuPfrl4G6cIz4DOPDve/XXaSdQKbce8VmKz3EEJXJz5JkhADDOO3L99bI1/7/23j3Msqo8E39PXU6duvYV+oJNCw4TwdbENJGABjAqCiqIKBgN6oxhRIbIJRkBlbE1owSTxxBFvA0jKon0zAMkaojSJIghdLyAGBRj1DQ2YjdFd9e9zq2q9u+P/r2r3/3V2qdOVdflnK7vfZ56quqcvddet72+td7vXd/iGKZ5UQeDVRZaZ2GszLZtZjt/c/vtOFJwuITmYqHePNay4XOBrr/pMFYbTjtOh5+df3Esp32yB4erTeO8yIZY1TYi2U4bPlMIF0WWXc6ad9RaK1s7yL/V2ZG1to49azbg/KatrW3aDsVYvmutXbWvxIhlvS6rP8XsY5YYgNdZcj6WtvaNI9lu2PnQYjzP7ff8wEl0x6xgPYU0AjGPJo2LGsu5DBCdnZ3o7e1FV1cXNm3ahGOOOQZdXV046qijUovxrMUnjXtLS0s4DGVqaiocXMIDQpUg4AFULS0t2L9//7RtrpVKJSjaVeU4G2jd2fo83IHUps32sc+IPc8aLrvoTZKDisORkREACEr+I03NRGfK8PAwBgcHg0rCcfhwI+6YbxSLxdQheSTPLWFMu6QLPxvDmr91oWSJVF0MZsUvB6YvHDimctwkmasxMzl2c9GpIV4ssafko4Z4sWEpuBiOkey8VrcIU1VGcll/tB55v6rhdXHU09ODVatWhcNEV69enXJ+AwhOSktmqz1va2tDd3d3WDT39fWFA8e0XbiQZ/4ZBkTrtlgsYmhoCNVqFSMjI0EBz7R1zqCLZBsCRwlp7TNK+tN+sh3sgaFcENsQdBp6w4bF07phGgzHQYUzVdO8n9unqYoeHR3FxMQEenp6QvgRpptFxMQIWd3OzfzoYWG8nvlivvWAToYLYhxc7U+FQiH17iZJEs6saWk5eJg874/NXWw4AQDhvVK1t+ZJd+xpe+nheLpTwc5tdT6o4XqYlkLHHe0TJJHsjhDtXyoIseNGbMcI3w3rOCHqnd+4/XY0O7Ic1I2G2Hpb17i0OWqL9Odw1yydnZ1YvXo1CoUCjjrqKKxduxbd3d3hEE7OOfh8joXMk84/ent7w/jT29sbDovmOWK6O2l4eDiEXrPzq2KxiOHh4RACph7E1rocI2kfdCy3jmeOu/zc1r/OD+jkBQ7tCmMoMLaHjtGzFeBVq9Vgv1euXJkSCqiTt1Y92OvUIRDb4WChNlPFh5omba5NizsWuVtLHedsDxtybr53iWg/1brhdwsJfWets2Ex7KPb7/mDk+iOWcESsbqoj12nxmeuxpyHh/b09GDNmjU4+uijA7HORVEtjzFwaMDv6elBW1sbxsbG0NvbCwAYHR2dNqBxkNeyKGoZqXqQRWLP9yRO28vuGlCDaQdwXWjFBlyqwPL5/LRTyI8E6ARpfHwcY2NjqVBEjsODG3HHfENDRJDwUnLRTpZ1/FPCVCe4Ol4qkcexzx4Abcdvq8zhAoEkryWqNR/2sCv9m+UF0gs8KsO4oGFZNA561o4nzV9sIa6qMlteXeCo8zyXy6FQKISdY319fVixYkXYNk1Sj4slLpxiDne2Y1dXF8rlMrq7u9HS0pIillk2VaJrKByCIV6444yhNjTsSKyuLEHOsqtyWMuvdaSLcLWtugjnczWMiHWWkHAncWHbX9ub93KepiQFyQfWuXXMZI3Rdi7HMk9OTqYW8rpIjy0a2cf5ndY/64fkSWwRzp2FLLPOyTQNfb49L0D7rs5lNeQASRF9P6ySTqHq71wuF95HwpLYSmzzRw9hozPEOnQAhAPv1enDNHXezbGF+dPf7D+zsatuvx3NDuvwbWRYIp3Qd1fHDrvL7XDA9XdnZ2ew3zzDS537HPc4fhJqVzo7O0MoNjpuKUTTMuj5U7H2oROY5Z0NYkQ6x3d9pnIYwPQDNe2YrjY8SxRn7bXNTz1txbkt7QKFB2pfs+ouNs6z3nXnUowTiJVVr6VgIXaPLaOd72rd6Npb+/RC243Z2sDDhZY35uCZa5qzefZCPmO5wEl0x6xgyVUuJOzWcjXgc/G0EiQreJgJDbcqneodeLiI4kGePT09mJqaSqm/svIYMySHAx1AY2R1jESYbfrAdEMUI+9jJJAlSmIkO73t5XIZY2NjQVHW7EQ6y0Y1mG4bdAPicDQmSqVSalKuC8/YLhklxQklvZVE1TGNCuHYmG0XsExT02caShwr0adkKndZKYmuqiw+0y5a+VuJN9oa7hqyizhLoFt7mOVM1mfyM807F9x65gdJV62TrDmC1rOquZVABabH97SLXLW19vBTVU6pY4TEtCr8lVBVx4Stf+0X/FzTsKF/tI2YF9aLOhe0zWJ1z8+oPOd8TNMjkdHa2hrC2cR2OSh0HmdjebPN+RxLIMTUcfr+KQmvfSFWXtafPlvVdPoeWjJGd6rYvMQIB/ZjOmO48LeEj9YbCQW9jlBhSVY57JxNlf627uhsATBN8WdJATtfVoeQtrHDcaQgNo7pWBsjQ5caMfJS19vqZLbELsfy+SAdOS5zvcyzTWjDNV86xqodsPnk+pth3Th+8qwIHY9ou6ydZjk5RtYLTUPjsXN8jYXis+XT8FuxeZ22nc6XYmFPa4nYZgId4bTfetYGx/0s4Z/aGULnUOoM4XfaDnaeRjvH/mnnPZqGrZ9YfXNupLsS58MZFEMjvO/A/OSjUcqy3OAkumNWoAHiQpvGwKpyrGJHyYJ6wbS7u7tx1FFHhW3hK1euzFTA10JLS0uYBPT19WHt2rXo7OzE4OAgnn766bD4iRHm8z1A0VhQSVetVlPbu2baSlVv+lxIakxvSyplLSDtIkzrgW1ZKpUwNDQUYtWTSG9mTE1NBdJ8bGwMIyMjGBoaivYNx9zgnnDHfGNsbCws0EiGUnGqZKu1QZbg4wRfnbW0RXahpWRzkiQhNIvaPyDtnKTt1DAuJPv4wwVRV1dXOMSbNo+LVI7Ban9Z3iRJUvGxmV8usK0SivdwazXzZBcvqjC2iyVdYNFut7e3h8PICoUC+vr60N3dHfLCxR8Xaeq8jamK29ra0NXVhVKpFA4b011Rdgu25ov2imVThwevZd9RB0RnZ2coCxf9hKq/+Cwlq/X5udxBVT7nQ1Tfaf50HkU7yvArrAPr/LFzryRJwg49OoI13Azrgcqz8fHx4OAoFArTyFbNoxI0WUpmbQsl06l+V2cI60RJYXXosJw6V+F7p/1EHVD8nuGSmD8l0a2zwo4JbP+2trZw6G25XE7VuT2sWJ0HfPe0HwBIOcCYjr5nuuWfdaDjkbaxdYYwZA+JLKuiZJ9SR8BcCUS3345GhxKB+t6qE82+90vdNy2hqnnV8YE235Lo3FFlSd655IOO+66uLqxYsSLsJOvt7Q22SUNa8T4AYS3N7zjm8ND0arUawrlwrQpM3yEEIMUdWPsz2/bSORPHzXK5nAopwrrXv3VO1t7engrXom3EsvM36yEWhk0FGjrHqadMbOPJyckw71W7H+MPOOfSMvFvtpN1zus8SOPUq62nQ0XncMr1WKe6fb46Szhn5lyBNny2DpPZYKnf+VpOh4XKm9vv+cPhMXWOZQk72Ov/ukDRxcDhvLRUszGGqsZ1nQ1osFSNzsWjXQRlqbHmE7EFtBru+UrfLnq1fLP90bSZbxIvR9Lhm5yw6c9c4t474rDjxWx/ZotbbrkFxx13HAqFArZu3Yp/+qd/qnn9Aw88gK1bt6JQKOD444/Hpz/96WnX3HnnnTjppJPQ0dGBk046CXffffesn/v2t7992jv227/927MunwMp0hpIh2nh2A9MH/8sLGnMe2NjoI6xNnZ4zP7Zv3XHlu3fegi2PYxLw3XEtqTrQkjLpM9VBbwSyloW5keV65pu1njPPNIRoWpu5tc+N0Zk2rpmPlSJTpuuttuSEVpOXZTZ8YT3algddV6wzLE6zKoLtb1UNtt467YPMC9cSKlyLlY/tp6USFVnEp9lw/XYuYd9P5T0zerXdku8vjsaR9bWO/PI/GaFB9S82D5v21HLpc+J3cfvYnWrfcFuPbfvS2wMsOOB5t/mx/YB/q99TL9je7A9a4Vw0LmfPnuuYo3Ftt8Ox1xhSUGiUftl1rrT2rGZfg43D7rrSw8QtTuvYuQf77ef2V1kTNOe7aBp61gbG9frhR1b7Zhaz3iVNXbG5ndaN2wzW09Z/8+Eemy4IpbXLM7Gzj+snZppvmTbMDbXtp/ZOlObqnlbblgoDsrt9/zBleiOWYGDWbVaRalUwsTEBNrb28O2Ul1sUWVXLpdTi4t6oIN3W1tbOA2chnauk3/mj/FVJycn0dPTg5UrV6aMnHpFSRLP5wCiC89SqYSxsTEkycE4uVxkq3pytmlToVQul1EsFjE2NhbKwHqoRSbFjF4MExMTGBwcDH+vXr06ejhXs4DtMjQ0hIGBAQwMDATngBuP+cPhvEuzvW/79u248sorccstt+DFL34xPvOZz+Dss8/G448/jmOPPXba9bt27cI555yDSy65BLfffjv++Z//GZdddhmOOuooXHDBBQCAnTt34qKLLsKf/Mmf4Pzzz8fdd9+NCy+8EA8++CBOOeWUWT33Va96FT7/+c+H/1Vx6KgfdIpSTUt7YQk4VZMD08k1Lgg4DgPpxRDv18/4U6lUwjgbW+gp0aakI/PIbc5UBfPQxNjB2XYRAiCVN35mw4CwzExTyXw6Q2OLKZZVP7exlzs6OtDS0hK2fjP2ucaPV9tnVdSq1qLCSRX7rOfW1tagDs/n80FV1tnZGXZD6f1a11kLadaL9okY4W/nHtoPGCpHnTZWlQUgOBj0+ewbmsdY2BT+8Fouorn9Wbf7c77U1tY2zcnEMlH1NTU1lYrDz/xT5cg61bmRrTe2p7aT7p6gio911dp66DBV9nntr0r+M1+EEjWWbGGZ2Hd4ngnfbSrUtU/ZQ3lt+ZS81zbQ8vNv3ZFnHXs6tvBvvj+ap1h4In1feA/TZz/P5XJhDNTxKkYi8nP72UxYTPvtcMwFsfGh0fse7RL/5m+O5xwbOMZaJycdxHr/XED7S/tKsjsmpGK+dFzSNXps3dnW1hbOJ9Ny6lyCn42Pj0+bs80Vlqhl3pWkp1rbCuqsEIPjN3d66fjKMKdMz84/dP6nu+FmM/7qjjaeb0L7yZ2L+g6Q7LZzUzu/Y98iWE7aJH2+tjXnBmxHAMHOsc11d53yLUyPdUnOQs+rmYvjpFmx0OV0+z1/cBLdMSvo4FosFsPCiotnQre7Usk725ePgz4XV4VCIaVCnwvBrEa8UChgaurgKeGrVq3C1NRUIK65HXhiYgLDw8OpU6fnYxCh0QAQYooDB+P60mlAEmC26QIIhogGloeo0UjOhkTnIprGUcs/OTmJwcFBFItFtLS0YNOmTU0f0mVqagqDg4PYs2cPRkdHUS6XjxiF/XLExz72MbzjHe/AH/zBHwAAbrrpJnzjG9/Apz71Kdxwww3Trv/0pz+NY489FjfddBMA4MQTT8T3vvc9/Pmf/3kg0W+66Sa84hWvwHXXXQcAuO666/DAAw/gpptuwpe//OVZPbejowPr169fsPIvF/DQSY4/JMUs8Rg79EqJOlWeMiwDF3Gq9lQCjt8rYccxQ8cOdSaralRJdMYP52GcWeOz/tZnWcJWiXtdGPJ/OsRJbHJBqIcwsh65+NF0WGdMj/aLO8dsHFWrCAemq59tLGpVJk1OHoyd3dvbi8nJybDQ4nZxOk86OjpC+fkMS6Dr/6wzq67SeuWzdQGq9tCGIOG9SZKkdhDwXm6RZh7tDoAslb4S2WwzJdHVwUFwHkawPXnIKuc/JHWVsNYytbS0pIh6JT60HErgc4HN8D0Ml8Z0+Z5xTsY2sTsu1MGo9chn2jLRqcV2037MOqbTSA8x1T6j75yWU/sRyRjWCevS9i2tR1XvaVgDLY+2N7+z/YjP5fkt+t7q2KTP13dNiUaH40iBOpwbhUSfyWFVK486ltAu2nnBfJWPYy1/SKLrWKF5UQGCrrHV0ag2M5/Po7e3N4R3sXZUbSDH87ms92PQcVvJa9pSFSmoQ9zOCZiWJaUBhLHYzlvUttldBbNpO1s3HPM7OzvDfI2hvYC0eDDWdjEbwDmL2ic9rF0dzOpgoT1Uu03eRkO/qACEaXP+PDY2htHRUZRKpXAmma/BHY0ID+fimBPUm6rbrOz2otgCsBGgi3V7+FlXV1dK1UgSYC4hZGo9W1VuVEwxTqzGyZyNd1oJCk3Len5ng1rPp/Hjs2jwmjF+uCoRyuVy8IA3Yv9tdtiFzWx/6kWlUsHDDz+Ms846K/X5WWedhYceeih6z86dO6dd/8pXvhLf+973AvGTdQ3TnM1zv/nNb+Loo4/Gf/7P/xmXXHIJ+vv76y6f4xCsitaqR5VYnMlxaCf4lniNjQn2+xjZZhdQuhDRUGO2DIS9P5YnVVvFnq15ioWkyFJFsS61Pm3d6kIzq57VGW3LEXtWrI2UiNSwMbrg1zA4vNeOI7SJsa3nti/YfGi71wqrkbVotYtX2290HqD9KzYv4N/ap2rlW+vVEvCxOVut9yVrTqT50Pa0RIS2vaZpt/fXel9VPKDzH40xHqsv7QfaJ20/USI8tmXdpmO3o8feQ23DGKkdg31P7HfMS6yvaD+KlVPrZSYslv12OOaChSKX54pa4+RcUOu9smWdj7Jb+2LHUh2T7PxAYe2AhnVR0l7tuDobD7cOY3MYHR91PqTjZ9acKGa3dWcYldWx8Xi+2iW2E80+U8tv5238vFadWRteaw6t96itz5pXsX61DPozWx7EMTPcfs8fXInumBPUa0sPIkFi2E7WZws1bHZA5XPmkibv5WEcK1euDIstkuW6HYse3Wq1iuHhYZTL5Vk/l8+0JE5LS0vwsk5MTKCnpweVSgU9PT0pJX4tAp8DG9thYmICQ0ND2L9/P0qlEoaHhzE6Opo5GM6kjqj1+dTUVCCbBwYG8Ktf/QrDw8NYu3YtVq9e3VSK9FKphNHRURSLRTzzzDPo7+8P/c4xvzgcY8z7hoeHU58zfIRi3759mJycxLp161Kfr1u3Dnv37o2mv3fv3uj1ExMT2LdvHzZs2JB5DdOs97lnn3023vjGN2Lz5s3YtWsXrr/+evzu7/4uHn744WllcdRGd3c3uru7w0GFGnqBCwlLqiVJMm2BoKoaLqg4RtMWAekDmVQVTPugjkRdbPE3Fzzt7e0hbEtvby96e3vDotKqnpSco4JZw3RoCDA+n6RikhxSFjGvvE4PQ2WatFf6ntoFsCVl+T/zzl1MWnckOPVgRuatq6srHErJ9JlGLpcLC2vNO8OytbS0pM44UfWzHhTNMZ3qe92WnAUldqnwZb2wfjUMB53ymqaS/9rvdPHO60qlUgixYhf5VDmrqovhUnhdjKROkiQVW5+2uVgshjLQIUElop1zsO9QmaYLZbsNn32I9/FQWHXmq4hA66itrS2ox7Uv6L3atzgPKRaLqFarGBoawvDwcKpP6446rRe2XblcnuZsswS0Hgxq1eoss+ZP88602Dd1vCFs3H19p9jnNca89k3elySHDhDWd5d51naypEi9mA/77XDEYB1jc7k/5gRfqn6n6725roWzMNv12mzT5vxB5x1c9+v8ijbNhgGjLWJ+NBwICVPg4Nxd20nHZaqTSUrPFRx31abQTjIfo6OjYTegznWYbx2fOe+ieIzjf5IcDEHDuQYPx9R5ls2X2rLZYGpqKoS7qVarqZ1kascJtW/8X9tR+43OI9ROTU1Npey6ltvOGa3TPDYfplCgVCphaGgI1WoVAwMDOHDgQGqnntuN+YPb7/mDk+iOOYMDPg3rfEONqlV38fu5eqY52Le1taG7uzvkn0aWscZ0a3C5XMbo6OhhlSmmZCKpkMvlQvqtrQdPReeiXBfeFmqQONkoFothOxTzrgbT3p+Vpg62WQMvJyDj4+MYHBxEtVpFd3d3uGc+FRgLiYmJiUCij46OYmRkZE4TG8fMmA8jvmnTptTnH/jAB7Bt27boPbE+P5P6IvZM/byeNGe65qKLLgp/b9myBSeffDI2b96Mv/u7v8PrX//6zPw5poPhQ7h4sAoc4FDMZn6v7WqVNnYBaZVElrzSa/msmKpViT8uSLj44U4ou8jjdXYxax3LGuecP6qIJVg24JASmYshkpeWjAUOLaass0G/B5BaOPF5mid1jBO6+FZSm23B8hGMqc1ruGBk/mgz2SdsnTCMB59py0LCUfuQ5qsWYZzL5UJoEkVMBca6oSAhl8uFuQYJc3V8KBGr6Wpd28WwJde1vAxbR4c+cCisTJZ6TBfiMbU4+5e2D4l3ihRYVr4nrBv2Be1nsfbRfsFyckcfQ9gpYqIO+44zpj3zwO9Z5yyDpqHpsr0rlUp4h2LjDd8BhZZR09L+pvNhrX+WRdPW0DAsD8cG7Sv6fb3wRbhjoVCPqKfWvZaEX0oCXfPULOsghY6P+sOxN2YXYkpljjkcY6hA17FW7SmdmpOTk2FeB0w/AHo2UCc45wc6zwOQsq96RobWR2weQyKY86fx8fFgv+kM0Hmk2rrD6RtJkoR6amlpCQ5xche15nH6d8wuqNM3ay4Xc1DZuTTTV2cKocIA2u1KpRKcEPzebcb8wu33/MFJdEdDQgdnksK6+JpJOZaVJgd+jb+lCjBdfKt3nQdzzfaZuVwuLOJbW1ujh93RIPGA1vHx8aBA53M7OjqiJDjLQiM0OjqKSqUS1Ock1XVCaes3VqYY8TMTqtUqRkZGUK1W0dfXh76+vhAv305GGgXqnBkZGcGBAwdCjN2lnnw7auPJJ59EX19f+D+m3F67di1aW1unqc77+/unqcSJ9evXR69va2vDmjVral7DNOfyXADYsGEDNm/ejJ/+9KeZ1zjiYPxtq2C2k37dmhub1MdIcrsQYDq6CFBC1hL4Vhmn8ZkZP5x2xpKrWbBl4nP1h8+z6nkLS0jyM0IdC1omazsssUxic3x8PDgKSBZr2VQdzTStSl0XVPa72E4tu8C39ab3x8hRppnP54PCnQelxtpG1WQax1XLxDjZVMfrFmZVNzMsmq37LJvMa2o527X8dlFM0QDjuOpOCM5dbJvYPq6f2bmN5pf5tIeU6tzLhkGxi3x977SfUfWnKkd9b2NOjSxhglWa27ZmP6gF+36oIpX5s8o+PWMgli8lcLSueX+MhGTfUidKVtoOx1LAiou0P9bbL7W/Nwo4HjfTWoLkL4BAbiZJglKpFN0pBkyf5+jOKP3Mho7jvdxNpXMLO9+YC3T3FWOG65xBQ8bw+RprXMPCMV8UMVBBzZ2KVJrrZzpn4dhtHZ+c38yln9CW6Nk2dCLrAdasR97D56hTROs75nS2dkodtloOnaOwvPoOa7gWzoPGx8fDrva5hLN1OJYCjclsORw4NHEaHx/HgQMHAkm7YsWK1Las2UC3co+NjYUBm8ZRD1CZmpoKxHehUMgknLPAicGKFSuwcuVKtLe3o7e3N6Ws4oKaRnBkZARDQ0MYHx9HsVhEW1sbent7w3Z/3a4PHPJE04AODg6iVCphZGQEAwMDqS1ktcgT6yVWA6YL4VooFovYs2dPqEMqK9euXduwJHqSJOHQ1aeffho/+9nPQt/wBeXCYT484XTU1EI+n8fWrVuxY8cOnH/++eHzHTt24Lzzzovec+qpp+KrX/1q6rN7770XJ598clB/nnrqqdixYweuuuqq1DWnnXbanJ8LAPv378eTTz6JDRs21CyXYzp6enpShxqr0ppEoaqulWSNqaZ0rGcID1VzchutLjaYXtYCUBchXIxynGxtbU2F0LCLGoWWR8dp5lN/9GBvzYcq3W096PNUVWTzY4l0VRZz99Pw8HAoG9tFbQrJdS7MWQbaLVXdsixcuNHJTVWbzZfaPS5kdQHH53d0dIRn6m6FlpaDIWZ6e3vDYWj2wG91VCsxyr+ppFPVHUOPTExMBPWVEg/j4+MYHx9P5cO2q1W06VbuLCihwd8k661zh2n29fUF+23nAywz+xafrUIHdVQTnMeQoCmXy6kt47E0lWDQPkDif3R0NAgHuCCnE4T9Tt8p5k/V8iyj7izgtdrHKWqwDhI9INTuZFCFpo4beoYA64XhbAi1leqgUjEJ284qCm0IHPuOs55j6vgszIf9djgUlvDTMX42/a1RifRmAu0316QHDhwI54NxnFLHvz0HhWFYOP/gOEThml2XaggQjpsk6a3obDbgWN3Z2Yn29nZ0d3cHW8y5nIbd03kHbRjjs7e2tqJcLgcxH+0OD7/U0COqpNY5oz4rtius3vGX0DkHy6trbc4rLYnOe3U+EKtf60hmO2jdKYeiafPH7hikM4bheUZHR1GtVjE4OIiBgYEgmnQF+sLB7ff8oTGZLYfj/4caXxp1GrfZvsw0GroFKxZvi8bAqrpmY8R18atKts7OzqCYpUGhUQYOKQDUC86FMT2/XKixPPTelsvlsCClJ1y9xLzHep31O/v/bCawuo2MTgDg0GFfsS3ZSwWdsDE+b7FYxNjYWCiDY+GwmEb86quvxsUXX4yTTz4Zp556Kj772c9i9+7duPTSSwEA1113HZ566il88YtfBABceumluPnmm3H11Vfjkksuwc6dO3Hrrbfiy1/+ckjziiuuwOmnn44bb7wR5513Hv72b/8W9913Hx588MG6nzs6Oopt27bhggsuwIYNG/DEE0/gve99L9auXZsi3h31QRdzQDpMhr7vJAGzzpmIKcc4nitBblWhtfq0kudciOghoqqWyhojY2mrUk9VQJZstYszje2peYw5FlQhmKV61ZAT+lsXWsAhElzrWZ9jnRlW2Zyl/rf1bOtNF8kxNXJW+UhM2gNLLTGvJLESl+pU4N/AoRA6GpJHVdW0mVYRZtXYVgVYj33N6ke0hVz4cmFslWWqTtN8xVSk1sGkeVXFdUxxqu8h09d2tKpGVfXzOw2pYssec2xp/fE+Sw7o+6u/GVOe7a3KRS231o+OUbxGxxnb/23eNI/6Hllnid6X5WSZLVHpi3DHfELDPwCH+vhc+otd6ywVYs7vZoA6dLk+4hhHu6BjGJB2QupaW22FOrH5nbb5fNcP7Yw9vNTuZNedeio+0PFbnY1cb/Nvlol8ggoXAKTmjFlzlrmuje1aNkmSlKPChvayqnC2j9oQa781r0lySEyYVa6YI1d3g2k/IAmvc6J6RHuOucPt9/zBSXRHQyNJDqqy9u3bh1KphGeeeSZ4lOllnol80G2/g4ODKBaLGBgYwO7du1Eul4NxJbGg24yocGKIj3o9xSTM29vb0dPTg97e3qiSnF59GqW+vj50dHRgYuLg4aCcuHAbGicAzKOS6Dw4TQ9FnYksp9G0xEJs4Vxve01NTWFwcBC7d+9GZ2cnkuTg4a0dHR2hHvjspQA94fSC/+pXv8LY2Bj27dsX6s1V6AuLxTTiF110Efbv348PfehD2LNnD7Zs2YJ77rkHmzdvBgDs2bMHu3fvDtcfd9xxuOeee3DVVVfhk5/8JDZu3IiPf/zjuOCCC8I1p512Gu644w68//3vx/XXX4/nPOc52L59O0455ZS6n9va2orHHnsMX/ziFzE4OIgNGzbgpS99KbZv347e3t451c1yhhJrdhFIpZAeTqWEqBJXlmRSUlQn/DxrgosXtTNAOgQMSXINk0HHKnAodAjHeFX76LZops9yVCqVaXnm+2EV10mSBPW5LoLomOX/rBfmUw8LywIXV5aEbGk5GGd7ZGQkkNCTk5Noa2sLtptljZGwlijlIV5UK01NTaGzszMcBFYoFEKZWG4qxdgH+DnLzPJxoanEeVtbW0hf5xm6uKZqmaQ728ueQ6LbxcfHxzEyMoLJycng+GadxZw8ul3a9nnWly7mbX+w8xb2NX7H+iqVSmHXQD6fx8TEBNrb22uGNtFFutYhy8s+agll9kNN3zoMWC4NH8A25U4QEgVU9jMt29e1X6ljiX1c1Y8aCsa2i+4M0Njt3M2gP7bNeL8+T+d/StArgc7+GiPV7TyK97Nv6lyOdcDn6W4UJ9EdS4ksEnaufc2SvIsF64g+nHdlqaB1VyqVMDw8jFKphK6uLgAIdpY2UudaSZIEW0KlNsfqkZGRsPYaHx8PY6i1qzqnon2MHcqZBZ23dHV1obu7G21tbUE9rzuQFLTlqkQHDs0RKpUKcrlcarcyd5Kpip1EMHBoBxQQ3+03X31DCX2e61UoFMI8Q3c6at9UAQDtNO13S0tLyplgFe28ln0l5oywDvbJyUmMjIwErmJkZCSE/BsfHw/zPcfCwe33/MFJdEfDg4vlYrGIp59+Gm1tbejr6wuHV+pW6Zjnn8alUqlgcHAQQ0NDeOaZZ/CLX/wCpVIJfX19IdxKLpcLi0cSqjRIGj99JjB0Sz6fx4oVK0LYiZgKiAadyvfOzk7s378fAwMDmJo6uK1Ow7lwWxnjn3FSonHasgZJVXJZwx6rN72nHtAoDwwMYGRkJJD/5XIZK1asQGdnZ2oxvRSYmpoKBntgYABPPPEEBgcHU6esO44sXHbZZbjsssui3912223TPjvjjDPwyCOP1EzzDW94A97whjfM+bmdnZ34xje+UfN+x+ygC28SSOpU5CKD0NBaVjlqnYi0QaOjo2GRaLcs8/m6wOTfLS0t6OnpCWMi47croUfFs11sUfWkah3aNCXeWQe8VlVfQJpg4yLSOjW5WOLCkb8tSW4R+04XdkxnYmIitZhlnpQ01sUdf1er1RCmo1QqhYO7WA+st0KhEOwgF+FciNMBogtKEqcs68TEBPL5PLq6utDe3o6urq5A0isZrAc7sh1ZR7TPSqJr3xobG8Pw8HBw8NiD2XURq7Y4plojia3qrtgWcZ0T6M42fqchVDo6OgIp3dbWhmq1moppzzyogl3Lp+fIkHhQEQF/+Bmfb98jna+wXvgeDg8Pp4gLtq+GA1DE5jS6wCehrf3P9mX2Hba3htCJKfe0zpVQ0LCBsZ0edHDEFOjqILJ9Ut9hkiS81ioONYSC9iWHYymg9ovv3+H0x6Ugr+2OECVkmw0cKxkPnTuqp6am0NPTg0KhAABhnOeOajvnYnzuarWK4eHhIEij/ea4S9vNOQLnPOoAr5dEZxjW1tZWFAoF9PT0pM4Zo/2L9RGdU/B/FRkACAeHcn5hw7HF6pJjLnB4Md6zQBuYy+VQLBYDj0H73dHRgSRJUsIFu4uO+dLz2OhYsCJAzk00NjqQnrsxTYIOaoatJYnOtTcdK26Hjizccsst+LM/+zPs2bMHz3ve83DTTTfhd37ndzKvf+CBB3D11VfjRz/6ETZu3Ij3vOc9YQc3ceedd+L666/Hz3/+czznOc/Bhz/84Wk7uGd67tvf/nZ84QtfSN1zyimn4F/+5V/qLpuT6I6Ghy7UisUiRkZG0NLSEowwDZcuRNQ40otNRdzIyEhqMZ7P58OCUVXeVBlyMjCbGF2q6NPFdq3raZD4W++LKe3t1iirgKoHNJiWQNIFYSzu70xpMg1VIrS1tWFsbAwdHR3BSLN8C6lKt+ozqkiHh4dD+BYuvp1AXzx4XTvmE5bw1s+sMtSSm7zW/raKGjsWarpKUKpyJ4uU1udnKUu1TLFQJvWM91l2R59TywmthKK+s1wYZimqtF54DcluAMFhyQO1afcApEhwLrBIyNrDpxhGAzgUJoX38v6Y/SahyfJr/6DNjamvrKrXkiaxNrWwacSU4rF207rU70nWKHFs8619JrbbwhL92vaq2ub8Kuas1za3NhdAKn9WsalOA0ueW5UiSQ4l0a3iT5WGWe9YrXdD+4StK61LLb+9R+ei2te0r+jcS50QuqOFdaH1r1v0Y/nX9PkZHQwsh22/2Ygb3H47HNmw84lmhY7hdPq2t7cH+93W1hZ2C1FZriQ619lcv6uy3IbXAw6NfRriIyt8WxbU0a3O+piSWgllvZfjrK0L/rY/dn2s8wX7tzrh+RzrMLfPtmN1rbpQ+0s+g84JfZa2Lz/jXELnUKwPtR/qlI3ZSq0rzRc5FZ3TaXifZntf7LxiKZx3c8Fi5XH79u248sorccstt+DFL34xPvOZz+Dss8/G448/jmOPPXba9bt27cI555yDSy65BLfffjv++Z//GZdddhmOOuqosBt8586duOiii/Anf/InOP/883H33XfjwgsvxIMPPhh2g9f73Fe96lX4/Oc/H/7nGTr1wkl0R8ODg+7k5CSefPJJDAwMoK+vD8ViEV1dXejr68OKFSuCwkc9o1NTUxgZGcHo6ChKpVK4n+E7qG4bGhoKW7/owaWRHx4eDoR9vYoCbh3jlv16FidUgFHFzklKV1dX2D6nkwCS/twqN5vBW5V3q1evDtvdqHhXFePAwEBQElD9npWmqjqp8Nu3bx+GhobQ3d2NoaEhdHR0YM2aNVi9enVQDCzUwaM6SRseHsaBAwdQLpfx9NNPY2BgAJVKBUNDQ0FJ4FgcHM5Ew9vJEYOOzSTbbF9R9SeV4oSGpLDpatgWnfArVFGt6VPVrKFB1NnL/PK3JT317A49mEsJfZZdiUOWVRVcSh6qIkkXeSw/01RyVhdVWn5LQnPxrApikp3j4+PI5/NhMb5y5cqw3VhDq7Ceh4aGwpbfffv2hW3UTJt54n35fD61HXx4eDhsaWZZtM7YTlNTUygUCkGJroeX2xjyStayrbXe1HmuJKlVCtuFs9ahhV7X0dGROiCtpeVg2BzmI+bwZj9SwoL1oOpte7gfSQ86O6xYQfuVPottxG3bGqbIEsZ8XykiKJfLoS/aOcfU1BQOHDiA4eHhlIBA1ec6D1QSW9+z2HZ+kgJaB5oG65XPzOVyqa37vM86AqyTRdXvHR0dqboncWRVrOxHqv5jnrW91QmkSn+OXSq+INTZVw/cfjvmG9a51yxklMIKkYDm7+8cg6vVKg4cOJDamZ3P57Fy5cogktIQdAznMjw8jOHhYZTL5bCW5LhNEp5rZLuDaXJyEmNjY0ENPxsleuwcE+sI1/kP7ZAVjyl0TNefmHI6yzYCCHNBnYepQ1iJeR3f9ZBW68S2Nkbtp9Ynn2kPSFcnwuTkZKo9ueOKPASfobaN7cd8co5K+60Okf379wf7rU7wWmHjGhHsN1oH2o6NisW03x/72Mfwjne8A3/wB38AALjpppvwjW98A5/61Kdwww03TLv+05/+NI499ljcdNNNAIATTzwR3/ve9/Dnf/7ngUS/6aab8IpXvALXXXcdgIPnmj3wwAO46aabwtll9T63o6MD69evn10lCJxEdzQ81GgMDg5ibGwMpVIJhUIB3d3dgQDVOKscyJIkweDgYIiFvnfv3kCkcjsWPeStra0oFoshRicHQi4iZzN4tLS0pBa69d7DBT5PFAcQiH1Nhwt1IqYKqwUO+jTmfX19KBQK6O3tDdu/qCbQMDaM3VorTU5MuEgdGxtDkiRhUsXJTU9PTzDO6q2fb9A4j4+Ph0lgf38/9u3bl5qsOBYPvgh3zDe4QIipbNln1LmnIbRqxV5VNQ8XVrHrmSbHav1NRyHP3tDFGu/V38y3qok0XAfHNOa9vb192limhCHtijphdeHIz0mSqj1R54SScEraWcJA64ykuqrMaWNZH1xQMj8k/ZIkCaE7KpVKcGirrdEFHJ3LqnBi7HrNL+vSOi+Yf901oG1iHQdKzqq6y6ZtQ+awL1ry3CqwY32R0Dj7JAr4bG0f7fv83kL7jHWqMKa5qs7se6ax4Hkd5wxsR7YNwWdw4a0LcxuihnM5fjc6OhqcKSwv3zHmS50xdndA1k4BfR9tu6vKjPNRvotZakKtdyuC4GfMs4aGoTOEede6V6jKn/m07cN3X+9R5SR/NCTUTHD77Zhv6NjRrFACsxmdADEoUUzBVrVaDeMUgBThquFYSKIPDg6iXC6H9bvWjYZY4fhnw7nYcGe1oGtb/ljnDMdJtd9KhvOz2JjLfCu5Pdt2tvNE2ioN78d0dZ7H9rD5sGXXcmqIV9p3DRemzn2dK/B+nadwnqnOYn1uTOFODoGE+sTERBA2NPv6O8Z56JykUTEf9nt4eDj1eUdHBzo6OlKfVSoVPPzww7j22mtTn5911ll46KGHounv3LkTZ511VuqzV77ylbj11lvD2mHnzp246qqrpl1D4n02z/3mN7+Jo48+GitXrsQZZ5yBD3/4wzj66KNr1EAaTqI7mgo0JMViEQcOHAhhWcbHx1Nx0Gg8uODigSajo6MhfIcd7KmA0sXbXAd56y2eLUhw0PDZmGy6aLaL3nrS7uzsRE9PT1ASMH67HtTKZ6xcuRL5fD4oytRbzuczj4xpp/lj3XKCUKlUcODAgfAZn62H7qmSr9bWa6tQY9upJ5z5HhwcxP79+1OK+iNloutwOA6BY4FuC7aK7NiYqepgjlt2q6m9PrYDh4sj/nBc1XGNz7bEuZLXVv2uf/P5quxVW2AXVPoZ79PnWuhWZyWErWKQ0GdZtTHrU0OjUcVbKBQwOjqaUn2rE5tKdDp1uYBXBZd1OGh7x2wE82jrXcvBz3VxHWt/259i/9vrNQ4sy2IX5DFiXR0BVNCrzdZt26xjfqdiAyVP1V5rmh0dHdOI5xghHatDrW+2p90yr2QTr2W+S6VSCLFXLBanxUpXpXtsjqVqOebNto8NHwAgVWex9rMkON9TdcDo3M/WH6FkDR0uSkJwLqsOLTvnUiWgbYfY51pu6/xpZuLSceRA7V+jzstrrbWsA+1IA8fJXO7g4dhUo6sNamlpSR3mPjQ0hKGhoZT9B6YrtZXUtuvvemGV5myPmMNcr9e/ZxoLlaRnerPJH9f2XCvT+as2UucpBMtgQ3LpDjs9tF53OLHMKsKwO5xs+XjP1NRUIM/5mYod+HzdMTk6OhrsN88QYkhdtd+N/J7XC1Xj23n2kVC+LGzatCn1/wc+8AFs27Yt9dm+ffswOTmJdevWpT5ft24d9u7dG01379690esnJiawb98+bNiwIfMaplnvc88++2y88Y1vxObNm7Fr1y5cf/31+N3f/V08/PDD0xwCWXAS3dE0oCoql8uhUqlgbGwsKL65zYiebC5ukiQJMdlI4Nrtzrrg5MEcOvjNZRBU4z2X++mpBhDCwgDp+KY0iLGty1mgEV+xYgWOOeYY5PP5EM7FqstoILu6ujAxMYH9+/cHhwUNIuufinYe0EqDrgtdnsherVbxy1/+Ek888QTa29uxevVqdHZ2oru7G6tXrw6HuRUKBeRyudCmbCPNn5JdGjt3cHAwOE727duHcrmMcrkcDqlVIsqx+HAlm2OhwHFQSVc9JFHVvxxTVM2sClZO9lX9reOGEuf2N8cwboPVbZ9KzDIdgs/gzh0d1zj+EqqWsukrCU4lly6A+J0u1pRIjhGASiLqYtSqtrioAw7FKefnAMKuL11oaP0xzNrExMFDqLj1l+3Jcmj+1b5rOBdL0ioRTCI1azs25xGlUinkW+tB68KOS7bu9DcX0QyXonFfOf/goll3nHHh29bWFnZydXZ2hvA4wKGwLby/q6sLHR0dKJVKgbRlWCDtK9zZx11iPLhd50lUB2q92r6ghDLTZ73pWSh6HduAqkOGAND3QBV6nM+xTbUN1XGg5LmS7XxXGE+f+eSchs4vXSDHQs7pjhDbZzi22Dj1HJt0DqoET5IkYRejHijMNrBKc6uItGOU1nFsR4S+0/USVm6/HQuB2A6aRkDMWRpz3h3JBDrXWNylXK1WU6E/df7End5qv7MUunYelsvl5kyi2/zymXbOYMc/ncdkzcv0f3Ve0+7OBBVcFAoF9PX1BfvNUGmcp9o6bWlpCTvx6KCgzeLcIZ/Po6enJ6zFu7u7U/nnPEZtlebJ7pSiHS2Xy6G8dNKTcwAOieTK5XKYsw0NDYX2HxsbC22g9uxIWH+rKEed4DoPbsRyzof9fvLJJ9HX1xc+r0U6xxz9tZxVsevt5/WkOdM1F110Ufh7y5YtOPnkk7F582b83d/9HV7/+tdn5k/hJLqjqaALBhpeNThcpKkRJoFaSyUw3x5D9dDy90wea1Uc6ctuyW1+xglMljIsC5xMdHZ2BgdE1gCosWDHx8dTh5BqXqisY0x3qspjajG2SbFYDPdxkdjZ2Rk87UpyxJRl/M12VrKJp6dz9wGJCt2B4Fg6+CLcsVBQ1SYJJf6tSmpeU2tcVlLKOlZ1DLSHV6kt0pifRNZYzfyog9AS+DEFV4zcZRkVdsGo5VToWGuVqtbWzKTmsg5rfqaqNY0rzetIBOshkqwLEpM6HyApa3eAadlUfZ2lNrbpqj22adaa1FuSWGGVbNpv1MmTlT8ldvVHVd/sS7TFrDcu8nQBHUsnpvS38y/m36quWUfq1FE7ryS3lpftS7JGnSF2LqH3ztR/tX9oW+nCl6hF2mgsedtOOr9h/bAd7LyFf9t0tB45/+H7HXuXa/WRmI1lPmNjUb3zx6y0Z3Ovw2Fhx9ZG7Cd8Lxsxb4sBOy/h+qtSqaRsMklTOnR155CFjnm0GeqonW1d61irtkrH7nrTzLpO7fVs8qRjO9fJtM8AwjxR02a4lyRJgv2O7Q60O8jpKFa7pKIzdXTzt/7N33Rq5HK5cICs5oXpcp5Gkl9FIOwP3A13JL0/1oEOpNu5EceL+bDffX19KRI9hrVr16K1tXWa6ry/v3+aSpxYv3599Pq2tjasWbOm5jVMcy7PBYANGzZg8+bN+OlPf1qzXAon0R1Nj+7ubqxatQr5fB69vb0oFAoolUoYGhoKYTxmG9P8cFGpVMJhaPl8Ht3d3alFpQUNPQ9soWMAQMrrq+nbQ+5m8thzQc0YtAznYtNWkHCfmpoKnm7mn0qErq6uoLqkOo7EkRptVXiSSE+SBCMjIxgfH8fIyAgGBweD15sTCm5756KeRik2maOnm3FwSajr9jHH0sMX4Y6FgG4VZagv3brKST+JKT3Qios3jiFWIWzHWEvEkii0Ialms91XlUV6IBSVtxzzc7lc6jm6+LLqGEvgaX7t2K+EfIxU4xhunZqavjqOVf2t7zx3KtE2rlixIjh229raUKlU0N7eHpye1iYSWjYulLPUKFo22hjWIxeGfA7zzeuVzLTtblXY2pZJkgQVnNow7YNc+Nr+ZRdl3N2Qy+WCA1xDpllntaajOwBYTl5H1TPrwS4A6SBiHfDdKhaLKfurfzPP2gcLhQJGRkbC/IP1z+/ZzycnDx4mx5jnnCfogj2mANf3g7C7DhWqGrMLXc4n2I6EdVbxN/ueJeVZ16wPHubGa0lQqMNG88c253jAdPju61yI/Yr5sUp4to3tt7ad6oHbb8d8Q511QGP1k5kUjssNVFNz1xJ3INMmlUqlcLYWgLBDjHMbRWy+oo7S2YDXV6tVjI2NBXvGcVnXszpf4W/aMA0Hp85itrsS0TP1BX7f2toadiTynDONB29D/fFenXtwLGdIO36fJEmw4bp+Zr75fO5E444v65hW+2MduTynjfNmFY4ASMU+HxkZwejoaGo+q/atkd7tw4V1nhN2p1gjOQ8Wy37n83ls3boVO3bswPnnnx8+37FjB84777zoPaeeeiq++tWvpj679957cfLJJ4c+feqpp2LHjh2puOj33nsvTjvttDk/FwD279+PJ598Ehs2bKi7jE6iO5oauVwOXV1dOProo9HR0YGjjz4avb29GBkZwZ49ewKZOjg4uKgDWLVaxcjISJhkkHiIEdYceLmNWbeHUW1Oo0moUk+Vd7XKyEUct5Jz63YtEp154ASgp6cnxFflJKWrqws9PT3o6upCd3d3IHVUxa6EDT3VJGRGRkamxUrVBak9tIZpsrw6GVCyppEVLQ6HY/7BHSmTk5OB6Mt6/2MkOnctUUFDAsyOJVlKJI6xSrbqZJqIpQcgPFdJdI01yQWJLqD08CxLFsYUsAr7fKYVu56LrBhRbZ+rRCfLoApYLsI7OjrQ29sbtjbTCT4+Ph62MFcqFYyOjob7COsgsERojPhQEp3hwmhfdPFMApU2Ww+t1AV5zJmgxKbaJXsdyVY6XmLOBkswMM5poVBIOcBjcwDrYNDyqIqZ6agCXctFwlZ3l6miTN+X8fHx4CDQLc1TU1OpRXhnZ2eICasHq7F/j42NYXx8fJoDTPuhtfMM96NODnXiK3msbaWHuREkoLU/6ZyE9ajEg6bFnZHapvl8PuTDKtqZT7YJ86+xZ3mt9lng0GFvuVwu5dCgWlD7HPsh86nvcq2dGQ7HQiNG5DUSGllZutjgepDCqlWrVqXI4WKxGEKBkNDWHXUKjlc6Ph8uyUcVvN1lpTuu6fjkmKy7/TSUX8zRqA5cYOZ5Fsd0De/HOQXHcgrN7H1qs3X3ms5l+B1tKtf5Ov/kdSybnj/CMqtz3eaD+W5pORTujLaEdaLn0DHsYCORxwsFOxexcw21ycsNV199NS6++GKcfPLJOPXUU/HZz34Wu3fvxqWXXgoAuO666/DUU0/hi1/8IgDg0ksvxc0334yrr74al1xyCXbu3Ilbb70VX/7yl0OaV1xxBU4//XTceOONOO+88/C3f/u3uO+++/Dggw/W/dzR0VFs27YNF1xwATZs2IAnnngC733ve7F27doU8T4TnER3NCVosNvb23HUUUdhw4YNyOfzWLt2LXp6etDZ2QkAIcYYD5ckMbHQ0IlBpVIJk4oYac0FHD25jMvOha5ulSN0sV/vtjdVy8UW//XAqpeYlhIM6v1nXVjiQdOJEd5WIWZj5ukiWheOrjZvDriSzbEQ4BigYwKQjvsbIwuBdAzNrJ09liy10Ofo+GrHOlUAKfkdU+zEiHtVMOszeY+WJ0Yw23tihHPWOzqTzeB9umC2i1Au+AqFQnC+ckHOWKO014zp3dLSEuKoW1tj1T7a9vqZOmn1t82/Eq9ckLN92F5KevK7mF22SjZ9noYbsv1N+0DW7gJtb+ZFCXIljGPpaZ3YNK3KLkbuqopP+5uWhfXARbpVBZI0iTkBrJPKEhf6Pmm/t4vamRAj2OdqZ5hvfe/0nde6Zv/QPmXfzVi59TN1Vmib6HP1eiXj9f2czdzJ7bdjvtGo/SJmHxo1rwsNjl0kpCms4g5k2moe1pzP5zE6OorOzs7gEM86J2wu4/ZMoN2hE59ORELtKklgteFqi6wTheO1XbtmlSuWjoXOkzS9WvWh80KdG1jBge5+Uxti185ZbcP60XV5S0tLyn7p3Hm5vSdqV63tb7R6WEz7fdFFF2H//v340Ic+hD179mDLli245557sHnzZgDAnj17sHv37nD9cccdh3vuuQdXXXUVPvnJT2Ljxo34+Mc/jgsuuCBcc9ppp+GOO+7A+9//flx//fV4znOeg+3bt+OUU06p+7mtra147LHH8MUvfhGDg4PYsGEDXvrSl2L79u3o7e2tu3xOojuaEitXrsRzn/tcrFy5Es973vPwghe8AB0dHWFrMlVRlUoFjz76KB555BGMjIxg165d2L9//4Lnj6R4tVrFM888g/Hx8XAYGD24NGSMH8YDMbnQJMnDsgCHDGOxWAxKLYYfqAfzpTRSEiMWT9WqNKempoJCHTikeMzKk91uZ8keHchjhJOjseGLcMd8g4cmMYyThi/geFQoFNDb2xscmlTWcvLPgztV8amkKlU4dtumKqwt8ajkqYazYpxvXsdFniqhVA1FNTDH2K6urtS4S5AY0wMXdXFmiVDNby0Fbxb0XVblteaf6ZIgX7lyJTZs2IDu7m4861nPwubNm5HP59HX14fOzk6Mj4+Hg6ypGKcjnLG9qYoiAcjn64I4SZLUIdiqSCMxrwsdVf6rMxtAsF0MQ2Lrhduk2fe4i0Gd4JZIn5o6GDaIfdfmP5fLhe/y+XzqgFrrjEmSJOogYjvqgaN6joz2BW3TWOxU1lc+nw/1x51zdtHPfqjhStgOrGcqoq0ziAp1VQfGYAkRdUYpuazXW7JZ33EbCobl1vRVEWjLzB/eo2Vn/1CSg3mwY0iMDNGFue5ssPOoXC4Xdq4obF7UgcJxrd75odtvx3yjURXoQNoJfiSGpKgHudyhncx9fX045phj0N3djWOOOQabN29GR0cHenp6wk6y/fv3o1wuhzXv+Pg4fvnLX04jWhVZ4oW5IkmSEJaP4UV155V9rrXf1nbwtzoos9Tbmgd1uGtf4rN5nZ5rQlurznmS/OqQjYnYaFs0NJ/aFV2jq+q+VjnINdC+2GdrebMcJUcyZqq/RqqPxbbfl112GS677LLod7fddtu0z8444ww88sgjNdN8wxvegDe84Q1zfm5nZye+8Y1v1Ly/HjiJ7mhKFAoFbNy4EUcddRROOOEEbNmyJSzqdKHBrWT9/f0YGBiYdtDAQoHGj1uTK5VKODykUCgAQFhAjo2NBUNPosAuhJVIBpAiew5XWT9XYt0SM3a7s046dGJgf7Kez8E6awHtaF74Itwx36AySJXAJFyBQzGGSeRyV5DGvtTFExdbSnTHCLCY8of/W9WRLqhsCAldMKnS2ZJdXGwxpmaWUs4uVGO7gdReWuWvqmRt2SzsglDrUxduegB1b28vent7sXr1aqxduxYdHR0pEj2XOxheZ3R0FIODg2hpaUltgVYngJaXbaP1qQS1jfEdi61NwhNA2LZOIjpmr/gs7nzTtlWSP9aHSGzH0gMOheCwuxxi7UxCWL8DkCKjtf+pjbbKZ91iz2u47Zz1r4t9LZPNG/PB/sCyqGOdcwimkxWbX4nnrN1nMQWYqgHVOaTvls2/ku76fxbRo8+w74y+C7F3jTH4Wc+WbFESXR0ANmweof2P97NsWbHrZ3rPbf3OBW6/Hc0Gq9xdrqANpxihr68Pa9euDeFUe3t70dnZibGxMbS3t6NUKmFsbCx11pU6JXV8AxZmbKAzf2JiAh0dHcHJqeM9gFQIPXXCx6Bj8kzrU70WmL7bSUl03ZXFvzVkq9pvOy+0YdgInfNxHa72Rx3mM5XDltWKMWyIs+WEZhob3H7PH5xEdzQVaBy6urqwYcMGbNiwAStXroySsTSSK1euxLHHHovOzk7827/926LnWYluHnKpCyQ9kMNuuU6SQwdTKajIm81gSIMMICjt6Jm34WJs/oFDSjt7KIkSVlwoAtMXb3YBn6VGcDgcjtlCiWeqcEiYayxmu5BjPGeOX6rUUbWNJeF0iyx/qHBWklvV37qA0UWMpj0TdOGkimYdiy2pqSG29G9LytnQEjHY8Vrtlt0KbdVPJF8ZxoWh11hXzAOAoBzjtYxhqs9V9RXzRuc5dyQAmEZKapnVFrH/sO60vVUdrvWgNjt2+KmWycZgtXWpz1SbbPsIn2UXy5YEnZo6dLCXPTBNHfQaQ1vnHvyOhDXLoSo45i+m2lNVnNa31pM6P+z9lsRnOTXPSoRoP7bv0kzOei2TnZfY/Ok8h2nHlIoKJTiUkOB9Ov6oU0vzF3NW6bV0qvFdYroW+gx9jgsWHI0O9tWFXjdYpzOwvAkk2iQ9EJw/jIXOuY+ef9Hd3Y2enh4kSRKU7LoWXCzoWprzEf2ODm11Ntdqb0uO15sH2j/dpcfdZfzhPEHnFOQI7Npf+QXd/aXlo03Tdbs6mg+HUGVatQRxDseRCifRHU0FJcaf+9zn4tnPfjZWrlwZDr8iVM2zceNGtLa2Ys+ePTNuEVkIqGeb26EUMeWYKsWocIvdw7/rgarexsfHMTo6GgilLBJdF9KlUgnDw8MYGxsLh5FwO1ilUglebiqq9Lk6GeC2cp0MOJYX3BPumG9wUUYCt729PSzaent7kc/n0dnZGc7LYIzOarUaFMRZalC1LUraKYHV0tKCzs7OcPiyht7gmG/JN6s4t8pe+0wNxcLFF8dTJSd5DZ/NdO2CTQlOXVgBh8g9JRDV5ihxzrFczxzRLdPMNw+n6u7uxurVq7Fy5UqsWLEihKYBEBRgPISrp6cHfX19yOVyoU55HYDgqOBnudzBECijo6NhRwF3f2mdK2Gpi0ElvK0jmCHa+JkSkbpI5f18niVhCdanVV1zFwSfwe3o7GfcWk3ilGS1dZDQ8U1HPe22kszWcaR1pI536yxgfrOIEC0T20SJAW6Dn5iYCLvyWJ+8P0mS8FvzbPOgda1OCmD6OQW2/rUvc+eJllXfRaal8xYlwfmeKVkeU/vbeY++a3rWgY49VmChSk593zVEDuecGt5Gn6nj3GzmYm6/HUsBdZguJAlLW2XXRbWcy0c61H739PRg9erVWLVqVbDjDI/HuUkud/A8kaGhIQwNDYVwpiMjI6lD2xcLXEfbMG2E2u96xqi5jGNq/3i+C+ej3B3J69Q+U7ym4WYsgQ4cCk2mDiDlEThP5O/5cEbpfIlYjkr0ZoLb7/mDk+iOpgMNIJVsjFGadS1jtelCfbFhF2uzvW++8qBKLcY1ozItVoc0+DYum3rCucDVLWdWZRlTSi6GmsTRmHAj7lhIKJGoqnANGaFqW12MKNkVU8cCSG2L5XWqirbnQijxHstnPQu3WkofLYdVnqvqOItIVLtQ63kk7RR2BwAdBUoEkqzTerFnaViFIf8nqagkL/Mdq4dYuBxLRPLaGImuZdX6YnpWSaxpK2HO9NUxrunZMdAqHi2Bb5+h6nGbhrad2udYKBe2u9aF7RNZ32n5FVnEtU0jlmaMXGaasXlK7J2gEk/r3/bnWFli5IqFtgGQPkeA6c1WuWrnUrb9Ytfa/+22/aw5nS2rXlPv/NTtt+NIho6jQDpM03KGznHUkR8L52lDf3H+lTUPWQyok9WOdRx7F2p80jGea2kewKoOc2tLOKeizdf1M6+1NknnKgDCOt/evxDlczQ+3H7PH5xEdzQd+BKrem6m63XL+XIGDe7w8DB+9atfhUNYe3t7A9mk26UnJycxNDSEYrGI4eFhjI6OBjUbrxkbGwtefHrTVcVBrzmV7FTC0xvu7bL84EbcMd/g4q2rqyv8rwdJkjxnGKtSqRTCWnFhYZXnHJtq7dTRBbeSxrqQjKlIOS7aOOiWCAZqx6zWAzxbWlrCGE5i2qqVlFzjM6n+VmJQlc0aLiW2s4iHW1MBqwd/WhIz9sNn2fj0eogW60HVVqqgpsJKY+JzEc/zSGIh07SuWW+WvNW/Nc/WGazpEXrwa5bSWx3Ptu9pmVXNTaJ4YmIiEBT8zT7Bc1bGx8dTW8i1TGx7PoNpsl55AKjCKrHZ9609t04PO2ezux0sCaCLftYD09L3gP2Bn8UIGiWNrTNN0wKQOjzY5pWEhN1VoteoCjBmr+iEi5VFz2GwZLolz234IZaJ/YBtxRAKWXZXia964PbbsZiIOXoWoh/p2K7OKDvOL1fM5PS0Dlu77o457hYz7+rItkKvhW5fKuFV7c4D4rmrjHMmjeM+PDwcwsAWi8UUOa4Oce5AamlpCYeZq4CB7ZEkSSpszXyVOatPOBoPbr/nD06iO5oOMTVTLaji0AeAg/U3OjoaDjvlVq/29nb09vaGRTS3XPf392NoaChskVdCZnJyMhh4Lua5rY8xbWmsS6USRkZGwmSg1sEtDofDMRsooaphLlpbWwOxzB04HI9IoPNHtyKr2gdIE4K6WLAhNCyhTihpqyRxkiRhdw+vs8RuTD3Oe5Vs7ujoCFuCSaJbUldJNwCBRLfOzFg4Go7XJGQnJiZQLpdDuDE6T9VxoaFTYkQ6yQpd1JL4J8HMz3Xxyzwp8aeEPu8joa8LByVslai3JLqqEfm/JRp1Mcq/Nb96+CPLrMoxljVWB8w/79fFL8lttjsJZn7HMD883M2q19vb28O1mm/bfzXEkRL9dCKos0VJdLv7wi7a1VlgiZmYsk6dEUxD1fV8fq3dCvxOSXT+ZpgetpndcUDoe6f9RZ1VSmDHnj81NZUKU8PPOBfT973W7hEl3LVeeRAu02WasXj9xFLt0nQ4ZsJikeh8ls4l9JnLHXbdbZ2mViQQE68tpZqfYyxtF7CwYYHss0ulUpiTqROcYXBoU2iXJyYmMDo6irGxsVQ4FtovnQdyrqXzqZiD24oHnER3OOYOnzU5mgocnBlrbWBgAK2trejp6ckkLYrFIgYGBjA0NBQWSssdqvYrFouB+FZjTKKkWCyG2MHWOKpB1vibnBgAh0gKKj99V4DDPeGO+QYXFpakBdLjlG5rVRIOSBPMVpWmW2ctYmE0+LkqTS2Jrv/rO2EdxcxL7BqbXxvTfaaxVt8nJUktaQocGsuVMLaOBiVVNQSHVWGrWpqLRy70bPgwdTLYRbgSqMyPdT5w0cyFpyXHY4tJS5bHwnxYUmEmRZter8/U+OtZJIPeq+eOaN0xn3ruCH8T1oHBtJluzCGkSm9b97H+k1UGLWNsvhbr/0xXHRgax53lr0flqI4YS8grCa75teQylX461sSeo3UU+9vWSVYa+u5nXVfrGfru1rqf71E9cPvtWEzwvdXxYSFg5w12/rCcYZ3b5XI5nBHCtSHJWz1vRq9pFCHbQqvOs57JPqTCBYZVVfutB4nqmjm2K4Kf0QFrxRdqw+38Y777dCO0rWNmuP2ePziJ7mgqcKJ/4MAB/OAHP8DevXvxvOc9D319feEwLt3aPTk5iSeeeALf+973cODAARw4cGCpi9AQYP1MTEzg6aefxoEDB4J60yrlyuXytG31RJIkqS30XFzqoXIkNqxK0Afj5Qs34o75BrfCkixS4puLPHX0aUgpJZhIjlEdlLX1l2hpaQlKYB7+qAQs1UJ06I6MjExTm1uCS0lqq5piHvVz7iiiEt2SpKVSKaRL6FiuYS5IHOqBlazHcrmcOtyKCzhew/va29tDnajql2UaHx/HgQMHMDk5ia6uLqxcuTJ1qGOlUgm7loaHh8OWZiqSbbgb5oXtq6FNVJ3PhaaWn0SskuHqlNDY7to+TEPPCdEwMjGlsDptdLHLdqLNtGQmlcTq8GHf4A4KBclzhlsrl8upEDu640LbpVwuhzTYHzo7O8OuAvYz/miZc7mDB7+yTmy4Ei2f7lhQ5b+WTXcS8Le2oyro1dFk20iJMNYVDxm2jg8SG7pDQg+t1zAslpy2jiJbdioPtX5Zx7w2ZtvY97Rf8XOWid+rE4Np5/P5lONO6yjmBKsHbr8d8w3uXK3l7FnovqMKdDtuLATp2ExIkiSE8hwcHER/fz8qlQoKhQK6urqC3efYzN3OXHePjo6GuddSkul2DrdY+WDf5vq6Wq2ipaUl2Ga1qxQW8DprS1VNz/okMc/v9Tqd3wHpnV7N3qf1PXXUB7ff8wcn0R1NBxrzvXv3olwuY+PGjZnboavVKgYHB/HUU09hcHAQ4+PjS5z7xoBVtRExxeNMsOpBIL0FXRd/JCscyxtuxB3zDS7gYuQZxyhVPtuY2yQ0SSqRMFQ1tm6H1X5oF96WUNPxUc+CUAW8kmOavi5yuGjSe1Slq0SjJcRmem/sgsuG9dCy69+8V4lHPWhM48JrO5RKJeTz+RBWhzG51dnBcCTcxaQEpyWnrXNW86MkqKrjY3VC8lvrQPuTXsffSrJo/1DCwCrlY04MbQttN+3LuVwupb5Wcl0d1qwvOsHts2w/0/BCfJ4e+sp60bzqDgqS83Zeof3ahlOxam4lNvi3hl0hoa71p8S0feeySGEKBrSt7M4DJaF1dwd32dFRoCrumZTclgC395Bo136p18REDNoP7X12x4UNsaMkPEMD1QO33475hjqoLBarz+hultj8YTn3XZLAFE5xB/Po6CjGx8eDc7K1tTWEEKtWqxgfH0exWAzO96VQgWeVZymeyR86PWlX1fbRMW9hd9bV0zd1Hqehx2Lz2GZEzHHuqA233/MHJ9EdTYlisYg9e/ZgdHQUvb29aGlpCR5xLszHxsZQqVTw+OOP46mnnsLY2FhQ5DmyMdcBlkZZVVNAOuapD8AOh2MhUK1Wg4oHwLRFCYBAyjK+pKqpgYMTcj2kkaQdCTYllTl5p1KVJB//18m9EulKpOpCiHm1saMVJLsYc5zKd/4w73a8jYVVsWnqeK3EsS7UVAlNYjGmbuXzssLBUGk+OTmJQqEQ6ox5rlQqQck2MDCAYrEYtoXrridLCDLPbAs93FrLpKFjtNxMG8C0A0ZJ/jMt3Qmg6Wo/4cJV69y2iSrCtU41XXsIpu2DFkqsxqCLcfZdJf41r2zfjo6OVDltmbQ/23xoH9c60H5qHfi2n+l9WtfaTlnPt3Vj3w2tC1unusuCbckY+2wn9nnmX8l8O3Zo/WuZbFktuWKdFNbpp1BnHn/bXSXqeNFyOhxLgcWKTV0LHAtju1qOBMLxcMFxo1QqYWBgIDjCOTbqwdZjY2OYmJjAvn37MDg4GJzhepD7coed+8WEE/b6LOV1lihA1+X8zeuPlPE+q+z8DkjbN+9/jvmCk+iOpsTIyAh+8pOfoK2tDXv27MHjjz+Ojo4OrFq1Ct3d3RgbG8MzzzyDcrmMvXv3or+/P7XdyRHH4RoW3Y7tHmJHFtwT7phvlEqlQEByscffSt5qCBfbl9rb21EoFNDa2opCoZBSqwIIBBlJNRLXXDyS3NZJPfOgBLBV3Cmha5+n46iGwNAwG0rU0YnJcjLPliTkIkpjQ9t8WZVzjGSmOlfTsESwEq5TUwfD2vT39yOfz6NYLGJ4eDjcT3KSzg4uvqlep0qd4V2UnGxpaQmHWrNugEMkOtuJoU4s+avl404EdQxriBEq/kl2kkgl2UnHgO7K4vWsW3XSKFlu1dX2fiV7LJmt/c5+ZttW82Bj9VOdzXdAD0dVVTjrKAtZ6sMsYorvDttMn6tkO5XTU1OHQvxon4u9S5pffs4dLLpLwTpc2J48N4ZhYSqVSqi7mCLdqsBju0M0RJO2pyXLtcycx+rzWF59F9hu7Ju8n4p37e+zIQndfjvmG42wNuPOEyC+k22hkEWMNho4Vo2NjeGpp54KSvT9+/ennIwMDTY1NYXR0VGMjIygUqlgeHgYxWJxzuNHs9TTTLA22u7sq1U+XjfX0Ftq6/h/s0J3jtQzz+Fcxu7OW25w+z1/cBLd0ZSYmpoKpAkPF83n86hWq4FE7+/vR6lUwtDQUDDcjsWD17cjC27EHfMNVd8qSa7EoB4qqn2QE20bisSqja26WuNl8367KFGy0IYc0e9tOZgvQolwkpj2/ImsOrHpxYi+2ALVLvJsWvoTK0sM6lRIkgTFYhGjo6OpbcZchOsBpOqAUFW/Kr1tnmIK5Zmcu7U+UwLctjXbRon9rHAlmg9LgmctamOfL+QCWEno2G6ymJItVj5+bvu4Kqmt071WH7LPtyFKYnkiuWzLpHWv6Vno+80+x/5nw68oauUrhixiRB1hWWXUv+0By+yLSthrDHXm1Ul0h6P2++VAyj6Pj49jZGQkzENIaPJ8CbuLbD6cEbWUx80C2vqZnN217p/t8+wzj3ToHMX+vZzh9nv+4CS6o6nBRfi+ffvQ2tqK4eFhtLe3h+1kVLL5i+9wNA7ciDvmG8ViES0tLSnCPKZKt3GpqermwYudnZ3I5XIhVApwaNGmhC0PziRBRTJNQzxQ/U4FNeODqmJUoUo4G/4ilzsYp71QKATFO6+1saBVVc18sxyqXNXnaMgWqyTnvXyWhoGwoWgsYaphJBiOguFDJiYmgp1mWtbZoE4R7iTQUDxaj3yWHpwZI9UtlGxUpZYlGWOxxVW9r2F1CoVCdMFq/4+Ry3QcqFI8ludYGdi3LNGvfVMJfyq98/l8UO8zJqvWmfYPPXBXCVotL5+vuyFsWScmJsJBsNVqNRXzXNO24Wy0HllWDXfC/Oi5B9pOjMGvDjH9XuvMEs8AUgcJAwj1RccQ82r7h54To7Cqeet8USKcY1OsL6tS344vuqWfinR70Fy9amC3344jCTp22p0ZC3WOk90Vps72RsfU1FQgxoGDuwB1fOI1SXIwNBtV6fOh/l0sEngxVO8xwUK996lju5460XuOFBJ5JvU+v7fzEu5I5Byh0d65mYQehwu33/OH+vaDLBC+9a1v4bWvfS02btyIXC6Hv/mbvwnfVatVXHPNNXj+85+P7u5ubNy4EW9961vxq1/9KpVGuVzGH/7hH2Lt2rXo7u7Gueeei1/+8peLXBLHUqJYLOLAgQPYt28fnnzySfzHf/wHnnzySRw4cCDEYnM4HA7H/KHR7DfDfJTLZZRKJRSLxdShVlz0kTDS8As8T6OrqwsdHR2pMCmWLGxvbw8hQ/ijhBwn5jwYk/nhD/NDIlh/SJpq+AglLPP5PDo7O0MoF16rJIANvULSTIllC60PvVeJaksuk2CwxKaGPVGCUwlRzev4+DgGBgZw4MAB7N+/H/v378fAwABGRkbCoWVKnlcqlaBqU1W/ht3QUDMaxqaW2hhIbw/m/6wf5tceTKv1pIe7sl9oKJbYopkLGvYZ7atKysbymuUcsOWwoYJsG2metT/b/qJxi+3zlfiN1bl+znywzPYd4XsJIEWiW2W8LS8dAbbutcwkvLWO9UBVu4DlffrMfD6Prq4udHZ2Bscbn0vnm43VrnVmdx8wjzPt+NCdJ+znWX2D7afhjTimdHR0oFAohB+OJY7lg0az30sJtZ96ADjDPsw3cWRtog211uhQccDQ0BD6+/uxd+9e7N27F08//TSefvppPPPMM9i3b1/KljdLCI16HO/zBbvDqx7Qns1W1R/bCdnsyLKbhHU4AAj2M8sZvdTQ+dti9EHH3LGkJPrY2Bh+/dd/HTfffPO078bHx/HII4/g+uuvxyOPPIK77roL//7v/45zzz03dd2VV16Ju+++G3fccQcefPBBjI6O4jWveU3mKd+OIxdqjA7H0+ZwOBYesfe1nh9HY6DR7LcSZbrIsCEVlGAi2aYksxK/djJrY4srqackHQleVajqdubYpF9VsbHQLSTmYgdVxhYKqhzX33pPrXdKyT5LwrJObTgMph1rG3udLuiyVET80bZUEtf+joW7sXVUa/GpZdaya7lmUrPbA0m1HLHFuZbfEsNWIZ9VP7Yts/oW+yj7piWIlTi3z9S2t7sWasVnte+Spqv5oiMhK2xPDLa8Wc+J1Z06jNShFdutYv9mW8ZIMN0JYXdE2DaxnzN929/tu631ap0M/C62ENf86q4NHV/qhdvv5kaj2e+lhh3fFqrP6jvPOUQzvxs699Dx2tqW+SrjYtRTzNm9WM9bjHuX45hsy7uYjpLZwK4zFsrB5vZ7frCk0oOzzz4bZ599dvS7FStWYMeOHanPPvGJT+BFL3oRdu/ejWOPPRZDQ0O49dZb8aUvfQkvf/nLAQC33347Nm3ahPvuuw+vfOUrF7wMDofD4ZgdFnvS6Jh/NJr9LhaLAA4dZBhbyCuppIrvrq4utLa2BjWpXeQqyajkqpLAqvhOknRM0KGhIVSrVRSLRVSr1RDyQ8PFME9ZB5sBCApSXq+hTnitTnaVKOP3NgyLJVEZKqarqyuERrOqeeZPJ/dM1062Y8Qw2wlAimhk3WmZY4pv5tUSieoQ6ejoCKpnzZuG7rDEP8lIq+7XMBe6sOH/VE5riB/mv1qthjpWFT7zoKGGtGzcckwFMduZeWVMaxK6sbbVdlIVPUOysMy8n+VinqwKnemzD7PcGqbEOlpiJC/bSEkr7cOEHrjKduY1SjgnSRIcYlpu7qLQ3RTMZ6VSQUtLS+pwUO0HLL+Wmfnh4cO53KGt4drf1fmjYWCU7Ncyan/XMxw4FthDR/Ue2wf4PfsMfxh6Ru/n38xnvQt1t9/Nj0az30sJdZTad3U++6slxNTWNStJpfnWHUSx7+fjWYuF2aq8FxuHQ/TrXKIZ+9xcwDLHdkfqXHqpwXkwbbTOJebLIeX2e/7QVPv3hoaGkMvlsHLlSgDAww8/jGq1irPOOitcs3HjRmzZsgUPPfRQphHn9lFieHh4QfPtcDgcjkNwI778sND2myRcjIxTUpyknA3JogeKxlSjSZKE74F0CBRVlltlusZEJ7EeyxeAVPpW7Q4gRRTGFLKxPNtFu1VWK1g3/N3e3j7NUaDkqOa9lhpZn0VSU0kK2z6aTy5+lEDXa2OLIlXXkjTmPZq2zZ8Stkq4qvLeKpf0b6vmtQ4Bph+LiW3bQUOq8Lm2b2u+bJlifaKWQlQdA4yLbvOnRK8NpROrU20jJVj0WeqYscRAkiSpfGh4lphCyiqu7aGzsbQ13zbPbHuS6SSbtc74P5+nRJyWl+S47Tu18qUOn1gIGyXD7bvJcnMMSJIk5M+2K5+jZasFt9/LD8th/b3QpKI6wtT+NQJ5Nx9YTqRsM0MdN8sJdi7G342mRtczlnS+Pl+OPbff84emIdFLpRKuvfZavPnNb0ZfXx8AYO/evcjn81i1alXq2nXr1mHv3r2Zad1www344Ac/uKD5dTgcDkccbsSXFxbDflvlrCU3SUxSkcmYwiTarDJFiTDddk1ijfFSgbSSTVW5NoY0yfuWlpZA4jN/qj7WxTbJNCJGgtsFgBKXvMeS4HoPJ+zMB4lgloFq6lqxo/XZSlZbp4QNEWPTUvJSQ24oUaptrUp0G0qDxDPDjijYnrxH6wpAUCiT5I2pCK3zgwQo65/X6E4A/a0OAn22vYZtSRJUY+FrG2aFqrHvhn42MTGROhiUdRxTV/M7/UwXerwnFrJFlc4aaod/x9qZ7U8o+a7Ka+aH7aTXan9mvnQXiaZv23Rqaioo1rVeVPkfCzWk76v2d6Zt+xqv4zX8m/2DBLd1XNn2BA69szrm6TU6fuiYo7sBZoLb7+WFZll/W7sJNFZ/i5F4jjjsLrEjDTF7vFiYDzVzs0Ftc+xspEaqC7ZNbO6YldfZ5N/t9/yhKUj0arWKN73pTZiamsItt9wy4/WxBYPiuuuuw9VXXx3+Hx4exqZNm+Ylrw6Hw+FwOA5isey3VWrogpq/29vbQygGPXxQw4lo2AMSbCSvGNpkamoKY2NjqFarUaIqSZIU8Uyo4r1QKIRn8X49FNMS4QAC6RlTzuhnvI7ksIa4Yd2o4pz3sE5IEuoBaxqjWslSJehV1aOEgW0HYPp2aSWplTzXgx+t4phtY0OfaDuqsyMWX5JEoip+eYBprW32JCr1Rw8Y1TrVvsF7bRl5vfYhJW/peNEya31bZbg6I7Qfq0PIEvXqwGlvb085jSxhbcMeaJ/SPm/byTo/6BhgO1lyXNXiGmZF+wHzwzAzmjadVna3CPsUf2t/1PeQxLy2rb5LWUpwLSf7tCXfdWeDOl60D5XL5RSBrv3XkobMC+ufh4gS1kmjDgYn9RwxNNP6OzZu6Xi31FDHca2dW8sdWePakYJY+y/mjoTlqERXu2sd541WDxy37HoEmL6bUh3zjVaO5YCGJ9Gr1SouvPBC7Nq1C//4j/8YvOAAsH79elQqFQwMDKS84f39/TjttNMy0+zo6EhNLB0Oh8OxeHBP+PLAUthv2z+4YNEwD0qcK4HF6/W3LnZUeUtyUmMuz9Q3LWkGHFIxMw9WuWtJRVWm27zGoCS3qsO1fmx9WeW9qm1j4W6sopafqfp2pnxaWJVzLI+xz+qpk6w+olBSNHadJTP1PpuWqtKtosiS3Fn5tcS/bYdYebU+skibWsrImdSAtRag9nm2z7Mu+P7wPbB9xuY1Vu+aT1v/WlexWPhWnU3CWwlxthXJaRL2TD/WV2wd2npjeaxjwF7HfGu8ea1fdRzyh8R/rG1sm/K62ZB6br+XB5pt/W2dazreWju6lFClaaPkqRERm/8cSVjKsh2pdVoP1LnWaFA7rmMXf8+Hs9vt9/yhoV2hNOA//elPcd9992HNmjWp77du3Yr29vbUASh79uzBD3/4w5pG3OFwOBxLBztRmO2Po/Gx2PabRJmdfLa1taGrqws9PT3o7OwMB3pShUm1KtWnusC1oRt4OGixWAyHbaqqRQl5jc1NRagefGmJbKvQ1R/ml/ngc0nqqVIVOEQmUj2rKmU+T5/DuPBst0qlgmKxiLGxsaDIZjgRrauYwlxV7FTj6zNZ7zEyXt9x61SwsM4RvR+YrvrTtFgnsbAx9hBVuxOAakf+cDeDdbYwbe1nmgdV+ReLxaDEZn3xHptf7ZtW2c80gUPx8zs7O0Pf1zazxK8llLVOta6yHBvqXOL9tk6UsG9vb0+FVOL/fE/0/eFOA+sM07q1h44yPA0P4yV5x8ODtS70Hra5hpYBDhHnPOOAP2w3tp1935hfLQfbf2pqKpyVwB0XTCemdNdr9ZBYbZ+JiQmUSiWMjo5ibGwMpVIJlUolOPy07TVcjO50mAluv498NNP6W+1nVh9rlH5nHfHA9LHS0Thq6ZitnY80VVCx1GVcjmjUOufcuVKpBDvPObheY8eR2ZTH7ff8YUmV6KOjo/jZz34W/t+1axceffRRrF69Ghs3bsQb3vAGPPLII/ja176GycnJEGdt9erVyOfzWLFiBd7xjnfgj/7oj7BmzRqsXr0af/zHf4znP//54bRwh8PhcDQW3BPe/Gg0+x3bts0FUKFQSBG3JNdJ1Cm5pfcqcc3JbblcDuRTLIYwF1sMpTI5ORmIew3rEFMxazgNEoUkA3XCbNXFlkBUQpD51/wpEcm8KvFr46Dzfq0nVbIqGaCqXSptLZFNpazdtq1tEKsfXm/rIItIJ+GsByrytz1kk2XVH96vRCj7jd1ma8G2YB9kWho2Rol0LtTVcaIHaTIfluTm96xzhvHJ5/OhfwMIDqBYfHimoWnzGtYL+7Mu2vRdixFDvN/2Xdaf9iHgUFijXO5QrHbWt6pLYztHNB58jKwn6WxBp4MN98K2UkeaHm7LPsywL1o+VYHrThU7xtgQPPZzVdXbMxrsbgRdVGsbM5yNgu+6VedrWKpacPvd/Gg0+304sCS6fg5MDx3WCLDOYqCx1PJLCXVALjVUwDBfJKK2uQ2L5nDEhDmKw+2Hbr/nD0tKon/ve9/DS1/60vA/46S97W1vw7Zt2/CVr3wFAPAbv/Ebqfvuv/9+nHnmmQCAv/iLv0BbWxsuvPBCFItFvOxlL8Ntt91W9ynzDofD4XA4ZodGs99WjWFVrEoQWUJOJ6mWbFVySslVYOawGjF1nBJjunhW4tyqrDUmeFY4Fksm8npLFtv7lPAjAae/7bU2dIZNs5aqzjoHYqE7am1ZjT1T1dF6bywebtbvWvVjSUvd8aDpW3I3K//2uTbtmEJfwfYiIazEaVZ5YkStOmbsd7VQq87sO5gVQojPj5VNCWfdDWJDMOk9zFdW6B+mp32BxLeGk4m9K9rf1YnB8mkfjjnHkiRJ5ZHp8BpL3Ot7y7a24xRDzKhTztY7cMgBon1L60DHMqbpWB5oNPs931gq5WSM8HLMDUeq8lVt1ZFaRsfhQ53dvmuhMbGkJPqZZ55Zs0PU01kKhQI+8YlP4BOf+MR8Zs3hcDgcCwT3hDc/Gs1+VyqVMMmk+rynpwetra1BlauLF36uBFNMYauqbIZySJIkFZ7DknzAdIJMlc76bA31wXAWNg2rAFbFq5LWzKMq5pXY5MGOvIdqYF5XLpdDWfkZ86rqfYaWYNlYp1TlWih5rmE0SPzqIZ21yDyGrbCLiomJiVA2OkusCp/lVMW9JXeVeNEdCww7oiF/VFHOerKHfarK3ir9tc7YP7ljIRaah3VH4pT9UEnXWMgVbZ98Pj9t8c7rZyJ/6ETKgn5v3x+N+a51y8+0/dVho0pvvieq+mb9qeNE3zmt0yxnTWxXiTq5bDsq6Q4cOsRTdxDwPdH24edU9dtQUDbEilVj5vP5FJGvhL7WmaajOxvy+Tza29tTIVzYjwCE7+pBo9rvgYEBvPvd7w4E8LnnnotPfOITWLlyZc38fPCDH8RnP/tZDAwM4JRTTsEnP/lJPO95zwvXlMtl/PEf/zG+/OUvB7L4lltuwbOe9axwzYc//GH83d/9HR599FHk83kMDg4uVDHnBY1mv+cKdTgDSI17i01Qqi1Wh6k7p2aPRpnn6xg+X3myzuZGKaujscB5ts7Z56MfNqr9bkZ4EC6Hw+FwLCrsxHS2Pw6HhcavVvKTxKcS3ABSBHRMia5QckvJLyXOrELWbjG3hCfzYPOiMdBnUn3HVPRKHih5q/G0VeGrICFtiV4bZiRLtaxEuw27ElN0Mw9K5M4UfzQ2BthFqbaZksp6rw39kTW+aH6VyLXPsOE2svJt01cHjJLGvEev0881hjb7pJaT12ndKsGrbWHza/uazXOtMdi2hRL7ttyxerL1kaVGB9JtE+szqkLXvqvkeCxkjM1fjKTX+rVqfh0PtN9bNT2v036k/UljtMdi+Nv31BKIPJeAjjHtfxwXNMb6bEj0RrTfb37zm/Hoo4/i61//Or7+9a/j0UcfxcUXX1zzno9+9KP42Mc+hptvvhnf/e53sX79erziFa/AyMhIuObKK6/E3XffjTvuuAMPPvggRkdH8ZrXvCblBKlUKnjjG9+Id73rXQtWPkc2rB1cqrmifbdr7Sqa6XtHY2Ah+pGvZxwzgfMLu7t0PtJtRPvdjFhSJbrD4XA4lh/cE+6Yb1DtSVWvxgK2E1Al0SzxTbUHJ6482EcPmowRZEpKWtKLz1aSWRXoejCokrwkwpQoYz75W4m3SqWCSqWSyr+qs/WZSrCqk4DKFyXb7UGgSiaqapp/x4hDdRDoO0xFPO/T/GieVMlvCQolhals1vZmOTRWtO5MUIU72491ZpXFmi/WhYbUoEpZyV5bphg5rvWjxCxj6jPPLS0tKXW9Enk2/ri+G9pvLMluEXsvWFYNLcTvbEgVq8bUOtb+o++jjQ3L90XzZD/X32wnW7fqJLFnByhBr+pyJewt6c12YDpKPluHC8tq0dHREb6rVCopZbr2J7tTwzqhNG4/323b1nqeg9azVe7WCgdk0Yj2+8c//jG+/vWv41/+5V9wyimnAAA+97nP4dRTT8VPfvIT/Nqv/Vo0LzfddBPe97734fWvfz0A4Atf+ALWrVuHv/7rv8Y73/lODA0N4dZbb8WXvvSlEOv79ttvx6ZNm3Dffffhla98JQDggx/8IADgtttuW5DyObLRSES0JZpq9XefyzY+1B7NBzhPcDQPGqHNYkKQw0lrKe49EuEkusPhcDgcjqYGic/u7u5UCBd+Z8k3VaRa9SlJPx78WCwWwwGQShLqQZNW1auhVTT0BK/r6OhIxWvXUCYkvVRNyvzbwzc13IyGY+H99jBMPRDTqlrpMGhtbUVHR0cguBlixpKzAFKHbGoYCQ0ZoyE5NKQHgBThyDSUMC+XyyiVSoHAZTtbta8ql4E0QUzins+25dfwGWwnEpncyaDOFeZP02CbxxTTSuoriW53HyiJroSqHrLZ1taWUigzfa07dZxomyjZFGtLhSVseY+WJ0Ys63VsB/5oiJ1Y/PHYAjFLZZ7lSLGkh5LSzKPuBNEDU9mmNlST1p3Wi77jmh6debF6aGlpQVdXVzjsVMPD2DZNkiQ4xaz6nk4hOr0KhUJKCc9nqlNM82PbVMuxGBgeHk7939HREZwLc8HOnTuxYsWKQKADwG//9m9jxYoVeOihh6Ik+q5du7B3716cddZZqXycccYZeOihh/DOd74TDz/8MKrVauqajRs3YsuWLXjooYcCie5YWjQCkT4XoquZ1J1W7b8cMJ/to3ZsudRfM8PuFFnKNptpvuZYGng4F4fD4XAsKnw7mWMhkBUOxV4TC9VgoWpuq9JU8jALSprG8mjV7HqP/liFbiz0hg3zkFXmWJ6tIl1V87GwFJoe82NJY16j99vD5rQ8mrZVx9u/NX+2fHbRk/W3RUzxHEvPEiSzHYtmS6zUuj6Wv1gaMcxmQVar3mz6sXrMytdc8mevjz3f7g6JfZeF2Pcz9S2r6rfhXayaXd8X64Cz74wdF1g3+pm++7F60z6r39tyzoX4Oxz7vWnTJqxYsSL83HDDDXU9Owt79+7F0UcfPe3zo48+Gnv37s28BwDWrVuX+nzdunXhu7179yKfz2PVqlWZ1ziWDrF+vJRY6ucvNBrBWeFwLCaOtD7v6+/5gyvRHQ6Hw7GoOBxD7EbcEQMVw1R3KxnK31Y5bkk/q/6l4pfKWSpMNS0qSYFDBw/yb0u+x8h9KnRV4UoFaYyQIwnHa6hGtYpqktaqqrVQkk7DPMRiRWt9Ml9UmKt6ulqthnagEp0qWQ3rwb9VgU/1eaVSCXGaNUQNCUElIW3ce1W2sy5UAa3EI+uJamRV4+q1VH/zHuYzSQ4p/fX5+mytH1UKM4SH9p+sONfMhx7cSUeC9gfWuYbtYFtYJ4n2Eyq4LQGrhHSWKl3vYzuoIp75UyW0KtHt+6J54CGcWn98X9SREiPPWSf2Wn2mjdduHWt8z7njQ51LSo4ztMrY2FjqoNi2trawo0N3mbA8VIlPTR081LdSqYR3S1XzVNLrb82z7t7QnQFaDms32QdjfX8mzIf9fvLJJ9HX1xc+z1Khb9u2LYRKycJ3v/tdAHGyw7Z9DDEidqZ76rnGsXCoxwm92DgS56Y65juJdnjg+O11WBu0qbE5yWLnQ228HVua9X3w9ff8wUl0h8PhcCwq3Ig75huWzLSkGYkpxkonOZal7CYhrMS0EmiWELdqbkuiW6LPkpEApoVzsapyndQzXeZR1doss43rDBwif7Ts9hBR/bFKWt6vIVgIkr1azra2NhQKBQAIYVlizgXWhY1BTzLdvvca3kRJe1W9q3NAlbvaTu3t7SH0ho2lTmg7WELb9rkYsabkrtapbX8Ny6Kksead6dn02SbsQxrCpL29PeUMiu2ssOnFPmfeNa9aXyTrSQbr9SwXCWmNT6/tr+S87bOaZ6ZFaIgfJYct4az9X9sztljX9uI7qZ/rd+wTbW1toc/yGnUssLx0Btk+MDExgXw+nwpdpKGD9PlaN5OTkyE9dZjZEAL6ftj2qVQq0+oghvmw3319fSkSPQuXX3453vSmN9W85tnPfjb+9V//FU8//fS075555plpSnNi/fr1AA6qzTds2BA+7+/vD/esX78elUoFAwMDKTV6f38/TjvttBnz71gY6Jiq77O+747Dh9p6HSe9jucGr7eZoWKSpSaqdb7NHx1jmrE9ff09f3AS3eFwOBwOR1NDyUyNMw4gRejZWMeEhkOxE2VFVpgYhQ2voAuBWiElrLrWEu1Wwc40bRgHqxxXstKqd+uBEhWqYLakryXjYweJxkK0ZNVFlgrJOiNiMcWtClfVupqO3qMke1Y+YoSzkvc2XI+mofnQXQ/aLqpW10NZrRo6lj/9PEupqe1g+0OsDWJ1H2sLBUkX7rCIpTnTe6DkNvuQ7W+aB1se+87ptaoot4Q0gEBIZzkatP/acpBsr1QqKSJAVYja1iTY6YCgE4TlVIeQzbdFrJ9q/Wke7TijOzgaCWvXrsXatWtnvO7UU0/F0NAQvvOd7+BFL3oRAODb3/42hoaGMsnu4447DuvXr8eOHTvwwhe+EMBBR8IDDzyAG2+8EQCwdetWtLe3Y8eOHbjwwgsBAHv27MEPf/hDfPSjH52PIjpmAb5vNkQS4ATPQiA251ioerbPWkp4n1o6NAJ5rnmJzav0b0uoN0K+HYuDxpsxORwOh+OIhnvCHfONnp4edHd3h9AheoglySWqji15qiSwVaFTwasKb4IkF0ktEmgk0TQ8A5AdPzxG+Ok1+kyrHrdK9KyY3qpKt99nEcVKUit5p4paLSdV5AxpUSgU0NbWFsrH71m/SZKE77OgBLQuXngwK0OIUI1OVTlDwGhdlUqloBZmP+E9wEHSt1QqpUhKquGpyLOKaCUgGcZD1b4abkfD7/BvbV+tZ+6YKBQKyOfzSJIkKPnZt7V+tO1Yp9rPta9b6E4NbX8AIcyOjd+tZVenBstRrVbR2to6Td3MPhoLO0Lo+0bFuirXtRx0inR0dIRyx8IaaT3p+6RhdaxS3C6eeZ++bxpuhnkplUrh+d3d3dPS4W+2T5IkQX3OQ2T5Hmkb6AGmdmxj/+JuG0IJf6veZ/knJyfR3t4ePU8hhka03yeeeCJe9apX4ZJLLsFnPvMZAMB/+2//Da95zWtSh4o+97nPxQ033IDzzz8fuVwOV155JT7ykY/ghBNOwAknnICPfOQj6Orqwpvf/GYAwIoVK/COd7wDf/RHf4Q1a9Zg9erV+OM//mM8//nPx8tf/vKQ7u7du3HgwAHs3r0bk5OTePTRRwEA/+k//Sf09PQsSJmPZKht0ndZQ4hpyAcnsGZGrE7rvU+dgQsFOydbKiLVChi8Ty0ubJ1nOeIXC3b3mubH9hPa6kbuM41ov5sVTqI7HA6HY1HhRtwx37BxqW1c9CRJphGAdlGpZBOQ7mtWQWphFSlKellltJKOdsGgE3ZLlKliVvMYI0ftRN8SnTPBkvEa4sXWgVVXA4cIDxtP1ar0Z1qUZ6mhSRbHQs8wf5o2n0WSUuuFvzU/JHc1pnaM8FXHiHU4qKJKw6jo39qnrMOD5DyJXo0lbutI02F/qyfcwUx90RL0er32C+ZbnxFTzcf6ZQxKjim5bd9NJds1fcbbr9XfbfgfW+YsZbYl7rQc7GMtLS2hzXQsYj1yPNLPmN9SqRQU6hqWJuZ4qLVbResnC1bVWw8a1X7/1V/9Fd797nfjrLPOAgCce+65uPnmm1PX/OQnP8HQ0FD4/z3veQ+KxSIuu+wyDAwM4JRTTsG9996L3t7ecM1f/MVfoK2tDRdeeCGKxSJe9rKX4bbbbkv1m//5P/8nvvCFL4T/qWy///77ceaZZy5EcY94WDWwjjuWcHXMjEZW7dv5ibVDS5EX/t1odbUcENuxttTtkDX3499qg5c6r7XQqPa7GeEkusPhcDgWFW7EHfONQqEQ1MmWELIkIie8VLiS/KXqmGphDf9hyWQgHQPchjShWpWqYuDgwYsdHR3T8meVvcxnDPY5fH4WIUeFtJLMzLeGONGDKC2pZsushDhV90o8ktwgkcm6UIVxe3t7+G0JXkveKlmpxDLV5zaUDwlKpkeHhlW38W8tv1UbWTJe88PrVKFt68nmX3cv2H5iD3JlXbJMXLCps8DG3bfOCd0JoHlQxwE/t6QxHQ50JKhDQZWg+pn2Aa1H1gOfyTZmXXBHAMupoVvYF1V1bcl07V+xMwDsYabqsNA+pf2PZWY6ViXJ8qlSlv/zvdLdA/bAW6veZ170kM0sx4k6SwibZ9sn7f2al5kcDopGtd+rV6/G7bffPqvn53I5bNu2Ddu2bcu8p1Ao4BOf+AQ+8YlPZF5z22234bbbbptNdh0RxNSedgwBkBoLNATbkYaY43u2ZY2NxbPBQivCVTRgY1AvphLcCgeWE7LKvJTvlDrt7ZxrMfqEzu/t3E7zod/buUkjrlcb1X43I+qbMTkcDofD0aS45ZZbcNxxx6FQKGDr1q34p3/6p5rXP/DAA9i6dSsKhQKOP/54fPrTn552zZ133omTTjoJHR0dOOmkk3D33XfP+rlJkmDbtm3YuHEjOjs7ceaZZ+JHP/rR4RV2maJQKKCzsxP5fD6EbFGCT4laq5zWAyzL5TIqlUr4XxcRWUQp7y+XyyiVShgfHw+hS4CD5HlXV1cg+hl6QheONv615pXfKUHKZ2apjkkMdnR0oFAopJwMJAuZTrlcDgchMjyKXdhycRtzFpRKJZTL5dT9zD/r0YacoUPBEp6q0rYqQzoE+KMhXEhS6i4E1hlJdJLlSqazHu2hkYQl0+0iQp0TMRJAr2ff0WdUq1UUi0WUy+Vpzgy7u0I/05Au2h4sU6lUita7JVQs4c6+yR9V1WtdWSJHy9Xe3o6Ojo7QLuoY0jyS8OZzOzs70dnZmXpPAARCWvu/9l++azZMjl3M6vda5vb29tCPrFNH+w3Lp/WgjgUNIUXnEscDhjHSH+1PDMOi7yvHNI5rtk5jBylrO5G8V+eS9kPbbvWS6A7HQoD9UPuz2jYgfd4I3yPt70ca+J5zjKL9rpfkVfs0F2JY7dhCEGh2vsLy2bnQQkPzMNe6ambQftn5RT31sJB1pXNaxWL0DRVg6Bk2sfeB9psh/dyeHsKRvP72FnY4HA7HosJOzGf7Mxts374dV155Jd73vvfh+9//Pn7nd34HZ599Nnbv3h29fteuXTjnnHPwO7/zO/j+97+P9773vXj3u9+NO++8M1yzc+dOXHTRRbj44ovxgx/8ABdffDEuvPBCfPvb357Vcz/60Y/iYx/7GG6++WZ897vfxfr16/GKV7wCIyMjs6xRhxK/RKy/xPqTknL6eybFl51QW9JXw4YouVtLKT8TNI8WuiDVbaZK3tq6sIpevSdWb/q3qqBJJNp77L2avoa5sO93TDGqTgwtk26rjaHWmMFyqCK7FqmodaZ1Gut7NuQHr7OoV71knST2x+YvVoeaFwsNlcD/tYw27Vi72jzGyhrLl5LQSvrMZiFaS7Won9u8W6Iuqx9nPcu+i3b8iDnuYotxrTtdiGt92DqJjSf23cwqw1yVl4tpvx3LC7F+WI8NP5Jhx9WlUkovRB7s/MSKARYTy1GBTth5xWzbYKHqrRHaox57Zuc9jZDvLPj6+yDmY/2dS45061MHhoeHsWLFiqXOhsPhcBwRGBoaQl9f37TPdayd6ySDJivrGRannHIKfvM3fxOf+tSnwmcnnngiXve61+GGG26Ydv0111yDr3zlK/jxj38cPrv00kvxgx/8ADt37gQAXHTRRRgeHsbf//3fh2te9apXYdWqVfjyl79c13OTJMHGjRtx5ZVX4pprrgEAlMtlrFu3DjfeeCPe+c53zqZali3Yp17zmteEECFAmphkX7NKYQBBiW3V3TyE0kIXGEpmkRSzKth8Po/u7u6gvm5vb0eSJNHwIkzXkl82LMlMoCqmtbUV7e3tKBQKIS2mQ7V8qVTC6OgokiRJhUbhoaB6GCvzMjk5ifHx8aB4LhaLSJIkKGTz+Tx6e3vR3t4+7WBLku1MU8PJDA8PBwX12NgYJicnUalUgsqdh2x2dXVh7dq14fDSzs5O5HK58DxVCQ8ODmJoaCh1wCfTUIV0kiRBDa6wBzryN8va29sb0mpvb0dLS0vq4FRtR/aNYrGIYrEY8jc2NobW1lYUCoXwu7OzE21tbejs7Ez1a+3HSZKgUqmklPbsx1RO9/X1oaOjI/U5d00o+Z7P59HZ2Znq09VqFePj4yiXy6nFIfsE24Rqcn7G961cLqO/vx9jY2Ph3QKQqrOurq5pcex5bZIkoc2UlOYzlJCmCoztoDs9crlcSjXO+/h+tLS0hDqZmpqatjPDOiqoZtc2jS0wC4UC+vr6UgpLS1LwfyrNOfZQNV8sFjE5OYlSqRQOLNX476w75pnjCNPkAbo2XIxuPeeOkWKxiH/+539uKPvtOLKhfSrmuFWoc5jfxxxGCwUlFRda9c7n6I4guwOnnjLrPCXLqV0L+nxC7613TpIFtSV0oqr95A6jhQbtmg3JYedoh4OYo3ax+m4WaB9po3T+OTk5iXK5XPPA6ZjTPEutPVuo/Y458BcTWk4VRthwdLSlukNmsfPaSPb7SF9/uxLd4XA4HIuOxfCCVyoVPPzww+GgMeKss87CQw89FL1n586d065/5Stfie9973thMp91DdOs57m7du3C3r17U9d0dHTgjDPOyMybIxtcXMcUoDaOMRfeSj7aUB+8zsLGYNV0dEFEAouhKQqFQlikWaWKDZFCgsyGwVCilGXWHxsr3BJ3LDcXqTZWuK1Pjbutz7VEp1VGc6GhCm8lLRmWQol05kfDhQDpbcYMZUEHgY2FzgWMVfraOrXOD9a9DZliCRuNT83n28UVr9NyWOW9DZdiQ/TYfsm6YN3p1n5tZ9uHFFyQKiFir7PtaMPj6PulMfVj92pfyHo3NQ9ciDKcjIYt0VBCfBb7RVZ7xtqe5WCoFV3gkkTRUALa1y0xoGOIhoixPxr2SNtX29nmg++J7Ys2zIF9B7QfxsYlbWtto7lsP18M++1YPtDdLvreZvWdmF1fjDzGdn4s5POsIni275Gtw7nUl9oDkoUUBNTaAVYPONYxLWsrF1PRG6tr/e5w07Y7i5Zasax1TVui84l6wrkogR6zRfOd36WCzvdj4aT4ftk6bVT4+nt+1t9+sCg8UL7D4XDMJxZjTB0eHk79rzF0iX379mFychLr1q1Lfb5u3Trs3bs3mu7evXuj109MTGDfvn3YsGFD5jVMs57n8nfsml/84heZ5Xakwb5WrVbR1tYWSD0lcGMLUBJLSiTrhJgT5KyJO4k/XZzycyWzNH2qaPm5VbMCabWzKrXtPVlEKaHEHz/n/ZZgswcyUrnLfNjn2HuVSGW9KPnL31NThw515fXWiWFDXljCVduJqnO72FPVtY1nqferOt4+i/mOkdJaZps+y24PpGS+2I6W8NY+pEpyppWl9qpVf/yeqnW7+NN+o/3MltMq0ZRQV8LZOohIFGuemC7rh7+13ukIib2PfK4q+divNK69VchZFScXZPbdivVp7Q+2XlQVrlAiW1Wk2v+1viqVSnjXGD9dY7jbcapWn+Tn+h6qk4fPURLS9lmHYzFgbUStvqf2W8fLxcJiO4Tss6xzYTbp6O+55IF/qxJ3PurBlk3HysV0vC208y8rnaUca2Nl1HlsPfmL9YX5qresNBvFPmWNR0udV19/L97620l0APv371/qLDgcDscRg5GRkWiIrHw+j/Xr12ca0HrR09ODTZs2pT77wAc+gG3btkWvjxEctVQNsevt5/WkOV/XOLJB+33PPfcscU4cDoej+bHQ9nv9+vXI5/OHlYbjyICuv2cif6yTc7FhHd4L/SwAwZE2H2nNBZOTkygWi4f1/Fool8sol8sLlv5swIPgFwqL1XdmAzpOK5UKxsfHZ32/CgAOJ6xPFhqxzhTM3+jo6BLn5BB8/T2/19SCk+gAVq9eDQDYvXv3ERMbfXh4GJs2bcKTTz55xMQd9DI1B7xMzYGFKFOSJBgZGcHGjRuj3xcKBezateuwJ6sxQ2e94ACwdu1atLa2Tps09Pf3T/NAE7FJRn9/P9ra2rBmzZqa1zDNep67fv16AAc94hs2bKgrb47pcPvdHPAyNQe8TM2BZrbfDHXlcLj9bg54mZoDXqbmQDPbb19/H4KT6Di0NXXFihVHzAtK9PX1eZmaAF6m5oCXaWbMtBBinOjFQD6fx9atW7Fjxw6cf/754fMdO3bgvPPOi95z6qmn4qtf/Wrqs3vvvRcnn3xyOODv1FNPxY4dO3DVVVelrjnttNPqfu5xxx2H9evXY8eOHXjhC18I4KAa5IEHHsCNN944D6VfHnD73VzwMjUHvEzNgSPZfjuOfLj9bi54mZoDXqbmwJFsv5fD+ttJdIfD4XAcsbj66qtx8cUX4+STT8app56Kz372s9i9ezcuvfRSAMB1112Hp556Cl/84hcBHDwJ/Oabb8bVV1+NSy65BDt37sStt94aTv0GgCuuuAKnn346brzxRpx33nn427/9W9x333148MEH635uLpfDlVdeiY985CM44YQTcMIJJ+AjH/kIurq68OY3v3kRa8jhcDgcDofD4XA4HI7Dx5G+/nYS3eFwOBxHLC666CLs378fH/rQh7Bnzx5s2bIF99xzDzZv3gwA2LNnD3bv3h2uP+6443DPPffgqquuwic/+Uls3LgRH//4x3HBBReEa0477TTccccdeP/734/rr78ez3nOc7B9+3accsopdT8XAN7znvegWCzisssuw8DAAE455RTce++96O3tXYSacTgcDofD4XA4HA6HY/5wxK+/E0dSKpWSD3zgA0mpVFrqrMwbvEzNAS9Tc8DL5HA0Jo7Efuxlag54mZoDXiaHozFxJPZjL1NzwMvUHPAyORoVuSQ5jGObHQ6Hw+FwOBwOh8PhcDgcDofD4TiC0bLUGXA4HA6Hw+FwOBwOh8PhcDgcDoejUeEkusPhcDgcDofD4XA4HA6Hw+FwOBwZcBLd4XA4HA6Hw+FwOBwOh8PhcDgcjgwsexL9lltuwXHHHYdCoYCtW7fin/7pn5Y6S3XjhhtuwG/91m+ht7cXRx99NF73utfhJz/5SeqaJEmwbds2bNy4EZ2dnTjzzDPxox/9aIlyPHvccMMNyOVyuPLKK8NnzVimp556Cr//+7+PNWvWoKurC7/xG7+Bhx9+OHzfbGWamJjA+9//fhx33HHo7OzE8ccfjw996EOYmpoK1zR6mb71rW/hta99LTZu3IhcLoe/+Zu/SX1fT/7L5TL+8A//EGvXrkV3dzfOPfdc/PKXv1zEUqRRq0zVahXXXHMNnv/856O7uxsbN27EW9/6VvzqV79KpdFoZXI4suD2u7Hh9rsx4fb7IBrN1rn9diwnuP1ubLj9bky4/T6IRrN1br+XIRb9KNMGwh133JG0t7cnn/vc55LHH388ueKKK5Lu7u7kF7/4xVJnrS688pWvTD7/+c8nP/zhD5NHH300efWrX50ce+yxyejoaLjmT//0T5Pe3t7kzjvvTB577LHkoosuSjZs2JAMDw8vYc7rw3e+853k2c9+dvKCF7wgueKKK8LnzVamAwcOJJs3b07e/va3J9/+9reTXbt2Jffdd1/ys5/9LFzTbGX6X//rfyVr1qxJvva1ryW7du1K/t//+39JT09PctNNN4VrGr1M99xzT/K+970vufPOOxMAyd133536vp78X3rppckxxxyT7NixI3nkkUeSl770pcmv//qvJxMTE4tcmoOoVabBwcHk5S9/ebJ9+/bk3/7t35KdO3cmp5xySrJ169ZUGo1WJocjBrffjQ23341bJrffB9Fots7tt2O5wO13Y8Ptd+OWye33QTSarXP7vfywrEn0F73oRcmll16a+uy5z31ucu211y5Rjg4P/f39CYDkgQceSJIkSaamppL169cnf/qnfxquKZVKyYoVK5JPf/rTS5XNujAyMpKccMIJyY4dO5IzzjgjGPFmLNM111yTvOQlL8n8vhnL9OpXvzr5r//1v6Y+e/3rX5/8/u//fpIkzVcma/Dqyf/g4GDS3t6e3HHHHeGap556KmlpaUm+/vWvL1resxCbmFh85zvfSQCEhUujl8nhINx+Ny7cfjd2mdx+N76tc/vtOJLh9rtx4fa7scvk9rvxbZ3b7+WBZRvOpVKp4OGHH8ZZZ52V+vyss87CQw89tES5OjwMDQ0BAFavXg0A2LVrF/bu3ZsqY0dHB84444yGL+N//+//Ha9+9avx8pe/PPV5M5bpK1/5Ck4++WS88Y1vxNFHH40XvvCF+NznPhe+b8YyveQlL8E//MM/4N///d8BAD/4wQ/w4IMP4pxzzgHQnGVS1JP/hx9+GNVqNXXNxo0bsWXLlqYoI3BwzMjlcli5ciWAI6NMjiMfbr8bu4xuvxu7TG6/jwxb5/bb0Yxw+93YZXT73dhlcvt9ZNg6t9/Nj7alzsBSYd++fZicnMS6detSn69btw579+5dolzNHUmS4Oqrr8ZLXvISbNmyBQBCOWJl/MUvfrHoeawXd9xxBx555BF897vfnfZdM5bpP/7jP/CpT30KV199Nd773vfiO9/5Dt797nejo6MDb33rW5uyTNdccw2Ghobw3Oc+F62trZicnMSHP/xh/N7v/R6A5mwnRT3537t3L/L5PFatWjXtmmYYQ0qlEq699lq8+c1vRl9fH4DmL5NjecDtd+OOoW6/Ef5v1DK5/W5+W+f229GscPvduGOo22+E/xu1TG6/m9/Wuf0+MrBsSXQil8ul/k+SZNpnzYDLL78c//qv/4oHH3xw2nfNVMYnn3wSV1xxBe69914UCoXM65qpTFNTUzj55JPxkY98BADwwhe+ED/60Y/wqU99Cm9961vDdc1Upu3bt+P222/HX//1X+N5z3seHn30UVx55ZXYuHEj3va2t4XrmqlMMcwl/81Qxmq1ije96U2YmprCLbfcMuP1zVAmx/JDs48vhNvvxi2T2+9DaOQyxeD2+yCaoUyO5YdmH18It9+NWya334fQyGWKwe33QTRDmZYrlm04l7Vr16K1tXWad6e/v3+a96vR8Yd/+If4yle+gvvvvx/Petazwufr168HgKYq48MPP4z+/n5s3boVbW1taGtrwwMPPICPf/zjaGtrC/lupjJt2LABJ510UuqzE088Ebt37wbQnO30P/7H/8C1116LN73pTXj+85+Piy++GFdddRVuuOEGAM1ZJkU9+V+/fj0qlQoGBgYyr2lEVKtVXHjhhdi1axd27NgRvOBA85bJsbzg9rsxy+j2+xAauUxuv5vX1rn9djQ73H43Zhndfh9CI5fJ7Xfz2jq330cWli2Jns/nsXXrVuzYsSP1+Y4dO3DaaactUa5mhyRJcPnll+Ouu+7CP/7jP+K4445LfX/cccdh/fr1qTJWKhU88MADDVvGl73sZXjsscfw6KOPhp+TTz4Zb3nLW/Doo4/i+OOPb7oyvfjFL8ZPfvKT1Gf//u//js2bNwNoznYaHx9HS0t6+GhtbcXU1BSA5iyTop78b926Fe3t7alr9uzZgx/+8IcNW0Ya8J/+9Ke47777sGbNmtT3zVgmx/KD2+/GLKPb74No9DK5/W5OW+f223EkwO13Y5bR7fdBNHqZ3H43p61z+30EYjFOL21U3HHHHUl7e3ty6623Jo8//nhy5ZVXJt3d3ckTTzyx1FmrC+9617uSFStWJN/85jeTPXv2hJ/x8fFwzZ/+6Z8mK1asSO66667kscceS37v934v2bBhQzI8PLyEOZ8d9HTwJGm+Mn3nO99J2trakg9/+MPJT3/60+Sv/uqvkq6uruT2228P1zRbmd72trclxxxzTPK1r30t2bVrV3LXXXcla9euTd7znveEaxq9TCMjI8n3v//95Pvf/34CIPnYxz6WfP/73w8nZdeT/0svvTR51rOeldx3333JI488kvzu7/5u8uu//uvJxMREw5WpWq0m5557bvKsZz0refTRR1NjRrlcbtgyORwxuP1uDrj9bjy4/T6IRrN1br8dywVuv5sDbr8bD26/D6LRbJ3b7+WHZU2iJ0mSfPKTn0w2b96c5PP55Dd/8zeTBx54YKmzVDcARH8+//nPh2umpqaSD3zgA8n69euTjo6O5PTTT08ee+yxpcv0HGCNeDOW6atf/WqyZcuWpKOjI3nuc5+bfPazn01932xlGh4eTq644ork2GOPTQqFQnL88ccn73vf+1LGoNHLdP/990ffn7e97W1JktSX/2KxmFx++eXJ6tWrk87OzuQ1r3lNsnv37iUozUHUKtOuXbsyx4z777+/YcvkcGTB7Xfjw+1348Ht90E0mq1z++1YTnD73fhw+914cPt9EI1m69x+Lz/kkiRJ5q5jdzgcDofD4XA4HA6Hw+FwOBwOh+PIxbKNie5wOBwOh8PhcDgcDofD4XA4HA7HTHAS3eFwOBwOh8PhcDgcDofD4XA4HI4MOInucDgcDofD4XA4HA6Hw+FwOBwORwacRHc4HA6Hw+FwOBwOh8PhcDgcDocjA06iOxwOh8PhcDgcDofD4XA4HA6Hw5EBJ9EdDofD4XA4HA6Hw+FwOBwOh8PhyICT6A6Hw+FwOBwOh8PhcDgcDofD4XBkwEl0h8PhcDgcDofD4XA4HA6Hw+FwODLgJLrD8f/jzDPPxJVXXtk06c43nnjiCeRyOTz66KNLnRWHw+FwOOqG22+33w6Hw+FoLrjtdtvtcDQj2pY6Aw7HkY677roL7e3ti/a8b37zm3jpS1+KgYEBrFy5ctGe63A4HA7HkQS33w6Hw+FwNBfcdjscjoWEk+gOxwKhWq2ivb0dq1evXuqsOBwOh8PhqBNuvx0Oh8PhaC647XY4HIsBD+ficAimpqbwnve8B6tXr8b69euxbdu28N3u3btx3nnnoaenB319fbjwwgvx9NNPh++3bduG3/iN38D/+T//B8cffzw6OjqQJElqS9k3v/lN5HK5aT9vf/vbQzqf+tSn8JznPAf5fB6/9mu/hi996UupPOZyOfzv//2/cf7556OrqwsnnHACvvKVrwA4uC3spS99KQBg1apVqbS//vWv4yUveQlWrlyJNWvW4DWveQ1+/vOfz6mePvShD2Hjxo3Yv39/+Ozcc8/F6aefjqmpqTml6XA4HA7HXOH2uz64/XY4HA5Ho8Btd31w2+1wNA6cRHc4BF/4whfQ3d2Nb3/72/joRz+KD33oQ9ixYweSJMHrXvc6HDhwAA888AB27NiBn//857joootS9//sZz/D//2//xd33nlnNL7Zaaedhj179oSff/zHf0ShUMDpp58OALj77rtxxRVX4I/+6I/wwx/+EO985zvxX/7Lf8H999+fSueDH/wgLrzwQvzrv/4rzjnnHLzlLW/BgQMHsGnTJtx5550AgJ/85CfYs2cP/vIv/xIAMDY2hquvvhrf/e538Q//8A9oaWnB+eefPyfD+773vQ/Pfvaz8Qd/8AcAgE9/+tP41re+hS996UtoafFhxeFwOByLC7ff9cHtt8PhcDgaBW6764PbboejgZA4HI4kSZLkjDPOSF7ykpekPvut3/qt5JprrknuvffepLW1Ndm9e3f47kc/+lECIPnOd76TJEmSfOADH0ja29uT/v7+aeleccUV0563b9++5DnPeU5y2WWXhc9OO+205JJLLkld98Y3vjE555xzwv8Akve///3h/9HR0SSXyyV///d/nyRJktx///0JgGRgYKBmefv7+xMAyWOPPZYkSZLs2rUrAZB8//vfr3kf8fOf/zzp7e1NrrnmmqSrqyu5/fbb67rP4XA4HI75hNtvt98Oh8PhaC647Xbb7XA0I9xt5XAIXvCCF6T+37BhA/r7+/HjH/8YmzZtwqZNm8J3J510ElauXIkf//jH4bPNmzfjqKOOmvE51WoVF1xwAY499tjgrQaAH//4x3jxi1+cuvbFL35x6hk2n93d3ejt7UV/f3/NZ/785z/Hm9/8Zhx//PHo6+vDcccdB+DgVrm54Pjjj8ef//mf48Ybb8RrX/tavOUtb5lTOg6Hw+FwHC7cftcPt98Oh8PhaAS47a4fbrsdjsaAHyzqcAjsSd65XA5TU1NIkgS5XG7a9fbz7u7uup7zrne9C7t378Z3v/tdtLWlX0P7nNizs/JZC6997WuxadMmfO5zn8PGjRsxNTWFLVu2oFKp1JXnGL71rW+htbUVTzzxBCYmJqaVxeFwOByOxYDb79nB7bfD4XA4lhpuu2cHt90Ox9LDlegORx046aSTsHv3bjz55JPhs8cffxxDQ0M48cQTZ5XWxz72MWzfvh1f+cpXsGbNmtR3J554Ih588MHUZw899NCsnpHP5wEAk5OT4bP9+/fjxz/+Md7//vfjZS97GU488UQMDAzMKt8W27dvx1133YVvfvObePLJJ/Enf/Inh5Wew+FwOBzzDbff0+H22+FwOByNDLfd0+G22+FoDLjryuGoAy9/+cvxghe8AG95y1tw0003YWJiApdddhnOOOMMnHzyyXWnc9999+E973kPPvnJT2Lt2rXYu3cvAKCzsxMrVqzA//gf/wMXXnghfvM3fxMve9nL8NWvfhV33XUX7rvvvrqfsXnzZuRyOXzta1/DOeecg87OTqxatQpr1qzBZz/7WWzYsAG7d+/GtddeO+t6IH75y1/iXe96F2688Ua85CUvwW233YZXv/rVOPvss/Hbv/3bc07X4XA4HI75hNvvNNx+OxwOh6PR4bY7DbfdDkfjwJXoDkcdyOVy+Ju/+RusWrUKp59+Ol7+8pfj+OOPx/bt22eVzoMPPojJyUlceuml2LBhQ/i54oorAACve93r8Jd/+Zf4sz/7Mzzvec/DZz7zGXz+85/HmWeeWfczjjnmGHzwgx/Etddei3Xr1uHyyy9HS0sL7rjjDjz88MPYsmULrrrqKvzZn/3ZrPJOJEmCt7/97XjRi16Eyy+/HADwile8Apdffjl+//d/H6Ojo3NK1+FwOByO+Ybb70Nw++1wOByOZoDb7kNw2+1wNBZySZIkS50Jh8PhcDgcDofD4XA4HA6Hw+FwOBoRrkR3OBwOh8PhcDgcDofD4XA4HA6HIwNOojscjmm49NJL0dPTE/259NJLlzp7DofD4XA4InD77XA4HA5Hc8Ftt8PRPPBwLg6HYxr6+/sxPDwc/a6vrw9HH330IufI4XA4HA7HTHD77XA4HA5Hc8Ftt8PRPHAS3eFwOBwOh8PhcDgcDofD4XA4HI4MeDgXh8PhcDgcDofD4XA4HA6Hw+FwODLgJLrD4XA4HA6Hw+FwOBwOh8PhcDgcGXAS3eFwOBwOh8PhcDgcDofD4XA4HI4MOInucDgcDofD4XA4HA6Hw+FwOBwORwacRHc4HA6Hw+FwOBwOh8PhcDgcDocjA06iOxwOh8PhcDgcDofD4XA4HA6Hw5EBJ9EdDofD4XA4HA6Hw+FwOBwOh8PhyICT6A6Hw+FwOBwOh8PhcDgcDofD4XBk4P8DKuChCw1jdoYAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 22, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "class EarlyStopping(callbacks.Callback):\n", + " def __call__(self, algorithm):\n", + " if np.mean((algorithm.x.array-ground_truth.array)**2) <= 3e-8: # arbitrary stopping criterion\n", + " raise StopIteration\n", + "\n", + "algo=FISTA(initial=ig.allocate(0), f=F, g=G, update_objective_interval=10) \n", + "algo.run(500, callbacks=[callbacks.TextProgressCallback(), EarlyStopping()])\n", + "show2D([ground_truth, recon, algo.solution], title = ['Ground Truth', 'FDK Reconstruction', 'TV solution'], origin = 'upper', num_cols = 3)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Calculating data discrepancy at each iteration (A custom callback example) " + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABdIAAAGlCAYAAAD+ngTNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9eZxlVXkujj/nVJ25To09M7TIBRWBmNAJg19FQUCccCCSqyGYIB8RowLigMaIOCCa68U4gN6giF6B5CIOERFQAQloGJyi0ZikmaQHurqmU3XGOvv3R/+e1c9+a+1TVd3VXVXd6/l86lNV5+y99pr2etd63me9KxVFUYSAgICAgICAgICAgICAgICAgICAgICAAC/Si52BgICAgICAgICAgICAgICAgICAgICAgKWMQKQHBAQEBAQEBAQEBAQEBAQEBAQEBAQEdEAg0gMCAgICAgICAgICAgICAgICAgICAgI6IBDpAQEBAQEBAQEBAQEBAQEBAQEBAQEBAR0QiPSAgICAgICAgICAgICAgICAgICAgICADghEekBAQEBAQEBAQEBAQEBAQEBAQEBAQEAHBCI9ICAgICAgICAgICAgICAgICAgICAgoAMCkR4QEBAQEBAQEBAQEBAQEBAQEBAQEBDQAYFIDwgICAgICAgICAgICAgICAgICAgICOiAQKQHBCwjXHfddUilUnjkkUfmfM99992Hyy67DKOjo3skT53Sf9rTnoaXvexle+S5AQEBAQF7DrQ3vp9LLrkEgH+MHx4exqWXXoojjjgCpVIJfX19eOYzn4mzzz4bv/jFLwAgMV37c9ddd7l0//7v/x6pVApHHnnkLpfpDW94A572tKft8v1LFS94wQt2q14WG6lUCpdddtliZyMgICBgUbAv2tvFQLDxSxPBxgfsi+he7AwEBATsWdx333344Ac/iDe84Q3o7+9fdukHBAQEBCwevvSlL+GZz3xm7LN169Z5r61UKjjuuONQqVTwzne+E3/wB3+AarWK//iP/8DXv/51/OxnP8PRRx+N+++/P3bfhz70Ifzwhz/ED37wg9jnRxxxhPv7i1/8IgDgV7/6FX7yk5/g2GOPXYjiBQQEBAQELAkEexsQEBCwPBCI9IAAgyiKUKvVUCgUFjsri4Jqtbrflj0gICAgII4jjzwSGzZsmNO1//RP/4T//M//xA9+8AO88IUvjH138cUXo91uAwCOO+642HcrV65EOp2e8Tnx4IMP4uc//zle+tKX4jvf+Q6uvfbafX5hv7/PRQICAgL2NwR7u/8g2PiAgOWNENolYJ/GN7/5TRx99NHI5XJ4+tOfjk996lO47LLLkEql3DWpVAp//dd/jWuuuQbPetazkMvl8OUvfxkAcO+99+Lkk09GuVxGsVjECSecgO985zuxZ9j0CF8YFm7Lu+222/BHf/RHKBQKeOYzn+k8/4of//jHeO5zn4t8Po9169bh0ksvRbPZnFf5L7vsMrzzne8EABxyyCEztu8xP1//+tfxh3/4h8jn8/jgBz+IRx55BKlUCtddd92MNHV71mzpE3Mpb0BAQEDA8sbw8DAAYO3atd7v0+ldm3Zee+21AICPfexjOOGEE3DjjTdiampq1zJpUKvVcOmll+KQQw5BNpvFAQccgLe85S2xcGXvfOc70dfXh+npaffZW9/6VqRSKXziE59wnw0PDyOdTuPTn/60+2x8fByXXHJJLP0LL7wQk5OTsXx0movMFT/60Y9w3HHHoVAo4IADDsD73//+WJ4BYPv27bjgggtwwAEHIJvN4ulPfzre9773oV6vu2vmOgcAds6BfvWrX+F//s//ib6+PqxevRp/9Vd/hbGxsdi94+PjOO+88zA0NISenh68+MUvxn/8x3/Mq4wBAQEBAUvf3jIcyQMPPIDnPe95KBaLePrTn46PfexjjuQnHnvsMfz5n/85Vq1ahVwuh2c961n4X//rf824blcQbHyw8QEBewKBSA/YZ3Hbbbfh1a9+NYaGhnDTTTfh4x//OG644Qav0frGN76Bq6++Gn/7t3+L733ve3je856Hu+++GyeddBLGxsZw7bXX4oYbbkC5XMbLX/5y3HTTTbucr5///Od4xzvegYsuusgR/eeeey7uueced82vf/1rnHzyyRgdHcV1112Ha665Bj/96U/x4Q9/eF7PeuMb34i3vvWtAICvf/3ruP/++3H//ffjj/7oj9w1Dz/8MN75znfibW97G2677Ta85jWvWdD051LegICAgIClienpabRardhPEo4//ngAwF/8xV/gG9/4hlvo7w6q1SpuuOEG/PEf/zGOPPJI/NVf/RUmJibwT//0T7uddhRFeOUrX4m/+7u/w9lnn43vfOc7uPjii/HlL38ZJ510klt4vuhFL8L4+Dj+9V//1d175513olAo4I477nCfff/730cURXjRi14EAJiamsKJJ56IL3/5y3jb296G7373u3j3u9+N6667Dq94xSsQRVEsP765yFyxefNm/Nmf/Rle//rX45vf/CbOPPNMfPjDH8bb3/52d02tVsMLX/hCXH/99bj44ovxne98B3/+53+Oj3/843j1q1+9S3VIvOY1r8Hhhx+Om2++Ge95z3vwta99DRdddJH7nnX9la98Be94xztwyy234LjjjsPpp5++W88NCAgI2Fewr9nbzZs34/Wvfz3+/M//HN/61rdw+umn49JLL8VXv/pVd81TTz2FE044Abfffjs+9KEP4Vvf+hZe9KIX4ZJLLsFf//Vf71Z5go0PNj4gYI8hCgjYR/HHf/zH0UEHHRTV63X32cTERDQ0NBRp1wcQ9fX1Rdu3b4/df9xxx0WrVq2KJiYm3GetVis68sgjowMPPDBqt9tRFEXRBz7wgcj3Kn3pS1+KAEQbN250n61fvz7K5/PRo48+6j6rVqvR4OBg9KY3vcl9dtZZZ0WFQiHavHlz7NnPfOYzZ6Q5Gz7xiU8k3rN+/fqoq6sr+u1vfxv7fOPGjRGA6Etf+tKMewBEH/jAB+ac/lzKGxAQEBCwtEAb5vtpNptRFO0Y41/60pfG7rv88sujbDbrrj3kkEOi888/P/r5z3+e+KxzzjknKpVK3u+uv/76CEB0zTXXRFG0w4739PREz3ve8+ZdpnPOOSdav369+/+2226LAEQf//jHY9fddNNNEYDoC1/4QhRFUTQ5ORlls9no8ssvj6Ioip544okIQPTud787KhQKUa1Wi6Iois4777xo3bp1Lp0rrrgiSqfT0QMPPBBL///9v/8XAYhuvfVW91nSXGQuOPHEEyMA0Te/+c3Y5+edd16UTqedDb7mmmsiANE//uM/xq678sorIwDR7bffHkXR/OYAnAPZOrzggguifD7v5krf/e53IwDRpz71qdh1H/nIR2akGRAQELA/YV+0t7RLP/nJT2KfH3HEEdFpp53m/n/Pe97jve7Nb35zlEqlZqxROyHY+GDjAwL2FoIiPWCfxOTkJB588EG88pWvRDabdZ/39PTg5S9/+YzrTzrpJAwMDMTu/8lPfoIzzzwTPT097vOuri6cffbZeOKJJ/Db3/52l/L2nOc8BwcffLD7P5/P4/DDD8ejjz7qPvvhD3+Ik08+GatXr449+6yzztqlZ3bC0UcfjcMPP3zB0yXmUt6AgICAgKWJ66+/Hg888EDsp7s7+Yid97///XjsscfwxS9+EW9605vQ09ODa665BscccwxuuOGGeT//2muvRaFQwJ/92Z8B2GHH//RP/xQ/+tGP8Lvf/W6XywXAHbb2hje8Ifb5n/7pn6JUKuH73/8+AKBYLOL444/HnXfeCQC444470N/fj3e+851oNBq49957AexQsFGpBgD//M//jCOPPBLPec5zYgrD0047zRsGzc5F5oNyuYxXvOIVsc9e97rXod1uux1gP/jBD1AqlXDmmWfGrmP5Wd5dgX320UcfjVqthq1btwLYMa8BgNe//vUz8hgQEBAQsO/Z2zVr1uBP/uRPYp8dffTRsTXgD37wAxxxxBEzrnvDG96AKIpmHIo6HwQbj1j5g40PCFg4BCI9YJ/EyMgIoiiKEdGE7zMbX473++LO8fT0Xd1CNzQ0NOOzXC6HarXq/h8eHsaaNWtmXOf7bHeRFFtvoTCX8gYEBAQELE0861nPwoYNG2I/s2H16tX4y7/8S1xzzTX4xS9+gbvvvhvZbDa2BXku+M///E/cc889eOlLX4ooijA6OorR0VG3SNzd8zaGh4fR3d2NlStXxj5PpVJYs2ZNzM6/6EUvwo9//GNMTk7izjvvxEknnYShoSEcc8wxuPPOO7Fx40Zs3LgxtsjesmULfvGLXyCTycR+yuUyoijCtm3bYs/dHXvsm9twzsBycG5hz3VZtWoVuru7dys0gLX1uVwOAJytZ13b6/bEvCYgICBgOWJfs7dzXfPuifU27w02Ptj4gIA9gUCkB+yTGBgYQCqVwpYtW2Z8t3nz5hmfWYMzMDCAdDqNTZs2zbj2ySefBACsWLECwA6FNYDYIR4AZhjP+WBoaMibT99nuwvfQalJZVqI+HsBAQEBAfsXnv/85+PUU0/FU0895dRLc8EXv/hFRFGE//f//h8GBgbcz0tf+lIAwJe//OUZB23NB0NDQ2i1Wnjqqadin0dRhM2bNzs7DwAnn3wyGo0G7rnnHnz/+9/HKaec4j6/4447XBzVk08+2d2zYsUKHHXUUTMUhvx5//vfH3uuzx7PFZ3mO1zYDg0NYcuWLTPitm7duhWtVmvWec3uLsJbrdaMNPbEvCYgICBgf8VStbdJGBoamtN6e1fTDjY+2PiAgD2BQKQH7JMolUrYsGEDvvGNb6DRaLjPK5UK/vmf/3lO9x977LH4+te/HvOat9ttfPWrX8WBBx7owqE87WlPAwD84he/iKXx7W9/e5fz/8IXvhDf//73Y0Zzenp6lw45tR7juWD16tXI5/MzyvTNb35zQdIPCAgICNj3sGXLFrTb7RmfT09P43e/+x2KxSL6+/vnlNb09DS+/OUv49BDD8UPf/jDGT/veMc7sGnTJnz3u9/d5fxyQawHnwHAzTffjMnJydiC+U/+5E/Q29uLq666Cps3b3aL7Be96EX46U9/in/8x3/EEUcc4VR0APCyl70M//Vf/4WhoaEZKsMNGza4+cNCYGJiAt/61rdin33ta19DOp3G85//fFfeSqWCb3zjG7Hrrr/+evc9ML85wFzxwhe+EADwf//v/52Rx4CAgICA+WG52dsknHzyyfj1r3+Nhx9+OPb59ddfj1Qq5WzHrqYNBBsfbHxAwMIjOehWQMAyx+WXX46XvvSlOO200/D2t78d09PT+MQnPoGenh5s37591vuvuOIKnHLKKXjhC1+ISy65BNlsFp/73Ofwb//2b7jhhhucV/klL3kJBgcHce655+Lyyy9Hd3c3rrvuOjz++OO7nPe/+Zu/wbe+9S2cdNJJ+Nu//VsUi0V89rOfxeTk5LzTOuqoowAAn/rUp3DOOecgk8ngGc94BsrlcuI9qVQKf/7nf44vfvGLOPTQQ/EHf/AH+Nd//VevMdyV9AMCAgIC9j185Stfwec//3m87nWvwx//8R+jr68PTzzxBP7hH/4Bv/rVr/C3f/u3sXNLOuG73/0unnzySVx55ZV4wQteMOP7I488Ep/5zGdw7bXX4mUve9ku5feUU07Baaedhne/+90YHx/Hc5/7XPziF7/ABz7wAfzhH/4hzj77bHdtV1cXTjzxRHz729/GIYccgkMPPRQA8NznPhe5XA7f//738ba3vS2W/oUXXoibb74Zz3/+83HRRRfh6KOPRrvdxmOPPYbbb78d73jHO3DsscfuUt4thoaG8OY3vxmPPfYYDj/8cNx66634P//n/+DNb36zO6fkL/7iL/DZz34W55xzDh555BEcddRRuPfee/HRj34UL3nJS9yW9fnMAeaKU089Fc9//vPxrne9C5OTk9iwYQP+5V/+BV/5ylcWpPwBAQEB+xOWm71NwkUXXYTrr78eL33pS3H55Zdj/fr1+M53voPPfe5zePOb37xb53gFGx9sfEDAHsOiHHEaELCXcMstt0RHHXVUlM1mo4MPPjj62Mc+Fr3tbW+LBgYG3DUAore85S3e+3/0ox9FJ510UlQqlaJCoRAdd9xx0be//e0Z1/3rv/5rdMIJJ0SlUik64IADog984APRP/zDP0QAoo0bN7rrfCeuR9GO07hPPPHE2Gf/8i//Eh133HFRLpeL1qxZE73zne+MvvCFL8xIcy649NJLo3Xr1kXpdDoCEP3whz/smJ8oiqKxsbHojW98Y7R69eqoVCpFL3/5y6NHHnnEe/L2fNP3lTcgICAgYOngS1/6UgQgeuCBBxKvsWP8r3/96+gd73hHtGHDhmjlypVRd3d3NDAwEJ144onRV77ylcR0zjnnnKhUKsU+e+UrXxlls9lo69atiff92Z/9WdTd3R1t3rx5TmU655xzovXr18c+q1ar0bvf/e5o/fr1USaTidauXRu9+c1vjkZGRmbc/6lPfSoCEJ133nmxz0855ZQIQPStb31rxj2VSiX6m7/5m+gZz3hGlM1mo76+vuioo46KLrrooli+O81FZsOJJ54YPfvZz47uuuuuaMOGDVEul4vWrl0bvfe9742azWbs2uHh4ej888+P1q5dG3V3d0fr16+PLr300qhWq8Wum+sc4AMf+EAEIHrqqadi97P/6HxldHQ0+qu/+quov78/KhaL0SmnnBL95je/8c4rAgICAvYX7Iv2lnbJ93xrhx999NHoda97XTQ0NBRlMpnoGc94RvSJT3wimp6entOzOqUdbHyw8QEBewKpKDJBlAIC9mE0m0085znPwQEHHIDbb799sbMTEBAQEBAQEBAQEBAQEBAQEBAQsAwQQrsE7NM499xzccopp2Dt2rXYvHkzrrnmGvz7v/87PvWpTy121gICAgICAgICAgICAgICAgICAgKWCQKRHrBPY2JiApdccgmeeuopZDIZ/NEf/RFuvfVWFyNsOaPdbnsPmVF0d4dXPCAgICBg38b09DQ6bbBMpVLo6uraizlaGOyr5QoICAgIWJ5YDLu0r9rCfbVcAQH7A9KLnYGAgD2Jf/zHf8QTTzyBer2OSqWCe+65By9+8YsXO1sLgssvvxyZTKbjzyOPPLLY2QwICAgICNijOPnkkzvaQh4attywr5YrICAgIGB5YjHs0r5qC/fVcgUE7A8IMdIDApYpnnzySTz55JMdrzn66KPnfGJ7QEBAQEDAcsRvf/tbTExMJH6fy+Vw1FFH7cUcLQz21XIFBAQEBCxPLIZd2ldt4b5aroCA/QGBSA8ICAgICAgICAgICAgICAgICAgICAjogBDaJSAgICAgICAgICAgICAgICAgICAgIKADwkmE2HFo45NPPolyuYxUKrXY2QkICAhYdoiiCBMTE1i3bh3S6Zk+2lqthkajsVvPyGazyOfzu5VGwPJFsNUBAQEBu4dgqwP2NIKtDggICNg9BFu99BGIdOyINX3QQQctdjYCAgIClj0ef/xxHHjggbHParUaDjnkEGzevHm30l6zZg02btwYjP5+imCrAwICAhYGwVYH7CkEWx0QEBCwMAi2eukiEOkAyuXyYmchICAgYJ+AbzxtNBrYvHkzHnvsMfT29u5SuuPj4zj44IPRaDSCwd9PsdxtdSqVcqqS6enpRc5NAACnlgzHBS0/hLbbPQRbHbCnwL512GGHeZWU6XQa6XQaqVQKqVQKXV1diKII7XYbURRhenoazWYTURTF3u+urq6Oz+Wz2u22+8ymkUql0N3djUwm4/KRTqcxPT2Ner0eu5dpMn8+sAxMM5VKOftuy8Q0MpmMKwt/c37QbrdRr9fRbDbdPUyHaWm5mN+uri43JnZ1dbn6Zdr8XO/RMvFvlsXe02q1XB6Yj3a7jVarhe7ubpRKJWSzWfcZ607H6Xa7HesPjUbD3Z/NZt13URTF5ktEu91GrVZDvV53eWO5tfw+MN+K7u7uGfe1Wi1Xt6z/TCaDTCYTu7fVaqFaraLdbqNYLCKfzyOKIlQqFTQaDeRyOfT09AAARkdHMTExgWKxiAMPPBA9PT3Yvn07tmzZgna7jb6+PhSLRdRqNWzfvh31eh09PT3o6+ub8Uy+F0QqlUImk0F3d7frq+12G9VqFVNTU+ju7kZfXx8KhQIqlQpGRkYwPT3tyqTvAH+AHURts9mM9R9C3910Ou36i6/Npqen0Wq1Eue8Wpbu7m50d3djenoajUYj1v9TqRSy2azrY7Zd2V7sY2xX3p/JZNDX14dcLoepqSlUKhWXN97Pts9kMsjlct7+Nxc0m020Wi2XZ9YP3/VGo+HSYl599Tw9PY1f//rXwVYvYQQiHTM7bkBAQEDArqHTeNrb27vLBj8gYD62mpN6u4hebCylvAQE7M/Y34n4YKsD9hTYt0hUKklLkOhKIltTqVSMILPknY+g94HkGNMH4kR+V1dXjDi2hKvmr1NZSV6z3Jx78CedTrvnk/DjvdYBwOv1MyUpLZFq/+7u3knv8FrNH9PUsvJvrV8S1fxcyeUoitBoNGL1qPMu5od50fIyX2xvTbNT+bq6upDJZGbUCcvF5/vai3m0bcu8JTkYeJ/WH8vI/1lXLAfTIbnN94B9gMSwOlPoiMlms46A5T1Ml2X1OXu0n9p3RduG+c9kMsjn87F3kO1lHT9aV1ovtp6T6p5l1LL7yHnWF8to+xIdUPZz/d/2R/v+kdDXtmT78xptB+2X6sjzkeqaJstB5wC/b7fbyGQymJ6enlH3Cn1usNVLF4FIDwgICAjYK9gdUnN/JTsCZoddnPEzVX8vhf6z1Ej9gDCuLGfsTtvZhWvoB3EEWx2wEFDyUWFJPd/fJKJarVYsDSW1LKHmgyUFrbJb80r41MtJUHLbKrFJEqsaN4oipzbv6upyhKkq0m0elTjW3yRgma5Vp1MdrsphLbeWk8pcJeFJXirBrYQ686vkLlW+URTFHClKUvP/RqOBRqMRI5xte1pHhpK9Wg7uBEgiJ339g+3SarW8KnreR5LVOnKUgGe5G40G6vW6U7Bbsr/VaqFWq8Wex3oB4HY1sE60vumA0bYjga/1xXbX/qc/URQ5p4SWWevW7hqxUBvBsvjed+3H+h5o+TTv3d3drs926gfap7SeddeD9iXu9GBbW2cM+z7rxj7fpsfxQsukjix1qtl3QPtRJ+fDXBBs9eIiEOkBAQEBAXsFweAHBAQEBAQsbQRbHbAQ2JW+YIlKVXInXU/4SDwlyiz5OldV+1xBotlH5vFvJV55rc37bCS+VWDb7/QzVUfrNcyjkuBK4uszADjClr99+dXyzRU+JXqSIl2hThQL3dXQ6fqk+3WHRKc0bf4tlCjVNPXHd48S0qxPe62KRWzZNS1Nx6Zh29gH9ulO8F1jnUDWGWMxn10muwr7ztnnc7zYHWLbprmnEWz14iIQ6QEBAQEBewXB4AfsCfj6hm7hDH0nIGDPYrmpuy25tVTgI3AWA8FWBywEqCxVtbePzPT1e5KQJNgsSUv77gsRQ5CQJDnM2No2jncnaDgKCyXNNW8aRsLGSLdKXpJ3DO1h059LHpUY17pQpbXGcPcpq5kX3kNFOfOhOwD4u16vxwhT1oGSp1bZ63t+Ut3qb9smvvAmwM4diKlUCrlcLlYfqoy2YxyvYbxx7hxgeVqtluvHbE/G/mbcbqtYJinOumf9axm4k6HRaMxQvttY+8DOECmab6t6VkW5bV+WwZLsBPsL+0ESwe3bDaLhe+wuBL3P5wiic6nTbhDtX1oe7SvWaabjj96n+bF90+6A8fU33xkHSdCdDwodL5KcLbMh2OrFxZ53lQQEBAQEBCwCPve5z+GQQw5BPp/HMcccgx/96Ecdr7/77rtxzDHHIJ/P4+lPfzquueaaGdfcfPPNOOKII5DL5XDEEUfglltuiX1/9dVX4+ijj3Zx644//nh897vfjV0TRREuu+wyrFu3DoVCAS94wQvwq1/9avcLHOAwn4loQEDA7iEpPMNShF2sLhVY5WJAwHKHJa2AZGLUZ7M1JInGT+Y9hE99rKSYHvgHwEscz0beWSJc82rJP71eoaE1mHaz2USj0XAHFPryoeWxY4SSfjZkBNtA48Qn1S3zreVVok8JWxsPXcnGpHbU/CY5P+x9Nja5tocPSrKyzDYki+8e5iuV2hGbPJfLuYM49bnWMcIfPbDStoOS6b7wQTYMC8sMYEY4Fm03TdvGQOe1SiDbtrQH9/raUcs7H/hIdFvPvrawz7e7HqyzppMN94VU8hHpiqQ+qdfru8t71OFl8+xzNPnGj6U0FwmYOwKRHhAQEBCwV+BbhMznZz646aabcOGFF+J973sffvrTn+J5z3seTj/9dDz22GPe6zdu3IiXvOQleN7znoef/vSneO9734u3ve1tuPnmm901999/P8466yycffbZ+PnPf46zzz4br33ta/GTn/zEXXPggQfiYx/7GB588EE8+OCDOOmkk3DGGWfEiPKPf/zj+OQnP4nPfOYzeOCBB7BmzRqccsopmJiYmGeNBgQEBCw+dIxeagS1xVLN21Jy/u1NWx2w74KEF4lASz5S0avxnzspUgHMIAyV+OX3naBkV6ewIb5rbD53pa8rge0jOm2oF5+SWz/XvPiU1gr9ztaDTx1O4rHRaCS2jU9Rbh0Zvnzoc20MaV9+Ne2k2Ps+0jzJkaPPtuSnkuP6mQ19w0Mp2ZbMm21XfQ+0ryohrmVO6lu2PmwdKMmsZdQ69z3PF0ddD07V/mHr0tfWSe/VfEKdME22T9K96gziDhH7rNkc1Fa9b50KrKfZ3nnf+2HHi6Q0rBPLOgKSEGz14iIVhVrE+Pg4+vr6FjsbAQEBAcseY2NjM04Q5xj71FNP7fLp4uPj41i5cqU3fR+OPfZY/NEf/RGuvvpq99mznvUsvPKVr8QVV1wx4/p3v/vd+Na3voV///d/d5+df/75+PnPf477778fAHDWWWdhfHw8pjB/8YtfjIGBAdxwww2JeRkcHMQnPvEJnHvuuYiiCOvWrcOFF16Id7/73QCAer2O1atX48orr8Sb3vSm2StjP0Ww1fODbr0NCAgIUCwVWx2w74H9aO3atSgUCigUCgDi6k6SS0ooK9mlMb3VSWeVrqoG1dAZBAkye8hjFO0M/6EhTBQkGaluVpWzT1Xt2+1iywvsDEfTbDZRqVQwPT2NXC6HfD6PVCrlDdVBUtESzhrShIrmfD6Prq4u1Go1TE1NIYoi5HI5ZLNZV7eWPK5UKmg2m7EwLkmKaj5/amoKU1NTMdW/lrNUKqFQKKDd3nGwqB4c2263nQrfksOqgNfDVK2iV8luTZf1pfer6t6SnTYEDgnVZrPp0mK9sB40HYZumZ6eRqVSQaPRQKFQQLlcRjqdxtjYGCqVCjKZDHp6epDNZlGv1zE5OQkAyOfzLjwMD6Jl3tVBov1eHR8km1utlsszYb9nOam6Zz0y7j3njbVazR0Ey/5kVdgaNkk/Z53ad8Gqt327K/h8bWcbxonvJOsun8+j3W5jampqxvutjg3t74SOM76+4SPUtV/5CHqf6t3uCugUEoZ9oN1u47//+7+DrV7CCIr0gICAgIC9goXwnI+Pj8d+GPNS0Wg08NBDD+HUU0+NfX7qqafivvvu8+bt/vvvn3H9aaedhgcffBDNZrPjNUlpTk9P48Ybb8Tk5CSOP/54ADuU75s3b46lk8vlcOKJJyamExAwX4TwEAEBAbuKoHILWAhY5baSUap41b87qdGBuNLUpxy18BHrvs873euLeW6J3aTya1pKfs4W1qSTWt4+w6pZrZPBhvzwQWNN81oNPZIUv1rLYQnx2erYpx63hLHmR+9LCudjYdOzoVGs0lkV5LZf2b5GAt3mRVXg2l+sKtmnDtf8JimXfX3d52xKqj/Nn1Wfa0gfCx/p7XMkLRTsbgyF1puvLWdToPt++2BJdOsYSILdjeAb33yOO+0rs42F9p5gq/c+ApEeEBAQELBscNBBB6Gvr8/9+NTl27Ztw/T0NFavXh37fPXq1di8ebM33c2bN3uvb7Va2LZtW8drbJq//OUv0dPTg1wuh/PPPx+33HILjjjiCJcG75tr3gL2Hcy2xXShECbJAQEBAQGLCR7cSHVxLpdzSlgNhwHMDMHhI1TVfpLwa7VaqNfrjuztZPd8pK9V/PI6JdlsjHCqeKmmni3kg7XHvCedTqNQKKBUKiGbzc4gsvW3quA1Vrk9UFVDQwCIxZe3z7dEH6H3+0K0WGeEkrB6CKc6UFhfVq2r9UyVrr1f82vVvFovqoZm2ySRnlpXPtgQPDZGvyXPtVzsU/V6HY1GA8DOd4GKa0vo+/Jl88960Hq0xDnzzLRI2GsIG9tHfNBdBiyT7etJIXy03bXtNGSOjyS2YZu0b/qe7QuNpPnX3RRsL9+1cyGsNY9Ml2kzfe4ISCqbvq++dYDdXaNq+aWEpXr+2Bve8IYZ4YaOO+643S9wByzNFgoICAgI2OewO+Qe73v88cdjW9ByuVziPT5vfycS03e9/XwuaT7jGc/Az372M4yOjuLmm2/GOeecg7vvvtuR6buSt4DlD7tICNiBpPcuYPlgrv3aRxQFLD0shK0OCODBjSSJNTQDsDP8A6EhImw/SiJCVUVL4knDRujcymeD2+22I9hsnHAbfoHvBcOUKLFtYVWsCn6WSqVQLBaRSqViYTd8KnslXjVcjNYX86QEKcO52LJr+fW31o2tO0sia5tY0pNkMtFsNtFsNp2K25aLYD1oaBdfX2AYGSWlmY9Wq+WusenbNrJOBC2vtr+2sVU++3YFpFIpNBoNl14mk3Hp8Xm+8EB6v4/wJQHOXRLst8wX88k+qqFttH0I+7f2fbtLQfsK64d50e+ZVlJ4E5LJ+jzbRr5wNlon2q46jvjU5iw7dxdrfnScmAuhru+hth/rW8cF373Mk/YF+57rODYb9rat5vljn/vc5/Dc5z4Xn//853H66afj17/+NQ4++OAZ1/P8sfPOOw9f/epX8S//8i+44IILsHLlSrzmNa8BsPP8sQ996EN41atehVtuuQWvfe1rce+99+LYY48FsPP8sf/xP/4HAODLX/4yzjjjDPz0pz/Fs5/9bPe8F7/4xfjSl77k/uf4t6cQiPSAgICAgL2ChTD49EZ3wooVK9DV1TVD4b1169YZSnBizZo13uu7u7sxNDTU8RqbZjabdcZ+w4YNeOCBB/CpT30Kn//857FmzRoAO5Tpa9eunVPeAgICAgIC9hYCkR6wEPApLy2Z1InA6iQwIIHlCwdCss53D59tiW4lMjVWs+9+zZ/mP2nHmS8tJRTtvXMVVWg5lJC176/PCaH3Mi1bL/qdJW01r/ZZPseB/T9JoGLrUJXIqs6frW3s83ZFrOIjeX2hWFhnncKi2BAoszmfO+XV914lvUdJ9aQOD9/zkp6fVI9JO0psmr7wK0mE8a7YkrnkbT7P8O02Uadg0jU++Mruu28uYZGIvW2rP/nJT+Lcc8/FG9/4RgDAVVddhe9973u4+uqrvTvEr7nmGhx88MG46qqrAOw4q+zBBx/E3/3d3zki/aqrrsIpp5yCSy+9FABw6aWX4u6778ZVV13lzh97+ctfHkv3Ix/5CK6++mr8+Mc/jhHpuVzOrbP3BkJol4CAgICAvQKduO3Kz1yRzWZxzDHH4I477oh9fscdd+CEE07w3nP88cfPuP7222/Hhg0bnHom6ZqkNLXcjOV+yCGHYM2aNbF0Go0G7r777lnTCVje0K2qATuxOwuBgKWBubbhroznCwmrOA3wY2/Z6oB9G4wf7YsNnc1mkc/nZ6i5faSafV+7urqQyWRi8ampRKYy1JKaDMOQy+VihDPvUUUpVb9KkFHZqiEXqHJlCA8Na6J596m3+Z0qr/UQQ19sblWta30xDYbi0HwkkXy+UBi8X9tKwf81r3oAp4bQsCSjEv2+kCokJ7WOVbVbr9fdYbE2xIf+1rAbrDO2Ua1Wm9E29mBVW17Nu4aQabd3HKDKtmf/sQ4IdZaw7rRcdszU2OM2LI/2e63/KIqfOZB02KWWW9vT9gPfD6/nc1h36XR6Rj/TfPB917alOt/nWNA+M9t82b4jGoqHn7H9eYCnrXM+i/1Cv/c5lZhfDanEQ3PZRlq/Gu7F1652JwfbwO7cSMJC2Oq5nD0GLO3zx4i77roLq1atwuGHH47zzjsPW7duTai5hUFQpAcEBAQE7BXsTc/5xRdfjLPPPhsbNmzA8ccfjy984Qt47LHHcP755wPY4fH+/e9/j+uvvx4AcP755+Mzn/kMLr74Ypx33nm4//77ce211zpvOAC8/e1vx/Of/3xceeWVOOOMM/DNb34Td955J+699153zXvf+16cfvrpOOiggzAxMYEbb7wRd911F2677TYAOyZgF154IT760Y/isMMOw2GHHYaPfvSjKBaLeN3rXrdLdRMQsC9BFW0hFE7AQkEJrbkqyPZX7G2VW8C+CRuXWcM5kDDuFKc5Cbw/iqJYuAYSZUoGq8JcCUnex+d3dXXFQqMowa/Eoe3fNha4JQW1/J2IS0uu+ojQTqp1zS9JdA2BYpXkFqwzH4nOMdMqsy1JbEN8aDmUiCb4PPud/T09Pe2IUA1fYp9rCXGWQZ0q+r1vrtFpB4T9joS1VXnrc3zpWvW/PkO/t6FgNNyMJWw7Eb+2rjREi3Ug+Mqv6dkyalgUn1qf746GjLFl9dXfXO2IzY9PGZ90dgLz5qs3fQ9sPenfdBiwbyaFs2EdqHNCxw2tB237+ZR/vuB9Bx10UOzzD3zgA7jssstmXL8nzh9bu3btvM4fO/7441Gr1dDT0xM7fwwATj/9dPzpn/4p1q9fj40bN+L9738/TjrpJDz00EMdw8DuDgKRHhAQEBCwz+Gss87C8PAwLr/8cmzatAlHHnkkbr31Vqxfvx4AsGnTJjz22GPu+kMOOQS33norLrroInz2s5/FunXr8Pd///du6xkAnHDCCbjxxhvxN3/zN3j/+9+PQw89FDfddJOL4QYAW7Zswdlnn41Nmzahr68PRx99NG677Taccsop7pp3vetdqFaruOCCCzAyMoJjjz0Wt99+O8rl8l6omYCApQkuauxiJiBgIRBU0wEBexedwk/MJf6vj5RW4k5VzoQv7rWmZ4m9JILZEnpKevE+JVHtd6rItlAVNK9Rot7GStf82/wpbKiXpHz76l7J2mw268g9q+61pCvzbOtPyWyfg8GWx35myXEbFiQJJNp9anqSpr4+qGpy9hN1snQC82adNpZYpio7m83GDkOdzR5p+kzLfs/yaJ+0oX58z7G7Nnyktl5n1daqRteQQUocK4k+Wx9QZb32q9kcHHoP82TJ/dmgZdM61zjz6gTpNNaoE0F3SficYbqLg2nPdhjsQmI+Z48BS/f8sbPOOstde+SRR2LDhg1Yv349vvOd7+DVr351xzLtKgKRHhAQEBCwV7C3VW4XXHABLrjgAu9311133YzPTjzxRDz88MMd0zzzzDNx5plnJn5/7bXXzpqvVCqFyy67zOvxDwjYnxEIzoA9iaUSVkkX/0uxzwdFesCeAIkhVWNSkawqWUtcWhWrEk4kJxUk01KplAv/wrSV5LSkoyU+eY9N2+aB7zIJcCXGfCEsfGS2XpcUwsUHG7KDpB2JRSXjlJy2RLuqevP5fKxObPiKXC7n6j6TycRIZ6sY5+dKuvvCjOhv3q/Eo/YJ68BQkp2hPRjexqq1lfjnYaSWCObfLC+vS2oL1gMAp5y3YXp4AGqhUEA+n3ehgHzhS2ydaP/v1C987xC/V4Ja77XP5n2+8DC8h/mw6fn6gdaDL99ar1of/JmrMpvlJgGtNmw+aWiebL/K5XLuXW80Gt6+rEQ4P2P/1bAzhG+HAbCzH82GhbDVczl7DFja54/5sHbtWqxfvx6/+93vZi3brmJRY6Tfc889ePnLX45169YhlUrhG9/4hvuu2Wzi3e9+N4466iiUSiWsW7cOf/EXf4Enn3wylka9Xsdb3/pWrFixAqVSCa94xSvwxBNP7OWSBAQEBATMBqsInO9PwOIg2OqAgICAhUcnFddiItjq5YulaK996lZL4HaCT0GunyeFlFD4yMrZQlr4ymHT8H2vMY81L5ag8xGys+VFnQJJjkGrXLf5SkJS+BMA3rjxvFbrcjZl6lzHvKS2sWFb7HXMjw070ylPnRTv81GM82+qj5PKpaE9OoX88f0mLIHrU3rb3Rr2+6TPfd/5FP5JcfTpqNA6mKsy3JfmXPqMOkQ0f/NB0m4NbVs6VfTd9jmGfPmbrf/bfjGX/O9NW72Uzx/zYXh4GI8//jjWrl3bMZ3dwaIS6ZOTk/iDP/gDfOYzn5nx3dTUFB5++GG8//3vx8MPP4yvf/3r+I//+A+84hWviF134YUX4pZbbsGNN96Ie++9F5VKBS972cv22naIgICAgIC5ISzOlyeCrQ4I2DOYD7EQsO9gqdu1YKuXL5aSvdaDEoGZB/mpatPGtrZqamAmqUhiK5vNIpvNzgipEkU7D+ikKtgeJqrwjcc+UtkesGlDYti07Huhz9DwED71OGEP87TQZ+hvlplK80wm43UA8DpVPGsIGtZfs9lMPNCVZWNe9TlKbCtRqKpxW3Zf6AerWNaQIz4ymflnP0mlUt5+xTzbA2XZLo1GA81mM0ac2ufzORrChTHqa7Wa+5mamnKK9KQxU5+RRFrzHeF70NXVFbvO11eS4tprGdRZ4+u7vvdV3ymtEz1Y0+4q8LV/J8Jdr/MpvFk2daZonn0/fKaWWUOx6LvdaDRQrVZjuwk0z6wHrS8eqqwHrKozhWD9zTeky9621RdffDH+4R/+AV/84hfx7//+77joootmnD/2F3/xF+76888/H48++iguvvhi/Pu//zu++MUv4tprr8Ull1zirnn729+O22+/HVdeeSV+85vf4Morr8Sdd96JCy+80F3z3ve+Fz/60Y/wyCOP4Je//CXe97734a677sLrX/96AEClUsEll1yC+++/H4888gjuuusuvPzlL8eKFSvwqle9at7lnCsWNbTL6aefjtNPP937XV9f3wzvxKc//Wn8yZ/8CR577DEcfPDBGBsbw7XXXouvfOUreNGLXgQA+OpXv4qDDjoId955J0477bQ9XoaAgICAgIB9GcFWBwQsPHzb6wP2H4Q2D9gTWEr22hcqxQcdB5WUsip0nzKZJJ0lVgG4EBuW3NL/fWStfZ6SuPyfcbg1BIaPwNSQIhaaVxtfmmmos4Hkrh6wmpQe88OQIul02sU+t0paErLNZtOFarEkOsnkdDrtJb8VPsU97Z0lhpUYnc2pbNXovrbz3WOJUv7WGNqsWx8hb0P26GG2WgZVppPo5TVss1qthijaERokSXGsjhDWmSWoNf+5XM71c73PFxJJifBOTiOtqyR1PdPS/E5PT7u2tMS2EsQaukXzrenaPGrMet+OA61/S3JrGe09Nn37OfPGcC5at/oO+MYB60iw9aXvoa9fLzUs1fPHurq68Mtf/hLXX389RkdHsXbtWrzwhS/ETTfdtEfPH1tWMdLHxsaQSqXQ398PAHjooYfQbDZx6qmnumvWrVuHI488Evfdd1+isa/X67GtAOPj43s03wEBAQEBIe7q/oJgqwMC5o4wtgUsNQRbvf9gIex1kq2ei7JSFbQ2fvNcoQS4ErKWeNVnWPU2sDMWtubDF25FY0uT7FNCTGGdCUnp+N45H8nGvPjiW+v3NryLlj0J1nGQ9LmPALRpW6La5sWmrXHPfSpz3Y0wV6Ix6Tob19uWUUO9+GJgd9oVYElvX/l1FwLzk7RjwQe9j3ns5NRIqgPGi/elrZ/7dlnYtIi57pjw9WtbB9ahoI6mhSSbtY9pP9R8q9NkPv1PnQIEy24PRZ1P2jZ/u4JdvW8pnj9WKBTwve99r+M1ewLLhkiv1Wp4z3veg9e97nUuIP7mzZuRzWYxMDAQu3b16tUzgtYrrrjiCnzwgx/co/kNCAgICIgjLM73fSy2rQ4K34DlAt+CdbHge2/Cu7T/Itjq/QMLZa+TbHW1Wo2FNLCwxJolX224hSRoOJFOilNL/OrhhFQkU22s9+pn/JzP4WGmrVYL9Xp9Bvmnql1V1BJK1trQLs1mE5OTk5ienkY6nUahUIh9b1W+tt40TIvvAFPNk4YHsfXH+mU7qqLfF+ZEiU9ex+f4VL/ML9PlNQzXA8AdgKrPsep6n0Ldtj/robu7O1Yf2tYMkcKyU1Ws4V/YJprnKNoRs5npMs9af8yDrS/+zb5mwwVZ4tmGRkkKw9IJ1gHC94HlYR1Yp5Fvh4gqta0ynO2pB9aq0yTp3fapya2625bD50Cy6Vkinu8gy6e7Dmq1GprNZqxsvrTtc/Tdt89jH+SOEc3/fBxFzEew1YuHRY2RPlc0m0382Z/9GdrtNj73uc/Nev1sHp1LL70UY2Nj7ufxxx9fyOwGBAQEBHhAg7+rPwFLG4tpqxdaoRIQsDew1Me18F7tnwi2et/HQtrrJFutxBkwezgrq+btpLQllBwjwTabml2JdMb91jjqSTHUFXyextRWNbOS8aqMV1WrJZJtvTCcCmOS87vZnAq8xiry50L+JaVt205V1Urkkji1IW98qnWFEu4ay56fs57ZvnNRm2tYF+1TPqcCr7exsfkcG99av2PZNe/aXlq/VoVu68SmrfXju1dJfPu8pDq2ThD9Xsl0+xybTx865V0dV5pn+94npc+617axhLivvjrB5xzQXSh8B2cbD3z1kNQGJNDZR2zoKS3rbAi2enGx5BXpzWYTr33ta7Fx40b84Ac/cB5zAFizZg0ajQZGRkZinvOtW7d2POk1l8shl8vt0XwHBAQEBATsL1hsWx0mhAEBC4u5kC8BAQHLDwttr5NsNQlJS8KrStsHVRgr6ecLj+AjhJQMU0KK6fEgSCXwfOSfku36LBu2g+XL5XKx+zSvJMw6heJIItNIvFWr1RiRq9dbYl7/T3Je2FjxbCuWlzG+mV9Vp1OFb+td885nWMyFJGS5dbeAzxHjI6PZTiwfyVemq3H1WQZ7UKdNj7Hmeb3WCevb9ne2t6bDw0H5TP7WMCtaRt5j61Gfp8/QMlsHjm/XgD7P1j/rXZ/Jsuo7w7pkfviZwr4DTEPzr+S4fX+SHD3aXiTq1QEw224WHznOOO92B0lSOjoe6N/qmAHgnEt03LFdfOnaMSRgaWJJK9Jp6H/3u9/hzjvvxNDQUOz7Y445BplMJnZwyqZNm/Bv//ZvHRfnAQEBAQF7H8Fzvm8i2OrZEVS9yx/7sjo7aYzdW+Puvly3yxHBVu+72Jv2WmOO+whVVfQCcUWs/lhiTAlu/dHwDhruRUNzpNNpZDIZFItFFAqFWOgZTVtJTFVIJymvu7q6UCgUUCwWkc/nkc1mkclkXFlVEc3fPqLMqoqZ91arhfHxcUxMTKBer3sVsqrIt2ElkhTBStLyukajgVqtFvthGVWBT6LVEvqW3NXvSSzSmcG60us1LIi2q01P61BtiO0XURTN6At0BFDtr31ICXXWEclP1oceFqphP/gc1qVVGyt5n8lkXD/RPkrilW1jy8L0WA4lpnWHBWH7MPuO9gPbj7q7u5HL5ZDNZl3erJ3mfdpPtX6tw8SGjWFZdHeHvqcK285qb5iW7z21sE6KJLuldejboeBT0bMu9JBV9ocoima8U81mMxZCyNbrXBBs9eJiURXplUoF//mf/+n+37hxI372s59hcHAQ69atw5lnnomHH34Y//zP/4zp6WkXm21wcBDZbBZ9fX0499xz8Y53vANDQ0MYHBzEJZdcgqOOOsqdNB6w78MXg6qTUiEgIGDxEN7H5Ydgq3cPgSCMw2erA/ZfzKZODVgchPZYnlhK9tqnHrXhTJJUnj7FMcks/Uz/1pjcqrbVQwT1byWxrJ2mklXzzOfxmSQ8+Uz+z3v1t5bfvltWra+/LRGpeUi6Z3fAurChLvhMGwN7Nmg7JuXXKtltfek8QUl0m2/fs1U5bqHk7FzaxhK39hq7E8D3XFVI+2J2+3ZGaFpWSe57x+YSQsf3LPtZUp3Od/5m20/V6PbZ+g7PB7ORxDYc0GztrHmeq6Pf1z6annXUWbX8roSm8ZUlYO9hUYn0Bx98EC984Qvd/xdffDEA4JxzzsFll12Gb33rWwCA5zznObH7fvjDH+IFL3gBAOB//+//je7ubrz2ta9FtVrFySefjOuuu27GyxmwbyKbzaJcLqO7u9spAaanp1GpVNwp8pOTk2GxHhCwBLA7jq0wUVg8BFu9e1iqfXexyMtisYhSqYR2u43JyUk0Go1ZF39LAUu1HZc7Qr0uPQRbvXyxlOy1jywjlExkCBEfiUhVKK/XEBh8hhKvQJyQ07Ae+p0qrEloacgPXpukHFfVNK9l2AotE0OCqI1TBXg2m51BmvPa7u5uZyuVEGZ4CCX4qBjWukun0y7kjq8d+Bymw/KXSiWkUimnSI6i+CGaWgdJxC//tjsRkuKb+2KIsw3b7TYajQa6urq8saVV2cyyan/SdvBBw6Go0t6GNrF51z5sn5kU61zvsaplLZe2D8usymgbK96S+0yX5eI1BN8D3b2h+dUQRBoiRRXkPmdP0i4Ln11gCBUbfz7pfWPdqGJdD/ltNpve/mbbkeVn3nz51fvnMzdVdT3zx10P3MWg6VGBr+ODhjKaDcFWLy4WlUh/wQte0LER59LA+Xwen/70p/HpT396IbMWsEyQyWTQ19eHfD6P/v5+DAwMoNVqYcuWLahUKqhUKqhWq0t+gR4QEBCwVBFs9b6HxVLJp1IpFAoFDA4OzthmHOz0/gGfAycs6AICFgZL0V7bWM16YKBP4QsgRjrbWMpaFp8TVgm/TCbjVR6TIGPYBRLJmrb9bYku5tN+roSgkn9KkDabzVg6rA+tL4bVAHaGK+H9JIaTVMmsZw0vY6F5z2QySKfTyGazKJVKTqBGIn9qasoRgtVqNUbQ2jrT/y1hqSpcu0PBF/4G2BmahOXm39aBwnoEdrR1q9WaEavdEv3Mg4YDsbGxffXGZzDvti46qcz5mY2jzX5h+54NB2ND9/jeIb3GtztC86jkvN1loSFgtJx0uihYd0kxv1VVb9te68KWI6kO0+m0OwzUhlrRkDdJ+WG6vl0T+n+nPPjA9256ehq1Ws2FDGo0GjOuoxPFhmraH0RG+wKW/GGjAQEWXIjncjn09fVh/fr1KBaL6O3tRV9fH1qtForFIiqVCkZGRtxAVq/XZwxiAQsL33Ym/R2wfyN4zgMC9i9wMVMsFrFixQpks1n09PSgp6cHrVYL+XweU1NTqFarGB0djcUoBcJ7vyfgU2J1UmctNEKbLn0EWx2wUPCRUEpsKdGlMbetstSGQvD1USX/NMzKbI47JfU0X0mwa5ukUBdJ74KqfDvlQaEkoy/evNaHT1Grim/fc/P5vIsbzzA/hUIBhUIB7XYblUoFjUYD1WoVqVTKqX/VEeFzbCTVVZIy3RK/eo+qz5kGv09ad6qSmp9reB+bJy3DXB1SSQ4dH2xoF7uLgKS13S1BklvjbyfZcj0cU4ll+3u2Pp6kLvftoODvTup0Jf+TYA9WteFPkvKp+VXC39c3OsG2vQ3X0gl6TVLseSXwbRtou801nEyw1YuLQKQHLDtks1k87WlPw+rVq3HQQQfh+OOPx+DgoDs1Xj3n//Vf/4Uf/ehHGBkZwe9//3ts3rw5DBwJ2J2FtBoEGjCd8PgOxQnY/xAMfsBiYbHCmMwHqi7a03ndG3WhTu/DDz8cZ5xxBlavXo2JiQmMj4/H1DqPPfYYHnzwQYyPjzvHt25nD1gYcMux2mVVpM3FVu9N0j1gcRBsdcBCQMOWADMJLg2loWMRSSiqYTU0hQ0vomOWjzSkc9anGraEtg3NQXBsVCSNk74wGvZ/Gy/ZFz7Czlk0XAyV4Uqass4sAadqX6ZJURnrN5fLYeXKlVizZg2GhoZw6KGHolQquXX19PQ0RkdHMTU1he3bt2Pjxo2YmprC+Pg4xsfHnZ2mYpyhNnyEelKoDauUVtLYV28aisfuELCKdfYBDYmSVOdsZz1I1pLW1tGvinkLzb/Pec3f7MdU3Hd3dyOfz8fKm8lkUCgUXIgb5tWGCuFv7fNsa5s3nz3n/IDlV6cE085ms8hms7GdEgqfI0zbyjpD7HuoCvak91bzGUU74/drmCINeaRtZ8OpJPXXJEW7HR/0N98x7Yu640WvZxtoH2a4F1+9WgRbvbgIRHrAskM6nUZvby9Wr16NAw44AM94xjOwcuVKNxmLosidaA4Av/3tbwEA27dvX8xsL2nYidd8B1f1MnOSooZurp76gH0bweAHLAZ00roc+tFyyeds4OIgm81iaGgIRx55JA4++GBs2bIFTz75ZCysy/T0NH7zm9+g0Wi4rbrzjU0ZMDu4cFObrIu5UN8BQLDVAQsDVRcD8TjnhJJ5lmQjSIIq0a3XWWJTyWn9zrfWsWpW5ltVqFYZ6lOoqnAo6Xn2uTZvncZfq0JWWEW8hpjpVAb9XSqV0N/fjxUrVuDAAw9EuVx2ZOn09DSKxSKmpqaQTqexdetWRFGEWq3mQlhoWnb3t64DGWpGQ90klUdV+D6nupLp/F+f6SOBlRhVpbq9z4ac0x0Oep0tn5ahk5Jay2mfrWFcSMqS49CY2r76Yz65Ftdya56S+qX2Cy2PpkVSXOuE76Zv/LcOId7jg74bnZTgvnec5dK4652Q9P1sNsxXh9pn6eTw9Vf92z7f7hYIivSlj0CkBywrpFI7DmZZu3YtnvGMZ2DNmjXOO+vbHtPf349DDz0U/f39GBkZwaOPPppouPcXqPezWCwik8mgu7sbmUzGTeRoyKemppy32U6MVMWWy+WQz+fdpEaNPB0bVBj6DgMJCAgI2FPgZHy5TBqXSz5nQ3d3N1auXIlVq1ZhaGgIExMT2Lp1K4aHhzE+Pg4Abuv4wMAADj74YJTLZfz+979HpVIJpK6AtrZUKmFgYADpdBrj4+OoVCoxW+vb3qwLblVoUS3a1dXl/p6cnHRpJmFf6Z8BAQF7Fs1mM0aaU2nLkCA27IYqrJW0s4cSEkrA6zjI++di97lescSnLwQJx1hLiPF6pqEq+SRCzxLZOk/RcZxrMhLGfH4nQtQS9MynJY7T6TTy+byzwatXr8bg4CB6enpQKpViZeYar7e3F0NDQ8hms6jVahgdHZ3xfBKcJMup9NZyWRW3zacSokqsJrWnkpBKJut6U9X5vvqy+UiqX36u+WS67IuFQgH9/f1Ip3cc+NrT0xOzxa1Wyx0Yq+VjGnRiMH9cpxeLRaTTaXf+m+1HWr88yN0XH56wTnXfvEvrgu3pqxvtu/zbvq+dyGVb/z6Hmt1dou88217fRd19oG2W5FCz9WR3d/CzpPdOiX11JCYp2OdClgcsXQQiPWDZgMYqn8/jsMMOw4YNG1ysVT1MJZVKOXJ45cqVeM5znoOxsTE88cQT+NnPfrZ4BVgi4PawXC6H1atXo6enB/l8Hj09PUilUo44r1ar2Lx5M6rVKqrVqtvipelks1l0dXWhXC6jt7fXGX89rT6KInfwa6vVQqVSCUT6forgOQ/YU5htwbwc+s/uvB9LEZlMBk972tNw2GGHoa+vDyMjIy4W+ujoKDKZDEqlEkqlElatWoVnPetZGB8fR71exxNPPBHCuvz/Qcd3V1cXVq5ciWc961no7u7Gxo0b8cQTT2B6etrtwtNFpYZM4EKxq6sLmUzGzaVos4vFIgBg69atmJycDPW+nyPY6oCFQLVadSIdEoStVitGXivJpDGClRxnGBMfCUb1sCUMSfgpsebrmxr6wXfAnxLszIdeq2Q+leAaNsv3TFU7WxUwv/ep1hW+vKpC1xLUJKQV2WzWkeNr1qzBwQcfjL6+PgwODiKfz6NWq6FWqwEAisUiisUi2u0d8dLL5bJziGv+tJ30kFXmi+1J5S77Aw/RZDk07A9JZ5/C3NdWbG8+R/uMz/Fh01KHhQ3t4tthQTtKIpd1umrVKnR3d7t6bDabGBsbQ71eR61Wc0S3ErBsV8aop/2fnp52cybWD++36nEAiSFXmGd9/9ShoYpxW3dJoUbU0WQdJkByX9V7bb1aBT3TZ9qaJyXX+T7re6/p290vym0k2S7Nf9JYkRQKyOe48ZVfMVt+FMFWLy4CkR6wbKCDEk8Vz+Vy3lhrvJ4xxprNppvM7e/ghCWbzbrDZagoVyIdAPL5PKIocpMRHbBpqOglz+VyTtnGCTAnUJlMxjk7rLojYP9BMPgBAfsPuFupVCq57eGM7WrJFNp1Omf3NafCrkAVVSS/GbOWNpyLRi4uGRqH91vygDabSj+7XZzpLacdHAELj2CrAxYKStipAl3Vqr4QEhyHlPzyKTh9ZJntv3Ppk0nEliX1rLrUl4ZCr/eRtr7r9Tf/1jLNlo4l5zme23FdnbRqU1QVbuuBaz4S3za0hlW8a/k1X1omnyo9Sa1rbZott4J9bba1v83nXJTCtl+QY6AN1fpUgjibzTpbre1B4l7bhP+zrrPZrPtbHeU8R8D2eVuvPgW5/d+nztcyJ/V9wH+wry/92dT+s93PvGg+9Uf7bqf5jK0vOw75xhr7nTqukuouqc5s+nZnwFx2ZQZbvbgIRHrAsoJvu85s16sx2p/BehsYGMCKFSuQy+WwYsUKFItFN4kCdhoTqtUajQaeeuoppwhoNptotVrIZDIuhl5vby/K5bKbYKlx19PHG42GUxXQexuw/yAY/IA9hdA/lh7S6TSKxSL6+vqco5WfU71Vr9cxMTHhdi1VKhXU6/U5P0MXSftSH0ilUujp6XF2tVgsIpvNolwuu/ibrN90Oo2enh50d3dj27Zt+P3vf++UUXSC87pyuYy+vj4AOxVr3d3d7v6xsTEUi0X3nd3urE7wfam+dwW7IghYLiKCYKsDFgKq5AbgwjtSdKMOPWDmwaEk3TTEhQXXeapW5RojiZBKWg92InJJXtq0LHFMpbWG07Lkbzqddmuh2cDy6bM0XAXHaVWcqyKb9WLzQ4KWgip9hirANQ+WYG80Gi4UmFUlA3DtTDukoUOBuPKe6SohrApnrY/ZDtLUXVk+noB9g+3JfGrdse9wDWvFZOl02q2T+/r6UC6XY4RtuVxGqVSKKZfZ36enp7F9+3bUajVHoPM6EvE8qF3rvLu7G7lcLiZ6a7VamJycdOp0X0x5bQ9tJ7tzwfZ3n1Kf9cR6t23k69P6He+xbW0dRzoWJDm3AMREknRe6D2+8EAA3Luh4kH+tuFhfLsZCPIaeq0ekjubLdW+zvLq+zEbgq1eXAQiPWBZwg5uC3Xtvg4uuFevXo1sNou+vj7k83nvtSTTadCGh4djk1Iu7jkJ43YzEiQAZhjCWq2GbDbriBLfYRwBAQEBAYuLhSD8UqkU8vk8ent7ZyxGuFBpNpsufFi1WkWtVottM57LM5YLOTlfMG5tJpNBb2+vc0ao3eTOMp4X0263sXnz5hhBwTAuTGdwcBDtdhsTExOOwCgUCm4Hnzo9lIjROVQqldqvQ7Ttqmp/X+2rAQE+sL9b0YzG+/apf5VUIjFFZbpv3LEiKxuuwd6rJKzvXewUjsGnwtZyJd0/m/BLr9Myat3wmWo/VdntW+dq2BtVTzOdfD7vnBrATvJa65D3qTCNZG6tVouF1tB8a5sobNv4SHRV0VulsI/Q9MVC99W7OqK1/ylhbfsty65OAj1nrFwuo7+/3+Wj3W679bE6Vui4AHYQsHQyqGOAxC93nulOb1W+1+t1FItFNBoNVKtVb3/Rurbf6/pc6yjJNrGutI9bBbpPBa95UAeXOqWsI0bv037gK4fGw7c7AHgd25XzGdv/2K76XrOcdt6jaU5PT6PZbKJWq8WcHHS6AUicz9ryangfrauApY1ApAcsK3CwGx8fx1NPPYVyuew86TrYcWCq1+vYvn07RkdHMTU1tdcXL+rZVs+4NWTWo6sGwjcB8W1dnC0fqvzgtrxOzgUaAwDOQAA7VWxqLJhPtoPdJqff+7YMBuwfCJ7zgID9B+32jliqw8PDyOVyTl3NxXtXV5cL0TYxMYFGo+GI9PlgIdXRulDSH6sass+ztp6kTbPZ3OV8ZDIZR3BzEUg7DviJGVVN6nxCFW8+ckQd5AyHZ2OshjF4J/Z1OxZsdcBCQMM8WgKLBJMeCOkLNWFJZaZpCTfAr6LV53KNogSdhmXguoXkJtGJBOe9mUwmprTtdI8lgK0zoRPxZr9PUg6zvLxenavMJwnzRqOByclJjI+PI4oi9PX1uefpbgGex1GtVjE1NYVGo+HqTdeUWg9se0vA2nJYm2thSUVdf/rQyfGi69BOO9y17+hn+gw+h+3vGztZ/2qHdT2clDdffVhVvHVe6O+kd8FXvzbkiiXI9Tq+Q75n83rfM1gWLftc+QDbV3Q3gr6rSbs8rPqc/dKmDexUvCunYUUbGp9enTHaH1nf6sTyvcc2NMx8bGiw1YuLQKQHLBtwoKlWq9i4cSOKxSLWrFmD3t5eFzNMjUe73cbw8DB+/vOfY3h4GJs2bdrrg4Ye7MUwKGoAqtUq6vU6Wq0Wpqam3PY3Dt5UhylINtAozGVroHq3S6USyuVyLJyLDzphLRQK6O3tdfFXm81m7GBRjZenigUaGH7PyRYX+rui6ApYvggGPyBgeWAh3rdms4nHHnsM7XYbg4ODOPzww93h1uVyGZlMBgMDAyiVSqhUKhgbG8NTTz01L6f3XOzfXKB2WbdR02arw7tWq81YnJPgzmQyLkwKiQkf8e57Pu0h7WZPTw9WrlwJAJicnES1WnVEN/PLhSHTp0quq6vLbTkGEHOeMzarKuqYRjabxeDgIOr1OprNZmyxmLTo3F+xK/WwXOou2OqAhQDXEMCOftFsNmOHIts1gIqM+DnDjKRSKTdeaWhIe7+GOOGYTSILiB+2yGdZO6KkONPzjX+6DlOlM8N+qNIVgNshxHQBuDWgHlaaRIwTPoW2qrv5o+nxwEslHVutFiqVCtrtNjZt2gQAGBoacuvEQqHgdjpNTEygXq9jZGQEW7ZswdjYGMbGxtBoNNyzcrlcjKzU9WyxWHTtxl3JlhRWp4r2B5aBpCmFaQx/4qsbkv4+klbV1ZZIZ57YphSO2RAtrD+WnQexKlmteWGfph2mo7zZbMbsvp5bokQ65yVaP0pIaz1qOe3f6rTyzZ+s6tqnjNZwTMoVaEgjfqd5p+NMnSBat/qe2jZV55AKFrQcnQj5drvtdj3yXDdtI4L1ybmfj0iv1WqYmpqKqdf1rBnWL/s7+4mGxbEk+q7OsYKtXlwEIj1gWYED09jYGLZt2+a2NdFA6dYrDpojIyMYHh7G5OTkXh80ODHgBIPbvHTSY7dWqcfWF+9LJ6NzVXVbRboasNnu4725XM7VsRoU/d/nPVdywioAAvYvBIMfELD/oN1uY3JyEsPDw8hkMs5u8VBRLmYYB3RXFekLAbVdurjjotfa6qTFojqtSVjPNx+6oGZ4tcnJSbfgUpWUD7T1uiBWu+wjYbjw52LPqs0Cib5/IdjqgIWAJZWUOOf/SUQ3wXtt3GIbagPwH6rItZbdkcNxT8d2VWrTBvgIf4Vvl7AlPbVsvrFVVelK6Or/SbZEFd6qNtZnJJGrJItVkZ7P59FoNNBoNJxt5nX1eh31eh1TU1OoVqsz4qj7FMaaH62TJBLXqpxVecy8s20o5LLtoddZxb62QZIaXZXE2l99ymTd7ZCUllWC67U2XJtVo7Mcvmf6VM62r/rU8bsD9lebju2fGrLH9km7g30u8yR9h5MU+53SIdFPpxyJcluGKIpi6du/mZdGowEAMWeMjUHPa+07n1S+XXXOB1u9eAhEesCyQ7PZxJNPPolms4nt27cjnU6jr68PhULBebzpOX/sscfwm9/8BqOjoxgdHd0rgwYNfDqdRm9vL/r6+tDd3e085zpw53I5N2Hp7u523nPeXyqVHPlOkATnASNzGXwXQk1mjQJ/6LSwk1md4KoqRO9Jqj9rtOwkgr99ntyAgICAgMVHu93GyMiIW6hTrV0sFlEsFgHsDBW2adMmPPLII5iYmNirTm/alnK5jN7e3hmEOndaNRoNtwgDdhJEvJZ2mQ7zTCaDarXqtV1JSFr8RlHknAw8EJRkfi6Xiy0IdUHH80p40LfGdk0i4xmznop0XTAn5d+mo3OFgICA/Rc6NlDZbdWtJLgsiay/+TfHJVW02rRIWGo4GV8YCRJm/J0U8kJJOqtWVsK1Xq+7tRt367Lcmi+WUwk4dXLacVNJUx/xxzrg7qHp6enYrl/mm8SzEsvMV61Ww8jIiLM1unu5t7cXrVbLCdK2b9+OLVu2ODKdZaCdt2tSJYhJhjJ/VDDzN4l2dV7wHiq+GdO9u7sbpVLJic3serHVajmFPHdSa/upo1zDqNI5wH7qO5iU5VIHENtZ29aqjgHEdnGr7dbnAYjtONf7bdtZx4F9H1g3luxV0ledSyyHihR970O73XbzoSTniJLpNg1Lous7b9f3Pj5AnSS+uQnT5c46nQOxjVQkYR1PdjzScUvToSjEOu9Yd6xT61SwebVjn5YhYOkiEOkByw6NRgP//d//jUcffRSDg4PYsmULSqUSBgcHMTg46BblExMTGB4exsaNG1GtVvfawZY6iRocHMTatWuRTqddiBcFDUC9Xkd3dzempqZcGun0joNBS6USgJ0Daj6fx+TkpIthStXb3li0qoHj5If5UOWFEu2cJNufpPagsdFJn51oAnDPZ/qBSF/6CJ7zgIC9AzupXwxw8T0yMoLt27ejUqkgm82iVCqhWCyiXq/j0Ucfxfbt291C10ck7Cmogm5gYADr1q2LLWY0Hnm1WkWj0UC9Xo9tz6dtIqnD8mWzWUxNTXVc6Ck6fc9FrW4lJnFB0l7bWxduVJczHFw6nXaHnekWfz6n2WyiUqnMWHh2gi5K1bEdHNzLF8FWBywElPBWFaeChJySlbzXXletVhFFO8JN8pwNHfuUDNf1iubHQok5n3rXqpo15AfXHxwnJycnnc1Q0pppME8MhaE2RMPV+Eg9EuQKdSbQ2ct6VIKX5bSxpPnT1dWFbdu2oVKpYPv27U6ZTjFYq9XC1q1bMTExgVqthtHRUed0Zf5I/Capp2lrSTIqkd7V1eWIbrWXrCN1anMXG4l0hnZRp3Z3d7cTm1FJX61WY32B9lp3OqizhvMRht1hXrRv6O45EtC6I8yS3gBiO/HoBNDxVmPZ67M1LdYh68/OmXS9rDvRleTXA2b1LBcq5PWgcR/Y3pqvpPlC0i4FH1FseQZLone6Xwluflev192BuGwvfUesM8Q6Vux7b9PJZrPOycM6Yxuyz+h7bp12Gqtdn5dUP0n1tSsItnr3EYj0gGUJTmKq1SrGx8dd/Kl0Oo1ms4mxsTFMTEygUqmgXq97J297CmrIGQ+chjVpaw+v1fhZVnHBAZWf6TazuQyG6r32GZuke4Cd8d30cFRVmfOH+bRkusYJ4/2sJy7ulZAgEUCCQCdgdhKhkzGdhFkDH7D4CAY/IGDvYrHfG9qMer3uFrW0CbVaDePj45iYmFi0/PkWaVpn9mAw2nLdmp1Kpdwin7+BnTYcQMz2zRVKNvgWV0rY6PVWpaYLO2sTVYUHwJHnNq+qKtUFZhRFM+KN6ud8ln2uVZwtdj8NiCPY6oCFghKQHEP5uSUALVkJ+MO0cDzzxVq3JBuJK7v+smunTjuHNE1V96pa3CppfQ5hXqdrL9+6UOshSdXrg60r62C15KBeS6V/V1cXpqamYvHeSUpPTU05ollV5EzDl1dfm6pam/lR22HT0fUwf2t51I5bMRbJbWvn7bpc21PzZW0Uy6NrTM23Oma0DuaqNFa771vLss9bEl37JgB3xgudD+pcT6VSjsifnp52Z5jp+l0dREqQ+96P2exFkhLbpmnLOxt4X9IuDp0/aT35iHhtN9aBvi/aP/Ud9vV3iyTuR5+9qwi2enERiPSAZY16vY6tW7cim81i+/bt2LRpE9rttlNU0QOtJOyeRjabRV9fH7LZLAqFgiOGfeDnmUwG/f39KJVKTglGTycXo5yAcUsYsHNRmzRpI0hkTE9PY2pqChMTE86Lag9qIWioqWYbGxtDrVZzirxGo+FC6NA7q84DTnbb7R3xXSuVCprNprs/k8mgr68PXV1dTnnPEDicKJFIt2oOALFJBOPq1mo1VCoVN+mrVCoxwj1gcREMfsBSwVJQbO9JLJUy8Z2v1+sYHh6OndVBezRfqHpsd8rZ1dXl7E2r1cK2bdsA7Fw05vN5Z6OUsFElJBeupVIJhULBpQsAxWIRg4ODaDabTsk3m60moihy2+25eOOBZgMDA+ju7nZkBkmQRqOBSqWC8fHxmMJMn0nVIgAXbq5Wq2Hbtm1u7sFruLBmrPbu7m709fWhp6fH2fVms4menh4MDg6iq6vLkSxdXV0uLB3D0ig5oI4VHoK3VPpsQLDVAQuDer3uyDwA7m+rTrckJxAPYWFVnK1WCxMTE45gtUptG35DHYH8XJXiPkdfq9WKxUjXnT7MqxL6BMdjXqMhPfW5tCEkNhmyU4lS1k273Z6hilZ1t5ab31PBrtfbtagSkXrANLBjXToxMeF2jFUqFbfWsqIopqUOWl/+eJ1V6dLeqXCMinGeOUJbTZDstLHLWb9c+3OuwQNkrXDLJ0azTmm12fpZo9FAV1cXJicnXWhWJVk1vyo4Yzq6jqWqn7wFlfoqyGs2m86WVqtVdy3trR6QXi6XnROBdadO72KxiHw+78ISKUncarUwOjrqdsHRbnN+oO2tuwm1Hll2PTiV92j/V+cA+QRVfWu/VtKa75LuDlHnk3U4aJ64Q8ZC32/ea3fQa7/itSoWVIea5tO3y0Sv4/uS5OxKQrDVi4tApAcsazSbTYyPj8+YTOlAvLcJVBotbj30TV589xSLRTeZqFQqAOLb9tSLzomBqiI6KdPVQOoWN27x9kGVHzxcplarue1309PT7rAZGnFOBDnhUyKdi2a2SXd3N3p6epDNZl1Ynkwmg3K57LacKZFu1SJKkDOm69TUFJ566iln6Dmxmcv29ICAgP0LnRRoAQuLVqvl7NpCYCHajuosEunj4+MA4uoy2mVVM+lijAvCnp4eRzBT1c0wL3pI23xAYhyAW1QzTR5mSjKdjmqS0kqkK1TBRhs7OTnpFs1KRrBuSaTT4b9q1So0m02MjIygVqu5EHYMT1er1ZDNZtHb2+tC3ExMTLgFN8lzlpEkDhDexYCAfQkko1UlSyeg3SncaZ1EEo3rnna77UJnFYtFR9TZUCq8V9W2+ryk9aGPnJotbVUu6zqHP5om88L1nCW/Ge+cn9kxOYm8tuFDbd1qHVsSXEOrMF+sYwCxg8BZb5YYts+wql7+tnWopKU6A7i2p/CLtpohbLhG5bVKTloHiIZeoQ1X0tQ6U3wkutY/7VgqlYrF7uf3PtLXHj5rP6O4gOtozj9arRYymYzbycfftJvcDZfNZmO8A+uPc4ZMJuPW6jyrhmt5PcNM5xu023wm82kdDZYU1uezTe3Oda1Xrul944LWp+377A96vcbrV2gYH+2TKopgP9FY9exvvh0etvy2H/lg1e9J402YDy19BCI9YNlAB7pCoeDU2lQy+4h0xhW1qif1Xqpn3G5Zns8WI5vPXd2qo0oEGjCdmGiccR3A55p2tVrF6Oio817TYKpRYB5IflPhr44JrUeS/+o9VyKdkyMexgbsUMP19/e7BXepVIrFrPNtxdO/aaDb7bbzwHNy02w20d3djVwu52K+chKonveAvYvgOQ9Yagj9as+BajwN0QUgZiO4QFPQVndKV7fm7mobqlJLQftNW+WzsyR1GFZOw5hQvaSk9mzxRi3o9KZQgHZXCahqterS5+4wGwfWotlsYmpqyhE1tVrN2XkFd4fRFvOMFy7C0+kdZ7jk83l3aLruTKOKX+P2KtGTy+XQ39+PVquFbDbrFux0zvuUjAF7D3vbVn/uc5/DJz7xCWzatAnPfvazcdVVV+F5z3te4vV33303Lr74YvzqV7/CunXr8K53vQvnn39+7Jqbb74Z73//+/Ff//VfOPTQQ/GRj3wEr3rVq7zpXXHFFXjve9+Lt7/97bjqqqvmnf8AP5RctvN4kqK6dvORj7ON8ZzzM129l3/rb/t3EtRmWVh1KbBz3WgJQs2LHZvVjpFYV1WqvYfENElkhSr2lQz2Pd9H+PL5uVwO5XJ5hhOAtlpFahRJAZhhQ5iejQGtebVCM1Vyq2JZ25BrP9s+vnr3QeuD9/nKxvzoj698XHfSEa2ENL+n0xsAJiYmnJPcOr051+Aan+tVzocYu53OFe7w4JyKTger7CeJTjuuu9l9XEgURcjlcm4uQ8W5b8c5bTbbX99b7We+vsn60nByvnfEV/++eY7t1/Y7jRNvz1ewThX77trr9G+tD3tfp50gvnFqvgjr6sVFINIDlg1IjGYyGaxduxb9/f0oFosYGhpyqjIufGlopqamMDIygkajgS1btmDbtm1uIUmCWmOIcesXPZlUeM1nsOEkwHei/FxA8jyKIje51MGeB2eoQQVmHxA5YI+MjKBarSKfz6NWq7nFcLFYRDqdjnmet27diqmpKTdZ0u1NVKpzEkLlAsutBiKfzzuF/po1a1Aul5HP5x15rhMjrbNOChUlF9hu7XYbAwMDjoRgPW3evBmjo6OoVCrYunVrINMXCcHgBywV7E5f3BewN9T4XV1dGBwcRG9vb4yMLZfL6O3tRbvdxujoaMzGTk9PY8uWLdiyZcuMvKkajIu93dlxlsvlMDg4iEKhEFMdFYtFp/6yW3WpaAN22OKxsTFnb6ge5wKtUqlgbGzMEcrzIYajKMLY2Jg7vI55yufz7uDTkZERjI2NuXxQFdepThjjVheVWjZ1Iqxfvx4DAwNoNBqYnJxEu91GuVxGsVhEKpVCb28vUqkUqtUqJiYmEEURSqWSU+arnVVFKh0YK1asQDqddnOMWq2GLVu2YGxszIkf9vaOwoAd2Ju2+qabbsKFF16Iz33uc3juc5+Lz3/+8zj99NPx61//GgcffPCM6zdu3IiXvOQlOO+88/DVr34V//Iv/4ILLrgAK1euxGte8xoAwP3334+zzjoLH/rQh/CqV70Kt9xyC1772tfi3nvvxbHHHhtL74EHHsAXvvAFHH300btU3oBkKKmoik8A7sBIPZxRVeV0UmqsaAuu03itho6xxG4SrJKd45WGAAEQG8cUSizyOksSWoIdwIz1IcdkXquhKXzEuI+gZv7tYYdsC/7PsV9/GOozn8+jv7/fKZz17C4Azh60Wi1s3rw5tjuYz1BCnE5mWw7Wu+8AVbajKvHpRNC1dSeFs5Ka+qOhVNieFN1pfXNHAcVa5BcY6oNzGmCHU3vr1q3u+3a77XajpdNpTExMOKJ9amoKXV1dGB0dxcjIiHMmc/1N0n1qaiq2g0PV4VEUoVgsolwue3dys4753tEBbnd66w41zgW4Du/t7UVPT4+rTwrxJicnY/XI3WzqALdEvta1JY7Zf7Qfse/4dm3QceETJ1jCnu8Jn8+yq/NOd4toNAMdP5huUqheXxQE9lfriLE7HJRX2RWbG9bVi4tApAcsG9gtXlQxDwwMOBI8l8vFBsFcLhdb5HLrtm4VIpGr9wOIGVtg1wacuarSrcHXCZSdZHBitiuDr3qW6Ulm+jwkjQqyWq0WW+DqJEjzzXR1gsYJHj/jhDmbzaJcLqO/vx+5XM4p3nYVvns52eGEsNlsxsLKUAUDYF7ERsDuIxj8gIB9H7R73GHELdl0ePf19aG/v9/ZMS5kgB1j8ujoqIthaW2c2m0uVHZV0ZNKpWJnjvAzHsJFW6h54N9K1pA0VmJAF8W7srMN2Ln7TBeSdKDzmSTVGd5sNgexxmnVeRDT14VrqVRCX19fbNu3EjBcuOsBpUyXi1iN86uKL25b1wV3d3c3RkdHHXGjirmAvYu9aas/+clP4txzz8Ub3/hGAMBVV12F733ve7j66qtxxRVXzLj+mmuuwcEHH+yU48961rPw4IMP4u/+7u8ckX7VVVfhlFNOwaWXXgoAuPTSS3H33Xfjqquuwg033ODSqlQqeP3rX4//83/+Dz784Q/vSnEDOqBTP1KSTcce3XVqQy/45uwa/3g2W6B2JAlzXbclKW71WSS2aavmkiZ/c1ePpquK9CTngiUSNUY8QRuqQiYVPDEUCAlkLV+j0UA6nUa9Xnc7m4GdBLM6RPTAT65tdfezr058CnDbnjbWvd5riUqF2nLtd6qKtmp11pG2jT6PZD/DrNA+d3d3O6e1Krb5u1arufkBOQjNgzrydU2tzgPuzGdIFw1bQxJf20HrVXd68G8to0/Ip3XOvFJE53sHtC9YKNeiZw1o26gzq5N63ELv17Lo7nvf7hc7f7L9h/fZa9gHfHO9pPHEcj5zGR86pbOr9wbsHgKRHrCkoUZscHAQq1atQqFQwEEHHYQVK1Ygl8uhr69vxhY0Dmb1eh3FYtF5fAuFAmq1GjZv3oxKpYJ8Po+enh63qLMHb4yPjzuPsR6q2QlUcwNwZPFcQCX45OQkJiYmYoZUB37dKg4gFs9rLoMinQONRgOjo6OOTKdHnJMhbhe3ZIIPfD4NRrvddge1MQb6wMAAstks+vv73eRrVw3HXKDqlKGhIRSLRfT19TklPtUA1ikRsOcQDH5AwL4JXfTQWcrxvlQqub91+/H09LQbk4Gdi+Ao2rGtuF6vO8U65wJdXV0YGBhAT0+Pc5IzDNno6GhMiTcbGo0GhoeHnfOVCy4SuRqSxadQ4jZ4LpwajYZT4HHhyvBpu0Kk6wJMFe1cdE1OTjqSm9/PZ5xkPWlItv7+fgwMDDj1O59py0lSiwvwUqnkiPPR0VEXGqZUKjkVGwDnuLACAe4GWLduHdasWYOpqSl3AGqlUlnQ+PoBs2MhbDWFK0Qul5txuH2j0cBDDz2E97znPbHPTz31VNx3333e9O+//36ceuqpsc9OO+00XHvttWg2m8hkMrj//vtx0UUXzbjGhm15y1vegpe+9KV40YteFIj0PQSOE1aVqaRTs9mMKUW17+kOV5KeQJxM4w/HJh+hp33aKmR1l5Pe02nnkzqMlQjTsmqavjO79NDD2Qg4Sy5bp4Fer8p2Xst6oYObKnSGR+3r60OxWHTncHCXN+0zbTNFarSNFGDxzAyK0rq6ulAqlVAsFmNO50aj4XZPcY2ZBN6XyWRiJKc6W3RuoPepI5cqb60TJWi1jXX3FBXMarPYj7SfcWcEBWoMN8R+zTBsTLerq8vtuOJan2Ss9k0Nl8K8MQZ6b2+vOwxdHRq2H1lVtCWQbZ3aXe6sXwDuWQBi8xyK7niwuNajkv/6ztsdBPbd67SzX3dv2HNfdB5Jh4ZvB4bWcScluq8Okwh3+46qWME6xLQebJgZW65OCOvqxUUg0gOWNGjAurq6MDQ0hKc//ekolUo48MADsWLFCudFt4MQ0Wq1MDQ0hFar5bZBUZ3Mwy55yGWpVEKhUHAEfLPZRD6fj8Upmw+RHkU7tl7NBVSKc3sZt4Mrkc7FPScENLy6UJ/LoKgD9Pbt22d4elUdP1elnxpKTlR6enqwatUqlEolrFq1CqtWrZphwOaq/NgVcGKlxMjU1BT6+vpQr9excePGGdvRAgICAgLmD92NNDg4iEMOOcTZZ6qbV61a5QhyLiJVdUe7wK3lk5OT+O///m+3GOLOswMPPBBr1qyJxdTevHmzI2vnSig3Gg1s377dEclUzPPMDd0+TFJdtxzTOU/Hc71ed3bfbqNWJfh8wDqh2q1arWL79u0Adj++pt7DLfyrVq3C+vXrnfqdZSYBStJewflTFEUuhFqxWMTAwIATMnBxrbFclcii8n7NmjXo7e3F2NgYCoUCJicnsWXLFredPGD54KCDDor9/4EPfACXXXZZ7LNt27Zhenoaq1evjn2+evVqbN682Zvu5s2bvde3Wi1s27YNa9euTbxG07zxxhvx8MMP44EHHphv0QLmCV2f2DAISiRaR4uOESSw7LpBlaSq4FVFLZ9tSTwlCRWWXEwitLh+YvgNzTfT1THa7gbijiw7jlvFtu4csust/q3rYCV9dVeQrokymQx6e3sxODiIbDbrHNS0W+n0jvPIeOCl7jwql8vOLhcKBVSrVXR1dWFiYiJGpPf39zunN9u7Wq2iUqm4eUAS1NliHeRKcJLU9hGjGlpIiX/tS9o/WI9KplMtns1mY31N7wd2iuF4ptjU1JRzAJNUJxHe1dUVE+cp0ax9Ut+TKIrcDj8KE/r7+2cQsPquWQW2EunqgNI65XM5Z2FedBcDQ/TxEHI6y1UIqCI8FQHYd4nPItTZozvlmAdC3289n4WCQJZV53SEpqMHk7KPWxW7Omvo8GB9K9SB1WlcsU4h3ZnDPC1lLMaZJldffTWuvvpqPPLIIwCAZz/72fjbv/1bnH766e6aKIrwwQ9+EF/4whcwMjKCY489Fp/97Gfx7Gc/e2ErQBCI9IAlDRowqqOKxaLbekZDb7ddKXRLNLerRVGEnp4eNJtNFxOOA202m3VGi88mUT1X0pcTBnrpraJcoVub9DBPDTdDcsJ6ZnVCpip6a5Rmy6v+Zp6sgZ0rSC5wcsVTwbkF3OeZ3dNQg8YJXiqVckoM3XofFup7HqGOAwL2bXD8p422qi9dOOjB33o/1dCFQgH1et2pwzSuN6Fkhm9rbRIs8WLTJHQrtf7vUxDqLjrOW2wsT99iai555W8+Z3dtFucUnPvQdtt5iuZdF+H6fN6jZI69htdxTqZb3e01FFFQxVwsFt08aVfU/QHzx+7a6scffxy9vb3uf0uSKuyc0I4Jc7neft4pzccffxxvf/vbcfvttzuFZcDCY7Y25FiuxDZhlZ1WrQvMDHVid8Za0Y7+n5Q3HZ+5vkoSa821rBY233OFvdZ3b9JOXx3HrdDIdxClrq31R9tMd5fRqaznoejB4iy3EpNJdaN5pq2j6p82XuvO2lclu22MeqtiJ/HKXVcaj1tDgSbZHWvPtc4U8+kfWtfaVrTXnFv52tq+SzYvlnjXv9V54etbmi+mwzzRWUEHvJLmSjz7xmq2qy/fc6k3ay+S3gHrGKOjQkP76BxOn285EdaXfZatn6T32/ZHX7vMd364N7BYZ5oceOCB+NjHPob/8T/+BwDgy1/+Ms444wz89Kc/dUT5xz/+cXzyk5/Eddddh8MPPxwf/vCHccopp+C3v/0tyuXyHqmPQKQHLGlks1msWLECxWIRa9euxQEHHOBChnB7UydiVslobivv6+tDFEUYHx+P3a+hXeiV5GGc3d3dqFarmJqamjXPzWYT4+PjsdhzVOTZQ1todBhmhUqvFStWIJVKoa+vD4VCIRZ6RT3rjLHWaDQwPj7uDiihest6PTnA63YjCyXS57NNnnW9du1aDAwMoLe3FwcccAAKhYJTJzAfi4VMJoO+vj5Xrp6eHlQqFTzyyCMuzMtS9wQvZ4QtaAELhfkuQPcHJC2QfNgTdUeb0tPTg5UrVyKTybjtvs1mE2NjY25rMA/impycjB1UzcU51cztdhsrVqyY4ewdHh52SnHaLDrIK5UKqtVqx3yy/1BFxsUgsHNLN+0zF/D8jCp4VYQrqZDP5x35OzAwgHa77Q4OVZVcrVbrmE+f4lwPE9OwZPNtz+7ubgwNDaGnpweZTMbNcwqFAhqNhlNL0tlAtSXFDAxDx2s432Fs3XQ67Xb2UXXIOi6VSqjVau4geFWk1mo1VCoVR8ywLYaGhlCtVvHEE0/MCBkSsPBYCFvd29sbI9J9WLFiBbq6umaoz7du3TpDUU6sWbPGez37dKdrmOZDDz2ErVu34phjjnHfT09P45577sFnPvMZ1Ov13Tq/J2AHdO4PzAyRAOwkszqRq4QlnHSNZc9AIiGo4WLoMLXOPoUlZK16WcvhU6RqOkqq0c4owcv0WRfWeUBiljZORVL22eqgJnQnlIq8aKfK5bIL5aXObzpUfWSgqqS5szuXy7kxn2MHBWw8qyyTybiyc9e2treGK2V9M++1Wi1mY1gv/ExJW4rSlBwFEAvTQnKaPILuPmNdMo8qtmJabBPeo+HhuFZXIR933gGIreXVycDf/Izx6bu7u1Eulx2H0NfX55zMts/QUcHPrXNfCWJVunMeRXW27buqbNf49HznuJuhUCi4OcT27dtdmBvOAbQOVVFudxQkkej6PqoDQ50sPiEA+z2dEc1mMxYWjyGh2O+5AxLYudNARYoay342J5vvOx0ndBxkfudjf/f2unqxzjR5+ctfHkv3Ix/5CK6++mr8+Mc/xrOf/WxEUYSrrroK73vf+/DqV78awA6yffXq1fja176GN73pTfMu61wQiPSAJY2uri53sGhfX58j0KlInw00AFEUuYMtGSO7UCg4owHAHTDGwYweao3fOheQgE+nd8Qzr9VqbtJit5LReDOuWLVaRaFQQG9vrzuJu1QqxWLaAYhNRnjQWBTtiBfL7e5Jajk1hEkTJVUO0qB2GnDVe9/b24uVK1e6OLlLSe3DyRMNTy6Xw/j4OLZu3eoW5yFe+p5DINIDFgKL6Yxb6lhMBwNtDA+V5vZlOqa5/ZshWoCdu7G4eO7q6nKLsUwmg0aj4YhbLvx0y7Sqp2gjO5HTChITVsVuF+icC1DxTnutTmm1rdwGzt+6mGd6XORzsT5bPrWOuXDzEe1zBQmJgYEBR6BrTHfWLdNVVR937vEaYOcWcobyabfbztlAEp73ZrNZd1Dq1NSUW7xyIc95DAmPXC6HcrmMiYkJPPXUU/MqZ8CuYW/Z6mw2i2OOOQZ33HFHbBv3HXfcgTPOOMN7z/HHH49vf/vbsc9uv/12bNiwwY0rxx9/PO64445YnPTbb78dJ5xwAgDg5JNPxi9/+ctYGn/5l3+JZz7zmXj3u98dSPQFglXN2vESiCt9kwQ+vNeO03Rg6vjMNJX01GclrXn0t49c96naO5VVSTYlU1VhrXm2RKBPpZqkjk3Kk0LrhmtKnuNFRbpPiW7V3qpc5visu4x0Xa3rVr5TStKzvdWOqYNB24POLVXPax3pjmwNyUbCXneKMR3aK+tw4HNtSFVb33Z3Gvsj+4ISpiyrCgZsn/ZdS9Kc3EehUHD1anc1KKlrdxFYB5b2K1+McCW6fekoT8AdY0S9XnchbjS8izoq2J+Vp2Hd2jzq+2t3LFjVu96jOxO0btmfVEGvOylY78DOQ3Ttu21jyWv6s0G5F+v48o1LnbAQtnou55kAi3+mCTE9PY1/+qd/wuTkJI4//ngAO5Tvmzdvjj0rl8vhxBNPxH333ReI9ID9DxxcGdIln88nbj2eS1o0XNPT07GFIL2vHBh1wU6jMtthmxZKdI+PjzuVhE+Rbj37pVLJEen08KqnlOlzcsA6IZEO7FysUzmnhtD3wzoirApjtrJTfVcoFNDX14fe3l4XB26pgpNvVQ1OTk66w2UDAgKWJnRBGRDHYpHo3HXFCTgXXepIVfXT1NQU2u22+96Swro9WEncdDrt1G96vR7uNZfQZraeaC9brZZTUlEdTVKYinRVofX29s6ITUtiQWOt8ppcLoeenh4AO2wuVVGaJ13E07lPclkX4ruiRucikbaPDg9d3LMsar/1b1vHrH+q+Kz9VOVfo9FwB8xlMpnYOTK6gFU1ohIr3MlAAUHSdvuA5YOLL74YZ599NjZs2IDjjz8eX/jCF/DYY4+5GKqXXnopfv/73+P6668HAJx//vn4zGc+g4svvhjnnXce7r//flx77bVOuQYAb3/72/H85z8fV155Jc444wx885vfxJ133ol7770XAFAul3HkkUfG8lEqlTA0NDTj84DdB8dvkq9W4QzMjQT2feZTl2v6tCPWCWnzp45DJfz0t90B7SPRfGnr55aYttdZVa0qg5OeZYlnS7Jr/dFWc73JtZoSsxY+tTs/o4PAOletbVJVvR682mlntNpQXl+v12NrepbbZwd5L50GtDEk1GmXbP6mp6edjaQ90u+VnPe1K//XOrGELutQnSC075xf8PkMRcod9lYUx/RtX7HrepaD/ysxzfuZpu0Ttt/bdwbYGdYvnU672PoA3HzP9h86kjRUrZ3fW8GfnXvwh2WzZzDY81g4t+T3qVQq5lzh3E0dMyyrz8nlU84nOQrnCluvexpzOc8EWNwzTQDgl7/8JY4//ngXLeKWW27BEUcc4Z7D+2w6jz76aELJdx+BSA9YkuDAyQNQBgcH3cEWjLc9X+hgWiwW3d9TU1MzDB4XijwMhYq6uYID+8TEhNu2buOE63W5XA4rV65EoVBAuVzG0NCQixNL8t03geMA32g00NPT4w5VpeLrqaeechNIu0XLGlyreqPRUPVEEsrlMlavXo1SqYS1a9di5cqVM7zxSwk0nPw5+OCDMTQ05A41oxELKuiFRVCkBywUQn+YicWsE4Zh6+npQX9/v1uAlctl9PT0oF6vY2JiAq1WC1NTU2g0Gm5BPzg4iFqtFjtkm2Q6f1S51N3dPeMg71qt5tJV5ZgPPqKjVqu5BfrY2Jhb0NHucYGlKJfLOOSQQ2KOAz2vREPEaIi3VatWufkAy6wLbdrsYrGIvr6+GLmvjgRux55vO/Fg9ZUrV2LNmjVOZW9Vl5wz8Tn84UGxqrKnE39qasrtPKDaj4o61vPk5CTS6R0H2ZVKJRfejgR/Pp93czAbXmfFihXo6+vDyMgINm3aFIj0PYS9aavPOussDA8P4/LLL8emTZtw5JFH4tZbb8X69esBAJs2bcJjjz3mrj/kkENw66234qKLLsJnP/tZrFu3Dn//93/vtokDwAknnIAbb7wRf/M3f4P3v//9OPTQQ3HTTTe5eKsBewd0sAE7+gXHSAufkMe3NiF0bOaajZ9bxSqdkBxffGsfjmd6RpYla5UwU/JXScUkWLLVhhzRa5Sgs8/V0DC2XvQzS0RqfvP5PAYHB91hleVy2bWL7prWvKuTNZVKuTUxd16x3vg5nc0kJVX1zF1qqlpXYpPpWHW8Ct14sLgtP7Az/BjX3SR1+/v7Z+wQ4E51fhZFEarVqjuXhc+1O+hUwWz7NdvAKtzpROLcgO1kyWX+FAoF9Pf3I5fLubmVQp+vNtK37rZ5AmYeysp2JueghPpsRDrvpWqe7UtV8/DwcMyZBSAWkknz5asT1tv09PSM+Z0KCthvtA8qoc15Tr1ed/M0hh9iP9HdcfzNg2Jt/9H8WQ7FB8vj2OtmG0d8WAhbPZ/zTIC9f6YJ8YxnPAM/+9nPMDo6iptvvhnnnHMO7r77bkem70redhdLk+UKWFZI6qC7u6hX76xu5UrymM8FPjKZkxodbDmwWyMzX9DwW2La/nCiRjUft75zksL68JWH+eKhZiTfaaz1OUTSZ/zNgcenrvDlgR5zxkOnId6Tg9fugkZQVXGqzNjbHuH9AYFIDwhYXHQiJ3Y3XZKgNv5jKrXzYElgZkxcLsR1MWqdmaq8U5Uav1Ml2a6UTRcvSTuSuCizcTS5CEun07G5g3VY0wnAhRvnNZoHS4BovFjWs08Bxe9mK7uGntED1klq+KDOf+bTLoS0fTjn0XJwNyAXuyTXaWvtVn+rqNOFend3NyYnJ5f0/GK5Y2/b6gsuuAAXXHCB97vrrrtuxmcnnngiHn744Y5pnnnmmTjzzDPnnIe77rprztcGzB1WYW2xu7ZoNuJJiXINp+ITZKlaN2mtOduO6KRxOCmfVu3KNPR5zG8n4slXz0n553keJLq5Rk0i9jSkh3UoKOFtQ3BofWsYNQ2l4rNp2mbWxvgUyarIzmazMfvE/JG4JVh2FbixrCRGaR/Vkc5y+shAC+1PvnbwgXlRO832Uoe2tZE27U79jb+tIl3b2PIVWqZOux/IaeRyOXcuQFdXl5sTaR1aJ89sNl0daHZOwvt154B+x7/1R1X8nNdZZ5Xv/dS8qkp9trGsE8lr22uuHMRC2Oq5nGcCLN6ZJkQ2m3WHjW7YsAEPPPAAPvWpT+Hzn/881qxZA2CHMn3t2rVzyttCIBDpAbsE9cwxrppCvYHqeZ8rdEHFQdjnFZ1vmhw0uHCsVCrYunUrGo2G81xTNdVqtTA6OorR0VGnmNpV0Btvt3AVi0VHQA8MDKBcLrswNlrmTmWi0WIcWSry6vU6pqamvB7npMmYTgxmmyTQ28+DRtauXevity2nBW5XVxd6enqQzWZRrVYxNDTkYvDO5XDZgLkjEOkBAYsDkpCZTMapeuzW3t0BF35U/NldXFQF0tlLG0eFEO2rXahz6/XY2JhTNXGBqaqhkZER94w9oVKmzc7n81i9erWz01Sv2QUhlWLMHxVyjEebSu04THzNmjVoNBoYHh52h4QDcMo4XeySdKdynoQ/nfA8RIt16isDlehsAwDusPNms+lsuJIKNrydhqnh80lKkRxn+1G5x0Uq46ayjKw3fs+48Xwey99sNtHV1YUVK1a4PvHkk0/u1rwsIBnBVgcsJJTossSoqjCV1FVS1kKJT17jWx9akozP4/oK2KkIV5vIe4GdoWFIZtr8K9nIsvgEU8wvnaoA3JinKl1ey/WoEv+aJ13b2XpWoZjWhaahpLYlM/Ua7gjjvWp3CI4XVPtu377dhTMlAc28TUxMoFKpxOJxk0ug41jz7dvBoKS6jlVK4nLnms5LtB59jghgZ4gx7Yc9PT3Ovo6NjbndYSo8U/iIZ81fd3e3i9+uZWWeGeq1WCw6Z706JOyOCv1RWKeDhoLRH+aFYgiWS9OzpK8vD/xf19Xt9o6wqdzhr6F5bH2xbVhHVl2v75eGfuM8Q98te+adLTffez5HxxOtN54DwDwr0a750j6kn2k5fU4AJe2tgGQu2Ju2erHONOmUf+6GPOSQQ7BmzRrccccd+MM//EMAO+a2d999N6688sp5lXM+CER6wC6BqiYuLO1gx209u7NI10HLniC+q6BxIJE+OTmJ4eFh1Go1N5i2220Xz2t8fDy23Xx3YOuCdcgDRRlbnLHcZlM9sDzATs+6emGnpqYwOjrqiHUuyvVen/HXiUHSJAGAa/tMJoO+vj6sXr3aGfvlhK6uLufQqNVqGBwcRC6XcyEIAgICApY7SOIWCgU0m01MTk7OiFW6O+Dih0SDLpKjaGeYFi7mSOKS1NcFhqqiaAu3bduGzZs3o16vu51PSrpyzrEnSTzmZ926dc7hOj4+HlvYMnwL48bq9nX+cE7T09ODtWvXOsftxMRELP+M006SgbZVz0JhnXEnWrVa7UguFwoFDA0NxRbMzWYTIyMjqNVq6O/vd3M7zgEs4cH2IfGhhBjnBFzgcP5ARbpu22d6TIOLY265VpKMqsAVK1ZgYGAAk5OTy26uERCwv8GuY5KU2kqMcuyZjZTi2KE2TENmcFzhuk5JPx3HdH2phyPyWl370b5pOUjcKclniTabJz5fn6HqcCUElWQkuc4xdDZHos2nJT6tItmu9XSHl+7WBRDLv6ZXq9Xc2lN3f/P5lUrFnT3Ctmc7AHBzBU1b60H7CttK1cGchzCMmR5MynQsn8A0NC+0R7qTjI5qErc+5XcST2HFgXye9q9MJoNCoYB8Pu9i2FM4oAfTan5VKKfQ+tU8aD1aQp1zCdp9q+ruJLBjW/G9KpVKKBaLaLfbqFQqrl9wN6KPg9B3ku+DPtfHKen7T5GCPXhY56JMi/1Nn+MTl6hIwu621Lqxda/XJTlttO7UKZTkGFkKWIwzTQDgve99L04//XQcdNBBmJiYwI033oi77roLt912G4AdffLCCy/ERz/6URx22GE47LDD8NGPfhTFYhGve93r9lh9hFlowLxgjZVumVJYT7cdhOcCNcwaQ3R3YCcPzWYTtVrNEelc/DIGKBUKCz2Y0YDQWOgBF7vjMFDHA7eN20mkwk6cksrp+5xeWm5Tt9vtlxPUSBYKBeetthPmgN1DULkFBOxdqBpOt2GrWkft8+68nyS0VdnFMB+0TTbsR1JatNFczPFvDUNCG70Qju7ZoIs7XeQlKfn0M6u81MW/bn/mXInX684/XXj7VEtciCWpN5k+SQX+z781HJwlXHS7M9uZ8wydU2ldcVHOxaHG39Xn8xp+R8Wg3kPFfXd3dyzWfqlUAgB3jk3AwiHY6oCFAMc2q2TtBN81nQi8JFjSXclrH9Q+KjGpY5uPKLdrNh3zNUyGHdttmZRcpI3Rd0nzZu16J2e4HZuBnWFHOylg7fpHyT3lAvi3nmnRaDRQr9djNlLJaR/Jq4r9JKWz5kvth5ZNoTZO20KvtU4WbQvWtxKtWmZfvTNt2jHraFFexDqL6DRnWNckTkDrxTd/S+oPeo1t86R3K+l6VW9TJGHnD+zLPCNFd1z45g6+vM7GH7G+dY6r76kS3uqU0vs7OQb4dydh4UJA+3KSo8GHvW2rF+tMky1btuDss8/Gpk2b0NfXh6OPPhq33XYbTjnlFHfNu971LlSrVVxwwQUYGRnBsccei9tvvx3lcnlXqmdOCER6wJyhi7l8Po9isegWYJZIp0dYF4zqFZwNuuCs1WpOZcXwKLOFPElKk4szHkw2MTHhDvHSCQX/tqq6hYAuJPP5PHp7e2PxxXelbEwX2Bnzm9vRGOKFh6rqj2+yqluMOjkRcrkc1qxZg3K5jMHBQRcaZzmS6ay7UqmEAw44ANVqFVNTUxgeHt6tXRUBcYTFeUDA3gEXCiQ8uQOKv0lCcps17a2O//MBVc2NRsOpkmnn9N3lolTT58JKt+pyUc4DRKempty2YB78ZO3VnhojSHhTYcX45rlczimulPTV+uNCnARDs9l085h8Po+BgQHkcjkUCoVYHHFgx6FpbCc6FHi/kjhRtCMcXTqdjqkpie7ubpTLZdfudLIzvEtPTw8GBwdRr9ddGaMocuF5OM+LosjZRl3gt1otp5JnuzNvAJxKkaSCnqWSyWTQaDRc/nm/7prgHKPVauHJJ59EtVpFKpXCoYceilarhccffxxPPvlksBELiGCrAxYCutuX44V1pnJdprBEJ6HqUd5r79HdLkqA8TP+tqEpuGuLO4m4o0Ydfeo81PQsdEcPQ1HpQdhKhCtpy3G1p6fHOVlJUuo9DLei5KHvvdN1t67RKCKjyprto3Vny8e1kHIBbA+u1ScmJjA6Oopt27ahVqvF1OAavssqqLVs1nGh5LWPANd6UCcs7Q3rX523lgjXtDlnYp+0oTzUrtEWU7SmTmvt57TfqVTK2XANcaZpl8tllMvlGCegfd6qyLW8ej6Llo2Iosj1J+uQsfWqAgXrUNHreID49PQ0SqVS7Gw2AG6ew0NmKVQkx6J9VIlw3amosEpwfR7HGtaDpmnBfqX8lXJAfLblrfSd9dUL61yv812jsM40/j0Xgchi2OrFONPk2muvnTVfqVQKl112GS677LJZr10oBCI9YF7g4MCFFb2nSVts1ajM54XVgZoGZ3cJbSWQuahVknlvqNqA+ISBi3HWIQ3C7qavivRcLhc75Vo92Ul16VMhWHALOw0++8VyBkPtUBHAftuprgLmjrA4DwjY81A1CxdherAWFUKpVMotbFTNvCuOQ5KlwM642JlMJqZU0gWxqoP0ty5iNGSLKs+5AFzoMSEpTdaj2gXd+aXzBlVa8V4lD5RwJ5EdRZELp6LP5zZvEuWsWyU0VA2oiz9FOp12IeMYWoY/LFOhUHC7zDKZTGw3AOcUAJxjQ+O16hZ7XfTrYlNFFVbRr2QVEUWRC/HCeKvVahWVSgXDw8Po7+/HunXrkEqlsG3btt1t+gCDYKsDFgJ6NpR1/vHzJAKY0DVL0vUWVtHpC9XA71UBr8Qw79Md1pb0J+nnW/uo/aVDVYl0zYMSxRSice3mI3HpjLYqda0z/tY2IKnNMdvGGGfe9Le2AduN6ShJyTU1idV6ve7WtiyXJcqV4PSR5Ultq9fb+mS7cd7BdTXjMWu/43U2HRUiaP5sPHklszVfvE9DjAA7w7HRLmq906Zns9nYTm/lBazgz/ZTS/pbsD/Y+uR9OgfR/PneORUn0lYzZJ+2E50Z5I18YVQsOa/f2V0Xdp6mPFPSDg0dC/i9VbL7RBmaL213dWzpdTrv83E5c523sh/O5dpgqxcXgUgPmDPUwFhvtB0waDQ5MM+XkOQ1rVYLExMTSKfT7vBHhhPJZrNzzjsH+0ajgWq1iomJCYyNjTkCvZOazZZtIQYencjRUPq8l7uTti72dbCnobATTUINm2/bH9Nm/LlyuewOHVvuILHQbrdd3HQqN/aGkyUgICBgIeBbGOt3ul1WF4LzdXprmiRVqUxT4plE+/T0tDuoE4gTw7qQzmazmJqawuTkJEZHR10scl/5Fgqd0uQikGo+EsoM/wbElUpKVnBBbwkC1hXV2nYrP20PSWXWlRLQvgWjhR5cls1mHaFDJwqJD8bdZZiXarWKarXqdhik0ztCrJTL5Rg5RgLdLsDVgc/PqUrTRTYd/lon09PTjvhgXTC2KuPV9vX1IZVKxRbvAQEBSwf20MAkR+VcoYcKEiSD2+12TFntIyutEledhPyeYyxJYCrT+b0+W9W7SYSWktx6rz6fa2YbVsvCEql27Wrv0fKR8MxkMqhWqwB2qNR5uCUPtbT51LwqgZhK7Tw/g+G19JBxJX81PVW9cw2cRKCTLFZOgfeSX9A+RvulCnEL5SJov3XdbB0crDuCu7mUzFaHgtpm/VGHhs8hAsDxG7S5rAPdGa39TAl/5VuUa5mtf9g20ed0ghULWD6Bf9NeawSDVCrl5gfatr53S+tHxQL2+TaeuhWTJMHndGCausuwUx0kORrsd9YhZvNh5+27ywcF7HksvxgMAYsG611XRZGNHcrvrIGbD6Jox9bi7du3Y8uWLRgeHsb4+DgmJia8p13PBm4Pn5iYwPDwMLZs2eIOREk6cM2qBebiLZ8NOuhrfPSFItKT0lfDrso4VcrZH99EjWqJfD6P/v5+DA4OulAyyx3cdl4qlVAqldDb24uenp5wqNkCQVUtu/IzX3zuc5/DIYccgnw+j2OOOQY/+tGPOl5/991345hjjkE+n8fTn/50XHPNNTOuufnmm3HEEUcgl8vhiCOOwC233BL7/oorrsAf//Efo1wuY9WqVXjlK1+J3/72t7Fr3vCGN8QWI6lUCscdd9y8yxcQMBdYu8JFncYfV6WZKrvmCt09RtUwQ71wsTg+Po7R0VE0m013GBgVUiRjGZqsr68PuVwO27ZtwyOPPIJt27YtqjOTdq+7uxvVahWjo6OoVCou1Azzr/VHUrher8fIbNrkZrOJiYkJTE5OztgezvkPDyGdnJzE1NQUWq1W7EByHRuT2iyTyWBwcBCrVq1yzuF6vY5qtYrJyUkX4m5kZMQRLNPT0xgfH8fw8DAqlYorX6lUwtDQEHp7e5FOp90Br5xrcOHLOQSdDdwFODk5ibGxMVSrVbcrj6EC9SBchgjiwWesZy7Ky+UyVq9ejTVr1qBUKu3xBef+tqDd27Y6YN+EHpRoD9NMCrlAKCkIxEN+qgOW5LgSq7outYSohtnSUFnqVOaOW4bcUjLO9nWmqT8avkTTBeLEI9dprCPuJAZmEmuWnCU6EZ9K0LdaLberZ2xsDOPj4xgbG8PIyAjGxsYcCd5pR5oVYHG85s5uPexalcVKrmu76k4pJcBtW5Gkpx1gXnVnl9oRKro79S86FnioN22Vigp0TsT6ZZg3Opztzjmq8nleDPuIHlTK+tD1NMVbDO1CsaBdtyuJzv5iVezWIWD7oG1TFUjqe2XnF74xPpVKxXgMX/8rlUro6elBoVCIkem8huXQ/GpYI8LuEGE9Mk11KPh4Kd94Yn807zqfs/O7pPt1LNHxSscs/Yx9R8cNfddmQ7DVi4vlz3wFLAp83vVduWY2tNvt2MElVDPpxKfTYGAnO2romJZv0qBENI27NfS7Gst8T8PnESbsAGrrcLaB1pL0dnK83KGTJz2sdV8o21LA3jT4N910Ey688EK8733vw09/+lM873nPw+mnnx47BEWxceNGvOQlL8Hznvc8/PSnP8V73/tevO1tb8PNN9/srrn//vtx1lln4eyzz8bPf/5znH322Xjta1+Ln/zkJ+6au+++G295y1vw4x//GHfccQdarRZOPfVUTE5Oxp734he/GJs2bXI/t95667zKFxAwF9ixy5LRSTuTdgVc3FBJze2+unBRwkMVaxZqs5Ws9pWP47Y6jrngWSiosk/tpi5urXOMTgKqmjRerJZRtyxrW+j31qk9l/ZSRZYeXsa0lfThZ75Fq50DJAkKfHmyDhxgpiLRpsfnsU2BnaFrtJ3tDoCAhUNYnAcsBHxKX36e9P7PBl2/+HbNEp3S9o1tSfcq+Z9kq3x5snlNglUpd7KLTHO+UHKSRJ4S1CSmZ3t/1Tb5CGJVeNsxWXecJZGclrjU8vJ3Utupsl3jZtv7bZq6o0Htq7UrPjto85U0Htq61efYNbWS2rYf2TLbOUcnOzjXfqPPmavAz7adXq+RDPRvC1/fSnq/fTvxkvKY9J1vrpP0/XzFJba9kgj3JP5pV58VbPXeR5BZBswZOiGwhsc3yFnl8668sK1WC+Pj46hWq+7gLSqqVJ1kt4b5Bq/x8XFs374dY2NjeOqpp7Bt2zanBAN2DrbZbBa9vb3Ow9vT0xPbttxoNJwqfnJy0h3UNp/yzTbx2p1FYaeBm8ZJJ7MWNi+KVGrnQbP0yO9rRDP7UaFQQH9/v1PQBew+dsdwz/e+T37ykzj33HPxxje+EQBw1VVX4Xvf+x6uvvpqXHHFFTOuv+aaa3DwwQfjqquuAgA861nPwoMPPoi/+7u/c6eLX3XVVTjllFNw6aWXAgAuvfRS3H333bjqqqtwww03AABuu+22WLpf+tKXsGrVKjz00EN4/vOf7z7nYb0Bywd28bRUJ6FchOp2WACo1+uONM3n8+ju7nZEqh7suStlm56edodQkrQtFAro6+tziycqrGhPaY+oSGc+R0ZGUKvVMDY2hsnJSe8BmgBcqJGuri53IGUqlXKquHq9jrGxMS8Jn+RkTqpPbn3XAzvpLNDrtI/odu5CoYCBgQEXrqbRaDjnvJLDJCFUuaRtSOcC/2belXBnXhgCjwq33t5eF86FYP7K5TKmp6fdlvVUKoXe3l50d3ejUCg4UYNVWuqcK4qiGCGi7dxut92cCtgx/nGnHNsa2BkXXuuy0Wg4RyTDyWWzWTz11FNot9vuULt02n/Y6kJgKbzrSaTOnsDetNUB+z6UmM5kMjPGBY55eh4W+7tVg1vyiWsWhhhheI+k2NLsnxoyhNA1EZ3AOlYB8MbJttBxfK5rYF1b0+bY8to0NP86/uuuKC0L/65Wq+76RqMRO6vLJyDykY7tdtsp27lLa3JyEs1m080vWB7aEY7vPFeLcxUN6aXpsz9YclHtDvuLkucUwSksEc460Z316vTR9bnuYrCKc6tw9sWr13akXdSwrqx/5TOS1tVMS8lo1rNPQBBFO0PYaN3xfdR3Q88yYXtpDHSdk6hYslAoAIgfaGuvYbvw/Wf76vU2OgD7sO4IUFGD1qfv3dDna1sAcce+zrksr6U7E7TO+Gyt06R3XO9Jgr7Ltv46IdjqxUUg0gPmBQ4ESsjyb3ud3d4y2yDiQ6vVQqVScQtRbn2iseFvGhBCDReJgkqlgtHRUfczMjISMy46yevv73fby1esWBEj0qemprBlyxbUajW3aGeZ5zIoad4skb67JLrvGdaraydE1qtu/1bQ0cDtc50Oml3OIAnR29sLAF7vecDiYHx8PPa/xnUkGo0GHnroIbznPe+JfX7qqafivvvu86Z7//3349RTT419dtppp+Haa69Fs9lEJpPB/fffj4suumjGNSTffSBBNDg4GPv8rrvuwqpVq9Df348TTzwRH/nIR7Bq1arEdAIWH+qsXepnJuiCiraARKiqwHK5nFvQkLTeFZDQBHYe2FYqlVCv12PEqlVFK6HOxeDIyIgLKTI5OZlY17oAHRoawvr165FOpzEyMoKpqSl3rorvcC3792z2mwtAbp9mrHEls+1in3XOeu7t7XWLVdZLPp+PKfQYB1ydIHbxl0Tc2DJyC3pPT48TIaTT6RgRzuf19PQgiiIXViCVSrmY6lzEMt/NZnMGWa7zKCts0Hoiuc/7o2hnCBsAGBoaio3nJAHGx8eRzWaxcuVKlEolNJtNF5qv0Wi4beG69X1vQtWDexK2XwQELGVY56IeOKlENg9lpGPVkn28X0k1tQvqaPQp4IG4yAiY+S75VMZc8/B5dGImkdt2/FciUNfPvjFcHaIkem0oCruGU8JdP1dykrZJSfVarebIYZ6DMTAwgJ6enpjQyo4zdm05OTmJ7du3u3NRNPxYd3e3I8JJoPOMjYGBgVj+SKhq2FZdu/pIdLY3P+N9ep6JPkP7hkKdPKqaV8Gg9k2S6XoGiNa/b76i7UruRBXaGpolqd/6oByM1pO18/pe8Tpd11qOgHO1UqkUC3nDdICdOwB4Lfuind/Z959zJzsGMB9M3+5cY5raVqwrn5OAv217W/GiXq9zFbaX5k93FPKZev6Db/5h3ydbN5pPLdNcdgIELD72PQYsYI/Bt+gF4l40wsZf7TTpn23LDQ1ZvV5HpVLB9PQ0RkZGHJE+PT09I9wKfzSvJBEAOO94KpVyZLqqzXp7e1Eul9HX14f+/v6YYeBJ6pyI0APPw8DmU5caW4/1NN9tPRYa41zjcCV5Le1nsy3OND7+vjzI06myK/H9A/xYCM/5QQcdFPv8Ax/4AC677LLYZ4ynvHr16tjnq1evxubNm73pb9682Xt9q9XCtm3bsHbt2sRrktKMoggXX3wx/r//7//DkUce6T4//fTT8ad/+qdYv349Nm7ciPe///046aST8NBDD+0zB/fui9id/rtUQEK0Vqu5g9TsoZm7CxKuXV1dGB0dxebNmx1RPz097Q7UiqLILUhps1WVR6K8UCi4BSywc2GVyWTQ09Pjdo6RlC6Xyy40F5XpVIIn2btO7cqFfrVaRRRFTpHOBSd/+8hvks08oFQV7LxWF+qWON8d6ELMxu8FdjpbdMFtCSrOo6xKjItmVV0C8YP1lEgnYe/bpahOCN/i2qo/bTicbDaLnp4eN8cj2bUvYi79daGes7u2OiCgE3wqTa4vZoNVhibtrtXPlTAldMxTAkvfM46POi7yWjs2WnJOiWf9nnm3hCnzzHFUr9GxU9eM+jxbF7oepopZSUklLXmGGA+DtgIiWyeaD47hdIjw3mw2i66urtghmhTEMZ/p9M6zNvhs2nueJTIXqHOYh6oqEW/7CElse7+2OdtEv7N8hpLvFmxnn0pb28hHGuv3Selr3q0S3ldWdUxpLHVLequzyvZdvc46IHwOALUl6qCy6n9bF0rUc541F87B904BO+cO7PO+/Nm87wpsHn1p2brSd2G+vEqw1YuLQKQHzBk0UKlUyqmpaPCpYgLih45xS5A9HFQHYZ8KQA0VJxJjY2POOI6NjaGvrw/FYtEpmHSbNA/04rPa7XZs23p/fz+y2SzGx8fdRGBwcBDlchn9/f047LDD0N/fj97eXgwMDMQU6dVqFStXrkStVnMHbk1NTWF4eBgTExNzrkcAqNVqbnHP7cm6BX5XwC1ytVrNkQfcluXLy3xAlRsPTduXCeZ8Pu+Ub0GRvjBYCIP/+OOPu50CADoSz74JTadJStIESD+fT5p//dd/jV/84he49957Y5+fddZZ7u8jjzwSGzZswPr16/Gd73wHr371qxPzF7C48C2IlyqYV6tMB3bYMBK66sid64J1NtTrdYyOjjqFGrdxc7s3DyXjgpk2nsQD88FDMsvlsjsQUxX1vb29WL9+fczxnU6nMTAwAGDHQWhPf/rT0Wq18F//9V/4zW9+48hWJWK1bpLqkurnnp6eWCgCbicnUcCQb5zz0GE/Pj7u1HpRFDmyiI4M2mw6NBbCqcE6bbVamJiYcG1NRTkdxbpbwRLcQFwFr84Bqg651Z3XqcOD7UBnSavVcuFdaFfpXCGR0mq13A7Erq4u5/RJp9POCaRbq1esWIFSqYRKpeIU6nsbe2M82JuOvLA4D1goKEEMxMkitU10ijGcBENn2HsBzCAn1SFpQzQQlozkGMIxWclGTYNjEpW3lgAkwU4npT5TyUAd0zWshyqVeQ13imk5uK7m39PT07F42vo8Ip1Ou/Ukx3q1uxyra7Uafv/732NiYgL5fB79/f2xcyhoL9Rx2m63Y7vYGGZNQ9KwngqFgjvsure3F4ODgzFRFg/ebjabGB4eRnd3t7OJPvg4A/4wZCt3P6ljxlc3zCvLpLsOrILYOkZYp0rKW0e0Ooes48Oq0lW0p0Q1ldx0NPB+zpnUrhNKjrOcyreo/beEP//XnQvqyGF7s0/wtyWntf40bAvzxPrSOQPfC6rc2ce1jW07+oh8bT9yVQwfxLbT9lKBqNav3dlgnWcKrUd1tNnrNb9JTpa52uBgqxcXgUgPmBfU4JNg9CmTfYp0QgcPnzpAn8XPuMCih7qrqwuNRgPFYhHAzu3CXKhTYa6eVT1YlAs5quaUIOa2MyXWlUhnvNB6vY7x8XEUi0VH9M8Favg5WaTnnAPwXD2vvrRpsDjp4qn0CzFg0sgxZuC+rEjXWL/7cjn3JhbC4Pf29saIdB8Yjskqxbdu3TpDUU6sWbPGe313dzeGhoY6XuNL861vfSu+9a1v4Z577sGBBx7YMb9r167F+vXr8bvf/a7jdQGLj+Uy8VQbYifnNi65bmVdCOg2Zg1hwsU5F4U+hZjmJ5XaEWKLynIlX5gGbTTVbvyOdpTzkG3btrmYrbpYmutCRQ9OVdJZF0RdXV3ueZwfKWFer9fdGMg5he4g0/A2uwJVUupnAFx+bPl1gUhixqds0wWwlleV5D4nky7yuXimIEOVYmx7tj9JBY25znu0f5CkoXBiXww1txgIi/OAhYAdC3xQO5AkWrHKcyXQeY8d/yxByPHbKuGt8lbHIgrDSBZbIl2fr8plzUMn4s0SwrTbvId5Uyej2jVbZ2ojLbHoG9O17EpAk8i0cbxJaKoinWXmmlDV/bT3erYWw4xx1xhDwNC2VqtVZLPZWN3OFawbhl613AN/q+PBkqNqh2272WuTlMR2Da+ch4+sTRIVKk9iFfRapiTClrD5U4Kfdp/Xad9WAlz7t/I4ygNZ55XmTR0R5BI0z9Zhpor5+Si19f0l7E59VbirM4z53Z01v+/d0++AmST97ogSg61eXIQZZ4AXOnBpaAt96ZQotwognXiQ+NbFMw0oB3M1BjpJoKKdBpuLMXoVGU6FadP7zDiaNOBMn/HHGo2GI+NLpRLa7bZTn/f396Ovrw+9vb2OWFcinVvNarUaBgcHsXr1akxNTaFWq8WMrC4grUHm/7VaDZVKBVEUYXJyMjZZ6TQYW+hkqFqtYnJyEtVqFdVq1W0nX6gBc38K7cJy7svK+30R2WwWxxxzDO644w686lWvcp/fcccdOOOMM7z3HH/88fj2t78d++z222/Hhg0bHElz/PHH44477ojFSb/99ttxwgknuP+jKMJb3/pW3HLLLbjrrrtwyCGHzJrf4eFhPP7441i7du28yhkQoAswX6xZqwoC4jEiaYOZFpV5tPu0q3YhSOW0qpQsucxn0mE8MTHh4oDXajUXno0Lds4JSHjQaUsFHd9DLsRpp/v6+lwIGF6rYdZSqR0xwNeuXYtarYbR0VF3MCqJ19mUzDoHaTabjtQgKayLGS4CGVfd2knWEw8s08PLdodIt+pLjemuyjclfqamphBFkZuTJaXlU9Tp3EYPbFNVHQAnUmBauohkfSlYXyT0OS9SBZ7mU0UDC+UMCggIWBhw7FT1LGFJbXWa+VTfNl2bjj2osd1uO4W0hpgC4vZQx0e9X8c+PQ+CNo6OR+bBN0ZxvNdy0VbrGpg21DoZrRBK78lms87uad5V7W6VuVSiM23GJ6f6mEpwu65m+DSFEu6qSNYdWfl8HoVCAf39/ejp6Ykp0pV4LRQK7jm06dy5pmtcnduwjmj3Va3c1dXlzjDjWUq0NdoWnPMoJ8F0lePg7jHaGorUrDNFD+xU4pR1z/5k5w12va99jemqTUwi4a0I0cKS777rtL/4iHHNp6rELf+hnAhDtukOCZLaNn/qONC0VHBIp5YeEqtzW5s/S+bzGutIsHmx9Wrr1jfnsPXWiUOwiveA5YVApAd4wcGOah96h7nIo6FN8typ6kpP6u7t7XWLO2731oUm72M4GMZFbzQaLn4bF380KFu3bnUTh0wm44zvwMAACoWCC81CVRxjm1JVxtAqQ0NDWLVqFXp7ezE0NOSMfl9f3wxFOgBnWLmVm+Q8jTw9/PTyAzMHYhr5RqOBcrmM6elplMvlmBprLmQ1DT1jtpMoGB8fd3W2EAtMTjKo1N5XCWYacJILuk0rYNexNz3nF198Mc4++2xs2LABxx9/PL7whS/gsccew/nnnw8AuPTSS/H73/8e119/PQDg/PPPx2c+8xlcfPHFOO+883D//ffj2muvxQ033ODSfPvb347nP//5uPLKK3HGGWfgm9/8Ju68885Y6Ja3vOUt+NrXvoZvfvObKJfLTsHe19eHQqGASqWCyy67DK95zWuwdu1aPPLII3jve9+LFStWxEj/gIC5gGNyV1cXisUicrkc6vW62yZNdRgQD5nG31SE0Za32223OO/u7kZfXx96enpicwI6gJUMbrVaqFar7nlcSNDZTcd3KpXC6OioG18HBwfdoZalUilGTPD53NJMope7xgYGBjA0NITBwUFn+6Mowvj4+IxY5H19fTjkkENQrVbx6KOPot1uu3lJOp3G+Pi4W/z7QIcBw7CwrFwI6rZlJdHphCDBrOe1VCoVF7JucnLSzakWql/kcjl3OLuGjSMZwnAzPJSUW+xtPXCeBuwUSSixoUQCnwXs7G9s2yiKUKlUHDnC+Y09W0aJA51HKnQxzDbRXYcLjf3N/geVW8BCgO+xhYZJUaeuhuoj4aj3+95vdcxZUk/to+68sn1Uw6T4dgXrgZ6qqmVZmK6S7Zo2oWIyPXQZQMwRqHGc1bmqhB/V4z09PY70pp3hGpLraI6j6XTa2WpVbk9PT7vPNP+MZ57P52MCNXWu0+76FP2cPxSLRaxevdqdQTY4OIh0Ou1CjzJvugOAIjqGTOO6Xw8QV8U/HQKKSqUSc3irSI19R/PMz1jvtNXq7OZv/nAuwfbi86zgzKqrlXjuBHIvTF+dOFbVrOS8jwD3pWsd0zpHnI07UJKZ80cl0u27q07xTCYz4xqmqU55Oizo9GHd8nsVu/nyyz6l9aj5AeD6hwpHNR3rnLBjiI4H6ggDks9v0O913Jiv/Qy2enGxqCzYPffcg5e//OVYt24dUqkUvvGNb8S+j6IIl112GdatW4dCoYAXvOAF+NWvfhW7pl6v461vfauLkfiKV7wCTzzxxF4sxb4FHcD0cJBCoeB+qHBS5ZH19nGQ13SoGGN6xWLRpUlDrc+xnzMN3RKuaiT1GOvBWjowqcFRY6YKMh2cdZDW/3W7mq0bm1deawlxVUiookrDsWj+fT+qCNR0SPDbLVkL1Uf2ZSW6wpbTV26dqLP/0BjvT3U1FyT147n+zAdnnXUWrrrqKlx++eV4znOeg3vuuQe33nor1q9fDwDYtGkTHnvsMXf9IYccgltvvRV33XUXnvOc5+BDH/oQ/v7v/x6vec1r3DUnnHACbrzxRnzpS1/C0Ucfjeuuuw433XQTjj32WHfN1VdfjbGxMbzgBS/A2rVr3c9NN90EYMdC6Je//CXOOOMMHH744TjnnHNw+OGH4/7770e5XN6d6t1jCLZ66UJtE8lkxq5U+6MqYfsuqeOQCjT7w/BpfIbab84T9Nl2N4/aK1V2a1xuXqOLQ82jb/Fkt/9apRY/owNff5hXksxJCi8F1Xx6uHiSTeZcSBfuvJ/2mbZ6IW20BfOhcx0AM/LGazU0T9K2YzsvAeLblpkWF6tKUPnqRkkYVQr6FvZJqv251J+vb8zlHv29P2Bv2uqAhcVSttf6DtvfHBt2Z1cOEA9X1Smd2ebnOk7qby0L07d2wze26Bohm83G1oi0QdZm2meok5Y2Wc8I49+atv7md3Z+oPGi1WHM9TTtlbXXWpdqf+2a2dpsu0ZS+83yca7BOYZdT+vztE0smav2VnfQ+WyYrXe937emVtuURLB26ndJinDtbz5b2CnNpDJZaJ6T5h/62Wy20j7PV7+2rTUsDJ+hz9G21XmEvptJ8zSbF85FeE/SrvpOY8JcxiVb93NxRMwlndmuC7Z6cbCoivTJyUn8wR/8Af7yL/8yRlYQH//4x/HJT34S1113HQ4//HB8+MMfximnnILf/va3jnC48MIL8e1vfxs33ngjhoaG8I53vAMve9nL8NBDD807ttb+Dm6z7urqQn9/P1auXOkUW/l8PrbAGhsbw/j4OBqNBrZv347JycnYooghUbLZLAYGBpxSjqonDe0CxOPd8Te9iENDQ045PjY2hlarhe3bt6NSqTgvtXql7UKLv3WLFK9V+Ay6fsZ06O1PpVJO7c7DxQqFQozEn5iYwOjoqDtAhduomRaVX9PT09i6dSsqlQp6e3vdNnYq9exClOUiEcFt881mE9u3b8e2bducin+h4qPbutpfkFRWdTpREaJKTIbUoaohGKy97zm/4IILcMEFF3i/u+6662Z8duKJJ+Lhhx/umOaZZ56JM888M/H72fJZKBTwve99r+M1Sw3BVi9NUMHX09MTO5iz2WxiaGgo5oylbZicnIylwQV5d3c3yuVy7MCwdDqNUqk0Qw2cz+fdgZ669VkPtKRze3h4eEbIFEu+cmHsWxyPjY0hinaojgcHB536i7vi6DynwglA7LBu2nyGY+vu7saBBx7o5hUMp8I867xAQ7MRjUYDmzdvxsjICEqlkju4nKR4tVrF8PCwC/3GAzO5CJ+amsJTTz3lDgOvVCouHwuJKNqx44070gYGBlz9UK1PZ0K73Xa2Srf6M/a8kt8sh6oxdY6lyi9VWPKws4mJCYyMjKCnp8cd3KqHoZMw0bka61XndlRiplIp1/7WMWDHYvYRJXNYT7MdtBsU6fO7N2DxsBTtNfuETxXO9RjV0p3e49n6ls7XVWGsil57HbDTTnBnsYaqUqW5EqzcfaUhWqjO1uezLIVCAeVy2e20UrvKsZHrOK4fdB1KoVZ3d7dbG3L3mOZZ6886dfmscrnsdk1PTEy4MZ/jKdfVOp7THgI7Y8X7oCHTuB5SpbnWna6ZmLdsNou+vj60Wi1ks1m3A2xkZCS2M432yEdUMt+jo6Po7u52IVzJc6gq2jpKmF6tVsPY2JirDx6sSuW+VTf7yGjtA1o3qVRqhoPCRzhzh4Z1FvA3f7Qfahgl3qv/W3vN/hxFUSzkkFVhsxzaZvY8FU2bzgdVXKfTO0O78Gy46elpJ5DQMEG6+4JREXgQsRLuvnbQ/HBOAyAmdCOPo/dbUl/LZNtUr2M61qFClbuFFR1YqNNnNgRbvbhYVCL99NNPx+mnn+79LooiXHXVVXjf+96HV7/61QCAL3/5y1i9ejW+9rWv4U1vehPGxsZw7bXX4itf+Qpe9KIXAQC++tWv4qCDDsKdd96J0047ba+VZV8AB5ZsNov+/n6sXbsWmUwGPT09bnLARTOJccbjJpHOwb9UKmFwcBD5fB6rVq1CqVRyqjbdjtQJHBxoKCcnJ1EqldyiK4oit5D2Dfi+Aa0TfGo0nzKN6rZUKuWcBT09PY6g4MKPEwLGaZuYmHChXHRSyTodHx93sd+p5Gf+7TZIfQ4JgrGxMdRqNYyMjGBkZCS2NW4hsT+R6J2gSkf2bxppjQ2nW+EDApYjgq1eeqBdUmc3z/jQ80NoHxiOxRLpdAzncjkMDg6iVCrFyGwq21Q9mM/n3XXAjrGw0WhgbGzMHRbGkGzj4+Pe/NsFoyrCudjkApYhYRhnm7u2WEZu9dWFiyqWSMQz7AgXY7SbJGpJ9mre7NjdarUwMjKCVCqFFStWoK+vL0Yc8xDyqakpR6KTIKrVapiYmMBTTz2Fqakpt3tsT4BlnpqacvMVkkJU0pO0Jqmvu+Joz/L5vOtPXCgy1mk6nZ6x0GParN92e0eoIM512DdoKzkn1HA+nPtw/sM+ZQmsTrsRfPaW9lp3X+iCPyBgX8BStNeWDOe7rJ+RjFIb4FOB+2DVpnotxyu7FrJrULte5Pig9zJtjYtuxx9bJl0X9/b2ujV2uVyOkZgAnFOQpK06tSlGy2azbn2tIWJ8ZVey1bcW5L0aqoRjrDridacVY5t3EhlpHHDmw6rBtR30f66paDsYPpUOX13b0kazD+iz2u02KpWKs1PkONRxo+E9OGegnWPINYaYZTg7n3PCPl/rnvnkHEfnBCSaLZGu+dH+pH9bglvzr3WvpK3eY+uL5dHn+q5Xstl+x8+S6kmdU5yHcb7Gz5R4jqIo5iDSz5k2+5Pt38w7+7I60DkHYHln40l85bRiS2CnA4fPZX0pZuNQNM9zIdIDFhdLNkb6xo0bsXnzZpx66qnus1wuhxNPPBH33Xcf3vSmN+Ghhx5Cs9mMXbNu3ToceeSRuO+++xKNfb1ejy1ekhZ6+xvS6bRbkGtcTS546E3kQrpYLDovORdDJI7L5bJTt3EhPt9wFxz0OdCp553edMZO5UCo6rhareYmCByMObDrIV9UofFwTi4sqV5j/DYf+a1/k9RQxTu3olljYQdtLuYAuIUmF6F8PheAwE5DxcNhGBOXhIB6uBcavvzvq9CJNf8nqADRsAdKpGv77QmHxnJFcCjsWwi2eu+DC8Kuri6niqZ9tbG6bexXLmS4gC6VSiiVSrEQbCSFmYYe1kYilgo2XWhzAU2VO9PXOKO6ANe0VAHF72zMWNpqXaCqLaYSS+vA7nYDdo7rdBRw7sMdZRrXPWm8opN/YmLC2X06LZg2DzYlMaKENdP25W+hwK3xelCoPkcV+SSZ9V5VEepch2B720WjLixJVGjbs875bpMw4pyPZJouUpkfzrOoJtO+5FMEMp/MK3df0HnEvkMSj/PFgGCr90XsKXudZKt13QPExyArgPLtKrHo5CSz4LhmbYsiidDlWVq++T/XpEoQ6neaVxVBUVGuZy8BO3f1cEwiiU/yj7vEaKN0reEjGOcCriV1Xa2q7VqthmazGbMdSkj6wpExH6po17qlDdF0ktbTans5Z2Hd6DxF5x/anlRMs+35w7mGlkNV/EwjinbsVFIHc5KNUZKcz7Z9QR0ZOgfyXaMkOfPFe3QepvG8bRvo5z5BoK8MvndO86n8gy89+27yvde64XxSd4hover96kizYZY0Zj77AeGbUyWJI5McTD7oeGXryjpRmA99nj5L20fLrs6B+eQt2OrFw5Il0nlA2+rVq2Ofr169Go8++qi7hqFD7DW834crrrgCH/zgBxc4x8sbNNyDg4PusM2BgQG3KNZtbcBOw0aVWxRFyOVybtvaypUrsWLFCreNSrduz0fRrIs7TkRarRZyuRxWrFiB8fFxpFIpRz5zW9z4+LhbuCvB39W141CwSqWCer2O0dFRjI6OIooiDA8Pu8MvRkZGAOxUV+mgp4ZMyXhOdNrttlug0chzAcfJkV2gT0/vOECFi+9KpYKuri7n0NAy6OBKh0Cz2XSHquhhYQu9OGfZNVbcvgpVZFgDz/eFDiUebKuTBIb8mZycdAfT7e/GztbjfO8NWHoItnrvg1vDc7kcVq1ahYMOOgjp9I6Du6ampmJqXY2pyoV6sVjEihUrXPgwbhen2q1SqWBkZCRGjtPeqVotinZsR5+amkI+n3cqOR0H2+02yuWyC2lCMpwLIIY7YzgzKtF1QUG7ODw8jOnpaUcmFAqFmJqYcwuO26p014WwKsEGBgZihHatVsOWLVucAjpp3EmlUm4eQYdBoVBw93R1dWFiYsLNj6hsU7JWFXJJW9R3Fel0GsViEYODg24rtVWqcQec3easJAcXq7oFnOQ4hQKqnFKSm6BKn4vq3t5edHV1OWU/lWh8frPZjIXQo2NGy0YyCdh52LqSOz6nNw+f1zj5URShWCw60mTbtm1BnY5gq/dV7Cl7nWSraQ+A+NrJOkQVVulpCbHZYFW0GgbCpyDW/9Vxax3IzJtCCTlNW89L4gGdfX19GBwcjB1CqU5t2kWOZSThaZ97e3vR19fnxkYtlxKvSXWh9auhKLmuZkiVSqXiwqdpGuo8tyE9WOZUKoXx8XFs27bNCdR6enrQbDYxODjoDkOfnJyMOeLVUa4hZJhuLpdDf3+/G+N5vcZt9/Up5pEiM86TVKSnIgOWlyKo0dFRFxbERz7TBjEd7T8k85Uk5bO0z9gQIhrSg3aRv3noqc6DrOKb1yrp7yO9laDnO2odAipo1DrT720/43UUUipBrHWmZeX8gqLD7u7umNNJ3xFgR/gqzr/Iw3Bdzvmq1inbhz98dhKU/FZiWwUDHFt8pLw6V7Qefe8j68bu1pgrhxNs9eJiyRLphM8ozGVbRKdrLr30Ulx88cXu//HxcRx00EG7l9ElCF8ddHppaFCpTFMVuZ08kEQEELuHcdt40rca7N0thxosKpharRby+bxTZwPxw8AymYxTSSiRzsGX25g5SaASnSFjeL9OBPkMYGcMVU4qrAeSRoDqg05KC+uhpRFmWWcj0rng3dOKcfUg76tQo5lkpNi39VAcfkZSiLsb5uM82pcRDP6+i2Cr9x5IJNIOl0olRzb7lMG6YNTFuRKKtDG6CLOLVB0X6aylyppQp/v09DSKxSIAOIeybmPXtHQ3l8a0JBibVBX2qpTmohyAs8lKnvhUb7ro1N1jQOdFluap2WzGVNFsG6rd6BRgiBrbjj5l2kKB5ePcSd831j0X/NxBYNVaGiOXZSR86lHaQCUI1LlPJwvJb36mC3jWI59h+zEX43ahm+Ss5v0UdvCHwgeq5elcCQi2el/HQtvrJFutxJVVa2o8dB9JqdcCM2MTJ+XRrtNsCI+k+zUPlvRS0mwuY7V1YqsjW9fUHKN1PdFu7wxporuKSEzqGNupHjqB5dADvBmzvd1uo1AouB3dHLvpoAZ2zi9YR6oA584sit64c9y3e0xtsrXRfA5/U1TH+tQ2tSS4hdoHCsFUcOAj0knQ0i50sg1qo7hmt/2J+eD/luS2pK0vfVuWTvkAENvdpdd0Egjwt96nv33kvJaRYB9RUYRV/yc519g3dde3Qvke7U+WRGeeLDej+e30HiXVlZ1L2TSSnHesB82Hzq9tu87FlgZbvbhYskT6mjVrAOzwjK9du9Z9vnXrVudJX7NmDRqNBkZGRmKe861bt+KEE05ITJvGaF+DeuO4UNa4oySb6fHm4U26UFHCdrbtdfSk9/X1AYBTpDO+marBFhK61W16ehorVqxwsce5rZoLaVWEMz/T09PucCn+jqLIbUWs1Wool8uYmJhAb2+v85wTTJ8GgD+67dxODkge+AykBQmMVCrl8qcGX0kIlpPPm0v6uwM6HKamppzqfl8Fw7MkhWXRdrZEw2wL+/0VweDvewi2etegTmo9rIxjvFVlAzvfHy6qS6VS7PAlTYPXk3BvNpvo7e1Fu73zjBNd5FOBDOxUM0dR5FRPauN4HwB3TggXMPV63R3ATJKc+V+9erU7lHRsbAwAYod9shw6nvK9p0OSBHq1WkV3dzeefPJJFwdcSXvmk/Og8fFxjI6OujkPy8lFkCrhlBhIGnesAkvvozqK9l+VTArrPF9ItNttTExMIIp2HCzHHQwkEXSByfpV6PxNw/voTjslQ0jW02mgC0kSCwBcX+EC3ypGNVyBOm5I4NDBwp0UrD+NTWrbTOde/I79cnp62u2qUEeUvV9/7w8ItnrfxJ6y10m22r5P2jdUGGTJLR2Xk+Ajwmw6wM5QGkqs+0hzBQVXdIzSXnJ3jxLtvrGHY5p1aCeVgw5FhpShQIyHifOAUYY32VXYtYmu//WQbsZLp/KXdpmf014oOcl0GN+dinRidHTUrb9pz3V3s66hmTbJVCVcAcQcNECcjGQ5mQbbk2t5PkMds2qj2VZJO6/ZrkkEK3/7+iX7nhW9aTx6Fd212+0Yj8M69vUnX79I+oxltmp4Ww57X5Jt5ZzCtovtYwwBRW6D5WbZKUywDhLCF/qHokUAsfkvoe2nefOR3/o3+4pvLW+d/qwH9gv2Eb1W287Wq90Vwfqcy7sebPXiYskS6YcccgjWrFmDO+64A3/4h38IYMfAfvfdd+PKK68EABxzzDHIZDK444478NrXvhYAsGnTJvzbv/0bPv7xjy9a3hcL6fSOOJ80vENDQ7ETkJvNpjuQkgeB2UFOQ7lYz6F9FhdODGvBLeP0cKtRXkjQYUDVVxRFLqYpTx9nfDedBOjAyC1humAfGRlBpVLB+Pi4237c19eHsbGxWB1MT0/HtkTzhxMtDqjqKbWKvk7gxAzYGVqG5fZd6/t7T4GEAU9R35eJdDqbuB3fQkl07UdKoKhzIxisgH0RwVbPH1ShUS1MlRnVWww/RpLZbv0kacxQLPyO6RIk0ovFotu1BOzcUUY7TVutqtxyuQxg544zqqlJSuihjbR5XBj19fU50p6EZT6fd2eb/P73v3dneXDxPDU1hbGxsUSVExcbQDxe+hNPPIFt27Yhn8+7w0hpr3O5HHp7e9Hd3Y3t27fjqaeeAgBXb/osOk41NryO6748KbjLLQm+e3QhvdBot9sYGRnB2NgYVq1ahac97Wmx3Xt0yGQyGScq4E4qtinrnAILYCfBBOxU/nPOx+9Vpa9qUCrfSehzrqPEgBIErB8lNFTZrtd2CjfHz7Qt9aDasbGxGPnjw56w3z7Sz/dZQMBCYW/ba0tiK5QcVELd57jqREL7CEVNQ5+tilVNw35Gxy6dsdyl3dPT49T0tM0kBdXhp7HR1TmY9K6TfKNTXc8g6+vrc+FB6azgWGUVtkmEqC2f7spi/lhG7tLiXEDXyja0G8luYKfdVRW71s22bdtQr9eRy+UwMTEBYKfd1LFd479zXa32n+3Iutb1tbWpJKHpANDPlLjkLnamTdGdOp21zazKO6kf8RoVFWqb8MfubrfXqy3WEDK2vWdTVyddo/nWOZd1SNg+xnebbci5LO+184BGo+HOgCMPw/kcBSTsU/bdJv+gdQXEne9KpNt3zjpO1LFm21PnNOw3Oj5pfenanz/sQ8w371XnoeXfbLtQqBCwtLGoRHqlUsF//ud/uv83btyIn/3sZxgcHMTBBx+MCy+8EB/96Edx2GGH4bDDDsNHP/pRFItFvO51rwMA9PX14dxzz8U73vEODA0NYXBwEJdccgmOOuood9L4/gAaA6rQ+UNSW1VvjLvGkCg6GeAAaZXNNLY+qDJdSXg1eHsCapy46NMFoB74pdsHOZhrnHKWkwaMXnjeo4fCADsXkpxk6SGgQFz9pDHLO4UJScLeJsrnAlUZsjz74mDPfmInUoQqO3goj5Lntt0Dgud8uSLY6oUFF8jcWUUbQ1K7q6srtojV8daqdDW0iS42Vc2u15C8V3uoCwGr1gPiC6tOyjpCFUq6YMhmszH1MtPWcSGJSNdFr5bLhkvRBSiV0F1dXahWq7GDxkio+MiCfWWMssSCklYE21TV53bxqgtOhe6U07bxtaXtu3q/JYM0/7xOFetKjLM9NRyAD+rsoa2mfV8Mh/dSnzMFW718sa/Y6ySbQLul44ZvjapKd72G93cCx0Kub0kyMwQWSUBVw6rt9DkE1NapklXfNRJtfLaOr3NVIHd6/+yYrPnSeqKN1vWt7rBWBTKdoaxTnavoGM3dasovkEgnSdput70hcLRcNuTcfMG5kG0rJaeTyGRLuKoTZFfX9vxf52Kd1tVJcyTf3/Yd6iRU8BHX1i7PpYxaT0xX+71vF739Pilsn4oTtTxWwe4jx2396ThiYfOkfcPnLLHvj8LXr/Q5+nymlcS5+RBs9eJiUYn0Bx98EC984Qvd/4yvds455+C6667Du971LlSrVVxwwQUYGRnBsccei9tvv90ppQDgf//v/43u7m689rWvRbVaxcknn4zrrrtujxO5SwmlUgk9PT0oFAo48MADY95rHUza7TYGBwcxPT2N8fFxDA4Ool6vY8uWLdi+fXts61Mul0Oj0Yh55azHkgNAPp93i3MSAntrkdDV1eW2uw0MDLjtufQ+0zgD8UWkb9HEBfTk5CSefPJJF5uOsd51MKTB7+3tRW9vLzKZDPr7+10cLw68w8PD2L59u4sjyzwt18ErinYoDNjuum1/X3rnoijC1NQURkdH3SGu9ntVi5IE09AMExMTTuXXaYG/PyEY/OWJYKsXFrlcDgcffDBWrlzpHHG0p1TiDAwMOKV2pVJBs9nE6Oio2w20detWF3tU46/29PSgXq9jbGzMKdsrlQoAOKW5Ht44PT2NsbExdHV1oVwuI5/Po1arYXJyMmbzqTayC2vGQiWhkEql3IGd7XYbk5OTaDQayGaz6O3tdYt0deATvkW+/s9xmOMId9mRkLVxYzkup1I7dwkpcaux2EdGRjAxMREjCfaVMSdpoU2iolAooFwuOxWihq6jo0HjnpNA4Zk4dJxwUaqkN+ee6vBgH2KYAnW8UCmuz+zq6kKpVAKwk/hvt9vuUPmRkRGMj487csuC+WK/1F2T+uy92d5JRMlS6XPBVi9fLEV7bQ/40/7lW1vq5xxz1NFnVd6664Xp6NkQJKd4P5WtfI51NjJ0Wi6Xw7p169w6j3aT4UloQ+jU5W4fDRPGNagloFlO3cHDsZEOZy2DKt51DT4bcc6y+whAdUCyHqJoR2iZ6elpdxAzd3rznBJ1ZlqOQL+n85KHjY+NjcV2rCthShtSLBZRLpfdmRa8lmWZnJzE5OSks1WdCHW1F4SGUKGzQglVVQmrMlqdzCR3uaZXBbLmlW1jd1qxzzLNer2OKIpcGD62iVU1M21+brkM2mxtW67XkwjeJFgy2fYzTY9rXw37p+mwndmHGN6FZ8fwOUqSj4+Po1arufkty8f1t77Pqvi2gg/2R0tY61zFOrR0zsKxQq/ns5m+9gvtR0nzC617n2OQwpO5cAfBVi8uFpVIf8ELXjCrAbjssstw2WWXJV6Tz+fx6U9/Gp/+9Kf3QA6XPviy9fb2olQqYfXq1RgaGpqVyOYp4NVqFePj426g1AM2OXDoNiJgppdTCfQ9ERO9E7gYa7fbKJVKKJfLse3tPu9hEjhRYSxYpk9ygFCvMcObUJGvz2SsUIab4WRrOYOTQg150mnHwnIFDTW3oPnaTVUROiHj+zI5Oeniq++KamJfRDD4yxPBVi8suru7sWLFChx44IGo1+vOWafqK/5wCzTHIy5Mx8fH3XbsoaEhpNNp9PT0uINHx8bG3OK00Wi4w8SogidJSSdvJpNBX1+fOyBZt7ZzYWaJai4SqtWqW+x0dXW5RZIujvV7qtJ8izPA/677xg7a2LmAz89kMujp6XGLIy6WOF7rbrW9AZ8Se0/AV3+c32UyGTd3mpqacgeX644qu+jk3LNYLHoJbA29omQSF41UdzK0DLDTpnKRzOsZ/ojOmq6uLufoZgg2huVJsrXqeEmlUigUCo6c35Xdgvs6gq1evlhq9tqn4gX84SR83/lCMNCOADsVxgBiu52skprzczpRORbpOlHT4TkMAwMD6O/vj5GEHN+mp6fdwZccm1qtFqamptwamvlTglmfpeMk02XoUnVe+tazPke0tSlWgesjdfWH46yGflOOQNtEbblV7rLu+T9JdCWdNWwdCUfWl3WEMK+Tk5OufpPCcamjUm0X80ihoLVpti61jXSdy+81xI2P+1CHgs2DpsO61UNZ9XrLu+h3eg3JW+aN/R6Ik/Jar7ZMeg3/1nkAofNVdbDrO8i8cT7BA9j5o2e28DlsHwrROAdV2Fjq2gb2+bb+bf59anObF+5uVEFB0nul+WJadn5k59EE867Cz9kQbPXiYsnGSA+YHXxZC4UC+vv7HTk+FyJbFeuM/9bV1eUOEMnn8xgfH3ceeDWk6jXkYmoxVYU6eNKLzgkNB8P5Qg2NehsJ3QZttzZbbzY9qXrS+HIm1JWc4cEhe3snwp4C+zjLx8NGOxkbLtBVEaPvSFigBwQEAPHdYwCc6pv2yypXOB5RFZXP590hoFyM1Wo1d/YJJ/R6/gmhizBdaJNI5YKYE35dFKhaCNhJIvB6XWQwxjufx8M+uRhqtVrI5XJYtWoVGo0GxsfHZ4Rn2RPg/EBj0+v2cKoQGVZnb43be+MZ7BN0kBBcIE5PTzvihm1E8onhABkWhwtgVa9zQaxzG86b2Ne4QNRdWyS/1XlBpbvNv27t5rPZdwHEFuSzgfM6CibUKT4bFtrxEeYGAfsy+L7OJrZRAt2S6hxHlCzk5wSJcR3fNB0lpbk2I9Ftlb60BQy/pmSdjwjn+ldDfVKRzr85xlarVTduqR3V0CC6brXk3lzHC991Wj4dm7XOrCpW43Kz3nziIBs2xzqjeY+qwX3QNrIhbZg265n586ntNV86j9H2961ZKQj0pWnbgYS/79kUVM1HRGXJZLWhrLf57J6y8z/bf+08M8khYEl1bQ/lPTQt7WMsC22uzhdsXi1JrXWixDLTZB3TYcA8+fqnLZs6IXwOIN394asH69jQ9K2zZC7ciI3vrvUSsHQRiPRlCr64XV1d6O/vx/r1690BZHMBDxprNBoYHh7GxMSE2+I9MjLiFuJUKuXzebeQVs91d3c3+vr6HDGwGC+9OhR4sBjJf43BtSvwLa643YwHcFHpRk87jXW73UahUEBPT49bxLIOq9XqslxAkTSm4mJ8fBzd3d3uVPn/H3tfGmTrVV237jzf29PrN+pJQggwCCcOIpQwFiRVyAGXIwsUK3GFWDGmrBIQQCEYGbDlASvCLvJigwRUhDBFGCohKkyFgMQPZGPkxMjYYIQBg6Q39uvxzlPfIT+61un17T63+/bweni6u6qru+/9hvOdc76z91577X0OepkGAgdkiRaLxUBaF7BWmWpQCQim9I1A9KCMIucjebZKOBzG4cOH8ZznPMex0+bn5xGPx5FKpZyzxCwW/iY7jbqWoGapVEK73XZrFJnkY2NjgXsCq7XC6XgCQUZZKpVyxxJcpM7XNU7T0hkUbjQaDhxIJpNIpVLOSaJ9ks/n0Ww2HYM4m83ihS98Ier1On7wgx+4TUAv5TueSCQwNjaGWCzmUvbb7bZjtkWjUeTzecemv5yyiDqdlY3YbRCFDHwG+6PRaIAVx++BVfJAtVp1fcagTqvVQq1Wc8dZ1icJFwwYEcQqFosBRihL5GUyGbdXjTLjmY1BUCqVSrl9cThmw46bsuht8IriY3by2YYF3teT/azTRrp6JDshunmzivpJCuTZsiA8l++eMj/5m8CcZREruUWZ5toW2u4EvUkMy2azzvdVUpbObZaG4rOoXgTg1kAya/lOUVeyTAzbrOCjDWKzrQQylYylQD/FF2zQ6xK001rveg4DlCxxyue1m3xqkIREPt/Gzxqw1nYxgKugOfuSP/SrCaZqWRgGhy3rV0Fhjp+SFrTPFaDnfLPEAr0ubTMF/fWenGMkGVjRcbQBBbZTmfoMcAOr2RVWX2lAxs5/gtmDgGHqVc7jQYRMG5ji+8KAOr/jfGKwgvYsSx/V6/U1+4cxkGSDJ2y3BdJtBgP/Jral9ipFSY76vS8DUYF0fq/jpmMzaBz1HbUb8lrgnu3TcnY2MDhIRrp6b2UEpB9g4cubSCScQzEskKmKktFdBUlZI5U7ZgNrQUOr5Pcycsa+4KJORbYTi4S9Bhc5OoS6cZum4PE4GiG6GSqBlIMoHH+ytgfVJT2oQkNFDRZNvfSxQy4n0OVSykjhj+TZLPF4HLlcDv1+35X8simgPkYS1x8GbdWhYaktOuxk0Gl9amvU2xRl1V0KXlhgQ51RDRRq2q/dnJslPJTlzJIg6tReKqGtQjuHYICW4eLzKmttp5nHeylkpHOzN9p+dBaVha/kA4IfyjS3nyszjH1n7w2sAmla/k+dVR5LMMpmAuo89tU8VbvLim8M7TsxrDxbGGIjXT2SnRCbleljAOt7aG1s/rbvur2Wvv8+faWiACvb4ANwqSusjuY5+gzaRupfZSWToc4ya1quQgE+XkNLitr3yfbLIEa0FQXSfQxdbb/+TVCP/TJond2IRetjCRPstUC22iX2OC0fwjYNWssHtUXvYdui/TKIca5EBB6n4PiwLGR7TQXS2U7LIrfg67DrrS9YrN+tlyngE18/6Xuoz682repvDZD5Al/sFyuDsjTsfQetO2q/Kig+TF/ZdvjeNZ894suu0PHTecM+GAbTG+nqvZURkH5AhaAxwVm+cJtduEOhUGBDTdZq5eZkBIITiUQgIpfNZpHP5wGspofvtYNBw4cbmxG03oyiWU9oGKVSKUxNTSGZTGJsbAxTU1Ou7ipBcy5sykiPRqNu4zcNWhxEQL3f77tsBjIYuZHcXs+D7Qg3xWm320in0zh+/DiAVWOJxnC320WlUkG9XncgxUghbSwjhT+SSy0+I3q/CDN5lI0VCq3UKadDkc1mA86G/qZ+AVYdN2UOz8/Po1qtBoxxgpWsgc7yZ7p/gzowBEN5L9VR/Eyd20aj4cAG6jUFXS2Iomye7WSLDSPRaBSZTAaxWAwTExOYnJwMlKtjSRmtn0s2Npn1XOM5JgdRWq0WZmZmUCwWceTIERw6dAih0EqdcN1QixuLJpPJQMA8mUw6/c6/mYlGBme73Uavt1r7nOARmeYEhjj3lWmoWV/Ly8suQ1KDMwRzuClqrVbDhQsXXPbD9PT0GueYc5sbmm1WfHPTMuMuVxnp6pHshNjylz4SFv1XBddUFOwCVnWSAsm2JIKCkRQybzV4x3bZmuRaAkwBYi3jwmtSz5IVT1BYNzNeXl5GrVZzWTrFYtEB7mS98xwlalnWrga4tfSHD7jkOcru5XFav131sw1sx2IxlzHHzcZ9ov1PX1zXYR1HzTjgTzwedxlj+XzeZd8NIghSb0SjUdTrddRqNczPz69hwuu84b30M3ttG/ixQR1LSND+tf3MY9YjWun1u92VzThZFSCdTqNQKKy5Fm0tDYrrc6uO5W9bcojX8wHPOk8ssEvRZ9Vr8V3n35rBRRJFoVAI9LOWelH2uRLY2O96X22rZsHp/ND26fOpja3zUfuBY853TgkqGoTxMc+1rdo/PrHvLZnowxIuR7p6b2UEpB9QoeJnxNyywIaVUGh1wyi+jEwDpkOudZtouBw5ciRQO24/AKhU3lT2NGJ2ol00MOLxOLLZLA4fPoxsNouxsTFMTEy4zbCskUEWGIH0er2OhYUF1Ot1V+rloDrnBNJrtRrS6XQAkNnrubBV6XQ6bjf4TCaDEydOuJqtsVjMZWosLy/j/Pnz7n05qAGRkYzkchN11IH9ZSjSmaaTzDRwAuncLBRYdRRarZYrywEgUD5MHWoA7joqdGzT6bQD47lRNJ0vrtt0AmhbECAlwEpnTB2PZDLpWHZahkP7fxCQ7kup3UnR4AGBdNoJDBbQOSVwQiczlUq5EmxkEh7UNb7ZbOLChQuIRCIOpKA+46Ze8/Pz6Ha7ruwN5xh1YS6Xc+VvaAdq6jbBb5YsYJCFjC1mINCJ1frmzWYTzWbTBaU5j2l/6kaxmUwG8Xgcp0+fxszMDJrNprPJLNimgaidqMO/HYd1JCN5NorW1ub/lmlNPTDo3dJ3mUAZ9SDXCN8Ghxa4VaEO5t8aTGY7lagGBGsha/CYgFcksrLPWLfbdVk11IcsbcHNsZnJm0wm3SbfXDsTiQQymcwacFADDgQdtc0+38uyjK1dpFnmBD71ewajtRyNjpP+7esbBSu1RKYF06PRKMbHx90+MrlcLgBy87rUC2T0R6NRZ1NVKpVAAJX3t5ubKyN6UKaeii8gwDZZIFqxEg2A+K6tRD/ObQLpjUYDU1NTrh8sYM8+0PGw9pSyu7X0LIlfSp7wPSf7XwNIOh70f3ktnQOa2cF+5v44fKfUxuR7U6vVnC3A51H/WvvBB2AzWKblXjSgoH2upV80uGfXC8XBLEtc55vNTNFxsMEWu9ZZBr4G6Paj3H///fiDP/gDXLhwAS960Ytw6tQp/MzP/MzA4x977DHcdddd+O53v4tjx47hXe96F+64447AMZ///Ofxvve9Dz/60Y9wzTXX4P3vfz9uueUW9/29996L//W//hf+/u//HqlUCi9/+ctx33334fnPf7475vbbb8ef/MmfBK77spe9DH/5l3+5Q0++VkZA+gGWnTbqrXLUBcE6w5Y5sF+AUxtB3cl2aWo4AXs6dzTk7AJLY6zf7zvnkufRyNpL0Yi0Kk0gmGI5iN3BTcdoJPb7/U2VGNovonObbaeTH4lEHKux2WwiFou5+q2sp07DZORory+jyPlIdlP2w5wZpI90feX3NO5V1FHXTZ594IBl0QAIGP90RHXd1/8tUwdY6/DSLlDdr8wh/aHzrHVY6VjxWurM7dR4adAhlUohlUoFGHJ6HzrZyu5KJBKOubVfbBuKz3kHggCJrx/prHOD10QiERgPBaHVuQb89ULpHCvQY51RdbC1rq7alzr2GiBSxpfaH9S1usFtMpl0AShlH3IuNxoNx07j7/2wNuxnGenqkeykKICln1F8YCRFfRMLaHIdsv6LXl/9VZ6jTFQVBf15Dd7T51NafahtsPoQWFtvWdcprn8+m2Gj9X09UTB9GH1m7+HTOT7ff1CZCz4Lg+06vloilTpYS6ZaMJrXISjKGu5KKtR72CDCMH2nto4PXLWANu9j/ybYDSCwwTmDz9S5tg9JXCCJod/vr+mT9Z7D4jf6uWVd+2w6/V7fmUEgsL0vsLaGuYLR/E2sgAErxRiot+16Ye1SfU6+1zYAY20Jbatdl3zjrBvT+t4jzRTwvRe+vh203unzDFqjrOy2rv7c5z6Ht7/97bj//vvx0z/90/joRz+K17zmNXjyySdx8uTJNcc/9dRTeO1rX4s3velN+NSnPoW/+Iu/wJ133olDhw7h9a9/PQDg8ccfx2233Ybf/d3fxS233IKHH34Yv/iLv4ivf/3reNnLXgZgBYx/85vfjJe+9KXodDp4z3veg5tuuglPPvmks/8A4F/8i3+Bhx56yP3PPRUulYyA9AMqGt3djlOgzpVNieL3fJlVSahjvhUm/KUQG33VaOhOXDuTyaBQKCCfz2NqasqxBzOZjOsPXyRS2fGMHlerVdRqNfT7fcdM320Jh8NuYw7LgKDBw9q7ZGKrccHMBbLsZ2dnkUwmHavgoIgaE9Fo1G3WVygU3CaqqVTKbcTWaDTQbrcxOTmJ+fl5FItF/PCHP0S5XA6kzY1krYyc85FcaqGu2uv5ogFKMm+SyaRj45Blw03CQ6GQq3euTgcN9F6vh6WlJczNzWF5eRnNZnPgvaPRKNLpdIAVRECZG5zphlLsL7KTycxWh7Df7zvHhhs9AsF6sAQE9KdcLrvyX2ovcC2Ix+PIZDJOzwwaN+vIrTe+dDpzuRyOHTuGQqHg+ow2k4LmoVDIse1006p+v4+5ubmAs8n775UQOLZjw3aTPe+Tfr+P8+fPo91uI5lM4rnPfS6mp6ed095qtZDNZgNsSjLFCAA0m03H7ragD2utW5YfNxhTMIi2kQZwQqGV8gEkHRBcajQaqFQqgWdpNpsu7X16ehqTk5NrAgOc0+Pj41hcXEStVsPs7Kxjyu8122s/rFODZKSrR7ITQl/VllhQ4TvL95drrZZR4Rqs5RoUaGJgTd9/Kxos5DnaJpYx0c0i6RfwOAXiLUhOXU/d3mq1Au3VgKT2j65FCiZTR9myFOuBa4P8XQaLrZ+q12P/+IB0BRB9xCsfw1vHU1nvlHA4jHQ6jUQigWw2i0Kh4GwUC37RzlAgnRuwp1IplxXFUnMsoecDNtkeZXprsGTQJqE8FwgSFdRe0/bS1mP2G59J9Vq9XnfEBd67XC47G4bnMYuMtuAgcJYEN7aR7dTNbi0gbd83BZXZLgtO+46z16ad0Gq1HFg+NjaGsbGxNe3n3FtYWECpVEK9Xg/oapaOUyKGZjOo2LI9Oja6HumY8zu2RfEtW6aJ46vvhM244XrE7+26p4C/Xau0H/djaZcPfvCDeOMb34hf/dVfBQCcOnUKX/nKV/DAAw/g3nvvXXP8Rz7yEZw8eRKnTp0CAPzET/wEvvnNb+IP//APHZB+6tQpvPrVr8bdd98NALj77rvx2GOP4dSpU/jMZz4DAPjyl78cuO5DDz2E6elpPPHEE7jxxhvd54lEAkeOHNn0c21VRkD6ARZdSAZFIIe9znqlKazzo4rEt5jvpQyKEO/EdVkCR3+o8AcFEzQqTue30Wg4EMI6h7spXPwJirDuKZUmFQGZ5gRRVHk2m02Ew2HUajVUq1V0u13kcrk9e6atCp+L4xSJRFwpAALp7AumwzNlMBKJ4OzZs4EyACPxy8g5H8luyH6YKwowKsuKxrPWLieg2Gq1UKvVAmmvaoTX63UsLi5ueG/eU7OlCOLHYjG3ttNmiEajznkkAwpYrWNNkJwlYQA4QN4GkS0wQCCWbSDQwHVSAYONgMVhgGwFdbmPydjYGIrFokur134lkK6borImLNulmQN7PbeUyUVnToMtGwWSGPzOZrM4fvz4mvmodh7Zcbpu12o114+cl9wLhkAKSR60J7rdrjtHn4MlgSgcF2bs0bnmRrpajigcDjvQq1AoYHx8PFALlm0mkMXvisXivtrTZD/MKZ+MdPVIdlI0UwQIbkxJ4MpmaFkmKdcDLaNA4d88R/0UeyyPZ2kUZZwq81fJahbA9oHZqnv4zLbMmY/xqvpSiWpKDANW97FQ9vpGov3iA/TUT1bd4WP82nMU4LfrmGXk0obg51zrGThlSRsCx77sbmU0M7hCMlgmk3E2iS+YPAjfsBiGjrMGin3n2UAyx8kGVqirGJxXzIZlTNS2IbGx0Wg4IDmTyQyFZ+j1beBivZrgfCZtv37vK8mkv21QSQFrZoyEw2FHRNTrc55rJmQ4HMbCwoK7vq8MoPajTzSIovaRDUhZlj77jnON5Wgsw57zX8tMse2c7/p8eg+2Rz+zfT+sDt4JXV0ulwOf81200m638cQTT+Dd73534PObbroJ3/jGN7z3ePzxx3HTTTcFPvvZn/1ZPPjgg1heXkYsFsPjjz+Od7zjHWuOIfjuk1KpBACYmJgIfP61r30N09PTGBsbwytf+Uq8//3vx/T09MDrbFdGQPoBFX2ZyRbmJlrDlNVQJ4lRUTq8G52ninY7L/ClEG3Ldpj6KgqGsKwLgZFhGe800Pr91VQ0ghm7zXIjmMLNXdLptKv9rqn/ZEty81mC69Vq1bEhOf6ssZpOp10NUzqu+ynQoqIpltysL5lMIpfLuc1jWRdWmftkaxYKBbTbbbTbbWSz2UD0fT+9EyMZyUh2X9QgJpuGtaDpVHCd1PWCTnwikXDOIq8z7FrKe7JmtdaiLpVKATaW3ptrPHU8WchWzxGE0DYrK4iOLR0GOpvqDHEdJTg6jO0xzLoaCoXc2p1Op9FoNNx31uBmmxjEUJuGDhQztRqNhmPM75RtsZEoqJJKpRxjknVTFexgH9brdTfGquMsY6zb7TrbsdPpuH1AWLOUTK9UKhUACTg/GGhQRh/nC3+0pj6dZCVgWKYlhbapguDpdDpQJohjE4/HMT4+jsnJSXctfc5QKIR0Ou3O4zu3Hqtzt2RkJ4zk2SKDdJd9BxTU5W8NGPr8Wwv2cn2xTGpdFyy4xXsxcNhut90eJnpPux8Z1z2t58xAMUtz6Pdsh5KsKMwCov+lazXv5esv37X0eB/Q7etz3/mDggiWLWvboIETZf0S3NXyHizLogA99Y0y5BUg1nbRFmEmFf101YsW5Nf2aDCan+l84ve+/lMyAgly1HEkCTCoT6Bf+5I+JP1QnWvtdhvVahXtdjsQKLD3t2NJm9LiC/oO6FzSoLeOteIBqud99+QP578NYtO+yGazLujuA9Lr9XogW1Pr4vtE7z1IFIhXW4hin32Qra3z0xJHOH/4XPre+WwNbYMvcKHrym7IFVdcEfj/t37rt3DPPfesOY576Rw+fDjw+eHDhzEzM+O99szMjPf4TqeD+fl5HD16dOAxg67Z7/dx11134RWveAWuu+469/lrXvMa/Kt/9a9w5ZVX4qmnnsL73vc+/PN//s/xxBNPeAMDOyEjIP2AChV+t9tFtVrFwsICEokEJicn3WK+0fnc4KFSqWBhYcGbdjZIlBmwX5wBy1jYCaBfjTEy0lOplIvWaXr8ekLDIBRaSSFPpVLo9/suWr1b/RgKhRz7PJlM4sSJE84pJ+itipftqtVqjsl17ty5NTXBi8Uims2m6x8aMgTn96Mo2FQul9FqtXDo0CEXXJiensbU1JQD0gkwNJtNLC8vo9PpuGDKoUOH3HWr1eq+eSf2m+xE5HwkIzkIYkHLUCiEer2OarXqypno+g+sOjQszcKAq24ONYxw02TqrnQ6DWCFwdFut5FIJNy6zzXQst90UzcVOlOsH07dqPU7GaS12W68JvUDnRsFsdeTYcDPSCSCqakpHDlyBN1uF8ViEcViEcePH3fOQqVSQbPZRKfTcfdutVoBgJgldyYnJ9FsNlEsFgMpwbuxHjFjLJFI4OjRo66c3NjYmCujohvG9no9LCwsuHFVIIcBXh7XbrdRKpWwsLCAcDjsSppR35MZriV8OLbLy8vOOY7H46jValhaWkKv13NzQQPQCpjze7XR6HwzsEHQm2w9ZgB2Oh3U63UXvJ6amkIikcCJEydw9OhRdLtdVCoVB0zQER0bG3PBJLuJ7Eiv+GWkq0eyEzJIZylwaY8nm5OsYq4Zyma2oBfnnAZu1X+zBDALfBEEbDabgTVL9WEikVhTwgOAW2NV35GgxjVYfWsLJgNw6xHXJl7HAu1WB2pAwAY1db3XPrJ/azDfkuS4jtpyGFyjlcHPNZYBAQvC096hXiPATLY2+4OkJQY02BYLKqoPB8BlffN+JH7ZQC2fW0Fi26c+cHYQKxpYYfDm83lHguD4KiPdAnkE/rnPFvufwrIvtNfYR7Z8kZ6j42D9eQVndWzY33zv+G7QTtPz7Qaddg5RRysjPZ/PY3x8HIlEAocOHQr4y7RrmQHS6/VcsCqZTLpSPXo/PY/PrFkgNmiigShbwpjzTd/zQYE2y/BXzEltaG0jwXSdu9o+n03La/rKLftkJ3T1mTNnkM/n3ecbgc723bDBzGGOt59v5ppvectb8O1vfxtf//rXA5/fdttt7u/rrrsO119/Pa688kr87//9v/G6171unSfauuxPhGskQwlfHq2X6lvkfOdp/TYqRJ+SWO++/Hs/iUb2dsrZtcaYRmc3w7amI2rT4tTg223nnEaMKiIrVIjKTKOxwjbTAA2Hw451yXM3mo+7LWwPFRXZI7qpCw0IZdarogawZsPZzWQoPFtl5JyP5HKSYddsddSZTq5GohrLVq+oob6Zd0AZfXodlpPhvcgE4t/qTPE8dVg2aoM6G5adYx0YBTd2KpjM+zMwTFCVDhoQLEtn26bBBHWylIW0G6LMPLL2qG8ssKRBbc1AWI8cQTJGs9l01w6Hww4AUcY52wMEa+Iz4KBgkLWVLKilQIAGkHxOlAI3dm5o32h5JGubKXBDfe4by+3aX7tlv+2WjHT1SHZKFFyyzGbLggUGl5hQ4I6/1RfR75TFrt8puKVi1xtdO7UEjGWr8lg9hz/8zAJ7/K1+oAWuVf9qe/WZtB3r6ScbtLDtseepTaDHaxvXWx9Unypb1/adz4+2Y22fQ9th/X19Hu2PQf2vx1hAT/vbXkPBeg3K2A1TqSMJblMvU3gc55dtoxIWtKQP2+7rf/sdj98I6NTn0nHhtXi+7xo6Hjr3NfhiN5K1wRzeU/W5+tPa54PGy9cfNkDks0EBBEqx2Hd0PSxNf/S91LYMCr5sdM1hZSd0dT6fDwDpg2RqagqRSGQNU3x2dnYNo5xy5MgR7/HRaNRlEg46xnfNt771rfjTP/1T/Nmf/RlOnDixbnuPHj2KK6+8Ej/84Q83fLatyghIP+DS7/dRKpVw+vRpJJNJdLtd5PP5NZtHMiJG8LxSqWBubg7NZhNLS0uBjSg2uh+AAHDKxXKzwPJOiy7iBEc1sLCd61rjYSuLnTU+rHFir2UNLZ8hpAbEeouzgiS5XA7T09MOSN+oFBAj07lcDolEAoVCwUXQa7VagInRbDZx7tw51Go1FAoF9Hq9AIN/r0FmNXTn5+cxOzsLYDVdk9F5/dE6wf3+Smke/lbDydb1G8laGTnnI7ncZFgArd/vu80OY7EY2u020ul0ALhNJpOOeTs7O4vl5WVXN73T6aBYLG66fQTQyZQiE10ZawQ4ub+FMoyz2axrE3U92cYA3AZfBHdZsoXBVK6NZBjSIaNTs5UgwUbPW6/XsbS0hFBoNb262+1icXHROaU8Vn9TFMzgmmVZecMIHWnaJsOk6WqwnkwultwplUoO6A6Hw64kn9bxDIfDmJiYwPLyMmZmZgay/TnHarUastksjh07hmQy6foMWK3xq/1BO0RL4rDWubLYOA58dgIC1JnKJuT84xzVjbs6nQ7m5ubw1FNPuX6hns3n8wiFQi5jrtdb2XCO91IAgXqc81H3MrFA21bkctNPI109kp0QC54O+l7BRF99bP6tdrr6o9RxGsjlOqQ+kgXa7f24RrPUKfdGisViyGQyAcYvj+feIVoqq1arBdZqMpMtSOkDctlW3p/H85n7/b5jMPuYs7we/X5m+7A/7P3Ud+dvLQenfrT1W5VcpcFR+ku2bdSlqlP4N/uR67Oux6qP6W9StzAo3Gg00Gq1XDYAbRbqGD4T+5G6xALNPkKUltlQm43/M4ONf+u46DhoH4bDYbe5d61WczaTBppJBKA9xvtQX2rGmI6LbbO2iW1n3zO4zb7h3xxD9i/7SPeOYRuZPVYul10WAJ+D77aS0XwgtQbaqa+VyMB76vG+3xsFDdg2Bt8VROd1GHxX4gDtGLVXLa6j7HfbTr2/fu/DbnQd20h2U1fH43G85CUvwaOPPopbbrnFff7oo4/i5ptv9p5zww034Itf/GLgs0ceeQTXX3+9m0s33HADHn300UCd9EceeQQvf/nLA21961vfiocffhhf+9rXcPXVV2/Y3oWFBZw5cwZHjx7d1HNuRkZA+gGXfr+PcrmMWq3mNl5aXl52aePAatSNKTetVgtzc3N4+umnndLZbB0mGg3qkAN7yzpmOpn+7HR9qa0A6IPOX+86VDDKnrLGJRDczGY9J1CBdKZEs1a7zwizQpCEQAwdeBqbNI6azSYuXryIxcVFHDp0CLlczinNS1WfajPCCP/y8rJzzqPRKA4dOoR0Ou2MCgui82/7vUbZlbU+kpGM5PKWrei6er2ORqPhjEc6izTYGdys1+uYn593JbOq1eqWGdt0OgkgZjIZpze03nU4HHZ1LAl6c+3mJpzcMJK6gA5wrVZDr9dDLpcLOIA8l+fzeOoqTS/eCeF16/W6SxsfGxtzjnmxWAw4RoDf4SHgovqV/bWZMWBqN685LJBORzKXy+HQoUPodDpuk1AtE1CtVt3+OJOTky4wPjY2huXlZczPz6/ZdI3S7XYxNzeH+fl5TE5OOjYS2emcNwQiGARRRhkdZOpFYHUPFgsmAXBznP2p9c5tWj8BqH6/j/n5eZw9exbhcBjj4+OOda+bnXOOEcjSvuf8Vga7TY/fDog+kpGMxC/KcB0kBMG5vnANHPRu2uvpusrvFOjUTZSVGa2ZUxSuTfQneS3qA/oJPLbX6znQtlqtBkqAKRtXwTu9p11zLNmKvp2C/r4SLzzeErD4/Own66vbY3Wt1HO1rUosY5AACLLJNWChomC4/pA0QNtB92rR59AAgwXSm80mWq2W8001gE0f1sp6QLoveKB9pM9Le4NzzGZysf/1N20u1lcnOYHjrnuCcF4lEgl0u10HqOu4WaGOpe/Pd4PjxXlOoFqDNnbM2M/MwAbgxkt1fblcRqlUcrZfNBp177cC6RpUUvGB6bac0jD2oo6nT6/bgJjFY7T8kLZRCSXDis4nzn1fu/idJQzsN7nrrrvwhje8Addffz1uuOEGfOxjH8Pp06dxxx13AADuvvtunDt3Dp/85CcBAHfccQc+9KEP4a677sKb3vQmPP7443jwwQfxmc98xl3zbW97G2688Ubcd999uPnmm/GFL3wBX/3qVwOlW9785jfj05/+NL7whS8gl8s5BnuhUEAqlUK1WsU999yD17/+9Th69Ciefvpp/MZv/AampqYCoP9OywhIv0xEGcF0um1KMhX98vKyW/Q2uyBQbAqbsgH2AkzXKDXboxHs7VyXv7UECP+mMt/omdk+9htL6tiUNAABhablQiyQrpF9jdAPAiZ4Xa3Nt5mxUkBfnWkrylSrVCrOaOA9FXDejbmixhbbxE1cyIAg44RzR41gTc9UAMpmPmw2cKMReR8zRSPd253H+0VGLLeRXC4yzLrvO0cZPs1m0+nmaDSKWq2GSCTiHELV0Vud/wQE6NBY9rc661z36GxRjxBUt+naVnfZtYqBS57De1OP0hHbKeF6qkx3rq/rOW0K7LOt+iyWdWTP1z7gcwNwwG2/3w/UGl2PgW91grLD1CGm4w4EN3jTvqeDvl69TY4HgyEEpC2gwkCy3ViWwnmjwJk+B0EXFe07BQ8AoNFooFarOca7ghB8Th1XPjdtMvY9AAes82/LKhtW9HnUzvKxAQ+6jHT1SHZCbIkNHxOTawvBdGsLb+Sr6DqgrHPLdrXzUv1W333YJh5Hna3gcre7Ug+90+msWav0mdWX0NIbuiZbhraueVx7faLX8BGjdH3SQLbtE984qU+pvrUe72Pc8nNtjw8j0HVUvxtkX9k2WntD9atlGfuY5jrmvlrcHGsfuKyAp26Kqc85qG/4W8+nzcUfCx5TL3O+kZjhA+31uQcByr4+0THzER1ouwJw9mm73XZzn3ZrOBwOlDEc1D61PfUdsX64r30a+NAMFR0ba5tS9/vwFI6His6hQfN/kNh3zILogwB+fdZhfIzd1tW33XYbFhYW8Du/8zu4cOECrrvuOnzpS1/ClVdeCQC4cOECTp8+7Y6/+uqr8aUvfQnveMc78OEPfxjHjh3DH/3RH+H1r3+9O+blL385PvvZz+K9730v3ve+9+Gaa67B5z73ObzsZS9zxzzwwAMAgFe96lWB9jz00EO4/fbbEYlE8J3vfAef/OQnUSwWcfToUfyzf/bP8LnPfc5l214KGQHpB0RUYdlFkS9Rq9XChQsXMDc3F0hL4Tn9ft+Bt+12G41GY0tsMF6HgH2j0UCz2XSpQ3sFpLdaLZTLZadcht3AbJhrk21dLpcdA4rPqbU5fefy/Far5dL0yS7jBmDA6s7RsVjMMcsY/bUKTwMHXNjJDqcy08VVU795za1EO0OhFWZ5NpsF4N/lnW1aXFzE8vIy4vE4pqenceTIEcTjcUxNTSGTyawBkHda1AAsl8tuw7gzZ864sSyVSojH40gmk+j1eqhWq2g2m0gkEm6zNjJAGBygwVCpVFAul1GpVFAqldw9hplvGiSJxWJIpVIBgITvKMeTaXMHHVAfOecjuZxkO+B2qVRCtVoNOFyLi4tIpVKujMdO6DANFh46dMilp1Of0BnSdOJIJILDhw+7ey8sLDi9zzWp0WgAWNEtmUzG1frk83Ed02Aqgc1Go+F0NIMJ2+lPIGgbdTodt0mV6lGrQxWMpv6kE97v9wMbS/vsJE3n5g91IMFzpl6z9B51x6Da5exT6mzqJqZ9p9Npt9noxMQEwuGw2zi00WgE2Fu5XM4xt+fn59Fqtbz9XK/X8fTTTyMSWdlAlFkEJ06cQCaTcY4xgXaWCOB84PwKhUJOl5G9xvPoVOoc46brykoko7xSqeDs2bMBdiH7lo48SyEpizWZTKLf7yORSLjrh0Ir5V/6/T4qlQoWFxe9ASXfnNLvotGos10Y7AqFQm5uEVS4HHTVSFePZCeE2SV8L7TEFecJ/RJgFTRWVq+yMy0AzYAaA5YaDPb5FjxPAVKWk1JAXYOq/M1Slhp4JUGHxBotz8E2q+7Q8h4+MJ3ncO+KSCTi1l/d04p9YgOLFoBW5i3XbH7O3zaQEAqtbo6oxC/qfdoLakdQ7LvPYKz6sLb/tP06zhqoZHBUAxOKgSjBiUF6Oz98ulqDFPTB2Q/Ly8uBEjHUa+wb6mfdY4TjbgPRNpiivjkAZLNZ9x1Z6LRBdNyAlXJ64XDYgdaxWAz5fN7ZMr6+1+CJnWs6jgpKc15roIP2pM77Wq2Gubk511/1ej0Q9FHg2QYYdJyVDMqsd96DwnNtH1tiH/1qndO0K3RzYAXwgdUNcQG4PueaxfbRvvW93xrY5+c6B2z2jJ6/XkBkPdkLXX3nnXfizjvv9H73iU98Ys1nr3zlK/HXf/3X617z1ltvxa233jrw+43amkql8JWvfGXdYy6FjID0AyJW0VkHgC9orVZzn+tLqS/2Thi5dJxYSoZR9r0QPg+Zd1x4t8I4Wu8edJK4C/vy8rJLU/YpKd/5apCosqRCoMJnqjMVNIFXFRqn+luzA9TQpOKxjPTNjhmvYzc7s+0CVsASsvap1NLptKudvlvzhSBEvV5HpVLB/Py8C2Iw4MC5zLHV+aPzSOcAf3TT3s0w0jkOFkhn/VhG9GlE2ej2QZWD3v6RjGS7wjUbCL4PGuCmwb5dUWa2Zs2oLcF1hs4CAdV+v++Ci6pP6FgCcEAimXt8PuoGguWaHcdAvJaP2Yl1QYFatlEDtgoeaNsBuBIkCvbob1/7qAu5blPv8remQWsdzvUcJWW10all+jUzF3hd1iNvNBool8sBQALAmnrjg/p5eXkZpVIJwAqAk8lknAOtziLBjHg8HigLxD4DgvaGOuiW/ak2De0pOucMNrC0kYqSP7TsGseVz07biW1WMglBFopPt1ogjoEXjjdtAQ2KX2667XJ7npHsvvC9oH7R9ZTzS9cCZZYrWKbrBtc4BaCoc6xPNYgVTH/Ygs+qIyyYTt9A78M1hSCoBf1ULLNX28HPtKyM+iHhcHhNjXNeX/16Po/qOAWntWSKfWZ937VNykjns1pAVPvWBgbUv9WxVBBT2+8LCKxHIrQgtY6D6n6u09RNfA4C6QSiNWObgX7Vy9peG6S3+lvLmWi7bbCIfj/1rt5b9SuwGoxhsFgBfe2nQeNjAW37oyxyi6MQ+yHgzyyNRqPhSF+6wbsla9pxZP9zPmhpXs0Qp+g7rYEPO798+wTyevTZ1bawOIwGPIjV8B1geyyr3QYHLDakc1XXFxVfUGsYGenqvZMRkL5PRY0ATRtSJWONE42u2ugvz1HFpY7xZoWLaCQScQxrLuRkUO+G6MJWr9cdI50bY+wkkM6a8OFw2DmtVIYERG0qkZZyKZfLaDQaKJVKqFQqgchmOBx2Ne6pAMhAUOVvF2o6tGQuMJWKfUMFwP9tJH+rfTFsQIZzrFKpYHZ21tWqzWaza55Tmf3DRmbZBraH85JAFMH8hYUF1Ot1VKtV95kv/TIUCjkHPJVKIZPJOKC92+2iXq9jcXERzWYTMzMzmJ2dxeLiIkqlkktDH9QvodAKWy+VSiEej2N8fNyx/7gBIOeCsgHq9brbZK5YLKJarQaecyQjGcneCQ16goUEhhls9K2XdIyoq1XX+xz5ndBj/X7fAa7xeNxtWBUKhVxtz35/tRQL70nGuTKQbJuoA3VDNdaXpV4jIywUWmEHMxC5kwFv9jPXxng87uq6837hcDhQk9syscg6ov4gg0kZYRwvMs51E0sGCfj8PF4DCWR5KyNKgRnNgNK69HQM6Qi2Wi1EIhHXj7wP2ZlkdW2mPBB1SygUwvnz51EulwP2RzKZdPclUM/x5LywLDYdH/3hOFUqFVSr1UCpNLI/ragNzJJsk5OTmJiYQK/Xc/qdtlan08GFCxewsLCA+fl5l0lhxfaNbiDOMU6n05iYmEAkEnEb2tH2i0QiqFarLhOPgAKvPXJ0R/JsFX1HuEZprWGuBQpqWqKNDYJaEFqP088UIAMQKFmmNr+CckAwYGfvwaAa/+Yxyra39yaQZq+lQLcCzO12G/V6PQDSKrhH/9MG/9h+2iRaWs32qQX8tA0cG+pC+kC+frZgtu0zLd1jn59BTQLHPJ7+tOpNZYRT59Hfp/7gfRRU5v/qTzPwT5IA97risTyG7eP40kZSvW0DKz7RMbMAswbvNSOO9gn7xPZfo9HA0tKS2+CdfjTtOetP6yajHEP2PeeABrqow2gTaRkXzQDgHOEzWFBegwpsn/rV3Kuv3W7j4sWLmJ2dRbFYxOLiostoVOxK5wNtEmYEsA+YOW/3SiBJgM/B7M9qtRp49zleFjfTIInadxoYsUG+9QBx3kffK/UFdgtLG8nWZQSk71MJhVZZXolEIpA2ZIF0Oojq6KoC8hkHjHhrhHQzQkXCFPVoNIp8Po9sNrurC4Ay98rlMhYWFtyivpMgI4F6KpVsNuvqzANwykE3rwAQKAUyNzeHer2OpaUlLC4uujGjAie4nEwmHcCcSCScQWBLsVChU6Exms15o0Yqj1fHXZXSZvtiGMa/BnkINkciEczOziKRSCCfz2N6ehrJZBKFQgH5fN6BMYC/1p+9Ptuj6eXlchntdhuLi4uYnZ11AHS9XncRbzV4tF+oiFOpFHK5HAqFggMsyNo7e/Ys6vU6nnnmGVy8eBGlUgnz8/MBRqAVvg+FQgHT09PIZDJ4znOeg6mpKQek6/vKdnJez8/Po9ls4kc/+hHOnj2LdrvtnvMgyXYAhREQMZL9KArMkpETDoeRyWSQTqedrrXrLpnn4XDYBRHtnhibCVpuJFxLer2eS3Gmc8nyIQQhuaYCKxv5EPhdWlpa4xArCM1+UNuCOpHgfSi0UsKGjtMgtrcKHb31RNcW2kKhUAilUgntdjvAXmYatHW2CfBUq1UXlF9aWloDDPM6XLv5bKlUKhCoVfAnnU47BjkA9+w8lo6oOurMoiKIToeZ9czVxtG5ROYig/e6KbgSK3x9yrI4LH9G4H9iYsI5qNy09uTJkygUCohGo27TetqkvDb7V9ln1NUscTM7O4uZmZkAiKBzUOcB7eBer+f2FEin0zh69Cja7TZmZ2fR6/WwtLSEc+fOoV6v4x/+4R9w7tw513fDCG2URCKB6elp5HI5ZLNZHD58GLFYzNndwCrIMTs7i6effhrNZhMLCwsolUoBR/kg6bCRrh7JTgl1pNraBIq53rVaLUco4lpBm5j2vfq1QHCeKajF9c1mX9msXmWvKmAJrG4qyL/tnFafjIFLWwpDiVLUmRZ8Vv2jRCmWFCHxhhlN9DnZJgX5bLCC6y7PoVj/R/uD7eQaXq/XXaBUs9AUV2A/a0Ya13LNNFDbgYArCUgEghWA5NpuwUUF9+nbEYxVIF3JSdls1gGrtLGUZUzdzHtSzzFozOdi220wWIkRvvFUO9Cnu3XfNI4p9TnnpfWJSQwLhUKYn593baeupo3DILCCw773Rj+zjPNisejA50ajEbgWj7Eguupr2ojENwjAsyzd7OwsGo0Gnn76aczMzKBareLChQuuTIxmC3CMeU2S3mKxGMbGxpDJZJBIJBxBzb4nAALs+dOnT7t+t9mZGuTQ9UHBcX0ffCC7rhe0/7i+qL0HrAY7lAi7kYx09d7KCEjfp+JbgPQltZFfLu5cZJRBpOA7r81FeqtOujo6NIKoaHUhuNSibaAi0kVpp+9Fx5dgCRX6oPR0prVz0daaXwx4qELQHypR9qeWUtFACj/j97oZmC7oqqCp8Dc7RmoI+5gV+lsXd2sIs3wAFbKmx5GRouyKQW3hD8EIMvi0VhvZaWQ7+AxiG3DS63PcOYbVahW1Ws398B42BY2ixj+j5NlsFrlczjnqVPgWSFelH4vFHDgXDgfr9B8UZThS+CO53ITrqL6/qrsJHloH0vdjr6sB8O2KOnPU1QQReH8F+y1LTddJBUZ5bd+6qr/5HAqm7lSQwPeswOqm6FxLaZ8wmw5YrYlp7Qhb5kufn864Zcupk67gjbLfqZ8t68nqHnXs1BlTZqPqYR0bte1s0FvBG9tfem/2H9umG8NSR9OO4Q/7kPamtkEz48LhcKCfaSdtZp7r8+jfaqNRV1erVbenz0blktg3BCIYWM9kMshkMkilUgHACoAjL1A/Ayv1OpVxtxNlmnZTRrp6JDsllqEJBBm2XNN07aHYADTXj0HzcyPgyYJclmHKHy2Rqe3XZ9J7WWDNJ741y9du9TssK3bQdZT56gNzLVDq8x3Ur6d+pg7U4PgwokFt6nx7D7ZLS6ipHuF6rm1Xn19LbWrpE2B1zzH9rSQ/4ij8rTab2nIamFDfVfWZ/ijWYsdK+8D2kSW56Vjpb9vHzHzTIDkzo9VWYz9q3+s8sJkUJCMQ3yHGw31jNDjM+UIMSt8pH6lS50Cn03F+O7O8+DfHlWOk19ExjcVijkBAnU0CKjEFfX857rTPeLwlkWgwzo6HD5vgvOIxiq/47Gde315T16Vh3rmRrt5bGQHp+0x00eYmSspI12g7FyOm8vZ6q6U+rDJVh5yLr0aerRLaSFTRF4tFt8iyVAUdjmEjapsVLecyNzfnNtMql8sBp20nhYZFo9FwZUqq1WqAMcZoI4WKgWw+ploz8syxJcOLCzpTuLVUjo1w9/t9xGIxZ1TQ+KMQFFCwmSyuWq0W2IxjI1GHuFaroVQqOceXgD/bqYaorZXW7wc3cGO0n8qPf9NoWe/ZNcJPNh/ZdIx2k4W+3gZgkUgEuVwOY2NjSCaTrvzBxYsXXR8yJfypp57C3/3d36FarWJubs5F6dkXvnskk0kcOnQIyWQSV111FZ7znOe4z7hJn2+jXpaFYAo9N5U5dOgQSqUS/v7v/z5w/4OgEEcKfySXm5D9xKAngWnNJCLLjhts9vv9wEaSynCi/qb+5AbVGggHNv8+cO3lPQA45jLXGl5fQcLl5WVUKhUAcM+ojDNtd7fbdY4rnQjaF2Qg6no6KPjoa/tWhGm7LI8CrIwX06GTySQmJycRjUaxsLCAYrHo0sSVLU+QlHtZsKRJOBx2Kebsm26363RZJpNBPp9HKBTyso7UiVUAWnU2x4zziYFnjg11vzqwBEDooCpLkv1JsFiZjmpX6lrdbrextLQUCAjE43FUKhWkUilXfqzf7yOXy7kNVjnP2BYLiNE+IDN1mHmgwSjaTtVq1bHPn376aZRKJVy8eNGxwzmug/SPBdTC4TCmp6dx9dVXO3tMswloc7C0C9/liYkJN9bcMK1cLuMf/uEfXA36gyIjXT2SnRKuPda+ZYkHArUEttbzGXk8/7aBQV1b1bfpdruBUlzqVyiQpWuBlk9Uv4NiA91cC3SN4/c8V9tOfUl9QcBQj9MSL/SLNEBK/4s2h7LuNXihQCQxBg1qKyDK9Yu6v1QqBYBSvZYtcaPAPv9mO2nbMIja7/dduTWywukfc3+tSqUS0DvASqlQllwrl8sB3QKsZBPRp6KOsxgK5xo3+WSQ2wZElBFO/a4YgwYc+Eyqq9VO8s1lDQzwfD1WiXQM+FufWkvCsO/pS3NOUFfpHOZ+J2oTKjOeQLqWdtHzFRRWW442iO7/RfIhM9Pb7TYWFhYcnnL69GnU63XMzMxgYWHBZXvpvNf5G4/HMTEx4QLdzDYoFAquOoASHexv2uydTgfHjh1DKpVCrVZzLHj2KUUJM4qtqVi8S/sJgAtmWKxGcTrFAYYlFox09d7KCEjfZ8IFUNNymE5rX16+ZGRZURlYJ8iykqkEbfR5K455t9t19b4BYHx83LWHqTg7DaSrocEaYaxl6kt53sn7EozggkigXEuzKNBRq9UccMyNs9g+BVlo4NEho2HlA9LVYKGDbFPPGMVluRcCGQS3CWIkEomhn5/XJdOLjikNEt1NXoEDTfcjOECAgKnjygagEuQ7wOsry44GGBU+o9c0aDajWAh4jI2NuVQ+toeGBBX+2bNn8cMf/hD1eh3FYtEBXOvNt0QigcnJSeRyOZw8eRLXXnutMzBsKaBB5+dyOTdeExMTmJubw8WLF52xsV5t9pGMZCSXTuhsca1WZ0ZZTQBcNhKB8mg06jJm1OnSDSX7/b4DGpWRvFnp91drUtIh4n2y2WzAeVSdTd1BXaXrIp0nZSSFw6vlsfhM3Dzy/Pnzrvb4bqxZDPxSdyjgEQ6vpHuzHy5evIiZmZmAjlGwIJVKYWxsDOFw2JEcCKZ2Oh0kk0nnjBJoz+VyGB8fBwBXZkVZcsAqY88Gi7XvqetVr6tNp8EPtY+0nqkPSOf401lWEF9FN9nj95FIBEtLS47hz1qy4+PjyGazAFZBBt1El9faqqhNQWe5Xq9jdnYWlUoFp0+fxtLSEi5evIinnnpqqPJn2n+85tTUFK666qrAnj8cJwIf9XrdjUUsFkM+n0c6nQ6AELOzszh37tyBA9JHMpKdEPonlpXe6/UckK77SWgpEK5Ddu3ib/VngdWNTS2LV4PEDL4pwUzXewWGLYjOoKquj/o31wE+k22/j13Pdus+K1xjQqGQW1t5rgZbFUinXmFwnGuvDRRwDdMSoGwbg8etVssFkwlaazDEByL6RO0IJQnwmfg81Cu6AbnaO7wf/dVKpeJIcwzOq15VANeWeLHPYAM3SlYEVkvTkfDEIAMxDw0SKDvczlHLRtf5o2C67TdlTnNu+pjKdr+ZaDTq9hAhS53EO+pPYg7MmiK+QSCZ9qrOWQ3Ys332GSnErhiUCodXMqnZtmKxiEajgbm5OczMzKBerztCgz6/ZvqxbxKJBAqFgiNv0iZjWRcNgmggSbEE9gcAZDIZFItFLC0tBTYhVfuK2JydL3qsjivnBo/j++2z4QfZ35cCyxrJzsoISN9nYkFFjZhbMJWLgRoEjFbrgspFQBd3VRb6AvtebjqFCpbyOkAw/ZcbRFGhc+Gxkf+tiEZh6YjXajU0Gg1Xw207kbnNtgVYZVppNJdC4ELZ0mr4qfOmJXxsepmOPwDvIm7TzpTNTEXH8aWRRDa8RkP1mqr4+RwEwAmS6/05zgoIUOmsNyZqFAJra/8pIKUGrU3Z11IBm5kDGtFXtgHBIwYOuFmpbryz3r2o+Knw8/m8q+PGvhpW1PjlhqX5fN4x0avV6tDX2ksZRc5HcrmJruXWYWLAlQ6QMtZ1bWYgXIF3rqPUoRutN7y+MobVcQRWgU3rQNtgJ+8bCoXWsP+AYLkqdf7YZmXZs6Ym9YbWi98N8aXG83na7bars62sNrWVqL+oEzhW6ogDQcKCBcZVrGOkeoL9zbbQmSUDut/vOyCI7dPrURdqiRoLwKiNSUdamWfrzTH9zjIZ+bmyzzV4rky67Yg68WwP78d6u8PW3rfPRkYbWehabo7vjc4jbYftOwX30uk0stlsgHW432Wkq0eyE+IDw+13VgatnT6xxw26pgWqNrq+D2j3vRNcF/Q5da3gtXgdDUAMeAABAABJREFUDRgw6Dw2NuYAeF/7uWZwnfbZGcpoHwTS2X5SEFdZ1VxDyQzXUiAbiYL27A/VO2oPaVsZcKeusqV2aLOEQiHHWtcSNOq/qh/q+1+vO+iZbHsJilq9z3t3u8GNSxWAtcI+0bJoGqy2PjlBYSVkWDyA802fh6At+0xrtLMdnE+04zj22j7tV30GPvegfuP8ok0AwBEPid+wjAsxHQWa9fkVuGd/8EczCSxWRnuU17HHAKuZmcwg5L2bzeZA7MU+M9vms8m0DYNEbU19f4exl0a6em9lBKTvI2G0jI4SWW4ajdNjgVVmlVX4dMCAYPqNAo1csJTJpC8V2zM1NYWxsTHk83lcccUVjmlGJ/ns2bNYXFxEr9fDzMwMALgNt7j5A2tV2ecYRtgu3fSRZVy4IYWWS7nUCwOfvdfruU1OAP9mINbZpPLhmLKmF5noBLcZxdUoNBBkWHCBVydZ0+7JXONCTiXPzddSqRR6vR7y+bzbLE2ZEHTKe70eisUi5ubmAiVqCOzy3FwuFwBgyART1sCgsVFlo8rfMggsEKIGwaCI/0ZCRc/sgkaj4drNzVzOnz/v5hozC2y6vAqBkXg8jqmpKVxzzTWYmJjA5OSkY0ps9j0Ih8Ou/E8kEsE111yD8fFxPPPMM24TwP2uFEcKfySXm1BPKrOJ2VJkAfF7ZpnpWmWD2vxRdhU3LaX+8wnXh1QqhWQyienpaRfMJuA9MzODSqXirsXSH8rAAeCyokKhkCuVpUBCOLy6KRwdLxvo594hpVIJ5XLZBSS3AySq/htGuLZb3aHjRGdJAQMrfJ5+v+9K1ynJAECglI+C7QpYWAdL9zNhmR+Wq6NOIjGh0+m4oCxLv5FFqNflRqkE5PlM6oCy3ePj48hkMi6Tj/PLN8dsnzMQQb3N75mFp+dY23Orov1Lp5VZByxxppvPbWae0JG+9tprUSgUnK4GVu1ZvpcUfbesPqfdF4/HceTIEaTTaSwuLuLixYsD59l+kpGuHslOCNcSvjcWBFbgGQgGJG1Qk2KBKwr9LD1GgVTLplXwm3pNA9paeoZt9QGjFK7F6utZX4b3oY4tFAo4efIk0ul0YP8SliSjTgAQKKHJ67FtFoTlWqngqgVZ6eNRT1QqFWcPlMvlAHGKY2j7zgaPLQue9wqHVzdl1/VP/ftyuYxIZGXvrGq1uoaAxzmkxDTVq1oSlMCzMtItq9mKAuWcX+zvSCTi+lqzz/ibujoSiaBer7ss81wuFyidx7Fi4IDYBffzYFY2n4f2I0uecq819fcV3FfMgGMLwJXno1iwWftWN1BlhQHNgqMoGUMD9Hx/tKQfs9e4yXir1cLc3Bzq9Trm5+exsLDgMB47jznvwuGww8S4ZwlxCxt8U0CfNop9N9hPCqT3eivlb8+cOePsVYux6T1ox+m8tgEGO985twatQzxHSS7ryUhX762MgPR9JspO1gVpowi6Ve6hUGhNahfPV0PBArL2GuHwShpzoVDA+Pg4jh49imw265wEllRhOhCVCTdUZLqSr9b1MKLOu9YRIzuYTGFNfdsN4X22Wo+dfU6nUJmEylIf1F9qvLB/NO1LmY52wda65c1m0ylIa4Cyz6nw2c8EkbXNlpHO8zVNc9g+3Qsnk0x0/mbknunbBCcIjm0EBnFsWZ6GNdiZfrZZEJ1Co4qBi263G9jVfr8rxZHCH8nlJj6GC9dfMsUoCsJpqQ5grYGuDCtlfw96DwiSJpNJZLNZt+cDdQodGDph1OFc79gOriPqdNp76npjmVN8FmUi8Wc9sPpSiW/NUcdlUGDCHkugguCNZUspIUEZinp/qwdVv+sY8zPqXurqXq/nAhhsv63BSpa9zYBTp1RLp6VSKafPN2vP+ALJtrboTou1ZckEJJhOIGoz9iCPi0ajGBsbw9jYmNu/hNexzFNgdfwsAUCvSRuagNhWdf9uy0hXj2QnZL0Aml0/1C/aaA2h/rH6yQYOfYC2nqM+pq6ryqgmQOwjNenfugZYu0CBPYLK3MR4bGwM2WzW+VcshUW/lqQkssUZYGd7bEaZPvOgMWEfKGCnbHRmWtMvUjByvTFRvagBVP3eh2cocKv9boF6fU4dL2Dwhqv6M6xoUIW6UXU9wXENlLMOOEH3cHi1fJwGj2zmszLT9dmVTMcsfw2Y2H5huym8D7C6r5yv7+mrst08VoMVGiixQRTL+Nb3hNdpNpuBALgy0hm8YaBCbV+KBsboB9OOGSS+d1GvZYNtAJDP5xGNRrG4uDhw3nDdsfeyADqP1b9tXw06hu/kCEjf/zIC0veZ+F76rYrPedTF3GdAUKjg0+k0nve85+Gqq65CoVDAlVde6Vg6VBypVApzc3OYm5vDk08+6dJ0ZmZmEIvFHPs5Fos5JpWteeUzhqhw6PjXajUXIVxYWEClUtmS07TXYh1v9oMC55sJOKjBQABEGRg2GKOKbWFhwUXPbWSXhlW320WtVnMsNwIPvjmkinq9+bWfpNPpuGfr9/uBjQPD4ZX0rnPnzqFaraJYLA5VYiEUCrkNULLZrGOKbgdE12tHIhGXAcDa/BzXg8B2G8lIDrrQ8dANn2ncE9Qmm5iijDmu1WRraeBSnVZ16n2GNyUajeL48eM4duwY0uk0xsfHA7Xb6ZQnk0mUSiW3rwQ3iSTICsAFwSORiEs5pu2gwV9g1VlTJh7LuXQ6HQfe62abW5Xd1iNWF3PtZ7CC427Td5Wo0Gg0EAqFXNowM+mazaZjJfZ6PVSrVddvOkd4T/ahBtzJ/lZQiNlf6vyy7cBqzVdeE4Abq/1uR9Hm7Ha7KBaLmJmZQTwed6AT664y8D/Ms4RCq5v0pVIppNNpB3yXy2X0+/3A3OW7wuMsqYHjxbII/X4f4+PjyOVyDmgZyUiezaLANAk3NoCnAWYfeKd/q15UVjR1FDNwtNSknqtgsYLzVt+qD+3LKiXwqdfU75hdFo/HcfToUUxNTaFQKOA5z3kO0um0W/9brRYSiYTbh4ls3UajgYWFBfds6ufxnsyWUlYwfRvqZ2AVjGZpVDLStRSpgq98fmXd+sBE+9sHnHOtVRBfx8sCtFZsOwAE5g+Z2MzK1rauZ0v5AFcL4LL9Wm7PBgE4d7j+c05wblLHE0jXcSG5gfckKYNENfqoyvi29qINrGzkr/Keyu7nXGb7idlo3XQFmfW9Y59xXxSC/3zPWR51cXHRkTC1LdaOAuBsaQagdC81JSAyE5wsfr4XGoDwrSFsu9rMut8AxQZttP9U/68HqPN/n6/OsdJytSPZ3zIC0veR+ED07Rrd6oQPisD7Fth0Oo0jR46gUCjgp37qp/DiF78Y2WwWR48edelujCoePXoUS0tL+OEPf4iLFy9ifn4etVoNs7OziEajqFQqzkEZHx93SlRrxVJB8IfOO3cNZ9rX0tKS+0w37tzPzp9P+MxUUPZnoxQ0K+ow2xrpykpXIJ1sQbYjmUwGgHym/xPc8W3iqUYugRcCQ8qO2M/j0+l0sLi4iFKp5GqsapZAq9XC7Oysi5qvxwqlkIU2MTGBsbEx5HI5x3DbCWHJJKaGskzPIOW8X2QUOR/J5SAE3+ik0Qnh/gV0drgGK3OMjGMNoAJwes9uOMU1fKOsk1gshquvvhr/6B/9o8AeJXQ8uNFlPp/HuXPncP78eReUXlpack4Eg3RkKeu96bQRSNZnYgmvTqeDYrGIhYWFQNBxvwdUfaLjRL0JwGXpkVVlGXJ0uLvdLqrVqluvx8fHEQ6Hcfr0adRqNTeH1L5RR5K/lVnGEjk+sAZAINitG2up0895xNr1Wgt3P4+RsrrZTmXS0za04MR6wvnMfUcY+K5UKqhWqwFyAtsQiURcajmDIOw//iazMxaLYWpqCvF43JUuOAgy0tUjuRSivq2PIatAp9ahtmuiT6yvQd3Lcplcywl00l9hZpL9zsc6pijQzvZSh5KAo+0GVghqLKf1ghe8ACdPnkQ+n8fJkyeRTCYdkN5oNJBKpVzJC+qYWq3mNmLks2j5D81y8/nVmk3L4GClUkGxWAywo1UswU39SPUXlWmrAKgF4pkpncvl3HquZbOsnaNBZasblUSm+8wQ7E0kEm6cLKivbdJjfML5wLVb97liO1imBYADhpmlzzkYj8cdOVBBd0ug0P09eG8G0YGVMnDUMepns6/Ihrf2ge8Z1T7Q8dP3j3YK28FyMdyrhdch8M/xoc/MOackDCXy6fPy+TVDkp/TrqbuJaBO4FszNVhah/OBbdbx9o0zcSluYgpgYElFS1KweBT7m59bdrtth56vgayNZKSr91ZGQPo+k+1Mal2INCVEX0S+qPrC+pxcAqvpdBqZTAa5XA7pdNoB4DyeqUuMhCcSCedEUlFr/VUueGyjsqZ9QDpT3PibCojfb6fPhgWpd3qhsVH7jY7b6vUHXUMDKozSckG346GGEo1Krf/H69hIto2o7vfFWllkjUYjEHxg9JzO+TBCI0Svs5ksg2Gub4MkB4HpNlL4I7kcZZjgtB5r/7cGuL0G12jfdbkOEAzMZrOBADWdvn6/70pCZTKZgC5Wtg5BhWaz6VKJfQFAfkb9rGU1CMwedDaNJTf4yAgqg1Kn7fEcM8uGWi9QosCCstB4rgIrVn9ru1VX0+EeJstqvwjbSdYh7QxNl98sk0vtno0IDFaXK8BjHWj+KHv0oMhIV49kJ4X+HuDfkNIHMPkAzvXWyEGyHkCqbVrvvR8E5K+3bttzNABP/5o+dSKRALD67jArvF6vBwJ5ti619hX1LoFIC9LZMiL8zG7cuZ4wkGhFwXT7uW2LjrWWQbHrqg1QK2ubv1UP6rHW99Tx9Y31Rn65HV8F520NbCU1kXilgRkFqdkHutko2x+NRgMA+6DMDJ+sN47a/7ZPfUD7VoXXJkGEfUMMx24Krux23/hokEaxCeITmq1ngyZ2fq4XPLH30mcZ1C/WNhzG198pPGCkq/dWRkD6PhJdZDRKqIoFCL581oin80onwzpTepxujGJfxGw2i2PHjmFiYgKHDx/G1NSUU/50voEVBcAU8mKxiKNHjyISiTimG9lpTIFfWlpy0UKCgKpktQ/4Q1Y067bZiO2wYhdVX3SaogbQTjOr1wNc9P9hF2Pf9fU+wxzP6DZToyKRCFKpFA4dOuTqejMNc2lpyW0Wwo1La7VaAIwPhUKBzdK2usGcneuXQvj8LGHD90+BJT7HsHOAhhKj5evVu9+K8Pq9Xi+wc/l+d9RHCn8kl4PQaaWzk0qlEAqFAqU+fOni6uwRWCDDWN/lXq8X2CiS9/SxYsbHx1322MmTJzE9PY1Op+PStYFVB/7KK6/E0aNHkclksLCwgMXFRSwtLWFxcRHAah1wrudc83kNW46N53BtVOd8uyC6z+7RNflSrgfKrmI5AAUZuBEaEHQWmZXFNV+fhTqz2WxifHwc2WzWjTOJCGRqlcvlgUFbBdJ57VgshvHxcVfCgA57sVgMsNeBlTq75XIZ4XDYbWDGtlsGpU907PcyUNJqtVwmhdrBmw3gsP/Yd7SNyTonaE8AiWPLuuw63zlfALhjGdRg/24UMNkvMtLVI9kJoV6gaJkLDTQpGKxkLx+Qvl5gWUX9SZ7Dd1LXSa6Duo7QN7WBR/qganNTV3BttmQvSjKZxOTkJHK5HCYmJlw2KZ9PN5U8duwYCoUCYrEYzp0759Yh6zuq70a9b3Wl+rNqf/T7fVenejP+5kbHKrDJ7DiOne84iuoVLTVi11Y7p/gZdalmfKsuUPvF6m87n9hXPJ7jqSxh3/Fqr3A+9Ho91weJRAITExOO+cxMgvn5eSwtLaHT6QRKvwBwZAbiQmoHct7pe6IkN/uZLZfC4wYBxex/tUdsCR4ren/axHazU5Is6W/rvm4aWOEz8n2Lx+NIJpOBEi7MugyHwwHbS98Zva+PHU7RvtCghq/0lPYRz7Mlh2yf8Lo6B+1x6h8MIyNdvbcyAtL3mfBF1MVLHdhB5/BHa4YzAsgFQ8FgVQjWKQ2FVlJdJyYmMDk5ibGxMeTzeVczSh3EbrfrHEBu0tRut3HhwoWAc83r8jm4KPIzZaQDCDh2tj7lVkWNN00hs32r/WRB+0tRNkOBb/1sO6Crr5/WW2zVaKWxEovFcOTIEYyPj7s0qW63i7Nnz2Jubg7VahWlUimwOZoacExhG8Y594kaBtofl2LhZ/u4I/pOiG6GstNsNPaNstJVse9XGSn8kVwuorXDNUtLayRqmSvruNGx54bG3W4XuVzOpZMqKL+e3slkMjh27BjGxsZczVWuY9b5mZqaQiwWQ6fTweHDhxEOh9FutwN7PwBwDg7XcT6HgsrDlLjaqgxiCSl7cDeAdB+brt9fqS2uzjqAQJ/E43F3DoMR3FQrFAq5rIFqtYpKpYJut+vqpYfDYVSr1YFjTvvNsrMymQyy2SySySQymYwbN62hDqxucquBXbU5N+pX3pc6ea/WZa1Jux2hHtVUfabRs349bUG+A+Fw2NUWVsebDj37SEEiDcSMgPSRPFtEfVoFzgmaAVizjvrYtzYryr5DChZbsUAj76llKOy7r2u/ApokqOl1WC9bgVMFvSmxWAzZbBa5XM6VkFKfmnZ8NBp1wdZ6vY5MJuN0jgU9aWvwOa3/ovaDj5nLTG8ALsigYv1S7S8rCtZyvGx5Hr031157H8UmFLjWUnrWN+TYaUk6nmuD8eorKXCpz6nzS4M8m8120gwCYGUOTExMOIIa20mwlrabtolzkMdpMEVxDe1XK5ZEqG3S59Z3QQFxG5BY7z72erRZAATar7pVAwX6PNbXJQ6l2dhaypDYEvvT2jSKdQDBTAobpNK+su/yRhgNgz+D+sn3ub7fzNQYRka6em9lBKTvM6HSUyeBqUM2sqiGg9ax5mKrQLpGermorcew5fX0GN+iy9/KuFnP6beANBWgBUl5b10gtvLCK/NcwUbLJGBbeB8+s/aBKrHtpkLzHoN+VElu5Xra7s04yJFIBGNjY5icnEQ+n3dMRzK2ODeTyaRjuzGSrGOqDL5h7q2iTBVVYvqc2+n73RI7Z7YbHFFRg5Z9fxD6ZCQjuRxFdaAav1bHaGCZ64EC2D4m1kbvNGuTx+Nxt4cDGUvqJOr9arWaqwFtgQG2jXpZ114NDFyKtUbTda2Dbcuh0HawDDH7s9ngt3UEFYRRAgDby3aqc6/kAf7mtagvLXmAwIvOh43ayQ0vU6kUpqamkMvlnK4msSIej7tMq0ajEegn2olbKcGmIIgCJJthjO4XUQIAsPa91TlhS6kpGYNjakXtFv4/kpE8G8QClfQ/fSUJFRgEgsQl9RN5rA/QVP3EgKF+R93YbrcD16JocJH3VZa5buSs9yPwZX04HsNrq45gG6hX9XsNQAxaU3iu/m19DNWRvqxVXzBC2+EDaHXvFF0nKUog8vnVdh20uk/7i/NnGLCY+lVrcet9lECn5EI75jxG9aT94fho9p3qdv5PwJf7yqTTaeTzeQekMwjDDMJ6ve4y13TsOf8UILZkM+tjqo5WNr6Ol74vvgCJxUHse+gLqNj3Uv/31X+3bdYgB4WEPWaMKcnUzg0bhFE8ySd6vC0P53sn+P9GPv1WfH4NjKxHoB3J/pERkL6PhIqfi1qj0XBp3lTUfLnUiNA0Mm6WqA67Lky6YK4HvtF44CYLuhGLjcopgK91Un3Pp5Fzn6LWY7fjdCjzgVHseDzuIu5kjOkGIoOAdI4J08a03Mxmo9O2Hzh2/Jvt0UXfV49Or8X2sp0a3ebY+VICbX9xQ5Srr74a1113HbLZLK644grkcjn3fa/Xw8mTJ9FsNl3WwezsbGBzOV5vvfv5RMEKKkcFU/icNGQtu2E/Cd9lvj+cJ1bhb0c4F2lUHISaxKPI+UguJ1FHa5DDyXWMAXGCmdTnLHvV7/edntV1fCNpNBqYn5/H8vIySqUSKpWKc3aYrk6HvdFooN/vY2FhAefPn8fc3BwajYY3SK7Ahz7rpRLVy9xrRfuUAHE4HHbfdzqdwEaPlijA/t7sukhd1OutpB+HQiG3uRWZT7SrCKyrzubazDRkAAHQhNfWID2DIL7Ahq99kUgE09PTOHr0KHK5nNPVlF6vh2PHjqHT6WBmZgaNRiOQ4dDvBzefG3Z8FXQmWKIbkGlJhK2U4NsL0eCNblzG91afjWw4ZhcAq0xOghI2gOIjSux3GenqkeyE6PqgQCrXemWlA6v+jrXx7XujPrACTlwbNahNn4LA+vLysmMCKxjH8wG4NlOHEMCr1+tubWN5DmWuK3hHv12zRvksLOmWSqWQTqfdc9C/p22vdr2uH6qf1U7gM/NeqlPUt6IvorqRvqiWpSIAzzHi81IP6nOxD6mrbeCDos/AfVioA7XUBwMMem8L3GufKOiZTqcDm36zHIiWq9O+Uxa9YgH0rbQcrvpezCZkn+izcn5Ho1EUCgUcOXIEmUwGJ06cQDabdexqtm98fBylUgndbheVSsVlC9A2JC7DOWg3fWc71P4kmGvH0L4XOne0b3W8tG/stQb5tWojq23G8rFkj9s+Y/vZLvZ3rVZDLBZz2Xt8BrXZeI5mxA+yAYkp8F3j5qiafcB3WMW+O+s9/6A+8gHt/J9zfBgfYKSr91ZGQPo+EwW5qUSUBU3lwmOt02gVOSO5uiDy96CFRYFZG5njokLRttrUo42e81K+wFxUqXSZ8sNFVxdf30Zq+qw+Bh7Z/oNYEeuJRsHZf0x1tIv+eiC6vaZ12DhnfAwJX3+xr3K5HKamppDJZDA2NuYUNZ3CeDzuFE4mk0E6nXa1QrcL5LIdlumg0XZlV+5nsZHwnZzz1jjZaHz3i4wU/kguN/GtvcoqsYw71d9Wt6gDPuxaSochkUi4wJ11eqw+aDabaDQaaDQaA9NHfe/bpdbZuu77gHQ679ygTdn3NgA9DGNoI1FdDQQdR95Hx9myw9gOvZ4NMtug/bCMdGCl5m6hUEA2m0U+n0c2m10DrAArART2nQU0tipWV/O5LFv7IK7bOp6D2HIUHyvTPrOuDwdFRrp6JDshSuKyALO+D/q3+qzA2vKX671HuuYosYe/lWCma5iK2tfq26p/zRIiPJ7+3KBgmdUNBGjJSCbRhscoOcr6mYOC28ps1+wxzW5nOwex020gUMdC+0xJAgwmK4Crm17bvuAz6feqT3kvy5y2bVBbi9e1ekn7i5/pPLLBT72f6mo7fy1Ww8Cy9iMDKFrbO5VKueAJiX7d7kqJXJIQk8mkA3Z1bIHVTAYGIYYJumuQSp9T9z7zMctVeH8NnGwk1q7VPrNzzOJVlpXO/qfNZ99t3k/Hy2JXSgJQ0XG0WQcUX1klFZ+dqc+xEdA+CFAfRka6em9lBKTvM1ElS4YSnSuNnPNlZqSSkVKypi24Zp2/jV6eWq2Gc+fOoV6v4+zZsxgbG0M6nXabjvL8druNmZkZlMtlnD171rHcqtXqrr+gukgy8sza3mRbM2JMBaJKxjLSgaACoDJkxJxpXYz2D+sA6/U5dgAc60mj2OsZecBqPUG2pdvturQwKlydE4OE4EQqlUI+n0ehUHAby2rfsG2M+E9MTKDX6wXYWVsRNXz02TlG7C81OH31z/aLsE/IRKjX6wFGxHal0+mgUqmgVquhWq26KPp+d9RHCn8kl5tQ75IdYwHUUCiEer0OAI7Zxs/p8Oq1NEg7jHDzyH6/j8XFRczPzyMWizm9Z9nVzWYT9Xo9UON9P0g0GnX7rZAVDKw6UGQCh8NhFwigvqNOYEBa2WwbMa7V2bbgtv6QGUbwJB6PY2JiAtls1tkDtAUsKERR2446grq60Wg4Hb7R2NPhLBQKOHbsmGN3ch6qYxYKrex5MzU1hUgkgmKxiKWlpS2Pu56nc5d2Ae0s9oeCUftRer0eqtUqOp0OYrGYC0pZEACAy4DgHGQWIbDqaKsNTxCrWq2i3W67TYUPgox09Uh2Quhz2ZJlXKt9tcSBtXW4NQhpfbZBzGd7Pv1lH3CrvpQCdgr6EhRl29QPU+CP3ynoC8DtR9JqtZDNZhGNRtFqtQKZLvQx5+fnUa1WMTc3h2KxiHK57JjIg4gzg0pBaNBC286/tWynDRbyfrRv6J8pKU2Z2P1+P9AOvY8GpPmZto16g/6d3p/34vMoMMv7+MBaZZRz7DUDwbce83wtpaJYjAZVVOw8UInH48hkMk63cMNw6pZEIoFsNotut4uxsTHXL8RSdFwt4Kt9r2Ouc1zL2mjAg8epr+97n3yAtc/O8YHCOj7st36/7+yD9YTjz/WDlRrS6bTzsfks2l4NeimQrhsb894aJGm1WgFCCs/jeAxaa7Qf7Hz39YcP19H+02zHjWSkq/dWRkD6PhNdBPjSMs2Ei4CN4mr6l88x3sqLUqlUcObMGRSLRVx11VXI5XLI5XIIh8NIpVIB5/LcuXOYn5/HM888g3PnzmFhYcHtAr6boqzqZDLpSrkw8sv/gcEGh0/UkefizHQopo0rq2wjUSer3W47p5obvjCyTYVvFYSNjlM5ETAnWGL/Xs+Bi0ajSKVSjtk2MTHhGPy2n2hIMbASDoexsLCwLSBdx47Gmo+RrgZgv792R+79IgRJ+v0+yuUyarVaYFfx7bLpl5eXUS6X3U+z2XSA0khGMpLdEwLpmi1D4VqvDvl665U6Rio2EK7Cd7/dbmN+fh5zc3NIpVKBet48v16vuw0uB5Vg2yuJxWJu8zX+UEcya4uf1et11Go1AEFGONPRqe/C4bBLvR7EEtR0e/a9bwzYz9T9sVjM2UWRSMSt97oG02ZTR5hBUAbRuSksgfRh9VkoFEKhUMAVV1yBfn9lM9N2u+1ADu2bVCqFY8eOuU1OS6XSlnWFAhZaFo/lUFKpFJLJpAMylEG3X3V1uVxGpVJBIpFAo9FAMpl0th7fH457pVIBsLohLxAEz3QOkciwuLiIRqNxoID0kYxkJ0Q3iNTsTL4vmkENDC7TYrNbNBPGt177gCoFRxXo1uAr26MkJ15P2c7K+gZWAVklylg7v9lsYnFx0flaJDCxn6j3lpeXcfHiRZRKJVy8eBELCwuoVCprMpao4xTEHJQxw7ZY8JNrN4OIJIrZc6jLGKAnkK4ENVv/WoV97GOEs8+oQ5SQoEA8n01BbA1cKqisDGYADifh3BsEZOq1NMte7Tg7h2zgwQeiJhIJZDIZV653eXk5UA6G7wkATE5Ouj1v9Jpsn82OsIF/XzYVmeQ+IJ19r/Nb+1btJOpz22/KELdkMbUZNPOO7bJ+Md9Jfbc4L5vNJsLhcABI5/kA1pR+ZX/xXVVMQdukQLqSGoDgJroaWLIBDoqv//W7YcS+gyPZvzLciI5k10UjfhYwtVFRdRJ3ylGhE9BsNlEsFjE/P4+FhQX3e2FhAXNzc+6z+fl5lEolx6LfC2dBwViCvfqji6FGxtf74TFas9t3/c0A88DalCcbqVXnTdtDY9LOC1VOg5TsZto1bH/vlPhSrvQz+3OpZSfuR8Or3W6j0Wg4oGM77ykNik6n40AxW3tyP4sae1v52azcf//9uPrqq5FMJvGSl7wEf/7nf77u8Y899hhe8pKXIJlM4jnPeQ4+8pGPrDnm85//PF74whcikUjghS98IR5++OHA9/feey9e+tKXIpfLYXp6Gr/wC7+A73//+2v64Z577sGxY8eQSqXwqle9Ct/97nc3/Xwj2T+iDp0y2/TvS/V+8r61Wg1LS0soFosolUoolUqOgby4uOi+I7i8H4QAOQPGtB3UiVfwwOpi6kb+rc4gHdVEIjGQ3aMO9Ebis8s0zViDwDxebTTV03aObHWN87HO+LneQ/t0J8WnK21AYb8L27u8vOx0NYM3CjaocJ7ZPvWBULSlNVV/v8tu6+qRXL7is+spup4quGVBcz130Dq23rzTNduWLFWfieu5fs/ztS1bEeoLZg1zrWFmaaVSceSYSqXisk4JAm8n8D3M2m9BeXu+T9/6zhk0Tvq97xo+X1s/s231tR8IguE6t6yetTpSs4j0R6+lv+18U/vAx5gfdLyvn32ld2z/AoPLHPHeNrixEUvajqklBljxseP1eMUy+Fv3DVDmtW9tsL/1ndU9+dYb50HXtuOlmQsavNkoWGWfWY8bZr3Yrr4c6eq9lREjfR8Lo8BU7LoY6MLiWzi2K0wXbzab+Na3voUzZ84gm83i+PHjSCaT7n6tVgvnzp1zjvvi4uJQ6To7KVy4WIOMbGn92y6GwOYMIkbt6VhpxJSsKwqV+EbC/uv3V9INWe+MJUCY6pVOpwPMvHq97tLaaVyRHd/pdJxRpuniG80NXj8WiznlBMBbioTXUjB3JxxEn0PuM8R8x2x33lvlZ69tle5GwgyD5eVlLCws4Omnn8bS0hKuuOIKNy99htJ60u/3XV3jxcVFPP3005ibm8P8/Py+KtGwnmxnjdrseZ/73Ofw9re/Hffffz9++qd/Gh/96Efxmte8Bk8++SROnjy55vinnnoKr33ta/GmN70Jn/rUp/AXf/EXuPPOO3Ho0CG8/vWvBwA8/vjjuO222/C7v/u7uOWWW/Dwww/jF3/xF/H1r38dL3vZywCsgPFvfvOb8dKXvhSdTgfvec97cNNNN+HJJ59EJpMBAHzgAx/ABz/4QXziE5/A8573PPze7/0eXv3qV+P73/9+YMPAkRwsUafF6ujtyDDnt9tt/OAHP8CFCxeQSqVw6NAhV0ec2UosA1Wv1125ma2KgqZblVgshsnJSWSzWQditNtt51xpm6kLI5GIqweuelF1gjrhiUQCvV4PpVIJS0tLAQeYunqzOoRjWq/XMTc359Lbp6en0el0UC6XnR2kDGY6fVpnVzOJyF4f1n5oNBooFouIx+PIZrOIx+NotVquBADtg0ql4uyGncriIkOR7EFeUzcwvRQkD0so2Emp1Wr48Y9/jFQqhWuuuQbPfe5z0ev1UKlUHBOO9hCzHoFVfZ9IJBzDVIMoCwsLKBaLbi+ZgyC7qauBlaD3H/zBH+DChQt40YtehFOnTuFnfuZnBh7/2GOP4a677sJ3v/tdHDt2DO9617twxx13BI75/Oc/j/e973340Y9+hGuuuQbvf//7ccstt7jvH3jgATzwwAN4+umnAQAvetGL8Ju/+Zt4zWtes+n2j8QvupkhsLY0JYA1flm/H2T66jvj80fsbwW9FRglM56fk6VK3aFMZwXR1VZXUJDHsTyG9c2ttNttLC0tBTYsjsVimJubc2s/jyMLvVKpYH5+Hq1WyzHWeR/tH+vjsp+Vretjo6tfwzVdA9K6UaqSx8hI1xKpykq2hDV+zjHUbCY9hu1g25SFr3pRAWqeo4z1RqPh2t7r9RCLxQL7qbA2PVn42g/U0yRB0dfVrDOdZ2wrr6/zhngBs8MBIJPJBNj5fDYy5rmZphIMNEtb55vONf7PTCraUyyVx3ngC3zQ3mL72ff84bzTftf3hb+5CaidA7p5JudrMpl0mSA2mMZjdb6ybcy2X1paclgFM759wL+SLGywv9frOZup0Wi4EkqtVstlSCjDndUhfO83j2V/6maplEHrlI6nfY6NZLd19UiCMgLS97lsBrzbSWF0sd1u48yZM5idnUUmk8Hi4uIaIJ0paLoz+24LjRsqnmQy6QBLLU+yWTbBelFvjV5HIhFXV2vY56fCIJjO8gC9Xs+1O5FIuDRpXfDYz8pUYIq4lnMZlsWgTA0tX+NbZBVIZ/R2J0usbMRmsH/vlChLwgLpajgNC7qwb1jnsN1uo1AoOCNns7XS+/2+27G9Wq1iYWEBs7OzqFar+4ZdupHspsL/4Ac/iDe+8Y341V/9VQDAqVOn8JWvfAUPPPAA7r333jXHf+QjH8HJkydx6tQpAMBP/MRP4Jvf/Cb+8A//0AHpp06dwqtf/WrcfffdAIC7774bjz32GE6dOoXPfOYzAIAvf/nLges+9NBDmJ6exhNPPIEbb7wR/X4fp06dwnve8x687nWvAwD8yZ/8CQ4fPoxPf/rT+LVf+7VNPedI9o9wXdwL6Xa7mJ2dxezsLFKpFEqlEuLxeIBhu5OsWB9zaLMSDoeRzWYxNjaGer2OhYUFp4fYlwT+E4kEgFUnWAEaTfNm28LhcGBT8Xa7HShpst1AB9djlgThxp9kGlrWI3WytlWflf2xGfuB+gCAA3F5P24Izt+0FXZSV6hTr06wvcdOOmvbyRLbSFqtFubm5pBMJnHFFVe4oCbL+vDeNkVcSzfR3iTwzoBLuVzeVOmevZZnQ9D7xIkT+M//+T/juc99LoAVPXzzzTfjW9/6Fl70ohdt6dlHsrEQSNP/rRAAtSC7gqy+eea7ls3+0Wxje5wlpeiarGDXes/GY61o2ZhSqeSyXmq1mtNnBFQXFhZQq9XQbDadjW99BuuL0K9QMFKfUY/X51BAWJm0Ck5b1rgC7np9vY7tP+1TBmAZ2GDb+JxcO7WNPt3lC7IQHNXrUy/ZQAP9WPXxqDeJaWgmgU/ot1sgWNvF+xBYt+3Q8zWAYe9j/WMdT8tSV1Kc9r2PqMZxZftVl9t3QPW9Hsf+JGDPNhFQBhAoO0cgXff500CXFQXTl5eXUavV0O/3kcvlvJiFfc5BQLqW2aO9rPNSgXQ+60Y4AMeQwvN95ykp065Nw+jSEZC+tzIC0keyoRBQD4fDWFxcdJtlcNHjBmq+VKdLLTQcuGgpa3wrJVc2e1+C96yZqqlgwy6AukDbVDL90Sixguf8m847GWHKqBimHTQUFhcXcf78ecfkT6fTboHv9/vOKV9aWnKlfRqNxhoQ2l6f/eFrE7/X/mA/axRcFdp2wBsgmIYfj8cDrAtrIGrQROvkKbNwUHuWl5dRLBaxvLyMfD6PfD6PRCKBQqHgouhadsCy4MmM6HQ6mJ2ddSUayuXypuvqPluk3W7jiSeewLvf/e7A5zfddBO+8Y1veM95/PHHcdNNNwU++9mf/Vk8+OCDWF5eRiwWw+OPP453vOMda44h+O6TUqkEAJiYmACwAgLMzMwE7pVIJPDKV74S3/jGN0ZA+kjWyEbsb/t9t9t1eln3UNnJIPd6zLtBok6gAt1aJ7Pb7bq1udvtBj6jg8WgNTA4tZltU2YeS7yoPqXTO+xzcE22DjOD4lr/k88MIBDsJoteN77brJ1Clv3Zs2eRy+UcK519w+w0sqnZtmHmwDDZBrQZ2LfKMFQm6E7MO00D13nAfmZddjIHGazmc+h8WU8UgJmbm8NTTz2FcDjsxo3BikgkEgApaA8yG6HX62Fubg5LS0suG2CvbOSDIHsV9P75n//5wHXf//7344EHHsBf/uVfjoD0HRLOd/oGBJNUrL29URkPDTwCwfXKd227BvmAXb3uIBm0RitAu946rt+R7awBYc0ytnWa+b36Qmwz/Sbbj/b5bN8PIkppe7W8CpnNlomux7MNykC2+oS6gaIMawUf9XjV1wri+gBs9UMJfhMYB+CY4bYEqvXz1PfSAPh6+lGfQftJN5uu1+sIhULO7+z3+24PjVarhVqt5vx4DWBQp3EvmEQi4YBp1e2+4IaPlEndbXEGizkoYdAGyi37OplMujnC5/NhA6rLda849jftLM4fmwVCG7ff77usPCVZqF1pfXn2F3UyyyoRSFciovYt+8EGSvTd1xKFtA9U76/3fvrG56CQ5J7NMgLSR7Ku9Pt9t6A3m01UKpVApNin2HZT1BlPJpNuY1GmRW2Vib6R+HaI1k1NfIutT7hoEgBnf3MjEip/Glh01llOhfXz6EDSSee1hnVgqSi63S5Onz4NABgbG0M4HMbExEQgFY718GdmZvDUU0+5tENbs1b7RyPW+twUjYLTYNExUyNA27rZOUfQmkxIbv6Sz+edAcDUNGB1d3jek33PdPlarYbl5WXnvOszU2q1Gs6cOYNoNOrOz2azuOqqqzAxMeE2xNWNYNgPNLqKxSKazSb+4R/+AWfOnEG9XseFCxdcqvhBcc53InJeLpcDn7MMksr8/Dy63S4OHz4c+Pzw4cOYmZnxXn9mZsZ7fKfTwfz8PI4ePTrwmEHX7Pf7uOuuu/CKV7wC1113nbsPz7PXeeaZZ7zXGcnBkWFAyM1eT5lWdu1UZ5ZrAYN3BC4UUN4p2ey16GTwN1ONddMyMqpZ3iwUCrmArm7GxZrvsVgMhULBMaB4H/3NdTkajSKfzwecNerTzQRnqQdCoZADknnNcDgcYLepHqT9pIA6v/MxxDaSbreLs2fPYmlpCWNjY+h2u5iYmAg898WLFzE3N+cCv5YB7xPV3+sBv2TucWzoyFIYmGcfbVVCoRASiYSz7Xgv2kShUAhHjx7F9PQ0ms0mTp8+jWq16myWTqeDxcXFoYB0lhIKh8P4wQ9+gPn5eSSTSUxPT7t0fNoMi4uLqNfrCIfDbnNflvpptVr40Y9+hHPnzgXG+6DoaWD3WG77Jejd7XbxP/7H/0CtVsMNN9wwdPtHsr7o+jsMSKSA4SBwmmurHktAknazspx5XepGyzhX/cnrD1qTtfyWZa3ye98z6bX6/b5jm+tz0s/WvuF6zWexDGPbjwTL1W6gaBaNL6Ch7y37hXuM0MdWwHIQI14BTGt7WIBU+8wCpVwz+b9vI0kLvPI5WaqEgYpoNIpMJuPwCpLNtCY+v2u1Wk530cfTjAb2j89mICahQYVwOIxqteoy+1lyL5vNus1Hi8UiFhYW3L50zHbjNbWvkskkACCdTiOTybisMy2bYuevJanxWhYgJpahvno4HHbBBN97yzZxXtC+Y7m5WCzmSGPaJgoBbGZNMguAAQefsJ+i0SiazSbK5TIikQgKhYKrSJDP5wN+NcebY0wi4uLiIkqlElqtForF4hr8ROuwsy9tVgHtWtqtzWbTMeZ1bigupaLvCvtdyQLryW7p6pH4ZQSkj2RDsSDmfhNNN7N/8/udvh8Q3HG83+8H7r9ZdhmV0zA/VGg2Yq6O8lacNo5vrVZDqVRCJBJBtVp1JXJ4baY+MXJLIIIgiU3LU6OXCofKwRrW/G2j5/q//t7sM3K8GC1PpVKIRqPIZrMOSKfCV0OQfavRfwY5QqFQQPHaNingwM2EGAUncERwX/uJCr/RaKBWq7n6bdzUlwzDgyQ7ofCvuOKKwOe/9Vu/hXvuucd7js9RGJYxpPf0MTyGueZb3vIWfPvb38bXv/71bbdtJNuTjVIxD7LYZ1Oncr+IgiOWMcTv9W91yjVjh8/GNVdBBn5vnUdgNYhqg7DKkh92fqg+4vVV9ypzEEDAWdWsJj6zffeHaQvBeabCV6tVB3hEo9HApna+4Iv+qNjaresFGHx62DIet/POUR/qhrS0R3q9nmtrNpt1TnM6nXYAitbztcF9X7vUDiNInkwmHXhOO4D20PLysnOOGUSp1+uuHEOpVNoTgslOyLMl6P2d73wHN9xwg9uH4eGHH8YLX/jC4R92JOuKsmQtkGsB7PVEQVb9TAFLIAjE2/v6ahVrO4YVXeP0fK7b69lx+swKegMI1NHmsfZ69p20BCUF9IexX+1z2bVc/RIbvLBjYtnp9re1Uegb8hgF/n1kKwXR9Rpct6mPCJqSba1Maks8UIDcx8xWf3q9rAZ9bmUmUxi0J6GK+5FZYFfLymgwXucxqwIQpGbfK3Nbn1OzMnQMqEO1/waBt9bOolDPUgdqoIU1/Vn6zrLSfZkGGiDR9vveUQL7DEjxfuwv9qElqFF3k3nOftfNS+2882Uucg5oSRm16ThvNkvoVJxjmLVxBKTvrYyA9GeZ7DRbbq+F0V+tKX6pyrn47k0nT6ORBNU3ckJV6GSHQiEHmBIo5cZhjNiynIqWdtE08e0wnxgZ73a7WFxcRKPRcBF0bqJF5d9sNjE1NYVsNhvoc1//aySb6YqtVss9ExkAPJapkmp4azBnWAUDwCnYaDSKVCqFsbExJBIJjI2NYWxsDPF43JVbITPSGlv8YTrm8vIyxsfHUavVUK/Xsbi46Gr5Mn3PFxCgYx2Px1Gr1ZDL5ZBIJBwIQGBAWZO1Ws0xFObm5rC4uBhINTxost2158yZM8jn8+5/65gDwNTUFCKRyBqneXZ2do1zTTly5Ij3+Gg0isnJyXWP8V3zrW99K/70T/8Uf/Znf4YTJ04E7gOsgAFHjx4dqm0j2b7sts7bKV1rA4qb/X6vRVlZ1JXU1dFo1NX51mAw10BgtQQXWT5cPycnJ10QNBaLOfASgGNsAUHdw/7hNTVtezN9p44d9TD/Xl5eRqVSCZTV6Xa7LnVYbQKO3VbtFba7UqngqaeecpvW0Q4plUpus7FsNuvAFbKzs9ksUqlUwNGj3mWdXo6NlhCzQW8y9xRcscGEzQoZZWw77Qzd/I7OeTKZRL+/Up/80KFDKBQKAZAkEom4DW01c09BKytMxeeYzc3NIZ1OY2ZmxrEdNSMBgEvPZ0bIQQXRKdtt+0EIej//+c/H3/zN36BYLOLzn/88fvmXfxmPPfbYCEzfIWG2qgW6NZipoDLgr2kMBMFvFdZTHyQaiFVQjEQYgq4W2B00/weBXPT7BoGuvBevoSAf+0bt2VAo5PxCfm9FdSUZtwroa9mNQWKZwhaQVWDWgukEm3meDVjqde3/bJ8Cj3wOHWtbTkSvw7FVRq8G6nWD1maz6YLMnDNKQCMpjDaBZkfTbtGxU99Qn12P4d9ktlNPplIpZDIZLC0tod/vY3Fx0ZUFow3EMmIAAhlf7AuOLQO6WmK13++7oC77kfYT5wbtIH3e9dZ8/U6zu9PptMsMjMVi7od+Ne09zn8Fz/k7m806ghmBbb6X6vfbdgBwpL5QKIRqtYp4PI5kMomJiYlAqRfaKsRTmCFYrVYdzqIBA18AxdcXnIvsYwABEJ9BBi2HpH2tgShdH21GyXpykO2Mgy77HkjvdDq455578N//+393wMPtt9+O9773vYEF+7d/+7fxsY99DEtLS3jZy16GD3/4w6MadyLWQAEO/otHZc9Fmwu2ZbpdSiGQTwOIiy+V9LCOFCOl/f5KrbRSqYREIoFWq4VEIoFut4tarYZOp4NisejAVK27uRPjSee7VCohGo3i/PnzDoCmI8s0ZoIZGsgYxMjXaDOB6FqthsXFRbTbbVdDnIYNDVpfeuBmnzcUCjkmVKFQwIkTJ5BKpTA5OekULYMFCvbwXFWkBEc6nQ5KpRKq1SpqtRoSiYR7Hq2Tq4ZUt9tFqVRCuVxGOBzG7OysU/j5fN4ZRTQqdbd4bky00xu7HkRhnfn1JB6P4yUveQkeffRR3HLLLe7zRx99FDfffLP3nBtuuAFf/OIXA5898sgjuP76650BfcMNN+DRRx8NpIw/8sgjePnLX+7+7/f7eOtb34qHH34YX/va13D11VcHrnn11VfjyJEjePTRR/FTP/VTAFZAm8ceewz33XffED2wP2Wkq1dEAZ2dAtM3AiS3A1healHnW+tc07klEK3AJB0jAuV09hRIJzOZpV/ofKkjrWW5dD3WNV6Z7cOk0dLu0HR8nk9GU6VScQGCSqXiZYNReO5WMtmUQUdwgOwvnX/xeBy5XM5tXN5qtRAOh3HkyBEUCoWA3iM40Wg0EAqFnE6zrCzVwVp/dqckHo9jamoKqVQKuVwO+Xw+wIjLZDKYnJxEOBx2Ae1IJIJDhw4hFAq5QH2n03GB81arhfn5ebTbbVeHdtC7qRu1k1nNjDUy31OplKuLzqCJzodns54GDkbQOx6Pu81Gr7/+evzVX/0V/ut//a/46Ec/OuRTHjzZTV3dbDZdOSauL1ovfVAgcdB6qKCxssFtNpN+Bqxm2mgJRoLO2iYFKxXosm0ZROZZbw0nQKrn6719zFsGD6mfFJT39Y2vzbbuuA2IKlBugXPbn9bHo471sbB5bR+xTBnUyhhXXamscN96ynvajANel34p7Xeu0XwG6k3qRG7crXOL/cDr8Zk5Hnx22zYLwNZqNdRqNcTjcfR6PaenM5kMgBUwmEEn6uJ0Oo1sNusyo+hj6xxV3U8wme3R/URYykaBdLV71iNnMRht+55s82w2i6mpqQBoTiDd7gOmPqyC43yeWCzmst75PCyhBMDrA9NeBFbK/hHcr9VqgRKCirOwZCrHXktQcZ3gZ3yX9J42C4NzWPen04AF56D2n30PeX/tj90ghY5ke3LpkcZtyn333YePfOQj+NCHPoTvfe97+MAHPoA/+IM/wB//8R+7Yz7wgQ/ggx/8ID70oQ/hr/7qr3DkyBG8+tWvdvWlRnL5iQKdVrFbFsNutslnjAwrVLxkfxEY0DIqWj9MU9l8keJYLOYUMeuBp9NpFx0d1DZ1AtXI1Egzo/z6GQF1ZQNoar6mWRMIYZuy2SxyuRyy2axTwgSUVSltxkHVdvNe+sMNyuwGOjS49Tf/5jOw/alUytWpy2azSKfTrj6bL5qsz6Op9/V6HfV63QECjJDTmKDxsJ1sg/0gdgw3+7MZueuuu/Df/tt/w8c//nF873vfwzve8Q6cPn0ad9xxB4CVzcf+3b/7d+74O+64A8888wzuuusufO9738PHP/5xPPjgg3jnO9/pjnnb296GRx55BPfddx/+/u//Hvfddx+++tWv4u1vf7s75s1vfjM+9alP4dOf/jRyuRxmZmYwMzODRqMBYGVevv3tb8fv//7v4+GHH8bf/d3f4fbbb0c6ncYv/dIvbaN391ZGuvrZIz69u9HxepxmknGd1+N0nQQQcJR9TGddp+0Pr6VOuwY4tgN60nFiRhWBdE0RXg9E1/azDjh1x2aBdXVWeT/V27we9ReztDQoYB076msFs1V3bsR03KyEQiEkk0nkcjlkMhnXRrZXNwXnvLE2go4z259MJp1+Zh8zuK5lX1TstdU245jTHmMgQefnQdbTwM7oaga9dZN1Kxr0Vnn00UcDAWoVBrRVBgW97TGDrqnPzezIy1V2U1crKKoBQ679vgzWzax9tgyC3ssHdFtwmOJ7XwcRz3yArg8EV59OdcFG7fMB1oMY4eqr8Djrfw5ai3xMcV0/LYvWPpcyi+2aN0ivqo9sxbees08oltFv+0YD3fr8Og70vbiOc+22zGcbjKAOoo/HrDrOZe1z39haXWuDI9bn1HKx9sfqOILaBOipo9lO1fnaJ4PGyd5Px4/35r1Ul9p70saw+IzOXf3h+alUKvDDa9l3Usvw2NK3Vk8zkKL6Wuvu2/ln55u2376H2ibtq63KZuzS3fSrKffffz+uvvpqJJNJvOQlL8Gf//mfr3v8Y489hpe85CVIJpN4znOeg4985CNrjvn85z+PF77whUgkEnjhC1+Ihx9+OPD9vffei5e+9KXI5XKYnp7GL/zCL+D73//+mr645557cOzYMaRSKbzqVa/Cd7/73S0947Cy7xnpjz/+OG6++Wb83M/9HADgqquuwmc+8xl885vfBLDSaadOncJ73vMevO51rwMA/Mmf/AkOHz6MT3/60/i1X/u1PWv7fhI6GPy9X0QXVxVfpM6ex8VMQVoqtN2UQe1QI2Mj6ff7LrJdrVadE0zloVFTOu2DGO/cdDUWi2FychLpdDpgICwuLmJpaSkQPbXPw2hzoVBAKpVCoVBw7HMFQHwGxKD+18htv9936WBkGjJYMDc35zbiYZkU9pH+3kgYGU8kEjh27BjGx8cxNjaG48ePuz5Kp9POqLfGp85J/q3sEEbcG40Gksmkq7HJzU/m5+cdk832MRkCNOhYj1WBJMt68F3noMl2FPdmz7vtttuwsLCA3/md38GFCxdw3XXX4Utf+hKuvPJKAMCFCxfcxrrAClP8S1/6Et7xjnfgwx/+MI4dO4Y/+qM/wutf/3p3zMtf/nJ89rOfxXvf+168733vwzXXXIPPfe5zeNnLXuaOeeCBBwAAr3rVqwLteeihh3D77bcDAN71rneh0WjgzjvvdGyvRx55BLlcblPPuJ9kpKuDsp25vhUZBhjYKWH5EADOER3UJmVy0UlhOS2eT8YRWUPUccwSisVizhEiaykejwecHm5uRd3CjC6mCNMB7vf7a0qiWWbURsKxbTabjgFFh5GpwrpB2UZjEY1GcejQIYyNjaFarWJhYcEBtsMwvaPRKMbGxpBOpwN7dzA4TYe82+06pjcA14fK+qNzq0zueDyOTCaDUCgUCPDOzs66lOit6CbVd/3+SqbByZMn3QbntC9yuRzGxsbc3KCtRBYa2X60vcgCo9CxJ0OtVqu5ObK8vIxSqeQCnSp23Hq91Y1mWfqFtttW+2C/ym7q6rvuugtveMMbcP311+OGG27Axz72sTVB73PnzuGTn/wkgJWg94c+9CHcddddeNOb3oTHH38cDz74ID7zmc+4a77tbW/DjTfeiPvuuw8333wzvvCFL+CrX/1qYL+S3/iN38BrXvMaXHHFFahUKvjsZz+Lr33ta/jyl7+8pec+KLKbupqkEQDOp0kmk47luh7rUsscAGs31qYoAEZhENEXdNVgLUVB1438Ul5HgwI+gI+/SX7is9vjCDRqGRZlrCtD2v7Qt9N+sML+8wHYyozVNiSTSacLdINEHQtglSFMHWj7SftZsweU7U1RBrrqZF6X84jfKWgeDoedPlMfVcv4aHsUhOWPPptmKEQiK5tM5/P5gJ/WarVcyRb6r9QHnEdshwaCSdzSsSChi8fq2NoAis4X9ls4HHbMdNYJp5+r2evMnNbAgYLQatv5sAvt64mJCeTzeaTTaZfdrfXQiReonWYDPTpXGKxg9lg6nUa73Ua5XHblTfVZmFmnLHXOGS1/o7XTeT8SE/nsipHxfHtNDSpoUITjoGuLziPfe2kBd74L2n4+50aym7oaAD73uc/h7W9/O+6//3789E//ND760Y/iNa95DZ588kmcPHlyzfFPPfUUXvva1+JNb3oTPvWpT+Ev/uIvcOedd+LQoUPOv3788cdx22234Xd/93dxyy234OGHH8Yv/uIv4utf/7rzrx977DG8+c1vxktf+lJ0Oh285z3vwU033YQnn3zSZXYwAPyJT3wCz3ve8/B7v/d7ePWrX43vf//7l8y/3vdA+ite8Qp85CMfwQ9+8AM873nPw9/+7d/i61//utt5/amnnsLMzExgB/dEIoFXvvKV+MY3vnHZOefbEbtQ7LXYCKWVjdprI5qbYcjtlHDhUzDdZyAMI1xAuSu7svbUGNuoPjaNoGQy6eqA29rkZJX4+kpZCYwM05FV5vZmRI/n31TWdI6ZCs+66VovbyuibPR8Po/JyUn3HATYbT3CQaLfUTEyWELjjeBPpVJBNBp1JVwGtV8VJMf8cpfdVvh33nkn7rzzTu93n/jEJ9Z89spXvhJ//dd/ve41b731Vtx6660Dvx+mnaFQCPfccw/uGVAv9iDKSFfvnVjH/1LreK6toVBoQ6CXulDffXX2uPZZp4NOIT8HVp0bAjDKZqe+BFaZ1FqKRAF9LecyDGN8kHDzbQUgdBOrYSUcXtkwc3x8HOFw2JWDGfYaZIex3jmBZmalqdNq2emaIUUgnQADbYlMJuNKcJRKJcTjcdTrdSwtLQ2036z45qY9LxKJYGxsDEeOHHG2CoBAEERLG7DNDDpof+rfuVzOkQvK5bLrCwbxa7XaUP2sxIj9tEfJpXjvnw1B74sXL+INb3gDLly4gEKhgJ/8yZ/El7/8Zbz61a/e0nMfFNlNXU2gmIC5ZaErqG0BVyXn6HvPdQpYW2JF/7cAt+oYtb99TPJhRcFc2xauMQQAueayDfqMFOtbqX+pfcbr2FKXPn9DAfn1/FJlO2t2sQKISmhSMNr2m689PiBdj9d5wOeijmf7bdCE/WVBTs4xC5gDWFO2Q9uvc0QBzng87srIabCW85slYzSAwrZxvDSjyupNHqsZ3LopubZFfXTOO/qkBLOB1RI0JG4pKUufXYMLFr+wASedH8QGlLynpeU0mOELWunffCbOOz4DyX4MdOvaoXNF9TLnnr4jNmBHm0HfHf7N4J0FsW0wS9uitqjO9Y108yD7SasObCS77Vd/8IMfxBvf+Eb86q/+KgDg1KlT+MpXvoIHHngA995775rjP/KRj+DkyZNOv/zET/wEvvnNb+IP//APnc4+deoUXv3qV+Puu+8GsBI8f+yxx3Dq1CkXILcB7oceegjT09N44okncOONN+4ZWWvfA+m//uu/jlKphBe84AXuhXj/+9+Pf/Nv/g0AuBp4vt3Zn3nmGe81dWNDYO3O8pezbAZM1wVCFSCvowptvRdZlYCmiakCtAuJXlOVgY2s2x9t926Jgun835fyo2INCBU60OrsKevJ18+qtCYmJlxay9GjR5HL5QKKlGOg7G9tO1OgU6kUJiYmXCmUS8n2V9B7fHwcyWTSbcxJYGLYdFv2O6+VSqUcG50sNAYEtiucx4zA5/N5jI+PIx6Pu83l6KxfTmy1kYzEykhX7w9RhwsIbq62mWtwfVTdrnqcoLVN++U5FNXZXHd9ekTBdbJxGES2uk/bp5uF0bFqNpsOvLDOobVXtPzLsE6LOp1qUw3r/LA9mUwGuVwOqVQKx44dw+TkJDKZDMLhlZrvlUrFbYjFTT99dgVryY+NjbmaxPxcGW3KsNO+G8TOZL/ymQhmEGQni75er6NcLq/LorJ2C8dDbSVN5WZaNu2hdrvtwAutdwqs1EvX+rF0eGnrdLtdp4vZN5zDBNIPcnmp/UKO2Y7sRdD7wQcf3FQbLxfZTV2taz2DXj4/UtdnBTZ1bluQmqJ6h+uZAoYKXvt8LwvgW1FQTH0lBpPpG9HPUv1Lhq+WvrTX0b+1bRbo9PnKGkDWZ7JMWv7WQIJl+ltfXX8G+bN8fn4/KINYgXw77vq3BtMJfirIqmxyC/oyUO5rq/5PMNzOLR+oy7GjXlI7huVLqFdKpRKWl5dRr9fXzHNei/u6UF9p3XUKbSS2UZ/R1/++ecPvqCup8zudDrLZrMta42d2/HTesU30q1mCtVAoIJfLrSlvo31q3+H1nkPnXa/Xc/uxsdRtLBZDtVpFo9EIBFtsJgrngrWD2T/EFTRzQNvm06c612xgS6+v75q1xfmcvjG11/PNi0sp1reyRENKu93GE088gXe/+92Bz2+66SZ84xvf8F778ccfDwRlAeBnf/Zn8eCDD2J5eRmxWAyPP/54YO8xHkPw3SelUgkAMDExAWDvyFr7Hkj/3Oc+5+rNvuhFL8Lf/M3f4O1vfzuOHTuGX/7lX3bH2UXTKkyVe++9F7/92799Sdu9n2VYEJ0vNqOo6vToIkaA1i5ovA4XYKZjM7rLhVeBeopGkHl93chJr6/32G0QXUWde99CS7HRfWt4aCokjTJ+P2jsCObGYjEcP34cL37xi5HJZHD48GHk83nnjHY6HZeOVS6XXUkVNRwOHTqEw4cPI5lMYnJyMpDix2fbSVFDlMyzbreLpaUlJBIJB/jbsR90Lc7VfD6PI0eOIJPJ4OjRo5iamnKsAsuI2UqbKbFYzAUr+B3T38lYJLPg2S67HTkfye7JSFfvraj+03Rs6s/NiJ6vbB61CWhkc4MuAGv0mjosdDoJKPA4/o7FYm7jSwCOed7vr5bz4DUVyOf9lWXIdGseZ4PAeiwd2s2s0Zp+q3NXQYFBos7ikSNHcNVVVyGdTuPEiRMYGxtDo9HAoUOH0G63cfHiRczMzKDZbGJmZgbVajUAXPBeiUQCk5OTmJycDADQDECTqcb7kknH/Tg0w0B1I0vJESzgszMTizUy5+bm8PTTT6PVajlHdyPhc5DdxvIx+XwehUIB1WoVlUrFZdPV63VXTo0lWRigpk7XEnjh8Erd+VAo5Eqo9ft9RxLgPKjVapifn8fc3NxQY/9skZGuvnxlN3W1BbmZRWJ9JHscgDVAlxUNhhKgtaxbAG5vKNsmS8xS9i8/t8+iBLBerxco1aGBSR5DXToIrLd+oq7rPjDd7ksRDocdA1j9yUFMa4KUzWZzjU/nA9J1M0/td2X92u80eK/XJhBOlrJ+T72uQQu2lQQw7UfqXsuYt30z6H/LIKato/8T9E4kEk4vsR3aJ71eD/Pz80gmk2i1WlhYWEC9Xl9jZ3AeUofp2LKMG59J9xDwPYvtI9/7ozpQx5FEA85XBu71edjHtvRQoVDA9PQ0kskkpqen3SbgChrbMbb978MS9HwGERKJRCDY0mg0UC6XUavVHEFNn1WvQ3DfEkLIcOfzkxChc5Ni26l4lQZBdDNcLfOidq4Pt/LtMaNBIRJJNpKd0NVXXHFF4PPf+q3fwj2ejOn5+Xl0u11vkNVu7k2ZmZnxHt/pdDA/P4+jR48OPGbQNfv9Pu666y684hWvwHXXXefuw/PsdQYFgHdC9j2Q/p/+03/Cu9/9bvzrf/2vAQAvfvGL8cwzz+Dee+/FL//yL+PIkSMA4HYep6y34/vdd9+Nu+66y/1fLpfXTKJnu+iCZhd1KhwaHsro4oLHa9jr0GnVDbDUcaNwYbLpXTaNbS+B80FijUMFN9gftg4en229FLn1hNelkiernJuMKpDOjTEJNLDNHB+miCvwcan7mQYBARXdtARYBTt8wZpBfaHX0M1RBxldW2kzhcYc+6/b7Tomg0b+n+0ycs4vXxnp6r0R6/irvlWnTMHtja7HoCZBSP1cnWw6Duo8AGvZP8o4Y1stA1xtBftcPF4/8wEOvCevrdfitX1sR7s+K5uI4gt6r/f3ev2rOorALnVuv993GWDcMEwZZb4gvTqNZKARgPb1sz4/bTkFrNYjAmi/2Y3FaA+qHbhRX7D91NHa9wQJgBWn3scyU5AoFAoFWLE+cMHapcx88IGGz2YZ6erLV3ZTV9v3SoOywCogbeeMru2AP4t3EMjOaxIktD6DZTIPEt899XP16RRMpM+qOmvQvZSgZoMKti2+a2j5FeuPK6iuehtYzVZiG/S33m8j38W3bqqu1GtwvGypEAuoEoT1fa7nKHPbtt+KT3frdbW9eh/VrRpYUF3EYDb1N4/l/FMchUFtgqQawNE2rTcXNlpffbqc7aYfzD7hvbXvfDaSBbgtKULbrteg2Lk16LfFTNTG5DNo4Ev7w9pstk/4vL5MD5/otTZ6F+w6NeiaG40d26OklI1kJ3T1mTNn3L5FALxsdBXfe79e/wyyr+y8H/aab3nLW/Dtb387sOfJVtu2XdkSkP7UU0/h6quv3um2eIWb8KmocX311VfjyJEjePTRR/FTP/VTAFZYvI899hjuu+8+7zUHpSyMZHWx0A0jyHRWZ0UZ42Tckn1LZc6fVCrlHCVe0zLSNbqrCx4ZRr1ez6UOavqwjQzvB1GjUGupTU1NuYh0Op0GALcxGKPYjBQ3Go1NLYxkJSSTSeRyOVcTNJvNIpvNBlK0c7mc2+STY5vJZNymYocOHcL4+HjAWNgtUYWeSqVw+PDhAKOSG3wNqsvL+UZ2IzdbzWQyjll/KZ6H1yRzIRaLYWJiAu12G8Vi0aW9DwNkXc4ycs53X3ZLX4909d4ImS3hcNiVCdGMMYKynU4HS0tLAQa5vQ71aT6fx+HDhxGJRFAul1GtVgEEA4ZkwSUSCUxMTLhMKtXdvV7PpTnT8VGGMbCaVtzpdFx5jUajgVarFah5btPi7X3UGctms2uAeerHTqezZuMqy3QfHx8PbEQNAJVKBbVazZUJsUH9YYVBCk0X5xgx8EqbiGyvSqWChYUF1Go1xONxpFIp11bqb/ahZWMqUKN9y3Zns1kAwbWZ45xOpx2gD6w6x7wW09cjkQgmJiZcv9BmW0/f9ft996xTU1M4ceKE229kfn4e0WgUhw8fdvYmx4mB6UqlgtnZWfR6PUxMTKBQKAScd9qM2m7es9fruUA3syvI3ON8YQbks1VGunr35XLU1VxLdL8Ku4GiipaDUBBawVi7DhHgI4ANwPlVek+W4+B9GfzTzSs1uOdjW/vAfbvWKRBrQVdl5a4H+nEtHLSes0yIbgTtu45lh1NPxOPxANvVgu8UJXjtBAGJ96Lommt9eQWiiSvo2NHmoT6lTaK2ATODm82ms2OsaGCF/jr7VkF03l/BXIK92WzWMf25Abden365xT+oz7QNSlTg+Cs4T7Y77YZBorqf7aFvyk22WTrOvosMPpORrgQ3Auk6Xhv51QSIbZBAg+42CKMBfj4/923Tsn/2XP4mLqXCd90G9NgH7GsfOcTOf7239pvOQZ6rz6/H8nsdMwV+NyIO6rNvRXhePp8PAOmDhHvlWKb4ekHWI0eOeI+PRqOYnJxc9xjfNd/61rfiT//0T/Fnf/ZnOHHiROA+wOYCwDshWwLSn/vc5+LGG2/EG9/4Rtx6662BXah3Wn7+538e73//+3Hy5Em86EUvwre+9S188IMfxK/8yq8AWHnR3v72t+P3f//3ce211+Laa6/F7//+7yOdTuOXfumXLlm7LkdRRU/lHIlEHPhro2RcxKLRqEsnJsDNRTcajToQ0+cAWhCdolFDBdK5EWWj0UC73XYA/26CveuJXcy4IKfTaRw9etQ56EwR407fVPClUgm1Ws3t/j2s0LBKpVIOOE6n047tRmOx2+26uqztdts5k5lMxqVrTU5OugV1L/qV90yn0w74YLCm0Wi4v31CRZtIJJDNZlEoFFyf6M7zl6K9ANw9mALHuUujaTsKbyQj2Yrslr4e6eq9EepQlr0oFAoOqGY9zGw26wK06wHp1MuFQgHHjh1DLBbD7OysO0adSupe1sjsdDqoVqsBR4U6R5lXBNItoMDzAbg1XoEU3lcdDOv801Hhmq92BPUCsFqr11dqIB6PY3JyEhMTE87p7ff7mJ2dRSgUCtRe32xglPdgPycSCafn7EZkkUgEmUwmABKw3+lIZjIZpFKpNdkDvBd/69+tVgvFYhHAivOUyWRcCRc6ewSleG3NoFOnl+cRKEgmk65UjGUeWlFALZPJ4Pjx4wiHw6hWqygWixgbG8Px48eRSCSwuLiIYrHo7JhwOOxKsnQ6Hcfs53UJvtsawErC0Hr9HAsNnADPnk3AR7I/5HLU1VxLfExlCyZvxNpWsFuvpcCX1gvXzGYLumu7SGBS0Wvq9WwtayC4mad+x/WEa7eCseoTMChL4M9mU/F7ZepSh2gg1ucLq47j2k0dzGdhu+1eThqAHMSQHsb/1iAIf6ve9AGMPl+JfaL1xcfGxtxmlwSqOU7tdhuLi4uOmFatVtcETHRe6Zgp41qZ0AoGKyZCnVyr1RwpTlnc3GuM+oagOOcx768BJgWZ+b4wQMRgyEZiAVnad9TdtVptTfkYzQLT8wigM/is4zaMb60ZazzHNzdU7POTiNhqtQLvrI9pThtS1wq1Fy2Qr+8dx81+btcxn+jc1Xb5Aod6jH5nx3+/SDwex0te8hI8+uijuOWWW9znjz76KG6++WbvOTfccAO++MUvBj575JFHcP3117v1+oYbbsCjjz4aqJP+yCOP4OUvf7n7v9/v461vfSsefvhhfO1rX1sTdN5KAHgnZEtA+t/+7d/i4x//OP7jf/yPeMtb3oLbbrsNb3zjG/FP/+k/3en24Y//+I/xvve9D3feeSdmZ2dx7Ngx/Nqv/Rp+8zd/0x3zrne9C41GA3feeSeWlpbwspe9DI888ghyudyOt2c3xRe5utT3UyWvysrWM9donjqVLGuhQLqW1uDiq06jb3FRxrv+r7+BIFNtr5npdnENhUKOBccNLycmJpBKpRyQnkwm0Ww2EY/HUSqV3MJOEGRYR10DG2TZ8TeNKH6nn1OpM1sgmUwGNmzZD8IgQSaTAQC3+YjP0FIwiPOP83g3nkdBH2uM0WgeJsJ8ucqI5bb7slv6+tmsq/dSNF1XHSLqbhvoY2DVpu+qcw4gUH/Sgoy2nIt1dtQRVIYNr6+6Wmtc0g7QTb56vZ5zmBQkUUBGnRz+ppOq2Uy8lk0bB+D0NPUg9SIZ28pgJyDNTbA2s6YrsNNqtdBsNgMgjOpy6mkSFrTkmtpmytZX9rZlSvlYk751VYEMC2qo08fr6dwgUWCj7DFgbU1e2iPAKgBnWZN8DmafseSLPhf7wYJCBCwsy4yBd+27y1VPD+ucj3T17suzTVf7mN38XIFOioKeKuqPWlaprls+kG7Qu661oVWv6Pqna5/1YfmdZV+rfmT7mA2g4JkCglomRNm5vI5lSmvf8r56Ta6PPgZyv98PkNwsQ9gHBFowVPWBD2i1vr1lNvtAdrYFwBp8gcFo7pVBID0ajbr9OljCaxCDGVhlJSvbmZ9pBpoyyH02B20y9Qftc2lf8fl8QLP2uwba1Z/UH/aZnYe+MWMAmqS+Qes222dL0wxqq8qg++v3PjKEPgfHhPZrq9VCKBRCtVoNjKm21/Yz1w6fqN2sWY+81nrnDiM6XwY9v/6/Waxit3X1XXfdhTe84Q24/vrrccMNN+BjH/sYTp8+jTvuuAPASpmvc+fO4ZOf/CQA4I477sCHPvQh3HXXXXjTm96Exx9/HA8++CA+85nPuGu+7W1vw4033oj77rsPN998M77whS/gq1/9aqB0y5vf/GZ8+tOfxhe+8AXkcjnHYCdhcq/IWqH+NiyeTqeDL37xi/jEJz6B//N//g+uvfZavPGNb8Qb3vAGHDp0aCfbeUmlXC6jUCjsdTMCotFRG027VMKoaTQaRTabdUwz3WHaOilMc6bDR6dSHbxsNuscU2WkW4dbhcpNHZtms+muz83EVLFzgWf/DWI37LSwrbVazTnWpVIJvV4Px48fx4kTJ5DNZnHttddiamrKlV+JRCJuM7BarYYf//jHKJfLeOaZZ/C9730vsCHIRsINLxOJBF784hfjn/yTf+I2G+VGmDQKTp8+jdOnT6NareJHP/oRFhYWcOjQIVx55ZWBWuL7QTj3yUQvlUr4wQ9+4HZHtyySbDaLY8eOIZ1O4+qrr8bznvc8xONx1zfApQ0Q0CBYXl7GuXPnsLS0hNnZWXz3u99FpVJxwMnlLKVSaU2KGNfYP/qjP3JlAjYrjUYD/+E//Afv9UeysVwO+vpS6Go1mLdjkO6VsISV1pnmek+njhspkemtuprM3Wg06tKkNR1dM9IU+CQIQD2lDHS2pd1u4+zZs1hYWHBrczKZDGwcTv1O8JzX5vXJvqKjHAqtlPWo1+vOvohGoy5jqdfrORa1OsmaMUebhdlOAHDy5ElcddVVrh1ku5GZv7S0hFKphEajgQsXLqBer2NxcREXLlxYw/hbTxRMueKKK3Dy5Enkcjk8//nPx/T0NMrlMs6fP49ms4lareZK45TLZedA0onV4DfHqVwuY2lpyYHvdL4TiYRzmPnMZJwTtAfg2O/se44N2bGVSgXlctnNF93EFICzWcrlMn74wx+iXC4HHFMFZXjeC17wArz4xS8O2B28J9nntVoNAJwtyfmmQSBlejIDw4IMFGYodDodXLhwAcViEaVSCWfOnHGZj8Ns9HWQxI7DSFfvT7mcdPW11167BoylKGBGsIoBT+oQBZ2BIACqABqP4zl6HMtZcaNH6ki11202j8+HVH+UwnWYQKgNDtCv1tIYXK/YVvr6LF/KfuC6zFIeqju4DiaTSXd93avCZg8BcDpP107ev9froVqtotlsuqAtA7wsv2YD88qaZ/9ov6hNxfb0+33nJ4fDYbeZp16Hvmqv13N6W8eFZSiY+UvbgAQ13q/VamF+fh6NRgPz8/M4e/as0wssE6t9xeCCkv9oE01NTeHw4cMBX1vJfcz2YzlP+nm0m/icBNnZTv5wXvH+kUgE7XbblcXLZDJIJBJoNpsoFotYXl4O7KHSaDSczqcdxT607xifl/ZQrVbD2bNnUavVAjYh50smk8HRo0eRSqVw5MgRHD9+PGAn+eYE54MGiNSG1PFWX96W0OFzsC1LS0uo1WoolUp4+umnnU3LcnUWmFYCqCVSaAaCLzvGx0L33UPFR+jU421QTo+xfcQA2t/93d/tO119//334wMf+AAuXLiA6667Dv/lv/wX3HjjjQCA22+/HU8//TS+9rWvueMfe+wxvOMd78B3v/tdHDt2DL/+67/ugHfK//yf/xPvfe978eMf/xjXXHMN3v/+9+N1r3ud+34QdvPQQw/h9ttvB7DSj7/927+Nj370oy4A/OEPf9htSHopZFubjUajUdxyyy147Wtfi/vvvx9333033vnOd+Luu+/Gbbfdhvvuuy9Qp2Ykw4k6q9bJH5ZNstX7KiuNiz7/14VHI+Q0ZtheOtL8obNG1jNZR8po8zEMgNWUOX1mLvTWyFGGwG6JXRxt2lAymcT4+Djy+TympqZw6NAhJBIJ5HI5hMNhZzilUilUq1UkEgmUSqU1zu1G0u+vpkmzzE40GkWr1XIKn8YJwVwy0lnbkLXFdysAMYxQsVBhM52NjAEf44MGKgMCu81I57uh7fAp6mejjFhueycjfb1WBrFoDpIQcCSASP1Dg57OMIDABsgAAk41A9GsndpoNJwOY+1RBT7ofGu9cN6XIAiPpcPOvVfoTCsgojYObQUC3SxDRgeUDp8+v+p+ZbEDq6VcarWaW4NsWnI6ncbk5GTAwWUmGe+bSCRQq9Vc/XaCAZuxy6irQ6GQA8vJomPbNdjBeqtqM3EsNPWcDi3HRB1oZTdagMjXbnUY7YZ91pnUcadtp+QGirVl2TZ1HBUI5704R+34KrhPx5+guo4tn4HPrtfnNZmlQRCLgZHLTdjPwzzbSFfvnVxOutrHIKeo32TfV8tEH8RG13N4Lb7/9BOAYJkKnqMAqr2eb/7rOqO+n2Y4WX9ERVnjyurVNdMydLnWaWCU66RlolOHs03KYtd2KdingXaCjNQltuSH6g5dz3l9jpGWxbEseNUrXN9pKyjIqH2sc0HLe5BRzWwy7unB65ORTjuGz6lt0TFlf9Emol7m8cqe12ANzyVwTfvHh+HYuaXEBM5dnT/W5lJgmPelTcH261hbvanX1tJR8XjckRY4hroZLeeWZgOoT2t9bPusg95b/lYdb6/JAFkkEnFkCgbGtNSe2hV8Xvap2jB6H/arLeNkRd/vYQmtFpjX+9u1iKLr17CyF7r6zjvvxJ133un97hOf+MSaz175ylfir//6r9e95q233opbb7114PfDElXuuece3HPPPRseu1OyLSD9m9/8Jj7+8Y/js5/9LDKZDN75znfijW98I86fP4/f/M3fxM0334z/9//+30619bIVjUKpE2CjcT6Fv5Nt4GKuLCY6HYPY46FQyIGcGulUthGZPzYCb6OTKqroWaNUlYEqnEvJ0h9GFAzQjUFCoZVNz8bGxlwEnZFsboamfcJoYC6Xc2VMOp3OUHU6lckxPz+Pp556CqlUCrVaDYVCIZCmdvbsWZw7d84p/PHxcVe7bbcA582IGm9klAArzDiCMRQaqHaTmN1+Jr5Lvhp7lzIYNpKRDJKRvl4rW30PbbBbdbVNMx32eptpj7KWIpEI6vW6A3qpL9VRU+eP6z7Zv2Q9UVfTCaSOSqfTzjkjAK9p1gQCeH0A7hrRaBRTU1MOGKdz2e12HYOIepAbNdOBY9YZgWsyoOnk8foE2+kE0qmkY6QlT+gkqtNJ/cvr6Vqt+7sQcK1Wq44dzXJsW5V6ve7qqZ45cwbNZhOVSgUXLlxAs9kM1LRnu3zlyggCcw4OGm/aafxO7S/aVQrqcJwtSUHTy6nPWPee1+GYJZPJNQxJYDWLjnONgW/eQ+u283i20wLxtJPUdiZgYtPq7XgpaMN5QKb6Vt7l/SwKXIxk/8rlpKu5vvp8V30nlVjFd9GuMwp2cY3j2kLAk38r0EfGNtcjBpP1vfeBUQr0838F+ZToZTNfrG/LvxV0t78JWPZ6PQccWhCZn1FfUbeqr+MDIjWQan9T2D9qM9j2+3771lTtMwueW5/d978PDOZcSqfTLrMgn887Mhi/t5kKtFE0w0nBb4LknEMKetMeqVQqAayD2U60KWhHUV/SDuO817+1Dr6PuKbjRgzG6jCdTzxHAWI7TvxOgW3tm3Q6jX6/7/Zs43NY31WBfPXN1xMdf99cod2mc4H31+dV/UUbkIQLH8Bt9fcgG8DXLt8zsJ81iGFFg4C+Z1K7eT0sQIM8I9nfsiUg/YMf/CAeeughfP/738drX/tafPKTn8RrX/taN3muvvpqfPSjH8ULXvCCHW3s5Sq6WBJw1gWKzoTPGdkJsUpcI4+Wka6LJ5WiOi12UY1EIs6I4bUGGRhWdCHlwsmUXrZVI5nKONgtR0GVsaaj8XlzuRwOHTqEfD7vNjCj4xgOh12dVTLd4vE45ufnUSgUEA6HHWNtI6Hj2m63cf78eTQaDSSTSczNzTkgnfPo4sWLuHjxIhKJBK688kqMjY257IP9BqJTNJ1xcnLSpTGxhI46+HSE94IJrswMpr7R+LK1gZ+NsheR82e7jPT1xrKZuaVgsTq14XDYlYTYzPWsPhzm3Gg06hzI5eVlVCoVF4y1OljZynz/WGYtHA6jXq8Hyk3xeVh+zDK3lL1OcIPOhQbeaRfE43GXtkynlQA5QQ7qRG7wOTc359KXWRKLpdC05Iyyr215EjqqPJ7p4wTeyS4jCKE6g2w3bsZJhz0cDqNcLqNWqyEcDqNYLG5Zv/T7fVQqFaere70e5ubmUK1WMTs760qksL8VMLAMRvZpv98PlH/h92SfMdONtpM6qAzEU1/R5lKwSHWbZcbp2HY6Hbf3Cze6tbXkY7FYYPN1jgPtuHa77UrU5HK5NSXqdJy5ua4yIoEgIYPBFLWh1W7UfuK8uhyB9GHXppGu3n25HHU1GaT6Lmnwqt/vB3SUHmPLj+jaw/VKy1cwK9cez1IX6oMCWFMyRO9tQTn7PijYbFnvei6BadXLugYp8Kl+rYLfzLhScht1AOtG6/UV6GQ7ub4p45j9x+907Vc7RttndR0/12e2zGd+RjtAr21Bdx5rwUcNztOfpp1C3WFZ8MBqoD+ZTCKbzbrSKKqvqEO4Xwmfn0x5zfZiJhrHxGIyOkdtPXaraxRbsf2ltpXtYxscUV1uAW9fQENBYfrM+XwesVgMxWLRbfpu7Tp9t6zdY+eFHVO+Iwrsa4aCjr0GMTiGNsMyHA47HEAD7nr/QfrbBor6/X6gVLAGx/QYjolWZPAROTcC9H2BQdsn+nsjGenqvZUtAekPPPAAfuVXfgX//t//exw5csR7zMmTJ/Hggw9uq3GXsyhThmwsAoXK7tIFU6OZ23lxBrVHAXXf5/q/LtpUysog4GJoU898ini9Nunfg9LRuOCxn4DdXRxUAdhFT5WOry983+n/W2kHa8V2u11UKhVnPNFgYB03NcgOAsCrhjDZJb65NGyg5lKJZWqw3RxfGqoUnyF5ucpI4e++jPT19kUDdVx3fEC6OvabBdQ32x6uJ+qs+UTXFtVPmlZuDX0tiQUEHQF1jJUB7GNXKThAtpfPAVPG06Bn5T3VmeRz+VhuFDpAQHAzKb2+tWnsZzzX6ujt6hbOE5ZxIdtda7gro03H3bKetK98DrTtI+1X+7f+1vuoM6mfW3Ca92HAxecMalu1n9kn6lDruAwz33k9naM+wEftSmXqW/tLAw7PFj000tW7L5ejrtZ1xMfW1vcVWA1+DcvE9AHImrlj/SkCl1rCRMuTDpq7Pp/Crr18HivW3vd9r+uhrqXaJtU7g3zqQeu4Xp//8zMFOQkSbtaHGgSk+p7bp2d9QK/qlkF6bj3bwfa11TXrPRvvzb5g1hODzvYe7Dtrn/iu78MrLHahepvH+tZkC+LbuTnof22zloez+pDH2X7z9ZdP7Dlqj+kzDWtL2XdDwX69jhJPrS5XbG2YZ/HZIRQfmL6e/uM917u3DWBtJCNdvbeyJSD9hz/84YbHxONx/N//+3/xcz/3c5iamtrKbS5L4YsYj8cxOTmJZDLpoqtkQmm9sH6/j2q1ilKphGazidnZWRdNtQyf7YiNCOpnuojYxT4UCgWi/ZquwgWMUeTNAsNW9HwGHrhxmCp+tl8do50WZUAwpZyboVoj0WYTUDnS0dPvlNGwmbG1jma1WkUkEnG1XO39aWSy/u1WgPu9ELL8E4kEKpWKqweofQpgXSW5F0JjJZ/PI5vNus+AlWh6pVIJsPkuVxkp/N2Xkb7enoTDYZexUygUMDU1FQjiKbher9ddKZKFhQVUKpUNr7+Rk72RKOhN1rEyzfiburLdbrtSYzxXS7aEQqFAWrky1piurDqKTG5enwF0OpXVahXtdtulDzNLrV6vO/uBQfFSqeScRjKQU6mUY/+ofiXLjn2mNgZ1IQPHtr99QW+eByCQKcYUbjK9WXJmJ7IDyQYLh8NYXFxEuVwObASrz5rL5dyYkeXIAHk0urrpaq1WC2TIaRkbMqCUJWmdSi3TR1G2fyqVQi6Xc3X0m82mC8jwHhpo6na7WFhYQLVaDQSXeD4ANy/Zv+xrsllTqZRzlC1LNRQKuech65GlimxmAse92+26vWqWl5fdhnSs18u+Zf+T4KJ29+Wuj0a6evflctTVy8vLAfBXgSGuM7SFrc2uusayebUchAaFs9msyyaamJhYUxqDP9x/QjcwpA3OtthAHHWbDfIRhNRn0mfQEp1ch1iCi2sZ1y8faKm1rCma/WX7VPtS1yrbbl+wmN+xbQDc2jyMWIxAy1Mo6EncgBlWLOemNeiZGbS8vOxssH5/ZWNN6mGu1ySF8Z7W99Y5BASDqFo2jf9zvDlWZKzr5ugU6gjddFZtER1jAIExY3t8G3NyrxTaXiQk+LABHR9fgMeOH/uLPjTn2DAZ8Pa+Gjz3BTxUfLpB56AGeCi8Nv1jzf7v9/vOrgTgyhNyTxy1f4EgEXUQxmIDaoov2ICfrw8U27Gi80JtGq1swOdIJBIjRvoBkG3VSN9IPvWpT+Gd73zngVD2uyV8EePxOCYmJlzpjyuuuMKlaCUSiUAktlgsYnFxEfV63TkJ3KRyJ8RGCPW3ZRrZl45GBBUYfyvQvlOMZ43CAwgoGn0WAGs2p9pJ0cVRFz+OjUbJlTGvxgHban/08804awqks03AaukTPS6Xyzmnm9kQ/G6/SzgcdpvX0rmmobYeA2AvRY1HNSBpvFUqlUA92BGQPvjckVw6uVz0tdVl2xUGg+PxOMbHx3HFFVc4Pcfvqd9qtRqq1apz9IYB0rfbVqY8c41RB0R1Cet81uv1QP1wTZtVMNQCCNTlAAJ6lw4ZnRWCmFybq9Uqms0mMpkMCoWC28OCabkE7Qm683rZbBb9ft8B6SwH0+/319gZluXDdmtJM7VTrJNjz2PZgGaz6ewsHk/AVXX0VsdPwd5KpbJmc3Hd1CudTrtNyqmz6SiyRA37iploHA86gZFIBKlUKlAKgH1DQEKzKdQOZD+wzArL7jSbzTXl/3httpPBDO2nXq/nABqWsWH/1ut1B3RrSr8NLvBenP8MQjBwwz5W9p+WJEylUg6cabVa6Ha7gZJFnBPcJLfVagU2Ir2cddJIV+9fOUi6mgFJC6YPWrspCkwpOGx9PGAVmOT+U4lEAhMTEzhy5EigdAYDbdQLqVQKrVYrsM4rQE8dqMCnDSRTX2oZLPs81F8KvlJfWkDV+jHUEfacQcEHitVvPn/SZglQVO9bdvp677b6trwf+1v9YiXdUS/zHK1dTx1B3UAdxTHr9/suu5rXo96zPrf1s/nsagtptrAFuDWLmzpXAxHUy1Y32GNs8IJAqdokek+W3WNb1aazAReK1um280PbQZ+UhAgAa2xIPc/3t227zg+1Bey88QHug+7BeUjbxFZloH4mSSMej6PZbLrSh7QLgNX69FrWxz6nvsODnksDgBoo0jVL3y1LXFCigcWR+H4nk8kRkH4A5JIC6aMBCgqZNclkErlcDpOTk8jn826zRzqYZKRrtI1MmYmJCXS7XVeeQ+unb1e4WGl0jBFQG/XmQq4AuU2fGbTI75T4lJJlMFiFsF2Wsl0kufAp80tZE9w8LBxe2eAklUo54yscDrsxrNVqDoRhzVoaIIOEizENEzqTaghwF3YFaDUSvZ9Y28MKn1HBGjWUNFoN7E2ZHwqZCkeOHEGz2UQqlXIbu9KYrFQqyOfzaDabmJ+fx/z8vBuvnXivRzKSYeRy0dc79RwEMQmgJxIJjI2NuSCkBmvprNMRDIVCmJycRCQSQbvddsGynWob13YAbk8InyjgSJYOgcfl5WUHHvp0KP8mG4trGR0v6n51coBgaQySBmhDqFPL4+06Z9lbAFwJG60fy8/VIaWOI8tNbSTqU/2bfUR2dLFYDGxWrUwj6vlGo+F+lLW8UQDH51ArI4x2Add+dZgtcGNBAraPjhnvp6Aw7QP2Fe0jy56yAQIFrjlefHaOgQUyLACmz+5jy6nNFIkE69XTxrHzko4wgXBen/pfn5nzWOcox1znAjcvA+Bqt4dCK5vGJ5NJV35neXkZxWIRpVLJO9YjGcmllIOoq32+oAWegLU1lW3wTQF5XoPrKDcwZj1sBsr0fGWa81y+58wOteWjbNuVrW2fUYNwGmTXNUz1ynrMVQu+sRzNILFrNq9jv7f3UV3ua4ueZ/tC9Z6eb+/P5+CPAulW31OXU6/RbiGg3mq1UK/XnR1EzET1mQKTvAZBedUDti/0WQiO0/YhkO/rbwVmB4HXWyEU+gDcQXsKsC3DiuI9GmjhHON3dl7YZ7RgubZjPXvIvov8XH9bnc93n/XxiY1R19NG5X46y8vLKJfLa7L0bJ/yb1//sW80u8IG+nw2rN7DZyfasdVgnK4RI9nfckmB9JEEJRKJYGpqCocPH0ahUMALXvACjI2NBcA1fZH5kmUyGUxOTmJ5eRnZbBalUgkXL150CwSjs9sRZZNxoWZaiS4sunj7Fhx1htQQ2Emh8uVCZBd9LZGhinqnQHQqZzpiZIUxzVmNqYWFBZw/fx7VahWZTMalFGezWUQiEceeqtVqOH/+PEqlEmZmZlwGwqCsA/ZrJpNxCp4bmFLIQGSaOtl8DOQweHMpgx07LWqU6SY7HHP+ptHEzYd22/HQ+01MTODEiROIRqOYnJzEoUOHAmATx7xWq+GJJ57At771LbRaLfduX04yipyP5CBIOBx2pTQymQxOnDiBbDaLXC6H8fFxhMNhx06l8a5GfK/Xw9TUFPr9Pi5evIjvfOc7jp2+E/O40+m4MigE97W2pTo6qVQK6XQaAFxJDgCoVquoVqsOdGbbut1uoNZno9FAuVxGPB53pedo5NPQ1zJzBCe4aSPXYM0eUmYvAw/AqgNHwIDXIiBvhWy9aDTqgtDhcBiFQgH5fN5lBahOUPCCerTb7WJ2dhadTgepVApXX3010ul0YOO1arWKSqXiNgMtl8tuTAkK2CCBCsFmDXprEEQ3uSyVSq6v2Ed0AHUNpc3TbrdRrVYDmYpkXNuMM27MCayWBSLxgNdWBiGB8lQqhX5/Ja2em5ERrGYacigUcnpYA/q0CTWQYh1LMjbT6bTre5ZsUTahOrMULQ+wvLyMer3u5ms4HHaZGMpeb7fbmJ+fd4Eilsc5cuSIex6C+Szt0mg0HAv/m9/8Jr797W9fto7uSFePZCdEgVPAz7jWtc3uLcJ1VdcL6glmO+fzeQegHzp0COl02pWg0sCjXp9rXrfbRS6Xc6Sn8+fPBzZ61sAmsDZrWwOjDAISSFOwmOsYr2mBY9s3XHupO+11CH7a6zC4yEwvbet646PCdlq2NHW2BjJIatIANXWGHXdl41Kv26w4Xof7fJE0qKz0paUlAHDZVbwf+6PRaDi/lxlx1N/83Aa1dV6xf+PxODKZjLs+g958TtVFLFPGIIvWHQcQON/OcZ3rKpyj+j0D/RaQ1XJz6wVn7DmaTc+5k8lksLy87PpOj7PZiGwXn1vfNdX1PvxFs8os8GzJHPrekIE+MTHh7L2xsbEAPlCv17G4uIhWq4VnnnkGrVYL/X7fsfxpC7Dt2ve6ZrANbI+WX9WgnwYP+Dx8XzVoQNF1SNvNttAuHTHS97+MgPRdEr5MrInOF398fDywMNqFtN/vu/Iby8vLbrFg2orWN92uaMRPy2Uoe4lO8SCGke+ZL4XogmWjfGog6eJOg2wrgLqPLeGrQ2qj8c1mE7VazS3s9XrdtYtgDKPrZKQTXKfTv14fMOCRSCSQSqUCNcN1g1FlQdDYO4iMdFVINFIYMAFW57CtkbeXyiKZTGJqagqpVArT09M4cuRIwEgulUpIJBKoVqt4+umnHSPuoI3NMDJS+CM5KEIwOJVKuZri6XTageZcm7meEuwl4EsQjqUv1tOVmxU6QcDqRqCWwUMh2EyHgc42U6MJhgJBFqCCtWSE6TXYBz5gWgOFWqfax3qmqH1B8IIOrDq6lh2nm2TxugQSCCpTH9KZoqh90mw2US6XnW63NkW73XbBcjLSOQYWFLaijDSOB/tG2Yu0XXxMM3XqLCikbHytaU+HU89hgBlYrderOlOPtenrPK7RaLixUaKCdRh1PgzqH2VecT4quKL3tc/O6xO40mP5fNSjZKlzDttaqxwPkgwYSOP7zXe5XC6jXq+jUCiscY4vJxnp6pHstNj3X4NkupYpS5VrmQXkFIBLJBJON5OJToIRASnLQlawD4DTgbS/VZ+yXbbtvufhj9r4KlYH6pqr9x20dq635qivq/1rj9Hr+NZm6j/tK6vnKcoCVyDXttn2j+oLxRIUONUfrtkMgjYaDYRCIafPuPYDfv9cQWBrA6gdwflC0Jprv5YI0/nE37Sr2H7LdNb5vB2flAAtr2WBczs37LxS0f5SAoaWLrR+tA+o1/mmup/HD9L7/K1zTeeMDe7rGsA9d6LRKMbHxzE1NRXoc+4VxExwLberNpZtm76vlmXOc+0xbB/H2LLsbdkhe321m/Taw86Rka7eWxkB6bsgdOqYIn706FFks1mk02kXUV/PAePiEY1GXXS02Wxienoa8XjcbZS03RdCo5rcQEo3RgFWGWMaaWc02udUXWowXSOhoVAokA7WarXWRPVt+4fpEy6gdFDJPqdDyc3IfKyFUqmEM2fOuHFbWFhwjPBoNOoi57VaDc888wzK5TIuXryIZrM5sLSHOuN0+MhI53gBq8oxGl3ZgIxt1jTISzU2l1LUwCRIo7XKGG1miZx+v+82yeP5l0rUSOL7XSgUcPz4caRSKRQKBZd9wvmbz+fR6/WQz+dx5ZVXYm5uDsVi0c2ty0lGCn8k+12oK8bHx3Hy5Ekkk0mXvdPpdFAulx2wquU06OjpWkQHj6BbvV53bN6dEjKHFDBQJ4ObYQNY4wzRGeN3PFaZZ9Fo1G1yqY4IQWkLanNda7fbDuDk+mtZSsDqe60pt2QDa21LMrosOEGGEBlkANwmcizr4mPd8d5sE3XF8vIynnnmGRSLReTzeRSLRcd4Z/37CxcuOAY8y6dZwFuFrKlsNhuwiRjQ7vf7jvnFvgyFVkqKsOavbjjHe2h/2Mw79jHvpWx8X4o59Sr7kkxs1unUuc4+VZuKpYZYbziRSGByctIFidUZtkGBTmd1E08t2caNz5ShxfapDafXTiQS6PV6DgBhAIMMTWaNcM+hbrfr7HESXJh5YftHNzOcmprC0aNHHbg+bPaYnff7VUa6eiQ7IdSJPoDIBn8tAKy+jPp4XCOYsUIAnZkkXBe5Rli/zN6LaxizawaB3NR9Vo8RONaAJtckW3OaaxzXPfrPCrZyrWOglc/J83muAtu8vwW6+fegcjR2TCgK/unz8/m43mkw2NoDg3SuXoeYg5ZdoQ/PID6PpQ2m9aUXFhZcNhP7SRnWXJu5ibUC6to+xS9IbCSZQu0ato39SluJ/rQNgOg8VrBYQWEGuHldBcUVuFVMxQYqVC9rP1N8mIwGpHVzS9pr9p3luNFO0f3vFDT2sah1Tur7boF0vZ+1qUKhkCMNJhIJ5PN5RKNRl5Wp9yDmxuxuls8lXqPlcfQ8+x7o+6VrivarkkjssfosNoBi31P7jtqAxSAZ6eq9lRGQvgvCtNhUKoXDhw/j5MmTgU1RKOsBfHzJGG3vdDo4evQoMpkM2u02FhYWhkoBWU+ozLQdBAfoxKmzpnUx6bxTQfgWqJ0UVSBsC5+BDrQ64AACNc5UiW3kYFOJa7kQMssJdqojR6GSr1arSCaTjsWUSqUwNjaGUGilhjp3jz9z5oxLG+Zi7xMyMAiej42NOQdPGXtUkGRLsvafbmq7lZpt+0XIxleFz1TAXq+HWq3m/mZpAyBYv20nRedLKBRyO4lPTU3h5MmTzgHXaD+wAqYwlW5hYQHNZhMXL17E2bNnsbCwsOPtHMlIRuIXZbtMT0/jmmuucUBcKBRCvV5HpVIJMJ6YFUN96ANGx8fHkUqlMD8/70ps7ZS0222Uy2UAcI4iQYVwOOzVJ1oLGlhduxh8JJhAAJIltBTMJIDMtZeOLGuxq/6lg0awVBnq1FcsP9br9ZDJZNxxDCpns1lXVofgB8F/PhvbzRRuynqBc55LXUyAnEFQEhbo6DYaDVeujXp2I4lEIhgfH8fhw4edndXr9RCPxxGLxRyLWjP+wuGVsj2HDx92favOOQCn24Ggk27HRUvDWKfPF2AmUJ1Op93+HbR5FBSgI63ADvXu2NgYJicnMTY2hrm5uUBfc87xhwGTXq/nnlPnA0vgEFjQjAE+A+0vZZbSXk0kEu4dZYCJmX8AnF2Wy+UwNTXlgAQFy0KhkHsXlpeXceTIEZw8eRKVSsXV4t9IFDDYDitxJCM5KEJwUIFIG9y074ECkLSp6c+QIEUfJhwOO5+KwCftbFvaRPUORdcxBg77/b4LFFsGqd2gkOsf10YF0vkclqnKoCQ/5zqkPjWD9/T1FPzkfTqdjtMf7FvLmF3PDx/U/2yrLRfHNV73HlG/2gZzdRw1aK8BVS3JqXqQvrYG9lmei9fnXKhUKojFYkilUoE5try8jFKphFar5bK9iQ8wy079QYKruk8KN7FU5jFxEdof/X7fgfg+YJbrPvtTwWfOH7WnqKNtMEd1HtvL4xXct8z3QQC8jk06nXaBKtqoOj8UV+AzUyfbrAadi/yfOAzfH7VBfGuBzh39jEHudDrtdDXLwWkber0exsbGHPGx3W6jVCqhVCqtIYbqWGlWpgLZfDe1vDHbZd83nUtqG9mggD3HynYA8pHsnlxSIP3f/tt/i3w+fylvcSCEi4gu0GR3DQPo6UurTiSdC7sYbEd0sdSadVykuShrGrX+7MVLrwoaWFX6NC7YdkagNQJqo7YqahzRePCVclnvuTU4QSNA0+bovDNlnPdYrx+tQlTWvSphzheNolpld9BlUIRdDTBGyH0KbKdEGS+aFqjvqxrJKgwE0TChg3A5jI+VUeR8/8pIX69NzbYptKo79Md3HepIOsMEphW83AlR5516iesfwV+taWkNfW0PQW+umbatus6pI2T7Ttdj6lh1qpSh6NOh1nGz5bpUd+tmkVq6xj7zRn2uTj6B7kaj4Vjn7Fuy9jdLXFCnUOeNgtMUnYMsT2CdNx0H9iOv57unOtmWiGDPo3BuWd1pgQK1AVXUjqQtog6lTcHX4Mqga6rNxmfRecB+GwQg6fnq0BM4YTuVBcv5qwAIHXjNQrmcZKSr968cRF2tugAIslJ1vqgPw//1GsDqWsX1y1dmSn09ZZVadjiwGmhlIJzvtG/90PXUp/t1DWNbFRjlM1On6ZrC/tEyJj6msb2/6mX+tgCk728rm/E5dBy1fXxODW6yPTb4qQEB61OrntBrsH+5JjP73NpXBOn12nZNs3OC/6u/pvNoUL/5AkE+cNnqT7VNtA0+Brreh/3A4LDPfvK1cb3xHTSfrQ2nNqYtcaN9v5n7W1DZPgvH285jvvc6ThS1NywOQrG2hbVNBr1Dw4j2m15X15z1xAafhrnXVmSkq7cvQyOw3/72t4e+6E/+5E8CAB544IHNt+gyFKZZZ7NZZDIZV8vat2htJHyxEokExsbGHMNGge3tCF8qTe1utVrO4VZgUMuD8N4ald0tUWXI+zJizmggsJouTuBSNwGxwn5UFhdBCWXWqSLxLUiaBnjx4kUsLi4655jf84fp6Gr0UXwABp+DSkKNRwo/1+8VIDrIYK0GEfgc7Md2u41isYi5uTmXts3Ubo0o74To2LRaLVQqFWfscW8DtnfQc3BcWP6lWq16N9e7HGSkuC+9jPT11kTXFP7f7/cdsBqJRHD48GH0+33HcgmFVrN+6BiGwyulPBKJBMrlMpaXl1Gr1dwmWTsp1EdqtDebTczNzQXsgnA47FhuZPPEYrFASvGRI0cCmyoquEnnnn2STqcDTq6CstRNLM9Bh09T8RXs103OuT5YFg/7kPozFouh1Wo5xpmOlwLdXHc3ClBT1AEncK66VUumaYDAJ6rHWRKI2Ygsu6MlZXiOppiTdakOGf9W4IC2htoc2i+8lvYD57pu7kYGdygUQrFYdGWDNH2fx2kqOvshGo26jc/PnTuHubk5lEolZLNZxONxt4l6p9NBtVp14BWzJKir1Zbl/TknOp2OK3cTCq1k27EMDFO6NdVeg00cT5agoS3Ljds1eKN9znFhUCyfz+Oqq67C/Pw8zpw5s+G8Yt+tZy9uVyzgs917jHT1pZdng66mDvWxwa2vo/6YAllkbVNoL3MzbfrB6vMw+5PrNtvia1uns7LR9Pj4ONLptPMh2A4fO1h/qPuYzaIZRiw3addRvQ6fnX4KdQVLbWi5GmXRs33aTupVDWBSLJhtn4F6XnWoBfs12Mj7RSIRF4Tv91fY46qLuX5qIJ12FNnttANIKlNAU3WfstRrtRqWl5cDe7Hw+ZjpxEw96kYNUOv+NsQFmJnAtrJvLXhswVH1r6l/iPUo5qDAuAZsNTOC/UO9FQqFAvrPYh4K/Nr2KQBv3zHOS56vmARxFOpYZrQrlsJgkA3423eNNoMNZPjOUR1s28E5xEwBLVULrNp5DLLYkrt8N2ywy64LWqaJouQTfYd0TbPBLLbJii9gouUN+f2whI2Rrt47GRpI/8f/+B9vGMnkYrDdEiOXm2jKGBeg9VKNB4m+vATQ+/1+YAHbbNRskHABozLSFBwu+PxhYGAvWDnWCFMFpY66NWx0DAYB6RqBpVOqaWg2CuwTVQilUmmo5wHWbjRJZ1ANnkE/qjip2G2EfFD0+SCJjdYDCDAGuYErgECd4J3M4LDCWq+8jyrC9QJMHA+mjtOQutxkFDnfHRnp662LBhyBYJYLNwun3mg2m4G1lQZ6OBx2ZTFCoRAWFxfR7XZ3dF8KXscH5rI2qDrH3GOFYCD31iiXy2g0Gu6zfD6PpaUlVKvVAADJ+yhIocCyL4irADg3bqXdQAdWnUXLarPODsEYSrvddnXLd1LYn0wLBuDADPbFRmwh1U8EDLrdLjKZjKvnST2l/ecjLHBusa8sW5vjRBuBc1drmRLk0BqmZHPpc3D+93orjHzOe7ZZnXJ12PWaTPkulUro9VZKBtHx1bIAfH9qtRqy2axrs48Npu3ivQhSdDodVCoVB0TZ7C9tH21A2ofsL83utP3Lcxm8AIBUKoWpqSn0er1NBb0vtR7TZ96OjHT17sizQVcTbNMgH9fPQf6MMlC73a4Lsqo9zaCZ+tXq7/h8UtVRlj3OcplcLzU4bMFc9Yl53UGBTR+AqQAfnykejwfKxLGNGmTl57acqYK61J+sHe7zkbUPqHe0VJdeV7EHnw/JdZTtY41y6mx+r8EABqKZja22htVxtu91HrRaLedj67rPflPGu/aPgtvUtdo2LacDrJYksaCrXSfZB/qjZDa9pj4Tz9O9YBggsIC0L8NQRXW0BdH13bLnaJBeAxbU28DK/jO0ZeinKtFS35n12qPzj8f42sQ+J2mFc1ptUf5Y28Q3XorpKOiu/aP3tm3VYA3H2/YfxQY0fHiVfWbNttF5vp6MdPXeytCI0lNPPXUp2zGSLcpOOeWDxCpnNXwYNdfF0UZAL7XYaKuvHfxcnXVlcyn7kOfa6DeNEjVYNvuMvL6CEFrmh4agKiaKTWvnMcq01mgyz2HaGyPp/PEpiYMmg8aBz8VNwHq9nqtTrxkJPiB+s/fn/ThHWEOZ842GfqPRcLUbrdOt86xer6NcLqNarXqj2Co2MMK2XErG20gOhoz09dZEQWdrIBMUrtfrDgTV9VgdaGBl/SG7e9iyXZsR6mLf9XRdtM6RgttkgwOrZciU4WXBCLLANHivDpAGcAE4gLLf7weAEG2Lj/mj9oYCxGQTK+tOj71UQkebLDUt+aO2gi0tooQErv8MIChAo/q43+8Hrq2bovHa/X4/YL+wf3k9vRbHjPOaNgGAAPvb2nrAajAYWN1cLhwOB5jb/M32cPM5bYMCSHacOMbca6ZWqwVq7vK52UbqT91MVEsnkrQCIMCKtOQB3rPRaGBmZgb1eh3j4+PI5XJuHyLOSyVdcD7zvIWFhUB99EFA9nqAx07KSO8fLHk26Or1wCkgWGLBB1L51r+NiCa6dlowzdrLWqpCN6NUEHYQcYrrJdcYrllsp13b7fPrNS2Y3G63A0Cq9cX5mYKjPjCSOsgCwPrbnufzhwms8reu+wACGzhT71AHatDCgpkW8PWBqoo7DPrOAqvhcDiwWXcqlXLjTduNARP6avSrU6nUmn5gP6o+saxwxRnszzA6wPq1FvjW7zWgofPKN9f5t50j+m7a4xhQUAJIt9tdA6TrMdYnt8+tbdaxtHpT5w4z93hep9Nx2ZT0qW37afvo+8sxJxCv/ajf2f5kezSb34LkCnj7AgkafLNjTVE7DNi4/MtI9ocMDaRfeeWVl7Idz0rZLgh+qUF0ChcMuxhyUVDFNMjYuJSixom2Q40kdXK17da50msqAAGsBeo3K7wnWY2xWAzj4+OuBMDY2JgDey0jmSlqTOMn05oOpD6rLRfDGuyM3FOxaBr9QRRVtD7lWyqVEAqFHMO70+m4lHpN4/MZbcPcm787nY4DnxYWFnDu3LnAXGu1Wnj+85/v0sctK5UGf7PZxOLiIs6cOYO5uTnHbPeJL/DS7/dd1oRV7PtFthNkO8hzdbdlpK+3JgR+NUVZwV+ycZTBBAQdfDJnuAkhNziq1WpDbUi4GVnvnbBgOoFdBuxmZ2cDIGSv10O5XEatVkMoFEIul3PnEmTnZtgEKpVppXqY141EIg6YVMBCmUDtdnsNo9znbHQ6HZfeq9lXDIqrrr4UwrJb8Xjc6WwtA0Qdq6nZtVoN5XIZ/X7fsczo+LH9yvqjA8hrEuxl6jTLmxCsIWhNAJv6ho4uASGObyQSQb1eR7VaRSgUwtTUlAMGdC4RICHI0Gq1XFkibiDa7Xad3lNbRZndHB8tPeSTRqOBxcVFxyztdDrIZDKu/BDnHwBXxiGdTrt+5jubTCYxPj6ObDaLcrmMhYUFp4utE9toNDA/P49Op4Pz58+j3+/jBS94Aa699lpMTEw45nw4HA6UYyTTcXFxEd/61rdQrVZRqVQArL4P7EN9HxQUVDBkOzrRyn651khXDy+Xu64eBCAqs1MBYh8rnfqE51lWqG++UbcAwWxu2xauLbTBWXqKJUEIGtuApwq/V0a07j/CDJyN7HJLyiEb2PqzKgT3LFintgvP8YHQFsBWUVYsdRH7RMvd8ZrU47re6vXVl1bCF9thwU3LVtbyKPY46lb6dwy45vN5d2/2rQLpWmaX1+Jm7Uq0ow7VsjIM3PIZaZ+ofUj7SJnaGsjRvreBFxtMpliwnmPL/tRgxHqEMQvOW/stmUy6LEaOJTcdZ3be8vJyQBdr230BBMVe1Ha0QR6+l+12G/V6HcViEf3+SqCdY3H8+HFHTtBggwLpvAbnK6so6HvNe0ajUaRSKRfIVxvN4kocB7Vr1R4cFESztquuCWobsw3DYBMjXb23sq0aB08++SROnz69pnbZv/yX/3JbjXq2yFYmsF1sdvMlsJEzGz27FI7BMGIZuBbw9rXJKhifccXzt+ucW6WRSCQcE6xQKGBiYgKJRAJTU1NuEecO1BSC4qwrSudSv6dSUKNBGQR2zC418HCpxRofFP7NMiuhUMixQnUjISozy9QA1gapfPNZ+5EKm0ELBYq4W3yr1XLsP3UCeD7bW61WnbHiE3UsaKypk6Fju9+U5Ejh752M9PVwos6JXf/5XikoZpkmCvxqvVGtObobYoO++u71ej0H+urzsp0M0un5XCet8W/XUQta0Fm1OooyrB7y6W/ef6fF2gYMXDLQnc1mkUqlnPNOp7rdbrvavXTubdq5Olt8LmUTah8Cq04zn5/9zb/JkCIgQPaf1fPsYzLSOTf1OHtvBYb1GlrrVue0JSf0+/2A4zho/afTHAqFXGBFnVl97/TebBt1IFnp1IfMAvHVEyYYRL3dbrddBhufRUEx3VeGQZ1isYhms+lS7XmenUsKKCizT8Gu/SYjXb13cjnpah8By8fOtHaxFQusU6ztr3rYBtHs+mZ1ooJiSkiyOsq202dr+9bHjcTqRXtvBY/tvQb5soP6x3eMBf/0M/aF2jJqAwCruspm9ekzkVGsWWgK/A/S87yP6iTVN6pbtWY213D2J20zzg0NarN/GJjl+QCcDtF5asdY9ZRd7/Vvn79q+8kGXtcbV72HFfv++SQUWls2SvtV9bmW+qP+1Ky2Qc/ku7ZPdB7ofNNgFveXYQBMsxZ5DY637nejBDdrqwBwwQMNmgPBvfJIhvHZrNZWts/kG0OLW2lgaVgZ6eq9lS0B6T/+8Y9xyy234Dvf+U5gwqiBOJJVYSQ3HA4HAL3N1mrWl2V5eRnVahXlctnVF9tNAFsXKgsULC8vB1JthomobeX+QHBzFdsOjcwOusYgw0LvsVUJhUIunSyRSODw4cPIZrMYGxvD8ePHkUwmMTU1hYmJCcTjceTzecdyYzScQnYF06qq1apLeeJGYaVSCe12GwsLC5ibm3MgLlmEakQQYD6Ii6gFg8i0t8LyBZ1OBxcvXkSr1UKhUAAAt0ERN0Wj4hwUAbbzjfcmi4UM8tnZWczMzAQMxUQigb/5m7/BoUOHcPToURw/fjwAYFWrVczNzaFer+PJJ5/ED37wA1QqFdTr9UAbQqGQ2zg1mUzi0KFDTukTzKlUKmg0GqjVaq5NvtIJeyUjhb/7MtLXwwuzSxiw5GaIWi+Tfcg1mU6E1uYEVt77VCrlSlbsto6mqGNC4FXXOZar4PPz2ZgRow7z2NiYYyMrG8c6RVp7lM+t6eBk+5Kpt93n20mJxWKYnp5GJpNBOp3G5OSkyybKZDKIRCIus8myzAi6cl1eWlrC7OzsGoCENkqj0QgEUq0zRTCA12S/kimujDhNlQdWHHBts5abUcCf2QW8r5aw4byNxWIYGxtz161Wq+7vZDIZyCqwDisAl0VHYNuKOo/z8/MumMznU3tZAWjq7Egkgnw+j0gk4jYB5nusQYf/z96XBkl2VWd+mZWV+1579abu1oIWsDU0ISQMMmCExXgsC2E0YYeNMSiskYetHWYQRoEAA8MyijYBAhQjIxgCkCMYBSaMjYRtxAi1h5Awga0FtHSrl1pz37OqMnN+1Hy3vnfrZW1dXVXqzhNRUVW5vHfffffdc853vnNOs9nE7Ows5ubmjM4lKL6wsICpqSk88sgjSKVSGBoawsjICDweD7LZrAEOyMp87rnnTCNhm1XJvwEgGAxibGwM4XDYjKPdbpsAO+v8E4zfKXqup6u3Xs5FXa31i7vZ1yyVoYCn6lKtF05xy8TVoJcC0Db4CjifVb7ebi9mz2hwTPd4HYMdaNZj2kECZTW7jYP7rDLatRSYXr9dDkNf0zIwNlkHcO7N9hgVYKZfo+Qg+pmaXWSvT73P3fYA+kYMEmn5MAU3ybJnhhP9HLKGmSWUSqUQCoUQiUSQTqcN41j1mn2f9F7S99NAsmZ/Mbur0WiYkiC65jQjmnOqjHtdJ/yuzWTm+3YQ2g5w23uCruuVcA7qyLUEqtwCJhyH+sjaC6XdbhsSIH9oa/DctGUo9hzaJLBms4lKpWJ+V6vVZUGM5557DrFYDIODgxgeHnZcX6VSQSaTQb1ex+nTpzE5OWnsEOpsPqu838RkSITgPkLAnhmmboQQLTNnB0w4h3ZQT7/PedX9Ya16tKert1c2BKS/5z3vwf79+/GDH/wABw4cwE9+8hNks1n82Z/9GT772c9u9hhf9MJUagAORcSNfj3CB4bsGQLpmka6FaIGgw1ikxXlFjHd7DG4gfl2Xbtu33X7e7OEm2I4HEYqlUI8Hsdll12GkZERDA8P48ILL0QkEsHAwABSqZSjaaudBgYsKZ1Op2NStxcWFlAsFk1d7tOnTxtlo0B6Pp83c+TxLHUyZ3T9xSicD03ZsoXKj+nZ5XIZ5XLZcV8AGMPMjkIDTqYEsMT8b7VaBuyuVquYmJhAtVpFJpPB5OSkwwhhSZlUKoWLL74YnU7HGIR9fX3IZDJ4/vnnUS6X8e///u946qmnjNGq4vV6EYvFkE6nkUgkcOGFFyIejzsMGjYJzOVyJnKujVZ7cv5JT1+vXZT9QiBdm2QSFGi32yiXy44gnjqBZDXRuQDcWWtbIepIujHFmCVFfaqAd6ezVGcyEAhgeHgY4XAYxWLR6Bg3hh8bwKlovw4C6QpCrldsZ2Wz5tbv92PXrl0YHh7G0NAQLrzwQgNiK/NNnSGmg4fDYVNj1efzIZPJYGJiwhF4aDQaKBaLJgBLnUKwQoXObV9fn3HkI5GIAVfIkmdwXO8bA6+0MxV0ajabxnEMBoMOh5YAO7CkO/r7+xGLxeDxeIy9QX3k9/uNLtYgAZ1tj8djMq2YEm8Lx0bbhOfx+/2IRCKIx+MmRV9BCK5pv99vAjzlctmsMRvUbjQaOHXqlAk4M/OLY56amsIPf/hDBAIB/Oqv/ioOHToEj2exWTBL4mSzWTQaDbzwwgummaquQXs9B4NB7Nu3z5TRARbtiOnpaRQKBVNKQgMEPTk/5VzU1drQWAE9BQoBZ+YN9yGb0cvj8bftAxKwCwQCBviy9R6PMz8/78qYJnismT020OsmGrBW0FGBbpYd0evh9dIvoB9Cm0ObnuqxbNDZZhXbIJ7+ze90E/qY7AnDgCPxCzsQ3431rHuZsuqVaGT7XICzNjTtLc02CoVCiMViCAaDGBkZMTpiaGjIZIyFw2Fjv/B+aF8RLYmmWU96DSz/RTCXmXUAHCCzgtu8D7ZtpMCxZi2TSW3bZqqvOU+cP83OcCslZgs/p+UKbT2jID5LwtnZbHofuZapj0kYtLPpARigmq9z/JwDLWlCG4GEQTtLm9fJZzsUCmF8fNyUsKOdVigUcOrUKdRqNUxMTGBiYsKsZwZxNIBF0sHQ0BBisZgj25DfIbDP+89jKPhtPw/c97ifcI65Z7llLqj07IGdLxsC0o8ePYp/+qd/wtDQkFkYv/Zrv4ZPfvKTePe7341//dd/3exxvqiFipKOJJlerHXZ7QHS7+tx6LSwnpvtfG2F2EaDWyqcGkNn8/w8H3/0ve3YhKhg+vr6kEwmMTw8jFgshqGhIQwPD2NwcBCpVArhcBixWMwwxtRZd2MLqIOsyppzzCZdqVQKyWQSfX19iEQijgYwer+UrfViEY3QuzEC3D5vB3TsunUaOednbPYpjQdtQlStVh0/NDIVRGdknQ737OwsEomEMQi9Xi9yuRxmZ2dN9gBZe3a0mmskGo0atiTr11Hh00BoNBoIhUIG3Gg2mzviXvci51svPX29frFBZU2xV6a1re8AZ31QHosBv+1kFNJhYU1rdaTtseueZwcIbKdRQWUN2PF17kF0ANWJOhMdtFn7gQa9maWUTqeNHlXg2gZGqIfoQCngwddYj5PrhKng/f39SCQSiMfjhlzBHwa9lbHmlk2gc8E1yLklyYH3Ue+nglv8jg1m6DFJjrBBAtsO5D3RDA2bebmR+6Pj1zTuubk5s560yZ0C6TbDjWXW1CZSoIkgGmusAzCAd61WQ7FYdGRTuF0TWY39/f0G1AmFQg6bNRwOO7LWNEiwE6Snq7dezkVdbesL27YG3MFUtzVks8GBpdKIWhqK+xT3Cd3HbIKSApbUj/ocuvkFbuL2ngKHek67XIfbd20/1g7YdRsL53UtgBzHpSC3nltBVP1fgwTdxqH7mO6vfM/WS4CTvc3jUpdpbyvW7g4Gg46eGSQusNcGAOMb2Wxq+oBa/9vez9vttsnOYlk3zRygnnYTG4NQ/aUMbP5Qj9nPgc1MVrur27nWiinp8W0bwg1EV9uG88ffahvZ4D4xKw1Iqe1hA+TMEmP2F3EzxUGazSZqtRra7cXsrmKx6PDtlWhKkoGtX7XcLkkFzPhmYIP3ifebwQObcMf5WWm+uR+p0FbSOebv1fYcPX5PV2+fbAhIb7VaiEajAIDBwUFMTEzgkksuwb59+/CLX/xiUwd4LghLTMzPz2NychKRSASxWMxEQrXGcTfhBkImzczMDE6ePIlCoYBCobDlxrc6kEwTJmuKkXUqHa1PuVnn5obIgAIZWUxHo5O0lSxAbnyxWAy7du1CNBrFxRdfjEsuuQSxWAwXX3wxBgcHDRtam6IoINHNUeYGSwZyp9NBJBIxDLPh4WHMzc1haGgIo6OjKBaLiEajZp2cPHnSADrlctkR/QW2rnntmYg6m1SkqzGumX4ejUaRSCQwODiISCRiQIx2u23AcDrgGrDgPAFw1EAn+7vRaCCbzToaFKmRVCqV8Itf/AJ+vx8vvPACHn/8cYcBV6/XUSgUTNqYgioAHCyb0dFRHDx4EJFIBOPj46Y0DddGKBRCs9lEOBxGuVxGoVDA9PT0ijXXt1J6Cn/rpaev1y801KvVqglYe71eJJNJDA0NAYBpgqRMuFar5WCQAYt7RiaTMVkiKzm0ZzP42263jWMRDAaRSCTg8/kMG9rj8RiHgnqV+jscDqOvr8+wlOhQdDod47TOz8+jVCphYWEBoVAIqVQK7XYb09PTpvEzdV61WjXlyTaSLaNzdCbzxX24v78fv/qrv4qXv/zlpmElGVYMViqIQGDdTs1uNBoGwCb4HIlEHI58p9PB8PAw2u22yVqo1Wo4duyYYTsXi0UD6gAwDh5LyqhuUnIFAWKt48nAibKmIpEIgMU1XCgUzHiZRUAdyONxrQNLWRu0Qzwej2MOOKd8JtZi31IIQDMAEQwGHc1LyehnRh2brjOIzWwA1qunri4UCoYRTz3PeeNxARi2YLPZxNNPP43p6WkAMDqd9kG73TYlm+zx83r37t2L0dFRo6sjkYi5N51Ox5R6yeVyAIByuYxSqWSaqtnrlPO7VXqwp6u3Xs5FXU1gW5smEjSkKBtWhWtQv6/kLPqg5XIZ09PT6O/vR7PZRCAQWNbUWdnI/K6SYmq1GkqlksnyJfOa+5ntJ9nAJcdJwJ7sWPtZcGNiK4DNvZhZKl6v17Dn3ZjO+n2dTxsQtudaa34ryUp9LBtYV7EDyzoOZRsrU5r7rQY5eN6+vqXm1nqP6d/TZgkEAhgbG8P4+DgCgYDR1eFwGMlk0rD6lb3OnmI8vw3+csw6D51OxwDzOv9kJ3c6HWM/KQCugLSuF63VbpcD02CxAqjUp2o/8FhcQyR5qM/J8+qPgtC8Hzomgs3MstasAV1HBJzZ4412CUvT8l60Wi2TIc9nS/1q4jc6D+122+hq2qC0TyuVipkHPh9koReLRUxNTTn2EDLZFxYWUC6XTTk6YKn0IHX14OCgwWbGxsaMzcZxcb0Wi0VUq1WHjcd7pkECXeN2QEJ/23uGnb1CG3I16enq7ZUNAelXXHEFfv7zn+PAgQO46qqr8OlPfxp+vx/33HMPDhw4sNljfNELNwxGznK5nAEC+ZBQ4a4EZqpzT5BMgbetFFth2qVd+Pd6nKj1nl8ZyXRwFETfauCQSpl1thKJBPbv34/LLrsM8XgcBw4cMDXcaDCs59gUrTfGFGwa4NyQ+/r6DIhKp3pqasrMDev0d2Oj7WSx2SPaedtNPB6PmXMC6mQwBINBcwyC4KxbqwY/DSfWH5+fn0c2mzWpXqxPb0fwAZi6rAAwMzOD/v5+B5uDQaBu16BsjHg8bhQ+jRg1lGjYtVotpFIpeDwelEqlzZv8M5Sewt966enr9Qv1C0EAllliGQsauHQ0uD/wWVWnamFhwfQzcRObtXu2hDYHwdlYLAZgqemigp8ahNYa6soc0lqudvCADiw/S31D4JVzeyYM3M2YKwVKdu3ahSuvvNKAMLZDqzYNwV3+r6xIdXwBmEA5gQuek/aclumjU8y1Qt1DUIAAuM6B2kLUiQT0mf3o9XodzTs1g8lOHefYeDwbVLFLBehaURanAuprzUwk0MW50lIHOh8s10ZdVygUUC6XTX37cDjscMQzmQwymcyq5+d9BhZ19czMjOsY+Vm393jdqVTK9MIhAKR6ng3nfT4fZmZmzHroxkDsds6zJT1dvfVyLupq3Tu6+Rk2oKnftdnP/FszpxqNBsrlsnmeWGLCZu3agLcdhCRRhgE4ZZraekr3M7f3AZhgK/c1tRncSqIo+5vXpwxmDeYqEM3vrCSKL3A8nB+bda6/u+1z9j3R89igPK/ZjVXfarXMXCjASfCbY/P7/cZnY6a39hZjuRfVOeztwfJnWurHDfikbcTz0lcjKFwqlUxmMO0k2gHK7LZ1Ie8tf9v4hL2/q0+uYLg93wrY2/fKJuW5jU0z62i/0C7r5ldrDxiC6rQB+UPWNsfIQDxtZ9sG5DhbrRZyuRzy+byDnU4yC7DU9JXvkcBJoFyDNvTJeV20w3SNMWuM/nQ8HjfZY90yFGgv20x0e3/TZ4n3X++7Bj1oU/O467Gberp6e2VDCOeHPvQhwwT5y7/8S/zWb/0WXv3qV2NgYADf+ta3NnWA54pwoVcqFczMzGBubg7JZBKNRsOU+LAjsfyebnCTk5MoFAqmUdJ21j/mNakjTkeQgLamrawnVaXb+ag4CH5yXng+/qhyOdvCTS+ZTJqI5sUXX4xUKoULLrgAo6OjBrhVZ3qzx0CHMxaLYXh4GKFQCAcPHkQgEEAsFjNRWZ0zzptb7dydKDSaafiulHXAyHg4HMaBAwcwOjrqaPRKxhuZE7VaDblcztTE0xpxyoJn8xnWSHcDG1YaPw0HKt2VStMATqOX98ktxV8NJ/3cSumXPTn3paev1y/U1ZlMxgCYPp8PzWbTOFMej8e8zlJepVLJZPvw2ZuZmTHBzG7n2ipjVtkwdlqtx7NUhoU2hYLIChao461lSDT7jKwmYMn5UZaaXVZjK0T3R6/Xi0Qigd27dyMajWJ8fNzcR45R50CBBXWGlClJ59+u/c5jahAVWGSaDwwMIBgMolgsor+/H7lczoDhGihmQ3GCBjbQQrFBc0qr1TL3AHCuAU3RVrBfG4TxHHxNHT3qGD4r0WgU8/PzJsDM0mbdhOcNBAK44IILzJwkk0nzfLHucbvdht/vdzQwZdkVn8+HXC5nmGh0trU009kWnQ8+C6w3bJebAJaXcLCFr/d0+Lkv56KuXimYpmQVYDmIbgN+9nG5p5GQQgZ6IBBwANjaxJPPpGbwkGnKrBU3AM0WmzRjs7dtPeH2fT7XCprqvsDxaiabDaryWBpc0DEx0Mvv2veEoL19LW7ArI1R6Fg4DtoCqi/tubFFAy3UO9Qz1KnRaBTDw8OGqBaPx00TcC3novebPjHnUnW1BmL0/Bq8oR0HLPqTyWQSgUAAlUoFPp8PlUrFQbTSYI3iI6qHuW4473xPy40q+GqDrd38OfUH3d63dQjPxUAAs6WICWgAR20mv99vsvXYu4TELt4HPn9KEiNeowEs6kQF+5mBoH63HYBpt9vL1jBtbH3uaOsoyVNtIG3mzmvSc9jPL58nt4yGtQQJ7eCN2/vKRN/ucpA9WZtsCEh/4xvfaP4+cOAAnnzySeRyOcOA7Im7tFotZDIZlEolRKNRLCwsmI7D4+PjhrHFlGk+yNVqFYVCAfV6Hc8995wB0XO5nNnAt0tsZn2lUnGw07T+mLLT17tO1Pkmo5oMAk3Z1ZSkrQLRPZ7FlPjdu3djdHQU+/fvx2te8xpzX3fv3u1olMLvbaZQwXU6HYyMjCCVSqHZbCIajSKXy+G5554DAGSzWRw/fhwnT56E1+tFtVpFOBx2pNTtZFlYWGywylQvG0SgeDweA5onk0n82q/9Gg4ePIhgMGgaiWhkPB6Pm3X885//HMVi0QQebNCJhraCQWsB0YHuDWFWA9K5fmioKJjOz/AZA2Ca0JH1tlOkFznfeunp6/VLu91GNptFoVBAJBLBnj17EI1GUS6XMT8/j/7+fqTTadNAkM9foVDAv//7vzvY1kyXXe18W3VddFCYrsx9X4Fj6m9el+51gPNZpOPl9S423PR4PIYFTKG9wyAkCQB00pRZd7ZEr4sp2xdccAFe//rXO/qW0CnT3jM20EEHkCw5dZ6ZtaQlurxer6npqnPLHiksx1UoFDAxMYFOp4NyuYx8Pm9Kr+RyOVSrVSSTSQOk0xaivaMscGApBZwOuDIwKQT4GRRSUAFYqjGrr9ugip43nU5jZGQEs7OzePrppzE7O7uqQ0iWWyqVwitf+UpcdtllJmhFsIwsN87X5OQkJiYmTPPTSqUCj2exMSjBCAUzNnMd6dzZ76nty/lkWruCPCpumWwq26H7erp66+Vc1NXsFUDfx7aB7etS1qy9BpWVzT2Dfgxt5EajgUAgYIJ5ZKhrDwsAJrOb5a2q1aohymipKlvn6djcgDaybnnNNrBt70lugC8BRfoZyvLlfqhgsPqVWsILcJaQ0UAyg62cV3uO7WAy/RANUCjAys/pNajPrteuOpDn5P5IP4d1qunDJJNJ7N6925RwYZCVvcWIn3CP1dK5nGctm0Gbh36fzo2uTerOVCqFQCCAZrMJv9+PUqmEfD4Pn89ndH6lUnEEFWjf6P+8J9QVvA92QELXHP/W8bg9PzZZ0W2N6r1jwILZWySH0T4joM5nh4AzWdvj4+MYGBhAKBRy9P7SIJeWZ6GurlarZmxqAwJwgPi0s+xeL/ws77WuMQXn+VwwmG4D2lyLHD8/z5K3bgE1PjucE13P9n6l57ODHHqvdF3S3iqXy6Zfy2rS09XbKxsC0v/4j/8Yf/VXf2VSgwEgnU6jWq3iXe96F/76r/960wZ4Lgkfcj6MTEUJBoOo1WoOAJ2bTKfTMRs0wcNyuWw2/zN5gDZLFFRkqo2dzmWnoQFrA5Nt44U/PJemH2uasZ7Djv65GUYbFW6CTA+igh8YGMDAwICJ1qoxc7aE16rKLJlMwuPxoFAoIJVKodVqmeYpnFMqyp0uHC8j56uVBSA4EIvFzD1hOprN1AuFQg5GISPpBNL1mSRosdFnb73fsdew23G6HbPbd7dLegp/66WnrzcmZAOTscO9h06wpn5rCRM6ItyjduK6VX2qjhL1N+BsRKaOh309tk4ng077b9AmUL3tBkKuNuYzEXVW6ajHYjEMDAxgcHDQ6IBu7EOge3M2dYIJniijyWaY0SnWbIZYLIZOZzETgr1PWI+TjEv+tsdlg9w2GG6DFvodN5vMvi7bOXRjvtkAOwBTinC1QLOCH7wnbJLOZ5DgB4M2ai+71XPdbuHYgCVmnD2/9t+rHW8r95Kert56OVd19Wr2azexyyAo+AYsNaLUz5K97ff7HSQv3dOApX5HWtbRDjC66To7k8TtmnSfdwsI6OdZHoR61sYA1Nawdafb8W1/1/6tPoH6QbaOcgNzbeDPZuXSz3djTbv53raojqY/xtIh9OWYZUwwU/1dzapy87n1+lfzjew5I4AKwNQAn5ubM70uqKfsc9prwhZlpK9GKNAghT12BWbd9Ix+3x6bBj26jVMzoknoIlmLLHTticIMEQa9eA6C9jbIr8/xatiWfW+AJR3L79uZLrq+3Y6na1afXXue3Na1LfY53J452zbjeuW414Mx9HT19sqG0LOvfvWr+O///b87lD2wmL74ta997UWr7M+26CbHWlCVSsXUTWdKmm46CqTPz88bVhKwCMDbym+1etGbLWrY0GliLSoARvFwk1W2ukbOV2Il8NqYitdutw3jSxnp2gSEmzmZCapgW62WYR1o5+eNCMHzeDyOl770pbjwwgsxPj6OPXv2IJFIIBKJdE3FOlvCc7FOZygUQrvdNhF0j8djGmWxNEkikTAsNz3GThHNRMjn84Yx3k0JeL1epNNpXHTRRUgmk0in08sAdIrH4zGshmQyidHRURPcshuHdjMwz6bwugGYWsuhUMisawU7yE6sVCqmETGj/ztBegp/66WnrzcudF4LhYJhiDEQns/nDdOaLJhKpWJKeKmjsFPWLnVtu902+5umU6fTaYTDYQNOErAElspS0Ulxc8LJBOL+Ayw1dlJdzTRcZbQpw1ltAu6/WuN0I8JrDIVCuPDCC03DMjLRCWjzs3p9vDbWsNb0W64HHoPNWRmYUHuI64fXEYlETC3fwcFBkzrOvht00t2IA8rqo+1o3wcyzux0cqZDa0kybdjJ97XxNteBMr7IGlRbbXZ21mRR0rZa7Z6Fw2EMDQ0hmUwa5iXnVcfMeeKay+fzKJfLxibciudsJTCIwTZgMfuPQMPIyAjC4bBJb2fQjXbzauPejv2jp6u3Xs5FXa1lwej7UmxAGHBnqOtv1Rk8NvfAhYUFwyynXtb3bX+SjE9mkHHNKwjnZvsDzvrUFNVhmvljk8r0evg+r8uNEc1SIkpWI5BMnMAuYaPjtOdWM3l1HrScGH1D7lcAHEApy+hoGRZe09zcnAl0snkzj8/x8t7p/eXeyQaWfr8fIyMjiMfjJsCqJTu9Xq/x3RQM5fGBpYa0em+oW+zAgc2c5z3Ue93X12fqslPnNhoNs9+320u11dWO4BrjfbDBU2U128Fr6hWC9VxrHLt9ffo9HkdLqFBIdmBpNPqZoVDIsWYZ0GDN+ZGREYRCIQwNDSGdTjuyQ9Sei0ajCIVCaDQaplwbme9KSlP2uD6rGmDS69bqBjyOssj1+vUztEX57PAz9XodhULBgVfpPSf+QIII7T5dO3zmVW9y7Hy29RnUtcF5IGtebcQekL7zZV1AOtMTO53FtINgMGjea7Va+N73vofh4eFNH+S5JKrwC4UCPJ7FVFQ7TUqBdKab6cNCtq2yv90Y2VshygTQlDOv12ucSEYnqSQINKhCUdENihsXFT6BQgLpBO9ZO5sOHlniIyMjZuNkM0YCI2wWuZGNyONZrJE7PDyMoaEhvOQlL8FLX/pSpNNp7N692wDT2wFKUzElk0l0Oh2jkIrFIorFIiYnJ03NVa7DwcFBR5reThE+C2SOFAoFU0e2W3TZ4/EglUrhwIEDiMViJi2P76sQhOjv70c8Hsfo6CgCgQBOnjzpMCK3S7j2PR6PaXhDpU7DmcE3zhE/t13NiHuy/dLT12cmGvQuFoumv0Sj0YDH48Hs7CxCoRDm5+dRqVTQarVM5gsbC9br9VVZRlspynjh2Gg7MDinQDq/Q/3hljZLUee8UCggn88DgCmjwkA7wUTqf+5fdHDUwVQ7iE7+mQDpTE3ev38/XvKSlyCRSJhmZOrY6Pn5P+0w2i+cO5b6IQmi3W6b49l7Lx0krhcC8FqHPxgMmqAMA+CsM06AiMCL1qRnI1e9R6z7qeV06IhSr7HsCkEMsvWVmEGghM9Do9FY5szyXmUyGVPGh427VxKPx4NwOGwCCf39/QZI5z1TNlwsFjNNf3O5HEqlEnK53IbWxEZkpfVHAKfTWSzzxID+/v37MTg4aO6lPku0P3ea3dWTrZNzWVezhJi9DwLLWeKUbmA64GRRa3CQoDL1GnU1sASEabkIBZjV/1ZWsQLluo+pv2hfl5Z80J4gbj6mDfpyLOo3UhdoVpc2fNS9MhgMupZydAtG8Jz0F2wgXUvL8Np5bayTTdY49QCPv7CwYPQYr0drZCtYrXsf9Tt963A4jOHhYaTTaUQiEQwMDDjqcDOgoOXHON8rAenU08QYbCCda4PrxQ5ER6NRAxKzd47aBNzjFQBWm8oNSNd1YwdoGHDVEm66DjUIw2NroNxec3yf4LlmZwAwAQGCzwTS2dx1aGgI4XAYAwMDSKVSAJzl73gdvC+NRgPpdBp+vx+ZTMaMm+OzbUmdG45f17VNdCApks8PgyWcO2Wpc6617HCj0UCxWDS907g++MNyM9qLT0kyur+5lWLR51ltTDL33So47BSfoSery7qAdJaJ8Hg8uPjii5e97/F48JGPfGTTBneuiG7gjN5q9FSBZG6ifHj5PzdKAn5+v9+wnbUxA0FllqbYyodRFQBZZ1QAFAVqqWjcwGZuJKrImC5PYFE3NW0ewYhxMBhENBo1TUnokFEZ0RDgMezUvpWE46YySSaTSCQSJvXMNoa2S3h+MvHa7TYSiQRSqRT8fr9x6GnkECTYKaVeaNTMzc0Zx1wN4ZWEz52CAG5CJaisN5sZsp2iRh4VPpkeNHJ4DbqO+dtNsW+X9CLnWyc9fX1mok61/QMsBbg0iE1jG4AJ5NpMKT7PDAoDW1u2Qdky/K3OI3/UsFfHZ25uzjixBG71OmzAgXaMzpUC1Gz6rLVibVCRThn3QQXt1zpvbF4Zj8eRSCQQjUZNmTMyingsMqF1XmxdokxHAKYOKMfGedDPqV7heTl3dBT7+voQiUTg8SzWUE8kEqhWqybjDsAyO4UOvLLDOSa9dwqkqFNpzyHnVp1jvRfqwLs5tXqf1xJI8vv9pl68zXC30821fKAGZXaS0HalnUrbhQCLst0IZGit+50gPV29dXKu62oFrVV0X7H3fGUM6x5if4fZMto40A6K8hiAswwWP8MgqOogBbTU51Bw0tZ36vfxfPZvZTavNF/8jD1u1dEEBxkgVd1KUbCYf+tc04/mtfFaNWhNf5D+NbOu1FfSe8RAL49DHUeA0taP/CE+wkyecDiMUChkgvFKHOJ9UmZ+N3vKDsSo7WAD6qp73AIf+puYDIPBkUjEUdfbBnTt8ej6VvayLVxPuq70dXvNrRbste053iPOH589297lNeg5dT7c5tu2HXgsew7UVugWOLPPwfuo94rHsV93w5jsYBIJJjp2xaHoXzPgpPuavXbsgJ8+//ybc673xN5b1qJLt0NX33333fjMZz6DyclJXH755Thy5Ahe/epXd/38ww8/jMOHD+OJJ57A+Pg43v/+9+PWW291fObb3/427rjjDjz33HM4ePAgPv7xj+PGG2807//oRz/CZz7zGTz++OOYnJzEAw88gN/5nd9xHOOP/uiP8NWvftXx2lVXXYV/+Zd/2dB1rkXWhZb98z//MzqdDl73utfh29/+NtLptHnP7/dj3759GB8f3/RBvliFDwsbUvX19SEYDBpmLBWpPjAEv8joabVaBjQPBALYv38/hoaGDLOKkT8C70yrzeVyOHXq1JrSRjdLCPQpqEcGOJulKPhHg8dORwKcxgIDAupskJHOFDTOE5tgXHjhhYaJzrnXSCyVXaFQwNTUFOr1Ok6fPo3p6elV50sDGnv27MGVV16JwcFBXHzxxdi3bx/8fr+jkct2C5X8rl270Gw2kcvl0Gw2kclkkMvlkMlkUK1WMTs7i0AgYMCG7R6/AsjZbNY02SUzdCUgnYEnDaCsRdSY2+7rp6hTPjk5iVqthnQ6jf7+fqRSKUQiESQSCbTbbRQKBZRKJdMokU2Kd4pj23POt056+nrjwj2TjSTpNNCRpBFeqVQcxi91UX9/PwYGBgxYG4/HTVkxGuMvvPACCoWCI8X1bDNR1IhXp8v+aTabpmQGsOhAz8/Po1QqodFoIJlMmgZ4tVoNpVIJAIzeU8eeTaGVHKDH3b17t2naqiwhjpElV4rFIqampkxzOLI41zJnXq8X4+PjuPzyyxGPx3HxxRdj165djtRadRxDoZCD1ejxeEzwQOdOgfFCoYBsNuvY42jz8fvURbRdFhYWUCqVDCgAwDQuV5C4WCya4ChL/Pl8PpNBoIC2riey2pl1pWwsnot1TJWNR2YamfZcJ/o5zoMN9jCgQCaqAmJu4vEsZo8dPHgQ4XAYwWDQXCvLC9jp3M1mE4VCAdPT06ZB2k4SBro5L6dOnTI9kbS8IDPspqenTdmjnaLnerp66+R80NUEk5SZqWCT/q2BRwWNqSOUQU5draUlqEOUSU2dTXuafhozd9VHV2Cy3W6bfg3M4p2fn0e1WnXoqk5neRNNvTY7gKZBWN0bdcw8Lj+v4KFey/z8vGNOVFQfuAWgtWQq9QuvtdVqIRaLIRaLmf4VZIQTf7ADCcASkY5BT2Z0sdQO/+b9JL7Bkimjo6PYu3cvwuEwRkdHEY/HTalWMu9Z2pJ6VTO93OwCrg0F3HUe3MgDem1uwDHL+DFLIBwOo1ar4fjx40bHU4drkFTPzzWjWSiKDXE8NtFAf3jfeT9strSKBoO04S6z85kZyM/yGaDPrWXldIxu4Lmuby3B4sbC5npwC67x3ul91fuo65rH0/vLeeAzpNmWCwsLmJqaQj6fRyQSwdzcHGKxmFnjAEy1A7U5iEfpOPU+61pRDMIOdtjguVvAbDXZal19//33473vfS/uvvtuvOpVr8KXv/xlXH/99XjyySexd+/eZZ8/duwY3vSmN+GWW27B17/+dfz4xz/GbbfdhqGhIdx0000AgKNHj+Lmm2/Gxz72Mdx444144IEH8Na3vhWPPPIIrrrqKgCLDaJ/5Vd+BW9/+9vN99zkN3/zN/GVr3zF/O+WpbOZsi4g/dprrwWwOCl79uzpGinqyZIok5zgN2uL2Sx0u84TNwdG2wOBAAYGBjA+Pu7oUM0HgfU7S6WSUWBbKdxEPB6PYaETNCdjD1hqPKZdte21pKnCZNUqkK5/c4OnU8h0sLGxMaN83SKmnU7HpMZVq1Vks9k1RXS5MWopkIGBAaTTaSQSCVdG3XYLjaBgMIiBgQGMjY0BgHGi6bS2Wi1EIhEA7kp4K0WNGYI1VGgrsaxVgW3kXthMw50gfBZoKAJAuVw2wF44HDbBplqtZpx0GrM7RXrO+dZJT19vXLjHq3NDoVNAh1OFDgr1EetvDw4Owu/3GwezVqshk8mgUqkYR8Vm3p0tcXN8+D9/tOSEMu6pd9vttgG9GezWkm56Dk2xt8/Z19eHaDRq6l7bKcsEtWkrcF+r1WquAQE3oQMVjUYxNjZmMrJisZixL5RpBcABNmvfFV4bz6XXy9I1diaDliWhLaQAkTqonFemVqfTaQwMDJiAgj3fBIN0XMpyImDB8djN0DhGXXskcui4uSbUydO51XtAW1ad1dXWdCAQQCKRMPVu1fGm487XyDxlOjpB+52mH5huXq/XUS6XAcA457w31NXVatX0Ptop0tPVWyfnsq5WdijgZFnbfrD6G1peYaVSTwQhGfzkPq37IM/FfbzT6Zh9ltkwBGuZHaWBSZJ3+vv7TV8R6n/6KCv5G3zPthdswJHzoN+xQUGey2ZVa6aW2hF8nWClW/kSLTfFH9WL1DMsZ8LSLpwf+95yjlqtluln1m63jf7TEi4EiLWxaDQaNRlK/NF7S11KHci10o0cYM+52/6koKUNpLuxwHnftOwd15c2HHdjydvgveI49vns9aDguf2/fs9meevcqA2rAXrNHLDHouzvlRjo/F/P6waA20Cy2/5g3zfaP/Y94/rmc2EHImwgXZ8NjofBskQiYY5NW0PZ6OxZqOA99yY3okE30aAY758Nqu9UIP2uu+7CO97xDrzzne8EABw5cgTf//738cUvfhGf/OQnl33+S1/6Evbu3YsjR44AAC699FI89thj+OxnP2sA8SNHjuANb3gDbr/9dgDA7bffjocffhhHjhzBN7/5TQDA9ddfj+uvv37V8TEYt1WyofoN+/btQ6FQwE9+8hPMzMwsu9F/+Id/uCmDezEL2WtMPSKQrmUzNFrHB5+RE0ZtPR4P4vE4RkZGEIlETAMOt6g3nVKvd7E2OetNauRsK8QGwKlYuFGr4uymCHSjs8Fzvqb11tRRZm01ZXm5icfjMenejIZHIhFz/G4bGBtuKGDP/7sxEnaC0BAh+N/pdDA8PIxcLodOZ7Gmp90FnUblVl4PFQjTrdh4jcbsaqVKqFSq1Sqmp6fNs2ArLf08jcFarYZsNot8Po9arbajHELePzI0CVApK5Kgj9e7WMcPgDHgqeTXoph7cu5IT1+vLtQ9LIHF4DfgdPYZqG232/D7/UY3kb3FlORgMIhIJGJ0tZZ0oBM/NjaGeDyOcrlsmNZb3SxcpdVqmSA8QT5gsdEdG2DS6SqVSpiZmYHX6zV7EAEHgrEsw+ZWgoVp0EzbBpzzzDnQvZp2A9lfCkZ326eVvBCJRIzzrc3UqOtZd1WdGqbx0o7plrrPPZf3W3/bx1RQXB1MllbjtXLu1H5kCjt7ZnDf53XqXHU6HQNMcJw6Xwpw8bVOp2POx3umYBHnmeAFbYV2u22YbdVq1TwPdHBX06PlchmnTp1COBzG+Pi4IYnQVuZ12CxOG+DfSaK2bKPRME653ZiPdd+p0zfas6cnL345F3W1zUR3Y466AYEqBCyBpSCnMpSZQWoDbQTPFUCjX8ieICSlcQwKFPI3j89+GEpes8epe7gCrh6Px5XUouCZioKZWnJDGa/c/wnkUWepX009wr2cezJf0z3abqzJeSdJjX67lnPRIC6Pw3vi9S5mQrHnBvUn93beF+0zQpuANeC5ZroRnDgfWru6GwDptr7ciAWqR/U1N6CegQu3oDn9VQXk7UA855r6UudWr0OfEZ0L1ScKkGvQxfZ3lZxYrVaX1VLXc2qmA31JZivW63WDe2iJUSUJ0Bcvl8sGgKZ9wzXeDWPQebMDShwfABO40Lmxg3J6n+z7wPtlr219zoiHJBIJ+Hw+Q+jQ4IsbSUH/VvCcx9Ux6bXZpYF2iszNzeHxxx/HBz7wAcfr1113HR599FHX7xw9ehTXXXed47U3vvGNuPfee82zf/ToUbzvfe9b9hmC7+uRH/7whxgeHkYymcS1116Lj3/842e1x8iGgPTvfve7+P3f/31Uq1XEYrFl0boXo7LfbKGzxFpibCTlxr7WzYDOFxtYeL1eDA0N4ZJLLjEp4jbDWllUqVQKyWQSXq8X+XwelUoFmUxmS0u8AHBExpnOpYYP50ZZW6ok1VniZkXmjrL1KV7vYlOngwcPIhQKIZlMmqBEt+gmsOjQsxFaJpNBoVAwLN5u9dIDgQCGh4eRSqWwb98+HDx40NRd3Sm1xW3RTZsMt1AohH379qFWq2FmZgbHjx93RM+DwSDS6bRhO28FmK5KuFKp4PTp02g0GpidnUU+n19ThJbHKBQKOHHiBMrlsmlY4xZYIZtgYWEBxWIRp06dQi6XMyyynSLcU8jaY/dzOt/A0nPn8/kwODiIaDRq9hIFjbZLeiy3rZeevl5dqIei0agpnUbHjLqLhjQzdorFIur1umGyMJtnZGTEBGYJbjKQTf3v9/tx8cUXw+/34+TJk6ZkFR3b7RCWhqPBrwxAvs/0X5amUFb0/Pw88vm8SRNXZo3tpCYSCQOYsteL7SSqE+jxODME1lquiyV2GDBngJ3BWaY0t9ttw4LjcXmNzALSEnG0Y7QWqgY5tREb7TU61GRQ0tHmfDEVnHNGvRQKhdBoNAx7slarGUeWoDqBdtuG4nl472z2mwIgtKfIAGy1WmaNA86SA3Q6WeJuYWEBuVwO9Xrd0WtmLft9p9PB7OwsnnjiCVNWbmBgwKSY9/X1maaw7Xbb9AHiPdrJoDPXMeew0+mY9cD1rSXaGMhaLUC0FdLT1Vsv56KuXsneVIDYLn2g104giwFulmCh7rDPoUAg4GT18rmKxWJIp9PmWAoE2qQbAsHUAzynNpVU8E79eAW1VWfp3ksh6K3+Gq9HgTqbDct5LJfLRmfTT1DQV/uUaMPEbmPiddBPZmla2kN63dRhBL3ZEDoUCjl6mBE40wyrZrNpcJJ4PG5K4jGgy6wqW+cri56sagXS3YIzNmDptlepLaLZCZx/m5jE+8XrIr5BHIFzoutRWdK8h7S1ODcapFdbiMeiHuaYuH44PjegluuWQW/anTwP1yHvv56Lwd5sNotGo2H0llZI4L1utVqmrwvL3tF+pD3nBqSr/uNcKWFS12w3PM3GlTSzTT+vNg3tK8XpuDZ4nEgkguHhYTQaDZRKJbMPaNamZrzYQXPNBtF7ymfJDgLaOFc32QxdzfKMFBJLbMlkMmi1WhgZGXG8PjIygqmpKddzTE1NuX5+YWEBmUwGY2NjXT/T7Zjd5Prrr8fv/u7vYt++fTh27BjuuOMOvO51r8Pjjz/uej2bIRtC/f7sz/4Mf/zHf4xPfOITCIfDmz2mc0LsDY8P4kpgpH6e32F6SSgUMgqsG8uaDyQAx4a+1SVeKBqxVcWsEUFep73JaURW02/cnAzb0VancjWhguA8k/HWbY45NjIPyapjXb2dLnTcGPUPhUIIh8OmezS7tbMuLOdc2Q9nA1DnvaRhxNICHAsNwPUcjyBJf3+/cfC1zpyd9UCWIhu77aSSKLqfqEFJpcznRyPoZM7QYNmqYMhK0nPOt156+nplsR0UPi92Sq6yrQA4nBR1NqiDtJ667jX8LlnE/OxKun2rRBnkwFK5NpvtRdY6ARBNsdXmSd1EWW7K/AGcLCSOQRnTwNL86efchA49Gc08p7LoVNS55jXZtoaywdTZ68aq1Huq+zNJBhQ3MEjXo/b74DnoNGu5PHWgaRfZbCllXdqAAq+tG9DAY/F+8zq08ft6grVkE9ZqNfh8PlO+R9P/dW2wXAqzQdZ7vq0SBWGA5TVPlVVHEE91+3ZfU09Xb72ci7p6pf3Z3m+B5bXS+Vv3NGU2c99drdyjMla5RyoDdSXda5/XDZDj/zaL1AYyef712OLKelVfiefi67wu/tbPAkv63Saj6R5FUT2nc6Svq/2j86zXbf/N/91wCT3XasFyWz+pjeCm0/S3PdZue53ec/7d6XQc/hd1pU0GUFazvZcrNmIHO1a6Xnu83ewVBZ65Hii899oUlXNvz63Om9occ3NzhqBFEpcy63lcvk8fXjPKbTt6LdLtHunfapfzPrmtI5vcwTVnP9v2Z/x+PzqdjrHHaAPZNqE+82vVh25BwbXIZujqPXv2OF7/8Ic/jDvvvLPr9+x7thq+4PZ5+/X1HtNNbr75ZvP3FVdcgUOHDmHfvn34u7/7O7z5zW9e17HWKhsC0k+fPo13v/vd54yiPxtCwFKZ12vZMOg4KfOUgCcB4rUIa2J7vV4UCoVNuKKNCxU+o6Qej8ekMauC1TnS1G1+T+u76UOoaTfhcNjRFGyt4vUupvqRkeY2ZxwvG3cODw9jZGQEyWTSpI/vdPF4Ftl0sVgMjUYD4+PjBmR+7rnnMDc3Z5h6wWAQjUYDoVDINLSkkbNZwRneR5Y1YDPUer2OUqmETCZjwP31HjebzeLpp582jUPYTGR4eNjUhieLgsz148eP48SJE6hUKiiXyzvCIbTXOJmuWq+Qae/K/KDBU61WTRMVzvN2Sc8533rp6euVhbqawVc2CdQgbqlUQrvdRjgcNkHGer1uAnzUzYlEAqOjow7Qk44LnR0ekw2L5ufnEY/HDQi605oDM6hIwFOvo9PpmHlwY7gBS6whfo/7mTa6pDNGHcv3eHyWjSmXy1hYWEAwGMTQ0BCazSZmZ2e7giiBQACDg4NIJBLYs2cPDh48aFhCwKJtEovFADjroisYoix0shFtx1IBUjYQJeuRwD2PSwCH52eWkM1so21EMsT4+Di8Xi+KxSICgYBpCMeSZ319i01Mw+GwsWPUydeeOvZ8q7NvkxVsp5SlfdrtNiYmJsxadksRX6uwDFuxWITP58OJEycQi8VMdoeWW3v22WeRy+VQLBYxOTmJubk5w/jeblHAjexKLS/EfQNYYhB6PB5T3oi2DstF9XT1+SXnoq5mVhZtUw1kaq1kFQLBBLXoE3Mf070acJZOsP1DwFlORvdY+thaokoD5jaQSL3V6XQcOoo+qo5T9187e1p9XWUp6xgV6HUDxfW7fF9tDWaO6fvdnktb11HodyhLV8FzziMBRTLSeT20E2xmLQFJj8fjmC+eg/Nol9vg3yRK6RyxjAjF/tsNFLYDHirEIZhdpmuL/2uZEo6H3yPuo2A1x8sfO6jPMZAYpT3gaCuqPibGxPngufgdrR9fr9exsLCASqWCQqFgGubaJA+uY/5tB0MqlQq8Xq95dgqFAiKRiMki4/fm5uYwNTVlMt5nZmaMrajH5vPhFlRzwxl4Dvu5su+b3lO9t0qQ4zqmP01Wuj67+tx4vV5DPKT9paWSdE1pzXkeww6k67hsEF3nZzXZDF198uRJxONx83o39vbg4CD6+vqWMcVnZmaWMcopo6Ojrp/3+XwYGBhY8TPdjrlWGRsbw759+/DMM8+c0XFWkg0B6W984xvx2GOP4cCBA5s9nnNK7AjXWiIr/BwZW9zINfVsreemMbbd5Ub0Ibc3Pt3o1PigctZNlsZKt0gimdbrZeGrwxqNRo0R1e1zdM7HxsYwMDBgNuDtnue1Cuen0WhgaGgI1WrVbGrAYnpgsVg0Dc/C4TDS6TRCodBZYU3S+GPNsenpaZRKJZPCvpbUJjcpFAqoVCqmt0CtVkM6nTbBEBp3lUoFv/zlLzEzM4OpqSlMTk5uewkUFRtIj0QiprkS17umi1MBMx2Sn+vGAunJuS09fb2yUN8yEEqgnLppfn4epVLJUS+bwADZKHRoEokEBgYGjHOl7BxgqQ4mj00mMXuf7LRyUgAcrCPaJwo4qANh75ncc5SZz/lmFpc6IfyOpkYzK0kzhbgPVqtVFAqFroHW/v5+JBIJDA0NYXR0FLt27TK6T51SYCld3nZ4eM20L+xr1b+5Lggq+3w+45woKML9mkETdbRsMIaAw9DQENrtthnD3NwcJicnTWkhn89nCAokUeh56VSTHQYslchR51UBEAqz8ACYMkQsh6fXsFFh01Cy3FgrPRqNoq+vD7VaDbVaDcViET//+c8xMTFhyBU7DbTlfWPTPLvMAkv58Nnp6+sz95T9FdgEbjuB9J5svZyLupplUfR/v99v9nY3II2iQLqWBbWJaRoQ1BrECqQrGAbAQXQjQEv97Aak87skqbD2t2ZhaXYJxdaJ9LNs8F/FDdRVdqsd/OT7GuDmsfVYq+2V1Ic2s1rnW4F0Xm8gEHCU8+L+Rp1q60jqeJ0HBecJEishQYF2Hlvnt1uvDFuPu4GXbvOvgRO15/QzHBv9SP0e14H2CrHHxGNoQIDvE/NgwJVEKI4bgHmO+Fkt7aL3fH5+HsVi0dhRhULBUY5EhXqKoiXpSGwgwQJYLAkSi8UMoYTSaDQwMTGBUqmEXC6HXC7nqN+voveT86JBGzuorwEJO4tCMxm63WvqXb3HJGHaGd/6m/gPew/SjlOiiNpRbtiFHeTTcemzo7bpVkg8HncA6d3E7/fj5S9/OR566CHceOON5vWHHnoIN9xwg+t3rr76anz3u991vPbggw/i0KFDhlRy9dVX46GHHnLUSX/wwQdxzTXXbORyjGSzWZw8eRJjY2NndJyVZEPI33/8j/8Rf/7nf44nn3wSL33pSx0MHwD47d/+7U0Z3PkoduRKf2yluNpx1IGnaARbU0j1nFvpmKhRYF+77dR2G5f9Xf5e7ybk5kCqaKScJVFo1K01ULITRA0kbY6nTjXXDwEKsjf4m9etdVltpQUsNyK7GVlsUMYf1vQ+k7XIc83Pz6NQKBhjj/eQ66pWq5ka7NVqtatBtl3SbV2pUWgbiPq/Znxs9xrdjMh5T9YnPX29NqEuUocRWNr7tFwSsAQSq8GsNU61VjQ/z8+SqQTApNl2a6SsAbDt3pvcWEOUbjpa93zdg2wWnLKy7AC7ZuMw8LqW5qwEwLnmuf8T/LBLbxCYVduDOk5L9ZBtpEwzPZZmIdpzwePympU1zs+TkaagkK4/Mpd1nAwM1Ot1lMtlAz4pu53XqQFX+95yfqn/yZDmPFM327VMN0N4HY1GA5VKBTMzM6hUKmg0Gmg2myaLg3bDTtUJan+r3Uj70l4XW+kwr1V6unrr5XzQ1XaQkvuQGzCqoK2CcMoeVztXfUEbcOa+Rr+CAcVOp+Pwh/U4tj7WAJeWMFOA2S5Jwj2tG4nM/tttrnge6gS16XXO1P/l+Bis51yrf63fU0aszoUbqG+PUYPQbtfgRn5zmw9lv68kbvYHj7GRvYffswMzNtjZzcfi//ytgQeda13b+j2C0Bo8twFWXWscC0FzBmjt83B96Ov6s5qordtuL5UL4rPKZ9Lj8aBQKDhsDbsEmw0gu80z17iC6G6BIPs+dXtNnxP7u7redN3ZgSN7zHaQyS79w3F2C2KtdP16jm7vdbtPW6mrDx8+jD/4gz/AoUOHcPXVV+Oee+7BiRMncOuttwIAbr/9dpw+fRpf+9rXAAC33norPv/5z+Pw4cO45ZZbcPToUdx777345je/aY75nve8B695zWvwqU99CjfccAO+853v4Ac/+AEeeeQR85lKpYJnn33W/H/s2DH87Gc/Qzqdxt69e1GpVHDnnXfipptuwtjYGI4fP44PfvCDGBwcdID+my0bAtJvueUWAMBHP/rRZe/x4e7JctbSeoxlOkusM0Wm0VqbbNEJYuoJsORUaiqLOvwLCwvbUhtaHTg1ftRIUGfc/i4Vlf6sl3nL+eY8uDHrWHOeDelGRkaQSCQMw3u7Qcq1CjfoQCCAdDqNubk5DA4OIhKJGOXHSHg+n4fXu1geaHZ21jDsyLRKJBIGqCBzzk5R0nvUbreNAcuGHWR8cu1putSZOOlcL/V6Hc8//zxOnTplgiDKkGy1WqaBGa97pzmCbkwQNxDdTQErOLgTZKfN7bku55u+dlvnK60520nR4Cj3snA47AD5gKU6381m0zCQa7WaaXqVy+VQqVQQDAZNI+p2u22aLVEf1+t10+SaDD0VZpUQJO3WBHsrxA5a6+v6W4UMfLLX6HiwSaadIg8sOfIej8cEedlovdVq4dixY5iYmHCkkrsJ2b7hcBitVgv5fN6x92vDcwK1Cl74/X7TKJ79UMjqqlarDgdMU9y5bsjittlKmpZOoJ52BPURx6dAPhu45XI51Go1UyaEjDiv12sazPf19SEWi5mygNFo1DRaVWYb1yWFZWLYJKxcLhunk+8TTN/svUOD6rVazVyHBt/ZNHWnS6PRQKFQQDQaxfDwsGHtcY3retlpPVkoPV29tXIu6moN9gFw9D7g3qsBUX0OFLDjHgk4We7cw4AlUFf1kZJ25ufnzR6vPbU0UMq9m/6g+p7lctnoapYco6/KYFkkEnH4nyw91Ww2l5WkAZYDa7wOJZNpzWs3li1FwTrOHe0UgqEaVHAj6XF8BHZ53G6kKNo7qg9sQJu+HzNrqSNVvF6vKUvG8ep5FFTm8WzWrrKVdT5WEhss1XXJDGy+Zh9Px8j/VVfTzuEcaWk8Bjm47liWjY3RyTbX0iE2YEqcp9VqmTVmN3LlWqDOtu+jvYZUbMxFCSOc92q1inw+bxrVa48hzeTk/dfz8vN6Dg1q2UC0Ath6j3UPsDNVeB08P599Nrpn9QYtk6rNXu354P5Cgo3X60W1WnWQVPlZN1H/XIk4XBf299fqt2+lrr755puRzWbx0Y9+FJOTk7jiiivwve99D/v27QMATE5O4sSJE+bz+/fvx/e+9z28733vwxe+8AWMj4/jc5/7HG666SbzmWuuuQbf+ta38KEPfQh33HEHDh48iPvvvx9XXXWV+cxjjz2G1772teb/w4cPAwDe9ra34b777kNfXx/+7d/+DV/72tdQKBQwNjaG1772tbj//vtNCcezIRsC0jeTgXIuizqd6xEFjm3lsVaAmMaDbpx8cLmJhMNhB/vOVkpbLXYUTwF2/d3te6pgNyor1fjkZs0NVBnpOwWkXKtwLQQCAVM6iAqQ10IjCYABvtVgpRGq0W9l1wHObtX8YakApmoTSGdN8s1kmvE5YEdqe43ba2yny0rskBfDGtzqyPndd9+Nz3zmM5icnMTll1+OI0eO4NWvfnXXzz/88MM4fPgwnnjiCYyPj+P973+/ibJTvv3tb+OOO+7Ac889h4MHD+LjH/+4I9r9ox/9CJ/5zGfw+OOPY3JyEg888AB+53d+x3GMP/qjP8JXv/pVx2tXXXUV/uVf/mXd17iavFjW9naK6h51oAA49sRqtWrAbhr0ZIkpq1wD2TwOHTwy7dSh5Z7oxtIiQwnAMibcdokbW49iO6b23NrOOfWQ6l7do2nzkJHearVMGZOVGOm0aajXyNqynTm1HVhblD9ujCUCP81m0wGE07ZikFrtNb1XymzjOtLvK8ihDqI6XnROtQYn/7bTv/ke+2jw+ADM+XQ9aXNZXcMcp4ImZ2MN6nVUKhXHveT87VThODnnJGbo2uCzwGwB2lY7TbZaV/dkZ6/tjYodeFWmOZ8J3cfcvqPzwr1HAUDulfb39H/qaO5fzLbR8wJw7HMKZLfbbVNeg3pewXzqGgKj9n7l9jypv2szaRWYVl2r9oQdpOD7+pqy2N1Yybw+fd9mBOu4bXCT3++mD3Qs/K4Cocoa1vmzz6X3SW0KG/Bcrx/UjQ3sxghey7GVqUx9q2tP516zBdRWIMCr98htDjTgwqwtAvT6fNiMdPs+rQSmq0+uwTyv1+uwQVjqRQP+LDvXLUhsk8J0/vVageX12vmbdpEbWcwG1O3v0ra2Swe5BXncnoOVSG1uOAPPCTh7B/H69PMr3RNbtkNX33bbbbjttttc37vvvvuWvXbttdfipz/96YrHfMtb3oK3vOUtXd//9V//9RXHGwqF8P3vf3/Fc5wNeXEUdX4RCg1pOm7cSFZjhlJ5amNANlUKBoMYHBxENBoF4J5ixY26UqkY1lKn00EikUA4HMaFF16IVCqFWCyGgYEBeL1e1Go1ww5+5plnUC6XTeR9Owy7bsbQSp8liyubzSIUCiGdTpt5WkkUyGATDkZuVWgkkZXOutN26uWLTRRI10YbbmIHhgi0t9uLjUzUqLUZATS0+B3OOZlYPI5+52wI15WtFHeyKPhGJgywVMuZ16PgHJ1zgiE0srab0bSVCv/+++/He9/7Xtx999141atehS9/+cu4/vrr8eSTT2Lv3r3LPn/s2DG86U1vwi233IKvf/3r+PGPf4zbbrsNQ0NDJnJ+9OhR3HzzzfjYxz6GG2+8EQ888ADe+ta34pFHHjGR82q1il/5lV/B29/+dkfE3Zbf/M3fxFe+8hXz/4uhWfGLQdyCsat9nvu93YjSZgF6vV7DMnZjrNTrdUxPTxsgPpFIOOou+v1+07tEy7UwBZZs1WAwiNHRUUSjUUQiEaRSKUcZrWw2iyeeeAL5fH6j03TWROcfcNoptE+4P3U6HcOABmCYQPysAvZzc3PI5/OmVBezAOw0aepqli5jjwzWwKQDSEfWBtJV9B6TnahlxzhGghVsRKegN4+pgQLVoVwr2t+FIA77X7DeOp22bg6xfR80g4JONuuN0060xWaUsfkuHUPbKV9NNkPXun1fx7SR4LuyDDcrMMW1x32jXq+jv78ftVrNsb9zHRFcIdhA9upK4MNWSQ9I78lmiBtQpn/zmWHWlwaKu7Gl+RpBVw1885lWUhXPQYB6YWFhma5ngFZ1EEF+7pd6bvaM6u/vRzKZND0R2COFUiqV8OyzzzrYuarX7OCyzg/BtG7Ass6h/T6PSeIXsKSDeK06v16v1/TRsMdkM8iJNej5eGx733AbswKLzGiORCJIJBJIJpPmR0vAaO+QbnuTDbTr/Nh6yPZR9XXVJ3bw3W2eta77/Pz8MoC1GxlQMxoUFCeBTV+jTuD/fFZoKzCrmj1MODYem/YLMwQ1mKH2hA3oUrS3D4/N123hObtllvN/BqSUIKLH1PJEquv5uvYmoO3sVvfdZqZzPlgCT/eRVqvlyFTU+81702otNVinLcuqETYIr3uZvq/19dU21N+816tJT1dvr2wYSH/44Yfx2c9+Fk899RQ8Hg8uvfRS/Pmf//mKbL/zSfigkpWk5SK6NaXUjZHpQHNzc8hms+jr60MkEjHpKMpsodBpm5ubQ7FYxPT0NGq1GiKRCNLpNIaHh/H6178eBw4cQDKZxPDwMPr6+gzLbnJyEj/84Q8xMTGBEydOmBS47ZD1nJefLZVKmJiYQCwWQzgcNvO0kpCZUK/Xkc/nkcvlHOm3FBpiZKJHIhFzP14MTGA3IdBAkIEMczcgXaPfquwI/lQqFdMY1K2+udY01RS1tQRLNltWO5f9TG236LPAsgLtdhuRSATAkjFmA+m1Ws38rlarrnUaz2W566678I53vAPvfOc7AQBHjhzB97//fXzxi1/EJz/5yWWf/9KXvoS9e/fiyJEjAIBLL70Ujz32GD772c8aQPzIkSN4wxvegNtvvx3AYi24hx9+GEeOHDH13q6//npcf/31q44vEAhgdHR0My51VTnf9PV6nlsa5AQuVwoIer1e89zxOwral0olnDx5EoFAALt27TIAOA1z1lrXfZD7J5s4eTyLzZAvvfRSjI+PI5VKYXR0FIFAAMlkEolEAr/4xS9MX4edKGqbqBNrswHb7bZhSrPMi9frXdbgFIApZdJsNpHP51EqlRz3iM6hx+Mx/Tyi0ahpohSNRk1TR3V8GDBRva9ZCAQZ2AxbmWUsRcbvE3AgIN5utw1womw03nsGsLV0DNn2ZJGHQiHj3GnwZaXsOYqWJgiFQgYUKpfLDv1tC++XPb+8t3qfVxI3VtZGxf4+bTJg6Vlcj2ha+Zn2Y6Fo9gjXMG1sAkYE8JiST5up3W4bEGSzxtOTF5+ca7raZnlyD6ReoF5U8I360X4OuAexprQGqRWg4vfpd7N2sz7vfE4VXKPuIDDq8/lM9hGzlTgOlreMx+O45JJLMDAwgHg8jsHBQUe5ipmZGfT19WF6ehqZTAYTExOOvUrHDixncHcjNqmfouxzCv8mWYp6lXoPWGK6cwwE0qlHqcO0XJnOmYrbaxrc4LXZQp+ajdqHhoYwNDSEwcFBo3fn5+cdtcPddJ8GRHUO7R4hboFTe42pX1qv1x2MZT2WBk5JsuNYuwGqtt9LIgGviXpZgW3aD7Qh+L7WINcm4jy+3XhTs9/se6c61M2u0DWpz6HaCsBSHwHA+ey7lRdys710jVEvEveygwgK4vOZV/yB95XlA3UN0xZSQJtBbz77NlbHPYUkBNpRxNBsZrzeP9rEGhTkPkHf3A5MdbsXPdlZsiEg/etf/zre/va3481vfjPe/e53o9Pp4NFHH8XrX/963Hffffi93/u9zR7ni1KU0caHRDczwJnuDSw5SMr6mZ+fN84amzG6Rb6YSkNgmE6rz+dDNBpFIpFAOp3G4OAg4vE4UqmUUZ6MlKdSKdRqNWSzWdd0lp0qNI64mamj7JYFoCw3zqld580WvX/djvtiEr2WbqlsFAYRuJbi8bjDsFEFprXY1BhQhbIR9lg32SwHmPPBvzVar4EAG1jwer2OCLabAUXgRJX/esE+NRQYnGPtSK2rRuOMhpeWm9juZ3kzIucs00OhQ6UyNzeHxx9/HB/4wAccr1933XV49NFHXY9/9OhRXHfddY7X3vjGN+Lee+/F/Pw8+vv7cfToUUdXcX6G4Pt65Ic//CGGh4eRTCZx7bXX4uMf/ziGh4fXfZzVpKevVxebmaPsKptBp4a+/VyR1cw9kc8s91VNxaa+oRHdbrdN3WSys9LptAkMs/4qGdaxWAyxWMxRZoRj3O7n3BY7IKHsbzYABZbqsiqbUB00AvDdmrfZ+kt1tZ06b+/V6iDbjjPf1+Nq7W57HHzf1n0266sbc87tWAzIKDO9G0OR10agPhAImOACQSSCFGvVCxtZUxyj2zydiVDnEcRQdvlK16PBFqagU1/azLq1ssFU1GFW4gAdcBU++7oH7BQ9DfRYbtsh56Kutvc7e++jnww4GbQUNyYxn00Fm7TspK2b3YKA+hnayR6PxwBl+jxq/yzqJrLoCQInk0nEYjHjG/Fc9XodsVjMEFpUL9hjcps7zoH+5lzRptDX3cqJrSa2HuGccf/i3Nh10PlZvZdq46j+06xkta24J/PeE9jUDDxlyeteb4/XniebUazX5TY/bq+rDdctc8AmDeg49bf+8DwaxGC5LwY0yGLm/Nn9QhRQVpvVDXzld7WcL4XnsQMF9tzZoufh34p38Xi0XezPKjiv49BmwiQckBipIL4y9NWvto+v9r19LTp/nCfbLtNro652Y9t3C850EzuwAsBhg67V/ujp6u2VDQHpH//4x/HpT3/aASi85z3vwV133YWPfexjL0plv9nCjU43YDKAGZlTRcgIGpuV0bhm5IvOT7vdxuTkJAKBAGKxmEnB5eez2SwqlQqq1aqpWbV7925cfvnlGB4exiWXXIK9e/eaGukezyL7jcc/dOgQ9u/fj76+Phw/fvxFw2TtdDooFototVqmMVupVEI4HEYqlTJAJzfFarWKVmuxadfExARqtRqmp6cdNVJt0RQumwXxYhXbSFEmHrAEMI+OjuLAgQOIRCLYv38/RkZGHKl2bDZSrVbx5JNP4vTp0yZ1ShnowNo3bjU6NLKuzBYFqzayRulQp1IpU+JGUwoZFc9kMoYNyXJJZJfFYjHs3bsXkUgE8XgcyWTSYXzU63XMzs5ibm4OU1NTmJycdBgBaxEq20qlYgJmAEw5AD7LnA+yNrUMghob2yWbofD37NnjeP3DH/4w7rzzTsdrmUwGrVYLIyMjjtdHRkYwNTXlevypqSnXzy8sLCCTyWBsbKzrZ7ods5tcf/31+N3f/V3s27cPx44dwx133IHXve51ePzxx5cFBc5Uevp6daEzX6/XkclkHPs6n3Gm7ZINRBBMncv5+XmT7pnJZJalP3Mfo65mY0WymMbHx7Fr1y4MDg7iP/yH/4Ddu3ebsmP1eh3FYtEwtV/5ylfioosuwjPPPIOf//znjtRSDc6vR7o51Px7te+t5Ejo/k8mDxlALLtSKpWMPuJ80yZidg1fcxsDdbyWyFO9xuuJxWKIRqOO+QoEAojH4/B4PIbpyD1egXeysJj9x9IpDHLQKfZ6vcYO473g/qc6jKxJBkVJAqDtSLtvaGgI/f39yOfzCIVCJmvRvs+hUMiUFKKuZnp/X18fisUiCoUCGo0GnnvuOczMzDjGsVnCe6jpywqwbETUFgiHw4jH44bVxTnMZrNda44HAgEMDAwgGAwiFoshkUgY27FarQJYcqRzuRyy2ey6xtpqtcy5FeSrVqvG9rT1PjNSuK53imPbc863Xs5FXU1yk7Kmaau6MWfVprfLvABLjZqZvUG2q808tktGEpDUH/YvaDabprQl9YKCyDMzM44ylAAwOjqKPXv2IJlM4uDBg2Z/ZoaVAswXX3wxhoeHEQwGUSqVDNmNez6vT4O97XbbsJXtEqLd9lbqTu6FZJLzR/1bZR/z3OofqL/caDRMyRuSSshyVzuIgVnd5+wSGFp7nnutHdjWYHA4HHaA9Db4qoQ/Ho8+uu13uvlbCrJqEACAY3waJOV61UCBzpuWf2W/FA0eaC8VZqENDg4iFos5GtZyzlhKhOuG2Ys2CMx50cCEZhfw3DbTWlnZ9jpTIN/e1xVMVqIZbS7aIQw2qd2zsLBgeqSRVe/1LpZDZNlcBv+TySQGBgbM/kBAm7ZzNpvF7OysmQctAaXX5yYej8c0muf3lCCozwjXuK3DiYXweAr421kZGkjh+uFa1QamLP3WK+2y82VDQPrzzz+P//Sf/tOy13/7t38bH/zgB894ULacPn0a/+2//Tf8/d//Per1Oi6++GLce++9ePnLXw5gcSF85CMfwT333IN8Po+rrroKX/jCF3D55Zdv+ljWI6r4AWekSzc2On3KKOdD2+l0DAuLDjg7DA8ODsLv9zsaoExOTpqSLEx/GxgYwEUXXYTh4WHs3r0bY2NjrmwmMtNHRkZw8uRJ46xtFKTsJm7O+mYIU7/Jwpqbm0MikUAwGDSRWG6OdM5nZ2fxwgsvoF6vG0NppXFrxHklVtiLQfQ6GCDg6/zNdZpKpXDhhRcikUjg0ksvxd69ex2M9Ewmg+npaRQKBeRyOVNyYKOADoVzTFBDDWU7KmwzV9Zy/Tw2nep4PI7R0VED4mjQhfPDGuVs2huPx7F//35TPmlsbMzhOBQKBZw4ccKA4Nls1hioawXSgcX9hIZDs9mEz+dDo9FAMBh0pMXR8C0UCpibm3M0SNxupbkZCv/kyZOIx+Pm9ZWA55WAwbV+3n59vcd0k5tvvtn8fcUVV+DQoUPYt28f/u7v/g5vfvOb13Ws1WQr9fWLVVdzbNSjwNL+qOXUmMZJQ17BQWAJSFtYWDDNk/V9Zk8wqFYsFs35fT4fBgYGcODAAQwNDeHgwYPYvXs3ZmZmDNBWqVSMI3/JJZcYB+fJJ590ZGCpY7Nesdlb+rrb8WyGldu82kKbhjUpa7UaAoGA2dfI9GMgsF6vm+wxZuW4jUPBGNpAamvxmui8aqquz+cz4AAdOQXn/X6/YXS3Wi3jnPHesgwLHWmC4kqosJ0rjhWAqa2qtVABp57p6+tDPB43wJFbWZZAIIBEIoFoNIqDBw/i4MGDZl0Aixk9uVwO5XLZlAeiM76Z+kGddgWLzkQH6DFDoRCSyaSjPnKtVjNAlZswaM5axsPDw+h0OpienkapVDL3myBWLpdb11j5PbfXuOar1aoD9Go2m0ZXAzvHse0551sv56Ku1h4YAMy6V/1kM8pXAtLpo3m9XgOkE7BUYpD24aCoLuBzyWeQpTkqlYoDaGR5VWZCEsQOhUIYGRkxpdfsbEId865du5BIJFAul3Hs2DFjS9iBdhUFjRnM5fzwOrUfA/cukut4fgbpeU43cJm/bSCd881eDwwUM+jAYzKgq0C51u6mb2033LQDy27Mbt5PJTGorlcg3QbiFXzX63abc8VcOD4Foe01pIESPS7XB+0FYjT9/f3G/mCgPhwOI5lMwu/3Y2hoyOizcDiMvr4+17KcGpTXgAXHoAEJzV7Ta3ErL6zPZKvVcgQ3FFDW+dI549rR+xYKhUz2pJY8Iq7VbrcN0YDjC4VCSKVSCAaDJug9MDCA0dFRQ3ZZWFgwRD3qzVKpZAIeNsHRDafRoJWucfYT0LESA2M5GNqVSkK0z6n4kJ5Lz8l55XcDgQCi0ajjOz0gfefLhoD0PXv24B//8R9x4YUXOl7/x3/8x2VswTOVfD6PV73qVXjta1+Lv//7v8fw8DCee+45JJNJ85lPf/rTuOuuu3Dffffh4osvxl/+5V/iDW94A37xi18gFott6ng2InwQ6agDToWugKBbSrkCnZraq5/ndxgZ4+bGTZ2O10rlSBSwpJO40fIlVPIEIvi3XXtUFR03R2X7rech52fpmDPCynlTIL1SqWBubs40F6VyX+34atSdCbNqJ4h9HaqgARgDlUDz4OAgkskkUqmUcerVyCEQMDAwgMHBQcN8c3P2VxKuD2W8c/1yXDTguP7JlOgWOXcTsg3D4TDS6bRpwptIJAzI0mot1k0bGBgw6XYEcUZGRpBOp5FOpzE6OmrqFxNM0fU4ODiISCRiAmWNRgNTU1MolUrrUoLqYLDBqzISeD+V/WEbzy92Yc3jlWRwcBB9fX3LmOIzMzPLGOWU0dFR188T4FzpM92OuVYZGxvDvn378Mwzz5zRcdxkq/T1uaCrbeEeSaNfgdHVQEE6fm5B826lSaivvV6vAQW12ZU6imQqu9Vk3IhuooOs5TJ4TD22G8jBMa33nNT1tGcAOJhYCwsLJnjA9Hpl06moDlMnj8xtTZlWUGKl+eL4+Dfvu56Hf3PMPL6m99vBCf6vOlQdNps5qY6cMgCVnUe9mEgksHv3bqOz4/G441isHQ8AyWTSAM/ryZCi8JzKfON5tBwca7V3Oh1HerqCRaudh4H7gYEB09PFtkOCwSAqlQoCgYABrT0eD9LpNOLxOMLhMEZGRgwIT0Z6u902TDDeC9WlxWLRBNBXE/u5abVaRlczCA7AMPDU9jxXdHRPNibnoq62dYS91/JZs4FCJZq47RH6zHCPVrawW+kFFQVHeX4FtzhOkskoBK2VDUwd43bd6vPb79tjs8tKKnGIv+nLMtjLvYufoY9LQN0GTtUf4/HpP1Cnq82iY+N+qgxinQdmjKkeIzPezkiydRzn1gbZ7Xutv1cjxSjzV7+nwKb9HZ0XmzCn98MNSNfvaDk5xVLo1zLTMZ1Ow+/3Y3Bw0FFuV9ey1h3nvLtdqw3s6vjt89s2nuorrnfbbtV7wevlc8TfxH6CwaDBCjR7jOcj2VH7hni9XqOXw+GwAdLj8bgZM593nm9ubg4DAwMmw6NQKJiMRR2rHVDTa1CMzQ5QcE74mu4F6ne7ib3G3MB8HQPnmsd22yN6svNkQ0D6n/3Zn+Hd7343fvazn+Gaa66Bx+PBI488gvvuuw9/9Vd/takD/NSnPoU9e/bgK1/5inntggsuMH93Oh0cOXIEf/EXf2GYfF/96lcxMjKCb3zjG/iTP/mTTR3PRoQPIcE+txQPfWCpyPhgsb4lI5VsZGWD7wCMM8A0aKYYxeNxk57eTfnQEWF5FDqebuyvbsJrYh3XYDCIoaEhRKNRw+xTJUYng2k+2WzWbIZk9K1nI6HhwsYuPp8Pzz33nMPho0PD3yuVc1FRY8uuSfZiFft6NHhB9lY4HMaBAwdw+eWXI5lMYs+ePRgaGnJs/rFYDKlUCqVSCdlsFv39/Th16hSmpqbW7IACzrQ0NkKl4teSSBy7ssZp3Gkq/UrnYR3ieDxuMjbUOeeaaDabiEajqNVqplGQx+PBK17xClx22WUIh8MYHR01z6gGugAgkUhgeHgYCwsL2L17Ny688ELk83n8n//zfxxg+FrWkQI53EvUSNNAj8382AmyVZFzv9+Pl7/85XjooYdw4403mtcfeugh3HDDDa7fufrqq/Hd737X8dqDDz6IQ4cOGUPv6quvxkMPPeRIvX7wwQdxzTXXrOdSlkk2m8XJkycxNjZ2Rsdxk63S1+eCrlZRRziXyzkCv/q+Lfwc9ySWYfN4PCaQRufbFupIn89nSlR4PIsN0BRoZZk4vqf6dKPPu8/nQzqdRjQaddQo1T2EjkStVjOl1M7knJwn9oBRPa3gsjrf3WwCG5Slw1UqlRCJRAzY4ff7kUwmEQ6Hl12b7bAzo4cAtNZtVVYjj8EUeLLMqCt4TJIb+EPbjnPBsi5q29FGYdYcWWq1Ws0BpDPYfMEFF+A1r3kN4vE4BgYGkEwm0Ww2kcvl0Gw2kUwmEY/HUa/XUS6XEQqFTFm29QS9PR6Po4kuszaY1eH3+02qOsfcbi+VL+DcrkUncJ7i8The9rKXYWRkxOjATqdjgPVGo4F4PI5qtYrJyUk8//zz8Hq9eOlLX4qXvvSlhlTh9XqNjerxeDA2Nmaunc70nj17sH//fpRKJfzsZz/D6dOnlwEybnOiBBnqYfYcUjtT18Vag/9bKT2W29bLuair+czzuLr++QyoDay2u9tnlTlL0EmBP7eSm3zu+F1lK6s/Qd3KYK6yq4GlespkX5PFWiqVjI1oB9Joh9sALH0vCnWCNipVdi/3Lu7zzLZWNqyCoJwjkpxarRZKpZJh0/I7GsjTIKgNtrbbbczMzJi9jCQnBeMZ9Nb5V53K67VJabYfyutwu+c2kEu8ROeeJDrFV3TvpS5X4TySnNDpdByEQrvON+8hdZCSG5jdQKxGiZD9/f2Ix+MIBoOmZGooFML4+DjS6bS5Z7QHmI3n9/tRLBbh9XqXkXkURNfsbV4XfzMYTRyG39X7bDcLZeYzbR2uMz2n2otsmk7cIJVKmfKjGmBoNpsIh8Oo1+uoVCooFArweBbLyKbTaUQiEYyNjZlSvbzXxKjUdksmkxgdHUWtVsMzzzyD2dlZo1N1bdnC9aulet2C+zZBxfYBupEQ7H3Ifk/XDT9LvGS1nn32+Hq6evtkQ0D6f/kv/wWjo6P4H//jf+Bv/uZvAACXXnop7r///q4gxUblb//2b/HGN74Rv/u7v4uHH34Yu3btwm233YZbbrkFAHDs2DFMTU05msQFAgFce+21ePTRR10VfrPZdIDDdvO6syGqNCi2wrVFmT7ckN2AOhUqYSoDBdq6RWH1fOokrpeNrt9n6lswGEQikUAsFjNpPsp4Y6o87wcZXWSU25HptUin03HcX1UUqljXu4G4RdNfzJuQrkk1dtSI8/v9xknWhjqsya3GISWRSCCRSCCfz3etS7aS8D5x3TO6bRt2NAip4JVNsRbhcbkutZ6bMsr7+/vRaDSMwRwKhdDX14fBwUGMj4+buuorlRgJhUJmbjmvZPuvVE7ITWymixrS6ujvxEj2Vir8w4cP4w/+4A9w6NAhXH311bjnnntw4sQJ3HrrrQCA22+/HadPn8bXvvY1AMCtt96Kz3/+8zh8+DBuueUWHD16FPfeey+++c1vmmO+5z3vwWte8xp86lOfwg033IDvfOc7+MEPfoBHHnnEfKZSqeDZZ581/x87dgw/+9nPkE6nsXfvXlQqFdx555246aabMDY2huPHj+ODH/wgBgcHHaD/ZslW6etzRVfbog7EaqJ6hga5ssl5LA2Y636reyrrp7KOpuqulfTzep8T3W+DwSDC4bDDGVOAQx3SWq3mOD/Htd7zb2bpOPvcdHIIJiggwnugNoYCHsASI10dKAURdD40uKnAqBszTh1+LUfjxkjX4KmCDPY5eKxIJIKhoSFDngiFQgBgdI3agdFoFNFoFNVqdUWnz010vWr2GK9TQR/WFtUgAtfLanYwsNTLhWVrBgcHTe8AAulct8woI+jg8/mQTCZNkJLnobNPfaxgnK4Lnnct47RBCX5+rfvHTpKec771cj7oatqlug+5gVMq+jwpaKoENN1j+Qza5WK4p/K7buxiHktJanaAlvuxBstYu91+9u1j6Ln0OvW8vD6bVax9O7SUGP171XEU1pJeWFhwZGPZ86nz4/ZZ1dMKonKPpS/PcjU2k95NbF9a9Z0NtrvtKba+tsW2T+xAuX7GBu1tPISf6WZz6feVxa7BBgAOQJ2+J/trJRIJE6TR8iosk8JAvds10x7U9aDCZ4EYkpZyVXtSfV+3SgL2/GqQgLZRKBRCJBIxGd60LRWP8vl8jn4EXDcMcPP7oVBoGdnMths6ncVMN/rvDGgQI9Agjh1A4N98nfde14naf7pPuQX9KG73yMYn9Bln8EftPXvv6SY9Xb29siEgHQBuvPHGs+L02/L888/ji1/8Ig4fPowPfvCD+MlPfoJ3v/vdCAQC+MM//EMTmXNrAPfCCy+4HvOTn/wkPvKRj5z1sa8mbguYDzdLTpCFTpYYmeKaUqPKiAqTgHRf32IjlcnJSczPz+OCCy5ALBYzYLd+n00RyQwnU2w1J5eKQlNxWN6D7CyydbmZUtrttokwxmIxJJNJk6rDFJ2ZmRmjWDbicCu4uBZnqNsxyCJsNBqGGcaU5RejtFot0zyzXq87mpwBS01TCGJreSBbSWgknOwxZSysdY7o1HKtcN3w3GqgaFYAFaYa8yspIZ6HQAJrLGotQgU7yPocGRkxRuTo6Cji8bgru6HbOUOhENLpNIDFJsCVSgWVSgXT09PrLoFDsUHznbwet1Lh33zzzchms/joRz+KyclJXHHFFfje976Hffv2AQAmJydx4sQJ8/n9+/fje9/7Ht73vvfhC1/4AsbHx/G5z30ON910k/nMNddcg29961v40Ic+hDvuuAMHDx7E/fffj6uuusp85rHHHsNrX/ta8//hw4cBAG9729tw3333oa+vD//2b/+Gr33taygUChgbG8NrX/ta3H///WetvMlW6Out1tW2w7pdQieHzgSbDlFf0eHl/hiJRNBut01dUbKNmWXGJsEDAwOmYVUikTDgPBnhU1NTqNVqprHueoTjoDPDfYxMKW2aRmYesKTrtXRULpdDqVTC3NwcSqWSYWjthEAe2dLhcNjh1Pl8PqM3tCEdgQwtXUMHk2U5+L+yy4ClhlZcA+oAU9cy1V6ZaryvWiKg2Wyi0+k4mtKxyZgy4CnqKBLUIeObbETqMb7Pe6pM+/UIHUkNQCgzTQM9ZN8raNINUOp2LgValKlP0N7n8znYleFwGLt374bP50MkEjG2AnscsAa/Br30fO12G9FoFPPz844gwUrPmq77nayH1yI953x75FzT1bZdbZekAmBKkVBsG9zNxlagW7+nAJn6yHyf+7QGi3VPZ6NHZUdHIhETKCXjmk0kNaCpQTcNeGoWEY/J86moTuC42B+DuppktGg06ijDyrnVWtUAjE5ZWFgwQVMFve2mpQTRV/JpFHRUwDwYDJp5UeBS9QDvN/8niKq+KP1rXht9SLfMHZvVz3HZukZ9VrXTNPjC/+3KAFo+zAbXae9QH7F0J/W46lr6tnYQmqRBuyyOAtVc7xrMoFD/036xAwH6o+Cw3jsF6BXE5bq3S7vofdDgC/3qSCTiIIC6BWw0A4JkEcUOyITX+0Smto6h3W6be8o5Zmk3LUHoFpDROQKcPRx0PdjZFDYBQ9cg8QmbLKBj5nkVpyB2p+uxB6TvfNkQkP7Hf/zHuPbaa/G2t73N8XqpVMJ73/te/PVf//WmDA5YXESHDh3CJz7xCQDAlVdeiSeeeAJf/OIX8Yd/+Ifmc7YTYEd+VG6//XYDbnDcm13bfaOiDHSmxVJ50rnV+lkAHM4MnVvWBAUWU0VOnDhhaj0y1cZOZanX65iensbs7CxmZ2dRqVTWVCaDm1A8HsfBgwcRjUYxOjqK0dHRZQpIRQFWbgRUFJlMBoVCwZR6USWzEdHzbPT7rHlbr9dRrVZNGtuLdSPqdDomrYplCBiwAJZSt9kgj2C6GnoUBma4RsPhsGn+sx6hgcqotgZguJ6VwaflS7jGNOV9JSXEbIl4PG7OpQqVQiXPoNbo6Ch8Ph/27t1rAK61ghB6TXv37sXCwgKmpqaQy+XOCEh/sa7Bsy233XYbbrvtNtf37rvvvmWvXXvttfjpT3+64jHf8pa34C1veUvX93/91399xfsRCoXw/e9/f8VzbKZslb7eSl1tMz+3MzvI5/OZBpAEzTudjnGaNZWWzjuB9Ha7jUqlglwuZ9jqmUzG7Gcsy5ZKpdDf32909czMDCYnJzE1NYXp6el168VAIIB0Oo1QKIRdu3ZhfHzcwcphKq7H4zFBVo5HGUXz8/N4/vnnMTExYRqi0vHYCUB6X1+fA0RPp9MOJ4cNXBcWFozeUTCdxwBgyobxHmrmnQIfys5ilpI6xwqkq66h3cYfsv77+/tNsIXBbnut03bqdJYa5hI8UZuSzGt+hjp+I5ljtvPOayeQotdHHc6AAtfJenSX2ogaLNBz00bsdDqIxWKmP080GjWBCZa4iUajDudYHWMAhiXYarXM/VrtOVsNaO9JT1aSc1FX02dltrRmj9pZIPZ+RJ1Ef0D3WC3LybG5jdsGFAnScT9U0EwDzArEMuhNHxCACZBqdhP3GpJ6uG+Xy2WUSiWjaxigJZhrM2MJSnM8g4ODCAQCSCaTSCaTy3QIsQCdD1439Qr1l/Zooj5hTyjeG5vxu9qeRntFy3vVajVXpjawVP+Z+APHRN+a/rUSt9Q+sdckr1f9Pr1/fJ/HIuiqoK4CzSSUKYNax0FgWIHU+fl51Go1NJtNB5hOIJ12geIh+hptQjtgQLY/MQgbSNf7w+8wA0rZ55phoPeF80pdyftDUJf61mb02/YdwXTWfme5NZsAp/eHwmC31+s13/N6vYZEwDXOZ9GuH04An4Eh9khhLzy9dgXWdewAlt0Prh8F7+1rsIF425bS9c91AiwFGHm/eP/tUoI7wY7uycqyPpTr/8t9992H2267De9+97sdN7ler+OrX/3qpg0OWGzCdtlllzleu/TSSw2TcHR0FADW1QCOEV792Smi0U9tjsWHTjtBE7jke/zhe9xEGREvl8sGnC4UCiiVSkbB5/N55PN5ZLNZZLNZVCoV1+iv23jpdDOdh3/rOKiE9MdOa1Fnj2BsJBIxqT7dgFkFVdYDaq5XlBGljuqLEcjU6C4dW7cURGV/KUPDjihTiaqTu9a63yq20asGDP+337f/dlsHbuuiW4S623wBMFkhmhmynvWmDAeWbCB4cz6IGxNxPT89Wb9slb7eLl29nevCjfWjzj91IB0BZdqpE6y6mhlPpVIJhUIBxWLR6Gk2cM7n8ygUCiZra61zwL2HGW/cf5Q1ZO9FqhNsNhaBD+6JZKRthOF8NoTALTPrVD/onm6PV+dTnVBlvGmwQJ38bnuW7Uy6EQvcbCQdkw32qigQoDpb75/ef4JRZ5JZp2NR3eYWbNfr26idRgDA/r7aCbRbGERhUF/L6Nj3Re+Xskx5PUoO2Anreiukp6u3Xs5VXe0WXLWBUTtTxRbdy7T8B4+vvoiywd1KQug+SF9b/VR7n7b3ZYJi9APpX5N8ZgPC1N8EWgmIumXo8H8NvKstoeCovZ/ar+n4NWNYcQLd/2zwuZvo53Te9d7qvbfvr36Gx1DfUZnZGoTutte4+aNuutLGCdwY5qoHdD25rSEVey3a2Qr2Nat/7Vayzf6xgzYqOhab4Gb70N2CTLpeaPOo3WP/aP142z+350SvuZttRKKeEve0tIwSOIh12VmASmYhGN/t2bCvRZ8pnUe3+XLbE2y7R++1fbxux+ZvxQHXku3e09XbKxsu7fJ3f/d3uOWWW/DUU0/hb/7mb5BKpTZzXEZe9apX4Re/+IXjtV/+8pcmPX///v0YHR3FQw89hCuvvBLAYnTn4Ycfxqc+9amzMqazJYxCcyNIJBKGkR6LxQyIx82FD60qDr/fb1hwHs8i86pcLqNcLmNmZgatVgtDQ0NIJBIYHR2F1+s1jORsNovHHnsMs7OzJlq9klL1eBbLY+zevRvpdBoDAwO44IILTESxm2PeTfi5vr4+wxIOh8NotVqoVqs4deoUnn/+eUfNUo0OcwOiI7mS07le6XSWGoCUy2XMzs4iEAhgZGTEMLt2CniwmnCtkJ01NTWFbDZrDEBGXtkAdn5+HplMBjMzM5ibmzOKjsoJAKrVqgF6JicncerUKczOzq7LQec9VMNWFaibkrIBAlVANEYBmPdosPHZqNfr8Pv9xnizAROegwYea8VTaW9UfD4fUqmUMcLXoizPBTmT57Gn8DcuW6Gvt1JXq9Oiv7dSlN3EPUeNdc1w4X6ljDbuMWSxcU+enJw0we5wOGwaKXm9XpTLZbPXPvvss4blthYWLNk+fr8fQ0NDOHDgACKRCACgVqs5xsRaqx7PEiOd6cWsec293e/3Y9euXahWq+jr60O1WkUul9sQU34josC4vQ5qtRqeffZZ5PN5vOQlL8HIyIijBIjPt1hTG1ieFs8ggbIGyZwkgEIdoA6b1+s1tdK1/BjXitbt5fF4b8ikojNORhe/301oG3KshUIB8/Pzhhmm65Jp18ViEblcDk899ZSjT816pdPpGLCZ7DmbvcWx02ml3bpWe0nBMwahWSbH611kQqbTaZTLZZw+fRqlUgmpVMo0AR8ZGUEqlUKlUkGxWESn0zHgOABDitD1yvXU39+P3bt3AwDy+TyOHz++4bl6MUlPV5WVLnoAAQAASURBVG+PnGu6mlnSgLPMB7C0pzLoRxtdCTMej8c8b3bwjJ9x8/UIPHo8Hgcr3i6doq8Bzr1GwWIemz5muVzG3NwcCoUCqtWq6ZU0PDxs9GC9XkepVMIvf/lLFAoF5HI50wgRgMOHpdCPTyaTxvdn/yZmhKnfT1+Gx+NYFXwm+Kps/1gsBp/PZ9jj3Ld1TFrypZtwPFrSy41spX6VBjtpZ9RqNZOZFw6HMTg4aABT7vNKOuL9WI2wpffNBlJ5rTZ4zmwnzR4A4LhP9vXo+Ri8t9n9nAvaB7xm1rq3j0ud1Gw2US6XUSwWTeaflmYj5sE55Xwpu9vOXuD12A1RVY9zfTD4Y2dN2/qb80QWuQL/nGt+TwNGwWDQVGAYGhpCMplcdv/sfYPzwueFtlOtVkMymcTExATy+TwqlYoDkNZyUIoPdAsA6DpVQozNqKfYxEK+zx/aaBqQ4/cVU2F9+IWFBZw8eRIrSU9Xb69sGL257LLL8C//8i+46aab8IpXvALf/e53Te3fzZT3ve99uOaaa/CJT3wCb33rW/GTn/wE99xzD+655x4Aiwvvve99Lz7xiU/goosuwkUXXYRPfOITCIfD+L3f+71NH8/ZFCojRuPI7rJLXCi4qAqVypn11xjhLZVKxuH2er2YnJzE0NCQaeiZz+dRKpWQyWTw1FNPYXZ21qT0rPaQ9fX1IZVKYWxsDMlk0tR13SigTKWjrF8CntVq1bD2dGNWg4rOvs1W2AzhBqxKjUw3BfZ3umh0m9dRrVYNmKzpcfV63QQPSqUS+vr6TJ1WNUQICFerVWMwlsvldQMpajzb7HM1wnluNXC0QY5+D1gCvXgOAI4Udyp8G6xQQ5SGvmZbbFRo5CQSCUcH9XNdegp/e2Qr9PVW6+q1rAc6SWdD7OCdDaZSf6szzv0GWDKu+dl2u20YbQCQy+Xg9XqRTqfN39ls1jDbpqenUa/X1zxeBr5DoRBisRiGhoYQjUaNfcBropNCPcs0ZS1Lw/qTHo/HNKD2+/1oNpsIBoNoNBpbpgvd2D+UZrOJmZkZNJtN7Nq1y3wegHFgGBTWsmZ6bILl2o9Dm6ppLxCb4aXzSPtOGYDqJCpoz1ICdmq7jt8epwZ32QiWjUbtz5FwUalUMDk56XD6NiJ0MLXurD1OBcmA5c7rSqJzZQetOp2OaTLGlPxarYaBgQEkk0lT2od10hk4J0hDW5l2M8+n404mk2ZtnDp1qgekr+G7PdmYnGu62o345JaxYoO/uo9qkItri+xq9YH5PoFFtya/6htyLFq6ieCcXX+d80KbgvWw+/r6UC6X0dfXh3Q6bXRluVxGrVZDsVjE8ePHjZ9VLpeN76I+itfrNfqC/g+JdQwEaK15HZsCurQ11JfTz/E6A4GAmWf6QDr3Coi7zaHON++jBknt7ADVkXrPOdfs6aE+Ju8T9Yb6cXqfu90n+9q7MacVTNfxKLFKA+o22UqFY1qpHAjXupbyiEQiBvRWsJbHoo/NoC+F94n3TDPotESffl5Ji5qppc8nwV1ep/q7umZ17nhc6le3LBT+1teZzaLlizhfdiBLs+mIT9D28fv9GB4eht/vR6PRMD1htA69igaBSL6znxsFyWkP6nzqutJ9g+uAx9A55jqx74fiHCzpvBa7rKert1c2BKTzpg8MDOAHP/gBbr31Vrzyla/EZz/72U0dHAC84hWvwAMPPIDbb78dH/3oR7F//34cOXIEv//7v28+8/73vx/1eh233XYb8vk8rrrqKjz44INnrXHb2RBu/HygNf2KDoo6Kwo0Uknpg0wnDIBjk2D0vFaroVKpGCOAkXPWlFoNAKUTws7KjJ5vNiBIZ9Dr9SIWiyEej5uoY7PZdERUOQcaqVbQfa3nc/tb/5+fn0exWEQwGESxWDTAB53UnS5UymQ2EvRWBQDAAD+dTge5XA7Hjx9HPp+H1+vF3NycMUA9Hg9yuRwymYxhpM/MzKBQKKzbObcZFWrc8G+uc31Nx81nRZUS1wfrHJKdQeOkVCoZpr12Eie7IJfLoV6vw+PxIB6PG0bbmQjH7Wao9qQnmyVbpa93oq4+W0aiBm7VAQawrIyEBr01uMvv83Pa5EsN+kKhYL7P7DECresZq9/vNyn3zHCjKDuef+vx9Tq5/9JmodPOawfg6Glhp0XzeOqgqANrf3ale6h2kO6jqhe0vjhBEq01zjHz8zbQrfNAG40NY9UJUmdSX1PAQV/T6yKQzjRl1hkHYHQ1+9e4NZelnmq328hmszh+/LixTxKJBILBINLptKmRvrCwYEoEKYi8nsCTBga4ltzuAYX1PllKhmCOpm/zuDpfej4+D4FAwJSl8Xg8KJVK8Hq9xh7je8ViEXNzcyaopQ3wdLxu18znRksibDTrUOe257j2pJuci7qaa1+BJA04Akt7g4qClW7PndtrqjsUBCUYzeeYRLVgMGgyXAj8EWAmgKlCHa1ANUF16gOC3VojndejwVKK2gfUAX6/H4lEAolEwhB36OfadoT+b/tJClza4DKzvqlfGBggSYq+nZsfpoxctzrc9nkVsNT7q79p82jvCzvTQPdRtSUoHJMGYfQ314xiBXotbmVkdPw6D9SjtCu0zjvxFdb4pm4mLsPMPmI9XIcMsHCc2mR8dnYW+Xze0Z9NA+C6BmifqY5UjKnVapnMPJ6X91rnkutBA1LUh3pM9WNZi7/dbiOXy5lnhs3r9V4TxyHw3eks9m2jTab3gWPk3OlYleTIRrXsB0BbmWtPj0V7lnOomAeF91sDFWoj6mcU+Nf9TTM9bFHMTLM3GMw5E4JDT7ZGNgSk28bx//yf/xOXXXZZ16ZuZyq/9Vu/hd/6rd/q+r7H48Gdd96JO++886yc/2wLH1BuqpFIxJQ1IdOGkUrtaEwFog8xo/f83dfXh0ajgUAggGaziRdeeGEZW4yKgxHStdT9ZqPGaDSK8fFx7NmzxwHyb5Ywxa3dbqNYLGJ8fNw0RWUTKHYxp6KkQUMFsJZa76oU3KLZwNK6bzQamJiYQK1Ww549e5DNZh3A8k6WTmeRYcha+SdPnsTzzz+P6enpZeAMS+p4PB48//zzaLVaiEajmJmZwd69ew1jwuv1YmpqChMTEyiXy/j3f/93nDx5cpkCXsvY1Ejhb1tRU/Rz/NvrXUxdB2ACL8qA4RpvtVqm/nCz2cSpU6dQqVQQjUYxNDRkotecgxMnTqBcLqPRaBh2m832W+99ULbG+eJc9yLnWy9bqa/PdV1NoUNC55ZGfCwWMyA1n2+mrXK/ZDNS/tBw7+vrMw7B3NwcSqWSCXDPzs4CwLL9bi1CxyccDmN8fBwjIyMOx01BTIINBABoU1CvqaNJPbmwsGCaZMXjcbTbbZRKJYTDYeNEkr1Np5a1q4GlPaHZbJoyNeqE2KAz51+dYzu4qs3sGCRmTxifz2fAXI5D06M1YKDOD++R1+tFIpEwac8sgadsPo7RTovnOG1HzudbbGjNIAznmsHubDaLJ598EseOHTMlBVTILvd4PKYMXn9/P0ZGRkzGwN69exEOh5HL5TAzM4NarYYTJ06YADHt0LUGd5mdRXCKc6SgBO8Dm5DTOSwWi6akEZ8LMufU9uJYGEBaWFjAiRMnkMlkjL1MGzeTyaBeryOXy5lShazfT7Cn2Ww6AB0CZbbjrAAKQYBoNLqhbEuej/d7K8odbYb0dPXWy7moq7m/2QxXfdYJFANLJbZsBrNdSlHfIzmGrwMwe45mkQYCAVPSJBqNIh6Po6+vz5Q8U6CWJS30nszPzxsGMUFS7meNRgPlchmZTMYBvnIPZI8vLZdC0Iw+CvuBhUIh7N69G4ODg2b/UfCuW8BT7QI7U5vzwvlPJBJot9tmD5+bm8Ps7KzJPOZ3FcykraJ7GIOUwFLwnddPAJNjpt0BONc69/larWaCEHapH3tN6TogOKwlhLQcjJ0FpZlhCpITL7DZ+TbYyeAz7TNmqbP03uzsLHK5HHK5nHmfYDvXHrMWGBiuVqsYHh52AP58v16v4/jx46ZaAEuu6nxooIX3gqC76jy7RBB/WI5Fr7NarTrsG2JQJDeqDci69hwfiWrEslKplFkTtCFZUojjYtaFAtQ24YDlfvU9nd9sNmt6/rFvAY/NuVL7UXEz2t42eK2EAf6tpA/NllF/Xm1YDeLb9hZFgyHaeHY16enq7ZUNAen//M//vCzV7PDhw3jZy16GH//4x5sysPNJ7Ai9Rr30b00FV7atPoiqQFRBc3NlJ2NVOhsRgsaaeqaR6M0SRvHb7bZxtjqdjlE06uzwerV25loY8m4MCbfvKdDL2tp0yLVb+k4WggVUOmyIQ2VpCzfxWq2GbDaLZrOJTCZjjC/edzLSK5UKCoUCKpXKhtnWOs/2/1zvNjtAjR4yIVnCQNfCwsKCKRfEMbJ0ENdQrVYzn+G9pkFCNijX5JmIAg3ni/QU/tZLT1+fHbH1q+pczYwClhjYZKSpI6Asby1Zwf2B+/VGhU4UwVoNPOseZpen0euk2OwgvmanFjNjTdnqOkfKSOfx1Hmx7QgbOLAZb8pq0/e5v3MOCQRo7XK3a1PdQmKCOkd0+GwdoA4gz2+Pyd7HVE8qe46v00lkeTUGOGyhrqY+433gNSQSCSwsLBggnew5ZVt1IxG4id5PnpfXo/Oh2ZF8Llh3VNnetCX4Oc4dnXPeAzrfdIxJnmBQg4EbZYNq+TYen2NdbW3pfJyJDlrP3O4E6enqrZdzWVfb4Ke+rgC2G4i+Vl9ORctWcJ+hHtRGhfoav6d7tb2Wqb/ZGwuA0S8MFKq/bgOyyqTntSrAy71Q90QNPtg6SsXWzbZvq//znLQJyARWjEHvCwFt7t2qD1X/EnC1gUq7jAjg1BXUd9ynbWa4vXZ0bfCaOVb7Om3Q2MYq9H6vdE7V6wyMsnY4f1gilb9pa2gZUTuwND8/j0qlYvqZKJDOErKsuU87Ruuv2zYGhTaOzgsxEvrSSoqw74fWRdf51KCTrktd1/SdeUwGtDVQwevgfHk8HkdJHPs+0C7WgA2w5Etzju2SrXyfwLXqf/v5USIpP2uvKY5lNYzDJnjoHKv962Yb6rOwmvR09fbKhoD0a6+91vX13/iN38Bv/MZvnNGAzlfRDV4BdAXR1SiwHR/+8OHkZxlxVQddU3k28hAxKjg0NGQaIrg54JspPOfw8DAqlQqy2ax5fSPHckv3soEE+9jcDMloa7fbmJ2dxcmTJ5FMJk3kdSNG39kWKoVWq2VSv9kUdHJyEsViccUNu16vm/q8bH7BIIfX6zUKn9HotWQ1uImmVnm9XhPB53vAUiqfrZCZoUDGCaPuajRxzH19fY4mc5lMBrOzswiFQpicnDQGY7u91JS10WjA7/cjnU4jHo8jkUhgYGBgQ2twfn4e2WwWp0+fRiaTOW/St3oKf+ulp683X7xerylppqxXMlbtdW4D0NTB7Xbb1LHkfkNHfLMkFAqZ0muDg4MYHBw0zDoC+hwPy5SRpadgOw17N+eD9UTJEE6lUti7dy9qtRomJiYwNzdn0tU1CE7HRRk7PCaF+70CDpxL3c9tVhDHTAetUCjg5MmThpFlpyczw0CPwUZsnU7HZAaqc875Ud3J+eh0Og5HVEEKvX7eA2a1VSoV5HI5zM3NGWZVLpczZfmUfbmStNuLvU3m5+cdzKxKpWJY+gSa7cC1m9iglsezVFuXQBLZ5Sx7ZrP92u3FtGyuA86J1v611xOwaH9wrkulEjqdxSa3LE+oQQ/OEZ+naDSKXbt2OcZtzxMdedseBBbZbsePH8eJEydQKBTWlWXH61FQ6MUiPV299XIu6mrNEgKcQKgCrfpcuoFT3cAvYAm402dMASsbkFZxC5hyLNxbtNazMsMJ3rGcB8+reknnQIFajs1mT7MnGvdE7ofdjqN7lvq2bqCw6k0t48ZeLpxLJevpMRSw5d+qt9VW4FzxHLw2Xpfq/4WFBQSDQTPXDByz9AgBUAU39T6ouAHktl/vBojqulRinjLobT9NgWAlprEcC0u6ADAZdyR0Ub+xYkB/f79paMlzkpHO+vG0M7i2OB+0Pe11ztIsvC6+rvfeLRhjB/dZ/ohZE5FIxAQSaL8wwMQAPtcBbQyekwEG/a7H4zHEvFQqZewwt6CG7iOKDfB45XIZ+XzeZNppOR9dCyr23qFrl8+yTZCxQXSbmKJljNwAd7dx6DE00LGa9HT19sqagfTDhw/jYx/7GCKRCA4fPrziZ++6664zHtj5JDaArsrVZqfrZ+2NwQ2Ip9K0j3WmgDeB9Gg06kjXOhvCsfKcoVAIx48fX2Z46Sa30uagoDmdZ5173XRVuKl5vV5UKhU0Gg0DpNdqNYyOjjoUw9kKKmxEFBjI5XJ44YUXTDmWycnJVRn1rDHr8XgwMzOzzDBRpXgmm7qC4l6v1zjavAZgyaCmAWYbY/F43DVNnN/lOonFYujv70etVsOzzz6LXC63rIGRzhuZdclkEpVKBXv37t3QNXK8uVwOp0+fNnVqe9KTzZKevj674vF4TMNOLS+mwKjbD78LLM8eowO5mUFpj8djnBMC6cPDwygUCshkMsaJoxNUr9cxPz+PWCyGVCplGEQaVLRLr7AxmLKVkskk+vr6TGmSfD4Pv9+PVCplnEcC1AyIKstIgw6cHy0dxzFpMJfzpU4x9QkA5PN5nDp1CpFIBKOjo44ydDp2BQiYpt1utzE8PGwcVTqL1CUcC8dGfUqWtNoXPB8/SxCITjSzv+r1OjKZDLLZrClDxgD+WvRrp9MxALrH48HExIR53c1OWkn/2wEHZYHze8ViEV6vF8PDw0aH8r5xbdPh5vvKCqVwTgg06D1mUIBZYTwOnXO9NjLbyFJ3A9L4ed4nBrUUQGk2mzh27Bj+7d/+zRFwWI+cafZaT85dOdd1NUEuBajdAE4bKNeAqH08+3lSIEzLehGgs8F6ZYDqZzWABiwH0ulP83sMwLEms9astjPIlenudu0MKBIQpS+q5CK3EhLqs2qQXvcqfpZ6k7pOgXR+huA1500DxW7zrtes4KziDwwSRCIRRw8rYBHsnZ+fXwa+MtjLkmfKntZ7aP+2/1bSnBuQbvv7XDO8Bn6POlrXDbOfqGe0Pne9XncwqwmkezweE3QmeMygfqPRMOsOgLGfyHxXIF3vp8/nQzgcRiQScfi4wBLwzPWnOJIGRCh2UIrzEY/Hzfpk+VS7SS31u9/vx/z8vClro+AwsQRbWH6QhDhdt3aAjPNnB41IEKGtpBknbsJj2iX4KBpQsQl9drDBXn/2d3RfU4zIxkv0GTsTLKUnWydrBtL/9V//1WwiP/3pT7s6eTsJPHwxyVoZRt0+3+2BO1sGvKZvbwX7mgpAU/KA5caWKhdlEfAYVCDK7rejz92UjALpvOa5uTlUKhVT5oVd3G2jabuF6dGM9OfzeRQKBWPErKVOtwJCanjyPXut2caLbcjwM3psVfQ0XuymP8pIp/OsynwtQJQar2rAa1qpMiCULUpjqFKpGGWtRulKQsOrUqmYUjFssnI+SC9yvjXS09dnX2h8E+CzgQLuU2roA87yFvzNPdhm7W2GKBitKei613JcatwrIAE4G3npvq2iTrftoCpYzDHo3trt+Va9o460na2n+lqviXZKp9MxLCU7Y4p6g8EQvQ+8j5qWzvutNVnVZtDzK9ChP6oT9TrplGuDVALWG9k/N7rncu4UmAGcbDjA6ewyOMCa+BRd2zbZQ20xXXcKnFDH8p5oAEYDKyp8n83V6fSr7cp1YTeAI/hP9j4DSOeTbLWuvvvuu/GZz3wGk5OTuPzyy3HkyBG8+tWv7vr5hx9+GIcPH8YTTzyB8fFxvP/978ett97q+My3v/1t3HHHHXjuuedw8OBBfPzjH8eNN95o3v/kJz+J//2//zeefvpphEIhXHPNNfjUpz6FSy65ZN3j36ic67p6NbtYATL7dbd15KZX1IanflVfTr+rwWu77IeOR8dl/9hgmJ5DdZWt8zkG/la9AGCZT6rgvoLi/J4Gm/V4tq7kuNxAOjtgbc/DSqxbe97t+6SAov7wWnmfNBBN34vBTwbZ1Z7SH9t3VF1uX5OKXr/bvVQ9bt9POzDBMRJUt3V1tznlfdUyfrx+AA7fXMemNhAJXorHcI6ZEcc5AeCoTmDfX14bv6O4QLe1bouuJc4ZMzc8Ho9r7zQ2VQVgytjY9qg+l5wPzhf7GWhzVDu4Q7H3C16zXfZN7XY3kN1+vpVAo+O0AwE6Z90AdD1+r7TLzpc1A+n//M//bP7+4Q9/eDbGct6KDVAqgKc/qiC5SdmAnz58uplvZmqpx+NBIBAwzF9Gks+2MOo6Pz9vnFM6O+qgdjqLDTXthiGaQsyIv7Lc1CF3M9bsTdHjWUwX/+Uvf4l0Om2YWNFo1NTC3W7jl/ebDciq1SqeeOIJPP7448jn85idnUW9Xl/XRqwKwQ1QUQOK5VXYoMTj8Zi5B5aUlhoj2tyEtYG13AEVrALsvG927bSVhOMiA4OKk+fU61TW3TPPPINoNIrh4WHDAhgdHV2xERmPkc1mMTExgVwuh+eeew7Hjx83bLrzQXoKf2ukp6/PrrTbiw0QqUNKpRJ8Ph/i8ThSqZTRz3Rg6BB5vV7D/tIGSUzbPRuZKdRl3H/oxLAEh9oUbGYOALlcDoCzpAodMHWyyFgCsKyGp9oczWYTMzMz6Ovrc7DYAGdtUhUCq9zb+bc25mRZHQKmWnOzv78f6XTaNIaemppCOBw2DTh1jCz5wvRgsp5TqRQAGHtnYWHBzKMCMgRhaWsR/GV2lN/vd2Qb8t7Yjl2tVsPU1JRpXkZWudZEPZuiDMLR0VHEYjE0m03TZE+BZm3OpsGFYrFoAifKxKJd4PV6EYlEEIvFDCOPWREMHgBLoH0wGMTIyIijViwD25w3Cuen1WqZrId8Po/p6WlzP8gEZONfv99vSBDU45OTkzh9+rRpUnu+yVbq6vvvvx/vfe97cffdd+NVr3oVvvzlL+P666/Hk08+6Zr5d+zYMbzpTW/CLbfcgq9//ev48Y9/jNtuuw1DQ0O46aabAABHjx7FzTffjI997GO48cYb8cADD+Ctb30rHnnkEVx11VUAFsH4P/3TP8UrXvEKLCws4C/+4i9w3XXX4cknn0QkEtnQta9XznVdrU1C1WegcG9fKShLsckvPKba6PyfPbyUeAXA+HzsuWUHQe2MMu4zCpaqD6jgN/c/6i0CwLbvwuu2QV42Q2WpD+pW6lc785fH1KCBlvywfTQ7YEBdpYB9IBBY9n17zDYgr/eD79PH4x6v/qCKsqp5r7QXF1nsOka7/rw9n2RF24EEXo/Oi15nOBx24CcK4ura4D3WYDd7mLBvGr+vAWAGQfi/Buq1pwdF65PrHPAZ4Nh9Pp8pL6u9ywKBgLmfnAPNvOf1Eyymz81xaK8bvfe03RTo1+dFdTDtQR6Tdq8KgXA+k41GA8Fg0JRO1GdY7xeZ7YVCAfl8HtVq1ZTBYwac2xrQgBgAR0Ykn6VuADq/o0EhEmr0O/qs6j6mGfZugRaOTW3o1aTnV2+vrLtGOssn/OxnP8MVV1xxNsZ03opGK+1oqdsPv+P2f7f3VKgk1ivcUJkSfjbLutjnVYCamx2dKQXStWEFhQqEDq4C6fyuRsvtDViZedpMI5vNotVqmfRrjU5y3Nspnc5i6nKpVEKpVML09LRxEKvV6hmBN27rRw06znM4HDblDyKRiDESafRpY5ZKpWKiytoMzQ5wKJDOEjDrWc9ct8r+sJWeLYx4szt4LpdDq9XC4ODgqvPU6XSWdXTP5/NnpARfbNJT+FsrPX19doR7Vq1Wg9frNaCqlv5QFhn3Fa0fSSCSIKWysjZT1FnjeeiwE9TmPso9lHtvp9NxODK8Njswzz2Zx3FLBWepFM4Hv6tBTLf9wXbSlFnF8h86p6ojCIxGIhEDkCsArNdAEIGseTqd6pTSqWQtVB6btoOCHwzQuvVgob2h95zXx/Il1M92rdWzLRwf07lTqZRxgrVRGueH4BLvFe0iOtGavca5UduANh3njiAU1ybXIOvTqyO6kq7mXPb19aFer5tmbolEwpRPUOBEbRZgKfBDRvr5Jlupq++66y684x3vwDvf+U4AwJEjR/D9738fX/ziF/HJT35y2ee/9KUvYe/evThy5AgA4NJLL8Vjjz2Gz372swZIP3LkCN7whjfg9ttvBwDcfvvtePjhh3HkyBF885vfBAD8wz/8g+O4X/nKVzA8PIzHH38cr3nNa9Z1DWcq56qu1gxS1W22rlNGqL6u9j/fdwNjbeapMqDV19VMJrs3g+oZBU8Z+NVMZ+5/GkzlfsVx6zW4MZ11X+TY1K/mXsxrsDN9dC55zSsB6TbBTp9T6ihlSfP7NoPXBtP5ff7WwAFLuvBvm6CmJWeVJMXALbN41e/X4IGOiedn+TA7MKL32WY6azkbDe7YuAz9f9oR2mjUzh7T9arn43Xwfigr3V7Xeo8Vv9B7oiWBAoGAqWHuBnTbwRReDz/LbDjOpRIlFXzX7/O3LbqOeC1ujHR+v9lsIpvNmjXDci+8Rv2sfrdWq6FcLqNarZrKABqE0DHr2Dh2Pte6x9jPr+4NALoSJfm+3ktlx3Nd6POl5+Rnuef0gPSdL+sG0n0+H/bt23fepTmebbE3U27Qyt6i4lYQmb81qqhKH4Bh4CwsLCASiRggkKxtlpiwGUQriZ1itBViR70p3TZ1blKcMzpsmtqr4Lo6afY5gKXAg+34srzH5OQkgsEgqtWqachB1t9WMMlUuLEyqlmr1Yzz3+l0HJ3hyZDcCKDOa6Lh4vP5TAPaYDCIRCJhlCE7kqvTrKA412ytVjNGSa1WQ6vVMmDC/Py8oxahKks64GsFHFSBqqJcy7zOz89jcnLS1ExvNBqGSaLMdH6WDdBOnDiB48ePG5ZhT4n15GxKT1+fHeHeWq1WEQgEEA6H4ff7sbCwgEKhYPSKZpEBMHuNOi7K9iFo7fF4kEwmHbWmCeCuF9Sjk0UWHo/J4yjzT8FysnVpj1DvaSkPG9RQJ8EtC85tv3Nz6Aly8H/AWVNeM8rUCefnyWKLRqOGvU6mmMfjQS6XMyxkMpOj0agj+KEgh62/lfnHuVHwQ+ue6jXZNgVtER5HQYNgMOjIztpsXUFWOAME1M902AOBgGGkNxoNw9bnmJkNSHYZx6mObDemqf6mjUsAwufzmXvBz9ls0JVEQRJ+d3p62qybmZkZ05Q8mUzC41mqsa7g/+nTpzE9Pe1o2NaT9UmpVHL8T3tTZW5uDo8//jg+8IEPOF6/7rrr8Oijj7oe9+jRo7juuuscr73xjW/Evffea+otHz16FO973/uWfYbgu5sUi0UAQDqdXvG6zoacq7raJiRRqD9sIEn9OX6/G6nJrcyE6ib6zc1m0xyHfSa0rIvt09mgus1I57l8vsVGpgMDA4hGoya4TlCQe6OC2xw3fRUFyHkeZrFxPybIp/Ojc8v33Qhk9tzy+twAO/rLCjBqEMDWgfa9tBsycm41KKGiPjqPQ3+Pe/H09DTm5+dNjW4GQCm8Lwqy6/l1jEoYcMtqsO0Qe6yquxRjoO3m9/vRbrcRCoXMfHLtMRuKxyYmoTYf55XvKzZBv1mZ/UoA1EwGzf6ORCLLAgq8DgYAbPazBkLsAITOEe+bG5DOZ8wGpWkr8TMKJrfbi5memUzGZOHRvmb2iNrSJEQUi0Xk83mjqzUAZY/Lftb1fur7GuTQtavPvhvxxe1ZUYKm2stuwUPuFcRTtopA0ZONy7qBdAD40Ic+hNtvvx1f//rXt8XgONfE3hjo4PI3nUqNwKoDyw2ByluddAAmjVmBy0ajYZyg559/HqdOncLc3BzK5fKaH9ytBof1vBRV9ioaDdb0YDZGVUdca6lRbIcXWM4wAGCAk0ajgaeffhq5XA67du0yaUkDAwOG9XA22IZuwvXQarVQrVbRbDZN6hMbl1C5RqNR48TSAFyPcE1Fo1EMDAwgFAph3759GBoaQjgcxuDgoHGeGFDQVEdVoGq0ttuLje3K5TLm5uYwNTWF2dlZVKtVnDhxwihMRs4ZCKABo8q5m2ja2VpLH3G98X4fO3YMsVgMF1xwAWKxGNLpNIaGhowy7HQWG75NTEyYlP2JiQnT5f18BNLPx2veTunp680XsmDq9Tri8bjZ77ShVDQaNU2yuL+Ew2GzR2kJFACG9RwKhUwgksxcMn9PnTq1biCdZdi4B/v9fjSbTZRKJVMuBFg04NlokXqy0+mgUCiY8mkEUhkoaLfbhllsM5M0OKvONOeP4uboENhWkIPZYyoEdbXkDACkUikTNKADziZgjUYDJ0+eRKlUwuDgoHFCyXriOFVHuTnonI96vY6+vj5T0g2Ao1kW54DjVMIC7zntCKaK0xFmxth6gr1rFZ/Ph6GhIaTTacRiMYyPjy8LULBsjtoHvP9zc3OmKSrXTLvdxvT0tGlkS+BCHVVNfea5WIuczw3L7pCJT7BnrbXKdZ4ajQaOHTuGU6dOOYgVw8PDGB8fd1xvoVDAyZMnTeBez38+ypmutT179jj+//CHP4w777zT8Vomk0Gr1cLIyIjj9ZGREUxNTbked2pqyvXzCwsLyGQyGBsb6/qZbsfsdDo4fPgwfu3Xfm3bGOHnoq6m7qIoE5P7pO61SgLjayqaxaOgu/rBqoO4f9N2536mjaDVv1bmOI/BJty6nzPYSF+PQDY/WygUUCqVTE8kN7a6Dehp424G79TPtgPGNqua41a9qfOkhD0GDJXAR5Cz0+m47rWaqa3lORUYVlxCSQB63fZYCSTz3rNRZ39/PxqNBiKRCAYHB42vmU6nja4lGMy5cWPLk9BEn8sOdOvnOCa3AA6vQct2aCZTJBKBz+dDs9k018R631wnNgtZ7Skl/fE7DHAr4zwWixngXrO+Gcznc0WWNgNAHDfve7FYRL1eN0Q73m/eWyWE8XvMRqMu1SARbRoeX8vA8X0F0fksaXmbTCaDQqGA/v5+TExMwOfzGb9acZlGo4FisWiIaiTdacNWPRdtF3uNakBPn0UNMPHadR1oaRe3oJ+uJfuc9vq3QXQAJutgrYHVnl+9fbIhIP1zn/scnn32WYyPj2Pfvn3Lasn99Kc/3ZTBnU+ihgAfXv6oYUFHVh9cZYhRIWoUmVFJbiJerxeNRsMoqWg0akBOpl6vZ8zbIWrw2E4uRRW5pt+5/ahi4zFt6QauM3DBbtGxWAzlctmUMdEU77MNptvrgGNTZ5yBBKaSsn6sXZ9tNaEBqsBHKBRCIpFAMplEOBxGKpUyyl7ZlcrU47iV7d1ut00NXDI/aQQFAgFHwzxlO6ihaAdH7HmyjYr1rGVl3rVaLWSz2WV1XTmuUqmEbDaLWq1mjOuzwTB8MciZ7Bnn43xthvT09dkRddYBZ1YMnUKmCqv+VuOcx6BBTiZyp7NY95JAOg1qAuH8/lqfCRrrqu/UeXbbJ7mH2c6kDSYr0EwWlq3juu33/Nv+jJZEUXaR1gbluZRFyO8TdOe82mABwe9gMGiCBNTV9pj0GvWH43BjamnatV6bzqMNbjCgTRtPA/1qq+hx1yMcE9cTmV7RaBTRaBTxeNxRU9jj8RgdrHOuWQBcq36/3zDW6fADMHXPlcnpBnrRVlGHUq9RMy3Xe+2dTse1LiuZewTEfD6facTOoMH5zAbbDF198uRJxONx87rNRldxe0ZWspXdPm+/vp5j/tf/+l/x85//HI888kjXc55tOV91ta0/KG5Zwbof6+v8vAZBeb/tvYaMcAKw/IzqPN2n3HwElmHhXspjMvubAK+O2c1HVV3mpk9snbvSGlYSkT0/etxuz7btn3UTZSyrXlGmt/08dgsEq07l+5qFzz4X4XAY1WrV+IQakOU8asDEnj++bo9Fx6f3xc32UYayPdckPHIdaV1vtWlsO4Hzzd+q67XOP4FygusE0kl6YH10ngeAA0tiUFhtUAZTlLChtonOhT0HbmvMtons+bI/awdZmIlhV2Egm1/Z3CzXxoAYy8BqwKrbnqK2pq5l/axto+nY3X67rWtdQ25BGVvscbrhWm7S86u3VzYEpP/O7/zOJg+jJ3xomQbU6XQQCoXMpkAQmA4JN1zbSGC5Fr/fbxo1jI2NYWRkxDijfX19JnLOBg+pVAr5fB5PPPEE8vn8ik5Ep7NUH9bj8SAWi23JHPHaaayQscbNVYFRpkjTSaLRw7+ZIqWb6kogOl+3Nx3d2HO5nAFXvV4vYrEY9u7di3379iEYDGJoaMgou81uRKpzw4ZcZL5xThhM2b9/PxKJBCqVCgYHB1EoFDA1NYVnnnnGrJ+VoqB07iORCMbGxhCJRDAyMmIYbQMDAyZiTuWnIMBqQAtZgVyvrVYLfr8fw8PDqNVqGBoaQqVSwezsLE6ePOkA2mu1mmmgGolEzBqxI+udTgfFYhG5XM6UOVqv8JltNBqYnp5GPp9HJpPByZMnHdfH7A+WpTlfQXSgp/C3Q3r6+uwJAWmyeZTxQv1C3UNdzeCblvFIJBLw+XwYGRnBwMCAI7hLR2Fubg6xWAxjY2OoVCo4fvy4Yb+7OYMU9vFgPW+CM8ViER6PxzhmdkCav8lSV6aUvq96ke9pmrNmghFwYBkTGwSn86DnAZw1cFVXtNttB5OKLDWWrGu325idnTW2VaPRMPcsn8+jWCxibm4O4XAYe/fuRa1WcwD2DDQTmKduIlBMfUInjM6cW5BDnUuCyhwTy6TMzc0Z0IABbgIIAEx2APuyrFW4xvx+v9HVtKGYDk6HnSAQ55kMOwIavJd03hmQiEaj5nzBYBBzc3NIJpOGJTwzM2PAJdopp0+fNmuC5yJzUMkg9Xod+XzepKFvhlQqFUxOTppnlAQTAg7nu77ZDF0dj8cdQLqbDA4Ooq+vbxlTfGZmZhmjnDI6Our6eZ/Ph4GBgRU/43bMd73rXfjbv/1b/OhHP8Lu3btXvrizKOeirmbpK2B500Q3gFmzjlYKigDdbUIb6FQ/zwb4CNwSRKSus9nt9EcYoB0aGjK6mn4lfZD5+XnDrKWuZnaR2/5FAI/+DgCzp7oBw8Dy3iIco33NbvPGICmw5DdzH280Gg5QWGta8zzaW0z9O84D93mOk6JkLjuwq9epwDezqrk2IpGIYawTZNVAO0kMlUrFzC11LscEwOg4/ui9tvf/TqdjmNt2MJjnZOYbs8o6nY4ppaqZEQre8n8bLCazPR6PI5lMOuxKlqyze9doQIjzpUQMzrGSNZmFyEbb9Xod5XIZhULB3CvOU7VaxdzcHPx+f9da/QAMqM3eP8QUlH3OdWvjWwqwMzBFm4D2Kudufn7eZFVqpoh+hveT94AYmpbw5XOjpAx+VzPR7CCBnaVmg956LN1zeM2cX31G1eZVUuBq0vOrt1c2BKR/+MMf3uxx9ARLzBk+rHQQNUrZ6XQMw1nZSW5AOpsqjY+PY/fu3Q7nnsDr3Nwc+vv7EYvFMDExYeo3r8T84SZCVtdWpb0qMKxpVGwGxrraCwsLKJfLAJYceiogVUYaiVwrqK2MKRtIKJVKyOfzpjlVOBw2cxmLxRz14zRavVlzw2svFovIZrMmmkvggHVyw+EwRkdHTVmCYrGIQCCAiYkJs/a6bd409lhjdP/+/Uin04ZBo7XSVwpIdHudYwaW6g8CQCKRQKezmG5IQP355583mQAsS1Sv102pHQCmrpptRBO4mJ2dPSPnnM/s7Oysa+SZn3H7uyc92Qrp6euzIwpes28DgWo6dvxNIJ3lYFi2guWokskkQqEQ9u7di927dy9jyWazWQNMVioVzMzMYGZmxjiL6kC7OYC5XM4EvFnOi/tiMBhEPB43e5k6sx6PB6FQyADtdMrolPJcBD2pH9rttilrwwA2U5J9Pp/p10Gdzu/rMaif3Uq3cf7paDO7iuPk3DabTRSLReNQ0oEiyE6gg8AvwQDaTmRa026g3icIoY6OHSThNTFVnnW4FTBgSROW9aNtw0awtOMIJtBuoaO7Vunv70cqlUI4HMYll1yCX/3VXzUOKp1Qnp9AtgZWGMzpdDomWMFAAwPmsVjMsaba7TaGhoaMM8z607QXGYDu6+tDPB43Op5zxGcHWATSM5nMpjLE+Syq9PTz1ovf78fLX/5yPPTQQ7jxxhvN6w899BBuuOEG1+9cffXV+O53v+t47cEHH8ShQ4fM+rz66qvx0EMPOeqkP/jgg7jmmmvM/51OB+9617vwwAMP4Ic//CH279+/mZe2bjkXdTX3XmApi1XBLgr3S7t+tR1AVZBc90Al6jBYS+BUfQAFEnk8BXip57R8B49BHeb3+7Fr1y7s27fP+EME0svlMubn55FMJk1JzXK5DK/X6+gnYYNmeg0ATNNI1ZHcq92CA/be1S0bl+dWIp6WdWGTTmYbKTGLPwqkMxBL3cnAq1t2uwYl7ECAzrcClrVazawjBgDoQ1M/EgOgMFirx1KWs5YHciPQ2bqVthGBcWXia+YYSQOs122X/tA1qveIc8eMQ9Y7Z3lYXRfEa/Q12mW0ibSXiB1QUfsjEAggGo2i2Wyiv78fzWYTmUzGBE9YagiAKVlkZ4/p/Wy3F2ucs6SRZpLbpXB4T9T247Uou93r9RrAXM9FYppmhHINK7bDdcdjKQhu3w/Ojw2C62f4Hp8dnsfNNlG8geuKpWs5LpsUax9vM22enpwd2RCQTnn88cfx1FNPwePx4LLLLsOVV165WeM6L0UfOk07YxkWTWvmZqLf0xqS3Og0GqnKi9/jZkoFwGi7W8RNhefi5kmn+2zPj12eRIF0Orq60fM1nQNbAWxUFLTQYzIavrCwgFwuh4mJCdOAc25uzgAnBNPVsNSotX3t/K3GgTbIKhQKmJubQ6FQQKFQgNfrNU3XaPxwPniPw+Ew5ufnDWjAhnlu18r5jMVipmZdKpVCIpEwaWfK8t/IeujGOuHxtE5uIpHA4OAgQqGQqffPtEqywMl202g954zMkY2kiwNLzUZo/NvX7BaFXinT43yQXuR8+6SnrzdXuC8pa0cbiLJGNIFlj8djmOXcEzR9lc47WcnKzOPaJ3NYnYXVhPsh90aeU4FSTUHX7wHOWpBaCksBZHWGyCRiDXg6vxrI1vIhmk7Lv9WeUMeKY9CUZXVkbf1BncX5JDjAbABeJ9lNU1NTBlQPh8Mm0EGgRAEWN3aZ22/NktN7r06nbT9xjqgrFhYWTP38tWazEdAm85x6m0AE2YYErvU+6HhU9+pn1FaxdZvaGe1225xbG8iqvuQaJSOT95x2Cp+JMxV1tHUNc91qCZrzXbZSVx8+fBh/8Ad/gEOHDuHqq6/GPffcgxMnTuDWW28FANx+++04ffo0vva1rwEAbr31Vnz+85/H4cOHccstt+Do0aO499578c1vftMc8z3veQ9e85rX4FOf+hRuuOEGfOc738EPfvADR+mWP/3TP8U3vvENfOc730EsFjMMdgbStkvOZV2telNf0+CtBmYVXAKcLFP9joJ7yh7ld6jPCDIycKqAKvcA7vP8Dvc2BS9tsJ97nvbJoM7jZ+0ggL3fMqDJzCDbX7Cvmfpb/VA338sGqKk3bQBQAU0Km/fqHOqc2cCiAqY2GKn3QzO5+JqO0V4zrH9NvZnP540uo17UBq16HTY4qudQfaZrjJ/nemHwH1gq30n7wl4Teiy9Fl2fqleJY7AxOnUl9beyndXv1OMqQK0Max0bgXYdB4PjzDSLRCKIx+PGduM5OS98zmwcRZ8vZVtrloUGq/SZ0wCaYjYck5Ip+HntX6LPRLfgyFrxCDe7Ro+n12+TMe3nW+0ofeYVx9NrUlkPkN7zq7dXNgSkz8zM4D//5/+MH/7wh6Z5QrFYxGtf+1p861vfwtDQ0GaP87wRVZ7chMLhsFGuZEfxPVVeZCXPz8+bmududTYVYPb5fEgkEoaFFIvFEA6HTSSy20PGtNh4PI6RkRHTGOdsgenKimKKO+CsU6d1NJmupMABO2TrBr4ZY+amSIU6NzdnUoZnZ2fx9NNPIxKJ4ODBgxgcHMTAwAD27dtnAHWy9BgY0CCJXj8VFdPiFxYWkM/nUalUUCwWcfz4cdRqNZMu7vf7ceDAAQwMDBgGvxo+XFfhcBj5fN40Xmu328uYWhoxv/jii7F3714kEgkcOHDA1NhnQGOjIHo30WP19/cjmUyi3V5sWpJOp1GtVhGNRnH8+HE0Gg0TUS+VSpiZmTFKmkEWKmBNwVsPu4/rJxqNmgBCPB53gC001AkQMMjRbDbXXYv+XJKewt966enrsyfcl7UZJ/c/OhTK3qKuppPearVMmq7f70e9Xsfk5CSCwSCGh4cRiURMfWdmmvn9flQqFYeOWOnZqFarhr1TKpWMbqfTTxY6bYFgMGj6ObTbbZP5RfuCDgL3TO5z1GF9fX2oVqvI5/NmzKlUytgvOm8MIhDArNfrJrhPO0UBcn6nWq2iXq8jEAhgeHjY9PwgUE2Hsr+/37D64vE4BgYG0Gq1MDs7i3K5jL6+PgNw//KXv8Szzz6LQCCAsbExxONxDA4O4sCBAwiFQsZmYNk82h2ce9V9ZOPTrqKu5r0gIFAsFlEoFODxeJBOpxEOhwHAsPwYTPH7/RgYGIDX60WtVltTEMXn82F8fBwjIyMIhUIYHBxEMBhELBYzzLpCoYBqtWqasnLeFGDm+g2Hw2i3244mbZoVWa1WjaOubEECAby/mUzGND2nLmZJFV3LqvdZBuhMJRgMYnR01KxxAiMEYmq1mrEfznfZSl198803I5vN4qMf/SgmJydxxRVX4Hvf+x727dsHAJicnMSJEyfM5/fv34/vfe97eN/73ocvfOELGB8fx+c+9zncdNNN5jPXXHMNvvWtb+FDH/oQ7rjjDhw8eBD3338/rrrqKvOZL37xiwCAX//1X3eM5ytf+Qr+6I/+aJ1XfeZyLupqGyB3yzByK/2ge78SwHhMN6AbWF4egb+5f5MAVq1WHSQs7t88lxvBhkFB9n7QEhcej8fRdyESiZjMbQ0C0y7gddBP93q9JqO22Wyahtl63fY1K0gHwNEXhK/Rb6Y+oq5WIJC2CPEGXg9BWYKhJAcoIY32gOpzBXP13qqfRV2p4LvNpOZ10PbI5XIGRM1kMsYHZF+ORCLhYMYrPmAH25UE0el0TDkbXU/quzF7jAQ1kgNY3swOSNhZ55oRx7nR4Pjw8LDR0fQnGfynXlUcQ0mMtEu07Eq3IIY+Q1wDBNIBIBaLIZlMmjkulUqmfKqW+VGCmgbStWwfMxG5bm3CgE0QIZCvBADFrvR7xKBYmpW+PO+fbSNpeUCuUw0o2OvSFtrvNhHFPgff13Wv+xlJsXo+rRShgQEN/qwk2+FX33333fjMZz6DyclJXH755Thy5Ahe/epXd/38ww8/jMOHD+OJJ57A+Pg43v/+95tAOeXb3/427rjjDjz33HM4ePAgPv7xjzuy1H70ox/hM5/5DB5//HFMTk7igQceWFYOrdPp4CMf+Qjuuece5PN5XHXVVfjCF76Ayy+/fEPXuRbZEJD+rne9C6VSCU888QQuvfRSAMCTTz6Jt73tbXj3u9/tYAX0ZH2iTgwZOn19faZ2J7CkjFRhcpOl0+a22elvYMlR4WbNzau/v99EI90eMio8jkmbO5wNIF0VAY0brb/tBqQz4s5a7hoJdUvn2ajYkV0aDvV63ZQPyWQypj55qVRCrVYz9Wo12MFjuJV8sYMlBEPIPs/lcjhx4oRhwjOYMDQ0hGg06tjE1bClc0zlRWVmizrUqVQKo6OjBpjgdWw2gO42z5pe7/UuphXWajVMTU2ZueD8ax1/gtwEtqn018sO18g/m7Wxx4DW3+90Oo4xaG1em0VyPkkPSN966enrsyt0HugYkenMoC/3Ct0f1WlUJ18bMtK51b2f+tmuIb6S0HkmaKzptNTxdHxYToQOc6vVctQD18A0f7TMCx1RgsUMLFCvUM+RGKBsNiURqD2hQVDaOkw75txGo1GTekxRxhcARCIRxGIxtFotUwYMWAICqJsJghNsZuNszhcba5Pd7qbzbJCCwW0C6SzvQyCdTiPn2g4gsDQbMwvWome93sU+LXTOk8mkI+tsYWEB1WoVlUoFnU7H2Am81zbDi8EUtQ8UDFFdSlCJdgVrvbLBPdcM143abW715TdLfD6fCYDTcQVg9DgAV/vnfJSt1tW33XYbbrvtNtf37rvvvmWvXXvttas233zLW96Ct7zlLV3f32k2xbmoq3Ud2T6lAnAKEANL/q0dtFPWp60r9fM2i5SvURcqY9TOpOXewPPwmASZ7bFTuE9y/yNoZrNSbeBfM4/YY4sBaiVW2cAa51PHaAOVyqrmPNkYgNoh9rzzPc0Es9nePKaCjLa9o3pdGcs6HzoOe61oJhgAU6+bujEcDqPVahlQlv4YX+sWaGHwne/rmJrNJsrlMprNpgNI12PQtlOcQnEXvS82A5k+dTAYNPYJ7Rn6rHo/OM86Brfyv2RN65jc1omSCvUZ4Prj3DDobK95BqBUb9PGBGAIJKvZKyTpMQDF62evNZYc0rUTCARQrVbN86UED/t8ivvY0g1E12eEc6KBOTe8g+8rWUbvHW1hG4dzyw7h8XYikH7//ffjve99L+6++2686lWvwpe//GVcf/31ePLJJ7F3795lnz927Bje9KY34ZZbbsHXv/51/PjHP8Ztt92GoaEhE/w+evQobr75ZnzsYx/DjTfeiAceeABvfetb8cgjj5jgd7Vaxa/8yq/g7W9/uyNorvLpT38ad911F+677z5cfPHF+Mu//Eu84Q1vwC9+8Yuz1s9xQ0D6P/zDP+AHP/iBUfQAcNlll+ELX/gCrrvuuk0b3PksChorwMqa5ho5VwVE5RuLxVAoFADA1KkElkd5qWTJeqNzs5oz02w2TUpyoVAwjazszspnKrwm1kIlk4mggjrnwJKy0gZWtkHiFkncDLGDFVQuPP8LL7yATCaD2dlZ5PN5wxJLp9OGDchIuqb16zxQqZXLZczNzWF2dhbFYhHFYhGnTp0yLD0y9Mgg1DWikU5u+Nz0NSjCa/J4PEgkEhgZGUE0GsXY2JijcerZBNBXEoIonU4Ho6OjABYZPeVy2dR/JcDFhkc6F6spEGU0kB0ai8UMwz+ZTBqFz8g51xgBJt4D1owjcDI/P29qHNdqNeRyuV5KeU/OivT09dkVNWLpeHHPWVhYcJRlYxkRDX6XSiXkcjnDQuNewvqPzWbT6FTuaQSpdQz6222M1B20C+joAzCBZ61ryb1Smd58TR1uOufqPHPcZL9pEJspu/wcdU6z2UQoFDJOEueMTGUKv089z6A+ARJ1FG1bRAPxrBVPVjSPTbaTMoq0sZff78f09LSjCamWq+EcEjDn36VSyUF0UJ2rdV/1Rx1UAgTaMNZuoAYsMcoCgQBGRkaQSqUcoD71EwM/ZI4pKKOigIoSPTQYZDv2yjrlutIm5LFYzAD47Geia2ijepBrwufzIZlMYnh42LH+IpEIdu3aZcr32EH1+fl5HDx40KwL2sbT09MOFn1PT/fkbMi5qqvdfAQbFFawGFgijBEIt4FJ3Yv4ORU7IKs+IvcaZe/y2Oxpoc84j0Wgu6+vzzRVVKBWwWru/STS0BdTMJW/6TeQ9Q3AlKZkqQ9+xi6PRR3BcdpzxUwxBdTpn2rzZzsQwd/8Pvd1t7nmdWhZFZt0RH3Be63EQDvYovrEDejUMnjFYtFk2xWLRfT19ZkSKQycEowNhUIO/bKwsGBsB2WkU381Gg3kcjmjs4m/MBNZwVIeU20JOwuP64xECGa9sS8Ls/+0/Ileuw1Kqy/L9cWxKqBvB59oA6go5sP7wwbiPp/P6GvqRft63bJDOA86T7SlmAXHprqJRMLMF4MgnA8GG3ieVmuxNCuz6lkijzgRiQvshWPjZLp32PuK/Vza693+ngbyOL+KA+h947rlb13TdkBiJ9sYd911F97xjnfgne98JwDgyJEj+P73v48vfvGL+OQnP7ns81/60pewd+9eHDlyBABw6aWX4rHHHsNnP/tZA4gfOXIEb3jDG3D77bcDWCzn9vDDD+PIkSMmgHz99dfj+uuv7zquTqeDI0eO4C/+4i/w5je/GQDw1a9+FSMjI/jGN76BP/mTP9m0OVDZEJBOR8QWjfr15MyESg6AcRS5AWu6G7AcFG+32wgGg6aR4sjIiHEWNfJFpdtsNk3jJaY5c9PrJmTbNhoNzM7OmpRhboCbJWRNsQZ4LpdDp9MxTCc6ttz0qBD5XUZWlSlwNkWNCWYSsNP3zMwM2u02QqGQCTyk02nDZk6n0yaSToXP8XIeyKZjulkmk0GxWESj0TBN1YaHhzE6Omruq7K9VJnydW0goumMCnwMDAzg8ssvRywWw8GDB7Fr165lc7qVYDoNRBqW+/fvx8jICE6fPo18Po/+/n4Ui0XU63WjSClrUVB81gKBAAYGBnDo0CGMjo5i7969uPzyy809jEajywwcNfTtgMXs7Ky5Zz/96U9x8uRJTE5OGtBsLQD/i1m2OnLek56+3grhPFKH8rVOp2NqmlMfkNnD9dzf34/JyUmEw2EHSFqpVFAoFIyD5/V6DauZDSqBtT9TrVYLpVIJs7OzCIfDSKfTjlJn7XbbOP9aQ5xAPu0FspLpnCvLjfugZmVpIzCv12tsmEgk4ggAEKRQFr5mF9GZ8nq9xsHzeDyGBKBps3QE6cjw/jBTLxwOIxAIGBY7gRXOQzabBQBkMhlMTk4uK5HH+xmNRk3ZGpZjqdfrmJ6eNnNZLBaXBap57xicjUajBpAha9zv9ztK6RDMUKeT60DvfyqVwiWXXIJwOGyAdKZmEwTivWBaOe+PG7PcjeHItW2X9eEcE2ymvZZMJjE+Pg4ASKfTpoQKG8kpyKLg2HrF5/MZ5/ziiy/GoUOHHP1b/H6/AS7UZpyamjJN1+PxOHw+nwFmCoUC/u///b84fvy4Y72c69LT1Vsv56quVuKXzUhX8I77ijI7+Tkexy6Zwdd1D+NvzU7W47sF6zQ4bLOyuccyEwpY1M8MkjKAp/Y+S24S6KU+tBnF6suzTNz8/Dyy2Sw6nY7JVOKY7GtX4E0BU/r6mr2mWW7co7V3hzKWKWQDaxDdDqjqPVDAX++XkuI0YKoBa3u98F7YJDX1XdUWojDDiGU3SS5jJpISD4vFoqO2OueJeAqzx3gdxDpCoZAr+Yz+Jj9LIJ/veb1eUzt/cHAQF1xwgdE7bJbu5k/ar/Nea9kcArQcE8kSnGeuc86tlmZTkgfXDokdhUIBxWLRPAPEk5TNzx99PjXIwHtEQkAsFsNFF12EVCqFdDqNkZERs1Y5f/yfmAjP32otlQIkJlIsFh1B73w+jxMnTiwbo1tGupIxKZoVqGx+JbDyPdrL+r6SNnXO9ZnlfVU7VZ8FPmuryWbo6lKp5HidQTxb5ubm8Pjjj+MDH/iA4/XrrrsOjz76qOs5jh49uiwQ/MY3vhH33nuv6cFw9OhRR2Nwfobg+1rk2LFjmJqacpwrEAjg2muvxaOPPrqzgPTXve51eM973oNvfvObxjg+ffo03ve+9+H1r3/9pg7wfBY74qfKR6PqanxQAVDhM5WWSlM3dG6cjKyTLbWW1FqNQvL7/f39RiGdKetbwV6tgUVHWMdnKxp7vraaMW2zJmhY6fwCMIZGu9020W0F0lUIcszPzxsDbW5uznSEp6PMz/GeU+nZ5Xo4JjIctemmm9FKg4BGnTLRt4ONzvHx3NzwCUbV63UTfALW7thpIIQARyqVwuDgIIaGhsxPOBw2DdR0PG6i4AM/4/f7MTQ0ZNLcCcbos/pidpy6Sc8533rp6eutE90/lVmnutrWr9TBXq/XUSNUdQXZLdTrdA7WKtx3+H06o5rSq3YEWTV0/Ci6L6mzoMfnNdnOgtvndZ64P6oOV4DAZvdQeB51hO1j829N+9VjKXtOA596nVpjlQ4ej8egK4H0QqFggh6lUskc0waKCMATkFZdzHI2XAc2WKDzqL9Zp1dBcptEoE4h4MxUtI9t33u1Q932c9W5alPQZqBzrwGDjdQkt51WMh+TySRCoRDS6bSpO68BEGbS8WdhYcHYUAyQMwjDeU8kEqZBvLI4bRDlXJKert56ORd1teopXVN2wA5YDhypLmUAl8+lAtH6nW5BQVsv634GLNVQtkFH3bMJUnIPIPOXGVbqtzLAy73dza/mXmoD1PTNms2mKcXlpjvtedX51b/tshEaAOde1s3noG6kTaB2gU1S0mvS+6HlVG397XY+XQ82iK7XQLBbiWK8D2SsU4+qPuf1k5FOsp3efx6btpbqf9XJBJ+V9KbBZttPVjIBgxRa051j5GfXopv5vl1ShM+Lvfb1HG5/K5gNwKEvdQ3wPujaUVtNj0k7MxwOm+bn1KvxeNwEsNWW4f8K6vJ+ap14npfkQd6HaDRqfGwlfHC96160UbzKfmZ0/Lbda98DnS/7WDZTfiXZDF29Z88ex+sf/vCHceeddy77fCaTQavVwsjIiOP1kZER06zblqmpKdfPLywsIJPJYGxsrOtnuh2z23n4Pfs4L7zwwpqPs17ZEJD++c9/HjfccAMuuOAC7NmzBx6PBy+88AJe9rKX4X/9r/+12WM878XepFj/ynaM1Akul8s4duwYwuGwcSTIrg0Gg0ZBNJtNPPPMMzhx4gSy2axpdLIamM5zNZtNnDx5EoVCAUNDQ/B6vYZVp7Wz1yOMGjYaDZTLZTz77LMol8tmzGQ/KfOcyo0KjArOLU3mTAD+tYoN4usmSjCcDMNcLmecQGXT2WABN38aWATneZ18v1KpYGZmBs1mEydOnDApZPPz86b+a6ez2LDtxIkTKBQKOHnyJHK5HMrlskktZMQ8GAxiz5492Lt3r1GA2wmg2+LxLNVAHxgYwEUXXYTh4WE888wzJuCgqeYrSSwWw9jYGCKRCF72spfhJS95CaLRKPbu3WuU/cDAwLLyO6vNBZUpG8sODg4iGo2iVCohm83iyiuvRKlUws9//nM89dRTpiafnbb/Ypeec7710tPXWyv2OmW6KXUU4HT+6/U6pqamTHovS7vQ2WLmF8uDTUxMmJJQaxFNM52ZmUGxWEQsFkOtVjO1sxOJhPk8AUcG3dnIa2FhwaTP8hr42+PxoFqtYmpqyoyLzgltD+o2ZZRpYKFarSKbzWJhYcFxfjKSqO9JFGBgWJ1P7slkX6u46SwGsekkE1jVDCGeR3/o5JTLZdMATZlKzARTsMUtyEJ2VKPRwPPPP49CoYDBwUF0Oh3DeCMgkMvlDEjPkgHUD5xnpkOTlc1zADDN0chao4Pq8/lMyRICBsz2o8PMjLh2u21sSo6L86HMQdqY/A7vJe0XsjoHBwcRiUQMI3ytwLTHs1imJZ1Ow+/3Y3R0FENDQ4jH49i/fz+SySQikQiSySS8Xq9hjLVaLUxPT6PTWcxqTCQSDqBfg1nsRdPX14dXvvKVeOUrX4lcLofjx4+jUqnghRdewMmTJ43tda4Fvnu6euvlXNTV9FO6sci7BQQJDOpnAWeA2i04SD1hg672ublX6/e5p/E7GnDk70KhYIKmnU4Hfr/fNGxW3/P06dOYnp5GuVxGpVJZFvxWcE1fY98x+i7cQ9mTieVTCSRSz3C8HLOCyrwegsb1eh3ZbNYE8Dm/1IU69wDMawqw8n5y/9P7o+PQsjO6p3Bsbn4ydQ+vg9+zs/B4vzSwCSzaVFwL5XLZURaNdpiSDm1WP3WFAuK0SYLBIPL5PACYrDG9lyS4MRuNxAdgqYk4G9bGYjGTMcX3dI1rSRMGb+x6/vacs4JBp9NxsOH5OQak9FkguO8WuKINwtKuDCaTpc95tHW3PjfRaNRgCfv27cOuXbsQDocxPj5uxsgsfJtwoEEmDcTzmeh0Oqb8UavVQjqdNuVU9+zZg0ajgenpaWSzWdTrdUxOTi6zHWn/aZBHyw/ZBEPdWzSTRe0gt6w1XcMaCNR9wc6K4e+VZDN09cmTJxGPx83rbmx0FTeixWoBMrfzdgvorOWYmzW2M5UNAel79uzBT3/6U/zgBz/AU089hU6ng8suuwy/8Ru/sdnj68n/FzUe1iLVahWTk5MIBoOmNmUoFEKr1UIkEnGwvE+cOIHnnnsOlUrFKPy1jmlubg4zMzPI5XKYm5sz9dj7+vpMmtJ6r7PT6RiWO9NzcrmcUSpkvjNibDe8UBB9rQDqZogd9QecgLqyFajwq9XqsuPYRiWweg1cFaY7zc/PY3p6Gn6/H7VazbDmqKAIfORyOUxPT5sURK4x1m1PJBKmXMx210V3E1Wu8Xgcu3btQiqVQj6fh9/vX8ZMWUlYQzWdTuOaa67Bq1/9aqOk7br1a71+nSsawgAwNjaGTqeDYrGIgwcPolwuo91uY3Jy0gBBPSDd+d2erF96+np7pdVqGeDQbc8gSOrz+ZDNZk3piXg8boA9stsmJiZw/PhxEwRfi9C473Q6yOfzaLVaiMfjBqwlS0g/r7VOWbOStSjdmFEejweNRsME1ePxuKnNrXXElfVFHU6AoVwum3J08XgcsVjMAVDTeafzXK1WjfOvafu0H9gYjKxspt7qdRJIp7PGGucEn2ljAGe2d3UTBgSazSYmJydNE1SmefO8rLFeq9VQqVRMCSEFmqgDmcJOXU+2nYLoZGbx89pYjAC7zhUZlm6leuhY8of2AW0wOv+0gci8B4BEIoFwOIxisegALVYSjisYDJqA9Ete8hIcOHAAqVQKl112GQYHB02N1FarhWKxiGq1agIR7EfAsXY6HYcDzDXGuv0veclLMDIygsnJSaTTaVMOYGZmxgAx55r0dPXWy7moq+mj2SULNPgHOEuW2Exwm/yk7HFgCShXYMxmYAPOALauUWWoElTVfZJ+Z71eNz4y9Yrf7zckJWV4T01NYXp62pR10WCb7p/2nsfAJvcr3b/T6bQB0e091T62vScxYEsdMjU1hXq9bvxqEn20jJvui26BZD22grpK/LMz5932Bn7XraSJ3hPaPNTVmlXNv3XsfX19qNfrJjjM0i4E31U0w0jLd3EcZEWzlIgG3nWO5ubmUC6XHeVytWQKs6KCwaCxrZiZRTuNc0SA2SYC2lmCNpDeaDTQ6XQMCG+vd513O4jB+6vrKRwOI5VKmZrk+XzeEcTnXBNv0UxKEvl27dqFaDSKyy+/HBdddBECgYApa6uECs3gUJuEonsGr5lBpk6nY4gI1WoVw8PDaDQapscAiQ9KQmHAhUA651bPY2dX2nOqmX1aeplr3g7UAEtEEzv4oAA6sx5Xk83Q1SQKriaDg4Po6+tbxhSfmZlZxgSnjI6Oun7e5/NhYGBgxc90O2a38wCLzPSxsbENH2e9siEgHQD+8R//Ef/0T/9k6j7/7Gc/wze+8Q0AwF//9V9v2gB7sjGhMuGmNzExgWAwiEajgXA4bDbbZrOJTCaDUqlkANj1Cr9Tr9cxOzvrqHOqbDTAGV2jEaAscjprLFmSz+dRq9VMuQsqZBoAWjdO06A1nYfn2E7jfj3nXg9o3u37NCpYL1xZaZwP1nItFAool8vGGNMINdOvyIJYKb1wO4VriY1mgEUmJRWoKndbaEAGAgHs3r3b1G0bGhpyMCk345rtYxAAIWi0Z88eXHrppaZeWTabNQZFzzntyUalp683R3Tv20iAdiVmRKezlE0UCARQrVaNo0ZnkU78Wsqv6XGVyQUsNdmiU6hMLWCpjiUA4zDpeVmbFIABdjUIq7qc7CiyiOjcsn+FMprUPtDa28oMAmBeU6edLGJeJ51tZcLb4Io63cqO07kDzn7/D469r68P5XIZU1NTplwAQWmy21RXc3wEe/x+v8kGpL1H3UHbSK+FdoKCEepQqqOn6f2cE7W/eFwFovRYOs+0L+hs8lpXE+pLOucjIyOIx+NIJpMGDGKQhU3ZGQRQRhvHwPrGtn3IrAyyBcnIX1hYMKX3BgcHsXv3btTrdczMzCzrfdCTnmxEzjVdrX4D4CxZoExOfZ9ig4bA0t7ejcmuIDX9HYqyZO1a69yzFHS39zXdS5hVTB0dCASMD8pa52y47QY+axDSZsbzfNQL9KkrlYoB0oGl7Cx+1i51oQEBzfRWBjsDzMpKtpmz9LsZcFVGuto0uv9pbzL1w+ljalDDBuj5t45D9by9FjiHOsecd/WHtfScBh+U4KbBELvWu5bDrVarpiQrx8r5LBQKpsSqW08NljYjOE8sg9ehQSSb0a+vacka296x74v9DNli2z723ySSUW+rTck1pn/7fIvNSlkJYXh4GJFIxLDadf3oNdvPq9oi+r99HUpW5P0kUSQWi5nyqclk0jzLmiXCsXNdEFzX9+z9yLYd3GwYfcbd9izeW80AoL20ViB9K8Xv9+PlL385HnroIdx4443m9Yceegg33HCD63euvvpqfPe733W89uCDD+LQoUNmL7v66qvx0EMPOeqkP/jgg7jmmmvWPLb9+/djdHQUDz30EK688koAi/vQww8/jE996lNrPs56ZUNA+kc+8hF89KMfxaFDhzA2NrbjQLWewDiwjUYDv/zlL3Hq1Cn09/ebNBoqhFZrsQEZG1mut1YlFQdrHTUaDfT392N4eBhDQ0MIBoMYHh425yWbScEIOtylUgmZTAZzc3OYnJxENps1zUBY0oXMam40moasadRsAqPK2Y4Ebra4GUN2FHIrRKPCTz/9NI4fP45QKISBgQFHd/n5+XlkMhmj8JlmTmUcjUaxb98+jI+PY3h42IDKO/V5p7IfGBjA/Pw8xsfHMT7+/9h78xjbrupM/Lv31p3ne2uueoP9/IyxmRKcOEAzJQ206ZYIgQ5SWigdBdSW+w/Af9Bxd6w4AyB+ROgpAkJooSYoCqBWGkWtRmJQEiODk8Y2BGK3sZ/9xno13Xme7++P0rfrO7vOrenVe1X1fJdUqqo7nLPPPvvstda3vrXWPGq1mjGA3YSMs9nZWdxzzz34tV/7NaRSKaRSKVPGxk5LPUgJhUKYnZ1Ft9tFKBTCa17zGly7dg3/63/9Lzz33HOoVqumLtlxlzHL7ebLWF8fnGgapzoxe5FR67jf72NpaQn5fN7BxOYzQ0eYJTjU4d8O3FdwgOdmk3A3BvZgMEAqlTLNn7RZE/8mO7rX6xn9QdYd2ekEKcneCofDhgVcrVZRrVYdQDgAw8Imi58sMta6rNVqAIBsNotYLIZ2u4319XXTP0QbVpL9RceNgATngc4W2Vt0am3A42bob85prVYzxAety87AN6+Ruprj8/l8SKfTiMfjmJ+fx6lTp+Dz+bC2tmayELhuyEDkfSLYTvZ2IpEwgRVeO4FlTQv3eDwmaE0dORwOTfkAZiXS1mJABdgEEhhAXl1dNU7kdnPt8/mMc37q1Cm88Y1vRDKZdJStyeVyKBaLZi6Hw40yLupU06nVdc/roJOfSCQMG5Drtd/faPbKzLxTp04hn8/j8ccfx9LSkrGrbwUZ6+qbL7eirmbJCreg23ZrjDrQJkLxfwVz+b4CbWwwyfeVta4sVH1f9YEGdRWI5nnK5bLZKyKRCPx+v4MVrVk+gHuJBgXYFEAHNhs1KrBXq9VQKBQQDAYxNTWFWCxmxs3jKZDMMXNvZ8127dfFElwej8cQ1NT+aLVaZu/n3j4xMWHIVXr/dP/mPLEkynaMdILIdtBlOBwaXWeX0OKc8V7qeqH+53xqEITj5D3VEi/UkWSRh0IhJJNJAyJzHIVCwRyLY+X9Jpahddft4EA4HEYikUAymTQArwYwNJtLx8z7rOQGBuAZ9OXrXDNuILoN6tKu1YCA4iUkm5HkSPtBm29rNkC320U8Hsfi4iJmZmYwPz+Pu+66y9hyxIHsAIsGs3hf+SxyfHYJFlt4HC3V5vF4kEgkUKlU4PF4TFbZ2tqaozQu7VmWF2RmHsfJ9axBi1GiuIGSD+y9T9e1fV+4fneSm62rH3roIXzwgx/Evffeize84Q340pe+hMuXL+OBBx4AADz88MNYWlrCV7/6VQDAAw88gM997nN46KGH8OEPfxhPPPEEvvzlL+NrX/uaOeZHPvIRvOUtb8GnP/1pvOc978Hf/u3f4nvf+x4ef/xx85larYbz58+b/y9cuICf/OQnyGQyOHnyJDweDz760Y/ik5/8JM6ePYuzZ8/ik5/8JCKRCH7rt35rX/OzG9kXkP7FL34RX/nKV/DBD37woMczlgMSjQzSQeNmy9Qxgs5uaU57PRcVHtP4yABj80dGMPm6fpdR+1qthkqlYuqGEzzUjuLcdOkUK9OdTqYy0ukA3gjgfDdzchgMJZ2ncrmMWq1m0rfplDMAwk7XNjBDhRWLxYxDSQV2lIUGNJnprOW6ncLz+/1Ip9NG4Z8+fRqpVMrBbrmRQiOBLMt0Om1KMsViMQNIjYH0sXO+Hxnr64MT3RNuBMhBpvZ+RR1yFfs1Otgez0ZtczpGdNSYwkxnh44EfxN4peNBB52OAB1Oj8djjjMYbNTX5rnJSKdwD9Tv04liaRl+PhgMmjR0rU1uAyp0dlgOTnUjr4cOIHXEYYBX1McATH8MAA4QYrsSImSkU+fRziObDtgED2yWldqAdGKVhcj5tLPR3NLweVxlYZKpqXYc2Y/av4fHHrWGeR6WqGPJOdY559wQ7CL4DWxmWPD7nA8tN6HnsBnzzATh67QZGKThb31GjruMdfXNl1tRV9sAqQKl3CeAzTWjNrcCS7r3KTipQWT9rgKs9IWBzTIMCsTzmNybqGf0bxuwJunM693owUDfSslo+gy5+RLbMdJ172WNeQWU4/G4YZBznri/K0DMXg/0pbU+OO8Bx0wbgLpDgVUNDui9UdHPauCC125n/tjzoD4m9Q+Py2O6zZUen98jqG5fK3/boDUDDAqkA0AsFjNzrsEFZSMTx+D81ut1tNttR3Be7z+D/AwoE5Oh/tV5tBnpet38jj1/Guy27w/nx8Zh9PN6j/hM8Ljau4fj4rjtexSNRpFOp5FOp5HNZg2OoCQRft7NttEAhB2Q0PHaADWPSSyAASev14tUKmWeAT4rnEeuAy1bw+eK86DEFHv/GCX6npaL0WtwI8Fs97rKzdbVH/jAB5DP5/FHf/RHWF5exqte9Sp861vfwqlTpwAAy8vLuHz5svn8bbfdhm9961v42Mc+hs9//vOYn5/Hn/3Zn+F973uf+cwb3/hGfP3rX8fv//7v45FHHsGZM2fwjW98A/fdd5/5zJNPPom3v/3t5v+HHnoIAPDbv/3b+MpXvgIA+PjHP45ms4kHH3wQxWIR9913H77zne8gHo/v+Tp3K/sC0judzp7o9mPZKsqUBrYqz4MUZX3ZCpnK5KDPo45gs9k0GyidGWWJ69g0GsgUHI1Ic8xsxEignAaAbsqDwcAYAwog30hH2VYMqlgOw7ng3LJuG40LNSJ0bB6Px9QbY80sAunHgR2jAEosFjPlWVZWVhwOusfjQTweRyKRwPT0NF73utfhzjvvxMLCgiOl/mYLn5FMJoN7770XMzMz+PnPf456vW7W/HEG1MfO+c2Xsb6+MXJU1qPt9Oz1u61WC6VSyfxP55PggJbk0CAsM8nodKqDbqff0kGpVCqYmJgwtV91PyBozgB8IpEwoKdmTQ2HQ1QqFXi9XsOmVgaTsoppF9ip7woQcJxa7uao7LGaPk3bRe8xrzMajSKbzZqGXpVKxej6aDTqqNPK46neV+AYgClfoPpGCRIKwmvgQllbdgMv6lMy6jW9PZvN4sSJE2g0GigUClt6x/DciUQCr33tazE/P4/FxUWkUimEw2HU63VH41PaMewFAGysIQXvaf9wnm3whTIcDh3ZAWTTxWIxDIcbdWjvvfdeLCwsYGVlBS+88IJhfO7GCT6qMtbVN19uRV2t/obuEbqH7NXWtgN3CnYTKFSASn0xPvO6V/BvBcn4XRvo0/Op7lC9yfdsYH87vaKAIQBXPcRGoawrzYwZziEzczhOfoc+NMlmBM9VN/Kz2kSS+z2Dudqbg3syA4vcJ6lfeQ/sjHC3e20DofZ90TmhnaF7t95nxVJGifrkus/xnNQDqr/UnuFcqq7Q/V7LwXD82sOEADsJhnZwWufCLuPCY1H0+AxK06/XYIjbHOi90bWgtoGup8FgowxbPB532HEahEqlUojFYkilUrjjjjuMnmafAc12sEum8hzK5NaAmRvQ77aWuDY5/4lEAsFgELFYDL1eD1NTU7h69arpGcB+BAyGMyBlZ7Rwnu11aZ9/u/+5XtQGs68X2FzXR5GRDgAPPvggHnzwQdf3CGqrvPWtb8XTTz+97THf//734/3vf//I99/2trftOF6Px4NHH30Ujz766LafO0jZF5D+oQ99CH/913+NRx555KDH87IRMmPsVJr9potvJ27RTb5+0MINp1wumzSaK1eumE3HdqyUQawdqkOhEEKhkEnxZqkadjCvVCrGeLAZaZxbKnVN36MBoJv1QQk3YNv40gDAzRYdh13axG3z9Xg8Ju2M5U20KddxEK4vNjiJRCK4cOGCQwl7PB6TDrSwsIB/9a/+FV7zmtcYttthAOlctxMTE5iZmcGv/uqvol6v4+///u/x3HPPYTAYOOoQj2Usu5Gxvj44uR6D9UbK9YyJ9aRVCoUClpaWRrKDqXcBJ7NXHVLqXWU6K0tdAXoARlczbTybzWI43GBLNxoN0ySN+7fWo1Ww0+fzGadNwXEdkzLd6DQTpLCB1MMUZZwB2KLDtETKwsICZmdn4fP5UCwWzft0ellnl9enzqnXu9HMjveDn2XqNhtu09ZSEgYdTK4H3kO9HwpCtdttkwVB53ZmZgZ33HEHqtWqqXGuQoAgm83iDW94A1796lebgD8A05yb9iQ/T8CJ6ycSiSAcDiMcDjtSqpWFpqxTAA4HmiCCrrGZmRnE43HU63U8/fTTWFtbc4BYYxnLbuVW1NX0PXXfAJwgtbLD7b2Ox6CMep1/q32spV+UcaogKvc+kq14LAW6FNSmL6vAqoK7LBdll7Oh2LpFj0UfmfqI+5PdKNvj8aBUKm3pOcamlYov6Pwwq4n+oJbW0MAG91H1r6kXCMTzGlnWRsFU+/p0jPa9HAWQupXD4LkJfNpBFLvEjQ142j6dMsD1XHYdfbueN+tX897o/HE9EYDWe8OsMTYbZUBXwV/V9zyXYkNcV5px5/P5TAklvS4FZnUd6PF53ziP1IsAjC5VXR+JRJBKpRAMBk0FAWYuAsDMzAxOnz6NbDaLe+65B4uLiw5Q217vtk2jQQVtBu6WieB2TQqis0cCe6V1u10kk0nT0L1SqZiSwtyLtJxMMBgE4AySbJfdPmp8vB4lL+rrtJn0XhGnOi64y8tZdg2kk0IPbDx8X/rSl/C9733PgE8qn/3sZw9uhLegKGtWGcKj0lsOUnbrcI8yVnYrdjRYI/5UUPbGqim+Co7zN49LlroqGAXSdaO22QW8np0i5LsVN0POZqGr0XZYspfzq1KmknZTyEdRVCnzOjS1jvfD6/UaFl82m0U8Hjd1YQ+Ljc7x8/lgDULW0iMThIb6cZQxy+3myFhfH6xoWYtbbR2OeiY1Zdh2jlVXu2XJ0L6xGV8KpFMfK3BiO7Xcr93KmrjpVXWg6YjQZrBLk7mBJkdBV7uJOooqen9oUxEw0WCHOpmjWFQEBpSBZ6dU63gUYFJGle2UA5uOKF+3U7uV/GCPz+PxIBQKGT2o9c71vtn3U9egNqElUECnVkECFc4Fx8Dx6jXx+Gw6x+AAG5QeZxnr6psjt7qu3q7kgYqCerZ/poxgFQXd7L1F93v9rvqG9t7vJrr3cRxugU3+5vG4N+j3FZDlb7d9XZ8ft3ERuLSPz/3fDpIqK1mDAso8twMb+nmt4W2PUwls29lIo3xuN72ix7HPq7rHnnO1KWxQ3E14nZwfBlNoi9jlzDQgxMCr2/2x58HGfGyWvX7HTUbpfns92u+NEhtMV9H7CTjr+PN/+xr4OgCjq9lLhGC0HdTR+RkVKNPPq/3ndr387cbA1/lndgV7KHQ6HUfQyb5e2zayx+U2Vvt/ft/Nzhgle8Egxrr6cGXXQPqPf/xjx/+ve93rAAD/8i//4nj9OIBthymaDsV0E3X2qtWqacp0sxe4bsr2Rq+g8H7EdnbT6TSSyaSpBR0OhxEIBIyDxM/RiR4MBqaGervdxtraGsrlMrrdrmGs2wGJ4XBoUtkIrNK4UgN1lDGzW+Gc0DkjM0EbuipAcJTF4/GYumZ2OtZxEjrfrJ8ajUZNdJpR/Ve+8pV417vehUwmg5mZmUMF0G0h0B8KhXDmzBm87W1vw/r6On70ox+ZbIzjKGOFf3NkrK8PTqirA4EAWq2WyYrajy60nbLrEU3Lvd5juR2bzlIsFnMEGam/p6enDdPZLhvCWqqdTsc0ftR0cgU72bhRQXM2SGPvFALDLDGm7EFNE6bdQjtLGXdk2QGbNg0blCtLkddw1MRt72Qmn5ZSqdfrqFQqAIBUKoVoNIper2d0uQ1i2CC7NuELh8Nbsuv4edqrylgn+7vdbpt7S5Ydxx6NRhGPxxEMBlGr1Ux69ag593q9OHv2LF73utchmUwilUqZoDLvG7MOuPb6/T6i0SiSyaQZK22y1dVVeDwesx49Ho8hDmjWJL+n895sNk3ddQWoGCjw+XyYnZ1FJBLB8vLydfU7OGwZ6+qbI7e6riYbVOtwA1trobvpVA1kufWwcGM/U5/wswrGajNBzaRSsIz/q57R0k5kfNs+px2Q0wAu92e9Xg0uahBXdZYtdq15BQe9Xq8BMJkxQ1+X86FjY2k11vZm1jd1tPYkoY9sl+wC4GhWGgqFtgWubaKS4g26n+veyvFpwF7vlwKe/Ftrj7MJJ69plL+v18xzsVY8dRjLmLBvFe8t50IzD3geXgvxDeoa2ie1Wg1er9dk4SvDXdc97wXPZe+xXFPEHfh9BgsUILdBbf62Axlc97oW7UwzPtdkr8/OzuKOO+5APB43/b7soLX9DNsMbb5vN1UFsIUQoWPX518rAfA5V7JqKBTC5OQkAoEAarUayuXylvnUPgi8XmWnuwWGthMNCCjxYRSBdrc6eKyrD1d2DaT//d///Y0cx8tGVPFFIhGzyfBhZwMw4HAWuO2I3gjHkiDh5OQkwuEwFhYWEI1GTb1MZUBRqQ2HG82jKpWKSTdmGp3dtMw2bLiJ8m9VDgcFECuAT0D9sMu67EfIDIvH48YA2c4wOsri9/tNfVgaLzQkAoEAFhcX8Yu/+IvG4T5KwQKCPsPhEDMzM7jnnnuQy+VMiZrjsp5sGSv8myNjfb1/sfWv1+s1DRyHw43+HNcTGFXH73qOQT150CA6j08bgPUuld01Pz+P22+/HX6/3wCn6vzX63VUq1WTOcbasazVqudRZhDTtQmm09FstVoIh8OIx+PGPqHYjGmbqcVx0Snl+8xk03qrx03ozCvTjXMGbDiLTDFnhpk6kzpPWg/XJhqwuSxT1wl8sG49sAG6Axu9btiPpd1uO0AtOrqxWAwAzJrQusJu1zg3N4fXvva1DrCBJWLo2PI+a53+aDQKYKNnDxvSk4ChQDprrWvpQdv2JTGjUqk4nGmCJJy/VCqFiYkJFIvFg7rNhyJjXX1z5FbX1QzG0Q9yYyPvBE5xz9e9XYWva9Bb9zmKlm/iHsJzKnMU2AzQKluZvrs9bg02qvBauKcqsKkNugnM8vOjgDUFZhW8JeBLHUkAma+7NXOmX81AZq/XQ7lcNnXQ3Xo8KBlN54BZSQSIR4HV+prOL+0YHkvnXcvRuM2Fgul6bM45g7btdttcu1umlQLpDCZoYFXLyBFgZXkWm4RlEwc5Hga9qSsGg42681qOxM7W43za86rnUBtHy8sqiK6EAn5H93j7XiuLm/dH547j5zwx+zuVSmF2dtZkjilJwu1ejQoYKQDOhrkAHL1c9Bo4R7qe7GdTbdRAIIBEImECQG7j4meVXGD39uFcua13Ww/q+bmulIipshc8YqyrD1f2VSN9LPsXfegVZD1MwJUOlipfTbFVdjXZ326KbSdhLU82EiXjmc6eNgjTiDWdv0AgYMpdpNNp9Pt942RTgWi6F+CMQCoDwS0VHdhdZFHvkW7UPD7BdHXwrmeju5lCsIHpyW5pY8dFqOy1nhzXG+u8kSFw0PXyD1JCoRCmpqaMkx4Oh83zeCNAtLGMZSxOoR6hw6AM173K9QSnlSnEfYt7HB0P6kEbtN6LEBxU51wBbL/fb1jBPCftGOo66pFQKGQY7fV63aF76dAT0OZ76gzyutVR1+vi59SGUDCegIU2O1ddfRz0spuQxcayZHTKqOeAzXqeGugnWK5EA9WRrFHOtc7PKugBwJyHdmMkEjF2GHUvARx19AF3p1FrqxMUYy3ZVCqFZDJpShEw4MI1qmtHHVOCJwQQCGLQXuP7zIikHcix2g4yCTAKDDDY5Pf70el0UCgUEAqFsLKyYkq+HJeMxLGM5aCFdip/K4A5CiyywT3uK/zb9teoH5TMpMAnn8F+f7Pnls26pihzXDNT9Pz2a/bzrfsZwVPqJ/ai4PucF7vPiJ6fQrCVf3MuCNLSv+H/yh5Wn3ow2KwFrUEHgqIej8fRh8z2l+0SMpwX7vUaiFQ9ztd0jt3sIbUlFARVsYkIap8oEcDtOwoqEwhXkNoNVLXHp9dmr0f9rGY9aO8QnQO75It9fgW1FSxmRp3eh1G6RokQqueUMGKfz/4M9XIkEsFgMDDYDfuVsOcJ/+ZaU/vBDVx2m3MV3if+bQfj7GvQoJ19b2gfsqG91+s1ZWho09vsf/3tVuZI77tbQMKeVw1Q2MQQt7kZy9GWMZB+k0UVg6aJ2Ozlm/UAcROJxWIIBoOYnp42zBw6UI1GA91uF41GAysrK4aFRGdmJ+EmH4vFcOLECYTDYZw4cQKzs7OmgZMNoKtw4/P7/abrciAQwNTUFPL5vGFLNZtNE7WkI0RnSZUUFZsyDKgMt9vUbQAdgAMwZ4o4mfIEW46TE8XoLJ1z3eCPG6BORz8YDBrAPJPJ4PTp00gmk7jttttMI9WjCqR7PB6k02ncfffdKJfLePLJJzE5OYlms4lSqXTsmpmNI+djOeriZujT6fb5fKZcVLlc3jOQfr26nQ6Y3+9HMplEIBAwjHEApjRco9HA6urqlgbTuxWydYLBIGZmZjA7O+sw/gE4GkLqHJGdFolE0O/3MTk5iVAohFKpZNjAlMFgoywHbQk6P3QQ1aGZmJgwtgl1rQ0QE7BvNpumAWW5XDb7pKbla7bbcRPei1QqhcXFRaOre70e/H4/0um0cXpp8/DeEJweDocma0CbaBaLRVy7dg1+vx9zc3NIJBIGMFbx+XzIZDIGiCa7K5FIGIBaWVyNRsPcTzr/CqqxASjtMjZQjcfjOH36NE6cOIFer4fLly+jXC6bEnQE/2lrsdQQ2ePAZj1zMuYCgYAjQ0LBGh5He/hwjAT1aVt2Oh2EQiHMzMyY8fj9fpRKJeTzeaysrBjgf6/Ek8OWsa4ey0EIM7i0TAJ/KzimIJgNZPF5BpylYfi+ln3RXkLMVm6320YXUmdrIJU/DN4RXOXxqYuoMyhubFKOhX4HdTTBxkQigeFwaLKr6/W62XMUdHYLMii7nMIMHxLUstmsAyC29zAbcOW4BoMBwuGwKcdWKBSMjtVr1evUgIjNyFbwXMFrgvfaXNH+vO7H1FsaVFFwVDPnqaO0x5fbPPLYalOQ0cz7qUCyzpdeB8t96HzwszpfPF44HHY0vKYwGKIBChUNDPCzHo8HjUYDlUrFYBcsYaN7tx2w0ufGLgHjtl5sUJpZXqFQCOl02jTxzmQyCIfDmJ2dRSaTMXqca1sDLW4EDzuQoTpE51bXjBsrnDrczmJxW6uDwQD1eh2FQsFkY9jj1XOSHGAHkfTZVZ9cwXue235u9P6rEFvaDe4y1tWHK2Mg/RBEN2Oth6Yb9U5iK0X7YbMV03bHIHMsEomYaCKddWCTfQbAMGz2kgrN87DURjQaNeC9MoZ3cxwqEzrMrVbLsJLonGmEm5FtYCuDQMFzj2eTtbTdnPG7enx1xOygyHEC0SnKYjjOjHRg02igUqUjnUqlDIvMVmBHTZieyCh6KBRyrNXjJGOFP5bjJrrHU1/u5/kbpat5jt2sbztNmM56IpEwx6Euo/G+n+eG7F2m67LeKo+pafGqI+zUbOr9cDiMZrM50qlV4fjtOeH53Zx222lUVqJdZo0gqLLejqNwbskK471WR1vBb3Xuyd7UOeDc9Xo9NBoNw/QexZDks+DxeIwNpsw+fZ+gAx1z3gd1UG1GOpnuynDj2uh0Oqb+Op9HXguPyfqt/A7ng6xNTVnn52xWqL1e6Ujzb/4fiURM7fdkMonhcGiYoW7AyHGQsa4ey0GI7eNqMJZ6lK/b68YNcLOfSRtYU1/MLivGzwGb/qCucyVccW8h4Ko6w010D9X9jAApQfBwOGwAYo7RZs26iQKcdmaQnou6wAYReQzVExTuoXbmjg18Kii+nbhljCkA7TZ3+tv+vNs6sOfL/luv2+07ajOM+qx9LTa+oOOz8QOdM71X+kOxwevtrtUGcLvdrgH0t8N6dI1tNy/6Wb0Ofk/tT65t1n9nXy+uH51nPud7FQX69XjU3fY16RpyCyZxXXPM1NXBYNBkR7qNQedJ76e+x+dq1HVqEMN+hkedb7dzNNbVhydjIP0mCzfebrdr6jbqZsxo1qjFTUUfj8cxPz9vGirSkabhUKlUsLS0hHa7jWq1ampm6nEIImYyGUxNTZnGn3SaaUQEg0H0ej3zu9lsIpfLOdg8o8br9XqNQ5FIJJDNZk3zMi0fsxfhMVmDk4w3Rmh1LDRU1IBTh07TeBTQH7WZ2gwETQ9UJpQyDHYj6nTqud3K1dxo4ViOKkt7t6JGJ3/i8Thuu+02TE5OIpvNHgsHVyPZMzMzuOOOO0wDPzoHx0nGinssx0nImlZGnc08GSUKJE9MTCAejxvmLp8DMmK08aWb+Hw+JBIJJJNJBINB81sDgYlEAvF43ADX9XrdlDjZzpG1JRKJYH5+3rCXm82mw8EiWAFsNvYC4HBclH3m9W40myMbmAxiHZP+dDodVKtVBwjb6/VQrVYN2GunTGu2mTbcYvBRgeFWq+VgMe9F6IQRsD+MrCDOG+uRUwj42JkSmgGpKfONRgPlchn9fh/xeBzAZk8A1mu1e9CEQiGTBl2tVtFut00WBACTYcBmXsFgEM1mE5VKxQGg2yXXuHa0lN/09DTS6TS8Xi9yuZzJ9gNgegqR9cZ7SyBoMBgYu1evn8CYOrJupAclXZCpFggEHGV0uJY43m63i0QiAZ/Ph2w2i2QyacoL7acM1EGJHXjarYx19ViuVxSgs30wBXgp2605+3M265d7m+oCfkfLfvB/gp/MSo3FYpiennaUqABgamZzH2ODTepVBdxZ0iKdTiMejxsCGe0AZSIzqEcGfaPR2NKLwvZned0EK8PhsNGrkUjEUcPdBl+pm93mmHsvAMMwDoVCDmY/9SXHSxBVfWoVYh2qqxmwZNYSf7R0Du+VjlV/a+BYGfyaocBj2CW/bFCZjUWZad/v981+TZyEx9ceIxq014AQ39fAC9clj0dygs699jDRMkXMsqdtxLXGuVGby42soUC/bevwmPocKubghtEoxsG5DoVCyGQy5pkZBdQT8Fc70gaiNaDtZq/qdXIOdL7dwGnFdvh9PkODwcA0RvV6vVhbW9syT7SpRq0xHT/PodetgQ97X7Lnyl7vu5Wxrj48GQPpN1nUUdS0DX14tosqMvqcyWTw6le/GplMBidOnMDJkycBwKSJXbp0CU8++STK5TKWlpZQr9cdx9WyF9lsFvPz8yY1jOnAukkx7QuAaQJWLBa3pBHZwnQmpsROT08b9o4qy92Ibr48Zq/XM2m1rVYLuVzOMR4qf93IaCyo4qISVKPL3uA0aKC10BVIZxraXkq6UAnSmFNjh03crifiuBfhGuPPcQCatxObwZFIJHDmzBnMzc2ZFMijLrwHfr8fMzMzuPPOO7GysoKLFy8e+4ZmYxnLUZd+v496vT7S4B0lNKCpV0OhEObn57GwsOBg/Kyvr+OFF15Ao9FAtVp1BWa5LyeTSaOrk8kk/H6/YYd7vV4kEgnjrNdqNQSDQeOY76VsXDQaxcLCAiKRCOr1url+O9BLB5DXo3/TGSGzvd/vI5VKIRgMmmMqe1DB+Xa7bZhWBFlJELCZU6wVTweMzjv1fiwWcwTO2VtFHdS9CM/JTL3DKA9jA+m0FxhwsB1hm6FPu65er6NUKgGAWUMM+ACbQSQNRpO80Ww2sbq6ilKpZLK9hsMhyuUyarWaaVg+MTGBVquFUqlkSrdo7WCfz2fKHxDMIYFjZmbGBLxXV1dNAIs2GBu1aRo07Sg2I9V7w/nyeDyGQc61YQeauCa73S7y+Tzq9TpCoRASicSWLMpSqYThcIhUKoWZmRmEw2Fks1lks1lUq1Uzx4chbgzEsdM9lpslBAW5BjWINcq/sMEkBbD0M/qsApuAl/aG4BhsIIwyMTGBWCxmfNTbbrvNAMmZTAbAJpBeKpVw9epVNJtNrK+vI5/PO/zCUChkMl0nJydN6SkSv7jvARu6st/vm7IqnU4HuVzO9KdQUWBPy18RPGdQnfutBuop6ge56XECi17vRvkOkt5KpZLRG1rPnb8VbNXsJo5B63hrqTH2NlNg1L7fCpQTvObxCYLyexoI4JzRJtAgK4XnILBJwgGvk+vIZjUrI5prTq+DuknniOuD5EVm+uk94HPBe8vvaiN3DSKQDW3XVldGtB6f99DOTFNWNT9PkJzzqjYd7U1+hsGcbDaLRCJhgHRdg/q/G2Pbtkv5Wfs1DcLr+8RhOEbOpxu2w3tPG4O4QDqddqwZHVuj0UCr1TL3hwQA3gu30jNuOlfnfhT2sB/W/lgOV8ZA+iGKvVHsZNx6vV4T8ZucnMTU1BQymQyy2aypkcr0lHq9junpaYRCIdRqNRSLxS1RO26iWitcAVR7M2TqmCpyNZDchJuMNjRVZ3u/QKZGHbWRiz1mnVduZJpazGMpqD9qTHQ+bSDdLuWiDDu3cXPOVWnSEbWZGsqaUyOGzvtOwMj1MJFuBWdLr4HKj3XqaNAeB+GaIFOGWSPHTa5nXd0K63Esx1f2sv48Ho9JcU0kEpibm0M0GjU6m+AdGc1TU1OG9WWDf+rE2anBysZVnah6cRQDzU0UMOX5bOag7SDp/NggJNnBHA8BdU2zdxsbX7cBdl4Lf8hw4nxybJrmrO/bvWj2cj8V+GWGgY5HbQ8FdvZSBm8/oo6ZOtUcl1vpHK4pLQugP2ThaXkDAlEECbS+qn6HKd/MACDwTfuMdo42h+VcKVuL7E5mEyibleOiLamsQPsztFFt4EgdbGXh8X1gE0hgSUM6zhQenwQKgmlk6QWDQeOAH5YoS+9m2YBjXT0Wir0WdH/U8ko2i1N/23vadmCTsj5HjUGPSaBbSzPFYjEkEgnEYjEAMM93r9dDPB7HxMQEyuWyg/WsOkr3Vd2T3cA8kqh0DvT63eZP9a/u+zsFJ3QvcJsfPRYzknTv4NzznlGvMujNzynQu91Y9DoULNZzarCd/rbNLla/Wo9lg/Ru64Zj6Ha75vv9ft8xp7wWXvOogMR2a9Oed1vH2MGjUffJLUBi6zY30bWlz9V2Y+Nn7ECOBq7VZtip39h2Y9U1vxt9ZYPzvEcabNnueRhlV486z3a2sW2v69wBcMXJdgLMlWyzk4x19eHKGEg/RNnrAg6FQnj1q1+N2267DYuLi/jlX/5lpNNpw/AGNlNUFxYWcPr0aVSrVfz93/89ut0ums0mCoWCSckiq5vf1+ZKKnyN3ZrpSDKaZzsh9nfD4TCSyaRJOacjtV/hxk4HhwyhaDRq0mu1ZAuwmWJGJUxFSYaAgtq6cVIUHCeordF225ly2ySppJPJJGZmZkyzjmQyuQVIp3DMnU4HpVIJ7XYbuVwOa2trJs15lKNOJWdH9t1SvHSeeL7j2oiNokENruFIJILp6WnMzs6aOvvHRbxeLzKZDE6dOoXBYOBIDTwuMlb4Y3k5SCAQwKlTpzA7O4uTJ0/izW9+MzKZjGFK9/t9lMtltFotnD59Gr/wC7+AdruNv/u7v0Mul3PoU4LR2jxLjX/qBq93o3QVdXU4HDblLTTQO0p8Pp/RoSxfoY4+x0H9q2PkNWkJDTqmqVTKNC5tNpsIh8OO7C23PUFT2FlWhoCqx+MxDCGCvGTmK6OKY7T1MvX2boR2wMTEBE6fPo3FxUUAm8y7drvtaGTK8nf1eh29Xg+FQgGrq6sj7aPrFQWxNV1cgQcC2QQGNCCQTCaNTcJUftWJBIVrtZpZR8AmsOTxbDYanZycNPdGg0K1Ws1kUymbn+vK4/GgUChgbW0N1WoV/X7fHHNqagrT09NIJBJIJBKGJdhqtQxr0uv1Yn193ZyHdeNZjxhwAi78W0kV9XodzWbTlGFQZiOzP7xer7G5BoMBgsGgKVPE0jZszOvxeDA7O2vY9Hq8w5D9sNzGunosByHspaHsUcBZ49hm1Kp+s0FWN79EdZsNfPGc6gPxfe6FCwsLZq+55557EI/HzfPNfb7X65neSo1GA71eD7VazZS2arfbJjiozGMFp23fiyAtfWl+X4E3BQe5p+v1Myip+pFig7N6bgXqNLBBAJ26xOv1mutXYhfnhhnq6sPaZVJtQFsDvHpvqFcIzurcs/QN9QPZ97RZuO8ra5jXpPu9HfDn+ev1OsLhsMl0ol63We4AzNzodbj5ktRxvC+8//ZYeH/tNUqyogYG9EfBYgWNbYBaSw7p2uD9VLyD65Vzx/PwGWu326a80cTEhCk3mEqlzHOja85NbJa4AtMU2m6KvWhQQ+eAY3ULMvH49v3RwAv3Ad4rW1+TeGcTTSnEm2wcScXWwfyO237FvYmZmDvJWFcfroyB9GMkfr8fc3NzeMUrXoHFxUW84hWvQCqV2gL6AkAmk8H09DRqtRpeeuklPPvss/D5fKhUKgA2GT/25jEqIgds1lUnu8iOWLuJx+MxDg2dslGA/V5ElaSmyilDzRZlyfEYqgSpwHncUd/XdC0F0rcLKGjUPBwOY2pqCuFwGPPz85iamjKKzj4vlRfTqJmOzhR3rVU26nyaObCbDVcV13HfZPUauH5Zp/iwndu9isfjMSmn+Xz+2I0fGCv8sbw8xOfzYXJyEouLizh79ix+5Vd+BdPT08jn88jlcmi326bsSiQSQTqdRqfTwTPPPLNFdynDTUt/8YfNIanP+HnWLndz4N2EDkU4HHY45OqYqo5VoZ7SjC3qpUAggHg8jsFg4CjfsZ2+BLDFsST46vF4jGNNsMKeM+4VrDFqgw97EerRdDptSuixZj6dPe7N4XAYnU4HlUrFgOxra2t7OpeOf7ef5z1SFqTaB+poK9ARDofR7/cRjUZNSaB2u23sDDLvtc43bRTaFCRYpNNpTExMoNlsGtBjeXkZjUYDmUzG1Asm4MPx8x5Xq1VUq1UTGGG5F/5Eo1FHCnckEjElaIrFolnjNpDF+VGADtgo88LyQgTDwuEwYrGYAwRiMCgcDqNeryOfz6PX6xnwCth0+hmc8Hq9pl8B67gfNxnr6rEchFAnKXipoJgt1FkKdKnv1W63HexvN2CS7+1kIzOwx6DdzMwMFhcXTR8TnpslP5iR0mw2sbS0ZIAuzRi29bXt69rPBsfJvUvnRNnAysy2S6ioX+0GwOs51RfU/Zd2hWb70Jemz6vNxPk9vsd7xTnfroSPBkb0uqhj6NNzXulnM5jLwDrXSzgcNmVuNBtPQXzNyFf7gP67kgLdMBWdQ65RO0DjFqgAttYaV/9agXM9hgKsBI4VeHUDzt3mmmMJBoPm3ui60GxG/a06U58tJfAx84q2A21HFZ7LbUwULaHD+aH9Ys+/Hov3Vu1Vt3PpvNhAu9pMep90fLqeaFtxD+L94rpREF3vmT7LHId+x763SvLcSca6+nDl+CExL0PhA04G8+zsLFKplKOUiS2MaOl3QqEQ8vm8acCkilDZu6OED74qwJ0eQjvaNmq81yPc/NwihW6iyksdYSpatwg64GTJUYFqzdFRyoKKfXJyEtFoFKlUyjR3ZROa7TZLbqqxWMww7skEWFtbM7VHyZRSg4iBEjVWCACMmhuCFO1223GPD/q+3WjhtfCeqqJ0i1AfdaHBwKDU9QSixjKWsdw4YfYL9fTKyopp/lmr1RzNi/r9vqmNHolEcPr0aTQaDZM9Rn2jNoAy3JhdRoeXIC+BxN0G3Ohs0SlVFpQNpAPujaL4Om0PAg2VSsWw+PbDjgVgmGIE0nkuOsLA1tqaezmfAq0EkIPBoGG8EShWHUtSgY4RgAGLp6amzBgLhcKWpu8qtrMNOJmWo8ZMsJh1uJlqz/fD4bBxgBX44Ofa7bb5GQ6HqFQqKBQKZn0RsIhEIoYNGAqFttiOzIrQsncKZrCuKsv66LolqM3gCOurU0cTRFHbi81Oue653ngf1EalvqdNQFuWf0ejUfN9LXHINUGbi7Yig0lk9HGtdDodLC0twePZYOYr+34sY3k5Cp8pPstuvoeCzbqH28Aej8fv8H3qUsBZ6sq28+lLeb1eAwAyIMf+IjyGsnE1I4ufYWZxuVxGoVAw+6k2Q7avUTO5bBDZBlQ5DvVX+RqD3iwfp3Nng+SqD9WXU0CdfysTXoOO/F+JZgoOcl9m0FCvnRniNuNW/Wseg5lteh+pw3lPgE1gk/eDWUQahFF9rgFkPSZtGgDGt+r1eiiXy8ZeaTabjsCNYhpaPkzFZvkDm3rZbnBur097zdB/57gV4N4pSMNjqt7Tz9ol7rhWdD3pb64rrgV+V4P4owIQvAZ7PdvjtoFym2VuBxHc1rc9D26+vq47BgT4PLGUm71XKQmU80qbxwbYt5tnPZ7iTTpOPkO7YaSP5XBlDKQfA+EGn0wmcfr0adx9992G/TQKDJyYmDCpT4uLi7jnnnuwsrKCK1eumAYpdCS4Yexk7CuIvNtaozRc6JwcNICpAOluQVKNwpLhZG9m9qamBok6aDsxt5nunUgk8OpXvxpzc3OmYZWyFngttuh7k5OTGA6HyGQyuO2229BsNvHss8+aZrLr6+uGFUWlFo1GEQwGHfcNwMiyLQToy+UyAoGAo6a+GrbHQdioRRvdaK3+GxHUuZHi8XgM8491Go+bjCPnY3k5iM/nQzabxcmTJ+H1evHss88ax4sGN/f+druNcrmMXq+HbDaLX/qlX0KpVMLTTz9tmHB0+hKJBE6ePGnAaYJ4yWTSgItsQEynwC7XMUq83o0mYwQU1HnVYL7qLPuZpLOYSqVM3xY2UeVevN8yJ/pd/a2NUFVsxtdOQjA0GAxidnYWsVgMqVQKc3NzxkGn06SsIQ0stNttcz+8Xq/R1fV6HT/96U/RaDRc90Aey9ZLWjrGFo/H4yhfsrKygvX1dVPiheOIxWImHVvB836/b8qw+Hw+lMtl+P1+rKys4PLly5iYmMD8/LxhZ6bTaXNOBloIfLRaLVy9ehXD4WZDNY/HY0oEsW8Pz8nSLDMzM/D7/ahUKobpTYc2mUwaZ71er6NarTquv9lsmrIRXq/X0SCV16fgAYFwPjdaf31qagqJRMIAYf1+31wng1M8v64DXhPXR7VaxT//8z+bwEI0GjUsyeMmY109loMQ+iAELDWQpTpGQXGb2atsTQaHFURUsBXAFl9FgV+WaIhEIibThWx0rYnOYCqwmbHMYweDQSwuLmIwGCCXy2FpacnsHeVyGZ1Ox/hrGshTdi+D6W7XSzDaBpX1uSIpKxqNOnxrgo8a6OY4lMnOc1FsNq2y5Cma7aR6z9ZRzGLSwCrPoQCwArXMYmPZVT2+3kcSxBjQTafTjgwCfo7noC7ia8Ph0ASOCaDa648EtXq9jpWVFcMcdgvscH41qKw2G4WBBvaJ4b3R++Z2bJYsoa5T3MDGVNzwCPrueo/4PkF9BlHcAHTOmR5P7RQSJ7RknC0aQNLzu4Hh+r7bsRSs10wAO9ikMso+5PeCwSBSqRQ6nY6xP7hGOA59LnhP+Izpc0pshZgLX7eDASw/5zZXtK302dlOxrr6cOX4ITEvQ9FoKmuak5E6ykFWgJnM53A4bDYg3UQIiDO9xN68NKJos9ev5wE+CLkeINSOdKoicQsq2BHVna6b94DOeTweRyqVcrD1div8LB3Vfr/vYG7x/tmBAEaOlbGx05xpjdtRhulxEDXWAfdo9nETu8TDcZOxwh/Ly0EYuNOa2cPh0NEAlA6zsmO5pzMgSlHWGL/L7ylzjA6aMrH2Om79nu3sqShr0G1PZRk4ZZq5AQK7FXVY9Ptu7K79HJ97K/UzS4okEgmTCWYHoNXpVZuAgI0C7gSA7Ow/ZXnZzKTd3j86yjwGgW61A+x51LrxXH8ATBo9sJW5p+tDj83zK+ClpQ3I3iaYwPr2LKenoJoyCnn9yrLXbAyOWcF9G9DQeVYWuc4T7w+wUfJF7yO/x+/w+tUO5LwQ9Femm6asHycZ6+qxHISoL0rhPqFBST4/+hn9rcdT/Qk4gTl7f3b7jo6Jez5rElPc9nl+h6Wn2POL+6v6Tqrv6Fer3+zmR7sFfdX/Vtmvjrd9Xgrn39br/CznwAaIVacrc1sz7jTTm9dpE8hsf019TgUxuV+rL8QgjepS1VHUGfw+S9GQ5EdwlplG2sdFM8V47XYGAOdS9bqy+4HNhrSaZbAT6U9tPTc7y+01e++18Ru399xkO2zJ7Xy7JTG6/T9K19j2lW0f6fcpuyVOqHBtuLHq9XnQcfHHLgXkFtRTO4Hf199u16DPyk4y1tWHK2Mg/ZiIKrKdmONu37W/pw2xKpUKSqWSo3mo7cSQSVQsFtFsNk0N0J1qj1JpMa3XLVJ7PcJouEbvdmLJjxonj6f/259x27jdhEqZzeZisRgmJycRDoddU7j3IlwLwWAQCwsLiEajyOVyaLVahnWm6Xacd03tHiXD4RDNZhPFYhHBYNBhTBw3BjTZIZVKxTTEGZVSd1xEjcLjOP6brfC/8IUv4DOf+QyWl5dxzz334Ny5c3jzm9888vOPPfYYHnroITzzzDOYn5/Hxz/+cTzwwAOOz/zN3/wNHnnkEbz44os4c+YMPvGJT+C9732vef/73/8+PvOZz+Cpp57C8vIyvvnNb+LXf/3Xt1zLH/7hH+JLX/oSisUi7rvvPnz+85/HPffcs+drHMvREwXf6FANh0M0Gg1UKhWToUWwndk/+XwelUrFlH9R6fV6uHLlCobDoWFlqWNLwJosNzK4S6XSroxxfpZ6nXXNVdhjRdNeyXxnMHc43MhqWl5eNmBlIpFAvV5HuVw2jbz2+jxrzVxNAbfnfT/i8WywpycnJxEKhTAzM2P6aNTrdZPmzetm3fVIJGLYcKwNzvGR6RQKhTAcDjEzM4N+v492u41qtepoiMrrG8XQchOCtrlcDtFo1DTQJnGCoEC5XDY2AR1+lgxi1looFDLjSCQSOH36NLzezbIwer+Zvq/1ZYHNBmyafeg2z3RW2dSW5BCyv6mv0+k0vF6vKZlCgNsOiJMswu+zJJ2C73YTQAX8fT6faWLXarVMmYZ4PO7I9HAjT2h2Sa/Xc2QI0NY6amXYbLBxlIyd87EclOg+YftQuufZviEDehro4/e0ZIweS/1dBeH4/GoWC59dYHOP4Hjot+o5Nfioe3cwGDQZ4AwWlstlEzwlu12Bah6XGULKPtXPKRBH3T4xMYFGo2EYwApUK6ivY+c18zevX8fDe8SgMfdPzhH/1wAAx8TPqR5TEpP+tudUr1mPz2PSjiBGkUwmkUwmje1EcQuc6LUTvGc/MhsUJ3jJ3iFer9cEfpvNJhqNhhkfsRJ7Huh3qw8+MTFhdFiz2US1WoXX6zW6zwb+OR8KqNrrgZ/TbAsVG0BXkoV9zaMIGlwfHo/HUfKMx6dtFI/HzbHd9Iv+b7+nYDT/13XJ120SqD5DdiDOzd7V+eLxeG6yw90qJ9j3RMkFFA0SkkCi37FJBnpunRe9j3q9O8lYVx+uHC9k7GUqo6KQe/m+bViw9hfrgUUiEUQiEQSDQbMhckPodDrodDqo1+solUpoNBqo1+uOpi+jjHM692xOwU2dDt31Ohh08DhGjfjuVa5nM1JR9sLU1BTuuusuU87FLZVnr8cmkOLz+TA3N2dSEq9du2acQSp8BXNUuY+6TgLppVIJkUjEGHgAjhWQznVLUIpAup3aeNxkv8G0l6N84xvfwEc/+lF84QtfwJve9Cb8xV/8Be6//348++yzpmmgyoULF/Dud78bH/7wh/FXf/VX+MEPfoAHH3wQU1NTeN/73gcAeOKJJ/CBD3wAf/zHf4z3vve9+OY3v4nf/M3fxOOPP4777rsPAFCv1/Ha174Wv/M7v2O+Z8v/9//9f/jsZz+Lr3zlK7jzzjvxJ3/yJ3jHO96Bn//856ZEwViOtyiQB8CAreVy2egD9sig4+bxeFCtVk1TLft4S0tLKBQKiEQimJ+fN4Ap92Y6a61WC6VSyejt3eg12gL1eh0+nw/T09MAnJlo3Ed5PW7OCRtO1mo1+P1+LC4uIplMGhC50Wi4NsjeSZTlrSDGQYgC6ZFIBJOTk4jH42i326Y2tzLKqBej0Sji8bhx4pTVzbI7zEqbnp5GIBBArVbDysqKsYkIFtnsrJ3skcFgYO7VcDg05VBYM3Y4HKJUKqFWqzlY3rwOOses/0vdGI1GkclkMBhsNDmn/aApy5wP2lzhcNj0A9A55fUooKIsUJYoZIkV6uxisYj5+XkzdywNpAAOA1E8JzP1FEjXmvUMPDHwQZuR10lQIJfLmfunDi/tBgXz+b4GE1jSiH1mlLF62OLG5hvLWG6kKAgMOAOG9ueAzT2C+wvBZu6T+sy5PVda9oXBNQ1achzcE+mTcS9RIF1rUtusY/2be5meq1KpmD2KjZYpSohx81913vib+zaD5PTzgsGg2as0mG3rENXV1NOqS+1zkaDGvZb3kO8rUMzzMkhqiwK3bvfdBv2Vwatsce6lDHIymGKLjXnY+zV1n55T7wvL5vp8PmNPARvlxOxAEMfO+8I5UdBbyYStVgu1Ws3MBXuB6N6s12/77KpPud45dntPtwMeDJ4rWKsALtcQv6vv2/XxaX+Uy2VMTU057rMNgutrOnc6ZjZFH0USs0kGOg9u5V7cRJ87rleWk2OWib7PfYiieJeudd3TaAvz+Go3q+/OZ15FszR2w/Afy9GQ44OMvYyFGzEj3azLGIlERoKC3GQIrNZqNcO6sd/vdDpoNBoYDAbGoddNgAq1Xq8b1pVdKoQbom0EAJsGCZ0T7X683/nQ6+SGREWxH0Dc4/EYRgKNDE2t4XloWGznxCtDik4inbiD2BRVoahjGo1GjRPJ+8n7xHu9EyMd2ASAOK9kZfC+HWVRJct1TeBGgXTbuDwuoobrcXSEb2bk/LOf/Sx+93d/Fx/60IcAAOfOncO3v/1t/Pmf/zk+9alPbfn8F7/4RZw8eRLnzp0DALzyla/Ek08+iT/90z81gPi5c+fwjne8Aw8//DAA4OGHH8Zjjz2Gc+fO4Wtf+xoA4P7778f999+/7XWcO3cO/+2//Tf8xm/8BgDgL//yLzEzM4O//uu/xn/6T/9pT9c5lqMp3Gu1qSJ/tLyX1lzs9XqmhrSbjqGzNjExgXa7vYVZRoCX+paOHXWZiu208W9lSGudUjoP/J5dTkyv2efzmdrQTGknCKB6ei9iM7GAzYaVdIgIvNjZR6NEg94MaJD1xvFp2Rx1cPm6ZuXZ6fvK2ia7utfrmfXAe2bbNLsB0jkm1vKkjtOSbOo4ahBCz+fm7LrpSa5RLQHIOdF6rW7OPLDpZGtzN+oztTeU/c5jEXhXUIFZGbwPCpbpPbIBfV1DNiOPz6KSPUaBAbq2dR6Po152kzHLbSwHIdwfFHi0SzQAzkCirR/s/Uq/R/9GA13cb/k9+5jc47TZMmt663HdWKkcjwLgbnue9ltgto5eg92ni3spdZmWAXPbj7RclhtI6fYMqg3iRtBT8J7zw6Cr/vB+KsvbJuvpPHIfVh+S59FsYTf/lPpcS7kEAgFHzysbTFe2udtacxObbMY5oZ6ybSHbbrLPb685xUDsLHqdP9s3Vf3kpmPs58oev65hW+x1M2rN8H0NCvCZsfEXe+w6Z/zb1sFuz+6oMbuJzjXXrh00tvcEtfH0Pqr9th3wb2eM6jXotVJs/Eefo1HXs9sA/FhXH66MgfRjIASxy+UylpaWcP78eWSzWRPldgPTqWSbzSaWl5fx3HPPoVgsol6vA9g0JIbDIXK5HOr1OoLBoCMdjfUj2dSp1WqhWCwaw4FNzAg6qyJStg9LyMRiMXP+623AxI2m2WyiUCgYFh8d9d1uDtzMfD4fZmZmkMlkEAqFkM1mEQqFDJDc7XZx7do15PN5w/IbBaaHw2HMzMyYJjaxWMykDB20cCNOJBK4/fbbMT09jZdeegnFYhH9ft8EPwD3DvC2EISn8ZfL5UwjjqOWouwmXNcsU3D58mU0Gg0UCgUDUKnRfZyEwQHe04NkZN4suVkKv9Pp4KmnnsLv/d7vOV5/5zvfiR/+8Ieu33niiSfwzne+0/Hau971Lnz5y19Gt9uF3+/HE088gY997GNbPkPwfTdy4cIFrKysOM4VDAbx1re+FT/84Q/HQPotIMPhZsp2LBbDHXfcgWg0aliquv/QwQSAcrmMS5cumYC1fUw6LHS0A4GAYacBMCUyWq0WqtWqqZvN4+s5yabRMdGx83g8iMViCIfDhoXF13w+nwEJPB6PYfMAm85iMpk0zSmpp9nYstFojGyguZ2QFEBnhcy0u+++G+l0GoVCASsrK2i326ZR2E5C9pnf70cmk8H09LQJFjQaDRMQGA6HpokcABMY5z2jo8sSKdQzZDnTIc9kMsb2abfbWFpaQj6f37KXj3LQ7c/oXObzeQAwDHkCw2xMzaZqvA/2Xsxz0d4EnKUSyAYkeNHtdpHP500DNbuci64nYJM5x1R2r9eLZrOJZrOJfD6P1dVVsz4YdOH4otGoKR/EY7KuucfjQbvdRqFQcFyPz+dDPB6Hx+NxrB07jZ5MR5ZZItBBhrs+M7SrOSYNBtCuoIOtZfWOirO6F/07ds7HclDiBrLZvqMNour6U8BWey+oT6XBNxvIU79QfUcGnldXV5FMJpHJZJBOp03JGLfyChxnrVZDPp9HuVx2ZFgR0GT5U/pNoVDIAdRphpNm+7AUGPcNDWrS76R+4ueZ/cR90W0OgU2AWfc/LR3CMdF+IBubc8rAv5bZIeCvBDS9T8lk0jScTSaTxmahX03/nXqHx+Z1c7+dmJgw/eGSyaTJgCIBTku/6fW7Ad5uexv3fQ24Aps2Fcva2WtN1xX1GgMHaicx22o4HJrG1Uo4IO7CIHG/3ze6VtcBj633S69HyRDU+XYwhM8N7UklY2jgm9fCgD2zFtfW1tBsNrG6uopqtYpsNmueJ2V12xldqiNtYoaKbfdsl4VNW5tzoA1reXzeG64jDb5pQIzf5X5hEzLsMjoMvumPZgjwWuwAHY+la9S+djsosp2MdfXhytFGxSz51Kc+BY/Hg49+9KPmteFwiEcffRTz8/MIh8N429vehmeeeebwBnkDhA96u91GuVw2imc7wJibVafTQbVaxfr6OorFokPhcxNpNBoolUooFosoFArI5/PI5/MoFArm/0KhgGKxaEplUHHT+WCNKUaKdbPXdHMF2K9HNDpKZ4xR/b1sDKpYIpEIstkspqamcOLECZw+fRonT57EwsICZmdnkUwmHezyUTIxMYFEIoFkMmmUMNOnD1LUEAoEAkilUshms6auKQ00m7G209wz84HzSmf9uGy4NC5YRkHr8l5P1sJRED7TewkWHSXRSP9+foCNOs36w4wJlVwuh36/j5mZGcfrMzMzWFlZcR3bysqK6+d7vR5yudy2nxl1zFHn4feu5zhHWV6uupqi+6/X6zUg7dzcnNEnsVjMNDmjvqSOp2Npi7Lo6vU6arUaSqUS1tfXkc/nUavVjI5VXatsLq0VrYxewOmEUbfTGSHozLrWNitMM5/8fj/S6TRSqRS8Xq+DLT2qvvlu5pRODhlNLJly4sQJTE9PIx6PG4BzN0JgmNljbMrOuR4Oh+Z9dQjpwANwgA12jViCAwTTQ6EQwuEw4vG4AbjVaeOPOsjbiZuupp3Ftcf7GA6HHYz7USw9HpNsSjqhnAfWYCeooXVFSUrgHGipArL++f1QKGTYbSwXyOwxmwkWCAQQi8UQj8fNNYTDYTMGEj6U3Ujwn/eJa4drkJ8hwzEUCpkfBg3cwD1lvdvp1/r+cbYzgIPR1WM5HnIj9bUN8Nl7G58xPjO6B7qxa3Wv4Wu65hSwU4Bejwk4985arYZqtWoCjDy+zWrW4zPj1S17jLq/Xq+bMqj0g0lKo/6u1+vmdTLSuddyX9JmqByH+gKqt+15V6G/6Ma2V3CWALB9bdzbOQ4eS7O57c9FIhGkUimk02nMzMyYcqTpdBqZTAaxWMzoEdtHJo5BcF3xBmZ7MwiqezjtFh7TXiduP5xP279SG8fe2zQYokEfzTS0Mwi4FjSYYD8T9jq3AyD2WuP9d7Mf7GfF1v36jNjYgH6Ox2cZNBK6GJinjWcHFPQ5sp9PPY/e81F6ZJTdwudbewSpr2/vL7oPjfqx50WDGbpPcb3Y62AnEFzxG7dAgR3Q2U7Guvpw5dgw0n/0ox/hS1/6El7zmtc4Xn+51JolIH358mUEAgHk83mjoKLRKKLRKIDN9ONyuYxr166hVqvh/PnzyOVyZrMDnKwA3Rio9NnMBIAjUgfA4ZxpXTQtI8LjAZtsBEbwGaGlklNHfjuwmRsKmV4EHYrFImq1mmFe70UikQgymQzC4TDuvPNOnD59GpFIBDMzM4hEIobVz0hrMplEsVjESy+9ZOrY2gaM3+9HIpFAIpEwTvmNFoIcyrBzU1i7Ec5zu91GLpczhsHk5KRj4z9qwmeEYJKC6I1GwxiwVPwKkBwHIVhQKpVMIO3lKCdOnHD8/wd/8Ad49NFHXT9r39vhcPtMBLfP26/v9Zh7OddxWYvbyctRV9uOWq/Xw9LSEjweD3K5HHq9HhKJBCKRCKLRKAaDgWGMaxPvy5cv7yrYyXMAcOgfN8ZtMBg080v7QJ0RZSNR6vU6rly5YnSJAqM8P3WAOk0MMg+HQ1QqFQwGA+TzeVSrVUfT5/0Y78o+m56eNnXMp6enEYvFMDs7i2AwiHa7jcnJScNKX11d3cLu12PG43FTZodBObKvyEzUuVQHlPfb49lM1VfnR9mT/IyWMbleQgGFzD6OeX5+3jAFFWjxer0G/GGQgDYcmZPULcyUYO1yBhPT6TR8Pt9IR1VZbrx+wOkY8vOsE08gSeek2+2iUqkY0J2AOY87HA5NJoXN+hoOh4YcwfvJwAJBcgIb6vDz2dCxK1DEEgPD4XBLEMrWFWz+vl324ljGcthyM/W1DZjZpSdV7FIIts/Bz2uA0w3oBOAalNYxrK6uwuv1olarIRaLmX5WzEZiPzCSzlqtFlZXV41/wf0ScNY55jnItFbdwLHZ1z4qc5kMXpaJ4byRLEd7wAb/bQBWx8Xza3BASW8a+LbBRZ5Py1vxOoLBINLpNILBIObm5jA1NWUym4PBoNl7Weo1EomYXiRs7K04AYPQ7OVGfWBfp+pZez0o0KlzQduGelC/o2x9N5vF3v95bOoNBkb4vpIgPB4PwuGweQaU5a86TQF2+57ymqkXuZ7tprC8VrVdbJvPtgf1s91u15DRqKu73a7BG9hMtdlsGvtWz6l6m3Oi59Bx6N+8Jn1u7H1B76E9/xrw0WdDgwNk2zMQTztEnye938pyV3tYMTIN+vF9Elr0fbt8kx6T62JsOxx9ORZAeq1Ww3/4D/8B//2//3f8yZ/8iXl9OHx51ZptNpv46U9/ihdffBGnT59Gr9fD1NSUYbkBMI7J5cuX8eSTT6JUKuHZZ5/FpUuXzKbhtlEyotbpdFwVrm6ETKllozM6Y4xka7oaf7PUxpUrV0xzDTqvTD/ajTAqWi6XUalUkMvlsLKy4mhGtRdJpVJ4xStegWQyiV/8xV/E3Xff7SjtQqe33W5jYWEBS0tLuHr1KqrVKgaDgdmAVYLBIKamppBOpxGLxW4K6EwGYK/XQzweN2V59sP+46Zer9dx6dIllMtl+Hw+LCwsOAIgR0mofLvdLnK5HBqNBlZWVkyqP7MVyDypVCqGEXpchAGy5eVl0xDtuMn1RMD5vStXriCRSJjX3Rr4Tk5OwufzbWF4r62tbWGCU2ZnZ10/PzExgWw2u+1nRh1z1HmADWb63Nzcvo9zFOXlqKvVkKfT02q18Oyzz+KFF15AMpnEM888g0gkgjNnzuDMmTMANkqCtFotLC0t4Wc/+5lhp1FvbvecUPeQgcNx2KnFHo/HNM8EYBxkOlx01myHplgs4plnnkEgEMCJEyfM3q/6nTqbTovf70csFjO2xPr6uqMkmqZua6oxZae9gVlXkUgEv/Irv4JXv/rVZi4GgwGmp6dNaZXV1VWUSiVcu3YNP/zhDw1Abh8/FAphamrKZI4R9CTgz72Fc8QmnnapAM6/giMEqnkM3jN12vZT4sZNOp0OlpeXkc/nDVucpfrIsuSYqA+9Xi9isZix59LptKPcj8/nM4BFo9EwQZ5Tp04ZAEDLD/BaeE7aQbSj2u22mSOfz2dS3dvttgGcNfOt3W5jbW0NHo8H2WzWUW6BYAnLG/CYCkJwvQAw9qHf70ckEoHf70e1WkWpVDI2LEsj6P8E0wmsEVAgGKAgiTr6/f5GWT1mgh7Ufb6ZchC6eixHW26Gvh5FEHDL9gC2BoMBGDtdg5caTLbPB8ABJlL0uLofvvTSS7h69Srm5uYwHA6RSqWQyWRM02XuU9VqFWtra2i1Wrh27RpWV1cdwKWbH9vv91GpVBw6liAa/Wa9Dm2CqQAq34vFYg5GbL1eRz6fRzAYNDpHe4dwPwPg2LN1r+QeTnY+M4QUVFS9qPPM6yaRifPHrLvbb78di4uLjr2XY+p2u8hkMlhZWTFlU0ni43mIE8TjcdOgnZlnanNpwJrzbq8VBpA12EBAnuVV+FkNEI/KDmOwWQmJNtFMAxXUV6VSyZT9IeZCm0rXv2ZncR0o013LqSnjm7ad1ua3MR/7Hrqxo/mMUkez5A/tOLL1/X6/WTvxeNxxfA0w6VjtAIX+5vf4o5kkmpVhZ1YMh85SQ25BFhv36na7aDQaJsOZmXE8lwrXLYMkLO3GTDreR83MsIXj57F5r7jmFEhXu2I7Gevqw5WjhYaNkP/8n/8z/u2//bf41//6Xzte36nW7CjhpqA/x0H4wJKFnc/nkcvlTNkVlmbR93K5nDECuCnrBmVHBTU9iNFoOyWOG5O96bul8ihDi8wjMqLoVGqk2E6nsSPgTKVRZrHNmN+tcDOjYmbdtVQqhUQiYRR3Mpk072UyGeNUKVNPhcqOLKabIRpR13sw6rNu998WGk5k+3Oe1Zg9CuJmLNkp7lxjjD5fDzPyMIWO/KhmhEdd9F7t5weAyfbgjxuQHggE8PrXvx7f/e53Ha9/97vfxRvf+EbXsb3hDW/Y8vnvfOc7uPfee40jMuozo47pJrfddhtmZ2cdx+l0Onjsscf2dJyjKC93Xa26tNlsGrAul8uZ8ivU1aVSyaHL8/k8Go2G6946Kr1cAXc351jHxWMoS2fU3k+Qkg6CBsmVqUOnRe0DZcqR3abBzP1kSQGbjUWpr9PptEMXh0Ihh85OpVIGKHa7TmUe8/l2S493s33UeVPWlRuz0nbeboTO0flm8J/6TYGFUdkOtj1gM994Dk2LdltjFJ0ziq5NAu8sreBWlk9tPQJVvB+8FnvdjUp/t8enY9HnyL43ymaz54pzYrPvaHvRQSd4ctzkIHT1WI62HKS+3klXb0e+2W7d8HsasLa/N0q2e+40E6vdbqNWq6FWq5lMVoJqLMFCAk6lUjFlYOhf7MWv1rITCvbuxq/SueCx6VvTx9cSnm5gpb0PK1jMPVdZ6DYgPWqfVGEQluW3WFaM5VgikQhisRhisZjJqI9EIlv8V/3R7He7XIi957vdd3vMbtdg6z/dz22CIe+HjX/YwLauM71fWkbG9qvdAGY9ltu4FZNxuya3ebLvn/2em75Wf5rfoe/tFqixbYRR5xolo9beKDtM597tGvU4Wu5FMzDcsAH7fPazSFG7yH5+9oqd7PazY119uHLkGelf//rX8fTTT+NHP/rRlve2qzV76dKlkcf81Kc+hT/8wz882IHeBBkOh8bhWF5exg9+8ANEo1EDKAEwqbFkrrZaLZRKJaPoGU1TJaQNkUZFXin2RqxKhN8btUG2Wi2sr68bdkGj0UAoFMLk5KRJIdfUaTrkNAoajQZqtRra7TauXbtmmqeSybRbZ0WVYyqVwqlTp5DJZDA/P4+pqSn4/X4zHioRMte8Xi86nQ5mZmbQ7/cd4AfF5/MZw4AsqpshvDccPyO5zEIgoEDGAuCMhtrR716vZ+Y4mUyaGrRzc3OmkRzPe5hCQ5jp5+fPn0exWMTy8vKWuui1Wg0XL15Ev9/HbbfdhmQyeahj34v0+32sra3hhRde2LZcwVGW61Hce/3eQw89hA9+8IO499578YY3vAFf+tKXcPnyZTzwwAMAgIcffhhLS0v46le/CgB44IEH8LnPfQ4PPfQQPvzhD+OJJ57Al7/8ZXzta18zx/zIRz6Ct7zlLfj0pz+N97znPfjbv/1bfO9738Pjjz9uPsNyWpQLFy7gJz/5CTKZDE6ePAmPZ6MW6Sc/+UmcPXsWZ8+exSc/+UlEIhH81m/91r7m5ijIy1VX00Dm3/o6sKn3JiYm0Gw2cfXqVfM62W4s88Lv6XMSCoUQi8Xg8XhMUFMBRTXSWdZKGdP1et1kVtCRVXaWOnkUArODwcA0sWTplomJCaTTaczOzsLr9RrWrWaXsY4mS20x/Z3X7GZn7PR8p1Ip3HXXXUgkEkYXA5sMH7J/vF6vacRerVYN0E6ggDpQS9FoINrr9ZqGmHQMmWZLHcvyIMCmI8kSYl6v19Fwy3aIJyYmkEwmEYvFUCqVHOwsHs9mhO1mDdKOu3r1Kp566ilEIhGcPHkS09PTaLfbpkcO2ep6r9nw0+v1Gja6x+NxzNf8/DwGgwEikYgjkEvQhLpU2fiaws/Pk/lYLBbx3HPPoVaroVAobLnOdruNlZUVdDodY3/1ehv9Kur1uim9YDdqo43caDRw8eJFY0dms1lHwGE4HJrmuZrSb4ME/X4fxWLR8ZzpveH9CgQCiEajSKfT6HQ6KBQK+NnPfmbA9OMmN1NXj+Xmy0Hr6+10NcFRFe6r9nMFOFnbyvDka9yb7T1D/Rx9jm1WOn8zgEofptFo4Oc//zlCoZBhpAMwZVFZ2qXb7RrmNo9lg5zMutLzKpDW6XQMk5vj03JTbmxb+mp6TZ1OB6VSyfj2vV4PgUAA3W7XsK01c4bHoX7XOs+FQsH42NTfo7KvdL7p0/M3a6KTOc4a6GSX00ft9XpIpVLmXiaTSWPX1Go1M1bus2Q/a8kM/qZNwbmiqM5myVO9Dn5ebQiK3+9HNBpFv9939M3Qex4KhQxh0K08ka5pznu5XEaj0TBzouVk7e/r2qcvz/ng86DXwjEPh0NH6VJd9/o3n03aLBpw570ol8u4evUqKpUKSqWSaQhOIWEE2CA6tdvtLbXdlTGv12CL3g83oFzxC95LG+Dm2Gkr29/R391uF6VSCSsrKygUCsYO7/edjXs5Xq41PT/r8itYrqKZisqW53qzs9u4P+ymzKN+Zz8y1tXXL0caSL9y5Qo+8pGP4Dvf+Y4jRcUWtyjaduDeww8/jIceesj8X6lUttTdParCiBmdc27+fCCVXWMbJpoWpA8xxU0RjBI7AqivjXpf61TSeWNjTALPLBcDwGzqdL7J7Gu1Wrh69aqpCbqfki50nmKxGObm5jA5OYnp6WlT/1MbpwAboHI2m8XExATq9brpUt1sNresNa/Xa5ph3UxGOjdEKufhcOgw9GhoMV2bSp3Osh2F7fV6xtFPJpO4du2aYeozZfqwQXRgE0hn/fBLly4hl8sZg1fXRqPRwLVr1zAcDpHJZI6NEuHzXCgUcOnSJVOn8bjJzVT4H/jAB5DP5/FHf/RHWF5exqte9Sp861vfwqlTpwAAy8vLuHz5svn8bbfdhm9961v42Mc+hs9//vOYn5/Hn/3Zn+F973uf+cwb3/hGfP3rX8fv//7v45FHHsGZM2fwjW98A/fdd5/5zJNPPom3v/3t5n/qmt/+7d/GV77yFQDAxz/+cTSbTTz44IMoFou477778J3vfOfY1gp/uevqUfqHBjGNc9aZdvvcKGFvDo/HYzJSAHf2tBtoR+ZcIBBAMBh0lCsZxRKkHcGSbKwNTZ1GVrjH48HFixextLRkguIsBcJyGuwxQod9v+zceDxugp9sYgrAkeYMbKwxsuByuZwDZKXQ+dcyZZwPv99v6qY3Gg1jZ2gTTX5XSQS0B+jsKxjO+zMYDEzAgQ6Y1ubmOHgte3GkCLCsr6+j0+kgHo9jZmYGmUzGkBB6vR4ikQiSyaQJLGsDPD0/HXc65DMzM+Y8BKLpFLIZqMfj2WLn2c3U6Kjn83lcuHABhULBdf23223k83n0ej3MzMyYY+XzeRQKBSSTSUdTuUgk4kiL5hr0eDyYmZlBKpVCq9VCLpdDu9025QkVUFMwnWNisKvVajlAKdrifr/fjCUcDiORSJhG5+fPn9+RnHJUZeyc37pyI/T1drpaAT89tlv5Av5NkNkm7DD4CTj3R92/FRC0wS3dZ23912w2TaCAzbI5zsFgYABmZZZrKSgel/uijo3nVXCfAVq9Hu69Chjr/NsZNGTQ0q8n8YtBCGUs8/oJ2GuGLgFFlpdjeRUFDlVP8Xq5/1IHezwbJdCSyaTx66kvCdZqk9BEImH8+Gg0ahqxuomW1rBJCzahge+7AciaUaVgrK45rlmC71oGVIP4XI+8l3qP7PtOHVar1cw9ZvNtLa2m5fpGscR1TlRImCCAzDEp0YCv6Xtcw1olgPhArVbDysqKKUlDzIU/zNjw+XxoNBqmRA/FfoYV8HaTUVgS9S/via1bbfyi2WyaIIgNdPN+d7tdVKtVU72BNqqbbcxz2s82+wUqWURFbXWuE16DBgftwBuf0Z1krKsPV440kP7UU09hbW0Nr3/9681r/X4f3//+9/G5z30OP//5zwHsvdasOpPHWfThUaPffu2gz0cHe1TqsKb+2huKRtsYLSyVSuZ/OivcVKjoWWeuXC6bmuXKNL4e0Y16FMva/sxRAJBtcQtqUOmEQiEkEgkHK5EANBUODUabgTAcDk1mA6PTyWTSHMturnMzRB3eXq9n1kaxWHR0EbfXBpliDIi4GdhHTXg/WIOuUqmYRrdj2V4efPBBPPjgg67vEdRWeetb34qnn35622O+//3vx/vf//6R77/tbW/bcU/yeDx49NFH8eiIJqnHTca6eneyH11FHUh9uJ9zUhdryTatfTpqXAROyTACNhy3crmM1dVVeDwew67q9/sIBAKmrBYBB00Fvh5dzXlgUIIZY7RHlPGkziYBcJ07ZcVrnxd1tjlWvW46c9yTA4GAYX0pu42OMMEDHk9Z7XTk7AxBbfwJbE1JZoPaUWnCnCe/349yuWzq0zMAoMwnre+rtg8BE9vB4/Wrzuc9aDQaxobQzxLQob5m42+uj1Frgg48wXneKwYbY7GYCewwkMFr0nvPMfJcZBYS3BlVBs++p4PBwLDfOQcEkMh+q9VqKJVKxpY9CPt0LGM5aLkR+vp6dLXdtBFw2uMKCKtvqQCxft/Nrnfz6XSP5d7F573dbm8JSrvpyn6/b0A0BW3tz7kBfm66ajuxwWIF/HTfHw6HBhRUf5X7uQLpzNBh8JF/695sBwf0OkddI99XAp82a9RrUKxgJx9bMQjASR4cNQ5b3MBp7umqv+1rUXBYv2MD/BwPA848nn1ckiI9Ho/Jrrevn2Oyy5jtFqvQ8bvNj/rSHCPtQtXVdnaCno+ER4Loao/tBlsZJaOCCHYQxO2zvF/6W+dBcSzaq0omUJa4jWXZWTL6md1icBrAsa9Zn7ux/XD05UgD6b/2a7+Gn/3sZ47Xfud3fgd33XUX/st/+S+4/fbbTa3ZX/iFXwCwWWv205/+9GEM+VDkRoLnKox+ezwetFotszlpoyZG81if2t6AuGEz3XtiYsKkhQcCAZMmRQWsjjjZbWQGaN3MvYqyEvT/vcgoNt9RECp5ptVlMhmcOnXKMPWY+kUApFAo4MqVK2i1WigWi6a+IddWPp/HM888Yxq8dLtdxGIxLCwsIBwOX9c87lcYfGk2m3j++edx+fJlFItFXLt2zbDv7LVRKpXwk5/8BKlUCouLi7j33nu3pFEeNWm1WigUCiiVSrh8+TLOnz9vjN/jJuPI+a0pY11944QsWmCzgdpehHs4mVDU09Vq1TgS2wkZ7dTLBM+vXLkCj8djUty9Xi9WV1eNs83zar3u63mGmYXX7XYxNzeHVCplnD27Jqz2dmEauabmstxIIpFAOBxGLBZz9D2hjTEcDk3Qmc5Vp9NBsVhEq9VCMpk0jVy1RAjLvaVSKcNYo+2iDGgC7Qo2RKNRZDIZBINBJBIJxGIxAJssupWVFbz44ouGRWjfP2UasnRKLBbD4uKiySLg8VjHX8F7ziVBYzYu18ACM9r42U6ng6WlJUewgNeic9JqtUxjOZYQGCWNRgNXr15FKBTCmTNnMBgMEAwGcfbsWUdW5WAwwPr6OtbX1wHAUa6HJe56vZ65zkwms4Udy7UCbDLyeU+U1RoIBDA5Oeko+9dqtbC6uop6vY5SqYS1tTW02+2R2SduosDSQYkGAfZz3LGuvnXlMPS17aNyrwC21n4mwKSvKdBHsde4DTjyPZv9agc0mdnCPZ96pVarbWGc8/scJwFT7k/hcNic2y7dQiDSvg4FzkZlCGhAUM+t18XSbl6vF7lczuHn8jq5d9E/Z2Cde5mtqxWI5H6voLLOhRsjPBAImPrnZO4q4Ew/jgFyDSrbwRSOlT+cR+p+G2jmPbD9fRuTYJCWrGWSsLh2hsOhKZmivcKoCwOBgKPELsdTLpexvr5uGtXWajXHOZvNJtbX1826YYZTNBp1NGfldXa7XUdVAbeAgwYE3OZBa7JznASTAZhAfbfbNU3btS+ABjEY+On3+8jlcmg2m5iZmTF6nSV9VPT5t/Uef7sx1fmelolzu35eEzMD7bmhjVev11EsFlGr1bC+vo6lpSWz9pnRQRIE77k9breSSfyfhFKel2Pl3zY2ZhMmlLCwkxyGrv7CF76Az3zmM1heXsY999yDc+fO4c1vfvPIzz/22GN46KGH8Mwzz2B+fh4f//jHTZlVyt/8zd/gkUcewYsvvogzZ87gE5/4BN773vfu6bz/8T/+R/zlX/6l4zv33Xcf/vEf/3Ff17kbOdJAejwex6te9SrHa9FoFNls1rx+K9aa3Y/s9mHYLkq+m+/SGe33N5qPKeOHGzI3Wq3fagsVIUF5j8djaqRzo2HkXJucsSv4QYlufDtd+6jv7vV7N0psZURGGVPxs9mso7ELDUAaDcVi0QAj9nGpQAm0l8tlADB1+Khc3CKsN+IagU0GBse0traGcrnsiCzbQgeXzYV6vd6WMj5HTchGr9frpuHRblP+j5qMnfNbU8a6+saJGuT7FRr21Nna6Hs337M/12q1HMFWW48q2++gWLncB+nsBgIBc00AzN9qf9BesVnHOl5t0k22HK+b7wObzHbaIY1Gw4AmCh5zHLSX6BC5scMUEKauZpmUcDiMbDaLdDptrp8AP2vgugVB1EEulUqYmJjA5OQkFhcXjWOpDHGbkMD5s5ltClIoMEW7oF6vo9/vm1R+zofW7u31eqjX66hUKsam2O5+U0ezJrvP50MymTRlXDTbgcEcgjy0f3htBJjInNV5spmm6vBSuBZYlkDXPYMS2gycDPnjKmNdfevKYetr+7m3ATE3H8L2bxRwdQNGbSbsqKwT3X+1rjkzsTyejVIlFN3Lucfzx618jdt1KOiv16R7LF8fdQw33a2lLN32Vu7Nw+HQBA2Ugcy/beCPwKw9j/wcx6nBatV/doNQzfLRTHadM9UxOl92tjuPoa8p0D/KN9X7wPe0tIuyjjkuBoWpN5jxTdCbJfg0qM+sqmaz6QiscO5JZqvVaqZ/Cc9DW0evcxRLWRnfbixnW2/rHAAw2RjEZshEZwa0W0NwZWOz5CDtSgWR9Ty2HWTfH7fAl46XY1Abk8fVsakdwLXBTDSWoKEtR/uF65e2GLM7ODc6ZzrPmh1hj9Uep309o2wgt6yCUXKzdfU3vvENfPSjH8UXvvAFvOlNb8Jf/MVf4P7778ezzz6LkydPbvn8hQsX8O53vxsf/vCH8Vd/9Vf4wQ9+gAcffBBTU1OmdOoTTzyBD3zgA/jjP/5jvPe978U3v/lN/OZv/iYef/xxUzp1t+f9N//m3+B//I//Yf7Xskw3Qo40kL4budVqzd5I0U2IIDXgbDa6m2PwOyzDwqYpylDSiO5Ox+PmZdcF4waotTVHHc8tBWg7YeSx0WiYhlZTU1NIp9OGwcaUZF5PsVhEPp9HLpczDGE3Z4mOZbPZNJHNGy06Bq0bn0gkEAqFkM1mkUqlEIvFEIlEEIlEMBgMTOM5MrbC4TAajQbK5fIWY4WBj+XlZfT7fWQyGXg8HlM3nUaE1oc9CFBdDWiCKayxury8jHq9jqtXr5r6+dsxLFkPrd/faMr23HPPIZFIYH5+3rAJjoLoNedyOfzkJz9BLpfDysrKsa25Coyd85ezjHX1/kTZROr47SeQRsdBde1+nis9/yig3AY+rlfYVG043GB6kV1P9pTOC0vAMGOJqcn2WKgPBoOBqfGt8007ZzgcIhwOm9IFZNcps46gMVnmw+HQsLxpv9gNpLS/C7/H5mNsvK6BAgCGFR2NRpHP501Q25bBYIBqtYrhcINhx/rd1NWDwcA066TN4/P5jO0CbNQ5rlQqjjRnigICOn9k6AEbAZdWq4W1tTVcvXoVzWbT1CJVZtmo8dPmWFtbw/nz500WHPcMBWMIQMTjcQQCAZPBSPCBaz2fz28pJUHHn+On88t7w3mamJgwfWPY+8Dn8+HUqVM4e/YsXnzxRTz11FMolUpYXV3daUk7xnAjCAjXq2/HuvrlKwelr9Uv5P/AVhDJjWGrQLmyzG1xA950DbqBf+qjqJ/J97SJI/dQG/BTkEyBffu8+hn6ypqZRGEAUufKZqbymG5sVf0uP6vzpffBfr7t82iwl8fW5q8kINEv0++weXWn00E2m0UikTA6hox4MqMJ1NbrdVOW09aT1AUE3YkZbCf6GQ146hzq/VNwX8FrnS/aBqxBHolEkEqlTPZYJBLZMt+xWMw0mmdJNjfAtdlsolKpGBuDa4H6iPfCDkYQ5HUL7ug88If4jwLMw+FmVkWhUDBks/X19S3ldHWt8Z7T5iIRr1QqIRwOuwKY2tPPJlsozmNjPvbzbJdqse+rBsP1f85PqVTC888/b3rv2WtYg1VutrYG3Siazab7gdpOdilcO2C03/KNN1NXf/azn8Xv/u7v4kMf+hAA4Ny5c/j2t7+NP//zP8enPvWpLZ//4he/iJMnT+LcuXMAgFe+8pV48skn8ad/+qcGSD937hze8Y534OGHHwaw0XPjsccew7lz5/C1r31tT+cNBoOYnZ3d83XtV44dkP4P//APjv89nlur1uyNFHVMdON1Y5SNEj6w2qTSbVPey4OtSm5U6vp2x7KZU7YydDsWI+Asl1GpVDA5OYlUKoVQKGSUI5V9u93G2toalpeXsbS0hNXVVaytrZkUbhVGmelE0yG+0cLrZqMYr9eLRCKBbDaLqakpzM7OIhKJGEd9MNhsJkKmnaYna0BEP3vx4kUsLy8jk8mg3W4jlUphYWHB0XjloBnevJ+scd5sNnHx4kU8++yzqNfrWF1dRbFY3FEREYxpNBp44YUX8OSTT2JychKRSORIAenA5v28du0aHnvsMaytreHSpUsHxvAcy1hupBxXXa0OyVEQn8/ncLBtPbtbod5TAGO/17rTPns9hv0oYYmbVquFfD6PYrFomFBk0ZHxxTIizOAhoGwL9QmdSDp5ZC21220TVAZgGEr2bwaQ2TyUTCitoU1g3+PZrPnN83o8G/XLWXaNQDoA8x3+hMNhzM/Pm/J2lUrF9doGg4HJHisWi6a5+6lTp3DmzBkEAgHTOJz9TjyejbI9tMXYcyQYDCIWixlmuZ1arc3SWHuc2V/NZhNXr17F//t//8+A9Lz+7YJBdM77/T4uX75s+rw0m01MTk46gJ/BYGACHZlMBuFwGIVCwWRv0U5l9hodcc1+5Nxms1kDxDOzjcGHRqOBXC5nyiTV63VMT0/jl37pl3D77bejUqngRz/6Ea5du+bao2U7Oejn5ajsX2M5HnKj9LVdKoTPvRvIBcCwl/U1Df4SwCUYy7G6ge62aJaJzVrmvsbjsP+F7Sdxv9asHTdQj8e131eAXpnCtt+kpDebBa/z4DbX+jmei/OogLAGBBSsVdH3tJwL/7bvDctmXLt2DbFYDKlUCvF43JFJxvrz1L+lUskEx1n2laVeOD4GLgnEb+djqm5RO0Uzznhter1uGIYNTLMEDIO209PTpnE1S59q6RUC6PStbayE64j10ZltRtuBZXE0a41rRbPS7Abho/SrBsW53okZdDodrKys4Pz582i1WuZe2IEsOwBBO4yYyvr6uhm3srJ5fYoTkNTJcWuGgZYSUnxHAwKaheC2bu2AEOd8bW0NTz/9NAqFAlZWVrbsL25AOY/L9aPgO8+njcu1Z4R9LH0+1a7XY94MEuZepdPp4KmnnsLv/d7vOV5/5zvfiR/+8Ieu33niiSfwzne+0/Hau971Lnz5y182a/2JJ57Axz72sS2fIfi+l/P+wz/8A6anp5FKpfDWt74Vn/jEJzA9Pb2fy92VHL27NJYbKtxg7QjmQbBWdOO+GdExmz2m18SNeDtnjSyDWq2GiYkJVKtVE31lbUxNc2JDy0qlYkqiuIEJPO5uOy4fhCirStlVTGVijT+mK2mHd2Cz8zo/w3lUpQHAGJWDwUYqdbVahdfrRTweR61WM0w8Kj/bWN7ttfA3f2gwsG5ho9EwAAkbouxU61evgWnjuVwOPp/PGG620XpYwqwGNlItlUooFosGgDiuMma5jWUshyd7DXLfKFHQwHZaRwnBaKYcExwnq1vZfnQAtX66m1CfsSSLOmvq2NkBDHUC9zKnap/YAX/qawL5dm1y6lKy4YGdm9NxzNqgtFqtmkafZI2NyiCjfWWzrGynWoW6Wh1xBjYI/u/FLqIurFQqBpjgPbPnTYF1zpnah8p00+slOOZmG7sdn8em082SLgRMyOg/zjLW1WO50eLG6NTXFfQ+aOH+S/BR2ar2GHXf2M432Gmc9t7J3xrQs8dHP83tu6Oua7v37Pf1WG7j18CG6ir9nrK/GZTQjDBtRs4AKfuoMXOIukEboFPX2n69rTeVbTxqfvR+27iFG6FASXn80XIlWtaFPzZjnH9rYMgtc4I+KX3YRqMBv99vdCZ7vWiwSX1+GzS2fWgVDRbxPrG8CQMctq7mMUg20LHzfjNgzWMw+NHtdrdkX7gFefS324+bjaL3jqKfs489HA4d+AWD4Qx66z23sY/tnj83O2gnDEHtDZVRgYHt5CB0NUs1UkY1j87lcuj3+1uaTs/MzGBlZcX1HCsrK66f7/V6yOVymJubG/kZHnO3573//vvx7//9v8epU6dw4cIFPPLII/jVX/1VPPXUU/tuhr2TjIH0l5now+YWud5J+NAzDVlfY81qt03oIIVRPzqcjHxquhOBVTqQo8phlEol/PznP0c0GkWv18Pa2hrC4TBmZ2cRDoeNgmm1Wjh//jyWlpZQLBaRy+VGHpdN0VqtFnw+HxKJxA0xBFW63S7K5bJh4THzgAqfTqAq+uFwa/1XjXaPun+85nK5jPPnzyMYDGJ1dRVLS0tm7sjsTyaTDpDeBtcpCkaQVUEDi5stmeRLS0smfWxtbc2Ue9mLDAYDXLhwAa1WC/Pz8yZaGY/HMTU1tSXl8mYJ57xer+Nf/uVfsL6+jqeffhrnz583jVGOs4yd87EcdTlq64wAMnD9TG+bHXejsltsUABwBtpjsRiSySQAmIAhHe9RoDebfHJvLBaLpjapso263S6uXbuGQqFgGG6jhMdsNBpIp9OmPAkD5XQCPR6PCeTSuWemGZ1s6itgkx2mY6MRT/YXS7AxgAts3JNIJIKpqSmEw2Fje3i9XsN2Z6P3Vqu1a8eA7HJ+b21tDcFgEDMzM0gmk4hGo5ienobf7zfB6YmJCdOgXNcdbSsFpHkfB4MBLl++jNXVVWN7dTodk7a/n3r/w+EQhUIB3W4X2WwWJ06cQDabNfYfWfCsmV8sFtHr9RAIBIzTpfV/a7UaBoOB6cmjgXqC4nS4ef+ZocAyeWSbBYNBNJtNfPvb30apVMKzzz577HU0Zayrx3IQovWxVXSftwOCXD/0NRRk3I1/6QZY8rt8nYCajtEeA/UjiVFugUsNMCqxS8+vvqmW3FDQj2NWZr2WSuWY3QJ9Oma71IfOvRsQqGNW4FeBYdWvmh2s16LXwX4ZoVAIoVDIlDnNZrOOcqJkQOfzeVSrVRQKBQNwslQIfUcCswTdlfikZVjtwLaW5+Ax+b7OE/d4DZ4yiNvtdo0OI3EsEAgYHcDrZC19bQhLO4J2g86/lq2l387/vV6veY26iriLNvEmuB2JRLYEYvS54Rqk/TEYDJDP51GpVNBut1EqlcxvBtr5rLkFtDiffJ12ybVr1+Dz+cwcDYdDkwmvQRmdBw3UMHBEHc3XeG+09429jvmba9rGGxqNBi5duoRSqYQXX3zR9FVj5hnnzO3Z4jHt8+n4OS9uwZLtjqeBDbcMiZ3kIHT1iRMnHK//wR/8AR7dJhvJDgC4BQV2+rz9+m6OudNnPvCBD5i/X/WqV+Hee+/FqVOn8H/+z//Bb/zGb4wc3/XIGEh/mcp+HzpuSHRedAGrwrjRhjTBWQVruUmzbqoqXZv9RanX62i32wY4rVariEQiKBQKiEajJhW51WrhhRdewLVr19BqtVAul0eWoel2uyiVSuj1eshmszd0Hih0EMkA4IZsM8qU/QDAYbypMeUWYaVoChLTzllnLBwOo9lsYnp6GvF43AAOWiuW59UNULMH2DCHtdpbrRauXr2KlZUVVKtVXL582TQ/2S9DezAYYGVlBblcDsViEa9//euRyWQwGAyQyWQODUinNJtNvPTSS3jppZfw85//3AQPbgUZO9ljuV5xYxDdqqLG/fWKMreU7XPQ86jHpijTJxwOI5PJYDgcGqeZztgoUWD7woULyOVyiEQimJ6eRjgcNuVI2u02Lly4gJWVlR2vi71BCA6z9intB2UC9vt9A2ozKEx7A4DRRyps9E1Gls3a4w+dJ7LNE4kEYrEYKpUK+v2+OQ6zyxgE362e6vf7qNfrAIByuYyrV68iGAyi0WhgcnIS6XQaoVDIgPftdhs+nw/T09OYmpoyQQQ6z9TR/E0WWrPZxIULF/Dcc885GsPpWtiNY6gyHA5NrXYCGpxzbfRG22N9fR3VahVTU1OYmZkxJXoIhhHcCAaDjvsNwAANCq6rs6tp6ZOTk8hkMrh06RL+5//8n/jxj398y7DRKS+H/XUsN1YUSFewS4FPO/Bqg6B2M0nAvaY6X3cT+5gEcoFNENXj8TjKqBG4417gNlae0208BDlH+VOawW2XK1HAmj61Mr/dhPMEOME9N7EBLOoo6hUGgd2yx6gvdfwaPCDbnGXBut2uA1Dn53q9HtbX11EoFExjSwaPNYitZWQY7CTAzDHb5VI0e4z6e1QQ19bl9Jt5HiXUcSzUxfxNUJ3rTIPNWjZEbTm+r2tSG5ACMD1HmD3GQAQZ6pyfUCjkOC5tDOIUtFkYIO52u8jn81hfX0e73UY+nzcBCvaF4TriMYGt9cyV4e71ek0PkmQyiZmZGdNvTu0mt/nfLqNAgfTtss8Vv7CfSQL0q6urWF5exrVr1wyJQkmluie5VTug6POlwTNdc3ovbKa5HpfjtJ/v3QLpen/2K1euXHGUtx1F0picnITP59vCPl9bW9vCFqfMzs66fn5iYsJgZKM+w2Pu57wAMDc3h1OnTuGFF14Y+ZnrlTGQPpZ9iQ3I8rUb5Zjb5yWIzh9lXXPz4WZGZ1Nre1K4wdHRZEQc2FBgbDbW6XSMkndrWqbCWuPqkA8Gg5FKZL+im3+n00G5XDZp27wuOriRSMQ4x1QwTPlmJgEDBhzvbiOhAExqc7/fRz6fR7/fN/PFe8QarHREVTmpoUxFyfItnU4Hq6urpja6GnHXs844R81m09RgrdVqiEajiMViCIfDjkYvN0rUQGHpoLW1NVy+fBlXrlxBoVC4aSWCxjKWsdw42QlQVIfievc31cfUm3T6FBi4EaLBdNU5BJVjsRiCwaDRi2QD72avJchJZ49Nv+mwEkzfzbWp/tfeImQfa48QZR4qS4+f4XfowGpgmE4cx16pVAzwzLnS8iDMZtN09+FwiImJCdTrdVPz/HpAWwarWUectV9pB9CB15rpZOgx81AZk7Qd2ARW1+9BrTMyGAOBAJLJJHq9ngnS074gyWM4HKLZbBrghWtDASA65+p8q52mjEstlzccDrc45Cw5MwafxzKWTdkOTFY9ofrQfoYUiNqNEASzwT8VZrQATvCdz7mOTfd8LYVl/+ZY1QfWcjBudryWDHFjvNJXs31rnUsFd1W206l6TN4fsr8JDLuVxaLO1vnlddOHox9OUhtZz8ysovR6PeO3MjNN92YF8Akyqz7kNbiNU+fJ9rtHrUUNXthlZ7TWP3UfQXav12tIZdTlDLwTnKb+VNKY3nsyzHV8xBK0PjwDE8ruZt14Bik4Vp5X7xMzHPv9PsrlsmnWbj9fbiQIW2yQGICxBfx+P/L5vAHvyeBnMJpjd2tiPmq96ns6Prd1rpkctLVKpRKWlpawvLxs/Gq3Y6qNrgC/vtfv90cGGexr0fnR7A0tFaTvKcnwZkkikdhVn7hAIIDXv/71+O53v4v3vve95vXvfve7eM973uP6nTe84Q343//7fzte+853voN7773X4HNveMMb8N3vftdRJ/073/kO3vjGN+77vACQz+dx5coVzM3N7Xht+5UxkH4Lixtou1c2kIqC5wStbWWuSv9GsNzo6MTjcSQSCQQCAaTTaUd0djgcGic4EAgYJeTmeGr0milmBOoV0FAmFr8zSlqtFpaXl83Y5ubmTDOSg67RREVQrVbx0ksvoVgsolQqGVChVCqZdZBOp9HpdBAOhx1Msl6vh0KhgPX1ddTrdcP23g2YTkXKOuVer9ek3AcCAdOxPBKJGIYDAx9q4GhHdgYfWGO13+8bY4ZGwPWCTMCm0isUCvje976Hf/qnf8KrX/1q9Pt9TE5O4uTJk5ifnwewc72z6xEFXJ577jn87Gc/w+rqKh577DFcvnzZGGO3gqiBu5/vjmUswPZrwXYAjpIwDZnOlr2/ct8kYLnfABodFP6m0xWJROD3+40u1Pqa/B7lekBQ6kiy28j+zWazJggeDoeNM0rnjw74dvvEcDhEvV437HDqbHWgd7tfKqu6XC5jfX0dwWAQyWQSiUTClErT+6TNxqijgM1yNey7wuOSCU5dV61WcfHiRRMk5rEJNvj9fqytrTky4hS0LpfLWFlZQbvdNo0z9yO9Xg+rq6uGQXb+/HljvxEMeeaZZxAMBo3dBcD0KLFBMOoxlq1xA8OuV2q1Gv7pn/4J//zP/4zFxUXcc889SCaTuOuuu5BOp+Hz+QygPhgMsL6+7ji3BgTI8BsOh2YtaUkDsiI9Ho8BS/gs9ft9PPXUU/jxj39sStwVi0UHI/S4y1hXj+UghBk12r9AA5ijRMExBVjVr3Wzy1WfUdfqPqs+LI9FYJH7LD9HvaLlubT5I/WVZi8pW5f7B33iUT21mIlF39O+Fupyfp/H59hYZswuc0IgcDs2vG0fhEIh+P1+RKPRLfpY9wQFfm0wVYls+Xwe5XLZ+IHMzCIDnOQ1+n+8RoKtwOa+zeyxeDzuKF/KLC3+2IEQvqbrwo2wQB+zVquh1WqZ5tLtdtuUBFOCms/nMzW2mUHNe9Pv900TVdaE5+sMCigbXZuAEltpNBpYXV018wVgS1NzBj6SyaTJzKP+1ZrzGqjgs0cdZwPiHIdiALqeFPhVFv9gMDD2UL1ex2AwwJUrVzA1NYVarWYyEVlFgPiAPtNupV9sdre9nvXe8l5qxt+LL76ICxcuoFgs4ic/+QlWV1dNaT0G0vX8FF0fdgDLZpDbTHI9htvfBPlte8GuGLBbQsjN1NUPPfQQPvjBD+Lee+/FG97wBnzpS1/C5cuX8cADDwAAHn74YSwtLeGrX/0qAOCBBx7A5z73OTz00EP48Ic/jCeeeAJf/vKX8bWvfc0c8yMf+Qje8pa34NOf/jTe85734G//9m/xve99D48//viuz1ur1fDoo4/ife97H+bm5nDx4kX81//6XzE5OekA3w9axkD6LSpuzrEdKb+eY9vncHv/RoiC6UxzIstOmdbc4PgeFYCbcBNi6tb1iiotgqAej8ekEeu17EfsjZngcq1WMyxwXhOjw9rYhQYgAQcqFDrtGnnfyzVToRLE8Pv9ppErgXSv1+swptSQ1RqmnDsqY7dsgoMQzsHq6ipyuRyy2awBFqampoxxPApsup7zUpTdwIj52toaVldXsba2dt3nOkoyds7HcjPkRmZFXY8oo9XNGVCm8/XsM8pCp75Ux8t2FuzMsoOyFeikkMnHYDLBSnX+dZ/d6bz7qbW93Ri5BzPQTtuh1+s50rE5LoIwZMoBm6U/FCTg++p0sTyJlurS4zAl3uv1Ohp+afNpOucsTbDf62632yODDh6Px+hvlpzxeDyoVquHVmaMQX9gw76Yn583thvnm+uddg2DAoDTMeY12mtfU8L5HCgjnWsll8vhxRdfdGTO3Uoy1tVjOQjRfXqUTnNbLzYwu50P5yajSr/o+wQM6V8oAK0An+pTMtK5Lyooal+T2zNkA3JK1touSw3YzKCxmatqOygxh+Km31X0+3bzTO59ej2qr93KWPCYBJ3pdzLzTIMQbNBsj8Vm+RMgJlObulnvD8+vYKSNV9hzpcdXkJtsc45f55Nzws/wPvFvzhd1tPrUer/5t5styPO0Wi3HWpmYmHAEdu0a8hp05xiZca/kDdocCuTrenMbl5vYeARLJg0GA6MX/X6/KYfLDHWO0864GPXc2mD/TuPQ+1MqlUxW+/r6OnK53JbsMw0OuB3LFq7fUfa825hU9D64ZaTsRW62rv7ABz6AfD6PP/qjP8Ly8jJe9apX4Vvf+hZOnToFAFheXsbly5fN52+77TZ861vfwsc+9jF8/vOfx/z8PP7sz/4M73vf+8xn3vjGN+LrX/86fv/3fx+PPPIIzpw5g2984xu47777dn1en8+Hn/3sZ/jqV7+KUqmEubk5vP3tb8c3vvENxOPxfc3PbmQMpN9C4vFsNuHUFDTdlJX5u9d65uqEcLPUzYPHPgi28KjrUyWotffsxhLc5DgXO9WLO0hRtsX6+jqef/55RKNRnDp1Cul02ii//YxHlQkZZaxPXqlU0Gw2Haz5arVqlCrr3kWjUUSjUcOkYJ1YRvv9fj8ymYyDvcX7vdvoKLCZQkZlTcZ6rVbbAhZxvpTdYafw7VY0mqvGnh2xVvYY/15aWsJjjz2GVCqFq1ev4vbbb0csFsPJkycRj8cNu3IvBr3b3BAQabVayOfzuHDhAmq1Gn72s5/h2WefNffjVpOxcz6WmyHXs85upKiDqww56i9Nmb4efWUzaWjwkx1IgFE/7/b39QqBBwa87cApnd5gMGhqlNNRtFOSb6QMhxslYi5duoRoNGpYgRyDOuMsFaK1T/lZOpBsgkkdxFqwlUoFpVLJFXSlni6VSrhw4YKjdB11OTO1SBwgwE39agP+1ysckzrco3rD3GypVCo4f/48otEo2u02lpeXTX15BmtisZhhLJJJzrUfCAQc5WoYtGfAPxwOG/CnUqkgl8uhVquZRvPPP/88isWiWau3mox19VgOQmxGNIGz7Zjl/IwNRu8GTHdbt26AmZYNoT/i8/kcTSy5f5MBzFrVGpC2y0zybw32uoFmbsLyXhpg1rFSbypYqkEGPb76N6OAWs6VXbZEAV4dr56P10sdzzEpOK2/mW2swX0NNLsBm3aGHPVrqVRylF9jyTgCyqqzldVrg7FK5uLcDYcbJcHoTzPbWm0Wln/l3GjwQedee28wED0cDh3zRb9aAwG6lmwyF/1qFa93o7QMM6yURc7fbCA6SuygMV/js8hr06xJv9/vWIccC/8nqS+fz5s5qFarKJfLCIfDmJ2dNfYW/WqeU9epjSlpJqXH4zG2D0sJdTodVKtVrK2todVq4eLFi7h8+bIhCmp5IX3WuB7d9hn7WXILENo29056UJ+h65HD0NUPPvggHnzwQdf3vvKVr2x57a1vfSuefvrpbY/5/ve/H+9///v3fd5wOIxvf/vb237/RsgYSL+FhA4pa1AxNUsfcqbdksGzV9BbWVW20HDYC+i5F7EZdprWZEe5uSlqKu71blZ7EW7IKysrqFQqSCQSJpWYtef2Ox5Ny7p06RIuX75s6rtrbVjWQGPd9FarhWAwiFgshlgsZkAdRuCp9ILBoKPBGFnte61LzvXg8XiMcQjsjpViG2F7ER5f14adygdsNq9TEP/ixYu4du0aAoEAXnjhBZw9exazs7N461vfioWFBcRisS11CPcqXBtsdPr888/je9/7HvL5vGmqaoM0YxnLWHYnRxnEcWNSU2/rPrVfZgpllMOudTxHpZkflNDJIfigAUhmPwEbjhmztRgIBnDgoPB2MhxulPgqlUpGP9LWsBvlAZsAuwIH1KEEXtT5bbVayOVyuHjxooPFpufndRcKBVSrVUxMTGBubg5zc3OmTBsz5lgijveQrCs7Dfl654Rj4jXw9aMgpVIJ1WoVPp8PV69eRTqdRiaTwS/8wi9genoa6XTaBL8jkQgCgYBxtGnzEATXDAEyHSORCDKZDOr1Oq5evYpr167hypUrePLJJ01QY69klLGM5eUmbna/Ama2v6g+q83wVXDUDXwHnOChnfWk31Vflb6C+jiaKcXgHJs6qg9K1rIymoHN0hJ67XyN12JnjjFAq2VQKPRd6KfRd1HwX5ncqpsUnNb55jzQV94J8FemM79PFjuvnRgBwUg9JseuoLcCsJxbHSuvg0FQrolGo2GCodznGfwkBqLMZg0A2NlLHAffazQaRt9yr9cgAsviNRoNU+KFPbV07vU84XDY2DmxWAzD4dDUYCc4TlBdgxmcH7UJOR5+h2vYzqBgsId4gTK/+R0t42IHTngflIyo18HSMFqij8fSLLpGo4H19XX4/X4Ui0VMT08jkUiYhq4s+2pnGNjkNyUpcu1xHKwlT8LC2toannvuOdRqNeTzeZPJFgqFEIlEHM8nn397zjW44YZr8TnWjDfec95Dm8jnhn/shI2M5WjLGEi/BUSVMTcEKhJl5dqpUfrw78URGLWx3CyHQqO2ek7dvEZ9xo5W3+jxatkUll6hslfGmpthqNerRgCNCSpxguTcwFX4HYLhjCKHw2EAm4pU0+QAGPYi09ubzaZRyOpA7ia9/npA8d2KMs/J9mfQQl8DNueERoiy4AeDgTGKS6USCoWC6RTt9XoRj8fR6XQcNRKBTePfZlDwR9P8OZ8rKysoFAqmTm2xWES9Xt91o7zjKIcROR/LWI6icM/SmpfApjFNJ9pmgO1V9Ht0lg7jWaIec2P6cF+83mu9HuG5We+UYLbu9fbY1YkCYOwq1m8FYAIELK/mVj9cRVmMmtHl1l+FzbDpxGqJNOq4gyiBcyPuh53GrTqcIIqWFKAoMMO5aTab5l6VSiXz7JBY0u/3EYlETP16DVJz3tjglfXtJyYmTD149p4pl8uo1+umofutrJPGunosByG0q91Kn7iBU24lHdxet2U7Apf6fKO+Y4P7Gkjlj60L7PcAJ4Btn5fH5Hn4nlvGtK0Hdb70+PY8KgNbxQ0kdZsn+7edjWUHAexMcb1Ofo9jVNtDyW129rAKfVEdF/1qYCMozyAAf3MsOqcKkOo8cvwMcFMXsCyr6lM9P8fJ4IcGPbTWudv9pl7TGvA6RiWhcZwcq95vvSbaHhpssu0tBeXd1pu9DtSvJV5BfIn3lkEU+s06Vpvtz/vFzIRSqWTsFM4bCYf2WlAsgzgWr6HRaKBWq6HdbqNSqaBWq5kfMtQV49D1yetQseu0cyz2HOla1ntls9dtbEDvjy36ObfvuclYVx+ujIH0W0CoxP1+v2E+h0KhLYx0OmPdbtcRQd5PrU030PZGOxaa5sRI7nC40ViUmyQ3J7tGOdN57bQx3eBvBJNeI9PPPvssLl26hEQigbm5OYRCIaRSKaRSKRNF1/vF7xG8Zkp4Pp83KUtra2sol8sja4jznnQ6HUfDFzZ/m52dNew7NxYkjQTWASULfnV1Fe1229Q9O0zxer2GcRYOh5FOp836j8fjZm7tJjyNRsOAG8Vi0XT2rlQqGAwGJpsgHA6bFPJsNouFhQWEQiFMTU0hmUwiEAgYRgTnURV+q9VCuVw20XLeu6WlJZTLZVQqFdM8jmv6VpWxwh/LWDZ0NlNa4/E4pqenMTExgUqlgkajgcFggGg0iuFwaJpY7TWDzO1zNxP847m63a5xegl4AjAlS0qlktHR9Xrd2CWHBVS2221cvHgRq6urhs08MTGBdDqNRCJhmHMEbsnOUnaZMrHIaMvn84aRtxPoQ13OJmehUAinT59GLBYzDKvBYIBsNotUKmXOzyAty7Rdvnz5yPXZoBPLgD7nkA50PB5HOBxGo9FAoVBwNBdX244N5Jm2zj4xnK9YLIZsNotAIID5+Xlks1m0Wi2sr6+j0+ng5MmTOHv2LPr9PvL5vAmWX7lyBcBGZkA+n0en00GhUECz2US9Xt/SaPVWlbGuHstBCJ9RZU2r2GCzMpopGmR2AwF1rerxbaBZAVayaFXfkHGubF4yrnW/1+vgnhUKhUz5DLvsA0lturdrrxK+pmCrlpgYRXrbDUN/O5IW55aAL/0VJSFxrMPhZkkS3h/OGwOTmq2rpTI4JyRjKVjMueV90dIgSo7j2gBgMAvWDy+Xy4hGo8hkMggEAgYQ53rRY3LebGJVvV43Pu6VK1ewvr5urpFzr3POe9PpdByNWicmJpBMJk3JNZLOuI50vuhXs3Rbs9lEu9022eU2fqOZAJxj3g8Fvfk31ywJAvysihuOY2dqcN3TXiWbnKWEO52Osd0YhOA5lQgIbGSSNRoNTExMYGlpyeBWbEQfi8UcdoHW7ec88HhcW8ViEfl8Hu12G/l83gDr1WrV4BOxWMxcE9cZ17OKnbmir+meoevR3q/4fSVLjhLuCW7ZArutWjDW1YcrYyD9FhBloofDYVN+gukybhs/gURGYvcqu2UjH7RQAdORYjocx8TSLtzw+FuViCpXO4J60JuKstyuXr0Kr9eLyclJADCBDnZJd6uPqylSpVIJzWYT165dw4ULF4wjuZsgCJ16ZZ+Hw2HMzc1hcnJyZO1vzk2tVjMKkOx2pkMfJpDO+8n1HovFMDs7i0gkgkQigXQ6DZ/PZ2qmKhhVrVYNmO7z+VCpVODz+Uyt1GKxiFwuB4/HgxdffBEejwczMzM4ffo0IpEITp8+jdnZWYTDYWSzWcMqpbHEe1Or1bC6uopms4lLly7hwoULaDQaWFtbQ6VSObS5OwwZK/yxvNyFRjyDmclk0gDpdGYBOJzLWq1mnp3j9BzQiaJDSdYSM+YAOAKyBJoPU1h2C9hgNMfjcQOEUI8Am2wzNjNnMIBBawZo19fXDZCwlyAI54wl2aampjAzM4NcLmeY5jMzM5idnXWkILOed6PRMNdxlITAEIP6gUAAiUTCgA/ZbBaJRALlchler9c45QQS6LgDMOVmOPcMMgAb9TJZkqFQKGBubg6NRgPXrl0zOv/06dMYDDaaouXzeYdTe/HiRbz44ouHYuceBRnr6rEchDCISlauzZq1s4T5WZXtAGPAWa/YjYHLtcz3WNtcfclut4tgMGgC3DaYbgPqOkaWiiAgagt9dGAz00x7hthZStyHmP3KY4ximu/mNT22fsbOAup2u8YPpU9ts8sJqpPUxjHaTUiBjfuvmVvcv9Vv1BI8Ok7dg3TcWtaGc9nv9xEOhx2lNQiWcu4U7NQs/V6vh1qthmKxiGaziXw+j3w+7yj9oveSNhr/5nwxEJNOpxGJREwAifOlAREGgEluJOGrXq+jWq06giuanaXs8O1+FEjXOvSj1gPgLIuk95HXxdKwyWQSfr8f0WjUBC4IWrOULAl42jsPAOr1OsrlsjnPYDBAKpXC9PS0CUrFYjFMTEwgkUgYXCsSiRjAmsEIBtXX1tawsrJibC6WCKS9SdtNxc6G4Dy4AemaacFsBLXnNENBgXB9HtxEnyc3GfXMu93Dsa4+PBkD6beAUAHZaWb6EDMCb6en7Sbqpaktdj0xdTxutKhCJYhMBaUGjsfjQSgUQjgcRjQaRSqVcjASNA1N67qz3heVARu/UClc74ajjCqC4lSmVFRaXgWACQa0220Ui0XzXRoiu533cDiMTCaDUCiExcVFzM3NIRKJGLadG8uDQoUcDofh8XgwOzuL4XBomPBMqaJTS+E10QBluhaF6WCcExrcuxWC/36/H5OTk0gkEojH4+baEokEUqmUachGY4fKOx6Pm7I4Ho8HiUQCxWLRGLC1Ws10k+e9b7VaKBQKpi5etVo1Dc600S8Zgkw7J+uS4DlTzcYylrG8fERBRE375V7B9GQKnSnuX3aT0KMu1NW0P3h93JOHw6EBUwF3AEBtGAUeqDdyudwW3XNQQkeYYCt1YaVScdSzJ6ONjh3Lh4wqubad0JkkCz6TySAWi5k1wKAx04m1OR7Hx4aZCwsL8Pl8pqm1W8Nw2o/MqNL55vtqJ9Em2YuojZpKpYwDTtJHPB43znksFjOsUK4bpmj3+31Eo1H0+33UajUDQjAgboMCfF4IkrfbbZRKJfR6PSwtLeFf/uVfMBwOceXKFaytrTmABJZvGctYxrJ/YW1x+mZujFibtWkDnvbn+bqywil8TcvJ2GCs/bruT3xdmdqjSo8oU1rLZhBUtRnlFJtlq8ejvmB2k/rZOh8K3GmAwJ43La9h/+b+ys9pWUllInMetLxHOBzGYLDRnJmZv2QSq5ChTDJXr9czmT2cM2Wrkww3au+1Aw7K7i4Wi8YvJIDOoIidtcDzUUfT1yfAr+VFdE1pWR/qK7/fj1QqZYLBBJ21fI1baTgKgViS6hiM0TrenCdmWzGYY2c4aMBA1+V2ovYVf3w+HxKJBKLRqPFxGfSmX83s9na7jXA4jF6vh2g0aoDsWq3mKJXD+dYgCcFpljXVUm21Ws2sK9o0mtHQbrfR7XZRKpUMLkJWvwYfNAjhZmPaJXD4mooGJ2z2+G7mlwERJW7qsd3Oudv7N5bDlTGQfguIApWqRDTizY2RGwZZTqOilPbxGdmNRqMmwkkglzWoboZQcVarVZOC1m63zfVSiS0uLiKVSpm0eSoCpmbTICDrq9/vo1AooFKpoFKp4IUXXkCpVMLS0pJhf19vwIDf5dg1YkyFbzuxdFqHw83mMpx7O8LuJjxWNpvF6173OiSTSSwuLmJhYcEBMI9SCnwtFAqZNKh4PI677roLq6urmJiYQC6XQz6fx+rqqmM8oVAIs7OzpoRNNpt1nKder5t0rLW1NeRyuV1HVj0ejym1Eg6Hcfvtt2N2dhbxeByLi4uGjZZMJg34QOYglSqNuXa7jdXVVdRqNayvryORSKDRaODq1auGZcI1UiqVUK/X4fV68dJLLxnnQOfQThnkOQlCaKO6l5uMI+djeTnLxMSEKTOl5aYI0g6HG6XKCAIy+B2Px9Hv91GpVA69lNZehPZBs9k0Ngh1XSAQQCgUwokTJwy4yvRedTaUyUfggcDp+vo6Hn/8caysrNyQ8dPB83g8aDQaWF5eNjaTAs3AZsox93w6cHsF0hOJBO644w6Ew2Fjw2iwNhqNYnJy0jjp1WrVvM56+9R1mUwG3W4XKysr+L//9/8il8sZ50wdZ+pogid2ozY25Oz1eqhUKqhWq3u6Jtoa4XAYZ8+exeLionHEfT4fYrEYEomEYx5DoRDi8Ti8Xi+uXr2Kq1evAtgE5kqlElZWVtBsNnH16lUsLy8D2NQTDFZ7PB7U63VcvnzZUY6gWCzimWeeAQDjkOv390JUGCWcv4PSXbZ9sd/v70YPj3X1WA5CCLJSFPxTAMsGkwiy2SCXAocazKR/y+8yO0hBK2WUKtBOEFIbL1JPKRNd/TO17RXw5HcobgC8x+Mx4CD9E/qjJPKsr6876k7r3GhWtbLd7YCE23zbGTYKpmtpl263C6/XawhYJKjRz2ZJUC3Rkk6nDcDO+WHmL8tukAy2traGbrdrytkxeMEx6/XqtfB1Ze1z3MVi0WAVnFMt7cLv8zp4/na77WDle71eRKPRLeuS73G9xONxnDx5EuFwGNPT0ya7m2VQdPw8vzLK4/E4stksBoMBarUams2mYVT7/X5TqoznHgwGCAQCpjSsBnhoT7LEXK/XM6VDt9uPuZ45JpIQA4EAFhYWkMlkEAwGkU6nTWkXPtMkQTBzjuA2SYksiVatVpHL5UwgWwFiEiJIuFAcgushEomY+0GfnPeetrJbIJ06zL53Nnvcba1xvfFZo80UCoXM2uNzo9djNxjmdTBwo36/Bnb0WVJ8YDcZcWNdfbgyBtJvAVEAT+uMuTl8/J/KZbuoGt+nEUFHiEA6u5yTHaYO5I0UbjJ2RJ3GBDc7piCx/EYmk0E6nXYYXgqSxmIxE9kslUrwer2m3iaZX7aztR+xo8wcs22oAZs1yvd7Ph4vGAwilUohnU4jlUqZgMJejqOR9Vgshk6ng3g8jmaziVqtZowQVczskE3GmZ0uxbRAGj27WT96fBqjjJLH43GkUilT5iWRSDhAK41OE8whG35iYgLdbtfUf9MMATU0X44A+EHJWOGP5eUsCl5SD1OfaaYURQ15fn+7YytgwHNowFXZaDeL6aJMOrKo9dpDoZDJJpqcnEQgEHCwlZQNx/RcbbBNZ073loPIIAOcIMTN2vcnJiZMf49oNGoAcgWNGHRXMIfXq8AByRIERyYmJhyf1XuhBAwyPGlPcq6Zgr5X4f0jg4/sc+pYXi8A44QzkMAMADrSClKQsabNxHWNb3fvWFLo5Sa7BffHunosByHKlNVnkkKAi3uWLQp62axq27clUK5r3GZ/8pw2650/Ctzr69uRzvRZUV3tViaC+y1Jb0poon+hYK2OWZ8rW9frXOnfvB77mt3mUvdLNlymT0fAnwHwWCzmYEAHAgFks1lT0kSB31AoZFjpgUDAwUCu1Wquc2qD0G4BAt4vBda5BrQhJX19PZ5mHqsfSrGZ9Sqcc2aHRaNR05vOLgdEIUiqvr5eC6+x2Ww6suyp53mPCHZHo1GHnce1pHXYSQJwsxvt+dSgDAMN1Mu00fga7z0Bd5aLpc3BTDHaC9TVxJN4LfqckozpxsLWQLf2NdAa/XyfNpIbM98tcKf3gOPi/2qH6hyqTW4/P9vhKqPsd5uUwePulvE+1tWHK2Mg/RYQKgX90YYIypjSn+3qdiYSCROJPnXqFKampkxTCCplbl6rq6uoVCooFou4ePGiiYbeyNqSVJzctEOhEM6cOYOzZ88iEolgfn4eyWTS4YwxDckOOFDJ0ghgKjXrWL/yla9ErVbD888/j6tXrxrle5CONY0ABaKvNzAxMTGBTCaDSCRiWOjJZBLxeHzXG7SbULHHYjHccccdmJmZgd/vRz6fR6/XM8o1lUphYWHBGBqarq3HImvE6/WaiPWoMi8KcE9PT+PUqVOIxWI4ffo05ubmEIvFMD8/bwwNpoOpQcKfaDRqWCvBYBCNRgORSATD4dDUfmea2fr6+i3fCPRmyFjhj+XlLNTVmiaqZbXUgWDZKrKSWMtVhY4JnahkMml02Cte8QrEYjEUCgWsr6+bVFvuscvLy3sup3U94vV6zThvu+023H777QiFQkbvKgBMh10Dn9zHmY3E9Ol3v/vdqNfrpllYs9nECy+8gGvXrt20a9uPKDAEbNaX1cACAWMNKrDsCFmAdrCXa0wZhMzUikQipm67rjU6xZxTzVbkcdjUnQCEMsJ2us5oNIqpqSlHDx8CSBoQJ7Ou3+8bUKPX6xm93u12US6XDcORrDxmn2n5gKMge9VZtl1mf38/x3M7xm6OM9bVYzkI0XKggLMUiYobUxrYBJT4w6CZgltKrtIa2Sr6eTfmtspwODSZozbzXQFzkm94fdynya5Wdir3UQZ+5+bmDMuX/bJI1up0OojFYoatXSgUzOv2HNlAvx1Qt4PoumdzbvV7BIiTySQCgQBmZmYwPz/vaKrKJtxahmViYsL0E1E/KxgMIplMotPpIJFIGPsjnU6j2WwiFAphbW3N+L8K3Nts+u2E94PXoOC6EhJIiiOGQSIgf1MIutp78sTEhGmIydJr9HEZ4B4VbNb1quPj+NkzZ3Z2FrFYzGRpaz1/lpCJRqOO+WImxHA4NGVWYrEYBoPNOu0secLrVHIcdXIikcDU1BRCoRCmp6eRzWbNPWTwW0u28npJVGNQntn01PFkntvsdZIhlT1u/w24k9l4P/nc6Ws2KK33Vde+Cp9dm4CiILyC3rS9+BxwP+C4ybKnPcZzuAU37LXmFlAYJWNdfbgyBtJvAVFWEjcZVeLAZrRMo3la99KWRCKBU6dOIZlM4r777sOdd95palpyUyTIePHiReTzebz00ksmbQfYXUrKfsUGHGKxGM6ePYu3ve1tpnt3JBIx1z4qKqsKLxwOA9iYz9tuuw3D4UYd8Hw+j1KphG9/+9tot9uOWqg36poOQgikT05OYmFhwQQXRs3FboXfj8fjOHv2rEn7fv7559Hr9ZBOp809oPPudk6uJ80uqNfrpsaZmzCdjM3XTp8+jXg8boD0aDRqyskwBXHU9Wp6WDgcRqvVQjQahcfjMYATm6iwHA8wVjxjGctY9id0nLSPiRtbjs7sxMSEqd2p9UuBzX1YG2KePHkS2WwWZ8+exb/7d/8OMzMzOH/+PJ577jk0Gg0T9L5y5QoKhcKhAOnBYBB33HEH3vKWt5hyYXT2mMZMcGEwGJh6m3SEGUxl6v3rXvc6BAIBrK+v4+rVq6b81lEG0m02Fh1hBvwJpGuqLwMJg8FmOT0F22nTabAmHA4b++jEiRNG/6+vrzvYmgSzCabbOpvrlin0rCW7U7k7HiMSiWBmZsZkpxFEZ1Cc/WyUFcnzAkAsFkMkEkG9XkehUEC5XDbAFNPNU6mUSRE/KkC6ihuore/pb1v0e7u1P+z7p98f2zBjuVlis6qBrVkRNlNdAWAFeKkX7XIbdukSPZ5+l8feyf8hkM6yoVoui/qZQKJ9bQrG2aAZM6PD4TAWFxcdZUdZloN7WDweR7VaNeVQ2CNC9zYbAFeGsn3+wWDgKFelYCSFNgkBXYKpCwsLhhyl5CQV6mO3Ou3c19kXrFQqIZvNol6vmzltt9umf5R+l/fDvmc2IUsJU9SHw+HQ+OokHCiQTl1h6wseT+8j54pAeiKRMEA69axmldtjtkFSAsg8N/3V4XCI2dlZNJtNeDyeLcTEZDJpgHTNkuea5L3mHHg8HgejmziQjosBbOrS6elpU64mk8mY2uhkvCtzn0ImPG00rjU+OxxHo9FAtVp1BC4IOtsgupa15bxxLrhO7SwMDaToPdS51ywYvTejbBktB8Xv8Fmh6J5jl3vi+HUN6nj1OdH1e7OyRsdyfTIG0m8B4QNsA+luKXT6GZuRrgy5WCyGqakpJJNJ03CC0UhG3xhlSyQS6Pf7RqkAMI0fbpTBToUdj8cxMzNjGPSMFBOE2IvoZktjgMzmfr+PqakpzM/Po1gsmhqhtmFzlIQObDweN01F91LOZSeh4QTAlP0hI51A9nYNVqhAmFJHxtt2YyQYwzpubJiqIICdFufmpGoEm8oNgDnuYDAwLINut2vWmxrtY9m7jCPnY3k5Cx0EOrWsQ8p9ymbTaS8SfXbUaSXwGgqFjA4OhUKo1+tGD2tN8m63a7J1yBq6GXXXA4GAcToZ5B4Oh4bVxOsCnMFvBhv4W+0dj8fjYATSmU6n01hYWEC73TaNw48agKhjUb1GxiIdU64JNj9n+rTNfKPTrA6dXbuX+o0BbK49BjgIBtjj03GqA9tsNkden65RnpeMd+pplgpkyZlRYAnZbkwtJ5ONzwxtAJ73uIo6/TdirboBUtt9dqyrx3IQosC41+vdki3NICngrBus39ltsEmJZfY6VLCZAe1Ra9Vmo2o2t45Dg5c2E34wGDjKfDDbiP4Ks860fBlBynA4bMBnlrUii3cn4XOu8+f2N4UAHst6sD+FZhMzS0xrs2twUIF7Pa6Chn6/H/1+3/iLwAYwnMlkHL3WtBSHzrUtyjLnHOt16x6mgWP72NQZbuC3DXaSca2lXJQQYTO+9dgUBrq307G02Vj2h+tL/Vo9Pu+LlhfhcdzY9cq8pi1BG5H6lGuB957Xaj+rBNA5PsVPeL20FWgLtNtt0wNgO9HnTO8jnzW9Nwp0u82rij6r+p7bWrMB992I3hsll3K/cAP59fr2AqKPdfXhyhhIvwWEUbvBYGBSwEOhkDEU+KCSTcQUbzaP0i7Vk5OTCIfDeM1rXoO3ve1tpm4pa2Jp6hT/Z2SdNbBLpRL++Z//GT/96U9vCMg8MTGBqakpJBIJnDlzBu94xzswPT1tmn3YTIHrkVAohEwmg3g8jre+9a141atehYsXL+I73/kOrl27ZkraHMXNKBAIYH5+HmfOnEEqlXKNIl+PkEXn8/mQTqdx6tQp07Wbyng39VQ9Hg9isZhhV165csX1M3x/enoaiUQCi4uLWFxcRDwex/z8PGZmZkzNOkbARxnftoEUj8cNOMD0cHYcj0ajWF9fR6fTMY1cjuL9Pg4yVvhjeTmLAuIsUcFgrTpLZA1pqQpd/36/36Tfzs7O4vTp04hEIjhx4gQmJydRr9fxd3/3dyadmk2XWfplOBzizJkzqFarWF1dxdra2g1/vqampvCWt7wFU1NT8Hq9WFtbQzAYNI3Bud+SCEBng2PXjDrNWmKTSaa+DwYD3Hfffbjvvvtw9epVfP/733fs30dBFHygXltYWMDk5CQmJyeRTqdNMITB+rW1NQAbNsnCwgK8Xq9p5KpsP9plZK4TTI9GowgGgyYFWQkVsVgMk5OTCIVCjnmyxzkcDpFKpRAMBk1m3qg5ZVmAcDiM2dlZw3KbnZ01TelY2qBaraJWqxmwnKCIpo5rTdZOp4NOp2POTyClVCqhWCyi0WjchLu4N9nu+doP43w353M71m6PP9bVYzkIod9B0It/KzilhBvN2nJj8RIoVKCJ600Zq9w3CWjRV1FAkEAewU+tb67gGgFeDX5rzwkexy6vyvNHIhGEQiEsLi7i7rvvNgAl2alaFoYAO/2SaDSKiYkJNBoNUzp1VC1mBeA4ZgW89R7w89zbaVOkUilks1nceeediMfjxn4gwGuzd22QUcF1t0CGx+MxxLxut2vKx+ZyOTz77LOmnA11H8dol/TgmmGGggKXNmuf47IBdq/Xa5q7axkRgrbKcqcEg0FkMhnMzs6aYAOD3iQP0l5jYELPyftg61ZdAyS+pdNp03Se5dTY5JXPEH1dLWnC8fM4bMTKcZCcwWvzer1IpVKIxWKYnZ3FiRMnEIlEDJmS12H37+GYNQDEZ4ts9H6/j2q1asZBe6Ferxs9zvWkc6I15rXxJl/jHNjZH25BIiUH8HlX/aZr2Y1wqFiCipue06AgA0fKrt8uOGSD+3ovt5Oxrj5cGQPpt4DoBkSnAths8qKKj0A6y1Zoaq7P5zPNJWZnZ3HHHXcYJW4DohqdTSaT5rVarYZSqYQrV67sKXq3F6GiyWQymJ+fx913342FhYWRqfLXI36/3yjJUChkOnT/+Mc/NopADYejJGTsT05OGqDmIEUN4EgkglQqhW63axh1jKTv5jhkhHc6nW2/w9R3prclk0nEYjHE43FTdoiO+G7Oyx/txM3U82QyiVQqZVj2wWDQsOaO4v0+DjJW+GN5OYs6U81m0zheWuKE7DYCy5qOTaGuZubY4uIiotEoFhcXkc1mcenSJZw/fx75fB5nzpwxeyPZRclkEtlsFoFAAJVK5absabFYDLfffjvm5+extraGlZUVB9DARmSAMz2eY6ZDyTRwOtoEMZRVdfLkSUxPTyMej+MnP/kJSqXSkd27qUeTyaQBMggYs5wYgfJut4tsNmv6vrD0DeeEtcXpCNLG83g8hlWWSqWMY0cWYCwWM7XLeUzbqaNjp6na22X9sWYugZhYLGaa1BGASKfTBhjP5/PmXErWIFigmWvARlPSSqVimoZWq1WT8j2W65exrh7LQYhmG6mvCTgbZmqvB/qtBLXcsqttUVBMwXGbMU3/gPY+QVr9DP9WYJW6R1nN3IP5ng2mswkj961UKoW5uTlTwoM/HK8yiBn49Ho3+kg1m03kcrkd/VsFa20msoKOKgQt6cdls1nMzc2ZmuijwGCKG2FpFNt6OByaxtaDwUYZt3Q6jWAwiGvXrplACPWarhE9rrLouXaUYa3n1+t1A2x5H20wXfUQhaVd2ION+lZLq2mZkkAg4AhkKNBuH5vnpn5l9hizovnbzuRQX1xZ2pwbMsaVIW3rd5LfWCYtHA6bEnMa1NZ54vXqePR+sF4+ADQaDfh8PiQSCVO2xtbVGtjR+6b3gvPG6+D65VrX67czHDWjfDvGtxvxTmVUBoN+nuQPLbOsGS32ddtzoPdzJxnr6sOVscV5C4gaEKyjqnWnNbLFemFs9qCKIxAIYGpqCplMBul0egsQv5PQSfP7/Yb5RsD+IGo9UWlGo1HcfvvtOHPmDE6dOmVA4lFRw4MSnj+ZTOKuu+5CKpXCc889h2KxaJhyR2FTUgODKWiqfG+EsKYtu3QDB7tB0+DgeVjShT9MkbTT1/YiVF40GlmCgAx7lp65kfM4lrGM5dYVdTioE9vtNmq1mqNxF52xUQ3BNb2YAUs6GUydnp+fRywWQyqVMq9TmNkTjUZRKBQMQ/mgazIGg0HDkj9x4gQSiQT8fj9isRimp6eNA1upVFCr1Uw9UAIeg8EA5XIZgLMOKq+XTDrOCVmCbFhJxrvP58Pa2hqWlpaOhI6m6Fiorz0ej7HTms0mWq2WydryejfKsJRKJXi9XvOeOqVssO7xeBx2idaFpUNJUoXf7zfsdYLvABz12W3GqJ0lYYs653Z6OJ3MarVqHE0Gs/lssPyR1+s1TdIAGCBMs8YIztAOUGBkLGMZy+EJSzooI1MBKAXngNFN9myWs/0dvqc+rb1vcf9T4FNBVVv4mvrT9AFI+uE+pcxTjofB63Q6bcg+WnZDyTz2tXLfjUajyGazaLVaSKfTSCQSxjaw50LnQVnVCigSWFWwk+U2stkspqamTEaUZgfxmPaer2C9W0mV7fxyHU80GsX09DQCgQDW1tbQbDbNfbKv0Z43riEtr6OEQv6v+oXzsxvSlepAzofWY9dxMGjNDAcN4NuAJ311DRor6E87j8EkEga0LJEC8pwTDdBQz7sxtTUQwSCOG+uc+JFegwLpKlrulp9jaT1dD3YWAc9lg9+cT841ny+9/zZWpdnm+r+dnbFbG4HrRoMsuu4VtNc1wbXtBp7rfbYDUDwm95exHG0ZA+m3iBA8r9fraDQamJiYQK1Wc2wm3NDsmm6UcDiM2267DYuLi1hYWDAO+m6BQ6aWN5tNU+ql2Wwa1tD1it/vN81afvmXfxlvetObEI1GTXrwjRQ67BMTE5ibm8Pb3/521Ot1BINBvPTSS4adfhTqpVPJs54oI8puqYAHJXTetXzQXsQ2km1RVgfZlJlMBqlUygDr2zUW3U708+xMHwwGkUqlkMlk0O/3kUqlTEplqVTa0/HHsinjyPlYXo6i+5I65wBM7Wv93CinlcJsIzZ21h4O3W4X4XAYd911l0mHpiPF48diMZw5cwbdbheFQgEvvviiAV4PwnDneaLRKP7Vv/pXeP3rX2+aohJcmJ6eNmDqysoKWq0WqtWqYal5vV50u13kcjk0Gg2kUinMzs466nSSHcY+F2xCyvmNRCJ41atehRMnTuCnP/0pVldXTSrxURHe42AwaBpuVioVABvpz9Vq1ZTwSafTKBaLWFlZMexz3ns69qlUCidOnIDH40E+n0e5XEa32zXsc+pn6upGo4HhcGjsG2ATtKDTqo4619NOBAky0gn+UEdrSYRcLmfuN+sAM/NAdUWtVjPp4ewHUK1WkcvljE3L2ukMLjEoMNYb+5Oxrh7LQUixWHQwhBXcUmYp9xIFiOlHcH/jZ+nvuvmVPJbuiQQf+T0CgypuTG1g029WMHC7fU9ZvtR5CwsLyGQypvQog77ccwmWstkoxz8cDh3ZvsViEWtra47eH9zblRGvorXDWXdbS6Jor6lTp06Zsh70g5TVPAp45GtuZTNs39P2z6gPMpkM7rjjDjSbTZMpx1IgnBMFyhVU5/qyg7s2s9dmhCu4Omp8PJ/WLdd68Qo26zxzjem5FIzlubU0i509QL2oPe3UPuR8cK3bzW+pp7WEkQK8XIN2j5RRQLNNBNH+PTbTn9cAwNw/vkf7TcsF673lPOjaYQkeLQfD91g5gOfUQBp/699qx9jXOWoPsOdEsTF9RnQdcH1okEnPw3PpsXRdaiBpOxnr6sOVMZB+i4kd/bSBdE1Pc2O5hcNhR0rZXkBJKmeyg/x+vyl9chBCB5ygLVPTbzTbmqLRUUbsE4kEgsGgcUyPimiU+6CbjI46H0vgAHAYLTuJHd22v6MRXxoLNED5W6Px+1kLatyTwcDz6PkOujzOy03GCn8sL0exQXSKGuj2+9utdxrp6iQDMOyj4XDoaFZGx8Pe55TFTdvhoK6XwU+WLFE7hA4S7REGod1qm5I1rU6yzQxTfUAniewtgtORSMTBSDoqovpNWWZ2MIVOPO+VNsHW5mW8tzYwpMFqHlsddFv3qsOuelW/t9MaVbabvVbVHuX7tFltIYii91bHzHPpuhgzua5Pxrp6LAchNhg3ipyla0Z1IrCpt/Q13cfs0h0Um5lq7wn2fmeL+tI229oGDu0yDMqCJQksAYAtAADMFElEQVRIS1nYPhozc3TfVn3H47D0i5aM4LVxX7T3az2mgnTcmwmi0r/WLLe9+FS6f9v6xp5je+5YtlN7YWgGsJ11YK8rt/PZ51QQ09Y1O61JfkbBdxv8tH9GYS07iT03OgfKDNf5sOeAn6e+tEXHqexwex4IvtsscH3fbQxuxwCc696NhW+PEYDDv+da4bn4On1zravvJjbjXefZFr0WGwi3+zjYa07nUnEDt3O6nd9m7G8nY119uDIG0m9B4abmVoZiu42dEXSWAtmr6IbMKCdTc69XPB4PpqamcOeddyKbzZomVgddE303QoXv9/uxuLiIV7/61SgWi3jppZdMQ7DDlFGgzY0WGieVSgXlctnRKGc7GQ6HqFarKJVKqFQqrmx2BU1Yf53sNjIrDuJ6qZCVAU/jUuvhjWV/Mlb4Y3k5iu3g2H9v99qo4yn7jHqwWCyiUChscaQVJKdTRDDU5/OZjJtyubyr5kY7SSqVMo2q/H6/aWxOZhL31MFgs7b3cDg018Fa2iwDA2zol3q9bsD/bDZrbB0y12q1mvks52Bubg6DwQBLS0tIp9NoNBpoNBp7zpq6EcIgrZYno5AxxtrxBJ4BGF0Ui8UQDocN86zf76NSqWB5eRkej8eUa/F4PEgmkxgOh8jn86hWq+h0OqhUKiiVSshkMlhYWEA0GnU465xDsuUHg4E5PpmCo2Q4HJpxsQY868W2Wi1HkENZggSMeJ/JmmQGA68zHA5jYWEB/X4fhUIBpVLJlJKJxWJoNBqm1OFY9i43W1d/4QtfwGc+8xksLy/jnnvuwblz5/DmN7955Ocfe+wxPPTQQ3jmmWcwPz+Pj3/843jggQccn/mbv/kbPPLII3jxxRdx5swZfOITn8B73/te8/73v/99fOYzn8FTTz2F5eVlfPOb38Sv//qv73nsYxktWgLDBoe4v+jz7wa62+UmRgGNPB9/KyOdY+B37cCxG2iqY9TAIuCs+a7MUhUt88Lv29nges0KRvK7/DwDyvy/3W47Go+61ZvWcfAzGgDt9XpIJBJIp9Nm32RJF2XwMjA5Cgjn2O3yGradovNgC7ONer0epqamsLCwgFqthnq9jlKptOWec3xqP3AuGVjV+2XPr9t91mAuj8WsB4K+uiYVCNYAuN5bXRt2eRLqM2ZMaOYE7w9tG+o43iO9PwDMsUjq4/+tVstkoY3KKFC/V8lj2wVF9Fr1GVXbU6/d5/OZ7EsSOxKJhBkPsyooxJHsMm28B3rvSMrQ50aPo9dJ8oFmtOh12f79djY7v6e2NNeHPi87rUcdr+4XHs+42ehxkDGQfouK/cDuRmwgfT/ApEa6FeQ8CJmcnMTdd9+NbDaL6elpRCIRADcfMGZTlsFggLm5Odx1113I5XLI5XJHAkgHthqB+tqNOh+Nj1qthlwuh+FwiJmZGdNIdJQMhxuN9/L5vCmRY4uyJzS9zmakX6+o0ajlAuig87kYZQyOZSxjGYstN2KvUAec+1+xWEStVjPZW7bzp9+lo0UHdmJiAvV6/brH5fF4EI/HcfLkSQOGNxoNtFotlEol9Ho9R+12bXrO8YZCIROEjUajxlljw6pUKoVEImFK05DRTt1BUDoajWJmZgZ+v9+Um6NDdxSAdN4nrUcLbII0bHDNbC+C4kxzZsPZZrNp5rbRaGBtbc1xvxmQ4D2mE1mtVlEoFEyDcAXSFQBhYGM4HKLdbmN1dXXHmvoEDNg3hfXxCQgFg0EzplarZcobMZji9/vNGmb5gXa7jWvXrplyN/F43KzlRqNhvhOJRPaVYbEdsDaWGyff+MY38NGPfhRf+MIX8KY3vQl/8Rd/gfvvvx/PPvssTp48ueXzFy5cwLvf/W58+MMfxl/91V/hBz/4AR588EFMTU3hfe97HwDgiSeewAc+8AH88R//Md773vfim9/8Jn7zN38Tjz/+OO677z4AG6WTXvva1+J3fud3zPfGcrDCMl0KVNnAOIFiFWV0E5iiuLHV+Td1HX1QZbLapRlsH3m7/czNj7KBc3u/sQEuZdArIKllLfgdZv6wt5kNpBMk5bXaYK4eS4/JzzGwwSCnlshUgpoNkmoAwQak3RjLdjDBbV4JQHI/n5qaMoSsK1eujAQKh8OhCcpqMIFrxgYtbeKBXhM/Y49dAy/Kpta/7fvtBswSqNZyLzo+Bdr1nAyYlEolrK+vo9frYXJy0tw/noM2FAFzPlOtVsvYR9uVarFrpduZ7PY6HhX00r/1WaTdFYvFzDqOxWLGRmAPMo6Rzy+/ZwetdK3R1qA9aa83jpWBEgaUbBtG58O+PjdxA8LtYIzOh65BXSN6HDvT5SCILWO5sTIG0sdihJuwnUa912PoJk4GlRpF+rndnoMgfyqVQjKZNPWwD0u4ibMTe7fbRSAQ2PV33ZQBxVbGe70PVAC8D4yUcnO/EcK1w/VDx5jAjKbdU7hGut2uqe2vtdTsa3JT5DdC1Biwf7TR3V7W71g2ZBw5H8tYrl/oMDDjKxqNwuv1GhausqX4t35XnW8A5lgHVQ6DLGvNSCLDiL+BTQeOThfZWWQz2w3BbAaj2hfqSPPa6Wj3ej34/X5MTk4iGAwaVvoocQNUlfmo4M71lHRTHc3an3odCk7wM7SrFBRyA0220/V6HQwcN5tNw5oCNuvd8jqpm7VW8HaiAAkAR4BcX9NapfweWWh6jyYmJsya4Nhs5pn9w/PsVlffSBvpuMnN1NWf/exn8bu/+7v40Ic+BAA4d+4cvv3tb+PP//zP8alPfWrL57/4xS/i5MmTOHfuHADgla98JZ588kn86Z/+qQHEz507h3e84x14+OGHAQAPP/wwHnvsMZw7dw5f+9rXAAD3338/7r///n1d41h2L24sVQWR7PXi5hPZ7FhlENvnsety8zy7EQKUbmt41H4/quQjx6xBSbsWNq/J3sP1+/bnPR6PaahtM/YVsHObG71GfpcZvrae1fHbxxgl9n3a7jNaTkR1O/uhdTodRzkbe+waaLGPpbaPMrztMiMUDQ4oyO3GQqbvagPZ+hn7Huo57HnQ61d8gN/RDEINsACbQQG9fn6WIDxtBrWXKPo8boc72ODwdqJBInvd6lgVB9HPKE6koLYNpruJPrvbrUXdJ26GLz8KmB+1L+3FDhn71YcrYyB9LEbI7gqHw4Z9tBdh9JRNw8rlMtrttknNZaouAJOutBtAncpwamoKr3zlKw2Yftji8WyUm7nnnnuwurqKp59+etuNm0qOkVYCCjReVNkzqkoFuJd7we+RsdBsNk2E+UY5ie12G+VyGdVqFWtra1heXjZOcCQSQTabxeTkpEMB1mo1rK+vo91uY2lpybDc3NLFNQKuzXLVoT4oJ5iKnIx0bcbDEi8ej8eAGmPZvYwV/ljGcv3S6/VQq9XMPnX69OktfRzIgiEwS7CUzUgzmYzZM/P5vGEuHYQkEgmcOHHCMKYBOMqxkPkEbJQpATabrhIkL5fLxmm2G0lz7+WeoMdTBn6/38e1a9dMKZA3velNKJVKaLVaKBQKrmNXB0sdatYnJ/AwMTGBRqOBSqWy7wCEBgtyuZyjobqy04fDIer1urGvWMKG97zdbhtbgXretkXUkWNQmLZev9/HhQsXHNleWsKO89Xr9VCtVrcwE92EmXtkGRaLRQQCAdMgvNPpIJfLOVKiOaZgMIhKpYKlpSV0u11jP/D8ZGJqKRy7zBvHr4zO3chYz2zIQehqNs2lELBT6XQ6eOqpp/B7v/d7jtff+c534oc//KHr8Z944gm8853vdLz2rne9C1/+8pdN74AnnngCH/vYx7Z8huD7WG6O8LlWwEqBMTdw0QYf3YAz+/m3S13wu/Zr/H9UM2+WQbHZ4TY4p40euV8qkKuAZKfTQbPZNI2StbEz54IAKPWaBnB5nVq2Jp1Om6wuzmO73Ta+IzO9bGCSOp9jjUajmJycRCQSQSgU2nIf6E9SqF/cAgp67+xAgc1+1uxeBWiHwyHi8ThmZmYQCoUMO11L2eh9tLPglfik463VauZeqo7UIIY2pLWBe/U/tUl3OBx2ZDvo8dwC8jr/aqtobw+C/yxBov68kgC0nx0DIZ1Ox5DScrkc1tfXHQEgzhXPyTHyPHawmnPA79r3lqIBCjvwpXOj2eU2o99eQxoA4Pip49U2cwuoj3pdf/hcaQNTHfN+hPdPhevKLkGk57PnQOvC7yRjv/pwZQykj8UIHW06bHt9wLhRcNOjs6uKk4qaEV01ONxEI5jhcBjZbNYw0o+CRCIR4+DR2d/NtWjndDWogI1NnXOpTIDd3g81CqgYRzEsDkoY/aair9fr8Hq9KJfL6HQ6pvEdr8Xj8aDb7aJaraLZbKJaraJarW67Fmzje1Tk/CBEwXRNedOfo9Rc9jjJWHGPZSzXJ3SUmdbMWuQM9ukzRgeN+y+BglAoZPZi1q08KEZ6IBBAPB43QKw6uwpq0DbgfquNJBlQ1c+og6VsPLfUbl5rtVo1wYOFhQUzR9uJMrU5lz6fz+gDgiG0YfYr1GV0fhkcoTOmjibZ2xrwUEeT8+bGAtPz8TXtBTIcbvQ28Xg8jn4gBD673S5qtZqxJ3bLTKTdNxxulG/j+Tl3zWbTlHmhbcixsd47iQChUMiAUupccxy6DngMgjXbMdjGMlquV1efOHHC8f8f/MEf4NFHH3W8lsvl0O/3MTMz43h9ZmYGKysrrsddWVlx/Xyv10Mul8Pc3NzIz4w65lhujNgMVGXT7oaNzs+5geFuzFoFgBXYtD9H4X5p75PK6iawaoN0bvrSDUjW5sz0H2yQVQE2m0mu+xqvgWWv6HMrkKmgJbDJmKe+0OMweMvj2WKzq3fri+o51Pfja3Z5Fb1PLDPW6/XM2AjeK2Zgry3aF0oco/2hDHINJNjXaYPIKsoOJ1vevtf2nOn1ub1u/yixjutYcRX90UCJ6jv6/sRzdC2oDWaD3TYxze36t9OlbsEC+/lzW8+jRPcJXd9qz9rzyfnT0m60qfR8+izTJt5OdkPUs69fX+d4R5Vq0cAZr2UvMvarD0/GQPpYjLTbbdNEKpVKoVqtot/vO8BeN1EAmGyvbDaLX/qlX8JgsFHHUwFJAKYBRqfTMWy4UqmEtbU14yRz06ZTx/ptmoJ22ELWFaP5oVDI1K9TZcI6n9osk+w2G0hXRjodTbL9R7EobFFW3+rqKhKJhOmIfpBCJUnGRb/fx+LiIiYnJ5FMJnHq1CnDeJiamnIYMJVKBXNzc2i1WlhaWsK1a9dMFJ3N4AimqCFBlj3XEI1zNa72C27QSCJgwEg1f7gm7WjxWIntTsaR87GM5fql3+8bgHh1dRWXLl1CMBg0rCvbIbeBhVqthsuXL5vPLS4uYjgcGr3EIK8K9Xun00GtVkOpVBoJJExMTJhGmMCGbUGg3+v1otPpoN1um3H5fD7DOKPNEAwGDcuOjo46mXSMlBltgwTKOtpJ99kOLQCjq+2gN4/Fhp/U+aqH9iKDwQC1Ws2cLx6PIxwOo1AooFqtwufzIRqNGsad2gFkHpIZqcxsHQvZ/mzsrQz2SCSCqakpU3ectct5PrIpWTaIjjrBdTdhPfNGo4Hp6WkTfCBIwmC0lnXRJmAejwfZbBbdbheZTMY0JuP6ITgyHA4NE5P15EOhkNHZO9VyH4u7HISuvnLlChKJhHl9OwKMGxi1nR3n9nn79b0ecyw3TnQtMUPKza9UgE3ta/2+Gwg3CvhUfWCPZ7v1TVBuMBiYYKAeR9nnvA4F13l89n9ipkQ6nUYwGDR9KRRY03KoqscJ7kajUczPz5sx2fNAv4UBZOrZZrNpdCPnnb3QGFimf81SKtz7FQDWJpk2u92+b/o8uoHWNrCpgQubdOW2Dvg6r0PtA63xTSJBKBRCIpFw1KO377cCsTZjWL/HeeX9sxnp9jj1OLqG7DXMYAHvIbP2PR6PGfvk5CTm5+cRi8VM+TziC8yiJhGB95flUxmA5zjUbuI1ab+S4XDoCEbbdqSWKdqJBa5rmb68st/1fzcgWn17+xlzE80q0TnnOh4VFBuV2bIbvaHrVrMidLwqek1ux98tAXLsVx+ujIH0sRhpNBp48cUXsbS0hHg8jrvvvhvdbhfJZHJHIH04HKLRaGB1dRWtVgsLCws4deoUgsEg5ubmEIvFHMpUlf3Pf/5zFItFPPfcc/jHf/xHw4hnIzQ6lYlEwjjnR4Fh5PF4jHPYaDTM+Oj407mlQ8rO6FR2o6KyGhWu1Wom4FAsFkduyG7S7XaxtrYGv9+P2dlZTE1N7bqO+25Eo/cs5+PxePCKV7wCk5OTmJycxJ133ol4PG6cc71efqfdbuPixYu4evUqCoUCfvzjH2NlZcUYgjwHGZj1et0w2JnirmmM+w0WqJHEWu80LHgP9J4STB8rorGMZSw3UzqdDgqFArxeLy5cuICf/exnRrcQpLBBXXWAi8Wice4HgwFe+cpXIhAIYGZmBtFo1DT7VDC2Wq3i+eefR6lUwpUrV1Cr1UaWggmHw0ilUgiFQiiXy6jX64jH4yYQXiqVjLNGh50lS4bDoXHue72eYcsrk4rXp0FNXh+dEupXgsp2wNoW6g51GplxpmVz+v0+arWayULz+/0msEH2124D3pRer4disYh2u41EIoF0Oo1kMmlsIRIJkskkqtWqg+HI2uVa6zYUCjmc1263i3K5jG63i3w+b0qqMNCQzWbxmte8BslkEtls1pTgaTQaxsHm3xMTE0YXs6SMmzQaDZw/fx6BQAB33nmnqU/PzEJmCbBMUbVaBbCZbeDz+bCwsACv12sAg8FgYEDyZrOJSqVi1ghr4TO4wX4BB1n7fyx7k0Qi4QDS3WRychI+n28LU3xtbW0Lo5wyOzvr+vmJiQlks9ltPzPqmGO5MaIAFv+3s0QUSFK7WslFu2m6p+CzCtnJNoCo57dF9YjbNbFBNAN5ylbmmPnatWvXkM/nAcAAoJOTk0gkEg59oVlFyqbn9ROEV6Y1GeUKcrbbbUNIKhQKWFpaMrqaeisWixlwOZlMOppe85g2451+uYLdbqU5FCBUgFuFulrvGfdqO9vXBtL5PwP2kUjEof95DTy3Zilpqa/hcGjOqe9zfHo+rU9OW4V9O8i6twFee9xuwQWbUU2ig5LTvF6vycafmpoyfrUSCxkIKZfLiMfjaLVamJqaQqFQQL1ex8WLF1GpVAxBTUFmZsR5PB6ji3ktxCoIqJNgNhwOjY1hByCU5MDrstn82h/FJq0x601B7e2AcHuNuK0dCteWHQBzE11nPLYy4d3uHY9PnGAUAK/fd/vc9YDjY7m5MgbSx2JkMNhsKFWv1019Q9bxdtv8dePQDSoSiRhFnc1mEY/HjWLlZkSnh7Wz6Tz6fD7j9GnKEh3powCiUzR1jo621h2jA8/3eR3aeNO+Hp2jQCBgFJDWUNuNUcn7WavVTG1cKriDZOXQcKHhlclkMD09jUwmg2w2i1gshmg0+v+39+5hdlbl2fi998w+z57zJDOThJBArEDE0mApaEGr4rHiqdBqPfxaDxRRIPZDKXoZqEKxvfyoVbBY6qFW4fsutEo/awmtRilUFEEgYhJgkkkmc97n8+n9/ZHeK89e8+49e5JJ5pDnvq65Zmbv97DWete7nrXu536ehUgkUndfqh+pcKTajYtsj8djys2JFidb9g8nOa2GjNmQkznbuHNhL/PZKo4N6jlXKBYHXLhls1nE43GUSiVDgsuFGxeXckHOsbRWq9Wl8KAzOBAIGCIdgFk0dXV1oVarmTG9ra2tTkUHHF0kynztvIY9B2A9APfFjE2MuKnT5Jgif8vFrFQPShthL4Tkwl+q2WzlFe0wzwOObqgtCZCFkumS+LXrJMto18mtDnzmsv3kwo3zqra2NkOmdHZ2IhqNIhKJmGPl3KZUKqG7uxt9fX3IZrPI5/N1Tgw+V95Xzg1l3+OxfBYyJ718nrLt3Z61VLfZJNSxPgfFEZwsW+33+7Ft2zbs3LkTb3nLW8znO3fuxGWXXeZ6zoUXXoj777+/7rMHHngA559/volAufDCC7Fz5866POkPPPAALrroooVURbFIkIrPY+lX9jjo9p183xutAVgOW3HcSBEq7ymJUI6z8npyjJLq20KhYByTdBZzfSzPlWOjvA7vS4UxiXRGIUnHKYn9YrFo9s/gfWRkuFQLSyey249sJ7uejdbjbiIjtz7gZrNlG7vZN3uOQfGAfG7SXvM3yXUey+fTCG79TCrS3fKJ2+fxbzn3sdtU/i2fO4UAjECo1WpGlMZIfz5TRu6Xy2VEo1Hzt+McUZV3dXXBcY463m0byb9ZH1mvRu+SXTf7b7vdpPpczgVk28n+zntL3oLt4jYnbPYceU3pAGo0Dsm6EPKezWA/T/s680GmoWl1nNR19dJCiXSFQbVaNeqvvXv3wuPxIBqN4owzzsDQ0BACgYBRp3PxQrKWXu7h4WETFkailPnNJGgEOzo6sGnTJgwNDaGnpweDg4NIJBJ49NFH8cwzzyAYDJrUKX6/33WAW2pwIUgymZ8xLU1nZyd8Pp8hKOTA32wSwrbjAr1cLsPv95vQq/kGwHK5jPHxcaRSKZNypVqtmjC+44X06J599tnYsmUL2tvbsWbNGqNw6OnpMcZebgzk8RxR8zN3ejgcxvr165HL5XDmmWcinU5j//79+OUvf4l0Oo3R0VFMTEygWCwaZX40GsX09DQKhQI6OjqMCoGb27XqMJBKiHQ6bVINjY+PY2JiArFYDNPT0ybMXpLraoQWBjX4CsXiwXEcTExM4JFHHkEwGMTg4KBRgvf29sLv9xtVs4y2iUQieOELXzhHCSM3EstkMnXqrmAwiE2bNmHdunUYHBzEunXrkM1m8cwzz+DAgQPGHtgpRqQTnA5JhptzgUU7Ih3uTC3HaCCmHWEqL7kgZFvIBRhQH2LLOQmvxQWqzF3LOQtTywBHN0aXJDyjyqjMbmtrQ3d3N7q7u1Eul5FKpUxbt7KBa612dCPY2dlZHDhwAIlEAqlUypSJ6e8433IcB5FIBNFo1KQdY6ozOjASiQSy2awhzQOBALZs2YLTTz/dzL/YroODg3Vh4dJGS+f0pk2bTKj4c889h3g8blSPhUIBU1NTiMVi8Pl86O3tNTnXGYE2Pj5eFz3G/mY7gFgfAKYvOI5jbC8Ve4xsTKVSSKfTmJiYMPV2HMc4PVSVvjCcTFu9fft2vOtd78L555+PCy+8EHfddRdGR0dx5ZVXAgBuuOEGjI2N4etf/zoA4Morr8QXvvAFbN++He9///vxyCOP4O6778a3vvUtc81rrrkGF198MW677TZcdtll+O53v4sHH3wQDz30kDkmk8ng2WefNf+PjIzgiSeeQG9vL0477bRjqruiHrYTr5W9hex1EQk44Kg61D6O95GpnNyIYOnwk0SXnW6DpB3vYxNkcg0g1cocm+lg5thMIjSfzyMUCuH000/HmjVrjPqb9lEqWu2oKvlDu+BGfHM9zv2pgCOpveSG2WxHSTbzngDMmkiSnySQbcJbOszd1lxufUCqlqVTWG7mXa1Wzd8y7zntEm01I62bkfBsRxLLXPcxRR7rR+cA16vS9jG96uzsrOFKJD9BgZx8LnLTcJKj7CO2XWJbk/CPRqNYv3593bOJRqNYt24dAoGA6W/SlpNzqFarxtmdz+exceNGk9aNa+np6WmzCTjvT4e+1+vF7OwsarWaEVmw3WxHv03+2u86bX+pVEIymUQymTQ2m+p7ckLBYLAuvZHsU7aQknMrmTbYrf9J4QbfW0ZCSqcM7yH7spyncD4hHQ4SkhNxE33YDgf+dqvnQkSPuq5eWiiRrjBwHMcMTKOjo4jFYgiHw8hms8hms+jo6MDQ0BCCwaBJecEw51KphOHhYZxxxhmIRqN1BhmY66GVyi4a+oGBAWzYsMEM9M8//7zxtpNQbnVgOVmQAx/JhkqlYhZvXKTSQLSSWkW2m8x3SgUgvcrzDYDVahUzMzOIx+MIBoOIx+N1BP/xtqNUkpFYYQg6y9wqent7jXFmSqHdu3fD4/FgdnYWmUwGhw8fRrlcRiKRQKVSQW9vLxKJBKrVI5uSMU+9TP3TqhHihCSXyyEej5u8hpxoxONxJBKJOhWCKt0WDjX4CsXiYmZmBrOzs/D7/Uin0xgYGDBpxLxer8lnLtVk0WgUGzduREdHR11uSkYGkagEYNRvzN3d1taGNWvWYHBwEKlUCjMzMxgdHTULDrcNmmknGDVEAprXJ9FAFTw3ypKRQB6Px9SJocdSJSTHFpIA0hnNlCfBYNCkZOG4D6DOAUBHMCO6eH/giE2ms8Lj8RiihCHmuVzO1JNlmW/s4tyLC83x8XGzYTdtKQl0GQHA0Px8Po9kMjlHKUnyPRgMmhzonZ2dxsnCiDFJHDD1C1OqMH0d91jp7+9Hb28v0uk0fvWrX2FmZgYHDhww/S+fzyMej6O9vR1dXV1mgc/+xLQyfN5Mfce5EetHJ0etVjMbmMtnLFMOUOmZSqUwOzuLWCw2h0xbiMJLcXJt9RVXXIHZ2VncfPPNGB8fx9atW/H9738fGzduBACMj49jdHTUHL9p0yZ8//vfx3XXXYcvfvGLGB4exuc//3m87W1vM8dcdNFFuOeee/CJT3wCn/zkJ3HGGWfg3nvvxQUXXGCO+fnPf45XvOIV5v/t27cDAN7znvfgq1/96rFUXWFBOsYA1JFkjfoJx3aOoTbhKNN52ee5EekkwuWYweN5PVvRzPMbwb4O7y3ToDCqmmvCYrGIVCpVt3km06BJe0QHtiSVpQ1jzm87jZuMWg6HwyYFRrFYNDmyWT5b4W+Tz24KZUbqSmJQOjbchG7y2ct7kigk+cz5A4lZv9+PUqlklPdyk1a2GY+z96ySUdv8zK2cVO7bDhYSq9JxARzd8DuRSJhUKP39/ahWq+jo6DAEOMspI9kkqSr7s/wty0oVeW9vr7GR5Bg6OzvR3t5uuBmmdmFkAu9JB0+xWMTg4CCy2SwmJycRjUbNvIbns2x8zl6vF8lk0ojvOD9yi/i2SXSbSGfqmGKxiEwmY35yuZwREMjUfZy/2M6rRu3oxjXYfZDl5DvG90Rudm+DdWUflNGddn92I93lnJvllPMz2V/dIgxbha6rlxZKpCtcwYW01+tFLBYzyvBcLodAIGBUZe3t7SYsOBwOm8Gw1QHBVsPxPv39/RgaGjJGaSWQlnLCIMPCZSjdsULmWqdarJXy0DDm83lMTk4akkQqB5vlv7evxboBR/PTcUFMQy832VhoHVk2j+fI5iobNmxAOBzG2NiYyQnsOI7ZjTyZTMJxjuTvjUQiqFarxmFhe6mlAQaOTn6r1arJ/8rFOAn12dlZpFIpoz5oNBFVKBSKpQLH+Vwuh3Q6DcdxDGnMRYskRuX4TCWWDOOVP3LhJBcQXDREo1EMDAzUKbpkqLFU8HDBD8AQtzJiySY+7P+plKrVanVqIrl4ZDnl4s5OaQMcJU8kQc5NNmX7yLLYbeY4jiGA5eJPEioLBcl02kK2TXd3t8lXCqBuQSaJHM7NSKwwAq2zsxOhUAjRaNTM1Ujgy8WhLDefGR0G7e3txonBjWGpCly7di3C4TAmJibq0rbJ/VOCwaDZ56ZWqxmFoLTPdJxwfsEyZbNZ89zolOEiPJVKIZlMms1P7fQIaquXP6666ipcddVVrt+5kdqXXHIJfvGLXzS95tvf/na8/e1vb/j9y1/+cu0bJxg2kWqrLd3aX6bHlLDHefs7niuvIVOAAPUpXSTx22x9JstqRz3Z5WY9gaMRXlLtyrE6nU5jZmbGiK+k2retrc1Ef7P8bilZbNtktycdpEwHE4lEkMvljBrbLjOJT3ldOYbSUe5WR/tY+cPv3AR19jxDEqSNxnCb4Lb7UCuOa96X/ALbhLZQkp4sL0FbWyqVTMQ350NsD+6dIlOJ8Npy7Wl/L8UIHR0dxtEtIxTc+p9MbWb3UY/Hg0AgAMdxjCM9EAiY9a3H4zGEey6XQzKZrFtHezweI96TEW/yObK9pLOK8y4S/pwLpFIpEykphQZyridFEm73sgl0yb3IfiL/lvNCW+zp1ndk+8l2lfPOhdgP2Z/se7uNaW6qd8XygxLpCldwMZLL5fDkk09i7969xihzEPV4POju7sZll12GF7zgBSY/67Fu9hgIBNDT04NgMIhzzz0X7e3tSKVSOHDggAnjXo7gACvD+thOJDPskKRWISeHVHqXSqW6SWGzgZyD8OTkJP77v/8bwWAQL3zhC/GCF7wAoVDIbC43n+NDTrxImIfDYZx++ukmZQ3reSweVVlfEgenn346enp6kMlkEI1G0d/fj3g8jt27d2NmZsaUgRMNpngpl8tGmU6Fo1ueVbm5SSwWQy6XM+q6bDaLffv2Yf/+/cjlcpiamkI2m60jg5Zrf1zOUM+5YqXDdsgtF1SrVUxPTyORSKCtrQ3PPvss2trazGImHA5j69atZtNH2izuh8KFsr14pGOUYybVdlzwn3766QiHw0gkEti3bx+y2SxCoZAJW4/FYsYxT0KVqniv12sUzxJSySU3uZqdnTUKP6n+YpQVbZkM1ebmnADMuVSyycV9d3e3UcBms1lzjiQvWPZcLodcLmfCqGl/+MPvj8Xhmslk8Pzzzxv7xqi2/v5+9PT0GKKcZWP6GDqXufjyer0m131nZ6ex1bSvtVrNOI7ZjsDR8HXHcUzUIfOjA0fUwSTfmcZvaGgIfX19pt6JRMKQRalUyvQh5uqlulL+zdQuXFj39PTgtNNOQyAQwLPPPmsi6pgbNp/PY2JiArlcDhMTE5iamjKh+ifDRtsKyNUGtdWKxYBNeNkEqBvBSshxWxJQNrkpyTU6CElI2gSodBq6ldWt30u1tJ2aRjqV6Sy06yGPBY6srw8cOIDR0VGEQiH09PTUpW8JBoNmTW07pWmP5JrGJvQkURwOh7F27do6xy9Tt9VqNRMRbqeVkepjtjfXsxL28+R1bILUbY3JetiqYKZ+k3m6Zf1kO/C5yfa17+P2LNgXyFvQXstNYuW5NtlfqVSQTCYxOjoKv9+PgYEBDAwMIBAImA2PpUNAEq/8kbaczu1QKGTmaF1dXejp6QEAk+JO5oOX+cVlCjlJOPP/7u5uOM6R3PxdXV3I5/Mm4iGbzWJiYgKpVAqFQsFETXB9zEhArv0pHmCfl+n7CoUCstksarWaiYJIpVKYnJxEoVDA4cOHMTU1hVKpZFLVyXJLR5s9TvCedgRJrVYz9ZfiQDlmUKhnz/t4fUlYSzW5rKfcV6bRubIf2vWy3wPbEWA7kxa6yfKxQG318UOJdIUrpCFxy/HJhReNQFdXl9k9+liJVKlk7u3tNfnWx8bGzICy3F56lsf2ANtquVZU383Aa0hPaiuLN5arUChgenrabO46ODiIavXILvBM89KM6JfKNBohv9+PaDSKrq6upkqRhYD1A2A2KM3n81i/fj0mJyfrFOn0nNdqNaRSKaNeYwg4Db9tjGmkuHt5qVQyHnOZty2RSCAWixkvPVV+qkY/dqjBVyhODEh8yoWJBElwW53HnJjA0Q2gOX7ai1+p6uYx0Wi0bpFDEoMEOcdsjrmSIOcYzXva4dhShUUCn2Vys7FUbHPhJBXisuzyPIJpydiOJB7kvQimjmFKEiq2ZehwK7mA3UAyWJLkLKdUA7Jskrig84BEg3QocyNR1pt1YF51kk6ShHYLZWYucuZAJ+Hf1dWFXC5n0uIwj7pMBRAKhZDL5UwflTlpWUepwiLJIVPicTFLhwZtdiqVMu3gRogd79zEDY0UtasBaqsViwG3vkA7ISOCCKlstdc5bgS6PEcSXIzmscvRTIXq9Xrr0njZZZLqartutiJZ2gy+S3KjRUa5BoNBY0tom5mWRV5TksdyrWWX1W5vkrOMHMrn80YJzBQXPE/aSKn65j3knipu9+UzpR2UznkbNrEo17jSZvDadiSB/Rzl+m6+tai8NtuWdtZWu8v72Qr4crmMTCZjbGAkEjHzHLkHC0UHdpnlupptwmtRJMaNv2kXpfPWXtNK0lWKIACYeQp/6MDp6uoy1+M8kKIJrnu9Xq+JQJMOBjmX4t9MDVOpVExfy2azyGQyJlUe89IzwtuNHJewHW28pxxH3MYSOVeUKQbZdmwv+c6wDHKdL9vVjpzku9KqM10+a+kAs/vsQpzzS2Gr77jjDvz1X/81xsfHcc455+D222/H7/7u7zY8fteuXdi+fTt2796N4eFhXH/99WYPFOK+++7DJz/5STz33HM444wz8JnPfKZuA/JW7us4Dm666SbcddddiMfjuOCCC/DFL34R55xzzjHVsxUoka44JnBhNjAwgM7Ozrq0LscLj8eD3t5esxCt1Wom9YZUW52IhdFCQePFnK4kcT0eT93ADTTeWLRVSKMgyQU37ycHeZlqhaGBiUQCe/bsQTAYxPT0NMLhMAKBgMmDJieNjEzg5M/v92Pr1q0YHh42SvTFeOZukAqT9evXo1ar4cCBA9i3b5/pG5OTk0gmk/D7/SgWi4hGoyiXy2YSQrWgTDHANuMmLMViEZOTk8hkMpiZmcHIyIjJJZdKpUxewEZqFUXr0MW5YqVjpfVDju1MwcY0bMDclF1UK8tFBm2APJ4EOhXtuVzOLAqq1Sri8bhRVcfjcRSLRaNk4oKJ4ykJaFsBJEkR2gE6pLlAlWQ6navA0cVxsVisc8LbTlRGWXk8R0KX6Zilkor3YTvabVOpVJBKpQDAzFFqtRp6e3vR3d1t1OlyQW3DLcKB5aR9KhQKePLJJ+s2daXiPBAIIJfLYWxsDJlMBh0dHeju7japariAzufz5jlzEcxFvM/nM/nvqSZjOajgl4tJtgWvRQK/Uqlgy5Yt6OzsxNTUFB599FFMT0+bujG/7MTEhMmpzrQ1vb29hqhnu1UqFfj9fhw+fLjOae71ejE2NobR0VHjUKeS3g5vZxvzZzHV46tRiU6orVYsBmwFJ3BUMU3I9VyjftdsnSFV727X4dgl02rYx/J7QpLitnrVbS3Av+WxMnpbEo90HPNvjsWBQADhcBjRaBQdHR2IRqN1ayyOxVyfeb3eOvW3VL5KhzLvx+uTNKXjnVFHUhnuFp0m6ygJddZNit04H5DHukWr0x6ThAWObIzKsnHTbrfUHW7Xsu/ZqD/ZfYCfyR9J7tvkunQEMHqfm2yXy2UEAoG6+YN0CNPJINf0vb29Jv0aj+Wa1X62UpHO/igJeUKeS8g9SKLRKIaGhhAIBDA5OWnKynlRMpk0ooharWYi3BgFTvh8PpN6LZ1OmxRrcoPR8fFxFItFJJNJs6aWz9PNYWY/r0aCPfv5SHW3LQiRv9m+8h7y3WKZpANLtrt9f8m9yHLIZ8N32HYOuT23VnGybfW9996La6+9FnfccQde+tKX4u///u/xute9Dr/61a9cN+keGRnB61//erz//e/HN77xDfzXf/0XrrrqKgwMDJh9TR555BFcccUV+Mu//Eu85S1vwXe+8x1cfvnleOihh8y+Jq3c97Of/Sw+97nP4atf/Spe8IIX4NOf/jRe/epXY8+ePYhGo8fURvNBiXTFguHxeMzO0WvXrkVvb69RAy8Gud3e3o61a9eip6fHkLjpdNosrOiVXQ5EOkl0qpapJKOyr1EermNBs5ywEpwEtbW1IRKJIBAI1A3us7OzGB8fN8oH5mIbGBgwKg6GQVFRxolFV1cXtm7dio0bN5qNYO0J7GJBOgPOPPNMbNiwAQMDA3jyySeNcT5w4IBRE8TjcUSjUWSzWTMZ7e7uNuFrMhceyRKq4yYnJ5FOpzE9PY2RkRGTI52LdyXQFQrFSkQ4HEZfX5/JjdnT02Nsgr0g4GZWMs+l3NySdicUCqGjo8MQm0zfweOnpqawe/dus6cHo9qkUlwSszJ3OgCzkRrB76SSnvMALnYTiQRmZmbgOA66u7sRiUQMwSvJE8dxjL2WC02m9gJQlzOe3wcCAaMykyrwWCxmHAJMK7ZmzRoEg0HEYjFMT08bR7u9cGL5pfJOLrCoCPN4PBgfH4fX6zW2ze/3G5W5JNL7+vpQq9VMSD9tNJ0Dcu7EBV4gEDDku8fjMUpxlkM6AThvIPHC9srn8/B6vTj33HMxMDCAZ555Bs8++ywmJibqnvPMzAzK5bJR3vl8Pqxbt84QD5OTk0gkEvD7/ca+c95HwqJcLuPw4cN47rnnTLu6qUQbtfNi4ETNB9zmUW5iCf5uVm+FYqkho5ykshaoT70ghUGNSDU3JTJB0orjtbQxct4vScxm4Abb9vn2esAe0+1IJEnoSWKUTmuWuVKpmA2auXbh+kUSc9LBDRzdz4zqb5lGy1b+h8NhQ2IyhQdTqMgyyfZ2cyTYSnJJKEvCm4SkTWrKZyz7A9uGm0tzfcZoYFkm2TfozJXKZDfHqZuzg//bz5gqcqYtcYP8nByF1+vFzMwM2tvb61TkXV1dRl1Opy/3L6Ed5CbmTOMq3xtZb1uNzs/YJ+z5BPslbTvfAdr8UCiEgwcPmn7B1Hazs7MoFApm43Wm37VV2FIVTsU50wcxhcvhw4fr5lXNHCM26S2fuxwr5HeN5otSfOimoLcdevL95flSxOFmb+2yyesRdt9qxGHJOeBy5R0+97nP4U//9E/xvve9DwBw++2349///d9x55134tZbb51z/Je+9CWcdtppuP322wEAZ511Fn7+85/jb/7mbwyRfvvtt+PVr341brjhBgDADTfcgF27duH222/Ht771rZbu6zgObr/9dtx4441461vfCgD42te+hrVr1+Kb3/wmPvjBD56Q9lAiXXFMYA41ek0XU5UsB0UadU4guFhtNqE6WeCkkDt/S8LZxskoKwdmTgC54OUO8Ry0OXGSRrWtrQ2pVGoOkZ7JZMwEjxMzXl9uLHsi60QynSRCZ2cnOjs76xwr+Xwe6XQaAIzHW3qTGxHp3PAkkUiY8DNO3mj0l6MhW6lQlZtCcXJBopkLQmmvpdKJi25bVeamcrKJDi44bCUYgLqFjK0OsuG2AJSLFBLpMiqNC3P7h5Dke6lUMip1O5qLdZfqOSqx5aLcTYnEhaVNesg6ucFW2VM1GAqFDBFBtaEkgNrb241d9nq9dTZLOiVsdaEst2wre1Eq62STD5KscXuOdLBTWcfN9FguhoyTtGcKGG5imslkzCaibHsuviuViiHSGQGw0BQ6knxe6TiR9VBbrVgsuPWH+fqIm/NovrWGTaZLklGOc/aY1khpLcvSSD1qk3o2SS9JR5s05vckObl+k3bazf7a/9t2TNZFEnwyxYVdt0Yks9u97fvJdpRtJdvSJtLdrsNzKVBz2zjajQRvRkraxxLyubH+bpuES2ePXQ+uTe37s8xMm0ebzXtyfSqjuuQ8yX4ubs/Y7f1x64t2W9tRF4xqC4fDCIVCxk6Tb2FfyeVyqFardfMTWT5boMbULnSy06ZLNFNks5/Y9tpuF/sa8n2T6WjluY3uS8znoG7kROO9FwutjHksz/HaakZWEuwXNkqlEh577DF8/OMfr/v80ksvxcMPP+x6j0ceeQSXXnpp3Wevec1rcPfddxtRxSOPPILrrrtuzjEk31u578jICCYmJuruFQgEcMkll+Dhhx9WIl2xvMCNMKLR6JyNwhYDcudrTozS6TQOHz6MbDZrNjJbaqRSKYyPj5uNOmgobPXCYgywtlG1yQKq+AYGBrBmzRoT2s3BkO1I4r9YLGJ2dtaE0Y2OjhoFAQ0JF/FnnnkmzjnnHPT29mJoaKhOiX4ywIlgT08PXvziF2NgYACPPfYYRkdHUSgUMDExgUQigVAoZHLBM3+7bBsZakcinZuNZrNZ5PN5JBIJo2TUBeHiQhfnCsXJAxdwJDQ5OaajlDY2Go2iVqsZNVIgEDDhuyRtOXZyoSvTmHV0dKCjowOhUMjk3ly/fj0CgYBRvZFglWQ4y8fyyIUtx1/OBXg+/5aLmFrtSI7Z7u5uo7xj+hEq4LPZLGZnZ5FIJMxGa8DRRRtV5sz9zXuwHCRvpaqxo6OjbjMwqvdnZ2fNQpLnyPzvtLG9vb3o7++vI7YZHdbW1obJyUkTcp3P5037ZzIZAEdsmM/nMwQzF46RSATRaBSRSMSo2zhXoy2tVqvG/ns8HqRSKfh8PpMTlc/edgxIgoeLPDqrPZ4jKXJmZ2dRKpWwYcMGAMD09LTZ6yaRSJiULlS2JxIJ7N+/3zwHXpPPO5lMIplM1kVKsD1afQ9OpMO/lfsDrdmwxTrmeKG2WrEYyOfzZtwB5m7oaZPbtrMScCczG8EmR4GjxCYJWumIlfdqb283GytyLOJ50sFsO4xJ3Ml1nqwj14VMpyId1pLoHhgYQHd3t0npYpPEbnWnPXQcp85hTSetPJ5OzWKxiI6ODpPShXtWyI0keR6vxzLLda0sH22lnadbks/SHksiVBLoAEx0GNN8ye95L/nMeA87Wp2OW8dxjABMOhSY45zOXZLFsvxSiMD5C3POy6hsmQKUwrpisYjp6WlUKhXE43FzPtXmVJ9zLxDOjTiXkE4Xzi1k/Xgt9gE7fSnbSs7d5HtEoV2tVsPpp5+O7u5uHDhwADMzM8apQFvN3zMzM5iamjL9mX2e/ZWkOdP+McVLLBYzqdpsdbcUFLilwJPvkpvowxZUMFown8/DcRzjJJCwxQB8h+V+PTL1nxtsMp+KdrdxSvIlbg4h2eekQ+VkbTbKuRrxqU99Cjt27Jhz/MzMDKrVKtauXVv3+dq1a+uiDyUmJiZcj2eE4tDQUMNjeM1W7svfbsccOHDAtWyLASXSFccETjiYV3sxwYHEzpNaKBQQi8VQq9XMBhlLCcc5EoI2PT1tFqScmLhNBhfrnvxtGxeGnvf19ZnUK8yRymOAI8aPG2xSnZfP543Bt+HxeHDmmWfitNNOMxM9Gu+TAfYH4Ehu/k2bNqGzsxOHDh0yjgFGKfj9fiSTSfh8PpNjkIt8n89nJmO1Ws2ED5bLZbN7uAyTVCw+dHGuUJxcyOgxGbrN8FIuDGkTcrmcIbhJpEqi221RRoKe9+no6EBvb29dWjEZyi4XG3JBIze6lKo2WXabkGGYNDdT83rrNzClPWbql2QyaRbnEvKeTJ9SrVaNXWAebrlQ9fl86OnpQXt7u0nDkk6nMTExYRTWblFNJCc6OjqwZs0a4+QFgM7OTqxfv944GEh8eL1eQ8Qwjznzktqg40Q6T0KhUN2eKUy3w2vncjn4fL66lDlsdxtctMowZZnmhZuJ9ff3AzhCJI2NjZkIPi5Yi8Ui2traMDs7a+ZO0WjUOL6DwSCAI3uhTExMHJcNWGol+kLI9OUAtdWKxQDHTLeNPyXpbStcCUl0zUeiy3NpT/g5xyp702lZHto8Oo+lOreRitUeV6TD0XYOMHWGLIckmgGYVB9u+dndIAk6EnAc4/k3y0TiNxAIIBgMmrGfm4BLAlbWT6afsclq/ua8QNoPu5xsW2lrZTvws1KpZDa1pr1wE5JJFb9sC/lc6QSR7UG7xjoxUo3PRqr2eQ7bzOfzmVzmfr/fzDmY071cLiOZTJprJ5NJlEolZDIZQ8h3d3ebVGZ8JnJuwxRsfKbAUYJZrocl6cpnLlXc/OG6llFsfr+/LsKvs7MTa9euRTgcNqnquBko2yOfz5uNa6leZn25UTudMnSoMKKdaW/5HCnuk31IOvn57CRJLfuI/Ew+d/m8C4UCEomEcb7T4SUdQ3Y/lX/L6BHOJe3+bqv/bXEG50Qywk+OO/b7wetLgUkrYoHFsNUHDx5EZ2en+dxNjS5h16GZc6DR8fbnrVxzsY5ZTCxtbgzFigXDk+zcposFOfGhgU6n00b9LfObLgV4b7tM/E4qp+SGIMcDTuzszbRINDAHLtUMMu2ODL1neha/34+urq46BYS9YSwNTSgUMvl1ubhdCjCfO3PgckLEiQMnDMyBSyVbLBbD7Ows4vE4YrEYEokEUqmUIY7o/T9RDhDF0uCOO+7Apk2bEAwGsW3bNvzkJz9pevyuXbuwbds2BINBbN68GV/60pfmHHPffffh7LPPRiAQwNlnn43vfOc7C77ve9/73jq1jsfjwe/8zu8cX2UVCgtcEHGcc5yjCu9SqVSXDgQ4QsB2dnbC5/Mhl8vVpbqSKVHkopbKYi4MZY70X//610bpDBwhVRjuKxcM9oZ0chFVLBaRzWYNoc2FWSqVMgs1uYAiSU8ynbYhm81iamoKMzMzKBaLc9pKLuIqlYrZ8DKTyZjNs6RCjfVNJpOIx+OmjCSOeKytfOJCnLZa5oOnjeeivK2tzaj9Ozo66vY8aYRgMIienh709vbWCR0YYk1HOskFO00b5wcy532pVDI/Ml8554B23lO7nlxk2wpLKsfkpuZsdy6+SaYcD6TzY6nnjArFqQSbDLYdpUSj9ZG0BdIpaZOqbufJa8sxQJZLKsKBo2OwHJvkmNfonvIabtG6HFtJJtuRPdJB3Cz6uBHciG22mfwhccxc1nQwMyrXbV1vt5kcy+WzcSu7vAbvL8vD9pLkr3Tqy/Wz5AMkQdps3cbnIklYabv4A9Q7Uqhgp2ODm2xyriPFfnyudPbTeU07apPD/Glvbzf7nJCYt1Omynq79V8bNjcg+xzL6Pf7jWOAqnRyBtzoVBL7LAfts7TLfEc4n6T9LhQKdalybJLcfkayrm59Xr4nbvWW37HOFBPQeePWR9wcbJKgt0l6t/Q/bs/AfnZu9XYrB/uz5HtOBpgylz+NiPT+/n60tbXNUZ9PTU3NUYITg4ODrse3t7ejr6+v6TG8Ziv3HRwcBIAFlW0xoIp0xTGBKmYubhcT0jBSwVQoFHDw4EH89Kc/RX9/P4aGhrBhw4aTpop2K1+1WsXhw4fx05/+1JC1wNHNX6QXGKjfmGShkI4LuZil8ejo6DBKbXuTGruNpLqvra0Na9euxcGDB80O3SRXpFe0v78fZ555Jvr7+5c0GiAQCGB4eBi9vb0YHBxENBqty8Um86qm0+k6VYFUjtiT+WaKE8Xi4WSq3JbzzuIA8NrXvhZf+cpXzP+MHFEoFhMkkDnGhUIhsx9EqVQyKvL29naT0oQbLzOUWOYEBVA3rjJ9GDdmzuVy+OUvf4nR0VF0d3fjFa94Bc455xwUi0Ukk0kT3svFKP9mujG50CyXy4jH4ygUCiYSyus9splXPB5HIBBAX18fAoGAUSF5vV50d3ejo6PD2MparYapqSk8+eSThoS3IUPPmaebG7JVq1XTTl6v1yzOCoUC9u/fD8dxjF2lqk3aXqnmi0Qi2Lhxo1G9S+V7sVhEJpNBLBYztndoaAjlchmhUMhs6EmllQ2Px4Pu7m6ceeaZ6OrqqnNwpFIp1Go1s3hmmZn+TDrduVEancxy7JXOdrmg5EKXiqtgMGg2CI/FYvD5fCbnKtuFBLm8vnSySML9eEjo5UCirzScTFutWL2w595u82x7Xt7sWkC92ns+SFWuLINMJyHLSWKQ5GCj+rgp5al6BeqJTtpLn8+HSCRixnuZOoJ1ohDIjbSfr85SZSyJc66LZDTyxMQEpqenzf4UkUikbj8ppi+R96eNlHXjulQS3CwHlb9sc3ks7YS9qWatdiR12eTkpEm/aTtqWRcZtS5TpxFcw7K8koBnhBedy47jIBQKGXGAx+NBNBrFwMCAIWQjkUjdfMiOkmMkA3BkPs80eSwb24bPJhwOY3h42DicmW6HSnDOG6RQQPYt+bzdnMUyAoD9kPWgIIC/qUYmh+D3+5HJZMz1aKu5kajH4zFp41hmACa1i1QB12q1Orsv50fyt3y+NuSxNqfBOsi+JvuvvK585+XnFBawv/CahMx7z7alQIScg7ymBMtliyBl3aQYkMfK9D7NcDJttd/vx7Zt27Bz50685S1vMZ/v3LkTl112mes5F154Ie6///66zx544AGcf/75pg0vvPBC7Ny5sy5P+gMPPICLLrqo5ftu2rQJg4OD2LlzJ8477zwAR+aTu3btwm233bagei4Ey16Rfuutt+IlL3kJotEo1qxZgze/+c3Ys2dP3TGO42DHjh0YHh5GKBTCy1/+cuzevXuJSnxqQHrMTsQiRZLV/MnlcojFYojFYiaNylIoiFk2Kv2ocpaqKenlnM9j3gp4Lan+oqGiQQ+HwyZPLTeskYbHNr48JxKJIBKJ1J1D8HiG63d0dCxpbnqSGPSi23kApddYbnJC4ogTM7k5m9xUVBeAJxa2ImOhPwuB3OH7rLPOwu23344NGzbgzjvvdD1e7ix+1lln4X3vex/+5E/+BH/zN39jjpE7i7/whS/EDTfcgFe+8pVmQ5SF3DcQCGBwcND89Pb2Lqh+yw1qq5cnpMIZQF0aFVtpJ/OAMsenJBbkIkHaE5K+tFOJRAIHDx7EoUOHTPoRzhnkdaQaUI7hclHNc+QCnOonhn3LRYitJmKZCoUCkslk3V4mbuBiifXnj1TP0e44jmPyoMsNx+32kfVjWjyq0Wl32UZcQJFQlkqxUChk8rw2AvOhM62bJL1tBbmsi1zQyvBnW0HIc+3/7TlOW1ubmZNIFb1cCNvnSwU8BRRUth0v1LYvDCfTVitOLk6mrW5V7NRKn5lP2Wl/7va//IzjnBQd2eOaXOOyDPI6MlVDo7rK9Zfc8NPNPixkPW3fT95HioVsNbecE2SzWaRSKbOXiRt5x7LYZKabzW5Wdrfy2N/T/kmhnltdbLvR6J5sc5bTVrXLcshnI/Oi22nSeIydk16eJyO97PS3kuimXadDwU2RbnMIbkSs23OQ/cuum1Socw4if9OZwOtyXU3ng4xm5DPjj4x6k6l7bIW7LHuzd1u+I83eNencYrSdzMkur8d7yvdNOtt4PdkGdt+zr2djvndCXkM+W+k4WQiRfrJs9fbt2/EP//AP+Md//Ec888wzuO666zA6Ooorr7wSAHDDDTfg3e9+tzn+yiuvxIEDB7B9+3Y888wz+Md//Efcfffd+PM//3NzzDXXXIMHHngAt912G37961/jtttuw4MPPohrr7225ft6PB5ce+21uOWWW/Cd73wHTz/9NN773vciHA7jHe94x4Lr2SqWvSJ9165d+NCHPoSXvOQlqFQquPHGG3HppZfiV7/6FSKRCADgs5/9LD73uc/hq1/9Kl7wghfg05/+NF796ldjz549iEajS1yD1QfHcZDJZDAxMYFarWbCwRopoBeKWu1IuHQ6ncbMzIwxpkyjUiwW8dxzz6GnpwcdHR0YHBw8qelGstksDh06hHQ6jeeff96kdZHqKg7IDINiShI50LcCDqQMxaOR4uBHw0dyORwO1xnAZpAhetLbzkmW13s07zo3kZNh6EsBOg0AIBQKGdUhyQ7F8sZieM5b2V18Oe8sTvzoRz/CmjVr0N3djUsuuQSf+cxnsGbNmiYtsLyhtnp5QkZGOY5jFn3c54JjOwAkk0kkEgnUajV0d3cDcF/YkAh2HAdTU1M4cOAADh06NMcGUrFN+zIwMAC/319HqFP1TLJULkqZs5spZ7gRXG9vr1kokah1HMekX8nn84jH48hkMjh48KBR4EmFugRtdSKRgN/vR29vr0kdJhVX3DiPOWyZ8oxqJhIx0hEgVU9y/KO6LxgMmvkTcJSA5saf8XgcAExZ8vk8Ojo60N7eXhfxxvkXlfFUldNpEAqFzGKW57Dd5UawnGuw7FRKyjmHbBOOjTZp7ziOIRO4ISo/V7J1+WMxbLVieeJk2uqFksKN1kZ0/PFYN5LcbVy3x2GSckxtIddKUvxkb9RJSBJO3keS10C9SlWqcWWua46ZtHeO49RFdhWLRbO/BZ3b0qloq68lWSnJb/5P4pwbYDvOEaVxIpFAuVzGzMwMQqEQOjs7jWiqEbFIsJ1YXz4n1lmSzdKJz/uTuM9kMjh8+DCy2SwOHjyIqakpE6El7QajBpj6jNezyX27D9ApLJ8h5yB2v5FiM6ZUs50fbk4QthHTo1B8xhzjXFfTXnJtLdPA0HnOdqRDWzqvS6WSEQmwL9kiOJZFpuFhv8zlcnX9rlQqmTmhTAlLsSDna3L+yPvbfZKqe9lObHtJFtskvTyfkA4IOT7wmvxe7qdiz++k80heU74r8nj2Jfkuy/rIaBjpTLP7j/y+EeR4ZtdzITzaybbVV1xxBWZnZ3HzzTdjfHwcW7duxfe//31s3LgRADA+Po7R0VFz/KZNm/D9738f1113Hb74xS9ieHgYn//8502kNwBcdNFFuOeee/CJT3wCn/zkJ3HGGWfg3nvvNZHerdwXAK6//nrk83lcddVViMfjuOCCC/DAAw+c0PXlsifSf/CDH9T9/5WvfAVr1qzBY489hosvvhiO4+D222/HjTfeiLe+9a0AgK997WtYu3YtvvnNb+KDH/zgUhR71SOTyZhBnX87jtMyidsM1WoVs7OzmJycxOTkpFEkkVxPp9PYu3cvgsEgBgcHT3re7kwmg1//+teYmprCvn37MDk5aZRxwFHDUKvVkM/n6zZ7azQ5c4NUoTNPLBUDNLJciJNEl5vUzAeS0o7jGKKira3N5Hqn+lten+FSx/uMjxWss9frrSPS0+n0kpRHcfLRyu7iy3lncQB43etehz/4gz/Axo0bMTIygk9+8pP4vd/7PTz22GPzbvKyXKG2enlCLr6Ao6orEqeMSiqVSmaTzO7ubgwNDRkylosgLqa6u7uxdu1alMtl7N27F7t378bs7OycfUIKhQJGRkaQy+Vw+umnY/Pmzejt7UUsFsPMzIw5Tua25EIyGAwagrpcLpscpVzIRaNRQxxzUceQ6Fwuh3w+j9nZWezduxeJRMI44Rupm3lOJBLB4OAgurq6UC6X0dHRgUqlgqmpKSSTSQSDQbOIYzQXSQouSAHULXztxYoMDSdJQkU/F+/MU880LwMDAwiHwygUCiaPPUkR2/nAuQZV3XQ4+P1+o+Zne5HEZ79Ip9OIxWLweDwmUk0udllmtrVchEuCgvMH4GjIe7NIgNUON/JvIecCSlArFgcn01bbamE38sqNSJLgeCvJL/k+uSk75bjLvxuJh0iaMZJVkpPymnYKBrmZqX1PXtMm6m07LG2x4zgmbReJdKqbKSDiPW3SWBK7sk1kmZmqjORotVo1aTELhQImJyeNzV+3bp1JCyKjsdxU8PI4qT6W5LZMncZ61Go143xPJBIYGRlBIpHA/v37MT4+7mqrOQ9hmjM6PegMdgP7oG2L7RzUdnty77FoNGrqJ4lkHiefOdemXq/XpEmhY5qbu8ry0lFCAtveNJTOCXIMNvHMe9rqaUn8yuch7TCfB+cA7GdcY9ORUS6XTb56pqOTDhEbbBv2x0YRDtLJJd8luz7SQWCTz7VazbQhcNQ5Io+Rwg0557QhnS12n5C/2Z6N6u5m6xtxJgsVVy4XXHXVVbjqqqtcv/vqV78657NLLrkEv/jFL5pe8+1vfzve/va3H/N9gSPtuWPHjjmcwInEsifSbSSTSQAwYfAjIyOYmJioUxIGAgFccsklePjhh10Nvq1edcuXqWgOeiLL5TIymQwSiQSCwaBZ3B4LpHqAC0jmVOX3VFglk0lMT0+bfK5u4UiLCbnolJtX0lvuNqDKyRm96MwRCjT3OLItZLiUDEUj3LzjC4U0DI0mZ428/UsFlmWxoiAUJweL4TlfyO7ibuqUZn3F7Xj781auOd8xV1xxhfl769atOP/887Fx40b8v//3/8zCdaVDbfXyAp3e8XjcLCSoSpepU4D691SGv8rFC9NicVPIfD7vGqrNqCwu4IPBICqVSp2aiHaLCy4u7GTYrVSOyUWmVJzZ6d64EMxkMigUCvOOPbwGCWg7bFwuklhWHsP5gVyw2eOdtLVS0cWFrcz3Khdqto12eyYsPxfPMvSc5ZQbf7E+Ui1p15P3lOOgVBHaaQrYl8rlslHkcW7WaIGpaA0nm0xXRfqpgxNpqxdjfm7PvziONBpPbMWoJN/sTT7ta7ilCZlvfifJMKlEdwPHdekU4DVoD4rFInK5HLLZrIkg4jjsRuzJa8jxmvWhIpfXpW1jG5Ek5v4h3EdF7psh286NzJVlsH9sSIUy5x5yY2+Sxm7rataJ7Ww/a7f7sQ3tazbLxW2vpeV8qBWlsVSryxQvbir2Rn1OHiPV6bI89jlucwI5lttzO55DJ7y98bjtDLHnIbyv/M3yurWfXT83x488h/eR6nSpxgfqo/1sJbl9b9ZLfi7L4HZ/OV+TTo5WIccH+71zcyxKNPpcQm310mJFEemO42D79u142ctehq1btwI4ujurmwLwwIEDrte59dZbcdNNN53Ywq5y0Cglk0k8/fTTqNVqGB4exotf/OJjDqGgwc9ms3jmmWfws5/9DLOzs3PUxsViEU8//TQOHjyIzZs3o729HWvWrMHQ0BDWr1+/qMQqB5lyuWwmlwcPHsRPfvITTE5OGlKiEZgnjPlU6fGNRCJ1kxQJuTkMVejcUNPe+ItoRvS1Ardz3AznciKspYFbTuVSNMZiGHzuKt4My3lncTcMDQ1h48aN2LdvX9N6rRSorV5+yOfzeOKJJzA7O4vBwUG86EUvQigUQiKRwNTUlFkc0Dal02kT3kvim8q5dDqNRCKBfD6P/fv34+DBg0aRLVGtVjEzM4N0Oo1isYhoNIru7m4MDAxg7dq1xhb6/X6TV52pQqjAkwskufDi/3S0ZzIZpNNpY48dx8HMzAwOHDiAmZkZswHWfCiVShgbG8PMzIwJveYCiG1De8z8snbucLnvBsEFKuvGjUlJalSrVRPSHYvF4PV6USqVTBQYFWtMc0f1Pxd2Uu3N3OS8X7VaNZuNhkIhhMNhAEeJH5k2wOv1GsUZN4SVIc2pVAozMzNmg7Kenh7T3tVqFbFYDIlEAn19fTj99NPR09OD/v5+BINBE13YSt7P1YbjWbAuxfxGF+enBk60rea45Zb+oBWSiMc2IpClY9GOCuZ4xn2j6Fwkuclj5SaUMvWKJMDcHFm2OtYmFyWZSHvF+0qylQQp13q5XA779u3DzMwM1qxZY6Kf5HpROkB5P5l2S+ZCZ/7zsbExHDhwANls1jg9WN5isWiU4GvWrIHjOCYybXh42Ozt4ff7DSEvHdeSwGzkaOBzYZq0YrGIWCyGVCqFeDyO0dFRk6+ddZX2wiY+HedINLXbGlA6LHgsow34I6PtGonhZASXvJ6dwkYSz7SZtNuVSgXBYNBEnMmUNPl8vi6tCu9riwXotLYjBPjDNGr8XrY1uRXOEaRwgfVmZF0kEjERgaFQCJFIxMz/qP6W/ZoODc5vZB+VOehZJqnol3unsBzy+bDsPE4+Z37vpnaXUY4AzLsg5zTyXacYQPYxqZK309bJZ9So37iNH1J8IcUfvI4cn6SDaz6orV5arCgi/eqrr8aTTz6Jhx56aM53ragEiRtuuAHbt283/6dSqTnpAhTNwYEun8/j8OHDZtF71llnHfM15cA/MTGBPXv2mLxiEuVyGYcPH8bExAQqlQrOOOMME/pN47ZQj+F85apUKpidncWBAwdw4MABPPvss5icnJzXO83BmhO6UqlUt0mmnW+cC2LmhZe7ltubvRGLuciyvchyMthMYXCyoST6ysTJMvjLeWdxN8zOzuLgwYMYGhpquY7LGWqrlx/K5bLZ26NWq+G8885DNBrF7OwsEomECUXmooV7cdB+cbHX3t5u8olns1lMT0+bHKv2pL9WqxmVmcfjwf79+9HV1YVgMIiNGzciEAigs7PTkKzMySnV1PYCjYs2O1clVeSSwGZk28zMDIB6NWMjVKtHNksFjhDS3d3dJtKNi2AqB3n9VjbDdFOKk1BgeVgnSZKzzXkOw7wLhYJRkMmFKnBkHCIp7/F4zKbbTMPC+khHBJ+dTTax3H6/H47jGKI8FAphYGAAXV1ddfXI5/Pm+3A4bPaykXnbFcsfujg/NXCibTVTQbr1Jzc1pltUrU1KSUgCzv7Nv+kEtpXCrBPHT0ms2sSd3Q52G0nFKu/ZbD0lSVeCZGe5XMbU1BSy2Swcx8G6desAwDiyZR0kiW8TgrRThUIBuVwOiUQC09PTdXtryLaiLSuXyxgYGEA2m0U4HMbw8LCxAUxtxjzrtgODv5u1G6O+uAfI7Ows4vE4YrEY0um02WhbPiPWx3GcOYSyvTa1HS88l8SpTc43UrPL+Y+dHoiQEeZyXSp/uNanLZf9ns/bTgvkpuCWBLV0KvA7fi/fAengt5+LtPkkyEnIc55AEpn8jB1BSEe8LCOFg2x3PjepFJfp5Ox+JPsk555yPwP5PEny2/1evntyDsv3xB4fuMaT5xBsD1k+uedQM15GRjfIdpJtIsviFk0wH9RWLy1WDJH+4Q9/GN/73vfw4x//GOvXrzefDw4OAjjiQZckRDMFoNvmdIpjA/OZU/n07LPPYnZ2Ft3d3eju7p439Yb0Ks7OzmJ8fBzJZBKHDx82OeIaefxqtSMbnTKvGhVVwWAQfX19Jl84w9dbIVx5XXqgU6kUYrGYUcmPjIyYvO0LGYBokB3Hqdtgpru7G9FotC5Emh7wSqVi0tsUi0XMzs4ackOGNDHEXoaIt0Iwy4kJJ1skImSZaeQ5mXBT0Z9MSLVJsVhs6GBQnNrYvn073vWud+H888/HhRdeiLvuumvOzuJjY2P4+te/DuDIzuJf+MIXsH37drz//e/HI488grvvvhvf+ta3zDWvueYaXHzxxbjttttw2WWX4bvf/S4efPDBukXofPfNZDLYsWMH3va2t2FoaAj79+/HX/zFX6C/v7+OfF+pUFu9PEG75vV6MTk5id27d6Orqwsejwe9vb1mQ2y5kaRU5pFALpVKSCQSRtmWSCQabuIpUSqVMDs7i0KhYPKCc5He1dWFTCZjCA/m4WSZuSEmSX5umsZ5h9frNRugMw96pVLB9PR0XbqBY1k00JYynylVTR6PB+FwGL29vWYfBW4U5+ZgZ1vSKc6NUUlMyOPkxlyNIsIkASTvJ50RXFD6/X5Eo1GzOIzH40apGQgETJns3KFUcdm53rmZGhV1UnnGlC4+nw/JZBJerxfJZNLMz3ThtnA0IqbmcwopFM1wMmy1TEsCzJ+qwCbBgMYbAwL16xiZ4gFAnRPW7XhJyDUio3hduxw2YWcr0RuV2a6b2x4adECXy2WEQiFjx7q7u83aUebS5vU5vnNcLpVKSKVSmJ6eRi6XQzKZrMuPboNtVSqVMD09bWw1Fcp0ijL9jFRls+78LdXAUokLALFYzKyjJycnEYvFkMlkzJyDhK4kgWVf4PrP4/GYNHCSuKR9kmAaOjrduWbmfWX5OJfhMbbdshXyHIclWe31eusiHeSz55qVzgTp9Lb7gnSy85qy70mFtlwXS4eD7POynvJzOi+oMJd1Ytmkk11CqvHtKAmWnU509lkZxSfbhnWy1etuec3lu83+YH9P2JEIsp3dnClu/brRtXl9+368NsvJY/hbfk4nnFSvLxfhoqI5lj2R7jgOPvzhD+M73/kOfvSjH2HTpk1132/atAmDg4PYuXMnzjvvPABHBsxdu3bhtttuW4oin1IoFot47rnnMDo6isnJSVSrVfT09ODcc8/Fi170orqQZDdUKhWkUikUCgU89dRT+PGPf2w2HZmenq6bxEhwkJqcnMSuXbvg9/uxadMmbNmyBT09Pdi2bRs2bNhgFFH0kDYblDiYlkolxONx5PN57N27F7/4xS/MBqdjY2NGibYQ8paEABfh9LCuX7++TpkXCARQKpWMgT18+DCmp6cRj8fxzDPPGIeBDH1ibrtsNgufz4dwODzHu9qovpww5PN5pNPpOSF/NMgMw2OO98VU/C8EcrJQKBSQyWSQzWZP6U3MVhJOpud8ue4s3tbWhqeeegpf//rXkUgkMDQ0hFe84hW49957T+jO4icaaquXN6i0TqVSSKfTmJiYQCQSwUUXXYSLLrrIbCzt9/tNLnW5NwcdrrVaDaOjo/jv//5vZDIZpFIps0BtZhOz2Syef/55tLW1YXx8HHv37kVnZyfOPfdcDA8PA4DZPPv000/Hxo0bUSgUcODAAbMHS0dHB2q1GuLxOKampuD3+9HT0wO/34+pqSk89dRTyGazJvUJNyU7VnBBTKd3T09PXS7Rrq4u9Pf3o1wu45FHHsHTTz9tFrL2vIWLRqq3OQew33mSH9VqdU46ArnIBOpJCtrkQqGAmZkZE6XHCDimc5mYmMCBAwfQ1taGM844A729vSYtj61ak8SUJJ/ogKEjGziqyGT6G7/fj7GxMUxMTODw4cOG2FHid+FopFDk7xPRpqpyW704mbaakTNuSvNGcCOebVJaOiw5DnJtQIeejP6VylEpxpHjnZsyWRJwUrnK90OO89wY1B6rpeLUJuLljyRGabeKxSKCwSA6Oztx2mmnmXtwHSmdmFyj0dldKBQwPj6O5557DrlcDmNjY5idnQWAOuJTqum9Xi8KhYKx1RS4hUIhDA8Po7u7u26D1EgkgnA4PIdEZ92LxaJJS8rUNePj4xgZGUGhUDCbeNOZS7EZiXRuACvLyXV6rVYzKWY8Ho/Zk4ObfLKccrNrpjnj3i779+839prPlH0oEAiYDV9lmwFHHUR0iMvy8VlzHc91NB1KnC+l02kjIGCKNKqVZV/3eDxGECjJWNlv5PyC/ISdIo/gs+H8jg4J4Mh7ToKXbcG6y+crHQbst3aEvVTRS/KfZSHXIN9R2X+kw8RNnCDfa16LQkV5b5aXAgtg7mbEjSIKGmE+gSjHBjoRZJs6ztFUPbYDhmAav1agtnppseyJ9A996EP45je/ie9+97uIRqMmd1tXVxdCoRA8Hg+uvfZa3HLLLdiyZQu2bNmCW265BeFwGO94xzuWuPSrHyRZGc47PT2NarWKZDKJXC4Hn89nBg1bTQUcGUiz2SxyuRzi8TgmJibMYr8VcpSThra2NnR0dCAajRoivLu7G7VazZADdhicXRb+5kKX5DJV4SwXB8mFLmDkQM2JQjgcNgR6T08PAoGA8fbTINL4h0IhM7miMZDKdDlRcJsQ2s9NTiblj5zEyu/lJHUpIb3KLJsag5WDk/msluPO4qFQCP/+7//e9PyVCLXVyx8yvyNVb7lcri5cnJAEqlyk0XGbTCbNxmCtTPir1aqxX1xQ0FZHIhG0t7cbEoJELBc4hFxEc7FYLBYNqctUaNzY9HgWGCwnw5upymM529vbEY1G0dvbi3K5jGg0imAwaJwNXPxJ8kYqIEulklFwSlKDC0c3FaWbktCuH4l8EjC8LudAwBFyi2o1mQ5AXo/llfdmWWUeT/mMONfjfbm4lUSFYuVAn9fqxMm01bZyeyGwSXR5Tf621bZyzJcpseS5bmNaM2GQJCwb1ZFoFEHkdo6bkl4StcARQj2TyQCAidIGYPYSkesyKQZjWtRsNmsERxREuaWVsR0NjPhKJpMmX3YoFILjOEZBTaLWXl9L+8D1LMVPFKJls1kUCgVTTtsRz/I0Uhm72XaSk3SiSGEZbS6fJW0tneKyzWWOcRmJLfuYJLxtcpm/pepalpVrVukAsuvi5jilQ0C2gX0852skcWUZbUgbLzkBt3dJ8hdu17PfMVlufi85E3ltt+PldaUDwYZU5NtqeJvnkXMyu55S8W7zRI3e+2YckJujzS6brVKX97L73HxQW710WPZE+p133gkAePnLX173+Ve+8hW8973vBQBcf/31yOfzuOqqqxCPx3HBBRfggQceWNHqvpWIdDqNffv2IRQKIR6P49e//jUCgQB6e3sRDofNohQ4spBjns/JyUlks1mMj4/j0KFDJsXIQlCrHcnvBhxRmqZSKfT29qKjowP9/f2GtGY5ZLiQzIVle6QLhQIGBwfR3d2NQCCANWvWoFAoIBaLGU97K5uY+f1+rF27FpFIBENDQzjnnHNM2RhWz0U6JwOhUAgA0Nvbi3Q6jWg0inQ6jQMHDmDv3r1mUsBc6mNjY0gmkxgYGIDH4zGTHDsaQJIis7OzyOVymJqaQjqdNhMdtilJgXQ6jampKWOsgsHggp7PYkFGMCQSCZN/VxXpKwPqOV+9UFu9clCtVk0ar1/+8pfIZrN1qiAujoEjaUCYM5wLi/HxcRMSfSw5r4vFIlKpFIrFIp566imjkKZt/vWvf42hoSFDCsgc7bVaDdPT04jFYvD5fEgkEggEAshkMlizZg2KxSLC4bCJrmIUV6ug7Wxra8OaNWuwdetWhMNh45Cn4o05w9PpNCqVCtavX49wOIxKpWJs0vj4OA4cOFA3x6AKLxgMIpvNmhR4XPh7PB50dXWZunOeEYvFUK1WMTU11TAnO9Vuk5OTRknHNDocP+WmsTJXOs9nODsV98FgsE4tKFWcbCfO2UiykHDhgl72nZOJRukgVgNOtD1UW716cTJttSR4gXqVqiReSfrZzkcJm5yyVa4ylSfXfDapLfODuxFkds5jpniQKlVJ3rWqYLXrIUlWtpEk9DlmU1UeCARMtBGFVxxnpQiMjtRYLIZCoYDZ2VkcOnTIpPyS7S7rQUgVfaVSQTweN1EFiUQC4XAYkUgE/f398Pv9iEQixvkibQzX+hS7yecHHFnXlkol+Hw+dHZ2mkgs2hkqze1c1fzNZz0wMICOjg50dnZicHDQRHczZSptFB0PdAB0dnaiq6sLPp8PuVwO09PTGB8fN23IFKt0yJNwb2trMxuQM484AMMFsA29Xq9RnFPlzU0uOW8iKU71MecpdoQEn5GMDrS/k04n29FhO+Z5benIYbQAy8z2tx0XtgNGOiVs8lpG0kn1Nc/hdzKlCbkX2SclCW7X3S4P/3d7V4H69EfSccLjbFU9hY8sv/1c7DHKba5hp+qT7W/fS9ajVbGm2uqlxbIn0lt5yB6PBzt27MCOHTtOfIEUDcHUIB6PB/v27TMLqvXr16Orq6suvDiZTCKdTpudxDOZTJ2XcKEvt+M4SCQSSCaT8Hg82Lt3L7xeryGrg8GgIa25kGxvb6/L9cYBzufzoaOjA4FAwBDgjnMknDmbzSKZTOLZZ581G6i1ki/d5/NhaGgIg4OD2LhxI17ykpego6OjbvIl709Eo1E4zpHwuKGhIRQKBTz66KM4dOhQHcmQy+XMZMvj8SAajRrj4JaTj+dMTk4imUyaHHWcxLBNOQEgke44Djo7Oxf0bBYT1WrVGHr2IW7GqlAolg5qqxcfNvm4WJNeKrlJZO/evbvunv39/di0aRPa29tx4MABjI2Nwev1GlK2WCwuOL2ZBO/t8XgQi8XmKIl6enrMJqQDAwNm3sCyc+7AOQUX1n19fXAcB6FQCJlMxtiHhRLpfr8fPp8PAwMD2Lp1Kzo7O02Z/X6/mVPEYjGMjY2hVqth/fr1OOuss1Aul42z98knn8TY2FgdGVAsFjE9PW02bWUKl87OTpOPtrOzE16v12y+ViwWMTk5iUwmU+fsdoNM7cJ0NFIlx43FpLJctj+fbTAYxODgIHp6egw5Q3FBoVAwhAJVctxXJhQKIRKJmMW5m6rwZMCOQNQFo0JxBCfTVku1q1Rry7UPx1uudewNkO3ruKl1qdiVUUOMjJHkHAk0m7SyIUk4EnVuhDkdz25rLbfrS6WzFC3xOLke9Hg8KJVKJmKAm9L7fD709fUZQpfnyE2lSYAzTRtTldBB3siJABxNGcZ0cNwHbXx8HH6/H52dnVi/fr1pYwqrSHRKh4a8NucPAEzEeCgUQqFQMA5pqu65rrY3f6X98vv9ZsNr7sm2bt06Ux6uhaXCn6nFotGoiZjq6upCsVjEs88+a9qJ+7KUSiWk02lUq1UTlcbUOrSfbM90Om02cqddzWQyJgqA0Wfcf0Yq3em8YZoYtwh+2+nSqJ/JjcFJ/str2imR+E7ICIZcLmeIdHszc5u4Juz0JHZ0gp3iBajfw0CmkuF74aZet8tB5b+dFsZNPW+PATIygLDr5jYHt50YzcZTx3FMpgAAdeWU97DHI7eoA8XyxLIn0hUrCxwgJSGbSqUAwCwcAZgcplyUSY/1sUIOcFy8cbdyKtoA1C0kCRp5GspoNGoMJicJVDm0t7cjnU4jEokAgJn4uanzaCC4OO7t7TVqNhq4ZrAniB6Px3jf29razCZeNMIADNnv9/tRLpeNAedislwum9A/Gkyq293an6qIeDxunqH0gJ+MRTLLValUTJodEuhqaFYO1HOuULQOW8VyIiBVwwQX4G1tbUapxIULVVWL8T66hb7SbpOgZbozG1RwRyKRulziJNJpN0nyMnd6IzvHxQsd6czJ7raolaQyxzSpouLi2u/3mxQ1cmMtHs+8sdwwrVwuG7W41+s19pkkvlyQNQKVfR6PxyzMAcxZLFIBKjcpl8/YViYyPQsV61S88TipiCN5lUgkkMvljFBCsXKgtlqxGLDJLTdbJok6aY/kek7mhZaf8x62alwSdjLdhX2uLKe8PglRfmeXF8AcssuOvmGZGwnE5HH2b7d2kutMKSCiWpaR3uVy2ayr7Y1U5T3dyPRGqUCketneZJrl4G8SubSnjLLmD6/PY7ge55xDplqRCmZJKLMOVJ2TNG6Wu1qSvFRJM888iXkAhqeQxCufM+ckXq+3LtUpbTWfB78n3JxAjBLw+Xzo6uqak76kkfLZno/YpKzb85Pns1/K1C+c88n90HisfLaNwHfGbv9mc1iew3evWR3s60hlN+C+SbENWTabv3BzDshru6nReZ35nBuN6u72+bHM9dVWLy2USFecEEhPZ6VSwdTUVJ1XkgtChpgv9svMgYXqLK/Xi9nZWeMl5ySit7cX69atQ0dHB9avX48NGzaYcGh7cU6jXigUcOaZZ6JQKGDv3r3YvXu3UYQnk8m6cpCI7+/vx1lnnYUXvOAFiEQixlveKhhOXq1Wcdppp+G8885DKpXCr371K+MoSKVSxniT9GbeVuBoqCAdGOVy2Wyq2mgXd7bl5OQkfv7zn2NgYAADAwPYuHFjS4ZrsZFOp7F7924cOnQIzz33XFMHgGL5QQ2+QrFwnOy+n8lksH///rqIKxLIXPScqDLRRnHvk2QyWbfI8fl82LJlC0477TSEQiGjDs9kMkgkEnAcx0SeMUWax+PBL37xCzz88MPG8W0TKcyrGolEsGXLFvT396O7u9so17gxFzdyszf5ZL74trY2RKNRhMNh9Pb2or+/3+Rtl6HfbGdG8XG+EQ6H0dfXZxTpTOnCORMXniSL7OcwOzuLp556Ct3d3WYjc+a155yLKQ8Y+i8VXnTYM2KPqv7Z2dk6gYQMl3ccB5FIxIgNgCMCip/+9KdmU+eTnX5NEmlqOxYOtdWKxYDMo03YqRs4ttqKdDnWSLW03TdJiJK0stNgSBKdGz8C7mQj7z2f0InjJaO75PqJ60uqeblO4Wesk319pg6Ryn27fJlMBl6v10RkyXZgGeg85vpbpkRhW3JTRtsRLAlRll+SjW1tbSiVSpienjYkOIlz/kQiEZMONRgMoqenx0SPceNZlon/p9NpdHZ2IpvNIpFIIB6PG2U9o6XpkJV2ig5vqt25znWLyLbV/jLlSHd3NzZs2IBsNmvaDzgiTCOpXKvVjJiMpDvrzL3UGAnv9/tNWhipOJf9JJlMYt++fejq6jJiOzdHNu8jSWQZaSEjrtgvebx8vnyGsh/4fD7k83lMTk5ienoahw4dwsTEhLHXfr+/Tr0t+4lUybOMfD58l9iPG6VucptP8hxG50tnDeeC8lr2HgHy+fN6Mh2tjITh/7LM8j3g+2SndmpEjkvYjptmzg15rCTwWxEgqK1eWiiRrjghkJOXpcxfLfNg2eBgODg4CADo7OzE0NAQfD6fCQ90A0OmueHZxMQEfD6f2Q1dggY/HA5jYGAA69atM4P2QuDxeMyg393djaGhIYRCIYyMjACAmawBMIvm9vZ25PP5ug3HAJiNXqhqaOX5ZLNZHD582ExmGnlTTwSkUWF+2UOHDiEej6sifYVBDb5Csfwh85pKnKwUWtJuM68rQXvW09ODSCSCtWvXIhwOY2ZmxkRLMW8r9yTx+XzGTkuVtgRDoknODw0NGVJYLtrK5TKSySQKhYKx7VR/U1HO1AKhUAjhcBi1Ws2o1SRI0NOeejweQ0i3tbUhHo+bvV+4EHNbrMnPSJgzvzrzr1KdWKvVjKCAykISClxMcvHP8/L5vMlfy7KRvCK5QEKEc5tCoYBDhw5h//79SCaTS5J+TW3GsUNttWIxwLHFLVWBTRJJ8ZUNSQq6Rf5KpTNQH2klx283coplcyPs7OM4VktFt53LGzhKQEpyjqStJHLl2sxOt2VvAi3zu9vtxrqznegw4FjO60v1PsdvSRhKQtYt3YTH4zFrRzrauTaV5ZD7kcmNP2k3aC8YCR4KhZDL5Yzjm1FQTFUj03FI5T+jvmw1unQAuP2Wz4Dr9Gg0amy3dNwAMPZdqtgliZtMJpFMJuv2X5ORXiRm2b7Skc2UNiR/3ZToNtFsfy8h+5RcP/Nc6VDg3xQiJJNJI2RgihwZ2SF/S7LZLZJBOmXcCGH5mRwfZP9nBKR9fVvFzvuwz7MdeS2+e27tyLmPzAlvp5WS7WdHnDSKApD3aIUvcSPTW4Ha6qWFEumKUw70xre3t6O3txennXYaurq60NPTUxce1ux8TgKYS5Z55FKpVF0oGFVpPT09xjgfLwEtFWskFezJKSdEJMqlYWX4X6veTgDGYVCpVDA2NobR0VGEQiH09fXNyYW32KjVambzk4mJCYyOjuLAgQNGqadYOVCDr1AoWgUXQF6vF11dXRgYGEAwGMSaNWvqotsKhYIhoR3Hgd/vN6QwFXzBYBCbNm1CJpPBxMREXfQY70NVejQarcstzkUziQGmfpGh6iQp2tvbjaqyvb3dbDKey+WQTqcNsUJCQo6JjuMYFTg38ZQLYbk4dltg83/OAWKxGA4dOmTEAcFg0CySAdSRD5J0kkpQEgsdHR0mBJ4pXTgPYp0cxzFlnp6eNvuYSBWoYvFhkyaLAbXVihOBRiShVJS6nSPV5RyLqaq2Nz+Uv20Ccz5wPHdbA3J8t9NBUG0r11ksV7VarUsRYyuEeawbeSbzKrMOzYh05vEmiWtHXsnNN+WYbW/e2gy2iMo+HziiMudmqJ2dnYhEIsZRLZ2wst5tbW0mlRrvQQcu250bX3d0dKCnpwcdHR11G4HLTStl+dxU2ZJEdxzHpHKtVCp15LzdzjKKng4UitcYmVCpVODz+UwEmx2NwL7AjckBYHp6GtFoFB0dHRgcHITP56tz0JBUlkQ4HSG8nqwzP5P9Uc4lHMdBKpVCNpvF5OQkpqamMD09jVQqZcrMa0g1tt0W8l68j1v/sNP/yHK69Ws+F5unsOcr/ExGeNh9mP3H7VnS0SSV/G7tyHP4I9PisAyNnAV0rNikeitOjlbGLbXVSwsl0hWnHBh6HQwGsWHDBpx77rno7u5GV1eXUZc1I4YZfu04Dk477TREIhHEYjFMTEwgFovV7Y7e2dmJDRs2oK+vD+FweMFKdDdEo1Fs2LABHR0d6OjomDMoyxxyDMWXkBOLVgfRZDKJfD6PmZkZPP300+ju7kZ/fz9CoZAJ6ztRZHqtVsP09DQmJiawb98+PPXUU9i7d++ccEqFQqFQrB5Qseb3+7F582a85CUvMbaXNo45xqlSB47auGq1ipmZGQBAR0cHtm3bhlQqhUcffXROGjamdOvo6MCaNWswPDyMXC6HRCJhFnl0onOjcLkxFvdXkWlUAoEAzjjjDJMaZWpqqi56zG3RRgUe0Dw3ZyOw3sViEYcOHcLu3bvR39+Pc845B93d3ZiamkI8HgdwNM+8DN2Wi0c6F/i/4xwJ26fKng4D5lelWj+dTmN8fBxTU1MmdYwu2E4cGpEo9mcKxcmGVHsDRzcLtNWkMl0EIYkmO50Eo31IYEkC3SZO5f/8Xr4fNsHKv+16kIi2SXaphud3Mg2EdILaZZKQSmlbHMW2swlHEoIejwehUAihUMg4l22iz+/3m42g5QashFw7upVLKozdlP/8PBgMYmhoCB0dHeju7jb2Uiri6ZDg86OwrVKpGEd2Op3G1NQUZmZmTKpSABgYGMDw8DDC4TB6enoQjUYN8S3JUNnGtoOY95YpZkKhEBzHQTgcRkdHh6mTdORUKhWk02lkMpm6diSR7vf7USqVTEQCc9rLvcpYZyrSs9ksnn/+eRSLRaxZswa9vb3o6OgwUWUA6lTyMtWRmyNd2gBJSEuuoFKpYHJyEmNjY5iensbzzz+Pqakps1E6AMNZ8JnLd1nOsYC5G4fKfst5Ep+z3Hi0Wb+z8+Hzt4wMkZ/JNmDf5pyNaWIIzltshwrb13ZC8X5yo2I7CkYea9+L17UjPSQ5L0WczVTuiuUFJdIVpxyopGI4WSQSQSQSMeqGVsDjAoEAIpEIisWiWZTSYDmOY9Rcbt7tY4XctbxReaWBWgzQC+/z+ZBKpRCLxeDz+UxoujTsizXwc+JCx0Q8HkcikTDqdE3rsvKgnnOFQrEQcBHv9/uNszufz9dtCFatVk00GXB0cc8FIxVEkUjELFhscFHNhR4X+iSZZdi9nYtVlhM4SmZ7PB6zWSqvN98Y2Eh12CrkApeOAJaBbWIvQOUGsjYJwf/lQpb2nuWkQowh6iQa1Nl94nGs4eDzQW21YrHgRpzzc/7fiFh2g0zLIZWgbiR6M7itn9xyINvHyXFekt+Nyt2oHiT6Gt1HjtW2AEoS8620G9tLKl1topDXcyuLG+R9ZTtwjRoIBOryvsuxyraXLBfz6TOtmCwzr0PFOJ3XMuc3r287oO3nI/sQ7b20h271tNfVtkNCOiZkP5Q21Ca0uX7O5XJIpVIIh8N1e8i5OV5kOzYi1O3jpCOEG4Zz7xbug8K90+x0Jc3U5m4iOjdb1Gr0u7y2jOZwq0+zc3mcfV/2ITvljE1cS4eHDfu9tdHIFjdy4Mlxi8csROyotnppoUS64pRDe3s7enp60N3djd7eXpNP9ViIbr/fj2g0ikqlgp6eHvT39yOdThuiVxLprZL084ELfnpZ6TE+kQtWDraFQgFPP/00ksmk2Zh1eHgYfX19Jtz+eNXpvBdVfJlMBv/1X/+Fxx9/HDMzM5iennbdLE6x/KEGX6FQtAqqtsrlMkqlkrGnVGkB9eHqJAiKxSJKpVLdYpbnOo5jnN4krami6+3tRTQaNcrqZDKJmZkZlMtlE6JOcl3aXJYzn88bJbfP5zNOX24y6vf761KvnQiwToVCASMjI4jFYhgcHEStVkNfXx86Ozuxdu1aE2rPTUW5cGUu2Gq1ikQiYeYXVN5ns1njSO/u7kYkEkE+n0c2m0Umk8GePXvw/PPPI5PJmLB1RWuQBEGr8xu58LY/Px6orVYsBuSmf0DzftWIvJLkttxUUhJObqkj3MA1iq1i5X1sslAS0JKs5XfyXJnW007jwRzN0vEqNwGV5XFzBshz7TITFDzJ1Dey3G4EukxxIT+X5Kn9PCQ5zHN9Ph+6uroQCoXQ3d1tcp9LFa9s30ZpTkniktAmIS/XfIFAAN3d3QiHw4hGo8Yuu11POoClCp7OX9aBm5YStjOb6nKbbOf1qXi2nfmE3+9HOByus/3SVo+NjZn0sIODg2YuwWdnb57K+vD5MJUPzwGOpmaTNiIej2N8fBy5XA579uzByMgIMpkMYrEYstmsSfvKvsJzg8HgHOcA69joveFvPkf+bzsU3MD6MkWevWGudL7YdrMReS7LKf9nG1NwIYUQbG+S+lIQwUhIu080Gt/cxhu7LenIWIhDUG310kKJdMUpB6Z26e/vNwo3GTa1EDDMr1wumzzrjuPU5cY7UUS67YV3UyYsJhznyGY3e/fuxf79+7FlyxZs3LjR5D/t6+ubE7Z0LPcgmBM9Fovh8ccfxw9/+EMUi0WkUilVua1QqMFXKBStgqQ4AJN3VOblBuoV0pLM4EKUC6f29naEQiETds00LLQlgUDAkOUM304mk4jFYiZvKnOw24tkAIbwJ8Hs8/lMuDfrwHDvExlNxTG2VCrh0KFDOHToEKanp+Hz+UyKlzPPPNOkZAOObnrKxTiVcMwFK39IvEQiEUOYeL1e5PN5JJNJjIyM4Iknnjjh85HVChm23mr72YrJxYDaasViQKb9ANw3GJRwW0NIErajo6OOlOZ41OqaQKqmbeUxP5fqXUmSuSnRWT5brSy/531knmRZN3ujTNlOrKf9Psq/ea7Myc12lGtFW93LqCJ7k1FbneumlJcRX1zrhsNhdHd3IxqNGjW6JKzlPVhmWS9bdU3ikiS1THPC/Oj8aeSgZh0YhS7HVUlKM0JdErjyGLYTVfPyO3lNEr521AVzvMs9XVjmWq2GyclJo3A/88wz4TgOOjo6TDobW/Eu24epU2xy2S3lSSaTwf79+5FKpbBnzx4899xzKJfLJjWbnJvwedApAxx1ELgpue13l/OxRk4rNxsjxwc67wEYDkVu5iptpZ33X7Y9n6mcJ8qyyjFBHsv7S3Egz+Oz4txSOtua2T+3MY/taTu13JwCblBbvbRQIl1xysEeUPnZ8VxPGi1bIcAwqsVSUHOwlQvyhQyGtuFzU4s0WphJ1Vomk8HY2JgxMnRIMP+8JDjkfeW1CBrnSqWCbDaLUqmEw4cP4/nnn0c8Hsfs7KxRGaoSXaFQKFY/uIBrb29HJBKpc0rLxTAJgVwuZz5nvlNpI7koDAaDiEQiKJVKZuFVqVRQLBbNBl6cJ/D+DCenEokLOUm6UD3FRbtUygMLc3bbRKokcZodJ8HPS6WSyYs+OTmJw4cPG2cCFed2nXltEiE2SdHW1oaZmRkkEgmMj4/j8OHDSKVSyGQySqIfB7TdFKsZklyTaxBJhNtrBZkehOCYvdB7y3vY97H/d1NPy9QntnORazJgbo51opEjQbaJ2xggyT77OvJ6NtFKspUgaSdTkkingSQN7TZxixjgPZiShc5u2kG7Dedrd3s9y+vQdrPstuNX2ih5H+mUlMSqJCnl85XP1HYoyE1j3Z6NFLdJB4ydwoP3IVgWqtMTiQT8fr9JjSbnP1T/y/5ik66S/GffpKM/FoshFoshlUohl8uZMslnK69rR5TIOku1eyMOxV7/2/V2O086Xuz3rhWVNu/B4+Q4IfOfu6UxcovAaAQ3x5f9t9s5dp3dUgnpPGDlQIl0xSkHj8dTt9BtZgRauZb0/HPRTcNdKBSQTCaN13gxwNxmJJzt3KbzQe7+LXdwB47mbJOh3vZ1OXEZGxvDv/3bvyEcDmPLli3YunUrurq6sHXrVmzYsMGE39nhdBI04tlsFrlcDslkErt378bMzAyef/55PP7448hkMpiYmEAqlWrJiCqWL9RzrlgpsMNFFScfPp8Pg4OD6OzsxPr169HX14dQKIRUKmWeCRfasVgMo6Oj8Hg82Lx5M9atW4disYhYLGbSvNCh3dvbi9NOOw3JZBKlUgmlUgm5XA7j4+Po7u42acs6Ojqwdu1aOI6Dnp4edHV1oVgsYnJyEtls1qjYqJzP5XLw+XyIRqPo6upCuVxGPB43m4fKsN1GsFVd0mEgF7fyM6B5SgOmXPH5fJiamsKhQ4cQDAbR39+PaDSKaDSKwcFBBINBtLW1mVR3XV1dCAaDyOfzJhIsGAwiGAxiZmYGu3btwoEDB5BMJjExMYFisYhkMjnHAaBjd2vgnOtYzjsRZVFbrVgM2AIjN9ERSTlC2l+u1QiS6G7CGjflu60et0lpua6wVdiSEOVxjuOYMZ3kJ8k5qWS21adUNQOoI1ibnUPCkm0k62/bAbm+Yt2kEpubVzLayFZN2wQ5YW+mKolopnDhRt3cjDoSiZh0IDyXxLp0hNvzLF6bJGokEkFvb69JO0ISPZFIoFgsmggFCrxYZ67tZX/gM2OUGG28z+cz7SEjHLhOtlXGMue7TbLTEc10NMFg0LSrXK/bKJfLKBaLiMfj2L17N0ZHR9HZ2Yne3l4EAgEMDQ2ZCDBG53ENz9Qussy8X6lUQj6fx/j4ONLpNEZHR/HUU08hl8shm82a9uYz9nq9JoUN+4lUXbOOjuOYqAMJO6pAto/tMJFOJ74PhULBPCf5LnCfGr63fN9sst2NI5DRBNJhJN8f6STh9W1HioRUn8u2lxEthBxLZDvTgSgjSFgPtnsr8wG11UsLJdIVpyQaecaP9VpA44kTldSLlY6ERpOD90JJHqnIJ5EO1Hvim12Xn2cyGeTzeWMAmWN2cHAQvb29ZrInQ+7drsUJDjcpGxsbw9jYGJ599ln8+te/RjabNcoDxcqGGnzFSoFUNCmWBtwgtLOzEx0dHQgGgwgEAmYBI9VQXFzTBjNvKv+XY08wGDS50Gn/yuUy8vm8UX3RPoZCIXMOU7PIfKnM/cmFPBeYoVDIONalirCVMVD2PakWsxeM/Fyq7txAQh84uoALBoMolUro6elBtVrFwMCAaXMqDJl/1ufzGRtMsiSZTOLw4cPYs2cP0uk0YrHYnDnOYsyvFEsDtdWKEwGbyJaKWjelphQ+ce0j1ykcq3lteR9CKk8lGSjv55ZywVZTy8gmEnEkz932zXCDFC2x7vY9G0GSdDIiqhHRx3NkuhFbPW/Xr5EqX95ftif3HmG0GElsqtJtG+YmqGJ57fYFYARq5XLZtE21WkWxWDTpN7gWJkntll5DXpd7rtj9kP1KKrHd0qQ0UuyzPbiuZlod9glJ/trKdPblQqGAWCyGfD5vFOmhUAiRSMRExAUCAbPBOq/Fa8vnQxKd+40lEglMTU1henoa+Xx+DulMwZ98zjKFilSry/4g+xb/djtOtp/9HrjxJ/LZsY2kA0rey+14QhLmjBp0S5uy0PmKFDHIjdfd6mE7ueRx0mlFroT9ptl4QKitXlooka445VCr1YxxyefzdcZioQMpz+UinCpxDmy5XA7T09MAYDzqdqjdQpFOp3Ho0CEkEomWN/OSEwJOekgC2EQ6JwNSacHvJaQRTiQSePbZZ9HR0YFyuYw9e/YgEomgv7/f3I+EA8Fws2q1ilgshnQ6jXQ6jX379iEej2NycrJO6aFY+VCDr1gpsBc6ipOPSqVilGfDw8MoFApGMUXFUC6XM4u/tWvXGlJ9fHwcAMwCXxLg3HCLTloqyjOZDNra2pBIJBCNRk1edV4zFouhXC6jvb3dKNlI8FCB5vF4kEwmUalUMDExgUOHDi0o5QntqiQW2tvbjRqtVCoZuykVjq3A4/Egn89jZmbGtMns7CwOHz6MiYkJ+P1+dHZ2oqurC8DRBSjbhvUMBAKYnZ3F6Ogo0um0yaXuVhfFyoTaasViwFaf28RvK31FrkFImroJk+ZbJ0jSTZJUjdKkkOTjsTKFhlQuS7KYJBlTgdnXl2pdqbC1yUQ35bK9FpMOBElO2uQ4I6FkGhQ+Bzttjhs5z7rJTR/5HLhGY2o1uXm1G6Tzm//TMSD/lrm4bcI3n8+bSLM1a9aY+nBzVRkF7ZZShqpxr9dr2iaZTGJ6ehrpdNrMC/jsGjkZ7HYDjuZC53qXIjq2nXTC81nxPNaR9pTKZJ/PZyLhwuEw+vr66lLpAHBtq0wmY3iO6elp5HI5zM7O1qmt7U1T5TOR7wc31pTKdPkesq2ls0C+b7J+vAfb3o60sJ1q8lnaEQIUBdqRG1LYIK8jYQsT7HvJY2whg4RUmkunoDxeni/fAdlfWR/Z/qpIX/5QIl1xyqFarSKTyaC9vb1ug41jUahTTV0qlZDJZJBMJk24lOM4SKVSRpGeSCSQy+WMAW/F02jDcRwkEgns27cPiUQCqVSqpfOkAaR32+s9kn/WDm/0+/0mr7vc+MJtwKXRmJiYwMzMDLxeLx5//HGzQ/maNWtM3vRoNFo38eDmZOVy2eRa5WSM9242IVMoFIoTheOZnCoWB6VSCZOTk/B6vRgeHkYmk4HH4zGbY1arVSSTSaOA27hxIxzHQTKZxOzsLKLRKNavX49QKGQ2Di0UChgfH8fIyEidqjGfzxuCenJyEj6fD729vWbROj09jdnZWaOSj0QidU5xqfCbmZlBLBbDyMgI9uzZY2xdqw5h+7j29nasWbMGvb29yOVySKVSZs5BglvCTYXP+Q0X116vF+Pj40bVxsXehg0bsHHjRpRKJYyMjCAWixk7LxeAFCTIBfxiwFbjKxSKlQu3NC722kemGLHXYI7jGOchgDlEm034SiLRvo8dvSOdkJL0I3nuprYlGKEjlekk1Li2kmk9qJSW6SVYJq4JJUhOy/pJpbTc4NBuC9netVoNxWLR1FfmESe5K8l0brgo68zjfT4fgsEgABgRGm1AoVBAV1cXvF5vXdoY+1kSUs1rp3SRZZXkP8Fo6M7OTqxbtw7d3d2mvSXJStJVti3rwc9IWs/OzuLgwYPIZDJIJBLmc9lHbNKcwjRJkHJT8nA4bBzwdL5L4rRWq9UpkRkFxrZlrnSqsA8ePIhgMGiIdEbIkbBn23FewLkR0+AxLY6E3V/4YxPpvC4hyXtG9UkVu52qSDo0pOqfggjpoJHzKPZHSaCzr/J9opNLvnecI8r0RxLsm/a7JfsL/2b7u3FDsp34XrOdZJuwXeQ7KdXorIt8lxkRuViZDBQnDkqkK045yNAuEsacsCyU3KYh4XVoGOT3zEvHnGRUdS2EuJde+nw+j0wmYwjnVsB7SQNBI8VQKX5PAy+9qPOVUyrj6G1njq9AIIBCoYBisVjnhZVEeiwWQyKRMJ5vVaCvTqjnXKFQLATSrvDHtg9yoW8vACW5QnvNPKs8Rh7LdGyZTAaRSKTuHlzUSNvJhZBUSnExVSgUzM9ClePyt7wXF3pcOMrcnq2o3aV6ku3LdvF4POjs7EQ8Hjd2eXZ2tq6dFKcG1FYrFgNSiWmndpAkkRyHJTEJ1KfEkk4/t7VJs7WD7NO2ylme24zol9exSXuuoeQ4LUl5ux0IN+eB7QSV7bAQyHI2OtdWI9ufN1oby+fItZtcU0tCdT7Hh5uttjcR5XEkp7khJ9eaTMPmVhe73JL0ZaoY/tj3s69lP3N5Xfn8SdiT/HVLOeMGkrfSmeDxeExZ/X4/CoVCnfKdZS0Wi8hms6hUKkgmk0in03WOEZLRrXAP0unU7KfZe2SnXnGLznD7LccAtxQsjXgJ+3PbieJWv0b3sc+fL2WLDds5J9Xqbu+3fM/Yb1p9Tmqrlw5KpCtOOVQqFcRiMeRyOfT19eHw4cPIZrPo6+tDV1fXggauZDKJyclJxGIxTExMYHZ2ti4fulSmP/nkk5iensa6devwohe9COFw2OSRmw/5fB4TExPI5XLYu3cv9u7di2w2uyBFOvO2Ub0nDbydc4z/03PeyLPrBhrtXC5nPK2xWMyEOcoFPNuKCkNVoa1uqMFXKBQS9sK6EXK5HA4fPoxoNIp8Pm/yj4dCIbOxGMnx3t5e9Pf3o1qtIh6PY2ZmBul0GqlUCul0GpVKBX6/vy40nyiVSjh06BCSySQKhQIGBgYQDodN+hjaTNpP5i0lsV2tVs094vE4ksmksW+tgDlnpX1ub283G6eSOKBDnvnLE4mEIfDnUwPyf6o7JZHB9DWM3DvZ464bcbFcYZMoq2n+orZasRiQOaOBo32DqSNtdXYjMZPsU9J52Aw2AQ7U50u2STdJDLoRv/J8WV4pTCL5xbGZZbCje/k31bgkHUlMk9ClMtWNzLZTTdgqb1lO2W6SNJTrP0m2ymcm12xMpcb6Skf3zMwMMpkMQqEQhoeH0dHRge7ubkSjUVN+GXFEpTTXgfydzWaRTCaRz+eRSCSMQjyTyRhiuVwuI5vNYu/evYjFYujv78emTZuM7WTd7DaTz6BQKCAej6NYLGJ6ehrxeBy5XM70Sz4HO32P7RCx5wPckJtkf6VSMf2hra0N6XTaXJ955OkwYDvZjiaS+5VKBdls1jgO6DyQKY8o6KOyHUCdCt/tvWEfpiPErf+QDJYiBNk32Ifc3mGp+KZTQPYJ+U7wh859vifkE2Qkof1c2XZer9fkkpdllcS57ciTz1WmZ5Hjkts7xP+Boxvzsow2+K6T+5FtICHbZT6orV5aKJGuOOVQqVSQSqWQzWYRi8UwMzODarWKcDiMzs5OAPNP0DiIZrNZTE1NIRaLmUWzHKBpELLZLJ5//nlMT0+jWCzi9NNPrzO+892rVCphamoKiUQChw4dwsGDBxvmJXWDDIuS3nEZxsR7kTzn33JX6YUM6lQPKhSEGnyFQmGjFdtSKBQwOztbt88Ic5RzsVoqldDW1oaOjg50dXWZvKfZbBa5XM6EhJMUBzBnsVOpVMyiOhgMIpPJ1EVqSaUh7TcXeF6v1yzwGWLNv1uF1+s1Iep0FgBHFflSocfw7kKhgHQ6vcBWd09ZwL1KlhIraax3I+NWA9RWKxYDcs0BoG5tRMLPFvU0IquAuZuENgP7oRuhxbHcPl6msJJ1sK8pr0OClHaJRJl9fZ5PElBuQsl1l1RhMyWITAsibU+jNrLLB9SntWmkMOfzCAQCCAaDpt60z7Q7tHf8DjjyPNPptMnDPTs7i3K5jHA4XJe2wlY4l8tlQ1xTsEV7ls/nzTVlZFexWDQk8djYmCHY16xZY+psp9GQ4xmfMVXbuVwOiUTC7PchFek2qSzHe9kvSKLLHymU4zxFthlQ/z4wTYlMK2RHI3B+UavVTIo5KtGl4I2fcU4UiURMP+I7Z/dL9kXp9GHfkXnMZZml84af2XUkSIhL1b79PknHvtw8VhL1bhGJ8tny/nJMkcQ4z2klStB2lhG2E4v353shU9zIMrHt5Tjj5rSSZP58UFu9tFAiXXFKggNbJpPBxMQE8vm82USrra3NLGTlwCsH93w+j3K5jOnpaRw+fBipVMrsgu02MNHz7vV6EYvFcODAAcRiMXR2dqKjo6MuVFtOMgqFglGbjY2NIZlMmrxpCxk8G5WplfNWk8pKoVAoFMsLrdiXfD6PyclJpNNpRKPRujBue7FTLpdN+jMS0HScM82Y24KMZeGiMJPJYGxsDIlEwthBEh5cJPv9ftRqNUxPTyORSNQR6blcruU0ZXIBxXkHF7WSmJEkiL2wa9XZrVg82Ko4hUJxFFJlDRxVzkpFqsyR7EbwzpeeYb6/SUoBR4kuN7WyvIetjreJLTcyWtoUkqFSPWuraO2UF41SWNj14fGtpiJtFqFkp8GQ6ljbocA6SMLfrR60v16v1+xhIp3QPEc6U6T6m2lQC4VC3feyXXgtrsczmQxmZ2fNWp77f9lOCpLRvA+j02mr6ciRUWGNnoH8TKqpy+WyiUKTUV88ju0sHfFuzlipspbtK9XbtpOI5DTPsxXf0gki21P2a/4tyV37Rz5DWW6bgJfksa3klwQy3y0p5GO5+R7RueT2LrnBjfiWkH1R/pZ1cYtAcbuO/Qyl84F9QEI+I34v27PVd1ux9FAiXXHKgWS4x+PB4cOH8cgjjyASiSCRSCCTySAcDmPt2rXGk86BXoY7Hzp0yISVPfXUUygUCkbZ7gaGmFMJPzk5iUAggOHhYQwODiIQCKCrq8so62gwJicnEY/H6+5Jcn2hizZp6KVxohGQx/BvSaLrIlFxvFDPuWI1w174Hk+fbbZ4W01otX5TU1N49NFHEQgEsHnzZmzYsAGRSATd3d11juharWaU6NyHI5/PY2xsDM8//7xRwDVKJcaFdqVSwcGDB5FIJODz+dDf34+enh6zyJakdqVSwejoKCYnJ+vsJjdiawXSGcBFJ1V37e3t6OnpqUsrA6BO3cXz51MoKhYPy3lu5EYcLKScaqsViwFbwZpKpVAoFOoiZKneBVCnqAXcU7BwnG/kDHWDJC7lWMt78Vq8P8sFHE1b0YyMk4pe1lUqT+U9eC3aDx4jryMdC25pNniPRpBqfKkmlt+TNHZzDri9w8yBThvJOpIM5g8FaolEArlcDjMzM/D7/SadqdxYk+tqku8UqI2Pj6NYLBr7LclIqdBnqhmWye/3o6enB11dXWhrazP3LJVKxh5zHc11O1XoTFnCdHGSOJU532Ubsn+zHSqVCjKZjLk+93Shw51EOiPq+HmxWDTPVK7BZX/kXEP2J1kmW/zHa3g8nrr9XexjeH2S8Hy2sm9IstkmnlkOlpcReNJhwP/5/Nvb283GtYwyqFardal55ByY15TRhLZqX/Zb6SjipqGyzKyznXKGx9CBI58v08XI+9oRH7wvozocx6mLSpQOEKm053OS9+E7Mh/UVi8tlEhXnJLgwJPL5TA9PY1MJoPh4WEMDAygUqmgq6vLGBZuYMaBNZfLmd2wZ2ZmMDMzYzYpaXY/bpDC3IDMe8ecqNVqFcFg0ISol8tlTExMYHp6GrlcDpOTk8jn88dVZ0J6ud0Wgxzsl/NCUbHyoAZfsdqx2AS4qoyPgDbW5/NhYGDA2FBpp4Aj7V4oFOrCwakOTyaTZnHUDHJ+kMvlzOLG7/fD6/UaIgiAUcDPzMxgamoKQH14b6vPzi1XJhelctx0Wzzyf+0risWC2mrFYoH9gYRbqVSqy51OIstWZRI2mUcci8NQ5jO3yXmSnJJcY/mpMHeLBpLrJBJiMn0Gy9movG7qcnn/Y4VU9dqfu5XFtikkU5luRDovpCKYxDavyXUy073wGBLK0knB65VKJWPj8/k8stmsWTPbOd/l8+O52WzWXFc6aXhv5linMyefz6NYLCKRSJhocT4DKaCbLxWIfHZUVdNJz7LbIjagfnNaW+ksye/5RG481iZ32ZfdVNY2JJEsHTxu/d2NhJdgOdnv+LcsO69LDgSASUHD98YtMo99Szpwmr2Pdh3t42Rkg9sYI50PzdKsyGgV3pvXbTZGyfdFXks6WlqB2uqlhRLpilMazMdWrVYxMjKCfD6PUCiE0dFRhMPhusGM+cZyuRzGx8eRy+UwNTVlvOWtKs8Y+lWr1TAzM2NCz3g/TjYrlQoSiYTxZraSz6vZPWmASqVSHQFhT/IYCi93XleFm2IxoAZfsZphL3aO91pKjM4F7abjHMkRPjU1ZZRNbC+mdGGalUqlgtnZ2QUR2xKO4xhCwFYvATAqNKkClIvHVutF5HI5s4DkYs/n8xlHO20zVVwkHI61forVB9vxciznq61WHC9IUtI2yrVOMBicQ/bJMcwmuuUx88EtrQMJX0mmAzBpSjwejyF43fI3SzRa7zUjvyU57kZa83y3VBHyuEYkp9v8Q6qaCUm2upXRJl/dnolsU7nBInDUHtKJnUwm4ff7kUql4PP5jBIbOJqXXdpq5iqX6WN4L7t+0hbTSZ5Op037kazN5XJIpVLmmvwh6S2JUtsxD7g/bwrhpJLbcRzDGdiKao/HYzYLLxQKJuqd7c762HUiscpjGQEg+Qm3vjCf40mO8ZxrsAyyn9ltYkdd0nHB7+xNPGXOd6Z1kn2Y4wIdN3YEiHS08RnL/Oe2AMEmxd0iV+gc4vGSuOd3drSITEnVCPxOOhDc8svzf/Yh3pNOI74TrfBKy9VWx+NxfOQjH8H3vvc9AMCb3vQm/N3f/R26u7ubluemm27CXXfdhXg8jgsuuABf/OIXcc4555hjisUi/vzP/xzf+ta3kM/n8cpXvhJ33HEH1q9fv6B7uz3HO++8E1deeeWC6qlEuuKUBglwj8eDvXv34vnnn4fP5zNpVmT4ET3Y5XIZqVSqLtffQgYjhnF5PB6Mj49jYmLC1cvLwXE+NUOr9yyVSvB6vSgWi3VGSA7yjnN0gxKG8R1LGhmFQqE4FbGYY6WOu3NRrVYxPj4+R/0tw8Wles5W0h0LHMdBIpFAKpUyn9kKqOON4GL5qNgE6jcJDwaDiEQideHi3MzUVgguJtSZs7Khz06xlOBah4RQMBg0G1nKdFxybJapFGwcyxjONY7cDJQ/dtoUEq/2+stWnUpSzE4/Y6/l3OohI4K5hpSEoCS77Tpz3Wan2LBJN1l2XrORstgmym0lsUxJI9tOkqgy8iCRSMDj8SCZTJpj6EDhZpzAEacxHcJynzFb6CVV4vZzYZnptKnVashmswBg1q+ZTAaxWAy1Wg3BYHBO6haZ/kPCjjaQbcTzmNJFbgIuj+H6m2tqEukyjYlUYfPZymuQNGf/q1arZp8W6RiS6ne3fmc7Cex3z03JDtSrs0nkU2THZyvLJkV40pHG+Q3rJ50DbCcJloPfM2pBbuZqR4+wnLIvy5RR7NvyXZBKcIoY5PPjsy6Xy3XnNnv3OScjl2RvBksinakCZWYDRiK2KtBcjnjHO96BQ4cO4Qc/+AEA4AMf+ADe9a534f777294zmc/+1l87nOfw1e/+lW84AUvwKc//Wm8+tWvxp49exCNRgEA1157Le6//37cc8896Ovrw0c/+lG88Y1vxGOPPWb6Qav3/spXvoLXvva15v+urq4F11OJdMUpDw5oVHkxpxyV2zTEkmCWO3sfz31P5iBJAyLJf3siReMod+7WhZhiMaH9SaFQHA/k4o95TeUih4vwxbSxJ9Ne24t32mWZHo42Wu204kRB+5RiMUG1tSSzJdlF2CTisUKSgXYucHnPZgpkm1B3I7ZbQSOSXV7TLf1Eo3q5KdLt6xGSCHRDI2W627NpdIwshyQWSabKTbMl6cx1NdelNskpy+fmoLCPtR3oFLzxPlLNbJfVTsVjtxHb1a0v0UbzfM4X5N8A6j5rNL66Pf/5nDRuz8JuG7f3ijxAowiIRu1g/+32LBrdR35mv/eNYPct+5lLJ06jusr7zDeXk+r0ZvWxHRaNnh2Fi3TYNDtOtlWrNni52epnnnkGP/jBD/Df//3fuOCCCwAAX/7yl3HhhRdiz549+I3f+I055ziOg9tvvx033ngj3vrWtwIAvva1r2Ht2rX45je/iQ9+8INIJpO4++678U//9E941ateBQD4xje+gQ0bNuDBBx/Ea17zmgXdu7u7G4ODg8dVVyXSFYr/AQciueO49MzaKrflNnA1g/TCMmSOkxqpjABQFyZ+vM4ChULieB1PCsVKgdtCUHHiYKc1WQ1tzjoVCgVMTU0hHo/XEQ4nI53LamhHxcKhtlqxGKhUKggGgwiFQnPyGgNziTmgMaFmK2fdYKdoIDnFz0ii0jFpE502GSpJ1kYpIhqRmbYi3K0ubtcjuE6zldiSTJTkm9wQ062sfr8fwWCwLtWnVOsCR9W5drSAXRe5Gapdb5/PZxTKjOKm3WI97E00ZZtTfS6jtGRbyfzo0pnAlCGSNOczZhSX7Rhxe4424cs24h5lVBDLZ0KlOSPjarWa2auFG2SyjHb6Dt5Dpo1j/SVhy59GfV++P+wntuJdbpLe6H2yn4f8julwgKNpefhOyTQ3PF9GMtiOGarP/X4/AoGAUW/LcsmyMjJP5laXfUo+D0Y+NHqmPFYq5eV+DR6Px+yPZ/cX+zq2Wl/Czj3v1q5ybIpEIvM6Wmwshq2W0ZbAkT4eCASO+bqPPPIIurq6DJENAL/zO7+Drq4uPPzww65E+sjICCYmJnDppZfWleOSSy7Bww8/jA9+8IN47LHHUC6X644ZHh7G1q1b8fDDD+M1r3nNgu599dVX433vex82bdqEP/3TP8UHPvCBpg4dNyiRrlAIcPBqtnHoSoWtvPd6vSiXy3OIdDkZ0wWRYjGhi3PFaoebckj77onHSlJlSxXbfCBBYi90FIoTCbXVisWA4xxJFREIBOpIbXu8diPR3VTVPLaZilqmarB/ZBoSuf+TjPyx7yFzgEtyUyrDGynNbUWwnbJE/t3oOvacwu3e9nzDJo1JEvp8vjpVtGx76TRgW0ni125ru835f3t7uyHh5IabvA734fJ4PAiFQiZ9KsGysmxSzU3YhKUknG2CVD5r+Vzt/sW6sLysE8lhlplEv7yWTFnCdTXzocuIAxntLZ0Esi3tfsBj3Zwj8rnZsFPX8NqN8vQ3g+wrLL+MNpCbdrJd5A/PdSPZ7TRFNichHQIk2mX/le+xbB97E1x73iXblWB6QDoGZP9r1CZuER92OiW2O1PU2A4seU8AC9oXbzFs9YYNG+o+/9SnPoUdO3Yc83UnJiawZs2aOZ+vWbMGExMTDc8BgLVr19Z9vnbtWhw4cMAc4/f70dPTM+cYnt/qvf/yL/8Sr3zlKxEKhfAf//Ef+OhHP4qZmRl84hOfWEBNlUhXKE5ZyMkW/wfcwx0VCoVCMT/kuOmmglEsLlaiw2KllFOhUCiOB8xjLMkwN2Wo/N0sdUojAh2Ym/dbXksSl16v16QTse9rl0VeQxKfkvxrltLCDbaa1u07meJBEpSsr1uKDkkM2iSkrdBn+XkPu76sqx2V7OYEttObkIAHjuaJlmXnfd3Kbh9jPyN5DstqK0jl2pZ18Xq9CIfDAI6qbe01sNwk3O6DkmiXqV3cyHhJepMwtdXKsmzSCUFCulHaGrvdSqWSeZ52KhK360qy136GMsWL3d6yHG7EMuvu9Xrh9/vrHDCyreQ7KMcDqcyXZbPV4KwPHR6twFbf29eV5WF/l/3WLkOj6/HHfjfls5REulski7yfvdnuicTBgwfR2dlp/m+kRt+xYwduuummptf62c9+BqBxGqv5xkq3sW2+c+xjWrm3JMx/8zd/EwBw8803K5GuUCiao5FHXn6vUJwIqMpNcapgJSmkTwQWoro+nnvIMO+VvDGTQrGcoLZasRiIRqPw+XxzNgMk3JTZEm4kq02S2ISjfYxUI8u0nG791I20k+fKPTnsdBlupJtdTl5PRv5KoluSrXad7PpKIpLlY7oMqTqWZaXKlqlDgKMpNmS7kKB124PDzjFN0p9pQ2V5GQEtiWSSlZLIrlar5nypUHebR8k9vqQzwE5JItOg+f1+hMPhurQ1lUqlbr8zPltJKtsqeNnXeA5TtvAzzkXK5bLZSFVuiimPYTvzR85p+NxsYp7PjWlzvF4vgsEg/H5/HVnINie57ZYjn8e7pXuRKWJspbnsi2wHxzmSf76jo6NuHxdJzMt0MEyRIzfhlI4b+VumAmIfls9hPtW4/N9uS9ZJqvfle9zMnjXqI4wCkf3SdqRIZxcAQ5zL8aGZU7FRHRcCntvZ2VlHpDfC1VdfjT/8wz9seszpp5+OJ598EpOTk3O+m56enqM4J5irfGJiAkNDQ+bzqakpc87g4CBKpRLi8XidKn1qagoXXXSROWah9waOpH9JpVKYnJxsepwNJdIVilMYuuBRnEzo4lyhUCwm7PyTCoXi+KG2WrEYsHOiS0ildzNRTyMyye26zdTJJFYbqUYbpS/hddwIZaA+5cp8fd9WGNvllf/b37mljZN1lISeJAalMln+P9/mo25qcLe0PPyMZZBKa5kKx61ObAdbBTwfiWkr0hvZf6n+JQkr1dDyb+mskfeQhKdMG+R2DP+WdWrmIJIq5mZpghq9A/IZNWoL+7qttrEN+Zwb1ZnkPZ019vO2+8V85bHT8dh1aoVong+y7K1cbz6Hn9t8tFE7NCqLfJdaKf+xYqHn9vf3o7+/f97jLrzwQiSTSTz66KP47d/+bQDAT3/6UySTSUN429i0aRMGBwexc+dOnHfeeQCOOF527dqF2267DQCwbds2+Hw+7Ny5E5dffjkAYHx8HE8//TQ++9nPHvO9AeDxxx9HMBhEd3d3a43xP1AiXaFQKBQnBbo4VyhODZyM95ULVU2ho1AsLtRWKxYDjQgjqQaV6mw38q0REQ+gIQEpCT2pGpUpU+yUExIyfYcsB8lnquzt1GJuKR9sgtu+nszL7IZGBL8kn6X6WtZNpv0AjqaTsX/LdrPBz6SiXBKckqxmHWiX+WylKpcKaVkXj8dj8l/buaZtRa+d4oTH8ZrynrxWrVYzm4FyU0yWWW5eSbhdv5ETwE6dY6dYsduS6T3cyG1bpSzTydipR+RxvIbsy/JYPg+3lCWSkLZJa74vMq+7dIDx/eX1ZeQB8/HzWJbXdkhIRbh9vKxbI2eJLLN81+wUMvZztKNNZLSC3T5yjinLZjvG5B50Ml2MW1561kkq1zmucHPc5Uakt4qzzjoLr33ta/H+978ff//3fw8A+MAHPoA3vvGNdZt9vvCFL8Stt96Kt7zlLfB4PLj22mtxyy23YMuWLdiyZQtuueUWhMNhvOMd7wAAdHV14U//9E/x0Y9+FH19fejt7cWf//mf40UvehFe9apXtXzv+++/HxMTE7jwwgsRCoXwwx/+EDfeeCM+8IEPLHiTVSXSFQqFQqFQKBQrDouhSFIoFArFiYOt3GXqCzvNSTAYrCNXJeltq6AJN5LT3iyQ5JYk9u0NIyUkISjB+zD3u1Qf2wrdRt8RJHT5W6ZbIdzsmyQL2Y622p7EnE2kk5yzz2lGVMr2IMkoVbOS1JVEOnB0E05JBJM05zPguXQo2Gnh+BwkkS/T4vA3N7QtFAqm3WwinYQ7ryWdITLtjl13myiXz0aSxG4EOushUwGx/8h83zJCQaqj2TYyJQ3T7sh72MpuPh8S1LxmI1Kcv22Cl9eXz5zP2Cbq29vbjWOChCQdL3Z6JvZ5t70KJKSjRh5nt7Gd+obvvB2FANTnAJfpnuRnLKtdDhuSkOeYxncaqHcO2teTfUA6FuiEWsnz23/+53/GRz7yEVx66aUAgDe96U34whe+UHfMnj17kEwmzf/XX3898vk8rrrqKsTjcVxwwQV44IEHEI1GzTH/+3//b7S3t+Pyyy9HPp/HK1/5Snz1q1+tc8DNd2+fz4c77rgD27dvR61Ww+bNm3HzzTfjQx/60ILrqUS6QqFQKE4KlqPnXKFQKBQKxVGorVYsFmwSvREZJckkW3XcKM0G/17ofRup3pulICFsotftvnaqCjttiLyWraa3z7frY5eD122UCkbCLY0Kj3VTy9pOgEap1Fp55yUZ6qbelm0kyWe3FDhu9bQJa/4try3JVnkfuy3ttrfrbNfFra6SCJfXsElym5hvVFeWleQzf/N685GubnW168TjqBCXZZckr91O0rEhIyPoOOD1JFh23rNR+XkNt/ddloHlc0ujIvtRs6gL2Yfs8sl2cCsr3xdJ+PPZ2M+Y39tqdekwdHvP3LBcbXVvby++8Y1vLOj+Ho8HO3bswI4dOxqeEwwG8Xd/93f4u7/7u2O+92tf+1q89rWvbVq2VqFEukKhUChOCparwVcoFAqF4kRjPhJuuUBttWIxUC6XXZXdkqiTRBLzWFcqFaOadgOPkypEN1UpSWM3lautUJcqdDvthg1bDWwTinbaE6YskUppSSKTVLMJX7sc/Ezmnue9mDJEQjooeC43uXRLD8JrcuNN+TmVxraier5NvmUdZPml6lmqed2Ic9lP3EjMSqWCXC4H4EjfCAaDcBzHpBfhxqI831aAs0y8l+1Ykf2EBKl8DrwHy8LjZP3dIitknWQKHKrUZcojPn+Zmka+W7KMdtvL9CW8FlCfY50qaN5TXp/RAlLRLqMRuIkoNxLl9f1+v7merTy306DY5XZzKMi+JFXwNoktz+W7BTTfs4Ht7vY3gDrHBZ+PXdZGts9+R/iu0/HAcvEdZhTCSk3tcipBiXSFQqFQnBSowVcoFArFqQipMFvu9kxttWIxQPKuEdFkp8zw+/0NyVz7fJJPbmRTo9Qqbgpcwla+Nrqv/MxWmLrdW6rAbbLWLo9MKyKJc37Pz6Ta1ybdbVLercwkad2cB7LMNniMJPwalZdwcwQw3QXb2y2lin3PZupcEvHSGcN7k6yWkQ7slzIVjiwv20Gea9/PLh9QvzkmiV06Udra2uryy8t7sf4yDYhMsyKdHvJHErRuivZG6mupirdJZzuSgu8vSV95L16ffUn2T9ZFKq8lmS73LZB9RDp/mj136RCQ74QNPotGERpuYPllfXhP1lc6VFjPZsp6WRY+b9lvZAomu12aQW310kKJdIVCoVAoFAqFQqE4QdBFq+JUh00U2USmnXKDsAkyt837gLlKcfu+bht6yg0OSbDKMjVKZVIqlVzvZddXkqmyLpLQdKuz3Sb2eVJpzHMlKc7fNmEvz3cjiN2cD5LEl9fn37ZiW5LiJFSppJYkLssslc7zkYe280ESz279hIpx+7nK42UaD5axFRKT9ZVkrd1vpGLdjsRw61du9ZDkv+wHduoa+2+C5wJH+4i9qSufi03Ok7C3nSvy/m7kPR08zdKi2Olj3PqpfX23Orq1g/xf9is7AqPR++32TtvXkBEkjWDfQ5L/spyyrfi+zBftoVh6KJGuUCgUipMC9ZwrFAqF4lTFSrFjaqsViwmbIJWkpU3O2oSdJBz5NxW+kpyTqVRsSDJLknI8ljmnZaoJqb6WJBhJ9FKpVEc62ylX3O7ttsmlW53t9pApPWwSlgQtN/C0CU7+LQliN4eCJHBt0pykvSybPFameJGpdLzeI5t7trW1IRQKmTYuFouGpGVKEDuti+0AkG1il1u2oSSrbcWvTVjKclLRTqU825JtZ5PAkqRlmhM737V0eBSLxbp+0ugZyPrw/lK9bTsxbFW2vBbvTecGIz7s9pEKflk33ruZcl8+F/v+/C3V427jgLxOo/fH/kw6P2SfYX3lpqoynQzvx+syTZENO9rEHjtkdAevaV/HHhPsftWI+Jdj0HxQW720UCJdoVAoFCcFavAVCsVSwSYDFAqFO9RWKxYbNpkuya9milpJYDVTifPcZv3PJuVsYoyqXDfizibWZJoQ+1o2GqWdmK+cjVTqRCOl+HyKfre2WwhpJ9vDLqdbeSRBLdN7yPNaeXatlM9WdUuy1S1KgfcGjjp2bFW4fV6j52nXSTp55HXclNzN6tRMHd+Kgt9NBe5GQvN4t3fSjSyX17P/lv3ArYzys2OxGex3dlnd3hs75Ypsdz7zhUQh2KATpdmzstuJ/9vvgyT5W4Ha6qWFEukKhUKhOClQg69QtIbjXWQsJywXAns5lGG1QyrwtL1XLtRWKxYD5XIZjuMYpaat2Ja2QRLYMs8yj7OJPxJjtqJZ5qSWx9l/25AElq38ZU5jqr+5MSZVqCTGpCLVLqedZsVNoSvbolHaFXkc29RuWyqwbTLYVs/bKUlkXmheZ76cz/amrl6vF8FgcA5xSPWufFayvvyRJLUkJueLNCCq1SpyudwcR4fdXjxf3p/RBlSnU8XPCASv14tAIFC32Sr7cLlcNo4CtqNURcu2ZB1J7kvFMnO8l8tlFIvFumfLe9nt6hZl4UbSy8/Yn9nXWV/m7p6P5HdLTWOrqN36n9vmo9wI1u/3z9mIVj53eU+bQJff27noWS6Z4132cZbTLVLAdvbQIeT3+02kAY+TfU06bniOvA+fZalUMs+UfadRdIsb1FYvLZRIVygUCsVJgRp8haI12IvtlQq33JCK1QsZzq75PVcu1FYrFgPMIy5J1WZKS3vMsNWZ8m+ZlkXmKydsItuGJJblvey0CpLsLZfLdeSo1+uFz+erO8eNGLeVyPZ9W4Uk0nk+STkSsLJekhC180WTiJTpPeT5wBGytVQqGXLRfrdJntPRQKcJiXRJjtvEMs+XRLO8t5sqvFGqFxLQAFAsFlEsFlGpVIzDw+fzmTLJlEAydQqdPqVSyRDMfLaSdJb1I1kqc6CzLkz3wrLbqmn5t3w3mH6F17PrKnOl284mO62OVJHb7SdJbZ/PN8eZ4tYvbZW5TTrb95R1lESzfNbsY/L6btEEbm3m9XrNc+Nn7AesmyTkZYSArQSnA6hR3WUZ6KiTDjZJzrNf2GOV/a7Kd4eoVqsIBALw+/0NN+C1n8mxQm318UOJdIVCoVAoFIplhPnCeVcSdLJ+6oD9Vp+5QqEgqBInbJVnMzQi9Gxyzu2e9vH2dSXB5na+VL3aqUdacQ5IJbJbHmaWzS5vozrIv+1UFY2igNyu0UjV63Z+M1Vss5Q38rfXW59DvRlsgta2KfaGso0c9W7pMZrZJXms27l2tBXrJUn5Rn0VwJy0Nq2gmfNgPpDUtp9HK2jUbnYfldez1eON3o1WUjfJssrruinl7X7v5qSy/5d9TG7WK4lwN4eYWwSAJO/tCI9WQOcOzz+eFDOKkw8l0hUKhUJxUqCec4WiNTRaFK80rIY6KFrHQhfsKxVSjbga66u2WrEYkApZqZS2P5M5qklWuqVusMltAEZ57PF4EAgE6lImECSo+L19zUYEoa2YJqQidj7ClqkbgPq0IiynVDITchNWNxJTKt3ZJm75qSXh56b2lz9uxwD1ubNt0lMq2mU7lcvlOelGuDmrrcCWpD7bKBAI1LWdnQaGSl2Z7kSqd0lMyrQ7su3cHChUYlMpbKuJmXKjWq2iWCwaVTHLYadfkQp8j8djVN+VSqWOvGU72Buasi1l2iA30lheQ4KK+lqthlwuh0qlYhTRvB/rYBPDvLabfeP39jOQzg6Sy7a63b6OrSKXdZCbiRL2PXmcjHqQKVXsMsloBB5XLBbNJqTNxgL2Kb6bvEYwGJwTlWG/z83ANEFsZzelfzOorV5aKJGuUCgUipMCNfgKxVGoclexGnEq9OnVrhpTW61YDDTLsW0TdW7pJxopxeXfJCwl0SUJLR5HElESf5IwJWy7bBObBEm5ZuOAJFRJhErSkSlAGilo7b/t7+2yub17dl0kIe5Wf7fz3MhSWR5ZVzsXONuZKTBIsLql6gBQl/ZCEsvy2nY/cVM5S2dEK8SkJJhtyNQ9Nrnslg7Ibg+qjqUDxH5Wbg4J1m2+yAe7nDynvb3dkM/2PZvV1Y1MtqNK5Od2u0hyvFF9CdkX3JxsbAO3etrnuB0rIcl0vo/slzy3UVlkmWxlO6MNmo13EpKIl5/Z700rcwy11UsLJdIVCoVCcVKgBl+hOIpTrU/bodEKxUrFfOkQVjrUVisWA27kop2j2Iat6HQj06XaF6jfjLFRGdzUycDc3OiETaLJFAyShLQV1TaxR+KYRH6jOjcihu1c7Y2iYGzVtl0Hu03dyGc7dQmPtUlvebzcoJR5xGV7kUjnZp18dnY6FLe2oaMBOKqWp6LbJkTd2sOt/8koCakoJ+RGkG4RCW5OC/m9VFJTZS5V/LJdZLkqlYrZbFMS4DyPzgWpcm/WXryuvIZ9T7ZjI4eSvC7PcesLsm1Y/0KhYNpXEvCN0qDYaVNkf7ffWdmG8+URbyZYkcp8WTbWRarMZc57lkG2gYwKkY49u835mVu0jby+fb9GUFu9tGgt0dIKwB133IFNmzYhGAxi27Zt+MlPfrLURVIoFArFEmKhdmHXrl3Ytm0bgsEgNm/ejC996Utzjrnvvvtw9tlnIxAI4Oyzz8Z3vvOdBd/XcRzs2LEDw8PDCIVCePnLX47du3cfX2VXCNRWn5qQyp3VrORVnHgsh/7jtrBWHDuWq60+1XG87WOTsCSnSAbaCs9mBDHfN27sWCwWTfoWv98Pn88HYC55yFQhJCjtVBYk5WyluhthShvG+/l8PnOuDdaLG13ax9oKbluFzs9sklKqu9kekkCX58nj+Dc3d+Rv/i2fiSSbJWFuP0+SkNwcs1gsGvU9v2PbyzzQtiPEHtPtOpfLZZRKJRQKBbOxI8lK+UzlD58T7y3TzhQKBZTL5ToSVjpc/H6/cRCw7WSf4P+y7PJZyk08eS03wlVGJfCa7C+S1JXt3Ei5Tshn3Uz5Lt9Fm8S1iX+7b/EY+5nK97JQKCCTyaBQKJj0KR6Px2ykyf4k6ybfUTcHi3R68Tj7/WtU50YiDvbRYDCIYDCIcDiMYDAIv9+PQCBgCH4+V25gK9uKZWhvbzepWqSDQOZjt9NdyfeS1y8UCsjlcsjlclAsb6wKIv3ee+/FtddeixtvvBGPP/44fvd3fxeve93rMDo6utRFUygUCsX/QC6cjuVnIVioXRgZGcHrX/96/O7v/i4ef/xx/MVf/AU+8pGP4L777jPHPPLII7jiiivwrne9C7/85S/xrne9C5dffjl++tOfLui+n/3sZ/G5z30OX/jCF/Czn/0Mg4ODePWrX410Or3AFl1ZUFutUCgUyx9qqxUnun3ciLJGGym6qTfldeSmj43uJUlIW1XdSBVt30f+tFrWRkS7WxkJN0W4Tf7bDgo3Ip5/2yp5t3JKyOPte8vr2QplNwW0/XwWIyqtWfvLYwD3jUMlZDmkM6WZQts+Xl6nUcqUZnArg/2527HzXWu+zxv1G7doBFmmZhELvK506Nj9TxLM0vFhO5ka9RO7X8logGbt4/YM5bVkXWTqJrdoEHvckJEH0qHTLArFbjOZHmYhivSTZasVc+FxVkErXnDBBfit3/ot3Hnnneazs846C29+85tx6623znt+KpVCV1fXiSyiQqFQnBJIJpPo7Oys+0yOsceqJqSpcru+GxZqFz72sY/he9/7Hp555hnz2ZVXXolf/vKXeOSRRwAAV1xxBVKpFP7t3/7NHPPa174WPT09+Na3vtXSfR3HwfDwMK699lp87GMfAwAUi0WsXbsWt912Gz74wQ8upFlWFE41W90spPRUhL1IWmw0W3wqFIp6qK0+Pnu02nE87cN+dPrpp9dtyijV4M1SekgbIQk4Kn25kaKdHkQqR6Va3U6vQqWxPAc4aqOo6pXlc0sLI8vqpqaXZJ8kf6WS3C1VB8vEejaK5GI9a7VaXdu6kZxyU0ZJ/NkbMJbLZWSzWdRqNYRCIUQikbp7F4tFFAoFo572+XyoVCrIZDIol8uIRCLo6emp20CSSlu2a6FQAAAEAgGzISafF1XBtVoNhULBfG6n0/J4PHXKbT4HOQ+gytsm+O3c61SOy2dDhbBUx8sUQcFgEN3d3Whra8Ps7Czi8Tja2trQ2dmJYDCITCaDWCyGarWKrq4udHR0oFqtIp/Po1qtIhQKoaOjA47jIB6PI51OIxAIoLu7G4FAAOl0GslkEh6PB52dnQiFQqhWq6btWRbC6/UaJbjjOIhEIgiHw6hUKkilUigWi+aeXq8XuVzOpF8JBAJmbwGm4GEUhVTLM4KBkRZ8r+g4KBaLKBaLpl3td0CeI/cs4PNgmRznyCagfDZ2Ch6WT9bDfsZS5c7zWA+v1zvnebulAXIcB7lcDsVi0VyL/S4cDte9P+xvfKft8cUeB+wUNnyvbNJ+//79y8ZWK+ZixSvSS6USHnvsMVx66aV1n1966aV4+OGHl6hUCoVCoXDDyfCaH4tdeOSRR+Yc/5rXvAY///nPzY7ujY7hNVu578jICCYmJuqOCQQCuOSSS1a1zTrVbHUzkuBUhVsIu0JxKsFN6bhccarb6lMZi9U+jchnmS5E/kgVp/2usH9VKhV4PB6Ew2GEw2GEQiGTLsItdYuErfzlbzs9iK2mlqkbmJbCDZIgd3vP3WxgI0Uvj5HpLphugmko/H6/OddO1SIdBG5kP9tfXp9EIYlv3t9Oc8K0E8VisS7fOAlpmd4COOr4CAaDdelA7EgB2T/sVC1+v9/8BAIBk3bDPkc+O9kG/Mzv9yMYDCIQCJg6yWPk/3w+vD+dNzKNh030BoNBdHR0oL293aSkkeloZGoju1/wODvVjp2fXX4n+5AdtSBJat5bqs7lvew0Om59DzhKlss2s9vCTl0jU5ewzD6fz7y7fH8BoFwum3swBY90qrlFUsiURWxv2W6NxoRGYwy/k21p/89xge8Q+zh/OB5Jst0NMoLBTvMyX/53u9yqRj/5WPGbjc7MzKBarWLt2rV1n69duxYTExOu50iPGXDEE6NQKBSK48eJNs6pVKruf07CJI7FLkxMTLgeX6lUMDMzg6GhoYbH8Jqt3Je/3Y45cOBAw3qvdJxqtlonqScf2uaK5Y7l1EfVVi/svqcSFto+jWy1TRqSXJMpE9xSg0jCl8pOSXqS0JXkmE1Uyk0qG6VBaZTeRJ4vy9vW1laXq53fk7SzP7PPl2VgOSThZ5dR3kdGuEmVuU38ymuQAOex8p68jlTGuqWXIJkn21YSsW7/8xz+lhEAshyyLeX3bspetqPdBo3GMdlfpFOE/cG+t10+O2+43W/pbJDKd6lkd0vTIZ+XXU8ey1zisuw8Vl5DOgxYNrttG5VDXrO9vb3uM/uedv+W38vzZH+UZD1hn0OHmMxBbreRXWb7WnbUge0Qkfe0nQn293IscktjI9vbbhtZB15btpmtlreJbNkH5HfSEaZYnljxRDphe3oaeYMB4NZbb8VNN910MoqlUCgUpxTS6fSc9Bt+vx+Dg4PHvUDt6OjAhg0b6j771Kc+hR07drgevxC70Oh4+/NWrrlYx6xGqK1WKBSKpYfa6lPXDreKVtunka3ev3//iSqaQrEssW/fvjmfzc7OLkFJFKsFJ9JWDw4OmmgAxcKx4on0/v5+tLW1zelIU1NTczzpxA033IDt27eb/xOJBDZu3IjR0dEVlX+1GVKpFDZs2ICDBw+umrxHq61Oq60+gNZpJeBE1cdxHKTTaQwPD8/5LhgMYmRkxIQLHs897EWcrXADjs0uuE1Ipqam0N7ejr6+vqbH8Jqt3HdwcBDAEVXd0NBQS2VbDVBb7Y7VNr4Aq69Oq60+gNZppeBE1Elt9bHd91TCQttHbfXKxGqr02qrD6B1WilYqbaaqY4Ux4YVT6T7/X5s27YNO3fuxFve8hbz+c6dO3HZZZe5nuMWXggAXV1dq+aFJjo7O7VOyxyrrT6A1mkl4ETUp9mCiTkdTwaOxS5ceOGFuP/+++s+e+CBB3D++efD5/OZY3bu3Inrrruu7piLLrqo5ftu2rQJg4OD2LlzJ8477zwAR/KR7tq1C7fddtsi1H55Qm11c6y28QVYfXVabfUBtE4rBYtdJ7XVC7/vqYSFto/a6pWN1Van1VYfQOu0UrBabbXCHSueSAeA7du3413vehfOP/98XHjhhbjrrrswOjqKK6+8cqmLplAoFIolwHx24YYbbsDY2Bi+/vWvAwCuvPJKfOELX8D27dvx/ve/H4888gjuvvtufOtb3zLXvOaaa3DxxRfjtttuw2WXXYbvfve7ePDBB/HQQw+1fF+Px4Nrr70Wt9xyC7Zs2YItW7bglltuQTgcxjve8Y6T2EInH2qrFQqFQiGxXG31qQ5tH4VCoVAoGmNVEOlXXHEFZmdncfPNN2N8fBxbt27F97//fWzcuHGpi6ZQKBSKJcB8dmF8fByjo6Pm+E2bNuH73/8+rrvuOnzxi1/E8PAwPv/5z+Ntb3ubOeaiiy7CPffcg0984hP45Cc/iTPOOAP33nsvLrjggpbvCwDXX3898vk8rrrqKsTjcVxwwQV44IEHEI1GT0LLLB3UVisUCoVCYjnb6lMZ2j4KhUKhUDSBo3AKhYLzqU99yikUCktdlEWD1mn5Y7XVx3G0TisBq60+ilMHq7Hvap2WP1ZbfRxH67RSsBrrpFj9WI39Vuu0/LHa6uM4WqeVgtVYJ8X88DjO/2x1rlAoFAqFQqFQKBQKhUKhUCgUCoViDrxLXQCFQqFQKBQKhUKhUCgUCoVCoVAoljOUSFcoFAqFQqFQKBQKhUKhUCgUCoWiCZRIVygUCoVCoVAoFAqFQqFQKBQKhaIJlEhXKBQKhUKhUCgUCoVCoVAoFAqFoglOeSL9jjvuwKZNmxAMBrFt2zb85Cc/WeoitYxbb70VL3nJSxCNRrFmzRq8+c1vxp49e+qOcRwHO3bswPDwMEKhEF7+8pdj9+7dS1TiheHWW2+Fx+PBtddeaz5bifUZGxvDH//xH6Ovrw/hcBi/+Zu/iccee8x8v9LqVKlU8IlPfAKbNm1CKBTC5s2bcfPNN6NWq5ljlnudfvzjH+P3f//3MTw8DI/Hg3/5l3+p+76V8heLRXz4wx9Gf38/IpEI3vSmN+HQoUMnsRb1aFancrmMj33sY3jRi16ESCSC4eFhvPvd78bhw4frrrHc6qRQSKxUe622emXUR2318quT2mq11YqVB7XVyxdqr5cf1FYfwXKza2qrFfPCOYVxzz33OD6fz/nyl7/s/OpXv3KuueYaJxKJOAcOHFjqorWE17zmNc5XvvIV5+mnn3aeeOIJ5w1veINz2mmnOZlMxhzzV3/1V040GnXuu+8+56mnnnKuuOIKZ2hoyEmlUktY8vnx6KOPOqeffrpz7rnnOtdcc435fKXVJxaLORs3bnTe+973Oj/96U+dkZER58EHH3SeffZZc8xKq9OnP/1pp6+vz/nXf/1XZ2RkxPm///f/Oh0dHc7tt99ujlnudfr+97/v3Hjjjc59993nAHC+853v1H3fSvmvvPJKZ926dc7OnTudX/ziF84rXvEK58UvfrFTqVROcm2OoFmdEomE86pXvcq59957nV//+tfOI4884lxwwQXOtm3b6q6x3OqkUBAr2V6rrV7+9VFbvTzrpLZabbViZUFt9fKF2uvlWSe11Uew3Oya2mrFfDilifTf/u3fdq688sq6z174whc6H//4x5eoRMeHqakpB4Cza9cux3Ecp1arOYODg85f/dVfmWMKhYLT1dXlfOlLX1qqYs6LdDrtbNmyxdm5c6dzySWXGGO/EuvzsY99zHnZy17W8PuVWKc3vOENzp/8yZ/UffbWt77V+eM//mPHcVZenWzj2Er5E4mE4/P5nHvuucccMzY25ni9XucHP/jBSSt7I7hNYmw8+uijDgCzuFnudVKc2lhN9lpt9fKD2uojWM51Uluttlqx/KG2enlC7fXyrZPa6uVv19RWK9xwyqZ2KZVKeOyxx3DppZfWfX7ppZfi4YcfXqJSHR+SySQAoLe3FwAwMjKCiYmJujoGAgFccskly7qOH/rQh/CGN7wBr3rVq+o+X4n1+d73vofzzz8ff/AHf4A1a9bgvPPOw5e//GXz/Uqs08te9jL8x3/8B/bu3QsA+OUvf4mHHnoIr3/96wGszDpJtFL+xx57DOVyue6Y4eFhbN26dUXUETgyXng8HnR3dwNYHXVSrE6sNnuttnr5QW31ESz3OkmorV65dVKsTqitXr5Qe71866S2enXYNbXVpx7al7oAS4WZmRlUq1WsXbu27vO1a9diYmJiiUp17HAcB9u3b8fLXvYybN26FQBMPdzqeODAgZNexlZwzz334Be/+AV+9rOfzfluJdbn+eefx5133ont27fjL/7iL/Doo4/iIx/5CAKBAN797nevyDp97GMfQzKZxAtf+EK0tbWhWq3iM5/5DP7oj/4IwMp8ThKtlH9iYgJ+vx89PT1zjlkJ40ehUMDHP/5xvOMd70BnZyeAlV8nxerFarLXaquXZ33UVh/Fcq6ThNrqlVknxeqF2urlCbXXMP8vxzqprV75dk1t9amJU5ZIJzweT93/juPM+Wwl4Oqrr8aTTz6Jhx56aM53K6WOBw8exDXXXIMHHngAwWCw4XErpT4AUKvVcP755+OWW24BAJx33nnYvXs37rzzTrz73e82x62kOt177734xje+gW9+85s455xz8MQTT+Daa6/F8PAw3vOe95jjVlKd3HAs5V8JdSyXy/jDP/xD1Go13HHHHfMevxLqpDg1sNLHFEBt9XKsD6C2WmI518kNaquPYCXUSXFqYKWPKcDqsNWA2muJ5VontdWNsRLqqLb61MUpm9qlv78fbW1tczxCU1NTczxmyx0f/vCH8b3vfQ8//OEPsX79evP54OAgAKyYOj722GOYmprCtm3b0N7ejvb2duzatQuf//zn0d7ebsq8UuoDAENDQzj77LPrPjvrrLMwOjoKYOU9IwD4X//rf+HjH/84/vAP/xAvetGL8K53vQvXXXcdbr31VgArs04SrZR/cHAQpVIJ8Xi84THLEeVyGZdffjlGRkawc+dO4zUHVm6dFKsfq8Veq61envUB1FZLLOc6SaitXll1Uqx+qK1eflB7fRTLtU5qq1euXVNbfWrjlCXS/X4/tm3bhp07d9Z9vnPnTlx00UVLVKqFwXEcXH311fj2t7+N//zP/8SmTZvqvt+0aRMGBwfr6lgqlbBr165lWcdXvvKVeOqpp/DEE0+Yn/PPPx/vfOc78cQTT2Dz5s0rqj4A8NKXvhR79uyp+2zv3r3YuHEjgJX3jAAgl8vB660fOtra2lCr1QCszDpJtFL+bdu2wefz1R0zPj6Op59+etnWkcZ+3759ePDBB9HX11f3/Uqsk+LUwEq312qrl3d9ALXVxHKvk4Ta6pVTJ8WpAbXVyw9qr49gOddJbfXKtGtqqxU4GTuaLlfcc889js/nc+6++27nV7/6lXPttdc6kUjE2b9//1IXrSX82Z/9mdPV1eX86Ec/csbHx81PLpczx/zVX/2V09XV5Xz72992nnrqKeeP/uiPnKGhISeVSi1hyVuH3FnccVZefR599FGnvb3d+cxnPuPs27fP+ed//mcnHA473/jGN8wxK61O73nPe5x169Y5//qv/+qMjIw43/72t53+/n7n+uuvN8cs9zql02nn8ccfdx5//HEHgPO5z33Oefzxx81O262U/8orr3TWr1/vPPjgg84vfvEL5/d+7/ecF7/4xU6lUll2dSqXy86b3vQmZ/369c4TTzxRN14Ui8VlWyeFgljJ9lpt9fKvj9rq5VkntdVqqxUrC2qrlz/UXi8vqK0+guVm19RWK+bDKU2kO47jfPGLX3Q2btzo+P1+57d+67ecXbt2LXWRWgYA15+vfOUr5phareZ86lOfcgYHB51AIOBcfPHFzlNPPbV0hV4gbGO/Eutz//33O1u3bnUCgYDzwhe+0Lnrrrvqvl9pdUqlUs4111zjnHbaaU4wGHQ2b97s3HjjjXWGY7nX6Yc//KHru/Oe97zHcZzWyp/P552rr77a6e3tdUKhkPPGN77RGR0dXYLaHEGzOo2MjDQcL374wx8u2zopFBIr1V6rrV4Z9VFbvfzqpLZabbVi5UFt9fKG2uvlBbXVR7Dc7JraasV88DiO4xy7nl2hUCgUCoVCoVAoFAqFQqFQKBSK1Y1TNke6QqFQKBQKhUKhUCgUCoVCoVAoFK1AiXSFQqFQKBQKhUKhUCgUCoVCoVAomkCJdIVCoVAoFAqFQqFQKBQKhUKhUCiaQIl0hUKhUCgUCoVCoVAoFAqFQqFQKJpAiXSFQqFQKBQKhUKhUCgUCoVCoVAomkCJdIVCoVAoFAqFQqFQKBQKhUKhUCiaQIl0hUKhUCgUCoVCoVAoFAqFQqFQKJpAiXSFAsDLX/5yXHvttSvmuouN/fv3w+Px4IknnljqoigUCoVC4Qq11WqrFQqFQrG8obZabbVCsdrRvtQFUChWM7797W/D5/OdtPv96Ec/wite8QrE43F0d3eftPsqFAqFQrFSobZaoVAoFIrlDbXVCoViuUCJdIXiBKBcLsPn86G3t3epi6JQKBQKhcIFaqsVCoVCoVjeUFutUCiWGzS1i0LxP6jVarj++uvR29uLwcFB7Nixw3w3OjqKyy67DB0dHejs7MTll1+OyclJ8/2OHTvwm7/5m/jHf/xHbN68GYFAAI7j1IWg/ehHP4LH45nz8973vtdc584778QZZ5wBv9+P3/iN38A//dM/1ZXR4/HgH/7hH/CWt7wF4XAYW7Zswfe+9z0AR8LIXvGKVwAAenp66q79gx/8AC972cvQ3d2Nvr4+vPGNb8Rzzz13TO108803Y3h4GLOzs+azN73pTbj44otRq9WO6ZoKhUKhULQCtdWtQW21QqFQKJYKaqtbg9pqhWJlQol0heJ/8LWvfQ2RSAQ//elP8dnPfhY333wzdu7cCcdx8OY3vxmxWAy7du3Czp078dxzz+GKK66oO//ZZ5/F//k//wf33Xefa060iy66COPj4+bnP//zPxEMBnHxxRcDAL7zne/gmmuuwUc/+lE8/fTT+OAHP4j/7//7//DDH/6w7jo33XQTLr/8cjz55JN4/etfj3e+852IxWLYsGED7rvvPgDAnj17MD4+jr/9278FAGSzWWzfvh0/+9nP8B//8R/wer14y1veckwG+sYbb8Tpp5+O973vfQCAL33pS/jxj3+Mf/qnf4LXq0OKQqFQKE4c1Fa3BrXVCoVCoVgqqK1uDWqrFYoVCkehUDiXXHKJ87KXvazus5e85CXOxz72MeeBBx5w2tranNHRUfPd7t27HQDOo48+6jiO43zqU59yfD6fMzU1Nee611xzzZz7zczMOGeccYZz1VVXmc8uuugi5/3vf3/dcX/wB3/gvP71rzf/A3A+8YlPmP8zmYzj8Xicf/u3f3Mcx3F++MMfOgCceDzetL5TU1MOAOepp55yHMdxRkZGHADO448/3vQ84rnnnnOi0ajzsY99zAmHw843vvGNls5TKBQKheJYobZabbVCoVAoljfUVqutVihWO9TNpVD8D84999y6/4eGhjA1NYVnnnkGGzZswIYNG8x3Z599Nrq7u/HMM8+YzzZu3IiBgYF571Mul/G2t70Np512mvFsA8AzzzyDl770pXXHvvSlL627h13OSCSCaDSKqamppvd87rnn8I53vAObN29GZ2cnNm3aBOBIaN2xYPPmzfibv/kb3Hbbbfj93/99vPOd7zym6ygUCoVCsRCorW4daqsVCoVCsRRQW9061FYrFCsPutmoQvE/sHcB93g8qNVqcBwHHo9nzvH255FIpKX7/Nmf/RlGR0fxs5/9DO3t9a+gfR+3ezcqZzP8/u//PjZs2IAvf/nLGB4eRq1Ww9atW1EqlVoqsxt+/OMfo62tDfv370elUplTF4VCoVAoFhtqqxcGtdUKhUKhONlQW70wqK1WKFYWVJGuUMyDs88+G6Ojozh48KD57Fe/+hWSySTOOuusBV3rc5/7HO69915873vfQ19fX913Z511Fh566KG6zx5++OEF3cPv9wMAqtWq+Wx2dhbPPPMMPvGJT+CVr3wlzjrrLMTj8QWV28a9996Lb3/72/jRj36EgwcP4i//8i+P63oKhUKhUBwP1FbPhdpqhUKhUCwnqK2eC7XVCsXKg7q6FIp58KpXvQrnnnsu3vnOd+L2229HpVLBVVddhUsuuQTnn39+y9d58MEHcf311+OLX/wi+vv7MTExAQAIhULo6urC//pf/wuXX345fuu3fguvfOUrcf/99+Pb3/42HnzwwZbvsXHjRng8Hvzrv/4rXv/61yMUCqGnpwd9fX246667MDQ0hNHRUXz84x9fcDsQhw4dwp/92Z/htttuw8te9jJ89atfxRve8Aa87nWvw+/8zu8c83UVCoVCoThWqK2uh9pqhUKhUCw3qK2uh9pqhWJlQhXpCsU88Hg8+Jd/+Rf09PTg4osvxqte9Sps3rwZ995774Ku89BDD6FareLKK6/E0NCQ+bnmmmsAAG9+85vxt3/7t/jrv/5rnHPOOfj7v/97fOUrX8HLX/7ylu+xbt063HTTTfj4xz+OtWvX4uqrr4bX68U999yDxx57DFu3bsV1112Hv/7rv15Q2QnHcfDe974Xv/3bv42rr74aAPDqV78aV199Nf74j/8YmUzmmK6rUCgUCsXxQG31UaitVigUCsVyhNrqo1BbrVCsXHgcx3GWuhAKhUKhUCgUCoVCoVAoFAqFQqFQLFeoIl2hUCgUCoVCoVAoFAqFQqFQKBSKJlAiXaFQ1OHKK69ER0eH68+VV1651MVTKBQKheKUh9pqhUKhUCiWN9RWKxSrE5raRaFQ1GFqagqpVMr1u87OTqxZs+Ykl0ihUCgUCoWE2mqFQqFQKJY31FYrFKsTSqQrFAqFQqFQKBQKhUKhUCgUCoVC0QSa2kWhUCgUCoVCoVAoFAqFQqFQKBSKJlAiXaFQKBQKhUKhUCgUCoVCoVAoFIomUCJdoVAoFAqFQqFQKBQKhUKhUCgUiiZQIl2hUCgUCoVCoVAoFAqFQqFQKBSKJlAiXaFQKBQKhUKhUCgUCoVCoVAoFIomUCJdoVAoFAqFQqFQKBQKhUKhUCgUiiZQIl2hUCgUCoVCoVAoFAqFQqFQKBSKJlAiXaFQKBQKhUKhUCgUCoVCoVAoFIom+P8Be0R8LD5nDVAAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABdEAAAFxCAYAAACcBuH3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9e5gcVZ0+/k5NdXVNT02nM+kkkzAJEwgQSEDQIAEvgFwURN0VL6ur4q6yILuPArKKrnJbhEVYRVdAcVmQr/freuPnAgqIAgqyuIabBglkSIZkEiYzPTM93TVdvz9OvVWfOn16MgnBZMh5n6efnqk+de5V55z3fM77aYuiKIKFhYWFhYWFhYWFhYWFhYWFhYWFhYWFRROcXZ0BCwsLCwsLCwsLCwsLCwsLCwsLCwsLi90VlkS3sLCwsLCwsLCwsLCwsLCwsLCwsLCwaAFLoltYWFhYWFhYWFhYWFhYWFhYWFhYWFi0gCXRLSwsLCwsLCwsLCwsLCwsLCwsLCwsLFrAkugWFhYWFhYWFhYWFhYWFhYWFhYWFhYWLWBJdAsLCwsLCwsLCwsLCwsLCwsLCwsLC4sWsCS6hYWFhYWFhYWFhYWFhYWFhYWFhYWFRQtYEt3CwsLCwsLCwsLCwsLCwsLCwsLCwsKiBSyJbmFhYWFhYWFhYWFhYWFhYWFhYWFhYdEClkS3sNiNcdNNN6GtrQ1r166d9j333HMPLrroIgwNDb0geZoq/r6+PpxyyikvSLoWFhYWMxF8j/Pj+z56enpw7LHH4vLLL8fGjRt3OO5HHnkEF1100XaNES9mXHTRRZm6lp8vfOELSbi2tjb80z/9U+bedevW4ayzzsL++++Pjo4OdHd34+CDD8bpp5+OdevWYe3atS3j1j+yPc4991y0tbU9r7HxmGOOwTHHHLPD9++umMlzBvaHm266aVdnxcLCogXs+PuXw4t1/N0VsGP+7gc75ltIuLs6AxYWFjsX99xzDy6++GK8973vRalUmnHxW1hYWLwYceONN2LZsmWo1+vYuHEjfvWrX+GKK67AVVddhW9961s4/vjjtzvORx55BBdffDGOOeYY9PX17fxMz1D87Gc/w6xZszLXlixZ0jJ8f38/XvrSl6JUKuHDH/4wDjjgAGzduhWPPPIIvv3tb+PPf/4zVq1ahXvvvTdz31lnnYWtW7fia1/7Wub6ggULAAD1eh1f/epXkzw988wz2GuvvXZGES0sLCwspgk7/v7lYMdfCwuLFzssiW6xxyOKIlSrVXR0dOzqrOwSjI+P77Flt7CwsPhLYcWKFVi5cmXy/6mnnopzzjkHr3zlK/HmN78Zf/rTnzB//vxdmMOdg6nG1PHxcfi+j7a2th2Of2xsDIVCYcowL3vZy1Aul6cd55e//GUMDg7it7/9bWax/1d/9Vf4+Mc/jkajAcdxsGrVqsx9xWIRtVqt6Trxwx/+EJs2bcLrX/96/PSnP8VXvvIVfPzjH592vmYiJicnEYYh8vn8rs6KhYWFBQA7/gJ2/N0Txt9dATvmW+yJsHIuFi8q/PCHP8QhhxyCfD6PffbZB5/73OeS42UEj5F98YtfxIEHHoh8Po+vfOUrAIBf/epXOO6449DV1YVCoYCjjjoKP/3pTzNp6PERJukVHlv62c9+hpe+9KXo6OjAsmXL8F//9V9N99933314xSteAd/3sXDhQnzsYx9DvV7frvJfdNFF+Od//mcAatefR9vuvPPOTH6+//3v47DDDoPv+7j44ounPKLU1taGiy66aFrxE9Mpr4WFhcWejsWLF+Pf//3fMTIygi996UvJ9QceeAB/8zd/g76+PnR0dKCvrw/veMc78NRTTyVhbrrpJrz1rW8FABx77LHJ+5jv8dtuuw1vetOb0NvbC9/3sXTpUpxxxhkYHBycVt6Gh4dx3nnnYcmSJfA8D3vttRfOPvtsjI6OZsK1GlM5Jt566634+7//e8ydOxeFQgETExNoNBr49Kc/jWXLliGfz2PevHl4z3veg/7+/kzcxxxzDFasWIFf/vKXOOqoo1AoFPD3f//3O1LVU2Lz5s1wHAfz5s0z/u44OzZdvuGGG+B5Hm688UYsWrQIN954I6Ioej5ZTbBlyxacddZZ2GuvveB5HvbZZx/8y7/8CyYmJpIwb33rW7F8+fLMfW94wxvQ1taG73znO8m1Bx98EG1tbfjxj3+cXBsYGMAZZ5yB3t5eeJ6HJUuW4OKLL0YYhkkYzh0+/elP49JLL8WSJUuQz+dxxx13bFdZfvCDH+CQQw6B7/vYZ5998PnPf74pzNNPP413vetdmDdvHvL5PA488ED8+7//OxqNRhLmzjvvNM5JTHOc9773vQiCAGvWrMHJJ5+MIAiwaNEifPjDH87UIQCsX78eb3vb29DV1YVZs2bh7W9/OwYGBrarjBYWFrsX7Phrx9/pYHvW8qtXr8ab3vQmzJ49G77v49BDD004hucLO+bbMd9i94G1RLd40eBnP/sZ3vzmN+PVr341vvWtbyEMQ1x11VV49tlnm8L+93//N+6++25ccMEF6Onpwbx583DXXXfhhBNOwCGHHIIbbrgB+Xwe1157Ld7whjfgG9/4Bt7+9rfvUL5+//vf48Mf/jDOP/98zJ8/H//5n/+J973vfVi6dCle/epXA1BHAo877jj09fXhpptuQqFQwLXXXouvf/3r25XW+9//fmzZsgX/8R//ge9///vJkbaDDjooCfPggw/i0UcfxSc+8QksWbIEnZ2dOzX+6ZTXwsLCwkLh5JNPRnt7O375y18m19auXYsDDjgAf/M3f4Pu7m5s2LAB1113HQ4//HA88sgjKJfLeP3rX4/LLrsMH//4x3HNNdfgpS99KQBg3333BQA88cQTOPLII/H+978fs2bNwtq1a/GZz3wGr3zlK/GHP/wBuVyuZZ7GxsZw9NFHo7+/Hx//+MdxyCGH4OGHH8YFF1yAP/zhD7j99tszm8mmMfX+++8HAPz93/89Xv/61+P//b//h9HRUeRyOXzgAx/A9ddfj3/6p3/CKaecgrVr1+KTn/wk7rzzTjz44IMZK7YNGzbgXe96Fz7ykY/gsssum9aCmpZRRFtbG9rb21uGP/LII3HNNdfgzW9+M84991wceeSRKBaL20xnKvT39+PWW2/Fqaeeirlz5+K0007DpZdeil/+8pc4+uijn1fc1WoVxx57LJ544glcfPHFOOSQQ3D33Xfj8ssvx0MPPZRs/h9//PH47ne/iw0bNmDBggUIwxB33XUXOjo6cNtttyUk0O233w7XdRMN1oGBAbz85S+H4zi44IILsO++++Lee+/FpZdeirVr1+LGG2/M5Ofzn/889t9/f1x11VUoFovYb7/9pl2Whx56CGeffTYuuugi9PT04Gtf+xo+9KEPoVar4bzzzgMAbNq0CUcddRRqtRr+9V//FX19ffjJT36C8847D0888QSuvfbaHarHer2ON77xjXjf+96HD3/4w/jlL3+Jf/3Xf8WsWbNwwQUXAFDWm8cffzzWr1+Pyy+/HPvvvz9++tOf7vCc0MLCYveBHX/t+DsdTGdt+/jjj+Ooo47CvHnz8PnPfx5z5szBV7/6Vbz3ve/Fs88+i4985CM7XB475tsx32I3Q2Rh8SLB4YcfHi1atCiamJhIro2MjERz5syJZFcHEM2aNSvasmVL5v5Vq1ZF8+bNi0ZGRpJrYRhGK1asiHp7e6NGoxFFURRdeOGFkenRufHGGyMA0ZNPPplc23vvvSPf96OnnnoquTY+Ph51d3dHZ5xxRnLt7W9/e9TR0RENDAxk0l62bFlTnNvClVde2fKevffeO2pvb48ef/zxzPUnn3wyAhDdeOONTfcAiC688MJpxz+d8lpYWFjsKeDYcP/997cMM3/+/OjAAw9s+XsYhlGlUok6Ozujz33uc8n173znOxGA6I477pgyD41GI6rX69FTTz0VAYh++MMfThn+8ssvjxzHacrzd7/73QhAdMsttyTXWo2pLPd73vOezPVHH300AhCdddZZmeu/+c1vIgDRxz/+8eTa0UcfHQGIfv7zn0+ZX4Ljs/7Za6+9MuEARP/4j/+Y/N9oNKIzzjgjchwnAhC1tbVFBx54YHTOOedMOf4effTR0fLly42/XXLJJRGA6Gc/+1kURVH05z//OWpra4ve/e53T6ssejpHH3108v8Xv/jFCED07W9/OxPuiiuuiABEt956axRFUbRmzZoIQHTzzTdHURRFv/rVryIA0Uc+8pFoyZIlyX0nnHBCdNRRRyX/n3HGGVEQBJmxPIqi6KqrrooARA8//HAURencYd99941qtdp2l2vvvfeO2traooceeihz/YQTToiKxWI0OjoaRVEUnX/++RGA6De/+U0m3Ac+8IGora0tmdPccccdxufBNMc57bTTjHV48sknRwcccEDy/3XXXWd8Zk4//fSW8yYLC4vdA3b8teNvFD2/8Xe6a9u/+Zu/ifL5fPT0009n7j/ppJOiQqEQDQ0NTTtNO+bbMd9i94aVc7F4UWB0dBQPPPAA/uqv/gqe5yXXgyDAG97whqbwr3nNazB79uzM/b/5zW/wlre8BUEQJNfb29vx7ne/G/39/Xj88cd3KG+HHnooFi9enPzv+z7233//zLHAO+64A8cdd1xGj6+9vf0F2fU85JBDsP/+++/0eInplNfCwsLCIkWkHTGuVCr46Ec/iqVLl8J1XbiuiyAIMDo6ikcffXRacW7cuBFnnnkmFi1aBNd1kcvlsPfeewPANuP4yU9+ghUrVuDQQw9FGIbJ57Wvfa3x6Kw+pkqceuqpmf957Pe9731v5vrLX/5yHHjggfj5z3+euT579my85jWv2VZxM7j99ttx//33J59bbrllyvBtbW344he/iD//+c+49tpr8Xd/93eo1+v47Gc/i+XLl+Ouu+7arvSjKEqOkJ9wwgkAlATaMcccg+9973sYHh7ervh0/OIXv0BnZyfe8pa3ZK6zTlmH++67L/r6+nD77bcDUBIDBx98MN71rnfhySefxBNPPIGJiQn86le/yjjW+8lPfoJjjz0WCxcuzLT/SSedBABN9fHGN75xSsvKqbB8+XK85CUvyVx75zvfieHhYTz44INJeQ866CC8/OUvbypvFEX4xS9+sUNpt7W1Nc0RDznkkKb5WVdXF974xjc25dHCwmLmw46/dvzdFqaztv3FL36B4447DosWLcrc+973vhdjY2NNjlG3B3bMT8trx3yL3QFWzsXiRYHnnnsOURQZncKYrlGGRL9fvw4ACxcuBKA023YEc+bMabqWz+cxPj6e/L9582b09PQ0hTNde74wlXFnYjrltbCwsLBQGB0dxebNm3HwwQcn1975znfi5z//OT75yU/i8MMPR7FYRFtbG04++eRpvUsbjQZOPPFErF+/Hp/85Cdx8MEHo7OzE41GA6tWrdpmHM8++yzWrFnTcpGk67pONa7ov3EsbTXe6huuOzJmveQlL9kux2bE3nvvjQ984APJ/9/+9rfxjne8A//8z/+M3/72t9OO5xe/+AWefPJJnHvuuZkF+9ve9jbccccd+MY3voEzzjhju/NHcM6g+2eZN28eXNfNzFeOO+44/OxnPwOgyI0TTjgBBx98MObPn4/bb78d++23X3J8mXj22Wfx4x//eKe0/7Yw1dyH5di8eTP6+vqawj3f+VmhUIDv+5lr+Xwe1Wo1+X/z5s3GeeQLMT+zsLD4y8KOvyns+Nsa013LvxA8Au+1Y74d8y12H1gS3eJFgdmzZ6Otrc2of25yBKEPQrNnz4bjONiwYUNT2PXr1wNAMiHgy3diYiLjiXq6zmJMmDNnjjGfL4QTC5NTVFkmiecz4FtYWFhYbBs//elPMTk5mWhTbt26FT/5yU9w4YUX4vzzz0/CTUxMYMuWLdOKc/Xq1fj973+Pm266Caeddlpyfc2aNdO6v1wuo6Ojo6VTaH2BbBpXWv3GxeiGDRvQ29ub+W39+vXbFfcLjbe97W24/PLLsXr16u2674YbbgAAfOYzn8FnPvMZ4+/Ph0SfM2cOfvOb3yCKokz9bNy4EWEYZurwuOOOww033IDf/va3+M1vfoNPfOITAJT14m233YannnoKQRBg1apVyT3lchmHHHIIPvWpTxnT50KWeD5tNNXch31lzpw52z0/k3i+8zMTgWOdjFlYzHzY8TeFHX+fH6Y7Tu1o3HbMt2O+xe4DK+di8aJAZ2cnVq5cif/+7/9GrVZLrlcqFfzkJz+Z1v1HHHEEvv/972d2lRuNBr761a+it7c3kUDhzuj//d//ZeKQHq63F8ceeyx+/vOfZzYBJicn8a1vfWu74yKxvz2W3/Pnz4fv+01l+uEPf7hT4rewsLCwaMbTTz+N8847D7NmzUoWdW1tbYiiKLNJCwD/+Z//icnJycy1Vu9jLnD0OL70pS9NK1+nnHIKnnjiCcyZMwcrV65s+pgshKYLHg3/6le/mrl+//3349FHH8Vxxx23w3HvKEyLNUDNIdatW9e0gJwKzz33HH7wgx/gFa94Be64446mz9/+7d/i/vvv325iQOK4445DpVLBf//3f2eu33zzzcnvMmxbWxs++clPwnGcxAna8ccfjzvuuAO33XYbXv3qV2cs0E455RSsXr0a++67r7H9t6c+toWHH34Yv//97zPXvv71r6Orqytx1nfcccfhkUceSY56y/K2tbXh2GOPBdB6fvajH/1oh/N37LHHYmRkpCmO7XX8bmFhsXvBjr8p7Pj7/HHcccfhF7/4RUL0EjfffDMKhUKGtN6RuO2Yb8d8i90H1hLd4kWDSy65BK9//evx2te+Fh/60IcwOTmJK6+8EkEQTMt64PLLL8cJJ5yAY489Fueddx48z8O1116L1atX4xvf+EYyKTr55JPR3d2N973vfbjkkkvgui5uuukmrFu3bofz/olPfAI/+tGP8JrXvAYXXHABCoUCrrnmGoyOjm53XDyS+LnPfQ6nnXYacrkcDjjgAHR1dbW8p62tDe9617vwX//1X9h3333xkpe8BL/97W+NA8aOxG9hYWGxp2P16tWJzuTGjRtx991348Ybb0R7ezt+8IMfYO7cuQCAYrGIV7/61bjyyitRLpfR19eHu+66CzfccANKpVImzhUrVgAArr/+enR1dcH3fSxZsgTLli3Dvvvui/PPPx9RFKG7uxs//vGPcdttt00rr2effTa+973v4dWvfjXOOeccHHLIIWg0Gnj66adx66234sMf/jCOOOKIHaqHAw44AP/wD/+A//iP/4DjODjppJOwdu1afPKTn8SiRYtwzjnn7FC8zwef+tSn8Otf/xpvf/vbceihh6KjowNPPvkkvvCFL2Dz5s248sorpx3X1772NVSrVXzwgx9MrBsl5syZg6997Wu44YYb8NnPfnaH8vue97wH11xzDU477TSsXbsWBx98MH71q1/hsssuw8knn5w5pj1v3jysWLECt956K4499lgUCgUAakG9ZcsWbNmypcla75JLLsFtt92Go446Ch/84AdxwAEHoFqtYu3atbjlllvwxS9+scmKcUexcOFCvPGNb8RFF12EBQsW4Ktf/Spuu+02XHHFFUlezznnHNx88814/etfj0suuQR77703fvrTn+Laa6/FBz7wgcTIoaenB8cffzwuv/xyzJ49G3vvvTd+/vOf4/vf//4O5+8973kPPvvZz+I973kPPvWpT2G//fbDLbfcgv/5n//ZKeW3sLB44WHHXwU7/j7/8bcVLrzwwkRb/IILLkB3dze+9rWv4ac//Sk+/elPY9asWTsctx3z7ZhvsZthV3gztbB4ofCDH/wgOvjggyPP86LFixdH//Zv/xZ98IMfjGbPnp2EgeYVXOLuu++OXvOa10SdnZ1RR0dHtGrVqujHP/5xU7jf/va30VFHHRV1dnZGe+21V3ThhRdG//mf/xkByHgS33vvvaPXv/71TffrXrejKIp+/etfR6tWrYry+XzU09MT/fM//3N0/fXXN8U5HXzsYx+LFi5cmHg6p9fqVvmJoijaunVr9P73vz+aP39+1NnZGb3hDW+I1q5dGwGILrzwwucVv6m8FhYWFnsCbrzxxghA8vE8L5o3b1509NFHR5dddlm0cePGpnv6+/ujU089NZo9e3bU1dUVve51r4tWr14d7b333tFpp52WCXv11VdHS5Ysidrb2yMA0Y033hhFURQ98sgj0QknnBB1dXVFs2fPjt761rdGTz/9tPGdbkKlUok+8YlPRAcccEDkeV40a9as6OCDD47OOeecaGBgIAnXakxlue+///6m3yYnJ6Mrrrgi2n///aNcLheVy+XoXe96V7Ru3bpMuKOPPjpavnz5NvNKXHjhhRGAaNOmTVOG0/N83333Rf/4j/8YveQlL4m6u7uj9vb2aO7cudHrXve66JZbbmkZjyl/hx56aDRv3rxoYmKi5X2rVq2KyuXylGH0dPQxdPPmzdGZZ54ZLViwIHJdN9p7772jj33sY1G1Wm26/5xzzokARJ/61Kcy1/fbb78IQPR///d/Tfds2rQp+uAHPxgtWbIkyuVyUXd3d/Syl70s+pd/+ZeoUqlEURRFTz75ZAQguvLKK6dVDh2cM3z3u9+Nli9fHnmeF/X19UWf+cxnmsI+9dRT0Tvf+c5ozpw5US6Xiw444IDoyiuvjCYnJzPhNmzYEL3lLW+Juru7o1mzZkXvete7ogceeCDzbERRFJ122mlRZ2dnUzrsQxJ8HoMgiLq6uqJTTz01uueee5ritLCw2L1gx187/urY3vF3e9a2f/jDH6I3vOEN0axZsyLP86KXvOQlOzRG2DHfjvkWuzfaokhzSW1h8SJCvV7HoYceir322gu33nrrrs6OhYWFhYWFhYWFhYWFhYWFhYWFxQyDlXOxeFHhfe97H0444QQsWLAAAwMD+OIXv4hHH30Un/vc53Z11iwsLCwsLCwsLCwsLCwsLCwsLCxmICyJbvGiwsjICM477zxs2rQJuVwOL33pS3HLLbdktMJmKhqNBhqNxpRhXNc+0hYWFhYWFjMBk5OTmOpAaFtbG9rb2/+COdo5eLGWy8LCwsLixYFdMU69WMfGF2u5LCxawdnVGbCw2Jn49re/jf7+fkxMTKBSqeCXv/wlXve61+3qbO0UXHLJJcjlclN+1q5du6uzaWFhYWFhYTEN7LvvvlOO6ccdd9yuzuIO4cVaLgsLCwuLFwd2xTj1Yh0bX6zlsrBoBauJbmExQ7B+/XqsX79+yjCHHHIIPM/7C+XI4sWCZ555Bh/96Efx//1//x/Gx8ex//7744YbbsDLXvYyAEAURbj44otx/fXX47nnnsMRRxyBa665BsuXL9/FObewsLCYufjDH/6AiYmJlr93dXXhgAMO+AvmaOfgxVqu3Q127LawsLDYMeyKcerFOja+WMv1QsGO3TMflkS3sLCw2IPx3HPP4bDDDsOxxx6LD3zgA5g3bx6eeOIJ9PX1Yd999wUAXHHFFfjUpz6Fm266Cfvvvz8uvfRS/PKXv8Tjjz+Orq6uXVwCCwsLCwuLPQt27LawsLCwsJhZsGP3iwOWRLewsLDYg3H++efj17/+Ne6++27j71EUYeHChTj77LPx0Y9+FAAwMTGB+fPn44orrsAZZ5zxl8yuhYWFhYXFHg87dltYWFhYWMws2LH7xQFLor+AaDQaWL9+Pbq6utDW1rars2NhYbEHoNFo4KmnnsLixYszTlzy+Tzy+XxT+IMOOgivfe1r0d/fj7vuugt77bUXzjrrLJx++ukAgD//+c/Yd9998eCDD+Kwww5L7nvTm96EUqmEr3zlKy98oXYQ1113Ha677rrEV8Dy5ctxwQUX4KSTTmp5z1133YVzzz0XDz/8MBYuXIiPfOQjOPPMM/9CObbYHWDHbgsLi7807NidxbXXXosrr7wSGzZswPLly3H11VfjVa96Vcvw2xq7v/zlL+Pmm2/G6tWrAQAve9nLcNlll+HlL3/580rXYveBHbstLCz+0rBjdxZ7zNgdWbxgWLduXQTAfuzHfuxnl38uvPBC43sqn89H+Xw++tjHPhY9+OCD0Re/+MXI9/3oK1/5ShRFUfTrX/86AhA988wzmftOP/306MQTT3yhX6PPCz/60Y+in/70p9Hjjz8ePf7449HHP/7xKJfLRatXrzaG//Of/xwVCoXoQx/6UPTII49EX/7yl6NcLhd997vf/Qvn3GJXwo7d9mM/9rO7fPbEsfub3/xmlMvloi9/+cvRI488En3oQx+KOjs7o6eeesoYfjpj9zvf+c7ommuuif73f/83evTRR6O/+7u/i2bNmhX19/fvcLoWuxfs2G0/9mM/u8vHjt0v7rHbWqK/gNi6dStKpdJOjdNxHLS1tSU77I7joL29He3t7fA8D+3t7ejo6IDruujo6EiuyW8AiKIIURRhfHwcYRiiWq1ifHwcURSh0WjAcZxMPK7ror29HY7jJHlg2lEUoVarYXJyEhMTEwjDEOxWbW1tyb2dnZ1wXReFQgH5fB6u68J1XURRhMnJSTQajcQpRWdnJzzPg+/7yOfzaG9vh+u6SbqA2vmLoggTExOo1WpNaba1tSU7gryfu4Lt7e3I5XJJXUZRhHq9jjAMUalUMDo6iuHhYQwODmJ8fBybN29GGIZJnXd3d6NYLGLWrFmYM2cOcrkcgiBAW1sb8vl8Uz0xzwTrq1qtJvXVaDSSD8vBsrCuWWe+72fKV6/XMTk5idHRUdRqNYyNjWFkZASTk5OYnJxM6oDt6nkeOjo6UCgU4HkegiBIysD2am9vR71eR71eR7VaRaVSQRRFTX2Q7SDzX6vVkvacnJzM3MP7eM/ExATq9TomJiaSz/j4ODzPw6xZs5DP5zFnzhx4npfUrSltpslrLIPjOHBdN0lLhq3VagjDEGEYJnlle/DDftFoNJLfa7Ua6vU6hoeHMTExga1bt2Ycqshng/lkW7NO+fcL9Qp++OGH0dvbm/zfakfc8zysXLkS99xzT3Ltgx/8IO6//37ce++9uOeee/CKV7wC69evx4IFC5Iwp59+OtatW4ef/exnL0j+Xyh0d3fjyiuvxPve976m3z760Y/iRz/6ER599NHk2plnnonf//73uPfee/+S2bTYheDYve6++1D0fXUxCIDOTmB0FNi6VV3r7FTfrqu+aYGyZQvwzDNAGAITE0A+D+y9two/axbAOMMQ2LwZ+POf1ff996vw//AP2FhcinkbVwN33gkcdhgem/MKPPss8Mc/quTvvFMlccUVwImzfqP++cMfgGXL8MC+b8f69cCcOSrJQ/fapOLeZx/U9lmGP/4R+OEPVRZe+1pg/vy0CNWqKuJBBwHOd74F5HLAq14FzJmD4YqDMAS6JzcBjzyiMvL006ocvg84DlAuq78PPhhjcxZh82Zg/XpVNUGg0omHUrhuWmWTk0CxCMxr26QCuC6Qz2MYRWzerH4PQ1We+fMBz20kEdXgIQyBSkVV36xZQBHDmfp/bGM3nnkmjWflSmDek79R9f5//6d+mDsX6OoCVq1Cba8l+OMfVZWyTubMAd5xak21V5xY48hX4I470vL4PjBvnsrnvHIDqFSwZmMRDz6ofvP9tMyuCyxenHYJ143LVa1mO2TcOMNVD9UqsHEj8Oyz6jK74MREWm2A6nKum3bbfD5Ng9Gzevg3u3QYqi4sw7Fs1aqqMkDVh+8DCxcCRb+GsdBLHg2mV3BraQSui1rooFpV8TCNp58G6nWgp0fVxUEHAc5TT6YFmzULw50LVN+b2ACMjmJ43lL88Y9pvioV1c/++EfgX//1OQCD+PnP98PKB6/Hb17yD3jzm4E3vQm49t+G8dj6Io444n4Aw9j60ktx1YMP4ryDDsJvrr4XR+y3Bfi3fwNe/3ocdvbReOYZYOPv1gH/8R8Y/sSncfnlwKmnAis3/4/qM/m8Kt/69SqvBx4I7LVX2nbVavq+mDWLLxh1nY3T2QnMmYNnNm3CQS99qR27ARxxxBF46Utfiuuuuy65duCBB+Kv/uqvcPnllzeF35Gxe3JyErNnz8YXvvAFvOc979mhdC12L3Ds/r//W4e9FwXqxRCGybPaCIoIQ/X48f0n35udnUAxiMcWBuKgISFvkgOZvCbeeYwOSNOUUU5OplHwf0Bd45gp7zNli9kIAqC7W70Xi35NJbx+vXrvVCpqMAtD9Q0AMS+AUkndNH++ernn86j5xeQVZkqT73mivT0dZ2QZ+f/oaDK0Z8IEQTxWyPplPhkJM8BKkfUcR9jwC0mzsc4YDcHxkGWZmFDVAqhim5LK51Ue2Y6Tk2m8s2apOKvVdDzl61pvx4kJFY7ZBtJ+IecGLJqsW1lcvf/IfBGjo9m09HaT7cC5CQA4YS2NVE9EJiAhMy4z77poIO3/bFbWOetDdklTH2ffls3OeRPLwOm1LFepZCiP7IRA+mB1dqaTHDYkE2WnlnURZ6QWOli//hm85CUH2bEbe9bY7W47iMWO4oU4SqYTkfJ/krX8kEQk8cq/gZRE5/8MSwK31f2mNEhitrW1JYQt4yeBSdLadV3kcjl4nmck0Zm+53kJaSoJdxOJznpoRaLzmyS67/tGEr29vT0hScMwRD6fRy6XQxiGST2xblgGEv25XA6+78NxnGmR6Eyrra0tIVK3RaKzDiSJznyRlOcGCAliE4nOOvV9PyHUC4UCcrlcstGhk+iMc1skOvPAvsQ+IetC3scw8vgT+wPbX+aTGyCMY3JyMkmbaU5ForMc8ptkNuOTfTqKoiTfLJ/sa67rJvfINuazwbbkNX0zQW4o7GwUi0UUi8VthluwYAEOOuigzLUDDzwQ3/ve9wAAPT09AICBgYHMYL5x40bMnz9/h/NXrVZRq9W2HVAD20Si1URFYnJyEt/5zncwOjqKI4880hjm3nvvxYknnpi59trXvhY33HAD6vU6crncdufXYuaB/asYBCh2dKiLQZASxVxIBIH6ljN7AKjVUjaSq8ogUJ9iMUuiM+z4uJrURxEQBBjvKqI4FqfZ2YkgUIvZjg41v+eiolgEip2dQKGg7i8U0NlZRKGgog0CoNhVVb8HAWrFIoIgXT90diremFnP5YC2NhWvUyioC11d8QW1GCqGVXVjva7yRxK9vV2l4/tAVxfcYjEpXisSnemGYZxMWzXL2kLFIRfbxaKZRG9rU3xAsQgUGWm1Cvg+grFi0iRJWqx3lqGjQ326upJ66uhQ8U5Oqr+LxVqm3RvFYmYvJS66ImOKDcBxEIwVk2qRazHXTas2Q6KT1CB4g+chlwPGxtQCVJLorFdJoudyabeTaTN6SeywTYJANWutlsZVr6u4dBKe8RaLiqxxQw8c8pieiUT3PBUf0ygUVBpJfy0CDh1nsf/F5FexWkk6aGdnmq8oSrseMAmgis7OIoodHejsLGb6RjBcBNAJYBLF9nb4AIrt7Sp8MVQBOzvR3q7uK3Z1JTfn83HbjhdUp/B9lXl2FBZCtp2sXFZ2e3saNi708Pg4ADt212o1/O53v8P555+fuX7iiSdmSAeJHRm7x8bGUK/X0d3dvcPpWuxeYP/q6iqiWAzUeM2Xvu8nJLrnZXlyvuuCQJDoDKSTiUAzia7PAQwkOt+7kuQ1Rcf/ZTRhqN51vK9en5pE7+qKxyu/phIejjeVo0h9whDJy5rPX6GgbmIEvo+aX4TnqaCmqpDkK6DS7+hoTaI7TpaTZFm6ugwkumw7XhNjSaaCSNj6hUyzVavqtSzzzPkP60++GjgXkv2CfGtXVxp+cjKNt6tLxZnLpW1sItFzORVvLpctAtPXSXSObRJTkejMF9HWlumGTe3GcjGdaZHo+nMgM6b/r5HobBfHSeugUlFlll1S9jO9yWWz63MqdltZrmLRUB7ZCYG0sTmh8bx0kqP1r0xdxL/XQgcjI8MA7Ni9p43dlkSfgZBksfxfh4nEl6Se/JuELK+RZCYRqVuhEyRNSdaSeJTEOv8nAcnwjuMkv5Go5MNCwl2mTfJULzfvlf/LcLK8k5OTidW2LD8tjicnJxMrY5LPkqzWiWhZRyZSWVrsm/IpCVsStaEYpExtrG+aAEi+c7kcGo1GQjizvDLvMs96m7KOmCYJZmmhrdcr21CWXV7Ty8J7ZNipyqZvMEgynnVmIqZN34yT5DfblX2T/ZXtIE9Z8CMt0bnhIvuxTFPmz0Si7w54xStegccffzxz7Y9//CP23ntvAMCSJUvQ09OD2267LdFmq9VquOuuu3DFFVfsUJrVahVLlizBwMDAdt8bBAEqNBuJceGFF+Kiiy4yhv/DH/6AI488EtVqFUEQ4Ac/+EHT5IUYGBhomqDMnz8fYRhicHAwM5mx2ANgWrFMtfKV95GY5f/yHrnCA1JybdmyZLHf1QXgmXT1oM/he3pS6ygS7dhrLyDuo5lFh8gzs1wuq/+5ACS4nqhUgOKCBUlZGnAwPq6MeLp7SyoDrgsMDaVl5IaBllkuIHWeQS6kgXgx6fqZVZOLbFVm5uxx/XluCM914c72UKnEa6Mwu8jWmwSAMlMCgH33Vd8LFqjKKJdRqSh+vWnNKBdfrtvEpUhrKd4s12AyrOla9o/0/wbU2DU5mW1bri+4eGYe5MKYmxe+DzhoAL6Ki69R2b3Z/npxZT75f6apwxCu6zW1tSwcF9Myv1qQJD+e3JyJf5D1WgwaWLDAQamkSK/hipPUxZFHzsbg4GwsWgTg8S709ADHHKNOH6C/H729BwE4AMAwUCqhFwB6ehSBQUtM38eKFaqbc8ei6NewdKmn4l0zpBKTG2lkQEzPvSys6SPvmyZ21dg9t6MDlW0HbcJ0x+7BwUFMTk4ax+JWc4YdGbvPP/987LXXXjj++ON3OF2L3ROZR0+8YHQekI+sbkjbHIm4pr/0+S3Dm+5tEZUejf6dGVOQWhfHe24ZTE6mlr1qrPDg+h68cjn70mYkMrGOjuwGP+JNXd9pshyXZdCJXxOfaioP40vu0SvExP5mNtjTcA1XbaRXK9l60Yl/5sN0uMA0TZPXpwqvX5e8nxzr9LaU8XDslNdbhW2Vr/b27FzANMwAKWHPDY9kbmCa58rGazW2mcauuBIdAJ7rwgvUPUHgJPMMnkqT8045NZbzEb27lkrNZZAb664bE+jyZJ+M0PStl7tpcpatE87Lthd27E4xk8fubb/lLXYbkOCTxKokrElGSlJXkpE6QSvD08KX6fCaybJaEqZShoXxk5CUeZTSHnJXSVq0A8oCva2tLbGMlkQ1rcslGo0GpHW9rCv5zfqpVqsJqcx7aM1MyQ7Kw3C3jhI5URQleZk1axZKpRIKhQI6OjoyJDrjl9b+0pqcBCrldWiNzzyQaCfJL9uZbSrjk2Vpa2tDLpdLNiHCMExkeuQGgOu6Sdoy76wD9hPWQ61Wy7SxzB/7V6tTApKkl31HpiXjkicfGFZuBBD8W99IYDr6aYAoiuB5XvIbNy64kSHLRYkjKVFE8px9JAxDjI6OZoh0neBnvdBanXUsn5FdjXPOOQdHHXUULrvsMrztbW/Db3/7W1x//fW4/vrrAaj8n3322bjsssuw3377Yb/99sNll12GQqGAd77znTuUZq1Ww8DAAJ5++ulp7doTw8PDWLx4MdatW5e5byor9AMOOAAPPfQQhoaG8L3vfQ+nnXYa7rrrrpZEummTyHTdYg+AvqriDH+qhQagZvClUnqPTpRVKmoyPzSkwvb2qt9XrUqI6UJlowoTa2ZIA9f2dhWUtyIsqR+XLAF6ejD5WNb4PVmlIDHMxooVKqm+PqCAsYQoZ9YGBoDiMcdkyvjss+p6GHro7TsIhZ4tWVJBfoIgWafTqFj+bLJYc12gEajn2oEaE9xQVaVpQZlkNm4Xr1xGd2zB0/ALKg6XCzdFiGbWSUuXqn8OPRRwXWypKBK+OpDKlugWaQ04cNi+rovBwbRsJKvzeVU2tjeDy67CMPI4NcssCecwBMJ4DSjJAS6CW1mqcUHZ0RFbVlarwKBaBHnxCtMXR9/lN7up66p8S2s1yb3MmqXiL/gNoBLC8xvo6nKSfABALXQAeIB4ZPTNCR6TJ78ThoCnWXP7bPuhuFLWrMFi3wceWgusWYPi/Pl46eGH46XLArzudQWEIVAc+CPQ24t9go34whfmYXFpGPjmr1BcMYQzzzwKmzfPBnqW4TW33QasWoXZs+N+c+SRQLmM978/zufAgKqIxx7D3/zNIege/COwdq3q2EuWqMLyOWclmhbgsnHYiLo13HZgV43dFQAfBjD12a8sJgD8e6WyXWO3aSyeahzenrH705/+NL7xjW/gzjvvhK89RNubrsXuh2Ss4B/xO4/vUvmTbujYgAO4nqLHdBI3EzmaBiWdVNNJXHmbHFcI04azzALfn5OT6fDH/3ViEkjHpDlz5qGrd56y9q5U0o986evEdfwe81wXs2d7xqlPK6JXH9cJuQHL/zN1IwNrJ/1YtyyftMaXpCtv4Xg1MqKucUye6jXLsW5oSN1H63PZBjpJzWUp+5G0IJft3Aq8n/mTzZDMCTR48VxEtkMup+qERLrc/JZ55FwlQ5pXDGy1qEjWfatNCVeS1rITcr4LJP97ADxZUCDNbK/Y8XdT+TemLaFv7jtoiLRC88NnehhNYWT5Rf/bziG6JezYve3wpuvA7jV2WxJ9BkKSxTqRCWSteSWJLCU5dCt0Eq/S6rsVeS2JT2pKV6vVjJSGtGyX1+v1ekIay3RImpKwpw67bpEu88AyyPxJklZClxxhXkxa2tKynvEH8WDu+z5c10000X3fR6FQSNIm4Ss3GEhYO46TSL5ImRm5MSEJeBKzzK8kpXVSnkQw69z3ffi+nxyFodwJ24V1y/plHur1eub0ADXK6/U6xsfHEx13abFOsprlbGUNLq28adFtsjCXfU/WKduC8UnyX7eolyS6JLNJorMPUrJGyt+QFB8fH0/04NnPGUZq2ksrfZkXuaHAdmG+KeezO+Dwww/HD37wA3zsYx/DJZdcgiVLluDqq6/G3/7t3yZhPvKRj2B8fBxnnXUWnnvuORxxxBG49dZb0UV2bAfR1dW1XXGwjqd7ZA5QG3NLly4FAKxcuRL3338/Pve5z+FLX/pSU9ienp6mXeuNGzfCdV3MoViixZ6DfD498hwaJuVyJSFXxJJEJ/gbFxZDQ8DgIFAuo9a7DwYGgDt/otYAZ57ZDee+e1TYuXMTy3RKmOZyyrK2ry8mSIdKaJS6MTAAVGJSlwR6qQRgIF5xum5Coh96aCy3MbReJVoqwfF9uG4xWV/39zvo7PRw8MGA7youcc0a4LnngP5+oLe3G/uvWJFdJcblawRF1DeleZHVkJyapSSLnx553xTf09HhwHUVQeuFVbXIizPfKHWndTg0pDI2NKQqpFpVluRuN1zXgR+T6aVSStYym3/u91CpeFi7VpV3ICbPe3uVpf7goFpIc1Hc3q5+LwQBxtwiRkayhvgsV0KCxImxHer1VCJ/9mwVhsZ/Dhpp+eBkFv+mY/vyCLPsgvJ6ogc6MJjWFzPkuvB7FyfdeGQkmw7lcUulWBIg7veFwIfrqjPrCTlfCZOFc0GwPw04GBpK5WBcVxE+UttXJ1QSsiIImkiCZIEehsBjj6kGeugh4O67gUWLlF+AahWF735XdaR/+ifghBOAX/0Kix94QDXy4CCwdi0+97mjMDAA4PZD0fuOdwDHHINZs+ITGMccA1QqODl8RF14rF9VxB/+gO5164AnngAef1x1FGnuT1QqzZ1eNhwLxftYpu08Zr0rx+4OAP42Q6XgCmU6Y3e5XEZ7e7txLG51lH17xu6rrroKl112GW6//XYccsghzytdi90TGRI9JuPCanYTEMhuQupkKd9zjoFES74FadsKrYg3E7nJTzI2hiFQVcQjbwrmqk1CuYnKjcnnnlP/SxkRQI036n3uoVTqRhB0o9Qbv1OHhsxzG2HB6/m+yoNgh0mskujV/3ddJ0Nwum66wUqC2HWdJpI5IWyRWpdz7GS2OJRJaRxZz6WS+oyPpy4pSHKbbB+YJ7mxPzqatku1mpLTvJ+Eu75fyte8g0Yyr5HQ92VkuwOy7YGmDicSclw3qT9CEulsLmO/Gqo0t7cckEWGSGTrY7fMTjoMevDYlkND8eb9oLqZVglyF0RmHEhNyWMLAC+fhydNzfWNHh1TPWytdnYI3WJC3CeNGkzVZTzJMgXs2J1iJo/dlkSfYTBJt5jkM0yyEbpls7TilhIfkqCVVu3S0SLjIeHID0ECVJLvYRiira0tuZ/kLslMan1Tu1zqsUtrdWm1zXt1y3dZV7K89Xo9IURpGU8iVJeDIdra2pL80EI+CAIUi8XEWl4SvbQ0pgyKrGNJ/LNMupa2lMaRbSbzJtuK9S3bk3rtUopEEu563co2Yl+hxTWt91lvY2NjSZwkq0mgswxyY0OvT8YtnXVKAlpKCMm2lv1Ut8znJpEuJaRvKOk+AZiutHxnejyRQO0tOj+V/Z0EvP7sSUKf+WU967JEuwNOOeUUnHLKKS1/b2trw0UXXdRSMmVHYZL92Vb4nZGmdAIrceSRR+LHP/5x5tqtt96KlStXWj30PRGuq0h0aQqjT8JNk3LXVSs401lUrgJJ6JVK5PXwk5+odce73gUU+2PiLiY8C34Dvp++q1esAJwHfpswvgMDwAMPpEnTEtn3kfE4Va2q693YoiyTBwczZmvt7cUkezTA3W8/Fc/goCLPR0bS9VC5XMwUvVgOgGo14+RK6oNSszWxGorrTllHe8lGAS2pCohXzGT2SyWAJHqlkjL6g4PpiiYIMJ5x0OUoa+k4rQYcDAyo2zZsAH79axXVhg1qkbhqlTJSp+OruGqS5oPvY3AgW3UkNGhZ7rpIrKHcmCtlnZCUp1O2xCIs7iv8s9WClX9L1RypfkLy26nG4ukkScg8xAGdsIYwVEQFLRlZHlr/BwGAwaG03wYBitQC4iJZbqDIRb7vo153kjokEaIbXevyMGEIjFXVonV8XFjTy+dv3TpFZN99N4YfegjFhx9WmR4cxOq778YWAK/+/e+Bd7wDWL0auOoqFfleewGDg/C++l9Y3NurNl7OPBNYtgwdvkqvv9/BsmVFOD/4gTp+0den4n7iiXTzq78/NfPk7glhYnXk4l8WVtadPHY+TeyqsdtBuriebvjpwvM8vOxlL8Ntt92Gv/7rv06u33bbbXjTm95kvGe6Y/eVV16JSy+9FP/zP/+DlStXPu90LXZPyHclScAwTHk7/XGUj2ozD9dshct4dM3r6YBkrLxHJ18zp960QcAJlHxZV1chU1aOGRy/JTZvVuHKZfWJVcuQz3uYP7ecJTdNou18t4tTNo6sZGDq/8MQjusmcxjqVDuum5KuyG5UVGLynA4yOR6MjiLZnOV8QU7DmGw+n9YHkNgRGMdT2QYMw6rga5ptzXRMBDq/WT7X9YzcrcyHLtWX2cAwkegisKrjdHMiDLN9SsavNkwq6dxJjjcmVjz+m/1J7yJA2oe5F+y6ULItcp7LiVV/fzofkRHKBpCb0vybR+rkUT/ArBGoHwswlMc4XzdBI9D15pB7ADsCO3YrzOSx25LoLwLsCLFkcngordDlt0mHXMbTiriW+ZPW1iatbGmFrDsvNWlIm+LQ09HrSMreSGtzkrkMI0lOaeks5XG2pW9t2tgwEYamdEgGm8h8eY9+XZczkbrnehlM1uIyf9JCXFrps+70Uwd6mFZ9Uv4+VThZFrmZsK161I8A6fWkt1Or9mM6JqepuvRLqzLoz4yuh2/xwpPoH//4x3HSSSdh0aJFGBkZwTe/+U3ceeediWfzj33sY3jmmWdw8803A1Aewb/whS/g3HPPxemnn457770XN9xwA77xjW9sV7oWewCmsmjRTYv0+/hdrwNhmKw3RkbE4leu9uPw7e1eEm1CkMZ5oKVQy4W8MJXJ5WBeMIchcn6aPZPBEBfqdJLFRSbDBIEDx1XH5vXqyVjryHoQgeS6vV6HMpkxkZJ6neof3TJI3M+Fp046cLHeisvU61ZfROnrOdkHWnUHU8GnMrBqtWZkNRrrWP7dog715sgEk3Xf6m/9pikLm0WroCT3m7JMRiPupDUAjXodTtyQFQDDQNo5q1VU63V4DEPruHxeybGUy4DvJ9GOjKiova1bVbi+vjSTOvlgetZb1YOJQZEMywzCC7kQB4Bzzz0X7373u7Fy5UoceeSRuP766/H000/jzDPPBLBjY/enP/1pfPKTn8TXv/519PX1JVZrQRAkp023la7FzMTzfbxMQ5B+mNRkWDtdNL0DTQS6Ycw0aZDL/Mg8Ut5E8uFALFHWaldBf081DQ6mzIsymMKbwhgu63/L8UB3rGqajumk93QwVVGm3mgx3+S4qcW+5HBboaUueQu00uTmhgHTTGRhTP1K5Nf4tyGI6VbjLXoDyYml3CwAWpPcQOoMhhMc/fepGln2XdO904xHn7rTIGKmwY7dOw+WRJ/hkCSgbnUudZel3rmUwsjlcomzSSnfsi0norS21sloyo9Qd1umxW86vZTf1OfWnYnqkjSS0JQOL3WNaZKuvEdKouhW3ZK05nWpS97W1pbRTac1fa1WSyyMmYaUJWE9snzymmw/nZhnvj3Py8jDeJ6HXC6XxKXLl+hOY03ks6mOWIfyGsPrMiWUWmH6lIlhXnRSmfWtOwmVlvYmIlrWi34aQd/AYLzyXuZXDyOdpkoNf2n9L/u2vmkgLfClHIuepgm6xJDez3aGlbVFFs8++yze/e53Y8OGDZg1axYOOeQQ/OxnP8MJJ5wAANiwYQOefvrpJPySJUtwyy234JxzzsE111yDhQsX4vOf/zxOPfXUXVUEi90B+qRaah63MmcDzISjgXRzXWVks99+KS+eOLkUGhddXR76+uLfwzCx1FG606mmJtclW7eqiX6hp0eRgb4P30TmhiHw5JPA5CS6V7pYsWJhIqsSBGm8lAgxSTmzmMrK2svod+sGQ051LGuG5fuowUvLLqoYc/1mMW7eR3Pp0VFFiNLEznWb9EWpyc0Ml0rdiOXT0deXGrmHobJC7+3NrvGYXBAAqFSRz3vo6kolV3K51CorKUNYANwChgazhoVyDdnRAYSUnUms19L6lsfYdQ7W99O2kWRJvZ7KziRsiWy0+PpY6Bk3DZhHGo11U0w+boOG62W1WqVpudbH5/f0oOEmYgQZY3h94S2zKPOg8uHAdQso9+6vrDVdVzVSEKDs++p5WbUKGBzEyrvvVs6zjjkGW6oFdC9dCr+nR4niH3yw6ic9PalYf5wJpjkxoQ44zKfz3JUrk7Tg++kpkmXLgKVLUYMHj8cSTO8EXbheNrIkqbZj4+HFjre//e3YvHkzLrnkEmzYsAErVqzALbfckjhe25Gx+9prr0WtVsNb3vKWTFrSQdq20rWYmTDxZ9vi3ab6H0ilM4CsnvVU97TilbPjnqN8QvCFpL8o42uFkgu/pN6tHKelDjhJZvlK5pDQ3p4dj1zXg+djagMAeX067ysSyPF4kZXnSq9tKxkge1JKnljSq4f3Us5FVptUBZGvZMbVah+41R6GtGw3VkWL+tH7iOtq2udTkb2x3FvSdmJP10Rip042HbPGvz4/5fgm8lAs+3BdByMj6XSi1fMxPq7SKvC0GieMscxecpTA1K/j8iUOc3S9HNlorfqnrFTGx3v1PjvVroahf+tVJx3kWqTYk8butsgyNy8YhoeHMWvWrJ0WXyvrYxKb1BEvFAoZp5VS11zKf0gnkySzpUQIoMhGaoZTzoOyFtSLbjQaGBsbS36bnJxEoVBAoVCA53no6OjIyHR0dXUhn8+js7MTnZ2d8DwPhUIBlHORUjKSrNVJTspsMF9Sa1zeI4lzSZhSzoXlk6BmtZSoaWtrS+p49uzZKBaL8Dwv49hAEvZso3w+n5Qrl8tlrObZRiTHGYeMh5byckOER1x4TZLDvJd1U6lUmjTRpd64lKIxWadLolvWlyTY9f5JSMkXnTCWDkUlmI7Uy6eMDr9ZZ/J0A/MjSf9WhDbzxX48NjaG4eFhjI2NYcuWLajVahgeHk7kXChrU61WM20j5YhYt3ITSrYJ640a63yOZF3uzNfxunXr0Nvbu9Pi25ngu3FwcHC7HYuWy2Vs3bp1u+6zsNgesH9uXbcORc/LLjQoyOm6alFgItH5f7VKT5zpJJ6LijVrgEcfBZYswfCKozA4CNx/vyLwTjkF6K6uz2YqXggMo4gwjH8fHASWLsWzIwVs3ZomRWt2cn6HHgoUBp8GymWMoaBIyIH1qWbL0JDSglm7FjjiCKUj3duLR9aq4+LLlqlF3j33OVizJs1SqRQ7NkVKJnR1NS9QyXV74ViawTBMWOnhioPBwfQnqaG9dClQCIdT/fNSCbUepeXtIdbI7u9Xv7HAQYBGeR4ATUebCVSrKu1yGVuGHKxenRK29Tpw4IGpr1c2K638u8ONiXD6liElC0PZG2mwHIbAn/6kNjJMxA3XirHkfUYRJFlUx4GHK06yKSFlAHxfacbTIay0kMqEcYXWtpseT+7vT/uMrB72HXZXUa2Z7l2obGw+ns0FuDznzU7g+0C5jOGql0mLjw2DMC9UTaHhuHy8li5VPPg+fQ2lix7HjTAE/vd/gYkJjL3uzbjvPuA1vX9Uci577w0ce2y6qGdkcSd/dryIzZvVY9DXBxzUfytQqWD9qjdj9Wrg+ONjCSW+A5YuxT1DykH1Ub1PqxvlxpcsDCuVBRabYPy9f/16LDrssBkxdl+C7dNVrQK4ALBjt8ULimTsfu65pJ/xfSffzfLxb0UItiK69Wt81I3WvoaIG34hQ2ADWXmY9nY1jrpurGHdSmZFJwpLpWSs2LpVBeMmLyW15KtZ+s9oStPEHMs0dcQVKUlxvQrk/3Ksk1FkLLHFDxlH22HqTFXGKdtYupuQm/NAdpwBUl6XdQGkUwryuDKv/GY8pv5T8DW/bC3seTN9xlC30pkqkG6OyK5gkheXmwX5fDovc4a2pIOrvgtBdlwnnlnQIEDD9YybNKa9YPa1JoMGmLtRq0emqV9opyczO0W8SXRu+piZqp5cV5srEvGP7H/6iU/Owfr7+7Fo773t2L2Hwe6fzHDolsy0mqa1dBiGCTkrCXRaE/u+nxDwUodckpwkrelYkR9JajOtarWKMAwT4lMSi4y/s7MzIdG7urqS9EkySx12fqSGNslv3fEjNw5o/U3ikvUhdd11R5YmeRPdWpq/ua6L0dHRZBOChLgk8BmOddzR0ZFJo16vZzS9uZEgCXJC1r8kW3XLekl4M+xUFs4k2uv1OkZHRzNksLQu57c8ISAt72Wa8nSCbDMpK9NK1keS3rIOSZhLHXepgy9lZXivjFPqyusbE9JhKPuw3r/1fq5b/cvTHbLvSsiTEfK5lc53dev2PQEvtJyLhcXzhpztS1JMkueSbdVXjXLCHxPvNb+oLM3iMCQsjzlGXarXgS3+QgRBTDwLk9xitT8l4IIADb+A0QF1X7msFjebNqlFM7n+IAD6+hbDd4ECF+V6Hu+7D7jzTsWqjo4CS5fioNe9LkM4lsuFzHredVO5bUY5OmomhT3UkGHKAaBUwljVSXyDMjtAuugfGQEKc4OMlS/Tq1Y9hKGHUs/+CJbGi6A4I05lOBshv2lFHCfaHQR49Sv7Mov0QnWLCkOCOAhQ7OkBJpCuyH0f3aUSqiUvI8fuuimf/Pjjaq+kpweYMydrkS+boKNDRcnFbkKcxBEXe3pAB2Js+kTjfagSa80WRb1kedpSyUv0Y2V1sBp0I696XVliT05m+xClSUmsFxgRdcKHhlLPsHKVSS3y2bOBMESxtzc5PUFrPkDF6bkNjFUVEcQ9nsFBJWtOCfyJCdXXlbWhg56elyIIVD2HIfDYYwuVxeJjKully/bHwje9CTjwQDw4tA9cFzhk2ZY0z3FjjI4icRY7OAjleADA//t/Sjd/cBB43etenhRp7Vr1yPg+cNSZZZVZHteYDukk+yXZjhmCF/pIuIXFzoKDBjyEoKNGz3VRjZ1WctjOkHUx6AgTaObodCvq5HSVJCRNsk8AnFIp8QECNDvNdN3UAXVHhzqllOhMS1ZYN0EOAhSDAEXfx/yeEuC6qLmFJk1rOQbIqQnTzOUcAF48LnhNm7qZNEX5pKU5kE1L15CXG+Va9TRvFoQhVI4ALw5UbAOMx+r0HWvfRXdJWW9v2qTST/yFBOoUH2+R5LTrpq9j/aSWOBzYpLpHNOBk+lLG0px5M+3KGDYMZJNXKukGgkkRReavszM9bMU5hieNPWRfpddQ10WyY88GqlSSSZ3j+yj4PgpzS5nNew6jMir+xvzKbsvN/lbSeVIaXc0lHZRKXjKfSaTSg2a58ySNcWBzf/MeFJ+xIEidvKu0PASBB9eP+4dsK6FtL5pKpRuG6YR1BsCO3TsPlkSf4ZhKzgVIHVWSlKQltLRgp9yItAKXMiZAs/yFlMHQJV1IQJLwIoFKq2vKuPi+j3w+n+SBltmSuJXQZVxoaS1JdKZHS2tKocj4TDrZrX6XBDGARMKFVsSSLJfxSBkS1i/B+2X6DJfL5eD7fhIHkBLutIZm2XV5EmkZrVuQk8jW65PtNT4+npDo8iQATzCQJGaepYwNCXvHcRJra9Y7+4IuY8O+Kb91q3Z5EkHKDEmC3yQDI+PU9d710wzMu+y/cjNA/+jW97refCt9db18soyyTk1lejHDkugWuzV0Ikw3W5MEuuke3Uwnvl6tpotBhCGcsIaC76JQHQIAPFvvxsCAIl7nzi3A4cy/UlEmUmGoTHHL5QyhTb5bLmAAxe3RULfb1xb3XAmuXYuBeh0999+vAtbrygRd6LfQGRm5ZaB5PQ80G/l6bgOoiJW8qA8uDBmfvk8xMaEcw3miDZjlwUEkZKvrAj09HoqBm9aVqS0rFcWU0kSvowOoVpWDM6iFeoZAp5m5zrjE8fv+PGPXqFZVU9Fyn4tCqR/P65T7ZHaSCiWDXSrB9wtJ1fk+sitD1403ZVIHeFzM6qS57IqUSjFZ05Fwl4cGpFW66yJdQbCuNm0Cnnmm2dyMN5DBqFbh+X6GpALE5gEKyQKbhPZjj6m/+/tTZ6NyoV0uK9WVkRHgW98CnnuujmOPzWHFCtUGCw87DM+2L8Rt31GL5mXv7YYnV/9I18JMt9GzEGEI/OY3iixfulRZqNO6bu1aFXcQKOtSR5r/mUgSE7Gub8jNENiFuMWMgc5I+j7iN32GF86EBxKSG8iGIaGckceQDN1UJLrrJtfdII1fkn96NoDYWSPBNLjTSVaSEhhdXcm47cWEvV8uJu97/QSQKU39dRQETqY+HJ1RRHas4bfUZZevRA4HtIpndGqzI2yuS1NCjEhCZlyMP47vo6NDbTQ7YS2pBM/3ATjJni83MwBVnfoY6rpmh5KmV72SUGk0d7IW80LTzzohTaMFOe/So5FDiqxbVb+GjIdhs1m/rEs+M/yOd9wd10UQFDPyLtLxKxXOOO8YGMhKtOmPiEyW5DnnHaWS2iT3/fQ7dmWS7D/Lfsa4OZVjvuTcctYs1caTk+kJBICb+dnNIqlt36SFbtoM2Y1hx+6dh5kzY7PYYUhiUScytwcmDetWhLQkFXXiUyesZRzSSlmmYXJgqmtv6986icw6kGhFwsqw20OMyvCSCNc3OGghbdoA0f+ntAzrkQQ279fJV13HW1pBb0/7m+rYtNGwrfu3pfeta7Xr8eu/7QjpapKlkZtArbTZZfq6vvp06mCq/E5V5j0FlkS3mDHQyXPT3xKtJtaucrrZxLiKRSnXxcaDKdoq12gZg0x0rfOl5d0Bms3DBKgB2d5u5glNvCFAqywzWu1TGLOp5Udf3E65ljGVybRw5P/1euL4tWWYMITrt6yuJs1MRsukZVTsAuPjyiLKkcKtcQSyvJ6sLIMVoF5HrSDzaKpzI8k0FfTKkDdrG/k66OCOTml1UkaPln+zTiUXAEwCyKX3uy4mw6y2rid1UrVniffpG0JA627j7SgRPoPIc8IuxC0sdgBi7HDQgOs6RlJWR+L8E0hf1rmceZJgGLMkh99qrJxqj2/KcWAH3l+8ZdqOGU1E9HQTEmN15t74e0dfv1PVSVqXToaABZC2ox7JdmSExaK2/Q5hqvSmM8c1oNVhan1jRb8uk+I1Tr8YzrRJI0lx03Vek/mSVd7qOfBkkWfg+DwV7Ni98/Di6hl7CFqRrUCWZKJFNqVUpM64rnlNK1xpFUyC0QR5vb29Hfl8Prl/cnISQRCgs7MzkTKh3jklV2iVLtPSiWBZFt2RqC6LwbLyXunkVBLpUpvbJJ2hE8W0ymdepNyM7uhSt5qWlve6ZAzzQOtzafEt60BuSvA+OjeVFt+8h5bUtVoNo6OjCMMQY2NjSVpMl3ritDr3fT/5n+lIa2/WqS6PYtqokBIoOokt+zD/l2WXGweynmX7yM0HU9yyf+qEOS35x8fHkz5FGaJqtZo5IcANC9d1MTk5iVwul8j36E5FpyLAJXGvE/Vys6XVs/ZihiXRLXZrmEgxWpvq7Girb3316rpqESHFwvv7Mxoog2vTSz09SH9z3dQqWpCsOnleKqUWxmGYWg8rC+Y4b4yPN/b1Yd6f/pQ4S8R++2UcdTbgIFdN4+rqSq2KpK4r/w6C7BFaj+UVsiyNoIj6ptSqiHmXVVcui6PQ8X20sGIaUoqkAUcR0HJ1xXuBtP4o7Ak0OdJK2i+Xaza/ZgHj72K5hr4+dbzYCWtx/hz4vqpCWkzrJCwt70V1JF1CSZUU0Lt0fwAqLC36uAjt6Cioe8rKuq4ylK1/Zl/vF7JK8vlsV5aLUX3Rmh6rTjdSkhup9cJECVmw3t5Ug8VXx+jlsXSio8PLqKww+p4elQTLMGtWqvPKsvX2qntWrgSGhvxEN911oU5trE27/Zo1QLlcxOJY/H4MhcRqjXHS0HPZMrW5sXRp2oWZNz4ilUrsgHUqosfEGMh3yAyyaGvD9i2u9zwTAYtdiYS0bLlL2zw065IbTRIcMt7MxqWXOgLl2DOVhjnzFYaJXAqQJfqYJ77zq1XhKJr3Sy01OdeQ8wWRJt/bJk5Q3xAkqtXmvU8VrQPXbbJrzhRTl9kAUgJV6ozLT+IAXOZdCphPB3ph4kGtwLqpiHapVOD4ftIOdBbLcXB8PDtGA8oyXGrMm17rnJOobyfzW3u7g1zOU2ka6kjGx3pidulsnGlUq6nmuF6fcnxPwIyxvzLyVn1Vznflcbr4f/029i8ZTG5G07pcv0+vP+mHRbpVkXXLetBPUujF4D3t7ep5Yr7oA0DmNZMJ8c3nXp/+Z/rsDIEdu3ceDK9Si90ZU1ks6xrZJKylY0vKpUjd77a2toR4JQkOZC3PdcKS16if7vt+4gyyra0NQRBg1qxZ8DwPXV1daG9vTzS/Ozo6kMvlEmkZ6dhS16wmZNkorSIJdCmpQhkRAImciHTOKe+bCiSYSWZTboYa3dyU0GVHKFHDbxmOGwesT2rT85v1Li3NZRhKwbiuizAMEzKY7SIdZQ4NDaFer6MSH1vjZgbrkUQx68Nk6U8SnW3B/sK/W51MkMQ120zW91QnEvT6khs7JOjZPiYCnXmR0i3UPOfGAp2GSikXbtLItgeQkeJhu5i00U0nPUySMLI/6ZskVs5l2+EtLHYpOMM3LIibmEeuenif66IGTy3AekrAokWKfXvsMbXiOfxwIAjQ3698jqakpwenXE5Z6zAEymU0giLCoeyEnoQ0CWZAaFj7DWCwAgRBqsvu+2qltmKFimDVKuCVr1SOM9GN6mB2DSWPvVKzWh4pHh1NiW250IPvwSuXAQC1WI92ZFO6qNlrL7WoKVQ2xmQEV5Y+UIkTFELrcqHF6iaJ7PsxkS7arBYqwqPAs8A8a0wBcECtRuWquLMzu5IDsmeQq1Vg7VosjMuFSpwxFOH7qiop67J2rQpCuRDdrxcJ5XJZEb9Kxz5dDJss9jSOxPibXAvquuxSXUe3uG7F97JNczlk62bu3PTMNZAyL1yp9vYmHbEWKi1VHq9mHrixQD+l4+NpOy9dmnJUjI7VLsvIR258XMm28FF9dpNKk4/RAw+ouE45ZR66e9I2kov0Z59V36tWKSJ9xQpVPKklv3Sp+h4cBFCeh+6gltVS0gkd+b/swDMMbdi+xbVdiFv8JRGGMG+kxn/rlzKEeStWM35WpbPHkRE66VRiYCRFE/8cMVFrjK9Sgef78FwX/lwveb/pp5USktD34Poe3N6iyi9J9FbMofjQ6p3yFfotmXpDc1SUyyZ0h5FTfZvi13/LOI7UG8dknGAqgM5o64VjO5A1FZryhVIpaVc2Wb2uFMqEJDiA7HjFeYck1ZmE/JbXOZ5zbCLBazoEyO/OzlT2TS++vjHB++QcjIRzw/fgBKJeSaabxiu9HTQGuQEH1UpWF56HI0h6y30l+v3mtEvPs15Pet3IunRdlQ6dfDLblHPX46RxBoso4xaKhUn69Nmi91N9TjUTYcfunYcZ2gX2XJgIdGnBLCU0pENPkugkMiVRToeJukWsyTJWkuiSaGS8dFTa2dmJzs7OxGEmtb5JMksHjCRZSWQ2Go3EYphpkrDXISVOZB5JoNLSeGJiArSkZr5JTpv011nHuVwus4lAUlwn0OW31JhnGgzLTQySwzqBKklrXieZzDTq9Tra29uTMnHjQJZ5fHwcw8PDmJiYSEh0OpllXLIs0sJaan9LK3NdEkeS9/JkANPi75LUlpAbH7rkkF5mQuahFQEr9c/Zt6mbX6lUUKvVsHnz5qSP6f2c+aKFvCwbNy/4nHBDp1U+pL8AWU+yj5lkf/YUstiS6Ba7NeSMWS7wdCuvViS6ZOTiGTo52BpiUrlSUWaxvg8cfjjGqg76+4EnnlCWzGmUHvwgJtPjxQ8XeswKZVYYZGQk1XtUVuhx4kGAwUFFNnfz5mXLFEN46KHAypUYc4v40x9U1ul4qbc3drgUx9NdKqE+p4DR0XR9Sr1LcqtSm9v3FVFA4l1aEXcHtVT8misjQDHJ0gTJdZOJKxe1cuHEdXHBF5aCYWpVjFIBhZ54VTcwoC7SIp0irYQU3pZsvVxlcyeBwty+DzcoAgAWuhuBcAhu3/6JlD0XkSSKWRe0gi6XVZGDQBG7tMLWjeEl6S3XtnJhLqdMrqt4biesJRkp9qSENklhOlPTF+TyEUiuMSGuUPWExU5HzVeavBhK20nXdZXO03g4gP2D0bIuli4FFvak42ktdDAwoO4n4c56am9XhHilouIaHATuv18199KlwMqV89C/WtV3qaSuAaptXFc9EtRfdcIalEPbtHsCafsFKzyltW4iJloJwPI3k1nebor2+LM94S0s/lJIHiWOw25W8oqPnec2sjfJl6aJvHVTLfUwVBuBQDo8cPjo6FCWxkn8+hxBDgauCycm00ulQuadKN+N8hXhug6CoDsh7TPEvSyggBwrpLX1VJLj0gqb4SWJKclfJplsSBjmQ4lJEtMw1bfOROvkuWSSOfHQ52I65Ji9aFEzG+37iXWuB3USjPUi/KBnotm6NavxLbMh61r/nw665eFCTjHkhrkeF6tEbrLoeyeyuCSJ5TXVng7gFgAXcINidgNJrzsRaQOOqpN4TiX7pwzOdGUVm6KX/UomxTyzHvRNJRlXGKb9kKfa9Dg5rzEdknNd1R5yA0PmU99MMh6KmGFsuh27dx5mVstbADDLuLQKp1v0trI4JtmnS020Iq10y2MS4nQW6vt+QiJTSoayJrrDSp30npycTAhiQlox64SjToKbyEuSqZK0plSLtHTWtbj1epbkv56+JL31epcWxyTTZV5M+uN0BipJZW4kkORub2/PWK4DSOqxWq1iYmIC4+PjiRU9kFqJy7wxXikPIyV2pNW16eSDLlMiw7fSGZdl1utRWvfrbav3XxMkuS8dhk5MTCR1Iq345bMiyygdrUpIq3KTNbzMmy5pI8ts+uxJsCS6xYyBvoLUoS8Y+bdGoks+zeMqanAwYYSrVUX4kpSTFjZhCBTjWbyUw5DZkXrlzAqP9aKS5quJzyuXEwZ3GEUMDqhFIpBanDloZL1CuS66ugpJHuSinIsr6ViMfz/3nLLckovHhMndsCFr1iUkZdLzwdlmoMUy03BdJIQJP7QAV694BwVJ9nI1SnMnzjeYpm65xgpkxKzoOJ9JewwMAOvWoXzs/k1dhdU4NJT6LyWxDqQbBLq1veumTrKYRUme5/PNi9IwVEVKNkBExXhBgCDwkqJ1dWXvdV3V7np9JiS6XF1Ki30SV4GSm6HhP/Oo+9/jpg+dqHGThfw8nYDRoH1hMAysXptk1CuVUC4vTJqB1U9ZGD5LbHaS6qxz/i0PmQwNic2j/qeTm32/O6mDWbNUWG4kVatoJtHZCPKb4EMzw2B1VS1mIoxDuPb8KR8eZmLRQSM51SQf8Zbcte9knRTqzKIk7l1XObh2XYTC6bKehj62A6k1fCFws4EEaI1umr6YsgWkrkE6OrK/cTjU40r+NzGsrd59LSOB+ffpvi/1+Rh10ebObdrE0P3SOK4LV2yYAKn+OC3P5bhRqWQJa5KyOolOw285xcnns/3StIE9VfXoVt2cA3GDg9dkVfBvlaZ8O6fyQmFMlsv/ZT/XnwE5B2S60uEn65CgjYIsk2nuop+W053VynLxI09Msm5MhgWumx5AlJhiL8HMmc8gIt2O3TsPM6fVLbYJSdRKkroVSL5K0lnXrZaklYybVsIkF0l26hbEuqWxTJvXpyJbpRUzyWuT/rVO6Er9aSmfIfNqqht9c0DWq74pIa3RZbl1iZdWRL9ONFOTXNYNyWx5P63rW8mpSEv7RqOBXDyaMc9TkdOSeGb80uJc7xOsW+Zb16efjs63TFtu8si209tH5lWvQykho39kn9gWTDrlet3JPmWSPdLT2ZOszKcDS6JbzAhMh+jKrDxa/AbNQmkoXhWUy8ocJghQHVKTeinFnSG8k43UbBLyeDWDkTgkR+xJIlrPEFc3Qi5F/zQhzoQk7nXZTEJf9Mi/wxBppXR1NQumajdwcUtyt6Oj+RivXj/8n9ZKBf18NsveSuZNrhRZaJo/8bomN0PvsAW/gVIpJV5cV1lUs306O9Pi9/Sk1tbcP5B9gfWqL7RJ/srFYlObyVWuIUCrojemWkYx4yQhNNZA4+wzi2TZR7jw5lFwIMvJy+PdJI4yCMNMkRw00N7uNHVvxiW5fn7Lemb63ETIlDdsbgfjczLVe2Oq98UMgF2IW8wITIfcmupZNBDshCQmGY18xyW3ypeM/hKcbh5hfp3QCrdeV++kZANgG3MW183KcJjKwGvbcv45OZmV1PBcZF+G25gTTYlthePEw8S+tqpvQuaLv4m5gOt7CdEbBGp+lculUxQ5jLYig2kBzf/pPkTKuZDElePU9nCy+gE6HSbHta32NkzdplUVyjFP9h/ZJDKuVpbg8n+guSy6UQjjlYQ+Ld85DeEGguzj2/PY6d2oFUx+E3Z32LF758GS6C8SUO+8vb0dvu9DOhMloQ5kCUsSjUBKUuu6ztJCltbT9Xod+Xw+sWCW8iTUO8/n85n0qbUuiWPdMl637pXXSJ7rZDiARNtakqq6Y1FqipOIl1bYOllrIkgpy0Jpms7OTnR0dCCfzyda75RH6ezsBC3vc2LUkG1A+RydFJQbIJSpoc65vFc6xJT15rouOjo6UK/XMXv2bNTrdRQKBQCpJnqhUEj6il7PlDipVquZOpX9QmrZy3xLp6SdnZ2ZfElpHl0iRlrVy3bQSXnTqQn5N/MrdfApEUSnofzWHYPq5LhsF5k2IeWS9PzIcuqbHHo/0K/tabAkusVuj+1ZhAPNKxLJ/gEI4n+9oY1KusR1gVNOAUol/LG/gIEBRZ6uXKmkIrxwDG5QwNCQWiwVe5QpUxgvIKT0dAFjQBii2KXSGxhwEiN3RcAWUOjrQy100gUbzX1pFh6b/rpuqjlNctEkOcHFo3SwODSU3pPLpdbVsnrkmnVoCHDLRRR6/WbzJkq5MDCUlRjDOK6LYmxNTR3tMMymSa106RCyPqeI+cuWqQu6sLtMXzcxlIy1DNvTg7FSbAntxlbfrIw1a/DKV+6fBK9WgQMOUNZog4Mqf5s3p/U2Z45qTzZJuZxdjNMSvdXCUxK7tFTr6BD9Uaz4G3AQVtNFp774NS2GmabqRx4c0XeGK2qzoFrJVp/u+46bBDQQDENVRmnY39mpjAYlwTB7dizBMFBJMxZH7FWH48C+coSbyz5+su+x6Ummx/5FUS4rfX5AncRwXWQ3WYIAbiWVcWFd0GK+4DfMlWWC3lENzu53V9iFuMXujobrqbECyEi5SGJMkuIMm+hzy93r+CXE1028P9pERuq8rTpxprGKcnzR4ud13/eS0zgyfgn9/3Soiq3NXa+J5JNjRi7X7LhS/m0iHjMb38a0gTBO3/P95oh1GJjN1Hlr1nFpk0wMG8LEAusfIPXKqb93XXViyqmOpXOB3l445TJ6e9X6mY6r46E+M5/IyuyobylJohPFHJNaaX1L6FXH8RzIGiaEYXb4kFViGlZMxHor6CS5/i1/k3rnTFu/lzDpwE9VfhpKSF8BOsnN8PK5YdzS5oHp69A3DEyEexNxLnc/ZgDs2L3zYEn0GYKpSDZaMJO0JolLORUSxwwrrXV1rWspS8JrJF9JGJM0lGGl41KmKa2eAWTIRuZZd+6p60ZL55Qk0PR7pGU2HT5yc0BakEt9cpM+vC6zASApA8tXLBbhui6KxSIKhQJ830ehUEhIc0q1SMt006ZAK0t5E5Fcq9US8pxEMYlnSUADSPoAyzc5OZk4WZXX9c0LEst0vDk6OoqJeDVLcp51wHoldMeqtH7XCW62Jf9muWT7Sut79qMoipLNCH2zhXXRaDQSeZaxsTFIy3M6FqWkj5RwkeVppY1v6qfUkGc+KIOjp6v3ZxOBrv+2J8GS6BYzAvosvdUCWJ5vlrN5YXLrVIZRqFYVgf7QQ8DKlfjNyEF4dk26fluxQukwL1sGYO0AnJ4eVKtqMbdlSBGXuoVPwa0Bj63JLBjr9f0TEj0tQmqdm8shZf/6+jCGQlK89nZFKLa3Cy3toUrTisgJayj4Lhb3IiHnKYPBBRbXqzyGSyNuHhUHKN/hISjvL/cc4IVCgkQ3axZEu+P7CMrzMD5uPkVOSQ8uegcHgc3lIoKgiN4V81T52ABS5FQn0aWZMi2wwxDo68MD9yki+IjDY6dvg4MqzvvvR3HRQJoZ38fCUgmY7QI9SFllxqc7pBvM9rci+1QIoFLNmnVJAXGkOqauS2dZXhOhDWRPMbTq4vzW9jQAFAC3gKF+Vezx8VQKSGaN/3Ovxln7Z8B1UYwFx0slJ6OVXwwaqv5kYqMiU77fLBYcm/OH8DJ9UCII1CZVGKo+TlJ9xYp48yP2cDq/t6RuoMdT38dwxYHvA/v0qnlVQ5yKyISVlca/dQ0luavj+5ZEt7DYiVCPm5N5/+jIvhtU2CYSPX7nk4jXydP4lW6MNwyBsaoas13fMxPBBubQcV34furckOSp/hqRUeh+MtTHaSL95KkxCY7P2+K9TWWURUgV7Bz4vpeS+aaBRWYYzTJsWaSq5ao+kWp6M7DuaEO2oxy4OEmJB4mhIaC75Cv/NHQQ4rro9qvoXuqraw8NwHNdLOSEKoD6tKoUUwWGSB2l64OqzrK7LhA7YWf76+0jkzD1cVM4oPVQU69P7cScabDO1akDJJkq+C7gi5u0jLWUSuJ3NVtfyTaK66I4Oxuf3Bgz5TfJJ8z9qhVhDzQ/G0aLc9OzOwNgx+6dh5nX+nswTHrdBEn0XC6XkN60jJaEp27NK0lqWv7q6TAeap3rIMlMolqS9pIMJqlIIlNayUtZGWm5y/uYT6CZRCdxWa/XUavVkrIByOixM29S09zk7FEnVuWGRGdnJ/L5PLq6utDZ2Qnf9xEEQXICgIQrCXGZhiSOaS2tW3pLGR7mY2JiApOTkxgfH0c1ngzohD+J+1wulzgP9TzPaAmt68STqA/DEOPj46jX66hUKpm0GL8uTyMlbriBACD5lm3OTQDZJwjmkf1A6tYzD1IuhfFKvfORkRFMTk5iZGQkyTvDcHNF1/7XJX6YvuwLUjdfXiNIyEu5GLnRQegEeivS3Eq+WFjsRtAnySZWTl8MyZm67ydEGwA4lYoiV9euVUT6oYfie/+dOjEMAuCYY4CDeoeBtYOJ00qS6HS4qDtfQqUCrFunTHljdnDSVyQ6rcJpwdzZqSxp1XCuGM0t1ULiyJKOr7iWc4a2mC2+gHSBWqnAc1309c1L1rHS+ZZcywZBahUUhqn1sUQ+r/KwdGkBBVdjLqQXU+YhCOAEAYBCJi0g5aNJnpPfZnmVI1QPi6XGCtOi+RPblgtomt7H4Z59zsPq1cqK/IjDwqzgeaWiPMVq/SLJOxdjJrNDuaiW5ujUNJmYSPOVzyunaUJs3nFdFHw/IdPDMLX8lvs7utGg1B0FsnJBbHpq8rOqWNyREWVZD6istLcry3ppDe5UxxRh4bqJJ9ruchkoxYTFUAVYM6g08qU5GzcbWP+sQ9dNfQv09GSaTF9Ql0pOYvXOKLyhjSo/kpWS3lzj57hSicn9x9ao+uUmlHRgICtJJ9Jl+7Kf6dpHFhYWzxu0iu3qmppEl1xYJpz2PEsyU3K0DMqhX04R5DikXu8pEez7ntq8ZcJy4ApDOFAbyzKPMk19jGPepYWverWkxCW/aa0uyXSdrJdV0Ir/NnHFMi/p0ObEZLp2o0awSv5bH4NMr1fWqe8rLW+vVMrqnOvMKBOgM/F4EFROpx04/f1qHNlrr3R856DJDV3p0ZzzLclwmypIdjAOppzk6B5GqWMWS8rI6PV+J+t4KjK9Faa6R5LpTCOzGSL7q+GUYlO5kZ72MGbCxHBPMaY6buyo1jTvlnGHIZwggOf78Hw/NibIJmHaEMpszkzxAmm43tSSdxYvWthZ24sIOqEpSU8JnbwkqahrbwOplAWAJpIXSK3gSdy2Iu1JDEry3uRMUScnpSTLpLZ1KglVxknZEzoRlem3kquR6clv/i6trFnGXC6X+ZC01glmWZ96vesW6fK6rHcSxfV6PbEO1x1fynJK4llKjPBbEvgMx3RJdJP05u+0atcdgjIvuiSKzL8ubaK3gTwJoUui6GnJOGW/kO2vS7bIfqG3sSSsW1mi644/Zd4J/QSBzL8el57ungxriW6xW2M6BHqrsOJ6Zh5OEnhkJLFa7e9Xn1JJLGrJ9ooZvr5GyOhnVqqKIedixvcRutn1Dp1rZrIar7TJ+bquItGBWDZDEsqtIBZTThAgCApTOqACUv1rWS6dY2Z+C75rDigXcFrb6ItMeYtu2M5q7unxlG68ZF71ihfWYrXQSY6sjw6pJvV9UR/y6LipEoCMk9Ym1pfpSQ+s+hlwWfZ8Xumd6AKtobJsDIVDvETWpp5dm/J3nQ+gUzWT9Zbc3xgZUd1waCjVKfX91DFdEifrBcgKn/M6GXnqGMnM1OtZmR8jk5U6SMsshuO6mD3by+aHm1v6orlaTU5ryC6X8VSq/z/d94beJ1q9W3ZDWGs2i90drXhNE+Srw3PRkjXmu5F/67riOpmph9Hj8vSLWoYU6Z19emQarTjHbemY05+ITnZL0GG4zmOaXlemV5xOxrsuWlaUtBSW6ZvGcRlFtZqOM2EIuIGjiFo5jprqWOMTGLc3Pq7GHJLj1aryhM5BDcgYDmR2kqd6l8s8cRwvlZo9hPNvueNsyKeeRKuxebqEugwrdfZl9o0ZkROKbc2N9bmNHp+MV59/6fHIuE1hCf0UAgDXVwYpqXV58+i0Ta1zLZ8z6BCZHbt3IiyJPkMhCT1JmrdymKlD15E2SU7oTkR18lNCl4bRSUepn07i3aRBLa14+ZFkqSQhdSeOknyV5ZC63LQMl2XJxxZdUsKFmwGSNG9VB4ybmxBSnkWS5SbLf709ZT7031iHJutmlknmRW6OSLJS/sb+Q51z3/cTzXu56cEym4htXcveBJ1kp8681LnXNxykBXm1Ws2ccJCOT+VJBKmFL/PbKk8yb3qf0onu6RC+er/X62k62JOIYkuiW8wo7CDJ5bqxHEo1TC1cFyxQGhI9PZg1K9Vn7uwkEZuNQBpd01iJ66zx8VjiI7kZQLkMF1lOj2szGjQnF5Fmy3XT32qhY3ZGyhvkYk8s+hw04PtOQtKWSiqPjEJqgsr1klxXZ5JkOvKYs1xNi8BSlkSCBuWdnVnOOp9Po/Zcg9YlvX6xcloQ7CSKXReouQV4PT2qjScm0iMAor4TSBJd/51lpDk3zQtZedNZuYlVN60a6chUGrbLtmEbyEW01C5ltLreKasLaHbcqWepKTL9+L2JhGhvT6332GgUV2eYIEDDLyCMq9QoIxCGcH11OiQhxRkX02f88mHT89Nqs2Uq8sZ0/3SZjt0IdiFusTvDdQG5VNMJXwkj2SjHNvGM8jWkv+/0x1gOUXxNj4+brHs1TXbt3UELVxNJraenQ772aI0uLWZ1MlaPn0PMdF5PrXhSfUMhcToqKz3e2GRd8KepZKZNecrMF1qR6GxXWnuLd3sYAt6CBSocTzoxHumlko2uy69xx6TVuKyP4bRGl3MsrQI5l9LJ81YbGVPVz7Yg24pFYBukQ5ujelArIrtVJ201zul9Qb9HJ9BNcbf6HWh+hl0380xsT1REA06TRf0MkkS3Y/dOxMybuVkASKVGPM+D53mJo0+T3IYkdHWHjJTxkCStlAahlEk+n884owSQIYt1XWtaaANIiF/KYNBKWHcwSVmRRqOBsbEx1Go11Gq1jBQH45PlYnwkUlk/koyWVtS0KKejVH5zs4C/yzRIousSOUy3vb09cRZKSNJaWnrrUh+SYDZZQzNvJPulFrduxc/yUwdcpinrguS11Ienc9kwDOG6LiYmJhKrbkroyLSZV9l/pOY68y43LWTd+r6fKQPrQ2qXs07Hx8ebyqqfVKAUzcTERJN1v26BzvzpJw1kH9ZPRZj+lpCnA6JI6bibCH2TFbqs1z0JlkS3eNGg1eKhWlWT0LVr1WKrXFYeqnp6gJUrsSVYjP32U3wroNZUQQBgIGb3YgFpniQG1O99fUpmZczvxugo0OjrhrNoUUr4lkrAaiUvImW8NcnsZJERQGVJWnUp6RgHftCdWc9kihoCruvBKyFDgjphCA/A/Nk+urq8RO5D3k8iVlaXztfX68BY6MEvdcdyLXFgarNo9c51cbNDNSeRwpFEe6kklEF4SoCLLi6iY53t5sKn95TK3Zg/X11avRooleZhn1e+UjUUTxVQDFwW8Lnnsmw0SVzGzUqR+jdJ3YfZRSYZGt0yP47Hc9Xx58LcIOtQD400TPwplFSnYTiZrC5Nz+JQUWZ0NOUcZPs2bYzk8yrA4KAqH+uH7UDWiZb39Cwat8eYW4Tf162kYVwXDVf1s5FNKtqeHmTN5MVC2glr8FwX1arqF91Le1ItfHaUnp4MiV4ZUpcbcFRfZKGA9D6271REuuzs8v8ZRKa3xZ/tCW9h8ZeC6wKelz6KfE/xkSOhTN5TPrK10IHrF+D46fu34XrJxrZ03Gw49GMkO2UYE+eorsUnm2LoBLp8bejW7fLVoRN6kgDVhw/5TcjNU8bFeYF+73TB/DdpYovIHKgxyg2czB45g9TrqYoZraUB88aEIx1i6JXE+UM8IRoL1ebyyAhQWLVKvceXLkWj1K2MHzgZ4gSG8ZrE8fXjD6aKYgeQWmr6ACnmAcp5ejoem6I2JSOv6Y5E9VOAre6T2U3/9+D5bnae0WrnxPQtIwZay9i1KhivT0XQi/k3wjAZw+lIXUfLqOJ/Wsq1uOq0yDYt13cj2LF752HmzNgsMiCx6nkeOjo6Mg4lpyJkAWSsd6vVKmq1WkIgSy31QqGQaKyTRHddN+OYUSeKpUPPfD6f0ckGFAlGgpQkubQ45//U5CahKq3jdaemUsojDMOMLrmUfKHlPeuJRH+pVEIul4Pv+5CW9zpR29bWltSz1GWXWtiSfJXkufywHkjoSxJX6qkT3ITgJoeu8a2TyWwHksnVatUoi8I2lRbuHR0diKIIvu9jYmICo6OjqFQqmbTkhgSQteimlIxOUuubLyyrzI90PErt+FAbQGU966S6dFSqS/9IQp11Kgl/5lPWp5Su0UlunfiXpxj0UxWyL+n5kuFMVv57Ava08lrMMJjM1FpN8E0rEi6yHntMLcKOPx5b0I21/cCf/qQWgCtWqKDPPaf+L5UA9Kfp1uChv1+FSUiAoS3AmjUorFyJoSEHAwPAwqVLAd/H0/0OqjHpvmBBauykG+0CqbPJYtBA0Q8TIjIMs2tGWTyu76SxbqlUgB8ox6mJdXVMRhZcpcvd3deDBhwMDWV1T7kIJocq+eLJSemr0Uui9f0CensXw/djfe04QqcynAp0i/Zb2NeHsZJyNkn5FiCtk4LfAAaGssd/maEgwLMjBeRyQHdQE4tHJGR+oVzGokUF5X/sIRXF0KHz0NMzDwsPbSi9nnIZz46oo8QkAagVnizWmXc2gOx/suKkVjuQ3f0wfWR/dV1lScXGYz+V3xzL41UlTyQ0XC/h/XU5d3IA3CsaHweeeUa1MU9AJMQIdzMoowIogtx1mwkL11URCkJ7GEWsXcO0C8meCpBuFAFo6ovJxkgYAr6ParUQS6k7WNjXp9KlWH5PD2pQOuj1kSzx4MXxNIJifMqkmm6UtDLD1xk1+ZlhcABsj/GdtWaz+EvCQQMFv5H4guB45UFokKN5I5evYNcFCrGMUy1MiTf9kdW5Q5640jcaJUz8bqrS5TS9DnSCj/dxo3Iq6RZ985PYlsE0kI13qlcZCVpTfDp5mxDpcqySmYvHJg9QRC3MTiFb8bTpb2pe4/qeItQhiNCgCCDe9xxM49q6FZgIDgICIBwCwkEgDNW2su8XUCrPy5SFY14ydm/rY0IrornFfYkOOLJON5NvrXPqdSej09urFe8vs8T+FgSplJ0k/JOAzcx762syEVOi28Pyc84c6557JZVHzmv1cnLu4qABWqYnp9c0Aj07fAtrdPkSmQGwY/fOw8ybuVlkiElJ/uo66CZpF2mFLolsneB0XRcdHR1J/CTWSXzqZKBuRUvrY2l5zHtJBAOKgJZW8tTiphNNSaKToJXx0RJaOpl09ZexyJ+UJaF1d1dXF/L5PDo7OzMONKVT04mJieQeSdBLuRSC/3OzwGRlzHywTnRrdAlJSNNSXFrmSzkVXdqEGuEmuZ5cLpdxnAogIdHb2tpQq9WSUwa08Ga6LDt/Z7lNEjWyvzK/7LtsiyiKkvRYd41GI9kI4KYB0zCR37p1vqnvy9/1jQvGpRP304Hc1JF9lX1SWuzLvMnnbk8kk60lusWMwLbeCa2sjfhbtaqIucFBwHUxMAA88ABw++1K0eVd71IT+Q0b1C1OdSwzw5c8I7nEhOw79FBUq17M3xVQGVR8fRgqK3TJ53V2AkW/BriuIgbE2sdzFQmoHCUWUK83+0rUFTfIMdNIOAyBIgPSoSZviBdcju8jKM1LiAapZOL7qnzkUcMw5UAZTaWi/HtJ6/pyuQAvEOSr1LcW9Vgol1EuFzJNk88DBbemNOWlVRkjjy3Vnn025mCXevCk9SEzNTSEUkmRuWvWpPnv6QGWLnXQ17cY/f3KSp3EglqMkndVjuaCoIByT7da2NGhKzPLipEL1kola3poWrzrIvCsgFIpFeKXFSz7MD9xhTuBi8nJlJiSwai0wsX26GjqYJSkD9FAbC0oCXNGKssoNzPErs3gIDKnM6rV1DlvX18iY56WSe28ZI93A6hWC0l38X1POTcdGgKCAMNVL7mVXZjcjxf/k2j2y1MMOsMjHyIZETv9VCTLbgp7JNxit0b8TMVUWrKRpz+bdFsBKPIsDJ3kAAxJNf09J/+mY1DpPJz7m61eqfyWXKPrNmuQmzhGeY88XCPT06uB5QSmtkCWhL5+TVez0vcDZbmZhrQWl/clS3RJpOvMpojccdUmrpR7mYrobU4re58cDrm3SmUWjs/c3JYbMJxLMb3UgFyN3a4rFFv8NEyTM05TRlt968yvqfL1RhLfju8ndSejq9fTOVurJPW65e/p3nss9yfbTG8/GcEUxLpOVKebVl4ivaZSFHWpxWXaMFCbUh6qleY+oyNx8isKy+fa9FwlDntn2Phtx+6dB0uizzBIYlASf62szqeCLnehy4u0khnR87AtqQsZD5AlhSWZqFv96rInUvdbT0vmX5c50fMmy0liWlrik1iV5DiJWhMJKollWZ8mC3Rdc5txm9pV/q+3i2mTRLdkltbPsq7kBoCp/0xOTiZ65dvSwje1nd42Olr1U/26ricv+4PMm7TE1+vPJJ0CIFMeWZfbImmlFXyrePXTEuw7U8W5p8KS6BYveuhkJtKF9eBgyu1JAlKfkMuFfjJfF/GG8XFk6ceyXlcketOechK313w9/rjagpkLcFkM3TFlcoLZbY4vWV3HNxn2uU1GVE0LovHxrI9TeZqYVmtJ2nK1KK75pULmOHwup+WViYuMVSvNeraJVZtoGGmJLZVBRkay/LC+3pJZdV0VHgAKkrXl6lVnTkxmg60gy9mKwNiBxSCzY9JXb2VolsC0kjdFLsl8123KNvtGy/4+Rdlkv5Z6p9OtjgYcOHz4plt/Opkww2AX4ha7NcSz6AqC20jyTRHFNm+LAzmCCJSvYjn8SIJ8qjSn4iMldMLdlO8dweRkljRvNV7LtFulqRvoTln1pgKLa7qm+1QwDec6UVytZi3lJbEuldEkqayPZ/qGg+sqNyjS74zrKiI3Y32/rc4wFbGuh2PCprBJJXiZYFLivRV0x6It+6apM+iEeStMEUYvqutSDki7zxDHdj8Dz/ehsST6HomZN3Pbw6HrTkuymyChK0lFeT+J4yiK4Hleot8sraxlXHQsKUlWPU8mgl1a4EptbJO0iNRIp8U4SW3ebyJZeT/rgHIslOuQluXS8lhK1OjlleU0OUvV86xLceiOPOVmh7Si10l7eQ3IEr2sE+mIk21MC3RabNMCnR/pRFTmRcqVsG1YVl0uiPUpyX/ZVjxNIPXX9XqVluLSOp/EeLVaTaz+pUW9tETnyQBasU9OToISKuyX+jMh202eAJDPj35CQ0rJ8LrpWWI9yHT050GmrRP++gbEnkYSWxLdYsbANEk2LWj0lTetaufPTwS4K2vVvJ963L29ygpmYkIdOW0ERTi9vclCZKuwvM6Q6LHFd2+vIoZJYtI/oq4VCiCJM6xm+e3i7JTx9NwGurocjI6myYRhuiCWEp708ZhopursJkS6MegsSxoGc6FKo2RpiT4+npL0UgaGFn6U4wiCbiWzoVeWIF9l2uSlUY3zKc324wbaMqTkZ1j2ahXK6j2O3hNC836oopg/P5WJKZWAuXNTqe/e3jRdtpW0auNmSlLRel2SSKf+dldXmndGKLVV9AU1/zcxzrIhdOsx/ua6KJUKCMNUGigINDka10Uh8FELvOTkhHRQRmKiQOa9s1P9WC6nRy2kiaDrKpN+jcGQJH0QqKpg0EQXX7JBUr4mros5c9Sf8+crNZlEDghAd7mG7lJaRyRwnKEtyseB76PQ0wNUNLaGposmFmAqzCDvZHYhbrFbQyPxUsfI2WdQSonxNkCNLyQRJybSd7buG7IQ38iTXePjaXh9+HPd1PWDvsGoHyZiHkzFMhWz1WZlKyKZG7amMMxLq9eVPpRQGkaeGGuVR2qad3Q48eu9sG1rXre1LElmMxzNMjVsL/mbvJ/uNtj+9I9SKqm8si05tJrKJNuyVV2psKnEDGBweq0XrhVM8yrT2C7Yf24MF1wX8NPOYqrXVu0ok0/U5IK4/TjpFHOAzA2ywvTERP48sRkli8fvpM70ygUFfFQcBQ77cWE8ndSX/1damN6L8FMO3dPdMNhNYMfunYeZ0+oWiUyErl0uHTkCWceRADJEIYBEp5zW1vy7ra0tIZVJikqdcxKtJrJQt1SW5Cjvy+VyTZbT/KZkCAlMqaXOuHU9cZ1UlwQ69dg7OzsTMpi/5XK5jHwLiW2SpZJQlnUpCWhJoJN4pWwKy+15HnK5XOL41XEcdHR0oL29PckfHZa2svbWLcuZT6nfTQ1xfpM8r9VqCSkNAL7vZ/TiSerq5WRdtrW1JfVH6R/pnJYEt6yLarWa9FO9n+jW4ST+x8bGkvgp5TM+Pp7UaRRFiZSMlO5hvZn0z5kGw+j50WWPpHQP5Y1Y72xPnSyXZZGyPHKTSvZVKYMjTwnIOt3TYEl0i90arVYSklTUw+vfsYQLDj8cCAL8uV9Jr7iukp1YtgxwVv8fEIZYfOih2DLkoL8fCMN5SfIDA+kCLkmWkilr1mCfFeqs8Viojq3PmpVak3EtFYZqQSgXTuPjSgcUAGbP9lKNy8FBFHwffX3FRGtaEtrpQjjlbHn8GQPVrCQK0MzmV6vwXBdBoMb4oaFU7luS6SY+nou3iYnUXyfrUzkV9dDZOQ9zV8xLHWaKhRaqVRSYFz9rGdboWYgwVNr0ExWgMpDmg7yo0rwVurV0JOn7CKqKwD3ssHTfpKsrdgK79s9YWC7DP7QI3wcKGMsuJhlhvKJvwMFY1QFPGQAe/KAABPNSHVaS6eyTOmS8/F+yPCyUvF+S9ZKAFhtCBYZlo3GjSJahVIIXBFi6dDGGhlRbycdlZAQocOE9d666d+lSbAmLgA+gnErChCGAfnXfrFmq37luk0w6SqWsk1RUwjQAdYL47MYZmh9swfy++CHpr2T19NnxBweBkRE4CxaoeAYGlGYSPfy6rnrgWB59A0Ci1YKbx1FmCOxC3GK3hnzO5GtQ28wNYieWnqvIOdf1kMtlX2vc0OUGZ8b/g696NglaKT+mWzBzqJDvMB20juYrenS0mfuTqh2um+bdM8xVEht8382M/YCZs90WGS/HYTmMSCU0ffiXcXZ2psQ1x+z2dgcdHUoSxZS2JHUlYS/LIPMphz1ZX3qZ+Rtl5LhRIjdMgOxcysTDmuqTmzCyD8iNklQuKJWCSTaiWWgmYiLaTdAbyXXT+YFpbgokUjmerCzfBwI1bkqfAuyXgOqXo6McKvl29+C6HtrbC4DY3NBVZhyd8Gd+4gp1XBee78Pzs4R6QqDrHc20uyLDyN0o3QGPzJi0DqH8IOtFr2O9I9ixe4+EJdFnGCQRTBJdErAkGk3kopSW8Dwv4/RQxi/johWwJC2lnrVuBS8txmu1WqIxTatpaUUvHXAyDZKKkvQkudnKEp7lYr0wf7lcDkEQwHVddHZ2JoQ2iXOdVCaRKi2MTVri0gKcmuO1Wg1bt24FLagBoKurCx0dHQiCICHNqTNPcpr5Zbz6poUkXCXhy3qm5na1Wk10yyWJzvikDE5bW1uyoSFJdNmWsp8VCoUkHuqUk+AmSU/r8VqtlukXrFvGxbZiPw3DEKOjoxknsxMTE6AePslz9g/mQZ420J3IyjRJaDOs7FdsY9kHZZoMo9c/45R9RG70kBzns8W2Yh5kX9Y3IfY0ktiS6BYzAqYVoZzE6xY2BIWaOzsxvOIorF2bkUZPSHTc94C6r1RCd28vHnvMw5o12aRJoie8aRgmJDpNnAvLlgFwMHdulh8FUqkXaTHHRX+9rhaR3UGAhPF0XThBBQXfR7ncjZGR7PqBaw1JLDhhLWURdAZBLjpiDZtioLQ6pe40F6Bbt6aL2VagTjyRrP8SztRBEBSSRbLnNlLNdD1vrtKqHxpC8s26ZpwkNaQlYrXqIAyL8EOgGChSho5RaRzurP2zaqeBAXT39KhI16zJasR0dqqKLJeBvj44QYChISdDTrBuFAGjFqy+X4TrAu1RqrHuurGuvq4dE4app9ZU+DdrCpktXBqhrvldqShrbDaeFI7N5xPz++KhPoo9JVQqXmZjZHQU2Z0h18Wz40U88UR2U0X6AyVnTTKKVoNFv6Y6w+2rVQXRQWlfH1AuY6yqThOkzvs8tRFQrSoyXPYHgs9upaKEcgcHlQfgZctUuVevVokPDqq2W7RI/U/mhKyZ7MStrNVEH5wpsAtxi90ZDTgZAi7dz8o+Yx5q8Fyo00hhCCdItbcpt0ZHynJ84TtIH/pHRlKiUY6X7e3ZV6NTHUsDxZHQ+SHHZRPBzXdhPi/KpA8S8ka5sQkkGtlwXVVuP0ust4JOEI+OqiRHRtKNTtaTHHYM+8NJHcqNBW6E6pb+Ms2JiWZuVFqW62lKPlSS3eRUu7rScaXg1gCEKJZFgfndFkI5ETcT2PSP4fk+an6hiew38d6y71D6JQhiR6iywls1AiPR55t6eF7Xd2dMOx3t7WpywUbp6YHj+yiUSiiUAgxXnKRMbGMprSfrnVHqba0MCERZdJJfc/ztxM9FxmqfiUnLC5aPHZOTDU50ZQbZKfbaKy2v3I2XDaTvysjNjfhTCx3UJ2fOCGfH7p2HmTNjswCQdYYoPxI6Mcr7AGQIQJKKuqQHw0ldb8arWyrrOueSJJWW2pJ81C3IAWRkNKRECEEyXZLa8m+mS1KaRHk+n0+szinfQqtw3TpZJ82l1rmUCJFkPkn0arWKrVu3JkQs89zW1oZ8Pp+UiSR+oVAALeSl1TLrSsrCyFMEjFdKqJDgluS5dARKQpdxSBkTad2uS5DI+pEkOk8wAEjKyzC0epf9i2npZDfjJAkvSXRa0VPGRcq6SNJZEtWMn5s1sj8zH/ppCKm5zz7Ia3IzSdYL/5blNPUTxqHnRd+k2lMJdMCS6Ba7Oaay+tF/N4XjRN91sXYt8NBD6Vze95Wlck8PFCkXhtQlwdDQPKxZk11XUAYkSZILEFrLui6wdGlMrDYbFrdabMo1CEpudmETE6OFpSWEoZM51s4FLyU0EisqubKSiw+9zmKi0fcLSVJy7cNvcstAs5WczGYYpoR+EGTJb66NukvIlo+RxQs3Eujc6JDxLlqUrqnILQOpNf+sWUABVThhiPmz/WxZ6QWTMiWVStoZuBgjIwwkJtaVipdZsEqDb0lMSBKC68Hukt98rJoE7/h4zGKLOuBKng2bEenXOgs3Ih57LP27Wk0dlQZByqb09ABhCN9fmFn/Jv1NLF6ffRZYtw545pmUwFIOc1X/l+QVkykGDaA/brSHHlJlXLRIBejpQQMORkbSjStWcbKQ7+9P24b10NGRbhIMDSkvwOvWpRW+Zo0qe2dn2nYLFqRSO/IjiY6pSHJLoltY7DRI7qvlYyXHKnHNdb0MR7d5c3bcY7yS8OUjnpycicH0czn1aunqMmxwxsSe4wO0HZf8nxas+YCLHFN11lZOBAQ5KX8jsd5Kb1yWR5LDJNB5Qo0b3/opMlkPOqEqs8i/6ZBU6pLrxTORuNJ5KvngbW0OJAeu9GMHkjTV53h63abeweGVfci3nbQn0OV55GkEOpX1faTSI7Ji5ORNtqUJMp/sSHLXY2KieYNdJ9FpWS2sGHy/mNzGkwj6/8wyo3Jd5ZtHnj5I5GRM/ZV5YflMDy8bXraZnJuMjKiHVj8ewfGYcw6WjxPNtKDZetTT5jMUPzO6zcjuDjt27zzMnBmbhVGPeUfjkJazuuyLDpN8iol41/OlE146Ka/LWOjOF3UJFeZR11MneSo3FaTFu4zDpJMtyyPzLUl1qUnOvEorcUmCStJbpr0teRO9rvR602GKTy+X3iamNORmgele3fp6qrQkdK142Wd0AlluuMhwMn9TEaim3/S+M1X5TXmcqny6Jbsedjp/W1gS3WIGotXEvhXiBYFpnZDqtJqTmSoLSSQkRuMEXN/L6E9vT1YTp02GTJji2aYvS8l670RrW7m+2tYiGUgXr01OqaRlkmijMMw6hJv2SV19E0FeM4WTDWQoyHT6Bv+mxi3/b2rLVpFKlkcyQzxe8HzbTZRfro1NeQirqZ4t20DyAUbfnSaGx1TnraAzOPzW9cnlw8o+wwdAkiozSNf8+aAt/mxPeAuLvzT0MVC9FxtTBxKQ44D81m/Xw045Xk733bSNoK6L5rKYIpjuRt408iFJ/enkcTrxSoPf6WRRJ6Nl+roj023VX/LdqlAyY6YwBiMBSgLpeXne0IllfewyGSzI31uJ3TMcnXxz0qNNNBiFqX3kuC2j5abIdPyebzckYy8xVWIzaKP6hYIdu3cebG+aIdBJ2G2FMf1P62LATBzSgldak/O6TEMn0KUjSUm2S4tqAE3EJK2mKTsCIMkf85jL5RJyNZfLNRHK0tpZtzKnrIuuea47N9XrVUpsUB+bden7fpPlOC2cgyDI1NXs2bMRBAGCIEgcmUodbz09maYkoHUCWbZjoVBAvV5PLPUp61KtVhNd8Xo842BctPJub29HrVZL6ol1yA0IKWOiy47ofYKSKfJkA8tG6RaGdRwH9XodY2NjkJbntESndbsss27tLa3p5f+6hIzJX4DMFy3dmQf95IXsH9KiXsYpSXcJ0+aIhYXFDIOJ/ZZ/myblieYKlAREqYSyr5QgKBXCW8fHgWJfX2rdEoYolZTlLZN33axBjesitfqV4p1hCCesoavLy5DB0nmlXhR5u7FMYWh0PsW4k/UcjyFL7ROZCC12RdwNv5A5Zcsj73KdqEtz8xrLxToCUks/WmRLy7ckDt0EznUxXPVQGUytn4HUX6csEovBhST/7+qKj4OvHUhvkOSzlDlhpvfaKyu2GgTKGkro9pTLHjo7U1UQGn2beHrdYjEhV2RGZ89OOxILKK3PWlWcbAR2wHxeWZlLqy1WUmen0ixgeVwXPXHTVyrKUGzOHAATYiPBdRNLc1p2kadmlMyyJNMbrgeH9btgQZqPmHDg80AruYQE8ON67ulJrfBlmwVB1tRuaEg9wL29KvP77ptK47A+XFfVJdtVNpC+eyDKbWFhsXOhP1p8H2asrVs8f/K1zWGZ101jkbxvKuK0Xo/Dy3Q1Yla+o3QuUDrBbCIzp5qjMKPyfS4KWgsdoMW+I6/RF4kc/xmFlJTm61ePSyYtx2meNJMW9lNJuLEexKHnzKuVUmqmqtAt3zlcZU7RSb8Wraz69chb9CE6kWW9tdq/lm3uujDLxshM6zfLDishN/WlpXa9jsRbul4+fewXmXbQQEeHen6q1dTSvNVGiGEqqX7XHzB5o95PXTf+yYHrijkm64Jhu7rSI4JhqDoWj0zIzXVmjsc79TmPfsyj1Xw//nbQQMZHjsUeBdvsMwAk8KRl9VTQSUVJqtNZJ5A69CRpmNNGbBM5KAlVSZrrzjFJPEoda0pySAeV0hKd0ie6bAqAxOGjzAeJX93BqvwwDOPgt07CMk4glSipVqsYHh5O6qKtrQ1BECRSMdLy3ff9JO9MMwgCFAqFRBdd6oLrDktJHks5EZ3MJUnNNBif1AwnGTw+Po7h4eGErJZkNoljaWHOMlFmhhsNDMN7pQNO9ikS6HRSK52rMpwkrFnHIyMjoCY6yXSGkWS2JLFd183ojMvnghsA0k8A20kvg9SLZ53zb5NMkJRR4t/Mm9w0oNSNzLv+TElsy5r/xQ5riW6x20PXGpWLUJ3FJSoVxZb39mLL0pejWgUW9zSwuCfEg6s9/OlP6cJxdBTAqlWZ1Xpvb5Yk3bRJKUuQswOgyL++vqzWY3xTwUdG67SjI10EUwqbR51J0La3q9sLkgQXsidci5n8WHLq4LoePH2RF8fXcJUmtnTyNr4pXduQjCZRKtcqkm+Q/8vj9GwOLsqDQDiiAlCDF1eVh/FxL9FXpfR1tZpKuEhZFK7TyJOSzOXi26tU4FF3ZCAm0SUhzf5CwpkssTxOzG+5gKtWUXRDFDtcoCsm+8teohdOPXhpJJeRepELRjYyA8qdCuappwcN10N/f9yNRDurKLpR7PVT2RaK946MCK+ySMuikfKFykYsdkNgaRnDVU/pmK+pZMo+q131fWarUkkd0TE6ElWSGyhQBH/ZsuyCPG7UQqmEnp4CJGooAKUCvBV+VueUdRSGqYbSypVpx4jbcqy0EIXKRuCmm9QinQK7jEcn0VtBT3OGoD3+bE94C4u/FJywBgeN1PI8eR96mrPCZkgOj3yc3Gzm3/Kwjny9yu/Mxh2vB77ZujkMQeea5PPkPEDf08w4zpaB9G9JiPo+Gm66yR5W0w3xVhsA8tVksimQe8aSvyRSXxTpeKrv0bI+ZdaneiXK4kmCul5vnhcwD3K/mlJ0BbeWSqy5brrRv2ZNVphejs0mAltk2gGSdqRMi6kchqbJEvqtdir09oyNEaTsuUyjfRbQEU8/vHAs3RTOaPmhmQGXZY4H3GLgw/cd5HKpIQOniqaDYOz/RL2u/PJ47AAEbxAdpBY6Sf9MsxXPMeUDKuOY6iPDcE5mIsn1TsV657f2GzeGZgrs2L3zYEn0GQBpbauTbiYJFJN+N4AMqUwySnfaKeMNxctJ6mlLEl3KuURRBGlJzmvSgWS9Xk8cSZJAM2mESyK0vb09IVkBJERmR0dHQiRLR6d6+tLZo4mYlZrytEqemJjA6OgoNm/enNznOA5mzZqFfD6PQqGAfD4P3/cTJ6GdnZ0JeU5CmhrotJBn/qRsSRRFqNVqmJiYyNS7bi3POKS2t17ftEQfGRmB67pJnYVhiPHx8UQ3XVqncxNAWqOTrGfaUhOd3yTZpba+lGTRSWr2K5L97A/j4+PJpoW0WNdPUZhOWEiyXG6qyA0n6QSUGzlMUxLnJoe1/DZJBTFfso+1IsWl5bou/bMnw5LoFrs9uEIgaydZ1VbaidUqsGED0NuL225Tl95+ZD/w2GPoW3liRoK5UgGG+w5SpO/AeiAMjXP7hx9OJS0BoBZ0w+vrUwz75s3ZvMaLImqder6LYuAmDhaBNP1SSS1scrm4GFzpCodPXGRzvSUtrIB0wey6SBdH8SJnrOpgcCDLyUviIQwVsS/XKFJrXa5p9DWeTCrjNHRrNUuMui68pUtRrToYGEgtzvnp7882IfW3y+VE0jshqDNOVMMwFVGvVFSb53Kpwyou9GRGS6U0ES6CJalTHUsXuBSXjctQ7OlBsbcEOmNlvtjldP6kadNHt/yKF6NbKh7Wrk791ErOgFLtqi4KcN0Cgt5uVX5Albu3t9mEXD4bYZg4VkVPD4q9vcBgNcv6uy66grQNSKKT8JD6sbI9qlWgUPITHfnMrgjJgjBM+2Vc5+sH6EyvCNctxhGnfQ8Aqn5MSsREQbmsNNh/c7+DH34BWLVqHt7Y06M6FNtZdlBmVmdRdMJA1tMMQRu2Tyt1R2Y61157La688kps2LABy5cvx9VXX41XvepVLcPfddddOPfcc/Hwww9j4cKF+MhHPoIzzzwz+f3hhx/GBRdcgN/97nd46qmn8NnPfhZnn312Jo6LLroIF198ceba/PnzMcANMouZAa4lSKDzvZT9WelPa6QYrUv1VxjhuilJy/Eqn88eQNElR4CUYGzAUadnpG+OOA+Mkz6KZfZSB5Rxdk160jKT8hO/k6WGs24fsK3Xj4n315NqlQ2+w/mK5Oaozk0DSDY/OLZtSyFLT5f1pueJw1KpBBT8eAOiUs04xh5DAWEVKAJZK2bAvPGtJxJXjut7mf4jozH58HbdeE7RSidc7gDE32NV5e9ja3+zNLjuDiWd7xXiOijCL6u6aEpXlCOpYD5DYQjPddEdqEyPdTmZaacIljwDut+AahVwAw9OoNWbIO7HqunpR/ksqQ31gnqu4wqWm0KMSs4V5Xcyd3NdDFdUGqVS1uAiM7GKb6ZBimfo5E7sxnimwI7dOw+WRJ8hMGlqmwh0fpss1nUpilZa2zoYTpKR0oqacic6ISYtwEmc1ut1VCqVhNzl/X78MqS0CAlLWl/TeSWAhGDv7OxELpdLSF/mDcjKiNAKXpZX1qFeB5SZGR8fx8jISJJ/kta0ZOf//O7o6EAul0NXVxc8z0uIaRK8pnzxQ+Jekrm6hAutziX5L4l1hqGV9cTEBNra2ppOH5BEJ9lNS22S3o7jIAzDjCNQKeOiW4nr1v+yL0qrcm5khGGIWq2WEP7SAp/pE/omgbSQl5ss8ltuwMjnQJL80hGrPA0h+4bs53oZmQ8pM7MtuaVW2JOJdEuiW+z24IxcXyEA6cpEWoPznRU7bnziiXjRdOAQsHYtuo9vwPedZFEchoqDDQJgcaAW1l44hnI5tZwlJ1itKiujXA547jlgPsluKYIuv4FMnly/iDDMWsbpxkZNzHWMyclURsOki5osdIJ4YRNbR9FyWpLoQm2jKZsmx2OMXy5CaZ3shLV0BScTkyR6cr7cS5xV8jMyouq3Xs9aFtIhKTcZGFViAch+UamojYzRURUhMyb7DiOkVX5MEIRhao2flqkAB0NZEl1WEoAg6E7kS4mmYNX0QsNVcwBH1CfCEDW3kByaoDPVNWtSY3Ny7jztLI2/fN9DIWbYa6V5sU9cD0G5mFSL6wLFIH4+Nm1KnXNmOlza+GxvOrDVSQBZVrnAroXqqDdKMbkvPdvpFRM3cLXqJRsRcrHv+2n/HhpSGzzPPqvKs2wZsNdeDh5/HLj9dhXdGw8NUu+n0jLOQKw0/T+DSHMdL7Rzsm9961s4++yzce211+IVr3gFvvSlL+Gkk07CI488gsWLFzeFf/LJJ3HyySfj9NNPx1e/+lX8+te/xllnnYW5c+fi1FNPBQCMjY1hn332wVvf+lacc845LdNevnw5br/99uT/9m2xeBa7H+S7Vz5vrtcc1kCMSfLXZBHOb/lekqQokH2v6FnzZEDxg0kegvmQ8WfGINN7TpLnQBOBrrlS2a49PElqykdD5lknijmu6uR5UhZWTAzHdWF6a8jmNJH2TNME2Z7GnQRxOSHRtXxlGrhFGwKqTJ4LhHFbtprvAKIPVafZnrFxAh278gQdlVro4FUvO/dtfF/Ne+g/Owi8eDwPsnNcfZzSNr3huigII4D29tQKfqq+lO5pxZtJvOi6yVwlDNPTk/oJCZUNB3TCW61kDw3IuabePGoK5mXCqOtqDqH6o1ZxkK8TJ+6byNbRThfAf+Fgx+6dB0uizyBIsk2SSVKHXA+rO1WcLmFH4nAqB4syDyRVpVSKri9t0iHX/yZ0a2NpdS0Jdmkd3Kpe5EfPB+OT90rrZJlfksrSwtkkIdPKGp71w/rS8yHLy7zLMugSNHrZTKcJWsXPb/0Ugu7kk79JC3QpRWNKR6Ynv2U/kPe0ul8S8uxP8n+9PK36KOPmZojcCDClrW9G6fWnx2/6W4d0SKunsyfDkugWMw766lb/W1s9NOmNh+mRbc675UJcB0k+GaZUSo8+w3VTM90WedgW9AWeyYxLP5ItF8EZS+F4FaoWR86UVmRN6YrrpvvIiUgnVibLIOONoXL4pZ+Glgt63bCMfzdZtukLXDIFJtO6FsQq11+mDQlT/ctrYYjEcZkehPF6KdudxJ/UlcZQy/W5/NarUH7r2W3Vzg3Ei86ODpVp7uDITSdRLknyaBx7E6nu+ypaDzWA+WrFHhjSArKEENs52eAYz7aP3MhJ8sPdFpn2dPqkju1hsXYDvNAL8c985jN43/veh/e///0AgKuvvhr/8z//g+uuuw6XX355U/gvfvGLWLx4Ma6++moAwIEHHogHHngAV111VbIQP/zww3H44YcDAM4///yWabuui56enu3MscVui1YDzXZGAWz7EZev/mlHbHrBbSMfRphe0mIjwXHdDEHPJMmNTucVxLGHoHwKYLa03lZcmfJso53ksCGldWSbsAwcH/T5yZR50gdT38/uoOsffeKmtSPJZVO96nl2XTTHPdUAKJDRU4c52HS6VzJWT6dzizJuq9/o0fH2JutvqM0T1hslY4hWc5DxcfNmkH4aRPYPuccmffsApOb1G9N/E4monfBe2RWwY/fOgyXRXwSg1AgJXcpaSJKXFsnSKleXoZBkpE6+AlmyWbfeliQxHV1ShoUfpkWrbOaREi46mU3Lan5I3NLSmBIwLKMkyCUJrltC0/qYkjKSDAaQOLmkvIjjOMjn86BkS0dHB7q6upK/KdtCq3OTBjs1wmX+aMmsy7LoBDvD5PP5JrkbaS3OumN6JIxZl7Tyl0S+tKqXuuWUtZEEtG7VLy3YdTkUtiUt9Wl9L+tf9glZVlqT834A0C3UpRY764T9Xm7isP2lA1Fa6ct2kX1cf47kyQh9k0Q+RyZCXvZF0+9yo0r2/T0FlkS32K3BWTYXS7pmhiQC9YVr/D17dvwvNTGGhrBs2bzE+tf3hRNLsYAKq8paaOtWZd1DeeZSSUVVdMdSs6Le3mbtEcNqQa6PMvrZInk9H/B9eG4DXV0O+vpS+eeCb7CEq4bKLCr+v1AuIwydxJKPupH6gk/y0OQjOZxI/WsTd+37jtLEzhQA2cVvGCba2L29SrpjZESlxVP+siml/jb5X0Cl5wxtSWV9uKNQLmedgrKRenpQ84uK5I3bqhY6ydFr0+Iz0fiWKz5mpKcHDb+A+qZst5TBqO3u+w58v5jRFPV9J64SZXFFffogUL4yaammW12S0NbVjJINk8ow5s8NYhOwKrwgQL3uiCaIrdbHx5XDUUk6BwEa5XmoVIDBfiQnBbJWYs3ypfSr6wxtAdYMZNualcs2KpdRi09hhKGy/tfLSTB9GQ2JosnJ1MK+ry8uxtKlaTo6K9SKmZJhZuAiHNjxhTj9DBH5fB55TVC2Vqvhd7/7XdNi+cQTT8Q999xjjP/ee+/FiSeemLn22te+FjfccAPq9XqTz6ep8Kc//QkLFy5EPp/HEUccgcsuuwz77LPPtO+32A3QirkT/yoSr/l3EoN895PM41hEH8J8N8quJflP/VUgNxoTSRctf0xbYkordHlCDmhm+TnQxwOaF38Q+AiCLAHKdx3QbFirE5iSrObfrAdZJ3J65LrNTj/VdbG209qN47yMj692Pe8yr1JRjHlIHImSAJXznHjMTtqJ3t1ZvzyWJuoyUzhtctIwvB1l3ba3N59U8H0PfuDBkYXT2rPhF5ous4+y7Pp0VC8qHbvKRyKN04Hrq1OQJokSfWOgOpTqsOtTT5m+Kl86ZXKqY2q+KAd6AAgCOK6LICgkXVpat8u5DtOQaeob3yZwXKelu++rNPL5eK7ne8oIwbCZkNa7INKBbWsO7UawY/fOgyXRZwhMFrC6RS+JPkmik4iWxCuAjJNHmYbUe9YlUmS6ofaGklrWksA3yYAwPzJfJMN1yZVcLodCodBUHsdx4Pt+RptaEudS/1wSmLVaDfV6HdVqFUNDQ5nfdIKbJC/11z3PQ7FYRGdnZ/ItNdF9389Yi3PzQNabtL4GkJDzJINN1v3ScSY3QqRVvLTSlg5b6SCV9SMJbTrAlCR7FEUYHx+H4zgYGxtrIsipJ860SF5LYlnmWUr9SEejExMTkNb+/EirfimTI63yZVnYh1jvut4/8yw3RKRzW9m3Wafs99zcMWmsm55B08kC/say61ryukxMK4v8FzMsiW6xW2NyEvC8lPQDtm3SI8fGahXlcrxYIsk9OIhuvwL07IPHHtOijFekJFqffVYR7YDi6jo7gf32i9VCVq9RbF9fH9Dbi5pbwEA/kM97mD3bUxrhPOcb59cJa4kVvFyEZYokNw64kKhUUHBdFKpDKr7N1ebFO78lO+y6CErdTQZbLdYncN2UaJ+cTEnLalUteLhQY1jG1dPTetGT3BCLoRd7e7Fs2bzk+HO1Csyfn3WIJZ2TysWn5zaAxwZUppYuRQ0evHK5eSUf3zCMIgbWqvwVY+eqlSGzUguzPzICuLMLcEuFlGSJM7FlyEFlUF2SvkGBdPH43HPqIw8n6BsWkmDgd1+fql9ueGzapP4n8cGm5r2eK7SGqTmZ6UhFTEyo4+auCyzu68seYxD1tHZtqk3PI+ok7Ht6VJ/o61MW54k0zdAWYO2QSnvNmqy5ITMZE+jDKGLtYylJNDmZdl+5EQGkJLr0tybl1p97Tv29bJl6DofL+6DY16fywU0tWT6y8SboZPoecCR80aJFmesXXnghLrroosy1wcFBTE5OYv78+ZnrU+mbDgwMGMOHYYjBwUEsWLBgWvk84ogjcPPNN2P//ffHs88+i0svvRRHHXUUHn74YcyZM2dacVjsZhAENZH4dIh/p66yfhuQDv+6alurMUx/pxCS6ATik0Hxi5950zf2JHmcDHG6tFwrHW0J/YSU68LzfWV1m3kfNxdOWhvzIzcVJH8vCU69fvTsSUvhNMmspbwk6uU0TMLUDlL7OpMBdUe2EV03IcjdUA0jjWAeHM3PRyNIpcrq42m0HR1KDoUbHHIjxFRfgHkDl1lpb3eQy3kAvLQuWIRKtijcHGCZGbdpc0c2q7TSZ3zN6jXki9R/8gSgXg5+m2T3mjYxKsNZpzQyk3FdOyXAjzcMmGZFK7tMS+4pyejktxxe9bD0NTAxwf2SrCNyeR/hzVAG1Y7dOw8ztAvsWTDJnrQi0UnI6jrZJAR1C13GI9OQBK0MJwlPXapFWi0DioiUu0eSnGb+aL0tyUSdRCe5zI8kN/mt621Lq2d+SGACagNhbGwMQ0NDkFbyzKescxK6+XweHR0dCIIAQRCgWCwiCAJ4noeOjo6k7mUbSYeVUudc1rl0WEkSmGCeWF+0dJd5k5InrF+p+c1rTEs6y5QEL8PROl8S3NKCnO3T1tbW5NhVll1at8u+xBMAzJskoHm/7MPcWGHdyTDs13LzghI10gKdTkxJ4Mtnh31d6mbJ+ua3PKkh+6j+PEhSWCfZdWt0kxyNfgrkxQ5Lolvs9pDWRvy/VTh9ARuGKJfjyT8ZwbVrgcFBlP5qn8SqNROH7yfrtsFBFbynR5HoPT1Asf8R4LEhxebFM/5nRwoYHVXEJ62mu7ocFICsQ7VQSZpwUVevx1ZBklCQZZbsAZDkvWnRLlczXMGVSkC5DMf34bqFDJGuExBczHHBBaTkuf7N5Do6UouqahXwAj/bVswPPaZu2pSsYp1KBQXfRyFeOJfLqUamTmx7rtBrHaoosnR8HFi6VKVL/XPZN+I67+9XxLDrAsU+NyPDOjKSWqTJ9CYmVNOqulALufE4LMldKohIgiHJ4lBWDp68taxzZpkL6WLQQNEP0XA95POp5VelkpLzUmIlIXL0jyDJJyeLSbupNIso9mU7QQNOQp5XKqp7jYyo9KtVZQgIqDb2hjYClUq6sTA4qAq7di2werXKFHc/+vqSwjeCIgbWqGDsO+wWklBgV2aUXGQLfiVDoi1dqu5bvRoolRwc1OOrmyWLNhWM5M7MwY4uxNetW4disZhc1y3ZJEzGQ1PJ4LWS29se6byTTjop+fvggw/GkUceiX333Rdf+cpXcO655047HovdBGHYRJC7LrKm1Mg+7/qmI18r8vSKfHx1nwq8xjCSUJbXFGHc7BRRfss8k6TNsNlyLDYR6fpuuR6hqcDyHea6cCThHvhZnx7j6ZArZWH0OmpVLloD63ryMptN5ZcRVatAaEjA4LhaDoAN10ut3n0fNbeQaSc1jnpKL7wUj2UDKZmrk9ip73Ankw1+y036bbW1LLduTU9w3tDervonoL4lqczwnFsBzeS6hLTi1jcB9LzqmwJ6eXw/zSO7k+8jPZXH42asTDl3iycmDtI5kKm7612dhhZyPinrkPFMZS3PrLQ6qZkl6QVfs92iJ7sOduzeebAk+gyGbtUsiThdP1t30GiSZGEc8j5ek6S5TFMShdJBoy7PIQlGKcVBot1kFS/zLmU7pIWwtHKW5dLJYklQMq90dMr7ZfmYb+ZP5pcfEvvS8p95l3khAa23m8m6WhLRzA/jp4W03taMU0raSOt/hqf1ubTqJ7FN0HKdJLe0QCfBrhPjMj69DnRdcUkk6ycA9HukFrpOzkt5FabNPi77JuuBzlblhgk3HkjUS5Jej1t3smqC6ZnSLdV1a3PTBtmeBEuiW+zWkJN7fRU81T1idk7nobXQUdbSsRmyE9ZQrTZbv6mFhPqTZOucOcCsWYrspEW1DL91SK1FRkfVwkYaRyd50qATuJnyMh9c1PDz3HMqbbnakt6fZNmFRbpcTMkqJWhEDGRJYSDrAE0/qksnq2Eo9DxNkOeNaS0sVsHFchmN2AJOLrKS6GQdjI+rig5DhIjbVZeTiQsoZVt0az5ZDmkNxnRl+8TJZbhqve1kU42MZK0e8/l08cxwGZ39uF4c38fs2crZaGdns2Ua89xE5OjskmhATn3Gx5FY6xE8YcB+TvkiuWBOIBfc/F96iJWbJ6IiGc/QULYsJB7kNVkcNnVHR7Yv8G9uRCQnCnq11bYeud5YOpj3GYK2+LM94QGgWCxmFuImlMtltLe3N1mubdy4sclijejp6TGGd133eVmhdXZ24uCDD8af/vSnHY7DYjeEzqCF5kcVSA+4SIfcvK0V+P6l3wp5b6t0Wl1vmY6J6ZRjsMksWI/YRKLrejTyOwxjctPLlFP8PHWeDeWUY1lm3NWyanSm2orx5Ytf3xiIIw/DWPtajNWyCuQGMJCOU6YNcCmdbiKVdW1uPbv67wTnNnqTyPmB3AzW4zdNWVsNPTL/+skC/m6yRDf1Wf4u5fuS76qYyHACwEriLpRM2M3mQc7Pxsez6cqhXyfO5bMnreaBdE4lN4FaPYt6fDMRduzeeZjB3WDPgW7ZCmRJN+lUU5KokkiWhLgkBSUBzTgk6SzT1/MjIUlVmaYke6ciCklaSmehJqkQWhozjyRZW31M5Lwk8fX6kgSxJFFl3ZCYpU631OuWRLJe53obstxSxoThW91PTGqLLSlBI4li2WZ6P5IW+vyWVv0mglPPi4yH/Um2mR4Py8sTCbqci2kDiMQ1CXu9PrkxwA0AefpAbiQQktQn8S4t2Vv1U73+dEtzfSNHpivj2xPJ8lawJLrFbg191TudmbO2MOW6wHMb6Ww9ZuDK5dSCCQDGqsoyjY6SgFTWZGJCELZhmJocDw2hp2de8q9cg+gWZVPm2bQykAvsMFQmwdTnoGmyXkdc2YjVSFeX+pOLTt0PquvG1vBhCFRDeAD8nmKyqCFHy6LzunRwmnFSBTR7QuVvFNPmjb6fIbjlQk0Rv6pNHGa0qyuJtx63k+e7iXUeABTiwjGPcuEn1/O0qJfre9lkRKZNRVNSp5vXaO2VaOxvo9mbEIZw43zI9SzjIRGUcUAmTd2pGxsEqAyoMktte4LWhL7vZNp19myVLuuK0vJJfeiECNuyXFbXeDSB+vS+n9mYkOWgJmwQqP9pwTY+rqJk+vm8il4eONDbolSC2TxOI59a1XkmYzME7fFne8JPF57n4WUvexluu+02/PVf/3Vy/bbbbsOb3vQm4z1HHnkkfvzjH2eu3XrrrVi5cuV2aarqmJiYwKOPPopXvepVOxyHxS6EIE0z78ImtizrTtD0uNKZswmm6/o1EydN+Q+ZpanykImAzJ9kWCUDKgcOfefalCE9YdN7LB58Pd+H57oolFzUwuwGsSRcZZSmV5zp0dTLnWZDjcWu76UW6fpObysCnfUV/x9W1bhtLL+oHukkVZLZejg5jsvyMhuS8NXHVQmTnry+xwGY90R0MA9T9alWGviybPyWmwL5fJZU19OU5ZL5SCSMdGfcTETXm0e23qVxgD5PCsPUgIDRcHwHmjccmLSYCm73IbKZCDt27zzM8K6w50ASciQTpewFoMhD3VKWxCC1tKV+trQcZ7xSI1taAMsw8pvQrYd1ORcAGUJaQlqZU5qDUiG0Omea9Xo9seqWZWd5pKSJTnZKq2nP89DZ2ZnIfegyG5JMpbY7LZqr1Woi8UGL7fb2duTz+YQkZt6k9bskDEna+74Pz/OSzQPT5oVuBc3y0ZpeEtFjY2OYmJjIWI1LslcS7RMTE6hWqxlZF6Yr72GdtBsWeLRQlw5JGV5aobMvUTueddZoNJLNDNlPaJVPwp31qG+qhGGIarWa2cQhec6TBiTZ2WdknUordqnNb9I/57fcRGFa8ls6kWU768+SyRp9T4Ql0S1mDFoR0qaVbqzFjCAAZTUTC/KenkRuYuXKbHTUP+f/0mCHxrYLly5V/zzwgPp+7DEUKxWly9zbnawhKxWgu7eUJQtcFxBEMdPg4jRj6cUViKsWyQDg9VbU9eeeU2S6zKwk08Mw9do5NIRCSf1U5JRgcCglHWVBmXEATqmEgu9jcbkMlAPlgDLWyKSFGBecxaCRFRl3XcXIuq6q75hwbbheIlGS4zoNAKrZbDBMGKYOp7q6PPilbjh9fUAYYswtiipQsiQ8IFAue0n19fSoawMDWeKfltBy8Z05qu6mTubY7bhw5QJa+k6VGunkEHQLNxOPkmlzqM2MIPAQBOkeCde8XV2StykozVha9gMJob1lyMHAQLYrZdKLiQ8HQHfJR1+fItPnzEn10Eli9/SoRwkVn5WbZooMPK2VuEru6VH9JShiZJP6iacdWP/sFjr30tmZRkMtdIZlHdIo3nVV+K4uAAOVZhJd9sdtrbxnGIm+o0fCp4tzzz0X7373u7Fy5UoceeSRuP766/H000/jzDPPBAB87GMfwzPPPIObb74ZAHDmmWfiC1/4As4991ycfvrpuPfee3HDDTfgG9/4RhJnrVbDI488kvz9zDPP4KGHHkIQBFi6dCkA4LzzzsMb3vAGLF68GBs3bsSll16K4eFhnHbaadtZAotdCvHMyccxeQybWD4vM1TKd6d8jKXVMTe4M1y8FrXkBZN3vKYn4SAmF2NyWm7IyvTVNQc+HT/KDLd692xr804Pq8dhYoz5zTwjq+9u3C3QKyX+mPTDpc62KQtIag2g3IdOLgc9sXSISDMh+yvsC05S3zp42qujI7tHwTFCYvZskVZVZZZbMl7gx/GlGw0k1CmbJqdOJtk7fnTLc9PUi+Df8qAgr5s2KUzDk5TRbwVTlxkfb3YEW63SV4uHYk9Pahkhd6dlovFA7cZTyXo9K1ejl5cbFvqJAtYn606Xg5H3m3Ti+ZuMU15juBl0iMyO3TsRu5REv+6663Dddddh7dq1AIDly5fjggsuSHRtoijCxRdfjOuvvx7PPfccjjjiCFxzzTVYvnx5EsfExATOO+88fOMb38D4+DiOO+44XHvtteilmGILXHvttbjyyiuxYcMGLF++HFdffXVmt2I6af+lIMltaektCT/HcRIik2QgSULKjpBAliR6q78BGPXKmQedLNWdMvIj46PlsU4auq6LQqEA13UTfXE6DSW5TgKZRDbrQEpv8Hcg3XQwWSHn83lEUYSuri7U6/VE5sQkrUGS10TYTk5OwvO8xHtwFEWJI1TqqOsbCbqFsnTO2Uob22SFToJ4eHg4Y1FOeRqp/a1bTIdhiFqthvHxcYyMjCTEM4AmK3oJSaJLS3Nd8oVh29rako0Fxsn6kOS5TvhLEluS8LJtSI5T+53gRovJEl1uJknHpexD7Lu6rI5Mn/UodeKlE1fWh+43QPa/VjJKuwoXXXQRLr744sw16QTkhX4XWmJ85mGPGbslqSVn0KZVnZxxk9jz/XSNsKZf6XK/6lVYXymiB8Bidz0QBBhGMdFiphY0Fw4k0MkRh+VulHu6UcADirUdHAQeegh42cvQe9LrMTSkLoUhsGXIge8XUfBrCeunL7SyBluOWgzHgcZCD2E1JYf36etTGeOGgCDam7ypSSFzZp4rmE2bFFsqvTzyw8QoRN3Tk1iOO52d8Do60E1L8t5eFWawkl1B0aQoCDBWXoyREeDx+7I8exCkJwHKZXWN5Cit+kdH06jI3ZbKiwGoKqBESC6nsr1mTbpoJFFeLqvNEWrb9/TEpxKoGVJpYcHsunBKJUVQxO1VmO0n+r6VStYyUtc9l+XQrbMyC0G9Q8SyLrNmpVqkUocdUPGFIVDULPq3DDnoX506CZX5SpKRGjfx6n1hEAAlF319hSS9SiVNU51SUA1R89UJBfgFuAHg9y6Gs6KWrb8gQANOppuRQO/tVdJI8zti52Y95YxmcrkMLFigwnZX18crbheoIEmjWC6jVu5OnfcOij5uYilM5m2SuZBMyXZgV47dbdi+xfX2znDe/va3Y/PmzbjkkkuwYcMGrFixArfccgv23ntvAMCGDRvw9NNPJ+GXLFmCW265Beeccw6uueYaLFy4EJ///Odx6qmnJmHWr1+Pww47LPn/qquuwlVXXYWjjz4ad955JwCgv78f73jHOzA4OIi5c+di1apVuO+++5J0Zzr2mLE7fpZIkPJxayLR4+fVFY+o3N8FUtJcvj/5OzdSdf+I8pOclqqOZcdFPWOuC5RKcFw3caoog5EQ5fvcdQvqNgPZmWzI8mb5txyjmYjcndZ9XUg5NLm7oFuJknnWmV4OorKc8cDglEpqzhEEQEyoMzty2tBqj0CH3PQtlbxMm+unwQAVRt/sTbIT/+2gkTqR1HdkXDfV9zYhLrcXfxD4CIJsObWumCmLTp7rQ0WmnUVfB5qdaMv+xN8JqefP+OWGsildk8NZXaKf9c5nZnQUGB930NFRhBsU4ZbmJXUMZJ9XyhpyDpH47tEfUCZe8s0W7vKewAfKfrKBw59knct5MaNh3egnEVoN+duCHbtfHGP3LiXRe3t78W//9m/JLsJXvvIVvOlNb8L//u//Yvny5fj0pz+Nz3zmM7jpppuw//7749JLL8UJJ5yAxx9/HF3xedWzzz4bP/7xj/HNb34Tc+bMwYc//GGccsop+N3vfme0nAWAb33rWzj77LNx7bXX4hWveAW+9KUv4aSTTsIjjzyCxYvVAmk6af8loespm+RGdFkOILWqzuVyCUEoydT29vaEQJVEK8lL6YxShtEhLX0lGSnDyvaQsikkzUlA61bd0tJ+cnIysZ4m0cqySRJd5kvXY6eFe0dHB3K5XFIXUv6GeSTJTqK5VqtldN6lI1OpO88y+L7fRMpL0lC3eNbrydQHSJZPTEygUqmgVqsl+ZBta7LEl/IrExMTGB8fT+Jj3fB7OlI8JMFJ6ldpYSbqiPUt+wblW6SMDutGngQw1Ymse35Yt3IjgfkDUpKaz4u+eaFbv/Me3XpcWqHzb5NVugwvNwOmIst3JZG+fPly3H777cn/sr53t3ehxa7HHjN2y5WpXD2bTHkkfF+ZJ/k+giAmTTdtAjZvRs0v4qFfAccfD3j/+7/AggXwV7wUQErMUsaCDhblupvk6CFA6lxxcBBob4dz5JEolboxMJAuAnwf8HuUE60GnCaHUNVqVpPcI7Hq+xiJfZfSJ6fvOyiX5ylSl0wxiVTJloZh6i1SegQdGlJMwDPPZK+zYJUKsGGDykippFZwJNHJqObzwNy5qQUTLd7lqo2r4FIJ/f2qeh54ILUGJzdPQyiuu2QdVyrCqi3IrpeBVBeVhtiVSho/q6OnByhgDEABmzaptDzUlINSOmiVhLLsZ9IMTPzm+D68IIAriN/2diEZFBeiu1SC63oYGlJ5lVE3QWcnwhBdXYpEn5jI7EkkXMvkJBAEHpzAxXDFwfgm1axsdu6xsIkyaentFW+cOG5s1RgEKAaBsuqrhBkihocgsotXD67rpcRHJZsMdYk7O2PnvEEDeOCx5OHiZgUAdLsuustxQ//qV6ow3G2hKH9PD7ylS9X93Plq9X5o2rVA6xX3dpLowIt77D7rrLNw1llnGX+76aabmq4dffTRePDBB1vG19fXt81N+29+85vblceZhj1l7G7AyRBykqzk747rJi8JReI5ycZ1K/AADJDVVOarQUqWSSLWcxvqvc9NZRPrLohmx3XhCut4OW7LoUJ+S7S3S5os1S9nnL4P5aSZ47JkDeUgSE/PFe2lSsjKlUwjM6YfAeKH8waGd13AzW7cyvFYOrhmnTOs/JbRy0NL8h4pA9eqrTMOxWWm9HkGkD2apL/j5TGEOEEnlsJxAy+pOraxbEudPGd0Gek60Rm8eI4nNw3k/gj3QuRthE6gAymxnjlBUUnb3wESWR/46saxqpN0GX2vhpCH15hePp/2V93pdyKFKCQM9flKMh+V+oiyjVgZQkqGknSFzD0uEOv96+8MEv3SoajMwvbCjt0pZurYvUvdyb7hDW/AySefjP333x/7778/PvWpTyEIAtx3332IoghXX301/uVf/gVvfvObsWLFCnzlK1/B2NgYvv71rwMAtm7dihtuuAH//u//juOPPx6HHXYYvvrVr+IPf/hDpmPq+MxnPoP3ve99eP/7348DDzwQV199NRYtWoTrrrsOAKaV9l8aps7TipjTZTikVa9J+1nXM5f361IgrfIj49HlUGQeTUShDK9rhJtkNaQuubT81SVcgGZLdJlP3ZJffqQ+tyyvTF/mQ9fF1nXVc7lcQlBLS32ZBtvURF7rdaBbRNMiW1pDm6RcJJEu61CXwGnlPFPWkawP2Ra6ZbYu2aH3RVkPOoHeql0k5OYRNzRk2+inJvT0dR12vZ/qfZ3pyDqV7b+tOtwd4bouenp6ks/cuXMBvPDvwlYbPVN9LHY97Ng9DcQTdJekdLwCpmUwgFS7IkYYpjIi0ppIrhO4oMws4LhqqVYzlknTtZKRi3P9aHMYZsn8ajUtmyQ3G66HWuig4Xpo+IXsypAsw/h4uiCXH5ra0zuqdBipO5DcujVrZt3qbG6cN7kJwehYZab6kdcmJ5vrn/HJjQh5ndlJFsRxoIkJYfml3yDrRze7kwnLBbyhu2XiDcOWpPl0VENcN7uA1++R/UX2EX1vpCX0CpXEjb75IhqI9S6rTXYVvUvItk0W5ww0MtLcDvwMDandI+5CVCrZB0EyPfpD26pC5Xer37cTu2rsdnbgY7HrsaeN3VM9kiYZD9N9HAcI+agyHN9LlHiZMm3T+30ag7WJN5RDg3wvTkxkP0aLZJOJMZAd9PQXbqt3davP6Gh20DW9a7Uym6pE5r/VsKkbHPBTr6fTENN0YZsVvq1K38GPg4ax+iV0PthIoOt/G4qhb8JMp9tJq3N9bmFsw2o1M2/QwXbQpzOyv8p2nrLu9YaWnUDOH1rl15T/+LOtoThr/b/jsGP3zMeOzdpeAExOTuI73/kORkdHceSRR+LJJ5/EwMAATjzxxCRMPp/H0UcfjXvuuQdnnHEGfve736Fer2fCLFy4ECtWrMA999yD1772tU3p1Go1/O53v8P555+fuX7iiSfinnvuAYBppW3CxMQEJrjNB2B4eHjHKkNDK/Jal5iQFuTbikcS1tz9Mul2S8tgXpfyHCQ1+RstjnVyWMJEDkvSk/+3+l0vqyRL5eYBLc9lusy31DrXLSd0AlVazFPrPZfLJTI51DX3fR/5fD6jcS5JekrtTEUGSuLVtJFBS2t+dPJaktjUS5dW6nodSamcVnVgyp++mUDozkFb6YubrPGl1bbUktfTBdRzXKvVmjYMdNkXaVEv80OpolYbNkyf7Q+kJyEkaW9yXCr7XitZIRN2NkE8MjKSeQfl83nk6S5dw5/+9CcsXLgQ+XweRxxxBC677DLss88+O/wunC62lxjfnrCXX345vv/97+Oxxx5DR0cHjjrqKFxxxRU44IADWt5z55134thjj226/uijj2LZsmXTTntPwh47duszbX0VEv+eTLh9H8jnUQwa6OuLrYVi0WWvOoxyuZg4NKQlb7WaamaHYWpg3dGBrOA2rWviBUSppCQvOjtTC3MEgZHU5DUTsUpLJBp9J5bV1DQXdaAvxgrSBAxQqyMp5E3TMi5wyILqJkrSuyS/83lVuFaLI+FItFxeiDBUVc28uW5aL4zCdbMa4AzHJKkuI8so12ft7Vllm44O9Zvnpg5GczlkNh4ylSf6TNKm+jUR3nWbHeG5rqesC+P73DgaOtGUOq9J1FVRIHYypL9TA5jasLLZeRsXxqwD9iXZfOUy4FW2pIy3bGNWrF4gvfxhiPZ2L3OJXchk5M22am9P81Fw45MAQOvVPpA2+sREKgbPvFIsPQyb+2ur8ujl0upahp8JY/cLratq8cJjTxq7dYvSBpwmMsxkwGraQJwOdN7PdYUzZn1s1DakuSktSeD/n73/D5Isq+4D8U+/evXqZdar7Oya7O6cpmZUM/QMDQx48AwLIyOJWEZgab22JXmttS1CRCDCBD9sNEKyZdkrVqGFtQNLeEMrsXgJEMHKcqwR8o/FCBT28EOAvzAwAQMaRCNKMzUzNdM109ndWVVZma+yv3/c97nv807eV1Xd9Mx0TeeJyMrKzPfuPffc+95993PO/Rx12tbpaX8LiToDhnlUzhm8Z1GvRqNM0MwI3jwv523bSFXAKsE5W+lfONlyAu33kbRjIE18HhlWxyLUFnxusXiyUmpzLvLPQKIO50Kea/OHjBEBsSQwtbxkaqu6e/1eCLkRNc8lcWyLThGANK3uUtMpiTa0dSjjjk51aYpJlF37XB+G4hhJOkaWubu95mmxp4Uen21x/jkiSxClmORUsQVqI4DJhzk+vISOkc+h7tR7hXW+aVumc/e1Jc86iP6Nb3wDd911FwaDAbIsw8c//nG86EUv8hPr8ePHK8cfP34cf/EXfwEAWFtbQ5IkOHLkyMQx5BWysr6+jp2dnWC5PIfvu9Udkve85z0THEdXUiyYWneMUmSEzgdK4JK0Kdvb2zh06FAFxCa/NalOFHRnZDU5pgF40FLBbdKGqBC4VACefO7D4dD/riCm0pAQuFSA0zoACJwqB7tSdQBlIta5uTko/YmNKgbgwfM0TdFsNtFsNtFoNNBoNLCwsIA4jtFqtTA7O4v5+XlP5UKwVvW0+mqUO+2toDfBcoK2o9EIW1tbHkgmYE6qG/Kdb2xsVPjACSiTboQc4UqBE4qEV91CelFfja7nOFCnSl2kdmj7p0a4cyzSgXDx4sVK8tQQ7ziASvS/7gKwkee77cbQqH1G16vTRvuKwvJsv9bJ0xVl/aIXvajy+Vd/9Vfxrne9a+K4V7ziFfjIRz6CW2+9FY8//jh+/dd/HT/4gz+Ib37zm5d9L9yvPJ0g+mc+8xm89a1vxctf/nLkeY5f+ZVfwWtf+1p861vfwrzNDGTk29/+Nlqtlv/MCIGplHLNzN2hBVAdgK4RLQqU5nm5t3t1Fa94Wddti73tNnfO6dNotttYXr4ZcewwxtVVF7hFEJfSbhegdrrsvihoYtDt+m2uJ5aLRUGxBXuIRTy6VuXL5P8hlZvFj6TIIICcrP45PFfM1lZlkcjtwpxOmu2200dXUnUAo0abkx6D2911AV6SnbrvqPz6ujPWk086/Todl7y118OJO9tot5uO/rpbBijpDt6zZ6sLWGWKYVVHj1Z5QFdXSyz47Fn3XuSLrexUH6fNCu66OYjc9mHLJc/vQlvDeZwsHNOsutCkudrtlgdrCKLT1+K5RX1kmRkAIkk8BtJy+cTz4oLPVWkPuKFidrZ0VrDLl5YcFtNcf8gZ7ezZkrPo+uur14mGoNnVdwHkNBoliMIAcAVU1NGhucuOHi3ssLpaLqaVp0eV5ji76aYSQIrjktQ+dknqKsn0FHmgwfgeul8o6qPf42DM3dOF+MGVa2XutqCzv/dB+JWLHwmMKTf0bn6wvXxkmvSZ96emArHq0db7RzHZhihMbHuoJ2k/9Lc6ffR/TjNp6p51E/Xiq4eY3+lnG9qsyKzew5n9m4rNzJTnbm2V5RbHJ2mKxSzDuJ144PzIkbIa9b1r+9SUgDwnifARzHJ953kZBa1978rWO5eby5ttcTiw7+w8Ghp8VvK8oO2ZfDYLJbesOGO0Hv7PpOxxwcGexmhlbq7iGLL2YxF0Kqhdmum42uf06mi91lHAPmyX3O86RJTySMe2FqlTP2lh0jRxz5Q8Qe2tF4RNDlPkR4kGm2EvFM+D8LEPymGr07MeQ7HX4nTuvrbkWQfRX/CCF+D+++9Hr9fDxz72Mfzsz/4sPvOZz/jfQ1Qle3EH7+eY/ZR7qXX/8i//Mu655x7/+fz587jhhht21WO/ooBcKBrdHmuPsYAeI6LTNPVgMgFWnq/gIQCf9DOKIh993Wg0KhHNBCYJrg70DlmIgvEEPJmYktHe5BenQ8BGWbMtCpQr6G4TU/J7rZPJVkejEeI4BnmtbZQ1dUqSxAPoCwsLaDabmJ+fx+HDh5EkCbIsQxzHyLLMR6uzHRZUtfXwewvQjsdjDAYDWM5tcpBvb297O49GI/T7fWxubqLf7+Ps2bM4dKjkjLegPnnbWQ9FbWfHnerFuvk7E8ESPNfIb6VYsWOWADdfNlkpE6my3eSA5zgI8Z1TByZ3VX20LyjqLFB6G7aTCW05ni3YruVoBDrbbq8/rU8B+ysJpH/rW9/C8573PP+5zhvOhFIA8JKXvAR33XUXnv/85+N3f/d38cpXvrKiL2U/99j9yNMJon/yk5+sfP7Qhz6EY8eO4b777sMP//AP73rusWPH0LZP4FOpyDUzd9sH7rpVqi4yNCKGvxOJXlkBHnwQuO02PIoTONHZBD73OaDRwMm7HYj+n/8z8N3vOkCS4OtoVEb0OhD9pEMolctifb1cAHP1nufIb/vv8PDDVZ5Wis1xlmVAM3Vt9HyUa2vuwAcecCAk21dwM47jpLLuBoBut4WIbS4WmkwKySh7roGyNtA56doVPfitkmBcw6a4upubc6tqKj8aAQ8/7Gzw3e+WGTyJmrfbaHY6uPPOEz4PK3OXsv4nnywx1ZkZT2ePTqeIvB8MgJUegIIHNI7R6dyIwcBh9+fOuWSVBNF1AczhwH50NDKR4/yWCKjNuIX1daDTaaGZPlVd5dKGwp8e5UMwGn1np0xwBwBZ1kQMBxg1U6AZF2XZBbAduwrm5HmZZFae46I0RZomFXU47Oks4NiZmwOOHymS2n7lG65vSNezvOxAdAWzSdGj15UB0tN2y/9kt6dTOGw4JrtdV120/oTTwRlpYvFfAbbjGCDveaHTZudGfONrbti7a7HpgDEF2i2YHhIO/ppjDsLcPV2IH1y5FubuELjqLzd7w5DrkJfwaOTu47tFBId+02KZi4HTVHwkcVG1QBhET1NsDiLkg1o2q0pbCHqG+KxVH3UuEsi0QKqTCECCublFzLLMdqlehUrEAqshwJ30bQqyU7T9s7Ol47ywQ1SA6eikGHeTyn3e+iBCQp90CJgN2YnzF5vHnCdqQ97ml5aaiNOymWnaQtppOceM2oKVaWcE/uc8rodacwWnC2uUGo+CA9Rdh7YWStDbJt310dYelB9MGt06Cew8TUMWdSYeZAfQTn0QAg9lEfyf1wqFO/rSFMizBGmaIOnE1XEnc+9YEvLmOTBYY/ua5fVi/Bq5GUuDQblxsmIX0xfKkc5nvuncfW3Jsw6iJ0niE5zceeed+PKXv4x/9a/+Ff7RP/pHAJx3+vrrr/fHP/HEE9470+12MRwOcfbs2YpX/IknnsAP/uAPBuvrdDqYmZmZ8JjbcveqOyS7bdu4ElIXsaoX1m6AnKVnoRC41IhiyzcOwIORBF9nZ2fRaDQq4CT1GI1GHpTX5J6sT18KzM7OzvrPCoyHotB3k9jMNiFucUZgz87OVgDjELc6o5lnZ2d9lHmj0UCz2USWZUiSBPPz84jjGGmaQulc1P7aZzaa3kbCK1hN6hLagBHojI7m/1tbW+j3+zh//jzOnj3rHR60x8WLF71ujBinvdSmIfoVGx3OujXym4D93NxchR4lxBvPeqgL+4H9rjsQWNfm5malvRYY584COmK0v1iH6qOifWI575k0VZ1CIaog/m/H/LMhCwsLlWjq/cr8/Dxe8pKX4Dvf+Q7+5t/8mwAu/V64X7lcEN1u2d3PvffcuXMAgMXFxT3rednLXobBYIAXvehF+Kf/9J8GKV6udbmm5m5dXYU+24WGAoM8juj1yooDok+exMoa0H1lE9EjjwBpila8iU6niY0Nd5hbsLl3LujabRch9PiZCNvbTbTbTWTdE4hWHyqzOlIHhiff5oBijZCmano4UCxgUhQRRcVihRlPqft118HvuY7jibU04P5vyvb0IRKsrLj6vvOdMnqZwD0dBrff/iJHuXH6dBmVzVULV/Osm1kmez3XwNVVd97WFjw3TgHGN+MYN3bbfsHKNXueuwWzJtFiBHoTmyWYz7DzwnjZ0o2I4zKa6vDhMpGZxaZJcwKUYHfrSOoXgMM8wtqqqwoAbuxmZecAk9QuxViL05LSRQO0ONwS5NVyVDFd/E6iKdXoNvM769V+H42qjDtpWkSyrRZj55FHyoSyvZ4LB6Qo8Ex9rE7F50Dgm98Uwc8aJMnfot5TpQcljsuLIQCk+638DKsvdnisrpbOraUl5yRocoeAlqPPn3VAfchJUHx3EObuQ8XrUo6fytUh19TcXYgHvWqARvMvgBJIv1TRS1zv/Zxnq4kMXcVDJMgH1YTVFhu14K9GDde1z9GJRZU8phYHV301cNzWG8eRnz/n5xM3Z7YlYlkzgep7CEznO0PAqYA6JAuDMRGnB2TTGGjHE1HB3CkGFDsN+gPX/rRZfsd6ctewsSSRVFsw/QVFMX7GBrB5ZJZL0wRJiskxxgp2ca7aaYLC/lAd4ziqtjzkWbDPq9aDEMd+x1qVGM6UWQfU18zPlTqoj9CwRAT04xhII0/XwyI0+Wmo+DwH2u1mSY1EEL14jur3yjI4JLe2SlpEPpoD1R0cKgrihwB0K1GRxhiYzt3Xmlx1DgZSNdx0003odrv49Kc/7X8bDof4zGc+4yfqO+64A7Ozs5VjHnvsMTzwwAO1k3mSJLjjjjsq5wDApz/9aX/Ofup+tuVywbkQaKUJSkNUHkp3YekvlBrDcl9b0Fr/D/FkAwgCjwri6m8hG9iI37pzVafd2qVc2ratlve7LqmqtXNdf4SikhW0trznocSWCvwqcL1fbu79jqvQGNLxEqJLqTt3tzpDEd82sWdIbL8pWK+/WSA8RF9TN3YOUuLQS5Ht7W386Z/+Ka6//vqn/V5or8/9vADghhtuwOHDh/3rPe95z5713HPPPXjVq16F2267rfa466+/Hh/4wAfwsY99DH/wB3+AF7zgBXjNa16Dz372s993W5/rMp279yFx7J7QCx6KCaxQPtgFrF3MK6XFYIDJBZp52reLcX2v1TVUQJ6XYToB0eRRWpECrpqf0a63L1wAhkgq/LAVpEDBdK72a3TxCon+5AjdCxyJY+y5kLSLXkbuh9bKc3Nhe2s0mC/aLni1sl0khD1PLHqDB+2zYIL3RhVVkXb1XKq6/T9Ut+3XUMG7CLtfi5idrfZvpS9DelgAoBAHplc7WU/1w243AP0ZlGdy7p65jNdUrk55rs/dtZfhLvfBvS5dGym8H6ncdvZ5b1fcOSSXe4sJ3QLpfOQtUnOC6/zNOZy/M6G4n5f13d6gd5urL0V5lOClBzHzvPI/Xwpy2vlQQdK6achUW3mkAKo7oiqF7VboJXTcJY81O9db8Dv0vf2tTi5nwIUA9+K7EA3RvqowB/E5KpRA1VR56XLZJ+5fpnP3wZRn9gnPyD/5J/8EP/ZjP4YbbrgBFy5cwO///u/j3nvvxSc/+UkcOnQI73jHO/Dud78bt9xyC2655Ra8+93vRrPZxN/9u38XAHD48GG88Y1vxC/8wi/guuuuw+LiIt75znfiJS95Ce6++25fz2te8xr8xE/8BN72trcBAO655x68/vWvx5133om77roLH/jAB/DQQw/hzW9+MwDsq+5nUkLANiOVGfHK7xU4BEqQSiOGAUAjk0Pc1IzMVqCy0Wh4r78CkKFkmAryslxGl6serGNmZmYCMA0BzPq/trsOmLX1UUctj7QrGgWv1Cmzs7NYWFjA3NyctwGTijLyWkF1W5fVSyPvWQ8jqzURKDnHyX1uqUyU5oTlMIqeUeYKGFNI36MR3uQat2PNAsgKSHMMabJOcqCTK1/HK8F9/ayiuxeoEyPuNXKcbSJFi+U9175h1L3tF20fryGlcWHf66sOSA/lH6hzBtU5Pi41IvtKyjvf+U78j//j/4gbb7wRTzzxBH79138d58+fx8/+7M8+7ffCy41Ef/jhhyve/r0ikd72trfh61//Oj7/+c/vetwLXvCCSuLRu+66Cw8//DDe+9737kkBcy3JNTV3W/Q5BALq/0qqyc88ZzBwocjnzgGDAfLcBcaeKLZvIk2R5p7OG8vLZXQzo3xdcE80UTWyzIXH6g/F4m19vaqO4oKdziRH+LiI3CprQlWJ664Dnvc8oNvFMG7i7FkXFM7oH8Dp31pqu/KKLbw0haWUoS40z+wssEieUU0mxT3a3W7ZoJIMvAwz6naBU6ecnjfc4H7rdrE5iLCxUQW99V1tkOcoI99UycKAEcZI08ir1WgUkW557iO7kiwtI+MwxjCPSv71otwIY8Rx5OlP4tjZSxOEDuG2szfJCZOWiedCdvSU6lmCKDNIv45fJfyUbdj+OEVO5LsojtFMU3Q6iQ/S52nb26590WCzGuq4sOAGGwnal5fd/1mGTTSBvODR5yBh3+tgiUuu4DguNxvwtKWl6iVKdqNuF0BPkG8eRO+NOmZQ6E6b8CIdDLB06kacPCn0MP3z1Z0Seq2zDnvPuILA+rM5d0+3hB9MuZbm7l3Bc16bxYEhkI0An/HDBm+lMzMTRVbKUPH5FIoDyVmd5+Ucqr5H1UHrZW7Osr1uB42KpczYrQ1sB3W27yp6XiXCXguO4+oWtZCRQ6A7/zeUW0oFgsBjWBRy/KsRLFVYoWOWuaTuMzNAK3MAfJYl3ilMthnrB2B1St82jBPEaVIC+dbTHmhLXpiHUdmWJohjS4upPJvs5owJAcCheSkkttz9gMm7oeHmWSpJY2RZ5CnlSVloH7nJ184E6Z7fXLY+RgCSNMWRI5H/CSinZH3Wsxv71Cz8XrvONuFKYOrTufu5Ic8qiP7444/j9a9/PR577DEcPnwYL33pS/HJT34SP/qjPwoA+KVf+iVsbW3hLW95C86ePYtXvOIV+NSnPoWFgocTAH7zN38TcRzjb//tv42trS285jWvwYc//OEKaPjd734X6yTBBPDTP/3TePLJJ/Frv/ZreOyxx3DbbbfhE5/4BH7gB37AH7Ofup9Jsfzeyg3O79M0nQBzCQYSoFSua+WGJogdxzHm5uZw8eJFn3yPQKhSlBCYJZBNkDFEk8HklcoxruD3oUMlr7lGGytoWhelzTL03dpN26kgM9vRbDYroDPLIrA6MzODRqPhwfRGo4H5+XkPqJM6JOQgsBHYSoVCEFyBco08JzC+sbGB7e1tbGxseDoTJtVUUN46Liw/ubaLZRCE3ypmbwu4h0Q55RWkJkc+7RUCrgnW2ySh2hZLW6P2YjlJknhdqAOphprNpueAZ9ttNLxto9qPjgX2jXKz10ldbgJL4aPfax8/m7Qvq6ur+Dt/5+9gfX0dR48exStf+Up86Utf8vfDp/NeeLkgeqvV2veWube//e34D//hP+Czn/0slggyXoK88pWvxEc/+tFLPu+5LNfU3F3HbRl6AlcQvVh1DXPHM5rwyb7X8xQheV5QNJ/8YfdwXzzs3367xxcrOTXjuApY6tpmM26hefvtlbrPDxJsbQGr33Vfc2u5qk7/E29vOztOPeKXJaeloJa33OJA6m7XM8g8+WSVwnx+Hh4c1kUL+cGzzGGTbA+j0MmesriUVXm6i0xhm2jiwfsBIEG3ezPSNrC4tOQKO3XKvbfbDuVMU4y7JxyDyGoZ7U6KFaY9sIsqv2jNZGFvV3WDAbKsiXbbtbndRjWsHgCyzC3si++STgdHjx4rjV+UGwGYm0v8ItFVFSFHE/mg5JBvtyOkaQujs9WFtuITxIT5fZpGSLNWdat/7LbCK5d52i6Sy8XFnKXG0v/puIhjNNttNNMU2VLLM+/0+wXuTZ5+LnQV6e52gU4H59HC1pbzKQHA4cNNNBpNpJnTY5iXNAQcV6TDmZ+vOpiiwWaZNLSQVrsNdFNgXUIo9frkNRnHXid/jWq7V1eBrS000xQ/+MpT7vO9p8s+JOBDo5v+rQwuPUfHVp7vTsAckGdz7p4uxA+mXCtzdxwjDGQaBGwcJ7WgmAXMeLtQdhKVubmSB52m0MtcVcjz6g4k+uJ4v2MCSJXZ2WoTmJtT83aqEITXBI4hWmstX9uu7/Z/nXO2t4s5PHXPOmm6iDgGEtJhaaVWigcb9oO+Br1JTJ560L7VXUiRm79sQQqmB/SIBgN0u8ecE3xlFchzLJ48ifP9yIHq/T7QSdFuV8fKzEx1x1Oel0nKXbLQxPfB7Kxbs6ozRFls1KbW/pwauIuu0NrRooQ60zoP7AC0x6voscDkw5E4AfYqTk+xuwMAuGciAAmAZgxH03OkPGmMqHqeztnWaMU8TtqfZurasZiJEf2LdqrqmxTBCSw2jk0D49gHPei9hXshLkWmc/dzQw5dfDbRm+e4nD9/HocPH/6+y1G+aEaBEzgk33Oapj6xZZqmlUSSjUYDqUQchTirCWYpQK4R1hQLYPM7AqIEO3m+Rl0PBoOJJIxACdySv3tmZgbz8/MeAFXOdoKaLFd1sjoqiK0A7c7OjrcTgfHZ2dkJLnONdqeOyn+epinm5uYwPz9fsakCtypqC4LhmiB0e3u7EplMW54/fx6DwQDnzp3D+fPnPQCuwD/bt7W15SPWNzc3J5J88iH30KFDnuObXOpAmWyVnPfaT7Y9mjyTIHaz2UQcxxMg+sbGBgaDAba3tzEYDDAcDrGxsREEym1UuNbF7+m4YAQ8gXu+Kye6vZYA+HMpTBpKvWgTRqErRc5uEqKfsTsLdIfB1tZWxaFwJeXhhx++LND4mRDeG//kT/4EWSgstUb6/T7+yl/5Kzh37tyeIPrFixfx9re/HR//+Mdx77334pZbbrksXf/W3/pbeOqpp/Bf/st/uazzp3LwhOPz3Pe+h1aSlKEsumgBys+WWJwP9e02nkpPII6B1tqfOYT4k58E7r8feOc78YnBf49ez4GkWQb81b9aJmYEShxvZsZFOm9tAY8/XmKS8/PlwncwKOmeeUmdPu3wQC7cbrnFAfQqjLodxk2PH/Z6ZUB3Mx27RKj9fsm5/spX4qnOrd4fwJ90fbS0BBw/7pJ0MvhYgQJSrTNKnvgmE6f+8KvG5Y95DnS7eKqfYHUV+NKXXHmHD7vopOVlF3TOxKnMscq6RiNUItDj2Nnu6NESn6cNdZF79GiRjJJ88ECZIXRpCeOs5fuv2wVa639edoQCx/QWMEJeFmuMqtqMW1hbc3oxmRbtRcdCiN1Gh6BGsrXbpcOE44GPgYr1Sy437ydJUyDpP4UKMs6BwQKVbmdpCWi38fiZCI884jYpHH/862HQ4s478a3TDlygvuRAtcUqb732y+ysy/nZwvlqQt3vfc8VxoIXFsoOJkBuM5dRXvhCDJduRjI4X47zM2fcwOHn5z/f7Wx4+GHg2992Cp86VV4sGomp3iMK7w8K6POcfh+rjz2GG+6880DM3V8DcCnL+QsAXgbsa+6eylQuV/zcffYsWs3mZHipcXIN42YQf1RR3mZGJVs+8dCuIN6feW+1HMxKPWFBdFteHFcd6kB5f2e5LE/bUsd7rmIjzS2OGhLrK7TvWoa2m3VTT9WPbVa7aF065+mcxinJO1TzYTWfCkV3DamBmJQlz908n+fAbbe57/iQwkQpaYpNhMeMbtrS30JjKuQcsO1k+/Q7TSbL77gDzu4Yq8y/oUpsZfxsHjIYNa+7Izhn2+B+LUb9y3z3yVf32qFggxdCngZ7rIrOvSGkP9Ruk+zdn7PbxVDYZ3V1FT/wAzdM5+5rTPa4TU7lapAQiGn5oUlLYWlfNOqVn/V8PYeANYF6vjNyXClDNKLYRtYS3CZISeBWk0Za0FtpMXbjQubx2o46qhdtr41y1t+YfLLZbFZoQPQ8AvIE3vkiGBuKdlZKGaub2pG0JRqRrVHKBNi3trawsbHhQXT2lQL2Gr1PgF353NUe3KFg+0wdCNpvLFedH3oO7UE6F61PnRM8n31Bihq+hyKzQ4k76VgiiK5UMtYZou3WsR4qP0Tnov1ZJ3ZcWv1DiWVDyVavJbncSPT9yFvf+lb83u/9Hv79v//3WFhY8EmtDh8+jEajAQD45V/+ZTzyyCP4yEc+AgB43/veh+XlZbz4xS/GcDjERz/6UXzsYx/Dxz72sUto1VSeUxJ6yNcHaxuuZhbrfsHK72Rxl+cOl7z/frc+e/Wri0XR+hM+cjlutyoLkpUVt4Ah8EshkB3Hbu03GrljCYhz0VmJSKYCee6ixgoaF0Yz+2axrQxb73SwtuYixzVoVxfoBGcZPQdU+bJ1raZrPtY9seUdiQesCdgfPlwCzr1eWf72dglGsJmM7OM6iXqkKVwiUwBIq9FieS6R+PxSFndRPkSaJiVeygYwO1wcV3cfpKlXLC/qSorGxwZzJd+sBkar3ebmymRZ1JVtpy114W3HymBQ5mXV9SMx3YSF6oJXw9xVIb+9oVWCCNaxVAAQj64n+MY3qmCQBRQ4XhUHUWyapkWvANAfftg15JFHqoORWzmWl8uGqf7muh4Miv5Wx8HGRukEYeUPP+w8VJ2O3/FQkb3uFxS7WA+hLVepTKPZpnLVC6+pPRBhiyvuJruldqjD6LRcBbB5r+ZtVssOgdQEni2+SLHc3BZHZf0KtNu5wQLglBBoHMImbXvtY5IF81XnENuKLdcyZun3E1JnDOvMBEqvbfE85LdUcR7gcVkGZCXdnc6/IXtrOykzM2W7Q2OOQHmoj5U6hpKEBho/2wJ2G7gBbwh3rPEZSvPZAOVzlR2vDPzQR8c0LXTVQc652kaXBzvUtKHuQgDCg8nOw6Eoe5Z3KUD6AZPp3H3l5LkzKq5xISinoKECzBaEtqJc17slzNTobHt+SKc6XfW30Ll7lacgpC0vFO2u4L1GZe8nKSjPVfvouSGQPCR1yUFDSULr2mc5y+vspMB/HbBbJ1pmHdBsj6mLUrf67AWa7gWSsp66RK9qk9BOgJBO1LcOzLZ5B/aSOmqXUL3XujydIPrv/M7vAABe/epXV77/0Ic+hDe84Q0AXEKshx56yP82HA7xzne+E4888ggajQZe/OIX4//7//4//PiP//i+653Kc1D2A27t50Gb5ZhQMC4w+JzvAcw49qckGCKOHeVHKJ9m3UKZvKl+K/A+2qIL6zEiR0lCRJwhSIXYRXKIPzW0tuN7aFE8cXBxANc4PKfRqEb5WWGXqK14fuFH29/aiApqIcXCL06TEnSoi+rSfdjFu28Wy2lX13R2a706HRiRqLawQIsKt4JrU2zZlNGo0IOFE1wIGdicTGB8YgzIMQoQWAeALbKubybGsvZLdc/7ZMGhkNG6Y9XI5Ny3C/jdJASk1w32A7ZIny7Ep/JcFIuhcU7bb3JHi8fxs9KPqD+WdaifNqQHy6ijbrkcmUi+HBDVQ29ddY8RdT7C0Hmzs9X5ytZVd7tV2+55G97rnmsjj0PHme9CfWN1pISeiexn7QfmbN9tHrRc+JXKQ22tA4d366xdxFalzxb7Kmavg3YbjCFF9jp2Ny/PfnV6Dsl07r5ycu2MmgMsCsDpuwULLeUEP49GIx8NrpHAmoyRACRpTRhZrMfzHAKVGqlsqT0UvKXOGgnOyHMLXltQ1EZZM0J7PB5jOBxWwGgtgwA3o7EJgBOcnp2dRbPZ9HQ3TIppgXHal983Gg0kSeIpdJQihRHL5KoPgfvk17Z0LoxGV3uR9oPtY/+ovdg+9rlGujORK8F0tYW2jXYCAI3gZj/qToWQ6HhQznl1XLCd7LsQ0Kz16E4CHa9KHWM536m72seOP+u8IXDOaH/2D+1lx64di9q3+q712nelJpoC6k+f7MeuH/7whyuff+mXfgm/9Eu/9DRpNJUDK6GVka7y9GW+m+UaTbevyirquuuAu+5ywCijyW/uugiocdrE6oPumOZsH0me40XLGRDH2MwTH72m0Vx2vbCwULJZVJiT7AqteM8yR2MClEFCi6QwEXoVYow2cRPXNUrNwe/It705KJNqkRudQgx0MACSMpMqkniMLIvQ7bqd1kBZNttGE9uIPeoTx5M0J3GMkgfT4KtJPC6NQNSdDfM850Cn03LblFkggVprdEkM6ssvaFIiAIuyvSBtNyvB3nnudFcAXXFhjeQjEB5aY+pnOmT02J0dF0gfH2khzlqIZBu7J78loMzvizaSin6xPa6CE6LIwoKjewFKQIljR3PDaq5obQdN7LlvtSPj2IXG9XqlriS/Z+E02He+U4YJAsBg4PTIUbYLcMdwezZ53hcWHJ+MTTBglVVOWpYVkl29SFOZylQuWfIcSJLJ7809KTeXKFANgtXbOcXvhDHV1QG9NbTSnibGOk/VCW65v23Z/M46T61jUv2NNjFmXUAu67eRxix/LyBd31mOZdnQl9LmhOpUOhvrUOZnTxeiJ6unWaOe7bY0oExarg825Ngrzk3iMeKs4MVGyQ+uKTeUtkaDoUP2s9PDbgC6nl9K5NqucxYPCBlcxT4kBCrmvzpuaMoQLXvduAJMUIbqpM/N9qQ6Y4QqsGKTAdRdpNRpL8MHJCpY0ady7cn0ie2AyH4AdAKUBIsVQAXgQUGNpCZQThCSvNb8TYFGJhKN49iDgKxbE4MSBLUgI8HDwWCAnZ0dT/+h4LmlBVHRMvI890A0dSFXfBzHvg1M/Ml3BdnJoU0wnCA6bcQ2Kb/8wsIC5ubmPJjOPtFElMqhbW1AkHZra8vzYpMzW6lY1ElA8JmAcZIkE0lXAVQSkiooTzA9SZIJoJq7C8gdTiBak6XSHruB6BQ6EJj4lGNE6WtoHx3LLFvr0+hvguPkrZ+bm/P9pbQudDTUgejUhzZXnn3S6VAPjkNtg1IWkeLI7j7Qa1UpW3T80kFyrYPoT2ck+lSm8rQIF2G6urarQfnOP7OT5oMSuyjz6693POV57mhd1taApaUmEjhK5tOn3fnH8zUH4n3vewCA5o/+KPL0mGev2NoqMUGl/swyB1recEMVzx0jAuLELbxkYcV15YULjn89jgF0W8g6LSTpit9zbsGBCxeqfNak5Miygld9MADWHFreLMDH1nKGYR55GlJd321tAWmaIElLmy9mMdrtxHOsWyDhzBmX4FSBWQaCX3+9W3AfPQpE/fOelzzPS+oXxVT9F6QlsaThp097Qvhkaan8TRuxtITNPEGTRikQfJ+Eikkr14q+JdCbpojabbTbx5Dnbl0fx8LPLmMIWYYkTZG3W55Ch32/245o9nW7XeXU5Xbtc+cI3LeQZS20ltNy3EuS0GEeIYHjZI16T2Gx3wd6ebVyWSA38/N44Qtb3tY7O6X9Sc/jtn2PAUTewUIdPe5Bj0kcl6T7tCmJ+inXX+8dGk/1E7SXgGhtzTWWKMdg4NrB8ui1iGNsZsdw4ULB8/6Vrziv1vOf78oOhQ3y3mBBdLVHCDkJRftfpTKNZpvKVS11gGHxPswjIJ/42t1nBRAbFwClAtF09GrkrQKH+p2mRgjdBiyGGLotBNSfALnrTBCqU8vgy0a523drzom5UiQE0tt2aTl8qbPC1mcBeeZXpG2jvAhC02AFnmAnQtJztdvlvZ6Tp5KtE2inh560Lr2eA4ILiQqFm3HsEmTGMZBWlSavuNrATg+kRtH5WEX7WSnnWIZLZgrEcYI4lWc780xaKwEAmYk0gWrKD/u+206Nid0ToQvCPkuHBrtF5+tAb1XOku7roNcHJfMwyWc0fy8IDUat7xKTgj+bMp27r5xMQfQDJCGeaAUKCbSSr9wCk/xOI4UVsCY4OT8/70FXoARECaITsNZEkAQ8CTjyf40AVsCSYKuNkLaR0JZyQ0F0JoKkHmwDk6wSRJ+dncX8/HwlKSsdBpY7XHnZWb+C6FmW+Sj02dlZr8/Fixc9IK4JKTURpSaVZBJRfrZUMixPo5bJga79qcAubWRBdAXA6UAgiM12sy8IQF9KJDp1YR9rokxLkaK8+nYc1wHp/I6ODgLoyoGues7IQpRJadVWtBEj0NlX5JlnuzU6n+ezH/hZAXTr6LJ5CyyQfq3zoQNTEH0qB0jsalIf9BXQM8f45/LBoMxuKQ/hnQ7QevD/B2QZ+v0X+RyGi3GMJ590WO3x4wC21x3J+b33ujJe8hLEJ4/5tcH2dgmCEmdl1PXRo8CJ7riy4uK/FT7N3NHGJPkAWGjhu98t1x7tNnAzOaEHg8raA3CLWuKOytc9N4eSp3ptrQJOIo6RxDGWl2/E2bMll3kcl2BunCXuIb4oIxoM0NKEYYJUHOmcwLlzrm6yzhDE6HbhkkaeXnOL6E4H0fIy4jjxi1fA4JjUW+tptx1w3Os5AJy/tdsYdk4AMZB03NePn03w5JPA0tKiA6HTFJsDN88106I/Hn64JK+fny+3DgwGaJ5qu6d0Js5cWXGeAq5KmRCt3Ua25BI+EZi2W8RDa7y5OZf4lU0geM7cqMy55vJnLqLZ6ZQgepbhodUI/T6wvJygidydtLJSJtq0i+Q8B3o9tNLCKdF2DgUdr5p4bGHhmG8Hx1MFRM/z0jmRphjGTQeCkXuex3Q6GLcXceYM8N3vOpPdaiPhJNnnJppADMQdx/H+x590Q/ctP3fKgehHj7qEonSCqOiin4NZgXXr+TmgIPqh4nUpx09lKs+YKJAWADMtgFkB0AUwi+CcuYqhWRoSi/lxF41GTZfllQB9HEcTuObc3N54nL1NhID0XfwH/kU9eW9N06p+qlwSx0BaBRgtkErxwDbLGgyAvjO43xtQKJTw/zTGuF3dObCbD9In0+wHUF090YKkQPmAlGV4dD1BliVopcUaOnPzaNQ/7x98hkiQxOfLLXNMsB16JuRgMOBuVDzrQN6bWdVDkmVRxZYW/6ZoX4f47Uu/bgQgcaC6Hdu7gemqQKF7HLvI+6QGNbRjQv+3zqE4joC0WTo+gCqfoQWsDcjN4IfBAH4nSRXET4qNgwmydtO1W5/Rq8q4gAqBiqvVR94GQa8UT9iPPa8Smc7dV06mIPpzRJSrXAE7ApEK/hE8VcoUBZc1GhkogVkLoipQD0wmpVSAzNJZ8KV628SoIU5rBSRt8ke2S6OC2Q6Cr3Ec++j7UFJQPV/txONJ+8L34XDoj7eJMgmQUxRYJ4iuUfRKRaKR7BbwtpQnQNVRorbi/xqFzfMtz3rIFrZf9hqDrFej8XWchDjsVUL846oX7WT7UW3Ac6xuVkcbFW5pgWhru6tCd3eEymc76+yj1+e1LlMQfSoHUjR0jJ/1N/N/HMM95TNzmEiaAnhgBeh0sLX1okoOKwY/7ewUHy5cgA/b7vcncDgKt0UT85yfR3XhF1cXbxNt6/c9gKgYn7ZZT1MwXQH0OC6i0rji0RB5iYBPul00Gkllm3yeMxpdOOKZ8LFIEuwPLkDdpFtGTfFnvhIMyyRhZ89KyHZSSfJlAWhvgAINIQiTFIAwAW/kue+3pIhmO7fmuqzfB7JusxIM5cve3nbOFQ09m5kpKWPiuKQROXOm3B6Qps5ARfKzJB4jTV3blXO1LkIsjl0/kWLHOXwSvx60ST17PbiIei4648RvrhgMgCaB7TNnqsbXClmw7HuP0hRpkWQ1yoeVRGNpp3q6+EsceKKL4LSJs4V/YZFOGtaVZej3nZmZH7QiJlsgaZIAd87qqrvsNvMETY4F9jvHolWU/attD4mCLqEF+lUqM8XrUo6fylSebbFTdvCSMyCeRuOqhHA1P+dJ2RNUDwactHroVMCy9D5uObV3iwIOAdA6N+tnD7KqkXT+KxobFQUlcRmpz8ODYK3uyqlTLk0RpajYvlnMt5Xy6IwMAa5A+D4r4CuAMoo8TdFbc9Nta8F95yns0hIEH/Ql2CAEltdFO2sb1dA6mYlEaYqYOhZjTp/BZmerZiS8EGryaFSOkzLwO6pE0FdstsfcE4zIls8sl3biuAjpxu8StZNTsLSfjjtjN010apPpshg+x9GZkKjNzfw8zKMJoF/LqhM/Ng+YTOfuKycH54ntGhcF4CylS+jYEL0Ez7FUMHWAdQiwsscRrIzj2FPJWD0saD8zM+OjrxWAPnTokI9gJsisEc6sj6Apo7JnZmaQ53kFLJ+dna1Q1WibrLMhZI86+1tqDuWht5HGfFFCFC+h+jQ6uQ40DPWp5ZHXyG7b7xrxHirHUqHUiR2Xyvmt0drq4NAxoXoyQt4C/CHufuVbV1spvZHaU8dSqM27tV0dN3q+HltnL7VJqP5rXaYg+lSuatnZAXbZgVORmrAhv6jc3nYvEkdnGdKBrKPyHEePukhgAEC7jdFj8nuaOtRT99TCgdZZ5hZNpO3Wrc7+/Dqgrvhuc+AWbIvtcpGhO5pd9C98FlRdzCkmbrlMBwMAnbQMadbVChdLBYCr4LWWlaQBvUPZ2VBtoq53x6SuIeVKEb2suk4kvRzkE1uHfTcLPQsNVAHH4xhpWkYjRoNNxGnTHzPMIyQsg9zp8/OuE+mFkLI86s3O4J52AfeVEx2YXGRrURS/EIxjIK9SwebSfN/mQiI4jnqg2AE/KCqhTjre1HEiAAalstg2K2+O6Ykd13YcQbeNG7BCxkWpQvEFCdhp16LfdDyzi+MY1X4JgU3W2NrI3VbkIUDoKpbplvCpHFSxfu6JyzKEjpuf7aEUzmET96oaBQikG1a1iXJDCbv30i0kWqYF32tBVi1Yfh/vdlVrA/a694VAZ1t+yOh7NRaYjELn+cUN3X/NeYL/WpBbP9tnKTq8+b++2+NDL7Y3TsRkk7sU9pvcFpikUPHPoYFn1KBHyfSDN7eA/P64QF9EGFccLIFiw7LPvo3j+msijstnuf1WfrnD6yDKdO6+cvIcHSLPPdkNRFcwz4LEFjC0QGsIYFWuc5Zp6yPNCQFtRqAnSQJG92q0tXJyz87OVkBVHkual0OHDuHChQsVihXWNTMzgyzLcPHiRTQaDU+RQvCVkfQLCwsgtQvPA0pubgVsmZjSgqIK/hIIHY1GPlpaE4IyMeX29jY2Nzf9d8r/HQJaFbi1YLPdNaC0OewDm2CU9lfKEtZDIJrvqg/7XBPJWiBfdQyB1OokYJ/ojogQwM1+YVuSQCIgpWlRHn3qMTJPFmpP1lcH6isHvjodSAMDoOIMYb/wWDpq+L3uPGDbaQuWUwfoX4syBdGnclXLYFCuRnRFo0/XitQyEonHxHGZnHJlxb1uv90lKjx5EifbBc1KUdedr3Y/DQbAQ3kLGxtlLkqkHRf2SxqJNEWCIY4fjXH0qKPEaDRcdA4pOnhuowG/mLTbbvv9CKORC3Du9YCTJyOcaGeI45Jq2ufHfACOyqLdRu/BEkfmMXleBnvTBM4cCbJsEa2TJ6tRWxLqTBCBXNxkMHF4d4SWgpc2qk1sHxeUHuwy2bmNLFtE++QiouVlDJFgfa3apUePKp1IUSbD+YtFtI8MW1523y0tORoXmAfqwQDtttNlMRsCK6uI2m2k7WOeLiVNm1i8807X6ao0UF2EE8FdWir5yMnfWnw+c6aksLFmIhg+NzeJBbjFYlREvrni5udLXIAR6f0+MOwecxH9RWT8jZ0M6MYlV2yauoSb1C0EnhRj0G+xznMkaVxsE48rTqIoHyLLEq9XHAsNjthpiATIlfM/9X2gMjfnTHj4MIDH49KWcQycPInzeRMZgObgKV921m1ieVl42m2Uu/S3N7YFkCwHbB2oNuVVncpUroxsb0842ggG2ktUL1Wf+HAX0Ut6NCojXoHqLiyguGcM8uo1b54jSPWRpPEEMB3CPEOfgertYy9/HWV7u6R14VzgKEAAxAnitP7curI5n1SUUC9BCKwNUGqUib4jc0qCKIvrldHv09RFGmvAQrfraVo4Z2zmbu3ZTJksNAEy912WAchRzb2huttnwABAHnr+yvOiXKo9qJooz8PAuTUj3yfpXNzLjcHCmDpP2bYYBwAjtHVnVimR1OPmX9ZHgJ3vngImz8v2Wi9RCMWuGfTN4jqxh4XsUgaplMV4vvOiP+Iac7BM62iZkAOGtk/n7isnB6vnr1FR0NJGTod4qi0Xs4qNVLaULhRGhrN+io0eTos7FI8lSLi9vQ0mIN3e3q7wiytIr6CjRvsS7CRommUZFhcXkSQJDh8+XIkwV3CZuijfuYKqymtNQJzHWQ5wBVvpCGDySfJnk75lOBxia2sLw+EQFy5cwPb2tv9M/cjRrkkwd4uqthHb1N+CvQCQJAl2dnYqSUeVdxuAtwWBX6B0fliHiY4j7R/bR1qPOjQ0St+OPQv806mi9g5FhiuFDZ0IOsaVP90C/iHwn+23PPH6IgiuDgnWodcLQXaOFbUL6WI4FmxC0WsZGJ6C6FO5qmVjYzIqGKhfPOlWVB5DTpbTp93r534OX8dLcXwE3LrswFUe13rgC2h1Oviz/FZ8+ctuMdTtFgsBckz3em7lS97nXg9Rv4/FTgfZqRMYDEo6F13Qj4Wqg5Lnjo3iwgXHFU1miu6rmgAc4JjEYwf+rw48kHs+b2JtzeVXXFpy52SZq3d9vWT0oA79vluoLy8vopEBrXizylk9GKDdbnnTEmQGSqaNbLmJSO08GpUh99IHGhTG9lFKXLq0RZqWToKo91RJnTIYOJsvLVXAl37PlXA+O4H09hNYWwNWv+Kw1VOnioVjwf/aSodoZTHwYNH3y8uIO8cAOL1GI+Do0Rsx/wM3+r5qYtP9qOOIodCMos8yjNNmZdg9+WQ1/ymBbwqDrZ1TwunJRbKzuwM+FjP3xfGjLvne6dOlY2RlBeh2E8dJr3wvrLTbxbh7onIJ6dZr4lp5Dhw+HOH4kbh0pgAYpo5CqCWc5p1OUtolz13SUgUr0tTnhGvGjmN1HCfI0wRJWgLdceycS0eOFNQ+54qOX1rCOGthbc2Z/dQpoPngg075TgdRluHFLz7h8JN+fxJEpwFlLCswNAGosF9D/KxTEH0qU7kyEgDoAj5uD1QypweBdMRJhaqB9Bpy29GivfCS91G/g7x6I7aTsEFCI0PxkRQFEojUqGALHupOLqWYDplFv+etaGOjtIsCsqF2hnDDKvAoXNKqlDnBz62DsG5KS6L1EOy3bXPVJf5z3nPtK6k9gKf6Cfr9pDInrq0553Ezd3PaIF1Er+emiCTfBNIU51E+o1QVgnc26GOftqW/PgmQV3Wux5TrhOdajnyOwSQuxmB/UE+Bw/81oSrcODt7tkz8bU+lfjxtfr5M/J0QlQ4h3Dz5UgaUnl+8e8dTDM/VT71VKhHzpsxhXlIpWUy/VsQApcOoRv+rVKZz95WTg9Pr17goqFdH00GxXNgaSayAZCginecr1UqIfkT5qRUQJXhKgFGjxAnMEzTd3t72SUsJ9g4GA+zs7GAwGCDPczCBJwC0221EUYQsy5AkCdI09SAw9awDSxXUJQDOqGwFptU2NqqfILHagSA6o+kJnm9tbWFzcxPb29seuJ+dnfW2sYk7Q5QjoV0HChQDZSQ3AfK5uTmvNwF1pcJRTnGNvlZgPASoq2ND3/VFh0nIGUJAnPUzgakm8rT213FF0WS2O2bBWRfxb51QtFtoF4Dyuevn4XA4QZtDu2tdNkJfk8mGkolOQeGpDaZyFQsXHhY0t0KUkAiwLhLIB7q66pJInjqF338X8Df+BnD83EqJFg8GLmlhmmLwylvx7W+7YOeTJ4uFfXvRLUhvuaWsg2hzkY00KRYWrYYuPgCkGTYH1Sg8LhrW193r9GlXzPOeR47rMZJ+r4yi39oCbroJ6HSwvu5AVWHA8FHDQJk/lXXxWFJjnDrVRJJWHQ1pp0odsr5e4rOzs+5/z42uUVUmIZXFJXu9qi5Kyc1I+na7WIj2em41zYM6HTx+xt3rlRqF5ZISe3XV9dOLTo2rq2euPtfWXN+nKaJTp5DniY+0f+QRdzj1eN7zmjjO8H5KllWA/F6vGu2v7eR3/b6zoS52+Tu5x+P2YiWYOolRMVgCIMturDQlTeFAdI67CxeA6693FSwtYWWltKuC571e+f9g4Jwvx4/Glf7M4xa2toDWkbIDs3ah79p69dqTgdzvFe0cOLBqkLp2LVpAKh5XBxaAp/IW1h4sbXryJMpkoYXD4vipNo4caQK9QdkwRRY4Fm0InHDIVzpLB6QOqhBv8FUqh3Bpi+tpcrKpPKNi5+5CLCjLRMwWmN4LEwtgcgAEuLTONQUB7fWvBYVQb6XRimOQN9ueWid7Ael1jgD9je822rlOB3VIRAY0tdHYfFkaMgp3WBEwruvDULt5W01T50CNMMb6eoTVVfd8dfRodT7FoQHQ72PQXvQpT5LBAOO06R3y5Y6nSWGSV9vdDG5Qu+021kL2t0Bv6LwKHR0r5oufQ8+wnKeK3/K8nKv5OGRz5MRx2SZAfMZZASzXzWvqWN4NTL+UgUsnVN2gLOqa2AkQqNI+Q5Zg+bh6kJZ9wJKCT+fuKyNTEP0AyW7Am41ID0WhA1X6EP0uJKHEhxoNbCOGWS6BYgXqCaRb2hSth4DjaDTyIDrbZYHgOI59olAFfZVWRIFoAq4hyo39RsNq2dRfAeQ6TnQeQ9tYzm+K9q/VR+lJbMS29oXdZUAngP3NHqNOA5u0VOtUEFgTw9pksXa3AZ0ddL6o/jZxKfvY7o6gvXXXgdWNn210f2gsq93UvqFIdnVe6VjW3Ro6LlSvOsfIVKaR6FO5yiUUsQOEw8D2KqfIbLiZJ1hddUAzZvtV0LXX8w/jxDK5MMnzIirNkzOjXKAwKtgCeRSz6uMagFHeXCD1+2W0MIDqD8L5OTB4Jqk5ohTI86SyVlM1GBGW5yZRFybXUqoX9UzsAXyX/+O0uqZR/wYDnPv90iSM2p+otGhAKHFVnjvseHu7TBzq14khAGVry3W4TyybTKxtKe02gG41jJAAer/vimBCT8BF+qu9SdmioISaS3WMMEYu0VgVnYuxFGdV0+S5tJGehK0tXzGDLlkf7acA+kSeOVFuZweVwRDlwyrSYqU41usFafssJlfIOjALeh7twzxH1UlTeCSSdlxF2kL6WCQuoGct4rWf+8hVJNNotqkcNOElNhrtD3hOAseE5qnK9xYw3887/w/dOwL3GdJQ7CW7Rdfa+cH+VleeJt7W+d3O9Sqk77J0LXy3APpuOtfJbnirNaHOuw4YjcqpWQ725xT/2F0Mti61t41E5/y3s+OeQ9T2oWh7K7v1Zejc2iSxdfNoiRZPfKV5t+1my13jS+rqqxsoITS77hl8r/lyHx6xiWfYy5il6u4TV7NM5+4rJwes66digUEFlRgVq++kKdFoX+UpZyJPCqPJQwCmBQ5tRLwVBUgVFOVLgX+NIlaAfG5uDmma+s+Ws1vB0ZCDQNtGAJZUKvo9qVpGo5Gvg3YmbYsC+Gwz+d/5Iu2H5XFnJDr7xEaWE3jXPrbAr905wGOtQ8RGm7Nc0rioDnwR9A6Bzxp1fvGiS/KqjgqNDLdj4+LFi5WIexVL4cL69Z1l2X625ajUjceQhAB3W07oWrBR79Z5ECon1PZrXaYg+lQOjOgTt4YF8X9LhmrPK0KNm/EQy8uJo0FZ7bnfu90SjIQDeJeX3VbiWj0YBq7AOlc4/CwgLH8K7KiusE5wi3Mlgo51SQJNsoskg/MOgSwoSJaWXurBXqXviGO35Zfb5pGllcrVTHFcRoYxEn0wAJo0CEPCeHAgeVij4Ras5Gon/fX8fHXb+sKC+21hAcB2Wp5QhK/pwjnPXdV57g67/nr3/7lz7vdhHiFhyHeel5FdCwvlfuc8r0T66XBiHeO0WUkCxqBnjbjjYpznsapGo2ynDk/2q+d3LQaC1cVL4WXIspIKdjRy5WJdOmswcO0q0A8dkjpcaSs6MTodlFHhhZI8dnMQoclK2Rf8X21btMFfmv7ZlwlJS+M4JpakXBCSLmb5GPLcqX/2bAFusA9pnCzDEIlz4tBLQKPZjIAhsUCCBRcOGIAOTBfiU7nKRecFwHMoW8BR6Ur0PuhzNoj4KFc5kLQllXqBKiAZira1CDTf9wGi26rqvtvZqQd8tVide4DJOUGTNO5Wp8Usde5MzHe664xO7Sxz9+Bez/3OKYCbw5aWgMX2GOf7EdbW3PHMKfPQaoR+31HMMTcM86tU9Mxz0IlNBRjZ755LMu8M3toqgXXqCVTntt3wYe3i0LhTuzExvLVvKC+qDXoODbmJHQC78fvoqzBMkqZot5PKpsetrUkaI91sRQf+BIC/mweAv+92jYTKsQ9QIYOYsm0+oLrTQkUrtRPF+BwOjEzn7isnB7D7r21hFC5BV02UScCWYCmpUAiaElwnlQojpZmAc25urpK4EqgmI7UUJCyLelEUeLx48SLm5uYm6FTIFc1IcoKQrIuc5s1mE41GA61WC41GwyeeVKqVUHQ720qAlPUQvFfQl3Qsg8BWWm17FEXY2try9iVFDe24tbXlAeZDhw554J8yMzODZrNZoQOxSSdVQuB4aDeCRlCz/3d2dpCmaSVCmnrzpZHkak+lr9FoektLwvPVzqqHjlkdT9RZAWeC7SHOfvaDjUDXcaBla7LSuih0tV+IXkWvAfahcr3rzgj+xnfaS0F4u4tgCgY7mYLoU7mqRdFNDWHWyG5drCt4bUOMu133eXUVd999M27tngfuPe34U1796hK0GwywvAzcfffkItcnKCtQ4U00HdhIUmjypjAZZnEsg8k7HaCZnwfiGJtoYna2BFfn593ryJGCG5wnAWV5S0t4qufAiOVl98KDD7pV7pe+BMQxXvSOJcTxojfB+rpjg5mZcUDq3JxT63w/QosgbJbhwgV3zPJyWXWv55JAttvFlmssYvnkIqJez+lDwngThU86EQVzjx93WDZpVC5ccIvsTqdYiJMDnf1U6HXmO+48mvmBB9xC/w1vAI5v/Dmy22/moVhfB2ZmIiwsJOBCfTQCji8tOTqXwjvQXMqQplFwXUuKmJmZCI2Gi+pfX/fqTKxHyS6S526Rq76Vo0erIPtiuunGkGxvaCIH4tTzg/pVYdHnLQzxl28DhkV7WukQ+PagHNNUuui0w4ePuTG0+hAQx2h3HU9/EwUP/rKjyDm+sAl85UGny6lTQJYh77niHDtRguVlYJHbHtjo9XXX0BtuqKA9oxGAI5kH8p1eMdDpYBPlVvxF6lsA+AmAG9tt5N1jePjhYocIx0BhzPN5E+trwM1x7gZzu129xlim3hMo7ED7vTq9WMaUE30qU7kyUmRHHu9BfcJ7ZTM1oLlulwmhbcVNhnzIlXqKm+4YkdtJo1LnOLOhy/Z+Igi3T4zogb0oCMJayhXbFOtYn3jeCAjr5O4oVc+aiybMMiDJyrktTYETHbfDqNdr4swZ4IUvBJL1R7HQPoFvfrN4Vuk9CgwGGAxuxuoqcNttAL70JbTuvBNfWnHzA+6/34Hcnf8Oa2vu+aHZexRZ94QH0bkTjTRmeS40Zv0+0mzRU8Ztxi3E7RbWH3B5RgiiDwZuCm80Jqc9oOTV1/m46K6Kk4KPhUp5xumBz2HcscVjdsOLVayDJE0lAatNFsOD6aEfDITTxim+2O0C7dT39dmz1QAE+xzip2PrJNZBUtOQCS5zW0nI6RQa3Gbw2uvfYvtANRHqfqPKq+M/2tfOkKtFpnP3lZMpiH7ARMFNgukawT07O4s0TaHR3Br5TVCRgDGjspWOREFjBTUVoI/juELpQWCcYGooUSmjmJMk8ecw+Sgj4hkh3Ww2MTs7iyzLMD8/j/n5eQ+iaxS3pSexyUE1Ynw8HkOjs7e3t70ttA2aCJTH0x5Jkng7EJgnuDoYDPxngugWhGfbCZ7bKHagBHDZNxp9T0oYBaCt80DBWwWQqQ/LI9e3reU/DAABAABJREFU8qDzXNZB3nq1F3neCYDqGLNOFktDY3cfAKi0T50fIWcNf9PrITQO2HbWYemOeK5GouuYol4K3rOP2G9WF45zBeUVRK+LeL+WZQqiT+WqFrvi5CLDUqpoUiYFdfWJ/XnPc+ecPo0fvj0D7v2SQ2Q7Hfy3ryXY2Unwg7ffDqyvI1r5c7woBYZLN+P0aYnuEWB+E02srAAvOrVUAvwSvj2OE0SDTSCOceECfJIsrK4CWYa4eyOAMjfnwoJ7HT6MMtyaK7mlJSDL8NBq5HlCT54EWv1HXRtOnwY++lG3krz9dtx6991+RfVnpyOsrLjF59KSW8g+fjZBrwe0ltveMXFuzdW9iKeAdoqHr3PJTY8ccXqfPu3w+jNngFfcchIA8PhoEdt94MZugWCnKZBXF64eHFlZAb7bw42dDtBpY3jyGE6fdpFrOH0aAPBU51b0esDN3a4rL8vw5JPOPidPOlW/8hW3mP7FXwTw7/4zFn/sx7C0dDOAMh8oF5qPPeYWxMdfueQ8COLoSNPFynpPfTXkGSXIvrZW8ojrIp1+Gw5DRqAvLLj/PRUKV/trPd+YIRK3i4COl2yxMu430cSFs8Dx7YeA06eRtNtIul1grV8uxpeWXEWnT/uErEeWit0JKytAHCNKUzTTtDTcLbfg+PIy8MCKA0C6XeDOO/FUL/Jb3FdWXF8DwGLaq0akkZD/6FEgLcH/nR0H9MdpMe6L63KMCGsrbtjHMbCYFsZ6+GHXOY89BjQaWPprP4kvfanwGy0tlUbOMqyuuvNvPpkD3/mOQ2qYUZfG107RF+8bCgLQ07ELqHC1y3QhPpWrWtpt5/jrhzm+Kf4+qckXgaoT2aLMllYtjhFlDjS3nMtxnCAucoVUolkVJK/wgcl3FqWW+0WeAwn4OfH+N95WWFwrG1fLEYdz099TXbuZxDRIfq16AIiyzB1ftCVOm54azcYdzMwALQHRsww40c6Bfh+9XhOPPAK87GUA7j+N5is7WF1NnMnXHnD85Ms3Y2UFiNafAP74j4GlJZw+faN7Vvlvn3f2+KsORG/GQ+CBBxDFMfK83GWU5/AKjUaLZa7XXs/tHiuSja+ulnMu2cqQ5z41zMKC8/kSk9ZuYrQ57R/HLmiAu8NII6SR9pweRiM3tzPSntNyK96szh2DfHLeKPqNuyKqjGxFAtY4QdKWccyXfVblswI7ME3BFK7HOx2Mlxcru+Q2cze2/XNWLuOE5dSB3SK2Sd5RxLLsux5sbSGiTgu9jKiCtmXix13mZ70cOcYOikzn7isnB+upbSqVSHQCfASWZmdnPYiuQK+C4SyD4CLBeALwBG95HMXShBAM1shcC8TaZJ2MziU4Sd0UXORvjUYDaZqi1Wphfn6+QulCkFcBTwXRFcAnQDszM1OJFiYoOh6PPXi+ubnpo613dnZ8O6nroUOH/OckSXyCVNqB5fBY3QVAQFwj7zVpJYF0G/lvdwRQLP+2HhOis6Hu1slAMJ50NZZfnu3K8xzkqbfOhrm5OT9m2HZLf2JpWyyHue5C0DETAtFtmTbS3ZZTB7zW8aRr/UpHozzvpO1RwJ3HaIS+ljOVqUzlgIk+7HO1E+JD4YsguvIu8/3oUXf82hrw5S8D3/iGW7FtbeGb33SHPf/5LRxfKgDH1dVicXfMnWci13o9hydWIroZkR7HLvq3qH9np4zGqkQboVx0E9dbWMBElspxexFnzpT4ZadTLO5WVz3iuf7wwxgDOPbAA2U21DhGp3OrNxMj3HdwAv1+SX+yOXB0M4cPw5WZpjhy5FZsb5eB//2+w2pnZoCXvcwBvitfczhop5M4oDaOgbzsimiwCZxeLU+m8u02kpMn0W7f6Lrl2w797sW3YmUFuPmVbe+IuHChiKSLx4jjCA8+6Joc9c8D993nQOG/dDPOnSvzUVKefNJVeX6QuD7iorXfx8yMA9E5VfL/jY0qKw9xY0dHMhnpRhCdi/mFhWJBy2xpSgAr0fr9PrCI3B0Tx0BWHdM8/Xjec44SjdCnc6WwJVZX/fcJhmWC1jguAenTp92LHAMcO3DjgJfWzIw79YEHHFiBdtEwNrzXc56UYmWsC1mqlRTtHWct71taXy+cSCnKa7nX86vf5O67kecusSlOdirtZPJdLOfA449XQ/y1cnakSp67bQ9KJqxbEOoW7VOZylQuW4Z5hLxfApcWROelFuXDiTwY/nrmTVXp0ngvUieYeDMVg9dLu6gNcVzkAwndJ/jO+vV/FqrPH34iSCrtIT1JHKOK8gIlsq33nFA7bZh6Xbh6oUOEMXZ2qnAbb7Oco0Yjefwo6uCmoDiGc2zefjt6vYJuZWUF6PUw6BYMbtwK1uthbe1Gl3D0wQeBPEd+d3GPpsN8eRl8dvJmKurc2Sn9I/wujhNsbZUMY5we8twVkBe3fgVL1c9CoJZCh/DsbDmPK9gax+4ZopmmYLaXNAXQ6yFrL/pHuUoGcVZa4+Bg9HaeRxPDyUXKR64+HVPap/TgP/lkmbxG56rBAJGOyTR1FHvqnNFxok4n+x2FOsv0WcWuo3ogvcbxbLn3bbX+WlEAvU4/C6TL57qcAlO5dmTqYDjAEoriVE7qEM2Jnksg1772ipYNRXpr3aFj9f9QxHjod8ujvltbbPtDn209KhpRfikvazvbbu0Hy2eu+lse8jq715Vh23YpL6vzbvqprWxS1u8XKA71LWUvwHs/iUPr2rdfvUIR8JY7fiqXJnbs7+c1lak86xKKrNntM7/jnuGNjUoGLa5JtrdRXdjahY485IcWBxNf+EWVLP4CCwUFGOIYE7/z/MqiQRXIc+RwQUgVQGIwCJoiqDuKSC7zg/pjB4PSbNRpov2F+Kg/XfQNBm6RWJCdWm5RX3WhdB2myYU1y+S2ebtw5WtrC5MRyjWi0VJ1dtJioiL+0balcqJ9rzuuTrgKt8fVhXiGjldgiP0QqFv7N6jWLivXyjlynezZtkIv34S6SDmtYJc+nDiRjeJFuNfC/QBIdBmvS5Xf/u3fxk033YQ0TXHHHXfgc5/73K7Hf+Yzn8Edd9yBNE1x88034/3vf3/l929+85v4qZ/6KSwvL+PQoUN43/ved0XqncrVJyHQrPbAumvQ3tDtOXUV7vK1zi/7P6G+/H1JqMy9XqH6d5sQvw/9/KnFfdIXNxr5+729/1bu81bf3dDNwLxvdanr3r2GSUgmnq0CJ1emUCnMH1839napODRdVz7XKaRJV7Q+zS5qjbHbw8rVLJf7PHTAZTp3XznZ51PgVJ5tqQP+dgMGFfwLcZnbSN88zzEzM+MjtEnZorQlSicDlPQVobrJ4a1Rz4zQZgQzE24SZGZ0epZlmJub8xQuGlEfirhmdDkj6zViHwAYKT8YDDAYDCoUKvoKgeMW2A4lylTaEAv4Ky85y1QOdI101/MtlUwIsNbdBZbfnNHSNuGn8rmzHEbqs22MLCflTihpKHcQqB14HMu1UdlqO9uf2i7rUNCxFwJTNfKc5TMaXvtBdw5QbFkhHWyd1Fl3X2ieAj1Xk5CyzeqQuJZlSucylatadJFBrgwbiQ6EwW7dP8qQpV7PRfQypLjdBmZn0e06THFuztRd1O8jknz4lDt2fr6I8lo3gHshjuoiqeDa3LKdxGPPyw24KF0fqMwPUh8Q4FhlBtQ8R/dzn3PnzM9XdGmlQ3S7idOziCbuny71aRYK+N3xRUh8WvzLqLE4dqbrdIpIawDdrou4amLTh401swzk+E6UHJ386Z2Oz4q60XNtWlxedtH7607ncZwgarcBuKDj4l+kKfDiFxcRzQwNz3MsppuIO47blYHW2qZz54Cjt73UU/JsookNF0Dn6XQOH3Z1kUPWBPphMHDVzc+XgY/z85BOc9FsvR4wSCNk7WPVJKcM+UPZFvTK3QvJ4Hx5XBwjaxdryUHqCOVpiDyvKDhGhIhZZrPM2Y6fOWDYecwpoGMcQIIh5ucTbGxU+zpNUSYvZTuYMbYwTpqVEex+bHq+4jGyLPJpAtptlM4pGp7Zb9fXcfvti2i3i/5P4cMSs2yxmmw3jstrhFH4Kjbcld+F0Jt9OleuNnm6t4T/23/7b/GOd7wDv/3bv42/8lf+Cv6v/+v/wo/92I/hW9/6Fm688caJ47/3ve/hx3/8x/GmN70JH/3oR/Enf/IneMtb3oKjR4/ip37qpwAAm5ubuPnmm/E//U//E37+53/+itQ7latT7OWkvi9ewnEMYCAnqGhCDRtJG7q+BwNEce6izAEkWYxhHoUv6X4ABFUkNfR9nY55jrxfqjZEglyClSvPISzDOj+VdoO/10Wiqy4so9i1ZW9vNCGfaxoNR5+2sFC2vd0uaN4w9vbudotdaUePAo0GZmaKObfddtuT2u1yGjl1Csjzchpst12+jCwDeu67uTlRP459jpMsA9BzX3NKYxJznaaQZcj7ZfJM1jUzUzVLJnMRh0mWwdPqJQCyLOFU6Q/SepMsqz6vcQ4PDWbbDwEh/k0/7jhrVqkBWb6Wpx3IscNdltLnExHhoeui7jPPK36r7J4QmaBbCb0jcI5vTnjmiWNMXmv8QW2q1435Tp+Hd3PMXG0ynbuvnBycJ7apTIgF0JW73EZAW7DSCvmvCeoRwCXfNb/TZJQAJgBGAqgESy0IzWhvpYXRJJ/kc1ded4LoBNsVpGZ9GkmuerBe0rQQRCeNC9s9Go08rUoI2GO51J11KViu4LdSsVgwnmA+bUlbsA/VqWCjoOnUUO5z3VVABwhpWPh+6JCjr2H5bAOdDcppTmF/U/fBYOB11chrnqMJN/mbOgo0SeihQ4e8nUiRY/uSZbI8SwGjYLwC+ZbTX/WiM0X1CwHZCrTX0RWpaIJY8qVbIF2BfUudc62Cw1MQfSpXteiTcZY5XmvLh07gUQBIfzyPIRno2hpw++0OeO73PVHz7be7j7q4pHD9ggdXyu2ycYwjR1xAu+e1nuBhT9DvuwUUaVh6PaDFld5ggGaaIs8in9CTeDOWTrqDC0J2XfPMzRVmIdL5ylc6+pYsc/XfcENJIzIaAd0uTp1ylC4PrUbI88TTk/R6QHu5iTh3i+Q0hU/YOLdV4qds9m23FVTURfk3k+PzwRV4svYCMe1jEUCErHMCcQxE5KovFoOb6WJpto57wObO6V4PWOx2EceuaQQB0hT4iZ8ofAu9nuO539oCHngAraUlXH/9iQqeSiaT1VXga18DZmcjpGkTeQ7PH8sh9bznlYw/EcYYI6qwBwwGztye45avPrdQV5OQOgCjWRm+J5YzD/h6xwxP4LgrxnCr00HabQK9tiOsJTDOk2MHEiGH40ovxkO/D0ddc9NNZcU0JM9X6pM8B9bWcHxpCf9tJcLjjzt733Zb4SRYXi7HIj0Jwike5UNkWZk8LM8BZKkHhxIA3a6zw/IygHvXnPGvu869SOmysoIXdQdA3MVTvWNotxOXwDbP0V260anMATM3h0f7LXS7LURf+pKjayk42icyyeW5u2B2dkrSXCpqAfQDtBJ/uhfiv/Ebv4E3vvGN+Lmf+zkAwPve9z780R/9EX7nd34H73nPeyaOf//7348bb7zRR6i98IUvxFe+8hW8973v9Qvxl7/85Xj5y18OAPjH//gfX5F6p3LwJInNLiUgDJxZAFOdaPb8ABiXhIBnLacOvASqdDH2XlGIOsnzHH6+J2DqDk/cKy3AxZB3gc5RdRbofUzPEaB9jAiIHd92CM+cm3NF87kmy1wy0EYD3nmxvFxU2+/7jJ3Pf76bFzF7EhgMsLDgjht3jiG6+26Ml25Ep1OY5+67nUn7rrsePxPh+O23Y9w9gbjv6lhYKB7HCt27HY/FOydxnqPTcdPCxkZpdh9D0Okg77njG43y+9nZauJPD47D5XKJY0nSXkir3Ua61HRjsFft6q0tIF5o+senXg+IOy3EMowSPmfZcVH0jVKZMCB/Z8eywESI4ybiFEi6qPLNEFinYiqay8MC+yp1ziZ9N8ckaU1Zeq3oM0rR3goQTucPf0MVnLf4vxf9oXh4GsdJeb2gTFAa+XLLcpJ4XM13cJXLdO6+cjIF0Z8DogClpa2wILombgSqQJ8CuwRqGSnOSFuNPLfgeQjI1MhfljEejzE7O4vRaIRGo+HPieMY8/PzFZBcQXxLBaPAq41Q5v+MxmYyTILoqhfbvb29DUayh2wDwOvOcxU0JxhMkJplaGQ7wVY6LNgeOglYjkbRs5w6uXjxYoXLnXqyXVvFap2JRemU0B0KFpQH4COrGV3NJLAE0a1Yrn19V+CfTgLaTftYAWtLk2Oj3nVMhL6jTa3zguOCYLoC/dou/d3SteixdMiwH1gehWNTHT90dFzrVDBTEH0qB0a4gAhF/kiyLgBV8moCb2trnu8bS0vu+yI54Y3t80CXkT1SbgFgN9OxT36JImo6gYvwxtq644jm6q+Yq1g1F2N83dhplyvuwQBp5ri5mfhzawt4aC3B0tIxRAVntagDP2XHMcadYxhkxxCfApI77yw5S8+cKStst3Hrj53EU70IDzzgDiFFNOlZ09RFrAPAuL2IPAcacIvUtTV3/JEjAjSfXi8jq7nyVQLWOEY/XvSgchwD7fYJZJ1yLba2WvKf0rTs3n4fyLrHkGCMG7vskBjNdIzXvqpY1N3fc32xve0SZPb76L7qhG8Th0GaOor7P/zDEmPNshJTbrddoPfxI0Ngdc3vAIiEb7TVEcXWpENdwwo0oOUBe7Z5bq5cQHc6wCte0cKRIy0kGLroOILoSh1EI6ytISnKHraPebttbQFPOt+Pd3wkxe6KYdxEfx0AErSKHQq+vJMn3Wtlxb00ZL/gTz937gROn3aHFbls8eh6gm73GKIHHnCV06gSLZlliQ59bA4ixHGCJHe2arXbSJdbiNYedYlEAeCFL3RlrK+7AbayAnz+88CrXoX+qdcijoFWrwdsbaF7Z1H2/T3v7SI///GHH3Z2ZDZXrq7VuQaUofL2/qHnhHa5XKVyuQvx8+fPV76fm5vDXGULjtsBed99900sll/72tfiC1/4QrD8L37xi3jta19b+e51r3sdPvjBD2I0GvndlbvJ5dQ7latTQlhxHEtkqwXm9LrVQngyMMlTrjcd3bUVcpDpKwS8a10WsK5plKqg/1tAe2bGzdtx7Jy4nmM6BIaqfrSJ/DYmYB7wH1gfIZOVu6STOaI8x3EGChQnNQdP4eZOXAHRX/jCQqVs2d3fe26qXVsDOq/677G64g/F48df6sy/5ua7xx8HcPxG7Ky533lbdc1w9lvMhkhPJW4HW9HeVuacsY1G1YcCuJwm9N8qTsvPnGsXFtyuKv98Jc9Z2mmJBmKgdNJvb5ePMhcuVIcnI9wbDQeApykmgNsxokrfW2q0UHkLCy2k3VY1Ot06iyjWQaydba8VFfsd69DyAzspK8fyf+t80v8NgA44cF6j0Sdwf3E8RHQOxUmhXuR3lrDaZnE5RBgXzojixwOUWXQ6d185mYLoB0gUqLZR6HU82Qo2h3i5CeAp+EcglRG1yhVuQT+NRrYgulKQaBQyweeZmRn/P0HPVqtVSQKqwK5GH2u7LU2Hgt8KWjPanIC4peDg/xrBzLYSJNWIcQWh1caM6NYofZZPsJt6EdhmVD6j7wF4B4DaO0TboxHa2q+sh7rbflJnhY4L9lue5z45qrZTwWxLdaN0NdofFE0mq7biWLD2shz9ISqdOiojgujUT/vAOkoIbOuYtnWHHEbaPzqOVCc7dnXc1ul/rcgURJ/KVS02AktDWGxUjY2u5WqLvxP4nJnBJppoEvyMY4d8knOC5WtUKs9X6fddGf1+ufIyixUuxi5cKHNGWf1dVF6EZuwSrOWzLTzyiFNnURYQkFNnZ92Hft9hj+73FrKshVvbq649vZ7jMXnySWBtDVnnRDVZF0p6ch+JlqboD5IK9prnrnlHjwLHj45LpwQj+YnIm77IU2kzqjmvAODs2bIYspwsL5dJTPt9YLENt3InDcxg4BObYTRy/ffII06PdhsJhkjTxA+FVjYG+n30ei3cf385hLrdcjt5mhaResxeyRB9KmvBF3oG1tZKeqHBAJgrh8namhs+s7NOTdKknDpV0NdkKOl6dAdDHJf77wtQaJgt+oSpcVxuquChaepAa6CJC2cFi+80iVkAAHr9BKMRcDzLqpy1o5HXg31x6pRzmGxsuM9ZBrTy3KEMR45M7AbRZHp6WSa8Lvt9R3bDLRmNRhlZz3bff7/zdiwvY7BclFPYJhpsot1ulraamcFjj8muiCefrIIAFmRgR6joIA9d81e5HMKlPbscKubuG264ofL9r/7qr+Jd73pX5bv19XXs7Ozg+PHjle+PHz+OtbW1YPlra2vB4/M8x/r6Oq6//vo9dbyceqdyMMTjfHa+ptj7bFzstAEQp0k1x4aea4E9BabtayIE1hwfAtUD+jldImxtVfOChJqkWCWxqDRNHGAYAB0rnw2IrrujbBNC4oFetZGhiPOebGYQR5G0PI4xzBa9aTqdcq7e2ioB7m9/uyy60SifL3RTkAfRB/DO6Kb0M40XxTmyrInBwNHJsOmM8GedajYF6d1zzKB06CsgbY3ECRQlQ5lOxUwGr0Mjjt335aNBlS7ITjmh/CL6ruU5aj+3YyvSaHOr8wQKHZA6oDukrB33u5UVAtFDx5vPjB4nWB66BAEgkUfjyndx7CmSxog8qDzhlDsgMp27r5xMQfQDKCGwHAhzO+8FUtVRYuj5GhHMSGfLD23LC4H6/F0j5/mdJg+1uijNR0jHUHstfYrqr5Qv/M5GA1t6Gm2bPcYCrdbuWq4CznXc4JbCpa6/9yu76RmyaV1kdKhfFbSv062ufAWpQ7zjoTbU/XYpNlGHQahPQ/a6VO7y0FgKiY6va1GmIPpUrnrRh/3QAmI/iwoeV9A6+HUpw4G0HrP4cIu/msgglqvbsCuUXG4xNTvrDqkEdOzy0C/5vHw51p/gzk8q5+S5HNxoOBR0F2BwZ8cE8BSLldFocr3l1bXKsFFa0D76hHyWc3OTmIHvH7HRGJFfjAEoQ/JDwIgRqstg5JmZgFlUiQrBd01h2ohd6g3mWNO62Oi5ubI84TK3mJBtD8Wuky0uRJoBXz7M/5js2krTQqCUtYc9x7aZ9ZEkVyPaxZYTl/pg4AGGiQtJed93E9tXdcDVQZE4Bi7lWfTiRSDP8fDDD6PVavmvbSSbSuh5f7dnvbr1waU+M19qvVO5OqUOYLykE0NiQb267+oUMWB9bfl7qKi30f3cPoLH1IGYRaFjE7OqzeOpnGOoTxWoLUDHOieBfl/TEDtX8nmmrrhAMyYP3EXqQNbdTp94PtmtwD1EaVhsdD9/t0PIYta75Vbdl9Q9a+42XvcCxOvq2G0A2waGbFs3fvZp90tV+8DLdO6+YnLAntqmolHbIdoQTVhpkzgCJRBKihYOLpZHQJsR44Aj9Ce1C/m1qQfBbxthbCPRNbqX9SmIy8jhNE09DYzqq8lMKRbstGA56TvyPMfW1ha2t7cxHA6xvb1diXAnXYcC7JZDnttJNCqbNqdsb2/735RbXEFiRrizvLm5OczOzmJ2dhZpmvq+ZdtDQHPIBrYum9CS5ekxIUBcdyGQ35tt1ESn1va6S0HLZES+0rkwUp2c7Ywwt7ZSnaywXTq+1NnC8TJjnr74mfbXcUldOB50J4YF0dnHbK/SAFmHAN+t48g6jC4HrD/oMgXRp3JVi406sw/9/Fy3omMZQLn/eG0N0ZeK7YVLS5Nl8fyCy+RFp9rAg6ddWFKjUe7dpiwtuYhahiC3256/8fDhMnqq3XbRvT5CiuFahYpx6pIpjs5K+4vfm/l5NAtKkTEiRLmLWs+yxHOT+uJ6qeOazjLHU3LTTY6jvF+C1rrIHgxcVPjRo4uVbemcWnVX9ONnIiwstNBcWirDtvg+GpXkp2mKGJUgOh9gzXK5CWBrq+QvXV52wd1HjhTbskty8UL/BE0mhtVxUPTD+UHiI9916llaAu68s8Srs8zVMT/v2nbhApAePVZGB3JHgo1UtmOEhWUZMHIfNbh6bs4FbzMHagXvj+Myq1uWufGpY7HgarlwtgwU7Hbd/4cPuyKOH3VRWNz+TL+Cgil8MX8nullJ8s7sqIVirCPLyki6SsJZ6syGpimGSHD2TAmsVMHv2B97Pm+itbTkuGLSFOOlGx1/e7cYKMvLPux9aanofw6g1VU0s577v+D/P8puYQZUXYnbe4HuKlAJXfsHRS5zId5qtSoL8ZB0Oh3MzMxMRJA98cQTE5FmlG63Gzw+jmNcd911+1LxcuqdysEQf5kp2Kk/kuPbnAPAzXechDhp6f95Xm554gTDrUChZwND5+GlLmxYfyfdVxxjse10Xlgop0DKzk6pgvU9TvA3G8oWoKQGqSQpRdlsqm99BjpVbW2x/oKXPWs6KhMVTXpi9KCFFhbK+ABL3211sNMmk3wCKPO2qLI8uNCLNB2zs27OYnu4eYnm4u1eI/PdPNlE0pYDaDAeEAiRz3tVlSx7hbbPsqDsJXb4sQ4+nzian5pxIZ2p48F9JYlAyR9uO0Q98IEyQ8849hpE2pyM9g5dFyzT0g/tk7ikFnsvPoS+O0g86BWZzt1XTA7gk9u1LQStkySpcFtr8kSCkwSfgWr0LSlDlM7DRmyT55nlkeubYDvrnp+fBxAGBQm2ElTk5yRJguCvcqJbcDfPc89nrck/9aU0KQR/NzY2MBqNcP78eQwGAw+ihyLeqZPScahDAEDF5qxTAVg6H+ioUOCUv2tfNJtN35fkQlf7KcUI6UJUV0utE3IkhCLBSbdC8NkmBGWS1cFg4MHkJEn8MQp+Kuc7AWg6Avi99qnSnszMzGA0GlWcEypqC9tPoUjxKIo8fc3MzIwHt9kPHPMXL16sJKrlNaN89eTRt5z8dHTouFP6HrUFz9PxpP+znJBdrwWZguhTueqFizyirrqC4gpFI8FD0WVx7MC3TscRcD/4oEvIeffdVaDerkZPn3avXs+t6AB4NDrPMUaEtX4L6+stHD9+AscLQI/ML8ePOjqR7u0tDAZAs/+EA9pZT7EqLFVIfDU7O3Bt7vedDkW7Ip6XpojyHCe6bb/N2zW7DdxySwWMfaqfeLpywDWFZiUGvrFRNSFVJId6HDuQoNEAOp1FZO1FtE7FVUoS8ou024j7VVCV2CvL9klUUXZZtPYocK4PnEN5ULuNcdpEb9Ud2+nc6Ls/z4FWp+PBaJq23S4WwkUjTp0C/tpfC4Mag4FjA9nYANJ00R1TYOitrMi7wQUsnRVLLSQFnz4BiNliWBw/XpqBQdbiC6jugiAAvLSER/tuccSpdqcP5L0SA8gyIFr5cyR5juM0atFnUbeLOG5W1rCa7E7Bhk00nRMEcKA1s89lGbrd6qWmaQg8gl903GZBH3PunCum3XZ2jvJh9Rpqt/HUoImVFaDbbeHE7bcDaUoae5w82UK700Lz9oEfO8nqn1ev6298o0RU7rgD6HaxVNgEp05VqZbsNaxGqfuN9jxAdC6XtRDfpyRJgjvuuAOf/vSn8RM/8RP++09/+tP4G3/jbwTPueuuu/Af/+N/rHz3qU99Cnfeeee+OFUvt96pXN2iYG/lHwPmDfNo4vL0/NZ6M+MNVScwgui6G0pBYb3hy41Y63SO7PIUD9yrZ5kv4ROJADTT1NGTzJq6QpKjfH7hOq3gOc9z9zv/1ySlIXzUF5lP1DJhYr6naVJRLcsSpO3WxHkRXLLGBHlBqQG0svJEgqN1fgaaQPXdzBPEaeIo7Awny1O9yM+5pAcj2Dw7W7LtcVogOM/uUR9+HEfIMpcQtEmvtu/k2Ac5EJSm88N0CwD32+xs2SZ5/PPPanXTB3VXu9rhUQG/B/kEoJ3nLmkrx4M6FrSONC3ykGRxdZyGEHx5cewN+u5n64tydbgEukBS2dDl9ZD2VKqrwe8r1ExAdYehUTP02XOos5zdrrerUaZz9xWTA9TrU2H0K4FsjUQH4IHR4XDoQUmCifxM0JBgMMtQbvThcAhGbyvVCQH8ubk5NJtNn1SAIKHyW2tUc4iqQ6k0+NvMzAwajYYHqRV83C5mC+XKtpzVCs6yDZubm9je3kav18PW1pZvn0bcawQ+nQw2EpqgMJOHav3kdec7I6A1KWtoJ0AURWg0Gj4anc4FC6Yq2K2f7XYXBXXVNhqJTocJxdKOKAc8I9F5vG7dsXYnaK/9qeUr2E1weTQaebtxTOoYBcrdFHq+jUC30fpxHGM0GlUogrQfaRN1Mih4TgcME7MyAl93W/DaUmog9jG/13HG31m3PR6oRsNfKzIF0adyVQuzMmqkVGgRzsgyGyWuoPrysvvtD//Qcy+fjxeRZkCy/mh5PMuMY0c4/uCD1Tq4iioOP33aFXfyJPCKVywCxUJnbg4OMF9fRxTHbpFNLm2jX56XEdR57hZFeQ6gnTmdV1ZKoDCOHaC5tOTbG8UxmmnqFugF8LyJJi5cALbXS5yBUwiLIi7B/xVv1Aj07e2SLjxNy/yhp06dQLMzLDOoFgDFOG1iZqtKn9LK3MI5KcCLZHAeOO1Q74T9trZWRvzPzQG33IJxt8rlTt1prxtuaOHEbbfhqV7kucIJArNhJ0+66G2uB1jVaFTFYXQIZBnw/OdHnk5bh6IrOykW9iWlThw77njShqdpyYmuQ6jSj90uHlqN8MUvuq8XFiYX24wAxFdWXMN7PdeYTqfkFs+aJTiRphgg8nTnBBl2dtypTQLiq6vOzoWyDDpS+2VZsVjtdAAA49Rx1pLenEN6aakAnuT6QJpinDaxftoN4X4fwMlFDHrusuLY63SAkydvdVGSvZ47WBX5/Oedrq9+NfDylwPtNjqFblheLvn560AD61kI/cbPB0WexoU4ANxzzz14/etfjzvvvBN33XUXPvCBD+Chhx7Cm9/8ZgDAL//yL+ORRx7BRz7yEQDAm9/8ZvzWb/0W7rnnHrzpTW/CF7/4RXzwgx/Ev/k3/8aXORwO8a1vfcv//8gjj+D+++9HlmU4efLkvuqdysEUArP2SwWQdepOUyBBXr1Bc54ZDErQnDk5Llyolk3UkYVxgotjfw9jcXpLKAOjXfR2k8CxgumWZ9s4BPZ8mXuOzj8ESq1fn5+VasTOWfb/UB+wagWn+T0ToDobRJM7AKQShqcx8SN/T9ptNNsZgBIEPnu2qvvRo1Vqts1B5PN0t1IOBDevcjMBfR8q9J0wJc3GRjllsLwsizAzk/iIfAXNd2OiI1Cu1Hq608CC7Wpbmf4mur50zuThzipOUv57dYRbGn2WOz9fgumec5+K2ufa4jXMIw/Q1w3tkFhHgMWwCYuFAPfgFGsqqyQNle+AckxVyuFD0kGR6dx9xeQAPbFNBZiMhtVIZ4KdSk2ilCo8XwFvjZbmMUyuqYkYx+NxJSKbdVuKEZbLuixIC1SpUqhfCEi1UeJ0ElixgKpGYhM0Hw6H2NraAmlELCiqkcrWXgR1lcJGgc8QdQqjr0P821oeaU4Y5U9bhOxmE1aqjW00+l7gpKUNUQCetqZTgn1vqVG0DALjIR1VJ+XV1zHF/7VN1pFiHQChNvEYdeAAqIxJjQTXHQQsg1QwlsrG8tmzDH3X9ipPPMe5in4fote5FmQKok/lqhY+zTPDkxV9MjcL5QlhRFKvh/F3voPowgUfQbvIFZPKzEwJ6NkwalllrK+7Q8hIUdkdyySVFCblpM7FisjzVcOowYKIVlK4Ldqu+AoEeYgE62vlKXbRaM2r0WOcZjTYT49hdLUHtNtJmWA1yzy1COvyCylBSRIWwqRmRDPOnHEIQrvtwN3BwAPAdhHJd7foj3wRoa6P+udxvCFfdDP0+5F3EFhcJs+dCgwUZ/s1USqPU2B8ZsYtZqkXt75r9LsCScPcLZQfe6zEjY8cKQEDAu/z88V5HD/r69VVu6Ip3ghJBfhXMGZzEDmny9ycoiZoNKo7BPyiv6iLC3viWnRu9HoFw44OqKLBtBsvAw4VzeFK/9IJhsLzS9Lq9Hrw2VULx0FW6OcVts4pNiBkJ4q9VxwkEH1mBoj2t1UeAHCJVHU//dM/jSeffBK/9mu/hsceewy33XYbPvGJT+AHfuAHAACPPfYYHnroIX/8TTfdhE984hP4+Z//efyf/+f/iRMnTuD/+D/+D/zUT/2UP+bRRx/Fy172Mv/5ve99L9773vfiR37kR3Dvvffuq96pHBwx+GrwRzOdVnDviflWUT7e3MhTxbBgCm+6gWte5xIClIw4toB62g4Akoo42jbZe47lIFEAHSUoqM8AoVgAC6pboFM/7waA2uB87i7jXLa1VfZbErK7rcx2stxTozgGaUc4X7JLEjk3H/jHB192XDUTZmYmb+OcrweD0oeiPlw+y2i3qG0UPLe+1Tob8hz6+lVsGVp3Eo+rUQuW1iZQsTU/n1GAST7+OHa68bEyTaPJCG85WHfXhfxDOh6t6I4+oLqZSx9FmTR1P8C5FZ7jEolKtH7hdDtIU/WETOfuKyYHeRhck2KBxZAQkLRg3n7L12hblgdUOdYpNjJcI3MtkKlgqKVTsTQndXzd+r2Csuo40EhsBa0JUjOq3CY41TJZp0ZCK+gZSkZaB7jzXUF0rVv7qQ5UVFDZ9pf2mf3fOiIsvYuNSt9NBwW6rQ7qXGFZ+k5wW3c9qCNCo/uVguVSQNa9rgnbbut0UScP3+varKJjxuqiY5XvIT2ts+BaAYunIPpUrmrhQ/9uWwrrwrHsioari04H0Q03AI2Gp4NGz4TgxHE1nFi5r+fmKtkwlaZjAjSwKzdNWCkrmIWFxIPFFVyPH5iIcTcQUBZIJW/m5KEFzu6jm4nHs9mMvK7DHZVS1P+exv5LXYRRRqNiK7gs4CrJzmgXrkqlz4m3E+CvwUUq2IU3c91iP8/B7eIhnJXt52s0KqP4Wb/119j/0xSIBptI0hQ2qgqoco/OzroIdLZX9aqcp0ZgdtTiANfe8lC1kQ3SiuPiz8JCpaF5r2y/r1sMHgGI46RySegmkTqhPRRHIvbNMVjRkWS+HEx6QnHNJJkxvBrK9vl+xN4zrnaJ46d1IQ4Ab3nLW/CWt7wl+NuHP/zhie9+5Ed+BF/96ldry1teXt7XM8Ru9U7l4EkQlCxuoPa34FSvyJwipLw5Ew2251h0z9wP9KfQO2Ci562y+jl00w4VKG1n+XFcXscEQnW64u1+L7GPFnUqh1Tiefqe6OSr3uS9xKCcIed9kob7QoXTGx8HNE4iz0vwX7/nPB3ioueUqXz1FE2mrg5na7+Ar2Di8242rozlkAHiKsDNAIL9Tk0TRU88lE7+pI+laq+6OkPD3LZZHRi7KmuVMXJgec93k+ncfcXkEp7wpvJsSwiABTAB8ik3tR10li7EgsAEmw8dOoT5+XlPb6Hc3Mp3Tf5pUr+Q/oLl8RxSmFjKFwUqlX4jNjc0/sao4YsXHfXMaDTyCUNZv7aNwHmz2UQURdje3vYc39puBcYZVR1FEQaDQQUMV050nqt2i6IIaZqCvPMaWa/9RqCbUd+0k+pkaVrUsaF2JTjN9ipvPW1Ee2m/2HGh/1tgWSP97XjTtoT63tpWeeOVEgaA35GgPON2t0CdhCLgdTxY5w8pXEhdoyB6kiSeGkaTxVoHlSajtdHzIbqWOvvbc0LX7lSmMpVnWAhWK8oZklBYFnksAHc+aS/uvttxr5w8ieOzTwG9IiKakdA7O8Dtt7sw5LNnfbJQnwCS74U+113naJkZNMvqBwOUCRypC/dPb22VROMrK2h2Omh2OhjHiU80NTfnuFKjLANuuMEBnhcuuIg7i9pL6PLmoORHZxAcTch8nAQ/Cyps9HouGpoLVUZQA6hEeHMhqkF+bpNABKCJQW9y4cVzzzcipKnjXs0HQJPoqa6Idb92UWE02ES73fS0KOQ916ZTZ+bmZHA11npliBsbXYyJdnsxuFhk3zESnUlcAQBHMwzzyNPA6/D00VL9PtAflHVlGVqFYuOCadauHTsdN4a0XXyfm3P2HiNCRCCZq3+Grec5osFmxW5cfFMUwI5jkI/H8ZvHLQx6VXoDDrN2u3B4FKHkCdwW/uXlRW/aPC/YXhT0lmfIdtvt0sgyeMoYAh9kpPGRp/0+8Pjj7nzuUT950nXG/HwZpV5U/lTeQhw30WL/MrydXPnasXZwsrMvBWyfylSmsi9RCga+V1YReY4ojpGmUeXy9KAcExPneXUy42d912sdKLlJOBGKd5L3wdGoLJZ18zFjIoJWn0M0RBiBY3Z7SdspWZZUiqR/QEHtEBZqq1eqFzWDUr9QTRVu9GM95fNDhDhuIus0y3lQw5fVBvouDwxROsnDDrjdUGoS74gtvmT709RFcbfb0YT5qEKWlVRz1tS6U8yCvpabmwco37vuANgtOpu2ruNAnzA+x7HZGjBGVKHS0yjxECc6i7HgeZ4bqh1VpLju4jjydqdDom4MqWgUvG1WnUw8J+nLPoTFcZAnfb91TeXakelQOCBiwVqlZLHRxgQOCURaqg99URSgJDc3ObAVhNVI852dHWxtbWE4HPoEkaQlsVHQpI4hLzWP0WhjBdKV050vJrZUPuo8z9Hv97GxsVGJPqfuqk+j0cBwOMRgMKhEsJMLm/YgDYwKAXJytrPcOI59QlB+Z5OF8nh1GihITQcAI7C1f9lvbJfaVkF09gu58mdnZz1fPdvLflSxzhTdHcCy9ZgQAGyj7PV/nk9qGHKVk3Nc9SJHuo4BgtZzc3OV5KGh3RV2t4KlNVJHkOozGo2804l9zbbuBJ5Y1CaWn5/6Ke2PRr1TT6WX4bvuWLjUCO2DKtNI9Klc1ULAMLRC0P9DD+RKo0KkMsuAn/kZx8m9/ihw//3lymFjo/x899347JcS/PAP/ZDLOkkQPU1Ljo80RQwHDiqPtS7usNwu9eI+Y67aH3/crYgefNCBgzfdhKjbRSvLkHYTf0qatpCcOlXyPpOQXFf7aYph3Kzg9Qze5bo/icfu/DzHzWkKZMVqeT1Ha2kJ5CAlUE78gbg9mT90MZnnzmykOeF3c3POJgTZ2U1kEJmdBdJ204HCuq2ZCtOIaeo45dMUx4+0MTyS4MyZskt92zDEYtuBMQDQTMflGOA4INhSrFDby4sVnlUuwFl1lhWJTsk9UiDrSZpisdNB1j1WXRTyGPYR+73gEkeaIm8fmwCLOKTINmQTgeo6OOl0SuUAVzbHgaAIwzzCxkZZj3LfkuN8M0+wPjiGvF+qSnphggEEKBKgykec54jabbTSFK2Ty8jzyIHjIU5ylM6aNAWasQNjjrdZMYAeygM4zmmc+Xnn1CIPDGlb4hhYWsL6wDlmWhxLq6uuL8ivBExyI+j/dQv5q13i+GmPZpvKVC5XKmBZ2qxO4QaxjeIYSQHqRSjyOvBS1DlTb4YWxLbXuEVMBUSMMPZzBQFBS3nmQfQQ+rwXPVSobhWDjkdxjiSOXQLPNEaWRRXw1s65Wt1+bllqqhAonOclLQrF+iDm5hIsLCRIM3Es84FDlbE0JXmOtL1Y0YfPC8Ikhvn5Kj1KhDGyrOBl7w8QAWhpg2MAnbSalFWEJk9iA5TnuXNyq66Gloe75Ogw9nNRo4r61yVXtTpUEmDqO6pJZfNByfHOZwGbXJZDW4egAukaUc8dDkFAOs+LpLg1MKTaq85zU2n3ZNvUMTDhsKg8KKN6jpx7SUj9QZHp3H3F5DkyIq4NIfhm6UFsRLcmtrQAHjAZjU6xlBwErTVZJ0FHlj0YDDxATmDSguiMLNdoagui2/ZZEH08HmN2dtZHXVMnJg89f/68bwcj3pk0FICPIt7e3va6sj3D4bACbDM6mQCvRpEPh0PMzs76hKC0EwHuJEnQaDSQJIlPGMqocG3vYDDwOmhiTk2oqRHeSidDO6lt2Gfb29vQSHQLHOcyYej5pDthv9BpoGMkFA2vgLF1lAAlZzzrZrsIXLPt1IvjRh0PdFZYh5G2g+fa7zVPAOuxIDp14LGzs7OV3RMKkquDSqPRQyC6OhFUF00wqm3Wa3A3aprnkkxB9Klc1eIzKmLyYV4l9KCvUehx7JJt5gnu/aTDrd/85hNoPvDvXB0LCw4kLED0TTTxxS8CS0st3HzyZAVEf6qfYHQBOFIUe/SoeynFNxfk5/sRWp1ONSkot0hvbZV8rnFchncPBkjabcRpE2trbiHVbh9DkwAqUCKi8iJ4ThB2fr4AQJlscr3nsqCqncRZ3e7c7P+PY6CJTSDP0SyirxNI0si2+25tzRVNPVncwkJJC3PunPuO/JgaFN7USPQ4BpaXXV35ZukN6PV8WF6SZWg0Wj5RZxwX27eLhXyTi6w+ylXo2bMlgC4oddQ/j2aaotnmOX2g10cSF0la1/tlw06fZke4spaXq4tr6kkOfQK9zOzpMpAC7WO+C0cjZ6cIYySDPpKine2lY7446x9KiLTrVoNizOi2+9D6lA6MNAUwGODChSYeeKD8jcVY/GkwAJIUJR87FSNQDWBp6WZ3ma4YAKWQVjYu+jMvbfXAA9XtEEtL7qUgOrcXnDyJx0eLOB7/eUkeX1wHZ7duxPY2cOudbVfuhQtuWwV3jFhgR0VtyUF6UGS6EJ/K1Sxy43IAWmCs0lHqweS4nMSKORtAGLzmjcoC6/zf6sJyivmGEfB6uorf+KZgfggQVwmBfjUA5oTOctP1icgLAJKm2q3pu6mlACvNTRNbp62qZwFuOtMXFoqEqzppaGUsnE6LfFgpOM+b2NioNpuBCP7LAuStAPUW9M4yRGnqwG5VGEAwcScbagnAa5y/XhfO84peF3UDArTvNT7gQHMV5eTn46BGotdh2Nrn9jvbjzb5a+X/OrJ9C3bbY2gbIEybxM9ZNgnia937AdHNdeudbVredO6+JmUKoh8QCfGD7yaW1gTAxP+h8vmuQHcoglrLZ31K06EvRpmz/BD/udXBJhZVSg8tVxNB6rkKrCoYrYAtwU+KbR+TSwLwtiAoz6hzG82v/Ov2pXpbENz2Qx1YqPZTahFrc8s5r2A5RSOptYxQEkzap44T3UZSa6S10p9YahtGjKtedHholLetb78SoqPRdu9WBx0//Gyj0m3fhewS0mG3Y+01cS3IFBifylUrdqVopW7hw9/MgnZQ4KLf+Y7D25rMRkX+5bNngZ0dDAYuAN0lzmx75JeJIHUhy6isNGtNYHF5XmxhDy2sGF7EBacCoYMBojSFo0nhGqZIBlkToTPamlz/xDGqC0eluFHp95EuVRfP6A38sQkjhCXaOS6iC1k817mAW3DbCCpdb3kdzSKJVCmL7XRykasL2OLUyvbpECAxGFQTzllUWnlq2D6uQmkzNu7ChXJfs4b7U3jshQvl6hco98qL3S19bwXcb7eRponH5ivrVrto1fql7bnpYjaxTPLq+kaTfbLZoXW2b9/WVun8GY28bbJlAUrU/nquIgLqdNBjiCbIdUCg/ckHgeNZPJHZlcCDb+TOTqnfHoBGpaH7PfZqERL87lcOEsgwleeG2BuK/Y3vFgi3njwr4nglyFxJ/hl6t2UJIFcnlYSGpt5KOyzwV6evSu2N1urgziflDUV3Tu1mKhbP6Ye3AXu/1/81JYWWq85Wn7gy1LaQAqadFvf0pstrzhEqtgnFtFB1mNv61Rj2vY6rRR8y1OB7GX2P31QlBdDV4WGxa/6vQ50JcevqiGNUI8G1QDsAgKqN7fNSHeDN/1UxGyofUq7umd56hw7i/LybTOfuKybPoVFxbUkIBLdAswLOep5SUdjzgSoYrLQhNlmm0rCwbKUW4TmabJK/W4CX5fAYpcMg1QejhzXil9zjaZr68ghaW05qbatG/lqglxHSBNIJWCuPewgoV3vZdipwrGAqo7ctAK8gs+pv6VVsIlUFi9mGOrBY+1VtXjd2aDu1Wwiw1zGjba2LvFbKIf2dx2gEuaX40Xq0XRqBb9tcB3zrOTourVhnT4jyxbbV6rebXGsA+jQSfSoHWkIP9naRUMyBo5GLqjp6tHjGX1hwD7NEEW+4wZ9b4WkOCNcYaZogyWK/9kjTkh89TQtwURdeksgx2JbimHEock8josxCfna2TEoWLFdXZ5bUMo4n8OdKnRa4zx0Hd6fTRJq6RbeumdK0BNBpF+LOee5w5sEAyDtNpGkTzW7qbToaiePBZqMsoqwpHhQe5JP6sjMYfl33spFp2i/8/7rrSmoRJuMM9UuWud+5Ih6NKslSA76PSeBfwB3lxnUR5KZPdcErrzRtVjh1VT0CQ0r3c/hwNY+nNt9fAyxwZ6fc51+Ip2DQVb8AXF4BrUA9CbZTqRh5zQcDtNtN18+su9ilMkesnPWzoeQeCqFMIVRiLyDoahPaYL9yDT3XTOUqEDORVD7WgZB2rlGQHOPK/5SJxIN2AtNrW+oNUXHoqZXoaXX+2ZNCEgLVQ8B77aRrjqspfi+hbch9rbdeNom7wlhdnpePB6xe53CeA7hnH79DTkFXVTTkWMh3uX1Zh4p+L7sWgoaou8/v9qylx9Sh1YFxWTmuTgL9R2cPnTdxXH0c4xTG03R5a+dzVUcfk6yaFTqZ3YDput9Cn3eT0Pi39Wt/1pUXOJ85ZSai0Q+STOfuKyZTEP2AyH7AI6XCUECWIB4B10OHDoH82wAmjiU4GOLxZj0WKOZngt0ExwgQa3Q3qVLYLv7GSO+ZmRmQ+oPtHo1GGAwGFRCdCTx3dnY89QzBeALo5NtWug2Wy6hyRhyTsmZ7exubm5ue7uPQoUNoNpveVgTum80m0jTF/Py85yBn2TxPAWyltWH7lTdd+03trOUojYhGVCvozwh6vjOZKrnXdbwofQ4TaioorlzhCrDbqHONMNd+tWC3jjmlDWL0OX9Tx8bFi4433jqIlOdcgWd1fGh5FlxXOwClg0LP03eKUgppm+yOAPajRvbb9zonRQh8fy7KFESfylUvddEqoUWWvvO3InJ1jAjb28D115cc0VhaciDrTTdVI2EBvOAFjkkCK9V60tQdQlYL95wfVRYwrXRYjXTiiYpmdrsOTe71SkLSYrU6TpuVoHGfb5NRVkQ3pQ6lFx8MSk7rhLZQChlmEKVOWVZZ21Qi8GIXIZ7ogqeIIG7FMVpxjBMv7/iEpgw6JtWLgueK4x854kzgmDyalfWSY0Bplm6EOHZ0PIPIY68VX0Rv4NtRsRPB2HYbm2ii2Yk9CnA+byLvAYspqpHRmoSOfOYsL+BM8PqRc58UJRJFzUV8lA+RZUk1kC5HdfVblJtlSWWNmUASnFI4CNXIAJIsx9JSq7L2TfLNkk4lz7HYSXHqVOJVj2O/EcMX1enwPGlHp1PtzDguo/iZ9LPQg8MuzhK/9X3ieh4M3IKy9Eo5LvO5OeC221y9vR5OZLnrZ9q5yPx6hHZcXy+pf5aXS5J5b2h5r5ODFPE1XYhP5SqWMaLK/SyOEzev8P6gwKbeU/l97JJk82elg3EAGoLzvwfHkcjPbn0a2qGj1Vd43HXSsgBxAJSfAFmL+7kmkvb3Y62PP9QBicX3dKxajNN+DpUZoUwI3Ww7nZizRGng+HjA07e23FzNzT98bGDz5uaAI0cSxHGC+fkWGjJ1elvGk7sFUpQ5o3VaBYBhHrmxojvzNNN5yJERArftdzq+bER7yAFg+8OWb48JgdKhz8V3tEUzLXdDUAWz2So4bcllUvk95C8I6iTzdOU3ndtDY36/Yq+HQkhnE2XxZJ/WnVu8eC2Vl98unO9Xs0zn7ismB6znp2KjcC0YyMjmmZkZD84qiE4qE4LoBP7IQa2R0AQ5FeDUiHWlRtHPCvCmaYo0TXHx4sXKsfY4gqQEVJmsVI/f3t72bZ6ZmfHlzs7OotVqTURn7+zs4MKFCxiNRhXKEpZLQJm0LOPxGMPhEFtbW9jY2PAgtE2ESk70+fl5NBoNZFmGOI59NDx12N7e9o4BArsE7gnszs3NgVzq5E2nEDAnlQj7j/ayEel0YqizYnt7uwKiax/Q1kzcqe+qg44vjahn9L2NYFcA3VLV0P7sQ0vnYscz20ZaHXUU0XESArl1DFh6GT1HgXobra/j34LdBNLp7FFhmazDcqbvRukSitZ/LgPHUxB9Kle1WLCS/+uD/W5AGbM0oVwLLy05jC3B0INtwyXHB550u/6B/oUvBBYzSaBVAAFcpJw54/i++Yzf6biyW+nQcasPBtUEoOSv5mciyNvbJaF4QSdy5oz7mmtIL5oFk4vBYhVMju88SzAzU66HkhhlGwjYExClfgWIDkjkvPTBoC9AKMFSlleQezfjGM2i3OHyzVhZKQ/d2nJ5VJmjs9dzKhw/7gK3T51yi+pbbnEqlbnKmkg7LmFqb61kZ+HCssL5LiFYDnwpouTSFOPOMayvAlmWYLHbxRAJVh50dSyeRKno+npp54LHfBwnGHRu9GaPMK4CxgRvOsfcb2la8oeT/kb2wUdxjmax06ASSaX78wFEeV4mNktjoNev0s8AZT8w+yv7rd9H0h446MgCBZQ8x83dAhBfWQXyHMcJUHeFB39t3TsiKmD/+nrZUXRAnD1bIiOoAgJp2kTCZLbUfzSa3MueZQDzELzyla6+Bx90vPTklu928RQWgYGLol9YAHD/mvPc8EIkiE6dFRSwtjiIMl2IT+UqljwH0CxBucgivwb4KiNME0SpA9suFEmk/Y6jQrxTWR15Rbl6iZOhow6jI1OH918SVdZ36wG2hXAi0u/TFJt54hNFApOAqEvc6dYoaZoAceLmMgtaSp0EC5O4tBmrBARAtyCx0T2KY08Nl3Wbfgo5d65KP06Afbcg83bbteXIkfKze6yIkGVJ5Xgmc41jd7yWGeVD96xROE5a7ANxQnMOrcyDoZcYhaBtOVQSIHNBeXHbBAyEwGPTB0Fgebe5xD6XBnRM9D0GWhYIDzlZfN0oHfGAywdTUw+l3CGWTNIg0bYhED30f6i95uUcI9VT4zgqc7xofSxDnufUEcWxqIccOJnO3VdMDmL3X7OiIFyIkkKTTtrIYCaOVIDRUrUo+E6gEkAFxLWJGq1emiySiTIVpCQwqIAlo6VZDykyCFwDJYhOUJqAOwCf4FOTRw4GAwyHQ6+XgnUEOdk+jWom+MzEn6PRyIPm6lxg5DmdBHReUFdrH+UT5zvPmZub82XxeALhSo/DNtJeIZoXG/HPNigdDmVnZ8fbks4TRqKzvJmZGR9Vry+l9aFdrANAbc9xpDQwBKdnZ2dr+capx7bwyqr9Qhzt6nCg88LusrDtUYcQ3+uS99KppBHpeh1oW/m/UttoZL4eH6Kmea7LFESfylUvdQ/sdQtbvue5W7kWwDQPXVoqkmb2Bw7I7nR8vs1O5wRm5oFZOHwd6+uVFXiEsV8IbmyUmCtB6+VluPq+8x0HDDK5IV8KohOUpM6y2t/YCON84zhBlGUYx0kBkMvKpFjxZp1jFROB4ECeV4FW6lIA6aMLAiSIXbmAGQw0cWcBEBMpn5sraTjm55G028jzRb8QZ65IzbtZBBJ7rLPTKWl2aHIGKA8GZdJWqs9IuIqh4tjZpviKoD4xbXdI4sF8vwAj5zmTgBblnR8k3gGwteUW/lkWodttIRI+b3K5j0YRjh49hoieAE0oSwCAzz0K7Oq4YMdpuDrP1cbTuPRScI5W0JhtC6EfMmawulp+LqK8k3a76gjodoE0xfl+hK0LcIA7gEonb2xUAOscVUr6JAsseXZ2nP4aib60BHQ6eHyrhZ0+cIJj7eRJ59hoL2Ll/jLovIlNB+D3++7cbrfqgKNt99o+fpBkuhCfylUslUsscP8Z5lUAuIqhJd5hWld2YgHMoiDeOhX81XwdwGRKiTgWMFWpvfT/UDt0d40BSQd9B+IzgaaCfzxse7u8FccxgLSIwi4A5b3ASqW4qRgnBArbNhRGiLLMAeoLTb8RRw+lr1xtqiagH143KnGjENultyqazbUxKafE4uA8d3ZrzZa68nknHzhnrJ87LTBtgGONXKbeyiLmIAPncHenJohTGQ9qQ+uYsPatkzoQnf1rjw0B1fuhEVIeF362uz2ACiDtvjbR3JYHTh0W1hu1V7sNAM5TfJ9zvMdSnw4auU/YoaxqJjEubS58tmU6d18xmYLoB0z2S+tiear3KqcOYNTf6r7XMpWTW6Nv637XRJ4E0QFMJCjlcXWJNG1E827tt+3gd6pbHS+22slSi9h2UrR9ofKUHoX119GFqI62P0ORznW7Fqw9QsBy3RjR/q/jTr8UUcCZ9uL3+pn9b2li6iRE38JxUjc2rO3sMXTw7NbekD2uNXB8vzIF0adyIGW3CCAbmmIWOXEMB6AXH8bFQk4CwT2+HSyvRg1fBcFq7oUOgfz8n58v5YF6H6E3ofXZxAFm0bkbk8VoVKzHtG5mvmLiTC1vMKjtBmKucexw6zStYqiqtyZo5eJ6P/gnjyG3unLA7rruZSUixHiDOwOMjVhEQpA7dPBuY7fuWP5vz+U7wxz1uJooRADVAUJkpM5I6qBAVOL1dWCALsBNtS76PtBGHf9SrgfRjB42GBGDvBrqqXpZEOO5IvTcTWUqB1j0EuVn+87fKwkULeBYU7a9pdclYQyeaBWp3Nvq799jRJU8lXW3x1rZcwLfh4SAdPu9/B6n5S3F3lq0CNpyZ6d6HKcb5kcxvu1KlbvpPBollc/7lhqDahGq+97FGXDZzich3erm2f2ca50m+3pgMXXb+i5BynwDqOpp59J9XgO7iT4rASYYROtH9Ws990DLdO6+YjK14gETBQYZ6U2x4K5SXzB6mhQes7Oznq/cRslSFOBWKhEFOW2iR42GV3CU0dXUW9vCiGGl2tDIdQKXpDdhJLBtp0Z6M7J6dnbWR8hr9LvSvvB/npOmqW836VYYca50JWoXbbsF11ku7c4+4XEsi9Hl1HN7e9tTmSjPuaVIsWKdA0q/osDw7Oys14N9MhqNKnziAMAobu5w4I4FvqwOFojWd3VQKBge2lkRAvGV3mY0GlVoWkKAtyZpVdGxHXKasF8UdFcg3opSHmn9Gl2u7/t1bj3XZQqiT+WqljwHkqT+N5W6B/GCMoJrgSQe+23C4/aiZyQByqgqskw0u133g+wbjQabaMYxOp3EY5V57qKi8xxlWFYcl0kQFTC3Yila4KhNNNiKP0W5o5eJ0tQtPGoSauqaaxwniNpt92F52b0zBLxCLE79q3pGGGNhIUIzHZeRy0C5Dz602Ov1cPLkCRw+7A7laYzcZwB8lpXcqKyf2981EJvAu7aL0Ug4Iv3e7yNKU6RpE3leRpM1Gq65zDE6GlV34COOnRJzc26FXXCNt9IUrU4GIPEB2cXGu8p4S+IYR464OS7Ji10OIRTBym7gRui4EKADwGcg5W8aMcb/LSe/tp10QuwUe2yaemcTAQjPkw+U5VmaoH5pWh/dR70bDYfGC6WQH0/Frg1efliTEMfYJWilqgkK+qFOp1ycsrMswqNttujdpUaHPduy2z1lKlO5GmSXMcqvS0qryV2toVuiz/WRVstmtLL6A/WcOh08VUwdIGijY23bAg7pCGM0GmUUNOewOgzVgopxXCTWVgA3YEeNQg8mWbQVqUI6kcI5fhcWEv/V7Gzp7Oa8rHiqPpuoavRl1k1XOveyPJ/XJE0xO5uUQKnYM4mFmo4dHfK+iM0iwEXZA54L3vpCrPh5SsvcDSy2gHPo+N2A7bpzLHhfdx7FdoR1Hhc6RBgjjqOKuqri2OYuqItE1wJ0/BtSdjWhbYqvv6Yj7C4LXq+2SgAHL5/JdO6+IjK14gERBW4JIhK4U2BOOaoVwG02mx4MjqLIf1bKFI0QJ3h48eJFz7NNXm3le1a6GI0EpxDEJg2J8pNTSD1CHQ4dOgQmDSVQa0F6Ar1KLaKUKQSr2U7ygiutCT+zfbTPzMwMGo2Gbxe5wqkPgAqIOxgMKkkklW5GwXylFbGR18PhsGLnnZ0dbG1tVZwXSqmj0eB1EeMU6qYc3wrwsw/UQaJUJATbSfWizhdtg4oC8Rrdb4FrpauxQHYoal+PZ99Y+iEdn9ov7Dfr0FEufwvsK+CvfabOEtaj16G2cbfdG5QQOHwtAMZTEH0qV7WEQPRQVM5ui6ntbWB7GwlcUkesr7tXp4MHH3Trgo0NB+Z2uw4kf3TQxPo68PjjEYATjnqEgF2BBJ86dSM6nZLju9Eo2DC6LUTdbkmNoYhxaFXZ6TjwkWSieY7j3cAirp+XSLIumHTxEsc+OBwo8eA0O4a0c6wE09vtcrEEYHMQefxwTJ5Mrnj6fbcQ7fVL2g7WOz/v3kl7w1X3976Hm1+S4eaXdHD0aBO9nuOufvJJR+Vy5kzJXqOU4RcKShlugdfFONsElAt8AOh2k8KhMHCFpymaS0sYp+W4aWVjZFnkQdz4SAKaooIGNBru8+qq+25lBUhTnLj9duBkxy/Co3xYLhYLRRIuMNXRoP2jEoo2qyPu1XNCSEwcF6TghdADRAMplQn322tyUI1YLyhbfB0CknNLfwV7SVtILAgexxhmi+j3yiJ8U7S9pDci8M7xL2MvWfmz8ljypBcIDDF1z/Nz8qSrkNc3rznayEoIEJuC6FOZyhWTMSIgbQYBXkuf4ijAqtQNFH6uMl4xmbfjt1YKc8vCQrFTJn1uE/cmPRgI0mJUEOTA/T1Nk0ob6J9VAFpP42275H+PimOaRZnhtnhbqqHqXnqMziOFwZpZhubRDI1G5KcP+iNDtC6hKUqnKYtz8/ORI46OJ4pjNy8PNn1S6LTdrNqXJ1p+Hm1TiBxb+7F4RXBRz4keu9/7aBD9RfU7a9u68/lZUWU7OEP/m/ao1DpUtN7igojEBupYKA8lh3niKNiUYy80pqiXXg+i424+BK97nJQtSNMKjYs1BatJYvOcfFBkOndfMZl0vT6D8p73vAcvf/nLsbCwgGPHjuFv/s2/iW9/+9u1x//9v//3cejQIbzvfe+rfL+9vY23v/3t6HQ6mJ+fx1//638dq6ure9b/27/927jpppuQpinuuOMOfO5zn6v8fvHiRbzrXe/CiRMn0Gg08OpXvxrf/OY3L6ut368QbGLUtkZRE1gKAegEgBuNBprNJrIsw8LCAprNJhqNRiWSPcSrTf5tTVKpyRqZEJNAsUZcp2nqecIJFG9vb2NjYwMXLlzAhQsXsLGxga2tLQwGA2xubuL8+fM4d+6cf+kxBJr5roCvAu7KM842z83NefAXQAVE1wSijUYDhw8fxrFjx3D8+HGcOHEC3W4XR44cwcLCgm8Pk3tub29jMBh4GzGiPkkSpGmKZrOJZrOJ+fl5/3+j0fA7AVjW9vY2Njc30e/30ev1cPbsWTz55JN48skncfbsWfR6PWxsbGB7exuaHNTSvdjIfIL4dBBwHHAMzM3N+QSZTKrK/qBjQ9vCdjQaDczNzXlgXcco9dLv1AFQB6bry0aoq7OGjp2trS0/JmkXguME/zkO2Pcsl+NI+83qorzq/N1G+VM3jkF92V0hoV0iddd5iJrnmZD3vOc9OHToEN7xjndUdHq67oPWYbKf11Sefblm5m6lqQB2XxzqIkYXMltbJV94BrdYe+wxIE3x4IMOJ+X6IFp/AlhdRZ47PPb++4H//J+Br3xFFuTr68DKCpLVP8eJ+AmcPFlij/2+A4ixtFQmN9Rob11JsEAmQiSYzspXV10yxdOnS6SeyS/5maA1FzBp6qOFST9SqIsHHwS+tX7MvU4nePBB4KHVCI+fiXDhQmniwcBFGXv7kUCcLwXRCf7zRNp6ZQX44z8G/viPcXP8EP7yqU380A8Br3oV8OpXAz/6oy5n5MmTJW18HDudz551zacJVlbc6/HH3YvtojkGA+l7ntjruYU5x0Gvh2j1If9bkm/iuuuA665D2ZY4dkjH1par+E//FLj3Xve6/37ggQcQrT2KZHBewuBRKsP+WlkBHn64tJVFclQU9VFucbWxHqu/85iZmZKENk2dgTY2XFu1vwqgetw5hodWIzy6nuCpQROb6aLPtjtsH8N5tDCMmyUw3m5jGDe9vTl8+33XV0/1ImzGLQzbx9xOh+VlXzVpgNJUEsDSHvPzTmcZ/0MkGGet8oK6/37ga19zepw6BXS7GKdNxLE7pBVv+jaeT4/hocExd+yZM1XEh/bSe0Uocs9E0V2KPNNz9wRYsZ/XVJ51uWbmbpSX3zCPMMyjEujT+x6vTaEAYzS5PZRzG09jGgvN42yTYQLhSyFNy81UPqFnyDmvJ2h+EzoNLZBelJNgiGY69ocuLJQ+wPl5N9XMzLjXzk45Z2t7mKv57NlJHHlC3f0C6GpUGkyfK9bW0MJ5nOiO8bznuVv6855XPtIUeZ3944qaINRfpGobDFw7/JxddHSUD0sder3SlLS56sr5nZ1sdS/09w8PfK2slHOzvvQYTlo6b9cRwV/qfdY6y+0r1Edx7MfZuL2IYdrCZtzCU4MmHj+b4NG1CA+tli82+8yZYk4eFNebfS62niZRcTBw1xSvq34fON+PMEQyOd71uVZf5rgQvm13hrArx3ECxC4CPXQNu5xExTWL4d7PV/uU6dx9cOVZBdE/85nP4K1vfSu+9KUv4dOf/jTyPMdrX/tabDAMSOQP//AP8d/+23/DiRMnJn57xzvegY9//OP4/d//fXz+859Hv9/HX/trf20iWaHKv/23/xbveMc78Cu/8iv42te+hh/6oR/Cj/3Yj+Ghhx7yx/yLf/Ev8Bu/8Rv4rd/6LXz5y19Gt9vFj/7oj+KCrvieQbFgI7+jWAoRAnZK5ZKmqQc/bUSx5ZpW4DMEJirFhwXuFVSnngrKE6Tli6Dm1tYWNjc3K2Auo8htVLbSyrBufRFEJchvqWs0upvRywTSFxYW0Gq1cPjwYbRaLTSbTR/FT1tp0k6NcKcuCuLyRacD7a9l0S60wcbGBvr9vnciECi2nOF11CAWTNcxwHFAu6gOtDfBeoLCth3WpjpOAVTA9dD4ZR/sBZha4JRjSceO9iOFbbbR/xYg17Gk59vxob9Zehgd/xrpH+JGr5NnGyD+8pe/jA984AN46UtfWvn+arsP7lcudbFI+cxnPoM77rgDaZri5ptvxvvf//5nQNuDJdfM3G0B9LrfdhMC8VykFwkQx4iwumpyh3JBhjIZ5je/6dZbvjqiicXiq4lNDwIPBgVfNMFlu8DQlSaFACgXH6qHAqEWZOUKQx60ycWq6yWuPRWT5/pxfd3hrZrAbWJxbuvVVU2jUfKbKMLx5JMOtf/GN3ylJ9qbOHnSYaG33eYW52SVUfBEgYQzZ6r+A2021fIR6nleog524UtvAlfw/T4WFpz63oZEVRi+//jjrg30tCgwrnZnXVSWAK4qG5LQwlbfQ8eORlUCeaAMXbR0Ltpfo5E/xvphej1gmLYwzloVkGMMtwgfIvHF6XqfOzgIZp096xKxPn4mMolcZQ2o7W00yrFfjH+qvDkoFv8EQNIUj5+JcL4flQ4vRi8Wiq2tuaGGOC4VC4EVdfJ9LFafa3P3VJ4+uWbmbkzidUHQlzcXc21qMyzGyHmt7jLXS12nK75P/G8PDp2gjre6eT3QtiQeI4nHlcNnZyeBRGsr/s/5eWurTD8StOVunRB6aVS3AtLirD96tEz4zdt0kTt8AlMNVcdHAn7m3F5nK3WkVDpK9bMdvrVVRX0vXJhoRwVg1zlaQXN9rrKemJCDRSU4qPbRD7Z8W0dRlu2ec+fK+dvO5UxKz6IrjquauvTxQgMw1AniAysuAfTV6PhQ0yiV+0MBvFtzcOdKlA/LXSx79cs+ZDp3H2x5VkH0T37yk3jDG96AF7/4xfhLf+kv4UMf+hAeeugh3HfffZXjHnnkEbztbW/D//P//D8eeKScO3cOH/zgB/Ev/+W/xN13342Xvexl+OhHP4pvfOMb+OM//uPaun/jN34Db3zjG/FzP/dzeOELX4j3ve99uOGGG/A7v/M7AByg9b73vQ+/8iu/gp/8yZ/Ebbfdht/93d/F5uYmfu/3fu/KG+MSZK+oTBuNHEqEqcftVYeta6+I0L3A3bryLYBvQf06mg0FZW0ks7WHfenvoSh+BURDyTdtm/fb7lDEdai9e9mLv+m7bbPqb9tR11+7gb97gb2Xw/cdaoul/aGE+NP3q1tdnXV11ZW9Gy+9tWNovO1VzzMddd3v9/H3/t7fw7/+1/8aR44cqejydN4Hn85I9EtZLFK+973v4cd//MfxQz/0Q/ja176Gf/JP/gn+wT/4B/jYxz72fbf1uSTX/Nx9OQ/OeV6JcAqtl/kbI+H0Gb3C08kdZMUBEwFp+9XvUqOYLlPsIveKFEQhiKuLSK1I9K8LXiKltzWD5b+sbL/fS69QY0UXxZ33tC9Xl6GFr21rSK+Qfer0tYtsrY8hi7vpu1v5xW8a5akvy2drrxGLJdm+2Noqy9DEehO2sScWv00A7jVNiDCe6IddMXAt6/tcdFt5tubuysWwn9dBoqp5Dss1P3eHJHDh2lzDKoGppXKrJDWKTUKot2BePvvmv97tXr7bzacoLyrcknpJKph+KT68S7qF1emrv9eI1Vf13ms+qJvyKtUFJhrWGWyknZR0krEdroNAv594oAuUezkSmmNC5e73u5qi96pSxY/vOt1ELC//ZZkj0JeqS0i/Sxn3V1qmc/fBl+9r6AwGA6Tfx/ZDK+fOnQMALC4u+u/G4zFe//rX4xd/8Rfx4he/eOKc++67D6PRCK997Wv9dydOnMBtt92GL3zhC3jd6143cc5wOMR9992Hf/yP/3Hl+9e+9rX4whe+AMCBKWtra5Vy5+bm8CM/8iP4whe+gL//9//+RLmM4qWcP39+v03ftzAKnJG0cRxXAEBGnjNymO+kD2H0Od8toMqI5IsXL3rKFEb6arSuRv3uxQGtQlCXSS7rgDHWSxAbKBM18vetrS0wkphc7RrhTAoZ0s+Q1/vixYuew3pU3LlJw6L242c9njbQiH5LZ6PR2axbOd9Zn4LnjDC3dCSMEqddGYWtfPDaXuVMTwou30aj4Tm92fczMzMVbnFGUFvedG2H8obbPiUtUAjQ5/kcT6FknrQJP6tzgTrqscr/HwKl6zjjQ6C25UnXOix3vY57O25t8lH2nU2+aq85297dnASXIhcuXKjcg7iLICRvfetb8T/8D/8D7r77bvz6r/+6//5y7oOXIpcKjF/KsZ/85Ccrnz/0oQ/h2LFjuO+++/DDP/zDwXPe//7348Ybb/Rbl1/4whfiK1/5Ct773vfip37qp/Zd99Uu07m7Kvuau0MraT6w05Z86NTf2m33ENrvI8nO+73I6+vA8ePllm4A2OzejHQZWL3XRfvEsePyJkvGZp6gubRU0qgAwGCAxXYKtGN0uwW/58qaq1+jy3W1D8BnTWQoNleiNhqqTtg+0SOKYxw5kvgIop2dsug8n+QVZ1QZP6sa6Bf6qm2pD9/ZJp6Ypi4ynZ8ZjV/0SZQ7Xnp2EYEPJiBdWKhi8CEg10a+7ezA2XkwKHlhLLqiK8OCLzshX7aNLic9Sp67MDyxr+czUQBXoyhpA/arDderZDNFWafqx/J6vfK70ciFmPV6ZTlqBM2kxwy3PIZc73J8KNGemowLai7C4yxCt+s+t9KhHxfKp0rzqJmOHnWfHWVCXB2Mtn9yl8jV22swKLnb+30cX2qXbWAInuw4WF4uxvK5fpg+yQIJIbSnOOYgzN2XjD48yzvtnisynburUjd3h4anu7wixHGCKDPXptiUly7xUTvdcHrUcu1UyVuNlqe34ZISwoSva2XaEC1AC95LdBLLXRLqJJV7D0peartZhhjxzEx9clQtx9/XQui1zuN6/9My9LtCoSRNkWVRxQRqf3t71eP00caqELwvF7qlaeISjercysgG22agNBIHjEWAQ54K6wmwL63D2pf/2zml7vmozlCqE/tFjVUcG8cOSyD2aovg4foYlmUoKe3UjqyjeJ6LshhxTJrdSdNV8Fv7DFtHcyPKNYvnBAXU/eeisixz7XPUPgMkWYYsi4LtrJVC0encfW3JJYPo4/EY/9v/9r/h/e9/Px5//HH82Z/9GW6++Wb8s3/2z7C8vIw3vvGNl6XIxYsXcc899+BVr3oVbrvtNv/9P//n/xxxHOMf/IN/EDxvbW0NSZJUvDgAcPz4caytrQXPWV9fx87ODo4fP157Dt9Dx/zFX/xFsNz3vOc9+F//1/91l1Z+f6Lg9Wg08oCvjbomsEvOa3Jxk86DYKlGqiugqAA034ESwB+Px9je3kYURR4kDkV+a9kEgQF4oJkAuD334sWLvk4Cv3o+257neYW+RUFXtRmFYHeapsjzHGmaYjQaYXZ2trIF0YLCGiXO9hBEV5taihMFx/lZHRMhQJB1zMzMYG5ubgJgV7DcUpSo42NmZsb3uSb5VJsqXUuaphUb63EK7KvjRdvKccg2qEOD7VU6oLpIfB0PFmgPgffqYLEAue64sAC32ludEMrBHtqpQZvlZqa3Y1xplejoshHqoZ0G6mT4fuVFL3pR5fOv/uqv4l3vetfEcb//+7+Pr371q/jyl7888dvl3AcvRS4XRLcg524PKpTQYtHKF7/4xcqDCwC87nWvwwc/+EF/rzioMp27v8+5mysETSrFlZwChkC5Gp2ZccTXs7MelHyqcysePO0OW15277Ozbn32x3/sgOYnnywxzBtucMUTGOx2b0aaAlH/fLmaLAC9iItxnnzbbZOLLqKKS0sYx0nl68EAaLcX0cyG5WrVosmhxS/bDCBJUyRpjCxLJoAFLWY0ctiqYpoTwALBWE2KqmjpYFDandQc8/OlZ0JX0tQPDlDNlluYn69u8dYFuC7e9LJnm5RbddxedMlQFVnhjwoasK9mZkrd19bKPoljh+R3OpMASb9fZn5rt6soQp6XSUk5FpU3t7DB+X5UWcMmslD2g+Cxx5xR+G77Pk3LMc3v5ubK7LgLC1WDGSB/JI4Ugx374Uy14th9GeU5Fgd9d8DqKgcqoixD0m4j6XSQx4mnq11bK30QzD2bxEWF5P3nmFDe9jx3v3e77v+TJ0uHAp0kWVYS/RNlGo0Q3f9VHOf9QZKc+oaxPruADSxmD8LcPV2IP3Mynbsvfe5O4nEQROdtOU0jAAnibLHi9wxhmPyNtwrNh8GpluXaXN6aW5g+3STfBAZ5lfLKguc8ySKTcYxx2qwF7qlzhWfdOl7VIHHsEz0mBu0f5lFwDp9Us1iHVW7cKOft3cBcK4rSFjovZinQLvWxgH+oKNpiZqagTRNppmOgj6punG/7fdcOnReK7z3vnILmdU5SSmg7GxUKofshMF0lVI/tY+1rjZa3hmL51InPfDpHxjHS4lludtaZgENEu5pDh2Pc052F6JLU2Z+mHqTX7rC+Fj4LVEB5flYl7EWcpiXlRqFDZJ5l7e/IcyRZhiQueNJDNqvpp+ncfW3JJYPov/7rv47f/d3fxb/4F/8Cb3rTm/z3L3nJS/Cbv/mblz2Zv+1tb8PXv/51fP7zn/ff3XffffhX/+pf4atf/eqeFAhWLCAYEvt76Jz9HEP55V/+Zdxzzz3+8/nz53HDDTdcitp7CgE2RlAnSTLBD86knuTxbjQaSNMUjEpXmhKeY4HMnZ0dbG1tVcBOHsuoZP6vYKPlgw5FBBNwtWCyAocEg5kwVKPBCWASyLegqEYp83cFuAkME0yP4xiMDFegnAC26sbzlRecQDWTbCqIDpSA62g0wubmZsVBwShlyyuvjgHuBBgMBt7229vbFUeFgsE7OzsevKWONvpbo6ABB0JevHhxgutbAWbahnWmaTqhK/tVy+F33C0QoupR3n0F0O3YoL1C9DQUC6DbSHTbfnVMUDj2rKOC79bxo0LAnu8KonNc2Gh2C6BfCrBcJ9/61rfwvOc9z38OgcwPP/ww/uE//If41Kc+tWt006XcBy9FLhdEt/fVugcVPS+0WLSytrYWfHDJ8xzr6+u4/vrr963r1SbTufsy5m5d/GmEKh/gL1xwKwsLMipZ9tGj7r1YUDy4fiv+8A+BO+5wSS4Bhz+eOQN8/vMOACQWed11wPXXlyA6E4c2GsDycgutdupOWFkpo2O5cFpYcCCgPixzQZNleHQ9qazbGT3e7wPdboIWgVpdBIWAdK52NJoaQJRlaDJC267EswxgJGDuwNxhHrmFf69fPSfLcH6QAEgKjLiJREFp9s38fJksklnUrGNDVt5R2sPxLAMaMcZLLa9ahHE9uBHHHuBO06Y395kzwNGjLUSMXK6z1WDg+gsoF7br687w119fgueMIlckn51DW3M3gi7E9VwBXYZIMOiXw4M/L7ZTTAwCenAeeKA8gQvrTqcERubmqtF0BujxgL9GZRe2sGs4xUz0laYo27qy4t5Pn+YgLZOCxjHi7JjnZn3ssZJavtMREEV3ZVCRlZUyI9q5c67c225z7SjKxunTDrxnnevr7jNQcvI//rgrd3m5uoNAGxkCMfiS3w/C3D1diD9zMp27L2/utk463jqBySlJb1PRYBMA0PRAnMv3oSD66mrpsFOcstt10xD9C3p7bGXj0nGnu70syKz3BQW2swxjuJwPo1Hp4wy1Ic4i59i1N1UbRs8TgaoDNk2RZBnirDkxpVmamlLlok69N+wGMtv7of2ec1zxTgc4AKAt9zzzPKJc2BU6EV+ufFZnt9rLJtawYfp1utcJAfS9ItAr4fKYtCP/D734fMBtgIyeD4H92kczM24wzc2Vu8b4HJumiAqgu87/G8flqc5B0S8DBvK8mhGc44uDpohG39lxfaa4uALpvh/1eZSBBUD5rGGvH73Q1dmgtlbkXufiNEVUP7UG58Dp3H1tySVY0clHPvIRfOADH8BrXvMavPnNb/bfv/SlL8WDDz54WUq8/e1vx3/4D/8Bn/3sZ7G0tOS//9znPocnnngCN954o/9uZ2cHv/ALv4D3ve99WFlZQbfbxXA4xNmzZyte8SeeeAI/+IM/GKyv0+lgZmZmwmP+xBNPeAClW2x1XltbqwAneoyV/URDfr+iYKmNMKYQQGWUNGlGCEgTqLUR6CxfEy8qYKiAbZ7nE9zqBINDEbwUBTEtnYX+TlBVI4SpC4HWECBKPQmYa/JU2oWgchRFPqGpgugUHqPfs33WrpY/XR0TChKzLoLoPJeOBaWSsVHmBGDZN6oP9dOocZbNMuiwUECazhBG3lsHAEF5Rv7zPI49Bcs1CtuOV+3Dut0CmsRTAW0bsW0B873GWuh7tS/twzrrKGJ4HPUIRcZr+epwsLsyQlHoWu6VANGZHHc3ue+++/DEE0/gjjvu8N/t7Ozgs5/9LH7rt37LJ+K8lPvgpcjlgugPP/xwpW173XdDi8U6CT24hL4/aDKdu6/A3G0fPMkRrb/bY/iQXCyc1+FyRZ465RbaeV4WsbLiXoxQ73bLdW0Yy00coEz0kMAeddMoHbOI6vVKHwBQrudnZ7lmjRyIYAC+2ofvEHjMBbBNCGqjhQAgbk5GURXHK9d1HJsIaqBcnDYaZcLITqfabt0CTISWi0QuqihcQPPldSyOyTKk7abvWkazt6iXdTpQcS4o47gMYbQJQLnIJHBNNJiLY0bDcVHO9of2UxdbmXMToJambu3ptjVLu0ajMjHaww87QJ0Lcdooz8tINYbs05HEdqZpdTFugZWAkBHGglv+Sx3j2ieFreJ22V0bG+GhBCBM59Lrubaur5d9E8fVXQwFDQ+yrETStE2M3CfvjF47IQldA4UchLl7uhB/5mQ6d1/G3F1z3dmveY/QBNMhwDGKY0CSHPMWwF0vxWF+Tmg0qixXvjwFsvmuKPzMTLlNi1Jca2NEFV+wpZSh8BaXxKje51R5PYn20+eFQhilnudR8HamU1scF3OKRVrtc0gdMKz/7wa0h+493uGRlkC+LU/A0drz9XmB26L4uY7k3uqoPDg8TgF0Pb8Oldbf93JA2PZpYhB6Wqi7jjOgumtMn/X4jFTUE+pSVdEztulYq3PasDAz2e/mo5hoJ/tDdwcoD5wC9Xq+7mCk6IOR2j60cyzQDiZBB6Zz97Uml5xY9JFHHsHJkycnvtfo6P3KxYsX8ba3vQ1/8Ad/gP/yX/4Lbrrppsrvr3/96/H1r38d999/v3+dOHECv/iLv4g/+qM/AgDccccdmJ2dxac//Wl/3mOPPYYHHnigdjJPkgR33HFH5RwA+PSnP+3Puemmm9DtdivHDIdDfOYzn6kt95mWEABlo7/1u93AR3uO/V/r04hcS8tho37ryggdZ6OgLTgeogAJff/9AJAa5UxAW1+Mug7pG6LkUAoW3S2g7Q71z1662QjsOhuqTeqA31AC1d0ivVmu7X9LyWL7pG6sWvBddxJYe4XE1qGOprp2W5vt1lZtr/2fn0PvoXbaNteB6c+UvOY1r8E3vvGNyj32zjvvxN/7e38P999/P26++ean9T5Y13e7vQCg1WpVXrsBoFws/tf/+l8ri8WQdLvd4CIvjmNcd91133d7n02Zzt1XYMyGnuz3m3SnWEhZhhGuMQj86TrIUnAGsUj7gx4QWtDs0rSJ5tWVq7awJ9qFTt3voXMD9Y3NY2qey3EEixcWXPifUpjYCGi7aAjZxkSrV0BpLS9gojQNlBk6f37egRYEvkk0GpLZWfc7j5mddefOzblzFxZKwNrqVugQ5cMJFRg1FuXDah/QEZFlzsPTbldftC/bpSABuehD9jZ9WTuWUS7QPQBl+9BQDrAvuW6miZVRpVJHyNkT6mMLkNhramurOr5DAIm+10kdyL6HPNtz9zQ52TMn07n7+xuzu12COjwnjtN5SKjP9hIeU0lsvJtSep/fr+II3270lryrsvqbVTTQ0JAqFs/1p+12H9B7rL237zYxhJ4bQmB7HfiuDdlljqp81ihhguChROb2f0ZF67F1Eegh4+72bGXbVvdMautsNKrjjHM927kbVaUA6Tq+Qo+DlR/r7v16cDGH2ql3Yu627QzZ3/YNz9vt9SzIdO5+7sgeT3eT8uIXvxif+9zn8AM/8AOV7//f//f/xcte9rJLKuutb30rfu/3fg///t//eywsLHjw4vDhw2g0GrjuuusmgIvZ2Vl0u1284AUv8Me+8Y1vxC/8wi/guuuuw+LiIt75znfiJS95Ce6++25/3mte8xr8xE/8BN72trcBAO655x68/vWvx5133om77roLH/jAB/DQQw95L/+hQ4fwjne8A+9+97txyy234JZbbsG73/1uNJtN/N2/+3cvzWhPgyhQS0CvDujdDRgPgbcKqjLyW6NjSbsBoMLNTeBZy2AdFuxmGyyAyjqVk5zULjxPHxptZLJGwttoYB5PXTRhqkabMgGr6m4BTraX7eDvGrFt9eP5pH5hOxWwD0Xo63mxTA51ACz1YcQ6+cjZXo1e150J2g/sK0aqa32M2Ga5Olb0PHLnK/c9+8jqfejQoUqi05DDhv2hn9lO0sno+KGtFNxm+0ixwn7WMcIdCBQLmKvdbYS96kxnQF3kuV4XV5LG5VJkYWFhgt5kfn4e1113nf/++70PPv7447Xe88uNRN/vsW9/+9vx8Y9/HPfee+/EYjEkd911F/7jf/yPle8+9alP4c477zzQfOjAdO6+rLmbD5F84Nao6lBEE49RUJK/F+DjySVH49JuA3/6py6QhkwsZIDZ2nLfbW87MJHAO1Di4H7Rn2Uu+pVUM4yCYqQ1t44bYNsebgPkBgOUkeh13KYsz36mHdQuuii1AHscA1nTRbFplHPRXgZW8bRh1kTSScu+4TkEe9MUmwMXOZdkw1IfC5RvbVUzu2pfKTWJinxH02QZEPWeKvm6ez3XQaT/UBvQfrr1uN8vM6wCrlM0utxKu+3oX6gjy6cwcr0oP4pjNNMUNy91XXm9nuOdX+tX+ylN3TaIra0y4pr2yjKnY6NRRi4SfMky912n417qiBBb9vvO3KRUt01jhHyeO2YVADh6tOCbZyT41lbZzwTu8xxR/zxuu61ViQ7lTo4sQ3W86XXKC4u7F44fdzQu3A3Ajk5TV/f6uns98kjZP3NzJZWQAi86nvSzLvQ12k0SJO4lz/bcHQS6dpMrkOflWpXp3H156+4IY5Cvu264cjlZyX1sgHMGi2sqDutb0/85tdhA3GEncQmllVOGJ6kzhHNSjdJcQtkNWcRC0zTgIN0NeOb/IaDX82pVuaGprvXhuCJsfKbhlQZAehAU1Xi6Dp0n99K3LKx854NNCBTX/y1IbgFV3stVJ+YdseXtBdgDYYd+CESvcwLUeixEqK++awcprYsdV+RFV53E/s4ZX82ho2r4IPAsKZOmsx94wSi1jHk+XOx2MUbku4/CxwcMRG8d+PYC0OTpduyoHqEHEJYdcqbrxW3PwR4OMyPTufu5I5cMov/qr/4qXv/61+ORRx7BeDzGH/zBH+Db3/42PvKRj+A//af/dEll/c7v/A4A4NUkBi3kQx/6EN7whjfsu5zf/M3fRBzH+Nt/+29ja2sLr3nNa/DhD3+4AtZ997vfxfr6uv/80z/903jyySfxa7/2a3jsscdw22234ROf+ETlIeWXfumXsLW1hbe85S04e/YsXvGKV+BTn/oUFhYWLqmdT4dYuo2LFy96ehHl1Q7xkwOTkcsKIir/t0b1anQ1gWKCgayXNCcK+CqoawFDpbhgnQA8oKxgt9apgC3PU9A+BKBr+9geTXRJcJnJWEmJo1HVll6G4HRd3yivu+ponRw8RvtIQVkCw8rDrtHWGnVNqhXqt729jZ2dHf/O/pmZmcHs7Gwwgp3nj0YjbG9vT9Rx8eJFDAaDir50uOg7bUA72/HI9tF5wTFHQF056S2YrZQvdOxwzJDKh7RDBLOVukZBfR6njh0d37ZOHYN2fFD0/qPnKKjPc5VO6JkG0veS7/c++JKXvAT/9//9f+Ov//W/PvHb0wmi77VYBByf5iOPPIKPfOQjAIA3v/nN+K3f+i3cc889eNOb3oQvfvGL+OAHP4h/82/+zb7rvVplOndfxtxNsFAXAgQWgcmFkVKG2AVpsWC7uXMe3f+5hW98A7jvvhJz7fVcNDrgAESC68TDicVy7dFoFAvPLHPAJ22kIG6v51bzGxvlYrjddvQXWYnfDgaOxWNjo8Jy4nhH1ZFgOVwtokAFdds4Q4OZEJOV0l6FXnm6WBTr+M/jtAnA6aWLKjJrABFmZhZdAFXnGIDCjg+Wx6YpcN11CRqNBK12XO7Bp37r65PgBQDcfrszeLuNYVxywlb8AH1n4lY2duD5+jrwne+4jltfdwe+/OV4dC3y7ep0bkTrznYVHKDBQ4sa5arlOwfD0hKGeYSzZ53ai+2Cb3d11bXxzBlHUaLjlBzfHBdc0DIpK3nAKdbZwe+IKj35pPtc2ArdLsadY45TmMcXYMRTvchzlC9mw7KOOMbmIJrAKc6edVVvbADtdguLy8vleLpwoWqjPAfW13FzNgA6Kc6fbGFrywXTJ/G4yqPK9vCdwD+/08SiSv3DHAG9nuNcevDBauj7LbeUNlSgQhf96kDR8X8ZIPp+5Omcu6cL8WdOpnP3ZczdMjYJ0CYAFtvFunS3jfipy9Fx9kzJpjUYOOccmb4shsnLYTQqL2XLnuJuX4nLFVLU4wuytBq8b5hrTO+Ro1H5iMLHjTQt7nl94zS0aCdlNKrSYGhIvjzTxFkVCLd87HU4shXe560/cWYmQqORII4TNNtp1dFpk2iHgEwLWNdVVvw+RgTEiUsiClKbjavzAucAS0diG2yBXK3L6hS6Z9qyQoC5Pc5KqJ32970Aej2WInNnlGWVhPF0ePN0Tl9ZliChc1rnXXUeaV8Wz4xRmmKx3Qay2Cf0nHCuAKUtFUy3c60+i9vndoLoFN1dRyC+zomlz22x210XGpLfr0zn7oMhhy5eBmLzR3/0R3j3u9+N++67D+PxGH/5L/9l/C//y/+C1772tU+HjgdWzp8/j8OHDz8tZROEbLVaaLfbOHz4MG688UY0m00cO3YMjUYDCwsLmJubQ5qmmJubAxNNEuBWEFfBcoLWm5ubyPMcm5ubGI1G/mXBWwC+3Ha77ROaMmECQeuNjQ1fvgVUedz29nYFOCcIa2lLFKjl90yoOjs7iyzLPEhM8DlJEn8+k3yyncpPTnsmSeLBNraXQPRwOPR86pubm8EobL6Tmz6OYzSbzQonvdKIEOhVQFZ3AqhoNL2CsNvb2xXbjUYjb/fBYIA8z/1YoL04LlQ0kpxtZl0E1a1Tg04J1Z3CNlnO95C97G4B6qPvGvnNyHG+kiTxfU/nhOWZt84hjm3lq7e7OBRA16h5y/VO4D2UkFQdOMPh0Efq06ZXEkB/+OGH96QveSbkX/7Lf4l/+k//KX72Z38Wv/mbv4mnnnoKf+fv/B187nOfw7/+1/8azWZz32Vtbm7iTW96E86dO7cn71wd/Y8uFt/whjdgZWUF9957r//9M5/5DH7+538e3/zmN3HixAn8o3/0jyo8pAdZpnP3/oRz97mHH0YrScqHcF3UhR66NfTM8irzwb9Ykf/50g/jf//fS8ybmKQCxq98JfCqVzmM/M47y9Pz3OF8CSTajMkOL1wowU0KM6IdPw7ccAOwvIzHj78UTz7pgAHiyf2+w1Cf9zwHQN560iTl0oRoBDS5WKIeLPCxx1yyxXbb1dtoVPmi2Zh+Hzh1CptLt1awTg38sQsU2oiR+/QRXLjgHBDsEmLCDNZPMHTg58MPO91WVqoLLsBV/Ff/KnDnndiMW/4Q6sSmUKdFPOXKXF8HvvENt5JcW3OVvutd+Orplh8W8/MugJzDIk2BaPWhyRDHfoHQLyxUx06R2HMzXfTU4L2e+/n5zy9A49PfcuOABPtskwXRFby97joPAo9P3lrZwKCBWe12kXSPlTPyfmnJ/bi8jEd7TbTbQLP/hKu73cY4Tnzu21OngOb6Q6VeaYphtuivAzpJ2C7We+pUUXdoDPLa4zXHTlfnli7k+T+PJWACOPsOIpcgjUlMOQBWV13f3n8/8F//q1Ps5S93g+vVr3bvHEt0TKgTynKv6n0iTbH62GO44VWvOhBz97k3vtHdG/cp54dDHP7gB/c1d09lUqZz9/7Ez91nzqC1uOi+VEevBd2MY4vgOpOG8n7Ee6L6YAmsa3HMt9xulwlGl5fLTT5zc8DxI8PSc84J3VKtcYIQerJx1griyIoheyBYn1XyvFSceTUUUGfwD+9LuhOLya47nUpSU865NGkIn2exIYCReL2C/2nq7EOWsqh/vtRd2xLaCqAUMfpcFgCXh3kUxKfjuHCK6wMI+yjkDNV3nhOKYA6B27YcbVfoZQ1pyw8EbFSOqYvetnXq72pbsek4TiaGl15G7MNmPCwvEl5INqgjTd1AOHLE1cek3PxNRefxkGg7uR2NA1ajVGgnjg9ea0ycnmUYp9V1aYRxqUOh+zgtAyweeWQVt956w3TuvsbkElwRpbzuda/D6173uiuty1QuQWw0KyOQ66Kv6wClUIS6RuRqFG4o6lajrjWiPERlYcsIUcmovlEUVeqw+hKo5Wcm51Qgci8e7RCFhk3MClTBUuplk7GGQHQeo1Hm2kf83lKi2L7V/tW2aTLMuj6zehHIZeS3gvoqpEmhXjZKXoFsdcAooGx3Gtg+npmZmdj5oMfPzMx4PWwyXbWNfsf/eQ6j020btR7axPLd27FhP1vnhpU6Shdb/9UYgX6l5Bd+4Rdw991342d+5mfw0pe+FE899ZRPqPJ007nsJR/+8IcnvvuRH/kRfPWrX913PQdJpnP39yF1q9fQMSHRRdmZM4iXy+SeyocOVHe9UrieUIps5CgXDlyU5Hm53/vCBVcQwTpD/UEMQV+a46ySJEwXg6EFHoXhSRsbpbOh3S6TT9bYlHXXbZXXUxhEzWPPni2Te164UM3JRqw0z4EkLQrULcW6eDULXgLzrIuAboXZieezI03kmgbm53m53X5mxn1uKVWOFbs4LhZ4F866Nm9slGDzxoZrd8I+YJ9TdCG8vl6CuTMzpSMkjj1mQJxcgWwXqN2cjKSURW+FCgjAOE4m175KkyKdbIcYz5uZof2biAjw2MV0nrvoe6CMBqfyOlYV+SnawAVzngN50ZVxHLmkvToYOUAJ2M/OVsdOSC9tmAXwVI88v7Q94c+A7DZ3T6PZnlmZzt3fp4TusfpZgFO9XWxtufsg6VlsslBe1qFHAaUhU5w1eO3o/QGBY8zx9icPoFtgdi/RBw2G0fN9l1O0nfrcYE2q71b/OK7m36Q0GjKH0Ggh4Fplr7ZyPiqcJFqM5gHNMvfMwwjjxILTdc89QBX4rYtIV33sXKRtqZuvAm2qfN7tZRtu67O7Cmt0iuIYcRzVqs3uGqcJojifHMs2izhtQceygud27gy12x6rCgGuc/kQp4NtPzYN2SHw1X4utWdSpnP3MyOXBaL3ej38u3/37/Dnf/7neOc734nFxUV89atfxfHjx/G85z3vSus4lYDYRIgECpVuxYKcFji24KaKgrGWGoUv3bZneccJqFoqGKuTpc+w9e8GaBJQZZSx5YO35Sqwa2llFExXqhflfmdkNL8niK/OC9qVoO3Ozg40GlqTZap9bd8oaK22thQhcRxXnAm2H2zbQ99bR4faYLd+U/Cc5yqYvZdQT9pEaVYsuGr50q0zxtqUxyq1ja1XhY4E9lso8p9lWVvVtdsC9lrWcxk0D8nNN9+MF7/4xfjYxz4GAPjJn/xJnzTlWrLDsy3TufsSJc+BUMTGbosTewxFKWAWFhDHLgCYeB8DdQYDB5BaIFkX6lysJnWLKA2V1sXK/LxH4BkBphSSaVrmk8yyclHut9Yqt7NGfmn7WDA5opW/2nKMy4Izjqv05NoF2jRd583MlAt6rsE0CE3zjMYxquAmG28REDE4deLXMzMlDbec4MpRPlEq0ethaanlgW7mA01ToeTMpV6eryF62qg0xRAJtrfDeGueF3U3GqXdWfbcXBkZTXSIIX/SL2QnmZur4tBsvy/PAgZyfpoC6BcL7v55NOMYnU4TcSzRaWzrYODoB9LIA+aWEUWHcwW10qi/OHbtUVuqTbVvjMMkwjgIriS2fYxm63Tcjo52u6Sy0ZNDwEndKlv1vAoTeNXO3bslxA3JVeYgOGgynbuvgOi9IzRvFwAhEPmfeRvWdxV1butcwcvZ4r95Ls7pSwGz8rzC8W6bNQGgqyL2XklFLfLNMHp1uBodtV2Kb9KPTyHVTAhwr5vqgrKbfeoAaq2QvxcVu4jiqNIvmi+UdiRQHPQKhHSzc46A6HZu4eFRFk+WWecEsZ/t3FanS0hXLdMC1LY+PnQZW6epm8/pb+Hh9MsDEr2tOjChKVCNKNBnitDcvh/RY3l+qI0cdKQZDIx3O5V7up/AmLsUFZ9Jmc7dT79ccrd//etfx913343Dhw9jZWUFP/dzP4fFxUV8/OMfx1/8xV94btmpPH1C6hLScBBEJj/3YDDAxYsXkaapp26xEbkhIE+jyBW4JW82RXnYFQAl+EjwnEC+AtCW+kLrs9HWBMNDDgHVi7Zg5Lg6F3i8UqLws9KeqD2UR5x1UfetrS3/P4Fd6kF9WY9GovN39pVNgEq7KiDL3xgNr8lMtR2kWCHwb9tUB37rjgLlE7948SKGw6GnHCG9iToXLl686PvZRoOrbUK7Iy5eLBOaqvPBcubT7iwz9KJoWRTr9CBPukbe0/lCe9PRURdpT/1V35Djg+VpX9modwXkLUD/XJI/+ZM/wc/8zM/guuuuw9e//nX8yZ/8CX7+53/+2VbrmpPp3H0ZoqFkfLC3n3UxHoqWsRFF5BYB8LKXlXjzxsb/n723j5OkKu/Fv1tzpqamp6bpHXp3m2WAARZYcMUlbBQQFBWNEF8To7kmxhg1l5jkKmhMMJoYA3k1XuI1al5MjHoTvdGr0Rsvor8ICRGim7BXV93IIhsY2AGG3Wa2d6amp6b398ep76mnnj7V88LusGA/n09P91SdOi/POVWnzvd5zvcB7rgj3zrOwIryfTdNi6BxamwgpiBt52X6Ak2Sz5lgL4qxDqXj04knAhs2ZHm27OIphQ0oBVMFalW3aHBbxyUXh9xCvWFDzjHN7bJclLES2TVyJ7lv7SjVT+9wjRlIp2BWgyB6mM7m7uBEasfHi673lKygKC7GlxwczLYpRx3nqYY0svnISnIL/N69OGMiBbY2MJParb+k45RDp7DVWnpnSQ70KMJMEqI5nataAhLMG7VaTtsiO9mYHOw9dMi67stt+5nCKqaNaEPoNjDIdawDkBjIlfV10b/sz0rUAfZN2zSTkwCAsVoNY3EM7G3mnvpiB0UYRRiLrVKGh4MCDS0X5UkCVAhO6LbJRbfkOJWLcx3PgIOn1UIQx0izbf50Wqtk9+mBpIIkATZvj4qL81oNeMpTcvCe2/4ViFLqRacpB7QF6XGWx3vu/uAHP4g//MM/xP79+/GUpzwFN954Iy677LLS9LfeeiuuvfZaR8X29re/vYuK7TOf+Qze9a534e6778aZZ56JG264AS9/+cvd+Xe/+934rd/6rcI1mzZtcjFVHg/pz92rEA0gLufeyu5TBr3UjxreqpzOCRpqOyyPyx1RvIbTX4UTi34/4LNCA9hZmsCYPEynmwDRPWnyOhk42QfM8ltOJhKIzBpNINgY267BwRxzp+gYljJr+ZEiMUk5J9pv010vWTdfRr5CKdk1xoSFpJwyCpzogDV0yDx8Rgp+i3mmg6DQtb5XDMDywA8OhogiW59KI87HgqR2A/we6T6daF1lHxcDwIQ5uC0Bcpmv5umReWWe4kEcI4wibNoQF9orq1XQu7xx5M5JPWfT0C8M+wW+etavTA+8IUnRxnHPdxZZSfnSybKjqED3I9vRQWA59IVBxmfUOh6kP3dbOdZz94pB9GuvvRY/+7M/iz/4gz8oENxfeeWVq4qe3ZeVCYG/wcFBDA0NORA9CAKQz5kc2FEUYWBgAAsLCw7opeduLy9wigTRCXQCRa9z1onHJNczgC6wkOkpkkJDfsIwdKA6Az8StF1YWHA6IK/30NCQA0m18Br+JrVJkiQFwJeGBvKcG2MKZZI/XQYSHRoawsjICAYGBpzRQlPRkG9b07dor2nJMy/TsH8liC77kB7XEjDWOxMkKCxpUbQxhJ73SZIUuMJ1YFkJqmt6FZmv5iKXbdZUMtL7nTqW40iD1hw7Uk9SN9IIwh0L1BWNLRJUZ91pDNLGAwna64CukpJGtlcHK5XUOtLQIcfMk02e+9zn4pprrsFv//ZvY3BwEOeeey527NiBCy644JjSufSlKP25exXSagHr1hVf9OVqmKvrspd6IH9xn5qyq6nLLsNs/VSgafnOazVgc20Ws6ig1bI0zJKKmc7Ceu1L2mxjYGkn5Kpfe9DKRVmWNkxnMRYbjMUoogLNJnB/K+fwiCIkpuLYQSSAXasFmJioIK5VEEjqljTN+c8zXtWOCfHww8BiYgNFRhEQCC7qIG3bdiRJDhJkbeqY0PJhN1sIjUFlfVxc3ci2UUFOWQZooUjeSdJaAgwUzu0ZwBHWOojj3CsxijJP6mYLQRQhNAadqIJWXEG1kdgOod4GBix39s6dwNatqE5M5AC3FA24ysVgpv9ZU8Whg5bGnTiwxIJZv/l5oL1+zHpQ1+vAli3FsjheicJTBzLDqSkExmBzo4F22u1BBwAziQ3+GjVOzY0pmVTjTk4efPAgcP/9xQUzAXd6g3k8zqpRhKoCJg40A8zNAZUNppgP9Qbk0XfVar4TVdBsArXaGALNj8ybKYqQJKHbaW6xCwue79xpm3T55RtxxvbIju1Nm+zNOTFh8yLpOw0oXUiCqKcGPSgr4CldC+k1d3vb10tW+G7zqU99Cm95y1vwwQ9+EM985jPxp3/6p7jyyivxne98B6eeempX+nvuuQdXXXUV3vjGN+ITn/gE/uVf/gVvetObsGHDBvz4j/84AOD222/Hq171Kvz2b/82Xv7yl+Ozn/0sXvnKV+K2227DM57xDJfXU57yFHzlK19x/+sdoGst/bn7MYgP8NTnFdhKL2QJovMyUrqccEJubJMiY3rww+wZw8PGRQ5Q4fzjAzL1/SWBdllv+b+8RryzyOCHEheVRenfXdXJviV2XeCJBgBtpxAALh+71IE2grO6XbeanhN9uvA1hA9xzzM4AHfx2fktjoFg+qHuiY75+H7L8rhLLA3QatrxQdp5DaZL0bHn4zhAFFlQPapXrSMD26yDq/r0I/UkdN9tvLDlOM9q3/tqmuYBvPnslnO2AJ4DY6xRSM9n0iAkj8lBqD3PYwHKiy6292Ol6N2u53nDoKchoizYvJfiSG5bVHpKhJrluw3fheyYCWGyvAmkM8Dv8SL9udvKsZ67Vwyif+Mb38Cf/umfdh0/+eSTH1dL/Q+aGGMwNDTkvLDpsU0QGEAhGCiBuzAMvZQUUgjoEQgkOEnOcXmdpieRgLP0RAdyb3XpJS4pPQiMa4BeemoTzKSHPYN/Dg8PuzoTuKZor2HqggC59KDmOQZ8ZBp6ZrdaLSwsLLh2yB0BlUrFBbSUIHaSJJidnXXtke1l/SQgTpCb4LmkqZGUOvq6IAgwPz9f8IjXlCOSBkV6c8vAnexDgvIaPOdvjiu9m4E6ZDtpgNEPM6lD6f0tvc9l/8lAshKAlmNWG2hkIFL+ZnBTzUsvd0OwXbyG51LxJiK90+U9oftYtk0aGXwUM70olp6ocvPNN+PZz3524dgZZ5wB4NhyovelKP25exUi3an0IlwuPnR0JZ6XL+3CU3vfPuvxfd7WjgXXb7oDlUYDW7Zc4tZ9XDP51tKyqNFR5KCzBmNlwFMuKqenc2AdyIN20QWe/N61mg02aQxS5PGhHn44pztn/MY0Bcb0QjfjhJlNAjSn7fWkrE5TZIsOuyBZv154irM+zK9Ws94/MsCXXkDLwJzyHIFoeY1cvEkvYKlU6ixJEGV82W5Hs+SXjyIkJsTUFFBt1HO3vBNPtN//8i/WE5vWh1NOKS4a9XiSi016T8cxpqeKge18Q5DVP3gQGB6uAKYCxEU1sXm18SoCdDDTCjA9CdRqIcZik4/TTMKsrmFWt3YaFJJQlXbxn3mgM+DnwYM24d69xUpPTNjItUQQuB9cojYKnECthoUjG7G4aBezob4pABfsDACqtU5hC7qkhx/THpkc8/V6gd2At0uSALt321i09Tow8owq1k9UEXJ3QFqxOx0IojNImayjphHSbfSBDceB9Jq7j/VC/H3vex9e//rX4w1veAMA4MYbb8SXvvQlfOhDH8Lv/u7vdqX/8Ic/jFNPPRU33ngjAODcc8/Fzp078d73vtctxG+88UY8//nPx3XXXQcAuO6663DrrbfixhtvxN/+7d+6vIwxaGS7EI4H6c/dKxfneQu4cep2DwkpmK3ESfk49oHp+hL56NIhH/iIW1zM43oCQLQhtBRpPuBRg5tAtzdyWewFMcfMtAL3LOOrSBn+7MOriZuymg6UlO820kPYk2EQRXYHUWSc1zVfSagbLg8L1C4a3Zf60J4FWuQ5n5ECAHs/QCd/75Be0778fXWKIswmdm7UATelI7nMUjeF40ZM+zAmRJVOCaxTL4cN1Yn0qC57NTUmsHeJb1AnSTEArSSvHx7Og8/IuvnebfR7jbxh5DyZefD7wtQAedHGBPa9RL2Tt9PAxTMB8m++YwLA4mJo9RtXXZ9ow0ZZV7PKcqoOV4ygrp305+61kRXvQ4iiCDMzM13H/+M//gMbNmw4KpXqS2/RfOGaukRTUQDo+tacz73K0fQXmhtdc1FLoFB+pOeu/uj66DbqcuRxgrGaJ17WR+tFU2pIcE6flzQmPo9oSX8jg5ISrCUI7tMb2yL7RusAgPdaHy++zrsX6KipSCRNiY8L3acrfe1KRfev/F0mPj35fmsDgvxfA/CybKlTPZYkP7/2wKdOfXXR9V+tvp6Iwol87969+NKXvoQ5uqKge/ws59OX1Ul/7l6F+FYf/Pah272ELq7G5GtNIpKZ1y4XUFJWUkThIrEw6QKMZdu4CCb4SaoP6SqG4roqSfJAa24h4llcEnTlZ34+v55FuGK0t5Csn++3rr9sg4wEJxf5ui/VIq6rA9K0sMA3prt+rIJrPwlWGXSy2bT1YcM16iL7q+Qjm85h5BuWaZoDNQyIpz9UUzsN3P+F/tN69a3CVTIdbM9VhG2WfcO+4OpVota+PhU6c2WU6GhuzqbpICiMR2ZbaGePhaTsIladhiMGsEWthna2Q8MHSnmlbOHqe54cB9Jr7l5qzHo/AGZmZgof7jaU0m638W//9m94wQteUDj+ghe8AF/72te8db399tu70v/Ij/wIdu7c6RwzytLoPO+66y5s3rwZp59+On7yJ38S3//+95ehrWMn/bn76EnXo8x334kE8tnv+2hH2l63sn70d9UDPf73NcL34XlxvYzj6Jsq+b/vsVuKn/Wap8ue4WmK0HQKj2Cp41Lp9dzslUbrRJ0rXKLTlr1seY7TYCPnZjlXs/m+15eyD9MW5rKSZ2rhXPa70wPeKwyXpcaZ5KKRL2y+ebtM17qOnhtHesxrPeri9PyuOedZTX7ke6fsiyTpTis/y33fpkf68ST9uXtt5u4Vv7G99KUvxXve8x78r//1vwBYoOjee+/Fr/3arzmLQV+OnUgKDMn/TNFgKL2p2+22o9eg1zKQg5j8zW9NSUFPYum13Uu0Z7XMF8j5zmUwTlkfH3DJcnkt6WykLmSZEjyXHtU8T89mAnOSr1zS3sh6+XjJJdhMWhLWhW2jF7b2fmb5PM6+kZ7oOlCq7mNtMGFdSW0jv3U+0lAAwO0iaLfbkFz0Pg92bfyQ40aWKb3p5ZhiHaS3OD3R6fnPfHXQUfapvgd6Aa0a1JY6JJ2LTKupWHxGJenNr0F76aWuDRDaiNLLaPBEl0ceeQSvfOUr8dWvfhXr1q3DXXfdhXq27b7vib520p+7j4JIoFEf9y2C6T6cppYfPEtTq2U0ymmae0uPjqIWW2/XiYnc03tkpOh0xcCW/N8Cu6p+Qmw6+5wMpVeTdLOjp5YxFvyVHvitFqLGRufUzoCTadpj8StAT70gknUvrPV13SUyKVf5rLNsA9MYU+oN5wrTiIev7vJ8mrO/RBEsT7zwbDP1MczNAW1TQUgPGH7X6znFB6O1+uouFcE0UYROXO1yPKOnnsxG9gP7xccZL3VPNdZqGXdvGXAgCks9OAnl8GFgbi7A+vVVhPU0p8oZH893AwwM2N0NmmZGbgNnJYUnOZDz8IawdDoaQAijCIODdpzbS0NXT4JFADA6WoGJKzaYqShvNg2d453+SNtKkth7QHq1zs0BVUlfJEUBWq5M+X2cSq+5e8XByTJlnXLKKYXDv/mbv4l3v/vdhWPT09NYXFzEpk2bCsd78ZtOTU1506dpiunpaZx00kmlaWSez3jGM/Cxj30MZ599Nh588EFcf/31uOSSS/Dtb38bJ3KHyRpLf+5euZSBWl23Xg+kzJjcU9p3Tj9X9WNdM1bJUA0uDnXieUjLQvT8pQvUx8Wnkz0DfUB42a2r52jqIP9fBEX11WmZ0iu5tywfJUgxcf7tA9cVyCwvLaTlp8zLX+aTdayeo+Vv+cpYhnv7Pl2P1zKFLfEM5iU+j2tjAEQhwtgzztLUz6PPdutBreOQyAr46q7GjgTQJWAud3XwEltURqtiUHgvka+uujh+iCf7XuPlu1TZtO2u883tx4n05+61mbtX3Pvvfe97cdVVV2Hjxo2Ym5vDs5/9bExNTeHiiy/GDTfccCzq2JdMyPssvZsJtALFgIWLi4tIkqQAVpLKRdKzAOjpJc10BLvJvS4BYAmESmCSdB+SXoaULYODg4VAm2yfrgtlaGioANwGQYAoigq6ILBKwwEB2U6n4+hZJJ82QXQC85qahroBctBXAuwAXDupF+pI6oaAv6R64TfTzM/Pgxzt1K8EvWWdZD9Lqh7Wi57w5MSX/SP7aXFxEXNzcwVQnXVgvhTpaU0dS/51aRxgf7Eu0mCi9evz+Jc87CyXnv38nwC6BLY5LmS9+b+8T9hvNHjoHQESPB8YGHD0OjQGsN+kAUPSvMgApFJ/Oj6AbzeCNNw8WeSaa67B4OAg7r33Xpx77rmFc30Qfe2kP3c/BpHAKtC9mNKLPF5DOgtjgCuucAEfz5gQAayiyIKKcYxGlkWzaYH0pz3NMoDIF3sGKyusHRP5Ty6O5zFhQMsQUW1zoQmBDPJIBJariWyLc2W8DdRCRzlN1hLu5l1cRP42KZ6FPOcDJrvWH1KfRD6pQx5bWMhJ4jOu9XYaWOOA9nqTqy8p0njAc74t0m5bdw42B8ksMNnMAX1jYBqn4tFHLdXNqdu32+snJmx+e/fm/09MODBdArAFMBc5LUmaAq3J7qZwEUlc2rcWos71Lnu9vq3VVHBYrQMBxmhPeO5GWFy0beeaO46Bk08ewyZagmi4oRFhYgIPTIcYGMiBpEpkdUDqgTjO6H0Ed0w1zvQ0OVXkuhVKiaIxd4kcQgTRSdM+OAjU65bHdHGxatszXfT2l3ocGsptArxdOPaJ9c+On41oy9kImgeK3AldqN0TR3rN3aWDr0yytPfddx+q1ao7PNSDTNbn+NDL4cCXXh9fKs8rr7zS/X7qU5+Kiy++GGeeeSb++q//Gtdee21p2cdS+nP3YxBT9Mp1z1spHsQtAGBMiOHhnNVCGrM11spbQdpJ5fOa35xLoiibTzRIqQDaroe2rLNvIs0KJb0Fn2Wy3kt5fsvq8BHGOZ8AZheQ3gssVaB3YAxo2B8cLD5vdR2MCRASzKU+fMBuWUM8CHVHGFid6nieEyuf4Twn0yjebs4ZHCdSZHfqY7qrOU4YsLWr28ueubr/lQ75Ld/FinUIMDBQsTRwAKL6ZvtuKPnEZUaZDgHPJj/1rmJMaLnd5dgo6bs0zT3GW60ioM48BwbyON6aEa8sa1nsUpsBNU+9PO/N/zgF0vtz99rM3Svu+Wq1ittuuw3/+I//iH//939Hp9PBD/3QD+GKK644FvXrixACqxJI93lpE/RbWFjA7OysAygHBwfR6XQcgO3zsuVvfksQnqAoAUzNky09cjWgLb1yK5UKjhw54ryUtae29LSXXr8a6Jfg/pEjR5z3NAOs0pBAsJje+NJTmDeqBEjlh0C2DF6pKWgIyBNEl3pj3uw3zZvOvGZnZwuGACD31teUKwS52T7tDT4wMOACs8qgs0eOHHFe3rJvpIf57OysSyvzoz6Yh+xf9h3pbGSQVR2UluOD45UGBOn9zg/T0mDC/9nXvgey9gpn/ZmPTitBdN13eqz7dmzIIK6ap13XRYLo1KXvnnuyAek333wzvvSlL2FcB9RDH0RfS+nP3asU+ZJMr20tenXN6wBgzx67Otq2Df++K8APbWtbcFXSh2zZAhiDzaaDRsPyS09PW8y90ciBQCAHPhnoKEjbeVlqgcmfxHy5iJAL+TF6zkqeSa6YiUY2m6jUaqjXw0ITuYixxXUvbFm+j1WF9XBrK4Piiz15znWktsVFh0YcaAZoNoEoCjEwEGJ4uAoTZ6As694DHC7oS6+OBHgRRUAw9UC+s0BsjTXbLTA7OQk0dpwPwP42Bjh161ab79atzlAy08q3HhsDIApgsgVpmgLTU3kMWu6WZRexyrVa7uzOamvOVb1tWfYb0wStGdsenvStQKPIdQHrxLwPH7a/JyfJxW7r2mwCGy4/FQE6zmBAavh9/8f+jiIbnM/G5rTBWycnrYo3bQJOOqmCer2CSpzm4yFNrXLIsa76MZoYszqczkFzGpCkl3kUWZvG0BDw6KPFsShVwc/oaA7w0KYjbTtJYuOKpilw0UVjqLB+8r4sW+nL449zAEstvebu1S7Eq9VqYSHuk3q9joGBgS7PtYceeqjLG43SaDS86Y0xzgutLE1ZngAwMjKCpz71qbjrrrt61vlYSn/uXoVk95ikejAGSwOw4lwUhc6IJh839DCXXur6VpAYuAZJK6ad72jqNTcZGSyxCP4ZE9pPpJqTFoFdHy0Fp3eK9lKWQKvPcGAMUIkUOC2VXKxol16lviTAy29Jv211aedIE2eArBYf0CsbIXQqg5wWhPqOrVE1jFHcoScUoHnmeUoPLepZOv5y7Eh9SqOLNC4XxpQ0VPikx/NYjgMdn7QXJ7jkE7cSFoweUnw75Nx4j0oAdPFbv6tKeiHJROKLRT40lDuX6PtRF+u79alaze5X0EQ27viuZp8lovIr5A0/1tKfu9dm7l4RiJ6mKaIowq5du/Dc5z4Xz33uc49VvfpSIr5AkxpIl7QY69blgUYJsnc6HQxnT5zBwcEumgnpdS6BXp4Hcs9aDY5qj2X5TY9tCUz7qGXYNul5L4FnCXYDKICukqpFArNzc3OYn58vANGavqNSqRR0q8FpCepLyhbJ+w7AgbbSm53e98PDww7k1t78zEt6vbN9ZfQ0NAxIAwPLl7odGBgo7AgAci96md/s7GzB4CF3O2jDCftVGwyCICh43vsCa8qxKg0fDGZK8Jp9LT3AZf9pShmOQyl6V4Oug9Q5+03TtmhPepZBoF3eF/pD8dHuPJk90CmHDx9GpVLxnuuD6Gsj/bn7MYpejOk3dd9Kmm/mU1NArYYHpgLs2QP80HbjjqHRcMEJDYBK8yEESYLzto5jphVY79tmE2GthoWFAIODOWgeOn4JtcJlfUXVNQdqIZZZPcpRREFTUkBfM8/fOB5zixp61XUtSjxAOr/527tFXoOMrDQ5xePYrpZEoTLWqFz8xHGAMXqn60WbXilp9FlkRgAmQCdHZgtE4vbc/LwF8/fts1k4EH1i3KLL9TraURVJK1/EDgwUY2qyGq1W7tnNYSc90ySQLhfCPtsOq0nHbXazExoFuOL1rDA7CJzHuQSWWWaS2CympooL56kpYGAgwKOP2mLuugt45BGrm337bLpGI3f8iyJ7nFg5u8ItwKl33ekcD1GUUTgEbtiwyyiHDlngn/WMIlvPVstuEigLG0AAjDr1GYT27bP5bN0KVHii1/OhF5B3nEivuXu1C/HlSBiGuPDCC/HlL38ZL3/5y93xL3/5y3jpS1/qvebiiy/GF77whcKxm2++GTt27HD0ghdffDG+/OUv45prrimkueSSS0rrMj8/j+9+97u47LLLll3/oyn9ufuxizMayqCYFN+4zO7dAB0YE2B42M55enoHckMnkAOkZeB5FDGIZavceKveM/iskdTUvEQ6gmrguYzWQjdZnre71YrnykDIDoQ3ei/RbXS/Q2/SMslV0n2diUSAUFlRCYKbIu+2nGNkAdT3WE04FYh2ttPABYfV9n1fO6hPDZzL36Rk83lBF2iJpIGiB5gud7rp9y9+5GuPnMsksO4bQ7pYvk9wjI+M5IA2z3WQBTD1dXCmQJYrXz3le6tI2rVJI47z8c+yZfb6tzYCSK//wn3q6t5xGZjMsHa8S3/uXpu5e0WBRY0xOO200wogW1/WVrTnaplocFYCeBK4koBiGUClvWR9Xuu6bN9vH4d7L9HlSSC7LAClr90a1JTt1cC/DwTtpZel+kGm0570mo7EFxzV99G6LdM3yy4TXzu1zmTapcYJRXLa6zpLI01ZPXz6W6otZSKv8dHJSFlq/K/0WJmBaSV1fjLIs571LHzsYx9z/9NzH+gHFl0r6c/dx0jKVqh6RZWmxbWkWuEwIKJc5VhPl5KFdlnZJaLfgbsuXcFLsjHdnmyFPMQ3FyulfJy9CllORVaaZjnXCOXIxdNyitELVaesKOrqxuXeir41cy97Tq/6edPoFbIav491wcjFsQThy9IxrQSMvLJEP+p+0GCQBArkNfpaWZwxvR3FvW17Iqy2e0ivubtrEC7nswK59tpr8Rd/8Rf4y7/8S3z3u9/FNddcg3vvvRdXX301AOC6667Dz/zMz7j0V199Nf7zP/8T1157Lb773e/iL//yL/GRj3wEb3vb21yaN7/5zbj55pvx+7//+9izZw9+//d/H1/5ylfwlre8xaV529vehltvvRX33HMP/vVf/xWveMUrMDMzg9e+9rWr0OBjl/7c/TiIZ6zKOc83/5U9G+iFbIwH5H2Mzwfpvb1c6TUleud1Ib7npstkhfd3Wd1Wk5UE9r2WDo+UeWB7u0Tls5S+l2qHPl82dowBugKEHiVdUzTYvtLzvT3ZlfgGnzrmtbeo83IOPwq30ZL98ESU/ty9NnP3iu/Ed77znbjuuuvwiU98AmNjY8eiTn3pIdojluLzRqdHNr2qNe/0kSPFYKH8n963ukyCWARJ5TEdeFLSZ4Rh6PJft24dhoeHC7Q00guYddHBNCk+ugxyaNOLWXNPs12ks6EXfaqevJLfXNK5ENRmftJDX3quy48PIGcZ1I3sM0mbosvhb8m5LoF23Q9SB5IeRXKNSx31MnToespx56Nx0UFhfV7jHIf0gmddpB5YtgwoqoN1yrEp6yW98OUYkm2R+pbXMJ0eP/I8x47P4CD7T+80WAoElnV5Mskf/uEf4vLLL8fOnTvRbrfx9re/Hd/85jcB9D3R11L6c/cqxfcS6UNNl7iu0bD0LB0ECDIPdKZbXMyCE2Zp2wgtTUkjdEuo+Xm7eOvUQgRGeEn7OFOz/0PTQa1m00VR7tUjPXEL7WGbDh2Cu0gEukwFLUgh9maKoquuyDNNrfevVNHwcO5NHcdZsMjpZtGdul63bk1xbI/TzahWc1w0I9njgN5PBS8iuomVup4hP0aPdOl5nx2vxnGuNHmdcJWamKgWnLkZY9K5SWVlSiCWgAXrG0W2n8h3zuyNydtGXu4TTrB9G2aL7CiyY4N9IZvF5nIbdGG4sH4Zv7y7CHAu4sxrYCCvuzF2AcuhceaZeZuHhiyPf71u/5+ft9+ML1qr2d+SzoXXpqk9dtJJ9vrC+KzX84ZJNzoOwjjGbBIUup27JjjehE3DUesz5qscFtS7jBGaprmq5L3DtCMjon9XsvhkG45D6TV3rzg42QoRile96lV45JFH8J73vAf79+/Htm3b8MUvfhGnnXYaAGD//v249957XfrTTz8dX/ziF3HNNdfgT/7kT7B582a8//3vLwTevOSSS/DJT34S73znO/Gud70LZ555Jj71qU/hGc94hkszOTmJ//Jf/gump6exYcMGXHTRRbjjjjtcuY+H9Ofu1Yn2yHVc3lLK/jdFj16guNOGzyuCiNLTmOXxWsZPMHEAGDt/l1LDlQjz53MeyG8pPafw98JC8ZmtX1WWCz5KI2xPoJ2FuJcCFBUivsPIwJigUC9dH/0YdYYIdIPLBYN3qcdz7sUudwzIwtyGLI+iyANOnUoGPN1M/Vu2QfefCzKr0jJvaxzIvO17PHOpky6ecpGnDAlTZlD2cdPrfKRoChpNtxKgUzwpFEG6Inr367J8ux25M89HmaRpWHz11fnJdwOdXu8E4LtaWeDi40X6c/fazN0rfnN7//vfj71792Lz5s047bTTMDIyUjj/7//+70etcn0pivZYlseBIthHoE8DuTyWJAnI7016ksXFRRhjXFBITStCIZe6pteQtCYEe8mPDcDRsYRh6AXJNUiqPbYJwrNMApntdhvtdhvz8/OOC12CnGyDbKcEdAELnJLuROYtKVx0H7AtYRgWjAIE3tlGGUCVFDtsi6RKGRoagqQGkdd3Oh1HRyMDXfJcGWiepqnTC3nhpbFBgtyyTAnQS3oY2S/SCKKBdIoM4CmNF6SikaC/HGuSsofXMT/Zb3qMsP9IXeTbAcD85X0ky5BULxrk5TGOD0njo8etLx+d35OZxoVy3nnn4Zvf/CY+9KEPYWBgAIcPH8ZLXvISvPe97+2D6Gso/bl7lSJXBfJ/onQynX7rF/+HU/fiKU85FWkKhFu3FvapOozWAEhTHDwI3HefXbBXs5UUi7JMFoFYaFneyijqDlKJZhMBgDFjgJpBp1Hxx9uUK56DB20hw8M5x0UcoxNVsHAoX9hJnm4AmEUFUb1iebbTFO00wOJizsgC2MUaebNrNWAsbud0LUxEnZHLUS+KCfgag1FYMLSSzhQ50OVqSrshS9H9JIOZkgNF7hkmhwo7IuvDiy6yPKrE3gkgowVH2SPB7MICM6Pn4Xbner3qAHTaMnRgukrUcYUFaYrQGNRq1QKXqFSBL2CZMcgtGfU6ZtIK0hSIatVcbUleZ6qJ093gYL5wnpjIyxoYANavB8KpewFjMD6+2dGlcAxQWBeOJRoPRkayfo06wLRFrw8kFTt+GlUYk/EKS+L3Ws3Rt5D+4NAhy3nOBbdcfNdqtq4E8Kencw71ZtPWYdOm/DZg+6nXOC7S6GzYYKsyPAxgUS2tfEC5/J9j6jjzNu41dy/bSEBZhaHgTW96E970pjd5z330ox/tOvbsZz97yXnsFa94BV7xileUnv/kJz+5ojquhfTn7tWLBjXDsnErAGBH+6Gm95GRbluq7zf/J33W3Jx97vC5HBJA9/KhdVdLJpOc1Bq412CufG3RQLWk7PAB/zJf/btnZZlR2cWCMi4wBqExCKMemcsKJflvt8rUFdPGVZEH6XkoUZQZ8JPUTUJBMmuJZnoog0aRgQGrv0JslxKRc74XqBU6kzz+3YB4sNSQAVCk5pHc7KQA8hlD5DjyHZeyVB0KALo6KAO7Ji1bV8ZX4biU414PJd/ruAbR5TXSyOQLYisNY7zO0bh4Gura5CvkOJH+3L02smLNvOxlLzsG1ejLUuKjAQG6PYcJShIcZxrN200QfXFx0YGk0oNXApASxAbgQFzN063Ba3JaR1FUCDYpA2YyDwlK+tpMkWAuweL5+XkkSVLqjX7kyBHHQc5rNBh75MgRB1J3Oh3HFS9BcALd5HUntzn5ziWILkFlCQZL7nYN6NK4IANb8lvyh0twXfOmS/Cc+pifn8fCwgKSJHEc8dIjnO0HUPAml3WXeqLnuwS6qSNZJ00Bw/rT0DE/P1/gVi/zZvfx60uhnnS5rJ/2QJdpfSC6HOva21yPc2kAkGOWevLt0NAir3mySqPRwG/91m+5/2dmZvog+hpLf+5epXS57yL/TRBPrqzlC6r8vXcvNm2LMJNsxOR0gPHxKsIMqHUBqmoA0hSPPgrcf7/16K1mc0YRRM8BQQKuIyPAhg2Cp5SoruAFD4xBRSKyuq6AdQd65BHgxBOd63AnrqLVyhceerGSphaENAao16sI0S7gm8TH6a07MpJ5VU9O5aTUtCQQ1ZyYcJ5fgAigagxm09ACqciA1L17bQWojAwY9i4WdH+xj7lYkug1Ud5azZJdR5EL6BoSdG82EUxOIqzXUZs4w9a1ecAuzK1CCiC69ASzHvPCqzpJENYNGpmxQ9B9I4qE0aEpjAJZwkojQlQLC0NSgsayi51KMlfsWVQcnzuFqiNwLwFkXk9v8bH0IduPTPRg4rjWgyhCNYqAVjMfDNpAkX1vjmOgxnsr+2SVYdBR3geNRohaLUStBlTiNmbT0GWdpnasHj5sq3HCCbkHOQOyso0TExkgn+3+kBzycuODBEnYzCSxIL0xeb5RBCBdGhxz0guJOw6kbO5ei4V4X6z05+7Vic92ShDV62GbgXvaQZxDd3S0eFzHRdD5SoO1nDtNHCKI1IUllfdxgMs6uTwVaBnyfJYPgWoJ0MopTwZfLhMvCFyGvPoMh7JDyq7T4quQ711MWwI4r3iiiPJZHpqMn54THWAnDAnCM78oQoo8qKQEebWxgmkKALKb49PuNvH/LKMgA5rlZaQ4842zMlWQJ1wavAvjRFpWZN00SbrnZgmlIvR7ZBQBqahI9gJC8DxpoSvOCt8ReaxsetHvIMy+lye6rqJ+LlRM9m5po9s7I5oxAQI96XuMNB0E3bQ7x4H05+5jLyvWzG/+5m8ei3r0ZZmiwXQe0yIBPwmYEryVQUHpgU4A00fxwfKkF7rPA157LBNolmA6ryOgLEFICS7LMjTIKMuTALIGiCU1Co0F9I7WdfV575NyhKAsQXQd4FUCwPzN87JtEpCVIKs0VlAH0tggPaslhYvsL70jQOuFoLoGdHVfSwC6DOD1eXXLMSn7iW337VgoC7ZJYNxHBcOgo9rIIwFx9oM0CPCcNED56FzKxEdNsxxQV99PZdf47uMnqrhtYyXSktHe+rIm0p+7H4P4wGbfAkO/bMq0zaYFGic24uGHM0/sLBmds5gXHbOTBO4tjQspvSCQtB9d5UrXZK72ZHRJuT+dkqYWRM4oUxBFpbE3ZdMJPMaxBQkKazNVPxcgVQYOZfDQbIHSRoiDD+fgQxSFiON86+/wMBAiyYNjTk3lyiDXiG9VJdvp6yeNJjCPDEA/eNDWaXOjZs9PT9uokmmKgN7zXIiPjxc4Qagz7yJW0MNU6hGMCdxa1i0a2VbZAcJaEcQGMtRRF8WNEMcfawwOPVwM6Mky+ZF9rtfKtRqAXZPWkBFFuUfW/LxF8ZtNq4OpqTzaJ6OQcozR4MFBJFfK2YfxRGU9qbpGI8ShQ8WhLtVKb0tXX+RjsmLawPQ04ngzADhqJRoPhoZgA/wmCRBHhcWy1EUXwKRvECm9zj3O0p+7jz/pz92rFw2Y+YB1isTI5DH5W04VUZTPyfo6OV/zeIE2Q04Gvgp76sbT+lWkCxj1NTRLHGS/Q2PpVGR+vo0wvQDNJZ9xvdrFjLXS9LuILz+f3srKkXpOU0AbJZIEiGO008CC6pyH9Va7kqYZk4HxWRnOeKGNI3pi8onuWNEcvpJIm4BWj28+0uddXaWXg3z/kMc0gk9EXmaquVtIvyePZ7phdnNz1sDNNsgi1HAFUHTyHhzMX+2U7cHLUsJzATpu0qcBwJggd2Qo9LnHcKXf+wWAfrxIf+5ee+mbF56AslxvTF86H0ezBmEJ4ko6Cg2kapoYSS1SBgZq8F1yjWtAVNdVg/eajqVMdF208cFHi1OmR03H4Tu+nL7RBgipXx+w3Ut8fbiccsvaCHQH4NTGDIqkuJHAvg90L6tbWX00FYoUaYjpxdnua7MG0GU/aJE61caopfpH62s5APmTyct6+/btbhzonSRS+p7ofXlCSC+gvCydTi8AXce9mJ1zIGn2f1kRegsuvYzT1IJ9XZ5PzMy32FWeNIFcCLGgbMEgm7AS7E/joQUqEZ9OPat1bpmGusQ5DukCfdtqyxb0cjFe1neiTmma16VLZzpvIdL7b8m6CZFtNwaF7ewuQ4UoDwyEXVXqCpCqFoCFMkTZy5E0VRQJ3DMtgQvtDSgReq589WJ8CaExhWt2DQDJrAYGckCc29ldddyiuLsMeStosTrN+1V7x/WU4xRAB5Y/dy+3nwrp+9KX41h63ZbLGe5lQPeKhr4HSF2qbl2ynMQZoCyLGxjwvyZQJL96aTm90P7lSBlArt8XCsC46Z7Ll7Ca9KzSCuahoyqirpb7POhqmn5d8VVRHuvi+V5qkPt+y8zkOaknjeKr844iKS2+z+ljWny4vW9Y6XRS7DuKv02WtqX7XC87zfEq/bl77WXFmlm/fr0XEFq3bh2iKMKWLVvwsz/7s3jd6153VCrYFysasNVUJAQby7zSSduiAXJ6gTOgpvSKplc2ucylEEAdHh4GPcrTNHW0KuvWWf5vKdLLWILmR44cwWD29JN0Jp1Ox1GTyDx4nrQ1bJPkLpcUNBqYJh3L0NBQwQNaepazvRLMZZmyDvRIZ3tZHwnsSsOAEQ8jer+zH6RxQHqk+4BkSSviC6aq9aUNHbJNTCfHj/yWbZXHpEGD10pPbd9Y9PWV7BtJlcLjkmpFUrcwDx7TxgTNzy77Q49pSRXDD732SYMj6yGNTb4dIexPaVyQ+vaByU8mueeee9zvO++8E29729vwK7/yK7j44osBAP/4j/+Ia665pg+ir6H05+5VCkFASXwp0WH5P9PqN31jgC1b0NlyNkwCbNmS4elRDR0EOPnkbAGQAIhjRIng1c6Ad/JFHzpk05KiolYTXjbTmaeJ3GfMNsg6xzE6tTGLbbbs4Yrk/iZPR+a5EtZqqNUqXV7AALq8paPIepnXaqFTCYun43scA2gJNyI2UAQxNaZ7+zzLdUFWG1W72KzVcg/yoaE8r7LFgs+1XjaC53l9HDvAmcB2mmaULuwEorkyP2PQTovB7ZhtmDk9FfpIeIKFUYTRUcV/KtvDzOi9nY279evDgrEiilD0issWtFIFSdIdrIsfCTpLNQG55/fmRqMIlEti8ozWxdWhXs+59umJrndDyM7O8hwassk4Bg8dyseCcOIv6GtkxNKsnHSS/a7VgE0b7Dx8YDCwnqHiAv5kIFJ+2mkAE1VcuiC1NEJRRnO0sGDZj0ZHs3Mc+Lotvt/yJjkOwPXlzt3HOjhZX3Lpz92PXTTOV3Z7LmUvD9BBR4CbMkC0zybLZ6h8Jhc8xnUhYu6Qz+lly3ITi3JZd82hLZPKZ3/XLqpeCG/ZOV1f3/OxLK0P7JXHdF7if2n8dA0yJr+cyuC7iHgX8D3WgdygLr2SA813r/u5V3uzuTI0Bohyr2hCKmXq0fOznsuNAZCiu3/40e8vvhcXeZ0uDCjwvxE4T1pdrzcFxhja3KUQFPfh8yMjvWMDaFXa4zZ2kEzTFaNAvS9a8N3+z7aE4vzx5IUO9Ofux0NWDKL/xm/8Bm644QZceeWVePrTn44jR47gG9/4Bm666Sb84i/+Iu655x78wi/8AtI0xRvf+MZjUecfWJF0GNpTt5enq/SgJfBMnm0CgASACchKcJiBMsn1zWODg4MIw9BxiBOIn5ubw5EjR1yemlKF+fgCN0rAW/O4S2905iePywCeMm99PSlmRkZGnA6k/jS1CmDBc9K7yDoSfD9y5IgLlEnKF5mXDggr+097NkuAWlK+aEMKg3NK6hYfiE4amzC0kzHTy7xk2fpbU6MQgKbOWPbi4mKX4US3iUYaAAUjBscL28QgrxQGux0aGirQ5XCcyvuC/S3LpL7ZDo5BCu8LAK4es7OzaLfbzjAkdSp/++49Y4wbMzrmgDZ2rHQnwxNBZDTsn/iJn8D73/9+XHXVVe7YxMREH0RfY+nP3asQCVJS9AJCr5zJ7S1B3DhGe8t52HkHcNFFQLDv+0CjgQNJBXEMbBo8UECaY2ODGg4NoQCit1qWCSNNLZdzmM5aXvHp6bxu5Kzgb9aRoHpG8jw5WbQNVGpxDmzyeffww45mJYhjxPGY23YL5BTXsqgQlqYlMAZVY1CdiNBoBEUAwXHVIAfuJcIeRQjSNipRvmrtmNDhslzvNJtAFFVQIY86V2lsB/NnZdlHXMlxe6vop0I+bFQcFxZ5AwNZEhOiUq/nilRgNaLILSAlp2kUAdUMRG/DUt84I4ZYbVYy8L6wM1yCruyAgQEX/TIEMBbZ9nRM6ABfeX0aha75VMHoaJGSnqJBHC5iFxftWFxYAGpP3YjKFpNnSJQbACYni6Sl4+PA+Dg6UQUPZ3Q9aavLZmHHkuk4slQaVNj8Bx+0/8dxPvylRJEN9jk6au+ViQmgGrWBvfsAYzA2MWH57ZsESfJ2im533Uq2IWMypUxPIzAGrZYNyDo6ClQw271bgGNOIjDyfpRpjgMQfblzd6mBqkxWkrYvBenP3asTH1aY79YKutIudfsRPCZgKvOVATp99BOsB4CikVaeMMbF3GBQUxlssQzcdvn6GuADnD1J+JHPYddmmbeP09vTDgmiystNVEzqYp1osm95TB8vK1Om1R9xnj87CBBoA272TG6bCpIWEMcVBMms0wUpcHx5yTFkg7+LmC7amC3bQpFAblbnMJs3a7Wcr5/vE2UyPFxoSj7uixUsJpK/l7oRNKot+jtJ8mChkvNc112e01kDRYN+2bfPxiKPLSx064kG8sLQiMOMCi/Ph+9p9GB3r6tR2OW5HmSs6I+39OfutZcVa+a2227D9ddfj6uvvrpw/E//9E9x88034zOf+QzOP/98vP/97+9P5kdZNAjn807WgJ4EXOldDqDgmQ7A8WUT/JMe4wTRh4eHMTQ0BAbPlACtMcaBjxKklUJQWHOFS490egPPz887QJUewfTuZV6slwyCKj3R6Y28bt26Qn2kFz1BXZ/nPPVHcFaC6LoeBNHlrgDZZglKS0CVXOWSG53gsAZfJeAsvaXpjV7mAc58mLdun+4f/mZ9qcMwDF0AVOnhTdCbutJe15qqR3uPA3B9zkCxh0mYBgtIG2NcEFcGYGU9CKJzzLC9BLhl/8kxOKjeSLUxgCD63Nwc2u12of5yx4I2wrBdAwMDXTtAfOn4rXdMPFnkW9/6Fk4//XTvuT6IvnbSn7tXKRLs1fza0tuoZMFGVHD3bmDnTuCSizrA7t1AFGG6VbEv6ozqOD4ORBEiWO/Z4WG4FTgxYWKUxmT/TE4Ce/bk0TqJhhIFZD25KohjzKYh9u+3Xrx0BkYjKgLwrRZw332WvDJzgw9rNQwPB5ibK6qH7+QDAyiC05lUtIeT/C09maTxQYHeQa2GNA0LXcLLCiC6aGeXSPA8A0JdxYeHcw9pCXJm9eEhekBRB9GGKoJ6vdj/WfvaadAVQMtHlTo3B1RGFXKd1TcwBiaq2mw1UCC3JrAjeG0cI+D2Bck1Li4lxzhtDrUaUEkOFMawqY25oF9s2uhonm2zCaxfDzQaY6g2MkS72cxJXMmlesopLrLn96cqLkSAvF3Y9fW63Wmxfn3gPL/YLazH9HQObI+M5EFA5SKb98z4OFDFDDA5bfnrs3EeykyRL7ilF3qQtpEkoVOh40efngZqNTSb1kO9EnVs/kTepcJ8v/Wzgro6jqTX3N1fiK+d9OfuVYgabw5IdK6pRd5jCUxq+oiuhADImyw3fS0s5HEo5PWOhzoVeXjAYJ/nuZzSyugqgO6YF13S4/6TwUhDk9VPguW9LAwSgY+ivA0KMKVw6U8v4zjOQElphC7jD9fGB9kuCT6X1Tm7Vl7OAJ5Of9mzWxqYq1ERME0zQ4d8dPuKlFUtUJ7p537ZRQJMD6IIoTEIY9MF2GvpMhj1StyDh6zM07rQNdmH70PcGaa7T4aakce10UbWP3t1LszHAKxRIxV3sMsg14scd7IsORZZZ3t5UOgSxjNAlL8zsa6hkcFH/Wp9vKU/d6+NrHgvwpe+9CVcccUVXcef97zn4Utf+hIA4KqrrsL3v//9x167vnRJGXi+nGt8HxnwUYK6MhAl/9fgML3KpVc6PX19NBq8jiCm/AwODkLSqbDekrJE10lTmGjqEunNTfCa6SSYy3IlwCyDVJbpyvchiCzLYn4aTJZe0tS9bJMO1OrzXpZlltG5yPZqT3idr6yz/F/Tp7DP6NEt9SWDh0oPcZap+0WC0HIMSgOBrgvHi/xoj3n50fqQgWB1eurWN+bYR2yrBtB1eb3qovX/ZAWIzz33XFx//fVIBHo0Pz8PYOkYDb5PX1Yn/bl7lSLf+n0LO73g8Z03xsVURJo6Tgq3YCaamaU1xnqhG5MvZIK07YpwOADz4ufwYT//tFyVZIAwk87N2e92GuQIJK+RXBlZu4wpLuZlcYODSl8SqdWRIXvVkXpn2aIQDUgnSbYQlistX3564SD3Fs/PW0XI9otPxxNoanFRxB+VHv+iLC7adH31mnl+HsV2q09hDaMXNPPz+X5oFqIjbMp8PV0kA9YWXNSzZ7b0L5Bq5Phh8o4Ji2AGQf7Dh/N6xDEefjiPL0rMXX5arXzoyXK14zZB/EcfLTaZQhvIyAjySjabtk6+zlBt5D3Wtd1cKDAlgMD2loEVUspAjeMMRO81d+tnyrI+fVmV9OfuxybLHXq+uArLyZffmn7C7abRqKLn/aGjAEB+5OOb0ssLeVVS9o4jn2lLvQOZIrgrp1Y5983Pd09ZXYpcqn6ai0z/1t8lz3jvqawthelBA/TLVKE8Xmifr52+i/SLQ1Yh6xFfHGf6UdtFueMT0W/y007tR74KyFcCTutzc/n8z36VVeW7Jftdv86VDSdZPcYzYZsKOxfUHF6mVqB7uue7mfaW10KdyOu8xoX+3P0DKSvWzNjYGL7whS/YLQFCvvCFL2BsbAwAcPjwYYz6yCz78phFgkmLi4vQnsWUMuBO0qQwXafTcV61muPaB0rLvCTQq2k0NGgr00mvZ17D+gC59zS9jMsMBRJk1lQ3Mj8fn3fqHrzG5aXb7ytP9oPuEwn881t63Wu9aQOABJMl+Cy99GX7qCdSh2jQn8dl3hrwlm2X4qOiKaMNkmONFDSyLG1Y0fXUADv7hL99QL02Lvh46KU++VvuzJB9Jg0Si2JC9N1Lsg5leuFYKsvDJ09GkPjDH/4wXvziF+OUU07B0572NACWrw3oe6KvpfTn7lXKUgs7+b/vO3OvnZgAnvKU7PiJJwL1Opr77EKjqvLQRboglrDetWmaAYr8MTJi3YNHRrpddzQwnqaIotCxthQ85/jCTA/dej2nCqGbcFpcuHVRj/OkBJQ9oIFXzz7QWywCJF0pm95V96Ve+lk/yWFOT3T2gWdFxaQaUE4SWI9muq2laQFEp8HDt2uaeQwNoQuAl0ouVEWC7UBOuOvTpa/tniIKwcfkHnBRtgczQRQV1dZqAVW6tNfrKGxZEEDE4GBY0An5TyWrz9BQdj6xmTNgKr3LWdWhoXyL9gkn2Hzokc42DQ8DaGYNoNu6VELWOLYFsHWgJ1+BczUt3gC8H7ueBVJxSy1ClwO8Pw7Sa+5e8eK6vxBftfTn7tWJF/d093z+L78lD/NSGfumfi321s/n7kIdZF165MM2yCx8HunyHcFbFtNkzzQJDEqeZ28lfAijrFh2LjAGxuTrMC59df2N6e1VX1Z/563uA6N9QHcJaE1ee9YNAEIxIDoIHG20e+aXNN1XTYpMUwhEvtTFut5LDEg9RxujxkOJXnx0OzrPMpH9J/nJZXG+adD3miynYo4Zvtt1BaMvQ7vTFDJQ7sJCkVZpmaosFe+zRMpxxhven7vXRlasmXe96134hV/4BXz1q1/F05/+dKxbtw5f//rX8cUvfhEf/vCHAQBf/vKX8exnP/uoV/YHXQiWAkCapjDGOCBdez5rr2ftgUx6CgYBld7Y2luXHN9hGLp0BBHJA05ubgDOU5h0Gz4qFIKY2nNdApIsa2hoyHkBS8oQ/tY85VJkIEoNFJOShmlIqyKDmUpQnfqTFB3SIMH6JUlS4GGXNDM+b3KCufxm++ayBSgBXhlElOmHhoYcnYwEpRcWFjAwMADSo9D7X3p1ky6HIscKPczp5c3xIEFk2RYfnY5vPGqPcxnAk/0zlEUyk3zsksNcBmMlpY/saw1Uk6tfGiRIEyQNO+12G5peR/Loy35jv0pDhGyzNljQUMVjErj38aQ/meTpT3867rnnHnziE5/Anj17cOTIEbzkJS/Bm9/8ZgB9YHytpD93r0KIEvM3F3C+VYv8n24vxlguiTTFGZP/hDMuaACtGvD85+Obe0Ls2mWTbOLiMHP9MfEYBgeL6wVjAkRRBsQDCJoHbPpaDTj33GJA0EYjXyClGchLabUQRim2bas6R3E3Lbion7D5ZjQpBzBmqTOaRTyeTSYQbAzQiauWZ7TMG1oAkE53ApXtGMv9aeIw346c6SY0KcZqMchLKgNtFdroAwUkbUymB9dWHwAq6k098XJ6RzGb6ekAjUYVlXQ6TxRFaDYtrfwpp1hV0oNreBhON9UIqMbGcnNTNxkKPNMKwO3ShbpzrLCfNIEo0/J/tfrTTD9U19wcEK0fA+J8mNPLjKwsBKnJn04jimPIMSHGJ85GKN3YOLayuhEIF8wzMMbmNzJi6WGcB2fGX7R+/RiGh4ELL7R1Ia2+bCL/p+2HC/0qZvIOPOWU4t7wbOzJ28fpJ+sjlhFFAJqt/L6OY2zdinwg8FsDPfr5IP+X7nHH2UK859zdD062ZtKfu1ch4r7N/gWQ81TL2zNAByYOutjatHQQAFGl1H7uKCBQvNWNyYNsA/ncpmk5+K0BZgZS1PXTZcn2uTwT/fj3eNFGOT1J0Ast9B0n10x2PjAGUZRTXczNdd/6si2FR4jPkKwVrWnaytBrnY9UVppmvNYVHDpk/Q/CxD6/27ENuD48LPjsVZwLIylg0hSG7yye147id+A4zr2AsM9Q0audJWXlbHqBSJOPe/nuRE9sLRLQlsFz9RjUNEJlwHya5jZ1TbMiy6TwnSCKhFe9pPiTkik/QMeNPX2aAeHltMX2+aZon1+CruPxLP25e21kxcPhjW98I8477zx84AMfwP/+3/8bR44cwdatW3HrrbfikksuAQC89a1vPeoV7UsOohN4JIVFGIYFIEpTh8gAi5ITXQpBbwLlR44ccSAqgVqeI0AoAez5+XkHJg4ODhZoSQg0k/OagCLpQGgMkIA26yCpTlgGvwlWz8/Po91uu+slr7isr/7mb4LpBE/n5uaQJEkB2CSYKr9l4FNpHJidnXX1l8YC6UHOPmE9CbzKdh4+fLgQPFQaSghoD2euUxKcplEjSRKQ357jhfrgWJAguuT5Jge5vMa3C4G/eb0ei1LP1Bt1Rx1LqiAC+BLEl0YWSbMiee8lVzv7kyINCnNzc+h0Opidne3aPcCdAwTT5c4KyU9PPUujjA7US33IPpM7HeTuibIYB08mqVQq+Pmf/3n3/8zMDN785jf3PdHXUPpz9yqE7rAE0BW3dAGgVYs0B6Rt2WI5K2680X5/9KP44s6N2LMH2LXLAoqXbM2uzVY/Ya0GenTJBUkUAZsWHyhQbaBet2VkXOdJAiRTNn1mj8ToaAVRvYKgNeOIqMM0RRhFiCbOxsGDWTlZ8M65OWB+PkSrVcWhQ5ZGen4e2LEjC2iaBXwci2NEE8UFpA0WGaBer1oPN5K4UzweURKlLOLuAcZqca6bLGhrNQNk23HFqTpBYI/LvGVZWR9xm3LUGENIZFvv8+X/2YoxSWy7AMtVzzVIFNku3bvXJj+baHccoxNVsP+7NgDmKacAwdQDqEQRKuuzOpJzdnq6WM84xkzGwU3cl6B1GyHC2BQR5JNOKhomNJ0N2y50HySzqMYRoihwXv3kEN23r9D0ri6jikPTQaNhF6xTUzkNC2n6t207H3EMhM2HuvZv12oWVFpYKILym2uzNqOpbnAhjCKESFF9dApotbA5ioAoq1wrBWo1dLaeYds3nZWZ7V52lavV7ADW4EQUIYocLo6xWrZob9l7zGQqDZKsfvU6ZswYIgCbTVYWgRY5diSKpxEWjk/ex8fp6rxs7i6Mr+XIcdq+J4L05+5VSJoiSNsIxTOfInFV0kMEUCzpWQIJCvowPAmg8395zOdxbW+FbrCvO02Xra+sqV4wnjzUOq3Oj8cscCk8mH3GZV9G6juMIsgAnL56O3BUl9Nt+VjZs0Mqgc9ZGTxUzu+1Ch59lDuVmvb9IwP+C4Zc1VGBMZY7nvQqUQ6s62pQ3NgxAaIoBIxyEvB14DKby08ZMC6nGV0f6UGuYwFItdEjvABoy2++WyC/j/T9VPUZlnsZCtIUaKG7T3soIYDdWWHi4nup9GuRbZLV8b2a+u4XLWXc8Y+39OfuYy+r0swzn/lMPPOZzzzadenLMoTgofRI1hQfmjpCewAzH/m/BAwJ6hHEZEBHApva45nfMo/BwcEu72ntRS1BSM1RrSkyJBB65MgRFwSUYGySJA7E1d7TMk+pI9aV4KsMjEoPfen1Lj2TCY5LChDqmnUhaOwDYTWHN9tL3S8sLODw4cNYWFhwxgemGRwcxPDwcMFIIL20JT2P7Bcf3zz1KL2jJfc5+50i9SDbw+vL6IWkSG9wjhGOCe48kAYitksakeQY1vzoURQ5UJu6oJEmSRJXtuY3l1Q8moddUtTIccBvHx2Oj07GtzPEZ5B4ssn3vvc93HLLLXjooYecAQzo07mstfTn7hWKXEn04NfsAtAliD4+DiQJ2p/9LKYAnNpq4bbbLFi5Z4/Fv7HNFK9JU3AJIosLkAUlJSAYx8D4uPUUn1Je5cidf+mBs2nU5EjnffcBw8MIGw0MD1ddtSU39b59NunevTa/LVuyjOmanSSoZPrpRBUkSc5PPTAAbNogvK58Uduk/jLQMWkV161xnAWXZOUIzEcRwkYDJqoITDlApWwOysAUcnBbFpwQw8MhqvXYzyWeVWJhwbYLsItr2lZC00GrFWDvXtsdZ9fyFVerZa+Zns4cee6fyilk5KptejrfUZB12HSm96mpIi6eJHYRXuG1xuTcJVKP2tNfeqOLhW9oDMLIoI0QBw/aw1NT9juOc5YbucCUC+mqSYHIYDozvkxNWQCdcVZHRoCzztqI2ni2cyIzEhGIX7/e5kcPcOzdlwd75Ydt4eDetYuWmuL92Ghk3oXGVkIFtwUA1Go4kFSwsABs2JC1I9NTaDqo1wNUTBvYN2nTZ7p0a06OkUYDk/vsrR3u2WOPNxp5J3EMyV0serzr58RxulAtm7v7C/G1lf7cvUIpzNVhF7Dt6Jr08149eyygnBu05+aKU5gEIaVvGh9P8pjGhPX/kk5Gg+gOvBQXSEoS+TiRx3yPQWYhpyGJXYfyoGc+9OpafidJRu0SFinXkGcbpG1/HlIhPgOknox8dZDKkPMhlZO1ifpJU7gfcwM2hMemDZ3cit2rvUonUnXytHz9yYeZ7b+Q87Mcg72A9DQFBGjP1yuOOW3s4bQl66dtA1rFekObG/O8kPMxFag/PikD0X3/6/Q6T3lMGyCMQRBlb9CpPRZFlWVNQVon8pHgS8fzxyOQ3p+7j72sSjN33303/uqv/grf//73ceONN2Ljxo246aabcMopp+Ap3Gvcl2MiEtBdCoDSvOMyD+kJq7mpfTQdOhimrIsPSJbXSe/dIAgKVCe+NshrKQRDmYcvkKX0dGY+PkMCUOTqJuAs6TbKuKult7GvL3xexvp6gvDMQ7Zbt0kGVWW7NX2P9CCnN7s2HugAl7o+kjNc6sinh6XGnPzW12g6GEmHo3nrCaRLnchrWX+dt6YxIv2O1LnmnKdIj3/dN3Lsy3ZJEF3StshrWSefnn3lPZnkz//8z/ELv/ALqNfraDQaXeO/D6KvnfTn7hXKUos36eoiRb7UZ6uQFoAmgFNhccKDB4sO5YVrPZJmiwHnoiyIwVvTReYMwC7Iu9YzcgV1+LDL2Kg1HANCsSiuJV1eGgCMoizYVU6zsrjYg6e1TIwpePR1KUA3KE0zby7h1VeyAJVb57XOoyjbZi0VqPLwdkuaYmEhdPqS7ZBVdv9wUZ/1W+F4llAHZ5OL8ELTFha6Pc5Ztk/nWi9iwR7GOVAkHcwKi2etg0IFw4JupRc9N29UBWJjomLVjRFef+S7KQP/Wy3gkUe6FcT+o5FFd3K2fUBS14dG6CW12/ILO06yPspB9Lw812WCcqa705chZc+Q40B6zd39hfjaSn/uXqF47kHOS4BnOPa4b32AqLYFl8UV1I/csvO9bo8CgM6LjClwe7NePiy5TCRIKLJdWnxIo6ob0rTAkU6va8mZvqzGl81vS1VWni8D28va1Kt+vg7N2grY+XspDFxn08Wbv5L5A/5As3q86mZ7XqV6qqlQhg80l8YW6RJPketiHYEXKP5fNrfI/ijTkUa3s//5nsjLtcjzZWmeSNKfu9dGVqyZW2+9FVdeeSWe+cxn4p/+6Z9w/fXXY+PGjfjmN7+Jv/iLv8CnP/3pY1HPvgghCEhP2jI+ZekxK8EqCUgCOUBYFkRSAuySjkKD4PyW4KQM9EmAUgK+ZSCtbpMGSyVX9tDQkPOC5ofe5QSTNUc1f/u89umF7as79S6BU00dI7nBfbQdAAogt/T+np+fx/z8fBdPuPZYLzMOMK3kbSfILgN0Sv3J6zT1jzY8yHGzHEOOrJf87fOiZ/0kB7r0bGffyd0Bkpe83W4X8mJZkjNfGh3YRt0/ZcFpfWPVZ2jpS1Guv/563HDDDfjVX/1Vd2xmZgYnnHBCH0RfQ+nP3asU36Kr1+JPLvJE2hhADQBaLWzbZk898oig+IwiSzVRqwFJgqpJMYsKpqet5/OGDQCmm108053ME5tArjHFWJPEayNSXxiT86dnROayGVFkPYSBnPOa659GA9ZTl/VQi9kwihBFYQGIrUhPMLmw8a3iUht0Uqo2TTNPrTguRozM8uWilZzsOj+CqUHaRhSFXeuH+Xk6tgeo1OtFj/QMxB0eDrucitMUMJGt6+hopt8MdG2nAebmcjUPD6NYb1kJzdUuhpHkBR0dFfVupv4IeOJ/gvHGCJ7bMgAhSbBhQwWDgzY4p+Q/l1u6AetdXnBjy8aP9ezPvcq7FuRx5AZogA7S1OO5laZFlEvry5g8sq6oOw4d6g46p906s2ubU/Z0o4Hy+1gt5sm1ihbcPedo6ZcyYqRp8V7RItt3nHGP9pq7+7yqayf9uXsVIsamvJ1LsVcN5mX3peYt18J5drmBMoXtsvRxLKtk0wbdXOUEB02Rg1x7ydMOqR9JnDNZd843Be/8Lgu/qJj+XwPWJc+GAoVLL8Tfh+zL+U1xvzuectnJepePnHOz3+6nem53ECCQO4s4JsrEgbU2L/aJtPGyWnq60Lzipe+VJYdkcG8el6qMIptGT5tlKudUJJvcNb6lLnU/lunJN0bK+kan8VWUZfIdk7/lDZ+JNDbJe1Cfl8NO/6/7bYW2jjWV/ty9NrICLVr5tV/7NVx//fW49tprC5HAn/Oc5+CP//iPj2rl+lIu5G4m4KiBcsDv7atBKALakhOd9BiaZ5u0G9qTV4Lq/J8BGhcWFhzvNr24JZWJpHHxAfQACrQqQO49TtqPgYEBRFHk8uH/AFw7tG60h70E3AnKS8oYgtpsC7296QEfhmEBHJZBOEmpInVIQHZubg4SPKa+6IVO44AEzvX/sj38TTodgsgAEIYh0jR1/SyNLLyOfSO5ymW5TOcbS7o+vnMsk/0nqWc0yK8Bdupdjj16f7fbbdc3DDaq+4E6kH1BgwW552UfUagPvavDZ/wpa79Mo3XyZAfiDx48iJ/4iZ94vKvxAy/9uXuVIsFYTazq4+7UIHF2TfjUp+LUu+4CpqbwqldZsLHZFGBeFOHf941hagq46tIU2LUL0aXPwt69FlvftPiApanYt8/muX07UK87Cg25fpEMH2lq34FdgCwGD63XXRtktaPInmo0LN22XHCcUTsA7JnMgXy69tELOI4xMnKGc8xtNoFKPXaGgcJiS+qSgHWSOKBbGgFmWgGi2kaE9Xqha9ppgDRb3zqQORF6J4CZ9U0Qx4iiSqHbJMZpTABjKqjVKojrOaAQxyEmJuw1BB44HIaHLa1HrQZnEWEwzvFx+6lG7bxjsjZ0ENj8Cdxniz/qOopcXFc0Gjl3r2tbL/A2TUF+e2OAilzTasAiKzAAMBbHOOussULX0H7BIhwvOOAQ9pERW8ehoZyihdfSMa1jQhtwVtRZYt6FuhHR0YVHkeUUIq95FFkOGfLekO6H55hHptvZeCO++107VrZuRVGPxtgFkb4+A2MCcXOQYj1JUERHZD05yORzQwF0XcjKSha2ayD9ufv4kP7c/dgkQAdxHBT+L0UPxf3ZTv0AurRflmHG+hFLb2D9eiDTs3hpxMwZTYJuYyhgn02w1BWhMajEIk1kgPUlgKwHkEdTzdFlKKtPZ/J9KPufwKTXk17zzOh5TQKimfiCVmqc33q6h4iiEGEtN2oDmTFeSgKceGI2xWRzBXWeJEAUV+1znzv/9Puey0dPZHDc3EVecKYXna2BWDl59hAC76EBwrj7vA80lt3pY+nRXS2nqXx6En0tB/RSwHnZbx+Iro5rqhQfwG2rEiKMirszIIwtPtB7qer57lHuAJFpynaiPF7Sn7vXRlb8xvatb30Lf/M3f9N1fMOGDXjkkUeOSqX60lsI8NKrOwzDAue2pLqQoJ70JpcezZL7uiyAqASiNWguvc4JcvpAdHpHVyqVgje0Dn7q8wZmu4Hcg3x4eBidTscF15TnfcElaUjwed5TD0eOHEEURQiCwIGqC2IfE4NhEqSlFzmFxwlGs6943fz8fKGPJPAvvaOlAWFoaKgABvfySCfoLNPSo5ygNUF0H4Arvb0lfYo01six4QPS5bfOV1LSsN+k17mmQpH5ynGxsLBQANQZNFQGzI2iCENDQwjD0BlVwjDs2l3APuIYkfqnoUTSEul68d7SuwK06PEs9bRSj+wnkvzET/wEbr75Zlx99dVd5/qe6Gsn/bl7lSKBS7nakCsLnid4Jrm1uVi8/HJg2zZgchKbdv4Dnve8H8WePRmInnEq/59PWoz8qotS4I47EFx0EfbsCS3uOrnX8pgz8mOGru67w3KWc13DII0Z9oc0tUBvmM7af7LF4Gw0BsCus7nIDQHniR0CqBoASIHmtD2+O/smeJ4klp96eNi2s17H+ovOwKOP5iB6HIeoEkT3rdyk/oxBFBcXLgcPWkDaXmLnEa6z6HFfq3n4bSWSL/oyrlfcKZlEVunEEy0Y3GgEqKYWQD21kQGxSeCawi7nBgLqtrnPntu6NQtyOZ06UPZAMxB0AAHGCKIL0X0p+cS7xh9FLfBThKSORxQFdlmpx7L8PwMKxrZsAWqx8/IPklkbYFMSq7LhtRo6JsToqB0C9XoezG7//twQMj/PSypu8S9vmcLiVloRuPtAguvbtqGdBjh40DISnXHpFsuTThJ5IN9C0Wg4JbbTAHv3AN/+tq3nFVcgJ3/XCFh2H7dNBQAQtpqOC70dVR1nfbOJ7gZIMIE3Iccg+4z89xp4WgI4WWvpNXevGPQ/zgwETyTpz92rFIFyuecfn7XyvpMgoLExIlJh+5J81hpAjyIPSAwgjHIvdmKsMuBjGUYtsUS5KSeKuumnNMe3E/mML7vvytDDpURW0AekZ8e6OKJ1w3111gZFpRwNBi8s5Kx0Wuz0UQzOzv9ZdBRlsTHStnvmG2MNGIcO2c+mQbgYLPR+D/S7i+wL3d6y/2ko9uhUGgu0EMTtmr+VjgPR92H2KcwxmYGBu6p4OfWqg24Whoicp8qQaXlR2ZjwXK6Hhf5fFyPFxnDxe5QvdX2aZpRyasyRolAD93yPWWqnyuMl/bl7bWTFmqnVati/fz9OP/30wvE777wTJ5988lGrWF96CwFAgokadNZexjxGQBwo0pkQxJRe4vo6ivY6lx96vUsub1JmSMDMB2JLEF1ScJC2g0JAk8cIREsjAT2XWW+pHw2iSy9uCusivc2lh732Qpfe4dSl1Am9ywmmS6oW1pfXELQluCxpV2T9Nc2IPk79Mcgmy+BOAy3aSCKNJUyvuerLxAcm00gg8wmCAAwEKg0Pkjdfton1kWA/we/Dhw8XxtvIyIgD2iW9j6S5oQc7+5Zjl/WV9db3kzZC+LzVffKDBgRv2bIF73rXu3DHHXfgqU99KgYHB9EPLLr20p+7VykadOQxvQAEuheASWJ5VgDgnHMs2jo9bYH0Cy5Ao7EZJ54I4LBd0e3caYONIk0tMp4kmJqyYCimp4H778+BwijCTMsGypya6gbQ6U2VJQWarfyfWg2Te+2/ExNACLEgazZtWUSZ5+aAu+/u9qYdGLBp77+/4DEcwtKmtFp2EdpqAVUJVDJf6b0lFoRB2raBzTJZXAxcXocP20sIntMxPUCnG2Sm/uWKGUDYyLnbgdwOQKCXl87PW2qT6mLW7szL2dQ3O2w0c77Hpk3ZluoowmwSOHA+mH4ILupoBpw29+VqtN8BoqjiFnCsVxRl1DnNlgvi6qTME120Pc2SFezSGoWgfghAS+/tWs1uZ+euA0kjxPGdARsFIClN0V5f6eLRz8di4Bag5Hkv1I+IFQ1SBKmz7QIPTAVoNm11bRkBzhgftwcYAVdYIWZRQdK0l09O5rs2CpXTkumWdQ5F+TKWQZLAghFyLOt3qzS1liAg3y6hvespx9m26V5zd38hvnbSn7tXIRohk8+7XuCvCZG0/Lgo0A0uugCZ3S7R1hs5ioAoKDyLe71GaPxYxggxJugGUOV8KjPlTrEy6cVLLfXne64xnTYYmm6vYW+DlwLRpUFYPTf05T6QNU0FTV4mAwN511NdjQYQtGZsguzFyRirGqbZ1DAukDuvD2Wb+Fv2vw9VlUYNrWdlEC8be4Bql37H8TkpyLR67jEGQa1mKfeMsR4VyD33KQXgmIPTtwMr+5bGIyB/BV5K6Jchs9W+K7peeujKXRwUGgXkK1Lp9NVVSFiwlRTSZBkcjyB6f+5eG1mxZl796lfjV3/1V/F3f/d3zgPzX/7lX/C2t70NP/MzP3Ms6tiXEpEgs/Q+L0snPYspPlBQA4GaS93Hha250VcDdmludZ2nriu/fcCu/J9gtw90lqL5v3t5Fpfxw8u26I/P6MB2ETiX4LWvbmV61frROpK60jsRZHppLJF5awONTy+6/VqfvvGldyMQ4JY6lNdIwwP55GUd9c4IyWWv67OcMco+1jo9mvJkp3P5sz/7M8RxjFtvvRW33norAHT18XKlD6KvXvpz9ypluW/HS6UbHbVv8tPTDpDkgo2E5s7ZlygtxCKCAKNaWHKxwnVQKQ4nruvydNKLcnmM6LJGZAcGctc6WbcyWc6Luw9RyH5KLz6nt6MsZYs1qZdeTSCAUFhsqcx8a9scIEGxDF+/+ESuJFe6mjPGH5HOV75aPDKJMSptDx2laeZRWSYK3HHBaQWwzXtiYYFAtmd1/FgWieJ6d+9lbV9c7I1Nuet1P3AAP4EWpL3m7v5CfO2kP3c/BvHdi0cb8dLzliy7++exE/kMllFUtQwMdEeq1ghj2bOqR0O8AHpZHfUx/X+PckqDj6O7K1ak92UktvOX0FWvhL2O+4yt6KZh0VXzzp9l726+csteQHRBvcQ3PtS75XKGYS8pu6V86XSVFxfz98Ml5+rHImkK0sUcb9Kfu9dGVqyZG264AT/7sz+Lk08+GUeOHMF5552HxcVFvPrVr8Y73/nOY1HHvpSIBHHpkUsvbg3CSr5s/i+DaBLIlMK8mZ+krvCBlxLwpFexBDol/zk9f8nrrj2O6UEsPdc11Yf0FJbewjqwJ89pwFjqQNLdsF3MW3qJ81uCwqSvmZubA72ZZV1JFcK8JXUN68Q6yLpKOh1Sykgday96qSsCyJJLnu0gxYnsC22wkP3Ja+WYk+VJvVH/ml5G9j3byjRDQ0OFMcN663xlWTxP3XC8+AKf0jtdjied3gfwa6OLrAdF31eybPnbZ8DyXfdklHvuuafrWD+w6NpLf+5ehaQpsG5d0aXbt+jk/2WApzEZbwus2/PUFJAkOOGEjJv59/4auOgiTE1di/37HwFqNrJnJ65ictLi7jDGujuLcom1N5vWK3vbtpwlgtVwXkCiTkFrBlu2VAEA4fQDOSk409FjiTQsQ0MWTNfCiFZRZAnUybOeVdcF3GTecZxXTHqxSa9j+cKephgYCL1JjbHVGh5GN18920CCd2Ocm/5MK+ja0b9hg72EjtYnn2yPbdgAYDItWCoCWE/2Ws0G0lxczFUjh8fCgqqssRy7EgCW3lFRZOsdRWFOqS3bpBc+1GHmOd42FaRpxn+ejY2REdsHQTJb9FJjwzWlyPBwXl+mlV6OcptDtr09peEn3zSO1nQ+7iSmzWLIJ7phg9jEkCR5XzE6aRTlBoY4RgcBHn44D8g7MZHdVvTUjyILEJF7PklQMSmimh3rJ55oKdXr9QyMiCJ0oorgxAdMVLEwRhQBrazOUy3H/ZMkodsFUa/D8tvKMcffUuR9ItPoZ8VxRqzaa+7uL8TXTvpz9yqFRjgdewDo4u+myOlcG6Tl9Osu4+2rx7ei5vDhlD5nXvmslP+HptPtaawNm9plthc4Kh/IXY1C97fOx3M/dwXIlPXQnvK+PGW95LfKjgBpL/YrN4eKbPU81NWeKELaUqf4DiFcwDsmBEyY70KQupcV1RX3tddzbCkbj42nohom8+jiSBNp9cAS7yjtNADSbi/4PPtAHCuCxyxOvt9IH4uSprrfvNd8rzl6WtVDXv6W8cTLytK/l6qcLE+Pcb4PHm/Sn7vXRlasmcHBQfzP//k/8Z73vAd33nknOp0OLrjgApx11lnHon598Yj0pJZ0IYcPH3bgKOk/CCJTJFgrAWL5kYAhAUAdVFSDiRJ0ldQjpNIAcsCRQDRpOFgPCbpKD2K2QQaglNQcmp5EgqGsF7nBgaI3s9SjbC/TMH8CvWmadhkbyPnebDYL9eS3zxOc+tDndBvWrVsHSdcj6yUDXpKvXLZbXhMEgeuHkZERAMD8/LzTtwx4qr3hGahTB3+lPgliyzrzGvYt+0jSuPB/flNXNK5IIF3SF/Gb4Lg0UshxSWoWctKzLD22qW/S3kid6R0APm9/9gP71Oe579u9oXcK/CBKH0RfO+nP3asQEm5KUFauCHRAKQk6ynRRlCPcd93l0p10ElDZ9TV87+/+Dmd/7nO4a+BaAHfggakfxWZYrH3nTuBpTwNwQWxRY7HVmWwb+/bZOKPP2jELAHjwUAWHDxfxT0GQDUxPI5zeY+tB6hYZyDGjHunUN1qwcXsnXwjLNmY86I4YPI4xm9g5KI7tgsZW1xT1J8F0qVsjg5FZYRw9Vov4vlwHYrpVpHORi8V63YGv880cb2ds1YWFIu02YIHWYPohYDLJ8xUggDEhxqJZAAlmhsewd6/Nb3BQ4fmSHsVYL+rpaXv+0KFi8NQ4trQhQTKLsVpU1LdcHCsgqBNXkaZ2rKQp0GiEqEQGITrYsCHjNOdJ6kYA760WMLat0c3PKvtajh3BGyRZXlhd+dsYCzwRtw+SWcdPHsdANc7GVSsri5FYCdAXsKLAjfVHHgEuvRQ4f1vHto27Oxg0d2ICM0mIavNeYGoKQaOBsUYDZ50Vuji4AIBazdHCkKbcSgXIgPVK1IHjTEpTp4qJCVtV7Bb3ehlwUavlv6V+tZTt4T8eZWBgZYvr44yq5okk/bl7ddLOnhk2YHRoPzUb54BgGIFDoHs4S9AcyGmrvAEzFWonn1+8rSXHuczXcjnnZRijA0krwLwXmkgpA9AVaOyru1eWAoI1UC6P+0B/5iHb4AN4s99yl5eaAgvfvZrMPo/jIM/D2AulsWNhwb5qDQ0BbYQIJyYsX3p2/uGHbX7Dw5bqI4rD3FAjDdXyf0mlwe8yA0UPobpCeb18n9L5aCsNJzm+b2Wc6GmSG745TssMSjLgLdPw2jx+jd/OI5sugW+Of37L6tObXIPyetjq+0gLh5u+jvl1EEB7lnfdYvo+jKLs2dJd3nEr/bn7qMmqu/3MM8/EmWeeeTTr0pdliM87lp7eSZIgTVMHBgKA9CCWHswEOSXASY907XVLoIsAJkFNzWcOwPGDS4oV7QVOwJPALetBIFMDuUwjvZkJJMugqBJE1iC69DTXgCiPMZCoz/udnNoEi6VeyHUu+deBPGDm0NAQhoaGYIxBFEVd7dCivZslQCw97Qne0ntdXqd562UbRkZG3BgwxkBy1/t2Fsg6sr3yMz8/7wB5CYhLz3MGrKVBgnqRwDvr2W63YYxx+WqqFoLrBNvb7XbB0EAd0gud/0sQnSLT876hl7o2amhqF9lXcrwxT5ZNvUk6H5kvv59MAPG1116L3/7t38bIyAiuvfbarvPzmetmH0Rfe+nP3SsQuqhKkBkovkRzwWRMN3c6JYpwINqM6Sng7A0bbLqDB1E/HcCnv4LPAXj6wgKShYMA/gX33ZeD6HfdleDuuyPgsjj3FM7KCNI2Wq0Qk5NZ1f7P/wFqNQzueIEDcx3OLwE6ovOHDuUrpkbDui6ffrrzvtq9m3h5ACBErWa9pE88cQzrG5b/nN7DncZmBw4DOZ5pA37CeYGnaYgoCmEi4V0nFspykZOprvB/aDL+8xQAjAUYJF+3LDyO8f19FkgheE0cOI6BsVqn2J+U3XtsENfR0XzRKQCCMDLAvklgehrxRZeg2bQLPbluBmzQrkCA6AxG2WrlgTeZfaORcW9L8FyvGJXHfjsN0GqiAM6PjFjQKEQbAfUyPZ0rM2v8bBpicp/lCG80AmzZckauW5khK0xvvGxsdEyI5mSetNWy1N+PPJJXNY7t4jpiXzft/ZSmoR07+/YV2jYTb8b0dNGLkLdfs2k/d99ty3vZywDccUcx4GlmGXlgOsT0NHB+lNggA9kYG4siXLIjBowNEDvTChwGL29pjpPxceQRRDPkJIsviomJLOBr2T0vUR7PDgsvYO7b7bHGsty52wsC9ZInFMpwfEp/7l6Z8PEnQTaAz92gMGXLqb0M5ySwHfCkvMAU+cClMVVTSkhvWX5CtIsGxV781rJ8XVHfd8kxzX3tw2ALAHQZiN/r2/fb1w4NoAuQX9PESPzf1U2TZ8t2q2JDYxDGtr/aaZG/W2+6stNhxb1SpCnw6KM2HY36Nq19rwmjTjEjzqfaAWM5hosSSVNB6cJ2SuBev49KgwTB88zI02rmwcD1lKR1IavuA7blsJWe6LrJepeAbEbhfssMVsyjjGNde54bk71vUFl5KV1UONwVJ5P6hikNaE5Eo010fIDo/bl77WVZmvF1Rpm8733vW3Vl+rJ80R7UABwITKCXgLSPQkOC0vLj874lqChpMQgyyjIkeCo9siW4K0F4egoTDJYUJyybwKgMSilBbuntXBaklOClpjeR5WiDAetB0FV+yzYwX60neuAPDg46XUnAVOpaGg0kcC91IClOJHhOsFhS2LA9PmoaeolLYFr2j+ZE197nvnotLCyg3W67fAYGBtwY5IfjIQxDMJDo8PBwF0Av+1jzxOuxo+laeEyOX7ZxYWGhML58HuY0KOjdAmW60X0leddlO3y/n+xy5513OgqiO++8s+u8L9jwcuQHRX9HS/pz92MUutUsLOQAIhclPiCsDByLIkxNWcDybOYxP28dVPfswSyA7wEAmgD+E488Auf1Ckxjenq8uMgUb/tJEjrgEXv2AI0GzEWe9bc80GrZIIwyUCR5UjPAcTYJMDlpQfFHHrGX1et24cggn7VaiLFGAx0TFpydmaXc7txBUPBSHhgARkcDVKKoi6M9TUkMYhcuIT2AAAsyMGolV2ISsRDuRm2EePhhu+glJswYn4Xr9AL8vvtswFR62ftcqzJwmoYMFqtxg1D0Gy9rNm2dgNyBOk3RfbEOBCVoVGTVmWc2rDL9CeOC7GdYL8lDB12MW2cjiuMAY3FULD/JXNTEYrwNG3xPln/wIPDgg3l8UgZ9dQtp0R7bxDQH9zM0otm09WEfscksg/YAN965ZXlxMb8/o8ilQT1D+LntgIXHMdA4w+V58KANIssqHjyY74BAmuYDPk2dzSdoHsiVzk/ZYlNGg9PjSO5mOQ7oXJY7d/cX4sdW+nP3YxcxnRVEgnic3nWaAhDHhDo4pHhW++YwCTRKIehX8Drn5MhvjUpqlFAi/xqBlCizAqJd1knvgI86gCq9+V1wSd97ThmI7gPQfQpX7emKMSKkK8CqNmZqpF2Xm6ZAVHGXaNCXl09P568b1bgDZO8xHFd8PRga4tRiQdlAvpvotvbQhT5F2jd53hhB6eLTo3xfIIAvPND1uxiHnXaWl+ND2gC0PVh+5uZyPcqNCXJ40hHaZwdy74xZYYEx9l3QGCAqp03pshX1QsRFI+TOEtkenbQw3jyJjwdn7f7cvfayLM3ozvi3f/s3LC4u4pxzzgEAfO9738PAwAAuvPDCo1/DvqxYfICwBPLK6CM0gCwB5qXALl+emjKl13Fdpq677+OrO3+X1UNSb/jO+erJ3z7PcU3d0Ut8beslPtDXRwEiAWaKpFvR6ShlPPmyL3x9J39LA4o0mkgjgfToluX3GotLid6RIfvWFzRVjmW9i8PXF9r4Q/34+vrJ5kV+NOSrX/2q9zelz4m+NtKfu4+ylL2QA/6FkkpvDHKOE+mWA4LGVQDrlfNzYrPRKzfxIux+Zmm860ifl5dMODyck5hngK+veV0LqewHFxGF86K+vrUHgUqJJbK+nUwjblt7tvgLjCcxV4HC6xtJgjCOMT8fONBermvTFN0AOn/rffcEDaQSxCItjkPHtKOxDZlOYeEujatbUwEThVVhUZitHE6FPpN1l6vYLK/BQf+CsXSceOrgYwOIIgso8PKuncOppcPpyjNNAVW0XJjK6hTWgFyxE+jP6pWx1nUDXtmFsg80YFQIWssD+l7TOluNUAdLLfjXUJY7d/cX4sdW+nP30ZGVDlHvLfgY70s+xySYvux6aaTRd0wjiCXzhm6GDs5N0F8+D3XRFrxV66CylwMN2smJXqfR12XvIJxPA3SQJIHDhIuBLEwxLgbnLKK48oWKGRpT4LPWupCAbxQV56IyFpyuPpXt1+30gd/dKihk1XVZSR7eeT873hVUXpUlsxwcLBqYdJa+5g0OFl+ffNXT44vTq3e3Q+H6sGvK9JWzEikL5Ho08l5r6c/day/L0ozsjPe9730YHR3FX//1X2P9ehv86uDBg3jd616Hyy677NjUsi8F8QGIGuSlhzC9Zwn0ac9ZSUkiqS+kaFoQ6XEseb99gGsZ5QupUSSFCCljKNqTnB/Jqc76sG0SJPXVpQzUpSey5tTmucXFxUIe1Bc5t0mPAgD0Wmc7JdXH/Py8C54pdacpUNiuTqfjaGFYP5mebWTfsa9YL7ZRtlt7tbOukkJHe7LLc5ouiG0nbUsQBI5DnvQ+LDdNU8zPzxf0KYWe5XrHgPRol/26uLiIMAxdn+hdCtQh9cNvyb0vdxXIcxI81974ZVLmgS6PlRlRfhDB+D6IfmylP3c/RnFIXCYaCabo1Y5EJzOSxozqGZjeAFx0ETAxYZOceSbOALAVwH/5Lyfib//2rbj0UgAfSDE1BQD/gVZrC/CVr1g33Xrdus3W62gjdAEWJyYAfHovYIzzsJ2YsE0I0LH/sE6NBrBjR9HLbWIidzWPY8wdzKu/ZUuxyaOjeQxIbglfvz5ftyYJECYz1tt9fBwHEstDG0V2UbZvn/WYrtUANJtII8srXqsBZzQsr/u905av+7yJFNi3D+0t52HnTmDr1grGJieBOMYDkfUmPnt62tLTXHEFZsbPQzU9ANx+O3DWWZicPBtTU5Yzvl63VdqzJ9PXnj22EY2GrfyePXYxHkX2GD9S6MJljK1ws4mLLqrknN/GoFbLDACTlpObe8HrjSrGx61+xsfhxkUcA2HrABwvjwz4qUFt5Jjx6CgsN/uGCM2m9S4jmN9BiLS+GWF0wNaB7YxjBOh00RkQZ3hgKkAUVTDWaFhdjI/nRoQMlKBj+/i4HVtpFjB1eDhXF3nnTzop62fqrNlEBc08AwF20GG80QCqURtthDh4MKdWqdVsIN563Z4HkG+VqNWsQqancfaOWXS2VIA9BjjzTLtKn5qyF05M2L6ZegBjxqBe34hWy47fRqPotN9sAnFcRSjGAPsLaZaI2whKkRR0r87lM4KgkvRWfyJIn1f1mEp/7n6MYgyGQwvo6aEnOZ0ly0VoLKjqbmcNCi+JmhaK7wJmZUDMUhxL73wCup8vGsX18W2ozLmjy0dfQVDSh3mzaHoItxEiTQNUOCdk1GB2/stA63od7TRA2HyID1H77OVWIyDfaiSCUrSjKsI0i+FRq2E6tZ7ip8YHgOlppPWzXfwX7NoF1Ou4Nz4PxgCb9+2zLxZXXIEDZiPG0gfsO0G9bt+3AHueL0ZZdOkwTRECqMTGgcxAbrzfNJwCw1SSQcUAW7eGBYze0ZVRZP/5EGhNC0iFJwmCNIXJ4pxEkfV+7yBwm57i2NatgxBthIW+ybfYZaLnFGGYkEYC/mZy7YTheQXpcvLX7ENSP6J4V46k1csp+tLueEJCP0EUWSqezKFC1lXm7y1U/N8LONfGC/fbB+6vFIw+XqQ/dx81WXHv/9Ef/RFuvvlmN5EDwPr163H99dfjBS94Ad761rce1Qr2xS8+AF2DhgRJJRitqUI06CpBSKaT3un86ECgZV7N0kNZgpMy6COBVdJu+CgwNOVMmqaOKuXIkSOFQJa6TKkf2XbtdU/6EElXQsCbupQg+vz8vAtqSW52UpawHqwL85+dncW6descyMz8eD31pwOp8nqKbgP7e35+3vGEJ9kMduSIpXshHzs51tkXEriXgDcNFaRCkRQyMu3w8LDrIwmqy3EijR6Li4ulNDc8L3XO+ksDCvuUbWf/+3ZNUC/8LcerD8QdVG++0kOf1/h4z+X9pKlvysDzH3RQuA+ir5305+5VyAknFHmKNYiuVxs8Pjdn6R+iyC1sqslDqDZiIBoHXvQii8ZNAbjsMrwSQFSr4aMfBd7whtMRfPp/AWmKvXsB4A5MT/8o8PGP2wXGdddZJHF8HAcP2kXI1q3ZwnLnTsBYWozpaeCS7bMWNd6wDQ8kYzaYY9S2FxHAzNowE220NBkA4sQ2mwuoLVvs77vusjQktRpQaT0ExDFmUgsgh60DCAGYeMzqYd8+u9CNIkymGxFFNp8ksacefBA45xyg+sgUksYYdu60588w00AUYffuCqamgPPGU2D3bhw88Tx87nOWC/uS3buBRgN3TD4dU1PA2Sfst3zwL3whPvc54Kd/egzBP/wD8MxnYu/dduH9ilcAp0YPYe/ejdi5E3jmMzN91WpuQY077rCVe+ELrVIbDczGGwugdWXfd/JIlLUaMDmJyu7d+TgwBlUCBPfcY9Nu2ADUagiNwTnnbMbgoL20sJV4514ga5dDarPVJvlLQ2M9tdLUDq/16wHs3AXEMTZtOh/G2DoGySwOJBXs2wds2TKGarZinYk2otUENtfbCFstDAyMFTjskwTZmAO2bx9DdaKGeycDTO6zcXGr+74JpClaGe4b7LG6mNh+CQ4dss0kVrJnj83z1PFO5iWYrU4nJy0h/OmnY2b8PDt2Jr8PpCnG4jaiKLRja98UwvFxLC6OYXg4u38McOmlG+32emthsnnv3ZsbgJIE+MpX7Hb6iQngh3/Ynt+9G4hjPDhXtf24Z6et+wt/DM2mVXsweS+qcYxofMxRxzSbwBlbtzqwfGIiAy0Sk6MAGgzRrnJ6n7ymEfJuJTjOpe/NtmbSn7tXJxJb1t/0po4iC5qHaANJisAYONqSHiB6h2my/31O2BpwZBovvzIvls8IfYz/K9Bcehe7xwjBb5ZDJznxjAl5PAOSHfVY9mwK4xgwFVtU01oXW7DPxvHxEEGaoo3QPX43R7ZO904GmQE8ts/piQl8fzLExMRGBHv3Wkqw2OYzlk7aeBNbt2bzVQVB9my/7+BGzM8Dp9angN27sfDss7FzZ/auc9NNwI4d2B1lIPqeXcBttwEvfCFuuw14yQ7Yd4IdO3Bg6yUwBqju3ZvzhdFILCm5MqC20C9TU/bTaNhJMEkQ7Ntn9UXLbrNVDL4t+y8Lwu0GBOd1Ecujk9HKhEkLaDYRRBEWFkL76jg5aetkNiJJsrmn2QTqGx1TWdXYvGcS+55Qq9l0bYTOOT9E29G4cAxGUU7ZIseoHKdSeI0ckoUAveJ6H4jOWADMx9EYURdpmn9TWJgsPI4RZMdDdX907ZRQ844MIKvFB8i7eygVCaQxxNgdDV27M45n6c/dR03KCYZKZGZmBg8++GDX8YceegiH+Da+TPmnf/onvPjFL8bmzZuxbt06fO5znyucb7Va+KVf+iWMj49jeHgY5557Lj70oQ8V0szPz+OXf/mXUa/XMTIygpe85CWYpKWzh3zwgx/E6aefjiiKcOGFF+Kf//mfC+ePHDmCd7/73di8eTOGh4dx+eWX49vf/vaK2ncsRYPoEgyVQReTJEGSJGi325ifn3fe09KznEAkAVN+2u22+03vYJbDIKQEfyUgLOsoudeZdmhoCJVKBcPDw6hUKi7A5JEjR1w9+ZF1kPViOn6zjbLeMlCo5E5nIFIGU+WHx8MwdB+m4/8EthcXFwv1INA8MDCAKIowPDyMoaEhB6wDFnCdm5vD7OwsZmdnMTc3h7m5OSRJ4nYNSIMB6zM0NIQoilCpVFCpVBBFkasb9c32zs7O4tChQ3j00Udx4MABPPLIIzhw4AAOHDiAVquFw4cPu0CcUi9sH8tg/zAgqvR8p46iKEIURYjjGLVarfCpVqsYHR119QTgdJYkiWs79cBxyj7lGNWGItmHYRi6oK1DQ0MYHh7G8PCwawvrTQA/SRKne35YpjQ6ySC7LM83PphGi/ZWXyk10VrLhz70IZx//vmoVquoVqu4+OKL8X//7/9154/3Z2EvWWqO0XLLLbd4n6179uxZmwofQ+nP3asQSQ8CFIEv/SYuX0wXF4sBpYyx4OyePeg0NuP7OAPfn7QLHmzfjuiP/xi45hqE73w7nvu5/wZ87nMCRN9lHbj27cPU1JQFWLdvx4GkgkcftZ7mW7YAlel7MXvffcC+fW5tiD17gH/+ZyBNsXu3rcJsGuLBQxX8+94q/vWuMXxzaiO+ObURX/mKXZfu3p3vjOaab3N0AGOte7Fhg20eF3dotXIWjYxgO0TbLr6mppxn99SU5ZkOkllUog7uv9+Ws7ho0yUJcOedmZNahlzu2QN84xuZzvfsweHDtn5792btmpzErl123YwHH0T6z/8MGIObbspiQH71q8D/+38OPx0fR5bYljU/Dwvy895OU/v/V79qy5yYwGy8Efv22TL/4z+yOJitVu7ZXa/b3zfdBNxyiwXl+bnjjvyiyQwomJzEpuEZjCUPILjlHy3Yu/d7CKYesBaKvXstH7twD59NLa/79HS2UM1A9CTJQPU9e4BvfYs4PSqRDbLWbNosp6bgOpLOeoDV8+CgBeMBWA9AuGGKffusV/rtt9vmffe7cPVy69y9e4GdO1FpPYT164EzJjqo7vsmTo0POEwbk5M58boxtiG7dgHNJvbuzepDkKHZRCWdySuRgSlRBLeF4IzaAfzQtnYOoj/6qG3ovn15ANDbbrM7NwA8kG60g3hyEkgS3H13dul3v2vrns5kQMSs66swscfIGT8bb3TbMYLJe3OSXC6kZdBhDXKxs3yueocO5VFZ03TFnOhP5rkbWPpZr+XWW2/FhRdeiCiKcMYZZ+DDH/5wV5rPfOYzOO+88zA0NITzzjsPn/3sZx9zucda+nP36iQ0HVSiDiqmjTCdRZjOIkjsh/dgkLYzAD1xc7ajEBPzewdBwUiWpvZYx4RdXrGWJqTo4R6aThE81BzeQBEsJNiaGWs7tTF0amNoR1XMJCEONAP3efhhO79yB5q00bmKyecQg2jwwyASDCLN/zPENUAecDpJctyZc8HkZP44hjGYnMzm6ey5TqB9agqu3cSm+dzndUkC551+//3ZO8HUFLBrFxYX7dQBwM7Te/fiW9/KpvDdu+1EBTv1ArBz8u7dOa85XwaaTdtnSZKD5PfcAzdBskHT0zb9LbfkAaqbTftiQoM7g93wGhnAI3uJ6piwgMrOpmHBS9wBzuyXJMHiYqb3rB4LC5nOs/5JU1u9uTm4uZVNSRJbDruy1YIbs0mSU7QYk1OpDAzkQ47nOPw4vcUx7L2Edn4fZeMnTGYQJjOoYBZVM4uxuF3YzNdoAJs2dDBW66CSziCYfijXve/DMciXH+5YkB+pZ97PCszuOIg7cAA6k+tpWYox9r7tehZo55lVSn/uLsoTde5eMYj+8pe/HK973evw6U9/GpOTk5icnMSnP/1pvP71r8eP/diPrSivw4cP42lPexo+8IEPeM9fc801uOmmm/CJT3wC3/3ud3HNNdfgl3/5l/H3f//3Ls1b3vIWfPazn8UnP/lJ3HbbbWi1WnjRi17UFQRQyqc+9Sm85S1vwa//+q/jzjvvxGWXXYYrr7wS9957r0vzB3/wB3jf+96HD3zgA/jGN76BRqOB5z//+St+YTmWormytfe4DLhI0FTSVsi0ABythe9b84hr3msffYqsm/RMl6AkgU6Wr4OO+uqjz+uPpOfQHOC9Pr5AqzpoKUXXU+pHgrCSCkRSlUgvfBmsVepO10sC/tIjnJ7RzFMaFghY08hA/ejdBcxfGw90/8q6STCbwD4BbZmP7F+pM/2R/cc2ac50X59pY4hPP8xX6kiWK/tPUxDpfpD/r1Q0xcvxIOPj4/i93/s97Ny5Ezt37sRzn/tcvPSlL3UT9rF8Fi7HwPBYDA5LzTFl8h//8R/Yv3+/+5x11lkruv54lP7cvYrxKsmdAf+WTi0SJBP0ZFxs0BObONysqVrP9AsvBL78ZeCjH80QS7swBuyL/gEAM4DbGs21w/BwFjNxehqzAHDoUL6Anp62ATLT1C2yk8QCp1wv6s/0tMcbKVvEyK3vzMx1Fxc0vJAruGyhPT+f64br9jQFMDeHNLWMHK0W3Kqm2bTe6gDcovGuuzK9ZQuoqakMhJ2bs7oxBvv2ZcBwtsBlWUEy67aSP/igAP6lJ9r+/ehMTblAshpnOHQIBQ+ygvs2F9REXvfvt78ffdSmP3w4XyRPTxcVLgs6fNihH1z0zc93xz51AMn0NPDIIwjStt11m7UlSaxODx6EG8POuCIycH2dWs52Btpkdz74oG3eo4/CVcDVhYvbVivjdG9aI8D0dO6UJ6Oe8uJHHnFAP8e4O8dKPvxwgd8fBw/m5WVlugZwQc3BPTlpdZsBC65h2bhqtbK6ZvkYI8rOGh6aTgFv6sRVW560MHm8QgEUnxmsoxQqfXFRoV0rk8dz7paA4rI/K5DlPOul3HPPPbjqqqtw2WWX4c4778Q73vEO/Lf/9t/wmc98xqW5/fbb8apXvQqvec1r8P/+3//Da17zGrzyla/Ev/7rv6663LWQ/ty9yvGqjVZ6B0jZh9fKb4opBrz02dOzZF31cB6rZRfxQvHpmBCzGRe4xMDl//Pz+RwhQkMUs9cgoNaH/mSFGINC2jQtBpxcWMgfiaw/H+H0Tk4S+/hOkrx8PlcB2MpnoK8DimUaBRynKex7zfS0CxqO6WnMHjqUP/MBN7+6RywN4HoiZeDoZtP+li9LmfHbFZwkdlKcnCxOlFSCRGizctJUDAhhgFHDo9sTm/+LuVrO3QziSZHFd1AcM7IsXkNjD5B7iEsPbP0JTae7jXpQCmCbQLsD3PXg1Vafubn8+9ChvF9arfxcr3tYS9YY3yl5TF/uu3cLvyWIvkogvT935/JEnrtXDKJ/+MMfxo/+6I/ip3/6p3HaaafhtNNOw0/91E/hyiuvxAc/+MEV5XXllVfi+uuvL30JuP322/Ha174Wl19+OSYmJvDzP//zeNrTnoadO3cCAB599FF85CMfwR/90R/hiiuuwAUXXIBPfOIT+Na3voWvZF4oPnnf+96H17/+9XjDG96Ac889FzfeeCNOOeUUZ20/cuQIbrzxRvz6r/86fuzHfgzbtm3DX//1X2N2dhZ/8zd/s6I2HivxAdYauKYQfJIAsw+AJpjbCziX3N2+j/RG14BXL0BM8mP76q7bXcan7QPiJXAtf0vQ1gei6o/09tfAto9vXe8SkB78GpDVbVjKSCD1shToLssCUACT5S4F6QHOfKVHvPTEJsguaWc0qC93O+h6+kRSoWg6FD0uliNlgKvsR1999Hhge6S+JciuedqXqs/xBqS/+MUvxlVXXYWzzz4bZ599Nm644QbEcYw77rjjMT0L3/GOd+DrX/96zzTHGkRfao4pk40bN6LRaLjPagwmx5v05+5VzN1pWhZ3//4AAQAASURBVHyJ1N9l6Sl08+ExAarTsyhJYFcvw8M5aWpG0Gw9v9djYgKoINt+/fDDzu1Lb8UNARet0xgUt8CqcumFJB3f6HXEKtOGwAwLwUOzbcpuTSG2Mrtrsv8ZbJIXj4zk5WBwEMbku5558ciI4NKOIhhj6UKiCM47j/XG8DDirGDGTWJjyNaCNAUGBhDHwKZNWT6sMz/r1yOo1YDhYbfIJX1kFGXdQ7ct2d+kdoljuMYNDxeVKxstx4NelIn6cD1JiSIASeL6yu10yPJdXEQh/0I/yL3ZWRp6m8lTUZTHl2XWJ5xQ7BtXhK+sbAy7IuVCTGZqjBv2XToAXMBQl+/wsB1ETGuMPSbzHRnJ9SzHPWmVsnEEwDaStDuAx32zWO2uoGfSqqGl18JeZjwwkH9WIY/n3H2sF+JLPeu1fPjDH8app56KG2+8Eeeeey7e8IY34Od+7ufw3ve+16W58cYb8fznPx/XXXcdtm7diuuuuw7Pe97zcOONN6663LWQ/tz9GNbdve5DKXqceub6jgcy0UOczwkClKTgWvYzocc9oy/lo0M+TvhI5HNrVWX2uF/lYxdpisFBNYekqZvv3RwBFxrGVczVj2Vl18lr6BnN6J6cat38HkXusY84RiUrIo6Rz8uSF5wTpzE5sM0XITnJy/e24eHuSZKBRyT1p+wItlN+S32X6FWed1NC9r+IbV041ktYJebFdzpHiZ3Nr5oiu+xR7Rv/pdJrzMnf8sNGDg5avfMdamioOLCXO69kdfAlKcuG35KqyXvRY5T+3J3LE3nuXvFIqFQq+OAHP4g//MM/xN13340jR45gy5YtGNEBuI6CXHrppfj85z+Pn/u5n8PmzZtxyy234Hvf+x7++I//GICNVr6wsIAXvOAF7prNmzdj27Zt+NrXvoYf+ZEf6cqz3W7j3/7t3/Brv/ZrheMveMEL8LWvfQ2AtYpMTU0V8h0aGsKzn/1sfO1rX8N//a//1VtfUpBQZmZmVt/4JUTTW+ggnzxH4HV+ft4BUAx4SWAoDEMX6JLgKvPV/Of0ViYFC3mxNYWF9L4mCKl5qFk3AC4oqDHGAbmSe9rH/06RIKf0hAiCAO1221GQlIGdEhD1AeKkxiEoTc9r1p9As7yW+QJw/cMgoTwm6yL5vZMkwbp16xxFjEwjdSG5wdmXQ0NDjqaFaWQw0iNHjjj6mfn5eczNzRV2B8RxXKC7YXBQGZxTgvGyLNm3PiBccrzLvmQ6DbpL0FSmk7+l7pi/zEd7+HO8ai97igbQKew/HUiXupF9Qj35wF+pHw3OH205dOhQ4RnEXQK9ZHFxEX/3d3+Hw4cP4+KLL171sxAA9u/fjxe96EUYGBjAi1/8Yrz0pS/FFVdcUajDSoFxptXP1uW0bSVywQUXIEkSnHfeeXjnO9+J5zznOUct78dL+nP3KubuxcV8ceUD+vhNjyEe4zVupQgLmM7Pu9NkfAGAeGIzwokkBwIvugi46CJcNAl8/OO/gze8ATjjG7Cv9f/f/wc8+CCGfupa7Ntn1xv1OoAoQrXRALZuzd97Gw3gzDPt9uGsmocP2+9aLf9mtUnHzXPGZAvUw3k7RkasU9bmbdsw0wrQmrbXV+t150UVYtYufBoNwBgRjNHq76yzRHC3eh1RZHlOt2yB09tTn5pxficJUK+jXgcuvzyjZTE7gIkJnEyA+ZxzED7nOUAU4Yd/OCvrssuALVuwI2sXWi1geBhbtwIvf3kWX3LrVouos8GXX25PbN2KJLGLSwZMdcB1M8rTkxt9x44C/70TAq1btth8I3Ht3Jz1wJuetunYkeyERgOT+/J+iCIgaM0AU1MI4xbOqNeAqWmbb62GA1lg0QPNAHE85uq8uAhgYiILCGer1TEhgjhG3Vi9M8hpFFmVpClw8skWZ96yxf7faABIbN/UaplR5MQTrbeYMTnGkIEWWdcDickpCaIKgvFxS4Zfr6NuLECP+6dt/9CSkiQFOoEkyfhnecO0Wjmw0WjYThJBQ9FsWt3GMRb2wzbwoouALVsQ78vqtW0b0GigXduIZDLL86677H06MQEkCWq1CubmgLFaJ98nb0xOAyDvbw2U+Z4X2liSGbwwOlpAO54Ic/eKF9dZ2uXM3ct51mu5/fbbC20FgB/5kR/BRz7yESwsLGBwcBC33347rrnmmq40XIivpty1kP7cvYq5OwNmC6LHq5zHhcHc8Z1nzzJ6VPsuJ9gWZqAkkvy+l5zj3gykZPNeO2VgUztnJy0/eC5BVfntAlzyIhoFy95dWLaogwOeoyins8ikXhdzUZpirNbBxERg30Eyo26jIQyPGdBdr2fvElkGztiNyAX2Hh/P6MgyoHtiIvM7ODwMjI+7qbYSddzEdc4JGZicngM85zmAMfY9whjg0kuBrVtzg/3WrXCVYXvrdVtvzsvUDXUyPm7nagYfB6w1f2Gh+x2P//vAR0n3pfq8AI5nuh8dhXMgoA4XFopp3JwbRWingXtNpQwP2/l/dNT2TWAMNmzIgp5nlEaV2MCYPNhsFBUN94Aaf3ou09++CzUQrfXEdgLFwO3yWmF89+pbl0m8QlUpBBDG/uCiXQB6Wf2zOvC5AAALi/Z3f+7+wZq7V21OGRkZwfnnn38069Il73//+/HGN74R4+PjDvT6i7/4C1x66aUAgKmpKYRhWAi2AgCbNm2y3KEemZ6exuLiIjZt2lR6Db99af7zP/+ztL6/+7u/i9/6rd9aWSNXIRI8lQEtJTgJwIF+nU7HeRkTDCZgzSCd0luZ+VUqFZcnj0v+aZbPsgggElQs+ybQLb2qGXyTPN/SQ5xAtfS01iCxFAYoBXKAXILoEoAPgsAF+ST/N3XBcsnFDtiHButFowOvl9QlzJsAexiGhePsI0klwnqnaVoAdn3GEeZHQFnyfw8MDLh+IvgtdyKQD3xmZgbNZtPVPQxDNBoNRFGEWq1W8DbnuJNjUHKrM29yuzNArNw5IHn0ecyXnxzDMrCoNoDoIKEcX8zD50EehqEbDxJE5y4FAAUQXNbPiElncHDQtY/1Y19okN/nTS099Y8VkH7eeecV/v/N3/xNvPvd7/am/da3voWLL74YSZIgjmN89rOfxXnnnecmn5U+CwHgr/7qr3DkyBHcdttt+MIXvoC3vvWtuP/++/H85z8fz3/+81261bT9lFNOWXbbViInnXQS/uzP/gwXXngh5ufn8fGPfxzPe97zcMstt+BZz3rWY87/eJD+3N0tpXN3mubeMD6PLj4T5EKVL/l86Wfgwfl5RxNhTFDYzdpqAdu3n2G9oEdHgSuuwINPeS5euA349rfHcV58L/ATP2EDbn3608BXv4rRq6/F3Xe7GKO2vOc/H9ixI19njY872ozBwSLWT4+uWs0uyk8+2R4fHbW8lzAGcRzYRfm8bRMdhKamgPvus8/d+Xmb7/i2jQhkwKzRUQtGZotaYwA0rf62b7flxTGARgO1GnDFFdnatmkXShdeaHFOtBLg5JNRNbN4xSsqFifd/kKgVsPEw3Y9iwsuAF7/eqBWw+WXZ/lmwVsvrwv6jjjGqdFDuPrqjdgcHciB1KiKNAUqr3iFBW+3bXMBN084Ie9uu7CNbaFpatOS8FMaW7gQ5GfbNjzQqmLgCDDYAsZqNau4ZtNuCydoMT5uAe/GqY4VJk1zkBvT05Zbha5lo6N2ANTrjjKU69G5uRzTJ/8+h2erZY0ejchiy3EMILEL6+3brT9fJZ0BWgm2b9+IRiPDpydt39QISpAk3xibRwuu0ErrIXsuuwdmUcGhh4FNHAy1GsbjbKzt3G/1QUMDQfRmEwMD2W2XAdvYt882gKTr+/bZ3+PjwLnn2ryze411uXcqxPgVLyjg9LjoIiBJXHZIm8C3v21vlMwjvV63Ad8c3y3vaVLyRJEtl0AAPdT5TOBv6cUo/5fPCuE5/0SYu8kxu1xh2uXM3ct51muZmprypk/TFNPT0zjppJNK0zDP1ZS7ltKfu7ulbO52Y9MH7ol3+U4GVsOEQBbAOU0AIAcWZRbG5IB6FzWL3qEij0vgShvaM+CeUwc3rNEnTGJ5EkCPY1WHJO0GzWWbJSBZBqTpOqbFPMPmQxiLopy+ZHoa27ZttGD7lE07Pm7tq7TSG2Mfk6OjANY1AADra9n/zRxE37IFWdBMC7Rv25rVaVcMbN2KCmZxxRUVq6TLLwe2bMEFjSxN/MPu4b59e9bGl70MmJiAszXRUs8JNaPGcyJfkKijrVvznWbsx5NPtp0jQV0NDmc65Di0hmv7v1N7Ng+4S4QhvmJsoFvpcZ9dBNRqbp4fGIAzkGucntNKiLYLDOue2GKMuuCcxgbVdbsGUBxGaQqbtgwwL94o+bf+zfed1DNeqX+Zh2yMOM57RhqzSsF9VbdA/A7djY7izSaF/wvDWqtVvE2A/tz9gzZ3rxpEXwt5//vfjzvuuAOf//zncdppp+Gf/umf8KY3vQknnXQSrrjiitLrJHhXJvq875rlpJFy3XXX4dprr3X/z8zMdA26xyqsgwRUy3i7CeZJj++FhQUHBpKWg4Aw80vTFMYY523OvCQgHEVRARAlB7kM0ijBc5/HsfZE57cE1SStiaZGkTqRgCS9uWU+DAoqqVlkuYODg4U2SX1qOpYwDB1wuri46LzLNZWONHJEUeR0KL30yVOu6VvYLuYjPfC5k0D2P9tCsLrT6WBoaKiQ7+zsrNuV0Gq1cPDgQTz00ENYt26dC14aZxMEQWMGSZXANvU8Oztb4HVvt9vu3MLCQsFzm/qkbpmP9Bind7yk0JGGIepNi/bGl0YkDVBL73reK5qzXV+nDQG+snhfcueDbJ/2Rpdj9Vh6on/nO9/ByUTGgJ7W8HPOOQe7du1Cs9nEZz7zGbz2ta/Frbfe6s6v9Fkor7vssstw2WWX4Q/+4A/w3e9+F1/4whfw0Y9+1OWzGk/0++67D9VqdVltW4mcc845OOecc9z/F198Me677z68973vfdKA6GshT5q5W4LikoORokF0HpMfCcC7BXa+YCZ1eK0GnEHv2h078A+fBn7uhQ8Av/duu9B74QuB3bvxwD//MzqHDmFzZPHDM8/MvIRhr6MnehQBM2kF1S1b0NyXv+i3WgV2C9Tr2SKkNZMB4HlTQtbdLbDsNaScls7XU1NArVZBJW3lhYyPA1GESnLAJsp0d8ZEB+PjGUBfqyFIZnF2Iy14JG1afMC+oSYJcNJJwPQ0rrjiVCQJ8ECyGckUwC6aiTej+vKXoxNVsGNHtmi89FLAGJzfyDzpdjVt3rt341QufjMAms7gIyeeh8FG7v0nA205sIKNJmI9MYHZ2uZC94fJTAFMeXCuij17cn2PbYmLC/ZDh2wbM090EYcUxgiv7qlpyzlOy8WWLcBFF2EmCR2dd5paL3Gu8dM0B+MliB43KghaMxhrNYE0cokrzXsLi9tqLUV1vGaNGRlI4MAbWmKMsToH8kLpqd1oAHGMQwczXnWE2LDlbATooNKaAaabuec40OWJTkz7wYUQo6Oh3bLfalljQ20jwkbD6m3TJnQmzrAL/Ql77WwSYHExj/smnRC/P1VBmlbyQGxJ0xoo6HGY0eYYA2DPtG1Po5GDKQ8/bFGgRiMf2/I+50cuxvnskLQ+2isPT4y522dT7CVMu5K5e6V196XXx4/F/PFkkifN3E3RALZHypiZOK1LDJBSAO3ks1zzRUvRIKI4zstkNvpSCu36zkucD34N4GvgnN/Zc0d60jpJgZDPJ1+e09PFdk9PI5DxKYxBtTaL6nrjJtEAHTQaGXhsagDsHB0SOG40gCRBmDzggHcYg3Dq3rzO4+PA9DTOm6hbQHjHDiCOcfZE1g/RVme0P+ec7JpLLwXiGMPZa8zs6KkAMfMUMFGIIJsQOghsn5L7XBo36/Ui4EvjsdQpv/UxyP5UOxqyNAXqEI4N9mnWF0HaRiUyQGrcdSxCjlPJDFbgMNcc4vLdVRhzgwjgLggNoBcqr0+WAetSMqNCXoUQJs7LMgbWEcNzz5Lj3SbOvkS7oyjwA+lLTVRq7i3oRp4X9ZC3N41arFt/7l5d3Z+oc/dxC6LPzc3hHe94Bz772c/iR3/0RwEA559/Pnbt2oX3vve9uOKKK9BoNNBut3Hw4MGCVfyhhx7CJZdc4s23Xq9jYGCgyzLx0EMPOQtGI3spnpqawkknneRN45OjTSmwlEhQGSjSfWgvWk2tUcZ9TiHoLQeyBu91cEWC5ZoiQ5bL32Vg6FLX6vQ6nfRe13Qg0mNYe+z7gnoyzzJudEkNslR7tBe99sCX9dVUNhp418FhJS2K5pX38Y/LwKakjuGDhoA786DhROqE+mK7Zbnau1rXU+cj0+gAn7Jftdd6ma578Ztrqh05DuR1mhrI17/SCMMx4qu7ry1lbTjaMjo6WpjwekkYhtiyZQsAYMeOHfjGN76BP/7jP8av/uqvAlj5s7BMzj33XJx77rm4+uqrccIJJ6waRGdE87WQiy66CJ/4xCfWpKwngzxp524uKqXbifxd9vLNNAsLjgN7YCDbqi2ccFotuFVQO6raGJjT08Att1gPqmc+E9i/Hy3YNcQ4OkgS+9yKIgAJujhA5+aAeEPFuxiSzq9B2s4RfVlvbRxAfliu8SR2WJG60Ks80Vjr/ZOlYWAuqS/pzZ2B+RXMAlHFgcKsf6sFIK4gSoFqlAELXPjKSKkDA3lZ9F6OY6RNe/qRR4pdB4jt8VyEypPZAtQFSMv0OhZHhbFxeDpnfkmSbMGu+dABx/3amsoDxRUcv9LUnpibs7w8c3NoI3SxuWR2WpWqGy3YzI4E8o4UgcwAeC92BgXZx1I3HAxiLLE97O44DhAwHY0CIJiBLt0QY6/wXsqAJ+dFNzjoFrZj2Xjh5WxmrZZj5DoOHI4sdAFfDgfxRWebn+8mpV3J6lSOI/7O3qefCHP3ahfiy5m7l/Os19JoNLzpjTE48cQTe6Zhnqsp98kkT6a5O02R8an0Fi9QuFzRIJ38v9cNot8jVPm9Lu2yB8jJ11cXscOlkIkqTxyGMQECOVHIyujnYI95UU429PZ1VDnyOpkX0L2jSzojEMSnAVfOX5IKBXAe7Sar/qFDRQdym7UEdQPrOMCJSoDLhXnRR83ie54r0a+IDrjXHeCbyHVHpTmAy1NdoTV841BbZ2Ra0RTffUEd9fRh1m0pSaLHdz5cQwQCbJfntVErr1OPevgK0lLWYJWxrBO/FxeLrwH9ufsHa+5ecWDRtRJSaGhQjPQkAHDhhRdicHAQX/7yl935/fv3Y/fu3aWTeRiGuPDCCwvXAMCXv/xld83pp5+ORqNRSNNut3HrrbeW5rtWoj2ptUivWf1bXiODV7bbbSwsLLhvnyeuzkOC8hII08Cx9s4uq48vL6YtA0bpAU3gV4Ky2htYB62UHtr0gOan3W47XdAzXILxkpZEfuQxHYzTF0y0Vx9K73ddluR2Z9vYfq0TCYizXqTjGR4exsjICCqViqNuYV7tdhtJkmBubg6HDx92FDBzc3NIksTtONC60YFXNf2ONkhoGiHWQ+8GYFtlgFjZ77I/9RiShgW5a8NXL6aR+tcAfi/vcXmt5oqX43Ol4PFaC3eVHOtnoc9bf6nPWsudd95ZeJHpS2950s3dZYsBvWDyeJR2pRUxO4zJMW8XtyqOgfXrEaLtHFxx4okW7D3rLOCss1AHUAOAZhNbM+ersWg2B4tbLYyP20u4LZcsFFGUx8TqWnDJNpS0lUlY5xNOyPMltunIw+WHF/B/DbbyQ4CbgL726kuSQlv4GRjwqF2vFDKg1SlBJC7rtoUFTzCtsgUuStSXpZWAdrMJ60afcZ9j0ya74N+wATDW05v9JI0WjldlYsJ6oZ9yilMR42nKuJpa7SeemHdHiHZxka091nzKyT4dBEWAQdIX1esFbvdZU8WDD5PnV6lFjpGRESCywVRlALixWscNGRfYNeMzSFPkZUo++qzsuTlnl3BJBNZSaDZOOinXbebd7lQho+6ynXosS/GBKfpby4oRPL+s1dztwwuX+ixXlvOs13LxxRd3pb/55puxY8cOt1u0LA3zXE25TyZ50s3dPtHPM/gfd/rRFkXWoBpkZAje/HwXeeiaCuBz9nCvRB33bGJQbf6v5ztX9aVuqrK53BQ9gn1TQBvh0u2g+OZxOYfzWJJYg732jGYevoeFD5wu+5Q0m6cHB4vvCqHpIEjbbm52xeo+lX0rO0XPC0I/HQRop0FBLXNzXerAbBKgjdDSCvn0rAH0rKJR1B27fHQ0o+OLOrmetV5120Q7OnEVbYQ4eNAaHPiuItuQJBkFUlkf6Lqr94blzA8aQNfC9HNz9h2N+nS6jCp5v+gbSX9k/y5zbpb/et89Vyn9uTuXJ8rcvexuf8c73oGXvexlePrTn37UCm+1Wti7d6/7/5577sGuXbswNjaGU089Fc9+9rPxK7/yKxgeHsZpp52GW2+9FR/72Mfwvve9DwBwwgkn4PWvfz3e+ta34sQTT8TY2Bje9ra34alPfWph29nznvc8vPzlL8cv/dIvAQCuvfZavOY1r8GOHTtw8cUX48/+7M9w77334uqrrwZgwba3vOUt+J3f+R2cddZZOOuss/A7v/M7qFQqePWrX33U2r9S0SCkppKQ6fjNlx96YlPI+3z48OEChQYt+vSslUEpNTAoubsleK2DL0rvXw1IynIkEE6RdCAsg+A2y/cBy7Jc6b3NdjAvgrGsB4OmSs5sXrtuXc6pTdobyf9Nypnh4WHHSy5BdblrQHLIE+iWgTqlviSfu9QvkNPo0PgxPz9fAJKlfqIowuDgoOM7lx7h5MU/csRSzBw6dAiLi4s4fPhwwQjA/NatW9cFCnOckPKG/QfAAdeSzkX2Fes8KEy6bK8EoGncoNFH7jrQtDg6oCjrxf6Q4DzHM4+RE196jss+1luNOK5Ig1R2bdk4l/VYa3nHO96BK6+8EqeccgoOHTqET37yk7jllltw0003HfNn4Wo90ZcrS80x1113He6//3587GMfA2AjgE9MTOApT3kK2u02PvGJT+Azn/kMPvOZz6yo3ONJ+nP3YxivaktuYTFn3Wbyc9qTRS846YqbpSP+RmA1jmG5NjMqi4su2mxPPvWpwEUX4Xs4G2e/bAJj27cD998P7N2Ln/zJp+OM6AHgKzvzVc/DD+PULd/HqeM1IIrRQYg4LtJ2G2MXYO5RzBOse8k+9krUgann22qHhvKYiGlqnaMfRAXDcQWmloPrDi9o5cE6C1uNyTEty6bw4mzBFxiDer1aCH41Oiq2t8ut5bJP2HAeE+5ocWzrxS5isblTmvCOll7JmV7oEeboP5Li6oNr1SSxNDgAcMmll1qKEAppSbKAn4D1jCezSbMJRNvOwKkvm3D16MRVTO+z/3KH+ciIrcvCgrXZSA5dBx60DgBTraJ3HdF60tSQ74eVpxC8RoAwozZpR1W0mlRNCOsCWkXaBCZ32+yyprkhdfAg8OijAer1jRjL+M479Y1oTgGVLLgr6Xcq9TrSeHOhDogiNKeAsfFxy22f8dwuLAD3zo+5rhoezoGp0dGM670W466FwIEEaQq72+NlLwO2b8f3mhuBpjUSDQ/DAuuMqEf6AQkayHqxgfL4Us8RijCyLUcez7l7pYvrldoIlnrW67n76quvxgc+8AFce+21eOMb34jbb78dH/nIR/C3f/u3Ls83v/nNeNaznoXf//3fx0tf+lL8/d//Pb7yla/gtttuW3a5ayn9ufsxjtce9yeNo9qR2u3Okh7CZYZF+VvvupIAZi/AmNdnu7PGogiIbH4+MNGYbJ5LPPnqhD5dZGAmQd3FxeKOOCDXwcBAgNHRCqJaxXqmp2mOqpbpBuje0SZ1Jd8zZPuXYxAoA9TLmp7lGxogjGwAzTTNApOmqaUoS1MEcYw0C77Ol5aOCYVeQkRRiHA8LryjdOKqa0KATgEkTlq5evhNB31Zx+KUEcAYW5bh+0yJ53+QpqhSb4nVndt40fSMNwo7l5NxHDt+7+aUTXrwoE3K6YjvEHwVGBoC1q+v2Dq6OnjuEY43EWuA1SLvv5SyKsum67RyCEkxJsh2fIYFT3HfEKIw2GpXBUQi1oP1p170FL+U9OfuJ8fcvWwQfVkRX1coO3fuxHOe8xz3P3nNXvva1+KjH/0oPvnJT+K6667DT/3UT+HAgQM47bTTcMMNNxQU8t//+3+HMQavfOUrMTc3h+c973n46Ec/WqAZufvuuzHNLUAAXvWqV+GRRx7Be97zHuzfvx/btm3DF7/4RZx22mkuzdvf/nbMzc3hTW96Ew4ePIhnPOMZuPnmmzHq9gmtrWjv5F6ezBRJ8UEQXQcAJZhOkJPBRCXliKYjIYC6bt26Lq8FApY+ihRNPyPpX6THtw4YKYNbyqChEtiWAUHLQHQGCpV0HfwOgsAFXa1UKiA/ugZ1WZb09Ja6DIIAcRw7wFZToch+kO3nMenBT7B6eHi4ADxLcJllMygnvcQpMjgo8wiCACMjIxgaGkIYhmi32y7qMjnTZ2ZmMDc310VfQzCeupFGHfaVpHfRBh/Wh+1gX5E/XRoA9Hg9cuQIkiRBkiTO+CFBdJmW56QhwRjjDBx6jHNsSYBb8/hLXn5NXcS0BNEJ8HP8ydgEx5oLfaXy4IMP4jWveQ3279+PE044Aeeffz5uuukmF4TkWD4LjzWIvtQcs3//ftx7773ufLvdxtve9jbcf//9GB4exlOe8hT8wz/8A6666qoVlXs8SX/ufgzjlTrSb52+hR//12/2RGLFQmNw0GKUZBwh1QcmJuxb+dQUzt8SA7sTy/15+eX45IeBc84J8arXvQ7YvRvYswdnNJruN+LYuhonCfCVr1jU8DnPARqbnTNOT48ZyY3iW7kDQLOJEMDExJgDa9k8cktPTeXNlwAu22kMcM45wPr1AUIenJ62F87NwXGjjI7aDBYX7cVDQ45ypDoeoRrnQbsKoIJGBCiSa1P2IYBq3EEUBZiezrFkjZdXJCCitnVTD2E66xa0TtLULbKazTwu5vj4GahtO8Ph080m0GraXQbVqA3TCPHww5ZHfHIy584fGgowOBhmi+3coWrLlgwcYP3Wx3brfNouGihotdHGCknQD+QgehyjbSpObYXFbFQBjKMvd90oPe3YnZdemgexNca26847Lfj/3B1bgFYLU1P2+s0TExbUThLgW98CTjoJ8eWbbblZv3WiClotYKY+hur27Q7on58Hbr/d5s+gu+PjQNh8yBoOmk2g0cD8/GYcOmT/nZsD/n1XgB96xStwb7OKW26y2e3YkbV5sApEVXs7GwC1Ckx9Y2604bjygQjHUB7PuZu35UrSr0SWetbrufv000/HF7/4RVxzzTX4kz/5E2zevBnvf//78eM//uMuzSWXXIJPfvKTeOc734l3vetdOPPMM/GpT30Kz3jGM5Zd7lpKf+5e/XhNUxS9eLN7lDzgEivL2KFyAJ1gmuYalx622UOdgUlzMD60SeJqN2e5zE/OU9r4luUfGFMI+tjVnpUAz3xuZuBwklijN6slg5myG4eHbRq7k6dqDd/yWcdGkydFP/98FlzJpSLrKDtFI82SPsX3kWWmaQ7sUjJQP4wiy8PeUhO8MZnxF4hjSyfSauVGhrxaFpgdHrZpp/fZyy2wnOMgNEzILjp0KKckk00Duo3wuTN6iEqsdC1d2akz/c7je38rZgzUaminAaanbFYHs5glfCVjNvK+kMZoANl7bMUanErmPxps0jTXJ/OWY41QCw0NPhC97CMBeTnP8PVRliGHjXZCr8ZRN5LPymQdJm9dSog2BuGxCvSQ/tz95Ji71x1ZASpx5Ege8fXzn/+8i/j6kpe8BC960YtQl1GO+4KZmRmccMIJRyUvAnZDQ0OO+oJALY/RS1p7h0tQUQLbEkgmAB3HMcbGxlCpVLBp0yZEUYR6vQ4GnSQISXBY07Vovmv+JgAtPeKlR3Gr1XIgMIFcgt46gKb07AXgwGB6GDMNweVF8QRgXgS96b0NAMPDwxgcHESlUnG/oygqAP+ybEmhQnA/CAJUq1UHoBMwloYBSSvTarVA2pTZ2Vnnrc1dAUEQuLrI8nk9vfIJLM/Ozrr2UOf0POf4IOB+6NAhPProo5idncWBAwdAnnQGS5UGB/Y5xwiNDZKCRRplKNKDnv/LYKEcBxJYlsA4x+7c3BwWFhbwyCOPuICmMo3uG7ljgf03ODiI0dFR144gCFwfchxSl3KXgOSAZz7Dw8OFmABsA+s7Pz/v+uTQoUOFsS0NRdpYcDTlvvvuwzij0B9nwmfjtddeu6IF4fz8PN73vvfh0UcfXTNO9CeD9OfulQnH56P796MaBMUXa7/bi/1mOgLDtZr1km21gI9/HHjwQeCXfgn/PrkRJ58MbBqdBaIIB5oBajUg+MrNNmDhhg056AvggS3Pwk//tAWfP/TL3wF27rRoLFHZe+6x9CDbt9trpqft9W94g0USKVxwiQUOxW1RZ93lgpcfeqFJ7vU0RSeqYM8ee3pqKndEGxjIPYHpUT00BPzwD1tn3krrITjkVCLFgC2DETIBR9FRcKuX/aDBCd03+n/5na2iDrTCwi50ueu3ihl7YnIyd1OPImB8HDNmzAbbnH6oOEayusxEG7F3L3DXXcC//IvN76KLiowgXGRv2QJsxgNAvY7v7LUBQ++4IweqFxbyxWC9bru80QB+aFsGllMH7KNmM48sqsGOoaF8SwKtIfRS3bbN8cbPZACDtBNRFhbs4rvVskORw/Lhh217OBZ+8idtXbmDeu9e4P/+XzvUX/EKa8j4zh5ryNixA6hMfs8q7N/+zRqXfvIn0UaIcO93gGYTs9svwa5dOcMNkBtxPvEJ2+TMsRyba7PW2JQkVgennIJ/nD4f+/bl43XbNnursI/qdXt9rZaPB/YXVTwykt3DSVIcF9Sn5I2R35KnRxhkJvfvxyk7djwh5u49ex7F6Ojy5+BDh2awdesJ/bl7hdKfu1cmHJ/79z+KjRuruUd5dm/OpnkgQwJw5MmOYxQNY9ymwv81dVUUoR1VC49WDdjFcQbKy10+fE4XLJIogs4a4etllJPPFx8QbYwzisoYGpzOZfgRebloJk48Uezk4TwtaVsk0CufcxIAty7Mxbr73Hg1MK5RT2kUoCFd7hyQIgFn+dyVxuRGA/cmGwHkgdYPHsx3pml7B5nD+MinvZnVkqogwPvoo92vJrp5dEyQTCO1WtY2ORaVU0YXiC7dpDV43mgAUYSZtIK5OftK2mzmH6pLZsHXQMmMwlcwtt0ZWDJx3udp7rlNI4LG2rW9Radhk2j00c3XHyn6tV3bczjGjbFtcveqNG6J9+WHH7b1kHlUMYPJ++/HKeed15+7f8BkRZzo69atc9Fe9+zZg69//eu46KKL8Od//uc4+eST8axnPQvvfe97cf/99x+r+vYFRb5zIAdoVyKSakLzhWtAryzYYxlPsY8Hvaz+vbzpy9L4PJW1B7MPkNT0GjofgqA+j2GZn+Z81x8fz7b01taBTeW37zrf93La5KuzpOaRfOtytwKQe16TrkYC7JqDvtf40+3s9dFURfJ4r370jQuZRorm6ffVTwL/vh0fukxfm30BXXWdl8rnB0HKxm2vT19WLv25+/gSYzLPm+ytP4qyhRKJLoEC2M116uHDyFcyXFDpqJISTJaLa3ksOy65Xcn2WlphSsmqRa7fWBxjYMqkBa8W7fWjj8l0PcpekVuNbo+6Xp9adh5LnOMh6of8qOw+EVvTKTCKclCGC/LDh4vdXmhDr5UlC+lFAVCiR5+aGSeXmDz/Z/a9itLDCUBhK3whkQaastVrr+Gu/y8kyiqsu4h9oViXCrpnu3msp4fWsgfSE1N8Q2ypT19WLv25+3GSFc41fA7ymdAVN1oafeVkIMtbXCxeuJqbyGfk79HEsv97TcOFNvAE603h/yKg+opdYFc4x/asvDzX6/+SbGQT9UfOCT7pNU/43o16dnWvdyHqukzU+GN3lLUH6O7Wsiq5OCli/Mn8ZNuOpZSppOw28t7aq5m7n0ATXH/uPnrymN7yGPH17W9/Ox5++GF8/vOfx+c//3kAwNve9rajUsG++EFbigbDfcE89TXyGLnGCabSq5iUFQw8SknT1AWnlDzpzNMHqPrKl+d0sElScOg2yDZLgJvUGdrDF8g5w30gN2lkmF56SROYp3e55E3X+UvjA4/Ri1vrQ1KYcPcAj0vecO42YBpSncj6AnD6p5c/aU94nvpksNB169Y5L39Sv9ADm17bmqJF61/2Aa/hGNH6kX0p+5bt5XEJ4JNeR+4goD65+4L1ZBpJByS9wiW1DHUIwJUt9UgKFx6nLpmf7kN5rBdwr0WnpU6ezADxxz/+cXz4wx/GPffcg9tvvx3rtTdKX9ZU+nP3CkS+UPtciXQa/i8jbgLWU3x4GEhTbNqUOammpni5dP2iq3GthtakdcKu1WD/jI/nblB0CRofz/lh0jQvW7qZycLStLDY4XdF0p7QQ8z3LTzBuPU5TXMbgPTEq9XsQoYeP1kMyTwvulxRvwMDLsimWwnJiJla79rrTjaqbOeA1kmaIorsfMyqSAcutLK0niBijjI88wrNaWZSIEmcKkdHbbNGRvJvqSfqCFMW0a3XLYXIli25R/TcXNETnVTqBcoB9p/26GNFeVyONX7o2ZoZa0hXQFVJjzJmwywOH7Yf6i5rvhuejUZGedNsYcuWjfjhH7bFVZv3ApMtTEychygCKskBO77n5x3v0UxiPSg3NxpAHLv4s6QP4hCivhj0Nk2RV4TbIeIYcS0fh2maB/MbH8+pZ8jjzg0R9LrjMLX3cFq8X5YCsXyrU6bvivb7+Et/7j6+pD93r1Kcm3D3KVJMedPztzwOuPu3161Lo6KJK9bDXc5ffJBoL2LfXCZFzNvdbUu7j4lnPQNdamBUPselyMeZ8xJOVR3lXMhgHHxgSi9zuS1N1p+F6Mro9sm2i4nFrVLLjBw+lFTqOitf2wQWF4tqlRuL5PRpTB6TxTdkWJScN7Rw7DC+jHzF6PKwl/M7f5chncqTuvBOh6IXNn9TtfJyzoGjo5IT3Z5zlEWJKlOoXoP1snxjull/pP5kU4C8X4DirSPfT5iuTNekjmF/SmeFrpcaVRFdT93m40n6c/exl6PW6xs2bMDrX/96vP71rz9aWfYlkzIvXSDn+wbyII4a/NS8zUwrgVuC5ww+ycCZgN0CYozB3Nyco7IgpYekl5Gc6RJ01R6/FAKXkq9btlVyhFO0hzw9owELjBr1ICMoTioOgtQsS3qxSwOEpN3wGS0kHYgOGMmAp7qvpLGBfTU8PIwwDB2YKusnA4gCcHQgrMe6desczQtBZrZVcq7LIJvMZ2FhAa1Wy9HJtNvtArhPL3UNrFM3ANw1NBpI/TAN6y8NBOxz5inBdPYr9Ungn20ivQ6940mdQuMAaVMkJ7ocE/Pz8y4vbbxhP9Cwwf6XZckgvdpoI3ctaGMCf2ug/ckMnFM+9KEP4Td+4zfwlre8BTfccEPBOLJS7/IfBH2ttfTn7h6SpkClYl+QfVzhMp0EZgXA6sDNrVvdCmVT9ACQxO4t3jAPvS94yxZ8b6+luNi+3Z5+8FAFm7ZvzyJNZttzWy273/qUU3IEc2Ag57dg/gVU2Ir0Fl5YANLhEFFtY6F5DJIV18bsokmA59yZTj5Ngo9clGzYYKso1VQxGYc5V2hycTsxYY9TF3S5VsC1VdwSYALz1yvkkgV3xbRRqZlumhsJdhBk5ko3SRC0ZtCJq7h3Mr/OGGBzbPu/EnUQxwEaDTsM4tiCtXIN7Hg5o7ZrcxWWp7N+xRgOHcoBai56uZgNTQeYzManJr+X3yKYWMFgQ10wcwAYH0fbVJC0ip5p8/NFxh1jisaAkRG7gJWUrVEE/ND2juVwyfaNV+IYz51o2P8/dxuQpqi+yKA6MQHctgvYtStX1MQE9u7NbsGJKuK4in27cw72vXvtGLvwwpwqh0MmSQBEKRzqPjkJADj5R3PnfI7TTZsybnnMFnRXTZpAmgBTdrxUajWY+pjV+1TLb7zQY1OiExJNkYDIcQai95q7V+qh1vdmO/rSn7vLxQdy8bmu8erSiyWgJh/SlDRFkLYRGoPh4cDNoUAO4uUBsEPEtTEAQCB3kmkk0Af0ivK8dfQB0dlznRzwSasYSFTjyMS+gRxk1CCrNSZ3l4EswLTLSGaggVxyofQyFvQCwiXC2+sa+T6mr5XlZg2U06AWXXXANpM+CyMjOStaWbVovJAiA3cCxTyMEe8e0nAi35fku45PJ3pMiPuAQ7rRKALQklIljtX7j/ukwCNKUerdIkVYsF37bMZsO2PKGJO9y0jF8XdkEMdFg/5y5xQfyA7kw3RZzwrk3UCHB3etMk4cD9Kfu9dGjj/TSV+8IkFHCc5KwI5gqQRfZUBQ6fXKYwTMyZktg3QyPwKZBFZHR0fR6XQc6EgAVYL4ZVQYGlwn+EswmEE7ed5HjSEpXCTdiAbRgyBAFEUOqJVtkOAtkBsjpC6ZN8tkOgKtg4ODBf5uelATRNd9JttEPUjjg6RXkUYSeo7LXQESRJfe0wScCfpKIwFB4NnZWcdDT75u9jE92jkG1q1bB3rhs07UBfOXFChSl9ILnX0jaXfY5zJAqRzT0hhBnnIGNaX3PIF8tq/dbmN2dtaNIZbDevA63ic8R93rtgC50aHdbhfKk6C51g3Lln0uj/8gUbn8j//xP/Dnf/7neNnLXobf+73fK5zrg+h9Oe7FtyrSC5euF/4oX1hmpNDtibORJEB18juWn3nrVrQnzi5683BVlsn39ga44w5bxPbt9vvuu4FHaiHOI9e5XOjThVoimRIYjWNbBhFGAGkaYm4up7E4fDjPlpexSnNzcEG1gJxuW9KO0jOa1zYaQDB5bxFElECvXKUb4y5um4rV10SnaMCQKzHfolF6+GX5kyrE6Vqu6mQeWTmBPCeR7qx+7dQaEJImsLkRAfv2IYhj7NsXONUODQGbL4hcu+O4gnrdcm9HkQVrA3Tw4MMB5udtsytRB5icyvlPp6YAY1CJIlQk+J0kwHTWvkfV6l+6lEk9UbdRBNTr6BjLt96azr3MTK2KMOuHA0nF9akUSVvPKtXr1gBRq4XOYCK7JDQdy+M/OWkvJvkqB87u3Xn9Wi0LoN9xh1XWtm3AxAT23ZLj4MbYrBh4dXoaOPNMm3R0FDivcQBIEhyINhMzzyu+bx+Qpti0vo358dDFXK3XgU3r2zZI70035YF54zgH/zke6nWEE1m+cgcAF9JlSIpvzMn79zhbiPeau491cLK+9OWxCr14JT+zlq5btswAqecbiY4agyiquOlNU7mQQ5nP04GBiuWalsE6+SnjF/chkBKczjibeUnS7Oah1piyzErbpmXW/Hb0bxI09L0oyGeazkQYtVlfKQ48lpWWFlkfwK4zkPXy6VAbRaIIkScZsyFQPhbb9fdsaoPHMsZjFIl3uJYA6gEbPB2w8/dgST1lW3Rgcple6VwGyfWpZiEz4FjqwGK/OqA+mbUnkwSYT4BHk/y98eDB3OrC8WhfAu3FAwN5APiTTiq+y6GIu/u6yZgcQHfjq4znHbABYwHwDTRU5wvX+XQXRcCwUgBQAMzbaeDNRtuD5Gt/x4THnQG8P3evjfRB9ONcyvijKdJbenFxEfT0leCzj/uZgCXBzaGhoUKQSEnNQjoLCd4PDw9jcXGxAKTzGgnwSzC/jFJGgvoSdNb0NFIkpQsBzjRNCwCopKiRNCLSgCD1wjw037f09pegqfZklwC8DCDqqz+vp9EiDEMH+Euvbl6/sLAA7WUPWHBae4lLw4bkNieAPD8/7wJf0ruddWZfUY+yPtJLH0DB2CEBY0mF4ms7wXHtfS9pXeSYZnsY8JRjYmFhwRkZOPZoPKCxgXpmXVkvSfHC9nHcky5mQEyK/C13HUh9y/tNG1z0uP1B8kIHgHvuuQcXXHCB91wfRO/LcS++hXOZiEVkJ8q2cGfg2+Sk/flDJgXuuw9oNFzykCsgFYhweq/F78bH8/igzOe8y+suSFThDV96ux48WKRI4Zu/+E7T4jqJxRMg1c1m8LTBwRyX5GKd19BD2RggaB6wYHCS2OhrgPWYl9GzqOcowgyqmDuUe7afeGKA0dEqojhb8OkVjg+QFMe4KGKbKlEJGMJ85Ufu4c4ymE2Cgld4oxEgyOpDr3x5GQs3Jo+VOjwMBK0ZIE0xPDyGxcUMQCfATCBF737gxbR6DA3ZxasE2I1Bx4R2wanRgEznpEbhJ4ryfl2/3gbKYzU4vKSaNKYRRQCmmwiMQYXlSRAoSeCieE5P5+2cnLRjYt8+O6DIo8IIpRMTQK2GTm0MU8K2YAxcgK+pKZtUOoJjzx6g1UJ8+WZbb1aa0dPiGJieRq22GXFsT8Ux7I+9e4FbbrGo+lOfaq+dnLQFjYzke+6pBOkZqUFwvcDXaIdG8DzveI+n9Jq7y0DJMllJ2r705WhLr/Faetv5wHRfxgBM1G1PX4r9LUmAOA5gTAhjQoRRp/sZIcrwot/Z/3Kem5vLgzCWZSWzkQwzPK49hB1I7GsIjbZ8AOuPeEdpI0SadDdJZhlFQfY7m8fKDAq+Ti0zdmglyLqJy2RQTZnl4CDcu5yJx2CMCKaZpH7wV9fP029dx90kps6LzuogcK8ofPcqw4/l5fK9xNVdvgjQuM33NWnslu2JIsuXNjiY7xjkvOjW2v4pTzfXvSfKAMDyW4rvfz0WfJZ/IH/flEadTBmBo/QJCq9/lIGBcvs4pTSe0OMk/bl7beT46vW+PGbRdCdaNHDtC+QoPYrlR3J/S+9rCThrfnDWR3rtauBMe6frY7p9SwFvvnM+OhkfN7XvXC/ppaOytvr0rw0Iuk94ra+vyj69DBBlbSvT+1Ltl8FofZ7aK/346qXbL3Un9SfT++rbKyCqL6ipry966UN+9wU4/fTTsWvXLu+5ozE2+tKXYyYrfdukrBQMK1mcyuKV84y/DL145X5V6SWjVjZHE7db0hlnKZcWT2Ukn2ZX+3pdL9LIdVZXACxffj36nUaHMqGtolC9TM/sEmPgFomFdHK1SyRjaKi7P30iMipUXVZGVczXRL3Y9alIHyt4DvLb91sqR7aJIItvAGWFUh28jM5wQ0P203ORy4uVO1nXwn4pwGNwsPteOlpynAHoQO+52weSLPXpS1/WSnpNj2X/ey/2JSq5V5edvxB5b7i5qUcZZdJrOtR16pU9H5XeNL0yKtOTusYH6GvQWqYpgJO+MpcrvRpsipzovmnWGPTu0KUG3HLreozmgdJs9QNaRxXtlRnb1+PFr+ydQc7nXfXoZe3y3WS+AlchT6Y5qj93r40cf29tffGKD1CV3xQJbGuebAkIksaFnugSiPSVJYH1hYUF58Es6UMGBgYwNDTkvLxZpgYfpYevD2SW9DOS3kN6fMvrJJAq+c5l22QdZDBQWR9pEJCe5iyD9ZX/ywCWpH4hbQnT0NtcUoXQ21ly0Mtgl/JDnQwODiKKIrfjgMe0bmW/a0CYXt1SXzrgJ+sgvcV9Y0zS7Egvdh9QrY0M9IyX1+m+krzq3GGhdzcAOTf78PCwo9MhBQ69zmWQXMnFTl1KkWOQ9woAMKiubqtul9zNwPbrPpD6fbLLr/zKr+AXf/EXHSXP17/+dXz7298G0PdE78sTQEgL0suVpkwEIEqHHbQit/XVbWFl3oLwup1tWmVwQ2ZXq2VrFumxpD2rSAtDD7Fm03r80svIGOe5XB0fR9yo4OGHix7HsmnENwlcMg2LIiuHMflverKNSXRT83Wz7uJ3Ne44TzTGJqNqEliPvahWgZQgzYOfF4JlRhGSJOelpfe8MSFMPIYwIzmdTQIYA4Sx8lrTi+CsMgMD1il5ZCQrs9FABwG2bMm7IopQ8KoK4zZCA0S10NY385iK6hsRRdZjPqQLvyRo9XnftVq2P4eHc+4c2f+w4EPA/7Pgs53aWEEf0gNRfoDiEApNx3m/DQ3lVSE7jMtE6k3tMHC7JkZH7SA+dMhuseD4jCLgh3/YHtu1Kwe9s8G/datVJ5s7PW3VsGULcO65IvAu4LzjHOVwrea82rn1/IDZiLvussVT7TDG1vOZz7QHs+Cq2LIlD+DL/Ck+D0cKb5YycEmOr+Nwpdpr7u57s/XliSRLYWtd5+UzWN/Hnu8AHRgTuGeofM5qoRHWy+DE5yU9fn03mp4/kwRBZHdZtVM7lzHGp57TmV0ZwM7leReQ7NOBzlymXeIdKU1t/agLaZiWgSYBoEqaOt9cqHXhA/V9O4S4ZSxLI99p0rTEkJC9vzhP+sjuIoAJ7Xucr7+W8+Bbag7wgMc+FZfhyVKfrsnUARPKvqTnAvtcgul8KeOkye8s4DdqNUtvknZXm+OL75FRlO0uTNKiB79us69PmVaOBb2dUoresSmUob3I9etL2XB+DHj9MZf+3L02sqohoCO+nnbaabjxxhtx+umn46UvfenRruMPvJQB5/qbYB7pMoAcnPR56WpOdMkLrb3DSZdBOhAGG52fn0cQBKhUKjDGuECZQ0NDYBBIAsiSK1zSX/gAcV4jg3XOk9wtE14jwX/ZVlK5EEyXFCu8VtJ2aIOEPKeDmzJtp9NxgG0i9v+QL52UNAzASqCY+iKILnVMKhJJBzMwMADygUuDgqZPGRgYcBQ7pDuR1CX8pm6Ghoa6KEmk4UICwVIPsv2+nQQSlGe7mJZGB+omSRKsW7cOQ0NDrq8Y/JNlhmHo+pn89wsLC65N5Cun7hgslf9zHM3NzRXqxH7SYK68b6hXSddDehnqoN1uF+hk2B/y/pE0RT9I8rrXvQ5pmuLtb387Zmdn8epXvxonnXQSgD6IvtbSn7tXKCQKlwsOwP9GLV/+M+kgQJABbmNoAzGANLKgXByX8nPPooLp6XxtIulRxsezAGC+RTa3TGdbu6PxDGDeuzffnpsTs9rVTJIgiGNsGh/HTJLznXPtxB27Bb7KOMZsEmBkJA9MRW7puTn7m+uV2kTFbpclIqv1JyVbBIXGYNOGmgteSpyVWCs/zjCRXduJq1nzQsCMIU1yRhRj8m3P+aIgn9ejCBgfrxaXU3rhFUVIm/bUhg12AdhBBTNmDCYBzt+mnu2TzbxdGZF4oP9vNBDHlQzwDQBUMTBSzYNzigVcvQ5U407Oo0MlAK5fOyZE0mKVAyCqwoxXrf1kXz5suFCUupR9XIUtG5MWrQ6iCJVaDZXRGKNbK0jTrC5pCqToDahQl3LruFzRZ+BEu74548GfyMH2Wg0BOrj00sDWjwNta91x07pgZJTxcQBAM0v64MEQmy64wJZ71lnA+DhuucXakyYmbEzeKMrqunWru94ZfcbH7be8fyhlgI7WgXTrkoYeqaPjbLXaa+7uL8TXVvpz98pE8ncH6CA0uVezvB21OOMjgE5ctXklItAwz2V5yV04AXIO7NAA1fV+tI3zsw/4dAckRUpZZaXxPcswNAYhgEotN6bKR9RK71uK9ZIPbavl88pn6PWBnqKhEkDX7Ce+y+fmAgwOVroemYV3Et1IiX5qZdMCK+KlUDR1meyfAy37fsT3ouJUEACZkd+nCi1lRgw3nmQm6iJpsPElK83X9Re632e1RR0oRh1lOqaVgUSzb+rSBaKP8yyNkbzxLf97tUwsXk7aIkjpwlzO809QfnAQgAGiuuBWL9GdBMzTFEhV8axCQW/opmvhueONxoXSn7vXRlYMopdFfK3Varjxxhv7k/lRlqXoTSTgTZBSgryS51kH09Qe3BKMllQg/J9gKwHDIAgwNzeHgYEBJEmCwcFBtNtt5y0tr5Me6dITmh7nsj0awCQoSRBd05SwTZLeQxoHJEUK85LGBhloVFOqSEBeAsTkEadH9cLCAmZnZx0oyPIJALPOrNPw8LD7DsOwwO8uvZupE4LoQ0NDrnwC5TLQJ3WxsLDg9UCnvshnz+Cp0utbeqBrkFOC32We1NKAw3QajKf+qU8AiKLIBbel0UHunNDBYTWfOfuB3uUEzOXYoSc6PdujKCoYVfQ4kkYUpmO9eUzyo8udCdI44aOG+UEChN/4xjfijW98I6anp9HpdBBFEU444YQ+iL6G0p+7VyF84ZerKrmSA5Z0R2nDAn3B1AMkQbXIHVAMIsb8jcGhQ3nwRjrwsqhGIwMNGVhSeVXNJgEmJ+W6McQZ9bpFDOfmLIE0yxoasr8z996qiArJwJNRlPF3qwhRJqpidDSn6CaAvrhosUbSdydJFlSLCy6WrRfgxuRAf/Y7iCJE8RgOHswptJmNxCHJKS+7y+fYBFiaeMkXy/Xa0JDFbKsSvBALOganowTNA7aTtpzt6Luxe3fRw40XEDiWbX/4YbcSD+sRkuT/Z+/voyTJzvJA/OmoW1FRWVHV2dU53TmtmlFpaEktMRKDNDASCCQMCIkVOoAx5ugceWVjQDYCC4llzWIvI1uLDto9WItsMNisxTHWwv7AZhELMtJihIUY64tZMZJmmBbTmmlpaqZrurO7sqqisqKyfn/ceG488ebN7I/paXXP5HtOnsyMj/vx3htx733e9z5v0qAi3dgAnniiuf5fXfUc7J3OEjorSyFp54Cltgs60O6q/LjEn+k0RjtK8Aij4nShSzLydju4nrdo1ekVof8Ms1aTh925hhEky4/AtY8ELtYBUqytVTTk99bqzjLgb6yshEYeuBZSDJF88uO18cCT0ftynDkDfOlLvlKveIU38LilBqXrE08A8yvHgBxwK75K99zjz6+seIOIc77MF7CEk+vLyDLgeNcfv/9+XruMbncZKQZ1OSahQPpbgSf7LFzkHfKVlHFj9zQ42bWT6dh9BaKdk3N2QJ61ZOxjRzCQr+w8b4XhqZTH3Q8NSQUQlqPesI386v9pliH1LxwPaKIKTsjr9T2q46QFHO3xyHsnqYB1AP67igmiwRTtczwJr3cxr2sdTPV9NuG9pjRtHHLo8KxxV4AROzYAnk+Q5y3AKT95Ue/oM1aKYeZ3sCUcaDGqugRDpCiBLG0M5f1+vYkvy5rBGe23pkuJdIOGgzz/O1cbejxXfn2NAuw0DAHeYDPS3wvzX8emWKPrmGQLrcp3PuaKxhndKwCIQYFtx11sIZgJvxVEtwYPekZU+W2VaRjHez3fRzY3m8XiroH5eVYhaejOss2wX7G/8b8Wwzu41M9W0m6PNZzBuabx4zqR6dj91Mtlz9zGRXy988478ZM/+ZNXtXBT8RLz9B3H98xv6xGsntkqlnJFPa5jonQxCpADtYcu4D2xSfFivW+1DhpEk8e0HGogUA97oPasVtDf0pQo37ilhiGgSm9tC84r8EkAV3VMkJT0HfR6Jr3I7u5uAFRt3dgWBI1JA0KAVmlQLCitXuIshwVqdUeBpXSx1xFgV8CX+VuvaV5jg6ZaQ4hSyjAdBeU1UCt/a5srLQ/TU0MAhd7kgAfh6fVP/dNjXNudxhT1Lrd9UPVNXfIeAI0ya5+Iee9rmnaXxzNNOp0OAODChQsApp7o11KmY/cVChdmsVXQOKnO6VolJZDabmOYL1XbWIvmCqxCEvdQL8IWFpqT/BQDoNdvloHjhiz+NZ7obZ1qtbazUy9kiFoStNabyhJJntcLkV6/CaJX3s/0+nEuwfnz/lYueCgBROcNwPjgTzFAIK891kgTQ2lQdlY6iAWG0qba2WkC7QSS89wvCLMs8WCD+ehCf3YW9aoOtUoDCq4BrOxuAWa8s1NXrCxRlmmI7UVwuWkMaWICMzP17d4xzAdhK4umXljf7e1Q3FAU0pGnbgj0xTOMnYgFOnPGJ2pX/pROpyqHeHFWfZExUAn2z8wkmJ1Nsb7u7Tnr6972UJYe0O50AJxoB90VBZBmZR1RV8Hrdtsfv/9+v7vjjjuALMPGRhoCv5alN0isrdV1X1vzt507Z+xizqFXlafdrg1Ya2v+Q4r6m25KR/3PLmdVasCdcP/lpHGNxY7dl1vc67hq171Mx+6rINoBnWvg1LFL7VBEEF0pSJTTOeWN1rA2zuBuXur0ag2erQSrVcx4H/22FbMDR/Wy43vaA+yj6/6IDSIkod76IzfFjsuxcfYB6lVxVeqZYy6HUovt+np54DRx5WidZQwH4INfRwJXOoLRZQmXpU1AFenI1IS3x5hmYkZ8zl3IiGL1Wpa1X4PSr/CaIZLR+CP62ypWz8cya1Q88i3WCxrEtzca05ZGe/GWLBM6Hs4ldGKqIDrzU8cDmfQU/dHbGPyVtDCULPPzDeYd6yfaryg02jS6rvWUL8vmMxnT6XUq07H7qZPLbvlxEV/n5uawSfPQVK6qXCpwFAPqLGCnXN6XIxaMjZVRgVICyJZr23rIq4e7DUxqwUhNxwL/6lGuwDm/bVljPN8WFLYe2LYe6vUOoPFtgXybF73Yy7IMOlBOdi2D8rTr8ZgHv91dQMBbDR30RLcc+La9lU881gf1mP0d87a2Hva2Hpb3nuWw11qvcdsvlBKItDD0PNd2i7W19mG2ue2PVu+q+0mULbHn5unqkf61X/u1E40FakSZgujXRqZj95MQu7gA4gtGWQQQXA74uyzsyhLBO6xxLxcT1aTVUjiGW8YtlEVGuE1HEoncp4jtReo/Dg/gIpCe6I0yx27W/7qV2Hj8z8w0Pacb6Rf1qiBWfJuVXSPSq31+vgKUuVKTVWKr2q4c0u77/NjOjTx1cWX1q8fNyq3RBcp6Rz+PLyw0F6m8JxgWyhJA2uCzZfIEIfSekPWkVZJzXjFUtvYFWbRnuWyvd85vbncOs7M1v30sae4MZ33zHI1nKyzEtZPFdoOMaXTnmnXnmlh1GLIrCszNpYEKvd32AMrCQoo899dfsVdW7B1yKeeusVzq2D1diF87mY7dT73E8GcaKq2MOz52jL1YxpWMUKXwe9zDNuldMu6/VrT6JgVJTC76StK0LvPmmLp0XNI5jL76eS+vde4inuhV+bLKE111qjZujgEoSyRZBueShiEjOhfDKAXMuLra/9YTXcfqS9Z7TGIA+yQZ137mHMdS/rbFsdOaBq2Kna+qN4Q2pFGuPayGFEvvw6mKnaZcTKyn+jiv8ujx62DMpkzH7msvl936jPj67Gc/u3H8D//wD/HCF77wqhVsKl4soKpg6jiAXL2dFVjWe+z/WHoKeGveMQCaD2dRFA2gkSCzlpnUHLOzs5idnQ1gsnJLk5aDXt5MSwHQGGDOOjNwp/XIBtAoH4Fbnit1QpMkARBnoFYbkFVpYuYq9IDc3nmeB7oW5kX6lc3NTezs7GBnZwdKscM6q1HBerPzm3VgORU0pn6oU9LwEEQnx7i2G9NVXWmbW+94enVbL3M9RyBe+x29uZVjnIYX2//YftYzXvXBvk4KGPLNUy+7u7uBtoW7D9iOFiSnQQPwOwrogU7ue+VzZ90AjAR4Zd3HgcUx/T6d5Lu/+7snni+KAp/5zGemIPo1lOnYfYVysUVxDCStANgkywAs1aB5NfMvCiDNZRHEc50OBmWC4nQNKGoMQ+fQXEmUZRNpr6TdNng4F5V57l196drlXB08URdlVZrMIo2s+EIwz6JAmmVot1Ps7np+aaAGGfIczZWvfguKPSgTuHwpcMiTPoVO64cO+W9uE85zYCmrvPIrfacYIM+9B5ll2Qgc7e3RxWu77UH5pfIscKrn3Y7X15tRsPIciXOeQgSoPaL7fXQ6Sz7NLPO6pct3t9uMvKoFEgSZW/nJTc6mOHy49lpzzjtbHz7s6cItKMz20LqVpa+CgvEAcPBgnUbgKVWFaL/sdGql2cCn4mEWuN510ewcltttIHfYKn17bm/X3bHdrg0DVFe7DeBUP2wtb5UXaq9zRdxZPvbpPA8AyuysB0u4Nm+3vZd7UXiv9GpDSJB+vwJhTp3C0ZUV3HnnsgfQP/lxoCzxoju+IegrPBMxLzTrlmdX+LYh7DXXgVzq2D1diF87mY7dVyCX8DzxVTcOAJ2dbQKaNsnGxu6Ya7GVcd7BsXJPAkJ1/LTHbKVi+RuukcRUMHUOadasg+V+rjnSh01qqphU6SonvU4JxoHQFgxVGzvPJf0LCBzfnDDYRFhPjR9SxSVJsgxpnqN0nh4Np0/7cysrPtC3TIk6nXiAdVtVMwTaYoz4KsSKa4eJumvV7ZDELlCxhpjYuZgwcw7URYHEOWSVd35ZjqdECRR7bth0RGDllPNcK209GpwLTgucI7C6agi34P38fJ0kszbQQkPUQGOn+o3y2WebFzOT64DzZDp2X3u57FlbLOLr//l//p9417vehX/7b//tU1HGZ7zEPHAp1vtcqUcU5LWAsnoLqzd3DEhXwJ2AsvWYVs/znZ0dDAYDFEUR6DW0rFmWBSCXQTAJZitgab1+CYwrNzZBeQLb5B9XUJPAKNOzHu61da4MwCf5xQn27+/XPOcE6RkYNM/zEHAVQOBhJ8e3gsYKzKrnsnqOKxc87yHQTOCWdVfOewVj5+bm0Gq1gl6HwyGKoghc6GwbNVBY2hmKelYrkE6dKQhNg4QGcqWRQD3btV/zP0FqljfWH633vOqCxguWK8syDAYDlGUZjDM0KCgdjfLb8z+NF+zbrBs561lmlmdubi70uSRJQr7jnlmt19MRGP7Zn/3ZiecvXLgQtiU/Het/Pcp07L4CsZP92Hn95uyUgSM7HZS5B9FbWeaDX7q0immV1MvSanX48Okk0F7kuQcVW8XZ+gB8UDIgbVKOAECeh7UP14ph0blW1gBkxX8eRZVldTdEEhYfLfUOr+rR2O5aFFiutowGcJngvBKLWoS3OrZV8YH7w02vON568KDXh3NAK6sWaKfWmnvuez0sdzq40E/Grt8WFvx/eidnmXC+33/Sp/vgg8Bjj9U3cnXmuTz8TST+7PXQ7S4hLbdq3Zw5Ewo/7Bzx6VtwQ0B0tXGw3bVbcV3ZKi94gH6vbvtAlVMlm2RAK/PtVxS+2NYzfSmnt305maqIIDqNLBaosVFfWb9S0q0K31pZwTD3AUl3dvypbter8UUvqhbexYWaQob96dSp+mL2m7Ksg8MtLHiEnJajogCyZht3OkBy6q/RynNkNx3Bzg5w9KixefR6nhZmbQ3HVlaAk+vAf/2vwN4eWnmOF544gbP9NPDKh15q+3QMMNCGpEUnpu/rQC517J7yql47mY7dly9KjTJCPVKWgASAvAj2O/I7JoOyohPJXdPQp3kqB4ZmfjFUy6J8/AjY2ABuq9dOI5gk38exPG3lrIsvUDkE1NztdX4KrjfH7pBsxG6oQSdtMSzIzO8Qt0PrZHaMjegYaEZId86Pzxsb/lwVX6PsLnl9nTzZ5D2rBuUUQxzroj7Oiun/WN72dwSpTRsB1/15l1k9N799MuIpH0P1Y5YJS9Zuy6Zpmf6WuNIbWBzQakeeqdAG0haa/zg+nnF9u7qEDhSc1/L2FIPR/myr124Hh4wYxQ6zigZ01fIYS0fj3RKhBvpKyHTsvvZy2TO3WMTXZz3rWfjf//f/HT/wAz/wVJTxGS0xT3SK9SK3/N0EF8fxY/O+cTQtMZBdvaOVakS5vA8cOIDd3V0URREAZ0qSJNjd3QU9hxVgV09tAqoKmhKYVQBZ+cXJMa7e79RXIQOH0obwP1AHhhwMBhgMBqHsTJuBGQAEAF15yqkT6p/e4QrSWs9vloHBNGdnZ5FlWQO8JSDLMqvHvQ0cy/ZiXuwze3t72N7eDuA9g5kSWFdub+1LLKPlwVcgWYFv8tZr8FHVu1LbqN75X0F57eNqHND6s39Th1pGgufUJQ0dw+EQ29vbocxqFGIZWB69l/1G+7I1TGmfUh7+GAWMyhRInspTLdOx+wplHEhG0Ym2AsuPPgo4h925W/0kNHPBC52OUC1JY5i1cOqUP7e66tduLWx5EJFIYJahdOLZzvJVKwEGPeNiI+lfAHoG0KQ71aFDTaAPCIA3A0eF113b62DgWij6wFKe1VEq7aLsZAVE0wubSHVsVVwd2zjnnb+Jy6pa6Z186BCQ9s967m4unAnYKwe5c8jbywHP1makHSHFoOI079cGj6IAHnnEL6AfeMB7pLHNmXaWecCWSHe7DfT7WFoZ+iCbLHSvF1zI19aATmep5sxlelWZt4okcLMTLGd1Ari/3qvBam+BqQEBfnhTVWnPaZ80VB28zntFc+FpDRy8oSz97oh8udFsStsCoAmgA3U0U8CD3BUHT9LpwLlWwJE7naot2GdI3q6u4mtr/vfq6iiNS7/vXerpJl4ZdJxgEjMzldHgk6eAdhtJlqHdXsJNNzWTCcaT+Xn/zPV6wJ/9ma/TV32Vfwxuf3Ew9kQBKH0eFB3idTFw7ToC0Kdyfcp07L58uRhIRA7ycfj1hOHqIlgl1zj1utc5wGVVHAU1Pup8QQc+TVgN2Aq2ujrAI7nagWZQTueSECsjCjSPA1RjLt/V70RAe37Gefqqd7LVLUFLBsdsgvrVMaFpC+VVoFpBdEuqvrvrrbW8l2PjzIx/t+/s1DFisgxlp8qTgToYECPLPBd5sTUayyWmT91xBvjxLKYUO3brPCnPkWTVNbIDIN5Pk2ZAbyvjUPhJEgO9x1mU1IDA/zHEX+usThXGOGOLEWh6yjIEkB/ZdWBBbAN+J3mONMvg8iaYzkuCcSY2Fqtlh0YV1FXOsqQOKjyVZ5xc0ezNRnw9cuTI1S7XVEQuFWCLAeM2EKOlgpnEn0SxdBwxLmwFVflfeaU1P3oLK9WMAr8EK5VmJeaBrEYDeojTC5zgJstBT2sLaKpxQg0Els9dg6aqBzTzZB7UkZ5XWg+WQYFo5mOpS9RD34K4yr1taW54nnlrOvTSJ61LjO5G+xB/sy1iVD6avvKIx/rBuD6jv0mPY721mW6sT6snve0rtkwKrlsqGrtDgW1FqhmlU1I9aeBTfnj+mS6HDh0aazSY0rlcW5mO3Vco6pkDjHrv2sl3WfoFmi5Sq2tG5ttynHQTZVnxNOqirMqzrK5tzN7EMyYsUO3iIraA0cXGJeigLP2acInrCLtg4sKm16vdqm1eWu/qP1VVFLUTGG9h8mF7sC6cNzZqvhMpg1+gJyPVck6CaNpIVQR+GQXTRuFUhLssa5BX9cwMd3bC/6LPxWCz7jEAZGbGZxHqSkMFo7VubNTgtPXujyI7aQOwaCz2FQWZtNsiy3DuXJNrNCzctd3Z1wlecEsF0AQ3UPfv1A29IWN9va7b7q6/gOT6VBIBjcqrLCVCDjRJz40eQhDYfj+AAlnVlNz6XfKhYvtvbwNPPOENYYD/3eshwRBlmTSzUD2o7u2iXr9vEJk0dl8ubjDFGJ6cTMfup1YUCI7FlBgnik9TLB7HV2yqA5odN8eBnLGdQpKuxYttEv5dGbkpVmitlPKKX+ThpbHdYqaa3EgVYuNVrEwXA9G3t0fBc/7Xc87VgVR4jI1eFHX7k+8r5lWu6Cv/WxCdHu62TBTlD6mtHfV55QyT47EmGIf7TtTzuPOxhPTcuL4yCURXsUC6GILKEsEBJFqfceC5thMjito82u06TosYJRpTXzXWXKy/V0ofqeZ1NsBNx+5rI09qRseIr1N56kWBPuvVqoCh5Qu3YKh+M10LbhJwVK9aBS6Zj3owW9oX3kcAViUGMBKgJV0GvZstMKwc6DEvekvXop7Y6n2u+athgNQcBOfpiU4vcQXn1RsfqD2qbTBTSx/DvNWDWY0CsetsmRUAVh71mFe0BYvVEKFe/DFOfdWL1sWCmfZlrYC19iO9z7aRNQBQlzb92DOg9dK+aQ0TTE+NLcPhMPxXjnd6xXNHAPNmGdUAos8OP9QfjUbjAo4+3eV//p//Z/wv/8v/gte+9rX4+q//euzv7+PP/uzP8H/9X//XFET/Csl07L5EGQcwx0BzfpsF0Pw8QW8XKFfCLQYIHWF74CJAPHBDkRS4LL23DVAtSKqt5SkpLghoMnEFtm09yhJJOUCWpQED5/Gs2mI8spDVBRI9dUjnot5G3AIrHk5Ds6ixzDHh9hjY0CClFZ0UBfK8FbBXoMZbh6gAYM2MFaV3t6UOYYGcq+lN6GlvqU5Y9yrdYr3adZALIGHbshLix9GTQJODxoLokesbALoFT+ziedxKqShw6FBrNC1rONAyqg40AqxzcJUqG03HPjM7WyNCarSodEzDQ1kCKVFw7ctVn9MmG6lbWYZuWhSCYWRZc794lnkPd8AT0Vfn2K2xjvjzY0Xb3J6/zkH1SWP3dCH+lZHp2H2FEnn+EgyRZUn0Naav03F47zi8LWYzC2Bd7OIYp4ktSAP1a94K1K9O/ual6sk78f1jf1/EyG5x393dZoDGGJ5JaYwjlEstn1ot1NKu8wIdQwiqz8z4lzcLxsJWRvj5+eredrsZiGRcGfRb229xsVmemMOFgueah+1wpadPGSIZ782vbWuB7Et56VpwW4+PO6eibaEPheatkzpNL5LmWExfr1dDw7ibeL25JvZcpzYzvc9ePGbudr2N5dOx+9rIJbX6xSK+qnz6059+UgWayqiM89gFasCRFBfjAm8SyItZphQA5H8CfkyHxygKVirgaMusXtiUvb09FEURQGkth6bBPEiLQsqSGLBOUJ10JTZopfJt8z7rJU/amYWFhQCCZlmGmZkZtFqtQO9CuhDyEwJNgFgpZWwQTdZL24Pe4RakV7Bb9cR6AZ5HnOWxBhVrXFAAmHQ6rZYnFNje3m7QrZAPnvft7u4GOhhL56PlVO50DdapfZPpWsoW27/Vs9/WhSC51plGF+anfZN14v0Ezy3/+v7+fuBPJ9WN0uKwPOr9r6LGF/Ydlou0MOPepTFP/6eDfPSjH8U73/lOvPnNbw7H3vSmN01B9Gsg07H7SYo+33bFrLNoww+uE/cltwXkGQZlC4Vrobdee1y7znJ1nb9lZaXeRTw7CwzzJSSrqyEtOIeWqwJ6rq03t4C323CdY4GdxF+ewrkUnU4Lrc6wCfgSuLTeVFVeiXNYyjK/8A8UIaXn4CatiHr4ctG5uurT6XSwVRHWlFJMLymANBwHPNY6N9fEtUn5keeo84wBwBQ5v9ztYthuYWbGr4lnZxXzbyFtywJcvcvZEL1evQCn/pUT/fhxoNsNW9uDl6Fz/lyW4WzRwtoaMQlynKZwAFpuiBQlkDW3GAOeXzdVr3fdRk6wWLntVRfahta4Y7c/qyHFXktZX0ca4/yMARfz883dBzzH/pZlcGXdtqEMKyuj6RF8qPoWqYTIHLPU7dYe6lWCg2zJP4LSJbMMng6H6fb7SLIMKytLujPb6/TEifoZZl92DnjBC4DbbwfKErd2SmBdOjTradtIKRFUv1YuZsT4CsqksXu6EH9qZTp2PzlJXb3mGuEvBkKHJMczqkCaNoCm4pHqUNykTamPx3DHkZ1h1srHMSgGLupYZ44nxZYfSbPIPfz0yuZ/tRiMA3HH0a+hro9ShU0yJNR1NxeNo5Kx+Vljv83MEl3bMcTqm/MXva/d9mNBUfp3PenoghcBRul0eMyC2ByzLbAdqx+/Y20vXu8JJJC16sGC5fabv2NtGQOcY/2g+rbPBUUDzEfLMiY9uDpui73c5ODnQkxHAXt+2511Nl+O54UPkOoq6hjmnZIKbpxe9GJXO35kWdW/JxkZvkIyHbuvjVxSq18s4utUnnpRzmYFWclvbYFKBZstd7SCdfpNANqmz3yVmzzmja0e7AqiK7CqtCcE/+lJzbIBgAYfVUBbAXOWXT2/tUwEf+lNTMCU+VgqE4Lf8/PzyLIs8JOrEYJpMHiqBpukoWF+fh4zMzPBe93S0LA+BM+1vdRQwd9Ky6LtpRzrbBP1xlZufAW1eS7LsgDwkt6EZWDgVN4zGAyQpil2dnaC8UCNI1o3Ba6p7xiHOYFw5dvXvsR7hsNh0JfqgGVXKhW2gQLuu7u7DSqY4XCI+WofN/Pb3d0NH3LQ9/v9UA8VSxvE+qtBhHVnv2GMAEtT80yQ//yf/zN+/ud/PnpuCqI/tTIdu5+kxNx/rCg4SWAZ8CvssvQcm+021nEsgNsMZqg7pufmgFtX/IJzq/Qet2fOAHt7Huxbysln3fPfDKzIRcTqKtJuF/0ywalTTUx8ZQXodBJ0OstodVGDfEyPwCHLb1c2ChQ617xuY8N7XzmHYb6EouJs761XhgJXr13J0GEDG5Vl7fTLIFLEiEMQTAav1HawbkWsQ6WXJMtwdGUFgzJp2Ao83psgy5b8vQRTu7eGZMPiH2jqpAJs/+pkgrWP+nIePgwcPSQLu9tvB9ptPPigp/Qmnqrr7Fs7Ps00z+EqIJ2e6EUBlC5Bi1uReTMX250O0OlgiCRgt3nVRIEf1fLsUod2samL/lgfX1sb9aaznmVsVHpz5zmG3WO+POQbzfMq+B6w3Ca9jF/gb+VHUJY1fexs3mzisgS2z/ks6ri1LSxX/PRnewn6vZrGvtv1VOzL+aDZb6iXXg+rq0vhVFEAW2ihdfvtXmdstOPHgZkZDO94CT7xCeCuF5XAvffW9aRBg31EAapxOz1YKf1YoOM6kUlj93Qh/tTKdOx+klKWgfe8+jvKv23fe87Vu5Sqj3NJY1iX5MPYxrjTeuuIlzDnB7yZeZqdYVtF0riEp0eChALjObo1AfubBVSg3Hida6BSvQ2ovcgDeFqWowCvzTcGAMfEArkVeKsY6e5uauYPIbLMiH0g6zTtnJS0uzVi9Ez6F/zvyliqY5xPNwHypUbxXWbmCap/tlHMAG2tD7aAMXA85mU+CbC2+tRz2uYU3TFoQOaiN4n3Pq2SS5v9VMsl+QY+fYO5W2ncmkmcAZcG5DJtR4xTMTBff2cZ0rzJ659lSQicq7pSkL9VnR9UdG6tbDhKrn4dyXTsvjZySa1+sYivU3lqRUFs5ZYGmvzcShtBINECtDEATz1xlZdagXClglHaEd5DL2/1ZldPYILPNi0AKMsycE4T+AW8R7dSpCjlBvWiVChK5aJBQpXn3PK7M23SuMzOzmJpaQmLi4tI0xTz8/MNQHZzczMA8kVRBHBUvZT39/cDkEpwlyAw623BakvbovpRnVsjhdKm8NoDBw4EnnalqlEDAnnRqd88zxsgOo0YzIN1JLhtPaq1rFo2tj0NFNS39mnWXz3XFYiOeaJrP1UAm/Qp1hihaWs/oz6LosDW1lYjICnb11LsaPpqJNDyUOi5r0abmDxdvdABYHl5GR/4wAfwEz/xEyPnpiD6UyvTsftJioJcekxXa0ATQOfEmq7PFXLec8cCNkccutfzwDIBZKytAf0+WsePoygSbG56IP2mm4B8NfWexcyHntnk8q68qHd3U5w5A5w/D7P49N+rq8uhyC5Lkbh+sw66QCOqySCkWl8uWDY3A81IUXggkzg28V/ijRRmo6CDAu2zsxXQWhQ+CKYC9sp/bRej29t+G/fcXA06ZxnSPEdZBbSkTvb26upxUc5y+WQ8JY4HSFK0234BXfT8NX/5l8BjjwWncwxvqtrHOWB1FWd7CR57zDd/u11Tc4a1e7sMCkoAOJeGneZUr3OVF5ZVUp7jQj9p4DIATydNIJ16Yua6groUT+lez1fCuXpnxvx80ys/dCgXgteeOuUPdzotbwOo9L6UD0eix677bo+NDd98zIpNbW0+gXZ/ZQnnzvh26PW8vWpuztsYZmerslfPVChjpZPl7gB5noYq9npAtnobkt7Zui7VtpCTJ4EvfAG460UAHnrI17vq1APyzlvDjjXwTBL7jrlOZNLYbQ1hFxOzIXUqF5Hp2P0kRTpno5/GgGgdjCxVlhvdKTQmGwAG8LYestbbVfK70E/CUK5pZhkZsRJkWeq9zu3usRiwasUa92Q8GeZL9e1FPV8AavYTOmGnDqP5xSwM9vfF3nERsJcgJkOfKAX2OMdnHdo4n7AGjna7hbxdg++pG4YxjgbdPK8MBc4BZRMLbw6fCRh7pAHw2p1+VrTwdpyItaudm9ldcjo+W6oYBczt+CT9YlAFw2UcF2Yxrgq1DlTPft4EIDgHhCqLXQEYD8xbsT4dvG9+3uflCOCXg3jQXupH9edSpcRHVgH1NBIRZK8f2WS0C6sXzHUm07H72sj11/JTico4sEkBc/7XcxawpsR4sxXg5rFx4J6lQ4nRxPCbQK2ldaEQRGca6jlty2zBVFs39diOgc30Rla9WGoYgt78KDCstB88plzr6vGtwK1tP5tvTO96Tq+3OwlihgmlVtE+oW2qBhgC2+q9rp76seClmp/tA9aQorpjP9C2YXltwNWLSaxfW90p1Y0aO9Rz3uqIZR9HOWPLNq4NVMe2DXnf013+6T/9p/gH/+Af4L/8l/+Cr//6r8eBAwfwZ3/2ZwCmIPpUblCxk+aLudOUJeCac+4aKJXbddJf8Zvb+KQjK8e9PUOmPRpXixShsUVnasu6u1sXioimrZ8u5GQlpGtqZcW4lAk79RK2x1tQIIZWxCS2YKr0b6tKUaex3V0PZCjewaBtTJZYPddrtlz0fN/eHsU1RnCOqryx6hBIb5hxK0WVxUizh6pHdTGu8hdrIFZYF+YjGY3qYBLGokKgpCjqvs5s9vaa+IJNk110e7tpv2qUnZ+ZmWZdiwJp7gDxVC2KyuNMwYc8b6a9szOy+i9LeY6MHqK6vQ4X3TGZNHZPwuticjnXTmUqV1vK0gTY5EH95u8JnTU2FCo+Gb1wXJrVe4aAncaiVHy1OV+Q8cC+FO14ad8zsfdOdWwcPgvU/gAj9Rs3Po8DjS9HqjEklt3ubnPM1vN6vVKV6/Cl9wOAy5NgAOccIMsQ+MhtFfj6n2QndU4ohJ6MxNpXg6fGMq8LMT5dC6JXxgLVY6w/xooH1H4Lk67R89ShhYUMQ+pIGtZ2oJLa+tgEJlRE+7e2uQ71E9U9ruBfIZmO3ddGLvvpjkV8BTwolGUZjh8/jje96U34u3/3716VAk6lKQo6TaKFsECneutSlN5CQT0FZtWbWak1LMe3TTsGMsbqcrF60jOYNCJAzZWt16p3swa/VLCY91qaG3oW0xM95mmsHu42QKmWQz2q1Rub+lVdKwVKDIRWsFxpWBTgpacz//Ozu7sb+NLp1U2xlD3UgXqix8Bp6m5ubi6UXYOa0hueBpGLAc+x9gYQKHIOHDiAwWDQaDMF/akPet1bg4Ly4rPN7G4JrZ+NL0COfC0jKWTUQHCpwnS1rZj30xkc/qEf+iG88IUvxL/8l/8S//E//kfs7+/jq77qqwBMQfRrKdOx+yrIpSwY7SS+QvvopKsYJL2uG/dW9/EnecKDd5sufhYWarCv3cbQpYFVg1hgWY56YtmiAmiSSDPq4u7uaPBOBQZnZ33iWYZh5bHHetaL/oYDNYCa1kU9jQOHLdO2XtN5Xns+awBIvYduyhEPLHVet5Svmk1RjC4eCYizzBSdipRl5X0m3t033eS/GRuWvz3/aoUCV277aZ5jOa/vDUIuWSowyzDMWsEjnuUmzk2gpcU21DaziDYLMwkQoce56ptebzEPuspNvFPx/SutbEPZVV+jGmi7YdtQt9qPtD8B3kOxLGuAhF6bI6IPBAtT8bh0OkdMOV2zwbIstP0wayHpdBrB48Lim7pVr78bfPU5aeyeLsSvnUzH7icnUSxR32XKda2fsqw4lGv+b928w8v0VRjNVNFce3MFFtMgOum5cm5MUM5JlbYFt3WMJMUxToHnMAcZ5wVv6xUrg/4eZ1SglCXSzAUwmmVh1gzYTpBTnQTsNAkY9Q2w2baqsXX3XBPYTTBE6mpQ3Kp0HE4dbSerB56zExHnRl3fbeW08jqh0opPoOwZmQyWJXwMnWbRtKh22qvNqzqLVQtoAud2qmGvtXptYP3VNVb/QySNoPWNbzMHKMtRAJ9zJ4Dtl0Snv2G8j+nxOpHp2H1t5LJbPhbx9ROf+AQ++MEP4kd/9Efx0EMP4R/8g3+AsizxQz/0Q09FmZ+xMg5wsoC5pb/Q48rhDNQAI9D0olaQlZ7CBFgJtmo6BDnV21x/a7nVi1s91SkKWO/s7KDf72N3dxdlWUa9owl+856YEBydnZ0NHPIESUkTQwoT8qADCJzqBKsHg0E4ZtvCBrIkZYoC4XZ3gBog7DneN1cNkBaY39vbw/b2Nvb29rC1tYXhcIjt7e3A6U3wfn5+vsG/nqZp0BePz8/PNzyyLa+4gvEHDx4Mhg0C3mwr1oU0OrYvqEFDaXlYv729vcDPTp1zRwD7IMvPdqMBgGnpzgflO9e+PS4g6N7eXugHu7u7cM4FferOg3FgvBWl8FGwH0Co3zMBGP7Gb/xGfOM3fmP4f+HCBfzO7/zOFES/hjIdu69AyhKgMc0CkHoNUC9UdHUhi82DB5vbkbPM007oehTtPKSXZR4jL0v/3dh2TiBZF0bdbuB35ikWTS8F6oXhCNJN3pF2e5S/lYXWVZZzvhLtdqBwyfMakwDq/3NzQtGCqsK9fpMGJ7bY4+Kn2wVWVjDMWhVX/OhCr338Vh941S44AST9C5491Tk/8y1LD1DLde3VIyO7gckgw6QOHvT/dZs44K9PK/qPovDAyuqq56NXbH13t6LvWS+avDcW1Xeu5sGh7tttbKGFjTM1vbmKJtFupz74pvbTPB/pr4GOpBw0txDwmptuqonqY32eGW5ve2VVyljuVnXojV8Vn+01t+vbNT/Vo8JrigJ44ok66YWFZqzVkF1Z+hMMREp9VwTqSycc8oriyC+cnW80ADh+HIMyweZHfZpnzgBHb7+9TkdAqFSPjVulXoeL7YvJuLF7uhC/djIdu69A+N6vwMzGeMfzfFkAo+M4jxUF8txTf5BiSpIfYRYLdBDO8zc3uMx1UOb7t9q1NM7rN/rcjLtgHGgdA1YblvZ4Eg3wXOO+aCEtak2lmLyUg9rm0wCc9dPvIwHQcg6tDEDu8xjlSa9pcPr9UU96BoFl3nYH2d4eUOZLQFED7ARUk9LPJ1gO5h8MCkUZbyT7rid1jvDNl9y/FHTi6WBSJ3RA4+hIbEcZB57bAdF+SzoMRJ5Wn1bbd27ygGuTxzzC9/biVCH2Xvttu6uoC8AopdCIgcK5UEYgRelDtsNlQNb219fnARSjNgpKUdRODmmWIcua8QFSN8qFPkQyNvDqV1KmY/dTL5c9o4tFfAWAX/mVX8Ef/dEf4Xd+53fw4he/GL/4i784HcyfIlFPdEtFwuP8toFGCR5afm4ClwRoATTASF6nXNIK2CuoniRJ4JK2IKGCnJNAbwadpPf5YDDATjW6sa42+KV6MFtvc94zNzeH+fl5OOcwNzfX4Fonbzf1pZzqGkRUDQ8qCnADHoCn9/7e3h6UHkZ1pTQyMe90GziVQDPLsLu7G8D07e1tbG5uYnt7GxsbG5iZmUGr1YJzDgsLC5idnQ385+qFroE2AcAG1CQIzHZW3TBgJoF8rYNtUwCNtmGeuotgZ2cngPRlWSJNUywsLICBRhnwlUFnNR81zCiArv2bdVEds8xMmxRD2r+U99+C6BYMtnQ67HuW1/6ZIsPhECdPnsTjjz+O4XCIzc1NAFNP9Gsp07H7CkRXfAr02vMUu3Dhiq4ocOiQX+iRf7mijkZReNpmALUXOPxkfXExwd5eBbr2BX2nEDHPcwyyJfRO14fUiTy2th4huiTS2+1iyy3VQS2VS9t63rC87XYA8Dsdf5je27wkz1EHqeT3+nod2bHXqy0LeR74qImMDrIlnDoFnDsHfOlLzW22HI67XaDTSZHnaTActFAFttSgmmw79QZ3DsnxEkvtNtrtVsBad3Zq6pa5OQ+iA7UXPRd729tAdqgKkFlhybetDkcBctVpv+/BXA18Se6dPPcoPA0IWYYttALFt4LLMzOjnvJlCWxvqydVGhbpZQnsbgN7VbN6g0DqOXfVWEIA2oBKI9y+XFH3enUnX1+Pe4CznzkXgoRWw0FwjOcOjbL0yaiovtkmi4veoNFuG69Qtneng79ea/lgpHl1nOT9WYakW4SOOkA60k37fZ/uE08Ai6u3oVWcBe6/HygKWZgXo8/Upaw+r/MV6rixe8qreu1kOnZfocTQPIr1zLZgMN91cinfPSOgr08opKd8yoEj2qVIsyZFqdJ+WVB4UjVG8xaxY3QMWCWgW3FXT5rGhMDQHD9jIDpv4g4x4VovCh9HxN6mU4iZmaTa0Cac7/o+NXklzgVAG1kGzDsMDi01hlXdPUZwl2A60JzK8b6ozllnKXSgaNGIsxbQtkA2mtRlzNeq0BtqPP+9y1IfE0WRZqsTlYjxwgL3WsSR4OksjGmk1LmaKiVrBnuljjUZ2zW0HayqxoHonCboY0qDxkhjtdsg/aHy55clp9M1ZZudivFR5xQ/UPlUD7BzrdF5czVvaHiLXIcyHbuferlsEH1cxNdv/dZvxdvf/nYAwHd+53fiH//jf/zkSzeVEYmBTjHqltg59Xa2tC5JkkCpQYAayFZqEfJma5BGpq33xMpt/2te4+4ZDAbhvA2eSSCVXsoMCKmGAgVsCZLSk3l+fj4KoiuoS8B8Z2enQZui7cC8rdEhxus+jutdjRH6+8CBA8FznvUuyxL0lN6RfWkE1wmgnz17FvSkphf53NxcqL/mRa98rZsaCpTyhUAwA78654J+tra2oPQ1pHxRqhVSoqhOWH7+Zh3ZD5gG24vtqN7ySmXDdNl+NrCt/mY5mZ/uVDhw4AB2dnZCmtq2lwIAq8GEBpTBYADnXNDT0x0Yvueee/CGN7wBX/ziFxs7Bvg9BdGvjUzH7isQO9u3K0C7cKJw9i8uZqkbYmEhCXipc/Be01VQJMB7ryUCWDqXIs+BVjb0nstMm9/VwnULLWycq9cWnN9b7HNmBk3PuBiokOdYP+3B6BYXCbposSueCiEv1ms2i5YbYGEhDbh4llUePFzhrq35Rfmjj/oIqCFSZF67ArESnQ4AD56fPu29gU+dGl0IcG3V79dBPNttoNUxi3JdhHLV1Ot51LYKzprntzYW2/zOc5+v0uNQ9vZ8Gfk7y+ARYBtZ1JZjfR3BtV63yrfb3r16cdGD6M5hY6O2OShrTaxrqtjuahfvWVYvlFIafyiVkaShM3ZiFZ6nxYEu/HQPNwamIZLGzgyWQzD2hseg2iLUS93i87H6I89x+l6f1vJq7st/pnLnP3q0BoCcQ+nSYNs5ebJpGOr1fB983moeB8xJgh+TmCXLIgjXmUwau6febNdOpmP3FUjM2G2B8sqDFaX3AiY4OoQEZ0Y1dmVJ7YUa6/yGW4KvgxDjA0AptDBAnZR6oV8ygD6pztbQHQN13SjnuN4aQEsdk9SgHqu/vs+cC7uMNjeb8R6B0cDRYbmZJXV8CUsdo17ZxiCQdquxq7pbmm/EK53/dUMyAfaKnS5UMdVCq36tQcHOBSPvdW1jAr3jdE8niDz3YHqiF+q3bfNqThY8/013bXaLMfz6uuPSjt2lpzjKstaIfcNOq6jXmIpioL4t30g31z6oFxcFXJ4GgzynVbxF+4IC87Y8jR0M1Ulnr2UZqjkMz11vQPN07L42ctn7Dxjx1coHPvABLC/7LZGbm5tYXFx88qWbyiXJpQJ59v8kwJ2inuSWhmVcvjFv6ljak8qp6VtPZS1T7BjvscdseS5Wtlh9bV66K8DuBrA6UAPGuLwn6dT+1/vHeX9TR7YusQCoel3Mu1rzHlcXBebteXsP0NxBMa78sTYZV07bBy41rVifjj0blnZnnFhDiU1P/1/Ks3Ejy5vf/GbceeeduO+++3D27FmcO3cODz/8MIDJ7Tmpnady+TIdu6+RjAPFxsxERy6XA2PxNbuwQXMSr2u4GHYXynMps2N7o8n3Ypc+KZHCczEW2zIcW8jp8eiFmr4iHdX3OC9+LrxjatAFegBDYgtfK0q8qZUwK1C9bFI3m5TVRSV207iGtfob19ki/YWL1svphooF0eOc3+r0HrzRxyVO1IYfAcZi2NvMjAfoA+hChKwo6kX5xSpxA65EJ43d2k0v9fNUyblz5/DGN74RBw8exMGDB/HGN74RvZihR2R/fx933303jh07hvn5ebzqVa/CZz/72cY1Ozs7+LEf+zF0Oh0sLCzg9a9/PU5XNECU1dXVkfXE1Qazp2P3VZQx4OZYIZjmLnZh8/yl9ncLmluJjtvj8h2HTE6Qi4GbI0Zz/T0u/QhIHxMbGPuSCjnuZSLtpGP0pOTGAZ9jyxTT87gX3UVeelftffikBntMmCCOOWbEUudMyuZSPuOK1Hj+IjpPMGykYftAxO4SZbmxEnad3GAyHbuvzdh92UucWMTXj3/84/iDP/gD/Ot//a8BAB/60Ifwyle+8nKTnspFRMFIinoMK+VHDJhToNHSuZB2RK/lf/UEpicuwUTSYlihZy/PqRc3+aljZbXX01OXHuL06OW9LJN6McfA9FjaykmtgUd5z+7uLoqiwN7eHoqiaNSBnOP8T4qQJEnQarUwOzuLhYUFZFkW9KV86/SgZ5mUZ1uBZ7YLwWl6gTNfpjs3N4f9/X3klecg06aXuVL50Gvc0qCo97v2FQXeWVbeowYFeonv7+9jcXEx0KgoSM/7SA3E/xZIV/ohpUEZDAbBG5+/uVtCqVzYV6yHv/L9a5nYnmxT5bLXIKOqb6VK0r6l5VAueN6vbal0P09XefDBB/Hbv/3bOH78eDj2dDccXI8yHbuvUMpydKY9abFqrxF+CYKgdGYZIB3Z/ppKWjw3KBMftBKot5BKGbggsPHRKH7LdEVtrWTasZlyUaDdbnlgUFcdZdkkPNdMyhLdrscVW9kQ6BeYna23ivd6QJknnqOb7sdzc/7+drt2VSONS57XZOLdLgauhf6aT4uAplU7ABw+XLPBHD7svcpGPL9Vh+pyRtqUdhvFWnDoCrz1zG9x0V96+HDNNsNrCAxvblZl67brfNS1KhBvoqatYRlJhQLUHOMV78nyiTbc8VaIn0osV3Fg3f6soLJWG2iCN/PzwFJeeVmu9+pycGsBRfu9ZlDtFmic44e87vJ/mC9hfa32GtPkWS4mTQ560vPQsb3T8XVn2bnFHKh2eJAuaH0dWFvDysoxLCzIbg/yw6+vI7j4dzpIV0o861lHkOe1w9sdd9Te6AmGwD33Ah/5iL9ed53EjCH8zfrr++Q6lxtl7H7DG96A06dP44Mf/CAA4Id/+Ifxxje+MQo8U9797nfjF37hF/C+970Pz3ve8/DOd74T3/7t344HHngggNFvfetb8YEPfAC/+Zu/icOHD+Ptb387Xve61+FTn/pUYzflP/tn/6xBo5Lrg3YVZDp2X6FYi5iM4wyErR8NHmmfU/83bXiojyBMxgAesy3aqcLsrH9/qz3SUrFxqPSe8OWoZ/a4usfeNVUh9H1Jug1bdedSZHn1vnRu1K3X1p3v+qwONK4BP8cZDGw7KHVIGCtZX4u6WrowKY71Ztb89fjsbB32w45H4f2uJ8chjTr3szoqfaBUGI5t3qZjt8ZbGeFH150Qtn2Fhi1xDmmWIc3cCB/9WEXZgkRQ7kBJ06uZ52zaatBmMpqcSkRNjapwqG7oQbeoscz9Plp5jltX2mGXG6eszpkdmP0+kLkROhZ3KG3Q/ETFIv7XqUzH7mszdl92L4hFfD1x4gQ+8pGP4Bu+4RsAIGwvm8rVk5inL4FApTlR3nIeo/B6y18O1ME1SceiYLcGzOTxnZ2dESoUAoz8JkCYpmkDeAZqWgwFbLWsBIkVWFZOblLK7O/vBx50pqHGAAV5CbYSsNzZ2WnwtzNwKYHQwWAA8n1vb2+PBUgppIdZXFzE3NwcDh48iFarFdpEDQsaIBXwIK6tB9tZucBJqcKyUB95nmNubg7kPt/e3g4vAxob2H79fj/oTfWcJEmDL95FBgmrA/5nOZVih22unPI0Xmjbs58xP4LW2o/YdltbWyiKosElz/tIWWN3WhDYV9Bc9cFyUh8E/tlvaIRI0zT0EZZPjUjUiQYh1b7ItqJxwDmH2dnZ8Fw8Xb2s77rrLpw8ebIxmFOmdC7XTqZj9xWIkjhOmjQrh7QVrqTLElmWYnfXY3YbG57+Q4eRogBKWchzW2xRAGnFN8oASS0JEpm6IfI8CYtvFpULiU6HlDAeUAwIMeumq6D1dSy12z4gJFcxpPMgaTVpV3hfUWDJncXSLIB1f8zlS6EMpN04enQJ8/kSlo67JnkpP0StK7SUQUTPn/dFZxGJ2XKBxPoePOjjYC4sAEcPDZpgsObBT6eDoUvR73sgYacPlL16HUlAXheBFbMKFhZ823U6QFpcAJzDIGuhKDx3tl+MpcjzI76MgN+WTWCA/Yb/SYHy2GM1WECO8bL0K+uiwFKng6VOB4PucmDG0WoqrsCyBy7fclB3LJTNjnLa6Gl9vXYVZANaFy6lauFvKkrogQCEhfy5c8ATp315GQuA5SRmr9vtb7nFH1t2F/wFJ71BYaksscQHpSyRZFlNP8S++eCDnkC/3cZtL2sDWYYL/cT3b1o+Tp70hel2vWVkdRVHv+7rcHS1Dec81dKtpz8G/MnJmpbn938feO97/T2896u+yiMxCl6p0YR6seCWRVSuI5k0do8FZcbIU1W1z3/+8/jgBz+Ie+65B3fddRcA4N/8m3+Dl7/85XjggQfw/Oc/f+Se/f19vOc978HP/MzP4Hu/93sBAL/+67+Oo0eP4v3vfz9+5Ed+BOfPn8ev/dqv4d//+3+Pb/u2bwMA/MZv/AZuueUWfPjDH8Z3fMd3hPQWFxfR1SC+V1mmY/fliwb7S/S9VJ3j2KjA6gjnuRH/GCdAFYy5wXNedXC+52L4bgDyKjCS55RWJAY8kvZkZLy0IHrMaBD5cA5BA+w4LJh1mJlJsbi4DJcDaWfQfPgVzKwqvFUkKA3eeymyu1vlnQmwy/GRv8fVi8C9sWWqWhRDVWH4kbL0dF3sF84BwyxFoiB+7Fsrad/rBnhPnUOee/3TYKLjncZaScqBj4XDAZ6Fl3lXo5L8cECtvpMs84C6q3nwKUMkPsBpFS9FJRhZNuL9xFZbP2SiyzLDq69GoAll5nMUKJT6RT1nZDAVzVy4eBLnsGQnwfbZ4byWzhN5jrTT8c4qWjag8nJP6rwMb5x9hq8HmY7d12bsviJTio34OpWnXtQLPeb5WpZlAMTp2TuOdkKBKAXRZ2ZmApiqHN8aTJMgONOnZzW9r9XDVgNHKpC6v7/f4PK2ZQLQ8ARm/Xd3dwOQTLBcjQjW+53pqJczgABY0luZH+qQoPLu7i62trawt7cXgmaOo3HRYJdLS0uYm5vDoUOHkOd54O/m9QpAU6/0etdysbwEkslnrvVjGy8sLGB/fx9ZlmEwGGAwGKDdbgcDwN7eHnq9Hvb29rC5uYmiKLCzsxOMAzQktNvtUIf5+fkRz3j19I6BxK2Wj2LPb15bFEUI8rmzs9Og42GaBMuzLAv9SoF8gujqGa+AdpZlDQCeugMQDDlqEGJ/5m/2c4L6CqJrf7OGKuutz/5ljSz6/CqQDmDkeXg6yY/92I/h7W9/O9bW1vCiF70Is7Oz6Fez2CmIfm1lOnZfgdhFamzlYEF0O8GvzrkKINzZ8cCw9cQlhyqFCyzvKZaEawDvNZNmrrE4O3TIX5M675lLiuZWNvSI5fo68MgjfrGxstKsn66KGDiJnmU83+lgq0jgMsDlS35xxAUNUe6K1Nq163Ver+eTYbLHjx9B3jnS9A6qdLVVem+g3hoC6Lq56dOhfhYXm4C2Xbi13KBGl+2Cl65N3S4ePu056k+dqk8xXXGqa+RBj6glV5V7vR/43NNuF6VLAw8sjRrEXn0aCZxrIW3XOgWA4F4OeK54dhKgBrF7PZ/QLbcgXV3FcqeDft4K1VPHcZY9LGILWUiqJxfTVyvF7q63BJRlM6rqoUMN4vKtMkXRB5xbhussh6bc3QV2elW3WW92MzqHM0uWU3EBdrks81mmxQXgvvv8TWfO1DsX2KH4UY/4sgS+8AXfD2j8WVlBH8fgXIoWo/qePu2DhHY6NSi+uOiB9+PH/TW/+7vAPfcAJ04Ax48DH/gAPlMUWDp1Cqu//dv+2JveBNx8c/N5oWWA7acIlSqFDXadyaSx+0oX4hcuXGgcn5ubw9zc3BWX8c///M9x8ODBsAgHgJe97GU4ePAgPvaxj0UX4g899BDW1tbw6le/ulGOV77ylfjYxz6GH/mRH8GnPvUp7O7uNq45duwYbr/9dnzsYx9rLMR//ud/Hv/8n/9z3HLLLfhbf+tv4X/4H/6HMOe/WjIduy9f6mHFc5xrQETLR81AxgCQ6qNY3Qc0uZ55T5Yl1bjQfH45XowEIa0GGg/sJwEkj4HnzvnXbpYBKQb1u0SBQc1Q0fuYuGbQU3oRUycE1SkEBj03t/+d5ylmZtLay16yKqriKOf3pbwnFLwvS+8o4JyA1xYFjxhr6fmubUOQWqdtrKfiz1kGpL3HkTqHLPPGaYLGfjxqIeXuJmAUPOeFsV1bOiesypxmWQBl1Vtexz0/ZstYTRCdnhfsjBaBt4A0x0YC6gz+ap4HjtsKlmt17TkrCwv1XGdhoRq3+2eBXjXGco6ocxB1uT98uI6hkmVIuMtL53Ds+5wD2ELxgQFqvWxs+I7OQCfyDIZdj9xqxvZSy1cl4TmOPFtJZbK7nmQ6dl+bsfuKZm3DYTPiq8o3f/M3X0mSU7mIWN4eCoE7gnyxAJ28zgJQCpBqsEelDyFwqIAjr1GgkvQW6vVNgJDpkzaFAKKlWrHc1kobYgOhWj5rBqKMcWNbOhegBnetTmlIoEfy7u4uSB0So9yghzk9ngmYEwien59HmqbhRWMNCkpxoh7M1KG2q+UV1zZUL+c0TbG7uxu+kyRpBFxl8NGtra0QCHR3dzeAuiw7jSKaj+rcguhquFFqIfYn7l7QOrNu7BsEwQmis58Q2Na2YFBT9l22v7YJdcI6UJ/UtQLoGliX9VT6FdaHbc1+ZHc+8BmJGasst7oaKJ6u8jf/5t8EAPy9v/f3Rs5NQfRrK9Ox+0mKrsZ0kq2TbgXPzAKQtyuuSynL0QBYPA7U4DntbUUBuDxpBJwKC/miqBbpaX0xg3dubtbHdJuyFmjMin5QJo1LlnK5nwuU6h4pSmAlUQcgGgY87UvaKGZZ+nv29moPa66X1FNL14hcT6cY1HXV1YL+zjJsFUkAdLnGo2PSwYO1Q3y7XS2gigIo4cFooOnZRDCjKOCytEGvonYWXeemuV89k9JnqVNduLhY7/G3HaUsffsJv4lzrRHnN2kyKbuA6FQqpd/3wD1QW3G4+GTieV4veKsMtOrM3y7KrfR6tb2AGLiKYg5ZBqTlVk1xQ/f1oqiD0zLwaZbVGRI9YWZnzvhPu42yWpe32HFoRWHB87w2KLTbvpD33Qfce2+t1Pvvx5cB9AGsPPigX0jF9oEryGJF++V1CKADk8duG5fgYsL32S233NI4/rM/+7O4++67r7SIWFtbw5EjR0aOHzlyBGvc6hC5BwCOHj3aOH706FF88YtfDNekaYpD5HmQazTdf/SP/hFe8pKX4NChQ/j4xz+On/7pn8ZDDz2Ef/tv/+0V1ykm07H7yQvfTzYWg3M12Oocxj6zpK+gKA2LD9I4bNwWjMTM3KSpdnd7nJ8AsNuXqw6KlgB6XKJovpttUgTVeZ0O/zQI65jGz8zM6HzFYsyTqFx0WqU86YHWJTbnqgpGz2qrXi379vZkT2HnAEZBd255pHwAvMOCNpidW1ilxc7Jbx+cM4mWuRHQlQ3E/zs71ba5nVHFcnwmSKz5A6PBX9E0nlgbgaWKs1XWaW+W1VOH2VkTSJ6g99qan1ecP9/cNrew0JyPckKnwdi1/9OIbguoSmRhOdehEwngdba4WEehX1314Lsa5ceMyTSoXe8yHbuvzdh92TO3WMRXCsHSqTy1cqmAmwKUFMt1Hkub4DlFAT97TvMiAEkqDwWDY/mQ1kTLRTBdy3E1AEZb7xiNjFLkKFXJuD59pQFC7cfuGlDA1X7Ug1s9ofX3uLzUgMGPBvZkujSWEIBnXrxOQWb12FY9sl0JcBPkHg6HgV6FhhKlSbHgspZLAW4F8dVwoudUZ9boMgmMtVRIWg41ZOh/NdTE+u3F+gN/Px1B4oceemjk2MbGBl70ohdNQfRrKNOx+ypJxEtlIhBmrue6QRd5vJ0g6+5ufGFqk7UStq9P8EQb+W0Xe5cI6JWlzy+JVajKnz/n5/0pXZ/YLdfjRBfrXBtqOqScrwEQjLaHRQRMe+hhtsHEAtkV5Jh0NW0u4sOWdZNk448uJrVdbJ3KcqT+se7ZuCdWH+fqRuLNBPOzzC8wFxZGlL+73UxGixzDlHl+bq7Zlry/AWTZ8s3MNKOJaifQm3QlH1HGCFDmnK8b6xdTIhf6PL+4iHRjAxkAx3PU78TGNXKdA+mTxu6yvLwt7KzqI488gqWlQMQz1pPt7rvvxjve8Y6JaX7iE58AEF8T6bx4nMTm7Re7x17zEz/xE+H3i1/8Yhw6dAjf933fh5//+Z/H4cOHJ6Z1qTIdu6+uzM427YM81pCJL9LmO90evyhAFd7pl7FbIfaSj73rdDyOfSL2AVbTdiMdv2IUKaoezlfGDY8xscVmPtH7rGIv0jb6zbKzfpovh5XY/RMlNpe6lEpTyhKo6MLGph8b+3WstuXgu5QW+1hfqCQGBtssbXB1vSY2b5o4/9DGuNhkhccmGZ9jBdT0OL4rtx1Bd50/6IQ0VhbT5xIMbwggfTp2j8pTMXZf9qyNEV//n//n/8HNN9/8tPagvF4kBuYBo4Apj6k3rD2vHub6rcCf9W4mLzlF6WNsfjw2OzsbqFTU63x/fz8AqjzOcisASs9jps2yWM9dC74roKugZFmWgTJDgWhNk57Xeo96PfNaftNzmh7o5DmnZzM92WfM24ogsxoM5ubmGpQgWgcFbvUaC8Cqx78aIrgjgPzs9NpnmRk0FUDgAz9//jy2trZGvMupJwss85te4JYr3DkX6FwYBJVtkGVZY3dBmqZI07TRJ6hLctRb8FyNHayD9TxnfkqjY0FcNRaod7/2r5jhIWao0LayOyTUEGU9959uQPGzn/3skWPcFjYF0a+dTMfuK5Bxq2QFqWMTfnXZEeLuBEO02wm6Xe/pzJ21zIo0JYGLcrvpUOOcv4drgMBxnWUYlAn6PRbJezgFTzmWOc9rzhOWM8ZPyY96K2N0jVEUQNY95svB1VXlHl6WTQp1Xc91u5WnUiXkaAVqz+bFxXoNpLt2lVVEKVca1DA8qG3CugifZZ77tLvd2jmJt3JR6MHgxG8tVuF/ekZXN5aFT1fB+Dz3aavn9lLmy5pmDs4lnvOTF6+u1q7xWnmLDhQFDq34fI4e9ZfPzdXrwbBbQVfH49qa9VFecaBuRHH9H7hWcAgrCr8Tm7rTbhVTF6ltuLub55yrqYu0CdF2Na8LFUpv/Dyvt4Tr1nCNpNpu+8JVwEOnU+1WoDv86mr9YOW55zZfXW0i/C99aR3sttMBvvqrcds992AZAL7ru/zxmRlfIT7YuqBXI5N16WN7Xo5r2DWSSWP3lS7El5aWGgvxcfKWt7wFP/ADPzDxmtXVVXzmM5/BY489NnLuzJkzI95qFHKgrq2t4eabbw7HH3/88XBPt9vFYDDAuXPnGh5tjz/+eOAhj8nLXvYyAMDJkyevGog+HbsvXzyPcf2fwBeP8d2vOFy43iKFlXCDkO4o4iuC40/i/Pu84YU+QSyWaF8FjIniGOCThVcOrNi73Ay6gzIBzHtZX0/8Hgew6zVAc3yzZSagrulNst/ylc3Xt3OGBscWRn6P8wFwrqa1UwdsHZv4ip+fB7DndZqh+W5r9AsdxPQdTm9p25C2zHq9c75HVv2loR87x9TCW372mEJ1a57ZqjfMWiNqZTsqEM7qxjzQgdFnx7DGNBuEBnkO/M7VUcF5s+XP07prAZzzc1hea/mVaNC2dC6dTj3h4MSSYzXHdU5WVcY8ENcbfYuV6dh9bcbuywbRYxFfp/LUyziPZwXgKOoFTgBPAVvlK9d7FVQn8Mn7NMAnqTD03GAwAKkxnHNQbmpyShMws4A4Rek1SKuyKy9ISxWiwKvS0VigbX9/P5SP6TMvTZsAsBoaCMwq9YsGvCSVjXp2M10C6fTA1jYk9QgBZ6UuUYOEtrNS6mgw2Ul9g1zqzjksLS1hd3cXzjm0Wi1sbm4iTdNA6VKWZeBl39zcHAHpWd/FxcUAwlMX1AeDcGZZ1gCbLfc467e/7/nx9/b2sLOzAw06SsPH3t4etre3sbOzE7jVFdxn31RQnOmw7dRrneetJzvzVfoX/WY/syA625ztSuBedzSMW/TYPJ/OHkWf+9zn8PDDD2MwGGBrawvAFES/ljIdu69AuKKwC2qLJtuJtrrikmqiuufwYf+TQTD11hQ+aJereK7LsqakXlvzyRCwDFt+KwD93Dkfk1KLTa/foUtrLkxd7LGcRdFEu1k/cjmLEYBcnmXp1yc+TmmKTufWkcU0OcsDoMCF33oTuE+zLAQiZfnV03x2tr6VILpzlQ7KEuiXo21gF0MG0HTwbcDDXPSzybhADOu3rObFLUtgd9d7ER7tdIKFY6vwdDeMWUnpdIAWtoCsFdZx2k8STTjPPfd2WY4GxVKKleretLiA5TzD6moadngz7+1tf2lL25tieXAi4MsQSTMu61oTCyZNz+oq0CrOBitBmmWeLoV6L8sQuPTWTge33t7BAGmwP5A9xQI8vi0StLjQ5ZbvjY2mkrVQztWWhF7PHz98OFis0t7j9QPV63ld3357ncbqqj/mXJ3fa18LvPzlbHjgm74Jq1/6kr/u7/99n/apUz5NfYZioIq2q22L61RiY/eVLsQvVTqdDjrKcT9GXv7yl+P8+fP4+Mc/jq//+q8HAPy3//bfcP78+bEL5uc85znodrv40Ic+hK/92q8F4J0vPvKRj+Dnf/7nAQAvfelLMTs7iw996EP4/u//fgDAo48+ivvuuw/vfve7x5bnL/7iLwCgscB/sjIdu69AyjIAXeo5akFha9tqAOlmnFewl8NLANPk5ZXYd63NiNdhCPKix4KL0hAe3uMKQmpa9n3jHAbwHOHKU07hMiNSRQCjALmWK3Y9xdoGrTFAvdn1tTgROFepbiKvOxA3ChBAR78fWj4FkOa5NyZglA4Org04h0zw6kZavEnf1RZEn1T2mMGjQqmTLEPq6n46RAK4FMiFF56i4Pk4EF06OdMMWHQ/rtbY9DZWFQXRgVEjVHBo6Ms8k4pWXbFD6DX6rYW2mYtRHEBtQCcYr5XgWHvmTD0fYMHpULK6OjJPD3krf2EFvtvne+jS69Y7fTp2P7Vj92WD6JMivk7lqZNJngeWBoRe4gq0qlctUHvCWioO/iaYTPB7HFCvHswEnhkAVIFtBR75naZp4JYGEMB49RCPeQrHPHetJ7qV3d3dwK29s7MTvJspCqITFLbn+JtgMoFk8sET1KWRgQE+6VVt20l/M13r1a9tRY9xgt32furF/mZQzSRJgpGDXO285sKFCwE8p8e4NSDMzMwEKpY0TTE/Px/6CHWXpinIq64BOLW/EHC2fOf9fj8A6cybILoGQqUhgMYH9US3nvzaRwiCU6cxahft97HdDDyn/ZrPh3LXK+CuOxmsB7q2k6UZerrIX//1X+N7vud78Jd/+ZfR5/TpVt/rVaZj9xWIXTHqImWciw5/09tFvVLLEjfdlPqgS9UiL9V8KjflBGgEn9re9kBjntcMG+gXAeQrS++cqwBtlnnckTymKVeN6v4O1O7RCv4pJwfQWNjo+mFz0/OJA7WnPD/dLvms+02U1C4kK9Tae/C1QvrMcimvOL3b3liQumG9GLIraU1TQXTnQuAxLtYdagcpWR8FAIEqYDBTpRXXqtx0UytQ2nBtyLKzeC03ANZ7yLqtUZoTSzhKj2g9x+Cta2t+MTgzUxeiUvzRTgdDlzbozgP3ZSYZKlIk7mPDzpFGVkyn16vBcqB2KNOksgzA6fWag1z1T0WQD/Wmm4BOB2m7jVs7HQzzpdAFLbY8N8e6JGh1u83+qO1PXbGg9D5qt70SFhfreyy3+iteUXv+FwWwsoIvr3sDSbfbQoIhtk68BGUJLJVn/X3kZP3qr8aFl70aZQksnz7tz9GzXZEJLa8arrTPXocyaey+Ul7Vqy0veMEL8JrXvAY/9EM/hF/5lV8BAPzwD/8wXve61zUCk504cQLvete78D3f8z04cOAA3vrWt+Lnfu7n8NznPhfPfe5z8XM/93NotVp4wxveAAA4ePAgfvAHfxBvf/vbcfjwYSwvL+Mnf/In8aIXvQjf9m3fBsAHRrvnnnvwLd/yLTh48CA+8YlP4Cd+4ifw+te/HrfeeutVq+N07L4CMai4xZtrw66/Ls1zwABhBGsVnOXYEHaBaV6XIsbgZ/F2+785xDEo9ei8pBEkshgNnGqzJ3CvLBZqWBjrSW8Nl/J7xKM6IgGQ1nlTiTrWyLjCVsI2sdMvHcOdQ3PblzRimmXI8zQMfUmxBZQueGhzqGyMReKsAAAlWlWmFcie56NRVCdZFPS/NDiD3zZvTYAqbkqlQTH0RJIuEWjW9nqjKgWaAWPtUNVoe+bT6KDVd276YOiokfppgNhxHvR2J5w+CLaxzdwuzGvzHOh0GkaWUB+O+9pvq84y7Bzx+i39J8vEEDau3fh7OnZfsTwdxu7Lbv1YxFeVF7/4xZeb5FQuUcbRusREwTp6wypVSQy4IqBnPXMJGirfOa9VMF49bzXNGD0JvbYtWE2vYoKj1sN6XN0v5tHKsjGAJKlaFPhk3gp624CSWg/LFW89lq2ns4oNNFm/3Oq3lYLuzF+BaJ5T4JX6VG9qvSZJEszNzeHAgQOBWmVnZ6ehA4L0NAYohcnc3BwGg0HQU6y/WE99NYZQ37obggYX3eGg9aY+1Qtf+596mqvYXQ7qiR7rL7Z9CZgzXT4DlhNdPc1tXS/2rNo8n47yj/7RP8JznvMcfPjDH8Ztt92Gj3/843j44Yfxmte8ZuqJfg1lOnZfRTELYbtgD+d4rexrTsqBB84JglvPF64EyxIMuLm359doXPw0qEvkVsWotQhlCbgs9QsDW0aN5MXyjqsTRourgSVZ1XALF7IM8kmQk9wf/FQrRF3IhXUV0yhLbwig3sYZLWwiUhQ6FmdZvbWfO4KVBsWKevGprrnVvmWuYzFCE0XaqvHHoAFbpW/3LE/rwKCsjz63LIhz3usuy5BlrQYDzEUXS5USGKeL4Pn6et106u2nFKuUUEbewMrrRQTY1WrhXDCeaJUoGhNgmKVIclls2wYBRoFpeqdpgxCt1x0Y3W59vN1G76QWMcHamj914sQy0nbhr19dBVZXcfKkz3KZ+bPeEQAo2t620teRTBq7yxJILsP57qms4n/4D/8BP/7jP45Xv/rVAIDXv/71+Jf/8l82rnnggQdw/vz58P+nfuqnsL29jX/4D/8hzp07h7vuugt/9Ed/hEVSXQH4F//iX8A5h+///u/H9vY2vvVbvxXve9/7wtx1bm4Ov/Vbv4V3vOMd2NnZwbOf/Wz80A/9EH7qp37qqtZvOnY/CSlLRLnH9UXO/6ivUyBOh/nwaPflXRNLe9y5MWK9tDVvoBlLw2XN+tgYlCPVknRjxdKhuDG3sCi1rWMUSB9fx5G0bQFtoTSPCmDW7CeKHRc42BcF0twBSLwhpHIgKKu2J8hPg4Bz8OAqxhc7zyu6N6t4axHRG20ji+Ji+eg8K1bVSccizYSZmWYMEh4PY/mkCttEJx3XDMqyBtRj98UMyuOu1Xu4i7LdxoV+0mgGbyhKsMxI8ZH7e72mY3xZAmnUgBCZ31+nMh27r83Yfdkgeiziq1KFPJ3pCL7SMgkAHycxIBGowVoFcxWUjAHo9JRWr2nrVW3pZTRPWxf1lrec7NZjnvfEgk8qAEkgXKlaCMJaz2MFShUAtjqL6U2vt179+iwQ/KWnvnoyW+9+6sEC7OqZr8E5tf1inuiqfwX2WS4FlSnWQGAB4pje1co5CaS2OuLvGKWKlkM9/2kkmJ2dDUC9ph3ra5pvzKhhdwjYPqD3xTzdVS9aPzV+2D6l3093+fM//3P88R//MW666aagp5e//OUApnQu11KmY/dTILoQii0eKLHFqHrf2FWOLCZ4WZ57THB3twroKVnZXcb0qF5YqL2iA/WJzUcDSsbKoVKWcOLRrewfSsGaZUArGwI9A3Yr6alNvygqEHgMP2iWeVqaDM0V5SSk2Oic2SkozEts96d9wQagoyg2yx/EQQIYQSAmcyNlaCwsTV1cVv9NHUZ1tbdXWwT4LffOztYBaoMhYhJY4VwACvQwN1KQ1Yf11h3XHmQom2nxpCJAGxv+Q17+CH2JfSR0c0TtHRfpl5q30WWwbPA83ejVm83ox1aB5UoxqAH4zCt6IgvLOEBgHJp1ncmksft6WogvLy/jN37jNyZeE5v33X333bj77rvH3pNlGd773vfive99b/T8S17yEtxzzz2XXd7LlenY/SRk0jMWewePkeglMXQy8n7y43WEqqT0HOpq1LXBxJ1reowr2Gl53suyyeUdw7n5UQ5yvsPCHCEGnsYS02PjjBWoyztSf9FDI137OwIw69ASSyrlAF2WTcuvjsMlxr+jK49vBf6zLB2ZbjhXAe/FBOPouDrb8UrKZrH2i3Vjm+W46aj1Qs8yszsgZkC5VAA9Vi973yQA3abPtlMS+3F9BQCKIrTRSNKsjyq0utBV/Xbk0aWCYnW6xPfGV0qmY/e1GbsvewYXi/g6ladeLgVsUq9qy9tsvYqBGrgmoGsDYCqYq0A6A2kqZ7gVAoikaFEgUYOHMvCmgsIsy/7+Pubm5hrgL69VL2etP6lAlKqFosA2UHtrMw0LyKr3N3+Tj5vBL1V/1oDAQJjaNuQRJxWKgvgaaJXl5b3UhVKnaJljxgTlICd9DalRyNfOa9SDfG9vL3iZs63YJqRrYT3UU78sy8B3boO9xvqv0sXQQEK6GO564H8GRXXOgbQqqndNT8vMMmiMADVi2Hazbaj9imXVa6gjcsGrp7y2u5VnEpC+t7eHvAIsOp0OvvzlLwfOsacaRP/TP/1T/K//6/+KT33qU3j00Ufxn/7Tf8J3f/d3T7znIx/5CN72trfhs5/9LI4dO4af+qmfwpvf/ObLyvd6lOnYfQVSlkCa+gkzgTaLmsUWYTob5wJAOa+rBR63B9vFGrIMW4U/x52qKyv1IrvfB5a4uOj3kTqHbncpZM0sWqjoVCjqKauoe+2i3Sy7bq2trksyIMv89uJ2G3j+82uKD8+FWYGMJ3s17YrmpwtjdaGrgPFOZ7mhwkGZAlV+Xn2pXyCLh/oIiKt6ZzNlXj8bG6NAhd5OXnEeVyc2bXLGoUrd0P/JssCn6reIlyidz3OAFGm73XAo3yoStOiVpZ+iQNoehu35gHi5OVejBgqeE9kuy5B+WBz3+6Ok45PAaKmf1U3MC9051EYN52qXfsCXtdfz9CcPPODLUQV4V1SIVWdA1sXFGsBfyoV2ARgFRNjfgGbAN/aPzc36HCvR63kOc+6QUK7UCiyhihV3x+nTwIMP+jpU6ZH3H/eVdWQ2q0xVJEXrIUaQ60kmjd3X00L86S7TsfsKhFQNhqKlHmLTyw4O2DDojQHNB2WCsogNS4nPk+8seSAS53zcisxhKXcNL3jNu54jVPdVJ0j7pmNUDG+0AVFTV6XXL0bHoRharJlovatvBfZVGgC6Dq7j3nlmgIlRuBQRHQP+uB9DUs8hz7yk7I0yCnDtvbDL6tIKjOWOpdIbPFLnY7gwjTDnsXMRFatHA+LqNwPTalta7DempouJNlWDqsfSydn2GZeQnRCNq3MMiLeV0QlWYysj6vmNzBFHysZzpd9PkDqHFulmeF2v35znyvwwby+P0OwNygSOsYRic0yZQ5XlU0d5cqUyHbuvjVw2E/6zn/3siZ/LkT/90z/Fd33Xd+HYsWM4cOAAfvd3fzec293dxf/4P/6PeNGLXoSFhQUcO3YMf+fv/B18+ctfbqSxs7ODH/uxH0On08HCwgJe//rX4zRJOifIL/3SL+E5z3kOsizDS1/6UvzX//pfG+f39/dx991349ixY5ifn8erXvUqfPazn72s+l1NiQGR4+gfFFhUXm0Cp0VRYGtrC1tbW9je3g5BGweDQeAOB9AAzNM0RZZlaLVaaLVayPMceZ5jcXEReZ5jfn4eWZYFD2GClwwOST7r7e1t9Pt9bGxshM/m5mYAeJnn/Pw88jzH0tISDh06hHa7jaWlJSwsLDSAXPVIJlC8vb2N8+fPNz6bm5vY3t7GYDAI9SNozPqpd7gGhiQoXxQFNjc3sbGxgX6/H9IsiqIRuJT3MpDDhQsX8MQTT+Ds2bM4e/Yser0etra2At+3tpvqXL2vGcB0YWEBeZ6j3W6j3W5jcXERi4uLIWoy20eNHAzIubW1hX6/H8q8s7MTuM/V65tc9XNzc+G3/U8QW4O5ss5M0wbz1L7LshHEJ9hs05+bm0OWZaGvab3zPEeWZaGvE8RnXy6KYuTDvqiGERo3tH5qqNC+YPsO24vlZN9k+dl2amy43oDzd73rXfi6r/s6LC4u4siRI/ju7/5uPPDAA41rnsz78Pbbb8dnPvMZAJ7b893vfnewAI/bwTDpczmyubmJr/marxnZHjZOHnroIXznd34nvumbvgl/8Rd/gf/pf/qf8OM//uP4nd/5ncvK93qU6dh9FUQ9VhXIswtK/c8F1vo6Ai9EWWJQJlhfr6kaL/STMMHfKpKA65FtYnXVf5OnupH++jrS3uNYXQVu7Q6w3H8YrdN/Bdx/vwcLydesi3dF548fD0BwA9jjNllDh5GUA2QZsJQNcPTA41juP4zk3k8Dn/wkcM89/nPffTVQSWR/ZcV/ut0ahdYFUq+HtH8WrfICUgyQYBhiQFJ96+toLoSUmkNFgdR+P1RrZ6dO69FHaw5wZSPp9Tz1+NpanWevV6vPOWA520J66q+Afh8XsIQBUrSyYcUD3wsLPjb/wLXCGg7wYP6FflKXleWtCpKUgxr3ZlsAtRVFC3jmTCgc2yYtLjTbnkB6zHIgC0HqqdPxTXXiBHDHHcCLj2/hee3HcVv+OG5tX8CtnS3c2tnCsfZW01hCqh6W9bHHfDnuu8/3j/vv94qXe7YrDtd2G7j5Zt/Xb+tuYdldqJWvfDztNtBuY5gv1eC48qLaxgQwzJdwtmjhc/cn+HKx7DN51rN8xky/6uN57m0B1P9SPsQSLgAnTwKf/ay//vBhIMuw7C54rnQbOY/6GPdbn7FxQPtF5Cs5do/D3CZ9pnJlMh27L18GZeIB7bKJ1+mrdlAmI0CwFYv9BeC5OsCggluF/5w7hzCuM3Zxv+/f90UhAC7HPF64tubf1adPIzn9MNLe4/7TP4u0fxZJ72ydmAC7KH0A1dQNw2uFLFZ8j83N+VfjoUO1YTKMU71es8BaHp7XD/Mf83Bbw8QIgK7jXAwRtwp3Lly+sVGPp/qxRXziCV+NC0XqP2ULW2hhq0iC40IjD0ig9uqTFFt+55FODqinfh9JsYWkf6FZAFuwcfMS+210k5QDpG4YPq1s2JiOLeVDLOVDtNzAf3zt6k95YeQT+tH643X7sr21zflfP7ZuOu+KtZ+1cIwD4/Wj2ym1stVY3/jovFQdQfR5qp6lRl+2/a6qT5gzVfrW5M72ElwoUs+Zr4a5qtyjHPaXJtOx++khl2HHaopGfFV5/etff8lpEOD4u3/374btapStrS18+tOfxj/9p/8UX/M1X4Nz587hrW99K17/+tfjk5/8ZLjurW99Kz7wgQ/gN3/zN3H48GG8/e1vx+te9zp86lOfGvGspvzWb/0W3vrWt+KXfumX8I3f+I34lV/5Fbz2ta/F5z73uUAo/+53vxu/8Au/gPe973143vOeh3e+85349m//djzwwAMN3p1rIRY8skASwUBLNWGDHAI13YnSdBCA3t/fh3OuAS7GgHqlCKGHO72dlUrFcoKzDAo4DwYDzM/PB090eglnWRbA+AMHDoQgnQp+EvTWfAjGb29vNyhC5ubmgvc071NvaktlQ7EBKFlPfpRDXcFfoA5mSk98Baiz6sVPwFUpbKxYz/kYbYl6Y9P7XHcCKM85dUR+eAXybR5M1xotYkAzQXHVpe2/3AmhoLQC00mShN0J7I8HDhwIfYRGCt5HIw3LS2OR5SNXOh62g+7AsPQ6lm5GaXy0rOqRzjKoR7zurLDPzvUCpn/kIx/Bj/7oj+Lrvu7rUJYlfuZnfgavfvWr8bnPfQ4LCwsAntz78J/8k3+Czcob8J3vfCde97rX4Tu+4zue8noBwGtf+1q89rWvveTr//W//te49dZb8Z73vAeAD3zyyU9+Ev/b//a/jYxRN6pMx+7LEOvtElvkjbuHk3vew0l85dlSln6+T/xvbg5YuskDyhvnarrmpNhCyzl0u94bm/EQG65XVdoJFwanTjUBf11wEBCvPOGL0ntcLbezpkeuGgLs4sg5z0/d63lgkSTa/N7e9iv5uTmfRrfr88uWAg7qHHx5dUGjnNbtNpBlKIo0OAwHb6Fu1lzAWYDSLujAQHBpUJeCK3RYo5P3zk693mJVAF+d4Ci1tub13G6jVywhz4FlJwtMAGjXRSBPOYu6s+P/L+VGx9SFcygrbvShS5E46XdcuLOPkde++rgsrReUrDBdvC/BfY0geopBFYSzX4MtBLGttxhvVKMIO/naGvDQQxieOoXk8GGPzldeUUMkgb+da+ZWUQXwtIYp2cFRVMm32y0kdncIlb69HdqCxT950tft2OqKv5b6kYCubOMQh4C6PH3at3mWeetCltU6VguEKtLqKFKfcP4y3dmezmP3VEZlOnZfuuhQbYcx/nYOSDM39p1owSMbi0TT5Dt+c7OBxTbsZPPz/tqUN+puKpVJBnqg6a1bluEd4lw6wj6hrxoPFJejeWu0bGAU+I05CcTKMW5smYTMxRpK8lWQkixmLLIt6szM6C4zFaWcS91w9P2sZeG8QoFXnbxwngHU4LJmbNtOdUldxQB1LY/oJBDlFEZvMZRz3P+Y3rW+Ov+aVBcqkd+XIrGH0aZlf1cS6JCszuy8dFz9NV+gOUep2jjJ5F7XQlnWdH51MYX5oCrTlQLN07H76SGXDaLHIr4CTRDvUmUSwHHw4EF86EMfahx773vfi6//+q/Hww8/jFtvvRXnz5/Hr/3ar+Hf//t/HyKu/sZv/AZuueUWfPjDHx7bYX7hF34BP/iDP4i///f/PgDgPe95D/7zf/7P+OVf/mW8613vwv7+Pt7znvfgZ37mZ/C93/u9AIBf//Vfx9GjR/H+978fP/IjP3LJdbyaciXAm1JqaDoUpd2wfNEKQlraFALvGmyR9yhPOPNT4FC5whXAt/zbBJcBD+LSAGABTStKv0FR/mzLOT7JWKAfDZw6ztPacmcTVGZ6zGtS0FFbFstNHgtCqRzozCdW/ljZY+nY9tRvzd+WY5LnsILS9p5Ye2hfUiOD8tvH+Ov1nPZ/y10/rs6xgKDWuKKiZdSyM+1x910v8sEPfrDx/9/9u3+HI0eO4FOf+hS++Zu/+Um/D/U9fNttt+Fzn/scTp06hec85zlXTOdy4cKFxvG5uTnMzc1dcjrj5M///M9DgBPKd3zHd+DXfu3XsLu7OxLQ60aS6dj9FRq7dZYtQTxjC3p7m/5IM4fSjW7zbiwk7IeoMMFsuZmL0+1tv/AcIvFbzRuZT6gTvxWs5LeubCUt66DUYFDVxZwszKzqQnJ2QWXq19C7KNeuPZ1rOhFrQE4u3Jls4xER0IEGj0YGVZ7jFlhRFdtOAeF8jXWQ3d0anZd7A9ijAMBlinOog7iqFxqJ1id5WavOpX+WAFLbCUyeWQagV9Yghi7czT2WDzdcp3qpjjEIbMDVmVlkAe4yk5X2czEkAWjq+BIMFNHyXkH7AF/ZsVufi0uR6227+40k07H7ysbucdjslaQT0hjT6e1rmOMVv6NliAGhfB+MAydjoHX1m3E4YpdEPcJjH1aGMjs7WrZxxkEjF6XLseNARFFaJDM0No451wTQY0NMdLwYV65JBoFYHWKTucsdE3QeEwObJ+UZK9M461HsXnZWlZjCYvOQSXUcNwGyhqGI0YG7NnwWMj+NzVNj9bHljZVzTGfR53mcxKiLLlWmY/fTQy67BzDi62OPPYZWq4XPfvaz+NM//VPceeed+JM/+ZOnoIi1nD9/HgcOHEC7chv61Kc+hd3d3QbocezYMdx+++342Mc+Fk1jMBjgU5/61AhQ8upXvzrc89BDD2Ftba1xzdzcHF75yleOTRfwW9wuXLjQ+FxtuVxag3HXWS9b5c8mLQZBVgKDpKewVCNKqRL7qCeuBZ1tkEsFqcmZTq910oRonejpa8ujNCT0ELeAq4L36hVtDQnWmKDe5gBCWUkVQqqcra2tQCGi5ad3OOl1SKuidVVaGAWdFdxWLnVLH6IUIwQYqRfyndsApPrNtNUDXb3PVS+xNmda9HzXuto628Ci1jtcDSrab21fspQ0rDdpWizdkJaRz4D+Zl/UfqY0LvrbBjll2tqfWT/L5c5rr7Zn+sbGRuNdtEOT+kWEUbCXl5cBXPn7cJIw7ZjR5WIfALjllltw8ODB8HnXu951ReWwsra2hqNHjzaOHT16FGVZYn19/ark8ZWS6dj9JMbuiy0S9NueI8BGrgrngH5/hClFXx+zs6NBKzlhD86rukggIEi3t07He3/fcov/HDo06oluZAR4tdt3Yws15j8764H6+fk6cGS77ctBD98YKMDy6rcukIoieCcfOuSrdPgw6nLZuo+pGxdJzGZhATh40Ke7sFAHWJud9e0gjCGhneiFrs7Dmt/uLkbq0cqG6HbrtKK4iN3GLPXPc1/vpNiKB1Pd2an3rtut1wRismy08JE8Nf5mlo0BXShW7xO8yLSPhKPSr5JiK/R9dr+RBbUA8VhfR9o/iyW3haOHBn5LvZ4vijqyarfrqYq6XZw/j0Ab41wkD+bT7yPtPY4lXECn4/Uf2ok8CWXZpEIgZVGMz3UcgMBP5PyNMHZfDIsbh89N5fJlOnZf2dhtH2997EZeU2UZ/tuAnQ2xhr0xQu5xSb5+DvR9yQEm9omNDTEAWxJXWpfGeDUOsNcPL15c9O86vu8mjBtj3/lWLvYiiIG8Uh9ubNNpzuJiXG0ctxm/msVkdSa2a0wnti1i942rq51LxShflPolRpGiadq8bdntudj/2EPACZA6CvH/uPaNgdiXIxPKNJYmJTawWN1NAu3HpSH36VzwYl3bnp+O3c8suchbb1RiEV9f8YpX4F3vehd+/Md/HH/xF3/xVJQTRVHgH//jf4w3vOENWFpaAuABjzRNcSjMcr0cPXoUa2tr0XTW19ext7cXBUp4D79j13zxi18cW8Z3vetdeMc73nF5FbtEsd7Q47xu9fpxQQ01PQZB1Ov1PsvLbWkpCPbqfQQg6T2uwCRQA/cEPAleAgigKjDq/U4gUmk0Dhw40KBpYXpK88J7FMgHauoTpmONBlYImgJoBFfd2dkJlDMqBK7n5uYwPz8f7h0Oh9je3g4AK6lFFAhXkNt6NWswUguqa98gtcnMzEzjm+mq94oaM5SGRA0o5PtWEFl55ckPTkog1a8aBtjnmDbbz4LgSg2kbaJc9UpHw/alkYD6VGMJOfGVR5352DZX44W2iQZWnZ2dbewsmJ2dbdAVaWBX24bqGT9pZ8KVygtf+MLG/5/92Z/F3ROiWbMsb3vb2/CKV7wCt99+O4Arfx9eilypJ/ojjzwSxgEAV8ULnRLbhRA7fqPJdOy+grFb+TfGgW72WxeoFSgH5zyYl+eeEmJ9HUmeo9NZDkk5V9+f52nIaug83UpZOXcz4GOM+iSsInkRy1rxeOpCUCfGMzMYvxhxrsnbDLmW54k67+35a3d3gZtuqtFj8q0XTVzUZRUVR56PBuaq9LbcdmivtmqQv98H1tabIDGVpeWkfiS9BEC328LcXNPLSBcLmiTXt7qeDqwf/cyDtHkOrPv0tsoUWZ7WNDVra1hios6h1W6jKJJGvgOkSDudUdC4KJDibFPX6uHPY6R1YT8oS69vu/U8y/xxBW4rXnEmOzPjgYfZWVGKpRyYna31HAMPtHwKsrTbSHo9rygF/bMM8/OtQKHT7wNL7awGq7U/lKV/fvQZI2qiegJ8RY4fB9ptXOjchlP3+FMEUkaAIJa51/N5LCwgfcEL6uvYj/lsPfhgs+7s67H3A2US+OZcsKTdCGN3WQKXMyROF+JXLtOx+/LHbrVROeeNgjZgo3Oo6TFQGw7Vw5Rp+P5bBRusqCViQJ++FhnIk0JDZdZuea/a2E4Ym4gWIiZ2DuJcXXpNw46Hep4Brm2aWha9NgI2j/XKjaFwF0PmeK4aQ1qZD+SpQ4JeAtROCNR3JkMIrwlBqjVraUeXVWN3Na4MygSu3fI0OJx7qN60rM2O0twJaIWF1LHZGiTYUZWfR/uBdm5bjnE6jYHsqlDbz2yak8D0WB+1fdPmzd9Sb7aFTi95eU1pU9Ttobx7gJ9fzMzUHHwxg4EF25lO1Wn4rqCoQczurhhWOz/YXNOx+5kllw2ixyK+Pv/5z8ezn/3sEVL8qyW7u7v4gR/4AQyHQ/zSL/3SRa+fRL1AuRS6hsuhdACAn/7pn8bb3va28P/ChQu45ZZbLlreSxELmCvYaUWPW0DacqcPBgMkSdKgVyFvNEFJAsD0ZGY6yj/NNHhOgVT1+iWIqsEsnXMBgB4MBgFgtGXd398PACvbgiCsekwTwGdeCtJZYFepPDQfBXVZJ6AGaNWgwECVTJtANgNN8nlREH1zczN4qCuITr505mE9l1kmBbfVK539hGA8KSjYtsorTwspjSnq6c88FDi3dVdueV43NzcXyqE7GiwPvvKSs79o32H+CqKrYYTgtPZb6oP9lbsRWKeyLIPxgse0P4zbgcDyaBtpsFeC8Pv7+yiKIvQZBdLVAKTPBvPVa66WfO5zn8OzGDgNlwY0v+Utb8FnPvMZfPSjHx05d7nvw0uRKwXRGUj3aku32x1ZCD7++ONwzuHw4cNXPb9rKdOx+0mM3XaxQ4mB6HpPWQLnzgHz87jglnH6JPDC3PnAilmG5eN+QbpVJI1kUwyQZh5AV6rNLKsWgkXhqTZ4EADyPACixBlZnBMnbkXae7xRh5F1bMz7vCj8guSWW0a5QNXbGai/mSgDiDoXArxZ8RTsCZxrIe9Ui1USlgtfa+JcXS5d8FVc6w2yUy2jXlstnNKswNHFLLTR0KU4c6YJqnc6QMsNMEAaGEz29ir9ZwOv+wqUHiANyZN6/Kablr33+H33+aCfdJlbWcHMzJGGLs6dA2ZnE7Tby96goJ5pNhgo24OrzF4PeOihelHebtfnaVBhmzhXGzOq9AZI0e/5S3TtmWVoGlQ2Nuo+rZ55PMY87MKUrlwEofkOPXOm5krPMmTZsaBDABh2W7UulKe3KIDPf77m7t/bA77qq4AXvajZZ6o8B7e/BPfdB6zd76nMGaQ3y1AD8Nqn+PB8+MO+vDs7Xme33940CG1sAF/4Qn1PlgF33VXrV58DFQtGjEHfboSxe7oQv3YyHbsvf+ymB7OKD8BZ/bFgKt8BxsCMyCXOJSNpq/AccTwK42B4w2wKl6VIAw+YFwWjFfds8LHbd63+Hmeg07FQj1+sIvadZcBOACiL0WQb5YqVmedV7H959yfOIa0+DeSqbUDk8C4vgX6JNMvg8iWvP46nZmccp2mzs8By7sfHrSIJw97sbIosS9HqGFTeVph5kxwfiPOCWCtLltUxSxT9V93HZFLbqU6ijVMJjd2x/mSv1fIocB4D0DX/caJ9qjKUEN8mzSDnJI2i6Pxne9s/WATRgXo+xBt1/q4IPduRnhJSN+c81mWnOSF/OeBcbcSZjt3PLLlsEJ0RX2+77bYQ8TVNU/zqr/4qbrvttqtewN3dXXz/938/HnroIfzxH/9xAzjpdrsYDAY4d+5cwyr++OOP4xu+4Rui6XU6HczMzESBElp8ut0uAG8JurkKfmSvicnV4uUdJwqkW/oNftvgiMB4D0pNT4M9DodD0ItcwWRSgTBNAt28h8c0bT0PjAbqVM96AqIKnGsAT/J8a0BLAqcES2kEsCA/81FvZnK620CYlhPb0rmoN7YCpUVRBM90AscEnufn50PZAe/hQX5llps6J1irgLmlWVGvaNvu/E8Q+sCBA4E6he04GAwaerR9Sg0cDPJK73AF8Qkuqyc64AFk6p/BP1mGnZ2dACQrEK3tyTqrQcV6omuQ0b29PczNzWFmZibsACB9i1K28EMDhnrgs38oTQ31E6PLsbsGaLxRnkr9aLvYQKZPRbDRxcXFywKaf+zHfgy/93u/hz/90z/FyspKOH6l78NLkSsF0Z8qefnLX44PfOADjWN/9Ed/hDvvvPOG5kMHpmP3FY3dY0CuxrlJQDrgF1Ozs1hb8/jcC293NRVE5UWc5ZVu6BUXKGCWQ3K7u1X2CnBrubIsrCtsXNF2G7iV3r3VAhh2YqxA4saGX5j0en4P9U03xYE/5g80DQwVwP3YuZr1nGtFVRGrwbVNnqd+kcxyqPfcuXOeuoQLz4UFD9RXoO7Q1Xklth2YniK1VX2SPMf8/BK2t+uFUMsNPG1InqPdXmrcHvRfAfdaRK7F5ueBpTyrG4MAbLsNLBxpFGtzs1Ztnre8JxyVw0W/XeRqhl/6UpODZmWl3pmgbpdZhoFroSCA40bp69mMqRs2G2lnp9n31Ytby2MNF7onmjQBQLP/9/twedM2UBRAS8D+cIL1ZTBPAiIveEET7K8sASdPAp/8ZB2HlQC6c1WwVktFUJYe4P/Lv/Q8LjIODsrEA17tts+HZej3fRnooa86HwdiaJ6hY9VyI4zd04X4tZPp2H3lY7dzAkCbc+OPpeHecZhv7JXM4zHR5Glf9B6uycg1Nj3/qbzg+eK2hmJbmEtB+cd9j2be4KcuZcwbl3RUATHQP3adVe7FjI+aps0ny2oubTvhqI6XZW3gIChf9P0xJpVlANq+DVI3BmSm7EkEVPWQtvWxILrVjTVixIwgNk0LbuuxmOg4a9OLdf5YOrH0bTvYe02bEkCnAz91r7sPUifp0vt8Z2c0KP3enp8fWj3Gnhmgvrex+y1t3DauzvRM5/d07H5myWVzov+Tf/JPAsD5zne+E1/84hfxTd/0TfiDP/gD/OIv/uJVLRwH8gcffBAf/vCHRzwBX/rSl2J2drYRCOXRRx/FfffdN3YwT9MUL33pS0eCp3zoQx8K9zznOc9Bt9ttXDMYDPCRj3xkbLrXShTotAA6gAb4fLnpjgv4OO4/RcFU9YqOUZHo7xgntKW2sJ9JwSHHBcC01CeXUkc9fjHgzpZbgVOti36rwUKvi117MaBxUn31Y3nGJ7WVXm950CdZQe2ug0ttV9Wj9Qi/FNG2JRDP4wpax2hyrAEh1rf4fbF+bXWg3+PkUq97qmR/fx9vectb8B//43/EH//xH+M5z3lO4/xT+T6M9YWLfS5H+v0+7r33Xtx7770APM/cvffei4cffhiA92L6O3/n74Tr3/zmN+OLX/wi3va2t+Hzn/88/o//4//Ar/3ar+Enf/Inn1Q9rweZjt1P4dg9DkCn7O6OrhsvtpDE6NZRp4sIe8K5kfUB4yvWN1+B2B0yExba+n/o0nphimYQMBUta1lG0ucFXIRepDwNnU2a/ZuFFG1kDSqTsqy29koVY4v7cdlpcEtzwSUtTBqKMTJ2dYe4jsb0jxj+0tiar/koSeiYdh/5KKeqiRvCOo7tmpNA+ljBR5OeuKt+pH6A112M64fXsg5Ke2TTuVjZrvRZNPKVHLs1iOKlfKbBya5cpmP3UzB2XyEyNGmo56th3OtxUppMj2M2P5fwmptc0HEyaRw3H6WtGVf/idldTRTOvpfHFSxWwKvV5pPG3pjYl9+llsPmY8da/T3JIHIpZR1336Q8Lyf9qyWXk9e4Pm1lTHtEL79KfXk6dj895LJ7fizi69mzZ3Ho0KHL3mLQ7/dx8uTJ8J8Ax/LyMo4dO4bv+77vw6c//Wn8/u//Pvb29oIVe3l5GWma4uDBg/jBH/xBvP3tb8fhw4exvLyMn/zJn8SLXvSiEDUcAL71W78V3/M934O3vOUtAIC3ve1teOMb34g777wTL3/5y/Grv/qrePjhh/HmN78ZgAfB3vrWt+Lnfu7n8NznPhfPfe5z8XM/93NotVp4wxvecLkqu2oSA2vpsUsgUNtgHK2LgobqaUsqDfWEBgByjNOrnKCkglrKoW695enBSU9hXqc84Bow1ALhPEYvX3oMsyykbaHwWqXLUFqXcbQdFgDWdKlb0sRYMD+WpnK3WwoSAr1lWTYCfpIjXT3t2Y6qa3ppK3hsqWdiXuv02KZ3eKvVwt7eHpaWlrC7u4u5uTns7++HtmK5VE9sd+qXfOv7+/vYrqzu1LdylrPfWDoYpqnc4QBCQFJ6nGsfYX10l4KC/aoP/lbaGHKZ8xy95rWtYwYIll13RlgDiO7C0PbQfhLjQD9w4EDj/7WSH/3RH8X73/9+/N//9/+NxcXF8J49ePAg5ufnn9L34VPtif7JT34S3/It3xL+c9vvf//f//d43/veh0cffTQA6oCfuPzBH/wBfuInfgL/6l/9Kxw7dgy/+Iu/iL/5N//mZeV7Pcp07L6Cvmq9cSiTgDwF0kQCm4VztadwdS8vTdUrqALossx7xeV55SG81vPn1Ns4yxqUKYcPI3BMl2VzIWC5S8ME+aY2QkbttvfumZurPWwtF6rqwepszEJHwVt11qIj0Ows0Moii52y9AgFyzA3572a2T5FgcRJWyi4GSu3pouLr8sSDNFypq0rQwHQdGBqpMVAq/PzYav27Gyt87Js0qEmxVYcpLcocLsNPOtZNV2LcwgRTEmjE8jbETLYONNcQKnnF4tL2prldnuU977qu1tuqfJoR1V/77WFir8/da7mjyWHeKfTfF5IPRPG5KazWCh7ntfeg7u7dXq9Xu3FzfIpIa5zITxAUfi6aYzbsqyet06n4rVf92nmOXDiRK3LKoG0f9Yf+9qv9dsHKj53rK7WCbPwtv0myZMAIL6SY/flYglXE0d7psl07L7CsftSzkU6pn2MJ4mNM8lXkNpPY68DNS7rfyvRDZAsYAwIt79j14wQwyOA5SplieB1rsdixeG3c5Gg1ONujMmkOowD/jUv5Xe3OuKL3xCmZ1nLVNrTeWjyjY1Xdr4X0ymvsQFY9BrdVac7mTSQaTWucK5hVeoc4AzlSEP/Wi8Va4zQ37ZT6+RmHMhuRSd2drublqU6l+Q5sqzuf6oy7sIcZimSDM2xtii8jjWA59yc30nmXFOXsXmr1lfqEquWdWp5MjIdu58eclXMR4z4erkyCeC4++678Xu/93sAgDvuuKNx33/5L/8Fr3rVqwAA/+Jf/As45/D93//92N7exrd+67fife97XwBrAeALX/gC1tfXw/+//bf/Np544gn8s3/2z/Doo4/i9ttvxx/8wR/g2c9+drjmp37qp7C9vY1/+A//Ic6dO4e77roLf/RHf4RFbkf9ColSoCh4yHME4tTLlmAfgWcVGzCRwKYCnIPBINCVKC80vwkIE0glBYeC0BrUc25uLgCWPKac0kANgJI328kbjdfu7u4GqhLrYaz86AqiK1WINQAoYK6GCoqlVrGAul6nOmHaaugoigIHDhwI9Wu1Wmi1Wpibmwv6JxULjQcEuS2fuALKWh/1KKcuDxw4gIWFhcbEmxzz5Cvf398P6bMupKfRb+pJwWjqRw0Yqi9LAaPXq/55zAbp1DYjVcv+/n74P25HxP6+p47hNQqc07DBfqt9VtuRQWLVyESds38pdZEaUSh2x0es/1xr+eVf/mUACO9Uyr/7d/8Ob3rTmwA8de/DpxpEf9WrXjXxnve9730jx175ylfi05/+9GXlc6PKdOy+RLGrYA1MFFtQ6YKjAve63cpTzTnPMe5coAUJa4wsadKZ9PtoMWgiOcFPn/bXdrsYtpc9ENqrt8ACHtdj/MbtbeGArsqva0tm9eW1BFm2DNdeRtYlYL9WL0wFiGaw0xSDUeC6ukbXXbOzvnwKmvP89rY/TzUu5665qKFy5udrjksb2JK81pZDmxQnlraD56tt8TaG5cjikzw5ejzLwq56NhF3bjvnjRUJDRIMSJllYe2su4/zvNJlJI8GNzngldXt+kbe3QW+5mvqhfj8fE3nUi0ewzbpHnD+fJNyvd+vuUeLwiexuuqTKYoEWdZC1rkV2cqtNVV+HzjzUN0kWQYcPOhtBBsbHl9eWGjh6MqKr8/qas09rkaibje059xck32mLIFB1kLayeo+wE7T7fqCZpnv4DTwkGKHessytNueMp07vtkcoRguReGWUWbAcrsEHnnEX/Bt3+Yvvv32Op/Tp4E778RfnUrxvONrnov+llu8/m++uQ4yy2fV0t2wsSf9v0z5So7d04X4V1amY/dkISAcgK+LAOf2WdShh7eMgJcCGKf5aP52iqCgYGzDS6xIaj/1+SY1PQkvihnurOG4+lZje1kCKJvluphoTEzNBqjmDEBzDB6nBAWaNUH9P64u9jqma0FzmycB6azlKcMcQswV51JogPW83YrW01MDoc6LICz/K1Bv6727OxpUVOcz4hjBMm5sNB0OYsadUVsDOftTMQKk8XsyUzfVpdXjJAOHLRQnGBHAPNpWvR6SLAsGjUBfCF//em6VoqWB0+38yOqUIHo1b02KrbrdNFCsMcik2bBhVBoB0Kdj91QAHNj/SnEIPAPkwoULOHjw4FVNk6AmQey5uTnMz883gFX1IgdGKTEUZCXfNT8KQhL0tB7a5JtO0xStViuA7wAavOYEPglSEmCkx7EGmtzc3ERZliiKogF2Z1kWykiAmUDmwsJCoywEztXjmGAvy0RubgVkKSwXy0pvbeXp1iCrahggz7aCsAsLC5ibm0OWZWi1Wg3vZYLqbDPyaGVZhna73QCZ+cmyDHNzc0EXzjnMz883AGQrBKL39vawvb2NsixDUNN+v4+NjQ0URYHz58+Ha/f390N61N9gMMDGxgbKssTW1lZjlwN1r17WCpxbowwNCeRCZ/8iYB7bcbG5udnwSre0KtpvLTc6hXz1CnZrH93Z2QnGItaLeic3PIO+al20r29sbKDf7wf9ajBTlp187Nvb241rrNHmycojjzzS4Fi7noTvxte+9rWXxTW+u7uLP/zDP8T58+efksCiU5kKUPfP8w895PtZDHUGmosCoAb0uEjo94EHH/QLpzvu8IsknfT3+0Cng8f2j2Bvr57vp+tfrr1iec/6ur/+1Clflm/7Njy2vRQ8zil5DhzreHD7sY0WNjc9fruUDxvBwLiOsPzpXODTEVfXF4qX0xm+VV6oywcEAPcClrC+Xq9jGGuLalHVEVg+dAg4frzyyD59ugavCZDqwkgXMYoKE9nmovT227FV1IAG63joELx3MRe+zgdABYC0uFDrP89rbvOyDAvd4eptWFurdOAGjSCwxE+T+z/n9dLpBL1suSVsbHhq791d4LnP9aeS9ccRFEbFaIBRBWZXVjw4bXnP4YOFal1JG1oUnlZ+Z8fHtd3crEF0gszttnfCzjK/m2F+vk6n1/M2FW0zrvlXVjyQ/sQTCDo5frwKgnvypL/5vvtqA9DMjL9odRW4+WacXX0JwwOE00DtyJ8UWz4dXZjff79P72u+BviWb/HH2Aepl9VVnO0loVvQpqIqPn3an/uGE2d9QNFOJ3iXb2XLcA5IP/rHwKlTeOy/+3v4D/8BeNt3/7VX1Fd/NfArv9LgTg/9VbwIA7hPiS3AyxKnv/Ql3PLCF94QY/fXfd15OHfpY3BZXsAnPnFwOnZP5SkV9s8zZ85jeXlpvPfoOFSca0ck4X2ut+zu1sbD1A2b6CYvAprpVcZMXjYJGLXYZJ43gys6JzErJuRJANAWz/7X2yeBs7Zc6txbg8syQVAdx5Bfm/m4TMYYAwBEQU47x0kwDGDpMK/jm5QlsJwP/ADQ6eCx7SUfWBRnw+RmmLVG+fSpRC2LGnlVmVbJOo+UeUcweGetMOzrlEbnTrFuG1Of/q759+viqFr54bhrcf5Yc1nDC4PoatMl/Qv1PEYnjlp4Bb2rAXro0jCM2npynugcfCB6nSdRpyxABZxr0+Q5kJZbzX5qDS8yr+IOgKQcNJVn5PTp07jl2c+ejt3PMHlyppSpXHNRoJIetgoGE3xUoFxpUnivDcypILqlUrHBF0mjAgCtVqtBfwEgBLTU/JWyhV7Tg4F/KRFcJKBOr2Cl/yCgq970SqOhHr3qfU3veAZ+JMCr/ynWWEBwVb37Caza4KMxUZ0wH+ZJYwGpUBi4M0mSEPST5bQfAMHAobQyls5Hy0C9AwjBYTXYKOtLEN0GTqUu1QOd6avXeew871UvFe1nauhg+zM97X/az/X+cVz4tl2VjkfblDpV2hnNw9K5qHd7jMpFdxzYstj2uhKe76eTPNWe6FOZypMSIsex/7FFrF5H4YqEXsYExhk0EqMchSnQDIDFVRU/VR6bm6NOOHmOkPah7q0jxaH4Rad/1ynQynhNFovWqnPNMjMDtA5lozpyLni42fWJdRzicefqdWhqV290S9ItztoGXG2eO+dXm3LNoEwCaKG3zM9X+UghXOVhPyJl6dsPCEYSXYOhKJBk3turcb/Q7XCR6FB75lNdCYa1UnQhaK0XlDzHoH0E/T6wfqpe99lF8sxMM+4W2/j8+VpVas8piprdxLlmn1hfr0F0LsqpDto4NjZqNflummCp06k7kUbU4xZ250KVeUqNOkAVpFU7I5+jLKvRJeqb384B/T6W236buDITaT/s9Srs/Y4sPHPD1du8btd8Usf6fWB9HZub3haAN7VR7O4iKwpgZQXD7jEPGFij2qWIfcfcIHK59v4pr+pUrgcZIml6p8dAXBE7ho3IOPDUgL/0dtZ09fJJGDODLjfKESuUq3eJKWhOw7jFMW1ZOCapX4vYAcZmPeLBPA5IjolN7CKosAY4bd5WGw2aLF+Jv8O5UH/uvkIuN2BppA4BpNVxOTbX08+4OWFsjkSgtwL3+70aMKeBWx0PNOAmk4ypy7KT6NyA34zFqzRqto0VuAbirDT8v7c3GvIkBAePdTithF5XlkiAxrOit1TDelXeFHAp0rYbmTvRmFL0a+PX3l5lhMojc1bbRrEH/6IvgxtDpmP31ZMbvzc8gyUGxClArqJAngXJbZoxIdA6qQw2CKYF7y1XtwKYFgRVkDRWh1j9lV5EgVLqJcZfriC3lsGWM5an1dmVAHwK3Gs5xwXlpAFDeeGBGgC26VrubcuR7pxDWZYBIOe3AtO2XQiGWxoX7R8EkXmMRhSVmL6YhwW6Y21/KXKxPBRAV4MLyxzri9reMfD8YmWxlC7PZJmC6FO5rqUsgTRt/r/U+2LXxlYgFSDbOGVd1HSRxtUPJsznJ0z0YwsvcmHzf2wRresM/g5BOHnhGP1YDvSLrUNRGGBD3fBsYcZVsvrwdi6kSMOdZQD6gjQASHKH1E1IV4J8NorS56q95lFtADWNRXatu7B9flK/0nYXUJ7gyDj7DQFpDrsXW/vpQtp6GeoxvTYWJ3QEi7Llv1KxQMXcnP+MAZNioJhNQuOkqmiX1jo6V9lmytIvni5jF9VYuQEBdMAX+3KG4+lCfCrXrUx4OV4SZnYFhjCL39tx+ZLzjiQwaXi07zu9pjEmTRCbbsMwcSk3xI6PAzLNsSTUsYlzMH9SmYyMw2UZEK/w2pZ0g6d2Kee0gWL1GDf2jANbnwQIy9v0PapJcaxSj3N73v623umxa2PnLja1pdEHWaRjk4LlYhlV6Vxs3Gi0GQtinoOpNGU6dl89mXaxG1QUuFNPYQ12CDS9aRUI5W/ldtZApQpuW2BbOdh3dnZA714FUi2grh7RyudOKhJScPA+losUJloH9RQnV7j1uCefOMtpPenVY1/pRnhsZmYm0LvYoKzM14L0ts5sG9WP0tRoPZm20t1YuhLAg73keme6pPJRowT1oH2BgLRS0QA+yCapZYqiCICyGhP29/eR53nQNXXAsvEYPcnp0c560ONeOcZ1xwHzUe573k9vea2P7sLgf6bFsmkfUKGe6O1P+po0TcFArwCgVDT0zI95nbNPjAsWSh2R0kWpXewzpn1qKlOZynUksQVUjPfSet1wVWq9VOVapWbMMtQczEDtcXv8eO2dDgBZhrm5MZ5BnXYA57lgJBdqWGP0ekicQ6ezBMZXRJX1+npN5Z1lnq4EZYlh3gr3M84nev2mKzS/y3rBpd7Meim9gwnQtttA0jtb60oLpvQYsbaxi+9Kqcmpv8YSM5gXBGG9V7tWU/mscGw7uloC4Lcqd7tLnhJmfR0oCqTdbnOVyfJ2OrhQtpCVfit+nicN+u5Gf7DoClDThbTbfrtz50jwQFc1BYoBlrkogG4bqHjRuRlC7wvAMGqGFY2TSen1PO23xRZ4TVH4tmy3EfplWQLIq3a7+WZ/Qa/n28as4AlqW1UE/agHumbIgKVG33CusbV/fr6il1lbA5zDUp5j6aYM588ndXqMH+OGQJZgZUW2jGcZbu0O8G3flgKnT8N1u75disLTzdBCpM9ATCxy9jTxbpvKVK43CVQc1bsgwfDiYK88i+MeSx4fIkGiHNhMQy+MGPRM/OPG7RbsjDGaBNA6UsAEnrbNGgxjUxQei9FmWLXwHL+VszpqNLV6iADiY3/btCLWhUSvEUmdq3eYFWVjMEnzHC4XrvxePd62O9wRJuVlIA2l6LP5snza/hczqpgyJxjCuSS0NUHLLKsNG5q8nR7wW73LY8UcV4RIF23sNuM16ohgg+bq77p8CZyrYpuwk4/zpDDu8s75/NWwo7vJnKvG5qKst9JJO9DYsiRUfeE5i+VvJVRCnGjUmDIds6eCKYh+Q4oF0BX4VlBSvYoVDARGvcMJNNNbmNcpx7p66hJ4HwwGDYDUerwzDS27AqgEMlutVgCIFcQnr7WmyzIq2DwcDuGcCyCv9WJXOhDr3UywlED0YDAIlCq8d3d3twHqWiGQqqA120bzpp4I1CrdCcHVwWAQ2lTLyeNqdNjZ2Wnwp6vu1VBC0Ji87qSmybIsUMvQI53lVeodgsh7e3uYn58fAYz39/cDcM7fSsuiup6dnQU5xkljY6lSaFSgDre3t0d4yJm/0gupN716vrMM1AUNCWo8Yf8nzZAC9+wH/LA/qK5YXjW86HPD8+R21/KN2xnydJepJ/pUrmvZ2QFardGVqF2BKFLMCTaP8zknL6Ryo1TXkwJjdVX4wD//+RoQ7Hbx12stOLeElTuPhIXyoUN+UUEQnsU720+h1CS6WA4Lsoo/eqlTYqmdhfJ3bz+Gkyc9x/VyPvCJV+h30u0izXOkuUOeJ57CgjzeBJAr/leqpt/3uGVR1HaB1dU6GCXXqMvtirv05Cl/EVHhiiOT9XCu0pFdrFLXCnb3eghk29aV+tw5T+KtbXr8eG20sKtW7mUm78naGtJ2ValHH/VEnVzdKajbbuOxcykeeww4ehQ4Ot9H6hy6XW+Q8Ly60n8oNBrkeQha+eW1BOtrwPZDNWsN1bSEC8Bary4f+2Kng+6JFwZadx7e22vaPQ4eBG66CbjzTqCVCRBfpXfrSg7c3sagTEIWyltKznEF34sCGOQpXHsZySp8PU6e9AWZIHw0QsDV0veHQZnQXoHb7ryzRvWJuFdt9+V1z4PKWKtZVtVpfd3nDwRC95WV5/nyFkW946EokJal77h8brMM+OQn8fqXHQf+5CTwdV/nO3K/37ROqFXCLrYt4hC1FtwYUpZTb7apXL8Sw7iiHtP2wuqZTTBEliUjp0awNwueRyyMSkGi04NLKXsMk9Y0KRpsVPmbU8DvruJpMS4yzY0N/03qEC2rvsIskK7zCuckKLreoGLR/EnHxilmHBpsQW0tMI9nmdeTDlxVmZP1x5tp8r2f5zjbS5DnKdKyGMkrGFLG1cX+jvW3okDiXKCDq4Yg7O7G8XtbTQLesSHETl21OBrnNFY8mx6HQaanhhTbnKSPA4C5uQRAisXFZbjcGPrHWAR0SLR0NN5oXc+fG0F2Ypw0ziHNMqRZVu8+tBWzCrBjd+QhDO8TneffADIdu6+eTEH0G0wsbYsCegpy87flpCZ4az3NCfwpEGt5uWPe1zvVW1LpP9QjXgFj9f7mf6UGGQ6HmJubG6HUUBBSvdAtiE7ANUYBQ7DO8lyznsq9zt8EhQl4Wi90FQXRFXTlvTym6WvZFDQmWM7rLdDonAvg+WAwCJ7o1gudAG6WZY08aZhgUNqtrS3s7u42OOoJBjNfemoPh8PgRc8goNRNkiQBIGaQUF7D/sV8ycuuQWlpGCDNDAFt1sMGHaX3O9udulWqFPXC53n2SQL4GhRVdyqwr7MNi6IIPPIMPmqBeuXZt4YQti8/vDdGG/RMkSmIPpXrWmKgl65e7MRaJ/J29RPzRK/Qb/VER78CZr/wBY9qHj+OYdbyXMzweO3iYoLVVe8hnueMcVEXg/EVDx6sqUy46OHCJiwkWae1NWBjA8kLCnS7t3kc8PRajYJrfZ2rF6MSgHNQJoBUj4vBM2c8DzdB9JWV2qOo3QaWsoHPq9fzF83MBHLus/0U6+tNr+mlLLKqVyHCqxWmizRQWx7oGs90Zma8zsnjbVeG29u1Hgiwnj4NPPKIX2nQG6pKb9heRr8PPPaYvyzLgKMHfD9Y6mR1Wbnq1Eh2NLhkGc6WS1i738fSrByp1b7i142nT/v69HoeFdnZ8eVdXUXS7SLPl0M/0SpXzu1YWfFptdb+ulmOtbXaEJHnSPMcyxWon3WXQxcgn3qnU/O6At5W4Z3Ol+HaQKvT8/qagCKpqonOn+37wK0nT3LNnKDbvRXL2ZYH5dkHkeKRR3z+dODPMukTBPArd/tWp4OVlWXgVL+5gGZQ4J2d2vL0F38B3HOPL9yJE15hTJf9Qt1LLQqlRhI+HBow9gaS6UJ8KjeKEDSOPmLjAF8IGB2AvVFQHQHMrtY0WW3wZVyQcVnqVKJBO6IXliVQeg/rGB94PSURQG/SvKMau4PHtnNwh2qDu3Ju87YYiMv5hEqaGQXHxuYYSm/HV74s9H3JiK42fSAeOVOvoWWX71mO3Rz8yrIeWLvdOu9+H1hZCcN6agwkw2qHF/uFc+moh7zOUWKKFF0kWWX0yByyLIlezj4T4qioLntmfKluTq0DARC488dJyEMkdcI1Xtl+bawZcs6rcwdVsbnpf8/NJZid9Y4eGnNb8xt5NkJ/LpuBSjlW28zsQ2Y56oBRK0HMImDP2zFdK3+DyHTsvnpyY83aptIQSymhwS4VaBzHbx0T9aBVwMqC6DaAJL2BlY7DgoOW79rSj8RoZKz3MX9rWZl3jA9ePZTpUc0y2rwI2Ntr1Rhhda564zktp+XKtvQxsett4FStr+rc7hBQj3/WSeurQDI91+ldTkMHjSIWrFTDDHWtHt8ahJX3KxivoDz7EmmImJb1midIrtQyqifV77jjSjFkd0lQD7orQI0hTDNGtaLGHNW57QOar+072q+eiQA6MAXRp3KDCSfKsa3b+j92nJP+yPVckIRj6uZbeloWAuPO+YXu6qq/0eVpuFeDhwEeRKfQQZtpNCJKKiDe6yFbqbx96OHDSFy6FZcgIIMxhgVlc31BQJVV0rVNoMlmOfp9DwALBzoPl2UdfHIp5rSrC5nd3WbkSJ5nAoAvFD2ISZOzuend4y2KoN9cIVLJGxv+vo2NOp3qWl3fbWwQWBkDbti8WE7nQvDLtTWPldNBfWHBtCcjeyqIXtGnpO02gGSEU3VurjZmtNsA7u81QfQzZ7zHvnLuVIvJrLs88igw0Ci9GhU/LkvgVl01m2qrhHJWJ6lHssFwA0T7eMsDF1VmRb9uWgZJDelQRxoFjbqx7cBK8PmYmfGJfulLPlEmroiCKja22I6J9tvpQnwqU7kqMpG2Bbg0o5UFtDGKC497ZPWxtlk1vGoV+NYEYwB0JDCp/k9tlSxIzXTNJ80dgKQRQ2NSvXS+Eavf+IOmXJpRWTYjVypIquetxNywNZCFnuN7muOADl5KlafvbzSLYauh38BosPKRdhx33lyXVGkRoA/9uSiAEs2dazq/5DxH86BTB/N3zgP2UpaRnQ3aL6XDknqGxSW1i3azvb3RppLpTEhSQ5rQEMS8G8+v7cfqeMDvGM+6nYzy2A1otL6aMh27r548c3vR01jGAU0KLPIagncKCMfAdgskW7Hg9TiQ0/KGswwKaGteyretALzNRzm6Y2KBVuvVzjwsRYctnwXDVawHPMtOYFh1GtNlrF7jdK5l53UK6KpBwLaF5fC29bVlif235dR8SdlCwFzbjqC1AuPahtTpYDBoeG4rVY41omgZ1fhiA4LG2sG2l5bHPiM2TdZJ+7gC5PY7pkdrGHomyjO57lO5ASS2erIT9pgnSmwFrYszgtNFES5N3bAG7YhqdjoNJxsCnlkGoFdWi43mWMS1A52zYvhgi95Z6s2lnNCFWRXZxfgE8K8sm15qzMY6hNXBvOR+AujmXq1TIyO7QJ2drTk8QoQr1Nwetk2IdFsKF105q/GD5SPtS7tdg+9mYZa6IdrtBO12ncUIsMoGIjeLGmr4KWq9KdtMwzHPubreVp+VkcPiKEyjwXZDnVIXi4t1OnNzNQdPlo1cSnxC8xnZYl6ibvhKD7Zf9PuCg1TXzM3VOIfdRk6PSpQlnEtHaGXKEkj54NxySw2mMLKoLazu0CARK9Ak8FdF2vfAuHcBfz8NFvB7e5e3EB9eBNOcylSuulyiUWqIxO+smvRsliUS5wLfOJO3zqtPWiYh7hPyaRjhOX7p/9iNl/geMkUIrzx1AB8ZxycaA9zobyaohNv6XzOMpRU7Fys8f5t5RmMHkVYSirlG0jJCMHocZz2A0bnhOH3E0tV+asd6Ox7xmOVDkWsseD5RqrwSAfeV3/9iz4Dl9x8Xl3sSVZE1cESNRCp2Aml1FLv+BjJmX4lMx+6rJzf+TO4ZKtZ72QJRBMtjtCM2WKYFHunBbIHii4HfBMBt4E5bbuuZbT3StawUekwT8NZ0SH8S87CPcbUzX6Cm44hRrDCvmZmZQDNjdaUUHhYsTdMUaZoG+hJ6hcd0aoH1mMGD6WqeyjtOb3RyfmdZ1vC0ZqBNDfqpQS5tuygXvebJY2wP3kdamf39fRw8eLABgKt3P6ln1COd5WEQ0SRJQP5wUs3EAr1qnWk4oIc5j2ubsQ20X+guBKZHT3r13nfOYW5uLhgsdCcE60o6G/5WHnXte+MMKc80mXqiT+W6FusBo58oQij30ctZI0hygk7X4i99CXjBC9DvV0wjp055vopOB3jpS4FXvAJ/1T+G9VM1bvv853v67WT98YDMOtdqrCNIT57nCCC70nhsbAAtBiqltznBUqKY/Kj3uXp2Aw1wOSkHyDJPuUEWFZ4mkwrxx06nthEk/QtNGhx6Olfp57nfdjw3VwO+jfIoajsz48Fyoqi7u3V5b7qp6YlOz3q9hhE1WXcutnjd7GzgJ0e3W0dfPXRodKswfHu2ALzwxCoOH05w000ATkUWvYDnY19dbZwLW657dZa6K1np9cMfBu+i+3tVTsveQ0x5ZcVX4Vi34gzv971xh7ogtY20zdB5zvHeuk+v3W44doemnJmp2rgc4EKR+t36JUY46tO1hz0ZQrXloHvixWHnBa9ZXKw3ANAgwS6QChd9K3PodpMQE44O5GtFgoWFW3HoNbciLbeAe+8NYPoQCRKtK59djaRalsCznuX7F738gZqUXqmBYh9g9P1h+8ANJGUJRKbtY2W6EJ/KNZWiACraSAX9rkgEVAsgJmqKlYvZxcbhe0GsUVePuVEaF3tJ4JjW8VC/NW1rLDaFot2Zhy3wSSxbNovBOdKLlKOFNHUZUYwFhfVeS+cSA9Bj71Etgw6YfPdyKxfzcK6mcdFrqvJwWBi6JQC1V3hpHOWbr3Klxk3hsrSmBxrXkKbN4zaJKi2lOOEFMW9s1Y0cH5Sjz8NI/7TjleSXZhlSB7TaNa0NL9VdjyqWdccOfbH6evGc6oDfdZmSCk946xu755iAZqQdWcnWYyL3jYuhUD/3lQHuBhrDp2P31ZMbp9Wn0hD1xrXUK+rBDNRgtwLcBE4J6mqgRYLJ/LZe2CoKorM8SkmidBpKraJlI082wUwAI+WkVzKDhw6HwxC8kmBnzHtaec5ZB15LwFaDkWqwSS1zVr1smR5BUPJ/K5c2z6dpilarhSzLAi85gWnrGa4Avno1WwDdgugEaouiCLQss7OzIfgngfz9/f1GQFQNlLqzswP19gYwAjIrBznFUrgkSYK5ubmgI6VwYXmpA5aZ55iW9jMe29vbw87OTgO0p4FB24zgOA0W2qeVLkZ3ByiITp52pVohncz+/n44z76k9WMwWoL9ZVlCA7bSIKPBb1UuF0x+usgURJ/KdS3kuVYhkEw0mMd0FcXFrHP1NXp/WXpejpMngTvuQK9XUWmcPOnBvTvuAO64A39V3ob/9J/8gpV800f3vgzct1avMvIcyFuBwSTPq4CgRQH0/KrGtY8AaK6tN7MlZNkSjnWyGkQmGEkw1dK5nDsX92yrEk5zh93dJLBg8DYC5kx+ZaUC+Htna8AS8DqlBaBKd6ntA7yFhbouQDWIJjlTuVgiysr2I9hpV3BFUXO+U06d8jQmQNPVbn4+oM4Pr7ewfh/Q7d6KY3d2m3mxnU+e9OmcPo2j3S5wHnXelQxKvxhbW0tx5kwanP4VJNffyhzCNeDuLmp+7k6nSY/T7QZe+e3tGlcAPCa8ulr1l5Onar4U9oVOBxfcsqdaXwPW7/N5Lyw01bKyAqT9s9jKlnHyZB2odHGxMvYUBZZWVgAkwJ5revEXBfCXf+m9+c+cAfb2kHY6cO5YXcmyRKvcQisD3GqrYePp94ElevBXnXt1dalhWzl1yn9I7/+sZ7Xwt79pNRDVlyU8pQv7/tqaz3dlpQbIicoXhQ9M8IUv1OBLltU8M+yb/FZww9I5mb5wI8l0IT6V61oMgMzgjza4KAHq4I0euaYBJCoYm2VIsgzkI7cBO/V2CxZOBNQNUHdRXFq5oZWmDYhTyCm4XCWq5bG/Y+B5lsl43C+aadv6xL5tebSCsQrHxILo9l4F57U/kIqLFHadDgbtI36Ocfrhehyt3vet4nEfIPxMitlZoN1uBoolaKwsMlb81KTmzW/MZYxOCEprdWizpR3BG4VSuSuFy1rjQenI0KOiqmzw88cMwEDz2QLQCsC0AzKTYEzkIbCBd5k89TrapZKqLy7BZUDWlr4YiQHQqKAxSlmsHajeFZF0wnvBuUZZnUsnN/51JtOx++rJjTl7mwqAUQ5oPTZOCJQyiCQ9b8mRrR7I1mMaGPVwt17elrJFgyvyPvV2JsCZZVmDU51gKQNUKiUI8yiKIgDJMd5rgr/K5V1OGJRZPnqOE3BV4JzALIXgrnpUa6BM9UQn0AsglEP1Nc4TXeulIPre3h62trZQliU2Njaws7OD+fl5pGmKsiwD6EsPdH5ruygQb+lgFGRWyhcF+9ku/NBjf3Z2ttEPFESfmZlpAPekblHAXY0EavxRb3jl1lfjB4OG8pu/Y5Q0uhPCBsDVXQp7e3uh7ZReiAYU9lUC6Py2HOv6zKgxZQqiX/r1U5nKNRUFyDm57vVqMmldVOsim6Abr1EgjaTOp08DvV5N9UFg/VWvwuDEi/HJ3wb+5E880PlN31Q5T5086QMzLi6G8ri2TzoMbwT9qndW2ulgb69eOBB8zDLg2Cvypie4XkBPHwbn1O/tbb8yVI+uLMPeXhoA9J0dXwRipsQbW9mw1iOJ0vmxOu33PV1HEUEmqEsF4anzdqUUggndbiOYFm0D8+0KhGV5WO8vfanOa2HB04DMzQGdDs4WLZw8GZoP/ZUUnU6K5cwsNE+f9uhtr+eBWUYClYVZUemKmxBYrsVF3+557rFcdjcKbeIctrdK76Hm8spbrn/B59vtonfaV4kLUtoSDh2CD8y5VvXF7e2aSyXPMWwv4+S9PqApq0BV0IaU5/Ce3adOIbtjecRmgVPrAZRwrlW3U6CqKTwgzQyKAnjFK+AyD6IPysS3f+WavtQGlroZHj6d4Nw5f/lWmaKVuQAiJUWBlqsDu/Z6CO11zz0+Jujf/lvd0PfKEnBZy4NofDbbbaDbxQCpDyhnPR2/8AVfPtdC0QeWeNyAd2NBIk3zBgTSpwvxqVzXsrMTPNEtCjcCksvxEZlgNAbgvVWr51ep1cbhwfZRV2DOHrdZaxp8fTTAQ91ZxnFRedXUk1sTkUMxGjagHjPC7ja7Qy0mMeA8BqLHJHZ8HDAau8fyivF8WQJ5ji23hFZeBgP62pofY4+yPnmOC0WKJRRgZPPz59PGFAVoAr0xG4Itfv3KTwIneYMCBvE216kXmy4mLJdylceGF8t+M3KN7e/a1lafQDxIp03UHqvm1KRJ0my5mzGGi1OUkXBmJsH8fIosS6P1DUU1Q7DWnWmlDs06ykX6jtBTl0WL8xWW6dh99eTGm7lNZaxYb3QrsQCMCkwDo8FAFUgfx0HN3zZ/5Yq21DJ6rYKwNoikUnEoGG+NBuM835me0pDoby0jryUoqgA2fxOsZTpKA6Lltp7PMWqdSaL1o25jxgp64u/s7GB3d7dRB0szo/zv2ge0/WNgL3/rt5ZBy2f7gwYT5TUEpcmXbrnZWSf17te+a8tp28lS7mg/UGOQrWesjpoH6xHjW9ddBXaXgX0OxuXxTJQpiD6VG0p0MXEx4CsGlOn9XB3s7tYT+qIfwGhieU884ZlIAn0zA1nOzo73ftEFbqScxMkBASntwogfXVUzvbKMuwiVJcrSAxe6gKP9Ic/Jt1408wCaF1odxvTJY1YUjBcZurSBtxNn2NkB8hUBUFk/BQZUh1mGotcMdEmO+uW2uZ6BPRtcNKPCDQ/nzvnyEPDe2KiTIh23Yh9sBl3E8/pWBVKTesViCjMzVXF4klaPsgz9iv2E7ENnzvhLDx3y52inoDITDFEUSbOa1GVZwulxbUc1qFTlcXl9e+owAtgQkOfhIRIkpr8wCJrWY23Ne8k3+n3QXeqXwru7wO6u113fb10PhOz6LKPZRcc+c5OQlRtU9vYub3E9Hbqn8hWVSxmzJ92rv8ch5ACa3sFXJkrlEQNm7TA4Mmbr2G15NSaNnUYUkGV+jYCTsTFc054Enl9q5ipaZkX3eU7RZfUmjoC5RQG09H/fXOYctreBpdl6zJnU7ON+U2L0JpZiSI07mganYFrFWH52bqDltCqYmRk1mIyIbd/Yt06oVP8xwNwWpnGsGTRXA9zabMnswyw1q4htaCQdTSumH98Ok8XefyMF35yO3VdPpiD6DSoKcse8wfU3QUmgBg8vBo5aahELpivFi+WWtgChpQaxQJjyXCvPtAXtbf1skEeKBSotCBvjadeyqliDgv5n4E56KGswTXrVxwKQWoDcBhxVOhOtB8F6HtNdA6SLIZUJjQn09KZ3+OzsLMqybBgi6DVt+dFVj6TTUdCbOlEKIKXsUaBePcgJntPzW8Fy5XrXslu9qZGCuwOU7zxG9WL7uBootI/E+qi9z4Lk2ibqIX8xmXqiT0H0qVznMsntZ9xxC5wrqLu+Hrxq0e0Ci4tot4HDhwE8Vt2f5+j1/C0nTniP5JtuqpK46aZolo2Yh6VxrSlLZFkatsgCTUA2gIQsq3JDO+fdotV1SWlRjOR5Uy10Cp+bq24pyxosXV/3yDELH/Pc11UhV03KM686j/GSV9foAszi/x4fTT0vNttFPfkIgM/PB/oVZkda9AAoa3lIOk6+c9a9cs0nL6mqk/rK8zpb0uHompbFYz1s81CSYgvdbiuwktDLndcM28sefF5crIOHVnv2VY1zcx48564CpYVHWYaG73bjnmCe7icf9crPMu/eTgVWYLXG+HQu8X20UhB3FCi/atA5lSjebQsLNcvN8eN1bNG0ivjaCkqrGvWWW0If8ztEer7cx4/jApawxEixGxtoZR6ob6zEY8aei4FCN9hKvCyBy/EFmA7dU7mmQuR3BHH2EvMcHXlMLTKnx2JgIBAMcioxOm9KgzqjSkuNf42ko0UQTmYNeFyW8cCTfHnLWKmg/eys/7DMmnSCYXPgsSBrTC4FPNc20vRYRgXDrc5jgKwFcqmHat41zFrorQHLK3m4LxSzun5QJt77e75pMFVd5HkS7L+k0uPQ8MgjPjkOJbQRHz7s6dOGLsWZM17Hy23vWDBwLfT7SWgiThe0KrZqqvqYM/g4sUHnQ/uyopcisecidkyvjx2LCKGYWJMrpbnWeWQ+cJlFvxK5VFVdTzIdu6+eTEH0G1SsR6yC2gT4lLNZva8VlFXaDnu/Xq8gtP63Xr8Eei24yHutMD/LE22DVlrAUnXg5A1o8wSaHNc2b63D3NxcyJuixoGYF7LSnShtDNMjwGu9vpm3cnZbznhLA6KBSXkPuc/J7c68Z2ZmQPqWzc3N8J+AsqVq2dnZCfzosR0LCmCrpz6DbZKuRrnnVffWK5tUKEo1o+B5URRQXnG2hYLizHd+fh7OOczPzwdDgoLrpNRRbnztW/q8MB9bb2sUYH0Y+JRtqQYQltcag5TWyHqvP9NA4imIPpXrWrgQtwGvnBv1AteFoJ6vXL6Hq7d5wLp/r+eAnp8HXvYyYGUFx10V1+qLReA9OflRD/z9d/8dcPPNPqDo/DyAlTt8midPNugoSJfSyoZAHyML6jxPg+c1UAeD7PWAMm9hyfX9n9VVXHDLnuKEKzhyQ3OrOFHdXs9zZMhKZ7k9xHIbeOyM5zE/fBg4eqgKqIVq5XL6tHdrfuyxGqhnBRjgi4t1csrTNV8BACLLNADYIGLOYZi1GpeQr92urZ0Dut1lD6TffnsNpNNlv1ohKxVOp+Ox8VvbF5r9g3p/7nN9473qVfhvn0hw19cNgd/+baDTwVaRkI4VqfO874DP9sQJn0SD435tHWm3i7JMArc3r5mZqR2laf9Avwhe3csAljttFMeXsLFRx1gtCk/Vsrp6BK1urzZQVO2ZFFtg0NrFxfo+ggUvXN3yBXEucLKfOJE2QP6UoAa57++/H/jkJ4Gv/mrgzjt9JW65xSfIuVe7jXa7ZpfZ3QWO3uT7wdle0mhu5/x1ziGA4VvO13OxaoZDhzx4zu7Vbldt3j2C1snPeMTjlltC0NjBy74ZAJBiiLQsAm/PheMvwe//PvCG1x2v633qlDcOsM31XaBcvGrk0Q7J64vCd84bRK6nhfi5c+fw4z/+4/i93/s9AMDrX/96vPe970V7xLKl5dnHO97xDvzqr/4qzp07h7vuugv/6l/9K3z1V391uOZXf/VX8f73vx+f/vSnsbGxgXPnzo2keSV5T+UaCMeJ6kUxKOu4Gso5TfCQxlGg2i0FjCKVitgZEJpyMUyZyQKRGB/ynWQ+cCPBdDu0aF4tNSrzXSJ1b6SvhurqHstYR0ndsHpvA+hVCtMYJpruOCN2DFzV4xocUunysgzDfKky8iMMhgOkod7OeQpuoH6dLuWu+b7NMlzoJ8hyIM3WgH4fZ854+rR2O8Vyla+rqsc5xdqaD31xa7d2MGDxk2LL08zlOdLMYb30MUcOHwaWeg8jX7kVf/Infly+62sHwNoaTvdvxb33Aq94BYCTJ5GsruKBB1qYmwPueoGf25xbuA2nTvlpw3L5OFznSJgecQp25owfJrj7jTvq1LeAtn8LlKvaLeCeumE917FjlLXkjDNmWINH0xLepHCrCkFHAgtk05ijuyA0JjzQ7MZMI8Ug/LGGMmvnVhmxjUUsVokbfdZVVTeKTMfuK8/byhREvwHFckCPA9EJHNOjV4FugorWU5ogaYz33HoEqzczgVket8Dg/v4+lAdcQUQboBJogq/Kx62ApPUaVw9pBXMtN7fqaRzliqWhoa71Wzm41SNdQXQGTNU6qQ7ViGH1Ri9sXpumKfb29hre5lmWBU90pUEhME3dJkkSwHSCy2x76pi83pZOhf3BUtQcOOA54rMsawDY1hiibUC+cOccyrIMfSIWlHMwGGBra6thAGm1Wtjf30eWZQFAz/M8GBTUSMA6pmna8NQ/cOBAqOfOzk74zWdEQXRtKwW9td+y71rOdNLWWHoifdY0vWciQDwF0adyXYsuFnTWPTfnZ/h2AQzUi1dG4KoWEGtrfm34wl4P+P/+Pw+gv+pVQLeLE+0KO/7DXSDLcLZo4f77gbvuqhZhYaXUxmfub6Esl/GSlZWweuIaNOmdBfrGVama5aduAFdRmijYur5elasDn167jU/+CbC62sJt1UVn27eh3wduPe4X1WexjFMngePHl7BEBJp6On0aKAocXV0FkHoA/f7760CNRQE8+KBfxVoQ/fhxH1TVuRqw56KfyDE9mAmiU/9jFnu9XtMTkMkcPFg3FYtQlsDcXIrZ9m1wnduwlPkFcECFqx0CGxveuznLgNtWh8BH763Jy7Xv3H47kGX4rf9fgt/5HeCtb03wDQ8+CBRF0Pux7hBYX0eWHcHenk/iJccvAFmGvz5deXWfOhUMCCWWgu1Cqom9vbpdk3JQ07Tw4nYbJ171N9DrVTzo/T7+Gkfwl3/pL3vJiRUMM8/1XpbAC48PgF4PMzOtYMtYXa2r1+nAE4yfOuWRgePHgfV1JCdPIu12sTtzzHt7s5Cs8H33AR/9qAdJshaQtZAcP163deV6v5QPUZYJvvQlrsX9/PKJJ5rdApCdBVU/OnXKtxF3cFTYeGMR/sgjvklf/MgjwP/7/wIvfalfeJ94IT74+/76v/GKqtyPPAI89hhOrgC/+ZvAq161hGMPPVQHj6WhR3d0sA+w06mBQlfd/N/vA1tbuFHkelqIv+ENb8Dp06fxwQ9+EADwwz/8w3jjG9+ID3zgA2Pvefe7341f+IVfwPve9z4873nPwzvf+U58+7d/Ox544AEsLi4CALa2tvCa17wGr3nNa/DTP/3TVy3vqTz1MkAaXvAEzbOsooaCAdFKT0Om16h3dsqBQkF1GmnlOqYb8zzf3Y1gy4qOx+YSzoHhI12WhtfI6CskQZrnoSxpe9g0/qLOa5i1/HiHSj2Ff1cC/l2ZlIO6DOu92lrLsp47V0fR1Epy8NEKxoBW5eBgutXYOkCKFEW4hrFVjh7y1w/gwWq1EzBLeoMDCZbyLICdHP7yHLityvexx/yUpNsFltv+nVz50AXg/tEH/fRk6FIklaKZZ4idUpWzLI/h0Uf9cI//di+SLMPJk0fqsfvee7Hx7Ftxzz1+eoP77wc6Hdx7bwt5Dtx1s9fzE+3b8NnPensu1k4jyXP0en4XWQtbwHofs7NHgrpb5QVk7aWwWW4p90aZrYpSj/R5aiAa63HeL+o+o8YYtVarjNvloHMxutOLAWdQJt4oUpaeYq8X91NRe7MGs+U1zklf1b4kgH0TQk9HuqMO02psCMYtW+eiQCLAP9PY3Z2C6FcqN/rYPQXRbzBR7+dxPOL09LW8z+q1bTmjeb16Q0+iidH/9L4msGwpMhRIVQ5tLS89khVw1vJb4wDrQE9fLbcaBuglbD2dtY6kAFHvZNV1zPucYK3yoytvNuADizrnooCs3Q2gx1hWBZkJJHMXAMvAgKxpmgZPcnp4MyjnTuV6SEoTBtxkf1DdMshnURQNkNg5hzRNweChWv/Z2dngda9GA21Hpk/AmZ7zCkKrLgeDAXZ2drC9vR3qToMF24H0NGmaBjBf20mNHDQ8ZNUorMYl7QsK2FuAVw0xlnYGQKPfxWiNVKxh5ZnohT6VqVz3okC0Emqr2IUEP8YrjCwuLywKv7B62cuAEycwdClW2kDae9wvTivgd22tYm756Ed92lkGrK7i5Em/CH7JD7RDXmVZTfzpOa5e6ALSzcwsNxzSAIRFKToANjawVSQ4edLfdttqHkDJ9XVgbi7B0ZvaOH2fx0KdA16sdQZqAu08x2L7WE3fQf6PsvSr0y9+EcGyQH3pokuJvPm/8lDTRVrgEVUQQhZuisXPzNTezbpI0x3qWeZBhZ0dYGUlxcrKrd67aW3Ne+2tVzzquffOxtqaB1KPHq3B/Ur3Z4sW1k754LC/+7vAa14DfMNjjwHz86E6/DEz4xfH7TaAe+8FOh20uy/0yd237vM5fhzIlsK9dhEYaOBVB4yq2W4jOXECy+12Hey0ewSnTvlF6okTfos72/WFJzzgQZyENgLq6+BBAB/6vA+weeedONtLsExQGQCedax+NHgT4BGNv/xL4I47au/Byot92D2Gfr8CA/p9OLekWEXorwQz5uaafPBUBvH6m2/2h5byIZaysmGIuX/zCM6fB1782GO+0t0u8JznoN/3jvLdLvA3XlF1oMceA9bWsL7u2/KRR4BjTzzhE19b86touunrO4G7N7SABJJii/8baSV+ncjnP/95fPCDH8Q999yDu+66CwDwb/7Nv8HLX/5yPPDAA3j+858/cs/+/j7e85734Gd+5mfwvd/7vQCAX//1X8fRo0fx/ve/Hz/yIz8CAHjrW98KAPiTP/mTq5b3VK6NFEXFbexcYxhREH13dzRYs+JmfO+kWf1OZ5r8bwH0sqw9ZUmLQsw5KrEEIseT3EE5tJ2r03YOQOaB0o0NYH4+QV4FmKYRmUEXz50Bzp+vacK0vCMBQzmWaxRrotW660sVNo5TRFFKW3/hHE/5fsyy8O4f3pQiQRHiWgjuHuySLJY3btfe+9zAtr0N3HaTCzrh1AMVpYsa2be3vY6YV7q72/BED04NUl/qFKdOAceP4/TpI77N19eBBx/ETtdj50UBPwb2+zh58ogf7ytquyLzp8oSAajv91t1wXo9uG4NomOtj8Q5zM62vJqrscbly77fVvFnPBVatROjEENtA0SXgVbnDwqKa5vado05nJh7BqU3Zrk8RVLpU3nZbbdJXZPWKCm2KocQB5R1fUfm28aBBPBGqFj3s9VpzFmCojF2bGYA1MEgenoqE+TpMHbfOOFkp9IQBdMpMcAvRsmhaViJAYc27VhZbJli5bP5xP5PAhMvpQyTRGlKrPfvOP71i6U9rr6W7iWWhtWbFauTmI4U6FevdvX0150ACv7GeM71nHqiW/oTBZtjOogF9bT/xxkorA5i/XZcvWPlid0T49K3uo55oseeMTU4WT5+m75tW/v7mSbj3lOTPlOZyjUV674CjCc4vYiUJerVu3OB2zl1zWBd6mUWVnXV4jZgbTrz1wzGrRS0DLFbJK3gTFvlUa0hfUAiJFqceBnsfyZgM9VzsbJzhWXzqISed0MkY6+xSe7tjV+48fqdnSaGH+sDwTPKIiciTGNnxxv0iwKNNlbh1uUsq28M2Rn9qDqjza26pJuUNUhU520Ar6Lw3c0m7pwHrYmbzM5WN1cdNejUtrX2U+1ItuAVILW9XbWnOW/X9Pac5sV0Ggti6kC25o+crw408GwBBHi80dRj2r5R/5jEKnKDcaJf7gcALly40PjQyeNK5c///M9x8ODBsBAGgJe97GU4ePAgPvaxj0Xveeihh7C2toZXv/rV4djc3Bxe+cpXjr3nauU9lWsnYWyIyKQxwKZxta6LTSVGEpiQ0MXysElweFVDo/6+hCybAPqkl69aIOzcZNw7cEz5Jx2LvVMutY1iaYzLL3ZN+D8pczEIhB/VO84CtGGorNJrDJ1j9NxQZXVfULdcMzJ3iCnAVjqW79UQKXRjrEZ8PhZ7NqOOEprguAYVeSqqdiPKdOy+emP31BP9BpFLAajpJateywAagKEFHCl7ZvKuXrnqCWyBT3oj8zvmhayeyErJwnTVi5vUIRbUjoGX/K352Dw0HaarNDD0aNYAmc654K2twUEVmC7LcqROZRjAXKB3YTmV6ob58lpbHpZ7bm6u4cmvFDXMi1QtdleAepnvmhFJg3jSk393dzdK5xKjGlGQnmVVPvGYcUcBeuavHuPkOC/LEvPz81hYWAiBR1WHrVYrcJyTlsb2ZdtPbRkU8GZb2zQ0poD17lfdcCcD+eZ1VwZpfnidNVA8UylcVKZ0LlO5rsV63MT+8zdQg3Hqfb26CrTbyHqV924vbwQuBICtIvF8zqdOAWtrI8E5Q+BN5+pzdD12rp7IqQc6pSzDvTv9+tDIuinPgZtuarBqAACKArfc4nml222/hfbQobQOpkn6mLL0+Vak08PuMaydAlZWjiF9QVF7mrOc9ExnZqR7UU9+XuscQvRV4StMyoGnCykiC6gsw9ClDUCUjkmzsx4QznP/rfy4gD8WXXAVBVZW6sCf3hsMoY0bXngVmLu767ecP/e5s56yZ80r7vBhUX7VrjffXKmoSid0Eee8i53zwT4XF+tt7FRXpyMUJ+sCmM/ONvlm6XFWFCHuabtdp0P1DpEgyTJ0Os3gtkzWOdT0Ne22x3+dC3uvw5RSeeuLouaFabc9fz8AnFz3YEDnSG2fqvowt9lLs4burbiOZztawvYZ//htbtbB3Jbbrsmxn+f1c0QlzMwA6+tYygZot9M6YGqWebqassT2I37LfruNpuKUuNW+J7SRKA0lyjVj3VWvRxlif3+880nsegC45ZZbGkd/9md/FnffffcVl2JtbQ1HjhwZOX7kyBGskYoicg8AHD16tHH86NGj+OIXv/iU5j2VayN85Bik0z6Ck+zglqKF3uc8zmCeCtBr2mQ64THNi8cCpYY9Yce96j1BSg6+kgiIW9F8+TqWKUAw1MZs355qQ3bTlGUdyJz/uf2HYzaFru36/rPXWEVRydUxb5RG4z7n/LDRynMUa81kNClmMz/f9GDm692Pi32g3w+xvjudul5ZVnOtM72Fhep/FdU95MfBoypEVo2/WYYwgB4/Xr3Oq0G105Gxo7r/uc+VMX5uDocO+aExz2udcFxn4VrZEO12EryyURRY6uT1GAvvsd1SarGyrHdTxNohNlax72nnYZtOMgyPE1fv2vAO/J7KhY7j3KjGIhcFgCpOjD5zI3WYNN7KcWVZY5qERqL2EJ3TG9DeOU+Xo6pI0/FVv/5kOnZfrbF7CqLfAKIAdoyXGhjl/gbQAIA1IKMC6QpoEwhUsJ1AI8FmBTxJlUHAkGAu0yJYqPQkCoLxegWnWRbW29K+WFoX/U+Q0wLn6o2slDOW35w82+Qy5++YnhWIZr3If00aF+ra8nTHvKK13ix/mqYBBNc6EdhlfpbSh+2lxghtEwvelmWJzc3NRoBR1Z/2I+sxzvJRnwT1bbBX1Zvy9ZOnPEkSLCwsNAKtElBX3TCI6MLCQmgvNXDEjEXUw4EDnide68J+bD3vaVAoyxIbGxvY2dkZ6V80QlBPNAYxbzV2sD7KU6/t8UyVKYg+letaFBzjYgKoF1C6QFQ0b33d01qsrmKw+jycO+cXQgcPAjjf9sSYKyvVQjrBxgbQcs5zTD/4IDod49BLdLMCNbOsAt67XR8Ui9fp4g6oVw55joFroSjqdO2i5Ww/xfLqKoqUWV9xAAEAAElEQVSiBom5mjmWfxloOx+wFMDKyhGUZcXjfn9jZYSt9jFsbACnPgF86UveLtDt3oYMQLtXcZAePuz3nXMivLhYg+TUKcHXdhsD10Ja1TVIzLNaF+7VdnBSs7C+lTqwuOiDoPrs/YJ7e7t2riZOEDy8uGDt/xWWgBqo7nSqaGFoLrycC17ox48D3/d9/hv940Ce4+jiFm66qQX0fL/qZH6R3ekAOO0zTnpnfXpZ5q0Y1U8C8LSjzMz406kb1tzjCtSy03DPewWkL7sLuOOOpYD/53mdNjO7tT1Ep5N4TtaTp5HmOVZWjvnzd94J3H47Bt1bUZwG0M4Ckh88uVcrsHltzed74oT/Xl2tuVkefBDY20OyugrAc7CnWQYUFWWOiBqYtAusr4dd8o1vAGjfkSBZW/PGndXbSP1fKbHr61EUwOc/Dxw/jq/6qhdT3UC7jc8Uz8OpU56P/bu/u+r3d9xRWy3m5+t+J+BKKKhyRrC/Kv+sNRzdELJXfS7neuCRRx7B0tJSODpnrSSV3H333XjHO94xMcVPfOITAMbvqr3YDtWYI9Kl7GqdlMaVpjOVqysWU9NHEDCPmnNAWYPdFjfzQF8N6Plb4h7u+jjbcjT4qCcV1tW71MqK31qNwTHwT187zlV80QDyPA3nEgyxuDiegMBzrqdVMVK0ullzzsOLWE5jNOZLlcaFsgTKQsqk70Wlx6iOpRiEMd/HQfGnNzaAokgaQKjaG2ljXlioqMB6Pc8l7xxSAEvdSoGPPALs7OB5LxsASH2MjzWfSavtedQZyJrjw/Y2sLS6ii206mYKiLmXHH5sT8pBCIz+ildUzeocsLKC1VVP57a6inDNy15WJeMccOgQVlb8sLLcHob5z+oqjfVVxdfXfTDU9fUmVZjqVC0t2pF5LtZBFSBXg47OJ2nRiIHoSgXDfNQ7wdVOBbu7vk1p6GayvI3C0EPBkGL7os73NG/n+fNL6WJ8frTf6C48lQZlUwR9Z5yC1AHIHLIsuZHCmWA6dsfTuJJ0piD6DSIESa1nNEU9sZVHWwFcet1aHnT9aMBM3sfjmo4GatT0CBKyTBZEV7HeygAawLAen+R5rvkwGCfLoJ7yCpyTR5zXJIkP0kn+bHo6MxAlgd/d3d0AtBIU1QCg6klOzm4F1JneOJoP2+b7+/vBO5z84QrC0vOZ7apBQ+khrf1C60BdFkWBXq8HBvRk2WlYoF4sFQrbg+mqfulFrlz16rVPwPnAgQNI0zSA0WmaBv0PBgPkeR7aF0DQJw0dapRQj3W2Nz8E0QmQEzxnGmxHAKEP7+zsYHd3F5ubm9jc3AztzfT5XCRJ0jAOqEGD5R4MBtjc3Ax1URD9mQwMT0H0qVzXogtFXaly0m4n9Zypkye708H99/uFwp13VsGhOh3/p+IHL8sU588DRzsO/QcfxBqA4/2z2Nmp+cstiJ7n1Zql7YNXBSejGKhfgdvnzjSBZP1NENJ1j6C/htrLnBeSzHN1Feh00MoynDix5EFe6qRaRJ085YHz06cDjTiyzKf5spd58GHp5ps9uszFcrtdRzrl4oUL8nypCj61BNdZ8t7LJHLnItIGIXUOW4VfEJ8/X6+Ddnc92EynOQZNa1U6zm86Eppwe1uKQ0/3ft8DrZubNZLxXd+Fz5xsBc5wggWD0udP3PhrvkZAdAA4eRIJC5LnWM6HyG9PkBYXasSHHjFEuJ1DgiFuuinB4iK8LgiMn+rHF82KupMzn3o7fRovvv2EXJoEHvFw78mTaBHsrtDnpEKlHpu7FTsAilPV9dR/nqPo+SwePu35eZe78O123BsRsLBQA+sPPODvv/NOIGuFPk/wS/ur5bJnH+71fDfd2PAU5sRiytLrv/Xoo0Ceh8CpwWs/X/GJfPKTnhv9BS/A6uqLMT+PkMgv/6yPPfqmNwGve10VmPWlL63rrIt5oAk0WARPQXTryTlmUXp9ypUtxJeWlhoL8XHylre8BT/wAz8w8ZrV1VV85jOfwWOPPTZy7syZMyPeapRuBWKtra3hZunwjz/++Nh7xqVzuXlP5dpI6oYBsG4EIKyey5iDtGK8fIVehFGscb/9be8hsB3EIt+oAWi+opk/KcZieZFJha8hz23uK5G4sgrujKrerZC1BQ85PFCyLEGWLVcZVXnkR8ber57iQA1Y0sZIPvowX7AGR1aQVt3q/b65WaVfoCFa98XFSi8cdBX0Jyk6B4b77sPzVlaAtaKh1CTLUIXCDq/1nR3gQvsIeut1fS4UKbJ82RutAeQlx/Z+AMi/+RWVseS+DOh20ep9Gd/5mq4f86prvuFlFUXJKZ9hqziLl9zRDjFlUJZYdhd8W1JfDK6jLtujDVcrKGKg0f910NHUf0qEvuJcK7Q7YIwgtvHt3INlk/lyWXh98jI21f+fvb8PkiQrz0PxZ7JPZWXXZPfU9NTM1O72rhqY3R1ghRe0YpcPIWEBQnEx+rA+fLEl47CQHPwcCBQ2MpYUAoTBSA7FRlgSErZDyIEUVlxjruRrSwZFXJC5sEJIbIiVtCtGYsQ2bC/Tu1MzXdOdXZ1d8/vj5JP55Fsnq3uWWZieqTeio7qqMs/He07lOec5z3leFo1GP7N7VGB6VGxMxL6PC8g/dnEJfI8RIRvWi8h5nebD9Le2quClNV/leb2f8iatL/yGfyvfwsGx2dh9tcbuGYh+AGyafrRlaitYqmCevV/NSpQQmAXqTG6mo3InygQGKhDcssSVcWuZzPq//UzLqPXkZ1YqhHVgoFIGDFWwlRsFKuPCevFzraP1r7Levc5pVgNwuTundVaGNYFXW2ca/alBYAm4Mlgo39tAmgS/NT3ew3xUrmV3dxdZluHSpUvY2dkpA3lyE4GbDSqDYjc/CCCz7JadTV9YbWtlb5O5rZscOzs7pSQK21XbSDeEbH+y/VeZ8KrRTn+x72o5GXg0yzJsbW2VftPflUrpKOOdZWE99DelWvQKItvf841gMxB9Zte8ceFgAxZZxg4XYwTICoBwddUDe0kCYHW9ki0hwofYLyT6DgMA6wBODYfI86V6GQqQjos7JfmUshgW1C9ex4jKRbiVNuXr+fPVuqHdLvC8vLjg7FnUKOqDASIil7qBkKbl/gHXevx6eRm4807Pxl8kKNzrlX/j3gm/MNJVlat0qFnmXi/yTHBd4GhQrMIH/FoVTAC/2Ka2N9YFeHYOUZoiSTzjrLao0g2JL33JVwzVd8V+Sbn251Fysv57Pb/IjvNiE0UXvmzQ4RCxLjwVJdYNhjxHlOce+F8v+pk6KcQyW1iobzqQcj8Y+N2OAsyPnUO3W8kGxEni6/rww3U/FADwl77ksz92rGCMy++C2bBrLJ1KK5CB/XQ49B2P/iw6i68GA7SX7im7eLvtN0cUZFIGOq9dX5c2LPrqeuF2KgnBdf1Fn/mMr8xjj+H43cV9eY6xi/H//X/A5z//txgOvwF33134XY8222dCk4SB9iNluPH7AyXn8tQW4vu1Xq+HHjWLptiLXvQiXLhwAZ/+9Kfxwhe+EADwR3/0R7hw4QJe/OIXB+95xjOegX6/j49+9KN4/vOfD8ATHT7+8Y/jve99777L+FTyntnXyBRB0wGv+K0RYPdQe6RfTQDoqoip14SAdf2sxjoPlMEa5WL4Z/XMdcxWPJN7b86JdnRoQ9U5RPmolC7RR1DolhDp2D7KQn7T4ce5iuFfMnxtRryh2PBHkmCUV21iYzMDk3I81eaBmTBwjONEIM+r6J18ViuAj7pUB3FrBfAZpmZhwYO6sRsjzrNqdxaoAmw75ycGPCEG1K/ROWQRTLR8z8y18rpBYP1o53/c2DWMcJbL9rcm420x/WXHLy2L5q8d1bnyd6ThSUIbI9pntMjaXWyAXwBln9EpDk27hE1P5fvKodtu7OhnWgntuwfGZmP31Rq7Z4FFD4g16aADVwdYCoG5V3KvgmH6qkB3KP2QFrVNwzKYNW1rVm7EyraoH+3mgK2PlccJ1bfpL2SWgW7LqbI9+/kL+XOvMu3VzqHTAVaORZn4+l7baFreTT5pkh7SjQcF2Zt81bQBpPWyfcq2d0j2xvrItt00X17JdzeS7ee3tJ/f1sxm9nU3y/gpqa7eaoGR5NoSc8syRKiYDTXpyeIiGyRtz+Bokg+ztjidZeYADXqxTZnZDYX9mIKNArrWAoQWr9MWd8EySHr8iqo8T8WmHr9vqLf9uHxv0Y9p9QlZaKEaKk/TZo+9b6/Vc1NZGu4ZI5qumRpKcx/BNENVpdm+Gqp2nqMuFhy6gZ2k1arurV0vP5wmEChU4Gn5HWgbP4W/q2/Pfvaz8epXvxpveMMb8MADD+CBBx7AG97wBrzmNa/BnXfeWV53+vRpfPjDHwbg519vfvOb8e53vxsf/vCH8dBDD+H1r389Op0OXve615X3rK2t4cEHH8SZAhD73Oc+hwcffBBPPvnkFeU9s2vL9JkefL4b4zPGPtOvyEJjhbwPBUDV+Mv2kRJ63/jY2dcgOplGCGBtymefWVQWelAX/zcFg/2qbdo8pfiOAG5oDNeN9dq4Y8eCaTsP+p6fTQxWmLxu2til3+913R5GuZXQdK9sl6Y537Qy7MOmFdNKLdly7XcaM82lwbyfyvz2mrfZ2H21xu7rqVdcdxYCVvk5LcT2bgL3mrSXQ2CufmevZb6WlQugBFYVmNxvnQiQWbBcmeYKbmow1JAON6VCrK63ArHqF8rNbG9vl9IfFrDWMqi2N8uv9VDAz/o35HP7R9+Soc30NIinXqOSOeqzLMtKVrVKowAoweokSaDyPZRDAargpRsbG5ibm8OlS5dq5VStfEqzWF1yC8irX7Q9mHer1UKe54jjuFZ2e2pAdc9Z/jiOy/8tu5vtx2Ch9NNoNCp1z7MsA+VdeKKBddS60aax9O3mD/tq6ETIjWgzJvrMrmmz9KymmboCo4OBp7l+93cDd92FZK2Yf6+tVfomMjGPMcJzljPgwYfRB0AiTBlgam4OSFM8mXWQDcLMHZZrXOiZ1hg6SVJj/PBotVWOWFiopDOSpGAWX0K1IcCIZPqnAtVFfY4c8dVXTXfnPJm61LfuditmuwTkzPOC7STlzwd1llA5zBOE5xdkgVFOZK2qC+vHrMuj39zkEFCfzL5acFXmlaaeUq5ssG53wp8RxogdMD8flUTzWj5adjLkmr6jY/jesLvQ6/nPKOJqF+RkvTtXCcQraCz9cYyoxuByLsJir1dp19ORhb+7Xd/ORegSDIdeP3aULJbp0G0TzGtlefX7ZT/n8Xz+3Hj8m1VicVXPlF2UJH8W9/hxrxoDoNSxTRJf5ko5oOOhgZtuKgOeanvluW/ys2eXceRIUcc896cz2m3PSNf+QSq87Z9ab/7ArJbrgbKnl812Jfabv/mbeNOb3oRXvepVAIDXvva1+KVf+qXaNY888gguXLhQvn/rW9+Kra0tvPGNb8T58+dx77334iMf+QgWRIT/V3/1V2vari972csAAL/+67+O17/+9fvOe2ZfB7sC0IvBR4H6s4ZBOQ3GW0t+OqAc1YoRaQKBstopxtzc9GkHy1Y9r4WhqwU0eTIWS6AIE2nrK6/Tz6dhuDrMVGnG9QCRJmENBm7rPg309HMH1J+7vIjU5O1t/5kGhQZqcmkur6YFlomv8UecE2KEFjak220LvR/0VgdBFsY2BvNpkm9RvXAztwix0C1wHpIyim1Dc+6l5QnkPUaEVsv3VW0i3UvWfW7Om3SKoll4V3h18jwLF0HTZz9k0F/WL7RhwrSjcvISMPXpgQPZZ2P3fvPeyw5Sq99w1sSipoUYwgrqhhjLCrJbgNsC2xbkU7B4d3e3lKpQoJIgumqjq1yFTYt5WLCeYKdqkE/Tj6aMCrWurYa8rZetCwFo5jEajdBut0v5D4KmlObQ8qikB/2qvm1iLmv9NeApTQOgqi49QW3rC4LB9Bk1vLe2tmqSKJap3W63S+1xBs6kzwHUNNlDmwfz8/Ol7w8fPlyTyaH/WW8rXxJi32sfYADVzc3N2qaGgufqJ+q46yaAti3bb7uYTCmrnqA5pVuyLCt93W63y7Jr36E/qZUeOhmgGxcEz6mpfqPbDESf2TVtlgpmF0Zc1CjoORgA992HL3afV8oed7vwR3fPni11xblgjFa/CHzsY8CjjyJ65SuxVCyK7rmnCDK5sFBqq+e5xxuZfbnoGGY1INov3mNEBci9seHxU8CXpd2uWFWcd5aSHIV1knFVN6KTEoFy5DqIe2Z14xyOH6+TiwnaU8t9fh5Aq1c5Jk39go6bA2VgM18XgvFcz3jWvqy0+FocAc9zYONcpTTDgGOsb21BVrTDZlYwmYZVmSc0Mnnj3XfX+sQo8YE5eb1vj2Hhaw8ml0fNifbqApmLY/pWF6X8X69lfYvrx92liS5KfyUJEA0vVh8+8YRPo9eb2BQZIyoDoeZ5dap88dRKrX31td/3vqVU0Po6MHCLGA69jq1zXr5nYQGTx6JR+YnR08bdJWyvVovcra3qBDzdX8kXRZibq/LudoFbbvF9T+O+lW1YACdpVtWvOuXeQWdlBXjuc4Hl5fLecdJBNgTuvde7/Kab/D7YIjIv/9Lr+Q+Ldh0nnUrmSPRay4KwAtrW/O7AAeljXNni+umb7ywtLeGDH/zg1GtCp2Df/va34+1vf3vjPXt9v9+8Z3YNWeh35lwNSDdflX+102QFfGIDjtps6p9Hdrgsx7smEDAEZNt8NC8GQS03o0Oazs5NAOCh/PU1hM/yXgKVoVNB+gpIkFbH2BcybmV+vCfWHVK8sqYMZSDyEmQcAJ2TKOmob9qSAFBce3Ho23Ex8fr5adqZeHSXgU8Hw3qh1MfTQPQmwHUSwa2/Z31sY+s1mo4tuPyRaGE3KSgdZE03cnzV6nPLxo4pky1lihd75aVyj3UByQgKbof6J+eGQDVND/URm075OxazJx+qqVYElyyW5atJJYX8e2BsNnbvN++97CC1+g1nBAlD0hVW7iQE1CkoGZLZUMBSgVV9bZLDIAtdP+PnlrFtTQHQEMP+8uUq+CUZwgBq9dP7eS8ZzBrwVJnaasqUV8Ae8KDx3Nxc+Z4Ma5aB9eP/qv2t/raM62l/LHvIH8pMn5ubKwOZsuzapgqAKyisbUGmtjLZDx8+XPMFAWRqv49GoxLIZnr0f5qm6HQ66HQ6ZZBN6snT96oBbzd6NBCqSrjopgCZ6aG+ZAPhKhv+0KFD5SYAgBqYrlI0GuyTzH2+MpCp9nU9DaF9gP2Sn2udrW68lZu5EQHiGYg+s2veLF0ntDjigm1nxwNop07hV9/lAcRXvtLjd/jsox5EP3asBG/zHIjX14Hf/32f7rd+q6fPArjrLvggkwUCfeb3fVZcE3L41Yl9EUKsLG6nWKVcWvWgJvE7BZO5CD56tFgkMoFBVtWT+u0FWD1OOjh/rmBad5dq4ALT5yKt3fYgKsF75wCkvhIjxMiGk+5mtnlegaSHD/vsywWQgJJPDmMM1+ukLW4akHV+5EjFmKZt5j5/yo4eO+YXXWmKMmhYmVfhsE23WFsADtYNa50FANBuL2JhwSh3WPY8aXcEVtUBGjyM6apmepqWcq+8hAxwkvx7vUXEZEhvbHgxcTqT9ZLTCsxyY8Onc+RIhJMrK+VCOHbjEtnuYBOdow5PDr3G7mBQl3DlpknHjSbBHNYnSUqAmzFSqVG6ve3T1JMBncTr3i6mCZyLauw14tnPepbPV/XR0e9jnC6WLh5Kv0sSoLO8DDz72UCvV7smz4HnP98Tzns9L+GO+cwHIV1eBr7t2zxQkHQwGABLQF3E1+jQlhspNtjogbNrh802s5lZK4GxJnQamACWCaTrHibAwKQIAmiRq8uP2A1NayFM1d7XZCEwUT/jKR4AcElcbdxay/MSvG8yy0pWMJ/vyeqd2LAMmAX6mUeT5ru+NmGU9rM8L+J4AECSYDOLAAe4/mLt+sHAB0FN0xhJUs0BkgRYzP3uatxPkLuo2gBngFK7ma0b4nyua2WMc8Yubtxwcc63W20The0Y6lBNnSUAprOPqq9DQLRNZnfX/3EOU1VnyomCsjKu3JzXr4DqhNh+QG5/b1ROITjHsZr+ob2DSs+devnSfsUNkWHMs4l1Y8E3dYRO4sJte6BA9NnYfbXsILX6DWkhAJ3WpBccYqKr7YcBG7o3xBTWslht6VCaNh191XsIUKo8DNm+KoWhviHzmaCnlcxQHzE9ZRQrwEumPQFrBYRDetkETm27NPlA36vMTMjPBLrVv1bGhfkpIKwguJZXA5ZaVr4GTmV9dJMhz3NcunQJKuWj7Gq2EVnjGmhWN0ksG183ErhpwVMABNC5qaH+Zb6HDnnJFdZP+wnLwHZXwNyC6CodQ8CdzHq2s5UaampX5jeNfX+j2wxEn9k1bXZlN23RwhVHlmHkOvjMZzzB9u/9vQIvGwz8H+U0iiTjLPMs9bk54DWv8doRzqHfA7Dmkb5RHpWLvGAR5EMt5rhYgBEcteTXiUXGMJusJy/iKqUA/3d3q8CRurjguvLw4TqAXrLQwQBQPqAqF3FBHXZTnzoTEGXhub5VQGJ7uwLtVT1DF5D0y/nz/r40FXa/BpIVP6yv1dVX6JbaWrnIYL7r35d1M2nVQPI8DwbLqjnCROMaIyoZ1cRtrdxPkgBLTIs7Etq2ARBINy8uXPCbJVxwz89HWCTAXyDRSXoCQIUzMN/y1Ub1Ynl2dqqdnW63vEylWrS4c3PyoXNIkriWDPve8eNAlG3CdTvlveN0sXY8n/Up3bzcrY5LoH6NEhcvXQLQyoFz52pyQFx01wpNP4WAdHX2gbTZQnxmB9wUeTNAOq025oR+r/Kctl9Ni1liAfGQUf4iVGxNI/S6l9kNgyZTADVUPn2cceM5xOzV/xU8t0CovZ711FdeE8JwOYaO8qh6Jhu7dKmex9aWSLfIBME5AbB5ytBupFiGOB1ikWMD0Ib8Y4eGqj2jusxdyLEhhwE18JyvFkC3Zqd/gG+vVst+V0ie2MbghoEw0C3GrvUt55/A5GY7gW7nQAkiu/HSBKTXiqMMgcAcyN7EPspL5+b8/LU2R9P5zIGKcTIbu6+WzUD0a9j2C7JdDWDJSmQ05aNAK0HS0DWWHb1X2e31TUC1BZ1D0h668cD7tAwhhriV4lDfK4BPpn0Ty17TDMm3hORImtj+vJe+1jxDmwhWYkT9QB+oj8nsVka1nmoItZ1lj9u62oCdzIcbBE0bPras9hQG29b2F5u/3TSxJzCsf0N6+zT1sUrtqJ9teqFNFnttCEi/kcHhG7nuMzugFgLEgBKldq5iAgMFWE7Rca6MsgydbrFAs/TwhiztV+V7+VKvIaNHVDvKS3m4ppFEY1dSDRfa9VPsxnBphKNHPQCredukeXRb7+eUgmsSLpJ2dwN6rwIA23UQXU0Gc5J4RmHsXAkesByUseG1nnmY11eyRZs5F9f8KJhuxVorEuZnSYLJFZ9+WRSUR92dQ6XHacvABpX2TpIKEOaalv2v2wVwNguvYgsjoEJ/kQ3O90qu6yRjv7kj6TFfZeTXurLuMtC4syENlA8nNzj0vXPACDHibre2QOfmTK/nyx0NLwLDITr9BHnq+wfT46bD+rp/5QmNfj9Gp6gsWfjqsjRFyZRHr+dZ69RWKnxQmi6qA+BCzQ4skH6lAcdm8nUz+zpb02/RgI5BIHofv1MFxpsupQ7zlVgTKG6r8FQCaDc9qgiwqoa0NY1f4RwmNmOthYBbi0eGvtPxVo2KZDr2R7k/9RSnDkkSTaSf59UYqepptfGKIHoST47ZWjg7EUgSL9GH8SQDfYoGvZ1OWjC4xkTXCjWZlDcqXuOifXQqof01ZNbftu18lSPYUw32N2A3DZhWY1+1kzlXMdoZz4RzAhI5dN5IsJ9925ezg7ibTArdM58pP5wr/U1d+zYbu6+WXXdd43qxEGs7ZJZBbcFHBekIFjrnyustiDtNXkI1pWlNgPteGubKnOb1lHGhjEdTQEbKnthgj61Wq/yM12jZLUuewHKr1aoBx/QD5WlUH9yCr+ozC9xrG5AhT5a01T8niG/LrKaa7WxDsq8tW5w+UXkdZVjr5gf9re3CvGy9AZT+IkO73W5Dtc+pZc6ysG3IGLcgOSVc2H5kpOuGQZIktfaZJhNkgWyWg3WykjfqFwW86dt2u13+T1/Mzc3VTkiwTGTM6yvzZV9hnflbnLYhM7OZzezrbCFajoLKOsPu9YDTpxFhjFe8ogoqORwCS6dPV4gkkTyicvfd59E/ijk7V5Mtid0Y3W5Uy25+3ic1RoSoABU9V8cHtVTrdkvZ6ZqKByALHEvtUcaOkZ6I3RhpWj/2miSRX7CtrSHKMtyxsox+Py4Xzspao0sp18G1KNPTtSLjgfG6JIm8TI2rtMx5PRfFesy8g01/AYFf54/gx84hThJ0Uofu6SIg6+BJYCgIrvaBYpHcP7VYat3HbozNLMLGhseD43yzYvPDA87dbuTLsD6og+C9nm+7fh8A8Pi5CBcu+Hr4o84RWq0TcAmQ9gtwYDDwfadoxAhj9HoRdna8FA1Q+XkxGXmk+OGBF/KmLgo7jy7G8xxxniN2DulyB3nuu+LODnDy6AhYXUMMIGYDra1V/SJJECcJbu53MTdXnw+WJLWk4zc/9Lckuu6j7olSemVry19GaZj19arYScITB1FJGk8SLxeziAy4sOZliNbXfULPeAYW+32M0iWcPetPHJw96zd3zpypn87Ic+BlL13B4+ci/Pmf10lmDPK7vg6srgJ/sXIbnvOud02gL/PzqHaoGAzA7iKpH4TNDyBMO53ZzGZ2xVY+apqQWQE39bGk/5fs2BCALkhhJBuzNg1gOpvbFs1ipPq4UOkNNdUkn4oHmoJxQ9lUpxGr1c+IRbJuKqvVZNYvFiu13+k4znpNnAywVHb+DYd+UzTgkHHXz0tieMB9KU2QJH5zHGeH5XM5Auo7uToPcq4WFB3wG7znzwFAhPn5OrCsdWV9olzk8wAvNZIXony2U9qGsN/vY6eFBIQYheyNA5D4zxhPRrMKSb1MG6JC/X/a9DlYbNMpRnmErJgXXLjg76GqDucLykznrUqi4GuSREiSDg4f7kzIyPjCVsXgkp/Ny/cTpyFtJWd2Q9kMRL8GzYKyISDdMrcVRFc2tmpR6700e52aBcEpr6LAIY1MY5Y5BAxanXV+rxrVBDRV61vTJSBL3XMFpxWkpmQJ66AAKYFhlf1QtrcawWXWu0nHneVSbW4F/RUcPnToEOI4nmA0hzYttOwEfrmBQHBeNbi3t7exvb2NOI5LGZRDhw7V2o1a6QR6CXor85w+tkbNcQBIkgRzc3MliM6TCbqpw82CJEkmfEBfUcOcYDXbkf4OscTpK8qw6Ge8TkFsrZ/+bra3t7G5uVk7XcGyJUlSbhKoXr1uVrAvUT99Z2cH29vbE37W34sC53Ecl9/fiIzsmZzLzA6E6XinKzpLkVpeLoNwft/3dbCz45muwyGwdM89Xqrl7Fm/ChgOPVKYpl7GpZrpT+afZej3vTQFs0tTz7gdJYs4fz7CwkKhPc3VBVAy3Je6Yyx1IRTf3IPFAJLeCV89u1BTEF0jNRblSdNOqVCTJIWmep77+q2tAWfPYpFSHcvLnk2UdGr4IYFSYoxkCE+zNAV6vRjIq9PVbJbDh0XbfX29AlTtCkvbDkBkZFWCPigyidIUi2kKrA38aYJeD+7okgfQ19bqCMP6enHtWlWxYvH9+OUTRd+IsLVV9RNiyzs7ftFI96dpjF7vBLorJ6oNljzHUpIDCSo9lwvDSldlddVfx5UmI6aSZq6bJYXOuRfaAZYIGDy0VvVX1Y5xroosmudAt4uT3S6O3rVUti9f/f9x8edv3drpYBtLyIfAcK3aLNHF8aVLXjWl1aoClbKad9/tf05pCmDV9zf8wR/Uj9E/8QSwvAz3bX8XZ854d3z2s/7jBx6Y3MDp9SKsrvrvAO+mo0d9fIIlPIk8X8LDD3sAPkmeg1OngB/+ByNgOKw2ppyrtIPsnyIG6nfefKAW47Mj4TO7tm2MqB5Do3glcK7Dgv3p+U1S1IFZs/FYG/tdDOeqIcQGatwLSGcyBO5DQU6bwEmbRgk26xchlNx5pnLHOSDxzG07FE7zkw6poVea1tueNAttAJSAeS7zmXLu0gCahxpQJ0tiUQEk6459p9sFBpKXzdNPPGqVvJjF2DpfgbgMOwJMBjJvt2Vjv4jrMZGX/bM7GbbP2QbZa+fDOlgKGBeb4Uhcqdtu5dWUW8AiWl17m70WgQQHDo/6XUn8EPAcqKbJnNJwD59Dp5Wxy7IqDzY9pVhIIuHBzyNHfJvwBJtyCxTo1/fBigEHbAN8NnZfLZuB6NeoTdMPV7PSGCp9YQHfJq1uvZ7XhUDwEHhOU+CYshshKRCbHoAScGQwRwXvQ3ItBHiTJClBWAXPVZ7Fssj5XuvL8lq/KBOd5SKwTPY0y0g9dgWPrRSJgvwE3JWxr2xlPTmguvDj8bgEoukDlWphfmSjEyR3zpXg7s7ODrIsw/b2NrIsQ57n2NzcLOt86JAPNKrMfu0rrAOBcT0NoMC/ZdUnSVIC4/rH+hD4VxCd7aP9Ra1JkoYMdALZ6j/9y7IMW1tbNRkcbhKw/twkYP1ZBwZ5ZbnYVuzLqkvPcmqdyea/kW0Gos/smja7ONPVQImaVTbunUCWAZ3sSSydeQjo9/FFdxuGQ+CvzkRwbgnPTNc94Le66l/vvhuju1+ILAMWcbEeOFJWJUeO+Hk6ixBlm34FkSziwgW/GOgkeZ3dShqOrjYUxU4SRN0unIs9sK51VjCY4L4sYqNsE851sLFhFk2sF/21vFyyuKLlZTgXlwseLpC4uNHYXXbNx+SKpMoYrnxP7DLONysAeTj0KKwiGFwpcaXFVZn6hqu97e3KlwRCSYHmig4Fq0ujahIQVe2QtbUate6JrCqmYgOM4TocVm685RZf1OGQ2UfodguFUJaDpxrW1vyFq6v+T0FcbobMz9f1ckJB09i319a8DwcDjz7zGn7f7Xr/DgZAt4u45wH2uOgzj5+PS311xQVYxNDPa329qg7dz/vpr17PY/gRxr6MZ874AL0bG14UncBJliF66Utx9myMs2eBP/kTf/mjj/4tgIvY2JgDMIcHHrgTL32pT+bBB6uqUQ8dD51Fni9hdRX43OeAhx++hOc//zC+4ztinFxIqhMgSn8L6Sjpylw3JJybLcRnNrOrZPyJlRJgxcPH6lJzf1FtQhbFbsJqBpzbu0pazALotH0B6UVeNd3louyxXFg+azApFRIKzDiBcOrDuLA4TRGnnpVshvuJ/eWQREcTmK5jONMIgeelHBo3+jkI6J/V2uIrnW71XTi5CJlONDjQMD0LoicJxuliNT0SMJcbwAoysxgEbCntlySY1BZjPRWVDsmOqFPpQPqCcxr7mdaV11inm78oTb0Ge1LN1dQVlOGzew0h/J91VmCb1QjtfdgNLgXRz53zm+mcA3CqY/upc35vX08xJEkVo+fYMT8FkoOfZRfRzY/AT+Q6sdnYfbXsuuwe14vtR8qFr3uB7fYemtV9Jghp2eK8V7/T9FR6w8qmqM56iFGv8hoKegMowcuQvjjLTACXwLZeS8CzyUJ65bZsKoFCoFX9YOsU0kPXDQ0FkEMbG/azkEa81l9lTOgPLbuV7yHgrGxpgu1sQwLHIdDSyrDYzRqrQU6GOoO1Wn3wkAa6nqrgpkfo98D2DQHsyuIPaZTryYQQy52+5J/2Ectct31G0wz95qadMrmRbAaiz+zAmWXyAOVKIM/9Gq/Tgp/hOwf0bis/b7UAdF2dhZrnJQ66uNzARs1ztFoBbdI8L5Pa2QHg8vrKxIJ19jO+p6al5m2QbK/1mU1cpyykWOtFo8i2WY3s7NQXPYrb6wKdixtdWFn2kwLuGMoCdTj0qy6CviyDnj3f3vaNs71dL9z8fEUt04haiuoyIpkWvvSpqyrHShEozXPkqIrIAKvEAHSNzU2C3V2/EM8yvxis+ZsXb21VAWz1mACd2CSaq+XX+s3NVT68dKnataA/FdygQC3zLK3OamM7cXGsn6nEkC6OgcqNiqvkOeq/pbW1igrIz4q+SPxlMPCLcWAA4GJRxgjr63eW39vu6xzKgmxsAI8/DgB/gzNnvtF3m6Ou/tsJ7f6EqGwhxOHA2GwhPrNr22o/reIfO8RpEGO5LDgM126cYtP2whigcc+0WfgQ0mieGVHT86OpnJp24HrnqhNDCvoH9vb3baHsdBh2zmh/69jCgZDjtI61LIgmrgj9tOcrJxMhLRqdXMj8jn+UHbMAOjW6WScOlRPF0MR4o05qWD+768LOYwFyzUDrRdN6qgaPmm3g4nSFdZduiodAdJskXwlqa5GbtNHtfC/L6n7mvIldQv2vLuLUhEx0ElE41wL8PaEDoLbu14/Nxu6rZQdx5nbDmMpiTDOraW6B5hBQ3CQPYwMt6ncWGG0qc+h/ypCErlcAk8ApLRRwkqbgsmWTWxB7bm6udl2o7nq9raMFcZU1zrIR7NX0lWVO4FoZ4yFgXIFmZZizrropoCxoBYS179BvCggrAK73M4/t7e0SmNe2aUpH2ffaV0L32JMRoT4R2kgISd+of7XvKjNd/W7T4ckG9b9lxGt56Stltjf1+VD9Qr9V+/mNZDMQfWbXtOksOjSj1tc8h+t6rcWSepSmaLfN0VVl/6Qp0G5Xiw9BE0d55Nm8xSpM0yiLUnyYJMXCobYAciXzrhakcgJ1lvoRGA34Ic8LxjXrm2VIe4ulLGiSwB+HpoQLzZ7bNe61i3SrkENGUeHOqq6FKRg/HBYyJHle1yvVBSZf1SfCVKytuIj0KsLNgvB6jbxJsJr5WkYyLcvQ7VcYvBaz260YUsTdyYamWlCSFMEzFWhgu7OMdIz2tW7X142+0booYh2K/nb4sC+Itisp8rae9GeWYWFhsWwv1odu6/Umm8Qy1biHoev7rS1fHOfgN3d6PeDkSa/vUtH1/WtB7e/3Y+zseGmWXg/41KfuhAfRvWTfXXcBt9/um/nMGZ/28nLBds82Aedw7Ji/5sIF4FOfeiZOny5csrZWUQ5DwLgFxtSv+rcf4eRrxsa4ssX1LO7LzK4t40+OwJoFykKBrGvjpPx2yaAluNqUX9PnJYi8X9Nx3u4A2MRDQDIzbUI9UQGfNunQbaFrQsVlUexGg/8+gnMxokQy0fGEfg+htRyzLDKvY5IF3qcVPrABqpcsLFT77vPzdYBZ5zHKRE+SYizRY1Zal7m5aqO7aUyw9bNzPqCO5FtTsW8tqJUbk+TIJGeR5ucrzF+G+hq5QU1jmnD+xrTs/gWDnHPjIUmqwO95XhEICHzbfRXmzSmohoHRaZAezKO8DK9R1074Y1q/OTA2G7uvlh3E1r/hzDLOaRYQtyC5ZdIq4GklRyzQq3IuBAyZT1MwUgvEW8BSr+X1FgQlCK3MdVtmzU91wnm9DfB56FClIc5Al7xWQXwrwWI3FEKa8Konr9fqHxnfqhtPuRMFoG3QUfqNADDlQZgGP2O9NFCm+pxs/na7jUOHDtUCabLsVnaEEjZJkqDT6cA5h3a7XdNAn5+fL/XMQ5syzPvQoUNot9ul7A79zHaz/Vq18tX3ITa5Bu5kvRiclsFNKeui9zItSrfo74N1olSOMtbZHqPRqGTvWxa8/R1Y09+s9h+7aXEj2AxEn9k1bXahyQkz33NRVrxG+QhJEgMu8YBekmAhqRYdAIBDiUfeOOs/fryc/BM4f3IQYTgEut0lLK6kGCGuHQd2DhgXwRodvLZjtwtgzdB9k8SDtN0lRARLVYdTTRdR1GkmQOBiDAdel9ulsQ/Aub6OKM/xnNP96p4s83VTwJjItyw28rxaRFsdSgKrvI2vPI7LRRcx4u3tajGb50DWjdHtnkDndFIHmJXhlWUVWi2+2szj2tq22wWW0iKg59mz/jpGmaT+zPIyHj8XYWFhCZ3lvFr5AUAR8DWyTPEkwW2nL6LfX8Stt9abgos8LhRbLWAp2azOL68OKmeRXq1GoPuWW+o0S6LxdGqBEvuyn0DnVFEfnlFnebkxsLxcIQK8n+np6pW/l4Iq1oHX3E2Xl2rKJb2eLyIwua5nQFEl5LH5VlZ82zNQ7mAAdE8/x/fvwcB3BnYabhIMh/i2b/Ma/t/8zf6yBx5IMBgkZXVf/3rgBclf4K7ve05ZlnvuKfpjIdz/jaeAf/gP/ed33XUY990HxJ/5pP/+rruqhmOBtcNbYz+hT9nBD4yNcWWL69lCfGZfO9OhutQ2lzGIIJ0CoEBd7cLj5MVmto6rAu6OipM2eVaNR/uROuH/NQDdIs2hTTf7LLHPmf2C5aE0DB1XsdVWqy5TE3rM7WUh7gHHbjKGAaDViuFcjKTn48CUAV6tpgwLaU2cPUZU7ncwkGjtOjY0jx/pZyxk4YQo25TIHsDycqc27NEijOvzrGEGrGeTm9VaFxtBVTdsQqC+OjXkWJu+9U9gk8Cmy/oupa62UWSnUzqtVEK9Nc7fODyTYFKC08RVUEVQ6fQTdLtRmQebivGGbHlIuLd7ArpXoBIuKjMTu7GcmvSSSaxzrZvxA/29HLgN8NnYfTVsBqJfo3YlYNFeUieWeawSHLzPSnxoGULM9b3kWQjSEugMldcyjZluSO5CQUeaaqozHZWn0bJTg5zyIARmeT+A0kd81Y0F+ufSpUtlncg8J0hNYFzTp09tIEoCzwSkVWucQUeVkX/58mWMRiNsb2+XYDk/0/IQ3FX/se4EwXd2dkoAnnkQbN7c3MTly5extbWFubk5pGmK3d1dzM/Pgxr01ELvdDplmtx0UEb7oUOHakFD4ziuta3qmWvfASpmvG5aaNBSyzxXLXL6iD4fjUbYKhAs2y+SJEG73Ua73S5Bc+0rAJBlWekzDVSqjHR76sKe5mDeKgEzk3SZgegzu8at3QaiaJK5zRk734tudqfbxSiPkaU3I0mATr4JOGDxeDHhHiYeAWQ6/X5tIZIkURmH0mOAcQ1rY5b+Hv/d8eMFM9nod4/yqMRZd3djpGmMxV4ysRiNMMYoj5DnMTq6MCgWChpTcm4OOHko92ArJTS0YP2+B1ytFSsXLnTyvFIA0TUcF1jEZ7vdgr0lZdLAV8R7d3aqwJyehLwIYLG4B+gV6UWDJ325ez08mS+W+Phw6BnIKk968iSwshLj1ltP4MX39YA8x5fXY2TrQL9/Ap1eD19ei/Dooz4A5fLyiRpeMSgA2mf2+5V2yfa21xN58EHEaYqbu10gTWRjJgfO+oot0umrqxUAf+mSp2FzV4WIT7fr+yvZ1/zLMt+ZeI34b/Wsbz7v5w663Q6Wll3lBGk3nDqF0ennlVh+ngPZWgVoH+3JIpSaKHle5h2vrGCp16utvBcvDesL/uLzm3s93NxP6xs5EpSWl1IX/+xZoNu9Dc/8J/+k/ruUDnJzto6bswzPSTJgJcH3vuIUxukiHn7YF/Fl3T8DfvU/In7pS/Hd3/0DPkjv//V/eX8X9PXOmT/Dva0c9756Ga95zQks5V8BfvUPfB7ckFHdmiYQQ0Er7holiW/XA2OzI+Ezu3atBF7BAKOVKX7InyKHTmXGlnhaEsMV+tB5Bni5kxh5NqnCMZRHmsW/Q5IRgOiAA+FnRhOQvg8AvdRLLyRaQre4JIY1C/pPw2mtBnxT8UL7ivbzsLH1OmX1SUqwoH4oP+Lgy8uxJzkUxrlDrxfjtr5vHI6NcSbxaWiGOR7leRWg1E5GLl2qv4aE9xcW/Gu3W0eXOYlJEoxcpzbe7e4CyOvJzKf+f3vor7YxY8cj21dCDdJQ31jvTxIgcUCv2lTib0nl3fUWJUMkCft/AzrvHDpFERcBn9eymyy/NbuTFeogw+KzQ9362K1Ie9KpZ8Vyym/rik6QXBM2G7uvls1A9GvQyMzdj5zLNCZ6KKBlk/60Bb9tHjZYqDMPMMqMWFBcwXRNj/VUyY9Dhw6BzGVlbes9VlJF/UPJlibGvNbXynGo9IkGtrx8+XKZLsFpAuqj0Qiq2a7pWRkX3kv2tQVSWT4G2dRNEK0fmeRkQRNk5nuC4ayD3kfAO45j5HkOlSohW5sBVNXveoKBIHMcxzUmOsF5gs1sBwbnJAtd2fchjXTtTxYotxsa9jv6gAFUCXKzXpq3Bnidm5vD/Pw8Dh8+XP5e9Pen9dJNES2D9lX2bQXXQ7rt+jucgej7v35mM/uamXOA/m65ELGrRE6+C8ZalsVYXfUBjE4eGlaaHVw19HqVqGO3i3y90n0EqhiVvK3fB27uUy+UWcbl92WQUXPEXNd1FQEqQpp2vMSLWJ4Xeu5HJxfilB2hneyiLhzdbnsUOUkqprZuMJDZXpgylXQqwcBPaVrUdzj0zGulMKcpol4PzlUB4uhKyptTzpzfAx7X95IoS4gBbLpFnD3j/fyZz/giPvigf09gZHnZHyg4fRpYXvZHzR99tFoPHz4cYX3dx9vkMW6tD9twebnjpXCc84kzA11I0zG0wQB49FG/CGcELTZkv1/tMqhcC0H0fh+Pn49x9o+Bo0c7WF6+DUBFWif7zwfY9P4q4oJi6e5uvfCkiS8v47Of9VImZ8/W24++6nYjLKZFPa2ouRW3HwyAxx6rdwY9AsBNguI3E3W7PthZliHOc3ROn8aTwxiDAfD5z/s6rK11aoSwlZUOjveB6OG/8I28vl5Faz15ElG3i+d88zcDp5aB//h/+8CkWYbO6dPeOb/zO75Mt9ziK/jQQ/7v2DEs3Xqrd95nPuPL+JKXeN8rEECbBnodWDbbbCE+s2vfLLZcAxiBkm3qXKXPzGF+Z6diqBNjU6UrAoT6k9dApXtJc5fjRQhJ1huaNuRCzxhbUZN8KCsLvoZAWELPceK/JIDIKQf91VTEacC6ZbjrtCp0rz1gptey/LY8PHGgMUYHAz8mEkgHgI3z/ruTx9MqMTa+xgTRVybEuCF6nI2vNdC5+NveriY9qjfS62HkOrV43zaeKotG9TkdSqp2jDA3pxsk8YQUHu91hf55xLGb9bOScaF+JhTvOE29pJ5zQMFgvzicjEvH22o6+OpTzh/szrnmb79npYD6XIqaTfx/fr5eEM5ZtX6FEyOM64F7eU1BCKGfbXDfa9tmY/fVshmIfoDtSoG3aYzXkPSKmtWo3gvct/dYrWgF7pvkYZrY7jYdrcM0U+C6SWbDBgC1zOG96mtf9U83GpjmNLkbBa7pjybA1YK2oTRD4L0FfjUtoGJVh/yoaRH05waMyu9M07UP9TerXa7/2w0K6+tp9+lGidZFN5tUTsdu0oTatOk3M60dmuxGBNJnIPrMDow1MV9Ci9/iiPf2NjAR7BOodMqLlYQuIsnSJqherp8DE/wyyT2oXFzc8wh7nsMDknJf+e9eDB9ebBctUjayuQBU4HHAQvG8asCCLuCUrt5QHK5V7ToXqNc/dq7mY+L8/NM9EcWuk6QCTvhedc1tM7AtS3/TmAg/4wpfb8wyj1hz8a67IXylwxQtKHy0ve3X9K1WdakNxppl1WcEiEZ5VC8r00wSXLoEnD9fP5XA9Gtd3C58bSPxc7L01Cc7Ox5YUGmTPK8QglrDeoBge7vSZ1UgiNIKHaIQRCVoly4Bt97qL15frzoAG113VLgBws2jVqu6lh1jj99ho1n06kDYbCE+s2vY9votynhFHWYaxxDLcg4xri2Gx8eA/pRtjMenZJYSHqpL6HM3yTKfdvt+H0EEF+kr3rezU8cs98ozBKCHgHcbTJxsZ2WkazlCLrHE8iyr9LRt+5WnF0JzjtBYtr1dnyyEQPRQOlbCyxAgONzZctqiqXa97X/Myk5BrJ8m2l4bQOtqb2DiDRMht48+OGHWx9rofG87BTAJouvGNOPaaOekHJ1Ojvc5jof8fDBsNnZfLTuQzX8jmQUAaQRgraayZZjvBfzuBTyzDMoKJsAYAmVDearmOo2yJpq2gsXKKg+Br1o2fVV9c7LImab6jmmxHFovsrttvQGUDHUFiC1jXPOxfrHlIJN6NBohiqIak5xMbWVus54q9aKMec1Xfc16kUHNtMjKppSJ+gRAKd1CFn2e58iyrJSSsax/st/5nhIwZHzbjRxl+bMPqEQKXzUwKOusrHSWzUqsKBOcbRb6s22nYC1PCOzu7pbtr5r5WlbmQX1/7ZMh2wuMv97tawGi/8qv/Ap+4Rd+AY899hie+9zn4v7778e3fMu3BK/92Mc+hpe//OUTn//lX/4lTp8+fcV5z+w6MF2p7DXJlu9qoLTOtPMcUT7ynxUBEFut+iI7Tb1EiyY7gj9Sznudk/VXIA/kOZwwk8iG42njk8e7ADxoymPp29uVLnu5YMkyHF8xIMBAVqMsiLxXEDtNY8SFjIiXjKnH2bTrsNqiJKQRCgDDIdJ0sVTQALwShjKyDh+uL6yPH/efddwIGAyR9hexsOBxVJKQGMCTbUdlGn5O+RktN+N0MtBl4bJJEIYFY5QsjuEVFaxCH5gJX8ns4gpZdebZuCaql3O+TCGis/paiezsIzGDcmobJwmcq04KaJFUQaYElvVotGamn6t8iYLo3a4/2eBclREphGQDJgl2zlfsUZUGUu3VTlKMv91uRZnX1e/GRiV3c+xYxfJ3zh9ByLIqbza2nrTYzzNhr5X2gVyNzxbiM7uGzVWBIEu5hQJUtvIL1D3mJZbwGmJYSzaNP/0Qjqf3OefjqNSeHyx08eDWDWn/fQyXBBi8FvAE617oSxcZ2rpa4+2+GLxbL5i8Xo3zBA5JihGHJF9svHOgAsY5doXwVGKe9oCTfSyrO/lng5lznLR5kABQBpjVNgq9181f2yY6BvLUmAb4lgAwbHPrWx0i+L9Ko9hN5ND1tKmHniwSrw0R2mBnvXRCof0tm1aXqOybtS9Cc1rdndHvGPVUy2orq5NBvUbL25BvFKqzsYMl6TIbu6+WHbRZ2w1jKgVCsJymQCQBPppqaysLmPfZ9IFJkI8AIQErgrkEMpVJ3SpGTMs8VgDZgpr8X8FazReoWNgKVFsJGa2L9ZcG8lT5Dtp4PEar1cJ4PC6BUZaT2tohJnKSJKUcyjRWvrKe9c8GDSXoy0Ceqsk+Pz9fC3Spmxi8hnVotVolyKuBYQnQM/2dnR1sb2+XQTipwb6wsIDd3V10Op1af6BWuHOulDS5dOlSKWWT5znSNC3lWtrtdm1jIUmSiX5o+5xK0SgYzj5h+4gy+K32ufqT7ac68yrjor8Vy8jX31jLUEhU4kfLzfLxepWr0b6+Hyb7jWJPN4j+27/923jzm9+MX/mVX8FLXvIS/Nqv/Rq+8zu/E3/xF3+B2267rfG+Rx55BIuLi+X744pozuzGswBAHbSCgeS6i5WSRVcm7GTrkBK1soKR60zM+/t9D0ySHLu15dUlvGpKDAcTb8oldZoVQXTBLZn1xoZfdG1v15+tBA+GQ2CJUhrr68BwiGj1i1jSQg4Gk6s3WaUOB3WZFecqmY1WC1jqeg3Y7kqnJjlDF83NefAgcrJa1sXNYIAoy7CycgIbG5X0ty4k6R+ypZkn1oo6JQmOHVtCnntfs/hcoPOU9bFjwE03VfE6L1you9ni2XlelxQv19pcLDMh27d0IccFY7frG98ywLjgVpDZaAukaVwq7Gj3JVCe576OGoOTfQWI0FlergHpTw6i2l6JFnl5GVhyF4Gz62WfKRnbx45V4LPt6DfdVF+Ys/xE5dMUo2Sx1vxR0UibeVzK0rDtuJFCefildOTbG/C7KGzQ7e1Kk+bxx/1OinPAs58N3HknRsvPRLy8DLz61f4HQ93ybreKZ0Ajim/bNDRfrR0tOeh2GVcWcOzGnefM7Bqw4iES5aPqPTDxO1UJF9rubphZbUFK/Vlr8paFzvEpykf1kzUC5BFI5Vhq05ybizA/7zW+YzealNzggKpBwuHlOggO83WUV9Isms+0zYNQnZqwUKAZZGTeCl5bgrH9M/vFUzcDtGwcHzhe0GXdrg86Wure51Taq2KvLCYyNlt0v92u/t/eruZFFvUH/IDLgnDiUZAp0OthnHRqhHbWod2uDkQB9QC4lmtA4zXT2tH6LOb9uqvATEKbPXbClaYTwXbtppStQ5JESJJOfbNLGe0sAzsdP1c2hiaomdBUQk9P/nEOpewJdaROLG29i8sPFoAOzMbuq2fXPIj+pS99CT/5kz+J3/u938PW1hbuuOMO/Kf/9J/wTd/0TQA8qPKOd7wD73//+3H+/Hnce++9+OVf/mU897nPnZruhz70IfzMz/wM/vqv/xrPetaz8G/+zb/B93zP99SuuRIG49NhCnQTPLIa3yGAnQCmBXD5vepQW5BeAWErQaKsWwATTF4FTxVsV2DTsrtDAP6hQ1XQSbKY+b/1jS0b89G60BetVqtWf15PlvHm5mZNQ1vzIFNbGdsERwla202B0KaCDRZKMH57e7vMiz5M0xTOOczPz0+AvRbYZf1HoxFGoxE0+CXZ7QTRqalOtnQcxzhy5EiwDnoCQLXG2S67u7tot9u4fPkynHPodDq1DQCC6lpnu+HBNDc2NrC1tQUy5lViRYOusn8BqNWTbaabPewDBM3ZB/jebm5oOVl3XqvlZ4BaBf15jwXRqYcf8kFI9uVrbX/4h3+IX/iFX8Cf/Mmf4LHHHsOHP/xhfPd3f3f5/VN9xu7Hnm4Q/Rd/8RfxT//pP8WP/MiPAADuv/9+/K//9b/wvve9D+95z3sa7ztx4gS6BBJn9pTsuhi78xzodKr/LWVKjYum4RCuJ7inPd5KxHhlBV8edGrrK1q/Xyyw4TWft7c9NpkkXHT4v9j5I9WjPKrLphSZx84fU2cR1terOKBcWxMLp/nPYyxyUZFllY601kNp37KCYzBTKmPQ5uY8uThN4Quyvo4oSdBxDp1eD0kROHJrSxjRdpHEnYCCOdzpA535BMdPL9ZAa75G+ag6Tn1mMCEPc/JUF0BUrmFXVvx9J0/6sjKdbheI1r8COIcjR5Zqbj582GOzLLuC6GTJ7eygAr4JotsFIr/Xhdzjj1fMNjLU2c8oaKpUPMrAFCC6xeutIsr8vE+WxHPtngyex6TzvCLR89HI5lnCk8DZVd8u1DkfDCrmPdnbWla7+8DMgVITdm3Ndz22QZIA/f4SksQHbR0OK7ckSSXL3+97UASrq1UnJLucnZ87VIyS6pwPIPqN34iHHvL1f95rXlPXdqeTVNbFHidXs8y9EOoTYvft076eY/eMzXb92nUxdhdW+2mFUG5jVmmLl3KcDu2Xhcxip3bzsQTQrRZWcSG/4sEeDsUKnjLYeK8XI3bF/XpjCElW5m2RQNztlprOxBqnSWBrctyoBqrHe+yEJT80CZkEKR0Wa8IL1bhA5nwIRJ9mui+h4zVQDUdML00BDIaI0hRZFmNry19Dv+/sAIup7JJYEJ0D6c6OT6xpY5UxUDiYEURfXgaSBJt5jGxQkQ/UVfa0oj3gBdQxZG2raWaB95J1H6pn6MbiWgb+zrLJYLv2dtuHqrgDxTxWQXSzuQSgStzOH3S+qHMlpmM7BN9zLsK68hotvNa36JdPcdgGMBu7rxe7pkH08+fP4yUveQle/vKX4/d+7/dw4sQJ/PVf/3UN3Pj5n/95/OIv/iI+8IEP4I477sC73vUuvPKVr8QjjzyCBc74jX3qU5/CD/7gD+Lnfu7n8D3f8z348Ic/jB/4gR/AJz7xCdx7770AnjqD8WqaSkSE5FyAOjOXn1tJl2mmoKkCfWSeAxVrWPW8LSPY5s3yE1jU8lsZDN0sUPY489zd3Z0An0O62srUJqjpnKuVmaA2TbW/t7a2ShB2e3u7BMmdc4jjuARINSCngri64WHZzMrU5yaByseQSU3/MQ8yqMn0JgjM71WCReuZZRlGI8+4IFObYDrf02/K0rcgJduI9xH8npubw/b2dgkms61Yzk6nU/ObgsZsJ4LP29vb2NnZwaVLlzAcDmsgOkFzvgL1DQQrUWM3euh7trsF5UO/Ee1f2mbK9Gd6rIe2OUF+llNBf+2rtv9+vYD0S5cu4e/8nb+Df/JP/gn+/t//+xPfP5Vn7NNtFy9erL1vt9toG23B0WiEP/mTP8G/+lf/qvb5q171Knzyk5+cmv7zn/98ZFmG5zznOfjpn/7poMTLzJrtuhu7dUINNK8si2tql9tVnEzm19bqpGIugqJsE1hfR5reVt42GHjA9tgxAYizDEg9gBwnbrKcqK8/mI5zFVit6wdi1FtbwOJRVyHDql0N+EXgwkJVeMmMVaQENd8nScUCQzacYMh1lpdLuZfKxYGjvsVGBZwrdxaiLEOnXASh1hZlgEwWhgUqJGsWFhZLJjtlW5aXgQ42q/JlGbDm85zvLpUgA+Dr1MEmkCbIC1YdY4xxfba7C2De1X1ltcItyKwoPFCh3e22T1yDreo1xf1RPkKaVkw6oFqXcjql2D1BBRs7jc3OtuM9JHQlCSoGOqOssk7UWOExdS7QWWbWj69FppvoYFDg8QTRl5d91ZVFqPgQP09TIM4360L31Joh5Z47UkC147G87HdP+n2snWG6EdJ0Ebf1XNWJez1/z6VL/iKKAFeddjqyZt/rtVe4Kj+IY/fMrm27XsbuiWCA9n/57dmv7c9YH9X2J7pXLODG/TKdC9gL5WtlJdvTVnzu5bmA0Hrjzk4VRZoTDKViawIF851jG5+vlFahWemQkDxKjV2v/zdtYlhUVcDRyDnExR8Sz9APuGuiXULjHoNzdrt+jhUDQOI80F883/PihBMf9yx2qZFuy2t9S7q4perTUQqiF6/jYg63sVHF8WDZdfzV7BU/1o0VvSY0HDXsHU06U4FsuwshyD03ObJhvZnV/3babJsbkH6VxnUt+mnjo3UEJ1x81UyrY5FV/UI/pFBHsnnKNc4V1+y1q2NsNnZfH3ZNh5N973vfi1tvvRW//uu/jhe+8IVYWVnBt3/7t+NZz3oWAA863X///fipn/opfO/3fi/uuusu/MZv/AY2NzfxW7/1W43p3n///XjlK1+Jt73tbTh9+jTe9ra34du//dtx//33l9cog/HZz3427r//ftx666143/ve93RXu9EsyGZBWv1sL/DcAo37tZDudwjQ3itty7C3ZsHGJumLvTTd7fX6fj8s2Cb/WrkcK2ETAmZtHfT/pnpa1nIoWOZedbBl0j6imvEh+ZlpfyH/hOqsfrcM7JBv7EkFC47bTZivxvbyX+g7+xtTrfeQP5p+j1fKwn667Du/8zvxrne9C9/7vd878d1Tfcbu10J9ea8/ALj11ltx5MiR8i/EKl9fX8fu7i5OnjxZ+/zkyZNYW1sLluemm27C+9//fnzoQx/Cf/tv/w133nknvv3bvx1/+Id/+FXX9Uay627sblp52El+YT5QmXxlF10NRjJTU1ah//eR7IRxzr/fY76l6bl2u5r/amg506zJd5bmFNrkCDGogCDyMVEVXQ1KOqH1s03DAg217KbdOK3+/F8TpxZowypZjxmHym33J/ay0KK9XEQq4k4zjig3lQIFGiPadz/aV1cLbXjZRlFwQHyr+E+WIbxYZ/0sRXCv8ny114h9Pcfuis12JX8zu9btehm7axILezww9vM8Ce1/hUwfKzbtxmftFfzumwD/p9uuECOsmy3oXs4MVax4z3a143WEce1Pr+H/jWWT/+0jnu05VbIjNCGzAy0HTTtmNxTMDjE2Wb637HO9d9r0bN/jf2ieImN2qP89LX1yPz7e669J9+ZKJkFXyWZj9/VhX7se8xTsd3/3d/Ed3/Ed+P7v/358/OMfxy233II3vvGNeMMb3gAA+MIXvoC1tTW86lWvKu9pt9v41m/9Vnzyk5/Ej/3YjwXT/dSnPoW3vOUttc++4zu+oxzMnyqDcXt7G9vc9cUkW/KpmEpfKFjbBNiGQO2QFrrqjyvjvUknHagCfjrnyj+VK+F9O8VCikzukB46v9e0bdlZX2UukxFs9cWV+a1gMNOjrIky7Pk5meDMk9reLC/lVSjroXXWerE87Xa7ZJCTIU0Wt+argLDVslfmvQY/pQ+YPxnpWk/61WrJKytc8yC72ra19pk4jmu64nNzc1hcXESSJDXdc/bVra2tmpRJiInNvqEsdzWeCmBZtD+wzra+QAVg2xMS+jnz1j6zu7tbA8HtCQeWjxIv4/EYnU6nLD8Z+8yjielug6NqHa6mbWxs1J5BIbb2XvZUn7H7tSvdSOC1jz76aE2zfFq9pp00sHbnnXfizjvvLN+/6EUvwqOPPop/9+/+HV72spftu5w3ul03Y7el0zQhkRawyzJ0ux0ve1GAsWQbddJh+Vm3G9fm88xqfLyDqNst2T2qWU0COApAMsIYSRJVx6alXGNEE6QwstkqPcq6vHmaFqwnBRbtsdmjR+tC4jTnagxtDaypaxgkaXUWHQDSFJtZVHM3v6ox0S1Yrj7X97pQogPYTvy818MoWcTG+epWlcmZaPPifa0eKAJXDrLi/k6p2EL1jzJI7Nqw5qeJRlf6lorE05lkdjtXSbywMEAFYOd5xbp3XvfWpZ69xyB2R492yhMHbH9bLFWWoW9I7mL9Y4yATNqD8jJMhAzwNMVm7qWJer3YBy5lhhDWaPHeofIbGf1K3uskY+SipasnHpwDkMrvcmcnTIW76aZKN4gdvygr2Ze89clhjG7vhNdjJy2U6ahMDD/bi3Gu5QjQBQ/C2D07En592nUzdlsLaSwX/0fOwbmoZPs2DS92fOIjOZQ8YxlqwGO+TgQFteYcYB4LIcxQCeUT9/MLi8DyJj0h5LwWeGhTXQOFajIhYLaWv81TnWifkfsBQ4vvLXBbPT6jWlKalV4XPDkgg0evt1iOM7UxUPVV7JgdYGiXUVXVce12PZB4UThPuqj6n53yhDBfEt9tv2B6Ew4CPJN/v9xZJ9e6enDZPAfyLHwb+3ue1/3X1M3t38RmBX3KibD2H8419AdWfEZ5mTJNHisoK2DGZP1cpWC0HNYv+l3RsWZj941l1zSI/jd/8zd43/veh5/4iZ/Av/7X/xqf/vSn8aY3vQntdhs//MM/XLIJQ0zDv/3bv21Md21tbSo78akwGAHgPe95D97xjndcUR2nWQhwtCC6ZQWrxIemowAlgWQL8O3FIlfwvN1u14BlpkMwsYlVTABTQVvVo7ba1AoOb29v1+Q1VJrDBiIlcExfKFBufWODULJuKmNDOZFWq1ULdqp58VoG4jx06FAJqvI7gsX0j7ahDXbJdEejURD003tYPpWVoYxIu92GBk9ttVqlRjrlcnQSCqDWrlbmh6D54cOHEccx5ufnS4CefmZ62l8tW5t9Ymtrq1Zu/Z4bCFp/5qUyKdovbPvqZyrfo3XSstK07ynoTnmZKIpw5MiREkSnrr4GpNW0WR5uDlg99asNpD/nOc+pvf/Zn/1ZvP3tb7+iNJ7qM3a/9lRB9MXFxRqIHrJer4e5ubmJZ/ZXvvKVifpMs/vuuw8f/OAH9339zK6jsXt7GxiP6xNrYJLRwsm5AKArK0XA0MEQcA6rq34d9pxTvRKIW16udCRVceTcOeDo0UUMVqu5/smTIh0yzGt5R7q6pxWAtv2zwCgXi0wuTYHFtACGddFdpFkChwV4uJn5Z1sn8frsO+eqtK0ebHn0WwF05zBOFzFYqwBRXSQicdUCyAq18sy1XRQ5h5HrwCXwvtGVXK+HEWIMh8D62TooUgLFNj1JI3ZjpGnkJUOyDFivFtJx16HbjfGsZ3kApd8vpHnWBpV8jYIYzJjp88gxJUYoFTI3V0U6JepNhIaRwziGUw9XAIyo262AgjxHnGSIkwSLx5MysJt0m9q6VPtKTes2M+g14MvFjkqNmH4fI9fB6lng/Hl/eb/fqfULutgfjo0RuzHiJEeyHOPw4eqaVgvo5BeBtSGW+n1ANonoPgBAX5AF6qeqtmqSAKdO+Qaifi37dK+H7W3/kbrUOWB5eRFLXVdl1G5XQvoMLhcCfwJA+QSQLn3sIIzds4X49WnXzdiNCpCjTFiSxBX8pWNCnqOTVM/CpjAHVlKZr3NzKJ9TOhzZzeNyfzE0GE8xBeqByZjePk0D5Fo5iwDQiDTF2MXlY9zW22KMISCfOL0+6mJ9zmoZaE2ZTAPR3aQ+uiZt20Sz4ivx7OAphWIMu3ml52PM5JvA+tBLvsjYCaB6/uvgQ8p4ktR3I5ip3UnRjYUsQ+wcXBrX+o8toq1nbTMGqDa0Q8h10RmjUII66EMkWrLJZIBw9fR96GBW06lHGxw12DdYPvt5AETfzP2G0HC9mrYDEebmOmi1/Jy8k4zrmjmBMdg/C2LEab1DKYBu+xowG7tvNLumQfTxeIx77rkH7373uwF4ndo///M/x/ve9z788A//cHndlTANr+SeK033bW97G37iJ36ifH/x4kXceuutU8uxlxE0Iuit4KvKiSg4aTW/yTi2bHMykhW0bDLmF8cxWq1WDVRmWmTiWlCQeepmgPWlBie1khgWeGdZeJ+y25XJrX5h8M8QMGs3GMi6DgG0BMcJprdarbIuqldOcJr5KlOe7Qn43UXqrKtPte6j0ah2IkH7ADXIDx8+XILuLDd91G63oSz+OI5BXW/LnmZ9WSYb3JOBTtkH9DSCgsOj0ajmV20TZdkzGCrvUyNLne3PdmCf1rbmd1Y7X/2u/mvalLKa+QBqfZZ9hBsT9Cl13XlagGXUV21TlkF/L1fb/uIv/gK33HJL+f5Kd8PVnsozdj/2VEH0/Vgcx/imb/omfPSjH60Fr/roRz+K7/qu79p3Op/97Gdx00037fv6mV1HY3eWVStLroJDrCOgvnAZDrGYJB7sHg6BNMVjj3m56OXl2H+X54izi0XwzBg7OxWGmiQ+242NCic+ebyY+K+v+3wIRFtwWRZFXAgx3a0t/zc/X2eeMynnigUG2ba6QFEUoN/H4+dj7O5W68kjRyK0Wh545OKFi327lh4hhusule/Pn6u0uFWrPc/9YqZclLOuyrq2C8WibQjGL5oAwV9cjUqZdF0ksrxJguaoagAwHPo2Y2BKXYAOh4gAnFwoKnxmtQ40qwB9mlYa4XleRZBjsEtddZKipgxCNS7iSZ225ZKy1/pIknhWuPPMLWbB7kXmur/X+ISotTpSdfL7fSBJcDHvYFhUaTDwxbT9wuAYiJMcWF9HDOBkUc5xuuhBgzNr5U7LUq+HwaDOSAekz+jCWP8IovP3tLvrgw30+7g4nARqvvSlqjmSU51Kf39hoQLRbUS3EGBu31sgvZgDHYSxGxgXf1dy/cyudbtuxm75zSkg2HGY3BwtN0gdkHhtcD5K7SNPgXGg/izjcMz7uaThXmeaFsDnIJtMvAEF1kcLlzcKPOrjvfwwhMAaEL08pZbVSdb2UVVL3xTTuTqzm77x0lzFhoUtj17MG2wGzFQGiL0CjFrf2Ky07MGysOFWV30/0HE7tJsScpjOk6zDQlIiph9GLkcZzjuR72p5m86odWjqsDYNLYNu6su8kXMxjf/CJNWPJEZMO6nQNPxpcWqn/+yXthNqXy7+HyPyxIj1KiYPg46rdbtArxfBuQ46qSmg+IrzRyRh5n65iWFsNnbfWHZNg+g33XTTxK7Os5/9bHzoQx8CAPT7fQB+10ZBjr2Yhv1+fyo78akyGJ/KsY39mAJNCiJZ5rkFUfV+C+ABKKUxCKZSwqIJTFegUqVHANTAXWUVaz6WWa8AfmgDQE2ZwDQCwwr+qk8s65lArQVraXZTQk3TC13HDQbNm/UkiG/LDqAGwqtvWWZlLrP8KgHD69rtdnAyqrI3Wo+5uTns7OyAgVeV7a6AuYLpZOgvLCzUTiFoG/Fve3u7Vn6mwfopsK1sbDXtS/QX/cA06Xvbd5i29n1ubNjTBwTC7SZTU9+zrHcN6moDltr+re1qZWKuti0sLOzJ1t7Lnuozdr/2dILoAPATP/ET+KEf+iHcc889eNGLXoT3v//9+OIXv4h/9s/+GQC/APvSl76E//yf/zMAr9u5srKC5z73uRiNRvjgBz+ID33oQ+WYM7P92XU1disASrMAZWiRZaJqXrrkJ/hbW8AiQTNekyyVtykrvTZUWcCS5eCNgcWcLjaJ0VlJc7N+mmTJWfZUwfa5dKlarCgrjrfx5HKSFLIfzk1ItvBaAu+CI5blrtVTL9JgjoFF+s6O/0uSCmQFKoxab9GT7zW2tTVdlBLwJjCuFaP/1tfrsiwCCpD1GNu6qZQLUQq+hhbi1gchcELLpc7ga5J4qRJUR+LLwLV6jz0OrcFad3Yq9nmxMzPKIwwHdYJ9t+vbm/HXmJ9WpYaIF6B3pL8Z+S0416kVqbHPSHuOESF3HbhuBxHbr9gA2NqadCUPBjDbDtthbq6+A0W/hwD0EJJgUYai8x+EsXvGZrs+7boau8V44ASJq/8WLZCeeGkXVYHiZQRtLTAH1MdT/rR1CC1Bt2kbtA3Gx8TOTjgkRslI1htCx8AKgJfMfO5HNxUn9HzWz5qCqpaPNou2TsukKVNXyWdYAJ2f1fIMJGXbobHQOu5YHTz1qUWVNUPrd+v/UJ2bxoimz7S89n3oT9OxuyBa9sKJOs2y3VX9rH1cQXS6IMr9vC+eaJdowm1BP+iYqhcL8K+seU4N8tzLwPFzLScgt3fjyd9O8T/7l5UXbOw/hc3G7hvLrunAoi95yUvwyCOP1D77q7/6K3zDN3wDAOAZz3gG+v0+PvrRj5bfj0YjfPzjH8eLX/zixnRf9KIX1e4BgI985CPlPcpgVPvoRz86Nd2vlTVpiu/nnhBgZ4Epq0GtoDFQBwRVukUlXPQ7+36/pvlZCRULDitTO8/zkuGrUhy2nNYsCG9Z7SEfa/o2D023SdZEgdaQhTYFmoBZZdrrny2TbgYQ1KaOO08aEDxXXzwVa5L1sWW0baT1s5tFX00ZrC9C0kPadvYEQajtVPbG/um9+lsI5XMt2lN9xu7XQs+Pvf6uxH7wB38Q999/P975znfi7rvvxh/+4R/if/7P/1mOIY899hi++MUv1ur2L/7Fv8Dznvc8fMu3fAs+8YlP4H/8j/8RDP4ys2a77sbuvWbOIVMw07n6miXARgrt7RI3TRJMLpqYh01PzB6h1fS4FuFCPHbjCjidlhfq6xgC5YojcgFWJuPCTDI1BQaU1JvnxdFaMpz5t7BQ07EuwezEa7wCFeAQu3GNcBWSmuHCvJYX07JsLS20Fp7lsRlZUDXLEGPkAfvQxogA0WX9muqroLo2wH7BGmkQL1VT+EZlZYgea7q28QJar7Zt2+0wvmyvrXWSKwCd2O+GQ1RtqO1RZM7Av+UCemfH7watr+Pk0RFOnQJOn/Ykc/4tL/u/pXTk/XIlFgJJnsoz5Qrs6R67PTvtSgKTzdhsB8Guu7F7mgWQsSa5Bm6yauBQ+/gPMVNrP/OmZ1gowcBXfMTasXdPADVgez1Om+o4UaeGdPPcBIvWgut7O37ZvynltXMmPv+5ga6Au76fKFeobNO+t3Ww34U+a6rzNAvNwULgeBNgbu8LWYO/m8xWo92ufhOscoRxdYrNjN+heWCW+XlXOdeSuVyd4SF1KeYn0fAi4nwTi24T/b4fo2+5xb/quF0otZXTJ5azrJSt4JQmsa5kONurZbOx++DY0zuL+yrtLW95C1784hfj3e9+N37gB34An/70p/H+978f73//+wF4QOvNb34z3v3ud+P222/H7bffjne/+93odDp43eteV6bzwz/8w7jlllvwnve8BwDw4z/+43jZy16G9773vfiu7/ou/M7v/A7+4A/+AJ/4xCfKe/ZiMH6tjWCcsr0tuKnMZDXV9ibT1r6SzUtwVe8jWE0JEyuzAqAmZdHERFdJFd6rutZWm1rBc5ZNv1ddbOY/Go1KJrWVVlEgTlnkys7WemqZbDtYNrFKeChDW3XkFfTme0qiqFSPBeC1bcjCJsOdfYKSKJQ/CR0Dsv0gSZIaG1wtpA+urH6yt7WsFgS3wDXLbPXBKf2iwVaZJ2V1VL7HbjyENiFC4LjKw1iWOiVtlCWveYVONrAeu7u7ICueMjfj8RhxHNd8yfLs7OzUJGyeLib6fm04HOLMmTPl+y984Qt48MEHsbS0hNtuu21fz9ivxp7uDYQ3vvGNeOMb3xj87gMf+EDt/Vvf+la89a1vfVrLcyPYdTN2J0kVfNCCocAku0fZVjwPWiwEiOdtbwNY7lWrhzTFxrlJPNw5j5u2Wl5pogZkKljKPPR9sUrYXq8zaY4erY6V9/v+9ejRgim+PpjUuLb1pKa2c7i5nwJAyahm0QYDj0fSHUkC5GlUrnuYXJ7XMfE0rUt7AxVj2afVQdK7DckyEC0vA0AZrHUwALI1AccH1RH7aPBkpRsPYGXltrJ57DH2xx8HLlzweTnXQT5kE3Vw8/IykOel7ElEmRg2Vr+PvzrrpQC6Xa+9ubTiKtkXAtKUWrHOYFr9vpcaoQNlxTp2cdnEJQDMfrG6Wge8te3sQlT7LK8vyhOzPGtrlbaQ9usQuBACHYp+kqYRkqRUd0G3WwUy1U0e5wotfgBYNX2Rmkbs9zShhOqi/OxZYD2NsHL6eYiLvlJa4ZsyjsBg4Glrf/In/v3HPoa/u7Lir33UawvdsbIC9FPgwTPAo4969KrbresisRChRTgLliR1bfav0r6+Y/eMzXY92nUzdrt6AEAC0KXUiN3NM79b/Vnrq2J7c3N+jHaukr6KkwRk2k7dMwsBd6YMevhIL6Wqmo+PIhRc1iWUvhgvUTmUpsudm2ScUzmM/zNNTbe61mtLOwlO6RzgAtMpgprabvvZAw5dF3rE8jMvGVcFde8wZkhobNE5l86zQmY3zZucGgK57es0QLzp//3cz7Kwfgao5ikFO9zzf5IcSt8lYxmncy9haDs+/9K0vHRry8/v7FQTiOAccPjwot8kShnAPKs0/1ZXq8kmj0NubyMCsFSkcpI/Eh6JJCHBOSDjXMLMYYr25ZzWzk9sM1iG/ZXYbOy+PuyaBtG/+Zu/GR/+8Ifxtre9De985zvxjGc8A/fffz/+4T/8h+U1b33rW7G1tYU3vvGNOH/+PO6991585CMfwcLCQnnNF7/4xRoY+uIXvxj/5b/8F/z0T/80fuZnfgbPetaz8Nu//du49957y2t+8Ad/EE888QTe+c534rHHHsNdd91VYzB+rU0BU5UJUYDZBjG0gLUyZAGUgShVzsVqVzdJmFh2L5nflPGwwCDBUpbFAug0y+olI1pZ6JbZSxA4yzLs7OzUAFAG+VQf2frwM0qOKAtb5WrUpwQ/qf/NvObm5tDpdKBa4QRWWQatp5XFUYYyryUzPM9zMECoZTJvbW3h8uXL2Nraws7OTk1bXRnldrPgcBENR/uRtpGy+tmmqvM+Z2ZXtl9YBrpeR9B8NBqV/ROoNh5YdvqAvgxtgIRkWPS3opss6lvbhzQgLYOH2n6i9/Fa/h6TJCnrYn+jzINBXZtkbL7W9pnPfAYvf/nLy/fUl/zH//gf4wMf+MC+nrFP1Z5uOZeZfX3suhm7222g40HTaYvS8jNOxBX46/VKEL3f95PvL69FSNMYaeqDIFEaRZNxzoPn8/PAotsEvrReAXFA/YY0reeZpmXwTOpaOueLsrzsLy+K5QNfEoTlImVnp1p4AJMbA4I+e/3OBPHKCkbw9blwwdeJ6zMq4ehJ6eI2AMBSt9BhTxxQBLtcW6uqpNqcvrqL2NmpjuyeP+8XZFwn9XqehdRxowoMLhZc8V057ji1gicHEVZXfdpMh2szVpkgQ7cLZKdjJElcLiKXFEQH8Pj5GL//+/6j5WV/z3Ofu4STp7rAmTPVgi/Pq0zpZ6CiSa2s4K9WO2W9gap8NO9T34f6/SWkfSBi221sePF9VkK12C3grTsJLNu5cz5DRsI9dsyXiytnDXDKnRh2psBCfjH1R653dioAfWGhLlnU7VIreFDplOsCmYFKFUSXo9z8mATx9XX/2dmzwJEjSzh+3BdxMR2j7FjcPFhb83+f+Qzw4IMYb2xgCH9MtwMgarWAZz3LF/pcId7/8pcD/+gfVf5QJEk7trLm2Fe4k8DnBCvwFOzrOXbPdFWvT7tuxm6EgcDq8cSA2NVGHJ8nNIuFWrKxcyL/JWNi5JwPFOkqGRLnAOSBhBXALxIniNxqVcMD8y2fk8Ns8qSQFrxh41SZwJbJbQFzjVthTR/FBBtVlk2HgdB+hT0J5vOOgprm2nY6LmseqkUfMpUboXFYzJIISXqi3p5aYLvJ0rBRMcqrQNcAsLMVzp9NU26EK1u76S9k08D4pnvsho1M0hRAZ0xzYBJvj/JR0edyYG1Y7//2R8cJoIDoDP/CqQqnROorPYx37FiM48djP8cZDv3APhgADz3kB/vVVeCxx/xnTzxR6R7NzQG33uqj/t5+e0VLv+sun/jysv+9JR1pt7icbwKVciCro9VTmaEGleBGm43d14cdujxDJZ42u3jxIo4cOXJV0tLAlmRaR1GEJElKoJhALY1gJ18VGCdYqK/8Y4BLgoi8xwJeyjImeE5WcQjQ3N7eroGnBJmdc0iSpARJFeROkqQWzFRBTAKjWZZhNBpha2sLw+GwBhYfPnx4QsOd9WKezIvBIpkf71MQmIDvzs4O8jzHaDRClmW1+xcWFhDHcRk0tNVqlZrl/FPGszKpFSjWDQUyv5tkUQieX7p0CVmW1QJ/8lWBaBvMVH0LoEwvyzJsbW0hz3NsFxRBpkOfWsmS3d1dbG5u1voD/abgOvsl21HbnG2jGwDApOQO+w5QbXTQuAnADRYF0TV+gG5aOOfQ6XQwNzeH+fn5sg9oOZTlzjowsOjW1ha2traQZRk2NjawubmJxx57DJubm3jiiSewubmJwWCA4XBYlu/pegQ/+uijWLYsvGvE+GxcWVm5Ipme8XiMs2fP4sKFC1+17tzMZtZk7J8XHnus3s9C7B5dSBH1HQz85L7bBU6fxjjplNgkLyHYu7Xl5/28DagD3fHwSf/F2bP+SwJwXAGmKcZJx4Ph6+tAkmDUPVGuNcoASUB53DXGqALMWZ+HH/aLEdYpTaugiQr2OVetgrQy990H9Hr45AMRHn20HvzsyJG6vibX+6dP+/J08os+b+abpvjycBHr65WsOMncLJ6u2/h68iRw/Lgncr/0pQUL/cEH/Y2PPeYb4O67/QXLy/jimt9oIK4aInPnuW+Hu+/2a7GjRyv8OMaoXDj+2dlF/Nt/69+ePu3vueceX7/bkq8Af/zHlROyzDdOnlft+KxnAc94Bp7sPwf/9b/WQQGC6Lom5YbBqVP+9eb8i74iDz5Yib7nuS/o6dNhaZO1tUqonw7+27/1rwTReRZad0R6Pf96111e+7x7Auvr/qPFdFxvZBa8WKQTPLg4jEqwe3m52MzhhgcbnoA6K6q/tdOnsZksYW2t6udsP2JLaeox7mc/27ug3wcW1/8GZaMPh95fq6vABz+Iv9jZwTqAM/AMoyUAibzmxd8LFhaAD3ygHiiWvyXuoPCz4RD4/Of9e+083W7V2Yp6rT72GG69554DMXYD/xl+m2G/tgngh5+Wsfv8+fN405vehN/93d8FALz2ta/Fv//3/x5dE1RY7fLly3jHO96B97///SVI8cu//Mt47nOfW17z/ve/H7/1W7+FP/3TP8XGxgbOnz8/kebKygr+9m//tvbZT/7kT+Lf/tt/e9XqN7P9G/vn+fMX0Okslo+f2I1rADIfT7o3Z4d3gmn8jo/PGtiqG2X6PAfK3/XYGe3lhhgmcK6UIuMlJeBaApdZ9Ww0TNwaQstycIOzKPzIdTAc1lno9JFlGStubFniivsyLQ0OruO9xZ6Bqpiap25SAJMBKxUkZ7swDwaSVNdq3loXtv2RI/6RrM3Q602CpUwrhEsroK/7pfZaxZQPH66AYueAaHixutnKpoXmnCGzwL81FkAAbThX6pvoBgDrRBCdpy1ijKqNd5aVja7H+mxe7IMrK7g49OQF7pNz7mUV0ngLpx/Ly8DSsJjjfOIT/vVjHwM+/3kMBwOsAxgCWEcFETsAPfhRqg+gc/y4n8i9+tV+svj85/u692/D+fN1oobtA/Y5oQf08hz40pdWcccdt87G7iu0gz52u70vmdnX20LSHE0awU0yF3o9AXF9VVPmrQaCVDZySLJDX/UaoAq+qLIqKolh66BAKdnxrWI0VUCfMiQEZVWWhMAxgXnWLeQzzU+Bdb7awKDKYNa6kRGtLGWrj63pWl9q+toeTe1K4FhZ49ysYDqtVqvGXGd5FGBvt9sTJxgAvxEzNzc3wSK30i1q9jOVc1EWP6VVCKJr2qynbohoeiEJl1Cetq00Hz3Zob6lXI2V1dE/C75ru2oQVZU/stI29jTBjWgzJvrMrnkLrQDtysowkux3eV6xuhR75pFWLlx04j43h7pmdmhhJOnHUgamp8HRuDCI88168ErewIURV65KQQuhC7p4Asoy5nlcBjC1TCbFHGqB25hOjYK2WH61tVVhq2oWRHfOM/dKUh5vZnkvXao2AIZDOLc0sbhWlhSN7Qb4BSXrECeuVhbGxKNiCwNpIpU+Qf1t3cQQRIP1DK2nSXrWtcDGRuHfpKjIzk59AZ5lxtnG8tx3wkuXUEa/HQ6rTQdSwvT+NK0a17myO83NeYZ8ZH8DRePEzoFsTCfSNKXpD4P12NryFecpiyLPUDVYXWJLXBAfPy4/IV7EtIv/N3d28CSANQBfhGeib8KD51nxysX5aGPDn8AIsRP5ua1ciPZ5oO3aORL+ute9Dqurq/j94ijIj/7oj+KHfuiH8N//+39vvOfnf/7n8Yu/+Iv4wAc+gDvuuAPvete78MpXvhKPPPJIyfbb3NzEq1/9arz61a/G2972tsa03vnOd+INb3hD+T7VINQz+7qZBUL5mYKx+8UoJ4BlfbaF/uTGkFZ6c8KTY3YtyLOeHuJRs+1tapT4G5OkPqEwlVO2dlO9y7xN4EU+221wSPVjaMO8Kb8kmZwr6ByIpOK92keBbKtmZh/HukFhhigcPuznENpHNI9QXTTfJhBdDyzZISPWiZ8mGOpP00znEzQNMGNNxy8xraduqmCY1fsh51fb2/VJGFDpHdGZUge+5bxOk9OipWnVxSfmdMWEazQYYADgSQAD+PGb43QEP91I4cHOE+fOIXn00SogfDGn0D6r0wx16fVls7Gb9tWO3Qd9FnfDmLJ9mzSgLSg9DXBSgLIpGKJlGVtJGQskTwMFFQwl8NsEoNv60kLsdr2WAKbNk9cqeK+bAlongsZ8pZ673RwIAd/T6hKSjrHSIOpzTZvt2gTqKnhLPW4ytJWBrpr4BN3JFLda4zYIZ6jOuimjoPNeALf1kdW4135Bv9h0FUi3mw+WGW83O2wdQu1l/ftU6qWmMkozILiyGYg+s2va9gK6mr7XRXGWIU790W4eC7XByZzzixWSyUpTBFUv5ncAMBwi5oKg+J6LAi1OuQ9JOpQ9p93t1kF0pd1pYdUoYC4ouXNxmRexeGpg83YuNEv5UC1TAdrmg0mX6rFixQj4qkUuNxbm53055+fr1Ls8L9PjvFkVWlTalMTrw4frrhujAIyLCynXQwY02eLI80n97GPHfLmYeK8H9HoYrjcTyejPw4crYvnCgn+PS8UK0Ir52g0e257O+cIW0m6lbujx4z5xyszQKWQ4UmRYkqZrnYvqmsP8QvLMs+rj4dDrzpc681mGcieGegYWjckyuLTyB1BJuPNyVu/wYSmqLpK63XKjoHPrrVh+9FE4ACP4BfgJeLmitHiNir/41lurKKmheoaQOf4o+FmIjWrFh69puzYW4n/5l3+J3//938cDDzxQSoP8h//wH/CiF70IjzzyCO68886Jey5fvoz7778fP/VTP1UGDf+N3/gNnDx5Er/1W7+FH/uxHwMAvPnNbwYAfOxjH5tahoWFBfT7/atXqZldFathk3kOFCxvPkubjOBqq1Xpf1MSrQSWmzJUU3SW74E6RZuv5QZhPHFpksSIOFxbYJwIJKmy+pwmEilC7nzuhrTQa4Cp1sHWqQTSJ7/WocXuI+p7fSXWqtMNfsZrmJ4C37oRwn3e0BQpNH1pKovep32kSSYmhHUH9lGwu1tX/ZrwT2icvlKb5ny7WTMl/cZhSPsXG4LzGlaMliSTgvlZhiTplG2V55O66ExC46aX7cATFcePe4eeOoV4bg79s2cRA+jCj9U5KhD9BDzn+gQAd+ut/lja8nI175L5gM77dM7aFEz44Nps7KZ9tWP3ge4GN5KFpD+AurY0vwvpa2s6vEZlXSyQroCmZUIr85oyHRo0lMCnZU+rBjpZ26F6hjSoCYLaevOeVqtVA8lpCspqGpRBoXa1gttkuDvngnlaUHYaG5tpUkLG6pRbcF/bSNO23ynoDKCUknHO4fDhw6WEjLYj01AAfWtrC3EcTwSqDbUr24yvqjWvQLoyx5s2fIAq4Kzqnqv0DgDwBIAFuFWrnjr4NNXt5/dk59sTAvyNKDvf9n3th7pZMI2pHtpAsT6YAcIzm9kBstCsOUTF4rVcxBYUmyT1IY84Z9fFAS/VxXqrheroti60OctXqhdZ3MU1Wxt1yXRdkG7mPshX3Per8jGiim1m5T5YsGKBP4JnD3dWRpVkzRe+UNG/h0OkaaeGr6apX/MwOaAC0cv1C8/tOodRslgygtRPKiWtTGyVO+Ga6PBhf39MzRznKno4F5jDIZaWuxh341Keut2u0tIFOJVt5ub88W9dbGdZVO493HNPVS8qtJycvwgMsjoQPRxWlHZKe5w6hS+vx6U0iZZBwf40BW66yZen1/MqJ3G+CfzteuXYdrsOomi/1AU0nckIs3qqoNfzrywf71FN9CItxYAIXidJp+pXStVL05qsQp57Br9zQL9/Mzr9fiUzs7bmqfatVnXem07p9xH3euh24zKdXq8C5TX9Y8cqCfJR72agV/WvxbvuKo8MrPzBH2Dl0Udx35//uW/Q22/3N5Lafsst3vl33111BAUstJ70N1D9+GhWv/gGsosXL9bet9tttIlYPAX71Kc+hSNHjtS0te+77z4cOXIEn/zkJ4ML8S984QtYW1vDq171qlo5vvVbvxWf/OQny4X4fu29730vfu7nfg633norvv/7vx//8l/+ywl5zZl9fawEvfMckfOb2QRj+b19jfIRYgck3QrQ5j21Z5pmQlCRCYVOj/F3b58PUpgodUDxfNTHxNxcjFYrRpIuomMfdMoC1jSdA7pdjFFIdQwr4rAWXQ4VlVWZqKemX2yW8yMLMGt6ti3UXZyX8P2EzEk+El8W8VfKggJIq2DblKghKGubSI1yMxyntWpc8nOI02bUPXi+6h8PT+k1/J9psfg6VMRpUqdAN6HxIWeGLNQ/1fENQHooSd0oie39uqvR5HSdLA0GiJMMz1zp4uIwQr/vpxdbWz6ODpNhqJii+1Zl6Pd8fvfd58fk5WVgfR1ufR0n1tdxYjjEMzlf5hEGyqv1+34icOutlbxdr4exi7FxzhdRp03WPaENmAhjMO7BjTCMz8buSbsBmv1gWwic0z+yp21gSH4HTIJ9KtES0kRXKQoFamnKZN7e3gZ1nS1IqRIqzGMaWzkEECuIvlOM1BZ81I0AapgrwK5G8JwWRRF2dnZqQC4DcxL8tqCt1SUnUzzEjKaPCXLzgWM1ua0sjJWqsT4hM10Z/goGU8aGdvnyZWRZVgZ/pYY9AMRxXPYh9gsNtkmfqd94TYilrX1m2gkK2xcJovN+AuBqTJebEuwXFqzW3wa13bU8uqlw+fLlWp8P/QauRLfbnuSwJzxmVtmMiT6za9p0Jh1alPBzu+hRpLfQKY/TFEjiCVY22W5UrNjakuQHAx/MkCtLBbipO0Jj1NAkwfZ6ReYFqriMTNJbFRQJiNDt3oZ0+bZSDmNuDpgvFi+D1bpMRrcbI01PYHnlhFdWFDA/TU/UGN1cvyQJEK19GchzLMkCf5RH2Mxj5G7J68OvhtdhKuFJqXauOW1ctUp+JcIig19ubFQUIxHhjJzz5Ukces9fKtnMFlQpgYr1CsTN86jEeufmgFe8olwrwjngZOtJ4KGHKyekKUbJok+zYL9sdm/2kvefAR59FHj88bqUDDcQnKvrhN51VxGQ9cyZSkuGTiACQFRCj/krqK47E1zlEzwnKsG07M6C9EW+3dmpDjN4MD1CksRwSez16QugIMvjUmGGMQEA39UXFiIsL9+MRa6ez53zyAi124kAFWKpnSTBbctpcAGv+r+Av/Xhh30Z6bZudwlJsoS7X/MmPPNHfqTqy0mCTeclhToPftL797778PjczTh5vPB7CDQgoqOdyJ4PV9DL0i8PjI1xZQw1P9+69dZba5/+7M/+LN7+9rc/5VKsra3hxIkTE5+fOHECa9RXCtwDACdPnqx9fvLkyQmN1L3sx3/8x/GCF7wAR48exac//Wm87W1vwxe+8AX8x//4H68onZldfSvH0RpVOJ4AyBT7jvJRbWyAc4hRAIgyxkxkojokipBaaS39ngXhM7l4pjoXl4/gkE71/HwE52I4x435ExOPjt0cQA5kZ+uf6yNcfaDjTJSPjM/k5uJZFjmHJIlqwLDOaWr+R/0aC57LATQP3uvmANAsZ+ccoiRBzDF83gFHE4wL/7Fsqv/O5LRM9lDe7m4xX8k2kRRBJwFfbg1oanXhQ4FVbf2tX9ptIEkiuKTjZ2TOVTvR00DpAAgerKCdt+pOidyve8EKnKuNXQykAX1/+6r9PbRbvraGxSTBYpri5lN+XruZRTVZl9Cw+uW1CMAi5k4+D61lwN39smA11ULp5TnghoAz/aDWB+1vVja6YgCUpePG3IEaumdjN4CrM3bPQPQDYE0sV6DOROe1+0lPwUq+V4DWMnHVCJqTia7SHyGgUNnvVnLGSrQoC97qYGs9eS3LSyY6AWEtY0gbWzXMAZRMbA1wyTT5P8tr0wmZ+iKKolJ7nAEzrWzK7u5uCRxbKRWaguJ2g4J+YzBTyriwbmSUk2HOzY88z2sbBaofz3utnjh9pW1O32md9XSE7bPqH4LWGsBT28XqsVuJHauRrvkTiGdAUfar0EmIaacwQidArDWx0Jt+tzObgegzO4BmVxmhxQ5n5LoSHg4Rd7tYWPDPbF1oEr90zhypJti7sFAHOyHf6YJ8ZaUWICpUZLuuIcA4GPikz5/3rKA0reRJGGOS8cy42Mgy4HnL/ZqQ9+GTdf3PbhfouBGwPvARIMm4ShKPhqdLNS1yzp1JILfrvmPHyr0Cz8AGMF72C13GV9P19yLZS0ePVmeqFcgUJ8X9DEvOAWvDuqNCfaDbRZ53yjLfcgvwvLt88LozZ4rrzp71YGsRgHMTHZw942/v928GADz0oHfd6moV65I4Mde4GkuW7bLkLgJn16uomlofguPUOaHpwpmASJHwZh7DpfCbPdpB6Hwr+CoLcQXR2Y+VtZckRRirYkGa59X329sV/r+xURH0l5c7WOr3/QeMWqf11PehIGcA4n4fS8VphItZjEuXvLvW131sMj2c8IlP+Dx9V14sD4EkCfAjP/JiPPclwO/8jo9l9prXRHjdK7qTsQWkjmUD0jnqU/at0CmBA2NUnr2S633Acw1O1sRke/vb3453vOMdU1P84z/+YwDNJx73Wg+F5nVXSnR4y1veUv7/vOc9D0ePHsX3fd/34b3vfS+OHTt2RWnN7OpZhHElu1J7nsXl94A/iVX72elv2qKedkBS00GWf5YprpFKeY9qlJliWAl0bq5yjhDah9PiqNkgnToU6JxjAkAPoZll5pOMzaYy6F6D5k8N8jQtgksrkspXndDYiY1lVqcpoiRBJ0nQ6frn6yivCAMcjyx7nrI9HHu5ce5BUs92V3kXO4dSTfYmt+l9HCeBakoUa38IJaSNrOOKNbuhoxbqy0Vb2vaywHP1PkKeF5tRSdEHSA5Q/X6Ox2Ru2DmXyA510hSdJMFSr1uC6vzJ8HQg99EvXKgOaTLovMYhD1WZ0nrdbjV/XF6uH6xLEgnyakH0EEW9cFLk9oh7cM3ZbOwGrs7YfZBmbDMLWJNm9ZV2JgVlrXSGfq9sawWS+d6y1u09ljG/l1kt8KZ7tKxko6vki5qWXcFfy6ZX9rXVQw+B3NPKFWIna3k0LW07Zfbb7/S9gr8KojNd1Ty3OuFaTwscW/3zUHmntck0v6isiwWc1Tfqh6b+3sQUD7WTgvi2TE8XWzyU1wwQnoHoMzvA1kTX0e9DKxHEQT3WEEsJQFi81C7W7fFwhBcSesvWVpW8Xsvj0Aq6a3AnZUlvbaG+qChsgomm5WTGsirTGJLMm5rn1j9kzMVu7ANdFYuYTuKQ55GVPa/rltv5iS40nasYxEoBVMDDtgPq7sdgUCy6i4UGHVakn2dV/YinECTZ2Jgk3BH4YNH5miSYjMhly+pcFdQrUG7r3GzoP6qB6NZC/ggkF7ykKU35igBGGUgsdXUtcYtcsN0UcdIdFLZnlsGJ1jAvJYiu5RgMKlDfM+P9Bke3618Jwl8x4L3X8+LA2VPTVV1cXKwtxJvsn//zf45/8A/+wdRrVlZW8Gd/9md4/PHHJ747d+7cBFuNRg3UtbU13HTTTeXnX/nKVxrv2a/dd999AIAzZ87MQPRr1JyDPKQCR/ebfqdX8pu3qCl3Du0zdErQZzvEM2ZKKMClYvChoYrfh+Sr910XU/+oVJ6uvuYjGaik6Wg6/HKIYnkmpL+a/miU67BtEtjEdKE2lmRojEtTq7cAzF/N43uve/O8CFSumxRqdjLUOGHchwXusW05rZx81bZmkTsMcF4D6N3kkQo1boRIR06STi0P/Qlx6nPunAfYqf5GMN22qXPVAbs8r+LJ6MG90i3NOwf1zw/Uhre12dgdsqcydh/kXnBDW2gXxoKaTYDrtDQtC1lNAXOgku0gKGvlNLRsasoEpoSI5nHo0KEag1zlWqbJwPB/gqoEj5WxHPID66Rl0nKrbrreoyx4Ba9V11sZ1YcOHcLOzk7tBICWSf2p5WcaZJnrpoRtI96nwV4VKFeZG2X8WzkagtbUTt/Z2SmlVdRPTNOyxbWt9TPVqKcPbf5aPkoAaVuwDCGpF9VZpxyO9jEGWVW/6kmMaScwQn1G/aUSR/QXT0RYnX7mb09i3Gg2A9FndiDsSlZPdnKtAt6oE8nJQFKWFif6wyGwyNm+leAAqkhaW1slo2fsYmTDao6v2qQEYW3xNDlLctJ1EBfwCwvVImR+Xi4u5DdCC/xx0kGU5tVKJrAAtPivbjTomswevS5vdnVGdC35gqE2kYlNTDVjQuKmcu846WDrXNWO29uYOCKNJClPEVzM4pI51W5XR/Mp0UKyvBIhrYxLr+fv7fUArGeTq1i+hiLXKgXQ+I6nFzxA76UC4Pyx7XGxsC43IiwjPc+RIy7lg9i8zL7bLdhpXOUCWOz1sNjvIkkipGnFIuMi+dIl/1m3u4jOrbfWNPfL3Ydbb/WUfC1Xt1tnvpHCD38aoteLsbLiPx4M/B+b/FnP8gcjuCgfDj1gniTAd3wHcPLQV9B9/Qncc0+hfb+6Gn4uhHYTrF6y/RGGQKJr3p7e4GS9Xg+9Xm/P6170ohfhwoUL+PSnP40XvvCFAIA/+qM/woULF/DiF784eM8znvEM9Pt9fPSjH8Xzn/98AD4O0Mc//nG8973vvaJyWvvsZz8LALUF/sy+ziYDiP3pBRmk+wHImjZXQ2OM/rZ3dqqohUT4AlRyvm23p+OpwKT8WKg6IbkJFmturtq0di6uwFygDkozMxTSHmgcHvXSie9C85DaZrdlUiuobDNUhjDfm7EutP+qm+2cb+hJqlq7BMzWodWqhl1bdL1eyNfluF9mY48J8saQ85wr28BaUM9+Wn8t/o9d9VuYOKGByaaw3wHAZhYhSTpVYHFOcnVzW8dFVl7mXhozBfC/AeqV53k1zC8v++TPn/fjNjfGQ32Sp/iOHPFhTTjNYxHK34f2PR23tcEPNIAOzMbusD2Vsfug94QbxprkXACUALaydlVOwwJPBPWUHW31m3kdAzvyPV+tjEpIrkMZ3UAFglO2Q+umGuHU4Wb6KrES8oFldmsZ+D/BXmVus9wsJ6VOaFmWlaC1BgRVkFWlWg4fPoy5uTnMz8+DTHCC4hqgk/dYyRBlkxNAp0VRhPn5ebTb7RpLXPXTla2tMiw7Ozul9A7ldxS8Vi1y+o1tsL29jSzLyuCc6p/t7W1QN54a5aq1f+jQIbTb7RLUZllVioX9le2o7amyLLrRcfny5ZrOuQWi6X+mNTc3V8roWLkY/s86sG9aVrxl4bMO9DsB8yzLsLm5idFohM3NzRJQp9/YL5IkKT+/UiD5erIZiD6za9r2ArbsikIXJlyNaeT3LEPkcnScQ+7iUj86ykeIARw+7BlPJNT277oZ0alTddpP4jU/IwqN87t+v9Qsp7VaHn9Mkiq2oa2OSoUwOU2DqhlF7MUSQOcfVyijdMmvk1br6ZMxND+/iMXTp6vFVEEJIkBPANWezraLz2pdE1ULtaLQnSQBA8fVj7zHiHq9yc0IfW+dUqRdgsgMclYYWVCUre/1/GZBzcdp6vVnVlbw0GeqE84MDpokPsYV/aSnoHUNTxA9xqi6gI2tuwZ5Xumgq/NET3+U14N6ApX+rnPVZomffnDTGkiS2P/1FhFpAlkGpJ2aqopmG6192SPiZ87418OHy42FpeVlL7dy9xLOnQP++q+rRfC5cx4v/8ZvfB46p0eVthCde/fd+OKqShfFADxL6tjJ22oav3F2ETh7FotJghes+NX06dO+3v0+0EnGXs/lD/63/6F0u0CvC7zGM5PwGx8EHn4YzwTwTAD4RA/4hm/w17EhgcnNGfnNlmYX5crUG9X72LVtT+9CfL/27Gc/G69+9avxhje8Ab/2a78GAPjRH/1RvOY1r6kFJjt9+jTe85734Hu+53tw6NAhvPnNb8a73/1u3H777bj99tvx7ne/G51OB6973evKe9bW1rC2toYzhT7T5z73OSwsLOC2227D0tISPvWpT+GBBx7Ay1/+chw5cgR//Md/jLe85S147Wtfi9tuu+1pqe/MnoLJw3QCNOcDRMcSC3zbtHjdNDBNnwE0C2wq2KtSbagHOVSpEWZJfW5m1VSUaYCn7hPXn/0RWi1qx8cT1fb/1NnBLAerpXlp2fi/VYLIcyBWf1jk2/qRiYWevc7VgNgsqwcg12S0vDr3uTiMsFgQEyDZNdVzmr+1eO12XQ++pgFv+4fdkeD8rwgUmxWY9KQ0DTXzKbmCurSRLWjAvzVEhSB78X+cOGxmdYkcSzD384UlQLq1nUPBuXI+Ukqqr/lXnsIjP6OKVZADbuhfu0XmvSq9Wn/Q8jch68XrGJH3kZXTsZsYmjbT1R/BgbDZ2H21xu4ZiH4ArUnuQkFHvg/dw/ssC9qCh1ZPnGkoAM8otnyv+tkEGBm0UgOMKvCtZSN7WOs1Ho8Rx3EJZFvAXNnNAGr/hzYRLGhrNd2tbxQ8J0CroCuDeHY6nQnAlkA4WdPb29vlZ3NzcyX4HAKOqWlO1vLhw4cxPz9fAsMEky9fvoytrS2QNa7sZwXRCeiS6a7tTtCZ91AzfWtrq0w7y7ISOL58+XLpE0Zopua7Bua0gUq1/2leqgWvvqCv+F2WZWCw0M3NzdqGAYHqTqeDVquF+fn5sjydjgc32Ie0vRVE1zI3geg2CCxZ8QT2t7a2amC6bgqxzVnW7eLs4I0KDs9A9JkdKNsPA0Un1s5h3POBc6Lhxdqq1XVvLtUm+PnRo3EpL76+7uf4zzx92i8eVj06PYJnmy8qKJznGHeXMDhbXw8pyYdrAx6HJROaYHg0vAisDxED6BQA97i7VJO+KGI5otfzjB4y0TezqJQ7t65SiRLnPBDb73cQu3EN0OW9lPFWsIB16HarxXeeFxqiZqEdJwnixAc943V5DqB7okwzwhibWSRBVn0+R4/6vAiQK76SJPWAdMSw19d9YExuNtS6SAGyfnEtxoMPVvVSJZLO+heB9fUqQGuaAr20csowA86sW0dWbc9CEWk5erQOQshphhEmA9ZNI9zTdD1/7BhwkkcmCsQ8T+ry5AoA4cwZT+3+/Od91FQmzgix/T6eed996PcXcfZstT+Q51771Ovzx1hZeU4tsNvqAz5ZBUfOn/duIGN/ZcW7444+fP6kygO4+fBh//7/LsD9D34Qq48+6osHIAWQfsu3+IX+//v/Yh3AFwGsAXgBgNv+z//TZ0ARd9se6jj5nU6A6Pr5pUs4OHZtLMQB4Dd/8zfxpje9Ca961asAAK997WvxS7/0S7VrHnnkEVy4cKF8/9a3vhVbW1t44xvfiPPnz+Pee+/FRz7yESzwbD+AX/3VX61pu77sZT6Q3a//+q/j9a9/PdrtNn77t38b73jHO7C9vY1v+IZvwBve8Aa89a1vfdrqOrMrtzEi8GTNxIPOgujAJHOWphtfQP15bAE2oKLONmlU211iSYeb3hZPtllo1mqaXQiLzvNKWc3Kr+2FGwJhZvvcnP+zAPk0+Totb55H8IFfYzgBqCc2PsQRBMvLNLK6izXgpyUZaHLa5Hx1BYBu/c16Wnw7VC/9vOx/WeaBeZ4ma9qw0cSLVw3AWQLPpk62S1XBaP08xvsUkx2iCWC3HSJJanIrQCUDqD8nu/Gisjp23qfZcC5WBvocPOnH6M9/3o+RfOWEgXp4u7uTOwpJ4jugMkB6Pf93+rT/bGUFUfGdp7MAXvM9RtxN6v4INXBT212zNhu7r9bYPQPRD5A16TUrwK0AepOOtl5n09Y8bPBMCygqU5r/EyzMzUNFgWsyuwGU8htM1zKOmSfTV4DVSpNo3aiLTrDZSo5YX1hmtK23guIEuAnyEuAnkEzJEILMQLU5oEx09aUy0QloK3uZAH6n0ymvUxCXba75EDAniE4wV3XWWSeVSWG6DMhJ4Jp/ZLMTbGYZWKd2u13Wi76wALnVZNd2YB+hb1kfBl9lPbIsKzdpLl++XALS4/G4lNaxDHTdLNC8uJGgUiva3xV4t4C6SrmQsb+9vV3K4HAzSfNiANzQJs+NZDMQfWbXtFk2CjAdSA8gjwRqlxxqKwfXE1yUAHCaIkmi8ojquXNAtxt5tu7qKuCcsIZjJGm1KOECMYTTOeeP6uYumihmmhYAuqKXhTRGlKaYm6szlXkk9vhxfz9ZUaur/jayptUNxCJUviZN6yA3Gcx2QdpqVQx1lZyp+VxXc8WqLGJiqJhOXF+1WlG5MaDJkPl04UIlMcKNjjSta5RTVYSy5yEyGW987DHvH2XTl7a6WkVu5Wqe55VV/FPFWk+e9HImehyaDuTKU2nhRaYsG7/a2qqzG5uAGtufTvbrN2gbqp6+c6iipn7pSx715oW9nv9/YwPo99FZXgawVCsb02N1WM08r4KKMfAYA7w655OuHTLo5R7A18i1TOjBB4FHH8VfPfoo/hRVuK0ugLv/9/9GAuAMgCcB/CmAETz+cdtf/qXPbGOjrpukQJvuZvGVPwK1Elg5SIvxpxac7OmwpaUlfPCDH5x6jZ07HDp0CG9/+9vx9re/vfGevb5/wQtegAceeOBKijqzr5P5n100qfpsUb8QKm3nAA2feTZrYaHngN6r1wTydK4e0oJMXw0QGspKs6BES+jxoszhmg44KuAVqMuOh4qrxZ6IhYL6daHHWwjDnZxi2Varg7GKmxIwV5+oRJ6qyVl/6bU6lmld8ryqJ1/LE09uPNneWQCoNnOV8nXa7ojzrG0GT+fcxErT8FYPnNfnU9o+NSGYEKJtEzRliuTUH2VwOG7bveCmjQvbdoDfk2bfL8vOydrZs56x8OCDfgLwuc8hHwwwBLAJPy7bs1wxfO9J4YObx90ucPvt1QlRnSx0u5OgfsKNHdTk7WgHK6AobTZ2X62xewaiXye2F7gUAtL1viaAcD+metYKijflaZnkeo9a6DMt317WlP9+gEsrjcPPFFyfll/otID6OPRQUHkdssX5XYitrsBsk9RPk4XKassX6hP0ifpGTx9oOnqP1sPqrzfJ9GjZQhslTfnYsof8Y+Vcpv1v05/mKxto1/Zhu7F1JW12PdoMRJ/ZgTBdMIcW1FOsXCTwlj2AMpu0XWRokeyieMqaZ28LLfTyXI5119MLLSia6hAqt3XDtMX5ftKtZSAX6mKNIISqn+ynjE0YiLWJWGcNDTBRRxZIUQ+iyCx4U6Y2MdtY8pcHFrOsjwXNmVSTD6Y1xtQubpELCbYXihMXaoutreozjdUXAmR2dwNlVe2c4s8uwEfFXwS/OB8Xr5DXsgBNR7mndeImVOnA2BhXxlA7iGDDzK4H+6p/ZvscRGuAWtNApg/bfQzQFrgNFanpkcINaHvdfvzBsdIWucl0HzFULvvdtDLsVT6th86PrpaiBv1og5vvp0wTA+aVTiJqiaHsI3auZYfRvUwld/ZdDr0m4IjQraGYODYJvU+vn5ub0td0sOe8qBi3OXZzjOavkB5zxec5gJj3soEbJzjXs83G7qtlMxD9ANk0AMmCsPqqADfTUX1usoHzPC81zvV6m6Yyh0OgJFAxx5XlTDkLfQ/UwXKVhVGddGp6q5a5+kXBUvu5ZZY31Y3vyaYnkz3kO7KOVXJEpVJsW2mdtV1UB52M8yYmutUHV8kclp0BTpWtT9+Q/a8SO/qebG7VT1cN9FD/Y9swPcrWkK3OPqBtw/es9+7uLpxztXu0LegLlVGx6SqAr0FbVSbG+p7+Ul17e43WW1nn9E2WZaVUDpnnejpAgfVQm+sJjhvRZiD6zK5pC6GJuhIITbzt9/bYc3FuOMYIz3pWjIUFAHm1UMrzKsjkwkJ1rJs0bF0EkZ3rnF8wq2qEc14ahfqbZDGplEftSHZIS3I4RLfXwalTleyLc34tc3HI48H+MzKs+32fr8V987xifoeO/LbbFROc6fpAl/7abhdYTO1kPkDBK+owdnFtvdVq1YGI3d1JBQ6WhYxxypLweLG6h3Xo9z2x6dixyYXqOOkg6vXQGngpnDT1xCeeKO4k40ogXftXmlba50RQlM6ljWHp+WRWMY2iMpTO0aCrCrIoYKKv6h8j21sa/UV/q486rCwp/fxddLveeaI/3+tVwcK2trzPWZ3lZZ8mmXgE3LPMl51Vdq7S+a/9dpaXqzLw6IRzvgxJguW1NQxRLRc78FKrDsAygCX4hfrfALgDAJ7xDJ/Ro4/6QrFx6aQQu9A61Dr6QNm1cyR8ZjOzNkZU6RyHTB/2ekRqGgoMNO+uhsBxjk12/mDnEnp/niNyXo5srylG4NYJs+A2r1OFmSYLuUPT0fmDhuEIlXOvPUMLiO930yDkC93MzvMqkDdQPZaZF0+50brdSfCc6bD8tpx5zqElgiviokxokOv/Tbu+tr8VAytP++V5xbS3/lILHYwiM730WRboXNaZIUcXEwHOJ/RSzhG0DEDz5gbnC5oG532cf5V+5MAOoIwOvruL5Nw5JE88gaWNjQkQHaiY6NHCgp+YcsLGidjhw1Xhs6yUuwn11TI+TpFDubGx352Wa8ZmY/fVsoPW8jesqaREiK1rAToFvfWakLyIBRN3dnZAyQkGnlTgj6Dp5cuXYTXMmRZBYUpraB14TQgQI4BMEJvAMQFrgvgKyE8D1pQlrfIvQAXwU5qFf5QtATCxYaCAvkqRULed7+fm6siJ+s+2D2VL6G+VoKFPeB8BWQWV+ZkC6Hmeg8E8mR/lQ+gP1kd10y9duoQ8z0tNdLazgsH25MB4PMZoNCp9RNkV51xZDsqrqA80gCrTUNkYrZ/q67Nt1Ce272hAV9ZZfU4/aTBRleFR0/pT5mZra6vmL0reMAirlldPdWibq6wLr7vRbAaiz+xAWdOCiKYL5xKpNosIrhTW13Eyy4DdxE/onStvkdOl/n9+6BzifBNxmuDxcxG2t+uBqrjGYDaL6RjIMmyig/PnvUzJ+fMVwM2ixnrz+npVp8EAUZ7jvvtursnD5nkVI5JVZtzHZ66MPfh71AflijAuQYovr0UlNkzcgtgF9ci5iDp+vAgmpYjs+rDuZy4wc7/wSRJ/z9jFGAwqPVSgAujVPyrPoutE1ovWbvsNDTWC83QdQWSgAnP9psEi0hT4pm+qg8Lx8ElgLav0Oa2ODQXXKX2iejRMSEH04u9i3sFwAMzNddBifQd10CAEhFjQggt13SQpg8maC2OM0OvFJZhARlmWwXcMOmljo7qPDSLIPIFyGvM8fBg4edyPoU8OolLiRSV3LEig7fnkIMLSXXdVou3sgMMhcNddQJ5j0Tm88LOfre8qdLtAq4XbitMAtz36KJ4EsNzv+wbd3QUeecSX//bbJwME6k5R03OiCSm75m22EJ/ZtWtTf1LOS2MARTBLoL4ZyZvtxvK036vuHha/b2qx+88qAY0JbXY7lyiA9Ng5UDIjdNl+6quSI1dqId1zHSemAezApNSF1gUIA9N8/CoTXmVImHbsmtmx5eZJ8fwl2KkbvaFYIM75YZW2vV2NKbyWEmgcG4Eqra0tPYlGHnTV7qUmuEOp+e4camVl+ZlfNqxPJ1V3XP3FtOgvHQN1jliTnLEdSsF7fW8G1FFegfq6KW/k2xsxeTXbb/XnqPGCkKbVpvvcnG+ElZWSbBBlGaI8r0BN/Q1rYXo9n067XZfEK+6J800/z04m2wKY7Hf8fjwXEP6/Zm02dl8tm4Ho17g1SVaoWQY6AVwFA62EigVHyd5tt9slC5yfEfBTAFjLYwFWlejQOhBY1GCTFqRWBjXBVYLV+hkDWgJ1fWsFmhU8Vya6+kI3C5i3BXF1s4Bg6Gg0qm1qKIhupUe0LVQrXQHVVquFJElq9zLvVqtVtinLQtCa5WL5CVa3Wi1QOxxAqSWuJw8soz3Pc1y6dKkEs61ES5NpeocOHSrZ6ATxqU0OoKzL3Nxc2X7UUCcAvb29ja0i4g3Z6SwTwX7bv9WUOc6yME89WcC2p89swFsL8OoJBJZ1OByW2vHcXCGIrj6msb35O+AG042qjT4D0Wd2TVtoxaerp2krda52TJCtkrb78MPAZz8L3Horxv0KpCZeTmnsKNusQEiilMMhdndPYDAocb4angoUC7O1Na+/vvxMXLjgb33iCf997fHpPHO7ZA6z7OvrwGCApe4QS0mC8fJtOHeuAuPzvAK/ieni7Fmfb6+HqNutQMs0Rf/UHWWM1PX1CiBdWKgkKrkIi9a/Ul8tcgXJC5IEo2SxxELpt243LrFSuovu6yTjku1PfwEFWJ/ngEswRlSeAEgSWXSygYoFWafrrz16tLaWA1C1A+Ne9fv+mji76CuvzLPTp3Exi2uBSZ0DDh/u4OSpbp2RrrssZHAnvhzDIbC1UUl/2+7G/7XtnQszCOluGplhpd79sH4tBgN00hTdbgfnzlXsvDxHyfSuNTA3CZStnedYXq6q5VzB1Cfg/dA6AGBpeRnoea1+kkgHA9+PVlbqpH3qpq+vA65/M1xX+tbZs1XHTRLg1Cng1a/2NzJaKdtqZQU4fBid7W10ssyj/adP+wBn/8//4x30mteEQXQ1dbyy8g+kzRbiM7t2rTrtVK3F8ryCNPmMiNOkNv55oNGAiZpAk8Czebgqe1jNP9siOBvoNARoOleC6f6jSUDd/h8yPYVlgW77f5NZnNXWCWhgX4tFZlOAprre9nYF8jkulBvzerHcFIXeO4dF54DEYdztlMOPqqVxnuBctUFb1cuXm3FQBPMOnqxrapOQ/9ptr7sNTPpBq8fuZzcc1BjwlEOMPeFX85vdQeCr/HG+lOco5eAInocAfGWihwgK2ldCcoATvwmWl3OIPK/iqfA6Bqhhplo4ZTRkmZ8o6LFC/dMfLH9/ZXAVKas2fvH2YB0mn43dV8tmIPoBMWWgh9joQF1fWeVUQmkpwExmM+/V4ItMlwC6fqeyJ7YMKh/SpE8dMgXftQwKwitgvJeedEhSg6aMaA0+afNWRjwZ3CFwmoA22dcaDFMlSKx8jG5UEMRVsJAbGNwM0I0BG1yV7a1tx7Z1ztVkTdQ3PF2gMi7K3t4LRGdeo9EIrVYLOzs7Nc10ygTpZof6m+UgyM/PWV8F9a3mvpUHUla3bS+mrT5XYF/7puZjfbWzs1OC6XxPH4Y2b9R/VtLlRpVymdnMrnnT1RVQp2/TmlaXU1ZRY0SIhkMfbHF+fmI9MzdXSZlgWGzgJh0/jS+BR7924EKpBvjyj9otqL8NLfS4qOykwojmomIw8AuKbhet1iLy3GOMlMsgIB3lI7/6XF+v0hgOgcceA44eRdTvI00r4Jtrl4WFOgYRuzFqSLguqgxYoQEo2TSKN9fYYXleLuTLxZou1ArQIkmKMSUfAQNB44FqNVqkFec54jxH0l0qq812yApw/JZbgHjwlSrIJs+bpylGiLG+7vcdBoMKg01THwA1STro9Fy9UoFj3lwjEoxXIhbdZRezoT+6WfsG/ddJAoHTeEOWwblOjanomejpRKZjF/vNofX1WjJxvomllAB7DgyyqmK8tkDOj/dvxu5u1SzdLnDyaLEZ0vXHzRl4NMuqoKPOAcvLJ/zieGvL6/AwSq52oPV14DOf8TfffXe1GaDOWlvzQV/pg5AzQ7bX9zOb2cyeHnOuxi4dI0LkXDmG+J+4/yz4G7XjvZ0TFPfpMFwFtLZDmAQibULHBchvAqH3qO7E/zUwOlS3QAK6GWFtAjyfks4009ubLq+N2yGUOZSglsE5RF2gI4ExOR8BqjFubi6eSFJjqdisOf+wc6sQTm0/lylF8HtNy4LXmnZIl17f19qpqY0K9L0GnueTeYemvSwD54XsujGjjeQ5vDi5T7DWo5p2H7QzkEhiy6uFsccDCKIXhJBysgrUiRHqF9tQxfs8B2Knla+FZ53ZDWizWdwBtyZN8mlmAx42BU3U7/TVXh/Km4AkP9cAnSEgPZT+XhrwtrwKlltTZnhIM94yxzUfzavpur3KqWW8EvatrZcFY6f9H/JvKG39PtQXQnWy/lRZIPWZ1RbXuvAe+53dlGEeetLBygFN25ix5Z52nWWeW9+H2iLUtqGguFqfmXmbMdFndiBsP6vWhpVfTSZDFtgxUK7KdKE9cU9DWebkiG4JEhNRNX8sFsF2KYpPLvFBJ3d20Lx6LW8Ir8FqC3LdvA+sJgn8U/cyJMc+kbf6VxY1eknT8fNaugX4PeGnaYv8phWt3EO2WshaLXhQ2BZKwJaQUS5mnMQlm46VDS1y98IwLC7UhBNp3zAun/SFZKxr2PIemwD7P3cLdAGsGRKZ0L+5uRLpijDG3Fw0FbNuAi2yDOgcPuz/OXq0rsWjG0jtdlUp7myUzDRwp2MyM2tXgnodGJux2WZ2nZt9JvGzK0zC/l8Dsfd6eJv3BNJDl+5lU4e5psSKz6MrGR9D4LUAjxYwtpddlf3FafWR8Yqvdv4QOqGlMUSm7a+EPg/V2Q5309Jgnjs7VTlDZdnPcFRe8BTGpbm5uiQcP2vK3znUgHMAjZsbe5bX3jsNRKepxoz+6QbVU9E6Qp1Nf7CG+NnYfbVsBqIfALMAowWjVWaF7NYQMGzBPU3T6oGrLAelQ8jWVQY0Qc04jmtMb6strbIn1lR2RIFV3se6WuY4zbKxmQ5BVwC18pGtrextBXObzAK16n/9s8EryfRnXVk+BYK1HVgOlQOxeuj0u8rENIHqGjiWvlZWu/6FQH9ttxBTnv5rtVpot9ulVAv7AOu5s7NTO0XAejA/6rCT1U0faZu2Wq2axI/2aXvCQoF8liPUTlpfTUeDhKr/9HMriaNs9L0Ade1DNyq4PgPRZ3bNWwNoWppzFetFX4vJ/VLqNbqRV8fG86wAEefngXYbeV6XYua8v5IZkQVEwcw9eXcfCwudshgxRtUZZOqaF+WJhhfR7S6WwRb5VZKQtRw+el7Wj8znpIPhekUS39oSMEBZ0gsL9cWN0JdiN8bKSlTGdaJ0Tak1mef1oFehRVHxR78dPuy/Uma8rpOcKxhmw4pxrv6p8vXtFhVMrPKzEEjAdpf+waBU1MJNEl82r+1ZlJ2iqwUjyqqa6GL+wgXP+PdBy2L/lxaY8qB+FF33TwJNV8oDabNoMFG7lxBc1/Iie0Kg+K6TjNHvR2W55uZQX+A6h83MB7idn4/g0hNwzjDV1KfDoWfuq1YOxem7XSwsLNbqOnYxIufKoGdJ4jHyLKvk2MkGveNFL/LpLy/j4jDCYv6kz4u6NQyGmmWVFuvKCp4cVuyzpbsyL/WS55WTm5B7OteiagdW1mUMWCbrntfPbGZfG9sLl9Mh1Uq++GEgqmRd+Gp/31UCE4nGzsGlddZ4eVJM5wl249sW0J5+cQ5xmiJ2KHXdQ7eHgk5a3LR2IosJab2aHGbrb/+3G5LSGATjQ8z2EDirsUw8INuwazwNuA/VI8tAEZU4TQD4DVm2TZrGxav/LE6S8oTafkB+FontEGoP1X0PFZH/hzZiQkOLXm/vYz+PbGK2rQqLMJ5oI15OxRRLUNB8y36VmXmWTbD4YyB4VM1T1avBB6GylXOppIM8B7aKGEDd7gl0er3y9J5z/uTbRIKBfkSgvKndD9zQPRu7r5rNQPQDYlZSRAFlG7DRAugK1PK9Ao4KnkZRhNHIL2h2dnZK8Jza1hYgVnCb9/NVWclMR8FF5mkDWPJ++xcC0Ql25vIUCwXu5HuCqWrqnxDLXqVQrISI6sVTV1vz5nUEXgkoU3tewWoFxylfY5nrTbItFkRXQJjALiVI1N8qC2MDrzaBwFYzvNVqlX/z8/OlXr32gcuXL5f65nmeY25urtSAp2nZKJFDSSDbZgqWs58qeK1tR815fbX9wDLMx+MxNjc3S51z+kqlXLR9FGhXTXT1HaVqtO9oH7lRbQaMz+yaNgFXJ1YnIXDVgqxnzyJKEmB5GZt5XIKfHbJa5+cnZFaSpNBCV50S5rG6WiKCnW63AvzW1isR7rNn/bWMKLW2ht5KBThS3oKYvNooj6pQWKxHEQ3z3Dl//WBQaZqX1xFYVaBYfSQA7G1pDiTFPYOsAi5DC2SNPirvxy7G1jl/Wbc7yYBut6vqe1mcYaUhQyfwPdnFtQ2TuH7Om6s0bXPNNM/Rbsdl0vz6+PHiMvqGgTaLegxWJ3DmcqODeyEE1il7E8IMqJWq3Y9+YFdbTIpNmSJoVpLEaLUq3XCWQavG93Nz4jMLovPiwQBLzgFpghHiApTw11BzeGPDbw488UTVtXu92JfPGRB9MPCxAwiic1ci832ms5zAHY1L9pv3ewVcEddeW6tiAdA36+tLAJaw/qCvzrd/+xJOujWg18PfrC8iSRZx80tfWu02JQn+7OEYDz5Ytce3fMsduPnuu30CthNKv6hp+evzg581gQzXtI1xZQy12UJ8Zl8740/RgoEaE8OCYjo0OAe41G+Gls/ndLE5KKi+LzIola51U1A3Ci2IbgujfzoOFunH5bhY3wRQ2Q3dnCfwaetbK7f939ZzGmhuP7d1kOceg6bqo4/gLP+3wHBJKrBltXlqBUMIJxuY41maYpFzlmKjPU7gpcWGVft0kgQujctmnDYNZD0YhDRkTCMURNWeGLRV289+h/3eD2VxdRJPCzyJuDcC6aHy1eXxzDxOC2j6M+cFg/U6CC5KhDVTrXVNzoLo9id3+LDfuNdu0u12yrEcYLpxWbygTexexBMfX/s2G7uvls1A9ANg05joFlxWpnVTWpZBa/WzCUhbEJ0gMFnHGiTTsuEVyCaISjY1wUetj4K6BGYJomrwTQLaIcY266FgKcvF4KEEe1XvnJsGNoimlSSxbGGrrW2Dr6r2OH1H3yqgbtng/JwgLMFhtjfrQF9omfm/lldZ1Brw0rK5QyC6brJY4J7mnEO73Ua73cb8/HzpfwWHFXje3t7G3NwcRqNRDfy3wTgZ8JMbC7oxoVrp29vbJdhNkFtPVygjnunpH03lW5guA5raTQcFyXUTQn1spWnUt6HNKP5ObiS70vreaP6Z2TVgGswxtOrWxUggWCLZraP+bWV8SAA1iQjeWi7881GFbtsFI7Udd3f9DadP+9f1deDRRz1a+OCD/trlZb96WF9HvLxcLhrjNMXWkSVsb1dEXz3lGmuefrUBdLu4cLYC0c+fl0WOAgNc2HMVZBdTwyFw5kyldZ0VbF4NxmiBaok2WeqAZ36BCkgAyqISzkWl1E3Hjap8dVWmwKyCE1xA8j2Bdqu1GegHdTC3SjrKRzVfcuGYDevFUqyEwDYX5K1WGKfl8eomLKGQXvf7BOuD2oZQXAQD3dmpFv3U46+B56AkTVYBD5qRtm3RmWJGmi38yS5y6ZLvO5cueXCbfa7bBRaXzUYFN4S0rfp9X5giWG2cpkhTzzpTtjng6xy7MdbWovK3x3Lw0Mb5gqn2rGcBJxeAcbqIhz9RYCynlvxP1PnF0kMPAZ/4RNW28/PAa0+fRhnhV+Vp1Ohzovq27zRR3K5pmx0Jn9m1axHGk5rfmHw+2uFGAdAwzuiDgjKNSBPSi+24zeemAudbW9UgtrXlX1UPgwgf6dg6B+GzNUk8mI5ooh77thAgvRdYHbomND9S0NS8V2kavSV0+1QtdK2HPk/5PiRYnufVZEYHYJplFxTfxQnQbleSNCGfh06I2aKqsZh241o/C8nwaXpNWun8rl7Gqg+XMnG2cAZIDw1RVZugvjEUAs81H5IWnCs31tkMnFrwPZNUnzBYqt2fsd1jZ6faxLDDLKcSoQCoeqhsQmqQVRL/5PlBI8LNxu6rZQdx5nZDmtVfplkQTgF2q+9s0wmlTeDPSmOoEeRVsFbBYyuTQhDUBoy0choK4CtArPVU4NOyrdU3DGSpoCXBZw2OqgBok9zMNAA91Ab8TNuBoK5ln9s21usty5kgtvpdGfn6naZpGdaav91IscbvrQa65qmSNiqbYqV1NA/dFFAQ3coNaZ8CUILgTJMbP5QiUt9oG4RONFg/qfQOme0aNFTbw7ZhaDOkSZ9f7UaVcaHNQPSZHQjba6FoF5b6ORfHMPhrUlFgdOLvHMILEF64tVUHdpUVfOlSfUVC8FnBz2JxON9dqi30nAsfOfZlrRhDzEqB21oFiAKHwGYFR9fXKxDh2LHw4px+NAC6sq7Le2SlpQuimqa2+lQ3POj40EKyqR0CK2ibRLXwqhp3BC/ns7FR+dAu8viqGMv29mQRLS6gr9YPpeQOd0yKtoowRqvlx2oy4pStOKHPrwtlCwgTSAcmgAsuarNi84NdkV2ltiGj+djV9caG79dySiPuehBJp6q1OAHo1PruxobfPCKpfmfH/3Rw1NWUY1QCfW6u2qdi2mtrAHrdsC/UJ03oiW3wA2WzhfjMrg+zQ7YFI0NgafXTLU5fhxK0qJ4y0YnwbW3VB1OljvNBo+LXfGAqcoh6+UNF4fdAFWuj0Rl7gej2c5bHZm5OaoV3LsLBGXVsm5CcaQLQr8SYjrLSNVOdv+hnzqHVihsB66ZsphUx5GI13dS2J+72W23dGNL7Ytnobuo8UTH3Cgai3etPM22o++7u5P68Hniz+0vcS0qSSWY6f07KaA/Nr/K8mn+E9nlU6m7qb2U2dt/QdhBbf2bGQgDvfmwvxrWChiEt7FA+BCOVCax5WWkSZQpregRjp+lFE/S0TF7dSAAwwTbW8vA6DY5pWcEh0FtlayxIS6DXSoaEtLhVIoSfK0NdGdjqB5ZVpWi0Dbg5QGCazOgmIL2pXdQ/TScAVMJG/RUC7237NbWT1tleF2pDrTv/LHC+Hz10lbexG0p202Hahojts02bVzc6KDwD0Wd2TRuf3yG0khZaxQSAdl5GjBnDrNQamVgfNiGjzvkVg9KFOfvn38JCBTIq4Mn7ywJ4a7f912TfeP3urEI9ixVHhDGSJCoJcROsaF2U6iupQ1aShSuh+fkqQqoa0csCwN/TzQK06/ottgt5i1qrr+WzUR4hZkVZHr2f5TcFU0ZYSTzOqzcWkLGsR/2fGu80bTrrD3UtMV2rHhKUE0HVDHZNqJsqOzsA5qXxxeeluD1Qp40FjN0hTf3eCbtz7QIWhNJAhXxLqY/D/KTtXKFBH9oISlPPOuPiPEn8gY25uapZlfHHpG3AtF7PH5og5qUxRhsBHdvP9BoLNhwom+mqzuz6M/7uG2VPAu/LD3WcDZmeVLGI3tbWZKZamJAeO1A+P8gstpe12/7VEtydkxNS055DoTy1rvUdhcnrFJ20iCWAPAsnpW4aI6pOhmkeerFShu2Y3/S5HST1Gs5hdNANPcfFHSFXqfxaaAjQLNnc6s4pwgJB0F3Cz0yU0f7vX0X7f4qFTnVMJAzUN3lsw2rGrtIa50eMB5TnVb8Nda809ddyfmRUjpDnk7HtbRo6JWVeDc07kcbBt9nYfbXsuukSM6uDkCGzYCDvsUx2BXhDIK3eY5nhylC3eatGtLKYnXOYn58vrwEwAaArgGqZ2KoRzmtDALwN5qna1JaFbgHT3IxICpArC5vBNZ1zSJIEcRyXoKwC0dyQYDDN7e1tbG1tldcwD62jgr4M+hoClPk95UiyLIPV6raBRZUFzjZR37VaLcRxXMuD98RxDJVdsaxtK0mzn7Zinhr0VesZYtBbwJunD9rtNpIkQavVQpIktXZo8gc3NtRvujlByRgbYFSNGzNaPr7qvU333wg2A9Fndk2bc0Ac12fQNdps4HqzUCBNhgupm/tjT2EdDj2y1+shW6/W0OVQo0B0kiDLgA41oXd2KoHsXg8X8w4W+32P8JFGu7EBfOlLlW6FcxW1Nk2xdc5fdvSo/ztyxCcZrX25zhIHSuZ7v79YJtHr+eLXFld5XmmQqA9uuqlCJwFfTqUGF5rrpX9lUXsxi8uyUjNViXlzc6htDijxHADyNIZzMVx30QMHw4sVPclK9BSrqs08LtRCFpGe8lryZT3l3rGLEa1/xbdnmiKHdxmboNcrglclCTYLNjSJ2ly4scrahbi4K1R0aotHHj5QqXagWjTK3kNt/T/KI7jeCUQY1xavfnMEOHmyzoxn+gSlL1wA5ucXvR97N9fKPRwC+TrQ73f8poUunovK5FmlQHTTTf6r5eV6vSdAjOVl4N57qwanfBF3cJjXcIjIOSx1U4zhpVsUTL9teYxeLypZ5sOh/xmR3T835+VccMkhyjZx112d8udH3zoH3HOP77rr616RaGUFwKpBK+yJB4uSsG7MwF5/YGzGZpvZtW1jI3EC7A2EcUPRuSrYtXOT6dA4NWAw6SiRL/QiO4ewm2h7AdihzTjZsIyc1xmPASBxWEwDiK2WRQM+7pV/E7qoQKktb+h+VwV9zovxRQ7qBU9CVfhrBJd0JjXpbf0EoOW93CzgZrxzxXiucxLAb9h3l5DnhaQdQfQy+ItPn490HYNDh7I4/HEs0kMGymS3kiKK60/bzGE+nBPZ5gz1fduNfNyYqPgsLj8v5zvTxiaLTDdtJIc2jlydWCIhggBMchb09sOH6+xznQrYPxtygHVnjBnrF763QVNZjThQ12ng+7Vps7H7atmBavYb2ZrAoxBrWL9TUFHZyBZItozqQ4cOYWdnpwSXVUpEgc0QiM68NV/9Xstqddy1njbgpQXnQwCs/Z51saC4BeDVV8xLAWbqw2teGqyUIHOr1cLhw4dLwJbAs2X907a2tmrfOecQxzHm5uZw+PDh2nsFkDVIp8qtsPwEz3d2dmoBMslOtwFFWT8th0qzsD7arkxP2d3MnxIoBJtZbt18sPIqLXNunOmqWakhTdu239zcXKnTvrCwgLm5OczPz9c2I/I8x2g0KjXb9Xeyvb1dvqq/uEkxHo/LV2Xaq4a7NftbUBD9RrQZiD6za9qSBOh06gtQCirTCE6HFrkC7pYT+dVVr1lOFLrXw9ajHtC7dKlYjOliuwh8lWVA0u0g4oJuft6vgHo9rK4Cy8tLWDx1yt+zvOzRwv/6Xz3Ay9VVmuLiMEI+qADEft/nGWcXgcHQa1Cvrvrr+fwtBKUXuzkWeylu7vvFsHOofENAcHXVX3/ypEfnibgXK6UxIuBUFeTUWpQkGCMqi63KIZbVRYB5jAhRmmIzq7SvucDlK21lZdEvkNk+NMlkfTXUxFHx6sH4QbEP8pxTXY+oZhl22vXu4RyA1TVs9p+Jhx/2n+3s+KY7ebKuZ671IjaiMUjJvHKu2hfRJuLik65Wf7F6PphsBaD3esBiCsQY4eRRX+CLw6hWHqoOnD9fSZ9QZ1Sl0b1vgdOnl7xG/dpaBWi4GFtb1b5FWuTJ89SPby1id7doR0UjTp2qnFDsIDx+LsL2NtBLRQufuxbDIaIkgXNL2NkRGYCHH0ZndRWdNMXS8jKwnOLkSR8TgP6KhheBbQcMBnhm1zPf/+qslzAiEfSO9Mu4Y7AKvOIufLLXwenTAM6YDTU6RpGV0GkIPb9+IG22EJ/ZtW0hAI7gIDcSQ0BjktQlRMoAoTJe6P31fAq9bFS66WW+3W794hDQru9Dn4cytZv6dlyzr3uRAHQeQ0S3AJvHrgqeneeooUi2mDsGIG+qji2Cgs2ADSRZtoaplv9MAeuKO1Avs08rQpIsIuku+vYePAkkCVZX/TXP7BXP7DTFk8Mq2GSeaVnqJOsmkDvkG/3MYtGhfdcQoKvjswLGqhBk/c10qSuucwU9MOAZ6uPGjRLb/73F8n5Spsfpq0mScV05vW3SeCf4rf6I3XhCOJ2bKKGDkVYSZy+r/b7TqB4HIa9OgRwcm43dV8tmIPp1YlaKxZoyypUtHgLPlYnOe/M8L78jUBliSCtTXO+1ZrXT2wUty8qcjEajMj0LTGpAVRvEVINkWhb77u4uyEQmEK/Ap+q18x6rt01Qm/8TSFfwfH5+HnEcT5RLA1OORqOyjuPxGGSwE5RXKRUtC0Fq9Y+2NZntOzs7ZXBMZU9byRICuZbhr5sDnU6n9Al9yH5BY3osX5ZlJQtfgfYmmRuVDLIbHBY8t+CzlVkh+M+2oG/JQOd19FGWZbU+rFI4lnmuZbAguv0dWjkb3QjQ0xk3os1A9Jld06YzbtV6Jmin1CEiliE2lnPVunVtDfjc54Bv/mag38fFLJ4IQjVGhIgz940ND9AWetKdhYWK0pskGCWLWF8vFounbq4YRGtr/pURQJ3DZhaVH7Poi8nI121tzddrtUCQZeFc1j3Py7rHRES5+qFvHnvMa2W02xVbvt+vyawQBOZ7ZVw75xnDJOtz+nD4cMUcIt5dLmxzAIjoqloTadEAz7g/uSBULwU9Cx9Rsl32MNDr1dlL/P7UqRhxUZndAgA/VzDnGSA263q3Msvd3YqFzXZXNtnOTqVkwmaI8lHpjDTt1AN+SlftdotgqlkGrGeI0xQj1ynBfcVPksSD6KXDnMNiv49RHtXY7or5bm0Bjz9eB9EVQOh2gV4vwiJvLBhn7OPlhg3p3N0ujt79wjItyu9Q/36ARWRD4NwXKi31PPeE9JWVyC/VtSBJAre8VFUyz73zP/YxX7hTp4BuFydPnfKFebjY9On1/B8D3/Z6SNLn1IGOz3wG+IM/AF7xCtz1ba/FotucBL600+yFgPDag0dlw2whPrNr3XRjks+e0BhtgVB91k4AiMW91InWfOzldZCUbPY4CLo5s982cfLJ/tmMbeb6vRaED3GgPngw8waJk1EBkGaykWoP0VgfBEi7k/U2jz6dcrFdyFBnkRVgbdpH4KOV6iL8TJufr8eOASfnfUE4Rj5zuRiHkg4Ga3tzJaw2d8g0bwLgalZyx/opZAqWc+5w6VL1nk1tWf6qK66EfFUJDBZeKqFzVhtMld9r+W03s58BAdmYUB8fDOvOlPgozCxy/lRGzIx6xcnBfDRx2lFNwXdrLErs5IPi/oM1fM/G7qtlB6rZZ3Z1zbKjQ+Cfvtp7Qvrh9hrLEA5JzliJD/18x44ygWv4qqxzGwzVlq0pjRCjvUn3Wu9R8FlBYWXKq1+4sWCBWADI87wEk62/+d7Kj9hgq6qJrnIh9iSC1k3BeN2UULka9XUIxNb/FXTWDQmtj5UGsn1wr02hvUBV3RDQ9mCZLDhv5WhCuuhav2l9Y5qF2uFGtBmIPrMDY1yAAs2rwtCq0c6us8yvcgq9cWqCBhlaRB8hrByu2IoFgAKcfm3gFwEdlUeR5CYkq20CGrEzzyvRdL3ZohNaZ66uZQxWAJ3gqwLHypi2RaLVApkGmiCEK+j/TKs2NQitVKWqW1s1Ej+cqxahypK3kEgtj6IAlOuxdZ1mXOSWoE7x51ynBBNsVZIEXm9fF5Zpp1bmsqpaDh5dzz2zyq4vmT2BbIIUuqGxH3US56R8BYCs+ajUDLH9jQ2/L1OT6cnF99q5THoAagF1a69J4sF8r91TJbyxUVDm677FYOB3d9bX/eXrw+aKTrNQBz1Yq3B4ndQrWVzfuGSBmX19bQI3z3OggT06EcRyz8TCXxFYVIk2Pq/5Occ/BTcrQN+ffIoUBbZ523KGJhGKHOd5JdPW9LyxaQhgyjpxiNdnvY5Flkne9Nl+TIF0TctW2RabJ590vkOGNv2tUxbMoyQ7ZBlq/uHQyDqGXGf3I0Jmgfe9rmmypvFVgWz+2RMArL/6j1O+yU2QqFk+x5TFEkHs0Fb16/oGQrlxxXxCE7vQ5FATtxMbTVgs4uSLnSJAfPEs86iWlNYzZAdu6J6N3VfNDlzTz2wS7AYmpVRC9wAIgrM2HQskW3ayAuEK6gIeACZATNaxspwJ/hKQJbCp+t9MzwK7vJ762yoFY5no1qax41XvWoFgBffJBNfgn01/IT9ZP1vQXd+zLKOR13Ejm1vlZSjnsl1o1jJf227KslcJESvpYjXvVWKF9bL9wkr5MB+tUxzHJRNd/WY3H7T+Wg4rU2PrYZn9BMetRA+lWtjvmIb2v1arVUr9qA4+09UNCd0Esf0ttBGj/bBJkuZGtBmIPrNr2kJgMVCffOuqObRyKCb35eKRFOMikmOSxOh2/QKPyWUZ0GFw0AJoLJMmklvoQud5pR+5tuaTv7k3AtbWK4SzYCMP1n1yGpRps9tBp59UQtvz8572PT8/EbxxQiPERnQiXWtrq7ZS8+yiirVnSUAhZhJlNmiUAQHqayBDjppgslnWWpZ5dtmE5qfzEjUE92lmz2KCxZZlQKffB9IUc5er6wF/9D3qdksJF00jyybj1jrnm3VhodI/9/nUMx2uVyxxuyjOsmIDhY5I05I9yMBdzLfdRr2Py8ZMCEvRJmZa2g1Uv50X6wYKu/MS+3ZRySgfIU3jcjFNIJ2LewVNLEmy1hhFRnG+iePHO1WfVkRla6uKbMo/LsKpw3PrrUCaot+vihnlI//P8jKQ54ge+rOqI2oUNLvgV7PvtRMfuJX4LDjZzK59a8K8+ZyZgrkFdhox9Xdqx4ZpZgFPCzJXQRNjxKmrxl+dj+hAx9cmEF2vM9KZQdOHdpIgScPJ89LQ5vB+/KDAatM9+p0F0EPpAb6KHBv5GYNn81Sfzjs4VtFGeYS4250gHTDWelNdppktb4gjqBsvNr1Q/9IusLBQ942dnto0+Ge7Qz2NusRaWMZlsoyh//ne67CbcdwSVEJ9mh2lCdFu6jx6n90tsPNXk5TOUSeyLb6cBrBfmzYbu6+WHbRZ2w1vli2tjFkCiFZihdeqnIYF0Zt0nBX8JICtgCoBQNWRVqkMZaGz7NTbpkxIq9XC/Px8Lagm72u329je3i5BUwKz04BKBWMt6KaAJYHVkN4560wQ2ILzlGxpt9tot9vl/6wPgX7Lrrb/s76W5ZznOS5duoQsyzAajeCcqwWiVP1uAGi327U2AlBKzmgeDGKqPuUr5U9Yb7YRNdn1tADTVaBaWdVxHJeSKuo3tn2Tf+wGhMq7KJBuJW309dChQ2i1WuWmzWg0wubmJpxzJXCu6bfb7fIzbl7wPv6uKLtDf2mQUNvPCMxz84CmADw12FmHmc1sZtegZVmlia6Tb6K5Fs1Tlgsn5wXjdeEuT0BH0islJZBl6KQOy8sxdnZ88MY890RYLJxAp49KE73AAhe58lteBrpd5EMPOK+vAw884HWpbx6eBT7/+Wpl1e/jzJmKSKvYnU8+wh39fj3qZatVZ+dmWRUAVIC/MYOp8VrVbJd74yRBlvnnIatAF3a7QAebQA4gy9FxDnecSmqB4WI3Ls9njwrud+w8e4nBnubnq+ftkSN1kOLcuYpB5yVtGFg8xvz8CQDA1nl/D+/j4nJhoXKJNrlzRUzRU8/x+ReA68JClc/NKyvYXa/kYACfjrLsnfNHyikhTzA6xggAg7HFJcBP8rRdCCeJ/zxLIgCefb5zrpKJqYAZf8/CAurodJKUGwl27cpLvM+qEwQE1dmO5b5L6vsB8Wklg2fdGDdTtx8ABoNSxgUodPGdlzki651l6fUqDJzgR3lmnxevrvqFP99fulQ5/PHHvbP6fWyig06/6POUcVlZweiuFyB2Y8Rn/srLFnFHZ3kZeOlLvWTRBz/oC8FAp6wsHZbne+ud03n6fmYzm9lXbQqI1kwAtQg+UGDJuAXq6KUF17iWMnrqIeBQgWEF2UJs4SYwkn/tttcBn5/3417SXazlNbEhrK+WGsxnIr+3oKLeR8vzMnBptxvXkp3GQN8rKKaaTYvphYpn/w+lbzdbtUnX1yupF24Ij5NO7XG9tgb0eiewsVHdTwK/3VwObbI37Z9qPallbq/XtOymivYvArt8bbe9z0iqsFIrzIfp1rXm6xvx3Jj330/+lmyftmVX43vmyflfyT7P8sl+GsrI/qj2u/uiG0Kh7+VefW4EfvrVb63muIMIpM/sathsxnaArEluhOxZmpMHgmVE83oLLhMYVADesofJ1lXmN+8lGLi1tVULYGnLStCS6Tnn0G630el0ShBXr6de9c7ODihzwmvIILdSJcwzJCOj7F/qiZPNraxrZWITFLcgOvXPW61WCabr9ZZhznbSP4LJrIMCrPTf5uYmoiiCZY+zPPyOQD7rasF0BdG3trYmNl7oN7YRAfRWq1XTK+cfy25PGyhwz7Zkua3kjfYl3QTQPmwlUwj6U+udTP2sGCCpf8582b5sQ24SKOOefY+A9u7uLjY3N8s+yI0HKy9kT4VoP9M2199eKJjpjcqwnjHRZ3ZNG1FXwMhjFMCXDRjIa5QiXYDonWQM5yKg16/uKRa0S0kCLCRYWKi0q7/0JeDuu08gWl8Hul1k68W8vVj5baYnsHrWF6Xf97LP//t/++xf3HsYePhhn3+3Cywv48yDVQxGBdFXV/3ia/nvLXoGs4pxc3V29my1Wuv1Ss1sLjKSJK7YSgQcufqTjYU895sF6j7ngDjfrEfyLO6JBCAv00kSxFo+oCwIA4glSQGwAwUAXTUjddN5LF19weT4fatVybqTOaWBudhWg0FNbrusn9dX9WXq96tqMA/Fr2+6CbhteVxpmFTOxTDrlKRq5knZerK6Dh/273mrPfGsYDebueNGXlqFhUiSmoyNvZ9dgCA/g9IyPfVzqaGbVVUaDKry53mE20j1JpheO5JQv5/t0etVGvrlglYz39nxjax6N+fOVdozxe/pYt7B2bPA804v+8/X1oCHHgKWl/GJTwDLyxHuePBBf++LXuQr6yOnAh/4APDv/73//13vqhrXsj6bECCrPcyyX6nWwdfVZrqqM7u2LYS/lXrGsuFVWyE3IeJAbVPXml5qWe6KWbdadT1xHYtC6anUiwVqq+tYg7h4H5dA6cLCYrUhSxCdz0IWwm72hWTb6KskQewc4sSVQUZpvHRCEif0HFSHOQekSRkHg5fvNxipJmP9p//zwBBBdI4lQDU2MR8F2q0KiM3Xbq5bn2j5Q4FA9Tugnh6HCNsHIvi5Quyc79MOWEx95ptZdfortGkzzbTJ7aaB1k3BeDWSDdQ/tqm9Lnled4LOszUT62xb2JDTQ/fqBrctlGxk2zlPTWaGE6DigrGL9+XTa89mY/fVshmIfgAtxEQHKjBdwVoFxhUctzIS+9H7Vgax3kdQUwM0Eii0rF+WgfIoBNPJdk6SpHbPaDRCq9UqwV8y0QGUwD1BXPpAfaSmICzLR5DValMTXCWj2sqKEDjXwJv8CwU7bfojsKvtuL29XUqQUPrm0KFDJbBuNwdUr5zgvf1O9b4JCqueOjcmCHJzc4MbAtontKzURrd9yErVqMwP77P+Ud1yy9BXqR6VpNG66KYN66xlY9+lP3VzYG5urvQ5+waNabMPal/Wcmu/C+m7q4SLniq4kYHhGYg+s2vaFDjX1YVFXW0ERgXXNzbKz9vtDkaug5gsXIKHBSLd6feRdD24t7bm8buTxSpua6tItsh3fd0D4KdOAYvpGFkW4ZFHvBIF8jUPfAMl8L26WsdnrWT6+jpwWyCgWG2R43zgzY0Nz5onoJrnVUDIEmENLKJ3djy7eH5egG4WShfyeQ48+mi1iiP1Ocs8WozCDwTTi3ui1CFJIp9uAcrHaYo4SZAkUUlWJuOfdS9jT/Wqoms5QxIiXOiyGVdWgOecHgNJVALsrBZjVtLfxHJVF7TXA8pG4uq98KUyuYdDHyuWmxg0LpQZSIzka+c8K58HC9rtAoBmgC09154k2DpXZ8gB1ULZMsmWl4sNkOEQWB/6zY1ksYbLaPfZ2Kjw7TQFbrurW9y7Xm34ALVFrQXzfeDS6hRC+QVQIRQaaJTOYCEKJ/JUxqlTsZdO2try/s9zPPywv/WOs2f97+j224FuF+OVZ2J1Fbgtz3E2y3Dbgw8imp8PM9GbmHX8ngtyIjRa3gNhs4X4zA6wBQDi0nT8xnQJC3s7QbdILnCu0ljWR4IC6BpE2xbH5hEqMk1Z4M75R59/bsZeGqbrqucTUEeG1Se626uDnwCXkSlA7FzFKmZ6TCO0majzjCRBlCToJAk2szrxbxpQ2eQLi62qhJ0d+zleabE5Nev3/ZTDPspD4PBeZgFttr9l3Ktb+J4bADWnWGZ1YZ0kARKfiA2USV14Tcb6tukzrSffczpG4/yApvcEwXN1BlDvK2ohB4d+JKGCa7p6DFL7pHMTLPQagM77Xd2v+92cuLZsNnZfLTtIM7aZNdg0LXRrBNDt/3vd2/S9BYCtznMI0A+la2VorGa4bgZY1rSVYmkqp5Y3FBiySduaviKLme+1zE31mGYWdLZmJUNskEtl21tZEVtf/b/pz/re6pRb7e4miRrrH/Yzq5++V5vt5bemOoTAaz2pYH1k7wmd9rB52N9cSAqpqdw2vRvZZiD6zA6kfRVglwecZUFqvqR+uP2q1AJ1/rraxD3PAcTV+kODg5qyKt7IWyeqE2LryKtdhE1Y04LGWtPqgyi2fpfnexQ6kK6iFhL+kx/pwaIkqfRO7To/dFxb0wqt+0Lp5Hldv7yx3Py/wUIKYFofXZQ7598TVKnpn34VKz/nuAmSV2B8nperCvWtbeadneJ7dWZgRdrkisb+atNh46lJ2mVWe/2e5fdUAi3FX9mr9uPLg7XS3sNmC/GZzexqWRNoeSX3qFFXO/gMDSHAFjxvynCvcVf/t+9Dhd4rz0DSdtjQ4l+p2f3+vYr7dFhTHjs7E/s5028KtGFUbOLox+QkPNXy6XvqzodM2yNSXe2Qo0MZ2UxDoLm+308ffqpmAPeDbbOx+2rZQe8JN7SFACWVZQFQgteqZ22DN/K+EChsgzvmeV67jgC36kXzPrKQQ6xdDfzIMpOZa5nuqvNNdjj/Z95zc3OgFjsAhBjblkVNn5BtTha3DaKpQDLTUk10ysCoj8gg17rrd9Tbtm2omw6UYbEMca0XP6e8CVBpvVudetXftlIzZJzz1UqQqIUkTHSTwfYP/d+C3dpnWW5+Zvu0le5RiRiyz0MnLpgGfaLseZWi0UClrKeelGD7hcqm+YXKq+x5leW50W0Gos/smjZlyNgVaWiyTvqQLlAXFvwqI8uwsNCBc57ZFunilekUdDTnlqqkC3CSsiBYXQU2NnD4nueVRaFGeHk8mSsk6necPYtXvOI5OH8eeOIJlExywLOUFxYKJvQ66uxkZlAEMWW9NFgXg3SVYCLz5AUM3pgkaIkrswxAEsOlcZ3RRrYQqWHqJ6ZFtrv6WpoAOWqC3ZR0IRaa556RxSP0u7sVgE4GN5tYFW5YX5LiVWIly6pj1DQlGq+vVyo3WvQaqK2BXGtRz6qvGdCzSZafLHKDR5eupQ/ipl0B9SOqOlurbeCIHrlL/UehclBHPUl8vccogpYp7U4KbRl5QMXI73YjREonpBg9ZVycK+MG4NIlTztnoxayNSz2Yi8FnvEMn3Ca4r77CoWW9VMVy3x9HdGpU8jzCOj10AMQHz9e1d8u8PX5YJ8Ves9XgwB9XW22EJ/ZwTH+xGpjLxD+3ZlxneMTGeVqJctWdcnN/a6QPdFHu72fjxn9PKRb3VTcvXBDjtMuLWKYMFM9acfEbIb6EDYSauU9tvB2bsOB0FZc82hg+OoGMesCVGMnpwyhxyjf7+5WLGyO685VJwB4L6uqRdWxLFRdnv5qeoRrVW0aeV7Vg3MLbXfb5mUd7ZipGankiCFkhGLKhogB9r3tFhZI53s9XVe3qJpzaKL8X09kNXVm7Xuh91p4+6rjrP0rrvO/82iy7OrrwI/wwA3ds7H7qtmBa/ob1SzL1QKKNjCofhYCzXmdgtkKOIZ0ngkAU8tZwVPVQWeeIW3uQ4cOIUmSErBmvryvCXR3ziFJklK7GqjkXFQbm5IeLKsClRa0pDwNgVgb7JJ1J5jKa+bm5tDpdJAkCebn50sNbg1CSZ1yu5lBiRbqsVtQWX1gddhbrVaQ+Q+gDHxJHW+C5iofsr29XYLHKiNDkFiDvVog3Uq4sD0VONZ+Z8F0lS7R4Jx8z3QpN6MAPPPXjRYFo/XEgvYz/m+Z+0xf+5n+lug3AuhJkkwE0FXtdLaZSsew/9lgsNvb26Ue+iyg6AxEn9k1boxsaBeDOuEH6t/ZBfqxY/7/4RCdJMHYed3zjl1QZJkH+pIEzi0hy4rjx+vrwPIyBoPYL7QffhhYW8PRV/4fTBbnz/ukVlY8boizRXm6XX/e9oEHcEf3YX/BS0/hIhbxsY/5S176UmCpO64kNYgMW/HrYiGRuDpmeOmSf108lFeAu6xGxy720h7DSeCdi8/5+Q7SfkcCTZmj5rogT9NSd4W6251kXCLfJUBSrJKfHEQlYErwmwC6Dc6purRc11F/e8ldBACM0sXSRdRNJbC7sVHtX/Be7gesrvpiLy/X86A5hwqxlw2AsQAw3W6d9bW76/PlpoAG4qSfVZ6e9/gNjMhL8ASQBwUSeOQcqIMWeS7/DAZee6jbhetXmwZ6VF3x7mPHfFWzrDh6TjCHGjAFosQAouon+vyuu4C4CLo7ShZ9XWzl77kHXx4u4ub7nP9tsSN0u9jYqNotTWMs3nOP10bKMrxg/U+BQQK84hU+rQce8EFH77oLGxuLwKlT6J4+7bWTdnZK8L22O2IRB+3DqsVjwfcDY2Nc2eJ6RhqY2dfW9OdUVyWJaoGMAYTHcwXgnCuCa2LyvtCrGEH4JIlq2bB8+ozTmBsqnQUYNi8qmRmNG8ExTJWlAP85n8VJEsMlMWKNQGnrSzNgY1AX3nkN9lrQxdBOrgVIDUg/dnE5PnOc0vfWd1R7A6qYGTZZxT+feMLfPzdX2xutGU+kMUgnfRmqhnahJvBb8V5q5ev0JtRm2gRNmybOxYCL6/rz0ka8zrp9WrqavpoGJrXfh/5Xdrq2Se4YWF7meixIyMlqISBbSAYqxVLzierJhfqeFj7P4YzOf+1HGjAd3g+Ozcbuq2UHqtln5q1JFkJZvARtgTrznEbA0QbyVJBTjaAwUAG0ytAmKMw0CEBaWZa5uTm02+0JEF3zVHkNXssgnmRNAyjBzizLSmY3g0sSYLW+YvqqjW1Be6s3zjzJQI+iCAsLC+h0OojjGEmSlD4kMBqSFVEGujLluelA8FcZ6LyPadp2J6jL4JoEaLe3t0tfaBsyDdU5p/65vtrNFQX7udFAn1izgDb9ohsmDASq7HytX6iNlC1udcvZ39SPaspAj6Kodq+agul6UoHfKfhtmes2HcuCH41GMxDd2AxEn9k1bUYP3DJXJkS17UzaOeDo0SqttTVEKyvI86jUrKwtNM+dA1otuJXnVEB1AW4PBgWY+dBDwOqq16JGB1tbFat8ZaVg0J4pZvW9np/8P/CAB99Pnwbuuw+Ld9+NkydfAABYWv0z4GNnPLrb63mAb22tWjSkKcan7vDk9GKhnCRRTcvVOQAJShB9BA+cD9fqC05qjhPr1IWdZ1lHmJ+P4VyMTl9WJ/RT4evNLEIuIHySRBWbvbhnhBjZkME963shyiTXwG1sTmLZdOFiMgIeOgM4h/j0abhisX/uXBUkjlrrNC7U09Rft7pabXSEugoAjFwHLgGiNK0YedLFej3RIC8A5N6pExgOvXT39rYH8qmDqzqq6kL6LU7dRGEsEMF7lBFZW98SFH7iCeCmmxBhjJ2daCJQm0qSHj9egfSjPPJgjnNVdLcsQ4QxWq0IaVoPdMqAqqdPFyB6t4vz54H5+RiLDFRaXPxXa4v4xCeAf/SPnod45UHvnCIKLE8cFHF/cXYYYzA4gZfd9STw7/4dcOed+NMX/f8wGAB/F/AOzjJsby8Cp1aAV77SNy53LvQZ0MS6pFntdN5zoAKLjnFli+vZQnxmX1tTfG7iNI2Ly+8nAmHS7P/2oahmEcsAgh/BnwBKkgDbFdVjIMJYAiEPJwHG4mIG8+50u8VmpB8blVyuxdLpjH/URGi1/HjrHGqIUJlV7v/43m6o1stO4lwB8OajSb+E0FznSgDdjs+hQJxyWy0ZDaFitbm511vsoWJhofqM8w+gzpHgfSyH1lWatVYmPsaZftmessnfKS7udF0QVJ9mk/s7nuGtDP7QPdp9tQ72f02b/2sdbflsfraJdZnLdvFpRr7fpXFY6qUJRHdVQFv+RCzIPzfn+zXgYwGo/4MbOfJ+2kYV27PpEXBwbDZ2Xy2bRMBmdiAspAcd+p7/05RprUEclY0cCvgIVFIlyqjlH9npCiJr+vaV+ViGMQFSy2onIzhJErTbbbTb7fK9sqdplrGsYK0FyTU4KIF+1kGlVegj5suyMG/6nD5ioNWQn+yfllPLZtvL+lKZ3js7O9ja2sKlS5cwHA4xGAxw8eJFXLp0CVtbW7X2sW1v/xRw//+3d+bRUVxX/v+q1d1qLUhCyNCSQYjFbBZewBt4gSQ2MQ5eE4Njx2PPJPzsEGywPWPjcXLAyfiEcXI4ZI7XyTCOZ+wZPBOW4yQeYjEBYgzYrGP2AJYsy0hgCUmt7laru9Tv98erV/26ultIWEJq8f2cU6CuelXvvqXerbrv1n32fmSvEzXJoRZbVWFuVNuo3+qY3s/UdfXFO3Vjsx76xB4aRfeA178kSDaBoedj92i3t4My+Ks6UjLr/UOf4NCvqxvh7fLqfZvhXCTJxrGzbd3llVdewahRo+DxeDB16lR88MEHnabfsmULpk6dCo/Hg9GjR+O111471+KRgYDuDmV/CE/2QG5/ylYhSDRLrmEguVE+EAD8/njvFvMca060vj62ACViNjynM+Y1bb3p5OVJT/TqahgffAB88AGwaxdw+DAGDTLt+0eOSMO8cmlWcmpW0ObmmDFaFTOpVzKAqNONpiaZvqEhthimfq46RxkxVXYtLTGP7rAzB9G8fISdOQgabgQhF2X1+R3WYp6BQCz8ih3DkE2m7M1606kmDYViRnC92Prn2Xl5gFUBZiU4nTKN2Vxx5+tGZxVlRHmM63Mx6mU9xxOVnvRaV1OGELvzlBthKUN9vTTqmpMpygBgGLHyKGOEkkVvK+XVF4UjpQuV3jWTfQJutbmqaCWw1idbW2NtoE+m5ObGYsMbBuLdLbVCq3rKzo7Jo69DqvJT7RDNy4/NgOTlobpadu3qasRujuxsIDc3rg+oSYh9+xCbdDp6FEeOADt3moKYbW8YkLMZ48cDF18cK39nRnP9Hk9WZ+rctDKid5zD1js0NTXhwQcfREFBAQoKCvDggw+iWa0MmAIhBJYtW4bS0lJkZ2dj5syZOHjwoHX8zJkzeOyxxzB+/Hjk5OSgrKwMjz/+OFr0mbJzzJucP9Stp0J22fVAynFQT9jdzX6+7bcewUpteXlSFziaz8R0jdrq6+X2+edyU7/r6xMUrbqevo6Hnr0acpTuVLpUbWqe0b4pPdreHps81z3gk+nXuGcc/QurJPv0YVH9bV90Uz+uD53233pb66gy6EZzvz9++LaLCMS+YlNbqma269eE/qSUjaZ8HKGg9QyQlyfVk765XLEt2eVCIVjh6ux2YvvjqbofdEO62xmFwwjHbW5nFG5nNKGPque+VGrKfl/Zn7X0LwH19orCEZ+RnqH2O+rJsSZb9C8A1XOj2mf/HTYciHpyEr/062z2IEld630zVZ2mB9Td55q3HRrR04yzGZE6MzR1ZmBMlvZs2BdqtBsFk4VlOZcFJe0La9q3ZOXVY6/rHsp2o7TdE12XV5fbLrM9nI4+CaAMpPb6UefZsV9b/91ZnmczNNpjyycz9qbKM1lddLbZr9OVNtaN87psqcpql1s35ttj7evydFZ/qRaXTXUP6XWU7B7Rz7cvsksS6W0j+jvvvIPFixfjueeew969e3HjjTdi9uzZqKmpSZq+qqoKt912G2688Ubs3bsXf//3f4/HH38ca9as6YniknSkM0uiItmTtf18La21y/6Gqz2Nxz2Y69fWDI7qHUM58saJoS5gWiDjRquOjthl1NumfSVI7U0yznvJlN8WrjtBTl1+lYX9pV4VJ1kVJnsJtBuVk1a76ZVlx/5CqIy5ao5Df79STZ2ZaftEXWub7Ozk73talVtl1dsIkNdUL6z2QoRC0pChf2FvGSX0N1R1Mb8fboRjMW+difZofV5HeSFa3na2SR/983L1sqxCjKukCd5y9rgDSQ6lIq79bNaLVIYA+wWcTtuLvdZvrbyVhQIAOjoSjAlxdOIO6HSa/wwaJLeUhTkLycaTtPo6rf+8iN9///3Yt28fNmzYgA0bNmDfvn148MEHOz3nxRdfxIoVK/DSSy9h586d8Hq9uOWWW9Da2goAOHnyJE6ePIlf/vKX2L9/P37zm99gw4YN+P73v/+V8ybnlx43cKW6YKr7P8n+LsvUnTEFUrfYjZ3J5vT0sU8/frYhKNl4rIzWdiw9bLdK239r6OFQVBmS6Va7LVT/bY8lr7CrKKdTfq2l62v9evp1VV0q3an0p1LFKr2aMNbThA1HTPkqQYC4BxpVV/ZHQoW1GLfWDsnij9ufs/Sypvx9FitwV7tgSn3aCWfV7xp2L/HOFny3Xz9hsixVn9ToSjx5PZ/0gbr7XPO2k1ZzJ0SSyuinhwDR/9YNjfqCkuqYwh7bWt9vj6Wu0ENb6OgGWLfbHRf+Qw8XksxInSxWtYozbq8DAJbHcjQateKG5+bmxpVB93xWeahQNvYFKfW6VMdUWmUcjUQiCIVClgez2qfLrzzUVb0r72YhhCWnLo8e/z1Ze9jbXeWpvND1RUPtsbwBQMVoV2FNlFe1kknVk/Is143TyhisyqWH59Hb2/63XX77ZIMue7JFPVXdqLLp7ZydnZ20HVW+dqO8vhip3rdVW9uN//YJmmSTLpmZmZbnul5W5VGv/58sZNGFTneN4t1Nv2LFCnz/+9/HD37wAwDAypUr8cc//hGvvvoqfv7znyekf+2111BWVoaVK1cCACZOnIhdu3bhl7/8Jb797W93K28yANCtcPaHbrsrkn2fsmiquKPK07uhAfmFhUBIO6ZepsrLLRcprxdwhOQaFwiF4PWaNsCKCulRaxgYPlxGYckJnYFhFOH4cXneZYWF0h2nsFB6zY4dC8eECXLxRPP65eXmS4laactOVpZM5PFYRmb52Tvg8PuQ4/fD4y1Ffb15uulqLV90HCgulrIop2mXy/SkDhkwDBmG5qKLpIjK2U6tGdrRIZ3tDUPGzx48GNaiqHoIbeUdX1wM5OTJBVb9zfHVrl40hw+X+xoa5LWShS1RDv7KAy47G7EXXxVEtbkZ7jwDY8cWAYjFV1dt4XTGrqE+5S4vd1iO0G6EAX8ottClab13FxcjBAfq62X47bw84NJLpRxmJBGMK/RLd+nhw2X87uZm6TU9fDi++GIKqquBq66Sh7duldt11wFz5sjzN26U8t5+O5DTUINgcRmOHHGgvNyN/GbZkCdO5MAwpKP14MHAqVOy3svLgXFjo/D5HThwQBr6LUvB2LEyU6/X8qJX3vxer3zZ/eKLWPic7OxYt/d4EHsTUSvjFhcjGHLEeZ0ni2gAAPD74fXmw+mEnJQArMYvL5cx/wEAM2dKt/QDB4CGBgy/LtZ3VL8rLjbbu6QEKCxEXp75tYbqUH4/ysvN+3vChNiMhylHnPXEjv2FXRVE/4xCD8rf7+lA9/yweudF/PDhw9iwYQN27NiBa6+9FgDw61//GtOmTcPRo0cxfvz4hHOEEFi5ciWee+453HPPPQCAN998E8OGDcN//Md/4JFHHkFFRUXc5PmYMWPwwgsv4Hvf+x4Mw4DT6TynvMn5w+2Uz/qG0xE36ZtyAk3X7Xajmv3etT8H2NH36+cYBmCPu6xjF0w3uKpJwFSGP3OAVCFj1Fc8QGw8VsZlpRt1w6DSleqRQH+MsRdXGauV17W+2LgKf+LxyBOiTre19oRaXDKIHBghID/PDLXhdKOtTcpjPt4kVLWaTI6bHLVVm0IZx5XMkYhUU3oZCgvl84XLhbivuZI1SUOD1MPZ2cCkCbJffbTTgcZGqWOLQidxxlOKzZulriwzPgUMA/WecWhoAKYMN6x1NU4256CwEMhp+BRwOnHGkOuseL1AjjOMMyE3amulTF6vlEk9LpiPZGhtlXp5yBAg3xmE2+NBg99hlcthhBGEqvf4R00gZvRXXuyyWdx6N7J3q7g+kqre7W2mY9+v5+H2pDhge852OJ0ydBFk+CA9RJE9L7v8qowJIWRMdKO5Kof+W/1vL1uyLyH7N9TdPaW7aURPM+xe2cqwq/4HEhcGtYds6U4eAOLihNsNf8k8m3XjuIqzrWKh6x68yTyc7QtSCiEsA6S+KKd+viqzimOtFiC1p1HpVP3YFw21G3/1xVHV9ZQ8yoCuh1NRi3pmZWXB4XBYMdPVZi+z+m3frwzuyuiql1v3co9Go2hvb0/weHY4HFaYGT2MTXt7uxXLXhnD3W53nCFcGdDV+frisYZhJEwsJPPSt0/M6CFUVPgUPWSP+t3e3h5n6FchcpJN9CjZVZ/WJ130BXB1w3ZGRkZCLHQ9Jr3qE3pb2731VTx+VSfqf7Wp9gmHwwgEAlZfSWVE1+/bC5VzKb/P54v7rcIF6YTDYezevRtLliyJ2z9r1ixs27Yt6XW3b9+OWbNmxe375je/iVWrViESiVjtTy4QsrISjWL2QJtA/JumsqIqC6F6O1MrItbWWouFhguHwu0JxQIzV1TAF3LD2SxflizDu2m8y8uDtAqalsVxY6MyPMu+fSj/3v/Drl0yzR1jCuW5Xq/crrhCyqCshQAcRw7ZLJmIf/MYPBinxFCgDRgWOi3TKXft2lqgqgqOiSF4PKPlS4WyaIdCcLlykO8MArW1KPaOw86diKUxDABlCASAiROBfP9JRApKceCAPHTxxfLF/Phx+aJ49dXS2N7YCOzfL9dy9Hrly5wyLo8dCxR5DPjNl08Vx9zjcVuedWWFPqC2FkVeL6Jji+Rn89XVQMiwjJ+X3Szrv7pavrQWFiJmHFXxts3P5ydN8MDrzbGaurhYlgUwF8t0ATA8gAEUNdejqKEBMAoBFMu2OXBAWjZGjIitQIp8VFcDv/2tbP/ycin7vn3ylNvGNktL+He+g5MoRWmeAWzYAIwdi2ORKfjoI+A73wHK6j/Gzqxr8Pvfm5MxW/+MnOHDsWvXaHz5JTDv9iCwYwdCN5dh82ZpX74sJGcx9u2TZbriCsDdfBrAUNTWSpsxtm5F/tix8PtLAZjxzD0e+DxDZaxyP5AViX32n5UFjBkjDdEqBIDyTFf1lpkJwCnbIDq8zLJLd3TIqq6rk3WQLAavmpxyqzdkLY4/AIz2BDF6uBOf1rqxdr0Dc+ZcBrf/LaCuDhMmyFMKCqRhxOvV7unycqC42DLmwOm0ZnvKhvsAeBCsuAY5CMrGUbFr1D2iu7/pszTJLHf67IBNr/VvwuherFQ5tnRFd3eH7du3o6CgwHoRBoDrrrsOBQUF2LZtW9KX4aqqKtTX18fp+qysLMyYMQPbtm3DI488kjSvlpYW5OfnW44u55I3OT/ocZBz8vIAxMchTzDy6fdpykQp9tstr6kskOa50ls8cfFHp1Nb20N3dVZ52mWzjyfmswKUoVE7Jz9PS2MYgCcWW1qhQpsor2u7L4B+uvqwR0UncTrlpEUUDktlDh4MuA3DWmalsBAoLZRy15sT1hMmOOAIhYC8HLS3y497ckJnAKcTecPzYRiAO+QzlWweop4c6VxgD2auW4c9Hn3VaPicRTJ0WvNJIBRCePho1NeburHhtHwGME93689Cqj6bm1FaUYHjRo7MbutWAEA7bsKRI8BtN/iA1atRtHAhtm6VdTrFL9McHz4O+/YBU+4z5LPahAnYsUP6Qoyrl5by2uYy1Neba574m+EPDcXhw7FnAPXYGAqZzg9+H9rb81Fbaz42dDQDhYXw++UEeGmxGfatsFQtnQKH3wd3Xp5laFcT/CFzslr3nFcTLjr2LxRUl1N9RR3PzIxfi8W+IKn9VolEZD9SnvhW/9fCw1knK8y+7XY64QaAwjzp7W9rNnV9fXIotgZOzIicbIJIF0PL0pqY0xMbRpLFdvs11N09pbsHTDiX3oh7u2bNGkyaNAlZWVmYNGkS1q1b11vid4lUoTz0Y8nCHijDp25It8elVtg9d1OFS1FplNHQ7kWsDJ/KiO7xeJCdnW0ZlvWY3vbQKXqsb2UMVUZJn8+HpqYmnDlzBi0tLVbMb7WwqTIA5+fno7CwEEVFRRg8eDAKCgqQn5+PvLw8DBo0CLm5uVZMcz2Gt9qys7MteXNyciyvclXWUCiEYDCI1tZWtLS04MyZMzhz5gwaGxvR1NSElpYW+P1+qEVP7XG2lZwejwc5OTnQY72r+OK6l7gyhre1taGtrQ3BYBCBQMDalAEagBXHOycnB9nZ2ZahXHlFq5jjygPc7v2tZNPbTY8Br/efrsRTt3ugq9jnejxytRBqMBhEW1sbQqEQQqGQtV+VW8nscrmstlRtm5ubi5ycHKsO7bHLdaO9Hqdej7+ux/bX7zN9wkXvn/pEi+7trr5UULIrQ7rd613Ve3+gu2PoV8HtdsNrWS26R15eHkaMGGHFMSsoKEjqVd7Q0ICOjg4MGzYsbv+wYcNQX1+f9Nr19fVJ0xuGgYaGhnOSl3ROv9bdygiub3YXFf2pXY/Bod4k1eqSap9yNfb70dCAmFtRJIKaereMywzNiA4Afj8uvliGH8F110mrJyCvs2MHsGEDckJnLEdba+Us5Q5eUSGN7xMmmO62kLHQjxyJvQHrgbMBIC8PJ05ID2I0N0uDsypTfb00HtbWxrzCmpvlCpqqDmprgQMHkO8Jo7HR3G0GWFUv5/meMHDkCAYPjs0xKDGqq4GDB+U+B6JobgZOnJBZq5ArqipVlqp6/X5YscutlxtVV7t2wXHgE2DzZmD16tj2298ClZXIP74H5eXSuJqXh9jFi4vl1txsla2o4S8oNWowOu808uv/IvNQW3V1bBLk8GHg97+X+asgswcOyAKqGLdmLPzq6lhS1aWs2NzNzTKuvd8v2zkvTxrVd+zAiRPynLLhUWD9erhcQF1dFerrYcXBP3AA+Ogj8zq7diEUkvaA2lpIGUIh7N8vm9bplPtUc+fmmtc5fhyhkPTmD4Vk/923T4px5Eh8nHiXCxiW7YO79lPL1qG/iIZCpvO12Ui1tXKi5NSpWBj6U6fkZg8fbqH6pik/gFj88yNHZGUCWL8e2LvXTH/qFBzVn2LsWDlBk5cXu1WsmZwhQ2JzTk6nrADVbpB1/ZfanNiY0N4u+789AL/9zVyPAaQqQQV5DQRwLvSN7t4IYEM3to1d1t3dob6+HkOHDk3YP3To0E71PIBuPRs0NjbiZz/7WdxL+rnkPZDo17pbKRlzy/HE4jy7nVEZUkvb1F/6ZHjU6Y7b4ibKU7qz22RQ/9sM68k8Ya1r6ZsaK+zPIfYYYvYyKyNyqvjqDQ1w+H2xLRS0LqPH4E7mlRxb0Nu2toVZLpW9Ok8ZgdXjTNTptsQwDFjjtnoUUQcdDaflRK5at+XIETiO/0X+vWuXVIpHjkh9q9IcPy4zq662/vZ4ZLx57N0LbN8ujfKAnEhX55hrjKC2NrbujFpUY+dOc2ENUw/u2AHs2AG/Hzh2DDLt+vVAQwN27DD16a5dwK5dqK42be6GIRWrYahHJ6sd1Nd6AICGBoRC8lnn1CnpUe50xkQyDFmhoZCm8kyFq+Zy1Sdcyp8DgPWloGob1Zj6ujHqC7JAQH7IqOLf6+us2PuD6iuqm9rjuas+kiyOuooxnxBr3O6urvq0HqRf9WWzX7uNINxGEDnOsHV7qC8lOjpi8f9VvPTO4v7b4+6rcHZuZzS+EszKTTY50FWou9Nbd6cY+dMLFff2lVdewfXXX4/XX38ds2fPxqFDh1BWVpaQXsW9nT9/Pt566y18+OGHWLBgAS666CLrk/3t27dj3rx5+NnPfoa7774b69atw9y5c7F169a4mYvzjd1onuyYnWShQgD0iBesPYyLPV8ACQZWI8lok8ygqHvA6x7LoVAozvNceXkrw7zap8qbkZFheSXrEwO617PdIKpPAqj8k4VW0b3F29raLCOpy+WCx+NJ6oEMwDLEJpvIABK/JlB5KS9rPRSKCm+ie7XrseD1BVU7OjoSwpUkCyujL16amZkZF/akK/HiU8VsTxaLXBmsVRvrdaX6ih5uRuWpFvtUM6H6ArK64dsul11GPbyLKnuyOOb2vpEs9rtuSNcnCuyTUfo1+oMnenfH0K+Kx+NBVVVVwpcBXcF+bwDodDbcnjbZ+WdLn2w/+er0e92tv8za3yR17EZ17X/5Yu6WHgu6sd3QFhg1n/TVe255ufnSpxnlBw2SP0996YDLlY8iozlm0LWM8kXSMJ+dbQXvjHpy4Cgulnk3NclzlJuvffUtm6dbQ4NpSHaGYgZhQJahsdH0djfTWxZR7bfpnR4KycWg1FuJkae9PGsve21tsfcn9WLT1gazrtyWoV158umLhqosrbkMy1DhiF2wri7WntXV8sVbd60z3eDzr7gC2dnyc3g0hIC8PESdbjg8kAJpkxvW22NIqyP1LbnyMG9sjMVoUS9f+oqqKr6JKWZTUwCff55rlUsZkxEKyVmNtjbU+xErh9eLZsh3SjQ3A8ePw3kdAJyC3z9K9pFhw9DQYL68m2/ghiF/t7YCyJB9srExFqEEfj8imdrkRn29NQnS3h7z0lafuuflyagucS+V5guvJ2+06lbmwcSvItWiYB0dsSpVIWAMI4mtSmWk2kO/5wA4lGBXyOo/dQpx3oWO5jOWEcrjccu+bhhWvHMVNx+AbCM1e4DYZM64QlOotrbEVfDs2D3SNZkBnFNM9IGqu5ctW4bnn3++0+vt3LkTQHLdfDY9n+y8VOf4fD5861vfwqRJk7B06dJOr9HVvNOdfq+7Ffr9aHqBd5bU6XTI0cPptKvDhLU2HIgmPhsku6i6QBdEtUZF3UBvLWDRhQuo/9U5yeJcKIuo7nXtdMKZl2MlU9nbw3cYRuIwZYlm/mEY7pg3s/mcYzkWmxfWHoPkl0Q6avVP/WHgyy9jsisDqh6vRn8QUOeoL/yUbI2Nsdl65Meu5XRKna3iujidMWtqQ4PUuaaOcblgKlHAmCD1FZqbpTXd70dtrXl50xDX3Gz+qWajDSNuoh9+P/yw1Ip8PvLEP/s4ne6YgVyrU+tZxykr0ppkthl4rT/M8+wqR01eqDB2qstYkxraJZJ141RfeHS1y+r6PQpH7B7V791kfVnPVOsv0ps9dq/aL2Mvg97VUpXBem7R7zHrt/ucjOjU3emvuweEEb034t6uXLkSt9xyC5599lkAwLPPPostW7Zg5cqV+M///M/zU7A04nw/NPaG4fGryG83kva2YdQe87u75/ZEW53rNXproc2B/tLSm3R3DO0J1NcNvUVxcTEyMzMTZpVPnz6dMIut8Hq9SdM7nU4MGTKk12S9UKHu7mW68OJOkpDCyNu181Ls72wS5qvSyUKYZGAzEHU3ACxcuBD33Xdfp2nKy8vxySef4NSpUwnHvvzyy071PCC90UpKSqz9yZ4NWltbceuttyIvLw/r1q2LC+nm9Xq7nfdAIS11dyorIOkXpFSLyfSbFXS9/9PT6r47WFXXl0KQpFB3p7/uTntt0ltxb7dv344nnngiIY16AEhGe3s72jVPrJaWlm6WJjW6B7r6X/futccW1z1dldcygDgvcD3euEKlVR7CilQzNiqNMswqT2flhau8wNXipLpntH4dPfa2kj+ZJ3pHRwfC4bBVZhU/XC3wqHtOp/JEV/WWzBPd7hFv90Rvb2+PW0hS/a1Cg6hzVAxyPca7Cqmi6udsnugqDExbWxvC4bAVHkT3dFb9TZVXDzfidDrR0dFhhW4Jh8PW4qdAzOsagOXd39bWZtVtJBKJq08VT72zWPJKdmXgV/Wux7XXy6Uv0KruHz30i73fq/pS5dM919U5KnSKCqWjQrbYwx/pnuh6vdm/rlCy28O+6Iui6jHe1d96PPhUnvnJvijpKXw+X1wMs1Txy85lDE0H3G43pk6disrKStx9993W/srKStx5551Jz5k2bRp+97vfxe17//33cdVVVzEeeg+TDrrb19qaGOYEiHmcKtcf9dvjAYSQ344GAtIT3LwHHYEAEAxK9yLTA6k14oMvJyz3ud3w+30IBqXHkc8XjXlDBQII+nxWdk4n4Ay0xoJPd3QAra0QwgfDAHyBgDyvtRXRHB8cra1SnmBQbtFo7DtV5ZWi4nCoc/1+BIM+ZGQAPo8flmBut/y7vR0IBuH3++B2A05VNp8PPjjhVLKbcgeDgM+U1w9ZTp/PBwSDiOppfFKEUEiKFggAPl8YgYAb7e3qknKBS5XG7wd8viD8fgPBoPrtAxwOBAIyFq4vFIj/XlmVX7VfJCKPmUL4/W74fIDh9wNCyHo0wrE2dLuBjIxY25v1YfWPaFTWl8Mh00ci8WE72tul8CrP1lYE3T7T2SqAjo4OyyFPeYj5AgHZv4JBtEXN8V0IwDAQifgghFnuSATBoA9AAJGIDz5TNsPwIRo1+3U4jNZW2V+CQcCXIWWIRMw+5AOMQACBTB/a2+Vvp3mdoOFTTQunI4pg0GEVX+9CwaCZl98PP3zWp+M+Xxi+kPSuEwLwRX1ARwf8fg8CAVmtSi4VN13F6m1vl3VitY3K2OWS9R2NQj1eOsx2jiun6u9SENkGTieChlvedzBjm5t9OxAAfDD7ssMhhfP5EAy65TGnP3ZvRaPyb3W/qQZU6N/EKxkCAcsVrtXsPxe67gbkJHixCj3VCdOmTUNLSws+/vhjXHPNNQCAjz76CC0tLZg+fXrSc0aNGgWv14vKykpceeWVAGRdbtmyBf/4j/9opfP5fPjmN7+JrKwsvPvuuwnGh3PJeyCQNro7I0OOD9FoTM+lMKKrRQWdTnOBYqfTirOc6jS50LbmJaveHXRvVXWy02mNNVa4GCTGUnYjHO/lqj75SeYCrlDxJvSLKd1m995VrsaGIXWY2peZiXDUidbWmIhqGFOO2kDskUM9CpjDOzIzAZ87CDid8PvNsdEHGCEfWgNOTS+HEXW6LRXo8wFGayvCOT5rSHarcVPFAFHPLUo5KB3sdMZCYAWDskxKYDUmBwII+3yyXtWzV2srWg0ffM5WmUZ9Deh0yutnZsaeEdTK4YEAAoZP6jyzLwWDPkQipl6Oyue1aFTqcJ/5rh0K+aTubm2V8rW2Ihw2n39MnRKEeY6p0/yGz1JrPl8QYadhie7zyWc/f0DTp07pph4IeKTuNhsl7PNZ7aAqVzns+3yyr7W2xvRw1FxnXoV70ZvAfh+o/1WXth+XZY+/DdRtqq6rHp3CYZm/6ncORGMPgvrztRLMftNkZkrhtfvM53PEnapC0thlTFbOSEReTu9OOTnmuGD3RI9G4fO74ffLzwSouy8w3S3SnC+++EIAEB9++GHc/hdeeEGMGzcu6TmXXHKJeOGFF+L2ffjhhwKAOHnypBBCCJfLJd5+++24NG+//bZwu90pZVm6dKkAwI0bN279blu6dGmPjaHpwurVq4XL5RKrVq0Shw4dEosXLxa5ubmiurpaCCHEkiVLxIMPPmil//TTT0VOTo544oknxKFDh8SqVauEy+USv/3tb/uqCAMW6m5u3LhxO/t2Ieru7nDrrbeKyy67TGzfvl1s375dTJ48WcyZMycuzfjx48XatWut38uXLxcFBQVi7dq1Yv/+/eK73/2uKCkpET6fTwghhM/nE9dee62YPHmyOH78uKirq7M2wzC6lfdAg7qbGzdu3M6+UXd3Trrr7rT3RFf0Rtzb7l7z2WefxZNPPmn9bm5uxsiRI1FTU4OCgoKzFyLN8Pl8GDFiBD7//HPk5+f3tTg9DsuXvgzksgGdly8ajeKzzz5DWVmZ9aUB0HnccKD74106MG/ePDQ2NuKnP/0p6urqUFFRgffeew8jR44EANTV1aGmpsZKP2rUKLz33nt44okn8PLLL6O0tBT/9E//ZH1uTHoe6u7zz4U8Pg4EBnL5BnLZAOru3uDtt9/G448/bnk633HHHXjppZfi0hw9ejTu6+Cnn34abW1tWLBgAZqamnDttdfi/fffx6BBgwAAu3fvxkcffQQAGDt2bNy1qqqqUF5e3uW8ByrU3eefC3l8HAgM5PIN5LIB1N29Qbrr7rQ3ovdW3NtUaTqLlZPqs42CgoIBOaAo8vPzWb40ZiCXbyCXDUhdvsLCwi5f41zG0HRiwYIFWLBgQdJjv/nNbxL2zZgxA3v27OllqQh1d99zoY6PA4WBXL6BXDaAursnKSoqwltvvdVpGmELm5eRkYFly5Zh2bJlSdPPnDmzS6H2upL3QIO6u++5UMfHgcJALt9ALhtA3d2TpLvuTgzGnGbocW91KisrU8a1mTZtWkJ6e9zbVGkGcpw7QsiFx7mMoYR8Vai7CSHk3KHuJn0BdTchhJw71N0DhG4Ff+mn9Ebc2w8//FBkZmaK5cuXi8OHD4vly5cLp9MpduzY0WW5WlpaBADR0tLSc4XtR7B86c1ALt9ALpsQPV++s42hhPQG1N19A8uX3gzk8g3ksglB3U0GBtTdfQPLl94M5PIN5LIJQd1NEhkQRnQhhHj55ZfFyJEjhdvtFlOmTBFbtmyxjj300ENixowZcek3b94srrzySuF2u0V5ebl49dVXE6753//932L8+PHC5XKJCRMmiDVr1nRLplAoJJYuXSpCodA5lam/w/KlNwO5fAO5bEL0Tvk6G0MJ6S2ou88/LF96M5DLN5DLJgR1Nxk4UHeff1i+9GYgl28gl00I6m6SSIYQXQgcQwghhBBCCCGEEEIIIYRcgKR9THRCCCGEEEIIIYQQQgghpLegEZ0QQgghhBBCCCGEEEIISQGN6IQQQgghhBBCCCGEEEJICmhEJ4QQQgghhBBCCCGEEEJSQCN6L/HKK69g1KhR8Hg8mDp1Kj744IO+Fumc+PnPf46rr74agwYNwtChQ3HXXXfh6NGjcWkefvhhZGRkxG3XXXddH0ncPZYtW5Ygu9frtY4LIbBs2TKUlpYiOzsbM2fOxMGDB/tQ4u5RXl6eUL6MjAz86Ec/ApB+bffnP/8Zt99+O0pLS5GRkYH169fHHe9Ke7W3t+Oxxx5DcXExcnNzcccdd6C2tvY8liI5nZUtEongmWeeweTJk5Gbm4vS0lL81V/9FU6ePBl3jZkzZya053333XeeS0JI+kLd3X/Hfx3q7vRqO+pu6m5CehPq7v47/utQd6dX21F3U3eT5NCI3gu88847WLx4MZ577jns3bsXN954I2bPno2ampq+Fq3bbNmyBT/60Y+wY8cOVFZWwjAMzJo1C4FAIC7drbfeirq6Omt77733+kji7nPppZfGyb5//37r2IsvvogVK1bgpZdews6dO+H1enHLLbegtbW1DyXuOjt37owrW2VlJQDg3nvvtdKkU9sFAgFcfvnleOmll5Ie70p7LV68GOvWrcPq1auxdetW+P1+zJkzBx0dHeerGEnprGzBYBB79uzBT37yE+zZswdr167FX/7yF9xxxx0JaefPnx/Xnq+//vr5EJ+QtIe6u3+P/3aou9On7ai7qbsJ6S2ou/v3+G+Hujt92o66m7qbpECQHueaa64Rjz76aNy+CRMmiCVLlvSRRD3H6dOnBQCxZcsWa99DDz0k7rzzzr4T6iuwdOlScfnllyc9Fo1GhdfrFcuXL7f2hUIhUVBQIF577bXzJGHPsmjRIjFmzBgRjUaFEOnddgDEunXrrN9daa/m5mbhcrnE6tWrrTRffPGFcDgcYsOGDedN9rNhL1syPv74YwFAfPbZZ9a+GTNmiEWLFvWucIQMUKi70wfq7vRtO+pu6m5CehLq7vSBujt92466m7qbxKAneg8TDoexe/duzJo1K27/rFmzsG3btj6SqudoaWkBABQVFcXt37x5M4YOHYpx48Zh/vz5OH36dF+Id04cO3YMpaWlGDVqFO677z58+umnAICqqirU19fHtWVWVhZmzJiRlm0ZDofx1ltv4W/+5m+QkZFh7U/nttPpSnvt3r0bkUgkLk1paSkqKirSrk1bWlqQkZGBwsLCuP1vv/02iouLcemll+Jv//Zv08Z7g5C+hLo7/cZ/6u70bTsd6m4JdTch3Ye6O/3Gf+ru9G07HepuCXX3hYmzrwUYaDQ0NKCjowPDhg2L2z9s2DDU19f3kVQ9gxACTz75JG644QZUVFRY+2fPno17770XI0eORFVVFX7yk5/g61//Onbv3o2srKw+lPjsXHvttfi3f/s3jBs3DqdOncI//MM/YPr06Th48KDVXsna8rPPPusLcb8S69evR3NzMx5++GFrXzq3nZ2utFd9fT3cbjcGDx6ckCad7s9QKIQlS5bg/vvvR35+vrX/gQcewKhRo+D1enHgwAE8++yz+L//+z/rc0JCSHKou9Nr/KfuTt+2s0PdTd1NyLlC3Z1e4z91d/q2nR3qburuCxka0XsJfcYRkIrQvi/dWLhwIT755BNs3bo1bv+8efOsvysqKnDVVVdh5MiR+MMf/oB77rnnfIvZLWbPnm39PXnyZEybNg1jxozBm2++aS30MVDactWqVZg9ezZKS0utfencdqk4l/ZKpzaNRCK47777EI1G8corr8Qdmz9/vvV3RUUFLrnkElx11VXYs2cPpkyZcr5FJSTtGCjjvQ51tyRd25K6OzXp1KbU3YT0HgNlvNeh7paka1tSd6cmndqUupskg+Fcepji4mJkZmYmzK6dPn06YaYunXjsscfw7rvvYtOmTRg+fHinaUtKSjBy5EgcO3bsPEnXc+Tm5mLy5Mk4duyYtVr4QGjLzz77DBs3bsQPfvCDTtOlc9t1pb28Xi/C4TCamppSpunPRCIRzJ07F1VVVaisrIybDU/GlClT4HK50rI9CTmfUHen9/hP3Z2+bUfdnQh1NyFdg7o7vcd/6u70bTvq7kSouy8caETvYdxuN6ZOnZrwGUdlZSWmT5/eR1KdO0IILFy4EGvXrsWf/vQnjBo16qznNDY24vPPP0dJScl5kLBnaW9vx+HDh1FSUmJ9nqO3ZTgcxpYtW9KuLd944w0MHToU3/rWtzpNl85t15X2mjp1KlwuV1yauro6HDhwoN+3qVLkx44dw8aNGzFkyJCznnPw4EFEIpG0bE9CzifU3ek9/lN3p2/bUXcnQt1NSNeg7k7v8Z+6O33bjro7EeruC4jzvZLphcDq1auFy+USq1atEocOHRKLFy8Wubm5orq6uq9F6zY//OEPRUFBgdi8ebOoq6uztmAwKIQQorW1VTz11FNi27ZtoqqqSmzatElMmzZNXHzxxcLn8/Wx9GfnqaeeEps3bxaffvqp2LFjh5gzZ44YNGiQ1VbLly8XBQUFYu3atWL//v3iu9/9rigpKUmLsik6OjpEWVmZeOaZZ+L2p2Pbtba2ir1794q9e/cKAGLFihVi79691krZXWmvRx99VAwfPlxs3LhR7NmzR3z9618Xl19+uTAMo6+KJYTovGyRSETccccdYvjw4WLfvn1x92J7e7sQQojjx4+L559/XuzcuVNUVVWJP/zhD2LChAniyiuv7POyEZIOUHf37/Ffh7o7vdqOupu6m5Degrq7f4//OtTd6dV21N3U3SQ5NKL3Ei+//LIYOXKkcLvdYsqUKWLLli19LdI5ASDp9sYbbwghhAgGg2LWrFnioosuEi6XS5SVlYmHHnpI1NTU9K3gXWTevHmipKREuFwuUVpaKu655x5x8OBB63g0GhVLly4VXq9XZGVliZtuukns37+/DyXuPn/84x8FAHH06NG4/enYdps2bUraHx966CEhRNfaq62tTSxcuFAUFRWJ7OxsMWfOnH5R5s7KVlVVlfJe3LRpkxBCiJqaGnHTTTeJoqIi4Xa7xZgxY8Tjjz8uGhsb+7ZghKQR1N19PxZ2Beru9Go76m7qbkJ6E+ruvh8LuwJ1d3q1HXU3dTdJToYQQpyjEzshhBBCCCGEEEIIIYQQMqBhTHRCCCGEEEIIIYQQQgghJAU0ohNCCCGEEEIIIYQQQgghKaARnRBCCCGEEEIIIYQQQghJAY3ohBBCCCGEEEIIIYQQQkgKaEQnhBBCCCGEEEIIIYQQQlJAIzohhBBCCCGEEEIIIYQQkgIa0QkhhBBCCCGEEEIIIYSQFNCITgghhBBCCCGEEEIIIYSkgEZ0QmzMnDkTixcvTpvr9jTV1dXIyMjAvn37+loUQgghpEtQd1N3E0IISS+ou6m7CUk3nH0tACEXCmvXroXL5Tpv+W3evBlf+9rX0NTUhMLCwvOWLyGEEDJQoO4mhBBC0gvqbkJIb0EjOiG9TCQSgcvlQlFRUV+LQgghhJAuQN1NCCGEpBfU3YSQ3obhXAhJQjQaxdNPP42ioiJ4vV4sW7bMOlZTU4M777wTeXl5yM/Px9y5c3Hq1Cnr+LJly3DFFVfgX//1XzF69GhkZWVBCBH3WdnmzZuRkZGRsD388MPWdV599VWMGTMGbrcb48ePx7//+7/HyZiRkYF/+Zd/wd13342cnBxccsklePfddwHIT8O+9rWvAQAGDx4cd+0NGzbghhtuQGFhIYYMGYI5c+bgxIkTPV+JhBBCyHmEupsQQghJL6i7CSHpBI3ohCThzTffRG5uLj766CO8+OKL+OlPf4rKykoIIXDXXXfhzJkz2LJlCyorK3HixAnMmzcv7vzjCRzdfgAABMdJREFUx4/jv/7rv7BmzZqkMc6mT5+Ouro6a/vTn/4Ej8eDm266CQCwbt06LFq0CE899RQOHDiARx55BH/913+NTZs2xV3n+eefx9y5c/HJJ5/gtttuwwMPPIAzZ85gxIgRWLNmDQDg6NGjqKurw69+9SsAQCAQwJNPPomdO3fif//3f+FwOHD33XcjGo32Qk0SQggh5wfqbkIIISS9oO4mhKQVghASx4wZM8QNN9wQt+/qq68WzzzzjHj//fdFZmamqKmpsY4dPHhQABAff/yxEEKIpUuXCpfLJU6fPp1w3UWLFiXk19DQIMaMGSMWLFhg7Zs+fbqYP39+XLp7771X3HbbbdZvAOLHP/6x9dvv94uMjAzxP//zP0IIITZt2iQAiKampk7Le/r0aQFA7N+/XwghRFVVlQAg9u7d2+l5hBBCSH+Bupu6mxBCSHpB3U3dTUi6QU90QpJw2WWXxf0uKSnB6dOncfjwYYwYMQIjRoywjk2aNAmFhYU4fPiwtW/kyJG46KKLzppPJBLBt7/9bZSVlVkz1gBw+PBhXH/99XFpr7/++rg87HLm5uZi0KBBOH36dKd5njhxAvfffz9Gjx6N/Px8jBo1CoD8XI4QQghJV6i7CSGEkPSCupsQkk5wYVFCkmBfzTsjIwPRaBRCCGRkZCSkt+/Pzc3tUj4//OEPUVNTg507d8LpjL8d7fkkyzuVnJ1x++23Y8SIEfj1r3+N0tJSRKNRVFRUIBwOd0lmQgghpD9C3U0IIYSkF9TdhJB0gp7ohHSDSZMmoaamBp9//rm179ChQ2hpacHEiRO7da0VK1bgnXfewbvvvoshQ4bEHZs4cSK2bt0at2/btm3dysPtdgMAOjo6rH2NjY04fPgwfvzjH+Mb3/gGJk6ciKampm7JTQghhKQT1N2EEEJIekHdTQjpj9ATnZBucPPNN+Oyyy7DAw88gJUrV8IwDCxYsAAzZszAVVdd1eXrbNy4EU8//TRefvllFBcXo76+HgCQnZ2NgoIC/N3f/R3mzp2LKVOm4Bvf+AZ+97vfYe3atdi4cWOX8xg5ciQyMjLw+9//Hrfddhuys7MxePBgDBkyBP/8z/+MkpIS1NTUYMmSJd2uB0IIISRdoO4mhBBC0gvqbkJIf4Se6IR0g4yMDKxfvx6DBw/GTTfdhJtvvhmjR4/GO++8063rbN26FR0dHXj00UdRUlJibYsWLQIA3HXXXfjVr36FX/ziF7j00kvx+uuv44033sDMmTO7nMfFF1+M559/HkuWLMGwYcOwcOFCOBwOrF69Grt370ZFRQWeeOIJ/OIXv+iW7IQQQkg6Qd1NCCGEpBfU3YSQ/kiGEEL0tRCEEEIIIYQQQgghhBBCSH+EnuiEEEIIIYQQQgghhBBCSApoRCeEEEIIIYQQQgghhBBCUkAjOiGEEEIIIYQQQgghhBCSAhrRCSGEEEIIIYQQQgghhJAU0IhOCCGEEEIIIYQQQgghhKSARnRCCCGEEEIIIYQQQgghJAU0ohNCCCGEEEIIIYQQQgghKaARnRBCCCGEEEIIIYQQQghJAY3ohBBCCCGEEEIIIYQQQkgKaEQnhBBCCCGEEEIIIYQQQlJAIzohhBBCCCGEEEIIIYQQkoL/DxhrK7a3t1eDAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 23, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAksAAAGwCAYAAAC5ACFFAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABuT0lEQVR4nO3dd3wUdf7H8ddueg8hoQQCJBQhRHoREAgqIHblTiwICOp5oIJYTj0VBU/OhugZ20mT804OUc7z+AmoBBBQulQB6SUQQkjvu/P7Y5MlIRCS7GY3Ce/n4zGP3Z2Znflk1OTtd77z/ZoMwzAQERERkQsyu7sAERERkdpMYUlERESkAgpLIiIiIhVQWBIRERGpgMKSiIiISAUUlkREREQqoLAkIiIiUgFPdxdQ11mtVk6cOEFQUBAmk8nd5YiIiEglGIZBZmYmkZGRmM0Vtx0pLDnoxIkTREVFubsMERERqYajR4/SvHnzCvdRWHJQUFAQYLvYwcHBbq5GREREKiMjI4OoqCj73/GKKCw5qOTWW3BwsMKSiIhIHVOZLjTq4C0iIiJSAYUlERERkQpc9mHp6NGjxMfHExsbS6dOnVi4cKG7SxIREZFa5LLvs+Tp6cnMmTPp0qULycnJdOvWjRtuuIGAgAB3lyYi1WSxWCgsLHR3GSLiRl5eXnh4eDjlWJd9WGratClNmzYFoFGjRoSFhZGamqqwJFIHGYbByZMnSUtLc3cpIlILhIaG0qRJE4fHQazzYWnVqlW88cYbbNq0iaSkJL766ituu+22Mvu8//77vPHGGyQlJdGxY0dmzpxJ//79yx1r48aNWK1WjZskUkeVBKVGjRrh7++vgWJFLlOGYZCTk0NycjKAvVGkuup8WMrOzqZz587cf//9DB8+vNz2BQsWMGnSJN5//3369evHRx99xLBhw9i1axctWrSw73fmzBlGjRrFJ5984sryRcRJLBaLPSg1bNjQ3eWIiJv5+fkBkJycTKNGjRy6JWcyDMNwVmHuZjKZyrUs9e7dm27duvHBBx/Y13Xo0IHbbruN6dOnA5Cfn8/gwYN58MEHue+++yo8R35+Pvn5+fbPJYNapaena5wlETfKy8vj4MGDtGrVyv5LUkQub7m5uRw6dIjo6Gh8fX3LbMvIyCAkJKRSf7/r9dNwBQUFbNq0iSFDhpRZP2TIENauXQvYmurGjBnDNddcc8mgBDB9+nRCQkLsi27ZidQuuvUmIiWc9fugXoellJQULBYLjRs3LrO+cePGnDx5EoA1a9awYMECFi9eTJcuXejSpQvbt2+/6DGfffZZ0tPT7cvRo0dr9GcQERER96rzfZYq4/xkaRiGfd3VV1+N1Wqt9LF8fHzw8fFxan0iIiJSe9XrlqXw8HA8PDzsrUglkpOTy7U2iYhI3RAfH8+kSZMq3Gfu3LmEhoZW6biJiYmYTKY6MfREq1atmDlzprvLuCiTycTixYvdXYbT1Ouw5O3tTffu3Vm+fHmZ9cuXL6dv374OHTshIYHY2Fh69uzp0HEuJr/IwvG0XE6m59XI8UWk9hgzZgwmk6nc8ttvv9m3l35wJTk5mT/84Q+0aNECHx8fmjRpwtChQ1m3bp39D35Fy9y5cwFb59cGDRoQFhZGbm5uhTW2atWqwmP27duX8PBwXnnllQt+f/r06YSHh1NQUODw9fryyy+ZNm1amdpqc3CQuq/O34bLysqy/0IBOHjwIFu3biUsLIwWLVowefJk7rvvPnr06EGfPn34+OOPOXLkCA8//LBD550wYQITJkyw96Z3tlk/HuT1b/dwR7dmzLizi9OPLyK1y/XXX8+cOXPKrIuIiLjgvsOHD6ewsJB58+YRExPDqVOn+P7770lNTWXw4MEkJSXZ9504cSIZGRlljl3yO2vRokXExcVhGAZffvkl995770Xr27BhAxaLBYC1a9cyfPhw9uzZY3+KyNvbm6lTpzJ37lz+/Oc/l+v+MGfOHO677z68vb2rcFUuLCwszOFj1BWFhYV4eXm5u4zLXp1vWdq4cSNdu3ala9euAEyePJmuXbvy4osvAjBixAhmzpzJ1KlT6dKlC6tWrWLJkiW0bNnSnWVfUoQvNOEM1vQT7i5FpM4yDIOcgiK3LFUdlaWkhaj0cqFxYdLS0vjxxx957bXXGDRoEC1btqRXr148++yz3HjjjXh7e5c5hp+fX7ljlwytMGvWLEaOHMnIkSOZNWtWhfVFRETYv18SVho1alRm3bhx49i/fz+rVq0q893Vq1ezb98+xo0bd8FjDx8+nEcffdT+edKkSZhMJnbu3AlAUVERQUFBLF26FCh7Gy4+Pp7Dhw/z+OOP21u5Slu6dCkdOnQgMDCQ66+/vkyQrIxFixbRsWNHfHx8aNWqFW+99ZZ929/+9jeuvPJK++fFixdjMplISEiwrxs6dCjPPvus/fN///tfunfvjq+vLzExMbz88ssUFRXZt5tMJj788ENuvfVWAgICLtpSB5CZmck999xDYGAgkZGR/O1vfyuz/ciRI9x6660EBgYSHBzMnXfeyalTp+zbz2+xBNu1j4+Pt3+Oj4/nscce4+mnnyYsLIwmTZrw0ksvlfnOvn37GDBgAL6+vsTGxpa7m1Mf1PmWpfj4+Ev+Uho/fjzjx493UUXO0eX4v/jJ902+T7kWuMHd5YjUSbmFFmJfXOqWc++aOhR/b+f/ig0MDCQwMJDFixdz1VVXVfuBk/3797Nu3Tq+/PJLDMNg0qRJHDhwgJiYmGrXduWVV9KzZ0/mzJnDwIED7etnz55Nr169iIuLu+D34uPj+fjjj+2fV65cSXh4OCtXrqRjx45s2LCBvLw8+vXrV+67X375JZ07d+ahhx7iwQcfLLMtJyeHN998k/nz52M2mxk5ciRPPvkkn332WaV+nk2bNnHnnXfy0ksvMWLECNauXcv48eNp2LAhY8aMIT4+nokTJ5KSkmKvt+R1woQJFBUVsXbtWh5//HHAFtxGjhzJu+++S//+/dm/fz8PPfQQAFOmTLGfd8qUKUyfPp233367woEU33jjDZ577jleeuklli5dyuOPP0779u0ZPHgwhmFw2223ERAQwMqVKykqKmL8+PGMGDGCxMTESv38JebNm8fkyZP5+eefWbduHWPGjKFfv34MHjwYq9XKHXfcQXh4OD/99BMZGRmX7E9WF9X5lqX6yivY1vzuW5jm3kJExCW++eYbexAKDAzk97///QX38/T0ZO7cucybN4/Q0FD69evHc889x7Zt26p0vtmzZzNs2DB7n6Xrr7+e2bNnO/xzjB07li+++IKsrCzA1lVi4cKFF21VAltY2rlzJykpKZw9e5adO3cyadIk+x/1xMREunfvTmBgYLnvhoWF4eHhQVBQkL2Vq0RhYSEffvghPXr0oFu3bjzyyCN8//33lf5ZZsyYwbXXXssLL7xAu3btGDNmDI888ghvvPEGAHFxcTRs2JCVK1fa63ziiSfsn0tC3tVXXw3AX/7yF5555hlGjx5NTEwMgwcPZtq0aXz00UdlznvPPfcwduxYYmJiKrwL0q9fP5555hnatWvHo48+yu9+9zvefvttAL777ju2bdvGP//5T7p3707v3r2ZP38+K1euZMOGDZW+BgCdOnViypQptG3bllGjRtGjRw/7dfzuu+/YvXs38+fPp0uXLgwYMIBXX321SsevC+p8y5K7JCQkkJCQYL+H72x+IbawFGhJr5Hji1wO/Lw82DV1qNvOXRWDBg0qM9NARZN5Dx8+nBtvvJHVq1ezbt06vv32W15//XU++eQTxowZc8lzWSwW5s2bxzvvvGNfN3LkSB5//HFefvllh6aFuPvuu5k8eTILFixg3LhxLFiwAMMwuOuuuy76ndKhw8vLi86dO3PLLbfw7rvvArYQUrqlqrL8/f1p3bq1/XPTpk3tc4VVxu7du7n11lvLrOvXrx8zZ87EYrHg4eHBgAEDSExM5Nprr2Xnzp08/PDDvPnmm+zevZvExES6detmD3mbNm1iw4YN/OUvf7Efz2KxkJeXR05ODv7+/gD06NGjUvX16dOn3OeSju67d+8mKiqqzMDJsbGxhIaGsnv37io9nNSpU6cyn0tfx927d9OiRQuaN29+0brqA4WlaqrpDt6BYbahDUKNDPIKLfhW8ReviNj6f9TErbCaEBAQQJs2bSq9v6+vL4MHD2bw4MG8+OKLPPDAA0yZMqVSYWnp0qUcP36cESNGlFlvsVhYtmwZw4YNq2r5diEhIfzud79jzpw5jBs3jjlz5vC73/2uwukkTCaTPXR4e3sTHx9PXFwcFouF7du3s3bt2mrd2jm/Y7TJZKpSX7LSY/KVXldayS3E1atX07lzZ0JDQxkwYAArV64kMTGxTP8fq9XKyy+/zB133FHuXKWn4qgoKF9KSb0Xqv389WazudzPU1hYWO47F7qOJeMTXuh61sdR9HUbrpbyD2kEQANTJmeyHX/UVkTqt9jYWLKzsyu176xZs7jrrrvYunVrmeXee++9ZEfvyhg3bhxr1qzhm2++Yc2aNRXegisRHx9PYmKiPWCYTCb69+/Pm2++SW5u7gX7K5Xw9vaukVb+2NhYfvzxxzLr1q5dS7t27eytbyW3EL/44gt7MBo4cCDfffcda9euLdMi1q1bN/bs2UObNm3KLWZz1f8c//TTT+U+t2/f3l77kSNHyswysWvXLtLT0+nQoQNg67R/fof3rVu3VqmGkvOcOHHuYaR169ZV6Rh1gcJSLWUKCAcg2JTL2fQsN1cjIrXFmTNnuOaaa/jHP/7Btm3bOHjwIAsXLuT1118vd8voQk6fPs1///tfRo8eTVxcXJll9OjRfP3115w+fdqhGgcOHEibNm0YNWoUbdq0YcCAAZf8Tkno2L59O/3797ev++yzz+jWrVuFLVOtWrVi1apVHD9+nJSUFIdqL+2JJ57g+++/Z9q0aezdu5d58+bx3nvv8eSTT9r3KbmF+Nlnn9nDUnx8PIsXLyY3N9feXwngxRdf5NNPP+Wll15i586d7N69mwULFvD8889Xq741a9bw+uuvs3fvXhISEli4cCETJ04E4LrrrqNTp07ce++9bN68mfXr1zNq1CgGDhxov813zTXXsHHjRj799FP27dvHlClT2LFjR5VquO6667jiiisYNWoUv/zyC6tXr+bPf/5ztX6e2kxhqbbyDcFS/I8n4+ypS+wsIpeLwMBAevfuzdtvv82AAQOIi4vjhRde4MEHH+S999675Pc//fRTAgICuPbaa8ttGzRoEEFBQcyfP9/hOseOHcvZs2cZO3ZspfaPi4sjPDyczp0724PRwIEDsVgsl+yvNHXqVA4dOkTr1q0vOjZVdXTr1o1///vffP7558TFxfHiiy8yderUMrc6TSaTvb6SkNepUydCQkLo2rVrmZA3dOhQvvnmG5YvX07Pnj256qqrmDFjRrWHsnniiSfYtGkTXbt2Zdq0abz11lsMHTrUXtfixYtp0KABAwYM4LrrriMmJoYFCxaUqeeFF17g6aefpmfPnmRmZjJq1Kgq1WA2m/nqq6/Iz8+nV69ePPDAA2X6ZNUXJqOqg4EIULaD9969e0lPT6/w/3yqI2NqC4Kt6XwX/xXXxV/j1GOL1Dd5eXkcPHiQ6OjoMv0/ROTyVdHvhZI+x5X5+62WpWqaMGECu3btqvIjmFWR42nrOJ6f7liTuIiIiFSfwlItlu/VAIDCLOfdgxcREZGqUViqxYp8bWHJUFgSERFxG4WlWszqZ5t/yZSb6uZKRERELl8KS7WYuXj4AM98hSURERF3UViqxTyDbGHJpyDNvYWIiIhcxhSWqikhIYHY2Ngqza9TVb7BtlG8/TU/nIiIiNsoLFWTK4YO8G9gC0vB1nQKiqw1dh4RERG5OIWlWiwg1DaZbgNTFmdzND+ciAjYphO51MS6c+fOJTQ01CX1VMZLL71Ely5d3F3GJR06dAiTyVTlOeJcJTExEZPJRFpamkvPq7BUi5kDGgIQRiZnshSWROqrMWPGYDKZyi2//fabffttt91m3z85OZk//OEPtGjRAh8fH5o0acLQoUNZt26d/Y9JRcvcuXMByM3NpUGDBoSFhZGbm1thja1atarwmH379iU8PJxXXnnlgt+fPn064eHhFBQ4/rvsyy+/ZNq0aWVqmzlzpsPHrY7aFsqkZni6uwCpgL8tLPmb8knPSIdI506nIiK1x/XXX8+cOXPKrLvYPGfDhw+nsLCQefPmERMTw6lTp/j+++9JTU1l8ODBZWaSnzhxIhkZGWWOHRJimx1g0aJFxMXFYRgGX375Jffee+9F69uwYQMWiwWAtWvXMnz4cPbs2WOfJsLb25upU6cyd+5c/vznP2Mymcp8f86cOdx33314e3tX4apcWFhYmMPHuNwZhoHFYsHTUzGgMtSyVJv5BFFUnGczzya7uRgRqUklLUSlFw8Pj3L7paWl8eOPP/Laa68xaNAgWrZsSa9evXj22We58cYb8fb2LnMMPz+/csf28/MDYNasWYwcOZKRI0cya9asCuuLiIiwf78krDRq1KjMunHjxrF//35WrVpV5rurV69m3759jBs37oLHHj58OI8++qj986RJkzCZTOzcuROAoqIigoKCWLp0KVD2Nlx8fDyHDx/m8ccft7dylbZ06VI6dOhAYGAg119/fZkgabVamTp1Ks2bN8fHx4cuXbrw7bff2rdf6JbP1q1bMZlMHDp0iMTERO6//37S09Pt537ppZcqvI6VPXdVr4lhGLz++uvExMTg5+dH586d+eKLL8r9LEuXLqVHjx74+PiwevXqi9b366+/0rdvX3x9fenYsSOJiYlltq9cuZJevXrh4+ND06ZNeeaZZygqKrJvv1BrX5cuXcpcH5PJxCeffMLtt9+Ov78/bdu25euvvy7znSVLltCuXTv8/PwYNGgQhw4dqvC61hSFpdrMZCLLw/Z/gHlpCksiVWYYUJDtnqWG5igPDAwkMDCQxYsXk5+fX+3j7N+/n3Xr1nHnnXdy5513snbtWg4cOOBQbVdeeSU9e/Ys10I2e/ZsevXqRVxc3AW/Fx8fX+aP8cqVKwkPD2flypWArVUrLy+Pfv36lfvul19+SfPmzZk6dSpJSUllwlBOTg5vvvkm8+fPZ9WqVRw5coQnn3zSvv2dd97hrbfe4s0332Tbtm0MHTqUW265hX379lXq5+3bty8zZ84kODjYfu7Sx6/Ipc5d1Wvy/PPPM2fOHD744AN27tzJ448/zsiRI+37l3j66aeZPn06u3fvplOnThet76mnnuKJJ55gy5Yt9O3bl1tuuYUzZ84AcPz4cW644QZ69uzJL7/8wgcffMCsWbMuegu2Ii+//DJ33nkn27Zt44YbbuDee+8lNdU2tuDRo0e54447uOGGG9i6dSsPPPAAzzzzTJXP4Qxqf6umhIQEEhIS7M3SNSXPKxQsZyjI1GS6IlVWmAOvRrrn3M+dAO+ASu/+zTffEBgYaP88bNgwFi5cWG4/T09P5s6dy4MPPsiHH35It27dGDhwIHfddVeFf/zON3v2bIYNG0aDBrZpla6//npmz55drT94pY0dO5Ynn3yS9957j8DAQLKysli4cCEzZsy46Hfi4+OZOHEiKSkpeHh4sHPnTqZMmUJiYiLjx48nMTGR7t27l7k+JcLCwvDw8CAoKIgmTZqU2VZYWMiHH35I69atAXjkkUeYOnWqffubb77Jn/70J+666y4AXnvtNVasWMHMmTNJSEi45M/q7e1NSEgIJpOp3Lkv5VLnrso1yc7OZsaMGfzwww/06dMHgJiYGH788Uc++ugjBg4caD/v1KlTGTx48CXre+SRRxg+fDgAH3zwAd9++y2zZs3i6aef5v333ycqKor33nsPk8lE+/btOXHiBH/605948cUXMZsr3w4zZswY7r77bgBeffVV/va3v7F+/Xquv/56PvjgA2JiYnj77bcxmUxcccUVbN++nddee63Sx3cWtSxVkyuGDgAo9LH9IivK1PxwIvXZoEGD2Lp1q3159913L7rv8OHDOXHiBF9//TVDhw4lMTGRbt262TtuX4rFYmHevHmMHDnSvm7kyJHMmzfP4f8BvPvuu7FarSxYsACABQsWYBiGPRRcSFxcHA0bNmTlypWsXr2azp07c8stt9hbRRITE8v8wa8sf39/e1ACaNq0KcnJtlb6jIwMTpw4Ua61ql+/fuzevbvK56qKypy7Ktdk165d5OXlMXjwYHvLY2BgIJ9++in79+8vc44ePXpUqsaS0AW2gN6jRw97bbt376ZPnz5lbnn269ePrKwsjh07VqVrUTrgBwQEEBQUZP9ntHv3bq666qoy5yldlyupZamWs/qFQTpYs8+4uxSRusfL39bC465zV0FAQABt2rSp9P6+vr4MHjyYwYMH8+KLL/LAAw8wZcoUxowZc8nvLl26lOPHjzNixIgy6y0WC8uWLWPYsGFVqr20kJAQfve73zFnzhzGjRvHnDlz+N3vfmfvCH4hJpOJAQMGkJiYiLe3N/Hx8cTFxWGxWNi+fTtr16695FABF+Ll5VXuPMZ5t0fP7+NkGIZ9XUkLSenvFBYWVrmOi6no3FW5JlarbRy+//3vfzRr1qzMMX18fMp8DgiofGvnxeotXWfp2kvvYzaby13rC127C/0zKvl5zv++O6llqZYzFQ8f4JGnliWRKjOZbLfC3LGc98ekpsXGxpKdnV2pfWfNmsVdd91VpiVr69at3HvvvZfs6F0Z48aNY82aNXzzzTesWbPmoh27Syvpo5OYmEh8fDwmk4n+/fvz5ptvkpube8H+SiW8vb2r3CIWHBxMZGQkP/74Y5n1a9eupUOHDsC5pxFL94M6f/yhmjo3VP6axMbG4uPjw5EjR2jTpk2ZJSoqqkq1lfjpp5/s74uKiti0aRPt27e3n2/t2rVlwszatWsJCgqyh7WIiIgy1y0jI4ODBw9WqYbY2NgydZxflyspLNVyXkG2Ubx9NJmuiABnzpzhmmuu4R//+Afbtm3j4MGDLFy4kNdff51bb731kt8/ffo0//3vfxk9ejRxcXFlltGjR/P1119z+rRjfSQHDhxImzZtGDVqFG3atGHAgAGX/E58fDw7d+5k+/bt9O/f377us88+o1u3bhW2TLVq1YpVq1Zx/PhxUlIq/z+WTz31FK+99hoLFixgz549PPPMM2zdupWJEycC2MPGSy+9xN69e/nf//7HW2+9Ve7cWVlZfP/996SkpJCTk+OUc1flmgQFBfHkk0/y+OOPM2/ePPbv38+WLVtISEhg3rx5lb4epSUkJPDVV1/x66+/MmHCBM6ePcvYsWMBGD9+PEePHuXRRx/l119/5T//+Q9Tpkxh8uTJ9ta4a665hvnz57N69Wp27NjB6NGjL/h0Z0Uefvhh9u/fz+TJk9mzZw///Oc/K32r2dl0G66W8w21dRr0Lzx7waZPEbm8BAYG0rt3b95++232799PYWEhUVFRPPjggzz33HOX/P6nn35KQEAA1157bbltgwYNIigoiPnz5zN58mSH6hw7dizPPfccTz31VKX2j4uLIzw8nJYtW9pDwMCBA7FYLJfsrzR16lT+8Ic/0Lp1a/Lz8yt9++axxx4jIyODJ554guTkZGJjY/n6669p27YtYLtF9K9//Ys//vGPdO7cmZ49e/LKK6/w+9//3n6Mvn378vDDDzNixAjOnDnDlClTKjV8wKXOXdVrMm3aNBo1asT06dM5cOAAoaGhdOvWrVL/TlzIX//6V1577TW2bNlC69at+c9//kN4uG1y92bNmrFkyRKeeuopOnfubB824vnnn7d//9lnn+XAgQPcdNNNhISEMG3atCq3LLVo0YJFixbx+OOP8/7779OrVy9effVVe2hzJZNRm24K1kEZGRmEhISQnp5e4f/5VFf+tq/w+XIMG63taPfcWoJ9vS79JZHLUF5eHgcPHiQ6OhpfX193lyMitUBFvxeq8vdbt+FqOZ8Q2/xwDUnndGb1x1QRERGR6lFYqu0CbB0MG5oySFFYEhERcTmFpWpKSEggNjaWnj171uyJisNSsCmX1PTMmj2XiIiIlKOwVE2uGpQS3xD7/HBZZ9w0XoyIiMhlTGGptjOZyPayjeKdl37KzcWI1H56ZkVESjjr94HCUh2Q722b4bswQ5PpilxMyUjAlR3nRkTqv5LfB+ePFF5VGmepDijyD4fsPZClsCRyMR4eHoSGhtrnlfL399e4ZCKXKcMwyMnJITk5mdDQ0CoPiHk+haW6wN/WyducqylPRCpSMvN7SWASkctbaGio/feCIxSW6gDP4JIpTzSZrkhFTCYTTZs2pVGjRk6d8FRE6h4vLy+HW5RKKCzVAd4hmvJEpCo8PDyc9ktSREQdvOsA/wa2sNTASCcjt8jN1YiIiFxeFJbqAO9g25Qn4aYMTmdpFG8RERFXUliqCwJLpjzR/HAiIiKuprBUF5TMD0cGpzNz3VyMiIjI5UVhqZpcNjccgH84AJ4mK+mpeiRaRETElRSWqsllc8MBeHqT6xEEQO7ZkzV/PhEREbFTWKoj8nwaAlCQprAkIiLiSgpLdYTFzxaWLFmn3VyJiIjI5UVhqY4wFXfyNuVoyhMRERFXUliqIzyKx1ry1pQnIiIiLqWwVEf4htrCUnDRWXILLG6uRkRE5PKhsFRH+BS3LDU0ZZCcmefmakRERC4fCkt1hCmwEWALS6cyNIq3iIiIqygs1RXFHbzDSVfLkoiIiAspLNUVJVOeqGVJRETEpRSW6oriyXSDTLmkpqe5txYREZHLiMJSXeETjMXkBUDOWc0PJyIi4ioKS3WFyUR+8ZQnRRma8kRERMRVFJbqEKt/OABGplqWREREXEVhqQ4xBdnGWvLM1fxwIiIirqKwVId4hTQFILAwlbxCjeItIiLiCgpL1ZSQkEBsbCw9e/Z02Tm9QpoA0MiURrKGDxAREXEJhaVqmjBhArt27WLDhg0uO6cpyBaWIkxpnMzQwJQiIiKuoLBUlxRPeRJhSicpPdfNxYiIiFweFJbqksDiliXSOJmuliURERFXUFiqS4pblhqZ0khKU8uSiIiIKygs1SXFYcnPVEBaWqqbixEREbk8KCzVJd4BFHkGAJCfluTmYkRERC4PCkt1jCXANjClNVNTnoiIiLiCwlIdUzKKt1duCoUWq5urERERqf8UluoYr+CSJ+LOcjpTA1OKiIjUNIWlOqakZck21pKGDxAREalpCkt1TWBxWNJYSyIiIi6hsFTXBJZuWdJYSyIiIjVNYamuKQ5LjUxqWRIREXEFhaW6xj4/XBpJmkxXRESkxiks1TVBtqfhwsggOS3bzcWIiIjUf1UOS7m5uRw/frzc+p07d1ZpH6km/4YYJjMeJoOC9FPurkZERKTeq1JY+uKLL2jXrh033HADnTp14ueff7Zvu++++yq9jzjA7IG1eBRvc1YSFqvh5oJERETqtyqFpVdeeYXNmzfzyy+/MHv2bMaOHcs///nPSu9jGPrD7gzmkOYANDJSSM5UvyUREZGa5FmVnQsLC4mIiACgR48erFq1ijvuuIPffvutUvuYTCYnln75MoVEwnFoakrl+Nlcmob4ubskERGReqtKLUuNGjVi27Zt9s8NGzZk+fLl7N69276+MvuIg4JtLUtNTWc4nqaxlkRERGpSlcLS/PnzadSoUZl13t7e/Otf/2LlypWV3kccFNIMgEjTGY6dVVgSERGpSVW6Dde8efOLbuvXr1+l9xEHBUcC0MSUylqFJRERkRpVpbBU4siRI9U6WWhoKMHBwdX6bk26/fbbSUxM5Nprr+WLL75wdzmXZr8Nl8qxszluLkZERKR+q1ZYatWqVZW/YzKZmDJlCi+++GJ1TlmjHnvsMcaOHcu8efPcXUrlFLcsNeYsSWez3FyMiIhI/VatsGS1Wp1dh1sNGjSIxMREd5dReUFNMEweeGEhP+0khmHoSUMREZEaUq3pTqKjo4mJiany8u677zq7flatWsXNN99MZGQkJpOJxYsXl9vn/fffJzo6Gl9fX7p3787q1audXodLmT3sE+o2tKSQklXg5oJERETqr2q1LM2dO7daJ6vO7btLyc7OpnPnztx///0MHz683PYFCxYwadIk3n//ffr168dHH33EsGHD2LVrFy1atHB6Pa5iCmkOmSdoYkrleFouEUE+7i5JRESkXqpWWBo4cKD9/dGjR4mKinJaQVU1bNgwhg0bdtHtM2bMYNy4cTzwwAMAzJw5k6VLl/LBBx8wffr0Kp8vPz+f/Px8++eMjIyqF+0Mxf2WbMMH5NAlKtQ9dYiIiNRz1boNV1r79u154YUXyM7OdkY9TlVQUMCmTZsYMmRImfVDhgxh7dq11Trm9OnTCQkJsS9uC4rFU540KR7FW0RERGqGw2Fp+fLlLFu2jLZt2zJnzhxn1OQ0KSkpWCwWGjduXGZ948aNOXnypP3z0KFD+f3vf8+SJUto3rw5GzZsuOgxn332WdLT0+3L0aNHa6z+CpVqWdIo3iIiIjWnWrfhSuvbty8///wzn376KX/+85959913efvtt4mPj3dCec5x/pNi5z89tnTp0kofy8fHBx+fWtA/KNg2indTjeItIiJSoxxuWSoxatQo9u7dy80338yNN97I7bffXmaCXXcIDw/Hw8OjTCsSQHJycrnWpjqnTFjSwJQiIiI1xWlhCWwtNkOGDOGhhx7i66+/Ji4ujieeeILMzExnnqbSvL296d69O8uXLy+zfvny5fTt29ehYyckJBAbG0vPnj0dOk61hdr6SjXmLEmpGRiG4Z46RERE6jmHb8N9+OGHbNiwgQ0bNrB79248PDzo1KkTEyZMoEuXLnz22WfExsby1Vdf0aNHD2fUXEZWVlaZFqyDBw+ydetWwsLCaNGiBZMnT+a+++6jR48e9OnTh48//pgjR47w8MMPO3TeCRMmMGHCBDIyMggJCXH0x6i6wMYYXv54FObQsOgUyZn5NA72dX0dIiIi9ZzDYekvf/kLV111FaNHj+aqq66iR48eZfr0jB07lldffZUxY8awY8cOR09XzsaNGxk0aJD98+TJkwEYPXo0c+fOZcSIEZw5c4apU6eSlJREXFwcS5YsoWXLlk6vxaVMJkwNWkHyLlqakjmUkq2wJCIiUgNMhgvu35w6dYrIyEgsFktNn8rlSlqW0tPTXT9J8L/ugT3/44XCMVx5+5Pc2cN9412JiIjUJVX5++3UPksX06hRI3744QdXnOryEhYNQEvTKQ6fqX3jXImIiNQHLglLJpOpzKjf9YHbO3gDNGgFYLsNd0ZPxImIiNQEl4Sl+mjChAns2rWrwgEsa1xxy1ILtSyJiIjUGKeGpc2bN1NQUODMQ0pFGrYFoJXpJMdSMjV8gIiISA1waljq2bMnhw4dcuYhpSIhURheAfiYimhYcIzUbAVVERERZ3P6oJTiQmYzpoh2ALQ1HVe/JRERkRqgPkvVVCs6eANEdACgremY+i2JiIjUAIWlaqoVHbwBGrUHoJ35GIfVsiQiIuJ0Ckt1XYQtLNluw6llSURExNkUluq64rAUYzrBoeQMNxcjIiJS/ygs1XUhUVg9/fE2WSg8/RtWqzrZi4iIOJPCUl1nNmOKuAKAFpYjnEjPdXNBIiIi9YtTw9KUKVMIDw935iGlEkyNbE/EtTMdY19ylpurERERqV+cHpbCwsKcechaq9YMHQBlnojbr7AkIiLiVLoNV021ZugAgMYdAehgOsy+UwpLIiIizqSwVB806QxAa3MSx0+dcnMxIiIi9YvDYSkzM9MZdYgjAiMoDGgKgOfpnZp2RkRExIkcDkv9+/fn5MmTzqhFHGCO7AJAq8L9nM7Kd28xIiIi9YjDYalHjx707t2bX3/9tcz6LVu2cMMNNzh6eKkkj2ZdAIgzH+I39VsSERFxGofD0ieffMLYsWO5+uqr+fHHH9m7dy933nknPXr0wMfHxxk1SmU0tfVb6mg6yG+nFZZEREScxdMZB5kyZQre3t4MHjwYi8XC0KFD2bBhA926dXPG4WulhIQEEhISsFgs7i7FpkknwDZH3OcnUoBWbi1HRESkvnC4ZSkpKYnHHnuMadOmERsbi5eXF3fddVe9DkpQy4YOAAiOJN87DE+Tldxj29xdjYiISL3hcFiKiYlh9erVLFy4kE2bNvHll18yfvx4XnvtNWfUJ5VlMlHU+EoAAs7s1BxxIiIiTuJwWJozZw5btmzhxhtvBGDo0KGsWLGCd955h/HjxztcoFSeXwtba15b634Op+a4uRoREZH6weGwdNddd5Vb161bN9auXUtiYqKjh5cqKBk+IM58iN1JGe4tRkREpJ6osRG8W7VqxZo1a2rq8HIhxU/EXWE6yp7jqW4uRkREpH6okbB09uxZVqxYwbx582ri8HIxDVpR4BmIj6mItCPb3V2NiIhIveDw0AEHDx5k69atZZZjx45hGAYBAQFMmjTJCWVKpZhM5IZfiffJdXgnbwPK3yIVERGRqql2y9LAgQMJDQ2ldevWjB07lu+++44mTZpw/PhxZs2axeHDhzVvnBv4RnUFoFnePtJyCtxcjYiISN1X7bC0bt06JkyYwNGjRzl79ixr1qzho48+wmQy0atXL6KiopxZZ62TkJBAbGwsPXv2dHcpZfgUhyVbJ2+FVREREUdVOyz9/PPPrF69mgkTJrB3715n1lQn1LpBKUsUd/KONR1m5zF18hYREXFUtcNS165dWbVqFXfeeSdDhw5lwoQJJCcnO7M2qY6GbSg0++JvyifpwA53VyMiIlLnOfw03D333MPOnTsJDQ2lY8eOWK3W2jNf2uXI7EFuWKztfdIv7q1FRESkHnDK0AH+/v785S9/4eeff+amm27i2muv5c033yQ3N9cZh5cq8ikeybtJzh5Ss9XJW0RExBFOHWcpJiaG//znP3z22WfMmTOHmJgYZx5eKqmkk3dH0yF+OZbm3mJERETquBoZlHLw4MFs27aNP/3pTzVxeLmU4k7eceZDbDuS5t5aRERE6rhqDUp55MiRSu13xx13lNk3NDSU4ODg6pxSqiKiPRaTF8HkcOLQbqCduysSERGps6oVllq1alXl75hMJqZMmcKLL75YnVNKVXh4kRfWnoAz2yFpK4ZxCyaTyd1ViYiI1EnVCktWq9XZdYiT+bToDme2E12wj2Nnc4kK83d3SSIiInVStcJSdHR0tVoqJk2axGOPPVadU0oVeUZ1hy1z6WTaz+YjZxWWREREqqlaYWnu3LnVOll1bt9JNUXahg+IMx/kzYNnuLVLMzcXJCIiUjdVKywNHDjQ2XXUOQkJCSQkJNTeATgj2mPx8CXYksuJAzuATu6uSEREpE6qkaEDLge1dm64Eh6eWBpfCUBQ6nbScwvdXJCIiEjdpLBUj3lHdQfgStMBNh856+ZqRERE6iaFpfqsuN9SJ/MBNh5KdXMxIiIidZPCUn3WzBaWOpoOselgipuLERERqZscDktjxoxh1apVzqhFnC2sNRbvIPxMBeQc20F+US3tjC4iIlKLORyWMjMzGTJkCG3btuXVV1/l+PHjzqhLnMFsxhzZBYD2xm9s1TxxIiIiVeZwWFq0aBHHjx/nkUceYeHChbRq1Yphw4bxxRdfUFioJ7DczRTZFYBOpgOs3X/GzdWIiIjUPU7ps9SwYUMmTpzIli1bWL9+PW3atOG+++4jMjKSxx9/nH379jnjNFIdzc518l6nsCQiIlJlTu3gnZSUxLJly1i2bBkeHh7ccMMN7Ny5k9jYWN5++21nnkoqq/iJuPamI+w8eoqcgiI3FyQiIlK3OByWCgsLWbRoETfddBMtW7Zk4cKFPP744yQlJTFv3jyWLVvG/PnzmTp1qjPqlaoKbYHhH463yUI76yE2HNJ4SyIiIlVRrelOSmvatClWq5W7776b9evX06VLl3L7DB06lNDQUEdPJdVhMmFq3hP2/h/dzPtYuz+Fge0i3F2ViIhIneFwWHr77bf5/e9/j6+v70X3adCgAQcPHnT0VFJdUbaw1NX8Gx+r35KIiEiVOHwb7r777qswKEkt0LwnAF3N+9hxPJ30HD2lKCIiUlkOh6Xp06cze/bscutnz57Na6+95ujhxRkiu4HJTDPTGSKMVH46qNYlERGRynI4LH300Ue0b9++3PqOHTvy4YcfOnp4cQafQGjUEYCu5t80hICIiEgVOByWTp48SdOmTcutj4iIICkpydHDi7NEnbsVt3a/5okTERGpLIfDUlRUFGvWrCm3fs2aNURGRjp6+ForISGB2NhYevbs6e5SKqe431I38z72nsridGa+mwsSERGpGxx+Gu6BBx5g0qRJFBYWcs011wDw/fff8/TTT/PEE084XGBtNWHCBCZMmEBGRgYhISHuLufSmvcCoJP5EF4UsXZ/Crd2aebmokRERGo/h8PS008/TWpqKuPHj6egoAAAX19f/vSnP/Hss886XKA4ScPW4NcAn9yzdDAdZu1v0QpLIiIileBwWDKZTLz22mu88MIL7N69Gz8/P9q2bYuPj48z6hNnMZlst+L2LaOr+Te++y0OwzAwmUzurkxERKRWc9rccIGBgfTs2ZO4uDgFpdqq+FZcD499HE/L5dCZHDcXJCIiUvs53LIEtj5K33//PcnJyVit1jLbLjQGk7hJ8x4A9PbaDwWwet9posMD3FyUiIhI7eZwy9LLL7/MkCFD+P7770lJSeHs2bNlFqlFmnUHTDSynCKCNFbt1RACIiIil+Jwy9KHH37I3Llzue+++5xRj9Qk32Bo1AGSd9nGWzoQTqHFipeH0+7GioiI1DsO/5UsKCigb9++zqhFXKF4vKU+PgfJyi9i69E099YjIiJSyzkclh544AH++c9/OqMWcYXisHS170EAVu897c5qREREaj2Hb8Pl5eXx8ccf891339GpUye8vLzKbJ8xY4ajpxBnirI9ERedvwcPLKzal8LkIVe4uSgREZHay+GwtG3bNrp06QLAjh07ymzTGD61UMO24BuCZ1467U1H2HbMg7ScAkL9vd1dmYiISK3kcFhasWKFM+oQVzGboVkP2P89Q0OOsjMtmrX7z3DDleUnQxYREREnjbMEsGvXLo4cOWKf8gRsLUs333yzs04hztK8J+z/nnj/Q8xIG0DinmSFJRERkYtwOCwdOHCA22+/ne3bt2MymTAMAzh3C85isTh6CnG2Fr0BaFewE4AVe05jtRqYzbptKiIicj6Hn4abOHEi0dHRnDp1Cn9/f3bu3MmqVavo0aMHiYmJTihRnK55TzCZ8c06SrR3Oqcz89lxIt3dVYmIiNRKDoeldevWMXXqVCIiIjCbzZjNZq6++mqmT5/OY4895owaxdl8gqBxHAD3NE0C4Pvdye6sSEREpNZyOCxZLBYCAwMBCA8P58SJEwC0bNmSPXv2OHp4qSkt+gAw0G8/ACv2KCyJiIhciMNhKS4ujm3btgHQu3dvXn/9ddasWcPUqVOJiYlxuECpIS2uAiA6ZzsA246lk5yR586KREREaiWHw9Lzzz+P1WoF4JVXXuHw4cP079+fJUuW8O677zpcoNSQ4rDkdXoHVzWzjbH0nW7FiYiIlOPw03BDhw61v4+JiWHXrl2kpqbSoEEDDUpZmwVHQmgLSDvCPc2S+el4KP+3I4l7erdwd2UiIiK1ilOnmzcMA8MwCAsLU1CqC4r7LQ3w2QvA2v1nOJtdUNE3RERELjtOCUuzZs0iLi4OX19ffH19iYuL45NPPnHGoaUmtboagNCT64htGozFarB81yk3FyUiIlK7OByWXnjhBSZOnMjNN9/MwoULWbhwITfffDOPP/44zz//vDNqrHHffPMNV1xxBW3btr28Ql5MvO312EZu7WB7ovF/25PcV4+IiEgtZDJKhtyupvDwcP72t79x9913l1n/r3/9i0cffZSUlBSHCqxpRUVFxMbGsmLFCoKDg+nWrRs///wzYWFhlfp+RkYGISEhpKenExwcXMPV1oB3usDZgyTdOJc+i7zxNJvY+Px1mlhXRETqtar8/XbKOEs9evQot7579+4UFRU5evgat379ejp27EizZs0ICgrihhtuYOnSpe4uy3WKW5eanllP+yZBFFkNlmw/6d6aREREahGHw9LIkSP54IMPyq3/+OOPuffeex09/CWtWrWKm2++mcjISEwmE4sXLy63z/vvv090dDS+vr50796d1atX27edOHGCZs2a2T83b96c48eP13jdtUbMQNvrgURu72q7Dl9uPubGgkRERGoXp3bwfuCBB3jggQeIi4vj73//O2azmcmTJ9uXmpCdnU3nzp157733Lrh9wYIFTJo0iT//+c9s2bKF/v37M2zYMI4cOQLAhe5CXlZP8rUaYHtN3sUd7bwwm2Dj4bMcPpPt3rpERERqCYfHWdqxYwfdunUDYP9+29QZERERREREsGPHDvt+NRVAhg0bxrBhwy66fcaMGYwbN44HHngAgJkzZ7J06VI++OADpk+fTrNmzcq0JB07dozevXtf9Hj5+fnk5+fbP2dkZDjhp3CjgIbQpBOc3EZE8lr6tYlm9b4UvtpynEnXtXN3dSIiIm7ncFhasWKFM+qoEQUFBWzatIlnnnmmzPohQ4awdu1aAHr16sWOHTs4fvw4wcHBLFmyhBdffPGix5w+fTovv/xyjdbtcm2HwMlt8Ov/uKPbdFbvS+HLzceZeG3by6uVTURE5AKcOihlbZOSkoLFYqFx48Zl1jdu3JiTJ22dmD09PXnrrbcYNGgQXbt25amnnqJhw4YXPeazzz5Lenq6fTl69GiN/gwu0f5G2+tv3zP0ilACfTw5kprD2v1n3FuXiIhILeCUsLR69WpGjhxJnz597Le05s+fz48//uiMwzvs/NYRwzDKrLvlllvYu3cvv/32Gw899FCFx/Lx8SE4OLjMUudFdoWgSCjMxv/YWntH73/8dNjNhYmIiLifw2Fp0aJFDB06FD8/P7Zs2WLvz5OZmcmrr77qcIGOCA8Px8PDw96KVCI5Oblca9NlzWSCK4r7ff36DfdeZZsfbtmuU5zKyHNjYSIiIu7ncFh65ZVX+PDDD/n73/+Ol5eXfX3fvn3ZvHmzo4d3iLe3N927d2f58uVl1i9fvpy+ffs6dOyEhARiY2Pp2bOnQ8epNdrfYHvd+y3tGwXSo2UDLFaDBRvqwW1GERERBzgclvbs2cOAAQPKrQ8ODiYtLc3Rw19SVlYWW7duZevWrQAcPHiQrVu32ocGmDx5Mp988gmzZ89m9+7dPP744xw5coSHH37YofNOmDCBXbt2sWHDBkd/hNqh1QDwCYasU3D0Z0Ze1RKAf60/QpHF6ubiRERE3MfhsNS0aVN+++23cut//PFHYmJiHD38JW3cuJGuXbvStWtXwBaOunbtan+ibcSIEcycOZOpU6fSpUsXVq1axZIlS2jZsmWN11aneHqf6+i94wuGXdmEsABvktLz+OHXZPfWJiIi4kYOh6U//OEPTJw4kZ9//hmTycSJEyf47LPPePLJJxk/frwzaqxQfHw8hmGUW+bOnWvfZ/z48Rw6dIj8/Hw2bdp0wZYwAa78ne1151f4mKz8vkdzAOaro7eIiFzGHB5n6emnnyY9PZ1BgwaRl5fHgAED8PHx4cknn+SRRx5xRo3iKtHx4B8OOSlwIJGRvfvx91UHWL0vhX2nMmnbOMjdFYqIiLicQy1LhYWFDBo0iNGjR5OSksL69ev56aefOH36NNOmTXNWjbVSvevgDeDhCXF32N5vX0hUmD+DY21PDc5Ze8h9dYmIiLiRybjQ5GhVEBERwdq1a2nbtq2zaqpTMjIyCAkJIT09vX6MuXR0PcwaDN6B8OQ+fj6Wy4iPf8LXy8y6Z66lQYC3uysUERFxWFX+fjvcZ2nUqFHMmjXL0cNIbdG8J4S2gIIs2PstvaLD6BgZTF6hlX+uP+Lu6kRERFzO4T5LBQUFfPLJJyxfvpwePXoQEBBQZvuMGTMcPYW4kskEV/4eVr8F27/AFHcHY/tF88TCX/h03SEeGhCDl0e9niVHRESkDIfD0o4dO+jWrRsAe/fuLbNNk7DWUSVhad8yyEnlps5Nmf5/v3IqI58l25O4tUszd1coIiLiMg6HpRUrVjijjjonISGBhIQELBaLu0txvkYdoMmVcHI77FiET68HGdWnJTOW72X2jwe5pXOkgrCIiFw2dD+lmurdCN7n63y37XXbAgDu6d0Cb08zvxxLZ/ORs24sTERExLUcDkvTp09n9uzZ5dbPnj2b1157zdHDi7vE/Q5MZji2AVJ+IzzQh9u6RAIw+8dD7q1NRETEhRwOSx999BHt27cvt75jx458+OGHjh5e3CWoMbS+1va+uHVp7NXRAPzfjiSOnc1xV2UiIiIu5XBYOnnyJE2bNi23PiIigqSkJEcPL+7U+S7b67bPwWqlfZNg+rVpiNVQ65KIiFw+HA5LUVFRrFmzptz6NWvWEBkZ6ejhxZ2uuAG8gyDtCBz9CYAH+9smR/58wxHScgrcWZ2IiIhLOByWHnjgASZNmsScOXM4fPgwhw8fZvbs2Tz++OM8+OCDzqhR3MXbH2Jvtb3/5V8ADGwXQYemweQUWJi/ThPsiohI/edwWHr66acZN24c48ePJyYmhpiYGB599FEee+wxnn32WWfUWCvVy7nhLqTkVtzO/0BhLiaTiYcH2lqX5q49RF5hPRw6QUREpBSH54YrkZWVxe7du/Hz86Nt27b4+Pg447C1Xr2bG+58Viu80wnSj8Lv5kDcHRRZrMS/mcixs7lMu7Uj9/Vp5e4qRUREqsSlc8Pl5uaSk5NDYGAgPXv2JCgoiA8++IBly5Y5emipDcxm6HSn7X3xU3GeHmZ736WPVx+gyGJ1V3UiIiI1zuGwdOutt/Lpp58CkJaWRu/evXnrrbe49dZb+eCDDxwuUGqBTsW34vYth6zTANzZI4qwAG+OpuayeOsJNxYnIiJSsxwOS5s3b6Z///4AfPHFFzRu3JjDhw/z6aef8u677zpcoNQCEe0gshsYFtixCAA/bw8eGmBrXXr3+30UqnVJRETqKYfDUk5ODkFBQQAsW7aMO+64A7PZzFVXXcXhw3paqt4o6ehd/FQcwKg+LWkY4M2R1By+3HzMTYWJiIjULIfDUps2bVi8eDFHjx5l6dKlDBkyBIDk5OT62eH5chU3HMyekLQVkn8FwN/bkz/Gtwbg3e9/05NxIiJSLzkcll588UWefPJJWrVqRe/evenTpw9ga2Xq2rWrwwXWVpfN0AElAsKhzWDb+22f21ePvKoljYN9OJ6Wy9y1h9xTm4iISA1yytABJ0+eJCkpic6dO2M22/LX+vXrCQ4OvuC8cfVJvR86oLSdi2HhaAhuBpN22J6UA77YdIwnF/5CkI8niU/F0zDw8hg2QkRE6i6XDh0A0KRJE7p27WoPSgC9evWq90HpstPuevAJgYzjcGiVffUdXZvRMTKYzPwi3v5urxsLFBERcT7P6nxp8uTJTJs2jYCAACZPnlzhvjNmzKhWYVILeflC3B2waQ5s+QfExANgNpt4/sZY7v77T3z28xF+3z2KzlGhbi1VRETEWaoVlrZs2UJhYaH9/cWYTKbqVSW1V7dRtrC062sYlgr+YQD0ad2Q27pEsnjrCZ79cjtfP9IPTw+nNFyKiIi4ldOmO7lcXVZ9lgAMAz7sD6e2w/WvwVUP2zelZOVz3YyVpOUU8twN7XloQGs3FioiInJxLu+zJJcRkwm6j7a93zzPFp6KhQf68NwNHQB4e/k+jqbmuKNCERERp6p2n6XKUp+leujK38Oy5yF5FxzbCFHnhk/4fffmfLn5GD8dSOXpL7bx2QO9MZt1O1ZEROquavdZKm3Tpk1YLBauuOIKAPbu3YuHhwfdu3d3vEKpffxCIfY223hLm+eVCUsmk4npd3TihndWs+7AGWavOcgDxZPuioiI1EXVug23YsUK+3LzzTcTHx/PsWPH2Lx5M5s3b+bo0aMMGjSIG2+80dn11hqX3aCU5yu5FbfjS8jLKLMpOjyAF26KBeD1b/fw68mM878tIiJSZzjcwbtZs2YsW7aMjh07llm/Y8cOhgwZwokT9XtG+suug3cJw4CEXpCyF4a9Ab0fOm+zwQPzNvL9r8m0bxLE4gn98PXycFOxIiIiZbm0g3dGRganTp0qtz45OZnMzExHDy+1lckEPR+0vV//cZmO3rbNJv46vBMNA7z59WQmry7Z7YYiRUREHOdwWLr99tu5//77+eKLLzh27BjHjh3jiy++YNy4cdxxxx3OqFFqqy53g3cQnNkHB1aU2xwR5MObd3YG4NN1h/nvL/W7lVFEROonh8PShx9+yI033sjIkSNp2bIlLVu25N5772XYsGG8//77zqhRaiufIFtgAlj/9wvuMuiKRkwYZBtv6ZlF29h/OstV1YmIiDiF0walzM7OZv/+/RiGQZs2bQgICHDGYWu9y7bPUonTeyGhJ2CCib9Ag5bldimyWLn3k5/5+WAq7ZsE8dX4fvh5q/+SiIi4j1sGpQwICKBTp0507tz5sglKAkS0g5hBgAEbPrngLp4eZv52d1fCA3349WQmU77e4doaRUREHKARvMVxvYqfhNv8KeRf+DZbo2Bf3r27C2YT/HvjMRZuPOrCAkVERKpPYUkc124ohMVAXhpsmX/R3fq2Dufx69oB8PziHew4nu6iAkVERKpPYUkcZ/aAvo/a3q9LAEvhRXedMKgN17RvRH6RlYc+3UhKVr6LihQREakehSVxjs53Q0AEpB+FnV9ddDez2cTMu7oQEx7AifQ8xn+2mUKL1YWFioiIVI3TnobbtWsXR44coaCgoMz6W265xRmHr7Uu+6fhSlv1BvzwCjSOg4d/tA1ceRG/JWdxW8IasvKLGNWnJVNvjXNhoSIicrmryt/vak2kW9qBAwe4/fbb2b59OyaTiZLsZSr+Q2mxWBw9Ra2UkJBAQkJCvf35qqXHOFj9NpzaAft/gDbXXnTXNo0CmTmiCw/O38in6w7TMTKYET1buLBYERGRynH4NtzEiROJjo7m1KlT+Pv7s3PnTlatWkWPHj1ITEx0Qom104QJE9i1axcbNmxwdym1h3/YuQl2V791yd2vi23M5OIO3y8s3smmw6k1WZ2IiEi1OByW1q1bx9SpU4mIiMBsNmM2m7n66quZPn06jz32mDNqlLqkzyPg4Q2H18DB1ZfcfcKgNgyLa0KBxcoD8zZyQCN8i4hILeNwWLJYLAQGBgIQHh7OiRO2+b9atmzJnj17HD281DUhzaBbcetS4l8vubvZbOKtOzvTuXkIZ3MKGT1nPacz9YSciIjUHg6Hpbi4OLZt2wZA7969ef3111mzZg1Tp04lJibG4QKlDrr68eLWpR/h4KpL7u7v7cmsMT1p2dCfo6m5jJ27gaz8IhcUKiIicmkOh6Xnn38eq9X26Pcrr7zC4cOH6d+/P0uWLOHdd991uECpg85vXarEA5fhgT7Mu78XYQHebD+ezv1z1pOtwCQiIrWAw2GpQ4cO3HbbbQDExMSwa9cuUlJSSE5Opk2bNo4eXuoqe+vSGjh06b5LAK3CA5h3fy+CfD3ZcOgs98/dQE6BApOIiLiXw2EpOjqalJSUMuvCwsJITU0lOjra0cNLXVWN1iWAK5uH8I9xvQny8WT9wVTGzt1AZt7FRwQXERGpaQ6HpYuNaZmVlYWvr6+jh5e6rHTr0sGVlf5a56hQ5o3rRaCPJz8dSGXERz+RnJFXg4WKiIhcXLUHpZw8eTJgG3zyxRdfxN/f377NYrHw888/06VLF4cLlDospBl0HwPrP4blU+DBFWCuXD7v1qIB/3rwKu6fu55dSRnc/v5a5o3tRZtGgTVbs4iIyHmq3bK0ZcsWtmzZgmEYbN++3f55y5Yt/Prrr3Tu3Jm5c+c6sVSpkwY8Dd6BkLQVdi2u0levbB7Cl3/sR6uG/hxPy+X299fww6+naqRMERGRi3F4brj777+fd95557KdF01zw1VC4l8hcTo0iIZHNoCHV5W+fiYrn4fmb2LT4bOYTDDp2nY8ek0bzOaLzz0nIiJSkar8/Xa4z9KcOXMUEqRifSZAQAScPQib5lb56w0DffjXg1cx8qoWGAa8/d1eHpq/ifRcdfwWEZGa53DLUoldu3Zx5MgRCgoKyqy/5ZZbnHH4WkstS5W0/u+w5ElbaHpsK/hUr+/Rvzce5fnFOygostIs1I937+5C95Zhzq1VRETqvar8/XY4LB04cIDbb7+d7du3YzKZ7E/HmUy2WyQWi8WRw9d6CkuVZCmEhF6QegDin4P4P1X7UL8cTeORf23maGouHmYTE69ty4RBbfDQbTkREakkl96GmzhxItHR0Zw6dQp/f3927tzJqlWr6NGjB4mJiY4eXuoLDy+45gXb+zXvQEZStQ/VOSqU/z3Wn1u7RGKxGsxYvpe7P/6J42m5TipWRETkHIfD0rp165g6dSoRERGYzWbMZjNXX30106dP57HHHnNGjVJfdLwdmvWAwmz47iWHDhXs68U7d3Vlxp2dCfD2YP2hVIbNXMXCjUcvOvaXiIhIdTgcliwWC4GBtv4n4eHhnDhxAoCWLVuyZ88eRw9fayUkJBAbG0vPnj3dXUrdYTLBDa/b3m/7HI787PAh7+jWnCUT+9M5KpSMvCKe+mIb98/dwAm1MomIiJM4HJbi4uLYtm0bAL179+b1119nzZo1TJ06lZiYGIcLrK0mTJjArl272LBhg7tLqVuadYeuI23v/+8psDrep61lwwAWPdyHP13fHm9PM4l7TjPk7VXM/+kwFqtamURExDEOh6Xnn38eq9UKwLRp0zh8+DD9+/dnyZIlvPvuuw4XKPXQtS+BTzAk/QJb5jvlkJ4eZv4Y35olj/Wna4tQsvKLeGHxDm5570c2HT7rlHOIiMjlyWlDB5SWmppKgwYN7E/E1Wd6Gq6a1r0PS58F/4bw6Cbwa+C0Q1usBv/46TBvLttDZl4RAMO7NeeZYe2JCPJx2nlERKTuctnTcFarldmzZ3PTTTcRFxfHlVdeyS233MI333zjyGHlctDrQQi/AnLOwA9/ceqhPcwmRvdtxYon47mzR3MAFm0+xjVvJpKw4jdyCoqcej4REanfqt2yZBgGN998M0uWLKFz5860b98ewzDYvXs327dv55ZbbmHx4sVOLrf2UcuSAw4kwqe3AiYYtwyietXIabYcOcuL/9nJ9uPpAEQE+TDx2raM6BmFl4fDd6JFRKQOcsmglHPmzGHixIn85z//YdCgQWW2/fDDD9x222289957jBo1qjqHrzMUlhz01R/hl3/aWpkeXg2eNXObzGo1+PqXE7y1fA9HU21PyrVs6M/kwe24qVOkBrQUEbnMuCQsDRkyhGuuuYZnnnnmgttfffVVVq5cydKlS6tz+DpDYclBOam2kb2zT8PAP8Gg52r0dAVFVv61/gh/+2EfKVm2qXlaNfTnj/Gtub1rc7w91dIkInI5cEmfpW3btnH99ddfdPuwYcP45Zdfqnt4uVz4h8Gw4rGXVs+AU7tq9HTenmZG923FyqcG8eSQdoT6e3HoTA5/WrSd+DdWMHfNQXIL6vcUPSIiUjXVblny9vbm8OHDNG3a9ILbT5w4QXR0NPn5+Q4VWNupZckJDAM+vwf2LLGN8D1uGZg9XHLq7Pwi/vnzET5efYDTmbZ/V0P8vLirVxSj+rSiWaifS+oQERHXcknLksViwdPT86LbPTw8KCrSU0dSCSYT3PiWbeyl4xth3XsuO3WAjycPDohh9dODmHZbHFFhfqTnFvLRygMMeH0F4z/bxPqDqZpCRUTkMlbtliWz2cywYcPw8blwh9z8/Hy+/fZbLJb6fUtDLUtOtPlT+PpRMHvBQyugyZUuL8FiNfh+9ynmrDnEugNn7OtbRwQwomcUd3RrTnigxmoSEanrXNLB+/7776/UfnPmzKnO4esMhSUnMgz4/F7Y8z+I6GALTF7uuw22OymDuWsO8fUvJ8gttIV+T7OJ6zo0ZkTPKAa0i9BTdCIidZRLwpLYKCw5WXYKvN8HspOh9x9h2F/dXRGZeYV8sy2Jzzcc5Zejafb14YE+3NSpKbd2iaRLVOhlMWK9iEh9obDkQgpLNWDfcvjsd7b3I7+ENte6t55S9pzMZMGGo3y15Rhncwrt61uE+XNL50hu7hxJu8aBCk4iIrWcwpILKSzVkP89CRv+DoFNbINVBjZyd0VlFBRZ+fG303y99QTLdp0ip9RwA60a+jOkYxOGxDama4sGulUnIlILKSy5kMJSDSnIgY/jIWUPRA+A+xa7bDiBqsopKOK73cl8vfU4q/amUGCx2rc1DPDm2g6NuKZ9I/q2CSfY18uNlYqISAmFJRdSWKpBp/fAx4OgMBv6PwHXvujuii4pK7+IVXtPs2znSX74NZmMvHPDZ3iYTXSNCmVAuwgGtIvgymYhanUSEXEThSUXUliqYdu/gEXjbO/vXgBXXHzU+Nqm0GJl/cFUlu86xaq9pzmQkl1me6i/F/1ah9M7Joze0Q1p2ygQs8KTiIhLKCy5kMKSCyx5CtZ/DL4h8IdV0KCVuyuqlqOpOazel8KqvadZsz+FzLyyg7Y28PeiV7QtOPWOCaNDk2CFJxGRGqKw5EIKSy5QVABzhtlG924cB2O/BZ8gd1flkCKLla1H01i7/ww/HzzDpsNnySu0ltkn2NeTnq3C6NayAV1bhNKpeSiBPhcfNV9ERCpPYcmFFJZcJP2Yrf9SdjK0HQJ3/Qs86k9wKCiysv14Gj8fTOXnA6lsPJRK9nkT+ppN0K5xEF1bhNI1yhagWkfo1p2ISHUoLLmQwpILHdsEc2+Aojzo/TAMe83dFdWYIouVnScy2HAolS1H0th6NI3jabnl9gvy8aRzVChXNg8hLjKEuGbBtAjz1zhPIiKXoLBURbfffjuJiYlce+21fPHFF1X6rsKSi+1cDAtH294PewN6P+TWclzpVEYeW46kseXoWbYcSWPbsbRyt+4Agnw96RgZXByebAEqOjxQT96JiJSisFRFK1asICsri3nz5iks1QU/vg3fvQQmM4z4B7S/0d0VuUWRxcqeU5lsOZLGzhPp7DyRwa9JmWXGeSrh5+XBFU2CuKJxEO3sr4FEBPqoFUpELktV+ftdfzp9OGDQoEEkJia6uwyprH6T4Mx+2DIfFt4P9/4bYuLdXZXLeXqY6RgZQsfIEPu6giIrvyVnseNEOjuPp7PjRAa7TmSQW2hh61Hb7bzSGvh70bZx2RDVtlEgDQK8XfzTiIjUXrU+LK1atYo33niDTZs2kZSUxFdffcVtt91WZp/333+fN954g6SkJDp27MjMmTPp37+/ewqWmmcywU0zIfcs/PoN/OseGPUfiOrp7srcztvTTGxkMLGRwdAjCgCL1eBgShZ7Tmax51Qme09msvdUJofOZHM2p5D1B1NZfzC1zHEa+HsRHR5AdHggMREBxIQHEBMRSMuG/vh61c6R1EVEakqtD0vZ2dl07tyZ+++/n+HDh5fbvmDBAiZNmsT7779Pv379+Oijjxg2bBi7du2iRYsWAHTv3p38/Pxy3122bBmRkZE1/jNIDfDwhN/Nhn+OgAMr4LPhMGYJNIlzd2W1jofZRJtGQbRpFMSNNLWvzyu08FtyFntPZdpD1J6TmZxIz+NsTiFnj6Sx+UhamWOZTBAZ4kdMRADR4QFENfAnKsyP5g38iQrzJ8RP07mISP1Tp/osmUymci1LvXv3plu3bnzwwQf2dR06dOC2225j+vTplT52YmIi77333iX7LOXn55cJXhkZGURFRanPkrsUZMP82+HozxAQAaO+hsax7q6qTsspKOJgSjYHU7I5cLrkNYsDp7PJzC+q8LvBvp60aOhfHKL8iWrgR/Mw2+fmDfzUKiUitcZl02epoKCATZs28cwzz5RZP2TIENauXVsj55w+fTovv/xyjRxbqsE7AO75N8y7GU5ug7k3wqjF0LSzuyurs/y9Pcv1hQIwDIOUrAJ7eDqcmsPR1ByOns3lWGoOZ7ILyMgrYsfxDHYcz7jgsRsGeBMZ6kfTEF8iQ/2IDC159SMyxI+IIB89tScitU6dDkspKSlYLBYaN25cZn3jxo05efJkpY8zdOhQNm/eTHZ2Ns2bN+err76iZ88L93959tlnmTx5sv1zScuSuJFfqK3P0j+Gw4nNtuB031fQrLu7K6tXTCYTEUE+RAT50Cs6rNz27Pwijp3NLQ5QORxJzeFoai7HztpCVXaBhTPZBZzJLmD78fQLnsPTbKJxsC/NQv1oWhKkioNV42BfGgf70jDAWwNxiohL1emwVOL8R58Nw6jS49BLly6t9L4+Pj74+PhUen9xEf8wW4vSZ7+33ZKbdyuM/AJaXOXuyi4bAT6etuEJmpSfisYwDDJyizielsuJtFyS0nM5npZnf38iLY+TGXkUWQ2Op+VecADOEp5mE42CfGgU7EvjYB97iGoUdO5942AfQvy8NCyCiDhFnQ5L4eHheHh4lGtFSk5OLtfaJJcB3xAYuQj+eRcc/hE+vRWGz4ION7m7ssueyWQixN+LEH8v25N6F1BksXI6K58TabYglVQcrE6k20LVqYx8zmTnU2Q1bOvS8yo8p4+n2R6cGhWHqfBAHyICfWgY6E14oA/hQT40DPBWXyoRqVCdDkve3t50796d5cuXc/vtt9vXL1++nFtvvbVGz52QkEBCQgIWi+XSO4vr+ATBvQth4RjYtxQWjIQb3oBeD7q7MrkETw8zTUP8aBriR/eWF96n0GIlJSufUxn5nMrIIzkjz/7+VGZ+8Wfb03z5RVaOpNpuB15KkI+nPTjZQpQ3DQNsYSoi0JuGgbagFR7oTaCPp1qsRC4ztf5puKysLH777TcAunbtyowZMxg0aBBhYWG0aNGCBQsWcN999/Hhhx/Sp08fPv74Y/7+97+zc+dOWra8yG9cJ9II3rWUpQiWPAGb5to+930MrnsZzGa3liWukVdo4XRmPsmZpcJURj5nsvJJycrnTHYBKZn5pGQVXHDE84p4eZho4O9tWwK8CAvwJtTfmzB/b0L9bZ9t24rXBXgRpIAlUuvUq+lOEhMTGTRoULn1o0ePZu7cuYBtUMrXX3+dpKQk4uLiePvttxkwYIBL6lNYqsUMA1a/BT9Ms31ufxPc/qGt9UmE4r5UeUXFIarAFqSy8jld6v259QVkXWLohIvxNJtsgSrAyx6sGgR4EezrRbCfFyGlltKfg3098fRQwBepCfUqLNV2Ckt1wC+fw9ePgqUAItrDXf+Ehq3dXZXUQbkFFs7mFJCaXUBaTiGpOQWkFX8+m11gG8wzp8C2ZBeSml1AbqFjt+oDfTwJ9vUsG6LOC1i2dZ6lQpYXQb5e+HqZ1aIlchEKSy6ksFRHHNto67+UmQQ+IfC7WdB2sLurkstAXqHFHp7OBS1bsErPtS0ZueXfZxc43h/S02wi0NeTQB9PgnxttwODfD0J9C1+9fEiqPh9kK8nQT5e9m1BxdsCfT3xUuuW1EMKSy5QuoP33r17FZbqgsyT8O9RtqEFMME1z8PVk9WPSWqlIouVjLwie4g6P0yVCVh5pfbJKSQzvwhn/mb39TIT6GO7LXguaNnCVoCPBwE+ngR4e+DvbVvvb1/nadvubVsX6OOJn5eHWrukVlBYciG1LNUxRQXwf0+d6/jd+hq4/SMIbOTWskScyWo1yCm0kJlXSFZeEZn5RWTmFdne5xWSlV9ExnmfM+37FX8nr8jhW4gXYjJhC0/eHueClbcnAT6l1nl7Eujjgb+P5wWDmL+3B35eHvgVv/p7e2rkd6kyhSUXUliqozZ/CkuehqJcCGgEd3xkC04iYldksdqD1LnXQjLzbGErO7+InPwisgssZJd+zS8iu6CInHwLWflF5BRYyC5wbmvX+bw9zKXCkwe+xa9+pYJVmfVeHvh5e15y/5L33h7q/1XfKCy5kMJSHZb8K3xxPyTvsn3uN8l2a87Dy61lidRHVqtBXlFxeMq3hads+2vpYFVEVr6l+LX0vrbQlZVfRF6hhZwCC7mFlhoNYKWZTbZ5E33t4cqMr5cHvp4e+JS89/LAr9R7X08zPiXvvcz4lXpv+96545y/TVP61DyFJRdSWKrjCnNh6XOwcbbtc5NOcNv70ORK99YlIpdkGAb5RVZyCyzkFFrILSheCm1hq3SoKtlWfj9L8X5F5BZayS0oKrO+0OKeP5HeHuZSIaxU0DovnPl62lrUSoczH09z8WLbt+RYPp4eeJfadu69ufi9B14epsumBU1hyQXUwbue2fUf+PoxyEsDsyf0fxL6PwGe3u6uTETcqNBiLRu2ikNWfqHtNa/QSl6hhbyic+/zCy3kFYe4vOL3eYWW4m1W8opsxyr7HWuVB0itCSZTcVArFbxKgtS59+c+2/YrCWTF+5QKZyXf8S5e713qGN4eHue2ldpecoyabl1TWHIhtSzVI5mn4H+T4ddvbJ8bdYSb3oYWvd1bl4hcFixWg/ziAJVbHK7yigNZfqlAVj5olQ1kBUVW8osX23tLqfe2YxVYrOQXFu9TC0LahXiaTXgVB6h7erfgT9e3d+rxq/L3u07PDSfiVEGNYcQ/YOeXsOQpSN4Js4dA53vgupds20VEaoiH2YS/tyf+Lm7QtloNW3gqDlbnQpW1OFSdF7ZK71NUNpydH8RK71NgsR2j3PsiK/nFn0srshoUWW0teOdvczW1LDlILUv1VHYKfPcSbJlv++wTDPHP2ibkVQdwERGnMwyDQotRLkgVWCwE+3rRKNjXqefTbTgXUliq545tsk3Ie2KL7XP4FXDdFLjiBtvNfRERqZOq8vdbQxeLVKR5d3jgB7j5XfBvCCl74PN7YM4wOLre3dWJiIgLKCyJXIrZDN1Hw2NbbNOjePrCkXUwa7BtvrmUfe6uUEREapDCUjUlJCQQGxtLz5493V2KuIpviO0W3GNboOt9YDLD7v9CQm/4zwRIPejuCkVEpAaoz5KD1GfpMpa8G757Gfb+n+2zyQO63G0boyks2r21iYhIhdRnScQVGnWAez6Hcd9Bm+vAsMCWf8Dfuhe3NB1wd4UiIuIEallykFqWxO7oBlj5V/jtO9tnkxk63Ax9HoUo3a4VEalNNHSACyksSTlH18PK186FJoCo3tDnEWh/I5g93FebiIgACksupbAkF3VqJ6xLgG3/BmuhbV2DaOj5AHS5B/zD3FufiMhlTGHJhRSW5JIyT8L6v8PGWZB71rbOwwfi7oAe46B5Dw1wKSLiYgpLLpCQkEBCQgIWi4W9e/cqLMmlFWTbWpk2zoKT28+tb3KlLTRd+XvwCXRffSIilxGFJRdSy5JUmWHAsY2wcbZt0t6iPNt6rwCIvdV2i65lP9tgmCIiUiMUllxIYUkckpMKW/9pC06p+8+tD20Bne+GzndBWIz76hMRqacUllxIYUmcwjDg6M+24LTzK8jPOLetRR+IG24bhiCoiftqFBGpRxSWXEhhSZyuMBd+/R9s/Qz2rwBK/hM12YJTx9tswSk40o1FiojUbQpLLqSwJDUq4wTsWAS7/gPHNpTdFnUVdLgJ2l0PDdvoiToRkSpQWHIhhSVxmfRjsOtr2LXYdsuutLAYW2hqNxRa9AVPb7eUKCJSVygsuZDCkrhF+nHY/V/Y+y0c+vHcoJcA3kHQepAtOEUPhNAo99UpIlJLKSy5kMKSuF1+pq1v096lsG8ZZCeX3d4gGmIGQvQAaDUAAiPcU6eISC2isOQCGpRSaiWrFZK2wJ5v4cAKOL4ZDEvZfRq2hahe0Lyn7TWivearE5HLjsKSC6llSWq1vAw4vBYOroKDK+HUjvL7eAdBs67QpBM07Wx7DW+rACUi9ZrCkgspLEmdkn3G9lTdsfVwdL2t5akwu/x+nn7QOLY4QHWyvTbqAN4Brq9ZRKQGKCy5kMKS1GlWCyTvsoWmk9tsc9ad3HHhAAXQoBU0irUFp5LXhm319J2I1DkKSy6ksCT1jtUCqQds4SmpJEBtL99xvITZ0zbOU6MO0Khj8WsHW7DSrTwRqaUUllxIYUkuG9kpkLy7eNl57n3pqVlK8/SDiCtsLVARV9gCVcM2EBYNnj6urV1E5DwKSy6ksCSXNcOAjOPFwWnXudfTe6Ao78LfMZkhJAoatj4XoBq2hrDWtgmE1RolIi6gsORCCksiF2C1wNlDtuB0ahek7IUzv8GZ/VCQefHvmb1sg2iGtrTdxmvQstT7VuDXQNO6iIhTVOXvt6eLahKRy4nZo7jlqLVt0t8ShgFZybbglLr/XIA685utn5SlwPaaeuDCx/UJLg5PxQGqTKhqAV5+rvjpROQyo7AkIq5jMkFQY9vSql/ZbVaL7Zbe2cOQdtjWMlX6fdYpW/+oU9tty4UENIKQZhDczHarz/6+uW0JbKzbfCJSZQpLIlI7mD1srUOhLYD+5bcX5kLakfIhquR9fobtib3sZDix5SLn8ISgpsUBqjhEBTaBwEa2JaD4Vbf7RKQUhSURqRu8ip+ui7ii/DbDgNyzkH7UNslwxvHz3h+HzBNgLSpefxSOVnAusxcERNjm0QtsXByiIsA/HPzDwL8h+IXZ3vs1AN9QMJtr6icXETdTWKqm0nPDiYibmUzFISbMNmXLhVgttlt56cch45jtNf2YbV32adtrVjLkpYG10BauMk9U8vxmW2iyB6iwc/WUXucXagtWfqG2/b0D1YIlUgfoaTgH6Wk4kXqmKL84PCXbluzk4iB1GnLO2JbcVMg5a3styKr+ucye4BtyLkBd7LWk9ar0OgUtEYfoaTgRkery9DnXIbwyivJttwBzzkBOanGQKv1aalteGuSm2V4tBbbbgiUBrKoqClo+gbYw5R147r1P0IU/e/oodIlcgsKSiIgjPH0gqIltqSzDsHVYLx2eyr2evfg2R4NWaWbPUuEpALz8ixdf8PS19RUrefXys43M7uV77tXLv/x+nsXf9fQp/uxj++zh5VitIm6isCQi4momE3j725bgyKp995JBK912azA/s/g168KfC3Nsx7MW2b6bl+a8n+9iTB4XDlEXC1cOr/c9t01DRogDFJZEROoSR4JWaVbLeWEqyza6emGubSnKK/U+FwrzLrKu9Gup/Yryba+W/HPnNCxQmG1bch2/FFVi9ipu+SoVqDxLBS2H1pd69fAuFdqK35s9dauzjlNYEhG5HJk9ivs8hdTseaxWW2AqyjsvSOWeC1Q1td5aVKqOQigorHi6nRpjKhWoihePUiHL7Fm8mIuDlUfxZw/bUvqzyePc+pJ9TWZbGDOZL7Fcap/Kbnf0OJXYB1PZfXyCbE+VuonCkoiI1ByzGczF/Z1cPRuNpcgW1OwhqvSSX9xClu+c9ZaC4s/Fr9bCUoUYxaHO1c1p9Ujvh2HYa247vcKSiIjUTx6etsU7wPXnLt2iVpRfaskrFayKt1mLiher7Valtch2m9Sw2F6txetKfy6zn7XUYgDGeevOX2p6u6PHMMpvN7s3rigsiYiIOFvpFjWp8zQ+v4iIiEgFFJZEREREKqCwJCIiIlIBhSURERGRCigsiYiIiFRAYUlERESkAgpLIiIiIhVQWKqmhIQEYmNj6dmzp7tLERERkRpkMgzDcHcRdVlGRgYhISGkp6cTHBzs7nJERESkEqry91stSyIiIiIVUFgSERERqYDCkoiIiEgFFJZEREREKqCwJCIiIlIBT3cXUNeVPEyYkZHh5kpERESkskr+bldmUACFJQdlZmYCEBUV5eZKREREpKoyMzMJCQmpcB+Ns+Qgq9XKiRMnCAoKwmQyVeo7GRkZREVFcfToUY3N5AK63q6l6+1aut6up2vuWjV1vQ3DIDMzk8jISMzminslqWXJQWazmebNm1fru8HBwfoPzYV0vV1L19u1dL1dT9fctWriel+qRamEOniLiIiIVEBhSURERKQCCktu4OPjw5QpU/Dx8XF3KZcFXW/X0vV2LV1v19M1d63acL3VwVtERESkAmpZEhEREamAwpKIiIhIBRSWRERERCqgsCQiIiJSAYUlN3j//feJjo7G19eX7t27s3r1aneXVCetWrWKm2++mcjISEwmE4sXLy6z3TAMXnrpJSIjI/Hz8yM+Pp6dO3eW2Sc/P59HH32U8PBwAgICuOWWWzh27JgLf4q6Yfr06fTs2ZOgoCAaNWrEbbfdxp49e8rso+vtPB988AGdOnWyD8LXp08f/u///s++Xde6Zk2fPh2TycSkSZPs63TNneell17CZDKVWZo0aWLfXiuvtSEu9fnnnxteXl7G3//+d2PXrl3GxIkTjYCAAOPw4cPuLq3OWbJkifHnP//ZWLRokQEYX331VZntf/3rX42goCBj0aJFxvbt240RI0YYTZs2NTIyMuz7PPzww0azZs2M5cuXG5s3bzYGDRpkdO7c2SgqKnLxT1O7DR061JgzZ46xY8cOY+vWrcaNN95otGjRwsjKyrLvo+vtPF9//bXxv//9z9izZ4+xZ88e47nnnjO8vLyMHTt2GIaha12T1q9fb7Rq1cro1KmTMXHiRPt6XXPnmTJlitGxY0cjKSnJviQnJ9u318ZrrbDkYr169TIefvjhMuvat29vPPPMM26qqH44PyxZrVajSZMmxl//+lf7ury8PCMkJMT48MMPDcMwjLS0NMPLy8v4/PPP7fscP37cMJvNxrfffuuy2uui5ORkAzBWrlxpGIautys0aNDA+OSTT3Sta1BmZqbRtm1bY/ny5cbAgQPtYUnX3LmmTJlidO7c+YLbauu11m04FyooKGDTpk0MGTKkzPohQ4awdu1aN1VVPx08eJCTJ0+WudY+Pj4MHDjQfq03bdpEYWFhmX0iIyOJi4vTP49LSE9PByAsLAzQ9a5JFouFzz//nOzsbPr06aNrXYMmTJjAjTfeyHXXXVdmva658+3bt4/IyEiio6O56667OHDgAFB7r7Um0nWhlJQULBYLjRs3LrO+cePGnDx50k1V1U8l1/NC1/rw4cP2fby9vWnQoEG5ffTP4+IMw2Dy5MlcffXVxMXFAbreNWH79u306dOHvLw8AgMD+eqrr4iNjbX/MdC1dq7PP/+czZs3s2HDhnLb9O+3c/Xu3ZtPP/2Udu3acerUKV555RX69u3Lzp07a+21VlhyA5PJVOazYRjl1olzVOda659HxR555BG2bdvGjz/+WG6brrfzXHHFFWzdupW0tDQWLVrE6NGjWblypX27rrXzHD16lIkTJ7Js2TJ8fX0vup+uuXMMGzbM/v7KK6+kT58+tG7dmnnz5nHVVVcBte9a6zacC4WHh+Ph4VEu+SYnJ5dL0eKYkicrKrrWTZo0oaCggLNnz150Hynr0Ucf5euvv2bFihU0b97cvl7X2/m8vb1p06YNPXr0YPr06XTu3Jl33nlH17oGbNq0ieTkZLp3746npyeenp6sXLmSd999F09PT/s10zWvGQEBAVx55ZXs27ev1v77rbDkQt7e3nTv3p3ly5eXWb98+XL69u3rpqrqp+joaJo0aVLmWhcUFLBy5Ur7te7evTteXl5l9klKSmLHjh3653EewzB45JFH+PLLL/nhhx+Ijo4us13Xu+YZhkF+fr6udQ249tpr2b59O1u3brUvPXr04N5772Xr1q3ExMTomteg/Px8du/eTdOmTWvvv9810m1cLqpk6IBZs2YZu3btMiZNmmQEBAQYhw4dcndpdU5mZqaxZcsWY8uWLQZgzJgxw9iyZYt9GIa//vWvRkhIiPHll18a27dvN+6+++4LPn7avHlz47vvvjM2b95sXHPNNXrU9wL++Mc/GiEhIUZiYmKZx31zcnLs++h6O8+zzz5rrFq1yjh48KCxbds247nnnjPMZrOxbNkywzB0rV2h9NNwhqFr7kxPPPGEkZiYaBw4cMD46aefjJtuuskICgqy/x2sjddaYckNEhISjJYtWxre3t5Gt27d7I9fS9WsWLHCAMoto0ePNgzD9gjqlClTjCZNmhg+Pj7GgAEDjO3bt5c5Rm5urvHII48YYWFhhp+fn3HTTTcZR44cccNPU7td6DoDxpw5c+z76Ho7z9ixY+2/IyIiIoxrr73WHpQMQ9faFc4PS7rmzlMybpKXl5cRGRlp3HHHHcbOnTvt22vjtTYZhmHUTJuViIiISN2nPksiIiIiFVBYEhEREamAwpKIiIhIBRSWRERERCqgsCQiIiJSAYUlERERkQooLImIiIhUQGFJREREpAIKSyIiDmrVqhUzZ850dxkiUkMUlkSkThkzZgy33XYbAPHx8UyaNMll5547dy6hoaHl1m/YsIGHHnrIZXWIiGt5ursAERF3KygowNvbu9rfj4iIcGI1IlLbqGVJROqkMWPGsHLlSt555x1MJhMmk4lDhw4BsGvXLm644QYCAwNp3Lgx9913HykpKfbvxsfH88gjjzB58mTCw8MZPHgwADNmzODKK68kICCAqKgoxo8fT1ZWFgCJiYncf//9pKen28/30ksvAeVvwx05coRbb72VwMBAgoODufPOOzl16pR9+0svvUSXLl2YP38+rVq1IiQkhLvuuovMzMyavWgiUi0KSyJSJ73zzjv06dOHBx98kKSkJJKSkoiKiiIpKYmBAwfSpUsXNm7cyLfffsupU6e48847y3x/3rx5eHp6smbNGj766CMAzGYz7777Ljt27GDevHn88MMPPP300wD07duXmTNnEhwcbD/fk08+Wa4uwzC47bbbSE1NZeXKlSxfvpz9+/czYsSIMvvt37+fxYsX88033/DNN9+wcuVK/vrXv9bQ1RIRR+g2nIjUSSEhIXh7e+Pv70+TJk3s6z/44AO6devGq6++al83e/ZsoqKi2Lt3L+3atQOgTZs2vP7662WOWbr/U3R0NNOmTeOPf/wj77//Pt7e3oSEhGAymcqc73zfffcd27Zt4+DBg0RFRQEwf/58OnbsyIYNG+jZsycAVquVuXPnEhQUBMB9993H999/z1/+8hfHLoyIOJ1alkSkXtm0aRMrVqwgMDDQvrRv3x6wteaU6NGjR7nvrlixgsGDB9OsWTOCgoIYNWoUZ86cITs7u9Ln3717N1FRUfagBBAbG0toaCi7d++2r2vVqpU9KAE0bdqU5OTkKv2sIuIaalkSkXrFarVy880389prr5Xb1rRpU/v7gICAMtsOHz7MDTfcwMMPP8y0adMICwvjxx9/ZNy4cRQWFlb6/IZhYDKZLrney8urzHaTyYTVaq30eUTEdRSWRKTO8vb2xmKxlFnXrVs3Fi1aRKtWrfD0rPyvuI0bN1JUVMRbb72F2WxrdP/3v/99yfOdLzY2liNHjnD06FF769KuXbtIT0+nQ4cOla5HRGoP3YYTkTqrVatW/Pzzzxw6dIiUlBSsVisTJkwgNTWVu+++m/Xr13PgwAGWLVvG2LFjKww6rVu3pqioiL/97W8cOHCA+fPn8+GHH5Y7X1ZWFt9//z0pKSnk5OSUO851111Hp06duPfee9m8eTPr169n1KhRDBw48IK3/kSk9lNYEpE668knn8TDw4PY2FgiIiI4cuQIkZGRrFmzBovFwtChQ4mLi2PixImEhITYW4wupEuXLsyYMYPXXnuNuLg4PvvsM6ZPn15mn759+/Lwww8zYsQIIiIiynUQB9vttMWLF9OgQQMGDBjAddddR0xMDAsWLHD6zy8irmEyDMNwdxEiIiIitZValkREREQqoLAkIiIiUgGFJREREZEKKCyJiIiIVEBhSURERKQCCksiIiIiFVBYEhEREamAwpKIiIhIBRSWRERERCqgsCQiIiJSAYUlERERkQr8PzgCh1WkR01XAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "class DataDiscrepancyCallback(callbacks.Callback):\n", + " def __init__(self, A, data):\n", + " self.f = LeastSquares(A, data)\n", + " self.save_values=[]\n", + "\n", + " def __call__(self, algorithm):\n", + " self.save_values.append(self.f(algorithm.get_output()))\n", + "\n", + "mycallback_FISTA_lower_bound= DataDiscrepancyCallback(A, absorption)\n", + "algo1=FISTA(initial=ig.allocate(0), f=F, g=alpha*TotalVariation(lower=0), update_objective_interval=10) \n", + "algo1.run(500, callbacks=[mycallback_FISTA_lower_bound])\n", + "\n", + " \n", + "mycallback_FISTA_no_lower_bound= DataDiscrepancyCallback(A, absorption)\n", + "algo2=FISTA(initial=ig.allocate(0), f=F, g=alpha*TotalVariation(), update_objective_interval=10) \n", + "algo2.run(500, callbacks=[mycallback_FISTA_no_lower_bound])\n", + "\n", + "\n", + "show2D([ground_truth, algo1.get_output(), algo2.get_output()], title=['ground_truth', 'FISTA_lower_bound', 'FISTA_no_lower_bound'], num_cols=3)\n", + "show2D([absorption, A.direct(algo1.get_output())-absorption, A.direct(algo2.get_output())-absorption], title=['ground_truth', 'Data error FISTA_lower_bound', 'Data error FISTA_no_lower_bound'], fix_range=[[0,3], [-0.02, 0.02], [-0.02, 0.02]], cmap=['gray', 'seismic', 'seismic'], num_cols=3)\n", + "plt.plot(range(10,501), mycallback_FISTA_lower_bound.save_values[10:], label='FISTA TV with lower bound ')\n", + "plt.plot(range(10, 501), mycallback_FISTA_no_lower_bound.save_values[10:], label='FISTA TV without lower bound ')\n", + "plt.yscale('log')\n", + "plt.ylabel('Data discrepancy $\\|Ax-y\\|_2^2$')\n", + "plt.xlabel('Iteration')\n", + "plt.legend()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We see that the without the lower bound, the reconstruction overfits to the noisy absorption data " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Calculating a noise approximation for each iteration (A custom callback example) " + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/bih17925/miniconda3/envs/cil_testing2/lib/python3.10/site-packages/numpy/core/fromnumeric.py:3432: RuntimeWarning: Mean of empty slice.\n", + " return _methods._mean(a, axis=axis, dtype=dtype,\n", + "/home/bih17925/miniconda3/envs/cil_testing2/lib/python3.10/site-packages/numpy/core/_methods.py:190: RuntimeWarning: invalid value encountered in divide\n", + " ret = ret.dtype.type(ret / rcount)\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABdEAAAGoCAYAAACpN6wQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9eZhcZZn3/619r+o9nUCAgCIwMToGB4OyieAgKoOiODqIir4ijrK4oqKIjgzqy0QHAXUCuAzLbwYQF0TCjEQdorIqKoOKgYTQnU4vte9V5/dH3u+T+5w+1V3dqV5zf66rru6uOnXOc5Z+7ufePZZlWVAURVEURVEURVEURVEURVEUZRLehR6AoiiKoiiKoiiKoiiKoiiKoixW1IiuKIqiKIqiKIqiKIqiKIqiKC1QI7qiKIqiKIqiKIqiKIqiKIqitECN6IqiKIqiKIqiKIqiKIqiKIrSAjWiK4qiKIqiKIqiKIqiKIqiKEoL1IiuKIqiKIqiKIqiKIqiKIqiKC1QI7qiKIqiKIqiKIqiKIqiKIqitECN6IqiKIqiKIqiKIqiKIqiKIrSAjWiK4qiKIqiKIqiKIqiKIqiKEoL1IiuKEuMm266CR6PB08//XTb33nggQdw+eWXI51Oz8mYptr/IYccgte+9rVzclxFURRl/qD8cXt9+MMfBuA+54+NjeHSSy/FUUcdhVgshlQqhSOOOALnnHMOfvvb3wJAy/06X/fff7/Z71e/+lV4PB6sXbt2xudy//33t33MM888E5FIZEoZ+ra3vQ2BQAC7du2a8VimYjYynzz99NPweDz48pe/3NExtcN9992HDRs2IBqNoq+vD+94xzswMjIyabtPfepTeO1rX4sDDjgAHo8H73jHO+Z9rIqiKPsjKtPTLfenMn0vP/zhD/H2t78dL3zhCxEIBODxeOb1+Iqy2PAv9AAURZl7HnjgAXz2s5/FO97xDnR1dS25/SuKoiiLhxtvvBFHHHGE7b1Vq1a5bpvP5/Gyl70M+XweH/nIR/CiF70IpVIJf/zjH3HHHXfgsccew7p167B161bb9z73uc/hpz/9Kf77v//b9v5RRx1lfr/hhhsAAL///e/xq1/9Csccc0zb5/CSl7xk0jHPPPNMHHbYYZMU1NHRUXzve9/DzTffjAsuuGDSvjKZDO6880689rWvxYoVK9oew3Jly5YtOO2003D66afjrrvuwsjICD72sY/h5JNPxkMPPYRQKGS2/Zd/+ResW7cOr3/96839VBRFUeYPlel2VKbbufPOO/HLX/4Sf/3Xf41QKISHH354oYekKAuKGtEVxQXLslAulxGJRBZ6KAtCqVTab89dURRFmZq1a9fi6KOPbmvb//iP/8Cf//xn/Pd//zdOOukk22eXXHIJms0mAOBlL3uZ7bP+/n54vd5J75OHHnoIv/nNb3D66afjRz/6ETZt2jQjhTuZTE7adygUQldX16T3G40GVq1ahRtuuMFV4b7llltQKpVw3nnntX385cxHPvIRHH744fjP//xP+P17VI01a9bg5S9/OW644Qa8733vM9vmcjl4vXsSY7/zne8syHgVRVH2Z1Sm21GZbueb3/ymkdP/+I//qEZ0Zb9Hy7koy5677roL69atQygUwqGHHoqvfOUruPzyy22pSB6PB//4j/+I66+/HkceeSRCoRC+9a1vAQB+8Ytf4OSTT0YikUA0GsWxxx6LH/3oR7ZjOPdH3FK2mBZ3zz334CUveQkikQiOOOII1wisX/7yl3j5y1+OcDiMVatW4dJLL0WtVpvR+V9++eX4yEc+AmCPEutMn+N47rjjDvz1X/81wuEwPvvZz5qUsZtuumnSPj0eDy6//PK29k/aOV9FURRleTE2NgYAWLlypevnVMxmyqZNmwAA//zP/4xjjz0Wt956K4rF4uwGOQ0+nw/nnnsuHn74YTz++OOTPr/xxhuxcuVKnHbaaW3vc/PmzTjjjDNw4IEHIhwO43nPex7e+973YnR0dNrvnnjiiVi7di1+/vOf42UvexkikQgOOOAAXHbZZWg0Gq7fufrqq7FmzRrE43Fs2LABv/zlL22fP/TQQ3jLW96CQw45BJFIBIcccgj+/u//Hs8880zb5wQAO3fuxIMPPohzzjnHGNAB4Nhjj8Xhhx+OO++807b9bO+/oiiKMv+oTHdnucp0QOW0ojjR/whlWXPPPffgDW94A3p7e3Hbbbfhi1/8Im655RZjIJd873vfw3XXXYdPf/rT+MlPfoLjjjsOW7ZswStf+UpkMhls2rQJt9xyCxKJBF73utfhtttum/W4fvOb3+BDH/oQLr74YmPkP++88/Czn/3MbPOHP/wBJ598MtLpNG666SZcf/31ePTRR/H5z39+Rsd697vfjQ984AMAgDvuuANbt27F1q1b8ZKXvMRs88gjj+AjH/kIPvjBD+Kee+7BG9/4xo7uv53zVRRFUZYGjUYD9Xrd9mrFhg0bAABvf/vb8b3vfc8o4PtCqVTCLbfcgpe+9KVYu3Yt3vWudyGXy+E//uM/9nnfrXjXu94Fj8czyQH8hz/8Ab/+9a9x7rnnwufztb2/p556Chs2bMB1112He++9F5/+9Kfxq1/9Cq94xSvacpYPDw/jLW95C972trfhrrvuwllnnYXPf/7zuPDCCydt+7WvfQ2bN2/Gxo0b8e///u8oFAp4zWteg0wmY7Z5+umn8YIXvAAbN27ET37yE1x11VUYGhrCS1/60raMAOR3v/sdAGDdunWTPlu3bp35XFEURVkcqEzfi8p0RVGmxVKUZcxLX/pSa/Xq1ValUjHv5XI5q7e315KPPwArlUpZ4+Pjtu+/7GUvswYGBqxcLmfeq9fr1tq1a60DDzzQajablmVZ1mc+8xnL7d/pxhtvtABY27ZtM+8dfPDBVjgctp555hnzXqlUsnp6eqz3vve95r2zzz7bikQi1vDwsO3YRxxxxKR9TseXvvSllt85+OCDLZ/PZz355JO297dt22YBsG688cZJ3wFgfeYzn2l7/+2cr6IoirK4oUxze9VqNcuy9sz5p59+uu17V1xxhRUMBs22a9assc4//3zrN7/5TctjnXvuuVYsFnP97Nvf/rYFwLr++usty9oj1+PxuHXcccft0/m5jV1ywgknWH19fVa1WjXvfehDH7IAWH/84x9nfdxms2nVajXrmWeesQBYd911l/nMbR1xwgknTNrOsizrPe95j+X1eo28pRx/4QtfaNXrdbPdr3/9awuAdcstt7QcU71et/L5vBWLxayvfOUrbZ/Lv//7v1sArK1bt0767P/8n/9jBYPBlt+NxWLWueee2/axFEVRlNmjMl1l+kx5//vf72rzUJT9CY1EV5YthUIBDz30EP7u7/4OwWDQvB+Px/G6171u0vavfOUr0d3dbfv+r371K5x11lmIx+PmfZ/Ph3POOQfPPvssnnzyyVmN7cUvfjEOOugg83c4HMbhhx9uS7H66U9/ipNPPtnW0MTn8+Hss8+e1TGnYt26dTj88MM7vl/SzvkqiqIoS4Nvf/vbePDBB20vWbrDyWWXXYbt27fjhhtuwHvf+17E43Fcf/31WL9+PW655ZYZH3/Tpk2IRCJ4y1veAmCPXH/Tm96En//85/jTn/406/OajvPOOw+jo6P4/ve/DwCo1+v47ne/i+OOOw7Pf/7zZ7SvkZERnH/++Vi9ejX8fj8CgQAOPvhgAMATTzwx7fcTiQRe//rX295761vfimazOSnL6/TTT7dF1DFKXMrgfD6Pj33sY3je854Hv98Pv9+PeDyOQqHQ1nicuJW4m+p9RVEUZWFQma4yXVGU9lEjurJsmZiYgGVZrl213d5z1nbj991qvrFj+WxT2Hp7eye9FwqFUCqVzN9jY2MYHByctJ3be/tKq7p2naKd81UURVGWBkceeSSOPvpo22s6VqxYgXe+8524/vrr8dvf/hZbtmxBMBh0TVWeij//+c/42c9+htNPPx2WZSGdTiOdTuOss84CgDntt3HWWWchlUrhxhtvBADcfffd2LVr14ybjzWbTZx66qm444478NGPfhT/9V//hV//+tempmk7stFtHcP1gXNt4pTBoVBo0nHe+ta34pprrsG73/1u/OQnP8Gvf/1rPPjgg+jv75+RrOax3NZH4+Pj6OnpaXtfiqIoytyjMl1luqIo7dPaxagoS5zu7m54PB7s2rVr0mfDw8OT3nNGR3V3d8Pr9WJoaGjSts899xwAoK+vD8CeyGoAqFQqRpAB2KeaY729va7jdHtvX3GLDJPnJOlE7TtFURRl/+b444/Hqaeeiu9973sYGRnBwMBAW9+74YYbYFkW/vM//xP/+Z//Oenzb33rW/j85z8/o1qm7RKJRPD3f//3+OY3v4mhoSHccMMNSCQSeNOb3jSj/fzud7/Db37zG9x0000499xzzft//vOf297HVGsbN8f1VGQyGfzwhz/EZz7zGXz84x8371cqFYyPj89oX2vXrgUAPP7443jNa15j++zxxx83nyuKoijLB5Xpy1OmK4oyGY1EV5YtsVgMRx99NL73ve+hWq2a9/P5PH74wx+29f1jjjkGd9xxh81j22w28d3vfhcHHnigKYFyyCGHAAB++9vf2vbxgx/8YNbjP+mkk/Bf//VfNqHaaDRm1dDUzUM9HStWrEA4HJ50TnfddVdH9q8oiqIsf3bt2oVmsznp/UajgT/96U+IRqPo6upqa1+NRgPf+ta3cNhhh+GnP/3ppNeHPvQhDA0N4cc//nGHz2Iv5513HhqNBr70pS/h7rvvxlve8hZEo9EZ7YOOa+l0B4Cvf/3rbe8jl8uZFHRy8803w+v14vjjj5/xeCzLmjSef/u3f0Oj0ZjRvg444AD8zd/8Db773e/avvvLX/4STz75JN7whjfMaH+KoijK4kFl+mSWs0xXFGUyGomuLGuuuOIKnH766Xj1q1+NCy+80AjJeDzelif2yiuvxCmnnIKTTjoJH/7whxEMBnHttdfid7/7HW655RYjNF/zmtegp6cH5513Hq644gr4/X7cdNNN2LFjx6zH/qlPfQrf//738cpXvhKf/vSnEY1G8bWvfQ2FQmHG+3rhC18IAPjKV76Cc889F4FAAC94wQuQSCRafsfj8eAf/uEfcMMNN+Cwww7Di170Ivz617/GzTff3JH9K4qiKMuf73znO/j617+Ot771rXjpS1+KVCqFZ599Fv/2b/+G3//+9/j0pz9t61syFT/+8Y/x3HPP4aqrrsKJJ5446fO1a9fimmuuwaZNm/Da1762w2eyh6OPPhrr1q3Dxo0bYVnWjNO+AeCII47AYYcdho9//OOwLAs9PT34wQ9+gM2bN7e9j97eXrzvfe/D9u3bcfjhh+Puu+/GN7/5Tbzvfe+z9SBph2QyieOPPx5f+tKX0NfXh0MOOQRbtmzBpk2b2jaGSK666iqccsopeNOb3oQLLrgAIyMj+PjHP461a9fine98p23bLVu2YPfu3QD2GFSeeeYZE414wgknoL+/f8bHVxRFUeYGlemTWe4y/ZlnnsGDDz4IAHjqqacAwMjpQw45pK3yP4qynNBIdGVZ87d/+7e4/fbbMTY2hrPPPhuXXHIJzjzzTJxxxhltCZETTjgB//3f/41YLIZ3vOMdeMtb3oJMJoPvf//7tgafyWQS99xzDxKJBP7hH/4B559/PtauXYtPfvKTsx772rVrcd999yGZTOLcc8/F//k//wfr1q3DZZddNuN9nXjiibj00kvxgx/8AK94xSvw0pe+FA8//PC03/u///f/4h/+4R/wxS9+EWeccQa2bt3qGsU/2/0riqIoy5vTTz8dZ5xxBu6++268613vwitf+Uq8//3vR6PRwHe+8x189rOfbXtfmzZtQjAYnGSIJX19fTjzzDPxwx/+0DU1ulOcd955sCwLRx11FI455pgZfz8QCOAHP/gBDj/8cLz3ve/F3//932NkZAT33Xdf2/sYHBzEzTffjG9961t4/etfj//v//v/8IlPfAJf/epXZzweYE/E20knnYSPfvSjeMMb3oCHHnoImzdvRiqVmvG+TjzxRNx9990YGhrC6173OnzgAx8w2XXOyLjPfOYzeNOb3oQ3velNKJfLuP/++83fv//972d1LoqiKMrcoDJ9Mstdpv/0pz81cvmee+4BAPP3NddcM6vxKcpSxmNZlrXQg1CU+aRWq+HFL34xDjjgANx7770LPRxFURRFUZS2OfHEEzE6Oorf/e53Cz0URVEURVH2AZXpirK00HIuyrLnvPPOwymnnIKVK1dieHgY119/PZ544gl85StfWeihKYqiKIqiKIqiKIqiKIqyyFEjurLsyeVy+PCHP4zdu3cjEAjgJS95Ce6++2686lWvWuih7TPNZtO1uYvE79d/c0VRFGX/otFoYKpkS4/HA5/Pt2yOOx/U6/UpP/d6vfB6tVKkoiiK0llUpncelemKMju0nIuiLGEuv/zyaWvPbdu2DYcccsj8DEhRFEVRFgEnnngitmzZ0vLzgw8+GE8//fSyOe58wGbqrTj33HNx0003zc9gFEVRlP0GlemdR2W6oswONaIryhLmueeew3PPPTflNuvWrWu7S7qiKIqiLAeefPJJ5HK5lp+HQiG88IUvXDbHnQ8eeuihKT/v6+tTp72iKIrScVSmdx6V6YoyO9SIriiKoiiKoiiKoiiKoiiKoigt0GLJ2FNX+rnnnkMikZg2rUVRFEWZGsuykMvlsGrVKtdaeuVyGdVqdZ+PEwwGEQ6H93k/ytJEZbeiKErnUNmtzAcquxVFUTqHyu75R43o2FMSY/Xq1Qs9DEVRlGXFjh07cOCBB9reK5fLWLNmDYaHh/d5/4ODg9i2bZsK9P0Uld2KoiidR2W3Mpeo7FYURek8KrvnDzWiA0gkEgs9BEVRlGWH29xarVYxPDyMHTt2IJlMznrf2WwWq1evRrVaVWG+n7IcZLfX64XH44FlWWg2mws9HOX/wehIrXi4NNH7t2+o7FbmkuUgu/1+P7xeLxqNBhqNxkIPR/l/6Nyv7M+o7J4/1IiO6TsTK4qiKDNnqrk1kUjskyKlC2RlprJ7sSpXlmUtujEtJuhkUJT5YrHOFfOFym5lLpHP11T/a/yMPxeTo5mOb32eO8v+Pvcqyr6gsnv+UCO6oiiKMu/sq+FQhbnSCrmI5HPi9XpNncBms7lolPHFMo7FzEL8r+v8srTZ1/vnNocoe1DZrXSSVs+Dx+OxvchikZkafT437Ov8oPPL/o06YVqjsruzqBFdURRFmXdUmCuKoiiLFc2AcEdlt6IoiqIsLVR2dxY1oiuKoiiKsmxwW+jJmuOLJZJNUfYHlmJkGJXNxTbmpXgtFWU28Bm3LGtRlnNRlP2FpSR3FusYl9I1VNpDjeiKoijKvKMecWU+WYwGMUVZ7jhLMQCLe+5m9PliHCOv5UKPTWW3Ml9IQ7qiKPOLU3YvBvmzFFHZvTzxLvQAFEVRlP0PGek329dMufbaa7FmzRqEw2GsX78eP//5z6fcfsuWLVi/fj3C4TAOPfRQXH/99ZO2uf3223HUUUchFArhqKOOwp133mn7/LrrrsO6deuQTCaRTCaxYcMG/PjHP550LS6//HKsWrUKkUgEJ554In7/+9/P+PwURVEWI0tF+Vrs41wM41sI2a0oiqIoS5XFIPdUdncWNaIriqIo8858C/PbbrsNF110ET75yU/i0UcfxXHHHYfTTjsN27dvd91+27ZteM1rXoPjjjsOjz76KD7xiU/ggx/8IG6//XazzdatW3H22WfjnHPOwW9+8xucc845ePOb34xf/epXZpsDDzwQ//zP/4yHHnoIDz30EF75ylfijDPOsBnJv/jFL+Lqq6/GNddcgwcffBCDg4M45ZRTkMvlZnhVFUVRFg+qhHWOxXINVRFXFEVZ3jib+urcPXsWi+xT2d1ZPJZeEWSzWaRSqYUehqIoyrIik8kgmUza3uN8u3v37kmfzYRsNov+/n7XY7hxzDHH4CUveQmuu+46896RRx6Jv/u7v8OVV145afuPfexj+P73v48nnnjCvHf++efjN7/5DbZu3QoAOPvss5HNZm2R5X/7t3+L7u5u3HLLLS3H0tPTgy996Us477zzYFkWVq1ahYsuuggf+9jHAACVSgUrVqzAVVddhfe+973TX4z9FJXdM0NrMiqK0g6LSXYryw+V3YqyuFED+tJEZff8oZHoiqIoyrzTKY94Npu1vSqVyqRjVatVPPzwwzj11FNt75966ql44IEHXMe3devWSdu/+tWvxkMPPYRarTblNq322Wg0cOutt6JQKGDDhg0A9kS8Dw8P2/YTCoVwwgkntNyPsrxw1p2cK1QRUhRlX9FoNkVRlOWPztnLC5XdnUWN6IqiKMq80ylhvnr1aqRSKfNyiyofHR1Fo9HAihUrbO+vWLECw8PDruMbHh523b5er2N0dHTKbZz7fPzxxxGPxxEKhXD++efjzjvvxFFHHWX2we+1OzZl+eD1el2bL+7vyFRivTZLm3bvod7vpYEq4orS/ry2v6LXZ2kzk/laZffSQGV3Z/Ev9AAURVGU/Y99Fcj87o4dO2xpZaFQqOV3nAs8y7KmXPS5be98v519vuAFL8Bjjz2GdDqN22+/Heeeey62bNliDOmzGZui7E94PB5dwCvKIqBTsltRlOWPym5FWRyo7O4sakRXFEVRlizJZHLa2mx9fX3w+XyTIrtHRkYmRYCTwcFB1+39fj96e3un3Ma5z2AwiOc973kAgKOPPhoPPvggvvKVr+DrX/86BgcHAeyJSF+5cmVbY1OWD81mU5VMF9wcVsrSpN1ne6H/BxhJpxFXiqJMh84RirKHhf5fkOvEhR6Lsv+g5VwURVGUeWc+08qCwSDWr1+PzZs3297fvHkzjj32WNfvbNiwYdL29957L44++mgEAoEpt2m1T3nurN2+Zs0aDA4O2vZTrVaxZcuWafejLA900d+aVtdGjetKp/F4PPB6vfB6VTWaCk0JVxRlOuT/uZb6UOYSym59xqZGZXdn0Uh0RVEUZd6Z77SySy65BOeccw6OPvpobNiwAd/4xjewfft2nH/++QCASy+9FDt37sS3v/1tAMD555+Pa665Bpdccgne8573YOvWrdi0aRNuueUWs88LL7wQxx9/PK666iqcccYZuOuuu3DffffhF7/4hdnmE5/4BE477TSsXr0auVwOt956K+6//37cc889APYs/i666CJ84QtfwPOf/3w8//nPxxe+8AVEo1G89a1vnfX1UZTljC7mlblAFcXp0ZRwRVEUZbFAmaKyZWpUdncWNaIriqIo8858C/Ozzz4bY2NjuOKKKzA0NIS1a9fi7rvvxsEHHwwAGBoawvbt2832a9aswd13342LL74YX/va17Bq1Sp89atfxRvf+EazzbHHHotbb70Vn/rUp3DZZZfhsMMOw2233YZjjjnGbLNr1y6cc845GBoaQiqVwrp163DPPffglFNOMdt89KMfRalUwgUXXICJiQkcc8wxuPfee5FIJGZ7eRRl2aALd2U+WEyllRZzaRlVxBVFaQf9X1fmg8UoJxcjKrs7i+YsKoqiKPsFF1xwAZ5++mlUKhU8/PDDOP74481nN910E+6//37b9ieccAIeeeQRVCoVbNu2zUStS8466yz87//+L6rVKp544gm84Q1vsH2+adMmc8yRkRHcd999NgM6sMdgcvnll2NoaAjlchlbtmzB2rVrO3fiiqIoyrQsFiVRyx8oiqIoytJDZfderr32WqxZswbhcBjr16/Hz3/+8ym337JlC9avX49wOIxDDz0U119//aRtbr/9dhx11FEIhUI46qijcOedd7bc35VXXmkyviWWZeHyyy/HqlWrEIlEcOKJJ+L3v//9jM5tQY3oP/vZz/C6170Oq1atgsfjwfe+9z3zWa1Ww8c+9jG88IUvRCwWw6pVq/D2t78dzz33nG0flUoFH/jAB9DX14dYLIbXv/71ePbZZ+f5TBRFUZSZoLXZli4quxVFUeYOy7LQbDYXehiuqOxeuqjsVhRFmVsWq4ybb9l922234aKLLsInP/lJPProozjuuONw2mmn2bK+Jdu2bcNrXvMaHHfccXj00UfxiU98Ah/84Adx++23m222bt2Ks88+G+eccw5+85vf4JxzzsGb3/xm/OpXv5q0vwcffBDf+MY3sG7dukmfffGLX8TVV1+Na665Bg8++CAGBwdxyimnIJfLtX1+C2pELxQKeNGLXoRrrrlm0mfFYhGPPPIILrvsMjzyyCO444478Mc//hGvf/3rbdtddNFFuPPOO3HrrbfiF7/4BfL5PF772tei0WjM12koiqIoM0QV8aWLym5FmVu0weX+zWKWcyq7ly4quxVFmQ0aXb30mW/ZffXVV+O8887Du9/9bhx55JHYuHEjVq9ejeuuu851++uvvx4HHXQQNm7ciCOPPBLvfve78a53vQtf/vKXzTYbN27EKaecgksvvRRHHHEELr30Upx88snYuHGjbV/5fB5ve9vb8M1vfhPd3d2TrsPGjRvxyU9+Em94wxuwdu1afOtb30KxWMTNN9/c/glaiwQA1p133jnlNr/+9a8tANYzzzxjWZZlpdNpKxAIWLfeeqvZZufOnZbX67Xuueeeto+dyWQsAPrSl770pa8OvjKZTMv5dvv27VY6nZ71a/v27S2PocwfgMpufemr0y+v12t5vV7L4/Es+Fj0tf+9VHYvfwCV3frSl77ae+laZGm85kN279ixw8pkMuZVLpcnHbNSqVg+n8+64447bO9/8IMftI4//nhXuXDcccdZH/zgB23v3XHHHZbf77eq1aplWZa1evVq6+qrr7Ztc/XVV1sHHXSQ7b23v/3t1kUXXWRZlmWdcMIJ1oUXXmg+e+qppywA1iOPPGL7zutf/3rr7W9/u+vY3FhSYS6ZTAYejwddXV0AgIcffhi1Wg2nnnqq2WbVqlVYu3YtHnjggZb7qVQqyGaztpeiKIqiKJ1HZbeizAxrEUXtukWgac1uRVn+qOxWlOXFbGX3YliLKIuD1atXI5VKmdeVV145aZvR0VE0Gg2sWLHC9v6KFSswPDzsut/h4WHX7ev1OkZHR6fcRu7z1ltvxSOPPOI6Lu6D32t3bG74295ygSmXy/j4xz+Ot771rUgmkwD2XIRgMDgpTH+6i3DllVfis5/97JyOV1EURWnNvhqIdEG3NFgo2e1UEvR5UZYSi+V55f+Rx+NZNGNSFhaV3fsHqncryvLC4/GYMnHNZlPn4v2MTsnuHTt2GJkAAKFQqOV33HSxqZw4rXQ3+f5U+9yxYwcuvPBC3HvvvQiHw1OdzozH5mRJRKLXajW85S1vQbPZxLXXXjvt9tNdhEsvvRSZTMa8duzY0cnhKoqiKNNgtai3NpOXsrhZSNmtz4ii7Dv6P6Q4Udm9/FkqerdmwyjKzND5d/+lU7I7mUzaXm5G9L6+Pvh8vknO1ZGRkUkR4GRwcNB1e7/fj97e3im34T4ffvhhjIyMYP369fD7/fD7/diyZQu++tWvwu/3o9FoYHBwEABmNDY3Fr0RvVar4c1vfjO2bduGzZs32zwfg4ODqFarmJiYsH1nuosQCoUmPQCKoijK/KGK+PJmschufVaUuWa5G3Lc/ofm8/9KS8csLlR2L28Wi+xWJsNIYm06rcwGzr3zMQfzWVXZvXiYT9kdDAaxfv16bN682fb+5s2bceyxx7p+Z8OGDZO2v/fee3H00UcjEAhMuQ33efLJJ+Pxxx/HY489Zl5HH3003va2t+Gxxx6Dz+fDmjVrMDg4aNtPtVrFli1bWo7NjUU9C1OQ/+lPf8J9991nvBBk/fr1CAQCtoswNDSE3/3udzO6CIqiKIqidAaV3dOz0IZBVWw6gyx3onSehf4/UZT9CZXdix+dD5V9Yb6dmfq87r9ccskl+Ld/+zfccMMNeOKJJ3DxxRdj+/btOP/88wHsyVB6+9vfbrY///zz8cwzz+CSSy7BE088gRtuuAGbNm3Chz/8YbMNS7VcddVV+N///V9cddVVuO+++3DRRRcBABKJBNauXWt7xWIx9Pb2Yu3atQD2PJMXXXQRvvCFL+DOO+/E7373O7zjHe9ANBrFW9/61rbPb0Froufzefz5z382f2/btg2PPfYYenp6sGrVKpx11ll45JFH8MMf/hCNRsOE3ff09CAYDCKVSuG8887Dhz70IfT29qKnpwcf/vCH8cIXvhCvetWrFuq0lHnG6/UiHA4jEAjA7/cjFArB6/WiUqmgUqmg0WigUqmgXq8v9FAVRRFoRNrSRGX3vrPQz/5CH9+J3+9HJBKB1+tFtVpFpVJZElGrLGOw2Me5VNHrujjR+7I0WW6ye398DheLXGSUsc/nQzAYhNfrRa1WQ61Wg2VZWnN7P0fv/eJkPu/L2WefjbGxMVxxxRUYGhrC2rVrcffdd+Pggw8GsMcBu337drP9mjVrcPfdd+Piiy/G1772NaxatQpf/epX8cY3vtFsc+yxx+LWW2/Fpz71KVx22WU47LDDcNttt+GYY46Z0dg++tGPolQq4YILLsDExASOOeYY3HvvvUgkEm3vw2Mt4FN+//3346STTpr0/rnnnovLL78ca9ascf3eT3/6U5x44okA9jQ++chHPoKbb74ZpVIJJ598Mq699lqsXr267XFks1mkUqlZnYOy8AQCAfT19SEWiyEWi6G7uxuBQAATExMYHx83qYeFQmGhh6oo+xWZTGZS2i7n27/85S8zElZOcrkcDj30UNdjKHOLyu7lCSOGFmJZGIvF0N/fD7/fj2w2i0wmg0ajgUajocqYoswzKruXJyq7lz/zIcc9Hg/8fr8JYkulUvD7/SgUCsjlcmg2m6jVamg0GnM2BmXxwIyxxeLg2Z9R2T1/LKgRfbGgwnxp4vV64fP5EAqFMDg4iK6uLsRiMfT09Bgj+u7du1GtVrFr1y5kMhlYlqVCXVHmiamE+VNPPbXPwvywww5TYb4fo7K7s8ynEZ31MoPBIPx+P2KxGPr6+owRfWJiAvV6HZVKBbVabd7GpSiKym5lblHZPXfMtRxn9HksFkMoFEI4HEYikYDP5zNG9EajgUKhgEqlMqdjURYHakRfPKjsnj8WtJyLoswWj8eD/v5+rFixAslkEi960Ytw4IEHIhQKIRaLGWGez+eRy+Xw6KOP4plnnkGhUMCuXbtQrVYX+hQWNfuSnk5hKpvfyBpsmuKnKIrSHrKe5FzPm/M1LweDQVMa4G/+5m/wvOc9D/V63USulctllEolFItF/PGPf8Tw8LAxqDebTZUhc4TP5zOyn8EGsjGYXndFUTrJQmY/LVfm8loGg0GEQiF0dXXh+OOPx+GHH45qtYpCoYB6vW50vGKxiIcffhjbt29Ho9FArVYzsrvZbM7Z+PZXpJzm/Zdrx7mW3fPZsFRRFgtqRFeWJB6PB93d3TjssMPQ39+PV7ziFTjiiCPg8/kQCATg8XhQq9VQrVYxPj5u6qGPjo5iYmJCjehTIBt5zUYgyjp5VMrl4kk91Qqw73Ud9RlSZst8Gqb3leVoZAgEAohGo+jv78dJJ52EV7ziFchms9ixY4fpY1Kv15HJZFAqlZDP51GtVtFsNo0s14yyzkKZ7fV6TRkd+T6NI9Ptgyyn51Wxo7Jb6RTLRb4tl/OYjmAwiFgshoGBAZx00kk46aSTMDExgW3btqFUKiEcDiMSiWB8fBwTExMYGxszNdIpU9SI3llk0Jqcm2V0eLuyW+f15Y3K7s6iRnRlSeL1ehGPx9Hf34/e3l5Eo1H4/X6b4ZaTBeu19ff3o1qtwu/Xx55QyAYCAaNA86c0eDNCsFUUoIw+Z4MZn88Hv98Pj8dj+261WjV1btUQsv+iwlxZKNgMcimwlMbaDh6PB+FwGN3d3Ugmk/B4PKhWq6hWqyYa3ev1mjTxeDyOrq4uFItFFItFdcI6oOz1+XyIRCLw+Xyo1Womal9eL3nd+D0q11IR5+8ATMP2RqOBUqk0ZYN2bbK6f6CyW+kky+F5WA7nMB0ejwfRaBR9fX3o6emBz+dDpVIxspv6nN/vRyAQQCKRQG9vL4rFIiqViolUV/YgA85CoRB8Pp8JIGDAQCsd2SlnafuQn0uneLuyW1neqOzuLGpNVJYUVPz8fj8OPPBA/M3f/A1SqRQGBgYQDAZtUdQUIIlEAkceeSR6enrwxBNP4Mknn0Q6nV7YE1kEeL1e+P1++P1+9PT0mMYwkUgEfr/fJsQnJiaQzWZRq9VM2p6EinYgEEAymUQoFDL7lpFt9XrdRBVWq1UUi0WNSthPUWGuLCRL5flZbmmyHo8Hg4OD+Ku/+iukUinUajVs27YNxWIRu3fvRq1WQ1dXF/r6+uDz+XD44YcjkUjgueeeQzqdNoZ0ZQ90VicSCRx66KFIpVIYGRnBzp07Ua1WUavVjFJO57V0cNNBznUVX3Ssh0IhhEIhlMtl7Nq1a0pFHFg+z6nSGpXdSqdwrv81m2Xx4vV6cdBBB2H9+vVIJpNoNpvYtm0bCoUCRkdHUavV4PP5kEgkEIlE8PznPx/hcBg7d+5ENptVfU/g8XgQDAYRCAQQi8Vw4IEHIh6PI5/PI51Oo1qtIpPJIJ/P2yLJpYObTnI60BnARtnOQIRyuYyhoSGV3YrK7g6jRnRlycFoqWQyiVWrViEejyMWixnBQmhQDwaD6O3thd/vx+7duzUS/f8ho8Wj0ShSqZSJHggEAqaOHV+VSgUejwelUsm2Hwp1v9+PYDCIaDSKcDhsFHFpRKdCD+xZAKjnW1GUuWA5pVcvh3MgHo8H8XgcK1asQDQaRbPZNGVb6KBNJpMIBAIAgO7ubjQaDRSLRZMhpexFNljv6+tDb28vGo0GxsbGbH1IgL1KN6PU+H1Z/5wl8SKRCLxeL2KxGMLhsPlMURRFmTlLPUvH4/EgkUjggAMOQDQahWVZyGQyKBaLJtKZTcB9Ph+6u7tRr9dRLBZNSTBlL5S14XAYvb296OrqQigUQr1eN31huI7lsyON6JTvzCYPBoNmn16vF9FoFNFo1Oj5Svss9f9VZX7Q/yplSUIDuYw8n257pk6p4XZvSn1XVxeCwaBJrZdpZXwFAgF0dXXB6/WiXC7bjOCMYGOdvGAwiEgk4mpEr9fr8Pv9JloBAMrlsq1murL/oB5xZS7R52PxwproVPCAybW3qZSXy2WUy2VTV7VdlpMTxUkwGEQ4HIbP50M4HEYoFEI8HgcAUzueToh4PG7S7sfGxlAulwHsdWLLyPNUKmUy+oA9RnUq+Y1GA6FQCMFg0Cav3a7vcrzmyl5UditzxXIuCbUczsnn85nG4CzVSTkC7DnHSqViAqaY/SRf+ysyOpzBa+FwGNFo1BYg4Pf7EQqF0NPTg1gshmq1iomJCVsAG/dFHT0WiyEUCpl7wfvEALdYLGayy8vlss0g307NdGV6lsK8pbK7s6gRXVlySM+srOE51fay1vf+Dh0JiUQCBx54ICKRCJLJJOLxuM3LDeydMOkpz+VyRgDL6HRGsodCIfNTNnml0s16t9VqFR6PB8Vi0aSUqxDfv1BhrihLi04YpqUDl8ok32c/k0ajgUKhgFqthnw+j0KhgFKp1HYPDaezfLnNFZFIBP39/fD7/bZMPI/HY+RzOBw2WXjJZBK5XA6lUsl83mg04PV6EYlETMmWvr4+RCIRVCoV5PN5AEAoFEIikTBR6expUq1WjfItG5kBUKUcsytLsVSeWZXdylyiz8fc0AkjH7OUmJ3E/bH8V7PZNLKbDt1WvbT2JyifY7EY+vv7EQqFEIlEEIlETBS507FNeZxOp/G///u/Rt8G9tanj8ViJoM8HA7bjkV9nmVWw+Ew8vm8KeHGQDnLskzJNwVT2pOm+o6zz8xiRGV3Z1EjurLk4D8xm1RON/lTQMhSIgtFq0h4OTG5TVKtJvXZTGiyrjyj2FibrRVME2NjVjZAkU3NZD1V/i2jDClcWG+d9dKnc4IoyxMV5oqyf+KMSuNPv9+Per1uZAKNvSwpNhPmOirIKbPaORbl4L7OfcwYY5Q4DRjynHkNGbVerVYnBRIwGk1GowcCAXMPqNQzCIGOcZ6LNiPrPBrNpihKp+nUPE0HaaPRmOQApz7H7er1unG6LvT//Gx16On09ZnC7DHKZUaPS+MrryEzuyuVitGX5fEpj9mTjGsAbif7wwWDQQAw9dL5+VKQN/PNbNc1S+FaquzuLGpEV5YUFOD1eh27du3CE088ga6uLrzgBS9AOBy2GallWvgzzzyDHTt2YNu2bSadeT6hAKThmoKMky47lzcaDVQqFZvySkVYLlgAGMMCDQ3tTG70SrMRCeudTlcvTY4jHo+jXq+jVCoZwwbroVOYU6Dze/R6y6ZmfDWbTc0QUBRFWeR0YgFtWRbGxsbw5JNPIhqNYtWqVaZcWDKZNDXTk8kkCoUC/vSnP2FsbAy5XK5tJ7iMhN7XMcs1BeWUbMzJCDtmWjkd+lRspewvl8szarLmzAAIh8Po7u5GIBBAs9lEuVxGKBRCNBpFKBQy+5ZlV2QqOddQHJ8su8YIcyrdAEzkWiwWMxlkjDLUNH13ZnM99DoqijIXdEp2j46O4o9//CPi8ThWr15t5JAsH8YGmU888QSefvppjIyM2Jzg81VqzRmNLSO0qTdTRtbr9Unjod4tdXFG2M9E7sko5VAohGQyacrhNJtNW38SWWKFjghgj8yPxWImA5x6M3VuAEbPdgbrycajzAJ3rpFU7tiZzfVYzBHoytygRnRlyUGBNzo6ij/96U/o6+vDypUrMTAwYDziwF5FulKp4Nlnn8UTTzyB4eFhVCqVeR2vjNSmAKX3mRHdbMxCwzgFJA3R4XDYpGpRODItm4psO6nubEBCozdTuadrGEbjAWvZUlgw5VsaxukskFHmMvrO7/ebnzSiV6vVWV9fZWmiHnFF2f+wLAsTExN46qmnkEqlkEgkjFIZjUbh9/uRTCbR09NjoqInJiaQz+fbLufC43QCqUBLZ7JUgrkmcTPyy8afbJjK/iLtzIFu2WvBYBBdXV0IBALIZrMolUrGGB4KhYxcdZZakVHpHCvlNbMAiJThNIBEo1EEAgFY1p6GckSV8P0Lld2Ksv9hWRbS6TT+8pe/oKurCz09Pejt7TX6pM/nQzKZRCqVgtfrRS6Xw86dO5HJZIwMkZHSc13ixZl17Qxek3XbnYFo1JVDoZCRkSyXJo3vMxk/98n65awd75TvzAKThm46yVmSjTYC1j0HYMvicxrRaT/I5/PmMzl+nZP3jaVy/VR2dxY1oitLEsuyUCgUMDo6imazieeee8402mKkdbVaRaVSQSaTwe7duzExMTGjaLZ9RXrBGQFGJVYKPkaTeTweVKtVUzec6dP8PiPDnOlyFP4zMTA4x7kv21PQO5uNUchLj32rVzvHc/7kcZy/6yS/NFBhrij7H8y8ogN2YmLClCSJx+Pw+/0oFAqYmJhAJpPB6OgoisWiMTrPJ1L2SuWfRnQAppwce30QyilZ3owlUxgtNhM4XzrlIFPrGSFHx7wspcafztIsNCZwTTTV9ZXrDRoRZhKJ59yXsnRR2a0o+x+WZaFcLhsH6ujoqCkrFovF4PP5kM/nsXv3bqTTaYyNjaFQKBijr9zPXEMDM4PGIpHIJCM6HceMQpfR6LLMmTSi873ZlKhxllqTertTf3dmZ/PYsvwpZT/XH7I5qfO4HK+b4X+q8+h0ORtlYVHZ3VnUiK4sSWg4z+fziMViGB0dxcqVK02as9/vRzqdxsTEBAqFgi0Kfb7Kuch6ZQMDA+jq6jLR6BSQFHrJZNKUnqGHWiq88XgckUjEtv9yuYxgMIh6vY5MJmMWAHM9yXH/0nDeaDSMF7xerxslnQJdRstz0SJfboJfRv7J0jByAcIXxzCT0jbKwqLCXFHml/lKo54KRrNVKhWEw2GUy2U888wzCAaDpkFmOp3G+Pg4KpUKRkdHjfN7vjKWqGhTdnd3d9s+pyIN7JHDTLEGYNKlKaeo+IZCIcTjcQQCAZTLZZvSO53x2s1ZTKrVqmnkxojAcrlsi0rn93hMGvIpO3O5nC113S0lnGVjmDUnHfhTwbWAHDvltbI0UdmtKPNLq+Ch+cSy9pRiK5VKCIfDSKfT6O7uNo2ufT4fdu/ejeHhYZTLZQwPDyObzZqeZNzHfEWf9/X1IZVKmZrgTuc1I9ErlQpyuZwpW8Z+X9Fo1JSJlSVXqGcWi8W25JiMKOc+qCsXi0Wzb9lrjMhIdK6BuG6o1WooFApmjcGSOtLZzn2Uy2VzrjLgbKp7QfsDryv3pTq2O4thfT0dKrs7ixrRlSVLNptFLpdDJBKBz+fDxMQEYrEYVqxYgUAggNHRUezatQvFYhE7duzA2NjYvI6PgpcRdqz76mzuBewVlKyXKgUX65mxG7qERuhCoTDrCXxfan9JI3a9Xjdp5FwIyGh06TWX0WytjAiyjpyMBJARdByHdCDs713gFUVRFjOVSgXVatUokMVi0fTbAIBnn30WO3bsWFBDK2VNLBZDV1cXAHskGTPIfD6fcXoHg0GbsZr7oBJPQ7WMiNvXZlR0TANAsVg0TmlZjsWZps4xWZZlst+Avc5uy7ImlXij0s7t25WzXPNI5Y1KvsppRVGU6VksBrpSqYRSqWTk38TEBOLxOKrVKvx+P5566ik8+eSTM24E3kko48LhMBKJhMkAc5YXpdGcZeNoxGaJFQbByYapjUbDBK/NpJeXdCDLXmHUXdnfTPYwcZ6PbB7KsThlt9txqZ+zjFu7z5Bco0inujrAJzPTzEJleaBGdGXJ02g0jDeW9cp8Ph+y2Syy2azxwM73IoQpblSep0rhpmdZpp3RyCwFqPw+lXEqvO1M4jJlrVqtmhT5YDCIUCjU8nsU0LVazUSiVSoV45GuVqsolUpoNpsIBoPmXKjI81z4fR6b3w+FQohEIqb+OxcLjJiThgcZiS6N6DwvNl2h15118dkMRo3siwP1iCvK/gn/dxnNxdTqUqkEj8dj3psNnTDOUvb4/X5Uq1XkcjmbvGF9UWfmEyPBZNYUS9U4U8Pj8ThqtZqJZJ/JfMgINqajc5+stSoN68AepwWz8JxlcRhRTgMCf6e8LRaLJpqQfVuoRDuV+0gkYgwSzBqIxWKIRqO2cjDSKCFryVM28/tcM8xXCT6lPVR2K8r8Ih2QiwFmTlP/o86XTqcXtMEiM7Aoi2k4pmGcBnUANiO2bLBN2cdIdAl1S5/Ph3K5bCK7270vvG7yuFwbMGuMMFq9Vqshn88jn8+jVCrZ9G42K43H4zZDPw3slNeFQsEml6UzndnudIzQMM/rSHnNNYLMQOdY+KrX66Z8j5Tti+W5nSuWSmCAyu7OokZ0ZcnTaDRM2Rafz4fh4WHTDKtaraLRaJhIsfmcAMLhsGn+xSjyqTzXjG7r7u42ht9isQgAtu7nNJbXajVTl5XR7dMZidnE0+PxoFQqmRQ22S3cDQrLcrmMfD5v0vEpQGn0YK13GsK5TwrearWKbDaLSqViW0jEYjHE43GEQiH09PQgGo2ahYHTA++M3qMhgy9G4+XzeUxMTKBWqyGdTiOdTpuFhXrSFx4V5spiQkbazEdZrIVgMZ0TFa5MJoNsNmurOd6qxNd0SPm6L+fKBto+nw+lUsnmgAWARCIBALaSZYx8CwQCtoypVCqFaDQKAEYORqNRdHV1oV6vG7lEOdYOlUoF6XTaGNHZOC2VSiEWixllmWufYrGIQqGAXC6HbDY7aX9UAHndGVUPAGNjY6b3DM9VNokLh8MmU27FihWIxWIolUrIZrOwLAt9fX3o7e01xoNarWZT+guFgjEMUOkul8tIp9MmXb1QKJhxKguPym5lsSGbVS5HFtv/TKPRQC6XM40qh4eHjQxZSP0qFAqZEi4AjOzg2i4cDiMajdrGymh0qWPKDHBZwkSWYmFD75k0GaUOTGc3s9NYv13WPKcNo1QqYWJiwjgoeH0ZzBaNRtHT02OM8DRcZzIZ5PN5Y0+g/kt5zx5tkUgEq1evRjKZRKVSQaFQMHo5S+wxEJBQ76dTnrp8oVDA+Pi4yTSkbWB/CF5bCuensruzqBFdWZJQ4ZZp05wcpKdUlgKRJUWmmkg61QSLx5Vp1e3AscroeX53qmjzdp0E3IaR2lwQ8Hq5nT+Fr6xjLiPw6L2m84Lp2xw7FyryuzxXACYSnco1Fy+tjOjOc+G+mSpHJZ/NZcvlslm0SOP7cl1wLwVUmCvK/kmreVymMjvLibQ7X3fCWU6Htmz+5SxHAuw1iktZ59wPz0Vuy/f4+0yRSrGM0ma0mJTljGSj87jVNeSaifKZf7PeOw0IwN4mZ8BeBz+DBdi7hY6HcDiMUChkrh+dDdFo1FYTXkadMzvN49nTbJ0RctKQrywcKruVxcpSiAZdykhnN5EOYGaV8Xf+nG7e7lTNd+rdzj4cct/OMqPyu/wps547UXaNyEhvmUEuj0W5KPVuynDnucjSqFwL8Psyo0sGJvD+0HBP/Zsymesd6uEyM08Gmsh7Jku1MmiQx6c9Q5aBVRYGld2dRY3oypKCyq3X60UikTAR1Mlk0tRGp0dZGmxzuRxKpRLK5bLxktLLC8Bm6Ob+ZarSbKKXW5VhaRcK0GazaRR67heAUW4pZKdzDhB+XigUMDw8jGAwiFKpZGt8SkWc1yCbzZpUMpbIkQZpjpNCnM4DjpuKMcfO+rfxeBx+vx+JRAKxWAx+vx/RaNQIbJlKJq8hFwl8j/ePin6j0UAkEkEsFkOj0UB/fz+KxSIqlQomJiZMSRqmqS/XyFNFUdpD/v/rXDC3xGIxJBIJW4+QYDBoor/L5bIpD0ak7AYmG0ucpb725R4yi4zGbxm5RSVdwnFSBrF8CmWfbGbOaC02S2Xq80zGWywWMTIyYnPUAzCRcSzBUqvVkM1mTcQam5+6wawAfjedTgPYs06Qyi+j67u7u21ReMFg0DjCWZaO55TNZs1YWbaN14TlXXjfWIs2Ho+bzDI2Tk2n0yZqnRF1iqIoTgenMjckEgmkUimbrsxIahpOZdBUs9lEsVjE+Ph4yzmb8p/yciZ1u50wK0sGsAF79Wa3nmQcg7MECbO8JJRHjERvV+8m+Xwezz33nNF1Q6GQMWYzQ5wOcpZwmU5212o1jI6Omow+AGYdwkakvBaRSASJRMJcB9pMuPZiSTZeE+5LGv/5XqPRsDnTgb1rp2azaTLA6/U6crmcsVewzKqiLHXUiK4sKSi4/X4/enp6sHLlSoTDYfT39xvBwG7aFIbVahUTExOmDAnriRaLRZtHmEZbKnn0/koP60zH2qqRaDuw/AkAIwglFKw8z5ko4lTkGeXFcwwEAkgkEggGg8bzXa/XMTIyYhZB+XzejIvIa82xSgcCxxYIBJBKpRAIBNDb24uDDjrIeMFZe06e51TOB2ekIv+mMOc15PhqtRpKpRJ27txphDsNNftDqtliQz3iymJjf3+m5qNviMfjQSwWQ39/v630VyQSQW9vLwKBADKZDDKZjE3mptNpU35M7svNkL4vChprjNKpzJqqVDQDgYDp6SEjo2kA5tqDZVMod2St1Xw+b85vqujwVjAgwOv1IhqNmuhvHieXy2FsbAzVatWW0j1VbXE6y2U0nMz4k078RCKBNWvWIBAIIJ/PI5fLGSM609MDgQAsy8L4+LgpPdPV1YVIJGJqwUvnA/H5fAiFQiblvlQqmfUa5fRMG6QpnWUhZPe1116LL33pSxgaGsJf/dVfYePGjTjuuONabr9lyxZccskl+P3vf49Vq1bhox/9KM4//3zbNrfffjsuu+wyPPXUUzjssMPwT//0TzjzzDNd93fllVfiE5/4BC688EJs3LhxxuNX5hadC+Yej8eDeDyOFStWGJkdCARMUJTP5zPZvyz/ydJj+Xze1CV33ivq9YzMllHtM4U2ABr2pRFcympnFLpcO9DBy6xqKRNpR5BOgpnAAC6fz4euri4kk0mEw2HEYjGbA7xarZo1T6PRmKRzS2q1GsbGxiYF2nHcjDYPhULo7u7GgQceiGAwaNYedGLwJ68Z9XmuHZy9yHi9mZnG78diMQB7SsHFYjGT8c7yL1OdizK3qN7dWdSIriwJpDCIx+Mm+jyVSiEUCpnmVc463PV63RiEKQCo0FHZBWBT/uiRlTXVZcpxu8Z02XxjJoKWnm0afpkeR0WTxmI5Jl4joP1JTp4P65fxurDWqqxRSqP6dOfC/dJ4zv35fD6z2OKigU1XeX6zidh3IvchU/osyzLRjrwnhUJhUsM1FRLzgwpzRVn+yGwh1tWk05SKOBtbh0IheL1ehEIhU4uU369Wq8ZR7pbaTAc4s9AoO2djcKVMlFFxzqgs/nSWGZElXDjHUaZTOZUp4rNFGgJ4vowaz+fzNpkts8ba2S8Ac+1l8zE2PWegAZ3lvK/yfJ2lX5ghxog6lq2T6yOnAV86ytn8DIAtyl9GDirzw3zL7ttuuw0XXXQRrr32Wrz85S/H17/+dZx22mn4wx/+gIMOOmjS9tu2bcNrXvMavOc978F3v/td/M///A8uuOAC9Pf3441vfCMAYOvWrTj77LPxuc99DmeeeSbuvPNOvPnNb8YvfvELHHPMMbb9Pfjgg/jGN76BdevWzfqcFWWpIeuD08gtM4jZA4QOVBkwRqMrG00nk0njlKYMkNnf1Lu5P8oKyvl25gzqnDI4bqYBbDKoShqjpTG+E7KbcpvXolAomMwr9vWSQXztZJhzzLJkHNddbJJKGS6vi1t5nlbHkHK51bqC7/G6WZZlqgYwq0yWh1XmD9W7O4sa0ZVFDwWxz+dDd3c31qxZg1gshpUrV2LlypXG88kamlIgUCB2d3ejWq0il8shkUigWCxieHgYO3fuNOnJVObpUacRvVqtYnh42KRHF4vFtgzp3LZer0/q8N0KqfSzMSbLyci0LGCvl1iWUKEy2o7RXiqw4+PjyOfztmg5WT+ei5npnAiyNh6vvd/vR29vL3p6ehCJRDAwMGCaiEplvBMG9FbIZ2jlypXo7+9HPp9HT08PyuUyhoaGMDQ0ZCuho8wtKswVZflDRTaVSuGAAw4wihyjunt7exGLxWxGaRrSabz2eDymZFulUsHu3bsxMjJiDNM+nw+JRAKrVq1CKBQyinq1WsXQ0JCRo+3IbWZpDQ0N2QzIsgEYy8E5079laZpIJGKU33K5bGqGy1JnjHybqbyRRniuAVgCh04E1jGXpehmYkjntZc1zA888EAkk0lznkznZuNURvF5PB5jHGDEXaPRMCXUYrEYenp64PP5TJQio+qZaShr1tZqNfj9fqxZswbBYBCZTAbDw8Mol8uYmJjA+Pi4yoN5pFOy29nklo40J1dffTXOO+88vPvd7wYAbNy4ET/5yU9w3XXX4corr5y0/fXXX4+DDjrIRIwfeeSReOihh/DlL3/ZGNE3btyIU045BZdeeikA4NJLL8WWLVuwceNG3HLLLWZf+Xweb3vb2/DNb34Tn//852d9zooyl3Q6i0zqTIw+D4fD6Ovrw8DAgMkY4nxN/ZvlTqTs7u3tRTKZRLlcxsjICIaGhgDsKf1BB3pXV5dpZk25+uyzz2JsbMzmiJ5qvB6Px5R9Y8BdJBKxOXK5f14rymjKSFlHvNlsGvlPvVuWseE8OJv5UAZxeb1eTExMGJnKCHe5tpipE9zj8ZiSptFoFAcccIAJQpDZ2lL3djq15XqJ7zGqnfe6XC7bss6Z6c/vsHnpwMAAAoEAxsfHsWPHDnOfuDZT5gfVuzuLGtGVJYFU5np6epBMJtHX14f+/n4jwCkYnMbYZrOJcDhsotIZdc1JnPXVE4mEqc8tjeiVSsXU83LbfytkOZaZCEAKTkZI0xBNYUcBJhuA8RoBaDtSXkaMM+3O7fOZjF9uK6PR2TE9Fouhr68P8Xh8zg3nEnrO5QKC6Wvlchn5fB6jo6MAoJ5xRVGUDkCnNmV3d3e3iWJjxBkzypwOajln8yedzDSeUrb4/X7E43H09fUhGo2iUqmYkidUTimP2pFl1WrVGHYZbUeZKw3fUtGVTcIoZ2QDUJ6HjOCW0W6zubbA3qbawJ5yLqQTyg4NIXQedHd3o6enx1bXlEaFVk4KGkar1Sqy2SyKxaIxntAYIZuoO6MHuQ7x+/3o7u425eboNCgWix1r+qbML6tXr7b9/ZnPfAaXX3657b1qtYqHH34YH//4x23vn3rqqXjggQdc97t161aceuqptvde/epXY9OmTajVaggEAti6dSsuvvjiSds4S7W8//3vx+mnn45XvepVakRXFi1SjnRqLpSyu6urC7FYDN3d3UilUsaITic253Jgrw7FDCVmh7MEKQ3jzEiLRqPo6uoyRnuv14tKpYLR0VHTl6Rd6Kyt1Wq2LOdWEenSqMifsswJjfOU1bwmgD0ifTbXXGbUFQqFGX9/OpgtwOubSqVs/UTcSt+5XQ/5mXRI8Lrw/vBayD5jvP89PT2m71kulzPOFkVZyqgRXVn0yLqfXV1dRpGKxWI2oQu4G7gp+GhsZzkYpk0BMA0+uI0UEh6PB+Fw2BYZ1w6shdpoNFAoFIzRVjYJJVQUaeCn8T0ej5sapOycLRu40GPOOmNsdsJUMHbGdgpDmTYtr5FEGh1mWjOcXvBUKoVgMIi+vj50dXWZSLzZ1IjvNLIBTW9vr7mGo6OjJpJCI9LnFjV8KMriYa7+HxnVRme1TJmuVqtGmWKUNuupUgmjvKBBu7u728hWypNwOGyczjTyVqtVU4aEsnG6aDZeBxrGZWo3I66cZV4YpcYxM5LMWRKF5ct4rlwbcFzOHh5TIRVdOT46rmfjACeMpPf7/YjFYohEIiaiz9nEnHXdeY8ZTcfxy/UXM89YO9cZxc/rw7R2pvTTqMGgBsuyTMRyd3c3AJgmqlM1YFM6Ryfmih07diCZTJq/3aLQR0dH0Wg0sGLFCtv7K1aswPDwsOt+h4eHXbev1+sYHR3FypUrW24j93nrrbfikUcewYMPPjjjc1OU+aSV4XO2SIMxg6BYilM6cAGYiG3+LuUY5WcoFDJZSQMDA7Asyxi5GcXMfdIxTH1cypzprgEd3c4sLBrF5bayJBq3pTySfb1k2Tk6/xlxTXnE86Re3mqsUtd2ri1o1J5J+TUnLN3CHiTM4JOZXe0inf1yzSZLzMixO8cv72WlUjHrKY6nt7fXBCxmMhlbA3Zl7lC9u3OoEV1Z9FAYdHd3Y3BwEKtWrTJGdCp2U9Uok/XMKMAooMPhsK1xqKztRmFZLpeRSCRQq9Xg9XqRTqfbGjeVP0bdATBGfGlIl+VSyuUy0uk0KpUKQqEQ+vr6THQ8a8bRuy+FGg3AbOJSqVRQLBZtzcs4cVKAU0DKGqREeqkpKNtNCef+U6kUDj74YMRiMQwMDKCvr29eSre0SzAYNF3E+Yzl83ljAJAee6XzaFqZ0ik6ncq8nJCRVAtxfXj8YDCI3t5eM8+yYRbrdzNS3efzoVQqGcMyjeSUg9KxLWU3y7Bks1mjwFHOJxIJY1SfTomUdVW5JuB1oyxnvXHLskx6M2WuNB4DeyPPmdbMknE0xrN5GI/ZbDaNg6DVWOV9lOnbjAp0yq6Z3vdoNIrBwUGzHqKzmVlr0mjAaDoa3EOhkMlsk9fN5/MhmUwaI0WxWDROFK5B2N8mm81iYmLCfAbAOFZoyKdRIxKJoL+/H8ViEU899ZQa0eeBTsnuZDJpM6JPhVvgyVTrSLftne9Ptc8dO3bgwgsvxL333tt2OUZF6SQziS6fC9lOI3I0GkV/fz9SqZTteHSCsu45HaicHxgM5vV6EYvFzPmEQiFb2RLO/1JuU3eOx+NtyW6eP79L5zn1eDqvJTKbrFwum/OhDiu/29XVhVAoZOt1xlJkPL5lWaaBaqv7IZ3uHCtln9/vNwEAsy0Tw1K3wWDQOD5oz3D2hplu/uT9l3XmKfP5uyx5R7uE1J9l/zFe33g8jlgsZkrwFQoF/PGPf1Qj+jygendnUSO6suhhhFMoFLI1IKP3sx2DrEwVlpFr0WjUeI6l552Kr9PQPBMDMBcZgD2yjJ58adzgwkFGsMlO2eFwGOFw2Lwnm3g5vcFUNNlZXEaMyevh9pKfy6ZufG+6CVRep0AgYOqx0XiwGIznRF4zKu8sD0Cnx0wb0into8JcUZY/lAc0QDN7jLKASpcsxyadIlJxljXHqdDSgMvMK+lclsefyTpBylUpZ6kQSsM9G2dJOU6FUp6LdAZQOQ8EAigWi6b0Cx3XsrxJq3G6GVhkNNhsHEtyrMy+o+zm+bjtTxoonTVW5X65npLXkQ57+Uxw7cQId9kg3NnAlde02WxOqlWrzA3zKbv7+vrg8/kmRZ2PjIxMiiQng4ODrtsz63CqbbjPhx9+GCMjI1i/fr35vNFo4Gc/+xmuueYaE1mpKMsRaUSVxmTqqIC9ubWcE6RsJ1J20wEue3o5oTycadCVlN3Sye52HFmWzZk5Rqc0S5nxOkhZzzJlcn9umebO6+rMnJfZapR5M51fnbKb8puZ684xyWNMlRnuFqAox+aU907jv3xGqE/zOtK2I2U30F5PN2V2qN7dWdSIrixaOHnTG51KpZBKpYxwmE5YtdpnMBg0ddJpRJcNJRlxTqWckVaymVg7cLJpNBomzZj1wJwKNhcmNO7TS9vV1WUiAUKh0KR6qoC95jvrwFWrVYTDYZM2ncvlTL1UqXzKOq1TXUvnwqQVTLUPh8NYsWIF+vv7zXVezNDA7/V6sWrVKkQiEdO8TEbUKYqy+ND/z9bMNhq5E/j9fhMN1dXVZeQNHcnMwqL8zWazRjb29fVNUrRrtRo8nr3NNGUtTjcDaqVSQT6fNyXSppPdTsexrK/K6Gq/329quwIwjdVk9Hc8HsfAwMAk4zDHSIWc0XZMmWeE+u7du23R7lIRBWCaqQMw/V3ouKYzgufb7n3n2sPn8yGVSqGvr8+U1+BaRa4TGKEvFXGmbctIPJZkaTabJlJfOhlooABg6tg3Gg1Eo9FJzgo6T2SEm4zmY13dUqmEdDqt/U2WAcFgEOvXr8fmzZtx5plnmvc3b96MM844w/U7GzZswA9+8APbe/feey+OPvpo8/+xYcMGbN682VYX/d5778Wxxx4LADj55JPx+OOP2/bxzne+E0cccQQ+9rGPqQFdmXMWcl3D0itdXV3o7e01gWvAXuOznIPZINPr9SIejxvZTqeyrEvulh1NeUDDPaOanfKkXWT0M2WjW68N2deDmU3JZNLIaY6FshHYG2TG82MWls/nw9DQEDKZjOt4ZZAZsNexLiO5nY77du8Vo+57enowMDBg1liydrnbPmXZWmfGooxAl44GmbHDa1Kr1YyRnHYbadjn+TmDE3j9enp6TFDBxMSEym5lSaBGdGVRQ6Eai8XQ1dVlum3ToDxTpEAJhUKIRqOmDjmFKpU8RoZXq1Xzmqkwp8c6m80agUZhLj3SJBaLYdWqVYhGo0gkEqaci7NxqjMKTdZjC4fDxpgOwKSpMUJdHluWdpnKiC6NE1N5ydn8K5lMor+/H729vS094YsFKvI0QKxcuRLJZBLDw8MYGxubcXNYpT3UI64o88NC/a94vV6kUinTjIyKVTgcNnXKqYTXajXkcjl4vV7jQG42m0in06ZmOhU6Z01yvth0m7KmXC5jaGjI1NduxwEur5VlWSbF2OPxuJZyoxFdytZ4PI4DDjjAyD4Aps43lUZpUKcSPDAwgGg0ikajgZGREZtsl9F+oVDIlMGQZU6YsSdT6mdyrxigkEgk0NPTYyLtZLQdsLd2PQCboV4aVeR71WrVnD9L1UWjUTNmRuCVSiVUq1VjzPB4PMaIQiMH77GsGc/oPa4RWSJHFfG5Yb5l9yWXXIJzzjkHRx99NDZs2IBvfOMb2L59O84//3wAwKWXXoqdO3fi29/+NgDg/PPPxzXXXINLLrkE73nPe7B161Zs2rQJt9xyi9nnhRdeiOOPPx5XXXUVzjjjDNx1112477778Itf/AIAkEgksHbtWts4YrEYent7J72vKMsNlrgcHBw0va1o5KXTksZwYK+Dm1HQUl5JAzEAmzEWgE0vdvbzkMbZmWBZForFoq3ZdivdNRwOo7e315zzgQceaOSbM9qeRm+WXavVagiHw8ZwXalU8Oyzz06SPTIby5n9zXWA0+DdLrSRsCRef38/gsGgzdnPc3EbU6toc3kfKNtlIJ1soC7L6EgDOreT9gZnpgIzhOLxOCYmJlR2zyGqd3cWNaIrs8Y5AbtNwjP1qDr3LyOgZPmWThlkKSiq1aqJ5qIwY/Q5BRGj32Y7ifBYVHBlyRQq0oy2ojLM9+U5u6Vl0cgt661R4QT2KvrO77ntT37ebloZ70sgEDCR9PTcL2YDuoTny5RFGhRo4FGh3llUmCvKwiOjn/alGaUbMptMNraSSpR0zkpFa6oGW1KmMCqZsk/KLEZzt2tAn4rpronX6zUNvZjt5ibrnRFfNCBQ1jPlnc23uPaQUGnluKTy7TxXea2mikyXZXIYpECFmeXuZPMz+awwmo/75rbcr3yPz4K8HnKfUll3eybkseX1AIBIJAIAZi2nzA3zLbvPPvtsjI2N4YorrsDQ0BDWrl2Lu+++GwcffDAAYGhoCNu3bzfbr1mzBnfffTcuvvhifO1rX8OqVavw1a9+FW984xvNNsceeyxuvfVWfOpTn8Jll12Gww47DLfddhuOOeaYWZ+XoswnzshlYN//NyVS33YavoHJ5bt4fDc5I+U8I5LZy4tGaWYzUeYw0nsmGVVOnE5x5/lx3cAyM9J47vyO8zxl41GZocWMMgbeTTUmQpnnPJ7T4OyE15Ol1zgWym6uE5z6/2xw2l5aRbBL2T3VfZNrTq45isWiWWd08llW9qB6d2dRI7oya+hdlnW6JTQ8yoZZM0Ua0J0G5dkaZvk9phmXSiWMjY1hZGTEeFY9Ho8R4rVaDbt37zbe0anKmUwHlVxGTgF7rmM8Hkc0GkU8Hkd3d7eJuGcd9OkM0TJtKhKJ2JwX5XLZLFa4OOG9mM4TLT+bytjOenmpVAorV640ZVxk9MFSgFGQLPMzMDCAfD6PTCZjGtYpnUGFuaIsLIxgCgaDpqEVDZn7IueIx+NBKBRCJBIxdculciSjlJ0p04VCwShZTrnfaDQQi8VQqVQwPDyM8fFxUwuUDnCuPyYmJmyNsDqJHFM8HjeNtD0ej4mel5lfjKaWayIqvpShPp8PiUQCBxxwAMrlMkZGRsx9kc6BsbExY9zgmoXrFWbM8fozOr1UKrV0BgcCAfT29iKVSiGRSBhDRy6Xw9jYGPx+P5LJpIkElxGINHxzHFxH8fxpJGd/FBlQIB38LAsgDfD8jAaWYrFoc1CwjE4gEMCKFSuMAWPHjh22KESlcyyE7L7gggtwwQUXuH520003TXrvhBNOwCOPPDLlPs866yycddZZbY/h/vvvb3tbRZlL6LSVkcCUK26G29lAuQXYjePSAUyjrTToV6tVMzcDdqcv1xzlchnPPvssdu/ebfpn+Xw+o5PX63VkMhnTYLzTdbIZNc8yagMDA4jH4wgEArbodzcHPz8LBoNIJBKmL0q9XkcikcDznvc8VKtVDA0NYXR01DZ+t34tMpJbBg4wO5qlY5zXQGax9fT0mEwsyudyuYx8Pm8r9+I2d/MceV2ItDvwHLm9HL+0D8h9y8+cBnVeL2b+sxQbAAwPD5sshE49y8oeVO/uLBqqocwaWTNMRjCxmQXTdGlonynOSHQ3r/e+QEWsVquhWCwil8sZY2k2m0Umk0E6nUYmk0GhUDCpxvsqzGXEFZVP1j2PRqO2ZpxUMNu5fk5FnbXIGRXOe+JMqZouEr0dfD6fMQIkk0l0dXUhGo0uuWgwevTp0OA9cevsriiKspShA5TKZKczh5yR6FTyZXaPjCxmmRMARoGSUckcH420Xq8XpVIJ4+PjmJiYMPJ6YmICY2NjmJiYQLlcdo1e7iS8jt3d3RgYGEAkEjHZbUwpZzS5jPCm7JfXn/tKpVLo6uoytccl9XodpVLJlKnhdeF6RmbMsRzcdI29qWgnEgkTBW9Zlqkrn8/nzf2QjdB5Hk7jCtchsjE714ky2k9m/8kgA15XqahLYwORkfDxeBw9PT2Ix+Nas1pRlGUL51ip2znrfncCaRx1NhDlOOQ8zTlcGqH5Xc7TLHNWLpeRTqeN3M5ms0Z2j4+Pm/JnnXDou50XM74p9xKJBILBoE2+0UlM5Pk4S602m02EQiFTypQ6sNPI7CYzpT2A45PBg273VTqs4/E4EokEwuGwGYuM6Hcez3kfW0XA82+3agDSeeLch/yeHLu8fvI74XAYyWQS8Xjc9ElZavYDxZ1rr70Wa9asQTgcxvr16/Hzn/98yu23bNmC9evXIxwO49BDD8X1118/aZvbb78dRx11FEKhEI466ijceeedts+vu+46rFu3DslkEslkEhs2bMCPf/xj2zbveMc7bM+yx+PBy172shmdm0aiKzOGkyiN5zSgupULobIoa3TOpDEnBa+MLJOe3Nko+1JosWRLsVhEPp+3ed6lAJ1tJP1USCFEQ8ZMDeet9stUMyrgMkWbNV6dQtQpCKcTtPJ70WjUpvR3uuzOQsD6eMFgEKVSyRiB1BPbGdQjrijzC+djKcOpGFERazabJnvJmZo90/857ou1zqm4SkWREU6y3Asjo2SEFCOXABi5zXRp2dDK4/EY2T0fxnMq4rIkC9dGUvlulaotFedSqWTWUbI0DNPdOWfyfbn4l9HZ8lrIaH+3+8e1GyPiZeYfsKdECqO7eZ7yPkklmvdBZg9Ig75cX/Fv6Vjh8yADMGQpNY6L957HSSaT8Pl8JnKxVCqhp6cHkUgEuVwOuVxO5UUHUdmtKPOL09gjmzVSftNILR2Os5V/jAQul8sIhUKTZBdlNo/pNl46SKUuyX0yO5pZU8ViEV6v15RNnWvZDeyt6U0ZzvKdPH8ZhU7kmOS6yK3Gu9R/+Tllt3zPuT/5t1sZHWCv4z4SiSASiRinscyml0Z42ayVaw7nefE9+Qw5j9lq7m+l73NbGYkv1zxsgFqr1ZDP52FZFnp7exEOhzExMWGyGvYnWjklOsF8y+7bbrsNF110Ea699lq8/OUvx9e//nWcdtpp+MMf/oCDDjpo0vbbtm3Da17zGrznPe/Bd7/7XfzP//wPLrjgAvT395tybFu3bsXZZ5+Nz33uczjzzDNx55134s1vfjN+8YtfmHJsBx54IP75n/8Zz3ve8wAA3/rWt3DGGWfg0UcfxV/91V+Z4/3t3/4tbrzxRvP3TAMm1YiuzAjpjWTta1nTU8JIJCnI3TzZraAAYVPMUqlkmmQy+mqmSEN+rVZDqVRCoVBAOp3G2NjYJEVUCoC5MKJTuIXDYVNGhJEF+1IKhfumcGVkNdO7WhnI3f6eSpADe5vHrV692kTRL+UoMF7zWCyGlStXolKpoFAoYHh4eJ/r8yl7UUVcUeYPmcnFDDL5YiZRs9lELpcDAFvZETqeZwKbalPh9nq9RlGVhmEaA5xGdEZXcyw0yFJuM8q7UqmYcibAvvdjaReWS4nFYojFYsbIHA6HbU1TZc1wGXXfbDZNpBhT2WUj9Xq9bozpMnotFAohlUrZjA5sgk4jAOWYdCa4KcWRSMTIbaZ806lP2c7xx2IxBAIBU3aF58FSPdlsFtVq1QQDUDmuVqvm3vO4NK6wzAzLwQAwayBes3K5bMr98L1CoYB6vY6enh50d3ejWq1ix44dyGazCIfDWLNmDTweD/7yl7+YNY/SGVR2K8r8IQ2bTket/J1lxPx+P+r1OgqFwqR+Gu1CB3g+n7c5vonTIe+GnOMZkFYqlZDL5Yz8ZlBXsVg033MaXucCZyQ6ZXilUpkUKc3zazUeOvidpcycPURYvi2ZTMLr9aJQKNiC2tyO10rnZPBad3e3kbd0WlBOhsNhlMtl45hm2T6nc19meMnxyzWD7Lsir40cl/NZkGs5eT68xlxzNBoNFAoFVCoVeL1eHHTQQWg2m/jzn/+MiYmJ/U5eyMCITp/7fMvuq6++Gueddx7e/e53AwA2btyIn/zkJ7juuutw5ZVXTtr++uuvx0EHHYSNGzcCAI488kg89NBD+PKXv2yM6Bs3bsQpp5yCSy+9FMCexuJbtmzBxo0bTfPw173udbb9/tM//ROuu+46/PKXv7QZ0UOhEAYHB2d0ThLNlVBmjCyxQuVXesVldJvsyjzTyGSnEVemDu/L5OI0pFP5ZLS7M8JtX7z50+GWps6f+xrFzetOoShryrt5v9284O1MuM6SAMshCh2AUfplhJ6ml3UOp6FrNi9FUdpHRrI5S6Q5FfNOlFCTCrRM7+ZY3PY9XZQT98mGm3R6c43gLDHSCaY6f1kXVm5HeeGWzu02LlnjWzoW3Ers8H4507zd9j1dNJvMJJTHcdYzlWs8KngstSNlozMqb7o1m9PA7ywP4HZe8hgM4vD5fKZmeqPRQDQaRSKRMDXclc6hsltR5hdnCQ2p38kGl61kxmxgWRMZXDbT8Tr1JhpRKbs591N2yyj0uXaAO6+llNdyu3aRaxvni5/LY04V2c3tW31Oh4os08rt5JrOWX5lurFLprsHTlnfznk4I9F5zfkMAHuy31jvf3+W3XNx7p2S3Sx7zBeDKiTVahUPP/wwTj31VNv7p556Kh544AHX8W3dunXS9q9+9avx0EMPmfr4rbZptc9Go4Fbb70VhUIBGzZssH12//33Y2BgAIcffjje8573YGRkZIqrNxmNRFdmhNPgS4WKv0sajYZtu9lGjjOajYKCkW2Msp7JREPlu1arIZPJYGxsDLlczkS4TyWw3Ma2L0hHBD3FUpHd1wlULmCkc4Njlyn10ltMpICUSq4U1KwhHo/H0dXVZasPt9ThuTEyMJFIoFqtolAoaLMTRVGWHJzn3ZQqyloANiWW8p3vz1TusbRKsVhEJpNBvV43TlfLskz5DaYlM4qOi3K5vgiFQmg2mxgfH8fQ0JCpOT7XtDpnqcj6fD7TBI3OeH5PNsr0eDzGsUBjeSwWsykpjMyiQ4BZfpQ7NBZ7PB7j8OdxGOHvbCDqtp7weDyIxWLo7e21NVT3+/3muubzebP+orG9UqkgnU7Dsiwkk0mjyDObThrZpZNBriVk81Ngz7NVLBZN81leW0YK8rwLhQIajYZJu5XXgI5v1kYPhULYsWPHfq2IK4qyPHCW6JCGWM730kDJSHA3eTAdlEHcT7lctpXZ4jFl9HKreZZR3z6fD+VyGUNDQ6anhxtzYTx3rnUoX2hXYLaTM1LbbWxyfM6gNBnwx15nlE+U+/l8HsCeBuG1Ws2MRRrwnUZLNwd4LBZDf3+/eRZkICDlIuW5HGulUkGj0TCN3Pk8OY8h33NG1fNcAZgmprVazZSl5fpSlscBYGriE9ZrZ8acz7ensbrH4zH13fc3loKjefXq1ba/P/OZz+Dyyy+3vTc6OopGo4EVK1bY3l+xYgWGh4dd9zs8POy6fb1ex+joKFauXNlyG+c+H3/8cWzYsAHlchnxeBx33nknjjrqKPP5aaedhje96U04+OCDsW3bNlx22WV45StfiYcffthkTU6HhlUqM8IZge4U6PIlU8X3xTter9eRy+UwNjaGdDptUsGopM5ksuFkXyqVjBF9YmICpVLJtvhodd6tvNWzwWnkdl6jTuxfGiBknXUZ/SWjAZzvy2Yn0vAO7K37xs7q7Ay+lEu5SJgOx7JFbDTqLFukzI6FiGZbiAYnV155JV760pcikUhgYGAAf/d3f4cnn3zStk0nGpwoSjs4o6X4npzznUb02Wbh0CDMOqhs1s3yHgBMzfRyuWyUbTcjLI2jdGYODQ1heHgYpVKpcxdnFnBsHo8HpVIJ+XzeNBKlcVtml/HcGI3Hcmt0IPh8PjQaDeTzeRQKBTSbTVsWGbDXiM5yNqwvy6hy6SwHWtcrlUb0VCoFYI+hvlKpmLq1+XwemUzGNBYF9kQYsRE7FXY6A5LJJCKRiM2wI8v9OaMOZTYge9MwrZvXNhqNIhQKGWdMrVYzZXM4nnq9btYk0WgUfX196OvrQzQanatbb7uO+5OhXiPRFWV+4fwiM4ulA5JzqNTXZJbRTOenZrNpSp1SPlcqFVumF0uRTVe3WpZ8LZVKGBoawq5du+ZVdrtFh0u9mOVd2WvDGTAw1RzmNNA7jegsrwLAGNHz+bwxPMtG2vJYzt+d5xOPx9Hf34+uri6bc96ZVS97xsi1BwMd6XyORqO2BuROe48zI1sej+sFOgXonHCuMfkZe6twnLzmPp8P8XgcqVRqXrLIFqPsnks52SnZvWPHDmQyGfNiaRU33AI0p7rmbts7329nny94wQvw2GOP4Ze//CXe97734dxzz8Uf/vAH8/nZZ5+N008/HWvXrsXrXvc6/PjHP8Yf//hH/OhHP2o5NidqDVL2CSq5/OnEORHMZlLgREvjd7FYNNFfkUjEVgZlqn0AMAsNChEpTJxIxZVedIlMPaPxYTHivOZSOFOo8adzu6kUH+nJl06U5YKM0OdilIsOZd/Z10XCTL+7UA1OtmzZgve///146Utfinq9jk9+8pM49dRT8Yc//AGxWMwcb18bnCjKdDgN5zIyWM7flKk0gs/2f5Xfp7G0XC4bhdU5HipscmzA3mgnOVZGUrVKMee+pOzm96WS2wklRWZ6SaXRWVNVvnhdABjZwrUJ74XzurSKUnO+plL+5fWRxhiZPeaMMgP21j3nWkFGl8s0crkP5xjkvZbPF+F1kI4UwF5SwBl4wGtJQ7xskMpnTF5PNd52hvmW3YoyF8j5dLHTyvAk51bOiXJO3peyKJx7K5WKrek1f7oFlbnp+zS6c19TlUmVspsOYafslusH57FawevklINOud0OMriAvU1kA2238bQykPMn5Vsr2S31URmkKKsBOGW3MwCC++bfcp/yu63m91bXmNfRsqy2ytHKYD6uw2TJOL7PtQCAjq3X9nc6JbuTySSSyeSU2/b19cHn802KEB8ZGZkUSU4GBwddt/f7/ejt7Z1yG+c+g8GgaSx69NFH48EHH8RXvvIVfP3rX3c99sqVK3HwwQfjT3/605TnJVEjujIjONkDeyc12SRMQkVVvmbzD9xoNIwnHAASiQTi8TgGBwdNlBYjlaQizvFKQ0CxWMTo6CiKxSJ27dqFkZER42EnFDqJRAKpVArBYBDJZNIW0dRsNpHP55HL5VCtVpFOp03qW7v106VRwK1u6HTeunb2z59SEZW1TImbN3Y6b2gwGEQ8Hjdp+FR8l5ORmdclEomYcjXZbNbca2X2zLcivlANTu655x7bfm+88UYMDAzg4YcfxvHHH2/e39cGJ8rCIA10c9U7oxM4a3dzrFRq2VzL49nTsIqynTJuNv+vzWbTFt3F6OFgMGgWvCztIjN8KLOkrGIke7VaxcjIiC3qzok8zsDAAJLJJOr1uommzmazmJiYmGRgcMrE6WQglTz2A2Ekl2yYxmsvZSyj+Jjt1NPTYxqulUol04sDgDFyW5ZlotQBmChvaaxnVLg8L6kU871gMGjWTF1dXUgmk2Z9xLIo3H84HEZvb69R2vn9np4eNJtNW/N4p2HEqbxLhZ9OQpkeHo/H4fHsadZKpbxcLiOdTsPr9drWeYQRcF6vF/F4HN3d3fD7/SaVuFAo2JqczsX/6GJR7qWTZi7HpEZ0ZalDwx/ny5mWO5lPnA5vzmF0HrIpOOdtGiDZdHu2spulT9PpNJ5++mnE43GsXLkSkUjEyD4ZncxrKXV9OYdXKhXs3r3bVqrMCYPjKLu7urpQq9XMdyYmJjA6OmrkoaynPdU5ul0Dt15eAGw/uX+nk5ryiOVauDaRJdvcMvrc5meWM2GJs1YOENm3huuNcDhs1hPclvKQMpFOFTofWErP6/VOCgCU61hpwJcyl/uWY2VAkMx8kM4cpwPdeU8YrR8IBGxlflKpFKrVKvL5/Kyb5E7Fvsqipeacn0/ZHQwGsX79emzevBlnnnmmeX/z5s0444wzXL+zYcMG/OAHP7C9d++99+Loo482DpUNGzZg8+bNuPjii23bHHvssdOO3a12OxkbG8OOHTuwcuXKac+NqBFdmTHSYyo9pFMpJ9Mpo1PBB79arSIYDGJiYgLVahXRaNQYuZ3pbU4FWKafsSs4U6qY7sTvUdCFQiFT77O/v9943XgOExMTAGDSkEul0owVNDlGKaD31YDutn8Ak5RrIpUv5/dbwdpmVHipHC9H/H6/SVFfrue4VMlms7a/Q6HQpHpmbHDy8Y9/3Pb+bBqcbNq0yZQT2Lp1q02Qcxsa3t3IZDIAgJ6eHtv7bHDS1dWFE044Af/0T/+EgYGBlvtRFh7Om1S0FjvOaG9p+GQUMJW0er1uiwaeLYw683q9yOfzJpLMmSoso5ekLOSxK5UKxsfHUS6XjULd6prTSEsDdX9/P8rlMvx+vymzkslkWkaLyZ9TnbszKkw26HSTr4SGBgCmHJqMtHOuZeT1cYtG599uY3Vbd/l8PmM8YMkyGk2c6wN5TlSKfT6fkYdUxLm+Yo1cZx10rqtktCQAo8TToSCd8TQuMAoyFovZouZ5zvy8q6sLsVjMGF1YmkbW8F0I5ivi1fl8KIrSGjmnLXbkPM+fNJZzfpWy1Ck/ZwPn5lKpZMqwdXV1Gf2UupAzy0qW/2Qfsmw2a/qfTFV3nLI7Eomgr68PAwMDxoHOMmOUOdIg2ypKfypotJ0qk91N3tIGQr3Qee6A3Tnsti/n+KaT3U4HNO0eXKv5/X5bTxvKZspu+SzI0mp8Tx5LOvv5bMnzd56HXJ84S8+5XU9+zjUcbQlcM8iMPNZXX+iyfVOx1Azp88kll1yCc845B0cffTQ2bNiAb3zjG9i+fTvOP/98AHsCz3bu3Ilvf/vbAIDzzz8f11xzDS655BK85z3vwdatW7Fp0yYTlAYAF154IY4//nhcddVVOOOMM3DXXXfhvvvuwy9+8QuzzSc+8QmcdtppWL16NXK5HG699Vbcf//9Jqgtn8/j8ssvxxvf+EasXLkSTz/9ND7xiU+gr6/PZvCfDjWiKzNCCgmmH1P4OGtF07NKJdotasyptMrjuP2sVqumhjkn3EAgYJQnZ90uZ0M0RlqxXhnrq/K8GNXu9/vR19eHlStXGkVcGtEtyzLGY9mUlDU721m4yMgClpbx+Xzmes22GSuRafRMpXd6up3Xe7r3JGz0xpS75RSB7oTRhozSU/adTnnEl0KDEznmSy65BK94xSuwdu1a834nGpwo84/T+bkUoHLlTIVmrU6v14tKpWKrf9oJqIw3Gg0MDw8bYyjlEh1TgUDARBdLZBQSs8OYHi6N8swi6+npQTgcRiKRMMZZyldGYtdqNYyNjSGfz08ySLejGDWbe5phjo+PIxaLGYVaOltpYJcOC8uybA3NJiYmUCwWbWXxaMCQdcNblWrZF2ik5viokAMwxgo6QZzKOK+BvGa8D7y/jP6mEZsGCD5/cr0jSwPK2r40rPN+0wkA7G14xu/IaHNG4vX09KBWq5nrPN/M19zgZpyZq+PMVzSboswVjJheCg5wADZDrXRE1ut1Y1ym7Oy07C6Xy2g2m2Zty34VzJRiaVUZ1c+f5XLZXOtAIGBkt6yhzTVJMpnE4OAgwuEwuru7EYvFEAqFEAgEbLLbmQEOzGxeoeyemJgwEd20HchSa5Tj8lmhDKxUKsjlcq7XmnOkLB3nlN0zQW4vHSU0OAOTnULO4znXD9LZ73Tay3N2BiXK4ER+LqPsGYBB2c5jSQe6W0CANNg3m03TZ8Xn85lmrIuNpSbL5lt2n3322RgbG8MVV1yBoaEhrF27FnfffTcOPvhgAMDQ0BC2b99utl+zZg3uvvtuXHzxxfja176GVatW4atf/arJ/gaAY489Frfeeis+9alP4bLLLsNhhx2G2267zZRQBYBdu3bhnHPOwdDQEFKpFNatW4d77rkHp5xyCoA9/0OPP/44vv3tbyOdTmPlypU46aSTcNtttyGRSLR9fmpEV2aETE2iksvJ3GlEZ1MLChunAVcuAtxqVkpPLr/H6CKfz4dMJoNdu3aZdON4PG5qYtKDGY1GbV5y2fArEomYCDUqrNFoFP39/YhEIjjooINw6KGHGiN6PB63RWkxJbxQKJiFBMfXrhFdNl0rFArwer2oVqtGAd0XIzojy2T0Pc+11XhmAiPootGoLTpsuUEveTwed33OldnRKWG+Y8cOW222qYzObs66qTI+Wjn3nGUf2t3nP/7jP+K3v/2tzWMO7FlokLVr1+Loo4/GwQcfjB/96Ed4wxve0HJ8ysKzVBRwwD7HO0s/sN8I5RKNmJ1SxOv1OrLZLLxeLwqFArZv326c1lIxDoVCNtnPcVYqFaNkUdZXKhWMjY0Z5yYdun19fTj00ENNNhnXBPy/ZDOrYrGIxx57zGZEnsmc1Gg0jGE2mUya1OlGo2EMv4wao5OCJVcikQgAmEakvOaUL1w7VatVm1FkNs+bc20lFVg2WZcKP6PTed1lsIQzFdtZq5S11pnZwGALXi9nuT06UFiqxlmuhVkSwN7ADD4zXq/XGHK8Xq8xyBCv14vu7m5EIhEUi0VUKpUFMaLPF51wqszHcZaa4UFZfkhj31J4HuWczQh0OsRlE2uWJ+1kiRoarL1eryntwswfljTp7+8387Q0IPP7lGexWAwrVqxArVbD7t27bY0ofT4fBgcHceSRRyIcDiMejxtnqRwL9eVHH30Uf/nLX2Y1HzWbTUxMTKBcLqOrqwupVMpkVxHKMkZHO6O2Kbspx/iZNCbTAT5b2S3HC+wtIccSbzLYQPYJkddErqec9eudQWE8ZwDGQO/MMJABgJTpMrqd8p7BGFwHAXt7zfl8PvOcyv9BWbKIjhRmQij7zkLI7gsuuAAXXHCB62c33XTTpPdOOOEEPPLII1Pu86yzzsJZZ53V8vNNmzZN+f1IJIKf/OQnU27TDmoNUtqiVaoUhQqFusRZC537kbWxOKG7NSaRCrycvKmE0nhdrVZN/Uyfz2f7WzY+Yb04ChNGUsuoMBrhaYBnFFs8Hjc1v+T4GKFFTzaVwVbGN7f35IKDUVQUTNMZ+Voh9ynrlXayOYdMx1/u0dn0zjsjOJXZ0ylhvhQanADABz7wAXz/+9/Hz372Mxx44IFTjnc2DU4UpRVStjoj0Ik0Istans7/0VbZY277lH9zvcB9VyoVI6dpHKcxWa4TZGoxoZx2ppTLmqGsn81sKRkJxcg5RjQzFdq5VnE7HycMDgiHw5Mi0qSMlE3IZfqz09ghm25J5Xtfsx3cDOnyOMDUZXvkfXL7TI5dBkg4t5PPlFMx5zPiLH/DiDlnuTvn+lFeI+6Dz4o2Be8cakRXlguL+VmUMtAZtcvfnYFmrSKfWwV+SKOrE3kcOhxkeS3ZC02WM3UacqVcpcyVmeL8ndHtNJ6zNroMhJM9VMLhsC1q2mmHmOre8pzoJJ5qvdNqrdMqk0EamDshu53joT2Dx5KfzXRfrc7X+ZJMV7qXP+WaQR5nKj1a3gNmtMnSgsq+obK7s6gRXWmJTJOll9gptGW5FqeCIhtW0HPKshiMGqOAlIZYpwFYRrIzqoneznQ6DZ/Ph1KphNHRUeNF9fv96O7uRl9fny3ajelgVJppQGetVqaBx2IxdHd3o6urC+FwGKlUyhjROUZO6qFQCCtWrIBlWaa5SKFQMELUsixbJL4UQPy7WCwaJTCbzaLRaJjU8JkYb3lPLGtP6ZpcLmfq0c0kSr4deA/5bCxn+FzR2aIsLRaywYllWfjABz6AO++8E/fffz/WrFkz7Xhn0+BEUYhUtBidzahmKnZOeSsNmlRq5XucA5nlxWZcsmSajICTJc6o3Mpjchz5fN5ElhWLRaMcU/5RYZZpwZQ7lUoFmUwGuVzONMkMhULo7e1FT0+PrUkZ1w7SwMCo9Xq9jkKhgPHxcWPcZ6QXs9fckAYClmSrVComw4xR6VIpZHkXziG8T1LpLpfLKBaLZi3BVPrZRrI5FR/WcqWTgQZ9rs0Y4cZ1DpuquylgNH7IoArWMpfHc64juZ9YLGYzCPD5a7XekWVgeHzZhFUq8QBMXXSZ9q4oirJYoayMRCJG9lEGAPaoZCKDu/g7o4NlmVMpu1kSlWVIuS6g3CoUCqZ8Fr/DqPdarYZcLodyuYx8Po9sNmvkLR3U1LUpa2WgGvXSSqWCYDCIRCJhGlZTjrOMC+WJnL99Ph/6+/vN2MfGxsxYWT5tKtnNa0VDei6XM+OUpcVk9r20icjrT9lNuc+678Vi0ZR37ZTsoT1D9g9xOy/A3sSTY5CGcZ6XXP85sw/5LMra6nIdJ7dxOmecgZL8Po3ibs+xRK4Z1YiuLEbUiK60hEozm0hRmElFb6pmD1JxpBGbBmkpbKlcOZV6KqVMA2eaWiaTMVHbTM2dmJgwEy7HvGLFCjSbTYRCIZNGBsCWcsbtE4kEGo0GUqmUKd3S29uL7u5uo5xTkZTfpeI5MDBgUrQLhYKJSpMGBGfUFWk0GmYBAwC5XM78ztIUU3nDJdKAUSqVzHXL5/M2w34n4LXbHwzLjGhzOjTUKzt75tsjvlANTt7//vfj5ptvxl133YVEImEi15k+2qkGJ4pCqDxRdgeDQVMrVRrRpUxy+75UsgKBAKLRKHw+H1KpFJLJpG2NUKlUjDNappRToZQKkTRm8zOPx4Px8XF4vV6kUil0d3cbZZgym2OLRCKIx+Mol8umnEc4HDZObzrA2fha1lmXUU1erxd9fX0IBoOmcRkAW7NNWY7EDak8l8tlBINB8z06L6QjgiXBZPabrG/K9QAd4CxD0klkxh3vn8/nM6XZisWiKfHCWu8cn4yadwZA8Hq4GdFpiJHZB1wzRSIR1Ot1Y5RhtgCAScYTPrdcx9AwJJ9hZwQlywnMlRF9f1sPaDSboswNMoMmFoshHA7bSnHKzCG3/0NpuKThk/M9+4ClUikzH3O+Hx0dNf0w/H6/0V1rtZqtTCqd5ZZlIZvNmvHyuN3d3ejt7TV6NfVmadCngT0ajaJUKiESiaC7u9uUTqXsZgaZWxY1jeihUAiZTMY0kw4EAkbnZ+CA2zUGYJPvDF5jFjo/l45dnoe0ITid26VSyTi+GRjQyfmODvBwOGyCEHlO0hjObbmGckaCy+8AsDnAneWC+JJrQmBvoCXlLJEZBtLAzn2yPBzXAMQte0I6LZR9R2V3Z1nQJ/NnP/sZXve612HVqlXweDz43ve+Z/vcsixcfvnlWLVqFSKRCE488UT8/ve/t21TqVTwgQ98AH19fYjFYnj961+PZ599dh7PYnkhU6JDoRBisRhisRji8bjtRcWKEzknUvkPRmFDocR9sY42lSfuhx5ypl/ze/wuj8vvUyFzelqd9VynS9Nq5T11CgApCGSaNoU2xypfkUjEeI1lWrkTCnMq4nxR+eOCRqaHyZdsQMbvcB90ROxLJJuyh+mEOReuXADKaApdDNiREbCzfc2Es88+Gxs3bsQVV1yBF7/4xfjZz37WVoOT+++/Hy9+8Yvxuc99rmWDkxtvvBHr1q3DTTfdNKnByXXXXYdMJoMTTzwRK1euNK/bbrsNwN4GJ2eccQYOP/xwnHvuuTj88MOxdevWGTU4mU9Udi9uZF1qRnVTFlEuTSWPZPSR/D7ltDROM/OLSjFldSKRMDLbeUxnXwlnJFSr/21nNBMN0lPtU56TrMcps4t4Phw7z5FKqLMsnJtDm83XGEFOpIxmVLQsWcLzpvOhVCoZue00IHcKjomKrzNLQF4rnpuzQbyM2HMGQDhLtMjj8nPuU37OCEc6eZyl8eQxZTaDPB/ZvHSm5dfk+k8eS7Ez37Jb6Rwquxc31L1DoZCRvdFo1OjedIq3ikKWemk4HLbJXzc9mzKQawNuE4lEEIvFkEgkEIvFzLbO+VDK7XbKljiNvFw/SMO23A/ncM7FMqKdcluOl9eH8lvO4059n3ORlL10/ksbgnTEyiA0Kcsqlcok3X2mPVbaQc6hzrWB06EhZWQ745D7lPM0f3faU5xjkeVyiZTB8vq3KoHjdlznd92QNhm5bpuOdgMUlwsquzvLgkaiFwoFvOhFL8I73/lOm2GCfPGLX8TVV1+Nm266CYcffjg+//nP45RTTsGTTz5pjAsXXXQRfvCDH+DWW29Fb28vPvShD+G1r30tHn744WVfYmIuoJfT7/ejv7/feJQZSc6J0rIspNNpk461e/duFAoF2wSeTCaRSCQQCoXQ09NjDN/stsyJzmnM5j+pFMxUKCuVCtLpNOr1OiYmJjAxMWFSsavVqpnMZaqQ/Od3S2FyMpUhXX5f1mRbsWIFksmkGRsj8liChg1I6fFnqjRfFLg0CjBiv1ar2eq7yugCKWh4nFqthmw2a0rd7N69G9Vq1Yyn05Pg/iJ82jGeU4DTCMOFHwDTtE9GG+7vLIRHfCEanEw3zk41OJlPVHYvTiijqFAGg0Fj6JAp21QKa7UaRkdHUSgUbPvhOiAQCCCZTJqMMcoeKuQSRpFR9vI4uVzOyDdG042PjxsZ6ITy1WmklbJYyjSWU2PEmlRiGdHM/ThrrMoxyQg8rjXolHZGwfF9SblcxtDQkLlmPT09ZkyVSsWUnCuVSibbjc1RmQI+MjJiog7z+bwxvHcaNjllw2xGfdNI7vF4kEwmzdqkUCiYqL56vW4MM4y0dxoc3BzGlHk0dPO8uBbk2iWXyyGVSiGVSiEQCJhMBpZt4TqI6ztG60tnRSQSQTKZNM+K8zlqFVQho/J5TabLuJTrwv2FhZDdSmdQ2b148Xr3NM1mtnZPT4/JAmL0dy6XMw2q0+m0rbEkAJu+2NfXh3g8bvt/YyCazMYKBoNmvgf2ZvB0d3cbeVgqlcy8ncvlbMeUOrN0astngceTZeW4ZuD7MvALgM34Tad9vV5HIBAwspER9R6Px8gnBo7RSSzLwcjeJ5RbxWIRu3btMv2O6DDguJgBX6vVTKkZWdqmXC4b2V4sFk1Ue6czyDgeNjN1Rn8751VnFh3vE9dYTvg+bShOozrhe5SXzWbTlP5hDznef9p4+Her48q1h3TKy8xJRtU79WePx2PKFsrngeV0WskbN7vTckdld2dZUCP6aaedhtNOO831M8uysHHjRnzyk5/EG97wBgDAt771LaxYsQI333wz3vve9yKTyWDTpk34zne+g1e96lUAgO9+97tYvXo17rvvPrz61a+et3NZLlCgskZZf38/AoGAUcilEKKAKxaLpnOy9ITK0i29vb1IJBLGOz6bOt9cSAQCAdvfjLqW28vFgFskl5wI3JQpZ3Q6f0rhIwUEG5B6PB5Ti5UCjMZrLiikIOGxZVOUfD5vOlqHw2FjDOB3eZ+kcJNOBhotcrkcstmsUfjnKgp9ptFeSx23c5VGdFkTUEZYcFHnbD6nKEsNld2LFxoDaehOpVKIx+PG+Em5RMMuZbf8vsywYj8QachmBJiM2GL6tpRRVJRp1GZfjnw+7zp2yldnGi/fY/RdqVRCPp+HZVkmco/KMx3K0rjL/TLqjfvkeodZbSxZl8vlkMvlzOdUqKWD32k4Zdk5Kozd3d0A9kZx8/yLxSISiYQ5PzpWS6USJiYmkM/njSyfK4WFCj7XSjLiHIBZpwGwReCxLi/LvrCxu1yLyLRwt+MCMIYH/i6jAYvFojHQ835znMwa4LG4NuS58L47S+XINRx/ul1bGdxBRZzlf6a7F/ubIV1ZmqjsXrzQWMxAnFQqZSsjSjkLwDhand/n3MUSKV1dXTZnLKO2gb1zKOWcx+Mx8grYm91dKpUwNjaGarVqm5Odx3ZGA7fK2OJYOE/LXmc8vmxa6uZU59pCyi8GCkiDLp3klE3S+CyjqOX1oc7N8dNpX61WbaXDZAYZ+45xbTJX+jadENIGQKRjRGa/yfUUs8h4/vI6OKON3TLKnMZ0OtK5nuS+ncGI0k7gHLtcN0jnu7OMm+y/I8ch16wMAPF4PG0FIEy3JlCUqVi0NdG3bduG4eFhnHrqqea9UCiEE044AQ888ADe+9734uGHH0atVrNts2rVKqxduxYPPPBAS2HO5k8km83O3YksMQKBAOLxuBHk0WjU5lmmwKIixeZZsVgM1WrVtm13dzdSqZQpdcIJbjZGV1mPjHU8U6mUTfjSg8qIbhlBVSgUbGm6VMSZel0qlVAqlRAKhUxEfbFYNB3HZdo7J1oZPS7TiKm8UQiz/huFs/TeuqU0UWFlozNGq0WjUbPYkWORkfrVatXW3JRlYOZCoPPYc7X/xYRMQ3dbTMjyCYwC5UISsEff8aWoV3s5orJ7YaDy7Pf7kUql0Nvba+QQs7SAvU5cWdaEcxUd3IxWk/U3peGVyjpgdwBXKhWjFMsoMBnpzGydrq4um+GbSIMqDZpsBE45I5Vg9vrgsWR0tGx6zv1SRtNgIBuNUp4xcIDrIdlnxK0+qxNmzLH5KRupcZ1SLpcxNjYGj8dj6qfKmu00bMxVCi3vNZuKOp26zig62Tyc1082jpXrDJlJQGOHTN+XpVIIG8Ax2pzrMzpE+D3eHxmtJqPGuUZ1rpGcKe1OBZzPM591Xh+ZhchrIqP/9mdUdi8/VHYvDHR6+/1+dHV1oauryxiYKTP4om7u9e7tJcbv+3w+U0aN5VokUs4BdiMpnYVSdgN7DfOUgwxco4ym7Ja6aD6ft5V5o5HaWXKV5VP4fc6zMpONaxenjHYrUyIDCPx+v8lW45jbkaWVSgUTExPGkUy9nbKoUCiYHmz5fN7WAJzygXJjLvRi2he4tmsVVQ7sLX/mlJcSXg/5jDmN3VIOOgMTuXZgw1M2ZJdyX+rPMouMx3DTpQEY+xL34bzn0qbD/gFcQ0hjPAMA3PRutzXBcmd/Ote5ZtEa0dl8bcWKFbb3V6xYgWeeecZsEwwGTcSP3Ibfd+PKK6/EZz/72Q6PeOnDNPC+vj5Eo1H09fWhq6trUm1ICiIK9EKhYDziTAtj9HlfX5+JSqfSPdMakxTiMuqs2WwiHA4jmUyiXC6bibdcLpvGo4yQp0IlDdwAjMeaaXHpdBqWZSGRSKBSqSAej6Onp8cWkcTz509nuZlGo2EWDTK9mMKg2dzT6FQKZQmFNA0SjIaLxWJG4WUqmVxUUEDw+7K8y1wo4cBegz+j95YzXNC1qi/HkkdsQsuITD5rjIijIjGXUYZLBU0rW56o7F4YgsGgSTVeuXIlVq1aZaKqGSHE+YiKDh1/LOvR399vq6NOxSgUCiGXy6FQKBiZxX1QoZalPPL5PPL5PPx+P3p6esx8SIMt1w7VahUjIyPI5XK2SDEq4rK2qWVZKJVKNgN2s9lEOp1GLpczczAN1xwLa5BTXgF7FVGpsFNO0+jPqH0a5rnOYTT2VORyORSLRZOez6huGpeZJUYnAPcpU5elItnpzKVgMGiyBCm/pfJMAwkAk11F4zQN/PxcGjRoWJelURgUIBvZSZgNwf0z0nF8fBwAzHPKNQ+DNbgm5XqLY+V6kUYG3ne3sjz8DrMQuru7TXkbBi3kcjkTJDI6OjplFsX+gsru5YnK7oUhEolgYGAA4XAYK1aswMDAgJGDNMpybmPd73w+b8qEJpNJrFixwhjYaWR3Zj3LSG9p2KSzk9G7jHTmfMy645yjY7GYKeOay+WModqyLGO4pgE6Go2aEqeyx0e9Xsf4+DgKhYItOI7ztNNI7yzP6jSqykxgOv2pjxcKBWPknm7uyWazZr2USqWM7JO10rkOyWazJuqcY+G94jl2WjemkZgGY6cRWBqpeQ/5u8TNQe/MwJfGc7l+4/dkVoEsESTtH4Q2EBlR7izdwvOjzYVZZrSdOGvMM0CR9iaWcOM5R6NRY88ZGRmZZESfK9vIYkZld2dZtEZ04vSwTeV1a3ebSy+9FJdccon5O5vNYvXq1fs20EWGM31V0ioaB7CXc2HDEVmLlDSbTaN4cHupfDMilx7Bdps8THdOHIdlWcaYToWcHbl5Lkx7AvamJMvFAr3T0qDNBQQNnVQUK5WKa60/CnN+V0ZJcbxcpDjT0fi5c1Ki4KHnnNvKxY6znIs0ojOazS3SvdM4o7OXM1M1aHFGdsraqlKpp2FHUWG+3FHZvW9MJbvdoOGVcpiKJJU8uSaQ8kjOWfK7dNrKpsjScSznfkayUS7JBpo8Jg3hXq/XKOWyxIqMCqdMlZFp0sjNayGPJSOQpUGfihMj7Cxrb/q3VH6dRgUae7kOosLajkGbx6dc4DF5LWX0drFYnFQ7VWbrzTRrrx3kMyCNLFIJdqZXy3PhNvzpFhEo1zjyfWBvrVt+h44ZafiWNdPlGshtzcQxOrMNeV7yOeV7btdDrmlllKd0NDjZH+WQyu7ljcru2dPOdXJCmcjoceq2MvOLUF7Lxtcyapp6N2Wn2/Gdc7cct5veKLOreQxnqTNmhDN6nNlKUj+W9bmlrk17gsxiowOW6wbntXNGpMvrL/UumUXVzrwjy9VyDcT1jRwHZXexWLR9fzH1BJDy1+1/2m37VvuQ5fXcnisp053ylrSS3zwOn3W5/plqfzLbn1kP0sbCsrpcdyoquzvNojWiDw4OAtjj9V65cqV5f2RkxHjJBwcHUa1WMTExYfOKj4yM4Nhjj225bwqr5Qgjtb1er6nNLA3krEVJbyqNxHIbZ8dst4lV1j0LhULo7u42ykcymYTf7zfp4K32sS/I9Fufz2eagbDRCpuW5fN5IwRzuZxNwMr06WKxaNK1R0dHkc1mzWIlHA4jk8kgmUwC2DuJSKWcPxn15DQyOAV+K6EgkYYEAKa2mVMB5fFlNNh8GLZpsJdR+ssV1t3n/44TaVxyK2/De78/lL5R9m9Uds8O6Wx2OuCoXFK2SPnBFxuKMeuL20kHH2UCndzBYBD5fB4ej8d8VzrRaZAG9sjceDyORqNh65Eio7dlxDAjigGY0iwyWollOvr7+5FIJEyJExqXmerdaDSQyWRclSka1hlhz8i90dFRPPPMM7bodGk8YM3Yer1uItml8iYVd+mY5n2aSnY7jbW8Z9J5TjnRyigvjchzIS/YSI2R4T09PWasHA9LzskmoE4jOJ0gNDJL571MxWZkmMy+k3XYuT+uXRmMIK+bfMloOzosOH4Atr4kwN6GqW73jfdArpmY0cd1I3vLTLXOUeVSWeqo7J4dlNnSsCx1TekAlvMV5xyZDeMsgSUNihJGSgMw0eeU3dKpKJ3C0oEMYJLBkt+RZWBkEJg0WFqWhd7eXsTjcRSLRYyMjJj5lxnQu3btQi6Xc3WAszwWZQVLeu3evRvbt28358H1j6yxzmtHBzRltjwfyiNnBvF087R0ErN8GwDbOkhmRTmR8nouZEK1WkU2m0W5XDaZh3S4MHBAylbaEKQh3Ong5nVxRvvLQD/pXOG1lA4HPr8yK8HNGSOvi7w+8pjcjhkM8j5I5PqE45MVA2TJ3vksoSqvq7K8WbRG9DVr1mBwcBCbN2/GX//1XwPYM3ls2bIFV111FQBg/fr1CAQC2Lx5M9785jcDAIaGhvC73/0OX/ziFxds7AuJrEvV09ODrq4u877H4zGps0ylcnq6GS1F760Uxk5kaZTu7m6T9s160LKJ11zAxUowGESj0TDnnclkAMA0qaLB3BkFTk+4VKJKpRJ2795t81wzld1pRJeR6tw3je4y7UkaUKWS2Y4wp0CgAX267ecT1hlb7kZ0LnynM6I7SwPI/ytnCqUKV/WIL1dUds8ORpfJFFUZcVYul02PD6ci3mw2bUZ0yp9ms2mrMUlktDmN6DRyyGhcYK9Bl6VJms2m+a5UMOW6geVQLMsycjIajZo641SgacxvNpsmNZ3zJxVUljdzwv9/6SCgPB4dHTWp3LwmhOXREokEGo0Gdu/ejWw2a8bMa05kLwsaEVrVRHd7j9lugD3SazoH+lw6WxlAEQqFMDAwYO4lM9qk8YLb0rgi14Qyy0rWHWUwgcfjsZWMYekfqdTzGeXaiSn9fA7kmk0agKSxnrKVx3amjcueNU7k/xA/lw6rbDaLbDZrS11320enaaWILwYFXWX38kRl9+zg3MjazNFo1Mx9Xq/X9N2i3OPcwvnKqS87a5I75R+N4iydGg6HjWx1Bllxezcd3i1K2bmtdHLSWMq/GaQ3MTFhSrJRVvKcZZaP02gr9WEagMfGxswahsdhpD0dAdS3WKKFPdLovGDWLw3o0oHa7txDI71zvp1OhrdyjHcKlp8Nh8Oo1+tGdrOHiMzCkv23KIP5rDqN6HLMlINS3srPpRGc+2QkOABbFiKRz5TTiO68N5T3DHBkkKMT3lc6nviSfeVogJ9PG0WrZ0Rl9/JjQY3o+Xwef/7zn83f27Ztw2OPPYaenh4cdNBBuOiii/CFL3wBz3/+8/H85z8fX/jCFxCNRvHWt74VAJBKpXDeeefhQx/6EHp7e9HT04MPf/jDeOELX2i6hu8PyOhkClOpPEolBNirFLoJc5k2Letz8idxpk8x8o0CVk7kc33uPL40qlN4SIHLcUsvJ9+Xk7mzLmutVrPV3ZRGdCqKXADx/KViJq/3VHW1p2OxTV5unv5WURNLHf5PTKeIU/lmHTc+XzQezEWNvKWKCvOli8ruzsPmXVRUZfq0s/yI7LFBR7g0PEejUSPHqKDLLBmpcEjHOdcKMgtKGjulDKQMk1F4RGZgAbApdc7IX6cBwalQSWekhO/L7WUksTTYyjJajFLj+MrlsomIYyQ0jQCU3Z3K7losc5Yz8kxGfxFec2YbAnYDC7/P9adbSn276wE5HhkJ70xHl+OVkZryOFyH8Pnn/XPWU3U7Nh0J8hl1Zg8uBhZ6HCq7ly4quzsLjeXxeNzU9mY5Fcpxp/wEJmen0gAqHbTO0iCUeZyLZONtp5GyldycDc4oZZm5LuU/52E346jTGeA2h3C+Zj8RmY3HtYrU6WWGGGU8j8910r7Kb7cxLiQym0EGZbnJcqdsnMoh4OaokbS6DvL4s3X+y4h3niMwOfjMDR6bJXilY0audRf6vi0WVHZ3lgU1oj/00EM46aSTzN+sl3buuefipptuwkc/+lGUSiVccMEFmJiYwDHHHIN7770XiUTCfOdf/uVf4Pf78eY3vxmlUgknn3wybrrppkVVl2qu8fv9SKVSCIfD6OnpwQEHHGCiyuiZlRGxNJCPj49jYmIC5XIZQ0NDJmWVNVTZTIlKPWA3nnNio6JPRVzWUZ8P6BFnKlFvby8ikQiAPWnLVI5kOhYweWHAc6LiPTY2hmKxCJ/Ph2g0OqnTORUzr9eLrq4u00CsVqvZ0sdrtRrGxsaQTqdRLBaNx3ipT0a1Ws00lZHN1pajIZ1NaovFoms0moy+8/l8tkUgv5/P522Grv0dFeZLF5XdnaerqwuHH344QqGQLYJI1ommMsAmn9VqFePj46hWq8jn8xgaGjJyihHsbBBaKpVM0+16vW4ix3w+n2mmSKc7o8h8Ph+SySTC4TDK5fKk5oyWZZkIPJlCTEciFWDK5t27dwPYkyXm3H8+n7cZL8lUkV/O7fmT87TX68XExMQkmUTDA8fbbDbNdZLG1EajgXQ6bZzpy00Zk84Qec2lYUReF8p5mTbNurEyIMHv95tmsrIxqkwpl1HilInNZtNEU8q6vjSAy5R1/l8w+lOm8jcaDVNGIJ1Om7Wtm+zmubNxaCaTsTU3k+X5FgOLYRwqu5cuKrs7B+fI3t5ePO95zzN9SCh7+DnnOBkdy8aczNQaGxszOjsbg1J2yjKsEgaOSSO6NGRyLpXztcQtyp3fd86njCpnRhZluxwns8ycuEVntzKi53I52zEA2Azq3E4en1no0oAqZTflxr7OW4sBZjNYlmWy3KTs5pqPstH5P+k0Vsu/3TK+nEZybicdzM5ebAyumMqgLsfnNPJznSEbwrZ6ruh4GR8fN+V7GWnP7HHpnJ8PWp33Ynj2VHZ3lgU1op944olT3hCPx4PLL78cl19+ecttwuEw/vVf/xX/+q//OgcjXBpQiESjUXR3d2NwcNAoAK2QEWDZbBajo6MA9pboYDSWsz6m/D6RirJT2M0HPL7Pt6czNxUq1jkFZlZXVCriXDi4NSehUGF9OBrMaYyQ6cb5fN4mzOdzQp8rKMy5yKJAXo5wEdmqnIuMVisUCrZFNLAnfb5UKs27MFeUuUBld+eJRCIYGBhANBo1irbMnJIR4VLpoIG9Wq0il8sZp7rMkopEIsYAzG3ZvCsSidiaiAIw6cH8OxgMGiMAa5DLxpmybJtlWbbmYlR02VeCRlFZY5zGA2Cvc75d3JSCVgZTJ4wi5PgZDSiVQlmbfT6NqYsh9ZdGdNaPB2DqizqN7jJyjUZoGt+dQQN8lqUSzDVns9k0df1phAf2Bi3wueJxGSkv12ksW0hnkFTw3aCRJ5/PA9jjGOAaebk5TpT9G5XdnUE6BGOxGAYHBxGLxYzs5jacQ6hPS+M050BGX0vnLQAjW2XEuowilkZIZ6kUmUUGYFqjJpEZRnJ94XRUy/1T15FjcT5j7ergjCieDto9OPezlJvMkOa9kM7/pT6Xc31F54wMIuD9oC3GGakuz93td3k/+b60d8hMCH7O32Xm/3RI54jzd7k+ZLa/c73hhM6pYrFoKyncySxCRXFj0dZEV9qDikMikUAqlTLp4O0YM4PBIGKxmInCYuQPa0jFYjGjzMh6ZJyQKNhlPTiOab7hMRnBZFmWLUV8tooQv+NWD0wuYmTNOF4HCiJ6RuW4pLd8qSJTEBlNwWdlOUSk8FmnMGfk51TCnNcEsKfVyXJJKsz3oB5xZX+HBu9QKIREImErzSKVCrcyKjQeRqNRW6QQFYrx8XETWU7lHICrsu1Mw5bNxYG9NVqljHereSlLpVWrVRPxzZrkjAriuGlEKBaLAGCyyOh0lmOci/93GtHD4bDJZqPRgsoXI7sY9TVfivh8HYOOAqkQM5hClmSRJc1kk006R1gCh7XupdOFCrab8s0gCFkCptlsmmwuGXQgMwgInULcVpbvkU6hmZRSc+6zXQPMVFkTM2UxyzeV3cr+jt/vR3d3N8LhsGm4LcuLAHudc9IIztKj1Ls5V3GOzOfzmJiYMD06GIkuHY50rstGrVJOusnM2ZTZoE4r52uZBUR5z5rkHA/lyVzDNZCsBS/lCptuejweFIvFZTfvyKbf0lbB4DanYZvPhNMRwnUAI8id5QOJ07YjnSYysMPtOjsdPRyrM6uA4+WYKpWKLaCzFdwnvyOd8u3q3XO1zlxMqOzuLGpEX8JQaQ2HwxgcHMTAwIAtqmoqPB6PMZIHg0GkUikzUY2Ojto85LKBiUwL4z+j3+9HV1fXghpOOUHToRAMBpFOp01aDxczs0EuhCRs/sY67Lz2sns5FdBoNIpms2mipBiZt5SNqjKtLJ/PI5vNmuiz5WBEpyJdq9VQKBSQyWRsDeaAyd58y7KM91wiFwbKHlSYK/s7kUgEa9asQV9fnylBAext/Mlaj9J4SblCA3lXVxfC4bAp18LU1lKphHA4jGq1akvFp+LLqDj5HpUrRqhzHUBZFQwGJ0U2cUw0SAN7oslKpZKRB/F4HACQzWYBALFYDD09PSblOp1Ow+v14tBDD4VlWXj66adRLBYn9SzpNIxmSyQSCIfDiEajpokrja6U8aVSyTQ+XS5YlmWitmVUGHu4APbavbK3B2W/fEYYDebz+VAoFODz+UzpHqeiLBV5rtNoDGF5IllqJhAIoKenB9Fo1Di1nf17+Dsb1vK5YVO/du8doxilUYrXi7itAWRPgaUcIDEdKruV/Z1wOIyDDjoIPT09Rq8rl8s2Q6MMOKORMhAImHKrnCvZf4slzqrVKoLBoMlMk/KW2TV0KFLmOucpWZal1bznlPtSttOYKvupcL53lneNRCJYtWqVmWPHx8fn5qI7xk4HBnVvGTnPcQUCARSLRbP2WC7QyMxnTkaEM6PKmSFGZFQ598VsOzoe2FeE9h5neR3K83bGSYcLKxrw+HRQyyBIrjV4bvl8vmU/E+c58afTRsXf3XCWkpnq/2U5oLK7s6gRfQnDSY2RzozsajcSnBMshTqFJT2bVH7q9botepoTmptncaHLeUjBT4WtEzW6W3lWZbdy2bVcelRl9AGvJQXFUvZ8SucCo9DaTRlcCvDeyahELi7oJHG+gNlFfOyPqDBX9ndoxI3H46ZsCCO1JfxfoWGOMoYR41Juy98tyzIZQlL5lUo29ydxpvVK47qcF6WM42fcngq1zNTisRlBRmWnVqshFAqZWp7TlaPrBDL1mcZ+WY6O5yJLvci1xHKZf5g1wHWTrFXOn1zzSaO2VFplOTO+J59ZGnOmWkcBdqXfmcItDTjO+r7O7Ei3/jfSaCBxG9NsZZOMylvKa7vpUNmt7O/QiMtsbpm55CyHIf9fnLI7GAzaHIF0QPN3Z0CS7CHRau6Sv7ttI+W9LBPn/L6zbJx83+k8ZD14OkTnEo5ZZsw5y+TwXrCsx3KU3VzrOe0c0jDtvIetzr1VoJcs7UPkPuUacarr6hyPXDtyXHL8svyg/N9xPt9u5zFTB/Z0UfTLCZXdnUWN6EsYGs8ZKTXbWuRMC2O0NJUiNiHz+XyYmJgwhkNO0PF4HIlEwuZFXGgjuoyGk176duqjtrt/CuZUKoXe3l4Eg0H09fUhkUggFAqZLu3SoMDGbDRolMtlZDIZjI2NGSPtUo1cajabyGazGBoaQiKRMBkOwMI7VfaFer2OYrGIarWKSCSClStXAtj7nHOR22g0TONQGQ2nKMrC08kSC52m2dzTrJERzjQ4MzUc2JPxFAqFbNFsMqqWjR+l4VwaPUdGRkyksSy30mg0EA6HkUqljIOXEefSYUjFRaaPS3nF92gMZXQ6S7zJaGEZFSQd7zJ9GMCcz5+MOg8Gg+jp6TGZdAxEkGsZynsaCcrlsilfJo0nS5Fms4mJiQk0Gg3E43Eccsghpp6+rKMvI8ll6jwAxONxs3akY4TrIMpJKvosCyjLGzijCAGYe8NniSUPWPdfGsnleLgeLRaLGBkZMSVlBgYGbIZ9qcCXy2VTTmgmuM0lzmMoirJvLDb5LZ1kzghtZ8AW5RodlE7DIWs3W5aFTCZjsn3y+bzJhpLyFdjbiyscDqO3t9fMuW6ZNjyOHEs758efTqcp1wTOe+KMUJ5LYrGYyTbv6elBMpk0fV8YxS9LagJ75D3LlsmMsqXc74JVA+r1OqLRKA466CAkk0mbbGW2OIMFZOAlYC/Xwz4g0jDu9rt8/mV0uQyikNdUZhNKZ7azlj7tBul0GuPj4yiXy7AsC/39/bAsyxbcwPMrFosoFAodMwov1WdBWTjUiL5EoUITCoVsRvTZQOU4FouZSLharYZMJoNsNutar8rr9WLVqlUmgov7WWijKRcrjGajIuaW0jQbWP+dJWxWrlxpjOjJZNIo287u1vF43NQODQaDJm2PRtqlnP7bbDZNGYJyuYzBwUFb5OJShSnd1WoV4XAYBx54oIkcZc1XppqNjIzYDOhL9V7OJ+oRV+YDZwTOYnpu6Ihj/WcaE9nI2O/3G+esVMALhYIxsrMkGw2dNKKz5EaxWJwkl6XRUSpQUhmXKd0ATNScU1FlU1IZyVapVEyEmNxvq+wdGYFE5vI+hcNhdHd3IxQKobe3F6lUyrZ2YKq8ZVlG3kciEQB7ZFwul5vkrFiK0IieTqfR39+PF7zgBejt7TVrlXq9bsrtyDIEsvdLNBpFMpmEx+NBKpUCsLduLp8Fli2gEZ0GDa6neG1l3WCuK5kRyfJqTF/nGPhcsoZwMBjEzp07sWvXLuTzecTjcfT395v987mj82NiYqJjNXyX6nMwU1R2K/OBM9t5ISOJnYZiRjuzL5TUdZxRt9KBzcAbpy4hP2ekeSaTsX2fTkOWVqWe6/V6W9b8lkbL6dZB0jgKwGZolgZ1N11fGlvnCjoeVqxYgVAohO7ubtMHLhgMmjrYvH40vLIkTrlcxvj4uHHMziZqebHQbDaxe/dujI2Noa+vD4cccggSiYStKbpsxO0MDgBgi+KXDeDpfAb23lf5DEpjvDPznmMD3EsMAfYqCsCeQJF4PI5YLIZsNovx8XHkcjmzPpNZcjIoY/fu3SgUCvt8LfcneaSyu7OoEX2J45y09gXnPqTXkJFAzkgyuchZaAM6kQsBZxrSviJTyLiYoRGDk7xzQWVZli2Kn4Z9ltBhtFWnouVng1MwOq+ZcxHl9N6yXi8XMFxYLgbHykxxRkjyxSa7cuHLVEFGs7Fm7HLpBD+XqDBX9lecSoQzxVVuIxU9t/8ZKoRseunEGf3DfbspRc4oI3n8VinfzsZTzhe3l/KDipBUqmQKPGAvHdMpOCYabmkQdh5HOg8o71kvFIBxWCw23OStW/S/83OuQQqFgnGIy8wCtwgyuV8+A7JRmDS+OJ9vOQ5nKSLn8+9cbzjXdDIAgf8DbDDKQBPW93eWoGHkZ7lctj2TKlumRmW3Ml8stmdFykYi57mp5IKc26Te5Kz57Gbolnq2m+x2KyEjZVqriH63/2XneTi3me6eyN4QnYLnSGcunds8lnzJDAAAxgnu9XpNr4vFJr/dor+lLHK7lpS91EGZHQdMrgzgdKIAe8u+yGwFWZ5N4na95Db7cq/5v8CAQq49wuEwksmkue8s5UYjf6lUQrFYnNTsXGmNyu7Ookb0JYqcPPd14pBGXLf0Jgpj5yKBSspiKOMicQrTTo7P7/cjlUqZVLre3l7TzJTpZG6KLBV3v99vIqrYiIsKHCML5xuOjeOLx+O21C9gb3REvV5HPp+3df22rD3p3lRAR0dHYVkWotEouru7l1Q0ujT2+Hw+JJNJAHtS1plpEIlEjBG9WCyiVqtheHgYfX19yOfz+Mtf/oLdu3eb/08VOu6oMFfmg6nqMc830ohLxY7KAQ16AIzhz7Is02BT1jRntG6pVMKuXbuQy+VQqVSmXAtIRZJym6U4wuGwidSSirll7W1kxghiafjnd5rNPY0fo9GokRkympuORUZHOaOHWP6L8y/Hymj6qc5LyqmpFDkqYj6fDz09PVi9ejUCgQBqtRqKxaIZK8+P14rzPa8RS7lIWbGQEZLy/OjolddEpnZTSXWjUCjgD3/4A55++mmsWLEChxxyiFmv8HwZCcnGo7KOL9cwbjVa+buMsuRnLIUG2B0oMiuDyr7MeuBalc3H5D4rlQqSyaSJQu/r65sUNcc17e7du7Fr1y5UKhWMjIzYsgwUd1R2K/PBYnpOOP/JnlvA3vIqhLKd33EzaHu9XtTrdezevRuZTMbogK1gtjjlkWyCDcDMjdTl2RSaTkXOmU7nvZuB1ukkkGPn9s65Uc6nDDTiOKaT3XIfU50/r2sikUB/f78tilruR+r7Mnqf5dh43aVzd6GQDhBG0nOsAExTeZZlafWMlMtlbN++Hel0GslkEgMDA0aGcs0j15mUnTLwYqpADpnJLx08boF1bs+XEx5DRpWPjY3B7/ejUCggHo8jEolgcHAQg4ODtkh0GWlPG0yxWMTQ0BDS6XTHAy+WGyq7O4sa0ZcwMqrLqczNZl9TlaGQEyeVELcJdqFxeubd6tTtCzSiRiIRRKNRkz4cDoenbIYmvcxsLhqLxRCLxYwzYiFh/fhQKIREIoFwOGyrl1YoFFAqlWxp3sDe54LR54FAALlcziwIWCttKUEhw3vt9XrR09ODgYEBY9xhDWI23uXCLZvNYnh42Dgh2ukqrijK3LIY/gelXGL6sWyATQUPgDGuNxoN42ilQiTlWrPZRD6fx9jY2LTHpyIum2DLLCpmD1G2M+qHUT7SwClrYtMAwJrY/IwKLrDX0MB1Co2yNPwGg0FbJDCVSo/HM22GFq/pdIoTlTsq+b29vfB6vRgfH0exWLTV9WSmmc/nQygUMvKQjd5keZ3FAq8ZZQ/vD5XU6a5ltVrF0NCQebYOPvhgs9ar1WqTGq/yfgEwv7P8Gcfj9XoRi8UQjUbNWPgZnw9G0UmkEV2+x/8buealHJYNwKVDoaurC729vTaDgjRs8RyLxSJyuZxxWi20420xOGYURbEjndCAvUEiADNPyv4ITji35HI5jI+PT1vOUx6Tehp1LGBveTb26CCcDzk2GaVNWkUcO+efVgZ353Y0eALt9SJrZ56TkcjhcNj0HXM6MLits7SMHNPu3bvnJEt9Nsg1IYMO6CAB9joBZDNZN+r1ulnHAEB/f78tkFCWIKKDmM+K7KUjxwTAlO9zwm2dDUDd9P2p7EMyI4zjqNfrxonQ09ODlStXmueepQQpo3nN8vk80uk0stnsojGgL/T6QZkf1Ii+hOEkSM9coVAw6avtCAdOfIw0k/W5p/ue/LlYJi3i5intBFLYychtKpXtXHMq8vTYyzqz8600ScGUSqVMBHo8HjcLNOnRD4fDJsKBzdVofOBisV6vI5vNmmMkk0lzrovZmM4FrIyqCwaDiMViJtOACzfWdaXRqVarIZFI2KLWo9EoKpWKuV7KZNQjruxP0Dgto4L9fr/JSrIsa1JklYx+c5PtM3Fgc26jrGHkdalUQi6XszkDJYz+4XgYFe9muJaGAGdWljRsOqOCuX+5vVTQpruu7axB/H4/ksmk6eOSz+eNct3T02OOL8+FUdjSOMHvUDbQucxrMx/IIAHWKafsZskZGTXI583n86FSqUyKIpNlTgCYNSGfv0QigUAgMEk+8l7yfsqMCT7LrGMqAxz4PAMwziJefxkJSUWUUYMcq9NgziaozJaT9yeVSqG7u9tWt1U+xzTKMGKR65SFjkRfzPJNZbeyPyKjZ6l7c26j7HSWPXPWEJfbtqujUv7IuZBys1qtTirJwZrpbuVAplszyHG6BaG5jdd53u3KbnldpxqL3+9HLBYzspu92+jglvuQ18hZko6OezYQd8rB+UA6kGVPu1gsZuQm13nhcNiWWUDZ6yzvJ9cppVLJbO+MtpeyXgZ08G8iZbWE6wE+Q/KeO7P+nY4Mfl+OW24nnVC0SySTSVPORe4jFAqh0WggEokgHo+b97iW6LTdZzb7WqwyTmV3Z1Ej+hKGArxUKiGdTsPr9RpDaDsGS3ohS6USMpkMxsbGjGIyHVIRWUz/VHJczoYo+wIFCiORmQIvjent7ofRhNLjzPfmM7otFAohlUohGAxicHAQfX19trQyjhfYa1Co1WpIp9OmQctzzz1nPOSMMHzuueewe/dulMtlJBIJRKNRRCIRxGKxeTmv2SAdUtlsFuVyGX19fTjggAMQjUYxMDCA/v5+Y0RnJLqMygf2NFnr7+83zefoMVcmo8Jc2d+gbJVlLQqFgjGGUrmj4ZFKH+edRCIBr9drjIUzKVXGMircfzQaRbPZRDqdRqVSQSgUQjweh9frNdHLVKIp36QhmcioOxn17HTEBgIBJJNJo/zLOtqMKqIBmKU/uL+paHceiUQiWLVqlZG5w8PDCIVCOOigg9DX14darYZcLmeuLQ3jlUrF5kCnsZoNOBlJ6DRazCUyk6G/vx89PT0IBoOmWapMk+YaiCnPhULB9C5hEAXHLR0HExMTZo0zMDAAYM/zy2eIzyrXRs1m00SJB4NBU9onm82aOutsui5L/0hDjWweJh3zrHHO8bLMT6PRMOsLZm1Uq1XEYjH09vYiHA7jgAMOwKpVq2BZFvL5vHEi8FxTqZQxWMTjcWQyGXN9VMa4o7JbWW60G8REA7rX60W5XDZZyJR31J3kHAPAZqyUWb7t6NAslcXsMe6fGWrS8ErHpnQ0Smcp9UygdQCcNMjLzHP5PWkQlU55XqN2A/KmOndeq0gkgoGBAVPCJp/PGznc09NjSrLJCGvAnhXA6+z3+9Hd3W0MzVK3nYt5ybk+Yz8WjoON47u7uxEOhyc5tS3LMgGS2WzWZINLx0q9XkculzNyOZ/PG5nJNaJ07EjnhMxmaGXwlt9zGtFbfd+JvNfSkC+fm2azaRqVS9ktnQM01nMfLH+TSCSQyWRsfcn2FelMmE/bzFyisruzqBF9iUMhzDqdoVCorRIa/J7s4DzTpkrzqTTOlk5NfM4yMVxczCQKXe5HplrNdB+dQqYG0jEgSwVIGIXGKACv14t8Pm+LSJQecaZcOdPfeQ0WExy3/D/g/wIXp7xOvGayBAMdIoyKoOHBmY6u2FFhrixH2olccRoIWS4DsEfm0CAtjZVS2Z/J/4BU6uX35PFl5LA8Nud4pyLWKmKY5+GMbnI23JaRVFK54/l3UnGhgzgSiZgeHjw3GiakA8N5fFlihHLAsqy2AhY6jYz2pvymEyYcDqNarU4qKcBoLdl80+3a8rNyuWwMGIxspOFaBgMQKuq8zsFg0IxV3lu3FHP+LrMUmN7tfOYB2Iwi3Ebuh/eHcpvGCdZsl/fVLbOQ5yjPTeXNXlR2K/srMlCLegNLhfBz+VO+zzlF6ksz0bflflvtQ8pjzmVTjasVTh3Qqcu4/e08v04Fr9HxyhJvdGJQDsp1hzyu2+8sDdNoNGy691zM8W76n3TGywbnsVjMRJ47HSt0THPNQRku9y8bZVPvdvY2c94TuYZzZsPLF+HvblHm0rjO77k5ppwOGLc1IPVo6t48Z7k25hrEKbtnkp3ZDu0615YKKrs7ixrRlwG1Wg27d+9GPp9HoVCAZVlmcg6Hw7ZJVDbqmpiYQDqdNo2d2o0ql4sIpqTTA7wQxmDn2BgpQGNou9H10+2XOI0Jzs9nsj/piGg1uUkh3+r6TrcPCYVmNBpFX1+fEeAyHbHV9xjBGAwGUS6XkUwmUS6XjZdYLi4zmQyefvpphMNhrFy50maUXuga8MDeRUej0cDo6CjGxsbMwtPj8ZhFFo0V8nd6z7l45qKIn7WbDaIoyvJhprKPcrhYLCIWi6Fer08qkcE01Vqthp07d5qoNL5YB3Mm0AjJCHemEssaqlSsmC5bKpUwMTFhooUikYjZj9yXz+czPTQ8Hg9SqZQx6FJB5LZUjpw1qGUzzE7BaC1G8HO+ZlaVPF4rWeqM6pPBCDNRTmQ5k3ajpqQDPhaLobu72xj12VgW2BPpxlJrNJzTCM5Sbel02jQId1sbFQoFPPvsswiFQibSXWbjAXvr3cr1kBu83zSuBwIBWJZlmoFynUbjBg0/jGSk0YHf5/G5jh0dHUWpVAJgN/wwDbxQKJhaqYxE57bSkC5lt9OIzuuvCqSiKMCeeWt0dBT5fB6RSASpVMroN+yhwVetVjPRwdSXZiK7pZ7JLCPOVyx9IQ3JMtKYRmdZkq0dfZhzb7u6JeUYde5OZKlzrNwv7Q104MoIdLfyWzITi/uT0fky42m6sToD4HjO011Lt0j0ZDJp1h90CBSLRXPtpJGc9y+ZTCIajSKdTpssRrc1Uj6fx/bt2xEKhTAwMIDe3l7X68rrw0AwYG+2hHROO2v/83ut5KHTcSFtFtLJwizITCYDy9pbyrDZbKK7u9usDWnT4jpRGuG5HpHBbm6ye7Y4nx1FcbLwlixln6lWqxgZGYHX60WpVDLRQz09PZMinavVKvL5PKrVKp577jk899xzJs17JgorhVGlUjGCQE5sCwWFiozwa6UozgYpHGYbie/08k71femJd9YLlfuSkVlTjUnuKxaLGSM6o6yng0Z0YE9ddJYPYpQasLcubiaTQaVSMdEDMkJ7MRjRKZhrtRpGRkawbds2+Hw+9PX1mVIHsgkfxy2jH3geTiO6rAmruKMecWV/p16vI51Ow+PZU3eajjmpIDNLaHR0FDt37jT9T0ql0qwzwRhBx0jdeDxuM4gDeyOLOG8De5pyUYGjEZ29H7gtjej5fB5+v9/Um7Ysyxg+4/G4MaLL6CYpE2Uq/L4gAwhobI7H48bowevYKgvLuQ9n5pVsCNsuzM4C9hpG2jkPKbv7+/vNtc5ms2YdRsdALpeDZVno6uoyZXoSiQQ8nj3NPIeGhlo2K2NABiPZIpGIKSVAIzfXVVT8ZSQ5P6czWjbF4/gKhYLtOlKm8now6p3PHx1K3I7Py+7du/Hss8/C6/UilUqZsbJxbD6ftxnR2ctERtJL+R4IBGz30y0Sfn9HZbeyv0MjOrCnD1KpVEIwGERXV9ckfYHlsSqVCsbGxjAxMdG2MZtIuUgjtXRGOzNzANgalzubjMp9OiOKCQ3zTmOi04DK/XJdIdcR+wKPT6cqnazUrZjx7Bb5Lg2+8vrQGMv1xXROYF4TmS1FvW+m99Dj2VMHPZFImDVVs9k0xmJZJpTXmTacrq4uc9xMJmMrWyPJ5XJGdrPEG0sHyevCsVMeuhm7pa1BBhhMZ1h2swW5GdLT6TS2b98OYE8pVOlY4HqRpeDcAg4Z2Ccj+7kW6RTLTVap7O4sC2/JUjoCJxfZEErWJOXPcrlsFAmmts42UpuTOL/PyN2FRC4y5KKhU//4dB5IT/tMG6hwTHIxJK+/FGAy1YqCTjalkQsFKpUyKs7tvkpvukytbhcaESi8WgktqUiXSiXk83njLZbn50z7n0vk/apUKqaGqqy3xmhJp9fbeb2d91IuymZjAHJbuLil4XXyeV5IVJgryl5FkRFIVI5pLGRZDdZRp+NvXxofOmW3U7HmTzkv03nI91kWQyrLTqO4fF8eg8obf+fnstRIJ5GKoGxi6kw/lttLo77cxjnHu81Dzowup9GB8hzAJOPxdOfBfdMw7ZTnlOnMkmJ0lxwXU6F5TOdxea6MnCwWi5Oyr+Rx3WQX98OfHEMrme/8221NwnvHurAsHUfnhswuk+PjPZPXSJbmkVGardbD7cgbnpc8X7frsdRR2a0oe0usMGALgIk0pzORjlqWXN0X2c15Rcpu5+dOWSNlBuA+r0pZ75T7rcbhNFhLx3en/7/leTvH59Sd5UsaXOWc7IxAd5P9zn3yPRpsnfuZLnhN6vJyfUdjsNyWRm+uM+Q5yaAuPnPOa8XvUHbLbC75u3NcMjuL+5LjaoVb6T63/ViWZeslxv8Hrn+da5VWOO8zsHdNO1vnjduaZLno2hKV3Z1FjehLBGlUc4uK4cSTy+Wwfft2E+nEaBuZFsQ02WKxaAzuMzX4SS+hZVkmPc3ZTGy+YVS9LDHSiUh0TjxMHwP2pDwXCgWTTjdVbXPeK+m8yOfzyOVyRhGkMYXKHaMEZRozP3fbL5VHRnDJ5i7SsBEIBBAIBGydwWdaR4z7YRkApmZLaBSp1+vYuXMnMpkMotEoVq1ahXg8jng8brzkMm1sLpDGDzZnyWQyeO6551AsFpHJZJBOp02TEkatSUWdRiMq42zKywjHXC6HbDZrGqnNpKkoF0WM5uQ94f8SF+k0qsmxLFVUmCvLjdk+k5Sn4+PjNnnt9/uRyWQQCARQLBaRTqf3uWkS5TUV8WKxaGvySAO5rBlKxbW/v984bNPptJnjGc1ULpeN/ItEIkYpYgQ6FTiWkAP2GlVlajY/cypjs0Eq1JSHjHyWCqlUlGXjVbmG4Jwlr5/bHBwIBMz58/ykg5sp/8zQ4vzOlP9WcJ1BOeXz+YyMdUa4kUKhYBRpGbm1YsUKkwnBdZzzWjebTYyOjhojOku5JZNJDA4OTio9xPWEjFTnudHwwOMzaozHkQ4Nef1lYASjDim7aSSQjigaFlgrntH0jKTnGHl/GBHP39PptM2xMJVhRH7ODFBGspfLZZtDDIBxki11VHYrCmzr82w2C49nT2ktZoYzw5cBO9S/ZwtlDzOsWQbOmZ3s1EF9Ph8ikcgkI7vTScxzch5TIh3g3JYl5jjvdRLKTepT1I2cmb78nbJFrk1kwBqdGDJiXl4HZv/JdZi8DtTLAZj+I41Gw4zPLfDK7/cb2RCPx5FIJIwRnOXlmGUlG8fm83mTKUedz+v1Ih6Pmwbira53o9HA0NCQyVLj8Xt6erBq1SpbvXT5rMpSavLaUs479U43Azp/SucC70M6ncbOnTvN/wSDRGSjXdoouG7iOJ02Ahreea0mJiZmtD6W58/rIx0rdHwtJ1R2dxY1oi8hnJ43ZzSyZVnG6Ce3l7+3E+3ULhSYFAZSIC2EEZ3nxomPym8narMRKtVM0atWq/B4PK6pdG7jozBhRCHvl/SwU9mVijINq25GdC4yZF047o9eXm7L70vjwWyN1xS8VHrdzpfPxMTEBLLZLGKxGILBoFmEJRKJeXW6cNFRLBYxPj6OnTt3GmcLnQ+MIuHzI7MFpNGkVqsZ4xCfOfmaSbd3adxgIzdn2iKP1ar+n6IoSxcZoSYVWs5HlLedkGWcQxjhTiO4NGTSCMp67KyPDuwt9yHTeqmgch+UV1IB5DqEBgAakQOBgHHKS8XFLWBgpsi1jzTaSvnnlD90aFIRl4qglAOtIpVYo1NGffE6NJtNU0KN23LdQuP8VOciZYUs+8N0ZhqK2WS+Vqshm82aY9GBkEgkjFM2n8+7ngeVU1maRzbxkkon1ylyPSjXPDJanecgI89k7VWZJcC1UrPZNIao9P/P3psH13ZVZ+LfvZLuPGqW3uT3niewQ5LGHf+eA5hOlU2bdNplTOPuVLsgIRQuEwI4aRoDTkwS45hQrpc0YKDKYSga7Eo5LkI1DTbVjdOASQJhCk4Y7Ge/QdLTcOf56t77+0P1bX1n61zpSrrSk57PqlJJusM5e+9zzl5rfetba+VyWFhYMCXkKJrizvVQcoPemwRKeM/qfdmL2AxzsvvD4bDJGuF9xnXabgDME0882RuiQed2u20Iaaq7uf9onevtCgF0zZrl/mvrS3vPBZx1tLsBauuRqvQ7ysSnH6ulXfsl1MM813qkK2V5K9nILVvYLWNYe7toJhPXmT3EgNWAsOoot8A/SXHUzwSsuZa0E2y9ykAsMQbqMY5vvbKonU4H+Xwe+Xze6G4S54gDaAUBnp9jUttOcYdugLk9X36Xx+K9WiqVcP78edPHBIApN8RsMrcMeT2HZlVwvQnK90ouUzyNz6pdGmm92u+e9C4f+9jH8Od//ueYnZ3FVVddhZMnT+KVr3xl188/9dRTuOuuu/DjH/8Y09PTePe734077rjD8ZnHHnsM99xzD5599lkcP34c9913H2655Rbz/kMPPYSHHnoIzz//PADgqquuwh/+4R/ipptuMp/pdDr4wAc+gE9+8pPIZrO49tpr8dGPfhRXXXVVz3PzQPQ9LKqklSllpyDzYady0LRZ3SSo7BV83yqTleek8qhWq45GVt0Y2TsldGpZI41lOnSN+iF0djudjmHTNRoNh8K1N38Fk7nR8zcBXDpbdkSa9T2ZVWCD6Dy+DfZy8+f9YAM0thG0VbFLAXQTVaSFQsFhbGmHcjU81ent9V7Se5qgjkaUm80mlpaWUK1WDSNdgXH7ftFaa+FwGAAMEFKv11EoFAyDdHFx0bDQtdFqN2GQhAYO2QnxeNywFN1A9EKhgEqlgkaj4VjL/Qise8aJJxej2MwaOrkKLNt6SQPcyojWjBQ6dP0MCrMeJxnM3HupxxV81vmxJrqya2lf8DMatKVuYoCYTOBwOGzKgnHPttOttyOq6zSbR9nkzKCzM/cUtGbQlBlIBHR1bbRUCh1lAtzNZtN8R9dI7wvu+8rgUh1LkJj6gOtJYJtBYtpmwGodd14Lv99v9J6WpetlHTn2UqmEubk5M25gNRhAIIAOKcdrs/Hdjq/zpV5mfX3q3Far5QjgqPB6dTodY5tSvwIw8242m8hkMmi1WlhaWsLCwgIKhQLK5fK69xCF15X3DNc/lUohEok4rjWDHK1WC/l83vQf0uDMftSD+3HMnnjSTZTE5JZl4lZGk5+zWbtuIKqyePvx7BC4LxaLJuvG9pd0XPYYdd76GsfYDUgn4Mu/ycTXjN1+C31n6u5arebw83Q/VpvLJhgySFqtVh12i+pGBqA1O1h1jwYrFJehjtOyM8pMJx5BwpaWNSUDnLah+vFqA/KarJcF5yZqw+XzeczNzSEQCJg1InjOMWkAXsvuMXDRjdygpL5Op2MwDvVR8/n8mkCyjW3xs0NDQ0gkEgBWdTf7+jGYnslkTB34XnQp8RTeM8RbEokEotGoyVqwMxn4NzEmm/Cyn2Q3x/zoo4/ine98Jz72sY/hV3/1V/GJT3wCN910E5555hkcPnx4zedPnTqF1772tXjLW96Cz33uc/jmN7+JO++8E2NjY7j11lsBAE8//TRuu+02/Mmf/AluueUWPP7443jDG96Ab3zjG7j22msBAAcPHsSf/dmf4dJLLwUAfOYzn8HNN9+M733vewYk/9CHPoQHH3wQn/70p3H55ZfjT//0T3HDDTfgJz/5CeLxeE/z80D0PSwamWTkUWtpqsOhThE3a7eamcqeUgdwK2CqKiE2R0skEo405t0A0nWzL5VKWFpaMuyprdSmXk8IYtLxJRDK9dQoNkUVeLVaxeLiImq1GhYWFpDJZByMP6ZKM3U6EomsAdFtxgFBdG7+TCemotA0aFtJ8xhbuU56D220xrznKpUKZmZmDAhD4Hh0dBTpdBrBYBCpVMqsoRoa641RgRINWBSLRTQaDWQyGSwtLaHZbCKXyxnFbpe74bG4VsFgEJFIBPF4HMlkEu32SjMUNm47d+4cyuUyZmZmcO7cOZPKmclkHIwPFYIz4XAYU1NT5vfBgwdNSj7BFN5HdPwZBCgWi8hms3j22WdRKpVMQGc/KfTtggf7aa6evHhEWUcKanJvJ+tGwUTu4XQO1YGjzlfHtl+OOIG9VquFcDiMdDptxs4sIzrHCvJHo1HE43HzfTLH7UAA93C7dAf1G8t20KGjg+K2L7utM8+5ntgANHVPPp83epzjjMfjRs9qEzPqE937uW5ujng4HEYikTAlzwKBgNE5GmigHggEAg4nW8uhELgHVll4HAPtj0QiYQAG1ev8Dq8FA9XLy8umLICmbruBK7qOtDPr9ToWFxfh968086QeZ1A4nU5jdHTU6C+yvRU8toNCtE05PxIhFhYWMD8/7wCctba9iqacVyoVM+fp6Wm02yuladiIdWZmBtVqFS+88AJOnz6Ner2OfD6/7r1EYbB7aGgI6XQaw8PDCAaDGB0dRTKZdJRz4ZgajQZOnz6NxcVFVKtVLC0tOcoL9XIv7xXxdLcnF6N0OquNvYFVPaslPmyykuoXHkODsLTjCfBut58Jhbq33W4jFos5anXbdoKSi9Se0PG67ffqd3Ev134b9EUJ5tMX2ej53myGGRnMBLlZRpQNNEOhEFKplClxQhCdc6TfV6vVkM/nkclkHPgH7ZDBwUFj2zCbbGhoyJT/ZN8sfof3CfUy/XD+JpmK5V78/pVyndVq1diExA+o620QXrPGeT4G9NW/XE938/w+nw/1eh3ZbBYDAwOIRqMIhUIIhUJotVqIRCLGdvH7/WbNiBsoA1yPrefTMqfnzp3D7Oys4z7UkmsqtFGA1eyzaDSKAwcOOHR3qVTCzMyM+X3mzBnUajUsLS31hPUEg0GMjIwgGAwimUwa3GF0dBSxWMy1FNvy8jLOnz+PYrGIXC6HM2fOmPI9+02X7bbufvDBB/HmN78Zv/M7vwMAOHnyJL761a/ioYcewv3337/m8x//+Mdx+PBhnDx5EgDwkpe8BN/5znfw4Q9/2IDoJ0+exA033IC7774bAHD33XfjqaeewsmTJ/GFL3wBAPAbv/EbjuPed999eOihh/Dtb38bV111FTqdDk6ePIn3ve99eN3rXgdgBWifmJjA5z//ebz1rW/taX4eiL5HRYFv3UAVRNdIrCpErSNFJagprcp04t9bSVnRVC4yo2x2zW6x0elUcfOls9fvDU7TkjTtvF6vm+gto7r2d7hGWq+dgQg7TZvKW9lO64HoZAPQUSV4rowBFWX5bQdEVxDITexxEpQBVu9bGkGsRU72Pe9lvZ83Go+yDVkuh5FrAupkiq83bsDZ+NQOXtFQolLn8VnjjQx4t+MrWzEcDiMWiyGVSmF0dNQAOQQ7FIQgAEFDn2vFe2u/pZ15jrgnF6vos0ugUAFbiu6LCsaq7lbA1c5C267Qqa/X6wYspj5SR5tAnzptbvpIRdnWyqa356bBfhuY6KcomKDsaOrLTqfjyABS3abf0wavCj5rFprabNpnQzMK1Dbjfs40buowXSu12TgWG+CwHXCKnpc2gTKu7Ovmdm8pw4+MPh5PgSc6nW62io6JdiKvt8/nM++rLddrgFifE96vPC4DWpwbCRelUgm5XA5LS0tdnXs3IZgTCAQQiUSQSCQMASCRSDiCZwys1Ot1xGIxw5jjNd+p+30nxdPdnlysouQVYLVHg/aOsrPJVP/pPqSv8f9+ZYyqj8P9za4Tbvt59KmoC9xIPr3sszpH7qk76XdTT9DvIoBMnci5aMkT1dn8nuID/L7qRfrZqrtZdo0+oGYl2Kx0rokeV8fP8bAOOq+Hkhs1g9oOxvDYynDX67Le9aOOoU+s9h0AEyBguRcK7xFtRqrHtO8h6m7aCMVisSf9pvcV18Pv95vACNeJurtcLpuACLGVXoSB9VAohFgshmQyiUAgYMgAzWbTkD5Yeof3HOdnB9r2k/RLd7NEIEVLFFIajQa++93v4j3veY/j9RtvvBHf+ta3XI//9NNP48Ybb3S89prXvAYPP/yw6a3z9NNP413veteazxB4t6XVauGv//qvUS6XceLECQArjPe5uTnHuYLBIK6//np861vf8kD0/SrqYPGmJKhqM8sVxKYS4QOuDptGwnWz5nuqaDYr3NTy+bxxyGKxmAFFWQJjJ8B0HXc+nzcOEZs69qsGnQoVc6ezUit0YWHBRKpzuZxxqhip5zjJqmLElEwrGhysC0vmMyPUBJSZEg7AFUTnOqgTqmukUXd+lrXBW62WqaPai3D+9XrdNN/UuqIKFHGcmqKvmRD8LpuXDQ0NmTUl+KCghA0qKABFw0LrlDMiTrBbDRQ3YXQ+lUohEAiYOS4tLZlnjJkOc3Nz+MlPfoJCoYDFxUXMz88bp7+bYtWU79HRUVx++eWIxWIYGRnB8PCw41lXo4LPLu+BWCyGSCQCYKU+8blz59YYsp544smFET7HdMBbrZYJjBHUYwNGMoIBGH2phi73TTKcGYhUp2GrATTulzwns28ILPMzuu9yTGz+SRaXgs3q3Pp8PhPko22jGUy5XM4wxUqlksNBXk+2o9vJOtY5DQ0NmSZcdK7a7Tay2ayp1c4SYFwzXhNmffE3y7fwuvNa08mIRCKIxWImQMy52I64nT6u+p7rxHuJwKyC2OrMazkVDTDbuoL3mrLsaFcokM7/GZDmd/x+v3FyBwYGkM/nHevK+4tzoc5SUaCj1wwr3nMcK22IarWKubk5NJtNnD59GtlsFplMBqdOnTI2ozaOtUUBDK5jMpnE4cOHEY1GEY1GDRNUa/GSbchAud/vx8TEBCKRCGq1GsbGxlCv1zE/P49z585tyf72xBNP+ifUf6x5zf1AgVM2fmRZKep4+k8aFOR+yGOor6KyFWCLmUf8Hn1GloZUXczz87cGX+0yM9QRtv5g0Jz6g+xm6kUSiHrxPbrts93eU6lWq8hkMo7Sp4ODg8hms/D7/Y4sOWIBtVoNuVzO6D36Z8ycInmJf9tCG4d+MoPt9CVJWlM/W4PqOkcGPwAYrIbvKaDPdVC8RwFq6ix+Rs+ltmO3e40YANe00WiYuaVSKfh8K01yi8WiybwiwM5rxbVVf5fB6FarhUKh0NN9rfOm3cnvz8zMoNFo4OzZs8hms1hYWMBPf/pTo7tZHm09/cnnlo1VDx06hFgshlgsZjL/FQDWZ4b3PTMd2BemVqthbm7uRau7Dx065Pj/j/7oj3Dvvfc6XltcXESr1cLExITj9YmJCczNzbked25uzvXzy8vLWFxcxNTUVNfP2Mf80Y9+hBMnTqBWqyEWi+Hxxx/HS1/6UnMefs8+zgsvvLDOzJ3igeh7TNQRCYVCJuWZ5S10A6NwU6by01pXVIJaz43Kkg4Blf5mU8T5Wda5IngYj8cNwLeT9dGpsJiexOaVhUJhzcbeT+GGSQB5YGAAlUrFgN90qCjtdtt8lmC7NmLlRh2JRAyIzkhpJBIxrCfeFwoiA2uj9DpGZegrg15BdLLnewHRleHFlHIC4bzPWONWHXet/a5KvFqtwufzmVQzGp4EmrSsC+8lBRU4FrIMeExlH+g5uV7dZGBgpXne8PAwIpGIAdF9Pp8B5zOZDMrlMk6fPo1nnnnGBG6YWrkeADQ4OIiRkRGMjIxgamoKL3nJS5BIJEzQyY3FotLpdAxglU6nEY/HUa1WMTQ0ZMrU0Nja6+Kx2Ty5GIV7GI1yguk2C5l1tsvlsmFYEERn3UxlH+n7Cn6rft2qI07Hh0F47oM6J5tNx8Apg/2axks7g58lsMz9XEHc8+fPI5/Pm9rsu7F30T5Q1rI6vel02nxmZmbGlOdSG4m6SPtZ0CnXBu903gAYpz8ej2N0dNQ4qmR1M/OM18bvd9ZaVeeYDEQ6v9SZ/I4yD+0SgLxWNoiuziOPSV3NMal0Oh3jSOv3A4EA5ubm4Pf7TcCHpU9YS596ku9rlp8eazP3NI9Lm4pldGZnZ1GtVvHcc8+ZMnrPPfecKT2wnq2oAAWd/FQqhaNHjxqwQZ9t6l/WTWUzN/4eHx835XQajQaeeeYZzM3N7StH3NPdnlyMQhCd9XA1aMw9gr6YlsJS/0nrSOu+oOAg31c/ZrPPf7vdNgF4HQP3GeIBGgQH4MAR7DGpb6afJVDt9/sNK1d1N33B7dRDtxn03YTAPX1NsoapQ0ZHRzE1NYVOp4Pz588jm806/F4en7YL/XaWX+P7Oga/32/uCfpqAIyeZyCCepk6QIMoet34GR6H5+Ca83Mq9PE1S0uzFxWApmi2nM7HZqUDwNLSEjqdjlkTv99vdPvQ0BBGRkYMrkO7IJfLIZ/PO3SofZ5e93oGdNTmzeVyxoZ47rnnkMlkcP78efzLv/yL6YvSiy4i2YHktUsuucRkj9FOdzuOVgHQQMn4+DiazSZ++MMfvmh195kzZ0y9egBrWOgqNp5BXHIzn7df7+WYV1xxBb7//e8jl8vhsccewxvf+EY89dRTBkjfyths8UD0PSi2o60RSsBZmkOdP01LtjcXNfC1PEYvALdG1OkMq9Nus4MJjAaDQZM2RCdku2C6BgeoOFkihbVDd6tOlRo+mh6lLC5+jspKa9fb14brpNkG+qPsblU0Pp/POI6qSLXbtgLaFDLBATi6duu9pnPgbypvbWaqzrrW8+U5aXS6ib2p6ybGsfCeVodWjT0arix5QuNxO6mFvL4EjAg2VSoV05yGRhTXZCM22+DgoKkFz2CJBkg2En1eCUoBMAaCz+dzdD3fy+I54p5crKLPqVvQW7PEuE9ruqy936seAJyNSzcSW4e4GaIKllKfMMNNwVj9rg0o6znUuQPWlv6i/tAU6156a/RLdK4aGKbuYRaT6hPbntL58G/V4W72Dm2wbiVw9HOqx8lY0xraBL+5hm4Nx6kzNUOt0+k4gsucD3/7fKuNUfkde/5u5+Hf/A6zD6iXfT6fo8GoloZRfb2de8DNnmXAQEvoqa24mWOTiUjghRkANnCgc+D62M82ARt7rfdDerinuz25WMXNL9bMb/5PX4R7vepmm/Wt/rH6NBuJnkdLtaj+oZ9CMFQze9zAJ9UL+sMx655o+2X0u7U0KQlau6m7NUBP/aY9REgm4j6/HrnJtl24Nirr+Wa8N2yflcejD059q9eKNpAbOUznSz3J7xBQ1/vJxot4Ts0MtOevept/a3lQ6mbV3Tw+7RHqrH7u6Xqv0cdmGVyS9jZDtiCIzgxu+tz6THZbIxsrUwwsHA6bXgmbtSculPRLdycSCQeI7ibsi2MzxOfn59cwwCmTk5OunycBcb3P2McMBAKmseg111yDf/zHf8Rf/MVf4BOf+AQmJycBrDDSp6amehqbm3gg+h4Tsm61hIey0wGnQqQjzTRe3Qg0tUhBdI02KzBpM4D4vUAggNHRUUSjUSQSCUxMTDjY7vV6HXNzcya9e35+3kQxybBjKpCbI9+LcEwaUc7lcsjlcub8+Xx+TZrTTooqJ9bZtq8Vx67NaDg+Bb3JPOdvMgpYAkDBcTcQhM4cgxd6LmYycG3IqGZDTLLZ6NyzhIyeh0qbDcWYHscu2ZwDG6nZGQhU8lQ0610fVex0vrm2dgBBDUk1UnqNULudm4A5lbbP5zPMsXq9jvPnz6NQKGB2dhaZTAalUmnDRnh0lOPxOA4dOoRLLrnEMBhZsmazwjpu0WgU09PTKJfLhg1SLpfNGu5V8RxxTy5WIZNXhezrTqdjsnXIZCbDB1g12rW0hzrsAEz/DQ1qugnLUxH4S6fTxnkgE35paclkJNVqNfj9fuOsKFDP7Dgyg+wAJUHGTqdjHGt+j3qA+yQbNLH5M53e3XLE7ZIk+rrP5zNZPQDM2FR4jcgGbLdX+lNoWTbqUM2g0jr5bufnefT+Yb1bZtyRMMASKWS/0W6gPicbXZ1vlqOhI0o7hD+00aLRKJLJJHw+HzKZjLFzutlW9l6sQAE/z9Is2o/E1tfbvf62/UU7cXFxEY1GA9ls1pTW61V/cIyBQAAHDx7E+Pg4ksmkYbJxPQE4zq3sfz5Xuj58ZmkTVCoV0zR8r4unuz25GEWDvvq/rZu4bzLzyAYuqR+U8MPv01dS3e32PLCECLObx8bGHMH2Wq2Gs2fPmjIl2Wx2Te80uwcL4Cw3QzBRM9UVDOQ8lT2fy+VMeaxcLmdKgm537+71+woOE8RXQht1HLDKtO62XzFwS/yE4KgGP7p9h6JBE2C1lB/xGJZ2Y8ZhrVZDJpNxNCwPBoNIJBJG1yvoT0IDS8qRxKXkNZKzeD1pO5bLZfNZuxGprqUKs7n5N3+zZI8+I+uVQdus2HYY50xbdHFx0ejHzYLVgUAAR44cwaFDhxxZ39obR59VCm0efpbCZ350dBSXXXYZqtUqZmZmkM1mt70OOy27qbsDgQBe/vKX48knn8Qtt9xiXn/yySdx8803u37nxIkT+NKXvuR47YknnsA111xjiAcnTpzAk08+6aiL/sQTT+C6667bcOzM4D169CgmJyfx5JNP4pd/+ZcBrPgnTz31FB544IGe5+iB6HtM6DwzgqmM3vWANltRanQNWI2kMmqrTp1G2vhd+9jxeBypVAoTExM4duyYcZY7nY6pNQ2sOJzZbNakl5Fpy8CA21h7FY3iUinRqczlcqb+1m5GA3k+KqnNiB2t1gZd/NtmtnUTvY40kLRbO1OS+BkAxikno5lKmIEb/SyNKDrvrHnKFDrOgQAClRS/zyBCL0xpDZjsdmRXmRYMOmjH9Vqthmw2i1wuZxxypoSvp1wYFAuHwxgeHsbk5KRR5jaDsFdhwKPdbiOdTmNsbAyhUAhnz551PPueeOLJ7orNRgPgYGwxCE1HHFh1zuz0az0m91PqVjob3Vg5PH44HEYymcTk5KQj80XrYmutb45V9xDqJoLvgDMzTEFi1cPKwuP8arWaCT5qSvFWpZvt0k02shMYNN3oGMoOt5mI/OFaK7Bij9UNoOHnCGxXKhXk83kzPgVmqSuHh4fNa+qIc83z+fyagAVtC60xS8IEAyoss9Mr+4vX2n5tszbSZkQZeTxfq7VSt5fAOXvlrNcXxRbe336/H8PDwzh48KB5pgYHBx0p80oAUPCMbD4+C3q9I5EIhoeHEQqFTINyTzzxZHelV2KXAuzabFT3ACVJ2eQ1Lf3B47ntRQzAskb1gQMHTBB7cHAQxWIRS0tLyOVyDjAwGo2iWCxiaGgIsVhsjb9NYNDv9xv/UPWSvW/THqHOpx5qNBqmh8luC9fLLbuZWUe9HofXRq8XfTK366K6jd9TW43rqj459SgJBsxc5+fa7ZVecupvK4Beq9VQKBSM/qrX645zMwCuNd55HILA3Wwse45uZAbaDzstfBY4Bq4Z588g/GYDNoODgxgdHcWhQ4cctiLXlwEl22/W4Iy+zusdi8UwNTWFUqlkSgp74pS77roLt99+O6655hqcOHECn/zkJ3H69GnccccdAIC7774b586dw2c/+1kAwB133IGPfOQjuOuuu/CWt7wFTz/9NB5++GF84QtfMMd8xzvegVe96lV44IEHcPPNN+OLX/wivva1r+Eb3/iG+cx73/te3HTTTTh06BCKxSIeeeQRfP3rX8dXvvIVACt73jvf+U588IMfxGWXXYbLLrsMH/zgBxGJRPCbv/mbPc/PA9H3qGyWqb2RKCDK//XHTciMjsfjOHz4MMbHxzEyMoLDhw+bOq/tdtswzmOxGLLZrCmxwvrfNDTq9bqpG+oGDOvfdpqRpmqVSiUTBSfzVuu57SdRsETTAu10wF6Ppce0mdv2sdTBq1QqhsnAenM2g5DKvFwum3qeut62AlTwRN/fy0LFzUDG0tKSaZBG0CmTyZhGtr2C/KxnTLYigxXbfc55bclWabfbBuxaL4VxL4jHZvPkYhJlswCrDb81WKp7vBrz3Dc11dtmttl7LZ1zfc2WwcFBjI2NIZ1OmwbGylaqVqsolUrw+/0oFAqmpnmlUjH1KDkflosicKilzLjf0ymnDtCxa91SPVe/2Oe7uR/YGVGcAzPI1PlS0JT7Mp1pYEU3JJNJo1uZvUdHWO0pdeg0/ZpjYTYer6uuv5Zf47h4LAa4NYBNkH4n0rV3QhjQAGDuX2aT0V5hbxreh70ICQLMDGRQg9eFtqkSGMgi5XOqjFY+C/wZHBxEMpl0XPO9Lp7u9uRiEtXPfI753BLktO9ZJQnxGG6v2362m453k2AwiAMHDmB4eBiJRMIEwDnOaDSKXC5ngm8LCwsm+JvL5UwJTRKoWOdae5aQIKRz13FruU5+L5/Pm2zm3coc66fY/rESDTciK1KUeKhgOY/P4zG4rUx9no94BgPUg4OD5m8t20a91m3N9f7i5wnyUx/Z9+ReE9pDPp8P5XLZ3GOcF20j1sPvVX+o7uY97mab8jqSYU5ioBs5leurJBhm4+8H2W3dfdttt2FpaQl//Md/jNnZWVx99dX48pe/jCNHjgAAZmdncfr0afP5o0eP4stf/jLe9a534aMf/Simp6fxl3/5l7j11lvNZ6677jo88sgjeP/734977rkHx48fx6OPPoprr73WfOb8+fO4/fbbMTs7i2QyiZe97GX4yle+ghtuuMF85t3vfjeq1SruvPNOZLNZXHvttXjiiSdM/4NexAPR95joBm872+t9Z6MbW50jG0B3A9T9fj8SiQSGh4cxOjqKa6+9FseOHUMymcTU1JSjnEu1WsXBgweRy+Xws5/9DIVCwZS5WFpawuDgIHK5HCKRCMLhsElbolOiUXAV7fJM1ho7c9MhoqO4X+pRqajhplkHbnXFNwOk0xjiMYDV+ugK7NDR9/l8OH/+vOl4ziAHP0cFZzcmpSLS0ioKmNvMjI2CNntBlpeXsbS0hEKhgGKxaJq2cT2azSbm5uZMJ3ploXUTn89nGOipVArJZBLxeHzD7IJexefzIRKJYGxszDTIoWJn+Yi9KJ4j7snFJEyp5TNdq9Uc2UXM+GGWFuBMiXXb66nbyJbRgCjThXkcN4lEInjJS16Co0ePYnBw0DQqJxhYrVYRCASwsLCA2dlZU/ZicXERuVzOwbaLxWKmQaQGaMlqCwQCiEajjvRvgrHNZtOUqyAYrGyr7cpu7wVabofX0OfzIRqNIpVKGdazfX30O8Vi0TCkksmkaZpVKpUQj8dNY9elpSUsLS2Ze4HfVwedbHE2AaPtpOuiulsdRDvji3quWCwa+269fh97RUjoIFON96T2oSkUCgaM6PW+Y6O1RCKBeDyOeDyORqOBQqHgeC4VgOGzwCazBO1pL1A3swzQ8PAwyuUyzpw5s5NL1DfxdLcnF5PYfg9BMQacyVjtdDpGj/MetsFnZfJqcA1YC+B2E5/Ph3g8jn/zb/4NrrzySnNO9Q9rtRrS6TQKhQKee+45fOtb3zL+caFQgN+/Ugea5VQJwqsQbKVtQN1N35B+t+pu1sxWH28/CW0x9W/5OsmBCq667VV8T2trDwwMONaT+zybv9olb1qtlmkqPjAwgFwu5wB5bWBcS/8oEM9j8TXNGKN/v5cBdGC11BubcVN3c66NRgNLS0uGuNar7g6FQiarTsum2kEKni8cDptnn2tHUQCduntgYKXJuLL/97pcCN1955134s4773R979Of/vSa166//nr80z/907rHfP3rX4/Xv/71Xd9/+OGHNxyXz+fDvffei3vvvXfDz3YTD0S/iEWVnCoLAI5Nmp+1hfWt4/E4RkZGjLM3PDxsSoMAqx2qA4EAFhcXjWKpVqtGQQQCAbNhse6XRnO1aYoy16g4lFGkip0g4X41yjVqrWxx+2czx9OIuB7ffg1YXWsy3WgIKBCvLDY672oU2tfNTcm7sSn3olBhcw0KhYIJ9JCByfTwzTAx+AwQkNf7fbvCsREY0xTBvWw8eY64JxeTcP9WcNLOtNJ9mKJOt1tQzY3JZrOe3MZCAJz6WwOzzIgZHBw0oCCZ59wDyQzSsmK1Wg2tVstRd1PnpzU0CTyQrUs20XZLt+wFcdN7wKqDzmtvs52UkUxHlw4cnUatdUoww419pcQIHlOZkzy3MubdGHM6B3XcCcLbjvteFq4FGX60Hwmakz2+mfkww0IbANMeYkNXrrl+h3YwnwG1iXhd6YiHQiHzXO0H8XS3JxeTcN/U0iyaDQw4/Wk3vWszkil6r9v3vdtx6AMODQ1heHgYExMTDvBd652Pjo4iGAxicXHR7B3MzKb+4J6ljSF1PAq+2iA6AfNqtWpqcu/3Z1eJZsDqNbGzA7uJrUM3CoqoLraFdhKvFe8hG5fpJWDh9r39FOTQsrgsWwOskhQ2qm/vJrbfrVkl9tqo7dStKoJtI/F57EdW+W6Jp7v7K/vDYnsRCZ0Wn8/nqCO9nuOsbC6Cz3SEyVzS79Ap0nrP9ibv8/kQi8UwPj6OiYkJjIyMYHh42NHZWDfsRCKBgYEBDA8PY2xsDMCKMs9msybiSie6VCoZ0E8ddAX6FUQnw4j/l8tlo+C3siHYjD59ze16uG2e/RJVdt2cZDfDrJdjqvQyZnWe2WyFSiKZTBpmHI21Wq1mmnyQbdXpdIzzqulybMq5nQY0vRg42xWuAcdMdj7n0mq1HLXgN6vMmVqpAZN+CIF0dfb3OojuiScXk9AB8Pv9JqDlps8VNNc9XnULmykp61x1HpnPWjaE4vP5kE6nkUqlMDY2hsnJSYyMjBj9qTozGAxienoaqVQKAwMDOH/+PPL5PIrFoqnNTHuB/U7shqea9s7goKYeE8hcrwHqdsQGiXdS7LkCq2wv6j5N4+b1V2Yj7RwGNCqVCoCVa64ZSly/UCiE4eFhw+bvVpecNpPeW37/So1cluKhw09bTPUxGe3NZtPBrNJyLhutrw3QXCghk14DGbRtNqO3ea2ptzUbgPar1v6nDmbJIgCOJq8E17UuvpZe4zk9R9UTT3ZPuHdqSTZbv6rPqzWx+T5fq9frRndreQglIXHftfdyW3ezprkbuSoQCCCdTiMajSKfz+PQoUPmb/YH495dKBQc4+E+rWAy9RmZzCRXMQhoNxLfrOia2liD2hFuNk0/RIFRm+DgVuID2BhM12vKUnZK/mOAlOW/1mO220FvZv8xQ4DXif1kaG8Sw6HfTX0FwARBevG7u12f3ZZms4l8Pm8CCsBqo/LN2HgMRLECgga5tB8gP0v/Xm1V23/m/sCMBdqBnU7HYdt5+vvFIx6IvsdElTKVSa+1lqiUCVZqWo8Cmtwkady7RUr9fr9JAZuYmMDo6ChGRkZM40hVQD6fD6lUCuFw2IDuPp8PuVzObEp0+rkJcYMjoKgguhoqNAKoKBRo2MpGZTv9HItbLTRdKwU/dmOT3OrxuwHxbq91A9uVKUhQdnJyEgcOHDAlC1gvfGZmBrVazaShM71Z15XGGJXgVgwktyDHTl0DZVO6NVPZ7PXnerBJkF1vvh9CB16b0u51FoIXEffkYhK7KSifQepg1cf6bCqoDqzc15VKxZT7iMfjJpNLg97d9KDfv9IA8dixYxgZGcHk5CRGR0dRKpVMEzJgtXHZoUOHzP5x7tw5ZDIZzMzMGJDVdvrV0aUeJ1jpFti2AwXbETeQVm2bnSzppnaCMvHV8WR5ObUnSFbgvkxdxu+Xy2WUy2UAMOVCtKY5e2iwrvdGILquCR3xkZERk7I/NDSEpaUlnDt3znG8drttGrIFg0Ezt15LudhAyF5wxG3Zypg0AK72UTgcNnY0ARKSQ+r1OvL5vCMAwQwQPssKymnQZTfIAtsVT3d7cjEJdZsNoivYymAXdR11oO6fnU7HZGbr9+gDc/9Qlq2K3+9HOp3G0aNHTS10BjO5NyhTfWRkxARijxw5glgshjNnzqBYLDoCfix/CjiznxnQI3DoFtzn7+08szb7WwOGGqj0+Xw7UprVJi3Z+klBdMpG8yWZQcv8DA4OmkA3M4tY4k8D4G5+ugZjuVbpdBpjY2OOEjTZbBbnz583pDUF0YHV8mME7nspvWNjIBeyNC7Jn7Ye3Mr9pyC6EstIcKHovBkEsUso8v5U24/XZXl52TQm3epYd0s83d1f8UD0PSbc7JRBw824282rTrU6vNwQ6GDaILoCwt2O7RYBB5zObLdSJJwPf+uPvm8rWH5GHQubYbVZ0XHRSFIQ3a0+tR0dtoGLjRTTRmKvvds10bXqVdyOoefj3xsJu7sHg0EkEgkkEglTm49lX1iDlN3geX4KQXR1xDcLQPM4bvfUTgLFOxEs2UkFZANXe13Zecrck4tN3PSdOmhuTCTd9/V/tx+3fX29sbjt9+pIur3WrXwH93EbRKfuV7Zdv0XPo+OxdTfn5KZr+rE/uoH4Nnhsg+gq6izbDr0yBfnZbqnH3USBFjKlw+GwAc8jkYgptRePxw3hwi5xote3FzvRbZ26sbJ2i2ndr3Pofaf2r1tpJpsQYj9jG5XV2y/i6W5PLiZRXa06U/dAAA4AXZ9v1ZvK+uXr+nujAKP60Sr2fmF/Zr1jq97hsain6F/bPTT6KdSH9twUO2BmFsfbTV/3Y6+0AVTV3YoVuNkPqgPssdh2lNpSvdhr1B+hUMhRTleBW/rdwWDQ0XvF1t1bsR84B3vuu0Vg0+PvxDn4/HbDVDbCXtxA8u3gUhdCPN3dX/FA9D0mmkqijSWB1XQrAr+q+BmN5KaqdSABJ1uLP/p+N8eeUXNGXJUVb2/aVMTKcLdFN3SOwc1g4HH1HFt1eskKZOoN026omGwQ3x6DKkSN2JNh1oth5CZqpDH66ff7TRSW9TTdOqe7HcseL5mPHCev4UZgNs81OTmJq6++GrFYDAcPHsTExITD2CH7oVqt4kc/+hF8vpU0/lwuZxjcGrjZLOCt5QH0OeC4OUfb+N1rwuvMeqy8Bv1koxPA0h8aUntVPGXuycUmNLwVUNaGUHzmWUeZ77MMDPc4ZbeRSWTv3+uNoVKpYGFhAZ1OB/l8Hul02tRJ1eMCMCzaxcVFzMzMmAZO9jlslpbaEW4OZb+Ea2WXQwGctaf5vs/nMz1UuPdSR2gpu63WZidDkcxFMsVZY576irYSCRBk2fH6k2GozDvVcQRdtJlbrzo0mUxienoaoVAI09PTGB8fd4C4o6OjOHToEGq1Gv7lX/4Fzz33nCPQzYZoABygUK/ro4EN2iD6umZo7HXR66l9BXh9NbMjEAggGAw69LuWK7RZ+grerBfA2mvi6W5PLiahTrDJayyXYQfK7Axp7nG6X1MnknBEkHqjvZQlS8PhsAP4Vh8PcDaEzufzmJ2dxcLCginlstF8ATiY1DvxTGrWOUtqdAPRqbvddLPiIs1mE/V6fdNj4Xk1MygUChm9zYaRQ0NDZixuDHUNCNikOt43ZDLr7171aDKZxMGDBxEOh3HJJZdgamrKMZbl5WUcP34ctVoNP/jBDxwZg7bupk7hGDdaH10nJS7oby0ruNeF2eTM/lpP3AIiNnEDcAaraJtrv4C9vi6e7u6veCD6HhN1ngh8atdnPtC2sido1mg0TPMv/tgbgUbJ19tYFJizlYn9IOn5tPZrtznyOzspCr4y7Ua7nNORXY+JzjGqseT3Oxuo8bNbAdHVeeJ62w6VXb9tveMpWKDXwk7L7zZWZesnk0kcPXoUyWTSlARQA4jGTLVaxdLSEhYWFkzJAKYRblXUcVUHVue5VZbchRBe260y8jcS+7pvFvjwxBNP+iO6DwMwTqo6InZqMwOoBNbtQLPaBb04yPV6HaVSCaFQyNRXV6YTQQOen45ANptFNpvtyih321N2cp/heBnwDgaDRg9QFxHEVke9XC6bJlGqUzXovRVGtM00o33B86ue1prpai/ovUBRfaZBAo6ZYE6vax0OhzE2NoZoNIqpqSlMTEw4zk9hKbYXXnjBcd9pkGUr60PiAuekDqlev72ssykKLiggznkow5LzZlNefkfL+HCN3VikgOekeuLJbov6EPocavBP93O+T5uee7T6zHze1RfrRXezJCuDpm7BbNuHrlaryOVyyGazPTf/VP92p0TXToPdWgpNdWg3EJ1+txITtrpP6rw1CK/lfNTPdduX1X6zmc28BzgPJT9stFY+n8+UxY3FYpiensb09LSZM+0Dv3+lr8mZM2fMWirrfDsEAdoiXB/+KEayXf9+t0TJhOsx0AH36gJ2sEePC6yW6qvVavuGFOBJf8UD0feYKLhG51obTSkrmQ8yN02N1q4H1vUCOpLNlslkMDg4iEwmg1QqZWptaXmZRqOBXC5nPp/L5ZDP513rSe+GcLOj482IM2uW2crcZjpTyCLgpsrvAHA44Vx/t3q364kNolOJU0ERrGfApFt6OM9pB1RsZnIv7GSyBghYhEIhhMNh1+7TVKwEL+LxODqdjlHqWxV1SN1AdDVq1uu2vZeETeECgYABRPpVG53GfqVSMV3NPSa6J55cOKFjrVljtmPG4LiylNwMeQU2e73nuR+USiXzo/pOx0Enzx7HXhDqo2AwiMHBQYRCIcfYVUd0Oh1jc9RqNTMP6g5dR4IcQPd9pFvqrh28pRPVbreN7kwmkwiFQgCcTeh4LLfSd8rOJojC+0izGXqRQCCARCKBeDxuanYqaK3OYSQSQSqVQqPRQLFY3LIDrvPT9dGgEWvwKvtxK1lquyUELyqViqkxy7WknabOM1mA2kSdrEddf4JlAEwmSrlc3jeOuKe7PblYhX40M4bsYJ/6GwxsKhPYTXe7sVy7PQP1eh2FQgHBYNA0+VZfVo9LvaB2/4XeSzWoyAxwZuh0y/xejySmIC6wmqGsjODNiOp1XutOp2PqZFOH29dIx6t6Dli19xSDsQleG/ndGoSNRqOIRqMGZ1G9of9Ho1GMjo6iVqshl8ttiaHP4+p90y1AzOvAce113d1sNlGtVk2QxLZPKIqn6bzsoLlNfGD2AgNo+0Gvebq7v+KB6HtQ6KjVajWTYqZgOkFKfdi5cdu1zezf9t/rjWFpaQntdhv5fB5HjhwBsJJq1Gq1jMLpdDqoVqs4ffo0MpkMnn32WbzwwgvIZDKmucluirL9gsGgYaZFIhEDngeDQQeriN/TYwBra29T6YZCIUeaEGuUcSPtNdVJI+K1Ws04+nTI6bTZzCd+V3+U7cBMBDIQ6dhVq9UNGcq6VslkEqOjo0gmkwiHw64gOtcynU5jcnISwWAQZ86c6fFqrRU7e4Dp+6rAOGe7NMFeBY0J7uRyOQBAsVhEuVx2BHO2e3xmAxQKBRQKBVPKYC+uB8VT5p5cjELgjUFRZU/zfTv91mbJuIFttnRzxDudDsrlstEj58+fN3Wxh4eHHazY5eVllMtl08iUzKm98mz5/X6HQ0kQlsA/HfVAIIBGo4FCoeBwhmgH0Olmc8h2u70G6LTPq/pF9T+F/1cqFdRqNQwODqLRaBgnOJlMwufzmfR8m+GkwWbeM9Vq1TARqa81k6BXeyoWi5lGczyelmLj9R8aGsLo6CiOHj2KUqmE559/fssgOteKolmQvG6szU7nlrp7O+fcaSmVSqjVaqZ8He08295ot9vms2SmsuGYEl943xB0KRaLyOVyxkbbD+Lpbk8uRul0Oobkorqb+ziwyj5Vv1D3ZtXdqucp3BPd9nP629Qps7OzRnenUimHzmg2m8hms6hWq1hcXDTfudDPlupp6t5AIIBYLOZaltReP9XHBLN5DF1vLZvSi2jAmuelDTA0NGQIYMFg0NFwVcu2UHSsDH4Xi0Xja2vmeq+EJurmWCyGsbExxGIxhEIhR9DGXqOxsTFcccUVKBQK+MlPfrJlEB1YLdumTUw1Y07tBq5JN91t++oXSojLKNGBupfjA1bLqvE9Xj9WL1AMwufzGRuAAa9yubyt7IjdFE9391c8EH2PCpUEwUJlI9vgLoFbboJujtZWbnx29A6FQigUCsjn8xgYGDDODx1KOuCFQgHFYhGlUgmVSuWCpfxoGi0j+Iwud6uDvl4kXNednyfgTfBD2XC9pilrVJSKmCwtKnBloPO4dkBEmeyqCGwGeq8sQ64bwQk7Td1tnVkTlqD3dkQZehoUsRWzvTZ7WVhfUXsM6LO8VeFa0Gln0KTXOngXUjxl7snFKqq/beCVz6utH7vdzxsxmNze535fr9dRqVRQLpdNNpvuqfxMrVbbc4FIzUbSniZ2yRvV45pKb2c0ATBguurrbvuQm05Zb60JhPOaa5bbRsK5uKWA637eixAMCIfDCIfDBpi37ULq10AggGg0uqbnzVbEjazhZo/xGvD9vSy8vgzUqJ2l9jk/y+dbQTUtCcN1oT3GEowkP+wH8XS3Jxer0B9j0NF+drXcyEZBzW56xW0/oNA2iEQiKJfLKJVK8Pl8iEajaz5XrVZNwHwvsNABOIK1tu9t6xfqcYKYtlBvAHD83oru0H2Y/zPQq5lFvPY2C5vv8bs6fjvzWwPvveyVikMQyA8Ggw6fl6LrFAwGEY/HTdbjdoXnsefPMWoAyA5K2HPpFQfZSVE72C4z7IalKLbgtha6HiS40F7bC89eL+Lp7v6KB6LvYdGHmSC5bvb60Pc7DZsOIbCyifz4xz/G/Pw8UqkUDhw44MpEz+VymJubQ7FYvGA1ohj9HhgYMBF87XbtVvNsIyeXAQxV6Kr8tVEkGQq9NmvhZ7jWnU7HsAk45kAggEgkYqLSPDYbVSqriZFw/q5UKoaJ1mtTOi0rQ2d+aGio6+fVEWSEdrtip7rzb9sxd/teP54Bt3tDlWevxhFF08rm5+cRCoWQTCYxNDRkSiRtNvjA69psNrG4uIgzZ84Ylrun6Dzx5MIL91Pdd21gfTvH3khqtRqee+45ZLNZxONxjI2NYXBw0KEzWHptYWFhW0wmSj/24Gg0ilgsZvbFarVqnHEApuY7gVk6ncyU0zVWJhV/k9nearVM5g6w1jnW13oR6oRarYZMJmPGNzIyYjLW6NiVy2UAK/VsFZzl2NUxswMHG0mz2USpVAIADA0NIZFIGLKFgsBafmQzjUs3ErIH7UAx9dVmgvqbPa8b2aAfsry8jPPnz8Pn8yEej+PAgQMIBoPGDgNW2Xq0lxgsYNCchANeBwa/M5mMsZ888cSTCy+qu1V6qW2+0XHX0y0EKKvVKn76059icXERiUQCY2NjGBoacpCkMpmMaSK+3b3DzsDeqpB1ruU/qL+oc9gDhsSrbuthg+8KzpMlTobxRtdFGd36mtZZpy9br9eN7x0KhUzGHrEYfof3B8lR/K6ynnvRcUq6UBBe/UIb72HJvmKxaLLW+iFKCuT/Os5eA0eb1cFa+rDfweRms4nZ2VnD9J+YmEAwGDQBMcUbqKM7nY4jMKFYHK91Pp/H3NycaWTvyYtPPBB9j4sNsgJro687BZjRsSJLhk7q5OSkSX+iwzg7O4tCoWBSl3ebUaMMcXbbjkQiCIfDxslWIHizgKUbmEpHUR1dOokaod5IqISpPIPBINrtNuLxuDEyIpEIotGoKSNDAFX/poFC4LxWq5k6m2QaAuvfL1QSwCojotlsIhAIuH5WQXSmnW/32ttMdBtM57ndPtMvAF0Vqg3Y2+l1vZxTDa9z586h1WphYmICw8PDjvS5zcjy8jJKpRLq9Trm5+dx6tQpY1TtBxD9QkTEP/axj+HP//zPMTs7i6uuugonT57EK1/5yq6ff+qpp3DXXXfhxz/+Maanp/Hud78bd9xxh+Mzjz32GO655x48++yzOH78OO677z7ccsst5v37778ff/M3f4N//dd/RTgcxnXXXYcHHngAV1xxhWMuH/jAB/DJT34S2WwW1157LT760Y/iqquu2vQcPdk7ovvphZBarYaf/vSnBjgeGRnB4OCgMfpZLoSA7XYD33bNyK2Iz+dDLBbD1NQUOp0OstksKpWK6dHh862UuisWixgYGDAOO9nXnDfro9uMImCFwcU64NSfuh9txZHT7zLFnudJp9PGsabOJphMIFWD70xVV9tCmW0bCeubA8Do6KiZK5t+M72Z2Yb8e6dAdP5okF3Xq1+itcd3whEnSeTIkSO48sorkU6nkc1mjc2nZXpob/JaEzQKh8MGMGcQgyDYheojtFnx2GyeXOzSze/e7r3bK7mqXC7jmWeewcDAAOLxOMbHxzE0NGT26mazaQLg/dDdNli61WOwHwcz3whG8pi1Ws0EwFk6RUln6nfZ2eKdTsdgDwqab1QypZs+0GCu3+83/jWJbIlEArFYzJTaUv3MMfCHAXJ+Vkv0bXTNeSwl5XE97VKADEIQaykUCiiVSn0F0Rn80DHbzPqN5rPZczJYshPB9WazibNnzyKfz+PgwYM4ePAg4vE4yuWyowedlqwB4CBN8of2IoPf586dM31T9oN4uru/sr26C55cENkKE3Y752I6DFPH2DiUv7WGWz8dsc0IN35tfEHHejNNTHoRZbRpnSxG3LX5a6+igLSmh/P6uh2LhhMNCCpWvqYlXTbjgHMMVAys96UGB89NZUJQhmBANyC8G4O823q43ee2873dZ4H3DsFsbaiqP5FIxARm+EMGJEFwTfey58N1pRFZLpdNPWI73cxtzjwGjSiyMck+15IM+0HcrvFmfzYjjz76KN75znfife97H773ve/hla98JW666SacPn3a9fOnTp3Ca1/7Wrzyla/E9773Pbz3ve/F7/3e7+Gxxx4zn3n66adx22234fbbb8cPfvAD3H777XjDG96Av//7vzefeeqpp/C2t70N3/72t/Hkk09ieXkZN954o2GiAsCHPvQhPPjgg/jIRz6Cf/zHf8Tk5CRuuOEGA4R54slWRJ0u6nA2IKazx2B5PzLHtmOPaLqw6lFNqe6mS6iTqe90HPZ+rMexdfZ6e3gvQt3IfXy9vZhj5Ge5/ysgsN481hMy0bVGt5Z1U3KErXf6Jbb94hYI78c5VX+7le4LBoNGb7PWrb7fqz3IgBjro9M2InGArHMtFWTbwmqn8Rh6DfaLg7rbuhtYCYAfPXoUoVAIL3/5y/H//t//W/fzTz31FF7+8pcjFArh2LFj+PjHP77mM4899hhe+tKXIhgM4qUvfSkef/xxx/sPPfQQXvaylyGRSCCRSODEiRP43//7f2967J7sf9kNf9s+n5KlWNqF+wb9hn7p7u2IlutSFrOts/Xz9mvq96qusAlsG+nvrehu2/feqHcYv8PP2rp7MwQr+5gE5MvlsqtfSFIc/b1eMsw3OwbVXXYJE/1Mv3Q3rx91ciAQMFkA1N30s/Wn1xI2DIjR5qXvbTcEdbsvNWuPhAfa0bSt9mM5l93U3RezeEx0TzaUTme12QrLUmiarrLZLsRDplFMNhMdGhpCKBQyjS/JDtougE7RVCefz4dQKGSUOJvAkh3eK3CtRpOuuc/nMw3LVFETRNWUbP6ttW6p6HsRNstoNps4f/48fvzjHyMej+OSSy7BgQMHHIGDcrlsAijPP/88nn/+eeMQsnmdMsMAZx1/NydaXyMzoBtornXgt5J6r2lr4XDYZDBEo9E1TWh1HjwnnwXe/2QicA3cxtJsNjE/P296CAAwjWTGx8cxODhoxqHKXMEZAiPZbBanTp1CqVTC7OwsMpmMo17jXpft7hX8LteRwsCGLQ8++CDe/OY343d+53cAACdPnsRXv/pVPPTQQ7j//vvXfP7jH/84Dh8+jJMnTwIAXvKSl+A73/kOPvzhD+PWW281x7jhhhtw9913AwDuvvtuPPXUUzh58iS+8IUvAAC+8pWvOI77qU99CuPj4/jud7+LV73qVeh0Ojh58iTe97734XWvex0A4DOf+QwmJibw+c9/Hm9961u3ukSe7AHpF4PNPuZ6Nb3tvQNYYSdns1nDEHOr2b5d2cozzYCzBr25/3Y6K2XNOp2OCW4y24yl2qhrqtWq2QOVta6iqdHUi1oGRhn5yo7rVYdTd8bjcaPL2DRca86rHcKgKnWHGwC/WWAgk8ngn//5nxGJRIy+AGB0Vy6Xw/z8vLERNINuPVE9uJ7TSDuEthEz2WiHEURW3b0V8fl85lqT6c1UfwJL6XQaw8PDWF5exvz8vOkPQAecgeiN5t5ut03pnZmZGfz93/+9af5GgD4WiyEej6NerxvWPx1+rjsZpM8//7xhErLx7H4LgG/n+5sRBsA/9rGP4Vd/9VfxiU98AjfddBOeeeYZHD58eM3nGQB/y1vegs997nP45je/iTvvvBNjY2NGdzMA/id/8ie45ZZb8Pjjj+MNb3gDvvGNb+Daa68FABw8eBB/9md/hksvvRTAil6++eab8b3vfc/LEnsRST9Y2ls5H89Vq9WwtLQEn2+1ASJ9kH6J7Wf1ItRjzJbWbDC7jBrnxL2a+h5YzapdXl52+O3rkb/o77P0KP1FAp2bmQsDpBrkpC/PADTPyT2afjn7v5VKJUewWoHZzazp0tISfvjDHyIcDuP48eOYnp52BCZyuRzOnj1rsvF6LaPa6z1Mf5Z+McvtKJC/GVKe2zj4o2A4dbdmDMZiMZOBXywWHSWLOp2OIXFuNA71m2l/RaNRxONxJJNJE3wnxmLPk9+vVqsoFos4d+4cKpUKcrmcqbzg6e4Xp3gguicbCoFDACaFaK+JMolZy4yOuM1W6+c5gdUUNmBlrfg307N62XRsYNjn8xmFTKfQ/tHaXCylouVcyEDcjJOq15rKmo4hu8NT6ZVKJSwtLaFYLGJhYQHz8/NmbMoOsOfI+XVzoJkGR8Vtr5+u1Xai/gqih0IhxONxBAIBpFIpE4gJh8MOkEeNLQYxms0mCoWCAV/4PseqwhrELH1Ehnun00EkEjGNWZWVye/xfigWiygWi1hcXMTzzz+PYrGIXC6HUqm0b6Lh/ZRDhw45/v+jP/oj3HvvvY7XGo0Gvvvd7+I973mP4/Ubb7wR3/rWt1yP+/TTT+PGG290vPaa17wGDz/8sAFHnn76abzrXe9a8xkC726Sz+cBAMPDwwBWHP65uTnHuYLBIK6//np861vf8kD0HZJ+lX/q9VxA/wxQ3Y/cjHd9X4N/F5qxZoudQaZMYe6BDGZSn9uNt7i2LFdSq9WQTCbXNLlWdpuuG/U1a6y2Wi2HftqMI8711SAqdYVdX5fp0mSWaQBc9/6tMOuol5SFretarVaxtLRk7AOux3pz1WDyRnqGJd5oG9ll0Xph6vcidMQ5v0gk4qgb7PP5MDExgYMHDzqABt5HAIxO3UjIZuP8lpeXEQgEMDExgampKWNPhMNhYweQUEE7iGxS6u5CofCidkr3egD8N37jNxzHve+++/DQQw/h29/+tgeiv0jEzqABtq/H17M9dJ/kZ9wakfdbtgOIsnwqdTPFTYdpdjj3YK0r7vf7zTFYZqWbvlGyFnUpfbTN+r3KKrd/tLwK58XPMhuAYLp93M1KsVjECy+8gHA4jHg8jkQi4SBXVatVnD9/3pHB5Fa735ZebVBeC4LoxB/43X6wkrV3iBIjaOPRZkin00in01heXsbCwoLp88J7otFo9KRDO52OIRLQ9giFQpiamjJj4HH1WFxTBnlKpZLp/ccsNJIePXlxigeie7LvxU7r0jTdraZlb2UMg4ODWF5edqS10cjYjCNOZ56pw51Ox7DylK3GkiBkRGtd9H6kZxOUaDQaOHfuHABnzflKpYJ8Po96vQ6/3490Ou1Q5G7NMpXJTUeXRo++bjv2qrBtEH2zypxAQjAYNA3mkskkEokEAoEAksmkmSNZE7ahRsYCm5MwhbzZbBpDh+CIG9segGGk1et1AwiRzUYWJZ1vOuXNZhPZbNaUVWJ6Zy8swr0m/YqInzlzBolEwrzu5oQvLi6aOvQqExMTmJubcz3+3Nyc6+eXl5exuLiIqamprp/pdsxOp4O77roLr3jFK3D11Veb8/B79nFeeOEF1+N4sn3ZzedlJ8613vPTD0dnp0UDhVqGTfc8/qZeY/oyg9XU73RebUYy2WTUyyy7RYBcA7kaVGUgV9n+m5kTAEcKMFlr6vjyfaYE21lX27luql8LhQLm5+fN/AcGBpDP5805qbvIGm+328aRVRuKNo7P50O9XncwsFTv24xGXjceg9drO/OjbmZN/Fgs5shgAFbtj0gkYv6PRqNYXl52MOrJNiSzU8vrdBsjHfh2u418Pm/KwPl8PsN4KxQKaDabKJfLBojI5XKoVquGkb5fpV+6ez8FwFutFv76r/8a5XIZJ06c2GiKnlwkwkB0v4+5nfd3QjYT6FedYOtwzYCzm2Lqd/kZ6nn2kFDimwam7WvA/VvHSx1Of7kXcJmi/qqW7hgcHDTl8BgMp1+nGeBu67aV60g95PP5kM1mMTs7a1j3AwMDyGQyRkfpmOPxuLFv7KC12jb1et3R4LxbFjf9ctZ3175e27EtGXBh0DsSiThsNmYzUHfTHoxGo44Gta1WC4lEwgQ6aEeRQd5t/UlqYGYYQfRarYZYLGbmyuPwHiXrXEvk7acSbBSPid5f8UD0F5nYUe6L4YHw+/1mI2QqGB1Dvr/TosAsHXk67j6fb1NlXejQEShlM5lgMGjYasvLy8hms5ifnzeMJyo4uwHIVoXpUwMDA5ibmzNM6UgkYhxGGj6hUAjHjx8316JbbVkFxhkkYKpWsVh0NMtR5pcaC5yXMtV7nSeV9dDQkGmSGwwGMTw8jFQqZUBsOuNkOthz0JrwZLIVCgXU63XTfKxcLmNxcdGk8VOx83epVMLp06fh9/sxNzeHn//85xgcHEQikTD3EO8rGnFcHwLnbBy7H5U50B+FzHqlvYjbtVzPQXL7vP36Zo75u7/7u/jhD3+Ib3zjG9semyf7Q2wnz35tK7JRGQzVA3tR1NFj8JtAJJ0mlvugbiPoTB1DcFQzrlKpFAAYW6DT6aBSqaBUKmFoaMgETbVci9ZhZQBO2Wy9OuHqqHY6HRPUZpkXsqYIptvzA+A4F4H8rewDdBSbzSZOnz6NxcVFB5uN8/f5fEgmk0ilUiaDjY3hRkdHHTVuOT+fz2caarEcDPU1105/tKm5AizbyZoKh8OYmJhAMBg0bD21bcPhsGHwca4DAwOYmJjA2NiYcbpbrRYikQjS6bTRrSzZUiwWuzLlyUxjWTsGKZ577jlzD9MO4vqQAEEwQtdsP0o/xr4fAuA/+tGPcOLECQOyPP7443jpS1+6qXl6sr/FjQSzk+fazSw5wFl7AtWpgAABAABJREFUfCO7QTOS7AA4fW7OQcFM6lk7C4ifY58pDWQTzNZSb8AqE1kzszk2DZRzL99ISGDi8bWsGv1t+lqlUgmFQsEQqWzgVsUOHvRyXQnODgwM4Gc/+xlmZmbM/LUMDsccCoVMGZzl5WWTfaY9XvhZv9+PTCaDs2fPmtre1EOKG3Au5XIZ1Wp1zX1h/96MUHcz6zuZTK6ZE8dPXalscbL+l5eXEY1GMTY2Zkqs5fN5R1k+t3uZet7n86FQKODs2bOGSGeXItIec6yhzuu+l+3rjWS/jnsvigeiv4jkYgRkNL1KgVs3FvROCRX2wMCAcfLV8dwsG53OM0FaGgg0KqjUtYTLeiVEAPdrv9F41NFmzbehoSFT9kTr4MXjcaP46ESqYabnpDGlTG7OTY0lO93bzUnfrCLj8QOBAILBIGKxmHG4Wa6GILqC2FxDPTcBBx0jS7xoWZtu6YhaXoER/8HBQdRqNcOyY5BCWYyFQsGwA9Zjy+112c2I+OjoqAkGqczPz69xpCmTk5Ounx8cHMTIyMi6n3E75tvf/nb87d/+Lf7u7/4OBw8edJwHWHH8p6amehqbJ/tT+pkSvpHs5X1B9aLqbq39ST3h5gypI84gMl9TRjL3Xe7Ftu7Q46q+2moWmw1GcI9mcJwp6wqibxQM4XH5ezN2hIIArMtOnWY7ru122+hFppKTuW4zDev1uqnzzWPb4LnaLf0qM8Z1YEAgFAohGo0iEok49HMoFDIgeqlUMkAKM74ajYYZI4MDZB4qy68biK5sOJbT8/l8qNVqppwg2fFkr/Gz+6V26nrSL929HwLgV1xxBb7//e8jl8vhsccewxvf+EY89dRTHpDuyY7JhWSib6RjVHe7/SjZSUkD1AM2W51Cfa7Cvdh+ZrsFNRTg597e69wVM+B3mS1EH5sBe5Zd20wZlV5tP9Ut1F0aoKe/qiVsCf6zTAnJAtpwlUEClnmjD6tzsIMB/az1zfvD1t2xWGwN2E/WOf1cAA6WvWb8k0UeDAaNbWOXn7HXl9eVdgGPSfIa15M2G+vE75d+Y+uJx0Tvr+x5EH15eRn33nsv/uf//J8GZHjTm96E97///Y7N+gMf+AA++clPIpvN4tprr8VHP/pRr2adJXuZ2dhtXL0oc42Eq2PoBuLupCirrtPpOGph9upEUoG2221UKhVks1lTZ461PgmmlstlExF1A5OV2ce6qPrZarXqAHzdxsg1DIfDiMVihrVNNjcVM2vWKvDsdk25Rp3Oajq+jrHZbCIWixlQOZ/PO+qLco34u9cNXWvpjo6OIhaLIZ1OY2pqCqFQCLFYDIlEwgHA6P3jBqTzM1y3QCBgnPNYLGai4lxn1ix3G7MyB3ltuFYAHMaONqz1FFpvEggE8PKXvxxPPvkkbrnlFvP6k08+iZtvvtn1OydOnMCXvvQlx2tPPPEErrnmGhPcOHHiBJ588klHWvgTTzyB6667zvzf6XTw9re/HY8//ji+/vWv4+jRo45jHj16FJOTk3jyySfxy7/8ywBWjLunnnoKDzzwwPYmfgHF091rZTsMnq1Kv9jvGwkZ4gwAr1d/XVnNwGrqN3tRaACVeyADrwAMo5r6UmugshwJhcFerb9JpjjfV+Ybj8n9drPrxmMXCgWzJgSw6RRzvBsd2+/3I5lMIh6Pm9IsdOp6qW+vuluFjip1Yqez0mwrFouZGuPUdeo4Uud1Oh1Eo1HTlJUN17S2O9l6W9VT9n0bCAQwMjJizhuLxUzqN+fHdWXaOrPdarWaI0jDebfbbZNOXq/XjT1SqVQMiMLv2+I2J71/CP4wcOLp663JhQ6ABwIB01j0mmuuwT/+4z/iL/7iL/CJT3xiW/Pay+Lp7rVyMT+7qo83AoZVzxOotbO/bTtHs4YBGN3NTF76yrbfyONpeTElDtHX57G1hNpmgrcElNvtlUbgPC79MA1Ga3+TbvcE1zORSCAWi2F5ebVXGX3Zje4nn89ngGb+DwCRSMToPma+a9BXe61wPbVkHbASvCQYT71ELIFlWrUsbK/SLQATCAQwPj5uMATaGZFIBPF43PE9xUzcMKuBgQFEo1FHUJTXJB6Pm4arxEjK5fKGa61+tfr9io1cDMFvT/ovex5Ef+CBB/Dxj38cn/nMZ3DVVVfhO9/5Dn7rt34LyWQS73jHOwAAH/rQh/Dggw/i05/+NC6//HL86Z/+KW644Qb85Cc/QTwev8Az2HtyIRz5bqLgZDfmiP23ftctnUwV8m6J1lGl4lcQvdcNmMoPgEkfo9HCuprc7Fkju9t1DAQChjU+NjaGkZERR20z1lajk2crSw1QRKNRpNNpRCIRTExMGNZ5t8at6629GkB0ZGOxmDGC6Ihns1mTdsY0663eswQGIpEIJicnMTo6imQyienpadPMiuli3QIA9tzIFO90OiatnOz0arWKbDZrjCefz4dKpQLAPV1SWf/qsNtAwl56drcrux0Rv+uuu3D77bfjmmuuwYkTJ/DJT34Sp0+fxh133AFgpbHYuXPn8NnPfhYAcMcdd+AjH/kI7rrrLrzlLW/B008/jYcfftg0HQOAd7zjHXjVq16FBx54ADfffDO++MUv4mtf+5qjXMvb3vY2fP7zn8cXv/hFxONx47gzfdDn8+Gd73wnPvjBD+Kyyy7DZZddhg9+8IOIRCL4zd/8zS2vz4UWT3evlQsBnu8W+117SHAP7ybK9gFgGGrRaBSBQMABXFKnE3xutVrGiSTwTceXx2aQy+dbbfqtdbTViWVWFVO16TBtBUTnnsb5M72cDDDqdH52I2FzrenpaVQqFXQ6HdM0tJcSXj6fD9FoFMPDw2i1Wub8wWAQ6XTakfru8/kQj8cNC4zON+0FZfkRRAdg+omwbmi9XkcmkzFNt3pZQ1vP2TqYQfcDBw5gYmLCUTeWjc8BoFqtmvR/BkkqlQoqlYphuZGxRiEbjsECzbBjX5hemoeR4cZxMQ1+L4Dnm8lg6EV2U3dfyAB4t7Hz3rpYxdPdLy5R8tNGoKmWqtJGkNxX7QC6ZiYRFCWITnavlhthFjIAhz+vjcK1xAuw2jeF72lvi16EdgT1DsfJfUp7kW2091FPDg0NYWxsDBMTE6jVapifn0e1WjU6qlcQnZk6DApEIhGTZRUIBAzpgGXkuNY2u55lW3y+lRJuAMx1I4i8vLyMpaUlEzx2wwW6ifr/9tyCwSAOHz6Mqakpg10AK2A+x6JECGXE2764BlSI+dDvrlQqKJfLWFhYMPYj7ab1hDbbeu9fLOIx0fsrex5Ef/rpp3HzzTfj13/91wEAl1xyCb7whS/gO9/5DoCVC3ry5Em8733vw+te9zoAwGc+8xlMTEzg85//PN761reuOSYbRFDsDvEXs2yVje6WArkRyN3tODZwrj/2WN1+7PO5pZJdaOk2p82IljgBVlnqGiHuFlyg865ssUQiYZxPguesQcfXVWgsudWbtxuYbHZt7PPoe1SQWl+eoIrNaOj1fGrokZXPbuAMUPQaBHATBReYGh8KhRCJRAzIziDIekpsLzjcuyW7rcxvu+02LC0t4Y//+I8xOzuLq6++Gl/+8pdx5MgRAMDs7CxOnz5tPn/06FF8+ctfxrve9S589KMfxfT0NP7yL/8St956q/nMddddh0ceeQTvf//7cc899+D48eN49NFHce2115rPPPTQQwCAV7/61Y7xfOpTn8Kb3vQmAMC73/1uVKtV3HnnnYbV9cQTT+xrZ9TT3XtL+gGmux1D9bmWMVtP9NlXcNZ2/PS4BHr12Op02faIG4hvB7N5PKbz2vPaCvhoO7I8xmaafdM5JGOc5UqoT1QXrse4U92nOl6z9bpdPy2Foyn1dNb1O9oUjjVMaVtsVDe2m9hBIGXedQsikIXH73U6nTX1ZPWz/BzvO9oInU7HBFzK5fKm74O9psf7PZYXSwD8ve99L2666SYcOnQIxWIRjzzyCL7+9a/jK1/5ypbnvh/E0917Q3rRo/04lq173T6rvretu5VFbuvo9YB56i7brrDP303Hafm1fgh1FAF1BdF7BeWZAR4MBhGNRk1QmmVLfD6f0V/dWP+qV9kngvpOG37rOjEbzJ4Lr5dmoXO9WA5Gmdass85j8zsbzd3tuvHeYNY6yQo8lt5ralfofW1ng2vAR8vA0M5hWRYlNPYie0lf76R4IHp/Zc+D6K94xSvw8Y9/HD/96U9x+eWX4wc/+AG+8Y1vmA7qp06dwtzcnKMTezAYxPXXX49vfetbrsr8/vvvxwc+8IHdmsKek80C3tyM7DrXuikra8vt+PpdArB6TAVjqbzs41OJMWJpg+e2M77bYhsgusG7jUfX0g4SAHBE7sluUsXYzaggO2BychJXXnklwuEwJicnMTw8bAyE5eVlzM/PIx6Po1wu4/Tp04ZtxTElk0mMjY05Gm8qm49z6PcaEtQmU44lXiKRiGGGkeW1nqiSTSaTpozL5OQkRkZGDMi9XQBdPz84OIhoNOpgPLJ+njYsu9iZTL3IhVDmd955J+68807X9z796U+vee3666/HP/3TP617zNe//vV4/etf3/X9Xsbp8/lw77334t57793ws/tFPN194UV1oTK3yC7ejGgatzq1PAcBSNacVkYX/1anlE2rWcKF5b1U75NpHAwGTTo1WWjqiCrDjWnNrDnO9xuNhkntpf1gB4H1Pa353UsmmQLnCqDbunu9a0V9NTw8bEqNHTp0COPj46jX60in06bM2cLCgtGHxWLRMR+uM3uYkL1NxjjvgVar5aglSluFvT3UzlJ7pt1uG+a22mYEG+LxOFKpFDqdDubn57G0tOTo5+K2dvZa8FqSicgGoolEApVKxZFeX6vVMDAwYMr8kCTQ6XQwNDTkKGdD1p42Dedcg8EgUqkUWq0WUqmUmdvi4uKG1//FJC+WAPj58+dx++23Y3Z2FslkEi972cvwla98BTfccMOW574fxNPde0PUR7SBYvrFvTxLNvDIfY/PMYHObrqdfreek6ClrUOVFMVzMQhOfcK/u5V909JsHCP1TTef2rYFegnm2+ekvlY97eabryejo6M4duyYydoeHh5Go9HAxMQE6vU6crmcYUovLS0hm806vs9gMcuXsU8Sx2CXqlVAmuug9gbXTYPOeh24ZlzreDyOo0ePmibMG+luXSf97fP5kEgkTHYbg+r2mNW2UtuFupsBeo6RGfD8Po9F25O2JEvCdms+/WIVD0Tvr+x5EP2///f/jnw+jyuvvNJE2u677z78l//yXwDAPCBuXdZfeOEF12PefffduOuuu8z/hUIBhw4d2qEZ7F9R50kbTGmJEipDZVi5OUQ8DhUEwV6trWYbCbYDrHWh7Ui3KpULLbpG3QB9e8wKGug6brYOF53/oaEhDA8P4/Dhw4hGo0aZc03JlG42mygWi8hkMmuCEpFIBKOjowiHw0ilUiatbCcDFBo9Zr1TbTBXrVZRLpdNalovx2O99XQ6jXg8jnQ6jVQqZZTtZo2tbufhtQuFQma86XQa4XAY+XzelMCpVqseiO7JRS+e7r5wYu9nqsfVedqMKKOXDqs6q2RPuzHJyTKym03SKaQz7nZO1gX1+XwolUrmPTdwm2NkbVOei59nQJNMMXud6GAoIL0ZHbxdB4W2Qzwex8GDBxGJRDA1NYXR0VE0Gg1EIhHU63XMz8+b+qXVahXFYtF8X9O6qftY+zQUChngmaVdGLzQlHptZM3sMwrXjPeP2oE8bywWw8jIiLnXGECmHbeRcP05JgZoGPjWrAGW89FG4cp8pz3EwAoDPCRzKEOWJYU4hlarhbm5uQtCyvDEKRciAP7www9vaowXi3i6e2+IAqa2ftxMVq762KqfVQfz+FqGVOukK9iq/r7te6sPpwC7zkWPwTre/IwC2IovaHNosrOVLa3rYbOXexVlbW9FCBxfcsklpu9WMplEs9k0fU2WlpaMH8iynyosXcMSoel02owNWG12aYP769lZ9t/A6lrbNksoFEI6nTY2HnVmLz6rHsfn85ljhcNhY28pmUOJFvqbxyFgzmtLu0DLzWnpH+r1cDiM5eVlnD171tPdnuyo7HkQ/dFHH8XnPvc5fP7zn8dVV12F73//+3jnO9+J6elpvPGNbzSfc3OGuj08ugl7slYICDLVh6U1lBkEwME+oqJlvSs7YkonmaVBlDGtzrmKNmmiIUfHXZVrrynkF1KYZkxgWNO1gVVAgEqLjK6tAh2248nINllYZF3R4dQgCZuGMo1ca4heKIY/HWSCAlyb9Rq0EDTiPcdoOO87t0Y2/RI+P9xnwuEwotGogxECvLijul5E/OIWT3dfOFHmsFujZO7rBJvX0zPcJ0OhkGkiSfYvsArcKpucoLc626qzVZfTaVXbQcej9TkVOLfZ0bqnuqV/U7dRD1PnMZjP4LIyq5WRp1lYqje00dh2G2nSQeT41EbSLDumilM36jXQ7D5mdamz3O3Z0sBDs9l0lHzhfDR1ms+hnU3HY9EupM0zMDCASqVirvF6a6RAAOvCEtxmhgH7qNhMNWY5FItFtFot0zjUJnqwVJ6OQ1/ncZX5pqDNi7nRmKe7L27xdPeFE/rY6ncDa8unaXC4G+GKezjLgtEPtZ9fZaKrX2WX/9BsI73OyixXXcwx8bce084Gs0F2FRuYt/WhrpH9w3Wg3626m7qeOmM74LldJ97uzUYMgw01+R3V137/SiPweDy+JnitQQdec7uvjK4rxdbdtug10b+BFd0bj8dNoFltuF7WhH67ZrtpkIaEDI6XtgbtP7d7gWtgBwFsAN/n85n+Jsy83I59drGIp7v7K3seRP9v/+2/4T3veQ/+83/+zwCAX/iFX8ALL7yA+++/H2984xsxOTkJAKaDOGW9zu2edBdVapFIxLBnqYC6gehslkGGU7vddjT6jMVixlmlQ0UHz2a4U/T43ASVTVav101Tkr3CQqeos8bNPBAIIBaLYXp62gDUsVgMPp/PMLXK5TLOnj1rGGalUmlTmxaVcDgcRiwWM+lUsVjMOKF0+CuVClKpFPx+P6LRqKm/Njk5iUgkgmQyiZGREYei301R0CeVSiEajZoO56FQCOVy2TTvdBOWVmETtbGxMYRCIcNW2wkAXY/H6x0OhzEyMoJyuYxisYhCoWDKCniOuKfML1bxdPeFEw2mDg8Pm1JYLNnFHheNRgOzs7OGyex2HDpA6XQahw4dQjAYRDabRSaTAbAKsmvDJ9b/JDDL0iHU6eVy2VFrmjq+XC47AEt+lk0qCfjThlBQVx0uTROnsz00NIREIrGmbjZ7Y/A7BMUJJGg209TUlAEjyG5eXFxEoVBAs9k0+kkd0V6E56CNFIlEjI1Ap5wBcJ/PZwLKtVoNuVwOi4uLhkXNwDFLlQWDQcPi03nbP8xKI4AeDocBrKbJ8/wMJvDaMThvg9H1et0ELiYmJlAul42duFEmBJmHg4ODSKVSOH78OPx+P5aXl7GwsIBYLIYDBw5gcHAQ5XIZpVLJ3EN+vx/FYhEzMzNoNBoYHx93gCy8r+wgULvdNk3btTQRg/B03P1+v7nWWwVd9rt4uvviFk93Xzjh3jM0NIRUKmWyh9jkUVm4LA1J31v3I+osAuijo6MYGhoy/aW4F3KPC4fDjiyzVquFUqlkjksAslqtmkbNwCoIW6/X14Ck1C3KYtd9f2BgwNgXbj6mgusElDWDXdcCcDLSdS3C4TAOHTpkdCIbm5ZKJcMIn5+f33KG8ODgoME4YrGYsSmUJMhzxmIxo39mZ2cNwZC6O5FIYHh42JRi47wYfK7X66hWq0b3Urdp+VfVaWrD2MLrrbYZ7TGfz2fAfG2IzsyvjfZwfn9qasqQAngdSaRk2TXajww08J7TAAmF47MBcSU8cG6xWMyUwisUCqaXTK9lkC5G8XR3f2VLIPqpU6dw9OjRfo/FVXSzpmj35qNHj2JychJPPvkkfvmXfxkA0Gg08NRTT+GBBx7YlTFeTEKlx42fQLcdXQWczTa46VLJA6sMHmVGs2mFNq3UKKyKKm42/tKu23Y0e6+Im2NFZR8IBJBMJg2wTSXJEh+Dg4PIZDLGIVQWWC/ixmbTtVZjQ5t9MIhBY4o1yJUJcSGEClGNhXA4bAzH9UBwvYeVlc/7eKfHTFYCnXIaw8pEfzGLp8x3Xzzd/eIQ6nA6qXSQ6QgxM0dZtusdh/so+z2wfAZZ3TwX9zZ1GoFVRpGWZ9MgprLHyWbjvUNwm+CrzchTMH2jNVFAmudR20PZzLxPleXNYLRdIoQAggIZWwmQKrOeetwGF/heKBQCAIf+5nUKhUKOjLde9spOp2NY/xqkUHtGQQ2tS2rv5RogZnCg1Wo5dO9Gtg2PSWACgAGNNKuMwIed0UCbiuCTrXPt1HYdt2Y7cA1tcOLFrMM93b374unui19sfcvyVQyCaiCTDZy7NbzUbCTaAMwEoK6l7nYD0QncLy8vGz3kprt5PAYZeW6Km34AVgOa+sPz8317LjZjXV9X4pp+l+sViUQQj8eNz8s9nLjF4ODgupnNG103JQbquPi+zpEZcQTQiZFoyTKtB8558VrTjnNjkK+XlU/da+tq/rYz1ogftNttE7zge+utE+cZCAQctdA1aEM96sacX69hul5fG0B3uya0k+wshBereLq7v7IldOzSSy/Fq171Krz5zW/G61//enOT7oT8xm/8Bu677z4cPnwYV111Fb73ve/hwQcfxG//9m8DWHlQ3vnOd+KDH/wgLrvsMlx22WX44Ac/iEgkgt/8zd/csXHththOpv7eKSHzjJsPHTEFH91AdCohrSNKhTI4OOhIT1ImuqbMrgei0wkjS0qPr1HMCwn4ch3slKjBwUEMDw8jkUggmUzi+PHjptmGguiNRgOFQsEwqebm5tBoNAwLvxfWkzICKpWKYftVKhUEAgGTKtVut1EqlVAsFlEul+H3+w37jex17dC9F4TGUCqVMsZHoVAw95sNWvAeZkYFjcjdCrioIcVxsIwO7+deaxp64kk/xNPdvYute/eLcL+JxWIOEJW6nfNh4FtZ41pLmsFrstn8fj9yuZwpfUJgU8ub2DXT7VRiOq9k8TLLjVlSFDKUlGWuDSL9fj8qlQqAleaZyWTSsJd5XDqqWgKm0Wis2XfJzq/VagYIoJM4ODiIsbExJBIJk9ocDAaRSCSQTqfRbrcRjUZNs+tMJoNarYZSqYR8Pt8zI13ZfMvLyyiVSshkMgYwZk1zMqAJEpOtPTIy4mD1MWjL60/Qhd9VhhqdcgVoOH8NWBAM4drRkadNqIw2XXMtOTM1NYVkMolisYj5+Xk0m01zfK4D/1dyBe8xZnYxIK1gPe1FgktjY2NYXl5GNBp12GK8f7kOdkM6O/DAnjJks7Hc3n7bF3qR/brnvRjE090Xr6ivQNIPfWPuy9SdFL7GPYt7ue6dbNqtbGWypu1z6zGoB+j/83PcF6ibCfraoKwGwm2Sm/6vNgPnqp9zA1JtvTQwMGD0iALIAwMDSKfTiEajiEajGBsbMyQA2hvDw8NGX4dCIVQqFRQKBWQymU1lGWk2fqFQMKXEiHdo5jzPwUyoeDxumOhKauN6UDdrNp+ukQYCqMN0rWyiYbe9XXW8XeosEAhgfHwciUQCuVzOZHm5Ce0QzsUunUoA3Qb7eV1pu9GOs+8Jm33uFkTQ0rSJRAKDg4OOfjqeeNIv2RLi+IMf/AB/9Vd/hd///d/H7/7u7+K2227Dm9/8ZvzKr/xKv8eH//E//gfuuece3HnnnZifn8f09DTe+ta34g//8A/NZ9797nejWq3izjvvRDabxbXXXosnnnjCAJT7UZRJxg0CQM9O2VaFGxgjt2SrsU62Mr40dYopW9w86YBSOWtdLJaIIUPJjg4q+4lzp8PTaDQMAGnXDON3ufnvJgCsG72bUzY5OYkDBw4gnU7j8ssvRzKZNIxvACZdvVQqIRwOo1AoYGhoCJlMxqRu9QqiM2WpXC6jUCig0+kYY0pBhWKxiFwuh0qlYhzUWCyGVCqFZDK5pxj+vJZDQ0MYHR019XQXFxcBwKRhq/C+I4hOBuFuMcF57dvttgFgABgGnTaIeTGKFxHfffF09/qizCHKfrvPfD4fwuEw0um0cYaBVTCTfxMEZWYUHTwFQwmi01FeWloy30kkEsYRUscdgGFnK4hOcBdYYRTzvUgkglQq5SjVRhacss4GBwfNOUulEgqFggmqRqNRA2I3m01TixOAKfVB+4GOGO0XHauC6MCKPTQ1NYVDhw45MozGxsZw+PBh+Hw+jI6OolQqoVQqYWZmBuVyGXNzcyiXy8a57+UearVaqNVq8Pl8yOfzmJ+fNw06gVXdznT6QqFgAGOWUHBjgNGeW15eRrFYRLVadWSpKfOe62w73Jy7gs6a+q3gebPZdAAb1Lm8Jp1OBzMzM+ZaqfNugyO0H7VeLD9P/cnAD4PpzDhgyQkFEjgW/Z4SFBis0ZI/sVgMBw8eNGVjGLy5GEu59Aqie7p798XT3RvLftXbys5V8JH7IgFB+tkEObUUmZb80uwpBgWp79RvVtaxnY3F/VazkoAVPUXiFUF07WeiP2of8PuqX9V/pz3Cz+r+qmC6MrF5HDcQfXBwENPT05iamjKBb/5mGVPiCoVCAbFYDMViEWfOnDEB8F6Fa+Lz+ZDL5ZDNZtFoNBCNRs14WUanUChgaWnJ2CLsM0O/UDERrSnPrACuq71WbixrxWc2ykjj96kT1aYLBoM4ePAg/H4/Tp8+jfn5+a4gOjMWmf1Afapl/xRUt0XZ4/ZY7Lkp0dImc5IYmEwmEQgEjO26n/aFnRBPd/dXtgSiX3311XjwwQfxoQ99CF/60pfw6U9/Gq94xStw2WWX4c1vfjNuv/12jI2N9WWA8XgcJ0+exMmTJ7t+xufz4d5778W9997bl3NeKFEnDVhlZ2vUbaM0mn6MQZWwgvn6ugojhnZakILoVOb8rQwzzlk3SQ0e8G86jMqAUuY5jYELyZ62Mwa4fsFg0LCh9YfKgsqq1WqZztIMOug69XJ+Ku16vW7SMsvlsoOJzjT0arVqIuIMgOx0uZPtiLLSmMmg94TbZ3UN10t12wlRA9LtZy8x/XdbPGW+++Lp7vVFU1W3+mwqEL/de3yz59W9Re0FOoRuwWot20G2Gx113T+V6aTMOXve9hqojqe+Zoq52gTa0NM+jw3sKgPZ1vvdgBQ3VpuChvpZ3bcJAOt7yhiLRCLmGGSdaerwZq4/x8GyKgMDA0ZPU1frj50Obae82wEDt7ny2ug62ve+HcR3c2i7zcf+nm1T6nXTZ4+6nfez/XkFbRSI5z3N1xQkX+951HWz18Y+/4td93i6e/fF090by3buKzd9v9u6W/cYezy6N+t+D8AEqAl+8z0FFNfzOxR70HMoWEsSFs9FQFT3TVuHqt/qxjanX6av2TrbLZBr+8P2deL4WRJHfzNLi0EG2juhUAjNZtPonM0K90RmfPl8PqOnWcecQXA2SrfJhnptlGHtRp60r5NdFmW7orYwz2f70256QAPgbmC5BrXt79oBHS1VZNub9jlVbPKFbRO9mMXT3f2VbdW+GBwcxC233ILXvva1+NjHPoa7774bf/AHf4C7774bt912Gx544AFH0xFP3EUdUm3AQIXHVKD16kT1YwwA1oDe9o8qYWUvcZzd5sbIJNnnNiDfzYDRIALLuBBsVsaQ7STupmhKESPydPCovFOpFMbGxpBKpTAyMoJ4PO5IY2fDtKGhIRSLRQSDQSwsLJhUJILivYyF9cLn5ubwox/9COFwGJOTkxgeHnYAJIuLizhz5oxJzR8fHzfMBsD9muwF4X3DZjm1Wg2Li4uOZie879zAmt2eF59rNnhjqma/jZ79Jp4yv3Di6e7uovdVL/eYOqDUjXSMVHdvRhRQ7PU+Z+1oOtZkarMcC7DqgNp1xDudlZJpqVQKAIyTp3Oh86zOOQFf6mUFjxkg1nORecbm1XR0OQael86uMs1ZToMNuEulkpkfa8OyzAcA05Rb+2fw+nCszBKy7SymsodCIcPco+0yMDCARCJhsvQInOfzedRqNQQCAeRyuS054pRyuYzZ2VlTBoVNOWdnZ02tb9oDwWDQ0ZxNAQ3aAywTA6wCF3rdGbhnuRvegwDMumjpPABr5kcH2AYFyKDnvcJrosxKvk4JBoMYHh5GKBRCMplEMBh06MparWYa2PNe8fl8hpnGMTD7oFarmbHwuutYbfKD/q0ARiAQQCQSMfbYxcZG73U+nu6+cOLp7v4LfQUFJrl37sYzTj3CcQBrnxH+T3CSACx1r5ZStZnJwWAQ0WjUEdBW/0OBSzKPlUigx9JMA+oEJTHpOQhi0jfm3s/9WLPcVGyfuhvhyN6jiRnQVgmHw6Y0KcuAKhOdx6TO9vl8xl7SDK3NSDabxU9/+lPTkLNQKKBer2NxcRHVatXYLgCQSCRMOT3FV9bDNGi/2PdCN6KE2mS2bDQ3exzU07QzlYRH0TKqxHw4RmasaaNzzoXn4ef5Ppn0PLbO1bZBOF/ttcfXicWwPO6LVQd5uru/si0Q/Tvf+Q7+6q/+Co888gii0Sj+4A/+AG9+85sxMzODP/zDP8TNN9+Mf/iHf+jXWC9a4cPOB52Ok4LVfOh3moVOx8L+4cZmR7IV7KfSpTLneDVVyXa0NxoPhZshDQa73IudXsxz79YDr8pG65ZRmUejUSSTSUdTUQXRh4aGjIJiyno0GnU01Op1HExty2azBsivVqsoFAqO2mqZTAazs7Pw+XyIRqNIpVKOZq97UVQxBoNBpFIpU9NOPwOs1gykk20z2XZjrAAchp1do9YTTy6EeLp7Y9mM7rBZLwSAGVTdSpNJ3T96kcHBQeMo12o1VCoVo380Y0sBRAr1RCwWMwwqlhGjsL7kwMCAYY2rU6TgKrOvCJIrm5djjcVijqAvHexGo2HsBDr/iUTC1BFlOZNKpYKhoSEDECurq9lsmhItHCuBAw10kH0PwIDIwKpzSgCdjlkkEnEA7EouGBwcxMLCggHzt6NrarWa6f/C0l8MFrPkDQMDyWTSXEP7vJ1Ox9SJV8dTHXVeq25sRdpXGoCgHWaz1WibKetL7VeSBZaXlw3wzddUtIkrQQ2CNTwe684mk0lT95zvcUw8vzbDo1OuBA5+nnakzQZUIgfH0i2d3RNPdlI83d1/oe+tgVbusbsFolNPr6cz1Jfg3/xuJBKB3+83JC5gFSRl2RUGi9ezRzS4TtH9ksFj3S9twptmAtnjZxCc/pm9vrrnKhtbj+V2TZRAxXUhmMseMSQacA6KVUSjUVMKToOwm5VyuYxyuezo+Vav1zE/P2/6mDCIwAbZXHeO38Yu7P9VF3Pd3bLHe2Vf69rZrHG+p6XwNADeDUSn7817Wvvt8P6k/eR2Pg2Kq452myNFS9LpXJSg+mInr10I+djHPoY///M/x+zsLK666iqcPHkSr3zlK7t+/qmnnsJdd92FH//4x5iensa73/1u3HHHHY7PPPbYY7jnnnvw7LPP4vjx47jvvvtwyy23mPfvv/9+/M3f/A3+9V//FeFwGNdddx0eeOABXHHFFeYzb3rTm/CZz3zGcdxrr70W3/72t3ue25ZA9AcffBCf+tSn8JOf/ASvfe1r8dnPfhavfe1rzc189OhRfOITn8CVV165lcNf9MKHmw4aa0jxb3WEuPkUi0Wz+bLG51aipL3Iek67G2PHjvjZadfKfNP5b0UUIFU2mdZL4+fWi1j2S+w6bfpjR8nd0rJ0PfV1O/14s4AOv8uUMYLwCiqUy2UAq2tJtt1+UTAEOYBVdt1uBk56FV1PvX8JythGgkbKLzamm4oXEd998XR3f4R75sDAgAFW+ZoGolmrlDWYbWB6PdnO/U0A2maNcz9Rdg9B/mg06nDMbNBZbRIbONVyK1oiho4QHRf+bjQajswq2j52PxXaPwoqkyVHx1EdNJ5f7QAN9FOUDWWnkrvpZwVZdY/msQjcd0tL36womF2r1ZDP501gQOfKe02dVm1Ix/f9fr+xS+xsRq4vAw269rw2DBjwGqoQbNLrSBBKm4vyvuDnIpGIuffs54JrbTdTY6YAQXgyy5XEwfMpmMI1UZa9XfqG5+U4Nb1eAzG2I642707Z5HtNPN29++Lp7v6I1mhWHaklShgoLpVKZt+tVqs7+mzbAUy3UhgU7uG2T6l7Hn1vYJWEpp/RgGIv4ub72z69G3DOvZ9/61pzLnoOt/JfGqzWxuA2iU7XwwZjqaO0trj2c1MfuB/S6XQMeY33DwP+bnaVrpdNUuxWgYA6ab39eKsAerfPMoNgcHDQ9HCxdXe3EjQ6R/3tNmbbbuP1Wm9Otv0KrNaFp32ga+rGkr/YZbd196OPPop3vvOd+NjHPoZf/dVfxSc+8QncdNNNeOaZZ3D48OE1nz916hRe+9rX4i1veQs+97nP4Zvf/CbuvPNOjI2N4dZbbwUAPP3007jtttvwJ3/yJ7jlllvw+OOP4w1veAO+8Y1v4NprrwWwAsS/7W1vw7/9t/8Wy8vLeN/73ocbb7wRzzzzjCGvAsC///f/Hp/61KfM/yTV9CpbAtEfeugh/PZv/zZ+67d+yzTvseXw4cN4+OGHt3L4i1qUsTY6Oorh4WGEw2FMTU0hHo+bFCSNRjYaDSwtLaFSqSCTyeD06dOm3rUdBdyOqJK0lZQ+ePZvW8mpAw6sMoJ7ZaCvJ2S2dTodA6DakVK+ZoPS/QbSFehm9J/KstlsOtZBMwm0LI8qQTcjYLMbuxpfrVYLpVIJPp8PxWJxjbIlIMHsB23atR8kEAggmUyaBi5M6beNSjcQe7fFjogzKk7mKPeE5eVlZLNZlMtlk0Z/sTrlniO++/Ji1d3dWCxbPRZLaEQiERw8eNCRKq2GPBmztVoN2WwWMzMzxplbT9wc1l7F719pOEbgk8wq3Rs12FsqlVCv1zEyMoLh4WGTFaWAKsFDOh0aJCb4TWCawGYoFEK73TYNNhVsrFQqKJfLGBgYQCqVMsHEWCxmjkcGe6lUMuVAyExW1jjXmOPVdeBYKDy/MqiUjUadTFHWcqfTMU0lo9GoYZtROE8FArZ6zymTP5/PI5fLOcACzQyMRCIYHR11sBlJuPD5VtLT4/G4ceBpUzCIkcvlTP11MhqBVZ3FXi783yYIsMHn0NAQ0uk0QqEQyuUy8vm8aQDPEn5aJpDXvNVqmflReH0IRJAMQECC3yfrTWvb2sGDUChk2PNMpyeQo6w12lssq8eU9UwmY+racr0BmOw37gO8PzjWi1k/ebp79+XFqrv7KWT/xuNxBINBR1kx2uGBQADBYBD1eh25XM6U4njhhRfMs70T49Ksb9oQdrkpwAmgawYWRQOgCqIrcKms8V78Szeyl66ZBkjtQKbODwDC4bAZC0lwnJeK+kq0Y/x+vykhog0lNeCqr6meor2hpXNoD1WrVQeZUee8VWm1WlhaWkKpVEK73TZj1nWjTtR1VqBXe34pFmBjD+r322tIUVBZz2frSwWdVfg/m4Uy+J7JZByfa7fbpim8gtc6DjsArTaTzp/PAOdJwoJmy+v9yGNq9qP2ROE68V4NhUIIh8Pm/mD24sWsn3Zbdz/44IN485vfjN/5nd8BAJw8eRJf/epX8dBDD+H+++9f8/mPf/zjOHz4sOnH8ZKXvATf+c538OEPf9iA6CdPnsQNN9yAu+++GwBw991346mnnsLJkyfxhS98AQDwla98xXHcT33qUxgfH8d3v/tdvOpVrzKvUw9sVbYEov/sZz/b8DOBQAB///d/j1//9V/H6OjoVk5zUYpuDsFgELFYDLFYDKOjo0gkEg4nhjc7nYlwOGzSjTqdTk81sjcrbiws/k1FaW+KNohul3NRUGG7omAkAXUC0VQAbpHRnQRPFezWH47TLj3Dv23mnB202CyrzWYDaDCETchUWLOMBo6yIPaD0OAFnEz0vQ4663oz60TZggzCEJy4WMVzxHdfPN29faG+I0M3kUiYkhoM1lIPEjAPBAIGqCSDeaP7dyv3N79DR8LNubJ1D1nhHJeOH1h1wO1yWDyGZp6ps6IMIpYDodABo2NNx4hgvzKJCPYr8Mk9s91uo1QqmePbAIFtcyj7jc4nAOOouWWKuelpOmYamFAnfjuiTrbP53PUP1dRIILlyhjoUOY0X++WEq81ycnM5PvKluO8uS56HK4/wQ4Gf5WZ7cZWVPBFRW0qZRlSJ9pBHZ2XHp/3v4JACkKprWjbXVw3ggEMyHQ6HXPudrttSAh8lvjZi5nV5unu3RdPd29ffD6fAcljsZgpr8n3AJgANG1vLY2m5Ut2cozKQrezZGyxdY69/6kut8+zGV/Pbc6bIShxHyYwSnELOLuBwZoZZJPMVA/b/rQNqque1r2a69EvJjoAB/Oc57ftMbe/OU/VX90yEvj5br67m86nKEajen494fXTrDM3m4nry9dU1gP77bEzAG7rbLfv6DNjEyq5lgTiuReQ7MEMBU93b/x9YKXnkgqJRSqNRgPf/e538Z73vMfx+o033ohvfetbrsd/+umnceONNzpee81rXoOHH37YNP59+umn8a53vWvNZ9ZrhJ3P5wEAw8PDjte//vWvY3x8HKlUCtdffz3uu+8+jI+Pdz2OLduqib6RfO5zn8Mf/MEfeMpcJBKJIJ1OIxgM4pJLLsH09DRCoRDGxsYMo0Y3pk6nYxxHsn18Ph8qlQrOnTvncC62Ax7aTnWn0zHOtZ0Objumbg8kNy1VBv0WVXZ0pJThTefQ/iywvfIuGjnnpkvmV6PRMKn76tTncjksLCyg2WwinU4bphUNNdaCLRaLWFpaQrFYRC6XQ7FYRKVSWZe9SGYkHTsyrwBnIIYOnrIFWS9OjZr9JHSi6ciqwaJON0EFGmO7IW7sjWAwiKNHj2Jqaso0u6GjTtBtfn4e+XweS0tLePbZZ1EqldaUP/DEk52Ui01398PpZYB7cHAQw8PDhkE9NjaGWCxm9hgABhDmXksdTud8fn4emUymr6yXZrOJUqmEgYEBU/9TgWwKg48MQHOc0WjU1KdWPW8Dj8CKcVypVAyzLxAIGAYvv6M2CfdprW2twDqDhnxdx2yD9mpTcC72a8pwou7TurGlUsmk59Pe0WaRPFaj0cDi4qIhPbDJpQapmaZdKpWQy+VQLpcNY91mf7lda3WAtaa+NmYNBoNotVoOBp6CB1o2hXPhZ2q1GoaGhsy9CKyWXdGAhM/nM9dB05ztQIJeF36XDHhmDWgmg5aYUbuWx7MDLm4OMudHW4VAmJ1FoIAJmeN0nvV1n89njsWAjgaFOp2OyW5gxgIz31hG5vjx4+h0OqbubrvdNkz5XC6H559/3twHnniyW3Kx6e5+CHtrBAIBjI+PmwzwsbExw0Sl3uHeOzAwgGg0isHBQUxOTho9OTc3h4WFhb4C6SzZyvJwbDapupdiM82593IvpSjhTMUus8XMbntftkVJarb/rOArf/Mc7FFBEFyPpWC/6nkFMd3wBuo86nYNbHMe9XodCwsLRu9PTk4akI86gPpO+40UCgVHJv56ovpF+25pIFr9USXX9YKLuAXnlWBgX2PbZlLRa6rXUtfcJhLo2ncLouhcdW6a9WeP077uGuzQfiuAsx9erVYz9f1pv9olXphdSduPQe/Dhw+vCbZTd7daKz3iyuUycrkcTp065enuDeTQoUOO///oj/4I9957r+O1xcVFtFotTExMOF6fmJjA3Nyc63Hn5uZcP7+8vIzFxUVMTU11/Uy3Y3Y6Hdx11114xStegauvvtq8ftNNN+E//af/hCNHjuDUqVO455578Gu/9mv47ne/uyYg0E12FE3y2AZO8fl8iMViOHDgAOLxOC699FIcPnzYpD6ro6HS6aw0m2y320ilUkgmk6hUKuh0OqZmW79qMSrIGgwGjSOs0VBN27I3b/6tEfCdAtE18qpOH1nX6pADTpbgVkWdYaaULy8vo1KpGCBcWX1UEEtLS4hEIqjX60ilUqjX6wiHw8ZBozGQz+dx/vx5FItFLCwsIJ/PG2aym3Cd2aQ0EAggHo87DCM6d0w3573CJiusp7qfWOiA05hgORoGMWgUMPCkzf02W/OqnxIKhTA1NWWa5TGIpiD67OysUeTVahXz8/OmJ8LFtKd6bLa9K97arpVQKITh4WGEQiEcOHAAExMTprmxNn9k4Jv6E1jZ39PpNC655BI0m0384Ac/MCUs+rXW1EUKLNvOKvf4UChk6gLG43GjL8vlMtrttklzBbDGsWm3V5qBFotFkwLN8ykjTFNjaTdwr1NWHQP2CqRrrVbujXxdWesEnBkY5THJiqHj1Ww2jb5Tu4Z16hmg5HgVhD9//jxKpRLS6bQpN6MB+2KxiGKxiFKpZNK3K5XKGlZbt/1O0/YJDDMo7PP5zJpqMJhrzICE2n/MaNIsNGAVPPH7/aYEiYIfdD7J+tfz6/HJpiOhQ1nZhULBkTXA54C17nmNFBhSPa42rGYNsGYtwS2tq6sghQIVvI4kGLB2e7VaNUBZIBAwthGDXGSVsxwNg0VDQ0M4cOCAIcEkEgkHoN9qtVAoFFCtVnHq1CksLCxctI64p7v3rnhru1bC4TDGx8eN7h4fH0cgEDDPMstwUncz8NdqtQzZ5ciRI4ZZubi42Nd1Zq8L6h02+FZAWYFIbeJN/1pLZ9ggqwrtFC1roufpxsJ1yzKj2AF3Cv1g7ZnCY9jBAP64nV9BXw0cs8k4xcYh5ubmUKlUMDo6irGxMUejz06nY0rDVCoVzM3NmUD4RhllijvQ3mI5XupOAMa2oF9ql3OxQWVbdK7UZ4qrKDOfn7Xxlm64kK61BuV1fmoH2c2/9X0eg/efZoaTiKlZh26YkN47tGNpZzCYwPuWJf9oE3HMtH0qlYrR3cQ6LrnkEnMPUHfTTlxeXjZ+9rPPPov5+flN626dz17eg/ulu8+cOYNEImFeXw90drvW62FNbp+3X9/MMX/3d38XP/zhD/GNb3zD8fptt91m/r766qtxzTXX4MiRI/hf/+t/4XWve13X8ansT/rpPhRudoFAwNT1pMFOtk43xcebo9PpGLAQcKZPbAcYts/FTZtsbsBZG9RtXq1WyzVleKdB2W5sd24UqhTo6NHxsufRTezP2mx3Oqy2g8txEHSoVCoIBAIolUrGKKBQ0bKzN+tzuTUC07krG0xZX9r1nEqEIKwba28/gecUPhP8263cgN7LBBB2U8EpKEOwIRaLIZFIIB6PI5FIGGDJ7/ej2WwaACaTySAWi5l7Qed7MYjniHuyn2RwcBDhcNikexOcs9NG7b1aQVI6cdyrCez1617muTX9VWW91F5+zx6L6jvuoUB3g7ab7lVH284IsvcCdcioT9XZt/WVG8NJ37MBWWXeua2TvkfnjT/BYND8bTvifL3XuthcB7sci83etsvhKMt7vcxAnbd9b9rZe91Ev8fPkrRAnaTn0ewDN4ee95Ay4dezP/Sa2yn9PCY/p9eNut6+Brbto2KDUjpWguXcAyKRyBp7ixl+0WjU7A8K7F8s4uluT/aTsPQa/W4C5coIdmNuK2jJzzM4SJ+v37qbe7WC4go6c3+jblSdx71ZRfdFN1FftNe5uJHnuP/puTTYq/W8+bdbHW8ef71j2z9uwuA8dXK1WjWlO/i+6m4Gv3slK/GaqA6gLqfuJilAdRy/10uJWzddbt+rm/Hd7SCLnb1gz88W3m9uQRxbJ+s1Uxtuo3m6jcsei5vNoLaE3mO8Nnz+mZWigf7l5WXE43H4/X7jk/MZ93T32u8DQCKRcIDobsJePTZDfH5+fg2TnDI5Oen6+cHBQYyMjKz7Gbdjvv3tb8ff/u3f4u/+7u9w8ODBdcc7NTWFI0eO9FQ6jeKB6LsgZNAwDfzQoUOIx+MYHh42qcEbbYZ8PxgMIp1Om/Qkbv6MdG5XyNxSZjejewoA8LdGkOlA6EbtZpj0S9SBI1BB8IBpu2QX0BBi2pUaR0D3aC3gTC8jI4wRVqa/k4murC3OmSmA5XIZiUQCtVoNsVjMNLjx+XxGeReLRZw+fRqlUgnZbBbVatXRGENFGXnxeNyUBiFbjpudOqBskEXGhTag24/C54LMPWAVSFFmJVPs6Qi7RTb7LWoI06EOhUI4dOgQRkdHEQgETERcHXefz4d0Og1gJTo6MTGBn/zkJ8hkMn3JNtkr4jninuwHoR5LpVI4evQoIpGIYV8DK7X2qHOog7mvAqt1WBlMbTabiEajmJiYQKPRMI0L+yWdzgr7OJfLAYBhXYfDYbPfsLGnAqSqy/lsqW4j25aObyqVMnpXda7NiiZATJ3JY5Pxq0xi2xljNhHZzWRPKxjLa6HAKIPbtA94LRYXFwGsZAYoo8ttDTkPlihhUDsUCiGdThuDneB5qVTCzMyMCXoqE389ACOdTps6jfwcAXIAxoZRZzUejzsY0Zy7fp+ZBppGD6w6wnTiWfLMfp3/077SwMzAwADi8TgGBgZM9h3tXF4rgk7Koi+Xy2g0Gkin05icnITP58PCwoKDbcd14N+NRsM0fuNx2TuEtp3egzw/sGojavYdQXCCH0wPZ0ZfMBg0DUh5vZnBMDY2hnQ67WDo8TwMkEciERQKBRw8eBChUAi5XA5LS0s9AzMakNir4uluT/aDcP9KJBIO3R0KheDz+cy+1Gw2TTaSPn8KOFKPJpNJHDx40DQcrVarfRsvdSSbFnPf4h5E3WYLS5YoyK5z0Hl0Oqs9HZQh7kYAcBNb1/B7tH90L2cGMLOB7bUNh8PG/+HrPKaK7vc8x0Z7EHW39hSJRqNIJpPGvyoUCsYWImudvvh65DViCel0GvF43FQTUJxBbSBdf5aFI4DbTajzVcfY4HE34oab8Jpo/zo3YpYSEhSU5rMSiUSQSqUAAAsLC0bPEyNpNpsm6522I+83HtvWnW52EufFcdOGY0lFlmKjDaDN6FnKLZFIIJVKIRQKmb6DGrxotVqGoDY6Oorx8XG0Wi0cO3YM0WgUmUwGi4uLPa3vftFpu6m7A4EAXv7yl+PJJ5/ELbfcYl5/8skncfPNN7t+58SJE/jSl77keO2JJ57ANddcY2ziEydO4Mknn3TURX/iiSdw3XXXOcb59re/HY8//ji+/vWv4+jRoxuOd2lpCWfOnMHU1FTPc9yfyNk+E41eJxIJjI+Pm4ai3Uq42N+nMNoZCoUwMjKCQqGAoaGhrrWANitkXtFZBladMNa24mZIBTwwMGBAAHXEdgOoVAPBjtTTqWcElGO2mXGAe0TcjqjbhgKj26xvznPZhkCr1UI2m0WhUDCAC+veMZJH57JUKuHs2bOO8jDrOeCMpobDYXM/RaNRR8RX2QADAwPI5XKmzAnvy35lMlwI4bwYUeZ1ZEAIgGEjAGu7k+/U/akReK5zOBzG6OgoJicnjRFrn5+p781mE5dccgmi0SgWFhb29TXyxJP9KOq4MHBNZ9Xn8xmHl6m63H+oLzRLSEuWBAIBDA8Po1KpoFgs9h1EZ1YT9RSd8UQiAb/fb4Bf1S1DQ0OmqTmPA8AEi+n4Mg2WQAQBVoIR6uTTRtByN+122wCYDCyow2qzmqlbCcYzGMzGpNRjapvQOQJWMwFYLs1uQtpt/6f+pxNOfT84OIhcLmcyhjjncrmM+fl54+z3In6/H/F4HGNjY4614PpQD9hsSTqF2gtFx837TlmK9pjUQdZsCLWF3K4JbUM6s8r8Yjkatcd4fDrVBNHT6bQB+6kn3a4B7Tj+7/P5THCn3W4bIoqdcaZsSQUQyDLjvakNa5ndSRt4eXkZ4XDY1MJPpVKmtCJLNakNyuOkUimMj48buzmbzfbEaLMBKk888WTrwueJQetoNOrYF5g9rFnX6kfyGMCqPopGoxgfH0e5XDblm/opNmDM8WkdaI5Vx8RSV26An2bdKNCrAdPNiK0zNYCpGdkMPBPn0D4b3G/Xy6TSNalUKq4BhG5CMgHtB9pdo6Ojxt7K5XKGgX7+/PmeriX3e9bMHx4eNtlKqqMVGNZMMpIBtAzdenMAnAEdXfvN+LLU0XYpNLfv2FlktEMajYbBrvx+vyHg6bnpd5MAQX2sWRLUhW4+rc6Z36PuZmk4mxjAdSV7nPc7g2bBYBDxeNxh33IcJH8mEglEo1GUSiUDojabTSwtLXVdU082lrvuugu33347rrnmGpw4cQKf/OQncfr0adxxxx0AgLvvvhvnzp3DZz/7WQDAHXfcgY985CO466678Ja3vAVPP/00Hn74YXzhC18wx3zHO96BV73qVXjggQdw880344tf/CK+9rWvOcq1vO1tb8PnP/95fPGLX0Q8HjcYaTKZRDgcRqlUwr333otbb70VU1NTeP755/He974Xo6OjDsB/I/FA9F0QOp4E0mi4u6Ue93o8sm9ZV9tW/NsVOh6MvtMZUOeI89B05AsF9NlOps5BmeRalkabsdjp0oAzKk7DhYYBnXQ78t7NEeSxCJRTIdE55LEInmsN717nrT92upYCDLpO9vf2q9jzBlYDQn6/3xhTBD26lSfqh6gRwPuD57JBiW5zAWDAJ5Z82s/Xx008Npsn+0H47GrGmIJ+dG4JFAKrjUXVCaHzxFqeDMD2+7nm+LQUGPdCNqmmvtHAMsvVUKdzfnRCFOCjzrN1h+0UKiCre7SWPVPQl9/X3h3qPGpgkuvKwLb2bSHozf+Vca17fze2mZuoHVGr1ZDP5x0MbZvJ2Ov+xFJv/K4CwmrD6PvKIlS7T9Pk7bVSG0V1IwAD2KtzS4dXAXZlcFWrVcNE5zH1fLx2eq15X7XbbdO4c3l52dQl1XuWAQUNgLtl5ek9qLYWQSK13fR1va58jyx2BeS5Psqs13tXgzIUAnfMNNmMbFcv7oZ4utuTvS66V9rZ3rqf6d6h+kL3GWb9MmgXDAaN/uy3aIk37lvU3fRZOTbVAdQJnN96epOfoS5crwa47VPxu/ZnuM7c03WPtDONgJXr02g0zPEVYNXG2BpIVZ94M7pbA8WlUsnsySy91i3bu5vo3s9G3LRh+J7qcF0jBv7tOvH2eN1eo63E+04zB9cLhtjXi+veDWOwy+0oOZI6mWNye7Zo19IOYzaCDc4rUA6sLU9jN5nXWuv2XKm7ea80m00TpNHvuOEdvD9oy8RiMaRSKSwuLjo+10+M7ULJbuvu2267DUtLS/jjP/5jzM7O4uqrr8aXv/xlHDlyBAAwOzuL06dPm88fPXoUX/7yl/Gud70LH/3oRzE9PY2//Mu/xK233mo+c9111+GRRx7B+9//ftxzzz04fvw4Hn30UVx77bXmMw899BAA4NWvfrVjPJ/61Kfwpje9CQMDA/jRj36Ez372s8jlcpiamsK/+3f/Do8++iji8XjP89tREP2//tf/umHNnBeDkLUTjUZNPXQ6q5sVtygoGUDdNpfNijKwFITUtCSC+Opc8OEKh8MXDJTV8xLo5gbJSCjTrrTuqN3kBHDW9aKSVWVO0IQKc7111zIvVGDqzNlgh7LH7XW0lXK33/x+p9NZwzywjZ79DtAqQMO5sFFavV5HLpfD4uKieQ41Nbyfc1cF02w2TaM2GoUate/2jPA5ZrMasuH2+zVyk/1ukFys4unuFXFzxAEY54kl2gYHBw0YyuecAB6ZyizfBaw6sHS8+i3KCKcuYZNidYpZCoxNN9l4iSC/3+83DdkqlQqWlpYMM5r7mK4NU2676S8CEUybJluI3wuHw4bJRj3o8/kMw5fH5W+ynqjjCPYXCgXTuFWdOxuQVuB4I6HuZiC2WCya4IPNmNqolqYGcIvFItrttslOCAQCpjyMjo/n4mcZvFFQl9ecdhvf4zE4d4IytIMikYjDjlHbhPcO7xdgxZ6Zn58310bT0mkH8bcGQ1jmaHl5GS+88ALa7bYpc8c1ZWlCjoPHbzQaRndrLWJ9hmg/MVNicHAQ2WwWuVwOPp/PlGtREgvtOp0fwRUCJGQOalCAa87PkVlJu/LAgQNIpVIoFArrAhb2PbaTYoMdHhB+8Ymnu1eEmSFar1qDngCMXmHwm/u3srYBmDrKZDfTB+y37la/m/9zX6bfqIAiS3pxj6R+sOfPzDR95rlXci9123vsIDgBcnvv4N7n8/lQrVbXBMm1bIaWimXjTSXn6f7PvXW7urvVaqFcLsPnWymduri4aHQfs9Q2E0ynTq3X6yiXyw7igQYBtME3yYZs6q7lR3g99Bx6Lr5P1rQGHmzyop7fDvgCcNhVbj6lritBbo6fgHomkzHPgpIReX42c8/n88hkMg4imNoWNvBvk+GYMUk7kcdRG1BtcpZhy2azaDabCIfDZp07nY7R53YvI56L99r09DTi8Tiy2axjL7AD9bspdrBvO7LbuvvOO+/EnXfe6frepz/96TWvXX/99finf/qndY/5+te/Hq9//eu7vr/RHMPhML761a+u+5lepGcN8MMf/rDng77sZS8DsBoJeLELnR8FnbfK2lagV7sL6wPeL+EGTMfBBtFt520jx3EnRTde3RzpIGmJGo1MchOmslCxI+FUTpq6r8bOesL3Cai6jd/+mwrHPo7NmLCvi308G7TVnwuVOdBvcZuLOsdks9EIZKRca8f3C6S2jVSCbawprIp/o/lwv7hYrpOK58Tvjni6e3vSbW+hPmG2iAJsui9r3UYGwwi2uaWlbnesHJ8tCjza9ofaEwQsCRKEQiHE43HHMdU2ALAmTdhmYPG37o0EBVjnXJnoPKatu9S55N/K3KMjrqVj+ikKDBNQt9OybTKDrV9sHcxycGqHUHfQ7qK46Xx1kjU4o+xq6jv9jupABV9od9jOMbAKqmj9f5uBp+vEvzkv3u+tVgvFYtGsE0F4zpUOL9eZQItbxl+3gLSCNfw+Sx642XocK207tWfdyAa65ny+GdTgsw7APBN7RfrhJ3i6e3fE093bEwUZbRBKA+QKFlJ0TyHwBsD4724lQPshbgxrBT4p7LOi+7riAOo/kHHOwCRlI39d18AOwKnw3Hb2neprzVzj/ksdRJ1E3a1ZSG4+drdxdBM7wEyCAMvg6DrY17Sbv8Y5acCac1ZSnOp/ZaPbgVy349vHdPP/3djd9jXQdeJaKAHC7dw8h9px/J/XR7P63MgKtG2AVXtOsaT1fGG+T+Bbx+s2L64hGeW0YfWa6nfs86ptEQ6H0el0TJ81HdOFlM3e927i6e7+Ss8g+i/90i+ta3zpA3GhgNT9JP14GHfrgdZNHHDW57LZYfr53XzYVMm4jYMbPqOnZB9wc+Zc3OZNZaBMcY3WbnaeVHhsakWHi1FWMqjUcNMxKVOdx2PzDM6BDi7HTBCZRonWrtvta7UTotdfX+M1KpfLWFxcNGlaAByNYLbLyLfBIYIES0tLaDQaCAQCyGQySCaTOHz4MEZHRx2NeVUIxJXLZSwtLWFpacmwSLoJ58G/uR8ra2S/X2NPtiae7t66cJ8m0Ais1Qusaa61StXYp6NFdjGwwj4mG7ufa77RM07dbbObqCNyuZxhZvF91p5uNBoIh8MmqEfdz7qnXB878GszjZgNpo6gMuK4ZsoOU/IAsJrZ5fP5jE7z+/2G7UZQut/EAlsYEAmHwyagYpcKUTCca6QgNAMqBOM1MKFsKwIjBH0ILnAc/KFe4TjoCNIG4poyCKCMdTZKZ2aC3iucD7DKcgRgAsWcP7MJNHhEkIoAFMGcdrtt6v+6XSc67MViEcvLy6ZZLrMOeB/SPiOzNBKJOEgrvC6s59rpdFAsFgHAOPmq+6m/GYjJ5XKIxWK46qqrMDo6au5PBm645twnKpUKzp49i2w262hMZoMdev3sMSgA1U+xgzue7F3xdPfWRYOBWt5Kg3r0pWywzRYNylarVZOpspuMVPse0P/J/qVu5ny5B9vZRXoMG1S018AOUroR9mwdwTWmTUQ9wvtUm4zy2Bqg5XWxfbpua7EVoW3H7KhYLAbA2RSe11nnT93t9/sRi8VMDzItf0abSTPY1T7QNXa7hzTYoDaRBiKA1SAI7QElcPA4/O32uq6lHcywA9Mci14vEifsY/K41WoVuVzO9IAjpkE7x+341KMAHM3seV20woBiMLxfmHVRq9UwMzODarWKeDyOq666Cslk0jFWDa5xnygWizh9+jRyuZxpeq5zWm8v1mvH69JPPXshGPCerC89g+inTp3ayXF4sg1xY+H0W+yHV6OPmiLnlj60G2ID5vaPAhx0PnUD7baGCjaoU7PVuakyC4fDSCQSptlJMplEKBTC8PCwyTCwy3gwZYmNVsjm4nWwAX/+zTQnTVN2A9IvdKR1q8K5KgOShke73UahUEC73UYsFjN1iePxuGFe0vjczhrw3mOwIpfLYX5+3tS7BYDh4WFcfvnlmJqaMudWEJ3Xj9f3/PnzmJ+fNw1puwkNNGX7kQWgYMxeEi8ivjvi6e6tCw16BjgBrNEzBEOZbUa9QiYvnUbuA51OxzSZ3myzrO2Irb/osNA5q1arpgYkgV3unUxZJmtcA8qcB/cfBRXVmbCZamygrPqIY2HZtPX2PM5HGzzarG3aJju1V/h8KyVC4vG40d0Ew8nOZp8T6vyBgQGUSiXkcjl0OqulfwhMuwUKCEKoA07Am3pEr6s2y9RyM+Vy2VETX22j5eVl5PN51Go1JJNJ831dP14Pgg8Eo0ulEoLBIKamphCLxUzAiE4u06fZeFSBAdowbvqAjjhBIjrR8XjclCFSUIZNf0OhkLlXVccnk0kkk0kUCgVTmkiD6JRms4lcLodyuYy5uTksLy9jdHQUx48fRyqVMrq13W4jHA4b1jmvz9zcHJ599lnMzMw4moryXGoj632rgR9dj37dv/08jqe7d1483b11oe4mcKlBRPVXbWDRjZnLciDcQwmk72bgwt4LdA+hX8hSVnZwmnsv52I3JgWcYLm9H9GeIQiuILoGVvm/6nG1b9ZjHev3bX2zU8KgL4PGbB49OjoKAMhkMigUCg6Qv1QqmVJrLKlGoT1I3adrxL1/oxKiajep7uf/en+qD88G98wcdAPS9ZgcL6+n6iYbMKfoOnQ6HWMbc9wqtH1arRYikQji8bjpu8Om9Co8l5YI5nFZvjgYDKJSqaBQKBjdrSXmgBW7qFAooFKpIJfL4dSpUxgdHcXll19uyh8zAK4ZAbTDzp07h2effRbnzp3D0tLSGvKom+6ynxteQ33Wtiue7t6b0jOIziLwnmxNVLHQAd/KzaibsgKHux2hUiPfzTnf7QfNPq+d+qTj0c+4KRb+tr+/nTlpwIGOZCKRMDXtRkZGDJt8ZGTEOH7hcHiN0iSIXiqVjBPJ8TJKS8dSmRbauKufc9sLstFcyG5go5NqtWpqBXYzHDdzbq4pnWv+VCoVU0+23V5pSlQqlVAsFtFqtRyMTH6GxnC5XEa5XDbGkT0vDcgw4KJsPwILvBd4jL1yrT1lvjvi6e6tiwLmGpQDnOVJ1tt/3PSPnTW1W8JxKFCn75ExTadPGU92sI8/yvajA6YORze2kc7fZp1tRi/Z31kvKL4doYNHPc55x+NxEwwnsKsg+tDQEOr1ugGetVSKAuNkaSmga9s0+qN1vG1Hzc6w0h4pABzv2anY/G0DG/pdroe9Pt2+q8xz27lXUMvtemsgin0HaPfwPV0j7TNjs8z0vlcAQcsLKCOf5+R5qbv1uiiIz4AOs0xYZ3U90TJICppwLBeyTGI38XT37oinu7cufMbtH2BtaRLb91OxWbvb8d+3Khyjm21hj8stc4jSDbi0z6P/62tu51cdrt/pZgt1m18vn9uqUAcQLOVPIpFAIpFAMBhEIpEwgVb2FCALWsFjrT3Pv2k7ETgmLqPz4fq4ZSx2u+9sfGI9m2a9685j6O9uonZtN9F70b7nVLTsLf1uErzUf+12DrfP6H2u+pyZjMQ9SBJot9tGdzMTlPe02k1sEE69XS6X1/jd9roo4G/vKboGe0nfebq7v7KtrhjPPPMMTp8+bZhYlP/4H//jtgZ1sQlZXgTIuJFoeu9mhBsGI22FQsFR/2m3RA18ZTZrrc1uqUH9EN3EdbO2WdbdNjE1EGzjQY9v/71ZYRpxOBxGLBbDoUOHEI1GMTY2hoMHDyIUCmF0dBSpVMo44t0aXzLSTUevXC6b+4sA8dLSEmq1GhYWFnDu3DkTGc9kMg5gnYrNVib7SVSBKrvO/gxfbzabmJ2dRbFYRDqdNkB2PB5HLBYzgLSW+el2X6jzX6/XDfi9sLBgmIbnzp1zsMFzuRy+973voVAoIJ1O49JLLzWMOQLfc3NzyOfzOH36NH74wx9icXHRkRJOIWuCDekmJycNI52NDvP5POr1OhYXFw2jjuUFLrR4yvzCiae7exMa4CwpwbISbDQGrBr7Wv+RoJgClUNDQ6bWIptPXqgMEXVAODZ1VAj4AjCOhDK+qVt9vpVSYmT4VCoVk+rM43HfUrBQnX7u25o5wzT0zYoNAPRTIpEIDh48iHA4jHQ6jfHxccPOZwk2/uZYFMAlC4vNLufn5x1ZYAyAc4+enZ01LH2bfKHHZsCd56ftQLYX9TzvN5/PZ9LX1VFl7XGfb4XRzaAsx8T0dfYR4ViY0s5zFQoFACv6qdPpGOYmswJUt9Im5nPlZodoLdXz588jm82iVCrB71+pcc6sPV5zDTDwXOl0GgAcAW4lFAAr7PNMJmOcbepOpu/ncjl8+9vfxgsvvODQ3QTayQas1+s4e/as0eN6L2sQjtdxdHQUBw4ccPgCPB9T09l8dreDbt3E090XTjzd3ZvweWRWTKPRMHuxXetYRUuVUWhXM5i8nl+5U6LncgPtqCfcSoACq0xd7ns+32pmkF0+jb+p8xkA5Wv2fqZlS7hfbnW/2u7e4iaRSARTU1OIRCKYnJzE4cOHjY3DNWCAmz1udCxqI3E/5pppuT761qdPnzYNzzXQwd/EftR20N522tTbJgdoRp8enw27iRnYtmU3/MUtoKTX2+16EGivVqvIZrOO/nAqBLZbrRbOnDmD+fl5pNNptNtts/balJznU9xDm31rvXwKsR/qbjYz1TJxrVYL3/zmN/H8889jeHjY6G6Om1l41WoVZ86cwdmzZ5HJZLqS13gdpqenceTIEUd2Xb1eN7pbG9x7uvvilC2B6M899xxuueUW/OhHP3JEpJS15Mmq0FHsdFY7e2sazGZEnRd2hmbkc7dvbmXzKNOZhoY6fDs9Bh0Hx8K/NwIqbCXXT+FmG4lEkEgkTFpROp3GgQMHcPz4cYTDYVPOhUALmW5uNew4p0ajYZzBfD6PUqmEcrmMs2fPolQqYXl5GTMzMwZwZ0kTreler9cdCnM/CkF0Ag5uc9HgysDAgIkyk+1PBpuWIegW+FEASEuv0GBfXFxEPp9HLpfD4uKiuUY06n/2s5+hUqlgamoK0WgUiUTCGPf1eh3PP/88FhYWcObMGTz33HNGmdvzImsiHA7j0KFDuOSSSxxATrVaNTXZ/X6/Uex7kdnmye6Ip7s3J9TdAExWCZ1PgpRkE/F9m72lAXNmnmiN1gslvPZ2MJ9zYokQOho+n88AN9xPGcCLx+Omzrs2sQRWmUp0/BSsp64miN6P/cmNVd0PCYVCmJycRDqdxsGDB3H06FFTKsAOuirLPB6PIxKJYHBw0NRPXVxcxPDwsAE+qItzuZzRIbRpyIS258jAK/WYNplXVjubbKkjNzQ0ZGqU0j4aGBgwWVO0T3kdadMReKAz2+l0jDPM7Lhms2nqlxJ00Jr3WvKHzxdryLqJMu+5DsvLy6Y0G/UnX+d5NMjAEm6sc65ZecDKM8B1X1xcRKPRcDAKObdnnnkGP//5z3H06FETPMrn88hms2g0GlhcXESxWEQ2m0Umk3GUcuO9aAMbyWQSR44ccYAJLJ9UqVRMIEIJH568+MTT3ZsT+j0AUK1WzT7JYK7q324AtepwLdV2IUF0N59ECT1u94G+prqJ5W6oz21g1mYb29l3yvDXYKcdoOx1fjuFFQSDQUxMTCCdTuOKK67AL/3SLxn8RUFRzp9BBoLcWi6TZVSpE0gcoH91/vx5NBoNQ5x0A2Htfmd2KUAlIKhepO6kvaHXhcCzTcy0bVE9Xjd2Om1Wt55a+tl6vW5K17jddxwfm7nyO4lEAtFo1FGujmPVjDXbVlQSoD6/jUYD2WwWuVwOxWIRhULBYTM1Gg388z//M5599lkcPXoUyWQSw8PDqFarJsBG4HxpaQmLi4uGte4mvA7Ec9i8t91uo1Qq4ezZs8Z+0JK7nu6++GRLIPo73vEOHD16FF/72tdw7Ngx/MM//AOWlpbw+7//+/jwhz/c7zHue6Ej6vP5UK1WDVOHjo+Cdt2+T2H0UxkqZCPvtiiYaIPpjNark7ITTHRupgqca03wC8X0I9DChqEHDhzA6OgoRkZGcPjwYaRSKUxMTJj657FYzChrBXPd6owBq5Fgshp5fw0ODqJWqyESiRinnOAGGX/FYtEA6Qpc7DfpFsTZ6HpzjQOBAEKhkLlGNJLU+KbodeA9RaeezjkzQvL5PAqFgmGmayCn1WqhUCgYAy4ejxtghQ39Tp8+bRqS8fg6Jz5LzFpgOYFoNGrSy2hkca8g016ZjhdavIj47ounu7cudAboIHG/Zd8KAn1khem+SqAdgCMAvtt1Vd3mxPkocK4lKuigqT5lphmBUOpcDRgwUEAAV+t0k7nFZ5g6rB+ZMrovbHWPUKb3yMgI4vE4UqkUpqenkUgkkEqlDKtc7TcGCjTdGFgFMTTIq/qG7CtgxeEbGxvDxMSEyTYkE1kbrinbmvrLtrHUNtPvM+tJS8HZgWTWcefrWoJHU9KpS1QHa0M7e121xMxmhWvN+0ufKwAO3Uawgux6ZWtqujedbQIC9Xp9jd7mGtHOKhaLmJmZMfY3bapcLmf6z7jdw7w+Q0NDiEajCAQCJhCuz1goFDKvLy8vO2rZ74WsQU937754unvrQqKL7o922Sw+r+pbKVjH/YDM9n43Bd+sKJHK7kHC991KZWiAwPaRbVBV/U1t/Ek7xw5wksi01f2hH/uCBmlHRkYQi8WQSqVw+PBho8e1UbwbiK6MbF0Lez0Y+OTv5eVlw3RnRhPvE9Xdqh9ZWkbXXkF0vf90bDYoS7tLr7kbGcwG0lXssn0qOj772ejlunEcvDZajxxYzXBgdrwG+PX51Mw6/pD1TSKbPT8+K36/H/l8HmfOnDH9X8hwn5+fN/1d3J5r2+/mb9oiAExGA+1DVgHQTIULLZ7u7q9sCUR/+umn8X/+z//B2NiYUUSveMUrcP/99+P3fu/38L3vfa/f49zX0m6vpIT7/X4sLi7izJkzjk7QdFLXcyp449ZqNZN2MjMzY9KGGOXbTeHGpg4X2UztdttEuf1+/5qUnX4IlZGytbgpEjzcSkR8O6JO4ujoKA4ePIh4PI5f/MVfxNGjR00acCKRMM02VKkAzoanbsK5aHOveDxuFPXU1BQajQamp6cxMTGBQqGARCKBWCyGQqGA559/HoVCwURJNUVqJ4IdOyW8/lRQbrXobBkYGDBldZLJJMbGxhAOh5FMJhGPx9FurzTSI1uNQI+mn2sJo3K5bDIBcrkcms0mstmsGQsVOhVXrVbD888/j5mZGQSDQfzoRz9y1Gvl+Xk/M6NAjVwagKlUytxTIyMjmJiYcLAUyNbjM8LyP3QoLrR4ynz3xdPdWxc+NyyfRaYSM0q0HIk651rOg0BcoVAw5ZXstHxgbfOnnZJWq2Uag0YiEaRSKQwODppGqHQK9DXqdjKVW62WAflox5AVzaAhv8NsKzosnU7HkAl4fIKYW3m++7VWdEjj8The8YpX4Bd+4RcQCARM3VQGYLmGrVbLZBoMDAw4gIZOp+OoBcrf0WjUMK9s5lk8Hkc4HEapVMKpU6cwMzODWq2GbDZrAqvs6zEyMoLh4eE1wDTXQsFX6jUGeKhPeH424ARgmqcxRZxOLYESHoNz02CKz+czWW5cH2XrM6DCdev1mmjqPRuUcc4sJ1Sr1YxNDcBkifF6kknPhqWZTMakpOu9p3obWA1+NRoN44Tr/NQ2oH3gNge/3490Oo3LLrsM8XgcIyMjGBsbA7DaLDYcDmNkZAQAjK9QrVaRyWRQLBYdx7SZfLuhFz3dvfvi6e6tS6VSwdzcnCnFFYvFTBbq0NCQI7OG9rWCl9zTmW3ywgsvdNXdwFoQup/CZ492RKVSMQQa7qXcgzWwTX1AgJKfYzCRn1EQV0FYfod7oIK6tVoNmUzG7J9b0cP9WqtAIGAylF796lcb3R2LxYyOpu7mPLVEioracQxeqp+cSCQcIDx98UQigWKxiJ/+9KcGo1laWnKs3dDQENLptCmbRjuALHUNWDDYS33JMWhvE732bnPQIIHb2tuAvIqNR/Cz62U/2N/XUkrRaNQ8g2Rxs5ycXfJMfV8Sw9gXjuWMiQEpoU6FGByxsoWFBbOOvI+1DLBb5h8xmuHhYVx22WVIJBJIJpMmI5X2RigUMuXjWCK2UqlgYWEB+XzedW10TXdaPN3dX9kSiN5qtYxhNzo6ipmZGVxxxRU4cuQIfvKTn/R1gBeDEGwmkEXnkQ89P7PRzcnjcCOgc3ChmMQcrzKTuOGrM8HPEozs17mVZaWlZPRvnnc3H3wqVEYkyWAjA/3AgQNGgRCI2OzxKXbgpdVqmdRq3ivRaBRnz57F4uIiABinmYpDDaz9BKTrc2VfczdRtmAoFDJGNFP2AoGAuX9pVNPRViNJGWwEuXO5nAHRCcJr9JzCdC9g5dpls1ljBPE60BDtJmpoxWIxEyBhGSCdJ7BiVNJoAbCmZuKFEk+Z7754unvrQofT3hu559hZMVob3E4V3qiEBYCuDk+/58QgG4EDzkkdETLFCSyq00kHk/skAwYExtWJo9NEkBWAg0BA8PFCZ0ZxfsFgEJOTk7j00ksdKdPKBCNjX9lVyvTTMmL8rLLW9Ttcq0qlgvHxcYTDYWQyGeRyOQBwgB8cp5YaANY2jSW4bf/w/gRgzq/XQeuBKhNd9a4yGRV41tT+9djovJd6EY6P9xCdcreUb2ZCAkChUEA+n3d8XgMLpVIJS0tLPQE//Aybj7mNkeL27PLaBwIBYxsS2Nf1IlPd7/cjk8k4ykB1W5tu59wJ8XT37ounu7cuJLx0Oqvlp4DVvg3UYdyPuDdxD9FMZ5JRuu0XbizhnRDaI61Wy7Wu9EY+nPp9NoDK7yqhy95ndc8niKnZZRdKqCMikQgOHDiAyy+/3Ngk1Mm8rnaQoJsu4jz5N7+r5dxIGGSPj0KhgIWFBSwuLq4JXGiWmtt5bT2iOAfnwM+pfcXXNms/6TXj+bplMfAzGlzeSGwGOvW3NqTnHEmK42sU+rY2eW1xcbGnMdCeZTZ+t7l1mxP97lAohOHhYSQSCRPE1yAD7Uafb6VUWyQSMa+7ndPT3ftbtgSiX3311fjhD3+IY8eO4dprr8WHPvQhBAIBfPKTn8SxY8f6PcaLQqjUKpUKzp8/j3w+b5g4wWDQRLS40fA7CpyT5TozM2MiW4zI7SRbbaN5KbjAciJ0BOyUHU2b2s756Lwqw6parZqa82Sh7yaA7vP5TH3zcDiMyy67DL/wC7+AZDKJyy67DIcPH0YkEkEkEjG1+foNVmtKVzKZxIEDB0x6cSQSwcLCApaXl829Uy6XHQx+grNbSbXebaEy5fjdHHZg5brEYjFT+uSlL30pJicnkUwmMT097WhO1mw2TT3xxcVFLCwsGIVNUEGBdoLsdKo1bW+j+05TRNXw3ghY4zWmMcLnTA1eG0gne5KGnicvTvF099alUqlgfn7eBK9YaoF1rDudjmmwSKCvXq9jbm7OZKIRSF1YWOgpaL4bukuBTy0LRkdM9z11vN0ChBTaLGSa85ilUsk4Qsrkpt7eKBC6E6KAAcHo6elpXHLJJYjH45iamjKBRzfn1C3lmvcAAMO0UraUnpsAqYIVoVAI4+PjSCQSqNfrCAaDhsVUKBQc5XAqlQqy2axhWnOsDMQqa41Ov9oeqnP0OxynNjjXciqBQGANsMDf2lhXned0Oo1IJGIyMdj8er3rze9Ho1FcfvnlGB0dddR0p17j/VmtVg1rm2nexWLRsMbz+bwp+9Jutw241i/pBqDp9VUWoTZjtYkfNrjRbZyeY3vxi6e7ty71et00JKZwnySgbtvK9XrdNCjU7JKNQLvdBMNs3c0eGdxjeskA133FLgWiosAtg+oMEDOTebcJaxTOdWBgAEePHsWVV16JeDyOiYkJ8xk7UGDrXDdRv4x7M4PQtIUIAtN2CgaDGB0dRTweR61WQyKRwNLSEprNpgnW8nsM4rLJKOAkMDCowwCqBp01+GOLAv2cr70G9jzt9xXY9vv9pnxduVw2pUaZrdZNaAdHIhEcPXrU9M8ZHx83OAMz8wKBgKltrr3EuNa8FrQRSUbpl2wUeNJMO8VZ7ICDBkmUqb/Rc7EbgTdP+i9bAtHf//73o1wuAwD+9E//FP/hP/wHvPKVr8TIyAgeeeSRvg7wYpJOp4NisWgai3IDjUajpuwH04Q1YsqNpVqt4vz58/j5z3+OWq2GXC5nNrEL+fBpRJxOIRW61tgEVh1VoHu36G5Co0HTm1h3mo4TGfraTGs3hJt8NBrFJZdcgnQ6jV/8xV/EiRMnkEgkcOjQIZOGqUy1fgud906ng5GRESSTSTSbTUQiERw5cgSzs7NoNpuYmZnBuXPn8LOf/cyxflRs+wVEZ10zGrrdQPR0Oo3p6WmMjo7i//v//j8cO3bMMLQ1ktxqtQxwweNnMhnk83lTl1YZeFrnbjNZJfyc1m/V19cTPlMEDzQgo8dR9gP3lWazuWeurRcR333xdPfWpVQqoVqtYnBwEAcOHEAoFDLp3YODg6ZxtDJOyuUynn/+eczNzRknnNksGzniu3V/c8+kU0yQm6AjAOOsEPzbaL+jc02nMhKJmP2U32VjKabZagNmYPfYtRqYDIfDCAQCuOKKK/DqV78a0WgU6XTaZHe51bCn7qc+oEPPWvkcPxlqmqVEx1gZkAzGHzp0CK1WC6FQCBMTE1haWkKr1TKlcKh72OSMAfpQKORI09cMAVs/cH1tfaZOOJvo2tfCZqUpyE6ghfPi2o6OjiKVSqFWq+H06dMmILDeNWbpoOHhYfzKr/wKrrzySlSrVeRyOSwvLxuAvtVqIRwOo1arYW5uDqdPn0apVDJ1TjudDrLZ7Jr7qpeA92alm0NsA+gEvcrlsrGNmWZOUcanm9hA+26Ip7t3XzzdvXWpVCqGIAPA7KsATHkP+gK0qWu1Gs6fP28IRwy+9cK23q37m7qIYKNmEqntbwPFdmkPt32df9uZTUrOIXmI/v+FIvMNDAwgEokgGAziJS95CW666SZEo1HTcw5wLw1i/9hil3PRjIR2u210HH054h8HDx5Eq9VCMpnEpZdeijNnzmBxcdHYRQx0MMhLsJkZVNrHQ8tz2iRE6naKfa1sna/zItDb7drz+Gwgz/JppVIJc3NzKJfLpvG1m9B2iMViGBkZwXXXXYfLLrvMkeWmgSDtZVcsFpHL5UxZUzsAQn93Izt6K+J2PNprGlRQXEvve9qCvGZ6v+wF8XR3f2VLIPprXvMa8/exY8fwzDPPIJPJIJ1O7wgweDEJHRUAJi0MWHG2CYBq3cxOZ6XsS7FYNJ2ECRoyArkZAG6nRCNvOn5u/FrahZE7jfy53TduzoGmEbuVcOH/yggDnE1k9JjdWD+bFQLPoVDINB5LpVKm1jad850Cz21Rp9nv9yMajZoSAqlUyjQso/OpUd29vknqvUAlu1EZF9bE0x865zb7QpvF0GDR+ub6o9kOu6mYlPlop73p8WxDZS9dW0+Z7754unvroqUrbF3DDB4Cl3zmyLCm80QHfC/euxqkJmOeQB+wFtRWENIt/Zf6Vz/HdQBW2WC2Y8pzrWcbuI1jq6KgL0FoZi2x+eN6bDUtraL7rLL7bOdXx673C9eM7G+/349IJGLqhbIsFwEhu56n6gHbsVNARAH7jdaZ47THzmP1egyOifdYr0QHbQIeiUQQjUYBwNjOWg6HrFJmdaqTux4Q3W/pdk/qs8D7ntfD7TP8f6/tF57u3n3xdPfWhXsOALOXAjD9uwhWKqtYM5s1yOvG/L3QonqbosFRtz26W/BN9bYCrUoWcvM/1gPiu513u/sxj8nyV+FwGIlEwvQc6zYWFd1v3dbJ1uv6PTedQpIT8YBOZ6VOejKZRDKZdNxztCW1lJ7iIzaGYa+xHRiwbQ9+3x7jRtnImnHI42gGInuRbVQ2hqVNqLej0agj2019V86PpDASDOzSpnbZun7KesfTNVWci2NSfU2gnfPsZZxeAHx/ypZA9N/+7d/GX/zFXyAej5vXhoeHUS6X8fa3vx1/9Vd/1bcBXmyizhgZRIFAANls1mweTJ2lgmK6JxnDbKTg9/sRi8XMQ8vfW23KtVXRKCI7lysbb2hoCJ3OCvuOqXI0WNycOT2uKm8aCgQzGQVvNpsmyKBp4UyLHhgYMPWrFBRQw6hcLqNWq21p/mw2EY/HcejQIVxzzTWYmJjA8ePHcejQIcNy2C0AXYX3WiqVMoyLYrFoOpUXi0VTm/f8+fMmms9rs9eMc73XmFbGsjTd7nm/34/x8XFceeWVSKVSGBkZMfeCWy26UCiEoaEhU8s+FAoZVgqdXo7FTmffaeFz1Ol0zF7A7IFIJLKmsSjv70KhgEwmg1Kp1NcUuO2Ip8x3XzzdvT3hfsiaiqp7o9Eo5ubmDMOIJcWWl5eRTCaNrlIG914QZVKTEcuyK4FAAKOjo4Y1zrGzliwAB3uce4/OTdnsmUzGOI0sZ0d2tgKqyjZSXaTMMNoE1PdbER6fOvyqq65CKpXCpZdeimQyiWAw6GjYRseOosF8gt9kkzG4Eo1GTc+NSCRiCAYsgce1ZyZAq9UyjdEGBgZMRlkymcTy8jIymQzOnTtnCBYE0JVMoLotGAya0itcJ66/2pkKmChYpPaUzo+6UNnTDGhr3w1eq2q1irNnz2J+fh6zs7MbBr95H8TjcYyOjposD86VdpxmPNLOGhwcNE3HfD6f6UO007JeYEdtl1KphJmZGRSLRYyNjWFyctKUouG+webF3ZoXup13t8TT3bsvnu7eumgAsVQqGf/5/Pnzptkh92bu3bSbqct3u8zYZqTRaCCXy5m5EEsA4MAVNBMGcAZE7cwkfZ/ZMgqs0m+22cIa1CQYyr+VUEedsF7/p/WE9sng4CAmJydxzTXXYHR0FMePHzcsdJ2XzskOXOt1tbEJnstNmLmluEs4HEYsFoPP53OM41WvehWy2Sx+/vOf4/vf/77BG8hKV8DcjSWupDi9fko8UOkG8tugug32ct58FnjNstksCoWCaW6+UQNZv3+lgTZ7wQWDQQdRgDYd58U1n5iYwGWXXYZcLoczZ86YoIPOy64Nv5vCTLdqtYqRkRFMTEwYm5/zo81LIko37OdC7Cee7u6vbAlE/8xnPoM/+7M/cyhzYCWq+9nPftZT5l3EThsql8vGUF5cXFyj4DR9RJnn3OjImmK0jim8W1VK2xF1wqrVqqOMCxm9VDTAqqJi6RE3ppcqOBoxrAXKNWG9agXUuZkxRYpNnOiUMkjBlCE6tFtlYqujx0YmBw4cwPT0NMbHxx1pPxdCGGyJxWIIBoOo1+uYmJhArVbDs88+i3w+b0DWRqOBsbExRCIRtNvtPVP6g8Lngdc/n8+bdEI34X2VTCZx+PBhJBIJUzapW5obmei8pn6/H2fPnnWwKC+UqCPO+5+pdmrUsBQD7+tKpYJCoWAaEXvy4hRPd29d1BGnPmY97+XlZYRCISwtLcHnW+l9Uq1WEQwGMT4+jmg0asCzzTZ92mnhHtnpdIxjRxAhHA4bRjYABwjL4LiCyG5Cvco9iPXQuY+xnIsGKBWwZdBdA+5qG22XHUibKx6P49JLL8X4+Li5Ztprwg3IJyDOfiJ2Rt7Q0JCj1w1L9ZEIYDOTac8QrPf5fEgkEqauaL1ex/DwMACYfh3FYtGRTs/vK8OeTCmOUcvN0Ga0MwSVlFGr1cz4tR4u10DrsNPGo52lDMaFhQW0223k8/meUrF9Ph8ikYgpA8M6srxugBNEj8fjCAaDaLVamJiYQCgUcpRw2Q1Zb05cC9Zsr9VqJmOR9xKDFhqkAjZmD3pycYunu7cv1N30EbnvcZ+m/1qv1w0JSzN+tgtA9UtsVjeJZH6/35Td0OAmAXXqOgVruYfzdc2W5/vMXGYGFMvRkqWvvof6/Moqps+lwWLVF1tZAzKdR0ZGcPXVV+PAgQNIpVIIh8MOQpFNNNRgJ/dXJQIwo6nbtebr9EVZlo6gM0sD8Z4igY2B85/+9Kdmj6fedmPou5XgoW0EYI3dYwPvdjaaHod/0zbQMdB2UIIFbVfb3ljv+sRiMUxMTBifm2uv5WS45rxn0+k0Dhw4gHg8jkKhgLNnz65Z+wv5DDJgxTK5Gmzheijp0w3bUtkL+4knW5dNgeiFQsHcwMVi0dQUA1Y2ky9/+csYHx/v+yD3u6gjY0eENR2EwjWmI0bnhgqDDR64MQNw1AkvlUrGsdtt1imVEoFvGit0sujIEcxWAN0NROfGTgBT65KSvaasP56r0+kgkUggmUwiEAhgeHjYRIfp3DFiTmdwaGgIzWbTKMONhOMmSD8xMYGRkRED2JPtvBfY3FSuDL60222kUimMjY2ZBnha84/10ffK+BVsoJGrQNZ6iohRbmU0dpuTGiEa9d8La0Ahu4A1hmmkJZNJBwOQ17LRaJisi43YA7spXkR898TT3dsXgoX8rWwrijpkfE7JNAKAaDSKTmc1dVwd80ajsSbVdzczXHRfsBlaypTudDprSok0Gg1jn/j9fvMav6u/7XXSUi48H0uq0E5wy1ijjeT3+9c0deb7G8nAwIApuTY2NuYIsiqjiNePY9HsOA3Mq13HALTaZHQ+eW5glbmnIDfXlWtN+5HBjEQigXQ6bWyWarUKYJXVxkCwzdznOvPaENTQtVJ9SX2ogRatWU+dqver6k/9rTYtwYZeUrJZIo+NRDV4oteBa0ZWmGYa7jVdQf3NMZZKJfPc8FppkKlSqaxpSnshxdPduyee7t6+EMTV/VnBPLc9TH80AKp7nq0DNTNpJ8Xt+eFYqaf1c3zdzcdutVqO/hUEuJVVq3utZj7R71adwJIqXHPqLgXp7awolubstfQFsKLb6OMPDw8jHA4b/awYCq+xrePs8yiwTFHgnWsFrOpuO5jBNeU+rk28qZMTiQQmJiZMg20SmyqVijk22evdfDV7Ljrubvq4m7gdy36d9mmz2TTXqZdrxey7cDjsGJfNLNfXlQy6V3xVwBk4IdmEZBmS1vQZUaIn7ZC9IJ7u7q9sCkRPpVLG8L388svXvO/z+fCBD3ygb4Pb78INifW6yIpWcFU3YXWktd4zo8uDg4MYHx/HsWPHDIBO0IzfLxQKWFhYQKPRwLlz5zA7O7urzjg3GG6YjFw3Gg2T0kzW1tDQkHE+tX4lhUqr0+mYjZsgN9Ndy+WyiQLTkSeD7MiRI6aBZCQSWVOTXA2BmZkZ5PN55PN5PP/886be5nrCmtpksL30pS/FwYMHcezYMYyNjRkG2l4BYAm2TkxMYHh4GJVKBfl8HktLS6jVajh37hxqtZphSMXjcQwPDztAogslVKb1eh3nz59HLpczJXzWY7TxevN+20xWAMEylkvZK0IAolAo4NSpU6bcDPeWZDKJSCSCSqViGhJnMhnTqGWvMNE9Zb574unu7UsgEDDOoTKiyY6lTqIhDazoGPaeYIPpoaEhU3ObOrLdbmN+fh6nT582TFQF4nfyXud+AqxtFmkDlMVi0XyezKJCoYBqtWr0xdDQkEn9BWCYaMrKUTag9jChIz88PIyjR4860sE5LgBmX15eXsb58+dNRtLS0pKjLMxG6xYMBnH8+HEcO3YMo6OjOHr0KJLJpIPtThCZJbN8Pp9h4FGnavASWK2L2ul0kMvlsLS0ZMbDNWDAgRlzAwMDhvRAxpemOjNtnQwuNiVrt9um6TXvtUgkYoIQvF/VuScwwjWgHaZ9QBjk0XXgfc5Gocpo5GeURadBeJI8mApOYEWfF1t4Lxw/fhyhUAjBYNA48ixDx/PQTqnX68hms1hYWEA+n+/JltttWV5eNqXV5ufnEYlEjG1CIIvlHufn500pOU93v/jE093bl0AggGQyuaZMpfrdDMTaweRWq4VEIoHJyUmEQiGkUinE43ET4Go2m8jlcpifn0ej0UA+nzfl3nZLFODj/so+UCyjwf2efit930aj4VpqDFgl5xHUJDFHm2PrerH82NGjR42OZoCYOl519/z8PPL5PKrVKubn502GVi/BwkAggGPHjhndPTIyYnpdcVya/W9XArDJVApCE2TXUnHUb8qq537NoC11bKlUMqXcGARn4+/jx4+bEr3f+c53TIk7NqiPxWIYHR1dgx1oQETXh+MmWK92m9ta8p5XkN7ej+3/aWMQNGbwZL193OfzIR6PY3Jy0gQ41JZQ21azJRhULhQKPTXx3S3hmOv1OhYXF42/zUxB2mjNZhPlchnNZhMLCwuYnZ01z9leEE9391c2hY793//7f9HpdPBrv/ZreOyxx0xaKbCyoR05cgTT09N9H+R+Fm7UBNC7geia2kOho0PjemhoCLFYzJTb4PEonU4HoVDIsHWZWr6bN70qVm4aZN8Dq00z1Hni/92Y6GSYMcJOZaVNJfk+wdJgMIhEIoHx8XGz9jYYzHVhyQuWnHGr6+omdNxooI2Pj2NkZMTBmtorADplYGAA4XAYwWDQ1AcnEEAnmeAA695S4V5o4b1VqVRQKpVMMKWXaLVtQPUqW/3eTouCWmw8zE7pvL5q8BI876WR226Jp8x3TzzdvX2h86QBNeoMOiT2fqTMrUQiYZpfDQ8PI5VKGT1Jx3Vubs4Bnu+WqINmiwLdZFJznvy7Xq8bthGdZttp0Pkw2O62B9iZNerU8hjBYBChUMgRVKeDqwzn9fQ4geJkMomxsTHT14TNr8jm4+cAGFuMAQE3NjbgTJkmQGOXuNMyJGTj6bEYXNFsRALX8XgcqVTKlByg7UQGFEuucN15TZQppVmKdkaFDTZooEPHabPy9RrbelNBeAXaewl0xONx46jqubT+e7vdNuCGnX2113QFr2+ns1JeolgsGt+AYAPt0r3IqPd09+6Jp7u3LlouQn1AN18TcAcTO52OKRUVjUYxNjaGkZERLC8vm9IWPp/PZJNUKpVd97t17NyraZvYmWDc6xUcB2ACqMo6535tM9FtcFMBZQKLxCe4Z5PsFAwGHf4Jhbqx13Vjr7Px8XHT80tLl9nAud3PREXvBw2wdMsq0GwzrrPaKdTduubEQBRYZpk/Yja0DXi8XkVLvXCOvdyDbraX2/t63XvtD8A5s88ax6Ygutp0mvnAzI69wt5W0ZJrzNpvtVqmBBBtedp9DLTtFfF0d39lUyD69ddfDwA4deoUDh06tKmH/MUoWguMikOZVbp+ZC0NDQ0hHA47an2Gw2FMTk6aGs00tG2GFplErAmWyWSQz+eNo7mbD7Juhu32SsMyNhYlY5zp31RwuiaqANrttnEiGOVTpr5GW0OhEMbHxxGJREy6czf2Mc/BeqhUholEwrAT1iuHEw6HMTIygpGREUxNTWF6eto0rdyLADqwauz4fCv1yqampgw7fWxszDSLYfo5m9Qwi2A356QKtlQqoVQqmTroZHFtBDTxGPl8HnNzc0gmk0ilUiYt3i5Xo0GgSqWCxcVF05BzrykPBtZYeoAsWLI+1fEOBoNIp9OmAZAGqPbavDzpv3i6e3NCx4sMIgaCbTAVgKOWKh0glpyi800WuzZ5ZAkOPoPMaGo0Gjh//jwWFxdd62XuprC5Gh0D7jFkL5N9T/bQ/Pz/z96bB0l2VWfiX2blvm+VtXV39SZENwKEJUaWwBJgEBZesAxGE/ZgY4NiNMIsaocdyEaBDAMEhlH0ECABMRiZIQA5gtFgAmwQHiO29ngQu9ZWq9VLda1Zua+Vlfn7o37fqfNuvazKqs7a1HkiKro66+V799133z3nfOc758zA7XZLg1Luoxps14xofV+cI4/HI/rYDGLSEdOfcw/k89GOZKd58/l80gBMO3kMIOuMHb/fL2AAbRWWE6P9YNZsp2jmGtnnDFBr24f3RJCHeoh2CHvncM2x3rpufMrABNcLAxoMbnD+NBMeWLaD7NYZP6dTTya+ZrNrp1gTPggasIYobQtdAmA1Fjqvn81m8eyzzyIYDGJ0dFRqo5N5x6xMvU5MBv1OFI6XzvbCwoKsJU2m8Xq9iEajFhAD6Duzl4r0dff6hO8QCUMkVgFYoTu4H7JMKkG7ZrMJj8eDZDIJv9+PaDQqfjfBc4Ks7fZSU/GxsTF5N1lydDtLUiwuLoofp++dtbl12QnqGnP/ZBDSDKCbew/9C5KzdPBb21LAcgmxVqtlyc7n72uBpz6fTxpvs+E0Gd8ALMC3iZMA1gx3BqcBWLAH/qsJE1r/cz3pIE0gEJCMLg1o69I61OdmlpsGlOv1OgqFguhu6unVhPehwWmem+Mm9mRm/tkJP69Wq9LHhmVJug1KMzPu7NmzCAaD2LNnj2Q78D3R9ogmlJZKJQlQ7TTRASM+Lz5L3fi81WrB5/MhkUiIDcdAUl93P3dkQ3UaxsfHkcvl8O///u+YmZlZoST+6I/+qCeD283CTYvgo+7SbFceQ2/gunHTwsICQqEQ9u3bh3Q6LdFLs7wENyBuumSpVqtVqR291dEwXfuStTp13VQ6vrxnrXT17wQI6YSz+ZZOSQaWNv5AICDdoGn4rMYkppJhHXOHw4ELFy7A4XDIJm634ZENNjY2hlQqhf3790tXcBpuO1W41qLRKPbv3y8dtM+fP498Pi/NRpnmx8Yt+hlthejIdDabxdTUFGq1mjRU64atqb9/5swZJBIJjIyMIB6P2zojmjlaKBRw4cIFzM7OSl3KnSSsnccsgnK5LBHyUqlkYTH6/X4MDg4KsK77C2zXffUj4lsvfd3dnVAveL1epFIpBAIBC2uLIB6zw9xutzgcjUYDmUwG9Xodbrdb+nHwhywwlpkgGMh9eHFxEb/85S8tgON2OeLNZhOZTAbz8/MrHDMGndkgnfqZoDGDBYVCQUpvaFDTfH/9fj9GR0ctpUhMh8VkmBGwJTDA4DwBjk7CZpWhUAjhcFgC3wQzq9WqMAojkYgEUnjNarWKUqkk5+J86CbqvL5mQZItx9+B5QbyZJoTsOBc6WCxdrSZks9zM2DBdP7FxUWxr8y68iRrAJDgNLDSGednBOVZHoCl4LQzTjtOZ10CS4BSJpOxMLi63ftbraUyR4899phkb9AW4fpiYLzValkaZ+tAxE4UEzTgnHH9AJDARSqVwsLCAjKZjCUjYLukr7u3Xvq6e23h3kadQFITM1OYpaN1h/Zn6Fdyfx0ZGUEikZBGzAQAyT7neZghzmAzyWtrBQk3U5rNpjRV1j613++XjCYN5FLf0bZhqTZduqWTzxUIBLB3714Eg0FLGTEd/Nb+FoFsljxhs3HO12olOkOhENLpNCKRCEZGRjAyMiJYAgAJXujnynvl37VtYAK5Gi/QJbb07yYozzIsnHedBWYSl5g9r+vI81g+B1YgSCaTXZPXTJa3vj9NBiGGosF2jkNfh0GY2dlZKT9DUuF6dPeTTz6JRCKBZDKJwcFBS5afDmBwXlkeKZPJCFFhJwnXCgMS1WpV7sntdguG0Gq1EAgEMDQ0hEajgdnZWduKE1stfd3dW9kQiP61r30Nf/iHf4hyuYxwOLxis+or8yXhxqA3iLXAVZ0mRMeMwDOjtasBmfw+We2MnG8XK1o7WHz5zLp0VHDcUE3nWbOe9L/aQaIC0MAijaW17l2DAnRwdQS7E4jOSDEbZzBgsluYInquWK+NBhONQabb6XR9bRBtxrrSBgej9kxpNhvZdHs+1qkjAFCtVsUR1+wLAhGMvOt0rJ2iPEymhJlpoedPH0fGOhkJmnmyHdJX5lsvfd3dnWjHU+tkzaCmE2h+z/wO91iymQkI8/3TwDD1jq4lut36xNxrHQ6HOKrUw3SK+Rn3F62713rfdWaN/r523E3n1XQadWmUTrobgAXoZ61tE1AxHWpeUzPH9Nj1jwk0aB2jbRa7cXF+9fF2z0Bn87H0mmbi0+7TbHHTttI2Ke/LLG2g74VrWt+PKTwHgRDqbM3QWo+Qqe31eiW4odmQmi3P9Go6thu53laIdsQpej1r/U27FFgGdfQ63A7p6+6tl77u7l60/rYrFaoBR73P671RZ5FrApH+HkuV6H2U3wFWlo3ZajH3buoDzU7nveixMpCn/exOJW94PO/bbr55DMekg+mmzbSaT6J9GfrcDIBrn9TU23rMpt42n73dNfW/5r3wcz5/M3irbRiNgRBn8Pl8K+ZZl3KjLdMNgc20l8z7MIMZdt81/W8CxBsJSNOP9ng84kub5Vw4j7RxyNjmNXeaaL9b24LaDqHQpmWgRZej6+vu54ZsCET/8z//c/zpn/4pPvShDyEQCPR6TM8Z4WZP4LubEh96s/R6vQLQ8qdbJrDDsVxXVBvh2yWm8+lwOIS1BlijwWYzLYKgpuNu58RSubJmfLfCOSWzkA6ZnXCMbBTHlDLWcN3JLHQtTJsHgOHhYezbtw8ejwenTp2SiPjExATcbjcqlYrU7YzFYmIs9bJsjXa+GQWfn59HvV5HJpNBPp/fUHMtRsSbzSZisRg8Hg9mZmYsNfN57VqthrNnzyKfz+P8+fM4ffo0CoWCRO53gui1znIErNdIhiPvSSt0pk+GQiFLrdXtMlT6ynzrpa+71xYClARzNSuYoBwbB7ndbmnqSwYzdV0wGBSGWjweh8PhEJ2kG4fq2tvUkU6nE8lkUsrC7KS01nZ7uXQUx68dCP5dO4KmaACR39EBB4fDYWH78Zmw/jfnmhlDLPEWjUYRCoWQy+VWzSILBoMYHh5GNBrF+Pg4Dh8+bLm/UChkaX6p9RwdVH7G0jCmg2oCuGRit9ttKfGjj2fwhGuAPS4YSKFNqEEen8+H4eFhCfgSaGbjTdZZZc1O1hYn0A5AmrHzWZHFp4ECXfffJC/oNHE2eOd5FhcXkcvlJDi/XkCb7PLFxaVGqw6HA8888wyi0SiGhobgdrsxPz+PbDaLSqWCU6dOYW5uDsViEVNTU6Lndoqu4FpmiRbWjCUQ1Gw2pfwR3yuyHFk6iSAYa7Fuh/R199ZLX3d3L9TVulEzhf0gCGjpLCcAQo7SBCm9H2o/lt/R2S8+nw9jY2OSGWqWBNXksK0E0zhmMqF5L/yXOkYHxe1qgpv+nhmUBWCZV8AKVusa67rkja4pvVoz6GAwiJGREcRiMellYo5J70/m/Op7tSuva5Z74fc5DzpYoOeD39drTY+DzzwYDEr2wuHDh0VvTk1Nif6krqNeZTP61Uq76MC7CVTbBUH03/gcdMlcli2i/l2vrmm325KRkclk0G63cerUKcRiMezZswder1dshVqthomJCeTzeczOzlrmYqfoCq5fXXaQmXnanuVzJoDOf5klx/Xe193PDdkQsjoxMYF3vvOdfUW+imgQWG/U3X6PGyedSrKlumFW8zzsuG3HmNtq0S+uHauK/2oQnUx6HRm1YzNxzuiE6uj0egBensfv90spk04Gw8DAAEKhEIaGhpBKpRCLxRAKhVaN9O40YYoXACQSCQwPD0stQIfDgVqthkqlIk54rVaTskRcT71aV1qxU9HkcjlcuHBB6u1uFMhut5fqqhYKBWn6WiwWMTg4CKfTaWEClEolPP3005iamsL09LQo852kOLj+mJIfDAYFyCEz0QTRdfokj6Wi78ulI33d3Z0QRHc6nWLoaweRfSNYUoKlNQh8EVwNBoNSgkJnUWnHXYPQGqCNRqNwuVzIZDLbORW2wpR2YNlB1gwbliQhI9oUBva1g6fZ4ZxLimZ76ZRkOnzlclnqz3N82Wy24/iZ6h+PxzEyMoKxsTELMEk9z3vRJTQ0MKAD96bTreeD4AGdU5fLhUgkAmBZ9zGI4HQ6LWnTen6YocDfWWqN+hEAyuWyAMssXwAsgQBmw3OCtARPdG1u/bnJUNP6kIw6NgPjWDKZTE8yuMhgY2kBv9+PvXv3IhqNYmBgQJqMFwoF/PKXv8T58+ct79VOEr4rbrdb9DazIYDl/j+cZzLYuL/4/X4JqnUiefTluSl93d2d6P1XB5+5p7PcFfd3gun8rs785r+dQC9+T9c+9/l8GBwchNfrxdTU1Irv0H432bibLbyO2TSbPzrzmvu+2QSaYmZB6MAupVPWltapBG4BSDkWzfC1EzZmZ3mvaDRq2e81RqJL8OnAr64Tzuvq8ZkgtJ4LBkH1nOhrco/X963nmfhEIBDAnj170Gw2kcvlpHwfA+DtdlvGRltyNTzDHK/OatIZFGaAgT8s9UnyGoNNGyVwtNtt6WXm8XgEP2C5XQDST6dQKOCxxx7DxMQE6vU6isXijmOha93NwDcJa3Y4EQDxD4gz1Ot1wVb68tyQDYHor33ta/GjH/0IBw8e7PV4nlPSi4gPlbfpuHQDDmvg2WRta+BZK43tiJBR8WlHTbOeAFgcuU7n0ArkYubdTBHXoueNYKTf77c0FNktolPYmPVAp44p8Vx7bIwBQKLLdP5Mtp4JzNqltwNWkEGX6mHEls1Du+0GvppwTS0sLCCfz0vfAYIgHEulUsHMzIww29Zad1stpvFqsiDsPtelEHTAarvXaj8ivvXS193dickgMut7er1eATapqwCIPuXeqUuPsTGguRfyeDquAASQ7NSYbLvYbHaiHTLeh/6b3dg0M0ozw3gOHYzmOcz9iw47a9LrIPtqNowmOJCwQHYeHWUNBpCdZdpJZBmRKMEsKc2+p6POOdBZieZ8mGwxE5wgU1kfByyvTzL0dfMv6laC8sViUTIoyPjXQRCdPq6vYTLWdI1hXoOfa6JDL9clgRKHwyGNwv1+P2q1mjjeDIJs9zuxmnBu2SdI9wbi2M310cmG2i7p6+6tl77u7k60X6P1Bf/VpQxNO1nvg2bTZL1H261ffs7yU/QfOo1Rj3Un6G/z/u3Aby1aP5mlYABYbCbze9rvpH6kDl3NL+Hz0z03tI+mQWuTmKDHpzPf+eztdKt5n3b+LefGBKbt5lgHr/W90N/WLPh2uy1ANrDkd7NZPQMNtGEAK25hkgxNHU3AnELbhT96/fdCtL7L5/O4cOECAoGAZGqQlEKbd6frB9M/0Jl9Gs/iO0WsQQdTdsLYN/r9vizLhkD03/zN38Rf/MVf4LHHHsMLX/jCFZG83/md3+nJ4Ha76E18PQuPx3JjY+RYM4S6OQeZVXTsgOWUYTb0CAQCwn7hBstU7a0UrchNp1x/3klBcbxURNy01it01NgAyxQqfqbjDg0NIZlMSimN7d4g1yNU4m63W+6lWq0iHA4L44kgDpvDuVwuZLNZSQGPRCLCAGTnbV0Xz3T+dJScDj9TtUulkoDcvDbX4sUGdrh+SqUSTp48iWeffVYYhGSicGy6oR/T73ea2IHp5mfm8ZrNuVPW6E6c2+eyXIq6226tr7XuqFOob83SG8xe0c0SySRut9soFovCjibIR4Zwq9VCJBJBMBi0OEpkIQNLbOJsNttRDzGluNVqSYmH7RITZNCf638Bq3NLQJT2CEHiZrMpPTqA5UZdOjOMbCAASKVSopeefvppaZS52jPWbKJarSaNU6kHdMNm1uHWf/f5fNIkloziSqUiTVbJcGMqrw7atlotAbBNR58lbMhAbrfblsah1IfU28By1gTB5UwmI8Eajl87sMy2Y2kX2oF0sk3SBZ+hw+GQYEOxWBSmuQ5G0DnfDL3Zai2VdnE6lxq7zs3NWXQ3A/Db+S50K5osEAgEJEOA869L+7AkzU6Tvu7eWrkUdTewUn+vte50YFMHGDW4q/1KXoN7LAk83LPpT3JP0+cy/eRWq4VMJoPZ2dmO763JRNdZXFstei410UhnXpnH6gAAdZtm4zIwaAYw9LX4jKhD8/m87N1r+e0+nw+xWAyRSETK7Zm2h87yI5Nas4O1buY5eH3NTtf3xM90/XUd9NaB5tXmWv/r9XoRCoWkVjjL4PHvbBTudDoxPz8Pp9MpzVtZjlXbkXyGdgx5lnkrFovIZrMrsitZPoUY0MUS17TQZiBYPjU1ZakPTr9bN2HdicJ3lbYrS+wwW1/jbATPGRSwCzhtl/R1d+9kQyD6rbfeCgB4//vfv+Jvmk3Vl41HfbRzpSOU6wG/dE0zHTWj08MUIT4vRtO202A3DQvz807zqSOwGwlc6POYDAQtmolOEJZM9J2wOa5XqHDNe3G5XBZlziCOw+EQh1yDILpsEYM8mqnJ8+j5JYhOhzKXy0kZl3q93nPDktfO5/OWe9d/57h3stixa9Y61u7/2w2k9yPiWy993d29cH3RaTIzbehw6gC3Zk/zczJztXMSCAQsDoyZcUa2kB0TnTqcZU+YqaPHvB2ymgNp7jtaz2vWIOeAekWLyXajHg6FQgKGEwRZzQG0Y6Jrm0fbHnyOdNT5OUtmmeX6mI4NQIAFXRqFZTnsiBC8b15XlxvQGQ7MAuP8aGY7gRvN5tLMfN4nyxnwHpiNxWM5bjtGFQDL+tRMrE49a3oh1N+8frFYlOel36XdIJwrYGnMDNJxznRPhvXa/Vshfd299dLX3d2J1idmBpk+xs6f1CAZ/RStnzv5phQS0kgIsqsnrvdLu14b2yH6HvTe3cnX1nNqknJWY9ua7F2SAWq1msV+Wk1YGoPlbe3WPXWWBjb1eDSgyWvSlgKWS8qY98TvmtfSAfbVnqM5r9TBmg2vsQtdk56Z4Cz1y2A8r8nv2gG1OjuOdigDFk6nU+qS62yyXu7RWt/V63UUCoWenXs7xATM7WxTwJqduVPwob7u7q1sCETfLYbqdgoNfm7KBB7XikTpNBrNDJ+ZmcHi4iLC4TASiYQ4YaaiInDeaDRQKBSQyWRQr9fh8XgQjUYxODiIgwcPwu/3Ix6PSz0xKv3Z2VmcPn1aakxu12anFRP/r/+1O54OdDabRbvdlsZNa21e3OgWFxdRrVZRKpWk/qZ5PSo9ljJhh/Dtrjl/MULAgvfi9XqlUZ6d2BmfBMQBoFQqrXh++nu61AEBDzZBM9MoN1P0PewWxaDnVO8PXq9XUv1ooGvDjuCKbii6k5q2bJXce++9+OhHP4rJyUm84AUvwPHjx/Frv/ZrHY9/+OGHcezYMTz66KMYHR3FX/7lX+K2226zHPOVr3wFd911F06dOoVDhw7hgx/8IG6++Wb5+3e/+1189KMfxSOPPILJyUk8+OCD+N3f/V3LOd7ylrfg7//+7y2fXXPNNfi3f/u3i79pJZei7tZOXzfrnXsUnQxzj9BOW6vVEjaTXeZNs9kUfdRutyXzResM/q711MLCAiqVigDwAER/s2E4a2rzPBcuXMDjjz8uztZOEjsWG/+lw8agA+0VsrKZ3USHWTsw7GNRqVSQy+Xkd7MWLmBlKPr9foRCIWGRE9xm1h57SnAP1bpQp+UCkICvZm9p9pEJwBAQ5xjtys/oADTHR1DG4XBYmpuZGXDdlCBjCZtWqyVZEMxcNPU+51oz98i6p4NIUEqXd1nrXVvPO7ma2H1fAzkbtSV0mZte6EkzoKKbqlWrVUujOoJxTqdTslF5LPeFS3Evv5TlUn3e6333uLcBy+9cJ2BxNZY7GyIyyMXSldQh3OfMvVs3AOYzi8fjGB0dlQymQCAg2SZOpxPnz5/HL37xC1QqlXXda6+lGyKRLm1CXVyr1aSOtdPp7KpuP3UPsYr5+XnR33bkNc47mdjBYNCSIbiefVr7otTxOku/k07hdTTBjHOl50zv5fp7ph2kfTX6vmsFw/T64v0Tw9E4Uyep1WordLcmH/SDcfZCW5TrneQLNimm6DVBJjrr3LMnzqW6lz8XZUMgel/WFh154+92Dk+n79EQIDB54cIFFAoFDA8PSxqT3TmazaakAGUyGUxOTsLpXOoEHQ6HcfToUbz61a9GPB6Xzta6hMVTTz2F733ve5ifn8fp06dRKpW27YVfz3WpiBhwqFarcDgciEQiq843v8s0JjbVyGaztiAjo+dsKkGDyGTN7SYhQ46ggt/vl87ZdvNmGg1cs2xKVigUpAwB07M0EKUNl07lerYK3F1rjen73ymAs65TXy6XBfShYd5qtaTUg07p575QLpcFaNpu9stWRsQfeOABvPvd78a9996Ll73sZfj0pz+Nm266CY899hj27du34vjTp0/jda97HW699VZ84QtfwA9+8APcfvvtGBwcxBve8AYAwIkTJ3DLLbfgAx/4AG6++WY8+OCDeNOb3oTvf//7uOaaawAsleZ48YtfjD/5kz+R79nJb/zGb+Bzn/uc/J81H/ty8bLetaKbSJHdY6buAhCQk4xR00BuNBqYnp5GPp9HLBbD2NiYsIgZ8GJJNe6HNLqLxaK8vw6HA8lkEr/yK7+CSCSCwcFBpFIpeDweJJNJ+P1+/OAHP8D58+d3JIhuit5X6TwSTAQgTTPpNBNEJttcO3/MXJqfnxcg3XxGBD/Y8yMUCkmTaX1+gsgej8fC8KJzqhnkOk1alwDjdyqVigQJCHhrJ51BemYbaN1IG4Nl94LBoJQ445rz+/1S35xrSbPJVxMNmLNcTLPZRLFYlOtoEgHXoJk9YYp+z7oF0bs5di3pBLpw/tcLDPBZb/T7dsIxeTwemf92e6nEXLFYtGQ36ICODi6R5LGVNpKd9NlsfdmJov1n7i92jf8Y4DT1ugY6qbtzuRxSqRT27t0rtbgJorNRIGAth0K7nOdKp9O49tprpcl4IpGA1+tFLBaDz+fDww8/jGeffXbbQXTACgLaidaD3BtZTo2EHh5H0fpCn5/zlMlkMDMzg0KhYAuGM5DudrsRCoUQj8cRCoVWlOPU3zPvQZMpKDoorwl3OjvfDPxr/WpHxNKl3Mya65oprkFZ/l2X0ukkXF8MDnEdZjIZwT30HJjnMte5zsrQ97FTZCf44DooT+IGcbVKpQK3222x7Ti/tKPodzML/lLyu5/rsmEQ/eGHH8bHPvYxPP7443A4HDhy5Aj+4i/+YlVW36UmGig002Qp5gamWbq6jAujXZVKRYB1M+LICJlmmtLJ8nq9UsOaSjyZTCIej0taUKPRQCKRsHy209JI1xLOFWvR6o7dds28NFOXP3RaVktN1wyHnVRjeqOi0wxXuycGEVhX1e/3WwxLl8slTCkdWddGjmbKbUSZrBaA6oVoI8eMMJvj19fkuiCgodNK9TnMFNGNzIEGeGh8ca3r2rtamevyEnwuzwVH3MyWYc8CU+655x689a1vxdve9jYAwPHjx/HNb34T9913Hz784Q+vOP5Tn/oU9u3bh+PHjwMAjhw5gh/96Ef42Mc+JmD48ePH8ZrXvAZ33nknAODOO+/Eww8/jOPHj+NLX/oSAOCmm27CTTfdtOb9eL1eDA8Pd3n3G5e+7l5b9P6kmcTmu8r3Wx+v1zWDXQTjdMqvbmTFf83mjMByM8pAIIBYLIZoNIpoNIpQKASv1yusrEgkIrXE+a7vFuH9NxoNuFwuKYvC/Yz1ak3wlt8h4cBuP9UOkHaIWSaF+o4sb3PP1udYS99rx9jOKdXX0mvFBNF5D53Grsei6//qUkN2wnsjSO9yuWS/JNOca3MzWWkmsaGXekgHTfTcmeCBnWj7hyw/rVv1eNc7N+b39XvPOeecUKdrEL3Xzd4uRvqO+PZIX3evLXY2NrAM6tq9P/p4vW9Td1Mnc+9m0Jz6htfRgVQAsocEg0HEYjHE43HR4cwOZ2ZZOByWYKzOpNpqWc+7qX0iXe6Te5cdI1qX+9L7ml35G4rWfaaPau7xq313NdG62+5v+hp2hC9+z668jT6H/p16Spf/6DT/PK/X67VkNJLA53a7BbfQpYg2Y6/tVRaZeU5zfvScr1ayUNttem3o918Huy7G99W6m+u20/qj7jb3he2Uvu7urWwIRP/CF76AP/mTP8Hv/d7v4Z3vfCfa7TZ++MMf4td//ddx//334w/+4A96Pc5dKRpsKxaLqNVqlrQw7YBTsZDRy1QROonz8/PCEmo0GvB4PMIaBpaZc6VSCZlMBo1GA3Nzc1hYWEAwGMRll12GkZERHDlyBIcOHUI0GpXGWu32Upo5DflarYZsNotarYbz58/LRrATNoC1pFqtYnJyUtg+zWZTGpGwDi0VO+t61ut1TE5OIpfLoVAoSGmbTps1nW9dV3U3g+ha8egfDSbw93A4jIMHDyIajWJ4eBj79+8XhoDb7UatVsPs7CxKpRImJyfxxBNPCAuazCs7ALqbMepxmin1WjFuFJgmAB6LxaS0DRunapbo/Pw8yuWyvKtkMTBYNTY2hkQiIeuOwASwXN6B7LPz588L+NNtQzTNlMnlcpYUMZfLhUAgIExKnrNYLMr+USgUpPTAcyEivnfvXsvn73vf+3D33XdbPms0GnjkkUfwnve8x/L5jTfeiB/+8Ie25z9x4gRuvPFGy2evfe1r8dnPflaCkydOnMAdd9yx4hgC7+uR73znO0in04jFYrjhhhvwwQ9+EOl0et3nWU36urs70aBuNpuV+ssAxCn2+/1SAozvL/Uk08kZ2CYQTOBS71/UH6VSSTKg8vk82u02AoEA9u3bh1gshsOHD+PKK69EKBQSvbW4uCjB9WAwiFe84hXI5/N4/PHH8dRTT6HValkcil4ELTWja7X31+4Yu+P5Wa1WQyaTkSZjbMzK5k2aXVytViWlmVk13AdN0TUqmbLMeeHnZNPFYjG0221L8NTv98tnZJQzaMygMhmIwHKZrVqtBofDIY07dQCa2UBm0MUs6cO1xOZn/KHOHRgYQDwel6w5lqexqwvvdrsRiUTg9XoxODiI8fFxcciZeTY/P49arYaZmRmcPn1aMsp6DabredO672Kcfh3A9vv9iEajwuoGluYzm812ZHu6XC4kEgmxi2OxGFwuF0qlkrC/uaYrlQrm5ubWBXYRlNOkAgCSAUmAToMF3D9ITNgJTFWg74hvh/R1d3fCtUl2bj6ft/gPtO2p32nXa3+bDF8SsXSDcZbXIgjcbrelnJguJxoMBnH48GEkEgkcPnwYR48eRTgctgDPbIKdSCTwG7/xG8jlcvj5z3+ORx991LLnbjTg2Ol73epmOzEJAADkvslQp30cCoUkkEDdRt2uSUDFYnFV/4fzZZILOWbtl9PO0Yx5jbdQb/Jzrg0dzNQBdeoU/quztMy9nOfksXr8+hjOWzweFx3FviR2z8Hj8UjWwujoKC677DKxJd1uN+r1umTgT05O4umnnxYbtNeiG5kzYAIs++gb0Q20qXWPFs4jgwNzc3Mol8uWdUfbzu12i98eCoUwPDwMj8eDbDaLXC4HYDkIUSwWMTExsa7efyaBhrZAtVpFsViUzBTzeNoOCwsLKJVK65qTzZK+7u6tbAhE/+AHP4i//du/tYAH73rXu3DPPffgAx/4QF+Z//+io9vc5Kl8ueFz06HDxHpVOv2HbBS+tOVyGR6Px1LTnJGufD6P6elpS30rt9uNvXv34nnPex4OHTqEsbExhMNhW8YVx10oFPDEE0/A5/MBQM8BNzvHvBdSr9cxNzdniUr6/X4L+EoFWqlUUCwWUa1Wcf78eZk3BjFWE83a7jSPu0k0s97unvj3QCCA8fFxjI2NYe/evXj+859vaUZaq9UwOTmJUqmExx9/HJOTkwAgQNLFjE8zxMwmf2Yt9Y2C9C6XS+oNRyIRUcaM8BMYcTqdqFarYnjz3Q6FQjhw4ADGxsYQjUYxNjYmgSoa5efOncP8/DwmJyeRzWY3HBWn8akBH5fLJTVuuYcASyB6Pp+XJq529f53q5w7d07qQwOwZaHPzc1hcXERQ0NDls+HhoYwNTVle96pqSnb45vNJubm5jAyMtLxmE7n7CQ33XQTfv/3fx/j4+M4ffo07rrrLrzqVa/CI488Yns/G5W+7u5eGITSDQz1HhQIBNBuL5VKIthIp5q6kiAoHXGCr9QvZBO5XC5kMhlcuHDBAsx5PB7s2bMHo6OjOHz4MJ73vOchEAjg3LlzmJiYEGeWmUG/8iu/Io3Nnn76abTbbYsDu1Edrp1uUy90CjZ3+hvPYwpBTofDIVlhDMwSNA6HwxgYGECxWEQul7OUJaENZI6D96+ZbyaI3m63pVY6wUw6h3QYdRBEn5fPVDOH6cw7HEulVzSI7nA4RB/quqTAMoiuHXSy87mO9DN3uVyIRCISzKEu5vf0PA8MDCAcDiMUCmHfvn148YtfLCXAnM6l2tuzs7PS5G1qamoFm7NXQta76XhfrI1JUoPf75cANq9HMLoTED0wMCCZmuFwGMPDw3C73chms5ibm5O173Q6pXTQehmjulEcsNwTgGWMyuUy6vW6hU3HHj0bDYL15bkhfd3dnXDPW1hYkPIJOmDNnmLU7ySOsXya1pd8v7k/695RvFartVRSzNTdPp8P+/fvx759+7B//34cOHAAfr8fuVwO+XwerVZL9qJwOIxrrrkGtVpNfG+7jCrzHtcSu+9ofbMRH8BuH6KdxL2cJcySySRCoZAF0C4Wi+L3UJeRiNBJqA+dTqetv8Rna96r9hOptzX2on+o5zT5UQdmGUDXGUTm8QBWsNlNf1Sfm1mEhUJByFp2z4QB/kgkgsOHD+O6665DMBiUZ0EQvVKpwOPx4OzZs5sGotPXpU1FfXYx64o4De2XUCgkYLrH4xFczNTdtIG8Xq9keQwODuL5z38+AoEAJiYmMDExgcXFRXl+U1NTmJmZWReIznvSz552qhkA51oFlrKkc7lcX28/h2VD7WKfeeYZ/PZv//aKz3/nd34Hp0+fvuhBmTIxMYH/9J/+E5LJJAKBAK688ko88sgj8vd2u427774bo6Oj8Pv9eMUrXoFHH3205+O4GOGGy/qautEf2eU65UOn8+qIHJ0EbmBmdBZY3lg0KMpGVLoJmh3wy2N1nc2NgsTcbP1+PyKRCOLxOJLJJIaGhiw/6XQaqVQKyWRSGOPcTDdyXc1EIHiYyWQwPT2N6elpTE1NYWpqCrOzs8hkMpifnxc2W7ddqbVi3KyUqa0WrSC00mf03u/3S0mBRCIhSp2OOevuR6NRxGIxS/riRksD6fXPhqdMP+/0o9+TboUASSAQkLXKFEuWSgiHw4hEInJfkUhEauMnEgmMjY1hbGxM1rLO9uAP5y+VSmFoaAijo6MYGxsT1tt65kgzWthgVDfGZRScbBfuMTtlvep3aKM/ACTgwZ/VQOfVWLXdHm9+vt5z2sktt9yC3/zN38QVV1yB3/7t38Y//dM/4amnnsLXv/71dZ1nLenr7o2L3u91FpMGZlcL3vE9ZUNHfkZbwC7bi04cwUAG0cmc1llQ1N0MMppj3sg7z/RhlonhPs8fsqzJZjZti43qb9pJBD7L5TJKpRLy+bzUPWcQUzdetDuXJjPoNFzuh7qUmy69Z5btMplk+ns6hd28LutZ63qn5rMwWYK04fjczZJodo48bUGzMTcBWb/fj1QqhdHRUaRSKakJrxuUBgIBBINB0eVr7aerCW1HZmhp3Wz3GT/n/7tdO7QPfD4f4vE4hoaGBLxhEzoGxqPRqNTT5TqNRCIYGxvDnj17kE6nxWbR+j6VSiGVSmFwcBDJZBKDg4NIp9NIp9MIhULrWucm2MCMNvYs0RkHDM7tFJ1N6ZXu7kv30tfdGxdTd5v7tvb7zPWps8V1mUrqEK3/tVB304/WmWp6DwCWg4os3Wb3fqz33SEwSbuYZeDoy/BH9/UyG5yvV6hb2b+hUCiIzs5ms5LVVy6XhXxAHb4a0KifH3UeSUKm/WWK3d5s2gV2BCw+89X0tr6GHbGO5zDHbedn2wl1m9/vx+DgoOhu2ltan9I+i0ajSCaTSKVSXTV4XU2oV/UP/XCuV9qc/Gw9mfnat9elhmmb6HVLTCEYDMo1QqEQRkZGMDQ0JD3+IpGIEBsCgYB8l2s/Ho+L7iYpY6N2KrMS6HvrUsrU3TtN122H7r733ntx4MAB+Hw+XHXVVfje97636vEPP/wwrrrqKvh8Phw8eBCf+tSnVhzzla98BUePHoXX68XRo0fx4IMPWv7+4Q9/GC996UsRDoeRTqfxu7/7u3jyySdXzMXF6rANMdH37t2Lf/mXf8Hhw4ctn//Lv/zLitT6i5VsNouXvexleOUrX4l/+qd/QjqdxqlTpxCLxeSYv/3bv8U999yD+++/H8973vPwX//rf8VrXvMaPPnkkwiHwz0dz0aEjhQAeemAlY039MbebrctJTb8fr9sNvydkTC9UbMRFZlJZKUSCCTTqtOmQWZco9GQDZMM3G6FBgKdMY/Hg1QqJd209SYIQM5PZyKTyUjZCd1opNuXl/ORy+VQrVbhdC51Pycor9nLNGoIMvIZrHVunb6/3bWlL1ZMA1HXVCMgSENs7969OHLkCA4cOIDBwUFptkPji+WDuC7n5+cxPz8vLLf1zJNmxxOs0cxNbYhqw5YBETaKWysKzLXKOsOHDx/G0NDQinIuNMCDwSBKpRJmZ2fFyHrhC1+IF73oRQgGg9L8V6elUVqtFmKxmLBkRkdHUS6X8bOf/QyPPPLIumqn0WBlihpZ8gTXtNLTLNnNqnO7XrlYZ3o9302lUsJC0DIzM7OCSU4ZHh62Pd7lciGZTK56TKdzdisjIyMYHx/HyZMnL+o8pvR198UJ98RCoYBKpSLvVicjU+9RfOepo5mhUigUhA1nvvdOpxM+nw/BYBDNZhMTExPScDYYDFp0v27GqZvSXsz7zhIXJptMO7W8/1qtJtkuOt16NUZ6J6ED4nA4UCgUxCml3cC93g5QNsUskdFuLzHfOFYygZkl6Ha7ZV71v/oe6vW6sKLoyAKw2BYaGKjX6/JMmLZtsrB1thzLBvDvuleLriHLc7NkGn+07qajm0wm8dKXvhT79u1DNBpFOp3GwMAA8vm8pCTrlPJyuYxisYgzZ85IGnW3whRrXT6h3W6LfvP7/ZINSYYZ5wCAJSNwretyrsLhMI4ePYrh4WFLFhad/0ajgWg0inw+j2w2i2eeeQaNRgOHDx/GS17yEgnQ085mORgCbsDy+1wsFjE6OopKpYKTJ0/iqaeesuwDq80LmYpckywNBywHS3QQai0AZztkK3V3X5akr7svTqgjGIAFVvrdpuiyHNy7dLYQM765f2mh7maQjTY6S7Dpd4j7Cv/G81+MeDwejIyMyDPT2WjcGzmGSqUipeQIAG5UmBnmdDqRzWYtrG8AFt3Ne1wr20nbWbrRMuedYG+nJqMa79Bgu+kj8V/dm4Tlc4kf2Nl3xBW0/+VwWMud8Hy6nJ9dgF+vCWIww8PD+A//4T9g//79AjYPDAxIIEg3pOY9MKPhmWeeWfda4v0wmM7xA8u6HVhaYyx3x78zE7Kba1LnhsNhHD58WHpC0Xbx+/2CJ/h8PmSzWWQyGdHd4+PjeMlLXiJZ4LSBmfnH8pjAMpmA4HmlUsHp06dx6tSpjoGwtYQ9DLQdp+dqJ2JDW627H3jgAbz73e/Gvffei5e97GX49Kc/jZtuugmPPfYY9u3bt+L406dP43Wvex1uvfVWfOELX8APfvAD3H777RgcHJReZCdOnMAtt9yCD3zgA7j55pvx4IMP4k1vehO+//3v45prrgGwBMS//e1vx0tf+lI0m0389V//NW688UY89thjCAaDAHqjwzYEov/5n/853vnOd+KnP/0prrvuOjgcDnz/+9/H/fffj//+3//7Rk7ZUT7ykY9g7969+NznPief7d+/X35vt9s4fvw4/vqv/xq/93u/BwD4+7//ewwNDeGLX/wi/vN//s89Hc9GRad36/QXSqeFqWs+cSPXwJyuJUnjm84LlY2Ocq/F8GEUVTPZNxKp4zh8Ph/8fr8wexlx1ONYXFyUNFbWbabzwvvcCBCgG7TYpUxvND3WdNx3GktoI6LvRQMgwPKzZFCEGQVkY+u0bBoijUZDjqMyXK9QkXP9M4WMUe9OILoGV7pdt2TaswFQMpmUgI9pNDebTSnxQgWfSqWwf/9+BAIBxOPxVe+Xf2OZoXK5jHPnzsHlcglw1K1oMIslnzQTVBupO22NbqUy93g8uOqqq/DQQw/h5ptvls8feughvP71r7f9zrXXXouvfe1rls++9a1v4eqrrxYj8tprr8VDDz1kSbH+1re+heuuu249t7JCMpkMzp07h5GRkYs6jyl93X3xoh25bkSnC7PeKvui6Mw0uz4cOv2YwCYD3KzrqrPWGPAz63FuVBi0DAQClqCgzpjjfutwOCxggmZlr1d62dTS3GfoZLJMis54I0histJMx5tZBfzdrI+uwXcNpjebTXmWJogOWMsOcFzUOXrONehg6j6T/UR7LhAIIJ1OY8+ePQgEAuIkkO0PQID+cDiMWCxmG3jsRrTupqPNOTAzJliKh38jE1MDyWsB07QPUqkURkZGUK/XpSwi2fUENNgvh/ZtNBrF+Pi49BFpt9vweDwIhUJSwo7vOm1hAgflchkzMzOW92218ZolBLgWL6bU3XZIH0Tfeunr7ouXbnW33p+1n8r3lXqW4JudrtIZRcByaRj+zbyWLiPTCxkYGBB/DYDFlzZxA/oh1FsbCXxTeqm7tehAOf9dWFiQ+eV9rLU3meC9qeP1D+/FtAm0mCC6fo48h75us9mUQL2+Hzuh/gwGgxgaGsLevXsFVwFgGR/tilgshnQ6DZ/Ph3Pnzq37Wep1T93NueKYOOc8Xs/fenxYYlPsQZJKpSzrk1kS7BtCe0jr7rGxMclqMwM2LpdLAFNtkzBzO5PJYGBgQNb8euVS1t2FQsHyOZ+BKffccw/e+ta34m1vexsA4Pjx4/jmN7+J++67Dx/+8IdXHP+pT30K+/btk75iR44cwY9+9CN87GMfExD9+PHjeM1rXoM777wTAHDnnXfi4YcfxvHjx/GlL30JAPDP//zPlvN+7nOfQzqdxiOPPILrr7++ZzpsQyD6f/kv/wXDw8P4b//tv+Ef/uEf5EYfeOCBjoDERuUf//Ef8drXvha///u/j4cffhhjY2O4/fbbceuttwJYilpMTU1ZGsB5vV7ccMMN+OEPf2g7EZpZAqxcDFslqwHnOgrJGlF0FAi+cUMAlhX8wsKCsMeZSub1elEsFjE9PY1AIIBqtWppIMmxMCLNZiz5fN5S93k14cbFchUejweJRAKpVErqtzNljAACN61WqyWOjW6MReB9YWEBmUxGnKKNKGg91xfj3BM0YKo565Duto1UC9cNn7VOPafockI67dB0CrXhyPW63vRsiq5/zhQyXZcWWDYMddYGwWQAlgZ/qzm2DBIEg0HLtfSYeW80LBKJBA4ePIhms4mRkRFpgNetIcwav263W1L12LBso01I7KLhfYd1SY4dO4Y3v/nNuPrqq3HttdfiM5/5DM6ePYvbbrsNwJIinpiYwOc//3kAwG233YZPfOITOHbsGG699VacOHECn/3sZ0VJA0s1Sa+//np85CMfwetf/3p89atfxbe//W18//vfl2NYn5py+vRp/PSnP0UikcC+fftQKpVw99134w1veANGRkbw7LPP4q/+6q+QSqUsgH8v5Lmsu7sJSm+VcA/hfqHLrxGEIwhOB41p0CwVQpC3UqlIzUzqT5aq4N7dai3VV52cnES5XJZasOsRBhLJlGejJzZs4t4LLGdxAcvzvrCwgHQ6LSwo3YOhmyyvrRSdpqzT2Rns0MCu3kf1+Ml604C8DvqyiRwJCTrdmXYZAysE7/l3bZcRLOCYyMJjdiBTiLl2zLXPMeryA8xa4v1yLNT7ZESaDdK6FTMQz/uh3aDZeJwbOyBDz383Ypcl6Ha7ZY45Jp/Ph6GhISwsLCASich7xFRsvptk95k258LCgtixZEDyPV5tjWvbc7v3qL7sLunr7s0Xh8Nh0d0amON+RSIbAAFDScBhVnO1WoXD4UA+n8fU1BQcDgeGhoYshDbeK4Nxs7OzUrZsvXPAHi0MlgYCAQkqMvOb/owufUYcgVm4zJbTzRCpV3aC7iZRwCxPqwPXdhiBDoroz+wCIFwD/J36XOtu9h0BlvEarf/X0l28JvUNG0ebx1P3a+a+rmxAopi+F10ObCNMaHPsOkig7xeA9BbQc9+tvaDn1iy9yrk1s7AYGNqzZw+azSbS6bSse+p9bV/oc/F8TqcT8XhcSIHdlivu+9NWMbOf3ve+9+Huu++2fNZoNPDII4/gPe95j+XzG2+8ET/84Q9tz3vixAmLXgGA1772tfjsZz8rDYtPnDhhIa7xGALvdkKfKJFIANiYDrOTDYHoAHDzzTf33MG3k2eeeQb33Xcfjh07hr/6q7/Cv//7v+Od73wnvF4v/uiP/khYMnbN3c6cOWN7zg9/+MP4m7/5m00f+0ZEp/SynqPb7RYWNx1dDaJrx4PgbqvVEifR7/cjk8kAWEptLZVKkmbLDZ8bIDsXz8/PY3Z2VpTpWiAxxxyLxXDZZZdJWYuhoSHLRmkqMoreiPfu3YvFxUXMz88jk8lIk0qTZbxe6cUmSIADWGpMWiqVhJW8W6XdbksKlllrtt1uW2qOmrXRNJAOLBs5ACStKhgMWsqvdDv/uowRjVQNRgDW9HndH0DXENZ/7yQs3RKJRBAMBuUd08aDHhMZaqlUCg6HA2NjY0gkEuvK2mCgqdlsYu/evTh8+DAKhYI8i43KTjB2u5GtZrPdcsstyGQyeP/734/JyUlcccUV+MY3voHx8XEAwOTkJM6ePSvHHzhwAN/4xjdwxx134JOf/CRGR0fx8Y9/XKLhAHDdddfhy1/+Mt773vfirrvuwqFDh/DAAw9IShkA/OhHP8IrX/lK+f+xY8cAAH/8x3+M+++/HwMDA/jFL36Bz3/+88jlchgZGcErX/lKPPDAA5uSFv1c1N0ma2w7My+ou5lx5fP54PF4RDcDkD0GgDB+CaI3m03kcjkUi0W43W5xsHkeNk2MRqOWez19+jSeeeYZZLNZzM7Ornsf8Hq9SCQS8Pl8GBkZwdjYmKW+J+tuOhwOAW4ByLjoFLVaLZw/fx5nz55FtVrF5OTkhsqybaYw/ZeMawKpBEzZMAqABFRpf9Dho+PGYDrtM83g0sw0HVBh6RjqJJbio27jnNOJZrk7/st1AUBKuLBUgBbNmieATkC5Xq+LvibbmmA82ZYcy3qFjj6DRwwMEGjWAWoCEu12e0UN8G7WCu1BHdDgvXBe+X7xvH6/X1KJ4/G4fHd+fh7lchl+v19YjpopaDLVCVhxfaz1zu0UMOpipc9E3x7p6+7NFRLBwuGw+B2adUvRGdvcH7lfs9eWw+HA7OyslNs4fPiwBKipR3mfpVIJ58+fl7rh671/BgX9fr/43Xrfph3idDpFFzAASFY996+5uTnMzs6iWq3i3Llz0gTULlNuO8QMFPAZcN1oJrPOPtdrjPsXCWO0XagPqfe0PqbO0nPFZ651O6XTPq/HSZ87n8/bzq/W3brcjD63JjGQDEcffqPkPhNAN3vv2NkELGvSCeOxE23zaEY77Rjt09OGisViUiJpz5494iPlcjnUajWxU/XcAMu61+12I51Oo9VqIRqNdm3f7BTb9WKlV7r73LlziEQi8rkdC31ubg6Li4u2eqJThuPU1JTt8c1mE3NzcxgZGel4TKdzttttHDt2DC9/+ctxxRVXyHX4PfM8nXSYnWwIRP/TP/1T3HDDDfjjP/5jy+eFQgHvfve78Xd/93cbOa2ttFotXH311fjQhz4EAHjJS16CRx99FPfddx/+6I/+SI4zX1pGHu3kzjvvFCCD4+51TbmNik45sWP/6k1dNxjVhgc3Id0clNFORrp1BFGz2XTzLjplaxn9VDBU1IzwUdGtpyQMx9VqtaRUBmCta7kWYK0VZa+lk8PG+d9IStB2i8l2s2vSoteKTik3N2R9jKkQ1ysagNCAtm5epxU7nXVd0qAbpa4j7eZ5Ox2rGSksebDepjw0ToDlgAMZjZeCbIcjfvvtt+P222+3/dv999+/4rMbbrgBP/7xj1c95xvf+Ea88Y1v7Pj3V7ziFauO1e/345vf/Oaq1+iV9HX35gv3EupEgrDMuCKIqJ02/ss9jN+h7iZoXavVpNQZ9SD360qlgmKxiGKxuK6gLvczOqcs30KnW7OAdJM0jt+0SYBlfU3A0e12W5jA2y26GafWGTr1ei3Rc8Pv8BymzrIrsWWXxdWtrtLXM1nfnb7H+15YWJDnZLLCtYOse8ZsRPT+rvU0/9WBd51SvR4nXIseZyc2HedL62zqcE3k0IxGbc9wfWjwjPa5/t5zXfog+tZLX3dvrmg/gLpb94nQYoLo/B79bpLGdMZyuVy2sJqBZWCP2WaFQkH6SXUjvDaDtmzyTRDR1HEALAFNft5ut0UH+v1+CfBrgHOnNElkgJaluUzdqvf+ToQ9fazd8ab+Ns/TSWcTCNbzRIDfHAMBcWIIa80tMQeTjKj/5fUZLN+I723el75/cy64hnQ5lI1iIHaBDjtdqkmZOggEYAUmoedUB7D5DjCjQduDz3Xple4m6bAbWY+e6HS8+fl6zvlnf/Zn+PnPf27JEN/o2EzZEFpz//3344EHHsAjjzyC48ePizFZrVbx93//9z1V5iMjIzh69KjlsyNHjuArX/kKAEgjgqmpKUv92NWau3Wq3bMThI6sy+VCOByWmtMsFcEmSjqFSBv3ZClxU+OGOzc3Jw0eW60WQqGQ1LUmA71er+PcuXP46U9/inw+j2effdYWUDXF4/FgbGxMuuDu3btXGMjrraeuN2vWow6FQqjVakgmk8hmszh9+rSleRaAFcAqI8S9bsrE9Ot2e6khHJtllkolSSUyU5N2qlBJLSwsoFAoYGZmRkqJsDkM545lfoLBIObm5hCNRtFut6VZLI0Onqter2Nubg4XLlzA/Pw8isXiuhgmZjCJP2adfruACb9DRUnlqR14Gjb6valWq5L6TaDBBMX5/JnyzUwRNoHbiDgcS+Ud0um0pPlfCtJ3xLdenqu62zSat2NtUN9qsFnrJILT1NsEYc3SWcCSTiXDplAooFQqoVwuY35+Hj6fD+l0GslkEouLiygUClhYWMDU1BSeeuoplMvlrtlszEhzuVxIpVIYHx8X+4NZPJqNRPYVmU68B6a164Dy8PCwsJ3D4TBKpRJmZmYstWE3Uzg2cx7a7Tay2SyefPJJKVWTSCQsgV+yyjVQrRmHDKASNKXOZ8kCXXZPO6O0ETRAzfPxHLxWu922sAVpu7GUCBncJkivxeFYSk1ntkClUkEul7M0vONceb1exONxYVM+++yzyOVyG2JGcp6BZRYkAFnrdqCEBnd0Sba1xHSO6RRzPllisFarYXZ2FsViUWrMer1eDA4OSrNv2sGcM9oDvI62J/l8YrEYDh06hHK5jImJCWSz2XXP1W6Tvu7eeunr7s0T+hQE6HTpNJZu0b6lJqHpLBWHwyE1mIEldm42m8XJkydRLBYtTHFmnNVqNUxNTeHkyZPSY6GbORgYGEAkEpGyLQcOHEAgELCA/prwxFrV1FnMqtalQYCl55ROpyUrKBQKoVgsYmpq6qIajq5HOhHh2u025ubm8NhjjyEajeLQoUMYHh5eAeza6RczcMs5sDtWB1R1vw5gufmz3gM5v2YAnUEIzrX+Xru9lAFeLBZRLpdtWeMEeoGlZr+Tk5MIh8OS9czxal93YmICU1NTyOVy68po5pj1O8D1bwYC+H+NMfHv6yGSMSPO7/dLSVWSRfR7Rb+b5XOJh+lSLhof4Pcoeq3TvnM6nUgmk7jiiitQLBZx6tQpzM7Odj12YHld8Rq7Qa9tpe5OpVIYGFjZV2c1PTE8PGx7vMvlQjKZXPUYu3O+4x3vwD/+4z/iu9/9Lvbs2WO5DrA+HWYnG6Y8fv3rX8ett96Kxx9/HP/wD/8gzSt6LS972cvw5JNPWj576qmnJAX/wIEDGB4exkMPPYSXvOQlAJYU18MPP4yPfOQjmzKmzRRG13SjQ9ZE54ZMwE6zYXRNdEYGqdSpyGu1GsrlMiqVCvx+P8bGxjA8PIxms4lMJoNqtYozZ87gJz/5CUqlEiqVypqROSqKwcFBDA8PIx6PY3h4WMa4EWCR32PdWG58iUQCExMTmJycFGWugwXczLVysWMnXYxooIBgxcDAUpdsznknh3anCY0E1q2dn58Xo04r/FZrqc6f0+lELpdDLpfD/Pw8PB4ParWasBjIvCiXy6hWq1JWYH5+3rZ7fScxGWrmj2Z/UDSTjOtfs9g1mMHva9YY0/K9Xq+w8c1nqOeDIDoZmxcDfDscDmlI2m63LxkQvS/bI89V3b3dBqwO+tGY1/sO65ZqJ63ZbKJSqaBer4vzQuCTJSiKxaLo8PPnz8PlcmFoaAiDg4NoNBrSL6RQKGB6enpdadcEaX0+HxKJBEZHRxEMBlEsFqVmrWZk0dGjo8N7JMO5VCqh1WohEolIqarFxUUBghnI32zRgIedc5PP53HmzBkUCgUcPHhQ7oP7OxtfMoCsG5QDy+xjDbA3m02Uy+UVbGU9Fg2U64as2pYznRyOxe12i32nsxtWc1oJ0DNQUqvVUCgU0G63EQgELAwflhrgXExOTmJubk7K9mxUOFe8Nzu7kE65ZkV2K5op7nQ6LRmYACTYzWdUKpUQDAYRj8cRDoelQXq9XhfbW9fc5XtqPh/eSzQaxd69e1EsFqUcQ1/6shnS192bI9yDTV+De6/W5ST00A8wWawEBHU/kEKhgGeffRYulwsHDx7Evn37UK/Xcf78edk3JiYm1sVCZ33oYDCIwcFBjI2NIRAIiG7W5DrqG+rqThlX1BehUEjIRNQdc3NzWwKim/pBj7HdbiOXy+Hpp59GIpGQcrFmYNNkptsxx6nvaY+Z2Vz8zCyd0ikDm7aR2e+Ddpwuw0KdxbJx1WrVlnXNTAhgyWaZmZkBsFTXWQcGaF/y3HNzc2IXrscW5POnvaZ9Wz0/nGcdhNAkg27wDx2kYLNV3YBcP1OSBxqNhuBizLqgTaUxIP18tM/OMka0o2KxGA4fPoxcLoeZmZmLAtF7SdZ8rojH48FVV12Fhx56yFKG7KGHHurYx+Paa6/F1772Nctn3/rWt3D11VeLHXnttdfioYcestRF/9a3voXrrrtO/t9ut/GOd7wDDz74IL7zne/gwIEDlnP2SodtGEQ/evQo/u3f/g1veMMb8NKXvhRf+9rXpGB7L+WOO+7Addddhw996EN405vehH//93/HZz7zGXzmM58BsLSI3/3ud+NDH/oQLrvsMlx22WX40Ic+hEAggD/4gz/o+Xg2S7jpmMxbrdj1Z1Tqmh3GzUKnh5usOEa/y+UynE6ngL+sxTw/Py/1sNcC0DkWr9drKeGyVkmM9c4LWVKLi4uSasYNUdf1NNl/wHIkfiNp5J2YXdws2THa5/OhWq0KEKLrfe5koQKr1+tSCqBSqVgY6PrYhYUFaXzJdMFQKCR16VhmYGZmRo7L5XLCTN+IaAfZ/B1YyVjQzBA61NrAoGGjgR8AwvTjXLDWPWAF6AkUsa8AO4X3Kg1Mj/+5Ln022/ZIX3dvjlBXmUwYrcdNx8fpdMo+w/RwYJn1qs+p2TSFQkH0OXU32TvdvBc6oMisMTokOogJwPKZ3uc4Nq1jKdoB0s4Y58FunDrDSO/nG9XdGlzWjhnvQzfRZuCUTGkdiOf3te7X5cz0M2JDSuodPR/6PGuVQuMYtR3HUgH8Dh3zQqGATCaDXC63ooyPdlSpk1k+YHFxUTIe+D2ee35+XpiIGmhYz/zTbrUTfS7zORFsMMsWdhK+Twx45HI5acyryxwxWKUbww8MDEg9eK5fzSzr9D6ZrFQTuF+vdGJe7lTp6+7tkb7u3hzR/rQGA82sV+posr25jvUeBKwsZUXdsrCwIJlA1OMkHXWr5zgO1n6ORCJCWjPfS5NBbPoWdmVqNHjMMjEEVU3dbWcv8Hc7ELobMdm9gHW/aDabqNVq4qvqQAG/T73TzZxqrMKOmW7qaK0XOp3btAv0NfTvJOIVCgVbJjp91Gq1irm5OZlTZnWwNJCe6/n5eVSr1XWXc9Frd7W5Wu2eNYEAgOhF/l1fQ5MHWq0W8vm89BDQPc7ol7MkktfrFdtHZ1WsVsoFQFe2xEZlNwHoW627jx07hje/+c24+uqrce211+Izn/kMzp49i9tuuw3AUpmviYkJfP7znwcA3HbbbfjEJz6BY8eO4dZbb8WJEyfw2c9+Fl/60pfknO9617tw/fXX4yMf+Qhe//rX46tf/Sq+/e1vW8q1vP3tb8cXv/hFfPWrX0U4HBbmejQalX5FvdBhGwLRuQEkk0l8+9vfxm233YZf/dVfxcc+9rGNnG5VeelLX4oHH3wQd955J97//vfjwIEDOH78OP7wD/9QjvnLv/xLVKtV3H777chms7jmmmvwrW99a1Oasm2W6Cig3+8X1hqj2vyMDBm9IejNQzPDqEDIsGm1WpJSzRRkpsKYDbXWUn5kiodCIUSjUYyOjmLPnj2WGmq9koGBAYTDYQQCATSbTYyOjiIUCmF+fh7z8/PC5KUhoVOraZzo9KDVxC5irUVv0Cx5UyqVMDU1hbGxMctz2ulSr9elgd3ExASeeeYZZDIZcbD1vVIpt9tt/OhHP8KpU6ewZ88ezM3NyT273W5pRlMsFnHmzBk8+uijKJfLKBaLXW++GnAgo1yzJ+xqp/JYrluyLrgHhEIh6cTN94apZHwvWEv4/PnzqFarCAQCSCaTwippt5fS786fP49cLoehoSExYllyaSNCw2yt5qfPNek74lsvfd29eUJAnEE3BlXJnNFONfUVgUzNzuZ+S13GOpism9pqLZVfu3DhggT21rt/ENgPBoMYGxtDKpWS8mu0IxgMJvhN55V6lM1EtX6l48jPgKUmqj6fD81mE8Fg0MIK4rzR9tFjoFNWLpdXHLsWuElWP7DsSGugv16vo1AoYGBgAPl8XvZ+nX3HurC6UZldKRLOl9/vRzQaxcDAgLCmdOCXDijnjLpKgza8DueQa4ogBrBUEoV2WrlcxtNPP41f/vKX0u/GHBsD/NTDbrcbsVgMg4OD8Pl8Ul6gXq9jdnZWypIwK43zqe+lm/XFVGsy+s0AAe+V90dgm7WDI5GIzKuufWsyB6vVKiqVCprNJs6dO4dcLicgE1lnvBc2qne5XJiYmIDf75fgBO9N1/3nWO2EQQI2qdXBl/UIbRJeazcE0fu6e+ulr7t7LzpQrJtU6gA3S1FxnydhbHFx0QLkknxUr9ctrHUCfvl8XvTZ2bNnJSjOvbDbJpAETkOhEEZGRpBOp8W/14FP3p/OVqfu7CQ6UO9wOMRvarVaCIfDort5j8zc0eQB7tH0q8xMJtNvM0Xrbm3T8FiWvGH5LV1uC4Bk8fGe2SRbP2+7IIAeH0Xvc9QPWnfpvVufmz/6XvQc8bgLFy5I5r+d7iahsVqtCrFraGgIBw4ckOzBaDRqqTbw7LPPCpFtPf6k1s1cK3od2dkAOkhDmweAlDSKxWKIxWIAlnv36LlkE9SFhQU88cQTOHPmDEKhEFKpFNxut7D0K5UKpqenMTc3h2aziWg0imazKWXpyFTXpYlMsJwl83QDWNqEBOHXK7uR9LbVuvuWW25BJpPB+9//fkxOTuKKK67AN77xDclqmpycxNmzZ+X4AwcO4Bvf+AbuuOMOfPKTn8To6Cg+/vGP4w1veIMcc9111+HLX/4y3vve9+Kuu+7CoUOH8MADD+Caa66RY+677z4ASz3JtHzuc5/DW97yFgC90WEbAtH1JLpcLvyP//E/cPTo0Y4N2y5Wfuu3fgu/9Vu/1fHvDocDd999N+6+++5Nuf5miwYE6byS3WJXE1ozzXUKsnZUNDubzhgd8lwuJ9G+jXZvBpY2JdalCgaDkjLb60gfHXkAAtyznIo2Vrg56hpdNAa6AfXtAHQ7BctNk444a42S2bRbHAQaRKzLpsEE8x6oWMvlMqanp1Eul+FwOKSmLOv1l8tlXLhwAfl8HpOTk1ImaCPrTBsjem3bKQHT2AGsdfLZA4Drk04ym+fSCAEgTnar1ZLADe+/Wq2iUCggm83C7/cL400z9jYimuFwqUjfEd966evuzRM7JjozwwjScR+k095sNiVdWjNqmG5KUI/7Aveaiy2xoRl1oVAIsVhM7A3uY3SctB2h7QvaHqZjpUFOguO6KTrPpZlZejws6UEHx6zNroFUu2fA+7NLs9WOMMEA/kvWkw7Y8jsm08l0njhXJD2YGV2cM+1oa4dS23EU04EFIA65zsTLZrOYnp6WezGFa46l1oAlHadT9c0AOJnoBIbXa9PxeZJQYXdvnFMGnqiTWSqNoBbtS/1s9TPRQZxCoYBGoyHrmgx+ghEE22nzLCwsIB6PS8CDQJkJ1GvR7wftTbMe63pEv0u7Rfq6e+ulr7s3R/R7rEtC6HdbB0Lp9xJM1cFPnUmjS0pqgLuXujsYDCIajVqAcvPdsgN3Own/RhISa2IziEtCEc/LcVBHaf3M+18NpLbT4xr41yAtv8eyaV6v18K21qSv1djkdvPJ85sBev2vth14zbX8Pc6LJn5Rx7TbbZTLZSmZ1omJrrPAgSU97nK54Pf7JYOuXq9jamoK5XIZs7OzQnpbj+h77bRWtM1mAulc+3xHnM6lfnbMlKHtymtwrTJjjITIZDIpWBLnmUGEUqmEQCCAer0u5BMTBDfHrgNlGh/SNtfF+N27TZdth+6+/fbbO+qp+++/f8VnN9xwA3784x+ves43vvGNeOMb39jx792Msxc6bEMg+r/+67+uSCE7duwYXvSiF+EHP/jBhgdzKYs2yjVbVtdWNet+83O9+enPzO/p718sU5xM9GQyKc1NzLSlzRCPx4NYLAaXy4VCobAiqm1Gmte6BypQDbia6XtatDNIJej1ejE3N4fp6WmJvNJ53My52KjQGCCDfn5+XpqK0rHsJEwfbzQaokgJkrAkyuzsLCqVCrLZrCi5jWy8BPlbrZYYTFzDGsgBIMYEFXmz2ZRURKZsa2MJWC73wlqwrC/JRn4+nw+5XE4a9bZaLWlOViqV4Ha7MTMzg3q9jkAggHQ6ve57BJbWEVPtySboS182Q/q6e/PE6/UiGo1KJhIdULO+s+mgAVZd5HA4JF3c6XRamG29EAalw+Gw1ISOx+OWoKIGdslGdjgcwsrj+NvttoX5ph0X3WiboGY6nUYgEBCQ1uFYasSms+uAZYaQ6VjymlpP67nh3wj8U0zHmCA6S9hNT09b7C091wQO6CxqUBaAgL0ck84QNK/L7+hSYpqpph1tfpelABqNBvL5POr1OorFoqUWPsfTrTPIczFAQUZfJpMRNri2c9Y6r9ap/J1Os8PhQL1etxAdtK2rASav1ys2BcF1XR5PB2fIcOc5qUfZIJzri++VLn3E4JbP58PQ0JAtcUIDSnxWph3dbrcxPz+PkydPSjbbeoX3pK/Zl76Y0tfdmyfMJCUwzWAoWc3apwaW9RNF6yEGibWP3iv9TR0ciUTkh6x43dQbsJYH03rNDH5zb9f3pqXdbsPn82F0dBTRaFR8HoKlfr/foq90cFPvZ9o20AFufsY9lWC9/pvWpfTxmEk9MzMjWWyajKDPTz1KYJa/64be5j3b/Wv3PPivHfFOB7DZdLxWqwkgTB2+ntIr1WoVs7OzEqyfnZ3FwsKC2AaFQqHrc5kBDQq/zx43ZNR36lVCe5HBZILoOgBl2rs8jgEpMtKZAUIbmDhALpcTEtvMzAzK5bIw3k1iBcfTCSDnu8CMeZZ7W6/Yre++XFqyIRD9hhtusP381a9+NV796ldf1IAuVTEj35p1Tsa5ro2uI2r8vlaYgNXgN89BVvrFjDccDmN4eBihUMjS4GEzhPfp8/kwODiIcDiMbDZ7UQwe7fDqmpZ02uxY9abDk8vl0G63cf78ecTjcQwNDWF4eFiMr/U0yNoK4fgZ+X3mmWcwPz+PM2fO4Ny5c5Y0eztZWFiQiPHs7CxOnTplMc7IomQEXQMs6xWCFVS2ej7NuvMEzmksNZtNBAIBJBIJeL1eMc60UFm3221EIhF4PB5Uq1WcPXsW2WxWGqyYzLdarSb3GI1GJXCi371uhe9sPp/HuXPnUCgUNqTMd6P02WxbL33dvXni8/kktZql2LSY7GPtJJpBW+5XBHrp9PXKEQ8Gg0ilUohGo0in00in08jn85iYmECj0ZDAKDO+9H5K54b7LQFQPX6yohnA9Hg80oCR+oX6OxaLIRKJoNlsSvk1gtzcc3WgHIDFpqHu1o67bmZJVhwAAUNZuq5cLmNqago+nw/BYBDpdFrqJfJedHOvdrsttWzn5uYwMDCAwcFBxGIxSxahdvz1GAh06H4uLGFD/cHvagCa5Xzm5uZQKpWQy+Wk9AqD3yaws5poptr09LRkINiVvukGQNcAEvUlAXpmrXm9XqRSKYRCIZlXnp/Hstartnv1Oc1avTy/0+m0pPcTIOfnzArgM2F2nM/nw969e20BED5v2iEkjhDg53OamJjAI488YgmsrEd2YwZaX3dvvfR1d+9FB4cTiYQ0IWbpR9P/01msOqBL37rdbotfyQDfRvyC1cbLRqKRSATJZBKJRAKVSgWZTEZASDMQq8fOPU6X7dB7H3UVx9xutxEKhXDo0CHJ2JmdnZX9MBQKWQLwdhldqxEGCKiaAVaOWROj+DtLnMzMzODMmTMIh8PYs2eP6BTzunqPZTk0ziX7e5nSDTPbvAczCMvmrMyCYkkxNpSdmJhANptdlw5giRNNpjR1dzfYjmlz6mfC+aat43K5EI1GhexA/afXGHU1e+Q5ncu97My547UYNGdGXalUkrKFpu7m8+c80R7lO2j33DQRg3YZ5w0A5ubm8NhjjwnTfSOy23RZX3f3VrpG+I4dO4YPfOADCAaDOHbs2KrH3nPPPRc9sL5YI4Nama/GcDaVYadzmOffiFDxkTG0FcIN3DRMuDHoNHEdudai58dk65sgut0c6e9TYZG9ReeUZWR2mlAZ6fr3BG457rWUOQ0UsgHMdaYNN4qeM7t/7UTPPx1oKnh+V7PMzLR7MiVWa/TKsRMw0ulxnCcaclxLBND5zN1utwBd2phaS3hPCwsL0ihnvXXsdrP0lfnWSF93b43Y6RNgeb/U+xWwEkgHuku57oVo1pAGC0zH2/xM78lmqrWpLzWbncezLJsOaJrMNL2Pd+NYameQ19Lzr4F4O+YVU6UJZNs5/LpOu9YxZlq3Di6Y4+P9dXq+ZiafdgapK8hk0z/U2esBYmkHAOjK4TZFO6J6PeiSJrSPeL+cXzMgpMsi8DzAcr1aE1jR96nfN84B55/f0444hUAMHXUdqNHsUf1M9FrgORhUZ9PSS0X6untrpK+7t0ZM3a11ogn4UrpZw52CcxcjJBWR7WuKHWjfSd/Y6QzTTqEvReBU626tz0y9becHmtcx91UT6Ne2g9YF/DtLlDFbWAc2zHsxM6tWeyZrPVvTjrA7F8eh/UaNFWgG+nr2w4sJuur5tguemPehg+l2fcn0szczDeh3r7UGdNDHtJWJSWhhEASAEC14DpM0amaL8L3gOdk3j+SNS0H6uru30jWI/pOf/EQW3o9//ONVQam+rF9MRaTrPJmOm3Zc9UamWcZ23+kl48XhcEhDpUAgsKUgOhuIMnJNxUTnjBsq06e0IiBzjd/nOZh2rzd/velStMLQTu7s7Cyefvpp1Go1jI2NYWFhAdFoFPF4vGcMwouVdnspNZ9NR06ePImf//znyGazmJqaEkWyXme8UyQYWF6jrIc7MDAg9fV0xoU2mjgGzWTn8yRTXjvawHI5F33NbuvW8TwsGaOVvy5bo99RAKhUKjh79izm5uakURtLHJFtt9q8kQVZqVRw+vRpnD17VhzyS0H6ynxrpK+7t0aYXsweGdzzyOBptVqWBlcMtJI1TYOe+qxarQrzuddC3dZqtaRZE8tp6KbYBL65J+ZyuRWAOc9lOlPUp3QUGZTUxywuLkrTR80+1+fSzi9FM7U5R9zDOWYC9myURvY3ANmnGQCdmppCo9FAMpmEx+ORcVJfsTEqa4qTWe90OiUTr9VqIZPJWOwsXS9bB595XtpRBEQ0m82833q9jkwmg/n5eZRKJSnHshnro5PwuYdCIcTjcbhcLrGzGIymTcZnybU1MDBgKRek2ZzU8QRS2LyP7xBBEs32pv3g8XgwODgo7wzLtVB32wVGCH4zC2xubk6uE41G4Xa7xa7lO+FwOKSRXrlcxunTpyW1frcxyS9WtkN333vvvfjoRz+KyclJvOAFL8Dx48fxa7/2ax2Pf/jhh3Hs2DE8+uijGB0dxV/+5V/itttusxzzla98BXfddRdOnTqFQ4cO4YMf/CBuvvlm+fuHP/xh/K//9b/wxBNPwO/347rrrsNHPvIRXH755ese/0akr7s3VwimNhoNlEol2bNYfiocDq8IFmpfmrqQe5wOdGoyT6+AdNoLPp9PspNyuZwECU1wlPuS1pcU04fVY9TAMwOuBDR1hpIuj6V7gJjBYlOfaXCcek9nILGci8765TkCgYDohkwmg2aziXQ6jcHBQXg8Hst+zfPwHnhdzosZLLADhM3npnEBsw68HbhOXzSbzaJQKGB6ehqTk5PSGHwrhBiH07nUqJvrWttk2vfn/Wsi2WrP15y3WCwm9pc55/p3rmdNdONa0j68lmazKT1dcrkcMpkMvF6vpbE7s88ZrOBaGBgYkGzzarWKyclJCxHhUpC+391b6RpE/9d//Vf5/Tvf+c5mjKUvWFlzm6CiucHr4/SxAFYcY4K+vRACo8FgUEDRrRC9QeqNl+CqdvA1A4lGAkF0OtpM+SVjWdfgtAO/9TMgMEDnmRv+zMyMKFrd9GU7hXPAuqe5XA5nz57FU089Janh9Xp9w2vE7nua3UEl53a7EYlEpFSK3++3sL7o/NJhLpVKwgwnAGJntDD1TAdE1nMvdN51SiENr05CJex2uzE8PIw9e/YgHA4jGAxaarXZzVW7vVS/lU1Yz58/L0BOX0n1pZfS191bIywn4XK5UKlU4HK5pOG2Ll1BoVNLh5g6rNFooFgsSnrpZgSoud+2221xhH0+nzRj1EFJgou8v1arZdGXLF1GphL3Lx3gpCNsAqeLi4tyr9qm0UxAO0abZi3RwWYasW54TiHIz72d9eudTqeAr06n05KBxGsS5NaBDR10DwQC8Hq9qFarEhBgSR/aFqyrbtbW1sCx/tH3xzlgXdC5uTlJP6YD2Gu2o51ofR4KhTA6Ogq32418Pi9r1SQ2tNttCX7T/mBQg/aGBm7o6JLgQEDE7XYLwGUyyPncy+UyZmZmZH3Y6W7tqLNxKhupBgIBKRXo8XgERNf1hAn0FAoFTExMIJfLYX5+/pJxwLdLHnjgAbz73e/Gvffei5e97GX49Kc/jZtuugmPPfYY9u3bt+L406dP43Wvex1uvfVWfOELX8APfvAD3H777RgcHMQb3vAGAMCJEydwyy234AMf+ABuvvlmPPjgg3jTm96E73//+7jmmmsALAHxb3/72/HSl74UzWYTf/3Xf40bb7wRjz32mNh4myl93b35wiAsmcEE8egf6qCy3j80EAxAdBx1uO4t0kuhn0JAUI9NA/4maK33Q3PftQOKeZ/Acg8PDWhz79QkI2A5cGxiDiaAbwbhaVMwaK2zxziPrVZLAqzAUi+PXC4HAEJAALCi1rlZHo7H6ew1PTa7udDzr3+3A8/Nvy8uLiKfzyOTyWB2dlaIbLQnNlsIIjNInE6n4XK5JJuN+lA3/qS+1iXw+G5Qd2tshfetm5WbpAmTcKczIjWRbjW/m/XTm82mPP9QKCRlVXX5PZ1twfVVLBalnM7c3Jyl4Wlf+rJeWTfyyTqCP/3pT3HFFVdsxpguSTGZrnTkyOChg8rfNavNBHY1mx1YbgKqmyHRyaGy56akv9etbCULYjVQ0vy7naFj1onXv9Mp1s6i3fVNA4WMPrKIs9msGAOxWEwcwu2qj87nTQeUgLRu/Mb77yYNbzXRQQo21xsYGJCMBY/HI06qrjnOOaeSptGj6+1phhnXKR1p3SxGl1Ho9j7MAFU3QSd+h8bk1NSUNCRlPWCCChRtrLAZLRuZbkawaydLPyK+tdLX3Zsrem/SjS1ZD9MEhsl0pv4wQWjAWiKDwLDOuNFg4HqEzgsdC46V4LlO3aXO495Op4SAuC6bYupbDS5Sb5oZcdrB0p+Zn2umtj4n51UD+7pWKP8l+5v1tJmRRnCbQVs6YeFwWJxxgvC8JsfTKcvMdAQ5dupG7Xzr0jO6dICeQzp6fG7a+d+MfVA3AaXzTeKC0+lEIpFANBoVwoHuVcJa/rQnvF6v2B/aUdesRt6HJpBom4DOvGYscm40M3I9+p7XYz1h1v7P5/Pw+XxyfyzRpwMbc3NzyOVyEoC61HTRVuvue+65B29961vxtre9DQBw/PhxfPOb38R9992HD3/4wyuO/9SnPoV9+/bh+PHjAIAjR47gRz/6ET72sY8JiH78+HG85jWvwZ133gkAuPPOO/Hwww/j+PHj+NKXvgQA+Od//mfLeT/3uc8hnU7jkUcewfXXX7+ue7gY6evuzRX6G+12W+o40w/XDYqpc82gmQ4Kaz3OvZ211glI8tiN6m79Q9HsXhMc1jrL3GPN++DxdmCynodOfr9J8DO/p/Uf9aFph5g2EAAB5qnjAQhJrlarid/N+t36OnqOqUP1XJq6h7/zWpqgqEXrblMfa31B/W2uHf2seqVDaN/ocmgkdNCuicfjQgzgGqQ+5rrXWWT6MwArQHRNUKBNw+dlllTRogMp68GR+IxKpRJmZmaEhJHL5aRCgtPpRKVSQblctmBj8/PzUn+9r7s39v2+LMu6UT2Xy4Xx8fFLpn7QVogG8BjlIyjr8/mE+WQytZhm0+n73ABdLheGh4cltYkbOWswVyoVnDlzBrlcTpptdcus2Y40QrvUKZ2KpCOaNBSo7NhNnE4iQVytwNdT05rXpDICgJ/97GeIx+PI5/PCVEsmkwiHwxbneLNFO4qs+5XP50WJNBoNAWVCoZA4kRupD8b78ng8iMfj0qhnbGxMgglMtQoEApZGoVqR6rVMA7bVWmpux7qj09PTUst9ampKjqvVamIkktmpUypXE7MhTjfrn2NdWFjAM888g0wmg0AggPHxcSSTSXnubJ4CLBlTs7OzKBQKyOVyePbZZ1GpVFAsFi+qCetulUvtfrdT+rp7c4XOiMvlgt/vF6Yimao684YOid4P2ZdC/41/1/qK1yCLenJyEsVisetxkv0ei8WkbAWZ5vl83mJkO51OKWFBZjCw1NyqVCoJCK37iQCw6FPuwbqsC8ehWWwmiG6mFjO9Xpdb0+xl7ajrZqMcg8fjwcjICAYGBqR5HB0x3supU6cQCoXk/7S/aG9xTigmiE6wnMQEBtM5Hm2DcR7IKtTBboLFHB8BfjrBmmSxGcHXUCiEoaEh0eOJRMLCGmPWgsPhENuCz8jpdErzUx1Qqtfr0gyVtoYeP7Bcn51r3OVySa8ZPo9gMCjzRwAFgJT0W000wMHncO7cOczPz4t9yPUxNjYmgQSnc6ksEYPetVoNhULBYm9fatKL9VYoFCz/12WYKI1GA4888gje8573WD6/8cYb8cMf/tD2vCdOnMCNN95o+ey1r30tPvvZz2JhYQFutxsnTpzAHXfcseIYAu92ks/nAQCJRGLV++q19HX35kqj0UA+n5c9x+/3S+YVs5R0CQ/uCdy7mV2jm15q3U59Cyz3UmAmqvkOrCXUeSRmuVwuCQJTz5k9R7SvpbPMAGvvEjPLV+/NOpuLgX9gJXisfS5tF9DX1vOnyWtkD+vSZ7xfHgNA9Gm73ZZ5z2az+OUvf4lgMIjLL78cfr9fMuSoo2kjaBCef2fgwyQg+nw+2Y90405tk9DO0L1JeK5qtYp6vS7riD6pfibs8Wb27dioJBIJHD58WOaJmXSRSEQIfWyezrVAkJl2WqVSsRDqtO7O5/PSu4v3qW0vrnvaTsRFtK1kBnhW61tmiva7n332WWQyGSGsuVwuxGIxwR24bhYWFnDu3Dlks1nUajXk8/kNYx3PBen73b2TDVFj3/ve9+LOO+/EF77whS03Jp6roo16pnlrdi03LP5uOgNm8we9ATocDqnbyc2m3W7Lxs40o2q1KhviWrId4Lmd6E15NUdGM67pKNGxNUF07SR3Ypnp89L5XVxcRLlcxtzcHGq1GuLxuKS/h8NhyzPbqvnTCocMdLK66ahSybKO3EbYEToCHQgEEAwGkUgkMDo6KmByLBaz1EQ3mRRmWqAGCVg/rlKpCGhjsjo0E11HnrudJ/O96fZ7jIAXCgVJQywWiwiHwwKe8Tk0Gg1x2guFAs6fP79lKX07TfoR8a2Xvu7ePNFMdGDJwSKYqpnEBNEZ4NaMHTMYTN2kHUJgOWWa+ma9Yu77LpdLAACOk8fpsdDRJQgKLLPbzLIkOp2aOk87oWZ6tynmZ7rMh2a0MatJz52eK55rYGBA2FhkolO/LCwsoFqtolAoSAYUyQQE/80eG3YBcR0YMIEAPZ8axOCz1M67Pi/XkGZim+y3XgvB+mAwiOHhYaTTaZlrncUAwBIc0lkTtIuYnq8bePFezACA/j/nks6uy+VCIBCA3++Xdcr1pEsFdSu8TrFYXBGEisViaLVask7Ys+DMmTOYm5uzPKtLUXqlu/fu3Wv5/H3vex/uvvtuy2dzc3NYXFzE0NCQ5fOhoSFMTU3Znn9qasr2eGYAjoyMdDym0znb7TaOHTuGl7/85dvCBu/r7s0TzQrXoGKtVrNkL5sscNP/1OQ1goMsP8oSJPy72+3G7OzsusdqjoVj0LWt7fQSQWS7fUv7/SZBje+q9vHs2O5a9HeoLxhw0KXM6IPzvszr6rnW5VY10E7CIclJ6XRaAqs8VvuamjGt75nX1GV4dJaV1usmiK7JARrHqdfrqFQqEuDVoDPnplMJno2Kz+fD4OCglNplSbRIJGIJZFC3ch557VqthmKxaFknutcIMzPMZ62DLbQPOmVEaNH3361Q/xQKhRVBqEQigWaziWAwCL/fD7/fj1qthnPnzmFyclLsj0vVf+z73b2VDYHoH//4x/H0009jdHQU4+PjK2rD/fjHP+7J4C4lodOg2bfValWaXNk5WTplmZ/relW6vlg6nUYkEpEoNrC8MdJxjEajmJ2dFZB1tZeNDpJm/27VPNEIIUvOdNap5HSdbM0E0+VLGAG1qzu71qbO+9bGxeLicqO0s2fPCqDMjtxut1sYgBzHZswPnX8GRli6p9lsSi37wcFBOYZNOUqlEs6dOyfg/2qOogZLYrGYON179uyRxmNDQ0OSXkXnX5fNMefZZPXxh0463wcy230+nxhQdLZ0F3SyxfgemMqfBk+5XEaxWJS6iBcz94VCQYD0arW6orlNJpMRdmG/FltftlL6untrpNFoSNMoh8NhqaFN55FOBh0rlqwgm4xsnsHBQQQCAQvzizqQDOBEIoFyuYzZ2VkL05vHm0I2Dp0Mv98vOpXjJWBq6ldgiTEaDocBwMLWpaNqOoTUj7Q9TCYddSnvXwfFNQCtHW3T5tAOG+eH5yHwrvtt5PN5tFotsX/a7TYymYzF8Q4EApLqb94/HVKCA7wnHSjgfZGNZVd6hM9L3z9tF5YKY/CYZVVisZjoOM0go77rVhwOh7D2vF4vUqmUlB5IJBLifJvgvwZd2LSV9hgACZYTiCYYnUgkxB4g2zOfz8uzoJ6s1WqYm5uDx+OxXFNni/F5k+nHmr29kEajgWw2i3K5LDaLtqf6jmRv5Ny5c4hEIvJ/k4WuxbTH1yKj2B1vfr6ec/7Zn/0Zfv7zn+P73/9+x2tupvR19+YK9x76kCTjcD/XzZ81IE3dzQA6S4b5fD6Mjo4iHA5bdCODicyuGRoakoaT3L9W090M+ALL+ywAAY41SMrzUA9ptjCvY4Lnpg+myU2aIKBZ3WbNcTMrXB+rQXgz0G0KwXM9H7q0p24KyWyhM2fOCJlreHjYknFHMN/cZzSoTUKBtkkAWOwv/k5fk8eZGc3VahWVSgULCwtyfWYm1Go1+X+tVsP8/Lw8w26EuptAuc5+TqfTYpdw7rlOdcagzkrgscSO9DNzuVxih5KIUK/Xkc1mkc1mZV5IJJyenhbdzZ4ttJc06M6sNN30/WKlXq9jbm5OMvc8Ho9klZg12vvSl4uVDSF4v/u7v9vjYfQFsDY4MRnTZK8xdUtHo4HlVCOC6AAwODiIRCKBYDCIQ4cOIR6PW4BbOj+VSgWhUAhzc3M4deoUZmdnRRl0AlF12g+ALQMDOa6FhQVJ79YpbNr5ZD0sh8MhrDsqMDrvdEoBaz3S1UQrdDuG2fT0NICllPf5+XkEg0Fks1ns2bMH0WgU+/fvt4DKvWSlEyAgmDs/P4/FxUUxErQyDwQCGBoaQqPRwMjICGZmZiRliw7pagqHjDOv14vx8XHs27cP4XAYBw8elFrwzH6wi/53Ev5d16J1u92Sxp1MJoWdfuDAAVSrVTz11FM4deoUKpUKZmZmUK1WBVTyeDxIpVKWtH9gWekz8MHGnusxZCg0MhuNBmZmZjA3N2dhbejjtCJfT93255r0I+JbL33dvblCJ4QBPO6z1DncC8mebjablv2WYG00GkU8HkcoFJL9lA5gu91GPp9HoVBAvV5HOp1GtVrFs88+i0KhYAHDgZW1oum8zM7OIhwOY3h4GOFwWIBJOmcEt6hPNUOYwKhO2TbZwHRsNWuaOo/sZQDCmGKgmXsy2Xw68MBraUddg+m8ZzYBpfNGQJfOt66VSZ1EJjqwVLZhZmYGgUAAlUrFUkqFAEkwGLQEhdvttjiKOgBNZ5pAAwEa2gxkQGp9UKlUJBir64FTd/P51Ot1WRelUknS29ezXiORCJLJJOLxOK688kqk02lLIEDX+aVtwYwEh8MhvWBoU/HeCPIxuE6bjax6ZsadPn3awtRrt9solUo4e/YsBgaW+qkEg0EBSXS2wcDAAMrlMqampnrKDmfTcG2zaILCpS690t2RSMQCottJKpXCwMDACob4zMzMCiY5ZXh42PZ4l8uFZDK56jF253zHO96Bf/zHf8R3v/td7NmzZ/Wb2yTp6+7NE50ppfWY9g01I5q9QTR7nX53JBKRcmFHjx5FMpm06MFcLodcLoeFhQWMjY2hVqvh1KlT8hmvo/dgPc56vS6NnFmmw+l0ii9ux5rXfofJJl9NOGad7cMge7vdFj+WpAH63zoYwHmkzaNF+0Z6XzUz7vT4qY/1/BAXcTqdyOfzePLJJxEIBHDVVVdJaRMdwGXTb529pv1//k6bQfuteu/TPjLZzQSE6YMXi0UhmjHgQKA9FAohHA5LiZT1+J5OpxPRaBTJZBKJRAIvfvGLJWOM49f2AIkFAwMDgtdQB9MmpU1CrIQB9sXFRfh8PikbtHfvXtTrdTz55JOiu0nSy+VyYuPQ9tK2Aeew1Wohm83iwoULlky/i5VKpYKJiYmOuvtS9xv7fndvZUMg+vve975ej6Mv/79oVjk3JoKfJmBOhrr5HR5Lx5OsKbK2dd1SOkPBYBD1en0F6LnaOOngUaFuldCBZqSUzjlBCe3QE5SwS8XTAOda92sndmwBKlEAUipnYWFBOkgDkHqr7XbbNi3PjqFtiplCpRU5yweUy2VpWKlrxJKZT4OQrEI6w4xgr6bUOPeMggeDQUSjUTEKQqGQrK9ugPPVxASh+cx5v2TLsZlINpsV8J3PQtca5njIWuc6psGxEWVuGlk0zBjA0M9LK7FLWSH1lfnWS193b41wbzH3PZOJzL1C17imPiCzmcwpBoAByH7lcDgQDAYFWNVOcaf0YDoU9Xpdym6YAU7TwebfdP1LXVeUf6NogNtMe2fwmd+j80Z2E48z2XJ2Y9T3pOdU3zfnk3aDaRtQN2rwhDXImVHEZpPUoX6/X+ZCg+WdgAl9be2003bTzbLpuJNlbq4Lrf+0o0qWWTdCIIX63+/3IxAIIBwOIxKJiLOs1yifMX9MHabn3GQ78nmz/iuBKNqmtBM0KMHm3LqxmWYdcl51bfWLFbvgk3bE+zpnSbZSd3s8Hlx11VV46KGHcPPNN8vnDz30EF7/+tfbfufaa6/F1772Nctn3/rWt3D11VcLkHfttdfioYcestRF/9a3voXrrrvOMs53vOMdePDBB/Gd73wHBw4c6HrcvZa+7t5cMfUxAIuO0zY9/SNN6iLATJ1G34h+NzNSa7Wa9OVaXFwUslG3e7fOttX+TKesCjvfq1t/jHutyUTX+AIxBK27TbCS46Bf1kk4Zr3Hm+OlnuSxdkRCsr8JYjebTQGDiRNwT9djtZtD/svr6O/owC+fR71eR7VatQDLwHI5Ot4D2fEsddbt89d2AJvNBwIBCUhqO4LrVN8H7RT+Xz9XHmcGFNrttmQc8rs6W5L3yevW63XBNvgOEcDX49AZHBcreq13KlnUl77f3Wu5qFoSjzzyCB5//HE4HA4cPXoUL3nJS3o1rktWCOgNDAyIE8cSFnSkWUJFb1AmE93pdCKZTK5gB+nvUKmxlAewxIALBoPiYHZimJMtxPIv6XTaotA3c34YPXW73cIq0XVRCYQy1UkHGTTDn/PQrfJaTfQ56GhXKhVMTk7C7XajWq3i1KlTiEajOH/+vLC/hoeH4fF4LDXrNePOHJupwHmvrBlerVZx4cIFlMtlAQKcTieGhoaQSCREkdOYocHI9MDFxUXE43GJ9pv10TUjMJ1OY//+/QgEAjh48CDGxsbg9XqlgYlmn/dSeE6v14toNIpAIIBDhw4hHA6jWCzC4/FgZmYGzWZTGAtMl9MsDRo5BEo0C3K9Y9ER90AgIKCArj2nnxXn9VJtSgb0lfl2Sl93b45wTyUAyb3WLINB59MuDZhOC2upMhDLPhNk5HLv8vv9lmZR3YyR9b6Z5hqLxYTtrJuMEpx3u92SeUZWkk4jN5nUdKg0SM4SKgRCI5GIsNo5T41Gw5JRRnvI1EGcGwCWvZxM80AggFQqZQF+NZjOkmZkc7HOdjableAH2WRPPPEEzpw5I5lbfr8fw8PDKBaLEoymU0smunbudcYgGYy6Bm+hUJB5pTPKxpztdlscVTreumHYwsICYrGYpbFnNxKNRqXUGvuVMNOrWCxKXdRWqyU1Vbl++YxpP3Ed08bUoDnXhG5UxjXFQASZbLVaDblcTo7ldfj3TsEUjvNixeVyIR6PIxAICBmBc04bvFAoyFxfyrLVuvvYsWN485vfjKuvvhrXXnstPvOZz+Ds2bO47bbbAAB33nknJiYm8PnPfx4AcNttt+ETn/gEjh07hltvvRUnTpzAZz/7WXzpS1+Sc77rXe/C9ddfj4985CN4/etfj69+9av49re/bSnX8va3vx1f/OIX8dWvfhXhcFiY69wztkP6untzhLq7VCpJ1jfJQC6XC5VKxbLX03fivyzPwT3E4/GIziPgqAPRAwNL/S103XQ9Drt3jLp7ZmZG9DHJPzyWukWXTjGBZ30trSO1Dqedos9JbCIQCAi7OhAICCahM+o0OYDYgxZzHATh7chXeh6oZx0OhzDhCZzruuT1eh0nT56UjLJ0Oi0lXsbHxy090RiMXg0LoI7h/VFP87q049hjrt1uCwbBe+Ke4XA4hIkeCoXkeXUj1N0s08v15nA4RHfquv762VJPa3tE2yk6cwBYwn8qlYrlXCz3RvsxEAigXC7jzJkzyOVyFsIFy8g6nU5h5Gvgvle6e2BgqRm47j/GeSbRoVgs9qxkzG6Wvt/dW9kQiD4zM4P/+B//I77zne8gFouh3V5KL37lK1+JL3/5yxgcHOz1OC8Z0Ywlgm90vMjYoZOnFZOui0llTka6jghq1rNm87C+aTgcht/vl5TbTtJuL6Ucz8/PC7DdKZrb6/khgMD64lT2nCc633T0CRIz9dlsNnKx4zW/z3nV6VlTU1NwuZY6R2cyGUQiEezZswflchl+vx/pdHpF7Ta7mulmxJsR95mZGUkTPHnypHSf5voBluu4BoNBqQnH8xH0qdfriEQiEr23uzeCIqlUCpdffjkikQjGxsYwNDQk66obNv3FzjWfebvdltrBTItzuVyYn59HJpORmqm6lMLAwICloz3fuY2MhyB6JBKB1+uVMgxkkxKQ4Ts1NzeHYrEo67gvfdkq6evuzRfuowsLCwJAUi9xn+XepYXHkGlMB6dUKkk5EDr1mknt9XrhdDrXdAK1sCYrnXIC4bQTeH4GeAmwsgYpnU7aHLpmOD8zHUPuw3RkwuGwBWTnPqkz6aib9Ll0/XHaA3RiWfcyEAggHo/D4XAIKEzdwe/ThiKIzOAmQVIGOGdnZ1Gv1xEKhaTfB50/HSwOBoMYHR0VR9lk+GvwhYA5x8xa5mSwsRQbAKTTaQvgQkAbWHJyo9EoKpWKBCC6kVAohH379iEQCCAajSISiYiDywD63Nwc2u024vG45ZrUk7Sf9N9MBhvXtLYlnU4ngsEgUqkUgGU7iWw82q4MatfrdSm9Y1f+rFdO3cDAAOLxOBKJBKrVKrLZLJrNptSBZVP2Poi+9XLLLbcgk8ng/e9/PyYnJ3HFFVfgG9/4BsbHxwEAk5OTOHv2rBx/4MABfOMb38Add9yBT37ykxgdHcXHP/5xvOENb5BjrrvuOnz5y1/Ge9/7Xtx11104dOgQHnjgAVxzzTVyzH333QcAeMUrXmEZz+c+9zm85S1v2bwbtpG+7t58abWW+iMxIxeAANx6b6Nw7yGwyv2dgU7qezLPGSAHlsthMlCnmc6d9jTuz7rsl26yzLEAy31HNDuXIKpmBJvse82q5/2SnEbsgT4qs455HyaITp9H1zW38ynpq1K36HGbQl3odDqlNxbramvS38LCAp599llpMkndXCwWLRlYzPYjwczuuprJrbO9M5mMlOGhDTU7O4tz587B6XRifHwcIyMjEjzmWtIlz4LBoARoupFwOIwDBw4IqSIajcp3OQYGVewyq/gMdLaYGTyh2GV4eTweIXMMDAwgGo0il8uhVCoJ4UFn9OnAhr6W/uxihSB6JBKxBA4YGNDl4/rSl17KhkD0d7zjHSgUCnj00Udx5MgRAMBjjz2GP/7jP8Y73/lOS7S/LxsTrdi4CQDL0VCzHAk3DR0R56ZBZ5Abl3ZsqUR13ctua0fxWvqHCq6X4Kne4OmcE/zUjTP4OwMQBMx5zzoyvxWilSKNhFKphEwmI3PFtD/W0HW73QiHw5Z6+AAsz5lBAtb9bjQamJ2dRS6XQ6FQwNTUFIrFotw3a9bZpWHr37XYRYc5p6FQSEBj1js1medbMcf6GpxLMuGpvAn0aHaHbt6m09PXuhbfuUAgIFkhNCYjkYgEQchSIiBA1gFBk0QiIcABmZkEtVh39lIA1/sR8a2Xvu7eOqHeIihMB5POjZlFphlEBHPdbjdCoZAcS3Y0AW9+XzPNeG39Yzc2soXoADLdlmykdnu5dJZOH+dY9bg7pQGbbDJdmkQzyXW5D4L4DBZQz+seIrQFgGV2P4PpHIN2qJnWTJCD96f1KgDJZuOPmflFADWfz2Nubs7CZKtUKsKS1/YI70+zz1k6jaXeyH6kE8ym77xXkwihn6su/aPJBGZQmIEP6qtAICDZb3o98fnxPCbgosXU81rXcv70eXWQhfMFQIJDBBMIDuln02kM6xE+LwaH+Iz43EZHRxGPx1Gr1YRtp5vnkWnK9UAgi2w9DWY9l2U7dPftt9+O22+/3fZv999//4rPbrjhhjWbbb7xjW/EG9/4xo5/30nPsq+7t0b4zKmPTaKVZvJqv5u6nf4pYNXttAPMEo/mdbsZH+0K6hHu3/q8eoy6jFgnYdDTDBJocJw4BPdRTcijr611qs4A5z7L8ZvzajKiO4kJAGtMRN8zx899mUHZ+fl5TE5OSnYAs7uq1aqA6JqpzVI+bD5eLpelGXkul5PAPXV7LpcT/576z7xXDWaTEU/9bae7CbiTOEjdrTPh9LPXAQu757qW6HdAr0vajCwzDEAY9vF4XGwk9ubRtt9aNulqQrIFbUT2o6FN5Ha7kUqlEA6HV4D1fFcYrNDZn3x/NB7wXJe+391b2RCI/s///M/49re/LYocAI4ePYpPfvKTuPHGG3s2uEtd6CxTeVFR6VIRdKh0KhYj4tPT04hGo2g0GhgbG0MoFLJtzsWNjxF43Rijk1CZMOo8MzMjzR8TicQKlt3FSKvVknEVCgVhFzOCrNnRTNum0mCUW0cm7cqk9EpMEIFAAFPhyPByOp1S0oWNL6PRqDCZdS1cPVZu/M1m08Jgm52dlVTjubk51Go1RCIRDA4OCuuMjAAaVGYAhevMZAXwvpxOJ0KhEA4fPoxUKoWxsTHs379fGP+bNafdiC7Rc/nll2PPnj04c+YMKpUK8vk8isUiisWiGFSAtXb5WoqB6fOhUAjPf/7zMTo6ilQqhcOHDyMYDEpAgQrdNJxoTNPIZkBlenoa1WoVp0+fxqlTp1AqlfDMM89gdnbWMr7novSV+dZLX3dvjVD/NBoN5PN50Ul0oKm/WeqCDjh1FJvgkV3DTDGykwFIiQnqYToDgH1dUlO49+dyOWkQbQKLGhTQPSOY8UaAnQAj9bHpKDO4TXCYjiOdce7fZJfzPqj7TVuENgqwXNOc4DWw5HQWi0WZZ309jplpxmTYt1otCRBXq1UJRHMvX1hYwPT0NJzOpb4bExMTouP5w/r0rFFKtiHL2TCATr3EjDJm8tFW0TV1mU2mbQIyq1hTlynhtPfI3tbrIRAI4MCBA4jFYkgkEhgbG4PL5ZLgbru9XH6IwXyyJM0APNCZkanL6+hzamZapVJBJpOB0+mE3+/Hvn370Gw2EY/HUa1Wpbk9m+XRZrEDn7oVnfI9MjKCK664AuFwWNag1+tFKpWS3jV8hwqFAvL5PADIs6zX69LY96mnnsJTTz0l5fMuBbZbX3dvvfR199YJ92KWS+H+Rxa23++3+GL0nwYGBjA3Nyf9JYLBIPx+v2QcmfsXfa/12Pla387MzACAZF7Rv7M73i7YTdHBXg248t5Y3ot9WBh81fqW9bjpR3KM1LO67wX1Oe0FndFkl01FApcGYZmpRra7zvrl8+K5G42GlGKanZ3F008/LXqaWQMkr9GWoL5gqbf5+XnR4VNTUxY/2c5X8/l8UvqO98m1xWfh8/kQCoVQq9UQjUaFPKF1N7AUZH7BC14g+imRSEhpWhPPMAMaGgcBsMK+M4Ft2m783dyrSfgCICQPYgC1Wg0XLlzAz372MwlaUDYKoPM66XQa4XAYQ0NDuOKKK6QELrM8GFTg7w6HA/Pz82Izk0BQqVQwMzODSqWC06dP46mnnkK9Xkc2mxV747ksfd3dW9kQiE7D2hQa233pjXAuqWjpEDKlipun3pyozF0uF8rlMsrlsnRVZlSdor/DSDqPs0ubNYXpU263W661VuOQjQgNGp1Oy7rvVOYEx7WRop16Rix1lHszQV8zws7x0yBptZY6U2cyGbjdbszOzgqDOR6Pi1IywWkadgTRs9ks6vU65ufnhdVMYL3RaFga0ZnguVbmmpGtHWYd2aahk0gkkE6nLcD/VrHP7YTvBZ9tIpFAKBRCqVRCKBQSQ0vf63qFwALr4e7fvx9jY2O48sorBehijV+OyU70nBeLRalf73a7BViZmpoSY/a5LH1lvvXS191bJzpopj+j80fda6aZktXMElQApE45S7AQUGUQ3KyLymutJQSQy+WyBXCmPiVgrgF0bTPwHHSYCUiaTHTqZdoZdIqBZZCaYLo5f7x3zhX3UDr0OtuMTiWPdTqd4jxx7jl+zWrn2mf5HV1+hONnqj+fKfuN6NqqZC2Hw2HpScNzlstlTE5OipOcy+Vk7kzWezgcRjweB7DcyE4HZrUDzDEQaKfzrnUQ5ykejyOVSklghsENzXrnXBLU0EQNUzTTTK8pM1NBM/x1IIY2XDQalaALCQecV+30X4wQKA8EAkgkEjh48CDi8bjMHefHBIimp6dFJyeTSWG0kaxQKBRw7tw5ALhkSr30dffWS193b63oADH1HZnDbFKpAWOC6OVyGcVi0QJcaqBcZ6FtBFjUfj5Z0ZqRq7OtNIFsreuYmWGaEU1/sl6vC+hs+tJcmzrzivdvAr1249D2QKe9XtsT1Eu0pXRmH20MM4C/uLgoRDZmFRPkZh17MqupD4LBIGq1GqamplCpVDA9PY3z588LnmJmcLFkKseny+fo+yfIr4PjDJqb4na7MTg4iLGxMdHx5nXtWP3aViBpw7TJTJtRg+nmc+J8M0ssEomI3REIBNBuL2WZeb1eSwm9iwHQeT/BYBCxWAzDw8N43vOeh1gsJuWEaHtx/vnZ1NQULly4ILo7FAohn8/j7NmzKJVKqNVqmJychNPpFNLEc136uru3siEQ/VWvehXe9a534Utf+hJGR0cBABMTE7jjjjvw67/+6z0dYF+WhAuXTjNgVTaauUXll8/nMTk5iVqthtHRUbTbS7XZWP+SwGqxWMS5c+cwPz+PmZkZqXvaTY1obpqzs7NotVpIJpPw+XxSa2yjpV20w82NjmlSuh6pLlFDR5fOG4MBOqpqGpubCfyakX2TuaVrqzkcDtRqNXg8HhQKBYky63qj/J4G48vlsqXBiXbIyZZqNpuYm5uTBitkU3AzZU312dlZzMzMIJ/Pi4Ih8BAMBhEIBJBMJjE4OIh0Oi3raCeJTulnrXYC6YVCYQUjYzXx+XwSJNi7dy/27duHcDiM5z//+RgaGkI8HpfAh/mc1hojsMTCiEaj8Pl8OHToEFwuF0qlEmKxGKamppDNZvHss88K0/RSYLj1ZXOlr7u3XjR4S9HMcZNhS/Z1JpMRprjeX8hwZ3BwcnIShUIBc3NzXelsYNl2aLfbyOVyaDabkgpLoJE6gtdkQy8AEuDtpFPpxDWbTUxNTYke1+ngDHBrMJsOsQYBisUiqtWqRYcSXNcOtU651uPQ52K5FF3/k2C8DiwzfZjzSVBAp8YTVCH7jkEIBkn4GbPk6vU6crmcJdPPBDg4dgIkzWYTs7Oz8Hg80rA7HA6LI0uGIxtjs6webUTOAcvh+Hw+SWEna5zgMtPW6WjzWWtCBR1VAh60/9hYjgELvab1euDfuQ7033RAyOlcqnfLZ1AqlbrW2wAk5ZsMSTLQ9+zZg1gshmQyiZGREfj9fssz5zzqxrMEOwhCmIST0dFRXHfddcLCY3ke1tLXmRV96ctGpa+7t1a0HtL7DktR6bIQOuNHN/4cGRmRIB19Ye773C9KpRLOnTu37hKO9PHJiNaAsA6Acly6p4gJbup9WO91mUxG+mMRhAZgCW4C1jKjHI/eJ3VQXQeD+H8GBnh9k1lNMXWALo2jMwPDKPYAAQAASURBVPwYWNKAsPlcgeW+JyQJMHjKn0KhAJ/PJ7qbetnM+OO9aL++3W5jbm4O58+fRyAQAAD5l+sgm80KAY5YgA7w819mQHUi/uk1apZ30bpHf86x0o4xgxd2gWsdGNBzTjuA52Jwmpl3epxrCTPr2EOO5Wv2798vPUv4mdbJJMoxwDUwMCC2HQAL3kJ7aN++ffB4PKhWq5iYmEA2m0WhUMD58+ct4+5LXzrJhkD0T3ziE3j961+P/fv3Y+/evXA4HDhz5gxe9KIX4X/+z//Z6zH2BStrTXZz7OzsLKrVqoB9xWIRkUgEqVRK0osJtD722GOYnp6WpocEULu5TrVaxZkzZzA1NYXR0VGJBLJG9GqR5dWEbK9SqYSTJ09iYmLCwpRj9JNODmBNj+Pmqp1VbShsheior1Y4VNwE0MkmsGPwmeC7GTDhfes1AkCi5n6/H2fPnpXn0mw2EQqF5PsLCws4e/YsJicnkclkMDMzI021WF4gGo0inU4jnU5LsxTdEG6nCB35druNdDqN5z3veQIuTE9PC6OiG2UeDodx6NAhRKNRvPzlL8fLX/5y+P1+xGIxYavpGnrdsOU0U53ge7vdxvDwMF70ohehXq9LQOvJJ5/E17/+dQHJuh33bpF+RHzrpa+7t0dMJ459D/Tn2rlhCapyuYx0Oi3gNhk2dE4LhQKeeuopzM3NWepIryVk7rRaLUlzZoNKn8+HdDptcWY1ywcA/H6/NO3WAT5Td9XrdZw+fRozMzPwer2WlGnqDzrkPJfW2wsLC5iampKSM5FIxFLXmoAunVLWFmcQmns008q5j5rNxe32Ep/Ph1arZWnkajbOMp+tnl9t92gGvKmn7b5Pp57jLBQK0kSdNblp47AuK8FbplHTyWWtVZYYiEQicg066sFgEMAyGEKw3el0WhqkE5whCMLABbOpTBCd5+cPv6+Z79qGYDq70+lEOp0WwGpmZqYrEJ3nCQQCGB0dRTAYxIEDB3Dw4EGEw2Fcfvnl8j7RvimXyyiVSlhYWEAmk0G1WkUwGMTg4CA8Hg+azaasNV1+h0Ghyy67DDfccAMajQYef/xxTE9PY2JiAv/v//0/ZLNZsTmeS9LX3Vsvfd3dOzGD2p3E9LVN3W2+B61WS0DReDyOwcFBIS3F43HJMmN5kB//+MeYmJiw1FHvZuzUdzMzM3A6nSiXy1KeJJFISFNtneVlgs0cL/1ifqaDqWfOnMH58+ctuhuAlOjSdcl1gFoHCrjXczwk13F+OQazh0knX0rfD6/DY3UZEx0c0EQGDdrra5rsbX0trbvNoIm5jqgTa7Uazp49i0ajIQ0vo9GoHMfnl8lkxN5jcIb3wQAMA992rHZ9Xc4dCQa6zre2c/iZGQA3M120PafXCOeANhQz5LmGx8bGJJifyWTWpS+07r788stx+eWXIxQK4cCBA0ilUmKLcY3SJsvn86jValJWhsQFCvU1S/8MDAzghS98Ia699lo0Gg2cPn0as7OzOHXqlJzruSh93d1b2RCIvnfvXvz4xz/Gt7/9bTz++ONot9s4evQoXv3qV/d6fH2xkW4WsY6Ier1eFItFcZR0jU6mo7K+tu783a3QsWANy3K5LGm6ZDtppdhJOWrnkkzqSqUi6c901Oh4kWnucCw3E9VMMSrJ9dac2yrRm9lagRHNHOhWdIphpVJBqVRCu92W2uB8ziabjRFl7QgzxU2XmelVmnUvRQcqaHwAsDj3a5VKoVPP0jo0hoeGhiRVbz3Mc7sx8l8abmS+kaXo8XiQzWYRi8WkZnKpVNqxa3kj0lfmWy993b0zRDOv7PZPOqPUgWQ/EVQlyKr140aCbNz/W62lRtV04qjPdWaXWU7E3PvpCJMdZN5Du90WYFaX1tI/1Ncmk416jCU/dPpup4C4ZkPzh2PSKfV2xASTza6byenz81hz3rvNCFjtuXDemXHmdrtRLBYtADZJDKw1bzIjgeWAic5u41yTVWa3Bu0yHc1gsQbzOZ92jrc+P+eTx5vPiGuN/WA0630t0fZKKBRCKBRCNBpFPB5HOBxGIpFAMplEvV5HsVi0pP3zPnVfGDtbwQx8+Xw+xGIxNBoNxGIxOXcgEBBH3Cy1tNulr7u3Xvq6u7fSLZBuitbddmLqvVKpJPuE0+kUv5sl2wqFwoayVai7geXgIwPX9LvX+j73b/rOevy6cWm7vVS/2w641t/R/rYmtFEXaNb2WmPrdJwmw/H/ACylZM0McJOIZn6X99AL0bYG+2SwXIgGwBcXF6UPXbVatTRu571TZ+ueLmtlf5uEDVNfmX8znyWwMqBg92P6/3zmxH50SbRuROtuZo+ReR4KhRCPxxGLxQSz0n3bTNIk3wv9fLU9yPsjKa7RaCAej0v2RTAYlEzAvu5e+f2+LMuGQHQA+Jd/+Rf8n//zf4Qh8tOf/hRf/OIXAQB/93d/17MB9mVj0m63JVrXbrfx6KOP4ty5c1J/cmBgQCKF1WoVU1NTwkBfrzIhq4cb0OOPPw6fz4fBwUGkUil4PB7EYjEBMsnqAawpUIwwsqZ3JpPB7OyssIhZc53pONqZJqhrggKcAzqMOhK7FWx00znc6Aa2ke/o9PYzZ86gVCrB7/fj3Llzwtbms5uenkY2m0W1WhWwlorS6/VicHAQBw8eRCwWkzTpnQSem+JwLKXAJZNJBAIBAcFZy7RT01yfz4d9+/YhHo/j4MGDePnLX45kMimlXLoxYi5GBgYG5F3hu5HNZvGTn/wE//f//l9pePdcqL3aV+bbI33d3TvRzkQ3WWJ2sto6rtfrOHPmDObm5iy6k85pvV6XjDMz+L1a4NVOJ9brdenRAcDSgLndbktQ0e12C2hLsKDVagko0G63UalUhJlEJhpLatH2YNkylrQi+Gg26xoYGJB+EwSJdbNV2jFkqjscDgksEITWactMrff7/XKf2lHSDCcAFta63Zxu5j7Ubi83cGdGFXUD67zzc2bu6edKljlroY+OjmJ4eBilUknK+Oia/CzrwhIqAORZsnEqswsptL+0biQrkr/rcju0LYLBoDjOuqwde4+wlMvk5GRXtobT6ZS6tqOjo7jyyivF8WYpHKbkV6tVuX/dT4XOv67Dz/kkEMT7TSaT8r5PT09jcXFRUtCBpXXERuEnT560DXDsVunr7u2Rvu7urWjSTa/XZLVaxTPPPIOZmRnJ0mFPM5YWm5+ft9XbWs+Y47IbZ6lUwvnz5+F2u5HL5ZDJZMR3IxDLvU0D2hr8NolwDN6ylFmpVJLxl0oluFwuaSpJJrIud8XAgNardoEL+uLMcjODFObxdnND3WKWhtFZ6GvNYa+FWWKNRgOZTEZKw+jxFwoFyYIqFotic1B3s4loKpXC2NgYhoaGLOWEdEacZokzOKzL6WgiAL8zMDAgwR0C9WutNx7L7/Mz9n8JBAIYGhoSpv3p06flPJ3mnfXpPR4PDh48iOuvvx6JREJqnnu9Xmn6yabptCNol7GOPe0N6my95jWmoZ8RdXc0GsVll10Gr9eLUqmExx57DD/72c8sPeV2u/R1d29lQyD63/zN3+D9738/rr76aoyMjOxoMO1SFkbldBMsMoqZEk6HlTU6N/qC0OHOZrMScc1ms8hmswgEAhgbG0M0GpUSLJr9xIgt65+yjvvU1BQmJyct43M6ndKQipFOAutkGlOZMorOTZ8gOzdXAJbfey1aeV8MgH6x1282m5iYmMD09LQENDSbrdVqiTLXzEPOr8fjQTKZxN69e6U2umaR7VRhx3W/349kMolUKmXJuLATj8eD8fFx7Nu3D0ePHsWrXvUqpFIpC3NxM4W13CORCKLRKEZHR1Gr1TAwMIAzZ84gn8+j0Wg8J0D0vmy99HV3b4VgJlNauyk5sR6p1+s4f/68XMuUTjrFdMRNsXMsWa5E1zOnA91utxGLxaScjK7pTeeiWq1Kc2s2AGcpC56nXC4DWAJmWd6j1WohFApJY2UNaNNmCQaDYstQNxFEZ/CdZWg8Hg9mZmaEQcfvcF7oRBHk1f0/+MP0eoK9TI82536zRQckHA4HZmZmAMDSL4XPrdOYyLZiP5OhoSEpEQNAHG3tSNMRZ3CkUqlIPXaWIDPTx7VNp1lomqnGsTKji7Yb65kCELA+Fouh3W4jFApZwK5OQgYcm3+/4AUvQCqVsoxV6//5+Xk0m01Eo1EplcMsOzLSeT29Hgk8cB5qtRpmZ2flvqPRKAKBgDDcWq2WNB59Ljjhfdke6evu3okOiunPein1eh1nz55dkYHdiQlNoY5ajfFujpVsZofDgXw+j2w2C5fLhXA4LLqOZVwZNCThjMA5Ad9CoSBENp7T1N1kR7NZo65JzV4dACyAJufcbp6ZecRgO7DMDO8EonP+OE8mcN8L8trFCEFyNpmdnp5ekZml54rfoTgcDiGApVIpDA0NYXh4WErS6cbuPJ7PiufXut0kDbbby6XUqK/NcremnUgWN0FozUZnlYBgMIh0Oo1Wq4UnnnhCgvKridO51Dg0GAxi3759uOaaazA0NCQVCKhndQZmu92WZqwkzZFkot85M0OOQDsAIXYAkPclHo/jsssuEzvz5MmTsn76+rsvpmwIRP/Upz6F+++/H29+85t7PZ5LSjo5ur3e7KlkqDR18yszZbtX1wIg6WxsesJaVCYI2263JdLHenFULGQ92THHqbhpELjdblGm+l9d881M79ksNrppKG2XItdjIBOPDEKtGDj/eox0qtmoho7jRmvcb7VQgbZaS81GCMTYpZjxHln7fWxsDKlUSph5W3XP+hq6hmwikcC+ffuQzWalhutGUkB3kvQj4lsvfd29+8QE8rbiegTC+X+CublcTpp2mY0xmVLOGum6JIzpHFLvEADXbHGdJcTjtPOm9/V2u72ikZmp57VDpfuO6HHR0bdLN6ctcTEkg16I3i+py+k02wENnCefzyeNNZm90Gq1xOnV6c/aJtDnpBNupunzOLM+rhazHq9Zp1cHavS5OT6/349IJCLry8wi470yYy4ejyOdTguzjXagfo/oTPO7DBjxMw346PVnd396DBqkYp1/ZgCwWXCxWOx4nt0ifd299dLX3b0Xvreb9S5u9D3ZyPe0bmBNaO5BZNoSKKW+ow7Xeytrvut62voa1AEOh0N0t65TbddMVJd0NX1uO3BXg65r+eh2fhn3bP3vdom2dUwQXeslPTea2e33++H1ei1BDzMrzvzdtLdW8121fub3NflvNdElfLSe5fdYVq1WqwnOYF6bWQhDQ0NIJBIYHBy0zXS3s4P1WtTrTdt85lyYYga5SNxot9tIJBIYHx9HsVjE9PQ0crncqvOxG6Svu3srGwLRG40Grrvuul6P5ZISbXADywY1N9tei1YmOsLb6wibVly5XE5KsExNTVm6XmvWEjdSszan2+1GKpUSJjqVM0HgUqkkTHMd8eZGrh1J7TjrWmm9Fh0Z57OkkrEDFLZKeN+6bhlgNbzMsXm9XkSjUYRCISSTSSQSCWlSthtER6FjsRj27t2LQCCACxcuWNgRTqcTyWQSQ0NDGBkZwSte8Qq88IUvlFSyrSj7YycDAwNiQL3kJS9BLBbDzMwMHnzwQakJpxl8u036ynzrpa+7ey/byXbqJBczlna7jVKpJI0neZ5cLieNzMz7NeeAoLNmqmuQks724uJSQygG2wnwanCbetrn80k2m9PplBI2bKbJ0hxut1vSnTXAy6AkgYVqtSr2CgOr3EtZ45sMKN00bScIHVIN+ALWNG2ytIaHh3HgwAF4vV4p3dduL9Wn93q9ci7aRwRAKCxfwuxFzgPZ+2wUZwIDtDd0GjkZ6zo4reuacq7JKHe5XBgbG8Pll1+OUqmEM2fOrHBkWa4glUrh5S9/OS6//HJEIhEMDQ1JCRdmbunrs0EryRtut1sy7XSQyAzsmPY5nW6Wk2Etd92Eb3R0FNlsFj/84Q/x5JNPSrmgvu7uS7fS1929Fe2Db0YW2UZFj2MjQDoD0k6nE/l8XnxrXYZLZwfx/9SBrNNtNx/U3QTZmXlOQF5jDCaAznKY5t7BsTAwrPdbzRo25whYBtj5DKkP7fzv7QbS7cagAXTaRtRnPp8PiUQCw8PD8Pv9Uv6HYDxtGjOIbl7DrneZvq4OJHUKnncSDaKTQMGGng6HA7FYDIcPH0apVMLp06dXgOgk56VSKbzqVa/C0aNHEQqF4Pf7LYEcHcTmHHG8LDXHEnBa1iI+2PWD0aS5F7/4xRgZGcHc3By+/vWv4yc/+cmOsvM3In3d3VvZEIj+tre9DV/84hdx11139Xo8l5RokE9HAjdLeg2Yr3UdOkQUKlTNAOImzdptLPdCUNzv98sGys2N9TvpqAPLm6G+P6acaUdes8I3i1nMZ2iy3rfTSON11wMEkMXm8/ksTu12gcrrFZ0C7vf7EQ6HJRvCBB0CgYA0EB0fH8dll11miWxvh2jGSDqdRjAYxOTkJL73ve9JOt1uyAjoJH1lvvXS1929lZ0GnvdKGLA2hamvdkLdDtjrGb2fan1Ip59OrwYQCLIShGd9zHq9LqVBdMmYcrkMj8cjAKVOVda9Uwi6a9vCdB6pO3SN9p3ynPVYtJ6j8FmQCRaLxQQEX1hYEODbbPCpCQbUPeZzbbfbwkAEsIIUoZl3erwaUDEbtWoAnmuB4w+Hw0gmk3C5XJicnFwxFwSI/H4/9u7diyNHjsh3eV0Nyug10W63pXG3Zu5r1pwulaNZknr8vC+CAqwJz2N8Pp/0C1pPs7WdKn3dvfXS1929F50Rs5PkYt4PM+jXjegyq9St3PvtGMHc46vVqiWoDiwHAXS2mMPhEAIWx6f1lz6vbkYKrGxy2SkTSZ+L9gWvtRMCJKvtmRoLoe7iMwkGg/B4PBL45/EmAKzPbQYpOq1v/blmn/N3jdXYjZ0gus5AIC5DXZpIJCxZ1Vr4eSgUwoEDB3DFFVdYCBYmUcOcL91cVONp5toyf9efmd/RwR+W0JmensaJEydW4Aa7Ufq6u7fStTV37Ngx+b3VauEzn/kMvv3tb+NFL3rRCmbqPffc07sRPsdEb5YEKIFlxUMm1nZu+qbS0uMDNv4SmZtgIBAQxc3mYma5Fzq3rMFaq9WkIVSpVJKyFnoz1cqcn3Gz18wn3qvdhnsx96ZZ5yYLfSco826FtUkJXJjO8m4SnVbGe9EsxLGxMVx55ZUYHh6W+qg76T7ZZC0cDmP//v144QtfiEwmg5MnT0qtwr70xU76urv3wvqLBFkvZl/vpWG+mUa+Zi3Z1Z/0+XyIRCJwuVwrmnUC1rJmbF6mM7e0ca9rdNJxZhYagXfWynQ4HGI7kE3Nc5jj1nNEO4DBdnMcBHN1BtlO1N12Y9JAMUFrMr0XFxeFWQ4sB8v5u06J1g40GWAaCGfZFZMZqJ+V1+uV+eWcut1uCXzopl0McrB5LQMkvCdTnE4nhoeHsWfPHqRSKanPqzMNdLYWn7nuDcRyBgCkyRsdeQ3mmEF1M+W91VpqJMoSg8ViEQ7HUtNU2q/sz2LeW1/6Yid93d1boe4ikWan7OfcWwBsio+ogwW6jjQ/Y8kvMpt1vW2Oh/q8Wq3KnkrfVo9fB1+pU3XjUn1+u/2U80Edps8LLGMCPI5/Y38VnQHHn52quyna9tA6lkFZAFIijyA7YF03ZlBdiyYh0u+1A905Duo+j8fTVdCXQRLqbmC5XC7tKzvG99jYGA4dOoTBwUEEg0GxBRjE0TYk31diZ8ByU3gSAIifmc3AO73rZuCf60aXy+Pcx2Ix7N+/X8qy9XV3X4B1gOg/+clPLP+/8sorAQC//OUvLZ/vJOBpJwojjey8HA6HLZtaqVSSl3M7AFddVkVvumb9042K3hDD4bCkKg0NDUm6Fx0p7cARjCaIXq/XMTk5iQsXLqDRaFg6W1M0qM70NgC2Tt/FsKt15FYD52TJcVPmxr6TlbkWr9eLWCyGSCSCQCAgIMVue8cdDoc0V1tYWJASKVzPXq8XR44cwW/91m8hHA5jZGRkRdrjdopmcTgcDlx11VWIxWI4efIkpqamdi2I3o+Ib430dffFiQlMkxEdjUbRaDQwPz8vTsdGz29mUW30PLo8XK8zzhwOh+iAaDSKaDRqKZWWSCSwf/9+ST02m3VSTy8sLCCTyWB2dhbNZhPlcnkF4M4eFgygs846WcOlUklASr/fj2AwuEI36YZS/NeuhB5rjxIM4Hjp9AM7f68xx0dnVpfPW1xcRKFQQLVaFcCE9h5LmPBceh6pdwhUEMTQmQRM36awQV2r1ZJrNZtN5PN51Go1uN1uSwkYXicYDApDnmUCVmuiPTAwgMsuuwzXX389gsEg4vG4MClZ7odp4Q6HA/V6XcCJSCQifXRYDziTyVjst3a7bSF7MACv55z/skkZAXk9RgYLotEo9u7di0wmIw3idqP0dffWSF93X7yYOiEcDiMSiaDZbNr6jdshDFAyYNyrkq4ajObeHY/HEY/HLTqCmbgEPOkfMdjHZo6Li4uYm5vD7Oys7PGNRkMCtmbwFYCAnOVy2VKGA0BHkNbMWjIZ0/r/DBBQz9v53TtdiHHQxtKZc6FQCAsLC8hms6jX6+LLauY6sIx3UEwypC7/onW9nR5jOZ/FxUXb8q2cfx10Z6N2kksIeJNwQbuLMjAwgKNHj+Kmm26STHFd1s8uUwGAEC1ZlUDX4md9fo6f5dk0WXK1+desen39arWK0dFRAMDk5KT07tuN0tfdvZWuQfR//dd/3cxxXFLCTY1KAlhOk90ukFJvtHSadBdvh8NhYVdv9EXUDCmWCWHKUigUEodWs6E0iD8wMGBpUOrz+eBwOFCpVGxZeBynZpJpZ1nLehnpdvevr6Ojm/qz3SKMImsG+m411mls8F600eX1ehEOh5FIJBAMBm2j5tstOgAUiUSQSqUwMzNjW5pmt0hfmW+N9HV374U6TPeX2G5mm7YnNCNb656LGZ+2WciQ0k4uwWy/32+xHTQznI2dyQbkeVdjCQHLQQHONx0e2gnagdf3r20timYOa5Y1dYLZM2Y3CudEs/kBrLBJKDyGtpF5Ls0I1Kx02qz8nH8z15u25fQYzOfC9wqAhUVol01A+yQYDCKZTMp6JAiuG+Ppe9K2tvlD+5DfN23HtdYE16h5HN8Hn8+HQCAgZRC2e8/YqPR199ZIX3f3TrRu4N61U3waTV4DVpZ37UWAnddgvW3qYdaTZk1pr9crJa0GBgYElCbA7/P5hAltsqB5rU77vWa4m/Nup49MnW4ea4Lp+u+7UX9zTeoSdLruuZ1uMW0es0yansONkCD5XTOD3y6QwXWmbQG70m20H9hvjVmNun69DuZrO43/1++MvibX2mpEErv5M981cy4DgQCi0ShKpdKKgMBukr7u7q3s/uJ8u0z4gtJh0ang29V8kkwkprgyJZs/TANmimw+n5dUVLu6qXbCjSoQCCCdTsPn82F0dBSjo6PCCmKKsV1nZm6i3KypjD0ejwVA11FMbXjolB/eE8/LjV5vxqsZVvrZ8Dx0uHTaGtOvTIdut4gu50IltxtFMzH4Q6ZjKpVCMBjEnj17ZA3u5MapbrcbIyMjCAaDqNVqGBwcRLlcRq1Wk/T13SJ9Zd6X3SB268xkqno8HmFKr3ddXsx7oJ0UXdfU7/eLI0w2Wa1WQz6f33BzTOoDj8eDeDyO4eFhS0DS6/VKfXNty+j6lgzKRiIRySyr1+uW3inAEpusVCoBgKVeum4eRn3t9Xrh9/stJdMIZhLc93q9aLfbwo4nk91Mc9YA7G7cX7SdxRRpn88n9hKfH4kKwHIdcq4hp9MpzP92e7lx6MLCAmZnZ1Gr1RAMBoUNB2CFU+n1epFIJABAGnSzjAyZi9SzuqZ9u92WhqkEBQg+M5Xd6XQK6zwQCGDPnj0YGRmBw+GQZvZcq7w/3SSU/6czzHtnMJ3liFj6xmRD0n43GZJsCKfXX7vdRiQSQSQSkfkMhUI4f/48JiYmZE13a0fvFOnr7r7sFtHgGH1A7gfc/7ejYTSBRJanIImMZV7Z8JhZNblcbt3j5L0PDAzI3h+LxZBKpaQsiGaRaxYu9TN1IZsyh8Nhyd5hU2/qTt6X3hf5uy4h1k3mtxkAp/9cqVSkuTQbOfN46g/aHLvN5waWdPTw8LCwqPnMGSTWutsMMphgNW2bxcVFlMtlNBoNuN1uiz9vBikYYOHvZlYCg9cUM6DRai33EyG2RN0NAH6/H/F4XPxvZqoxy1AH5vX5+TvXpSaKOBzL2dosV9Rut20zD/VYdZCBtmm73ZY1RduH9kk0GoXD4cAvfvELybTbbWusr7t7K30QfRuE4K4Jopsslq1arCwtQwB9eHhYNiSd7rqwsCCKnA7BekB0OrSDg4MIh8MCotP5WA2k5UZII4NKPRgMolgsSi1KrUD1PHKc2hjQ7DOem4aVXaTbFM30004+r8/GZ/q57iYhQ4GlXIDdmzZKp13/xONxHDp0CNFoFKOjo5LevZPF7XZjdHQUQ0NDmJ+fRzKZxPz8PACsmvbel770pXei6yb6/X4AS04Igbf1yMXqBc1yZQA8lUohHo+j2Wwim81KGbRSqXRRIDqzv9iEWQOMdG6oQ/VnCwsLorv5ObDkEHP/0mLX2FSD6AQyGXQn6MA9kDqZf/f7/ZJ+zhIy5XJZAAxdT5WO2m4U087i8+J8MeVaM8loq9CJ5FzQoXU4HAKiz8/PY35+HqlUSoJHwHKdWtpEDFITvGFpnmAwKMENfqdSqVjSxzW4RYeajjGd4kAggJGREUQiEdGHLBOUz+cRDocRi8XgdrsFpOf64LtbqVQkYEBgYHBwUNLnWbOfa5HgAJumcf1pO5J2sw6ypVIpDA0NyXe5XzB9XQNVfelLXzZPuLdrEJ1Bs63OCtHZQn6/H9FoFB6Px6K7M5kMKpUKstnshnU3M3wIzsdiMWn2yNJZer/X+x2bRHKsABAKhUQnTE9PyzVWK5tiV07DLuvezBzSLGbiJNVqVWwGu+fFMe82cJPC8rbM6qPupp1iBm9NQFhjF1xfJHhUKhXJFOTz1CA6wWT2C2GGgn62zGBwOBwy1yaxkLYbA961Wk0wHJ/Ph6GhIUQiESSTSSlpXC6Xpdwagzo6AEbR9c51kMWO6KexF64Jk53PcerAhC5Rw9JPbrcbsVgMlUpFAg27NVDTl97JxgtB92VDooHdZrMphrUJ/q4mfMmDwSASiQQGBwcxNjaGffv2Ye/evRgbG8Po6KgwdXQEWItO7/J6vVL7kcpWs3b5GUFVpn51U35GpyeR7U52mC4VYpdea/7oc/J8HBuj0nb3qpn+5o9mKZmpQHbH63Ro3ThUn0+nJa03s8BuLrYDvNYOIse1m0UrXTrN0WgU8Xgcfr/fVrnuROH75PV6pTYzwandJHov3OhPX/qy1UJdQmeTP+sJlGrdFYlEpE5pPB5HLBaTwKVdVpYWAoxad+uSVGSlk9VEvW6WP+lGCF6GQiFh3HbSjRrkttNh3H8JOvJffaydQ8QgtU4H10CnmQqsj9FkBe1gArDobdpkG9lfNLN9O8S0L81yKPoY8zvaGeScci70M9UlCM2murQlmS3YaDQk06BaraJSqaBUKkkDMJ7HrGOr3yU67XSSyTDjmnc6l2uj6rR3rgVdFgZYJmTobEpel2MlAN5pDeg5Y5YHSRw8p66tXi6XpYQL7WcdGNht0tfdfdmNwr3BZCuvZ00SZGQ2TCqVkp9kMin61wQ7TSFIGQqFBDAlOMfgNH1v7XdvpNwkg5nU3RStr7mfmYxdM1ios3rpe681JtP/1vvyaqU3TACUQQS7Wum0yS5Gd2+Xr61FPwd9H3Y63G7uGOxlFrwG1c3nacfI1oEmZqSxL435vujsLm2DUbhezIxF+t0kP2i8xW4d2NmCmojKtWQ3V3bzq0mrJmZjjof3rrMe2c/Q7OuyG2Q7dPe9996LAwcOwOfz4aqrrsL3vve9VY9/+OGHcdVVV8Hn8+HgwYP41Kc+teKYr3zlKzh69Ci8Xi+OHj2KBx980PL37373u/jt3/5tjI6OwuFw4H//7/+94hxvectbLGvf4XDgV3/1V9d1b7vPetvlwg2q1WqhVCpJGjMX51rlXOh8ut1uHDp0COPj4wgEAhgbG0M4HBaDvtFo4Omnn8bZs2dRrVYxPT29ogEhnVemD8XjcYRCIWk6otOc6bgyXbxWq2FiYkKYPasBCHQcPB4PEokERkdHEQ6HEQ6H120Q6BQepje53W4MDQ3B6XRifn4epVLJwmLj+Dm3dAQ160mzn8z639oh1s9Gp31TebPkDR1IOmPdRit5P1rJ6fNzDJstZorTdoECvRQqca7reDyOI0eOYHBwUNbPbhC+k5FIBM973vMQCATwxBNPYHZ2dtdFxfvOdF92m5ANxbITlG5YKXRgQqEQQqEQfD4fhoeHEQqFLHplcnISMzMzUnbCLuOLbLB0Oo1IJGIpxQZAdFoqlRIAvNFooFarCRN7PVlSoVAI4+Pjks5dLpctDpnWc2S4kenH8ZKFzHqYLpdLyn7o5mWmY09HWpdgIRiqmzzx+rSTyFqnLq7X61KXPR6Py7EEVUqlkqUJ+HqEbD/WkdXNsbZKeL16vY5isYjFxUVJ3degN3U655Xri3Ndr9cxPz+PdrstgZl2uy3MOJYv4vdoK9CxLBQKmJqaQrPZFABcN95MJBLYs2cPXC4XSqWSXIu2F9cP1y1LszBbkOUA4/E4HA4HJicnhWlOO5rvqG4ux7TvxcWlJqt6fRGM13WDaRuafYBok7XbSwy6QqEgGZ2mY12pVDAzMyOg2fDwMEqlEgYHB2VcLImwXaLH2+04+rq7L7tN2u2lzBc2Qua677b5JP0GEm+ouynNZhPPPvssJiYmJJulU7a2x+PB6OioZMwQQGew0O12I5lMot1ui66s1WqYn59HNptdF0ErGAxi3759CIfDwiDmj0lOM7NrGHCnvtUBwMHBQTgcDtEXLJuq55v7MTN/NFjNUmOaJKeBbO3zEmdgSRlg2c5oNBpSZnYjuptZRAz+mo3Ot1KYJeVwOGRuNINaP3fOCfUabZlSqWQhE3DeGLQ1AXQK7QHiFqVSSa5JDIVBcqfTiWq1KjqXPyR30QbTWRBcMy984QuRTCaRSqUkoE5dDcAWF9IBBHNd8BoUswSQvj+tx3Vght/RGEy9Xkc+n5eMxWg0inQ6jcsuuwyhUAgXLlzAmTNndl3m4lau7QceeADvfve7ce+99+JlL3sZPv3pT+Omm27CY489hn379q04/vTp03jd616HW2+9FV/4whfwgx/8ALfffjsGBwfxhje8AQBw4sQJ3HLLLfjABz6Am2++GQ8++CDe9KY34fvf/z6uueYaAEs21Ytf/GL8yZ/8iXzPTn7jN34Dn/vc5+T/zK7sVvog+jYIX2K7lOW1FrdmjycSCVGMz3ve85BIJFCv16VGMtOXXS4XMpmM5TxUimQOMf2VjG690bbbbUnxbbeX6op6PB5kMhlxxFZT5jQIdBRPOxvrBS/18VQwoVBI6qtqp56ix2fWw9PlXHTUlufRGzEVF89DhU0WFBWwjmx2u2Fxvu2AfL3Zb5VoQ2q3RVtN0Wx63hfrxg4NDUmK4k4Xbfh4vV4kk0k0Gg2cP39+V4xfy8Uy0vpOfF+2SzQw163ovYfs8VAohKGhIcRiMQDL+3ytVkOxWBR91ulcZJgxG4U1GwniErhjTWk6Nwy285rdvEtMZ41EIigWiygWi2i1WrbpxXTeAGuqLN95ZqYRpGXdTDrh1HUamG+1WnJPmsGrnS9ek2nPGgTVTCNdK5OfkXW10frUdBoJ9Nbr9Q2d52KFTiZTqGnraMdRs9c0OKFtU5bmMWvaE1xmmr9+vsw0JEGELDaPx4NGo4FcLodqtWopodBoNFCpVABAnG6OW5dhI8jEcUQiEVnvXIvaubarpc/z64wDvXb5zHiPLM1iOt/a5q3VagI2cD416FStViXwoO1fsk+3u9+MydrrZi/o6+6+7Fah381gLn28btYkgd9oNIpgMIixsTEJxnLfLBaLyGQycDgcq5ZYZNAtlUrJ3mSSt6jHuM8w4yWfz6/rHfJ4PIhGo4hEIrIv8x3m9Uyfk2PgffP/uv9FKBQS0Jb7qsYNKJwbrS/08drvZpCX39P9xngca1ZzzNS3G9W52u/mWLdLCCgTc7ET6jnqNo4bgKWsXiAQsASJTQa/HZDO65tZ+cByaSD+3+xBx79zXfF587oMig8ODiKdTiMQCKxggK+2rs0ggv6ux+OR69rNmx2jWhMItE3NcWt7kYEAVoBoNpvI5XI7xu8237lO0ivdXSgULJ8zsGbKPffcg7e+9a1429veBgA4fvw4vvnNb+K+++7Dhz/84RXHf+pTn8K+fftw/PhxAMCRI0fwox/9CB/72McEDD9+/Dhe85rX4M477wQA3HnnnXj44Ydx/PhxfOlLXwIA3HTTTbjpppvWvB+v14vh4eEu736l9EH0bRStwLpd1NFoFHv37kUoFMILXvACHD16VOpDspYjU1vr9Tr8fj/m5+cl8s4mJQAkLYuMdP6uUxsArNgMuVnp41cDeBklZTo5naJeMH+56Znn50ZvAuDcODXTWwcCuHFyfuw2SJ5XpzlrxtNaTU14baYEMuWeEV6y2fS1eX4yrMh4Z508M52p0zU5D3o+OomOdO92p0enoPG5ezwehMNhAaB2m7hcLsRiMdTrdUlr70tf+rIzhenffr8fhw4dwv79+6WptsfjEd1Np2hoaAi5XA6/+MUvMDMzYzmXnUOkGWRkwXGPI6OMjGDquW6cFupTBr25hxII51g04E2bQIONWieyFAfHR6eQbDK7wDz3b+pe3isZWEzT1/s87QDqZp6TxwHLGQTrraNKEIYZfJp1b9pZuu5sq9US3b1ZelWTADSzSpcO0UCBLiFAhzEcDqPVaklNc65P3jcZO7xX1vtmCjSvpRuksflsMBhEuVyWQEcsFhOdTHuOdVlJDCkWi2J3cnyRSESyGrneGDhiwzLWWtX2qyYn2Nm6ZhambpSmAQtgqba5rg2v55xAGhuhBQIBJJNJzM3NIRKJoFAobLsjvtttu770ZSNCXdIJdNMSDoeRTCbh8/lw5MgRHD58WIBpr9drCcodOXIEqVQKuVwOP/3pT6VuOIVlxDQrWNvu1Ec62wpY9nWB7gLfBPx1LxKttwH7uuQmsMpANP1LDZaxzAyz8kxgXgOWmvHLOTeDzmQy6+vqIDp9bRIAFhYWhIm+3mzvgYEBRCIRBAIBC3jK/Z6AsKm7K5WKBG03Q/ScUWdr20o/d/6duo395aiPSFDQZfD0mjLXkX4u5uf8v850JHbBz0nuou4mU50VCzhestI5FtqZ1O/8PnEs2gaalc/rE7fRjUF1WTf9nPS9c8zEszi3mjjIcxCXCYfDUmqRc75TQPSt1uN79+61/P9973sf7r77bstnjUYDjzzyCN7znvdYPr/xxhvxwx/+0Pa8J06cwI033mj57LWvfS0++9nPYmFhAW63GydOnMAdd9yx4hgC7+uR73znO0in04jFYrjhhhvwwQ9+EOl0uuvv90H0bZb1LHyHw4Hh4WG87GUvQzKZxJVXXokjR47IRqDZXq1WC/v27UOhUMD58+dRLBYBAMViUZjSBJ7p5LDemt3GoJlGBOwI/FLxdAJx6TxEIhFJYaez1AthajiwxPphzVc7p1gDwpqhxO9QEZkMK4oGY7VjrmuHEgSwA6l1xDuZTGLPnj3w+XzyEtO40sqF12q1WqjVapibm0OtVsP09DTOnDkjTK5O80+nVwMd/LfTd6g8tPLVxtFuFH0PjIin02kMDQ3tytpmfr8fIyMj8Pl8eOKJJ3bd+Ptstr5cShKPx/GCF7wA8XgcN9xwA371V38Vi4uLyOVywmbNZrNYXFzEC17wAni9Xpw7dw7T09MrQHRdl9QEQAGgVqshm83C5/NJEzE6JwCQy+W6Ao2dzqXeK3TGNGuNYCTHoMte0CYAlpnOZC0BS2SAVColDjH17NTUlACWdu+3dqgbjYY4jWS1lctlNJtNBINBC5DM81H/k9FnMpO6dYxpG7Bm4/j4uIDHurY6g+VszMl64DMzMwI8dyPrJVvw3mkber1eeQa6fA31P4/jD9lW7XYbiUQC8Xhcsu3orLLB++zsrDARgSXHnc6Ox+PB4OAgUqmUpPTTXmGT+mg0iuHhYQuwxPlttVq4cOECpqamhDBANncqlZIm9Wz+NTAwgGq1imAwKI1v+Y7xPpmZoZusmiUMyOTnv/l8XkAXAhR8JgRiWq0WCoWCMO3JZuf9Op1ORCIR7NmzB8ViEalUSt7T7dbd69Wlfd3dl+eCdJvdm0wm8ZKXvATJZBLXX389XvrSl1rKU7Gk0+LiIp7//OfD6/XizJkzFt1NvUiQkbXTAWs2CIOVul8YAOlDwgD1WrqKZU/oe9M20IFUM1vLFOpl6jaC3MQKIpGIhWXeaUx24+V+z6B2sVhEs9mU/RywNobkT61WQ6VSkflcbfx24vF4BIc4fPgwRkdHLexrrbuJVVB3Lyws4MKFC9IIe7OEvirJC8yUM9erLo9DW4iVBYAl3RSJRKScHb+jAWLznAS0NTCtbSlmqRHwJl5BUoQmL5RKJeRyORQKBUtmGUkUBM451wzQsGxwLpeTYDvXHZ8NwW3+cMx8frpOO8/PwLbuNcR/NclC/zBQEwwGkUwmkclk4PV6N9SbYCdIr3T3uXPn5D0FYMtCn5ubw+LiIoaGhiyfDw0NYWpqyvb8U1NTtsc3m03Mzc1hZGSk4zGdztlJbrrpJvz+7/8+xsfHcfr0adx111141atehUceecT2fuykD6LvEqGS9fl8iMfjSCaT0oTMruQGN3iPx4NqtYpIJCJdkvXmoRnZJgO90zh0BM50VDt9hw4+lXYvSoRoBW+ef7X70I64ZuXpaCsVswmiaxBaNw81G1J02qQIPjCCy5TeaDQqILpdgIHnZp1P1hJlxJbKwtwgzSyCblno5nV3u9NjBjU4J3T0exXQ2UrRhsVuVOh9R7wvl5K43W6EQiFpJJpMJiWgTaeAjJ1wOIxQKIRCoSDGvw56al2tGeH8mw68anCYzpbWdasJHQ46UwAsOlKzdulE22V/2ekljoU/upzIWqLZbfoeOUd2pdRMVpxZ57qbuTDnnPsv2fTUxUwBBpaY2ATRmapO5xzAijmzu67d76uN22Q32t2nnZ1g3iNtIJNYQRuO59DgDudVp+1zjei6rdqB10x5k53J9PRGo2EBC7gmNRPP7kfPgx63Zlpqe5TAu7lu+R1tW9KGYIM0HQDQc6ZZr5xbBix2o+3R1919uZSEzRBjsRji8biUc+D+SCZ1q9WS7Jh8Pi9AoQZ5tc9s+tKmf6bfMztS12pCMNQuw5x7jj7nWv6DaUdoHd7NHma+87pUCPWGJqY5HA7R43pOdBlV+u5r7Uc6QErg1+v1IhgMSsZVrVaTcXAfZwCczHRm91N3d9sHR/++3r3TzmfnmjPvj38zg8IaONe4hp1vr7+nGfr8Vz8Prl/9r17TDE6QUGHqaT03tP/0ucy50+PS60/r2dUIjJ3OYep5HVgwMQNNhLyUdTcDNN2IubesRci0O978fL3ntJNbbrlFfr/iiitw9dVXY3x8HF//+tfxe7/3e12dow+i7wLhxu9yuZBKpXDw4EEMDg4iHo93BKPJEHM6nYhGoxgfH0ej0cCZM2cwMzNjqRdJJaYB4E6LUUcv9XfXUmB2IDfv7WJFGwbrAen1vepouhkgMO+fyks78GYU0xwfHb5wOIzx8XEEg0HEYjEMDg4KuKIbdpjCz7xeLxKJhLCfYrEYarUazp07h9nZWanJx4YxnA8aA3qsuu6ZnbAkANPleP+8p90kTPXnvGgHfLc2TmUGRrvdlnTN3SR9R7wvl5L4/X4MDQ0hHo8jn8/jpz/9qbCwNOjrcDhQLpdRqVRQrVYxPj4Op3OpafbZs2fl+HZ7qdFjPB7HyMgIgGWdxFRzt9uNer2OQqGARqMh/U7IGFrrHaLuiEQiUvKKThjtC7KHdfkWCsGFZrMpjSepkzKZDBYWFizNINcrDCzrmufAsu6yM7SpA7vdf3Q5GzKRWQbM4/FI404NHAPLOpK6B4AwxDwej5TiOn/+vIWtaIp21vQ5V6vbSpDW7XYjn8/j2WeftdhEtDkACEDNczocS43iWKecLMtKpYKpqSkUCgWEQiEkEgnRpcx24PrStmWlUsHExIRlvS0uLorucjgcKJVKAID5+Xm0WkuNQ+mgFYtFYXz6/X4kk0lEIhGZZ7LbCXK020tsRfbsWVhYsPQ8od3Dd0UDCrouP3/I5DQdb12SUDcppVPPkgMAZF4mJiZQr9cxNTUFh8MhbNS+7u5LX3au+P1+pNNpJBIJ5HI5/PznPxeQkDqc+wKJTo1GA+Pj42i1WpibmxPdzf2Hepg6QQPKOvhHvcIyn902vuN3yLrWekmDrMByGSruYdSj2qfVDHYCzmaQfj2iS7ho/7ler0uJK7ugvNbd3bDxnc6lbLrh4WHJQAoGg1IOk3u67sfBe2UgmaQ3MpDZEJPZBp1wEE0+4HU04c1OSFxwOJZ6fUxOTq4AxHlODeJrQh/nqlarie2XzWZRqVRkDnQghf/q6wCQ0jacHzK9dfAcgGRstVotaSwKLOnuXC6HSqUi+AevzUCArknOa7LHCCsm6ECVtpV1cIqZYxrDoe1qzq8OhJtrSAPr/H1xcRGZTEayzcLhMAYHB/u9yNaQVCqFgYGBFQzxmZmZFUxyyvDwsO3xLpcLyWRy1WM6nbNbGRkZwfj4OE6ePNn1d/og+i4QOqoejweJRALj4+NIp9NS67QTiE62DlNIyehxu93S7EiD4d0wjjXr2mSCrXUPOj2t1xuPCaB3C6JTNMNPO0udnHBTia91/0yzisfjeP7zny/19Vgap9Mz5Ll1kIBGVCKRwJ49e6SBWLvdRrlcRrVaFbCYc85rMVjAcTMzwW787BLucrksSn83Kg0CGVSyml1pAhS7RZhiBtinUvWlL33ZOeL3+zE4OIhoNIp8Pi8gHx1cMlOdTqcA6LVaDXv27EE8HsepU6ek3InWwbFYDMPDw6hWq1IORjvn3Pd4LdoF3QhBdDriwDKITn1Ex5IMbGZ1Act6lWU4EokEPB4PCoUC5ufnJU18o6nR7XZb5knrMN20XetxzTbqRrQdFQqFMDIyIqVCRkdHpYwM7SAzoM97Z3mTYDAIj8cjzeg49rm5Ods54LlMJqEOpNgJdb7H40E+n0e5XJagq8vlksxEMsv4DDhn9Xpd5pQ1YEulEqanpzE/Py/PkUA9AR6mdvOem82mNKHl+mPgmsA20/NJAKjVapJhOTAwgFKpJI30fD6f1OGlo1ur1VYQIBYWFqSEC9PH+dx5rxq44Zph41Om/HOuhoaG0G63pRwPy8I4nU6Uy2Wpb08AhvYG1z/LKE1OTmJyclIA9kAg0NfdfenLDhefz4dUKoV4PC66i0Fhvtv/H3tvHmPZXd2Jf96rt+9L7dVVveH2ig3Y/IyNwAYGMyaTIQ4eLGXEkAygWI40YGvExAEUh5AgEoRaiC3MkBgUBawRIiiKNdgkYDBuEtoLXtq9V3dVdW1v3/f3fn+UPqfOvfVebV1VXd19j1Sqqvfuu8v33vc93/M5n/M5BB4Zf9XrdezZsweBQACnT58W380ffvfD4fAKCQrGsrqCRc+d6zHiBlpmAzCCiOYKHCYENDhO2Qz6IHPi/2J8t5ZB5X420iB0veS9YDCI/fv3IxKJGKTptE47pUW6ScMwmQosAYOs6q/X67KOMeMgjDMpFaqTGKslwHnedrtdtNf5rNG/8l5oLXiuu/T94PsE00ulElqtlqw59TnpxI0mFlJuT1dNmVnbzWYTuVxOmtfzegmiNxoN8fler1eIa1xz6ONTzojJI12xx++IHmuC7YVCAaVSSbTLnU6ngOhcJ+oEOc+/G3Pd/F1pt9uShCiVSpIksHqRrW4ulwu33nornn76adx3333y+tNPP40PfOADXT9zxx134J/+6Z8Mrz311FO47bbbJG6544478PTTTxt00Z966inceeedF3W+qVQK09PTQkpaj1kg+mVi+otvLhVd7TM6m2YubaWzoANnxlFnunW2TuuFkbGzXvDdnEHeTOnFambOim8026a31efX7Rw1cL6eYxDsDAQC0sSSwMN6SvTM58D7SpCcwXkkEhEdMYLo+jz12Oh71usa6LT0Qmc9yYndaAxq6YR7Oc3LyTRrYDsSU9ttFpvNsqvV9BzMpocADA0KnU6nBHO9SpZbrZboTjJw14x2bsMAi0HVakGc+TwZSLlcLsO+6IfMOuBkbhEEoJmrn3SDKl2ivVEzlyp3u4Zuf6/HCKJ7vV75IWCsWVhas5SyHhrs0Owwjo/WqQ8EAuKjzIn51ZL6vYz70uALk8aseNPPlv4cx5Lser0Ne+JoUEaPO9eE+lp6MfS1dSMj6MpFvkdwhcAOz1UzJ/X2BDIY/POa+Rm9zuP9IGih98/rqtVqhr47TBjoqkb93Ov7poECSgYQTLB8t2WW7W4zr7MJHlYqFUm0mmNtM+NbG+Xb2K/MLM/B1+hf2J9qvdrfBKmr1So8Hk/XqmMC9PozvWLzbt/ZzcbbwPbHXDbbkv48QXMSEbX8B2D0zfxtxkn0/zoB4fP5EA6HUa/XRTN9LfxgLeP6jAx6c5xHM69reG91bK/vufZtZrC9m6SJ/l+Dyqsl7pm00LJm+rr02JDhbZaH0deij6uvz6yYwP2Ze/pp3InfH34/zdfZbQ2i77W5Es2Mp10uttO++5FHHsGHP/xh3HbbbbjjjjvwrW99C1NTU3jwwQcBAI8++iguXLiA7373uwCABx98EF/96lfxyCOP4OMf/ziOHDmCb3/72/je974n+/zEJz6Bd77znfjiF7+ID3zgA/jRj36En/zkJ3j22Wdlm2KxiNOnT8v/k5OTeOmllxCLxTAxMYFisYjHHnsMH/zgBzEyMoJz587hT/7kT9Df328A/NcyC0S/TMy8CF/vBN3rS68ZOZ1OB5lMBgBk0tYAr85O5/N5aWyZz+elrGu1LxaPVa1WUavVDGW0Zge1GdNMYwK+62ma1mtf3cp7ei0gVjOOu8fjwf79+0XGhSz0iw2euH+3242JiQnEYjGkUilpYqW7jOsGoVrKZ7VrYNOrZrOJYrGIer0u4M7lpAVGNl0mk0Eul5OyL90E73K0Xoury8WsQNyyq8k493L+JROK8lvhcFj6G1BCIpfLYXJyEplMBsVicYVvKpfLeP311zEzMwOfz4dgMCjgLf2rbpBI6ZNsNruu70+z2UQ6nRbJDLJ6dODRrazb4/HA7/cb2ERsygUs6yk2Gg3kcjkUi0UpB96Ica2i2b9rAekbsb6+PtGv9/v9GBkZgdfrRafTEQkPLW9HTftQKCRs6mKxiEqlApvNJuQD3ZSdrBf6W66RNJNeB7nrmTfJbvd4PBgfHxfmONnV+hnQQArPr9PpSJWT3W4XPfKxsTE5XzPArE0nVNjoTPsrvQ7lMZhY6XQ6wiZzOBzS2JaVFqVSSZqGer1eAbb1mOj1LvVv9bPK8W2320JqACD31syMTCQSaDabcnyfz4d4PC7PtQa2zIkD3i+CIl6vF6VSSRin65Vn2AnT4MNqZvluy65Go79hEpVMYUpr6obCnAd6VQ1Vq1VMTk4ilUohGAxicHBQpLA4b9CfMN6u1WpSlbOWNRoN8d3NZhPxeFzOyzxf60Qkq4vMfp7npa+fCXYyh9c7hhtNCm/G+vr6MDg4iIGBASGwsQG0lpExy8gRCNakRT0+bJDebrdlPVAoFDA5OSnNUc0SJYCxF9tqRt/NXmn02Tru1ueymia8xloGBgYMSWd9HprNbibY6WacvO/mzzOhQPkg+ntWVvJ7wIozavUzyWMGxLlPSgXyHHWCvtPpSFLEbrcLy12vl7TsECvWWDFnBuz1sXXyQBMe/H6/JCJ2Gw7CNdVaz9dO++4HHngAqVQKn/vc5zA3N4ebbroJTz75JPbu3QtgqTpvampKtt+/fz+efPJJPPzww/ja176G0dFRfOUrX8EHP/hB2ebOO+/E97//fXzmM5/BZz/7WRw8eBBPPPEEbr/9dtnm6NGjeNe73iX/P/LIIwCAj3zkI3j88cfR19eHV155Bd/97neRzWYxMjKCd73rXXjiiSekinc9ZoHol5HpCXmjzqebw6JjZzktS4Wo39mNKVatVlEqlcRxarB6NbBZZ9TXw1zfqJn3fzHHMH9us/vhmDscDsRiMYyNjQmrbb3l9KvtWx+DoASdSalUEsdlBjv491qTaavVEkCe93q1TPRutkajgXK5LI50rcTP5WK9WC6Xg12KQPzrX/86/vqv/xpzc3O48cYbcfjwYbzjHe/ouf0zzzyDRx55BK+99hpGR0fxqU99SjLotB/84Af47Gc/izNnzuDgwYP4i7/4C0Mm++c//zn++q//Gs8//zzm5ubwwx/+EL/zO7+z4lr+7M/+DN/61reQyWRw++2342tf+xpuvPHGDV+jZbvTOO9q6bB2uy2SHh6PR4IJAnsEwFmKan7mG40GEokEstksotGo6KxqJrQG0MlYN8ufrHbO1Hj1eDyo1+vSKI0+l4EKr4mBhy6VJhBL0IGMbh3sbJaJzsTudhjvBeVPgsGgALpMamhglsAxg0oC52RQczsGlzabDYFAAAMDA5KosNmWy711MGtmj61m1IQnQE72OLW5S6WSgPWaXKErDQjuMtnT19eHUCgEh8OBWq0mawwmEPg3wQleMxu56bVDN7BWg+yUv9MMepvNhkqlglwuh0qlIpV4vF6dyDE3aNfsNPMaCIAE4gQK+B3R97XRaCCfz6NYLKLVagkgY2b+dQMDCOqzmXy73RYA/nJMglsgumVXq/H7TNkJkov0XML5C4DB52tjUo6Jbepz6+8GE3TlclnkMjbiu8vlMmq1Gnw+n6GHma7I4bZ8jSBjN4IR/Q/nLC3btZHv9E7ELIyF4/G4rDecTqehslrL4tHWAvg5Voy7fT4f0uk05ufnDZVS3BewsfmO95t+RcuOctw1a1r7Pa499HZcj7HBOTGcblUJnNfNazf65tXGhT6USWsmnMyVG0wo0zeb17XmdYA+P/M900l4Lfui5YbNILrWvtcJpW7JfQAGEL3bvdhNtp7zuRS++6GHHsJDDz3U9b3HH398xWt33XUXXnjhhVX3ef/99+P+++/v+f7dd9+96rl6vV78+Mc/XvUY6zELRL8MjGwfYKlEIZlMSmaROqXmL4+eVCuVClKpFObm5pDL5VaUFjM40BlanfnUbDZqXNERMWNtLqnWE1in0xG2UKVSQa1WM3QN36xx8iPIUCwWJeu+URCdzoHSKCx75kJIB1Ms29JssW5GNh5/GBRux8RLhgEbnQEQDS+duTUHuqsZAZK+vj6Uy2UUi0VDZni3m36+y+Uy0um0NOzTCylzYH+5GK+NYIgVmK5uTzzxBD75yU/i61//Ot7+9rfjb/7mb3Dvvffi2LFjmJiYWLH95OQk3v/+9+PjH/84/v7v/x6//OUv8dBDD2FgYECy4keOHMEDDzyAP//zP8d9992HH/7wh/jQhz6EZ599VrLipVIJt9xyC/7gD/7AkE3X9ld/9Vf48pe/jMcffxyHDh3C5z//ebz3ve/FiRMnNpQVt2z3mmYAMenZbDYRDocl0PX5fMJy4TxbKBSQSqUEgDbvk0FIpVJBPp+Xz5lZZAzAOe+Z53FzqbqWyKCxPJqgIpnCOlELLDfU0ky8vr4+xGIx2GxLDZ80CLGZQJxGP6aT+eFwGJFIBAAk6U9G33qAaAZOmllFNjN9vtvtln3y3Jlg6HQ6koDm63odx+ZZXDtRW5ONSwuFgrAQ9ZiYffhqY0J2NjW76bsJkLhcLjk3nnc3VjmPy2vVUjB6rDj2NptNgB6uJfX6kKaBJd0AjusYPhu6samWiOG+2PBVkwQY9BI8Jyihq0C4tuP18Px0hZoO9p1Op6yntH6uTnTwszy+OfFBAIbnqcGQ3WK76Vwss2w3GOdTMs6DwSBarRb8fr8kmNkwUfccyWQymJ2dRTabXQGk0ydzvltcXFxR2cLf1GLm/EXAsFvson23WaqE2+qGmTwXbmeWDCEwy7lUM7PJJF6tUWY34xzM4+n5NhwOIxqNotPpSIVaq9UyVM6vdiwmUHX/DPNcrOU8mDTW47PWuWt/wYRzf38/3G43crkcEomEQRpNj+d64m76buqum/0oz5PrLD5LAAw+S9+zblX6en/829zkXisgaEk2zXzWYDvxnk6nI03BCdwT/+F95BqL+9D71s8px47XRMKJXuvq+6cVGHjfNbFD++5uySKei66c6/a92E2+cjedy9VklwcadpUbtdNqtRqSySTOnTuHcrkMp9OJaDRqmMy1cdIsFAo4f/48Tp48iYWFBUPQyYlgYWEBqVRKsqoEuKnLSkdJNhuZSWSTUf6F2UZO6pwwS6USms0mvF4visWiTEqbBdE1UF+v18VxEeDfKKjIiTIQCGB8fBx+vx+xWEwAaTozltdrwL7XcQKBAEZHRxEIBBCLxaQ8ejtKgHS2eXx8HPF4HGfOnJH7rQN6HfStNkb1eh35fF7KAlOplJQj76YS5F6mWRfpdBrT09Py/BJY4Xdgu0sLt8NYKVAqlaR65HKyrcqI5/N5w+s6+aXty1/+Mj760Y/iYx/7GADg8OHD+PGPf4xvfOMb+MIXvrBi+29+85uYmJjA4cOHAQDXX389jh49ii996UsChh8+fBjvfe978eijjwJY0nd75plncPjwYdFwu/fee3Hvvfeueh2HDx/Gpz/9afzu7/4uAOA73/kOhoaG8A//8A/4wz/8w40Mi2W71BgINptNDA4O4uDBgxIocZ7i91hrii8uLmJqakrAWm1McOtgzW5fbkzKxohut1vAVOox8zuigygGJUx4m4M+srE1k4lBKtnPAKSpJQP6Wq2GYDCIkZERuN1uSaqzCo5VQutlWtMITJtB3bGxMdx0003odDqYmppCMplEuVxGMplc11zJijGfz4dYLIbBwUEJnNicnUxkrg0o3cbkQTabFYaUx+MxaNsy6W+z2eD3+xGNRoXRWKvVcOHCBSwsLBjOdSNzJdd+lEAJhULwer0SSJKdzoSG2+2Wxp4MxvU6gestAvuaZaYrH/h3sVgEAAGczfqoDOb1ePP5I9GA66tUKoXFxUVJAplZ5FyTcM3JtSlLu0ulEtLpNIBloEA3BqUMIMdNg+dc43o8HpFi4nny2dMBNp9Fat0TBDCz8bR+/m4Kftd7LpeCzWaZZZfKGEe73W6Mj4/jmmuuQavVEplLYPmZ1j0YZmZmcOzYMYmftfHzrFZijMakMhN9DocD1WoVhUJBqph0o2QNQAMwJF85z+rkoRkMJaOcpuNEnZRkLxCeO+NKJji7se27mZ47NCDM+XZ8fBxvfOMb0el0cP78eSQSCVQqFaTTacETVjuWx+MRabxoNCoMf14n5/9urGOdJDCfs75vPD5Bap/Ph71796Jer+P8+fNIJpPi77sRHFeb/yip5na7USgURCWAvpWJd64tiNFoJjp9KP0pY0WC/5pVzrUmk84a6ObrupoKWH5GNHFBs7u5zkyn01hYWECtVhM5IsoXttvLDVP12OtYXK/tOGas8uD97JaU0OepCQJr9Rgyn4f+X69fNM61W2y9Ptny3Vtrl5UOwBe+8AXYbDZ88pOflNc6nQ4ee+wxjI6Owuv14u6778Zrr7126U5ym4yOg840n89LmbVu8MkJnizpSqUiLOJeuqPtdlsyygyeS6WSsHa5D/7NYzKTSA0xrRNlbrqgy76o1W0G8zcyFvpzBNJ1s9ONfNHpAJxOp5Ruh0IhRKNR9Pf3Y2BgAPF4HLFYTJwzJVl6Aa90YMyGc1y2g4muM699fX3CaPR4PIYS5o3K3fAzBHe0pv3FTsQ7YUyy8Pngc8znsJv+2+VkXCRv5pnfDcZn6GJ+AGB8fBzhcFh+ugHi9Xodzz//PO655x7D6/fccw+ee+65rud35MiRFdu/733vw9GjRyUg6rVNr312s8nJSczPzxv243a7cdddd21oP7vZrmbfTdN+VrO76CPIltIML7JxV2N7MZjhPM3t6a8J2NFX6hJfBvzmH+27e33vABiAT64BtB61LmdmQMMErG6UZtbY3KhpRhgrwDgfBINB+P1+aS62Hi1LnivHh0G3HkMd8OkEhmbq6fJlPabaHwPLwAvHR5caa3/d7R70Gg+dmCGhQYO2+j5pNrnZdFCpr4nvadPyK93Kv81rD70fjjmfIb1W5PdArz00aOByueRHj6FuKKorzzTAYL6vej2qvyvmpmnmMdLPunnc9H3hjy41v9xsq3y3ZbvfLN+9zA7WSUSdINWMWD3nMm4mKGk2Hb9y/4xTCGbqSi0N3prnpNV8t46V9fykAUINrJvNDCRy7tIJwc0a51e32w2v14tgMCjgt/bdlLhbqxJa+1H6AfOY6OvU8bO2XnOV+TWODav0NDFQj/16426z79Z4i3k7M/Bs/jFLu3QDfs3+yuyzVsMrem2nfbfuVbfaOrTbWpRrK/N4m7EU873i3/p69JiYr7vXdZl/A9jQvdyNZvnurbXLhon+61//Gt/61rdw8803G16/Wsrg+eAuLi7i3/7t3xAOhwUY93q90qySE1Wj0cD09DQuXLiAxcVFnDx5EhcuXJCy1m7BTaezxIoDjDqOnU7HEIhzEmNGnMEPWU4sL+KCAljOKObzeczOzhoaqTDw0iVGvUwHk+VyWTK1i4uLWFhY6MrWW8scDgdGRkYQiUQwNDSEm2++GeFwGLFYDPF4HDabTUCMdDqNWCyGfD6PM2fO4OTJk+LkzAsJn8+HwcFBaYy1E9bX1ye6rYFAAC6Xa9MgBZ15vV5HIpHA5OSkLG5YgaC1RneL8btSq9WQzWZRqVSQSCSwuLgobEmWiRcKBRQKBWGbXU5Wr9eRTqeRyWRQKBQuO+d2sQ6Zn52enkYoFJLXu7HQk8kkWq0WhoaGDK8PDQ1hfn6+6/7n5+e7bt9sNpFMJjEyMtJzm1777HUcfs68n/Pnz697P7vVrkbfrf0r591EIoGjR48iEAhgfn4ex48fh9frxcDAAPx+v7CT6/U6FhcXkUwmRWtzPYlmMr5ZEcbzMIPaZE7xO6MlPPid7AYKFgoFnDhxwiBRxmPR/xGc5PGYSAaW/Do1pVnZxIZpOqneLZjtZXa7XRIQ0WgUb3jDGyQIj8ViAJa0Dw8ePIhSqYT5+XlUKhXMzs5iamqqJxPY6/UiFouJn2MlHWVKWILMcyCrm/eBwbPdbpfSZh14McjnOOtkidZQv1hrt9vIZDKw2WyIRqMYHh5GIBCQwJaJHep8U6qObC9KrLjdbsM6gkx9AMjlcigUCnC5XFJ5pwFrzdri+oyfZ3Cv5QdsNpuASmSu6WQQsOTbU6mUkAYCgYDcC65Zea8oJQQsgxpa3z2VSknVAEEQMk/5bJDNp1mMmonPhqQ8T50M0EAAv4/NZhO5XE5YnFer77Zsd9vV7Lv1M764uIh///d/F999+vRpuN1u9Pf3w+fzSdKaPUrouy9cuCDJv17HoukkHt8jWMiKnna7LWAzTc8rjNV1YhdYYqdfuHABmUwGkUgE4XB4BRuZ56IbSBKw5v+dTge5XA65XA7VahXZbFYqsTYaX2rfEo/Hcd111yEUCiEej2NwcBDAUgy9b98+w7HOnz+PU6dO9ZRSZQNt3ZOEiVKzcez0/5pprkFXWrd4l0zni5Gl67bPdDqNyclJaTBK6Txee7PZNCSBzSC6vgZNeCCRgUkep9OJSCQiEnV8JjSGY06+0Pgc0fcy4cRGopQh4piyop8VcGS663vQ7e9upnuv8BlmskD7XDNxQFfHaVDd/DwQ/+B1EU9hVedGGuruFrN899baZQGiF4tF/Nf/+l/xv//3/8bnP/95eb3TubrK4DudpdLucrks5avtdhuBQAAHDx5EJBKRQKxareI3v/kNXn31VWSzWZw+fRqJREL2pbNy5kx1rwCu0+kYGjbRmeuSH5aKa2YcA7VWq4V8Po+FhQUUCgUp5dGlvOsxnivLdEulEpLJpKGEaiPmdDoxNDSE8fFx7NmzB29961sRj8cRCoVEV5UsLi5C2CF9dnZWEhPm43o8HsTjccmi74RpjVq/3y8dsHmPN2JcUDQaDaRSKdjtdlQqFezfvx/hcHjXNtegEWTm85FKpQyMDoJWpVJJAujLyer1OjKZDBKJhDR5uxqNlSPrsW4A3XqZFtze/PpG97lV53Y52NXquzUjmT8E6xwOB86dO4f+/n5EIhG88Y1vxNDQkJRGV6tVvPrqqzhx4oSB6bXW95t+1mazGRLJZhCdwHMsFkO73RbgTzOVeP5Mmnc6S/qWZ8+ehdPpxL59+0SezAwa6+u32WxSBt5ut6Uny8LCAubn56UkXAdZGwHRmRDw+/2YmJjA29/+dgwMDAgT0GazYWJiAh6PR0D0UqmEl156CXNzc13XCjbbksRJf3+/AKUshSYTUQP+HM9OZ1kLVDMAdRBHH8wKBI4fQW2tW79VgXg2m5Vye0q+AZDg1sx8a7Va0ojN4XDA5/MhHA6Lrmm9XpfkSKezpFs7PT0tiRkC7npNSb9L8CUYDCIQCMDhcAgJgedLQIKVk2Rl6ntF32632wXI0oAQEx66akDvv6+vD4FAAG63G/l8XsrcWTXI43M9y/vLe6erEzSI73A4DJIv+j7o54Vr4XQ6fVmC6JZd+Xa1+m4NQhI4TiQSSKVScDqdmJmZwcmTJxGNRnHzzTdjcHAQpVJJCDuvv/46Tpw4gVqthkwmY+hHpY+hj8U5mMekaRCdUh5kPJtNk9jMVi6XMTs7K+BpMBhcAbKaK6vNbF/O5dlsFjMzMyL32a1KzpyA72YE0QOBAPbv34+7774bg4ODBhB7ZGREgHAey263Y3JysquPtNmWZMYCgYBUYuu1kHlNbQaEbTajRIh53dQNPOZrZF5vlURXq9VCKpVCrVbDwMAA9u3bJ76N/pXjrskL+rq0LCCfH2I47faS/Fk6nZZnSsuP6Yo6TaTUCXZ9nXrNSACdVRX6HrAHn9vtRiQSMej7m9dJvcZRP5OUU2IFHDEsMtF53TxHguhMgLO/iSZy6PWCuVqSPda4PrF899VtlwWI/kd/9Ef4rd/6LfyH//AfDM58rTL4Xs7czPQxa+ruZuMEYbPZkMlkMDc3B7/fD6fTiWw2i0ajIZnhhYUFpNNpFAoFAbM5sQLLTkBPXmtlqbo5LZ1F1OCB2UFxQub5M5tHp8+JuVtZGSdVBpytVksaTjHraZbnWI9xPFhGxgw2gW+yxZgg8Hq9CAQCaLVawjDvlnjgfjUjaaeMjkwHe9qJdctWd3NgNDoYOkRK/ZC11Q1YvFSmE0KUPtJN2jTTg6x0Nl273EBLfgeoY3u5OfOdzIj39/ejr69vBUN8cXFxBQOcNjw83HV7h8OBeDy+6ja99tnrOMASI31kZGTT+9mNdrX67m7Ptq6iqlQqKBQKAJaqJMicJbulUCgICKhBWTOQR6ZQL9CW7zNA4Hb0o8Cy9BiBRHMAbN4XAEnUm0twdXBFTXVdwkvAlOejtaG7+e61vuMEMcnUolxLq9UyVNOx2o0Mcr3W0MfVAbO50kpX3OnATIMRfN2ctNYA8Go+RsuhdNtuPeCENjNAns/nkclkBFDv6+uTQNB8ffw8P0ug27xmoL4+G5UywNdEDZa4a8kBPU76uQSWmJO5XE50883Xy4QGm43y8yQ7aD+v15T8DnB9wG21RItOJPWqtNPnw+ea187vkZaE0cE7QYNisSgJDst3W7bb7Gr13TRzXMy5qVwuI5fLod1uS88pNvUmY5oxqfa5NC0von2P9t38IdNY+0ctSQUsA35mH6OPqcFGxnBmCVYC82afzXOhr6ZsqlmiY6NG3x2JRAy+W8fKvEbK5pCwxzHU46fZ0FoeRDONzXO5GaPo9dpqZl6TaQJBN7xEf2Yt09J+xWIRuVxOro1Gv6zXLvrzvVj4PGcCyd3Oi+OpWe7m6+bffA6q1SrS6bQkwM3HJoGtUqkgEAjI+fL5Mo9ft/Uoz4frFj22/NvMxjefOxMmNL1uMYP4eg3Z6SxVY6TTaVnjXk5m+e6ttV0Pon//+9/HCy+8gF//+tcr3ttsGfwXvvAF/Nmf/dnWnugOmS6VeeWVV3D+/HnJvPILTseWzWaliQMbfnHS1IGidpBko/UyMwBrzmZrh2beBlgKjghEsZGVx+PB4OCgsNLJbtdZegYpbAzJJAGbb/G1jUwQnBh9Ph9GR0dx8OBBjIyMiLSLblBIkLWvb6nxVzgcxoULFzA8PCzNNyuVimH/TqdTgPb1suy3wnTg6vP5xOmQIcWFilmflmAGA1EaGYRcBJ89exblchkDAwMYHx/f8STBatZut4XZODc3h9dffx3ZbBbz8/OSSOIzQmZlpVLBoUOHpPz/crFisYizZ89ienoaCwsLm1rIXkrbSWfucrlw66234umnn8Z9990nrz/99NP4wAc+0PUzd9xxB/7pn/7J8NpTTz2F2267TRadd9xxB55++mk8/PDDhm3uvPPOdZ/b/v37MTw8jKeffhpvfvObASwxLZ955hl88YtfXPd+dptdzb7bDA7q11utFnK5nJTRJpNJKaPlPMzEX7fkts1mQyAQENkMsnu17+a2fJ+sWgbF9FlOp1P6fGjdVnNyHYAhgE6lUgCW1xMOhwPRaFRk5ebm5jA7OyvnyoooJvQpw0bGsAY3N/q93rt3Lw4cOIBoNCrycmRb6XWJy+VCPB5HMBhEKBSS0lyOi92+pGuqmUo6MHe5XIhEIrIG0OAz1yt67cL7UCgUBLSgpqsObHm9DocDkUgE7XYbhUJhhZarZsNptt5axuAwlUrhpZdewtmzZzE+Po7rr78eTqcTmUwG2WxWpFHI5mJ5ei6Xk0aylGIBlptwhsNhQ1KC0jdMKvj9foRCIVlj8t6Q+KATKQTZ5ubmcOzYMRSLRRQKhRW+jZI85XIZHo9HZLbm5+eRz+fh9XoRDoeFNed2uwVIYlKA84zT6UR/f7+sHShp6Pf7pZKC90mXzdMoT6RNA1Baqz0cDiMajWJmZganTp3C5OQkSqXSRWkKXwqzAvEr2652393r+eQ8WiqV4HQ6MT09Lb6b8xirW3VlF43zidfrFRIM41YNDGpQkv6LcyoBbPokErw4nzJBqpn0jLU5R9frdcEN3G63SIC6XC7k83lks1nDdWs/nUgkkMvlpIqsW6Vzt/Ezg6H03QcPHpR1A31cN3ZyMBhEo9EQCRhNqNMJYBLdyK42yzuaq8Z19RzHjMnw1dYjOlFM3+nxeODz+SSRz3vIbczA+mqs9U6nIyz/VquFV155BVNTU9i/fz9uvvlmuN1ukVIDYEj4mhNATCrz+HyWyNgHIOdMgNlms4nv5L3W48V9cyzJip+ensYrr7yCQqGAbDa74vrK5TLm5uZQq9UEe2ETUu27dV8Vbfze0LR/5jhQ7kj7fq1SwPuq2eccM72e47PgcrlE4nd6ehovv/wyzp49K1Vsl5NZvntrbVeD6NPT0/jEJz6Bp556alWpBfOXrFvGUdujjz6KRx55RP7P5/MYHx+/+BPeAdNsl/n5eczPz6+YoHVw1i0TqrOluoEVt++WQe1mvbJ8q419s9lEsVg0HNvn84nTZDDG69HlQfxsJpNBtVpFKpVCIpEwLCA2YpodFAwGMTAwgGg0ilAohEAgYGBk0drttmhpsmlZu902NBOhcd+8pp0wc7kZg1V9fGbMycyz2WyGjvBkLNDozFnGnU6n5bO6zHA3sLhZbsXS88XFRanGMC9YqKvqdDoxNjZ2WTkHLozT6TQSiQSKxaIFoq9hjzzyCD784Q/jtttuwx133IFvfetbmJqawoMPPghgyS9cuHAB3/3udwEADz74IL761a/ikUcewcc//nEcOXIE3/72t/G9731P9vmJT3wC73znO/HFL34RH/jAB/CjH/0IP/nJT/Dss8/KNsViEadPn5b/Jycn8dJLLyEWi2FiYgI221LTrr/8y7/ENddcg2uuuQZ/+Zd/CZ/Ph9/7vd/b9PhcSrvaffdqzzbnU4J1ZgBuLWMZaiAQQK1WQ7FYlPe6VRHxONpqtRqazSbcbjdCoZCBvd1rHtGBfblcFrCaFUkMyHw+nwRFep3BEl8G5CyT5c9mrK+vD9FoFCMjI7KO0AQBHYQxuCKrjX6Q6wZeDxlsGkRnkE4JEgCGJnN8bhnIawYXiQydzlIpfjdmFSvHyEAn6868rtLEh/Wud7i+Y0l/KpUS0MTr9YqcGYEAl8tlaNKuG+HqknFeO+8512laY59rEK/XK0kEapRzLavXnwx0c7kc5ubmBCAwG1n1NptNqrA41ul0GqFQSCo0WSGhj0Mt/na7LbJKDM6r1aqQOfg86HtmBlZYOQJAAn/NTg8EAvLceb1ekZ5JJpOYm5tb1z3cbWYF4leuWb67dwzc6XRERxoAFhYWNrx/zi2aeNXt+0SQT5tOoGq/ppPBWo5DV8OwAjyfz6PT6YjP180wCcgzQUy8gHMcpSy4fqAP34hxbPv6+hCJRDAyMiIkQJ4Dr5/nryvedMNvzrU8T7KFdeJSV94DxmokTdbTPp/H59itZdov6zWAxlTMRMP1YC16bbS4uIhCoYD+/n54vV74/X7UajV5hjTpUJ97t2eLz4ju50G/rckaOlFDcp3+juv98/P5fB5TU1M9K00o58I1IddJrD4jJqTHjMb7xnuoWfTmBIDGuvT4cD88Z90HkNtpn8/9uN1ukcqdm5u7bPtVWb57a21Xg+jPP/88FhcXceutt8prrVYLP//5z/HVr34VJ06cALDxMnjNML4SjBNLt+BsI/tY73Y686gbaWjAmxOUbjBl3k+tVhNdTqfTiVKpBJfLJQ3LzBpbZOGTdU6nrkt3N2t6wrzSTDtL6pCxkaZuvtJoNEQjjSAHF1N8xur1umjP9/X1SfM1yuDweDs5jnwmufgjG21ubs4g92N+BqnlWq1WMTExISDSTp//RoyL4UajgWw2K4mkq1kTfb32wAMPIJVK4XOf+xzm5uZw00034cknn8TevXsBLLEfp6amZPv9+/fjySefxMMPP4yvfe1rGB0dxVe+8hV88IMflG3uvPNOfP/738dnPvMZfPazn8XBgwfxxBNP4Pbbb5dtjh49ine9613yPwPJj3zkI3j88ccBAJ/61KdQqVTw0EMPIZPJ4Pbbb8dTTz112Tbpsnz39hl9Z6FQ2DQArVm1tVpNAmOC3GaNU7PRN9jtdjQaDQlqz5w5A7fbjdnZWQE5yaxmRRz9+Hq13te6DkrjMMD2er0rZFg0u4/jxWCc/zMBy/OhRIkO2jWLzRzME2DpdDoCUPP4DNCY7NcNtbSuKc9bl6QzkGTVnAYUdEmyrsjrtiai72i3l5qNUsecMnV6zNiwy8xqJIONQIE5aa8bzBO8oDYw2ZrclgmPSqUiawtKkzHp3cvYD4RNvsgYGxgYEBZiJBKRZnwEjvTzxvf4fQIgVYPm5mN81mi6KoDvMaFAySCdTKDUg9PpRKVSQTKZXAGQWWbZbjDLd28vUMR5cDN9LxhXVyoVSdgR+DYD6b2SAPw852K32y3xtdPplOofnRShv+d828vHrPca+JtjQfCZyU6d2AaM7HEtQ8NrMCeVdc8Ks3UDV/Xnu2EVAAzHN/e7MPtufXyuE+i7SUADlkFyNtvkuJp9H0HmdruNZDKJ8+fPw+/3SyJAjxXjeI4pz9Vc+aavT1cg8hp4fpRkId7DtYtmtXPtUalUxNf3skqlIg3eDxw4AGDJF0ejURkb9lzjWpTnpu+hOU5nYl77Zr320581S8BwTcOx4utMWNXrddGnTyQSPZva7pSZsT7LLp3tahD9Pe95D1555RXDa3/wB3+A6667Dv/rf/0vHDhw4Iosg9+MbdSZaUe2kS8iJ9NWqyVBNCc7BqR05JrNZC716nQ6wvqx2+1Ip9PinMgSA5abpehFArUsdXn6Tk4mevJeD9h6KSc6HdyRvfiGN7xBSvgDgQBsNpswzYvFIs6dOydlYrpRCu/Z2bNn4Xa7USqVpBRwdHRUGPc7DaAzCKYu4fHjxzE3N4dkMomFhQV5XsyWzWbxyiuvIBwO48CBA2g0GoZGMrvRyNIrFAqYnZ3FuXPnMDk5aQjYLxe7FBnxhx56CA899FDX9whoa7vrrrvwwgsvrLrP+++/H/fff3/P9+++++41z9Vms+Gxxx7DY489tup2l4tZvnv7rNNZauaoNcc3arq8l1Iv1N1cS+OU8y3lPDhXptNpzM7Owm63o1qtCjC5uLhoYGABy8Hjxc4BrdZys3I2gGQTTDY41/qumjmny/A5Jlyz2GxLDUsJ/FDehWsO+lRgubKrUqkglUqhWq0iHo/D6/UagmoNskciEUQiEQGnNZtO65QSHCaLfmBgQBpZRqNRWXvRLxw7dgyZTEYCXj22ZFrb7XZMT0+L1MrExARGR0cNgIVOeBAYJgBDwgRBAn0MssK0lEGxWMTi4iIASOKArHdWvrHnyuzsLHK5nMgN9bJyuYyZmRl4vV5cc801aLfb8Hg8OHjwoFQ18jwWFhYMx+c56jJw9uYhQ5+vA8tkEcAIwOi1Au9TOBwWSR7+LCwsIJFIoNPpIJPJwOVyYXJyckUfndVsO4LmbszF9ZrFZrtyzfLd22cEHVndsxnfzViNoB8TsQS510pO8/M2mw3ZbFbmtNOnT69g65q12AEYXrsYoh6Z9pVKRebdQCAg/oB+hsfkfEmMQL+m/Y1OZhJH0KZBYp4Hk7gEpfk+r1EnYLUkLpMPZtCcLH/6c4/Hg4GBAXi9XkQiEQwMDAi7mwD68ePHxXeb+4A0m03k83nY7XacO3dOyIZjY2PSU4ljxSqrVquFYDAo5DZ9rd3+16QD+nVWD+qksNvtlqQ713HlchlTU1NIpVLI5XKr+m7G6D6fD4cOHYLNtiQbMz4+LngFfXg6nZZKS66D9HOhqw01c53kA3NSie+bqxPs9iV9fq/XayBT8DvFyrd2u40zZ850re7cSeO1riY31Mss3721tqtB9GAwiJtuusnwmt/vRzwel9evtDL4nTBOJpv5MmhWMhcBnNQ4YdGZreVsNbjOBirUSjdnErXeG53dVowDf/N8ec50puax0tetA6VeWf+dnnD0Nelz0M48EAggFApJSZiWfbHZbKKPW61WV4DJzIg3Gg0Ui0UUi0VhsmuWmlnLdTuukX/T6ZFJSS02Nunr5dBZVgZAdNS5QNqtRsfO5q7UcL3cAHTAcuZXslm+e3ttK6qvuB9dlq11I9f6nNnIXubi3sx80gwgczC3WSOwq+f5bolQHQhrgKGbJIG5pLlbGTDfN8vGaG1cGoN2HlcHrd2CfP05c5k6Ge7UGWc5O9dd1FynTzQb7wsDbQaI3bYzz69cB+k1nV5naGKBHjOu2QgwmANfneCgb1urUTZJHAQyGo2GlPCToacDaCZG6Nv1ufK50AG4+TngtXIbc+CuA3g+f1wP6eQE/fZaTPvdbpbvvnLN8t3bazpu3IxxvtJzv45d1/purpV4p78h4L9dsQXPg0C0ubpHmxmv6FYxTAB9o3OL9u26or/b+ZqPv9o+6QuoqU0pL8bfJBtwvcBkfa/x5j0m27vRaCAajcqzoK9FYzN6TFb73/zcaKZ5t+uj76ZGf7lcRrFYXDMeJejOWJZxt65u09iLeV/d7vFq6w+drDJXzuntNLhuvo+dzhKBkES93eK7N/O8W757a21Xg+jrsSutDH67TQcUnES0s1xPZotfQmaLCaJqp24uZ13PeemJ3Owg17NAMLPD15oseI7VahWLi4uYmppCo9HA8PAwGo2GZCaZ0ex0lroyLywsoFAoYH5+HouLiwLWmo2OBQB8Pt+qAfNWm762er2OaDSKQCAgWXBKurB5FkEIMswJrqfT6RWBM5+VZDKJ119/HV6vV8BrZtx5vbrsbSvAdP2M1Ot1KS2cnZ0VDdVz584JI3CtknBmzalTHQ6HsW/fvl3XZJTXXKlU8Prrr+PEiRM4e/asaKFfjo7NcuZXt1m+e/PGpChg9J2bqUhjAMtg6WIS7Bo47xbobDbQ7WXt9lLTazbRzmazcDgcqFarKxqzUkaGOvJk83cDm6vVKjKZDDwej7C5bLZlrUxWPpGxrptzkaXFdQyZc51OR7ZjA1Sel5bGsdvtUroNLDPvGITTt2rwu9PpwOFwoL+/H263G9lsFouLiz2lfsrlMhYWFqSRarFYNDDdnU6n+EA2Z2MpP4NmsrsJEmjfrJ8F6tYzic/GpZQjmpmZwYULF1CtVpFIJKRZ3WrPsk4SXLhwAa+++ioCgQDGx8cRiUQM49JoNISVyAq8arVqALI59olEomsfHD631NOnEfyIRqOw2WzyfPFZ63Q6iMfjePvb345CoYB/+Zd/wWuvvYZ0Om1ojraWbZev26wPtnz31W2W7968ETzWidjNfJ9YWaSlVbbie8UEJM/VbOakMm2jx242m5idnRX/t2/fPjidTtRqNUmicp+cTykbwsbsZh/IRGUymRTWt9/vl+sCjJVFWsJDs5K1BIq+T/yMWaebSV0ABulQl8sFt9sNn8+HYDAofWPMiXiXy4XBwUF4vV6RU+3lu0ulEubm5uB2uyUm9Hq9GB0dlf3H43FZb7DijuC21gHXmvGara0T+MQINF7ExrJTU1M4f/48qtUqFhYWUCwW1/TdOnkyPT2No0ePIhAIYGhoCKFQyJB4rtfrwvp3uVzCfidTX1cScjy1jru+1yQiaIk2yuzwGSsWi0IQbLfbGBgYwMGDB5HL5fDaa6/hpZdeQiqVMvQhuhR2Mf7X8t1ba5cdiP6zn/3M8L/NdmWVwW+3mVlYOlu33gCcn9fNKHVp6GZLvfjZzWi8mhlBvKa1QHSyshKJhDTH2rt3rwFcsNlswtTL5/NYXFxELpdDIpGQTu3m8h5+vlwuiwPYKT1AvfAgiO7z+TA8PIxwOIyBgQGEw2G4XC5DSTVB9Gq1Cp/Ph0qlApfLtUI6h/eHzsTlconOXigUEgdGp7cdTHTet3Q6jUqlgjNnzuDkyZMol8uS2FjrGSQTvVKpYHJyEi+//DL6+/sRjUZ3PYj+y1/+EslkUq7TMst2u12uvtvMaN4NxkBBB+RrybB0M87nmp3WLUBer611/ItdwJut1WpJQBMMBpHL5aQxJhtuscyaSW32YiFrqts5ahCdyWDNkqrVaqL5ThAZgAR8ZPLx+JQ647kQjNe9PHSgyoC30+kIA51AOhP7BN51wNvf3y9AVjKZ7DlulUoF1WpVwPhUKoVIJCJsOPY7sdvtImlDPXUA0sCz3W7D7/eL/jtZdbqSMBKJiMapy+WCw+GQarFKpYILFy7g9OnTK7R611q7sTpxdnYWr732GkKhEFqtFgYHB4VVxmeZzfPC4TACgQByuRyy2axUThDIIsuM46mZ50zUBAIBAXXa7baso5rNJlKplDxjbJI2MTGBt73tbVhcXMT//b//F88++6zh+3apbLfMZZbtftttvnu9idiL8WXbZWZm7GbPsd1uS3xpliC5GFtrbjJXlG3Gp9P3zc3NIZvNAgByuZw0y6Sv4Q8bmlJWg3Fbt3OvVCoSzxPA5nsAZF/AUoWFWdpDa6nrhKr5fZ2g5zlSYkYn0Jn8DgaDCAaDBoCe+yH5LBwOA8CqCXBWILNqv1AoIBqNIhKJSD8Q+mNdFaV71VGihTKvwDJRUVdTkUjIxpp9fX2CgZTLZZw5cwbHjx+XasD19LjR4PfMzAxeeOEFhMNh3HDDDSt8t+5NQjxBE/m08dgkHRC3IdM9EAjItfIcudbpdDqG5Dd13ffu3YvrrrsO8/PzmJ2dxc9+9rNNyzBtpe2m+exqt8sORLfs4q3bF3AzX0od9Onynp0yc8bU7Ax16fZqSQIuRrLZLAKBAFKplDgbMpAIMmcyGSSTSdHtZClat/FjcMwJfCeM520GvjlGuvxcl73r1/R25ooAbUx42Gw2lEolZLNZtNttCa69Xi+CwaDsU3c/N1cN9LoWjquW0OGY5/N5JJNJKU2ntMlGShD5bGjd1kKhgHK5bHDgl9K4MCyXy0ilUshms7KIvNTO/GLMyohbdjnZbnre1mJ9X46mwWWdjF8tGU5/R4A8nU4bwGnul6XTBE4LhcKaJcdamkY3DzWfD/0g96dLvfXaQ7PwzT5FAyDdZOLom91utzDZNNObPpVBIjXcVzPuo16vix5+Op0GAKlS08Gslg2gpjm3ZTNN8/kAkDFk4rvdXmo0m8lkUK1WRUqtVxP6ta6BCQ1guXErAENTVj5bBDlarZZoo+t9cY3BxEm3dQrHTW/L+6OZjUxm1Ot1XLhwQZL7myGJ7DazfLdll9LW+/ww9tlNpoHnzX4Pes1LO2XmJIYGPs2Vcb3Oi36TMpypVErmaL7PWFY3nSZLuJsRYK3X69II3EyqM7Pn9Tqj2/74DBFg5uvm7bTEK/2kHh/KjRGE1/eOTVUBGPxOL+PxOHZOpxOZTAYApFpKH9O8liCLndvSj5rxAGAZR2FyIJ/PC3ntYn13pVKRJIpO0us1hE6Ga2KC2Y+aj98LazA/A3a7Xe4tk+WUhGOVO9UHLnVD0a0wy3dvrVkg+lVoZidifm0t0wGbOVgzA5jb+YVjeQ5Bau2EgKXghQGT1tk0n1O9XsfMzAwymQwWFxdRrVYRDocRi8UwMDAAYLkZSzqdxsmTJ5HP5zE3Nye6ot3AzHK5jPn5eQQCAdEw3W5rNBoCFOhu38ByV/FuQDkXHHyd47oakK4B7ZmZGaTTaXi9XrnmaDSKsbExuN1uhMNhAdTJyjNrkHFhppn0XJhUKhX5YTCazWalDDyTySCbzRqazazXWq0Wzp49i0KhgOHhYWn6EgwGMTw8vGMVBGbTCYTz58/j2LFjSCQSePnll3HmzBkBjy5Xs5y5ZVtpWykTom03Pmeadb4ZH65NM3F7AcVbYZrBpo3HYhmyLunWJevdjAlQJhRtNpswo1mGTN+cz+cxMzMjCd/VwMxKpYJkMgmfz4exsTEEg0G0Wi2Uy2XRjqfv0udGH0tpO7LaKf3C6/f7/bId5UFYTkxgQTf1JrsqHo8jFouJdjiwLLdCxhWZ5etJ/nL8arWalMm73W5EIhGMjIzA4/Ggv78f8Xhc5Fy4Ptq/f7+AHjxPnjOBBD5L1Es9ffo0UqmUNJTj/d1sk1zKypXLZcRiMezduxf9/f0CILAKgCXthUIBiUQCbrcb/f39huZorBys1Woy3qxgoMwO7w37CLTbbbmPZN37/X643W6RxDt58iT+9V//FZlMBq+99tqGrm+3muW7Ldsq2262+G571ggem/32WuPA9zXAqSU2zOuBnTAe1+fzie+uVqsipUmQtdfnKH81NTWFn/70pwgGg4hEIojH4wCWCE31eh3FYhFzc3MCtq8GZmrfvWfPHpEiY6zKOBdY7tcBLI+vxjB0I3HGyGZCHsef+6e/ZyKf/pvX1U0uhz3hGo0GUqmUAMer3ct2u418Pi+V9IlEAi6XC/F4HKOjo+K7o9GogT0dCAQMcqv04Vx76Otj4rtUKuHMmTNSaUVAOZ/PG6oGNmLt9lLT7VKphP7+fuzfvx/Dw8MG1rmW1qGP5jVw/PSz1Gg0pLFrN7KgmZygcQ0mHCKRiBAETp8+jZ/+9KdIp9M4ceLEhq5vt5rlu7fWLBD9KraLCbp1qY0ZYDU31touI9hLXSuWHdEBVSoVQ+BDZ2m+7larJezearUKt9uNYDCI/v5+CVRZSpZKpXDmzBnk83kpB+81jsye08HuhLHxSLlcFkfOTHov9jlgrCpYLxNdOzAy81lK7/F4MDQ0JPfGZrPJvdJa6eb9a4YGFxtcjBWLRdGDy2azSCaTmJmZEcBls2Pc6XSE4c39j42NAYAkUS6ldTodZDIZnD59GslkEnNzc0ilUpf6tLbELIds2VbYbmObbbdtVcWXWQZtuxIR5uPR9LEcDgf8fj88Ho/4bq3f2c3IoNL7okZ1f3+/lPS2Wi1kMhmcOXNmXXqWjUbDoFnt8XgEGDD3etGNMzWgquXPzIG6bl5NoJdmbtDOz1FOJBgMytgw+eD1egXsZaJ6vVav1+X8yApjWbUuiddN4FwuF4aGhkT+jQxzJj4Y8OoEeLFYxPnz5zEzM2MAEvRzt5lnj806yWzTbDaOrc/nk/PMZrOIRCJy/ppswc9yrHXwzXPUDXh1hQETImzePjQ0BLvdjqNHj+JnP/uZSNhcKWb5bsu2wrbb5+w265YsXO/6hXOljs3oa7jvnTTNDA4Gg5K4BJaruXoB3qwiAyDxjcvlwtjYmMzDrDDO5XI4d+4cSqXSmrJ1BN0BCGCu2eG6OoHzuR5THYPqyiud9DAzngGI36Mf1mx0u90Or9eLQCAg0if0G7rSi9Jw65X5oU8DIDHhyMiIaJkzmauJEQSKGYvrtQQTxLqvHQH2qakpzMzMSC+yi12Ddjod6U3Ty3cTz+G5N5tNgzyeZv7zXDVJsFtFnHlMNTZis9kQCAQwODiIvr4+vPDCC3juueeQz+eRSCQu6np3k11N8+12mwWiXyW2Vdl+c8DdrZvxdgfjmgnv9XqlmReZZ2bZEAbidA50GNroZGq1GtLptEiD0BlzMVAsFkVKY7VsOB0SGW9kcBH430qJEO3UyZbP5/OGxlm8lr6+Pin/0k6cjr9SqYhebKVSMUjCrHUOACRobrVaSKVSUqZGDXkCJWS6s6RaL2B4PC42yNBj0oINTNjEZCMNbFc7f577qVOnAAB79uyBy+VCOByG3++X52s7TS/UisUiEokESqUSTpw4gdOnTyObzaJQKGzrOVhm2eVmOjC63Kwbm0wbA4Kt0GI0M9gIuDqdTplLL5apsprR5+gAjr7A7/cjEAhIqS6DJz0+qxkTyAyKdVk4GdfrldKgHyI7mSXkBAl0wlZLpGm9VFaBsVJOM9P4Ps+TVV2ZTAbFYlGS7wAkaPV4PPKbwDTBaLL1KW+WyWQuyifqdVCn05G1RLValXVQrVaD0+kUsIDrLAazHHeC9IVCQYLv7ahWrNfrmJqaQqfTQTgcxtjYmDRLJcGC6xGbzSZjpkFxnrvWrtekAz67TBDo6+x0OrL2zOVymJubQ6PRwJkzZ2T9dyVIuVhm2Vba5QzorCWnsl7fvdb6xRxzU/JDa15rcHk742/26NB+j76bfVqYVHY6nSt6rnQz7btTqZSMBZnqutn0Wn5N+26dIDVLxQFGWRyNkZjBXG26koDzPn1vpVIxSMVxW2q5s1eKZqLTR/LzyWRSYuDN3MNqtSr9shqNBnK5nCGuDgQCSCQScm18fiiXoxP4fKaKxaJUtnfDTy7WarUazpw5g06ng1AohNHRUalu0Ox9jjsrw8yVAZoAqJu7azPfX/M6tFQq4eWXX0atVsPJkydlTXY5V31btn1mgehXsJlZX6sF6hvdr9bP1sdgUymdzd1K0wxqn88nzbDC4bA03OI5kRGtZS9Ybmx26Py/UCgI2K111nVmmg061ip5p1Py+/0YGxtDLBaDy+VCIBDYcp1tnkupVML58+exuLiIQqEggALLmOv1upR3eb1eeV8nCZLJJPL5vMjCrNdp0rnlcjnYbDZks1nMzs6ir69PGqI5HA4EAgE4nU6Ddhvvq1kHr1QqSbOPcrlsWGxx2614zuiIM5kMfvazn+Hf//3fceONN8Jms2FoaAgTExPwer0rtOy2w3gvk8kkfvnLXyKRSODFF1/Ev/3bv0mp4JVgVlmZZVtpa5VBr7bNpTIyjMkmM8+11K9kE6nVKp/WMl2JpKXQfD4fnE6nNKzSTc/0b+DipGP4faeP9nq9Un5M8Jw+XLPUdFJ8tbWL2feYG61xfNdjDB4pi7a4uAiPxyM+vFQqrTgfNs7s6+sT5jUAhEIh+Hw+YcjRv3EfwNK9KZfLmJ6eRjqdloDRZrMZwP9EIiEJeoLobJ5VrVYxNzcnzOyL0e9kwtput+P8+fMSkPLH7XYjEAgYdMDZ5IyyeRx7vXbqBSRvxfeyWCzi6NGjePnllzEyMoJbbrkFoVAINpsN8XhcmOL0r9R/1+fJe8OScH5PuOZkybeWgOH6Uvd+mZ6exr/+678ikUhgdnZWGsVtVQXJpTbLd1u2VdbtWdhuiZetMs4L3UBy+m5KRq3lu1dbv+gfspX13KuTqoylzLG+1vNea1x7jb/NZoPP50M0GhX2udvtlriW8x+BZQLfWtqrm7HHlc1mE9k1YDkW2kisR9/tcDhQKpWQz+dlnaMTDr32oyVceG0EujU7XY9luVzG+fPnkUqlxC/oNV2pVMLCwoJU2GlpmFarhXw+j5MnTyKXy0niYLPPPkl+XOdpomOn04HX60UoFDJUhXP8iY9oX8Xxp+/eDlynUCjgueeew/PPP4/R0VG8+c1vRiwWw80334x9+/bJ8TUZElipc8/nT193L8Jkp9MxSNxyHXz69Gn88z//M+bn5zE9PY2pqSmDlMzlbpbv3lqzQPQr1HSpF/8HlplgwNZ8GcyA4k6yARnUMOChtIzWOyPTWTPfVjvHbgD7Zo363A6HA9VqVcrOzeD7ZsdMB6o6410ul0UDnkw+Btkej0cWN3SyGkSnLAoZ4NrWw27QWXYek/tnR/FarSbBqAbRNXiim6aQDUjd1O0MRtk8Np/PY2BgAOl0Gi6XC9FoVO5lt8ZpF2t6MUBQhAmNhYUFJBIJZLPZKyobbjlzy3bKdmvJ+FpziE5YM7C7mOswl4NrNtlqiV0e1/x7M6aBdGpPm6XYNCDJc1uP76Hv3oqAR7PECCgDxiZqGpjQ46hBFQIfmlUPGCV59HHMSVImlPX79BEMLrXfp++/mIrAtdZBBG3MwDI1Ui+FtdttqdLyeDySUCGLkUZwg4CAHifzusz8nTADWjyu3hfPY2FhQaTnCMBcKWb5bsuudutFUtP/X6zv7rYu0POPlt3std1Wf9cYNzJ+IzmKyUYCk6zCulS+mwA2400AK5LB5s/wt/bVxBO0RBuNQDiruMvl8op90j9UKhVZ8xCXIDjLzzLJDmx+zbqW72a1mAabWe1NEH2nG2i2Wi3kcjkAS3J8JEGQMNeLtKjvo3ltux7jfqlYACwl4xcWFnDhwgVpfn6lJL8By3dvtVkg+hVmZEPZbDYJbgCjbhezwyzNATb2xeBkpkFSmi7l3a4vmy7XMTfL1E5PO3P+vZPZRB2Ez8zMoNFoIBwO48CBAwY29mb3rR303Nwc0uk0MpkMMpmMNHThdixHr1arcDqdCAaDotFmsy3LubAUvFwuw263IxqNCtuKQTtLvtZ7ngDks1yI6BKqbqV0BCEYfOomaxt5rrhfsxa8OZGkFx58fmdnZ/HTn/4UoVAIhw4dwuTkJAKBAPbt2ydNdDwezwpJo/WaXrQVCgUUCgWUy2WcOnUKi4uLmJubw4svvoh0Oo2FhYUd6TOwk2Y5c8t2wi6GPb3dxmBPS0IAxqSvlpS42GPpZB3ZUpROMc/rerx6BZybMYLKHo9HGHUADGw96m5TS5TzMxPDO3Uvm80mEokEqtUqIpEIXC4XgsGgjJ25LLzRaBiYbgzOOLaUzuEaptlsYnFxEel0Wtjf2vh8dDod5PN5TE5OYmFhQeTrgKWgj/6+r68PHo9HZEs0yL6VDDKua+jPuabcLWytQqGAU6dOwev1olAoYHZ2Fm63G7FYDD6fDy6XSxp/kojR6SxrwhJYYOVbsVg0PLOsoGi3l5q7zc7OolarYWFhAblcDslkEtPT01LZeKWZ5bst2067HJ4PDcABENkPnUzVcz2tF1O81zH034zVWPHNWIp+UZ9Xt8+bX1vPcbu9xySk1hnn+dE36kT4pQAhm80mLly4gFKphHA4jImJCQSDwa7bamCd6wteG6+P6zFg6R62Wi2k02lpyG1OHpOhTh/SarXg8Xjg9/sRCoWk+ozENafTiXA4LFryWsJEJ2q3YlwY3+ueH7op+KW0fD6PEydOwOfzIZ/P49y5c/B6vRgaGhLdfZIuzEkrrbZAzILrFK6LgCWgnmuqubk51Go1zM7OIpvNYmFhAWfPnpWqgMthLtqIWb57a80C0a8w40Kf5SnsMgwsOXcylsxZ3/V+MbSz7JatpNPZrolYZxvNILouVweW9cw0iG6Wn9luIwB84cIFJBIJDA4OIhKJGCb1zZ4PgWY6gLNnz6JcLiOdThvYbNQ005lur9e7okkZEyA68xqNRuU1XUrVbZG22hhw/wAM59bt2rvtc7MTty6B5Fhr3Voz+1vrwF24cAELCwtwOBw4e/Yszp8/L83qqMOvQaDNGI/PQD+VSuGnP/0pjh07hlwuh/Pnz0uZ5qVe3Fhm2eVqu3XhR8DYbNQq1/PVxUqAabYX/7fZlhpw6+Cj2+e2yui7mYCkpIzdbketVpNkL99vNpvwer0S5OlAcifuaavVwuLiIhKJBAYGBhCNRoV1bm5epUvO9dqIPprl/fpesofJmTNnejZR5fNBxprdbsfAwADGx8el/J3SMVz3mZMy69Gl3YiZ/dFuq/Sg/rrdbsfc3BxOnDiBcDiMN7/5zRgbG0M4HIbP5xMmJZ8xstZ5z1qt5abmJB/w+QyFQgCWmrFeuHAB2WwWR48exblz5wzSTLtpXCyzzLKtM7N2to5LNVNc+3it17ze+UH7PFbVaBDdDLBuZQxlNsZIPC59na601v1MVmPLb6c1m03Mzs5ibm4OAwMDAlzrWJCmk9XEMOjT+beZhFWv15HNZnH+/HlDpbneZ6VSkSq2QqGAvr4+xGIxDA8Pi1Qbe5XpNQ9BdH6eMelW+G8tTWIeg91gXM/Y7XacO3cOzz//POLxON797nfj0KFDhmQ2TT9f7L/CcaxUKvIZ3euk0+lgfn4e586dQyaTwbPPPovTp08bEha7ZUws271mgehXiDGQ0zppZiY6JxkCobVabcPOnKazttp2kiWmWcuaUazLbPX7q8mobOc5Eyix2WyoVqui0RYIBAAsM+Y1+N9tH7wmOvtarSbgNkFyzUgwf15LvhCc4X41c83j8QjAQtMgusvlMjDXNfC83vHo9vdWma5IIBOE2naaHaJBBa3fRzYa7xuTEOl0Gp1OBzMzM9IglU1a9cJMgyRmhj2wzHTXi6W5uTnMzs4ik8kgmUwil8tJed1uYfdttVkZccssWzY9dxDc0/OHw+GA2+02JKo3+x0wA9E7+V0yM760T9PzspkNtpNri27ny+DMXJJNv6JNNyTTrH9eI6+FfpUM9rUYgLp6oNlsyjPB9+nPeHz6cTYSZ6KYDK2tGs+tTrR0kxyiTzfLsehz0JUWfGaq1SrK5TL6+vqQTqdF0o6BdSAQkMavWgqHQJBucM6Gr3y/0+lIJUE+n5cGogDWvR66HM3y3ZZZtmya2MW42yz55PF4DKzti/0OcL7b6QTmWpIZnJs14epS+W7OwfTdjLU9Hg8AiGa9NvP16bgNMFaYM+ZerW+Yjr31moYYDXukaekfPisej0d8D6vNGMNv1TO0laZxqNV8t7mqXH8nuB4keY9rrWQyiVAoBL/fLzgEq8iY8ACWe98wlifxgIkPvT5YWFhAKpVCNpvtWgl4JZrlu7fWLBD9CjAGSX19ffD7/YhEIsKU9fl8BmfeaDSkUQad72oNn1YzOkgzGL3dgDQnYGqEttttYe1xkgaWMuMsldLBqp7cGfxqR7/V509mWrPZRDKZxEsvvQSPx4N4PI6hoSFpWBYKhYSBaJYc0eXsbPiZSqUwPz+PWq0mwGsvPTPNuCaITyfOUik23zJrfgPLcizMvlerVSwuLuLcuXOoVCoGNtylNH4HnE4nAoEAotEo3G43gsGgSNewUkM/S9RcJzOQ/3NMFxYWUCgU4Ha7cerUKQSDQUQiEezZswderxfxeBz9/f3CVqPWO8eSoEWz2UQ2m0W5XEahUMCFCxdQqVSQSCSwuLgo41ooFAzs/SvRLGdumWVLZrMtNbFic6P+/n6R0srn86hWq/D5fAiFQuh0lspQCehtJEDdTobaRo6vmbqstAGWAOlOZ1neqtlsGvp7bFVJ82asVCrh9OnTErz5/X44HA7x3Ux+MOgjI5y9PfQ6q1gsyhxP3c1upARt+l6Tte/xeDA8PIx4PI5arYbFxUVUKhVEIhEMDAygr6/PEHhTn3thYQFTU1O7rscG/aXL5YLP54PD4ZCKSofDgXA4DI/Hg1KphGQyKUlu/nB8CXCQXc7vUbFYlHVxLBaD2+3G4OAghoaG0Gq1kEwmUSwWMTQ0hBtuuAE+nw+5XA4zMzNSndbX14disSgSLsViEfl8Hs1mE5lM5qpgsFm+2zLLlo0yWg6HA9FoFOFwGACkQSSlPJvNJnK5HHK53JZ8h7R02E59pzTg2606rlarIZ/PS0NN+vdL+Z0vFos4efKk6LhT0mt4eBixWMwAnJubcTJ2KxQKqNfryOfzyGQy0si8VCqtKWWm7xXjQIfDgT179iAWi8k6p9FoiOSL7rfCeL9cLotU2G6RXwFgAMl103G/3y8V26FQCG63W6rliSlo6VZK+uXzecN6qVKp4Gc/+xmOHj0qjW1dLpf4bgBSRRYKhTA+Pg6Xy4VEIoGFhQXD88eq72q1ikKhgGw2i0ajgVQqdSmHcMfM8t1baxaIfgUYJzAyb71eL5xOp0xg3AZY1m1jZtPlcgmwvFG7FMGCOVtJkLHRaAjbik6F2XD9Q4BdLwS4X7NO9lYaj0umkt1ulwwpnYzOrJK1prXsCaJTq2thYQHnzp2TbOt6AmI6JmrXkTkRj8exZ8+enjrfmo3HoN/j8SCTyaCvr29XZHC5EOJCKRgMYnBwEF6vF+FwGOFwWJh7DofDwG6kHjnHhuzCUqmEVquFQqGATCYDADh//jzsdjtisRj2798Pv9+PPXv2YHx8HG63G/F43KC3arPZDFUDiUQC+XweyWQSJ0+eRLFYRCqVQiKR2BULop0yy5lbZpmxbwN9N0FQVvywNNrpdErAweDtcjRdmsz1h67m4ZzLoGo3VOPU63Ukk0kAkH4ibrcbbrfboLep+31oTfJ6vY5cLidg9uLiogEEXo9xzmQVU19fH4LBIMbGxoQVx14mY2NjovXNQDyZTAqjbWZmZtvGajOmyQ1MQlAnlgH4wMAA/H4/stksABgq4agTzHUQZeN0Mpqfc7vdCIVCcLlcGB8fR7FYlN4y1DE/cOAAPB4PKpUKstmsAbBKJBI4fvw4SqXSjo/TbjDLd1tm2bLpZpsk7+i53+PxiFwmdZa34jtwKfy/Bky7WaPRkMSlruq9lN/5er2OxcVFAIDP50MgEJAYMRgM9qwE55zfaDRQKBRQqVSQTCYxOzsr67L1Xhfvlfb3kUgE4+PjBpA8HA4jGo1KhTMbbPr9fpG7m5+fl7XDbjFdiUGCQSQSQTgclrg4EAggl8uhr69PQHNeh24AXiwWDRUN1WpVGo96PB7pT7Nv3z75PhEXGRkZQTQahd/vR6FQEMCeGEkqlcLJkydRKpUMckRXi1m+e2vNAtGvENNdsbU8iJlV3Ol0BEjXjTfXAtF1iS2DRc2M2smMKL/EZBvR2WiggePh8XjQbrcRDAYlaNcJBd3UjM5SZz+ZHWZgtRUTEMeNDtntdgtDWWva63vGBVitVkMmkzH8pjNfj5EB7/V6MTo6itHRUWl0QuC427OggR6yrPv7+3HgwAGUSiUJ1jluGvQgy5KlcxqkZzUEQQYuMjfi2Ah68xhDQ0NSkTE6OipONxwOC9PfDKKXSiUp53I4HCgUCuK0KZdTLBbl3pNhyCasvJ9korOagN81BvJkL5TLZeTzeaTTaamYsJyTZZZdXaZLX7XP1vMo3wNgaHLFkl9qZl4uRn9WqVSkIohrEfaY6OvrQ39/PwCs8IXAMuAKwMDY4pyeyWSQSqW2bU2im5ym02lhltG3ad1bJs5JXODvjTII6VvI6orFYqLnzQSE1+tFp9OB0+kUn6KbvHk8HthsNgwMDOANb3gDKpUKMplMV2Yk13xOp9MgVcZ7oSsZOe704RsxAuculwvRaBRer1dkVsg+D4VCcDgckrjgeZHVT3AhEAhIQE7ZlkqlgnK5bLg2nivvH8voM5kMKpUK5ubm8MorryAQCIiurpYmKBQKl9V3zjLLLNta0z6bsQdjY87t3XpHEWRkMvxymkd0FRSBUN1rCoD4bvoGmn6fUlk6Hub+KWm5XRJu9N1MhjL5qtcZ2rcxPmXzUBKrNnJe2nfH43Ehd5FspX0znyF97SRY2Gw2jIyMSIJmfn4eiUSiZxWbbmROnX69dtLkws2sI4mhOJ1O8d1erxfBYBBOp1Oq9NiQnbE3yZulUknGMxAIiD/ns1Uul8V36ypGnmsymZR1FkF4kgM9Hg9SqRRSqZQhoUOZ1N3C4qfpxqgWFnD5mAWiXwGmm2Xwh07d3HwBgDgN/f5qTcs0050LAF0mzOZLOwmiswyc2mKNRgPFYtHQQGJ4eBgjIyPweDwYHBxEKBSCx+ORUiBeEwADSyCZTKJarWJmZgbnzp1DsVjEmTNnMD8/b9Bv3azRUWUyGRSLRUMJmU4C6Em1W5duZlHXM+lyX8FgEDfeeCMGBgYwODiIffv2CQNeO9le+3A4HAiFQhKwjo6OolKp4De/+Q0cDgdKpRLm5uZWNNKJRCKIxWLweDwYGBgwNLzlwomZ5NnZ2Q2V7fO6IpEIAoEA3vCGNyAejyMSiWBsbAwejwehUMggl6PlXBh0k8m3sLAg7PBgMIhSqYQLFy7IM8LfTKywAQrHz9zFndfIH63zq5uZXm2O08qIW3a1m5ZiYxVSX1+fyHYBEJkQMnLa7baAiwwGLqdAHIAkf/V8yeDK4XBgaGgIe/fuNTCYAGMjN/05rgEYSL388svC+t4Oow+w2WwolUqyjjCDzMAyoGImHWx0zvd6vdi3bx/C4TCCwSDC4bAAz1zH6SoosiDJ6Caru91uIxKJYGJiAtVqFS+++CKOHz9uAC203B2Px2BZ653q5mesUtvos+h0OiXIvu666zA4OCgJAYfDgWAwCL/fL2PZbrcxNDQkjT1nZmZw4cIFAJAgPZ/PY3Z2VtYT/N5wvBlM8/7Nzs7K6+12G6lUSirOzPrxvH8X+2xtR+XjxQbi6z0ny3dbdrWb3W6XuZWVSdoXdQM2bTYbfD6fVMxsZL7czkrpjRjjJE0A0PP10NAQRkZGJNlLKS6v1yvxF/t4aKY646CXXnoJv/rVr0SKdavXNgRabbalxp7nz59fEfNqnXkdt/H3RmXlvF4v9u/fj1AoJDKuVAtg3BgKhWRNweMw2UDZuHa7jZGREdx0002oVqt49tlnkcvlurL97Xa7rBM4/iTKMaFB4hhlRMvl8rqvSUsQ+v1+HDp0CPF4HG63WyoqY7GYyOXohABJd/Pz84Kr0HcVCgUsLCygUqmIb9d69OxNwvvHijreH4fDgVdffVV8tx4bjutGqwh2wphM2SweYPnuS2MWiH6FGCcg7dj4pdKBnbnDtP7ptU+yhAhQE0TX5TgETXeyiQgDGTZ/0uAlJ2pK2vT39wsDe2BgQIBUM4heLpfhdrul9Cefz4sup7lz9sVeox43mmY3mEH0iwFa9X0kiy0ajUrGeCP74bhRGsXr9UrDD7Ikua0+LseQ2/KZY2KAY6HlbNZKzJj37/f7BVAn+5zH5CLXDKKTuUf2Xq1Wg8PhQLPZRDAYNGjdApDzvBzBq91kljO3zDKjjAV/tMamZqfTOMd2a0Kt98vf5rWBZoHpYHGnEuG6pFn3Z9GJZPaWIJuJ5wgYQXQmxMlsqtVqMu/rz2gJmYs1zbLbKamZvr4+0cWnTjj9FmAkU2jAXrP3WbFHMkS1WhW/SIk3HdDyXtBnch3I89HjwXPQAfN6zCyFEA6HDbJy7GfS6XSkrw3XHATMKbXG4J3VhzxnrifMQDjQ/f5RLulytY3eA/05wArELbNsLeP8qOMhXRXV6xnX8/BqhCX+5nE4R2s/pn34TvluHffo+Z7AOOdx+m72qCJg7PF44PF4hNWuY9tms4lIJGLo5caExFYRjS6V76asaCAQEAzF7Ltp3fqz8X32MaPvNlc/0PicUWqO94GJHsDYWH61teRq10Vfzbib50fCHdduBK659gAgvcE6nY4B7yiVSnLuutk8z1XfP8q2Xe62Gha33s8Dlu/eabNA9CvAdBaXwTedLSdjzYrSWlO9GFE2mw3RaFQc2r59+xCJRKRJI/dPUJnNENPpNM6dOyfly9sJMnLRwEDP4/FIQ6hwOCxsa5fLhUgkIplYZsbNyYV2u22Qd/H7/RgeHkalUsHBgweRSCSQSqXw+uuvI5/Pi9zLVk4qvJc6kNUB8WaMGqnUCB8dHcXw8LA0/7gY49iPjo7CZrMhlUpJ2RudqdPpxMjICEZGRqThJ7XCec3RaFQahjUaDfh8PpTLZWns2c14z51OJwYHBzExMYFgMIj9+/cLE31kZESy5VyY8d7rBajf7xfmg8vlQrlcht/vR7vdFu1hNqhNpVIGaRfLNmeWM7fMsmVwl4GMDsb5PrAspdXpLOk/spmhWToLgFSZkX1M33jo0CG43W4kEgmRIWHDrGw2i9nZ2R1tNkkWm8PhQH9/P66//nphT0UiEQnSyMryer3iq+kXNEOaMl1vectbMDY2JmXYlUpFtDALhcKOXd9mzAyA8nlgoErwGFiuKqS0CaVLCKaz0TqZ1HzO2DcEAAYGBkRbdGFhAaVSyQDiaI1TlofrYI/vk5EOwFAlt5qRLReLxRAIBCQxQHk2MuhYueZyudBqtYR532w2pSKOTdP1+sNmswkwz0qF3aKBejEgd6/Pb2Sf3YLu9X7e8t2WXe1GSUfNGDYDft2MTSrJkqUxHu3mu0dGRnD99dfD4/FIHEqZUTZFnJ6eRq1W24lLB7AM0jocDgwODuLmm29GKBRCNBpFLBYTH6R7tWniWjfCGADccsst0g+GcpnJZBLHjh1DPp/fseu7WNNrm2AwiP7+fgwMDMg46BhUkwp0r7dujHhiA81mE4ODg3jjG9+IQqGAc+fOIZ/PG5LdvB96jaQleSkx4/F4UCgUBNPRlVerXZ/f78fAwIAA6OxdwsR8KBSSvnxMbuv1bTQalcqNVColaw9iBKFQCMFgcNf57s3YWr67G7FlI2b57ktjFoh+hZhurkSnzr+1g9Lb6M+YvxgEXicmJtDf34877rhDGicGAgFDIFupVDA5OYlMJoPTp08jk8nI/rYTROdihc7a7/djdHQUd955J4aHhxEKhRAOh1c46dUyfdTi7HQ6GBsbE5Z7KpVCPp/HmTNnROqFDn6rJ5WtHjPey+HhYQwMDGBsbAzDw8MXlfUEjJqpY2Nj6O/vx+zsLM6cOYNMJiMNdtxuN0ZHRzE2NtYz2+p2uxGJREQz1u/3C1jdazwcDgf8fr8sMlkut2/fPsTjcYRCIQwNDcmilEF1t2vm96Berxuy/AAE2Gc373K5LCw1y6FYZpllmzUzg4xBqZnl2+l0pHycOs75fH5FU0rOb/TTXq8Xe/fuRSgUwhvf+Ea8//3vRygUwsmTJ3Hq1CnRfy4Wi5iamkIymbwkIDp9xNve9jYMDg6Kb2+32ygWi6jVaoakKRs1a5ae1jXdu3cvgsEgms0mZmZmkEqlcObMGczOzu5qEF37J5IftN45EwyaDchtbDab9O/QjU6pAQssy5UwqCYA0mw2kclkkM1mJUHMc9EgOgkI+jyp71sqlSSxo8v0V7tWu92OUCiEkZERafhGVjoBe4LoNpttBQMTgIDvpVIJ2WwWuVxOvgNOp1PWgZQQ2o2B+FosstXWrubPrHdN0iuot9Y0llm2tnU6HanGdrvdK8BOACt8MwBpkqgTwboajfO8z+fDxMQEIpEIbrnlFvzn//yfEYlEcPz4cfHdCwsLKBQKOHPmDBYXF3ccRGfCc3h4GG9729swNDRkqIYimU7LaPbSSWfF0MjICN7+9rej2WziwoULyGazOHnyJKanpy8bEF37Tq7FqIXO9wEjaY4/GpMh0A4sg6y6co/9v5LJJJLJpFTOezweQ9W5BuNJNtC+vVQqSQNO+sn1guiDg4MIBAIip+rz+aSajP1NgO5M+VgshoGBAelJlsvlYLfbEQgE0Gq1pAqN57RRGZ3dZHrN1K1XwsVWklyu43K5W28hbMsuG9MTsWaZ6x8GD/o1DabrclxmJsnmjsfjoktJSQ79w9JasscoFcJGGNtlZEb5fD7EYjEMDw+jv79fFiBkMmm98W4yNuYfBuM6mPP5fJJtHRgYkA7QdFaracpfatOgCku6ejUQ3ez+uQhyu93yTOhnhMdcrXGpLuvmZ1Y7Ry7MeAyfzyeNTbxerwTR3e6/lk7Q91z3E+B1MIjn38zoXyyL/2o3nXXf7I9lll3uxmeZDCSzjqO5cSOlx8zfAc7BTATTH9Mnu91ulEolFAoFNJtNCYBZpcMfluLuhPX19SEUCqG/vx+hUEiCRjKv6cO7zdec282NRc1rH2BZV35gYADDw8OiE7ob/bY50OQ9YiUdr5uBsW5CqwNoTZzQPVX4wzUgx4b3nxJ49INMQvOY+jx5rnoNwPPciO/mD1+jTBwlXcxSPHq9RtCG6zSuc/TzzH3uVp99KfzZxTDZLd9t2dVumhncrbpbV4ab3zfLnurYh5U5jKNJRKpUKkIqog/gPMkmlazk2W7jvBuJRDA0NCTnqONtxlxmApu5Z5QGFvVPp9ORud3n82FoaAijo6MIh8OGJqC71cxkBs26N6/5tDyOHjMNqpsbsXKdREk3Hadqv8339bjrc9SNTX0+35q+m/30eDxiQlx7krCm+6d0w1j4LGiSgNlvcz3i8/l2re/eqOlk26U6/k777q9//evYv38/PB4Pbr31VvziF79YdftnnnkGt956KzweDw4cOIBvfvObK7b5wQ9+gBtuuAFutxs33HADfvjDHxre//nPf47f/u3fFpWEf/zHf+w6Fo899hhGR0fh9Xpx991347XXXtvQtVlM9CvAOp2OQdM7n8/D6XSiXq+L9hQnxUajIQFXoVCQzsicxL1er+iY3XLLLXjb294Gn8+HwcFBmcgYTGk9uD179khG0m63I5vN4uWXX8arr766LbpjNpsN4XAY8XgcsVgM73rXu3DdddchHA5jz5494kC2wtEyM0pdbLfbjUKhgKNHj+IXv/gFSqWSNAndjUa22TXXXCMOfTuOYbfb4ff7pXs49fO5CFrPvWATUq/Xi1qt1tVx0hH7fD6RpRkbG8Po6ChCoRCGh4cFNOIz263hm96fXrgEg0EpuWMZGX+y2SySyaSUlu1kQ90rzayyMsuudiMIarPZUC6XJThlEAEsM3hYKcOmxmaJL4/Hg3g8DpfLhfHxcezZs8fAZisWi/jxj38sDB9qRofDYfh8PmEjF4tFLC4uIpFIbPt3zOfz4c1vfjOuueYaOBwOVKtVzM/PS/KelWAMqDlmTNwDy+zqer0uzcaTyaRUy5HFFA6H8Vu/9VtotVp4+eWX8etf/xrValVY07vBNCjNZ2FwcBDDw8OIRCJCaOAart1uI5PJIJPJwOFwIB6PY3h4GLVazSBDxmeMfpqyK8ASoE0QhBIBBHzsdjsGBwcRi8XQ6XRkLM3GgHhgYAChUAjJZHLVKjKfz4eBgQGpIhscHITX68XQ0JAQNijnUywWZW2lE9hMzNO/E6jgObLZKQP5QqGAfD6/qysRetl2BN4X438t322ZZcvs0Wq1KnMwQUVgObHLGJ3+yOy7WYnr8Xhw/fXX49ChQzJHsnfFv/zLv6Ddbhsac/r9frhcLoyNjeG6665DoVDA3NwcZmdnt+07xjk3HA7jzjvvxLXXXitAvm4WbvZlHA/O3xq3IJjc6XQMaxv6rsHBQdx3331oNps4evQonn32WYMP3G3G6xwaGsL4+LgQ+zQwzmehXq/L/Xe73VJNwLVPvV6XJIseN5rD4UAgEBDJXYLsfX19hn4yHK9u1disJojH41Ld0Mt3+/1+DA0NwePxYN++fZiYmIDP58PIyAhCoZAk/TW5AViOu80AOivK9+7di8HBQdTrdWkQT4mkfD6PcrkszcAvR/+heyBcyvPfad/9xBNP4JOf/CS+/vWv4+1vfzv+5m/+Bvfeey+OHTuGiYmJFdtPTk7i/e9/Pz7+8Y/j7//+7/HLX/4SDz30EAYGBvDBD34QAHDkyBE88MAD+PM//3Pcd999+OEPf4gPfehDePbZZ3H77bcDWFIQuOWWW/AHf/AH8jmz/dVf/RW+/OUv4/HHH8ehQ4fw+c9/Hu9973tx4sQJBIPBdV2fBaJfAaYDceo283+tPwZAgD+W3HKioiNi+WswGMTExASuvfZaYSF1y2ICyww4ABKgUV91O7PFXq8X0WgUQ0NDuO666/CWt7zFoAW6VUamFrAEVEQiEdGQfe211yTQ261G3dHBwUFDmfdWH4MZ6lAohEqlIs5UPx9rGRehZLT1Yq2ToUcwiIxLasZSN3a9VQI6S07d4Xa7jXA4LJr6sVgMAKTKodPpbOvzfaWbFYhbZtny94AyKgQFte41AUwmvWu12ornn8042ctjYmICfr8f4+PjiEQiOHHiBI4dO4ZisYhDhw7hmmuuEfCRQRw1O3cqWCHg/8Y3vhH5fB4XLlxAvV5HLBYz+FwGkhwv9tZot9sol8uy5qH0FsuSgeUEbzgcxr59+yQJ/uqrr65oar1bjCwzghVDQ0NSKu3xeCSI7nQ6qFQqqNVqEtwGg0HRgWfihQlpvQ6k/6JMEEHwQCAgjTUptxIIBGTNSACApqu8eI7VanVV5hh9qs/nE79NGQMeLx6Pw263G6R7+KOZjmRlApBnplarIZ/Py3Xk83lZM1h28Wb5bsssW36OGVdzTuLcp2VTNSPdDPwy7qEk6bXXXiuxptfrxeTkJI4fP45yuSwJclaNUzudhKJCobCtvpvX5/P5cPDgQdx6662i8272Deb4iD7H4XAIbgFAkr3tdhvVahWVSkUS54xfr7vuOrhcLmQyGfz617+WpMRuBNGBpWsnqYsMbQArQHQmtFmdxbUe13lMBOvqM33NjLvj8bgkMugvyeLmc9crGetwOBAOh9HpdOQ57mVcKwYCAamYIKkhGAwK0dBut3ddW+lkPv14X1+fkCYqlYr0NSmVSqhUKlJpdrnbbvB7W+W7zdJKOrmn7ctf/jI++tGP4mMf+xgA4PDhw/jxj3+Mb3zjG/jCF76wYvtvfvObmJiYwOHDhwEA119/PY4ePYovfelLAoYfPnwY733ve/Hoo48CAB599FE888wzOHz4ML73ve8BAO69917ce++9q17H4cOH8elPfxq/+7u/CwD4zne+g6GhIfzDP/wD/vAP/3Bd42GB6FeQ0SlpZpVuUAlAJlhmfrux2QYGBqSLtJnFu5bRodPxsREYj3WxxgnY4XBgaGgI119/Pfr7+xGJRFY0C90OYwDHZpbXX3890uk0arWadJneTh34jZiuFqDUynZLzxCE1pIAm22K2u0zWoqFIL0uAeNi5WLlVngcLmpYEq7ljHRm2TLLLLNsM6bnEALmDIKAZbYbpVx6BY4sydVzoG505na7pVF2MBhcocvocrnQ398Pn8+HVCoFh8OxLUwvspuHh4cRjUbR398vDSRjsZhIzZTLZbRaLWGLU37GZrMJy5jjx3PV8za31SXhZIIFg0Hs2bMHxWIRs7OzO6olu15jsKP1YindUq1WUa1W0el04Ha7RbOcbLNqtSr+ib6QSWe32y33VZeU6+dLB78ENcwyBPr5oeSKfm81n89ntZvsGnVzmcih5jAAA5OPTHk2QeO97uvrk6bvBGZ0ibnD4djV4Itllll2eZhmlnJOJQDM1zkf8v1uCVvGzWyo2Gg0xKc1m024XC4MDQ2hWq0iGAyuqKr1eDxSCb6wsCCNpjcbe/W6VmqWj42NIR6PIxqNAlgGcikPxiSveY612WyGBDfHiPtgopPXxfmc8Vaz2UQ0GsV1112HfD6PmZkZJJPJLbm+rTKd6NWkPl2VwO0oMeZyucS3a2IjyRTsB+NyuXpqqHOfwPKYktWtK/LMZn5W19Id1+tMLeFjltXjuZklaPhD3844ncfUskc8npbX5XOwGwDpq9nGx8cN///pn/4pHnvsMcNr9Xodzz//PP74j//Y8Po999yD5557rut+jxw5gnvuucfw2vve9z58+9vfRqPRgNPpxJEjR/Dwww+v2IbA+3pscnIS8/PzhmO53W7cddddeO655ywQ/WozPWmymahm6Gh9TLKQujUVDYfDOHToEOLxOIaGhgy6Vusxv9+PPXv2oFKpSAlyuVxGoVDYkkCVwbbH48FNN92E//Sf/pOwrKmhvZ3Aps7+X3vttQiHw0gmkyiVSpifn5fJfTcEaGRpEWxmlng7tcXYkZuOTpeNr9dWy5Tq59rn8yEajSISichvrYG6mWdBb089O2be4/E4ACASiSCbzQIAcrncrmMxXi5msdksu1rNrBMKLMuyARC5Nb2N1oXu9uyzkRRLhxnYkI0cCoVw0003rdBtZfBDBnC9Xkcmk8HZs2cl6N0qf8ag8Oabb8Z73vMe+Hw+hEIhCchCoZAkERYXF0W6plwuS6LUbrcjl8shnU7D6XRiYGAAkUhEtGIBiJQYAz7dVLrVamFoaAhvfetbkc1mUa/XkU6nt+T6ttJ0coPXUiwWBSAuFAqw2+0YGxvD4OCgjFm5XDZUYTFI1yXXhUIBqVRK5P1YnUg9/lqtJsG31sfX0kJc6/CeMgBvNpsCbPcyl8uFcDgslWQE1Fn1SAY52YhM+nB9q/dNuRfq63s8HhQKBWmS22g0pPkpn7Ne1RyWrc8s323Z1WA6HtDPrJam4HtM6pKVze3ou83JR22Mm0OhEHw+n8TKlJUMBAK44YYbDBIg+lwikQj6+/vRaDSQTCZx6tQp1Go1YTRvxTgw9n3Tm96Ee+65B36/H36/3xCTsTKqXC4bKnUJKttsNqkMYuUSWcv03W63W46n8QeuV/bu3Yv3v//9yGQy+PGPf7zrQHStb09dbyaG9bxJ6VCn0ylkAVa08xkhgOzxeKQHm96Ofoy+2Ey8YOUin7tuzx5f0xWPq83PrHhk0seso04/rb87lKYhNkXTzwexCT63XEMQwyCJTfcEsmzjtlW+e3p6WqSCAHRloSeTSVlvaxsaGsL8/HzX/c/Pz3fdvtlsIplMYmRkpOc2vfbZ6zj8nHk/58+fX/d+LBD9CjOdedasaD3B6aZl3cp6/H6/wbltBIjkhA/AwDDaKmCbDpsB9+DgIPx+Pzwez440CeOiqNPpIBAIYGhoSMqmuAjolu29FMZz1Y1St7shC52hy+VakeFej5mz1r2OoRuB0sl2a6CymWs1O3Y6cj53/Hunmu9dqWYF4pZZZjTNxqFpn7PaM6+DTt3QieA7g1b2TimXy3JMXeHF+ZSB31b6bgaYusxZ+ymWPJM1RWCXAaAGwllRp5ls/NHXQFa6ZgO6XC5Eo1GpnNqtOpva1/EctY4ssEws0Ilr3fBca5CyIq1SqRiSN5rVphlpveRuuoFBGkRfK+miGXb8rdcmBKXIcteyhLxPPAZBezIgHQ6HIUnEMdJN7/jM78Z7fjmY5bsts2zJNEgOGNnXupHkanMimdy6kbK54sbv98v3ToPoAKTSilU7G60gX881MoYMhUIYHR01sKL5vh4PJljN50AiHxP8+hgADNIl9As6JvR6vRgcHBQilZl9vRtM+20dj/IZ0NfKyoNumuW6kTrHpduYmmNt/nCs9Tb6+Dqxo/39etaZ3ZrIms9HH6sb5sTx0OsUnXDqhl9s5Zr0arSt8t2UzV2PdXteV7uHvZ7vbgmY9e5zq87NbBYKdAUaHzhz6RAAg7Pv9kXSZbabAQm13IYOyLcK4A6FQrj22msRCoUwPj4uAPpOd26mg2cDrH379uHGG29ENpvF5OQkSqXSjp5PL9tuZn634/F3rVZDOp2WJifraS7aarWQy+WErdCtHFA3FtPANoH0rXrW6Lw7nY6AD+xK7vV6UalUdiRxc6WaFYhbdrWafnbXAvR0gLTWPrXPp2xFKpUyMK01QEpj8ELQmhqZ1WoV+Xx+S9hsbJTm8/kQCARQrVYNMiIEAthXhYx5riXYKNrtdqNarSIQCAhTnswsNgPSQEOtVhM/SP/jdrsxNjYm2tvhcNggdXepjcE1wXBW2dEoz8PXdHKAkmMMcPL5vMi/sCk25XDIznY6nahWqyiXy8J0z2Qy6HQ6on/K5AUAYZp1Oh0p7S6Xy0gkEsjn8yiVSqtWaJmftVAoJCQE3i+/3w8AUvbNcWHCh2PChrpMMLD53tDQkKwnstmslMSzUd9ulPC5XMzy3ZZdDbaWTyaAvNp263nWqQVOYJpzW7lcFmawjuu5b61BTrkvxitkBG+F+Xw+DA0NSd8K+kkmu3XlEyvdzeMALM3lrKwiGGuOCbXkDX/ruJK+oV6vIxwOIx6PyxpgN/hubZqB341UpvEYJg50PxyujWq1msTFrBQDIBXmpVIJqVQKxWIRpVJJ1nt79+4V39itKoHnwR4i5XJZGpKvdU1mAhuvU1cVaFka8zYaKwKW1zAkcpqfba79Niuj2quq5GqznfTd/f396OvrW8EQX1xcXMEApw0PD3fd3uFwiBpAr2167bPXcYAlRvrIyMim92MhQFewaRYRm22ZS4rM5nA4LgpEB5bBR63jtVUgdygUwnXXXYc3velNlxREByAao9FoFAcOHMAb3/hGHDhwAF6vd8fPpZdp4GCnAHU6yFqthlQqhVQqJazHtazZbCKXyyGRSPTsEK67epNlyN8E0bfiWs3sTIIFLCvjotHKiltmmWUbNc3MWUu7dD0LV80o1lU0qVQKU1NTmJ2dRTqdFlBVa1yT8Ub9awKbbNC8Febz+bBnzx7s3bsXgUAAlUoFxWIRiUQCs7OzWFxcRDabNTTF1LqgDL4DgYCUkns8HpG+aTab0uzK7XajXq+jUqkgk8lgcXERqVRKAF6Px4Px8XGMj49jcHBQSpN3S1KU6zAGjpr5RX/EpC5BZoInDKwDgQACgYBo69ZqNSSTSXkOWAbu8XjQ39+PcDgsSYlyuYxMJiNAOvfF8m2v1ytBtJbkyWazuHDhAtLp9KqABsu7G40G3G63jD+DfWBJ4oASdEyoaDa91+uF3+/H4OAg9u/fj/Hxcfh8PrTbbXg8HgwPD2PPnj2IRqMyhuyhstnKxZ0mJVi2bF//+texf/9+eDwe3HrrrfjFL36x6vbPPPMMbr31Vng8Hhw4cADf/OY3V2zzgx/8ADfccAPcbjduuOEG/PCHPzS8//Of/xy//du/jdHRUdhsNvzjP/7jVl6SZZe5reW7e1V8m42VVbqhJqVP0uk00uk0ksmkJEFpjO3p6yifudWEIp/Ph/HxcRw8eFBA9FKphGw2i0wmg1wuJwlYnTztdu1OpxOhUMhQvQ3AAKjymgjqlkolkfmw2Wzi42KxGPr7+7d0nbKVRixEM60BY3NRYjL06ZSAYT85+u5sNotkMilNN+v1uqGHXavVknuyuLgoMjfxeByxWMzQmJw/9KEul0uA+EKhsCaIzvUIe43oWFj7aD7HukKdZAjeQzYW53q1r69PfH84HDZItXLNsVkQ3YrXd9ZcLhduvfVWPP3004bXn376adx5551dP3PHHXes2P6pp57CbbfdJvNFr2167bOb7d+/H8PDw4b91Ot1PPPMMxvaz+6IGCzbNaYZQpvVQdXBvGa89Spx2ohRjysUComTuVSBDY9LlnU4HBbt0vV+ns5VA8PmEqmLuTazFt9WNprpZmRH8BkiA44LRGbDzWVnXChwOzLldkvGWN8n3ejEvDiybP1mfgY282OZZZYtmQYmdfMnLXNCM7OA+BoDHe5vKxs49fX1SdDGxbAu2TWfiy7hJYNJ68KbZWt6JSR08KQlbrjG8Xq9iEajAjivZea53lx9p5tsbdZ4HdqX8rq1z9HXwrWWWftUs970+Gh2oJmpr//XfpzMOC0TqJ87AgNrPTN6Lcg1g94nWeXm6+JzQbCd1Qx6vPTx9XVoMEP/WL5747bTvvuJJ57AJz/5SXz605/Giy++iHe84x249957MTU11XX7yclJvP/978c73vEOvPjii/iTP/kT/I//8T/wgx/8QLY5cuQIHnjgAXz4wx/Gb37zG3z4wx/Ghz70Ifzbv/2bbFMqlXDLLbfgq1/96uYGyjLL1mE6PqOfJDlsLdkD/mgfap7/LtbIDmZjai03oqUzu8215uOb1yOrzQV6n5rJTf/m9/sRi8U2DKLrMdPx3Fb4bp5jL5+kzdwk1Byvm9nra82fZpC+VquhVCoZSAn6vMxNxderN67Py8zw1uTNXutH81rBvI15TaLvleW7L8522nc/8sgj+D//5//gb//2b/H666/j4YcfxtTUFB588EEAwKOPPor/9t/+m2z/4IMP4vz583jkkUfw+uuv42//9m/x7W9/G//zf/5P2eYTn/gEnnrqKXzxi1/E8ePH8cUvfhE/+clP8MlPflK2KRaLeOmll/DSSy8BWFoTvPTSS7JmsNls+OQnP4m//Mu/xA9/+EO8+uqr+P3f/334fD783u/93rqvb/el7iy7pMaSXwDSeXsjxiZmbH5B1pvNZpMmKcwkMrO8HnCXE2YwGMTBgwcxMTGBgYGBXcEcczgc2LNnjzTX8Hq9q5b48VoIWPDvbl2qGehvppkGP8f7US6XDTqp22E6G55Op7G4uCj6d9RqHRwchM/nk890Oh0Dm2FmZga5XE7KzbtdF58XrX2qA/GtMp1F13IuOpOvx9my9dvFAuEWiG6ZZcvWaDSkoZnf78eBAwfQaDRgs9mQzWYNpcUMHFlG3mg04PV6pUGnzWZDKpVa0cTsYszj8WBkZATxeByRSET8XTgcRigUEk106sMCMJyf3W5HsViU/wn2a6CgVCoJsMuAi9sBMDD88vk8ms0mxsbGEAqFMD09jXw+j0ql0vX8NTigQV2tQ88+MuVyGcVicdNzVLPZRKVSETmeUCgkDa4JYnD8qtWqgM5k5APLjZ7q9TqazaZsbwYvNCihS7V9Ph9arRbS6TROnDghr+vKLGCpuTabq9frdYOmby+jni11fNPptDTG9Xq9qNfrSCQSUonAcfZ6vXC73cjn81hcXESz2UQsFkMsFkO73ZbnA4AwMcnQ143nqSPvdDpRr9fX/YxbPmfJdtp3f/nLX8ZHP/pRfOxjHwMAHD58GD/+8Y/xjW98A1/4whdWbP/Nb34TExMTOHz4MADg+uuvx9GjR/GlL30JH/zgB2Uf733ve/Hoo48CWArmn3nmGRw+fBjf+973AAD33nsv7r333s1epmWWrcsYNzebTQSDQYyPj6PVamFxcRGFQkGIRmTqAisZwZTAcDqdknzkNloiZTMWCARw8OBBYT0TsNaMac63ZBRrAJmJT4KuOnnaTZ5Dy5robTudjszXzWYThw4dwsjICM6dO4dUKrUuGdVumuv6/Nm0e7Pzm44HKY2m5W50AoJAtyYcstEoAENiWSe4zcfifWfFFfc9PT2NYrFoaEyqAXSupVh5Rhb6ar6bz6IGwjW5oV6vI5/Pi9/VTd2J+7DigmsArl/MSQPzM6TZ+g6HY0Nx91rSS1eL7bTvfuCBB5BKpfC5z30Oc3NzuOmmm/Dkk09i7969AIC5uTlDMnz//v148skn8fDDD+NrX/saRkdH8ZWvfEX8NgDceeed+P73v4/PfOYz+OxnP4uDBw/iiSeewO233y7bHD16FO9617vk/0ceeQQA8JGPfASPP/44AOBTn/oUKpUKHnroIWQyGdx+++146qmnRBZyPWaB6JYZrNlsolQqwe12d9U2W8s4wbLZE7UnGbgw+NIMJn5urYw0dbEGBwcxPDy8Lo3tnbC+vj5Eo1G4XC4kEglDcL9ahpWOVeuL6Wwfx0Y7vY04AQLNWs7HZrNJ8Lsd1m63hSHGxUi9XheJm0AgIIAAx4HAezKZRKVSEcmB1Uwvqsx/b7WT1CVq/DE3GN3ovbFsyazxssyyrTEGRdSp7O/vR71eRzqdXhFoEPTlvEmQlc3LCDR309HcrLlcLoTDYcRiMfFBBJ7N1Vs8PzNjmqB+p9ORQF4zsqkfq1nquqKL64VKpSKJhUgkIvqIBJ67md4XYGzISj/g8/lkXEul0kUF4rzOcrmMfD4vWvIEgwkQM9lMOZ5msynNyuhf2ZzOfD28Dg1waPkcgvm1Wk3YiA6HA4FAQKocKpWKJL0J3KxlNptNJNg4Vq1WC+FwGC6XC7VaDcViEY1GAx6PR54Rjnez2UQqlRLAnMANQYG+vj7DNZsrGmw2m4Aau01H93KxrfDd5nUeiQra6vU6nn/+efzxH/+x4fV77rkHzz33XNf9HjlyBPfcc4/htfe973349re/Lf0Xjhw5gocffnjFNgTeLbNsp0zHzW63G7FYTGTK6vW6AQDU8yvnN/bPYA8RHS92a8q8UeN6YmRkpKt2t/k4vCZKc+nXNLNcE8P0tek5Widl9TjZbDYMDQ1hfHwcnU5nXXGtPm8m2AmkE5dotVoXlQDXMSmruFwul4HlrhuN6oozcxWV2TeZfasG38264+12G5lMBsViUfw21yb8DOVySLJbT5+Qbgx7vmaz2VCv10VXndV9HHdgCWMql8srnk8zkVKz8TudjqHSj8D8RtUSrHhzyXZ6HB566CE89NBDXd8joK3trrvuwgsvvLDqPu+//37cf//9Pd+/++6717xOm82Gxx57DI899tiq261mFohumcEqlQoWFxdRr9cxPj6OSqUiYOFq7GU+rGRDVSoVhMNhXH/99Wi1WpI5JGBMthaDnkKhIMArg37N9qKzY0C1lTrrF2vMaJOdTJCVzp7baEYzwQM6bjoHwDiWzEo7HA7JWPdiaPcyOst0Om3QM91K4znz/Mg6Z7ZxbGwMg4OD8Pv9GBkZQTAYNIDo4XAYAwMDKJVKCAQCwkrP5XKSkGFShwtFSsCwuU2tVpNFAp+bi0my8Fi6NI0JCbJCzMCKBaRbZplll8J0g81UKoW5uTkBloGVjGMGIZyvyuUy5ufnxe8ODg6i3W6L36afIhMbgLB/OQ/36mMBLAWOrN4xN0EjYEu/r9ls9XodtVpNWEhmBpIOGnUwx8CNr+sSYDMAwPHpZubAHoBB75MJVc3010xuvQ7YDCmhWq0il8vJ+IXDYRQKBQn0WRnFoJ3nSvY+AIOmupbSAZaSL+VyWQLqYrGIer0uQTm18dkDhmscghbUYddBuF6/dbNqtYqFhQWUSiUMDQ3JvqiXyuQAEwEcdz4jdrsd4XBY9NjJwmRyhSA6AEOZOpPh1Fi/GNlCyy7exsfHDf//6Z/+6YqANplMotVqrWj2NTQ0tKK5GG1+fr7r9s1mE8lkEiMjIz236bVPyyzbLmOyu9lsYnFxEfPz8wJCmxPJAAx+rdPpyLzNOW9kZET+Nsut8LVWq4VCoSCkJ8Za3Yy+gH6ZvkWzuml6bUCwVSdogZVa8b0IUFxLdJujGZ/p2LCXmYFzTV7j6zw/p9Mp/oR+YjMELa6NMpkM/H6/+CkysYHl5K45Ma+PpbXGzckINvguFoviv4m3uN1uRKNRhMNheL1ejI6OIhQKGUBwriPK5bIk38mg7+UX6/U6stksWq0W4vE4KpUKPB6PYW3AxEc3iR1WGnLtZ96G56efH67p9PpzPbJxllm23WaB6JYZLJvN4tixYwgEAtKwyev1Cnu4l2lnvrCwgGq1ij179mBkZAQulwtDQ0MIBAIrMpIsJTpz5gySySSmpqbw61//WphNBEYDgQC8Xq80oGJ3793ARCdDXjfIYuM0c2BHx8bAW2vWmk0z0JlwoANbr1PnQiORSGByctLgVLfSNOBBBno0GsUNN9wAr9crjb9cLpeBicgFQ6FQQKFQQKlUwqlTp5DNZjEzM4NXX30VxWJRGs6RicAy/2KxiL6+PvksF3gE2i/mGeH1aL12/UP2pl4IWQH5+m2ny8oss+xKtmq1ikQigXw+j1OnTiEejxsaLXcr6dYyWOl0GmfPnpX584YbboDT6cTAwIA0n/L5fIaAr1Kp4OzZs0ilUkgkEjh16lTPJtKU64hGoxL0O51O6SVSqVRQKBQkeex0OtFsNlEsFlGpVBAIBMR3asAYWAYXdMBllhVhAM01CNczZLz3Mh1g8zfPRbOjyNomm9DhcKDdbgupwMy8W4+1223kcjnxZ8FgEMPDw+h0OlhYWECr1UI0GkV/f79UDdAX6eoDng+Da51wYEO4QqGARCIh6wuCDPv378fBgwfh9XrlWWCinJ8vl8tSAu90OiWx0ssfcp3p8Xhw4403ioyL3+9HNBqF3+8XqRc2lmNigMH5nj17YLfbpdlsu90WSRmd0NFkDSYCtE+3fPbGbat89/T0NEKhkLy+ViWIeR+rre26bW9+faP7tMyy7TCC2R6PB0NDQ4hEIobmjAAMpDE+o2wOncvlMDs7K0nHm2++WeJmgsZs3siYpVwu4/Tp00gkEpifn8drr722KojOBDjBWu7fLA+m1xlMYPK4nGvN4DmwUrqEsZ4ZSNefJaFpLRCdVXZaDkT7bsZ6AIRkRhCcgDKT/uud+1qtliQAh4eHceDAAQwMDCCdTotv0klt3l/z2kZXhnEMOSbVahWFQgH5fB7JZBKpVAp9fX3y/Fx77bU4cOAAPB4PYrGYSM1yfLPZLPL5PPL5PLxer+xjdna2p0xKqVTC9PQ0vF6vNHLvdJakWfr7+w1kCPpe3i8SDDjn837ohIGZtEbSIJut83/dm8Wy9ZsVd2+tWSC6ZQYjK1wHfzabzcBe1otM7QDp9MgMDgaDAn4zC6o/y0wvy8adTifK5TL8fr8EN8y00onostzdZFpXTZ8nYGxASia6x+MRB6LZAdq07rcu9dKA7XomNLLZisWiMOS3OljoNjF7vV4MDg4iEAhgdHQUY2NjsphjsERnTkYZs+I+nw+1Wk20qSqVioGpz0UNF2m6CZlmDmz2WvRxzGx0fT94DTSLib5+s5y5ZZZtnWkJkEKhgEwmI1qpLpfLACizlFZrWtbrdWGz0Ud5PB7E43FJogcCAYPMSrlcFlZSpVIRKQ7Neqfp8mkeWzPcCfQTMNb/8zx1wlnvv5s0iZ7HzaabWq5VsaQBdF1RRj+vk6js/6JLpzWAsFH2FIECJtC1bjz9HINs6obqsdPnrysKeG7cTvtO3heuVUKhEGKxmATJXJ/l83kBtHlOgUDAwGrrdU+47uO16WoBsh2pL1+r1Vbcc3NFH6+fvwm26+oxM0ijWZKWbcy2ynezymE16+/vR19f3wqG+OLi4gomOW14eLjr9g6HA/F4fNVteu3TMsu2y+g/W60W8vk80um0kMY0k5xmZuuSvFSv1xEOhxEOhwWsJGjM1+izSqWSJGjL5TLcbrf01zD7bsbcum+Xnk/5mp4XtL/jj5llzc/38tVMiGszj8Nac5H2fwSt6a80s5m+TyfFtc/cqP/udDoiS8Z1AeVWzExzxvW8Zn5eM9DNzVh5LuaGoDabDX6/Xwh7AwMDXfupaH/rcDgQiUQEv+F6sZvvpmwgAJHXo3SaZvUT6OZ6UN8PXqu5ikHfdz5j3cb9Yv3P1WxW3L21ZoHolhmME2S73caJEyeE/bR//35hgTH7zKCLTpwZ55GREclck3GtwWI6TU66GmSn08/lcnj99dfx+uuvS8k099dtUXEpTZ8Hy4U9Ho+hnNrv98Pr9cLlcslvc5ORXvumXhudHfVJyQZba1IjyxBYAqP37NkjCwlmpi/WuMCKx+O48847Ua/XEY1GMTIyArfbbWgmp9kV+vPMbDscDjnPiYkJlEolnDx5EmfOnEG5XMbc3Bzy+TxqtRpSqRQajQZSqZTIAIXDYUNzNLNW32qmme6UFqrVasLW4AI3m81K2btOcFgOZv1mOXPLLNt6a7fbmJmZAbDUzHNgYACBQAButxvBYBB9fX2oVCoCNFarVWlM9YY3vGFF0MZqKQbb5oB0dHQUkUgE/f39CAaDKBaLmJmZwdTUlAHY5fa6lwQDWAKd7KHSarUEhGWJMAF6rf1NRjmTrrpReTfmGkkBnU5HAjgC+2Rpk4VGkNmsec5rr1arMkb039R0ptxMX18fQqEQgsGgyO1o9tx6jNeUz+cxOzsLm82GXC4nPVRIfGAw3W63ZZ1ms9mkgSoAuR7qrBOk0JUG1CH3+XxwuVwYHR3F0NCQPBMsRWeCOxwOi98cHR0Vfzk1NYVyuSy+mf6agE0sFpPxJqNufn7eMC70EUy6838tU8TKBy11R1CJYD2T84lEAul0WqrWCGBYbPSN2U76bpfLhVtvvRVPP/007rvvPnn96aefxgc+8IGun7njjjvwT//0T4bXnnrqKdx2221CBrrjjjvw9NNPG3TRn3rqKdx5550buRTLLNsyYzNIYKlp59jYGILBIHw+n8Q1pVJJ5jzOyS6XC4cOHQKw7IM0AMvkIrXE+R6lNaPRKLxeLwqFAqampnDu3DmZd3UFk9vtlsaeOlmsG2GbQXP6eQ388j2yq5lEoD8ys9vNUjRMxDORHQwGZY2g9eAZazMW1MxvwCg9o+VSgGWplWAwiFqthlwuJ/3d1tOklSSDdntJmzyRSAhRUFe1mY3XZ36N+6zX6yiXywK8sz8JWdqs5nK73RgZGcHAwIDhurSUXSwWQygUkgbrjUYD8/PzOHnypPjLZDIpPr1cLgse4fP5AEDUBKhAwAS33W43yLF1I1/qBDrXLiRzMKGUy+VEFiedTku1nxVvb86suHtrzQLRLTMYnVmtVsOxY8cwPT2NcDiMt7zlLQJ0Dw0Nwel0Sjksg+t6vY7R0VHceOONArTrRk7dyigJnrI5yJ49e7B3717paM1AnF2cOTnvFgCdphcmdGgMsm02myyCKOGim4z0Mv2+x+ORwJ9lySyZXg+Inkwmkc1mUa1WcfDgQQFUujV124zxesLhMN70pjeJY+dzYL5n5mvXTWGGhoZksVCpVFCpVPCrX/0KR48eRTKZFHkXNiGt1WpIJpNIJpMC3uuFX6/FSjfTrLxisYhUKoVKpYKFhQUB0ZPJJDKZjCELf7Hsd8sss8yyrbBWq4WpqSlcuHABPp8P+/btQzQaFXkXl8slJbya5TM6OopDhw7B7/cbKm/o21meC0ACUpfLhfHxcQnux8bGUC6X8atf/QoXLlwQn8XksgbQKTXDAIpJYa4pGNgyECaziwBqvV6XBD2rmHK5XFcQXYOvwHIZMfdPIJ79VsjsInuMSXyyudi/RTPlyPZyOp2oVCoCNEQiEXg8HgHwtRzYWv6C11yv15HJZDAzMyOBKZMTjUYD+XxewGOy6cLhsByPcij0xdxfq9VCJBIRECIajYq+aSwWk3vM9d7i4iLK5TK8Xq8kZEhuYLLc6/Vibm4Ox48fRz6fx8mTJ3H69Gnk83lUKhUB0ePxuFTkERSYm5tDoVAQQF+TEvicECTRz2SpVDLcawJGbBKXz+dRLBaRTCaxsLAgzweTOJpNadnus0ceeQQf/vCHcdttt+GOO+7At771LUxNTeHBBx8EADz66KO4cOECvvvd7wIAHnzwQXz1q1/FI488go9//OM4cuQIvv3tb+N73/ue7PMTn/gE3vnOd+KLX/wiPvCBD+BHP/oRfvKTn+DZZ5+VbYrFIk6fPi3/T05O4qWXXkIsFsPExMQOXb1lV4u1Wi2cP38e09PTCAQCuPbaazEwMIBYLCbEoGQyiUQiIZU/bPp54MABeL1eg5Y0/ZCWUtGx6ujoKGw2G/bs2SO++xe/+AWmp6fRbrcllvX7/TLPaxCdzOpGoyGJeQ1203cAK1njmhxXrVaFia9jNb2tTu6TtMXzYn8M7bsp9cWmmt1iQY6VZqvTbDabkLoYa7MKeT3GpD0r9Fj1otnt+lyY3NdN1bk20/6pVqtJQ+ZoNIpgMAin04mDBw/C5XJJo3RdEd9oNCT+133pwuGw+O6hoSH4fD7Mzs7i2LFjyOVyOHbsGE6cOCE9ysrlspAJPB4P+vr6RPZldnYW6XQagUAA/f39UlHWLfbmc1CpVARIZwzNKjeSA3K5HEqlkjz33ZqwWmbZpTILRLesq+mMZ19fn5SGk/3jdDoNzpQTs5llthp4aWZwA0uBqN/vh81mE2Z6s9nc8kaYO2G6DFxrZ+tGIpvZn97XepMJLL2jA85kMgCW9d82IpGjFzbAcuacZYM+n0+Ybdz3Wqa34d86Wx+NRjE4OCigRD6fF2kaNmqhg+fChQADFyYayDfLrtCpMzinrioXDsViUZqwkC3JxZrlzDdnVkbcMsu2xxgccm4keJ7NZgVELxaLBjaYWYakV8m12ejnWWXE4DsQCMj8y2CK52EuCzc3g9bl49y/mS1sluUwgwTaP/H8dckzj2cO7M3rFia+GZT28rkavAAgAbmunNOB8UaM516pVKQPCNdY2sfy/DR5gefGcSZ4z23IKuPaSzcH61Y+3qusXd9L7rfZbCIQCCASiQCAgUDAJA1L3lkVwbUeEydmUIH3je+zGo/3lfeWCW6uDZgMslhsF2877bsfeOABpFIpfO5zn8Pc3BxuuukmPPnkk9K4fm5uDlNTU7L9/v378eSTT+Lhhx/G1772NYyOjuIrX/kKPvjBD8o2d955J77//e/jM5/5DD772c/i4MGDeOKJJ3D77bfLNkePHsW73vUu+f+RRx4BAHzkIx/B448/vplLt8yyVY1zKOdFJnvT6TScTqfoWDPByT4fWoakm9QZsPJ7R1+ntal9Ph8CgYDE3donmmNXcwWuJsfp+Nd8bM7hZl/C+dscH+vX+Llu25h/qKOtz0N/luOkJdC0dJt5nPR765nDuE2j0UCpVEI+n5ekMO+feX96vPTYsPJOjwd9Npn23Lc53jUnMPT/fE1LqtF3h8NhxONx2O122b/23VyPEIhnzN2tyo7HIVYEQBIT+lz47BN/YpLcqvreGrPi7q01C0S3rKsRROeE9pvf/EYAVzolOqB4PI67774bBw8eFDmWzbLF2WjM6/Xi0KFDkoVcXFyUZhy78UusHREdjAYomNHf7LjQeTIL7HQ60Wg0DPpqq40LHU82m8VLL72E06dPY3x8HNdeey28Xq+UdZkXD92uUzf34s/g4CAGBwfhdDqFHbFWEmUtI1PB4XDg+uuvx+DgIBKJBBwOByYnJ5FMJjE9PY1sNiusemblS6WSlNBzgaGbuJIByTGjHBEz9uVyGZlMBufPn0exWMS5c+dw9uxZVCoVzM7OipYgx8IC0jduljO37Eqx9QZVO20sz02n05ibm8O5c+cMgY7P58OhQ4dEN5Ngq24USSM4C8CQdCUTiQxyYElv+E1vehMqlQqmpqYEAIjH4xgcHJQmqCx5pryJLhvXzDGdQKa0DAN8ynZon6sT1gz+NIOJbHANOJPBTT1QBuGxWAyDg4OGKiUABtYasOSji8WiMPDIBGdzrGq1KkHhZvxFpVLB9PQ0ksmkrCfcbjcOHDiAcDgsSZNWqyXNV3mtTDCTPQhAmOZ79uzB0NCQsPLJXGMjb12yz0oAMg/5LBHInpubM4DtHo8H+/fvx9DQEBKJBDKZjGi7Z7NZ2O12ZDIZWTdoPXQ+Z1r6honrSCSCsbExOBwOnDt3Dvl8Xsr3nU4n0um0sOYXFxeRSCSEQEAQ3Sz3s9WmwZHdODdcjF0K3/3QQw/hoYce6vpeN0D7rrvuwgsvvLDqPu+//37cf//9Pd+/++67r7h7Z9nlYfV6HRcuXEAymYTb7cbJkydht9uFxBMMBnHLLbcIS10nJVmlQ3/cDUAFID6z0+lIfDQ+Pi6+O5lMShNR+hz2TQFgkGNjMpcxIQCDb9U616wSIjiq/S1BVs105zF4TfybpD59PhpAD4fDGBoaEik1Xq957tc9V4DlymqdjGVVFLGRjVipVMLx48cxNTWFWCyGoaEhaSJL0qAZROd18ViaAMCq9vHxcWmwrbXIM5mMjJ/D4RCZXh2v6mQzq/hYpQYsEeze8IY3YHR0VHwp1wapVAoARMYlGAzi2muvlX4TrDDrlgCPRCKy3piZmUEmkxHwnsz2RCIhuM/i4iKq1SpSqZQhYb6dfvVKrkyz4u6tNQtEt6ynmZlCZmNAOzExgXe/+90YHBxct1RJL6MDdrlcGBkZwTXXXCP602xgtttNl5LrRYHO6m/WGKDrkiyCCqsZJ85SqYTz58+LRl4sFkMwGJTybGB17XDNNtOANGV+dOOyizUN2IyMjGB4eFi0yZnBP3XqFMrlMtLpNEKhEGq1GmKxGICl55egDPfDkj2zIybIUavVkM1mUSqVkEqlZPEwPz+PCxcuyPssP7fA882b5cwtuxKsV3XLbjDqSvayaDSK/fv3G8qumTinRIbuYWFmdwMwNKRkkBeJRLBv3z7k83kBy6nfGQqFJBjVEiQAZF4no4rno1lMZnYym27q4JnvU9bL5/MZQGYCswS5GZRrmRRebyAQQDweR61WQzqdFt9u7rVBP9JutyVxC0CAAkrWbDQApzF4JZHB7/fD5/Oh2WzC5/MJ4K0bhvI6OcYMrNnIm7IqQ0NDhkCc1Wq6ySj3p++bBlEajQYymQyq1Sp8Pp/IBw0MDAhAH41GRXedcjj0A+FwGHv27EEgEECn01nB/NcVB2wQ6XK5kEgk5D7wueE1FAoF8eME+7tJr22G2LCWbYSxeLmZ5bsts2x7rdlsSsVwN4vH4yLVQn9F38YG4/p71u07pzXBOdfGYjHs3bsXxWIRlUpFpMB0Q07O27qqR/tc9jOh0c/q4wEQgFoz0HWVFcFY3XiV10hGtPZ52oeRPR0Oh+U6dJ8TjomZma7JX1oajrHjenuZaKvVapibm0NfXx+q1ar0LInH4ytiZV05x3PQ8mX0/ewrwkbIrPorlUrIZrNot9siT8fEt15LcY1AYF33oiHxIBAISIPaY8eOIZPJIJvNIplMStPQfD6PcDiM4eFhYcVTooX9Zfhs8m+uAROJhGF8+ZzQdycSCczNzQkrfTNjfzF2Jfpvy3dvrVkgumWbNo/HI+Crbsq1FQGJzbakI97f3y9OjZlUc+n3pTYNpjJgpUMyl4BthekFhy5d6za58T1dGs+FUK1Ww/z8vDRMISOM5YP6nHWXbN6DoaEhDAwMwOfzwev1GhYv22EMkoeHh0ULNRKJSBKBjUUjkYhk2FnOR4Bcl78TuCFbj70AFhcXUSwWkU6nJSOeyWSscnDLLLNshRE4vpzmAwbE1Axl0AQYF9n0HUw86oDIzAKjhAeZ7Dq4b7fbqFQqSCQS0jicYDJZSDqpqUFus26p2d/poJef19VGpVIJ1WpVzpH712wsniOPq5PSZGppEFyz/Mj20uXW1JIHIH6j1WpJg1cGoASk1/vs8PoIQjebTczOzq6ocCOQ0Wq1kEqlBHwncM41AP0gWfncD4NVVoNROk3fCz4PmiFI/6rXgUxS9PX14eDBg/D7/dK8TDPLWq0WCoUC0um0NGZ3OBxSIdduLzX7ZsN2ss4XFhYkqc3PLC4uIpVKSTDO8e+W9N5OsPtymhMss8yy3W8ul0uqbgOBgPgUYKVMh056M6bjXGs2+ks22aYfpKxlJpOBx+MRMJrHMxv9q44f9XqC5wLAsEbgOdOn8Fy1v9Wxtmals7KOgDD9GPtqMR7X59jNtC8ClgkCzWZTyGv083p/a8X22j8zGc/1QaFQkIQBx4MEAVbi63NmNTpjbq7D9LjosdZJBvP16yS2mUDA62+3l3rTUHN/cnISqVRK3uNahlKBGkBnU1zeR54HiRnEH3h8m82GRCKBRCKBQqGAfD4v984s57cTZvlvy9YyC0S3bFNmt9sl+zg2NoZ4PC7BzlaAqHa7HQMDA/B6vZifn8eRI0ekS7Mur9oKxvNWGAPFarUqkz+bp5EZt1WmnZ0ulTKbLn/3er3C0OJiKp/P4ze/+Y1k7Fmux+ZiuiyPCxG9wLj99ttx5513SnOTi5VvWe16uV+WMFKG5sSJEwJ6nz59Gh6PR9jo0WgU2WxWGs+wXJxJAg1gsON9rVbDwsKCMNgmJyelM3gqlTLo91p2cWZlxC27UuxyehbJrg6Hw4jFYujv70csFoPX6wUAA9DIxCWlXphAJKsXWA4QKcVmsy01s8zlcgK+k1V37NgxKRHXZeIM4BkEA8tjqpluOlmrQXQypcnAo89tt9tYWFhAqVSSBqTsm6EDdfoCMtY0UJzP54X1xgBRM9i0zjvPiU3XGTyyGTgbfmWzWQlESQ4w3yMNQOgfJpCZhEgmk3jppZcMUmpkmnc6SxIriUQCHo8HIyMj0q+EP2wyqv0s/aLdbhdNc44tjckT/RrHgiA9AElgOxwOvOc974Hb7caRI0cwMzMjuvwcs/n5eZRKJUnwOJ1OjI2NiWwMZf1mZ2dx7tw5AUp4X8g0X1hYwPHjxw1SP3oMzWPN528rK8u2a41gBmx6kSfW2uZizPLdlm2VXcnSCVttNttSr7BYLIZYLIbh4WGR0SRDXFdC62phJjZZXc73NYPbbrdLU2kAwgpOJBI4e/YsisXiCt+n1woARObSDMqaY0MywnneWmqErGrGW4zb6IcJxtJv0t9Wq1VD3FutVpHJZFboxOtnTYP4PH/+T/YzgWuuMzgO+lpW+1v781wuJ/Jjp06dEqJXf3+/yKmRwc0ksD6+3+9Hf38/AoGAyKLpuJ5jzzWZ1+tdQQ4wj4VOoBOr0FI2DocD7373u+HxePDTn/4Up06dksqASqWCTqeDqakpZDIZeL1eacA+PDyMoaEhGTNKFFGaqFwui+9msmRubg7Hjh1DoVCQ817N31xO80e3c+2WgNnOa7F899aaBaJbtmljsOb1eqX0dqv3HwwGxeEwGNJMdDMD61KYzp7rn27M7K1KMOhs82rbMdFAIESfjy7ZZ0Mvj8eDTqdjcOYARMtV77vRaBgam2znveB++/r6BBAneM+mn2RIEPQgWOT1eg1AjBlEJyhRKpUko14oFJDNZpHNZgVYoZO3bGvMcuaWWXZpjIGbBlN1iTNgbIyt5U24jQ42uZ252aUOUJvNJorForCM6cMBGJqZ0p+aQWRzdZQO/jSArc+fIDZ9g9frNbDP9f7JbNPMcJ43AXEG+eZz1BVhgFF6hDrqHGdqmRPk7+Yz9djrcmfNsOcYMplBQNztdhtY/myIzW1Z3q3HTTMH9fgwqCZYwntqBva17ItmPQLLoIrT6UR/fz8ikQhOnjwp2+rxr1Qqkrghm61SqUgFgPbTBEz4+WazKX6ahAu9ZlnLLvU6crO2Goue7201097y3ZZZtvNGYJRV4G63W5LQgDHhqudzXb0MGEFU83uMF7keoDxMpVKROVfPu2bTvlEz4fXxzOB9L39M30lfYJ7HzIxxguu6Copxm/a1WsKlm+mEqvZtZkLcaoC5+X+doNbSK4y37XY7/H6/HIdM9GKxaGi2TZkWxvOszOKx9Pjoxuz6nMxjbb4veny1745Go+jv7zesX3ifiCUwuU7JmnA4LNWJJOJpn837RsA+n88jn8/L/laz7aoi4/dnu6zXvrfjWsxm+e6tNQtEt2xTxkAnEAjA7/dvCyOc+yRACyyVVqdSKXi9XoRCIWG+XUqjlAgz9mS5aSdDW8t5r8c0W8o8IVKupa+vTxgLZKiRaajHkudKkLzVaiGRSIhz4j1gSVUwGMQ111yDaDQq+qU83k4YF282mw3xeBw33XQTBgcH8eKLL2J2dhaVSkXYaplMBoVCQRiIwWBQQHQuUgh0aCZ6MplEuVwWBjrleSznsbVmOXPLLNt5I9jNAJzgLv0VwVJqetdqNWES6+bYeg7lb8qCdDodCfSZwPX5fBgYGMDQ0JCAoWSia5Yc/Y5mRPG7rgNGsp15/pQRYfkx/S79Hs+Dx+I2nOeTyeSKRCmvi2wsyodpGRMAwspiUOjxeBAIBAAsJajJhM5mswCWdNK1xitNJ38jkYjhnlAD1ePxIJvNIpFIiMQM2WdkfbOZKLBULk7AXWups/KMRAjNZiuXy6hUKgCAYrEoDDwzmK+Z/GZGI42gDJlnvM7x8XF4PB5kMhmk02lpZloul+FyueD1euFwOFCv17GwsIBOpyNjyWeR58e1CxufUn5nI9+JS+lPNsKmW+82+t5stVm+27KtMutZ2JhpySwmIs0guLmHCU1re2uwmr9pXq/XQI7zeDyIx+Po7+83gOQavNWgu64m06x4DaprsJm+vlsCnCC2Tsw7nU40m02RO1lYWBB2vb5uJtDZG4Wya1rCTY8DAGFvA8uJae6L/lV/Tp+v9t28NxxvAuTValWanJKwZbPZUCgUpFm37vdSq9Xg9/uln0wwGBQwX5MQOD48V7124ZqIWIpeWzHxYE5867Ek4M/11qFDhxCJRDA3N4eFhQU0Gg0UCgXUajW43W5pZM7Gozrpr9eR2WwWuVzOsJ7K5/Nr+m6doDBXz22VrWdfZlLHWp9Z7f3t9Nfmc7B899aZBaJbtikjiB4MBsU5bPX+dRmaLg1OJBLSBCUUCm3pcTdj7IY9OzuLhYUFVCoVKQEzO9utMjMTjEZtNZfLhcHBQRw4cEACesq56AUGg9Lp6WnMz8+jWq1icXFRAmgdXHY6HezZswejo6N4wxvegH379kmDE2673aYXXAMDA3jTm96EVCqF2dlZCaJrtRpstiV93oWFBUkiUM6FUjWaLUhQp9FoIJvNyrjo8n3LLLPMsivBCKLzhw09dSDpdDoN8yHnUK0BTnYzq68089fn86Ferwtgy+bTIyMjyOfzwq6itjVZVZr9DMBQzquDKwL/BMa1UR+VLC/qjbIknJrh9XodyWQSqVRKAnE912v2ucPhEKkzAtdkTlGTm8Gnx+ORRtssWS6Xy5ienkaxWJTgthsTzG5fatQ9Pj4uDPBOpwOfz4exsTH4/X7Mzc0ZAvJyuSxMf13ODRi1Ulk5RuDc6/XK/7oMnmXUzWbTkHTWIAzXEzRzQMnjcm3Y19cnLHKbzYZ9+/YhEong1KlTAqKT8U8Q3W63Y35+XhI7XG/w+J1OB4uLi1hcXDQAN2ZQaDUzswavFF9/pVyHZZZZtmz0jQS4NduY73O+BlbOAzr5SWDTDHazGTeP4ff7pQE1q4IIchNQ19IsZmCxGxtbA+k6aa63I1jOa9b7pVTL7Ows5ufnV8iN6aSrz+cz+G76eSa9geUmoj6fD36/3yAdU6vVkEqlJEFtjgk1c9nv92PPnj3ipxiTDw4OwuPxIJ/PI5VKoVqt4vz585IoIJisjcegvFl/fz9CoZCswfQ95Wta/1yTHAiS89mx2WzC/uZzY7fbV6xNbDYbWq2WSKO5XC7ccMMNGBkZQavVwtzcnIDffA6I2czOzhqOS7Y9e91NT09jZmZmBTGwm2a/Np2M0ZK2O+3zNB5xsSC+5a8vT7NAdMs2ZTv9haeDq9frKBQK4hQv9cTDCb9cLktWXJe5mzXqtuqYvcB5MvvcbreAB5ptCKwEuynL4vF4DFqw5v1zceP3+xEKhQz6tDtpPJ7T6YTf75cSdp4Lx59BORdhAKS7uq4SYBk5kx+1Wm3VRmSWbY1ZGXHLLLs0plnTAGQ+ZCCggUUGRZxb+VtLm5gDds2WIzhfr9elRwXnYPoafS78PIMjBnba9HH1sRn8dZu3dbDOBAAD7Xw+L8zwbmYGBXgsvR+ety4l55jynM0+Re/XbrdLmTSTGwyKu4EOZGKbx67XvMr9M6mh5VQ0gGIGPTSwrFmPveZfbt9tjcLXCYi3Wi1Zl+j3+Xzy2WESg8CBDlhrtZokTDZjvQgJlvU2y3dbZtmlMT1Hat9n9sFmOZFukindvsdaBpTzfK1WQy6XEzZ3r8pj+jH6br1/+ijtA7vFmmafo80ca7IHmfbden86MU0z+2S9bw3y6/hQr5fMsTw/x6Q+426Cxkw6678py8JKMCble+EEdvtS3zKS4fTaqds97WbdpFxWM/0c8fnhOiQQCEiC3bw24jZ6nLmG47NRLpdht9vFd18MPrIb/PZuOIf1muW7t9YsEN2yTRuZZ2zmtNWmJ2WCm2yiFYvF0NfXh7179xoy2DtpXMzUajWcOXMGL7zwgjQxAyA6X8z4kyFGh7oZ4/Go9WYGQnw+H/bs2YNwOIxoNIpIJLJCn1aD0HT+IyMjCAQCyOVy0iiEpeLMYhNAHx8fxzXXXIN4PL7lFQgbMV5rMBhEPB6H3++X8jeOPZlzLC8jAGHWddVlb2zAcjk5xsvRLoUz//rXv46//uu/xtzcHG688UYcPnwY73jHO3pu/8wzz+CRRx7Ba6+9htHRUXzqU5/Cgw8+aNjmBz/4AT772c/izJkzOHjwIP7iL/4C991334aO+/u///v4zne+Y/jM7bffjl/96lcbvkbLLFvNOp2l0tzFxUV5zePxoFKpSDMn3RCbpcm6SRewsr+H9i8ejwfBYFD+r1armJycxD/+4z8iGAzi+uuvx4033ijSIbVazaCprftzcG4GlsFzym2RqR0MBlGtVqVZJwNOYJmVzuDW5XIJc7vRaGBqagqvv/66SKyYTZfHk3VeqVSkuZiWt6FsSb1ex7lz5wBA/A5Z1gymdV8O6rWTaR4MBqXKrlgsSqk6qwI6nQ4GBgaEwVYsFkWSjOXnZnO73RgfH8e+ffsQCASEfV6r1VCpVGT9QBZjIBAQ9jqvkWsGzRrnM8UxYJJFgxr8TQZcIBDA3r17USqVhK2m2XJMbujPkxlvlozR57EZ4z24lP7+cltnWIG4ZZbtvBHQzufzwqrm3KUrcQCsmK8rlcoKsFInfTn3MoFbr9eFjT09PY0f/ehHCIfDuPHGG3HTTTetkISh39G+Wyc4+T7jSpvNJv202KCS2ueadU7TsabNtiT9xiaUxWJR/AXHg/44GAzKOoHV1+VyWRKzvG7un8l+bWxaythbx5G8jtHRUSGY9ff3w2aziY485VqIlVBeZmRkRPp6nT17tqeMicfjwcTEBK655hqEQiEBrwlu89qY2NdSOWb9epLG+Ld+FsyJb524Jw7j8XgwPj6OWCyGU6dOSRWgjqeJdfDZ0An5crksrHU2cd+ocZ86qbGVRMWNnIc5ebXbzfLdW2sWiG7Zpo1B6MWwgHqZBjd1Jjifz2NqagrZbBaHDh2SgH+nAXR9jo1GAwsLCzhz5gwKhYIsFqjzpYPKi9UO5z41C07rlLrdbsTjccRisTX16sk26HQ6CIfDwjLw+XzS8ITXwkUDdVmHh4e3TQt/veZ2uxGNRuF0OhEOh+F2u2Uxp8EJy3an7bQzf+KJJ/DJT34SX//61/H2t78df/M3f4N7770Xx44dw8TExIrtJycn8f73vx8f//jH8fd///f45S9/iYceeggDAwP44Ac/CAA4cuQIHnjgAfz5n/857rvvPvzwhz/Ehz70ITz77LO4/fbbN3Tc//gf/yP+7u/+Tv7XDE3LLNsqI0DZ6XTg9/vRbrfhcrkk4GNlDwM1v98Pv9+PdDqNxcVFQ3Mxs9wafREltBisNRoNJBIJpNNp6aXyxje+UUBcAuLBYHAFW4v71uxmfsbhcEi/j2q1imw2K6Xa1HRnwpmyLy6Xy1CllEqlMDU1JUGi2cwapcCSpnk+nwcAAzuM5e/ZbBaZTEbOw+12yzpJB7gahHC5XIhGo4hGo1IZ1ul0RD+VyWCWVIdCIUOwC2BVf+x0OhGPxzE6Oirl8fSXlUpFEhgulwudTkdk2giM8z2yyphspjGg15rx3a4XWJLwGRgYEK1XNpbVzxETJ9o2onO+XrOS5Rs3KxC3zLJLY5SZpP9iDMj5VverYAJYN27UUhgkWGmQk5Jf1AVvtVpIpVIolUry3rXXXmsAcDVYqquaGYNpkhIlNzV7myA/2c3cl7mZuDbKqM7NzQkOASwnRZlEYL8PnZCnHwdgIOExaVAsFuU9JsApY6PlUrg28Hq9GBwclDg6EAhI/ExiliYbMvaORCIIBoNIp9OYmZnpec9dLhcGBgYwOjoqBAdddd3pdAxEA31+5ooEEu80AUD7bj03ayCez5jL5UI8HhfZG/pus5wan4lu4HahUFjlCV+f7Rbw+lIff6Nm+e6ttYvrcLgD9oUvfAFvfetbEQwGMTg4iN/5nd/BiRMnDNt0Oh089thjGB0dhdfrxd13343XXnvtEp3x1WEMZLPZLPL5vLB/t1L+gmXWuVxOdMjq9TpyuRwymQwSiQQWFhaQSCQMTnEnjMHt7OwsZmdnkUqlupaVcSFhbkqyUYkXnUjgvnTygkExQQKWgq83uUDgwul0yiKIyQnNsuO+d7KZaC/jefG8yTK81Odl2e60L3/5y/joRz+Kj33sY7j++utx+PBhjI+P4xvf+EbX7b/5zW9iYmIChw8fxvXXX4+Pfexj+O///b/jS1/6kmxz+PBhvPe978Wjjz6K6667Do8++ije85734PDhwxs+rtvtxvDwsPzEYrFtGYedMst3715jQERfpQNu7UP6+vpQqVSQzWZRr9fh9XoRDAaFycw5l/NvKBRCKBRCs9nEwsKCgO6AUas6m81iZmYGCwsLsNlsCIfD8Pv9cm5mfwksB/0ul0vKoPU5kP3OPi1aEoUss0qlgnK5jEwmg/n5eSwuLooEW7e1C9c5ZMtTi5tscb/fv0JblBqoTD7QJ+myZw0wmNlggNGfa8Y/rxOANAMHIE1cKeWmfTcDfbLu6B8Jgus+Klo+RSeh+Rmy+MiMNwfpWg+V++DrupkZAIM2ay95IMsss2znzfLdu9cIyBKI5nyv52L6mGazKT6UEp+M38yNOqmDXqvVMDc3Jz2yuD+S5vL5PObn55FMJiVJzIQ3K8Z1RTAAAcwZW2rJE8aWBGX1OWoQndeUz+cxMzODCxcuIJfLSYVSN9/NniHED7jOYSzLhLCutuZahusfnr/ev17LaB/O8ddyNWZ5HN5Dxu867jbfSy1Hw/WAlt7TppMNmnWuExlmGTz9nv689sX6emm6EqwbaG75ccuuFtv1TPRnnnkGf/RHf4S3vvWtaDab+PSnP4177rkHx44dk6Drr/7qr/DlL38Zjz/+OA4dOoTPf/7zeO9734sTJ05ISbFlW2udTgfZbFayv4VCAY1GQyb7rdh/LpfD3Nwc5ubmpMycpc0ulwvHjx/H8PAwIpEIrr/+esmc74R1Oh3Mzc3htddeQyqVwunTp6W5JcdEOxKWfjOopwNfj2n2ORMLZoCBwTWZXWwAtx4QXQe5BEIICLAJGhub6J9LKeUCGBdm7Fxut9tFTsey3W1blREnI5TGxai2er2O559/Hn/8x39seP2ee+7Bc88913X/R44cwT333GN47X3vex++/e1vo9FowOl04siRI3j44YdXbEMQfSPH/dnPfobBwUFEIhHcdddd+Iu/+AsMDg6uMgK72yzfvXtNN8wClkFbamUzoG02m0in0yiVSvD5fIjH41J+zeCTAWwgEMDAwADsdjtee+01vPzyy8hms1IazaCt0+lgenoa//7v/45IJIK3vOUtmJiYQLlcRjqdFrYXS76B5SQv+3Aw6LTb7QLAMwClv/J4PAYGXLvdRiaTgc1mw/T0NM6ePYtCoYBEImFoXqqt3W6jUCigVCohHA5jcHAQfr8fjUYDoVAI9Xod6XQahUJBEgxkx/t8PgEWNPvLXCWlg1AG+U6nUz5PP8v9+v1+ZLNZpNNptNtthEIhkdyJRCIAlsFuggNaZ50NVVkl4PP5EAqFJHnB82UVmv4M1x5sTEuwnDrnBEZKpZJUhNFHE6Cv1+uiiU5wnyX+HA/LNmZm8GS7zWKzXdlm+e7daZ1ORyRUKb0VCoWElc5tGHvSN7MyjExrLYHR6XTg8XgQjUZht9tx/PhxvP7668hkMuK76btarRZmZmbw4osvIhaL4f/7//4/9Pf3i5wY5U5YrUbgWCdXCcZrJjwAqRzToLmWT9HHP3bsmIDprJo2k9KYrC8UClItxiQ4q7Aof8a1D7ELfXy9DtFAsT4mK8X4eQ2iM4nPMWAin2smJjeCwaAkPSg3w7Fgo232EelW1WZ+Tjhe1BzX52wG07k+cDgchsSATrpzv1yj8N7qpPulkFSxbGNm+e6ttV0Pov+///f/DP//3d/9HQYHB/H888/jne98JzqdDg4fPoxPf/rT+N3f/V0AwHe+8x0MDQ3hH/7hH/CHf/iHK/bJciKaGYSxbG1jqZLWNGUDx40woHvtmw6sUChIOTMXBXTC2WwWqVRKMs46G7xd8i7aOZVKJaRSKSSTSWGhd9ueIDg15uh0dAlVL9OLHe6HWWxdkqWz3XTYG9Fd55hpNqK5zE3v25xZvxSmWXtMTFzss2fZztlWOfPx8XHD63/6p3+Kxx57zPBaMplEq9XC0NCQ4fWhoSHMz8933f/8/HzX7ZvNJpLJJEZGRnpuw32u97j33nsv/st/+S/Yu3cvJicn8dnPfhbvfve78fzzz69ICFwuZvnu3WuaOaSDQd2AWZeBVyoVQyWSlhMjk5iBKANlAuhao5vHqlQqSKVS8hrlTvi/Zsjr8nT6IbKYtU8CIGXkfE1/nmuWTqeDQqGATCYjgf9qwR/BCQbzmiTA89LAhPajOsDsNva9TPtjzfTW+uz8HrCEvlqtGrTsdQJC//A9LQXHc+X48PzMQTqDfI41x9WswapBB543AMOahfdRywJcrbbTIPjFmhWIX9lm+e7da0zAmoFUs6a1ZkrruE1X/pgrmdnPgwC69t30V8ViEZlMRvy8uUG1rsjS/qBbXy4N0tJfa/azlu/i+ZbLZaRSqTWbgfPzjUYDLpdLzovAtrnPivZzlG/T75v33e23nsf1a2a/qJvC6rjd6XR21TTX8b2+x+ZYtxuYbpbc0c+H/jF/rtdreh2mj2fN6ZeHWb57a23Xg+hmy+VyACCl7pOTk5ifnzcwBt1uN+666y4899xzXZ35F77wBfzZn/3ZzpzwFWxkshUKBZw5cwZerxfxeBz79+/fNCtcl5lfuHABL774IlKpFDKZzIrt5ubmcPToUcRiMWmE4vf7MTAwIGXCW2WcOEqlEubn51EqlfDKK6/gxRdfFDB/tc8yOGWigaVZDER1eZQGzrlgqlQqkhWnlMtq5VybvXbtvPU+9CJgO5MUmzUz2GLZ7retcubT09PShA/AqqBzt0Xmas9Lt+3Nr69nn2tt88ADD8jfN910E2677Tbs3bsX//zP/yxB6uVulu/efVapVHD8+HHUajWEw2EMDQ1J483FxUUJ9rxeL/r6+oS5RRAdgATRlUpFqrGmp6cxPz9vaIpJ63SWKrPm5+dRLpfx+uuvS3UZ9cPJfm6320in0ygWi+jr6xOGG9cIZH8xOOzG9i6X///2/jw6rvLO88fftag2qaTSaklehO0YDDF0iJ0QCAdDJ006pBNCk0D2MDOd0w5NxuDvaZaEHNz0hGW6Tw6d0ywdhiGTznTs6QY6JMMkmDQ4EBwgNgTjFWxZkrWrVPtequf3h3+fx0+VSnJJ1lJVer/OuUfSrVv33udW6b7v5/N8lriOVgNOPbeMj4+jv79fR4WVQjKZxNDQEILBoNZwSYN2u93aAJYsMTHwzYl/s+ydILplRqxJkIA8M0h/hGg0qvcj9zlzwlsansq1MSPPZD8SzS+vybEk4q2mpkY3BhOktqtElJulWMwyMOaxGxoatMMCOOWAl9J8LS0t6Ozs1JH0UofddC4sJc5mzMXS+OcbGuJLC2p3+RGPx/HOO+8gkUigsbERy5cvh9frRSKRQCKRyPsfzWazSCQS+j5tllmxWCzIZDKIRCJQSmF4eBi9vb26ibaJUgrhcBg9PT0IhUJoa2tDPB7X/UxM/Z6YmEAkEkE8HofVatUNNkV3zDJi5jmJQ1m0b2JiQmdWpdNpnDx5Ukegy5jk3AqRdVIGVrKoTE0S3ZHnmWQyqZucSlaW6Lo5WQ6c1l7JLJdrbkZ/y3nIc1Mul9N6bk56y3gLJ9fNcZnlaEz/gNmvRD5TiTCX953JNjYz9sRhbzruY7EYstmsfk7MZDLwer1au4uVmCFnhtpd2VSUE10phW3btuHyyy/Hhg0bAEBH8xWL9Ovp6Sm6n7vuugvbtm3Tf4fD4UnRjOTMiLiEQiEcOnQIsVgM69at0zXyZoMIWiqVQk9PD373u98hGo1ifHw8b7tcLofe3l4MDQ2hqakJHo8HmUwGbW1teUbZXDvSI5EIjhw5gvHxcezbtw+vvfYaEonEtA2vJKo+lUppw1tS5uVholh5l3Q6rY1ueaCRyMBiDvT5pJgTvVyc1YUz9uVyXmRhkDrM09HS0gKbzTYp6nxkZGSSdgjt7e1Ft7fb7Whubp52G9nnbI4LAB0dHejq6sK777477bgqBWp3eRKPx7F//3709vbi/PPPR1dXFxoaGrST22Kx6NIkknUGnNZ+m82Guro62O12JBIJDA8PI5lMoq+vD4ODg7oBWiHhcFhHtHk8HgQCAbS3t+Oiiy7S5VmkMenY2BiCwaB2NJuRUHLPlyyvwijobDaLWCymy6kBp5zoIyMj6O3t1U1ISzFkEokETp48qa+JlA8DTqWi22w2bYgGg0GdhWLus1j0uRmFJks6nUYkEtFGrUQJhsPhvBRvs9a5fJ6RSCQvI1AcAWK8Syk2iaAPhUKIRCJwOp1oaWnJq1VrOiEkY0DKuMjkiWwrn1UkEkFjYyNWrFgBh8OhJ/8zmQzGxsYQDodRV1en740+n083kzOzEMjMMSM5CZkLqN3lSTQaxb59+/Dee+/hwgsvRFdXly7LJeVCBDPoytQgKXGSyWR0ffHBwUEcP34cyWRyUmlMpRQCgQBCoZDu9zE8PIwVK1bgkksuQVNTky47Iu8vVl7TzE4SHRItlvImpmM2Ho9jYGAA0WgUPT09OHHiRF5fDnNcxe5/El0vJcekl4nootkoOxQK5QUQyD4L9yuTyaYmynmY11omLiSq37T3zRro5jkUG4OZnSYOe/E9yDOA+BdMh35hhn5hRoCcn+i0aDsAvV8JlozFYqitrUVLSwsA5Gl3scA+Mj2FfpRiGQ2kvKkoJ/ott9yCt99+G6+88sqk12YSYVisZi6ZPTLjPD4+rgVWhMKMCJ/q8zDTjKTmdzweRygUQjwenzJlS5zt0vhsdHQUNpsN4+PjOupKIqfMSO+ZjEuMWIn+Hh8fh9/v1+lk0rX7TLXAzNSwwocZs8ar6aBOp9M6DU3E3vy90DgvXIDT6fmlUBi1Zo5pqlSwcsB8WFjqaeGVxELOiDscDmzcuBG7du3Cddddp9fv2rUL1157bdH3XHrppfj5z3+et+7555/Hpk2bdEmHSy+9FLt27cqri/7888/jsssum/VxAcDv96Ovrw8dHR0lj7GcoXaXJ1JaxWazIRwO6+jndDqtHa1yzU0NMJH1Eu2VSCR0TexikVXyHjEaRevdbneek1ii2cwUYtFIwZzYNSO5zLR1aS5mllZJJBKTGquWcj+R7U1D10yTl+cds8ZpYRPwYhRLrzaNXolUk6VwEqHwsyhMi5fPWiLuzH2YJWLMWuhyTPN5ovBZznR0FIugK3xWMM9XvmNLNfp8PmA0G5lrqN3liWi3TK7KRLPcV83/MTPLR+6/ZmNIKdkmzlKZ9Jwqulu0OxqNIhgMoq6uDqFQSEcti2PetHFFY0wNK2xQKZHVouOxWExPDAeDQZ1VZjbFLkW75dnAPIZkSclPyQqXHiHi2JfrUMwHUUy3CzHHZ+qnOK9N+3U6HZ1Kh+UayPvNZwezXOx0Popi51/oLzE13/RhlJs/gEwPtXtuqRgn+re+9S08++yz+M1vfoMVK1bo9e3t7QBOzYybDoczRfqRuSOZTOLYsWMYGBjQEeNS1mXNmjWToqUKmZiYQDQa1alae/fuRSAQwOHDhzEyMpLXdMpEbuDRaBRvvvkmuru7dSSEz+dDV1cX1qxZoxtPulwuAGeO2pabTDwe13XXjhw5goGBAfj9fhw4cAChUAh+v78kB3rhWCUlXVLA3W43Vq5ciba2Nv23RKOJiA8NDcHv9yMSieDEiROIRCJ5BrFEwsfjcb1Io5BSxisPFqlUCtFoVNd4l2uRyWSQSCR0qro0YylsPLKQmE4BcZRItD4pfxZazLdt24avfvWr2LRpEy699FL88Ic/RG9vL7Zs2QLgVKRUf38/fvzjHwMAtmzZgn/8x3/Etm3b8I1vfAN79uzBE088gZ/+9Kd6n1u3bsUVV1yBBx98ENdeey1+9rOf4YUXXsgzOM903Gg0iu3bt+P6669HR0cHTpw4gW9/+9toaWnJc7xXKtTu8kVql0uqbjweR11dHd73vvfhfe97ny6x4nA4kEwmdQNxszGmOKWHhoawb98+hMNhjI6O6kjq6e7HmUwG/f39GB8fx+DgIPx+P2pra7Fq1SqsWbNGR4vV1taioaEBK1euhMvlwvj4OMbGxmCxWHRT0Xg8jtHRUaTT6bxouBMnTqCnp0c3JpdmqZK+Dcz8XiLGqzTzrKur045/Sbeura1FKpXCgQMH0NPTo7PICp8XxPA1a8/X1NToaDlzu3g8rpuYFS4mEhkmv5uf9cjIiA5wqKmpgc/ng9fr1U1Sk8kkfD4f2tvbYbfbdSCDjFvOpdDJIpHu9fX1urmo9KoRw76+vl5PhPT29iKbzWJkZKTkYAQymam+u/MZzUZDfGlA7S5fJGo6Fovp+399fT3OPfdcnHvuuTqrSbKEQqEQstmsXm9GDw8MDGDv3r0IBoMYGBhALBbL0/hiiL3u9/sxPDyMQCAAr9eLFStWoKurK6+ES11dHZYvXw6Xy4VIJKLr4cuzhdVqRTwe1453CY47cOAA+vr6dA+VVCqFYDA4KdIbmP6eIjasZM9JBHhLSwt8Ph8cDofOqDOD2I4ePYr+/n6dGWZmnItmT0xM6HKyEhUuQTYycWD2GzEj5kVHU6mUztoz68oLmUxGl5kx9y/ZaBLIODExAZfLpZvImg3gzZr55rObrCvU3sLIfrMHyvDwMDKZDPx+v+4rQ7t75kylo8Wi0+f7mDN5PzlN2TvRlVL41re+hWeeeQYvvfQSVq9enff66tWr0d7ejl27duHiiy8GcOrmvnv3bjz44IOLccpLjkwmg+HhYQCnbrwNDQ1obGyEx+PRKb3TOVol0jsWi2FgYABvvvkmhoeHMTo6inA4fMYZ1GQyiZ6eHvT09KC1tVUbgblcDs3NzbpOmzjRp8OM3pJZ+VAohCNHjugyLkePHkUkEpnhVTq9f9O4FYO7paUFq1atgtPpRGNjIxwOhxbOVCoFj8eDuro6+P1+jIyMaKPWbLgqQi3LTJzbItxiyCcSCS36ALQDQB4U5GFksTFT8WiIVx4LKcg33ngj/H4/7r33XgwODmLDhg147rnn0NXVBQAYHBxEb2+v3n716tV47rnncNttt+Hhhx9GZ2cnfvCDH+D666/X21x22WXYsWMH7r77bnz3u9/F2rVrsXPnTlxyySUlH9dms2H//v348Y9/jGAwiI6ODlx11VXYuXMnvF7vAl2duYfaXf5I6jdwqlzJ+Pg4PB4PWltb0dbWpmto19TU6HrcYpyZmjMxMYFgMIju7m49uVxYC70YExMTCAQCegmHw3C5XEin03C5XDp60eVyoaGhAStWrEBdXR1sNpuucy7bST1wSWUXw3Z0dBS9vb1IJpMIBALTll4rFTG07XY7amtr4fP5tJbb7Xa0tLRg+fLlusTJ4OCgbnJW7DMw9TeTyeT1SxGDSrTZjO4zI9EKS9kUGrXyWUciET3xIA4Fm82mJ+jHx8e1o0UalhYeU87XnICXSQWp95pKpSadlzyLAcDo6CiSyaQuI0AjfPZMp6PzVeKFxnT1Qu0uf0ztlgCo2tpaNDU14QMf+ABcLhc8Hg9qamp0UBQAXS5FHK+SYf32229jZGQkr9/JdEhvEQAIBoNau8VBLsdxOBxwuVxob29HXV0dxsbGtCNPAr0Ka5Mrdap0and3t+6ZEg6Hi+pnKfehQsexNEL3er1ob2/Pm/ytra1FfX29dlpLLfViZWlkX5J1NzExkZchJs8JZoS9fHaio6J9EixYzMkpPVUkmFCc/RLEJr3SZNKivr5eZyPIUqycj/lZFyvRam4rfhylFILBoA64k0C/amWxSqvMZ2k2avfcUfZO9L/6q7/Cv/zLv+BnP/sZvF6vrsXW0NAAt9sNi8WCW2+9Fffddx/WrVuHdevW4b777oPH48GXvvSlRT77pUcikdBO3iNHjugUZ2lAYRpUpuE4Njam6535/X4dmV7qP7tsJ7XPMpkMjh8/rmuPt7S0aONb6pfJIrOwhenP8XhcG+UScQacqlcsIisGZrE65cWoqalBXV0dampqdN1jqQ8qBqZED8i5WK1WNDY26msZDofR2NiIQCCA4eFhLYLioJdyOg0NDVr4zDpo5jUTcZUmLdFoVDujC5u0yWcVi8V0XdNSJibmC2mWI5Fy4uSnMU6m4uabb8bNN99c9LUf/ehHk9Zt3rwZ+/btm3afn/vc5/C5z31u1sd1u9341a9+Ne37KxFqd2UhepxMJtHf34+3335bRyxLve9UKqWN93g8nldCa2hoqGjzrVIRR0Aul8PY2Bh6enq0Ftrtdh09Xltbi0AgoJt5R6NR1NTUIBwO60hqsyGZ1WrVfVLMieZitdqnwywLV19fj+XLl8PhcMDn8+k64/LT6XQilUohm82iqakJq1ev1vXZs9msTk83r5Nk5AHQ0eaSxSfPKeLwlu1zuRxCoZDuG1MsY8/cvzjRrVarjlYzn7GkYaiUp5FxA6efL5RSsNvtuu+N6RyQbeXcZSzZbFYb/fJsY26/GCyVuqPVPj4y91C7KwvJBgOA3t5evPXWW3ryWRpFJ5PJvBKl8h6JKJfXZ3O/kH3lcjmMjo7ixIkTOqva4XAgEAggl8vB4/HkNfqWbOZYLIbh4WGkUiltqyaTSR1glkqlYLfb85zFMzlPmfC22WxoamrSUfFid4ujX7aR6yAT98lkEnV1dUin0/o5o9AZLaXwJIOsMAPfrAMPnLovi2M+EolMO3EhpXui0aj2ExRqp2nnmz4N+WmWupNIdvMaFvYWk+OamWTyXCA+gaWiLQs9zqVyXauBsneiP/roowCAK6+8Mm/9k08+iZtuugkAcPvttyORSODmm29GIBDAJZdcgueff76io/gqlWAwiHfeeQd2ux1HjhzBiy++qGehZXZUBEAafiWTSQwODiISiejIJDG8ZnoziUajOHbsGGw2G44fP47f/va3Woile3hzc7OeAZcGpDKTDJw2rsSBAJxKZVq9ejUSiQRaWlqQTqcxPDyMgYEBnWJWbKa6EI/Hg7Vr16KhoQHr1q3DhRdeCJfLpaP12m29AABGyElEQVTpTKGSaDSlFOrq6vSD0MqVK3Vn9j179ug0ODHST548ibGxMXR0dOQ1PpGxyBjF0ZDJZDAyMqInMgKBgK4hK9dfZsuj0SiGh4fR39+vm7iaRvFCkkqlMD4+jmAwqH+K44KUP0wrq26o3fPLXEeqiJM1mUzitddew8GDB/Miib1er9aUgYEBDA8PQymlo69jsZiewJ7NeZkTwPF4HN3d3Xk9Qmpra9HW1gan0wmPxwOPx5Nn8CWTSQSDQWQyGbjdbt0MtaamBitXrkQ6nUZ9fT1SqZTO6JqJs99qtWqnRFdXFz70oQ/B5XJpx4TT6URTU5Oe6A4EApiYmMDatWtx7rnnIpPJIBKJIJVK4fDhw3jzzTfzovVTqVReWnwymYTdbkddXR3cbjdsNhvq6+u100EiuEWvp4qWM6/vyMgInE4nstksGhoa8pzd0sdGHB+FE+8y2Z7JZNDY2IjGxkZddk7S8GUCQ/rRANAlByQQweVy6cmaYtFvC4F8rwHkPedUE/M5Jmp3dUPtnnvms0SDBI+FQiG8/PLLePPNN/OcuPX19ejo6IDdbsfg4CCGhobytC8ejyMYDM7K5pbjj4+Pw2q1IhgM4r333tN6KZPLTU1NOjpeHM1yTWKxmC7FJlnXElHt8/mQTCZ15tLIyAj6+/tnFCwlOup0OnHeeefhkksu0ba1TApLcJ05mb9q1Sp0dHToCflsNouDBw/itddey5uETyQS6Ovrw9DQENra2nQGvtvt1v1kikWGSx85MyihGJItMDQ0hObm5rwJcPm8xDFuTgKYPdTENna73fr9NptNR5GbAY5mj5l0Op03CWHud7EC1syMuPnWksXQqrPV1/ncN7U7n7J3opfygVksFmzfvh3bt2+f/xMi02KmLEciEYyOjsLlciGVSsHn82nHsMViQTgcRigUQjqdxsDAAMLh8Fn/g5vpSZFIRBvRkUgEXq8XtbW1iMfj2mld6EQ3Z2M9Hg+8Xi9sNptOfxZHtKSrSzMXqUt3pvOXFDKfz4fm5mbtFDiTISkCKYKWSCTQ398Ph8Ohz13ETeqCx+PxvG7bZlMSOU9xvps1xc0JBcGs3yaN46Sb+mIhDzZS8kbGwpt8ZUAxr26o3fODqRVz6UiX/8dcLofx8XGdqi00NzfrBlyjo6Po7+8HgLxoN7OZ2GyOL7ojEV8mLpcL8XgcDocDTU1NaG5uznPySpaUGJASdSVGo+iE1OuWppalGmKio5LyLU4BieYT577D4dA6CgA+nw/19fXauZ9OpzE4ODipHJppqEsdW7OuLQBdMiaRSOj0bmnMKvo3FWbZPNHuwiy8wqw1WW9Gn8kxJGrdPH95X2HUnbxmPosUHnsxMJvSktKhdlc31O75Za7vOWbTyVQqhbGxMQDQWUwtLS3aUTw0NISenp68Btxmea65OL40CBcnutPpRCQS0ZlbjY2NeY2rk8mkzqQS3ZSs7bq6Oq2xYsubtcZL1W6Z2PV6vdrulv1arVbU1NTouuGicR6PRzdLlWeb/v7+vIhs4HQAgmR4iZ1uajeQb3vLuGUCfDqHtKndtbW1RccsTnHzGGZ2vVnj3mwqbq4r1ihYmpPKItdnsZzoizXxXi1Qu+eWsneik8pFhEcphdHRUUSjUT07brFY8pyfplE3V5gCJ/VcY7EYYrGYLi0jqeINDQ16Bry9vR1ut1tHs1mt1rzabYlEQqdpt7e3IxaL4dixYxgcHMyLhhOkDIvdbkdTUxPWrl2LZcuW6cZdMxEEm82m69y1t7dj3bp1iEQiOHnyJEZGRvKc58PDw3oGWaLZgNNdtyU1LpPJYGxsDIFAQEeVTUUikcDx48cBnPp8u7q69MPHQgib+f0IhUI4evQoxsbG9NgX2ygnpUMxJ2TmLNb3Xkq1Wa1WPeENQEc6zfe9VxqDig5Ho9E8J7qUbXO5XLoRqTxnZLNZOJ1ObYCuWLECF110ERKJhG4eJoamiRjCNptNN0eT8mtyTmKcxuNxDA0N6WPKtZAG3fIcIBPpDQ0NqKmp0Ya8HA84FVXv9/v1tRYHQGNjI5xOJ0KhEEZHR/UzjdnYa6oyJVKmR55/1q9frycSpHyelL+zWCz6eU1Ky0gAhDjZJbItEonozDX5LojDQc5F6uqLY318fByHDx9GKBTCwMDAoqRLFzoaSOlQuwmZGaIBC/ndF02ORqMYGBiA3W7XZcRE7+YrotcsISL7t9lsSCQSOvhMzlG0VZzcDQ0NuuyIzWbTupPJZNDW1ob169cjkUjgvffew8DAQJ6vQTCd2A0NDVi7dq12oEvvLDN4Tn5ONRktkeSSkSeT15L9JZMIkUhEX2tT92pqanTDUvEhhMNh3ex8ugnweDyOI0eOYHR0FBdeeCHWrFmTF0AnWiv6Kr1rzMA5sdNl8kIi7qWuvnwepo9G/pZgBMlCPHjwIEKhEPr7+xe8B5k49ulInx3U7rmFTnQyb4hxKU7yYje9+TZmRMhlZtxcgFPi4na7sW7dOp1q9r73vU8bqxI1b0YsySI10yORiI7GC4VCuryKIDPybrcbra2tOO+887Bq1SrtwJ8JYswrpbB8+XJccMEFupSMOJJF1BOJBAKBAOx2u47CN9PzpcaaRK+LsT+dKMbjcbz77rsIBoPweDz40Ic+BI/Ho6MaFopcLodAIIB33nkHQ0NDGBwcXFI12gghZCGR7CcgPwJsujrcc4k4bC0WC0Kh0KTniRUrVuDcc89FS0sLmpqa0NLSglwuh6GhIQQCAR1Bbrfb0djYiKamJt2sbKpJWIvFosuhNTc349xzz0VjYyPq6ur09mLIyn4ymYyusSpl6yT7rbm5GQ6HAw0NDbr0i+zDHE8ikdDNy+XZQ2q4ulwuhEIhjI2NacMfOP0sNVXZgEQioWvVNjU1acNaMtByuZw2+C0Wi77WpnEuzzk2m01PFPj9foyPj0MppZ8tnE6nbrImE//yvGO1WjE6OorXXnsNY2NjGBsbW5Rm4GxATkjlUA09DBb63E3HbiwW0w7zhbr3iR0sjmOgeCTxOeecg40bN2LZsmXaiQ4gL0q7vr4eSin4fD6t3b/4xS900JoZaS3HERu+ubkZ559/PlpaWlBTU6NLsZhR4WYGm7kPIN+x7PP5sHLlSp31JvXdxTEdDof1tZZJ85qamrwmr4FAQEf+m+cwFdFoFAcOHNDR+VdeeSUcDocet6m9APRzgdl0XCYUJLIegI6EN8cqZWgKneoej0c3jt2zZw+Gh4dnXBJvruDkNykXrGfehJCzw0wDLlwWKnrYFEoxeM1jSydxt9udV+rFTKcWMZE0ZrO+m9frRX19PWpraydFZouxKvuUn7OtJS6i6HA4UFtbqxuVFhrT0jU8lUrpTuPSiFMaiZrZAHI9pkMi7sLhMCKRiHa+L5QD22wMJ3X8wuHwjBvNkMWncAJtNgshZGEwU4IX639PdNx0BIgOulwurauyiGabWl74u5R7kbrjhUjGmsPh0LXYpbxaMb0snKw3nwXkviWRXW63O6+JeKFRL89JUipHtFwyxmbyDKWU0iVgZD/SGN2sLW9uX7jPwiAEc52Z2Wc2Ji08vjyLiPN+tjX0yeJB7SakcjBt8MVyepoNTeU8JPK8rq5OT9AW2ttic8tP0/6ura1FfX29LrtSiGiSONNN7TYp1OvpEIeyqd0yRgCTdFv0VjQ3lUpp/Ta1e7p7omin7MO0u+X5opjeTrVP8zXT0S5LsYBHGYdot2SvkcpiMbT7kUcewerVq+FyubBx40a8/PLL026/e/dubNy4ES6XC2vWrMFjjz02aZunnnoKF1xwAZxOJy644AI888wzMz7uTTfdNOl5/SMf+ciMxsZIdLJkEVFtaGjAueeei/Xr1+t65TITO13KkBnZtm7dOvh8PvT19WFsbCzPgS0dwdva2tDe3q5T0842Hamurg4rV65EfX09Dhw4MClSw5yhzuVyenZctpMsAYnWL4VkMom+vj6Mjo6itbUV+/fvR0tLC1auXIlly5bNe1mXTCaDoaEhRCIRHD58GPv378fIyAj8fj8NswqDaWWEkNkgk9Iejwfr1q1DZ2cnXC4XfD6fLkEiEVYSRW4ai9KoLJVKYfny5bBarfD7/Th48GBeLXaJJnO5XDoVvLW1VZdCE4eEGP3SRAw4nb4vqdwA9AS2w+HAmjVrdCPXQCAApZSuz2pOEsj+pJG2pLUXi5wTit0bTef8+Pg4jh49Cp/Ph/b2drS2tiKVSunmbWajczkv81gS2SbN3yRNXJwUZgq/PAfJBHwmk9HPScFgkIb4AjBVFO9sy0tQu8lCw+9MdSCO2rq6Olx88cVYs2YNPB6PrpMu2i22qtvt1llSol9SevScc85BXV0dhoaG8Pvf/z5PSyR7S4LcGhsb4fP58srHFkOc37IP6XUmUe5utxsdHR2IRqMYGhrS7zMzwaRMjji/pfyZ1WrN027ZvpTvtkwqSAa2z+dDZ2cn2tratLaazwyFmfNmCR85PyktJ0F50q/EPL9cLodEIgG/3490Oo333nsPQ0NDGB8fX/S+aNWOPD+an9/ZstDavXPnTtx666145JFH8NGPfhT/9E//hE9+8pM4ePAgVq1aNWn77u5uXHPNNfjGN76Bn/zkJ/jtb3+Lm2++Ga2trbj++usBAHv27MGNN96Iv/3bv8V1112HZ555BjfccANeeeUVXHLJJTM67p/+6Z/iySef1H+bfX5KgU50smQRJ7jX60V7eztWr16to9pKKU0iqcp2ux0dHR3wer1QSqGurg6hUEhHTVutVni9XrS2tsLn88HhcMyJo9nj8QCArr1WKMamYE5X53wmZDIZXav15MmT6O3tRTKZRENDA5YtWzYnx5iObDaLQCCAsbEx9Pf3o6enByMjI2woWoHQECeEzAZpcOr1erF27Vqcd955eU21c7mcNlqdTmdeHVBx7IrRKeVZXC4Xjh07lncc6Ski5dgaGhrQ2Nioy7aJMSpOZCl1IhFoAHTmWSaTyas93t7ejng8jhMnTmjtLkxJN5mqbupM7oNiZEuN3Hg8jubmZni9Xtjtdl1nXRzkdrsd6XR6UvaBGHcSUS9O9fr6ejidTl1rVYIJZPH7/YjFYhgbG9P1YMn8YjqCgPxmsfJzplpK7SaEzAbRDrfbjfPOOw8bN27UvT1E/5LJpNZuKQ0mpWjkdQBobW1Fa2srnE4n3nnnnUnHkT4eEjBXV1enJ3KlrnZhBLo4wYHTUdpmJL3D4UBjY6OeyC9md8tPc4I7lUoVvR6l3AvNSPF4PI6enh6EQiH4fD44nU5ks1l9Tcz9mo50s5m3jF0i+80JcFO7ZT+pVAojIyMIh8MYGBhAMBjU5eZI6cxUa83v5VxlcC20dn//+9/Hf/kv/wV/8Rd/AQB46KGH8Ktf/QqPPvoo7r///knbP/bYY1i1ahUeeughAMD555+P3//+9/j7v/977UR/6KGH8Cd/8ie46667AAB33XUXdu/ejYceegg//elPZ3Rcp9OJ9vb2mV0EAzrRyZJEIsykHIrZAGSmDm4xNiVlTBqSTkxM5NWBmyrN+WzGIDVGTUNpvg0UEeJwOIzjx48jHA5r54LUX5fIu7Mdq4xFUs+DwSCOHz+OgYEB9Pf3I5VKsZkoIYQsIcQ5m8lktA6K0WhiGshmGrmZRi0aKpFYpo6akeg1NTW6sbj0Q1FKaSe5vKfQ4SwTvFI2RRqCSYkWALpO6Xyn2st5xGIxDA4OIhaLoampSTdctdlsqK+v188xpgPBHFsmk0EikYDFYskrLSO9VgDoGrIyaRGLxTA8PKwnwUvNfiOnmare/Zk4U6kAQghZCMxJZ3Goi5Pc3EYoLCVhaqQ0uTZta3OSUGx8p9Opg9qkJIlof01NzaR74FRBdIWlT+T5YiFsbnFqh8Nhrd2tra26CasE05nbmu83y8bIc5O8JhPi8lwk11JKx8ik+9jYGEZHR6ndC0hhRmK5YGZsAtATXibpdBp79+7FnXfembf+6quvxquvvlp0v3v27MHVV1+dt+4Tn/gEnnjiCR3gsWfPHtx2222TthHH+0yO+9JLL6GtrQ0+nw+bN2/G9773PbS1tU0/eAM60cmSpba2Fh0dHTrNSxpvzsaJLk54n8+H1tZWLTLS0FQc7Gbt8rNFor+KGf/zecOV/ff09CAej6O+vl7Pgjc0NGDNmjXw+Xz6fGY7XrMszdjYGEZGRjAwMIBf/vKXOHz4MAKBAEKhEKPQKxRGsxFCZoOkREvqpcvl0q9JCTPpTSIGoaQlmwagpHzL5K84xCXqW9LOW1tbUVtbi0QigWAwCL/fj6GhIVgsFrS0tGgnuhincm8yG49KLVVJWY/H44jH49oRLxMD8+VIN43roaEhhMNh3ShsdHQUPp8P559/PpqamrSTQK6lvNfsZxOPx/UY5ZzHx8cBQKeaW61WjI2N6Uao+/btQ19fn54UJzPDdNqUqn/FoiQLf58p1G5CyGwwe2dIf5LCMiSmHW7WUS8sg+J0OnW0udk0Uyas6+vr0dbWhvr6eqTTaUQiEYTDYa1TXq9XZ3SbkejyXGEeyzx/03Ev75vPCXDJrLNYLOjv78f4+DjcbreOGvf5fHj/+9+P5uZmZLNZ/RwhTnGzvJo8Z5iTEjabDel0GjabTfeJAU7peTAYxPDwMF5//XUcO3aM2n2WzGTSxQwQnCvNnCvtXrlyZd76e+65B9u3b89bJ6WNC6sULFu2LK8UksnQ0FDR7bPZLMbGxtDR0THlNrLPUo/7yU9+Ep///OfR1dWF7u5ufPe738Uf//EfY+/evZMmBKaCTnSyJClM0zaj0GfjRJf3iqA7nU4diSXbmAb9XI2h2LJQxONxXZ/crEte6AgwG7Wc6fzMm7vsQyL6g8EgxsfHMTAwgN7eXt0QlQZZZUJDnBAyG8zUZNHfwoZghc0yC+uBmlHqov+ymPolxr7dbtf1UqVRmJn6PdX9TIxaOSeZSBfHgKxfiPtZYWaXw+HAyMgIfD6f3sackBADW+q0yz5Mo9xcxGgXx4TFYtGp5vF4HH6/HyMjI/M+zmpmIZ/xpoLaTQiZDWYpsOkaWRb2cSjUGtOmNhcA+rlAMsSl1rfZ7FO2E+R381nCzCorfGZYaHtbzi+RSCCRSMDpdGJsbAxjY2M6SEAanRZG9puTE2bNc9PBLhov19DMOJMSbMPDwws2XnKKudbKudLuvr4+1NfX6/XTOZ0L/0/OFFxZbPvC9aXs80zb3Hjjjfr3DRs2YNOmTejq6sL//b//F3/+538+5fmZ0IlOlixm9++zbYhpiqvs16xllUwmEYvFUFdXN2XN05kixmkymZzU6bvUcxbBLOaEEIfDVNHtMqNtsVhw6NAhZLNZNDU1we/3o7W1FU1NTejo6NBR+DK7X3itzag9uVYTExMIBoMYGhpCIpHAkSNHcOzYMfj9fvT39+uIQhpjlQsNcVJpFBp2ZHGoq6uD1+tFU1MTmpqa4PV69WtiQIrhLHW4nU4n6urq4HA48qKpxKi02+1obGzExMQEIpEIgsEglFKIxWLw+/0AoFPApRGaRLvV1dXpSLdMJpOXJi5Od7vdjtraWng8HqRSKTidTl3OZbpa6CbF0sfNdcUmr6eLkJMsLwAYHR2F3W5Ha2urbsgmzVIl4g+A/l2MpmQyqScU5LknEong1VdfRSqVQl9fHwYHBxEOh1lH9Swx0/Jn+r65Pg9qNyFkJlgsFtTV1aGlpQWNjY3weDx59mBhEFUymdTZUGJXm40/ZRJaeoxYLBaEQiH4/X7kcjkd4DUxMaFfdzqdqK+v1xnkDocDuVwuLyBL9DQej2utbmlpgdPpRCQSQSKRmHUZUdP5LnopDv6ZRLNPTExgcHAQANDY2IhcLqfrw4t2S6laMzNPap8D0L1KTO0OBAI4fPgw4vE4+vv7MTg4iFAohEAgMOOxknzKQffmSrvr6+vznOjFaGlpgc1mmxR1PjIyMmUPvfb29qLb2+12NDc3T7uN7HM2xwWAjo4OdHV14d133512XCZ0opMli9lYYy6c6Gaal0S2Aaed6OFwGF6vd87Svsz6rNL8ayb7lnM168HK+QLQM/Yi8IU3XklVz2Qy+MMf/oDDhw/D5/Ohv78fy5Ytw/ve9z58+MMfhtfrhc/ny4toK6w5Jw8k0nwtmUyiu7sb+/btw/j4ON566y0cPHhQ11ZlBDohZCExm/ywD8PiYbFYUF9fj87OTjQ3N6OlpQU+ny9PV8QoTKfTugxYW1sbOjs70dDQgEAgoLVN9M10IA8ODiISiUAppX9KhLrdbkddXZ3WMykFF4vFMDo6ilgsBpfLhbq6OiildA1WWdfY2IhkMgmXy6Uj4qTR2XTfKTMCDpgcOWdGhpvfVXPbQsQQHx4eRl1dHQKBgC5v197eDpfLhXPOOQednZ06zV0cIc3NzbBarQgGgwiHw9podzgceOONN/DrX/8ao6OjGB8fRyAQ0NfZHA9QHoZlpTDfpfoIqTamimoki4PX60VnZyd8Pl+ejhailEIikUA6nYbT6YTP59MT4GKPSvCY3W7HihUrUF9fj56eHgSDQUxMTCAQCGi7eN26dbBarbqsKgBdTkZs3Ww2q58hZDI9HA7D5/Nh1apV8Pl8yGazefudCWawndjdUj5OGp3LdnINpiKbzaKnpwcnT56E1+vVGWWtra0455xz4PF4sGLFCt3bREq/mgEAsVgMsVgMwOngthMnTuDll1/G2NgYBgYGMDQ0hImJCT1xQUipOBwObNy4Ebt27cJ1112n1+/atQvXXntt0fdceuml+PnPf5637vnnn8emTZv0/+2ll16KXbt25dVFf/7553HZZZfN+rgA4Pf70dfXh46OjpLHSCc6WdIURlufTf1uM6XZTAMTsZfoN9MhfTaOe3GizyYq24yaN2f55Xzlp9kVfaoHBinhks1mUVNTA7/frxuUDQ0NIRaL6YYuZjq7iTyQpNNpBAIBJBIJjIyMYHR0FMFgEKFQCNFoVNdj5YNw5cNoNlJp8DtXHpj1PAvXmynKZrkXID/iWyLVAeRtL7VXZX9SjiWVSuWVYJHJd/P9wOkyMmYpN9PxXVgSpvBZodTxy74lm07GWmiInwm5JslkEtFoVI/J5XLB5XIhEAjA5XLpeqlyLWWMoVAI4XAYVqsVmUwGDocDwWBQO9djsRhrqFYZ1G5CyGwo1OjCMi2FS+F7AeRpK3A6m6wwGzubzeqyn+JwB5BXurUwq+tM5y7lRePx+Ixs0WKlKMTuFh0vHOeZJtZlzIlEQjd6rKmpwfj4OJLJJDwej9ZsCZiT5xeLxYJoNKp7m8g5SR30cDiMaDSqm7CS6mChtXvbtm346le/ik2bNuHSSy/FD3/4Q/T29mLLli0AgLvuugv9/f348Y9/DADYsmUL/vEf/xHbtm3DN77xDezZswdPPPEEfvrTn+p9bt26FVdccQUefPBBXHvttfjZz36GF154Aa+88krJx41Go9i+fTuuv/56dHR04MSJE/j2t7+NlpaWPMf7maATnSxJJDo8GAzCZrNp57Y4lGe6LzGuxRANh8NafCYmJuD3+5FKpWCz2RAOh1FfX69nhmdLMBjEu+++i1AohGAwWNJ7zPqxkvZVGIkuY5JOyLlcTjdAK+a4AE6LfSQSwdGjR9HX14djx45h//79cDqdaGpqgs/n0w3cZNxmw7dEIoFkMgm/349EIoFQKIShoSGkUimMj48jlUoxEquKoCFOKgnz+8bv3uKhlNINpWOxmJ50lbIi6XQa8XhcG4WNjY06vXl0dBR+vx8ulws+n0+Xa0mlUgiHwzh58iT8fr82kIFTD9upVAoOhwPDw8PIZDJoaGiAz+eDxWLR56CU0v1QJMJMdFQm6MfGxhCJRNDd3Y2jR4/q95aS2VBMe61WKxobG9HU1KSvhzjoJeV8qjqShc6DbDarJ63dbjdGRkZgs9lw6NAhOJ1OuN1udHR0wOv1IhaL6c9ArrlEu1mtVoyOjuLkyZP6M5lqPDNlqvMnCwu1m1QK/K6VD6LdPT09iEQiOO+887R+yOS12XtDgq6AU2XDRGcK7eZ0Oo0TJ05gdHQUkUhE66kEcHk8HkQiEXg8Hp0RZrFY9OR4YW8VySR3uVzI5XJwOp1IJpOwWCw4efIk9u/fj0gkgrGxsZKzEk3Hv4zN7XbrjDWXy6X9CJIlJxMAZyKdTmN4eBjj4+MYHh5GT08P7HY7fD4f6uvrtQ0uzUilZGosFtNOdGF8fBx9fX26aSn/f6qLhdbuG2+8EX6/H/feey8GBwexYcMGPPfcc+jq6gIADA4Oore3V2+/evVqPPfcc7jtttvw8MMPo7OzEz/4wQ9w/fXX620uu+wy7NixA3fffTe++93vYu3atdi5cycuueSSko9rs9mwf/9+/PjHP0YwGERHRweuuuoq7Ny5M6885JmgE50sWTKZDOLxuE6rNiPJZhohLjPCZiMOswO21FFraGhAIpHQNUSLRWWXglIK0WhU1yuLRqMlC7k8KDgcDt3VXBYTmbmWcZnjKRYhIBMT/f39AE7PsttsNjQ3N6OhoUGLucvlymt0IvVSU6kURkZGEIvF8rqIk+qDhjipNPidKw/i8bg28EQ3xBCXyWwAusSIy+VCLBbD8PAw0uk0Ojs7UVtbCwB6Al0mcIeHh/M+Z4kYd7vdCAaDuq6o2+0GAAQCAYyPj8PhcKC+vj4v8mtiYkKna0vUttVqxfDwsO7tEY1GS04LL/z+WSwWeL1etLa26lrsUvKsmHYWSxMXHc5mswiFQgBOab80LJMoPq/Xi/POOw9NTU0YGhrCe++9p2vWLuT/RWH0IFl4qN2EkNkgE71SszyTyWjdnpiYgM1m0xHjZpkX04FuNjGUieqxsTH09/fnZYWJdkejUe0wloAxq9Wa55g3y7FKpLrT6dQl3ERP/X4/Tpw4gWg0qku9lYqZlSZjESe6BKyZDcvN+u/T7VNKzBSul15kHo8HK1euhNfrRTAYxODgoA42YKT50mIxtPvmm2/GzTffXPS1H/3oR5PWbd68Gfv27Zt2n5/73Ofwuc99btbHdbvd+NWvfjXt+0uBTnSyZEmn04hGo6ipqUE0GtW/S9RaqUgkdSwW0ylQ0uwTOB1BJmlXAwMDAIDm5ma0tbXNqLGp1E7LZDIYHx/XkW1TRXsVo7CMi9nhXM4XyG88Kg8YM6kBZ3YBTyaTsNlsugasWYderos8XEl9dzPNnRBCCDGR5mOhUAiJRALA6clbs9zKxMQErFYrvF6vNtRjsZg25OPxeF4Ts2LRZaaT2ev1auM7l8sVLd8i6+SnlD0TPTTLuZSC6LG5f7vdrvcrzggpweZ0OmG325FIJPLK0xR7zigcq2i3WR4mm83qlPFoNJpXBm8h4TMBIYRUJpKdLSVOY7GYzvoSO9S0v0XzREdlYtcsI2ruoxjpdBpjY2NaO+rr6/N03tRUm82mm4KL3SpR21JHXCbtZ6LdYkPL84kZuFZoc8uzS7Fa8cWu53TXWbLFwuEwstmszqyT8jbU0+nhpD2ZDjrRyZJEIrnFgXvy5En4fD54vV7U1NToSOkzIV29pX53b2+v/l1m2wFo43Z0dBRvvPEGvF4v3v/+98PtdsPtdmuD90wkEgn09PQgHA7j8OHDuou2OBDOhFlDVZqqiGibDy6FkWrSgHUmzm0R8YmJCQSDQUQikTzHvYm5X7MmLaleGM1GCJmKUptrjY2Noa+vT2utlB7xeDw6kyqVSqGmpgYrVqyAzWZDKBRCf38/MpkMwuEw4vE4wuGw1rpijbRisRiOHz8Op9MJi8WCZcuW6egxcWjLhLjoq0SxWa1WHfklfT+CweCMnOiS/m1qtozP7/frKDaZMKivr9f3WJm8nq7OrIk815ivp1IpnDx5EjabTaec04E+NYWTKlNl8VUi1G5CyGyQki3JZBKBQACDg4PavqypqdE6ajovbTYbnE6ndmJLBHswGEQsFsPAwMC05T7D4TD2798Pl8uFDRs2oKmpSWeIyfYSge5yueDxeHSPLtG6oaEhpNNpDAwMIBgMIplMlhRUJg500W23243a2tq8ZwSzj4noulyjs0Em1qWEi2h3Npudts8ZOYXZoL3Usj0LgZzTbHSY2j230IlOlixiJDocDi3MMutszgxPhdxUpcGnGYUuddYEs9zJ2NgY4vE4li9fjlQqpcV7uuh30xiORCK6cVcoFCpZzGU8MsNdrAFase3E6S3G4EzKz8h1lJRwQgSKOSGkGKbOTPd/LllgMkErDmtxMgOnjXbTCS0NL6X0iWi2GYleyMTEhNZ3ieaSiWJzUth8dih0nqbTad1gXKLHZ3JNzAg2qQsrzysSPZ7L5bTTQaLuZ0Ox6PTC+qmkdKopoo3aTQiZDXLvEOeuZEpJadNifcnMSWMAOmM5Ho8jEoloG3iq+4o43O12O8LhsM7cNrOpTPvWtHdlO7Nvlzinz0ThPuUZRRp1m5le5nukUXgpkejTIWOThuZk5pSrbpfyfFwMavfcQic6WbKIsEh0dzabRUtLC5RSqK+vh8fj0Q1IRPDEaM7lcrp8SywWw+HDh9Hb24tAIIB4PD6loEtKdDKZxLvvvguLxQKPx4OmpiY0NDTAbrfD6XRqZ77MFktN9XA4jOPHjyMSiWBoaGhG3cEF06ifSqjN16spgoqUDxRzshRgM8SZU+p1ymQy6OvrQzKZRG1tLdra2uByufIMcvk9l8shEAjAYrEgGAxqg3h4eFg3s5aGosWiwyU6O5fLYXBwEPv27UNNTQ2cTqeOoAuFQnmR4plMBkNDQwgEArruejab1ZHjpWA6Fsz65VI7VZqZFpZnM/ufWK1WavgCI44ZuebVdP2p3WQpUDgRSuaOdDqNnp4e3Sts1apV2ub2er155VbM0qCRSEQ7zvv7+zEyMqL/nupzEqd9LpfDwMAAfv/738PpdOpGozIpLbot2Wii3el0GuFwWJeFKTV7TILjzGC1TCajS8OYvgX5aWJ+//gcuTiYjW7LBfOZYjbvpXbPHXSikyWLOKhjsRiOHj2KkydPorOzEzabDU1NTWhtbc2rUSaObamFNjQ0hJMnTyISieAPf/gDuru7dZ31qQxkmRG3WCyIRqM4ceIEXC4XzjnnHCxbtgwulws+n0+nmqVSKWSzWZw8eRJ+vx+xWAyDg4O68eZMZ5dNh3jhjXiqNO9CRzpvooQQUhpzaYjPNvqkEilljKlUCseOHcOJEye0Xjc0NOhSLhLRZrPZkEqlEAwGkclkEIlEdLOxvr4+3ZBsuklppZSOQOvp6UF/fz8cDgc6OzvR3NycFy1nGszd3d0YGRkBgLz1pWq32bNEDHJpSCoOdrNRt4xXnBCyjTkpThaGszF255tSauMTspQx+1mcbYnJpaTdpZBKpfDuu+/i+PHjaG9vh9VqRVNTEwDopt9mtrfY3aFQCMFgEPF4HN3d3ejp6dHl16bTbtHbEydOaO1euXKlPrboq+wjnU6jr68PIyMjuiScOPNL+S5IRLlkjAlSIgY4XULGbrfD7XYXLelqRrNLMAC/QwtDufo7ip2X+f0gCwed6GTJI7VEgVMNs0KhkK5NJrPUsphiLiVVxCBPJBJ6tvtMxwOgjykNy1wul66BJk50SVsLh8MIh8M6pWwmjUQLKRZlXhiRLhMMhVFU5SgopDLhjDgh5GyRGp/JZBLxeFw3Cg+Hw9ooVkohlUohEonoie5YLKa1dCb1vcUgl0U02SwnI5jlW4DTTpnZGjpmyRZxkMt+5XUzcq+wfwnvmWQuoHaTpQS/r/ODlPlMJBKIxWJwOBxwOBxwu9164heA1lkpqRaPxyeVYSv1MyrU7mg0mjdBLRMm0rBUMsunc9KfCdOOFv03tbswylzOgd87MtdQu+cWOtHJkkcppeucDQ4OIpvNwuVyoaGhAY2NjbDZbLoJp3QUlxlxv9+PdDqt08FncoOS2W2JNB8fH4fVatXlXMRQlmh5SQWXJmGzHat05bZarbrZiDRIk22AUw840qhM6rfSkU7mCoo5WQrM5QQkv/NTE41G8d5778HhcMDlcqGuri6v94dkdomeifYGg8FZX9dcLofx8XHE4/GiPUNyuZzOTLNYLJiYmJhxjU3TMS77kUlvqX3u8Xj0RIJE5clYxflAiMnZai+1m1Q7cxnVye/81ITDYRw6dAhOpxMul0sHr0lptkwmg2g0qp3uEs3t9/tnfS+amJjA6OgoYrEYAORNfsvrsVhs1navaWubmBlrtbW18Hq9eU5zCQYQ7TabjlYi5VpTvNoo9TtK7Z5b6EQnSx4ROzE8pdyK1GcTQ1Ui0cWZLbPYYuDOFDGKxTG/EEjKuqSaSY3XQoFW6lQTNIm6l4cBOtHJXMLvEql2+B1fGJLJJAYGBvLWSUaZRKSLQSuR2meL9CuJRCJn3Ha2pT3MbDFJAzcnB6Quu81m03VhJXtNotbn4zvI8gRLG37upNrhd3xhSCQS6Ovry1tns9nQ0NAAt9uNVCqFUCg0o0bcZyKXy+kM7/liqtIvdrtd9zOpq6vTk+0SJCe/m++t5O8iHenlBT+LuYNOdEIMxFg1m3dJbVGpiS610So1MlvOVyLyzBQ283WZ8TebuhBCCCGVgDnBbf5e6XUjTcd6MplEJBLRE/ymbs+nZvN5gBBCyHwgwW1Wq1UHe1UDYmtbLBYkEgnY7XZMTEzkZZrP5+Q3IWTuoBOdkALEQBWD1EzTNmuJSyR5pWHWZBcxl2g9IN/JLg8vdKKTueZsv0/8PpJKwiz1UYm6UakURoOV+32jlKgtef6QUnKhUCgvJZyaTeYTajdZajDzZmHJ5XKIx+M6u6panpnEQS4lUv1+v15fmHFWDd81ZsGVF9TuuYVOdEKmoFKd5KUi0fRitBdzomez2YqMtiflD8WcLBUKy2UxvXXhqKTrPJO6pzKuVCp1Vo3GCZkp1G5CyHwzVTmUSsa0p6ttbKT8oXbPLXSiE7JEMW+GZtSa/JSIe940yXxAMSdLBaVUnuOc3935xYz6ryQNq5TzJEsbajchhJDFgPoxe6jdcwud6IQsYczaqoQQQuYHPnwuXBquNM42S5wQQgghs4EasnCwXAchpBKgE50QQsiCwxlxQsh8wfsDIfMDtZsQQgipLKjdcwud6IQQQhYcijkhS4uF+p+VCHSATVwJmWuo3YSQ+YL3B0LmB2r33EInOiGEkAWHYk4ImQ8qqQ46IZUGtZsQQgipLKjdc4t1sU+AEEIIIYQQQgghhBBCCClXGIlOCCFkweGMOCGEEHIKi8UCi8VS9pkU1G5CCCHkFNTupQmd6IQQQhYcijkhhBBSWVC7CSELjTgpCSlXyv07Su2eW+hEJ4QQsuBQzAkhhJBTVIqmUbsJIQsN7xukkHJyWpfLeUwHtXtuoROdEEIIIYQsScrJECNLG34PCSGEkOmREirA4uvmYh+fLA50ohNCCFlwOCNOCCGEVBbUbkIIIaSyoHbPLXSiE0IIWXAo5oTMjHKJupkLymks5XAOS4FKab5FpofaTcjSpZy0myxd+Bwxc6jdcwud6IQQQhYcijkhpWOmrgKV/f03nalk6VBO6ddk9lC7CVma8B5OSOVC7Z5b6EQnhBBCCCljlFJ5TvRKhg/ipNqho4kQUm3wfrZ0YeADIfnQiU4IIWTB4Yw4ITMjl8st9inMGfz/XXpU0/d3OiwWC6xWKywWC3K5XNWNm9pNSD5LqVRVqeOb68w5OnEXj6WUgWC1WgFUZ7kYavfcQic6IYSQBYdiTgghpBoRp0O1ZI+YULsJyaca/8/ngrlyfPP6Li5L5fpXU9nEYlC75xY60QkhhCw4FHNCyFKK4CNLA6UUcrmcjkSvNqjdhOQj3+ml9t2eLjq5Eq4Jo9tLY6lcI1O7q3HM1O65hU50QgghhBCy4FitVlitVuRyOUxMTCz26ZAKp1yM32p0nhNCilMO95yFRkpWTTcBXs7XZSmVKDlbltL1YUAHKRXrYp/AXPHII49g9erVcLlc2LhxI15++eXFPiVCCCFTIA8qZ7PMlJnqxO7du7Fx40a4XC6sWbMGjz322KRtnnrqKVxwwQVwOp244IIL8Mwzz8z4uEopbN++HZ2dnXC73bjyyitx4MCBGY+vEqF2E0JI5UDtJgCvDVk46NQk5Oyhdudfi7O2u1UVsGPHDlVTU6Mef/xxdfDgQbV161ZVW1urenp6Snp/KBRSALhw4cKFyxwuoVBo2vutxWKZ9TLdMeZCJ44fP648Ho/aunWrOnjwoHr88cdVTU2N+rd/+ze9zauvvqpsNpu677771KFDh9R9992n7Ha7+t3vfjej4z7wwAPK6/Wqp556Su3fv1/deOONqqOjQ4XD4ZLGVqksNe0u/O5yOXVNrFbrvF4XXnMulbKUy3eV2n32+lTNLDXtLvwfLZf/08VeKv1aVPr5cymPpZi+LdZC7V44u7sqnOgf/vCH1ZYtW/LWrV+/Xt15550lvb+SxZwLFy5cynU5k5jP1zHmQiduv/12tX79+rx1f/mXf6k+8pGP6L9vuOEG9ad/+qd523ziE59QX/jCF0o+bi6XU+3t7eqBBx7QryeTSdXQ0KAee+yxksZWqSw17S6Xh+yltJSTccOlspaF/s6U03eV2n32+lTNLDXtNv9H53vSl0t1LvzOVO9STvcFavfC2d0VX84lnU5j7969uPrqq/PWX3311Xj11VeLvieVSiEcDuslFAotxKkSQsiSQi1ACqZ5Lw+Hw0ilUpO2mY1O7NmzZ9L2n/jEJ/D73/8emUxm2m1kn6Uct7u7G0NDQ3nbOJ1ObN68ecpzqwaWonYr1lpccOR687qTmbLQ3xl1FinT83Eu802la/dSZSlqt1BO/6OksuB3pnopp/sCtXvh7O6Kd6KPjY1hYmICy5Yty1u/bNkyDA0NFX3P/fffj4aGBr2sWrVqIU6VEEKWFJFIZNI6h8OB9vb2Odl/XV0dVq5cmXc/v//++ydtNxudGBoaKrp9NpvF2NjYtNvIPks5rvycyblVA9RuslCUg2FDSCVB7Z75cZcKS127qSeEkELK5b5A7V44u9te8pZljnRYFpRSk9YJd911F7Zt26b/DgaD6OrqQm9vLxoaGub1PBeKcDiMlStXoq+vD/X19Yt9OnNGNY6LY6ocqnFc8zEmpRQikQg6OzsnveZyudDd3Y10Oj0nxym8zzudzim3n4lOTLV94fpS9jlX21Qj1O58qvEeA1TnuDimyqEax0XtLg/tXqpQu/OpxnsMUJ3j4pgqh2ocF7W7PLT7bPW94p3oLS0tsNlsk2YORkZGJs0wCE6ns+gH3tDQUDX/oEJ9fX3VjQmoznFxTJVDNY5rrsc0nWHkcrngcrnm7FhnYjY60d7eXnR7u92O5ubmabeRfZZyXIkOGBoaQkdHR0nnVg1Qu6enGu8xQHWOi2OqHKpxXNTufBZKu5cq1O7pqcZ7DFCd4+KYKodqHBe1O59Ks7srvpyLw+HAxo0bsWvXrrz1u3btwmWXXbZIZ0UIIaRcmI1OXHrppZO2f/7557Fp0ybU1NRMu43ss5Tjrl69Gu3t7XnbpNNp7N69u6o1jNpNCCFkOspZu5cqvDaEEEKmo5y1e87s7pJbkJYxO3bsUDU1NeqJJ55QBw8eVLfeequqra1VJ06cKOn90rW21G6zlUA1jkmp6hwXx1Q5VOO4qnFMxTiTTtx5553qq1/9qt7++PHjyuPxqNtuu00dPHhQPfHEE6qmpkb927/9m97mt7/9rbLZbOqBBx5Qhw4dUg888ICy2+3qd7/7XcnHVUqpBx54QDU0NKinn35a7d+/X33xi19UHR0dKhwOL8CVWTyo3ZOpxjEpVZ3j4pgqh2ocVzWOqRjlrN1LFWr3ZKpxTEpV57g4psqhGsdVjWMqRjlr91zY3VXhRFdKqYcfflh1dXUph8OhPvjBD6rdu3eX/N5kMqnuuecelUwm5/EMF5ZqHJNS1TkujqlyqMZxVeOYpmI6nfj617+uNm/enLf9Sy+9pC6++GLlcDjUOeecox599NFJ+/zXf/1Xdd5556mamhq1fv169dRTT83ouEoplcvl1D333KPa29uV0+lUV1xxhdq/f//cDLrMoXbnU41jUqo6x8UxVQ7VOK5qHNNUlKt2L2Wo3flU45iUqs5xcUyVQzWOqxrHNBXlqt1zYXdblCqTdrKEEEIIIYQQQgghhBBCSJlR8TXRCSGEEEIIIYQQQgghhJD5gk50QgghhBBCCCGEEEIIIWQK6EQnhBBCCCGEEEIIIYQQQqaATnRCCCGEEEIIIYQQQgghZAqWvBP9kUcewerVq+FyubBx40a8/PLLi31KJXP//ffjQx/6ELxeL9ra2vDZz34WR44cydtGKYXt27ejs7MTbrcbV155JQ4cOLBIZzxz7r//flgsFtx66616XaWOqb+/H1/5ylfQ3NwMj8eDD3zgA9i7d69+vdLGlc1mcffdd2P16tVwu91Ys2YN7r33XuRyOb1NJYzpN7/5DT796U+js7MTFosF//7v/573eiljSKVS+Na3voWWlhbU1tbiM5/5DE6ePLmAo8hnujFlMhnccccduPDCC1FbW4vOzk587Wtfw8DAQN4+ym1MhJhQu8sbanf5jovafZpy0zlqN6l2qN3lDbW7fMdF7T5NuekctXsJopYwO3bsUDU1Nerxxx9XBw8eVFu3blW1tbWqp6dnsU+tJD7xiU+oJ598Ur3zzjvqrbfeUp/61KfUqlWrVDQa1ds88MADyuv1qqeeekrt379f3Xjjjaqjo0OFw+FFPPPSeP3119U555yjLrroIrV161a9vhLHND4+rrq6utRNN92kXnvtNdXd3a1eeOEF9d577+ltKm1c/+2//TfV3NysfvGLX6ju7m71r//6r6qurk499NBDeptKGNNzzz2nvvOd76innnpKAVDPPPNM3uuljGHLli1q+fLlateuXWrfvn3qqquuUn/0R3+kstnsAo/mFNONKRgMqo9//ONq586d6vDhw2rPnj3qkksuURs3bszbR7mNiRCB2l3eULvLe1zUbmo3IYsBtbu8oXaX97io3dRuUj4saSf6hz/8YbVly5a8devXr1d33nnnIp3R2TEyMqIAqN27dyullMrlcqq9vV098MADeptkMqkaGhrUY489tlinWRKRSEStW7dO7dq1S23evFmLeaWO6Y477lCXX375lK9X4rg+9alPqf/8n/9z3ro///M/V1/5yleUUpU5pkLhK2UMwWBQ1dTUqB07duht+vv7ldVqVb/85S8X7NynotgDSiGvv/66AqANmXIfE1naULvLF2p3+Y+L2k3tJmQxoHaXL9Tu8h8XtZvaTcqHJVvOJZ1OY+/evbj66qvz1l999dV49dVXF+mszo5QKAQAaGpqAgB0d3djaGgob4xOpxObN28u+zH+1V/9FT71qU/h4x//eN76Sh3Ts88+i02bNuHzn/882tracPHFF+Pxxx/Xr1fiuC6//HL8+te/xtGjRwEAf/jDH/DKK6/gmmuuAVCZYyqklDHs3bsXmUwmb5vOzk5s2LChYsYZCoVgsVjg8/kAVMeYSHVC7S7vMVK7y39c1G5qNyELDbW7vMdI7S7/cVG7qd2kfLAv9gksFmNjY5iYmMCyZcvy1i9btgxDQ0OLdFazRymFbdu24fLLL8eGDRsAQI+j2Bh7enoW/BxLZceOHdi3bx/eeOONSa9V6piOHz+ORx99FNu2bcO3v/1tvP766/iv//W/wul04mtf+1pFjuuOO+5AKBTC+vXrYbPZMDExge9973v44he/CKByPyuTUsYwNDQEh8OBxsbGSdtUwr0kmUzizjvvxJe+9CXU19cDqPwxkeqF2l2+905q92nKeVzUbmo3IQsNtbt8753U7tOU87io3dRuUj4sWSe6YLFY8v5WSk1aVwnccsstePvtt/HKK69Meq2SxtjX14etW7fi+eefh8vlmnK7ShoTAORyOWzatAn33XcfAODiiy/GgQMH8Oijj+JrX/ua3q6SxrVz50785Cc/wb/8y7/g/e9/P9566y3ceuut6OzsxNe//nW9XSWNaSpmM4ZKGGcmk8EXvvAF5HI5PPLII2fcvhLGRJYG1XBfAajd5TwmgNptUs5jmgpq9ykqYUxkaVAN9xWA2l3OYwKo3SblPKapoHafohLGtFRZsuVcWlpaYLPZJs3ujIyMTJr9Kne+9a1v4dlnn8WLL76IFStW6PXt7e0AUFFj3Lt3L0ZGRrBx40bY7XbY7Xbs3r0bP/jBD2C32/V5V9KYAKCjowMXXHBB3rrzzz8fvb29ACrzs/rrv/5r3HnnnfjCF76ACy+8EF/96ldx22234f777wdQmWMqpJQxtLe3I51OIxAITLlNOZLJZHDDDTegu7sbu3bt0rPhQOWOiVQ/1O7yHCO1u3LGRe2mdhOy0FC7y3OM1O7KGRe1m9pNyocl60R3OBzYuHEjdu3albd+165duOyyyxbprGaGUgq33HILnn76afzHf/wHVq9enff66tWr0d7enjfGdDqN3bt3l+0YP/axj2H//v1466239LJp0yZ8+ctfxltvvYU1a9ZU3JgA4KMf/SiOHDmSt+7o0aPo6uoCUJmfVTweh9Wafwux2WzI5XIAKnNMhZQyho0bN6KmpiZvm8HBQbzzzjtlO04R8nfffRcvvPACmpub816vxDGRpQG1uzzHSO2unHFRu6ndhCw01O7yHCO1u3LGRe2mdpMyYiG6l5YrO3bsUDU1NeqJJ55QBw8eVLfeequqra1VJ06cWOxTK4lvfvObqqGhQb300ktqcHBQL/F4XG/zwAMPqIaGBvX000+r/fv3qy9+8Yuqo6NDhcPhRTzzmWF2CVeqMsf0+uuvK7vdrr73ve+pd999V/3v//2/lcfjUT/5yU/0NpU2rq9//etq+fLl6he/+IXq7u5WTz/9tGppaVG333673qYSxhSJRNSbb76p3nzzTQVAff/731dvvvmm7phdyhi2bNmiVqxYoV544QW1b98+9cd//Mfqj/7oj1Q2my27MWUyGfWZz3xGrVixQr311lt5945UKlW2YyJEoHZXBtTu8hwXtZvaTchiQO2uDKjd5Tkuaje1m5QPS9qJrpRSDz/8sOrq6lIOh0N98IMfVLt3717sUyoZAEWXJ598Um+Ty+XUPffco9rb25XT6VRXXHGF2r9//+Kd9CwoFPNKHdPPf/5ztWHDBuV0OtX69evVD3/4w7zXK21c4XBYbd26Va1atUq5XC61Zs0a9Z3vfCdPECphTC+++GLR/6Ovf/3rSqnSxpBIJNQtt9yimpqalNvtVn/2Z3+ment7F2E0p5huTN3d3VPeO1588cWyHRMhJtTu8ofaXZ5Qu09TbjpH7SbVDrW7/KF2lyfU7tOUm85Ru5ceFqWUmn0cOyGEEEIIIYQQQgghhBBSvSzZmuiEEEIIIYQQQgghhBBCyJmgE50QQgghhBBCCCGEEEIImQI60QkhhBBCCCGEEEIIIYSQKaATnRBCCCGEEEIIIYQQQgiZAjrRCSGEEEIIIYQQQgghhJApoBOdEEIIIYQQQgghhBBCCJkCOtEJIYQQQgghhBBCCCGEkCmgE50QQgghhBBCCCGEEEIImQI60Qn5/3PllVfi1ltvrZj9zjUnTpyAxWLBW2+9tdinQgghhJQEtZvaTQghpLKgdlO7CalU7It9AoRUO08//TRqamoW7HgvvfQSrrrqKgQCAfh8vgU7LiGEEFItULsJIYSQyoLaTQiZb+hEJ2SeyGQyqKmpQVNT02KfCiGEEEJKgNpNCCGEVBbUbkLIQsFyLoQY5HI53H777WhqakJ7ezu2b9+uX+vt7cW1116Luro61NfX44YbbsDw8LB+ffv27fjABz6A//k//yfWrFkDp9MJpVReWtlLL70Ei8Uyabnpppv0fh599FGsXbsWDocD5513Hv75n/857xwtFgv+x//4H7juuuvg8Xiwbt06PPvsswBOpYZdddVVAIDGxsa8ff/yl7/E5ZdfDp/Ph+bmZvzZn/0Zjh07NqvrdO+996KzsxN+v1+v+8xnPoMrrrgCuVxuVvskhBBCZgO1uzSo3YQQQsoFandpULsJKS/oRCfE4H/9r/+F2tpavPbaa/jv//2/495778WuXbuglMJnP/tZjI+PY/fu3di1axeOHTuGG2+8Me/97733Hv7P//k/eOqpp4rWOLvsssswODiol//4j/+Ay+XCFVdcAQB45plnsHXrVvx//9//h3feeQd/+Zd/if/0n/4TXnzxxbz9/M3f/A1uuOEGvP3227jmmmvw5S9/GePj41i5ciWeeuopAMCRI0cwODiIf/iHfwAAxGIxbNu2DW+88QZ+/etfw2q14rrrrpuV+H7nO9/BOeecg7/4i78AADz22GP4zW9+g3/+53+G1crbCiGEkIWD2l0a1G5CCCHlArW7NKjdhJQZihCilFJq8+bN6vLLL89b96EPfUjdcccd6vnnn1c2m0319vbq1w4cOKAAqNdff10ppdQ999yjampq1MjIyKT9bt26ddLxxsbG1Nq1a9XNN9+s11122WXqG9/4Rt52n//859U111yj/wag7r77bv13NBpVFotF/b//9/+UUkq9+OKLCoAKBALTjndkZEQBUPv371dKKdXd3a0AqDfffHPa9wnHjh1TXq9X3XHHHcrj8aif/OQnJb2PEEIImSuo3dRuQgghlQW1m9pNSKXCqStCDC666KK8vzs6OjAyMoJDhw5h5cqVWLlypX7tggsugM/nw6FDh/S6rq4utLa2nvE4mUwG119/PVatWqVnrAHg0KFD+OhHP5q37Uc/+tG8YxSeZ21tLbxeL0ZGRqY95rFjx/ClL30Ja9asQX19PVavXg3gVLrcbFizZg3+/u//Hg8++CA+/elP48tf/vKs9kMIIYScDdTu0qF2E0IIKQeo3aVD7SakfGBjUUIMCrt5WywW5HI5KKVgsVgmbV+4vra2tqTjfPOb30Rvby/eeOMN2O35/4aFxyl27KnOczo+/elPY+XKlXj88cfR2dmJXC6HDRs2IJ1Ol3TOxfjNb34Dm82GEydOIJvNThoLIYQQMt9Qu2cGtZsQQshiQ+2eGdRuQsoDRqITUgIXXHABent70dfXp9cdPHgQoVAI559//oz29f3vfx87d+7Es88+i+bm5rzXzj//fLzyyit561599dUZHcPhcAAAJiYm9Dq/349Dhw7h7rvvxsc+9jGcf/75CAQCMzrvQnbu3Imnn34aL730Evr6+vC3f/u3Z7U/QgghZC6hdk+G2k0IIaScoXZPhtpNSPnA6StCSuDjH/84LrroInz5y1/GQw89hGw2i5tvvhmbN2/Gpk2bSt7PCy+8gNtvvx0PP/wwWlpaMDQ0BABwu91oaGjAX//1X+OGG27ABz/4QXzsYx/Dz3/+czz99NN44YUXSj5GV1cXLBYLfvGLX+Caa66B2+1GY2Mjmpub8cMf/hAdHR3o7e3FnXfeOePrIJw8eRLf/OY38eCDD+Lyyy/Hj370I3zqU5/CJz/5SXzkIx+Z9X4JIYSQuYLanQ+1mxBCSLlD7c6H2k1IecFIdEJKwGKx4N///d/R2NiIK664Ah//+MexZs0a7Ny5c0b7eeWVVzAxMYEtW7ago6NDL1u3bgUAfPazn8U//MM/4O/+7u/w/ve/H//0T/+EJ598EldeeWXJx1i+fDn+5m/+BnfeeSeWLVuGW265BVarFTt27MDevXuxYcMG3Hbbbfi7v/u7GZ27oJTCTTfdhA9/+MO45ZZbAAB/8id/gltuuQVf+cpXEI1GZ7VfQgghZC6hdp+G2k0IIaQSoHafhtpNSPlhUUqpxT4JQgghhBBCCCGEEEIIIaQcYSQ6IYQQQgghhBBCCCGEEDIFdKITQiaxZcsW1NXVFV22bNmy2KdHCCGEkAKo3YQQQkhlQe0mpLJgORdCyCRGRkYQDoeLvlZfX4+2trYFPiNCCCGETAe1mxBCCKksqN2EVBZ0ohNCCCGEEEIIIYQQQgghU8ByLoQQQgghhBBCCCGEEELIFNCJTgghhBBCCCGEEEIIIYRMAZ3ohBBCCCGEEEIIIYQQQsgU0IlOCCGEEEIIIYQQQgghhEwBneiEEEIIIYQQQgghhBBCyBTQiU4IIYQQQgghhBBCCCGETAGd6IQQQgghhBBCCCGEEELIFPz/AJ4qsPHS3MbRAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABdEAAAFxCAYAAACcBuH3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOx9e5gcVZn+O9XV1TXd1Z2eSSfTmXRCE4YwgSEEDBIuCiggAiorut6veEH2twoqiq4KsgqLuIq7XlEE19uquKw35OYCKoISMUgIAQYYyJB0kk7SmemZqemu7v79ceo79dWZ6smFAJnkvM/TT890V51713fOe77zfh2tVqsFDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDY0pMF7oAmhoaGhoaGhoaGhoaGhoaGhoaGhoaGjsrdAkuoaGhoaGhoaGhoaGhoaGhoaGhoaGhkYbaBJdQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDow00ia6hoaGhoaGhoaGhoaGhoaGhoaGhoaHRBppE19DQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0GgDTaJraGhoaGhoaGhoaGhoaGhoaGhoaGhotIEm0TU0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDTaQJPoGhoaGhoaGhoaGhoaGhoaGhoaGhoaGm2gSXQNDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ2NNtAkuobGXozrr78eHR0dGBoa2ul7/vSnP+HSSy9FpVJ5Tso0XfrFYhFnnXXWc5KvhoaGxkwEPcfpZds28vk8Tj75ZFxxxRXYtGnTbqe9Zs0aXHrppbtkI/ZlXHrppaG25q+vfvWr8rqOjg78v//3/0L3rlu3Dueffz4WL16Mzs5OdHd34/DDD8d73/terFu3DkNDQ23TVl+8Pz784Q+jo6Njt2yjOnbavYrFIo488kjMnz8fjUajbXrHH388crkcarXaLpdlOlC77w7uvPNOdHR04IYbbtijZdoZ/Pd//zeWLVsG27bR29uLCy64ANVqNXTN6OgoPvaxj+G0007DnDlz0NHRgUsvvfR5L6uGhsYLD23Pnz9oe67t+c7iv/7rv/DGN74RhxxyCAzDQLFYfF7z19j/YL7QBdDQ0Niz+NOf/oTPfvazeOc734lsNjvj0tfQ0NDYF3Hdddehv78f9XodmzZtwh//+EdceeWV+OIXv4if/OQnOOWUU3Y5zTVr1uCzn/0sTjrpJL1oYLj55psxa9as0GcHHnhg2+uHh4dx1FFHIZvN4iMf+QgOOeQQbN++HWvWrMFPf/pTPPHEE1ixYgXuueee0H3nn38+tm/fjh/+8Iehz+fNmwcAqNfr+MEPfiDL9Mwzz2D+/Pk7XY8zzzxzSp7HHnssXve61+EjH/mI/CyRSODuu+/GP//zP+OWW27BGWecMSWtRx99FH/6059wwQUXwLKsnS7Dvoof/vCHeOtb34r3vOc9+PKXv4xHH30UH//4x7FmzRrceuut8rotW7bgmmuuwRFHHIGzzz4b3/nOd17AUmtoaOwN0Pb8+YO259qe7wjf//73USqV8OIXvxjNZhP1ev2FLpLGPg5Nomvs92i1WnBdF52dnS90UV4QTExM7Ld119DQ0Hi+MDAwgOXLl8v/zznnHFx44YU44YQT8NrXvhaPPfYYenp6XsAS7hlMZ1MnJiZg2/ZuezkBwPj4OJLJ5LTXvOhFL0Iul9vpNL/97W+jXC7jL3/5S2hxfvbZZ+OTn/wkms0mDMPAihUrQvdlMhnUarUpnxN+8YtfYPPmzTjzzDPxm9/8Bt/73vfwyU9+cqfLNWfOHMyZM2fK5z09PVPyLBaLuOiii/Dd7343ctH93e9+FwDw7ne/e6fz31fRaDRw0UUX4bTTTsO3v/1tAMDJJ5+MdDqNt7zlLfjtb3+LV77ylQCAAw44ANu2bUNHRwfK5bIm0TU0NLQ9h7bn2p7vPbjllltgGEJg46yzzsLq1atf4BJp7OvQci4a+xR+8YtfYOnSpUgkEli0aBG+8pWvTDmWRMe+vvnNb2LJkiVIJBL43ve+BwD44x//iJe//OVIp9NIJpM47rjj8Jvf/CaUR7tjTlHSKyRvcvPNN+Ooo45CZ2cn+vv7pfHjuPfee3H88cfLY8Wf+MQndnkn9dJLL8VFF10EQOzS09GwO++8M1Se//mf/8GRRx4J27bx2c9+Vh5ru/7666ekyY8u7yh9ws7UV0NDQ2N/x8KFC/Hv//7vGB0dxbe+9S35+cqVK/HGN74RxWIRnZ2dKBaLeNOb3oSnnnpKXnP99dfj9a9/PQBBANLzmJ7jt912G17zmtegUCjAtm309fXh/e9/P8rl8k6VbWRkBB/96Edx4IEHwrIszJ8/HxdccAHGxsZC17WzqWQTb731Vrz73e/GnDlzkEwmMTk5iWaziS984Qvo7+9HIpHA3Llz8fa3vx3Dw8OhtE866SQMDAzg97//PY477jgkk8nnZNG4ZcsWGIaBuXPnRn5Pi7NdxbXXXgvLsnDddddhwYIFuO6669BqtZ5NUduiq6sL//AP/4Bf/epX2LJlS+i7RqOB73//+zj66KNx+OGH73SaP/nJT3Daaadh3rx56OzsxJIlS3DxxRdPGQNRoPnGjTfeiKVLl8K2bSxatAj/8R//EXl9vV7Hv/zLv6C3txeZTAannHIKHnnkkdA1z3ZME+69915s2LAB73rXu0Kfv/71r4fjOLjxxhvlZ/S70tDQ0JgO2p5re76noO35rmF3+1RDY3ehR5zGPoObb74Zr33tazF79mz85Cc/wRe+8AX8+Mc/lgQ5x//+7//iG9/4Bj7zmc/glltuwUte8hLcddddeNnLXobt27fj2muvxY9//GOk02m86lWvwk9+8pPdLtcDDzyAj3zkI7jwwgslyX/uuefi97//vbxmzZo1ePnLX45KpYLrr78e3/zmN/G3v/0Nn/vc53Ypr/e85z3453/+ZwDA//zP/+Cee+7BPffcg6OOOkpec//99+Oiiy7CBz/4Qdx8880455xz9mj6O1NfDQ0NDQ2BM844A7FYLPSMHBoawiGHHIKrr74at9xyC6688kps2LABRx99tFxgnHnmmbj88ssBAF/72tfk8/jMM88EADz++OM49thj8Y1vfAO33norPvOZz+DPf/4zTjjhhB1u0I6Pj+PEE0/E9773PXzwgx/Eb3/7W3z84x/H9ddfj1e/+tVTFo5RNpXw7ne/G/F4HN///vdxww03IB6P4wMf+AA+/vGP49RTT8Uvf/lL/Ou//ituvvlmHHfccVMWUBs2bMBb3/pWvPnNb8ZNN92E888/f4dt2mg04HmefE2nKwqII9XNZhOvfe1rccstt2BkZGSHeewIw8PDuPXWW/Ga17wGc+bMwTve8Q4MDg4+p7bw3HPPRa1Wk0fOCbfccgvWr1+Pc889d5fSe+yxx3DGGWfg2muvxc0334wLLrgAP/3pT/GqV71qp+5ftWoVLrjgAlx44YW48cYbcdxxx+FDH/oQvvjFL0659pOf/CSeeuopfOc738E111yDxx57DK961atCffdsxjQHeaktXbo09Hk8Hkd/f7/2YtPQ0NgtaHuu7fmegrbnGhp7MVoaGvsIjj766NaCBQtak5OT8rPR0dHW7NmzW3yoA2jNmjWrtXXr1tD9K1asaM2dO7c1OjoqP/M8rzUwMNAqFAqtZrPZarVarUsuuaQV9dO57rrrWgBaTz75pPzsgAMOaNm23XrqqafkZxMTE63u7u7W+9//fvnZG97whlZnZ2erVCqF8u7v75+S5o5w1VVXtb3ngAMOaMVisdYjjzwS+vzJJ59sAWhdd911U+4B0Lrkkkt2Ov2dqa+GhobG/gKyDffdd1/ba3p6elpLlixp+73nea1qtdpKpVKtr3zlK/Lzn/3sZy0ArTvuuGPaMjSbzVa9Xm899dRTLQCtX/ziF9Nef8UVV7QMw5hS5htuuKEFoHXTTTfJz9rZVKr329/+9tDnDz/8cAtA6/zzzw99/uc//7kFoPXJT35SfnbiiSe2ALR+97vfTVteAtln9TV//vzQdQBa//RP/yT/bzabrfe///0twzBaAFodHR2tJUuWtC688MJp7e+JJ57YOuywwyK/u+yyy1oAWjfffHOr1Wq1nnjiiVZHR0frbW97207VpR3UsnM0m83WgQce2Fq6dGno83POOaeVTCZb27dv3+18aQzdddddLQCtBx54QH4XNS864IADWh0dHa1Vq1aFPj/11FNbmUymNTY21mq1Wq077rijBaB1xhlnhK776U9/2gLQuueee6Ytz86OaY7Pf/7zLQCtDRs2TPnutNNOay1evDjyvs2bN0+ZE2loaOw/0PZc2/NWS9tzwt5gz1WceeaZrQMOOGC379fQ2BloT3SNfQJjY2NYuXIlzj777FCADcdxIndYX/ayl6Grqyt0/5///Ge87nWvg+M48vNYLIa3ve1tGB4ennIMaWexbNkyLFy4UP5v2zYWL14cOsZ3xx134OUvf3lIPy8Wi+ENb3jDbuU5HZYuXYrFixfv8XQJO1NfDQ0NDY0ALcUTrFqt4uMf/zj6+vpgmiZM04TjOBgbG8PDDz+8U2lu2rQJ5513HhYsWADTNBGPx3HAAQcAwA7T+PWvf42BgQEsW7Ys5AH2ile8IlLCS7WpHOpppzvuuAMA8M53vjP0+Ytf/GIsWbIEv/vd70Kfd3V14WUve9mOqhvC7bffjvvuu0++brrppmmv7+jowDe/+U088cQT+PrXv453vetdqNfr+PKXv4zDDjsMd9111y7l32q15JHvU089FYCQQDvppJPw85//fI94xkWho6MD73rXu/D3v/8df/3rXwGIo+2/+tWvcM455yCTyexSek888QTe/OY3I5/PIxaLIR6P48QTTwSw4zEEAIcddhiOOOKI0GdvfvObMTIygvvvvz/0+atf/erQ/+QlzucOz2ZMR6GdTIuWb9HQ0NhdaHuu7fmegLbnGhp7L3RgUY19Atu2bUOr1YoM4hL1GUXaVu9XPweA3t5eAJiiSbazmD179pTPEokEJiYm5P9btmxBPp+fcl3UZ88WUXXck9iZ+mpoaGhoCIyNjWHLli0hbcs3v/nN+N3vfodPf/rTOProo5HJZNDR0YEzzjhjp56lzWYTp512GtavX49Pf/rTOPzww5FKpdBsNrFixYodprFx40YMDg4iHo9Hfq8e0Z7OrqjfkS1tZ2/VDdfdsVlHHHHELgUiIxxwwAH4wAc+IP//6U9/ije96U246KKL8Je//GWn0/m///s/PPnkk/jwhz8cWmD/4z/+I+644w78+Mc/xvvf//5dLt/O4F3vehcuvfRSXHfddXjRi16EH/7wh6jVart89LtareIlL3kJbNvG5z73OSxevBjJZBLr1q3Da1/72p0ah9PNa9Q5lTp3SCQSACDzebZjOiqvLVu2TJkjbt26Fd3d3TudloaGhgZB2/MA2p4/e2h7rqGxd0KT6Br7BLq6utDR0YGNGzdO+a5UKk35TPUy6urqgmEY2LBhw5Rr169fDwDSgNu2DQCYnJyURgGYOgnZFcyePTuynFGfPVtEeVjxOnHs7saBhoaGhsbO4Te/+Q0ajQZOOukkAMD27dvx61//Gpdccgkuvvhied3k5CS2bt26U2muXr0aDzzwAK6//nq84x3vkJ8PDg7u1P25XA6dnZ1tg0KrC9rpPHfV72hxtWHDBhQKhdB369ev36W0n2v84z/+I6644opd1si+9tprAQBf+tKX8KUvfSny++dq0V0oFHDaaafhRz/6Ef793/8d1113Hfr6+vDSl750l9L5v//7P6xfvx533nmn9FYDgEqlstNpTDevidpwnw7PdkxzEMH14IMP4tBDD5Wfe56HtWvX4k1vetMup6mhoaGh7XkAbc+fPbQ919DYO6HlXDT2CaRSKSxfvhz/+7//i1qtJj+vVqv49a9/vVP3H3PMMfif//mf0O5ns9nED37wAxQKBSmBUiwWAQB///vfQ2n86le/2u3yn3zyyfjd734X2gRoNBq7FdBU3e3dGfT09MC27Sl1+sUvfrFH0tfQ0NDQmIqnn34aH/3oRzFr1iy5COvo6ECr1Qpt0gLAd77znSkBtdo9j2mhqqbxrW99a6fKddZZZ+Hxxx/H7NmzsXz58ikvsoO7AzrKrQbLuu+++/Dwww/j5S9/+W6nvbuI2kAHxBxi3bp18kTazmDbtm248cYbcfzxx+OOO+6Y8nrLW96C++677zkNXnnuuedi27Zt+MxnPoNVq1bhXe961y6TF892DAHAQw89hAceeCD02Y9+9COk0+lQQPLnqzyEY445BvPmzcP1118f+vyGG25AtVrFa1/72l1OU0NDY/+GtucBtD3fc9D2XENj74P2RNfYZ3DZZZfhzDPPxCte8Qp86EMfQqPRwFVXXQXHcXZqt/+KK67AqaeeipNPPhkf/ehHYVkWvv71r2P16tX48Y9/LB/4Z5xxBrq7u3Huuefisssug2mauP7667Fu3brdLvunPvUp/PKXv8TLXvYyfOYzn0EymcTXvvY1jI2N7XJa5GH1la98Be94xzsQj8dxyCGHIJ1Ot72no6MDb33rW/Hd734XBx10EI444gj85S9/wY9+9KM9kr6GhobG/o7Vq1dLLdJNmzbhD3/4A6677jrEYjHceOONmDNnDgAgk8ngpS99Ka666irkcjkUi0XcdddduPbaa5HNZkNpDgwMAACuueYapNNp2LaNAw88EP39/TjooINw8cUXo9Vqobu7G7/61a9w22237VRZL7jgAvz85z/HS1/6Ulx44YVYunQpms0mnn76adx66634yEc+gmOOOWa32uGQQw7B+973Pvznf/4nDMPAK1/5SgwNDeHTn/40FixYgAsvvHC30n02+PznP4+7774bb3jDG7Bs2TJ0dnbiySefxFe/+lVs2bIFV1111U6n9cMf/hCu6+KDH/yg9EbkmD17Nn74wx/i2muvxZe//OU9WIsAr371q5HL5XDVVVchFouFPL12Fscddxy6urpw3nnn4ZJLLkE8HscPf/jDKYvo6dDb24tXv/rVuPTSSzFv3jz84Ac/wG233YYrr7wSyWRyl8rzbMc0RywWwxe+8AW87W1vw/vf/3686U1vwmOPPYaPfexjOPXUU3H66aeHrv/tb3+LsbExjI6OAgDWrFmDG264AYCYE+5qXTQ0NGY2tD0X0PZc2/MX2p4DwiavWbMGgPCOHx8flzb60EMPDZ0409DYI3hh4plqaDw3uPHGG1uHH354y7Ks1sKFC1v/9m//1vrgBz/Y6urqktdgmkjYf/jDH1ove9nLWqlUqtXZ2dlasWJF61e/+tWU6/7yl7+0jjvuuFYqlWrNnz+/dckll7S+853vtACEIn8fcMABrTPPPHPK/SeeeGLrxBNPDH129913t1asWNFKJBKtfD7fuuiii1rXXHPNlDR3Bp/4xCdavb29MjI5RXpvV55Wq9Xavn176z3veU+rp6enlUqlWq961ataQ0NDLQCtSy655FmlH1VfDQ0Njf0B1113XQuAfFmW1Zo7d27rxBNPbF1++eWtTZs2TblneHi4dc4557S6urpa6XS6dfrpp7dWr17dOuCAA1rveMc7QtdeffXVrQMPPLAVi8VaAFrXXXddq9VqtdasWdM69dRTW+l0utXV1dV6/etf33r66acjn+lRqFarrU996lOtQw45pGVZVmvWrFmtww8/vHXhhRe2SqWSvK6dTaV633fffVO+azQarSuvvLK1ePHiVjweb+VyudZb3/rW1rp160LXnXjiia3DDjtsh2UlXHLJJS0Arc2bN097nVrme++9t/VP//RPrSOOOKLV3d3disVirTlz5rROP/301k033dQ2najyLVu2rDV37tzW5ORk2/tWrFjRyuVy016zs2VvhwsvvLAFoHXGGWfsch6EP/3pT61jjz22lUwmW3PmzGm95z3vad1///2hcdZqBe3OQfOBG264oXXYYYe1LMtqFYvF1pe+9KXQdXfccUcLQOtnP/tZ6PMnn3xySj7Pdkyr+NGPftRaunRpy7KsVj6fb33wgx9sjY6OTrnugAMOCP2G+WtX52caGhozF9qea3uuQtvzAC+UPacyR712Z26gobEjdLRaSghpDY19CPV6HcuWLcP8+fNx6623vtDF0dDQ0NDQ0NDY51EsFjEwMLBTknoaGhoaGhoaeye0PdfQCEPLuWjsUzj33HNx6qmnYt68eSiVSvjmN7+Jhx9+GF/5ylde6KJpaGhoaGhoaGhoaGhoaGhoaGhozEBoEl1jn8Lo6Cg++tGPYvPmzYjH4zjqqKNw00034ZRTTnmhi/as0Ww20Ww2p73GNPVPWkNDQ0NDYyag0WhgugOhHR0diMVi+0y+zwc8z5v2e8MwYBjG81QaDQ0NDY39Adqe73loe66xt0KPOo19Cj/96U8xPDyMyclJVKtV/P73v58SIGqm4rLLLkM8Hp/2NTQ09EIXU0NDQ0NDQ2MncNBBB01r01/+8pfP2HyHhoae96PfQ0NDO5wnXXbZZc9rmTQ0NDQ09n1oe75noe25xt4MrYmuoTFDsH79eqxfv37aa5YuXQrLsp6nEmnsK3jmmWfw8Y9/HL/97W8xMTGBxYsX49prr8WLXvQiAECr1cJnP/tZXHPNNdi2bRuOOeYYfO1rX8Nhhx32ApdcQ0NDY+biwQcfxOTkZNvv0+k0DjnkkH0m3+catVoNf//736e9pre3F729vc9TiZ5baNutoaGhsXdA2/M9i33ZnmvbPfOhSXQNDQ2N/Rjbtm3DkUceiZNPPhkf+MAHMHfuXDz++OMoFos46KCDAABXXnklPv/5z+P666/H4sWL8bnPfQ6///3v8cgjjyCdTr/ANdDQ0NDQ0Ni/oG23hoaGhobGzIK23fsGNImuoaGhsR/j4osvxt13340//OEPkd+3Wi309vbiggsuwMc//nEAwOTkJHp6enDllVfi/e9///NZXA0NDQ0Njf0e2nZraGhoaGjMLGjbvW9Ak+jPIZrNJtavX490Oo2Ojo4XujgaGhr7AZrNJp566iksXLgwFEgmkUggkUhMuf7QQw/FK17xCgwPD+Ouu+7C/Pnzcf755+O9730vAOCJJ57AQQcdhPvvvx9HHnmkvO81r3kNstksvve97z33ldpNfOMb38A3vvENGSvgsMMOw2c+8xm88pWvbHvPXXfdhQ9/+MN46KGH0Nvbi4997GM477zznqcSa+wN0LZbQ0Pj+Ya23WF8/etfx1VXXYUNGzbgsMMOw9VXX42XvOQlba/fke3+9re/jf/6r//C6tWrAQAvetGLcPnll+PFL37xs8pXY++Btt0aGhrPN7TtDmO/sd0tjecM69atawHQL/3SL/16wV+XXHJJ5HMqkUi0EolE6xOf+ETr/vvvb33zm99s2bbd+t73vtdqtVqtu+++uwWg9cwzz4Tue+9739s67bTTnuvH6LPCL3/5y9ZvfvOb1iOPPNJ65JFHWp/85Cdb8Xi8tXr16sjrn3jiiVYymWx96EMfaq1Zs6b17W9/uxWPx1s33HDD81xyjRcS2nbrl37p197y2h9t93//93+34vF469vf/nZrzZo1rQ996EOtVCrVeuqppyKv3xnb/eY3v7n1ta99rfW3v/2t9fDDD7fe9a53tWbNmtUaHh7e7Xw19i5o261f+qVfe8tL2+5923ZrT/TnENu3b0c2m92jaRqGgY6ODrnDbhgGYrEYYrEYLMtCLBZDZ2cnTNNEZ2en/Iy/A0Cr1UKr1cLExAQ8z4PrupiYmECr1UKz2YRhGKF0TNNELBaDYRiyDJR3q9VCrVZDo9HA5OQkPM8DDauOjg55byqVgmmaSCaTSCQSME0Tpmmi1Wqh0Wig2WzKwBipVAqWZcG2bSQSCcRiMZimKfMFxM5fq9XC5OQkarXalDw7OjrkjiDdT7uCsVgM8XhctmWr1UK9XofneahWqxgbG8PIyAjK5TImJiawZcsWeJ4n27y7uxuZTAazZs3C7NmzEY/H4TgOOjo6kEgkprQTlZlA7eW6rmyvZrMpX1QPqgu1NbWZbduh+tXrdTQaDYyNjaFWq2F8fByjo6NoNBpoNBqyDahfLctCZ2cnkskkLMuC4ziyDtRfsVgM9Xod9XodruuiWq2i1WpNGYPUD7z8tVpN9mej0QjdQ/fRPZOTk6jX65icnJSviYkJWJaFWbNmIZFIYPbs2bAsS7ZtVN6UJ31GdTAMA6Zpyrz4tbVaDZ7nwfM8WVbqD3rRuGg2m/L7Wq2Ger2OkZERTE5OYvv27aGgLvy3QeWkvqY2pb+fq0fwQw89hEKhIP9vtyNuWRaWL1+OP/3pT/KzD37wg7jvvvtwzz334E9/+hOOP/54rF+/HvPmzZPXvPe978W6detw8803Pyflf67Q3d2Nq666Cueee+6U7z7+8Y/jl7/8JR5++GH52XnnnYcHHngA99xzz/NZTI0XEGS71917LzK2LT50HCCVAsbGgO3bxWeplHg3TfFOHihbtwLPPAN4HjA5CSQSwAEHiOtnzQIoTc8DtmwBnnhCvN93n7j+fe/Dpkwf5m5aDdx5J3DkkVg7+3hs3Ag8+qjI/s47RRZXXgmcNuvP4p8HHwT6+7HyoDdg/Xpg9myR5bL5m0Xaixahtqgfjz4K/OIXogiveAXQ0xNUwXVFFQ89FDB+9hMgHgde8hJg9myMVA14HtDd2AysWSMK8vTToh62DRgGkMuJvw8/HOOzF2DLFmD9etE0jiPy8U0pTDNoskYDyGSAuR2bxQWmCSQSGEEGW7aI7z1P1KenB7DMpkyoBgueB1SrovlmzQIyGAm1/9pN3XjmmSCd5cuBuU/+WbT73/8uvpgzB0ingRUrUJt/IB59VDQptcns2cCbzqmJ/vIzax57PO64I6iPbQNz54pyzs01gWoVg5syuP9+8Z1tB3U2TWDhwmBImKZfL9cND0i/c0ZcC64LbNoEbNwoPqYhODkZNBsghpxpBsM2kQjyoOSpeehvGtKeJ4Ywv47q5rqiyQDRHrYN9PYCGbuGcc+SPw3KL2nWggRMEzXPgOuKdCiPp58G6nUgnxdtceihgPHUk0HFZs3CSGqeGHuTG4CxMYzM7cOjjwblqlbFOHv0UeBf/3UbgDJ+97uDsfz+a/DnI96H174WeM1rgK//2wjWrs/gmGPuAzCC7Ud9Dl+8/3589NBD8eer78ExB28F/u3fgDPPxJEXnIhnngE2/XUd8J//iZFPfQFXXAGccw6wfMstYswkEqJ+69eLsi5ZAsyfH/Sd6wbPi1mz6AEjPqfOSaWA2bPxzObNOPSoo7TtBnDMMcfgqKOOwje+8Q352ZIlS3D22WfjiiuumHL97tjuRqOBrq4ufPWrX8Xb3/723cpXY++CtN0rVyJjmuI3Sr8xIHjQ0YOPHpT0eaMRPORoLC1ZEjykEwnAcTDuWUhiXBiILVuAv/1N3Pe+92EdFmDB2Frg5puBk07CrZuWwXVFEmNjwFVXAfff38DPfhbDadt+AqxaBdx2G3DqqbjpJVfgkUeApUuFnRvYchfw858D7343fvroMmzfLp7/yaQwy6rtnpwE+mdvBv71X0WdL7oIm7xurF8vHjtHHglkNg2KB+Uf/hA8w1Ip8WVPj3jNmoV1W5L4y1+Azk5g0SJxGSDyWzC/CWzZgierc3DLLcDBBwMvX/SkqGBPD5BKYRxJ+ZzfskVk0dsrHntWdavI20dt1hw884ywKRlvq6jknXcCiQR+nnkXbrpJ5DF/PnDKKcC8v98CPPUUcPfdokBnnim+XLgQmD0bg09beOABoFYT9Z41S8x1up2asPebNqF5+hm44QZhj7NZ0b1+0THP3CyM7OLFWLfRwsMPA7ffLtI5+mjxnkqJrGfNEq8kxoPJzuzZYWObzWLcNbBmjRgq8+cDJ5wght3f/gZUKkChINLcvl28Fi3y+9JvH5qH0PvYWDClTCSAudkaYJpY+6ghTQ4NcdsWaa5ZIz5buFD0w9y54v7uTWtFey9Zgk1LTpTzKN9sy/HF5xjbtwP33CPGHM1jDj0UsDauCwbKrFkYXJ9ELAYcuGWlMPZnn42V9xtyPlStiu5+6CHg0kufAbAed999NAZ+/lls+sAlePvbRZtfdJH4mbz73d8GMI7ts/4dV2zfjk8sWoTPv+5veO97gbmfeh9w9tk44ANnoFIZw/ZVm4ArrsD41dfgX/4FeMc7gGUPfh+YmBBzPcMQgwQAFi8WA9Tzgt+FbYv/n35aNIA/L5X1cxygtxfPbNqEQ484Qttu7F+223xOUtUAgOfkKJlKRPL/iaylF5GIRLzS30BAotP/dC0RuO3uj8qDSMyOjg5J2FL6RGASaW2aJuLxOCzLiiTRKX/LsiRpygn3KBKd2qEdiU7vRKLbth1JosdiMUmSep6HRCKBeDwOz/NkO1HbUB2I6I/H47BtG4Zh7BSJTnl1dHRIInVHJDq1ASfRqVxEytMGCBHEUSQ6talt25JQTyaTiMfjcqNDJdEpzR2R6FQGGks0Jnhb8PvoGn78icYD9T8vJ22AUBqNRkPmTXlOR6JTPfg7kdmUHh/TrVZLlpvqx8eaaZryHt7H9NugvqTP1M0EvqGwp5HJZJDJZHZ43bx583DooYeGPluyZAl+/vOfAwDy+TwAoFQqhYz5pk2b0NPTs9vlc10XNZq87AKoTzjaTVQ4Go0Gfvazn2FsbAzHHnts5DX33HMPTjvttNBnr3jFK3DttdeiXq8jHo/vcnk1Zh5ofGUcB5nOTvGh4wREMS3+HEe8k32g91otYCNjMXGf44hXJhMm0enaiQkxOW+1AMfBRDqDzLifZyoFx8nAdcWCdnIyIKAzGSCTSolVdSIBJJNIpTJIJkWyjgNk0q743nFQy2TgOME6IJUSawkqejwOdHSIdI1kUnyQTvsfCBI947nixno9WGQQO5xMir/TaZiZjKxeOxKd8vU8P5sON8zaQqTheeJFTRhFond0AJbltwkl6rqAbcMZz8gukXlRu1MdOjvFK52W7dTZKdJtNMTfmUwt1O/NTCa0l+JXHakUkMk0AcOAM56RzUJENl1PTRsi0X1nBwm6wbIQjwPj42LhyUl0aldOosfjwbDjeVPy1Dz0Nw3pel0MS0qrXhdpqSQ8pZvJCBLd9CyQyaP8okh0yxLpUR7JpMhDjtcMYFDgLBp/TkaMPbcqB2gqFZSr1QqGHtAA4CKVyiDT2YlUKhMaG85IBkAKQAOZWAw2gEwsJq7PeOLCVAqxmLgvk07Lm4lvykwkxaCwbVF4GihUCd53vHGpsWOx4Fq/0iMTEwC07a7VavjrX/+Kiy++OPT5aaedFiIdOHbHdo+Pj6Ner6O7u3u389XYuxCy3fF4YDT4bw8IHmL0UKPPPU88VCYnxW8aEPem08FDzXFgehaS8B/AtVpgu9NppJFBpsOR1yarGRiGuLTVok3UBpLJGDKTycBAJhJIJjNk8sVjwU2JZ4/jIJnMyKzoGtV2x+O+vbcscWEmg4m6sGWe5z+rx51gvuB5bMczGdQ1k0G6lkQyKZqBnvWAyC+TaQK1GtIdQXkz6bR4BqbToo2QhGWJ5qE9w0zGJ9ENL2hzALVMBiMjfvk8Txg5ar9kRj7nffOMDBUsHg+MyKxZsuyOYyGZFM1KXZnJABnHt9/VKpqZjLwmlVKmaabPVGcySI+LtKhJ+dyK2/AkTGBkhBoobGwzGZiWgVRKlCWZFJeQYwDNk6if6nU2d/Pbx7LE9JPmaHxoiq4WBtVxDN60ctjSFAcI9pWo7HyuOZHOSFvJ52iWFZ5jNJuiHjS25dxsPM0HCpyRpPhz0pEVT6UMdHYGY6papb9HAGTgOBlkEglMpDNynpPJiNsBB0ATmY4OJCBsdyKREXWxLCCZREdHBoCFTHoCsCyYfvs5DoI5fWen6HziH6hBaJLIG45+o3JeioBE17ZbYn+z3ZpEn4HgZDH/X0UUic9JPf43EbL0GZHMRESqXugEIk2JrCXikRPr9D8RkHS9YRjyOyIq6cdChDvPm8hTtd50L/+fX8fr22g0pNc2rz95HDcaDellTOQzJ6tVIpq3URSpzD32o8rJCVsiaj1m/aL6WN00ASDf4/E4ms2mJJypvrzsvMxqn1IbUZ5EMHMPbbVdqQ953flnal3oHn7tdHVTNxg4GU9tFkVMR71TmkR+U7/S2KTxSv3AT1nQi3ui04YLH8c8T16+KBJ9b8Dxxx+PRx55JPTZo48+igMOOAAAcOCBByKfz+O2226T2my1Wg133XUXrrzyyt3K03VdHHjggSiVSrt8r+M4qFaroc8uueQSXHrppZHXP/jggzj22GPhui4cx8GNN944ZfJCKJVKUyYoPT098DwP5XI5NJnR2A9AKwjPCy+yCXxFod5Hk2/6n99DL85GAkB/v5y8p9MAngnIR06+AsJr13eKC1bU8+cD/hiloptmuMxU5FxO/O+vdyXI26haBTLz5sm6NGFgYkKsK7sLWVEA0xQuVJQhbRgohY3FgrUubw6Vv4jHAZh2iHQ1EW7K0Jzdbz/L9GCZJswuK1iMeSwz05zSJQCE+xkAHHSQeJ83TzRGLodqVfDroespPbaI4kOAmkBW3b+ZbuEL0nafhf8I/m9C2K5GI9y3tL6gfR0qA5EORAxQfgaagC3SoscoH97U/2p1eTnp/1BXex5M05rS17xyTQSLe+aEOKX+ngdYfHPG/4K3a8ZpYt48A9kskHGaGKkasi2OPbYL5XIXFiwA8Ega+Txw0kni9AGGh1EoHArgEAAjQDaLAgDk82ItTe6Ito2BATHMacciY9fQ12eJdAcrIjO+kUaL8ajfPa9s1Ivft5N4oWz3nM5OVHd86RTsrO0ul8toNBqRtrjdnGF3bPfFF1+M+fPn45RTTtntfDX2UvDfFRBtv3d0LyfL+G/UdZF0TKDiBr//Qw6RD+esA6DiyR3O2bMDD+KJCfFMOfjgmDA/1bgwxkuWAIUCbBvo6gqerTBNYadMUxKsdNiLyFN67rkuMDoKoC8rTr75G5GdnYKUrVZ9u57NikSy2WCTgRhqpe70UbtmJR5RltU3OE07CdN/fNMBHNMU5fA8wKJJhm98LMdBKiXIVpi+0Zo9G+jsRJcjvLSz2WDTGOm0sNcDA+K5OzAgLrJtNE1LOhPz7vaXwpIpp+kX2atQ3ZjhIxtPB4fIX4D6iIaJvCjq2Y4gL3UuR59TmjSvE/MYUQHLbMJ0hN0m00jzE3qk1mABfn3JDtP19Jo1K5hDcP8Oafg9D/F4YJ/53IBAJD+Z5ynjQpkoTGmGahVdXRnk8+LEYM0WpLPrAsceW0CpVECxCCCXQ1cXsGKF6N6MOY5iMQlgAMCY+CH5LvxS9MH/cfT3A6WSLb3HkxjHkiVJke6dFXHtnDmiYHwyos7v6cV/F5GTtl2Dtt0BZrLt1iT6DAIRfJxY5YQ1kZGc1OVkpErQ8uvJw5fyoc+iPKs5YcplWCh9IiR5Gbm0B99V4h7tgPBA7+jokJ7RnKgm73KOZrMJ7l3P24q/U/u4ritJZbqHvJlJsoPkYWi3jiRyWq2WLMusWbOQzWaRTCbR2dkZItEpfe7tz73JiUAleR3yxqcyENFOJD/vZ+pTnh6vS0dHB+LxuNyE8DxPyvTwDQDTNGXevOzUBjROqB1qtVqoj3n5aHy1OyXASXo+dnhePC1+8oGu5RsBBPpb3UigfNTTAK1WC5Zlye9o44I2Mni9SOKISxQReU5jxPM8jI2NhYh0leCndiFvdWpj/ht5oXHhhRfiuOOOw+WXX45//Md/xF/+8hdcc801uOaaawCI8l9wwQW4/PLLcfDBB+Pggw/G5ZdfjmQyiTe/+c27lWetVkOpVMLTTz+9U7v2hJGRESxcuBDr1q0L3TedF/ohhxyCVatWoVKp4Oc//zne8Y534K677mpLpEdtEkV9rrEfQF2Es0Wf/CzqWtsOFqjkMswX4dWqmNxXKuLaQkF8v2KFJKaT1U3iGl8zgzu4xmLiUroVXlZ8eeCBQD6PxtqwV5XUz4B0zMbAgMiqWPSPIftEORWtVAIyJ50UquPGjeJzz7NQKB6KZH5rwIKrC0d/kWqaci0f+joWCxbofJ3SdMTv2oCwCaYnOYSp6xUqrN8vVi6Hbt+Dp2knRRr+TY4j1lyhRWFfn/hn2TLANLG1Kkh4txSc6OdHmE0TaMKAQf1rmiiXg7rR+jmRCDy+4HlyOPChQteQmoAkuP0LiHD2PMDzF/u+s5McYrQI5uBrPfJ6yzi+RExZLIIsfyFo20lZP/5Ow5T4GyJqSM6F+mHWLN+rzm4CVQ+W3UQ6bchyAEDNMwC2uOeLfwKRQ9zxy1K8uW3q+4rfKIODWGjbwKohYHAQmZ4eHHX00Tiq38HppyeF12XpUaBQwCJnE7761blYmB0B/vuPyAxUcN55x2HLli4g34+X3XYbsGIFurr8cXPssUAuh/e8xy9nqSQaYu1avPGNS9FdfhQYGhID+8ADRWXpd06NGLXQVsk5zsCouxc7gRfKdlcBfATA9Ge/wpgE8O/V6i7Z7ihbPJ0d3hXb/YUvfAE//vGPceedd8JWfkS7mq/GXojQbiaidweBsPHhnztO8NBWH7LVarB5nMsBhQJqy4+D6wpSMFPxJc6KRcA0ceQAUC4LtYxKRWzmLVsmvkY1Cxx2mNhALxYxa0J8ns/7G90VWxDito2eHlEksuH5fNiuVCrCZj06ZGHxP/yDrE/GaWJszECpBAwOAvbAXHT3AXjSl8zKZsUDPpeT9SbpNrK99FibPdu35357OozgJuZ3xEuiWhLls7xxJNNAT5eJGiwMD4ssk1vKolEqFZlWT38/YJqoeUlY+Txw+OGAaaJoik1QelzGYhC2u1gUjZnN4s8PZ/DM7aIZCwWxmaDKjzQaQNO0YPhEK3WhbQcbE/KR7E+gap4hbVOxGHzf2Rk4vlP6TdMC8r0AhC1vwgAcSw4zmiPw/QtGRyCdDiRUOjv9/h+uyH40TFNIFNkm6rOSclOmWhX1pTw8L3wKDQh+DvV6cIDKNEUeVmWT6IeJCcB15eEqPt9QeWaaUlI6/KQC30ypeYFsiyxgqYTFRRtYuRK4/XZYxSKOOvtsHLXMwWtPKIuE15aAZctglZ7G5z63EJY7AqxchWOWLcOppx4vNg76jsbZa9cCJ52E+fP9TYNly4BsFu98p7+5QLZ79Wq89a0vRvfQ/cJ2Z7PiWtsW19CkhE9w+A6F6hzCyfSonYYdQNvuHV8f9Tmwd9luTaLPQHCyWCUygbA3LyeRuSSH6oVOxCv3+m5HXnPikzSlXdcNSWlwz3b+eb1el6Qxz4dIUyLsSYdd9UjnZaA68PJxkpZDlRyhskRpaXPPekrf8S2RbdswTVNqotu2jaQ4XyTvpXRpg4EIa8MwQJIvXGaGb0xwAp6IWSovJ6VVUp6IYGpz27Zh27Y8CkNyJ9Qv1LbUvlSGer0eOj1AGuX1eh0TExNSx517rBNZTfVs5w3OvbzJozvKw5yPPd6m1BeUHif/VY96TqJzMptIdBqDJFnD5W+IFJ+YmJB68DTO6Rquac+99HlZ+IYC9QuVm+R89gYcffTRuPHGG/GJT3wCl112GQ488EBcffXVeMtb3iKv+djHPoaJiQmcf/752LZtG4455hjceuutSBM7tptIp9O7lAa18c4emQPExlxfXx8AYPny5bjvvvvwla98Bd/61remXJvP56fsWm/atAmmaWL27Nk7XU6NfQSJBKQ+BfdKUUl0lUjmJDqBvqOVXaUiFpG5HGqFRSiVgDt/Lebs553XDePeP4lr58yRnuljYyKpeFwsKotFnyCtZNHMdqNUAqo+qUsLqGwWQMkVqyLTlAsfWj8kK+tFptksDNuGaWakx9rwsIFUysLhhwO2WPtgcBDYtg0YHgYKhW4sHhgIr1T9+jWdDOqbg7LwZqAFl5RksU25WN3s39PZacA0BUFreS5QDVZtzWx30IaViihYpSIaxHWFJ7nZDdM0YPtkejYbkLVUzCeGLVSrFoaGRH1LPnleKIjFZbksFqdEIMdi4vuk42DczGB0NOyIT/WSnth+ZtQP9Xogkd/VFSyWJYFO9YMReBViqkcdd4jijtDccZvyNLwaUCoH7UUFMk3YhYVyGI+OhvMhjdhsVki10LhPOjZMUxADkpyveoGHJiOjmjBQqQRyMKYp1qqk307DhnPKVA84Tshz3TT9utCNa9eKDlq1Smj7Llgg4gK4LpI33CAG0v/7f8CppwJ//CMWrlwpOrlcBoaG8JWvHIdSCcDty1B405uAk07CrFm+p+ZJJwHVKs7w1ogP1g6LhnjwQXSvWwc8/jjwyCPS8zFw5/NRrU4d9LzjqFJ0H9VpF49Zv5C2uxOAvcOrAtAKZWdsdy6XQywWi7TF7Y6y74rt/uIXv4jLL78ct99+O5YuXfqs8tXYS6FuXKtepeoxKHWXllhq+pt/T7Y7mwUGBrBxs4EfflV8fNmljngedXWJDTbPg7X6fvT29aFSyaBUCmx3ryNOwqBYxHpvLjwPmOMIk5/P+5uTjiPZ2wULwsXvtseFN7xfLs/LSBvm9h2KbBZYiBGgUkG12o3h4aDKhx02Fz1Lloj60KkyH+OehXI58HrnU5502i9XRey2+sUXjzvfrgyvFWXozTfFRMHf6Lb6+lCpzA3acN06QWiSgLff5uWqkOLI9S+FaQKL0cTiPmCkakhOczzbKx//pZLYoCiXgbe+VRRjbCzgP9WhYObmwsjlUFkbfJ/LBRv7sizZrPSbSCTknoicW82ZAxjVEcAU3u+0tyI2n43Q0OOnt3p6RDvSfIDKQGnSnCBj1yB36ekivyPm9B8qY8WUy+IrkvnjXudz5gRlSKdFf01MBE1uuSOij8plkcDoqDRRVHfaWKd2pHp6XviUm+QzbRtNJxPapODmUOZ3ww3Al78sJqOOA1QqqJ17LjYBKHz608AFFwD33APrq18NdvTXrcMNN7xFpH3zCVjmusDpp6NItNjy5YBp4n3v8eeW/1sWOz+rVqH7sceE7V67VmzC0KYR97AmEp0agWnaT3k+cAJ3F0l0bbsDzGTbrUn0GYYo6ZYo+Ywo2QjVs5l7cXOJD07Qcq92HmiR0iHCkV4EIkA5+e55Hjo6OuT9RO4SmUla36RdzvXYubc699qme1XPd95WvL71el0SouQZT0SoKgdD6OjokOUhD3nHcZDJZKS3PCd6ydOYZFB4G3Pin+qkamlzaRzeZ7xsvK+ovXl/kl47lyLhhLvatryPaKyQxzV571O7jY+PyzSJrCYCnerANzbU9qS0ebBOTkBzCSHe13ycqp75tEmkSgmpG0pqTADKl3u+U350IoG0tyj4KR/vRMCrvz1O6FN5qZ1VWaK9AWeddRbOOuustt93dHTg0ksvbSuZsruIkv3Z0fV7Ik8eBJbj2GOPxa9+9avQZ7feeiuWL1+u9dD3R5imING5e67quab+T/eRyxhfpNP15D3tL8R9Xg+//rVYnLz1rUBm2Cfu/FVK0m7CtoNn9cAAYKz8i2R8SyXh2ENZkyeybUPk52/aua74vBtbhWdyuRySlYnFMrJ45MRz8MEinXJZrH9GRwMv7VwuE6p6JucArsuzlBIsjUagjW6gGazSTNP3jrbkRgF5SyXhikYhZj+bBYhEr1YDRp9Wkv6KbSLYc4dpGmLh7+fVhPDKGx4GNmwQscmqVfH35KTw8u/rCwKV+k0juw+2jXIp3HT8KLZctLtibNDpdGoTIuVJitZAM8RU0J+cbOZDiP5WHaO4N3c2CxjueHjFS6ta/0LDq8HzgqPv7MCCXDM6DoByJRi3joMMaQGRFyHfQGGEsWHbqNcN2YZEGqhOoZxgoHqMu4JAn5hg3vT897dunSCy//AHjKxahcxDD4lCl8tY/Yc/YCuAlz7wAPCmNwGrVwNf/KJIfP58oFyG9YPvYmGhIJiR884D+vvRaYv8hocN9PdnYNx4ozh+USyKtB9/PCDQhocDBiHkhodwOXmH8Zfq2cYbfxfwQtluA8Hiemev31lYloUXvehFuO222/AP5FEL4LbbbsNrXvOayHt21nZfddVV+NznPodbbrkFy5cvf9b5auzFUG1u1M4d3xBXN7toI1wl2Mk4miZGqgaGhoD//V/x0cUXG0g+/jikFlSpJEg708To6FJUKsLxvGf7o0AJgONgxJ6LX/+3ID1POknw75bnE+S2LWRLTBO5HNtMdN3guSzLl5H7ysPDgqxd+CoTqFQwMdGNzZuDaqdSQM/BRQBAzemG5wXxK8j+UxO4brC5bZoI7DaEjcnlhAwLEcnSLpLN2bxZTBiyWbiu2CzAtm3is6eeEm2Uy0nX+kolI2+1bWCRLYx1pliEnZvrb/BDtvvwsNi3cN06li+PY/ny6adengfU64bcpCaSlz/CmzAAOwnXb2IKl0LXm6ZPoFcqwgHBMTExYWDDhoAEJ8KZdxHfQFeRSIj2zDg2TNMIXMypEswJwygUYPsyKIpZl3si6bQoo0XzK88D4CHTZaLREHZf2jOy5Y0GDK8G05fE4W3G7TNtFtBpNL4nZdm2PGhJ81HLZI6N5bKYDPzxj/g7gIWrViG7ahUwOIj/BvAEgEvvvRdb0Y3uoSHgm98UlTrhBKBUQmbLFiFJNDAgfjB9fZg37Kfd1yfSp8n06KhoiMFBMc7KZfGezweeBnTEjirLnw38JCn3wqBBQ3Z7F0l0QNtuwky23bvSNhp7KXaHWIoKeMi90Llm9nQazqqudRShP913QNhzPip4qap3HVUO1fNZhSp7w73NifRWvaOjNiWmK1tUfmo7TFf3dmlH1VH9PCoNVU++Xdrt5IHUV7vv+Gc8jR1t+ExHoHJin28m7Kgdo9pKvabdK6qs6nih/7n0S7s6qOlyYn1vItBfSESNhx29dgWf/OQn8Yc//AFDQ0N48MEH8S//8i+488475W7/Jz7xCRnZGxARwZ966il8+MMfxsMPP4zvfve7uPbaa/HRj350j9ZbYx+ASpJxcLIs6j5694Ulae4+OsqcYuicL1sB0pFc02QEqb9Co6O9bXk4dpIrHkcw+efkgudJHU0qk+uGjxwTuavePjEhXk0YgGlGNg8rwlRvfvYxfSTzjSIlo26a7jr2Hcmm8LpUq4H3Wrs2VPfReLsAYQ5G/uH/0244hMo39c8pxVfz4nGxTLNNG/O/27Sh+nXoMp55VFtHfbcLaNcuRO5PSc40gy9cFzUAzXpddmQVIjyZXBC7Ltx6HU064++6YjFNrFI+D9i2TJaOxmP7doT0eoCpAyTqtx7VUfzvqM92YxH+QsLYjdeu4MMf/jC+853v4Lvf/S4efvhhXHjhhXj66adx3nnnAdg92/2FL3wBn/rUp/Dd734XxWIRpVIJpVIppPW6o3w1ZgiifmvAzv3Oon6fKtgzYHIy2OMN5cE3yFi+6TRCG5ATE4JTHhubeooJgGQoTZOdWFKfv3556vVA/1z1FeEbpZOTkKyo3L/zy0t618BUVZxQ2fx3evypZkD+QxmzTeLQhWwuxK+Rt7DJBpGx9D21u+vWAUxM6V4qG7eLtJkbFZeDMN0+aOSFrI2jQJdw/fXpMGUMtJnfqPOlHQ5vv1Fle1Db8/b3vGnLyPOgOdGO2o/mhfJCf0zUANSoXNUqKiyBalVc542OBkaZtAbXrRPjt1DAuGvIZJumJfKg3SQgYP7JdtPEjW9khyZOEeDPE16PHXXkXghtu/ccZl7va4TQjgwk0o97w/LryRs2Ho/LYJNcvmVHQUSJeFbJaJIfId1tnhe9U9BL/k763GowUVWShhOaPOClqjFNpCvdwyVRVK9u8mDmBCfXJe/o6AjpppM3fa1Wkx7GlAeXJaF2pPrxz3j/qeQ3lduyrJA8jGVZiMfjMi1VvoQTzZzkJqgnA+g7akP+GV2vypSQ1ArlTzIxVBaVVKb2VoOEck/7KCKat4t6GiFqI4DfzyVe1Gt40FSu4c+9//nYVjcNuAc+l2NR84yCKjGkjrM94WWtEcbGjRvxtre9DRs2bMCsWbOwdOlS3HzzzTj11FMBABs2bMDTTz8trz/wwANx00034cILL8TXvvY19Pb24j/+4z9wzjnnvFBV0NgboE6UueYxf6krmCiCMYJ0IyeXgw9mTl4U5JK5+KTTFopFcijy5CJA6E4HnlK0vt++XaxVkvm8IANtG3a7heCTTwKNBrqXmxgY6JWeZ44TpMsdd8hZh6/nAfKytkJ6mmpQUcMdD3v02DZqsLiDW+DUPMcOPIV4wclNzjQF+5BIBMdzTVOWWTY1dY1f4Gy2W57WLxYDJ3fPE85MhUKIm5DZOQ6AqotEwkI6HTiKUWCweJzVwUsCZhKVclhOn28+dHYCHsnOeDVZZmpvWvDT0KHvqfupnnzxTnxykjyliUymTvM/H/esSAdoTlBUKhA68/ShaQpdWTB7xkkiZYz35PNiYeuDe82pJAUvokqSVCoGTDOJXGGx8N43TdFJjoMceWuuWAGUy1j+hz+I4FknnYStbhLdfX2w83lBlh9+eOD1SMeiFeJmclKQWj3k0rd8ucwLth2cIunvB/r6UIMFi9wvo54Jim5nqJM54TYDF+TPFd7whjdgy5YtuOyyy7BhwwYMDAzgpptukoHXdsd2f/3rX0etVsPrXve6UF48QNqO8tWYIfA8IJkMP484oj6jaxVieoo0k2nK3zTZhf5+pvjATpDJaz0PxaJ45Ng2AqOfzWKyGmhr02Mkl8vAgi/vJKNlt6nn6tXA8DAWv/OdmDcvI5PO5SDrkE6LR14qFVStaYvYEZUyPaaEHZosBzxjZ6ewaRTbTz732XOrWglsX8iWUN0pIqdpBlxlV5dwlSfDO2+erCM/xGearM39zc/uXE56kvf1ieS3bYtjbCwuDw2RfjkVk+YuGacJzxOno2KxIOaH2qTUD2SDeMBsae4KjjydRXMwMhHU/VxS2zKbME1B+CYSQmqFK381GqJPKN9uxxHtRAmzsVmzM9i8OTwt4ie+AH+fxs6IOZ8HmKYFI5tFEwY6/bkHSp6o2OSkIKdnzxYntbJZ9OZFvbZtC2ToaH6jbqxQjBfTFEQ2bQwBwfSjuPzFgfe+6wJnnYWjHnwQRn+/+AHZNk761a+wHgBe/nKUy8DCYhFmsSikkSiQD9lUvxD8pyrnPSTUz8XufckYZLPCbud6Ua367Uy/MT4Jidog54NkNxwG9gfsT7Zbz9j2AagexpwgBAIik8tZEClJZDeR2VwihO4lzXAuYVGr1VCv18GDQ9J3jUZDEvOkvc09o1OpFBKJBFKpFFKpFCzLQjKZlOXgUjKcrOV5kQwLlxnhWuN0j6onzqVDePupIM1qIkqJpDcMAyRpQhImUUQ1b8dEIgHSQo/H4yENdEqTyHEASKVSIeKf6s03REzloR4l1cMJX1XihghvSpukaKK801Xtedu25b0qeV1XXPO45ItKGPOAohx8c4MIdK6Pzzd5VO9kuo/6VZUy4v1JY5ukWvi4pnHMN4gouCrvGz6GuGxM1JhS25/qxwn0/Y1If67lXK699tppv7/++uunfHbiiSfi/vvv36V8NPZReB5gWVOZPQLXSuWLb36/eoycWGjycPU8GfTy+OOZ91h/f7gs1SqStocVK8RRZ7n6chxs2yaS57FMyenGtoHssl4k+z0gl0PWLzaqrIzVqtCCGRoC1q3DolNPxaLDC0inRbwPkl/J5QwRyNQHOfwAwcKNn4ala6iZLG88yI8K7DgYqRpSg5UchWhxmMsZSNLCxv9QNLEBi3YUaHHENh1oYSqOvrMFj98wyayHQ/tzyOcNuTCuVkXeS5YEsV6pWycmxALSKIuArz0FB/G4eM5zrXoyza4LPPaY2Mjg5pqGQbkcOD8Fx8lFAE7TFAvupFj5YqRqyE0JLolj20KftolAf5UChwmna0GKJGm3wO8Q0hovDUO2u7ompPHjeUDZMWDbFhzHL58HmKaBJGVKcjvUiOTZFY8Dw8NBIFbbRncuBzoqTgSDsp8S6iqS1KVy0pjq61uK/LKlWHT22cAb3yhu9AV8zeOPR3ZyEuOnvxar7gVedsIJwKteJQL0nXxyMJYoMb8gdJKjWhVKAz0DA0C1ivV9L8Xq1cApZy8SEkp0Vr2vD39aKeZtxxWyU8ZgqDKUV9Q7VX6aQF17G57LI+GE888/H+eff37kd7tju4eGhp51vhozBOrmFBFlKvvHN7NU280ZUHpXiDULNRQKFk45Rfz8LbMpGFzSXiFdNQAveYm4xqiOyBMwI14S1Wogvz446BOORSCVstDV1S2CLJtmIPvF4bpCW/rXvwZsG4cc8T6k02L6YLiBZnqhID4jB11SQQPEOyWbSonvx8YEf0vxMLodv52qbP7jeWialpzK8MedaQpJriRJfwGA46CTCFgysPPmiQdvV5eUy+gtNCV5CwBomIGN96VHevJ5pA/PYPt2URfaCH/Ri4DeXA29WQ+HFgTZOuJaME0g6W4Fyh5MW0jK0B4ql1ehOcjgYKDYxXW/2V4y8nkD3bmctM+NRrB/YrkjAIBYLBPso1YqsJ1uAL7UyvDTyNg2slmhE1+tisNRdDrOzCeRoYHBNblNE0NDIgRIvS76rNEIqewAgIz1ks9DztvqdQPxONCdbQa7BDSRe/hh8ffgoKy05W+EI58NEs8lQdLT1C5dXeK3UIMlA9z6IUpCphbIIJfLIJsFjvvc52CsWCHy8vXzlgJYWi4Dn/gE1v43cNRJy4FXvlJ8f/rpogwPPhjo/bE+A3zlOieJzMAAAGC9NxflMrD0rcvEZlOpJBpmYAB//KO497RlebkZMmWzijqfMuLPD16xGbQBrm33nsPM6XWNSKiezOQ1TYSm53mSnOX62URs27aNeDyOzs7OkA45JzmJtCYikV7cc5fycl0XnufBNE0kk0lJ3HOdc06ip9NpmT+RyVyHnV6c8CUtczXwYywWk17aFECSyknpqJrZnHhXCWTVW5q+M00TY2NjchOCE+eq/ja1cWdnZyiPer0u76PyJpNJ2TccvP2JuI6SuOBe03TtdB7O5M1fr9cxNjaGVivQl+fe5fTOTwhwz3ueJz+dwPuMa7+3I4w56c3bkAh0ruPOdfCpjvxenibfYFA3JnjAUBrD6vhWx7nq9c9Pd/Cxy8FPRvDfLQ++q3q37w94rkl0DY1nDZXo4qvEKK/THZHouRxqdkYsjP1raJ5+0knio3od2Gr3isWYNx5yyc24w4EnjuOgaScx5i9ocjlBntJCjDQpRWyyhbBNIGk2wxsBVMZ77xXRuUolsYLu68Ohp58eIhxzucBLiq+9+CJmbGyqxqhpigWWZEKJnMhmMe4aMjYoFQcINhNGR4HkHCfk5Uv5ua4Fz7OQzS+G08e0YuETFTxBzg6TBmiphG7HwUtPKEpi2fNosV0OXLEdRyxmJxGsVG0b3dks3KwVkmMnTtZ1hWT34KBYxM6ePZVkJ3R2iiQTCbG4tqiP/IQz+TxMMygfkeeCwK7CME3Ydoa1C0LXZrMW6nXRN7w5qBmo7IR6XRATjUZ4DKVSoqxEFIRIdEqMjjDQPIaY8fnzxUrb85ApFKTnnh/vFoBPPphNjLuClCDp4XJZrH9JAn9yUoz1bFYEcMvnj5IbUZ4HrF3bKzZz1oqs+/sXo/c1rwGWLMH9lUUwTWBp/9awFqw/dilYbLkM4fkG4PvfF7r55TJw+ukvllUaGhI/GdsGjjsvJwpLLo8qca6CL8ypnTSJrqGxZ9BoRJPk/LQIEPZy5u7PZHOBgMCkByX/rVYq6M5mcfrp4lQPXFfGUGialthATKcFOew+gV7HBCoAbBvjSGJwUDwDczmR3eBgUIVcTjzrHMcKnvlUZoLnATfcgN/X63jpD36AJW98HzIYAX59p/jed5Gn2Hq+0zq2bBExQBoNoYxBzZXNBnuiponAJZvagjx7/ecWmSm1WPRdMpsV//gbqbbLSHTfkDRhBB7KADA0BMtx0NVFQUh9A1QqBQahWkUym8UppyxCtQoceaTIb+lAExgcCkTTs1lk+vqC+RkAu38un0KFnLwB0R+rVwtOuVgUL7LRZDdNUxSlXjcwNhZwsLmc30+DJcA00ZnLYHLSn5tUq7AcB6Zp+dcIsnr2AXNDtpuCbwNApijYbzo1Rpvkg4OyesjlIO2laQan0oaGxHWHHBJ2sLBtoNusBpHUaVd/7Vphtx9+WIxZmqRQEE7/N9Dd1wfTNGS3SgeJchlmYSGP3x3aCKf/KXD7r39toFB4NWbPBg73bffK4mWoZAH338T/T5/Qi4VnngkcfDAexWI4WaB3QSWYmJimdLqgNqxWgaozF64rNPOHhoAVKwwsW7YUhRVLkRlYjxGnF3+8WlTvlFPmwqBAwVznvB05zuf6yqbaTIC23XsOM6fXNSIxnZwLEASqJFKSPKG5NAfJjZC3NBF7RMgDU+UvuAyGKulCBCQRXkSgkmQLybjYto1EIiHLQFIvnLjlUGVcyHOYk+iUHwVzJCmUdnrU3Os56ntOEAOQEi4UZJKT5aonMhG+1L4Eup/nT9fF43HYth3yZibiloJ8Ut1VeRLu5a3qlBORrbYn9dfExIQk0flJAPI+J5KYysxlbIiwNwxDnlqgdqexoMrY0Njk76pHOT+JwGWGOMEfJQPD0+Qe9Zz4Vzcm+PjlmwHqS/W+V73e2+mrq/XjdeRtGlWnfRmaRNfYqxHlQRrlyaYuauk71b3X/9x1AYst7g2vhqRtIulWAAAb693yZO2cOUkYfHVAbmP+wobP94nvJo1WyrZUChx1u203zOB6nliZDQ2hVK8jf9994sJ6PTij7hMHtEgkbhkI8uFJhj2PfFK46obdm1n2PD11n2JyEqh5RtBePoler4uFGl885vMWMo5CgKj9QsG6SIelsxNwXRimCQuABYQJdIquSgWidz99254bOTRcV3QVkSL8pDA/sGXbAYFBxZENyiJz2f4xb+nVpuxmiE2ZwCOdFuMqac6HIp1YYCejJYhw54cGaI0przdZQkSgP/PMVE9ruoFc9VwXlm3LhThBbh4gKWV0idBeuzYImEfBRvkp7VxOqK6MjgI/+QmwbVsdJ58cx8CA6IPeI4/ExlgvbvuZ4PL739kNizYA/AHreYEXYKUCNPO98Dzgz38WZHlfnyBUYjGRP5EUjiOO4RucZFN/93wMqs8LvRDX0HjuwIly9TOVaOd2m65X7DdMM9gk9FnkXscBHAAeAqKZrifDTMbAJ5Dp2UYHdVxXmBvPE0onvFjZLMTJJBWui1K9jjUAXnrvvciY44JEXrUqcGk3TXQ5oshDQ0HVtm8Xf2/ZIpIi2ZKQiSYjQUw53x33vJCNUE+g1esAHDvQK7FtWaeRqgHTzKA0JO7v68sgSXMT/5ls+RsRoTYk4jcWA6pVGJ6HjG0jk8/6XtTDAYO7apWvaYNAb8Qvg+eFCXSC5wkzVSqJONLptHCWJxvND1uNjgbqXpSeOOVXDS7KsYT9ho3FrGD3oVpFZ3+QHtet37YNGC9Ycp+aE+18AzyfF31L0uaESkUMOS6PQ4elQgHH/XHkui7sUkkMiLGx4HuyZ2TbqlXYdkZugJsmqzNLml5DQ+J95Uqg1RrB4GAG/HBcfz/wlreI8fipTwGbN4/h2GNTOOIIUf6Fhx+OWn4h/najkMDpzedCOjaNxtS6U4yBlSvFhgh1QbkMDAz04rGHxZzCtn3JOlXKRf3Nq+D2vZ3U0l4Kbbv3HGbOjE1jt8GJxXYyEzuDKA3rdoQ0JxVV4lMlrHka3EtZlR5Rva5V7W31XSWRqQ042pGw/NpdIUb59ZwIVzc4yEM6agNE/Z+kZagdicCm+1XyVdXx5l7Qu9L/UW0ctdGwo/t3pPetarWr6avf7Q7pqo4HVQe9nTY7z1/VV9+ZNpiuvNPVeX+BJtE1ZgxU8jzqbw6VQGPXe65yHy0I/HtoIRV5MIUTcaYZub6nvyOLMM3iwACmCpgzUJCxWCyaJ4ziDQERVKqd5Wm3TxFZTKU8nCBuW181EZ4GBaeMqkREsK0p13geTLttc4UCwdJttNCjvlUdJCcmhOehoWpzKvW1eGOZgUSLimnbRCljVJtT2+401MbgN+8geFcTBgz/98GbPKpcvF2pTYkAEdc3AMSD+00TDS9MUliKPEMU561uCAHth421u0T4DCLPCXohrjFjwDc/6f/dTYfe6W/SL+M72ex5YrHnS4jlM03Am5p81H582/qwh1Db35efqLpn0I4XnDLnUC9skwj/aIrNiMiQP9tlNbjR8d8NnjC3HyywNICgH9rYaTV/Sk6dM/G/OZ/K7SO904YreY5L6XzFpoT60TRFG9M1OyBgp5lGht4JaqBPdf4xHQxgqo2O6n+Wl0wzor5Rt9brsSmfk3d9cG8NQCq4wLblfNjzEBad9xE1V263Z02OJtPWc0efz2Bo273nsO+Njv0A7chWIEwykUc2SalwnXFV85q8cLlXMBGMUeCfx2IxJBIJeX+j0YDjOEilUlLKxDRN2LYtJVfIK53npRLBvC5qIFFVFoPqSvfyIKecSOda2lHSGSpRrGpWc7kZNdCl6jXNPe9VyRgqA3mfc49v3gZ8U4Luo+Cm3OOb7iFP6lqthrGxMZB+O+VF+cbjcUnGU9/Q/5QP9/amNlXlUaI2KrgEikpi8zGsaq2rGwe8nXn/8M2HqLT5+FQJc/Lkn5iYkGOKZIhIY5/KRxsWpmmi0WggHo9L+R41qOh0BDgn7lWinm+2tPut7cvQJLrGXo2o1aayUAYwdXWlsrvKq15H4H5mmsK9lmmglIeCj/J5hBcN5BXNSFZ18ZfNBh7G3ENKeDD7ZeOBzwCgWMTcxx6TwRJx8MGhQJ1NGIi7QVp02pecy4FAy5yS5yfkLe5uR8Svk0F9c+AlT2XnTZfLsWBmjBCIx4M8+Dq0CUMQ0Orimd6p/Vw38EbnWrl8tRyPT3W/5ot2AJlcDcWiOG5veDW/fAZsWzQheUyrJCx53vNTw9REQqokiULfYgDiWr7QrNeBzs6kuCcnZFyqlXD7U/HVccGbJJEID2VOFqgkNnnt0fWxGBt4pPVCmRJ4xegMt3+yoeYFOrJhaRsrpLJCyVNQPKrDrFlBkD6qW6Eg7lm+HKhUbPT1iftME+LUxlAw7AcHRfC+hb427ziS8gACpUmSNv39gijp6wuGMJWNfiLVqh+AdToWTP1ffYbsiOXYi9CBXVtc738uAhovKIgM5M9zYOrDmO9i0v/8WkrDf46Nu4YIXEgPgsceEw95PzDiOEQgaflcdTIw6MFE6edyQC4Hb1g8O4jMTaUCSaoQQUlF8R9O40jCdiwY5dXAhg3IAugDgMMOCyYNy5ZJT/SamYQJkVehABxxhHh25nJh7nl0NOxc63kA8rlwG+bzGPcsJPOO9Dz2nd2l7SbP7K4u9o98volT2bRHzSVMMmm2GcH7hOY/c+aIulG/TEwIQ6FuOHOjEREU1nDHkc8nRayX6ggEFSa+s20D2axoPpIv42Ss50HaraEhIYkzNiaqScFMHSeJ7n7hXl4eFN+N5JLIFAoYcS2/yBa6BwYA25ZNFI+HSXCedyIRrhrFxqbqmabwmKfvTTOwhzSm6DvHQfAPGdtcDtayZSKA5+zZgW4bJUSnKxwHTScj941o/pfr74Zl2xgeDk6Lkew9yc4IucJUUAa/GPl84JixbBkwPNyFgQExfzJNoJadi2o5KM5IbhEyxUCCj0/JaCpHBygHBkTRBwZEecjz3HWDKrkugsR3ZIfVXYIZSLJr273nMPN6fz/HdB7LqkY2EdY8sCXJpXDd746ODkm8EgkOhD3PVcKSPiP9dNu20Wg0JFnsOA5mzZoFy7KQTqcRi8Wk5ndnZyfi8biUluGBLVXNagKvG0mrcAKdS6qQjAgAKSfCg3Py+6YDEcxEZpPcDA9yyYleSpMkauidX0cbB9SepE1P79Tu3NOcX0NSMKZpwvM8SQZTv0xOTqJer2N8fByVSgX1eh1Vf6JDmxnUjkQUU3tEefoTic4Dc/Kx0+5kAieuqc94e093IkFtL76xQwQ99U8UgU5l4dItpHlOGwsjIyNSD53KSZs0vO8BhKR4qF+itNGjTnpEScLw8aRukmg5lx1fr6HxgoKvUgh8kai6WPHVgmmiBkt4weSzwIIFYta/dq1YJR19NOA4GB4WspQB6WnBoBUvrbhyOTSdDLxKmKMnQpoIZoBpWNtNoFwFHCfQZbdtsXIbGBAJrFgBnHACUChgK7rhMkKA1rIE0qzmx79JH5Tf47oAbAuWf7S6BnFEeXRzEB9q/nyxsE9WN/mbBEQu2kEQVHaUnLqBe4vRoty2fSKd9VnNEwuuJC3CSeuVBMABsXDkhEEqFRZOBYJVP/09NIReOjJe9QsGschcsSKQdaG4SOS9xgOp8oU5XxwTOZFIhLlpPhTbreH4mKD/VV12rq6jely343upT+NxhNtmzhwx0OicNtn7dDpYiPsDseYZqFYDyRh+1BwINHknJoJ+7usL9o74up6XmbrOccKx6kwT2LhZ5Ek/o5UrRVpnnTUX3fmgj6h+ALBxo3hfsUJwZAMDonr8KD3J7ZbLAHJz0e3UwlpKUZ6RhKhAZjMEHdi1xbVeiGs8r1AfjpxF5J8pm6Ih0LX+75Tid9j5bhh58ezHX/8abBJmsxgaEh8XCkKSRQSkngsnD1j+g66WnYvSsMiey60D4jmjTifkM6ksGMLhkthE7BkeBh55BPbBB2PFY48Bp54qZFKcuUiecgpg23h62IDriueUUR3BwEAGhULgFL99uzBzY2OBrEs+H8w9RpCBU8gISTnTxPqyhVJJBPx2fDJ1YMAno4eHRWGLRdRgwapuDR7qDJ4n7KDnBSogY2NAc04Shs36wX+OjthzUa0CvWQESPKFEkokwnMyYpkPOkj8T7ojRLaXy8jYtmhPCtDu7+IbnoekaeKUU5JYsUJIgQwOhjefiTSnOC6lkijO8uXcYcGS39EjP5cTG7VkP4rFxfA8oFwSRSRTydVTSLmGviPwvQa69pBDAucC0xRjqVgM/yTkHoTp2+4nnxSFLBSAN71JDIYFC4KJJO3s++R5tQpMbA7MFgWnFT+tpNSSnzdP7Olks2J6C4i4oIVCOOi9H0tWqu+ddZb47qCDxJTCNMX9nifmL40GcPvtAGCgv1/Uh+YP1ar47dEel+MEcYZIjq5cFmXetk3MOTs7xX3j2QySZi36OcAHLr2r3gczCNp27zloEn2GIYpA5x7MXEKDB/QkEp2ITE6UU8BE1SM2yjOWk+icaKR0KVBpKpVCKpWSATNJ65tIZh6AkUhWIjKbzab0GKY8ibBXwSVOeBmJQCVP48nJSelJTeUmcjpKf53aOB6PhzYRiBRXCXT+zjXmKQ+6ljYxiBxWCVROWtPnRCZTHvV6HbFYTNaJNg54nScmJjAyMoLJyUlJolOQWUqL14V7WHPtb+5lrkricPKenwygvOh7Tmpz8I0PVXJIrTOBl6EdAcv1z2lsk25+tVpFrVbDli1b5BhTxzmVizzked1o84J+J7Sh064cPF4Abyc+xqJkf/YXsliT6Bp7NVRPUfpM9eJuR6JzRs6fdBMHW4NPKlM0MdsGjj4a466B4WGhx3nwwTxJS3if5XKSKaxWg/WhaQbePHQJaWxKro4ydxxfi9VAN91MK5Jly4DlyzFuZvDYg6LoXV0BT2C44zKd7mwW9dlJuagEgkUxcatcm9u2BXlOxDv3Iu52aoH4tWAeRIJ+kDbZlqYpJ67EcUxMBF1Ga6CkzSROvMCrGNkkknl/lVoqiQ/JI73RCB9n5sLbnK2nFVu9HqymaSFu2zCdDACg19wEeBWYxcVSyp5zAHwTgrygczlRZccRiz3uUMed4TnpzZpGDk3V4dI0xaLU8GqyIJl8QGgTKUzx8lSHcv4TkJ9RRuSCqGbMdjpqtliAoxL0E9fTpyblxArVjbzKiAQgUr03H9jTmmdIwoJzLURCbNwo0qSF9H33ie7u6wOWL5+L4dWivbNZ8Rkg+sY0xU+C+ATDq0EEtA2GJxD0nzNgCa119VnABycHtVVIiHjvR8x/7cr1GhrPG6J2GLk9JvJrut8d3wm2bYxuE8/JWAzoyecFY7dypXggnX66ILiHA9KQ7N/oqLChi/0dvFIpeNbQo5Oyo3uGhwObapr+c7tSAbJZuQHbQ0E3li1DcmAAOOEE6WW7bZuIK0Fp9PUBqFRglEropp3GfB6dnRbS6UAHnJ6RRG5SOXv9UzZDK8PX9fcDxto1ge32DZSVywUuv9SOrJ35M59ergsk+bW+gHfFnYsNG4Ds4d1IFotBcFGKlm3bgrXlx7rogU1GdmIiaGAqF+8cMpx+wTLlMjKeB7fvxVi9OszRk0Q89dHwcECW08Y3MHVYkc1n8VMRiwXzKyoGgYYnTT8oOCk8D4XCXJhmELbFP3QQ8l7vzTeBahXjZkZOMcmWwvP/aTRELJMlS8RuCHWKbQP9/dLhwXWBypC4NJ0ONlko0Dfxyg8/LAKqd3WJJLlD+xvfCBgr/wIM9KHmdMtg8818L26/XVxz0knhU29DQyLNOXNE/TZvFvFJKhXgda8LNhpouNB47e8XaRy1rBlEgjVNeF4GK1eK9pk3T8x3aIgUixYMPy5RW3Kc23V1TjhDoG33noMm0WcgomRc2l2nevS28zgmsk+VmmhHWqmex0SIU7BQ27YliUxSMiRrogasVEnvRqMhCWIC92JWCUeVBI8iL4lM5aQ1SbVwT2dVi1ttZ07+q/lz0lttd+5xTGQ6L0uU/jgFA+WkMm0kEMkdi8VCnusAZDu6rovJyUlMTExIL3og8BLnZaN0uTwMl9jhXtdRJx9UmRJ+fTudcV5ntR25d7/at+r4jQIn93nA0MnJSdkm3Iuf/1Z4HXmgVQ7uVR7lDc/Lpkra8DpHvfYnaBJdY8aAJtXt3H+jvNCBKSQ659MsWpmVy3L1RAGliJSj64mIzvhuSlwOgxeH65VTUUi2A9WgXFP4PP+IOYpFjCCDckl4qQF+sEv4sip8xWuaSKeTsgycl6CFDcmQAMHftPBiMUuD1eWGDYFgJS2GVWZY6QbyWKY8TBOSQKcXeYCLR7wRLNaBQCclHhd5cCkATqLzRqMKUlmJmDDNoD9KJWDdOuROXjxlqFAzUvAt8mYj0kNxgpT3maao79hYUEROntOxb/qO7ovF2AYIaxjLceA4lqxaOh2+1zRFv6vtKUl0zuKr57RNIdnjeYHjP5WRe8DT36OjQVBcIg+IZJo1S4xDcmjvdUaA1UOyoFY2i1yuV3YDNT/xJTz4nWkGpDq1Of3NyRJSCigUAGP4aXmzbXfLNpg1S1xLG0mui6kkOnUCfyfMQE82QOuqauzliLLRUZ/TQ6gd4c6ecWRDZLBr2ogl5ts0sW2b+Gj+/CDpLVuEiVlcEA/yKiOhbTvwCqdTQpTsFPgPSuI4JZvb3y/c3gsFOX8YGgrsrjzsQru127YJVtJxYDvd0uTRc5Kq73nBBnVv3kYThgyGGpoGlcuQOwOmGews8g0K5cQNf0RyW5B0zPBFrgvPFnORSgVIZrMBC01aYHQEjc/P1NOCvF9pF5tIdK6dQwUZHgbKZeRe92LZP3y+QU1ZLgMbNtQBbMPw8FyUy6ItaVpAp8jIcZ5sDbVtPB4cgFObidtGw6sFH7guktksstlgM9c0BXFtmU2MVH3nAZ9VTvb3g2R0knYz7BDiecJ4OQ6afYvFHGFoCLBtKT1DqFSCOeHs2eKd7DU5cWzfHpyyyzhNZLNGsAmwdg1w771ik6VYlBMfw/NgmgsBiM2ejF2TeQ6bFrZvF22USgWBSmkfhbqfuo6cAWRbDg0FzLrjwPQ3800zkHchXwjP8203n/yotjnKts8waNu956BJ9H0InKjlJHU7EPnKSWdVt5qTVjxt8hImcpHITtWDWPU05nnT59ORrdyLmcjrKP1rldDl+tNcPoOXNapt1M0B3q7qpgT3Ruf1ViVe2hH9KtFMmuS8bYjM5veTd307ORXuad9sNhH3XcqozNOR05x4pvS5x7k6JqhtqdyqPv3O6HzzvPkmD+87tX94WdU25BIy6ouPiR0hSqdcbTs+pqJkj9R89icv852BJtE1ZgR2huhq537Ev0OYc0TFZy5zObFCcBy4lcB7hwjUEOEtN1LDWcRiAdlNl9HCgDhiS/UU5gUi4pjJpaivKfALwYl7zjnze3ggTeV28U5lS6fDwqA8Ef8G0xQLQiJ3OzvD3uhR7UP/07o7ybVpuPZqO5k3vvCkSsdiQcVo4c7aD64LNBpI2mIxyQnofD7on1QqqH4+H3hb0/4BHwvUrqqnOHEGtA8Q2Wd8pyPignZVb063jKKCExHFPT1NU+XsQ+tTPkZoD4PkfYAwJ8+dQslbPgTPC1XJQBOxmDFleFNanOund97OlD9tIoTq603th8jfyXTPjemeFzMAeiGusU+A/2h3YOf5XqHljYsPaVcvm0XNE7aIJKX5faEYEgz1ekCe80cpoBRFsS8AwhuXFCDCh2ofDDDylGl6UZ780FUUSA6N7qHyeZ4f78Sfv8gyUUJ8g8LzkEoFnsu04cntgiwQZeY4IhC7n1/TTsKgGBzT2LJQQTn4Ea5YLDCY/JgXq5zjCI9lOjXgeeJ/IsZFEeIol+dKiTGae1EXUdepXuZU1XZzppA95mNUqZdq30JfKHPPSEPsy9bJeZG/u0OOG2qSnZ3i1WgIW8w3p/l8Ba4Lx0kim/XLR7v5vBH84O28y6OqwKvMhxif86RSov1nzRLfJxIAvHAisVj4ICnd33aOq7b/PgBtu/cc9p1RsZ+D9M5jsRhs2wYPJkqEOhAmLIloBAKSWtV15h6y5D1dr9eRSCSkBzOXJyG980QiEcqftNY5cax6xqvevfwzIs9VMhyA1LbmpKoaWJQ0xYmI517YKlkbRZCSLAtJ06RSKXR2diKRSEitd5JHSaVSIM/7OJvJ8D4g+RyVFOQbICRTQzrn/F4eEJO3m2ma6OzsRL1eR1dXF+r1OpLJJIBAEz2ZTMqxorYzSZy4rhtqUz4uuJY9LzcPSppKpULl4tI8qkQM96rn/aCS8lGnJvjfVF6ug08SQRQ0lN7VwKAqOc77hedN4HJJanl4PdVNDnUcqJ/tb9AkusZej52ZPEcQvfJzzv4BcPx/rcqm4PjzWWcB2SweHU76eqNCX7NYFIt100miUhGLlkxerDppYcmlp5MYBzwPmbTIr1QypJO7WKQlkSwWUfOMYOFFiyZyi/Ndf00z0JzmiyJ1pUNrZR5g0T91DscRCxRaUPLmoSYjpzAzl0GyYE/19KGzwHQxAIMWz54HwzSR8b2pSUebPL4IPIAZrenrszPo6e8XH6jC7jx/VSycM9b82nwe41nfE9r0vb6pMQYHccIJi+Xlriv0Sycng1PpW7YE7TZ7dnBk2rZF25JHm2kGnuh84cfXppzYpXVqZycbj4zobsKA5wZ8Aq2veVOo3BLlKcaRBYONHfKCc6vh5otyFCTZIfLSSyTCjv2pVKCLSuOVvO1QqgYF8xO23BH/YuE1yTcU+CLdNIXzpq9sBCAIgpbLCS9SQHjVmSbCmyyOA7MaOFtSW5DHfMjTj18QBXWgRgS731uhF+IaMwrqQ43eVfaMX8eelzXPkHa0210P/HGleCB99KNANouNsxZjy2A4BiN3wo7HgaZpwQhPB9BoiGdzxvY9jQdLSDoOEonekM0aqRrIFIsiqCg9wufPF667/f0i43weZkXYDgpNITlscoEGwjuyCDZtybGdq3PRi0vHUQxpst3JQkEkQEx8X5/4n3RfCNUqevLCdhIpP2tW+KRazTNgkc13HDRNC9VVoi3LZXFdLrcQyaPtcHAR5QRUqH/JONLRIt4GnZ1APo+N9W7EAXQ7bP5Rr8NY/XecffZS2LaYizUHksjnhQP7448HJ8mqVaGGcsIJQVZ8SHG1GNo8pw0U0il3HGHb+Kb15KS4rwlDbB74g6cGS/ZHeLwFJxSb+QyMfB41WDBNn1QmY0udTPpxhYLfvgYSiV40WNNyEFGdcTchk3VQLAo5Pz5Ny+WEBBqGh9Gdz2P58kxA4PMAnvQDqFZRLAZjtWla8tRcNtstNfpJ772vT8yRqN5Ud9pLIjkXyxsHJs1gfus46IT4DgjupU0vwx0PjxvqPHrnn5Pt5v/PEGjbveegSfQZgulINvJgJtKaSFySUyHimK7l3rqq1jWXJaHPiHwlwphIQ34tD1xKeXKvZwAhspHKrAb3VHWjeXBKItDUe7hnNgV8pM0B7kHO9cmj9OFVmQ0Asg5Uv0wmA9M0kclkkEwmYds2ksmkJM1JqoV7pkdtCrTzlI8ikmu1miTPiSgm4pkT0ADkGKD6NRoNGWSVf65uXhCxTIE3x8bGMOmvZomcpzagdiWogVXJ+10luKkv6W+qF+9f7n1P46jVasnNCHWzhdqi2WxKeZbx8fGQ5zkFFiVJHy7hwuvTThs/apyShjyVg2Rw1HzV8RxFoKvf7U/QJLrGjIBKkke559AKSZ1UKy5GRnUESdcVBPqqVcDy5fjz6KHYOBhwuQMDYhHS3w9gqAQjn4fris3QrRVBXPIixOMQQZHWDoY8uOr1xZJED6oQeOfG4wgWU/4CnaoXi4lFSizGtLQr1SksuOHVkLRNLCxAkvO0VqV1B62jSc6FnLjr9eAorpDvsODkFodIBstjEiSqWzMj2g3bhpObK49a8/ahW0lug9beW3IZOE4GhYG5on7UAZxwUEl0dRFOmRWLWHmvWKgec3QT8tx7qQTcdx8yC0pBYWwbvdks0GUCeYS9DPkZbipDOTzeMnLlCKDqhtkOLiAOsfimYVnzDADWFEIbCHtOthvi9K7saQBIAmYSlWFR7YmJ4Ng3Lxr9T3s1xtATgGki46+Gs1kjJKGbcZqBrgFlNsYKZdvh6Kj0WT4PD1ZoDHI4jtik8rzAc5AChxruuGRAegpZcQMxIraNkao4nr6oIOZVTXYqInQtbzT6W9VQ4rs6tq1JdA2NPYV2G1mqcaBnL3/oKW7CRPhmnKa4/857gRtuAM4+Gz+pnoktqwLP11e+EshU12M824vBwfCjXXBuVohUJS9eqU8xOAikUuhcECbRSyWgbCblZqNtAzjwQGHEly0DCoUQwU5mXcpbENtLu9tSHFtwqFR9mi/wJgACQtU0A8kvsqPZvl6YuV6g71CZhlcBFhXygVg42VXfccByHFimKeZCfiGeHjawbRvQ1TUXngcMDwVEPVgTieLPFY/6/oVi43J4OPws5XabhMJJ0H7evIB09zygrw8P3SluO265E9jdsTHg3nuRefBBuTNtmCYO9Tv0mBWFsHt5uQwMlQHTxELaxZDj0X/ZNpBjhD+VqwrAFWU3/O8yjoNq1UAsRmPHgGkmAVMecpOn10iOh4rteaRf3o3RbcF+AYbLwaCjgCu2jWZxEYbvDTZSgDAxTlOLOXN8rfXbVwHZLJYseXFImqhYFGn0OiPAHx4DymWcdtJykcBKTyRAg4oGXaWC3uIIkHcw7oo5QNKf/+Ty3VJ2hX43AwOirrT5Q5sP8Dws7Yc/zoalcwNd2DQt2F5g+2m4ZDDSPjYCP5rBN+05ic7HwAyAtt17DppEn0GI0usmEIkej8cl6U2e0ZzwVL15OUlNnr9qPpQOaZ2rIJKZiGpO2nMymEhFIjK5lzyXleGeu3QflROYSqITcVmv11Gr1WTdAIT02KlsXNM8KtijSqzyDYlUKoVEIoF0Oo1UKgXbtuE4jjwBQIQrEeI8D04ck7e06unNZXioHJOTk2g0GpiYmIDrW0mV8CfiPh6Py+ChlmVFekKrOvFE1Hueh4mJCdTrdVSr1VBelL4qT8MlbmgDAYB8531OmwB8TBCojDQOuG49lYHLpVC6XO98dHQUjUYDo6Ojsux0DW2uqNr/qsQP5c/HAtfN558RiJDncjF8o4OgEujtSHMt+aKhsRdB9SSNYuVUhpEvyG1bEm0AYNAqZWhILCiXLcPP/zcIYug4IrjSoYURsSDzNVeJROf6kwA7tl2tAuvWBWelczk07MXSs8xxAg/mVEosdoQ5FyvurW5SBrJMpQKnMtMEjMrWaPIBCFZu1Sos00SxODfkabV9e5gDB0QepITieYH3MUciIcrQ15dE0vTCruQ8iimVwXGEp5a/EcD5Slrv0KKf+G2qrwiEaomFL4926bqBTgz1LbEf5HrvX7dxm4XVq4VX0zFHemHB82pVuK0p40KWXWUsqNCUL3UEd0cnTRNyVSMWZ8GCkNi8YZpI2rYk02nNTuto1VObsuVa9kBYLoi6njzeqKmouqOjwrMegDzKTWoDlL7hjkOyTH4k2u5cDsjafkJVYLAsNPJpoNDgIfd8LsdjmgHD4hMYKoFPRHc2a0ivd0rCqmwS5aFG4OyX30BNU5x2yDhNsWFl28ILn8Zi1O9DJdJ5/9I4U8/xa2hoPHuoHqUqUU6fq/cQ/IcHPTeTXlXY41WrgN/+FjjlFHz+avHRWWf5es4YAW6/HclTTgHQCyD4efN42ZzDNU2IREolYPVqIJuFeeCZIZNHZo8IctOEjEBdKy4mGWtpNzNO08/bX7sMV8JRQ/3NAdMEjNJ6WAD6+nqRzUKe6OLTGQrMTY9FetyJAOXB858/PnM5Cxm6GAgiOAJBJcplYTAcB64ryHMKiDo4GPZLIBlz6ppUisydgUPzTnBx1M5tFInuX7O+ZGDtWlGkFSssQRrSDv+qVcFEgT/r+RyAbDwZUscRGvXcYHIbru5YkycBlYuuNU3YdpIUT6bYZs8LSGTPCwLJ8314HjvFcRAw5ETy53JANiuDo/L4sHSggE6pyUC4pRLw2GNAOo1MsYhMLutPqlxkPA8ZzwMGS8Azz4iJANk46nd1njM6KubDjgOzsAjVKpCEsI2WN46enqSc9ti22PCu14Pmt9yRYGJHMXUmJuQpg2a2W7RJ1Q9gPzQEy7aRpDYYHA7/NvgPU7XZ9Bk1Mk2iZtAGuMaeg5617UNQCU1OenKo5CWRiqr2NhBIWQCYQvICgRc8EbftSHsiBjl5HxVMUSUnuSRLQ3lIcUKV0iTZEwoiyvNvJ1fD8+Pv9D33sqY6xuPx0ItIa5Vg5u2ptrvqkc4/5+1ORHG9Xpfe4WrgS15PTjxziRF65wQ+XUf5EtFNpDd9T17takBQKosqicLLr0qbqH3AT0KokihqXjxNPi54/6uSLXxcqH3MCet2nuhq4E9edoJ6goCXX01LzXd/hvZE19irsTMEertr2eeh9TqthkdHpYvV8HAQ+0h6ptGigK2eVA9hHv8SVVesmGj1ZNvwFMcZCowWKqq/MiHOlxanQODdIxcM7cBYa8Nx4DjJ0GJXdRwHAv1rXi+VY6byJm0z+kKuFaL0Dc9LvUV1bKdmzuctoRsftXjinei3Wc0zhB6s52GsIrrUtll70OqXGAe1EYBQkNYpi3/Kj0dg5Tquat0TCaF3wuRaqPyGacLzjFA7mGZwRF/tK85bAyJbzkmpXU+v0VExDImvoIUvOQPKNKldgLDwOX1OjDzpGPHC1OthNzlOjFElfI9PQNED9tuiq8sKl4c2t1RyzXUleRLanOGRStX/d/a5oY6Jds+WvRDam01jr8au/JbUZz3/3DQB+ojtFtYqFVieh9WrgVZrGzZs6BK8JBHFTMaEkuHhMygrz/OfT5wpN83QNSRHxoN+miYko06ByLNZFljaT8e2k0HZFRsmn+f+d04+kEPje8c0d+CPOyBs3miDmvhgilOSSdthnfHRUfE32TGKoF6tApgbsicUaJp77ZOsDFVJ8tEFxWa261s+waBNkkrg7e55fuwYQHQYOTzQ5Ix2DoDgyF25LNy+u7rCm7vk7cB115mMjmxEAtnuiPkMXRYVW8YymzBNA6OjU80Jd86XdpDf7LdDtSSupbFkmkHgTZ6vHFvUYLR5QDsc/KgfzYFop4WOfal2m3ZN/M/rdQDxoL/U+AJqnJTQLv4zzwSN5fMlvFhwWL9Rn9L4Uz3Ko+w4f283p9vLoW33noMm0WcoOKHHSfN2ATNVqDrSUZITahBRlfzkUKVhVNKR66cT8R6lQc29eOnFyVJOQqpBHDn5yuvBdbnJM5zXJeF7dHEJF9oM4KR5uzagtGkTgsuzcLI8yvNf7U9eDvU7asMo72aqEy8L3xzhZCX/jsYP6Zzbti017/mmB9U5ithWteyjoJLspDPPde7VDQfuQe66buiEAw98yk8icC18Xt52ZeJlU8eUSnTvDOGrjnu1nXYG+xNRrEl0jRmF3Zwsm6Yvh+J6wSpg3jzhUpPPY9asQJ/Zj/EULNz9BLjTNTk7Eec4MeFLfMibAeRyoHU2n/uTt5r0YPe/pGKZZvBdzTOig5HSDfQdra799jHQhG0bkqTNZgPPNrAyqcQsXzeGsqR82MI3RJiyi/mCi4NIgVQqzFnT0Xjb9jcN1Dp2doYbpw3BTkSxaQI1Mwkrnxd9TF5R3CWMg5Po6vdUR3Ln5hGweFDT6cAWebYtiGOKycYd23nfUB/w9T2LRSeT5dw2pUHtrwbuVIs0JTEu1RN1tJrqTJ581Gkkrk7XOA6adhKe36SRxIHnwbTF6RBJilNalD8nPNSAfrzCUSRNVF+qaLdpMkOgF+Ia+yyU33TG8f8v+b/tnh5YBx8MzJ+PbBbYti0Tjuvp30986LZtgScvNyX06Jd619ms8BD2d7Hp8UMcLHdSlhdA8I38EeV5wXcUmyJJk4tsVpKZJhH4/kPfQBOdnYY0K5Qnf0RxM8SDl9L1/JHWaGDqc3TevHAbJxLSOKuPw66usK3mSXFyOBS0ldsPuiCXCwhd0kBhm6S2nZTtt20b0JPLCdkR2g2myRkF8WBzrFDduExOVMPx8UW7IwQ1EqzfJ8TzUpXicXEbmX/ThNw0JscENVgrmU4+ZtQTkjQuu7rEMFGD3VKTybFFAeC55j11DNlaPlh4B1OCdOzBtqXkSrXqc9+d/rWui0zOEbFb2NyQ/hZOFsrAo8r4E50pJpZ/0M72tp24KGnMQPutbfeew8zqeQ0JIiQty4JlWTLQZ5TcBid01YCMJOPBSVouDUJSJolEIhSMEkCILFZ1rclDG4AkfkkGg7yE1QCTJCvSbDYxPj6OWq2GWq0WkuKg9Hi9KD0iUql9OBnNvajJo5wCpdI7bRbQ9zwPItFViRzKNxaLyWChBE5ac09vVeqDE8xR3tBUNiL7uRa36sVP9ScdcJ4nbwsir7k+PAWX9TwPpmlicnJSenWThA7Pm8rKxw/XXKey800L3ra2bYfqQO3BtcupTScmJqbUVT2pQFI0k5OTU7z7VQ90Kp960oCPYfVURNTfHPx0QKsldNyjCP0oL3TervsTNImusc8givQDANcVk9ChITHjz+VkEDAsX46tzkIcfHCwtkwkfAKy5LN7/mKDTkED4vtiUcisjNvdGBsDmsVuGAsWBAuIbBZYLeRFaN3E13ihhbjnwUGgrUmLJdLhtJ3uEMEdqqoHmKYFK4sQCWp4HiwAPV020mkrpG3K01G981S+vl4Hxj0Ldrbbl2uBXFxFRb6itazUqJbdYUhnJ060E6cgA6eSRzFnO2iRN6XywT3ZXDd6esRH4kT+XCw64QTRUXSqIHQW3wedk1fdxyhtahSufyPbnpHDnNVQPdn8dCzThAUgOccJBS+TnpAALP+VzIpBQ9fxbDnfzRfrpCgzNhYs9nn/TtkYSSQCb79YLGgf6gfSPyAWiSKL+v0xbmZgF7uFNIxpommKcTa6WSSbzyPshsYWvYZXg2WacF0xLrr78oFHGg0UHvHNtlGtiI/VIG8Agvuof6dbpPPBzv+fQYvxDv+1K9draDxvoN9SlF1WybCo7/n9a9cGRKrjAC95iSBZTz4Zy5YB1WoMxWKwl0fMZy4vTpg98ohI7qCDBPe4MDsCDA8j09eH9WWxsWlRRFLKA4HmM+ccySzFYmKz1swmYbuBrjk9m5t+3BQyZ91+5ORacbGULikU/PJSwatVZABkcjaaeUts/FerQD6LSsWQTWCaAf9Lf8digYnknuJbKway2W5hRXI5IWjteUH8EdIgQSAjl3GafvyOsK2hNhgdFTJxs2aJV1cXQsSzPFJnmkHgTNcF7r1XfOc4aDoZGNURoFJBrhDY7scfBzY6FpauWCEqNH++cHbgnsu0I0/RLunEFNk0ThxzG+y6wUYwfQaEDSPfOHddGMNPC7vtb3xwMlny+a4HA2KTnG5Vh7nn+XbLHwcjyKBaCp9mpODaZI5J3aSnR7Qxbfx002ZPvQ6pI+RLC4XmT9Q+1CZsINfsDCwa646DjfVuTLrBqcCFBX/g+yfEDMeBlcvBsm04jhEy68l8kI4kz5cskf9bqMFFsGEwhfymPlU9AtRGpO/oXT1VMEOgbfeew8yZsWmEQMSqZVno7OwMBZScjpAFEPLedV0XtVpNEshcSz2ZTEqNdSLRTdMMBWZUiWIe0DORSIR0sgFBghFBSiQ59zin/0mTmwhV7h2vBjXlUh6e54V0ybnkC3neUzsR0Z/NZhGPx2HbNrjnvUrUdnR0yHbmuuxcC5uTr5w85y9qByL0OYnL9dQJtAlBmxyqxrdKJlM/EJnsum6kLAr1Kfdw7+zsRKvVgm3bmJycxNjYGKrVaigvviEBhD26SUpGJanVzReqKy8PDzxK2vGeYsB4O6ukOg9Uqkr/cEKd2pQT/lRO3p5cukYluVXin59iUE9V8LGklotfF+Xlvz9gf6uvxgwDX1AT2i3Qo4520kx/7VqxQjjlFGxFN4aGhaxkPC7WlUDYYw3DQb41WBgeFtfQnN2obAUGB5FcvhyVioFSCejt6wNsG08PG3B90n3evOCIt+q0CwTBJjNOExnbk0QkrUXV6nJnYe4Zls0mYTsicKp0sfPJyKQpdLm7i3k0YUjnLnLGIu6X1qmcL240eKxGi2nDJlEoLBTHlN0g+KhRHQmO9rL+6y0WMZ4VwSZpoQYEbZK0m0CpEhZdpQI5DjaOCl3ObqfGSGpIMj+Zy2HBgiQqFSGjCgCVZXORz89F7zI/8Fkuh42j4ng9BVglD0bDqwUNSwWkd+oA3nD8vD0Q3v2IevHxapow1EWgStyTLfcXk3QioWlakvdXHf6IC6C9oomJ4HQ1nYCQ61LazeCRzPhKnQ8+IkMYoT2CDIYGKe+k3FMBFNlVZSyqEf1cN+lLqRvoLRZFvqSBm8+jBqGDXh8NH6W3/HSaTsY/ZeIGGyXt3PD3EU82QHinxXZ4Vfh6DY3nFSqLCETbbv7c5NcA4nf9t78JbecTThCbd8tfilLhpRj8owhSCAj96FwOAXnoeei2x1Eyk1i9OnhGzp8PMRe47z4AgJ0/VEwR7LmADXjOQkFCb0cooGIqFQT0pGLSxvrCggjA3Mz3yvialUqgpFGvA6lUBl3FDP72N+CBB0R5FxbEemjjNrFG72mUZXAWgx7k1SqQzyObXYxqNVDk4BvgJLkyf76w5VwujcqTz3cLOfk/ivgjy5cvRBLjooC+VkxXF2ChBgyXYAFYlBfP/JGqEQoKTqYhnWYxQunZXipJohy5HJrZbtx3H5BOWzg0l5NH4zZvBno6AVQqsHIjKBYz2L5dbICLoZDB/PlL0dW/VAQ3Z89pvrHsef7cgUu2cRtOL9o0iMeDXXxu44hY9+3SOJJIwgUefJCCw4i4L2SL4cvOuMG4tf3TVUZ5E+C6QmqO7LYj5h3NwkLRL0NiM4IftCMNdFLcoblJsQj0zGli42YDGzcC+XxGbPpQIFxi4HO5YOBRRHqqH5ssjpvCdjtOEtnsQpRK4ic2ORnY7pGqIU5XDg2JF9l/z0M2m4HrBqpJjmMI7X0i0OfNw9PmIlTLQH9OzEltW9jxkM2lTRfPC/SK+ISG/9jU50XU6cwZAm279xxm5gjYz8GJSU7+qjroUdIu3AudE9kqwWmaJjo7O2X6RKwT8amSgaoXLXkfc89jupeIYADSi5nLd9TrdRlEk5PoRNDy9MgTmgeZNCMebNx7mupJ3t3pdBqJRAKpVCoUQJMHNZ2cnJT3cIKey6UQ6H/aLIjyMqZyUJuo3ugcnJAmT3Humc/lVFRpE9IIj5LricfjocCpACSJ3tHRgVqtJk8ZkIc35Ut1p++p3lESNXy8Unlp7FJftFotmR+1XbPZlBsBtGlAeUSR36p3ftTY59+rGxeUlkrc7wz4pg4fqzQmucc+Lxv/3e2PZLL2RNeYEdjRMyHqe75Yp9WkLzZZKgErVwK33y6cnN76VjEn37BB3GK446HJPOcZaS0hyb5ly+C6ls/fJVEtizW65wkvdM7npVJAxq4JjzRfH5s4U8sUCz8RKFEEs1JjJaqKG8Qxk5Ow5wEZupCCbXE3Ms+DYdtwsnMl2cqVTOjkNfGo5EnH8yXJWe5dn8slYTmMfOX61qwdk7kccrlkqGsSCSBp1oSmPBWIM+zZLMY9Cxs3+ovNPguWzbqYClWpIJsVZO7gYFD+fB7o6zNQLC7E8LBYpJOnXjweeBo6jgXbtuA4SeTy3YJYp4CuVFhqGKlBAvE/PyoeRaBzVoOT8hQpjF/Lj2erC04AhmOi0Qg8wfhlpLRCmyNjY0GAUdMMn1hvwoBBnmZEJlCivI58M4MtxMtlhE5n0KLaNMWin2LAyTrRsXFaOPtt4LpJOVxs2xLBTX0SZsS15K00hIlAIoJCHCdnhFMUGaeSeXwBzhfyMwj6SLjGjAAnwbgX6Y4IMPredYV7sm9r4ThY+Ufg5pvFT5eclHncSamnUS4DWIjBQXFNX59/TXlIMNlLlsAuHioDMfONwGJReADTZnI6DSS9EX/jLimfS64LLMyJh5+RzcLzklMe554HbNwonsePPy5skOMEbbJ9u8izB9VgEgIIYtFPwFm+WFbNMpuo2EZIvcM0BdEKz0PNEZvdQ0OBvrZti7jnK1cGsZ+LxaTYjPQJZMtsAuVK8GD3n9mZQgG2bYVMM/HkoQ1T7onuP2M3bwYeekjMfQ49OitvHCsD8El0lMuYNy+DRkOUeds2cTtJeScSSdkkfPOYholtG7DtTOAMnYUgdXkHbNvGb5jq+UzG0W/M0VEg2eGJXWiaGKm2QxmvBhkn0pmna7NZGDlxUouIZ+L0+SmHDEZgFjKhA36JhN+vw8PozC5Etcokb8jo+hfXYAl/b5LM4RrjbB5RqQRzOLLjf/1rMO5nz/YlCuP+fGdoSEwoikUAgGHbIGk6+h1kcn5+6TSQy2HVKvF5sQgkXRewM1PK0oQRtJlqt9WNNfU7+pt/N0OgbfeegybRZxg4MciJv3Ze59NBlbtQ5UXayYyoZdiR1AVPBwiTwpxMVL1+VdkTrvut5sXLr8qcqGXj9SRimnviE7HKyXEiaqNIUE4s8/aM8kBXNbcp7ah+5f+r/RK1SaJ6MnPvZ95WfAMgavw0Gg2pV74jLfyovlP7RkW7cap+rurJ8/HAy8Y98dX2i5JOARCqD2/LHZG03Au+XbrqaQkaO9Olub9Ck+ga+zxUMhPB2oqvdTgBqU7KKYAXT46n63mWJC4p7XpdLEamrLdk2tbUz/2XaYe/ItKXV4PIbwpMKZVGzKnpSa9p/6Y2a8Ap6xOVC56YQIi85aolls0S5bsDvPCuCzubhG2HiezIRRQrmFsNlEUIUg6FdQz3xObKIKOjYX5YXXPxoppm4AmW5KwtLaC5LAkQEOiqQG0UeD2jFo+7SeZScaL01dX15hTQ7gvl3y5xTuab5pRi09hoO96nqRsf13JhPf0tITRhwKAf3862nzLGZhr0QlxjRoKee7sCZk+aMCQJqRyOCX7Gyu+Z20wAkDvUExNT9tr5HqYqk42qKxljqka9zm5W6qU++rgEhpxD8GepjbBkGD1UWbq0cWz6gZv5/m0wf7BC9aJyEifP62upBDJ/hjJDbzqW5MiprfmLP7e51kzDZTEr/Ru5JArla/qOAK4bBDQnW833c6OamvhyLnGeydoBS63uNqs7ynSKjDVyw4WYS6mTL3XsRtkOXmi+SWtaoWR4UrGYaGc7lwkVWc6PXFdm1WiwfNXGaLdRxf7n45HanPsKNBp+Hp0sD+4p7k0NlK62Aw1dSjT0ddTvn3fedFAnqPyzGQJtu/ccZlbPa0zRneZkN4EIXU4q8vuJOG61WrAsS+o3cy9rnhYFluQkq1qmKIKde+BybewoaRGukU4e40Rq0/1RJCvdT21Aciwk18E9y7nnMZeoUevL6xkVLFUtsyrFoQby5Jsd3IteJe35Z0CY6KU24YE4qY/JA508tskDnV48iCgvC5crob6huqpyQdSenPznfUWnCbj+utqu3FOce+cTMe66rvT65x713BOdTgaQF3uj0QBJqNC4VH8TvN/4CQD++1FPaHApGfo86rdE7cDzUX8PPG+V8Fc3IPY3kliT6BozBlETb/UzdWVCjLbrCrcyX4C7OiQdhKREuuHVMDkpvK2aTkZqV8I0sb0UPl0qF8C+x3ehIIhhIjFpUcfXabJYfpqeG+a3M10BC2CZTaTTBsbGwotGHnCM+EyK8SjXgSq7CZavDwo8yh2DacFDTsncE31iIljbcxkYWpCTHIfjdAvPNrWxGPnK86YFOVy/nNxt3++grRUhP0N1d10Ir3c/eYu5w9leoCFKMjHZrDjVTFLfhUKYCODS2qYZbKbIhlbbkla4pL9NZ/wpIS6iyxd6UQSFuvhTGQPeFvSdaSKbFd6OJA3kOIocjWki6dioOZYkmohs4WROksgEP5AecrmAmSLmg+qRz09h5DlxRU5odKnUxeeapVy+xm+L2bPFn6T7KuWAAHTnaujOBm1EGydGZavUgk3m80BVWUwTebIzhAdHbFcOWb+w0Atxjb0e023O0ecqGcafj/Sc7ekRD+ZcLsQZ2rZ4nodksHM54Z7uP7u8SuChzqVI4HnAli2wKpswZ85cbNwY2FDOP5Ld8zxIGQ9e/FDwTtdFLhd43E5MMAKZVZc5f4cIcQDhBzXpWPsb37EYpE66bXdPKUsNFmBaKA0HdaUmJLNFz+zRUWG3M8WibMitVQvZfK94VnDb7TjSXNm2MBf0jE9iHKi4qDnd8DwDSdLAyeVQs4Xut2xP31bL4UAu2L7dj8dFV9u2cEDI5aaerqImAQI591xOaLNTGraNoLB0cbUqEpriPo+pkwDTFF97EEaN2wWSieGTJzmRQdjGU5p+/gaE7B6XVaOx0JMeB9YOw/A8FIu94bHqz4Wm7NOYZshD3vMgtNu5hjyVidrbNIGSaC+aOzYa4hZA/J5CcbwdJ5CK4T8Mz0M2KxxBcjkEuvSjo0ClgmJxIcbGgGR1EzA0BMPz0FsoCLv95JNAOh1sugDBpIsPtHbPjaiNOG2790toEn0GgWQiVO1yHsgRCAeOBBAiCgFInXLytqa/Ozo6JKlMpCjXOSeiNYosVD2VOTlK98Xj8Sme0/ROkiFEYHItdUpb1RNXSXVOoJMeeyqVkmQwfRePx0PyLURsE1nKCWXelpyA5gQ6Ea8km0L1tiwL8XhcBn41DAOdnZ2IxWKyfBSwtJ23t+pZTuXk+t2kIU7vRJ7XajVJSgOAbdshvXgiddV6Ult2dHTI9iPpHx6clghu3hau68pxqo4T1TuciP/x8XGZPkn5TExMyDZttVpSSoZL91C7RemfUx50jVoeVfaIS/eQvBG1O/WnSpbzunBZHr5Jxccql8HhpwR4m+5v0CS6xl6NKM8fIEwqqter73Se+eijAcfBE8OWjEFVLIrFg7H674DnYeGyZdhaMTA8DHjeXJl9qRTwuzJbWuUMDmLRgA04DsY9C/W6WKDQiVrTDIjnyUmEPLEmJiCPcnd1WUKiwi9z0rZRLGbkEXNOaNMCnNaEth3oZ6LkTvVOUtl814VlmnAcYeNp/cM9krikKG9SIv0nJ4N4ndSe4ji1hVRqLuYMzA0CZtJiHKLd5OFs2wwt1pv5XnieOK48WQWqpaAcRABMTACmaQSkA0Xxsm04rljcH3lksG+STvtBYIeeQG8uB3uZ8PRKYjxMbFOC/uK4CQPjrgE6ZQBYsJ0k4MwVUi+kw007Ce080vjn1Onk1UWV4vfzBS9f6LMNoSRdy1kSVZcnm4XlOOjrW0gn5kM/l9FRIEm7PXPmiHv7+rDVywiPyFwgCeN5AIbFfbT4pvU79wTNZsNBUlH1ggv4Ipx+l66LHmcreor+j2S4Gma6aOCXy8DoKIx580Q6pZLQTKIIv6YpfnD8CD8nRThUDz05Fm3GbO390AtxjRkHdYM76p3+JqmKel080H09ltFtgRJHKiXimVA8xXodeHTQgOv2CqUsO5CUIDtq2wBy8UCm4o9/hLF8OUxzIYBw3Gk63BLadPQ3ggED9br4vAYLlr9Lm/HWS2OYmWNjctIInYxKJAQnOWcO5DObtLThQthqHg3af7iaps8z+sfnnGJ3iGek+rmukIvhcUeIzN+2LagfyctUKkk4ziJUV3OJuF7YNtBbEPIwI1UxX8lmhdRdT5eJOXMsseG5eq1wCujv9pVFMuI1JPInZZdYDBg3M0gWi9JkjnsWkn5AzNg2UdUlS0R5Dz442AR3nMAsOA6Qqa4HPA+1PiFv0u1tCuJo5HKAZwKmjaadlGonub6lSPbX5PwLAAwKskp2hm1+Ow6ACoJorTSRGxoSBcnnRV501K2zM4gUy+c8bE6HahWZXA6ZTqCnUWWOGC6wcp2Qjsnl0O3rDmWLQj993DVg5+aiMqRMiW1bRMv1B67nAevdblTRDbcCTPjKQLTBlM2K8ZdIiN8EzR8LhbBzgW0D3dkmUEUQ3JvsONlvz0Nv3kQ+b8AorRftX6mIgdVo4JjT/Y2sG+4UwYcOPlikNTQkgtZQhFoiz/lOF7W1+lxoh3Y2fS+Ftt17DjOn1zUABEQxBcXkwUSBgLyOIhe5tIRlWaGghzx9nhZ5AXPSkutZq17w3GO8VqtJjWnymuZe9DwAJ+VBpCInPYncbOcJT/WidqHyxeNxOI4D0zSRSqUkoU3EuUoqE5HKPYyjtMS5BzhpjtdqNWzfvh3kQQ0A6XQanZ2dcBxHkuakM0/kNJWX0lU3LTjhyglfamfS3HZdV+qWcxKd0uMyOB0dHXJDg5PovC/5OEsmkzId0ikngptIevIer9VqoXFBbUtpUV/ROPU8D2NjY6Egs5OTkyA9fCLPaXxQGfhpAzWILM+TCG26lo8r6mM+BnmedI3a/pQmHyN8o4fIcfptUV9RGfhYVjch9jeSWJPoGjMCfCLNyUa+WGGTewlaiKdSGBk4DkNDIWl0SaLj3pWgVWJ3oYC1ay0MDoazJhJd8qa0QhwclC7Oyf5+AAbmzAnzo0CwICctdPLupsV/Lgd0O47UCIVpwnCqSNo2crlujI6GHZxofUaeWpLY5RHAeJvxRQZpnTomTNMI6U6Tx9f27WEHqyiQfiyBr7UEZ2rAcZJSUtQym4Fmulo205Qxyeide9ERPzo2FpYtcV0DnpeB7QEZpwnHMWRgVFrzGUNPiH4qldCdz4tEBwfDGjGplGjIXA4oFmE4DiqVQHuct40gkS2YpgXbzggvwVagsW6avq6+qh3jeUGkVsqbKsJlYYLKBQny8+1EFA8NBewMDThybfPd7zPLbGTyWVSrVmhjZGwM4Z0h08TGiQwefzy8qcLjgRJnTURMLueTGnZNDIbbV4sGogClxSKQy2HcFacJYjHyFLQEIeW6ggzn44FAv91qVbBC5bJgzPr7Rb1JWLhcFn23YIH4n5gtYg34IG630GZjcKZAL8Q19mqo5Je6oUifcaPGP6tUxLPBtoGTT8bG0SQmS4GyBCAeM93Vp4FSVTzXuxz8+c8WVq8W3OLBB4vri8XgMQIAyEF8QM8exwEKCxGPT5XEoud/vQ6x6cvqwGVHuulZRGLT/g5jPr8wJC3W2SkCgOZyQRvRYwsuAlvgeYGLvU+i2zaAobIIxlkswjQt2WT8cblyJbB5szABqZT4jDbriaskcpnvIfPHZDYLLF9uwHEsaXa6s01pGAyKpTE4KDzVi0ehVBL/btggNq/JvNApPTEVywjbAz8puxuoiu9nzQqCvOfzfqyUchkYKiOZzQov91IJ+PWvgXod1rHHin6/915BzNKELpcD+vqkiSQi37YtaSJF8Q3YtoVly3qRNGuoQWyY2yZgebWgINRARKKToDlVgrws1NNnlBmNC9MMbPjgYNhzoVwWr2xWTFJnz0by5JORzOextWKgXBZ9GvKPsG0xyH0D7fljfPXqIFk+VxwYkE2DjOnPT8pVJD0PC+V80QFgAxVbnlAYz/kB5KsjwW8UAIaHYdDAUydvd94prrnzTlHXZ54R/bN2rRig5EGfy4mCka3mTgn8ecFtNG9jbbv3a8ycXtcAEA6GyF8cKjFK9wEIEYBEKqqSHnQd1/WmdFVPZVXnnJOk3FObk4+qBzmAkIwGlwghEJnOSW3+N+VLpDQR5YlEQnqdk3wLeYWr3skqac61zrlECCfziUR3XRfbt2+XRCyVuaOjA4lEQtaJSPxkMgnykOdey9RWXBaGnyKgdLmEChHcnDzngUCJ0KU0uIwJ925XJUh4+3ASnU4wAJD1pWvI652PL8pLJbspTSLhOYlOXvQk48JlXTjpzIlqSp82a/h4pnKopyG45j6NQfqMbybxdqG/eT2jxgmloZZF3aTaXwl0QJPoGns5VFJ8uu+jrqPFuGlKBxhahNi28FTO5yEWRuQt5DioVOZicDBMoJOnjsySJvzkxeR78gpidapjMT8WzotMix3XBZA1wwsJnxhN9mXheYZ0YCayOhYLJDSknAclShm0Iy6kF1xSZkXeXtRs5O1HzkKUFL3zYtKan7ybOPlN68vuLML1o8R8opjWYLTRwdNdsCB8AIEW6OTNP2sWkIQLw/PQ02WH68rJDWIzaDDQAowYYUASINWqFeKuucM3d/pmDoPypHg3abLy9ieCd2ICkkmgNmCECWIxRaRfGSy0EbF2bfC36waBSh0n2KHxSQDb7g3tO8nxxlzJN24UweeeeSaIF0AEBB3zJgKdssk4TWDY77RVq0QdFywQF+TzaMKQ0gHUTgDEaQTPE/dR31A7dHYixICsXCkKRg0+OCjqnkoFfTdvXqBZwF/qgrsd9EJcQ+P5gbqxSFA3yEslIJvFxtEkHnggsCVk3gSpPBQEscjlUCrNxcqV4t+uLvGezwfPM5lPvR58ODAAsxg+vGKagc2mDW/1+cAfyXD8Zw8xyADgOLByOThOYGPpcZvNBnU3ab6w3c+DvNHJHtg2DDRhmQgF+eAyMGSzK5WA5200RN0nJ4NnL3GXmzcLE0Tvaozr2bMF56nOWaRRILLUJ3ypOQcHxSuXCyRfenpE/sQZUxfweNOOIx77tP8qg3qXSqJNyeiXSoIlrlbFM9/zgIcfDuw57RL09WFiQlzON/tnzRKbC2ReArUSKyQPY1FBqVHIcJbL4sZUSlxIbZFKBUffuL2hnQk6rgeI/qONYUqXOo8mT/k8cPjhgG3DdbtRLgebRxJswlGDOAVJZpibv9CYg+84wg18tSpuNM2g03xZHjqZmcsBvTk7PLeko4jE8PPd97VrxTWrVwfza9cVffXggyKfQkF8RsdJ6F7uENPOLnO7Tv/PEGjbvecwc3pdI1KPeXfT4J6zquyLiij5lCjiXS2XSnippLwqY6EGX1QlVKiMqp46kad8U4F7vPM0onSyeX14uTmpzjXJqazcS5yToJz05nnvSN5EbSu13VREpafWS+2TqDz4ZkHUvar39XR5caha8XzMqAQy33Dh1/HyTUegRn2njp3p6h9Vxunqp3qyq9fuzN8amkTXmIGIIoangz8JV/l4Wqu2S2pH3L1MhIhRPwPTtkKyprtS1CaM8ISZFSIqnR3GsuSs9x702KH1i7qOaQeKGSXrx1f+jLngC3Yez2unVTbUTQT+WdR1vIMiKrIzY4P+pqCk9P+UvmyXKPUJDUZy16bjBc+231j9VScutQyeGygJUB9wDj8ydif/p14P7xbtDFRvM3pXNU75j5XGDA+I1+6+fRQd/mtXrtfQeN6xs8+BKEQ89zivFvqqzfObP+qnfXZFgDTS29nZUBnoDx4YVPmq3f/TwidhpQTJLtwc9Sjkn01j+uT3U+wFzz8WkwmqTgJqnEiaKvE02zkahxwCPC9slHbBtuxoftd2XKgFV/+PGhT8GANlwO+Psk3cuO4EIqcByoec71djok7Jm09eov6OKOq0UBucOpkHbqV2isejE302z4sZAm279xw0iT5DoJKwO7om6n/yLgaiiUPy4OXe5PQ5z0Ml0HkgSU62c49qAFOISfKaJtkRALJ8VMZ4PC7J1Xg8PoVQ5t7Oqpc5ybqomudqcFO1XbnEBuljU1vatj3Fc5w8nB3HCbVVV1cXHMeB4zgykCnX8Vbz43lyAlolkHk/JpNJ1Ot16alPsi6u60pd8bpvySgt8vKOxWKo1WqynagNaQOCy5iosiPqmCDJFH6ygepG0i10rWEYqNfrGB8fB/c8J0908m7ndVa9vbk3Pf9flZCJihfAy0We7lQG9eQFHx/co56nyUl3jqjNEQ0NjRmGKPab/x21SuJa1f5R0ZwtPHDIgYpunZjwg2t5ntSvzGYDeUtaB3APXtNE4LpFnsP+xYZXQzpthRaTPG6VWhV+e2SdPE9qqKsvWpQCgGlbYpnNtU94JuSxy9Ju2smQIk4sFtxKl6nS3PQZ1YvaCBBkN2mzk8cyrzuAcFAvv64jroVqOewtSM58vEpUDVqT0f/ptH/0e6gU3MBX5VzmhAo9f35YuN5xhDcZ0+3J5SykUoEzGjltRfH0nDsxTV8bXG3/rq5gIFEFYzFBmFO7RDUc7wQagIlEoFdKhaBGSqWCs/x+Ovlc4P03Oio8DTEZ9vYibzXyYiOempKkInMyvWlaMKh9yTOQaafS74G8IeV62vbbOZ8PRwakl+MI1ztq8EpF/IALBVH4gw4KpHGoPUxTtCX1K+8glQ2azstNQ0Pj2UM1WGqMgqi/SdoCAJYtAxwHc+aInz5XraJ4DCgUguMynod8XshVDAwAhx0WKD/5YRXEPRQFmR2TUu1UID0V/N9k8imeFzyqYzFhSw1Kj+/6mmbIc54ukXMI08TENsbJ0vOTbLX/UKbHXMZ/5jedDNxS9EY9mQUKIcHNIJ0qmzMnuLerK9AfJ/iqZrDtwC6Pu4YI5EyGolIRBc9msW5d0A35fOBozOcEtC/M2y+fZ3E0PA8os4kWdTblCQSaYvV6kNHBBwtbQRHFfUOXzWbQ1xdIl1NyYcm5QLIsxHNT23MtN88L5F2owRKJYC44MBA0GB8gjhNoq5ONpqjg1HncE72nR3SQXxc6JEcH2AoFAENeeG6BwITSmKWmoD6gg1syX24jyc1dRlUXY5FPnaT9pPuoYHw8UIYLFohruKc5JVYoRM9xonbH2jlAqNgPyHeNqdCztxkAIvC4Z/V0UElFTqpTsE4gCOhJpGFc2dmMIgc5ocpJczU4JhGPXMeaJDl4gEruiU7SJ6psCgAZ8JGXg4hfNcAqf9E1lAa9qyQspQkEEiWu62JkZES2RUdHBxzHkVIx3PPdtm1ZdsrTcRwkk0mpi851wdWApUQeczkRlcwlkpryoPS4ZjiRwRMTExgZGZFkNSeziTjmHuZUJ5KZoY0Guobu5QE4aUwRgU5BanlwVbqOE9bUxqOjoyBNdCLT6RpOZnMS2zTNkM44/13QBgCPE0D9pNaB68VTm9PfUTJBXEaJ/qay8U0DkrrhZVd/Uxw78ubf16E90TX2eqiLGE4oqiwuoVoVbHmhgK19L4brAgvzTSzMe7h/tYXHHgsWdGNjAFasCNJGcMqUsHmzWIwTZwdALIooYhln2gEkbQB2EEC0szMIyElS2KTUQQRtLOYHL+MkOJM9oXVlVBxLmjqYpgWL2kQhkJum0MQGW3RPbA7IXyKjiSjlDlTcuYr/T0QD/U88NEm6GGjKvqnB8pvKwsSEJfVk6cQ2cSe00CVOmdZZtDYjMpc04K1qFRY/Yg6ECWkaL8QsEEvMBVvpnZM8rouM6SHTaQJpn+zPWXKtSzwPdyYLSb1wRp06mS7kOxVUpnweTdPC8LA/jFg/iyS6kSnYwZF11xWdNzrKosoiqItCyierm7DQ9IC+HEZcS+iYD1ZDdZ8VC9a3pHyTSkmeRDYPjRnqvyQxEv394UWu36nJbBb5fBIcNSSBbBLWgB0+409t5HmBhtLy5WEGJJ/HeLYXyeom4PrrBaHCRXhVgmC6Bbaa5wxBzH/tyvUaGs8baNOKPyg446u+E0haIp8Hzj5bnOgprcdCz8XW/CI89ph4FvX3i597rbAIVqEmjUh/v0jmpJOAzOD9aCw4CvfeG3CUnZ0QCeRyARGaSslHtMrfEbHMN9Lpu54e8QJE2t2kccXIwKZpwa2GH/XZrLCdI14SnivmILbtJzoxETDQvkyH6wJl37TZxYWw8nmpjw0ExDQ9IukxTNUj28k3eqleJNtGzcHLmSk/IZwKCosFv10GgCRMM4nYrLlIFyADgz5yg5gjETFO0yPa7OfxQmgzur8fMFbdH25w1cuA2Hz63nHEfA0ABgZQszOwViC4htq+UoFRreLQvA0UTGz1MpLbpvkW568pAC3Nf5q+zJ3BWX9A7NDk88EY8gnkppORCiZ9fd1ImjU0TeFMYckdHwSSY5s3i83gbFYMShqgiYTY/SCb6jiwSuthVavIUN2G2dzCt4keGws0B+MbBrYtNkvkRgkZc76zw70D/DonnSZyOUMU3/XncmZS/FbyC4XDAAVZp/gknZ2inRwHOOEEkRZpDNEAKZeBO+4IysJffJJJPzp1TqxOTLXt3i+hSfQZAO5tq5JuURIoUfrdAEKkMpFRatBOnq7HHgpcT5uT6FzOpdVqwVQmJERcEllar9dlIEki0KI0wjkRGovFJMkKQBKZnZ2dkkjmgU7V/HmwxyhilmvKk1fy5OQkxsbGsGXLFnmfYRiYNWsWEokEkskkEokEbNuWQUJTqZQkz4mQJg108pCn8nHZklarhVqthsnJyVC7q97ylAbX9lbbmzzRR0dHYZqmbDPP8zAxMSF107l3Om0CcG90Iuspb66JTu9EsnNtfS7JopLUNK6I7KfxMDExITctuMe6eooi6oQFJ8v5pgrfcOJBQGkjh/LkxHlUwFp6j5IKonLxMdaOFOee66r0z/4MTaJr7PWgiTNN8PkilXvhcpA2aaGA224TH73h2GFg7VoUl58WkmCuVoGR4qGC9C2tl95sqpPcQw+JZEl+teZ0wyoWxWJoy5ZwWf2FiGHbsEwTlm0i45gywCIQ5J/NBotMz0OwqKHFgufJhShxEbFYmCOkR6dpQpDobHE17hool8LrD8qb1h4TE+E1Htdapxdfp9BnPKtQ0NDtbpgYNU1YfX1wXUNqlPJga8PD4S4k/W3SVeUEdSiIqucFIurVqujzeFx4maurSM4OUCb+Z00mvGK444E2JzEMfh0y+TwyhSwoGCtfc3L5czl21E0fviCnhaFtY2vVwtDqIE4b3UYcQtAWgsBwCt2i/oCod6Ew1YWc/zY8TwZWRT6PTKEgPP4462+aSDtBHxCJ7jiBszxfs9Ktrgsks3bgGsp3RTxPtqGl/G7Xlwy/zzMwzYyfcDD2AMC1xbifdAKiJ+M08ef7DPziq8CKFXPxalqQUz/zAUqFpQFMoL+lSyjCA3wGoAO7ppW6OzOdr3/967jqqquwYcMGHHbYYbj66qvxkpe8pO31d911Fz784Q/joYceQm9vLz72sY/hvPPOk98/9NBD+MxnPoO//vWveOqpp/DlL38ZF1xwQSiNSy+9FJ/97GdDn/X09KBEG2QaMwecQCd3X4JKnvPr/Q3wW28XI/w0ZwhYuxbd7yyi0TDgOIKjM03hZZ7NWljk2EClgr4+oXudGbwfuP125D96FFauFI8h6W1NBCh5/HZ2ipNMrEiSADWFl3TTTqJSCSQy4nGgZ474bqsrvuvOO8EzyK8j2TggOAiVywWcI7ch8DzhEZzLYX01A68SPohDl9i2CPZJG/O2HY6n3NcXeB+TFzGFmaDNXyLX6TFdKABJjAd2b6gKiq6eLBRgmklpu7n5KhbnoloSlw4Pi3T6+8M+BvTTTaXC3Wy5IyLeBbH8HLQxXCxi40QGXV2AVd0qMl22TNiQsoXKMJDNLoTdtxDdTi2YTJAN3yw8BbqXLUN3X0EG6bRtyADwFGO8UACSdhM1z2D+CwZM0xLODdS4NH5tG+N2N1atCmw3mZp8PoiN48KCh24AQH0USKeTSB58sLhJCLKHA5T6trQGC/AAa2gIePLJoG3mzBGN65eh5hm8SLLfySTTBjjn8uUfqlHnQVP9321G2aXZti0IqitutQBYKBQyyCwB4DjY2JqL7WXx+6xUgNNPn4ve3BPYml2E224DDj98MQ6dtzaYZHBSX52gUvmYo0pojjPDoG33noMm0WcIojS1owh0eo/yWFelKNppbaug6zgZyb2oSe5EJcS4BzgRp/V6HdVqVZK7dL/tP4xIWoQIS/K+puCVACTBnkqlEI/HJelLZQPCMiLkBc/ry9tQbQOSmZmYmMDo6KgsP5HW5MlO/9N7Z2cn4vE40uk0LMuSxDQRvFHlohcR95zMVSVcyOuck/+cWKdryMt6cnISHR0dU04fEIlOZDd5ahPpbRgGPM8LBQLlMi6ql7jq/c/HIvcqp40Mz/NQq9Uk4c898Cl/grpJwD3k+SYLf+cbMPx3wEl+HoiVn4bgY4OPc7WOVA4uM7MjuaV22J+JdE2ia+z14N5s/B0IJtvcy42eWX7gxscf94/oLqkAQ0PoPqUJ2zbkus3zxLrLcYCFjmAOLW8cuVzgOUvrCtcVi4d4HNi2DeghspuLoPN3IFQm085M8YLizs+ex65XiL9GI5DRiJBdDTRIHWHLSaqFHJw4ic7UNqYUk77jqiuUPpH15IGezfpkNm0c8Mw4iS7lZSwZy4peo6Oifev1sAw4PyVMdaM1lvRwp0pRdDR2vDw0dihB8sqHIYcMeeMHdUrCQCVMovNGAuA43YjFonlZeZkbfEAyAAZf83keamZSHpqgYKqDg4GzOa1difCgdSMRKUmfYa9l5/oxcS04uYxsFtMEMo4ZkAkUnDM04ILOp/6mALbc/KuO3fSq14GaJ4gGZH1yn9pNJaapEqYJ17UkQcSJKdsOxnelIsiNjRsDz8X58w088ghw++0iuVcvcwIdAWocXke1c/j/M4g0V/FcByf7yU9+ggsuuABf//rXcfzxx+Nb3/oWXvnKV2LNmjVYuHDhlOuffPJJnHHGGXjve9+LH/zgB7j77rtx/vnnY86cOTjnnHMAAOPj41i0aBFe//rX48ILL2yb92GHHYbbb79d/s8dbTRmGLjNjvq9qc8ieu5CxCY0TeC0A7YJT9ZqFZ6XkaTwxIR4ZtbrwCI/KLdR2YqetC2uHxyEUR3B8HAG9boL27bDG9XpdPCgVUh+wzFhmoYkEg3bhusaoaIGkTHFczyK2OMmKB4Xcw4LNbgInn+hNCHSKQ+Fm4474MZiYVtsmmEbyVU2qEiGV4NpWjIdbl8AIOmNCEOkBpv0j8jFYsnQaTHiPqnLKK4k5Z/PC9LbchxUbGH/+GF7z0OQBzH+VDH+e7dtbBkW93b7dmrES2JiWzAvq1TELcWiFczJaE4yNCQ3JmDbyObmhuZB/NKgYJbcoAD80ws0NhRJvNKwsNmcRCd+mw4m8IMYgCjOQt+oN/O9KJWAXG4uLL+zRlwLcIPNdKtaFdG+OXzPezrtSKB5HKnMqAfy5PDk80w/HcO2px6x457pCMpPsnCNRnj6ncmLwbdxtUhq5UrRxcUi0Lsij7WrgN/9TqRxKD/+wefuVD6VRKd3dXIywzbAte3ec9Ak+gwCJ9s4mcR1yNVr1aCKO0vYEXE4XYBFXgYiVblUiqovHaVDrv5NUL2Nudc1J9i5d3C7duEvtRyUHr+Xeyfz8hKpzD2coyRk2nnDU/tQe6nl4PWlsvM6qBI0at2iThO0S5/e1VMIapBP+o57oHMpmqh8eH78nY8Dfk+7+zkhT+OJ/6/Wp90YpbRpM4RvBETlrW5Gqe2nph/1twoekFbNZ3+GJtE1ZhzaebOpi3EfU/TGPQ+2v6ijheh0Di1E8vFr6ASuTJPcdNuUYUdQCe2oRQXXaOWOO7Solp7C/orNsG0AxrRxFqfkyz6Puo/WLjzOlxXlURh1o+fBNAPvLHqnOvHPuEc3EQShJlFXjaQpwxOj79oQq7TuitqQaLuo81+eJ7JqNNqv+6yA7Zbpy7ZSFoGUtNoOahPyd7W47fq5CUMEo+vsFIUm1kVdvPr1ogU/jy8W1Ry0IO/sFKQQqFxqAdWOZXkB4QB01M9yg2Mi3D98I0eWh9ginvfOjEkVeiEewpe+9CWce+65eM973gMAuPrqq3HLLbfgG9/4Bq644oop13/zm9/EwoULcfXVVwMAlixZgpUrV+KLX/yiXIgfffTROProowEAF198cdu8TdNEnjSENWY21AfHLsLzEDzfXReOk5mSfDyOqTaBdmBt2zcBduCJTtfSkS56RgGhB63RzkBGVDFETrIvQt/BnzcwW8j3eFFxxUPP89raZhXc9EU9p6lKpmlJyQ8VHn92R21+el7oYBcQPnnFy8GToT8SCTHfUp2fAQTxMOhLYtopQ3492Q43sANToNgZpNOhxolq05APRET64nMlDz8hnpU6j6S5o2qWTDP4x0ATsZgRmtdweyev5afYeGf7IJvtDx9ZL7qV/pa3uWEy2uDzpHbtyeYzUdy260J6xlM51N9GKItEItxo7QbwdJhBNpugbfeegybR9wGQ1AgRuiRrwUle8kjmXrmqDAUnI1XyFQiTzar3NieJKdAlybDQi/Iir2wqI0m4qGQ2eVbTi4hb8jQmCRiqIyfIOQmuekKT9zFJynAyGIAMcknyIoZhIJFIgCRbOjs7kU6n5d8k20Je51Ea7KQRzstHnsyqLItKsNM1iURiitwN9xantqP8iDCmtiQvf07kc696rltOsjacgFa9+rkHuyqHQn1Jnvrkfc/bn48JXlfyJqf7AUD1UOda7NQmNO75Jg71Pw8gSl76vF/4GFd/R/xkhLpJwn9HUYQ8H4tR3/ONKj729xdoEl1jr4Y6C1c1MzgRqCz66L2ry/+XzrdWKujvnyu9f+n4q0zTz89zhafN9u3Ca4bkmcm7KGOO+15odnAkl2uPqAtSf0FNxQ/pZ7Ps1XLAtmGZTaTThoynlU6LY8dT8nC90HnrZC4HzzOkygadmI4iqmldRnwkmROufx3FXdu2ITSxQxVA2DXO86Q2dqEgSJDR0cBLi5MJphnW3yb+FxD5GZWtgawP7SjkcuGgoNRJ+bzQTEVN9lXNM6QnXRRvKjW+OSNOBcnn0bSTqG+eyrvQZeStZ9sGbDsDj7WbbdOxa8tfNAdtPnt24BDJ9fhNM1iIq2pGcsOkOoKeOY7vsujCchzU6wbrAt9rfWIiCFhGBXccNH3vvPJw2BGRYNuYInFE2r5GZSswWAr3NTUuC6JW809heJ7w/lfrSaD8eTL1euCkSA6jvhRvoL3KBxFvvKhO5tfMwEU4sPsLcYozREgkEkgoUgq1Wg1//ev/Z+/vg+S4zutg/KC3p6e3t3fQGMxiB8sBPASX0JIEGdCEQlCCJdqiKcmRIyly/JGKXrt+tqtUsl0l03qdKE7Fskux8iaKo7hsyVZFZUmlsuWqKLZjW2EsvQ5l0xLzijRhEaIgcyVtgAUxIAbYwe7sTu9s7+D3x73n3qfv9uCDpkSsME/VYDEz3X0/536c59zzPLVls/zwww/jC1/4QuHzv/jFL+Lhhx/Offb6178eH/3oR7GxsbEl5tOV7LnnnsPMzAzK5TLuv/9+/Nqv/RoOHDhwzfeP7AawLAM8byuoCRSjvBI5TBWYbC7j3Npu4/DhPVhcVARjwI5D5rlaBiPQwQxPtQIcPqy+PnpUE3jJtiUTvV7HuZVIsZ1joe8sx37YMciMW7vUmCPjRrr6YxV/DZW6ldwI0Ac6XUQx0GxG8H3A6y6rge255xTjuN1GHFdNdQB2yKYznUamsTs3817ft8omcp7q9ayTEgAqMfLSO6Ril0pAu41KI0SzWUEYqrn7wgX1HAar5ImxLINmVgNE7aen9ESp6z2O98A4QPfuLWai79tnFgIkf/N0HdnwrA/a5iaAyTA/9xw6ZNvFAYBZt0Y+LAUudrycBI/BeGNsnV+yDHEcoNm0dcz65/zlKKaZUxTIYCb86Ukf6NoJnvMek6qw/1NPcGLCMOvZZAsLKg/nztlwKdShZzgYrh2CdNlmmBOq1ByXyHgYKu1+rgE76tQB45AC4kBGCDzfVqcdLlxQWZWn6NaygI9USdx6q9UNlDItRWB60Wcyn0O9Kjeejebul85GIPo2sSIGrMvoJdAnQXQC0RJ4BZAL8ijTkHrPrkSKTDdzFv5Sy1oC+EUyIMyPzBfBcFdypVQqIYqiLeXxPA9hGOa0qSVwLvXPJYDZ7/exsbGBNE3R6XRy37kAN0Fe6q8HQYBKpYKJiQnzV2qih2GYY4vTeSDrTbKvARhwnmBwEbtfBs6kI0Sy4iVLWwZsZYBU1o8EtBkAU4Lsly9fRq/Xg+d5WFtb2wKQU0+caRG8lsCyzLOU+pGBRtfX1yHZ/nxJVr+UyZGsfFkW9iHWu6v3zzxLh4gMbiv7NuuU/Z7OnSKN9aLfYNHJAn7Hsrta8q5MzDBG/neyjUD0kd3QtrkJBMEWndErMlXk3JimqNX0ZklsxKthF6gfwMmTziP16p5A67lzCmgHFFY3MQHcfrvetJ+YVxuRZhNoNND3I7QWgXI5wK5dgdJS5W6PbJ+sb1jwkp2UK5J0HHBD0e0i8n1EaUc970Kal7fRZQWQR4d9H3FS3cKQKmI6My9ck29uWtBSYxpG5oPX8ln1eqCY10UP5Q1aULXSaGBubo85hp2mSpqWYH2W5YOTSn9C4A+Aky2VqdlZBZbUaltpUfqGZVTQWlD5q+jgqt1OsVILs7+yAvi7IvhJpNn8tpEudjx0Nf4iY4MCFpBYWlIveTjBdVhIRh//Npuqfunw4EbV9/OODN4b+AP7ITUncx2pgvV1pXLj+8D+ZjN/jEHUk1ZKwOKiKv/qqgXs63XVJ5pNBQAZaZrORWCho9Ken88fh5Bnx2s1LKOChZMWEJdHwF0CKEF0ggNAXm59aUn9f25O/Q6XawdQaTatFIGsXIlmFJm7Ib8JNuL79u3Lff7Lv/zLeO9735v7rN1uY3NzE9OMmqjtSvqmrVar8Posy9But7F3795ryuf999+PT3ziEzh48CDOnTuH973vfXjVq16Fr3zlK9i9e/c1PWNkN4BlGRBpSTSOCUUeY9f5zcFhfd04WY3AdqsFr9VC/dj34YtfVIES6UNDVw3GgzDC0nlgNZ1BJ5zB4nHgoYfUWPHQQxpE/9MFi/w2GujX9+Mrj2tA/nAAD3pM7XRU2rUaAAVKUgs6y5RMlxeG8LrLqGQZkClpLd/XsTXS1Gh0bzmx1ekgANTY9NWvqkH35EkzENeOHtyCLUrjUMs4jVxmuD5BgtoLC6qeGg31+aVL+eqfSXwL0tLJQIR6cRHodFBtNFBt1tRap2Xn627XOllZ5NlZAGnXIqxZZhZT9aPfh1YLGMQVeLOz1hMgMjSYuxPnzwOTGVBNlE45Vdsoe75zpw3QzlsHYaROEOg+thZWText3wdWlmxdcV6l035lxZaHU4lx0MQib/DUeJplqCYDHDrkGZ9Lr2frgfVDR0+5rHzYHgZAV/8mGCCGv5EsQ6cT5JaB02RwtNuqTaamsOZXkOppLU2V9vjCgn0c59aJCeBAc2An1DSzXvKzZ5XTJgyVF989TgAVRHRxQdXNuXP5/sX1GbX25ZKUbUQAPwztmotrp/7snQgay8h5LZzAvFvWlPK99MKP5m4AN9/cPQLRt4EVyZ4MA9EJyLo62QQEXYYunyPTkACtvE4Cnq5Ui2QtAwqIlN4jCU4zf2RvSzDRBdEJLvMlwU3+dfW2JeuZLwKYgHIgrK2todPpQLLkmU9Z5wR0y+UyxsfHEccx4jhGpVJBHMcIggDj4+Om7mUbyYCVUudc1rkMWEkQmMY8sb7IdJd5k5InrF+p+c3PmJYMlikBXl5Hdr4EuCWDnO2zY8eOLYFdZdklu132JZ4AYN4kAM37ZR+mY4V1J69hv5bOC0rUSAY6g5gSwJe/HfZ1qZsl65t/5UkN2Ufd34MEhV2Q3WWjF8nRuKdAvtNtBKKP7IY3LqRd9LbouoIdZK2m1+dEBPVOI3nLgS2xzrhr4X6j3VaX1+tqU1ivA5XFZ4GTHZjoSnGMcysRVlcV8EnW9OSkhwiwyKfOj68Dlm1sqFccwwaJdMssRUcBu0uSIpsSmeS1GxsmeJoXhvD9qPDUrHxPhhs/J3ju/mVy4+OWQJamQBCH+bZifhgxVQf4QpbB63YRhSEiTVOq1YItJChAgMW67tDpKkSg1wNmZ1W6Zpcr+oau88VFtZnzfaDS9O0+MrV6no78KtbXVdOqulAgUE9fS3CXCiI5VhWz2Mkz0iQDjNljlokrVeIBKmGGgR+gXLYsLxICiSuR6ef7QK4wfAmQfHOzYtpNpVlBpZnvBAN4BjzvdlX3WlmxQBEBl8lJIOi8YLSBAah+2Omom06csLTE8fFc0LNBXEFrXl3GvsNuIR0x7Mp8pCBzbgmC5/vq9xiGDCzo4c56aEV5XcSpyIoYbdvIXuxG/PTp06hUrCSGy2STVkQeupIM3jC5veuRznvjG99o/n/33XfjgQcewG233YaPf/zjeOSRR675OSO7QUyAg4XgGH/4fHEs6/VMzBLUamowevpp4MwZBIcP49KlqiGSR34f6KjfcJoqoPVLXwKeekrN2UePqtvvxLPAEy3rdNSnmOgHrNWUcy4CFMB44YI96ZRlgIK90eup8StNgcj37Vg4O4vFVqB9hxGCEBaMB6yjkd4BBgZ54ol8PJF2G1E4QKpjt7jVxWrlEsHrXFSBL5MoN49yCm63FT7faFjGPOcTgz1ygF1dzUdCBWx9dbtAkiCo1bC/0cDAD8xXu3dbQJXzCTLhCU1TG6j02DEwOGpFOndZQN/HyZMq2cOHgajbRlCr4dIlD0tLNjs7d1rnqgT0wzBAkCQY+AGefFyVn8FOJRGAfxk8e3VVORe41nHn7S2mJ6xKlqHSrKHbzQcc5/zt+6oLlUr61AEXDuw7i4s22C1s+vzZ9JtVBE3YekySXLBWVu2JE7Yp+XObnIRoEG0E0c+cUTdJujr/6sphey4tqfhCgJ2P2f+4VpZrxHZbfc96Z98giA6oPO/eXcG0n24NMFoEnrtr/KvtCW5QG83dL51tr5YfWc5cVrME4lz9bDdAY5EkC58h7+NnEjSXaUqgUAZodOU5JMAopTgItBex4mXepWyHZAhLlrMslwsWS4CSeWWgU94vy8d8M38yv3wR2JfMf+Zd5oUAtNtuRexqCUQzP3w+GdJuW/OZUtJGsv95PdnnktVPYJtG5jpBbslAJ8DuAuPyeW4duLriEkh2TwC490gtdBecl/IqTJt9XPZN1gODrUqHCR0PBOolSO8+2w2yWmRFvymXqe6yzYscZDeTjUD0kd3Q5m68gasvmLmb0saNeD/zFFtab169rI80DbbiZ74P6jsTbN29W23YKvHAMKrl9Zc6ag+wuqo2pZIcbfLkmAvg5srLfHDTwNfSkkpbikXz2LWkcgM5RjrTkZsrWY3c2wN5UBiwp+uZlNSoZpDVLBPa20W2sWF3r6R4iQ1QpVbDAJ7JnwRLTb3w1eupis4yZNDt6srJ6AJK2RYG4OJLlkNqojJd2T46uRxW7badbKqVFXvkPstUH9zYsMAxwWSD9ep68cIQu3apIHXcHPNr2cS5wKqsU/csuah6QFVbGAZbiFy9nu3nlC+SeJYxySjkexkhVjpPREXyOcSRePvEhH20BDUkCNTrWaahBJEIrAPiREFDFOxqAHlRP5Wo0zawHfp1PdcDQKVSyW3Ei6xWq2FsbGwLc+2FF17Ywlij1ev1wut93/97sdAmJiZw991347nnnnvRzxjZy2BFASOkXWke17/Fkp6T+tAnndbXTTTJ3EmWbpq7lafIGJi0XtcOwb/6pgIOV1ZsHuIY3cWt0xLW1y01uaBoTAuhbxFTWKwyTYEg9O3A6padgyJB1E7HDtZ6PKcT160uOYeHIYC2Kn8oQHRpTEr6mwmgb1mnUFibWiCAzX8YWo2YOIYXxxgbiwxYSwc022aLY0QizNBrLw2c9nVZg3CAATx0OsrvnqZQjPZajQcU7PNF3bhzSBD6BtxttYBbblHruGEY7Ph4HkBPU+SDh4u1VZbRnYKcJEocV3P1n2UFp/fkpMqMd7t2oSqSYnN0u0CVnnut408WOvtsp6PK6Sqbqd9HN98pZHvQ609HBgsu+kmaqrohMM71oqxzFktKsZGBniT5k2WsV64JpmtOY8j6KTL3c2fNf6PbaO5+6WwEom8Dc5mtQB50k0E1JYgqgWQJiEtQUALQfIYEnWX6bn6kSVBVpinB3isBhQQtZbDQIqkQMo2ZR4Ksw15F4LwE8d36kgCxBFFl3RCYpU631OuWQLJb524bstxSxoTXD7uftulstqQEjQSKZZu5/Ugy9PlXsvqLAE43L/I57E+yzdznsLw8keDKuRQ5gAhcE7B365OOAToA5OkD6UigSVCfwLtksg/rp279uUxz15Ej05XPuxnB8mE2AtFHdkNbEf3qWu4RKDFjVgX+wG4W9G6yVrNsIwBYSz34fpALzkRZk/V1AdhyB6B3p/X6ntxexKzpJSv2SnmX6HZRWVgHk5NWn4NUMreOCKoLVHdyUv2XeyM3DqrvazZ8lgFphgBAWK8YJrBkZnHDRBYSiUMG2KW5kVD5Hc8288YwzAHcUv9bAb+qTTxmlIHCwhAbPbthHsAzm7RIF455dIF5NgsZ9XyfAyaE5dpUNCUlXPkZN41GY/8qzb7Fsgy+zgerTqbJ4GDGYcFE2YkZTC+O0W1ZbVQgjw97GOhyebl23bXLMiyzzErLm/qQvy3+jsig8317NIH69EKDVva1sTF7vJ64AKVrej2r8csj8CYgoK2mXL0kCfJ0RLehXAabU+e5jG0TG9Ov67n+Wi0IAtx333347Gc/i7e+9a3m889+9rN485vfXHjPAw88gD/5kz/Jffbnf/7nOHLkyHVpqrq2vr6Or371q/ie7/meF/2Mkb3MJscNibzJ790f9NiYwXCNdBUZs76P6Wkdk0GPZbxYjvE06n9XpqbUQEh0ViOPSTKDOLbEazMwTU7m5KHog+fUlmV6LHauMWlzvnId3HIuzDI7fnIC0xmRBG2OfwS/jaxXtqbKEYbwoIJX12qVXHVOT9uTdJrsbLLB5YK5oVSyk+LERD6IJScEMTGU0rwDmfPWxgaAXUkOZM4dwQKvUXMXQWE/9sxaxQRvj2MM4Jl5ig5YkvrZNdx2l3MyhyAXYJZzk0sgYBunqe1fqrDIm76IaUlfs5unLUfXZF/TdSqnMlNPfJDOFMvNNUGtpg6AhaGdM6lXv2Vhw4dLBvru3apCuTbTr83MZpsM9F278spwIoZvTuaO72XbxLGStJmYED8tOW+76+CiNfE2AsyLbDR3v3Q2AtG3iUlAjmCilL0AFHjoMmUJDFJLW+pnS+Y4nys1siUDWF4j/9Jc9rAr5wIgB0hLkyxzSnNQKoSsc6a5sbFhWN2y7CyPlDRxwU7Jmg6CABMTE0buw5XZkGAqtd3JaE7T1Eh8kLE9NjaGcrlsQGLmTbLfJWBI0D4MQwRBYJwHRc4LlwXN8pFNL4HotbU1rK+v51jjEuyVQPv6+jrSNM3JujBdeQ/rZKxgg0eGugxIyuslC519idrxrLPBYGCcGbKfkJVPwJ316DpVsixDmqY5Jw7Bc540IMjOPiPrVLLYpTZ/kf45/0onCtOSf2UQWbaz+1sqYqPfjDYC0Ue2bWwYIF20oNZazIhjw4IxDHLqq/o+jhzJP47653wvlTJItp2ZnVVvnnxS/T15EpVuVx1LblTNPqDbBaqNJL/D1BswAsVMw/cJFA/y1+rdhwlK1tCb0aUlBabLzEownRsknfEoUV9VuCRod/J0LikPoxlLXpIgCkPsr9WAmtoJDcI8043s6ko8yIuMc6fl+3aTpo9X84hzibgKAKT5bPAaMrkUNhsgTKrwmk0gy7DmV0QVeEaXEwBqtcBUH4+vt1p54F9uxNm1DCCj65/gPrtduWwZ6qVSPnaq3Dxy4y0OwJnr3D1hrs2hnBlxHCCOrY+Em1FiOspZE8FLEkv5AgygfbHj5TRrZZoeBgas8QBUkxDNpgLTd++2eugEsQ3w0g1ZuTZTRODJViLgUq+r/hJXsHJefSWVDApOjZu8StyGWui8lnVIYh1xnslJAK3uVhB9KJJRYNsMRH+xR8Kv1R555BG8/e1vx5EjR/DAAw/gIx/5CE6dOoV3vOMdAID3vOc9OHPmDD7xiU8AAN7xjnfgN3/zN/HII4/gp3/6p/HFL34RH/3oR/H7v//75pn9fh/PPvus+f+ZM2dw/PhxxHGM2dlZAMC73/1u/OAP/iD279+PF154Ae973/uwvLyMH//xH7/OEozshjHXMzkMLCOgPDsLTE1hdlbM3ToOBubmgDDEgw/q370eCJZRMXE7XMx+dVUx06eO/EN47RcURX1xEXjmGSDLMHPsGJrNPWY8GsQRvEbDDj4aQI38AZB4ZqojS7gihJ8Zg0XJeHiIGHWSgxZvimO1DmHAZznwTk0B3S6CGKjXIxVEnBpXrLOOmCwduZggSZQGu37df0cdd9+tgoJ6nYuA7yNJKrn1TS6S5vS0leXSQuoM6mmI1CngC/Cacx6B0fV1YK1xUOVdnx4giL6cKh736ipwsRTkZMc4vRDPTVNgrb4HSNVpAulM5Xsv65vE+9CnrdIUQRhi927PzM8E5d0wKpJ3IJnoLFO3C1zsBgjDqlmrBD7seknXf212BmNjdinEuqCDJsuAtbACPwSCrgiQ3myqflav4/mWZwgEfIYhcAiUen9T6cRz+j92zMZQ3dhQ8VoZmxUdgXbLuZCeFRcR1+vnQRihO2/9H4cO2f/L+XlszH62c6d6NH+Hs7NAJewDiVpP0e/u+2rZoOZuUdku4F8kzVbkHL/a/H4D2WjufunsZW31D3/4w/jwhz+MBR3m+q677sK/+Tf/xujaXL58Gb/yK7+Cj3zkI1haWsL999+P3/qt38Jdd91lnrG+vo53v/vd+P3f/330ej287nWvw4c+9CE0KKY4xD70oQ/hP/yH/4CzZ8/irrvuwgc/+MGct+Ja0v52mQS3JdNbAn6e5xkgk2AgQULKjhBAliD6sP8DKNQrZx5csNQNysiXfB6Zxy5o6Ps+oiiC7/tGX5xBQwmuE0AmkM06kNIb/B6wTociFnK5XMbly5cxOTmJjY0NI3NSJK1BkLcIsN3c3EQQBCZ68OXLl00gVOqou44El6Esg3MO08YuYqETIF5eXs4xyilPI7W/XcZ0lmXo9/vo9XpYWVkxwDOALSx6aRJEl0xzV/KF1+7YscM4FvhM1ocEz13AX4LYEoSXbUNwnNrvNDpaipjo0pkkA5eyD7HvurI6Mn3Wo9SJl0FcWR9u3ADZ/4bJKL1c9t73vhe/8iu/kvtMBgH5Vo+FI2B8+9lNM3dLUEsu/ouAc7mYJrAXhnbTNb+oGGjf8z14vltBHcB+/3kgjrGMitFiphY0QUwpXZplQFarolavIsKTCrVtt4Hjx4H77kPjjf/InNDOMuBix0MYVhCFfbPZl1l39w2+76nNr75oLQuQpRYcPsBNLR0CAmjPsYwAu/tjAZhYmsJE6JJRHvliYtzp1OuGZuRNTCAYH0eVtKNGQ13TFjtPILd7XKvtx8oK8LUn8jg7pWb5F7A4A1n9q6v2UdxcJ7X9APJSs6WSyvb8vN1XESiv1RReQm37el0zG0kX66bFDGbfh5ckCGCPbke7Qgx8q99eKlmGt7s/leWgvIsr9+lzIy47hJZ12bkzyvURMroAqzJQcRj9FzseFk9YHVOZL5OMPFavQZmZOAYSH81mlAMOmKY6paAaoh8q8AVhBD8GwsZ+eIf6+frTzEHZzQigNxpqoz09rgOK1WumTgHVXnv3qmur6fMazfCBLkwalVoN/VrVBu9tiz4u80Er2ohLQEqibtdhL+fcvQPXt7m+3hXOj/zIj+DChQv41V/9VZw9exaHDh3CZz7zGXzXd30XAODs2bM4deqUuf7WW2/FZz7zGfz8z/88fuu3fgszMzP4jd/4DbztbW8z1zz//PO49957zfsPfOAD+MAHPoDXvva1eOyxxwAAi4uL+LEf+zG0221MTU3h6NGjeOKJJ0y6291umrlb/gYlou06uPg9f4+1mkLrkgQHGjpWyPFFNVYcO4ZvLAY4EPYxffL/sxNDkuDECRvnW2o2Z5kdh9ttoFbbg3sA4JvfVB+eOQP4PmYP/WMz9nU6QJXAZpJgLfUUGNzpIEoShKFnwPn1dSCLA4TxHoSwQTBbLa1oU9+PoNGwki2tltJaTxLlEKC3Uspl1WoGxY38LrDQVk57TiQS7ZW6LKxTSQvWnt8oy9T/kwSYnETUbCod9XpNOekXu1ZjjEjn3ByW0wBPPG51yPl4AtgH6msI4hAbGx5WVtTYzeI88YSKVzE7OwM/AVBXWeQSg0Xu9ZRciJjKTNN2u8rn0Wyq+aDq+4gP7UGWAVG2rJynXA81GghmZ4E0M/W3b18Fu3apOcf3tX5+u63WWXEMhD7iWM0/4+M2gHqaKq7CmTMqzwsLlrA9OQlb3+xYaYqgXsfUVBVf/7r1GbAZKH+yuKg+2+/rjqYXQWuI0FpQSzNOZZubKj+sJyPpkmXA/DyCOEaYzMD3ge871jeTdh+BWOPALAIuphHSLjBTFw2pF18DMZtkmeZptPKHCBoN1YVc4kGtptp+fFwTKmRfZAwfaKd9GKLaiIt/oBJA5/3u3O063viM63SAj+bu74y5+2UF0RuNBv7dv/t3xovw8Y9/HG9+85vx9NNP46677sK///f/Hr/+67+Oj33sYzh48CDe97734fu///vxta99DZP6vOq73vUu/Mmf/Ak+9alPYffu3fiFX/gFvOlNb8JTTz1VyJwFgD/4gz/Au971LnzoQx/Cq1/9avzO7/wO3vjGN+LZZ5/F/v1qg3QtaX87zdVTLpIbcWU5AMuqLpVKBiCUYOrY2JgBUCXQSvBSBqOU17gmmb4SjJTXyvaQsikEzQlAu6xuybTf3Nw07GkCrSybBNFlvlw9djLcx8fHUSqVTF1I+RvmkSA7geZ+v5/TeZeBTKXuPMsQhuEWUF6Chi7j2a2noj5AsHx9fR3dbhf9ft/kQ7ZtERNfyq+sr6+j1+uZ57Fu+PdapHgIghPUTzlZiTpifcu+QfkWKaPDupEnAYrqRNY9X6xb6Uhg/gALUvP34jovXPY773HZ45KFzv8XsdLl9dIZcCWw/OUE0u+66y587nOfM+9lfd9oY+HIXn67aebuYQtmFyQrAs30mdM41qDp+fPAhQvohxUcfxx46CEgePppYO9ehIe+G4AFZnlamZspiUcTHL0HsAHF2m1gbAzeAw8gSaqGeGU2hPUAnmY2u1qkPB5OlpRhOIUhVnTsUsbkDEMPtdoeBeoSKZY7NVk/DCYloz11OmpXduZM/nMWrNtVAdUA9dxSyYLo3MCVy4opR+8EGe98DttKn/FdXFTV8+STlg1ObJ4bTYLDso67Xcv4lgA1gXMGBiUTq9u1z2d11OtAhDUAEc6fV2kF6KsApdzcSUBZ9jN5Ll9854UhgjiGL4BfLVNqN65pimqSwPcDdDp5Cd5CnNYFl7IMk5MKRF9fzzPaCOBvbgJxHMCLfSx3PfTOq2Zls9PHwibKpeW2l0Y1PN9XToM4RiWOFRjRzXLIBg9B5PHqAL4f2BPv3XwylEeemNDBeeMB8ORJ8+OiswIAqr6Pak039OOPq8LQ20JR/npdgyWp9XwNGx+2eC2wdbyQ116nfSfP3e985zvxzne+s/C7j33sY1s+e+1rX4u/+Zu/Gfq8ZrN5Vaf9pz71qevK43azm2buprm/KY45w0B2MnMB+9vWx2qebwd47DHgwE/4amyo1VTU0FrNxNzevdsGuWTSnDPOn1dT1z2Aeubqqhowb7kFzTf94xxhHIgQhhHSjsKWoxAGUQy1I1H6pTmnMQhmlnniO0+d6GKZV1YA38fzbeWirc3eqeYO19nNsez0aeWoJ6LJQslFhjwu51KFqbsuHBQAzIQSxHGeia7n/FOtAGfPAo89phzUnIfZPOoZarDf3KyYU2O1GnLBWjmVklxAINZdUxHj59LG91XRz53TJ8p0lPAgyxQIzjpYWLBeYxk51VfSNjkHd6djkWztmffCEIHvIwh9VGLfMLzlFNlq5QFxcJ0mSQrttgZHq+YUmZREY0ibOAb2J3oibzZxbiXChQv2wIVsejZtmgKohXax0+kAcYywPqO61RNPqHrYvRsB9VaY4UYDa6ly7KysALV7KwjiLtbiPXjmS6p8EhgHrHODQc6TBNhfW9OZ0f24ozIZhSGikq/WVQsdu0iRjuqiNbpsKzmHA1sZ6eYIBOz3BNuHzedXsdHcbW27zt3Xy9J/Se0Hf/AH8QM/8AM4ePAgDh48iH/7b/8t4jjGE088gcuXL+ODH/wgfumXfgn/5J/8Exw6dAgf//jHsba2ht/7vd8DAFy6dAkf/ehH8R//43/EQw89hHvvvRef/OQn8cwzz+Q6pmu//uu/jp/8yZ/ET/3UT+GOO+7ABz/4Qezbtw8f/vCHAeCa0v52W1HnGQbMuTIcktVbpP3s6pnL+10pkGH5kc9x5VBkHouAQnm9qxFeJKshdckl89eVcAG2MtFlPl0mv3xJfW5ZXpm+zIeri+3qqpdKJQNQS6a+TINtWgReu3XgMqLJyJZs6CIpFwmkyzp0JXCGBc+UdSTrQ7aFy8x2JTvcvijrwQXQh7WLNOk8okNDto17asJN39Vhd/up29eZjqxT2f5Xq8Mb0XzfR71eN6+pqSkA3/qxcJij50qvkb38Npq7r8H0ItywfTVyTWYwAHuEWluW2WO0XJdTeoUvbi5ylOOVFYO4G0kQDCfGuiaJZANnWZhleTA/TW3ZJLg58AP0Mw8DP8AgjCwoQTo9hWHX1y1SIKnfRBBWV/MBI90Akoy+xQ2sK+Ap6p76nnKjzCTJpnZvlZ9tbm6tfz5POiLk58yOkYvXF62vC3kV9wZZP7I8bsJyV13Q3VwAZBhofi2kKd/Py9G698j+IvuI6xsZam6FSu+F63wRDcR6l9Umu4rbJWTbsjzmopWVre3AFyPL0QvR7eZ/CNL54/5oh1Wo/Dvs++u0l2vu9l7Ea2Qvv920c/e1/r6kA9MZTDgsDOAh552EHQo2N63+NY1DxeqqiK/I8WdlBVhdhZf1c4e5OG3S6T2AZ/JBHWp3/jFv9BdynMxNBppsJofctdSziKt0BqZpfs5252U56K6sKKRWTrRkSp89u/V6d6B2AnxwOcBHkjPAITc3n2rjiSvATqfu9CK5djILck6Xc56JUSMrVJaDC4qCCS/wBzl/eKGTwnnJLlh0yRYbcoGcuyWW3OuJe3w/N63JeDxO1dqH5ipFOAfYQEtL+flbFJtpwVeBVy9dsks6OR1zqUgcPAwxfH3gfu72TRZa0urdxcKwAheNG0PZCNdno7l7+9sNUzebm5v41Kc+hdXVVTzwwAP45je/iVarhYcffthcUy6X8drXvhZf+MIXAABPPfUUNjY2ctfMzMzg0KFD5hrX+v0+nnrqqdw9APDwww+be64l7SJbX1/H8vJy7vVS2DDw2pWYuBpo5wKZEswtAq4l61bKYkjd7yAIUC6XzYvvJUDtWhHI7gLjRUC1+50EKwmWyu+KAHQgLwPjapgP08KWbOVSqYRSqWRkcsIwzL2kxrlbt0XAvTRZZrKbNzY20O/3zYu68JQSkWxoarb3ej10u12srq6i1+sZprgMOirrwAXqh7Gih7UHTfYLnhAoqlOXje/Wl5TokXUh64F1IR0CZIGzjzEfsr0osyPbk+nJunAdNmwH+ZsoClwq+5mst6vZSw0Qr6ys5Maidbr0C+y5557DzMwMbr31Vvzoj/4ovvGNbwB48WPhtdq3EkR///vfj1e+8pWYnJzEnj178Ja3vAVf+9rXrnjPY489VujAOnny5N+3qN+xdtPO3e4i2t3E6O8NqB2GQLmMSjygJLqhSQXpsgleuGuXZfKmqWXo8LGGiUSqc6OhxCfJyO52zWnonTuFhmccF4Ka3EdInXQaN6Q8dVuvAxV/zQLY4gYXEzU7n/FxKxw9NaX0TptN4Lbb1HHyuTnFTpubUwKWzSZw++3qXDZZ6JKJTjb6xEQeyOQmrtWyx6vbbVOvzD8fR+a9zLOrAc4gVLxHZkVuctNUbVR5D4udZTCOlDjW4IpwPOQS2rXLJsbv2I/cTVsBQJ5lwMAP7L063TDMxQwzLDz2q1yfdToA7+c9Ug5GbvDZd1gHExO2zmXsz6B70UoQEU2SiIEsVBFiIAAkmgQ+5G3yRc3UONbH6Zm2QdULTMoKUAxeirTLNpTehqttsIfUtXy/Hebu0UZ8+9t39Nx9LSCX+1u80hjk+4Y8DEDNY5OTZr7hWEcpK0ls5TDP4QS33ALcey9w991qrtO6IVE4MNdNTQHVuI9SSbDTOYgjX8SVFTslS6PiWbMJewGR5ywz8ZcB9VU/87bOTRy8Gw31knP24cPq/82met16q1qL8OQOx/UkUZ9z7JRadSwc5+7Tp1UFLi6a+tq3z8p2c3o0Uma1GgZJNQe2cqiemspnpVZTpwToJ+AJLkqv5cBuqDRKJRGo240wTavXgTvusPov4nQZncymvbgYkMezRJ0P/MBcK9SCcus5I1nCDlYu5+ZQzvlyemJ5fF+vfcQ6QaY3OZmfs+XLtJHxBIn17diYygcrTf6O0jTXHVhm15cgyRwE2ycmVLer1VDsHS8gdOTWVUxw1y67pnTb8Wpzt8tQv4KN5u6by/7+rpS/pz3zzDN44IEHkKYp4jjGH/7hH+LOO+80HWV6ejp3/fT0NP7P//k/AIBWq4UgCLBr164t17SkgJawdruNzc3NwufyHv69UtpF9v73v3+LxtFLaS7rddg1UiKj6H7AAsmUTVlfX8eOHTtymuLUt6bUiQQ4yaymxjQAozEtdawpGyLNBSwpm0JpEH7P/PIaF9Dnd0xLlo/gl9Rgl1IdgA3EWi6X4QaDdJ9HsDUMQ0RRhCiKMD4+jvHxcUxOTsL3fVQqFZRKJUxMTBgpF+rKy3y6+ZUsd9a3ZDq7QPHGxgZ6vV4OSF5fXzdSN9Q7X11dzemBU66EQDNBZimBU8SEl3kryhfzKwF59gM6FNgWRUztouOf0jnCvkiplsuXL+eCpxbpjgPIsf/lKQCXeX6l0xiStS+dEHTayLaiuZr2VwN+v1Us6zvvvDP3/pd/+Zfx3ve+d8t1999/Pz7xiU/g4MGDOHfuHN73vvfhVa96Fb7yla+86LHwWu16y309137+85/Hz/zMz+CVr3wlsizDL/3SL+Hhhx/Gs88+iwlG9RtiX/va11CpVMx7MgRGZu2mmbuHLaqlcUHvnoOV1DJumhYXcf+9daWFfeiQumd+HlGSoNk8AN+3J35XVrbsm+1GPGyqD7RMDOp1c6x3pql3K3oz10cVz7e8XFb5/6IsR/pLSmTwdHaw+A0bpEtFLjOvbtey5gAgShJz5De34ZMeAZpkuPEIvTzezc2Z3NiXyzbz7baqLJ5JrtXUrrvTwcyRBEkSKfnruiUgyf3V0lKePShPmzOpqSm1YeSmmBKzvB8w8WLNRh8ABmEE37e461rqIZIbPF7Iz7gJdzdu8uhwliGMLXjPKlR5r8DT9/rIn1pmkiaYaOp0AGGBPwBCu33ifX7sGeCcoA0PVJRKNmgam7zRUBvhqH1KVRpphUmiNrXydyIdM3yA7KhhiPFxK6NPMhzzwVuYPtuagIo5kk+ES56zl5lmP7v1VpMufN+K2vvqyH0gHQDSEcAK499hDjf2b/k5tsfc/a0OTjayb53dFHM3B0Y5KEgb5swCiscEqJ/+K16hPgoeeEDNOydPAp0ODh3aD9+3MiLtNgxILdVNkgRA/YG8nki9biaUKgfrE/NAt4vw8Kts+JHmHnMKShbj0iXqrQPVxIKi5TJQWXzWTlREJ/VcMj2l9NOXluypq1LJQ5JU1RzCB9FBz4iRnIsAe2qHUmzr61ZehM9oNhXYniRWi4UnewD1vJMnlWRMHANf/zrQbGLmh5oIwwjHjqnb6R8nMJ5lwLMnvdz6hX5O/p9cA9nUxLgBq0MupwIXjKeT2AQq5RqF9XP4MAa1PSpo6sJC7gGcn0wAUno2OEGFIfp+lJv64ljJvtVqgVlT7NypNb+xDCx28vPU1FROWo/rFzodZFOa9/r6fuaZpmJZGaebjvP9tTVgYVGVbWFBdeypKXVTmqq+Mj6eR+6ZN0DJzIQhwnAPxsZ0OeMQ3ZZVAGI3kOsZxhg4WLuo1svuETcuqmhc7LBu5QK32cSgPmMDm6epkWkyz5COhWHjgjQ5j+sf5WjuvrnsZQfRX/GKV+D48ePodDr49Kc/jR//8R/H5z//efN9kVTJ1bSDr+Waa3nu9ab9nve8B4888oh5v7y8jH379l0xH9dqEpArYqO717rXuIAegzqGYWjAZAKsruQHAzcy6KfneYZxPT4+bsBpyTAnuEqNbGku2xiACUxJdjD1xekQcKVCWBYJlEvQ3Q1Myc9lmgy2urGxAd/3QbazBNJlnoIgMAD65OQkoijCxMQEdu7ciSAIEMcxfN9HHMeG/cxyuKCqmw4/dwHawWCANE1N3qSeOcFz1vPGxga63S7W1tbQ7XaxtLSU04x3QX3qtkt2OoBc3bn9TuaLafN7BoIleE7Q2vM8c0+RA0ieApBtzT7BQKosNzXg2Q+K9M6ZB7LOZX5kW9Cks0DK27CcDGjL/uyC7fI5Mngoy+7+/mR6ErB/KYH0Z599Frfccot5Xy6XC69jQCkAuPvuu/HAAw/gtttuw8c//nEcPXo0l1/atYyx12LfShD90Ucfzb3/3d/9XezZswdPPfUUXvOa11zx3j179iApYpyMzNhNM3e7C+dhADoX7ATd3MU4dy8LC2rDeOgQnscMZmprwF/9FTA+jtmHFIj+P/6H2keSARSGanPDIJgKRJ9VmzF5vJoMX4KEegORHfqHOH3aBleUxstZhDgGolCVMQw1mEr20YkTVs+TtCUoBrRzehf1egWejLAW2qCQZNlzDxInQG1WbzRPPmsFxiVzjuymclmxipj5jQ3FXut0VKUxgidR8yRBVKvhyJEZQ4JmYDGmf+GCxQrGxoycPWo1rWmepkprE2pDEfg+arX95gT7pUtqk8sNr8Rv2B3YjkpGxlOa34KateZXNBBSQRRezG/iWIeC4eZlffiatba5qYBsWhxH8KFA7ygEIl8AHrLgbt+VYHCW2SCzYh2nNsNBLjvs9gSK2HfKZWB6l2Z+P/mMahvK9TSbCpCRYLakU+boezaPYVLJ7VvdorCYGxt5jKrZBLz2CyoPqpKGs05ZB9Q913laq+3HM09bZn+tFimHiATaXTC9yNj5h1yzHebu0UZ8+9pNMXfL+dcdS92xj59LBFVOUHpA99ov4I47VFBJHPpuBPPPAn/0RyoI6UMPIcsiPPMM8Ld/q+YDyerl3F0uA89vHkB25AAaDT0mtdsq0CiPL2WZCuLRbiM6ehSnT3u54cIdNlotNS3fdhuAxF6zaxeAP3tCjXmMxMnjVr0esLiIIEmwuVnJAcsbG8DUVMXMb+NxhMqxBPB9nGoFJrTJ5qb2Vx8GgmzNepafe079pR7HLbcohyQrodtVgDkfVCqptcX/+l+q0mo1NfYeOYJqo4HXHIvRzzw8+aRaOtFJnWXAM8/YZPj4atxHNQYGzcCCplkGQBUwrlextGSfQR10tzsQl+ZS6vhxoF73cMBxsHyjuwePPwo89FAVM+0n7UTo+8bhDMDME/2woupLOxu4dKOFIRCkXURhiLm5SJWh01FAMtdijD4vvQVxjEEYIUkUzr1rl24X+AB8hKGXO5lI8oME0eV0bIJ6P3ncRkdfWMjP3dKDIY/i8ZVlRtB9YnqPmZP7cWCAcvfgHWCXtbUalCh+uazSdEF0elOYBz6IBdOLzbVkBsefAMLQQxhGqNcjVCFAdDl3u1ZE/nCd/NpGc/fNZS87iB4EgQlwcuTIEXzpS1/Cf/7P/xn/4l/8CwDKO713715z/QsvvGC8M/V6Hf1+H0tLSzmv+AsvvIBXvepVhenVajWMjY1t8Zi7z71a2kVGSZNvlQ1jrMof1pUAOTdwI43ApWQUF8l1EIwk+FoqlTA+Pr5FBgNQoDhBeRnck+nJlwRmS6WSeS+B8SIW+pXMdwbCIm1xMrBLpVIOMC7SViebuVQqGZb5+Pg4oihCHMcIggATExPwfR9hGELKk8j6l23msuldJrwEq10ZESnrQkCZDPVut4vl5WUsLS0Zhwfr4/LlyyZvZIyzvmSdFsmvuOxwpi2Z3wTsy+VyTsalSDee6TAvbAe2uzyBwLTW1tZy5XWBcZ4soCNGthfTkPmRJtvElRJi0FTpFJK/IVcKx+3zL4dNTk7m2NTXahMTE7j77rvx3HPP4S1veQuA6x8Lr9VeLIjuym1cy9h76dIlAEC1Wr1qOvfeey/SNMWdd96Jf/2v/zW+93u/95rzeLPYTTV3uwvoogU1Xy7LVdKLABuEanYWCy2gfjSCd+YMEIao+Guo1SKsrqrLSFoKQ8s+SxIgCgc4d97D+nqEJIkQ12fgLZ6yUR2ZB9KTDymgWDKkmTV5OaA3fKEqUxD6lrFDlvjioqIqJYm5UQKpkqAWic1UHwEWFlR6zz1n2cty81urAYcP36kkN+bn80ejJcDBtBllstNRBVxcVPf1enZnrMH4yPexv54Y4Jlk9yxTQAGJ7pLsHmHNgvlk8+nKixuKeUhW9M6dZt+8BZumzAlgwe7KrtBs4PqZh9aiSgoA9tdj2zjA1h2m7mt+yHCYdl/Jv4rNluWfIzMm0YIi1hU/k+gKi6/Tle2+sWHrzpxoCAfAou47Z87YgLKdjtrl0yTwXAR8ifzIy/gxD0XwvQyey++8jpCSIWLgAt463QE8wA/gkVavwY7FRevcajTUvj4iUCCfI9efw4D6IieB/mw7zN079Ot6rh/ZjWE31dw9zIb9DuVfdxzqdFCph1jOKpifB+6pJTCRqxcXUa8fxIULCuidnbUE4XJZB3NsqD3HXzzmGSyy2dyDA40QePppNTkQwCedPU2xuhoZtTJJ8KXR5ywdqYAOYn3ypHqWLBcnLk0DzrKKmQcBlQaJ8pz24lixpZ9+Wk21DMPSbKppeNeuCLOzB+F1l9WNpZJ17u/dq6jkYYhBGKmxmF5OIswLCxgsLMArlfJzt0awAwC33XYPWi2r6JamakmyuZmPb87x2pMLG1ZUliGYi1EqBbnTZ2xultf3lRM6jj34vsWQsww40ESuXywsqDizr3gFMCODq2YZskzVE09/DfwAS+eBqakInu5fRq5Hdk09sXro2IylqTp5uL5uFxsCvB6EkVlP+T7gpWuG7c5OY07I+Soo+MZ5iyNPTGi2e9jX9d+x+kQE0BcW8h1Q6ha5AHoYQiLl4838bdS253vZPXlbHAP46lfVj4njjbyYvxdduLVMrU3CpKocALrN2231MyiXrTxPlZXtOr+Fg2TLXD5srTSau29Ku+EcDJRquPXWW1Gv1/HZz37WfNfv9/H5z3/eTNT33XcfSqVS7pqzZ8/ixIkTQyfzIAhw33335e4BgM9+9rPmnmtJ++W2FwvOFYFWMkBpkZSHlLtw5S+kNIarfX0lne1h2uNFwKMEceV3RXXgMn6H3SvzdKVy8a8rA+IGu3SDVLpll/U8rD2KWMkStHaDdxYFtryStjzr90p2rf2qqA/J/lIklzLs3iulWcT4dgN7FpnbbhKsl9+5QHiRfM2wvrOdAodej62vr+OrX/0q9u7d+y0fC93f57W8AGDfvn3YuXOneb3//e+/ajqPPPIIjh07hkOHDg29bu/evfjIRz6CT3/60/hv/+2/4RWveAVe97rX4S//8i//3mX9TrfR3H0N5vtq06h1KLZgheKNS5BzVa+kpIXRIJcLfmex7+Km8u/QvBY9IMuKo6dp29gQ+uoiIQm4ykBWBPH5d2UF6CPIb8QkcirBdLLTh+TFZEjkn5raVwuu6ftOmd2XKB7rlcz9IiJyuVxc3wzkmnu0C3jIxK5gRdjzFrCo8KJrfDDBeycrMous11A7YoynREZodW92kXH3wVcwNr98RKmUb99cWxblw3WQaVNger6R5a2m210JQP822rdz7h57Ea+R3Zj2HTl3F/32rnfcK5pTu134vgb/HCkmOVS445Ecg+R8Z+buK+TxWodsOXeY8c+Zs8yX1NUQ4xqw9XQPX+7cLWON0iGe02135239WZoiP3cDZiAdAHYBUVABrtS2W2Vm/nEzXlCgoiXFlqkoK4494n7IZKTMjsmQNhmw3Y3jIYvtFj3Xhq4VzJvse0X3DZtmZVZNP5WsCHkisOhhw+bwq8x/8muuy+TLxD+REd6BIZV0Zbvi78ddb32b521gNHdvV/v29xRh/+pf/Su88Y1vxL59+7CysoJPfepTeOyxx/Doo49ix44deNe73oVf+7Vfw+23347bb78dv/Zrv4YoivDP/tk/AwDs3LkTP/mTP4lf+IVfwO7du1GtVvHud78bd999Nx566CGTzute9zq89a1vxc/+7M8CAB555BG8/e1vx5EjR/DAAw/gIx/5CE6dOoV3vOMdAHBNaX87rQjYJlOZjFd+LoFDwIJUkjEMAJKZXKRNTWa2BCrHx8eN118CkBJM5P8lyMvnkl0u88E0xsbGtgCmRQCz/L8s9zBg1k2PeZTPo+yKZMFL6ZRSqYTJyUmUy2VTBwxSKYNSDgsU6uZLMu+ZDpnV/OzyZas5Tu1zV8pEypzIQJdkZFOLnH2CRvkeyfCm1rjb11wAWQLS7EMsP08qSK182V8J7sv30uTpBRlQVWrCyzalRIurey7bZliAW1k+/oakjAvbXr6GAelF8QeGOYOGOT6ul5H9Utq73/1u/OAP/iD279+PF154Ae973/uwvLyMH//xH/+Wj4Uvlol++vTpnLf/akykn/3Zn8WXv/xlPP7441e87hWveAVe8YpXmPcPPPAATp8+jQ984ANXlYC5meymmrtd9LkIBJT/58ZaMlx4T5qqHeelS0CaIssUu2xGH99EGCLMjJw3ms2thCNFuvG2JI04VvRY+YXeELTbWwk3zGKttlUjfBBG5rFm5JSZ2L1bHdGu19H3IywtKTYaj1UDKv+VRqKep3XEWRUuk455YfWUSkCVDCOpV8njwtS99H0pBm7ZUPW6Yr7t3q2ikmmh1LXUw+pqHvSWf2UdZJmSbdmyg9YV6GGgjwbbYK9ephhc5IcHcWg2zx6s/qwJMKo/933PMBZ9X9WXJ9jnfQTIMiASAS0HfiBVVnJZNJLqsWKbmS/kX1lwIM8o43VyMy0+83wfURiiVgsMSZ+3ra+r8nnpWh7A4DF9CtQyUlwcYw0RkGkdfXYStr3sLL5v2Gu+bwmLvK3RyP9EqW5UrwPoCOSbFxH5kUAPdN5ZJ/yRpikac/sxOyvkYci6LPqtMw13zHgJN+gv59w9OhK+Pe2mmbuzDPC84eBj0We+nx+zODmePq0GNs06j47VcemSh7WwiujYMTPv+L4aG2ZnbRxODtm+r9i/nEJkrGyEoQowCtgx5PBhIE1xMY3Mx5zi3OWu1AFnYuPjug52787LuzGugzj+1V2woD7zJ+dEDpW9nkpbsr45PJMN39vpYZonxaRsVaZO+LRawMREhOm5ufzRrcOH4Xc6Vk+NA62YMzpt20yMjdFsqr9jYyLYKGOL0OREqdueybK8UajinbBrBP4ASBWbPcoyNBpVtFpaSo+VomnrtZpabsQx7CSkpUboaFAM+ip657d2SbKjye7v9YCKnJtlZvmKY80mj00h3EN7puG0eQAqLGBHfT45WTXrtixTdRhJBzjrcXxcVfYtt6iTBbrxl30V1LXKDijWif2wgqAemtNfPJhAFRaGrpmctCcuKalXLqsTD17nonW6yLW4DEwr5t4IXOfo/t5uA50OGg/ek+tO9TqA42l+vpbG98MWWdfhLCiy0dz9nWEvK4h+7tw5vP3tb8fZs2exc+dO3HPPPXj00Ufx/d///QCAX/zFX0Sv18M73/lOLC0t4f7778ef//mfY9KESgb+03/6T/B9Hz/8wz+MXq+H173udfjYxz6WAw2//vWvoy0Ep37kR34EFy5cwK/+6q/i7NmzOHToED7zmc/gu77ru8w115L2t9NcfW+pDc7PwzDcAuYSDCRAKbWupTY0QWzf91Eul3H58mUTfI9AqJQoITBLIJsgY5FMBoNXSo1xCX7v2GF1zSXbWIKmw1jafIb869abLKcEmVmOKIpyoDOfRWB1bGwM4+PjBkwfHx/HxMSEAdQpHVLkIHAZ2FIKhSC4BMol85zA+OrqKtbX17G6umrkTBhUU4LyruPC1SeX5eIzCML39JkqF3AvMqkpL0FqauSzvoqAa4L1bpBQWRZXtkbWF58TBIHJC/NAqaEoiowGPMvusuHdMsr6o2OBbSO12YfZsNgEroSP/Fy28csp+7K4uIgf+7EfQ7vdxtTUFI4ePYonnnjCjIffyrHwxYLolUrlmo/M/dzP/Rz++3//7/jLv/xLNAgyXocdPXoUn/zkJ6/7vu9ku6nmbnl0lOYuouVn3PzojWs/8wAECLgp6XSMREiWaYnm2deojave0B0+bPe5Mqam7+cBS4l3rvkVRIcP59JeTgMlffp19TFlRWTWuSHn8La5aSQslSSIZOcQtbz9drVrrNeNgsyFC3nC0sQEDDgs1UjC0G6i9P7G7O9XVqx6SrUR53W6tbjsGiKcPA4AAer1AwgToNpoqIfNzam/DGAWhhjUZ9TR4MU8+29szAYQddVSZPArU3a52dIAfxxHRmY2SZCn1QNAHKugW/qzoFbD1NQeW/n6uR6AcjnA5KRMykOGCFlqNeSTxEMYVrCxtDW4HF/cU/LzMPQQxhUbTFSnO4CX0zIPEzWeBr6es2Rlyf/TceH7iJIEURgiblQMWNDtiiP1EpmRSLfezS6jgl5P+ZQAYOfOCOPjEcJY5aOfeaYq2a8oWTAxkXcweemaDRqqrZIkQD0E2qnNv/x98jdJ9IugGY/OM/+Li0CvhygM8aqjc+r9Y/O2Dem8YaU77ZvrXPIe2beyrIDKeGV7Oefu0UZ8e9pNM3enKTAY5OfqK7FM+R0FquPYxkRgzA3qkc3NYXFxD554Avi+n/op44UO/AEOHVJAbKOh8MbxcTX0jY1Zf9vEhB1ukkQFm/YP/0M19rLODh/GWurhxJPW8SyXrwQ8y2Uz1SGOgTVE8DOgEg+Adhe44w4lhSEDRBw5YmTECPAWKadR1kyGKJmcVC85rHFo5dQ7fbixtV6zzIRV8X3gvvvuweSsHrsxyGvXhSFQr2MwdyfOnwcutfOKaswb6yTLbP6yDBjEFTXesEASaNV5ieIB1lKhNd9uw8syRG6+Wy2g3UZldhazszPwfShwuBGbZ8/OAg8+qPW7m4fU/BpGubqlkhG1yrMMytmeZZicVOA510OXLgHTswkA7VDHwM4TBM3rdZw/D4yPB4hrKuBst5Pz82+du1kXoozRbIgkidBuK6UYAKjWMtug1Pgpl9XCdG7OdsBaDU8+oS49enQG1dma6RhriLC4AMRxgBkdLObsV1U93HabAsdnZ6tmaVdJX9CNrNps+vYG8MoEOL5g1w7Uz+c8yQ5RqymZIErP0InBBXarhaDZxD/4BwcxPbmmxO3nxdw/zNy+49rfA0gfzd3fGbbj8suJ3nyH2/LyMnbu3Pn3fo7UiyYLnMAh9Z7DMDSBLcMwzAWSHB8fRygGgCLNaoJZEiCXDGuaC2DzMwKiBDt5v2Rdp2m6JQgjYIFb6nePjY1hYmLCAKBSs52gJp8r8+TmUYLYEqDd3Nw09URgvFQqbdEyl2x35lHqn4dhiHK5jImJiVydSuBWmqwLguEyQOj6+nqOmcy6XF5eRpqmuHTpEpaXlw0ALoF/lq/X6xnG+tra2pYgn1zk7tixA9T4ppY6YIOtUvNetpNbHhk8kyB2FEXwfX8LiL66uoo0TbG+vo40TdHv97G6uloIlLuscJkWP6fjggx4Avf8KzXR3d8SAHMvjUFDmS/WCVnoUiLnSlYkP+OeLJAnDHq9Xs6h8FLa6dOnXxRo/O0wjo1//dd/jbiIljrEut0uXv3qV+PSpUtXBdEvX76Mn/u5n8Mf/uEf4rHHHsPtZPpcp/3QD/0QLl68iL/4i794UfePbPsZ++elb34TlSDI07NcJi8X2nJBTnAuSXAxVBuvSuvv1A7i0UfVIv7d78Zn0u8zWqdxDLzhDTYwI2D3QGNjajPe6wHnzllMcmLCSkpwzyPxvPl5tc8gAHn77WofJI2s274fmY0qtSjrda1rffKk1cbsdoGjR3GxdtD4A/iVJAo1GsD0tNowknws97RpavanOeIxgYXXHBvYL/Wm8WI3wOIi8MQT6nkM3tZsKsIdA6cSB2FaGxvIMdB9X9UdNWsJprunlqemdOA3AiiApRY2GhjEFdN+9TpQaX/DNoQEjrk7JkNeM8lN/WcZ1vyKZunZ+HKsLwIEw07J81rqi1IjVgYIY3dlO7BvUTKVz2WWg+5FewEFSunxcLVPddC6c+c9nDmjwKPpc1+2G3dpR47g2XnFyGR+19fVX/exzGOW5dulVFL4VgXL+YC63/ympfIBqnOwgQmQSx1eaXfcgX7jAIJ02fbz8+dVx+H7225TJxtOnwa+9jWVYVIQ6fVieaX3iCbZbZJprxtw8exZ7DtyZFvM3U8DuJ7t/AqAe4FrmrtHNrIXa2buPnkSFbJXJYAqT4oVAeyLiypox759OJXcA98HZp7+MxUM4fhx9f0HP4hf/a93mp9/kihcOkAfp1oBzp5Vc4ecy4GteOb0NDA9NcDzLc8EzOT8/Kd/qqYcZu+++4D7b7+o3uiBvZ955qCMDNCYJEAlu2jH7W5XiZmfOwf86I/iWdyZ8xl89atWkiVN7Qk4suo7HaX53espEnK5rOYoOvU5/J4+reb7H/1RnT714jXj/XnM4GMfU2WfnbVAuO8Dhw4BVVw0bdRHYJYdDI+ye7d6fq2m5pjJSSDqvgD4Pk51q+h0VNlNQOuFhfzCiHO3nuR4im5qSgc0lw5wMqvn59VrdhY4ehSDMDKA+Ayet5N/rYa11MsFLaf/lVPU0pLlHzQaQGXhy+riQ4ew3FWBUxcXlbb63Xfnu2gca2eDfvjFbmCKxT5CvJdTkbfwDasrz8ZutdT8x7lRZ+YbC6oPNhrAPY2LqmFPnDD68gCAH/oh/PkTFTQawJ2NZSyjgv/yX9QlDz2k+g3n8FYLuT6dZcDnPqfq4c1vBqYv/Z0tWLut0pKeEsbd4XxOJgkrF7Dt2WxiLd6j+sLjj6sOwP3eH/2R6gdveANw9KhK53OfUwut229XabAzchzg8yWTnx77YXP3889j3733jubum8yuz3UyspfFikBMVx+ashSu7ItkvfK9vF/eQ8CaQD3/kjkuJUMko9hl1hLcJkhJ4FYGjXRBbymLcSUtZF4vyzFM6kWW12U5y+8YfDKKopwMiLyPgDyBd74IxhaxnaWkjJs3WY+ULZGMbMlSJsDe6/WwurpqQHS2lQTsJXufALvUc5f1wRMKbptJB4JsNz5XOj/kPawPyrnI9KRzgvezLShRw79FzOyiwJ10LBFEl1IyrjNEllv29aLnF8m5yPYcZm6/dPNfFFi2KNjqzWQvlol+LfYzP/Mz+L3f+z388R//MSYnJ01Qq507d2J8fBwA8J73vAdnzpzBJz7xCQDABz/4QTSbTdx1113o9/v45Cc/iU9/+tP49Kc/fR2lGtl3lEmar/xMbr6L2Kf6M4PXSaqwRgazTO0Zjh9Xa/kHH1S3e+0XDHPZTyo50HRhQe0rCPzSXBLOxoa6loA49wg5RjIzkGUIajVAy7hwM2aKxbKStl6rodVSJCVJ2pVgJ8FZ4hhAXi/bIYaZ/QrT7meeYsHr9PsIzIadgP3OnRZw5klwwOq1yubq9RS4zE0e8xGGUIFMAUAHzJQy6oaJzw8Fs87L+gjDwOKlLMDKikqMmy56G8LQZCzTaQW68L6DufK0siRGy3qTQAbzyrJLgrXvb9V/J5jDuKwSF+e+kCw5kwnZOEA+Q+Z4Q8USwV3HkgYunm8HeOaZ4j2xBAzoDGG/ktg0qxYdjU6cPq0KcuZMvjPyKAd39/J3K2UbYD8KCDYQgFpdzaNUm5sqvfl5ex7dBcuvNl7Q5P/de25wG7HZRnZDW5YBO3bY3x7/ygGziKGeZcbjykCeM4D1+j73HNDtGp+i9I1Wwwy1WmDGryBbM3OXHEY5hk9OQp9Ii7CwYPG8LFNY34kTVtVkfBzWialfQRjC9z0DHFOvPMtgx0Ae++JEGcdYPGnnkPV1C6Bz2jKniaCcvL4foddT15bLCsjm/dLJe+GCjVdaaSQ2EqquW1Yh8zgxYbFcAGg0qrm1AMF5YvG+r9L2fcqODICTatGTNKt5n61sT+k9FwsOX6frYWDnK4LGnNM4d09MKLZ6rYZuVwXwnKnpNPT8EM4exNmztguyLoldt9uWhZ7rg2mKUK+90tS2IwNkc/72fU/fG5jssliuT8g8X17Eo37MHNcjaQogwsqK9T+bDsEOWy7jYlbBk0+qj+6ci9FtqbbpdICzZ+0UmyT2t0EnD2DrolSCXaCRAs9o826/ZcR52Y6i3vhZmgIRF4KMOgtYL0+rpV7z8+qHVasph/jV9NVZfjmObHMbzd0vnY1A9O8QIygnQUMJMLsgtGtS6/pKATMlO9u9vyhPw/Iqvyu692rPkyCk+7witrsE7yUr+1qCgvJeWT/y3iKQvMiGBQctChI6rHyuZvmwepLA/zBgd5jJZw4Dmt1rhrHU3fxcDTS9GkjKdIYFepV1UnQSoChPzO8wMNuNO3A1GybtUpTuzW7fShD9wx/+MADgwQcfzH3+u7/7u/iJn/gJACog1qlTp8x3/X4f7373u3HmzBmMj4/jrrvuwp/92Z/hB37gB6453ZF9B9q1LJy37GCu8Bxn4V4uW0ZxDsD0fXNLgD58X0l+FMXTlFnk5ov/J5Dq+9dWFgm6DuApSRIi4qQNa3N9CUUxPt1qkfe4MtKFN+sLXPb1+LjdoxepkEnchPni/dqPdtUmMw8C8g/RG1Q/DCwGI8EYmZipfJugKRafk+RlZWQ9ynLr/azpA6wLPr7osJTciLvN72Z5Y0Pngw8nJbyogp2bCYxv6QPiGmrXurhV0SOHtc2WvizbRdZ1UV6F3MtQk52G9UBBYheQuZIVAenDOvs1dcQbx0Yb8ZFtSxs2/8lBVMzPV5oufV9hq2Gob0lC+Jnwqen/BFkffhyYWA7uM118UC4PcsOM9KbrDxU72cZIMZg1J4YiB981mAR6fV/Nl6VSfuymE9cdurJMrBvEIC8P53CekJ9JvoL0WY+N5U8o8XNphcNx0cOEnJcXxyiVvK0PcOu5YFIzaYmG87I+xseDLfNZuWzj2dBZveV+pxyyD3BOl33ErQPZr8w6suj0pGQyiIz4vpXqMR/Ixtbll9OrDAbq2pWmYGOy41PkXoL+8mIZCMBt1yyzaKa7eJqYuPa5u6gjX4uN5u6b1rZXy9+kJgE4+dcFC13JCb7f2NgwbHDJBJbBGAlAUtaEzGJ5Pe8hUCmZyq60hwRvmWfJBCfz3AWvXVDUZVmToT0YDNDv93NgtHwGAW6ysQmAE5wulUqIosjI3TAopguMs375+fj4OIIgMBI6UiKFjGVq1ReB+9TXduVcyEaX9UXZD5aP7SPri+Vjm0umOwO5EkyXdSHLxnoCAMngZjvKkwpFJvuD1JyXjguWk21XBDTLdORJAtlfpXSMq/nOvMv6cfuf67whcE62P9uH9eX2XbcvyraVf2W67l8pTTQC1L91di31+rGPfSz3/hd/8Rfxi7/4i9+iHI1s21rR4lqCYvLlfFbiPkWe4xaL/N27gQceUHsEsq4O1GOg28UgjLB4Ul0TlboIsgx3NhVDai0LcmwlmQVpk5NWzSKnnOQilfpvHKvjzYAlBVV5bFbIq3Cv4u7VuT+R0hz8jHrb1CJlekI612zM0hQIbCRVBP4AceyhXldHvwH7bJaNVcxNp9wHk1jmypz4Poy0Subgq4E/sJVA1J0FMzrnQK1WUUFF+UB5BFhWuggMap6vKVsegKo4XhAmUY7sTYaXBNAlLixJZwTCi/aK8j0dMvLazU1FQPN3VeDHFRW4jBov6+u2EvmX9HVYKfpqMsgjBSIjk5PqKD6g0jagPfKxYeWeWZaDVRz4Qu+YH/q+otJ1OjavFL/nw1lhzz2X34inqcpHBlsuQF3D49mURpictEfAr4TmSECAzyqyK3qRRjaykV23uR7dK/0GJYAukEifQ5h0pukJj0OKlhfHuXPAhQse5uaUFNZFVPHccx5uvx2oLpyAB2BazwfPp1UT5yKK7W9eKoFR2oxBjE1ASwkEG+dygFJJsZwD9DHwA1zM9gCc++pQgLZmHTN4I3FLDlnUOs8yNQdkmcpUFAL331/JOWNdpSzmeWzMHgaqMIYKAHS7qM+ZeKlGHUMWiWnz1Bg/37dPrUmaTSubboB6PWfKZ5i64YJgddVkdpBUlcyJrui4NqOurdfzx56oK9doqMqgRkoY2iFeSpwBQKuF2dn9OUI7oMpCBvrsLHBwdmBp9nqe1Op/qNdVHZKrwCmMXVTWDZcL7tqPB6cONBvqQuZzfFxVpO/b01lac0grsul4Jsg7jvWxtyRRMjPNpuoX4+MRmk31aJ5OmJiwSySu5bhmkd3BLNg4nx46tFW7J0lUnsfGbAfodoEvftHqFPKEBZ9Zr+e9Sd/zParTjY/b+ubcLR1MVwPQ5QKr6JqrxJIb2XemjVZs28SuBUAnQEmwWAKoAAwoKJnUBMoJQlLXmt9JoJGBRH3fNyAg05aBQQmCuiAjwcM0TbG5uWnkPyR47sqCSJPPyLLMANHMC7Xifd83ZWDgT/6VIDs1tAmGE0RnHbFMUl9+cnIS5XLZgOlsExmIUmpou3VAkLbX6xldbGpmSykW6SQg+EzAOAiCLUFXAeQCkkpQnmB6EARbgGqeLqB2OIFoGSyV9XElEJ1GBwIDn7KPSPka1o/sy3y2TE+yvwmOU7e+XC6b9pKyLnQ0DAPRmR/WudTZp5wO88F+KMsgJYsoceSePpC/VSnZIvsvHSQ3O4j+rWSij2xk3xLjYlqCzcUNMwABAABJREFUpS6QLj4zGy7KfNB8xTLfu9dqRh4/rk6cNhoRAqhTrvPz6v7prKU2Dt/8JgAg+v7vRxbuMfuQXs9igjJAWBwr0HLfvjyeO4AH+AE8h6nEvcXKigIGfB9AvYK4VkEQLqgEdLkkcL6ykmeL8Uh7HOtj12kKtBRaHumdc6UZo595WFjY6gDo9YAwDBCEts6rsY8kCYzGugSSoevrwoU8MMvNHLVcp6YAr7sMhEqXPMvsyWKJqZoPeNyZmzICrPPzRhA+aDTsd7IQjQbWsgARK0XvUgfk9lA0taXblpvWMISXJEiSPWZ/7/tCn130IcQxgjBEllTMHpFt75IQXSM+Tnb4xoY9Sn7pEoH7CuK4gkoztP1eBAntZx4C9BUTr3MR1W4X6GRbN6i6gaNsGXfcUTF1zSPvgJXnCUM6XKzGLPNo9r5SG4EdgnVKoX7a3r3GoXGxGyBpAF6rpQpLD1SaqnLwefRa+D7W4j1YWdE6708+qTb4t92mnu3S6iVQ74Losj5c0I5oyTaxEZttZDe08XdNk85tvudnQ+7NOSEdEL1WUxIur6p/A4hj/LfH96DVAu6cGwAnTqBdfw0+/WmlD159/HE1QU5NAUmC+A0/jPl5+vYCM0ykqQ29EccKM5ybUxrZk5MAwgQDeEZVK4Iat8JEyaAEnReAkyfhHTqEJ5+sGmC2VgPupHRHt1sYUFvijnL8pxbJNMFiisCnKdBJUa9XTRVy+iKIHDeqCrxvt5UUyuIpPPjgfmRZ3u8JWNWNLLMAMuduAu6NBlCN++gLOZNIg8CcllZWdPDpLLNOTz23roVVtBaAA4xwmmWGrT2ozyhHOPtIvY5z5z1Mz84aT/0gqeZik2CxrXRM6KzJMkTdLqIkQdyYMc4CQDuWKY7++KL1FkA58Xu9vO+W6mFyzZZlVnpn927VnZhd2YcomZOmHur1GVSbiSqvWJT1Z+/E0hKwK1aOF2/+71B57jmFhuu4LcaRoAvsdZfx0EMVHQC3i0otxKFDqj/Sx7BrFxCky4jjinHQM2A6ZeZ9H1bzhdFojx61hWi3reeIBWw08DeLe1Cv78HM+mNqcUp9oTTFRhkYJBV4DHyq83zKP4BOB7in9rwKphPHyvPFazh/S2OFciHljh3yOvkD2iY2mrtfOts+rT6yQp1oCRQSaKVeuQtM8jPJFJaANcHJiYkJA7oCFhAliE7AWgaCJOBJwJH/lwxgCVgSbHUZ0i4T2pXckCA6A0EyHywDg6wSRC+VSpiYmMgFZaXDwNUOl7rsTF+C6HEcGxZ6qVQy+bl8+bIBxGVAShmIUgaVZBBRvnelZPg8yVqmBrpsTwnsso5cEF0C4HQgEMRmudkWBKCvh4nOvLCNZaBMVyJF6uq7/XgYkM7P6OgggC410GU+x8RGlEFpZV2xjshAZ1tRZ57llux83s924HsJoLuOLjdugQuk3+x66MAIRB/ZNjIJevElGadS/1lcY9bXZETJ+6D2KZWT/x8Qx+h27zSBqKq+jwsXFFY7PQ1gva122I89pp5x993wZ/eY9f76ugVBibOSWTQ1BczUB7lFP/8rdceRqQ1VkKXAZAVf/7rdTyQJcCAMzZFbuekGLIuNbGke9S6XYRlHrVYOnITvI/B9NJv7sbRktcx934K5fhyoRbx+hpemqNBLwHzrDdOu2gwuXVJpy414GKoNXJAuA/MtE+zMazbh6w0sp6Qcjsl8y3SSRAHHnY4CwPldkqBfmwF8INAb53NLAS5cUFqvlabKyFqq5rko1O1x+rQVr6dIrAYporlErdLJWltYUJ4CbvzIJEsSxA0V8MnVUQXU+yKZF+rbsggET8iI5PFzFUCvqgALohVxjFOLagPdbAYK0GnrPioZYbIuNbBRCTUSkSiHguyvXtY3v6fJyT2mHOxPORA9y6xzIlSB4nwfyjFElEWzCgdJFefPq/iAtRpw0NUQ4G84DLGGSLE4a0rj/XOPqq77zp+aUyD61JQCGugEkSY31OzMElh3PT/bFETfoV/Xc/3IRvZts2GAufwNFgHoRXM3f5ucA7IMu3erIQCf/K9As4mFxR/GiRP6/vl5LJVfg0cfBY4dA777iScsWFivI/6hHzb4rtTxzjIrWU0AdXYWmC5dBPwYy93AFCEMgchXb7xMSb2h1VLjU72Op5+u4tIlhUXW68CdHH+6XcR1Wy1ZZosmD1ItLRHj7ao56q//2pa/0TAZ9wDU61UzV9DvzLl/164KAr+jHphlmGnowrZF2wBA/UBOL136LBoNHSiz/QIw30ZQrwOo6vWBihnjYYAoVMAxADt3k4Udhmi11PR0wO+ohRXnz3odi4tAuRxgWgO35857OHcOKDUqqM7NYeAHZp4y4PbSkvLaA6oSCZLXagiOKOe2KdDjJ1Q9cpHDeWt83KzfiFdTvhtQjmUgH2um11Nt6nUuIvCVNn6YBGapcvZsfh4/fDhCRaxfUKvh6adV1g8dAvY3fHUy64//WH3AYNk8YsD1WqeDoD1vK6DTweysdSyMjan1IzodxDqWTxjatU6tFljfepJYtkeS4G9OBAjDAHfOzqqO02io9DXQPqjP4HH1U8M/7vXsWnJiQhV0p9byb+w3GveDuII//STwzDPA//P/zKDS6ajF9Nxc/scmfwz8IRLQF/I/uffu2HI1xsINZKO5+6WzEYj+HWJSq1wCdgQiJfhH8FRKpkhwWbKRAQvMuiCqBOqBrUEpJUDmylnwJfPtBkYt0rSWgKQb/JHlkqxgloPgq+/7hn1fFBRU3i/riddT9oV/+/2+ud4NlEmAnCaBdYLokkUvpUgkk90FvF3JEyDvKJF1xf9LFjbvd3XWi+rCbZer9UGmK9n4sp8UadhLK9Ifl/liPbntKOuA97h5c/PossJdWSDWtXuqQp7uKHo+yzmsfuTv82a3EYg+sm1p3OXJRbf8zvm/70PtgjSLW1oYAjixANRq6PXuNEEkAcvo2tyEDfRE2na3uwWHozE4FDHPiQlsCUpmrIiF0+0aAFHuFWSZ5W0STJcAuu9rkhY3JZIiLxjwQb2O8fHABoyEJWqFodCIl1G6ZCY0qBvUB/B9O/bL4gbo20310pKgbAeGtOj7WwFoUwFkrEFJ0QRkupGVl2Wm3QJNH7vUUk3W7QJxPcphOObZjOxGKjhgRWB5MRGX8+ft8YAwVBWkI3AG/gBhqMouVQyGxc3yfdVOlNhRoFFgMCQ3qGenA8Wo12kP/MAcrkhTICKwff58vvJlgnwwd91QgHeog6x6Wd8mmqYIa/nbJbCCbpbrS4MwwpL2L1S56WdacYxuV1UzGX454+9StzVlkgB1z+Ki+tmtZQEi9gW2u9yIu+WWP54iwI7XFP0ub3Ab06/ruX5kI3vZbdjvsOC73M/RCUQyPq7lNBYWAN9HtwsbVLLTwfq6+qrbhRojzp41GikeBsgyb0tWODwC1gEex1AnuHwfvZ6dq9T4lOXnY4K4aYpz52xQ8TAEkGh0vNdDuZyf50olG2eSZTahT+j81+VEp6MWFkJDLEjU3ONyCOgIDwCrE8bo5w4IGTYPbGkGjveVeGBZy5xzQxt82/e1QyHLADVC5zOi88o5DXFmwXU9aRu/fKLmXWLdar4IkKU2NIiZN1lA2vo6jPA9H8i/RPCp+00xfV1Y+oOjUK1hpA+IxranUhk6XTuPxj583zMEBC5xWLYK55ckQR8Bzp1T1Tk7a/ssFhYsdZ5eFWaM6P7Zs1bLJ8vMNGhMO6NlX2IbxHFgLhv4gTqloNNqtdT1d87GqoJ5TE43MKUODTNfEld0RfE0Zhh6iDRRZH4e+MpXdLDbXk91dkr3uHO3NIfsUvi5nLu3kY3m7pfOtlfL38QmAThX0qXo2iJ5Cd7jSsEMA6yLACv3OoKVvu8bKRk3Hy5oPzY2ZtjXEoDesWOHYTATZJYMZ6ZH0JSs7LGxMWRZlgPLS6VSTqpGlsl1NhTVx7D6d6U5pA69yzTmi1Yk8VKUnmQnDwMNi9rU1ZGXzG633SXjveg5rhTKMHP7pdT8lmxt6eCQfULmkwx5F+Av0u6XeuuyrqS8kaxP2ZeKynylskvHjbxfXjusvmSdFKV/s9sIRB/ZDW2bm8AVTuDkTO56xLhPlhTW1y3dSOtRkpDLe6amFIMIAJAk2Dgrvg9Du7kQz2fQKspDAjY4lAEcmZGiBb/+bC31kKZANbG7H+7xLPsXJgqq3DhJTNw9RZ+mAGqhRQTkJoQbIA3gSvBaPisIC/Itg4WJOncxTL4GlK7hEWFN+5J53RL0Ms3yujB6Y5ZlyMmzSK1Uk7Dvm9PCYQh46Rr8MDLX9DNPMdWkYP3EhGpEeiHEswzqLQVHuZnV4D7bhFVTFJDM7QIDeKp/+j6Q2XaUf80zBPrsQWnUA3pjm+pEmCfZ36TjhImLZ+UwZgdwZp92H7mlH0GezPadi/MgfO4aCrCLiG9CtQGbm7aJjSNJdq6i/8PJn8zAMCtCTW5gGx0JH9kNbdf6W5LXOeMJh1n0egp049wdhoiRd8bVako1Cr4P1Gpm3hwbg/oPozbqOTCOg1zcEE6NrmKW78P8R6iGwGQQQB8B2m1gRoxhBBup3W7ejI+7scFzsi4yPwAs4Cg11JgJnRHKk8mvWF1Zhvy4V3QaB/kAqTTi0bm5Uo/ZaTdfBgvURtZxLEHgctkmJ05wcWAvGp7py47CAfrC6aHy5SGSgvAbG/kA124ZqWvC/FA8PI6NP0J2RT5ShvaQGuPmmSINeaJg167c8io3F/uh7RNxrBMbH7d1Ik3fN4Cn1k/sw+I3wmbd2AAQ+rlbwxBijWez4WV9m4EwtH3d3ATbV0TMlYkJABjP6wWGoVF2iWPGsrHl5OnI3A/Irewh63dTEMfpk/t8NHfftDYC0beJXQlEl2CeCxK7gKELtBYBrFLrnM9006PMiW8Gb8VAD4IAZPdKtrXU5C6VSjlQlddS5mXHjh1YWVnJSawwrbGxMcRxjMuXL2N8fNxIpBB8JZN+cnISlHbhfYDV5paALQNTuqCoBH8JhG5sbBi2tAwIysCU6+vrWFtbM59J/e8ioFUCty7Y7J4akLI5bAM3wCjrX0qWMB0C0fwr88M2l4FkXSBf5rEIpJZOAraJPBFRBHCzXVgWSghJkzItUkef+dhwqHayPpneMFBfauBLpwNlYADknCFsF15LRw0/lycPWHbWBZ8zDNC/GW0Eoo/shrY0tcicXCjL3ZZcRHMXzGt83wanXFhQr8OH1VHV2VnMJlpmRad15EF7UvpUVsHqqo1FibCmmFyUkQhDBOhjesrH1JRn4kb1elaig/eOj8NsuLjhZVG6XQ8bGzDMtdlZDzNJDN+3+2YTH/MEjK5r56TFkXkNN8889uz7rI4AcVxFZXYWuR2joDoTtKQWKxVMFN7tKSYVM56jPiFX976W9GCTMS9qv1VFMluF12wq4KGVb9KpKSknop9JOr/e3Bl2frOpPms0lIwLnAV1miJJVF6qcR9YWISXJAiTPeaYdRhGqB45ohpdZhrIIzTctDL6l0Q69Pvz55EDR2Q1CRwht0e1+LYC0gnekCTHwwN89et7zHFtdLvYX4uBum8ZfWGoqG3M2xCnjQHudWUGoY+AwLZwEnlZH3EcmHz5vpDBEfXURwBkUj9WbMKF8ZT4zp0AzjlI1ewslrMIMYAovWieHdcj4mbqt+yy3EV7m8p2N92ywnmNNL4v0ty5QW20ER/ZtrEigKsIMON4pceuel05P/H1rysa7OHDatyfncVsquVF9KDz0ENqbFlLPUQPPojucaWMMTkJNWfX62rs2Kl0J+bmqmg0lCRHs1k1Y2y7bYYj7Nyph4xaDYMwAtL8KaM1REAY4ZmngTNngH/ypjkllg2VzSxT8s/1OoCTscpHo5FTKMuyfEgJDlG1mhqO/i7dj8bR/Yrf3etZprJAyjknMlZku60AXeN85xjIo3VkAzsOU4LFfPyFC2o9oKa5CIgjZCHQ7XD+FESBVlvJjdRSTMexmr9nZ+0CQOc7DHV7KB0yoNnEWupZx4FmOJe1P7teBzA/jyCOUa3V0EeAhQWVr4PHjqlnMaZJr6dY+3Lu46TEiKgsKBOs1cxBM3WwzIL16+u2P9RqW2NkMx0GRt+1Kx+js91WjPRuFzbOR6cDL01x+PAe9HrA9K6+urBeB97whny76Of3Mw9ZCivnJuY0r3MRke9jZaOCS5eA6V2qAzEQfBzDnI6ozCbK+eD3raSN1j7no40UHBeBOjhAlirZ9HodwDengbvuUhUxOQk0mzj7jHpU0Dol1g8ZDh2qwvf175ALYnnEErD9klY0d1/JyIrfJjaau186G4Ho28AkaOkyp4t0ql0tZmkuU9mVdKGRGc70aS57ONQDDK8lSLi+vg4GIF1fX8/pi0uQXoKOku1LsJOgaRzHqFarCIIAO3fuzDHMJbjMvEi9cwmqSl1rAuK8ztUAl2ArHQEMPkn9bMq39Pt99Ho99Pt9rKysYH193bxn/qjRLoNgXolV7TK2mX8X7AWAIAiwubmZCzoqdbcBmLog8AtY54frMJH9SLaP20YyHenQkCx9t++5wD+dKrK+i5jhUsKGTgTZx6V+ugv4F4H/LL+rEy9fBMGlQ4JpyN8LQXb2FVkvlIthX3ADit7MwPAIRB/ZDW2rq1tZwcBWNpYE0C0yqa7hAn1+Xr1+6qfwZdyD6Q3gYFOBq7yucuILqNRq+LvsIL70JbvXDEPYzU2no3ZXYWgQa6/bRbVWQzw3wxPbAPKyKgMh1UHLMrX/W1lROAFPt9aPqSPRjYYGDhcWgMXUALnLWYRWS+3XGw11TxyrdNttq+jBPHS7CsBsNqsYj4GKv5YXhE1TJEnFVC034oBV2oibETxZzxsblnIv2oB7JFk+mt0P2boIQ+sk8DoXrXRKmqo6bzSMhEuWqQ08ACzHMwgPz6DVAhafVPu5uTnNqOuqDFTCPiqxD5zUbd9swq/tAaDytbEBTE3tx8R37TdtFWEN5mwz+xEZV6T2xTEGYZTrdhcuWBybGK+MrUmWlnJKqHxKdh2B9GqsPpieUpvn+XnrGFlYAOr1QGnSS70XJlqvY1Cfyf2E2MS9nuq2zPPOnZ7acBOMAdAPlYRQhX07TVGrBbZeskwFLeVD9CaX+/HIV+y2gR8gCwMEoQW6fV+BDLt2aWmfS7rhGw0M4orRoZ2bA6KTJ1XmazV4cYy77ppRm3fSKyWIzgoUfTnHPnQZiWxXychkZx2B6CMb2Utn7mRX9J17DRFL34e38A018J08qUD0d7wDX2gfRDMD9ifLwPyiEa0+mH4ZB481cG6livnOfnS7CsBOEqj/pKl12rXb2J9kwIIaQ4Oki8OH96PTUdLUpZJeG7RagN/Axa4C0KU/cmNDZSlNgf/9v4GvfhWYmwtw5759QBia2JDf3byonhOGKh+zs2g/bgHr8XFDrsfKihqCpqdVHk6cAP7rf1XV8YY3fB9qNSDqvmDH/qUloF6nSo3BixcWVL60vx2ox3a9cuaMnXQdJq/vB4azINU26KxvtfLgeRwbn4EN0M2yzs5iuXYAlabe88UxiNF+o11Bcvj7VDFO2ucnCYB5NadN1hVQ7rWeVxHfazWg2UTQaKDVCrS8SIAwnMGhQzOoZBdV5hYXc45ukhY8Avfas8DPu12gpeuLRAQ5r1OShwHAJca9lkXI9FqHc2SQpjhYA1ADvuxXDb7fn60iyNaMlnjFb6ECAOd0/TWbNuCmnjPXMiVjY6Y47bThksTL+mpd4/vYjCtYWgIGs4FZpyVJoHwXC23T/6M4Btodc7rhYlYBupZHgFjX3eKiqs9Dh/CNVoSJCeD7HtSEFNyqjn3oujzVjrCwAOzbB9VWgJEcevWrq2g29fqBCz1XCsZ1iLvztePsyX3OZ62tYbvYaO5+6WwEom8Tk6DeMJkOmquFLZnEEpAsYqTzfim1UiQ/IvWpJSBK8JQAo2SJE5gnaLq+vm6ClhLsTdMUm5ubSNMUWZaBATwBIEkSeJ6HOI4RBAHCMDQgMPM5DCyVoC4BcLKyJTAt68Zl9RMklvVAEJ1seoLnvV4Pa2trWF9fN8B9qVQydeMG7iySHCk6dSCBYsAyuQmQl8tlk28C6lIKR2qKS/a1BMaLAHXp2JB/5YsOkyJnCAFxps8ApjKQp1v/sl/RZDDbTWfDOYzx7zqhWG9FpwCknrt83+/3t8jmsN5lWi5DXwaTLQomOgKFR3UwshvYZJQrYPixTaKEXFTLRTgX2YuLKrDU3Bw+9V7gzW8Gpi8tWLQ4TVVQsDBEevQgvvY1Q3pTIHhSVRqSt99u0yDarKORBr4K1FkZF0u7DEAYYy21QLDcF7Tb6jU/rx5zyy3UuB4g6HYsi77XA269FajVjDSpOD1uWMOAjZ/KtHgtpTHm5iIEYd7RENby0iHttsVnSyX1f6ONLkXjSWE3G/F8c3U6+bxISW65eR4bg7q41bIX1Wo4d16N9VIahc+lJPbiomqnO+cGeQRf6qGePg2EIby5OWRZYJj2Z86oy5mPW26JVHAzaXGcA/Ip5wrkGffSxyNZjfoR5ntqj/tJNbd3DHzkKiwAEMf7c0UJQygQnf1uZcVuaBsNLCzYepXgOYl6lJFtNBRQL9sz8yvo9YDKLtuAcaLz22oXA16+j25Hl1Of8U9DVa6qwyIL/EG+YwG4mFXQOmnrdHYWNlioRoam5xLs2hUBndQWTArGsy/KjTc7WBH1X3ZI2am2EZttB65vcz0KTjayb6sVzdNXuo6/TamtQtR2YQE4exZrjYP42AeAn/gJYCacV99RouOxx4Akweqx/wuPa5Ca8RlNIEM64NptGxhRjyVemqJaq2FqSjFnMT8PfPOber6NDJBK29iwc/eJEwo7PHkSuLOhUFZN8AX+1xdtBMlmE8+3vBwTvVTSJ6W6XYRTatyMfH3aCHtYLABqzP6BN9Ts/Li6CsA6R1ltZECz2GYMZJ3aI0O5dvD9IDckcqjeuVMld/KkqhaNZwOAjaPSbiu9buqnNZv46leBqSkPB/SpMb+t5nk6hpnW9LQO1MlTaNoZr/ToW9YroBuh06marsFh+/DhKqqN0ALl+sSVjYEeAX6EbtvOy6wSriXk1CBBdL6PYyggvNOFX9tjlo6AzivXa7pv1ea+z5wma7WARiOCJ+PKkCiQJMChQ/iLxzwVhLapfhO8l/XU6ajpfnJS3VZNfLMQycKDJphppG+mZJGZ/LloYR7CEAsndND6pjphtpYGyLIIFXYA38fCgg7i++ST6n4thzgII6QpsPCkje+K+Xn1d2wMyDJM117A9KFEAffsyC4TXRYS2HqSTn5XZOK3sB1sNHe/dDYC0beRXQl4cxnpRSx0IC8fIj8rsqLAh5IN7DKG+VwCxRKoJ5DuyqbIdAg4bmxsGBCd5XKBYN/3TaBQCfpKWREJRBNwLZLcuFY2rHw28y8B5GGa6LyGdeNqftNk+7r5kfIkLmNbtoV7yoBOAPc79xrpNHCDlso0JQgsA8O6wWLd0wZ0dtD5IvPvBi5lG7unI1jf8tSBmze+d9n9RX1Z1pus3yImu3Reyb4sT2vIfiHzNcwxMrIRE31kN7gNY7JJZsq1bNYJuq2uYi0LsLio19ylbh507XTMeWZunojDZRmULqjQozQ7LW5KXCCP5mxaid+R5U2cv9u1G2IA+S+YzzBE6uCZlObwQiDLAvNMiRPycXpvg8Bh97v7FJkv5jNwL+Bf8X8/3HosnP4NkuG4zwUsa39LoroA1GV3u8LKiqorBg41+KcLrDIDq6sisGzgJmNMMffC3HMIoHe76hEM6AkoJqGsb0q2ZFk+qGium+pnM8Bdrv4dRrUf56smy0QZufvv9UzCBGiYHutPAuhbTj+LzG1uItcZvKyfRxZc09eafEGUvZR/1paOqeV5ZBtmGfJOGu2RCBLf3jcsP/L7IfkcuiG/VtDvBrERm21k29rcAV1OVvzLgVYPDisryhfa7QLIuvkJTUtW8L/EJn0fQKgHUYJ4PP5F4xwbhgjDqk1bA3N0+tKkf55y7XTK8ss41tJX9A76vpJeaeX9BiatbhdeHMP3A5sf7DFYKwneSopLm55g3KErTdVYb6Y7dxEwhOXrDo0cjzlvsCg8bbZlDllfVxOIztfqqj6sJiqvVLL1RYkzA8QXjcGceBlBO8tyADf/drs6now4fcRutbFh50HZHIxlI5eA0uT6zHwnnK1bsssE9eJEroH4CtzM6+Cd/czD+fP5fmbaD7aZZAz0ATx4ohHcKdHgz/IYmrMA4CkyW6bAzuW6rxhHBCsuDNH3I6Rd9ehcX+CCbn3dHoNk5hzCxZa6KzL3BFmRZdnoFNlNaiMQfZuZCwxKUImsWPmXMiWS7St1yhnIk0Y2eRGA6QKHLiPeNQmQSlCULwn8SxaxBMjL5TLCMDTvXc1uCY4WOQhk2QjAUkpFfk6plo2NDZMG65myLRLAZ5mp/84XZT9cHXcy0dkmLrOcwLtsYxf4dU8O8FrXIeKyzflcyrjIPPBF0LsIfJas88uXL0PKt0j2ugSRZTBXybiX5kq4MH35l89y29l9jrRh/bHIigB39zlFvwWX9e46D4qeU1T2m91GIPrIto0V7Q648fb9vHZK0X2aahz5fTSbgZJBWeyo7+t1uyOGkYE08qOFz3OjkkkWPN8LEJZfuRKP/IxZp+xHjhrFtEQATTLjgnTZMpt8H43GPQbslfIdvq+0tkncQxzmEpfVRPY6YJnoaao1OQF7zpsXOwG2ANUcm5v2iDRPWE9MqI0gL5+ctNKaWA/tDRq54OaM1UkCIQPJZZk69u37OgAa6Xhy0zY5qRLWlHoTRMvpTkxjEEbKMaErhZtIbsYB9VcWm0mNj9tyyu7JdlWBxGA6gpsXY9rLQIlSQKU/MQGgLRorTVW5NEogu6TsrqwrOjFqNVgqnwAdAK0rzEQFaJDbABsxXPHTNGtfBiS1laOUWAK7IaRcTHOP2QMvLWn8RQak0529j0A5cSSNkxV4NQDc3bS7G/ltBqADo434yG5wG+Y84/uiAVi+5zVkNpdK2LVLHQSr1wEsdNS1t9+uBo2vfx0YG+OBHExMiMdyjODYEYZK60TKShjnHuw1OjhFr6eG2igcYAAV/2Rz02LyuZALuqxmDqfkWZIYCbAwVOzuvXt1WR57UuXt2DEjN8b6YDbqdTs1BlwP6DVP2rVzIoNxcgyOYz0vNpsWtJ2YsEevhPfSBCLVyVMqrl5X+eWpPFan9gvA6y6rCY4RJPUkyDaAr3TDFxfVuoLxQI2vQFdVEIdm7DfALJF2equzfIBM5qdc1qCy1luRjm8J9rP+GQSUdSy7Jk9yce0Tx6r8im2uLlQxTDwDlJvuy0XN+DjGx1Udsu2CTEuOUFxdODQCf4Dxcc8yx30fmlOOel1LoCEwimbTUwPr0RDzbrcLFfvG91GPdduMj9tFHC/Ua1Q6/c0zWFG64+VkCFnITgdBovohddfNcpf9vVy2C5EkgWl82XDMi7sAkp+xjoo8BGww1uk2sdHc/dLZCETfZkYWLkFXGSiTgC3BUkqhEDQluE4pFTKlGYCzXC7nAlcC+WCkrgQJn8V80STwePnyZZTL5S1yKtSKJpOcICTToqZ5FEUYHx9HpVLB+Pi4CTwppVaK2O0sKwFSpkPwXoK+lGNJC47SyrJ7noder2fqlxI1rMder2cA5h07dhjgnzY2NoYoinJyIG7QSWlF4HjRaQTJoGb7b25uIgzDHEOa+eZLMsllfUr5Gsmmd2VJeL+sZ5kP2Wdlf2KeJeBMsL1Is5/t4DLQZT+Qz5bBSoex0GX9FcmryN8A21BqvcuTEfyOf1lfEoR3TxGMwGBlIxB9ZDe0yQW3pDBLZrcEceVq3qUYM1jS4iIeeugADtaXgcfmlX7Kgw/a3VOaotlUgcrkhtL3ARPsUqPCa4gU2Eg6D3VTHL1RbhZrNSDKlgHfxxoilEoWXJ2YUK9du7Q2uNxh8nmNBi52PPi+icmlzli3WsATTwC+jzvf1YDvV00V8DT82JjatJfLKlvLXQ8VbuTiGCsr6hrutanDvXOn2gN1OkAHVTRnq/C4GaJgvMPCl5tQNtX0tNpfkbG3sqLA71pNB3fl0Wa2k87X+efs8eVuVx2dX1pSR/qnV7+B+PABc9JbBVTzMDkZgGzzjQ1gutFQFEbtHYgaMcLQyxGjaGT9jY15GB9XG0hNcnR9IwCsukiWMTCZxZenpvIb/Wq4pvqQON4QIQP8EH3NSDebQ93mFfTx3YeAvi5PJewDX0ttn2amdaPt3LlH9aHFU4DvI6nP6CPeWge/qSRypifXgCdPqrxo3YOsox6n1IkCNJtAlcceWOh2WxVUa/8yvxsbAHbFBshX+fKBWg1riIzfpcr8agA/ALA/SZDV9+D0aU3+ZB/QlbmcRWi3gAN+pjozURjZGHL96AJ4PHfvAnVygw6M2GwjG9lLZRJtlWD1MMCsCFwjgqznqWDxG3jTmw7gnuYy8NgCcNttWDv2MHwfCMb/Auh2MVMf4OhRL5ekAYsXFlR+Gg07YZARrNcXYxM6QLQe2Je7nnH6otWClyRotyPje6/X7bwQhjBH2DxODBqJHjT2G5Wqel0B0tHxL6g1yKc+ZQBu79gxdZGeOJNEDbVHj6o5NE2BLN6DqNZRE2GSoDWvhsODswMsdz089phdbzQaKkbKpUt7cPBootYLExPA3JxavyTLZq1U9ZeBWgULCyr5o0dVmRoN5UC4/XbPxOag9HXUeV7VI6NqUvc6ScwUMfADdDrAF7+oAqj/7M8CB/xTuBjvx/Hjat2hqs1DtdEAsgytlsr3gX21/MIlTc38ynkmSdRc2+0C7Y6S4yn31HB+9qx12gN2vSWd5lyj8P3EhA0MyyXn9PiykhMTaHuSBOa+wB/YTqDbvBL2cexYgEo8sDJ1AAy6rp/D423T0xVMTwP4P4tAGKLUUA6VYOHvgJMnMXPsGLo1pTGOJ56w7IRYBaLfuVO1zcmTAe66C5g+92XrXZELmdlZFZA98zA1ZdvIwwA+dL2GIbB3by5EDeLY/o70etsLQ9RqB810aipu1y7l/E6U7M1MlqmAA1NTtuxFxzvkmADkvSzu99fiQL8BbTR3v3Q2AtG3mUlwk2C6ZHCXSiWEYQjJ5pbMb4KKBIzJypZyJBI0lqCmBOh9389JehAYJ5haFKiULOYgCMw9DD5KRjwZ0lEUoVQqIY5jTExMYGJiwoDoksXtypO4wUElY3wwGECys9fX101dyDLIQKC8nvURBIGpBwLzBFfTNDXvCaK7IDzLTvDcZbEDFsBl20j2PSVhJADtOg8keCsBZOaHz6PWt9RB571Mg7r1sr6o804AVPYx18niytC4pw8A5MonnR9Fzhp+J38PRf2AZWcartwR75VMdNmnmC8J3rON2G5uXtjPJSgvQfRhjPeb2UYg+shuaJMLax6BBbZKqnAXxJ2V1IbgIvuWW9Q98/N4zeEYeOwJhcjWavjfTwfY3AzwqsOHgXYb3sI3cGcI9BsHGLfJSKbweWtQwZTunGtYgF/Qtwd+AC9dA3wfKyvqq1oNCqGMY/j1/QAscWdyUr127oSlW/Mcud70n1r0DJNrdhaodJ9XZZifBz75SbUZO3wYBx96yACcfzfvYWHB7tu8rI9zS2pTW2kmZpd4qaXSruIikIQ4vVuxoHbtUvmen1f77/PngftvnwUAnNuoYr0L7K/H9ny2wIh9Xx9pT1O18fp6B/trNaCWoD+7B/PzOjCZ1tG8WDuITgc4UK+r58Wx0dqcnVVZffJJhYf/3/83gP/6P1B94xvRaBwAYOOBctN89qwCRKaPNtRGXDg6wrBaSIjqdhVGTAJklln50kYjD5rTb8NuSMxnclL930ihENFpdUxh+gjUKQI6XuJqrt+vIcLKEjC9fgqYn0eQJAjqdaDVtRvKRkMlND9vzrTvaujTCXqj64UhojC0FXf77ZhuNoETCwoJqdeBI0dwseMZ+Rm1EVf/r4YdW1huxDsdcPdN8H9zUwH9fqj7vf5dDuChtaC6ve8D1VBX1unTqnHOngXGx9F40z/BE0/oPbMGUviMxUV1/4FZvRFvNu1GnJUvG0W+OG5I9is9HUXMtm1io434yG5oMxRX5ANhkL7N36OkcRe9CAKmKXDiBB5+sKb0z0+eBG67DZ/8pLrs//dDR9TAtbCAO5MQ/dqMwfrWECEKxUB++DCe70SYaei0OaaFITCt81+rAWFonL5jYwC+vgA0m2i31dx456zSMq/V1NgdhlATpDyRpvWj5+dV8rWaAsOj+S8Dv/3bwDPP4JRGpPe/5S0quKSolyRRQ909zWWg3cbzmwfQbgP3NNUc2Q9VUOYkAXD8OCpJgqmpA8ZB7bWex6XuDB59FFi6P8D9OuLpqXaEs2eBZrOCXbsqCDovAAsLqB4+jCxT7OJ7GjpY54kOkKaoZhmqAGpHvg+PP67r6cQJVXeHDwO1GvpxVU3dqXKOkxHeaqlmO3MG+PUPDID3/hdUf+iHUKvdA8BKsmzsVg5wBuTEvTV7JFDPoyQdcBmYJIp40OlW8cQTjPuius6ZM7Zpx8aUQ4KPcw8i+b5aQu3apedQ3wfqelEwv6DSF8Exo9i3804q5p5aTbHiF0+hsriovl9ZsYsKSbRgAM9uF3v3VjC9qw98TjMHGqpu8KUvAf/v/wuEIWpHHlYBd//X/1LXvOUtQL2OsSWV78cfV9N6kgDTx59UaT34oG2rdhuYncVaWEWW2sOEqst6yhlAxoDu/5Rcw6QqN+bnYY5njI+j8YaDRuIHs7P2/jjGwoJq+5lapk6LAOo3IZ3X7twrNRR5DFCeQJPjhvxsm9ho7n7pbPu0+sgA5JnoBPgILJVKJQOiS6BXguF8BsFFgvEE4Ane8jqaKxNCMFgyc10g1g3WSXYuwUnmTYKL/G58fBxhGKJSqWBiYiIn6UKQVwKeEkSXAD4B2rGxsRxbmKDoYDAw4Pna2pphW29ubppyMq87duww74MgMAFSWQ98Dq+VpwAIiEvmvQxaSSDdZf67JwJorv62vKZIzoZ5d50MBOMpV+Pqy7NcWZaBOvWus6FcLps+w7K78ieubIurYS5PIcg+UwSiu890me7uc4YBr8N00mX6Uo5G6rxTtkcC7rxGMvTlc0Y2spFtM5OLY4JhRXoocmHN1bwE/nxfgX6AWtF/6UvAM8+oDUyvh698RV12220VTDc04Li4qI5NQx+vdhgvnY7aj+QY3WSk+75i/+r0NzetLrgB2rURyyOuNzmJLVEqB0kV58/bvX6tBlT8NZV/jXi2T5/GAMCeEyfsuWvfR6120FQTGe6bmEG3a+VP1lLF3Nu5E+qZYYhduw5ifd0S/7tdtXcaGwPuvVeBBgtPKxy0VgsUUOv7gMBGvHQNmF+0NzPzSYJgdhZJsl81y9cU+t3xD2JhAThwNDGOiJUVHdDLV8enT55URfa6y8BTTylQ+B8o0IBMP9qFCyrJ5TRQbcTNWLeLsTEFosvj2GNjCoCXGAhxYx6jliA6YEF07vUmJx0tXALoBNN1f+52gSoyIdCa79O8fTrrqM2vZOgTkNJ1icVF83mAvg3Q6vsWkJ6fVy8K0LLvQPUDCTS0WirJuTkASdcy3jKd3/PnjddAAhHMVqDLO4grxrfUbmvwIkReYFfP68FDDyHLVGBTzNZy5WQAPzQzRWWUFH+ZOBtSGgGMzU3b2PIIggTetyGrbWQjuyHN/X1Sg1w6s2hFQDrfE3SMYzVe/dVf2bm7VDJg7j/6RxVM12pGNiI47COO1dy9sgJEu0JzimYQRjh9GkiSCFEcWwQ3TVEqqTmt70cIEh8dPX2VSjCDGPE8BiiNtQPU92F1wfVYQ1B5cVENm7WaXor89Tzw2c9iudXCCSigbL8IoDnwFcuZeCtOnAC6XWRzB9BqAfccio1MVqejTwKdU2WfmDhgmMk410Y3m8GTT6oh/P6jdSAMsbCgsq9kt4DpzQwaVQdQVU1y4oR1dmaZKsDqKipzc0jTGXUjZTqOHcNaWMWCdhbMzQGVtA0vDJGigpUV4G//Fjh7dhNYPAM8+ihw6BDiI/eYg0lyCOb0sJYFSkZOxJ2hkg27TRgC6HaRplWcPKkB5GnVZpw7uL6iLx2w8mzyYOPmppZO4dEpQLUJwXDpBHKDW+vMXOyogKb7Ox3g6aftd5OTFkDmKT4RHTWp6T517hywvm5/Jl//uqLx33cfkoceBk62gK98xTxjLQuM7EyrpYD0N70JNgosvQ0rK2aRxDqRyyLFqBfrizBEd9Fq7GMqzLe5ZsFHfh++ln1Bo27n4jhGa14nmWTqP7t353/f/OuC6iTDsI45h4vTb1v2AiO76WzkYNjGVsTilJrURTIn8l4Cue7ramzZIqa3TLvoWvn/IsZ40feujvqVyuKWv+i9m440ySi/npdbd265ZTu4euYy/64O+bB6H/YMt2zX83LzfKX8ybpyg7L+fYHioralXQ3wvpbAocPKd635KmLAu9rxI7s+c/v+tbxGNrKX3dxN+NXe8zOtiY3VVRtpChaDW19HngHjimmKDZPzNn+NTNNXWtNGKWLLTVv3Eu73vF8GqsxlIMuQAciAfOCoNC2sisK8QwMFzhfSH5umttqYpy3l1+ZhkE+Meer11CvLtshYmqR1podhmlmG3DNLpfwezKkaBcy6DMchxue4L/cavjwM4GGwVZJT3uj+HXbdMMuyfJQxmtxQyjIVXc/64l/dBu4zZfsWZivXCa9QFPE7uWrZdL5MEQrayLT5MPbalZ7PQvFH6NbLNgTPvRfxul770Ic+hFtvvRVhGOK+++7DX/3VX13x+s9//vO47777EIYhDhw4gN/+7d/Off+Vr3wFb3vb29BsNrFjxw588IMffEnSHdk2sL+PVJJ0pK+u5qJvc1rZ3ERe+3zYWKvzsWXuulK68n73vR63pMa2TEAOu6wCDwMTkTED0NevovkztybY2DDD1QAe4PuFawLOh5zPZYBMObby3s1N5MZJ4+fgoojRI9fXt9atGI/l0sOM1/nqABhrpGB9UjTnGl30AsA0N52L+YblKpoy5X2l0tZ2y81fcu3iXuDO7yIh0yasU76cTPczLwcgm3KI55l20J3ck/VnGiqfPROs3Z0rnTXvFc1XuvKF073bUGmKctmpXJEvd01wpTSHLlivNn5sQ0300dz997drXAWO7OW2YcDflYBBCf4VaZm7TN8syzA2NmYY2pRskbIlUk4GsPIVRWlTw1uynsnQJoOZATcJMpOdHscxyuWykXCRjPoixjXZ5WTWS8Y+AJApn6Yp0jTNSajIVxE47gLbRYEypWyIC/hLXXI+U2qgS6a7vN+VkikCrOXpAlffnGxpN+Cn1HPnc8jUZ9nILKfkTlHQUJ4gkPXA6/hcl5Ut685tT1ku16Eg+14RmCqZ53w+2fCyHeTJAZr7rKI8uGkyz/L0hYxTIO+VQUhZZumQuJltJOcyshva5IKaWhlF7JMisFseCZUi3/W6pRQnCVAqoV5XGw+zEWDaOn2jdWooaOpaHilG2wHctSmpiyC3uQx0vgJ/YHS5AXti3ffFG5EeALM5Nsbj4lmG+l/9lbpnYiKXl0rYR70eqHxq2lF33uYn0hkwCjmashXq/25uWpYSA2RFoRo363V1VDvCmmHPR3EManwHUhydzCuhmbraUWWqanZW2lZ5HviB0pSFYu3JAG533aWZeaSGZxmq4Rr8WoTz5y3RWpbp0iVg6tA9RpJnDRFWT6quQTmdnTttrDlXM5VdiDHZyFKfmIBoNMUc7HSANPQQJ3vyQU5Jt4MtCzqpOb0QpMv2Ot9HnOg9ZxoqWh0rIstyGRzAg0dKmWYwmvfsMGw8CrzKPg7FvJuYCLC6mm/rMIQNgMZyMGKsrpww3hqojZ3aw8AEHiNp3jinWPEExNptHD5cRZLo9g9hWHpxXM0H2/V9+xshC1+aZMDKz4o22tfoXLnR7Ft9JPwP/uAP8K53vQsf+tCH8OpXvxq/8zu/gze+8Y149tlnsX///i3Xf/Ob38QP/MAP4Kd/+qfxyU9+En/913+Nd77znZiamsLb3vY2AMDa2hoOHDiAf/pP/yl+/ud//iVJd2Q3qBUxyuXvzAUp5W9WztvyN8/5hK+NDczOqq9zP219baeliK/T48vAQivndAxDKK3qhbYd3MPQCcjsGTJstwtU9bgbxyI930ezCbzylXrYo5yFgz6SUG+GmCQB5uZQPXkSc52O+n3KQJ8Ams39uO02Pd81GkCamsNNnQ5Q1RNjva6HUz0HxPqzjQ31n1JLLRMYQgNZZqTJmk0dZ+NkJwewGlktwALn4lSAmUbm5oCVFaV9vaDKt3u3XkvtsONpGCqN9Xa7ZAXbdT548E42PeeLTgeID323Csq5uAjU6+g8aU/2haFOK81Qq5nwHiaQto4zapjotZour267fuYZ9TxKuZXLgZI8Yx+UncL38/2VJgow1VQnsNANbUMwEq0W0R/4AbIUCBjfQwqz62tY3bjlFuDee1XFck7juqrdRtQI0e4qeZ5yGbj7btEXJybyUeL1GoK3bzH+PtMUnp9hairC9LSeu/lbpAZMHKsEOx3ce28FcQwM4go83zcnGuO4YufuNFVrknpdy9u17HpGEgJkfTJPYajq0Z2rt9GcTRvN3S+dbb/WH5kxF0CX2uUuA9oFK12j/jVBPQK41LvmZzIYJYAtACMBVIKlLghNtreUhZFBPqnnLnXdCaITbJcgNdOTTHKZD6ZLmRaC6JRxYbk3NjaMrEoRsMfnMu9MS4LlEvyWUiwuGE8wn3XJumAbSqeCy4KmU0Nqn8tTBXSAUIaFf3fsUPI1fD7LQGeD1DSnsb2Z9zRNTV4l85r3yICb/E46CmSQ0B07dph6okSO25Z8Jp/nSsBIMF4C+a6mv8wXnSkyf0VAtgTah8kVSZMBYqmX7gLpEth3pXNuVnB4BKKP7IY2uTPmzsjVQ5esHLm5kRsfLthbLaXd2WyqHZMWaj58WL2dnMQWtgz3jji5YI+5+j527VKkOKNrvUWHPVAanxtWhqXTASrcMKQpojBEFnsmoKfZ2DRm1cVakF1uMMtlXS3cbB09qjZLWqcT+/ZZGZGNDaBex9ycknQ5teghywIjT9LpAEkzgp8ZCVij1VnuWfyUxT50SO+r9fMPJHoXdnIhd7wXtRq6qALwENdm4PuAx+O5mlW2FlZttdXUApt7vU4HqNbr8H1VNDo3whB461v1Br/TUZvLXg84cQKVRgN7987k8FQqmSwuqlPVpZKHMIxybC12qVtusYo/HpSWq9wzpqmq7ko8yANAXV05yAchVRvgKNd9Z5qxAUiMY4Y3SOqd76NSqyGsR0AnURtoAuO8mUy2DEorXfeHbhdKuubWW23CrEjeL6VPsgxotTDdaOB/L3g4d07V96FD2knQbNq+SLBJaIp7WR9xHOR+L4hDsxEPANTrqh6aTQCPtVTl796tXpR0WVjAnfUU8Ou42NmDJAlUANssQ72xX2WZHaZcxvPdCur1CrwnnlBHvRkhTYJ1bKOxMZWGJieYjLoA+jZks13P9ddjv/7rv46f/MmfxE/91E8BAD74wQ/if/7P/4kPf/jDeP/737/l+t/+7d/G/v37DUPtjjvuwJNPPokPfOADZiP+yle+Eq985SsBAP/yX/7LlyTdkd2gJoEuooEuUAbkxyL3OynnANiAwtPTBuBlTHDlkwtz87/GXIHPfc5GfdaTSZJATQzz8+ozHXckyNZQTUIsdz0Ty4SSIPu1Z9GA0Rrcu/9+K7vSb75G6Yt/6Uu5tQSTjmOoz/fuVZobDzyAOUbpbDatdli3i/1HfDz44AzGx4GLyQFsbACtp9TXrRaQzO1HqaPG6loNQDwLhCEabVXV6+vAWm0GYQc4dkxNAVwPHai9ACQ+sLBoFyfaaU9/7+DonfDqdeSQ+zTFIKmaOhgcew0A4OkvKWd1va6WILt2AeiqNs1SlT/9k1bPOXQIAOCd+DKq9TrQ2GPWJL4P3Hab8tc++STwp38KTE9HuPfeg+jOK1Uf4fdQbX8uRRUX8frXV5VjPu4Dvo9u10Otpup+fFzXgY7BgjBEEMfw/T3IMvXcTofliHSbVuDHUAHkuY6UMi6SrKEXMB70Oi+OYRaXmsCxXDug1h7n1XQUMchtHCtAkILuvm/6Iu6+WxX29tstsaLRUIV67jmg28XZje/G3/6tmgbf8AbdH/jjkFI0+vdRDddMTBO55FVOeN/0w0bjALpdXW9PttXvaHpaJTA2pgoxP4+DtQ5Qa+D5VhW1WoRAy+Hc8gpn7p6YwDdaEer1CBHXPuxM8sSBXBPJ71jf8lq+3yY2mrtfOhuB6N8BJgFKV7bCBdFl4EYgD/RJYJdALZniZNpK5rkLnhcBmZL5y2cMBgOUSiVsbGxgnIJoUKDtxMREDiSXIL4rBSOBV5ehzP+Tjc1gmATRZb5Y7vX1dcNkL6obACbvvFeC5gSDCVLzGZLZTrCVDguWh04CPkey6PmcYXb58uWcljvzyXL19G6dgUXplJAnFFxQHoBhVpNdzSCwBNFdc7X25V8J/NNJwHqTbSwBa1cmx2W9yz5R9Bnr1HVesF8QTJdAvyyX/N6Va5HX0iHDdsjkxAvLxpeOHzo6bnYpmBGIPrJtY3ITXrTZlgC6FK/m4r3VMuwYQ3/SG/H9yTJQ52ZIPFcD2FE4sBsvzZoOoBjeaLWNVqgB7GGT5t6Tr/21xNKe0hRhrLS5Gfiz1wNOtQI0Gnvgac1qkR2jYQrfx6C2B2m8B/4cEBw5op554oTKDxNMEhx84ywudjzKqhp5SWIUYWjZWYOkqgjHUPujVktdv2uXAJrn23an3etZIXEGyfR9dP2qAZV9H0iSGcQ1u/dsLVo5ULGnhe9rwnR9DwIMsL/OBvERhQM8fExvro53VFusr6tIWt0u6sdmTJnYDcJQbcT/6I/sviuOLaZM/dTpXX1gsWVOAHhhqLRYfR+VmshYSzSoKphGZCpmv8oyl8uqnlMNItx/vw7ihr7SiydCI6WDWAmtlmKpJQn6yR5Tb70ecGHRkrHDUIPoSYK+H6HbBoAAFTLp+LzZWfXSwfdylH2tn37p0gzm59Vl3Ns/3w5Qr++Bd+KEDSbGiiRrPg5k18da6sH3AwSZqqtKkiBsVuC1nle6uwBwxx1WE3ZlReXp8ceBY8fQnXsYvg9UOh2g10P9iH728Y7xdlGff/r0aVWPjObKDbV0rgGWKu+OH0Wb8m1gL3Yjvry8nPu8XC6jnDuCo05APvXUU1s2yw8//DC+8IUvFD7/i1/8Ih5++OHcZ69//evx0Y9+FBsbG+Z05ZXsxaQ7shvU5O/NDfwtWaaS5Sx/i/L0GK8lUr13r9KNhsIJ6bREZp1ha1mAxUXlY8Zjj6nPX/c6YO9eeBggSTxgvgV89asKnLz3XnUNg0P4Vayu5kF0HFIDbj3RZeyqvE6vfgPTTQV0f+5zwOHDezCj+zuLSv9lkugPGw3gB38Q5iLAzisLCwb4vP8Nb8ByFpmgy5wzGfKiVgMOzuq9ULJfsa995Z+8dAlGI/zYMe0APqnXHt/8pg3svLqaaxtORydOAHFcRb1etQHC09RouwPKPyFx2kYDmKn1805KXe5/fPQFVb6THeAVr1APOH4caDRQPXoUcRyZuXt6cg1otbC4eAC/+ZsKV15YUGuSwpNxaQrMz2NaMpTDEHNzB7G0ZDXUg9YpVXZAPSxJEM7uMWVg1ddq6nRas8l7A4RhgP1hx87ZGxvqS3rZWy31Gdnrc3NYq+1XJ/UWF4FGA8efVF/reLN4vuVhbKyKcX0L4lg5GAQoj8OHVcBZ6WVoNFRaX/86sLqKc+F34+mnge//fuDVr1bT+6nsoAom/z/+TLXxxIQ5AcBCZmHVdD/LQ/FUXJN2G0EYYm5uRjmGeJJu3768k3phQf3GHnoIrfg1al7WzobpY8ewuuoBXzxv5u4TJ9RtB/njmpiw4wOfK+du19nNMULO5TeBA3w0d2+1EYi+jUwC1S4LfZhOtgSbi3S5CeBJ8I9AKhm1UivcBf0kG9kF0aUEiWQhE3weGxsz/yfoWalUckFAJbAr2cey3K5MhwS/JWhNtjkBcVeCg/+XDGaWlSCpZIxLEFrWMRndkqXP5xPsZr4IbJOVT/Y9AOMAkPVdJNsjGdqyXZkO8+62k3RWyH7BdsuyzARHleWUYLYrdSPlamR70GQwWVlX7Atufbka/UVSOsOkjAiiM3+yDVxHCYFt2afdtIscRrJ9ZD+SeXL7ruy3w/J/s9gIRB/ZDW1ykSwXzgByK3+J4HERzo04v+cGdWwMa4gQEfz0fbWh4Aa9aFEuNzS0blc9o9u1ILLjwEtThQ+urNijwm7+A38AwEPk95VGaqmCM2dUdqr6WrmXADSh1vfR7ar9i/q+gjiu4GCyaAM/Xbqkomu2WohrM6YK+DzKk4chDJreTYMtBKvVVQWeT08NrFOCTH4i8k5bZKEoMwTQoW1pyT6GezNuLM3x+QRqY8pz2NzZM5JakgBnzqh8JAkC9BGGgekKlXgAdLvodCo4ftx2oXrdnJi2TDYiJdyoSpaTy2zWAeWMvFCaAmXbTVotS9La2ICRSZmb0/I1MSxIJE8wEHAql40noB9XTcBUTe42AArzv5Z6ACKsLAksvhYB4ufT6QbY2ACm4zgvNbCxYfLBtpibUw6T1VUbgKySZQp02bVry2kQL1OBxWRfzTIg4O+y21ViNzySMT6ej2rm+wpMefJJoNlE2tTP0XXjpWtIksjW1dgYzp4VpyIuXMhLurCtaGwIabKTb8ON+A5c39plh5679+3bl/v8l3/5l/He974391m73cbm5iamp6dzn09PT6MlA+4Ja7VahddnWYZ2u429e/deNY8vJt2R3cDG36ELgNHkiR553IrXUIubv2VSuTlXb24iaJ1SsmFhkns2fbq+D+WljWMLeEKcBLpwwR4D49ieZcjiam6I7nZhnAGR38+XcX4eOHsW8T89gJMnFYA9w/Jpy0lepZkBS/uZxwNx2O9/WT2r1VITe5IAJ0+icugQFhcDnD+vnlUqqawTE+X8d75Xweammts8DHDhgmcCOleyi8oBzHyRds2xkwx/2OUUl0UAMDHhoVSKEIYRVjt2nj550vrRTdOx4vVrY0M/53OPK9A+SZQjpN1W78fG1ByR+DABKtttYGEB7fYBPPfcEjqdXcZ/K/kUOZmvpSWVtgbHEccI6nVMT8XaAaDb98KFLV2VczeXNFT+m5y0RZmYAPbv8+3xPAbL5SlAE+EVZsGjTkNEqCQJ1hAZZwOXmsw6FV36mYc0ixTgr/viWjKDxUXg4Gxo16Fce2qiRbem/hvHwHTpIpbHq3jiCXXpfi78qJHDfh7HyJypkv8PSPTodNTvi4QJ1i1PFvJZx48Dr3gFuvtUXzCLiU4HExNVK9s2NobWGd3VWNHr6+q36a7pXSY6/xaNJ6O5G8DNN3ePQPRtaEVgOVCs7Xw1kGqYJIa8XzKCyXR29aHd5xWB+vxeMuf5mQwe6uZFynwU5bGovK58isy/lHzhZy4b2JWnkWVzr3GBVrfe5XMl4DxMG9yVcBnW3tdqV8pnUZ0OY0YXtasE7YflbdjzJUhdpDteVIZh311PnUiHQVGbFtXX9WqXF/WlIpP962a0EYg+shveXDaKa0WfFZlmqGFz04K53NnKdJwdRRhiaBAn81w+UG8S5FelknqFYV5NwgXcpW1s5DE/d7/g+7w/yN2TZeLi8XG1m7nC5kLGu+KDs9RKT8qsmuy6mWGh5IOuoU0o110ub/WTmPYRdTSAp7Q2aaTkF0kEOMbsEsQYGyuoFpmJLVHiCh4mC3GFdAsDc8m0WOhy2T5PaJkXYUuyPDTX0cJ7+DllWc3z4fwfW5s2V7QiNphbH+49bpmZXrmcP55NrVR985afepoiDLU0jvtDkrrvVzK3rdzrr3UcuVHM94HrWYtevgxkGU6fPo1KpWI+dpls0orW+1da6w3bH1zvmvl60x3ZDWpyjruW35s7J7rBGHmsB7CDuJycxP3SyTjUOPbK8VB8JeejXHavUK7cOCuSoFPVLbZl/xYkehUzwcb1fdKX7fte8RJDjsNy7LzO8c+dBnNOAibslkHewDmA+ZDfb7llbMuct+VSZy67Ynko7zWkXLKd5LJvyy0y37KjjI+byjC+3Swzl0lpb2keBvB9wVHWEzgx+wE8xUouKBv7l820k8+ieVKvL4Y8cuuHfIY8UcLOWzR36/yb05PD5u5rtSvN39vJRnP3S2bbuBfcnCZZ20WyITJgpRvEEbBAKCVa2Ln4PALaZIwDStCf0i7U12Y+CH67DGOXiS7ZvUxPgrhkDodhaGRgZH5lMFOaC3a6YDnlO7IsQ6/Xw/r6Ovr9PtbX13MMd8p1SIDd1ZDncRLJymad09bX1813UltcgsRkuPN55XIZpVIJpVIJYRiatmXZi4Dmojpw03IDWvJ58poiQFyeQqC+N8soA526dS9PKchnkpEv5VzIVKdmOxnmbl3JPLnGcsn+JZ0t7C9jDlLB96x/2S+ZF/YHeRLDBdHZxiyvlAFyHQL86zqOXIfRiwHrt7uNQPSR3dAmGebAVuCO77mgd6/jMwCru9hqwXtCHy9sNIo3kdxJtVq4cy4BTs4rFs74uGUh0RihixTkJMFAs3J37rRMriRR7N5cFC29ycwywA9VMMWNJVF+/X2ULSPSkiIDePAyxVqP48CczjWP64SKChfHiu5z661Ko7xrQWv3+O7SEjA1Vc3FcePUSrJRtwucO+9hcrKidDzJCubfjQ1F29LIhY/8HpoEaz6XhwB6PUVu9n1FCJyYUO8D9KW4uM5/oLRJeTZetlujgeU0MMx3OfU0Guo0NPd/cazSmJhQZVtZAcKpPQqkJyuPFw9DleXD4hjYUG8lubpcViQrxkDNgTG+rz6kbgp1zfnSWi0rS+p5vCTLVL8C9MmALMPAV+x7bla5T5WELhLBUI/t8XNGR9UZYxpxrJ6xuekEnGWeWdAwRB8Bls5bICUPfvvm2uUsQqXRUFoxYYhBY7/Sb6/rjkI94DhGo6Hbnx1ocRFR3FH/1/r/U2wWRkDVG3ZTcLed3PaT/Wc7bshf5Ea8UqnkNuJFVqvVMDY2toVB9sILL2xhmtHq9Xrh9b7vY/fu3deUxReT7shuUJOA95WQOs7d7tgqf8+Urmi31WmVMFQSLBLplEG4SyVUsot46KEqvIVvWJqvWE9kGYz2tBnvOdD6vjn8dNddaqg7dAh5fXY5PzBgd1cVO8tsuaLO89ifCOq0XD90OojiGHGspMAQJzaYJxcM9Tr6CMy8Ip2qgPKT9xszuccuiTWEmYM55hMAZVyYiQn1ELKUBVOf4S8mJqxaFqVwOH2wLlkdB5oD4HhLPa9W08HVVdIBGf/yCBjl9ZJEy4DpsukMNBrAK19ZQbNpFWA2Ny1gv7EBNbfMzubk5KSTtp95gK9OZgUMlELmuK4g37fzK6uBOH/OryHnk7Exxaifm7Mi7aIyuB7xfdXWge/j8OE9hnnOx5hspKmKHQPlAAn04i7t2ixHZL1zgaHrcmpKTY07d8J0DrMs5hwpT1+GIfpxFa159Yj99X5uTYo4Vu1Sq6EfVhA0fJvR2VkVOL7zgpVFnJsDJicxN6e70PS0yt/iIipxR6WpxftrXX3675ZbbHq9XjFhxp2j3TFkGLnlRrbR3P2S2TZr+ZERtA6CIKdtLYMnEpwk+Azk2beUDJFyHi5jmzrPfB61vgm2M+0JrSVVBAoSbCWoyPdBEBSCv1IT3QV3sywzetYy+Kd8SZkUgr+rq6vY2NjA8vIy0jQ1IHoR4515knIc0iEAIFfnTFMCsHQ+0FEhgVN+L9siiiLTltRCl/UnJUYoFyLz6krrFDkSipjglFsh+OwGBGWQ1TRNDZgcBIG5RoKfUvOdADQdAfxctqmUPRkbG8PGxkbOOSFN1oXbTkVMcc/zjHzN2NiYAbfZDuzzly9fzgWq5W9G6tVTR9/V5KejQ/Y7Kd8j64L3yf4k/8/nFNXrzWAjEH1kN7xxdygW/2bDy12CZIIXLap9X+0wajV1XPrkSSWW+tBDeaDeBd/m59WLR04BK8iZZRjAQ6tbQbtdwfT0DKb1ZoUnbqenlJxI/XBFbYC6LyignenoXajNQmCS2dyEPbI7P2/K5fG+MISXZZipJyYIpip2YgEGDRBc7AZmfwmoorBaiYGvruarkFmkhjo3rOPjQK1WRZxUUZnz85Ik3BwnCfxuHlQl9spnmyCqsE3mtZ4HLnWBS8jtZgdhhM6iurZW22+aP8uACjf/jYap2iTRQLIuxNyciuEm2YB8pak63a1kYavqGo2pVGKtNas3tcZZ0aiozTj7ZxiipLvF9LStBpKshS8gfwqCm9tGA8931eaIU+1mF8g6FreJY8Bb+AaCLLO6r7rNvHodvh/l9vd0hvB+vl9DpJwggAKlymUDbDB2Gn9quViAEmEIQ6xp+ZhLl9RjkkTVs5c5UgdJgotphIUFoF6vYObwYSAMKWOP2dkKkloF0eHU9J1g8Rv53/Uzz6hO6/vAffcB9Toauk4wN5eXWnJ/w7JShn3H+txGR8Jf1Eb8Gi0IAtx333347Gc/i7e+9a3m889+9rN485vfXHjPAw88gD/5kz/Jffbnf/7nOHLkyDVpqr7YdEd2gxo9sRz8iuZkIO8Al2gsYIG1uTn123zqKaW9/PrXWzF0OqWlc9r3gePHcQBQciHNphrnKF0FrTaRziCtzWD3bmAafQuoAwjSNVT9DPffAeAOWJkvOaDPzWEQRvD0YES98jQF0Egs6A9YyRiaiQ6aIJn9bnS7wKA+A4+OVT0Q98MKlpYs6Mo0fF9Vyfnz6kUnJmBVRdRcra6/2FGSX2EYIUyq8AjGLiwo1F3LdK0hMs1DXfDpKa053lGTSDVJEDaV47Ze17Ep9FoHT540Emz9TK1LNjdVU/qz9+S6QVC/aMD2c0uBCdNhQPRaDYcT4B3vUFXH+clK2KlpQcmYVFGrVZWjVixg1rIAKyt2zbNz5x5MH6nZYNlhaJjhzaZKY/duJV/HJmc3jWPkJ0YdXOXL8xGACElSNe0CAOcWrMwNvvlNoNXCATZkGgMIEcdVE5eGizTfV06Vi1mEjQ3bnp0OVJyWLLPR1rWDqNkE7r9fx6zRlWyIys1mLhLrml9R6nULqqmaTSgdGzn561gsS0sqBsvu3RVMz80BcYz//SUP6+vAkSN7EBEc12uI6uKXgZavdNP37rXye7t3q5gEjQaa0HV5993qu9OnbUwh2pWIMa5J1sd2sNHc/ZLZCETfRkb2K4FsyUQHYIDRfr9vQEmCiXxP0JBgMJ8htdH7/b5hb0upEwL45XIZURSZoAIECaW+tWQ1F0l1SCkNfjc2Nobx8XEDUkvwcV3v7KVWtqtZLcFZlmFtbQ3r6+vodDro9XqmfJJxLxn4dDK4TGiCwgweKtOnrjv/kgEtg7IWnQTwPA/j4+OGjU7nggumSrBbvnePu0hQV9aNZKLTYUJzZUekBjyZ6LxeHt1x652gvWxP+XwJdhNc3tjYMPXGPin7KGBPU8j7XQa6y9b3fR8bGxs5iSDZjqwT6WSQ4DkdMAzMSga+PG3B35aUBmIb83PZz/g903avB/Js+JvFRiD6yG5o4yZcMqhcVhs3NS7LC8hvqrmR+KM/MtrLy34VYQwE7eft9Xym76vd2cmT+TQIouvL5+fV42ZngfvvrwIbasNWLkPtUNpteL6vNhvU0nbyl2WWQZ1lakOcZQASsdHlbo6UKW6001Q9PwyBDAZ4XkOkNo9tC6RyCuGjJIHPxS8kA3193cqFh6ElfM3NzSCq9S24oDeWgzDCWC8vn1KJ1UY80JvrIF1Wgd2yTAWxotg3Gf/lMnD77RjU81ruzDvra9++CmYOHcLFjme0wrkPZMHI0OJ+wI0BJgmG0r9x222ekdOWXVE9O9DSvFZSx/fVJpay4Ty6zY20lBI37Viv49Sihy9+UX0sNVj5GhvTm84nF1TBqftKhmWSAHGk9PV1O6TwDGbEgwKbm3ojTkB8cTHHZiPpSNZfHCv2IcGlQRhBxxwzQfdaLdUdvayf+30gDDEII7TnVRfudgHMVpF21M+Kfa9WA2ZnDyKIYxtYT2bk8cdVXh98EHjlK4EkQU3nzTAqCQLIjTfr2fUsFH3H99vFvoUbcQB45JFH8Pa3vx1HjhzBAw88gI985CM4deoU3vGOdwAA3vOe9+DMmTP4xCc+AQB4xzvegd/8zd/EI488gp/+6Z/GF7/4RXz0ox/F7//+75tn9vt9PPvss+b/Z86cwfHjxxHHMWZnZ68p3ZFtEyN6ygFzGJDOz4oCCdKjrE+f4I//GHj0UeDIEfzdQoBaLUAVnby3UIDoOH6cg4tKn9G0dXJf+hLwt3+r/On/+A0qqeWuYkNHRFCfe04FMZUobqejxs1Dh9DpAFUNjC59VYDoHMueecbGTOGpI6Lh8/NArYbK4cPIMg/nzwObmxHSNFLFaNuqkmR6OcReuGDjVjSb6rNWywavJDmac6Ot3irKZWD6UGw1zMPQxCchE7+aDFQCbB9dwChJEPkAQl3gx07auDO9HtBomNibgKqCr3/drkNKJaBer2JmLsFy18O5BVvOMITx+B+IB2j8c8/k+/z5/DKP0xj9u/W6CgDKwKdcmjD2e7sNnDvnYXq6imkRA4dLRE7LQfci1upVPPOMeo5xgDt9eRkq3orsui5hwPeh+lCvZxeHd98NJAniuaqdhtiwcUUFEL9gy8p2X44DVHhUDDCUecYRr9V046Wa7Q1g0NgPDwNDBljQ8/HKikpD+XZaOTLEWrwnd83KClC6vYrOovrNdLuqnmZntUOm2bSL4SSxBJU/+iP1O/zn/xz43u/FIIzQ1P2wH+9XQdHZYV0SjBwvttPcfDUbzd0vmX0H9Yqbw1w2rGQ6E+yU0iRSUoX3S8BbsqV5DYNrykCMg8Egx8hm2q7ECJ/LtFyQFshLpTB/RUCqyxKnk8A1F1CVTGyC5v1+H71eD5QRcUFRyVR264ugrpSwkcBnkXQK2ddF+tvyeZQ5IcufdVFUb27ASlnHLhv9auCkKxsiAXjWNZ0SbHtXGkU+g8B4UR5lnqSuvuxT/L8sk+tIcR0ARWXiNdKBAyDXJyUTXJ4g4DMoBeNK2bh69nyG/CvLK3Xi2c+lyc+L5HVuBhuB6CO7oY2LannUU5pcbMtj4UULbu4mOx0MnnsO3sqKYdBWSW2WNjZmAT13VySYTjr+lTkhnVMAkVQmwAblZJ71TtDoqMLJBh9EtJImj/TyOpY9SdBHgHbL3sKNrEsqkUXh4zjNcPPm7J0Nu9oA2klgA6zGsZEWYVpG9lIw/gM+hLQ6udNdX7dnqdPUAMC8nZtn/h0fB8LQM48oanqvu4zpcfFBPUa36xkHAZ/b69nj+MRMZLPLQKm8TgLjY2Pq6DvzRdBDst892HmMTL2zZy1uvGuXJbkReJ+Y0Pex/7TbxQxr2ZAIcsA/L0lTFYg0CkNVx6oCAd83cfek+omX9U1aPPFAxwMxk05Hb8Rlh9IFZr258dBkDFf6l2YkSEUqJPs/o6tqNCnW+TMZdp1TLEBRPdHcsWI7bdTHxgCx7rmqXadU3Y/8yI/gwoUL+NVf/VWcPXsWhw4dwmc+8xl813d9FwDg7NmzOHXqlLn+1ltvxWc+8xn8/M//PH7rt34LMzMz+I3f+A287W1vM9c8//zzuPfee837D3zgA/jABz6A1772tXjssceuKd2RbSOTR2CG2ZWAdTGnceBIz59HmKZmCKxybpFjHweUEycUi/0f/AOrdZVlBkw8c0ZdwoM58H0TOzHiOHTmjAIHKdvW6+Xm8I0NNZ6GccVg/lkGO+acO6eeI5nonPs5zqUpfD8ycxiHeSpwSNyWc7T0PXAa5TxP5jVg5dskt0BW9eRsBVECk0Cq1wxjY1ZiJDeJ8EHyiBMDXMoFR5puWdfQ8SqlzTh3d7t5vfMBPAXOttsqwKaeFKenaohjC6pnmSrvpUt5BzjridmmrBqzG4bAdKwysanvY76C7kWg1ULUDFEqRYapbnhsYoLsdNT8beTSYNcNRgKG9cV1XBgqlrbvm8DyHga2nmPbjobJDrsUrkzqytvYMHO4l66hXo8s0G//6G7mmfpiNnjKMMsApF3LjgjDXD/kSUTO9S2Nty8tsX4DZFmAahhajwaPPXIN7fu4mEbwM7suUs6fABUWzu2cwwD17W6jufsls++gXnFzmAssFhkBSRfMu9bnS7YtnwfkNdZpLjNcMnNdIFOCoa6ciitzMkyvW34uQVnpOJBMbAlaE6Qmq9wNcCqfyTQlE1qCnkXBSIcB7vwrQXSZtmynYaCiBJXd9pJt5v7fdUS48i4uK/1KeZBAt5sH6Vzhs+Rfgtvy1IN0REh2v5RguR6Q9Wq/CbfcrtNFOnn4d1iZpck+4+ZF9lX+Lcqn6yy4WcDiEYg+shvauGu80pFCl0LM/7uMU25cazV4+/YB4+NGDhodsdnnwl3SiYlqUthbRMOUMh1ys5NLlx/I3a/Y+E9OBgYszuF6fENxziuBgPy/r4KD8iP3UmISZDcTj2exybwehjuyOnJlDe0un8+SATU3NoBKbDOQC5CVZbZeCHSINifeLsGDYdVAsCEX4Mw9uaA/8/1gy338muXni3tVmWXXX+P+PwwBL11DEIZmAyttADuvlUqWNSbBki3+IFkJDKwnN8zOT4DmqpT4vv6HmrT6lXVs+U3aosI9AL4f5H4S8pDIMGN9WODEAhbsg7k8EsliZ5I36N9MEG/t91sKfz0bb3fMuNHN97+lG3EAeOc734l3vvOdhd997GMf2/LZa1/7WvzN3/zN0Oc1m81rWkNcKd2RbTMr+g1e6XfpOKnN9ZoaHeoxyzCDU+HhpPfTnM7RF8mAiBrco4PSDT5qVCEkcg1sRa41QlsqKRktDwOUy55dU/AZEjjnpCjHLL2WyNKt05U7P0lskn4FgqyySrlcCkM1pVIJi9XrVjfLSedC7jvOAXxA7jgV7BhdLitv7+amGezlss1lZsuq5XRWKtl5wIDKBeu6cjnIfTw+jpwUjHw+1zOunL0sAvNm5rFOahD3MIxMe5qAseJmd9nCbsL/G6NXomABFYZBLmNZVqxOklsKsx2YcdGHGJzU7UOybqSefbkMIC2oGFE+uS7hqYjx8SE/ZVY4f2Q63gvT3LKGo0NfMjXctbO0ogXgdrLR3P2S2TZr+ZvbigBYAFtAPqlN7XY6Vy7EBYEJNu/YsQMTExNG3kJqc0u9a+pPU/qF8hd8Hu+hhIkr+SKBSim/4TuDEr8ja/jyZSU9s7GxYQKGMn1ZNgLnURTB8zysr68bjW9ZbgmMk1XteR7SNM2B4VITnffKevM8D2EYgrrzklkv241AN1nfrCeZJ1emRTo2ZL0SnGZ5pW4964j1JdvF7Rfy/y6wLJn+bn+TZSlqe7dupW68lIQBYE4kSJ1x97TAMCtiwMv+4Dp/KOFC6RoJogdBYKRhZLBY10Elg9G67PkiuZZh9e/eU/TbHdnIRvZtNoLVEuUsMnfTzU01WVNczPOY6ewsMDuL6dJFtWHicWV1nho4fFgt/JeWjG6pOYotj2RDST3OzVnSLJNPU9hgXsxLqaTu7fUsvWdhAVGthqhWw8APzMakXAYGfqDYWPv2KcCTFDMXtRfU5bXU6qPLTYvczxP8JM5ANhV1VckUApBjeMvNLvc36pCA0ltNO1v3N7x3edxDGCrd7yzVAbLkRpDUbZpO0EvXkCSRkUWh7rksOvPM2Jzc9KHVMQx5U2jdJ6hf6u7T2HZkojOIKwBgKkY/84wMvOyeHga233VTwSqLUdEZG8DbAlRwUzo3V0y84tH3ATyll0tQCLC09SyDl67l6o3sfZoEsH0f1OMxGqlpx7Y1mXvqJ6MdHppKHgAIfB/NZtVUbZbpY+QS9BZryCRRRMw4hpGMIXDBDXkYwtbfuXPq/okJVdbZWdUYExOWvakTv5hV4PuROuIuKfLUypcNW4QgDTu+MLKRjezFm+8ryQIXmHN/a0WDLymwBNSSBOfOe5h+/evV/bfdhtlZIMIacKJt5ZyyDJibQ7++H8GhRcUg56TAo2JxbH7yDDhNGZQBPEMyn27WLCi/c6d14nGM2dgAWi1U63UD5DebVdx7r45hzgnp8GFLs15dtWN2kpgxai0LcmOvBPeJL05N2WpKU+Bgsw8sLiI5fMDEe+S0wBjqu3crGTXf90yQa8qicRuuyhuYz+Rw2OsB8VQEL9ZtxExxLJXxUPbuVS8+KI7NvBz4Ayx3PdO01B6XgdcZXNycXJPP5iSt637v3moujiwJCLyXDgYvXVMM680Muw7NGMY+wJNTqizVuI9q4lMoX/UlfTRs9vA/zMnhD8IIXgJTByHU9CRPybmxVwCo9Rs/lBFLu13U61W76EgS9FZsPuUz2G2Q+SpRMX9d7AaG5C4d/nEMVEIdNLSrMthsVs0U2u3qvrUjsTfote3YmOqijYZNO46tUkuzqQKABz4UkYKeitVVpdcWhmqNoaOVB61T5kF0HGQZ7Do5TZV2/N699njIlcaLkd30Nlq5bRNzwVopyeKyjQkcEoh0pT7kiyYBSmpzUwNbgrCSab65uYler4d+v28CRFKWxGVBUzqGutS8RrKNJZAuNd35YmBLqUedZRm63S5WV1dz7HPmXeZnfHwc/X4faZrmGOzUwmZ9UAZGGgFyarbzub7vm4Cg/MwNFsrrpdNAgtR0AJCBLduX7cZyybqVIDrbhVr5pVLJ6NWzvGxHaa4zRZ4O4LPlNUUAsMuyl//n/ZSGoVY5NcdlvqiRLvsAQetyuZwLHlp0usI9reDKGklHkMzPxsaGcTqxrVnWzQJ3vKwTV5+f+ZOyP5L1znxKeRn+lScWrpehvV1txEQf2Q1t3BlKdBEoZp1LmlOW5WVUJH3mn/9zpcndfh5GzJIILd8/9BD+8okAr/me77GikdxJiLO6PtRGQupYc1+TZQCaSX7DKZHtc+fUrvbkSQUO3norvHodlThGWA/MLWFYQTA3Z4ECceTW1FEYou9HObzePQoe+AMDNBwIQyD29VnwTAXjQmCqamzMsoyI21P5g9VFOZPVVStzws/KZVUnBNnZTNzglUpAmEQKFJbnzJlhyUhqt+GFIaZ3JejvCnD+vG1SUzaoTXAYqnVUFA5sH2A/kIKyWYakWc0xsrinZdJxrAOdUntEb3KDMES1VkNc35MHz3kN24jtTnHWMESW7NnCNmSXotqQGwhUOmaCWs1mDhACsrBn1H0f/czLxemi74bdz8MAa1mAdroHWddmdWVFtSFBAAI6AZAPqpdl8JIElTBEZbaJLPMUOD5EukGSQiNfOSWmEyYMoAN7Afs5K2diQgFR1IGhbItGwdqpcsxU2JcWF+2ReaJjso8NGzuGsd5uVPs2sNlGNrIXbfRmyt+WdIa7v0k5T3Ls1ozv5TTAwgJQeuAfofq93wt0OogWnrVjRber5lEA+ImfwOceBX7gwWM25oMe+PrNg1haArCiPp6bU9N6rabykCEwQGutFiiAvFZTKKOQlDGyJQsLuXJM14Fjx6oANNhKCZg0VQLsZ85YWZgsMzExKHPCR+lYm6Ya4xjwFk8BWYb9SQIkPvDoY8Dx46i+6U1oNr87R3KnrFw17gPtDqIwRLQrxFoWGPB5Y0O9mLZ0mhPMXl1Vf6uJmjwuphHaC8DOnYENJMrx+MgRlWmhq82xHu02KvU6ut0I7bYa0ptNmBgeSRKZOjRE9wWdMXoS2DcANJrV3MFBzt0E6ZNEzN0nTwIrKwjuuEPJhcXCwcu/dMCw7z33nBJw73YRxDGqtRo62INuV/EsJicjRLEqfxKr6YlrL/kY2b0D6dA1QU6g5GrEgq3vR0ZCXzL5OYd7nYtAkuBUt2rqi12Rjn3yETjvGs1x3cGq9QzVQzVDCFDAfJLz3jAwbaMBVEPhoE9TVLvzqlCtWp74wI7U7QJPPKEe/P9n7/3DIzuqM+F3rqqvrlpX7TuanlFblgd5LBvZHjsDNmCDCV4wP5cQSEhINmHDPoQNARKwIT/YhEASE54kbOIQEsgPAuEhCeyGsLvw8RnbD8HggLPYZj57iAUWWBnLTI+nZ9SWWtJV66rn+6PqrTq3+rbmh+3xjN3neXp61H1v3apT1XWq3nPqPVdfrcf5zIzmS5+YAKam9NrP0MNZR9e+fbov6DiXCpQLJz8K4UyTvu1+zOQM7P2nrhB88+lB/IhumdjSB/CA7mh0ik/JQdBaJusk6Miy0zS1ADmBSR9EZ2S5jKb2QXS/fT6I3ul0UCqVbNQ168TkoYuLi7YdjHhn0lAANop4bW3N1pXtabfbOWCb0ckEeGUUebvdRqlUsglBqScC3GEYYmhoCGEY2oShjAqX7U3T1NZBJuaUCTVlhLekk6GepG7YZ2tra7lIdB84zsTkL+8n3Qn7hU4DOUaKouElYOw7SgDHGc9ns10Ertl21ovjRjoe6KzwHUayHbzX/1zmCeBzfBCddeC1pVIpd3pCguTSQSWj0YtAdOlEkHWRCUZlm+VvcDNqmieT9EH0vpzWIjcbRZGkFP87opBALgx7JQvxlZv0ev7Nbx5Hed8/6meMjOgNgAHRV1DGN74BTExUsGtqKgeiH2mFWF8Ctppit2/XryJu0sVWgEq1mk8Kymg2JpkiuMAopTRFmCRQUdlyTybJDpQJoAJupyleku8zy/RGlVFgunJNHZkn9SSc1Ul1l/2/UibKL8tQNtHXIUTSyER/xr0Z68niGHS1vq65SgF3ylsGhZdlJLrZ/bezAGG24jbj3EhnGcI4xtBQJXeEfXAQdnNd5oaqBbeZW1hwALrY4QatRQ0uJLynBTRbCJVJ0tpouYbNzsLuNk0SrVCi+Kwn+T8JLPBYcxybqMMdtgvX17WeAnQQpi2Epp3JxA5bnO8fCgm+yKMGRA/4WRTlHTlG6MDQFAgplpbK2LfPfcdiJHDPz8IILjqUFSNQDWBiYpf+mc4JYExsbisGcECaOV3t25c/DjExoV8SRGc059QUDq6PYkx935HHm9/BwupOrK0BF16R6HKXlvSxCp4YkXOBL1KXHKRnivQ34n053UVyZEl7zO+K7HYm5og0BYaHLTX5974HpGkZr31tGZXbb3fzHjm5ARw8FOCOO4CpqTIu3L1bf7+0BEQRZmd1scSxt283J41MHYjd812pUNvvJNGTNedbXnTggGuTmSzLccMk9t6BNA3QaFSgVAW7RkYcl7o8vlOtotnI+/yjyCT0hDmB1Fp0QC8B/NtvB77yFaBWwzk/+kwsLzsAfLxm8mfUW7ljZOVaDUrlqVAkgA7kp0OqNooCRFEZ9Tmt5okJYGQk0PaWD52YwPfnAiRJGVHVOLJpM8x83mrtxMKCVmXYfNg+M8gyJEnF2p4gazvibplR1YyhoP4DbaOjSEdAm+eE1SqQVLS9mWvo+/fu1e9ra867wEUIk7PTztMAzs1pm0/7NDkJJDuwuqrXMxsbgKoGCJU+KTee6DGwkoXWj8ugAivyGKAUhoNPTKCtylhYyIPwBNJt/MV8E51k1PqMzjpLvzMJqU+bFqLt+oGLNPP7CpXSPOZ15NeUUQSYg5KjSQfYO2PplNBoALfeqsu85hrnqAZcxASJ06tVrLz2P+P224GXTMbAfSbzLvUOnUAXtap+2J13ugHmOzp8AP1MBtL7tvsxkzOs55+6UsQPvpn4tCYAuv5fVD7fJdBdFEEty+fzJE2HfDHKnOUX8Z/7dfATi0pKD1muTAQp75XAqgSjJWBL8JPit4/JJQFYXRCUZ9S5H80v+df9l6y3D4L7/dALLJT6k9Qivs59znkJllNkJLUsoygJJvXTixPdj6SWkdaS/sSntmHEuKwXHR4yytt/3vFKER2NbPdmz6Djh3/7Uel+3xXppagOm13r/yaeCtIHxvty2goX9UAxgL5Z5KhEA01ZqcFF779fr/PLS0v6O/IvLywAGxtIU70p0YkzE7vpYiJIGbxKuo8ornRhcVlmNsFFi3yGbROYlkBomiKIImiaFO4dTTJICZ6Ltq2vdgfsKAW3+ZRh6r60Wogm3H2WF9RcGzJCWEQ7q6icwzzk8eqhoXy0uuyKHHbiOQIYGTWaRPlwbAEQiybbiGmr7FzDjeKYYU1eIyvO57N9BPWpMzZuacmRnMpwfwqvXVrK74KZFFfo3Ttolwf3zVFnYvO5PaNUoqcP2fbM62I20SV51X0jk32y2T6mlWvf6qpz/nAz3mohnjS/A/lAePdSJxIkk8gRGys5BajTJMHhGWAsVl2ZXW1CNzZyY8PV73g31/5ccSYIOfGPV84kB0Ffznw5lu0uuqYIUN/YsFPGgw9qELPVAiry+JNI9knKkoUFAFuTHCXI0pID0ZUydB8EgQ24mWW6OE53FQksCrAcWeayVXoc14giZJFzrA8MALs4wUKsCcx9Mm+6VYmpcyDtkbyw0dCLmUOHLCe4FWm7fFTcnDgDnH32DwX4XSKnbZq33A3QyVU5nWte+ACBZ0e5JpDtYxkBOpoWRJbrG0BZHkVS7MQxVFzJ60tmv+YpPipa6ov2aX3d9at4ZXF+PZNlmtZM6ricJFAqsGscqePQH0dyIWn+n6bueik5PDlNkWVmfCPftdJs2jL8tQzXGtQdO5wgv0fFZm21jH6o111mUtk/UkHmd2Fzgk8p/eMVleOt7SzQa0zeR9u92fr+TJa+7X7M5AxbtfWFUgSC+0CzBJzlfZKKwr8fyIPBkjbET5YpaVhYtqQW4T0y2SS/9wFelsNrJB0GqT4YPSwjfsk9HkWRLY+gtc9JLdsqI399oJcR0gTSCVhLHvcioFzqy2+nBI4lmMrobR+AlyCzrL9Pr+InUpVgMdvQCyyW/Sp13mvsUHdSb0WAvRwzsq29Iq8l5ZD8ntfICHKf4kc+R7ZLRuD7be4FfMt75Lj0xXf2FFG++G3167eZPNUA9H4kel/OaCnacfgbL2MD19f1Bm/7doM/jozoxSxRxHPPtffmeJoLhHuBKAoRxsru6xiww/2SjXSTmyi+itpirpGJJ3Ntk5t5cV+pJDaoReXyRfJQlmfeffw590wfuM80B3e1qpNura7mgw6jqHuDLgO9lpbM/6tlRFEZ5Vpkdbq+7oEMEjA2UdYUCwqnWXd92RkMv+71kptLHxjn/7dtc9QiTMZZ1C9xrL8nsssz0eaaAt9HN/CfZQiUglKBzUVGnUKC41K5HmjCZGiyaFaP9DOS7uess/J5PGXz7W+ABW5sdGUUs0ngWB8zju0YZgXkA6Qnwe9UVoxRoKk58p9m7tnmlMogsXI+nw0llYREhYpAPX5/pm3YqYPjlafQuqYvZ4AU2Wg/Ot0D1nnCKYqgr5dzweSk/X1Xq27albJ1q7NLzSagqmWECazNyFr63ixzUwgeQff8wfmfz+bELurt+wQkqbQFVc1FfvLPgQG48gjkcu7lc5m0Y/t2C/pbejKpUy/ymQHHPqsOm7Cw4G6ln4LTf72uWehKJQ2MTk7uQCgikSXLXJYZ5zsrFUU2cWiWATkDBdhcIUrB2X5ZoFwPSG52ab+NXSP3NwBtu6UtkWsKPp9lEuX3E9NGUe62nHjrMCbelmYnt1yQNsgD0uOa06O1+eI2OqpD1cHWrVpfTBtC8FwuM8tRB2hleR2yQnIAyJtlxaVu/HURF34MPCj6bVSrdj0MwJHgMxDD3GKj5TmuabtlnYtst9D7GSV92/2YSR9EP0PkeMAjSYUhAVmCeARct2zZAvJvA+i6luBgEY83n+MDxfybYDfBMQLEMrqbVClsF79jpPfAwABI/cF2r6+vI03THIjOBJ4bGxuWeoZgPAF08m1Lug2Wy6hyRhyTsmZtbQ0rKyuW7mPLli0ol8tWVwTuy+UyoijC8PCw5SBn2bxPAtiS1obtl7zpst+knmU5kkZERlRL0J8R9HxnMlVyr8vxIulzmFBTguKSK1wC7H7UuYwwl/3qg91yzEnaIEaf8zvp2Dh6VPPG+w4iyXMugWfp+JDl+eC61APgHBTyPvlOkZRCsk3+iQD2o4zs9997OSmKwPcno/RB9L6c9tJr0ezvUnsttk3kagcB1tZ0ziLyS2JiQoOs552Xj4QF8PSnmwRdc/nnRJG+hMeg9f4hyOHbNpGTBA0lGEyaCobGbWzkQMhOVM4Fjdt9sNxdyU1kllnqVUC/k9M6pC4YmbW25pAI1sls7LkXsjzfRp+5SCEiENBRehWlMP6sqk1oyqAuUr1I8Fzi+Fu32nxTmJgo5/ZhOqis7NwIZnO1kgYWe835IpppHjCgngjGJglWUEa5qixCspiVkTWB0Qj5yGiZtJW7P5ZX4Eyw9eOxcx4BF1HU3FgGWRtxHOaAC2TIO0dMuXHsNuO6H0WCU4rkIBVjLYwzTEy44/EANEVO6sbLaDXC9HRoq04AhUMxy/Tn+j7RDqJMEqgh0MONsKkHh52KQwQSXZGSpnpD6bxSGhAbHAR279bPbTYxHme6n6lnAyJtpR5J7sv7SX1jFS3ee8mZFPHV34j35XQWjk3/Nygdbb799kF0E83q4+RJAv0PqdgA4IILAKUwOKjpucfGACyrXLmTkxrHO3hQ2yfNn1221S2V9L05GyjtLeBsNz+XxNXCHnNKtFKr6QZUq0hT6Khr0z4/CLhUAtoIEaYtR3btHxs6/3z99+7deOghfe+2bUYdjaabs2WWcKU01YsUadNbLeBZU/jqWmAZcqQN2bdPf1araf1NTADXXvsSlKMOVKabJ219aAnOAVSriGNt97MMjl/egLDUFddTobS9tO2mH1ZinVukgiP5XB3Npk7ETntYKgGXXqrLMbrP2S1p6KSzgYuU7dvtIoVqz4nvfM0yBACSJMTgoDMnQbqSXz8A7nQbvTqNhs4zEsdALbRNDyD6q96w9n5iopKz3TInTZqavJzMwk57KZ0H7PN63X2WQ7z1xytpgPLkZP53yYc2m/pY59lnu1xBVNS2bUCSYDRu4znPCYFlABddZG1zR+k2RhG0R6Ze13+cf75bP0m7Lf/v61I6mM4E6dvux0z6IPoZJn4Urg8GMrJ5YGDAgrMSRCeVCUF0An/koJaR0AQ5JcApI9YlNYr8WwK8URQhiiIcPXo0d61/HUFSAqpMViqvX1tbs20eGBiw5ZZKJVQqla7o7I2NDSwtLWF9fT1HWcJyCSiTlqXT6aDdbmN1dRXLy8sWhPYToZITfXh4GENDQ4jjGEopGw3POqytrVnHAIFdAvcEdgcHB0EudfKmUwiYk0qE/Ud9+RHpdGJIZ8Xa2loORJd9QF0zcad8l3WQ40tG1DP63o9glwC6T1VD/bMPfToXfzyzbaTVkY4iOk6KQG45Bnx6GXmPBOr9aH05/n2wm0A6nT1SWCaf4XOmb0bpUhSt/2QGjvsgel9OaymKPpGLefn/IqBsdVVnx0J+czE5aUBJs6BvT2g+8LBWs5v8iy4yiblEpBOjjACdYOqRR9xavlrVZVeitubhTNN8BI8fAkYEmUeHyZ+tFA4d0h/LfYQtA8hHUZsNIzm+szi0wXFZZjbrYpOJjQ23oWL9DIgO5Dliqc+0JYBQbuhZniH3Lit9nBlRhPbkrtzef3VVAxfMycbkX2NjetM/Pa0jqi64QFfJbajLiKo6YWrTgPKSRj7H+S4i9FfSAECoeeSjCJ3qDjTmgTjWyeLaCDE3o58xOgVXUfLN8uhytYqOCpFWd1q1B+jkAWPTQZ3qDv1dFOU5SKWzIk0RqAzlSJ80yG2Qvei4IMsQwkQsRgpotvKhZoDrB2Z/FeBTmKTagSI9K97vaFfNgApz80CWYYxgQk3w4NcbDrmSYD+Pc7Me5FCg98b85si+EkVlhExmy/ozux3rzg0/8xBceaV+3syM5qglt3ythiMYBVINio2MANhbtzysueR9PjjnO7fOVOlvxPtyOkuR00z+BiWYyes5/3FeESA6oM31xIRJrmjnKm1Hj6TaTkQlncuwolaANZUDwMP572MsjvG91g47ndAsDw/rg2ijs/9XP5f2meAi590o0t/xWJuMvBVrBWKkgMHZCbxXq1hdACojsPY+mc7jxDTro2mqkWsJ5lNXl16qFXLFFZi/SdvSi6cFD3maApOTONIKbbXDbMUh45wDmRD7wQe1kb7mGtQmXoj5eZcKhOaF0/C2bfrRZ5+tp9xaLcArX6m5ysNaDUeapL0LtA2f2Gn9m8SxV7JQ09MZ5wC7nEnNQ5k0W8zjbVXGrLHdl9WyfHtlP1BfJin1ShZiaQnYWgXCdNEpGXCgMO+nMNo/ilCJtANcMpjkqPrEmK5EQCVW9hrUm/lgCgLYkpCeJ+biGBWOldl6F+0N752a0iB60HgYSDNUWOdaVes2PaLBaTqV4xgHDwVYa+lm2TwljYb73RFsF7K0BGBkh04Sy1wlY2O6vs2mHjPMQGpzvyTaGxXHQL2OMbZhzx6gWsViqnn5edIOc3O67G3bXJZ1rp3kmlfOG1I4ns8U6dvux0z6IPoZJBKEK6KkkEkn/chgJo6UAKNP1SLBdwKVAHIgrp+o0a+XTBbJRJkSpCQwKAFLRkvzOaTIIHANOBCdoDQBdwA2wadMHpmmKdrttq2XBOsIcrJ9MqqZ4DMTf66vr1vQXDoXGHlOJwGdF6yrrx/JJ8533jM4OGjL4vUEwiU9DttIfRXRvPgR/2yDpMOhbGxsWF3SecJIdJY3MDBgo+rlS9L6UC++A0DqnuNI0sAQnC6VSj35xlmPNcErK/VXxNEuHQ50XvinLPz2SIcQ33sl76VTSUaky9+BbCv/L6ltZGS+vL6ImubJLn0QvS+nvRQtmuXnfjQb3xmdYjaqvHRiwiTNbKV6wV6t2nyb1eo4BoaBEky+JG4wjQToIIr0vLK87DBXgtaTk9DPu/9+vevkxkLu1rkxJCjJOjME2JRdhPN1VIggjtExycFCubkyG8m4uiOnIiihKwm0si5m576+xMjovF55zDpNZeLOlkvm1mrpDRVpOIaHESYJsmzU7lOZW0zm3eT+lFhntepodqhyBiinqUvaKveig4PIK0oprRvzEUF97rP1JWFu72jbQ7JXEbm3mIbWAbC6qqPo4jhArVZBIPi8yeW+vh5g+/YdLhpOJpTl5p7rHrkplOOCHeefs/dPNVC59FLQRkvQmG3zfyMSrEpTl7SO7U8SncRUOgIMmLDYCrC6BA24A8h18vJybrObIU9JH8YFWx5yGkvgY2ICqFZxcLWCjRYwzrE2NaUdG8ko5vY6fKCMFdiMbBMTuq7ytyHBp17zyZkm/Y14X05nUao4IZ50ZMlr5TxH0JpzD7R5qdWASusHzkGdJGgnO9BoAHfcoT9+5SuBSnN/vlz+7ufngThGmu7gf60JTBINCmPfPj2nGsDPzh/yJFmSOKouCboynwOcw5dfL7YCVGo1rGShC5o1xo04YSXSTvtMVbS9yjINbgMu4h5wdYgi7K+HaDQM1khHsDF2HRWiXnfLj9FYdR8RY0j+7KzWT5KguueFqNd13tSDB12R990HpOkCDh2KcfBgCWNjFqvHq17ZcYYdZakKDAxo0zA46FTXbMKdDIO7liwhSoWIklEdxW3GRFuVLRU8AFxWg2sHbSuB6dVVYGQEi9EOzM/qr+mv3TlhFM5FgHGsc2hWJiZcvxNUbjYRKIU4GbVriSyTDPPI21wjAcextPUc/4xEB7RyhobytCrMUEq+Fo6/VksnZs0yF20unOXlWs1x5htn02IrwNyc7oeJCSCrBhilvnKRGlr4yOVl/arVQpT5ZZLoCx56SD9jakp/Tk9QtYqDA+NYawI7m3N6bO3eDUxNYSUN0Gq6cRFF0APtwQfdaY0iJ9uTSfq2+zGTJ+HoeHLL8dK6+DzVxyqnF8Aov+v1uSxTcnLL6Nte38tEngTRAXQlKOV1vRJp+hHNm7Xfbwc/k3XrxYst9eRTi/jtpMj2FZUn6VH4/F50IbKOfn8WRTr3OrXg66MIWO41RmT/9+JOPxGRgDP1xc/l3+x/nyamlxTRt3Cc9Bobvu78a+jg2ay9Rfp4qoHjxyt9EL0vZ6Rws1IEhvmLbg80UwqOM9OArtxgkd4xd3R3k0W8rIZ9BMHq1VVdaBHIz//z7xNZUB/HpkIENPe+QL6w+WnY9XWz2SkCDEia6gEhvbqB+3el9B6Sm2Z5DJwiE7RmWbc6e4kfKcb7/FfhjV7WT2K8hScDPB2xiJAgd9HFm43dXtfy//69fJfZyHyQqqixcoAQgOilJOmgQODwetnffj3tM/KP1dH3BW2U41+UawF4rx4SM1EKmqaGOvDrVRRh+GQQeu760pczQaRTa7NrCgwHpwf9W09zjkdJIWZxee9kkhUxJxNnZbm2WuR5pl0rqq90ePri2Q/JaiMdvLJ9ATpQKrDPU/SBMhDA1xHrEMdI697aQxQup3BbLWkfCOTSCbqwAKyu5tQmbbaej9cBtLG6WsIjj+hbLANIwfMLPs591+sz3hOK+VtW3XarbFyBcV9dzWPVWVZgh5ROxk0zWBkSgDUfJJw+PafdXmO71+eyUjIpp1wM8Rpz4q9LQbIvWU/PftNuS6o2Ox565SbxPsp9RYTdB7uVshH1XC/JH1o7C3I/X8uEtLHhEvoU6DsnvZR/JtG59G33YyZ9LZ5hIoFBRnpTfHBXUl8wepoUHqVSyfKV+1GyFAlwSyoRCXL6iR5lNLwERxldzXrLtjBiWFJtyMh1ApekN2EksN9OGenNyOpSqWQj5GX0u6R94f95TxRFtt2kW2HEuaQrkXqRbffBdZZLvbNPeB3LYnQ567m2tmapTCTPuU+R4ovvHJD0KxIYLpVKth7sk/X19RyfOAAbxc0TDjyxwJdfBx+Ilu/SQSHB8KKTFUUgvqS3WV9fz9G0FAHeMkmrFDm2i5wm7BcJuksg3hdJeSSfL6PL5fvxOree7NIH0ftyWkuWAWHY+zsp/iadfxvKCK7PQ2WOsSYJOsmoZSQBXGQaWSbKtZr+QmymgnQFZaVQrYa5/c7goHm05IVkpFoROEDxKVrgTokLrEBTiWQ6Ui2IIr257JFQU+4jOypEwGgqJgFjCDgLNs/V9c/XM0AHIyOBSVIlkAryqheBrs0mpqbGcdZZ+lLexsh9Rv/FsUuMxecT2PBPZ8tgLn4fRQC2in5vtRBEEaKojCxzfKJDQ7q5PDG9vu7lW+OOjkSmJpqtEkWoVGMAoQ2KNAfvcuMtVApbt2obF2bmlIMXIV8omwHjRdf1QiVsSBfyALpUpIyklI1npByVIjnhxUkFOpu4V7U8+YArz6cJajnVKuVx7TObngwH5Xgypzb480M9cvQNStmAtzg2tExZpr/n5pSd1WtD7gPs/OxEnFlPtGw2p/SlL0+0ZJmORPfnwF4e3gIAlGN8aEj/1itxB5htumNMcYyWAZF5oslObbUaftAIUa0BobENdPwy4FUK2TV2jozo0FsZZS7bwHlCgvQSxDQZTVkPXpIkmnojru5wgcrG9vpJxDm/IYs115m4Nme7Tf0saxznbFPfUHVQrQZIEnNap97IP0Qi/FGkj4JBU+FMTpZx0UUujzYPVT344A6MjDi6dSZwPdIMNFVaVEGrnlcJTRIPwkmfL417tVrJqdk2L3VAcTlWSJLAMY5YRSHXv1hdBQ4fBtbWMHZ1B2trga3H8LA4VSei18txjHJikmE3s3zEuJAga0Op0E29adY9xv1TZWynPCEm6y7vkcfuuDAdGckvBCVNIAc+F0j+iYkkQbOph7TJxe3qHsf6+IU0qOZL+tQ3Xb6edVaetpCk98Z2ZxmAWeWOGMKVxeoFrUXHp26i7HM6KwLTiyrTt91PSelr8QwRCdwSRCRwJ4E5yVEtAdxyuWzB4CAI7N+SMkVGiBM8PHr0qOXZJq+25HuWdDEyEpxCEJs0JJKfnELqEdZhy5YtYNJQArU+SE+gV1KLSMoUgtVsJ3nBJa0J/2b7qJ+BgQEMGcvMMgmmSz51grhpmuaSSEq6GQnmS1oRP/K63W7n9LyxsYHV1dWc80JS6sho8F4R4xTWTXJ8S4CffSAdJJKKhGA7qV6k80W2QYoE4mV0vw9cS7oaH8guitqX17NvfPohOT5lv7DffIeO5PL3gX0J+Ms+k84SPkf+DmUbNzu9QSkCh58KgHEfRO/LaS1FIHpRWJNckPobmrU1YG0NITSnJRoN/apWMTOj1+jLy3pzVatpkPwHqT42fPBgAGBc79kJ2BkkeHp6J6pVx/E9NGTYMGoVBLWao8aQiHERCEoOSZEEbIzJv+T1rYKNEtspdp3cQwIOD47iHYiqOxyYbhI7EWReSQO7B+moUB9B5iay1TLcpS0XscbnDg/rd9LeMMT8gQew69IYuy6tYvv2MppNvd86fFif/j10yEVFyZPyS4ZSxtDY53AVtgnQoCyrUauFxqGQ2uRU5YkJdCI3bipxB3EcWBBXbQ3dRlx6KoaG9N/k/pybA6II43v2AFNVS20TZG23iTUVCbnZy4VEonjD5I+Dgs161328pgjYkRFq9ABRQZLKJDJgtEywJpEObmZ9MCCOLf263N8iqujkcXJjrxTa8ag9sp0LCJXt5YadgBDHvxh74dx33bXkSTfAg80FR8CBR8r5++ZvjjryxQfQ+yB6X/ry2EmWAT7d42a/Q38OFNGapFq2HCO1GvY3K0jrbppj0tEgXQEAfHcuxBe+oFkkXnJ1Td9rDOLFV+u1AGlKGg3NwFarAZdJND6OXd4JODo1ayek4eIiwJufaF6C+f3A3ByC3QoDA6M54NItB7QOgnQFo0kEZInmpxFz/WJWxuoqMKQcgGTnQh9gbbUwnihtz+bn8zofHMzrXqLi+/ZhvFbDy162E/W6TvFSr2sdS/YPCbDOzQGY3InGXD7PtOxaLl9y2GiaAs0mKtRlHOfzhfBic2MlSVAziTet/eBDyBND3jiTnHon6VmyDJ1kFIcOAeXtArAV66eAZbGRHGC0JWmKMNJdZevHdY9wPLezwOVryTI9RgYGXF/K4460O7TbpJmh559rRFHPTqTJVQLWi2swkUydtGhkhRkack6RjQ0Atap20siOFL9RDvE4hg6ioBDc375dF0jaQq4xsgzh7L9pqhtyriVJzszGMRDMfV8/ZM8e/QXHqQjs6FrHsN+lyOvPBOnb7sdMugmFT6F84AMfwLOe9SyMjIxgx44dePWrX43vfOc7Pa//hV/4BWzZsgU33nhj7vO1tTX80i/9EqrVKoaHh/GqV70K83LC7iF//ud/jvPOOw9RFOHyyy/H1772tdz3R48exfve9z6Mj49jaGgI11xzDb797W+fVFsfrRBsYtS2jKImsFQEoBMAHhoaQrlcRhzHGBkZQblcxtDQUC6SvYhXm/zbMkmlTNbIhJgEimXEdRRFliecQPHa2hqWl5extLSEpaUlLC8vY3V1FWmaYmVlBYuLi3jkkUfsS15DoJnvEvCVgLvkGWebBwcHLfgLIAeiywSiQ0NDOOuss7Bjxw6MjY1hfHwctVoNW7duxcjIiG0Pk3uura0hTVOrI0bUh2GIKIpQLpdRLpcxPDxs/z80NGRPArCstbU1rKysoNVqodlsYmFhAYcPH8bhw4exsLCAZrOJ5eVlrK2tQSYH9ele/Mh8gvh0EHAccAwMDg7aBJlMqsr+oGNDtoXtGBoawuDgoAXW5RhlveRn0gHQC0yXLz9CXTpr6NhZXV21Y5J6IThO8J/jgH3PcjmOZL/5dZG86vzej/Jn3TgG5cs/FVJ0SqTX77yImudUyAc+8AFs2bIF73jHO3J1erzmQd9hcjyvvjzx8pSx3bmQJRRHPUswUX7GRSqPZ5N7tNnUG/EowsyM3mtxQxc0Hgbm55FlsJvH//f/Be68U2z6Gg1gbg7h/Pcxrh7G1JTDHlstDRBjYsIlN5TR3qwj4ApkIkRulPhwZvaanXVIPTlP+be/eTPH2zc2HP2IqS5mZoB/a+zQr9kQMzPA/vkABw8FNgEaq9XOgvwmks+UySS5UeMmlug9+atvvRW49VbsUvvxzOkVPP/5OuHbNdcAL36xzhk5NeX2X0rpOi8s6OZTBXNz+nXwoH6xXVRHmoq+543NpgZTOA6aTQ1imO/CbAXbtuk8VrYtBBZWV/WD77sP+MpX9GvvXmDfPp04jUnJZORYs+n6a25O83tSV72OJXM8EyTgZtx3VMhr5fcyExtJfaNIK2h5WbdV9pcBqjvVHdg/H+AHjRBH0jJWolGbbbed7MAiKmirco4suK3KXXnQePr/SDPAiqqgnezQm+XJSfto0gBFkUgAS30MD+s6i/HfRohOXHE/qL17gW99S9djehqo1dCJylDK8COrFdvGxWgH9qc79LWHDrnBIfVaGOqI/GcnKafadncBH8fz6ssTLk8Z210UWU7xxyOdoAKwltcFrUV9KqVe1zzMUYQ779T05cQOJydFYk3o7z7xCeCmm4DFrKznGj5j717szL6PPXv0fVGkbUu9DmeHJRht2qAdh1E+zwnn3MOHHRitFEbjNlOuaAfA7Cxw772O0Jv2Mweim2cZO7+YhvjyHWV8+c4K/vW+Cv713jL27gW+/W2XYwTwQHRG6ddqjut83z7g9tu1TeOzJZpK8JWA6t69wB134EJ8Fz+8+wiuvlrniXzRi4BXvxq49lptvy+5xGG2MzN6nTQ3p/uEtnt2FnadxfQdXSB6o+FsZ6Oho5M98BytlrXvXC5ZpzD7YWNDl3XggH7od76j275vn27TnXciaDyMRx4xCT/p/JCVZUW5psgnVHFjSHKxe0flVtIACws6OMGOIZKLSxDdJMnG2Wc7R3izqes7M+P40KtVtKvjaCc7sKIqWMy0PT50CNhfD7G/HqJdHbdrzo4KLYi+Eo1ifl6P7yjSax7+9I40A3SmL0Zn6kJ0Jnfp+41dlOxoSYL875Jf1mrOLscVdJJRdCZ26v741rf0gIgivdCLY0NbZBLHom0T5Pwg24Gvz4zq+ziAqFOp66LQ+MfAAd633WeuPKEg+m233Ya3vvWtuOOOO3DLLbcgyzK85CUvwTLDgIT8r//1v/Cv//qvGB8f7/ruHe94Bz73uc/h05/+NG6//Xa0Wi288pWv7EpWKOUzn/kM3vGOd+A3fuM38K1vfQvPf/7z8fKXvxz79++31/zBH/wB/uiP/ggf/vCH8c1vfhO1Wg0vfvGLsSR3fKdQfLCRn1F8ChECdpLKJYoiC376EcU+17QEPovAREnx4QP3ElRnPSUoT5CWL4Kaq6urWFlZyYG5jCL3o7IlrQyfLV8EUQny+9Q1Mrqb0csE0kdGRlCpVHDWWWehUqmgXC7bKH7qSibtlBHurIsEcfmi04H6l2VRL9TB8vIyWq2WdSIQKPY5w3tRg/hguhwDHAfUi6wD9U2wnqCw3w5fp3KcAsiB60Xjl31wLMDUB045luTYkf1IYZv96H8fIJdjSd7vjw/5nU8PI8e/jPQv4kbvJU80QPzNb34Tf/mXf4nLLrss9/npNg8er5zoZpFy22234fLLL0cURdi1axc++tGPnoLanlnylLHdPoDe67vNhAv+1PB0mwSIHQSYn/dyhxKkhkuG+e1v63W9fRzRRBM1U8aKBYF5ZNmCyxJAl6CdrDsBULlpZz0kEOqDrAWbig6CLmpr7j0lJj83B9v25eV88scu3MN/rgQih4YcvwnR+zTVgMLMjAYNzEPHkxVMTek91+7dGrzgyXSqhfrj3unQobz/QDab1bIR6tzwLix0HwPmRp0gTauFkRFzFF1GopVKLnz/4EHdBiIAEhiXeuezWFkCuLKyReI7gmTDisY6I+0kgTzguFJ8OhfZX+vr9hrfD9NsAu2ogk5cwcKCU1EHAToI0EZoi+Nj+YjlZZeTdWFBJ2I9eCjowh3sHlC2l1Gb4hQGq7ySBi4yzZwGOHgowGIrcA6vdCWn53pdDzUo5SomQY7N+qKroicmTzbb3ZfHT54yths49qkx/1pp02QyxVbLOcAPHQKUsgmqOd1Xorb+wEw8c3PAvfcuY98+81EUuflzbg647z4E8/tRrVo/qwalJTjuOb6zDDmHta3f6iosL5yIoA1ai86BqI+2Aa0WSiUD4ppycgC6mL9bLY39Ejj/zndcYm7pH2V1OwjQUSFW0kDPodKLPjurn88+8G0GAemBAT3v3n+/BZ6npzUOeumlGky/5BL997nnuiL4mEYD1o5I3zvXWXSCWypu337KedtfyJiFQVm1NbCrVJ5+jNc98ohzqB84oN8ffFC3q9VypkAuNlhJJl6VixJ/HerbFVlXONuYZXBUPb4NEk5qu1bc2Mg5CyxPeJJ0xU4wjzc/X1gAVrIQ7UyflmtngU3EyrEdRZpthQHxXOPOz2v1H2m64Ak2Z2AALrmrL3QEJEluzYYo0s6uuTlAKRw8FOjADDH00Grpvmk2MTen/QaWN2hpKf9b8PvAn0MeBYjet91ntjyhIPpNN92EN7zhDbjkkkvwQz/0Q/j4xz+O/fv346677spd99BDD+Ftb3sb/u7v/s4Cj5RHHnkEH/vYx/Df//t/x7XXXotnPOMZ+NSnPoV7770Xt956a89n/9Ef/RHe+MY34ud//udx0UUX4cYbb8S5556Lj3zkIwA0oHXjjTfiN37jN/BjP/Zj2L17N/72b/8WKysr+Pu///vHXhknIMeKyvSjkYsSYcrrjvUM/1nHigg9Frjbq3wfwPdB/V40GxKU9SOZfX34L/l9URS/BESLkm/6bT7edhdFXBe191j64nfy3W+zrL/fjl79tRn4eyyw92T4vova4tP+UIr404+3br2e2etZvcrejJfe12PReDvWc0511HWr1cLP/MzP4K/+6q+wdevWXF0ez3nw8YxEP5HNIuWBBx7AK17xCjz/+c/Ht771Lfy3//bf8Mu//Mv47Gc/+6jb+mSSp7ztPl4A3btHKdjNY+Ga3HzHTZ7EAOymTy7YzQX+nvq463c8ESebRfQdp/gBzY9JQRQJdshr+CBRf9+nwJdPMcsiOGRlsFGhmjYDZvy/zSsXeHws/a6v55wxXX3iv/v1KtJPr/r6wLp8HhNwbVbfzco33xXlYWPx/mfyVom9FA1ZJi8jbp/D84oK877rAtx7NCFAp6sfNsXAN3PGPUp5omx37sdwPK8ziarmSSxPOdvt/yiP5/cnHbXmbztXG67yQhsgJye/OALzUpfCDlh2E05em7XB/22VSvr35ZWNLMvngRDPtHQlxylyfttMhYXlHo99HBjoniNEPhlpr4eGnN0umnflksB/SRaZTdc8vf7fS6+9hI59YdxOyF/q2+3jWKtxCEaRAKD99VCRFPVB8SNyfnU2s9dS0TcVku6fsrGhy2pnQRdHf6F4epA/hVxlvcozGl1+90Tl2ezb7jNfHtWwSdMU0WPIA/TII48AAEZHR+1nnU4Hr3/96/Erv/IruOSSS7ruueuuu7C+vo6XvOQl9rPx8XHs3r0bX//61/HSl7606552u4277roLv/7rv577/CUveQm+/vWvA9BgSr1ez5U7ODiIF7zgBfj617+OX/iFX+gql1G8lMXFxeNt+nELo8AZSauUygGAjDxn5DDfSR/C6HO++4AqI5KPHj1qKVMY6SujdWXU77E4oKUQ1GWSy17AGJ9LEBtwiRr5/erqKhhJTK52GeFMChnSz5DX++jRo5bDet1YANKwSP3xb3k9dSAj+n06GxmdzWdLznc+T4LnjDD36UgYJU69Mgpb8sHL9krO9NBw+Q4NDVlOb/b9wMBAjlucEdQ+b7psh+QN9/uUtEBFgD7v53gqSuZJnfBv6VxgHeW1kv+/CJTuxRlfBGr7POnyGT53vRz3/rj1k4+y7/zkq/5vzm/vZk6CE5GlpaXcHMRTBEXy1re+Ff/xP/5HXHvttbjhhhvs5yczD56InCgwfiLX3nTTTbm/P/7xj2PHjh2466678MM//MOF93z0ox/Fzp077dHliy66CHfeeSc++MEP4sd//MeP+9mnu/Rtd16Oy3YXbcZlVA+vUSr/XZLoRWirhTA2SYyqVTQawNiYy48JACu1XYgmgfmv6GAmpTSXN09sr2QhyhMTjkYFANJU85cmCrVaoDdNc3X9fP9IOIFRADZrosd1mYs6PxYViNRLmiJQClu3hpZZhYFMhqayi1c8STSrBv/OYRCtzEWo8TmsD9/ZJrnL5i6ZR8tFlFiQaS5adhExYiYgZf4sWbSPvfoYycYGtJ7T1PHC+EC03MAavuxQconK6HLSo2QZbJgi20w+Ewngyuh8yc0pTxcIvteuPmR9+TfLk4Sy6+s67IzHzHPZweA8PoDLcMtriHqI6z1Mrkvf3JgT7FFxgFpN/12J2nZckCOeKmEUO9W0fbtjvgklyFXUP5lO5Gr1laaOu73VwthE4trAyEFx4mBy0ozlR1rF9Ek+GOODIuKaM8F2nxgSBOAJPmn3ZJG+7c5LT9u9sdHtBe3loQNcZC7tzPq6tpG03emipZvoRGWbb5Nyz74AUbQDExOav1kp4LzzhlGrccoPMTo15eZQU5+wdQRTU6N4/vNNDk/SeVx0UdcpMqV0ZHEgOLatnWB9/bmZ1wwP2/mskh0BGlmu6VkGgObe3M9UEEq55UK97nKHyOltYMAkacwylGWiZ6W04V9a0rQh1ar+7sEHXfIR2ghmCeViwHwWoo2zzgqtGaGJV0qvk6S5kRQ2VIsvcawf0c4ChMxAyWTQRSf22FBGKJvcJ1ZoZAYH9SuOncL8NUCaojZhwG3O6dJ+yyTdMspd5usA3PqM39FmN5soZxl2RhGwr+6i25tN/Tzadz+/TZa5DOgTE+45q6tAlmFgILSJWeWwYp/I9R27j4HuF12kPx9PVoD5BirVKuJa2aqGeVgBNyR4yqFUEn/IQuUasNFAOU5d/zWaucXlyAgTrutyQkDrxSD/F10knpMkbiHo/47kM4vAZvRt91NNThhE73Q6eP/734+PfvSjOHjwIL773e9i165deM973oPJyUm88Y1vPKmKHD16FNdffz2uvvpq7N69237++7//+1BK4Zd/+ZcL76vX6wjDMOfFAYCxsTHUyf3lSaPRwMbGBsbGxnrew/eia/793/+9sNwPfOAD+O3f/u1NWvnoRILX6+vrFvD1o64J7JLzmlzcpPMgWCoj1SWgKAFovgMOwO90OlhbW0MQBBYkLor8lmUTBAZggWYC4P69R48etc8k8CvvZ9uzLMvRt0jQVeqMQrA7iiJkWYYoirC+vo5SqZQ7guiDwjJKnO0hiC516lOcSHCcf0vHRBEgyGcMDAxgcHCwC2CXYLlPUSIdHwMDA7bPZZJPqVNJ1xJFUU7H8joJ7EvHi2wrxyHbIB0abK+kA+oViS/Hgw+0F4H30sHiA+TyxIUPcEt9SyeE5GAvOqlBnUleepYp9Sdplejo8iPUi04aSCfDo5WLL7449/d73/tevO997+u67tOf/jTuvvtufPOb3+z67mTmwRORkwXRfZBzs4UKpWiz6Ms3vvGN3MIFAF760pfiYx/7mJ0rzlTp2+5HabsJwAnuydx5Zn4PuE3TwIAmgSyVLCh5pHohZmb1ZZOT+r1U0pu9W291GwpimOee6/KLZRlQq+3SEUbk7SRneJoiIKjHm3fv7kaFueGbmEBHhbmPNTXpKMpx2wGJPujgL74lyAsgjCKEkUIch10YvCxmfd1FlPHzKDJcla3UPdtPiirRUm4i5dHk4WHnmSCQLgD4EBpQjScrGB52J6rZFBYng2/kz55tkvS5nWRUJ0NlQfJC7jD5faOhC2fdeXybm9mREb3794GyVksrjd4HPkvuZiWaIGkBjA4WW0Fu3xxa9ARuEBw4oJXCd7/vSWwqAarBQZcdd2QkrzAPyF8XjhQfq+BwZrWU0h8GWYbR1IAG8/OWQzeIY4RJgrBaRaZCy6ZQrztsiblnQ2UeSN5/jgnJS5BljtM3yzSCRHCCTpI4dtwBDHdfX0ew926McX6Q4Acbxuf5G9iCzeyZYLv7G/FTJ33bfRK2WyJ8viMScJ9xniWdCOdoQBvogQFrfDu7L8OcuhDDh3RuDdJRNBradrdaOkfhxESAONY5OWs1N2Xt2fNMlFU7T7c1O4vxahX/6bUTek65805d96uvRicq62TcZtKmSW40K1AKGK91dDlMjEIbKAE/vm/f7qKi9+517c0yhGgjjJR2XAtQsBK18ZznaPC6kj4MKIV71Cjq9W5/cakE51jk3DcxgcVoBypXJZrHI441QEueGCZllhzvkl+N/dRqYWx7YqhPWignCbZuLVt+bYlRT08D49U22ghtrAHtiVw2ZJmmIBmbnnZ2gOPAL5T1OXzYcZHIccW6j4w4bnHaDj6Y5TabGK09DNRbzlbyWZKCz5TbSUbdEix168CJiQpCacxJ8Zemmg98Y0P/Xa/nvf90APi0cNQ9oNeNXL8aoLlUclQ4rI/E9jnkqJIk0QnQKyrDZRNG6XfM6HpOTCCoVvVaMY6hRir49rfzLHhcykURtK6ks0AmJs8yS5Nj1zpZBpxzjp0HytliN1UPaVFWV1GZuwfPTGINvpOXvSjggL8nOWY9EL1vu59acsIg+g033IC//du/xR/8wR/gTW96k/380ksvxR//8R+ftDF/29vehnvuuQe33367/eyuu+7Cn/zJn+Duu+8+JgWCLz4gWCT+90X3HM81lHe/+924/vrr7d+Li4s499xzT6TaxxQCbIygDsOwix+cST3J4z00NIQoisCodElTwnt8IHNjYwOrq6s5sJPXMiqZ/5dgo88HXRQRTMDVB5MlcEgwmAlDZTQ4AUwC+T4oKqOU+b0EuAkME0xXSoGR4RIoJ4At68b7JS84gWom2ZQgOuAA1/X1daysrOQcFIxS9nnlpWOAJwHSNLW6X1tbyzkqJBi8sbFhwVvW0Y/+llHQgAYhjx492sX1LQFm6obPjKKoq67sV1kOP+NpgSKqHsm7LwF0f2xQX0X0NBQfQPcj0f32S8cEhWPPd1Tw3Xf8SCFgz3cJonNc+NHsPoB+IsByL/m3f/s3nMOFBFAIMj/44IN4+9vfjptvvnnT6KYTmQdPRE4WRPfn1V4LFXlf0WbRl3q9XrhwybIMjUYDZ5999nHX9XSTvu0+CdstAUQZocodw9KS3gT5IKMky96+Xb+bHdxM40L8r/8FXH653ogDGn88dEjn3qrXHRa5bZsO3iKIzsShQ0PA5GQFlSTSNzB6jZvS9XVdAMPIKEQp4xg/aDiQW0YEtVpArRaiQqCW9/QC0rmDkpsyAEEc64g0uTOixDEQcweuwdx2Fmju1mYrf08cYzENAYRm71LWm0cJWkeRVhqTRY6M5CPs2XaxMQ6iJsbiGBhS6ExUbNUCdPJ83n70kQG4o6hs1X3oELB9ewWBv7nzdZWmLrEb7U2joRXPKD1uBOM4j+Szc6hriRDI8Skj0M0mr40QaSuPWUQR9AkGfxDQg8Osefyc/KPcyA4O5s/N8/ncWBLwl9F9RhdFQV6yi/iKIri2zs3p99lZDlKXFFQpqHiH5V89cMBRy1erLsAxdyqDFSHJ76FDOqyxVtMgAgEfpfQz5+fdM5m5DnDRhAcP6nInJ/MnCGQjPed7bgMuvj8TbHd/I37qpG+7T9J2SwQVcIAm4OYleR3tO6PF6eU2pM8z6jJ8/vPAa14DjP37/8VorYa0uhPNJnDLLc4MT0/r000ve5leIsjcJ0kSYmpqh7av+/bpm+6/X09Y9boG0c0c22oBFc63SiHI2sgynZQbAOI40N/HsaXAyDLjiJbrFMDZFmbKZkIQ2hPp7OWr2cTYWgocbOrcHFGEiatfZfFKXmbBUwKVRpdH4p3Ytw+YmBjFriuvRAc6p0RZKTeHymh7ApN0YhLYlkeMmk19kqtaxVgcozRdsRh4lplo5zv3IowijLJNzSZCpVCenASqCY5kFTQaerpfXg4wPFzGmIzupyKlnZBjh+HSVMD0dN4RQGodrhHTVC/mokj/PTvrQOEoMkTe6HYixLHOswH3ER3FUQSMR8ifICSXOZPBP/CA5gY//3xNKE+9s9MYpl8qadCZ9s56axrWGKtIr5F428aGW3aVSnlfNH9eiEwf3nuv1t1DD7n1pHD6lKencehQgMOHXT9ecolzgLPP7SkG9g/rx4Q7HDtx7DL28jpJzi7ngI0NgMmNL7gA9sibFxxix4Mfwe+B6H3b/dSSEwbRP/nJT+Iv//Iv8aIXvQhvfvOb7eeXXXYZZjizn6D80i/9Ev7P//k/+OpXv4qJiQn7+de+9jU8/PDD2Llzp/1sY2MD73znO3HjjTdibm4OtVoN7XYbCwsLOa/4ww8/jOc+97mFz6tWqxgYGOjymD/88MMWQKmZozj1ej0HnMhrfDmeaMhHKxIs9SOMKQRQGSVNmhEC0gRq/Qh0li8TL0rAUAK2WZZ1casTDC6K4KVIENOns5DfE1SVEcKsC4HWIkCU9SRgLpOnUi8ElYMgsAlNJYhO4TXyc7bP16vPny4dExIk5rMIovNeOhYklYwfZU4Aln0j68P6yahxls0y6LCQgDSdIYy89x0ABOUZ+c/7OPYkWC6jsP3xKvuw12kBmcRTAtp+xLYPmB9rrBV9LvVL/fCZvShieB3rURQZL8uXDgf/VEZRFLos97EA0ZkcdzO566678PDDD+Pyyy+3n21sbOCrX/0qPvzhD9tEnCcyD56InCyI/uCDD+badqx5t2iz2EuKFi5Fn59p0rfdj4Ht9hee5IiW3/vXcJFsFvwN6P3o9LQOzsoyVwT3t9y7y9PZxVhuqAFlbhAI7LFuAtTObQ7h8icxaJh4eanEPXWgN7sewNdz8V0EHnNz5ycE9SO5AECV3abfK0dyXSvlRVADbtPKI+FywyURWr4ToTW70UCGUFE5MpmpraPb3EZJ2XYto9krrJfvdGDFuRFn5JhUvNQPnQ9J4tDgLNNAOqkLlHIguyR1l4BEZChP0rxqo0hvhDsINPTCdq2v60HRbOrj9ocPu10zdcSIORZE3cvwNB7PlxFwx9i4kRHG97fYD+UYl31idKWSfMKzoqEEoJjOpdmE3cGzb5TKn2IwNDyIY5cMTraJkftyE059FUnRb8DImWC7+xvxUyd9230StrvX74vObf+3KSOAV1edI1ZXCFhfR6OhE2y++MXQhhpAPK31NDenE29edJHzN05NudzE9J+2WsZ214ztJqgnE0ua566uApXtwgmZZciy0GLL2h8eWIzZnjCKPZsv5+Esc9HIcg709SSB2UOHbILl+GXdlGZWpK03ToADB9gNgb2nXI3cHEpwnzzNtN2sl3R+M3G3sKejEzFW0sAtMahDCYIy8sC0KZ662IK1vG9kJIBSoY7IL6LtYH1oI6UD2Xc+DA05EJ2ds7Gh27i2ptswNNTtbKXdNvrrqBALC/pWDkWu29IUOhBB9i1tt3EMtx98EIsAqnNzGiCWR73kmgzQdkuuIXgiQ/Dh8HKZd4R+ct92Zxmcguld4npC0gwa/S0vhzkH+NSUowPsuocPYCc2m8gdjwDytloGHjASpVRyzpqHHtKfM2JF1Kur8bKhss/NWqxvu59acsKJRR966CFMTU11fS6jo49Xjh49ire97W34p3/6J3z5y1/Geeedl/v+9a9/Pe655x7s3bvXvsbHx/Erv/Ir+NKXvgQAuPzyy1EqlXDLLbfY+w4cOIB9+/b1NOZhGOLyyy/P3QMAt9xyi73nvPPOQ61Wy13Tbrdx22239Sz3VEsRAOVHf8vPNgMf/Xv8/8vnyYhcn5bDj/rtVUbRdX4UtA+OF1GAFH3+aABIGeVMQFu+GHVdVN8iSg5JwSJPC8h2F/XPsermR2D30qHUSS/gtyiB6maR3izX73+fksXvk15j1Qff5UkCX19F4j9DOpp6tdvX2WZtle31/8+/i96L2um3uReYfqrkRS96Ee69997cHHvFFVfgZ37mZ7B3717s2rXrcZ0He/XdZi8AqFQquddmACg3i//8z/+c2ywWSa1WK9zkKaWwbdu2R93eJ1L6tvsxGLNFgNjxJt0xC22fYYT7GgJ/fDHRkry9EIv0v5AX+BvRLoQy37Su5vUqV+rCv9EHKHt9X3RvwfP8JFNZJq7jpnNkRIctSQoTPwLa3zQU6caLVs+B0rK8AhVFUUGZRfcPD+voZQLfm2W1YsI4XlMqOd7VKNLtJmDt183UIcjaXVUYHNS3BFk73wd0RMSx9vAkSf4ljzCz7lSCJKrtcpDk+7LnWIbbu1qadb8P5UZfjHPiL1SxZFTJPaPI2VPUx/I3xOvkuFldzY9vgiqyIfK9l/QC2Y8hT7Tt7icnO3XSt92PYsz6v3egOCkDry0SM/cS31UKdj6UqUP8KUJOq0XzXOHvRIDdQ0Posk38Kcnc4tIBmWXaOdpzgvUrISvd60UZGECoOr6f1j1CfmgATz/XqX2uP+eOjFj7spIG6Kjw2LbbgKJl1Ua16oBmWwfOUUNDefvkqYBV0FRyXof69aSjvte8Ju2579xmPWivZZnylBRtd7pizbHUOZc7XesrXmzsdVgqIQKK86NI+yTHnW/DRAf6l0o+dKkKW6VeOivoT3mIMI7dEsc+WBbsO+ypcy5u/Iyzcr3JQAQGBkj7XvRb6bWeEXW3C/bjlL7tfvLIMVZ33XLJJZfga1/7Gp72tKflPv+f//N/4hnPeMYJlfXWt74Vf//3f4///b//N0ZGRix4cdZZZ2FoaAjbtm3rAi5KpRJqtRqe/vSn22vf+MY34p3vfCe2bduG0dFRvOtd78Kll16Ka6+91t73ohe9CK95zWvwtre9DQBw/fXX4/Wvfz2uuOIKXHXVVfjLv/xL7N+/33r5t2zZgne84x34vd/7PVxwwQW44IIL8Hu/93sol8v4T//pP52Y0h4HkUAtAb1eQO9mwHgReCtBVUZ+y+hY0m4AyHFzE3iWZfAZPtjNNvgAKp8pOclJ7cL75KLRj0yWkfB+NDCvZ11kwlQZbcoErLLuPsDJ9rId/F5GbPv14/2kfmE7JWBfFKEv71Ni8u4FwLI+jFgnHznbK6PX5ckE2Q/sK0aqy+cxYpvlyrEi7yN3vuS+Zx/59d6yZUsu0WmRw4b9If9mO0knI8cPdSXBbbaPFCvsZzlGeAKB4gPmUu9+hL2sM50BvSLP5e/isaRxOREZGRnpojcZHh7Gtm3b7OePdh48ePBgT+/5yUaiH++1v/RLv4TPfe5z+MpXvtK1WSySq666Cp///Odzn91888244oorzmg+dKBvu0/KdnMRyYWyF2nVBVzK0CbdaPe9AR+nJjSNS5IA992n1/MMRGOQ3Oqq/oxrfQLvgNvf2b0aj7DyCK48ayv40n1g279cAvr8v41EF9FRXQC4f9yVz5LRwnLDw79lnZQC4rKOjJZRznBBXLL4dlxGWHVgg42MJtgbRVhJdeRbGLddfXygfHU1n9lV9hV3rP7GSnxG1cQxEDSPOE7SZlN3EOk/pA6oP4ZvKaXrxgyrgO4UuQH3JUl01BTryPIpjFw35QdKoRxF2DVR0+U1m5p3vt7qPoM9Oan1wigu6iuOdR0JBABu48hdL7O5yc2p0GWrpdVNSnW/aYyQzzJ91B4Atm83fPOMBF9ddf1MYCTLELQWsXt3xQalZZk7yRHHyI83+TvlD4sI2diYPtbO0wDs6CjSz2bE6EMPuf4ZHHRUQjJaTo4n+bfclNPZopQ7ZXAc8kTb7mMCdL48BnlenqrSt90nabs5B8l5n9xO/m9Rzp9DQ3ngyNiX6Wng1a82U8b0NVhMQ8zcqad9prJYXdWBrtVqPvJcKRd0HceGNoyUUUzGDDgaijRFBYvA3LyLTk8SVCZinH12aKuWpnquXFhwACQAjNImslxWhrZV2hZ/bqRO5DzOua3RwPT0Dp2TpdVCpVqFSdWoj9d5znrpa2XxK2mA8jnnOKXEMbB7Nxaru3ROmDn90U6fc5q2Sp4EMqeHRqXNvuIKF+GfZa4DzDWySXFsklXPzObXMxMTQLWKtipr7vSpKWdY2BjpwJJJUgYGtD3Y2IBF9885R1P7STS8Vsuvl7LM1XthAUhTTE9flhuuHGNjQ4s6gbxc/01Naft11lk6KmNyEvH99+vjEZdcogeITHg6MODAbR6fkGtc4bBfXdX/HRvLnwqUS7utW3W12T1HkhCjExPOnnJMSe73KAKaTTz/+WU0m5r5ZXlZ5wJKEvM74fXUL/uVY/jss3WUe5K4G+XYARwdHhcIUeTWyXJ8yPHPAUyR8wnbQpHrqGNI33Y/eeSEQfT3vve9eP3rX4+HHnoInU4H//RP/4TvfOc7+OQnP4kvfOELJ1TWRz7yEQDANSQGNfLxj38cb3jDG467nD/+4z+GUgo/+ZM/idXVVbzoRS/CJz7xiRxY973vfQ8NnoEC8LrXvQ6HDx/G7/zO7+DAgQPYvXs3vvjFL+YWKb/6q7+K1dVVvOUtb8HCwgKe85zn4Oabb8YIE0c8geLTbRw9etTSi0he7SJ+cqA7clmCiJL/W0b1yuhqAsUEA/lc0pxIwFeCuj5gKCku+EwAFlCWYLd8pgRseZ8E7YsAdNk+tkcmuiS4zGSspMSRUdU+vQzB6V59I3ndZR19JwevkX0kQVkCw5KHXUZby6hrUq2wfmtra9jY2LDv7J+BgQGUSqXCCHbev76+jrW1ta5nHD16FGma5upLh4t8pw6oZ388sn10XnDMEVCXnPQ+mC0pX+jY4ZghlQ9phwhmS+oaCerzOunYkePbf6Ycg/74oMj5R94jQX3eK+mETjWQfix5tPPgpZdeir/+67/Gq171qq7vHk8Q/VibRUDzaT700EP45Cc/CQB485vfjA9/+MO4/vrr8aY3vQnf+MY38LGPfQz/8A//cNzPPV2lb7tPwnYTLJQbShmp5EfJSsoQedxXAMi7qouo/VQF994L3HVXnuqTVJuPPOLAdbnOB9xafWhIbMQnJx1/qARxm029eVhedue9k0RHtMVuX5qm+iTw8rLD3qMIQCLaJ9suEW250WYFRZSYDQ1mQkw+lPoy9coiJtDS/OcqKgMQR5fhmqebGmBgYFQHSlV3ADB6nHHXRhGwbVuIoaEQlUS5TRTr5x1XtlFXe/bYzW9blbsCnwAga2kVV+KOI729/37dcY2GvvBZz8IP6oFtV7W6E5UrkjxgQYUXbWr4MCIjBAoMF3g7C7CwoKs9mnR0u+bndRsPHdIbSzlOyXnKccHdMKPXCOpQfGcHP2OS08OHHUhhEnJ2qjsQpCtd4MuRZmBP74/GbfcMpbCSBla/zI9qMAQsLwNJUsHo5KQbT0wKxrZlGdBoYFecAtUIi1MVrK7qTX2oOq6/ZXv4TuCfn8nEomJ82mSuPC4/M5MPfb/gAqdDP7qNdZQOFDn+TwJEPx55PG13fyN+6qRvu09y303DIe2WdJj2+n0qlU+cbBxt5dl78MNVhZXqxfjiraGdCkjZPDGhp9SHHnKHhIhxshjr9+RcMzWlP9jYcCTQnKM5z8zPa/TyggsApTA5uRNpqu3P6qrGBA8c0Bgtpy6lQigVIorNiSMaTkmNQV0QlJTzEZDXSa2mHzg3h6Bed/RaU1OoTl+GNAX2t0ahFFCb1GuTbE43kXM6X80mUL700lwekB9Eu3DHrfpR6+u6LRPXjCJIV9Axa4Egbrj6PvhgPvqXBuTNb8bdc6OYnBzFaPyw/o7tNOOBTapWgbD5MDA7rxOd0iZGkU6KmpUxP6fVPz09ip1MuOmDufy/XPf5ttuA8ogidKKyTko7A0RRGbuYbFVSls3NAYcPu/wvRipZhgqfR25xDqwrrnDtzDLdppkZfc3UlBt8bAM9PGbwHmmF2hnB+0dGLLi81tSXlrFifxcdFdqlBJ3VCwuOcWd9HTj77BA7p6d1fYeHXQJyeXqu2cR4Wsd4HKP24gvRaLhqWRstxyedGZOTuu3UxbZtwHnn5aNOSJvHBfXhw5aayP4W9uzR9/oguu9cM+3OjScO6oUFPJbSt91nhpwwiP4jP/Ij+MxnPoPf+73fw5YtW/Bbv/VbeOYzn4nPf/7zePGLX3xCZZ0MWDRneMikRFGEP/3TP8Wf/umfntB9b3nLW/CWt7yl5z1btmzB+973vk0T1j1RIkE7AncykSRB2yIaiaLPJYAno3l9oI+82j53NZNqyijcouSSGxsbNrK8iJKE93Ahxut92hIJ1PLzUqmUA0slH7VfD59zXZYThiGGh4cRhqEF29heAtHtdtvqgiCzH4XNd3LTK6VQLpdznPSSRoR170VNI6PfZTQ9gV/2h4yoJv86QXTqjE4K1isMXWQDAFt3Wa5/msB3avB58np/vPr9QicDv/eTccr6BEGQe6b8DUg9cvywHOlc8ROOSuoYniIoAuypT/4to+Z9rncfrJfOGzprin4XpwuA/pWvfCX396OdB3/t134Nr3vd6/BzP/dz+OM//mMcOXIEP/3TPw3g8QXRj2ezeODAAezfv99+d9555+GLX/wirrvuOvzZn/0ZxsfH8aEPfQg//uM/ftzPPV2lb7tPQuRCWgJxElH1aCW6QGUPRMfMDMppiu0TP4y9ex3mLU+XSvpGPoogOqsTRXAAqDgCbgFG7lYBl/VpbMwCBiKI14KVxBoYtINa5B4mN9QSkCSqL4F1kqEePKg3M2Nj7qgxhfXjRg55FRft4ynEZRi5Tx/B0pJ2QHCvmMOeayFCfrC+7jarclNMBRtgYwVlzM3mu5xNyTKDs7CcRkNvztbWHD9nFKE+6/Z+hw4BZ59dyQEqAfUgI/jInyqPggN2Z7kSjWJ+1mG6UQScf36ArVvLjmf3oYcsb28OmOG7BG+3bbMAcGdylzvAkAGRwFuSBBogJy85jzAIEF0HTZZ1Ulmj/I4K0azrx9ZqcMlVTdtUPJprJrEE+hfSFEimx/WzufmVyVUNiM6EbZWJCZ1wr6nyDjAfTKdjgZt0U9+VNEA56rgkpoxS4yZ8fl4nbSPgzh8oIwvlWPLnED/SjfXgb+xRyKm03f2N+KmTvu0+CZEAGI0sf8fyGv/3CXSfACIgd/vt2n6/73246aYwN51ICmbSchssFtPTziYNDorEn5IfZmHBcXVwEcCko9/7njuBoxQm9uxEq+WYKXgwBtD4pJxitJ0JEZALOsscVwbnHNqepaVuR55S2hZJfnjprFUK4eQkUlQwM6OLm54GhocDqxd/edRqQdtYYzc6URl7b9LqpZ6Wl3XxSVK266OxKNJGd2lJ60QenWPgwNvehjvu0B9fffUO6ztQChiv6vZmppvDbMUlouFiLMt0W1/5SmtSZs0aoHbtLueUpXOVz+Y6iIr3o+gnJrCYhlhdApbrbtmgfeIVVKqR1u3Cgv5iZsZxfpMCBnCOEMDx+kxMAEmCIxjV1THVe+arJ3XyWp7ckuOciyh+V62iMafHSpkLHrOGaWe6L7VNnLftDOIYUDuwseEc1qVSgLU1tzRYWwMmrt6pTxgygEI6kyPTbtP5oy8DRhktn8INYi52OI4BYHoaKyijXKu5deTkJKB0MnWloE+xAW5R22hoBwzHfrWq1z8XXNC9bmcdOXj5uVzr8rfKCJiTlL7tPjPlhEF0AHjpS1+Kl770pY91XfpyAuJHsxKA7BV93YtPuihCXUbkyijcoqhbGXUtI8qLqCz8MoqoZHxAXT7Dry+BR/7N5JxykXgsHu0iCg0/MSuQB0tZLz8ZaxGIzmtklLnsI37uU6L4fSv7V7ZNJsPs1Wd+vQjaMvJbgvpSSJPCevlR8hJQ53ggqC+dKXJc+H08MDDQdfJBXj8wMGDr4SfTlbqRn/H/vIfR6X4b5XOoE5/v3h8b/t9ybBZJL0oX//mnC4D+eMg73/lOXHvttfjZn/1ZXHbZZThy5IhNqPJ4gujHc+0nPvGJrs9e8IIX4O677z7u55xJ0rfdj0JkKBXFX4gWIb7+tSZKWE26JFGSDx1wFCuyKK7lJUU2MjgAjpu6LHPnp5eWdEHcgHjUH3I/wBefDZjEk6y3XHj7N0khHwdReW6CmHyyh075bOmDKFrnZ5kLGOO1CwsuuefSkttvAg6jzDLopGGAU64fnSzbqJTFFfgsAsk5Zifez46UjgXkA/MJvPOIe5ZBg729xo3chHNjHsdYMtFeBBqiSP9/aMgcrF9fd31OkcenuTlnRQiQKGVPRRAnlwC6Dp4UALmkpDEXEl8oGz12VJjDsG2nyPah+0/ZLQMD1H9Zb9wl+CP7gZtr6lQCRXLjy+tNGxjpmGVAZrpSqUA7JORg5AAlcMLkcVIHfr1kw2RZsqF8PwFe1VMhm9nu/kb81Erfdp+k8PfIZKG+FNlwf2yL0y6YnQXSFPV6aG3DwIArWh50ksHvUaSx0FIJbi6KNO1YOY7zRovfr65qrzCPqRlDFKQriOMyVledzW61tA0kBi4PuygFPZetrTkjxEWEnBf5PU9n0dDRoQvkj87R25llgPEDcLkh1StVySm0E5URJEBbldFqOscDp24ZEG3XBCyIUcUEg9fX9c2mvvW6xpXlVB1FQKcWIoA4fEaHM19eAAT9tJJhZWQk0HZI0otQL0Vc0wZMbyPM4f1ySaYTxOq6WQVy7eQ7fw4dckcGo8j1GVy5ZJU755wQY4ZKxUbzZ+18xxivhbTTvp2yZpBrJn4HAMkO92eWAQhzay46wiv0MhWtGxldrpRzsAvaG7sO5X1icZym0L8f8+pE5VzxNjxQchamaf5vBnjIU6ayjf7/OXbk6zE+RfZopW+7T42cFIjebDbxj//4j/j+97+Pd73rXRgdHcXdd9+NsbExnHPOOY91HftSIH4iRAKFkm7FBzl94NgHN6VIMLZXBLuMqPV5xwmoymj5IuDVp8/wn78ZoCkjmSUliuRFlyKBXZ9WRoLpkupFcr8z8pufE8SXzgvqlaDtxsaGrRcpb4r06/eNBK2lrn2KEKVUzpng94Pf9qLPfUeH1MFm/SbBc94rwexjCevpnz4oisL3+dJ9Z4yvU14rqW3850qhI4H95oPj7Gc5TnznkN9uH7CXZT2ZQfMi2bVrFy655BJ89rOfBQD82I/9mE2a8lTSwxMtfdt9gpJlgHdKB0D3RonXFl1DkVFuIyM2AFiermWQEY/DshgWz/9zDxH6C2E+k6HSvJHPHh62Gz2eOpaBeeS1JCtFgA6QZTrJF6ABTD7Hj5LmM1gwOaIlf7XPMc57owhK5enJZRfIpsl97sCAwx1lQK+MRM8lP/M3SPL4rvzcPJh14scDA46GW9ygyyG3KNsVRUCziYmJit3EywBAywmeiefy/oGBPB2QAMDbCG2kly9ZZp49NOT0zrIHB/PRaASVqCzzbLKTkKZXHrawyw9ZJ94k7o8iAC29uQxaiygrhWq1DKWAsmrnKQPSVEf3RYEFzH1GFDmcbf3lGOSLSFbR71P2jQeUBejYpKfyZxP67SOYVa067lWZ0c7/0cqBsplzja/TMIFXT9u9WULcIjnNHARnmvRt9wkKwWLATSK+TZaOrSLPLT+jM5KcLVGUo10GnC2S1OPe1O3EzEEdBM7hyDrKOiil+a2r1XzODANs0kQMDblpiLzrZFCzzaEnlJViBLy049K5yXffzrMenMNZJlwQvV+cnKZzKlbKmuFazdHBM0BfBg7khM+VJwPpzYA75SX9AVlmAORWC0NDoxrzVEo/iM5XWdkssweN0lS/cwjZhNxsqM1oiuIxplSO+UN+xbqlKVCWHmt2pk+9Qy++XOiY+lJnxOC1w8Y9Qz8z1Os4mQskirp9R3QwKIXy5CTOOit0ILNoH9VFyqAoChHHbglDW95BoE/dSR3JsZUkeZsiruGJhBzprGlznABo5dtBfSoFhFRKkrg1KbnpZc6aHo79QpE2m4rr2+6npJyAFrXcc889uPbaa3HWWWdhbm4OP//zP4/R0VF87nOfw7//+79bbtm+PH5C6hJJ30IqivX1daRpiqNHjyKKIstN7kfkFgF5MopcArfkzaZIHnYJgBJ8JHhOIF8C0D71hXyeH21NMLzIISDrRV0wclw6F3g9y2A7ZaJNn+tb8ojzWaz76uqq/T+BXdaD9eVzZCQ6v2df+QlQqVcJyPI7RsNLuhLZjk6nY+vLZ8o29QK/5YkCySd+9OhRSwHTbrfRbrdteyVlC/vZjwaXuik6HXH0qEtoKp0PPmc+9c4yi16UIuoe3+lBnnQZeU/nC/VNR0evSHvWX9a3yPHB8mRf+VHvEpD3Afonk/zLv/wLfvZnfxbbtm3DPffcg3/5l3/Bdddd90RX6yknfdt9EkK02o809UE8YPMdkgSyuWME8IxnOLx5eRm44w7HvMLEinK9K4NV0xTIVIAo8qKLihJNcsMpIt4kHi4DarZt03sMveHUO5EMoYkEqwBJxe4fAoijzYzkkseYt293lBdy4y51Ye6hKiWAKtUn1c8IQB//kEHBrAb3oGG24jbdRGonJvKh9xTzoCjO55cslTRQUI406KqjsyJdjqwkN26zs9g1mQHTNSxmZbup5x44B3DIRsi+FOUtpiGajXzQnNzLra+bvib3uexkAg+AO7Yvk7EZhZVVG9H20AbEyf2ijcBn0jrWl+WYLi1HHWCuoa+ZnwegE92NxjEw23TRbOIERRhFGI21UoaGglw0I/enFmjwB7APqLPz5Sad6IJEdjh4Wi0EcYzMHFtnkFrZ/E6PpGWkKTC+R3gUskzrgQnbABc1KEEnCdTxbznO5O/F9yA9wfJE2+4///M/xx/+4R/iwIEDuOSSS3DjjTfi+c9/fs/rb7vtNlx//fX49re/jfHxcfzqr/6qTVpJ+exnP4v3vOc9+N73vofzzz8f73//+/Ga17zGfv++970Pv/3bv527Z2xszOZUeSKkb7tPQtbW3IQlnWHydwm46Fppv+XcQO92lmk7VqthJQstRQvZnBgFvG+fZgc5/3yXboFmb2lJz9EraYAorth7Rifi/OkZXwj6eY44TnWTk+5910Q7hyJ24oq+mDZ4chJHsoqdbkK0c0AsVlfzfNXSplE3WaZtTKvlkka2XDqNbdtcEevrzma2Mzeva9sVImgeQZimuOKK8ZxDnyYpVB0MDRlb20x1gbRxft+ZNuze7RJw8kBcHMPSeVQmY6hqqKPhd+/OU5sRwG42sXP3BKrVAJdc4oKVg6ztou9lLhGi7T5abub4Vt3dxsN6FNrZMmnFmE1+eFjzxktbziNhfpRAmqKSNlFRCgPnj+ORR4y5r2dW3+zeUinE6PS0U4xxylgzzgsfekjXRSmMTU7qJLcLC7nI7XK2aH4Auh9qtYp1hsjTEK0WNJc77aZcACUJwESbEpiOIhw8FGBuTvusx3k9fyvNpo40V8pyw7ea+W6oowygjAt379Y/QGbfNb8F+3tj4nLf4+MLP/d/p9LJdRpI33Zrebxt9wmD6Ndffz3e8IY34A/+4A9yBPcvf/nLTzx7dl9OWAj8lUolDA4OWhCdfNHtdhvLy8vY2NhAFEUYGBjA+vq6BXolz3WvKHCKBNEJdAL5qHPWiZ8ReF0zR1t8sJDXUySFhnyFYWhBdSZ+JGhLjvRSqYRSqYQoijA4OGhBUl94D/9PapM0TXOALx0N7XYbKysrUErlnrmxsYGVlZVcItHBwUEMDw9jYGDAOi18Kpr19XVbZ0nf4kdNS555eQ37V4Losg8ZcS0BY/9kggSFJS2K7wxh5H2apvY0gXQ2yPLkZ9Qt68Ry6TSQ9ab4VDIy+p06luPIB605dqSepG6kE4QnFqgrOlskqM660xnkOw8kaO8ndJWUNLK9frJSSa0jHR1yzDzZ5IUvfCGuu+46/O7v/i5KpRIuuugiXHHFFXjGM57xuNK59CUvfdt9EtJqAVu25ME5GebCjY13DDi3COfupV7XG5LnPx8r1Z1AE7j6ar1/GE9WsAKdbIocnNwbMljYB5ZbLQewh2LTAaA7Qtjf3CmFMFvBaKwwGsO1idFHD7Vc9E4UIVVle/xYAthJEmBysow4KWvOVW5CCThQR9UqOirEoUPARqoTRUYREAgu6iBr63akqTuCa9rUUaHmw262ECqF8tY4v8nxN645ZSkdqSQ320xyKiPIABe2ZpDzMOkgjoPcvqms2kCzhSCKECqlk4TFZVRqqTv2zqiqvXuBO+8EpqdRYRIsmbhTtDE3bmR0VhRhRVWwtKAp5okD+1F+gMaN2ltHdQR1tap5Z6VwvBKFpw5kgfU6AqUwXquhneWjsymLqU7+GtV2OmeKkUrcccf8Fxb0RpxcONIxwFA1P5ocQCWKUJF6iHRi0tVVoLxd5cuh3gAH9HgRb52obKLZRhHI3yrHg+GtSdPQAhwa7NHg+Z136iZdc80O7NpjkLOxMf3jnJzUZTHDIB0oRRtx/i0HlLym6NTLEyib2e7jitiTcoJrm8985jN4xzvegT//8z/H8573PPzFX/wFXv7yl+Pf/u3fsHPnzq7rH3jgAbziFa/Am970JnzqU5/Cv/zLv+Atb3kLtm/fbnOafOMb38DrXvc6/O7v/i5e85rX4HOf+xx+8id/Erfffjue85zn2LIuueQS3HrrrfZv/wToqZa+7T4JkXMOnVVA11yTc3Dzexpc0nTNzOgJ4dWvRnv3M1Gf17kIazXg4kmdaPEHzTLqdeATnwDW1w9geflsC6BXIu3kTkuh9TcDIt9DEqAiHZOAm9uYKZR8JxYsdpdMTelpqJI+DNwx4+a1OEawZ4+m8piYACYm8NXbA9x+uwb5n/98IElClGkDWDYjoIWuOolO/C3pOwJoYDxtuXooZZI5Z/oEW5YBYboIzDcRKqUdqVGElUx/VzbtGo3reG41zkd2ZwqAQhwbJ37D6CeOgac/Pe9JF7zhV1yhmyPzvEQRtA4NEXm5WsWRZhlzcyGeOT3t2sqQ/kZD8983mygvLGgwe3LSreWUQqc2boLYRwEAW2umreRUMXZqsRWg0XDc7MxXL1n3AKA6tUOfLkwSlyBTRgMAOdvdiSsukKHRAL72NQDA2ItfjO1TOxC0Fq1+aOLpD2rEZShVRiTGURybnCeAVt7evW6wkgt/fV0vNPj7YTvNc0YnE5x/flk7TlQbbYQ29UyFFYljnYCcCW+ZHFU6RYzdfmgG+P/+P93V4xPe71Mkt11Uo1g9lM+Ps7bm1tJnvW4Xxi4yupuedl6nLNO2+9Ch/LERtslbS9h2y/lFqdMORO/bbi2Pt+0+YRD9m9/8Jv7iL/6i6/NzzjnnCfXUP9VEKYXBwUEbhc2IbYLAACwAysjpLMsQhmEhJYUUAnoEAglOknNc3ufTk0jAWUaiAy5aXUaJS0oPAuM+QC8jtQlmMsKeyT+HhoZsnQlcU/yoYeqCALmMoOZ3TMLJaxiZ3Wq1sL6+btshTwSUy2UMDAzkHBadTgdpmmJlZcW2R7aX9ZOAOEFugueSpkZS6vj3BUGAtbW1XES8TzkiaVBkNDfBcxllTlDeB8/5f44r/zQDdch2ykS1UqQOZfS3jD6X/ScTyfqJOP1od17Desg6KaWsbv1TAT5tC+/hd/xb1kv+XdTHsm3SyVBEMbMZxdKZKjfffDNe8IIX5D7btWsXgMeXE70veenb7pMQ/r65uQTy73z5kWz8np95kdpzczpa6+Lpjt6c3HQHyrUapqaea6OS/DxVFBbJR42MCN5HH4wVUUp2g8KdHIEDhkcxBJ47kCTRyZaUQgZHW0lKThmElmXAqAQ9ARuhtZIGaDb0/Tw1nWXcSAYAQp2UipHilmNVWVA+iCJHTCrrTpGJOeV33JDLe6TDQQIFfvSYKSsyXKL2FLMkM40ipCpEvQ5UalUX+bhtm37/l39xCdiWlnQ4lQR2/PEko5vEce1G3XUdVeAPQVZfB4qVAVUG4rya2LxkQm++F1sBGvMaSBmNFXIIDwydiVJ6Yx/pBGPyEqoyjvWJiHLUcWfJFxb0hbOz+UpPTgLnnOO4Bkykm9yI50Bm04frR3UCs3YW6Pp4m8COCu1vppJ0csfOJT38qM9BzzFfreZyEfDnkqY6uvTBBw2rwnMq2DpZscfEF7OyjugkiC6j7OSGm1IEpMtxdxrJZrb78d6I/9Ef/RHe+MY34ud//ucBADfeeCO+9KUv4SMf+Qg+8IEPdF3/0Y9+FDt37sSNN94IALjoootw55134oMf/KDdiN9444148YtfjHe/+90AgHe/+9247bbbcOONN+If/uEfbFlKKdSY3O40kL7tPgnxAWn525Jj10+yzO9pt5eXcw6yO+7QU//UFLCz1gZuuhUYGMD4s56FZHqHeWwDWXa2ZeSwNlftyPmraa4sZ7RcZ5g6c16rRJE91cNTUOVIg9VhatYfMzP6xf1vkuiKRmUcPBRgeRn4xjeAL3wBuPJK4NJLNZCby3EB5E7LQSl0EGgH+Eae6x0IcgHR5fRIrg10NKPZdJzXvDgZ12U0m3pyXVtzFGNcWJgQ+wCGuo59Sr4X2Z+Cw2UUD6Nd3YHZWZdPcngYjsfdrAlaWRkzM8D09CjKspw4duuQmRltwxjezkADpSlaDh92/agpaSqadsTUldH3ctngT5uku19YALZuHQXi0dwwzjKg1WDTdyBKdDMac0C1GmC8amz3d76j3887T9dBOIzJRU8QndPGtm2aws+qtCUG5+wsTKZwx8POfbwcwPI31WhgjIk+Gw2E1SrSVCcOh4I9baF1ESJUmXU0aDv6Xft7ZH1nZ03dJj2byd/u1JT1L2WZSyXAkyH1unZ6jU1PuLrGMfbXQwwOAmOY0x159tndtttfk/D/XCOyPvSMnCbSt92nRoJjX5KXKIqwuLjY9fl3vvMdbN++/TGpVF82F58v3Kcu8akoAHS9+5zPmz3Hp7/wudF9LmoJFMqXjNz1X359/Db6z5GfE4z1eeJlfXy9+JQaEpzzv5c0JkUR0ZL+RiYlJVhLELxIb2yL7BtfBwAK7y3ixffL3gx09KlIJE1JERd6ka78e09U/P6V/+8lRXoq+r/vQJB/+wC8fLbUqT+WJD+/H4FPnRbVxa//yerrTBQa8tnZWXzpS1/C6uqq/a5oLjjWqy8nJ33bfRJSBIzzvQjd3kwY4mo2BwAcaGmidv29vnzk8Twid5NZ6HcQdAPGsm1yJ8/MnCTdFg/kpWtr+n111d26vo7uTYZSFnTli4nP+P+NDfEYPzpY1q/o/379ZRtarXwFJYAu6+gfWfc7INO86Nw3KtVdPxvIyPaXSu7F/mXWNz8K2u+vHi/ZdA6jomGZZVqfq6sOPPBfVBM391395+vV99qg+zL/eLqtCNss+4Z9QaBHotZFfSp0Zp/RQ0dMtNdBkBuPLDbXzk02krKLWHU6jpjAFkmik+KJJh1Tem1ci+aT00A2s93HGrOFLwCLi4u511pBQrZ2u4277roLL3nJS3Kfv+QlL8HXv/71wrp+4xvf6Lr+pS99Ke68804bmNHrGr/M+++/H+Pj4zjvvPPwUz/1U/j+979/HNp6/KRvu09CfGPp/76KgLKi72QyYQP+AQYzk1knm01hOjr5YnrMnbm53P+tGNvEabPr1IpfoJzcaWjFb4sUVcvLzl/OaXqz3yx523k/Tau0KbZ5/pztewyKbEmWuUmVzmbaTNk3Rbab6xpJq2LqQcw9h/95Spdqy9kFdiQDCvyko8Ie+eaqaI2Wsz9C6HPn98wR6ptLuZSRuufntrHypgKj5NeXS71C+1VkhzkQZHBJ0UvafFO4rxe5ZuggyLfF9IO/xrDC8SkKkcOLSwp/SSjHy0oWWru+qRTNDX49TjO7DfRt96my3Sfc8z/6oz+K3/md38H/+B//A4AGivbv349f//Vftx6Dvjx+IikwJP8zxQdDGU3dbrctvQajlgEHYvL/fPcpKRhJLKO2NxM/slqWCzi+c5mMU9anCLjkc3kv6WykLuQzJXguI6r5PSObCcxJvnJJeyPrVcRLLsFm0pKwLmwbo7D96Gc+n5+zb2Qkup8o1e9j32HCupLaRr775UhHAQB7iqDdbkNy0RdFsPvODzlu5DNlNL0cU6yDjBZnJDoj/1mun3SUfer/BjYDWn1QW+qQdC7yWp+KpcipJKP5fdBeRqn7DgjfibKZ0+BMl8OHD+Mnf/In8c///M/YsmUL7r//flRNFEk/Ev3USd92PwZyPJtu+RnDh7NM85qaa5LE0CibqBx+kMQ64mZy0kV6Dw/ng1WZ2DIXICPBRU/0dXqeDHlkVm4UGVHDNpRK+U1Sq4WotsMGtTPhZJZtkktJbDIlUMBHy72orbJfd7mz8zZkXdHcvEap7qhfvvgwHzwvqrv8PnPsL1EEHanFZ2UZVHUUq6tAW5URMgKG79Wqo/jgJr+o7lIRIpFYJ650bcwZwC2Lkf3AfinijJe6pxqTxJyCLwDK7U3mYZmHg0hVLy8Dq6sBtm6tIKxm7kj+xIQ7DTAwoE83+DQzEiBiJUUkOaDrWCoZDt9mq2szG0YRSiU9zvWtoa2n3UQDGBkpQ8VlTTkgnreShRbE8F/St5Km+jdgOfGhwYyKpC+SkhvkQqfy/TSVzWz3CScnM8o699xzcx+/973vxfve977cZ41GAxsbGxgbG8t9vhm/ab1eL7w+yzI0Gg2cffbZPa+RZT7nOc/BJz/5SVx44YU4ePAgbrjhBjz3uc/Ft7/9bWzjCZNTLH3bfRLig11F/+ff/vwD6PFar2uk0VChAG4608whyp06UgpB1sb0dIhvfetiTE2JqcDMhQp5+wmI5J+SQobPB5BlmgIGk1X78KJpOtceehQHB4FmE0EUIcsqWFrSX5Nxqgu4FBXj/MYqST5vuTwofLZvtAhCAzkO7iyDrszEhAvTHhzML3J8nUgDWASsG1Q/QAdRFFizs307gLpROI1C5LD7UdLmMAqesn27Rpol9Ztpg6wGq5KmQCgi5Ytst2QWku9MPC6bK30QgFsPMibCsoiwYH7pnWrbaObVxPIY7c3bLRXc6qq209Wqpj+RROfypILMb8JCPPA150wyut9eqxg6F62g5WWt5opZK6ygjEYDdsyurcElF6DnhrYkSYB5dAnZ9dhHNj8AkFvLWMok2e+5BTbynxfZvdMssWjfdp8a233CK7gPfvCDeMUrXoEdO3ZgdXUVL3jBC1Cv13HVVVfh/e9//+NRx74YIe+zjG4m0ArkExZubGwgTdMcWEkqF0nPAmDTKGleR7Cb3OsSAJZAqAQmSfch6WVI2VIqlXKJNtk+vy6UwcHBHHAbBAGiKMrpgsAqHQcEZDudjqVnkXzaBNEJzPvUNNQN4EBfCbADsO2kXqgjqRsC/pLqhe+8Zm1tDeRop34l6C3rJPtZUvWwXoyEJye+7B/ZTxsbG1hdXc2B6qwDy6XISGvqWPKvS+cA+4t1kQ4TX79FEf+Sh53PZWQ//yaALoFtjgtZb/4tfyfsNzo8/BMBEjwfGBiw9Dp0BrDfpAND0rzIBKRSf35+gKLTCNJx82SR6667DqVSCfv378dFF12U+64Pop866dvuRyESWAW6I1B8UJT3kM5CKeDaa23Cx12THbc7iiJwx10zRTSbes/yQz+k9wlyfW5oP/Nr/LR4wc+NMCN5SqUQUTKea0IgN0FEYLnzNDvn8kQbSEJ7gpoRVENDItqLjxZzoYwKKnrlqiv1yU0udcjPmKWMG7lqVdN7SF5vf9fpbxak84Df+Zt+CaxkDmwO0hVgvukAfaWgajvxyCMab9m5Z4++n1ybs7Pu78lJC6ZLADYH5sLRkmQZ0Jrvbgr3qcSli/ZCMhKLzfObDJg2yeSwvg7Mq6PCrkh4RsVtbDiqXgYFnnPOqE5E1mo5rlM6ESYn8YNGiIEBPX6UMrQEABZbgS0nzFYcegPDtQ4A83WXic1TShSN5gAfq8eWA0sWFvT4rVYDDA4CGxsV3Z5GPtpf6nFw0GEo/Llw7BPrX5m4ENHUhQiaR9yDpSPgNAfMi2Qz291z8PUSc+2DDz6ISsWBGYObHIMvCnzYLOCg6Hr/82OV+fKXv9z+/9JLL8VVV12F888/H3/7t3+L66+/vuezH0/p2+6TkM2cpT6o7lO98Le7d6/+7GUvs7b7mXtMIBkCIFXaKQhYZPJHfzRErVbCnj1uzliESeRpHlUq6TlG5hJtqzJC0mEBuTwNmgYtwMSeZ+uqmemvg8DRCbCdAwO6UIbYzs0BWYZUXYyHHtJz2fS0NkWHD+tLdk2qfLvRHclLXmslLpX2IMuEXsmf3TCTKvNfCKNlH0WglhH9/MJ3KrBS7C8qj/qKY61DEQV91lkVlEr6ESHaGkQfHnZ2paarODcH7Lr8cj3h796ty2c0/PS0ph/butW1zzhM6ZCQ0mhoZ/KYcRSnzfz3w8POiSFNrlLapgTpCqLInXDS5blDBdu26XvHa14gYxzrPB0bGy7XianvYivILTepxixzFHGAGa9x2eVvIcXOVVcBk5O59WSzqcfSmFnLdqKy7Ta7pjC/vzg2a9iHzGCam0PQbIrI8Iql+ksuGkU8MYrZfXrMHT6s65qmwP56iCTZYamPVpR2DC3P5QMEuIQdGtLNWF/XzZibc4/kab0sAxanLkRlasoNdjknFM0fRQD7aWbf+7b71NjuE+71SqWC22+/HV/+8pdx9913o9Pp4JnPfCauvfbax6N+fRFCYFUC6UVR2gT91tfXsbKyYgHKUqmETqdjAeyiKFv+n+8ShCcoSgDT58mWEbk+oC2jcsvlMo4ePWqjlP1IbRlpL6N+faBfgvtHjx610dNMsEpHAsFiRuPLSGH+UCVAKl8EsmXySp+ChoA8QXSpN5bNfvN501nWyspKzhEAuGh9n3KFIDfb50eDDwwM2MSsMuns0aNHbZS37BsZYb6ysmKvleVRHyxD9i/7jnQ2Msmqn5SW44PjlQ4EGf3OF6+lw4R/s6+LJmQ/Kpz1Zzn+tRJE9/vOH+tFJzZkElefp92viwTRqcui39yTDUi/+eab8aUvfQkTfkI99EH0Uyl9232SItFeGcIjRUZFSSAY0JyacQzs3o279wZ45u62BlclfYjJyDWuOqjVNDdko6H37QyS4V6RwCeTPgZZ2z3LC4sSgT85bJmgcBQZjmh5r1IOJeemttlEOUlQrYa5JnKfoR/nnitVx2fKE8ayHnbzo5Bf2DN6TSSaglJ6k2girY40A+i9WIiBgRBDQxWo2ICyckPeAxzO6curu0ScowgI6j9wJwvE0Vi1RwOz8/NA7YrLALhcWzunp3W509PWUbLYcsk6lQIQBVAqtJ816i4HLTfOMnKNfcdAMFZbHmeWf0u9+0MzaC3q9vBLXwem8ewC1ollM4nX/Dy52B2d7PZrdiJAx268SQ0/9wWb2w1nncXcnDpicH5eq3hsDDj77DKq1TLKcebGQ5Zp5ZBj3evHaHLUAgMEzelAklHmUaR9GoODmjtVjkWpCr5GRlz0JQEH6dtJU4tV4corR1Fm/eTvUo5tfzxSTrNots1s98luxCuVSm4jXiTVahUDAwNdkWsPP/xwVzQapVarFV6vlLJRaL2u6VUmAAwPD+PSSy/F/fffv2mdH0/p2+6TkKITP0C3U0saMWnD01RnFI5j4IYbcPdMGc9Ui8AddwDVKoJaTZ8WmrpQg4ZmsvmJn6jgxS92jri1NT03xDGwa0InUkySSm4KyDI9f46MBChLD3OWIU0rOHhQg4mzs44qPNcsORcODTl6FE5MaYp08mLMz+uviRPzp2DBeAFaS+oQAs1Zpu2OXO5wXl1fBzAkQHTe1Gi4RMxizZMavPK7swGAUZx11ii2TxqbNDeX7xO/b+hF5voA2gmxsACMbYE1eiMjFZ0IfHbWGcGRER3e3Gohq+qqzs0BeOWzAABH1A6kKTA+Eeu60zPMZxE5VwohOkiSwPa1WSqh1QIeeSToirNQSj++VnMOXcmIEUUAGk0EVQWepKKDemnJBVAEWRs2U2m1ik5tXOeNOftsfUG1ipUsRNrqttnyRBXLJ7hcq5lmRhVEcQXJq3USyG9+E3hob/cphDgGpqcDRCZxd5ry0Eag60MQ3fwX32nphjCT6rnn2sTcBw/qMulY37fPjTn+HGdm9JrhggvKUAq443a9ZhAHRbp+EnRk8XfItROZaZaX9c8cCHD11RWENOx0gPvR6XIcnsYget92nxrbfUK9nmUZoijC3r178cIXvhAvfOELH6969aWHFCWa9IF0SYuxZYtLNEqQvdPpYMjMxqVSqYtmQkadS6CX3wMustYHR/2IZfnOiG0JTBdRy7BtMvJeAs8S7AaQA10lVYsEZldXV7G2tpYDon36jnK5nNOtD05LUF9StkjedwAWtJXR7Iy+HxoasiC3H83PsmTUO9vXi56GjgHpYODzpW4HBgZyJwIAF0Uvy1tZWck5PORpB99xwn71HQZBEOQi74sSa8qxKh0fTGZK8Jp9LSPAZf/5lDIch1L8Uw1+HaTO2W8+bYsfSc9nEGiXvwv/RSmi3XkyR6BTlpeXUS6XC7/rg+inRvq2+1GKBHH9nVHRO//PXUqS4Af1ADMzwDP3KJesyexIF7MyFIBy82EEaYqLpyew2Ap09G2ziTBJsL4eoFRyoHlod0MFi3qxQ+e+WHJD5pJbVSOHIgqakhz6ajaPcTxqN9c8MdyFuxYA6Xzn/5lLMic+yMhKc1fKo97ioTLXqMRT4zjAKDfZPlohoxNlOJi/OVKaDxYwkVVEZnNE4vq7tTUN5nPvb0H0yQm9U65W0Y4qFjgANF4qc2qyGq0WckmylNLN5lFwCaTzGtL2+sJqcu/PbrZChERG9nlCvlL/RIGkCm40dJ3lMfN6HRgYCGyCr/vv10DQ/LwDlWo1FzAXRS5/n+yKcqTyniC/0zkeokj3EwI7bNhllKUllx+N47de19dUq73TBsi9dC+H0NycC1ws84vN5ocih8VpJpvZ7pPdiB+PhGGIyy+/HLfccgte85rX2M9vueUW/OiP/mjhPVdddRU+//nP5z67+eabccUVV1h6wauuugq33HILrrvuutw1z33uc3vWZW1tDffddx+e//znH3f9H0vp2+6TFIajHmvcFX2vlJ7gTAbw/Y0ybr8deOYUNCCbZdYLzXlubEgBrRaCvXdjtNUCpqawkoxjbc0xuqGm57FAafopN8GUsbam53g7dxiRUx/nqVpN+Nv8NQf/5gR16BCgFLIJxyw2NqZBRVKQZ5lJTm7RcP1fYvGSlY5zpD99WW51QN9w6JDWH4EvAtGmjmw65+ht27RDc2KignLeO5+30WyjR5uVpib4PnHrl3K1AzSawAMPuAhtOuINkNts6qouRjsAAPffp7+uXlFBGKdoJztQrwO1WhmhMaRtaIC6ErURZBlGRso5XcnuIMuX/CxoLSKOKzZWYWND92eoxKkwA6JLinO7NacdZLLW2ngeMY5ju9bw4wik/eeYmp/XWLa0a4ADze+80+a0zZk1Hi6LYxdbQCabshiLUSTatrHhBt7QkEW/2U426cEH9YsHD1dXna0mM+LsrAbWlXIgOh0a/jDJMpfYXi4NGQSQZcAllwBjvoO7YE19TNt+Gkjfdp8a231CiUWVUnja056WA9n6cmrFj1ztJT44KwE8CVxJQLEXQOVHyRZFrfvPLvp/EYf7ZuI/TwLZvRJQFrXbBzVle33gvwgE3Uwvx+oHeZ0fSe/TkRQlRy16+brtpW8+u5cUtdPXmbz2WOOEIjnt/TpLJ02vehTp71ht6SXyniI6GSnHGv8n+lkvB9OJ1PnJID/8wz+MT37yk/ZvRu4D/cSip0r6tvtxkiIgzF+gms2fxGlzyDLcsVKJUiqV//u4nt1D/DVw160nsEhWygWqF5Yh3rmh8RNqHfORx1Ofk7nmeO4RyglMgrhj6doHXW2XUVlR1NWNx/tTlICyfF4vf85m9Su8pmjTKC58tFgvcRkJwve6jtfKiLdCOUY/+v0gnyuf49/j3ysfp9TmgeKFbTsDgPLNZDPb3TUIj+d1AnL99dfjr//6r/E3f/M3uO+++3Dddddh//79ePOb3wwAePe7343//J//s73+zW9+M/793/8d119/Pe677z78zd/8DT72sY/hXe96l73m7W9/O26++Wb8/u//PmZmZvD7v//7uPXWW/GOd7zDXvOud70Lt912Gx544AH867/+K1772tdicXERP/dzP3cSGnz00rfdj0IejR3Z2LATUW4+L3AS57omTTVAKNDIovlm07mhYDLJMrFOON5yvLbxUsvDjmPbIT9ptLQl8nXMQzTeHHDc9t9v3yZGr3DNxA6SAHxBUbwll09dOdoZn1XG/6NgyZd7ju/T4f83XUttJv6gokPZBAnI6PgikX1W9DjaYOm/8JatuarI34Etr2j95Sdw8cqQZcluk02W1xWtLWU9jsf0+PXvKacZUL6Z9G33qbHdJzwifvM3fxPvfve78alPfQqjo6OPR536son4EbGUomh0RmQzqtrnnT56NJ8slH8z+tZ/JkEsgqTyMz/xpKTPCMPQlr9lyxYMDQ3laGlkFDDr4ifTpBTRZZBDm1HMPvc020U6G0bRZ54lkPzmks6FoDbLkxH6MnJdvooAcj6DupF9JmlT/Ofw/5JzXQLtfj9IHUh6FMk1LnW0maPDr6ccd0U0Ln5S2KKocY5DRsGzLlIPfLZMKOon65RjU9ZLRuHLMSTbIvUt7+F1/viR33PsFDkcZP/5Jw2OBQLLujyZ5A//8A9xzTXX4M4770S73cav/uqv4p577gHQj0Q/ldK33ScpRYvIItT0GPfVajpapoPAHgXndRsbJjmhubaNUNOU1EIb6bC2phf5nSREoESUtE8VIeoXKn3cGHA5twzVaj73lL8D5HFbeWEUIUvd5TKgO8uQD9UVZWaZjhCTKhoactHUcWz4ShvN/E61WtUEooxgI4k2+T6jCMNmOhgedseALScnw7D8PiraoDMiXUbem88rceyUJu8T3KuTk5VcMLeNPlMqF/Yv95DcPLO+UaT7SZ5UZ+Ae28ZAs7PO0n0bKj2eokiPDfaFbBaba7D8PLMI6ycSodl2mqg9ljUwkN90k9M3ioDzz3dtHhzUp7SZA2xtTb8zIV+S6P9LOhfem2X6s7PPdryx9oHV6jEjE1fSINftPDXB8SZ8GjbCjTlf5bDodZKbqpK/HV47PCz690Q2nxIlOM1kM9t9wsnJTpCq5nWvex0OHz6M3/md38GBAwewe/dufPGLX8TTnvY0AMCBAwewf/9+e/15552HL37xi7juuuvwZ3/2ZxgfH8eHPvShXOLN5z73ufj0pz+N3/zN38R73vMenH/++fjMZz6D5zznOfaa+fl5/PRP/zQajQa2b9+OK6+8EnfccYd97hMhfdt9EkKekSKqNaC3zea7GK9JYqZHzkMiijzLQneP5EmLYzun2dQInIDNs9uqjFaq7+e8goawn0rZvI5M/si5qlQyOToYTpym+tQTQ4JZz8lJ4Oyzsb7uklKyqvaZfJ6kdjMqohqpDpoK0pwzMj5nw2USTnJtMCeIKZs82bSZSQKMJoJLm4oT9bFSQMFTidqIaiEw3+q2D7QdbF+SAAMDGB7W1Dakx1HK0efxObTD1olSMOdxuESRy4kK5BNbbt/uli9IUwRRhLGx0EawA8BKGqBcq6ETlZG18lVnU3RCerg/4hiHDgFDQ4bLHJoDnZT4cqlaBOI//emkZXE2m0JbOjXlupT3sV28R+cX0accQrRz68A0BTIVoEz++wcfdMcikC9Xrl84PmS9ZF5ZRp+zmNVVx/PP3wmHnIya57NI6c31Vs5EbebxPwOkb7tPje0+4ZXbhz70IczOzmJ8fBxPe9rTMGxTA2u5++67H7PK9SUvfsSy/BzIg30E+nwgl5+laQrye5OeZGNjA0opmxTSpxWhkEvdp9eQtCYEe8mPDcDSsYRhWAiS+yCpH7FNEJ7PJJDZbrfRbrextrZmudAlyMk2yHZKQBfQwCnpTmTZksLF7wO2JQzDnFOAwDvbKBOokmKHbZFUKYODg5DUIPL+Tqdj6Whkokt+1ws0z7LM6oW88NLZIEFu+UwJ0Et6GNkv0gniA+kUmcBTOi9IRSNBfznWJGUP72N5st/8McL+I3VR0QkAli9/R/IZkurFB3n5GceHpPHxx21ROX55T2YaF8rFF1+Me+65Bx/5yEcwMDCA5eVlvOpVr8IHP/jBPoh+CqVvu09SJGIs/5abPH4uv/OuDev7ccklO5FlQDg9nTv7azFaBSDLsLCg9xlxDFTM7oeP0kwWgdgcBQBCd2SWzzUXBwBGlQIShU6t3MWPnau7Unoj3mzqHR85LuIYnaiM9SW3GZM83QCwgjKiallzmmYZ2lmAjQ3HyAJo4JW82UkCjMZtR9fCi/wdkr+ZEbuqEeh9ZDlbzHOgswz//qIQKvlMmcxUJphig8mhwo4wfXjllZrjlpthu+lrwVL2+JtAvkjPQ07aarViN+70ZXDjR/C2LBLQBVmGUCkkSSWHp0gV8H6fFsbuLqtVLGZljTklFae21NWZaqK5K5UcuC85egcGdA62sL4fUAoTE+OWhoBjgMK6SGwjTTXYMzJi2tnQ4MeRtKzHT00n6Surdv5MdpJYagDS2CwtaYoAAudsP5s9MOAAfCZY40n54WENCPBnwPZLAErS6GzfrqsyNARgw9taFQHlRYDeaRZtvJntPm4nAeUkHAVvectb8Ja3vKXwu0984hNdn73gBS84ph177Wtfi9e+9rU9v//0pz99QnU8FdK33SchfiiwD6QXGUJp40slmwF0NG5jcjLUn5v8JT5VWCcq6zlcTrqZMydZZkBSQSHWSMuYndVz0IVTnuPXoJSjahGjU8DBcyq2WPvTI7UVDcbBg474mcjn7t1AtYqNGT1HEeNnVS2ITkTU2HuVurmw1dKqGBlhvgoHSIbpIjAzl9c5gfPpaf23THRp7GkFK6gMZcAWo8d6E5hp6uuYmJvcHjR8sn+kXTd8WqFSLvkGbbVcS/A+U+bY9g5e+coASWLsCXSSVQYotFGWZh6jsa6DHTKmDqHqYGTE5TqRztsk0XYsSXRukDBbAZp6UIyNxMD2CAcPBZblpImydVAMDlrKcFt9ne8lc51XrWLuXn19raaTxjfndR2ks1eqjt09MABcc43+29pbsYbiepF2mcC5TfytFBbTMGfeKmoFqDdy3ppWg2rfiYGxnRibmHCJUcTwk2sodi2d7vI71oEOED57ednlDWCcCn9uHILyeSMjuo/48xkaArDWw3bLsePLaegE79vuUyMnrJlXv/rVj0M1+nIsKaIBAbojhwlKEhznNT5vN0H0jY0NC5LKCF4JQEoQG4AFcX2ebh+8Jqd1FEW5ZJMyYSbLkKBkUZspEswlWLy2toY0TXtGox89etRykPMeH4w9evSoBak7nY7lipcgOIFu8rqT25x85xJEl6CyBIMld7sP6NK5IBNb8l3yh0tw3edNl+A59bG2tob19XWkaWo54mVEONsPIBdNLusu9cTIdwl0U0eyTj4FDOtPR8fa2lqOW71XNHsRv74U6sl/LuvnR6DLa4tAdDnW/Whzf5xLB4Acs9RT0QkNX+Q9T1ap1Wr47d/+bfv34uJiH0Q/xdK33ScpXeG7yG/EuVGT3/nhPgAwO4ux3REW0x2YbwSYmKhYjk3unZEAyDI88gjw0EM6ordibEYeRHeAIDcAw8PA9u0BArnglxlFAQRKoSwRWb+ugA49O3xYk5SanUcnrqDVyh+TlZuzLHORctVqBSHaOXyT+DijdYeHzYZmvu6ILulJIKo5OYmOSbgJiASqSmElC/WGkhFPs7O6AlQGQweLNgt+f7GP5Yac6DVR3iTRgEAU2YSuIUH3ZhPB/DzCahXJ5C5d1+YRzVWvFZID0SWAoSPmRdRcmiKsKtTM5lXQfSOKhNOhKZwC5sJyLUKUhLkhKUFj2cVWJQY4WUHZ8rlTqDqJX/j+JEZ5jWYPO8BDKeBgarnWgyhCJYqAVjOPysjCzPt4HGtOWwBIzctUhklH+Tuo1UIkSahBiriNlSy0RWeZSxrWaOjodoI+TMjKNk5OEkDR90sOeXnwwcfhiKM98oj+P8uNIgCZGE/HEnndaRj51st2n4qNeF+09G33SYgEyYsAdRne609s/IwBZPU6JiZ2op0FCCcnHXhtynXTcBmtlgFQ4eZv6d8tJ5G1U42GTqCoFHBhtZmf4Djpz84CDz6IsWc8A5OTGiRlhDPmGnkQ/cABDaJPTemJrVbDysSFNnc052s2dWDARDazzSbsuSMSXbN4Apdnn61BzaDxMDDXdJkpBwY0Sh9F2lYmCRbT0PkFWmaNkhhbXq/rgh94QE/U1Okll6A9dTHCqOP6Kkl0dLbRYRyZKHxhN60Bk/ow/duZ0Emuc8bRLFqeOWHa3oJdMwUAOpO7sLCQT4OCqls3KAVt483zNY+7BsOljWeS86DVQmiPJMAtmqIIY5OTWEkDm4e1WtXLr6EhYGx7Jz9eafuNJ3gxK+Ohh7TdYi4WOaQZbe0vX2kPg5l/0zdyzURPvFIIqlWUldLJbpEBDaOMhQXtsEkSVK65xpGiy4QhpryOCq0OmTfkyitHMbV7VAdcNJsI0AEDQ6QfqVRyPhV2q3RiXzipHR9HWqFdRs7N5aPP+XvZulVHyHeUs/O04dWq/lsHsnjzgxQfSJcLgtMsKTjQt92nQk5YM+9973sfj3r05TjFB9P5mS8S8JOAKcFbmRSUEegEMIsoPvg8GYVeFAHvRywTaJZgOu8joCxBSAkuy2f4IKN8ngSQfYBYUqPQWcDoaL+uRdH7pBwhKEsQ3U/wKgFg/p/fy7ZJQFaCrNJZQR1IZ4OMrJYULrK//BMBvl4IqvuArt/XEoDuBfAWRXXLMSn7iW0vOrHQK9kmgfEiKhgmHfWdPBIQZz9IhwC/kw6oIjqXXlJETXM8oK7/e+p1T9Hv+EwVe2ysh7Rk9p2+nBLp2+5HIUVgc9FC219symuZCGpyBw4dMpHY5jK7tzJlMTA7TWFXaVmWT0QpcXy5N8s9V4Ymc/PIHTHgdiPy5izTIDJD1syRZtlUidNTCDzGMaDiMKcev342QapMHMrkoWaT0kaIhUMOuI+iEHEc5qK8QqQu6xk35QxDZrt8wFy2s6if1tfdGXZ+Z/TQzgIsLOg6jdcS/X2joXduWYaAEW/MwjYxkeMEkXuwAN7mWNDDlKsRlApyeIpScG2VHSC8FUGsIFMddVHcCOkgsOUsHcon9OQz+ZJ9Ln8GdqO6d16DPQxvA7QOBwd1wXGs+4fZPpmFlGOMDg8OIglqmRcxFllPqq5WC7G0lB/qUq2kupEba47JsmoDjQbiWANUpFai82BwEDrBr0FvOkK/PuaW25v6PxApm333BEvfdp9+0rfdJyHS41v0W5MgOqXo/yZEOJnQp8igygijvEGUcw3N2bZtDqtdXXWAXQcBAnODTJZobaBvl5pN4HvfA7ZvRzyh5yjLo02HL+3VI4+4CdLwrMzPa8wzy/J+cwLonN+1PQgBFVq7Qz88q0L7HrQW3dGdet1lgCS/S5LgSCu0oDDvr1ZNxDNtWbOpwdgDB2AzUJ9zjn5+FMC60JXK4bPage71JRdMVLhwomgnfoAkKet1B/u2XtcvelfT1FV4chfW1hwPve77HpCZuSCKQrvEsraAlebA4JpLgNWoVhHFFSwt6cfnWHWkB0Z61I1BW10Va0VTxbPO0rZfLmFkH9o1QdbWToxvf9uFdJMWSPLN8QHs82ZTA+9jYzocHHAZYvlQU0dWnQB3s6lVrVVeQWAiLOQSTPg/rM32fxbSEZNMXYh6HVYX8vAg2xumi9pBkiRQyo0ef52TA9GLpG+7+yKk7144A+V4ozGLriviaPZBWIK4ko7CB1J9mhhJLdILDPTBd8k17gOifl198N6nY+klfl1850MRLU4vPfp0HEWfH0/f+A4Iqd8iYHszKerD43lurzYC3Qk4fWcGRVLcSGC/CHTvVbde9fGpUKRIR8xmnO1FbfYBdNkPvkid+s6oY/WPr6/jAcifTFHWe/bssePAP0kipR+J3pczQjYDyntd518vAF2b2Mt8Z0FS83evR/hJqBhlnGUa7MsBpZsh3vJzmI293GHxQWYzIZtwIvsHHw/NUYkU6bQgQmZgwOEhXUG7vp56RQT5CpUorB9VVNQAcw0jnIECnfllCyHwWqi7TcaTbLvekHsFyM2e+f/AQNhVpa4EqaLfgYKEYDj+wKosgz5Gz5sNBYLVrdwVU+TOlfycHmh+LKEzhXiEz4Qii5J8tYzMs9WxYFr3M+RPwRetU9ev/mGVTeU03YQDx2+7j7efctf3pS+nWjb7rRXZBd/ba+YnRqpayjTzgz/Wz0DaPU41obmBJ11k7oXCetn8U/pPS4nFwosyKXq22y+uVCo2g/LxnJYloNllu6WevElQ6qarHr0WBqXSpvq0dM6pqLwsj9wzvR7s2/teUceeSBA9V6IoL1AKSgXHTzktAxqQz92Re7AfwcB3pbCR5v6EUt3l+E0bGDDjMFJ5XfE5csHlr9Ok7ZYP8n8IPRQg4wXSFChH2jHtL92oFpmHJZfHR+oQefUcS/f8nr8j/lxO2kRJnT2B0rfdp15OWDNbt24tBIS2bNmCKIowNTWFN7zhDfgv/+W/PCYV7IsWH7D1qUgINvaKSidtiw+QMwqcCTVlVDSjssllLoUA6tDQEBhRnmWZpVXZskXzf0uRUcYSND969ChKZqci6Uw6nY6lJpFl8HvS1rBNkrtcUtD4wDTpWAYHB3MR0DKynO2VYC6fKevAiHS2l/WRwK50DCgxGTH6nf0gnQMyIr0ISJa0IkXJVH19+Y4O2SZeJ8ePfJdtlZ9JhwbvlZHaRWOxqK9k30iqFH4uqVYkdQvL4Ge+M8HnZ5f94Y9pSRXDF6P2SYMj6yGdTUUnQtif0rkg9V0EJj+Z5IEHHrD//9a3voV3vetd+JVf+RVcddVVAIAvf/nLuO666/og+imUvu0+SeGqn5sFrrb9HaYEDP3do1LA1BQ6UxdCpfq0dRQBiBJ0EOCccwxYlwKIY0Sp4NU2uwbyUi4t6WtJUZEkcEeVGy39TMkDwjbIOscxOsmoxjZb+uOyDN/heVgTuRImCZKk3BUFDORPn7P4IGsjScIccCAerUGDlohYYgNFElOlxFFzrztsktVaRQPZSeIiyAcHXVm9NgtFofWyETIUyuiEgDOBbb0JjVwnEM2V5SmFdhZ07deVAkICJ7KPRFR5GEUYGXH35saSLIzRbGbcbd0a5jCJKBKdZMroIMipIE3z1C9yTyxBZ6kmwEV+jzOKj5WVxOTmyLqtQ7XquHdFEr7CfhJ9NDioL+MYXFpyY0EE8ef0NTyso97OPlu/J4k5Hg/gSCnQm2hxA/9LbICvdhZARS56Lcg0jVBkaI7W13Xk6cgIXKSjj1x0eYBEnx4nkHMq5Hht9+OdnKwvTvq2+ySESCHnR4qMlPV/k9JQ8RoziRyc12wllst5YgJQChNJMdYo8z3QvjOYd7yqJ/+pqqCYaqp8nWR9DJ/U1q2ujI0NYJzJGjj3Mns5J8ooQlLbgSxzbBukp2JwdJa55JV0EIRKv6rVIEcnHkXmVE5d2DlOslw3mNNkcRxibMw9S+bmbiPUtDgyF0oU6Ul9eDgfFWx0UY4UyhGcwfIj98mnxWhpY8ho6wAOhQBKhVCRTtCeE2FfqX5Jh7bYCsxayZwio/eDUeZxjDjWOTuYUDu38PHahGZTG7Y0RRDHGBsL7KU8RdblgDbltVXZqo9rRXn4jk3hIQUOJVnlJgKMT07qZwwMAIfM0T8uMmU4exS5rKtpqsdZtYp2bafmi6/V3IDi2jPLEEY6abpUdbOpo9LTFJic3IFm3WHyFC5Bt2/Xf5NRz3aRUrnx02zqtkq7LVVNxxXSFOVYoW1oXaQD3AYbHC/ILNf8co31BEnfdp96OWEQ/bd+67fw/ve/Hy9/+cvx7Gc/G0ePHsU3v/lN3HTTTXjrW9+KBx54AL/4i7+ILMvwpje96fGo81NWJB2GH6m7WaSrjKAl8EyebQKABIAJyEpwmIkyyfXNz0qlEsIwtBziBOJXV1dx9OhRW6ZPqcJyihI3SsDb53GX0egsT34uE3jKsv37STEzPDxsdSD151OrABo8J72LrCPB96NHj9pEmaR8kWX5CWFl//mRzRKglpQvviOFyTkldUsRiE4amzDUh+N4vSxLPtt/96lRCEBTZ3z2xsZGl+PEbxOdNAByTgyOF7aJSV4pTHY7ODiYo8vhOJW/C/a3fCb1zXZwDFL4uwBg67GysoJ2u20dQ1Kn8v9Fvz2llB0zfs4B39lxoicZzgSR2bB/4id+Ah/60Ifwile8wn42OTnZB9FPsfRt90lI0SZcLrAliC6vl8Cg2bm0py7GnXcAV14JBHPfB2o1HEnLiGNgrHQkt4GPlT4pOziIHIjeaukTrFmmT9+G2YrmFZdnpnn+VUYNyY2N2UXPz+d9A+UkdsAm57tDh+zmMIhjxPEo1tdd0A034vJRITRNS6AUKkqhMhmhVgusKgJ0us8fEzwnwh5FCLI2ypEDIzvmmDmTOSrFvXIZZfKoc8PJdrB8VpZ9JDfisk/ZZ/7R6TjO7WMHBswlKkSZPKISKBZ9kZp9PvXGSytmM9uGpr6xTgwBppcNeJ/bn0nQlR0wMGCzX4YARiPdno4KLeAr78+iMIdDAO5oP1VJKdrDDw/rttTrul3JpTtQnlJ5YIO88gSd2D6TdK4Tle2ePWt1+Sxc1KfZJNOhwuYfPKj/Jh2rL9yAj4zo38rkJFCJ2sDsHKAURicnNb99kw6TPF7A4chuJduQBTYaDQRKodXSXL0jI0AZK92nBTjmJLAuf4/ymtMARD9e233cQAPlRK7tS076tvskhD/cNC0OYZV2EcjbDsCB10mCIxjF7Cxw2dQKMDMD7N6N/Y0yqlWgXN+PEICa2Jljo1LKOZMvukgXTY7tOA5RSRKU992DXXNzQL3qPOtyjuCks307oJSmpIgqOHTIJJLcsxMBnbe0BaTPOnAAyDKMTk1BqTBH6TIx4ajMo8jRzYRwtgdpqkH63aGt0uAg8rQdSrlJlgWb33mYrWCslAJbMnQmdli+bmd6y1CqjHEmak0SbTO2btV85+wDwDllpcEiiLq6qpUxOanrMDurvzd9Lp2rrDIj8Ue7wprdM6V/nd1C6vByovW9EulAhFFAKzRJEEDb8jjW++2OCnUf+XN7muo+Ghmx/Tc2lGFsSNd9JQ20HmQ2TVOZTlTG/JzjQJ+YyPl1rNroT5CPZlXuv1+DzskVF+q1x/y81l2WOZ3Si759ez5YwDxkJQux905d/T17RjE6meQDFMxiR6nQ4rDUY6Oh1xr0oTD2YX5erymmp127AL28KadHtE6jUX0SkPR26HYSDQ66OJAsA8qxcmu7VgthtYpms2zX0nGM/JrUD1iQ49F3yjWbwOJi91g6xdK33adeTlgzt99+O2644Qa8+c1vzn3+F3/xF7j55pvx2c9+Fpdddhk+9KEP9Y35Yyw+CFcUnewDehJwZXQ5gFxkOgDLl03wT0aME0QfGhrC4OAgmDxTArRKKQs+SpBWCkFhnytcRqQzGnhtbc0CqowIZnQvy2K9ZBJUGYnOaOQtW7bk6iOj6AnqFkXOU38EZyWI7teDILo8FSDbLEFpCaiSq1xyoxMc9sFXCTjLaGlGo/eKAGc5LNtvn98//D/rSx2GYWgToMoIb4Le1JUfde1T9fjR4wBsnzNR7PLysr2fCVuZxJUJWFkPgugcM2wvAW7Zf3IM8vQDxXcGEERfXV1Fu93O1V+eWPCdMGzXwMBA1wmQouv47p+YeLLIvffei/POO6/wuz6Ifuqkb7tPUuTCutdGHMhHk/qgexxj3z7gzjuB517Z0dnEogiNVlmDhUyKZXYNEXT07JDZUAEOE5b7V7RaetcxM+OydRINldFPBBTMZytZiAMHzCYqMc2qRXkAvtXSXKfLyzacLEwSDA0FWF3Nq4dr8oEB5MFpI2U/Qlv+X0b9SeeDB3oHSYIsC3NdwttyILpoZ5dI8Jwhfaz40FAuks6CnKY+MjJtfR1WB9H2CgKG8klQRuko9NVVF7nOx0shLUl5xEOuTX0DpaCiii7W37zJownsCN4bxwhkGKDYOEn8nZgLN5/l9EhuDKtk1G502TTu+xkItnUrUKuNolKL3c6dIXAbG1q/555rwy6/Xy9bOl35c2HXV6v6pMXWrYGNIJM4BCMriTENDztqBP5MicsA+mdVwSIw33DIUZIg9MANLgFlNFuQtZGaBHlKCX70RgNIEjSbOkK9HHV0+RKwk+tg///+XEFdnUayme3ub8RPnfRt90kIbZ5wTgPIe+ukw5STopxAzMQ4P2/yVqapRh+npzE3Z5zPxnbrfBh6X2R/GlmGSqwwORmg1dJmOssYORygfO+9wGc+A1x9dTGIzroy1LjRQDgZ45FHAgtGVqujKCed/ISeZTo5+NoaUK+jUqthaCi0aglbRzA4OGrnfjvt8JnCGWqj3YmAzzeLE0NHEdrJDgCGfzpNdQWbTQRTU0iSnTk1mzQiGL9m0j2TDg8fzOTf9bp27HOyJ49XqYRObRz1uonON5Ho7SwoWo7YYkdFotCuL5EfOuvrDvAdV1o3S+uayn00yVweFDNu4nhUdKEB0lkoxxz7iBcafWFiAtHETn1arwDYTVOtin37NAC8Z4+x3Y39ufEdReP2dqaJCdGGikIcPmxNGCYnd6JCg+zrYXBQL0aTxOqY2HWr5XwWSQKsnxNgaKjsgikMZ7lSYY4WjelrGMBfrWrQXF4zMQFctruDxVaAZtPkLrnzTh1gcfXVOsmvB6JnmVvHjIzogI3MjAGXsDy142N1tYy1NaOXdDHv7Jah7BR/bc/PWi29Tj6NpG+7T410cx0cQ770pS/h2muv7fr8RS96Eb70pS8BAF7xilfg+9///qOvXV+6pBd4fjz3FL1kwkcJ6spElPzbB4cZVS6j0hnpW0SjwfsIYspXqVSCpFNhvSVliV8nn8LEpy6R0dwEr3mdBHP5XAkwyySVvXRV9CKILJ/F8nwwWUZJU/eyTX6i1qLoZfnMXnQusr1+JLxfrqyz/NunT2GfMaJb6ksmD5UR4nym3y8ShJZjUDoI/LpwvMiXHzEvX74+ZCJY/3rqtmjMsY/YVh9A95+3WV18/T9ZAeKLLroIN9xwA1KBHq2trQE4do6GoldfTk76tvskRQJePlAK5KNTen2vlM2paCNXssxF+XLza67l3kUpx1sdZO1cJBc36bmMi8vLxfzTEjQwgDAvZQ6udhbkNsRQKs+VYdqlVH6zIx9XKnn6kht7PzPkZnWk3vls8RAfkE5THe2VQz6LyvM3DiLizmYQk+0Xr44K4cvGhsg/KiP+xbOIi/r19fHUtTXk2+29cnsYf0OztuY4yH0ngdSz+L/fRTJhbS7iz8zZMlK5CJAAAQAASURBVL5AqpHjh5d3VOgukCD/8rKrRxzj0CGXX1TmKuOr1XJDTz7XD9wmiM+cdEVDnyC7rWSzqetU1BleG/kbo3pzDzevLDMOFQmOHEv88U85zUD0zWy3P6cc16svJyV9232S4v/OCuxy17X+BBJFLgCahhMiwndpyXFL9ahDJe5Y85Cbpw4f1sh6vd77tyInPnMjp65WSz96JQ3cZEdP4tKSM+7m92sxwDS1ftdc4kxeJO2uTPy92SQbx85kSDtk0FaJScplwUoauBNodEBKBwJFem3ZLlFxy+whIqWzTNsuvuQtWYbiOUkA6PIjniKzU2GW2c9k30ibLU16z/WN7ADqK027E4+Lykjbx5iBctRxibtNnynl2i7Ho98HjQbyQQis1+qqWZzo72UO9wcfdJg/h8jysjgsINrpN511P3TInc4QqgdMN6LZdLEQWQa7cJBrGtMB0l9mYzTFescmBBd2mus3u5Y+WbGLuNNH+rb71MgJa2Z0dBSf//zn9ZEAIZ///OcxOjoKAFheXsZIEZllXx61SDBpY2MDfmQxpRdwJ2lSeF2n07FRtT7HdREoLcuSQK9Po+GDtvI6GfXMe1gfwEVPM8q4l6NAgsw+1Y0sr4jPm+CsjIr221/0PNkPfp9I4J/vMure15vvAJBgsgSfZZS+bB/1ROoQH/Tn57JsH/CWbZdSREXTizZIjjVS0Mhn+Y4Vv54+wM4+4f+LgHrfuVDEQy/1yf/Lkxmyz6RDYkNsZot+S7IOvfTCsdSrjCJ5MoLEH/3oR/EjP/IjOPfcc/FDP/RDADRfG9CPRD+V0rfdJym9FpC9Nuj+u9nUTU4Cl1xiPt+2DahW0ZzT+5SKV4b/SJvEEnqPnGVmX83/DA/r0Jvh4RyvuB8pRnAzikLL2mK5N/lgpVzYb7XqqEK4Oc3yQWhd1OP8UgLK/o60l56LQG+xCWCxrF4uWOh4F/2sn4x4YyQ6+6AA5JQRXbKoNIWOaOZOkLsys9mVwY2yHbKMwUF0AfBSybmq5HbmcGTmRbosanvBI2RuMVs50Qb5OHl/FOXV1moBFYaCVavIHVkQ4HqpFOZ0wuP1ktWHx7FhQBkmTGV0Oas6OOg4zM86S5dDHIltGhoC0DQNYNi6VIJpnORkjWPHkUr12s226Bv+HrvmAqm4Y21CH80G/nGUzWz3CW+u+xvxk5a+7T5JOV7bXfQ9jVsUYXIS2L3bfF6rAdWqA4w9x1duu2eez8SJ0mZGEfQ/27blJyx5EsqvrwE4q9XQ2pW1NX0SyNaZE+TSkp2H2+YkE5cBaGV22SDnvNzEXuB8zdkoX89KJFlVeRtCkQfiJKBe9qnQKP6RMzoJSB+TpsJQeGsB8Te7SE77tkzqvscahf+VSypZJW2jUnexcChwraLLMHol4swOkR0gFlS5xOWyIlkGpUJbdYLMHQQ62r3HuoHOfGQZgqyNOA7zqUh0SHq+v7k4MeWxaJk/hbZ7cFCPJ8sh741hpSzjnFVDraYPqLELWA2OTWQZAnQQx4Eua2jIJWlhoaZDJAvTyEh+iOaGq9Apbbd1WByP8Hfm2/fTzL71bfepkRPWzHve8x784i/+Iv75n/8Zz372s7Flyxb83//7f/HFL34RH/3oRwEAt9xyC17wghc85pV9qgvBUgDIsgxKKQuk+5HPftSzH4FMegomAZXR2H60Ljm+wzC01xFEJA84ubkB2Ehh0m0UUaEQxPQj1yUgyWcNDg7aKGBJGcL/+zzlUmQiSh8oJiUNryGtikxmKkF16k9SdEiHBOuXpmmOh13SzBRFkxPM5Tvbt2o2oAR4ZRJRXj84OGjpZCQovb6+joGBAZAehdH/MqqbdDkUOVYYYc4ob44HCSLLthTR6RSNRz/iXCbwZP8MGiMp+dglh7lMxkpKH9nXPlBNrn7pkCBNkHTstNtt+PQ6kkdf9hv7VToiZJt9hwUdVfxMAvdFPOlPJnn2s5+NBx54AJ/61KcwMzODo0eP4lWvehXe/va3A+gD46dK+rb7JISbGv6fO9dem0r+zWgepfS51CzDrvmvYtczakArAV78YtwzE2LvXn3JGDeRJtpKxaMolfz9jE46dckl+u+gecSRQF50UT4haK2GDkxSysyAvJRWC2GUYffuio1GsmbBZv2ELtfQpBzBqKbOaObxeDaZey2lgE5c0Zu5XtHQEk2g7sTmvaM0B6uKQ5foyegmVBlGkxhKBTbKjMXm2igX/Xy2pI0xerBtLQIsRL2pJ94+MJAvptEIUKtVUM4a7qIostFW556rVcnA7KEhWN1UIqASK83NTd2YXeViKwBMH+bqLkPikiSfEVS20wdERDGS6YfqWl0Foq2jQOyGOaPCycpCkNoMM7sRtww5KsTE5IUIZUQ7x5apG3EewTwDpXR5w8MaFApVx0UfZhm2bh3F0BBw+eW6LozCk03k3/T9EPyuYNF14Lnn5tEQM/bkz8fqx/QRnxFFAJot97uOY0xPww0EvtujIq783DiTf8vIztMsgdemtrufnOyUSd92n6TI355vuwtoMqzQTk1NAQDGv/X/4Mcmtmvbfe21uGe2jL179Xx1IXM/ZBmAMOdUXIF2/CnouWNyUn83Xm07Lo2rrtJcFnGs6UcyaLzVzIk2pwVDhufn8dwrp7GSBpifF1Qlzaaz2Y2GBZy/2xhFfZ8ui8nI0UhRVm1MTroTVqurQBSFCGWyZz5XcqJY/jehY5O7gx+vZGUgKqOcJDrUGIbeA0CoMkTVss3x0moBUXUU5Thz4DL7xn8ms0OzfsKTbpdqwmnJLmUxnN8pR5oB4unLTG6Zef2hAKBZPB8Vx1qHLNyqYs6B4ivxDiwtAQ89pJ8/PQ0E6Qraqow0K6OSNTQHyuqqM3isKIMVqlXnXPANdaaTrE5MBFY1gHFGmAHGqOu0rgHlpSWtgySBpbCbnNyZ8yEsxuOo/NRP5aLhLb2LWRcquJwpPMlIZp9zzwXGtrbd76vp+pLPedGLtE2em3Oc6FNTbp2RZZqaBjBlzeuOG00SvT4SJOlKwTrqA3QwORnYdagF0d3w0GtJGnKjUz47R5ovvU297Jtc19qjAOXia58g6dvuUyMnDKK/6U1vwsUXX4wPf/jD+Kd/+iccPXoU09PTuO222/Dc5z4XAPDOd77zMa9oXxyITuCRFBZhGOaAKJ86RCZYlJzoUgh6Eyg/evSoBVEJ1PI7AoQSwF5bW7NgYqlUytGSEGgm5zUBRdKB0BkgAW3WQVKd8Bl8J1i9traGdrtt75e84rK+/jv/TzCd4Onq6irSNM0BmwRT5btMfCqdAysrK7b+0lkgI8jZJ6wngVfZzuXl5VzyUOkoIaA9ZFZsEpymUyNNU5DfnuOF+uBYkCC65PkmB7m8p+gUAv/P+/2xKPVMvVF31LGkCiKAL0F86WSRNCuS915ytbM/KdKhsLq6ik6ng5WVla7TAzw5QDBdnqyQ/PTUs3TK+Il6qQ/ZZ/Kkgzw90SvHwZNJyuUy/ut//a/278XFRbz97W/vR6KfQunb7pMQEYWT2zH4oJiPKktEb2pK7xhuvFG/f+IT+OKdOzAzA+zdqzcXz53O7/bCJIFSQe4RXNuPbfwgR7WBalU/w3Cdp6nePGWZC9oZGSkjqpYRtBYtEXWYZQijCNHkhTbpGEzyTn2KN0SrVcHSkt70rK0BV1xhEpqahI+jcYxoMswF2+pkkQGq1Yrms+YGhVIU8SVQyjzuHmA0iZ1uTNLWigFk23HZBegh0J/LsuWzTB+RJzWqjSIksi2BTAlsmg1bmup2AZoelHuQKNJdynxcFxLtjmN0ojIO3KcTYJ57LhDUf4ByFKG81dQxNY2Ux5PNvYuGg5u4LzfrbYQIY5VHkM8+O++YkBtA6pfIgXlOkK6gEkeIosACBEx8Sq5aCTZ41QOgx0Ctpp0Z9Xr+1P/8PLB792Waa7T5cNdR9yTR4NL6eh6UH09WdEH1rGvMhFGEEBkqj9SBVgvjUQREpnKtTHO2Tu/S7WuYZ/KENSvHaDs/TC2KEEUWF8doYiLTWvo3poxKg9TUr1rFohpFBGBcmWcxoagcO9KpUQTSScDoNI326mW7+9Fsp076tvskRIJhEiDzf3cMjwXy30WRRvTqdeD3f18bgL/7O3y9cSG+9jVNzzw9DSBbtjZERWX7s+D8TQAxVB3srBpbMzNv5xG87GXA5CQWW4FNHL6+7lKbDA+HGBoKUYlSDUgvLAAPPIDy9u1Q1WejXjf1aDbRmboQe/cC1epO7NwTo5OM4taP6jKvuUYvE8JsxQLyF1wwjvV1bdvX1nTRQ0MBgDKgyqhER9zcSZD5iitclnOjpyNNDaCXVRtQCvPz2sZeXK26vCMiSCBMElSroxgYcKbswsnEgbbsKxpAA553ktG8eY6B8qQDVbXjE3auCbI2AJ1UlX5me3II+nFaf2WMs1ADGKcGeKdTl9OXToxuym88jDLgKGaSBDMz+s/5eV3U7t0Ami20VBn1OnBxlGky8zgGnv50h/hmmUX5V1KzRklCndeEDRR63DWZWPubZRoon58PupZXUaS/W1jQauR648IrJ1CtBtbu790LzMyEqFZHsXv3KKoTwCiDIapVvfZQHYQqhaqVcznElTKOoZkZV08BSCtlONvv/CpQr2N0agrYM6GV9IVZbXh3PxdZBuxMFg3ZejNPCUQvlCk/QMd5RbIMl1yiHVhcn+i+F+sYGcBhdFquf98pCsgHJ+TC9NEdOCPWo44z7vSSvu1+/OWkNPO85z0Pz3ve8x7ruvTlOITgoYxI9ik+fOoIPwKY5ci/JWBIUI8gJhM6Etj0I575LssolUpd0dN+FLUEIX2Oap8iQwKhR48etUlACcamaWpBXD96WpYpdcS6EnyViVEZoS+j3mVkMsFxSQFCXbMuBI2LQFifw5vtpe7X19exvLyM9fV163zgNaVSCUNDQzkngYzSlvQ8sl+K+OapRxkdLbnP2e8UqQfZHt7fi15IiowG5xjhmODJA+kgYrukE0mOYZ8fPYoiC2pTF3TSpGlqn+3zm0sqHp+HXVLUyHHA9yI6nCI6maKTIUUOiSebfPe738VXvvIVPPzww9YBBvTpXE619G33CQp3Zty8iOjkruuA/GZdRqKnKdqf+xzqAHa2Wrj9dg1WzsyYYLfdKn+PiWpjkZQAJikpAcE4BiYmdKR43Ysqhwv+ZRTx2Ihyi/8HHwSGhhDWahgaquT2rXzNzeWTR5nAvFyEWpnHj6My0tTxUw8MAGPbXfSUDRv3qUeoPwM6pq08ph3HJrkkK0eEIooQ1mpQUVlgygHKvWyQAdBJGZoDKKqx27B1Eafqqj/yiC5m61bnWwlVB61WgNlZ3R0XJpl9Vqul72k0TCDPQ3UX3Sc3moz6Yn9GERpG76TKJRaUpkDGNnJTKM9C+yC6/KzASRAqhTBSaBuggcFnaaqrQpYb6Y+wUV1ZhorKgEihYZwv9TqT3enrh4eBCy7YgWTCnJwwTiJudAlO2AjB2TkHuvDFtnBw791LT03+91ir6fg7pZAP0RSSJDiSlrG+DmzfLqLToPuyWg00EDRnACOjS7vn5Bip1TA/p3/a4cyM/rxWc50kARnWyR/v/jxxmm5Ue9nu/kb81Erfdp+gSBBdgmP8rldktbx3agpIUzS/9jXMA9jdauErt2sAfd8+gyvHLcdrDeNgzjJkWWgTd+qEjpkzqPW6RjYvugiYmkInrqA577DqLMsHXMcxUEmUDv8lQjs2Brz82Wg2Cew20WzqutVqwOBzRnFwH3DHHfpxV15psEMay0YDo5MxkMTYb0DvLBN5PgBUJgyIeuiQrju98tQpoG1dU/+3rDSofuhQiEceAS6eErqVgGiWIY5H7UfNJjA5GeoVj5wXTRQ7lLIJJqVPXjs+K3YqimNoh6p8JkJ7kmpw0Jlgmt69e7WdGt+S5sZM1tR/lkrG8dBK83O1Us52LyzoB8Qx5u50XWSpx1otpNEODaJPZHpBNTmpHeDC8b+CMpp1NwzTFHp9JaMUhDOiDADVKo5kZSwvO2c+L52YcD4i26/s/7k5jCYJ2ltHsbCg7/30p/U9JrcpXnJ1DWg00InKaDWB0VgrrVytIknK1owNDkI32Kwpc078TFMHhWgDX/mK/uHs3q3b/+CDwHe+A+zZg/hKDaLjzn16wPoJums1dCZ3IcuAkPQrXDNlGcZGzJiZa+bWRRb1oWKkl4sLW0a4c0D684EvHJ9yDjkNQfS+7X785aQ0873vfQ8f//jH8f3vfx833ngjduzYgZtuugnnnnsuLuFZ4748LiIB3WMBUD7vuCxDRsL63NRFNB1+MkxZlyIgWd4no3eDIMhRnRS1Qd5LIRjKMooSWcpIZ5ZT5EgA8lzdBJwl3UYv7moZbVzUF0VRxv79BOFZhmy33yaZVJXt9ul7ZAQ5o9l954Gf4NKvj+QMlzoq0sOxxpx89+/x6WAkHY7PW08gXepE3sv6+2X7NEak35E69znnKTLi3+8bOfZluySILmlb5L2sU5Gei573ZJK/+qu/wi/+4i+iWq2iVqt1jf8+iH7qpG+7T1D8iFWJJAL5HYsUCe6ZDUULQBPATui9FxMqyb29vbdAsgxu88/dudn0tRp55gxAA6BdmL+MtDMJ0pBlUFEeN2beLj6KAWG2LB8AjCIE6EDSrGxs5Lncj0uUylG0dCnAb1CWGcoXEYHlR6AbIb2NDEKkRFGAMIryCvTKKOyWLMP6emj1Jdshq2z/YIQjN+vycwY2iHrK+5n805a3vt4dcc5nF+nc1wsLV0pHt/MIeJrvWunzyOkgV8Ewp1sZRc/DGxWxqWZkt9zTWvoW8t30Av9bLZ2Qz1cQ+48bZL+TzfEBSV0fKqGXTHPN5k6ciKPjGkR3z7NdJihnujv9OKTXHHIayGa2u78RP7XSt90nKUW2uug3WjQ+DaC6COCIuY9OWJtLNMu6EwJ7c6L9jABommpUUyl04kqOTWJ11SWxZBWyzNSPWSIFFZksn18xyePqqgskZ1loinnT0k45KoouM0tjLudTT1e5NkIkhZZzRJZ/7sBZ+eWIBke9QoVeeR3Zc/gVmyBzWPgiu5rrFH5OXSESF4n2KYVufTGcnZ+JOVF2sUwJYnXKh3I8inWAfIQ115FyFfEXBllmxkHZ6iJN81Rm3I7m+lNUUiX62lYLOHBAA+KHDhlMmA4Fs6aTnSVtd6mE/JpSjg9pF5mVlDxwhw+7RKi8bWHBBUvIAIwsc+MkFp0jA1w4+NlHfuf7/esHxmTFYyAn/hpK1uM0kr7tPjVywpq57bbb8PKXvxzPe97z8NWvfhU33HADduzYgXvuuQd//dd/jX/8x398POrZFyEEARlJ24tPWUbMSrBKApKAAwh7JZGUALuko/BBcL5LcFIm+iRAKQHfXiCt3yYfLJVc2YODgzYKmi9GlxNM9jmq+f+iqH1GYRfVnXqXwKlPHSO5wYtoOwDkQG4Z/b22toa1tbUunnA/Yr2Xc4DXSt52guwyQafUn7zPp/7xHQ9y3ByPI0fWS/6/KIqe9ZMc6DKynX0nTwdIXvJ2u50ri8+SnPnS6cA2+v3TKzlt0VgtcrT0JS833HAD3v/+9+PXfu3X7GeLi4s466yz+iD6KZS+7T5JKVpgy8WzL7kdkLs2BpAAQKulj/hC7yFsIBKPqyYJkKaoqAwrKKPR0Bub7dsBNJpdPNMdE4lNIFepfK5J4rVRBLdxIwG0ITKXzYgik6gMbq/DjVitZo5ssx5sJ6N5owhRFOaA2LKMjOa1PQBxZDrppFRtlulybVIx6teUy6Rt5GT3y+PmP8jaiKKwa/+wtsbgowDlajUfkW4QjKGhsCuoOMsAFem68ug9N8TtLMDqqlPz0BDy9ZaV4Cbai35iN/GWXLKsZuZlAxU3GSEYrxS0I6PXZhEA0hTbt5dRKmnOV8l/7p9qHh5G/qiAcgnHhoddVHnXPjqO7AAN0EGWdQd45ICTIn1JAEPUHUtLLpKMD2YDvHsZ6VeroffvWN5j6htFAdCC/c3Z4NZjOTG4ue/h3Mm17zTjHt3Mdvd5VU+d9G33SUgReFv0Pa/Z5J4EQBWwtrvV0oHZFmhUCivxDszOApdNpcD8PKKJC+2JpxDtvEdaUMnMzeUfKZMYyykQWeaSUE5OArWawwpNeUNDev7lSykd9Ev+6RDtPOBoIqmr1Z1YWnLgt226nEvlQsCz23wWoHOa8KSWTXYpc63wmJORXGJyaQM5H5rkMGQW8Q+ycWpdXQVKpUDzZ1PSFFu3ViyP98YGsJLmKU/sukE4tzsIMDgoEnc20nxlfYousTjgcieO9ToqyDRPeFIVzEHkdpdrAGFH5XiQei4cx60WRmsxlArB5QslirS+tm7VQ6ZaBdAo5WwOMeokAS64wK1XSiXTf9AO7pGRwLXZnJbjAQylYPn6MTmpF6tijaYdEdAR362WvoZJTE3UeZCu6HvIyeJHoicJGg2qO0DX6kH+hr1IeCvmsw4CBFHabZPkj06uleT/2WfyOaeh9G33qZET7v1f//Vfxw033IDrr78+lwn8P/yH/4A/+ZM/eUwr15feQu5mAo4+UA4UR/v6IBQBbcmJTnoMn2ebtBt+JK8E1fk3EzSur69b3m1GcUsqE0njUgTQA8jRqgAuepy0HwMDA4iiyJbDvwHYdvi68SPsJeBOUF5SxhDUZlsY7c0I+DAMc+CwTMJJShWpQwKyq6urOfCY+mIUOp0DEjj3/5bt4f9Jp0MQGQDCMESWZbafpZOF97FvJFe5fC6vKxpLfn2KvuMz2X+SesYH+X2AnXqXY4/R3+122/YNk436/UAdyL6gw4Lc87KPKNSHf6qjyPnTq/3yGl8nT3YgfmFhAT/xEz/xRFfjKS99232SIsFYPxrL45rOLcA9EDe89FLsvP9+oF7H616nNyvNpgDzogh3z42iXgdecXUG7N2L6Ooftid/xzZ+oDcpc3O6zD17gGrVUmjwcaR8lHgA98BIM7dB4c5X0FXw/mpV1+vss125SgG7kiOaz5VAPqPUGAUcxxge3mUDrZpNoFyNrWMgtxmRuiRgnaYW6JZOgMVWgCjZgVDy10KD1ZnBTS3InAq9EywwfRPEMaKo3LVRdVT3AZQqI0nKiKsmsi1NEcehTQrHE+0cDkNDem+YJLCbaSbjnJjQr0rUdh1j2qA3qIbXk+03m1oOLW7+azW3Ge8KV5PjMYfwh/ayssTn/c24eWAAzYF6wQWjXRtx6UCwvOCABRWGhw2FwGCeP5a4xPo60FGhBlREnSXmnasbPQj+w0mxQG7UKHLEtkrlI9h4r3DirMQ7cN99eqxMTyOvR6X0hsi/XykgTRGIHwejO9NUNNLfXEtKAf8YNTff8l6/P08D6dvu00P6tvskhAaNP1R/zvRPAsl7JJI8MIDKBRdg+v77gWYTr32tBs8bDZMo9BE9r996K3DffcBlb0qB229H+Q1TmJ3VYCwiM0fNzur6DA4CQ0NoV8fxlU9ps3DOOboKfh5J+o6RwSUOveoqII4xeNTUwbStErWxe3eIWg2oNPejEsf42Z8dxdIS8Mw9HUeXRUC/XgeGh1G+FCgnCQ4iHxVPEBWlErBtW57bi/NXq4VKpOfGdlRBq+lA2FYLqBiqjJU0QFSrIDBz40bT+URtt/B0HfuD3vxmEyGAJBmV5pxfWRsDAOeeW0atVtb0YfU6QgBXXrnDDoF6XVebOCLp2ajwTqT5vi3dFyd7s2ZqZ0H+dJUBeFGroROVc8mpkwR2/FWwiOnpCjAHnR3+7LPznawUyqqDqBZYX4u1m3DldNlv04+VahVPf/ouLC/nc3nzNTkJhOmiq5yIMt/Y0N+/7GV582QDGFotTSFn1imLaWiZUOxac2ZGcwkliTauYiFqTwhceaX+zjiB7LowSZwNp82Vjhel0JnYiX03ufVpWaF4bW6e2Yl0vpxQIbe+WkkDLC0BY9uTbo+VdOKwbJ8j0e/g0xRI79vuUyMn3PP33nsv/v7v/77r8+3bt+Pw4cOPSaX6srkQ4GVUdxiGOc5tSXUhQT0ZTS4jmiX3da8EohKI9kFzGXVOkLMIRGd0dLlczkVD+8lPi6KB2W7ARZAPDQ2h0+nY5Jry+6LkknQkFEXeUw9Hjx5FFEUIgsCCqgShAYDJMAnSMoqcws8JRrOveN/a2lqujyTwL6OjpQNhcHAwBwZvFpFO0Fley4hygtYE0YsAXBntLelTpLNGjo0iIF2+++VKShr2m4w696lQZLlyXKyvr+cAdSYNlQlzoyjC4OAgwjC0TpUwDLtOF7CPOEak/ukokbREfr342/JPBfjij2eppxONyD6T5Cd+4idw8803481vfnPXd/1I9FMnfdt9kiIX6hJ49KNduFAnoOyDuNdco8PC5ucxduf/gxe96D9iZsaA6GkK1Gr4wqc1Rv6KKzPgjjsQXHmlSfYEYH5Wc0gy86NBV+fu0Htz7gHkup5VGBoyvJ5ZZoHFlWgUgD4tTI7rELCR2CGAigKADGg29Of7zLs84n3okH6ASUC19cpdeOQRt/+I4xAVbpaKNoFSf0ohivN7loUFx+fJ6GXudRhxnyQO8M4h46yE6Mu4WrZfyUtklbZt05vrWi1AJdMA6s6a24TJI9vyAAF125zT301PmySXjcyCskeagU2oCQQY9cPH0N2Xkk+8a/xRPIdOhtDSe0aRAUP8sSz/NhRBo1NTQBLbiLwgFXywrAMbniToqBAjIy4KkonqDhxwe1RGOEZR2W6o5U+mK+JOgtjy6LxSwO7daGcBFhb06fFdV09pYltyDQPuCAU36lGEdhZgdgb49rd1Pa+9Fi4q0t8Em99xW+lj8mGrabnQ21HFctY3m+hugB9NSd3yOyJHRVGN3mmEJ1o2s90nDPqfhkDDmSJ9230SMjjo5lXaY+no4u9Pep99251lehJ72csQ7NkDNBqofOX/4Ed+5FWYmzMA9uwwMDGBL3xC0z3/2k+3NPfza1+L2dkKJiYAbKlrT/fMjC5/agoYGsLMDHDTTdpOSJ+h3AYNDwOVuKNtiPFu31Pfgaypixnb3gHmzbzcaGDPnnFtc751L7CxoZN7KgXcLuZwD0QHAJx9NoamntllIkJAV+zccx3yzPkuilx0fa2GRlyxmCjVvjpQxkZTMqGMIkvddF6tCiqWajXfVwRRTZ0ruxPEsYsk55TPKTbL3MmyCydjSxUymjSAJMG/peNoNNwzldInr4aGYMFXgteV7Eg+0WmS4OChAGtrLqdKhVQrpl+MiUCa6jXEyIirO+bm9Km8LAOe9awckG0B39YigjRFFO+wKtBAsHKLFW+tgHpdj6tt2/D/s/f2YXJc1Zn4q5qampqemlZp1NK0x215LI/lsSI7si1ANjYxQRAcIJgsv4SQsIEAuyQhu0BIsrD52izkk7DAsoHNxxMS2IVsYCGQBIc4iwgGKyCwAIEHPLYn9lhqWS2pNdMzU9NT0/r9ce5769SdmtGHLSHsPs/Tz0x3V92699zb99z7nnPfM/zsEKhVMJMIxdyGDeb0Qb0Oe+RBh8qHIRJT7OiojKdmU9aTrGoQhpnjxQDbjYaM9b4+4Nprzc/q4EHgs5+V4A5j39phOXO8A+jc8iykqUlEXgeu2707c3xPT2f10sfZTD0nJ8XMx7H4IEqb1AJXL8bM9VyqBCHseG2nAqAfOWJOLbj21nVuc4DptapeYOs9wEUWrd213RdGzlozcRzj8OHDuOKKK3Kf33vvvbiUrtSunHchAEgw0QWd3ShjfkZAHMjTmRDE1FHi7n0UN+pcvxj1rrm8SZmhAbMiEFuD6JqCg7QdFAKa/IxAtHYSMHKZ9db6cUF0HcVNYV10tLmOsHej0HV0OHWpdcLocoLpmqqF9eU9BG0JLmvaFV1/l2bE/Zz6Y5JNPoMnDVxxnSTaWcLrXa761aQITKaTQJfjeR6YCFQ7HjRvvm4T66PBfoLfc3NzufE2MDBggXZN76NpbhjBzr7l2GV9db3d35PrhCiKVi+SpxoQPDY2hl/7tV/Dvn37cO2116K3txfdxKIXXrq2+xzFBR35mQbO9CLbBdZJjHn11bJTMcdeh6+/HtXqCDZuBDAnm/j9+2U/hDSVnUySoF4XMBSNBvDoo9nGLgwx0/IszaQLoJvAbl4KNFvZmzjGtIkkGh01Sc905I1J/iW74AXggQdWRtP29Mi1jz6aixgOILQprZawbLRaQFkDlTo6UH9mXl7alk2jkeVlz5Y1Nye3EDxnYLqHzkqQWW+uCJIACKoZdzuQ+QHco+yLi7LBLi+bdpvNnl8Zsdgo95XDw2YjbiLuuN/1Go/BZh01G8vmVKZG+eshDEsqIV3WTSW/Lf2mKQBYaXcj5OgyRcaPukIvrn64WdTR23EsUYMEATSNkIpGpGrpiEGaor2htIJHPxuLngXSyfOeqx+DFnTEHMeM7+NQ3bP4jzzDw9ZaLYv0ZP1MG+ZRQtLMkvbx1Eaucq4Y3bLOgXq+zmWQJADicCVApyVNswR5PC7hRtdTLrKN+Fq2u7sRv3DStd3nIBxvrsNQR51yIqcUgeiAAIOkP9m7F6XxcVx11TZccgmAR8V7uH+/gHxotYBvfANotVCvC6iMZlO8ikx4XKsBkCnrwAGpxq5dGUYHZI/u70cutLgdb8a+T8i14+PIAE7fB5pNeAy3npoSI3bggNxLVDdNM7L0qSmZizZtApaXEe64AYCloBYQlXtPy1mGTI/U7yOPCHBp3tIeEl/nI/v7V06V5ahjHbhtBALa8kvO/Uzg2WrB98s5HJ9mifM6fQLbxnxZNCwvWx7uJByx9HiMRrcn2Mx4IKiMuWY+szckUTgB+74+AJeZhsQxjrcCLC1lAdRJYupyMsnakKaCsjNDu9GjdViYwsPK5tyQDXysDOSgjpggs9kUPpYkQblWQxgGGX1PvS5jMo4F9TY2vuMHtq9rNSCoP4zq+BZMTytfSehnThejIyZOjSLJjev7AKamkNTrCHldFOGEia8oQ+o8MZHZ7VYLiOMSttRqmVLDMHOAm2e1EaDVzA5hVioyrK1oRfE3Yuj0AKBM8+r7SBNYJ0gcA0N6ve7abx1coNdbeg65iKVruy+MnLVmXv7yl+NXfuVX8Nd//dc2AvMLX/gC3vzmN+Pf/tt/ez7q2JVVRIPMOvp8tet0ZDGlCBR0gUCXS72IC9vlRj8XsMvlVnfLdOvKv0XArn5PsLsIdNbi8n+vFVm8Gj+8bov7KnI6sF0EzjV4XVS31fTq6sfVkdaVexJBX6+dJbps10FTpBe3/a4+i8aXexqBALfWob5HOx7IJ6/r6J6M0Fz2bn3OZIyyj12dPpHyZKdz+eM//mNEUYTPfe5z+NznPgcAK/r4TKULop+7dG33OcpqQNvZXjc4KMgvN72tFnzfROsaQnMb7Ks293bfRIBRb2CRj+hdMyBG3Ue+7Nx37mZEo8lEDHXhPT2yQeV1rNtqciYLd9cxYa5P0+xRLMrlRn0iRDd9xRfmw7Wa0EGWsMy9z32GW7TvZzyf9hlF/VIkegN4puNV36v7rmgMuHVwxp/vO9euoSMLCqwmDo+5TU6rgG3+JpgjDbHa+Lqb4jPVgftejT3d9uXlDOdfszy3HziAv4c2pGvZ7u5G/MJJ13afo6w2oZ/NHKmdXsp224NAhhi61QJOnTKJFV3bzZNbzjxK35w7ra6YPtSbFdOwdgLo8vk8fl+wtztj2+3mlnDFlF1kplxzwr8rbFyRFDkk1VdFpmt5Wd1GHTBhjBN4nHuEKTBXnYL5Wvti9He0CVwihaFxgBxTleNFa82Fa/WDC6DrclgxM+j8MMio7biO0/lGnGI5lph4dUUV1aBbzf5ZlMDYbbtmM7piUEXOR6VBa3rVc86aIPe8NX+6q+nV+f2sek3R/We7nrpIpGu7L4yctWbe/va345WvfCUuvfRSnDp1Ctu3b8fy8jJe/vKX41d/9VfPRx27sopoEJcRuYzidkFYzZfN9zqJJoFMLSyb5WnqiiLwUgOejCrWQKfmP2fkL3nd3YhjRhDryHWX6kNHCutoYTexJ79zAWOtA013w3axbB0lzr8aFCZ9zcLCAhjNrOtKqhCWralrWCfWQddV0+mQUkbr2I2i17oigKy55NkOUpzovnAdFro/ea8ec/p5Wm/Uv0svo/uebeU1fX19uTHDervl6mfxe+qG46Uo8Smj0/V4cq8vAvhdp4uuB8X9Xeln6/+LHFhF9z0Z5aGHHlrxWTex6IWXru0+B0lTYN26fEi3u+PV71cDPH3f8LZAwp7NGeT160002e/+BbB7N+r1N+Hw4WNALFygnaiM6WnZu8P3M05S81xi7c2mROjs2LHylDojcnSdvNYMxsbKAICgcSiLZON1BA5Iw9LX54T/GGGiszAUjs8swxh8XwWvsWxynqZpPgJXRx07G8OenqDwUt+31LJ5TkzdBhJoMsTPRO/nIvQhgXgENADhp920ySRznVab0zC0m8w4lkiz5eVMNXp4LC05lfV9tFMvBwDr3KBhKPUOw8DelmtT0aZZRY63fTkSXjLl+L7Ub3DQHKfWO1c23KUU6e/PE6JSKVphvN5EsqV0/CAwL6DVyMadxl74GCaD3bRJHWJIkqyvFO+odTBEETrwcPRolpCX1Ko2WozhheSeTxKU/BRhLGN940YJAqxUDJhvjtJnnPiAH5bEmRGGQMvUud6yaFeSBPYURKUCASr0mOP/WvTvRF/jzhVFQNd3Uday3d2N+IWTru1+HOKCYxy3OiSa1xX9Jn1fwnTTVKLJjS2IImAkmgH+7M+A5zwH9fp2AJNA5RL5HUcRpqfNwbFdm2TSchBwgophKMHuvr+StcP3IXRa5t6S38bOnQF6eiRy2NJg6N8jI3qXlmCTeQwMyDy0sCD16++XMvv6rO3mM/v7M1Ngy+bcrBcYfNbGjUAU5cwI7TOjsjn/r18v1zB5tW1sksCPDPDLtvCoGa+JYyRTmc1IU0OZgoz1a3zcrKmYO4a239SPgfe0AXPG70F7Zh0fUWbnNOXX0pIs4Xp7Aeyu2AjqXqUO9lvgK9CSjhh9Ks/odvao6KMcR3YRwkeXQkVTp+6xIe+kB9LlJonYMNrFNM1Ow5FKzNhW0t9MTwPV0W1o1DP1p6nixTfPPt4S+7dzpxQzPm4OVoyNobRzp61LLmjedP6xY/ZQgLLdyBaqps9nkkDodBoNBLUaentLlmqd/T7T8rITjlx4hULblqaZybVHFSoVzM5mXRBF6rnuglB7s6Jo5WKtCFjv2u6npJy1Znp7e/G//tf/wm/91m/h3nvvRafTwfXXX4+rrrrqfNSvKwWiI6k1Xcjc3JwFR0n/QRCZosFaDRDrlwYMCQC6SUVdMFGDrpp6hFQaQAY4EogmDQfroUFXHUHMNugElJqaw6Un0WAo60VucCAfzaz1qNvLa1g+gd40TVc4G8j53mw2c/Xk36JIcOrD/c5tw7p166DpenS9dMJL8pXrdut7PM+z/TBgzrstLi5afeuEp240PBN1uslfqU+C2LrOvId9yz7SNC58z7/UFZ0rGkjX9EX8S3BcOyn0uCQ1Cznp+Sx3bFPfpL3ROnNPABRF+7Mf2KdFkftFpzfckwJPRemC6BdOurb7HIQ7LA3K6gV00UZch9pQwjBDuO+/3153ySVA6cAX8Z2//mts+8QncH/PmwDsw6H6CzAC2XDs3w98//cDuD7KziGbZ/H0+dSUbGqetUu4J4/MlmyCKYvDZgTZsjlpTEg9eMxYk7KajVbHHCsOdnZyUU62YLM5QRjKriiKMJ+IDSK3q1TXz+tPg+latyaCCYDduHGTzGrpfbzdCzRaeToXVR4qFQu+LjYzvJ3Um0tLedptQPaBXuMxYDrJyqUi0xS+H2AonAeQYKZ/CJOTUl5vr4Pna3oUX6KoeTJ9djafPDWKhDbES+YxFId5fTubbv2+E5WRphl1Z7UaoBT6CNDBpk2G09zl9VTAe6sFDO2o5ilG2F72tR47ijdIs7ywuvp/+n2I23vJvN3oRpE5yp+mGUjETKwE6HO4lmfH+rFjwC23ANft6EjbHM5WjI7KRrz5MFCvw6tWMVSt4qqrApsHFwAQx/Z4ObEFkRJggPVS2IHlTEpTq4rRUQMeHFS/9aLNNUEc/q/160rRZxerkB/5bK7vyjlJ13afg6RplrdD2wN+p7MvEjF0aVwAuY+JEicmJKlCq4VKDcBdd2H/Zz+LnZ/9LGbxOgD/jHb8CwiSBO2wjAMHhL8Zd9QEeeWzfR/o6cHJk8Ds7BzieABbml8HwhCHom12OsvZbt47PY2bxwwyvW+flHvNNZYixraJdTbzqeVV0RReTNBsKDTo+CTW6iXzGUdcrZafvzjR0/5XKhhYWukLZ7oU0psMb5K9EdcJmhvL03YuinBktoTlZaA6tg1eMm+pvKpVoIwZRLUyDh9WUd8AbhibAe7amzf0l1wCxDEiPwNwvcZjQHWzZdqaScTe8D1qcT4zpwHhl5eF3Q4AHpzysHVsDO3Us0Ms8A3o3WjmndZuomzj0E9TsWcAUKmUEBhbYRPKEgjXQG8UYT4cwvQ0MLrjBqHA0esE8owbTnhrWysVdGpb5Cdhqkb2Pq41lXm3J71KHHuVCu7/sqzJ/s2/kb+lxsPAZEty/uzcCdxyC2ZaGZ1KkgDtqIRWU2z31JSsZ59xfTtbe7Iivb041AgwNQXcXGsJFVGaIhrbjksvNXlMkDHULKz3MDhYQgoIYUySd9gHfgeYMAa+VsPcXGCH+1DckUUY+V24JlWAfM6RQ6EDzpWu7X5Kyjm7F6688kpceeWVT2RdunIGUhQdy0jvJEmQpqkFA4F8BLGOYCbIqQFORqS7UbcEughgEtR0+cwBWH5wTbHiRoET8CRwy3oQyHSBXF6jo5kJJOukqBpEdkF0HWnuAqL8jIlEi6LfyalNsFjrhVznmn8dyBJm9vX1oa+vD77vIwzDFe1wxY1u1gCxjrQneMvodX2fy1uv2zAwMGDHgO/70Nz1RScLdB3ZXv1aXFy0gLwGxHXkORPW0iFBvWjgnfVst9vwfd+W61K1EFwn2N5ut3OOBuqQUeh8r0F0ir6evxtGqbtODZfaRfeVHm8sM1ULcZfOR5fLv08mgPhNb3oT/ut//a8YGBjAm970phXfL5rQzS6IfuGla7vPQhiiqkFmIA+a6QV30SYckAiecASNOrBt0ya57sQJVK4A8NG78AkAT19aQrJ0AsAX8MgjGYh+//0JHnggBG6NsvAw8wwvbaPVCmwwGv72b4E4Ru+u59l9l8X59SKfOyZyhgKysxgYAK64wm6KDx7kHtcDECCOAxN4NoQNVZO0ykSodaojFhwGsr2nJPyE2jQGCMMAvt5wmp0PaWb0NO0Gpwe+4T9PAcCXyDXN160fHkV4cMqzdLYMVuZediju5PuTcnBCeF4HB7NNrwLRg9AHpqaBRgPR7pttMjLVNQCATliCp0B0Uou2WlniTRZfrRrubRfM0eC3E7HfTj20msiB8wMDErkdoA2Pemk0MmVyE54GmJ4yEWhVD2NjWzPd6gJZYWZjM2Oj4wdoTmeXtloCQBw7llU1iiTQy25om/J7SlPD18pkZ+aGmUg4a20kPrKfH/l1H3hAnnfHHRAQyXIgwXpGDjUCNBrAdWEiwJcZY0NhiJt3CWg2n3iYaXkWg9c/aY6TWg0ZH6wBwZg8bnTUJHxd7TevASF3EOtQUy1Fpz0usJyp7e5Gs1146drusxT+NjV4yc8JLuqTN5orCrD3Pdgoo9kEbmD4cqsluUzuugt/C0Bm12kAezE9/QvYurSERgOYnX0M3/72ZnSqI/A2TWfPBoDeXgPYNhBFA8CnPgVs2oTwpdsAOCZN56KYns44sKfNBHzZZXnjY5Iqz6cB9u1jsPIQqlUgrGQ/XS9t5+zuYj3DDUvpjDg3DZp7PCnlaOPKjIKOY0m4nHroN01jfo+SDyD04fuS0HHDBoCE2yVGtjcUqO9EAE/dl0VKR1HJztXVKsQ5GifYtGkz+vszBzv27gU++lG56PLLswTTUYTIrC28+iFgagrlXTH6+yW4jFj1yZNG5yo3CHm2OUwmJ7O/vu/Z5UYAk8NEJ6RUNlMT3rdTL2diAbGfw5tipKlcWvIdoJn1imNMTYhpazSAK6/cLklEpx/Me7J5jLFSsaHfTMRKfXF5QIB7dBR4znNgHQZJApRMv8y0PDzwgPD3Dz/wxczg9/QAt9+OGX9Ilg+N/M+QJnRyUl6bNpl+4kBMEglYiWNMTUm7bo6aNpNoMD6O4Q0phpcbQBzjqxNZcniODzrCN26UZbLNJ0NHArITm9Uq5PO5ueykJZXO8ceFqAui698wrwO6tvspKmekmaLOWE3e+c53nnNlunLm4kZQA7AgMIFeAtJFFBoalNavouhbgoqaFoMgo36GBk91RLYGdzUIz0hhgsGa4oTPJjCqk1JqkFtHO6+WpJTgpUtvop/jOgxYD4Ku+q9uA8t19cQI/N7eXqsrDZhqXWungQbutQ40xYkGzwkWawobtqeImoZR4hqY1v3jcqK70edF9VpaWkK73bbl9PT02DHIF8dDEARgItH+/v4VAL3uY5cn3h07Ll0LP9Pjl21cWlrKja+iCHM6FNzTAqvpxu0rzbuu21H0/5Nd7r33XktBdO+99674vijZ8JnIU0V/T5R0bffjlMVFWSQzY5SO+CkCwlYDx8IQ9brsabaxjMVFWbNPTGAewHcAyNnWf5XIJBP1CjTQaNTyUcgK8UuSwAKPmJgAqlX4u1disLkPmIxKb857erLQIwMyTk8LKM6T6NwHMslnHAcYqlbR8YNcsDOL9NK2fdNBlnCT9OqDgx5KYbiCoz1NSQwiILxNrAXIxp67TiKtOlJLbYDaCHD0qGyMuWFllF3uPg2cpKkA6I8+mkXZ5UOiMx02GtaRwcdqnaepUIaw33hbs5lt1hlAnaZYebNukwLReexcBxUSE+KQDaCcC7qfAXT8ALMnbI5bu9ePIg9DUZh/fpJY3l/WoY0ASSv//BMngCNHsvyk3HtaXlTVHmlimoH7ZkdPXIh9xCbzGdzw2/HOI8uGPoH64TWoGISfxw748CgCqlttmSdOCM0Aq3jiRHYCAmmaDfg0tT4fr3k8Uzpfq202NYDnjiN9muUiOBJ+pra7uxE/v9K13U+Q6PGqJUlWcoGvMJpyX70uJuGGDWaiXliQ+cEkMp4AAJwA0BbTtLxsproGDh/ejKNHgWEed1K82IJpJTKXffObQK1WaNJyc0SzKeAivYr6ewX+H2/JuuDgwSwwmT4DexLHWFn3cEwYAphuZqeWosg6TKOINC1C89EJS5bexJbt6DGMJMGqddIC2QkANlSf8jMO4mPHZOrlZbnofNOoMNxsuyoMAdw1KfrZsSOLnjdt8I2txVTDgqu+L/fnkkUDaKee2O5QKL9StazjWqJeF7PS18dABWVzefJARaDPtDxxKCOb+knpA4jtbqde1paWAsTZUUY3tN2sb7UKbNUdSc9zo5GjcmnIYLUJWFndel3GSk9PxlyihyuvbTRMW++9V8o34PdxDOHuvXlfAbuUeqVdHhiAnMjctEkqzouWl21UPJJEGnj0qHzfaNj17dLS9iy5K3I4eba20wo2djpJDCtCMi+N4e9f8/Fpu8YFiBZ3fuD7iwBE79ruCy9npBm3M77yla9geXkZV199NQDgO9/5Dnp6enDjjTc+8TXsyllLESCsgbzV6CNcAFkDzKcDu4rKdClT1vrcfaZb96JXUd35/2r10NQbRd8V1ZP/F0WOu9Qda0lR29aSItC3iAJEA8wUTbfiXkdZjSdf90VR3+n/tQNFO020k0BHdOvnrzUWTyfuiQzdt0VJU/VYdk9xFPWF6/yhfor6+skWRf5EyGc/+9nC/yldTvQLI13b/QSLG22qxV1oFkSn+j4yjhMdqQpuZ8sANjjBz4kUw10eF/ZqIWz/NdfotbLdA/AiDcjqC/v7MxJzA/gWNW8FJmH+oQ83972qb9G+g0ClxhJZ347RiJe27e5fkkwWXEx0WkV9I0kQRBEWFz0L2muAIk2xEkDn/zoBl46W0kpQYHcUBZZph0CF1YG6zsHC7TW2bk3HAaM3c46wWD2ccn2m606AV42Z3t7CIbr6OCmoQ66dyC4nqMC25W5NhQ5nRZlpCjiP1qeIdXVye0CdPI6gTZiBBCscT+ZG3Qek1eGluaS1/MD9rbk6OxfRDjm+/y7Lmdru7kb8/ErXdp8n0b8xNzs1vyMHMpxLOQHpCQPadhuQdmnJ2O45LC+bCOxHWytOEsHc3deHnB3SNgTASmOhjYieFOlxNGWv5j9YTXidnB5Lcs9wpyjt6Ka5tL5CbSeTBDAgegcePGW7O34Aj2Av+bQMWh5EEZIkwNxcZuNo5gHY63oGsqnI8lxTZ/r0IBydmvpZB7ZzDaPpkaY2Dwrtkct81ttr1ik6gMIdW36WtDQIfSDNll2Wlx15kxDwA+39UJ3p+twRKdSa9wwMZGizuo9OD9d262q7trCnR6nUrThWjje2xR2yvb3IwtxnZ3MdkHPyuE4B897y9avL3PVCrgE2N9sqv4UVRn8N0Q7zi8Bea+na7gsvZ6QZ3RnvfOc7MTg4iL/4i7/Ahg2S/OrEiRN41atehVtvvfX81LIrOSkCEF2QlxHCjJ4l0OdGzmpKEk19ocWlBdERx5r3uwhwXY3yhdQomkKElDEUN5KcL82pzvqwbRokLarLaqAuI5FdTm1+t7y8nCuD+iLnNulRAIBR62ynpvpYXFy0yTO17lwKFLar0+lYWhjWT1/PNrLv2FesF9uo2+1GtbOumkLHjWTX37l0QWw7aVs8z7Mc8qT34XPTNMXi4mJOn1oYWe6eGNAR7bpfl5eXEQSB7RP3lAJ1SP3wr+be16cK9HcaPHej8VeT1SLQ9WerOVGeimB8F0Q/v9K13Y9TLBJnxEWCKS4YqHc3hqyT1KRobAJ27wZGR+WSK6/EVgDjAH7iJzbiwx/+RdxyC4D3phKRg2+j1RoD7rpLInMqFQmbrVTQRmATLI6OAvjoJOD7NrpodFSa4KEjb1inalXO5OrNyehoFkYURVg4kVV/bCzf5MHBLM8YI6c2bMhHHQXJjETq1Wo4npQAZDybU1MSuEPOzzQUXvE4BrZWhdf94YYc2d0+mgJTU2iPbcf+/cD4eAlD09NAFOFQKNHE2xoNoafZswczte2SlOqee4CrrsL09DbU60LXWalIlSYmjL4mJqQRjIaamLCJwlCtZi8tjAzzfalws4ndu0sIQxPh5PuIY+MAmBZObkbCVapl1GqiH1LY1mrmKHjreJYkTifMckFtZJjx4CCEm31TiGZTIv0J5ncQIK2MIAiPSx3YziiChw6iyLO+gTTNgIFDdQ9hWMJQtWq5RO2FBiQgkFGrydhKTcLU/v5MXYxaNHS0mc6aTZTQzArgoEEWMF6tAuWwjTYCnDiRUaswuVilIt8DyI5KxLEopNHAtl3z6IyVgAkfuPJK2SAzbNAk2vPqhzDk+6hUNqPVkvFbreaD9oUqtYxAjQH2F1JkyI12CBRtON3Ntp4jCCrpaPXvBenyqp5X6druxylFQJELMOo5lp8niRgnJk9IU6b7ANJY7OboqNBc7NiByqc/jR0Arr32BnzjG7+Abf6DwNycYar6KhqNpyG485NiW5jzwSRUiKeA3t4rcM01AP6uYZMfJokEUluQc3w87/Dle8474+Nox5stPVonLGHpqHxVq2UpLXi5zimipyb7E52elkjhyy5Dp7Ylx2rHE2dxDAStFhK/jEcekflzeHAegI+H6wGSJMC2agJMT6MVbsbnPw/cdBOwxRj6r+M6NJvAs2YfAv7hH4DXvx7/vL+EZ90SAh/4ALBrFw4efBampyX/xbbaPCYnSzhwQLoABw4A1So2jF+HJAHKyWNAvSkLjFpNFPj852eobJJkdGmAtd1bKhm62/GDbBomdwwg98Yx+vtLqFSypRNt0hCOA/sO5hFgnnwy79smpwcgyb+5xGA+TeLvPCABAMODvkRi9/dnOXUABMbmkmWNp7aO+5sR1TYjCA9ljgmKed9qSVLaIX8GqDdQq23F0aOyxjPMPPb51Wq2pkGlguENbezZE4iN37kT9qiD79vTZxzizWZ2Km14UwcbNnjYvVu+G4ra8sXsbEZXY/S0axdV58szBgdlPLJCUYTRKJ/Hhv4X7TOZRwlhpQSPiW+SBJdcUhIV8nff358/QuHSrnHO0P9ru62DEy4yQH1N6druJ0zO2r3wh3/4h/jMZz5jDTkAbNiwAW9729vwvOc9D7/4i7/4hFawK8VSBKC7oCFBUg1Gu1QhLuiqQUhep6PT+XITga4W1awjlDU4qZM+Elgl7UYRBYZLOZOmqaVKOXXqVC6RpftMrR/ddjfqnvQhmq6EgDd1qUH0xcVFm9SS3OykLGE9WBeWPz8/j3Xr1lmQmeXxfurPTaTK+yluG9jfi4uLlic8MVb51CmheyEfOznW2RcauNeANx0VpELRFDL62v7+fttHGlTX40Q7PZaXl1elueH3Wuesv3agsE/ZdvZ/0akJ6oX/6/FaBOL2Oh5pHaHPe4p4z/XvyaW+WQ08f6qDwl0Q/cJJ13afg6xfnz+mWbSgBrJFOT9fWJAoHXJqQjZ55WoEhDXghS+U3UQdwK234scAhHGMD3wAeM1rroD30f8DpKk5Lb4PjcYLgA9+UBbub3mLbKJrNZw4keUQ27kTAiT7vj3Fe/POeUNCuQOHkiFJ5hi25SYCmKYNM+FmockAEBkcgXuKsTH5//77hYYkjoFS6zE5opwKgBy0jiMA4EdDooepKdnohiGm080IQyknSeSrI0eAq68GysfqSKpD2L9fvt/qN4AwxMGDwoG6vZYCBw/ixMbt+MQnhAv75oMHgWoV+6afjnod2Lb+sPDBP//5+MQngJ/6qSF4f/d3wDOfickHtmFqCnjpS4Et4WOYnNyM/fuBZz7T6CuOZdeWpsKxPTUlm+/xceGVjTbnQOvS1LeyDWocA9PTKB08mI0D30eZu9qHHpJrN20Sbk/fx9VXj6C31yRuQ8cmUsX+SdmQVqsZUmt2hUyyyei4NJXhtWEDgP0HgCjC8PB18H2po5fM43hSwtSUcOGWzQZxJtyMVhMYqbQRtFro6RnKcdgniWUowM6dQyiPxnh42sP0lOzhy1NfB9IULYP7ehOii9GdN2N2VppZqUiTJyakzC21jiGcNRvO6WkhhL/iCszUtsvYmX4QSFMMRW2EYSBja6qOoFbD8vIQ+vvN78cHbrllsxzdFg9TRrZKNCFJgLvugheGAlY97Wny/cGDkqxuoSz9OLFf6v78H7XJ6rzph1GOIoS1IXt0vdkEto6PW7B8dJRRh37m8NDzQNGmWtPy8L0GxQqPElzk0o1mu2DStd3nII7j0QJfRIQ1X5T+XepEyuazkWgGI9UIaBjbPToqvM8/8AP4qT/4A8RhiI98BLjrrucBf/pWJEtLmJgAgE/jxImfAd7xDplIXv96mZPGxgSUvF+Ku+UWAP/xEaBWw8mTUo1t8WPA1BQ6tafjqwdLqFRKkjeD9abnMwxxPNqC6QkgDMUByuaHoZgxmnnm7YhjJ3I6itCBlwHId00A//IvwOAgpqbyUxTp2K++Gig3m0jCETzwgDRrW0jbvVns8h0pcN99aMQ34GMfE3u15cABYGwMdx0UU/us2jfR+e//Hd7rX4/3vx+4+moPw3/wB8BP/ATuPvgsHDgg6sNddyFJfwSf+pQktcTevcDoKILnP19oV+7cKwXOzYl+9+zBJ/ePoFIBbt5taGTIf0IEe3paaEn6+4FKBV4YYgujAyYm8wmrq1VEo1sxOiprEKo/igDs2y/1ufRS4KqrRMFM2mqc7qQzEXVLzpJy0kS510d/bQgLC1lwNofg8A5f2nTJJXi4Wcbh+4BrrzV89SjboVytyn3790v5t902gsD3ceTUZkxNiQn09v4/oFJBq1WWoX3gADA5idGf2mq50Jmuh2sCb+rBPJH45CS21OtAUsPx0RswtJO2PUEp7KBa9bClMg8cmMDQ+Dim05L8tCYnEQC44w5JmoupKYnu+Pa3pR6VilnAAkOTX8JQFAEIJZNovS59dMUV6Oy+GQBQnn4Y5TRFu7bVsrVx7PJnbqj3sVV59bdUxCHQ8QNZH8SxLOyYSbUgYGHFEQzNSaiDKS4CKrYzlq7tfsLEO/0leZmZmcGRI0dWfP7YY49hlr+8M5R//ud/xote9CKMjIxg3bp1+MQnPpH7vtVq4fWvfz1qtRr6+/txzTXX4H3ve1/umsXFRfzCL/wCKpUKBgYG8CM/8iOYptdqDfmjP/ojXHHFFQjDEDfeeCM+//nP574/deoUfvM3fxMjIyPo7+/Hbbfdhm9+85tn1b7zKS6IrsFQnXQxSRIkSYJ2u43FxUUbPa0jywlEEjDlq91u2/8ZHcznMAkpwV8NCOs6au51XtvX14dSqYT+/n6USiWbYPLUqVO2nnzpOuh68Tr+ZRt1vXWiUM2dzkSkTKbKFz8PgsC+eB3fE9heXl7O1YNAc09PD8IwRH9/P/r6+iywDgjgurCwgPn5eczPz2NhYQELCwtIksSeGtAOA9anr68PYRiiVCqhVCohDENbN+qb7Z2fn8fs7CxOnjyJ48eP49ixYzh+/DiOHz+OVquFubk5m4hT64Xt4zPYP0yIqiPfqaMwDBGGIaIoQhzHuVe5XMbg4KCtJwCrsyRJbNupB45T9inHqOso0n0YBIFN2trX14f+/n709/fbtrDeBPCTJLG654vP1E4nnWSXzysaH7zGFTda/WypiS60vO9978N1112HcrmMcrmMm266CZ/+9Kft9xf7XLiWnM7GuLJ3797CuXVCdkTf09K13ecgmh4EyANfGkQH8gvT5eWMfoX3m4xJneoIHsRWPDgtwCh27kT47ncDb3wjgl/9ZfzgJ/4D8IlPKBD9gHBFT02hXq8LwLpzJ44nJZw8KXuRsTGg1HgY8488AkxNZXSpExPA5z8PpCkOmk3rfBrgyGwJX50s41/uH8LX65vx9fpm3HUXcOedGYeqDpAdCY9jqPWwJISC8QtMTwOtVsaiYUg6A7Rlk1av28juel14pr1kHqWwg0cflecsL8t1SSL7pOlpWORyYgL48peNzicmMDcn9ZucNO2ansaBA8DddwM4cgTp5z8P+D7uvNPQkX72s8DXvmbx01oN5mJ51uIiZAPH33aayvvPflaeOTqK+Ug2oZOTst+bmkJGIGqis1CvS8X27pVdLF/79mU3kdtzehrD/TMYSg7Jpvauu+BNfkcSnd1/vzzokUdy4eHzqfC6Nxom6t+A6JZjdmIC+MY3iNOjFEo0YrMpRdbrsB3J5GGA6Lm3NzuRHaRyAoCJvaamJCr9nnukeffdB1svS9M6OQns349S6zFs2ABsHe2gPPV1bImOZ9yo09MZ8brvS0MMp+/kpKkPwySbTQEIWAkDlIch7BGCrfFx3LCjnYHoJ09KQ6emsgSgd98tJzcAHEo3yyA2AMoDD5hb77tP6p7OiHPJn7d9FSTyGXln56PN9jiGN/1wRsBKpEqHwLnAnD6eoeeNNM0i8ajQs9yIP5ltN3D6ud6Vz33uc7jxxhsRhiG2bt2K97///Suu+djHPobt27ejr68P27dvx8c//vHH/dzzLV3bfQ5CCoui3yGPyWj7rr9nODjvM0akU9mMh8NteHBaclLg1lsRv+1twC/9ErZ/9n/gP+A9wIc+hDZoVpYBNPDY5z+Pxje+IYj2nj2Yr27F8bSMSy4Rf+1Q80GZlJpNnDhhTsPs2yfrAIg5OXhQLjkyW0J7/DrMj9+AB/1t+HpzC/bvz5I2Tk2Jj5L2e3RUHhtFMr309ABeayYLFTb21mvNyKt5XAo5eBBoNGxuSqqRX83NAWi1rOO10YBNQv2Nb0j1AQAPPIBmU5oyOQm5eXoae/eK3xsHD8Jgv/jwh5dw7BgwUa8Df/u32LcPOHp0UubmvXvNUuCEPPvuu0UxJNrmnJ8kwNgYjteuwwc+IB914MnnZn0EQGx3owH80z9lZX35y3KCbd8+qSwT2UxPSyLTZB6ldAZb8SC2+Q9iJJ5HOepIm+66C/ja1yz/djvejPlwyI4v5i3JUcmZTitjBsObOujpyXJ0NBpm7B45ArRaOHgQ+MpXzLA0lH386Q9FbfT0yLpm/36zjqpU8C//AvzVX0n12DcnTpgyJiaAffsQNA5h/Xrg+uuBrc2vYnttJjNDU1NiJ30f7WhI6vuhDwFTU9i7F/jiPs9Gh6PVkghyDpDpaaSpCWKengYOHsTQ5JewLf2WvO/vl0bu2yfPoP38x38EPv5xcQ5Vt0vZ3/42cOIEpqbM2m5iAti/H0HrOMJQbDfXUQHkhBq7rlMdkb5utewaIUmQ/f6ZPF7PBRo01pHn+kUvO9f5Z+kA79ruvHyv2u6zBtFf8pKX4FWvehU++tGPYnp6GtPT0/joRz+KV7/61fjRH/3Rsyprbm4O3//934/3vve9hd+/8Y1vxJ133okPfehDuO+++/DGN74Rv/ALv4C/+Zu/sde84Q1vwMc//nF85CMfwd13341Wq4UXvvCFK5IAavmrv/orvOENb8B//s//Gffeey9uvfVW3H777Xj44YftNb//+7+Pd77znXjve9+LL3/5y6hWq3juc5971guW8ykuV7YbPa4TLhI01bQV+loAltai6K/LI+7yXhfRp+i66ch0DUoS6OTz3aSjRfVxv3dfmp7D5QBf61WUaNVNWkpx66n1o0FYTQWiqUp0FL5O1qp159ZLA/46IpyR0SxTOxYIWNPJQP24pwtYvus8cPtX102D2QT2CWjrcnT/ap25L91/bJPLmV7UZ64zpEg/LFfrSD9X959LQeT2g35/tuJSvFwMUqvV8Lu/+7vYv38/9u/fjx/8wR/Ei1/8Ymuwz+dceCYOhsfjcDidjVlNvv3tb+Pw4cP2ddVVV53V/RejdG33OYxXTe4MrIxKKRINkumsTCY8nJHYxOHm/bKEo914o2wgPvABg1jKZgqQNfpxADOA5bzg2t0EUQGNBuYBYHY2Y95oNCRBZprazXmSyAaYgKr74ulaNlEoaBpAvZ47Ac/CbHcxfEpH7JjCWi0DWpuCGSmfpgAWFpCmwsjRasFuSJpN2T8C8vw0Fay02YTdENbrZk+8sCC68X0bjIapKaBet8/yknl7LPjIEQX86+SQhw+jU6/bRLJ0RrCM2VlkGyj2BTfD5nkWeT18WP4/eVKun5vLMoA2GnmF6wfNzVkAhwlXFxfz+zTu6agbHDsGL5WNNNuSJKLTEydgx7B1rqgCbF+nqQ2c41hptURXk5MmEaqpgK0Ls4C1WjImmk0BKhqN7GS7znrKm48ds0A/x7j9jpU8ejTH72+RhXrdPtM2wIwHO7inp0W3vp85EczY5KUWRGq15OfNZ5uGB37HdnWzCXQi4TzOeZhcwJxStBHXQqUz9NB25tnJd9N2r4jaO5PXWciZzPVaHnroIfzwD/8wbr31Vtx7771461vfiv/wH/4DPvaxj9lr7rnnHvz4j/84XvGKV+BrX/saXvGKV+DHfuzH8C//8i/n/NwLIV3bfQ7jdbXf4MJC9r0LmunfpZ5szZxNHI65Duf9MvCSlwDPeIZQkrzvfWg/8gg4NYq0cQhivxHHOFT37JTf12fYpep1dMykysTQqNeByUl46BBfR6sl8zCnQDp4XRPCw3M9PUDJbyNI520Te3uRj8rXGTX5ajbFfi0srMhLnbPdZt5qNo1aTRtYR34pFCXHRCdHjwLNJqamgIceWgaaTTxmO+lfkSRyQA/334/Z2TkAR2wUuXTJY/KYo0flIawz5/w0BeIY09OyjKL/1vajTkrO++gpOHIky47dbGZZP7V94SBgSH6SZJ1Bu2TWPM0mchRsubiLNBWbxjoZJdPet1oG/DfPpelbWsrGsv25JQl6e6XqjzwitzAx/H33mbFo6mWHNu1fs4n+fkMnNzlp10hpiqzt5l/MzkqBzSamp+VZ2gkVRcgGSKuVLX/ZRjrHGUKfJOiY8WAH6KOPAg88AMBUJQylvMVFuzyyGcg5MHUfGd1op4U9LWY+SFPk7XcReK5FzwX6lSTZfHKWDvCu7c7ke9l2nzWI/v73vx8veMEL8FM/9VO4/PLLcfnll+Mnf/Incfvtt+OP/uiPzqqs22+/HW9729tWXQTcc889+Omf/mncdtttGB0dxb/7d/8O3//934/95szKyZMn8Wd/9mf4wz/8Q+zZswfXX389PvShD+Eb3/gG7jJRKEXyzne+E69+9avxmte8Btdccw3e9a534bLLLrPe9lOnTuFd73oX/vN//s/40R/9UezYsQN/8Rd/gfn5efzv//2/z6qN50uKAGsXuKYQfNIAcxEATTB3LeBcc3cXvXQ0ugt4rQWIaX7sorq77V6NT7sIiNfAtf5fg7ZFIKr70tH+LrBdxLfunhLQEfwuIOu24XROAq2X04Hu+lkAcmCyPqWgI8BZro6I15HYBNk17YwL6uvTDm49i0RTobh0KO64OBNZDXDV/VhUH3c8sD1a3xpkd3naT1efiw1If9GLXoQf/uEfxrZt27Bt2za8/e1vRxRF2Ldv3+OaC9/61rfiS1/60prXnG8Q/XQ2ZjXZvHkzqtWqfZ2Lw+Rik67tPgfbzehZLiLdv6tdT2FCQn6mQPWlJYVlan5GwBI0S+T3BoyOAiWYRFPcPCJbv9tkWIDN1un7KOR55HN9P08HGUUZtySrTB8CC8wlDzVHYO3GUPGB2nvM+zBUua3SFAMD2XPQ2wvfz07U8uaBAcWlHYbwfTluHIawVCqsN/r7EZkHM28SG0O2FoZFRREwPGzK0VyYYQhs2AAvjoH+fkuzopNi2eRyWhGsPJXHxjH7FSupG63Hg95Z601dGOb2aFadSWL7yp50MOUuLyNXfq4fOEiQXWMC1HNfhWGWX5ZFr1+f7xv7iKJnmTFsH6k3YrpQ37fDfoUOAAtk2XL7+2UQ8Vrfl890uQMDmZ71uOfRbTOOAEgjSY0A5EGkvJoQhiavgOvFWM2ZtgIxcYQF9/Rkr3OQ76btPt8b8dPN9a68//3vx5YtW/Cud70L11xzDV7zmtfgZ37mZ/COd7zDXvOud70Lz33uc/GWt7wF4+PjeMtb3oLnPOc5eNe73nXOz70Q0rXd52i7gZXjT9M1uqAYhZM+X+Z7/stbc7bbGNQgDBFD01EPI4LQpKHRwEhV9hatVh5380xdc3NrGFo7tNp0os2XG0zrJons6TFLEB15q9cIBImXlux6RE9VtBeW9sUYDpo7XSeb5NPM80BZPtuwAYgiEwTcA8QxYlYQG8ScAsCmTQjDAQAVW45wZV8i07aa0+H7YuQ3brR22PflUTzkVLQGQ09PZrtZ6b6+LJMpo5Rdm7KwkOfQ1zbIJCUh5s7PfV/saBwDJcyLnrk+NEq1DhRkw87WD/kpNHcAynxRqcgaiZ9HUaYD2lw2zdYZaryZl7XdPT12bC8tIUs+r223EutYUWD28jKchSScDKUQPfT1FUeDh6E0TOcMUY23TgWLmK/Ext11fBQh77heKyjGFXc/wB/ZWdrwru3O5HvZdp+dZgCUSiX80R/9Ef7gD/4ADzzwAE6dOoWxsTEMuAm4ngC55ZZb8MlPfhI/8zM/g5GREezduxff+c538O53vxuAZCtfWlrC8573PHvPyMgIduzYgS9+8Yv4oR/6oRVlttttfOUrX8F/+k//Kff58573PHzxi18EIF6Rer2eK7evrw8/8AM/gC9+8Yv49//+3xfWlxQklJmZmXNv/GnEpbdwk3zyOwKvi4uLFoBiwksCQ0EQ2ESXBFdZrst/zmhlUrCQF9ulsNDR1wQhXR5q1g2ATQrq+74FcjX3dBH/O0WDnDoSwvM8tNttS0GyGtipAdEiQJzUOASlGXnN+hNo1veyXAC2f5gklJ/pumh+7yRJsG7dOksRo6/RutDc4OzLvr4+S9PCa3Qy0lOnTln6mcXFRSwsLOROB0RRlKO7YXJQnZxTg/H6Wbpvi4BwzfGu+5LXuaC7Bk31dfp/rTuWr8txI/w5Xt0oe4oLoFPYf24iXepG9wn1VAT+av244PwTLbOzs7k5iKcE1pLl5WX89V//Nebm5nDTTTed81wIAIcPH8YLX/hC9PT04EUvehFe/OIXY8+ePbk6nC0wzmvdufVM2nY2cv311yNJEmzfvh2/+qu/imc/+9lPWNnfLena7nOw3cvL2Yq8COjj3zTNh2vxHrVRwdISsLhovybjCwBEoyMIRpMMCNy9G9i9G7ungQ9+8LfxmtcAW78MdAA5fnzkCPp+8k2YmpI1fKUCIAxRrlaB8fFs3VutAldeifk0sNWcm7PBWvYvq006bn7n+ya36lzWjoEBCQwa2bEDMy0PrYbcX+aR2TRFgHnZFFWrgO+rZIyiv6uuygB8VCoIQ6HEHBuD1du11xrO7yQBKhVUKsBttxlaFn8XMDqKSwkwX301gmc/GwhDPO1p5lm33gqMjWGXaRdaLaC/H+PjEjw4Ogo55z48nDX4ttvs+fckkX0RE6Za4LoZZteTG33Xrgyo1cKN9tiYlBuqexcWJOSs0ZDr2JHshGoV01NZP4ShOYZfryOIWthaiYF6Q8qNYxw3iUWPNz1E0ZCt8/IygNFRtBHY4dvxA3hRhIovemeS0zDMOHQvvVT2y2Nj8r5aBZBI38SxcYps3CjRaRYogd3smq4X7nADBHTCErxaTQh1KxVUDLCARxvSPwQzSCBrfiBJAgTMkAdkPLVhKA/asCGXNNSGY0YRlg5DGrh7NzA2hmjK1GvHDqBaRTvejGTalHn//fI7HR0FkgRxXMLCAjAUd7KoR4JNpPRhw11Armi+cJ0lxuFFYIIb8e8F233Wm2tz7ZnY7jOZ61255557cm0FgB/6oR/Cn/3Zn2FpaQm9vb2455578MY3vnHFNdyIn8tzL4R0bfc57rsJvOmxyglVO+P077KvLwNP+ds2do1FMJq31QKGmCmaYOuLXgQvjrF7F/Dnf/5avO51IcY+YOa0v/1bicbd8zOWCtqaDIN+EqzmfMYpD8iSUPLFFBDE7zQma53Spl2+L806dgw4eTLA+vVDGB6LrJMaaZpRaC0vy5w5MGBx4cFBAU1J9U1gNgzFRgwPw+p4bIxzfwKsX49LLwWe+9xese/NXcDVV2N82lzzjGfg5g9+EIgiPO1pGxFFwNbeXmDPHjy3BUxMXA00vwXEMXbvBl73ujJ27ADw7GdbbnmEoRDLM6Ho6CjC0E75mJ0FSnGcAZ4Evy+5RC7q6xP9u+s6IHOOV6uYRwmlMM1OldXrmSP20kvl+ZdcAtRqmJyguSghjkuoGFPlTT0I3HkgU2ocYz4cQmM6z+wVhhKoPmyycfoHFI7s+zY3fLUqSTQBaYrvC60a6nXs2DGS5Rf1ZWFH2jdrL8MQHCZMhsqlCuobrA4W67BUgqhUMBqZy1uJrXCSACUmRNm5E8sVg1WTB5C/00susUnbPUB+N1dckS1CTXL3NDXPfMYzgLExLB015ZlMv+14M45NAsNoCkXc+DgwOgo/zPK6Bul8/uRgmgp9nj5NxjFBKfJY6fmCPzKWqcrp2u6nlu0+axCdMjAwgOuuu+6JrMsKec973oPXvva1qNVqFvT60z/9U9xyyy0AgHq9jiAIcslWAGB4eFi4Qwuk0WhgeXkZw8PDq97Dv0XX/Ou//uuq9f2d3/kd/Jf/8l/OrpHnIBo81QktNTgJwIJ+nU7HRhkTDCZgzSSdOlqZ5ZVKJVsmP9f803w+n0UAkaDian8JdOuoaibfJM+3jhAnUK0jrV2QWAsTlAIZQK5BdA3Ae55nk3yS/5u64HPJxQ7IpMF60enA+zV1CcsmwB4EQe5z9pGmEmG90zTNAbtFzhGWR0BZ83/39PTYfiL4rU8ikA98ZmYGzWbT1j0IAlSrVYRhiDiOc9HmHHd6DGpudZZNbncmiNUnBzSPPj8rKk+PYZ1Y1HWAuElCOb5YRlEEeRAEdjxoEJ2nFADkQHBdP18Znd7eXts+1o994YL8RdHUOlL/fAHp27dvz73/jd/4Dfzmb/5m4bXf+MY3cNNNNyFJEkRRhI9//OPYvn27NT5nOxcCwJ//+Z/j1KlTuPvuu/GpT30Kv/iLv4hHH30Uz33uc/Hc5z7XXncubb/sssvOuG1nI5dccgn++I//GDfeeCMWFxfxwQ9+EM95znOwd+9ePOtZz3rc5V8M0rXdK2VV252mWURx0cKac4LmT9VhMAzbSlN7RjfwO/B9L3eautUCdu7cKlHQg4PAnj048n0/iOfvAL75zRq2Rw8D/9//B69eBz76UeCzn8Xg696EBx6wOUblec99LrBrV7bGNxv8ZlP2jxrr594vjmUTfuml8vngoBwBh+9LAiy/AyxKm3p7RR31OvDIIzLvMnqqtmMzPNKbtFpSkNlx2011U/S3c6c8L4oAVKuIY8khVakAaMqm5MYbZT+MVgJceinK/jxe+tKS4KQ7nw/EMUaPmv3Z9dcDr341EMe47TZTrkneeltF0XdEEbaEj+F1r9uMkfB4BqSGZaQpUHrpS2Unu2OH5Rtdvz7r7sFBAGkkD01TudZsBnPOFu6E+dqxA4daZfScAnpbwFAci+J4LJkbslpNAO/qFssKk6YZyI1GQ45cEzUZHJQBUKnYE+jcgDNfFgDLv8/h2WqJ06NqgAaJzBLKm507ZUNeSmeAVoKdOzejWjX49LT0TWz2jXZz7PtSRgv2oaWWOaRvfgPzKGH2KDDMwRDHqEVmrO0/LPrg7p0gerOJnh7zszPANqampAFEoKam5P9aDbjmGimb5+FNXR6uB6jteV4Op8fu3UCS2OKQNoFvflN+KCYivVIpybMNJ679TfPIehjKczUox7lAR7XrUH/9Xs8VKnL+e8F2d+BlSXHPQHjtmdjuM5nrXanX64XXp2mKRqOBSy65ZNVrWOa5PPdCStd2r5Q1bXeppEKRjXBSdCNR9ekW2m1NA2FsNwzFVsYKE2DEODKxaRPw0z8N3HQT9jSBj3zkR/CSlwDo/1mZt//8z+W6PT+De+4BbrrJzKtN2ChqLjcQ14Bm07KPcAnR2yvTP5NTp2kWqKt9AUE6D6Sw0ez035I7XfztAXw/ME0NEDz0kMyBvi/o86ZN6Dtl1gSYB0If3/d9gaXBRlhBFIk9Hx4GcEzmsB07jM0yE+5w/wxe/eoyxscBRLcBtRp2nTTXvOhF8BYXgUoFr3mN6Z7f+A3gmmvwk0uGRswktxya+CLe9+5dAtK+4AXA6CiOp2UkDWDkhS/MnNphiLApfPNRJJj3/GBJoGZNoTU6KsrToKKes42d6sSSaLo+DYyNleGRgqRSyRwoV1wh5Y2OYj4ewcGD2TKgUgFu3jEjhOUHDggP+NiYZDuvVjExkafRozk4dgwY3rMHx5seenqkHPED+MSRAci9fX3AD+42gPH+KSBJcMMtVYShJw5wfxydqIxq1ei4UbUPi0MzaIwuhnAcaKXW+T2TBGg2gS1jY2I3KxWMEaj+/KwddEkCoQEymdvT2NjWWk0a9Mgj1s4fSobkd0NnMrPXky8pjrH0EHCoWcLI7bfjeNPDct2M8bExcVRMimneHjWF135pCbjlFgR+B7WalynHrP0QxxmtDNvr/v61U00Lr3Gj5fUJBHRt91PNdp8ziH4h5D3veQ/27duHT37yk7j88svxz//8z/i5n/s5XHLJJdizZ8+q92nwbjVxvy+650yu0fKWt7wFb3rTm+z7mZmZFYPu8QrroAHV1Xi7CebpiO+lpSULBpKWg4Awy0vTFL7v22hzlqUB4TAMc4AoOch1kkYNnhdFHLuR6PyrQTVNa+JSo2idaECS0dy6HCYF1dQs+rm9vb25Nml9unQsQRBY4HR5edlGl7tUOtrJEYah1aGO0idPuUvfwnaxHB2Bz5MEuv/ZFoLVnU4HfX19uXLn5+ftqYRWq4UTJ07gsccew7p162zy0shYZYLGTJKqgW3qeX5+Psfr3m637XdLS0u5yG3qk7plOTpinNHxmkJHO4aoN1fcaHztRHIBah1dz9+Ky9nu3uc6Aoqexd8lTz7o9rnR6Hqsns9I9G9961u4lMgYsKY3/Oqrr8aBAwfQbDbxsY99DD/90z+Nz33uc/b7s50L9X233norbr31Vvz+7/8+7rvvPnzqU5/CBz7wAVvOuUSiP/LIIyiXy2fUtrORq6++GldffbV9f9NNN+GRRx7BO97xjicNiH4h5EljuzUozqhivcB2N178TL80AG8pIAKLtZI6PI6BrVyg79qFv/so8DPPPwT87m/KYv/5zwcOHsShz38endlZjJj9xpVXmihhyH2MRA9DYCYtoTw2huZUtjdotXLsFnYP6bVmDACeNSVg3U1bWC7pR3XwtQRllVBKW9lDzOaplByXi4zuto7KJifwO0Acw0vmsa2qdpAAhpcPyQqVEWONBvbs2YIkAQ4lI0jqALtoJhpB+SUvQScsYdcuSHKpW24BfB/XVdty0YGmlH3wILYwesgA0AwGH9i4Hb1VIGll+yVeauk82Ggi1mbTrLs/SGZydB9HFsqYmMj0PcQIQHo0ZmeljSYSXeUhtcFZvg+JPOdGlBHuu3fbTS437X19ghUQWCEYr0H0qFqC15rBUKsJpKG9uNR8OAcGl+MU5VoszgyzeYwiow96YnzfJvSyD2WktkFcZk8YQAQBNo1tg4cOSq0ZoNHME/k6kejEtI8sBRgcDAQIabXE2RBvRlCtit6Gh9EZ3Yo0BYJRuXc+8bC8nNHeUv8A8GC9hDQt2QBzJM0MXTLtt5RDEw1pDxGINJUOGhzkjy/vNNHUMDrii3OHjl7TG3Jz7feC7S7yKa4lvPZsbPfZ1r3oevfz82E/nkzypLHdQPY741ysQTLt6NSind/aKWz5lEv20uVlAdPDsIQhXn/77fjfH/Hw8ucfx9avvQM4UgXuuAPYvx8Pf+pT6DSb8CA5KK+5xgChTdiIZ+tLM5HCGkRPEpnbGXHOgwhD4TxQb4i9DkMgSXM0IzRbvi/NOHhQpi8627kGCI4cEYDaRPQiijBo1EhbddVVmzNaNUQI/A7GxjxJaH3St07zJAEwlUi7pqfxohdtl3uqu9CJyhifluXBw9iC2hvehFYLePGLzbNe+1ogDHE7jC4+e0Iq+dnPSgLP0VGJRK9WbfR2MxyC7w8hbAF9S1lw+uyscIU3m0BJOzvT1EaXs9s9dDK7btZiR456ODmZDYNqFSg3m4JwE/n2fXt6jPZ7clKu7+kR035ztZElHL/rLjn19spXolPZjKm7Mx8tsd2+Pqn7F/eJ06a3V9Hz+D6C5mMYQYpOdQQHDpggiLvvNpk3jRw8iO2mH483y0BTfDWDg8gMoe9n9C46ASffm9wwCwvAfDiE0s6dQBRhtGLWjAav6PiBDVbo3H8/vCNHkF5jhs24eVa9Diwuoh0N4eB+YKRWk0aZqPJWCxgyi52OL4GCjzySBWwAUo8jsyX09pZsChosnZCksMp2D8Vm7TrdzE6uRVHGX8+Br9f22lbrSHU9T9Bm6/lCOcC7tvvc6v69arsvWhB9YWEBb33rW/Hxj38cL3jBCwAA1113HQ4cOIB3vOMd2LNnD6rVKtrtNk6cOJHzij/22GO4+eabC8utVCro6elZ4Zl47LHHrAejahbF9Xodl1xySeE1RfJEUwqcTjSoDOTpPtwoWpdaYzXucwpBbz2QXfDeTa5IsNylyNDP5f+rgaGnu9e93r1OR6+7dCA6YtiN2C9K6skyV+NG19Qgp2uPG0XvRuDr+rpUNi7w7iaH1bQoLq98Ef+4TmxK6hhONATcWQYdJ1on1BfbrZ/rRle79XTL0de4CT51v7pR66vpei1+c5dqR48DfZ9LDVTUv9oJwzFSVPeitqzWhidaBgcHcwZvLQmCAGNjYwCAXbt24ctf/jLe/e5341d+5VcAnP1cuJpcc801uOaaa/C6170O69evP2cQnRnNL4Ts3r0bH/rQhy7Is54M8qS13VxM60gV/b+7CNfAWJpKlIzhwO7pkQ2CDmBvtcw9PT1oh2VJqtRoAHv3SqjXM58JHD6MFiTArIYOkkTmrTAEkCA7emxkYQGINpVyC2b+r9f+XtrOEH1db9c5gOxjYhDETLnJL2ldcLPhRv21Wgh8H4C5hiDFaiCHAfMlGq5kQWHWv9UCEJUQpkA5bGfhX4wWZzk9PdmzGL0cRUib8vWxY/muA2CiD7ESiOFnvm+BDup1KApzY2OukQXJJYlE9nguHzpguVhb9SyZaC4wiuGICwsSXrewgDYCy7/q7vW0Kp1uFLCZHQlkHWnJXI0U3GwdCrqPXZBKb0J937aH3R1FHjxep8hgO/Ak7snRDTH2En9LJvIt4DN6ey1uPWTGC29nM+M422eTQtX6Ok4treBEt3tl5/NcWKiWs9md6nHE/816+nvBdp/rRvxMbPeZzPWuVKvVwut938fGjRvXvIZlnstzn0zypLLdpPZ0o0uLnFru3OU4tbRTUd/KS5Mke86Rox4mJyF259OfFlqx5z9fkoEDaAMYglB15JYMhnvaPtYY6NV+Y2bKE3F4qPWPk1GkuikMzNWn0tIUYlf4IXmsWUdTZlS10y/gywRZCjs5h2Ep7CAMzZ6qtxdotYwjPUQnKtu5mKA+wenhTR104GE+2gzfB8qk4lhelrnx5Enxhm7cCFQq6MRDSKalProtxEdLmAcGS8ytvrLzwhCN6cyZEIaeDRzohCUkiZjZEyeyAPY0RfZmYSFz1KgFlT5lSOYXuxZpNJDOzsI36x3tc9VDE+YxOie3HpJ8iFepIEnMSfejR8VjwDoxoWcY2mtyPOrmOlumXvcpJ2+aZk0umQK8tF0cWLK4iDaA0NjfNDX0cQp4tsuOamjJ9nMc8n19tkgeKqOKe3pEp1z3JQmAaDkz6NroU7nuum1hQSXpUePBXd+7Pz53bnA7DF3b/VSz3WedWPRCCSk0XFCM9CQAcOONN6K3txf/+I//aL8/fPgwDh48uKoxD4IAN954Y+4eAPjHf/xHe88VV1yBarWau6bdbuNzn/vcquVeKHEjqV3RUbPu//oenbyy3W5jaWnJ/i2KxHXL0KC8BsJc4NiNzl6tPkVl8drVgFFGQBP41aCsGw3sJq3UEdqMgOar3W5bXTAyXIPxmpZEv/RnbjLOomSia/Whjn53n6W53dk2tt/ViQbEWS/S8fT392NgYAClUslSt7CsdruNJEmwsLCAubk5SwGzsLCAJEnsiQNXN27iVZd+x3VIuDRCrId7GoBt1Qlidb/r/nTHkHYs6FMbRfXiNVr/LoC/VvS4vtflitfj82zB4wstPFVyvufComj9070utNx77725hUxX1pYnne0uWCjnPlebjVUX13yvcnb4frbhsxsbkwkqQNsGuGLjRgF7r7oKuOoqVGASbzWbNmBsKJzPwOJWC7Wa3MLETwyu46lTbkZW1FFF1BTVn5ewzuvXZ+US27THZvWLN/C9C7byRYCbO1C9ETIv3Ra+yCObq7q7UyDqQCWoi1frtqUlrDz2WoRUI9PzCvWZazWg3WxCwugZvTY8nGUF832b34zlZZvOqj0yjrEx4LLLrIqY+0znQHPVrvKuSeS43jzqfnD15rw68PLAgaYvqlRy3O7zfhlHjnorfExpivwYGRiwvKq20r6Pobhjh4xN7GpCMdMU2TM1H7159sJCliOOl1AnrIPFxy+5JNOtiW63qmB9tGLdsazFnRvcz4rkbHa1a8iFst166Jzp60zlTOZ6V2666aYV13/mM5/Brl277GnR1a5hmefy3CeTPKlsNw3cWoOvYG5b86VPp5jbmYeSc8LgoKEpSVOZz4eHLU3XZkDsdwxce634xkdwKKP08n07dQJyoaHjtgmzacJWTCOrgHruJSxPz4fWR8As3NWq2CczpyYJMtoyyLoi8DsrbTeNW7OZnWzTiTxVPbQdt+ufNIWHTtY+9hspP5iZ0+SS4LXMOU1clPg2vaB2zmeHKcev72frB36my/b9jAM/Z4erVViCcdpl45kosjOWr33XLvhPe5p0vqmHVjvzx7CfN26UIcRlglCvJTm7XamY/DFA1j4nUSdNtPWTKNCfQLe1a6YyM+FmPFyXU5O2j0x/HDkRoFPZbPvU2tHhYYTmmCPHmYdO1vFQa8U4tpQ6Nv6jWgWuugpJkvUr15pUOR1BtshKJUuqU62i7ZfQCUvZqUFdeX7GPCSrrXeLXjoC/TxI13Zn8r1iu9eecZW89a1vxR133IGnP/3pT9jDW60WJicn7fuHHnoIBw4cwNDQELZs2YIf+IEfwC/90i+hv78fl19+OT73uc/hL//yL/HOd74TALB+/Xq8+tWvxi/+4i9i48aNGBoawpvf/GZce+21uWNnz3nOc/CSl7wEr3/96wEAb3rTm/CKV7wCu3btwk033YQ//uM/xsMPP4zXve51AARse8Mb3oDf/u3fxlVXXYWrrroKv/3bv41SqYSXv/zlT1j7z1ZcENKlktDX8S8XP4zEppD3eW5uLkehQY8+I2t1UkoXGNTc3Rq8dpMv6uhfF5DUz9FAOEXTgfAZBLf5/CJgWT9XR2+zHSyLYCzrwaSpmjOb965bl3Fqk/ZG83+Tcqa/v9/ykmtQXZ8a0BzyBLp1ok6tL83nrvULZDQ6dH4sLi7mgGStnzAM0dvba/nOdUQ4efFPnRKKmdnZWSwvL2Nubi7nBGB569atWwEKc5yQ8ob9B8AC15rORfcV69yrIrvYXg1A07lBp48+deDS4rgJRVkv9ocG5zme+Rk58XXkuO5j96gRxxVpkFa7d7VxrutxoeWtb30rbr/9dlx22WWYnZ3FRz7yEezduxd33nnneZ8LzzUS/UzldDbmLW95Cx599FH85V/+JQDJAD46Oorv+77vQ7vdxoc+9CF87GMfw8c+9rGzeu7FJF3b/TjGq7to1rtnE8lkRa80+Z3e7TIU11xH/I3AahRBzuQaKovdu0fky2uvBXbvxnewDdvuGMXQzp3Ao48Ck5N42cuejq3hIeCu/XL2t9UCjh7FlrEHsaUWA2GEDgK7cdY4uQl8y9qjI4oZdecAf6WwA7/i2a+ZG4vtmJsDjqCE/qgEP87AdYuFt7JknblNODmm9bMpvNnstj3fR6VStpy0gNQhDFVEPduh+4QN52dEQ9IUUST1YhfxsTzpG4YqOlpHJRu9kKPWAixJfvdBoCBJ5CQxANx8yy1ytJjCHWckCT8BiYwns0mzCYQ7tmLLHaO2Hp2ojMZUhtcAgkX39somlQF8PP7PV9A6DtSVo4JtYV+kacb3w8pTCF7DQ2BCGNthGa0mVRMACACUkTaB6YNSHHl7OaROnABOnvRQqWzGkOE771Q2o1kHSia5K+l3SpUK0mgkVweEIZp1k9jPkvBKux9eHLJdRYrjgQHD7ZvOAHGE+5c8i/mkKWQTfscdwM6d+E5zM9CUjXt/PzLuXOqDPyZ3Y6035e6Rby3uPEJRTrYzke+m7T7XaLYzldPN9a7tft3rXof3vve9eNOb3oTXvva1uOeee/Bnf/Zn+PCHP2zL/I//8T/iWc96Fn7v934PL37xi/E3f/M3uOuuu3D33Xef8XMvpHRt9+MYr/xtuQ5BCo0TsDJSle95DQH5VgvV6pAN8PV9sWWDgxDbHYYotR7Dnj2bZX7duRN42tPwL98o4frdz0Ll1luFnyJ5DK985Wb8YPVbwO++X8o2vOrl+ndQ5txbq2H9rNCSsClRZCK/0xS+b5JFr+YAV6Al6UpqNQ+7dsn0zlwbxL9xzTUyB+3eDezcieOtAEkiS4tm04PvBxgbM6e9mq08mNtqSduALJK50cgQaFMRL20jDANs3JhRjvm+aVNLbJF14bB8LpbCUAwd5980xfr1gbWtnPNnZ+XS+UEpqVYzuTeiSJylai0QRYEt2p6wMkrxfB9AyZpJpjDZsnu3tI2IN+9JEmByElt27sToaCBUI5D7/uUbJVz/sn+LYM8eyddCZzPE1CVJRrXC8RVFWR9xSHr1Q/nw9GYT20ZD+ay/X5S6caP8bxJn+5Dk2POJZ2ljyuTwiSLMHhWdLS8H6OkJMFgro9kE7vyoFLtnjwxPOXHg43grwD/9k1AJPqOvD1hYsOsUXH89cPvtQLWK68bm5RlMPmqcGEliqN3Gx4EXvQgYHoY39SDKlQoexha0UiBq2pQ+SBIZAkM4DkQRvrg/o68DIDSGr30tsGsXvn5Q+nx4GEL/Njqa0Qv6vuicuVP0ukbPAa5dBjIbfhpH1ZlK13Y/OWz3GY+GM8r4epayf/9+PPvZz7bvyWv20z/90/jABz6Aj3zkI3jLW96Cn/zJn8Tx48dx+eWX4+1vf3tOIf/tv/03+L6PH/uxH8PCwgKe85zn4AMf+ECOZuSBBx5Ag7MZgB//8R/HsWPH8Fu/9Vs4fPgwduzYgb//+7/H5Zdfbq/55V/+ZSwsLODnfu7ncOLECTzjGc/AZz7zGQwaD+iFFjc6ea1IZoqm+CCI7iYAJZhOkJPJRDXliEtHQgB13bp1K6IWCFgWUaS49DOa/kVHfLsJI3VyS500VAPbOiHoaiA6E4Vqug7+9TzPJl0tlUogP7oL6vJZOtJb69LzPERRZAFblwpF94NuPz/TEfwEq/v7+3PAswaX+Wwm5WSUOEUnB2UZnudhYGAAfX19CIIA7XbbZl0mZ/rMzAwWFhZW0NcQjKdutFOHfaXpXVyHD+vDdrCvyJ+uHQDueD116hSSJEGSJNb5oUF0fS2/044E3/etg8Md4xxbGuB2efw1L79LXcRrCaIT4Of407kJzjcX+tnKkSNH8IpXvAKHDx/G+vXrcd111+HOO++0SUjO51x4vkH009mYw4cP4+GHH7bft9ttvPnNb8ajjz6K/v5+fN/3fR/+7u/+Dj/8wz98Vs+9mKRrux/HeKWOijbj7kJbb9r1glxzLpq/TApGxhFSfWB0VBDPeh3XjUXAwUQ2CLfdho+8H7j66gA//qpXCanpxAS2Vpv2f0SRbJ6SRDg3BwYgvKEjNhhnzWA1zY3irpp5U7OJAMDo6JAFa9k8ckvX61nzNYDLdvo+cPXVwIYNHgJ+2GjIjQsLWYjR4KAUwE04Q5LSFOVaiHLk2yhxOVrsANxuG7jZ1QCm+b8cyfHzRiPDkl28vKQiv+yHZmNFPQTpvNRDS5pa7JU5rVotoFbbinjHVruPazaBVlNOGZTDNvxqgKNHsxPs5M7v6/PQ2ysJ4XS0+diYOlafJMCGSI5Rp+28g4KAh+us0AT9QAaiRxHafimHL9lbwxLgW/py242M2CPwAAgQxCS2vi/tuvdewUR+cNcY0GqhXpf7R0ZHBYBKEuAb3wAuuQTRbSM52oROKODGTGUIZcPTCogj5J57pHwm3a3VgKD5mABbzSZQrWJxccSAQzLsvnrAww0vfSkebpax904pbtcu0+beMhCW5efsA4hL8CubM6cNx5U7H5znyLXvpu3W2NiZXn82crq53rXdV1xxBf7+7/8eb3zjG/E//sf/wMjICN7znvfg3/ybf2Ovufnmm/GRj3wEv/qrv4pf+7Vfw5VXXom/+qu/wjOe8Ywzfu6FlK7tfhzjVdvjIqOnQXRez+voQeXvlx7nZhO18S0ALEsGqlUz715xhc3cuSWqy7ywaxewezf+6b0y7//4618P3H8/MDGBHx5rAr/5NrQ+/GFE4+MCAvb1Ca91HAMvfCEONQKMVDsYXtdAp7IZk5Mm0bWZc/xQnIW5urItjhAgHh0VAJtO31ZLHJonTkCckVGE9s6nY//+7N5mUzi+w1DsjDXyOhL9xInMQ3zkyMr1ECVN4QEY3qR0naaSdFzbWN0OAs5M5MlTR2mKTZuCnGmbmpK5v7dXOU5bj8kFOvTd3M9/vbSdr6sNeNiSM42+D+x44XUo7+hgpiUnrGj/bhifF87zMMTo6HXWj9BqAf/wD8AXvgBE0QiiaARVALvMMNtanZdnTU8D/9pCaccOJEkJ1Srg7f8SkKaG/k7Vi22h0eU4j2NxFEQROtURTE+ZMdqso1StotHw4PuyhvN8HzMtz1LOaP796WngQx+Sz3bvBsrJY4Cxv9PTwJ13At/3fcAzru8FFhcZvwG8ZJckTPX9bCyPjmb92d9vx9zXD3q47o47pE333Qdcdhn2HrgOExPAy14GbKnMA3GIduqJ/d63D6jV0GzegMnJTAVfPRhg7KU/g6kpuYRr3cVFwPcD9PQMYTAESn4nO4Khx6Yec25gDMeDjmQvmk9WHO1cW7q2+8lhu9edOgtU4tSpLOPrJz/5SZvx9Ud+5Efwwhe+EBUmKugKAElwsn79+iekLAJ2fX19lvqCQC0/Y5S0Gx2uQUUNbGsgmQB0FEUYGhpCqVTC8PAwwjBEpVIBk04ShCQ47NK1uHzX/J8AtI6I1xHFrVbLgsAEcgl6uwk0dWQvAAsGM8KY1xBcXlYzAMsi6M3obQDo7+9Hb28vSqWS/T8Mwxzwr5+tKVQI7nueh3K5bAF0AsbaMaBpZVqtlqVNmZ+ft9HaPBXgeZ6ti34+72dUPoHl+fl52x7qnJHnHB8E3GdnZ3Hy5EnMz8/j+PHjIE86k6VqhwP7nGOEzgZNwaKdMhQdQc/3Olkox4EGljUwzrG7sLCApaUlHDt2zCY01de4faNPLLD/ent7MTg4aNvheZ7tQ45D6lKfEtAc8Cynv78/lxOAbWB9FxcXbZ/Mzs7mxrZ2FLnOgidSHnnkEdQYxnCRCefGN73pTWe1IVxcXMQ73/lOnDx58oJxoj8ZpGu7z044Pk8ePoyy5+UX00VItEYYNTAcx7IxbbWAD35QNpevfz2+Or0Zl14KDA/OA2GI400PcQx4d31GdiKbNuUinA6NPQs/9VMCPr/vF74lCaqmpjJU9qGH5Pj1zp2wu7ooAl7zGkESKdwsGIBPU5XYI7esOyN1dHQOeSc193oq/KETE/J1vZ5xWPb0ZJHAjFTq6wOe9jSzsWs9BoucaqQYkGcwQyaQP+usI4Hdtrng8Gp9pf+ajdHxVpBjktH55cqYkS+mp/MgS62GGX8IUQR4jcfyY8TUZSYUAOT++7mRlo2pZgSZnZVN39iYOeJfqeBbkxJxtW9fthlfWsocEzzFXK0CN+wwYLkO3YqiLHwuTRlulo3lvr4MIKI3hFGqO3ZY3vgZw6daFNy5tCSgBfORcVgePZrnM33Zy6Su3PhOTgpl8KZNsucuRx18a0IcGbt2AaXp74jCvvIV2YS/7GVoI0Aw+S2g2cT8zptx4EB2kh7InDgf+pA02QSWYySeF2cTwxQvuwz/r3Edpqay8bpjh/xU2EeVitwfx9l4YH9RxQMD5jecJPlxQX3mzvMjvyHn+FCb9+nDh3HZrl3fE7Z7YuIkBgfP3AbPzs5gfHx913afpXRt99lJoe12o8z1Xwq/J5oYx2jXtgrt1Uc+IlHWz342sGMHjiyU8bWvZfOvl8xnE8nkpMzDxl49XLkBb3iDzFHv/N22zEP33SenyX7lV3A3gN0A/A99SObmgwcFAP3VX8eBA8ANo8eBAweA8XEcwojYotYhAEC7Io7FcuicwOJf30enshlJYiKxC0DtTjyEfftkGtq9W3jEvzpRwr59GVPJ0aPAP/2TTGdvextQmvx6Hnxk6PTUVN5pQV6ya64RRWlbrI986XtcJzWBYTo9VnN8hAK2Hjwo1SDjSrWq6utS7rmcK66jOU1xKN6OvXuztU0cS3qa/n65bGlJurJeB175SqD0394O7NyJL254AaamYNdF09P59Cy7dwNvfrPUL5j6Tqa/ZhO47TY8HG7DlngG+MQn8vrREdVMcM4TbQMDUjFDLXPk1GY88IDYtvL0t4DRUfz9XsmRc8stEp1+qO7ZJd/hw5nNnpoC/uAPlgEk+NznBvCs6KvWAP6/A0N43eukDX/5yv8HTE7iO7f9O+zdK1HrW6PH5Hewf7/cc9ttUmczPr4ePwuf+IQMiT17gFLzEPDxjwNXXYVfvut5uPtu4B3vAG6uPZyts7hguOYa/NXSj+JrX5PloOXzR+ZP4CO5hF5aEpVs2pQN1zAEhqJ2tuYhMb87n7rgup4nFFn79GOP4bLrr+/a7qeYnBUn+rp162y214mJCXzpS1/C7t278Sd/8ie49NJL8axnPQvveMc78Oijj56v+nYFeb5zIANoz0Y01YTLF+4Ceqsle1yNp7iIB321+q8VTb/aNUWRym4EcxEg6dJruOUQBC2KGNbluZzv7quIZ1tHa7uJTfXfovuK/p5Jm4rqrKl5NN+6Pq0AZJHXpKvRALvLQb/W+HPbudbLpSrSn6/Vj0XjQl+jxeXpL6qfBv6LTny4zyxqc1FCV7fOpyvnqSCrjdu1Xl05e+na7otLfN/wO5sdlT1KTIJPIAd26yRVOSJTlzvcjZbWG2r9mfncAucQ7u8V/N+6whQ3gseUxUcxX2aSZDkw9aW5qBa9KdZ/XYDD/c4FA84mrMZtj3P/GZ/WXevCgu/4EfWzsJCP2Fa5Na0CyffOj5aWskRlK4LJXRCgKNJKUwoV6WwVPRapmXlyicnzPYtf61HucAJk/OWuLQx9hwVA1hru7vvcRabCbhexLxzWpZzu2W5+tmaE1hkPpO9NKRpip3t15eyla7sfp5zNwFvNQc4jVYCdi3hpLskyvYwEtE2OB/JQzySBgHSLi0CziQSSaDQFpPyeHjsReejIXMPykiTP3X26epvPc83X86CZ5PQaIEmyOhdh25pCLVem/t+1QWvJahPEamC5cnivuB/FdiV3nS7nHOdn2mDabybctDZjeRlYXFxxOIBj4MSJjJ7N6lf3iSnI95Hpkg9LkkKOefu5w9uWizguWKdxvafXZnqIAEuQ8HPkjOKKLjN1sqaaDdeGVOmc99qDh2EoD19asnY4TZ0HqQWla3cJjLtLH1ZteVleHjr2u6UlrDFg1Hd6rKw2Zr7HbH3Xdj9x8rh6nhlff/mXfxlHjx7FJz/5SXzyk58EALz5zW9+QirYlWLQluKC4UXJPN179GfkGieYyqhiUlYw8SglTVObnFLzpLPMIkC16Pn6OzfZJCk43DboNmuAm9QZboQvkHGGF4HcpJHh9TpKmsA8o8s1b7pbvnY+8DNGcbv60BQmPD3AzzVvOE8b8BpSnej6ArD6Z5Q/aU/4PfXJZKHr1q2zUf6kfmEENqO2XYoWV/+6D3gPx4irH92Xum/ZXn6uAXzS6+gTBNQnT1+wnrxG0wHpqHBNLUMdArDP1nokhQs/py5ZntuH+rO1gHtX3GupkyczQPzBD34Q73//+/HQQw/hnnvuwQabBacr3w3p2u6zkKLoqbWu4XudcROQSHETvmQTRKV+/nadZUtFG7Wms6gbS2bKyFdGZddqGT9MmmbP5o5Eb2aA3A5Zg6QlTXuij7C6f83mogPhliZYTh8A93PMVbW0lAW2mxySWVlM9kT99vTYJJt2x6MzZrp6L9rwFGzecve5OklThKHYY1aFVQtDAC1zrZvV1Pczak0TxZTRzMjmj6ocHJRmDQxkf7WeqCPUZSdZqQiFyNhYFhG9sJCPRLfBU9xBst/ddvMhWl96rPHFSCzjrOn4QU6dS0uyl9XFsIi5OXlRd9z7cnhWq4byptnC2NhmPO1p8rhy82FguoXR0e0IQ6CUHJfxvbhoeY9mEjklMFKtAlFkOVF5kp1DiPpi0lu7GScyYE5pRHE2DtNU/udPi9Qz5HHngQgGRHKYym84zf9eTgfQFO1Oef1ZHgm/ENK13ReXdG33WUiRPVjtOn2NS9nAhBPm9MimWjY3dODB0797Uo2YMOi0LlGwGzbI1FMerVlDGFar2FqvI2TOhYWFbBKr13HNNSNAvWnrxnk/V2cAMy0Pvl9GKeooomi5hqeXwk0BPN+xD2GImZaXYwhBo4E43mznv1otm1NtPm6tL0Zzh2F2nIrC02TuiTZdf6KfLE/Pp8rWdvxAOMo1qKr7OEnghSEqFQ9LS9kBq1x9i+ZnY6zmIdRkYaUs1C6ATRI6OppFkTO/Rn+/dBdNVE+P0Z9p66WX2mpZGjsuaQCJwq7VIAlY2Y6NG+0a0JoC3sDFAh9OehvfF72Tn8dpo6EsR9kk3NSSplm9OfQZXJ0kwPh4iMXFUCh89tVtn4yNycmy7/9+SHT5sWP2RNjYGICDk+ItUEZ1PvFQqkm/tablWYuLJnJ8fAilWg3YsAFjY1KHvj7Ib4hh/CdOyE3Ly6iNZhSIeklaqQhP++Cg3MrPuJxEq4Uoknw6/f3Ie4pWo2lxnTvu/xcxgN613edfnrDe37RpE1796lfj1a9+9RNVZFeMrBalC2R830CWxNEFP13eZl6rgVuC50w+ycSZgBwB8X0fCwsLlsqClB6aXkZzpmvQ1Y34pRC41Hzduq2aI5ziRsgzMhoQYNR3JjSC4qTiIEjNZ+kodu2A0LQbRU4LTQfiJoxkwlO3r7SzgX3V39+PIAgsmKrrpxOIArB0IKzHunXrLM0LQWa2VXOu6ySbLGdpaQmtVsvSybTb7Ry4zyh1F1inbgDYe+g00PrhNay/dhCwz1mmBtPZr9QngX+2ifQ6jI4ndQqdA6RN0ZzoekwsLi7aslznDfuBjg32v36WTtLrOm30qQXXmcD/XaD9yQycU973vvfh13/91/GGN7wBb3/723POkbONLn8q6OtCS9d2ryFpCpRKslAu4grX1+kNngJY7UJ9fNxu/obDQ0ASWVDTZxncFXATNDaG70wKxcXOnfL1kdkShnfuzJOytlqyAbvssgzBZFQbj/rqeikgWkfvLC0BaX+AMN6ca15i9uVRPCQbTAWek0Hk5MmsCdy4AFkeMK2mkm84zLlR1ij+6GgGRoRhFnLtANeiuAJwnP3A9zqbJZ+hn6ek5LdRiv2VNDf6iDlBZm5YkwReawadqIyHp7P7fB8YiaT/S2EHUeShWpVhwIRh+oQ6m2WP5icJygDKUYjKniHMzmYANfd8fX0qSet0K9vlF4EVWheaG5ZjQSPeAFCroe2XkLTywW+Li3nGHTpFCPAMDAjgrNkFwhC4YWdHjk2bo/+lKMIPjppN8ifuBtIU5Rf6KI+OAncfEAoDKmp01J64TkfLiKIypg5mx7cnJ2WM3XhjRpXDISORcSks6j4tO/hLX5AFt3GcDg8bbnnM53RXTppAmgB1GS+lOIZfGRK911vFzgt3bGrgRzvj9Cb+IgPR17LdZxuh1o1me+Kla7tPI/xd6bltLZuhQfQwhO8bkHx8XOySccJ5vo8dO0asjzoMA+GsDkO5ztixI7MlJInQl/k+pz8PNxD8fO5zMTo1JV67Wk0KGx6WCXRiAuW4noUsJwmiyMz1TjvqdcEYL7vMw0hF5vOOH1jzn6aGG5xt833MJx6ajYy9xveBIJkBpqZQG9+MalXmwq3xcYyODlnVBH4n8+gCmcEnobb2stK+GI+DPm2UprLPKsfIhxEzFNmU24ZwnqcJ4PuS3DRAkov216B+rVa2sQQLC47TgYA/G2PseicqY3JCm88AW2ti50vpDG7eHeFQ3bPLD4LhjMwny5zXPC5venowvHwIw6MRhofLNj8Hgd84ljy0wdR38h5ZGtQ4xqAPoJmIke/ryxKiUqejozjeCjA0Xil2lochwlTWB4uLwEy8GY3pzNzwxNXgoLwGBqSbuKaLY+AnfsKsY5IHhYLI1G1r+DB++82RAOjv3ydrlcaDuPHGrQgOflW40Kmo0VH8y5eFd318fARRBWgckHo0GkKfBgA3GLqfPbHQzwwOAg83StjiNyUvCsdXkuDqq/NLa6qtVgO2VmYyffLHMZcAJ6XPvUqKDRuGRGWNVn7x5a4TtWhHD0Xf17XdT0m5eF0oXcmJBh01OKsBO4KlGnzVCUF11Cs/I2BOzmydpJPlEcgksDo4OIhOp2NBRwKoGsRfjQrDBdcJ/hIMZtJOfl9EjaEpXDTdiAuie56HMAwtUKvboMFbIHNGaF2ybD6T1xFo7e3tzfF3M4KaILrbZ7pN1IN2Pmh6Fe0kYeS4PhWgQXQdPU3AmaCvdhIQBJ6fn7c89OTrZh8zop1jYN26dTYKn3WiLli+pkDRutRR6OwbTbvDPtcJSvWY1s4I8pQzqSmj5wnks33tdhvz8/N2DPE5rAfv4++E31H3bluAzOnQbrdzz9OguasbPlv3uf78qUTl8t//+3/Hn/zJn+COO+7A7/7u7+a+64LoXbnopQgM06tKDdrye4bFcpft+2iPbkOSGG7KgweB8XG0R7fB91VSK+7+jHxn0sO+ffIIUoo+8ABwLA6wnVznOsqKIdQaydTAaBRlybkMeJqmgY2oShJDGYPiID6J4Als/RgklKg9LSOjeW+1CnjTD+dBRA308n8dfe/7AuAmQHm0k3dgnC7CnMgp260271bX2nOgyzDP8dzoYv2+UkE7FQdC0gRGqiEwNQUvijA15VnV9vUBI9dnAE4UlVCpyAYxDAWg8NDBkaMeFhel2aWwA0wr4KQu0V+lMERJg99JAjRM+06Geb1wo+3qibo1oEbHF771VkPqOjgI+HEZgemH40kpF9SoVUQQnVWqVMQBEceBdZjoLgn8jvCjkhiWoAkHzsGDWf1aLQHQ9+0TZe3YAYyOYmpvhoP7vhTFxKuNhkSgcfO9vXocSBIcD0eImWcVN7yswxvaWKwFNsKwUgGGN7SFxPbOO7PEvFGUgf8cD5UKglFTrj4B4PKmUvTYdcec/v3qUxYXgaxlu893crKudOVxC+c97YjVRk3Pjfq3aV4eOminHpJYkomWGw/a+cNrtRBUKjixNISFBWC4P7TgeRsBpqfl0jAUp97srKR3mJoCbtht5uEf+iEBRxnG22yKI3x2VuZATkxmLRFAOZ/VHMJnAUC1KqBzq5md1EkSweZLG3y0EdjvDh/O6MH6+iAX338/ymNjqNWGJKr4rv3w4hjP2r1TTiUlSWZf0hSoVvGdqQCVSglDO5Cnl6NtNzaTS4ClJeDYManv2FgJQZRmayWi31Fkc5SwK9l9AZDNx3o+9X14zaYkAa9UgP6yOMGprzjGfCJAvKwFxLmaxptx330yR9F8VioBymEoOmk0MDI6inR8xPr3CQLPzQl4O4TjGRd+moq96+nB8GWXYTiKsG1XRQqenhZ7cniBmS8thzlqNcynUrfQN2OUIfU6tDoM8XA9MNzvHraNja1YX7VTSSC6fr3YyPvuy9Z2HP7sIi+ZR2kQwCDQqZWszbT5uj+xF/j2t7OjWvv2CVc7ydQHBoADBzC8y5es3nv3ijEeGwNGR/GVj2S2O46zuA4uBRYXgdEXbkUcA9vrh7A9SvFgugUTE8CWHQC+9jW5wax9htc9hg27NmNqKgP849jkknn/hzLbHYayttDeizRFMBrK70g7YvRfV4oc4EWn+C4i6druCyMXV693ZYWsxh9N0dHSy8vLYKSvBp+LuJ8JWBLc7OvryyWJ1NQspLPQ4H1/fz+Wl5dzQDrv0QC/BvNXo5TRoL4GnV16Gi2a0oUAZ5qmOQBUU9RoGhHtQNB6YRku37eO9tegqRvJrgF4nUC0qP68n06LIAgs4K+junn/0tIS3Ch7QMBpN0pcOzY0tzkB5MXFRZv4ktHtrDP7inrU9dFR+gByzg4NGGsqlKK2Exx3o+81rYse02wPE55yTCwtLVknA8cenQd0NlDPrCvrpSle2D6Oe9LF8HNex7ZTp1rf+vfmOlzccftUikIHgIceegjXX3994XddEL0rF72sFZ3iigIuO2FJAFuz2Zueln9v8FNJUlatZtFdekejymlMyn6rVsvyg7Kc7bdVso2VXszrxf6JE3mKFL3pNH/TNM/ryccTIHWbvbycUcQSl2TwGe9hZJDvm+gs7uRnZ6WQyy7LHwOnnsMQMyhjYTaLbN+40cPgYBmh2ezlNjRu/6jNNIWbd7apFPrFfcpy9Ys7aqWU+cTLRYVXqx48Ux9G5evb+HBuvpnL02vNAGmK/v4hLC8bAJ27SoIJ7ukH3kyvByPUNMDu+/mj71o3RuekRuGLlKQ9PcCGDWUYbMF+p1mJWC3VNOnCRhOe78MeGNeOiiSBzeLZaGTtnJ6WMTE1JQOKPCrMUDo6CsQxOvEQ6sq34PsCoM/NSZEEqyyeMjEhR7dvk2hRW2kmwIsiQ1sgifpaLdNfTAy4d6+AFddeK/dOT8uDBgaMt8HPlKBpBdxNuOtc0y9gJeh+kW3E17Ld3Wi2rlz0ogFzPWD13yIAzKF2oPm6LvYzTi3jzVv0h+SifnneTCKOOU4Z5iCNPTWTpgD2GHD5mmswP36DVCUByozqpgO1XhcwkqC1S2FihFNprZYP6NZc0QTC9FR47Fje34xWSz5sNhHHQ5Ioe2rK8l559Jiq9QYdBkkCDO2oZkZFOxajCKljWlVgsUTxs3Kqsqyn7o4whCBX7skCvmcGbt9HWC3n+pi2m7h0ydyXppkuaLtbLaAch1IBk2y7tlvsSeB3cqfV4hjAgansjXLWotkUm8GTdfffD3zzm5nTOIrs6buZJEC9Lh8PRe2sr1mpKEInKlsHyOHDcsn69R76+wOUI9EF1zyAtPXYMclpn6ayVuPSIElMUAH7K0ngxTGqVYnU9uqHgOmG2NPpaclsn6bAxASSj38cHQAlnoacnpaKP/BAdjQsitCJhyzYzbXh7Gz2c+Qag+Z+6OBB4OhRhM/+SQHzd0DK5tgz9jhIU6xfP2Jtd6UCYJ+y3ddcIw975BFpPJN9MghB/570glXLWvbbPRHZtd1PSTmrxKJdufjFpTtxxQWuixI56ohi/dLc3zr6WgPOLj8466Ojdl3gzI1Odz9z23c64K3ouyI6mSJu6qLv1pK1dLRaW4v07zoQ3D7hvUV9tdprLQfEam1bTe+na79ORlsUqX22r6J6ue3XutP609cX1XethKhFSU2L+mItfei/XQGuuOIKHDhwoPC7J2JsdKUr503OdrVJOdsFtfsMc79+/IqAl6Jn6It8P0uGpo+aOpuBJ3Ltf9oTracLaSmoDKNm0hQr27fW/eoajZl04K0sxy1vjX6n02E1oa8iVz2jZ3aJTxDA1T8v4gatpycjotX9WSSqoFzVdWWcihU10cXdi1TkfmaT02lFF/2vlaPbRLClaACZh1IdvI1ACE+7rxYEnrvZiRxz27ryA6cMJv9bS4HnKhfZJhxY23a7mMKZvLrSlQsmZzLozvU3x3lYzetnIivsd5gl8cxdoOd8CkE/hZCv9VztOF7NLuv7e3qw8mKirjkjvPLmVeth2tCBZyPQ1+wStlllUHVxTJsQsmh+1hcWPEjbbncdtebSwpTnoZOzEyvsn7bfbEN/f16nbhiwMqqF1dZGLwzX1J8G9lkNN1ha8+rbahU5mNz/nfWH3T2TD8bNgK7apOsTRXm++jNiMWMjeMRPdVKuv9ZSzvmyrxeh3Qa6tvtCycXZ+11ZIUWAqv5L0cC2y5OtAUHSuDASXQORRc/SwPrS0pKNYNb0IT09Pejr67NR3nymCz7qCN8ikFnTz2h6Dx3xre/TQKrmO9dt03XQyUB1fbRDQEea8xmsr36vE1iS+oW0JbyG0eaaKoTRzpqDXie71C/qpLe3F2EY2hMH/MzVre53FxBmVLfWl5vwk3XQ0eJFY0zT7Ogo9iKg2nUyMDJe3+f2leZV5wkL93QDkHGz9/f3WzodUuAw6lwnydVc7NSlFj0G+VsBACbVddvqtkufZmD73T7Q+n2yyy/90i/h53/+5y0lz5e+9CV885vfBNCNRO/K94Awwmk1gG2tRbQCRG0SpFYo0cNRhDA0GzCWrQiv23Jo2QYrsTgmsbI7ZKj/+TxG7DCCrdmU8B+SpPq+jVwu12qIqiUcPZqPONZN40aHmx9ew0eRlcP3s/8ZrT6k0U2Xr5t1V/+Xow7CkCerMnA0SYAEAXw/QBjnE2TZRGBA/pitASnIXcroed8P4EdDCEwSODniDTlWruvkIsemMj09Epw3MGCeWa2iAw88VW0vVaBHELUR+EAYB1n0F4CwshlhKNFjASOiNE+5u7ll+BZD6sido/sfhsuX703y2U48lNOHPsWsX0B+CDHyLklkD8uqMCjRFuLumPX/PDXBqLzZWYkO4/gMQyEPrtWEyoCgtxn84+OiTjaXAYdjYxJ0ZhPvAjbqj8wCNjscfzyXXILj/mbcf788nmqH70s9n/nM7Ph3FMlDmMCX5VNc0MGdG9zP9LjS4+si3KmuZbu70WxduejF9UJTzvJ3Zw9M0eApsW+T/DP6+rJ5hSdoxsYUYKizIppqtFMPASc45j2hUT1xIgtlN3OKV01QjmNcemkJzaZQd3DK4bTDxKBxzLbKuiIM5fowhE3EaXnfq1X4TVMxDfqycEVpwSnTnuRxTuZ0QllbkL6FReRMXYo837eZe5mLRZs+4fEuSSJKNkTbm0ZDDFySCI0Y6W+MPWg2pc+CZMYqKE0l4J96s2aHD+7rs2Uziazn+4hjgwPAg0f7QGVzLJCqhUe7qtUsESgXd4ayZ2lWbltaEk57L4qEV9zYz/nEQ2qWFP39Yko1KE0wP/A7mV1ttbBtbBQw9ptDav164UvP0f2xg0zTAxp4HoO89FIbOV+66ipZAN1+u3x+/fUZ9RAd48ZOUrfPfz4wUu3gn+/2bMoTqiCXnN2A72Fo3u/cmZVXrWJ+7Dq7jOX9vm+u3b07C3mPIuCqq2S9zffsGz2Oi2y0HqzuZ2pdb++/yAxc13ZfGDknEN3N+Hr55ZfjXe96F6644gq8+MUvfqLr+JSX1YBz9y/BPNJlABk4WRSl63Kia15oNzqcdBmkA2Gy0cXFRXieh1KpBN/3baLMvr4+MAkkAWTNFa7pL4oAcd6jk3Uu6qzfWJnk03UWkMqFYLqmWOG9mrbDdUjo79zkpry20+lYwDZRR8zJl05KGiZgJVBMfRFE1zomFYmmg+np6bF84Nqh4NKn9PT0WIod0p1o6hL+pW76+vpWUJJox4UGgrUedPuLThJoUJ7t4rV0OlA3SZJg3bp16Ovrs33F5J98ZhAEtp/Jf7+0tGTbRL5y6o7JUvme42hhYSFXJ/aTC+bq3w31qul6SC9DHbTb7RydDPtD/340TdFTSV71qlchTVP88i//Mubn5/Hyl78cl1xyCYAuiH6hpWu7z1JIFK4X3EAxiF6wWe/Ag2c2EkNoAxGANJTddBStys89jxIajQzT06dNazWzp+MuQ6+IzcKex3nDmgGYJyezM9SkoSAqniTwogjDtRpmkozvnAFFvb3yfJtg0yCr84mHgYGMApTc0gsL8j/3GPFoSTaeRGRd/WkxEXaB72N4U2yTl3I/SKyVrxwOYRKESfMCwB9CmmQnlX1fujO/gcjsehgCtVo5fzzTDeUKQ6RN+WrTJqGX6aCEGX8IfgJct8OZ26ebWbsMkbjnvq9WEUUlgz94AMroGShnyTkV3lOpAOWok/HoqI0q+7XjB0harLIHhGX4tbL4T6ayYcN9oNal7uMy5NmYFrTaC0OU4hilwQiD4yWkqalLmmYgSNFuS3tiNIeM3oiaXXC7MmJ48EczsD2O4aGDW27xpH4caOMVyx8b+I7eDcDSNJceORFg+Prr5blXXQXUati7VzCp0VHJySs0Ab4ABgRouDsnEqV/PxSN8Kw2rjWyxd+Bexxcl3WRyFq2u7sRv7DStd1nKXQ2AqvSoFgp+t7PEkxnQHkoE4bi/Q4ah1b+jiHTFyD2k4Df7t3G8XoytdkoddLmJAGCWi3jSE9T4XSenBRKimZTQG0awrExoFLBVVddh+VlwQoDv4PUz3KA7Nzp5AEJS9YGMA85f5vfqZex/vKnA7NKh87aJDd3hyG8tI2xMeMYnm7kDAwB9EcfFUYO4sthKLjr4CABX2RIqi90ZK0WrK2laLr1Wm2L9S+I8qT8chhm6zYd5h+GaEwbKrzxjlRobAwP1wNEEXDzznnA9zFvEp6W/DbQMu0eHJSHTk9nDmEA1WrJpqHxKyN2mbjUA+DyEczNARP75bPdu0sYqc7YuuSUYQByfcItSSSBNcfJw9OepaOnf5n5Z6LIOQ1GRZGGZXoa23bsAOIYD07JmB7e0M44dfTY9bOI+AQl+FEJpd27pR4cmzt2AC97GVCr4ciL/51lSxmKO1lWeVITIWNpG/r0/wK+/W086z/9J7RaJYyPA1ujx4AowpFZExhhHDlJS9p1qBFg5I47rN46lc34yAek6i98IbBtTNn+Wg24444MXecCmnohXw8pXTiYtFNc66PIprs5fC5Sw9a13RdGzhpEXy3jaxzHeNe73tU15k+wnI7eRAPeBCk1yKt5nt1kmm4EtwajNRUI3xNsJWDoeR4WFhbQ09ODJEnQ29uLdrtto6X1fToiXUdCM+Jct8cFMAlKEkR3aUrYJk3voZ0DmiKFZWlng0406lKqaEBeA8TkEWdE9dLSEubn5y0oyOcTAGadWaf+/n77NwiCHL+7jm6mTgii9/X12ecTKNeJPqmLpaWlwgh06ot89kyeqqO+dQS6C3Jq8Hu1SGrtwOF1LhhP/VOfABCGoU1uS6eDPjnhJod1+czZD4wuJ2Cuxw4j0RnZHoZhzqnijiPtROF1rDc/0/zo+mSCdk4UUcM8lQDh1772tXjta1+LRqOBTqeDMAyxfv36Loh+AaVru89BuCHRQJkGv4DVgTMjbZgkVvVDWVKu0VH5UnFR2vJ9H7OzWfJGBvDyUdWq2XgysaTeHPjC+zk9rYPTA2ytVGQnv7CQZSBL0yzCymw4yiorJBNPhqHh79abDgB+WMbgYEbRTQCde3zSdycJJCkmwVI+W7/YOB0qlSTwwhBhNIQTJzLeVxajcUhyyuvu0irV3XTihHBpa2yAp4TjGCjrpGkKbe74QW4z4TVNIrGxbZbPEwcP5hPY8QYCx7rtR4/a0PigEiJJPMu9y4MDx47pfpRnVKseKpUyKrWyLdr3gXLsWx3o4bqwkLWX+DMjB+lHCUOHb15vxElGzk2xAdMFVE7s+OmEpTwPuwGhLD1utBl+vNlGybUh/K+tFjB5IFN3GAI/aIADRBHafgkBOvD2fylzHphoyVIcw6I01ars1qMI8345xwd87BjQXxsBIsCvSZP27ZPvazVxiPi+1HkGZUw2hgSjqsrnExO8dgjV6pAk+GM99EArcKQVAuXub+E0c8h3U1az3d3kZBdOurb7HISJPvRv0gHJc/MdP1PCj4NkJnN+MaqYk6kOiVX3M5q52ZRL1q8Hrqsdz8LS6R0/kVV3YQFYWAiwvByg0RCw+4ZqNbMrPOalvdStFoZqNVx55ZAA92kKILDzqTf5HbneoK1+lM211WpWJPM7J4kkab7sMhSjbSoKvROV4SXz8LThAqydaLUkt0m9Ln4ATnkbNxondGsGoE/SOOZnT2T83W5f6OlfxzSw68IQKPu+jUR3s5I2GmIurF0bH8fEBPD93w9g/90AIBHuBc5zC6LzhBKAwE8R+D5m0pK13VQDc9ccOJAt+yq3lSWpJe1nFKHjBzh6NBuuvp/9D3gIq8L7Td55msac8zuZz49fdujkpFRA2czq2HVyDY2vzktj2sx1A08PjI5uR2lsLCt/fNx6aN7yOqnb614H7NzpYSsdA2GIdihrlK3hIWByGnjve4UPftcujI79iHz+kY8Co6PY8PwfQasFzIdDQCgOlCgSSvPmoDhM/BSYngD+9m9Ft3v2IONLjyK0oyHUY+Fzrwp+j6kpufbSS4EN5idqk83qAJZV5oAV73XkAb/Tc8hFJF3bff7lrFduq2V83bVrF9785jc/oZXrikhRpO9qfM/860YE68hsLS7lio64LhJNF6MBciCL0AUkEpsUL270rW6DTqLJz3Q9tINAR9gDWWS1Bv1dmhLNN+5SwxBQZbS2C85r4JMArtYxQVLSdzDqmfQiS0tLFlB128a+IGhMGhACtJoGxQWldZQ46+ECtfpEgUvp4l5HgF0Dvny+GzXNa9ykqa4jRFPKsBwNyutErfxf97mm5WF52hFAYTQ5ICA8o/6pf0aM636nM0VHl7tjUOubuuQ9AHJ11mOiKHpfl+me8niqScVEJszMSERGF0S/cNK13eco3GifbnFd8J1emwfc2MSx3XzmFt8KuF1GtkkcGMioKH0fAuA1W7nnsIwOvBz+CQhQurViNkmLi9kmnjtpgtb6pjSFF0XwfXEAoNkqjNwJQxieUA8nT8qtBC4pFkTnDcDKaF5X17ptUbapJE0MRUfxUQduAJouiirQQDuB5CiSjWMYepLozHmx6YzO16ABVWp30jpayT0twAcvLuaAnjQN7HFz7m/zzpA8BtTTk90ugI0kE02TvF7Y3oWFDONgVXjqOvA7QCtZCaKzQkePZhnJFAWBlUrF1MNQyCAbi8yBSrC/p8dDb29gc681GgLeSHShCV4bj63ukgQIwjRDJTSKEsfy+cSERGWaY9+zs4FN/Jqm4pCo17O21+ty24kTjl/M99E09TEnxxGGWY4/UtRv2hSsTCh1NrtS3ZH6/otwI05xbXc3mu3CSdd2n4OkKbBuXTZBalnNsaU/06Lmm5mWJ45WTvq0n5rCA/JI0lnbxMWcSOjF9P0cQKUDqKemZO684dY4m5fJYVWvywN4XK3ZxKbRIXOSKAPRAWTJnGmLjPT0CIhdiiJEkWfnReLt9PNjaSmb+6krpZYSdVCwTiKWPTubTyS6vGyAX2aV9DPe9JMnswACvfbR3WDtreouexAq9osdKJDHLS7C2rcOPJwwTgxMTWXt1DwjLHx2Vl49PSuA19Qv2XVPqyV2ZXJS6mlyXFubHoYBSpVKzsFMJ7ceerThNMVaxVxeMCIdrSSzKbyo1RK7zeh5Mz5LPC2ns4prRfo+kIoKZ2flr+DUQYYfx0PwxsfxrckAd94pbXvOc8yYiSK7sLDjnjb6K19BfWkJ1clJxLvM5wcOAGmKwJd1JJ9Juzw3J04VPntqCrjvvkxn9vcXhmglASYmcoca7E/O93X6FU/sNxd0rriONvc7N5AGuKiR5q7tPn9y1iD6ahlf+/r6MDc394RUqit5OVPgqAiocwE7zeV9NuKCsUV11EApAWSXa9uNkNcR7m5iUheM1OW4wL+OKNfAOf+6dS3i+XZBYTcC222HjnoHkPvrAvnusxjFnqap1YHmZNd10Dzt+vOiCH73dAEBb+3oYCS6y4Hv9rfmEy8ag/oz9/+iaGs3wt5th8t7z3q417pR4+640JRApIVh5Lnut6K+1mOYfe6OR1fvWvdrUbYU/W6erBHp119//ZrOAu1E6YLoF0a6tvtxSNEGuyiClIvuNLXgst1XKhQ0TSFArXuvjXqSj3QwVA53cxf3BaAcwWa7CV1RSMF9GrE9TfuLivH9LLidkei5OhfdrN/rjb6zUenpyUdO58pPsl1BUfXdR+nHcc8chlKe8KgmGdJuXqUoQgdeVnZLnsd+zj3TjX5c7XOVQE1/rNlvdJcMDGQq0o6VXIIwBDnggcVzA6nvsY9ea5fk+6IYnQ2MnyvHQBgpOhjfhwcZ4729Gb99UdGM2NSBnvq35fvIK6FoE7tGp+vNM5A73a/zA5pxlKCvL8jRp3ppGwMDgcUGznmvvBZIt9Z3F1jO1HZ3N+IXTrq2+3HImfy2VrHrZ3RIhPORPX2Un3P11/Z6NV9x7l5eXmnre3tVJYiYEl3UL1139xG6/aox1kYYmwHk52H77N7evLFR877Mzcg7ivX8bPDJ/n6xXTqCOgdEF9hArT/9uc6zqdcbXBfYYAB6jVUBMXOpGCPgoWPtk71uYaF4rdLbKw9hpdRaD07ddK5s8s67bfd8H77v5R6xlug1C/PNZH2wyuRKLj4umNZ6EMtIEkSRjIfBwbxfhD4Grl99P8udMjio+tWUZx30HBNxjPDoUQDKzkeRSrQSFOZd1al0uO5bXDT4dxTmnsc1RDlsA2mKKCpZXwjrn8tDtJYutKxmt3ntabOjnn/p2u4LL2e9YmPG18svvzz3+ac//Wls3779CatYV0RcQFWDqasB5DraWQPL+h73fVF5GvDWzy4CoPnjTJIkBzQSZNZ1JjVHb28vent7LZisuaVJy8Eob5alAdAiwJxtZuJONyIbQK5+BG75XapmC8/zLCDORK1uQlZNE9NnrDm5vaMosnQtfBbpV+bm5rC4uIjFxUVoih22WTsV3Gh2/mUbWE8NGlM/1ClpeAiik2Nc9xvL1brSfe5GxzOq240y198RiNfjjtHcmmOcjhd3/LH/3Mh4rQ+OdVLAkG+eellaWrK0LTx9wH50QXI6NAA5UcAIdHLfaz53tg3AigSvbPtqYHGRfp9Mcgc57FaRJEnw9a9/vQuiX0Dp2u5zFBegWw0ABrLVpgFgvTAEUM5Ac7OZSBIgiNQCnN9VKminHpLpbDOg6RrtplhvWjXSbiSOHTycOyFGWDGc2vezhEt6Q6CO9dq6682672fJPJMEQRgijgMsLclRbSADG6MIxdFO6jmIIrRTD35UthzypE9h0PqGDfK3t9fZKDVbVt8B2ogiiZ53WTb4KCefm/2srw8op8eBqWYWkqezqUYRPN8XChEgi4hutVCplKXMMBTdMuyOpKX6aLkLNpgj3VSHznu1cWOWXNX3Jdh640a1YUXWTvaHi6n09OTBeEA29izDS9srd616XDJZmK6cPlFgOslyvatNNHwfQ3EMRMI1m6ZZdCL1TscA1RXHAKZaNgqwlM5kUecacWf9dNSgCVXs7RWwhKAGqWUZFWkOhFhptcxmf2oKw7Uadu0aEgB9/5eANMW1O2+2+rK/CTcU0u1b/R1/iG5HuNdcBHKmtru7Eb9w0rXd5yC+L5HowEobWfQbpdDoxDFSv5T91tWJoVwZPK4SxzKPt8SW0LxGkUp6nPi5pIft1ENvbz4Ylgmr7e9Lg+ZxLCG4fE/7QntsbgrCDqLIk3mVlVCAu2XwcKbRnTuliNFRYCg09F6c/3mT+iH7PjJ6Ov0DD0N04GHZRACz/ZyL4xhZkhODwtIZzWbq9Yu23QRSOR+TRYen4vDpRyQCmzxetOFxjFtu+0ExzXVj25MElUpJkqrSfjSbgtDqRKF+vt+sLoydp1ny/QzMZ9Q8bfiOHcaWNVNrAEtRBEQh0tTD0lLeQbu8nHf+rl8vn1WrZt3jS/R+LqKf/UM7fOml8tnGjcAVV+SNnu5LTWsCwPMbKIchRkclRwnH5+KiDL+BAWB4U4goEgryVkvGTrUK4N4la+dKyXEgQZbYe/duxBMTgO+j3HhQnrtjh+UViqIgl3aETdLMZ6S0CUNzqqBWszw/pTjFjh1Dop+//VsgTXHdS18KJqo/eVI5h/gA7QxZy3ZTX0Xrf3eP8F2Sru2+8HLWvV6U8fXDH/4wfud3fgd/+qd/ej7q+JSXoghciht9rqlHNMjrAso6WlhHcxcB6RpwJ6DsRkzryPPFxUW0220kSWLpNXRdwzC0QC6TYBLM1oClG/VLYFxzYxOUJ7BN/nENahIYZXluhHvmnUst8El+cYL9p05lPOcE6ZkYNIoim3AVgOVhJ8e3Bo01MKsjl3XkuOaC5z0Emgncsu2a816DsX19fSiVSlavnU4HSZJYLnT2jXZQuLQzFB1ZrYF06kyD0HRI6ESudBLoyHY9rvmeIDXrWzQe3eh5rQs6L1ivMAzRbreRpql1ztChoOloNL8939N5wbHNtpGznnVmffr6+uyY8zzPPne136xu15MRGP6N3/iNNb+fmZmxx5KfjO2/GKVru89BXPC46Hv9l6tTHr2uVJBGAqKXzM6KSbOiyMsoIcxu4eFpz9JeRJHsLUrJ8ewDAO3UAxDkKUcAIIrsGp97JbtvrqfZbkTvOl1UWe1cO/Ds5qmko8P1DpFtTRIMMfsawWVuODVHuIvwms/mDR+4fJwlN+UjfV82kdzXlkKTXHOqnqd/aTYxVKlgpuXlAsl1Vw4MyHsdLWY53ycmpdz775czxLyRG3Hh8siHgzWbqFbLCNL5TDcm2gqhJMLyWjP5zZquUBTlfBzsdz2suGeXTXgTWM763lLlmGK9ECiF2fF4Bs/pIVuOGG2fbehzosc1AWo91tgWN+ur3ozqRoUhSrUaOpGAUouLGf7U0wNce628D5KZ7Ow6x9PUVHYxx02aZtQGAwMZSsPnhvk+rlQAb+pBlKII4abNWFwEhocdnwfP3tfrGKnVgMkG8PnPA8vLKEURto+P43grsFTIdpS6Y9rtX+c3akGxIn1fBHKmtrvLq3rhpGu7z1Fcb6nr8NKfa3tmIpgX+oYAAGV+DgMoas+sAdFnWh4WFlYe2tHRsZjObO58GgBpNkUQB6Xt3rDBVHGylXcgLixkNnx0NEOWtZPWl6hr68DWADAUiG5u6euT17aqsS+NJJvfObfyOQpw9dDBfOKh0QiQpkHulA9NRBhKEQR+26knlHQH6vm1QZrC9wM7XyuV5wL9eUscm3UAk6bzhm9/G/jXf833kWm/t7CAoQ0b5LreXiBJUK0aPcVxxqEGiMdar7FUTpC2L07awNSb6wquLajqNM26biQ8DkxNr6xXGGKoWpXgCdUMDs8AbfhRYIMIypgRfvE4hhdFGS0LeV60/b3mmjwSrX8Pes3Hvqaz3yTDKe3YgVIUob1hM06cyJa1cQwMDnqIY+FCB4CRaifjy4ki+aFMTeW9SC98oaDtAHD33QLu795t101eGCJJAszOZs6IWg0oJ4+J3sOydfKw6UdmSxheZ/qt0UA5jmX99oEPSIUrFWzbvRuHmiVbHaCVDSTt9Nd/OTdoSh9KkSP8IrDhXdt94eWse70o4+ull16Kd7/73XjZy152Pur4lJaiSHSKG0Xu8ncTXFyNH5v3rUbTUgSy6+hoTTWiubzXrVuHpaUlJEliAWeK53lYWloCI4c1wK4jtQmoatCUwKwGkDW/ODnGdfQ79cVIa9aRoDTfA1liyHa7jXa7bevOspmYAYAF0DVPOXVC/TM6XIO0buQ368Bkmr29vQjDMAfeEpBlnXXEvZs4lv3FZ3HMLC8vY2FhwYL3TGZKYF1ze+uxxDq6PPgaSNbAN3nrdfJRrXdNbaP1zvcalNdjXDsHdPs5vqlDXUeC59QlHR2dTgcLCwu2ztopxDqwPvpejhs9ll3HlB5Tmoe/iAJGSxdI7sr5lq7tPkdZDSSj6I2W3gUdPgz4Ppb6tsgiNPRtFDr3KyVVRieURX6rlW0SSpiXjQh3lmGI1FeR7ayf2a2nxsxxI+618pFPFkTv6ZFdugb6ALux6PiB5S6VAkUHbb+EpAWUozBLrKbJxwHZ1LZaWZSc3gGvEuUze0KCv7mX02pldPKGDUDQOi78nwRvCdhrDnLfRxQPWTxbdyP3kgHaBixpZTvDJDFZrJqyEedmWoH9dldHpNtsvMu1jiTZZKWbTRtCXq8DlUpZQFcd7WTqPJ/I5pkR4zqqzYL7jWYGVpNolKAGX7yJR9WjCJpmxvdV1HkzA0Jy7XPHtYlEbEdDuW7TtC0A8gA6kGUzBQRZMDtir1KBb6I7OaQDtLMxQ/J2HSper2eRbHqsAnLd4GAWlmgcOn6UNaGnxzgN9k8J8BCGiOMyNm3KF2OdJ/39WTayL3xB2nTllfIz2HGddfbkQDiozzTyU7QhL5o/utKVNaRru89RXHsDrPxN8qXBRzPHLuqyzH3WJhq7czwpIWlmP3uCf76f0UYEaQtoInMapxJxS3Bd2ymvNWPuSbMI+IEBcd4yE+jgoJRFW0SnNrK6leMw77ALQ7QVbYuHjm1Xf7/JfbJvv8x9BM3pJLBeAKUzc+/sbGDXLc2mzLeXXJIP2C5jBrh7PxBFCHgkiCTiRMwViM6pk9zo/Ez78r3WDDDVkAQW2mM+NZUlwyZ3PB3BrZZ446+6yp4Qq1aNXYzjzKOq7aKyrzP+kM050tsLDBk9eGkbGzbknf9UXzD9IFBvSrkLC9kFmmolihCEIRAGdi1guzNJ4Pkp1q83q8Xp6SzLaKWSKV4PJK5DazUc9zfnmhGQyoTKdMHzZlPscV+fVGTTJgQ7IvT2lmxiVz5iKO6gNLXPkL6btd7CgtRleVn6olbDfG0bUr+E8p490if798vrttvQ2XGd6N84xZNkCHNzmSOq7M/bJCXB2Biq1bJdCiSJ5BQfHvWzik1NAQcPIv3Up4RpaM8eoFJBWLsuy9fjK0eGBs9d20wdFYHkenzwmq485eScet3N+Lp58+Ynul5dUXKmAFsRMO4mYnSpYNbiT6K4dBxFXNgaVOV7zSutn8doYU01o4FfgpWaZqUoAlk7DRghzihwgpusByOtXUBTOye0g8Dlc9dJU3UENJ/JZ1BH+ntN68E6aCCaz3GpS3SEvgviau5tl+aG3/PZuhxG6ZPWpYjuRo8h/s++KKLy0eVrHvGicbDamNH/kx7HjdZmuUVjWkfSu2PFrZMG110qGveEAvuKVDOaTknrSSc+5YvfP9Vlw4YNqzoNunQuF1a6tvschZtsDTa7kShaGG6rN7bmmhVrdfU56SbS1FAsahoQ88zUXJtbvfkSecziLOejDmnSoXFulOyZbAB8oXdZWADKkWqnuwnRmzoH3F4tekcnVCMTio5mA5j8Um340jTLfOVEVQlA4K1olu+rJJram0Hwdm4uy4LpZuHUCDdDzHTH6fGxuGjfJ6aqgdN2Oir0cWnS3tq20lHB3d/sbAZOu9H97gYwTQEE2XgA8k4eDaKvddoiDHHiRD660vezBKI58AmQxuhMokCWKczUkeM78DviyGg0srYtLckFJLulkgyKQpqfgAg5kD/37ujBJoFlqGcq/O1hKG2yt6Rp1v8LC0IFcPiwXHDsGNBswkMHaeoV/n5zH7o/8u/RjfZatrsIc1hLzubarqyUru0+BzlDu5YTx27Kn1UGu+/b6ck19bk5V/NTqHuIS+eqwudr2835jfZU/yWaWDT/OLafU71dHyib5fsQO0PnsV4vhKFdX+QyfKUplpflZB2Th/p+5p9nNXO2LI7z7XP0quMR9LJLLx9sUnbaaQ2i06YzITZPjaVplvj7ssts4WGI7CEmOn01QJWPsUOGf9MUfhgY/Ui/B5HpeybEdvRtk59yjPg+/DBYaU7MP7RV2smzwo5rWRJalca0PJK+7ECPOdeGc01lItEtmm3KXloS05imZs2SJMBDD2VrpTjOyP1VX7C7yzxBsX9/Lil7FAXiMMr95kz12F7fB1othIY6j8HuNkf9wkKm00YDMwDaAKqNBtBswh9dqdNCHawmRXb+Ipau7b4w8rhWdMz42pXzLxroc6NaNWDo8oW7YKj+y3JdcJOAo46q1cAln6MjmF3aF95HAFZLEcBIgJZ0GYxudoFhzYFeFEXv0rXoSGwdfa6frx0DpOYgOM9IdEaJa3BeR+MDWUS1m8zUpY/hs3UEs3YKFF3n1lkDwJpHvSgq2gWLtSNCR/EXceprvei2uGCmO1lrwFqPI32f20euA4C6dMsv+g3odumx6TomWJ52tnQ6Hftec7wzKp4nAvhs1lE7QPRvhy/qj06j1RKOPtnl13/91/H2t78dt99+O57+9Kfj1KlT+MIXvoD/83/+TxdE/y5J13afoawGMBdtvPnX2SzZPYjZVepLXSB0BduD72fRSmqzm9tsm8K8KAIQmMd78P0AASkuuAlh4RrYdtuRpvDSNsIwyDbB5vPQbBRzmzftUODOGcjzqJoG2Y04I4Ac8F9jwjr6zG50XdBe85TwM7Nji6KSxV6BDG/twADA+mFsKKO7XeoQVsj3s6g2Rtq7VCdsuyk3aZhTB5G/whnj3kb8uPBLIM9B44LoBdfnwBytPxdg4fdFkiTYsKG0sizXcaDrqHWgM8D6PnyjylzXccyQIJhHwjUXgnI8pCkkco/lUhdmzOkuW9G2NLXDlKf6fVaKdWaZg4PyfuNG+51lRWig+Pfjiu5z9/uLHFRfy3Z3N+LfHena7jMUN9Hf6ZxdBXMigTqsi+xvuKcHDoCdN3uZSRQnrlcwL/PaKJKI6jAqZ1XTjmddV03HUTRvuO1yAdYkQSnO7LCn1g9hJPO7bUgcZ1zv7jqhwPnu+1kEvjNli76WVZ1ZL/aPstlBHKrHeLlcmHpZFVA3YaiSUhoh5xvB8zAUVJ+0IgMDOW7zJAGC0LHdS0tAHKPtl+RZpq0EbHnADlzXGQeF6ILOBid5JfWl86yssr6kmZevsrFoyyy6t2iCNeug3DrKPerH9SHbnqaCbOusrqpe/NiC+rSR1OnGjaJn2swoysYBK7Fxo+Xa5xJ2yKy99E9rYACZg8TUWTezv185opgF1dSlbLqHmV15IGFgANl41O3TA22131fR9RepdG33hZEzGgWny/iq5atf/erjqlBXVspqEbtABjiS4mK1xJsE8oo8UxoA5HsCfiyHn1E0WKkBR7fOOgqbsry8jCRJLCit66HL4DNIi0LKkiJgnaA66UrcpJWab5v3uVHypJ0ZGBiwIGgYhujp6UGpVLL0LqQLIT8hkAeINaWMm0ST7dL9wehwF6TXYLfWE9sFCI846+M6VFznggaASadTKskRsYWFhRzdCvnged/S0pKlg3HpfHQ9NXe6TtapxybLdSlb3PGtI/vdthAk122m04XP02OTbeL9BM9d/vVTp05Z/nRS3WhaHNZHR/9r0c4Xjh3Wi7Qwq82lRZH+Twa5++678ba3vQ2vI3kegFe+8pVdEP0CSNd2P07Rv28XBNOLcB3hq6PC0lSOo0Yh2mkJiV9Cs6FoVytD5jq5pVbL9q69vUAnKsMbHbVlwfdR8k1Cz3ojvyGKY/iVEctOIpcH8P0AlUoJpUonD/hy9+FGJ5tneb6PchgCSbbZ9qJUOLgZ/aUjfLnrY5KxSgXzhrAmVdUUCQAE9nMg42XVuLY+ib0i4ixfoIj6fqhaRScuoacnS9KVARwl2bCzT3V0OTui2UQu21ea5jnRx8aAahUdSGQy+VHh+/JdGOJ4UkK9zj19YIoJ4AMo+R0ESIEwyPlDAOG9D3TUe0spimCx5rbXutB96AJE1A/7WgMkRWASADQaCNxIR/e6NBVdcVer60WdmA71U53YLs0octzy6JwxY4tUQgzqK5PagHoKhTM1SYBEDckwhNDhsNxWC14YolYr5yNB4xgYH89+wxzLvi/csjt2AGmKLZUUaKgBrY/F6z7S/ANav66czonxXZS1bHd3I35+pWu7H6e4gFeREwvIRwM7VExD4TwQ+YBfEXuWeOjvB9oIEIyOSiLReuZbpWlsNFQeiwLgLWgdxxAgeReaTXi1Gnp6RrC0BBxviW3k6aRNYyanRhRhpuUJTYvllFJt0POPXodki4EsYWpYlsjfRgPwfQRjkSCOzMC8Y4fYMIVc898wHlqhQoNT2mnPJlKlNNPsZBGjlonI6gUL513fhxeG2LChpOMErJnp7fUQRWUEVYg9HhzMHOCXXipO2GZTThIR9e3rExoXOgjiGPN+GfVpIBwNxMYB2Zw/NobJCWB8fDO8ZhOdqIypKWnr2JiJhudY8X2kymch/e5MkBwQpMqhPVZjk8lVc7EHiS+ULtMP5+12ke3W0tsLNBoYqYVmwZnkn2nGr9dqCQXK6Ki8arW8PVaOEl39ctSRnCpc75FayPcliSltfhTZqs6nAfx4M4Jrr5W1wvg4hyCWNpatOisVKTZIZoBHGxm9mxqHQHYdgIzqyLz85z4XfpqK7a5UECQz2L27LNQxTT/rEz249Jpe/38mzu+LzMB1bfeFkTMC0U+X8bUr5180Z7MGWclv7QKVGmx2uaM1WKf/EoB2y+dzNTd5UTS2jmDXILoGVjXtCcF/RlKzbgCgk49qQFsD5qy7jvzWdSL4y2hiAqZ8jktlQvC7v78fYRhafnLthGAZTJ6qk03S0dDf34+enh4bve7S0LA9BM91f2lHBf/XtCy6vzTHOvtER2NrbnwNavO7MAwtwEt6E9aBiVN5T7vdRhAEWFxctM4D7RzRbdPANfVdxGFOIFzz7euxxHs6nY7Vl9YB666pVNgHGnBfWlrKUcF0Oh30Gzc6n7e0tGRf5KBvtVq2HVpc2iC2XztE2HaOG+YIcGlqngryD//wD/i93/u9wu+6IPr5la7tfpzi0lystngmOElgGciOEBuO0QZG7F6R1Jtqz4i+PmBLTSKN5k2SrqNHgeVlAfvKEfmsm9nmWIOio6MIqlW0Ug9TU3lMvFYDKhUPlcoQSlXkI91YEU1voneuWg/qWK29bnbWcrR2ojISw9nebGTHu7mJ4j7aTWyUpllAExNoEZSwSTDJ16n7wd3osA1GL14YYrhWW5G0S/BeD2EoGzcQTK1uscXmIsm0TswO9zuTHup3Sz03bgSGN6jouB07gDjG/fdntKxUN4/xb6lImUEUwTdAOiPRkwRIfQ8lHn3nzdykVgTU6cCz2ElkusgjWKSBFd/PdMgdFNumk5EVjXEegdef6+MCFNLqmOizTnVE6pPM27q3U4nOHIpJdSAb1/loM9I0o4ztjfJdnKbAwgl5RJa3toQhs3E/3vTQamZMBNWqRJwNRe38uKFemk2MjpbtV0kCzKOE0o4dht+1njlKenrQ2XkDvvxl4BnXpsCBA1k76dDgGFGgw6onPdgo/XI38BeJrGW7uxvx8ytd2/04xf0tFTkL+VfbcM7haSrc0FGEIwNbcexYRg+eJEC9GdhiwxAImo8BSYKlvi04fFiw3TgGwjjIU6AAMlFxnjFczr1jI5Io8Uge+964Edi0qYy0Lu+rVU+4uPUPqogehdewIGY9HR9H6hsQ/ZFH5DOedjMh1vO1bdh/N1CpBKjVxOnLYpm7hAeMAGkrp9YwBLZUzbwbx+JoaCI7kkfUlLas1RLDpyi7+F1QqSAIfcwkARYW8ixhzSZQrZZRIsc6QdwwzJKX0t4ZR/98ZYtlgEubmWmoVIAhzsHj40AU4VsTHiYmRDUjUYSjR2UpV60CXuOx7EZj1zStz8AAUOpXa4aenixSu1bDkdkSNlTMmHHGoe8H8NI2gjSRxK8cixMTGZisUXbfzxYO2o74fsYNbxcVqS2jM7YNzSYwRA700VEcj7YAEeBXt0nk+4GvKl6d7JDCxo3IbOr4OOD7ON70kDSBnvXbgPXbrD/dQwdB2oYfBpbKvTZ2HUpjYzjULFl/EE0uc+UGjUPyO+H6Y2FhRSR6tQoM4bi8GR3N1jj2CCUkkWm1CkxPw2sczJwo2vZqBxR/O6sB6PokBuUiNG5d231h5IxWbKfL+NqV8ysaxNbc0kCen1vTRhBIdAHaIgBPR+JqXmoNhGsqGE07wnsY5a2j2XUkMMFntywASNPUck4T+AUkoltTpGjKDepFU6FoKhedJFTznLv87iybNC69vb0ol8sYHBxEEATo7+/PAbJzc3MWkE+SxIKjOkr51KlTFkgluEsQmO12wWqXtkXrR+vcdVJo2hReu27dOsvTrqlqtAOBvOjUbxRFORCdTgw+g20kuO1GVOu66rqx7+mgoL71mGb7deS6BqKLItH1ONUANulTXGeELluPM+ozSRLMz8/nEpKyf12KHV2+dhLo+lAYua+dNkXyZI1CB4ChoSF86lOfwhvf+MYV33VB9PMrXdv9OKUogk2DXhQNoHPjxNBns4lt+iN2o8C9Y7Mpm1ECyKjXgVYLpbExJImHuTkB0jdtAqLRQCKLNeen5vI20U1LSwGOHgVOnszvq7nPGh0dslX2wwCe38q3QYOsRDVJcqrby43Z3Jw9f0wKUOLY3BcTb6RoblG+NNDe22uAVkZQacBe81+7Gx3utHnE22w2gyhCahJaUifLy1nzCOqzXlKMUOLI6esAcSyAe9KUa77xDQE8TNA5OptM/5gor+NND0eOSPczeisXMBhnqIMHwPcDS3GS7Ye93HFyqyQTleju/+RrLw+kU098uN5BnUmkNEMrfT87mdHfn4/KtwPKt8lrp6bk40pFjpMzUk8i2BS47/toyLDH7Kx0Hx+lj7Vrn4+l3a+VceKo9EOzKSBHX59gG729yJLL8XlKJ0PVNqIosE1sNoFwdCu85vGsLeZYyOQk8MADwDOuhXDAEiHzfbTJO+86dtbaiLvizjEXiaxlu11H2OnEOZDaldNI13Y/AVJkq4E8cFlETcb58vBhYMMGHIu32nybQ3EHJxY8HD4s06Cl9phqAK0WlmtbcPJkRm+SpkDgVAuNhrwIElarwFgWlE18nSbv5Mm8b24FiK6NF0PYXaOWJDKp1mpII8j7Y8ekQOuJjYAowuSk+AqZ4JzzL5A5Hek77OkxFBnZ7dkiAJLg2jomuDAgqByGUiAnfi6GeL21eUNYXs5sBJAFmG8xFZmPNqPZFL/AyZNy8iuKNiMMRb1LS8A392V04uxiu2SjPms1dOIhTN0p9mR8HBip+DjZlGaFITKbWKkIxZjyA9hUIL3pSltbqWAmlQTyc3PA1mq0AtH00MnnleEgIrf6jh0rgdzVJmN2FinSAFncLCxYWzrUaknZvm+DL1otGdc3OFlv6TMeHIQkS40iHDkRYG4uG2a0zzzUEMcehkI5Fddqlez4jiIB0E+cyKjMeRis5LezBKpcSBqudeaYAcwYlMztNlGsrSSBchNEETSbwL33ymkEHvek/vQxQDaUei/S60Xm7C6Sru2+MHLxj4SuAFgdbNKAOd/r71zAmlLEm60Bbn62Grjn0qEU0cTwL4Fal9aFQhCdZejIabfOLpjqtk1HbBeBzYxG1npxqWEIevOlgWFN+8HPNNe6jvjWwK3bf+5zi/Suv9PXuycJihwTmlpFjwndp9oBQ2BbR6/rSP2i5KX6ee4YcB0pWnccB7pvWF834erppGhcu7rTVDfa2aEj510dse6rUc64dVutD7SO3T7kfU92+bVf+zX87M/+LD772c/i6U9/OtatW4cvfOELALogele+R2W1TbkrerPu5/foOnDI3q439Ybf3M1PmlvYEw3OkWlni2TmWuIeyr0VUBt8frC0lFWKiKbbPo3Mc9OuPtab0zPFB6kXS8WpwfwiHa+2kdFK1a81Aof0if6lJdngavyZ+08bFa2i4la0zfdtZBqTcLl4R+4eU9+i5hBIz7lxjaLSZEW3r8SLVgywgsafroPYYHbMasCUU6ZWvbtH1dJBFsXHsc7HMEcZq+GWySG6sJD3X+XqzldPT76tSYIg8sFUeSyz5DotDG+uLXtxMTfmee8KoMzo4Xt1Ew6sbbtXwxdWk4vQR9CVp5KsNg+usBPqt2kMac4sp5JMc3HRyeugjn65ZsvODdou0UDoI2NY+bU7J6YpxJatNodo+jHXhrqiQXfWz/exsJD5512V8BYuPejs1EXkFbaKuCCwfkDBpbp5PT3K9hk+c4K/c3OwibB56otYsM4Xrg9gsV9ZJ8739hmmArlr1zJqRW1RurVruqIx6Ro8vmdnuLpby5bofmDHLS4Cy8v5Nad5ow/yRRGA2M+VTxOqH8m2cK1JHeuTd/DT3JqAuiU2vmKdoOusx6/TVjvWYCjwXAe2WosFXCy4451/3b46U1ltffpdlq7tvjBy1iu5ooyvgIBCYRhibGwMr3zlK/GqV73qCalgV/KiQae1aCFcoFNH61I0vYUG9TQwq6OZNbWGy/Htll0EMha15XTtZGQwaUSAjCtbX6ujm3XySw0W816X5oaRxYxEL4o01hHuboJSXQ8dUa2jsalfrWtNgVIEQmuwXNOwaICXkc58z9fS0pLlS+/NrfSQA4/5XJa72okFDaz39fXZuuukpoyGp0PkdMBzUX8DsBQ569atQ7vdzvWZBv2pD0bduw4FzYvPPnNPS+j2ufkFyJGv60gKGe0gOFNhubqv+OwnMzj82te+Ftu3b8d73/te/N//+39x6tQpXHnllQC6IPqFlK7tfgKkaMG8Griro1zSLJmhxiAZdZ2719zHf8kTXphUamAgA/vM0WmyahALTNPV81jl9gqaRJq7TiEgXdk+trm314bcdfzAVk9vUG0wmZ9RUJLWRUcaB75KWgmsjJqOoizyWSeA1PcwDEqDoOYaHbzuBnLpx7gbOw1osM4UvRRJUyDQyd8g1QWyoDv+H0XIH69utRBEEYai7F4ridpAmvI7YclGxLPexLkJvJd0FJkL3lBYGXezqsc0I861vn0/21Hr6xVSUTF8//pkdU7ZZqxRDfTdsG903jmOIz2eAIlKTNMM3w/DbGzlRP8gWBkTpVepbHbq6ec7LAxt33fCErxKJYuWNABbDjg6HVft95CsZbu7G/ELJ13b/TjFBRP153pO03ZDzYVMQQEAM4lQrXGesUWae2iewlBNke6agMhuHIuxiWOL7bEKLIP2P2e/3fmcN+i5nRMqPyP/SprKaaBGsjJ5s7m2t1fe0p4AmcklDkvT4aVtRXUWFnsztVL4qtWyBmkvgSUDz/qIVWRRvLRSgfDKAwhHN9vb6ODQ0fM0OUXsW2mK7LhcGCJN8ssN9gsDnm0Fmk14AMq+j/KGENjkm6StbaDeyh6gsq4ut7JxM58GCCOhb0GaohPKabkcGMxGX3aZGDxWgn1HxNs9Ecb1Ql9fFuqt6GWsmnldkqA2lpnwOEbWH60WyhHgD5bs2igwAyCZyq+Z9DqP5lCvaVlFjqswzHBt2+3aXvf1SYE9PUCSIIoCS3tvc5oYgB5+AL+yObdWbjWlHmXqrbc3H+WvK1S0QC4C8F3Pkvv9RSBd231h5Kx7vSjj65e//GXceeed+Pmf/3k89NBD+Nmf/VmkaYrXvva156POT1lZDXByAXOX/kJ/rjmcgQxgBPJR1BpkZaQwAVaCrbocgpw62lz/r+uto7h1pDpFA9aLi4totVpYWlpCmqaF0dEEv3lPkRAc7e3ttRzyBElJE0MKE/KgA7Cc6gSr2+22/cztCzeRJSlTNBDung7QDgj3O97XZ1ZrLjC/vLyMhYUFLC8vY35+Hp1OBwsLC5bTm+B9f39/jn89CAKrL37e39+fi8h2ecU1GL9+/Xrr2CDgzb5iW0ij444F7dDQtDxs3/LysuVnp855IoBjkPVnv9EBwLL0yQfNd67H9moJQZeXl+04WFpagu/7Vp/65MFqYLwrmsJHg/0AbPueCsDwM5/5TDzzmc+072dmZvCxj32sC6JfQOna7nOQNAXoTHMBSH0NkN98692C2a2tX5+dTOWGrlJxgrbiyJYXhoKRp6k5Lq05UPSmlAv/ajV31FrjAPpSwPBUEvhzy+RLU2Dwr34e76tUgDjORTDphI1839enKFpgGtxs5WlwXIRbb6qrVTlqHZYMV/zK4KF4bIscBdagsGm015qRNKe+D0vymuSvi0c3r8i9SQYZFrV+vbwnJqF9JYE5JsyT88zTpfdrS0vmOHRDhX1pEIG6JjBCXZv+mUcJs0czYECLLiKOA0m+qcdpFK0Yr5aOhGCI3mz7viAJJKovGvN84MJCdtY+STBUNW1oFmxCzfvjTc9SFtD5o7ud6tHCa8hGwKIHBvK5Vu3j0lS+YOIx6tsQqJfHfUSG4shDB4AvnQYAY2Nopx7m7pYyjx4FhnfscM7tm2lCf7baLvUi22ifiaxmu7sb8QsnXdt9DuKC5dp2u++1vdF23OwTttQk4aOaNuzcTwdr2UzwUZTlZLD2QZcLZIh8X5+lnuDpJ81ioqtGeyOfmw8532ib7XJgc07etCmb/6emMqQ0jtGpjphTOACSJLe8oE336oeAJMFwHAP9vtCZTJkJ+sSJDHl3Ra0R4PtCf5IYlrsEGBjebLnVeTlgAgcawjPvNY+jHIYox+aiJJF2TrSEz7uvD6XRUURRyX7FROWLi9Jcqmn9erEbjJa26yRD/zGfCv86+e/Xr5fKDAwIk4o1qb4vVCIcEKZeXrMpnX/JJSv6/HgrsF22sJDRw8SxJIBPmrI+GN4UWR73duoJYG0SW2N0FG2IDtMWMFSpZHRreszrTuR4IOdZby+8ZB5xXMoGbKuFLXgYiEOgZvqxZRapjQYwNYXS2BjSaAhpCsz4Q2g1shwlFL3+Y04cVDO7x98Mq8ohybGdJEA7CiQgIY6zSJP+fgHzYx9Pe5o4G7zWjC00TTXznIdqNbBdNDsLjDxtLFtDT0/LuK9ILpagyAHuDkjXMV4EpF9k0rXd51/OegQUZXwFgP/5P/8nPvOZz+BjH/sYrrvuOrznPe/pGvPzJDoS3aUi4ef86yYaJXjo8nMTuCRACyAHRvI6zSWtAXsNqnueZ7mkXZBQg5xrgd5MOsno83a7jUVzppptdZNf6ghmN9qc9/T19aG/vx++76Ovry/HtU7ebupLc6rrJKLa8aBFA9yAAPCM3l9eXoamh9G60jQyRdHpbuJUAs2sw9LSkgXTFxYWMDc3h4WFBczOzqKnpwelUgm+72NgYAC9vb2W/1xHoetEmwDgJtQkCMx+1rphwkwC+boNbp8CyPUNn6lPESwuLlqQPk1TBEGAgYEBMNEoE74y6ax+jnbMaABdj2+2ReuYdWbZpBjS40vz/rsgugsGu3Q6HHsur/1TRTqdDiYnJ/HYY4+h0+lgbm4OQDcS/UJK13afg2iwUAO97vcUdyOukmZt2CBHjcm/bKijkSSwyZV0yFXgdzA46GF52YCuLYW+U4iYRxHaYRnN6ewjHUTu7gPsvbr+RHqrVcz75SypJcFBHamjd7pms0MAnxyxBBd0oJsleuXfRiPj7eSullFW5K00yGg7LGNqSvbrjz6aP5VLc1ytSjK0KArs/rEEk9hSJ9Vk3+locN+HN5aiHMeI45LFWhcXM+qWvj6zqUYW6cZ918ICEG4wCTINbrF1tLMSINc6JR+pTnzJUL8oEhSeDoQwxDxKluJbg8s9PSsj5dMUWFjwVOS8bNRh9tpLC8Cy6VYBaAKEYSAbSn2MwZL+Kp1pkB2QOi8vSzs4yBuN4ghwjjPftxtwYw5sdCP3zWlq8+5Z0fpmnwwO/v/s/X2UXFd1Jg4/un379u3q26WrUrW63C6JsmjbbSM7AgSWGQMmOMZkHC9CGMLy+5JhJiHwEiAGMkwYMismww8GZhZhhXySMCErhEXWjwyZwDBMzDCGYUCADIqRsYwb3LbbVskqq0vd1d23q25Xv3+c85yz76lbrQ9kIdm116pVX/ee73v2Oc/e59k2Pp50kDf9XS7jx/WCCkYawW6kNVDhVRIzUNsIeoYpaXyffBIYr+1GITmhAr0liX2E2C4ueHcqucB3qP1094BX9fzJQHf/BELdLU8oSRC9n9E2Te0kND+PqTjGD1tKB6lgn+p26gijt9MVVKsFk72Hrkl7JVH7uALnVOrYahWtuV47tQQcpRM3UvEnAFSrKjAy0Us5T1MB0J2egSSpW8tlo1OumI60t6+13xqAlHqKBaTubjRsVEjW69JLreFV13tpKcDJk8jwblP3SKYw6aS/m3M19aOMB8PJ+fhxpQCuuQZRZZfRGeWy0gkE0cPQBq0kiL59uwklowz08NCsq++Tk9YADvjYtk3h2FEEoKHHyexsNjB7va4yq1aBW2/NeC+0/YLRd0NDaj6s17M2cvb1+LiHgm6QJAESeEB5t2qK+SxoHdYKaq3mjnmACyK7xiEXv+8DzSYKZd+eCmg2gQMHsp1A/vUjR0wjhjMlswYzxhAxbsfGVHcsLal29n2g6wfw0M2MaRkjlUOWbdFqASWWIQxhopTqDHfzxF7DPtOrS6o9Dx/Onlqgmv/xhIfde/aoPjtyxBjKDYiet5Z3vTQoF7jOpgx091MvZwyi94v4+vKXvxzvete7AAA///M/j9/+7d/+yUs3kB7JA53yqFvy/pPezi6ti+d5kNQggAWyJbUIebNlkEamLe/JK7f7XebV7552u23+d4NnEkillzIDQkpDgQRsCZLSk3l0dDQXRJegLgHztbW1DG2K7Afm7Rod8njd+3G9S2OE/LxlyxbjOc96p2kKekrTsMB82+22AdBPnDgBelLTi3xkZMTUX+ZFr3xZN2kokJQvBIIZ+NX3fdM+KysrkPQ1pHyRVCukRJFtwvLzM+vIccA02F/sR+ktL6lsmC77zw1sKz+znMxPnlTYsmUL1tbWTJqyb08HAJYGExpQ2u02fN837fR0B4YPHDiA22+/HQ8//HDmxADfByD6+ZGB7j4LcQExCaq7/8tFNne74pxr4HcxNuaZ/aDv6wBKYWBu7foBPAFY+n6AKAIKoT5+zbT5rt2rVlDA0oIFVglcu9jn0JCghXE3Drw4itCYV2C02ZRLxFbWU2y4koZ15in4bYyNBRlvr8DvWvS3XlebtqNHVRQwGUgrSbLHzLXX3sKC2hAdP672c+5GgJsvbs5oTCiUhQFEAp1slE5H5T08bHbUUbTL0Ilww8pira9n6XEo6+uqjPwchrCbVhlZ1C1HowHjWs/fWHjuSLWX3NKS3bO7mJA7NKW4w5V14vcwtBulgMYfChEN2WYcxFL4Py0OdOGne7gDVHXhZU5msBwCY89wzrsn/tnXLj6f6xwWRZg/pNIq1SJV/uPanX9y0rop+j5SPzD40Oxs1jDUbKoxeEUtygfMJW9tv05wN+MXsDfbZrp74M12/mSgu89C+ulu97s7kXOC4YTDOTpJkKZFNBrZeI8mKeHxG/gCVRRppno+K8honWmKdljMzIG+b088cZ7jybQwBJA4E38YojEPVCoF5cErJ3jfVzqO8zj1zcSE0itxjMacmrq68HSQ6yz1HAB1z5NPWhJ06nB6Y9PYS7BetDcBVYKcUgVT6LkvVL7i5JbGbk7Mx48rFJf/aZ0T+F2kqWf0Bruk0VDpy7S5NGMdTzQ98zugqhKgbfovQBdTFXGB76tyMKp1kqiFyaFDCny+8UbbiFFkHPblECSeTW9sqf4ZmyNNLFhNPnV268iIyrqQ1+cAEMd4vO5BBVktKW5+rvPkIoLjYm5O9S/XHPv2YSUNUKCxf3oagd/F+rpnDALSvwKwBxLcZU6g/x8asms16bUuQfQkQdaY5VqUZCBc/R/52Ofn1c+XXqouXVhQS8x6HRgbCzBJRR5F2TF4OgpNPnP8fIHq74HuPj/Si1yeQhjx1ZXPf/7zKJXUkcjl5WWMj4//5KUbyGnJ6QJ57vfNAHeK9CR3aVj65ZvnTZ2X9mbllOm7nsqyTHm/8R73N7c8pypbXn3dvOSpAPc0gNsG0oDRL+/N2tT9Lu/v5/3NNnLrkhcAVV6X510t8+5XFwnMu/+79wDZExT9yp/XJ/3K6Y6B000rb0znPRsu7U4/cQ0lbnry++k8GxezvPnNb8a+fftw+PBhnDhxAgsLC3jkkUcAbN6fm/XzQM5cBrr7PEm/RXWflWjP5eKHvutzF5RE1ltE4gJ52J0pz+msjt0bnXxPdelPJKLwBM3X1/MBdL7LavVUz/1D7vychurnxU9wPa8ZWDZAeMq7eea1uSRal5VwyNl7ArjlyKb1Px3Ju6lfx7rt12+w5YyXNLWB2053GBJ38n3rcc536fRuvNH7Je77trOk8SJNcx3OhoYsLav5QwcFtN6hp6jERbgT3Ux3y2F6uq+nShYWFvD6178eW7duxdatW/H6178ezTxDj5CNjQ3ceeedmJqawujoKG688Ubcd999mWvW1tbwtre9DeVyGWNjY7jtttswL+kbANRqtZ79xLkGswe6+xzIqQZhH52WlwzQGw9j03v1fyZ7B1zvVwxXzUs1JaUroRxZRzk/y+/u/45kTvO4fwA9gZV7RBS6KwI3bzbnn9I7djPjpNN3p+pGV5ec9jolb90g/2MF3Yji+n142L7cZHOHpygYlwPuX0ND6MlHJiRji+TWZ5P13GYNs9lay7VJyfEsT/C59G1n1A+O1aHfmGV+JgBumiqrjja6GN19pgrqAtfnA919fnT3GW9x8iK+fvvb38YXv/hF/Omf/ikA4K677sJLX/rSM016IKcQCUZSpMewpPzIA+Yk0OjSuZB2RF7L79ITmJ64BBNJi+EKPXv5n/TiJj91Xlnd6+mpSw9xevTyXpZJejHngel5aUtOahl4lPd0Oh0kSYL19XUkSZKpAznH+Z0UIZ7noVAoYHh4GGNjYwjD0LSX5FunBz3LJHm2JfDMfiE4TS9w5st0R0ZGsLGxgUibdZk2vcwllQ+9xl0aFOn9LseKBN5ZVt4jDQr0Et/Y2MD4+LihUZEgPe8jNRC/u0C6pB+SNCjtdtt44/MzT0tIKheOFdfDX/L9yzKxP9mnksteBhmV7S2pkuTYkuWQXPC8X/alpPt5usqDDz6Iz372s5ienja/Pd0NBxeiDHT3WYr0NuG7u6p0dw3yGrG65+aJHjqG21JsRAKRFv9rp57yMAOyrjsiS8EE07Mn4iZi2zZkybTzVspJgjguqM2F3OGkadZ1SGaSpqhU1N6xEHaBVoLh4cBk0WwCaeQpjm66H4+MWC+o5WXrmkQyUp6lrlTQ9gto1VVaBDTdZgfU8WyywWzfrjzbelyiZBtKd0LhSZfUrYeYdKrzfeWkFYYqfXEiPrOHXl7WZavENh9Dvgrr1g5Y2hqWkUfkActnq92+SjMx/OmCiZ9KLFfiwJJLV4LKstpAFgcZHYUKNpckQKNpy8GjBRR3p8wMjOug+I8v8gKI792oiEZdtZNMku3HJvN965HJk/F0bC+XVd1Z9i4844xX8NvWfU/TDVSrUxgbE6c96P7XaMC4+JfLCKopLr10B6LIOrzt3Wu90T10gQOHgK9+VV0vT53kgSr8zPrL+eQCl4tFd99+++2Yn5/Hl770JQDAr//6r+P1r399LvBM+fCHP4yPfOQj+OQnP4krrrgC73//+/FzP/dzeOCBBwwYfccdd+Dzn/88PvOZz2D79u1417vehVtvvRX33HNP5jTl7/3e72VoVCL5oJ0DGejusxCJysrnL09cIJHPLjmyqAjqlqaZl5nTMi7i7ftop55OPsjPl97GaW/gTHrWMmvfhwlA6aKOXtrGyEiAIF3pPSXEU0Scx+NYBakUVCPUX16yAiQJRmMbj5JYJS6/HBnFQ5djep5TYbLA+nX8uPIEltPhyEj2gBLrLZ2gy2X01pUTchzb42B00a9WcaLpGZXD6mnK+QxIW63a/9ifUj1TLQwNBdi2DQjStjII+AE8udi69FL1mXqm1VIVoDGLFC++j1IcI5wp9ah5ro/c5QFi37SL7EbXyDsxAeBQ3TYiE9RrjEkGcAWAllC21O1sKPad75tg4ost5dVfqFQMFw717NKSPXQG9D5acm3ktRaBJMHuWhnt1MOllyrdz4N2ubad2UaWgo8dyQFJt/PVVaDZxGSthtE9u/Doo5ZCPYqU7vZ91ede4wl1UuD//l/1Q62m+ObzdLI7d/Czu/a/QPX5QHefH919xj2fF/F1ZmYGX/3qV/GiF70IAMzxsoGcO8nz9CUQKGlOJG85f6Pwepe/HLDBNUnHIsFuGTCTv6+trfVQoRBg5DsBwiAIMsAzYGkxJGAry0qQWALLkpOblDIbGxuGB51pSGOABHkJthKwXFtby/C3M3ApgdB2uw3yfa+urvYFSCmkhxkfH8fIyAi2bt2KQqFg+kQaFmSAVECBuG492M+SC5yUKiwL2yOKIoyMjIDc56urq2YyoLGB/ddqtUy7yXb2PC/DF+/nKAa3Dfid5ZQUO+xzySlP44Xse44z5kfQWo4j9t3KygqSJMlwyfM+Uta4Jy0I7EvQXLYHy8n2IPDPcUMjRBAEZoywfNKIxDaRQUjlWGRf0Tjg+z6Gh4fNc/F09bK+7rrrMDs7m1HmlAGdy/mTge4+C+Ecf6qFsuSQdoXuY2mKMAzQ6agNyNKSOmoq1UiSAKnvZb5rSnW12IcC1NNUH+HV+QV+F1HkGR50s2fS+91ymZQwDUvEKcF4uTloNFCMYxUQkhtGbjRIYsnzusIjqOifQHEYQEP95kdFUwaeGp6cLGI0KqI47WeDavLFDbjegTGI6MmTdsMJWMxWnOYFoADXiQm1OZvc1s6CwTIPsdnv+irY1+oqsNYC0qbFHAjISxuKZlbB2Jjqu3IZCJJFBZqEKrDZk0+SDSBAFO1QZQTghxrAlXy8/E4KlGPHLJUAOcbTVG1skwTFchnFchntSskw48hqSsxBsgYYEIYDC2l2oMw77dRoWLdBdiATkuA5O4Cf2VCCHghQ3pJpqsb8k/OWCUD2I/f1fCaGhhTeE4ZAyVcbccwqg0IxTVHkg5Km8MLQ0g9xbD74oDr2H8fYvT8GwhCLLU+NbyJH5LWtVJRlpFbD5AtegMlaDN9XVEu75r8B3D1rUZcvfAH42MfUPbz32c9WVioJlGdQEeQD6a4V4QKSzXT3mXqoPVVVu//++/GlL30JBw4cwHXXXQcA+PM//3Ncf/31eOCBB3DllVf23LOxsYGPfvSjeO9734tXv/rVAIC/+qu/wuTkJD796U/jTW96E06ePIlPfOIT+Ou//mvcdNNNAIBPfepT2LlzJ7785S/jFa94hUlvfHwcFRnE9xzLQHefpfQbdFJpSOBb6vE0VRPR0JCJE8L5n3TfEgBtQwdD1Om2Na0Is5BZ80M3LJhrqNP4P/XdVLmtaDaksZfAKC9OEkxMBMB8Q0arzCosabR1xupUWYPzWplEVQVuUi01m8Di9BWIpgFv/hH1IwFN2cacwDXg+si8Z+JuErfi+mR6Oovbsj1pRy+EXaCeZnUJI1UyULQIikrua99X2U9OqiYAgJmZrDH56pludv3i++iGxQyDz6OPKtU7MwNMxeoalb5n6Xie+1ytk2atIqYTQKdjecg16lyYmFB8+OUywrCI2Vm17jh+XJWLdoFWC0BF1bkQdhGGnmmCAlbMOqaNQPXH/ferhmW/svCkqqO+Y3APWt1bLaBaRdsvKOoayTUYRajPqcumZmZMv/I2svDJMU58W/pblMsA5uvqwtlZBGmKSY4X6VzAxue4nZ9XdH+05EQRjnVKymge1lVZDx1Sz4Ye08X9+3H99S8yj0kYAqX5e1V7HFxTjf3f/zta/+N/IGK8g2oVuO46GwiWIkF0vvfbA5ypMjwPMtDd50d3n5X5xI34OpCnXqQXep7na5qmBhCnZ28/2gkJREkQfWhoyICpkuNbBtMkCM706VlN72vpYSsDR0ogdWNjI8Pl7ZYJQMYTmPXvdDoGSCZYLo0Irvc705FezgAMYElvZb7YhgSVO50OVlZWsL6+boJm9qNxkcEui8UiRkZGsG3bNkRRZPi7eb0EoNmu9HqX5WJ5CSSTz1zWj308NjaGjY0NhGGIdruNdruNOI6NAWB9fR3NZhPr6+tYXl5GkiRYW1szxgEaEuI4NnUYHR3t8YyXnt55IHGhoALq8J3XJklignyura1l6HiYJsHyMAzNuJJAPkF06RkvAe0wDDMAPNsOgDHkSIMQxzM/c5wT1JcguhxvrqHK9dbn+HKNLPL5lUA6gJ7n4ekkb3vb2/Cud70L9Xod11xzDYaHh9HSK68BiH5+ZaC7z0Jc71u5As3bfANZr2cBnPkaIFxbU5sQ1xN3dTXrzMp4jcohzjPXAIC/LUAQ2vIEvo9t29Q1ga88c3mqWG1I62pD9+ijaremAytlNgl8kYSVGxr+Xy5jJfHgh4AfFZXnGjeJ3PVrwlg/tnsj7n2Z7PT0DkTlHVl+dt1WK6nyzmeAr4UF1U5JYtuH3kvEB/iiZ1PBb9tNrSQa5e5K79QfmVcc9cQo2I2kdpVdy1fgqzIXfV3uRstwbAaVClI/wNKS3cPSi9o6ZHvw/QKC2LYpAOvlB6jNIwcJYNEBboh37kRQq6FULqMVFUz1pOM4yx6G9DBMrdFCko0zfWml6HSUJSBNs1FVt23LEJevpAGSFuD7JfjlkunKTgdYa+ph08gOM+m0R05YeSCAe2lA/b5tmzZSHD6sbjp+3J5c4IDiS3rEpynwox+pcUDjT7WKFqbg+4ECM4i+HDligZlmUw2iOMbu6Wl1zd//vQq6NjOj0J/Pfx73JgmKc3Ooffaz6rc3vCG7EeemW3LPuhtxd265wGQz3X22G/HFxcXM7yMjIxiha+9ZyDe/+U1s3brVbMIBYP/+/di6dSu+8Y1v5G7EH3roIdTrddx8882Zcrz0pS/FN77xDbzpTW/CPffcg06nk7lmamoKe/bswTe+8Y3MRvxDH/oQ/sN/+A/YuXMn/sW/+Bf4N//m35g1/7mSge4+Q3EHqPt8SRAd6J2ExIS64hcxP291QxjamKME0VstoBSrybcLD4kDMBo6CSHUjVEElGLh/AUFPi8tAYgaau6jlMsKJebEqcvpAZafnPOdPLqjpR0WUa+LPMnlzfpC6YsoUns4TrMHD6rk9u3bZYzGAND2C1hY0HoXKwBgYrTMzWWLw+mPMbPLZV0G7XK/knhWd0uR1mAAqFSwWL0a9Trwvf9XqSgGKGXaExO9vO7ss+DIYRttVIPy3vQ0wrBgmmpuTqnASgWYCtU4IAYdThSAUJ0I6wwBk3sja4w9csQGT9HAsXE7j2NVuFoNpZkZhGEBq6tW1UaRWsO0WsoI4/vKi9sDVKBRx+gblMuqoA88YPt7aCjL0/7kk9boQmPu0JBRtItpAfd/n4HFd5gmT+u2Gx4vF1GeuVatwRQTilmXcYxzecC2NuOLgUTYFrTK0BBTq2UfpFpN3Tw3Zz3ROx1geho/+pG65HmxNggdOqT0Mo8uNJvY9eYaUFZxggphF/iLL9nBG4bAF76AewEUOx3s+dSnlPF7elrpblP5tHetL2UzQP0CkYHuPj+6+6xGQbebjfgq5SUvecnZJDmQU4jL20MhcEeQLy9AJ69zASgJkMpgj5I+hMChBBx5jQQqSW8hvb4JEDJ90qYQQHSpVlxua0kb4gZCdfmsGYgyjxvbpXMBLLjrtikNCfRI7nQ6IHVIHuUGPczp8UzAnEDw6OgogiAwE41rUJAUJ9KDmW0o+9XlFZd9KL2cgyBAp9Mx757nZQKuMvjoysqKCQTa6XQMqMuy0ygi85Ft7oLo0nAjqYU4nnh6QdaZdePYIAhOEJ3jhMC27AsGNeXYZf/LPmGbsA5sT7a1BNBlYF3WU9KvsD7sa44j9+QDn5E8Y5XLrS4NFE9X+aVf+iUAwL/+1/+6578BiH5+ZaC7f0KRC2vXvSwPPHM8Tl1vHe5peJtUMdIJHrDgOe1tSQL4kQoExosMFUySqGPHCOzF3LwsL9vfuCmV4AHr47776ni6vKQYifu54dH3iKIYVhJ5gpiGAUX7EmSKmabqnvV1uxekQUFyanLfKB2kA7RtXeVuQX4OQ6wkngF05+dVHjzZvHWrdYiPY03hkSRACgVGA1kveu4kkwR+GGToVaSdhUCK7wNBpEAbUvoUy/rC8XF1kRtolHVYXs7wm/h+ITP0KMzXll2A6GxUSqulgHvAIj08r83Eo8i6yukMZNWZv3Twy6PObTbtHpoYuBRphwpDWIoCBpWjcYSB7UgpEIY2w+Fh64XHQHTHjwNxjFTjTgUOHFpRpAsdDQpxrAp5+LDasLNRjxzB4wBaAKoPPqg2UhL9l5XZbCPO9wt0Q76Z7j4lh3HO9QCwc+fOzO+/+7u/izvvvPNsi4h6vY4dO3b0/L5jxw7UXTBO3AMAk5OTmd8nJyfx8MMPm2uCIMA2uh2La2S6v/mbv4nnPe952LZtG7797W/jPe95Dx566CH8xV/8xVnXKU8GuvsMJe+5y3UJR/7pEE5gYWhOjfGUkwTDOY12Oujh/5bZp6k4Jab/4Pw5MoKMwvDCEGnqKV2fJNm5We8lu/CUjpeLCnnsS6CZXT9QhtQ0NVP9tm1AFHlK87r6IE158MmUs15XWddqwFRFAd5pCjQ02KrAawW8MzlOv5KCjc1tAHQCrHGMQhwrOjEZcdM9/aR/n59Xt953n6oqHcAJ2I+NqZNXhdBHuezgIvW6AnR5g24vD13QWWF52aoatqXUTUwmSYDJvWVkIs5KbhYuMrhGord1qwWggPX1rKr1fXv6MIqQHUh0Vjh+3F4s05cn2OhVzoSkYwcrkyRotdRhLdm84m9TBffxkI4NQHa5Ami9LpU9wXSehmw21WAaGVGVbzTsok6OZVF/4uwo60Y6fhzJ8eMIm011iqxSMYu5sLZbpXPkCPCd76iHN46xuLSEOpTu3tHpYMeRI3aBysG5md6W4rbnBSQD3X1+dPcZr9zyIr5SCJYO5KmV0wXcJEBJcbnO89ImeE6RgJ/7n8yLACSpPCQYnJcPaU1kuQimy3KcC4DRrXcejYykyJFUJf3G9NkGCHVf7qkBCbi6L+nBLT2h5ed+eUkDBl8ysCfTpbGEADzz4nUSZJYe27Id2a8EuAlyd7tdQ69CQ4mkSXHBZVkuCXBLEF8aTuR/ss1co8tmYKxLhSTLIQ0Z8rs01OSN21ONB35+OoLEDz30UM9vS0tLuOaaawYg+nmUge4+RyJ3GpTNgDDnerkf5HfeTpC107Gnbpl8XrKucBPvuchk3k0u8sr30wT00lRs5N0K6fz5cXRU/SUBb9crr59IL/A0zToes83kNUiR7/HrGATcZuDPeR6DPQWS6Lhb0JyvTBdQfdvPKdJ8Yf/Jzbibn97kufXPG56Ze/Lq4/u2k3gzwfwwVBvdsbGexu+s9tbBPZ3tCpOTfcn72TY97cEGlNFE5SCQN7Hz3GCnTnIZY9jYmK1fXiOGYfb/8XEES0sIAfj8j+27aec6coED6Zvp7jTNBlc8lbCqjz76KIpFQ8TT15PtzjvvxPve975N0/zOd74DIH9PJNfF/SRv3X6qe9xr3vGOd5jP1157LbZt24bXvOY1+NCHPoTt27dvmtbpykB3n0ORAHOeSPBseBgYGjLBIKXekvOdq27dR1nOhWkKIOxThjz9IedmMV94vp+lKKPekPMk7xGc7NKwmSTamOvqGWSnfsB6esvA2nyXwStdfUqvff7GNKUxwYi7BsnT4U4ESVcdZ6ZuXwU27enyTCGyIutnljXiZne51FM+AukklZfWfpZfjzGOHbk+4hjrKVq/MSvzZP/T7Z/WBJK+A0qvO8pXqlLZphIQpxGEOppDhn3rDrlMceWY5M2u8pf1cdem+rtZGiWJatvRUYTDw9ayJfS3OeUYhjaQTRjCh3LZCPXLcP70M7r1a/dN1pQXggx0d688Fbr7jHudEV//+3//77jkkkue1h6UF4rkgXlAL2DK36Q3rPu/9DCX7xL4c72byUtOkfQxbn78bXh42FCpSK/zjY0NA6jyd5ZbAqD0PGbaLIvrueuC7xLQlaBkmqaGMkMC0TJNel7Le6TXM6/lOz2n6YFOnnN6NtOTfciZrQgyS4PByMhIhhJE1kECt/IaF4CVHv/SEMETAeRnp9c+y8ygqQAMH/jJkyexsrLS413OdnKBZb7TC9zlCvd939C5MAgq+yAMw8zpgiAIEARBZkywLclR74Ln0tjBOrie58xP0ui4IK40Fkjvfjm+8gwPeYYK2VfuCQlpiHI9959uQPGznvWsnt94LGwAop8/Gejus5C8laYEOfkd6PVKEZ5gcmEfx545fcr1O7MiTQk9gEjH4joxEUM0HNdhqDhYmyyS8hJbXxcbce6EyHnCcrou0/IlvdPQu09IEiCsTKlycMOhN3R05JW8p5IuJfDtHEied8B6Nsu9Hr3Q0zTLKiIpVzLUMHKXJwsr+wOWurRSUe9sf+5F2QS+76kAklL4ne5o+sZUYxoSjI+iLMcsABRDVdYg9OH7HtAS5avVrGu8rLwLLiQJtlVVPuSAJdhhyh5pQ4cL2Lov1kfyigNZagD93vYLGW+07duzAcKkF5vbXKS2oVMd//N9S10kuxCxb3ld2KD0xo8iVeHRUfsuUR16Go6PG6SiXIblf221LDUC6/nsZ6vf5Cb/+c+3wW7LZeA5z8HuAwdQAoBf+AX1+9CQqhAfbLmxlghFnpfbqYC9n5JsprvPdiNeLBYzG/F+8ta3vhWve93rNr2mVqvh3nvvxbFjx3r+O378eI+3GoUcqPV6HZeIY/xPPPGEuadSqaDdbmNhYSHj0fbEE08YHvI82b9/PwBgdnb2nIHoA919FrIZsOX+Lp9HOXnp4NZkReE0SCE7B+f6NNV6LUkQRQUTZFoFqbR4pywG02v7BVucRFwbx4pGit68w8MWPKfu4XxVLqsAoM5EbE6rpak55MR4GqtbPUxWKlk34jRFKWojigLjGMxplYBvgDYCpCiXC+a2Tke9iE/TO1zqftYrimB1Xp4RXr7L/tGKhuooL1wL23gl8UyS1IdpCjvn05VarAlGR22skzTVDGGaRq3VUqe+6Lhsik1v8KEhRQ0Sx5YeZGZG/UfAcXTU8KVXKhbf5skrCVhnxqpr3OGFlYrKI4pU3kThtXc/whCoVrFS3qXWSWwwnXYU2ttcEJ1rlStqbeXhXS6jGxdx8qTKlqcN0lR1C7H748dVtsVQJ3bJJareP/qR1bmAatyJiSwt2/btStdzcSBOmlW5Zj54RJ0eY1vzeahW7aDjb3v32oIBKOzcid2PPooYQHH/fhV0BbCxBNw2d0F994TpBQaeUwa6+/zo7jPu/byIrwN56qWfx7ME4CjSC5wAngRsJV+5vFeC6gQ+eZ8M8EkqDPlfu90GqTF834fkpianNAEzFxCnSHoN0qp0hNncpQqRwKuko3GBto2NDVM+ps+8ZNoEgKWhgcCspH6RAS9JZSM9u5kugXR6YMs+JPUIAWdJXSINErKfJaWODCa72dggl7rv+ygWi+h0OvB9H4VCAcvLywiCwFC6pGlqeNmXl5d7QHrWd3x83IDwbAu2B4NwhmGYAZtd7nHWb2ND8eOvr69jbW0NMugoDR/r6+tYXV3F2tqa4VaX4D7HpgTFmQ77Tnqt83/Xk535SvoX+c5x5oLo7HP2K4F7eaKh36bHzfPp7FH0gx/8AI888gja7TZWVhR34gBEP38y0N1nIVxAu56ieZtw9zt3ntzI6Hu2b1cfGQRT3hpABfjyNc91mlpK6nrd7jHGxzWArnde7dTDwoKiwpTFpkNU1w/U5gmw5WK9pDebG6mTR8OFEcD37ZH1pSXGKQ1QLu/qwQLJWW4Abm5AGlngPghDE4iU5ZeOW8QNJIju+7oN0hRopb19kNmJij7TCftQfcCf6TTGLiNea/auoWeaL02BTkd5901qLk74PlYSRXfDDTilXNZ8sWHB7A3lOPFkwlGkNsXcxfKdvDg8963vDZJFlKIQtVqAtbXsXnt1VV1akP1Nke5n8l2gHl142bis9ex+kmBCrQYUkhPGShCEoaJLYbunqQlcuqtcxq49ZbQRGAxInkaX3aX6wlPH/KtVizQsLWUb2d300pLAI+3btxuLVdB8wj5QzaZq6z17bBq1mo1Ex/xe+Urg+uvZ8cCLX4zaY4+p637t11Tac3OW18A1ULhldDnp89xZLyDJ091nuxE/XSmXyyhLjvs+cv311+PkyZP49re/jRe+8IUAgG9961s4efJk3w3zZZddhkqlgrvuugvPfe5zASjni69+9av40Ic+BAB4/vOfj+HhYdx111147WtfCwA4evQoDh8+jA9/+MN9y/O9730PADIb/J9UBrr7LEQ+f67BSr4D2UmTyCBByTBEIeyiWvU03Yc98UVgnZIkQOCr+4Oyj/HxACdP2jAktF3HsaJh45S7vo6sXoBVxyt+EYX9+23shiiyfCkPPqhQ+kpFBYfUoH8G3XRpPIRqJwPJ8MwORBUb74PUGwGgDIVRhGjPDqQpUIy6Nv1WC4VyGZVKKWMgJvPX9HR2icFmHxkBvOaJ7FpE9g/XKpwTWQcaCsIQoQbOq1U1JU9MWMM6jeOk/yDffKKDWy/Gu+CXd6HQekLN29o60oWXMfSHITBV6apg1pUKlpYKPUNrbAyWEy4Mgf37rcGVFzNICvWJtmJM780yz3Eocl3C8ZZpAw4a6mr2eRShXdmFNAUKuuG7fmD06/whNV9PTOwwhgwFdHdRrLSygy9JgNBHt1pS3+/+uqK/mZmBt2cPqtUSGC6E7Bi0YbOvt22DdvdWID7iWNGiUefKYI6kfRkZUaB2uQzQkzqOTRTa6WkgaJ1Q1Grz86qtq1X1HPzoR8CePWiXpwAAQeNxVZAbblDX1etG51/9qU8Bz3kO8I53qPQffFCNA8ZFca0JbtuwH2VfXKBg+kB3P7W6+4x7fbOIrwN56mQzzwOXBoRe4hJolV61gPWEdak4+JlgMsHvfkC99GAm8MwAoBLYlsAj34MgMNzSAAwYLz3E8zyF8zx3XU90VzqdjuHWXltbM97NFAmiExR2/+NngskEkskHT1CXRgYG+KRXtdtP8jPTdb36ZV/RY5xgt3s/28X9zKCanucZIwe52nnN4uKiAc/pMe4aEIaGhgwVSxAEGB0dNWOEbRcEAcirLgNwyvFCwNnlO2+1WgZIZ94E0WUgVBoCaHyQnuiuJ78cIwTB2aZ51C5y3OedZuB/clzz+ZDc9RJwlycZXA902U8uzdDTRX784x/jF3/xF/H9738/9zl9utX3QpWB7j4LcRfG7sbc9WCj8HfpLq3vmZgIVLBEXwXUCmQ+ehfqAQpY9m0wUbPh1U5IaNnFPL2C5UacexfjISddt6Rw9yvBP3px53hvy33F8rLaywDWU56vSoV81q0sSiq9eyxSCs/3QX5vYsm+LzbtsTIWBH7XgqMS+HD7x3H56/qBydpDFz4sYwnzpAc62zhNbTBTSSsuqzIxUTCUNkmiNu9uQLOC3wYaTYSVQi/NiSQRly518j8Gb63XlZsXj4QTzPB9TJbL6PpBht7WcF+GDmAkDQp6XHTLOzJZSV5bSRlKOnaZVBgCmG/YzbBsfzZEva4SmpgAymUEcYxd5TK6UbGHApVieXk9FOj6xvEo+59txYLS+yiOVSPQTQ7o5Va/4Qbr+a+92R5vKANJpVKAhy5WZp6nAKT0hLqPEdWe8xws7r8ZaQqU5ufVf/RylOCQLG8eqnSBbsA3091ny6t6ruWqq67CLbfcgje+8Y34sz/7MwDAr//6r+PWW2/NBCabmZnBBz/4QfziL/4itmzZgjvuuAMf+MAHcPnll+Pyyy/HBz7wARQKBdx+++0AgK1bt+JXf/VX8a53vQvbt29HqVTCb/3Wb+Gaa67BTTfdBEAFRjtw4ABe9rKXYevWrfjOd76Dd7zjHbjtttuwa9euc1bHge4+S9ns2ZJGLb47RuWVSAPHyQo8YVD2NGgWpAmCVlMZUKMd6pFOE2N8LpTLADw8+aS6dXLSTocB7NxJIFUWmTE51HTlYWZmFwIilpycH3vMTJoqywIQFVAsty0y6xjC4duf63UFAtuDRh6GhgJMboGdH1dXgfFxFGegXaZ9C7RrvV6o+gjjoll/sOxea1G1R6WMY8c9jI4Kfd5oZaloJHDpegSzvmI9xeWM9BgPQ1ufhQUbh9taZ9XpAMas3LdvB4qRWljRMBKgjSD0Ual4atqml3mSGCP16KjKa+tWbRh5oKEsJVddpQyyUYSudgrwaNSYn1eZdjrKEN5R5QGrAAEAAElEQVRswpt/BMUwRLGs2qCNIKOeTRu4a00eRdT5pOUptFrA/BHaeT2srwfmFnYV7RNhaB22ryg3FUAunwddCK9SUZ8PHlQAuF7YFSo+arVibrxsSYOOiurXdlhEII8KTE+rdmLBAKXsx8eBSgXd8g541uJkAqMGjcdV5xGM/7Vfw4npF6JUqaiFyfQ05ufVGJjUjgeLtWvRaAC799eUEYqLmr17sXLra9XzTRB9z57e+YEi54k83X2B6fCB7j4/uvuMez0v4quUa6+99kyTHMhpSj9alzyRYB29YSVVSR5wRUDP9cwlaCj5znmtBOOl561MM4+ehF7bLlhNr2KCo66Hdb+6n8qjlWVjAElStUjgk3lL0NsNKCnr4XLFux7LrqezFDfQpJ3c7GwlQXfmL4Fo/ieBV7an9KaW13ieh5GREWzZssVQq6ytrWXagCA9jQGSwmRkZATtdtu0U954cT31pTGE7S1PQ9DgIk84yHqzPaUXvhx/0tNcinvKQXqi540Xt38JmDNdPgMuJ7r0NHfreqpn1c3z6Si/+Zu/icsuuwxf/vKXsXv3bnz729/GI488gltuuWXgiX4eZaC7z6G4nq9i42FEeskKahEvbSvgnCC4u3khmpumYMBNHr+m90iGukTc6p40let+PwxsIDJZxk6n11OvX53QW1wZWJJVNbcQHeWGniAnuT/40psSuR8xe2mmkabKEMB262e0cBMRRbFHpu0xb9LFSBoUVySPrGxrBgArONf1nELP6avMF/mj72MlVf0eRoENDMr6yOeWBfF9oNWCF4YIw0KGAeaUmyXdCK2WwkuIVzQatuukh7g8lk8xZeQN7s4asLtrabXwfWM8kVWiyJgA3TCAFwmAxe0QoHdzS7RDdgjRenkCo1Kxv8cxmrOyiB7qdfXXzEwJQZyo62s1oFbD7KzKssT8pZGIZXHL6nbMmexoz6NsprvTFHB8azaVp7KKf/M3f4O3v/3tuPnmmwEAt912G/7wD/8wc80DDzyAkydPmu/vfve7sbq6ire85S1YWFjAddddh3/8x3/EOMEbAL//+78P3/fx2te+Fqurq3j5y1+OT37yk2btOjIygr/927/F+973PqytreFZz3oW3vjGN+Ld7373Oa3fQHefpeTpO/f3vGdRf2dw62IolIdMh4BcGALRDvufNIwiwNKSpQnpJwzQ6FA7Z+biEtcFzEOg79RFaQpE1cBSePV58KTupuM9oKsYInv6iRG+5UklaXBIEgUWQziIpe1M9OjR0aJKWx5tkv2R12eb9B0vGxmxlChhmI19bbLQ90qglweRirqxmXyg2yyKtE6iYkzTnunbrBeSxJ4Q08ZsQ9tGuhF5qoxovAyc6fsIogh+aHVhbqeJdurCk4cCMk3L8QQAJ08qowIdKjIHn+I06wHBcsmLGAyUFvYkQaSNBGNj2fjjHIdmzeCrAOR+JNaf2mjvsX3puaCNA0kCFCQ5PelYmk1VET4Q5TIefBC47vKqcT4gsM92bTSUjaBSKSqjFnX3s5+NI0fUtdeS/qbHw6FPH8i18UB3/0RysevuMwbR8yK+SqqQpzMdwU9bNgPA+0kekAhYsFaCuRKUzAPQ6SktvaZdr2qXXkbm6dZFesu7nOyuxzzvyQs+KQFIAuGSqoUgrOt5LIFSCQC7bZbXbvJ616tfPgsEf+mpLz2ZXe9+toMLsEvPfBmcU/Zfnie6bH8J7LNcElSmuAYCFyDOa3dp5dwMpHbbiJ/zKFVkOaTnP40Ew8PDBqiXaeeNNZlvnlHDPSHgjgF5X56nu2wXWT9p/HDHlHx/uss3v/lNfOUrX8HExIRpp+uvvx7AgM7lfMpAdz8FIhfR7uI7DzyTv+d5XPGz2EjyMh6R7nR0QE+RFfc7TI4e1fTK8n1BfeLmIwNK9tvMinr4wqNb7qkl92kYAoWwCzQdsJs7XKeOANRGPAwRhl520S4S7foBPG7w89rWFafN5ebavcQd/rQvyA2ilMwpXv2B0Jbv8yi2rkvo95Qhs2l16uILrCbw0dtW6+sW1OG7uJeB8DodYYjo10amHL0/0/HPbEyR7XNTHxeccq04nY4CY5aWLC9/Dn2J+0hIJ0VjOMoblzJvpy2NZYP/043e5WEQ7eNWgeUK0Lab7VA19KYsLDnPT+b3U23Yf8qyme6+kDbipVIJn/rUpza9Jm/dd+edd+LOO+/se08YhvjYxz6Gj33sY7n/P+95z8OBAwfOuLxnKgPdfR5FPJOcR/vq7zw9xomLtGG+pR+TATiDUAU5pBGX+I/U5YHfRRhaipFMHpzL9B+jo9npzugEqWfSFGE5O7ePjNjDT4zPaLjK2Qg90bsd0ahpGFp+9MxkHoZIW849pzIm9pvj9TqAsTPcJAkeLy/3+gckiVKdY2O27kBO/wFAqvvL9zM87G4RA79r+3xoSBsUfKyuqsmxSDUj9RHfuRARVpOMg0SPQUZnyv2/XmPIYrPZN2m+jMd+5maWhwPVzVtQHfllZTTi1EMcfNs29ZvL/e+haxcP7rp3dNTG6kkSFMqRcGeHBdH5MImjcKOj2FS5yDpnTjRALEFktHfX+O+uKfIy6PffT1EGuvv86O4zXsHlRXwdyFMvpwM2Sa9ql7fZ9SoGLHBNQNcNgCnBXAmkM5Cm5Ax3hQAiKVokkCiDhzLwpgSFWZaNjQ2MjIxkwF9eK72cZf1JBSKpWigS2AastzbTcAFZ6f3Nz+TjZvBL2X6uAYGBMGXfkEecVCgSxJeBVlle3su2kNQpssx5xgTJQU76GlKjkK+d10gP8vX1deNlzr5in5CuhfWQnvppmhq+czfYa974lXQxNJCQLoanHvidQVF93wdpVWS7y/RkmVkGGSNAGjHcfnP7UI4rllVewzYiF7z0lJf97sozCUhfX19HpFdU5XIZjz/+uOEce6pB9K997Wv4T//pP+Gee+7B0aNH8bnPfQ6vetWrNr3nq1/9Kt75znfivvvuw9TUFN797nfjzW9+8xnleyHKQHefhaQpEARqoSx5OaXkAWVys8mNiXETi8yqvp3aDVBm8xSGJigWGVj0iVbjlV4kgNpqIfB9VCpFkzWzKEDTqVDyeDX5u0SFWXZJyaGv80IgDBXXZhwDV15pKT48dC3IONvMnlF3uSNlmwq3uHK5lGnCdhoAOj/VfIHySJfeXS6IK9ud3RSq9qFjHbtKvvu+dRLj73ROkt3u+5YPN/C7GZ5W3we8ZEV5rvkqzzYCBHGccShfSTwUuDl0Ns1B3DVeZoAOaspGIUoiwXNuTtPUpE8QxpDfsjJ5Y9QR1s9tmzwvdN+H3ez6vnXpBywx7fIy8MADqhw6wLtx4/N9U3XiEOPjFuQpRuTT1wWRhfB9O94AG2WOdW21VN78j5VoNu2Zfnq4UdIUYRiYJpa4O+bnFX/q2ppJz1CoHk4t2OQ2pmxIiqyH9DC9gGQz3X0hbcSf7jLQ3T+BnAqYdf8T1jtyaWNeu9YKqq0uPEXrUi4bsFx5cccZPTc2ZkMsEEw3FFVhF4W0hcJEhOFhD74PFP0VDVaqcpc1zVYUITtPhKElHQ9DNU+yXOgqj1upVzSdSKFSQRwXEUWWjqRWo9G7qa4lxQZpQ0iH5epv6mGtX8qV3aa5VxIPflSCH2cc0pWnt9TdUgfKdKFiuQDIejBHRTSbyrs6TbOxSwDgySetJ3SrpX0EKqrMiS7HxISKdTk+DmC8bHSQHB6mqsORCWDpxOREMWwD9Ya6uFZTmdXrQLmM5WW1jpmY8ODJMcgFHHXW+LjloqFImhN3kSLHaqqcGuTyAMiqOnYR109cNtRqekw1UpU/ac6owzsdS+nDsjYaio88TYHybkjhECFNu4nLmKYokMKHi4oo0g4CwppzzTU2j3pdcZzPzQH792MRRYVWRkBxJrTBWtNUUc9zjZumCENtHNHPTxyrR8GbfwS4/361HhgbA0ZHM84AuSB6nu6WDeueTLmAZKC7z4+cQTMqedaznrXp60zka1/7Gn7hF34BU1NT2LJlC/7+7//e/NfpdPBv/+2/xTXXXIOxsTFMTU3hV37lV/D4449n0lhbW8Pb3vY2lMtljI2N4bbbbsM8STo3kT/+4z/GZZddhjAM8fznPx//5//8n8z/GxsbuPPOOzE1NYXR0VHceOONuO+++86ofudS8oDIfvQPEliUvNoETpMkwcrKClZWVrC6umqCNrbbbcMdDiADmAdBgDAMUSgUUCgUEEURoijC+Pg4oijC6OgowjA0HsIELxkcknzWq6uraLVaWFpaMq/l5WUD8DLP0dFRRFGEYrGIbdu2IY5jFItFjI2NZYBc6ZFMoHh1dRUnT57MvJaXl7G6uop2u23qR9CY9ZPe4TIwJEH5JEmwvLyMpaUltFotk2aSJJnApbyXgRwWFxfx5JNP4sSJEzhx4gSazSZWVlYM37fsN9nm0vuaAUzHxsYQRRHiOEYcxxgfH8f4+LiJmsz+kUYOBuRcWVlBq9UyZV5bWzPc59Lrm1z1IyMj5rP7nSC2DObKOjNNN5inHLssG0F8gs1u+iMjIwjD0Iw1We8oihCGoRnrBPE5lpMk6XlxLErDCI0bsn7SUCHHgjt22F8sJ8cmy8++k8aGCw04/+AHP4gXvOAFGB8fx44dO/CqV70KDzzwQOaan2Q+3LNnD+69914Aitvzwx/+sLEA9zvBsNnrTGR5eRk/8zM/03M8rJ889NBD+Pmf/3m8+MUvxve+9z38u3/37/D2t78df/d3f3dG+V6IMtDd50DcI8juy/0dsDtIbg705rGdeoZus9kEFlueWZivJJ7B9cg2UaupdzoDZdJvNBA0n0CtBuyqtFFqPYLC/A8VB+TcnNpAi7xNwkTnp6ftRk4Ce9wVOXQYXtpGGKpN5OSWJ1BqPQLv0HcVd+aBA+p1+LAFKglMVKvqValYFJo7QH0eOWidQCFdRIA2PHQNd6s8UZzZHUpqDilys95qmWqtrdm0jh7NnFA2R6KbTUU9zlhU7CM2n+8DpXAFwdwPgVYLiyiijQCFsKt54JsGWGb3t/1ChhFgaUn3OcvK8uqCeGnb4t7sC8BuwmUBjx83hWPfBMlitu8JpOdZDjSIsL5uu79cVl01MwPs3QtcO72CK+InsDt6ArviRewqr2BXeQVT8UrWWEKqHpb12DHLY3rwoBqTR49m7qH3YBwrcKNWA3ZXVlDyF23jSz6eOAbiWPHOEjHgeCYHrexMAN2oiBNJAT844uHxpKQyufRSlTHT12M8itRGnO1fjLooYlGdC7/vPnX99u1AGKLkLyqu9E4nS7XD9uj3WT5jZ+nN9tPU3a7t53ReAzk7Gejus5DNBp2ro3mdC45JBa3nh5XEw0riGeNoNy6hGxXN47zY8nAiKWAlDdBOPWzbBuzbp+iWt261aqvZhPqg5/BSuIJi8oSaIw8eNIGKC8kJVKvaMCsBvDhWie7bp77rOd5rngDSFIsoYtEvWRLs48eVAXB+Htu3q7n9uc8Frp5uq7XC4cPqdeiQBXCHh+0agPMt1wJyTXD0qClrMWwbY3W9rqZMLj2SBHYeJzWHRHcl1ZbukzQV/RVFOH482y1ul9PO+eijKvlWy97PLKtVYFf4BAp+GytQfWWGix4TAdoqlonm8O6GBbNsMVO5DCg6M6Ou1WseljNNkZ0El5asXnrsMUZmRzcs2PZsNJSe5Prt0Ufz6W/SVJ9WyC4/KxW1pLui1sau6ASuKJ/AtbVFPG9PGzMz6r9S+gSC+R9rQFxXiusI6rFHH1WNSSP5/Lwam7OzPd7uBKuvmO7i6toKJkcXbadwPcSClcu2rcNQ/b5vn2rD+Xk1Bo8cUaB3p4O5OfXx4EHgx82SWpDMzABJotYIYiDwxCbzLoZtBbQfOaJ09/HjyooSRSaOqFn4sLwuaH6ql3RQOE0Z6O6nh/inviRfZMRXKbfddttpp0GA41/9q39ljqtRVlZW8N3vfhf//t//e/zMz/wMFhYWcMcdd+C2227DwYMHzXV33HEHPv/5z+Mzn/kMtm/fjne961249dZbcc899/R4VlP+9m//FnfccQf++I//GP/sn/0z/Nmf/Rle+cpX4gc/+IEhlP/whz+Mj3zkI/jkJz+JK664Au9///vxcz/3c3jggQcyvDvnQ1zwyAWSCAa6VBNukEPA0p1Img4C0BsbG/B9PwMu5gH1kiKEHu70dpZUKi4nOMsgAed2u43R0VHjiU4v4TAMDRi/ZcsWE6RTgp8EvWU+BONXV1czFCEjIyPGe5r3SW9ql8qG4gagZD35khzqEvwFbDBTeuJLgDrUizQCrpLCxhXXcz6PtkR6Y9P7XJ4EkDznbCPyw0sg382D6bpGizygmaC4bEt3/PIkhASlJTDteZ45ncDxuGXLFjNGaKTgfTTSsLw0Frl85JKOh/0gT2C49Dou3Yyk8ZFllR7pLIP0iJcnK9xn50IB07/61a/iN37jN/CCF7wAaZrive99L26++Wb84Ac/wNjYGICfbD78nd/5HSxrb8D3v//9uPXWW/GKV7ziKa8XALzyla/EK1/5ytO+/k//9E+xa9cufPSjHwWgAp8cPHgQ//k//+ceHXWxykB3n4HI1WPeijLPs01uyOV93IhrdybulYj/jYwAxQkFKC8tWLpmL1lBwfdRqQRmz50kIm9uSJNEeTy1WmrjJTddwvtdboLbqYdEbyBLcZjdlbogAzcKGkX2Il9dPztrvdH4vrqqdjIjI3ZXF4Zoh0WDg/o+VHn5kt5ZdP8NQyRJYBzkDGVlJcxuvl2AUqar0/TSNoDANBf/ZlaAdfJeW8tyi3JTRu5V34fqiLk5xaGdKM++kt+yYAAAxLYI5ClnUdfWNN9u5LQx28L3kWpu9K4fwPPFuCNAzDHGI+L65YeBNdywwnTxzhuzjhBED6AD1NVb1juOAI5MR27upVGEg7xeBx56CN25OXhEcLRXVBee4W8nDl5IThhwITMWxQmORCcfxwXlESqFjb66avqCxZ+dVXWbqlXVtWwf4WXKPjZxCNiW8/OqzwmahKFtY2mBkA3ptlFOfcz/Z0jL8XTW3QPplYHuPkvJ09nuPChBMT6TUvFoZUF+cybLwNOlWJ2YabUCM53EsQoqHTSVovfHd2BpSTnDpimAKFXzHL2xCZ4miZojtQ4MfD9Xz3WruxR/dOsJu5gAgDBEva7jatQCdT9B20YD26b13E50+6GHrHW507GFFzElun6gdbdnPcM5/zWbau7SqHHq78DyssIrl5ftNNfpoNdgLE+jSYoy3/KUs19WEs/we9M2L8FcNuGjj9qiM8Y0fMXNvbamDcxHjgB79qCZlDA0ZOlwutD1o7NDVDJB3UtxFyuJZ+nNaG2/7DLVX3Nz6nulguVlgatK3U4juCNJAhRC2LUijVJsPFYIvWnSG52PXrkMBK0TlvidDRnHKPH0wtycKof2sgegOosnxDodZQAn/zhgdWCtlikGoE/lJYvWwkFUnc+Rzp8L3rQFILIGocebBcRxAYXjx5WSnp1V43V9HfPzyvbA0we7p6ftOm9+3vLNpWlGpTLvQhSp62ZnTSwThKEykvCEWz8Qnf/JNY5rhDsLGejup4ec8QjIi/gKZEG805XNAI6tW7firrvuyvz2sY99DC984QvxyCOPYNeuXTh58iQ+8YlP4K//+q9NxNVPfepT2LlzJ7785S/3HTAf+chH8Ku/+qv4tV/7NQDARz/6UfzP//k/8Sd/8if44Ac/iI2NDXz0ox/Fe9/7Xrz61a8GAPzVX/0VJicn8elPfxpvetObTruO51LOBniTlBoyHYqk3XD5oiUI6dKmEHiXwRZ5j+QJZ34SOJRc4RLAd/m3CS4DCsSlAcAFNF2R9BsUyZ/tco5vZiyQLxk4tZ+ntcudTVCZ6TGvzYKOumVxucnzglBKDnTmk1f+vLLnpeP2p3yX+bvl2MxzWILS7j15/SHHkjQySH77PP56+Z8c/y53fb865wUEdY0rUmQZZdmZdr/7LhT50pe+lPn+l3/5l9ixYwfuuecevOQlL/mJ50M5D+/evRs/+MEPMDc3h8suu+ys6VwWFxczv4+MjGBEERz+RPLNb37TBDihvOIVr8AnPvEJdDqdnoBeF5MMdPdPSXfLDZQg6ZRrdYK57m3yQxD6SH2vZ32fuynli6gwwWxxc1fzda+uqn2d2TxmMt+kTnyXYCXfpVeOSMul2Azy0pTu2uhtuszG2m3AfkYP0biuhw33i3y0ZUBO7nmZbOYREQA9DR6ZDHSeeXsyp1l6yywuMBy3eQOk07HovLjXUANJkOIMxfdhg7jSQ7DVskTrm3lZyzYX4zMFELiDwMkzDKGOYkvuG5muEBnwNZOIbBf9GyloDa7OzNz2SRWvfCYrOc4FoAYg28Zns6nOqdfpyk9Td8vn4nRkQNt99jLQ3edRd+d5lzoDXT7qeU3fM71pLhM/tsEdM/pdAvUikGXmP5ZNgHm8tLAF2fkyTbOYu+/bOBppaud2zulra3ZuSxJlbJVrXd/PFCdwpzlOBrw/sj+zHJm5ejOl6Og/WQb+zOzybJRpqqrDdpZill9izt5sDcY/zZIktVRfmcwkmq/54PpVseePPA9m2eei7j2f+0zAgd/NHq+TFnzpfMAjYCw79aYsmyxHkig0O0lybVBInHWoWyfdTl2XBEOP5TAECpLuRqfBZuZwRS0ioX1Pe+b2IRe6NOxLDqBTeZBvBqDLNc4ZKriB7n56yBnTuTDi67Fjx1AoFHDffffha1/7Gvbt24e77777KSiilZMnT2LLli2ItdXsnnvuQafTyYAeU1NT2LNnD77xjW/kptFut3HPPff0ACU333yzueehhx5CvV7PXDMyMoKXvvSlfdMF1BG3xcXFzOtcy5nSGvS7zvWylfzZpMUgyEpgkPQULtWIpFTJe0lPXBd0doNcSpCanOn0WidNiKwTPX3d8kgaEnqIu4CrBO+lV7RrSHCNCdLbHIApK6lCSJWzsrJiKERk+ekdTnod0qrIukpaGAk6S3Bbcqm79CGSYoQAI9uFfOduAFL5zrSlB7r0PpftktfnTIue77Kubp3dwKKud7g0qMhx644ll5KG9SZNi0s3JMvIZ0B+5liU40zSuMjPbpBTpi3HM+vncrnz2nPtmb60tJSZi9bIRXsKYRTsUqkE4Oznw82EaecZXU71AoCdO3di69at5vXBD37wrMrhSr1ex+TkZOa3yclJpGmKBo+4XqQy0N0/ge7eDBzrt+njb9y0kKtCezm5TCly+hgeFjil/sCNh/G0cRf2/COKYM6p7typXtu29XqiO9IDvErgNA+IlfkPD6tNzeiojVAWx6oc9PB1vYVZGf7ncq7qstA7eds2VaXt22HL5da9T924kWI2Y2PqaH0cG3pMUw3SwNIZj/1EL/SMp5PIr9NBTz0KYReVik0rrwkyiTr1jyJVby9ZyQ+muramSGDp/eXyzjBNt/A5ecr4m2HIoGUiL9n/brvL73keWrpxza9iXHnJSibgnjll4W5S+WejgaB1AkV/BZPb2vBai9n/k8RGBOTx8UoFJ09azMD3c/JgPq0WguYTKGIR5bLwZJTegGlqj+RLLll3/PVDUmTeOf9fDLpbDovTfQ3k7GSgu5+CfffpDErOJ8Krdtu2Xr09PKyM0PB9oz8yALb+IfC7Gb1vgEU5l05OKp1N6jMZl8Rxs6UKMGUVaxHmY04TAdloj+7axH0xAV3YHjshlSTXGoLnJAyVXpV/XXKJnktZRuokiN+c+TPwuxYQbrUySxwW0Z1uy2XlaCzZ6dg+27ZpWm7fN/XiMOgB+XXfB2j36G6jNrjWimO0EVhdC/VzuawBbdc4wPUV6djm59XpK0m3x0bcvt0uHmR7iXHF8ptAuCwkRRo5+B8XF7xOLnry1lDSapQk8FqLMr6nKrar/1ynDn2Czms8oSjQqDfhPBM86bV/P1Cr9WD9AOyiTf7YaqGYnkDQeNye/KTIRTUDnc/NqdfQkKFn6xE5R8g1bx8Z6O5nlmyyM8yXvIivN9xwAz74wQ/i7W9/O773ve89FeVEkiT47d/+bdx+++0oFosAFOARBAG2mVWuksnJSdTr9dx0Go0G1tfXc4ES3sP3vGsefvjhvmX84Ac/iPe9731nVrHTFNcbup/Xrby+X1BDmR6DIMrr5X0uL7dLS0GwV95HAJLe4xKYBCxwT8CT4CUAA6oCvd7vBCIljcaWLVsyNC1MT9K88B4J5AOW+oTpuEYDVwiaAsgEV11bWzOUM1IIXI+MjGB0dNTc2+12sbq6agBWUotIIFyC3K5XswxG6oLqcmyQ2mRoaCjzznSl94o0ZkgaEmlAId+3BJElrzz5wUkJJNtXGgY45pg2+88FwSU1kOwTyVUv6WjYvzQSsD2lsYSc+JJHnfm4fS6NF7JPZGDV4eHhzMmC4eHhDF2RDOzq9qH0jN/sZMLZytVXX535/ru/+7u4c5No1izLO9/5Ttxwww3Ys2cPgLOfD09HztYT/dFHHzV6AMA58UKn5J1CyPv9YpOB7j4L3S35N/qBbu67XGhrUA6+r8A8HittNOBFEcrlkknK9+39URSYrLq+5uvU+wHGZsqjPjGbXl7EsvJIrgBO5cJ4aAhZEFJ6C3PD5dZb7qq5AVtfV9d2Oop3kpsy7miTLC7qh5qKI4p6g4TqdivFPuJawYL8rZYK5iVBYjaWLKfrRdhqwQNQqRQwMpL1MJebBZkk930S5zCsH61QIQRRBDRUeitpgDAKLE1NvY4iE/V9FOIYSeJl8m0jQEAAwjEgBDiRbWvXK4xgLgvMyGflsnWfk4VnPiyA5rllskNDat8+PCwahY3Ae8iTmweWy0FFF0RRNk8e++crDDE6WjAUOq0WUIxDC1bL8ZCm6vmRzxgRFdlOgKqIPqq+WN6NuQPqL3MqXnY0N8+kdpmfB8bGEFx1lb2O45jP1oMPZuueB0C4u085l7giLGkXg+5OU+BMVOJgI372MtDdZ6G7XUMVdZWrs3mtex/nVt8H9u7FYhKgiBUF0Ok5oRCGSFPPqCXAw+ioZcRIU6Cdemp+T1NlAPR9lMsldb3Un9KYDKBb263mQn/FzPHtsKhAcRFvo9kEdsWJpdDQikszqAFz85bOS+thL21biirft1HLSe9C5JsSRebEmmk7qdur1cxcXcAKChMhJiZU2wRoawNoy87jHD9sKDkPMw+C/9ow7DVPoFwuIY6VrYHeyRIIn55WlNmPPqpiU4YhzJrmimkdzL0FoFo19HKy+4sMgkljtO+jZCJLqws12wZQqQJRhHa8A40GMFUuq3UPbMzXHkoVHokit1gcq9gcO3cag28G0GbkaupcEq37ikeddZdLVXOqUK7pWi0b6INrgTRVwVrhwSuXgauuUgnIE1pyDSgp+44cQWF6Gr5fMs0VVgoIZJwbGbhb9ieju9PInaaI4wAFrNj8b70V2L4d7f0vwfKnzDC0AXbZRlKPa9o4ABY0Z/lp1fF9RVvDYOdcN3G96q7D5HjkeJXvjgx09zNLzhhEz4v4euWVV+JZz3pWDyn+uZJOp4PXve516Ha7+OM//uNTXr8Z9QLldOgazoTSAQDe85734J3vfKf5vri4iJ07d56yvKcjLmAuwU5X5O8uIO1yp7fbbXiel6FXIW80QUkCwPRkZjqSf5pp8D8JpEqvX4KoMpil7/sGgG632wZgdMu6sbFhAFb2BUFY6TFNAJ95SZDOBXYllYfMR4K6rBNgAVppUGCgSqZNIJuBJvm8SBB9eXnZeKhLEJ186czD9VxmmSS4Lb3SOU4IxpOCgn0reeVpIaUxRXr6Mw8JnLt1l9zyvG5kZMSUQ55ocHnwJS85x4scO8xfgujSMEJwWo5btgfHK08jsE5pmhrjBX+T46HfCQSWR/aRDPZKEH5jYwNJkpgxI4F0aQCSzwbzldecK/nBD36ASxk4DacHNL/1rW/Fvffei69//es9/53pfHg6crYgOgPpnmupVCo9G8EnnngCvu9juwk3f3HKQHf/BLpbApGnAtHlPWmqCDxHR7HolzA/C1wd+SoQVxiiNK02RiuJl0k2QBtBqAB0OiBz72M2ea3E/giozZAGRIkzsjgzM7sQNJ/o8V7KLI7zvM+TRG2+d+7MArJEDWT+rlcZA4j6PtppDg0NuKfy4PsFROWC2txzw8X0Wy3LUSp3zL5vN5zcYLpllNfqTWEQJpgcD00fdf0Ax49nQfVyWXHZthFkTkOHoQqmilZiNqJtBCZ5YhUTEyXlPX74sOJIHR83gVWHhnZk2mJhARge9hDHJWVQYD9wsyo7iv3BzXGzqTaNdD+LY/u/2XHCtgGNGTq9NgK0muqS9XUYblgJPJgj3BzTEvDhb8zDBb2HhrLWB86hjLpWrwNhiDCcMm0IAN1KwbYFf+Tn+++3m/H1deDZzwauuSY7ZnSe7T3Pw+HDQP2IcjhjkN4whAUG5Jjiw/PlL6vyrq2pNtuzJwsaLS0phIb3hCFw3XW2feVzIMU1yLnzhf7/YtDdg434+ZOB7j4L3c25xwXEXCMrf5PPJN/13P3j+QCzs8DNN0BxadOYFkUINRBLPc1YEtQdSQKkfgGFqGsUc1CFAmbnk4wBuOsHOL6xA2trwOzdKs0bbyygmNSBchn1OhDHgTLMpqmNmxwmai4FzJxWCE8AzcRyXw8PW29bFvj4cTWn1WrKmBtFKsFKBe1QBUv1UlWXk3JZnKZYQUGr6gBpWkQcq2CVRi8B8FotRd8lG4j1lQZdqa/kPM61QKOh5tw4RrEaAkjVayLGj+e8DIPcFdNd4PBhxNdci2PHtApk/o2GopDTXv6Nuko2Q/3C8tBCwXLoud9DF6Ojao93bCEAsAMndROX9xQRaMC92NLBeGXk8k5H6ZRmU/XXoUNWn1arVk/6vuqriQkFMssxzDKFoVGDpKnJ4LpynLP+8lSDXpsZahX2h+wrqd8A9UwtLVnufgDAC2XzYko6MnD9QtB8aUnVXzuS4LrrlMc5gEK6mD0x8ZrX4FvfL+CxL6if6RsyNgaru/niwmtuTgW1pyc7DQW+r9ZgBN1ZWF77a79mnVxccdf2ec4DgLEwDXT3M0vOGERnxNfdu3ebiK9BEODjH/84du/efc4L2Ol08NrXvhYPPfQQvvKVr2SAk0qlgna7jYWFhYxV/IknnsCLXvSi3PTK5TKGhoZygRJafCr62Fa9XsclOviRe02enCte3n4igXSXfoPvbnBEoL8HpUxPBnvsdrugF7kEk0kFwjQJdPMe/ibTlv8DvYE6pWc9AVEJnMsAnuT5lgEtCZwSLKURwAX5mY/0ZianuxsI0+XEdulcpDe2BEqTJDGe6QSOCTyPjo6asgPKw4P8yiw325xgrQTMXZoV6RXt9ju/E4TesmWLoU5hP7bb7Uw7umNKGjgY5JXe4RLEJ7gsPdEBBSCz/Rn8k2VYW1szQLIEomV/ss7SoOJ6ossgo+vr6xgZGcHQ0JA5AUD6FknZwhcNGNIDn+ND0tSwffLoctxTAzTeSJ5K+ZL94gYyfSqCjY6Pj58R0Py2t70N//AP/4Cvfe1rqFar5veznQ9PR84WRH+q5Prrr8fnP//5zG//+I//iH379l3UfOjAQHefle7uA3Jl/tsMSAdMsCZ9ahdX7/EtFYT2MAsj3TYMcmSOWZcyDky+jx6+SAnwc//qxhWNY2AXvXu5cXIXxhJI5Gan2VTeSxMT+cAf8weyBga9SVObTCV0DJJNxGoQ140iHQRNelDxhoUFRV3C8/NjY3bjqQEIiuf2A9OTSK2ujxdFGB0tYnXVUuoU/LbacEcR4riYud20v94syiLSa310FChGoe0MeUx+bEemWMvLEkcpKC92No7wOuuxejDDxx7LctCIgHQZz74wRNsvIGkBvq+Af5e+nt1ojqCzHOR9lRf1oy6Rhgvy4xBIZzAsOf5bLfhR1jaQJEBBgP3mD9aXwATBl6uuyoL92hIwOwscPGjxEALovq+DtUqjC/M5fhz4/veVp6TQg+3UUyBTHFsgQYIT9NB3vSk51igSsGP7Opvyi0F3Dzbi508Guvsc77vlXOoCYvLZFLp7bg7ADVDPPWAmEj8q9qgVNFvw41KGYtr3PQQ0BBMoZRlCFbiz2VS2OaqNpSXlVV3U8ynVMXvDxHeQQC+Q9aTmKTTqBKlfl5eB8XEsJgEaDaBW2wEvDLHiF9Goq7zGxwMzJ8um4hRIHVKpAKWKvkAGlSatBj2hJyYyNDFGxwHWqMk+kkbc5eWsgV/n4fs7ssuS+Xng0CEUKhWEofrPpFWvq8/VKk40FfguwmaoNKSukYFlAeOdT9XEIKc0wLdaQCmKrDHW1YmyXgsLWOx04HU6iA4fVnldd10P6LsSlkyeKjg6zDXuYTtZj4CdRc93bYSgrKQBkpbwOwgL8CqhbV93zUG9RjD80UcV0L/N4uS+D6AcWqCaHgjk3H/ySXXh7KxqHxkgVDpJjIzgB3MF/N3fZQ5PIgx1UF9hzO+GBRvLp9lUCp8e/HINQWPF0JAqS6MBfO97qp1HRpSul4tmKbLv8gxz4p6B7n5myRlzov/O7/yOATjf//734+GHH8aLX/xifPGLX8Qf/MEfnNPCUZE/+OCD+PKXv9zjCfj85z8fw8PDmUAoR48exeHDh/sq8yAI8PznP78neMpdd91l7rnssstQqVQy17TbbXz1q1/tm+75Egl0ugA6gAz4fKbp9gv42O87RYKp0is6j4pEfs7jhHapLdzXZsEh+wXAdKlPTqeO8vdTAXduuSVwKusi36XBQl6Xd+2pgMbN6itfLs/4Zn0lr3d50DezgrqnDk63X2U7uh7hpyOybwnE83cJWufR5LgGhLyxxfdTjWu3DeR7Pznd654q2djYwFvf+lb81//6X/GVr3wFl112Web/p3I+zBsLp3qdibRaLRw6dAiHDh0CoHjmDh06hEceeQSA8mL6lV/5FXP9m9/8Zjz88MN45zvfifvvvx//5b/8F3ziE5/Ab/3Wb/1E9bwQZKC7n0Ld3Q9Ap3Q6PRho7w+96Rleai1mQ5gHZPt+z54tEycqz3vmdMQ9IdMPdHC8bLt+gLU1e7uIqZoRWdY0zUmfF3CneoryZNpss9W/s7mljSxDZZKm8NDNVnETAKYnOxnc0rngtDYmmYZxpJ9HFJDfRn3Gh7vHB5AN/CXzkd6dffq950VuA9/PEv+LOvYdmpuB9HkF703aOAD2Fbcd19fzuX54LesgaY/cdE5VtrN9Fh35aepuNtHpvgbByc5eBrr7p7Tv1hNH5lGWk0nO803aMVd3ZxJyUU/0zsdJkp2GeI37HGWK4M7JbnnzOJ9z0uj3zMqir6/b+KdmGpSG9jxFg2w+ZzUP9pn7TVLivx6dzbLgFDpByiYXymVJpiBuG7hyOvV2dHbm95zThMR3e4T61zFoi6Yw97dTb3ODrxStJ/NUel+RDcbBw3xYGZ0Xcf/cpZYoU2bN2LPoFfkqLwXVDnItKYPB5AHkeXIO9PdAdz895IxHQl7E1xMnTmDbtm1nfMSg1WphdnbWfCfAUSqVMDU1hde85jX47ne/iy984QtYX183VuxSqYQgCLB161b86q/+Kt71rndh+/btKJVK+K3f+i1cc801Jmo4ALz85S/HL/7iL+Ktb30rAOCd73wnXv/612Pfvn24/vrr8fGPfxyPPPII3vzmNwNQINgdd9yBD3zgA7j88stx+eWX4wMf+AAKhQJuv/32M22ycyZ5YC09dgkEyj7oR+siQUPpaUsqDekJDQDkGKdXOUFJCWpJDnXXW54enPQU5nWSB1wGDHWBcP5GL196DLMspG2h8FpJlyFpXfrRdrgAsEyXbUuaGBfMz0tTcre7FCQEetM0zQT8JEe69LRnP8q2ppe2BI9d6pk8r3V6bNM7vFAoYH19HcViEZ1OByMjI9jY2DB9xXLJdmK/s33Jt76xsYFVHQGE7S05yzluXDoYpim5wwGYgKT0OJdjhPWRpxQk2C/bg58lbQy5zPkfveZlX+cZIFh2eTLCNYDIUxiyP+Q4yeNA37JlS+b7+ZLf+I3fwKc//Wn8t//23zA+Pm7m2a1bt2J0dPQpnQ+fak/0gwcP4mUve5n5zmO///Jf/kt88pOfxNGjRw2gDqiFyxe/+EW84x3vwB/90R9hamoKf/AHf4Bf+qVfOqN8L0QZ6O6zGKsZFychmwF5fRbhhs3C961XmL6XlwbSc0bvTMNQeVhHkfYQrjfVf9LbOAwzlCnbt8NwTLubq67jO2EWyBMxTEZxbD3H6GErebBdsNBtsz6bDLmPXV/vpfoeHgYKYc7GLU3VBpBlUC5yGa86zxd9IcHNvHLLdHHqPZGHLgq+09faUABk6bszaTHQ6uioKm8Ymj0cs5e03F6y0gvaAr2bQvKousez6YnOz05QuqXj2Q2UPGXO4pK2phTHvbz3euyu+EXt0Q5df+XZDs3fH/h+lt+A7/J5IfWM0clZ/MGUnZ59YagKyvTo4cibwtBaQnRZeQQ8SVTdZIzbNNXPm6ZlMF6TUaSOgrMtdQJB64T67bnPVV6Rms8dtVo2yl1e/20mP8GG/KepuzfDGM7F9QOxMtDdZ6m7gd6Bl6ez3Imbn0dHAdgAmfB9FSFT6OlWS+GBYShii+g0x8cDk1SQLNrTK1GEFb+Igp7KEEVIUzV9lctKvYmDaorDWxRLnjLyfV3A6WkbjFQaNjmpSzoqGd8hilCKuwhDT+mfJIEfFjJNI9VpkgB+VECrZYOaGgYPOYFz/uc8vr5u9aGkGeM7A23SC5zrJGbKtLg20b+R5ts4WYehIkwPQ8SxCiCOk4lVtloBrDtZmOWBawQmDQipZnzlAb66anFZqweR1Ues1+qqaiyWQfdRMUlUp+/ZY6OvCl58ctGzfGEYwJueBpIEx1aLOHoUGdFLDKvbyKdORV+p4FinhOW57D0B2lhJA32YoYACdT89ntlPExOKPm1iwqRJvb1tm25rrkXkiQL25/q66jCWCVCe5GnblnFkBBgZQRiq5mCXj42JttZr3xUUsLQATAJKJ4+MqFNpcayeh3LZPnOViuJZ/853gP/5P9XDRd3NE3Kyru7a/1Sg+hlZEwa6++kiP7k5BTbi65nKZgDHnXfeiX/4h38AAOzduzdz3//+3/8bN954IwDg93//9+H7Pl772tdidXUVL3/5y/HJT37SgLUA8KMf/QgNHsEC8Mu//Mt48skn8Xu/93s4evQo9uzZgy9+8Yt41rOeZa5597vfjdXVVbzlLW/BwsICrrvuOvzjP/4jxuXD9lMQSYEiwUP+RyBOetkS7CPwLMUNmEhgUwKc7Xbb0JVIXmi+ExAmkEoKDglCy6CeIyMjBrDkb5JTGrAAKHmzWUfAArSdTsdQlbgexpIfXYLokirENQBIwFwaKigutYoLqMvrZJswbWnoSJIEW7ZsMfUrFAooFAoYGRkx7U8qFhoPCHK7fOISUJb1kR7lbMstW7ZgbGwss/Amxzz5yjc2Nkz6rAvpaeQ720mC0WwfacCQ7eVSwMjrZfvzNzdIp+wzUrVsbGyY7/1ORGxsKOoYXiOBcxo2OG7lmJX9yCCx0sjENuf4ktRF0ohCcU985I2f8y1/8id/AgBmTqX85V/+Jd7whjcAeOrmw6caRL/xxhs3veeTn/xkz28vfelL8d3vfveM8rlYZaC7T1NcUIy7yjwAnYtvB9yrVPQ62/cVxzg3ElFkKTVCL0tn0mqpDQ03Iq2WOgYLAJUKurEK6pQ07alZQO0NGL+RG3zXe0diDEkCPF73EIYl+HEJYYWAvT7+7ADRDHYaoN0LXOtrJKg8PGxPFctL01SVT3KSliI/y7fNxhkdVS+5c2UleAzY5dCWwadcEF1s1iUInulv2UAyOBgAhGFmr8+6sNhdePC4AyRgEYZmvyWP/0eRbsucPDLc5IBqrEpFdXKnA/zMz1h6m9FRS+eiwYIuPDNGTp7MUq5zf0+DxtiYSnZ0FEgSD2FYQFjehbC6y56kbwHHH7JdEoZq8zw+bk/dj40VMFmt2o0qj+lLI1GlYvpzZCTLPpOmQDssICiHWRAgTdV9Y2OWCoCgDCl22G4aRHn2s20AOnaHKYYfIPFLSEOgFKfqiHocAzfdpC7es8fmMz8P7NuHH84FuGK6rrjod+5U7X/JJTbILJ9Vl+6Gnb3Z9zOUn6buHmzEf7oy0N2nIa5ulqCte02eMVgDfrWaAFg1iEn6FLKRkFkMLT1Pt1qKkqqVWGqQuTn1X7mMI4eAWq2IUlVRuSTNbPLLywJvbqbGoD40BCCMMl7lK9EOFPbtQ7e6C3NzVqfE1SK8I0fsvFmpoB2VUJ8HdlWrlppmfh4FMRf5wh64uppVP6RwYVxoYvNhqAFRXXcz4UrqL0mz4c59jJHBTLdtQ3fmakXtVdG6vFLBYlpAMfZN0NfRMGuARRqpGBlRhEsvBSYnusDDTYu0RxHaCIy+o21XUn+bxIaGrDFVlJf2W1aN6tZLVrJW8SRR9GDLy7YRqVf27AFuuEFdy1gaOhC2uT+OsayXe1wjzc0V0GwWjM2XxY0idTvAvvKA8i6gvMusbRoN4OD/ssOBVOyo15HGauyUy8AV0xp8v+oqBZjPzVldXqvZTFot0wblMlAKV9BOC2ihhLhaUjQrkpYuilTf/tM/GQP48ePAxESggo6Tdmh4GHEMXHmlNQxI28Ij8yqODvthsuyrdh4dBW68URXmhhvUTQcOAMePo/v/+w185jPA7S8A8Du/oxLet88ayt3xKA30eUY3KWGo5oozkIHufnrIOQHRz1ZOBXCcDmAShiE+9rGP4WMf+1jfa+aouIS85S1vwVve8pa+92zZsgV33nkn7jxFVN3zLQQtCdoRPCSgl+fNmgfyApb2gjzPMoCipD9h0E8CgOSbloEmZWBI6YUsPYCHh4czPOUy0OTy8jLSNEWSJBmwOwxDhGFo6sogkhJ4ZT4EzqXHMcFelomgqgRkZTtJ8Jze2mwnabBwvT/yPNFdEF3mS1CdYDWBaXqmE0SX3tCsC8vAdmfb5J064PVbtmwxADABY9aBwD1B642NDQM2M09ZPtdAwvpLL2sJnLt0KiwP+8oFzPNOXBDsZt0kUM66ynGbR7sCIBMUlNz/QRAYQ4wEwWWfE0TnmHe55CUtjzxRkecl5NZPjsufhpzOPPtUzYdPNYg+kKdGnjG6m6CABMW54wKynN1A1i2J95BaqvEEJrfFQKI9dQSv56pk/Qg9BAJEh9yI0FtLl+X4cetxTokiYHKbAreHhgqGcxu+4kLPswcwK8B6icexh2p1KuOUZfDyFp3hAxQIYDIBwPCzy6ZhXsQY5f88Vev7mqvaF+3Ni6Q3vNvOEhVmm4mN6EriIU1sWTodYNu2AgJfG+3TtuYQ1UZPd9Mg+VQ1YtCFZ/Z8Bb+Nbmg52c1+jK7Q9P7TIDqL3emIzWGjaYCBTEJyzHGDThDd5T2HChZqDAIt6wSnaVixtqbi2pJilv+L/SvCUP0+OmrbjLHQWHZiIjL7J5+EDn4HjE4XUCTHKkF01o3ghAapmCfT6nQYj9dDFOsgrQR8qlU7aIiEsF04qHRipbiLyy/3zLAg4CGbdH5e/feimUg1SrmsiIg1H63vA8HsLDA3h2PPfhG+8AXgna+qKW72OAZe8IIMd7rZ2WcGwiYiB8QZyk9Tdw824henPGN0t1RYUtxnU1p73fu1ka/QegLT0zvUaa/yLhRaT5jJ8PhxnqDqZo2gUrEScdYI92LLw4MP6nxqgdG5UQQEjccRAKhWp6xu0GX0GfdD6D/fV8lu374Ljx1Sn+mEXKkAU3GsJtRKBSdQQmOOU6mngPRWS92UpsYzXTYFHaipu6miWCVpp261dCwQYWTIAJTyu3RCIMLLOT5NgeFhzM+rZK6dUSB2OyyiPgf41UAZKGB1RpAsKoNFuYxFFBFCr4PqDVtobWCmzX10FChiEYhCrFB/c93A/i+XsRKW1Emx1iK68NBsKv24c6fW/+kiMNfIAugcA+vrWS73Ws2cdGpXdvUsLdMUCLXOW0ltYPmxMXX7wYOKUlwOW7kkYLadjlJRxKabTdW8hw+r6/fts47qaDaRRrtMDNqtWz1MTOxQXu/lsk2kWlUn4J58UgUWFSB6KWoD83Uk5d148EGFvddqU0p3s0/5TgMDlGF/fBwoUG/qMRjHCsN3lziSbp79+LwyVJkqFWWcqFRwbGy36t/5zwKHDuHIy34D//E/Aq86cAW6c3OIxseBN70JuPzyDFd8blnlb67IBfIZyEB3Pz3kpwqiD+TMRQKVBCDlw0hwTgLlEtTjvf2A9DzOaDf4ImlUAKBQKGToLwAYsFvmLylbCGASnCcwS0CdIK+k/yCgK73pJegtPXql9zUBdwmQut8pLp0LwVvp3U8Q1Q0+mieyTZgP86SxgFQoBHM9zzNBPyU4Ll+A9eqWtDIunY8sgwTfGRxWBhtlfQmiu4FT2ZYSNGb60us873/eK71U5DiThg72P9OT40+Oc3m/++4C0i4lkHx2ZB9J2hmZh0vnIr3b86hcXGBclsXtrzMFkZ9uMgDRB3JBi+uF4nqzbebFRiHFBDfYdIcVAbVcjsIAsKApdwvypfOQDk7MVgGyKu1tlV09xaEozlY110mglUeVJRbtxkHjfnBoCChsC/t44/diE9yMyzLzd2KgaarpQOSNRNhdlySD6muwYmFBAaHimnbqYWkpS6HCDXTgFM7XHvY9QvQAMN7G0paCJIEXquPWmftlRCztlefDeuazuTx0baPITbi7u6ZEEdrxDoXPzNm9nou/Dw1ZgDxJbB8zIJocP7yG7Ca+nx0TdBQEbGxXNgcd7JaWbDOpYeqhSNCEx/BlYFjtQsgq8y9JHwBoYEYORj5HYWhPJ7C9+e77QKuFUhwhDL0MM5EchwQXsDc0z1y3tlu1bV0lNaWBsOVlBULgDTGSTgdhkgDVKrqVKXitxV6j2ulInqfbRSBnypM64FUdyHkV15gt51FXKcnreK/UQc0mPABptAONhg7Sre8zcT+k0Vta6TjB0HU4DLG6Chw7pigwqFtNkTWQvHVyCkmSDSZpiu37ir9aS6Oh5t5jxxTAyPk7DIEp31cTXxyjOafmfbJW7ZqJrW7jJO77mbWBi3WzinIpwrl7dRWIIk8Fx5a6zNGDXXhqvpRCJSO+s+naCBBEERYWrJ6i53zgd20jJAna8Q7U6wrvDRIBXlMHRxGSuujupkJiw1ic7JD9H4bGHkCSG66XGM8b803rlk995xoKqHC0haMd78DXv67+2ro1Szem2rSApeP2pB5txnNzSgfJw3Wu7pd2iTnd58eOqW6enVXX8oCYh67pyEZD1UnH00WJKDv1ahwDl12WWbCax0Qj9Wms8GxeHkUFFZBbuvpzsTc0ZIBw80H3E73bOWzS1NKoN5vIrOnMgPR9YHoa3fIOzH1HgfNX6xMg9Trw/e8vYH5+GwoAwqUl+Dt32oZwF8kcIKejm88CRP9pykB3nzu5eHp9ID2SB8RJgFyKBPJckNxNM08ItG5WBjcIpgveu1zdEsB0QVAJkubVIa/+kl7E9cp3g0fKevF/WQa3nHl5um12NgCfBO5lOfsF5aQBQ/LCAxYAdtN1ubdl29JwQu/+brdr3iUw7fYLwXCXxkWOD4LI0qvbLWNeezEPF+jezPN/MzlVHhJAlwYXljlvLMr+zgPPT1UWl9LlmSwDEH0gF7SkKRAE2e+ne1/ete5v+rqey126GLmpE8dG+67bN1nQ52EFpE3ldwKk8hoXkwBEEE5e2Kd9XA70PJtDJp8kzf5BoDSvMP0qKTZ59KjudDKxtYCWvp80cpGPwN8kXREgLVOUlgYM/MD8ZgLLueVObdsZVrvNxpXsdwFG0Nusn/2GgDTV7qn2eHJDLk/gu7/Ja/NoQHv2k275z1YybZga7tTcirnjpE8SMk6qFDmkZR1933qG+kD2QTlbuQgBdEAV+0zU8WAjPpDzKq7upuTNF3lAuvt/nu7ul6+8nhPoyEgGrJPAZybbzeYzkUfg+xge9szU2k9FZssbZKlPKCI2hfzD9ReQVSaALDHWjEhF27dQm0iaGvYP3kb6sDAE0EwyHs2uXu4RoSwzawAN9nvo5gfU9n1b7yRRFG36uuFhG0g2t99lOmNjVoFo/c3L2SdUkVw/jI565r/N1k1Occ31zC5NFTBOjFoesOzCg+f7xk+hJwN3QdDbTT1fch8NpkUDuD721jPuxULDXV9wnUpDw9KSpTB0G4TtRlFJKnDegwY/ORD6rdc3E3n9RabDB7r73MkARL9IRQJ30lNYBjsEst60EgiVlCMEO2WgUgluu8C25GBfW1sDvXslkOoC6tIjWvK5k4aFVCO8j+UKw9DQjbDc0lN8y5YtGW9x5kX6FJbT9aSXHvuSboS/DQ0NGfoQ2ZYyXxekd+vMvpHtI2lqZD2ZtqS7celKAAX2kuud6ZIjXRol2A5yLBCQJl0MhTQ7QRAgSZIeuhemE0WRaWu2AcvG3+hJTo921oMe95LmRp44YD6S+57301te1keewuB3psWyyTEghe1Eb/+NjQ1D1UI6HQCQVDT0zM/zOpdULi6QLtuIFEF8l9768jUAigcykAtQ8nYw3BTI3aZ0sQYsUup6qYprhXO5WuyTgxmwHrckSxXetgyq1VPMcmzAeeJ8DDxqPbCa8Hwf5XLReP0AWa5TegIVfEUP040K5n7G+aQnV2ZHrcFi7k+kN7O8lN7B3DfFMeA1T2RpOVgwepKdDshBlzkA3tyPUWQGo2LX2Wha12o2Piss+4ovaQmAOtpdqRRVwEntBRfQc4tlYXnLZSymBYSp8pyLIi9D350ZD/J+lpV0IZqAtlveYTzQZTOFofbMk95vlRjQvOg8DCHvM8CwTt6Nk0lpNtVpaRcn4DVJYhwezbhMUwCR7rdLLlEX8Gi4s8slqO02hWkf6YEuMySprdPe8LP0RaOjQDHqGjqkYhShOBHi5EnPpsf4MX4XCD1Uq9oTVA/aXZU2bropAObn4Vcqql+SxATkMw9HH8DBVI6Nl3kgBzKQgZwzSRIForvPVg5YbCYciQa7+iRJ7C2COiwDAvq+pV2TAGStZvXY8DBGRxWjx8iIneeYbEFTS5BGpY0AgeDNGh2FWRtceuluhKEKJL5tm0qDXubkKse81l2tFiqVksknjmHLOjFh51ZdGKm7ySLHS0ZGVH4Mz1GKu7a9Womdo8tldKOihab1einj5ifnS+ly3Gxid3wCu2ux4dwqVoCZmRK8+uN2fUQqDp0/9XIh7AJw5mHdLxMTJYyP67WG8ID2pELjSbawaDzRSQuzvl6y07ZsJDmfs1wM8s20p6fxeKuY8eJn4MzJbe2Mki6Wy7j00oJZdshlkelfWJXHcCgsyvS01dmrq8pDnOqSXdRqAUWdEMcRq9StaF5zBgodGckGjNXxfNwlL9edcaz1p85sBQWkAIp796qxd+ml5uSbeT6qVXSjIpLExPU12XnNEyhGPio3qPY7cMAOg8x4guV8J6Xenj3A618/jF3xIlYAxcXD4PSSX5BjkGn1s7DLvpZrxoE8o2SwcrsIxQXQJfAtQUnpVSzBQKDXO5xAM72FeZ0Moig9dQm8t9vtDEDqerwzDVl2CaASyCwUCgYgliD+yMiI4c6msIwSbCa/NUFe14td0oG43s0ESwlEt9ttQ6nCezudTgbUdYVAqgSt2Tcyb7YTgVpJd0Jwtd1umz6V5eTv0uiwtraWCdIp214aSggae55nIj8HQYAwDA21DD3SWV5JvUMQeX19HaOjoz2A8cbGhgHO+VnSssi2Ji95GIYgjY1LlUKjAttwdXXV1M/1/Jb0QtKbXnq+swxsCxoSpPGE4580QxK45zjgi+NBtpXLGc/+5XPD/zudjgHTKf1OhjzdZeCJPpALWtbWgEKh11tFLqxdpJgLa/7O55w7G5eUOU0NBUatpoNTzc8D999vd0eVCn5cL8D3i6ju22G8priR5b6GxTvRCiCpSfhO72UD1AMollMU49CUv7JnCrOz6ohxKWpbTtc0hVepIIgiBJGvjm23FtV/3GjpDQU9urg/qdctlyXryWCUpDovxfpY8eycuoiocByjq7lg2bResmK/yEqSXJ27zmbTHKHvcaVeWFC7Stmn09PZYGhMl2kTnNcc6UGsK3X0qNp9EoSQoG4c49hCgGPHgMlJYHK0hcD3Uakog0Tgd5XnvbsbFcfPuSN8vO6hUQdWH7KsNWymIhaBetOWj2OxXEZl5moT144/r69nsYutWxWWsm+f5vdlvXV6u6oRsCdGO/VMFpL+m5zjEnxPEqAdBfDjErwaVD00v/hmwkfDBFxN1Xhopx7tFdhNUleJuOu+e7xhA8fRe7EQdtVYnZ1VmWhgqlq9QpWXu3bfVwaRNFUDVx4zP3gQt+2fBu6eVVzotZolnJWbakk35IJ18nOuteDikIE320AuaCEK7epq97N8DvmcSyANMM9o4Hfh+56d/Fot6y1Lnf/oo4qMmkY2zX0NAMGePUCaIgqB/fvV9HL0qJp2yHjRrUyp4szZ2BCTlQoWW54FP+8+DACYvLGMbdNFBI3HgcN17Nn7PAOiX3qpms8xm5go44UyUKmUqBaAQ1ohMyqqnsy78Ey9WFVOm9WqDchZqehgluRUZ5vqOCDdyhTm54FyuYhCRax5pHDeo94l79jRo8D/+B+qcWhtr9cVqNtsqnYGrBWeqGm9jkLUsrqTc/H6ulFYXqul6GDIUSZ1PhWYtiTX60rFV6uwZNwQIDrnf5Lj1+uqgS67zBpQwhCLKKLRAI4/qKhVOOWPjamiF7ACHD5iKW10+SZrNWAixg9nvUxcD3LeU2o1oJQ+Acw2UazV0PUDlHACSFWdsaUF7K2iVpsyNC90bChWq8CSwpXZHYxhPzJSVGXgs0J9uH07UC6bJZb5H3aN6TWeAHwf7ahkqGhWV4HrbrnFBPScqmgqOz0GH2kW0ZyzBgEOGa+1CBw6BKyuwltfRzEMUa3erJYSHHeGXweYKmuDhI6WXjzybXz0oy8EvvxlFHbuVNzp7Gt6d3AxBZGmfJdrTbnWBxyX+AtbBrr73MkARL/IxKVtkYCeBLn52eWkJnjrepoT+JNArMvLned9vaYnDkn/IT3iJWAsvb/5XVKDdLtdjIyM9FBqSBBSeqG7ILoMZEqRRgJZF0lLQoDY9TwmKEzA0/VClyJBdAm68l7+JtOXZZOgMcFyXu8Cjb7vG/C83W4bT3TXC50AbhiGmTxpmBgZGcHo6ChWVlbQ6XQyHPUEg5kvPbW73a7xomcQULaN53kGIGaQUF7D8cV8ycvOtgdgDAOkmSGgzXq4QUfp/S4DsBJAl/0i21gaMQjg03DDPmN/cayzD5MkMTzyiV4IukC95Nl3DSHsX754bx5t0DNFBiD6QC5oyQO9pHeKXFgDWW8WnqOVCLZMkxsSZD3R0dLA7I9+pHbB09PohgXFxQy1txwf91CrKQ/xKGKMC1sM7sPItclidDpirU8ElHWq14GlJXhXJahUdqu953zdouCyvr5vN7PctUeR4mkV1dN4JI4fVzzcBNGrVctPHcdAMVRBqdBsqouGhgw594lWYAKYEZ8shn42E9kHbOtmM1thukgD1vLAzRPTGRpSbS6Dn8m+X1217UCAdX5ebegZQEy0UTcuodWyXLVhCExuUeOgWA5tWaU3mxxvGug9kRZRP6JieYm4sgbIULys85Z3l+ecV1eBWg1epYIoKplx4jrMxbHqk0oFKNR/nC1HvW4NEVGEIIoUV2oUIayUzBAgn3q5rPJYXla3LyzQ6bwEPwYK5aZqr028r2VTEzk40VJB1mZniet7qFR2oRSuqN05xyACPPqoyp8O/ObYPi0JHA9RhEK5jGq1BMy1ssBaqwU8+KBqR6IC3/uecn9bXVWupAwQTBRBelWykeVGWwJIfDiIjFxk3uiDjfhALmhZXlaGTflM9/NCd5/TPC91/XloKFA6Wnuij8bqEtJi4MknLfG01mGHD9OuqYzbL9m3gmBuDnH1ajMdEUSnx3erpZ6ZkycBwDPPj5esWES7VkNQLiuS7Lk5eHFsdPfkRDer47WuK9RCbN1aUIE45+eVkboypT2SV3pA7iRR6oS6Wx4AimOgkJzIugOHoUFAaV9OU6BSKaAQde3ixKV5IaJMBdVqqTWQ75tAnJko2CKmjAHBqZd9H6jVsOIXDXc60tTqMc7XJIjvdCzgrtPpRkXVbHMqq04HqjK+D/hiuDAWS7NpjfdxbAjv29XdaDRsQFAuScplVa3RUR2YtF5XFyjk2jYyAFQqSJIpE1KE8coZY1vHjVW6Ta/HvDhW42J2VpX7sceAWg1Xv+516M7sMocQmk1gsazY3pkehwx19+R0Tf1w9KhazKSp8oCIY3OwjDqPPgy+D9VwUYQWSmZpp5q+gJ07X4hKBfDmHzHPStsv4MjdKr1yWY11P9RM9K2Wcix58klD/F/5nZszYxXDwyowPbq2LcbHVcUOHEDpO98BHn5YNfz0tHVo4ZqJDSvX7RSOU8nDQwO4719UCm6gu8+dXFyrtoFkxKWUkMEuJdDYj986T6QHrQSsXBDdDSBJb2BJx+GCgy7ftUs/kkcj43of87MsK/PO44OXHsr0qGYZ3bwI2LvXSmOE2+ay3fifLKfLle3Sx+Rd7wZOlfWVbe6eEJAe/6yTrK8Ekum5Tu9yGjpoFHHBSmmYYVtLj28ZhJX3SzBegvIcS6QhYlqu1zxBckktI9tJtm+/3yXFkHtKgu0gTwVIYwjTzKNakcYc2ebuGJD5umNHjqtnIoAODED0gVxkwoW19FLO+z/v9zwvLH2dPNJtrhMbYO6BAXXd2pryPEKSwI8Ccy+dpZnN1q02K25umIbxVibwSzS02URY1Zt1uhyvrvaSmnNDoY/BdzVliLQxMF8GsNSnoU0ZDE22OB6PpaUMwSt/ppPg0BBQzHPalRufTseWjRtmmQCgCkUPYh7lX15Wmy7XeCLfGemLjby0pO5bWrLp6GuJBbBaaSrScY0qbl4sp++bAGv0iuN+f2zM6U9G9pQgut7lBnEMCcbIPsgc/z/SzILox4+rjavk3NEb5rBS6nkUCAaRg1Xix2kK7KJnoNN1rphy6j/Zjty08wBEPF1Q5x50ZknLdq05Ks7/2Ubr67Z92TZuP7ASfD6GhlSijz1mN9sySqnr5eoCc/1Ejtu8hrhAZbARH8gFLXyWXCNrP89S9z43LfOcBhmkUT7qge/bOZhKS8/f8lAU9qZAvY5w+mqkaSbMibmNRvE0dZxcCQZLUPj4cfVqNhFVhE6V6w3q2CTB6GjB6vWREfNXsRKae0gDx/ypEsidTb2BuWbvnBqG6IYF41TOovi+p074uMJFg8xUHl2jUZvtShdqea1cm+j6pimy869EiLkwWVuzpxZEe0m7dpLo+UsvZNJQTO1pqv6kvl1ezoCt1FXz89kDWAznEYbIKjd6DNAoQCcFZIe066dh+oLrRrbR3JxaOBw5oi6cm4Pn+wjDKTMsaLCm7mYTsWnMAkEaLnQZ05Z4ZMS6xyQehmY5xmfgscfsSbpSq6WCzYYFLBxXwP3Jk3atZILcJolah7BOOvio28fqORRtSqvD3Jw9SUALkDSw9PMkz9PfmfkA2c8XgQx097mTAYj+NJR+QJMEFnkNwTsJCOeB7S6Q7IoLXvcDOV3ecJZBAtoyL8m3LQF4Nx/J0Z0nLtDqerUzD5eiwy2fC4ZLcT3gWXYCw7JN89oyr1792lyWnddJQFcaBNy+cDm83fq6Zcn77pZT5kvKFgLmsu8IWktgXPYh27Tdbmc8tyVVjmtEkWWUxhc3IGheP7j9JcvjPiNumqyTHOMSIHff89rRNQw9E+WZXPeBXASStzjmZksuwvsB6v3ANe5euNmDpvYgaEdUs1zOeKpzPxOGAJpik4FsNtyTuhgCsy7wKCvLNzSU5YROxEaB6Hy/jYNTdwkCyPIwS+4PDS22vJ8AunOvu8/ObXdeQA6PoSH7P7k93D4h0u1SuHAnCWTBCJaPXmtxbMF3Z8MV+F3EsWd4SsMQvcAqO4jcLM4mVR1xz26cDcW74AyF79t6u+2pjRxySDI9GazNlI/lAVS9mM7IiOXgCcOeS6WjFr/3sJSksB2v28EdF9z7yr4if3AYWiCHXRUwrTSF7wc9tDJpCgR8cHbutKC3G1CPhZUnNOgVCGQJ/GVDuvNAv7mAny8yr/M8WV8/s424s1wbyEDOj/R7JvkfJc87nb+L+WV0FBmkMUnUfGR0N49Ybd8OVCqG3xkQRj2t0N0s5VTCE2Q9SwypJ/gndR7E9OSC6IBBhYvVWAXmHB0195n5Vs/r7jxO/m3qnNFRES+CCQjd7UFR3xAs7mFBzVtHUCERHaYFdGzMfg7DLH8dlQIrIGLQRBGAhgDX5Ykf5tnpWERbdEjgd+FHSndv3aqzd64xQUXZJ0liPLRNYBFkdTezzqxjmO7YWJY/nZaKMMTqQq9elcuVKELvoiuOFYecbg9DeROGZgkTRarItP2wiXtUlFTQ4k+OCxo4xsdFvG+RkGyDTBLiy/CwKovxZAcMfVyRrvdDQ8bQwDqYBghDvXYV63Ops7k2kg+b+xC6kqevL3L9PdDd504u7pHwDBbXe9kFogiW59GOuMEyXeCRHswuUHwq8JsAuBu40y2365nteqTLslLoMU3AW6ZD+pM8D/s8rnbmC1g6jjyKFeY1NDRkaGbctpIUHi5YGgQBgiAw9CX0Cs9rUxdYzzN4MF2Zp+Qdpzc6Ob/DMMx4WjPQpgz6KYNcuv0iuehlnvyN/cH7SCuzsbGBrVu3ZgBw6d1P6hnpkc7yMIio53kgfzipZvICvco603BAD3P+LvuMfSDHhTyFwPToSS+9933fx8jIiDFYyJMQrCvpbPhZ8qjLsdfPkPJMk4En+kAuaJEbcPeVixCK++gtJjd/BEzpcfTYY8BVV5mYTZibU8dvy2Xg+c8HbrgBP2xNoTFncdsrr1Qnhb3GEwaZ9f1CZi9KevIoggHZJY3H0hJQYKBSuloRLCWKyZd7fNUQYCKzSffSNsJQUW7wyDL/JpMK9zF0BIpjzXUpaXCkh1CSIIoUt/vIiAV8M+WRu/2hIbUR5W6t07HlnZjIbrbpWS+v4caXdecmi9cxkhp5yhl9ddu23A0m5uZQAHD1TA3bt3uKo3bOAW54/fS0Pl5g/+uS175ps5ROapJe33whryzd33U5XfYeYsqamlRxk/KM9+qqbQt6AYq+6fqKc7zZUOnFccax23Tl0JANLraYBMrjjUCQQAGC+iMIeHOaojJzrXE05DXj4/YAAA0SHAKB4KIvhD4qFbXxjiLrQF5PPIyN7cK2W3YhSFcUv6oG07vw4Mm68tmVkVTTVBENj41Zr0PA8qhKaqC8F9A7f7hj4CKSNAVylu19ZbARH8h5FU6MUn+5gK28Ng9Mc3V3kqj4IYy+3WqhoW837saagxnPfS4eCa/A0e8oR+A4Bm66idzX80CqDOBh6GUAVZ4u2rpVzXc8QcaqnGgFKN1wA8wExwlY18PEMWEgEiAbEHJuzs5VpOXSTdFOPfjaI1jGu4giRSHt+9YQoCjY5m26o6PWuq8N0+Vy0TSv2QJJfQ3YNQYTZ1svLdk+ufxyOxfzHp62OnrUoq+0sC4vK/50wHqvDw1ZnU2ha7REpZnn3By8VgvXzswgigIVc0QrzVTfYtZxlYrqczluKhV0/QCd4ypZ8pdzCGaCdzP/yy5T6xSuPyYmgFoN3fIOLM/aQ3BUxVznjYyIoKT0qA5DRVtSrdr04hiYmcFKGpimnpkBgsbjWBqawpEjyvZzzTV22QNoqqJy2bY7YAqyd1pX++6DwP33o3DDDZiYKKl66UyG9TKYIURov+50YMaMXLtu3667KUkNhVtSLWL3q16l2ntiAuh0EPhd7NmjldCzn2048U39ocvQatkO4JqRY9W1GLiGJ9lpUvoZ3S4CGejucycX38ptIACylCYu9Yr0YAYs2C0BbgKnBHVloEWCyXx3vbClSBCd5ZGUJJJOQ1KryLKRJ5tgJoCectIrmcFDu92uCV5JsDPPe1rynLMOvJaArQxGKoNNyjKHekJmegRByf8tubT5fxAEKBQKCMMQ5CUnMO16hksAX3o1uwC6C6ITqE2SxNCyDA8Pm+CfBPI3NjYyAVFloNS1tTVIb28APSCz5CCnuBQunudhZGTEtJGkcGF52QYsM/9jWnKc8bf19XWsra1lQHsaGGSfERynwUKOaUkXI08HSBCdPO2SaoV0MhsbG+Z/jiVZPwajJdifpilkwFYaZGTwWylnCiY/XWQAog/kghbyXEshkEw0mL9J7xZ7ftleI+9PU7UBnZ0F9u5Fs6k3DbOzCtzbuxfYuxc/THfjc59T+1PyTU+uqyBimQ1bVDBHZqNIBwRNEqCpFvd+vANAFlNYDosIwyKmyqEFkWWgJQmik85lYSHfs08nHEQ+Oh3PsGDwNumY5ftqXxdFgNc8YQFLwO42hbdYMVZAg+8Lzy/mKYNodjoWZeemlNcA2Q06kO0rbrwoc3PqeDyQ9ZoeHTWo8yONAhqHgUplF6b2VbJ5sZ9nZ1U68/OYrFSAk7B5a2mnykO8Xg9w/HhgABMJksvPkjmE+8ROB5afmx5x7L9KxfDKr65mPccvvVQHJIvaKqArj5RzLJTLWPRLimq9DjQOW4c52SzVKhC0TmAlLGF2VqXPwLFe4wkFPlWrADxg3c968ScJ8P3vK+Dj+HFgfR1BuQzfn7KVTFMU0hUUQsCvFTI2HuOlJgZ3rVbMYDVzc+pFbOnSSwv45RfXDFF9mkJRunDs1+sqXwbc4/PA8+5Hj1q+Xlo2DDksekFzbszzNugXIYAODDbiA7kIhJMlJwOpl6VbMJDxNjfXuyA69Q25OVot1FvaAM7f4hi45BIc2341Pvs3NsvnPAcofP0fYZBKPfdFUcEUw/ctFuwlip+8O1EygDZDcHQufR7Gx4FC4xE171Qq1gBIYJuBN+kdzjmM8TuqVRVFOgzhJSso+D5W0sDE2zZGTKii/rN/Zmm6owhqjiQ/iQzuKRwFimUfUa2QmRp7QHT+SU9jgr0EOgGF4EsLMnVts6nWS4DV75Ly5ehRy0WjLcYnkoI17ld3oFBdsenJdcP99xsqlN3T08Bs0yxk0oYoe70O3HgjHmmVrPN/E1g9am3utKts325t9xn8luORfTg3p/qpWsXj6Q40jyjVSKaYKFIO5iYQfbOp1oTCwaHrB6hjSjniA2gB8FvA0PfserJWA4K5HwIPPojh66dw8KBael6383FFc6afiW60C4tpQelwuVZLUxTn7lVt9/Wvq/XOy16GSuVF8H2gW1brzlA/ctPT1oeEFDndil6bimsAbWxKEjQT9cjMzgLfGSvhkktKeMmrYjOen7c3AhoAnvtclfjcXNbawwajgwXXGfoZNLEM5LOfp5Opy/Pc9NP0ouI8GejucycX5+ptIAB6OaDlb/2EQCmDSNLzlhzZ0gPZ9ZgGej3cXS9vl7JFBlfkfdLbmQBnGIYZTnWCpQxQKSlBmEeSJAZIzuO9JvgrubxTqbwdYfnoOU7AVQLnBGYpBHelR7UMlCk90Qn0AjDlkO3VzxNd1kuC6Ovr61hZWUGaplhaWsLa2hpGR0cRBAHSNDWgLz3Q+S77RQLxLh2MBJkl5YsE+9kvfNFjf3h4ODMOJIg+NDSUAe5J3SIBd2kkkMYf6Q0vufWl8YNBQ/nOz3mUNPIkhBsAV55SWF9fN30n6YVoQOFYJYDOd5djXT4z0pgyANFP//qBDOS8igTI6eXbbNqjtlx8SxCdmzKel5VuPdwN03Ot2bRUHwTWb7wR7ZlrcfCzwN13q83Oi1+sN6+zs2qDxd12ksCPVdJGvXHDrOesoFzG+rpnriH4GIbA1A1R1hNcXkCCVno3yffVVXv0mvUKQ6yvBwZAX1uzexjuscMQKITdLEkm240XyzblZi5xdDc3PCwjy8825wacu3ftGcZLaRsYjTUIy/Kw3o89ZvMaG1M0ICMjQLmME0nBxABrNoFWNUC5HKAUOgYGAivcbDMSqABuEt1WPITAco2Pq36PIoUtGA5aLbSJU22vpAH8MIAfKe8/r7VoAJbmvA1UJ/eB27ZBBeas67G4uprhEe3GJcweUptYVoFNQRtSFEF5ds/NIdxb6rFZYK5hwH3fL9h+MlQ1iQKkmUGSADfcAF9ztrZTT/W/RnWKseLufWTew8KCunwlDVAILcjlJQkKvg3s2mzamG0HDijvu1/+FxUz9tIU8MOC2kzz2dSufm0EisdXequmqSozgLZfQNICivxdgubyN36Wv8lxf5HJYCM+kAtaSOUlwfMkUZ60dP12Dar8Tt3JCVf+nqZqfjh+3IB8YQirz/ftA2o13HOP0t20FT7nOQC+/GUV7PGmm9QEnyQIw+wpMqMb5+fVXCZOmlHdEat/yUyYdWvmHNpqqQCQpN/i+oMe9OTdJuitA0wkKJl4EvIglnZgNtM1ADWvqyjn2SNmgJ3Hm014YYIoKll81wXRFxYUsElDAC3uBDM1srqYBGjUOWUHCMMSKpUSitMti0rLtRcbCzDKczEtGGNqmtIxoaACpIaqTF14yoP9sceA++6zoGscKw/oKLLF157o7aiEb95lQ2gAdinCKpGeRxbLDDk91hZRRLMJ7KrVjO6e07qXcWV4jzmNKCN2NpvGaJKmSm8fPmyHZhwrkLxcVmB1ITmhgmc/8ABw/T/H4cM6GHe9ng0AW1WBSMNqUQWy5Vq40VDgeb2ujBkPPQQ89BDil73InACTTv5eaxHwAb9cNMlLvwPft+A5WmqcUHcvLSmu9EoFKP/aDtRqO1BoPWGPeUxP2/UzF02Sno0WKgaSjWPjwJAJPiuNahRXp7trAfl+EchAd587ufhWbgPpK643uit5ARglMA30BgOVQHo/Dmp+dvOXXNEutYy8VoKwbhBJScUhwXjXaNDP853pSRoS+VmWkdcSFJUANj8TrGU6kgZEltv1fM6j1tlMZP3YtnnGCnrir62todPpZOrg0sxI/nc5BmT/54G9/CzfZRlk+dzxIIOJ8hqC0uRLd7nZWSfp3S/HrltOt59cyh05DqQxyK1nXh1lHqxHHt+6PFXgnjJwn4N+eTwTZQCiD+SiEumFfSrgKw8ok/dzYd7p2LV7YjeExPKefFLt3Qx9MwNZDg8LIlNH5BH2nHJKp2kDUrobCb4kzybTo+eNu3FIU6SpMt5Kj2pupKIIlrPS9WiXF7ptmNee/M0VCcYL6fpBBm/nZnZtDYiqAkCVHkkyTUoYImlmY4HxZHApdq5nYM8MF02v8MDDwoJ1nFtfz55op7Mfiye7QVLW8/qC3rmSekViF76vhk4YwoJLtHqkqRlX0uFP4EbYts1iN7IxPXSRJF62msKz05e/y36UBhVdHj+ytwc+egBqAvL8uQsPnjNeyMsr61GvKy/5zLg3bRcoAKXTATod1XYtICB6JCl7dD4yy77P3EW0wT5dWV8/s831QHUP5Kcirj7bzGNUPNeZ36S+kYB8p4PVVf13pwPzJQzNnEkDMgD1w9Gj9kgQ+qgymYf4g9kbL3HeLKix8u4z9ep07ESYJMaoHDBxPzvNyumu4LeBVoIwKqqkaVwnB3zeGoJzddynPwDVHzrIRdcPlB5mmbUObyMwxSYwS3q4omvokA0lLQGwNmI2kbTlFtw0ZIabxVPR67eTJ639lYYHOZzcZQ1laMj2D7PcVQlN47uMehl7Dysij/0JvcTy8NBApWLjlJr7l5cNNRljo2eQfr3+YxkCedLP9+3igMaQtTXDqiPHkAe77gs1zQ/7xMTGYbuLtRfTWV62cWZp4y4gNQuwNgKlz/kMyhedQ1iR4WFgeDiru09HniZ6fKC7z50MQPSLVCTInecNLj8TlAQseHgqcNSlFnHBdEnx4nJLuwChSw3iAmGS51ryTLugvVs/N8gjxQUqXRA2j6ddllWKa1CQ3xm4kx7KMpgmverzApC6ALkbcFTSmch6EKznb/LUAOliSGVCYwI9vekdPjw8jDRNM4YIek27/OiyHUmnI0FvtomkAJKUPRKolx7kBM/p+S3Bcsn1Lsvutps0UvB0gOQ7z6N6cce4NFDIMZI3Rt37XJBc9on0kD+VDDzRByD6QC5wydtYU/r97gLnEtSlJxigdjXj44hjdboUx/T9UWQ2OzMzyiNZO0GpDzmSiXmYio2oLkMYBob1BMgCsgYkZFklNzQ9eIaGrAdf3pFWW/RMs9Ap3ASbSlMLlnLzxcLnee5LxNg9iu/y2spdP0VfwzJJjlmK2uwFiheb/ULEXdLEjI4a7yVmR1p0SbVqykPScfKds+4aWWmnpIuzRWZ7RZHNls55En9g8VgPt3soXrKCSqVgHMfo5c5runFJgc/j4zZ4qPZmk804MqLAc4JCkhYeaWo6vlIJ8odGkijuctcrPwxtQDXbGY4TmafGqG4ggj+ZzTfbnI3oK65zQCXPwwbT0za2aKAjvhZMo+lO3bnTjDF1QqSpyj09jUUUUWSk2KUlFEIF1GfA8zxjT16jyEF4KoDvApM0Bc7EF2Cgugdy3kUCsnxxopQWxVOJ1N0LC+rzJZcA4+PYNqyMclhbM9xl7XiH4ZseGVGXbtsG9QOg5tocBM/30QMiIkkQlYtGJdJ4GUWwrs5Sr8zMKLTx0UetDpLXAWpS277dGBkJMpKGi9ise6gLUN7EAaAsquRWZ9u6VBhaZ3tpG2NjgTKgE9CUBgD9XcVvEaIVo7BZ9EyzrrHcrF3qdXux9kCQ0yuXETbYK4zh1TRytaqOEFxzjeoX7ZEeRYq6BeUysHOnaSs55XN9UK0CQfMJRY3Wysam4WnAyQl1Y2ZIaCC7Uima5RLXAqxyt7pLGR1IR1erGcVOvUSbeLms+pZlDNIVS0s4MYEwVIwotRqslUKPaS9ZQRwXUEgXFRpfLqu8ueCMIsXnrhcIpbiLxZZnhodqG82rDuUrQnW+vu7EGZcnEWGpZ7hGYvfK8YVWy4L7l1+eNSix8Rj85dAh4DvfAcJQeb2HYhzmibvG72ckH+juZ6QMQPSLVFyPWAlqE+CTnM3S+1qCspK2w71fXi9BaPnd9fol0OuCi7zXFebn8kS7QStdwFK2gS8mNDdPIMtx7eYt6zAyMmLypkjjQJ4XsqQ7kbQxTI8Ar+v1zbwlZ7fLGe/SgMjApLyH3OfkdmfeQ0NDIH3L8vKy+U5A2aVqWVtbM/zoeScWJIAtPfUZbJN0NZJ7Xra965VNKhRJNSPB8yRJIHnF2RcSFGe+o6Oj8H0fo6OjxpAgwXVS6khufDm25PPCfNx6u0YB1oeBT9mX0gDC8rrGIElr5HqvP9NA4gGIPpALWuj+zQW23Hi7XuCum5ATabFb260A69YhxQE9Ogrs3w9Uq5j2ddyjhxNzzHr262rN/8//udqEX3mldoaq7oWJtiToKHg6uxB21YaQZdYbkigKjOc1YINBNptAGhVQ9LUbVK2GRb+kKE54BptHY7nBJ6rLo8Ri91iKuyjFwLHjisd8+3Yd9EoVRrXT/LzakB47lj3zW6nYAFDyzDW/S9c+AgTcSLERHHftbljIXMIj19JBid5jlUpJAenkYKW7OWDQBEmFQ17RXfFidnyw3S+/XHXejTfiW9/xcN0LusBnPwuUy1hJPDSbKo3AV7zvgMqWWAs356WoDdQbCCoVpKlnuL15zdCQ3WSbTWYrMWhICUCpHCOZLmJpycZYTRJ15LtW24FCpWmRBd2fXrICUgmMj9v7CKxcXVtRBfF9w8k+MxNkQP6AyAC5748cAQ4eVODEvn2qEjt3qgS59opjxLH1HOx0gMkJNQ5ONL1Md0vnM4LhK76q57juhm3bFHjO4RXHus8rO1CYvVcBTjt3mkB77f0vAQAE6CJIE3NcfnH6efjCF4Dbb5229Z6bU8YB9rmcCzjACC7JsSm9Rfl9eRkXi1xIG/GFhQW8/e1vxz/8wz8AAG677TZ87GMfQ9xj2ZLl2cD73vc+fPzjH8fCwgKuu+46/NEf/RGe85znmGs+/vGP49Of/jS++93vYmlpCQsLCz1pnk3eAzkPIi2T/dyAKa7nKu/Tk2q3vANJAhRahxX1xdCQmrsqFUxrYA8Hm+r6Wg0HDqg58jWvsSqpUgFQe5V1Dda6VOJxvg/LpcI5pNWCB8D3d6Bet0E+wxA4thBgNN6FYuPHCty84QZ842CA/fun4H396yrRWg0rfhEFAsMkptYBFz1O6AAKyQoKoymGq8UMyKwM87qQ5Fy/7z7FFUJj6OqqSpvzm0SEGw1MlstKJ7lgJVFhd41FxFh79buUJiMj6nO7ukNRjFC/aJ53HD6s9AwN4ZqGhXoDULzipfQJoCk6gPPy9LTK/1Wvwhe/5OGWWwDvox8B1tZQ2XMFGg21pvP0moDLFiZBb+ngyL1qrXbTTWg2i8bJu9WybDi1moeCXscZ+8nSElCv49o9ZSwmAUZGlHrcs0cFdf3hXIAvfQl4/vOnMBnNqcxYd10A39+BNFX6T+ruKILlj9O0ZYV0EW9+c1HVYzay67TVVWB+HlPVKnBIt+nevTg+sgsTEzvgxbFq31tvVeUul4EjR1CcmcH993sGBE9TYG7OI7Ob0e9ra+r2UqyMFysoAGHB0BpxvANZf4YkAZAmdo3abCoO+eoLVeDbRFPdPPQQsLyME7Xn4bN/Afz6/3cG+M//WR3xnJmxFiKOQbnGdw1dUr9fxF7pA9199nm7MgDRL0JxOaD7gegEjunRK4FugoqupzRB0jzec9cjWHozE5jl7y4wuLGxAckDLkFEN0AlkAVfJR+3BCRdr3HpIS3BXJebW7ZTP8oVl4aGbS3fJQe39EiXIDoDpso6yTaURgy33eiFzWuDIMD6+nrG2zwMQ+OJLmlQCEyzbT3PM2A6wWX2PduYvN4unQrHg0tRs2WL4ogPwzADYLvGENkH5Av3fR9pmpoxkReUs91uY2VlJWMAKRQK2NjYQBiGBkCPosgYFKSRgHUMgiDjqb9lyxZTz7W1NfOZz4gE0WVfSdBbjluOXZcznbQ1Lj2RfNZkes9EgHgAog/kghbXm5QyMpL1ZpP/cSHOgF5611evqzX91c0m8E//pAD0G28EKhXMxHoT9j86QBjiRFLAkSPAddcB1z23LY4mx7j3SAFpWsLzGIRLb75MoM6W2ATwlaYI/DZ8TWkiwdZGQ5erDBOA6+DdQK1WwG590Yl4N1otYNd0F2g2cQIlzM0C09NFFIlAs500l+tkrQYgUAD6kSPWLStJFA/n3FwviD49rUg7NXiQcYcjcsxNO0F0tr/rIaS/kwKTXtpMZutW21UsQpoCIyMBhuPd8Mu7UQzb1qNNc9w3m2p/Ozam7t9d6wJfP2R5OOXY0WjH3/6/Hv7u74A77vDwogcfBJLEtPtUpQs0GgjDHSbe2/OmF4EwxI/ntVf33JwxIKSaN5VHm1nt9XXbr17atu6EvDiOMXPjz6LZ1DzorRZ+jB34/vfVZc+bqaIbKq73NAWunm4DzSaGhgoGc6nVbPXKZSiCcQ3eYHoaaDTgzc4iqFTQGZpS3t4sJCt8+LDiUQ1DdEO1Yfamp21fa/CkGHWRph4ee4ygh1pfPvlkdlgA4mSBHkdzc6qPeIJDY+PGrrW+rnDzVgu49tFHgf/1v4DnP18ZXWauxpe+oK7/2Rt0uR99FDh2DLNV4DOfAW68sYiphx5SBZmdtYYeeaKDY4CDThooJFrC760WsLKCi0UupI347bffjvn5eXzpS18CAPz6r/86Xv/61+Pzn/9833s+/OEP4yMf+Qg++clP4oorrsD73/9+/NzP/RweeOABjI+PAwBWVlZwyy234JZbbsF73vOec5b3QM6DSP1HCyPQe/pDnl5ydKbU3Y0GcO3qqpq/ZmaUnqpW8Zzt+nDYlxpAkuCRRgF33w284hXAdZc9YfMrl/Gt712BdVyBF9W+awDekTFbnKEhqPgU5AijHmy14Jd3YH5ezWkzM+qvQ4fU3y8pJ8D992Nx38/ir/9aFftntWJ4vFXE3Bywd+8VKNBImHrKK1yfiDuRKnqNUlNVtDQ9jbBWUhQuNJJzjnvoIcUXfuiQagsamzsda+RmnSW1DOdAV2fLudOdN8tltFPPHN4j65jvK/3L6TcMPdRqJXjJCu6dLeiwMteixKNX2kvftbVPjq8o3U2vc8AazXUjf/wvPPzhH6rrf/bgQaDRQOWmVyNJGNO0ZGzIPJW2sADcc49e0/2f/6PWe3v3otkqYnXV0qzfd5+6Z/9+oBAJFhUuSjS3W7FcxuWXX41OByge+TYwN4d0z2vx93+vivrzVWXt+NajU1hfB140cwKYn0cYKuNPpQI8+9nq2uFh1XaYnVXOHL/wC+juuRbekR9g1/e+pwYzB5gGoI3h5MABRfQfRXiy/BKsrQG7aGW54QashCUU5n4AfO97QLmMY8d2ZJZFhw6p5dRNNwG7qkq/P/mkDsyrF2GNZoBmE5ic9DA+XjC2gShSQHs79TA3p4eK5JoDgFoNn/mUCpj+yy+D+v2BB4BmE4fKr8V//I/ADTcUcPXBg8q7Y2bGLmwMx40jeZ7oEkTP2wNc4DLQ3WeftysDEP0iE+n93I9HnJ6+Lu+z9Np2OaN5vfSG3owmRn6n9zWBZZciQwKpkkNblpceyRJwluV3jQOsAz19ZbmlYYBewq6ns6wjKUCkd7Js6zzvc4K1kh9d8mYDKrCo7/u5gKx7GkD+xrJKkJlAMk8BsAwMyBoEgfEkp4c3g3KuaddDUpow4CbHg2xbBvlMkiQDEvu+jyAIwOChsv7Dw8PG614aDWQ/Mn0CzvSclyC0bMt2u421tTWsrq6autNgwX4gPU0QBAbMl/0kjRw0PIR6IS2NS3IsSMDeBXilIcalnQGQGXd5tEZSXMPKM9ELfSADueBFbqolobYU11OFL+mFGoZmI3h1kijgcf9+YGYGXT9ANdZHftfXDfBbr+vNOT3KwhCo1TA7W0CzCTzvdbHJK0015yS9cqQXugDphoZKprjyhHqaAigDWFrCSuJhdlbdtrsWGVCy0QBGRjxMTsSYP6z2z74PXOt67wky2PF4ytJ3kP8jTRV4/vDDMJYFthc34Gw3SQZKQFgeB48iHQism93MiE2OxOKHhqx3s3QKltQoYagA2LU1oFoNUK3uQgANpochkobmUY+UFxnqdbUhnZy04L5u+xNJAfU5te/8+78HbrkFeNGxY8DoqKkOPwwN7QCgMYZDh4ByGXHlapXc4YbKZ3oaCIvmXok5EKPtaQNG5opjeDMzKMWxDXZa2YG5OWXvmZkpoFm3/Xr1jAKfaHzgZpjttXUrgLvuVwE29+3DiaaHElENALh0yj4avAlQG/Lvfx/Yu9d0b1F7sXcrU2i1gGLUVcCRXzT9x2YlmBKGMN55Gccw3zd4/SWXqJ+KURfFMM0YYo4s78DJk8C1x45ZMOiyy9BqKXyrUgF+9gbYIH31OhoN1ZePPgpMPfmkSrxeVwASXf3knMDTG7KA0ttRGug43gdyRnL//ffjS1/6Eg4cOIDrrrsOAPDnf/7nuP766/HAAw/gyiuv7LlnY2MDH/3oR/He974Xr371qwEAf/VXf4XJyUl8+tOfxpve9CYAwB133AEAuPvuu89Z3gM5T8JTZPI5o+7I8yTdBECj8/i1BBT37AGuugqIIkzGbWC+bibk+Xk1nbzmNQDuukulMz4O7NmDu+/ejSefBF701rIhex6O7emw4WFYT3QaFElHUbZzftA6AaQpGg3lnf6SOAUeewzNprIHXnUV8LOaZ5zqSc3fRdSPqPrUah52Qc03rYQgelPVL4pQqIUK0GcUU4Ldx46p3x56SL1LijUZJRLI6nCeYGM6vE/oS1ehrSQelpZUvRcW7EElidFzSaBoWQq4/37gW99S319CgH9tDQhDc5+JB9JoWLJwupLr8dIuT6HRULFgv//9WRw6NI2ffeghIE1RDNsIwwCHD6v8n/MchcNOTnSBuTlMViqIYwUA44EHjLVDxjt98knDjKKm/djPqoDlZfVqNIByGaVaDYh84L8dUk4Je16LgwcVDvzz06oB7vl7VfwX7fGBZhO+b5zwsXOnVcOjo1BK7LHHgCjCkSPauePv/k4Zh+jIwGAtNEYcOaLqsm+fGYu7tLHnh40SDh8GXr0/BqO3Nps7zEGA9XX1M5e+6hSGMtCvrwNYa+lTB0UT95Z0+6VIGfRxYBZBHCOMrs4aG9hwvo+vf10tk375ZbD6vtHQQ/YhzM1dhqsffFBZMRjJnSD6Zuv7PGcad805kDOSp4PuPoP4rAO5kESC6ZQ8wC+PkkOm4UoecOimnVcWt0x55XPzyfu+GZh4OmXYTCRNiev9249//VRp96uvS/eSl4bbbq64bZLXRhLol17t0tNfngSQ4G8ez7n8T3qiu/QnEmzOa4O8oJ7u934GCrcN8sZtv3rnlSfvnjwufbet8zzR854xaXBy+fjd9N2+dT8/06TfPLXZayADOa8iN3kUIotnKGkKe7zY921gL7+b2dxLR1UTNEpvRs1GS25AZQanWMz3c6yRaRlnWp0HeTzX11UAR1Gc/DK435mAm6n8L6/sJHDPAzigypKm6r3fNW6SjGPWT9JU7bnl/j9vDBD3N+XO4cRkGurIckcfQbZ9LIVxYsPQ3miyc9pHNmdud8u2ZGQu1yCh/5fABP/SccYyifu+Debm+/oRWF83A9W0qdvXcpzKgZQDYqWpyrsLr+d/2QR5Q0zmxXQyID7bQNc9k47TJhkwQ2yi+Xumq/v0fab+eZJXkYuMV/VMXwCwuLiYedHJ42zlm9/8JrZu3Wo2wgCwf/9+bN26Fd/4xjdy73nooYdQr9dx8803m99GRkbw0pe+tO895yrvgZxncY28/a7ZRHrmCiBrhXV0twkITQ6SpSUgTc1Hl9Kkp4h9Jjgzx+rvZp2gy+FMY+YeqWozeq0faOgqF1d3cxJ0g45vJkw3rz820d2uqmAS1JfuNErc17QL0/dtjA+GYDGN0ifvJNH9hVV1mbDYEqCmnhgeFjelqQ0EnyQmjzPGWnWA60zHGnd1peM6HVu/paWs7ib9P9cqmrE229xaryFNkbFYy4s6HRt0XFfYfR7oFG7Adz0e3SHijk9X5DXmXsmBIw3N7honTc3a1PyeuXRVrxfRa33PA8k3kzPqyAtLBrr73OnuzTXHQC4YOR2Aml6y0msZQAYwdAFHyrqzeJdeudIT2AU+6Y3M9zwvZOmJLClZmK704iZ1iAtq54GX/CzzcfOQ6TBdSQNDj2YZINP3feOtLYODSmA6TdOeOtFr3Pd9Q+/CckqqG+bLa93ysNwjIyMZT35JUcO8SNXingqQXuYdZ5Egg3jSk7/T6eTSueRRjUiQnmWVfOJ5xh0J0DN/6TFOjvM0TTE6OoqxsTETeFS2YaFQMBznpKVxx7I7Tt0ySMCbfe2mIWMKuN79sm14koF88/JUBml+eJ1roHimUrhIGdC5DOSCFtdTKu87PwN2ByC9r2s1II4RNrX3bjPKBC4EgJXEU3zOc3NAvd7rFMNdn+/b/+j95ft2ISc90Clpau5da9mf3I0pogiYmMiwagAAkgQ7dypezThWVCHbtgU2mCbpY7i71eeau5Up1OeAanUKwVWJ9TRnOemZzsxI9yI9+Xmt78NEXxV8hV7aVnQhSc7uNAzR9YMMIErMY3hYbSijyHKryuYbGemzR0oSVKsOjWsdpo8z4IgGczsd5W12+eXDytmtrhpu+3bR+LpfL7lEN5FOxwwR31dnsDUQMD5uHfrYXAyQFkUAGgIwpzsXqUa4EU0Sc4qdzAFsZkAB2V4YolzOBreVWIg5px3HCv/1fUNjZJaUkreehKi6vQqhXp/NNhQwUd5h7VN6DHPjL7rVDG+5D1ZsR0WsHrfYFbl0S7Gf5diPIvscsRGGhoBGA8WwjTgObMBUfVQdaYrVR5UTahwj23BETNyXGAs9z6RpRHGNG2fhgpYuNjb6O5/kXQ8AO3fuzPz6u7/7u7jzzjvPuhT1eh07duzo+X3Hjh2oM3BAzj0AMDk5mfl9cnISDz/88FOa90B+SuKCZRQXPBPe2OTFDue1o/LRMcuVrZ/fFRRQiCLl1Xr0KOI3i+Sot8fHAd83czZ835xcCUOlI4zqkIEyhe5OU+1BDJhJ2oCFeg7zfTW1lssAGipIdK2m5sly2aoCw26TqERMzFG/YvTwYlpAkXqNZSbASl0NqIapVtVJLFdk/BKxXskgpe56SuhtOhlThobUSx5qk8Gl09T+b9qT5RXtX61CU9VAue3LaJ26jlRXtRqwZcs12LkTtnFbLZTLBUxMqLYlc5+pT5LgkkuKKj99wglhaLJIU7WUec5z1DAol9W4u/TSkgXe2Slsc4LIOo/t21XIlYkJO4Y1k4WpN5lZpqcVxcnysj31gEsuUT9EEdCAbVRDgq8bKooUMr+6qj4/+9kmZomidJsHVlcRvUAXIwxV5fTYNmMW2YMI3bCAVl3g8pUyumEBc19XS2eG3fF92BMOetFplofkzReUQbVaST2rfMZuuUW1+REgDK/G5CTg1WqqsdjveUacfvNFHvAu16sXhQx097nS3QMQ/SIQCWDn8VIDvdzfADIAsAzIKIF0CWgTCJRgO4FGgs0S8CRVBgFDgrlMi2ChpCeRIBivl+A0y8J6u7QvLq2L/E6Q0wXOpTeypJxx+c3Js00uc37Oa2cJRLNe5L8mjQvb2uXpzvOKlvVm+YMgMCC4rBOBXebnUvqwv6QxQvaJC96maYrl5eVMgFHZfnIcuR7jLB/bk6C+G+xVtpvk6ydPued5GBsbywRaJaAu24ZBRMfGxkx/SQNHnrGI7bBli+KJl3XhOHY972lQSNMUS0tLWFtb6xlfNEKwnWgMYt7S2MH6SJ562R/PVBmA6AO5oEWCY9zQAnaz5AYsI5rXaKhNda2Gdu0KLCyotfrWrQBOxoZP1UMXgDqyXPB9xTn54IMolx2HXqKbGtQMQw28V9Sm1+d1RAY5/3JzEUVo+wXjFMViyktOtAKUajVz6jqKYHY4U9HjQOyrgKUAqlV1TLdSAXAktQmFIVbiKSwtAXPfUaeF1Wnp3QgBxE2gFEdqk7W0ZDfe3NDozRcAC1TEMdp+AYGuq5E8z2r2iX61WpaahfXVzYHxcR3MCsD4uPJoX121ztXkGDebY51PsfVDFAELVJfLCmRlP4nxQS/06Wl1vH96GkBrWtEAjK9gYqIANNW4KocKoC2XAcyrjL3mCZVeGCorBuweldmRpmbbNlieW561Zptw0BCV0EB6yV/E3r1Fg/9HkU2bme2KuyiXPRSwAszOI4giVKtT6v99+4A9e9Cu7EIyDyAODZJvwI+aBpsZTG9mRr3Xapab5cEHgfV1tbmFOuIdhCGQOMCAGOLuEGg0LHWrfAeAeK8HT+/Mu7XdpP7XjVhR9UgS4P77gelpPPvZ17K5gTjGvckVmJtTR/Bf9So97vfutVYLRjuTVEOcM1hoCscrB6QEmS6qjfi6fp3J9cCjjz6KYrFofh1xrSRa7rzzTrzvfe/bNMXvfOc7APqfqj3VCdU8R6TTOdW6WRpnm85AzrH0O9XhPpsUTiRHjyo+pyuvxLHn/CxO1tWcqLYil6i5nrE9fB9HjgB79+6A9/Wvo3X8eCZuhHmmNRpoMGkG+IyizMmeMIQJ0GxAU230S1p2Gjm2EBg9laZAtzIFT0dfvOEGxq5QIOzk8o8xuadsuNBZrHIZwJyqc6H5uIrFEk6h4U8hmaMu9JAkJcSx0k0BoKyacaxiSOzdawJTmiAhUmjZZftqgNwDssd9HOOjDLxJB2iC5b6vmn/KfwKIQsRx0Uy5NDTEsTC+cu3k+yilT6BUCYHDRyw92o03AoClhdP0cq2mWju84AVKB+3bB6C+XyXcaKBY8VGrlUz3Ks92GBB9V7wINFvW6BLHiIUtdft24LnPVWvCYP7HQLOJyWqKyZlYrS1qNdU+Cwuq8jIIShhicnwFN91UUEHINa2dq7t3V9u49dYAlQoQNB4HqmUkiY6zooOnt6OS7avpabVm1TQrhb17VXscOqTyn5wEXvYyoFZDrQYUsajWrEmC8iv/P/B9oBsVlR7XQLtUfZOTtv7U0TSWPB4qmsIDB1TX0Dbjpe2sQ0oUYWhB87qnGvgnBdL8PK6/fpd1RKjV8LUjOwxry3veo9ocL36x5aczSL0QOaDkXCGdAaQ13/d7rf0XtAx090+St5QBiH6RCEFS1zOaIj2xJY+2BHDpdevyoMuXDJjJ+/i7TEcGapTpESRkmVwQXYrrrQwgAwzL3zfzPJf5MBgnyyA95SVwTh5xXuN5Kkgn+bPp6cxAlAR+O52OAVoJisoAoNKTnJzdElBnev1oPtw+39jYMN7h5A+XICw9n9mvMmgoPaTluJB1YFsmSYJmswkG9GTZaVhgu7hUKOwPpivbl17kkqteeu0TcN6yZQuCIDBgdBAEpv3b7TaiKDL9C8C0Jw0d0ighPdbZ33wRRCdATvCcabAfAZgxvLa2hk6ng+XlZSwvL5v+Zvp8LjzPyxgHpEGD5W6321heXjZ1kSD6MxkYHoDoA7mgRQJbEpTkAtrlQOYCm0Sk5TKOHFFr/H37oIDIcll90a5UaRrg5Elgsuyj9eCDqAOYbp3A2prlL3dBdHqT+fEOVQyu5PJAfb3gXzieBZLlZ4KQfmUHWnXj8GMvPHLEumWVyyiEIWZmigrkFd5X8H3MzingfH7e0IgbztL9+wHf91C85BK1O+Yuiy5K0mNXo5zdqIhWE/D9IvxyUXkvk8idnlluEFJf8am2WsDJk9njwdu2WVwD2uOkoNs4mthhupABzJRnmDCQ3H+/8uDiCa9f+AXcO1swezLfBzzfRzv1DBgwMwP8zM8IEB0AZmfhsSBRhFLURbTHQ5As2p0nPWKIcPs+PHQxMeFhfByqLQiMz7V6z9/yXu6uyZnPdpufx7V7ZsSlnuERN/fOzqJAsFujz55G74+N7MIagGROX8/2jyIkTZXFI/MeoqiIUgWq3zR4hLExC6w/8IC6f98+ICyYMU8jgRyvLpc9x3CzqYbp0pKi7dX2F6Spav/C0aNAFJnAqcZrP6qqRA4eVGTGV12FWu1aBZrpRP7kdxXX8BveANx6qw7M+vzn2zpL4w1gvQd1PfqC6PJ5leftLwo5u414sVjMbMT7yVvf+la87nWv2/SaWq2Ge++9F8eOHev57/jx4z3eapSK5j+u1+u4RAz4J554ou89/dI507wHcp7FBczlcymF1zz2mJoL4hj33KOmrNe9TscsKZcV6CqAtCNHlJfv0PHj+DGAF2IRgAJ2Df+V1t3T02p+Wkk8FKan1XyerCDwfXVaBrAAPXVuFKlYEYcs3jc3py7lND43B+zeuxd+YmM8Y2m7mhS/+U0Fwu7bh6BaRRwHiCIgSFeyyj+KcLhZwsGD1pP76FGV9uWXqzQDQKHUY2PqRxq2OUm7gTrKZSymhYxaTxMgDAN4VI6uJ3oUoaWB1WPHlB6mjZLTbKUC4MBhIAxRnJkBwhBtv5CJXWqMr/whTW2bHjqkKvbmN+Mrd3uIY7W0CUMPBZ0R1w779yvDaSlcUV/YXq0WavteaAwSgd9V6wSuhVTUUdVwe/YAUQR2cZqqMTN57F6g0bLrGUnwXqtZHcE1JflbwhCYm8NNN12tVLvme5+YEHWOIuDIEewCgPmWAuN37kRcvhZpCrQrV8CfvgLzc3opI46cLSyo5ZnvlxDGJZT8w6ps1ap6lcsKQD9yxIDopbiLoSFPnfy6/HIgirB9uxp6tGfxRCOg1odyiUqjycGD6r/9+7WNJUnUHzt34gRK6CwIz/8tsSoPufnn57Fvn/WIX0wLuPNO4H//7wT/z/8T4nd+B/Bmf6ieYd+347efUU3OGcLb3Rh/5BG+ge428kzS3QMQ/SKQzfijXU9tCZZKMM+9X4pLUUJgFsh6cjMdSXciPYEBC4K7XuLS49b1ZJaf3d9kGWU9+ZtLFcI6MFApA4ZKsJWGAknjwnrxd1lHt32l17viOU0yAC6tc7LO0sOawKtbZwrbUwaBJeDKYKH87gbSJPgt0+M9zEfStayvryNJEiwvL6PT6ZhAnjQi0NggaVBc4wcBZJbd9c5mW7jc1tJ7m57b0sjR6XQMJQr7VfaRNAi548kdv9ITXnK0s704dmU5GXg0SRKsrq6adpPPlaTSkR7vLAvrIZ8pyUUvQWT3eX4myABEH8gFL1wkS65I+QLsRgewOwINEM7Pq41zGAKYb9ij0NzYIVBgYMVHE+pk7XSrhTQtZcugQTpidpKCxNBiuKC+fu/CMzzfLhUk3xcW7F5iZETvCVLYXbp0UW824bmbZr3hp/2AgVT5d7UKXHml8rwqcuNdLptXt7xDeYIRGdXtKzlcleO3pzzBpQe65PLUbSCdhuS+Z3zcYhtoCODZ9+FFEcJQbfrNRo2JMcHHHlMVg/1P20uMR5rvewa0p7P69LQGLhhJjIA2O7TVQsA8XJRYGhjSFF6aKuC/oceZbCQ5Lvk+Pp41OtDlntQFGugJfB9x7JnqBmGo6nrkSLYd9Ob+scdU9tu3a9BCPBfMhkOjNB2p++SJgpbe3LM99WBR1WCAdtM8ZoiPjCiAg23MpOjdxmsbDdGHeqw2dLOTSQh+rC46eFBV5uhRTOy1JxC6foD/+3+BBx98GK3Ws7B3r253ebTZnRNcj0yDIKXZgSkBJ+Aio3M5u4346Uq5XEbZ8F/0l+uvvx4nT57Et7/9bbzwhS8EAHzrW9/CyZMn8aIXvSj3nssuuwyVSgV33XUXnvvc5wJQjg5f/epX8aEPfei0y3g2eQ/kPIoEyt1nzX0m+bnZVEEzWy0TUDvwu2puqNXQDosKUNeewY2GmosAxeyl5jIBNAkDKPVDkgAIi4pShMivfi0mAcKwoABrPZ83m1nKF859fDWbwEqlBCRKz5TLUApsbU0ZfdfXFShbqcBLUwRyQk0ScyJovq6w30pFzelzc8A//ZPDS07lWK0CMzNop0pfmLoI8LHtF9CoW4yRVF3KazvNcrUIMDNJYAKKJkkvr7eiYpm3a4goAsoFhprJniDjD6wn9dncXEZ3c6opxKFpljRVzVY48l3j2WxOLC0twWstolwu2vqwfdLUGsD37TMnwUJRzYkJAF/+vjLIcyy2WoaPphuXlJGdBaG3tQ4+j0YDMzfogPKp0rdjYyJcj++rNjp+3Hbg6CiimlX7mS6gdaJcxvIyTB+MjgKloSFjQFeu71CJHD9u14atFgAVCLxULqOdetk1FOz6iPzp8hFMEhuzdn5eLC25Vtq50ywTaFRBGlogW183Pa0+duGh0VAAOvC/kKb/HN7dX1EJsA7uOl6Ku5aSv5PaxjUAXTQy0N3nSncPAoteJNKPBx04N8BSHph7JvdKMEy+S6A7L/08Lmo3DdeDWabtiks34tK2yHZ0jQNufVx6nLz69nvlieuB7pZT0vacziuvPU9VplP1c97pAJeORXriy++yjzbLu1+b9KMekoYHCbL3a6t+BiBZL3dMuf2dR3vjtpHbd5u15Zn890yS03mWTufZGshAfuoiF9H0BBIeqGqzk/ZcazC3JIEH69kgT4vyoq6zZNssQKabD7N2cbo8nCE3bmq/zDbbiGxWLrnb1aBrJkCofncdhE5ZBpEe/zJBvs5CPOTQbZ1i8+T+bL7LjdlmFetX2DzrR155+hl73Ptcr/XTLUufe7rwnIF7GmmeRjDNvKpS3LGaV+00RZY8N+8GDpLhYXtv5nrx4EgEK69Qp+pb5ndRS/csXuderrrqKtxyyy144xvfiAMHDuDAgQN44xvfiFtvvRVXXnmluW5mZgaf+9znAKj11x133IEPfOAD+NznPofDhw/jDW94AwqFAm6//XZzT71ex6FDhzA7OwsA+P73v49Dhw7hxIkTZ5T3QH7KcjpznDRgjo8bxNrM2/pl5gX9zFPNe9Ce2sjyQEs9l6uHcuaRTHF9Fdib2GmuXtH3SPY580deEGeR12n+bEVkwsDeaSoK4+hgiZP3pH8qXZVzWe7axNH3RgVtNt876wQjjk40/d9TeJjxkFkj8Jqc9dKm0z7/1Lw+PW2ao6tz1yZuHfv8JWV4WOtuQSafqbLk0uHN5KoDcivVb8j1sy+7jHwmSafT85Y/efW1/w8B8LJ1PtXz4P5/Nmu1C1oGuvtc6e6LsfefMZIHrPJ3Sp63dz9wrx/3ch6YK/9zr2W+rlcuAAOsSmDydOtEgMwFy6WnuQQ3ZTDUPB5uUoW4vN4SiJXtQrqZtbU1Q/3hAtayDJLbm+WX9ZCAn9u+eW3uvti29NBmejKIp7xGUubINkuSxHhVS2oUAAasDsMQkr6HdCiADV66tLSEoaEhLC8vZ8opufJJzeLykruAvGwX2R/Me3h4GGmaIgiCTNndUwOS95zlD4LAfHa9u9l/DBbKdmq324b3PEkSkN6FJxpYR1k3ymZe+q7xh2M170TIM1EGnugDuaBFgmWbAY5yo9NsKo+eV70K2LMHofbEQr1u+U3Eoj9AG1dXE+DQEVQAcI+h6R+NZ9KJpICk2WdTynnfV9t4T4KqYZihH6UXj3v6dHzcnsoOQ+1ZvKzTIPG24BvPHOMWbbB1q6q+5HT3feWMZY5YMxgUo0eJjVsgN0O+j7Rp08kzLJg/0jRLJ1K3dWH9mLWO82aNHMxTb14ZdNRs+JgXg81Jj7s47mlPD10EPjA66mXjVsnNnqT+cLwRM/+xYfhdAvFs2DTNBoCTyAo9uXzfEsRL0FiMxy4846SukvJQLJezQeMIMKUp4lj1M0GjVgsoam9NpsNm6/G8lghLpWLGOb0J+biRE5dVYnFZRv5Hp8QkscWdmNDcqYD1BgxVme2J7IIyTV1yiQl4KvsrTVWXz81VsXWrrmOaKpe5kRHlkS7Hh6QpkONT1psPWL+j5BeFPLXebGcif/M3f4O3v/3tuPnmmwEAt912G/7wD/8wc80DDzyAk3QZBvDud78bq6ur+P+z9/9Bcl3lmTj+6Pbp23d67rSuWj2attxSGnlsj23hCGKwAENM+BGo9ZIlS5LdLMmSWkj2Q6USSGXJskkqQFgIyVbKVbsJCZstyH7Y1KY2bH6xGxb41ELiAgVM0Dc4IIOAwRrbLasltTQ903e677S+f5zznPPeM7dHkrFBY/Vb1dUz3feee371+fG8z3neN7/5zTh//jzuvvtufPzjH8ecEOH/vd/7vZy260te8hIAwAc/+EG84Q1vuOJnT+27ZFfyu5Io3pkzevD4l/8SeN7z0FwxSlgcLHo9BNRDNuLn/+gfAQtr38A6DCvRyLZYImYcYz3Zb0+B5bKWmbE/jjGOqlZGbGYGbhxPEjx6XGdh927BwgVs7BT+Xy7r8S7Ihm488uKk8DlVOSaZE2ZN6LGO25u5OV3MVouOfuhB1Qq4u7IMswChF0i013On8EgYrkbj/PgodVqY516efS6DTFpwXOuvWCb66nlN6p6ddRLtWBMQl1I26DkGA12oZjMXW1Ip19ZxHNplhS0X+xM1SdIUYbQOKKP1ziqJIgf8sqxpijCKMDdXw9mzZh65+eb8go4ZabXQ7QKNRuhOJJC+LdcCUjbM2GgErGehjpfDuYaTaaNhq1guMZh87cgRXOwHOPNNnf0bbjDLim7kgqcrpS/+2tc0q7/dBpTCuqrhwgVDSDe6NTJrpZKJCQSXHdvcPc0+H42cjAunVbvGiWNwqcvlzP6mWb+JCOlMm+V69rPL+NKXnq/XIEtL+kEnTugM3XBDvt9NqNNcYVifE5wUO8Omc/eVPvtytlN7wHVhk1jUtCKGsAR1ixjLEmT3AW4f2PZBPgkWb25uWqkKCVQSRJfa6FKuwk+Lz/DBeoKdUoN8O/1oyqhQ69rXkPfL5ZeFADSfMRwOUalUrPwHQVNKc8j8SEkP1qus20nMZVl+GfCUJgOgSl16gtp+XRAMZp1Rw3swGOQkUXymdqVSsdrjDJzJOgeQ02Qvch7MzMzYup+dnc3J5LD+WW5fvqSIfS/7AAOorq+v55waEjyX9UQdd+kEkG3L9tswHnTJqidoTumWNE1tXVcqFZt32XdYn9RKLzoZIB0XBM+pqX692xREn9o1bZLFVcQ8ldQZwAGWR4/ikeROK2mZJNAaJ8vLVlccSumN18ojwKc+BZw6heAVr0Dd7C54Chhzc1ZbPcv0PpCPt+TafuoxiAIoFSIwG+jVVb2ZBVzQLR615brTSnIYq0ZjVzaikyIC5VBVETY81rFSmJ/PgwXc9PPU9cwMgHLDVYwJipVxL6kYq0SXhWB8bvOXmmcSBDdf8Gj56hm335yd1S+WNwfEm3ZYT/V9DJw6M4MtR5HtjUeO5PrEMNKBOXm9bo++qWsNJkeRYY0R7ZUoMXd7rFu5WZcbYAk6U0c+ijBO6lu6KOsrioCgf9F9ePasTqPR2OIUGSOw5DJuqgGgttjOta98J1hBqaBuF+gpfaSbp9R37zb9SoIFTIcPMYDIOKljY8XhD4OBU72RWIuWLwpQKrlnJ4nWmd3cdHFU5aO4yY4FaOAkkaqottvAHXcArZa9dxxVkfaBu+/WVX7DDdoPVkOq5V8aDf2haddxVHUyR3KzzYxIVIh1z+92HJA+xtVtrp++9U69XseHP/zhba8pOgX7jne8A+94xzsm3nO576/02VP7LlkhbdWYN5ah1wO+/nXgnnvwjeS5yDJgifMNJxNqYBw5gm90azgUj7Hwyf8GLC+jevQoDhmv4fd9H7C/OdaDUZLg2DH9COK+lqScpXpAabVyqhsAUDPjxWOdACdO6PGHClIcNjiVENu0c1s/deA5QWPzJeOet1pGMkaA7a1Yg5grK/oayrq02wS/zQLEgNFBNoRSoXVKhkavmAz17gk95dBfGGIIrHTy8xt1tcz8zSlBltPIcFsbI9CBVA14m/bd1LZnj8b59+wBsOGNvUaHnrIsF6N9aDT0HGWH445u6ziuYXZWp2kBaQKsppxWq7zVQj8NoVSIKA61o4VjOh3uJg/VxUUopSX8anfdlVtXjiOt697tODWY/eyfDBjO/7kwMmkrFdr+o5Vuqmi0b0HYauX6f5ANUXP+DyDRzvOVFeDBBwNbzEYDONhYt3r5DESKONbr2C98QZfNREOnhN/qqm44rufkWrWejIE0xeZmFYOBbqNmUyd3/rzu/697nQuRE0VwAUAbDaieTuvxx+nHCZAkNQStlm7bVitHGAHIZdmLJAG+ke7HoaSvNYvo6DAL03FcQ2C07nPrMElYkGt9X85lR50sm87dV/rsy9kURL+GjSBhkXSFL3dSBNRJULJIZkMClhJYle+T5DDIQpef8XOfse2bBECLGPaXLrngl2QIA8iVT97Pe8lglgFPJVNbmmTKS8Ae0KBxqVSy/5NhzTywfPxban/L+vYZ19u9mPei+pDM9FKpZAOZMu+yTSUALkFh2RZkaksm++zsbK4uCCBT+304HFogm+mx/uM4RrVaRbVatUE2qSfPupca8L6jRwZClRIu0ilAZnpRX/ID4Uo2/K5du6wTAEAOTJdSNDLYJ5n7fGcgU9nX5WkI2QfYL/m5LLOvG+/LzVyPAPEURJ/aNW8+C90H0gG3ex2N9EZncRG/9269OXvFK/QeAF88pXcLe/da8DbLgLDbBT72MZ3u93+/jQ51+DB0kEmDQJ/8mH4UmVOcfq1MTJYhMwfKmV2yzdZWNKgpGWGSEF8q6Q1NiKErY0/sgqjfbja746iK82cM0zqp56RqpEQlWd1zcw68VwpArAsxRIhUbJr96iUTOU01WKuPzY/dBaYg5/oh+t08SYtOA7LOyeKTtp7p51O7nYGw4tjo4NJEha2rGmPKAQB6XY+1zgwAqFRqmJvz9lc+e567PgKrsgJYiVJvX27Q4xgrK8htHMkAJ3uv0ahpJl2/ryvlwgVXmYIByDT4yNVVnc7u3QEW2m0LjIRqbJHtKtZR3aNwrh9ahhjrkt1lZsZo2EoWvaynKLIANzVwKxXX9r1e/mRANdIb8VocQakgp9JCPPumm/RzpT46mk2M45qtYh+sqbZawG23WbaexD+e8xwNYDUaerOPmVQHIW21bJCycVTVQdUAdyO9GT6Q7kk97TwAHbiW2GxTm9pEuxyAbgfynp6f3/AGvPstGpN7y1uAanYRWO7pdDodfd2RI3joIeBQKwN+//f1oPWqV1mU/DnPgUNBkwTHP2oJxnYuGI0ArPUtWn1BDI9KwY4bnY4mzi4t6Zf0t3FOY3Hs2Mxxh4sFBgExIPqZM3oKWOCNBrFsJe5gU6/nwMxmE7lTQ2MVarZ7lgEGvNVDnt7ncR5hdbl5o+/qhWuJxj497vfyB69k0zSbQDU9Z+eqYRbg/KiOTTFf8TnNpnFgcG4RgP16VNeHsVQdWQSkK7oO9+zRzwvV2I7dcUOvHUYjYDxf185ossqJ6DMIR7OJwSBEuWzif0hHOb21zEejAWCfmSs12SGK9LrtzBnk9MjjGNjfUMhNrpwIuTAyz1FJ1dZ9t6vnKe3LreamnVr/XH5NoRQCpdDr7cMDD+iuMj9vpicKlPM4Ap/d7+v5TyntdWm3reNlzZxelD87K2NkQOqkeQi9nq6KGi4iSTSLPY514O5g+RsYtw+h0zFBeFstjKMqlKl+BovnWrPWbFpyivQtAPpnycN+x44Bh+6Ndd4ZTXZ2FoiirXO3zzLnPC6PLUyZ6Ne97dQecN1YEYBOm6QXXMREl3YlDNiie4uYwjIvvrZ0UZp+OvJd3kOAUsrDkO0rpTBk3ZD5TNDTl8yQdcT0JKNYArxk2hOwloBwkV42gVO/XSbVgfxfyswU1TOBblm/vowLnycBYQmCy/zKgKU+K18GTmV5pJMhyzKsra1BSvlIdjXbiKxxGWhWOkl8Nr50JNBpwVMABNDp1JD1y+fu2qUlV1g+2U+YB7a7BMx9EF1KxxBwJ7Oe7exLDU1qVz5vO/b99W5TEH1q17T54PkksIsL6s1NIE0xVFU8+KBeo//jf2w2JL2eflFOwyQZpqlmqZdKegdh2FLNBoCORvqGmQ6SJPeEW/JZkOVxFCLA2G5qffKrBNP1BjLdWk5eJHb4WaaLysCRSgWoRsowuPRls7N5AN2y0E15GFCVrLxCrVOvPDldeWALu457GgKwBO2leob0ibBezp/X98WxYPdzg+oBLt1OXn3F3/Ar5TI9k+j/c8G+ZJ1KkDzLNMPOZ0jKipBINzQjj3t07v18uZ8oAupMixtv2bZK5bT2WTe89MIF7SzJMkq3BJolaYOJAVG8DwBsO/C59j0V/UrWKbUIDOLPy6RUi8xuqSQ+VMqCD0yGfW9+HgjSdQssAMA4ruVOarM8tpqJIAlwm9eQgJdlBiQoZxrxEHJAaWr6sgdQ2B+eD6TLyt6RNt2IT+0aN/nb8oExf5wdjYB+H+O4hgceME5o5TGniUDDYcE4flwPTD/7s9rzrZQGnc3cjSiyKm5bfur0VmaZHfty15lxhQAxhxuOY3v26HmbJ7ByYw8T8o7kpKkewyhnTWBwrEJUsyGqsZYyAfT8aWJN2nSHCNHvAUkS6lM3oih0TMq5yOLH8gPAIqCyfP6Uy+xVo3EuCHhmpEP8udwWl8eXmIDJJ5dgJo6q9WXaZ4qEOGSbJZ0mJLAPcTIQntbNTXECL4mctyRN9d9eRHeC3YAjRZw+nfe/Dgau3bbIvsm5w1srsB24BuL6o9kEasprGJPeYLAPy8uwp+qyDC54qNAnGiPQ7d7p6Iv37gVaLfROuLz7sXtyGev1ELXFmqnXR6XiiAnB8jeA48cRJAkAfcpuHFdz6wCueWzfEg6jzSz/M7jpJl3+Y8eAU6fMtZ2Ou8gEG7DpS5KC9FjJ/uSD6DtuDp/O3U+VTUH0a9iuFGR7KoAlXyJj0nMk0EqQtOganx19ubz7108Cqn3QuUjaQzoeeJ/MQxFD3JfikHUvAXwy7Sex7GWaRfItRXIkk9j+vJd1LZ9Z5ETwJUZkPbAOZB2T2S0Z1fJUQ1Hb+exxv6x+wE4+hw6CSQ4fP6/+KQy2rd9f/Of7ThP/BIZfv0V6+zRZx1JqR9azn16Rk8W/tghIv57B4eu57FPboVYEiAEWpVbKMYEBA5ZTdJwL8zRFNTGg8Jbz2MWP9L+y/4sv5TVkbQvVDnspD9dMJNT4QPqEC31sIlRjqDjAnj0agJXP9pMejXI+BQBuI8o9KPeKm5twILOof27YfEyEVU3yVBTpo8yhUlAqyO1BKWPDay3LTm6kTJtp5lh+L8t9l5VtMQnzsygSBZEbX9kocWzS0UGwAqLCfh7YoKK9KREg/R3sf0kCYDmduOEGdJ75XEqD0gEhZXWzzAAanX4uPT5XMvJzXVl6GWj0bIgGyvq5qs5h76zjIUKESWKZ8YBzzjQaOt9kDVabEbI4z47kBpxACk9oNJshqqawZOHLKqN2a5qaB912m9NWMnVgTSnXgYuAO2k7Fki/2oBjU/m6qX0Xrei3Jz8zR5ACjNFsBnrclM5ODviGbtxoQP9ueXyJdNssgw0xasYAf/6zxjFQjB923Mz080uX8mTybYtWBKxStktca68Xg7Q80ZYkIRYWNEhvLxF1xWKGUYS0n3+sBIBzw5q/hjAThlw/8OstihneCawozjsb5HpCExa8MdVkik3EtY+/LvLHYTmMSy/BGAEyhPqEl/FupF2X/zECBPPzeX084UDIrQtEOdfW8lmem0Ned8xfMwgLMEYcBxavl+XjbUkCPXdLRNrUzcxMfq1k29zo3+eAcXM60gaYMQWRazay6aV8fs2ceMg5+rMMc4nG6ZPElHcwANLUOo34EZ0gnId5Ci85UkegVjSjfCW/dGO18e9xUkdw5MiWH6Vt51x03gm2Y8Fz2nTufqpsCqJfo1bE2i4yn0Htg48SpCNYqJSy1/sg7nbyElJTmjYJcL+chrlkTvN6yrhQxmNSQEbKnvjBHsvlsv2M18i8+yx5AsvlcjkHHLMeKE8j9cF98FXWmQ/cyzYgQ54saV//nCC+n2dpUrOdbUj2tc8WZ51IeR3JsJbOD9a3bBc+yy83AFtfZGhXKhVI7XNqmTMvbBsyxn2QnBIubD8y0qXDIIqiXPtsJxPkA9nMB8vkS97IepGAN+u2UqnYv1kXpVIpd0KCeSJjXr7zuewrLDN/i9s5ZKY2tal9l80Hk/leBCw3GsDSEgKM8fKXu6CS/T5QX1pyiCQ3RtwNHD2qd3YUglQqJ1sSqjGSJMg9jpueMQIEBlRUcEEtpfHkqmTrcv9gNzQS5JXIJbBFeiJUesPGSzQTONDbrE4HQZrilnYLzaaW+RiNHMNbknso18FNm2SUsZyDQf66KAo0K0w5LXNez31RqeQ2b1Ws6wsI/Cp9fDlUCmEUoRorJEsmIGvvnNZ99YU1+ZAoQnOxZmUzQzXGehpgdVXvJcNs3bH5oQHnJAl0Hrq9PAjeaOi2M/qqp88EuHBBl0MHwwxQLu+DioC4aYD9Xs8GomMfaTQCjEYmAB5cPdeioUaKT/TcuXqiB1IDwJQtzDKESiFuVZFlLmjdwh7NxgwBhGwg70h+GEXY30xQKuXXg5a8F1W180P+loSu+zDZZ6VXCL6QMdjt5kEPfeIgsKTxKNKM0RpS4EJHyxB1uzqhZz0LtWYTw7hudVeXl7Vz5+TJ/OmMLANeck8bp88E+Id/yJH0bJDfbldv3L/cPojb3/1uR300dWkDAjLogERpJCOU9SDY/ADywQSmNrWpPXnLsq3Hm+TE5wNhzabWS0lT/KN/VMWBA0ZKgo6yNNWDrPHAvehF+/WA8IpX6O/n522aFpubmwOyDIuLLgubm25+wkxiWb6RAWGtFnRHT9Z7oLN1881APR7aeY82zPS6wJ4kk4C/UjYPHHfiOKSaHMbNgw4857je7+P2xUU0m9Uc3o0UFuznmqbfD3JzNqXE/FNRo5FZpxDJVQrj1kF7XRy700RyqNy929TT8rJjPicJAgDNZl07m62sjMkstcNl25pCzC/uw8yMTpfOez4vTC/maOAhhpidDZ0EHOV+mk104lvQ7wPt9iGErSEe6wQ4c8atyVZWgHjx+W4eJuJrqOeMq87nN5u6/ZrNICd7frA5BB5Y1iLg9ORSxD0XsRxAv487D8fWuSznryBd1/V3su/mbnY0U+bWkj1IgUbDrEHi2B7DcusvaGmX++7T8xy10o9rp0uW6Xm20wEeflhfQjL+6ZkalKoBPfETTFNUu4/gza9PdF7+75dsXdfawHqyHydOuLm319MxTdfW3CGQN7wBuHs+xkXUcPw47PqFWL/0fz3wAPCSP/gDnUEmkGWYmQm1hr4M+F1kctzg3B1F07n7OrUpiH4Nmg/KFgHpPnNbguiSjS21qOW9NP86aT4ITnkVCRzSyDRmnouAQV9nnd9LjWoCmlLrW6ZLQJa65xKcliA1JUtYBgmQEhiWsh+S7S2N4DLLPUnHnfmS2twS9Jfg8K5duxCG4RZGc5HTQuadwC8dCATnpQb3xsYGNjY2EIahlUHZtWtXrt2olU6gl6C3ZJ6zjn2j5jgARFGEUqlkQXSeTJBOHToLoijaUgesK2qYE6xmO7K+i1jirCvKsMjPeJ0EsWX55O9mY2MD6+vrudMVzFsURdZJIPXqpbOCfYn66aPRCBsbG1vqWf5eJHAehqH9/npkZE/lXKa2I8zbjOUoUxLZZgSsNMXrXlfFaKQX+/0+UL/rLr1hXl622pDo9ZwQJDdJRXSzNEWzqaUp+Lg41ozbYVTD+fMB5ubM8XO5uDcb1noyRj2BoPhmGiwGEDX26eL5jFi5C5aRGk1+4rhqWUFRZI6WZ5nb8C4vo8ZNc6ulN85RNYcfEijl5kwecZ5keh8ZApk7Bs5mmZ0V2u7drgNUfYaebDtABwKTaEBRHZiHBHGMWhzrAGRpimqjAbWnrgF0eUxYKaDbNdd2XMGUApIEpy/tM30jwGDg+gmx5dFIg72sfg1+7EPS3uccLFmGepQBERwAcKHvdFVWVvR1RDcYMZU0c+ksMcCDFtoxuq4A8FDH9VepHaOUiyyaZUCSYCFJsOdw3bYv3/XfIcjQVAoYjKrYQB1ZH+h3nLOE3Zd1cuaM3vwyUCmLeeSI/jnFMbTkwvIy8MlP5ll7Z88CrRbUvT+Akyd1dXzxi/rjY8e2OnAaDR1gjYEAKxXdnw4fBuo4hyyr48QJDcBH0e1YXAR+8p8NgX7f4XMErnwA3d+Yy3rnzTuK2TY9Ej61a9iKfks+iE5wPMtsXAb0+/h//p+qdeT1EKLZ3K/BWoo+dzpY4Bz7+tfbMZ2/4VAN3WdZhsOH3UkhajlHETBUNWDxdg6f2iHYf0IzqQ2a2VRWdloPYErpEzNRhCF0PkMM3bgsAyMSRfRA9GZTX/7QQ0AcBzjUgr5vZcWArSe1BFijYYJwKnusLsAY1QhYWQmYHVQqeuzudmHXPHK6tZIoBIHjGA89pB950002DIwrixnkqxspcCHVovC9HrCwYMsZJn0H/EtnJB2YfvuLubs2A4AOT04qPJrE+aPfx549dXd/t6srLMtwqgQ8+ijXLqFdB/FAYber404DwOHDIRqNEM89vGiTqidjy+wOsqEuX7+PeqOBOueBLAMeWNHPZIAXBtncu9cdc6T1eloGJU0RxjFC6UhZXtaTllws3XWXA9G7XdQXn8DRo/vsJUkCINYI9Lqqodd15VPtQwjeoOOknDkDrAlcHtDrluVlXQdx7Obu5WX9uKNHnb4/0lSD2X/yJ/nf4YkTGo1/6X48+KDDvOnL0MpKKYA13HDDXtz9s4ldAihl451iaUmTGXjS7k/+BPi3/zbEvfcexHv+Wc+2exSF7jcr52PpoJHvcvHLzrtjbDp3P1U2BdGvUdtOP1yaL40hpS98wHeSVre8ntcVgeBF4DlNAseU3SiSAvHTA2ABRwZzlOB9kVwLAd4oiiwIK8FzKc/is8j5vywv8+vXi2SiM18ElsmeZh6pxy7BY1+KRIL8BNwlY1+yleXJAakLPx6PLRDNOpBSLXwe2egEyZVSFtwdjUZI0xQbGxtI0xRZlmF9fd2WedcuHWhUMvtlX2EZCIzL0wAS+PdZ9VEUWWBcvlgeAv8SRGf7yP4ibZIkDRnoBLJl/clXmqYYDAY5GRw6CVh+OglYfpaBQV6ZL7YV+7LUpWc+ZZnJ5r+ebQqiT+2aNh9YltQsuSE3Nm7s05vF9BzqJx8Cmk08ojTj6qsnAyhVx6G46wI2LS8DR45geOT5SFMdZCmnychnZxl277byjQAMu6jfByKtD1ouA9Uoy28oyVYig1mmaWi4QZJAqVAD67LMEgwmuC80NoJ0HUpVKenqjOVifbValm4WtFpQKpT7VLsPIUFfYt5yH8jkJHNNasUSuwyzdQcgU8OW9D/AsbBLJX0DN+Kybkhn39jIs40ISpCWbAoSRlE+qiY3YFI7pNPJUeTPpi6bUrqEMVz7fVeNN96os9rv8/FabiAAXD54qsGwCbGyol8+oBJFug7k2WtZ8Wwc9u1OR9dhr6fRZ17D75NE169BEcKGBthD02dOnw+tvrrcjzKLRT8vkgllV+b9rC8GvAswtsAPPvYxDTjYyGj6xuCee7C8HGJ5GfjCF/Tlp059C8BFrK6WAJRw7NituOcenczx465o1EPHQ8vIsjpWVoAvfQk4cWINz3nOLH7wB0MszEXuBAh/L5LmKJ1t7MQslNS53VFstulGfGrXsBXN3f5LznXNpv6drqygdvzjQKuFL+N2cRgr1HIUvR4HEODZz8b6y1+DLANq2bn8HMtxINNM9MEAVsebQwMPCBFbrqqhm4vabSBJUMMYtXamP+908oB986ABp5F3csoJkxOKKW+ohqgnCo91AquBfagFfd+pUw4dNgHSAVgGuA0oCuD8eT2ezs7q4VZKZLEaGAvFTSsBqkmCi2mIkydh2NxmLQPjhOeigAlyIpQndvgQHi0yjg1kmc5zs6kXCJL2z2NMMtCnPBlIhjbrKk0RGub/MAv0NSdOaAd4pNnQfhwWVtXKCvDRj7oTVa2WlgvbT4C219NzNy/4kmFfz8/n11lds1aUnWbvXh3lWp4OhGn/Bx/U7+wfXMc8/LD+jo6RJNFeaDoQzpwBlpdx+K59ORkW6uZw+ch12soK8NBDga3CHPAOx0Q/ccItHbMM+NSn9KP27nVdi96cJ/7H/wAA7HvpS92XvR7UK/4RTpzQ1fDAA7qaRqOzAAYAvgTgLB544PXAryRYOaaLSe6GHQKyDJVKCKWAT3wCOHHif+Gzn30Z3vOLLbuIDDHMz92++UA6+6pc7+0Ym87dT5VNQfRr2K5EyoXvlwPb/Xtovu4zQUifLc575XcyPSm94cumSJ31Ika9lNeQoDcAC14W6YszzwRwCWzLawl4TrIivXI/b1IChUCrrAe/TEV66NKhIQHkIseG/1mRRrwsv5QxYX3IvPvyPQScJVuaYDvbkMBxEWjpy7D4zhpfg5wMdQZr9fXBizTQ5akKOj2Kfg9s3yKAXbL4izTK5cmEIpY765Iv2Ud85rrfZ2SaRb+57U6ZXE82BdGntuPM34gDdgGdZXoDUi3DbXgbB+3n5TKAROVZqFlmN5+11oTFeJahXC4IvpllNqnRCIASoIDIVw6NlJ/xfxXmv+PfAskeqxAB0i3XyXhZoSwXjSLb3sZkNMrj9BK3l+Rv7hUl3sH9sfzMNgePtBNUWFtzoC/zYKOHQgPlq6si0hoYQVPfz4ZjmSWqa7Q7c5m3dapc4aSmq8l4BpdFBljd3MzvoeVx981Ndwy8UvHqmxf7wqHSQwE4vU/fZP5l+UolV4dra/kIcDKjvJbOhJxzKbS3yHYiViI/kxJDMngY4KqR+Io9NCD7XKfjWHv8zPRFggOMlabPlF80eQzQ7d5qv/e7r2XMQadx+jQAfAMnTz5bd5s9Kv/bKfL+yP/9ei9qk2vephvxqe1Ak781+XcU4WI/QI2euihCluSHt5pkqJ49C6SpdQTe3o7y4z/TzzI7/BJEp3FdYIcGb6AcI3DOcgmQ+/Np0bwty+hfm2UAqtZ/Zz+nt5NOX8PMz82dJu3NzdB+xY+LpkQamfjjKLT4o8XF/TULK116Upk4I5ozv72enpu4iCJILNMjpuAfj/IZx3Is9v8X+eApKSC/lBiN9CtNnYP4zBntaEhTALGXtpy7OOnMzbn1CNFrwFU0ZcKK5hKmk2Uuqjvn5Mcfz5M//Prp9xH0L6Iax8iyINd3sl6+iegABxz7nJfrvuHmWok10w8kl1rM9xPm333nz7ubjElpt0uX1gD0oefuJwA8jm5XywXxmVGkn0+JO51xvcY9exYAvgxgEYgOiO+RX4QIx1POZL0PBvlC7xibzt1Ple3Eldt1Y1IWYzvzNc19oLkIKJ4kD+MHWpTf+cDopDwX/U0ZkqLrJYBJ4JRWFHCSJsFln03ug9ilUil3XVHZ5fV+GX0QV7LGmTeCvTJ9yTIncC0Z40XAuASaJcOcZZVOAcmCloCw7DusNwkISwBc3s9nbGxsWGBets2kdCT7XvaVonv8kxFFfaLIkVAkfSPrV/ZdyUyX9e6nw5MNsv59RrzML+tKMtsn9fmi8hX9Vv3PryebguhTu6Zt0obbB6nNDkMlVQ10kwEWx7mAYEohz1A1EcPsBkWgicMs0GxeA1j6p9AB2ISjyADscqdD8JtapDI6ZA51FuUjMFpQD1lmGNcsb5oibtRypCf0MkcDovkatF71StUwZkFmbXZWl42sNltWYxKM7/eNDEmWOTYW8+sziWSdcLPEDHGjSqRXItySXkfmkggwliuzz0impSmSpgMcZDaTxBHGuc8nG5pqQVFkgmdKEJvtzjyyYmRfSxJdNtaNTxVk2xuJtFzDzM7qjMh2JUXeLyfrM00xN1ez7cXysNq4AZdNIptJOp+ko2Uw0NlRCtq502joo/6Li5KunwNUms0Qo5E75v3Zz94KvRHXzMrDh7Xu8OamZqMrRQahYUoqhb179TUXLgCf/ewhLC2ZKiHgJDM5abzwf3PyVSChd+3aGFe3uZ7GfZnad8F8IMwHx8TYp1Q1x9Yl1mjnnE3zO+Wk7kuvmYFNM7az/OC+jUWRkGQRA2CWQctyiHXARJas9ER6zoHcNaasSVK1alx23Ge5OH9zsjFp2PyYuiPRWRQdSum6Go1cYOs4zsfYJKBOZ+qwUdOa7rJtOB8NBu6UFExeZ2fdHHbbbfoayta02+70G1/SmUzmOTPMsvr1ZBYbYwRb1lvz825OrlTceiRJ3Frl8GH96Jtv1tNkswlgubulHdDv65tmZvIJsT3kfCLLwJesSHkfHf+MtvqsZ5nTC02NLjebus4aDV1/goFt118GBY/j/VZqLsQQcRwijnXbc9rjfST+z89rKRWS5zc3tXQP+wObsmokg/azc9x8s24/U4YQQ9x6a2i11Xu9WSwvz2I0SqHn71ksLQHByiNotw+i1dLpP+c5sH9DKezZo7vG4iJw5swigO8BVh5xzhfZ5yat+/kjoMnYMtO5+7q0KYi+A8xnnNN8QNwHyX0mrQQ8fckRH+iVci4EDPmcScFIfSDeByzltbzeB0EJQkvmup9n+TypE87r/QCfu3Y5DXEGuuS1EsT3JVh8h0KRJrzUk5fXyhcZ31I3nnInEoD2g46y3ggAUx6EafAzlksGypR1TjZ/pVLBrl27coE0mXdfdoQSNlEUoVqtQimFSqWS00CfmZmxeuZFThk+e9euXahUKlZ2h/XMdvP7tdTKl3VfxCaXgTtZLganZXBTyrrIe5kWpVvk74NlolSOZKyzPYbDoWXv+yx4/3fgm/zNyv7jOy2uB5uC6FO7po27CQlMA/kNnXgPsqHRVoz0aj2KMBfptfZgYNLcZTYyXLTPz9s1PIHzc73A7InqqLVjDBHm9nqa0aWDNSroOFNJAqCTbqH2pikQJXUEBEtJC5LHo2XCgNNpJhCvQvR7+ki7ikMdgLPbRZBluH2p6e5JU3csnkbkW2xGJDlM7kOIX8jb+B5Fbm+olMOINzYcsynLgDQJkST7UF2K8gCzZH6lqUOrRV2tZ+GW4+j1eOiEOJVyUSa5GW+1cPpMgLm5OqqtzKEugD4Cj0BrrkumeBTh4NJFNJs1HDiQbwru6wkWl8tAPVp3Ui0rPVdZpFdLI9B9442uktkn2DbcMNu870N1MXbH2mV+ueOlVqlES5ieBPH5ezFUwyqAqlKIW/WcckmjobMIOOyA3YSsMzYXi0CMZDRygXJ7PSBZul33715PdwZ2Gu7Y+33ce6/W8H/e8/Rlx45F6PUiW9w3vAF4bvRlHH7d7TYvd91l+qMR7n/2IvAv/oX+/PDhWRw9CoQPfkZ/f/jwVgak7PC+sZ9IDVZGUN0RNsbVba6nG/GpfQdNemJ9h5YEa0WQ72rDjG1HjgBxjAb03Do3Z5LIlEOGm00gSZzf2iDu5/ohul2g1aqj2oCdC4qyALhglHYgEl7kLAMyE0uiSpCYg6IYU8YqRMAFAstm0hrHNXFqB6ilPeDkSVRbKe6666DOV7en62FmxjkeRyMtG2LQ4mEWGEe6LkgU6brh/E18Vg51TKrZNAG+lcIwC+39WQYb8HluLkCShCiVQsw1a1AKCFstdxKK1us5sesowsU0tHN1kA1xMQ3tWsvOnceO2fluHNesA3rc2IdOB2g0a/pUF2DH42FUM2se5KU+ANxxh+sG0m9MhvriIvDGN+rPvvd7gYX5sdYI08E08tp1rAwdTVzbs56lJ7heD/jmNx0rnXNuo4FxYx/OnHGKc63WQdRuvVVTrbkWA/QFN97oEG0DnJ9r3o5uF7jlyJG85x7CSX/iBJCmqN+TIE2qei20soKD7Tba7QClku4iUWTqud/HMNF1etddeZ872yhNdf1kmS5+o3ULqi9/Oeo/8iP6wx/6IZ2okKf7kR85iF4PePWr9ccnTwK9XoSPfexFOHlSz934y7/E3f/8n+Pee+toNoGffr2JURM1ARVhcVE/V8dFeS1+4iegtV2+9S29tuE6RsYU4A9XvuT4Ide2Rc6ta9amc/dTZTup1a8ruxqw6HJSJz7zWEpw8D5f4kPmoYi5fjl5FoK0BDqL8uszjZlukdyFBB1pUlOd6Uh5Gpl3apBTHoTALO8HYOuI79KxwPpZW1uzZSLznCA1gXGZPuvUD0RJ4JmAtNQaZ9BRyci/dOkShsMhNjY2LFjOz2R+CO7K+mPZCYKPRiMLwPMZBJvX19dx6dIlDAYDlEolxHGMzc1NzMzMgBr01EKvVqs2TTodJKN9165duaChYRjm2lbqmcu+AzhmvHRayKClPvNcapGzjljnw+EQA7Oq8vtFFEWoVCqoVCoWNJd9BQDSNLV1JgOVSka6f+rCP83BZ0sJmKmkyxREn9o1bpUKEARbmds+21Qcua0mCYZZiDTejygCqtk6oIDavFmU9yMTJcyk02zaTa5evwc2DqXGAMMc1sZH6nv0d/PzZtPj6XcPs8DirJubodF1jbZswgOMzSY5RFUC4GZ3LE+Tl0rAwq7MCbpStoYZazb1psQ3s9kgOSrLnAKI3KNwX0J8NkmcZirzNFZOIoT7ntHIBebUJOQagJq5B2iY9ILeObsRP5fVcoGq9ObMVc/CAtBuhzhwYB9eeFSDGI91Q6RdoNnch2qjgcc6AU6d0gEoW619OZ9Lz+Aih5pNd7Z5Y0Of8T5+HGEca53UOBKOmQxY1gWrsdJXVhwAv7bmmHiA8yokie6vRC744vF8XiPqb2XZ7DMjIEmqSJIq6i2V34SzgRYXMVy602L5WQakHQdo72lAswnl8XTulJVC2G6jTiDIVHBtrb+VEZpl2N9oYH8zzjtyRFBaXkpdfK3texCHfuqn8r9L0UH2p13sT1PcHqVAO8IPv3wR47iGEyd0Fl+S/D3we3+A8J578E/+yY9qfeL/8T90fRv6evXk3+Pucoa7X9XCffftQz17Avi9TzoZAYJXEqQrMn5OUIN/SyDlmrfpkfCpXcNWxBIH8uMNWcryiEyS4PSojjKMA9VeD+f9S1M9LggQnQ7w5eNOxnpxsQ6l9PyqlNu7UvKD2UoSACdW9Adm4hurEFnq5l09NrdywSTk8kOpEFXOCeJU0ZkzLkC1UkBNpXqi63ZRa/fyYxadjnzn38YZD2jZjEApxLGe81htlUreH0i8txqNzTqhp+srqudky5aX9fvCgl7HSL9HHNeQJDUcbLfz88rSEh7r17D8kA4k6WRlQtvsZEQfOVLFDxg091xWQ/cksHt3DXNzNSyf0M9vtYA7D7cBAKfPBNjouypptYBQCYAdwMLGI1hYTIy3t2/nmNriIs4lB9FuA3fi73XGPr2i3x9/XDcEGQ9ra/rhUQTcc4/+rNfT8/ziIr7c3Yck2Y/9r15yyLHxIg+jmp27icV3u8BLnv1sJ0be7Tr5m1tvBV7xCgwR4vx5nY0vfkK/p0drWFq60/Zxpcx6q9t1Wu2tFppLtwPLKzZQy003HdJOCpj11Gc/C5w+jfDee9E8/FwcbKzjzrhjf0+bm8C99+r0uXRk+JxW604c+o3fAAAMW4f0icL0MXvBofQEoBSeGwNoxsDrDmMdVdx7r9amf2Xry8C7/xgol3HffT+NpSUA73iHLsMv/iKGi7cjPPll4ORJ/PQbXgUgxH33AXj9R7QH5557dGeVGkP+wpQdix3Dd4DvKBB9Onc/VbaTWv26MTJzr0TOZTsmelFAy0n60z747T/DDxaqvAGDMiM+KC7BdJkeyyklP3bt2mWZy5K1Le/xJVVk/VCyZRJjXpbXl+OQ0icysOWlS5dsugSnCagPh0NIzXaZni/jwnvJvvaBVOaPQTalE0SWj0xysqAJMvN/guEsg7yPgHcYhsiyDFKqhGxtBlCV9S5PMBBkDsMwx0QnOE+wme3A4JxkoUv2fZFGuuxPPlDuOzT871gHDKBKkJvlks+WAV5LpRJmZmYwOztrfy/y9yfLJZ0iMg+yr7JvS3C9SLdd/g6nIPqVXz+1qX3HTClA/m4lEwXIM9KzzEpjpGmIlRV9jHVhVz/PMCNwxgV7kiDr5jfW1IDkbc0msL9pjjvbR4b2e6ubKsEApXIgs9tXB4jjqpZ4EZZlRs99j7csVMrKjtAWEuSFoysVvaOOIsfUljt8sqiMUc+cVSqToTrI/ubYAAa9fPDFOEbQaECpwIKprErKm1POXDKZebS31aojBLCualjWWAIefFBn8fjx/N6z1dLspaUloNUKoFSIU6ccwXt2NkC3q8lfGxtbCUlsw1arqqVwSFfjAxjclA5zqavZ6+lAbwyaJj0ZzabzMki5FoLozSZOnw+x/Hlgz54qWq2DABxpncx9xsebmbFxQVE/kuQzT5p4q4UvflFvvAkSsf1YV0kSoBabcvqi5r64PXVaZWeQRwAICJnfTJAkWkogTRFmGapLSzjXD9Hr6Y30zAzQ6VRzp6rb7Srmm0Bw4su6kRmoDQAWFhAkCW5/3vOAxRbwB3+mA5OmKapLS7py/vzPdZ5uvFEX8KGH9GvvXtQPHNCVx4BtL3qRkxSQYwTLLN/5t9ycAzvsSPh0Iz61a9w4X/ssUiDP6l5dtfPzMNmHhx/WP+V6o7d17gZyTsqsqz9KUwDGAb6y4hjYUQRUPTyfQx6zZUFLMZbL7HGqVSpEjZErvSIOBoDaE2oJOMCOpRcMyEpQGXGqxy06D+TJJJaz3ca4sc8+w682pbTEye7drjzlsq4zLgWUAoLuE0BHzANKIVN1AK6oJ0/qaYDzt998SQIcXGo4kHltDYgiLC/r+frP/iwf4JNKXkrpMo9GwA/8RAJkmdXkpg+EIK4Gy/X+7dFH82udZhNAluaY6JZRznm517OTa3T0IILOYy5j0iGdZTqDGxv6u5Mn885vszYYN/bhwY/pr9rtAI1GHftbLSBNMYxq6Ha1c0SC0VkGHD16UM+RKyuu06QpcMMN+MyDoY3FurGhcfZ+37WhlN6xa41vfcsi9EH/ov7baKsvHG3rtE8s68//9m91ZS4sIFxc1GX77GeB+XksvOpVuv7MQ1tHX2JjlTP++XLzkF42nND5uffe/ahmmZ5fjx1z9RzHwOHDqO7dix/+x/8Yp19UA/7gTzH+m79B0G7j6Bt/Ws/3/+//q69//euRtm5HuLKiI5MCeOMbX4Pggb/W+WNQdLmQlHOyZKTLHwTg+gM7246x6dz9VNkURN/BdrXA23aM1yLpFWm+RvXlwH3/Hl8rWgL3k+RhJrHd/XRkGbYzCVxPktnwA4D6zOHLldd/ly/paGCa28ndSOCa9TEJcPVB26I0i8B7H/iVaQHYwqb205FAcKlUsg4YKb+zna59UX/ztcvl376Dwq/r7e6TjhJZFulsknI6vpOmqE0n/Wa2a4dJdj0C6VMQfWo7xiYxTXy2aZaBwRQ3NoAtwT4Bp1NudtGU3AYcS5uguiW0yjTs6acJeSjI4mDgjlBnWV7bNJfElTBqZF6ony3yRqYzAAceF5gMykWzQLSkmnvOgUnZkQRgKXMJ5MsfCkY8904yFqf0iUjsOop0OzFLUZTXNfebgW1p65vGRPjZzEz+ZmbswgWHokhvCN9ZYVLD3NTRxoYGCspld6kfjDVN3Wdkdg+zIJ9XphlFWFvTm3B5KoHp57q4Txn3G4mfr625vLNORiMNKkhpEzK/AK9htTTAxoa+XXYPpVycvCo9RPIIPaCff+CAvpiAB4O58Vo6POgAIThRLrtr2TEu8zucaDLTO8amG/GpXcN2paBWwW/WyZ94Ewvg3gvmNX+Io/b3dma/5w1etvgx5/A41kxwaXIKDic8Jxf3kGMtj3AVsG6l37poWFPKaZ8zXjU/U0pLq+Tk1PzyinJubBRzE0iSz4Ga5ksm7QeCls3EOYAfynlKTkOy6qXf106tZS9xBjZl4PE01Q8aDPQlPP1FxF5WoKwT+TBauWyTpi86igA0Ilv8LNNNKNcXTMrGrfGCzRDnX1vLr2lMti0enKvnLRM7ihcRPpNBen9mZtxaxyy0QjUG4EgQAIN9O25BmmoZOOtw53zMmCdZBnQ6WFiMgbNnMQQQ9fvaIWU6RZamUMw789jtaudOt4txmmIMuGu8PralU8nvdxz7XNp07n6qbKf2gOvGfACQRgDW11T2GeaXA34vBzwzD5IVTICxCJQteqbUXKdR1kSmLcFiySovAl9l3uS71Dcni5xpyrpjWsyHLBfZ3X65AViGugSIfca4fI5fL34+yKQeDocIgiDHJCdTWzK3WU4p9SIZ8/K5sq5ZLjKomRZZ2ZQykXUCwEq3kEWfZRnSNLVSMj7rn+x3/k8JGDK+fUeOZPmzD0iJFL7LwKAss2SlM2++xIpkgrPNil5+20mwlicENjc3bftLzXyZVz6D+v6yTxbZ5cD4Z7p9J0D03/3d38Vv/dZv4fHHH8cdd9yB+++/Hy9+8YsLr/3Upz6Fl770pVs+/8pXvoKlpaWrfvbUngEmkbkilqk08V0OlPZYLEE2dEfD4xjlcj5YZhzro80y2SFCqCi09yolcMaCZyDLoASJhnGmuG9emE8AaNA0S/VGamPDHUu3x1rTFPPtfP7QS/O71Uol97/cf8VxiJA6o0ZX1ZecZJa3YOT+5l6w2+O4ZhU0AK2EIfVZZ2fzjL/5ef1ZVQ2BXh9xs4a5Ob2ppFw8g4Wx7ahMw88pPyPzzTidDHRpqsxudG1fYMYYYY1zODNNNhPPurP87BAS0fC1OIlmCCBXKZ2nIqKzrGtJZGcfCRmUU7ZxFEEpd1JAZkkqyNgNrzz2LB8mP5fyJRJETxJHZ+SDuMunTEwUYXTeAVVSGoja+XFs5AQAnSYp8xIUW111VEYGXGs29f9LSzpPfDYbW560uJIx4XKb7Su55pqz6UZ8ate4yd+UD1by9yq9n5N+w3Jg5/9GQ5q39/su0CIPY5FZHUVBDjulEsSZM2Ju4DgujMAux2U6RetmbJbqE8z+OK7qoKbmRalrO8T0xQTMZ8pJwIzTg/NbA3iXy0YfvJ+i0ahZkJtAb35+CTVRQDqLldLjcRJgdtbNuUoVxwMFzNDLemceYQ9c2RiUMzP6koWFvMyM1eU2eZAAvYw9zSl0YjfgDTIwC0XRWYdzc67LMa9+/5JeCU6aFDY3z+HXnNOiCHZOzWLnwN6zR09pzMZgANTmE1dopt1oACsum6y/LNP1d+CAvrSKdb22o9NeBkpnefgwdmbO6xTE5wmyJNFBQo0G+xiB1e0fI7BVyJdcu7FqsZLlFxhSZJ2yRiaBaG4OaDYxVFWEzSZw5AiUiT8Tx6YyeVQi1QveLTtzf505qTPINuS1Uyb6dWk7bdV23ZiUAiFYTpNAJAE+mtTWlixg3uenD2wF+QgQErAimEsgUzKpy2aW9ZnHEkD2QU3+vbm5WfhcwLGwJVDtS8jIsvj1JQN5SvkO2ng8Rrlcxng8tsAo80lt7SImchRFVg5lO1a+ZD3Llx80lKAvA3lKTfaZmZlcoEvpxOA1LEO5XLYgrwwMS4Ce6Y9GI2xsbNggnNRgn5ubw+bmJqrVaq4/UCtcKWUlTdbW1qyUTZZliOPYyrVUKpWcYyGKoi390O9zUopGguHsE34fkQx+X/tc1ifbT+rMSxkX+VvxGfnyN1b2FrZS4kfmm/nj9VKuRvb1K2GyXy/2dIPof/zHf4y3vOUt+N3f/V286EUvwu///u/j1a9+Nb785S/j4MGDE+97+OGHUavV7P/zEtGc2vVnBQB1oZkdpUpqjmSUCBSTu05uLNttDFV1i3yriR1lybGDgSY16aPSIRS8eEbK26wSRBe4JR+9uqo3Uxsb+bGVwHe/D9S5ETLMn2DlEdRlJnu9/GZSorFRhH4vT05SyslslMtAPdHa2Um7miMysYpKJRMsTWV5BIDl6/UQpCna7X1YXXXS33IPxPohW5rPRMeUKYqwd28dWeZiavFRUeSkZfbuBW64we3fLlzIV7OPZ5M4JfGWLINDTuRGUPYtyWzKMofIkPUmQSAJePCdILRp+zgOrcKO7L4EZLJMl1HG4GRfAQJUW60ckH6uF+R8JTLLrRZQVxeB5a5ji5EeuHevA5/9jn7DDXkAmfnnpjmOMYxqueYPTCOtZ6EAqRwmz0dVKkbTuNPVF83Puwbd2HDn+E+f1uiUUsBttwG33oph65AOaveqV+kfDHXLiZBJK6KbbvEGwZVPbsB3tF3C1QUcu37XOVP7Lpgc+IoYv/wdyjHUN9+BSwehGQfGURWJGbIYCJkSYD4Jm7EhAf24oPsEZmb24exZM9cxD2ZwTjPkxjcSe/t9AC0ttdLr5uc9QN9ej8042++jHj2m/+fY2+m7cZ0orad/vp6FNpan9DXoh/Z0ENa4j2oUYdyso9PJVxuruibnKZZtZQXVOMYNN9RtUNU01fVmFEtsvVkWNlHj2Vk7f7bb+pq77nJSZATNuXwBdFvw+RL3JTYrsXDZVVifm5sAZsyCYmHBIdFcZAAOkW40EHBMpDfeP0HFgrEQUST1eoBKxdY5HcFJAmC5p0H0hj4NVi67eJh83IULwOZmgP2HD+fi0qwn+3NLNLZnqaRj6Gr9cTFnsxI4DzcaGCJEyHL6IHoca4fzjTe69Q09HHGMr57Ua81bzP/ylAOLHce6eQ8ccL8PK9+yuEgtPl34T39aA+gPPeROlh09CtxxB1ZWgGbzEKqvf70N4h50n9ALg3Zbl8cEq7Wzl1w0snKkyTW/nLulp2dHOcGnc/dTZdd8qz/66KP4pV/6JfzVX/0VBoMBbrnlFvyX//Jf8H3f930ANKjyzne+Ex/4wAdw/vx53H333fid3/kd3HHHHdum+5GPfAS/+qu/iq9//eu46aab8O///b/Ha1/72tw1V8NgfDpMAt0Ej3yN7yKAnQCmD+Dye6lD7YP0EhD2JUgk6xbAFiavBE8l2C6BTZ/dXQTg79rlgk6Sxcy//brx88bnyLKwLsrlcq78vJ4s4/X19ZyGtnwGmdqSsU1wlKC17xQocir4wUIJxm9sbNhnsQ7jOIZSCjMzM1vAXh/YZfmHwyGGwyFk8Euy2wmiU1OdbOkwDLF79+7CMsgTAFJrnO2yubmJSqWCS5cuQSmFarWacwAQVJdl9h0eTHN1dRWDwcAy5qXEigy6yv4FIFdOtpl09rAPEDRnH+D/vnND5pNl57Uy/wxQK0F/3uOD6NTDL6qDItmX77T99V//NX7rt34LX/jCF/D444/jT//0T/FP/sk/sd8/2TH2SuzpBtF/+7d/G//qX/0rvPGNbwQA3H///fg//+f/4P3vfz/e+973Trxv3759SORKfGpXbc+IuTvLgGrV/b0d65SbxH4fqiFwT1/ng4hxu43HetXcPovWbJrj0NCaz5TQlKSnKNKBHMcINHvcB2HTFKHSAc2YBZ4wJh5g9mw5xpn+PESNm8A0dTrSshw+dci8GMzUP2ZN5lQcw+lsRhGqSqHaaCAygSMHA8GIlrs+1jGPSiuFahOozkSYX6rlQGu+B9nQ6Wyf7G2Rh1lYTAAEVke13db3kc3GdJLEbOqUwu7d9Vw1z85qbJZ5lyA6iVyjERxYwU2mz07j95LhdPq0O25Ahjr72WgEi0IwHcrAGBDdx+v9/fzMjE6WjDzZPZUKQXEAdnmS6Dk0snnqOKeDjlEzlTqjZN7LQHVM0Pc+8OGA3rSrKjod3fUk0NFs1jXu0NH5ZLVEkZPlbzYNY1Jqw5LyyM5PDxWjpCqlA4g++9l46CFd/jvvuy+v7c5KkrIu8ni7bz7DfNJG/EluwL+bc/eUzfbMtWfE3M0xlaCl9NICefRR/B4Lf4r8sN/X40WjgUe6VRtMM021BHSa6iEkXPkGhq1DOHFC3yalR5QCwmwdWFlBfGSf/a7q6WnIGClRpH15/twtpw4WVc87IUL+Q4Sb4y2dADR6UM0ksJ4G1g/K02nUOa9UkB8zAQTtNpLmodwQyKquNWM71o9VqIN6r6wAcYzmUj03BYS9J4ATGmDXc0WEYdPMtcdNRYhYGbX0CSwt7cPdd2sfKPXnm03tJ+WwHMeuLzCPXPdUKs7Hy/qTa5CcvzOOtdOXdSY9z7xR/p0ketHDaKlSkoSoPxcc7J8GZOY6QimtWV6Lx1ZabPQ9Giyn00H6XrpdjTFnN9RQqdSsnBl1xuloLpddfdX7j2hx+dVVF9hFOgcMg/v8eWB+fp87XeCfNDtyJMdEX4/qOH5crif03F1rxRicz/um+DtKEmB/fNHVEb0oOigNHsFBHDw6Bv6//8/1QXpPjh4FnvMcrKzoEx53/9RPuUUoo6cvLubqO4c+FZE1gO0d3vL6q5zDp3P3M8OuaRD9/PnzeNGLXoSXvvSl+Ku/+ivs27cPX//613Pgxm/+5m/it3/7t/GhD30It9xyC9797nfjFa94BR5++GHMccXv2Wc/+1n82I/9GH79138dr33ta/Gnf/qn+NEf/VE88MADuPvuuwE8eQbjU2lSIqJIzgXIM3P5uS/psp1J0FQCfWSeA441LPW8fUaw/2zmn8CizL8vgyGdBZI9zmdubm5uAZ+LdLUlU5ugplIql2eC2jSp/T0YDCwIu7GxYUFypRTCMLQAqQzIKUFc6fDw2cySqU8ngZSPIZOa9cdnkEFNpjdBYH4vJVhkOdM0xXA4BADL1CaYzv9Zb5Kl74OUbCPeR/C7VCphY2PDgslsK+azWq3m6k2Cxmwngs8bGxsYjUZYW1tDv9/PgegEzfkO5B0IvkSN7+hh3bPdfVC+6Dci+5dsM8n0Z3osh2xzgvzMpwT9ZV/1++93C0hfW1vD937v9+Knfuqn8E//6T/d8v2TGWOfbrt48WLu/0qlgorU0AUwHA7xhS98Af/23/7b3OevfOUr8ZnPfGbb9J/znOcgTVPcfvvt+JVf+ZVCiZepTbZn3NwtGGIAti6sJaqaZfnLfZqYAHG5tpeBsMplF2gsjg/a23o9vQHau1cAxGkKxDWjham25lNkjV9xA86NIjeyvMacdEVtj3I7SqldDeiNy9xc7ng1E2ARKUHN/6PIbVaR9l1GTAarrZaVe3FVbPS5/UJwV2Y8C0GaospCsOisBwbIZGYc0gD0+5ibq1kghLItrZY52sxnp6lm8CmFmaRuSd+ALlMV60AcIcv0PErtUTKsLJtN1hUTYJ58kFmi8IBDuysVJ2zqb96EfkyQDRHHoXPmwO0TuZyS2D2xJKqlcI/MZmfb8Z5SSbQnGeiMssoySaZjFOkj3TLPLB/fzUPXUUXP4PEE0Xlsn/iFZHlKICmODUglhe65QyfwQY8U4DwerZb2njSb6JxkugHiuIaDDeU6caPhAtwBThTYddrJG2p/3PAB9KvciO/EuXtq17Y9Y+Zuf2yUp0DkO19FjjB/7hGI4OOPa2B5YV7rOxMHDbN14ORJhM0mBoOqTYqKHZZZ3eshyIYYjUz8EM+TzjmGYy79koCTjpmb2zo1sqgh/6AuN8e/UkkPkpT/EoPnxb4rBwF0Tptzc2Z64bjKdUwco9puY2zqQPIM6NwfK00GqCulUd40RZitI0mqGlgn0Lmyohc58/NAFCFsibYDxIQDoNtFVSm023VsbOjhe3bWtEe3C0QCDM6Qi9Mik9L63DDrNn2N5JLZezh3yH5B54PvFOX1gJMQ4X0yngmdsoxWTkevsJkZUedev6jFru/RScP8l0oabGefYz9in7HLjePL2gMkF2oEplm+JMHaMteLNb0mk+x56eU25e92NVGc1RHHhjTeCG234+0khszOQvcBHusgSJ4kGDYP4sGPAv1+gNuzTCPlJFQcPqwB8lYL3Qd1un9XriJJqjgUpdZxYxcOpoPr2oObv/n95Rzf/njxJED06dz9zLDtBbO/y/a+970PBw4cwAc/+EE8//nPR7vdxste9jLcdNNNADTodP/99+OXf/mX8cM//MM4fPgw/vAP/xDr6+v4oz/6o4np3n///XjFK16Bt7/97VhaWsLb3/52vOxlL8P9999vr5EMxttuuw33338/Dhw4gPe///1Pd7Enmg+y+SCt/Oxy4LkPNF6pFel+FwHal0vbZ9j75oONk6QvLqfp7l8v/78SFuyk+vXlcnwJmyJg1i+D/HtSOX3WclGwzMuVwc+T7CNSM75Ifma7V1H9FJVZ1rvPwC6qG/+kgg+O+06Yb8cuV39F3/m/Man1XlQfk36PV8vCfrrs1a9+Nd797nfjh3/4h7d892TH2Cu1or58uRcAHDhwALt377avIlZ5t9vF5uYmFhYWcp8vLCyg458/NXbDDTfgAx/4AD7ykY/gf/7P/4lbb70VL3vZy/DXf/3X33ZZryd7xs3dk9goExbPAcb5r+SOYRtjsKhJjyr6+wqS3WLcaE161kTb3HQ7TAlAPIlNxBXbpLqTu3X54nfyGt8K9Cu3FEUevxbp+Nnx24WbQplW7nHb3bhd+fm3TFxGdJP1YiwQXKuifPsY0eVMPlZmw9aP36G8irBOpYIMjRFccT+6oq42afPr1x2vEXUrfV1pCgc0+ZXGYAbeycBt8/PtXiPsuzl3Ozbb1bymdq3bM2ruvsrfE23LuHYF49KkqQZww6AdcsSFhUNHQUL+FCdNOkW3ZNW/gYjlzEx+/vg25285BWxb7eLkToDxZGJCkRXktVx2ztWZGUyct3m7fM9lXFyzZX4ryl/R/D2pgWQHKLpfpm8+zxW1IE2uUa6m+WT5c32xaO4WCY9NENCJ60XhiLlcRvz1x0STD1Qq37dsYyPvtIgijEbuFIc9CepXkrknwGVA0O365JMcW2jTufuZYU/Truepsb/4i7/AD/7gD+JHfuRH8OlPfxo33ngj3vzmN+NNb3oTAOCb3/wmOp0OXvnKV9p7KpUKvv/7vx+f+cxn8DM/8zOF6X72s5/FW9/61txnP/iDP2gn8yfLYNzY2MAGRcywlS35ZExKX0iwdhJgWwRqF2mhS/1xyXifpJMOuICfSin7knIlvG9kBj4yuYv00Pm9TNvPO8srmctkBPv64pL5LcFgpkdZE8mw5+dkgvOZ1PZmfimvQlkPWWZZLuanUqlYBjkZ0mRxy+dKQNjXspfMexn8lHXA55ORLsvJevW15CUrXD6D7Gq/rWWfCcMwpyteKpVQq9UQRRGk7jn76mAwyEmZFDGx2Tcky10aTwUwL7I/sMx+eQEHYPsnJOTnfLbsM5ubmzkQ3D/hwPxR4mU8HqNardr8k7HPZ0xiuvvBUWUZnkpbXV3NjUFFbO3L2ZMdY6/UrtaRwGtPnTqV0yzfrlzbnTTw7dZbb8Wtt95q/3/BC16AU6dO4T/8h/+Al7zkJVecz+vdnjFzt6TxStaovxPwN4JpiiSpauKS2dSNDWO8GvftZ0kS5tb2fNR4voogSZD2dZLy5DAJ4DCAZIAxoigA+h4112x+uKf0lEzsRjGK8vLmcWz2JxJY9GU39uzJC4nTlMqRxmRgTYlDIood2wkA4hjraZCrbn4V+psff6M6id3Ll9TulN81GhhGNayed7dKmZwtbW7+z5UDJnBlLzX3V61iC9U/bJDYTj9XT1saneXyReJZmWR2K5VntrH+ZVQ0UgKVQhhFULGWZQmyIZBl2LOnak8csP39bPkEO3nowB7BxxBIRXtQXoaJkAEex1jPNBux0Qh14FI+EAZAF/8ruHojo18SyavRGGT9y+JaElksfpcS1ZG/jxtucLpB7Pgmr4OBq9IsA871QyQNc5RdMgmVysvE8LNJfVL+718rvt8Jc/f0SPgz054xc3e/D9RqeZBN/kZ9DTVjQTZEoxHquduMweOoqpNjdGm4+ZJmhwAzSI2jqmUEkwTLOReAHSftFOqNUTKItZwSOFRJWTeuCTg12GDKHDjJ6OXNHNy5uDAZzHrutrk5V0Z5WslqfzG/zSbWUyfhxiLIugmyIZIkBFZ6bj4mbZptw/E3STStXK6tmF8Z1DmOMU7qWxuQE4EvAwdXBbt3G91tjGFPrqUpqrFCoxHk1kTNJoBOz9WVBIx5uoqnAskY73bdCSU5oZZK7hSZbIONjdzapFzWJw737jWn3Pp9O0nHsT4w1WhAs/GbTSgVOiY3XH+gzJxsE77m5kw/kYszHi9jhzXvUhElxDDfJmL+vNgPUIsV0OtZeTzZHI2GLo9q6N/TmTM6b6ORPr0XRXD99dQpXZeGOq+Uw81t0IFOx8kTGTF8/r743HFzvz79xrzymAWAiBFlfUDe708+4u+vP8X/07n7+rJrGkT/xje+gfe///34hV/4Bfy7f/fv8LnPfQ4/93M/h0qlgp/8yZ+0bMIipuG3vvWtiel2Op1t2YlPhsEIAO9973vxzne+86rKuJ0VAY4+iO6zgqXEh0xHApQEkn2A73IscgmeVyqVHLDMdAgmTmIVE8CUoK3Uo/a1qSU4vLGxkZPXkNIcfiBSAsesCwmU+3XjB6Fk2aSMDeVEyuVyLtipfBavZSDOXbt2WVCV3xEsZv3INvSDXTLd4XBYCPrJe5g/KStDGZFKpQIZPLVcLluNdMrlyEUogFy7+jI/BM1nZ2cRhiFmZmYsQM96Znqyv/psbfaJwWCQy7f8ng4EWX4+S8qkyH7ht6/8TMr3yDLJvNJk35OgO+VlgiDA7t27LYhOXX0ZkFamzfzQOeDrqT/VQPrtt9+e+//Xfu3X8I53vOOq0niyY+yV2pMF0Wu1Wg5EL7JGo4FSqbRlzH7iiSe2lGc7O3r0KD784Q9f8fVTewbN3RsbwHic30ABW9ktBNXEbrfdNgFDe3rnu7Ki1++3LzYsENdqVbfgplmmNxd79tTQW3Fr+IUFIR3Sz3LPDiT6TDOAtv/ygVG5L+UeuxYbYFhuGE2aFjg04OF6qse2aqT12UdnXNryNn5WKiEPoCuFcVxDr+P2OAT5Z2bgjmXLAghnRU6HVKQ5VFWoCLpu5E7SBMnq94Huch4PtUCxn55II1RjxHGgj+2nKdB1wH6YKCRJiJtucqezg3Rdb8IpXyM24PbBcoMnj8tzI14quUin3OEToSmX9XWcw6X4rnlewI2pqb8wShFGEWrzEYZZfr0obsvtG61zwYL9HnoN6HyxoxJ1aTYxVFWsLBu91gxoNqu5fsEq1rywEKEaI4wyRK3QAgOALmo1uwh0+qg3m4BwErH6AABNsekl81Ee06Y+arPpAoOyTzcaVhpWVqlSQKtVQz1R7kGVitO1rVS2IhWy/xQXON/+5rOdMHdPN+LPTHvGzN0XLgByLywdd0W/Tb73+2i16joQ9YNdIIrQ6Wi87rmtxKLgHB/pAOQ0dLEfoNZqWbUJE5cxP6Z2ATSbGCNAkghgkvnIMszETk4lTfXY2eno9BYW8o51zuFRZORkumZ8iiIXg4OTvNAVZ32sZyGyvvPDEh+VVWaDb9IzbOpwnNTRXXHKGr7MDOs0yDKnda2ULgwBec5PZhy+GOnAqbWIknWxdXyj0cAwMxImnQJ2tHRAi3wGGKPVCjAaAQt7hnpdJrXBzFy2uFjHYOCm2qDzGHK6ewYNtvIwGRDy/k5HS6MwU+Wy84awEiXFXWrmiH4axzrAZrsNrWeWprZSa9EQN98cotp/wsaqmZ09iI0N46yH4zewXzG+iGhyVJWpA85/BKKlg8nUz/KyLlazCbdAoyPFxKc5fSbA2bNAux2gqhTq8Rh33RXYfhFFWsce3S7CRgP1JMHcXGh9CDooKtA+akDvkyeBRx/NRX213faee3QQ0//zf/R1jQawtIRz/dD2O64LTpwAomgf2m0T1wbQfbBcBp7zHNeuksQg64DzM9tQrrO93ywwnbuvN7umQfTxeIy77roL73nPewBondp/+Id/wPvf/3785E/+pL3uapiGV3PP1ab79re/Hb/wC79g/7948SIOHDiwbT4uZwSNCHpL8FXKiUhw0tf8JuPYZ5uTkSxBy0nG54VhiHK5nAOVmRaZuD4oyGdKZ4BflzI4qS+J4QPvzAvvk+x2yeSW9cLgn0XArO9gIOu6CKAlOE4wvVwu27JIvXKC03yuZMqzPQHtXaTOuqxTWfbhcJg7kSD7ADXIZ2dnLejOfLOOKpUKJIs/DENQ19tnT7O8zJMf3JOBTtkH5GkECQ4Ph8Ncvco2kSx7BkPlfdLIUmf7sx3Yp2Vb8ztfO1/Wu6y/SU4pXzMfQK7Pso/QMcE6pa47Twswj/JdtinzIH8vT7V9+ctfxo033mj/v1pvuLQnM8ZeiT1ZEP1KLAxDfN/3fR8+8YlP5IJXfeITn8AP/dAPXXE6X/ziF3EDAwpN7YrsGTN3p6kD4YgwS/BLsp3kgrrfRy2KNNhtWEePP67lolutUH+XZQjTiyZ4ZojRyGGoUaQfu7rqcOKF+bHbqQIOiPbBZQEScE8gdU4HA41xSuY5k1LKsJO4c5c7f15sNrqnz2ttS+7/du8OUC47UpVkc1lpUlNFQ4RQSd3+f/6MI6ZJrfYsM7qqcmdEcJkJ+qwg0zbc69W8AMGPrARWJl2SwJnfKMJWsF5av6/bTAICrKd+HwGAhTlT4JMreaBZCtDHsdMIJzOPAHrHQwfIlOKm3wtChyxzYDrTkvkSec/1kSjSrHClMI6q9hHsXmSu63u9OiFqLStS6uSbyGUXsyr6pkjcu/r9QjYvAISR3pyHABZMPsdxTTMHT3bsRr7eaKDXyzPSAdFnJDgtXwTR+Xva3NS0v2YTF/uBj2nj0Uddc0SLVae/PzfnQHSpy7Adc03+7wPpZg20E+ZuYGxeV3P91K51e8bM3RcubNXVkr9L30HK32Caop4Ix2cco5NpvPK5hxM7aHFalLdHkbmltR8XTrrxLEmMM/XkMr2IVg87jpH3bps8RA09TnJauHDBTf0cO+mn5Okcy4JmWpwvxDw+buzDmTPFut/Sx+hXWZCuA6kuzFhowKfLzudr8FR7cMoav2TEUg9EH0dVBAacX4/qeOi4/urw4RCBylxMjcY+K/He6zlZd/qZlYJb8BQw0evROqAy3bZSJ14wGWoJUCvDXdPrwUTVtA6Ec329XmP3Cjnnrqxo1JaeBEp9ybUT22J1VQcO5xwqOlGIIdrtUIP9/78VXQYi470e6lGk+9KpU0AcY2bxYK6rV7GuAXIz6YbtNhqNg3aqjiK4IKf0FPsnAGhRhJUHNVZ95AgA1QOSBOtZCKVCvRYCcLarH7d3L1Cdgc6nWfsmiwwQu+y0zNMUSXIw1z1ILm829yEYDHR9cn6FA9Evtm5HbXER+Id/0D/MRgPn1D7b/yQe/qUvuaIcapp1E+OZHD7s1mT+pC87sD928Hv/hencfb3ZNQ2i33DDDVu8Orfddhs+8pGPAACaxsPa6XRyIMflmIbNZnNbduKTZTA+mWMbV2ISaJIgks8890FUeb8P4AGw0hgEUylhMQlMl0CllB4BkAN3JatYPsdn1ksAv8gBIE0ygWkEhiX4K+vEZz0TqPXBWprvlJAm0yu6jg4G+WyWkyC+n3cAORBe1i3zLJnLzL+UgOF1lUqlcDEqZW9kOUqlEkajERh4VbLdJWAuwXQy9Ofm5nKnEGQb8bWxsZHLP9Ng+SSwLdnY0mRfYn2xHpgm697vO0xb9n06NvzTBwTCfSfTpL7ns95lUFc/YKnfv2W7+jIxT7XNzc1dlq19OXuyY+yV2tMJogPAL/zCL+AnfuIncNddd+EFL3gBPvCBD+CRRx7Bv/7X/xqA3oA9+uij+K//9b8C0Lqd7XYbd9xxB4bDIT784Q/jIx/5iJ1zpnZl9oyauyUASvMBSh8kk7Rys2tZW9MbhcEAqHGlz2uiur1NstJzU5UPWDIfvLFg0c+1PbHVIklzuc+2m1CZngTSzcXrWYi1NX3Z6moeq+BtlYoI3oWhZrx5ki28lsC7wBFtvnPllBfJYI4FYDe1MaPIgayAw6jlLSxeueyxrX2TGyYC3nITJk8kkKUlWWYCNSYDPPTLJpl0Sjl0QDLaJm3o5N/ye5kvWRkCbAmiCFQIVUoErpX3+NIzMpLcaORQHYPsDLMA/V6eYJ8kur394GKyKDlE3IDegfzNiN+CUtVclib2GdGeYwTIVBUqqSJg+xkHwGCwtSoJEvGxVbZDqZT3QEkHRa5AyD3f/i/zCNjOvxPm7imb7Zlpz5i5W/7mJwHpvI5Gp7QcY6LIYqljFepxCO7nL28FHO4qcdEgXc8D3M0mxlHV+vPQ3zpmS7+cXBPI4SZ3qEnmWxrHN3MTAXk5Tfi+BTnl63nAjf1DVbVjOR3zdKYz4OmWqVMOnvSSr67mvo6iKgKl0Ovm40qGzEyW2WeIOJuIIk9XvmC8t58zD3LekpkAnKeCjcgo4Xv22Irpm/XD7KypN6a1uupo16Tj+40l7dFHt+bXzCNxHLpKlunICjDf+84PdHoOJH/8cSCOEbU0YG3nRzm3c20hTwiyzoycy/nz5l5zD8H40OSZ/X5jAwCDoZr1T7UdARlcns1cW9rrHpOmOhssXg0mDTLl4Q4N6DihIQ7ymJrJI6tKdoOzZ/U9t92G/I9UKXdqrmgdLx1rbBdZN/I6YdO5+/qyazqw6Ite9CI8/PDDuc+++tWv4nu+53sAAM961rPQbDbxiU98wn4/HA7x6U9/Gi984QsnpvuCF7wgdw8AfPzjH7f3SAajtE984hPbpvudskma4ldyTxFg5wNTvga1BI2BPCAopVukhIv8zv//Sk0+z5dQ8cFhydTOsswyfKUUh59P33wQ3me1F9WxTN9/hkx3kqyJBFqLrMgpMAmYlUx7+fLzJJ0BBLWp486TBgTPZV08GZsk6+Pn0W8jWT7fWfTt5MGviyLpIdl2/gmCoraTsjf+S94rfwtFz7kW7cmOsVdqRePH5V5XYz/2Yz+G+++/H+9617tw5MgR/PVf/zX+9//+33YOefzxx/HII4/kyvaLv/iLuPPOO/HiF78YDzzwAP7X//pfhcFfpjbZnnFzd9Hi+XLm7VJza3B/1woPMDfGvU0UYfLG0E9PmH/UWabHfR0x2lCNHXC63bOQ3xNyDyJxROLcNhnlglNN2uPy/pxurHnsMAvy1Ls41hsxoWNtwYIowlhpDXDLFFPjHOAg97Ny0zUaec9iWvImWc8+8sD8+A/yN6ZpihBDDdgXOUYkxZDlm1ReHxySYPwkZ4DfrualpWoEU81Hj2W6fuPNzBSDVKJ6KpXJ+FWuSmUnudJywPW7fh+uDWV7mIcz8K8NbEdR1m4XC3uGWFwElpY0CY6vVku/6vHQIThXakVA+pMZU67Cnu65W7PTriYw2ZTNthPsGTd3067m98bfqdC0tniaN55vN5fZSwvmaY5Bk/InHYJ+enIs3eLw9NFxb9KVc7ecQmRZcnO0BwT7Pnap3MVpKleNfCAvmJ/XY7K4kWlSIiW3NOIckKaF0x3gGOlZhnxm4hjjqIphFuh5fDsnipxr5dwtRbbNuwxkqhTcHFkuW8mZXHpFryjSKLxkqAugf8sJBdkR+BLSQnGsyQpB/2L+6OHmJpCmCNL13Hot1yelwH5B3VBJrlyGvcaGGhEAd+52f+4mcO0HExBdXzpjMDen61FoA8nfgPWbKQWkKRoNrfCyuKhfcu7m/I2VFT1383c9M+Nk2Ip+xNK2+6HL/vEU2HTu3jn29K7ivk1761vfihe+8IV4z3vegx/90R/F5z73OXzgAx/ABz7wAQAa0HrLW96C97znPbj55ptx88034z3veQ+q1Sp+/Md/3Kbzkz/5k7jxxhvx3ve+FwDw8z//83jJS16C973vffihH/oh/Pmf/zk++clP4oEHHrD3XI7B+J02gnGS7e2Dm5KZLE1qe5Np67+TzUtwVd5HsJoSJr7MCoCclMUkJrqUVOG9Utfa16aW4DnzJr+Xuth8/nA4tExqX1pFAnGSRS7Z2bKcMk9+O/hsYinhIRnaUkdegt78n5IoUqrHB+Bl25CFTYY7+wQlUSh/UnQMyO8HURTl2ODSivTBJauf7G2ZVx8E94Fr5tnXB6f0iwy2ymdSVkfK9/iOhyInRBE4LuVhfJY6JW0kS14+q+hkA8uxubkJsuIpczMejxGGYa4umZ/RaJSTsHm6mOhXav1+HydPnrT/f/Ob38Tx48dRr9dx8ODBKxpjvx17uh0Ib37zm/HmN7+58LsPfehDuf/f9ra34W1ve9vTmp/rwZ4xczc3UaSMFS2sAfc5GcmAo8WY3QXxvI0NAK2G21jEMVbPFJPmuHHZuxdbj/3KzbI8jkoQNoqw0XX4rFKaTEWplGZTv+/ZY5ji3d5WjWu/nOb5oVLYb47GklHNrPV6jmTGjVUWB3Z/yOSybOu+Ukp7A46xrNOqImocRNQCglYLAGyw1l5P66NacLzn9oVB75zeRJoytNsHbfOwuMzT6dOapRdFVShVRdZnE1Wxv9UCsszKngQ8W8zGajbx1WUNAiSJ1sOvt5WTfSEgTakVvzKYVrOpd4GsQLFzlCCDBYDZL1ZW8oC3bLvcUQPk+6xk58EcTc8yF7TLNmJBB/WRHQ/MD5VCHOtAbUbdBUniNsDSyaOU0eIHdAA62RdJe7NIFlz9iGLytbwMdOMA7aU7EZq+Ys3UjY0j0OtppuEXvqD//9Sn8APttr72lGZN3tJuA80YOH5SH6GfmXFAkAQFJHgljRkjle4pAtC/u3P3lM32TLRn1NztjZ+Fvzv5OcdNjj179gBJggR6/Or3gXq7DcQxKgN3iz81K6XnbI576Pb0l9QnNxNlEEVaDoOTIWDn7jR1cyHHzXZbJ9FqOa31EEM99kv6tiyTYNRDKVRj4GArtsUfZgHOn8/rr8vhtlQKUC6HiKLQjq2cFpRymDElOeQ4vLoKYC6EauyHau7XjHw5HkcRHutV7ZDK4ZFrpaB/McfgDwEcamvJLZ4m6/X0GoHTbLO5D8kRLVlz+iGdxyTRuOn8fN1JlLGg3S7QaOAbXc0etnriSZKvEMFgX4hSYIZjPnT9nzypG/11r3NrMFNBwyywJPw9rX0IGxedpA9Pq/V6mjUOAN0ugmYz76yVngWmbzTMg85j+TlbnoDLMv3/8jKCKEKt0dB5Zj9h5bTbuKjquuz9cznw++abdR0nCbScT1zDhY7uM7VEz8mc3/c3x3r+Jn2d851Yl/K9XNZBXuVJROLc+++9V1+3uIiLWRXI8rEFgr4J3pkkwIkTqGUZatSljyLdFnNzur/FMfAnnwIefFDXGed33cHd78QfK+TajOs2f9zgdRMUDibZdO5+Ztg1DaI/73nPw5/+6Z/i7W9/O971rnfhWc96Fu6//378i3/xL+w1b3vb2zAYDPDmN78Z58+fx913342Pf/zjmBPu0EceeSQHhr7whS/Ef//v/x2/8iu/gl/91V/FTTfdhD/+4z/G3Xffba/5sR/7MZw9exbvete78Pjjj+Pw4cM5BuN32iRgKmVCJMDsBzH0AWvJkAVgA1FKORdfu3qShInP7iXzmzIePjBIsJR58QF0ms/qJSNastB9Zi9B4DRNMRqNcgAog3zKOvLLw88oOSJZ2FKuRtYpwU/qf/NZpVIJ1WoVUiucwCrzIMvpy+JIhjKvJTM8yzIwQKjPZB4MBrh06RIGgwFGo1FOW10yyn1nwaw5DiX7kWwjyepnm0qdd6lBzjaR/cJnoMvrCJoPh0PbPwHneGDeWQesyyIHSJEMi/ytSCeLrFu/D8mAtAwe6vcTeR+v5e8xiiJbFv83ymcwqOskGZvvtD344IN46Utfav+nvuS//Jf/Eh/60IeuaIx9svZ0y7lM7btjz5i5u1IBqho0LQQgpUlQUe5Eza6Me54sAx7rBIjjEHEcIk1hpVFkMtyIz8wANbUOPNp1QByQvyGO88+MYxs8k2Qkbni5p+BmUWudpm73QgocgUJgq2NAoM8hAEQRwnYbQ+jyXLigyyQZb7xdZp1FqSdGhz1SgAl2Se1Tbj4NocoUt4bRSD8jy2BBAJK/Gg29T6qqodtYGhA7PJzhlsU2zvUCrKzotJnOykoeVCfDLUmAdEkDCWTK1yWIDuD0+RAf+5j+iCDHHXfUsbCY6A22POPPh7KeAcdea7fx1ZWqLTfg8kfTdar7ULNZR9wEArbd6qo+w8xCEJWQoBJf0pPAvJ05ox/ISLh79+YDoskAp/TEsDPJTaf5uxZHOuDsyAHoc3N5yaIkMU4BKa4rj9OTtShB9Ciypxv4MTEHaqMuLwO7d9etnG0tHsN2LAIkjBr44IPA8eMYr66iD31MtwogKJeBm27SmT5jxPtf+lLg9a939eGzFeXxcOk94vhAdrxE3p6EfTfn7qmu6jPTnlFztw+iA1tPhUhwMorcXKGUnSwTga2PKnWUe24Mk8O6/PlX1RCYSTWATmDv8GEdr6HziB5fZZBP+R5F6HXcdMyhVgPBem6LYxMoMU31/KI1LjS7meMzAVSC9ErlNdMBhHGMPe1bcP68G/I5zctTYRyuvvY1PT0Q0G82geDBz+lA1UkCNBI80quh19PrgI0N50NWqooousU5FwA89KAep6PIzQ2tlpGMZyANmbFuF7VmE1F7H86f19PDxoaTaDOxNu00SOdDFOnrKpUQC3Gck0UZNvbjox/V9x0+zBibNcRxDbWk6+ZHKaOSCVT3oYe0FvrrXoe/7t6eG9I9/gEaDZ12FNUQtfejfnioM51lWt7l0Uf1RVK2Q87bnMcZBDTL3PrixAnndEhTV5Gc82ZngRtuyDtZTCMOmwfxkMGYDzWUy3C/jyNHNMu7XAbWozp6Hf2IOAYONvVvpo5zqCcAlnsuD6dP6+cwEA87rqiYPXvyv6OvfIV4dA2Liz+gs7Csq2OhfE7HZpFOgmZTz91/8ifAl76ER9IUCsA+AKpc1kfKZmcxPnYMHQD7b74ZePe7dV1wTSMbx483458U5Nwt5+wnAaJP5+5nhu26NEUlnja7ePEidu/e/ZSkJQNbkmkdBAGiKLJAMYFaGsFOvktgnGChfOeLAS4JIvIeH/CSLGOC52QVFwGaGxsbOfCUILNSClEUWZBUgtxRFOWCmUoQk8BomqYYDocYDAbo9/s5sHh2dnaLhjvLxWfyWQwWyefxPgkCE/AdjUbIsgzD4RBpmubun5ubQxiGNmhouVy2muV8ScazZFJLoFg6FMj8niSLQvB8bW0NaZrmAn/yXQLRfjBTWbcAbHppmmIwGCDLMmwYWgTTYZ36kiWbm5tYX1/P9QfWmwTX2S/ZjrLN2TbSAQBsldxh3wGco4NGJwAdLBJEl/EDpNNCKYVqtYpSqYSZmRnbB2Q+JMudZWBg0cFggMFggDRNsbq6ivX1dTz++ONYX1/H2bNnsb6+jl6vh36/b/P3dA3Bp06dQstn4V0jxrGx3W5flUzPeDzG8vIyLly48G3rzk1tapOM/fPC44/n+5m/AQfyi2kuuLmJSBJgaQnjqGqxSV5CsHcwcLqNBAEl0B32z+kvuDvkIl6wesZRVYPhRo9zmOxDv+9YY3K/1GoZ9ho3gizPiRN6s8oyxbEL6uTT7ChAKQtz9CjQaOAzxwKcOuX2J1Gk2UYEwSXRfWlJ56eaXdTP5nPjGI/1a7lYZNy7MnvEJuX7woIGGRYXgXvuMSz048cdy2ttTUfHWlwEWi080tGOBu4xi8jc3FsdOaL3XXv2uD1siKFFT/5+uYbf+A3979KSvueuu3T5DkZPAJ//vKuENHUbZ7bjTTcBz3oWzjVvx5/8iasr6SxgfUqll8VF/b4/e0QX5PhxhyiQ/bi0VCxt0uk4oX5W8Le+lQcuWi1HI+fDudk0iMMw2Wc31bV4nG9kZjyOMcwCKKUB84v9wILdrZZx5kgmHYEA/o4WF/O/taUlrEd1dDqun7P9uCGPYw3M3HabroJmE6h1vwHb6P2+rq+VFeDDH8aXRyN0AZyEZhjVAUTiPTOv587NAR/6UD5QLH9L9KDws35fI09AvvMkietsplwrjz+OA3fdtSPmbuC/QrsZrtTWAfzk0zJ3nz9/Hj/3cz+Hv/iLvwAAvOY1r8F//I//EYkXVFjapUuX8M53vhMf+MAHLEjxO7/zO7jjjjvsNR/4wAfwR3/0R/i7v/s7rK6u4vz581vSbLfb+Na3vpX77Jd+6ZfwG7/xG09Z+aZ25Wbn7hMnUJufz4PokiYtEW/OcRxvCHAfPgxEEdbTwPrbNNtZT42cYwcDF3z4BS8ADraMs44D0uoqMD+Px1rPR5oCh/ANGxDRArGCrTvMAouLyoNAg4Ge3w41Lublth40SDRR7UZDj5cEWE2AR0SR0/imh3jvXuAVr8C5fogHH9TFJ3juk58Jcl64oKf7pSXgluQJ4M/+LEdLP33TC/Hoo65Nlpf1iyfNOHVEkc56p+Oewbm71QLC45/TX7IyCAqb01rjxj58/vPO58vmk9rpzaaeh+NYr0Pm5oDb2+uONNDr4eLRV+L1r9d5ffnLHdkgSYA7428Af/VXznvR72vQPMscKPypT+mC3H8/fvr+2+2awZ6MM8bpmEN7lum/n7vyFzoC5te/bpnxaDR0hg8csOvI3BzOAnY6ulFOnwYeeMCtPUcj4HnPA2691QG8XNNVKhpMF3P5l0/q9l9cBF54WPQvenGUAtptPLIS2OVokoh1liRhAJb9bh3NSQK8+tVYj+rawdTv46Kq46GHtk7H/b5z0rAqFheBQ+mX82uTwUB3qP/8n/HYiRP4BoDPQc/dB6Fnp33Qc/cjADoA7gNQ/+hH9VzM6PWsr2c9ywb8BZA/XsEFGTuG/FGkqZ67jx6dzt1XaTt97laXv2Rq320rkuaYpBE8SeZCXk9AXL5Lk8xbGQhSspGLJDvku7wGcMEXpayKlMTwyyCBUrLjy8YlLgF9ypAQlJWyJASOCcyzbEV1Jp8ngXW++4FBJYNZlo2MaMlS9vWxZbp+Xcr0ZXtMalcCx5I1TmcF0ymXyznmOvMjAfZKpbLlBAOgHTGlUmkLi9yXbpHmfyblXCSLn9IqBNFl2iyndIjI9IokXIqe6beVfI482SHrlnI1vqyOfPngu2xXGURVyh/50jb+aYLr0aZM9Kld8+ZTivzPfCZpwXdZ5uRFJPbMPQDBUkm0LZWQ18yWz6eJ9EORB6ZndSvh1vxhtp6T77A3yMhgzKz8Xr4TdJUsW5PHLAttAFMO2z4xl/mzRWI6OUZuzX41GDhsVZoPoiulCU+WOMSbmd+1NecA6PehVD1HyiIA2+/n4p7ZdgP0JpxlCCOVywtj4pHIyECaiEWfoP623HAS0ED+NLZ0OmSZIz3LvcDqqqnfyBRkNNqqRZqrbM+yTHfCtTXY6Lf9vnM6UGtH3h/HrnGVst2pVNIM+cD/DZjGCZXSKDQA5enf2gbgD4PlGAx0wXnKwjyzqBgsLrElnlyYnxc/IV7EtM3f66MRzkFvtB+BZqKvQ2/AU/NO/tZwddUGVJs4PviF85lqT5J9fu3YtXMk/Md//MexsrKCj5mjID/90z+Nn/iJn8Bf/uVfTrznN3/zN/Hbv/3b+NCHPoRbbrkF7373u/GKV7wCDz/8sGX7ra+v41WvehVe9apX4e1vf/vEtN71rnfhTW96k/0/9tmMU/vOmwSmr+YewOlMRZF1/BHI5lwTYAyYkzCbm178EV7Y6znkOMucozwBbARj6ZxWW2OHyKJEkXbkFsqM9Hr6y717XZoc6ziGKuXmQM45pmAcjzlmcrjiMF8u61suXMjLoOW8/+bD8pKrD+pc0ydKPP/GG/Vczaxz2SHVP3Ll44UCQNaSai7fvEQ+q1Jxc3cUGWa9HLPTFFnm5m46du1PuBG5BuZ6ghMMAVdHtQcVOsShwNzjKhU3ndopjRnr9/VpJ9nofv80fSSQ6zO2abfrTkux4iV7gXmV83kUYYgQq6tCj9xnWQt2R5qGdkmVG+ZkQ7ICJIN7YwNQSq9X5l2AXqlwxkexmZltW1TZyGmqn1WpAL0enoCeuy+KLMUAhtBw8WMAnjDf16UGPOuBHd6fz+XCosiK5v9r3qZzN+3bnbt3+iruujHJ9p2kAe2D0tsBThKgnBQM0WcZ+5IyPpC8HSgowVACv5MAdL+8tCJ2u7yWAKb/TF4rwXvpFJBlImjMd+q5+86BIuB7u7IUScf40iCyzmXabNdJoK4Eb6nHTYa2ZKBLTXyC7mSK+1rjfhDOojJLp4wEnS8HcPt15Gvcy37BevHTlUC673zwmfG+s8MvQ1F7+fX7ZMolTcooTYFgZ1MQfWrXtF1uAz7pe7mBT1OEsYJSgY1nJOKV2cvKZbvPcCYRVHkxvwOAfh8h5VzM99zYy+xYPyR343ITBmhkVoLo8tiqzKw0Kdpq8qRUmNt485i2vF1uapXy8mRA26y3tUr5mCjKOx34LrNsHQszMzqfMzOuUszGiOlx3SwVWuSJXRKvZ2fzVTeGAYzNhZTrIQPantbPsq362Xv36nwxcUO56neL92PsIwRSSEqbmzPAyprZtBZRCGUifnuSKWak3SzLan7eBffiZ/IEhI2qIVV1jQAAsTxJREFUlm9b3R4CSKd5fThL3ccaWKk6nfk0hfXEUO7G38SmKVQsgCU4rV5ezuLNzoqsyk1SklhHQfXAAbROnYKC3ngH0Cy2EHozHprPAgDhgQP5yH5+OX2nE+B+gPzMd4zlfqQ7wa6NjfhXvvIVfOxjH8OxY8esNMh//s//GS94wQvw8MMP49Zbb91yz6VLl3D//ffjl3/5l23Q8D/8wz/EwsIC/uiP/gg/8zM/AwB4y1veAgD41Kc+tW0e5ubm0KQ+xdSufZPeamDr75BjqACX/aFzDL2e53hDkDnLdIDMANiq82KStxO09PSZL3k5/XuMe7gl/0R6lXITzfy8C9zJCcw/ucb76cE3a5Qoruame8lG56PIpCYQbuduzg+kDUMP25Qjk2kwK1ScoY9WOgqckzrKT7q+Yz9NMTOjnfa7d7tq5HLo/HldHVT24ftYhXquEWSCvXth25MqfM0m3JGmuTm3QKATmfV+443WY16pTFb2iCI3pXJpt3s3gAtwFcQA4tudnpCVyjri0Ub2X+qnSQaDnF+8uUu2tf1eTqbm+UqFKJddvM9+H0bGp5Ev7Npafs4zCPl8q6Z16ZHPPvtXu62rkkx+2W3t3O3LoN12G1qdDjJooFwB2A8NnvMUGcx7gw++UvMXmb53S/69Y2w6d9O+3bl7J7X6dW1F0h9AXlua3xXpa8t0eI2UdfGBdAlo+kxoybymTIcMGkrg02dPSw10sraLylmkQU0Q1C837ymXyzmQnCZBWZkGZVCoXS3BbTLclVKFz/RB2e3Y2EyTEjK+TrkP7ss2kmn730nQGYCVklFKYXZ21krIyHZkGhJAHwwGCMNwS6DaonZlm/Fdas1LIF0yxyc5fAAXcFbqnkvpHUAz4YscOVKrnjr4NKnbz+/JzvdPCPA3Itn5ft+X/VA6C7Zjqhc5UPw6mALCU5vaDrKiRfJ2G3HuDA1tK4rrANw+gHsdfqaUI4fZ7+RxUgk0m41vjoIlNlWDVYc5ckNMLHI9C6FUiLCptxZjBC5IpS/3wYyZXczQsL6q7aFjPn3zm47+3e8jjqs5fDWO9UaWyQEORLd4ZhTpY7JKYRjVciQmCR4ze5KJLeVOuCGfndX3h3JjSXo4Nz79PuqtBOMktKynSsWlJfdGPAVdKulTwBIwTtPA+h7uusuViwotCzMXgV6aB6L7fUdpp7TH4iIe64ZWmkTmQYL9caxPYrfb7phzmK0D3+q6iiXdTVY6CyN3yqxMRpiVpwoYLY754z1SE92k5e+39f9V168kmyuOt7AteZy/2dyParPpZGY6HU21L5e3sB3RbCJsNJAkoU2H4ISsvyxzQf7SFBg29gMN179qhw9bAKT9yU+ifeoUjv7DP+gGvflmfSOZbzfeqCv/yBHXEYo22bLzAu7HR5MOgR21+f727eLFi7n/K5UKKvSyPQn77Gc/i927d+e0tY8ePYrdu3fjM5/5TOFG/Jvf/CY6nQ5e+cpX5vLx/d///fjMZz5jN+JXau973/vw67/+6zhw4AB+5Ed+BP/m3/ybLfKaU/sOm+/k8oEv/3PJChcxC4JIO2PHCHLhH6QkszyFRDLxAuAGNh8Jp8SLBDXNGJv2dRoXLjhWtPSLbmwAaAjwHHBz2+KifsUxhqoKpYBgUQyOHMt42sjIv6HXQwggSeo4cya/LqGSF3Em+to5rVqpLRMEEnEM9F3WODdSqp1hNKh4Qb1ymgTAF/iQs2fdXCaZzv0+FhZqucNSbHIWk7dJBZNeD4Dah3o7ss705z3PLYFmZ/VcHq58QyfSagGtFsZLt2vpkk5HewioERZFwM0345zaZ089sZuRME31kFZLS9mwbhoNAA+KymaGmWmu7cSiSKcfAKqKsNHQki/Uypb6dDfdpNPkvZK9wWdEEbLU+UBmZ+HWKbyWOkZZlvOZAFppR6kA7fYtqC0u5oMEMMjMaKTzdfKkjt1inC2R0vXR7+s+t7Cg/5fcEcrwZBkwXrxFA/B+4HUAjcVFNE6cwHP/5m8AAMH8fG7RuHTiBNLVVUSvfrX7fcsxwXdyy7FD/s31ti/jdh3YdO7eatfX6m0HWhE4J19kT/uBIfkdsBXskxItRZroUopCArU0yWTe2NgAdZ19kFJKqPAZ27GViwBiCaKPzPkwH3yUjgBqmEuAXRrBc1oQBBiNRjkgl4E5CX77oK2vS06meBEzmnVMkJsDjq/J7cvC+FI1fp2QmS4Z/hIMpowN7dKlS0jT1AZ/pYY9AIRhaPsQ+4UMtsk6k/XGa4pY2rLPbHeCwu+LBNF5PwFwaUyXTgn2Cx+slr8NarvL/EinwqVLl3J9vug3cDW63f5JDv+Ex9ScTZnoU7umrWgTzs9pPvM0y/JIr9mohnEMROEWVna5rF9UrBgMRPK9Huyu1g8OSd0RGoU8owgbXUfmBVxcRiapjY5K/XeSHETcOmhPZ5dKwIzZCPZW8jIZSRIijveh1d6nlRUFmB/H+3KMbh2kS2c76DwGZBnqgiU3zAKsZyEyVdf68Ctb9yUSz2egMAncSg1zQIIcAWrcta+uOkBDHEEPlNL5iRQaz6nb/ZHcPwXZ0CGzXQfiZllgsd5SSeupGsIVlDKBsB464SohjjGMajpNg0qsJ/u1xuiDwKlTWtpUSsnQgcBNLv0Nhw+bgKzUvOXGGXAgN4NnyehwElSXngmizATP+329+ZVB6uQGU/RF/su9cqnkNvpRFEJFoQYfzPn1NAtzp+MZB/XMGWBuLkCrtV+z25TSH25sOO12nn4wWu3VKMLBVryVqQdgqKq2GIC+9cQJu59Hv6+Boyiq48h9P4dDb3xj7pz9utKSQtXjn9H1e/QoTpf2Y2He1HvBMy2KLzuRz6CU+kM+/XPH2BhXx1DT660DBw7kPv21X/s1vOMd73jSueh0Oti3b9+Wz/ft24cOkc2CewBgQQbvM//7GqmXs5//+Z/Hc5/7XOzZswef+9zn8Pa3vx3f/OY38Qd/8AdXlc7UnmKTDkPJXJUv/tal04sDLZBH8lSYk+YgG7seD5EkoQ1xwSl5QWUu2Kfx7tnlRK/vJDfW1vSH7TaGWSDjZ9o4E7Ozegwrl81wY8be02cCbG4C+w8fth7Vry6HQM8VpVLZj3IEdJbJ8K2j0aijvjjWmtV01Pf7SJI69uxxQxoDdNeioR44swzPNQFb1lHF6qoeY8MjRzBO6vj85/V9N9/ssNt+X68/9uzRQ/bRo3mSNZ8jfRicqhfa+llbhNo50SiFhcUGxvMa9ApgxuVORz/srhbWs9CGWznY0k7dry7rz+64o4aFZhNKaW1v2dzh8c9prfM77tBBNdptfP7zwA031HFwcRFIU1xs3qK1wZvPR7L0fDx4TJebsvNA3hFOf8P+7BH9YRLpQJmAY7RzPi6VdP/gYkDI3bHbjkbAnj37ENJR0m7rL6gZTge5DGQu9dHN+otlbjQMFm/mpaEWLUMY9Wxh6J9vNHR/euAB98goCtBu19FsAtVWqnXemfeNDa0bPzsLvPjFQLOJIF1HDRlqjQhJop9V7etgucPmwVwM3DTVeumjUYiNjdA6WjY3gZtueg1u+w+vQRSZODXseBKN73YREcCXJ97Y6ejolg42jgnyXc7fO9amczfw1MzdUxB9B9gkliuQZ6Lz2itJT4KV/F8CtD4TVxpBczLRpfRHEVAo2e++5Iwv0SJZ8L4Otiwnr2V+yUQnICzzWKSNLTXMAVgmtgxwyTT5N/Prp1Nksi6CILDa4wyY6cumbG5uWuDYl1KhSVDcd1Cw3hjMlDIuLBsZ5WSY0/mRZVnOUSD143mvryfOupJtzrqTZZanI/w+K+uHoLUM4Cnbxddj9yV2fI10+XwC8Qwoyn5VdBJiu1MYRSdAfJvEQp/0u53aFESf2g40uQHn/z6YRtSXi3nzHiYJ5ub0mM3hnDga2Uu5Y7UEe3mUWB5p5ndy92k24kVKERIzkCxdAozUoTx/XrPgSIwioUjqmpLElKbAna1mTsh7dsFpdwM621U1BLo9t2lnOdptIK7bokhGnx9vjfW0d6/1FWgGNoBxq2rJfdSYJ5hRaxrkec8eveMiEuFvhJRC2ExRVwro9AuP4ucqNEmQZVWb5xtvBO48PMYYgdVFxfKy3tSbAJzrqGL5pGNdA8BDx10sOwbXIk7MfZs8kc92qauLwHLXRdWU5eGOnTonNAns0tljEl7PQqgY2tkjO4gEolipHgAsQXRfU5ePqbLPms/4/caGw/9XVx1Bv9Wqot5s6g82N3Na9tZTISPIyd+DyWfYbKJuTiNcTEOsrenq6nZdDDYW74EH9DN1V65ZbCmKgDe+8YW440XAn/+5xlXuuy/Aj788ydcJzWeZs3J8Rj6RC//aHWNUiL+a63XAcxmcbBKT7R3veAfe+c53bpvi5w1qN+nE4+X2Q0XruqslOrz1rW+1f995553Ys2cPXve61+F973sf9lIjYmrfefN/T3K+lu9Fczd/r+5YDQKlEMcBosiBpHEMoNtFEMeoVGo5vB4NuFNkSWKfYef1tTWnSW6ek6UO0yeTWqppwdxK4PP0aY2PRjfXUV+M8Y2VEF/8oh4yZdfb3NQO2rU1l16rFeBQq+UmHwCz33tnbqiKY6CGi8BKVwOim5s6VsbMDKpHjiAt183wV8fKQ8AXvmBJ2QgxhJTCsfNW/xGgpxMPowitVs2uJVh3HNIvpiFqQiImBwJz7O12tXQY54BjxzTg/z3fA9x2G6rNJhrN23X9mfY4f34/Tp7UyS4sJgjVGN/7vYGdH6IIOnjoAw/oib3ZxCMrAR5+WK+NDt7VAtIUX/mKvp5ZYgwUpdw6hF2L8m6tFoC/MeAyJzvAaY5RAwdwMUrKZRH8JB9LBwDmzVoiax50DnrHlnAyb+xYAiSX/iNi7mMEgArRNWux/eK3Qj5HmF5EFtes47/TcV05y4Bbmg0npcffEhd3z362PgHJSVYpVCmvYybm8OhR7F9cBKIIF/tBYQDxM2d0Fc3O6kfp+PEh5uZCHD5cs9r7lJ5RMbDYAg7G5/JrGTkeyHFAjiHyB0iT8kg7yqZzN/DUzN07reWn5tkkzeqr7UwSlPWlM+T3km0tgWT+77PW/Xt8xvzlzNcCn3SPzCvZ6FLyRZrMuwR/fTa9ZF/7euhFIPd2+SpiJ8v8yLRk20lmv/+d/F+CvxJEZ7pS89zXCZfl9IFjX/+8KL/btcl29SJlXXzAWdaNrIdJ/X0SU7yonSSI7+fp6WKLFz1rCghPQfSp7WCTQPqk7/1rsgxACOEPzV0u3635AY/ksyUo511TxOaWt3CvtrmZv3ZjY+tx5H7fabRKlvRggPxGw5h0ENjMMDE+WOwwZQxJPpua5379kJkdqrFmcWUZAqVQjRSyLPBlz/O65f76RJ4g4EacNHYfRJ/QQLL60eshUArKMJhthZn0CZJwr8zYXwxk6js/JPlO6ulHEXLOmVzDMo9kV223SRR/p339UQ5E962oPgqSK7xkUpriKzoP2A8Qq626qtL7w3YjAiMjzQKuPdMUSoU2GV5KPEHmo9dzoL5mxutNe5Lod4LwV71xvtx4sePsyemq1mq13EZ8kv3sz/4s/tk/+2fbXtNut/H3f//3OH369Jbvzpw5s4WtRqMGaqfTwQ033GA/f+KJJybec6V29OhRAMDJkyenIPq1anIsl85CflYEmKF4jLMDugiEnbuIY9VolJ8POcGJQV9OR/6QjoJkOWamKTBOwpwDlqx5eR2HQ3tSi2U1nnR/XaIU3IC5saEHZjKkswxQLm4q5zCbX7PWoeXmLVHfUVKDxOL4tdWXZxBNVp7c0/trIILEvZ7WADFBNO1BIHMd5ejt+gVODcUuEzhBGEcHk09TWPCU8bilX1Qqpkgrl0UdsJHkl+VyPgYI4OjsZDp4nYHOaD57MNC314oc4fRyi8b1fUdF/btoHcl+QWcBA7/LZihcL/H3JBMlqYI38/QlneRK2bmb8zZfDHJLkn63qzkL9Efs3k22fp6QcDBGMRHmSm3Hz+PTubvInszcPQXRd6gVeWF8UHMS4Lpdmj4LWZoEzAEn20FQ1pfTkHmTJpnAlBCRz9i1a1eOQS7lWraTgeHfBFUJHkvGclE9sEwyTzLfUjdd3iNZ8BK8lrreklG9a9cujEaj3AkAmSdZnzL/TIMsc+mU8NuI98lgrxIolzI3kvHvy9EQtKZ2+mg0stIqsp6Yps8Wl20tP5Ma9axD//kyf5QAkm3BPBRJvUiddcrhyD7GIKuyXuVJjO1OYBT1GVlfUuKI9cUTEb5OP5/vn8S43mwKok9tR9jVLJr9HZQU8EaeSM79A2+RTJ5+32yGSA/yE+BGaTCwbOKxCpGKPSrxRwnC+tmTycl9j1SZ4CZcKRf3KknMfo8XGwqW77fOMmAcVRHEmZMKKdhg+fiv3NBLUpBUxsjdrPKM6FzypML5D/ETk5oxRRs+ce84qmJwxrXjxgbyjcnKNacILqahlaJl8LFSyUm0kCwvyc2+jEujoe9tNAB0063gD9+LItcyMb/MWWZPL+hNfqA3rSpEgLENoGcdET4jPcuQGUYbN/SynyWJkcPpdi07rtZooNZMEEWBPa3Pfk+Fg24XSJIaqgcO5DT3rffhwAGnIct8kfFJFp4IrFZVQzQaIdpt/TGxFjb5TTfpgxFra+5EAFmJP/iDwMKuJ5C8YR/uusto31Pv1bciJIIgwSRP2XaI2TVrT29wskajgYYfrK7AXvCCF+DChQv43Oc+h+c///kAgL/927/FhQsX8MIXvrDwnmc961loNpv4xCc+gec85zkAdBygT3/603jf+953Vfn07Ytf/CIA5Db4U7sGrGjyu9zvTeoeG2etUoE9zJRlsOPqzIw3tHLAJk1WTmgMAsr8xDHW0yA3PVELmuMTHaqAm5r4PL6T6cz7gfzYymtzwRqjSOdFpEvTjszYJcxJwmSEcy3BYykbR5CWwx7ZwFBRfg0Ahx8zT6ORF7eaBZKTC49lkfrNAjIi6A036PdGw+ajyvmh4541Vi6mRm7twjWNYaF3u953or6BrXj+7Kyb48tlJ58eYuiO6snFILDVYcw+xHWEqVwGoZegNZ0Zm5tArRHn+7aMmbOxYTX6ozhPkJD557pDKQDHu5ZqXmsroKPn4lo7RrsdQqk8uN3rAeuoosoooaWSfi47R6uFTkdLC4Ut3b7DqKZj2CwuugC1Zt6sRgqNRoB2O+cXzzU553TO2WSg792r39ttoJpd1Bed7GCLsbOxw/pzt9/I/jw/nbutXU9z9xRE3yE2Sc4FgAWwJWtXymn4wBNBPcmO9vWbeR0DO/J/vvsyKkVyHZLRDTgQnLIdsmxSI5w63ExfSqwU1YHP7JZ54N8EeyVzm/lmPil1QkvT1ILWMiCoBFmlVMvs7CxKpRJmZmZAJjhBcRmgk/f4kiGSTU4AnRYEAWZmZlCpVHIscamfLtnaUoZlNBpZ6R3K70jwWmqRs97YBhsbG0jT1AbnlPWzsbEB6sZTo1xq7e/atQuVSsWC2syrlGJhf2U7yvaUsizS0XHp0qWczrkPRLP+mVapVLIyOr5cDP9mGdg3fVa8z8JnGVjvBMzTNMX6+jqGwyHW19ctoM56Y7+Iosh+frVA8jPJpiD61K5pu9zi2GewyIU4dyIy8nuaIlAZqkohU6HVjw4yrT45O+s2JFkGNA/vR7C4uIVRNFahPrIrz143m1aznFYuw27upeSjNCkVIglBNBKCeFSZ+1a+uKEdxnUN/q/k0yejd2amhtrSkvMQZBkQxxag5yZWgvc+eC7zqJRhmIv6rkYRlNJgBBnc+toQQaOx1Rkh//crxaRtQeRsmLuER4lJnGo0tLMgV8dxrHdx7TYeetARrRgcNIr05pr1JMl0EvfmftLqfRIBphdGMtWogy4rT+jpUwrAde3Q4tPcYzsHDJ3WQBSF+tWoIfARg7iaU1WRjw06jzmKWLfrIswlCeqtlpZbOaID2n39606R5cwZvbl/9rPvRHVp6LSFWLlHjuCRFSldFIJs0L0LB3Na8mF6EVheRi2K8Ny2Bl+WlnS5m02gGo31MfJP/o3+oSQJ0EiA+zQzCX/4YeDECRwCcAgAHmhouYAkcQ0JbHXOSBYgjZ9JDxWdAMN8H7u27endiF+p3XbbbXjVq16FN73pTfj93/99AMBP//RP47777ssFJltaWsJ73/tevPa1r8WuXbvwlre8Be95z3tw88034+abb8Z73vMeVKtV/PiP/7i9p9PpoNPp4KTRZ/rSl76Eubk5HDx4EPV6HZ/97Gdx7NgxvPSlL8Xu3bvx+c9/Hm9961vxmte8BgcPHnxayju1J2FynvaB9O3uKZjP9ZwTunnSjKsyaHaWIR+8I4daQw86S0sO/Ww0cvrPUaQvmZ3VYz+BdGZH+ghLJTPOYoxmM7B+RI7pX/uanqc4p1NWxSp9RZEGLqMIveX8sL66Cpzrh4iS/ajek+gPqaWRZahGY2RZgAsXdFILC3r4HI10AHPOCdIhABXnnM0sE6unUtF/U3s7yIZuPuYEKQKtPNYJUCoBC5QwWVx0db+0hCFCDIx29mOpm59379bPO3NGv0tGd6Vi2qjdBo4cwQOfzOOm53oBkqSKxUXXxH5X6XT030mi05ufB4K+kcbZs8eB9Fmm63QwcIx0BvJgJFJ2CFNJcVx8WI5zbxyHiBv7HBbf2IcgXXeTq+moAYAMdVy44NJiu8/NAdXON/Q9x49rGZ9uV6PUXCCkKY4evRMrK1rmrNPRl1UqWlHnuUeP5vVXTCe82LwFDx3TbTA/7+T8SqUQz7nnB7RMHzuEub8eRXjhYb1ms7EAmmN944MPAp//vBGdN86pSgW4BOD0JvBoBrz7T4BPflL/7u69V/+wlpa2LjjZiDQJovM7Ojjk//7pgmvapnP3UzV3T0H0HWiT5C4k6Mj/i+7hfT4L2gcPfT1xpiEBeEax5f9SP5sAI4NWygCjEviWeSN7WJZrPB4jDEMLZPuAuWQ3A8j9XeRE8EFbX9PdrxsJnhOglaArg3hWq9UtgC2BcLKmNzY27GelUsmCz0XAMTXNyVqenZ3FzMyMBYYJJl+6dAmDwQBkjUv2swTRCeiS6S7bnaAz76Fm+mAwsGmnaWqB40uXLtk6YYRmar7LwJx+oFLZ/+SzpBa8rAvWFb9L0xQMFrq+vp5zGBCorlarKJfLmJmZsfmpVvXiiX1ItrcE0WWeJ4HofhBYsuIJ7A8GgxyYLp1CbHPmdcNMvNcrODwF0ae2o+xKNuDcsJtd17ihA+cE/Ys5drNK9ltWDT/fsyfcElTs0NKS3igY3dIhNNu8JkHhLMM4qec2wYDbH8g9PCVEyJIiGB70LwLdPkIAVQNwj5N6TvrCxHJEo6E3QGSir6eBlTv3q0oyhpTSQGyzWUWoxjlAl/dyc8/7SaomeM+j31kGhLKuzSuMIoSRQhS5wKka1Nhn0wwwxnoa5GRDSyV37JcAOfOucdBwC5BBSc+zZ3Onj50ZkPWRTojjx125pBJJtfsI0O26AK1xDJBJlqZasuZk169I1/bMVLnszi77wrbG+zEUgLncNPPR0nyiFR+zdy+wQCqY2bVnUZ6JRgBEKbhAb1/7mhZPZeIEOppNHDp6FM1mDcvLzj+QZfq4ttbnD9Fu355TElg5ppMdjdyR+vPndTWQsd9u6+q4pQn9fCIlAPaTKvhnBtz/8IexcuqUzh6AGED84hdrltz//b/oAngEQAfAcwEc/Of/XD+AurZ+e8iKE7/TLSC6/JzH93eEXRsbcQD4b//tv+Hnfu7n8MpXvhIA8JrXvAb/6T/9p9w1Dz/8MC4Q7QPwtre9DYPBAG9+85tx/vx53H333fj4xz+OOeo6APi93/u9nLbrS17yEgDABz/4QbzhDW9ApVLBH//xH+Od73wnNjY28D3f8z1405vehLe97W1PW1mndoXmz9Xy9wZsdZBvd70Y62BAdEpYoKF/25IQ3e/DRZHMMgeI0giMcrBrNNDVWI9l/7ZaGldlXGc+WjpZm00TbwQAMiDsdhHqIzwYtw6i09HjJ2M7cCgiWx3Q64luWkfay4dY4XBklh0YDKqYmanizrZy2ta9HlSk1wjlsvYn0hELOJYzfY0WRPc89dJhzKZRChr4BRzrnBNMq4VHOqHF9JUC5u6qoprAOifWk/048VB++CWWq5Ql3+Ps2a3Y6eYmbKDWR9J9+OQndV0fPqyv5bqhnj5mY8GwPCGAahSh3mjoiWS5kw/WwgDw9GYQcaeUCxt5Y0Nn8vBhd1TNZDTEGEBgq5CHs6TPlrFEHbBeRaNRRSglz9IUaNRtgE7ahQtmbffQQy6ui+xEpOD3erjlpQ2079mPY8fcmpUnC4Aq4riK1tK+HOZ87FM6aTpXNjY0+F4u68fNzWkHRbMJ1LLMHQ0z+ukLJKZ8+AGdt//+3/HV1VUoAJF51efm9GIySYByGX/3pS/hMwCef+YMnt/ruaMBXADLDMpOyBOM0hEnrwPEUcSdYtO5+6mau6cg+g6ySXrNEuCWAPokHW15nZ+2fIYfPNMHFCVTmn8TLMy8HZkErsnsBmDlN5iuzzjmM5m+BFh9aRJZNuqiE2z2JUf8uvCZ0X65JShOgJsgLwF+AsmUDCHIDDjngGSiy7qUTHQC2pK9TAC/Wq3a6ySIyzaXzyFgThCdYK7UWWeZpEwK02VATgLXfJHNTrCZeWCZKpWKLRfrwgfIfU122Q7sI6xblofBV1mONE2tk+bSpUsWkB6Px1Zax2egS2eBfBYdCVJqRfZ3Cbz7gLqUciFjf2Njw8rg0Jkkn8UAuEVOnuvJpiD61K5pk6AXbTsgvQB5tBsuJdJLU6iGwEUJAMcxokhvjs6f12BukgSarWt2i441HCKKneYoQd0inE4prSGeqWBLNuPYAOgSvTRsryCOUSrlmcrc+HATOjabOW5QyZqW1UD1DylfE8d5kJubPbmZJjZMhrqUnMnVuU/HgpEfiSIAgU2fhO1yObCOAZkM2csEHlhuPltqlHPjSuZWkTQ5b3z8cV0/W47SA/oLRm4lw4kMNW50z5zJb9IWFrScidxcu91ynqomvCjMG79igDIfy53Qle1roZm/QbYhH2l/Ngxc9+ijjp7HjpJluvKaTVRbLQD1XN6YHovDYmaZwy4IFjDAq1KOvWmtkWkAX0auZULHjwOnTuGrp07h7+DCbSUAjvzN3yACcBLAOQB/B2AIIANw8Ctf0Q9bXc3rJvHle7P4zh+BNNaJ78m4pu3JBSd7Oqxer+PDH/7wttf4a4ddu3bhHe94B97xjndMvOdy3z/3uc/FsWPHriarU/tOmxzQJs3dcsKR10pnpATRVc1iomMje8WfNAHu9TRAlSCpF3zhXC9AnOzTTmAA47hmA3vz8Tz1JbPE7HAsrEZjHbCbc0C3qynAzSaCJEEc1+zjmV4UmYDcGeycQIxS4oeAyzpx3koFWFqqIYzdhE5MHMgHQKVWO+cX+52sUzHeSdA8BHT++H0cY5gFCM2Yvp6FePxxJ71VKpnA6M0qMlVFFmkw9mtf004I+jI4ZzSbjom+uurm/dzwmyTA3r1YXtZVCmg8G3BrAnQ6GsSlB52VF0Xa2ywjurKQR45oADdJdD+Iq7YfbHGsRhGGyT69pDGAeS0e63pX1Vw7yXUf2/L8ef3oKHKfHUwSyMXPaHc+ezmn+qlTunz0bgN6EUVvSZYBJ04gbKcADtlku1231uLcLZudScoA9ZyWCcRznVnblblAJSdOmAXIgq7bj34U+NKX8Herq3gQ+tycgnaAL66uorq6ilqnAwXgAeg5/BiA537pSxr87PedgLq/4JHt4XtZ+LesrOnc/aRsp8/dUxD9GWKXA5eKgHR53ySA8EpM6llLUHzSM30mubxHWtFnMn+Xs0nPvxLg0pfG4WcSXN/ueUWnBWQdFw0KUl6HbHF+V8RWl8DsJKmfSVaUVz9/RX2CdSLrRp4+kOnIe2Q5fP31STI9Mm9FjpJJz/HzXlQ/vpzLdn/76W9XV36gXb8P+46tq2mzZ6JNQfSp7QiTQLoPql/GbOgG3nKZxbaftBf6IZclmRTZzTKN7XCDwgRlwuZVLoe5vQTTk3rZlytDUb6LmM8y/aI0rqgsXvvwWaORY99PiNM1MY/+dZPuG40cyJ4r1IRy2K+YIQabyzKHIjPjkx46CQAqeGVpcRJ+l5b9aFIdbNcY23ZxfyPKsmVZvu7EJX5bDAbuM3H7li4MGEacn6jUzjGvDBogpw3NSx9519tI5tyWgBkoCGAPFDxXfuYz23acjXF1DLXrO/7L1L7D9u0AW3JAnDB+Xw6Pz/1j3mVc6ywzJ6mU2jL+Sp8cr5X3bbsE4UIgywAx/Psxtf1b/LIVzXn8PLyKsYvPLqyzosG+oGC5dYb5vmhK9JYuW4ZluUbiwS3/3txzZmZyn28JGsqFhb+gkBMTvS0FD2F+QpGkX2F0KBfNjTIbRXUg50a3Ds03xJYg8NuZvxgV6xR5WsLPi/xbtkHRWnBL+0UFfUQKwq+taX+L+XoMN3eH4nP5bmcisggu15cnzdny/0lrgGvSpnP3U2VTEH0H2XYAkg/CyncJcDMdqc9NNnCWZVbjXF7vpymZw0WgJOCY45LlTDkL+T+QB8ulLIzUSaemt9Qyl/UiwVL/c59ZPqls/J9sejLZi+qOrGMpOSKlUvy2kmWW7SJ10Mk4n8RE9/XBpWQO884Ap5Ktz7oh+19K7Mj/yeaW+ulSA72o/7FtmB5la8hWZx+QbcP/We7NzU0opXL3yLZgXUgZFT9dCeDLoK1SJsave9aX1LX3r5Hllqxz1k2aplYqh8xzeTpAAutFbS5PcFyPNgXRp3ZNWxGaKHe2RYtv/3t/82ooOSGGuOmmEHNzADK9+xgb1jSDTM7NOS1z0tIkiVXGiyqX86oRSrmYZkoBwyywjGkyl3Iba0mDEw9IGlUrM0o22eYmcLEfWHacUo7lRr1Vf5ObZY7MJGVS+DgZa4vp6kCX+tokMSysfGUX7/iVsgHDiENTbpS2ublVgYN5IWOcsiSUepHVwzI0m8DNNzvimazKcVRF0Gig3HMnuBkEq9EwTEIKpMv+RXoWTwaUy3mtHNkYPj2fNGymYQpD6RwZdNUdu87HNJPvsn5IfPeN9cX6lnVUZWF9Ohp1bQV9kSfdCRzs2eOKwwBuPBlPUCFNnS6wjAsr4wDYBGRUMuoAGK3ZVqeDPtx2sQqgAb1JagGoQ2/MvwHgFgB41rP0g06d0pli47KS2F6TgPQihGxH2bVzJHxqU9tiaQrUapd3VhV9bwaxYabnON9VXIvHaLcDN86b01gyyCYA2MncjNMzM268zTLkjsswRjLnQY5dZIJzrOPfpZJ+bi4uCAc/sVY4fFinzXl/NAKGqmru0bfNzelnctzs9fSQxngqcr7u9QDV2IdQjYEsw/nzbk7h0MchnXPeDTeYuY7yZKx3pax0WhQBoTl2tI4qlALCSD8jyIYIObmkqdbrQD7upnQ8MB9UMms0dB7n53WZrD478qDtaCTmOHOKQPV0Hd56q1PvYrnQUTpRHsuTIPPMjPP2Spq/YD5vcQQwsww822rZW8noj6IAoel4DFAu5cP96YZTjQ3UKuemNLV1JEkGtijMD+drmc8kcQu9NMXioibZR5H+2GTfqrbJvtxo6L/Z1zl1+n7/NAXQTJz8kcmzZf43GsBNN2HRHBVIAaxDz90t8x5Dz+FLAD4H4DCAkFIu3/qW7nysczkv+4tCWaEF681tvVTXnE3n7qfKpiD6DjEpKVHE1vUBOgl6y2uK5EV8MHE0GoGSEww8KYE/gqaXLl2Cr2HOtAgKU1pDloHXFAFiBJAJYhM4JmBNEF8C8tsBa5IlLeVfAAfwU5qFL8qWANjiMJCAvpQioW47/y95A6qsP799KFvC+pYSNKwT3kdAVoLK/EwC6FmWgcE8+TzKh7A+WB6pm762toYsy6wmOttZgsH+yYHxeIzhcGjriLIrSimbD8qryDqQAVSZhpSNkeWT+vpsG1knft+RAV1ZZlnnrCcZTFTK8EiT5afMzWAwyNUXJW8YhFXmV57qkG0uZV143fVmUxB9ajvKfFTY/0zSuCxS7ZFUuMvrdrGQpsBmZHcQvIUbPO6H7YdKIczWEcYRTp8JsLGhNyLcIMl9jlLu6O86qjh/XsuUUP9yC7OMN8sIZ70egizD0aP77WllFpkxIllkxn081DbBnvbE9qg7wdzHOkHuiLhUI6EeOTfE8/MmqJhEZLv9fD3HsQYwMs3liiJ9z1iF6PX0RpAqKAToZf1IeRa5X2K5aJWK3jxLIyAhcQtWG8Fc7TSoIY6B7/u+PCgc9s8BHbOjJBIgN3AUXOeuU+rRMCEJopvXxayKfg8olaoos7w9d+vmZv4xXKpIBwPb2MOAXDBZ78IQQzQaocULSiX3E7DoUJJoZIbGBhHIPIFyGp85OwsszOs59FwvsBIvUnKnVHK/A789z/UC1A8fdpq67ID9vkZIsgw1pfD8L34x71UweqoHDcJw8NQpnAPQajZ1g25uAg8/rPN/881bypPzFE0aJyY54655m27Ep3YNGwMlFAFhRSCYBKMNGpmaQMU1P+1OB/sBABHGcHFDmGyONSw0vGrxGHEc2GvP9QIoVYPKgFsW9fi2nuo9etUAyD2EOH8+/3jO+WkKVOks5WB9ww0WDQ/VGC85mmGsQhw7pv19m5tO9opzFsfZ/fFFoNvF/nbTAdlKxw/hY06d0q89ewLs3h3iwgXYdQiHvlo0BPp93L6o43CE2TrQ6bm6jSKg1cIQIU6f1vlpNKD1upMEK8u6nI1GgCgKUU3P5bTXZBBSBvak0yFUer3RaFSxsKDXEXV1EYgU1to6ADbna86JFy44ORE6Ek4Paphp34nKV3QcynYbePazjQZ9p6PnblMOO4ez/7Ccaarnas479AwbJz/nLdu/Wi1cVHVkEYCGWwLIbloqAXNz2iEug8VLhjfXJbxHytH5Hu8wvYgbb6xhbU2rxnEdsLkJ7Sgul512O+AWTVyoGXbE3XfruqNkTqsF3HGHLm7YeQQAELcO4vz5/DxPfJ7tSN4AZWBOnwmwsLSk/2m3dd1/7GO5ID31m2/G88+cAU6cQKfXQwQgIbPB1Pe9f/mX2A8NouO1r9XlefBB/aA77nBAvRwr/L+L5nCgWKLtmrbp3P1U2RREv8ZtkmSFNJ+BTgBXgoG+hIoPjpK9W6lULAucnxHwkwCwzI8PsEqJDlkGAosy2KQPUksGNcFVgtXyMwa0BPL61hJoluC5ZKLLupDOAj7bB3Gls4Bg6HA4zDk1JIjuS4/ItpBa6RJQLZfLiKIody+fXS6XbZsyLwStmS/mn2B1uVwGtcMBWC1xefLAZ7RnWYa1tTULZvsSLZNMprdr1y7LRieIT21yALYspVLJth811AlAb2xsYDAY2HqWADvBfr9/S5PMceaFz5QnC9j2rDM/4K0P8MoTCMxrv9+32vF0rhBEl3VMY3vzd0AH0/WqjT4F0ad2TZsPmktk0f/eN7KmKt7n3MScOAF88YvAgQMYNx1IzQ0EGV1Buu5ASG7O+n1sbu6zWqfctEtScoCx3nCkKVTrEC5c0LeePau/zw2fZlNnmcPMe7cL9HqoJ33Uowjj1kGcOePA+Cxz4DcxXSwv211xIPU34xjNxVtsjFQT/wyzsxqgZqwobvqC7hN5nWhJcza79WFUywEYGgwI7Z5V4CFIEg1MkO3P+gIMWJ9lgIowRmBPAEQRLOPONpDZPFUTfe2ePXpvR+cA4NqBUqLNpr4mTC/qwrMfKQUsLeFiGuYCkyoFzM5WsbCY5Bnp0stC5lSk89HvA4NVJ/3tdzf+LdteqbwTQZrs2mR6W737fv5a9HqoxjGSpGo34hYbNkzvXAPTSSDZ2llmmWu8pBqNHeD9kEYT6q0W0NBa/STV9Xq6H7XbedI+N/TdLqCa+6ES0beWl13HjSItnPuqV+kbGa2UbdVuA7OzqG5soJqmesO9tKRFdz/6UV1B991XDKJL85GNHQugA9ON+NSuaZsUY2ASEMb/RSCMgVlu1srKjdeAHlCWl/WYdtfz7dAshzMJog9NUOugd07rNkf1XCyHxUXoSItRhOrior6PYz72gTH1uPTgGJmmgIpDhEgdkGfG27EK9drhgQcQpCmW7nmNHUpXVvIxPqyz/oHjulyLi1rP3Ty0GkU41GpiPQvxyU/q6Z1BxiU73s6pnY6dDENZb6zbOMa4fQjnz7iQIIcPAzUzAXJoBjRrvLrR12kakDPAGFmmgf2DTT13D41GeJjpCSFpVjE/b6adkzrB9tLtXIogVG4tQP125j+KdDVcuKDvf/nL9Xtw8qs6/4y2evgw0GjgkV4NJz/Ftg9NIOwqooZwclB43iyU5NqE6PgwruMrX3Trq5mZrcSIKHJ+Xp9NL8OmyG4u+8x6GqDKuWcw0GSOVoRz5TDnCEpTOGBZrlfk3M1O3OthYe0bWDjSwDe6NZw8qafMhV1PAMs9vdYtlRDGMebn61hb0w6QjQ0HuN/ZfEK34+J+nD/vgrVnGXDhQgCgBqVqOHRXS8+53a4Gv+fn9Q+o3QY+9Sk0/+N/1AvKe+/NRaKvtts4srys6fL33adjoXzwg/oH8PrX5xkdssKLzL9GHoXYETadu58qm4LoO8QkA72IjQ7k9ZWlnEpRWhJgJrOZ98rgi0yXALr8Tsqe+HmQ8iGT9KmLTILvMg8ShJeA8eX0pIskNWiSES2DT/rPlox4MriLwGkC2mRfy2CYUoLEl4+RjgqCuBIspAODzgDpGPCDq7K9ZduxbZVSOVkTWTc8XSBlXCR7+3IgOp81HA5RLpcxGo1ymumUCZLODlnfzAdBfn7O8kpQ39fc9+WBJKvbby+mLetcAvuyb8rn+HU1Go0smM7/WYdFzhtZf76ky/Uq5TK1qV3zJinbQJ6+TePfl2O70ZSWbQn6fR1s0dPdBPR6nFIm6BsHblTVx8rtTl3vYaLIscAs4OuzoZD/VxaHxn1RNY7ym17DNIJSCJIE5XINWab3TmRCcfMZZEO9uel2XRr9PvD448CePQiaTRvsTALGc3N5gDdUY+SQcAmke0iwDEApyb3Mek5PNMsQKAWlAu1kkBebNAOlEEVmTsmGQE+g8YDbaJm0wixDmGWIkrotNtshNeD4jTcCYe8JF2ST+jKxZup1uw53kEfRy+UAUVRFtaHyhTIXUEaATSRPOrPKZHVJcEf+73/n90fWH9mRW/q2yZtS1RyjXTPR4y0PtQCPpNlBB7yrx9ykZ0AvdQXjtQY5n2/ux+ama5YkARb2GGdIEmGYBZb8RwyDZWy19iGIY/3l3r3uOL7sQN2uZqqlqd540xkgK6vT0fQ91kFRZRbZ5b6f2tSm9u2ZRBSvxPzBL8uwyZ+od0oHvZ6mY5dKFtCdqF2tlJ3ramawVnEdgPMvZxn0eENmswQq1T47xkspLqX0/2nKQJxuXiBIG6apdvT1eqjfdx+iKLBTWankqiiOjbP+1CmNHos5DoD9v9pooNcLbZBsia/K4S932kdIitkJyuRvY0P/S4c85+Hz5/PyMnbBwLxkGQDtROXJOdU6qD82c1GQrmN2tqqZ4wbQD/oXkSQ1XdbUzN9KoVIJcyfjSiUN4q6s6ObY3xgCKx093q+u5iaTcVzDykM6WCaNftk4BprNOsJ46CrI1CXbU06l58/DMvNJMvCnCrl+k+9y/QNs7St8ZRkwjkK9lmRk9F4PUbzPXm/z5B87YyLWM61gj/wtLwPdLlpHno9Ox9y60nFBQc21QRwjSULb/+1jTp7Up9qiCAvzCS5ccGubfMzWAPu5FiKF/Z578LdfDHH3qyLg2DFdx0eO5FklBw7oe+gA73QwpKOH1P0ip9p2dqXz/dSesTZt9R1ukzTJtzM/4OGkoInyO/nuX1/0bAKS/FwG6CwC0ovSv5wGvJ9fCZb7JpnhRZrxPnNcPkc+a9J1l8unzOPVsG/9cvlg7HZ/F9VvUdry+6K+UFQmvz6lLJCsM19bXJaF9/jf+U4ZPkOedPDlgLZzzPj53u46n3nu131RWxS1bVFQXFmeqWmbMtGntiPsStiiEmwXlpPJMIvtLDMbX7PTkRvkLfdMyEtJyLjYjTt3Hd6L2SLYLrKik4t00MnRCNuzb5QCRNLSAhl8yI+gJt/hgH/qjvsM6cJny/o17z6psIgMtAXUMOD3lnrabhNU5DTx7tHlL14flMvQoLCfKdMXJnUv7u3spleUnyw6/+VnlzZpj1hUbNk3/A37lroQDyZGINMp2vFnGbSuqwVEsPWB3CjLV6lkQZkAY5RKwbZ7WPmZ7zCqzs664/ZSi4c3panunCwUURGhY2w8HVsf5tuVjB87zqZstqld43alv7sccugsiryAjAUmg15uOdUj/pHjZ6jGmJkJcj65nENXgOgq2er4LMy/HLeiCFChWxyUyzaffAzxRbd2yPKaZxMmEx6CImNbZrnQ/Gic3oVShsv/Llc3Xl44NPPz3PxryjAzgy3zSzAhSOK28wed7PILk4EiJwKdGxbcjkMEngM2F+RbKWBmZktsSn8+zdWJK/rEbl4SUoKyD9k6EAsmPqswLd4snSvM2MxM7iY5XebmcEq/ZBmUKghW7z1cKX26rDAuq9SON56GchlOJJ/t4zPLDSV/HNcQxDEULhMyk43qr1GKrttRNp27nyqbgug7wHyA0QejpcwK2a1FwLAP7sk0fT1wKctB6RCydSUDmqBmGIY5prevLS1lT3yTsiMSWOV9LKvPHKf5bGymQ9AVQC5/ZGtL9rYEcyeZD9TK+pcvP3glmf4sK/MngWDZDsyHlAPx9dBZ71ImZhKoLgPHsq4lq12+ikB/2W5FTHnWX7lcRqVSsVIt7AMs52g0yp0iYDn4POqwk9XNOpJtWi6XcxI/sk/7JywkkM98FLWTLK9MRwYJlfUnP/clcSQb/XKAuuxD1yu4PgXRp3bN2wTQ1Bp3SkD+3Sy467HW6EamF/RjFSJLDYg4MwNUKsiyvBQz1/5OZkQAi4bhtXCkibm5qs1GiKETiaauuckPGVh8JL+KIrKWHeunsHxkPkdV9Lt5iU+7KZMs6bm5/IZDRFMLlQ7Kxj0QN+OhGrsypmJn6O8ihWQG6212Vn8lmfHck7Euq9E4H9RM1I97rm63wEik2M+KgGO2u+gfUaQZVmMEgNJMudlZsungNnnMQxwXygBwb3vhgjvyH0WhfsVmX9pzwcBkNn3HgpDktcw2XiODifq+hELAhhf5JwTMd9VojGYzyAcpkxtQpbCeBiZoXQAVa5mDEMN8G/AeHp2XWjkUp08SzM05tWKloBnuStkgqlGkMfI0dXLslJq55QUvsGfJL/YD1LJzTueAGrc8usEAqO02zvVD+8z64VQz4YhK+Zt2v98UeTF2rKzLGJeBIAqun9rUvkNWqbj50v9dSpMDIsceMXfrcV6Ah3KOm5vLka35lZ2yGOCTYCjZ2cvLqEURVGu/dugx6GaaalkXsaZoLt2OvXu3AvRZ5pjk0Z4qwobS6Xe7QBxDNav64htvBBoNuyRZNZJfShkdciUks5JEX88JVU4MpixHjughj7E9BLl8q5FKLtcGZiJilR84oMfoKNLXr6eBlVKzPstu5jzKhuU+P79PM5h7qZ03qlGEMWpAXEOAMWrpumt/wM1bshKVwtxcuIV0TfW8vXvFfRzjTWOMm/vRWcmrzDFYJqXElNLrpIX5hi3UxX6AXs8RwdFsAnFsH8O5moG25RKTLPcsc6es5Mkz2Q4Mph7HRsudFzDDIohIiCFardAuHy0IDth2G0dV3debGoS2FHHruFEI0nU0m1VUs4v6BOLZs046zfTNWjMCEOT7zOKifl6SYJgFaDZ1WU+e1Gow7Dq9HnDwvvt0WocPY5zomATttsnnffflF37yPYqwHu/D8WPAC48cQXDgAII0devVSXN3kfnXXu3Jl++qTefup8qmIPoOMV9SRALKfsBGH0CXQC3/l4CjBE+DIMBwqAfb0WhkwXNqW/sAsQS3eT/fJSuZ6Uhwkc/0A1jyfv9VBKIT7MzEgFcUuJP/E0yVJuuniGUvpVB8CRGpF09dbflsXkfglYAyteclWC3BccrX+Mz1SbItPoguAWECu5QgkfUtZWH8wKuTQGBfM7xcLtvXzMyM1auXfeDSpUtW3zzLMpRKJVADnibzRokcSgL5bSbBcvZTCV7LtqPmvHz3+4HPMB+Px1hfX7c656wrKeUi20cC7VITXdYdpWpk35F95Hq1KTA+tWvaJNUqR53BZFauBFmXlzULqdXCehZa8LPKHeLMzBaZlSgyx6ulTgmfsbJiEcEqd1qNBtDpOhHu5WV9LSOQdTpotB3gSHkLYgzShlkACxOyHGbHfOaMvp57dbvxlMCqBIplHQkA9mCcAZG5p5c64NKvQ1aGBEG4oVMhBmfsvmsLA7pSccXXsjh9IUIKt/s0YPaWvKowf4xcgig0+dAsQ6US2qT59fy82JBGkQu0acrRW9mCM1tHB30hBNYpe1OEuaapOx4u8Voy/uPYBHzLMiBSJn8hymV3Opt5kEXj/6WSqDMfROfFvR7qSgFxhCE024wMfGrur65q58DZs65rNxqhzp/yQPReT++gidTQK5HqPlNtRVB7QksG1/Ue2NuJeXQ6LhYA66bbrQOoo3tcF+dlL6tjQXWAhtZ1jaIa9t9zjwMIogh/fyLE8eOuPV784luw/8gR2Gh1vsOHD5Qoixw/+JnPdNwRNsbVMdSmG/GpfQdNBtz0T5D4jizAjWv8LE01gmfm7qGq6gCZMshGkuSCZANuGAgwtl7LKuXJqLVlYi1Ujx7FwsJ+PfiurmqP6YkTOiEz5gSLizhw4KAeH2Md5JPTO4unHZYhFnZBz/2NBtDcr9O47TYgy7C6qrN99qzG6ZPEBLeW5W42ndA5B9HBwNbfGAEOqUcA1QP6SsfGaDTQXNpnh+jcvEQktNPJOyiN8xgAbrrJAb2IW1g978btRsPMWWmqC0m9nG4X7aV9bo0E2PnhzKiO06eBpaUAITVWxPxkG0kE16w2IjQazjkq23F+HjoeB5FtwCLZJ0/qYrFLVCraIcBlGrtWHANrawFmZ2vY6OVU9pBlwHqyH1ET6B5zB6DiWAPDt7Q1HrOe6cDdNbXuHB4IsLbmgqKyi9OBzeklSZCf4LkWYd0o7YCppimqSYLR7pqeU4UDZT0L0V2RknM1xHEN9cUIucbv9bC/oYATy7ovnj7tHEN33WWfV0sSQwzQt3+1U9M/K5PFWqrl75Lkdpw6pdc+rZaJpxPdrrP8gO4SL34xsD97BEha+Pv4hYhj4FD8RG5ePr1axemO/kkfOwaU/mkddx85AhtYSK4x5drGX+PIzyQZY0fN4dO5+6myKYi+A2w7JroPLkum9aS0fAatr59NQNoH0QkCk3Usg2T6bHgJZBNEJZua4KMsjwR1CcwSRJXBNwloFzG2WQ4JljJfDB5KsFfqndNp4AfR9CVJfLawr63tB1+V2uOsO9atBNR9Njg/JwhLcJjtzTKwLmSe+bfMr2RRy4CXPpu7CESXThYfuKcppVCpVFCpVDAzM2PrX4LDEnje2NhAqVTCcDjMgf9+ME4G/KRjQTompFb6xsaGBbsJcsvTFZIRz/TkiyblW5guA5r6TgcJkksnhKxjX5pG1m2RM4q/k+vJrra811v9TO0aMLkR9+lWksXmL6b5ndk8DpsH85tMIRHBW7lO11rcPZeufIYJ9onNTX3D0pJ+73a1punZszpoUpbpXcfsLNDtImy1LAgaxjEGu+vY2HBEX6muEcpnCsDgwrID0c+fF/sGuaPnZoQ7RR8Y7/f1TkZqprbb+WPkPlAtxEGtDnjqyD82AKUphFKBJVlV1dA9V250JDArjykblNVKvnCHzPwVbZbMtXkw1yUdZIIFliQWUE77+WwJbN0C21nmJNSLcFoe2fb3fOyqBCg0o6+XcwiFJhjoaORkC6jHnwPPQUmatJj6JtvWdKaQx6pNfbKLrK3pvsPNP/tckgC1lueooENItlWzqTNjIsSFcYw41kHlJNsccAHkOp3A/vaYDx7aOH9e199NNwELc8A4ruHEAwZHW6zrn6jSm6WHHgIeeMC17cwM8JqlpfxG3PdusEPQWeM3oM+A2zE2PRI+tWvYKhVgfT0/fnsM5C1sUuksp6c5imwQzIX5yAYd5aDKIZE//1o8tsEzh6oKpfRJMPT7erDp9XQslH4faDax5679Ovji2pqOr/AP/+BOv8QxsLKC/UdbxqHYQbXZhFL13FKDGPhCExa9DTDGMAug2oeQZcDaih7L6Zc8fBhuLcFyt9u6IIz8TYQeOiClUkD4N38DfP3rmqKdJMANNyBYXEQ1SdBDzQ1/xvl+erWKBaZpxu+xCpF29CULcyY2RtzEuX6ItTVXvbVo6PLHwdsIqQedx/JzhZmTLqR1nDypic3h8rJDo7l2kosdcYxg9+66PTC3uenw8qB3TueBZAXTl4YIsXLCxRil83v3bu0kJrDN5ZPpEluWiIZnQRwbaeoedeONsGLrVTrfO13bXlGk65sa8mTCSwmXKDLrIxlThF/K01P9vg2WO9e+XV/T03U7hI7t8vjj7hQD/dm33VZH3DRCOnQS9ft6LXr6tK6gr31NZ5Bi6SYPYRShnsQ4fSawOPvSkuFgdDrAl76E2ZffjkcfNX6hpn7Epz6VX7o9+9nA/pUTGDYP4kMfAhYWgLe+dR9CpTCM6+j39c/q5Ek3hzebwN1GGz23sPJJHBwrWGfyf1qaAgZH2hk2nbufKtuJK7fr0nz9ZZoPwkmA3dd39tMpSpvAny+NIY0grwRrJXjsy6QQBPUDRvpyGhLAlwCxLKcEPn22tawbBrKUoCXBZxkcVQKgk+RmtgPQi9qAn8l2IKjrs8/9NpbX+yxngtiy3iUjX34n0/QZ1vL5viPFN37va6DLZ0pJGymb4kvryGdIp4AE0X25IdmnAFgQnGnS8UMpIlk3sg2KTjT49SSld8hsl0FDZXv4bVjkDJmkzy/tepVxoU1B9KntCPNBZWk+kO6Di4OBvTSHv0bKIpRy3a6Ul46fj8EgDwxIVvDamkYS5fFs7tQIfhpwfiap56RAlMrrsufMML/lXlYCt7kCyA1qUf4BR2UfDPSmeO/erXUo69ED0CXr2t4jGPu5AwO8wZdlkbtZVrxf59u1g/9dlm1JwnYV0bhDaDmf1VVXhz6mw3dWD6Dfi9KXuJB89+vBSu542gMBxiiX9VxNBpvU5N+iz+87TPzv5BFvkUE6A1Lj/GBXlFjGloIQPJfA/eqq7tfilEaYRACCnKZsLk4Aqrm+u7rqGIT9vs7X2hqAPco+EsgTWEsl56di2p0OgEZSXBeyTor6EBtIvu8om27Ep3YNm2SJTgLEfON1Uv5jNLLYbS5t80rNsGQdjxyXDMAex3D52Nhw0TSNJ9oGA+cgxCNiMg9y7o5jAPVcdgExdwtmOYdjzpXlshtSBwPkx1WznhhHVX1yzqsTThvh6dPupNvGhkaOrWSKO+3GerywAiy0XHpcR1jjWqDRQJqGti7t6S2//ZgZGW2S71mGLBOM+NVV5wXmOmgw2DJvI8tyMnfsAkpBS8B5axtKkhEzlgeMZmY0iM5s8/SVeFTOpwq4731n+twcgK/39Ickccj1jAHRNzYAD6bB5mbBGmjSAoLpmv6VW7cg330ZlJbl41xZk+lwLcq+2Ovpzre6ms8/84CqTYdrO/T7wNmz9qRcHLv1w8mTDvu24Ux6PWSZ/o5L5HoU5X46KyvuUISeuxu5daPLT778W+rMB9K3m+OvSZvO3U+V7cSV29Q8KwJ4r8Qux7iWoGGRFnbRcwhGSiawfJYvTSKZwjI9grHb6UUT9PSZvNKRAGAL21jmh9fJ4Jg+K7gI9JayNT5IS6DXlwwp0uKWEiH8XDLUJQNb1gPzKqVoZBvQOUBgmszoSUD6pHaR9TPpBICUsJH1VQTe++03qZ1kmf3ritpQlp0vHzi/Ej10KW/jO5R8p8N2DhG/z05yXl3voPAURJ/aNW1yA+ajlbSixXMB0C7351peJLVaI1sw+EnIqFJ6MyLpwpK+zJ0XQUZ/EyqvNUbpWJKSogjuHuqQZjogVxQFliW2hRUtd4jyXamtQZ6YCHedNrKYMO4wDYB/2WoWQLvc04Q+IOCj1kXsRKV1tUMWlPmR9zP/XsaoB85bNBjg/vH3WwQ//H094DTeabLp/PqQVSt9GTnCZZGcCFwz+HtD6VQZjQDMiMYXdW53s8DWTaln7A5xDKv1mzs8KTepPNNPNIrn6/k80XbKaNAXOYLiWDPPCCpFkT6wUSq5ZpWn25m0zFe5rLPSbjvnh1SIKGxAWUd+nci+tKM24LSprurUrnHjGCJ/e5eTXfABtXLZfSRBZ45HBsu1TmVxbRRVtfNSjgHyNTOj5xkea6E8m3TuEgEn6hpFQDphWOFAZijn1ThGppxMCYfqdtvIlEhHvMmzlUjhmGQGQ/scUoIZ1FFE+LRVbU6PDTMR6NNj7gNmfN10dS5PQNl1EOcApRxBgGkWjJscTvt9oDY/7zyh/iBf4EyRcmj2Eta7qfux0fLeLvi7UpqlzcOCc3MuiPra2uT7eOiOj7PPZx7k3Cjmbuqw870wYU5WTIflNjr0VWZQtrU3Z8nlo7jcVbx0nM/O6gk+TbXwfank5m65DjEODLmkkHnmQYIk0fW4uakPWMolbxTB5rvZ1I9h3TGAK9Pp9Vz33VLGokVVEWDuvxfN79e0Tefup8p2UqtP7TJ2OW1lHwzkPT6TXQK8RSCtvMdnhkuGuv9sqREtWcxKKczMzNhrAGwB0CWA6jOxpUY4ry0C4P1gnlKb2meh+4Bp5g2uEiCXLGwG11RKIYoihGFoQVkJRNMhwWCaGxsbGAwG9ho+Q5ZRgr4M+loEKPN7ypGkaQpfq9sPLCpZ4GwTWXflchlhGOaewXvCMISUXfFZ274kzZW0FZ8pg77KchYx6H3Am6cPKpUKoihCuVxGFEW5dphUH3RsyHqTzglKxvgBRqXRMSPzx3d576T7rwebguhTu6ZNKSAM8wvp7fQPfYCSuy0DomcZsL851jQYc5wbjQbSrpP7tFONBKINo6bKM7SjkRPIbjRwMaui1my6XQKgN5yPPuqOMMvNYBxjcEZftmePfu3erZMMOo/lWeKAZb43mzWbBPfSgVxgZ5k7Bi7r4IYb8hu5djt/RJtRyli/AiG4mIY2r+VyHqS2QKfY3flEpywOoVQIlWjNTXu0XgLhNLO5W89CQ8qqIV7U7DpbTnHvWP3/23v36LiqK8//q9Ktq6tSqVSWC6ssZLtshDGOAGOcYAgBkhgCCSEh3QE66Uwy3WGSpgmQZCYhk+4F6XRWM0kWQ/fkOd1MkmkyQ6bD45eQtDt2N6ZxeAQDDjZYBIGFLXDZLlulUql0Vbqq+/vj3H3uvkclP4hfJe/PWrWkqrqP86q7z/meffaxESvsUfWZTMJD6GgIBBu3eRXlvRZ4Q5Ne0dIS3pY3J677kE5BSdS6TTkavhcIBV829xAR3ateDFZmHmKoqY1PA9TkiFoCzT3j6fokSo+MAK2tKVWOme5IustlwCsA2WxCCUJ8gBlkxnNDUWH+fPVVT0803zrzdG5PD3D++WGFO45a700DcbpXuYyYZaEzreL2FotRMX1hTw2ZTEw725XL6mdE3v3NzSqcC8bUxmh9fYmIVyKJO6tWqaZbKCiPt1wOwJAx8DZXPPA8cYWIbmAe3zCIN5twAkP2DoiGrCgUoqIkt9mmuBo8Y2KoIZmMqec8xRzv6QEyGXj50CPXcYDOHkv/pm2rHD7IgVDMpffZLIaGgCW5XKgUUjop5NnYWOgGvmwZqrCBYqgtUzZiqAED5XA/kv5+tYljXx8qbkwft2KFOqSvT90fjhN6lufzoWc4eb339DDFEeoCtNsl5Sl4DndmlG2pJZcAAApB2ewvxtDZ24taMoXCUPQ0lKNiKnU5PE/FAXcy8+Cl5wEA7K3PqtlPyjyPeRZcsJxX4U0GBqD2tKB65f0pMqx0I9YHIC/2TCYIBZdMAr29qKU7dZxz2tyTTqfmQjhOYBug9GOad25pUV2yvXujE+S0sonOoeTZqOqb7Ucn3DKQ7UmpiQ7HgRWU4/z5YTeL50GXoxtT4WCCfgjZd9cF9m5XTWz16oVInJJX7d2tRH4DfOEZzfP09qpDRkeDe1HnhhK/eHG4SuHUU1UmV62KKuCB/UslLaxendBmcWoKesbaLu7BJz4xLxI26QMfCL3iPU/1XZFOw/YquOKKhG7rfPXkOecAq1erMqbfAfqN/oY5qW2K46a3C59xsaMx9U9sxHYfKUREbxBmEo/qeQ3z77ioyL2RTSHZ9KhuamrC5OSkFpd5KBEubNYT0ene/L78e55WM447z6e54aUpztcTYM3vKS+mKG4K8Lys6F5cYKb48PxefLNSEpnj8Tja2tq0YEvCs+n1T4yPj0e+sywLtm2jubkZbW1tkfdcQOabdPJwK5R+Es8nJycjG2SSd7q5oSjlj6eDh2ah/PB6petx7266P4VAIbGZ0s0nH8zwKnFjCp2uyzFDDfFrm/XX3Nys47S3t7ejubkZra2tkckIz/NQrVZ1zHb+O5mYmNB/eXnRJEWtVtN/uac9j+FuYv4WuIh+MiIiunBC4zhAIhHtPLtuGF8SmHlATt8FAwbdNx8aUjHLSYXOZDC+Uw0KKB5oRLAP1rK6LuCkE4jR4K+1VY3KMhkMDQE9PZ1I9faqc3p61ODlpz9VA2NSA5NJlMoxeMVQQKRxtO2WgGJZDagp0Cc9f4NRWSrtIZVJojurPLUtC2HZ0ChnaEgd39Wl1HlS3AMRvYYY0Gss+2bEAm8vSjYfwNFYmMa9pDnUEEMsmUTFDWNfkwhMf4lcLqVivlP9EOwmhaF6VRwL/ioxvhjMgyzvTasRu+tisiXaPCwLwFAelewSvV/c5KSquq6uaDxzni+aR+B7kDY3hw77NC/Cq4gG5VTUvLwoeypSQCigZzJAKqkG611zVIJL5VgkPZOTqq0MD4ehASYmwjLm+m8uByxb1qlisObz+vdQs2y9ip4mYWxUtfK0ezyFqamgHvnKgd7esBACkWT33hgmJoBMksXCp1mLchkxx4FldWJyMhCWPA/o70diaAiJZBKdPT1ATxJdXWpPACqvWLkETFhAsYglaRdIJvG7QTUIp3izS5NvYGlxCFjTh8czCSxbBmDAmFCjguHieb3VEDzEUkMiA3HhBIYmwLkw7rrhc4km4rjtNjcfZQJxMmkDW4eAbduAt74VleQ8FPNqrnlqSl26uRlY0oNQoXRdIJtFxelUnr5ku8lw9fRgcBNgWTEsXLZMHd/bqx7wQ0OhLS2XgVwOvxuIaRvhOECnVQLyxTDkFaCel8PDwKZNegmOk5mHZFKl76KLAlvvOKiiU0160qR+sOGpzhS5rTsOrMAO7+85G+gBOtO1UK0lI1AoIJZM4sVBFZ6DQoPl80DRScEdCicbtEgN6HJPJsNbj4+HdrS/X2XpustyKl+WpRwH0uGEBdVXsah09v5+wLIS+l4tLTa6gsn7qpVAuQh0UpDyoH1MTYWxzClmfC3bjaFCAsWgT9DWFpokYPpCIrJxZ52ljunoULY55VSBchlj6U49UcC9r0l4t91S0IlwdUFVnRT6N/GIPomIxzrp0jR/wvs/NMHjJTtRLqpwZBR+n/9tawPOPyWjElMsRvq1k8PqWo6j8p7LAYn+Z1W/tme5yj/F/KeA7tksasuWKxt86aUAgJKl4pM7HmC5wUbiQaa6gxvsT6u9g9CTVTcdHMTCoY1ALodS70oAwIV9JcDzsB+dKBSArlNqKmGFAj50laqcqheL/AyXWDuA9Y/hXe98JyyrW9XvgKUyTgXFw96Y/XnTA53bbnJuaRjEdh8pRESfJZihWEy4Rzn3Fq8nnnNPdDrX8zz9HQmV9Tykuac4P9fEjJ3eErhlmWFOqtWqvp4pTPINVc1NTPkmmaYX+9TUlPZEJiGeC588XjudY8bbJlGb/ichnYvnra2tsG17Wrr4xpTValXnsVaraQ92EuV5KBWeFhKpefnwuibP9snJSb05JveeNkOWkJBrevjzyYFEIqHLhMqQ2gVB16P0ua6rvfC50D5TmBseMsic4DDFc1N8NsOskPhPdUFlSx7odByVkeu6kTbMQ+GYnuc8DaaIbv4OzXA2fCKAr844GRERXTih4UIYj/VMoh11srliaS7rDI7R3sbBhkl461uBbBYl147EJve8QEyk0VkQR5LiQSZoTWtwz6qTCp3rertDj2kaDdIOoJaFihuLbHhlWeHgTnuh0aZiXFQwR2QINh8lgZxwXbX71L59SuAnb/lsNhJmhURges89ri0rprUOLtK2tQUxQhFdbh0KxbFIyE2qIp40QA1qu9qdsAC46BmUETnjsTkMZDJKFKA00Pe9vTbsIDNTwZh+b+A5TxvEumm93xssK1ySTHmhOKAkxkxORlexJ5PBtYLCSCYT0Q0/WVNNpwNxIhiI28EGdyTuc693x1Eiui4wy0Iqm9UDUF7tVK7j42q/MC6i87Gm8lSLqei4wZfkXaadttxS6M6dTmPOirfpa1H4HYp/X0QKbll5zHHvs2XLgFwuBpvaJ1OXrJ7OMJOepwp/wwaVuN5eIJ1GV2+vSkz/UHTjOPICzWTgJJdHPQ03bQLWrwfWrEHfpVcjZVWmKyi80XCvVg4X0lnbayxkIC6c4OiAyQFkn8j1lyvSwHR3YhZCw7agjNJrrwHnnqs35KbnGv2MAYR2slBQnrxpAIiplWT0kLYsVJ1UuN/mqm6dJLu8H7jvvnDm0nVRcWMYGFDH9vQEK5kKBZUmMpY9Peo1PKxU5HRabcKZTsNxbDWvMPAi8OSTQF8fCj1vQzqdQMKylNGhPgATEPe7CcANi2jzZnVIb28MPT2dSGeCzTfZ7PHgYCKY2FcRPfi2LeRN7DhQk/as3GNeFfG4cjybmgpjt2/apMTfa67phB2EmCsWAStjI0Gif1CPo6OqyzQ4qO5LXvcq/TG0tioBXXVfbNi6H6A+o42mLQtAsYhyshsDA6HTu15953kA7MiKJ76ggYTtmBvYiKECUCwineuMRDzjUfns4p5wVQCgBPTcUm0qqRypr5RK1vTkvmUFdtWy4DiJSEQgEt9pn27aQ3R4WK0wK5eVPT3/zEzYFwjaaRV2xHY7DpAo71ENIZ2G07tc9RPoJpZayVfI05xMDJ4X2mPy5E+ngVTWCZfVbd8OtLfDWbMQngeUXBvJnoWIbdqkfgurViFFE00PPwwUi+i86CJ05nJAwdNtHevWAXPmwFp9IcbH2arE7VuA++8HxsZw8Sc/GfaPeaeSDqaM1hPR+bF8k2G+tPCER2z3kaLRem3CEcT0jq4n/vG/5jn14oebx5gewvVCzpghPvjnk9xC1YGnnXudm5uhmmmb6Rr1PNpninvNz+HiMxeFuac8LxeaWDCFWADwPE+LyWZ503sz/Ii52SqPic7DhZgrEXjeuBjPJyV4uBpe1vVEbP4/F535hATPjxkayGyDB5sUOpioyicEeH1Qmkxx3gxHUy8uOs/fgdrGgahXDycjIqILDQO5CAMzh1+o1+E2xTHXVa4/wWDQY2LytMuS+gi2cZRlRUZevO+vBmdKrE7w8CjsctNCVpsX4Dt2el4YNJ2fzN2mTQ+diYlQXQjgAjoN6rhwzD2mzSQRkY1M61QBT0a9/+laka5BvQkPllUahAGhnkKiNfeSNxfyRu4RJIDC9Zh5PRCk72gBPXhZVkKHtjGzopbIRxoEkExE0qyzytNBg0dPxRc3dV26PQnZNIbkExqHEp3Eslj6AuWJ34eHmqHx/OiompeJhOnxWNnzxmVcD0BkQ93IX8eJhi6ga42OBm5+0bJFsagG34WCOrxQnjmjB6JeA204Eb2Gwxtcn7zOAsJxxLRR9HDmzww++V3v4UXf00w2oj9dfljky+BhSFuLRLxbm5sjZpeea+PjQNcp6XC2lUEbUGr4zCbF1eCT/sxWW06wr0ixqCYScjmdxIR5PbZyhmwMi5xF+4BqMVyfH9yL2wb6mE/Ieh4XohEpeyuI4c7tTbEYbtZJtnYmOzM1FU5G842rqThpRZS2H8Zz19ww3ewLzGTbuIQRsdt0UmA0efeJY1mYvjKJ3Z9eo6PT+xCOwzYOtyw0Nyci1+bXIM16eFh1Q+mv62K6wWf9IZ4vlN1wssUsPHY/c1Ug9aFoAYCGeT3QJWleJDE+rmZQKAQgd/goFKIx1j1PdRSMvANQmSwUlIdDoTB9BdjB+vR0jNkJbUj7Lbb7SNFItS4E1PM4NwXXeucAqCvOmtcxhWTTO5kL4VzUBZQATAIxeR1zL2cSf0mQJWGTx/+m65nCLh1P8bd5KBjTE93kQN7xPN41F4K5uE+e4Hzzz5le9crJLGdTdOfvKS3VqlrqRt7cPLwMhXOZCNaF0X3NeuNe9jyEiBnSxYx5z0OsUL7MdmGG8qH78DzZtq090Xm5mZMPPP88HWaYGjMfpmc/ieNmiB4K1ULtjq7B2188HtehfngcfLoun5DgkyBme6s3EcPb4UwhaU5GREQXTmjqicVA1OucD77NTjWNJsAGWeRiHOzk6Dg20ulw0EBiZII2Bw0Gw/rSpOQGgwfPCx3u8nl1+e5MFcgXwkF14I1cDMYOFBoEACrpBBLcI6i1Vbl9t7ZO27xxWowQPnihxNOa7OZmfZzyjo/py3AtgS5jOv7wuKNAuHQZCAfF5u2p2HmYSx5DnaqjRhu+0YfBiVUvpsV9wpizmOZc7LpQ8UaTSTT74fGAiskZS6d1CBd+Ddedvm+tZYUbaFEkAXWf6E3LbAw4NRUpapUeqreg7t2yylNzcxgaBgicp3gbZxMz5niRp5FCA/BoJZR2PZYMDuYTKNScO6ltB5mMeVUkk0q45zHbaT6HCxu8nUTuRXXpebC9Ck45JRG2aVJOSA2hnU3pRQoDxQ8IAtlms2EyY141XDvveYhtfT5siOSFVm+QzamnnJgNv2GQzcmEE5h6vz3z91bPfhNchbUs/Syn5UHcNHJ7oY9jHq0jI+oZplfnsJjcmYz6aGAg3PxQi3yTk/qZUygoQTkeZ17v2ay6KcVAobzNmaMu1NKin2mxbFbZBcdRz7fg/pOTUP+TfSdjF0yez5kTFWEdR63miuxPaUxEnHqq+pciurW3h5PmExOBHTfFx6BuvGJo5+mrdFqJx+PjQGr+fLWPTDF4z+Ka1CxbbxbNH6fUvzAhW1mzbFiBqEu2sVwGUpmMXhUGqLJPJhFsmGpHJhja21W5UJx6PUlAJweZMkOgEZ4HIJ2MruzLZLQGT5fh/Qh4nrKURh9solzfDFmWSqNlqc03g33tdZOs18HhfQFKe2cmrW237ZbQmU6Gu3c7ji7vZDKccKd6jJg7/puLx4F4HLZVQ0dHTC9i5BPXutNz6qnR5Yt8qUMQfihWLqHrlCSmplSfDm1tYdD5rVtV4zmY7WX997qVxkNFzSTCn5CI7T5SNFqv7aTH9JbmHrMkIJohVuhYHk7DFNFniuPMxU8SsLmgSgIgjyPNQ2VwL3RKO8XbpjAh8Xgcra2tkU016byWlhZMTExo0ZSE2QMJlVyMNUU3LliSsFov3jnlmURgU5ynkC0tLS1oaWnR/1N+SOg3vavN/ym/ppez53kYGxuD67qoVquwLCuyESWP3w0ALS0tkToCoEPO8HvQJqa8TOkvhT+hfFMdUUx2vlqArsuFau5Vbdu2DqnCy43qfqbyMScgeHgXLqSbIW3436amJsTjcT1pU61WUalUYFmWFs759VtaWvRnNHlB59HvisLuUHnxTULNdkbCPE0eEFyApxjslAdBEE5AXDeMic47/HyUZw7ESVijgU0wEG/vU84wcDI6pARcF4mkhZ4eNSAbGVGnjI4CaJ+HRBZhTPRAC0zRCCXY8Msrq3FXoaBWaedyQHd5EHj5ZXWx9nYgm9X7lFFIWOr/q8vHsDSbje56SSNGni8aIbLBR82yEXNYmfCY7exc23Hguup5yAe1JL4mUAE8AK6HhGVhaa+jBVgAsK2aXj5bDfzRbEsNVMmbrLU1fN52dETjje/dGzrJq5W8tLG4jdZWtXHZ+HDoyeZ5odd5e3tYJKb+ks8Dyd7l6v6B4EqiQT4PdOdymCqE4WAAdR3uiWVZatk7hZCnsaGNKgAl7nuerYUIcp7m6SAv92IRcJ0YyD9wcm/omUdVQtXX3o6oOu04eiKhnpMV1RnFcqfrkGhBeoZlAUiqdsA94MgJ3E3b6Ka4/QBQLOowLkAQF99Sy8hpEE5pUfFt2X2oMdNNXBcYGlKx1em9drWDikUTj6tYxUggkQ3aPIVxyeVQ7VsJ26rBHvidCltEMzo9PSqo8K5dwL33qkTQRqeUWSow7oI3E1R4/L0gCL8/fCUOF3kpoHVkxs84nmY5BwfV737FChSLQOeCBXrjkp6ecI6Oa23lMpDK5dSHQYzooX71COlGcI/eXrUpqaseHxRtKpdT+y6gvz+MvZXL4cWhFAYHw9DnNO/nOJ1I5zpVOBaaWKc8rlmjDhoYUNdbsUJ9nk6rHRazWXiFoAh6etRFKUYNTS56HuyhV2FnMsgXUyiXlV3lYrGNatTVGMD5b60FQjP0xChcFzUnoSf6I8uYApvuBpfp6gqrZWxMJa+5WfWPulavRiXdjeJgINT39gKeh2qyE8N7lU3r6Yn4H4ThYxDtE6jytHWYtpYWZSPJ2RnZbkwUw7Bq9BoeVn0JGroFe2Bi7lygqz3YlLOs2htt5JkK7F2xENVv+VZgFacTiWXhDECpHEMhH3a9SOwm+6c7AXw223Hg5tU9OBSiZsECdR3aWJvqKJcLJoCYRwNNZnPTqsxhSm1kD4S/Edps17JgexVkMgndLMjM53Jhu9ET+PTDaWtTCSkU0HVKJripB7z+OqqDg7AHBkLP83PPDdub46h2u3272sz0oovUuf39gOehe9ky1LIpoDgfeM97VHp/+EOVkPPOi24wW2/moV7MOj6rQe9lHH9SIj22BmKmcCPkPUtYrGNgekTT8aa4TMIgF+BN72Hy1uWe33QuiYHj4+ORDSzNtJJoSdezLAstLS1IJBJaxOXHU7zqyclJUJgTOoY8yM1QJXTPemFkuPcvxRMnb27udc09sUkUN0V0in8ej8e1mM6PNz3MqZ74i8RkygMXWKn8KpUKYrEYTO9xSg99R0I+5dUU07mIPj4+Pm3ihcqN6ogE9Hg8HolXTi9Ku7nagAv3VJeUbjPkDW9LfBKAt2EzZAqJ/hTrnTz13cAYU/xzui/VL9UhTRJwj3tqeyRoT01NoVKp6DZIEw9meCFzVQhvZ7zO+W+v3mamJ6uHtXiiCyc0pLoCRniMQPgyO9LcXcsQ0RNODZYVAzLZ8JxgZNLpOEC7g/b2MHb1668DK1bMQywYOLg04A1cfCrJeRgaDB2AhoaAxx5Tt78w068HEUingZ4eDGwO42JyEX1oSA1oet6fCj3VaNRIbkoUpzP4jmJm07jCcexwQ0gSHEkxZhMLnmdr5zoqPssCbK8S3ckzOCfGBHJ9HceBzdMH6IQkk7a+rm0Fm2x7schYjeKmk1ccLwu6HH0fj4dh3ckDjI5pYZuIFouRcNs6f0oHUWmiMSf3GOf69fz5wMKeWugBGRYuym5CCzZ0TwpbTwN/GoPSqfz6dCm+nNpxgtjpZTdMhOPUXbrO54QcJ6rVkMcZNRUq5yrsyE+C2h6l3/NiWEiu3jTKjixJiJ5P9UFhBNJphKsJ+M0nJ1Ul83g3e/eGg+Hg91TyEhgcBM5e1hMu49i6FejpwcaNQE9PDEs3b1bnXnBBuKPasmVqEP4//of6/6//OqxcXmjmxBsfoFM++XOCL01oCCSuqnACQ7a7nogORCeIgVAppN8lBZAOfqOFAtDZ26ufybH8G0g5DpLZzsjPXE1UB5PS+bze+NvzgLPT6uFaySzEwIASi5cvq2FwMIaHH1ba9ocyAyre9K5dSkHO5bB+rXom08bjZIcKBZWNd13aq9JPanE6jVJmCVIoqecTbcjhecCyZdg92YmJYvjY2T2aQHs6gQTtCUEPWM9TG6kuXoy9o8sxMhLaOD0RXiyH5UznbNwIe3RUGbVkUhXK3r2InXIKunt7VUGxTRkrno3RUZW/dDoQooMJ+tZW9dhNJqmL0I3hnWGokGQyhZYWYGwo7HrlcmGYeC6i0zkE7dmayagJbJokb24Ot4ahxQfpNJDwSmrD6YGY3mqG5i5yOSDh7ge2DoR9qGQSheAec+famDNnHvJbVT7b26Mr3DyPYojbuj3xVXTUbOn4VLKmNpXlfaBgc/VyOXDYQHSeqKVFieh0Peoe8hV+jpNQfTkrXJE2Ohrab9o+ZCVNgvf3A46D2lVXY2BAtY9Y/g0k0sDcuYlIWJe2NtXm9cQBn62nAjFDrQwM4A0AuS1b1G8imcT+7HK9BUCsXFKV/cwzwPz5+PeNMfT0JLBk61bqaCCWzaqDe3uB730P1X/8R9i5HPDud6sCoQ6TWWB8dVpk6UVY3nqynGYkGgKx3UcKEdEbkHqe6EAopnOxlgvjXBw3w0gcSrxv7kHMzyNRk2/QSEKh6fVLaaDwKCSmk7ez4ziRc6rVKuLxuBZ/yRMdgBbuScSlMuBlxOEiLKWPRFYzNjWJq+RRbYYVIeGcb7xJr3qbnc70ImGX1+PExIQOQUKhb5qamrSwbk4O8HjlJN6b3/F43yQK83jqNDFBIjdNbtCEAG8TPK0UG91sQ2aoGh7mh84zy4fHLTc99HmoHh6ShueFT9pQnnnaqO1SefLJgebmZl3m1DYIuja1Qd6Webp5u6sX352HcOGrCk5mYVhEdOGEZiZvNlN1NXdg5OI6xSp1XbS0JFC1ErBpAELiYTDaS2SzcNJK3MvnlX7XFYxWyXuJ7lsoqEFXb68aULluDC+9FAySvLwSAAA9oCMnMxJZzZDphQKw0FzqTh6+TAivuGoDz5GRUFD1vHBDSK2w1hETJyeVdzEtI7YtJhobsUCxc2eocpPrs+uqkRiCciAxPTgnlrTgODF13WDwYyeTsB0HjhPTOgl5/FPeKdt0OXIsonSaxQKEA26qxlxOCSJwYlpg54N0WqVNxVkohBov3VtXEok5QVlyT26KZxrZyA6hhx15oJHztWUpz0FaWNDSEgjQFK+VhR2A42A88NjnYgNpu83Nocc7OWbbXiUIlFtWkxtOKuKEzZsPbfpGaVnYlw6D7NKIHoh4Z5tiPokatApBfwGEMyPce4wKgxIRFCKtyujttVXopPFxUjHQ369OXTo4qH5Hp58OpNOo5ZZgaAhY6HkYdF0s3LwZsdbW+p7oXCDghUnfMy/MyLOlYZCBuHACU29Cix4gQNR20/fcIIyPB8uMkqhBCZMlL6G8zNmmoTHLgm1Zam2UZWGobCOfB3K5FOzAw3rXrsDzNqkMSz6vtOmuLqhnDhZi06ZAKKVdJGnGMZPB1q1hCDaalw+cdmFZwLJlMXTT5LVloeTa2LQJWLYshe6hIeC559SEX1cXkEzipSfDfb8BFUZ6bAxYwt2ck0nVARkcBObMwUhZFVVbG9CZDMZHHkIbQjOp5bLaOH33buCMM1SHZOdO5RVAs67cmFoW3ED0Jf2eMhZLp5FKOshm1eaZ3FRQ9Q4NReceSb/mYVOSSWUvRpujq6zKZaXL1uvy0ObgtDIsgYoqi2wWw8Pz9B4dABPY83mVICo/x9FpBjBtZRX1IQjSj2kim+wkn7jWpoQ6BaxPysPRmXO31Ocj20krBeziHiXGZ7PY76aUUwPr6FBfiEzn0FDgpd+XCZfbNTejWFTNNpsFUkHnZM6cBPbtC5PZ2godHsjzALjMNlK7MJfY5fPYD6C7WIQd2PGXX1bNq6UF6GoPzhkYADwPm7eqSy7ZuVNtAkzLGlavxov9MSy3LAwAyA0OItHaGrr414N3ZHifnjcW/vxoGMR2HykaqccmzMCBYqGbkIBu/n+wc2f63hSAzTjP9QT9etc1w9CYMcP5ZIDpNW2GYpkpnTy99TaGnCm2NZUVeTHTe57mmfJxIEzR2cQMGWJucsm97c2wImZ++f8zvcyyN+OUm7G7ZwpRY5YPtTMzfvrB6uxg5TZTHuqJ13ylgllG5jn1VnuY9zB/c/VCIc2UbvN6JzMiogsNye8hdinB2TJGROGXFD/c/ErHhbbUcZF+u+cBsEPdgI+ijLRyvZFOnZYdUzE2/vKVq3XHDkzYPiAzDT5o5Ma/I9esGRNd57p88oNt/8k9vQjH0Xu9Rm5LGr5ZJPxaXK/h55nX8bxo/PIZ003/z0C9lcM8P3zJumWp9zRg58vHf5+Bnxps19RAmIQUz9OjCl62ZjVPTgbf88LkgnNw8ExFMWN7Na9Dlcdh19a3Otjvmf2eSDjxgpduVYdSlg010D4YMhAXGpRDtd/Gg8vzADiGbZv2m7anmS0KEUYfeB4LBxI8ULQNof0bgNDw1En2jI8SK7pZOYDw5kFMD3qGtbfXMcE8ZplxM1oNNCN0DqmuZIjovbYR4bX5RtKRdLCEcb2Swr+TvatXDry7orNi9AHoFrybYU5KR9JUZ0J0WjOq07GoY9bqNj8+j0N5NMskct5B+gcznUdloVf4cTHeOIE38WllTQXL2ka0P3rgbmBdG87zFmkjQVTuoFwnJlgZ1euU8etQ20PUdtcOck/9GS+EhprkPhBiu48Us6VFnJTUE5R4WBYAWrzm8azNzRvpvHqisLm5o+d5keNI4Obxouk88kKu57XLN36kNJNnrunpzuN8k3c4/U/3bm5uBsViB4B6HtumFzWVCXmbkxe3uYkmF5LpWjwmOoWB4WVEHuQ87/w7irdt1iGfdKAwLKaHOM8XfU7hTYAw1rsZp57H3zZDzZDHOf01Q5Bw6oUw4ZMMZvvg/5tiN2+zlG76zGzTZugeHiKGvM/rrbiga1CZcO95HoqGb1RK+eQrJaj+6qWN369eern3PA/Lc7IjIrpwQkOjGvrf7FDXU/fIo4be0zJV10V7ewKWpQaOMT4IoesEgxnL6gwvHQw8KSwIhoaA0VG0rTpbJ4VihNOyYz0CoyWog4NYs2Y5hoeV1xl5kgPKS7m9PfCELiDqnUw34DtCITq2n5xUh+vhqbnslXllxVlRui4Ax4aVtFVZ8DLn8ax5OdG1yC2LlzWrAniIBOymkC400PM8NQijFbhTU6GATh7cVMU8wg3ll8ZlPMSK6wIVNzr5wR2NA8dFXXb1YqJGdkTjLvDsa9rQc6aw/ORFXmfMHykD2zzRgH9sRDHT14pUZlAQVhJaJDLTQXHUHUflu4aYXjoeaW9sEM6/AkKP/HQ6hhj3HKVg9BTGxbL0vgEYG1Mec1SpQdgaSnYqk1TxVItFIJmkkMFAoTf0XC0UEOvthefFgEwGGQD2KaeE+TeVCv58MJ8V/Bz6ruEG6DIQF05g+G+MT6rNhGlP2ObdMa+KdNoOn0MHmLTzvITuMsB1YVlhF4I8lZOrw1ORTOpH1dy5iAavTqeBgQFcf/3KiMC6e3f08ZbNAhgo6zRRSJNsFmGA8LlzdfiJjg61Ioz2TT311MArvWyFoVzouQcA2SyShWhZVVzl9dxJbt9k6IAgI8G9KW6I64Yx2XkIElb02vwxm2Dabl61ZFe5KaMX7QHd0wPEivuDKu0EoFZykec7F6+pufAoW5OTQTllU4gFCZwzR1XT6CizTdRRIIIE8i6kZal+RBASX+eX8kV5IhGc97NoPniaIE0JdhydXirLekK6qiobNq1EY3HWrCT1y1K6bOttDJpOI7xJ0E5OOUWHRNdL+mJuBel0QsfwJ698XVSWFS5lNBPb24sSUkj19SH52GNwAF0wXBuvWTZiuRxw/vlAMomLLgra/fgKFU7I89QKAteF6yaAri7MA5A048/xQjJtN8GfI7RkgY6hzcUbArHdR4pG67WdtJherqagaG4Myj+rJ5rTcVzM5oJjvTjPJABTLGcunvI46HTPerG5m5qa4DiOFqzpvnTeTKK7ZVlwHEfHrgbCcC48NjaF9KC0cqHSFC0pPA0JseZml5R3ElPpmObmZiQSCTiOg9bWVh2Dm29CSXHKzckMCtFC8dhNUZmXgRmHPR6P1/X8B6A3vqQ43iSa8/AhExMTWjzmYWRIJOabvZpCuhnCheqTC8e83ZliOg9dwjfnpPd0XQo3wwV4uj+faOFiNF+xwNsZ/W967tP1eTvjvyUqNxLQHceZtoEuj51OdcZDx1D7MzeDnZiY0PHQZUNREdGFExxaf8s7+WYIBiD6HR9gW1Y4oCyXkXAc1Cw1yE6YA3FaGus4sKxOuG6wEWShAPT0oFi01Xilvx/I5zHnsvfRZTE8rC6Vy6mBDAaD9KTTav31k09iabpfHXCRGpxs2KAOuegioDNdC9dJkzJsBr8OBg6OFdUMKfZmqskLBXemftYsW62IDcf4Wnin0COtrQkkswnlhc8HNqbQSEJ6MEijuNsJp6ZHoHpyIhih7i/G9ACZBl4koJsrh3lYS9LySU/otEoAgGoypYuIBpkk7I6OhvMXdC7NBwwNhXtv8XsQloVwdMkmAGqWrb9Pp6OO1SSE0KQAXy5O5UzCPT9HDZRjKgRPHXGJxohUFSSik+Cvmz79E8S8RToNKxuKGzThwKvUcUI9x3WBBBUUjbKp3SKMLMDLicq8rw+wg013q44KnTAt86tW4Y1yCt2rLfXbooaQTmN0NKy3ZNJGatUqpW64LlYWngWKjtqcD1A79g4MAH19GB1NAb29SC9bpoQuUllIEan3DOCTbvQb499HGkGjUMPhDa7FaUA4hnDbDdRXWk3VlR/nOMrutbQA5TKy2c5AIzV+t/TMCmym583TUdpQLMK2aiiXg8nVrVuBwUGkP6m+dl0A2SQcRz3PTj8doc3r61MHbdiAd+UGVVr6ciglu3HffeqQNWuARHkP0F/Q969ZNhKoYmmmDAwVgXPOARYtAs48UwvaCxaokDP9/eqjlb0lIF8IY3SR2O26qs+QTiPthUVUcWM63NyCBcEm0bw/dPrpalKSlHw+E53LRbzPgWh0PC3CBvfhtpuq1XVVnyco4shkN7/VqaeqJKiQOYDTq0T03btpc3HoSQ6qMy5s02Twzp3q/4VByJyso5wPyOQAwO69MXTxzWqDC1AYM0rjaaeFYjOtfqPQMNwEep5qeqTPWpayv6aXOXU0ql4Mo8PRDb+5RzsRRChCtxN0YKgiMxk4mW4MD4dR5WhvW7pOTw9z1KBJlp4eYHISsfwbWLkiixpiqGCeCn+TzyPTswQdHSo9NI/d2xu0JZrpIJtIfQkAzw+qPurNV1yBed/9brgjqtZ41Cl79wJdF12kLlouY2XhcaCYRvWy98GygNh3vw288AJwxRUolxPAmWcim8upNkoX4ZNnprheZ3Jf90PpO8dpMBFdbPeRopF6bELATGEhuBcvibZA1POcIMHR3MiTi5wcEoWBUKDlHtokCtM1SIA0w7I0NzejpaVlmojO78nDa9CxtIkneU0D0GKn67ras5s2lySB1Swruj6PjW2K9ma8cboneaDHYjG0t7cjkUjAtm04jqPLkITRemFFuAc695SnSQcSf7kHOp1H1zTrnURd2lyTBNqJiQldFrwO6Ro8zjnFP+d/zckVLvbTRAOViYkpaFO58AkT2giUe+fz/NWrI+4tbsYtp/bGy5HDPdBjsVjkXA4X0/lKBfqOi9+m57p5HdMLvlqtiohuICK6cELDAzrzATcwvaPNvyMsSwWBpGvl84jlcsqblYd0odfevUA8Diu3PBSqA3G7WAzEzK1bgaEhFYsaCYyPh17l2vtswAvdnpJJJQL296u4qKtXI7ViBbq6VgIAOoeeBzYMhCOkcjkcaQFKyO1dqpzTLbWZo+PEIuGnlfcYtIhehRLOy/kwazSwtaxoXFAqJuVlHUNrqw3LspHIMvGRewY5jvL4ZiK848RCb/bgnCpsuOVwIMjnQrgnOcX5pioKshyJk55yqmrDMMuCvWwZLMvWcVNp/zqKtU40N4ebdu3dG+7tlsvVbyoAULUSsBwgFsTh9TzAY00sk2ExyAMBOdM7D+WycraamIDeoM10juJFSOVmJ61piaGyMIudx2+NDOJpILpvHzB/PmKoYXIypkP6ml52jqO81misWvVisEm5oJNcFzHUEI/HkExGNzoN4wAHIno6jeFhoLXVRoo2Kg0O/l0+hY0bgT/+47Nh5zaHO6Sl03rFAXljDpZtFIvzcHHffuCb3wTOOAPPXvDnKBaBdwHam21iIgX05oDLLlOVS2IdfwZwr0wqTA73YOPujw21saheZH8YxwvCMWIm223G5DZXwgChSEa7IAYT4PCs6b9xuo9Wc5eGInpgfMrlhHrf3w9s24aEVdU2pBZsjLlsmdIBMehqT1wkk8DDDwPf+AZw1lnKdq9ZA8e5GJYFJLb+Rm1CSpPl6TQ8L3gubtqkOgxnnWW4eQPd2RqKxRh27gweOQMDKjh4ILRXrBQKQwCQgOclgGLoC0BFm8+H264kk8rbOFbYoz7o7QUcB/vdBIqDQDa7UE+WvpGPabPe3Ky6R7ZVg20BCUfZg1I5Fila8+W6ytxQVQHhfuY035/JqDKNFfboDWKtZWr1Xj6vskwT5GS/qVrJyXhyUtn0XbvUPbLndsK2aki5FaTagXguoU3W7t1A17J0+KwP7JDrho4GjgO12euI6l/V0t06L5OTys7xDdvpnHh8WmSfEMtCqRyLrKzj80G0Bwmg7kG+Et3JoHO0d69K/IIF2pFgYCAaf576Q9kssDxXARwHpXIMTrJTbdBJXgJDQ4itWIGhIRu9vQnECgXYmQzmzElhakqVe7GorhNDDTXLhpeep8LC0YYvwY/nySeBe+8Fbt6wBp1086AjQG1A2+7BGEZGunH5qv1qI91Vq/DgluUYGwP+ZGJC/RaKRQwPdwMXLQPe/35V8ZOT0QKnBsAn4+m5YDZGVv660TQMYruPFNMVMKEhqBcPut739D/BPa35Jo7cG7neho9AGKqEe9TSi7zTuYjMr2/+pfuYHsYkkJpe7eQR7DgOWlpa0NLSot9z72nC9FjmYq0pkvPNQUnopzzw0CpURnRfSgvdm8qcyog2Wq1XTuaLp5Onzawvsyy5p/fk5CTGx8cxNjaGcrmMYrGIUqmEsbExjI+PR+rHrHvzxQV3sx2ZZUKTHLTZKoW5obqh9/Qdb2d0Xb55JxebeegTMzQK94DnKwnqTWDw+5ge7WY9kOBPZURp5u2DT3Dw63IR3kwvb9sSzkVR7zl2sNfh8p3vfAeLFy+G4zg477zz8Nhjjx3w+EcffRTnnXceHMfBkiVL8L3vfe/NZk+YDZAoR7FKTY+Ueh1qrj5SCBKm5Hoe6ovywRpjOt2yoM8xl4TTB6ThWRZbhU2uw8mkGlwPDsJ77DHgscfUgGLbNrS3B/p+f78S5smlmdLJVFDaR41rf3W9kqGW1w4Pq+MLhXBsxM/lg2E+dhoZCT26q1YCtWQKVSuBimejArUpa6kc0yuQx8bC8Csm5J1NerM5CKcXieA82yQyawdFKoCgEMjLi5aE8/O56EzaBXmMcz2Hxl0Jp6Y86VlT4x54vHnZqIbeY4ODejKFBs3kOceXhVNaeF2RN1sNsRm9n3nTrBcHV9c5FTQlmLXJ0dGwDvhkSltbuDTd8xAdhLJMUzm1tobp4YN7uh/VQy2ZirgkDg5q58/wx9HaCrS1RdoATUJs3oxw0umll9DfDzz9dJCQoO49D0qhOeMM5epI+T+QaG54J04rMzq3oUT0qTfxOjoMDw/jYx/7GDo6OtDR0YGPfexjKGolsz6+7+OOO+5Ad3c3Wltbcemll+KFF17Q3+/fvx+f+cxncMYZZyCRSGDhwoW4+eabMcJnyt7kvYVjgPmg5yIY//9AAjtXWck+AtHfN10vWNrC59bpuaB/4oWC2mBTO3upf+NxpRFmMgjv0dOjZlwHBrAjn4e3bh2wcSOwZYsWoPHyy+qhlc/rzZP1c/Hll5U629ODam5pOKEeCP6WpeztxARLl2Whlkxp+7prl3ou7t0bbgoJhItvCgXojSO5Da4mO7HfTSCfV0krFIBaZh72l+1In4DEZf4gJtvKq41vhULFSkXOr8cn55NJIJZ/Q/WVggOo2shPgHd56EWmiKKDeZ4qp5GRwMYgpkOg0CbXgPqoZtnhMzxILG8PesPz/n5gcBAxt6LTRHHzZ9JpzU1I+ZflcjR8Gk2gW1bUdlLeR0cRTn6zcC4x1OB50PVGL0p/Og3VIIpFXd7aU6BYVN95HoaHg/QH16f5YVqw5rrQbbVQAErl2DQhemAAePrpKewoJMKVEUa5UtkODiqTjWRS9XH7+/HCC+rnAs9TB5TLmJhQmwNjxYpgiQLqPws43Et9pmeK/kE2CmK73+y9TUREbzAOJiIdSGg6kMBY79iDYW7UaIqC9cKyvJkNJc2NNc1Xvfzy2OvcQ9kUpU1PdJ5enm4zzWY4HT4JQAKpWT50nol5bf7+QPc8mNBoxpavJ/bOdM96ZXGgl3mdQ6ljLs7ztM2UVzPdXMw3Y+3z9Byo/GbaXHam3xAvo3q/EX6+ucmuMJ2jLaL/5Cc/wa233oovf/nLeO655/COd7wDV155JXbs2FH3+O3bt+O9730v3vGOd+C5557Df/2v/xU333wz7r///iORXaEROZCSSJijnnrns2P1R6a4xjrxkf48vzYbbNC431yCHLlAMIqKPK2mpsLLULBRcydIJiZQOiwrTD8fW0TOM24PdgtzzoCyU68I6w0mTVG5brFb1rTl4rys+KutLZzj4JFUqKqbmxFs9IppddPaGr0WLxNz4Go4AiKGGmJeFTGvOi0TJA7QwJWP2yICEBsV26jqEDncqZJ7f1P7cN0wrroWsNmkD60woPzTZzx/02Kk04xBHW8s+momIvVnTCzVawP1LjBtDMvarb53MhnERwIwNRWpn2ntuF4QeHZpWJZSWNrbD5CZg1DvedJQq9NOnIH4Rz7yEWzevBlr167F2rVrsXnzZnzsYx874Dlf//rXcdddd+Fb3/oWnn76aWSzWVx22WUYHR0FALzxxht444038M1vfhNbtmzBD3/4Q6xduxZ/+qd/+nvfWzgGHGgii1PvN8tnQrlh5S/zeuxBZ2px2laS0fG8SOgRYIZNMuuJc1NTWuCNqK5mtslA1cub60a/MjbCJPsAhKFUeJ7oPeXLtMvm3CDZHf5YrTdJTDcwQ5ZQNVDUjPb2UOSmeQ76jvsvmAUaQ23aJHY9+13Pdkf6O0GGYm4l0vdyXYR2ITiY8qkdIkipB4BCAbZXiayKI614OAjNQvemfkFzc7DCjGb4LUt7qbN57MjEORVtPB6dXAeg2gkVnIFZJnV1YtOQWlZYf/VEaQNdrkbBq3ppVtc55ZTQG4FNsNel3q6qQcL1yjzq8B2IQ+p8NCpiu9/svU0O3LqFE5KZRD8eAoT/z4VGvqEkfUeYsa3552YsdYKHtuBwAda27Uj4Dx4upJ5IXS9WNcUZN8sAgPZYrtVqOm54W1tbJA/c85nuQaFszA0peVnSd3QsiaOTk5NwXVd7MNNnPP3koU7lTt7Nvu/rdPL08Pjv9erDrHe6J3mh801DzVjeAEAx2imsCXlVU5qonMiznIvTJAZTvnh4Hl7f5v9m+s3JBp72ept6UtlQ3ng9t7a21q1Huq8pyvPNSHnbpro2xX9zgqbepEtzc7P2XOd5JY96/rdeyKKTncMVxQ/3+Lvuugt/+qd/ik9+8pMAgLvvvhv/8i//gu9+97v4m7/5m2nHf+9738PChQtx9913AwDOPPNMbNq0Cd/85jfxB3/wB4d1b2EWwFU4c3TFR4j8f/pLIyfm/UWuN6l0GnDZdzSazOV05z6bBWKu2uMCrotsNtAA+/r0Zky0cVbC3Q/P68TAgDrv7HRauU6Rq1RvL2LLlqk4pcH1c7lAIKYRsUlLizrIcfSYQ8UsB2LlEhLlMpxsN/L54HTmzQTEkMmotJDTdDweeFK7HjxPhaE55RSVRHKupn2qpqaUA5nnqWXkc+ZAb4oarAqH64be8ZkMkEiqDVbLxWix08C9p0d9Viioa9ULW0IO/hTLu7UVhhuWyqed9NAbxFelZdRUFzSYpXjkMdSQy8X0YN9GFSi7YYDQYJRsZzJwEdNLzZNJ4C1vUekIIolgabqsPA97etSS+WJRuWD19OD111dicBBYtUp9vXGjeq1eDVx1lTp//XqV3ve/H0gUdqCSWYj+/hhyORupoqrIV15JwPOUo/WcOWql9759qiks7a2hVI5h69bAm40UiN5eHUuXvOjJmz+bVWPY118PhYLW1rDZOw7CkQgFXM1kUHFjEa9z7jAWoVxGNpuCZUFNSgC68nM5FfMfAHDppcotfetWoFBAz+qw7VC7y2SC+p4/H0inkUwG3pfUoMpl5cDmeSpWACkbQTr0jEU98coUGygj3IWTB+U/4ZnC4flhHZ2B+LZt27B27Vo8+eSTOP/88wEAf//3f48LLrgAL730Es4444xp5/i+j7vvvhtf/vKX8aEPfQgA8KMf/QhdXV34P//n/+BTn/oU+vr6IpPnp512Gr72ta/hj//4j+F5HizLelP3Fo4RdcS9iJ0z7bf5AtQDgd7Tci/6jttuQMf+dlwVBSbmVdWDrlxGX19KhVk7/3x1nOtixQpgSbYCbB1AMnk2fvtbpb1ezNPsOMDpp6Nn82bETj9dP0xXrQp0wf/Pjc4Auy7sstpEE6tW6fzabinM99AQsHMnFl6ZhWXF1CEU38yy4LrKLne1V/CqlcBvf6uymUAFKLpw3U4Ui6poOjrUJSm+eCqp0j00FG4gSftGFgphkZbL6jE8Oanse6IdKp47YpEVa2Y1UqiWYhG638H2fdY2Qov1dLG5c1VdFIvo6enEsmXqOOqj0F4l/LFNenc6rR71ySSQStaiLu/FImKWhY6us9HfrxzMe1dcrI4bHAQyGQwMqEUBuRyAf/q56oOtWqW+/+lPgVwOm4sfwubNwPXXKyfp++5TX61ZA3zkD6uoWTbWr1e3vOIKwM7vAOZksT+zFI4DdCWrKLk2tm5V+VqxQqWXVgFQd2F4mHmW8w3ag1UPVS9cATc5GZYJhcrRFZhOwx2k98nwc8fR+9SMjgKJoE9APxkKnWdZqm5suOi0AMACLCfs3EH1fT784eC+V10V1mexiExO5YWc4OfMYas4gg1XstkgfS0tqpLLZZx+enDvvr7ojANfvkDeBfXEc/pN0iRawwrtYruPlO0WEb3BML2ySdilv8D0jUHNkC2Hcw8AkTjhpvBXz7OZi+MUZ5tioXMP3noezuaGlL7vawGSb8rJz6c8Uxxr2oDUPIaOo/IxNw01xV++OSpdj9JDAjoPp0Kbera0tCAWi+mY6fQy80zvzc9JcCfRleebe7nXajVMTExM83iOxWI6zAwPYzMxMaFj2ZMYbtt2RAgnAZ3O55vHep43bWKhnpe+OTHDQ6hQ+BQesofeT0xMRIR+CpFTb6KH0k5tmk+68A1wubDd1NQ0LRY6j0lPbYLXtemtT/H4qUzoL72ofqrVKsbGxnRbmUlE57/bk5U3k/9SqRR5T+GCONVqFc888wxuu+22yOeXX345Hn/88brXfeKJJ3D55ZdHPnvPe96De+65B5OTk7r+hZOElpbpopgZOxWIxungLkHkxgSEOyLSCLOnB9X0PNiOGwZ37OtDybVhFYNBFwnvgXiXTEKpgoGyuLS3psKzbN6M3B//J2zapI65+rR0GHwym1WjKiAcOAGI9b9oKJmIDgbmzMFufx4wDnS5e9RxNMgYGgK2b0fsTBeOs0QNTGgU67qIxxNIWRVgaAiZ7FI8/TTCYzwPwEKMjakQrKnyG5js6NYDwFNPVWP6gQE1EHvrW9Wgft8+YMsWtb9UNqsGeSQu9/YCnY6HsmvrDTxTThWOY2uvq4XpEjA0hM5sFrXeTsSK+4MLeFr8PHuNKv/BQTXYTKcRiqMUbzsI67J8mYNsNqGrOpNReQGCzTLjADwH8IDOYh6dhQLgpQFkVN1s3aqU5gULQlc6pPjYWq843rxZnfLe3qJSwv/wD/EGutGd9IC1a4HeXrw8uRJPPQX84R8CC/O/wdMtb8PDDweTMRv/HYmeHmzatAR79wLXvb8CPPkk3DULsWGD0pfPdtUsxubNKk8rVgB2cQ+AeRgaUkICNm5EqrcX5XI3gCCeueOg5MxTscrLQEsQZnRiQv18TjtNDXIpfj45bFK5NTcDsFQd1HoWal16akoVNcWjNR+9lgU9OWXToJbF8QeAJU4FS3osvDpk44GHYrjqqrNhl+8Fdu3CsmXqlI4Opa/oQTdNZmUyWgDSak2hgIU9JQAOKn1vU8LS5s3hGnn6jZgeqzTgruf6zmcHDLt2YlPF4cVKVc+WQ7Hdh8MTTzyBjo4OPRAGgNWrV6OjowOPP/543cHw9u3bkc/nI7a+paUFl1xyCR5//HF86lOfqnuvkZERpFIp7ejyZu4tHCNaWoCmpqhdrid6mTN0/HdLIjrNrpLQRnaUXIgtC1ixAhUkYA0FG4QGe1agXMallwaPpNyHdWiRJdarwPqtQH8/Mp88G2vXqsvceFFgi6nvcM45iJGB6ekB4nF0F54P000h2yhk3OAgkM1iR/psWBbQ7b4RpsVxlGHduBGYPx+Os1I9f9nqpvFxIFXcAWzejOyaq9HfH5RTPg+Uy3CTnSgUlA7ZaZXwakHtO+F5wJI+JTJu2aImTVevVs9VivRBccrz+dCmnXUW0NXqoerFtPc1QY9JEnFj+TfUMziZxNkrkuoCmzerA6+4AvvdBDZv1vuIhrZ7/nydh1ihgFWrlqKjQ9kl2qfczu+I3Lgzk0EtbSM2tEMlng6kPsDoqN6IZM5NZ6NQUPddtw7I5WK47poeVDwbmzYpcd0eehX4/veBW2/FU80X4vw5BeCrXwUuuABrkx/CT38KfPnLQOIf/g5O5mY88shryGYXAWvXItbTgw0bViKfB65evQdYuxa1T/4nPPSQ0uPPtgaQ6u3F1q12aLvdElw3haEh1T+y+59HVy4Hz0sp7ZhmjYMZgoobg1vWUYnQ3Bz6a5C3fTwOVJx5cIth8yu5NpLpTsR6VD+VinzfPqA9twT5wah3vPZLoXLM54FMBrW+s+FZCdjB5reXXQace27wu7n1VlWIDz8MFArIrFJppDl3HU7IdXV/SveXm9Oqo1kuY+WlNVS9GPZnlyOdDvrAPFQTd/ufSUTnTjT81VCryMR2HynbPWvCuRyNuLf3338/li9fjpaWFixfvhwPPvjg0Ur+ITFTKA/+Xb2wByR8ciHdjEtNmJ67M4VLoWNINDS9iEn4JBHdcRy0trZqYZnH9DZDp/BY3ySGkihZKpUwPDyM/fv3Y2RkRMf8po1NSQBOpVJIp9Po7OzEnDlz0NHRgVQqhWQyifb2drS1temY5jyGN71aW1t1ehOJhPYqp7y6rotKpYLR0VGMjIxg//792L9/P/bt24fh4WGMjIygXC6DNj0142xTOh3HQSKRiMR6p/ji3EucxPDx8XGMj4+jUqlgbGxMv0iABqDjeCcSCbS2tmqhnLyiKeY4eYCb3t+UNl5vPAY8bz+HEk/d9ECn2Oc8HjlthFqpVDA+Pg7XdeG6rv6c8k1pjsfjui6pbtva2pBIJHQZmrHLuWjP49Tz+Os8tj//nfEJF94++UQL93anlQqUdhLSTa93KvcTgcN9hv4+2LaNrFYtDo9kMokFCxboOGYdHR11vcoLhQKmpqbQ1dUV+byrqwt5cp0xyOfzdY/3PA8FcqURjigntO2mgSx/8cE4EPVU4zE4aDRBoxD6jFyNy2XlneU4auQyOYkdeVvFZQYT0QGgXMapp6qxMlavVqonoK7z5JPA2rVIuPu1oy3SaeXWRq5WfX1KfF+2LAziSa5TNAFgrv9NJvHKK2owrEfBlCcaBQ8NhYOiSMBLqBHl1q1IOVXs2xd8HMTfpAFYyqkC/f2YMyecY6BkDA4CL7ygPouhhmIReOUVdWsKuUJFSbek4i2XAbhuxHFQl9WmTYhtfR7YsEG5fNHrpz8F1q1DauBZ5HJKXE0mEV48k1GvYlHnrbPwO3R7O7AkuQep/O/UPegVxA6F5wHbtqkB4JNPhjFIt25VGdy5UyfastRpdCg1KR2bu1hUMT/LZVXPyaQS1Z98Eq+8os5Z2FMDHnoI8Tiwa9d25SUYxMHfuhV46qngOps2wXWVnjI0BO2itmVLqEsgn9fV3dYWXGdgAK6rPMFcV7XfzZtVMvr7o3Hi43Ggq7UEe+jVyGZnthXGgJ+YCNvc0JCaKNm9O4y5u3u3etVd/g/WNs3grel0OPAG8NBDwHPPBcfv3o3Y4Kvo7Q1XitNPRc/kzJ0bzjlZlioAqjeosv7dUCJ8JkxMqPZvBuCnBNMAnMcQoEIgMU4HCT48jo/tXg9g7WG81h+y7T4c8vk85s2bN+3zefPmHdDOAzisvsG+ffvw1a9+NTJIfzP3nk2c0Lbb/K2Zk+EzeaCTcSIRnYRTem4HNrni2eEmhJ6H3aMJ9Perj3I5qHOCZ8bZuRJyOeB3WIrfpd+mztm4UdmgDRuQTALDw6+pZzxf+eY4SmVes0bZ/d5e9d369epcEtEpdAtt7mBZZBZCN3B6KA8MAI88AmzbBsdhq63GxwHHUc/jwUFgwwYkvBIGBgJP83we2LlTa5+dTgXYsAGZjN6eQ6f5lVfUY5K0f89Tx4yOArHifiST6tFM5hBBEii+Oqe5GUh4JSVmb9qk8v7ww8A//RPwwx+qjSTvvBNYuxadxVd1dQEIL0bu5vk88PLL6HTfwPlvrWFpTwXdzn4lcA8M6FjlZE9ixf3qnj/9qaovcu0mw/TMM8DGjbDdktbzf/hD4Be/AHYP28jnlc3ZvBnAtm3Y/9hjQKGADRugJqyLRVT++Z+xcSPg+/+KrtYS8N//e9AE/lVNYKxfD2zeTN08de/16+G66v3gIIDt24FiES+/jHDSo1jE5GTosY/Nm/VOsK4btN9MBq8WUvj3jTG9mSjtqQKoCfDlvVUszFbRnanCssIiILNF3b5aZh6QzfIFl7o465lAuK662NatwM6duntcdVJAOo3OoeexdPBXSCaBn/xzCpW+t+kOHlVnOq1WB9D8ElxX/ROI6Lkc1EG5nPpu82ZYlmp3mzcjnJ0ZHw8D69d7FnAnGR7/p56dP0zEdje27bYO+cgTGIp7+53vfAdvf/vb8f3vfx9XXnklXnzxRSxcuHDa8RT39oYbbsC9996LX//617jxxhtxyimn6CX7TzzxBK677jp89atfxTXXXIMHH3wQ1157LTZu3BiZuTjWmKJ5ve9M6oUKAXBEvGDNMC7mfQFME1i9Og+beoIi94DnHsuu60Y8z8nLm4R5+ozy29TUpL2S+cQA93o2BVE+CUD3rxdahXuLj4+Pa5E0Ho/DcZy6HsgAtBBbbyIDmL6agO5FXtY8FAqFN+Fe7TwWPN9QdWpqalq4knphZfjmpc3NzZGwJ4cSL36mmO31YpGTYE11zMuK2goPN0P3pM0+aSaUbyDLhW8zXWYaeXgXynu9OOZm26gX+50L6XyiwJyM4tc4ETzRD/cZ+vviOA62b98+bWXAoWD+NgAccDbcPLbe+Qc7vt7nwu/PCW+7TS82wrRhpqjO/qrNG23lscDFdo9tMBrsKkXjs1xObTjJRfn2dvV2994Y4vEUOr1iKOhqUV55iaG1VQc2rTkJxGgkOzysziE3XzMQK//fsvSSbFhudGO1clmNeItFIBscrxVR9j4YbbmuHXoKuS68YE6BjiHn/fHx0NGH9IrxcQRlZWstQMU2jUU2DaVb6rkMz9OhZfQFd+0K63NwUI3yqO6SSe0Gn1qxAq2tMTXYKyihombZiDkIB1xUDjSo4h5NLS2qDsjDfN++MEYLDcz4jqoU3yRI5vDwGHbubNP5ojE7XFfNaoyPI19GmI9sFkUEYkexCAwMwFoNALtRLi9WbaSrS3vL0QCWnCxHRwE0qTa5b18YoQTlMiab2eRGsBub54UbmVE7IWe9nh5jTBmo4U5yCTWr4MvpqyLLZRWFaGoqLFLyiuOO3JH26nlhffDfHIAYJWyFKv7duxH+BotFJZIEA2LHsVVb9zwd15ZCGANQdUSzBwgnc5amg0SNj8+8MxxheqSzNAN4U95ss9V233HHHfjKV75ywOs9/fTTAOrb5oPZ+XrnzXROqVTC+973Pixfvhy33377Aa9xqPdudBrCdlPoBXp/GHYbUOHBbCc4j3azDK6jDxsfB1pa9KbYQVQXoOiGQajzecSywMBACp4HLM24avI0WNGlJhX3YffuRdGHnWWxJTIsvRTrrKsrjL9tWcqeB8Lx0FDw7yqof1g4Mrz+OrBvX/gYYp60ngdlAALv+0Ihpa4TTPLR4xPlMrBzp95TkvTqGmK6HwOoCVPPi2mBFq4LKx06IZOtpu4An+eg8B/aEFBsOGJwENUtW2ABiAWx7JzMkrBu6B9qB2S7SSSj8qTdST0vtOe0wmDXLmU8uIcy7ZbNFGXXTSGfB/r7pzBnTrPe8HzfPsD3Vb9rD4DOclllwbLwBoA0gF27pgC8BhRPhzs4GNTLa8qsDQ4CXV3YtQvYtWtST5R4nu72AZa62ciIMk/NzQDKLo/SE+YRoS6cSDrYu1fdgsLdUfekrU1NMGMozwTkebqeeZ+LTKbjJPR7+sv7Z1DZDlY/eOEu4XPnwvOg93WBE4O9cyeweTNia9bgt7+N4ayzgOXBhW2rhmQypp0ckslEGOI8mQSam3Ve4MbDVSO7diG2ooahoaBP2OuE/W/qC9ez33wFWb3VZG8Ssd2Nb7tnhYh+NOLe3n333bjsssvwpS99CQDwpS99CY8++ijuvvtu/N//+3+PTcYaiGPdaTwawuPvk35TJD3awqgZ8/twzz0SdfVmr3G0Ntqc7YOWo8nhPkOPBLS64WiRyWTQ3Nw8bVZ5z54902axiWw2W/d4y7Iwd+7co5bWkxWx3UeZI9DRPymZQeQ9tPNm+PxAkzC/LwfYCFOY3cxG2w0AN910E66//voDHpPL5fD8889j9+7d077bu3fvAe08oLzR5lOoB9TvG4yOjuKKK65AMpnEgw8+GAnpls1mD/ves4WTznaT0Hb0bjDzV83N0Qk2037U2fHxSJuYI02dOYtDO+FoJWQmDjaxeYA2cbBL1yL/TRmfHRpqIvswTzoKnOjt7UREbHfj2+4T4Kf3+3G04t4+8cQT+OxnPzvtGOoA1GNiYgITzBNrZGTkMHMzM9wDnf5y714ztjj3dCWvZQARL3Aeb5ygY8lDmJhpxoaOIWGWPJ3JC5e8wGlzUu4Zza/DY29T+ut5ok9NTaFareo8U/xw2uCRe07P5IlO5VbPE930iDc90ScmJiIbSdL/FBqEzqEY5DzGO4VUofI5mCc6hYEZHx9HtVrV4UG4pzO1N8ovDzdiWRampqZ06JZqtao3PwVCr2sA2rt/fHxcl+3k5GSkPCme+oFiyVPaSeCncudx7Xm++Aat9PvhoV/Mdk/lRfnjnut0DoVOoVA6FLLFDH/EPdF5uZmrKyjtZtgXvikqj/FO//N48DN55tdbUXKkKJVKkRhmM8UvezPP0EbAtm2cd955WLduHa655hr9+bp16/CBD3yg7jkXXHABfv7zn0c++9WvfoVVq1ZJPPQjTCPY7tLo6PQwJ0DocUruNvTecQDfV2EZxsaUJ3jwG4yNjQGVSujRVi5jdLKEUqKqPrNtlMslVCrKEaxUCjaxGh8HxsZQKZV46FJYY6Ph+tupKWB0FL5fgucBpbExdd7oKGqJEmKjoyo9lYp61Wrh7lHklUJxOOjcchmVSglNTUDJKUMnzLbV/xMTQKWCcrkE2wYsyluphBIsWJT2IN2VClAK0luGymepVAIqFdT4MSVoL65qVf1fKlUxNmZjYoIuqTa4pGPKZaBUqqBc9lCp0PsSEIthbExtnlZyx0J3d7oBeR+RQDI+rhNRLtsolQCvXAZ8X5WjVw3r0LZVzF2q+6A8dPuo1YL16zF1PLlZURlPTKjE0z1HR1GxS8HigzFMTU1pZzja6LQ0NqbaV6WC8VrwfPd9wPMwOVmC7wf5npxEpVICMIbJyRJKQdo8r4RaLWjX1SpGR1V7qVSAUpNKw+Rk0IZKgDc2hrHmEiYm1HsruE7FK1HVworVUKnEdPZ5E6pUgnuVyyijpB34SiW1EVpQtCjVSsDUFMplB2NjqlgpXa6rNKLxcfV3YkKVia4bunE8rsq7VgN1L2NBPUfySe1dJUTVgWWh4tnqd4cgtnnQtsfGgBKCthyLqcSVSqhUbPWdVQ5/W7Wa+p9+b1SBBI+9TGkYG9MebqNB+znZbTegJsEzFHrqAFxwwQUYGRnBb37zG7ztbW8DADz11FMYGRnBhRdeWPecxYsXI5vNYt26dTj33HMBqLJ89NFH8d/+23/Tx5VKJbznPe9BS0sLfvazn00TH97MvWcDDWG7eWgGIAy5ZMYLAaIiNQvfUC2VlJc4f6DZNjA6qp5ZXkl/Rs8KMpE2PQOamlS/oKRsnrbPZH+mpoK9EMrw/RJKlUpo+ChAdaUS2pnx8dBmU8wsevCSbRodxcSEo2JW82cRPUAD+++SHaY+SamknoGVikrb6Cg8T4V4KQXPuHI5ePaPjgLj46iVSswuK/syMaFOV7a7hnI5ps1uaXQUlZh6HtPjshT0GajKaE6guTl4NE6Nhn0h7kU7OYkqlJAVc11gbAxlp0RFoNIMqPKdmgr7P7SHBdltKjtK1NRUWF5UTxMTKrHcMFH9jY7CdZ1AT5+C5zVrE6BskarXMoCS66JaLalyAKAWfZUAjOvPlO2eQK1WQinoN0xNlQBMqnY9NYVSqYSpqaDca1HbPToKtJbLGBtTdTM6qu6LsTFUKtT3Aqya6ldR3VCaKaRLqQTVdwzsU6nqRDzRaXFHc7Nq87VaWJRUd7yompqUvR8dBVrHRiP9yEqphHI57JLadGKphIkJtZKhVK2COiOjozGVPreCkuep7/1RUGMcHVXX07811rcbH4+F/U9KMG8XZmg1c3UI/faoPTQ3YzQ4Xmz3SWa7/Qbn9ddf9wH4v/71ryOff+1rX/OXLl1a95zTTz/d/9rXvhb57Ne//rUPwH/jjTd83/f9eDzu//jHP44c8+Mf/9i3bXvGtNx+++0+AHnJS17yOuFet99++xF7hjYK9913nx+Px/177rnHf/HFF/1bb73Vb2tr8wcHB33f9/3bbrvN/9jHPqaPf/XVV/1EIuF/9rOf9V988UX/nnvu8ePxuP/Tn/70eGVh1iK2W17ykpe8Dv46GW334XDFFVf4Z599tv/EE0/4TzzxhH/WWWf5V111VeSYM844w3/ggQf0+zvvvNPv6OjwH3jgAX/Lli3+H/3RH/nz58/3S6WS7/u+XyqV/PPPP98/66yz/IGBAX/Xrl365XneYd17tiG2W17ykpe8Dv4S231gGt12N7wnOnE04t4e7jW/9KUv4XOf+5x+XywWsWjRIuzYsQMdHR0Hz0SDUSqVsGDBAuzcuROpVOp4J+eII/lrXGZz3oAD569Wq+G1117DwoUL9UoD4MBxw4HDf941Atdddx327duHv/qrv8KuXbvQ19eHX/7yl1i0aBEAYNeuXdixY4c+fvHixfjlL3+Jz372s/j2t7+N7u5u/N3f/Z1ebiwcecR2H3tO5ufjbGA252825w0Q2300+PGPf4ybb75ZezpfffXV+Na3vhU55qWXXoqsDv7CF76A8fFx3HjjjRgeHsb555+PX/3qV2hvbwcAPPPMM3jqqacAAL20oWPA9u3bkcvlDvnesxWx3ceek/n5OBuYzfmbzXkDxHYfDRrddje8iH604t7OdMyBYuXMtGyjo6NjVj5QiFQqJflrYGZz/mZz3oCZ85emTYQOgTfzDG0kbrzxRtx44411v/vhD3847bNLLrkEzz777FFOlSC2+/hzsj4fZwuzOX+zOW+A2O4jSWdnJ+69994DHuMbYfOamppwxx134I477qh7/KWXXnpIofYO5d6zDbHdx5+T9fk4W5jN+ZvNeQPEdh9JGt12Tw/G3GDwuLecdevWzRjX5oILLph2vBn3dqZjZnOcO0EQTj7ezDNUEH5fxHYLgiC8ecR2C8cDsd2CIAhvHrHds4TDCv5ygnI04t7++te/9pubm/0777zT37Ztm3/nnXf6lmX5Tz755CGna2RkxAfgj4yMHLnMnkBI/hqb2Zy/2Zw33z/y+TvYM1QQjgZiu48Pkr/GZjbnbzbnzffFdguzA7HdxwfJX2Mzm/M3m/Pm+2K7henMChHd933/29/+tr9o0SLftm1/5cqV/qOPPqq/+/jHP+5fcsklkeM3bNjgn3vuub5t234ul/O/+93vTrvmP/3TP/lnnHGGH4/H/WXLlvn333//YaXJdV3/9ttv913XfVN5OtGR/DU2szl/szlvvn908negZ6ggHC3Edh97JH+NzWzO32zOm++L7RZmD2K7jz2Sv8ZmNudvNufN98V2C9Np8v1DCBwjCIIgCIIgCIIgCIIgCIIgCCchDR8TXRAEQRAEQRAEQRAEQRAEQRCOFiKiC4IgCIIgCIIgCIIgCIIgCMIMiIguCIIgCIIgCIIgCIIgCIIgCDMgIrogCIIgCIIgCIIgCIIgCIIgzICI6EeJ73znO1i8eDEcx8F5552Hxx577Hgn6U3xN3/zN3jrW9+K9vZ2zJs3Dx/84Afx0ksvRY75xCc+gaampshr9erVxynFh8cdd9wxLe3ZbFZ/7/s+7rjjDnR3d6O1tRWXXnopXnjhheOY4sMjl8tNy19TUxP+/M//HEDj1d2///u/4/3vfz+6u7vR1NSEhx56KPL9odTXxMQEPvOZzyCTyaCtrQ1XX301hoaGjmEu6nOgvE1OTuKLX/wizjrrLLS1taG7uxv/4T/8B7zxxhuRa1x66aXT6vP6668/xjkRhMZFbPeJ+/zniO1urLoT2y22WxCOJmK7T9znP0dsd2PVndhusd1CfUREPwr85Cc/wa233oovf/nLeO655/COd7wDV155JXbs2HG8k3bYPProo/jzP/9zPPnkk1i3bh08z8Pll1+OsbGxyHFXXHEFdu3apV+//OUvj1OKD5+3vOUtkbRv2bJFf/f1r38dd911F771rW/h6aefRjabxWWXXYbR0dHjmOJD5+mnn47kbd26dQCAD3/4w/qYRqq7sbExnHPOOfjWt75V9/tDqa9bb70VDz74IO677z5s3LgR5XIZV111Faampo5VNupyoLxVKhU8++yz+Mu//Es8++yzeOCBB/C73/0OV1999bRjb7jhhkh9fv/73z8WyReEhkds94n9/DcR2904dSe2W2y3IBwtxHaf2M9/E7HdjVN3YrvFdgsz4AtHnLe97W3+pz/96chny5Yt82+77bbjlKIjx549e3wA/qOPPqo/+/jHP+5/4AMfOH6J+j24/fbb/XPOOafud7Vazc9ms/6dd96pP3Nd1+/o6PC/973vHaMUHlluueUW/7TTTvNrtZrv+41ddwD8Bx98UL8/lPoqFot+PB7377vvPn3M66+/7sdiMX/t2rXHLO0Hw8xbPX7zm9/4APzXXntNf3bJJZf4t9xyy9FNnCDMUsR2Nw5iuxu37sR2i+0WhCOJ2O7GQWx349ad2G6x3UKIeKIfYarVKp555hlcfvnlkc8vv/xyPP7448cpVUeOkZERAEBnZ2fk8w0bNmDevHlYunQpbrjhBuzZs+d4JO9N8fLLL6O7uxuLFy/G9ddfj1dffRUAsH37duTz+UhdtrS04JJLLmnIuqxWq7j33nvxJ3/yJ2hqatKfN3LdcQ6lvp555hlMTk5Gjunu7kZfX1/D1enIyAiampqQTqcjn//4xz9GJpPBW97yFvzn//yfG8Z7QxCOJ2K7G+/5L7a7ceuOI7ZbIbZbEA4fsd2N9/wX2924dccR260Q231yYh3vBMw2CoUCpqam0NXVFfm8q6sL+Xz+OKXqyOD7Pj73uc/hoosuQl9fn/78yiuvxIc//GEsWrQI27dvx1/+5V/iXe96F5555hm0tLQcxxQfnPPPPx//+3//byxduhS7d+/GX//1X+PCCy/ECy+8oOurXl2+9tprxyO5vxcPPfQQisUiPvGJT+jPGrnuTA6lvvL5PGzbxpw5c6Yd00i/T9d1cdttt+EjH/kIUqmU/vyjH/0oFi9ejGw2i61bt+JLX/oSfvvb3+rlhIIg1Edsd2M9/8V2N27dmYjtFtstCG8Wsd2N9fwX2924dWcitlts98mMiOhHCT7jCChDaH7WaNx00014/vnnsXHjxsjn1113nf6/r68Pq1atwqJFi/CLX/wCH/rQh451Mg+LK6+8Uv9/1lln4YILLsBpp52GH/3oR3qjj9lSl/fccw+uvPJKdHd3688aue5m4s3UVyPV6eTkJK6//nrUajV85zvfiXx3ww036P/7+vpw+umnY9WqVXj22WexcuXKY51UQWg4ZsvzniO2W9GodSm2e2YaqU7FdgvC0WO2PO85YrsVjVqXYrtnppHqVGy3UA8J53KEyWQyaG5unja7tmfPnmkzdY3EZz7zGfzsZz/DI488gp6engMeO3/+fCxatAgvv/zyMUrdkaOtrQ1nnXUWXn75Zb1b+Gyoy9deew3r16/HJz/5yQMe18h1dyj1lc1mUa1WMTw8POMxJzKTk5O49tprsX37dqxbty4yG16PlStXIh6PN2R9CsKxRGx3Yz//xXY3bt2J7Z6O2G5BODTEdjf2819sd+PWndju6YjtPnkQEf0IY9s2zjvvvGnLONatW4cLL7zwOKXqzeP7Pm666SY88MAD+Ld/+zcsXrz4oOfs27cPO3fuxPz5849BCo8sExMT2LZtG+bPn6+X5/C6rFarePTRRxuuLn/wgx9g3rx5eN/73nfA4xq57g6lvs477zzE4/HIMbt27cLWrVtP+DolQ/7yyy9j/fr1mDt37kHPeeGFFzA5OdmQ9SkIxxKx3Y39/Bfb3bh1J7Z7OmK7BeHQENvd2M9/sd2NW3diu6cjtvsk4ljvZHoycN999/nxeNy/5557/BdffNG/9dZb/ba2Nn9wcPB4J+2w+bM/+zO/o6PD37Bhg79r1y79qlQqvu/7/ujoqP/5z3/ef/zxx/3t27f7jzzyiH/BBRf4p556ql8qlY5z6g/O5z//eX/Dhg3+q6++6j/55JP+VVdd5be3t+u6uvPOO/2Ojg7/gQce8Lds2eL/0R/9kT9//vyGyBsxNTXlL1y40P/iF78Y+bwR6250dNR/7rnn/Oeee84H4N91113+c889p3fKPpT6+vSnP+339PT469ev95999ln/Xe96l3/OOef4nucdr2z5vn/gvE1OTvpXX32139PT42/evDnyW5yYmPB93/cHBgb8r3zlK/7TTz/tb9++3f/FL37hL1u2zD/33HOPe94EoREQ231iP/85Yrsbq+7EdovtFoSjhdjuE/v5zxHb3Vh1J7ZbbLdQHxHRjxLf/va3/UWLFvm2bfsrV670H3300eOdpDcFgLqvH/zgB77v+36lUvEvv/xy/5RTTvHj8bi/cOFC/+Mf/7i/Y8eO45vwQ+S6667z58+f78fjcb+7u9v/0Ic+5L/wwgv6+1qt5t9+++1+Npv1W1pa/IsvvtjfsmXLcUzx4fMv//IvPgD/pZdeinzeiHX3yCOP1G2PH//4x33fP7T6Gh8f92+66Sa/s7PTb21t9a+66qoTIs8Hytv27dtn/C0+8sgjvu/7/o4dO/yLL77Y7+zs9G3b9k877TT/5ptv9vft23d8MyYIDYTY7uP/LDwUxHY3Vt2J7RbbLQhHE7Hdx/9ZeCiI7W6suhPbLbZbqE+T7/v+m3RiFwRBEARBEARBEARBEARBEIRZjcREFwRBEARBEARBEARBEARBEIQZEBFdEARBEARBEARBEARBEARBEGZARHRBEARBEARBEARBEARBEARBmAER0QVBEARBEARBEARBEARBEARhBkREFwRBEARBEARBEARBEARBEIQZEBFdEARBEARBEARBEARBEARBEGZARHRBEARBEARBEARBEARBEARBmAER0QVBEARBEARBEARBEARBEARhBkREFwSDSy+9FLfeemvDXPdIMzg4iKamJmzevPl4J0UQBEEQDgmx3WK7BUEQhMZCbLfYbkFoNKzjnQBBOFl44IEHEI/Hj9n9NmzYgHe+850YHh5GOp0+ZvcVBEEQhNmC2G5BEARBaCzEdguCcLQQEV0QjjKTk5OIx+Po7Ow83kkRBEEQBOEQENstCIIgCI2F2G5BEI42Es5FEOpQq9XwhS98AZ2dnchms7jjjjv0dzt27MAHPvABJJNJpFIpXHvttdi9e7f+/o477sCKFSvwv/7X/8KSJUvQ0tIC3/cjy8o2bNiApqamaa9PfOIT+jrf/e53cdppp8G2bZxxxhn4x3/8x0gam5qa8A//8A+45pprkEgkcPrpp+NnP/sZALU07J3vfCcAYM6cOZFrr127FhdddBHS6TTmzp2Lq666Cq+88sqRL0RBEARBOIaI7RYEQRCExkJstyAIjYSI6IJQhx/96Edoa2vDU089ha9//ev4q7/6K6xbtw6+7+ODH/wg9u/fj0cffRTr1q3DK6+8guuuuy5y/sDAAP7f//t/uP/+++vGOLvwwguxa9cu/fq3f/s3OI6Diy++GADw4IMP4pZbbsHnP/95bN26FZ/61KfwH//jf8QjjzwSuc5XvvIVXHvttXj++efx3ve+Fx/96Eexf/9+LFiwAPfffz8A4KWXXsKuXbvwt3/7twCAsbExfO5zn8PTTz+Nf/3Xf0UsFsM111yDWq12FEpSEARBEI4NYrsFQRAEobEQ2y0IQkPhC4IQ4ZJLLvEvuuiiyGdvfetb/S9+8Yv+r371K7+5udnfsWOH/u6FF17wAfi/+c1vfN/3/dtvv92Px+P+nj17pl33lltumXa/QqHgn3baaf6NN96oP7vwwgv9G264IXLchz/8Yf+9732vfg/A/4u/+Av9vlwu+01NTf4///M/+77v+4888ogPwB8eHj5gfvfs2eMD8Lds2eL7vu9v377dB+A/99xzBzxPEARBEE4UxHaL7RYEQRAaC7HdYrsFodEQT3RBqMPZZ58deT9//nzs2bMH27Ztw4IFC7BgwQL93fLly5FOp7Ft2zb92aJFi3DKKacc9D6Tk5P4gz/4AyxcuFDPWAPAtm3b8Pa3vz1y7Nvf/vbIPcx0trW1ob29HXv27DngPV955RV85CMfwZIlS5BKpbB48WIAarmcIAiCIDQqYrsFQRAEobEQ2y0IQiMhG4sKQh3M3bybmppQq9Xg+z6ampqmHW9+3tbWdkj3+bM/+zPs2LEDTz/9NCwr+nM071Pv3jOl80C8//3vx4IFC/D3f//36O7uRq1WQ19fH6rV6iGlWRAEQRBORMR2C4IgCEJjIbZbEIRGQjzRBeEwWL58OXbs2IGdO3fqz1588UWMjIzgzDPPPKxr3XXXXfjJT36Cn/3sZ5g7d27kuzPPPBMbN26MfPb4448f1j1s2wYATE1N6c/27duHbdu24S/+4i/w7ne/G2eeeSaGh4cPK92CIAiC0EiI7RYEQRCExkJstyAIJyLiiS4Ih8GaNWtw9tln46Mf/SjuvvtueJ6HG2+8EZdccglWrVp1yNdZv349vvCFL+Db3/42MpkM8vk8AKC1tRUdHR34L//lv+Daa6/FypUr8e53vxs///nP8cADD2D9+vWHfI9FixahqakJDz/8MN773veitbUVc+bMwdy5c/E//+f/xPz587Fjxw7cdttth10OgiAIgtAoiO0WBEEQhMZCbLcgCCci4okuCIdBU1MTHnroIcyZMwcXX3wx1qxZgyVLluAnP/nJYV1n48aNmJqawqc//WnMnz9fv2655RYAwAc/+EH87d/+Lb7xjW/gLW95C77//e/jBz/4AS699NJDvsepp56Kr3zlK7jtttvQ1dWFm266CbFYDPfddx+eeeYZ9PX14bOf/Sy+8Y1vHFbaBUEQBKGRENstCIIgCI2F2G5BEE5Emnzf9493IgRBEARBEARBEARBEARBEAThREQ80QVBEARBEARBEARBEARBEARhBkREFwRBEARBEARBEARBEARBEIQZEBFdEARBEARBEARBEARBEARBEGZARHRBEARBEARBEARBEARBEARBmAER0QVBEARBEARBEARBEARBEARhBkREFwRBEARBEARBEARBEARBEIQZEBFdEARBEARBEARBEARBEARBEGZARHRBEARBEARBEARBEARBEARBmAER0QVBEARBEARBEARBEARBEARhBkREFwRBEARBEARBEARBEARBEIQZEBFdEARBEARBEARBEARBEARBEGbg/wf3gERmCI+XyAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 24, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAloAAAGwCAYAAABxbMuTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAACABklEQVR4nO3dd3wUdf7H8dem90AIJISShCIY6b1IU6kWVBSwoAhyoudJ0UOxgXrSfsopAnIqAnqeIFJEVKRIJ/TeEQKhJIRQklDSduf3x5jFkEKCSTbl/Xw89uHuzHdmPjuJzCffajEMw0BERERECpyTowMQERERKa2UaImIiIgUEiVaIiIiIoVEiZaIiIhIIVGiJSIiIlJIlGiJiIiIFBIlWiIiIiKFxMXRAZR1NpuNM2fO4Ovri8VicXQ4IiIikgeGYZCUlERISAhOTjnXWynRcrAzZ85QrVo1R4chIiIit+DkyZNUrVo1x/1KtBzM19cXMH9Qfn5+Do5GRERE8iIxMZFq1arZn+M5UaLlYBnNhX5+fkq0RERESpibdftRZ3gRERGRQqJES0RERKSQKNESERERKSTqo1VCWK1W0tLSHB2GSJFwc3PLdbi0iEhJoUSrmDMMg9jYWC5duuToUESKjJOTE+Hh4bi5uTk6FBGRv0SJVjGXkWRVqlQJLy8vTWoqpV7GJL4xMTFUr15dv/MiUqIp0SrGrFarPcmqUKGCo8MRKTIVK1bkzJkzpKen4+rq6uhwRERumTpBFGMZfbK8vLwcHIlI0cpoMrRarQ6ORETkr1GiVQKo6UTKGv3Oi0hpoURLREREpJAo0RIREREpJEq0RBxg9OjRNGrUKF/HdOzYkaFDhxZKPCIiUjiUaEmB69+/PxaLJcvr999/t+9/8MEH7eXj4uJ47rnnqF69Ou7u7gQHB9O1a1ciIyNZtWpVtuf682vmzJkAXLt2jfLlyxMQEMC1a9dyjTEsLCzXc7Zp04bAwED+9a9/ZXv82LFjCQwMJDU1tUDuWXE2b948IiIicHd3JyIiggULFuRaPjk5mf79+1O/fn1cXFwy/axFRApDcpqVNKvN0WFkS9M7SKHo1q0bM2bMyLStYsWK2Zbt1asXaWlpzJo1ixo1anD27FlWrFjBhQsX6Ny5MzExMfayQ4YMITExMdO5/f39ATMhqFevHoZhMH/+fJ544okc49uyZYt9RNuGDRvo1asXhw4dws/PDzBHvb377rvMnDmTN954I0vn7BkzZtCvX79SP6FmZGQkffr04b333uOhhx5iwYIF9O7dm3Xr1tGyZctsj7FarXh6evLSSy8xb968Io5YRMqKaauPEnn0PIE+7izZG0OAjxufPNaERtXKOTq0TJRolSCGYXAtzTHD3T1dnfM1EiyjZupmLl26xLp161i1ahUdOnQAIDQ0lBYtWtjL/Pk8np6epKSkZHvu6dOn8+STT2IYBtOnT8810fpz0hcQEABApUqVKFeunH37wIED+fjjj1mzZo09NoC1a9dy5MgRBg4cmOP5X331VRYsWMCpU6cIDg7miSee4O23385xTqj+/ftz6dIlGjduzJQpU0hOTuaxxx7jk08+yZTM2Ww2RowYwRdffIGbmxuDBw9m9OjR9v0TJ05kxowZHDt2jICAAO6//34mTJiAj49PjrHm5qOPPqJz586MHDkSgJEjR7J69Wo++ugjvv3222yP8fb25tNPPwVg/fr1WtVARArcwdhExv1yMNO2Kxeu8dDU9Qy75zZeuru2gyLLSolWCXItzUrE27865Nr73+2Kl1vB/7r4+Pjg4+PDwoULadWqFe7u7rd0nqNHjxIZGcn8+fMxDIOhQ4dy7NgxatSoccux1a9fn+bNmzNjxoxMidaXX35JixYtqFevXo7H+vr6MnPmTEJCQtizZw+DBg3C19eXESNG5HjMihUr8PDwYOXKlRw/fpxnnnmGwMBA3n//fXuZWbNmMXz4cDZt2kRkZCT9+/enbdu2dO7cGTCXrpk0aRJhYWFERUXxwgsvMGLECKZOnQpAdHQ0ERERuX7vJ598kmnTpgFmjdawYcMy7e/atSsfffRRrucQESkMu09dYum+syzadca+rVWNAB5oWIXIY+f5cdcZJi47TN1gXzpHBGGxWDgYm0jdYD+HxaxESwrF4sWLM9WidO/enblz52Yp5+LiwsyZMxk0aBDTpk2jSZMmdOjQgb59+9KgQYM8X+/LL7+ke/fulC9fHjCbLr/88ssc+1jl1YABA3jllVeYPHkyPj4+XL58mblz5zJx4sRcj3vzzTft78PCwnj55ZeZM2dOromWm5sbX375JV5eXtxxxx28++67/POf/+S9996zL7DcoEEDRo0aBUDt2rWZPHkyK1assCdaf+4sHx4eznvvvcfzzz9vT7RCQkLYuXNnrrFnNJ+CuQRUUFBQpv1BQUHExsbmeg4RkYJwLdXKfzeeoJyXKxuPXWDe9lP2fb7uLiz4e1tqVTKfNY+3rE4lX3emr4vib19vA8DZyYLVZvDtoFa0rumYFVaUaJUgnq7O7H+3q8OunR+dOnWyNx+B2ZyUk169enHvvfeydu1aIiMjWbJkCRMmTOCLL76gf//+N72W1Wpl1qxZfPzxx/ZtTz75JMOGDeOdd97B2Tl/sf/ZY489xvDhw5kzZw4DBw5kzpw5GIZB3759cz3u+++/56OPPuL333/n8uXLpKenZ0pgstOwYcNMqwC0bt2ay5cvc/LkSUJDQwGyJJ+VK1cmLi7O/nnlypWMGTOG/fv3k5iYSHp6OsnJyVy5cgVvb29cXFyoVatWvu7BjU3GhmFoQlERKVSGYbD68Dk+XnGEHdGX7NstFuheL5g7Qvx5tFlVKvl6ZDrute51OXw2ibVH4gGw2gycLLDvTIISLbk5i8VSKM13hcHb2ztfD3QPDw86d+5M586defvtt3n22WcZNWpUnhKtX3/9ldOnT9OnT59M261WK0uXLqV79+75Dd/O39+fRx55hBkzZjBw4EBmzJjBI488kmvStHHjRvr27cs777xD165d8ff3Z/bs2Xz44Ye3FMOfk5ob+3hZLBZsNnOkzYkTJ+jRoweDBw/mvffeIyAggHXr1jFw4ED7ck75bToMDg7OUnsVFxeXpZZLRKSgnLp4lbcW7mXloXP2bdUDvKhR0ZtB7WrQtlZgjse6Ojsx7cmmLNhxmmupVo7FX6Zv8+o0dGAH+ZLx1JYyJyIigoULF+ap7PTp0+nbty9vvPFGpu3jxo1j+vTpfynRArNTfMeOHVm8eDHr169nzJgxuZZfv349oaGhmeI5ceLETa+za9curl27hqenJ2AmbD4+PlStWjVPcW7dupX09HQ+/PBDe1Pjd999l6lMfpsOW7duzbJlyzL101q6dClt2rTJU0wiInmVlJzGr/vO8t7i/SRcS8PN2YnezavydOswagf55vk83u4uPNkqtBAjzR8lWuJQ58+f59FHH2XAgAE0aNAAX19ftm7dyoQJE+jZs+dNjz937hw//vgjixYtytI5/emnn+bee+/l3LlzOU4tkRcdOnSgVq1aPPXUU9SqVYv27dvnWr5WrVpER0cze/Zsmjdvzk8//XTTuacAUlNTGThwIG+++SYnTpxg1KhRvPjii/ak6WZq1qxJeno6n3zyCffffz/r16+310xlyG/T4ZAhQ2jfvj3jx4+nZ8+e/PDDDyxfvpx169bZy0yePJkFCxawYsUK+7b9+/eTmprKhQsXSEpKsid3+Z2kVUTKBsMweHL6ZnadvARAg6r+TOzdyN7/qiTThKXiUD4+PrRs2ZJ///vftG/fnnr16vHWW28xaNAgJk+efNPjv/rqK7y9vbn77ruz7OvUqRO+vr58/fXXfznOAQMGcPHiRQYMGHDTsj179mTYsGG8+OKLNGrUiA0bNvDWW2/d9Li7776b2rVr0759e3r37s3999+faeqGm2nUqBETJ05k/Pjx1KtXj2+++YaxY8fm+fjstGnThtmzZzNjxgwaNGjAzJkzmTNnTqY5tOLj4zl69Gim43r06EHjxo358ccfWbVqFY0bN6Zx48Z/KRYRKT0uXEnl68jjzN9+iisp6Ww5ftGeZN3fMIRvnm1ZKpIsAIthGIajgyjLEhMT8ff3JyEhIUu/n+TkZKKioggPD8fDwyOHM0hpkDGPVl6bS0s7/e6LlF77ziTw2GcbSUxOB6BKOU/OX0khOc3GYy2qMfbhvI84d6Tcnt9/pqZDERERKRIJ19J4+btdJCanE+LvQZrN4PQlc8k0dxcnBt4Z7uAIC54SLRERESl0sQnJ3D95HeeSUvBxd2Hh39vi4ebMO4v2s+bIOcb3qk+tSnnv9F5SKNESKQYyFsYWESnpjp67zMz1x/HzdOFv7Wri72VOS/NV5HHOJaXg6erM5McbU8nP7BbwYe+Gjgy30CnREhERkb8kLikZX3dXDp9N4oOlh+wThn666ih31Q3iWlo6638/D8DE3g3pWKeSI8MtUkq0RERExO5cUgq+Hi545HFFkKX7Ynn+m+1YbVnH1tkMWH7grP1zaAUvOkeUrQmPlWiJiIgIAF+ui+L9nw9Q3suNSX0b0SaXWdgB4i+nMHL+nmyTrCVD27HuSDwnzl/FZhh0uSOYRtXK4eJctmaWUqIlIiJSxv0el8R/Vh9j7jZz0eb4yym8vmAPq/7ZCTAnFE212lj/ezwHY5N4omUoH/x6iK83mqtehFXwYug9tzHptyMcO3eFwR1qUjfYj7rBua/xWhYo0RIRESnDLqek8/DUDfZ5rZ5uHcpXG09w/PxVouKvEB7ozehF+5gVeX0psQlLDtnfuzhZmPJEE+4I8adT3Uos2nWGXk2qFPn3KK7KVv2dSDExevTofC9H07FjR4YOHVoo8YhI2bVo5xl7kvXmvbcz+oE7aF2jAgArD8axaNeZTElWBldnC/fWr8ynTzbljhB/APw9XenXKhQvN9XjZFCiJQWuf//+WCyWLK/ff//dvv/BBx+0l4+Li+O5556jevXquLu7ExwcTNeuXYmMjGTVqlXZnuvPr4ypEa5du0b58uUJCAjg2rVrucYYFhaW6znbtGlDYGAg//rXv7I9fuzYsQQGBpKamlog96y42rdvH7169bLfr48++ihPx+3Zs4cOHTrg6elJlSpVePfdd9EiFCLFj81m8FXkccBMsp5tVwOLxUKnP0YFvrt4Py99uwOAR5pW5ccX72TZsPZMe7IpG0fezZQnmpS5zu35pZRTCkW3bt2YMWNGpm05Lezcq1cv0tLSmDVrFjVq1ODs2bOsWLGCCxcu0LlzZ2JiYuxlhwwZQmJiYqZz+/ubf0nNmzePevXqYRgG8+fP54knnsgxvi1btmC1WgHYsGEDvXr14tChQ/ZlFNzc3Hj33XeZOXMmb7zxBhaLJdPxM2bMoF+/fri5ueXjrpQ8V69epUaNGjz66KMMGzYsT8ckJibSuXNnOnXqxJYtWzh8+DD9+/fH29ubl19+uZAjFpH8+GVvLAdjk/B2c6ZXk6r27Y+3rM5vB+OIPGZOyXDP7ZUY36sBzk7mv4W1g0rfxKKFRYmWFIqMmqmbuXTpEuvWrWPVqlV06NABgNDQUFq0aGEv8+fzeHp6kpKSku25p0+fzpNPPolhGEyfPj3XROvPSV9AQAAAlSpVoly5cvbtAwcO5OOPP2bNmjX22ADWrl3LkSNHGDhwYI7nf/XVV1mwYAGnTp0iODiYJ554grfffhtXV9dsy2esddi4cWOmTJlCcnIyjz32GJ988kmmZM5mszFixAi++OIL3NzcGDx4cKaFpydOnMiMGTM4duwYAQEB3H///UyYMAEfn1tbnLV58+Y0b94cgNdeey1Px3zzzTckJyczc+ZM3N3dqVevHocPH2bixIkMHz48S9IqIoXv97jLvDpvN3fVrcQDDUP4ZlM0T7UO5T9rzAXhn21Xg/Le1/+t8XZ34ZtnW7It+iKp6TZa1ahgT7Ikf5RolSSGAWlXHXNtVy8ohAekj48PPj4+LFy4kFatWuHu7n5L5zl69CiRkZHMnz8fwzAYOnQox44do0aNGrccW/369WnevDkzZszIlGh9+eWXtGjRgnr16uV4rK+vLzNnziQkJIQ9e/YwaNAgfH19GTFiRI7HrFixAg8PD1auXMnx48d55plnCAwM5P3337eXmTVrFsOHD2fTpk1ERkbSv39/2rZtS+fOnQFwcnJi0qRJhIWFERUVxQsvvMCIESOYOnUqANHR0UREROT6vZ988kmmTZuWp3uUncjISDp06JDpZ9m1a1dGjhzJ8ePHCQ8vfWuZiRRnB2ISeeGb7UTFX2HbiYv8369mR/Yv1h4j/Y9pGfq1Ds1ynJOTheZhAUUaa2mkRKskSbsKY0Icc+3Xz4Cbd56LL168OFMtSvfu3Zk7d26Wci4uLsycOZNBgwYxbdo0mjRpQocOHejbty8NGuR9Bfcvv/yS7t27U758ecBsuvzyyy9z7GOVVwMGDOCVV15h8uTJ+Pj4cPnyZebOncvEiRNzPe7NN9+0vw8LC+Pll19mzpw5uSZabm5ufPnll3h5eXHHHXfw7rvv8s9//pP33nsPJyezO2WDBg0YNWoUALVr12by5MmsWLHCnmj9ubN8eHg47733Hs8//7w90QoJCWHnzp25xp7bKvR5ERsbS1hYWKZtQUFB9n1KtESKzonzV3h46gaupVmz7MtIshpU9SfQ59b+yJWbU2d4KRSdOnVi586d9tekSZNyLNurVy/OnDnDokWL6Nq1K6tWraJJkyZ5Xv/ParUya9YsnnzySfu2J598klmzZtn7Yd2qxx57DJvNxpw5cwCYM2cOhmHQt2/fXI/7/vvvufPOOwkODsbHx4e33nqL6OjoXI9p2LAhXl5e9s+tW7fm8uXLnDx50r7txuSzcuXKxMXF2T+vXLmSzp07U6VKFXx9fXnqqac4f/48V65cAczEtlatWrm+KlX660tj3Ng8mNERXs2GIkVr8e4YrqVZCfB2Y+mw9jzc2Jx2oV6V639QtQxXrVVhUo1WSeLqZdYsOera+eDt7U2tWrXyXN7Dw4POnTvTuXNn3n77bZ599llGjRpF//79b3rsr7/+yunTp+nTp0+m7VarlaVLl9K9e/d8xf5n/v7+PPLII8yYMYOBAwcyY8YMHnnkkVxrfTZu3Ejfvn1555136Nq1K/7+/syePZsPP/zwlmL4c3JyYx8vi8WCzWYD4MSJE/To0YPBgwfz3nvvERAQwLp16xg4cCBpaWlA0TQdBgcHExsbm2lbRjKYUbMlIoXPMAx+2WsOJhrRtQ63Bfky4ZEG3N8ohNY1KvCf1ceYsyWaJ1pmbTaUgqNEqySxWPLVfFeSRUREsHDhwjyVnT59On379uWNN97ItH3cuHFMnz79LyVaYHaK79ixI4sXL2b9+vWMGTMm1/Lr168nNDQ0UzwnTmSdg+ZGu3bt4tq1a3h6egJmwubj40PVqlVvcqRp69atpKen8+GHH9qbGr/77rtMZYqi6bB169a8/vrrpKam2jvyL126lJCQkCxNiiJSsKw2g8vJ6fh6uPDqvN3sPZ2IkwX7FAwuzk72qRuG3FObIffUdmS4ZYISLXGo8+fP8+ijjzJgwAAaNGiAr68vW7duZcKECfTs2fOmx587d44ff/yRRYsWZemc/vTTT3Pvvfdy7ty5HKeWyIsOHTpQq1YtnnrqKWrVqkX79u1zLV+rVi2io6OZPXs2zZs356effmLBggU3vU5qaioDBw7kzTff5MSJE4waNYoXX3zRnjTdTM2aNUlPT+eTTz7h/vvvZ/369VlqpjKaDvMqNTWV/fv329+fPn2anTt34uPjYz/P5MmTWbBgAStWrADg8ccf55133qF///68/vrrHDlyhDFjxvD222+r6VCkENlsBgNmbmHNkXNU9vPgTEIyzk4W3rz3diqoD5bDqI+WOJSPjw8tW7bk3//+N+3bt6devXq89dZbDBo0iMmTJ9/0+K+++gpvb2/uvvvuLPs6deqEr68vX3/99V+Oc8CAAVy8eJEBAwbctGzPnj0ZNmwYL774Io0aNWLDhg289dZbNz3u7rvvpnbt2rRv357evXtz//33Z5q64WYaNWrExIkTGT9+PPXq1eObb75h7NixeT4+O2fOnKFx48Y0btyYmJgYPvjgAxo3bsyzzz5rLxMfH8/Ro0ftn/39/Vm2bBmnTp2iWbNmvPDCCwwfPpzhw4f/pVhEJHefrT3G6sPnMAw4k5AMwOgH7uCZthqA4kgWQ9M1O1RiYiL+/v4kJCRkabJJTk4mKiqK8PBwPDw8HBShFIWMebTy2lxa2ul3XyR3KelWxv9yiOUHzvJI06o0DwvgyembsNoMetQPJtjPk/BAL55sFaqa5EKS2/P7z9R0KCIiUsIs3hXDl+ujAJi47LB9+8ONq/Bh74ZKrooRNR2KiIiUMMv2n7W/z5iwvW6wL+8/VF9JVjGjGi2RYiCvc4aJSOmy+9Qlzly6RnigD6EVvPBwdb7pMVdT01l75BwAP754J85OFpbtP0vfFtXwdLv58VK0lGiJiIg4wPnLKTw6LZKUdHMuvPpV/Pnh721xymVNwdiEZJ7+cjNXUq2E+HtQr4ofFouFiJC/Ni2LFB41HZYAGq8gZY1+56W0yvjd3nXyEo9/vsmeZAHsOZ1Ajdd/5qGp61l1yJzkd+vxC3yz6QRpVhtzt57kvk/WcehsEoE+7nz8WGM1E5YAqtEqxjJmAb969ap9EkuRsiA1NRUAZ2c1g0jJl5icho+bCx8tP8z0dVE81SaM6euiSP0jyfrXg/WIS0xm0m+/A7Aj+hLjfjnIjuhLfLziiFlm8QH7eoU1Ar35amALqpbP34od4hhKtIoxZ2dnypUrZ1++xMvLS3+9SKlns9k4d+4cXl5euLjonygp2b7bepKR8/cA5qztAJ+uuj7vXK1KPjzQKAQLcOriNdxdnfh280kOxiZxMDbJXi4jyerfJoyRPeri7qI/QkoK/StWzAUHBwNkWjhYpLRzcnKievXq+sNCSrR9ZxIYOX+PPcH6Mx93F7a9dU+mhGlin0YAXLiSyq/7zFGFj7esjouThRUH4ni8ZXWe71Az1z5cUvwo0SrmLBYLlStXplKlSvaFgUVKOzc3tzwvPSRSXP1vUzRWm0H72yrycufbCKvgzccrjvD1xuNMfaJJjrVSwzrfRuK1dDrUqcjAO8NxdXbi3ZuvSCbFlGaGd7C8ziwrIiIlR3KalRbvLycxOZ1vnm1J21qBgLke4bU0K97uquco6TQzvIiISBHZ8Hs8G4+dx2KxsGRvLIfOmv2rqpTzpHWNCvZyTk4WJVlljH7aIiIif8GSvbG8+L/tpN/QF8vN2Yn/e6SB+lSVcUq0REREbtHqw+cyJVlNqpfj3gYh+Hm4cFuQLw2rlXNsgOJwSrRERERu0fhfDpJuM7i/YQgf9WmEs2qv5AYOH9YzdepUwsPD8fDwoGnTpqxduzbX8qtXr6Zp06Z4eHhQo0YNpk2blqXMvHnziIiIwN3dnYiICBYsWJDv686fP5+uXbsSGBiIxWJh586dWc6RkpLCP/7xDwIDA/H29uaBBx7g1KlT+bsBIiJSIu07k8D+mETcnJ14r+cdSrIkWw5NtObMmcPQoUN544032LFjB+3ataN79+5ER0dnWz4qKooePXrQrl07duzYweuvv85LL73EvHnz7GUiIyPp06cP/fr1Y9euXfTr14/evXuzadOmfF33ypUrtG3blnHjxuUY/9ChQ1mwYAGzZ89m3bp1XL58mfvuuw+r1VoAd0dERIqzrzacAKBzRBDlvNwcHI0UVw6d3qFly5Y0adKETz/91L7t9ttv58EHH2Ts2LFZyr/66qssWrSIAwcO2LcNHjyYXbt2ERkZCUCfPn1ITEzkl19+sZfp1q0b5cuX59tvv833dY8fP054eDg7duygUaNG9u0JCQlUrFiRr7/+mj59+gBw5swZqlWrxs8//0zXrl2z/c4pKSmkpKTYPycmJlKtWjVN7yAiUoLsO5PAfZ+swzDg+8GtaRYW4OiQpIjldXoHh9Vopaamsm3bNrp06ZJpe5cuXdiwYUO2x0RGRmYp37VrV7Zu3WqfzDOnMhnnvJXrZmfbtm2kpaVlOk9ISAj16tXL9Txjx47F39/f/qpWrVqerykiIo5nGAbv/rgfw4D7G4YoyZJcOSzRio+Px2q1EhQUlGl7UFAQsbGx2R4TGxubbfn09HTi4+NzLZNxzlu5bk6xuLm5Ub58+XydZ+TIkSQkJNhfJ0+ezPM1RUTE8X7ZG8umqAt4uDrxWve6jg5HijmHjzq8cS0zwzByXd8su/I3bs/LOfN73by62Xnc3d1xd3f/y9cREZGil5xm5f2fzO4rz7WvSZVyng6OSIo7h9VoBQYG4uzsnKX2Jy4uLkttU4bg4OBsy7u4uFChQoVcy2Sc81aum1MsqampXLx48S+dR0REir+ziclsjrrAjPXHOX3pGpX9PRjcoaajw5ISwGGJlpubG02bNmXZsmWZti9btow2bdpke0zr1q2zlF+6dCnNmjXD1dU11zIZ57yV62anadOmuLq6ZjpPTEwMe/fuzdd5RESkeEu4msbdH66m938iGb/kIADPd6yJp1v2i0KL/JlDmw6HDx9Ov379aNasGa1bt+azzz4jOjqawYMHA2Z/ptOnT/PVV18B5gjDyZMnM3z4cAYNGkRkZCTTp0+3jyYEGDJkCO3bt2f8+PH07NmTH374geXLl7Nu3bo8XxfgwoULREdHc+bMGQAOHToEmDVZwcHB+Pv7M3DgQF5++WUqVKhAQEAAr7zyCvXr1+eee+4p9HsnIiJFY/vJi1xOSbd/9nV3oVeTqg6MSEoUw8GmTJlihIaGGm5ubkaTJk2M1atX2/c9/fTTRocOHTKVX7VqldG4cWPDzc3NCAsLMz799NMs55w7d65Rp04dw9XV1ahbt64xb968fF3XMAxjxowZBpDlNWrUKHuZa9euGS+++KIREBBgeHp6Gvfdd58RHR2dr++fkJBgAEZCQkK+jhMRkaLx0bLDRuiri42npm8yXv1+l/HT7jOODkmKgbw+vx06j5bkfR4OERFxjAEzt/DbwThG3R/BM23DHR2OFBN5fX47fNShiIhIcbIj+iLzt58myM+dSn4eRB49D6AFouWWKNESEREBrqVa+XlPDP/8fhe2G9p6An3ciKisVgfJPyVaIiJSZkWfv8r7P+/H292FndGXOBZ/BYDwQG+aVC/P9uiLWCww+bEmeLhqlKHknxItEREpFdKtNt5bvJ/1R8/TMjyAN+69HS+3nB9zF66k0uezSGISku3bPFydiKjsx/sP1ed21WBJAVCiJSIipcKqQ+eYFXkCgN/jLnMlJZ2JvRux4+RFTl28RoOq5Qir4IXFYuHE+SuMXrQvU5J1b/3K/OvBepT3dnPUV5BSSImWiIiUCr/uM1f88HB1IjnNxk97Yoi/nMq63+PtZSIq+/F0m1DeXLiXNKvZEWv6083oVKcSTk5/fRk2kRs5bGZ4ERGRgmC1GfT5TyRzt50CYEb/FkRU9iPNarDu93jcnJ2oX8UfN2cn9sck8uq8PfYkq13tQO6qqyRLCo9qtEREpETbefIim6IuAFC1vCfNw8rTp3k1Ri3aR9XynnzWrxkRIX4s3RfL377eBkDL8AC+ebYlLs6qb5DCpURLRERKrOQ0K3O3mjVZNSt6891zrXFxduLJVqFUD/CiSWh5/D3NtXDvuT2I+lX8OR5/hTEP11eSJUVCiZaIiBQr63+PJ/rCVfo2r4bFkrlJzzAMJvx6iBnrowjx9+RMwjWS02wA/OOu2lTwcQfA2clCp7qVMh3r5GRh7uDWpKTb7MmXSGFToiUiIg61YMcpPlsTxR0hfvRrFcqzs7ZyLc1KTEIywzvfZi+XnGbl3cX7+d+maAD7nFdgTijaqU6lLOe+kYers+bDkiKlREtERBwiJd3KF2uj+L9fDwFwICaR7//o0A4wacURLlxJ4e66QVy6lsq7P+7n4tU0LBaz9qpleACVfN0J9vfAxckJTzclUFL8aFFpB9Oi0iJS1qSm2/j38sN8uS6KlHSz2a9jnYqkpNmIPGauK1ijojdR8Ve48Qnl6+HC+w/V54GGIUUdtkgmWlRaRESKhf1nEjl58SpVy3vyytzdHIhJtO/zdXfhpbtr82y7cAB+2HmGMwnX+Fu7Gvy0J4ahc3bak63QCl4s/sed+Hqof5WUHEq0RESk0Jy5dI0+/4kkKSU903YPVycm9m5E93rBmTq8P9i4iv19z0ZVuCPED293Fw7GJtGgir+SLClxlGiJiEihGbVoX6Ykq0ZFbwa0Dad5WAB1gn1venytSmaZyv6ehRajSGFSoiUiIoViz6kElu0/m2nbhF4NaBYW4KCIRIqeEi0RESkQVpvBjPVRfL/tFPWq+LM9+iIADzeuQv+2YSReS1eSJWWOEi0RkVIiOc3K3tMJNK5eHmcHrN03fslBPltzDICDsUkABPm5M6zzbVQL8CryeESKAyVaIiKlxIQlh/hyfRQuThZa16zAB482JMjPo0CvcTz+CmuOnCMuMYXLKek80CiExtXK8d+NJ+xJVvOw8ni6uVAnyIfnOtQk8I/Z2kXKIiVaIiKlgNVmMGeLOWN6us1g7ZF4Rv2wj2n9mgJw8sJVfNxdKO/tdkvnj0m4xtJ9Z/n38sNcuppm3z5zw/FM5Z7vWJNXu9W9tS8hUgop0RIRKeF2nrzEg1PW2z/fc3sllh+IY8m+WKas/B3DMPhg6WGqB3ixdFj7bJegOZeUwt7TCZw4f4XaQb60qVnBPu3CjuiLDJy1lQtXUu3lwyp4YQAnzl8FzOkaBrWrkWnJHBFRoiUiUuJ9uPSQ/X3vZlWZ8EhD/rP6KGN/OWhf3gYg+sJVPl9zjH/cXdu+LTXdxov/287SG0YHdr0jiI/6NOb0patZkqwJvRrQu3k1Lqek8/x/t+Hm7MTYXvWp5FuwzZQipYGW4HEwLcEjIvlhtRm89O0OXJwtfNSnEftjErl30joA+javxqvd6tqbBz9ddZTxSw4CUDfY195B/ZGmVRnRtQ5Ww2D4nF32ZW+qlPOkViUfNhyNJ81qPhqcLGAzoH4Vf2YNaEH85RRuC7r5/FcipZ2W4BERKYXWHD7HT3tiALirbiXG/2ImUt3rBTOuV4NMZZ/vWJPbgnxISbfRvV4wY34+wOdrzekXthy/gKuzE7/HXcbD1YnP+jWj/W0VAdh6/AIDZm4hMTkdmwGNqpXjy/7NCfB2I+AW+3iJlFWq0XIw1WiJSH4M+mprlklAa1T05vvBbfKUBG04Gs+zs7ZyNdUKQKCPO3MHtyY80DtTuQMxiby5cC8Nqvrzare62fbrEinLVKMlIlLKHIxNZPmBzElWkJ87Xw1okeeapjY1A3n7vghem7+H6gFe/LtPoyxJFsDtlf2Y93ybAolbpCxToiUiUkKM++UghgE96gfTLDSAa2lWHm1WNd+d0Pu2qE73epXx83TJtKCziBQ8JVoiIiXA+t/jWXXoHC5OFkZ0rUtYNrVQ+eHv5VpAkYlIbpwcHYCISGl0KDaJ3+MuA7Dr5CW+3niCmIRrt3SudKuNf/10AIAnW4X+5SRLRIqOarRERArYkr2xvPDNNlycnHihU00+Wn4EgDWHg/j8qWb5OpdhGHy0/AgHYhIp5+XKP+6qVRghi0ghUaIlIlKArqam88+5u7AZkGq12ZMsgM1RF7DZDJxyWPA5LjGZcb8cpG2tQHo2CuGLdVFM+e13klLSAXi9x+1U0LqBIiWKEi0RkTyIPn+VoXN2UM7LjY/6NsLPI3MfJ8MwSLXaWLrvLEkp6Xi7ORPg48bJC9eoHuDFyYtXSbiWxrH4K9Sq5IPNZvD7uct4uDhTvYIXiclp9P5PJMfPX2X+jtO8PHeX/dxuLk682q0ujzatWtRfW0T+IiVaIiI3kZxm5bHPN3L6ktnHqs9/NvJ/jzTgjhA/+6i91xfsYf7202RMTPhsuxq8eFctDsQkUq28F899vY3Nxy+wPfoiqek2Ri3ay5bjF3F2svD1wBb8vCeG43+sG5ghwNuNoffUpnezaprHSqSEUqIlIpKLC1dS+Wj5YXuSBeZknvd9sg43Zyde616X8IrefLv5ZKbjHm5SBVdnJxpULQdA49BybD5+gRHf785UzmozePzzTfbPE3s35IedZ2hSvTzPd6yJm4vGLImUZEq0RERykGa10fs/kfbRg692q8tDjavwr5/2s3h3DKlWG+8u3p/luJc730ZohcwjAx9rXp3vtpzk4tU0LBZoHhbAq93qMvy7nZz4oybrrrqVeLhJVR5uoiZCkdJCiZaIyJ+kWW0cOXuZ0ApezN9x2p5kBft50Ld5Ncp7uzH58SZ82NvKE59vYuuJi4C51uCz7cI5GneFXtn0pQoL9Gbu4DZ8uzmah5tU4Y4QfwBGdq/L4P9uB6B/m7Ci+ZIiUmS01qGDaa1DkeLj2LnLDP7vNg6fvZxp+9v3RfBM27Ass6jHJSUzY/1xWtWoQPvagbc0y7phGPzrpwOkW22Muv+OHEckikjxktfntxItB1OiJeI4hmGw8+QlPlp+BC83Z7ZHX+RsYkqmMk1DyzP7b61wdVZfKRG5TotKi4jk4ou1x5ix/nimTu4AoRW8mDu4NWsOx7Px2Hle6VJHSZaI3DIlWiJS5ly8ksr7Px/AMMw5quqF+FHBx53QAC8Gta9BJV8PHmlalUc0b5WI/EVKtESkTDEMg8hj5zEMqFnRm8X/aIenm+aoEpHCoURLRMqMMT8fYPq6KKw2s2tq+9sqKskSkUKljgciUiYkXE1j5obj9iQLoG3NQAdGJCJlgWq0RKRUMwyDAzFJrD58jtR0Gy5OFh5oFEJquo12tynREpHCpURLREq1T377nYnLDts/v3Hv7TzTNtyBEYlIWaKmQxEptY7HX2HKyt/tnx9uXIUnW4U6MCIRKWtUoyUipVL85RSe+GITKek2WoQH8MEjDakW4HlLs7eLiNwqJVoiUiot3HGa05euEVrBi0l9GxPs7+HokESkDFKiJSKlSsLVNL7dEs3EpWa/rMdbVFeSJSIOo0RLREqNxOQ0ekxam2lZndY1KzgwIhEp69QZXkRKje+2nMyydmFEZS3WLiKOoxotESkVpq+L4l8/HQDg751qsvrwObpEBOOiBaFFxIGUaIlIsRWXmEyq1UbV8l65llt9+BzvLd4PQJ0gX17sVJt/dq1bFCGKiORKf+qJSLFk9rdaR7eP1nI2MRmA05eucTU1PVO5j5Yf5ukvNwNwb/3K/PBiW61fKCLFhmq0RKTYWbTrDC99u8P++ZuNJ6hS3pPX5u/Bx92F9x+qzwMNQ0hOs/L5mmOA2RdrzEP18XBVkiUixYfDa7SmTp1KeHg4Hh4eNG3alLVr1+ZafvXq1TRt2hQPDw9q1KjBtGnTspSZN28eERERuLu7ExERwYIFC/J9XcMwGD16NCEhIXh6etKxY0f27duXqUxsbCz9+vUjODgYb29vmjRpwvfff38Ld0FEMvx344lMSRbApN9+59V5ezAMSEpO559zd/H1xhPUfWsJV1KtBPt58NNLd+Lv5eqgqEVEsufQRGvOnDkMHTqUN954gx07dtCuXTu6d+9OdHR0tuWjoqLo0aMH7dq1Y8eOHbz++uu89NJLzJs3z14mMjKSPn360K9fP3bt2kW/fv3o3bs3mzZtytd1J0yYwMSJE5k8eTJbtmwhODiYzp07k5SUZC/Tr18/Dh06xKJFi9izZw8PP/wwffr0YceOzA8JEcmbxOQ0xi85CEDDqv6M6FaHyn+aA6tTnYq0qx1ISrqNtxbutW+/v2FlzfguIsWT4UAtWrQwBg8enGlb3bp1jddeey3b8iNGjDDq1q2badtzzz1ntGrVyv65d+/eRrdu3TKV6dq1q9G3b988X9dmsxnBwcHGuHHj7PuTk5MNf39/Y9q0afZt3t7exldffZXpPAEBAcYXX3yR43dOTk42EhIS7K+TJ08agJGQkJDjMSKlxZGzScbO6IvZ7rt4JcXoPW2DEfrqYuOeD1cZVqvNMAzDmLLyiBH66mIj9NXFxuao88bZxGv2z6GvLjYemrLOOH3xahF+CxERw0hISMjT89thNVqpqals27aNLl26ZNrepUsXNmzYkO0xkZGRWcp37dqVrVu3kpaWlmuZjHPm5bpRUVHExsZmKuPu7k6HDh0yxXbnnXcyZ84cLly4gM1mY/bs2aSkpNCxY8ccv/fYsWPx9/e3v6pVq5ZjWZHS4ve4JF79fjfdPlpDzynrWXHgbJYyb/2wj01RFwAY3vk2nJzMGqrHW1QnPNCbjnUq0iy0PJV8PfjfoJY0qV6O7we3Zv4LbQkp51mk30dEJK8c1hk+Pj4eq9VKUFBQpu1BQUHExsZme0xsbGy25dPT04mPj6dy5co5lsk4Z16um/Hf7MqcOHHC/nnOnDn06dOHChUq4OLigpeXFwsWLKBmzZo5fu+RI0cyfPhw++fExEQlW1IsxV9Owd3FCV+Pv9bvKf5yCr3/s5ELV1Lt24Z/t4s1Izrh5+HC3tOJHIu/zI+7zgDwUZ9GdK9f2V62nJcbK1/pmOmcbWoGMv+FwL8Ul4hIUXD4qMMb+1UYhpFrX4vsyt+4PS/nLIgyb775JhcvXmT58uUEBgaycOFCHn30UdauXUv9+vWzjd/d3R13d/ccv59IcRCXlEyXf68h3WrwwaMN6VYv+JbP9e6P+7lwJRV/T1fe6HE7n609xu9xl2n4zlIq+3sQk5BsL1u/ij8PNq5SEF9BRKRYcFiiFRgYiLOzc5baq7i4uCw1SRmCg4OzLe/i4kKFChVyLZNxzrxcNzjYfKjExsZSuXLlbMscPXqUyZMns3fvXu644w4AGjZsyNq1a5kyZUq2oyFFHMEwDJ77ehvnLqcwsXcjwgO9b3rM/O2nuXTVbI5/bf5uOkcE4eyU/87m26MvsmjXGSwW+ObZltSr4o+7qxNDZu8EICYhGQ9XJ0IDvLmSms6wzrXzfQ0RkeLMYX203NzcaNq0KcuWLcu0fdmyZbRp0ybbY1q3bp2l/NKlS2nWrBmurq65lsk4Z16uGx4eTnBwcKYyqamprF692l7m6tWrADg5Zb6Fzs7O2Gy2m98AkSKyPfoiS/efZUf0Jfp+FklymjXHsluOX2D25mjmbj1p33bpahr7ziTc9Do2m8F3W0+y55RZNjnNypTffgegV5Oq1KviD8B9DULo3yaMp1uH8tWAFmwaeQ+/DmvPulfv4q662f+RJSJSUt1SjVZ6ejqrVq3i6NGjPP744/j6+nLmzBn8/Pzw8fHJ83mGDx9Ov379aNasGa1bt+azzz4jOjqawYMHA2Z/ptOnT/PVV18BMHjwYCZPnszw4cMZNGgQkZGRTJ8+nW+//dZ+ziFDhtC+fXvGjx9Pz549+eGHH1i+fDnr1q3L83UtFgtDhw5lzJgx1K5dm9q1azNmzBi8vLx4/PHHAahbty61atXiueee44MPPqBChQosXLiQZcuWsXjx4lu5rSKFYt720/b3ZxNTWLI3NtvmuZiEazz95WauppqJmJebM42qlWPD0fN8FXmCXk2sXE1Np03NQPvM62sOn+P8lRQebFSFrzeeYNSifVT0dWf0/Xfw9/9tt5/7+Y7X+y06O1kY/cAdhfV1RUSKlXwnWidOnKBbt25ER0eTkpJC586d8fX1ZcKECSQnJ+eryaxPnz6cP3+ed999l5iYGOrVq8fPP/9MaGgoADExMZnmtgoPD+fnn39m2LBhTJkyhZCQECZNmkSvXr3sZdq0acPs2bN58803eeutt6hZsyZz5syhZcuWeb4uwIgRI7h27RovvPACFy9epGXLlixduhRfX18AXF1d+fnnn3nttde4//77uXz5MrVq1WLWrFn06NEjv7dVpFCkW238tDsGgJbhAWyKusCnq47SumYFgvzM+alS0224uTjx/k8H7EkWmKP9qlfwYsPR83y/7RTfbzsFQL0qfnw9oCXzd5y2ry/4+Zoo9sckAnAuKSVTktWgqj81K+b9DzARkdLEYmT0Js+jBx98EF9fX6ZPn06FChXYtWsXNWrUYPXq1Tz77LMcOXKksGItlRITE/H39ychIQE/Pz9HhyOlzOaoC/T+TyTlvFz5ZUg7uvx7DUnJ6bg5O9G9fjDnklLYevwiVct7ciz+iv04f09Xfh3aHmcnC098sZGYS8lU9HXn/JVUEq6lcV+Dyizbf5aU9NybyX09XPj0iabcWVsjBEWkdMnr8zvfNVrr1q1j/fr1uLm5ZdoeGhrK6dOnczhKRIraykNxPDNjCwAdbqtIZX9PFrzQln9+v4sd0Zf4YecZe9mMJOvp1qH8s1td0tJtlPc2/x9fOqyDvdyqQ3H0n7GFxX/UklUt70n85RSS02y892A9Ot8exNNfbubQ2SQea1GdsQ9nP/pWRKSsyHeiZbPZsFqzdqY9deqUvVlNRBzLZjN4Y/4e++e76lYCoFYlHxa80Jbdpy7xzcZo1hw5R/UALzxcnakb7MuQe2rj5eYCOcxA0r52RaoFeHLywjUA3utZj4q+7lxNtdIiPACAX4a04/j5K1Qt71W4X1JEpATId6LVuXNnPvroIz777DPA7Dh++fJlRo0apb5JIsXEzlOXOPPH/FS9mlTNMg9Wg6rlaPBIuXyf18nJwvsP1mfmhuP0bV6NTn8kcDeWqaE+WSIiwC300Tpz5gydOnXC2dmZI0eO0KxZM44cOUJgYCBr1qyhUqWs//BKztRHSwrDqB/2MivyBD0bhfBx38aODkdEpNQptD5aISEh7Ny5k9mzZ7Nt2zZsNhsDBw7kiSeewNNT642JONqRs0n8b7M5WvfhJlUdHI2ISNmW70RrzZo1tGnThmeeeYZnnnnGvj09PZ01a9bQvn37Ag1QRPLnoxVHSLMa3HN7JdprtJ+IiEPle2b4Tp06ceHChSzbExIS6NSpU4EEJSK35vzlFJbuM5eXGtb5tlzXDRURkcKX70Qrp0Wfz58/j7f3zddQE5HC8/22U6RZDRpU9eeOEH9HhyMiUubluenw4YcfBsxRhv3798fd/fr4b6vVyu7du3Nco1BECl+a1cbMDccBeKJldccGIyIiQD4SLX9/869jwzDw9fXN1PHdzc2NVq1aMWjQoIKPUETy5Oc9McQkJBPo407PRlnXMhQRkaKX50RrxowZAISFhfHKK6+omVCkGDlx/gpfrj8OwJOtquPh6uzYgEREBLiFUYejRo0qjDhE5BYYhsG7i/cz448kC+CRpprSQUSkuMh3ogXw/fff89133xEdHU1qamqmfdu3by+QwETk5jYeu5ApybqrbiUtfSMiUozke9ThpEmTeOaZZ6hUqRI7duygRYsWVKhQgWPHjtG9e/fCiFFEcrDqcBwA9zcM4ZtnW/LvPo0cG5CIiGSS70Rr6tSpfPbZZ0yePBk3NzdGjBjBsmXLeOmll0hISCiMGEUkB6sPnQPgntsr0bZWIP6erg6OSERKPMOAExvg+DpIuezoaEq8fDcdRkdH26dx8PT0JCkpCYB+/frRqlUrJk+eXLARiki29p5O4GBsEhYL3FlLM8AXOsMAWzo4K5ktcU5uhk3/gbSrcP53cPOGinWhXHXo8CqcOwjL34Gm/aFuD0dHW7BsNnDKZ53Kmg9g5b/M985uEFwfQttAeEeI3gD1ekHQHeb+1Cvg7A7OeUwnrGng5AJlaDLlfCdawcHBnD9/ntDQUEJDQ9m4cSMNGzYkKiqKfK5PLSK3yGozePm7XQD0qFeZCj7uNzlC/pK4gzD7MbA4w8Cl4BXg6IjkRoaR/cM7PQXmDYRL0Zm3n9lh/vfkZohaDYbN3FbzLnD1uPn1Ui7DsVVQ6568lc9O2jUzeXf3vbXjb+bCMfjmUfO7VW8DAWEQuxeaDYAaHbKWNwxY8hpsmmZ+dnYDayqc3ma+Nnxibl87EZo/C/GHzFovizO4ekLtztDjg8z/f6SnQuxu2P8DHPgRLkZBQE3o/C7cfl/hfO9iJt+J1l133cWPP/5IkyZNGDhwIMOGDeP7779n69at9klNRaTwPP/fbfyy11xmx8/DhXd73uHgiEqRy3FwcDHc3hO8K5jbIqfA8tHmAwdg9uPwwGQIrOWwMOVPkhNgzf/Bjv+Cux/c9Sbc8dD1mscNn1xPsjq/B/5VYfFQ8ziAYyuvn+tKHGybAS0Hm78Hp7eZCYpfZQiqdz2RSzoLXz8Icfvhjofh0Rl5i3XvfNg3H9q9DAE14It74OIJaPYMlAs1a9zSkwGLmZw4uUBKEgTeZn6fsDuhTo/sE8ozO+DYamjcz6x1SjgFG6de/+4Xjl0ve2wlDF5n1uj9WeSU60nWPaOh7VAzMYpaAz8O+VNBA7Z8/qePNkhJg73zIP6w+f/HtQuQlgxL38h8bYALR2HOE+Z3bviY+f1dvcDDL2/3sYSxGPmshrLZbNhsNlxczBztu+++Y926ddSqVYvBgwfj5uZWKIGWVomJifj7+5OQkICfX+n8JZOCsyP6Ig9N3WD//HTrUN7pWc+BEZUiZ3bArJ6QkmA+XJ/52XyQTrvTfJB4+F9/OHuWh2dXQIWaZtNM6uXsHxIXomDxMLOZ6p5R5l/9f3YlHg7+ZD5cmz4DLvr3M8+uXoDfl5tJcOLpzPtcPKDufWaCsnqc+fN78FNo9Li5/8p5M3Fe++H1hKHl87DpU/N9hdpw/kjmc7p6mc1lzQbAlulweuv1fX2+yb52xjDgxHqI3QM7/2cmT2DWFLl4QEpi/r93rc5mjZEtHao0NZvuzh00k5yM756efL28kyuEtzcTr/hD17c7u0H1VnB2nxln+dDrtXzd/w9a/i3zdX95FbZ8AY/NgZid5nGhbcxznz8Kl07A6glmgpWd6m2g9QsQ3MBMADMSOjuL2STZ5h9mbEERZlw7/web/2PuL1cdbutm/jxjd4NPkHkPrWnme3cfSL1q1hS6ephNntVagVvhjMTO6/M734mWFCwlWpIfL/5vO4t3x9g///TSnflb09BmNf9qvXYB6t4PVZsWQpQlSFqy2azkWxlObrr+IARo9IRZo3HuINS5F/p+A2e2w8K/w7kDZm2Dm/cfiVaS+SD3rgQnN5oP9N/+BfsWmA8FgKD60PFV81zRG2D1eLOmIINPMDTpBx1fN2ss9syFrV+aD59mA/Pfz6Y0S7tm1gad3Wt+9gmG7uPh3CEzcbpyLnP5Rk9Cz8lZa4KSE+Gn4VCtpXmP//uQ2RyYwc3XrElKSQJbWuZjnVzNROfkRvNz+TDwCoRWz5u1XBeOwU/DMv+Mb+Tsbpa/dtFMmFw9zSQj+ZKZnDu7wtXzZq2Xizvs+R7IwyPb1cusHQN44BNo8pT5PjHGvDffPWXWVGWn+bNm89+N98owzBjdfXK+7qmtZm3huUNQPtxMdvyrQfcJ4H/DahXxv5v/z2361ExEb9TuFfOeLnrx5t83Vxbzj6Au/7p+HwpIoSZaycnJ7N69m7i4OGw2W6Z9DzzwQP6jLcOUaElenbp4lQ7/twqrzeCt+yKoUs6DbvUq5+1gwzD/yt35P/PBkuHP/wiXRTv/Bwufv/7Zw99seon806Ae70rw7HLzL36ASyfh28fgbDYPh1vhEwyXz2J/gIa2NWsrTm66XqbF38wHz5U486/0kiYxxoy9csO/cI4z4F3RTD4WDzOTUAB3f+i34PofDbY/+lqt/zccWW4mr13H5q2z9rVLsPs7M4Gu3Rl8KpnbUy6bTXCHfjJ/Z6zp0GmkmVAtexs2f0amBMgnyKytNKxmMlWtBdzWFRo+Dp7lYNtMM8bWL0Klunm/B8fXw9HfzATm2iXY/DlYU8x9LZ6DNi/C0ZVw+/2wfZZ537uOyfrdrWnwZTezVq7eI2ZydXavmdjUuqfoO6qnXDZrEL972qwZu1HT/mZNXswuOLzE/Peseiuzhi450azhsziZ99yzvPk9UhIheuP12s6eU6HxEwUadqElWkuWLOGpp54iPj4+68ksFqxWa/6jLcOUaElevf/Tfj5fG0XbWhX45tlWeT/w9DaY9+wf/SQsZHogVLwd/r6xoEMtGazpMP2e680lFid4ZAZE9IRds80aJf+q5qi0G/8aNwyzD8/aD80+M9tmZm2+cnaHR7409yfFwK+vw/6F1/fXewTufst8KCQnms0jv/0r8/EBNczasz97cp75MMzJqvGw879w/ySo2SmfN6WAnd5mJgfL/1hR5NnlZi1QfhiG2Ty4/iPz97VqM9jxNWCBfvOhRqecE4OcOsgXtLiD5neNP2Q2K6b+MSVC7S5mbU5AeOFcN+2a2VSYejn/HeqvXYSotebvZ15HDBa2tGtmDV70Rlj0EqRdMX/XH5tzazEahlmDd+0SeAcW+CCWQku0atWqRdeuXXn77bcJCgr6y4GWdUq0JC+SktNoM/Y3klLSmdG/OZ3qVsrbgdcuwaTGmftNVLwdnl4EH9wGGDD8APiFFEbYBe/axT+ac/7ig8FmhTlPwqGfzRFTdw41+5rU6Hhr5zu1DbZOh9sfMGsuLkaZ582oBcsw50lz5FXtLvDE3GzOs9WsWbCmmaPfKtQ0pyX49Y3rTVfB9eFva8ymxKRYWP+x2VTToI/Zp2z9R2Y5F09o/7J5rag14FXB7Hhc2IlHymXzeucOwop3Mu+7/QHo83X+zndgsdlx+kbtXjET1eLm2kU4uQV8KkJIY0dHU3KlXDb/3fKvVmyngii0RMvPz48dO3ZQs2bNvxykKNGSvPl4+RH+vfwwNSt6s2xYB5yc8vgPz4r3YO0HEFgHnlpo9rHwCzGbRj6/y/wrvBCq1HOUetVsTrmV4ezRG2HW/ebD+pHpN7nOFbN2KLw9+AbDT6+YzU53DjWbHH57H9ZMMJORXp+bTS1F4eoFszam0ZPXRzXm9bhzh8yh+qnm3IUE1ISEk9dHQ+ZFoyfMEWF/7u+1/SvYNsu8Lx1f+2tTDcTsgrnPmKPKMrh4Qvq165+7jTdr2pxczEQyJ8kJEDnV7MwOUL+32Yfp3EGo/6jZ3FVMH8BSNhRaojVgwADatm3LwIED/3KQokRLchebkMxr83ez6o8Z4Cf0akDv5tXydrDNBh/Uhqvx0Oe/WZOJjCSsfm8z2ShsNht81gHiDkDrv8Pdb4OTc96OtabBlBbXh4n/fQtUvC3n8j//849+M5i1VPYOzhZz1NjWPxK1h7+ABo/ewpdxkF1zYMENo8FCmpjJa8wu8A0xO4XX6W5OJbBxCsQf+WOagD9GuDV52uxwnXDK7IO08xuzT1iGCrXM/jAn1kNYO+g2xtyenGg2l57/3RwZ5lk+cxzHVsM3j2RN/N44a/YpWvrm9XmYMjR6AnpOyZwwXToJu+eYTXBJZ8xtFmcYuidrE66IAxVaonX16lUeffRRKlasSP369XF1zTxL8ksvvXRrEZdRSrQkN4O+2sqy/WcBeL5jTUZ0rYMlr3/Fx+yC/7QHNx8YEZV16oBjq+CrnuBXBYbtu95hvpCGQnNyM0zvfP1zgz5m7Yqza+41E8mJ5gizPw9Nb9zPHEV2o5jdZifyX0ZcH+2XIaje9VFqYI4yu2/irX0XR9rxXzMZqdYc/KtDYG3zZ3dqizn9QE6jwnZ8Az+8kP0+Nx9zVNvV81n3Pf6dmTzNG3S9ZiqsnTkK093P/NldiILPO5nNZrU6m8u3pF0xh9YP/NU8xjDgf33gyK9Zr9Hkaah7r5msbZxyfbtvCFRpYjbHluVBG1IsFVqi9cUXXzB48GA8PT2pUKFCpn/0LRYLx44dy+VouZESLcnJrpOX6DllPRYLzHqmBe1vq5i/E6z5P7P57Lbu8PjsrPtTr8C46mZtxpDdsPJ9sz/M04vMDscF7dc3/hjNZzFrsjJqUer0MGvccqrdipwKv440azWaDzRrqizO8PdNZpIBZn+O7bPMEWB/rp3JEHqn2Yn80zZms1atzmai4FLGZtRf/g6sm2iOdKx7rzmdRZVm0Ol1M8k+d8icwuL8Udj17fXaKSdXs49Y4G3mSLaM5kvvSmbt2e8rIPGUWbv2zC9mrdfq8XD3qMwTu0athVl/zDfVduj1/mQ38qpg1pq1eK7wEn+Rv6jQEq3g4GBeeuklXnvtNZw0r8tfpkRLbpScZuWdH/fz7WZzRueHm1RhYu9GOR9gs5mTbGaMlGv3ilnL8G1fc392kw9m+OIesybk7rfNfkuG1ews/9yam0+eaU3L+7p/Nht83MDsU9T7a7Pm48c/1X53eM0cLp961ayJq97KfPAfWwULBpvzCt33b7PZ73994fAvZhNXv4VmE9bnncwZqTME1ITHvjWTO8/y0P4VqFjHnNE7OtJMMsrimoWGYS6ZUini5n3EkhPhh7+bzYWGzRwtOGCp+fuy6B9ZJ/T0CYJBK3Nv3jMMs4+aV6C5puD5o2ayt+ETOLvfbA72LG+OmLxxIIFIMVNoiVZAQABbtmxRZ/gCokRLbvTdlpOMmGdOnOnr4cKKlztQyTebtdQMA1aOMUelpSRc357Rd+baRXMW5v4/5by0xapxsGps1u2tXzTXIsuulskwzLmnDiyGB6dCxJ/mzjuzw2yK9KmUeWj90d/g64fMeapePmR2aj76Gxxeen027ntGm81b54+Y8+YcW319UkW/KvDiVrN240IUzLzPrEH5MycXaPMStB1i1lTdOAu73JqEU+bcTHV6XE/ODMNcrujkRvNn7hVodlD31Uh0KTsKLdEaNmwYFStW5PXXX//LQYoSLcks3Wrjvk/WcTDWbJr5emAL2tXOocnwxAaY0f3653LVMy+c6xMMQ3bmnnCkXTMn38xY761qCzi1+Y/3zeHpxWZH5sQz5vIat3U1JwzcNtMsY3GGJ74zm+aiN5jJlMXJnFLg2Gqzqa/zuzD3aXNag+aD4N4Prl/fMMwO1L8vzz4+z/LmA/zOYZmnoDh/FD5pcv2zs5tZuxXWNufvKiJSgAot0XrppZf46quvaNiwIQ0aNMjSGX7ixBLYudSBlGhJhmupVrp8tJqTF8wOx+te7UTV8rn0T/npFXO5kZp3mxNjevib80LNfcacLfreD80h8DdjTTNHnsUfgY4jzb5aG6de3x/eAaJW/8VvB2AxF7INvmFtxkvRsGSk+d/zv19fOiSsHfT6wpyeITuRU8zJOTv80+xMXUoXpBWR4qnQEq1OnXKeadhisfDbb7/l53RlnhItyfDDztMMmb0TyMNi0dZ0mHi7uazJ43Phti7X9yUnmhNZBta+9XmGNn8OP7+S/b6AGtDj/6B6a/iya/brlIW2NTvUb/jk+ui/loPNqQduxppmLknjX/XmZW3WvE8RISJSgPL6/M739MorV678S4GJSPbmbTeXcHnprloM71In98KHfjKTLK8KWWcz9/D767U7TZ4yJwjFMBOrPXPNjuihbc1pElz/6DP27G/mXEdL3zITqrveMhO8jOSn0h0Q+Yk5yq/Dq3m7trNr3pIsUJIlIsXeLS0qLQVHNVoCcObSNe4c/xs2A1a90pGwQO+cC188AV8/aE7e2e5lc8SgiIgUqQKt0Xr44YeZOXMmfn5+PPzww7mWnT9/fv4iFSmDLl5J5ac9MTSqVo56VfyZs+UkNgNa1QjIPcm6dgm+7GbWIrl6m7VMIiJSbOUp0fL397dPTOrn55f3malFJFuvztvN0j9mfP9Pv6bM2XISgMdb3mTuoN/eM5Ms/+rmPFF5bWITERGHUNOhg6npsGyITUhmzM8H8Pd0xc/ThSkrry+6a7GYsxwEeLsROfIu3F1y6Hdks8H/1TDnx3pyHtS6p4iiFxGRG+X1+Z3vqd3vuusuLl26lO0F77rrrvyeTqRU+mHnad7/aT/JaVZ+j0vi4anrWbTrDF9vPGFPsmpUNJsIM/7UeaRp1eyTLMMwJ42M228mWa7e5pQLIiJS7OV71OGqVatITU3Nsj05OZm1a9cWSFAiJVma1WafpiEq/io7oi9y/koq5bxc6VSnEp5uzvi4uzCgbTjPfrWFvacT8fVwoV+rHJoNV75vrlsY8MdqDNVbls3lY0RESqA8J1q7d++2v9+/fz+xsbH2z1arlSVLllClSi5rXImUEXtPX18OZ/kBsx9WeKA3855vQ4B35vUDpzzehI3HznNX3SAq+mazwPGZnWaSBeZiyABhdxZG2CIiUgjynGg1atQIi8WCxWLJtonQ09OTTz75pECDEylJEq6m8dGKw8xYfzzLvoF3hmdJsgBCK3gTWiGXUYYrx2T+7OplLkkjIiIlQp4TraioKAzDoEaNGmzevJmKFa+vv+bm5kalSpVwdtbkgVJ2jVywm5/3XK/pfa5DDWZvPomLk4WejUJyOTIbhmHOuH7kV3PtwN5fw/F10GKQuaahiIiUCHlOtEJDzf4jNput0IIRKamSktNYfiDO/tnbzZknW4YysG04WMDXI499qq5dgs86QMW64PLH7Ot3PAS332e+RESkRMn3qMNZs2bx008/2T+PGDGCcuXK0aZNG06cOFGgwYmUFCsOxJGabqNGRW+ixvZgx9tdqBbgRSU/Dyr5euT9RId/hYvH4fAS2L/Q3Hbn8MIIWUREikC+E60xY8bg6ekJQGRkJJMnT2bChAkEBgYybNiwAg9QpCRYeyQegG53BGOxWHBzyff/WqZjN6wlevv9EJzL4tIiIlKs5Xt6h5MnT1KrVi0AFi5cyCOPPMLf/vY32rZtS8eOHQs6PpESYX9MIgCNqpW79ZNY0+Hob9c/V20BPaf8tcBERMSh8v1nt4+PD+fPnwdg6dKl3HOPOTu1h4cH165dK9joREqAlHQrR84mARAR8hdm9/91JFw+C+7+MCIKBiwBD/8CilJERBwh3zVanTt35tlnn6Vx48YcPnyYe++9F4B9+/YRFhZW0PGJFHtHzl4m3Wbg7+lKlXKet3aSuIOw+TPAAg9OAa+AAo1RREQcI981WlOmTKF169acO3eOefPmUaFCBQC2bdvGY489VuABihR3+86YE5RGVL7FBdf3fA9TW5rv695r9ssSEZFSId81WuXKlWPy5MlZtr/zzjsFEpBISZFmtfHx8iNMXvk7AM3Cyuf/JBePw8Lnr39u9XyORUVEpOTJc43WhAkTMvXBWrNmDSkpKfbPSUlJvPDCCwUbnUgxtmjnGXuSFejjxrN31sj/SZaNAusfa4c+/LmW1xERKWXynGiNHDmSpKQk++f77ruP06dP2z9fvXqV//znPwUbnUgxtjnqgv39pL6N8ffKYVJSw4Dd32UeUQhwYoM5V5bFCZ7fAA16F16wIiLiEHluOjQMI9fPImXN1hNmovXFU81oUysw54KHl8D8Qeb72++He/8NXhVgyWvmtiZPQ9AdhRytiIg4Qr77aImUddtOXCTxWhpHz10BoEnoTfpmbfz0+vsDP8LVC1DrHojZBe5+0OmNQoxWREQcSYmWSD7sPZ3AI9M2kFGhWyfIlwBvt5wPiP8dolabzYN9/gtzn4ET680XQIdXwadizseLiEiJlq/pHb744gsmTZrEpEmTSE9PZ+bMmfbPX3zxxS0FMHXqVMLDw/Hw8KBp06asXbs21/KrV6+madOmeHh4UKNGDaZNm5alzLx584iIiMDd3Z2IiAgWLFiQ7+sahsHo0aMJCQnB09OTjh07sm/fvizniYyM5K677sLb25ty5crRsWNHTdxaSqVZbbz74357kuXv6crYXvWzL/zTKzC1NSwean6udY85dUOLP5oQnd2gy7+g9d8LPW4REXEgI49CQ0ONsLCwm77yY/bs2Yarq6vx+eefG/v37zeGDBlieHt7GydOnMi2/LFjxwwvLy9jyJAhxv79+43PP//ccHV1Nb7//nt7mQ0bNhjOzs7GmDFjjAMHDhhjxowxXFxcjI0bN+bruuPGjTN8fX2NefPmGXv27DH69OljVK5c2UhMTMx0LT8/P2Ps2LHG3r17jcOHDxtz5841kpOT83wPEhISDMBISEjIz60TBxjy7XYj9NXFxm1v/GysPHjWOJeUw8/5crxhjPLL/Nrzx+9oWoph7PjGMM4fLbrARUSkwOX1+W0xDMf1am/ZsiVNmjTh00+v92G5/fbbefDBBxk7dmyW8q+++iqLFi3iwIED9m2DBw9m165dREZGAtCnTx8SExP55Zdf7GW6detG+fLl+fbbb/N0XcMwCAkJYejQobz66qsApKSkEBQUxPjx43nuuecAaNWqFZ07d+a999675XuQmJiIv78/CQkJ+Pn9heVbpFDtO5PAvZPW4exk4Yunm9GpTqWcC++aAwv+Zr63OINfCLy4BVxvcdZ4EREpdvL6/M73zPAFJTU1lW3bttGlS5dM27t06cKGDRuyPSYyMjJL+a5du7J161bS0tJyLZNxzrxcNyoqitjY2Exl3N3d6dChg71MXFwcmzZtolKlSrRp04agoCA6dOjAunXrcv3eKSkpJCYmZnpJ8Td9bRQA99avnHuSBeYoQ4B2r8A/f4fn1yvJEhEpoxyWaMXHx2O1WgkKCsq0PSgoiNjY2GyPiY2NzbZ8eno68fHxuZbJOGderpvx39zKHDt2DIDRo0czaNAglixZQpMmTbj77rs5cuRIjt977Nix+Pv721/VqlXLsawUD1abwbL9ZwF4uk1Y7oUN43pH91r3mGsWamFoEZEyy2GJVoYb14YzDCPX9eKyK3/j9ryc86+WsdlsADz33HM888wzNG7cmH//+9/UqVOHL7/8Msf4R44cSUJCgv118uTJHMtK8XAkLomklHS83ZxpWDWbpMkwIP4IpF6BpBi4fNZsMqzcsOiDFRGRYsVh0zsEBgbi7OycpfYqLi4uS01ShuDg4GzLu7i42Be3zqlMxjnzct3g4GDArNmqXLlytmUytkdERGQ6z+233050dHSO39vd3R13d/cc90vxs+3ERQAaVS+Hi/Mff5tcvQA//B1C24CbNyweBi4e5shCgEq3g5uXgyIWEZHiwmE1Wm5ubjRt2pRly5Zl2r5s2TLatGmT7TGtW7fOUn7p0qU0a9YMV1fXXMtknDMv1w0PDyc4ODhTmdTUVFavXm0vExYWRkhICIcOHcp0nsOHDxMaGpqneyAlQ0ai1bT6nyYm/WUEHPoZlr5pJlkA6cmwd575PqRR0QYpIiLF0i3VaB09epQZM2Zw9OhRPv74YypVqsSSJUuoVq0ad9yR96VEhg8fTr9+/WjWrBmtW7fms88+Izo6msGDBwNmM9vp06f56quvAHOE4eTJkxk+fDiDBg0iMjKS6dOn20cTAgwZMoT27dszfvx4evbsyQ8//MDy5cszdVK/2XUtFgtDhw5lzJgx1K5dm9q1azNmzBi8vLx4/PHH7WX++c9/MmrUKBo2bEijRo2YNWsWBw8e5Pvvv7+V2yrFUFJyGsv2mf2zWoSbtaacPwp75mYuaHGC0LZw/I/52EIaF2GUIiJSbOV33ohVq1YZnp6exj333GO4ubkZR4+a8wGNHz/e6NWrV35PZ0yZMsUIDQ013NzcjCZNmhirV6+273v66aeNDh06ZLl+48aNDTc3NyMsLMz49NNPs5xz7ty5Rp06dQxXV1ejbt26xrx58/J1XcMwDJvNZowaNcoIDg423N3djfbt2xt79uzJcp6xY8caVatWNby8vIzWrVsba9euzdf31zxaxdu0Vb8boa8uNu76YKVhtdrMjQcWm3NjTW1jGD/90zBG+RvGin+Zc2RtnGYYP71iGClXHBq3iIgUrkKbR6t169Y8+uijDB8+HF9fX3bt2kWNGjXYsmULDz74IKdPny6cjLCU0jxaxdeJ81fo/vFarqZamfBIA3o3+2OE6IbJsPQNiHgQes8yO8G7ekEugzhERKR0KbR5tPbs2cNDDz2UZXvFihU5f/58fk8nUixZbQbDv9vF1VQrrWoE8EiTqtd3XjTn1CIg3Pyvm7eSLBERyVa+E61y5coRExOTZfuOHTuoUqVKgQQl4kjHzl3mlbm72HbiIr7uLnzwaEOcnP6USF34I9EqH+6YAEVEpMTId6L1+OOP8+qrrxIbG4vFYsFms7F+/XpeeeUVnnrqqcKIUaTIrD1yjrs+XM2CHWYT+L8eqkfV8jdM03BjjZaIiEgO8p1ovf/++1SvXp0qVapw+fJlIiIiaN++PW3atOHNN98sjBhFiszSP0YYAozvVZ+ejW6opbWmw6U/5klTjZaIiNxEvqd3cHV15ZtvvuG9995j+/bt2Gw2GjduTO3atQsjPpEitfGY2c9w2pNN6VYvOPPOxDMQvRFs6Wbnd78QB0QoIiIlyS3PDF+jRg1q1KiB1Wplz549XLx4kfLly9/8QJFiavXhcxyJu4zFAq1qBGTeabPCl93g0gnzc1g7cHIu+iBFRKREyXeiNXToUOrXr8/AgQOxWq106NCBDRs24OXlxeLFi+nYsWMhhClS8AzD4O//287mqItUD/Bke/QlACIq+1HOyy1z4VNbridZYC4YLSIichP57qP1/fff07ChuVjujz/+yLFjxzh48CBDhw7ljTfeKPAARQrL9uiL/LwnlvjLKfYkKzzQm/97JJvFoA/+lPlzrbsLP0ARESnx8p1oxcfH2xdd/vnnn+nduze33XYbAwcOZM+ePQUeoEhh+d+mk1m2ff5UUyJCspl47shS87+1u8L9k6BCzUKOTkRESoN8Nx0GBQWxf/9+KleuzJIlS5g6dSoAV69exdlZfVakeEpJt7Jkbyx33x6Ej7sLVpvBr/tiAZjzt1Ys2RdLlXKe1Krke/0gwzAnIk1OgHMHzW0PTgXvQAd8AxERKYnynWg988wz9O7dm8qVK2OxWOjcuTMAmzZtom7dugUeoEhB+ODXQ3y+Noq2tSrw9YCWHIhJ5HJKOr7uLjQLC6BljQqZD4icCusmQrdx1xOrctWVZImISL7kO9EaPXo09erV4+TJkzz66KO4u7sD4OzszGuvvVbgAYr8FYZhsGjXGT5fa04yuv7388zYcJyMid6bhpXH2emG5XP2L4JfR5rvFz4PTZ8x34c0KaKoRUSktMj3otJSsLSodMGx2gzSrDY8XK83Yf+6L5bnvt4GgLebM1dSrZmOebeDL081rQSV6ppNhSc2wI8vwfnfs16g83vQ9qVC/Q4iIlIy5PX5nacarUmTJvG3v/0NDw8PJk2alGvZl17Sg0gc47mvt7I56gLfP9+Go3GX+b+lhzh27op9//8GteKT346w/EAcAK2c9vPk1v+DzWnw1A9wfD2sHnf9hI98Cd8PuP655l1F9VVERKSUyFONVnh4OFu3bqVChQqEh+e87IjFYuHYsWMFGmBppxqtgnHs3GXu+nB1jvsXvNCGxtXLk5JuZe/pRNydLdSZ3RrXy2eyP6BOD3jsW/jmUXPEYceR0FFN4yIiYirQGq2oqKhs34sUFwv/WAQ6O34eLjSsWg4AdxdnmoaWh9g9kJFk+VaGpBjzfcPHoGFfqNLU/NxrOpzdC9VbF2L0IiJSWt3yEjxgdjQGsyZLxJFWHDSbAx9qXIUVB87i7urMohfbsmjnGZqElsfpzx3ej66Erx8039fuYiZWGU2EHV6FgD/V2nr4QWibovkSIiJS6uR7wlKAr776ivr16+Pp6YmnpycNGjTg66+/LujYRPIkzWrjyNnLOGHjX7ZJ7Kz6Ib89V5fK/p4816EmzcP+tG5h4hmzs3uGmndDxEPQ+V2z9iog56ZxERGR/Mp3jdbEiRN56623ePHFF2nbti2GYbB+/XoGDx5MfHw8w4YNK4w4RXJ07NwVUq02XnRfgveheQD4/jAAuo6BBc/B1fNw99sQswu2zbx+oE8w3PEgODlB2yEOiV1EREq3fE/vEB4ezjvvvMNTTz2VafusWbMYPXq0+nDlkzrD/3U/7DzN27PXsdFzCJ7GtbwdlNHZXURE5Bbk9fmd76bDmJgY2rTJ2melTZs2xMTE5Pd0In/Z8egoPnf70EyygupDjw+u76zcEIIbXP/s6g3O7tDmH0UfqIiIlDn5bjqsVasW3333Ha+//nqm7XPmzKF27doFFphIXhg2G513v0KE0yFzQ6eRcFs3uHgcnN2gwwhIToTV482O73W6gc1mNheKiIgUsnwnWu+88w59+vRhzZo1tG3bFovFwrp161ixYgXfffddYcQokqN9m5ZSL/0AAEk9Z+Bb915zR9f3rxdy9YT7Jl7/rCRLRESKSL6fOL169WLTpk0EBgaycOFC5s+fT2BgIJs3b+ahhx4qjBhFcmSs+xiALQH349v4YQdHIyIiktktzaPVtGlT/vvf/xZ0LCJ5cvhkHNM2nOaeign0uLIBm2HBu9NQR4clIiKSxV+asFSkqJ08uJXQb7vxiK02HpZUcII1Ts1pf0dTR4cmIiKSRZ4TLScnp5vOAG+xWEhPT//LQYnk5Ozqz6lmSaON834A0gxn9t/+Dzo6aXUCEREpfvKcaC1YsCDHfRs2bOCTTz4hn1NyieSPzUZo7LJMm/bf9jz9H+rhoIBERERyl+dEq2fPnlm2HTx4kJEjR/Ljjz/yxBNP8N577xVocCJ/dnbfKoKM8yQZnlhfPkI5T1cauno4OiwREZEc3dI49zNnzjBo0CAaNGhAeno6O3fuZNasWVSvXr2g4xOxu7B5NgDbvdpSzs8XlGSJiEgxl69EKyEhgVdffZVatWqxb98+VqxYwY8//ki9evUKKz4Rk81K5dNLAbh22wMODkZERCRv8tx0OGHCBMaPH09wcDDffvtttk2JIgUpOc1KbEIyP+2J4eTe9YyzXSTR8OL2tkq0RESkZMjzotJOTk54enpyzz334OzsnGO5+fPnF1hwZYEWlc7ZwJlb6HH0HepZovjR2ppXXOeyy6M5DV9b7ujQRESkjMvr8zvPNVpPPfXUTad3ECkoCVfTOHDoANPd1wJQx2kuAA1a3ePIsERERPIlz4nWzJkzCzEMkeusNoP/bY6ms9PWLPss1Vo4ICIREZFbo5nhxbEMAw4uhqMr4Y6HuBzSmvG/HOTrjcdZ6LYuc1mLM1TRDPAiIlJyKNESx4paA3OeBODq9tl0vTqG01TkIad1NHI6is3JDSfDChYL3PshePg7OGAREZG8U6IljrV3nv2tl+0K090+4MnU13nNcyFYwanTSGjcD9KvQTnN0yYiIiXLLU1YKlIgrOlmsyHwz7S/EWeUp67TSbZ6PE+QNQY8y0PLweBTUUmWiIiUSEq0xHHObIer57ns7Md8azsWN5oGFWpd39/kaXDzclx8IiIif5GaDsVxTm0BYIv1Nqw407BJS7h3LexfCAmnoPXfHRufiIjIX6RESxznlDl9w5a0GpTzcqVRtXLgZIFGjzs2LhERkQKipkNxGNsfidZOoxZ9m1fH2UkT4oqISOmiREsc4/I5nBKisRkW4nwiGHJ3bUdHJCIiUuDUdChFyzDgh7/Dzm8A+N0I4e5GtfB0y3n9TBERkZJKNVpStE5usidZADtttehyR5ADAxIRESk8SrSkSNk2TMn0+Xe3ujSqVt5B0YiIiBQuJVpSdKzpGEeWZdrkU7OlOsGLiEippT5aUmSSTu3D13qNq4Y7u40aWDBo0Li1o8MSEREpNEq0pGjEHeDq133xBXYbNeib+hY1Knrzc231zxIRkdJLiZYUCeOnVwhKPwNAnE8EB4d1w8XJgouzWq9FRKT0UqIlhS/1CpYT6+wfe/ToiYurpnMQEZHST9UJUviiI+1vZ3k9hUvEfQ4MRkREpOgo0ZLCF7UGgO/SO7A3/FlwUm2WiIiUDUq0pPAdWw3AetsdRIT4OTgYERGRoqNESwrX1QsQswuASNsd3F5ZiZaIiJQdDk+0pk6dSnh4OB4eHjRt2pS1a9fmWn716tU0bdoUDw8PatSowbRp07KUmTdvHhEREbi7uxMREcGCBQvyfV3DMBg9ejQhISF4enrSsWNH9u3bl21MhmHQvXt3LBYLCxcuzPuXLwtOrAcMjtiqEEd5JVoiIlKmODTRmjNnDkOHDuWNN95gx44dtGvXju7duxMdHZ1t+aioKHr06EG7du3YsWMHr7/+Oi+99BLz5s2zl4mMjKRPnz7069ePXbt20a9fP3r37s2mTZvydd0JEyYwceJEJk+ezJYtWwgODqZz584kJSVlieujjz7CYtHs5tk6sQGADbYIqpTzxN/T1cEBiYiIFCHDgVq0aGEMHjw407a6desar732WrblR4wYYdStWzfTtueee85o1aqV/XPv3r2Nbt26ZSrTtWtXo2/fvnm+rs1mM4KDg41x48bZ9ycnJxv+/v7GtGnTMh23c+dOo2rVqkZMTIwBGAsWLLjJt84sISHBAIyEhIR8HVdifNndMEb5GcNGjjCenbXF0dGIiIgUiLw+vx1Wo5Wamsq2bdvo0qVLpu1dunRhw4YN2R4TGRmZpXzXrl3ZunUraWlpuZbJOGderhsVFUVsbGymMu7u7nTo0CFTbFevXuWxxx5j8uTJBAcH5+l7p6SkkJiYmOlVahkGRuweAPYbYUSo2VBERMoYhyVa8fHxWK1WgoIyL8ESFBREbGxstsfExsZmWz49PZ34+Phcy2ScMy/XzfjvzWIbNmwYbdq0oWfPnnn6zgBjx47F39/f/qpWrVqejy1xLp3AkpJIiuHCCacqPNi4iqMjEhERKVIO7wx/Y98mwzBy7e+UXfkbt+flnH+1zKJFi/jtt9/46KOPcow1OyNHjiQhIcH+OnnyZL6OL1FidgNw2KjKE61rER7o7eCAREREipbDEq3AwECcnZ2z1F7FxcVlqUnKEBwcnG15FxcXKlSokGuZjHPm5boZzYC5lfntt984evQo5cqVw8XFBRcXczWjXr160bFjxxy/t7u7O35+fplepZVxZgcA+21hdI7Q4tEiIlL2OCzRcnNzo2nTpixbtizT9mXLltGmTZtsj2ndunWW8kuXLqVZs2a4urrmWibjnHm5bnh4OMHBwZnKpKamsnr1anuZ1157jd27d7Nz5077C+Df//43M2bMyM+tKLWSj64HYJflNhpWK+fYYERERByh8Pvl52z27NmGq6urMX36dGP//v3G0KFDDW9vb+P48eOGYRjGa6+9ZvTr189e/tixY4aXl5cxbNgwY//+/cb06dMNV1dX4/vvv7eXWb9+veHs7GyMGzfOOHDggDFu3DjDxcXF2LhxY56vaxiGMW7cOMPf39+YP3++sWfPHuOxxx4zKleubCQmJub4fdCow+vSko20dyoaxig/Y8jkOY6ORkREpEDl9fnt4sgkr0+fPpw/f553332XmJgY6tWrx88//0xoaCgAMTExmea2Cg8P5+eff2bYsGFMmTKFkJAQJk2aRK9evexl2rRpw+zZs3nzzTd56623qFmzJnPmzKFly5Z5vi7AiBEjuHbtGi+88AIXL16kZcuWLF26FF9f3yK4MyWf9fROXGwpnDd8qVe/qaPDERERcQiLYfzRm1wcIjExEX9/fxISEkpVf63TswZSJep7ltOSViN/xsfdoTm9iIhIgcrr89vhow6lFIo7SOWo+QAcv22AkiwRESmzlGhJwTIMjJ+G44SNX63NqNnkLkdHJCIi4jBKtKRgHVuF5cR6rhrujLE9RcsaAY6OSERExGGUaEnB2msu8L3Q2pZq4XXxclOzoYiIlF1KtOQvSbiaRsI1c51J0pKxHfgRgB9trflb+xoOjExERMTxVN0gN3X+cgqjvl3FgPMTcW3yGGerdqdtFRfGr45l5objuLs48cuQdtTYMR6n5EvEGAGkhLSiXe1AR4cuIiLiUEq05Kbe+XE/zU58QROXjbBhI4etc3F3Wk+g9QEecw7kis2DyB+PUCN6EgBvpT3DPzrXzXXNShERkbJAiZbkat+ZBBbtOs2b7pvt23o5rwPgRZcfrhf8Y17ZGeldsdbuRsfbKhZlmCIiIsWSEi3J1fJtB1nh9gqVLJfs26wWV5yNtCxlDxBO8+em0b9qedVmiYiIoERLcpF84RRttg+nplOMueGut6DmXTiXDwNXLzizHQJvw/phBM62FEIeeg//aprOQUREJIMSLclWQmIixietaW4kAnDtsfl41rk7c6HQNgA49/8REk7iX+++og5TRESkWNP0DpKtb/43g3J/JFlRDYZlTbL+rHpLqP8IqLlQREQkEyVaksWlq6kEnV4GQHy9AYQ/PNqh8YiIiJRUSrQki+2/n+Eep20ABDbr5eBoRERESi4lWpLFtR1z8Ldc5YJrZaje2tHhiIiIlFhKtCSLOifnAnCq9hPg5OzgaEREREouJVqSSWJcNLXSj2AzLFRo87SjwxERESnRlGhJJsc3LQLgsHMtqlSt7uBoRERESjYlWpLZkaUAnA1q5+BARERESj4lWmIXffoMtyVsAKBco/sdHI2IiEjJp0RL7Db++AUeljROuYTSoHlHR4cjIiJS4inRErsa51YAkFr/MSxO+tUQERH5q/Q0FQBS0tKpnX4EAP+IXJbbERERkTxToiUAnD52AH/LFVJxISC8oaPDERERKRWUaAkAF49uBuCESzgWF3cHRyMiIlI6KNESAGyndwIQ7xfh2EBERERKESVaAkDguU0ApAY1cXAkIiIipYcSLcF6OZ7Q1MMABDbs7uBoRERESg8lWsKpbT/jhMFhqlOndm1HhyMiIlJqKNESkg+Yy+4c82+Ji7N+JURERAqKnqplnGGzEXh2PQDOtTs7OBoREZHSRYlWGXdkzyYqGBe4arjTvH0PR4cjIiJSqijRKsPikpJZ9+OXAET5NKacn6+DIxIRESldlGiVYf9bu4+H034CoErHZxwcjYiISOmjRKuMstkMXLfPpJzlCpd9wijX9FFHhyQiIlLqKNEqo+ZvPkzvtB8AcO/4Cjg5OzgiERGR0keJVhl04lwCVX7uT0VLAgnulXFt3NfRIYmIiJRKSrTKoONbltDaaT/XLJ749p0Ozq6ODklERKRUUqJVBiWf2gXA8fJtcApv6+BoRERESi8lWmWQ24WD5ptKEY4NREREpJRTolXGWG0GQdeOAlAurJFjgxERESnllGiVMVFxl6jJaQAq1W7q4GhERERKNyVaZcyJQ7txt6RxzeKBc/lQR4cjIiJSqinRKmMuH98KQJxXHXDSj19ERKQw6UlbxrjFmSMOUyo1cHAkIiIipZ8SrTLEZjMIvmyOOPQOb+7gaEREREo/JVplyMnzidQlCoBKdVo6OBoREZHST4lWGRJ9aAeellSuWTxxrXibo8MREREp9ZRolSFJx8yO8DHqCC8iIlIk9LQtQ1z/6AifrI7wIiIiRUKJVhlhGAbBlw8A4B3azMHRiIiIlA1KtMqIC0lXqW0cByC4bivHBiMiIlJGKNEqI04fP4iHJY0U3HCvVNvR4YiIiJQJSrTKiITofQDEulZVR3gREZEioiduGZF21pyoNNGnhoMjERERKTuUaJUR7hd/B8AaoGZDERGRouLwRGvq1KmEh4fj4eFB06ZNWbt2ba7lV69eTdOmTfHw8KBGjRpMmzYtS5l58+YRERGBu7s7ERERLFiwIN/XNQyD0aNHExISgqenJx07dmTfvn32/RcuXOAf//gHderUwcvLi+rVq/PSSy+RkJBwi3eicJW/as4I7145wsGRiIiIlB0OTbTmzJnD0KFDeeONN9ixYwft2rWje/fuREdHZ1s+KiqKHj160K5dO3bs2MHrr7/OSy+9xLx58+xlIiMj6dOnD/369WPXrl3069eP3r17s2nTpnxdd8KECUycOJHJkyezZcsWgoOD6dy5M0lJSQCcOXOGM2fO8MEHH7Bnzx5mzpzJkiVLGDhwYCHdrVtnsxmEWE8DUL76HQ6ORkREpAwxHKhFixbG4MGDM22rW7eu8dprr2VbfsSIEUbdunUzbXvuueeMVq1a2T/37t3b6NatW6YyXbt2Nfr27Zvn69psNiM4ONgYN26cfX9ycrLh7+9vTJs2Lcfv89133xlubm5GWlpajmVulJCQYABGQkJCno/Jr7hzcYYxys8wRvkZqVcL7zoiIiJlRV6f3w6r0UpNTWXbtm106dIl0/YuXbqwYcOGbI+JjIzMUr5r165s3bqVtLS0XMtknDMv142KiiI2NjZTGXd3dzp06JBjbAAJCQn4+fnh4uKSY5mUlBQSExMzvQpb/Cmzf1YCPrh6+hX69URERMTksEQrPj4eq9VKUFBQpu1BQUHExsZme0xsbGy25dPT04mPj8+1TMY583LdjP/mJ7bz58/z3nvv8dxzz+X4nQHGjh2Lv7+//VWtWrVcyxeEpLPHzBhdgm5SUkRERAqSwzvDWyyWTJ8Nw8iy7Wblb9yel3MWVBmAxMRE7r33XiIiIhg1alSOsQOMHDmShIQE++vkyZO5li8IqfEnALjsUbnQryUiIiLX5dzGVcgCAwNxdnbOUkMUFxeXpSYpQ3BwcLblXVxcqFChQq5lMs6Zl+sGBwcDZs1W5cqVsy2TISkpiW7duuHj48OCBQtwdXXN9Xu7u7vj7u6ea5mCZkkwO/mn+lQp0uuKiIiUdQ6r0XJzc6Np06YsW7Ys0/Zly5bRpk2bbI9p3bp1lvJLly6lWbNm9gQnpzIZ58zLdcPDwwkODs5UJjU1ldWrV2eKLTExkS5duuDm5saiRYvw8PDIzy0oMm5XzBGHlKvu2EBERETKGIfVaAEMHz6cfv360axZM1q3bs1nn31GdHQ0gwcPBsxmttOnT/PVV18BMHjwYCZPnszw4cMZNGgQkZGRTJ8+nW+//dZ+ziFDhtC+fXvGjx9Pz549+eGHH1i+fDnr1q3L83UtFgtDhw5lzJgx1K5dm9q1azNmzBi8vLx4/PHHAbMmq0uXLly9epX//ve/mTq2V6xYEWdn5yK5h3nhm2zW3rlXCHVwJCIiImVM4Q+AzN2UKVOM0NBQw83NzWjSpImxevVq+76nn37a6NChQ6byq1atMho3bmy4ubkZYWFhxqeffprlnHPnzjXq1KljuLq6GnXr1jXmzZuXr+sahjnFw6hRo4zg4GDD3d3daN++vbFnzx77/pUrVxpAtq+oqKg8f//Cnt4hPd1qXHy7smGM8jNO7d9YKNcQEREpa/L6/LYYxh+9ycUhEhMT8ff3t08NUdBOnTxB1ekNsBkWbCNP4+LhXeDXEBERKWvy+vx2+KhDKVxxUbsBOOtcSUmWiIhIEVOiVcpdOb0fgPOeYY4NREREpAxSolXKWeIPAZBSrpaDIxERESl7lGiVcj6J5qzwLpXqODgSERGRskeJVilmGAZBqeZkpeWr13dwNCIiImWPEq1SLC7+ApUt5wEIrtXQwdGIiIiUPUq0SrHTv+8C4KLFHzffCg6ORkREpOxRolWKJZ4yRxyec9eM8CIiIo6gRKsUs8UdBOCaf00HRyIiIlI2KdEqxbwSjwLgVKmugyMREREpm5RolVKGYRCcEgWAf2gDB0cjIiJSNinRKqXiLlyiuhELQFCtxg6ORkREpGxSolVKnfl9F04Wg0v44e4f7OhwREREyiQlWqVU0ok/FpP2CAeLxcHRiIiIlE1KtEop49wBAK6Uu83BkYiIiJRdSrRKqWreBukWV3yqqSO8iIiIo1gMwzAcHURZlpiYiL+/PwkJCfj5+RXsya3pYEsHV4+CPa+IiEgZl9fnt0sRxiRFzdnFfImIiIhDqOlQREREpJAo0RIREREpJEq0RERERAqJEi0RERGRQqJES0RERKSQKNESERERKSRKtEREREQKiRItERERkUKiREtERESkkCjREhERESkkSrRERERECokSLREREZFCokRLREREpJC4ODqAss4wDAASExMdHImIiIjkVcZzO+M5nhMlWg6WlJQEQLVq1RwciYiIiORXUlIS/v7+Oe63GDdLxaRQ2Ww2zpw5g6+vLxaLJU/HJCYmUq1aNU6ePImfn18hRyi630VL97to6X4XLd3volWY99swDJKSkggJCcHJKeeeWKrRcjAnJyeqVq16S8f6+fnpf9QipPtdtHS/i5bud9HS/S5ahXW/c6vJyqDO8CIiIiKFRImWiIiISCFRolUCubu7M2rUKNzd3R0dSpmg+120dL+Llu530dL9LlrF4X6rM7yIiIhIIVGNloiIiEghUaIlIiIiUkiUaImIiIgUEiVaIiIiIoVEiVYJNHXqVMLDw/Hw8KBp06asXbvW0SGVSGvWrOH+++8nJCQEi8XCwoULM+03DIPRo0cTEhKCp6cnHTt2ZN++fZnKpKSk8I9//IPAwEC8vb154IEHOHXqVBF+i5Jh7NixNG/eHF9fXypVqsSDDz7IoUOHMpXR/S44n376KQ0aNLBP0ti6dWt++eUX+37d68I1duxYLBYLQ4cOtW/TPS84o0ePxmKxZHoFBwfb9xe7e21IiTJ79mzD1dXV+Pzzz439+/cbQ4YMMby9vY0TJ044OrQS5+effzbeeOMNY968eQZgLFiwINP+cePGGb6+vsa8efOMPXv2GH369DEqV65sJCYm2ssMHjzYqFKlirFs2TJj+/btRqdOnYyGDRsa6enpRfxtireuXbsaM2bMMPbu3Wvs3LnTuPfee43q1asbly9ftpfR/S44ixYtMn766Sfj0KFDxqFDh4zXX3/dcHV1Nfbu3WsYhu51Ydq8ebMRFhZmNGjQwBgyZIh9u+55wRk1apRxxx13GDExMfZXXFycfX9xu9dKtEqYFi1aGIMHD860rW7dusZrr73moIhKhxsTLZvNZgQHBxvjxo2zb0tOTjb8/f2NadOmGYZhGJcuXTJcXV2N2bNn28ucPn3acHJyMpYsWVJksZdEcXFxBmCsXr3aMAzd76JQvnx544svvtC9LkRJSUlG7dq1jWXLlhkdOnSwJ1q65wVr1KhRRsOGDbPdVxzvtZoOS5DU1FS2bdtGly5dMm3v0qULGzZscFBUpVNUVBSxsbGZ7rW7uzsdOnSw3+tt27aRlpaWqUxISAj16tXTz+MmEhISAAgICAB0vwuT1Wpl9uzZXLlyhdatW+teF6K///3v3Hvvvdxzzz2ZtuueF7wjR44QEhJCeHg4ffv25dixY0DxvNdaVLoEiY+Px2q1EhQUlGl7UFAQsbGxDoqqdMq4n9nd6xMnTtjLuLm5Ub58+Sxl9PPImWEYDB8+nDvvvJN69eoBut+FYc+ePbRu3Zrk5GR8fHxYsGABERER9geJ7nXBmj17Ntu3b2fLli1Z9un3u2C1bNmSr776ittuu42zZ8/yr3/9izZt2rBv375iea+VaJVAFosl02fDMLJsk4JxK/daP4/cvfjii+zevZt169Zl2af7XXDq1KnDzp07uXTpEvPmzePpp59m9erV9v261wXn5MmTDBkyhKVLl+Lh4ZFjOd3zgtG9e3f7+/r169O6dWtq1qzJrFmzaNWqFVC87rWaDkuQwMBAnJ2ds2TccXFxWbJ3+WsyRrDkdq+Dg4NJTU3l4sWLOZaRzP7xj3+waNEiVq5cSdWqVe3bdb8LnpubG7Vq1aJZs2aMHTuWhg0b8vHHH+teF4Jt27YRFxdH06ZNcXFxwcXFhdWrVzNp0iRcXFzs90z3vHB4e3tTv359jhw5Uix/v5VolSBubm40bdqUZcuWZdq+bNky2rRp46CoSqfw8HCCg4Mz3evU1FRWr15tv9dNmzbF1dU1U5mYmBj27t2rn8cNDMPgxRdfZP78+fz222+Eh4dn2q/7XfgMwyAlJUX3uhDcfffd7Nmzh507d9pfzZo144knnmDnzp3UqFFD97wQpaSkcODAASpXrlw8f78LvHu9FKqM6R2mT59u7N+/3xg6dKjh7e1tHD9+3NGhlThJSUnGjh07jB07dhiAMXHiRGPHjh32qTLGjRtn+Pv7G/Pnzzf27NljPPbYY9kOEa5ataqxfPlyY/v27cZdd92l4djZeP755w1/f39j1apVmYZkX7161V5G97vgjBw50lizZo0RFRVl7N6923j99dcNJycnY+nSpYZh6F4XhT+POjQM3fOC9PLLLxurVq0yjh07ZmzcuNG47777DF9fX/tzsLjdayVaJdCUKVOM0NBQw83NzWjSpIl9iLzkz8qVKw0gy+vpp582DMMcJjxq1CgjODjYcHd3N9q3b2/s2bMn0zmuXbtmvPjii0ZAQIDh6elp3HfffUZ0dLQDvk3xlt19BowZM2bYy+h+F5wBAwbY/42oWLGicffdd9uTLMPQvS4KNyZauucFJ2NeLFdXVyMkJMR4+OGHjX379tn3F7d7bTEMwyj4ejIRERERUR8tERERkUKiREtERESkkCjREhERESkkSrRERERECokSLREREZFCokRLREREpJAo0RIREREpJEq0RERERAqJEi0REQcLCwvjo48+cnQYIlIIlGiJSJnSv39/HnzwQQA6duzI0KFDi+zaM2fOpFy5clm2b9myhb/97W9FFoeIFB0XRwcgIlLSpaam4ubmdsvHV6xYsQCjEZHiRDVaIlIm9e/fn9WrV/Pxxx9jsViwWCwcP34cgP3799OjRw98fHwICgqiX79+xMfH24/t2LEjL774IsOHDycwMJDOnTsDMHHiROrXr4+3tzfVqlXjhRde4PLlywCsWrWKZ555hoSEBPv1Ro8eDWRtOoyOjqZnz574+Pjg5+dH7969OXv2rH3/6NGjadSoEV9//TVhYWH4+/vTt29fkpKSCvemiUi+KdESkTLp448/pnXr1gwaNIiYmBhiYmKoVq0aMTExdOjQgUaNGrF161aWLFnC2bNn6d27d6bjZ82ahYuLC+vXr+c///kPAE5OTkyaNIm9e/cya9YsfvvtN0aMGAFAmzZt+Oijj/Dz87Nf75VXXskSl2EYPPjgg1y4cIHVq1ezbNkyjh49Sp8+fTKVO3r0KAsXLmTx4sUsXryY1atXM27cuEK6WyJyq9R0KCJlkr+/P25ubnh5eREcHGzf/umnn9KkSRPGjBlj3/bll19SrVo1Dh8+zG233QZArVq1mDBhQqZz/rm/V3h4OO+99x7PP/88U6dOxc3NDX9/fywWS6br3Wj58uXs3r2bqKgoqlWrBsDXX3/NHXfcwZYtW2jevDkANpuNmTNn4uvrC0C/fv1YsWIF77///l+7MSJSoFSjJSLyJ9u2bWPlypX4+PjYX3Xr1gXMWqQMzZo1y3LsypUr6dy5M1WqVMHX15ennnqK8+fPc+XKlTxf/8CBA1SrVs2eZAFERERQrlw5Dhw4YN8WFhZmT7IAKleuTFxcXL6+q4gUPtVoiYj8ic1m4/7772f8+PFZ9lWuXNn+3tvbO9O+EydO0KNHDwYPHsx7771HQEAA69atY+DAgaSlpeX5+oZhYLFYbrrd1dU1036LxYLNZsvzdUSkaCjREpEyy83NDavVmmlbkyZNmDdvHmFhYbi45P2fyK1bt5Kens6HH36Ik5PZWPDdd9/d9Ho3ioiIIDo6mpMnT9prtfbv309CQgK33357nuMRkeJBTYciUmaFhYWxadMmjh8/Tnx8PDabjb///e9cuHCBxx57jM2bN3Ps2DGWLl3KgAEDck2SatasSXp6Op988gnHjh3j66+/Ztq0aVmud/nyZVasWEF8fDxXr17Ncp577rmHBg0a8MQTT7B9+3Y2b97MU089RYcOHbJtrhSR4k2JloiUWa+88grOzs5ERERQsWJFoqOjCQkJYf369VitVrp27Uq9evUYMmQI/v7+9pqq7DRq1IiJEycyfvx46tWrxzfffMPYsWMzlWnTpg2DBw+mT58+VKxYMUtnejCbABcuXEj58uVp374999xzDzVq1GDOnDkF/v1FpPBZDMMwHB2EiIiISGmkGi0RERGRQqJES0RERKSQKNESERERKSRKtEREREQKiRItERERkUKiREtERESkkCjREhERESkkSrRERERECokSLREREZFCokRLREREpJAo0RIREREpJP8Pb/uMI0WOTRQAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import skimage\n", + "\n", + "class SigmaEstimateCallback(callbacks.Callback):\n", + " def __init__(self):\n", + "\n", + " self.save_values=[]\n", + "\n", + " def __call__(self, algorithm):\n", + " self.save_values.append(skimage.restoration.estimate_sigma(algorithm.get_output().as_array()))\n", + "\n", + "mycallback_FISTA_TV_alpha_01= SigmaEstimateCallback()\n", + "algo1=FISTA(initial=ig.allocate(0), f=F, g=0.1*TotalVariation(lower=0), update_objective_interval=10) \n", + "algo1.run(500, callbacks=[mycallback_FISTA_TV_alpha_01])\n", + "\n", + " \n", + "mycallback_FISTA_TV_alpha_1= SigmaEstimateCallback()\n", + "algo2=FISTA(initial=ig.allocate(0), f=F, g=1*TotalVariation(lower=0), update_objective_interval=10) \n", + "algo2.run(500, callbacks=[mycallback_FISTA_TV_alpha_1])\n", + "\n", + "\n", + "show2D([ground_truth, algo1.get_output(), algo2.get_output()], title=['ground_truth', 'FISTA_TV_alpha_01', 'FISTA_TV_alpha_1'], num_cols=3)\n", + "show2D([absorption, A.direct(algo1.get_output())-absorption, A.direct(algo2.get_output())-absorption], title=['ground_truth', 'Data error FISTA_TV_alpha_01', 'Data error FISTA_TV_alpha_1'], fix_range=[[0,3], [-0.02, 0.02], [-0.02, 0.02]], cmap=['gray', 'seismic', 'seismic'], num_cols=3)\n", + "plt.plot(range(10,501), mycallback_FISTA_TV_alpha_01.save_values[10:], label='FISTA TV alpha=0.1 ')\n", + "plt.plot(range(10, 501), mycallback_FISTA_TV_alpha_1.save_values[10:], label='FISTA TV alpha=1.0 ')\n", + "plt.ylabel('Noise Estimate')\n", + "plt.xlabel('Iteration')\n", + "plt.legend()\n", + " \n", + " " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We see with a larger regularisation parameter, the resulting image is less noisy. " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Image metric callbacks (custom callback example) \n" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " MSE MAE PSNR\n", + " 1.07888e-06 5.48145e-04 9.48530e+00\n", + " 5.85316e-07 6.22034e-04 1.21411e+01\n", + " 5.05844e-07 5.72563e-04 1.27749e+01\n", + " 4.31374e-07 5.19819e-04 1.34665e+01\n", + " 3.64704e-07 4.67054e-04 1.41956e+01\n", + " 3.06416e-07 4.16492e-04 1.49519e+01\n", + " 2.56388e-07 3.70092e-04 1.57261e+01\n", + " 2.14156e-07 3.28810e-04 1.65077e+01\n", + " 1.78987e-07 2.92725e-04 1.72868e+01\n", + " 1.50022e-07 2.60981e-04 1.80535e+01\n", + " 1.26383e-07 2.33361e-04 1.87981e+01\n", + " 1.07187e-07 2.09652e-04 1.95136e+01\n", + " 9.16141e-08 1.89309e-04 2.01954e+01\n", + " 7.89449e-08 1.72049e-04 2.08418e+01\n", + " 6.85910e-08 1.57283e-04 2.14524e+01\n", + " 6.00884e-08 1.44610e-04 2.20271e+01\n", + " 5.30737e-08 1.33746e-04 2.25662e+01\n", + " 4.72670e-08 1.24414e-04 2.30695e+01\n", + " 4.24393e-08 1.16364e-04 2.35374e+01\n", + " 3.84176e-08 1.09416e-04 2.39697e+01\n", + " 3.50543e-08 1.03451e-04 2.43676e+01\n", + " 3.22300e-08 9.82989e-05 2.47324e+01\n", + " 2.98493e-08 9.39156e-05 2.50657e+01\n", + " 2.78304e-08 9.01341e-05 2.53698e+01\n", + " 2.61075e-08 8.68679e-05 2.56474e+01\n", + " 2.46249e-08 8.40164e-05 2.59013e+01\n", + " 2.33423e-08 8.14809e-05 2.61336e+01\n", + " 2.22266e-08 7.92211e-05 2.63463e+01\n", + " 2.12462e-08 7.72332e-05 2.65422e+01\n", + " 2.03792e-08 7.54337e-05 2.67232e+01\n", + " 1.96080e-08 7.38151e-05 2.68907e+01\n", + " 1.89173e-08 7.23520e-05 2.70464e+01\n", + " 1.82934e-08 7.10307e-05 2.71921e+01\n", + " 1.77264e-08 6.98001e-05 2.73288e+01\n", + " 1.72101e-08 6.86725e-05 2.74572e+01\n", + " 1.67384e-08 6.76756e-05 2.75779e+01\n", + " 1.63068e-08 6.67997e-05 2.76913e+01\n", + " 1.59109e-08 6.59966e-05 2.77981e+01\n", + " 1.55498e-08 6.52429e-05 2.78978e+01\n", + " 1.52207e-08 6.45565e-05 2.79907e+01\n", + " 1.49199e-08 6.39012e-05 2.80774e+01\n", + " 1.46448e-08 6.32729e-05 2.81582e+01\n", + " 1.43935e-08 6.26837e-05 2.82334e+01\n", + " 1.41640e-08 6.21308e-05 2.83032e+01\n", + " 1.39533e-08 6.16084e-05 2.83683e+01\n", + " 1.37602e-08 6.11234e-05 2.84288e+01\n", + " 1.35827e-08 6.06739e-05 2.84852e+01\n", + " 1.34200e-08 6.02613e-05 2.85375e+01\n", + " 1.32710e-08 5.98831e-05 2.85860e+01\n", + " 1.31342e-08 5.95365e-05 2.86310e+01\n", + " 1.30086e-08 5.92132e-05 2.86727e+01\n", + " 1.28935e-08 5.89066e-05 2.87113e+01\n", + " 1.27882e-08 5.86154e-05 2.87469e+01\n", + " 1.26929e-08 5.83402e-05 2.87794e+01\n", + " 1.26069e-08 5.81077e-05 2.88090e+01\n", + " 1.25294e-08 5.79025e-05 2.88357e+01\n", + " 1.24593e-08 5.77139e-05 2.88601e+01\n", + " 1.23964e-08 5.75408e-05 2.88821e+01\n", + " 1.23400e-08 5.73717e-05 2.89019e+01\n", + " 1.22899e-08 5.72179e-05 2.89196e+01\n", + " 1.22457e-08 5.70800e-05 2.89352e+01\n", + " 1.22065e-08 5.69476e-05 2.89491e+01\n", + " 1.21716e-08 5.68219e-05 2.89616e+01\n", + " 1.21399e-08 5.67079e-05 2.89729e+01\n", + " 1.21121e-08 5.66082e-05 2.89828e+01\n", + " 1.20881e-08 5.65168e-05 2.89914e+01\n", + " 1.20672e-08 5.64386e-05 2.89990e+01\n", + " 1.20490e-08 5.63735e-05 2.90055e+01\n", + " 1.20338e-08 5.63197e-05 2.90110e+01\n", + " 1.20213e-08 5.62742e-05 2.90155e+01\n", + " 1.20117e-08 5.62335e-05 2.90190e+01\n", + " 1.20049e-08 5.61994e-05 2.90215e+01\n", + " 1.20006e-08 5.61720e-05 2.90230e+01\n", + " 1.19991e-08 5.61517e-05 2.90236e+01\n", + " 1.19998e-08 5.61385e-05 2.90233e+01\n", + " 1.20029e-08 5.61309e-05 2.90222e+01\n", + " 1.20088e-08 5.61240e-05 2.90201e+01\n", + " 1.20170e-08 5.61242e-05 2.90171e+01\n", + " 1.20275e-08 5.61325e-05 2.90133e+01\n", + " 1.20408e-08 5.61499e-05 2.90085e+01\n", + " 1.20565e-08 5.61750e-05 2.90028e+01\n", + " 1.20747e-08 5.62071e-05 2.89963e+01\n", + " 1.20954e-08 5.62405e-05 2.89888e+01\n", + " 1.21182e-08 5.62744e-05 2.89806e+01\n", + " 1.21432e-08 5.63137e-05 2.89717e+01\n", + " 1.21702e-08 5.63569e-05 2.89620e+01\n", + " 1.21990e-08 5.64026e-05 2.89518e+01\n", + " 1.22295e-08 5.64532e-05 2.89410e+01\n", + " 1.22611e-08 5.65052e-05 2.89297e+01\n", + " 1.22934e-08 5.65577e-05 2.89183e+01\n", + " 1.23272e-08 5.66137e-05 2.89064e+01\n", + " 1.23621e-08 5.66716e-05 2.88941e+01\n", + " 1.23983e-08 5.67352e-05 2.88814e+01\n", + " 1.24357e-08 5.68040e-05 2.88683e+01\n", + " 1.24743e-08 5.68758e-05 2.88549e+01\n", + " 1.25140e-08 5.69482e-05 2.88411e+01\n", + " 1.25548e-08 5.70229e-05 2.88269e+01\n", + " 1.25965e-08 5.71005e-05 2.88125e+01\n", + " 1.26388e-08 5.71802e-05 2.87980e+01\n", + " 1.26821e-08 5.72615e-05 2.87831e+01\n", + " 1.27264e-08 5.73452e-05 2.87680e+01\n" + ] + } + ], + "source": [ + "\n", + "class MetricsDiagnostics(callbacks.Callback):\n", + " \n", + " def __init__(self, reference_image, metrics_dict, print_interval=1):\n", + "\n", + " # reference image as numpy (level) array\n", + " self.reference_image = reference_image \n", + " self.metrics_dict = metrics_dict\n", + " # if data_range is None:\n", + " # self.data_range = np.abs(self.reference_image.max() - self.reference_image.min())\n", + " self.computed_metrics = [] \n", + " self.print_interval=print_interval\n", + "\n", + " super(MetricsDiagnostics, self).__init__() \n", + "\n", + " def __call__(self, algo):\n", + "\n", + " \n", + " for metric_name, metric_func in self.metrics_dict.items():\n", + "\n", + " if not hasattr(algo, metric_name):\n", + " setattr(algo, metric_name, []) \n", + " \n", + " metric_list = getattr(algo, metric_name)\n", + " metric_value = metric_func(self.reference_image, algo.get_output())\n", + " metric_list.append(metric_value)\n", + " \n", + " self.computed_metrics.append(metric_value)\n", + " \n", + " if algo.iteration == 0:\n", + " \n", + " print (self.callback_header())\n", + " \n", + " print(self.callback_iteration()) \n", + " \n", + " \n", + " \n", + " \n", + " def callback_header(self):\n", + " return \" \".join(\"{:>20}\".format(metric_name) for metric_name in self.metrics_dict.keys())\n", + "\n", + " def callback_iteration(self):\n", + " if isinstance(self.computed_metrics, list):\n", + " # Handle list of metrics\n", + " return \" \".join(\"{:>20.5e}\".format(metric) for metric in self.computed_metrics[-len(self.metrics_dict):])\n", + " else:\n", + " # Handle single metric\n", + " return \"{:>20.5e}\".format(self.computed_metrics) \n", + " \n", + "\n", + "from cil.utilities.quality_measures import mae, psnr, mse \n", + "metric_callback= MetricsDiagnostics(ground_truth, {'MSE':mse, 'MAE':mae, 'PSNR':psnr})\n", + "algo=FISTA(initial=ig.allocate(0), f=F, g=G, update_objective_interval=10) \n", + "algo.run(100, callbacks=[metric_callback])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## More complex example, image metric callbacks with region of interests \n", + "\n", + "Warning - this is a complex example! But the code may be useful to adapt and reuse " + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [], + "source": [ + "class ImageQualityCallback(callbacks.Callback):\n", + " \"\"\"\n", + " Parameters\n", + " ----------\n", + "\n", + " reference_image: CIL or STIR ImageData\n", + " containing the reference image used to calculate the metrics\n", + "\n", + " roi_mask_dict : dictionary of ImageData objects\n", + " list containing one binary ImageData object for every ROI to be\n", + " evaluated. Voxels with values 1 are considered part of the ROI\n", + " and voxels with value 0 are not.\n", + " Dimension of the ROI mask images must be the same as the dimension of\n", + " the reference image.\n", + " \n", + " metrics_dict : dictionary of lambda functions f(x,y) mapping\n", + " two 1-dimensional numpy arrays x and y to a scalar value or a\n", + " numpy.ndarray.\n", + " x and y can be the voxel values of the whole images or the values of\n", + " voxels in a ROI such that the metric can be computed on the whole\n", + " images and optionally in the ROIs separately.\n", + "\n", + " E.g. f(x,y) could be MSE(x,y), PSNR(x,y), MAE(x,y)\n", + "\n", + " statistics_dict : dictionary of lambda functions f(x) mapping a \n", + " 1-dimensional numpy array x to a scalar value or a numpy.ndarray.\n", + " E.g. mean(x), std_deviation(x) that calculate global and / or\n", + " ROI mean and standard deviations.\n", + "\n", + " E.g. f(x) could be x.mean()\n", + "\n", + "\n", + "\n", + "\n", + " \"\"\"\n", + " \n", + " def __init__(self, reference_image, \n", + " roi_mask_dict = None,\n", + " metrics_dict = None,\n", + " statistics_dict = None,\n", + " ):\n", + "\n", + " # the reference image\n", + " self.reference_image = reference_image\n", + "\n", + "\n", + " self.roi_indices_dict = {}\n", + " self.roi_store=[]\n", + "\n", + "\n", + "\n", + " self.roi_mask_dict=roi_mask_dict\n", + " \n", + " \n", + " self.metrics_dict = metrics_dict\n", + " self.metrics_store={}\n", + " for key, value in self.metrics_dict.items():\n", + " self.metrics_store['global_'+key] = []\n", + " if roi_mask_dict is not None:\n", + " for roi_name, value in roi_mask_dict.items():\n", + " self.metrics_store[roi_name+'_'+key] = []\n", + "\n", + " self.statistics_dict = statistics_dict\n", + " self.stat_store={}\n", + " for key, value in self.statistics_dict.items():\n", + " self.stat_store['global_'+key] = []\n", + " if roi_mask_dict is not None:\n", + " for roi_name, value in roi_mask_dict.items():\n", + " self.stat_store[roi_name+'_'+key] = []\n", + " \n", + " def __call__(self, algorithm):\n", + " if self.metrics_dict is not None:\n", + " for metric_name, metric in self.metrics_dict.items():\n", + " ans = metric(self.reference_image, algorithm.x)\n", + " self.metrics_store['global_'+metric_name].append(ans)\n", + " \n", + " \n", + " for roi_name, roi in self.roi_mask_dict.items():\n", + " ans = metric(self.reference_image, algorithm.x, mask=roi)\n", + " self.metrics_store[roi_name+'_'+metric_name].append(ans)\n", + " \n", + " \n", + " \n", + " if self.statistics_dict is not None:\n", + " for statistic_name, stat in self.statistics_dict.items():\n", + " ans = stat( algorithm.x.array, np._NoValue)\n", + " self.stat_store['global_'+statistic_name].append(ans)\n", + " \n", + " \n", + " for roi_name, roi in self.roi_mask_dict.items():\n", + " ans = stat( algorithm.x.array, roi.array.astype('bool'))\n", + " self.stat_store[roi_name+'_'+statistic_name].append(ans)\n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": {}, + "outputs": [], + "source": [ + "def mse(dc1, dc2, mask=None):\n", + " ''' Calculates the mean squared error of two images\n", + "\n", + " Parameters\n", + " ----------\n", + " dc1: `DataContainer`\n", + " One image to be compared\n", + " dc2: `DataContainer`\n", + " Second image to be compared\n", + " mask: array or `DataContainer` with the same dimensions as the `dc1` and `dc2`\n", + " The pixelwise operation only considers values where the mask is True or NonZero.\n", + "\n", + " Returns\n", + " -------\n", + " A number, the mean squared error of the two images\n", + " '''\n", + " dc1 = dc1.as_array()\n", + " dc2 = dc2.as_array()\n", + "\n", + " if mask is not None:\n", + "\n", + " if isinstance(mask, DataContainer):\n", + " mask = mask.as_array()\n", + "\n", + " mask = mask.astype('bool')\n", + " dc1 = np.extract(mask, dc1)\n", + " dc2 = np.extract(mask, dc2)\n", + " return np.mean(((dc1 - dc2)**2))\n", + "\n", + "\n", + "def mae(dc1, dc2, mask=None):\n", + " ''' Calculates the Mean Absolute error of two images.\n", + "\n", + " Parameters\n", + " ----------\n", + " dc1: `DataContainer`\n", + " One image to be compared\n", + " dc2: `DataContainer`\n", + " Second image to be compared\n", + " mask: array or `DataContainer` with the same dimensions as the `dc1` and `dc2`\n", + " The pixelwise operation only considers values where the mask is True or NonZero.\n", + "\n", + "\n", + " Returns\n", + " -------\n", + " A number with the mean absolute error between the two images.\n", + " '''\n", + " dc1 = dc1.as_array()\n", + " dc2 = dc2.as_array()\n", + "\n", + " if mask is not None:\n", + "\n", + " if isinstance(mask, DataContainer):\n", + " mask = mask.as_array()\n", + "\n", + " mask = mask.astype('bool')\n", + " dc1 = np.extract(mask, dc1)\n", + " dc2 = np.extract(mask, dc2)\n", + "\n", + " return np.mean(np.abs((dc1-dc2)))\n", + "\n", + "\n", + "def psnr(ground_truth, corrupted, mask=None):\n", + " ''' Calculates the Peak signal to noise ratio (PSNR) between the two images.\n", + "\n", + " Parameters\n", + " ----------\n", + " ground_truth: `DataContainer`\n", + " The reference image\n", + " corrupted: `DataContainer`\n", + " The image to be evaluated\n", + " data_range: scalar value, default=None\n", + " PSNR scaling factor, the dynamic range of the images (i.e., the difference between the maximum the and minimum allowed values). We take the maximum value in the ground truth array.\n", + " mask: array or `DataContainer` with the same dimensions as the `dc1` and `dc2`\n", + " The pixelwise operation only considers values where the mask is True or NonZero..\n", + "\n", + " Returns\n", + " -------\n", + " A number, the peak signal to noise ration between the two images.\n", + " '''\n", + " \n", + "\n", + " if mask is None:\n", + " data_range = ground_truth.as_array().max()\n", + "\n", + "\n", + " else:\n", + "\n", + " if isinstance(mask, DataContainer):\n", + " mask = mask.as_array()\n", + " data_range = np.max(ground_truth.as_array(),\n", + " where=mask.astype('bool'), initial=-1e-8)\n", + "\n", + " \n", + " tmp_mse = mse(ground_truth, corrupted, mask=mask)\n", + "\n", + " return 10 * np.log10((data_range ** 2) / tmp_mse)" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABdIAAAGiCAYAAADjmzR1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9eZhcVbn2j9817b1rrq7qKZ10kiYDhBkTiImMAongAAiHHLkOgka/cEVBQI8a0CMOB17wvLxRIIDngAgicDCAIIMElTAFTQIJEMaQTrrp9Nw1V+2af3/k9yxWVVfPQ1V1PZ/rqqu7q/Zee+2pnt73etb9GHK5XA4MwzAMwzAMwzAMwzAMwzAMwxTFWOoOMAzDMAzDMAzDMAzDMAzDMEw5w0I6wzAMwzAMwzAMwzAMwzAMwwwDC+kMwzAMwzAMwzAMwzAMwzAMMwwspDMMwzAMwzAMwzAMwzAMwzDMMLCQzjAMwzAMwzAMwzAMwzAMwzDDwEI6wzAMwzAMwzAMwzAMwzAMwwwDC+kMwzAMwzAMwzAMwzAMwzAMMwwspDMMwzAMwzAMwzAMwzAMwzDMMLCQzjAMwzAMwzAMwzAMwzAMwzDDwEI6wzAMwzAMwzAMwzAMwzAMwwwDC+kMwzAMwzAMwzDMjOTFF1/EF7/4RTQ1NcFgMODxxx8fcZ0tW7Zg6dKl0DQNhxxyCO68886p7yjDMAzDMKOilLGdhXSGYRiGYRiGYRhmRhKNRnHMMcfgtttuG9Xyra2tOPvss3HSSSfhjTfewLXXXosrr7wSmzZtmuKeMgzDMAwzGkoZ2w25XC435rUYhmEYhmEYhmEYpoIwGAx47LHHcO655w65zA9+8AM88cQTePfdd8V7l19+OXbt2oWtW7dOQy8ZhmEYhhkt0x3bzePt6Ewim83iwIEDcDqdMBgMpe4OwzDMjCaXyyEcDqOpqQlGY/GJUbquI5lMTmg7iqJA07QJtcFUNhzfGYZhpo/piu+5XG7Qd7qqqlBVdULtElu3bsWqVavy3lu9ejXuvvtupFIpWCyWSdkOM344vjMMw0wfMyG+T2ZsZyEdwIEDB9Dc3FzqbjAMw1QV7e3tmDNnzqD3dV1HS0sLurq6JtR+Y2MjWltbWUyvYji+MwzDTD9THd8dDgcikUjeez/5yU9w/fXXT6hdoqurCw0NDXnvNTQ0IJ1Oo6+vD7NmzZqU7TDjh+M7wzDM9FPJ8X0yYzsL6QCcTmepu8AwDFN1DPXdm0wm0dXVhba2NrhcrnG1HQqFMHfuXCSTSRbSqxiO7wzDMNPPdMT39vb2vDYmKxudKMyIIzdUzn4uDzi+MwzDTD+VHt8nK7azkA7+h4hhGKYUjPTd63K5xh2IGQbg+M4wDFMKpiO+T+X/CI2NjYOy6np6emA2m+Hz+aZkm8zY4PjOMAwz/VRyfJ/M2M5COsMwDFOW5HI5jLceNtfRZhiGYZjypNzj+4oVK/Dkk0/mvffcc89h2bJl7I/OMAzDMENQzvF9MmN7cZd4hmEYhikxFIjH+2IYhmEYpvyY7vgeiUSwc+dO7Ny5EwDQ2tqKnTt3oq2tDQCwfv16fPWrXxXLX3755di/fz+uueYavPvuu7jnnntw991343vf+96k7D/DMAzDzESmM76XMrZzRjrDMAzDMAzDMAwzI9m+fTtOO+008fc111wDALjkkktw7733orOzUzx4A0BLSwuefvppXH311bj99tvR1NSEX//61zj//POnve8MwzAMwwymlLHdkOO0PYRCIbjd7lJ3g2EYpqoIBoNF/c/oO7m/v39CxUp8Pt+Q22CqA47vDMMw0w/Hd2aq4fjOMAwz/XB8PwhbuzAMwzBlSSmsXTZu3IiWlhZomoalS5fipZdeGnb5LVu2YOnSpdA0DYcccgjuvPPOQcts2rQJhx9+OFRVxeGHH47HHnss7/M77rgDRx99tCissmLFCjzzzDODjsX111+PpqYmWK1WnHrqqdi9e/e49pFhGIZhSglbtzEMwzDMzKNa4jsL6QzDMExZMt2B+OGHH8ZVV12F6667Dm+88QZOOukknHXWWXlTwmRaW1tx9tln46STTsIbb7yBa6+9FldeeSU2bdokltm6dSvWrFmDiy++GLt27cLFF1+MCy+8EP/4xz/EMnPmzMH/+T//B9u3b8f27dvx2c9+Fuecc06eUH7zzTfjlltuwW233YZt27ahsbERZ555JsLh8Jj3k2EYhmFKSbU8aDMMwzBMNVEt8Z2tXcBTwxiGYUrBSFPDent7JzQ1rK6ubkxTw5YvX45PfepTuOOOO8R7S5Yswbnnnosbb7xx0PI/+MEP8MQTT+Ddd98V711++eXYtWsXtm7dCgBYs2YNQqFQXob55z73OdTU1ODBBx8csi9erxe//OUvsXbtWuRyOTQ1NeGqq67CD37wAwBAIpFAQ0MDbrrpJlx22WWj2r9qhOM7wzDM9FNu8Z2ZeXB8ZxiGmX44vh+EM9IZhmGYsmQyRrRDoVDeK5FIFN1WMpnEjh07sGrVqrz3V61ahVdffbXoOlu3bh20/OrVq7F9+3akUqlhlxmqzUwmg4ceegjRaBQrVqwAcDDzvaurK68dVVVxyimnDNkOwzAMw5Qr1ZKxxjAMwzDVRLXEdxbSGYZhmLJkMgJxc3Mz3G63eBXLLAeAvr4+ZDIZNDQ05L3f0NCArq6uout0dXUVXT6dTqOvr2/YZQrbfOutt+BwOKCqKi6//HI89thjOPzww0UbtN5o+8YwDMMw5Uq1PGgzDMMwTDVRLfHdXOoOMAzDMEwxJhJQab329va8qWGqqg67nsFgGNRO4XsjLV/4/mjaPPTQQ7Fz504EAgFs2rQJl1xyCbZs2SLE9PH0jWEYhmHKkcmI7wzDMAzDlBfVEt9ZSGcYhmFmLC6Xa1Qea7W1tTCZTIMyvHt6egZlghONjY1FlzebzfD5fMMuU9imoihYuHAhAGDZsmXYtm0bfvWrX+Guu+5CY2MjgIOZ6bNmzRpV3xiGYRiGYRiGYRiGmVzY2oVhGIYpS6ZzapiiKFi6dCk2b96c9/7mzZuxcuXKouusWLFi0PLPPfccli1bBovFMuwyQ7Up7zv5ube0tKCxsTGvnWQyiS1btozYDsMwDMOUG9Uy9ZthGIZhqolqie+ckc4wDMOUJdM9Neyaa67BxRdfjGXLlmHFihX4zW9+g7a2Nlx++eUAgPXr16OjowP33XcfAODyyy/HbbfdhmuuuQbf/OY3sXXrVtx999148MEHRZvf+c53cPLJJ+Omm27COeecgz/96U94/vnn8fLLL4tlrr32Wpx11llobm5GOBzGQw89hBdeeAHPPvssgIOWLldddRVuuOEGLFq0CIsWLcINN9wAm82Giy66aFzHh2EYhmFKRbVM/WYYhmGYaqJa4jsL6QzDMExZMt2BeM2aNejv78fPfvYzdHZ24sgjj8TTTz+NefPmAQA6OzvR1tYmlm9pacHTTz+Nq6++Grfffjuamprw61//Gueff75YZuXKlXjooYfwox/9CD/+8Y+xYMECPPzww1i+fLlYpru7GxdffDE6Ozvhdrtx9NFH49lnn8WZZ54plvn+97+PeDyOdevWwe/3Y/ny5XjuuefgdDrHc3gYhmEYpmRUy4M2wzAMw1QT1RLfDblK6u0UEQqF4Ha7S90NhmGYqiIYDBb1L6fv5I6OjlH5mxcjFAph9uzZQ26DqQ44vjMMw0w/HN+ZqYbjO8MwzPTD8f0gJfVIf/HFF/HFL34RTU1NMBgMePzxx8VnqVQKP/jBD3DUUUfBbrejqakJX/3qV3HgwIG8NhKJBK644grU1tbCbrfjS1/6Ej7++ONp3hOGYRhmsqkWj7WZCMd3hmEYZig4vlcuHN8ZhmGYoaiW+F5SIT0ajeKYY47BbbfdNuizWCyG119/HT/+8Y/x+uuv49FHH8UHH3yAL33pS3nLXXXVVXjsscfw0EMP4eWXX0YkEsEXvvAFZDKZ6doNhmEYZgqolkA8E+H4zjAMwwwFx/fKheM7wzAMMxTVEt/LxtrFYDDgsccew7nnnjvkMtu2bcMJJ5yA/fv3Y+7cuQgGg6irq8P999+PNWvWAAAOHDiA5uZmPP3001i9evWots1TwxiGYaafkaaGtbe3T2hqWHNzc0VMDZvpcHxnGIapLji+Vwcc3xmGYaoLju8HKWlG+lgJBoMwGAzweDwAgB07diCVSmHVqlVimaamJhx55JF49dVXh2wnkUggFArlvRiGYZjyolpGtBmO7wzDMNUEx/fqgeM7wzBM9VAt8b1ihHRd1/HDH/4QF110kRid6OrqgqIoqKmpyVu2oaEBXV1dQ7Z14403wu12i1dzc/OU9p1hGIYZO9USiKsdju8MwzDVBcf36oDjO8MwTHVRLfG9IoT0VCqFf/3Xf0U2m8XGjRtHXD6Xy8FgMAz5+fr16xEMBsWrvb19MrvLMAzDTALVEoirGY7vDMMw1QfH95kPx3eGYZjqo1rie9kL6alUChdeeCFaW1uxefPmPK+cxsZGJJNJ+P3+vHV6enrQ0NAwZJuqqsLlcuW9GIZhGIaZPji+MwzDMMzMg+M7wzAMM5MpayGdgvCHH36I559/Hj6fL+/zpUuXwmKxYPPmzeK9zs5OvP3221i5cuV0d5dhGIaZRKplRLsa4fjOMAxTvXB8n7lwfGcYhqleqiW+m0u58Ugkgj179oi/W1tbsXPnTni9XjQ1NeGCCy7A66+/jj//+c/IZDLCN83r9UJRFLjdbqxduxbf/e534fP54PV68b3vfQ9HHXUUzjjjjFLtFlNCDAYDjEbjoN+z2ay4ObPZbCm7yDDMGKikgMp8Asd3hmEYZjg4vlcmHN8ZhmGY4aiG+F5SIX379u047bTTxN/XXHMNAOCSSy7B9ddfjyeeeAIAcOyxx+at9/e//x2nnnoqAOD//b//B7PZjAsvvBDxeBynn3467r33XphMpmnZB6a8UBQFLpcLZrMZVqsVNpsNuVwO4XAY8XgcqVQK0WgUqVSq1F1lGGYEJjIyXQ0BvJzh+M4wDMMMBcf3yoXjO8MwDDMU1RLfDblK6u0UEQqF4Ha7S90NZhJwOp2or6+HqqrweDyoqalBNptFb28vAoEAdF1HX18fdF0vdVcZpuoJBoNFPS7pO3nv3r1wOp3jajscDuOQQw4ZchtMdcDxnWEYZvrh+M5MNRzfGYZhph+O7wcpaUY6w0wGJpMJVqsVZrMZXq8Xc+fOhc1mg9PphNvtRjabhaZpqKmpQTgcRi6XQygUQiqVQiKRqKiRr0rHYDDAYDAAyB9x5HPAFKNaRrQZhhkZt9uNWbNmQdO0op9HIhF0dnYiGo1Oc88YhhkrHN8ZhiE4vjPMzKFa4jsL6UzFo2kaDjnkENTU1GD+/Pk44YQT4PF4oKoqVFVFLpdDLBZDIpFAV1cXXnnlFRw4cAADAwP4+OOPkUwmS70LZU8x8XssGI1G4VlPv8u+9ZlMpqK+OJnpoVoCMcMwI3PEEUdg7dq1mDNnTtHP33//ffzmN7/B22+/Pc09YxhmrHB8ZxiG4PjOMDOHaonvLKQzFY/FYkFNTQ0aGxsxb948HHHEEfD5fDCZTLBYLMjlckgkEshkMvB6vdi3bx+SySRSqRR78Y0COYscGPsXHK1PQrrJZBJ/k5hOPxlGploCMcMwI1NfX48TTzwRixcvLvq5x+PBH//4x2nuFcMw44HjO8MwBMd3hpk5VEt8ZyGdqWgMBgNUVUVjYyNaWlrQ0NAAVVVhMplgNBrFciSY22w2NDU1AQDS6TT27t1bkn6XK5QtTsVaTSYTTCYTzGazEL6z2SwymQx0XUc6nUYmk0E6nR70xUfZ5yaTCZqmDdtWIpFAOp1GNptFKpWqqC9RhmEYhmEYhmEYZnS4XC4cddRRqK+vx/Lly+FwOIZc1uv14uSTT4bP50N7ezveeecdxGKxaewtwzBMPiykMxULCbUOhwOHHXYYjj32WDidTjgcDiHWAhDCsNlsRk1NDY444gg0Nzcjl8th586dCIfDJd6T8oCOk9FozCvaqmkabDYbgIODD+l0WhRtJcucSCSCTCaT15bFYoHFYoGqqnC73VAUBWazGYqiwGAwIJPJIJvNIp1OIxwOQ9d1JJNJ8R7DVMuINsMwDMNUExzfGaa6mTVrFr7+9a/jxBNPhMPhQF1d3ZDLzpkzB//f//f/IRaL4amnnsItt9zCQjrDlCnVEt9ZSGcqHpPJBIfDAbfbLYqOylYkwCce32azGU6nE0ajEXa7PS9rvdoh6xWz2QyLxQKr1QpN02C1WmG322EwGJBKpZBOp2E2mxEOh0VGeuHxBiCy0Uk81zRtkJCeTqdhNBqhKIrISC/WFlOdVEsgZhiGYZhqguM7w1Q3qqpizpw5Q9q5yGiahubmZgDA66+/DovFMtXdYxhmnFRLfGchnalYZO9tuZDlaNYhCxPmIJRB7vP5YLfbYbPZ4PV6oSgKLBaLEL/NZjOy2SwURUE2m0UikUAwGEQ6nRY+9Ol0GiaTCTabTYjxDocDqqoKIR2AsHUhWxiz2Yx4PI5EIpH3OcMwDMMwDMMwDMMwDMOUGhbSmYpHFtELC2MWg5ZjMf0gdMwsFgtqa2vh9XqhaRo8Ho8Y8S88TtlsFlarFZlMBqqqIhQKwWAwCGsWk8kEq9UKt9sNVVXhdDqFdz21KXukAxCfR6NRYe/CRUirm2oZ0WYYhmGYaoLjO8MwDMPMPKolvrOQzlQ8lBkdj8dFEUsqLjrUsuTHXaqbVfZvL5ZFn81mART/IhpusGA8X1zUHonciqJAUZRBBVtlyAJGtm8xm81Ip9N5Wf/UhslkGjR4QW1TNjrZvPAgB0NUSyBmGIZhmGqC4zvDMKMllUohGAxC13X4/X6upcUwZUy1xHcW0pmKhbKVo9Eo9u7dC7PZjMbGRthsNiHckhhLy4ZCIXz44Yfo7u7G/v37kUwmp73fJEIbDAZomgZN0/LE40wmg0QiIQp7JhIJZLPZvKx7skkBPhHlU6mUyAin12ggEZyKilKx1uFsckh4NxqN0DQNTqdT7FMqlRLiusViEe1bLBYhqgMHvyjpHNEytBx5rzPVTbUEYoZhGIapJji+MwwzWj7++GP87//+L95//320trYiEAiUuksMwwxBtcR3FtKZioVuUl3X0dnZKYTcBQsWwGaz5WU153I5ZDIZ6LqOjo4OtLW1obu7G6lUatr7TSI02Z/IwrXRaEQqlUIkEkEqlRKZ87QeCdGqqkJVVfE+ACG4ZzKZUX8JFWaiq6oKTdNGlRFOQruqqrBarcLahfZDFsdpf2X7HRLSAYg+FC7LMAzDMAzDMAzDVCd9fX145pln8NJLL01IpGMYhpksWEhnKp50Og2/3w+LxQJN07B//34EAgFRKBOAEKS7u7vR3d2Nvr4+hEKhac16JmFYURTY7XaYzWZR2JM+IxE5l8sJUTqTySCTyQgRnYR0TdMA5PuX07IASuIvTtvL5XJC1KcCpZQhbzQaxT9B9KLPC38fCtkaZzibm2I/mcqhWka0GYYZGb/fj127dsHv9xf9fPfu3QiFQtPcK4ZhxgPHd4apbmKxGN577z243W7xntFoRGNjI5qampDNZtHe3o7e3l7s3r0bwWBw1LOtGYYpHdUS31lIZyqeaDSK9957D62trWhtbUVnZyccDgecTic8Hg+y2Sz6+/sRCoUQDAbx3nvvYWBgAIlEYtqsXaiYp8lkgsvlQkNDAzRNg8ViEZYntFwmkxEidCQSgaqqSKVSIpvbZDLB4XAIIZ3W1XUdqqoinU4jFAqNuljnRIVmeT3K/AcgrGlMJtMggZ9+0vK0rPwa6p8l2UedZiHIXvOyQE/HcjTiPFN+VEsgZhhmZN5++23cfPPNsNlsRT8PhUJobW2d5l4xDDMeOL4zTHXT2dmJ//7v/8amTZvEexaLBRdccAH+7d/+DYlEAo888gieffZZBAIBju8MUyFUS3xnIZ2peNLpNAYGBoQ/N2V6e71e+Hw+ZDIZdHV1we/3IxKJoLOzc9qz1mRbFkVR4HQ6YbVaRYZ5IbKIrOu6EIwBCD9zsmCRSafTSCaTeQLzdH4hFcsylwcGqBgsZaXLAjeJ7XIbhciiuVzMlAYYgE8E+sI2OIuh8qiWQMwwzMj09/ejv7+/1N1gGGYS4PjOMNVNNBrF22+/nfeeqqpYunQp0uk04vE43n//fbz44ov8DMcwFUS1xHcW0pkZA9mhhMNhJJNJpNNp6LqObDYrRPRYLCYEXVpnOqCinJqmCQF9ND7kFosFdrtdZG2TCE3e4/L6sje57EU+nJhOYjYVKo3H44jFYsImZzjbFHrRevF4HMlkUrSZSCTE8VZVVdi8UP9kgT0Wi0HXdei6LvbTYrFAVVVRXFVRFBiNRiiKIgYg5KKochFT+oeL2qIBBtpX8pNPJBJIpVJinUr68mYYhmEYhmEYhpkJZDIZvPPOO/jjH/8IXdexd+9efjabAbhcLhx33HFoamoa03rt7e3YtWsXwuHwFPWMYcYPC+nMjELXdfT09IjMb0VRhNgr24ZMd6a2yWSC0+mEw+GAzWYTovBQBTXlQp41NTXI5XJC5KZ9I/93ErtJsJbFdGDkUcFUKiVE7lgshkgkImxnhiv4SQK0rusIhUKIxWKIx+NCICcRnQR5TdNgNpuFOC6L3KFQSAjxqVQK2WwWVqsVTqcTiqLA4/HA7XaL2QZUmLRw0ID2l44HZbyT2J/JZBAMBhEKhZBMJuH3+xEOh8Uy/M9aeVEtI9oMwzAMU01wfGcYppB0Oo0XX3wRb775JrLZLAKBAN/vM4D6+npcfPHFOP3008e03jPPPIOPP/6YhfQKo1riOwvpTMVDVh/0k27edDotlpGnhJHQTNnQoylqCUzsxpY9vSkbfTiRWl7PbDYjl8sJKxO5T0NljA9XhLMQ2WKFhGy5QGixdmTbllQqJV7y8aQs+lQqJQYwgE88zgu90Un4pv2krHgqzkoCusPhEAMRFoslL/Oe9od+kl0M7RNtJ51Ow2g0QlVVJBKJPA93rgZfPlRLIGYYhmGYaoLjO8MwBCWJ0Yxl2cbNbreLWcRs8VL+mM1mKIqSpx+43W7MmjUL8+fPH1NbTU1NcLvdsNvtRT/n66I8qZb4zkI6U7GQKG2xWODxeIR1isvlgtlsFoU8SVQnQZWsX2KxGILBYJ4QTO0W2qTIorssCo+F0dq5DAUFC5PJhGQyOUiITyaTSCQSQrwmYXo0X0i5XA6pVAoDAwPQdR0OhwOpVAqqqsJisUBRFACfZHmnUikEAgEkk0kEg0HEYjEhSMvt0XEDIIqtUia9XJgUOHjcbTYbZs2aJTLPnU4nTCYTbDYbNE0T68vnqBA6viSukw2MyWRCNpuFoihwOBzIZDKora1FPB5HIpEQBWjj8TjC4XCeXztTGqolEDMMwzBMNcHxnWEYYtGiRTjjjDNQW1tb9POPP/4Ymzdvxv79+6e5Z8xYMBgMOOaYY3DqqafC6XSK9+vq6rBw4cIxt7d48WKsXbsWAwMDRT9vb2/H5s2b0dbWNu4+M5NPtcR3FtKZioQytRVFgc1mQ2NjI9xuNxwOB2pra4WtCwnAJCzrui7E4v7+fmSzWei6jlgsJsRx8t42m83Cz5zEaVp+pEz2Yv2lPhd6m48WskFJp9N51i3UVjKZFC+yTRmL73cymUR/fz8CgQBcLhcACE93u90uirlSAZju7m5Eo9FBx4+gwQkS+CnTnPaf+mYymeByuYSVy7x582C326GqKmw2W162uSycj+UYkqUMADgcDgAHv6hJ/I9Go+jo6EAkEoHf74eu6+ybzjAMwzAMwzAMM4UsWrQI3/jGN7Bo0aKin2/fvh3vvvsuC+lljsFgwNFHH41169ahsbEx733SZMbC4sWLMX/+/CGfxf/xj3/g3XffZSGdKQkspDMVB9mkqKoqRF6HwwGn0yksQMhDnLKfyaqEsrnNZjMSiQTsdrvIVE6lUqKwJWU9k693Op0Wy5E1yHiE1rGK28AnmdtyJjz1h44HWaXQ1CZqf6xe8LR+KpUSYjJhNBqFkK7rOhKJRJ5oP1z/5X2m/spFU61WK6xWq/CPVxRFDBbQfk4EWXSXi5KSD7yiKLBarWKgxG63w2w2i4EJzkwvDdUyos0wDMMw1QTHd4apbhRFgdfrhaZpaGpqgsvlgs1mK7qs2+3GnDlzMH/+fESjUfj9/nHNDmcmD7PZDK/Xm3fOTCYTGhsb4XQ6hzyXY8FkMsFqtQ75ucfj4euiDKmW+M5COlNRUEazxWLBrFmzUF9fD7vdjrlz58LtdkNVVTgcjkHWHyTkptNpeDwepFIpeL1e2O126LqOrq4udHd3w2AwiOxoyna3WCwiszqdTqO/vx8DAwPIZDKIx+PCEmY4SKClbOyhvL6KrUd2LZQtTYU6NU0T+2gymYSwTXYpNHhA7YwECfa5XA6xWEwUbSWxG/jE2kXe95EGBqhdEvXJ793n88Hr9UJRFNTV1cHtdgsPdBK4R+MjP17I9sVoNMJut6OpqQmpVAo+nw8ejwfJZBI9PT3o7u4WAxnswTa9VEsgZhiGYZhqguM7w1Q3jY2NuOiii3D00Udjzpw5Q9q6AEBzczO++c1v4pxzzsGrr76Khx56CH19fdPYW6YQr9eLr3zlK1i+fLl4z2AwYMGCBXm2LlPJ3Llz866Lhx9+mK+LMqBa4jsL6UxFQVnMiqLA4/GgqakJdrsds2bNgtvtFlnkhbYnwCeZ0eSPrWkaAEDXdaTTaUSjURiNRtTU1Agxl0T5dDqNRCIhBHUSkROJxKj6TRnvuq5DUZRRf0nQerRuNBrNK6pKnuFyUU8Sw6kw6VjEXzpGtK/F+iMX8xxLu/KLzpPX64XVakVjYyM8Hg8ATMhHfqxQdrps/WKz2UQR0mQyCb/fLwYMWEhnGIZhGIZhGIYZPx6PB6eeeipWr1494rJerxenn366ePb885//zIJpiXE6nfjMZz6DCy64YNqe2wvx+Xw444wzhH7x5JNPlqQfTHXCQjpTUVgsFlF40uFwwOFwCDsQKj4qF5uUkS1FAIiik2azGS6XC16vFwBgtVrzimxSNjZlUquqKny+RpsxTcU3jUYjdF2HrusAPilASlBhUxKck8mkEPqBgyKv0WiEzWYTv1OV81QqBYvFIoRwyk7XdV0IwalUashRQjo+ha9i+zIeMR0AVFWF3W6HxWKB2+2G0+kcdDxLFYxpuyaTCaqqitkJPp8PyWQSgUAAsVgMwOgy/JnJoZJGphmGYRiGGR0c3xmmurBYLJg3bx6ampqwYMEC+Hy+Ma1vMBhQX1+P5cuXY968eeJ9XdfR2tqKnp4euN1ukRXd1dWF1tZWJJPJyd6VqsRkMqG5uRlz5sxBc3Mz6uvrS/bcLmMwGNDY2IhPf/rTmDt3Ltrb29He3s7P6yWkGuI7C+lMxWAwGGCz2YSdS1NTE2bPng1FUeB0OqFp2rACMLVBwrjD4RACtNlshs1my8u4pvdMJhMURRHWLg6HQxTZDIfDo+p7JpNBJBJBPB5HJpOBoijQNA2apolCnpQ9ns1mkUwmkc1mhZ1LJpOB2WxGXV0dzGYznE6nKIRKfu5kuUJFNEmAD4VCwtM8FAoNyq6WjxkNRMgDDjKyxztZyIzmi5LadLvdaG5uhqZpqKurQ319vbDqmQwv9MlAURS43W7hqe9yuRCNRrF3715h70IDEszUUi1TwxiGYRimmuD4zjDVh91ux7nnnosvf/nLcDqdmDt37pjbOO6447B+/fq8WeGdnZ3YuHEjnnvuObS0tODb3/42Dj/8cPz5z3/GXXfdhd7e3sncjapFVVV87nOfw0UXXSSe6cuF4447Dtdeey0CgQDuv/9+PPDAAyJxkZleqiW+s5DOVBSFhSmpKKSiKKMSYmWR3WKxQNM0YeGi67oQsdPptMhwp4KluVwOBoNBZKqn0+kxZ6Sn02khypNNTTabzWuHRGry5ab+WCwWWK1WcQxkkd9kMuVZp1DBTtomtUsZ30Nl65OAXjggIRcKpax58jwfTUFTWo8GPWw2mygqUy4COmEymcTxdDgc4pxrmpZX4LWSvugrlWoJxAzDMAxTTXB8Z5jqw2w2Y968eTj++ONFYttY8Xq9YhY5sW/fPpHd7nA4sGTJEixduhRvv/22eI4vB4ZL9iuk3LKpjUYjLBYLmpubsWzZsmGLgJYCn88Hn8+HSCSCv//976JeXrkdx2qgWuI7C+lMRSALsWTpQgVBZTuXsbZJQZwyxEm8Jq8tyj6m98mvnMTtsX45k11LKBRCLBYTr8LAStsEDtq5GAwGOJ1OOJ1OWCwW2O12YT9ChTmp/VwuJ4Rf8jnXNE0MFFC2ejweFyK+LKJTW/Q+ieUErSPbuwz3pWexWES/vV4vPB6PyMafymKikwENXgBAbW2tsMrp6+tDIpGoqC97hmEYhmEYhmGYmUpPTw+eeuop7N69G6+88oqw5Sw1drsdS5cuxYIFC0ZcNhwOY/v27di3b9/Ud2wULFy4EEuXLoXX68XRRx897kGQ6cBiseC4447Dv/3bv6G/vx/btm0rm+PIzCzK9y5gmP8/ssBrtVrh8XiEmE5i7Hiymmlk1WQywWq1wuFwCE9yEtIp65wKi2YyGeE/ThYpo4VEV/IsJyHfYrHkZYLLArXL5UJdXR1UVYXb7YbH44HFYoGqqmKktVCEp4x2+mm1WpFKpRCJRMT2g8Gg8IujNugYD5eRTudDtsAZ6RgoioLa2lo4HA7U19ejoaEBqqqW1A99NBgMBuGRrygKZs+eDafTCb/fj2g0Ko4fi+lTR7WMaDMMwzBMNcHxnWGYqWDfvn248847YbFYEI/HEQqFSt0lAAeLq15wwQU477zzRkwk27dvH37xi1+UhQBsMBhw7LHH4nvf+x7mzJkDh8NRVln+hSiKgs9+9rM44YQTsH//ftx4441lcRyriWqJ7yykM5PGUEU+J3IzFbZP4rNcWHS8YiytJwvJJGRnMhmReW00GpFOp5HJZIRVClmvjGe/crmcsFuhrHd5+9QngqxkVFWFqqowmUxCgJf3Q0a2X1FVFcBBXzNN00TGOmWVy8dQbqvY78Uy1IeDfNcVRckr4mo2m8taRCeo/9lsFqqqwmq1Ih6Pi+uPfOmZqaFaAjHDMAzDVBMc3xmGmQqSyST6+vpK3Q0BPX/X1NSgoaEBs2fPHvEZWNd11NXVwePxIJVKQdf1aX/epERDi8UCn8+HxsZGNDY2TmsfxoM8iz+RSMDn85X0OFYj1RLfWUhnJgx5SpPNSKHoKtulkEA9VuRimCRiDuX3PR4ymQySySQSiQT8fj/6+/tFxrrBYEA6nRZWKAMDAwgGg8LmZSJQ1nuhdzvZ1rhcLmGFQnYulIE/3H7LxULl7PVEIiEsbKLRqLCQyWQyeeetmLAu+6TLAnyxfsjZ3E6nE42NjaipqYHdbh+3FU8pMRqNwo8/l8vB6/XCZDIhFoshEomw/9oUUS2BmGEYhmGqCY7vDMPMdCwWC0488USccsopqKurw5FHHjmqZ2Cv14svf/nLOOKII7Bnzx489dRTOHDgwDT0+BPmzJmDs88+Gy0tLViyZAncbve0bn8yqKmpwXnnnYfDDjsMe/fuxVNPPYWPP/641N2a8VRLfGchnZkQsrhtNptFxrRMMplEMpkUdiATEdLl7cnvTSQrnfpEI5XBYBC9vb1525FHMQOBAEKh0KRkI9PggoxcUNXtdsPtdovRbPJFH+2+0YADFRpNp9OwWq1IJpPC3kUenR0qI53+HiojvbD4plyg0+l0ora2FrW1tWLQpdIwmUyw2+2wWq3I5XKoqakRxyMWi7GQzjAMwzAMwzAMwwA4KKSfcMIJWLduHZxO56i9xd1uN84++2x87nOfw9/+9jf885//nHYhfdasWVizZg0+/elPC02k0nC73TjrrLOwatUqvPjii9i+fTsL6cykUXl3BFM2FMsSL/yizeVy4r1MJpNnXzKWESd5ZEu2VZHfH4+YTuuTKE6Z6clkUuwbZaSTRzoVGZ2KETP5mFJGN2Wgj9dTXLaLobbofFH7xHC2LWPZX8pIJ/FfnkVQydDx0zQNNpsN8Xi84rLrK4lqGdFmGIZhmGqC4zvDMBMhl8thYGAAAwMDaG9vLxsvdABwOp2oq6uDy+VCY2OjmGk+WighDTjo+V2KZ02amU8WsZUKJXuW6jhWI9US31lIZ8aFLMpqmgZN04T4S2Ip+XRbLBZhIQJ8cnON1mOchG45M9xsNucV+xxPlrMsxFO7sVgMwWAQ/f39ednz5GVOVizyvkwWdEwVRYHNZoPT6YTNZhNi9EQyuUmc1zQNFosFdrtdFFdNpVKIx+ODBibomBN0POTlCtchTCYTvF4vamtr4XK5YLVa8wqZViLUb03T0NDQIKa49fb2imujkr78K4FqCcQMwzAMU01wfGcYZiIkk0k8//zzePzxxzEwMIB33nmn1F0SHHPMMfi3f/s3NDU1YeHChRUvRjPMWKiW+M5COjMuyINbHq0kEbhQ8CVh3WQyQdf1cRVplLPGyZucMsNpGxPJSJc90mXfa/J2nw7kwQlVVUWBUSrOOdFsbjo/mUxGZIvT+/I+FnqhFzKcgC5vy2azoaamBjabTWSkzwTI913TNPT39+cVva2kL3+GYRiGYRiGYZhKI5PJ4L333sOTTz6JaDRa6u7kMXv2bJx55pk45JBDSt0VhmGmCBbSmXEhC+mFr0JBm8Rh8ukm4XaswmMul0MymRTBUtd1JBIJITKPVWgmX/RMJoN4PI5oNIpYLJbn5z7dyJ7vhT7wk9m+LNrLVjvZbFYcRzkjXc5SL5aZLrdvNBrFFCpN04oOrlQy8rkhH/hsNiuuG2byqJYRbYZhGIapJji+MwzDjIzX68WKFStQV1eH9vZ27N27F8lkckq2paoqFi1ahKamJhx++OHweDxTsp1SUFNTg09/+tOoqalBR0cH9uzZM2XHsdqplvhe2YbFTMkoLDJK4in9lF/ycvJ7Y4FuyFgsht7eXnR3d2NgYAChUAiRSERkjo/l5kun0yL73O/3o7u7G729vYjFYsK+pVh7xQYRJip0U5uyz7zZbIbFYhHtT8Y26LyZTCaR6W4wGPIEcvKKH+4lW93Ix4jsfTRNg8fjQW1tLTwej/B5mwnIHulOpxMulwsul4un7U0BQ9kIjfY1HjZu3IiWlhZomoalS5fipZdeGnb5LVu2YOnSpdA0DYcccgjuvPPOQcts2rQJhx9+OFRVxeGHH47HHnss7/Mbb7wRxx9/PJxOJ+rr63Huuefi/fffz1vm0ksvHVRg+dOf/vS49pFhGIZhSkkp4jvDMEylsWjRIlx99dW46aabcP7558PhcEzZtjweD9asWYObbroJ3/rWtzB//vwp29Z0c8ghh+DKK6/ETTfdhH/5l3+By+UqdZdmLNUS31lIZ8ZFoaBDwnixrPDCZcebZZ3L5ZBOp6HrushGJ4/v0fqty22RdUsqlUIikUA8Hoeu68OK8mPJxB8P8vGcCj9xalMW52lmgPySM86L+aKPlJFOQr2iKDNKRAeQd34sFot4VXoh1XJkugPxww8/jKuuugrXXXcd3njjDZx00kk466yz0NbWVnT51tZWnH322TjppJPwxhtv4Nprr8WVV16JTZs2iWW2bt2KNWvW4OKLL8auXbtw8cUX48ILL8Q//vEPscyWLVvwrW99C6+99ho2b96MdDqNVatWDZqq+rnPfQ6dnZ3i9fTTT495HxmGYRim1FTLgzbDMPnI9cbGcy+THiDXX5vJOBwOLFq0CEcffTTmzJkDs3nqDCUURcG8efNwzDHHYOHChbDZbFO2remGjuMxxxyD5ubmGadPlBPVEt/Z2oUZF7KgSlnM5H1O4q8s0MoZzBMpzJhMJhEOh5FKpdDb2wur1Sq8vtPpdF7B00KxnrZH247H4wgGg9B1HYFAAIFAALquI5VKiXWoDVVVYbVaYTKZ8rYp9ysejyOdTgtRfjz7SMeLsr4n+8ukmDVLoSg+nN+33Kdin1ssFthsNlitVlgsFiE4z0SRmYR0h8MBo9GIWCzGPukVzi233IK1a9fiG9/4BgBgw4YN+Mtf/oI77rgDN95446Dl77zzTsydOxcbNmwAACxZsgTbt2/Hf/3Xf+H8888XbZx55plYv349AGD9+vXYsmULNmzYgAcffBAA8Oyzz+a1+9vf/hb19fXYsWMHTj75ZPG+qqpobGyc9P1mGIZhGIZhmKlE13W8/PLLAICGhgasXLkSzc3NY2pjz5492Lp1K/r6+rB9+/a853aGYZjpYuapW8y0UCiOk/gr/5RtQiZDRAcOBmC/34/+/n50dHRg3759+Pjjj9Hb2wu/349wOIxkMilGumWhP5PJIJ1OI5lMCq/1gYEB9PX1obe3F/39/fD7/UgkEgDys8/tdjvq6+vR1NSEQw45BEuWLMHhhx8uXosWLcLs2bPR0NAAl8s15ozywgGHQjF9MkboZAG80KZF3j4dp2Iveb3C/hgMBiiKArvdDofDAU3ThJg+2Zn1pYb2R1VVuN1ueDyeQYMrzMSZjBHtUCiU96L7u5BkMokdO3Zg1apVee+vWrUKr776atF1tm7dOmj51atX5/1jP9QyQ7UJAMFgEMBBX0SZF154AfX19Vi8eDG++c1voqenZ8g2GIZhGKZcKUXG2lit2x544AEcc8wxsNlsmDVrFr72ta+hv79/XNtmGAaIRqN45pln8POf/xx33HEHPvroozG38dZbb+FXv/oVbrjhBmzZsoV9rhmmzKiW+M5COjNu5AteFtEBCEGYliuWAT3ebdKUsGQyiVgslveKx+NIJBJ5ti+pVEqIwPJP+VWsP1RUkixKKNPabrfD6XTC6XTC4XCIl81mg81mEwIyecZP9HhOZoYzHT8AgwY1JuPLjTzyZfF8ponoMnSNjPVcM6NjMgJxc3Mz3G63eBXLLAeAvr4+ZDIZNDQ05L3f0NCArq6uout0dXUVXT6dTqOvr2/YZYZqM5fL4ZprrsGJJ56II488Urx/1lln4YEHHsDf/vY3/N//+3+xbds2fPaznx1yYIBhGIZhypXpftAeq3Xbyy+/jK9+9atYu3Ytdu/ejUceeQTbtm0TM9YYhhk7uVwOkUgEfX19IpGNfi98DQwMFP0fN5FIYGBgAP39/YjFYsNuT1VVeL1e1NbWjvhyOByT9sw6lj6ORCqVQiAQQG9vLyKRiHiOZ5hypVriO1u7MOOCxOxsNgtd1wEcLMKYyx30LZORxWzKFpcFXNmCRf69UOAt3DYFWKvVikQiAYfDAbvdjpqaGuFbTTYviqIITzFqKxKJIJlMIpPJQNM0+Hw+JJNJDAwMIJfLQVVVuFwuKIqCxsZGzJs3D1arFTU1NXC73Xk2HrFYDB6PB8lkEgcOHIDBYICu6wgGg4hEIqM+pnS8dF1HLBaD2WxGMpkUgu1Yi7QWtp9IJJDJZET7ZGVT7EtrPF9klJFO1i4zGYPBIKxs6He2dplcJjIyTeu1t7fnFZQZqShs4T/RuVxu2H+siy1f+P5Y2vz2t7+NN998U0x9JdasWSN+P/LII7Fs2TLMmzcPTz31FL785S8Ps0cMwzAMU15MRnwfC2O1bnvttdcwf/58XHnllQCAlpYWXHbZZbj55pvH1WeGYfLp6urCAw88MGTmqNvtxuc//3ksX758XAK3wWDAcccdh89//vNwu93DLpvNZvHKK6/gmWeeGfVz+3C8/fbbuPXWW1FXV4dTTz0VZ5555ojPH0PR2tqKxx9/HG1tbdi9e/eg+kkMU25US3xnIZ0ZF5TNbDQakUql8gqOytnIuVxOWKlkMhkhqNNnhFz40mg0DhLOCzOnM5kMQqEQIpEIFEVBPB6H1WqFw+FAbW0tVFWFoihQVRVmsxl2ux2apuUJ9bFYTBQqUVUVHo8Huq6LrHZVVVFTUwOr1SqEdJvNBrfbDZfLlRfUo9EoHA4H4vE4DAYDotEoYrEYEokEotHoqL4UaL8ymQySySR0XYfVahXvycd4vOeMzoFcsHWojPyxQmK/1WoVfvIzORsdOHita5qGXC43pcVfmPHjcrlGVZm9trYWJpNpUKZ4T0/PoIxyorGxsejyZrMZPp9v2GWKtXnFFVfgiSeewIsvvog5c+YM299Zs2Zh3rx5+PDDD0fcN4ZhGIaZaYRCoby/VVUtKlaRddsPf/jDvPeHs25buXIlrrvuOjz99NM466yz0NPTgz/+8Y/4/Oc/P3k7wDBVTH9/P/785z8P+azY1NSEBQsW4IQTThi3kH7YYYfh4osvxuzZs4ddNp1Ow2Aw4IUXXpgUIf2jjz7Cvn37YLPZ4HA4cOqpp45bSP/444/xyCOPYOfOnXkz/hlmJlMJ8Z2VH2ZEZJG7MGOcMnDJgoQKjtJ6lKFOXtwkBpP3OAnnZrM5z5Oc2gc+EYBlv3N5+kc2mxVivtFoRDgchq7rsFgs0DQNZrNZLEvbIrGe+kNFSnO5XF42u6qq0DRNFBilF2W6E9lsFvF4HACE/YvBYIDVaoWqqoOmrMhWNwT1J5vNIplMCnuaZDIpjhUdw7H8QyHbxaRSKWF5Q7Y2kxmQ5XM400V04JP9Hes5YUbHdI5oK4qCpUuXYvPmzTjvvPPE+5s3b8Y555xTdJ0VK1bgySefzHvvueeew7Jly8SMjBUrVmDz5s24+uqr85ZZuXJlXl+vuOIKPPbYY3jhhRfQ0tIyYn/7+/vR3t6OWbNmjWk/GYZhGKbUTEZ8LyxS+JOf/ATXX3/9oOXHY922cuVKPPDAA1izZg10XUc6ncaXvvQl3HrrrePqM8MwgyFL2GLE43G0tbXhrbfeytMG2traRu2LTs/5IyU7GQwG1NfX4/DDD0dvby+6u7snVA+B9A/SQMZKMplEV1cXgsEgPvroI0QikUEz/hmmXKmW+M5COjMsZFlBArSqqjAajXlZ4qlUColEAgaDQdiQyJD4TW2Qh7jdbhdtUra4bF9CgjMJy2QjE4/HkclkhDUJAITDYQAHi/T19/eLbZEg3tDQAK/XC7PZLOxacrmcyCYGDmYXUxHSXC4Hp9OJ+vp6OBwO1NXVoba2FlarFS6XC06nM29AwWq1wmAwIJFIiONBnmhGozGvsGcymRT7QO8RFHgjkYgoVmi324V1DQ1CjDbbm84PHa9AIABd1xEIBBAKhYSoPlnQgISiKFUhLBuNRlgsFqiqKs4J27tMHtM9Neyaa67BxRdfjGXLlmHFihX4zW9+g7a2Nlx++eUAgPXr16OjowP33XcfAODyyy/HbbfdhmuuuQbf/OY3sXXrVtx999148MEHRZvf+c53cPLJJ+Omm27COeecgz/96U94/vnn86xbvvWtb+EPf/gD/vSnP8HpdIrA73a7YbVaEYlEcP311+P888/HrFmzsG/fPlx77bWora3NE/0ZhmEYphIod+u2d955B1deeSX+4z/+A6tXr0ZnZyf+/d//HZdffjnuvvvucfWbYZjREwqF8MgjjwzKKu3s7ITf75/UbRmNRqxcuRINDQ3o7e3FAw88gKeeempcIvhk0NfXh/vuuw+vvPIK+vr60NHRUZJ+MMx4qJb4zkI6MyxyxjhleBcKw7Jdy1BQtrqqqqIdh8MhRHSbzSZGjGnUuNAzPJvNIhqNwmg0ilFeEonJOkaG2qLMchI8ZYsX2paiKCLbW9M0Yatit9uF9zoVG6WfhR7IiUQCJpMJDocDHo8HiqIgEAggHA6L40QWLclkMi87XSaTySCRSCCbzcJqtYrBAlVVxbKjzfiWM9HpOMbjcWHrQn2aLEjkJ8F/pkOZDoWzNUa7LgvuwzPdQvqaNWvQ39+Pn/3sZ+js7MSRRx6Jp59+GvPmzQNw8J93uXBJS0sLnn76aVx99dW4/fbb0dTUhF//+tc4//zzxTIrV67EQw89hB/96Ef48Y9/jAULFuDhhx/G8uXLxTJ33HEHAODUU0/N689vf/tbXHrppTCZTHjrrbdw3333IRAIYNasWTjttNPw8MMPw+l0jnk/GYZhGKaUTEZ8n0rrthtvvBGf+cxn8O///u8AgKOPPhp2ux0nnXQSfvGLX/BsMIaZYhKJBN5++228/fbbU74tg8GAuXPnYu7cuejv78fLL78s9I5SEIvFsHPnTjz77LMl2T7DTIRqie8lFdJffPFF/PKXv8SOHTvQ2dmJxx57DOeee674PJfL4ac//Sl+85vfwO/3Y/ny5bj99ttxxBFHiGUSiQS+973v4cEHH0Q8Hsfpp5+OjRs3jugvywwPZYZbLBaRwa2qqvC+JhGdvMrj8TjS6bT4KRcPpQxls9kMp9MpClG63W5ho6JpWlEBloRgEpFJCE+n01AUBVarVWRwk5gue35PRjXgYuJoocUNCchUfNLj8UDTNIRCITFlhGxUYrGY8JaPx+OIxWJFs9JzuRx0XUcoFBJVy2mGAB1PGugoRLbBiUaj4hhRf3RdF+eQxdzxQ9fAcIMGtAwN6siiuzzAQtc6U1rWrVuHdevWFf3s3nvvHfTeKaecgtdff33YNi+44AJccMEFQ34+0j1otVrxl7/8Zdhlyg2O7wzDMEw5MB7rtlgsNsgOQp4xW81wfK9efD4fjjjiCNTU1Ixr/UQigffeew/79++vivsok8nggw8+wFNPPQVN00a9XmdnJ2ehM8woKGV8L6mQHo1Gccwxx+BrX/taXgYfcfPNN+OWW27Bvffei8WLF+MXv/gFzjzzTLz//vsiC++qq67Ck08+iYceegg+nw/f/e538YUvfAE7duyYUGHGasZgMORlis+ePVuI6Xa7XVi7kGg9MDCAUCiEWCyGrq4uIaSTV7bb7RYZ2rW1tXA6nTCbzbDZbMKvfCSrEhLA5Sz0cDiMaDQKXdfR3d0tfg+Hw0KYJEFZ9iSnl5wRPJTITgIp7Yvs/y0PFlC2vclkgtfrFVnt5LlOWeFksTIwMABd1zEwMCBEcjlDnaxy6H2LxSIEebPZDIfDIWYHyJ7vtDxloKdSKXFuYrEYuru7RTa6nBU/2dcPe4YfRL4P7HY7nE6nGDAiK6FIJCKKvtI1wxxkujPSmcmD4zvDMAwzFOVu3fbFL34R3/zmN3HHHXeIqd9XXXUVTjjhBDQ1NY2r3zMFju/VS0tLC6644gocddRR41p/YGAAt956K9rb26sieSiZTOKvf/0rXn/99TFd16lUCj09PVPYM4aZOqolvpdUSD/rrLNw1llnFf0sl8thw4YNuO666/DlL38ZAPC73/0ODQ0N+MMf/oDLLrsMwWAQd999N+6//36cccYZAIDf//73aG5uxvPPP4/Vq1dP277MJEgYpsxnsjihjHSz2ZwnpJPAm81m82wu5CxtKrppt9uFNzpltw+VVV2IXAhU9hY3Go3QNE0I1ST0F65bTEyXC5oO9zm1UWjFIn9OgqlsgWO1WmG1WpHJZGA2m4XAT6PS5D9fmBlO20in00gkEshkMsKWhc6LPPggF2EhIZ38zykDnQR0snSZChGdGQzdD+QfTxZGdL3I9w/bvQyGj0dlwvGdYRiGGY7pjO9jtW679NJLEQ6Hcdttt+G73/0uPB4PPvvZz+Kmm26atj6XKxzfyx+yLx3q+ZqS0wqfl2WKFemsqalBS0sLDj300HH1q6+vDw0NDeK5faQ+lAq5LhyRzWbzZr2Phlwuh/7+/gkVLmWYSqQa4nvZeqS3traiq6sLq1atEu+pqopTTjkFr776Ki677DLs2LEDqVQqb5mmpiYceeSRePXVV4cMxCQmEqFQaOp2pAKh7NmamhrYbDa43W44nU4h4MrCbyaTgcvlEsE2GAwCgLCCMZvNqK2thc/ng6IowtpFzkIfbeayLEgaDAaR0a5pGrLZLBwOByKRCAAIsTiZTArLGSquabFYkEql8v5BiMViiMfjSCQSiEQiiEQiMBgMCAaDyGQycDgcItNdzkoH8n3Iyd+cRGzK7ichnY4becKHw2FYLBYAKFrZm/pO+0wZ6eFwGJqmCbsQykinVzKZFFnO4XAYuq6LIqepVGrKLF3on4zxVimvNGhAiQZIis1ooJkKlJFO3v1ms1kU0bVYLIjH4+JvhpnJcHxnGIZhppuxWrddccUVuOKKK6a4VzMLju/lQV1dHU455RTMnz+/6OfhcBgvv/zykP7jFosFJ5xwAo4//njxnAoAhxxyyJC+w6NB0zSccsopUFUVXV1d2LJlC/bt2zfu9qYCq9WKU045RdRPIz788EO8+OKLGBgYKGHvGIYpRinie9kK6WQYX/hl3dDQgP3794tlFEUZ5NPV0NAwyHBe5sYbb8RPf/rTSe7xzICyw+12O2pra2Gz2VBTUwOHwyEEZBmySNE0DRaLBcFgUPxNHugkpFN2Ok1tGo/1h9wH8iNPp9NQVRXJZBJ+vz9POKdCndFoFMDB4KgoCtLptLBFoc9jsRgSiQSCwaD454zas9vtCIVCSKVSeceqmDVMOp0WAj55xMs2M8DBfwYpU19RFACfiLIyJEgbDAZhW0Pnh0bKyS9dzpjXdV0I+9FoVAi0cib/VCAL6dWAPDOjmJhuMpnEveFwOFBTUyNEdLJ2yWazwjs9HA5zVroEW7vMTDi+MwzDVDcc32cmHN/Lg8bGRlx00UU47bTTin7e0dGBYDCI3bt3F72fFEXBySefjCuuuAI2m028bzKZYLVax90vu92O1atX47TTTsNbb72Ftra2shTSV61ahVNPPTXv/aeffhrvvPMOC+kMMwLVEt/LVkgnCsVWEm6HY6Rl1q9fj2uuuUb8HQqF0NzcPLGOlhmyT7WcPU3INiaFwipNB5OLf1IbhUJ6NpvNs3CxWCzCX11VVfGebGUxWd7Z8v6RIE6Z8JTlS9ujoo5kpUF9IcFXtj2haWYkiMfjcWGrQhnmJHwWE9IpG7yYaC1bsYz2OMjniTLpk8kkgE8KI9BUM3k5ufiq7Bk/lcgDBpX0RTgRig2AFKPQhke+fuW/mU+olkBcrXB8ZxiGqU44vs9sOL6XFkq6crvdRT+PxWJoaGjArFmzkEgkRLKYpmlwuVxwuVyoq6uDx+OZkHBeiMFgELanXq9X9EHXdYRCoUmdzZzL5RCPx9Hb2wuLxQK73Q6Hw4FMJpOXbFeI0WiE0+kcdOxsNtuorGgZptqplvhetkJ6Y2MjgIOj1rNmzRLv9/T0iFHuxsZGkYUsj2r39PRg5cqVQ7atqipUVZ2inpceGi2mn4XZ5NlsVlh8kJUJCcqFfs6UQT5c4CARXdM01NXViUKYDodDeKFbLJYpEwop65cEXNovo9EohPFkMpln60IiO+2XLH5Ho1Gk02nEYjH09PSIqV3kxV5TUwOPx5MnpJO1i2x5A+R7s1P/ZHG7sBjqcJAYTuvpul50oEReRrYemWrImz0WiwFAVWSl03VCMwCKIZ8HWXSna0A+V+xbn0+1BOJqg+M7wzBMdcPxfWbC8b0ycLvdOO+883DkkUfio48+wiOPPII9e/bgmGOOwZe//GU0NDTg6KOPzrN1mWwaGxtxySWX4PTTT8fOnTvxxz/+Ed3d3ZPWfi6Xw+uvv45f/vKXqK2txdlnn40zzjgD/f392LRpE954442i3yVOpxNf/OIXccopp3DhW4YZB9US38tWSG9paUFjYyM2b96M4447DsBBsXPLli3CCH7p0qWwWCzYvHkzLrzwQgAHzeTffvtt3HzzzSXre6kxmUwia9rtdsPn8+VlhKdSKQSDQei6jmg0ing8LmxI5CKhlJU+0ugrLa+qKtxuN2w2GxRFEQI+tTNVkH0Kkc1mkUwmEYvFMDAwAKPRKGxbTCYTdF0XnuPUL8rgloXvRCIBv98vlqXBgng8LrLT6Wanop5yhj75Y8vWLYWCOomoo/nSkAX6chWpqfisyWQSwv9MzbKWbXx0XRf7W7iMfE2Rxz7da3QNjOU6YJhKh+M7wzAMw8w8OL5XBjabDSeddBJOPPFEvPbaa3jppZfw0Ucf4ZBDDsG//Mu/YN68eVM+U9br9WL16tXI5XJ4/PHHsXnz5kkV0gHggw8+wJ49e+B2u9Hc3IzTTjsNwWAQzz//PP70pz8VXae2thYLFizASSedxEI6wzBDUlIhPRKJYM+ePeLv1tZW7Ny5E16vF3PnzsVVV12FG264AYsWLcKiRYtwww03wGaz4aKLLgJwcDR17dq1+O53vwufzwev14vvfe97OOqoo0QV8GpBtmOxWq3weDzCl5kKW5JwbLFYhPUJ2YTIxTnl4plms3lEQZTEP+oDgLyM7+kUUqkPuVwOiqJA0zSRmU7CN9mbFGaUF46eycsmEgmEw2HRDnmsE+l0GolEQhxXRVHyvOBlAZ2EVzrmM0lEpRkB8n5N9zUwnZCVD+1vsc/p/UQiAV3XkU6nhW1S4bUwE66ByaRaRrRnIhzfGYZhmKHg+F65cHyfGpxOJ5qbm/M8yYciEAigo6MD8Xh83NsjodzpdGLJkiXQdR0LFy6E1WqdNgsT6oPP58NRRx0Fp9OJ7u5udHZ2Ttpsanr2bmtrw7Zt29Dd3Y2BgYEh7U4TiQT279+P7du3C10DAPbs2TOkHQzDMJ9QLfG9pEL69u3b84pgkO/ZJZdcgnvvvRff//73EY/HsW7dOvj9fixfvhzPPfccnE6nWOf//b//B7PZjAsvvBDxeBynn3467r333qobQTSZTCIb3OVyobm5WVirFNqq5HI5+Hw+ZLNZRKNR1NTUQNd19Pb2isBFxTozmQxcLpcokEiZ7RR8ZG9wo9EIq9WKXC4nBPvp9n0mD7RMJoOamhrhb55KpRCPx0UWMYBBdijFhHTK1Pf7/YjH48LepXBqIXmq53I5OJ1O1NTUwGKxwO12w+FwiGVyuRzC4TB6e3uFHxx5mVfSF0cxKIs/HA4jk8nkZfjPVDGditOSvUshdC/RP6SZTEaI6DQgE41GhQXRdFjwVBLVEohnIhzfGYZhmKHg+F65cHyfGhYsWIB169Zh8eLFIy772muv4c4775yUQp3z5s3DunXrEAwG0dDQMKgI7HRw5JFH4gc/+AECgQA2bdqE3//+94hGo5PWvq7rePrpp7Fz507ouo7W1tYhl41Go3j88cfxz3/+M+/Zta+vDz09PZPWJ4aZqVRLfC+pkH7qqacOe7AMBgOuv/56XH/99UMuo2kabr31Vtx6661T0MPKgYpg2mw2OBwO+Hw+OByOEcVL8v/WdR2RSERkT1NGeiqVEgIxieeFIjr9Lmekk73JdEMWLOSbTgVSzGbzoIz00UD7mEgkRIFPar+w2CiJoJlMRhRZpRfwiZCu67p4kYg+1UVApwsS0C0WiyjaOpMLs2QyGZFpPlxGOi1HszRITCePdfLXnynXwWRRLYF4JsLxnWEYhhkKju+VC8f3qaGmpgZLly7Fpz71qRGXjUajIlFrorhcLhx77LGT0tZ48fl88Pl8SCQSeOONN/IywSeDTCaDvXv3Yu/evSMum06nsWfPnrxZF9WCnFg4ExPgmOmhWuJ72XqkM6OHBGyn04na2lqRiT6aL0Cz2QybzQaz2Qy73Q6r1SpE9GAwiFQqBbvdLixLNE2DyWTKK5JJLypQWspsAtpnOiYkpCuKArPZLLzJx3OTUlApJnaSbY5ssUM/qU9GoxG5XA5ms1lktCcSCSiKkueTXcnQtUN2QfF4HGazWVw3MwHZpieRSIg6A0MVG6XrhgYZqA6B0WgUhWdZRGcYhmEYhmEYZiRmzZqFs846C0uWLMGHH36Id955RyR8AQetX/7+979jYGBgxLZ8Ph+OPfZY1NbWTmWXmQogHo/jtddeg6IoqKurw7HHHgufz1fqbjFMWcJCeoVDgpyqqqivr0dzc3OeUDsSFosFHo8HmUwG4XAYbrdb+DaHw2HhkxYOh6FpGpxOpygkSRm4NOqkqio8Hk+eeFwKSKjUNA1utxuKosBqtcJisUzYj1y2e5GhY06DCRaLRVjh0PEgoVRRFNjtdlgsFlGklDzW5X+CKhEShQ0GA8LhMEKhEFRVFVn8MwHygads8lAoJLLKZfskmVwuJ9YBkLfcREZtZzrVMqLNMAzDMNUEx3eGGT+HHXYYrrzySsTjcdx///3Yt29f3jPkgQMH8Nvf/haapo3Y1nHHHYdrr72WhXQGgUAAf/zjH/HMM89g6dKluPbaa1lIZ8ZMtcR3FtJnACQcK4oiMsJHK2RTJrXRaBQ2JCQ2p1IpmEwm6LqeV0TUbDbn+TmTDzplqpcD1B/Z150ywidD5C92k8tZ6LKITv7gZAVDn1GWP3nJD5XRXEnI2drpdBrJZDLPU3+mQPcIvei6osGCYjUEWDAfO9USiBmGYRimmuD4zjCfWJLS7N3R2mFarVbMmTMHqVQKXq93ULJSMplEV1fXqNpqbGzkIppAXl25kSD725lGJpNBb28vent70dTUNKOuCyo6m0qlkEgkOI5MIdUS31lIr3DoS5+sSyZS4NNiscBqtcJgMCAejyOdTkPXdfT39yMSieRZdJA9islkgsvlgtVqFWJ7qTPSCRocyGQyUFUViqII25HJgGxcjEYjbDYbfD4fNE2Dx+OBz+cThU81TcvzU08mk7BarUilUrBarVBVFYlEQky/IxG6UsVn8gUPBAJQFAVOpxNOp1PMkiiHa2MiUAHRRCIBs9mMxsZGMehEgzWJREJYv4RCIaTTaaTT6Rn5T9dUUi2BmGEYhmGqCY7vDAN4PB6cfvrpOPzww9HS0oKGhoZSd6kqMRqNOPbYY3HKKafAbrcPu2wqlcK2bdvw8ssvzyiheabT3t6OzZs3o6OjA6+//joikUipuzRjqZb4zkJ6hUOWIhO1zyBR2GazAUCef7Ps6ywX2czlclAUBbNnzxZZ6pT5XQ5iKdmsUOa3oigAJk/IpWNmsVjgcDjQ0NAAu90Ot9sNr9cLi8UiBHyZdDoNh8OBdDoNm80GTdPy7F1k25xKJZ1OIxgMitHfxsZG8Y9JpVu8kJCu6zqMRiMaGxsBHMwO0TRNWL4kk0mEw2HkcjkhvFPhXoZhGIZhGIZhqhe3241zzjkH5557Lsxm86BnRmZ6MBqN+NSnPoVvf/vbI1rcJJNJbNy4Edu2bWMhvYJob2/H/fffjx07dgh9i2EmAgvpFQ6JclMhzlGbhTYVcnZ1McG3HER0grLzZXuVyewf2biQUE/COU3Tk61dCLJ3oYx5VVWFx7zFYgHwyUBGKaHphfKxk6HrYqhCmRSk6CVnbZfTNTJa5HuMBow0TYOqqjAYDGJQJJPJwGw2i2ljNptNHEvKVGcxfXRUy4g2wzAMw1QTHN8Z5uBzpKZpcDgcpe5KWWAwGOByudDc3AyHw4FAIIBoNDpl29M0DTU1NbBarWhoaIDL5RrxXCSTSVGXzul0IhAIzMjs5kQiga6uLrS1tcFut4s6eJWKxWKB2+0eVS2AeDwOv9/PM8nHSbXEdxbSKxy58KHs1TzetpLJ5JC2IoXt008ShM1mc1kJpCR20muyRVyTyQSn0ymCi9frhcPhgM1mg91uh9FoFIK5jOwnT8dT13VEIhFRfJSE51JhMplE8VRN02Cz2fIGJDKZjMieTyQSiMViwu6HfNLlApz9/f3IZrOw2WwVG4jpnjAajeI822w2OBwOWCwWIarTvieTSQSDQXg8HkSjUXR2diKTyYhzW+qBkkqgWgIxwzAMw1QTHN8ZhinEbDbj5JNPhs/nQ3d3N/74xz/ixRdfnLJ7fuHChbjoooswf/58LFq0aERbF+rjSSedBK/Xi66uLjz66KN44YUXZtz30v79+3HXXXfh0UcfxYknnogLL7wQXq+31N0aNy0tLVi3bp2w0h2OXbt24cEHH0R7e/s09GzmUS3xnYX0CkcueChnjo9HLCZv7uH8ueWsdHlb5ZppLGek02uyMBqNUFUVDocj70UWH0Nti94nwTmXywl7mFgsJixjSgnZ4pjNZmFXQ+fYZDIhnU4jEokgkUiIgQA505p8wpPJJCwWC0KhkLAFcrlcFSeky7MzjEYjrFYrAKCmpgYNDQ1iNoKqqsL6JZVKIRgMAgCi0ago/EPnnYV0hmEYhmEYhmGYg8/Ihx9+OJYsWSK8rF966aUpE9eamppw1lln4Zhjjhm1hmE0GrFkyRIcdthh6OzsxJtvvoktW7ZUlAA4Gvr6+vDcc8+JZ/8vfOELFS2k19fX43Of+9yozpPX68XTTz/NQjozLCykVzhU2JFsNOLxuBB4RxsQSISnbGjKNB5LHyYy8jSVyBnSk9lHEujNZnPei8TmsbRjMpnyLGIos1+20JkO5OKpVqsVbrcbFoslL8OeXul0GsDBKXFms1kMwui6Dl3X8wR1Et2BgwK9x+MRhWrLXVCXrx2yZTGbzaK4LmWly7Y+2WwWBoNBFLalKYI2m00I8HT8mOGplhFthmEYpjwxmUxobm7G7Nmzoes6WltbR5XRxgwPx3eGOWgh8e677+Kll16Cx+NBS0vLqGxe/H4/WltbEQwGsXfv3hljQZHL5dDR0YH29nZ0d3ejp6dnWu738SQCTrZdbLmSy+XQ3d2Nf/7zn2hvb8ecOXMwe/bsSU1OnCp0Xcf+/fvR29sLt9s96vvL6/Vi6dKlcLvd6OzsRFtbGz+7j4Fqie8spFc4mUwG2WwWuq4jEAiIbGiTyST8toeD7FwymQwikQgCgYAQ04dDFkopu7bcvJ8LxfPJEtMpcJL9CQmkJKZS5vVo2pELy1itVthsNqTTaSFo0/GdDsiqRlVVuFwuzJo1SwjlFotFBEyydqHjGYvFEAgEkEql0Nvbi97e3jybF13X0dHRAUVRoOt6XtY+WcaUKzRIRYMBuq7D6XSivr4eDocDNTU1qK+vzyssS/djKpUSnumxWAzhcBg+n0/Y4MTj8VLvXtlTLYGYYRiGKU9sNhu+8IUv4MILL0RnZyduvfVWvPzyy6XuVsXD8Z1hgP7+ftx333146qmnsGzZMlxxxRU49NBDR1zv3XffxW233YaPPvoI3d3diMVi09DbqSedTuOFF17Avffei/7+fnR0dPD9XmJyuRx27NiBn//856ipqcFXv/pVfOUrX4GqqqXu2ogMDAzg97//PZ5//nkcd9xxuOKKK7BkyZIR1zv00EPx3e9+F8FgEI8++ijuueceMcucGZlqie8spFc4dKGSV7Wu60LoHI2QTkItZc+OJyNdbqdcmeyirLKYTtnkJH5PJCNdbqcUGekkCFutVjidTlitVjGlqxjZbBYmkwmZTAapVArhcHhQNn0mk0E0GoWu63C73UgkEsI6ppyRB4loxoeu67DZbMIT3Wq1iux0TdPyMtLNZjOSySRsNhsAiGKkNFDCjEy1BGKGYRimPDGZTJg7dy6WL1+O1tZW+Hy+UndpRsDxnWEOFnTcs2cP9uzZA5vNhnA4PKrre2BgAG+99Rbefvvtaejl9JHNZnHgwAFs376dhcsyoq+vD319fXA4HPjsZz+LVCoFRVHKLhmu8N6Jx+P48MMP8dprr0FV1VEXhXW73TjqqKOQSqXwxhtv8HP7GKmW+M5XxQwhk8mIgONwOGAymfKypOXpR7lcDslkEtlsVlQlTiQSGBgYyCtaOhJ0k6TTaSQSCSiKIjKRgfFNk5pMqG/0ogKPk3GDylnu9PdEvjDomMtZ88O1J/vRFzvOhX7lw0HXhsVigdPpFBXLZUF/uH6QxUkqlRI2MGTzkkql8vYrHA6jo6MDVqsVdXV1YiCBLG3KAcq2z2azCAQC8Pv9g84R7bc8CCLXCaBisrRfhYMlpb43GIZhGIZhGIYpDzo7O/HnP/95VOL4rl274Pf7p6FXDPMJ6XQar7/+Ov7whz/A5/Nh6dKlmD9/fqm7BQDYu3cvduzYgWg0Kt7r6elBa2trCXvFzGTKQ7liJkwqlUJPTw8GBgbgcrmQy+Vgs9ngcrlQU1OT57tNVhOJRAKBQAD79u1DPB5HLBYTAvtoIWsYXdeFkE4ZuaUWC8m3O5VK5b0ma6Sr0N5G9mMfSxuyKC8XjS2GnAlPme9ytrjcFg0ajDQwQln0qqrC6/Wirq4OZrNZ2NSMhNlshtPpFJnnkUhEXEd0vNPpNAwGgxi0URQFiURCWNu4XK6yEdLpmk6lUujs7MS+ffuEt7vNZkMmkxFCOgnl9LJYLMJHPZfL5b1PL0VRKsJXrhyolhFthmEYhqkmOL4zTD6tra3YuHHjqGbs6rrOGdvMtJNIJPDXv/4V//jHPzB//nysX7++LIT0XC6HXbt24b/+67/Q0dEh3k+n0wiFQiXsWXVSLfG9PJQrZsLkcjmRcU0WLyaTCYlEQhRJJBGWMshpuUQigXg8Pm6RmcTfcvNJJwE3k8nk9W0y+1csm3w8bQz1kjEYDCLjmcRvEtVlKxV5vWKZ84XI7ZHYO1qfd+CgEE8WLyQc0/VWuJ+UqZ7JZMS1R9cuWRGNlAU/FcgDIJlMBslkUgwQxeNxmEwm2O32vOXkPk5Xf4vNQih2vmcK1RKIGYZhmPKEio2HQiGRKMBMHI7vDJNPIpFAb2/vtG83nU4jGo0iFAoJ68pSJ8NNF6lUCpFIBKFQKG8W/0gkk0kkEgmEw+Gqigm5XA6hUEgcr4GBAYRCIWFxOt2JYqR7pVIp9Pf3o7OzM09IZ0pDtcR3FtIrjJGENLJr6erqEgGBCjqSYErFENPpNOLxOMLh8LhtT7LZLBKJBCKRCIxGoxDoR2MLMpWQfU0sFkM8Hoeu66Ko6kRvUNn7W9d1RCIRmEwmMXihaZoozjnU/tMXTCqVEoJyJBJBJBJBNBpFOp1GLpcTXttkvULtKooistLl7VDfaACBzg8NJqRSqUGCP/mVK4qSZ0UyFui6slgssNlsQlQvhLLUM5kMenp6REHO+vp6uN1ukZ1OovpY+zFW5OMVi8WQSqUQDAbR29sLXdfR19eHcDgszqvBYIDD4RDnLJlMimx7Giige5D+MaUXndtoNIpUKjXqPtJ5puK2dM7pnxX5XFN/JnvAqFRUSyBmGIZhyhNd1/G3v/0NwWAQwWAQH374Yam7NCPg+M4w5cGBAwdw//3344UXXsCxxx6L1atXw+PxlLpb00JrayvuueceNDY24tOf/jQ++9nPwuFwDLtOJpPBa6+9hr///e/o6+vDzp07q/I7KRAI4LHHHsM777yDhQsX4uyzz0ZTU9O09qGjowPPPPMMWltb8c477/AsjTKhWuI7C+kVBInhhbYphVnMJBzL4rm8PmXVUmbtRIqEUqYOZTPTqCBtpxRCOh0HWUgn0XOyBEY6hrquC3sSylwmf+zhPMxlf3kSZXVdRywWE4McuVxOCKhGo1EUt5SFb9nmRd43ElTJZoRsbQq902WPckVRhA0JgHGNKlssFlitVtFuIfJ119vbC7/fD03TxICCw+GApml5+zTV1xAJ0OFwGLquCz81XdfFiwYIjEYjotGouJ5kIZ3OOQ2w0PUXjUYRi8XE7zRQMhroONJ5cTgcYsYAHV+5H/LMiLEWDGYYhmEYJp9EIoGXXnoJW7duFQkQDMMwM4XOzk488sgjMJlMWLNmDVasWFE1QnpbWxseeOAB8Ry/cuXKUQnpO3bswJ133gm/3y+ev6qNYDCIp556Cs8++yxOPfVULFu2bNqF9K6uLjzyyCN45ZVXkMlkRv18zTCTAQvpZY4sxhbaegD5IrosUtLfsghZuA79PlHI1oX8yJPJpBBBpxvab8rAJq9rykSfzExdEsJpnxOJhMgapyxhyswvXE/OIKZ16XcSQOlcUxa6bLtC2eOUsV7Yvjz7QA4q9ABIx6eU0PZJRKfiIDRDgsR92b4GGJ/1S6HFDd0rdJ5oZoFcK6DwupEHIej4yv7o8nUnWybJYnoikRDbHA65QKnNZoOqqkJIJ491Ou+ykG6xWMRADFnojOS7X+5U4z+nDMMwTGlxuVzwer0wmUwYGBhAIBDgeDTJ8PFkmNJDyWcGg0FYbk43kUgE/f39CIfD6Ovrm7ZnVHoWz2Qy6O3txUcffYRQKASfzwe32z1kH7u6usRzXbVCA8upVErU3LPb7UWXVRQFPp9vxEGK4bYVCAQwMDCQ90y7b98+BAIB6Lo+rnaHIhaLoa+vD9FoFL29vWO+Hk0mE2pra+F0Ose0nq7r6O3tnRHXVTXEdxbSyxgSSYvZOlA2qiwOUyCQLTxIjJMF+EJfb9kKYqwXvbxdk8kEv9+PbDYLp9MpfMams/AoWZlQcYn+/n7hcz3Z/u2ZTCavsKbNZhNBlTLBZcGbSKfTQvgMhUIYGBhAMplEX18f/H6/EG/Jp87hcAhBlTLSVVXNuzZkj3R5YCOTyUBRFCEMm0wmpFIpkQFfuA5dA+M9X7KYPNKxpgEFXdfR1dWFgYEBaJqGnp4eWCwWUSiXBGSr1SoGFOSBpZG2IfeLZhFQTQC/3y/87eg8kKhPy1M7cpa3qqqwWq1wOBxwu92wWCyIRCJiBkRPTw+CwSACgQDa2toQiURw4MABUWx1qABJ9wrtu6qqaGpqgtfrhaIocDqdQkin7wAayEmn0xgYGBAWQe3t7SJ7PhaLVaSYXi1TwxiGYZjywWAw4Pjjj8dXvvIVKIqCTZs24amnnuJst0mE4zvDMMQ777yD+++/H+3t7dizZ8+kC6Mjkc1msXXrVgQCAdTW1uLCCy/E6tWr82ZXv/vuu7j//vvR1taGjz76CPF4fFr7WM589NFH+PWvfz3kTIbm5mZcfPHFWLZs2bjaT6fTeOGFF7Bp0ybEYjHx/sDAAPbt2zeuNofjgw8+wO9+9zvs27cPe/fuzdvmaHC5XLjgggtw2mmnjWmG/+7du/G73/0Oe/bsGWuXy4pqie8spJc5ctarLJ7SSxbEDQYDUqkUjEajEDJloZV+L7R/IHFwPBcuZWVTsYdYLCYEZNrGdNq7yJnxlGUs27pMJmRrk06nYTabEYlEkM1mYTQaxbkqJl6SNz15aJOQS7YfwCeDKCSmk2UK2YsMJ6TTOaHzQv7qZLtD1w2JuYWzGiZynOSZEaMR0ml5qqhNgrTFYhH/oNAAkpylTfY5o81Ol2cByNcF2cskEgkEAoG8YzJUfwGIa5wEdbPZjHg8LgaxwuEwBgYG4Pf70dvbi0gkAr/fL/zRhxK16T61Wq2oqamBzWZDc3MzGhsboaqq8I8v9EinwZm+vj4xOBMMBsW5qNSiQdUSiBmGYZjywWAwYP78+Tj77LNhtVrx5ptvTnsRtZkOx3eGYYgDBw7gueeewwcffFCS7edyOezduxd79+5FbW0tli5dKhISic7OTmzevBnvvfdeSfpYzvT29uLvf//7kJ8ffvjhOOOMM8bdfiaTwfvvv48nn3xSaAZTSXd3N55//nm8/fbb41rfarXiU5/6FM4777wx/e/g8/nw5JNPjmub5US1xHcW0ssQ2duc7DxIVJWFRCDfqoJEaxLRSWgksZF8p2l5Ethk64fxTKWiC54KNlK/KQuc9mEqxTza/1QqhWg0KvypdV0fVricCLIQnEwmEYlEhF82DX5omgZN0/LWo+OUTqcRDAYRDodFljKdMxLJyQtdzm6Xr4tiXuR0HdBnlEGVy+WEVQqJ/3RcSIyl7GZ58GU0yMefbE3o+iq0ZqGfJGwXWg3RDIloNIqBgQGoqioGGuRBBLkQqzzrQW5LtjahmQNktUK+6JSdLmefF0Lnwmq1QlVVpNNpMXAUDAZhMpkQCAQQCAQQiUTQ3d0tstL7+/uFR/pwAwzkw26xWFBbW4vGxkZYrVZ4PB44HA7xHUDnvfB+okKodM4aGxths9kwMDAgzms5WPowDMMwTLlz4MABvPjii1AUBfv376+ohzuGYZixksvl0NXVhZdeegl79+7FvHnzMH/+/CkbRIxEIvjggw/Q39+PXbt2jTnrd6pIJpN4//338de//jXvGXvnzp0i4Y0ZG5FIBDt37hykiYyWRCKBPXv2TOmssFgshg8//BA9PT14/fXXEYlExrS+0WhEc3MzWlpa0NjYiNmzZ49Z+6qpqcEJJ5wAl8uFAwcO4KOPPpoRNi8zFRbSyxDKMjaZTLBaraL4Iv2UxVPZusJisYiMbFVVB4nHxYT0TCYjMtgLi1GOFhJCE4kEBgYGEA6HkU6nYbPZoGkanE6n2PZUiOlyVnwkEkFPTw/i8bjIziWReCogoTYWi6G7uztPUDWbzbBarbBarXnrpFIpIbpHIhGEQiGR0U/nQ9M0IdySiErXAonqsogsn1fqF/WN7Fx0XUc2mxU+6SSskihsNpsRi8UQiURE+6NBvpbi8TiCwaCwkqFrmSxpqK90vZC4TX2lNoCDPmF+vz9v4ICEdHlwoZjdkSye0/mn40uiMtkakXA/nB2NyWSCy+VCXV0dHA4HkskkQqGQuPYMBgMCgQCCwSCCwSDefvtttLe3Ix6Po7+/X8wGSKVSQ27Dbrdj9uzZsFqtWLBgARYvXgxFUeByufIKuBYOSMgzCqxWKzKZDGpra+FyuRCLxbB3714xEEHWM5VCtYxoMwzDMOVDNpvFP/7xD7S1tcFgMKC7u5ttXSYZju8MU37s3LkTN954IzweDy655BJ89atfHbf4ORIHDhzA//zP/+DVV19FMBhEb2/vlGxnrESjUTz++ON4+eWX83SLQCCAnp6eEvascunu7sY999yDRx99dFzrZ7NZ9Pb2TqnlT09PD+6991688MILCIVC6OrqGtP6ZrMZp512GtauXQuPx4OmpqYx614tLS248sorEYlE8MQTT2Djxo0Vec1VS3xnIb0Mkf3MTSaTEBDJ2qIwU5iymOUik0C+wAZ8ItBTpjAtRwIkCYK07kh9LPblQOIsZSUbDAZYrda8fky2mE7CKYmk8Xgc8XhcZKPLXtdTAYmp8Xg8L/vfZDIV3bacvU7iZqEdislkyitkSS+alUB/y17huVxOWPcAELMNzGaz8FwncZyuJTmrXi7OStdJYbb7UMi+7NQG7bd8HcvXnVxdW7YXot9pcEFug2xP5Ix/uido3+RMdBLS6bqQxfOxQO3Llj3kNR+NRmEwGIQ3eSgUgt/vx8DAAHRdF8VTRwoqNFjidDrhdruFRzoVGh2ub3IbZOmUSqVgtVrR398PRVFEfyuJagnEDMMwTHkxMDCAgYGBUndjxsLxnWGmn2Kzjek5EAD8fj/8fj8cDgcOHDiAZDIpdIjJen6n591oNIo9e/Zg165dk9LuZJHJZNDR0YGOjo5Sd2XGkEgkpsTLfDKg6zEWi+Gjjz7Czp07x7S+7CLR2NiIo48+Gi6Xa1x9cTgcWLRoEbLZLN54441hn//LmWqJ7yyklyGyLzqJn7JFixzMSDQj0ZMEVRLWZbFSFuFJuJWz1GVBthhU+NJsNsPhcIgimBSAKcOahNC+vj4oiiIyfimrnuxFJlKElGxEaLuhUAiJREJYaSQSiSkpMDpcf2hbiUQC4XAYRqMRiURi0NQgEptJKJZFXRLJKQObMq9lex/ZI18+jnTuSPSlcywLzIqiAIBo22g0Dip+SoVTDQaDEI6LfZHT/spiMVXOJm92sqOxWq2ijcJCubL9ynDHlzLG6ZiRWCwPPMnt0rUhi/wjbWe47VNWO72omC593t/fj4GBAYRCIYRCIeGHLhdxLYT8641GI1wuF2bPng2XywWv1ysE9LFOqaTzTzYxPp8Ps2fPFgVPK7XwKMMwDMMwDMMwY8dkMuGoo47CsmXL8p7rurq68Nprr6Gzs1O8l0qlsH37dtxzzz2ora3Fpz/9aSxcuHDCfdB1Hdu2bcPu3bvR1taG9vb2CbfJMOMlmUxix44dePPNN3HgwAHs379/zG3MmzcPK1asQF1dHZYvXy60Fmbmw0J6GWIymfIEVDmTV84QlkXoQtsWCpAkkhYK7QDE8mazGZlMZpDQXphBbrPZhO9yU1MTmpubhWBPBSP37t0rxFSaikKFPhVFgcfjEdugjOqxQtsjiw7aViQSQTgcRm9vrxBbp9MPmsRJyoYfarBAnilAL9lXnSxLaNCB7Fzob9n6pxDZ9kM+N3SuqXAn2f+YTCaRpZxKpdDf349gMAi32y2sZaxW6yDRXvYcD4fD6OzsRDKZRDAYFB53JARTQU6aGkiDL9QWZYyT5UwxCjPnC/d1uPXk9ceLnIFOsy3IW50GbLq6utDb2ysKjdKgxHCDObJVjdfrxbx58+D1eoWdy3gzQMxmM1wulyiuSkVt4/E4ent7J3w8potqGdFmGIZhmGqC4zvDTC9msxknnXQSvvOd78DpdIr3t2/fjgMHDuQJ6clkEi+88AL++c9/Yt68eXA4HJMipMdiMTz99NO47777oOv6mH2oGWYyicfj2Lx5M/77v/9b2NuOlSVLluCKK67AwoULRS21aqda4jsL6WVKYaaxnIFcuBzwSYFJAHkCa6GNC61DYrm8LfpdvoDlbauqCofDAafTCY/Hg5qamrzMZ5PJBKfTKTKsI5GIEFzJn5u8uKmPJN6PJBYWFpCkjHTKDtZ1XQicqVRKZB+XgvF+eRQ754Xe8rKgPVJbhJzBLmduF8tmp+OWTCaRSCTE8vKgB107JKST1zkde/m4y8VGgcHnezwzE+RrYTqRrW8SiYSYbUEWPsUshUa6FujYyIMncib6eGdsyPetxWKBpmlIp9Oi3eEKq5YT1RKIGaac0DRNDOQRqVRKFMlmGIaZKBzfGWZ6UBQFNpsNNpsNdXV1qK+vzxPS6+vrUVtbC6/Xi2QyKWauRqNRRKNR2Gw29PX1ob+/f8J96e/vR29vL7q7u6c12Y1hUqmUcC4gyJu/p6cHyWRyXO2qqgqfz4e6urrJ6qqY1V9TUyPqm02lP/xkUy3xnYX0MqRQ4KT3RlpnNBceLSNnycq/F174ZrMZHo8HmqZh3rx5WLZsGTweDxoaGjBr1izhpZ3L5RAOh1FbW4tQKIT9+/fjzTffFB7g7e3tsFgsCIVCsNlsQpQny5JC+xq5v4We12QdEg6HhaWI3+9HPB5HMpkUAm8l3YgA8sRzOh6UeS4fo9EKz7LNDwnydL6oPSDf0oeKlIbDYXR0dIiMck3T8rYt+4+TlQ3NfqBBncIsciqGK/u4F/r4lyvpdBqBQED42xsMBthsNnFMM5kMent7hS96LBYb1X6ZTCZhk+R2u+FwOGC32ydlWhidA03ThN+60+kUsxJI7C9nqiUQM0y5YDabceKJJ+LMM8/MKzDW2tqKJ554Anv37i1h7xiGmSlwfGeY6WHJkiX4whe+gMbGRnzqU58alDE7Z84cXHrppTjzzDOxY8cO/PnPf4bf7xef+/1+bNq0CW+99daE+xKPx7Ft2za2mGSmnf379+N//ud/0NDQIN5LJBLYtm1b2T0PGwwGfOpTn8JVV12Fvr4+bN68GVu2bKmYZJZqie8spJchsg/6UJnoY6HQ3qPws+HETLPZDLfbDZfLhXnz5uHoo49GbW0tfD4famtr83ypo9EoPB4PIpEIzGYz9u7di1QqJSxXTCYT4vE4bDZbnrhH1h9kb1LMQ5tEv1gshmg0imQyiUAggFAoJLaRSCQqQpQdClnwpizwYtnkY8nglgdkZDGdXnRdyEI6/YzH48LDm/zAaVnKRKcBDvLBL0Q+H7LATgMdlXK+yMImFosJ6xqy3KEM74GBAfj9fqTTaei6Pqr9MhqNsNvtQky32WywWq0ic3+ikM+9x+OBoiiw2+3iXNKgCcMwDGE2m3Hcccdh7dq1ecWSXnvtNWzbto2FdIZhGIapIA455BBcdNFFWLRoUZ4VLNHQ0IBzzz0X2WwWDz30ELZs2ZInpIdCIWzevBl//etfJ6U/9KzJMNPJgQMHsGnTpkHP16RllBuHHXYYFi9ejEAggL6+Prz88ssVI6RXCyyklyGy8E22KWOxPgE+8eumLwdqk6B2C1+F7RiNRmiaJqaEkWe2bD9BYqjZbIbVakU2mxWe2JqmCQ9pAMIuhDzTySaDikcWExDJUiObzYrpLalUCrqui6zoiQbl0Wb+FzvWMxF5H0kop4EOEvRp8EMWw8nvHEDe9UvnVx4EIAueoUT4ckK+f+jaI8jeSPblH21ApuNBA0gTLcI71DYKB2kms/2ppFpGtBmm1LhcLtTX18PtdqOpqUnEePnzBQsWIBgMIhAIoLu7e9i6FgzDMMPB8Z1hpg5N09DY2AiHw4H58+eLWeDFoOcQepYv9ozAyTczD5fLhcbGRpjNZmG5U46C8mRBFraVgmzRWknP7kD1xHcW0ssQuaCi7PU9ktWLnE1M68l2G3LmMYnm9Lm8jnwBK4qCuro6NDY2oqmpCfX19fD5fLBareLGlvH5fLDb7WhsbMTs2bOhaRoSiQR6e3uFf3YkEoHJZMLAwECeP/RQQrostsrWLSSi0/Ea6403lAd9sS8r+QuhcHBism74wi+doTK85f6PdztDbbfY9kkcpuNiMplgtVrR2NgIp9MJk8kk/jnz+/3CAsXv9yMajSKTyeRlxFO/ydOertPxUOw8TRV03qlgpzwwQJ79qVRq0KDVcFDGuNVqhaIog47RZEBBmDzSLRbLkDNUyo1qCcQMU2qOOuooXHrppZg7dy7mz5+fZ+sCAPPmzcO6devQ39+PF154Ab/73e9EQXGGYZixwvGdYaaO2bNn4+tf/zqOO+44NDY2ora2ttRdYsqMo48+Gl/72tfg8/nw6KOP4pFHHkE8Hi91t5gZQLXEdxbSyxAS4khMG01GurwuCeQkgJIITWKxLADTCLMsDsuYTCbY7XZh70L2E5StJvcrm83CZrPBbDbD6XTC6XSK4qIkdtMAgcFgQDQaFaPg1BZZjhRmRJNAKYvqk3GjFRb2lAXfwuNaeHymy5qk1IUhafuUXQ4czML2+Xzwer2wWCwiO5189+LxuPBNz+VyYiaCXPiWipSORXguhlwfYLS1AsaD7Pk+WZmYcrFROWN8MpEHiuj+qpSR7WoJxAxTahobG3HKKadg0aJFRT/3eDxYvnw5crkcAoEA/vd//3eae8gwzEyC4zvDTB1OpxPHH388zjzzzFJ3hSlT6P++pqYmvPXWW8Jal2EmSrXEdxbSyxDZczqVSonpVrLwRWKbLEDKWejkXy0Lz0MJ6bReMTFTXobE9mKCu2wpQ30YbhqYfIPJ1iGF2cmyT/pkZICTcCkLmIXWGrLFhtwPOYuf+iP/Llt6jKePtA150EE+T/TZWERQeV150ER+jaav5JVeW1uL2tpaOJ1ONDU1wePxCA914ODAi6ZpiMViwrqFzimd40I/9rF+2cqZ4PIsi8JjSH+XO4X3YOG9PlGGu64YhmFGg9/vx+7duzEwMIDXX39d1IpgGIZhGKa8CIVCeO2116DrOmbNmoXDDjsMDoej1N1iSoCqqjj00EMxd+7cvOfLZcuWwW63w2Qy4dBDD8XZZ5+NgYEBvPfee/j4449L2GOGqQxYSC9DyBPcZDJB13Uh7gIQQmoxmxYSLqn4pixmFwrpcnbtcGIqtZtIJAZ5QBcT00kwJcsYsl8phpzpLC8znK0K/T1W5IKbqqoKEZ1+p7/lzN3CPhQK6bIvtjx4IVvzjBb5XBQeQzo2hcL3cCPHhcKy3CZdI/QaSVilY6JpGg455BAcdthhcDqdmDNnDpxOZ16WeTweF9nodMyj0Sh6e3vzfMWpb2M5l9SexWIRgx1m8ydfYdQe3QeTbb0zFVB2O2Xnj2ewZDTbkM97pfjSA9Uzos0w5U5bWxvuuusubN++HeFwGIFAoNRdYhimguH4zjBTx4EDB/A///M/cDgcOPPMM3H11VezkF6lOBwOnHfeebjgggvE87rBYIDT6YTP54PZbMZpp52Go48+Gh0dHfjVr36Fjo4O/p5lxk21xHcW0ssQ2epCFmXJa7rY8nKGsSyYyiJpYbuF2xqqL3LGbGFGK/WnUJgvzHge7qaYDnsU2Q9dFs7Jm73QXqbYcZYLv8qDGATZz0zki6MwAx04eN5NJlOeL/topl8VDpjImcnyeyP1V7a+oaBrt9vhcrngdDrFMsBBT33yz3c6nbBareL6nYwCJrJNSeGAEr0qxbaEKCz2O9n3w3jPezlQLYGYYUoNDeolk8min4dCIbS2tuK9996b5p4xDDMT4fjOMFOHrutoa2sDACxZsmTI2M7MfMxmM2bNmoUlS5YMqR/QjHObzQa32z3NPWSKQZoa1TKspLhXLfGdhfQyRBZoqRgjCankbyxnqNNPyl6mzNPCTGNZiJczlocjmUyit7cXmUwGDocDHR0diMfj8Hg8qKmpERnuABCLxdDd3Y1oNIqOjg50dnaiv78fkUikZDcFCa+KosBsNsNsNsNqtQrhXFVVcTzlSuXyiC2Qf04omzeTycBsNovjbTQaxRdeIpHIsy8ZDfKgBWUpUyY4CcRkQTOUj7tsl0PnP5lMCoGEMugpA5quk+H6aDaboWka7HY7nE4n3G43NE0TBUZl0ZoKj6qqCqfTidraWphMJnR1dY3qGAyFLJzLfuJ0zgoHDOgY0DEtVzKZjLBI8Pl8iMViUBRFzJSYDJLJJEKhEKLRKCKRCBKJhCj8yzAMAwAffvgh7rvvPtTV1RX9fP/+/ejo6JjmXjEMwzAMwzBMdfHOO+/glVdeQW9vL15//fWy1jOqFRbSyxQSAEnwNJlMSKVSQkSlrGk5y5SEdLJymAyhLJlMoqenB6FQCJqmYf/+/UKMo+xtEjFDoRDa29sRDAaxb98+fPzxxwgGg4jFYiUR0uXCoaqqQtM0mM1m2O12IaRTRvpYijzKoi0J0eRln06nEY/H80T00X7xyUJ9IpEQ+6DruhCPLRaLGFAhobXQxoXaoBkBJJwmk0nouo50Og1d18XvQ1nvEBaLBTabTWShe73evAx+GTre6XQaXq8X0WhUtDER5Kx4GhCRC8QWZnIbDAYxKFHOZDIZRCIRpFIpca/Q4I6iKBPOrM/lDhZ6DQQCiEQiiEQi0HU9b8ZDOVMtI9oMU2ref/99tLW1DTmAR7GNYRhmMuD4zjAMwzCDyWaz2LlzJ37961/jwIEDQrOpFKolvrOQXubIViKyHQvZqshC+nDFQMcLeU4bDAbEYjEEg0HhM261WvM818k3NRgMIhqNikGAUo2gyQK5bOdS6IdeaAUynKBO54OWI7GefK1lkRf4xNd8NMjnVD6f6XQaRqMxT/iUhf+hLFyKFRaVB1nGcq3IxVdlm5yhlqVjM1k2K/I2i71GWrZcv5QLZyHouo5EIgFFUfIGBcbTrlw7QR44mQr7mKmiWgIxw5QaqpnBMAwzHXB8Z5jpQdd19Pb2CjvOocjlcggEApz5OkUYjUZheypDtcUqIcGJGYyu6+jp6YHb7YbNZoPD4ZgU7SOZTCIYDFZkTaJqie8spJc5si0LZYHLxR0Ls5En2/+YrCcSiQT2798PALDb7airq0NdXR3MZrPYbjQaRXt7O6LRKPr6+hAMBkUBzumEvrzIYsRkMsFut8NqtcJkMomfckYzMLyATpCgTedBURSRIU5Z0NROOp0e0nZkKGg5XdeFqEHbsNvtUFUVZrMZDocDmqaJrPhsNot4PA5d18XsBBLPSZxNpVIIhUIis5CWGSlwk12NbBEDoKhXO+0rXa/RaFT0aaIUE/KHEtKnAnn7hdY/QP6AxmjvQTrXyWQS/f392LdvHwKBAJqamsS5lgdmRgvdt6lUCt3d3WhtbUU4HIbf76+YbHSgNIF448aN+OUvf4nOzk4cccQR2LBhA0466aQhl9+yZQuuueYa7N69G01NTfj+97+Pyy+/PG+ZTZs24cc//jE++ugjLFiwAP/5n/+J8847T3x+44034tFHH8V7770Hq9WKlStX4qabbsKhhx6atz8//elP8Zvf/AZ+vx/Lly/H7bffjiOOOGJc+8kwDMMwpaJaHrQZptTs3r0bv/rVr0blfb1nz56KFO4qAY/Hg3POOQef/vSn86xjt27discff5yPe4Xy7rvv4tZbb4XP58MZZ5yBs846a9BgSbVRLfGdhfQKQBZiS7FtshlJp9OIRCIwm83w+XzC/5r6FovF0NXVhWg0KrJgSyXYGQwGmM1mIUZqmgZN04Q9itl88NIfq0BZuA4J65RNToMG6XQaFosF6XQayWRyTOePhHAS+nVdF9eAoihQFAWapsFmswnfe5o1QFmFJHrncjkhmpO1C/mvj9Ynm7LYU6lUnh/8UF90su0NzUqY6HUgi9j0c7jM+ML3JysrXR7IKtx+sYKeI0H3l8FgQCgUQk9PD+LxOGw2GxoaGvKKq46FTCaDeDyORCIBv9+Pzs5OhMNhhMPhigpQ083DDz+Mq666Chs3bsRnPvMZ3HXXXTjrrLPwzjvvYO7cuYOWb21txdlnn41vfvOb+P3vf49XXnkF69atQ11dHc4//3wAwNatW7FmzRr8/Oc/x3nnnYfHHnsMF154IV5++WUsX74cwEEx/lvf+haOP/54pNNpXHfddVi1ahXeeecd2O12AMDNN9+MW265Bffeey8WL16MX/ziFzjzzDPx/vvvj5hlxDAMwzAMw1Qf+/fvR1tb26gSjUqlN1QDDocDp556Ki666KI8Id1isWDz5s0spFco+/fvR3t7OzRNg9vtxhlnnFH1Qnq1wEI6M2pIHCVxNhwO5wUCynwmf+5S+aLLliuU0SsXqByPeD4ccpa6bCGTTqfF7yR4j1ZclWcYyLYshWJtYTFZudgs+bfLHun0+VhmCeRyOdFmJBKB3++H1WoVHumyfQptNxqNCuGWPOOHyuIu/L3YMSrM9KZ/8uRtD5cRPtZrURbMabZBYZFTWUwvPB9ysd/CczfcMabCvIFAAAMDA1BVVcw+GEpUl48bndt4PI6BgQHE43EEg0GR9c5Vv4fnlltuwdq1a/GNb3wDALBhwwb85S9/wR133IEbb7xx0PJ33nkn5s6diw0bNgAAlixZgu3bt+O//uu/hJC+YcMGnHnmmVi/fj0AYP369diyZQs2bNiABx98EADw7LPP5rX729/+FvX19dixYwdOPvlk5HI5bNiwAddddx2+/OUvAwB+97vfoaGhAX/4wx9w2WWXjXlfGYZhGKZUVEvGGsOUmkqxc5zpyM+V0WgUH3/8McLhMNra2qbUWi+VSmH//v3YsWMHnE4n5syZwwk4kwxpZAcOHMAbb7yBmpoazJ49Gz6fb0ztRCIRcV3s27dPuABUGtUS31lIZ0YN2YQYDAYkk0kEAoE8cZgsQEisK8WNYDQaYbFYhI+7zWaDyWQSmdxjLSw6FsxmsxhZpmzxYmLqaKDlKKubMpcp0FIBWrngaSKRQCQSEZnnVFQyHo+LbPJ4PD7mvlDmei6Xw759+5DL5eByuXDooYfC6/UKYRkAgsEggsEgwuEw9u7di7179woBn4R32Q5GvnZoG8XEXrmvsmUOgEFCujxYMJ56AfRPjtFohM1mg81mE3Y6NMNBURSYzWbxTxEdT1nIpmz8cDgsCsjKswsKiUQiaG9vh8ViEctarVY0NTWhtrYWZrMZVqt10GwKus7S6bQYuAgEAtizZw/C4TD6+vrQ29srzkMlMRmBOBQK5b2vqipUVR20fDKZxI4dO/DDH/4w7/1Vq1bh1VdfLbqNrVu3YtWqVXnvrV69GnfffTdSqRQsFgu2bt2Kq6++etAyJL4XIxgMAgC8Xi+Ag5nvXV1dedtSVRWnnHIKXn31VRbSGYZhmIqiWh60GYZhCtm3bx/uuusu7N69G52dneL//qkgEong0UcfxWuvvYbFixfjsssuw3HHHTdl26tW0uk0XnjhBezbtw8NDQ34+te/jtWrV4/Jcnbv3r2488478d5776Gzs3PQM2ylUC3xnYV0ZtSQSAmgbIuSkVArF/6UX1MFiZrZbFb4xhsMhjwbmbF8kdKXiFxslARTal/OgiaxnjLPSYilwQ8a4CDRfSzQeTcYDAgEAtA0TWSnk8hM/aWCtOFwGKFQCMFgUPRV9qWX2y7MHB9K/JY/Gy4jfaK1AuSMAUVRYLVaoSgKnE4n7HZ7nqAt+6XLvvSRSASJREIMYtBn8gyOQlKplCjma7VaYbVaYbfbxXYVRcmbBUDIMxFisRgikQgCgQB6enoQCAQQCoUQi8UqsnjQZATi5ubmvPd/8pOf4Prrrx+0fF9fHzKZDBoaGvLeb2hoQFdXV9FtdHV1FV0+nU6jr68Ps2bNGnKZodrM5XK45pprcOKJJ+LII48U26H1Ctuh2hUMwzAMUylUy4M2wzBMIYFAANu3b8drr7025dtKJpN4//338f777yMYDOLCCy+c8m1WI7lcDm1tbWhra0NTUxM+97nPCevf0RIIBLBjxw7885//nMKeTj3VEt9ZSGdmFLIFh2zpIou3U5GNLrctZ7ybzWZYLBYAEELyWL5cKEM7nU5D13VRQJL80CkTPZ1OIxAIIBgMiix2ufBoOp0eV3a2TDabRSQSQV9fH3Rdh6Zp6OnpgclkgqZpMBqNiMViiMVi0HUdqqqivr4e2WxWHA86NnJGuTwYIGeTk7+8/D750JNVDA1YFGakjzUbna4bo9EITdPgcDhgsVjgdrvhdrthsVjgcrmgaZrw3ifLFwqQJKJnMhnY7XYkk0nE43GoqopkMikEbrkArHwtyAMBVLA3EonAaDQiFApBURQ4HI68mRUA8qx8/H6/sNUJBAJC0K+koDTZtLe3w+Vyib+LZaPLFP7DM9I/QcWWL3x/LG1++9vfxptvvomXX355wn1jGIZhGIZhGKa0RKNR/OMf/4DFYsEHH3yAvr6+ae/DwMAAXnjhhSG33d/fX/EJOmazGYceeigWL14sNJix0tXVhV27do17pkA8Hse2bdtgt9vH9Jz27rvvor+/f1zbZKYfFtKrjGIFGGeKyEbZ6GS7oSgKVFXNy1KfDoxGIxRFQTabhaIoQgAm33TKHh8NlEVOInYgEIDZbBZCNdm1pNNpBINB9PX1CVGV/OxlQXki5zqTyaC/vx+BQAAWiwUdHR3CJoMytWngwGAwwG63w+VyiQKvsse3LKTLdi40YJDJZERWezqdRigUEoUyaTYEnddCIV0W0Ue7v5QFbrFY4PF40NjYCE3TUFNTA6/XC5PJBKfTCVVVxWwHGpwpLDaazWbzbHUCgQCSySQGBgbQ09ODRCKB/v7+PNufwkEFv9+PcDgMk8mEzs5OkQFPor48w4JmHNA1QFnwdF3IGfyVyES/n1wuV56QPhRUPLkwU7ynp2dQJjjR2NhYdHkqyDzcMsXavOKKK/DEE0/gxRdfxJw5c/K2Axz8x27WrFmj6hvDMAzDlDMz5fmDYRhmJAKBAP73f/8XzzzzDHRdL4mQfuDAAdx9991DFsNMp9Po7++v6O9mRVFwxhln4Bvf+Ma4i36++OKLuOmmm8YtpIdCIWzatAnPPffcmIT0eDw+Y4T0Sr6GRkvZC+npdBrXX389HnjgASEiXHrppfjRj34khNFcLoef/vSn+M1vfgO/34/ly5fj9ttvxxFHHFHi3pcvMy2LkfZHFmtJZKWfpeiPnKEu93EsUNY1ZZ/LhUtJeKafyWRS+KGTDU/hF9lw/RhJfJZFerKx0TRNWM5omiaytq1Wq/hdURRxHooVy5SFdJPJJERmyq4n8Vj2m6djU9jvsfi/EySOWywWMTBAmel2u1343pOQLg/MyEI6idZkxWM0GkVmfSKRgNVqhcFgEMdDXk9GzsDP5Q4W8lUURXjw04wLAHmzD0KhEOLxuMjir/QgNp1TwxRFwdKlS7F582acd9554v3NmzfjnHPOKbrOihUr8OSTT+a999xzz2HZsmUiC2LFihXYvHlznk/6c889h5UrV+b19YorrsBjjz2GF154AS0tLXlttrS0oLGxEZs3bxa+hslkElu2bMFNN900pv0sFzi2MwzDVC/VMvW7GuH4zjCDSafT6OnpQU9PT8n6kEwmceDAgZJtfyqhxD273Y6GhgYsWLBg3EL63r174XQ689aX67CNRCaTQW9vL3p7e8e1/UqnWuJ72QvpN910E+6880787ne/wxFHHIHt27fja1/7GtxuN77zne8AAG6++WbccsstuPfee7F48WL84he/wJlnnon333+fqxIXQFYA5WoJMFSfRrqpZOGaREaydCn0lJ4OZEGfBGDqj2xHMhIkiJLdh+zdTdnulP0ci8WGtXEhCxbKvnY4HDAYDHm2KqFQSIiyxYp+0nGk4puapsFut8Pr9cJiscBisQiRmOxP6DXUjAC5ACmdKxLprVYr0uk0PB6P2D8Si6mAZ2HG/VjsXEiUttlsaGhogM1mQ01NDZqamqCqKpxOJxwOh5hlIPuiF15Tsn0NnTva93Q6LbLIE4mE+J2K9uq6LvpfCA1akGUNHUvZ2oUsZWigZaI2PuXCdAfia665BhdffDGWLVuGFStW4De/+Q3a2tpw+eWXAwDWr1+Pjo4O3HfffQCAyy+/HLfddhuuueYafPOb38TWrVtx991348EHHxRtfuc738HJJ5+Mm266Ceeccw7+9Kc/4fnnn8+zbvnWt76FP/zhD/jTn/4Ep9MpMtjdbrcYfLnqqqtwww03YNGiRVi0aBFuuOEG2Gw2XHTRReM6PqWGYzvDMEz1Ui0P2tUIx3eGYaabJUuW4LTTTkN9fT1WrFgxodp4LS0tuOSSS9Dd3S3ei0ajeOmll/D6669X9Ezv6aBa4nvZC+lbt27FOeecg89//vMAgPnz5+PBBx/E9u3bARw82Bs2bMB1112HL3/5ywCA3/3ud2hoaMAf/vAHXHbZZSXre7kii+nlgpwlPZTncOHvheuTwCkXF5VF2umCvLtlUV8WVcdy3OVCn5FIBMlkUoi6lLlN4mkmk0EymRyyfbPZDLvdDlVVUVNTg/r6eiHykkUMZVQPJcbScbZYLKIIptvtRn19fZ5wTsehcN2RoEECALDZbOIYkKe4ruvo6OgQFia07+MtKkoZ6E6nEw0NDfB4PHnWLmRdM5rBGPlzOgaqqsJmsyGXy8FqtcJmswnRHDg4hYtmEhQLOmRlQ774sVhsyJkE8k9mfKxZswb9/f342c9+hs7OThx55JF4+umnMW/ePABAZ2cn2traxPItLS14+umncfXVV+P2229HU1MTfv3rX+P8888Xy6xcuRIPPfQQfvSjH+HHP/4xFixYgIcffhjLly8Xy9xxxx0AgFNPPTWvP7/97W9x6aWXAgC+//3vIx6PY926dSJ767nnnqvYB06O7QzDMAwz8+D4zjDMdGIwGHD44Yfj8ssvx9y5c6Eoyrj90YGDz3df//rX8wTzvr4+RKNR7Ny5k4V0BkAFCOknnngi7rzzTnzwwQdYvHgxdu3ahZdffhkbNmwAALS2tqKrqwurVq0S66iqilNOOQWvvvpq0WCcSCSQSCTE36FQaMr3Y6YwlC3IWIU8WZik3+VXYdty+4V2HoW+73Ib0+WLXohcCHOovo0F2f+bxFXKJJeLXBY7/rL4bbPZoGkanE4nnE6n8G1PpVJCaCc7lWQyOagdslghCxdN00SwkrPPx0sxMZrsTOh3TdOE8EyiO+3/WLdFQrqqqoP2iWY1yNfQWM+dPIVVHiTQNE0I7LJtzXAjuNUolpdiRHvdunVYt25d0c/uvffeQe+dcsopeP3114dt84ILLsAFF1ww5Oej6avBYMD111+P66+/fsRlK4GpiO0Ax3eGYZhKoFoy1qoRju8MM3lQAhw9QxZSOLu5mlAUBR6PB1arFY2NjXC5XHA4HBNul2aryySTSTQ0NGDOnDnQdb1qj/loqJb4XvZC+g9+8AMEg0EcdthhIgP3P//zP/GVr3wFAMQU+MKCaw0NDUNWHb7xxhvx05/+dGo7XuaM5SIlIVa26KDsb7pRZHsQufBjIbJnuMViycvalu1QCvtKImMmkxHWJbKPNPVT7hv9XmoLm0KfdHoVHh/ZLkQeLCBkoZwylOVjU2x0lPy4qfjhYYcdBrfbjZqaGjQ0NIiMdCpO6XA40N/fD7/fj3379okMaCqWWltbC4/HA03TUFtbC5vNJuxcip27ycJsNotrpampCT6fD+FwGIqiIJFIIBKJIBgMjmqEmK4PKizq9XrhcrnQ2Ngo9s1msw0aFBjvdUT3iaZpwjNd13WYTCZEIhFEo1EYDAbouo5IJDLmAYGZTLUE4mpkKmI7wPGdYRimEuD4PnPh+M4wk8eCBQvwr//6r5g/f37Rzz/++GM8/PDD2LVr1/R2rAyYO3cu1qxZg0MPPRQtLS3weDxTti273Y4vfOELWLx4Mfbt24eHH34Yb7/99pRtr5Kplvhe9kL6ww8/jN///vf4wx/+gCOOOAI7d+7EVVddhaamJlxyySViuWJZzEMJX+vXr8c111wj/g6FQmhubp6aHZgByMK0LH6TaEo2ICT0khBYzBZE9g0nexISYmWxXoZEehLPk8kkstksEonEkNsotXhOFIroQ/VNtqYp9LGfSBFNyromK5bZs2ejtrY2z9qFBiei0ShSqRSsVitMJhM6OjoGWeaQjYumafB6vdA0TWxnqpCvC7pugINZ3TQAkMlkEA6HxySkk897TU0NXC6XsHUh//nCYqLj7TtBAxqZTAYej0fcTy6XS2T/x2IxFtKZqmAqYjvA8Z1hGIZhSgnHd4aZPGbNmoXPf/7zOO6444p+vnv3brz00ktVKaTX1tZi9erVOPHEE6dc+1FVFSeccAKOP/54vPnmm3jppZdYSK9yyl5I//d//3f88Ic/xL/+678CAI466ijs378fN954Iy655BI0NjYCgKgKTvT09Awa6SbIyoEZHjlzl4RHVVWLCukkpst/U3a6LCCTjQXZg5BASj7UZKchQ22TkC4X7CThmbKyp9sPfSSKZYuTMExe53RMSWiVC4ymUqm84p/jsS+hwQoSoVVVFXYsZO1iNBqRSqXyrE2oj3S/KIoirGGoz7SN6ULeFlnVmEwmxGIxUZg0lUoNW1FbHrzRNA1Wq1XsE2W+T/ZMBnlghO4DOhfUBzoP5Va/oJRUy4h2NTIVsR3g+M4wDFMJcHyfuXB8Z6oFi8WCuXPnoqGhAdFoFPv27UMwGJz07Qz3XGq323HEEUcgFAqhv78f+/fvRzwen/Q+lAuKoohjfuSRR8Ltdk+7FlEuCZvlSrXE97IX0mOx2CC7CBJSgYPFABobG7F582YxUpdMJrFlyxbcdNNN097fmYKcOe5wOERWs9VqFYJ3oZBOlhXpdBqJRAKxWAzZbFaI4yaTCXa7XQjGNptNCMgWi0W0W+hvLhe/JKE0k8mIIo1ywU0S/cvxC46+VEwmEzRNg8FgQF1dHerq6qAoCux2O2w2m9i3dDqNQCCArq4ucTxjsdiYbXmo4KXD4YDL5RIvp9MprF0ymQyMRiPcbjey2SyCwaAQzz0eD2pra6GqKurq6lBTUyMGU0pxnOm6sFqtaGhoQCaTgdlsRi6XQyKRQCAQQCQSGXJ9i8UijnVNTQ3q6upgs9lgt9uF/cpU7RcNbNAAAFnu0Db9fn/ewFG1Uy2BuBrh2M4wDFO9cHyfuXB8Z6oFl8uFCy64AF/4whfw/vvvY+PGjSPWTZpsGhsb8fWvfx3nnXceXnnlFWzcuBH79u2b1j5MJ263G//yL/+Cs88+G263e0jLG6Z0VEt8L3sh/Ytf/CL+8z//E3PnzsURRxyBN954A7fccgu+/vWvAzgoTF111VW44YYbsGjRIixatAg33HADbDYbLrroohL3vnKhbG/K3qVsXTkjnbK/CzPQqdAmZYuTIE8Z0ZqmiYx0+X0S74eydqEim5S1DRwUVeUCnOWWkV4MOSPdarWipqYGmqbB7XbDbrcjnU4jFoshlUoBAAKBAAAMKv45lm2ZzWaRBU0DF1QgFEBedjy9aABE0zQ4HA6RkU6zB0oFbZsGc3K5HGw2W94gz3DQNW2xWPIKjFKG/lT3m/oOHPS6t9ls0HV9ykX8SqRaAnE1wrGdYRimeuH4PnPh+M5UA5SstnDhQqxcuVI8yxezLJpKrFYrDjvsMABAf3+/sF2dqaiqisWLF+Mzn/kMPzOXKdUS38elGrW2tqKlpWWy+1KUW2+9FT/+8Y+xbt069PT0oKmpCZdddhn+4z/+Qyzz/e9/H/F4HOvWrYPf78fy5cvx3HPPwel0TksfpxJ5+ghdWFN9gZEYSWIj2U+Q+C37fgOfZIyTwE2ZymRpItu5OBwO0ZbVahXvy5nkhWK4bN0iZ6QbjUYkk0lRcJSsMeTs9lIhZxPLRUKBgwHP4/FAVVU0NTVh/vz5UFUVTqcTNptNZPaTX3kul0M0GhWZ6YVWOsNBAwzJZDIvq11RFMTjcWHtkslkEI/HEY1GEYlEkEgkhHBut9vhdDrFTIJygQZ7stksrFYrvF4vdF1HPB4XsyEKjz1dF1arVdjUkJXNVBVKLYY8SCVb5iiKIgZQOCOdKQXTFd+rPbYzDMMw08vGjRvxy1/+Ep2dnTjiiCOwYcMGnHTSSUMun0gk8LOf/Qy///3v0dXVhTlz5uC6664TgnClwfGdYSaO0WjEkiVLcPTRR6O+vh6LFi2CwWCAz+fD6tWrMXfuXLFsOp3G7t278fbbbw9rOzoRAoEAduzYgY8//hg7d+5EKBSaku0wTDlTivg+LlVs4cKFOPnkk7F27VpccMEFUzry5XQ6sWHDBmzYsGHIZQwGA66//npcf/31U9aPUiBnLstiMjC1YrrBYBCZ42Q5oqpqnrULZaRTcVESLYGDAiBlN5O1y1BCupwtPVQxThrVIlGYtqfrOhKJBNLpNBRFQTKZzBt4oP7RPk0XJIDSOZMFXYPBAIfDgZaWFjidTjQ3Nwsh3eFwwGq1ClE7k8mgr68PTqcT0WgUJpMJoVBIiOKjEVqpKCsARKNRhMNh4X9utVpFRn8mk0E0GkUwGEQgEEAymRT3tcvlQk1NjRCby2n0l64ZEvp1XRf7SRZDhb7yiqLA4XDAbrfD4XAI6yJ5AGeq95GOI/Ull8shEomIAqo0aFRJo7JTQbWMaJcT0xXfqzm2MwzDVDvTHd8ffvhhXHXVVdi4cSM+85nP4K677sJZZ52Fd955J0/4krnwwgvR3d2Nu+++GwsXLkRPT8+UiWHTAcd3hpk4ZrMZJ554Ir797W/D6/XC5XLBYDBg9uzZ+PrXvw5d18Wy8Xgc//3f/40PPvhgyr47enp6cP/99+Nvf/sb4vG4mMnOMKWiWuL7uIT0Xbt24Z577sF3v/tdfPvb38aaNWuwdu1anHDCCeNpjilAFoMLfyemIyudxHLZ5kX2R5czeGW7jXQ6LTKXyROc1pGz08k6hH4OJaQDGCSGkl1MJpOBwWAQ4mPhPpRa9JW9rqk/lNlvt9uFmKuqKux2uxDSybtc13XY7XYAEAMQtM9j6QNl8icSCei6LgYhZI/0RCIhXlTUVZ6ZUE7Z6DJ0rSqKglwul9fXQjsc+VqWvfuL3WNT3Wd6yfcHvUp93ZYLLKRPPxzfGWZyoenfFoslr6YLw1Qz0x3fb7nlFqxduxbf+MY3AAAbNmzAX/7yF9xxxx248cYbBy3/7LPPYsuWLdi7dy+8Xi8AVLwXL8d3ZqKYTCaoqjpuK1WqZ0WzbysJsri1Wq2oq6tDc3Mz3G63+FxRFNTV1eWtE4vF4Ha7JzTrmZLdwuFw0c8DgQA6OzvR3t4+7m0wY8NoNMJms8HpdIrEPZ5J/gnVEt/HpYwdeeSRuOWWW3DzzTfjySefxL333osTTzwRixYtwtq1a3HxxRcP+iJhhocENVlYI9GPsoapsOZU3qiF4h75l8sWLJQlLwcF+e9ifSTxkrLbKRAX+qIXE79JjJfbouxui8UiRo9ITKdty32YTtsO6jP5xtOLBhJsNhu8Xi9qamrg9Xrh8XhE5j8J6aqqikzxcDgMVVVFgVDa59F4pudyOXHd+P1+fPTRR+jp6YHH48HAwIAQ0tPpNOLxOPbv3w+/3w+TyQSHwwG32y2KkgLTm9k/VsgqxeVyoa6uDvF4XOwbIYvu5BUv32/TAdkeAZ8MCJGFEg1ajMcPfybCQvr0w/GdYSYXh8OB008/HUuXLsWBAwfwzDPPzOhCYAwzGiYjvhdaGFCNn0KSySR27NiBH/7wh3nvr1q1Cq+++mrRbTzxxBNYtmwZbr75Ztx///2w2+340pe+hJ///OewWq3j6nep4fjOTJTm5macddZZaGpqGtf6sVgMf/vb37Bt27aKEx4XLlyI1atXY9asWTj++OOnzYt83759uPfee9HY2Fj0897eXnz00UfT0hfmIPX19bjwwguxdOlSvPfee/jLX/6Cvr6+UnerbKiW+D6hFFOz2YzzzjsPZ599NjZu3Ij169fje9/7HtavX481a9bgpptuwqxZsyayiaqBxGQq+qgoSp6QnkqlBvluTxWFBSrl7HF6FQrpdMPIBUYps5bEbbPZDJvNJqxFKAuXtjlcf4hC8Z6yrcn2hWxUZDuVidzM40G2u6H+kXc8FRj1eDxCTHe73bBYLML2Jp1OQ1VVkSkeiUSgKAo8Ho8QtSORyKj7kkqlkEqlEAgEsHfvXiiKAp/Ph0AgAIvFglQqJYT0AwcOIBQKwev1oqWlRXh3l3uWtDzQQqPDkUgEwWBQvC/PmiDRWr62p3P/5Ax48kkv7A/DlBKO7wwzOdjtdpx++um49NJLsXPnTuzevZuFdIaZBJqbm/P+/slPflLUKqSvrw+ZTAYNDQ157zc0NKCrq6to23v37sXLL78MTdPw2GOPoa+vD+vWrcPAwADuueeeSduHUsDxnRkvc+bMwUUXXYSlS5eOa/2+vj4MDAxgx44dFSmkX3rppTjssMPE89p00NbWht///vdDJgVms9mKzPCvZOrq6nD++ecjk8ngySefxD/+8Q8W0ieZSojvE/oG2L59O+655x489NBDsNvt+N73voe1a9fiwIED+I//+A+cc845+Oc//zmRTcxoKBuVMpXJs5pGXOTsbLLakDORSagtdealnGFrMpmEaEziZDabzRsoIFF2PNYrcuFVCijUdjabzduenJ0OQBQonWpIuCcxv5igX2jZIx8T+ffCZSeCHGhpihhZ8cgFTumY0fVZSaIuWefI2ebysSs8juUyOFB47knsp2sa+GSAphSDQ6WCM9JLB8d3hpkcyNrFZrOJmXgMU+1MRnxvb2+Hy+US7xfLVpMpNuN1qP8D6f+vBx54QNg33HLLLbjgggtw++23V2xWOsDxfTJxOBzw+XywWCxFP9d1HX19fXm+2ZWG2WyGz+cTtb3cbve4r3+Hw4FZs2Zh4cKFiEaj6O/vRywWm+QeTw0mkwmapk1bJjoh1ztjygOqcwZA1JBjPqFa4vu4hPRbbrkFv/3tb/H+++/j7LPPxn333Yezzz5bXEQtLS246667cNhhh42n+RkPiWWqqqK2thZWqxVOpxN1dXVCRNc0TQjU5Cfm9/vFz87OTiSTSeF1PdnIRU0LR4zlm0P+XR4YkD3VaRn60qHCohMRMQv91Mk/nLLT5T7Lgw2ySDzZUNvkgUqeWfTPE+0zievULxoQKXzJgnzh32OBzkcul0MsFoPRaISu6wgEAmLggb5Q5Axp+mehkoR0AKIgLt1jZrN50HGj64d+LweoT2azGU6nE06nEwDEfZRK/f/Ye+8oOaoz/f/pWF2dp7unJ89Io4wkEEJCRJPBwiRh0mJjG5wwuwZbXnvN/tZnndZe26yNfWxs40RwwsYGL0uSECKIIFsCIQkkIY00mpw65/z7Q9/3crunJ/X0dJi+n3PmzEx3ddWtqtv1Vj33vc+bgM/nQzweZ573810sFkJ66RHxXSAQCARzTTHiu9lsznrQngiHwwGVSjUuO21kZGRcFhvR1NSElpaWLA/kFStWIJPJoK+vD0uWLCmo7eVExPfis2rVKnzoQx+a0Hbj4MGDePjhh/Huu++WuGXFw2az4Z/+6Z9w1llnwel0orW1teB1kYXCqlWrcOzYMfz2t7/FW2+9VcTWCgSCclMr8b0gIf2nP/0pbrvtNtx6660TBo729nb86le/KmT18x4SzMjP2WKxwGazob29nYmXNNpJAmA0GoXRaGRCqN/vh1KpZGLtXDCRiJ7vb9ov3kM9n5BezAxnXgjlM9Rp/fx2SYieK9E0N/OdsrzJVgUA8+HmRX1eIM83QJHvh96fDrw9EPBe8c1wODzOHkitVsNisTDxmSyGaD3VAFkjKRQKxGIxaDQaZgFUieRmy/O1CWhWCn1nIpEI4vE4O/e1MI1PCOmlR8R3gUAgEMw1pYzvWq0Wp512GrZu3YpNmzax17du3Yqrr74672fOPvts/PnPf0YwGITRaAQAvPvuu1AqlbMSEsuJiO/Fp7W1FRs3bsSiRYvyvv/qq6/i6aefrmoh3Wg0YsOGDbj++utnvS6tVotTTz0Vp556Kt566y1s3bq1CC0UCASVRK3E94KE9MOHD0+5jFarxc6dO/GBD3wADoejkM3MS6jKr06ng8FgQH19PaxWK8xmM4xGIxMvSQzkBWCz2cw8tEOhEKLRaJZ/Otk+zBYS0JPJJBQKRVbBRvIDI/sWfvl8Yiu1vVArl+nA22Lk2qKQHQb90D4UKzOdF2jpGJGAzgvq1BaFQoFoNMp8z4PBIEKhEDvWdB4poz0YDLJlwuEwwuEwYrHYlB75JMbSgA2dN16EJVGWjg1vi1LK4pvFhrK6+QK5/AyATCbD/Of5bPxSkm9ARJZlNDc3Ix6PQ6/Xw2AwjBPSbTYbwuEwvF4vhoaGWHY6X1BVIJgNIr4LBMUlFovhwIED2LZtGw4fPgyPx1PuJgnKhEKhQHt7OxYsWJDlr+vz+XDkyBF4vd7yNW6es3nzZtxyyy1Yt24dzjzzTNx///3o6enB7bffDgC4++670d/fj4ceeggAcPPNN+Mb3/gGbr31Vnzta1/D2NgYvvjFL+K2226rWlsXEd+Lg8lkwpIlS1BXV4eTTz4Zer1+wmWtVivWrVuX1WdSqRS6u7vR09NTsYk+uczV83s1MTo6itdeew2Dg4Noa2sbdx3nGR4eRldXF9xuN7q6uua0tp2gvDgcDpx11lnjPL3zMTw8jCNHjlS11VMlUq74PqdVEn7729/iX//1X0Ug5iCfsYaGBpjNZixbtgw2mw2SJMFgMDBxms/aJqHaZDIhnU6jrq4OVqsVkUgE7777LuLxOLN5mW2WKgmNiUQCsVgMmUyGfdmpSChv3ULwon8uvMA9Vx5SvH0HBTVeLCVxm4I2tYf81GcLL55Ho1GEw2FWwJNmDJDA7/P5MDQ0hEgkwoqP0vmXZZmtI5lMYmxsDIODgwgGgxgdHYXP50MsFpvwPNM2ZFlm/cloNI7z7guHwwgGg0ilUgiHw4hEIlCpVJBlGRaLhX222m5yaP9pQECn00Gv1yMWi7GBA6ozQMeRH+goZ7vr6+vR0dEBlUoFu92O+vr6rOK+4XAYQ0NDCAaDOHz4MF577TX4/X422DIfM7BFRnrlIuK7QDA9/H4//vKXv2D79u2IRqPo6+srd5MEZUKj0eD888/HbbfdxrKgAGD//v34wQ9+gD179pSvcSWm1PH9xhtvhMvlwte//nUMDg5i1apVeOqpp9DR0QEAGBwcRE9PD1veaDRi69at+OxnP4t169bBbrfjhhtuwDe/+c2C2lxNiPg+OS0tLfjUpz6F9evXo66uDna7fcJl29vbcccddyAUCrHXwuEwfv3rX+P3v/+98L6uIt5++23cc889MJvNuOmmm3DbbbcxG85c3nrrLfz4xz9Gb28vhoeHxXmex6xevRpf/OIXpxTHM5kMnn32Wfz4xz/G4OBgiVpXHmolvs+pkC6EjGxI5NPr9TCZTMzWxWq1Zlk50LI8mUwGWq2WicXxeJxltWs0mqJm1eYWyuR9u/ONqNJ+5bOBKXbBzHzw680tZEoZ19R2lUrF9o/3WC8E2l+6WPAZ6PTDZ8JTW+PxOMLhMNRqNcsyp4xwAFlCeiQSYctEo1HE43Em2E92PPjMclmWodPpxnmuUzYzf8wog3u2x6ac8EVo+SK3vM1QPi/6UjHRtnQ6Hex2O2RZhtPpRGNj4zghnWYx+Hw+GAwGxGIxRCKRkrW91AghvXIRx1cgmB7JZBI9PT1ZN/GC2oK/x2pqasKaNWuyvD9TqRSsVmvWPep8pxzx/Y477sAdd9yR970HHnhg3GvLly+vSesJEd/zQ88SRqMRS5cuxdq1a6f8jNFoxLJly7JeCwaDaG5urvgChbmzvecCek6rhuuez+eDz+eDVqvF2WefjXg8nvd5PJPJYGxsDPv27UN3d3fpGyooKRaLJctrezIOHz4MvV4PlUo1YQLqfKBW4vucCumC9yCBUqfToa6uDg0NDTAajdDr9cxXnJgsWFHBTpPJBK1WC5vNBofDwYRX8sCeLWQ1kslkEIlEWFY3ieMk8PG2KlRVmmxfeBFwLoV0grZBARlAlmgcj8fZ+xS4KVOb9xGfinxibCKRQDQaRSqVQiQSYX/TMeOJRCIYGhqCz+dj65EkCSaTiWWkRyIRJBIJuN1u9PT0IBKJYGxsjInfE2X+kw2ILMssE91gMDCvc2o/nS/ycI/FYlm+6GQtVI1Qv6Xvilarzco6TyQSbDZANBpFNBqFVquFJEnsuM71vvPBU6/XQ5IkWK1WNDU1QZZlmM1myLKc9f0BALvdDqPRCI/Hg4ULF8JiseD48eMIBAJi2qBAIBAIBBVIR0cHNmzYAIfDgfXr14+bJVhfX48rrrgCS5cuRVdXF3bu3IlgMFim1goEglxkWcZpp52GFStWYMGCBWhubi53k+YUtVqNNWvWYPXq1WhubkZnZ2fRt2Gz2bBx40a0t7eju7sbO3fuhM/nK/p2ik06ncbevXvx8MMPT2gDsWvXLnENF4xj0aJFuOGGGzA0NIS9e/firbfeEvasVYwQ0kuERqNhvsdOp5MVFiVf9Iky0XnoPZ1OB5VKhWQyicbGRoRCIQSDQQQCAQQCgVm3lcRGEoKVSiXi8TgTJEmEJiGdxD7y5E4kEkyYBJAluM8V/PGjtgBgGeGUBQ685/Ou1WpZljpvWZOvrbynNT+oQAMH8XgckUiEFX8Nh8NZGc/8eoLBIHp6eqBWq+H3++F2u6HVamGxWKDX61kmeiKRgMvlwuDgILOLoe3lQ6VSsSx0o9HIZjoYDIYskTiTybCscxLRw+EwNBoNO28ajaZqhXQgu6CvJElZtj7xeJxZoQSDQXauaFCrFNAMCaVSCbPZDKVSyaxdaJZJ7mCGJEnQ6/WsP7tcLrjdbkQiEfT29s5LIV1kpAsEAoGg2lmxYgXuvPNOLF68mNVJ4mltbcVtt92GWCyGxx9/HO++++68F2FEfBdUE0ajEVdffTVuvvlm9vw+n5EkCRdccAHuuOMOGI3GOdnfxsZGfOQjH0EsFsPTTz+Nrq6uqhDSk8kkXnnlFezZs2fCJDyqhyYQ8KxevRoLFy5EIBDAfffdhwMHDsxLIb1W4rsQ0ksELzjzYuV0M6F5QY2mhwJgQmEsFiv6FDESgik7XalUMiGdrEzob9oPep+3PSk11CaCzx4H3isKmnvsFQoFs1jJdyz5z/PZ6PmsXPKJ6AQJoSSYB4NBJlzTOkKhEBKJBLN1IUuXqaa98dPw+AEPmkJEqFQqVnSVHzzInWlQ7dDx4IvPkohNx5rOHV/Yl7clKia5AzJ8G2kghK9FwMPXT9DpdJBlGbIsZ802mG/USiAWCAQCwfxFkiQ4HA44nc6876vVatTV1QE4MU2cn6U6XxHxXVBNKJVKmEwmNDQ0FOX7qdPpYLPZEAwGEYlEijajvFiQhY3T6Zy0mOpsUKvVsFqtAMCsraoFej4XlJ50Oo1gMAi3280SVScq+lpp6HQ6Vr/NaDTOC60lH7US36uj180DtFot+9Lo9XrIssxsOGYKL7zJsgyr1QqFQgFJkpiIPNtOSJ9PpVKsKCMVaOSFWoVCAY1Gw2xBSERXKBTQ6XQlF2R5UZgXIsn2hgYAKCubfOkpk5sXlHOPBy+k8xnp9H8sFmPC7GTe21TwUqFQwOv1IpFIsAEWrVbLLFfIKicUCjFxPneQgNYHjBfRqX/l+tuRSMwvm1sQttJ9+6ZDrrcf7X8ikUAoFEI6nYbX64XBYIDBYIDRaGQDCXMRkHm7IbL/IRsi3n5msu8MnX+yd0okElm1FeYj1RRQBQKBQCAQTA8R3wW1iCRJOP/882GxWDA4OIinnnoKb731VrmbJRBUBX6/H0888QSOHj2KBQsW4Morr8TChQvL3SxBDrUQ3+dUSP/whz+cVUynVqEMcrJ20el0kCQpb9bpTNapVCqZn3I6nWZCNonFxYDEXOC9giC8UM2L0DTKBpzIlC/3F4gXJEmcpmzwVCoFjUbDROx4PM6ywmkfc+ELrlI2MwnpqVQqK2N8sn3nz08gEGBTv/ht5vs8X0Q133K54nju/yTs85nnuR72uZ7c1U6+gYFEIsEGRvx+PwwGA9LpNPNKz2QyE/aB2ULnIB6PIxQKQa1WM9F+OkI6vUcj8GS5NF/Ol6B6EPFdIBAIBIL5h4jvc4tGo8GZZ56JDRs2oKurCwcPHhRCukAwTYLBILZt24bt27djw4YNWLt2rRDSBWVh2kL63r17p73Sk08+GQDw05/+dOYtmsfk2rMUYz2zXddMIPGRF/oUCkWWjclkmdilhm8D3y76m/eAJ8jehV7jhfjcz5GonmvjMtN9z80Qp4GXXKsVGsjI/Sxl2NOsAJVKBUmSsmY85O4/WdBQ++m9Sjl3xSaf1Q8NfpCAHo1GIUkS0uk080qfTu2C6W6XtwKKx+MsI50GcsLhMBvsmcheiM4PedtTkeGpyP3OUnsq/VzXytSwciPiu0AgEMwdgUAAR44cQTqdhs1mg8PhmBcz/2aDiO+lQcT3yoSe7zQaTVVZmgimh9lshtPpnNJ+k5K6RkZG5qVX9lxBGkYgEEB3dzfsdjuzXpqremepVAqjo6PweDxZMWi65xoAO9c+nw/Dw8NTWvZWK7US36ctpK9Zs4Z5B+eD9xWej0XvisVcid6lENNzfZ1zBb9ccZkKeZbyC5ErGOeK/LkiMu//zmdx5w568PtO+0d/89ubKfy2+dkKFouF+WCbTCYmkudmHyeTSUSjUVbwNB6PI51Os/UQlC1PbY9EIsyHnax71Go1y66fLxd2ftCDoMGHeDwOt9uNZDKJQCAAWZYRjUZhMpmybm6LcYNLWehURHZkZAQulwvAe97nqVQKixYtYpZNuVnxJKCn02kEAgEMDAzA7XbD5/NNer5oX/gZB9Qesiiq1PNdK4G43Ij4LhAIBHPH/v378b3vfQ91dXW46qqrcMMNN8yZ73C1IOJ7aRDxXSAoPSeffDI++tGPorGxcdLlMpkMnn/+eTz88MPsuVAwfY4fP46f/vSnsNlsOO+88/DRj34U9fX1c7KtUCiExx9/HM8880zWtXLDhg342Mc+htbW1inXsWfPHjzwwAMYHBzE0aNHK642QrGolfg+bSH92LFjc9kOQYEUK8t9uuRmXfMZ3PmyssuR4cy3I1+2NV94lC6EfMZuPmsTfj+KKTzyliqSJMFgMECWZdjtdlYl3W63Q6PRMGGdPgecENLD4TCSySRCoRD8fn/WPlEGNInjJConEgnme8+/z4vt1XQhy0fuec/tk3Ts6PVAIMCEZrPZzPoBDQbNJiudxPtYLMZsXXw+X9YMiYaGBlZwKN+oNq0jlUohGo3C7/fD5/MhGo1Oeq5oJgP55qvV6nFFcSuVWgnE5UbEd4FAIJg7hoeHMTw8DEmSsGTJEiQSiXI3qeyI+F4aRHwXCEpPS0sLLrzwQnR2dk66XCaTgdvtxqOPPlqils0vvF4vXn31VSgUCphMJlx//fVztq14PI79+/fjySefzJo9oFarccMNN0xrHf39/di+fTu6u7vnqJWVQa3E92kL6R0dHXPZjnkNL6KRLzdlABdS1JAXBCnLlSweyiFc52Z785nguVYvcyn288eFhEL6m2/PZJ+nzIxc7/FcIXY2qFQqZsFCYrlWq0V9fT2sVitkWUZDQwP0ej30ej2sVivUajUkScrKMgfeKwabTCYRiUQQCASy/NpTqRSCwSCzAfF6vex9shKhIqy86D4fslLo3JNdSr73qUhsJBKB1+tlfYT8/mnwgs/mBibvx7xwz28/FArB6/UiFovB6/WyTHL6jgwPD6O7uxuhUAh2ux319fVZnvXxeBw+nw+xWAx9fX0YHByE2+1GMBgc1ydVKhV0Oh1UKhUMBgPMZjO73pCQHgwGWQFhv9/P+kwlC+uCuUHEd4GgNFgsFixfvhw2m62gz6dSKXR1deHYsWPiWl2FpNNpdHV1YcuWLTAYDHnf37NnD8LhcBlaJ5iPiPheefDX8b6+PgwNDZW7SeNIJpN499138cwzz8Bms2HZsmVoamoq6jYCgQAOHDiAsbEx7N69G6FQqKjrnyuUSiUWLFiARYsW5dVxlEolTj311GnPOmptbcWFF16I0dHRvO+7XC4cPHgQfr9/Vu2ez2QyGQwODmL79u1oamrCokWLsHDhwlnPKs9kMujp6cHhw4cxOjqK48ePj7v3GhoawgsvvMCKny5evLggfS+X1tZWLFmyhNUfBIBwOIyDBw9ieHh41usXzJ5ZneV33nkHPT0946YlXHXVVbNq1HwkkUiwABEKhRCJRKDVagvyccrNqPV4PPD7/czio5RCeq7nNvk/U6azQqFgAj8xl0UcSQxOJpNswIL+58X1fJ/nf88VCoUCOp0OdXV1kCQJbW1tWLBgAQwGAzo6OtDY2AhZllFfXw+9Xg9JkqDX66FSqZjnOX/8+Mxi8tkmkZSE0uHhYfj9frjdbjboEg6H4Xa7mbULn+kcDoeh0Wiq9iGdn41AXuRkeZO7XCQSYdY2/LlJJpPQ6XSwWCywWq1MmCaLFH7WAv3mBXTqb/F4HMFgEIlEAm63G6Ojo4hGoxgcHMTo6CjrryS663Q6WK1WLFq0CIsXL2YDLiqVCsFgED09PfD5fDhy5Aj27NkDv9+PYDA4bt+0Wi0cDgdkWYbT6URbWxuzBqLBPK/Xi0gkArfbja6uLtZfaGClEqiVEe1KRMR3gaD4tLW14dOf/jTWr19f0OdDoRB+9atf4aGHHmKF4AXVQzKZxIsvvoi33357wgd8n88Hj8dT4paVHhHfy4eI7+UlFovhmWeewUMPPQSfz4eRkZFyN2kc8XgcW7Zswe7du9HR0YG77rqr6EL64OAgfvnLX+LVV1+F3++fUEiuNFQqFc477zx88pOfhMlkyruM1WqF3W6fcl0KhQKnnXYa2traJrT52LlzJ+655x4hpE/Bm2++ib6+PlitVtx222249dZbZy2kp1IpvPLKK7jvvvswNjbGnt153n77bXzve9+D0WjELbfcgk996lMwGo2z2q5CocD69evx2c9+Nsuqpru7G9///vcrXkivlfhekJB+9OhRbNq0Cfv27cvyXSNBaT5ksxYbXuDli1zmCt9TZbryf5Ngx3tjl6vz8Vnp+SxU5jojPde2I9cXnX+tXPCFRCnb2WKxwOl0wmAwoKmpCc3NzUxIJ59zyiyeqtgoicbk+a3X65mIrFAo2IwIWgcNNvDniBeBqxm+MOxknu/UPxKJBCKRCNLpNPNKBwC9Xs+mbyWTSTaQketdTr/5THQ6vnQOyJeeBitoe2S3EwgE4HK5kEwmYbVa0dDQAK1WywZQaDDE6/Uyb/RAIJBX+CbhX6/Xw2QysYEbXkhXKBSQJAmJRAKSJCEajVbcea+VQFxJiPguEBSHfDHbaDSis7MTq1atKmidfr8fDQ0NrDA2wd8LCCqXTCaDsbExjI2NlbspZUfE99Ij4nvh0DU2Ho+zZ6lCn2nT6TRGRkbwzjvvIBKJFLmlxSGdTmN0dBSjo6OIx+NzIuJGo1EcP34cb7/9dtHXPRfQM7wkSWhoaMCKFStgtVpnvV6r1TrpekZGRmA2m1mSm/ie5icQCLBEQZfLlTeBbqb3SVTX7ODBgxN62AcCAQQCAUiShIGBAUSj0XEOArT93OTSXGgGvFqtRn19PZYtW4bm5mb2viRJsNvt0Gq1rC9UYjyslfhekJB+1113YeHChXjuuefQ2dmJv//973C5XPjCF76Ae+65p9htnBdQUUiFQgG3242hoSHo9fqsYDzZqBnfqUiUi8VicLlcGB4eZgJdOeD9xhOJBJRKJTQaDRP4tFotGzgAMOvRwVx4wZz3/aYBBvqfF9VLBYmuGo0GNpsNsizD4XBg0aJFMJvN6OjoQGdnJ7Nzqaurg0ajYXYvfKHIfN7ttA2ypaHBGbVaDb1ez0RSsgtRKpXw+Xw4fvw4gBM3MSTKAieyJEiEpYtzKbz3iwU/Q4Ky7cn6ZiofcUmSIMsyjEYjLBYLK/RK06/T6TRCoVCWXRB9lt6nbdOABlnGxONxeDweuN1ulqWe2ycp41yn0yEQCGBoaIhZsSiVSoTDYYyMjCAcDmN0dJRZ8/A3CrSswWBAQ0MDy4iw2WyQJIkFZxoUoGuSy+WCJEnMeqZSbtJqJRBXEiK+CwSzR6VSYc2aNTj99NOzHqja29vR0tJS8Hq1Wi02bNiAT3/601k+28ePH8eOHTuqJqNPIBDxvfSI+F44kUgEL7zwAqLRKBobG3Huueeira2t3M0SlJCFCxfinHPOgdPpxFlnnZVXLJ0L2tracP311+OMM87Avn378Prrr1fsAEw5WbJkCc466yw4nU6cfvrp41wf+vv78fLLL88om5sy0qejsaVSKbzxxhv45S9/mWXHwvPGG28gEAhMuI7m5mace+65aGpqwumnnz7OAs5qtWLjxo1obW2t6Pu+WonvBQnpr732Gp5//nnU19dDqVRCqVTinHPOwbe//W3ceeedePPNN4vdzqqHtxgZGRmBRqOB1WqFyWRigulEQilBHSsWi8Hn8zFhbWBggPk8lwMSAkm8Jj/nWCyGdDrNsmBJ5Cs2fOYxL6CTLzhv8VJqD3kSt2VZRnNzM+x2Ozo6OrB+/XrU1dWhpaUFbW1tTMSVJGlC65CJoIGJTCYDnU6HTCYDk8nEROX6+npm5WGxWBAIBGCxWFjmOom4AJg9kCzLTCyeql9WGiSiUx+gzO/pCOmUwW2z2djfRqMRqVQKHo+HCeCRSISJzXyGP2Xzk01KKBSCx+NBLBZDMBhkxWDzZf3TSLpCoUBXVxd0Oh3rC0qlkm2XPptIJMbNZlGr1dBoNDCZTGhpaWG++/X19dBqtexcptNpGAwGJBIJaDQa+P1+GAwGZDInit5UipAuKD0ivgsEs0elUuHMM8/E5s2bYbFY2Os0yF0okiThoosuwtlnn511/X/xxReZh6dAIBDkQ8T3wgkGg3jyySfx3HPPYc2aNWhraxNCeo2xbNkyfOYzn8GyZcvYzPJSsHDhQnzqU59CLBbDQw89hH379gkhPQeFQoHVq1fjrrvuQnt7O2RZHiekd3d341e/+tWMrnOZTGbaGlsymcRrr72GPXv2TKibTLWutrY2fPzjH8fatWuh1WrHCel2ux033HADrrnmGmzfvl3c95WZgoT0VCrFvH8cDgcGBgawbNkydHR04NChQ0Vt4HyB920mgTccDiMajSIWizGRmYSuXOsIPus6FosxawiyjcjNTC0HvKBNYqFKpWKZzbkZ4bMVZ3lLDVo3iYz5Cp+WGspEV6vVkGUZZrMZdXV1bAoXDaQYDAZoNBpIklSQZz6/Pf438N6xoSxzk8kEhULBtk/FKOlmgLd2oWNGn68WeM/+fAVvech/XJIkGI1GmM1mGI1G6PV6NrBBMyr4Qp0k1PPwQno4HGbBMhKJsMGdyQp68q9TX6ZrgVKpZIVlJxO5aVmayUCDWPzMF/qhc0rv80J7pVArI9qVhIjvAkHhaLVaFkPq6+ths9myhPTZolAoIMsyZFnOet3hcKChoQEjIyOIRCJ5i1ALBJWEiO+lR8T3wslkMgiHwwiHw3C5XBgdHcXIyAh7fpjoOSmRSLBaSUQwGGQzXKuBVCoFn8+H4eFhtr+FFlOk5K1IJAKXyzWhL3iloFar2Szx+vp62O121NXVlbwNZrMZqVQKDocDTqcTwHs192oZtVrNklKnOj/Uj91u95y1JxqNzsohQqvVwmw2T1iQXqlUsmu4yWQqSlHTuaBW4ntBR3/VqlXYu3cvOjs7sWHDBnz3u9+FVqvF/fffj87OzmK3cd5AIuXY2BhisRiMRiMTNY1GIxwOBxO16ItBHZEPxKOjo+jv70c4HMbg4CDLkiUv53LtG4n8qVQKSqUSOp2OWbqQYMmjVqvHDRrMdHskllLmOQ1QUOHNcDjMjk0pxXTKDm5oaIDD4YDdbse6devQ1tYGp9OJZcuWwWg0sgfufF6qxWoHiahWqxVKpRLxeJxZmPj9fphMJsiyjEgkgtHRURaYI5EIVCpVRQqsE0H2K8FgEIFAgPXHfBdltVoNu90Ok8kEp9OJU045BQ0NDTCbzVnfRY1Gg2QyCaPRiHA4jLGxMQwMDMDlciGRSCAcDmd5nVN/pH5H2esksk8nuJBNEZBdzHSyPsz7quWK6PwAHVkB8UI6efFrtdpCD/2cUCuBuJIQ8V0gKJzly5dj06ZNaGlpwerVq8cJ3nPFwoULcfvtt2NkZAQ7duzA//3f/006fVggKDcivpceEd+Lw8DAAB544AFs3boVa9euxaZNm+BwOPIu29vbi7/+9a/o6upiryUSCbz55ptZ4nol43a78ec//xlvvvkmli5dimuvvRYdHR0FrSsUCuGpp57Cyy+/jJGRERw5cqTIrS0uTqcT1157LVauXIkFCxZkFX4sNUqlEuvXr8eXvvQljI2N4cknn8RLL71U07OIW1tb8cEPfhCLFy/GkiVLiuJZL5g9tRLfCxLS/+M//gOhUAgA8M1vfhNXXHEFzj33XNjtdvzxj38sagPnGzQaFggE2Iiu1WpFXV0dyxomUYuWz2QyiEQicLvdiEajGBoawtGjRxGJROD3+xEOhyui06XTacTjcaRSKWg0Gla8UKvVsqKJJOoplUrmvz1TH27aV8o6Ji9sKrZJWfr0N4mYpYKygtVqNWw2G9rb29HQ0IDVq1ejs7MTVqsVLS0tkGWZLTuX0CAGTSkn6xaDwcCyAsLhMHw+H/PIph86X5UmsE5EJpNBNBpFIBBgA08Tic9KpZIV9WxubsYpp5yClpYW9v3j+yRfhJRqFJDVi8fjycqA57P6pxK/J6LQWRR0nnkxPTcTHUBWv1Or1Vnf0WoYMBHMHSK+CwSF09HRgeuuuw4rVqwo6QB0a2srrr32WibMbNu2TQjpAoEgCxHfiwOJmAqFAtdddx0uuuiiCYX04eFh/O1vf8Nrr72W9Xqpa3bNhkAggOeffx7bt2/H+973Ppx77rkFC+nRaBSvvPIKfvnLX1bEbPqpsNlsuOyyy7Bx48aSPLNPhkKhwIoVK7Bs2TK43W709PRgx44dNS2kNzY24sorr8Q555xT9vMjqD0KEtIvu+wy9ndnZyfeeecduN1u1NXVCRFmBlDmajgchkajgdvtZoIWL6RTpjd5Lft8PiYcAyeEMBr54S1kSg1vQZNMJtkDHdlaUGY9ZV/zYvp0M9N5GxcS0amKOm2T/uYtSihblzK06ULLV6rnRdDZHD+q6C3LMurq6uB0OuFwOGCxWJiNymyy8QuFtkXFYMl3y2azwel0Mm/tQCAAtVqNaDTKRHidTlfRWem5RUbJ9miymwvyrrdarTCbzczGhfpJbjDm7VJkWYZer2ee8rmFQyezk5lLqC253wX6DvAZ6dTnaTlatpJu7GtlRLuSEPFdIJgZOp0OLS0tMJlMWLx4MQwGQ1ns0GgA3+l0YvXq1RgeHsbw8DDGxsbE9VBQcYj4XnpEfC8e9Jzocrnw9ttvw+fz5V3u0KFDCAQCVS920v76/X4cPHiw4Bjn9XoxPDxc8pniM0GlUqGpqQkOhwNLly5lVqiVAOkZkiShra0Np5xyCoLBIAYGBuD3+8vdvJKg0WjQ1NQEm82GZcuWwWw2T+v8GI1GLF++HMlkEm63GwMDA2V1c8hHMBjEoUOHoNVqYbPZ0NTUNCvb33JRK/G9ICH9tttuww9/+EOYTCb2ms1mQygUwmc/+1n8+te/LloD5xu85zF9kQOBACsaSpYgZO3Ce39Thi3ZlmQyGebdBYAFJRKWSx2gSIRWKBQsK5hEfgDMX5qEZBJn+f3NJ9byWb28aMnbZwQCASag+v1+ZrlBAj6fdVtXV8e2TRdesjOhdUUikYK/yGQVYjQasWbNGpx66qmwWq1YsmQJnE4nE2TLMWpK/c9oNEKj0bDMc7PZzGxd6Jx5vV54vV40NjYy0b1SxXTKCKcBp+HhYSYO50OhUECr1aK1tRUrV65EXV1dVr/g9zOTyTCrIuo/zc3NUKvVSKfT6OvrQzQazQoa5RDRM5kMmxESDAbh8/lY8NXr9czih+oWkB1SIBCA2+2G1+utOM/GWgnElYSI7wLBzGhsbMTHP/5xnH766aivr0dDQ0PZ2qJUKnHGGWegoaEBY2NjePjhh/HEE09U3MOiQCDie+kR8b347N27F//93/89oY2Xz+dDd3d3aRs1h3R1deGHP/xhwbU/EokEjh49WrEiOgAYDAZcffXVuPLKK2G1WrF48eJyN2kcer0eV199NdauXYtjx47h/vvvx9///vdyN6skWCwW3HjjjbjkkktQV1eHhQsXTutzixYtwp133gmv14unn34aDz744Jz6pRfC0aNH8aMf/Qh1dXW47LLL8LGPfQx2u73czZoxtRLfCxLSH3zwQfz3f/93ViAGgEgkgoceekgE4gngbRUUCgXS6TTLnFUqlfD7/WykkURWyhpNJpNMOObXRwIx/U8j3uUSOykwJpNJJupJkoRoNMoEc6VSiXQ6zUR0ai+fMZ27Tt7OhYR02gb/Q8JwIpFAIpHIKthImeLkCU72FwBYu2iQgto00y8zCbRGoxF1dXVoaGhAW1sbTCYTbDYbzGYzW66ckH+2TqeD0+lEOp2GRqOBw+HA6OgootEovF4v63eVflGjQRyy+QmFQmxGwkSoVCqYTCbU19ezPpFv1JfOFfVVKtoai8UgSRLri+WGsszpWJC1Ec3aoMEBmgnCZ61T8WIaeKoUaiUQVxIivgsEM4MGzS+66KJyNwUKhQKtra1obW2F2+3GSy+9VPb7DYEgHyK+lx4R34vPyMgIRkZGyt2MkuH1erFr165yN2NO0Wq1WLZsGS688MKKzQZWq9VYsmQJlixZgv379+Mvf/lLuZtUMnQ6HU466SRcfPHFM7q/sVqtWL9+PdLpNHp6eiBJ0hy2sjDo+6VUKtHa2jplMdlKjYW1Et9nJKT7/X52YAKBALMfAU4InE899RSrJCx4DxLHNRoNE1rp79wigACyLCIo45qyqlUqFfR6PcxmM8vq5m1gKBs9EAgwL+dgMFjykV+yjKDMV/JuVqlUTLSlgoc0GMAfj3zrI2sYPiM9FoshmUyy7HPysCYBnbLf7XY7LBYLJEnKm5FOxzSRSECSJPj9fsTjcZbdPhV0jqmoZ1tbG/Pfttls0Ov1WQMelQAdb71ej7q6OiSTSTQ3N7NK6n6/n52/QCDAhPdKCjw0WyESiSAQCDCrJPLdm+piPFEh3MngB7sqzYuNvufRaBQul4tdO8hSiM4fFUENh8NsNgYdt2oKYILiIeK7QDB9tFotVqxYgc7OTixYsACNjY3lbtI4tFotTjnlFFx77bVwu93Yt28fhoaGyt0sgUBQYkR8rwza29uxcuVK6PX6vO8PDw9j//798Hq9pW1YhaLT6bBy5Uq0t7dP+bwVCoXw9ttvo7e3t6BtKRQKdHZ2YsWKFXA4HFi8eHHFPeNNhMViwTnnnAO9Xo/BwUHs27dP1EiZpwSDQezbtw8DAwN46623JrSUEpSGGQnpVquVCb5Lly4d975CocDXvva1ojVuPkDHS5Ik5pspyzITVcmPmRfPo9EoIpEIs6qIxWKsUKRarUZzczMWL14MWZaZrzORyWQQCoUwMjKCSCSCoaEhHD9+vOSZpiTAUlZ3PB6HWq1GIpFg4nYsFmMDDHwR0lxRkzJtAbCMYzpOlH0eDAbZ35FIJKugpizLWLp0Kdra2qBWqyHLclYBRuA9W5x4PI7BwUFma3L06NFp+UaTj7hGo0FLSwtOOeUU2Gw2LF26FO3t7WzQo1JEdEKpVKKurg4GgwEGgwGrVq2CxWLB4cOHWb8JBoMYHR2FVquF3W5ngx7lhvci9/v9zGLF6/Wy/p7vvPEDVzQrgZ8FMhX8TBDqR5UCXUeCwSC6u7uh0+kQDoeh0+mYH7zJZEIikYDX60UwGITL5YLX64XP55uVpdFcUCsj2pWAiO8CwfQxGAy46qqrcPPNN8NgMFTk1Fu9Xs+KCb777rv47ne/K4R0QcUg4nvpEPG9/CgUCqxduxabN29GU1NT3mVee+01fOc73xFC+v/DbDbjuuuuw7XXXjvlM1p/fz/uueeegoV0pVKJM888E5/97GdRX18Pm81WMb7oU9HQ0IBbb70VN9xwA7Zv347vfve7Qkifp4yOjuLhhx/G1q1bEQ6HMTY2Vu4m5aVW4vuMhPTt27cjk8ngwgsvxF/+8hfYbDb2nlarRUdHB5qbm4veyGqGblwo85qEO7ISocDA2zJMlJ1O4p0syzCbzSzLmYRN6ngqlQqRSIT5OvNiX6k6J32BFAoFkskks5OIx+PM2oWOB7WJjlNu9jwvmPIZ6VRwlSxe6D2+wKhWq2WDGJTFr9VqxwVkagMJx7ROKgrKL5MPXpSl88MXF51p1nOpoHZT4U2TyQSLxQKj0ciOUTKZZIMXdGyB8vul03eDZj/wAyvTnYExka/5VPuV+7lKgway+JkbKpWKzRKhmS75CvNWErUSiCsBEd8Fgqmhezm9Xo+mpiYsXryY2X5VGkqlEg6HAw6HA/F4HFarFTqdjsVMcY0UlBMR30uHiO+VgclkwoIFC9DW1pb3/b6+PphMJuh0OqRSqWnNiJ7PUPHs6WSHazQa2Gw2yLLMjt1MrhMKhQIWiwULFy5EfX39bJteUrRaLRucOXjwYFaC5XyE9KRIJJJlGzwVubbAlR5HKMEzGo2y14LBIPr6+nDkyJEytmxqaiW+z+ju/7zzzgMAHDt2DG1tbVUz5aVc8EUldTod9Ho9ey23uCaJzplMJsuqhQQuo9GIlpYWGI1G2O12Vvgwnzir1WphtVphMBgQjUbh8XgQiUSYhUMpIfGVBDvghFitUqmYqE7e5byoyw8m8JAPeiqVYv7yJBqSwE7H0mw2o7W1FQaDAVarlQno+dZLx16lUjHBXalUwmw2swvZZNm6kiTBbrfDYDCgubkZ7e3tqKurg8ViydqnSoTaJkkSK4YaDAbR3NzMfOPHxsbYftCgDhWwLPV+0ewEyj5PJBIYHR2Fz+djnt+TQeeQiv329fXBZrOhrq6OFQvKPV9ks5ROpxEKhTA6Oorh4WF4vd6KE5+BE+2nQSQArO/SwBYvtKvVavb9IDsf/tpTTmolEFcCIr4LBJOjVCqxZs0anHPOOXA4HFizZk3VfE/sdjuuueYarFixAkeOHMHzzz8Pl8tV7mYJahgR30uHiO/VQXt7Oz70oQ/h/PPPx549e/Dyyy8jFAqVu1lVgcViweWXX46Wlhb09vZi27ZtGBwcLHezBHNAIBDAli1bMDY2htbWVlx44YVobW2d8nN9fX14/vnn0dfXhzfeeKOiv1uZTAb79+/HL37xC1ZfDziRkd7V1VXGlk2PWonvBaXRdHR0wOv14u9//ztGRkbGCUkf+chHitK4aofELLITIUuTfHYQ5FdNf6vV6qyMUaPRiNbWVjgcDuh0OmYTQ8vzv7VaLWw2G8tG9fl8CIfDzA6l1B2UMl4VCgUSiQSzb4lEIlke6fQ6HQf+ONHfNDKXSqUQCoWYGEj2K3xWvsViwYIFC5ilxVSiLx13s9kMs9kMpVLJjmMoFGICfj4kSUJ9fT0sFgva2trQ0dEBq9UKi8VScfYfudCghU6nQ0NDA4xGIxPSFQoF+vr6MDo6CuC9gptUmJO87ku1f3R+yRd9dHQU4XAYHo+HFUedTv8mYdztdqO3txfxeBzt7e3svOdCfSyZTCIYDGJ4eBj9/f3wer1lF5vzoVKpoNVq2aBcOBxm7afBNBoYUKvVzN5HoVBkFR2txH0TzC0ivgsE+VEqlVi7di3uvPNOOJ1OSJJUNYKUw+HADTfcgGQyiWeeeQZ79+4VQrpAUGOI+F7ZdHR04LbbbkM8HseDDz5Y8WJfJWGxWHD11Vfj8ssvxyuvvIIDBw4IIX2eEggE8OSTT2LLli04/fTTsWTJkmkJ6T09PXjggQfwxhtvMKvgSiWTyWDv3r04dOhQlsZCjgyCyqAgIf2JJ57Ahz70IYRCIZhMpqwTrFAoRCDmIPsWsi2Z6ef4H41GwwqVTpbhnM8DerrTXuYSsmihNpKVDf1Pli+0b2TPwmfsU5Ys2VDQOnJtOXgf66mOVy4qlSqrECp5aE/1GZp1QAUdK9FDezIUCgU0Gg0kSYIkSZBlGbIsQ61WZ/n30xQjKiKbOwAyF/vL2/vEYjE2SEQ/ZFkyk0EiWkcwGITBYEAwGITRaBxn/0OCcjgcRiwWQzAYRDgcZgVuK2nklB9Uo+luufUA+GXp3JHFEi1fKf22Vka0KwkR3wWCidFqtTCZTDAajeVuyowg+zYArE6MQFBORHwvPSK+lx6tVguLxQKdTgebzTapFZhKpYJer4ckSdDpdGV/bi8XJpMJJpMJTU1NMBgM0/oMJYTxDgDTQZIkWCwWlnRX7cdclmU0NDTA5/MhGAyyQsPzCV6P8Hg8GBwcRF9fH/R6PUtgJFKpFEsoHRoagtfrrRr/eI1GA5PJNGFfpmTZSrSAqpX4XpCQ/oUvfAG33XYbvvWtb01YeVoAJn6TkE1i+lQCFX1hyPIknU7DYDBAr9ez4DBdkYse+lQqVUUUL+F9tkko5wcb6H/+WNFxJCGdMmlJPKX1AtkCoiRJTNieiYcpnwVvMBiY/7pSqRyXoUttJb/UhoYGNDY2oq6uDkajkVlrVANUCFej0cDhcKCtrQ1arRY+nw9qtRrxeBxerxeRSAQ6nQ7RaJT1ybq6OibCFtMvlveup9Fjl8uFUCiEUCgEl8vFvPJneuFNJpPo7++H3+/HyMgI8+KzWCxwOp3QaDSsn8ZiMfT29sLlcmF4eBhdXV1wuVxsRkSlQN8lrVYLvV4Po9HIRB9+kIQGJigjnbcvMhqNiMVizBu/nNRKIK4kRHwXCAQCwVwj4nvpEfG99LS3t+Omm27CkiVL0NnZCYvFUu4mVTRqtRrnnHMOrrrqKtjtdpx66qlzKm4vWbIEN9xwAxYsWIClS5dOW7ivVJYtW4a77roLY2Nj2LZtG/72t78hHA6Xu1lzRm9vL37xi1/giSeewBlnnIHrrrsuq/i72+3Go48+ip07d2JoaAh9fX1lbO30oeLEH/zgB1FXV5d3mf379+NPf/oTenp6Sty6qamV+F6Q4tXf348777xTBOEp4EXdiSxdJvpcrphOGc5UWHS6QjrZytDf5YYv0JhPgOSz6flsZ8oq57PQ8xVH5LNsSTjMV1x0KujckY1OMBic0FudPPDtdjucTidsNhsb+KimrC8azU+n0zCZTHA4HMhkMjCZTMwbnUa3yTKERvDJuoifPVAs+GKikUgEY2Nj8Hg8iMVi8Pv9zHt/piSTSbhcLni9XoTDYZjNZvh8PjQ0NLAZBjT7IRQK4ejRo+jv74fb7cbQ0BB8Ph+Ayrng5/Z9nU7HZhXodLqs7wPwXrFWpVKJRCLBBlLoPIrppLWJiO8CgUAgEMw/RHwvPQ6HA5dddhnOPvtsAHMza3c+oVKpsGrVKtx0002wWCxzfryam5txxRVXYM2aNfPi3LS2tqKlpQXxeBw+nw/PPPPMvBbSR0dH8eyzzzL74I0bN2YJ6cFgEC+99BL+9Kc/zUrcLTUKhQJLlizBddddh5aWlrzLbNmyBVu3bq1IIb1WKEhZveyyy7Br1y50dnYWuz3zjlzbkUIgwSt3PdO54JO3c67tBZ/9Tdny/Hbo73KQK7bzNjC5bZzo87k/hcIL97mQ2E9Z2CRa8pYu1RSUc/sE7Y8kSWwgiI5nKpVi2cpqtRper5cN+JBvLF9kNXcggwZFcqF102++wGckEkEsFmOWKtP1Q58M6kfxeBwejyfLF1yr1bLzH41GMTIyAq/Xi2AwyMT7Sg7IuTM9JiN3em+l9NtaGdGuJER8FwgEAsFcI+J76RHxvfTw9+KC6cEn1ZVye/MFfnZ/LUCxZHR0FLt378bAwAB7r7+/H2NjYxU1e3ymTGXlXInUSnwvSEj/wAc+gC9+8Yt45513sHr1amg0mqz3r7rqqqI0bj6QK4JPp8PzAjAVHCVrC8ocnW52OYmAkUiEiX/kha1SqSBJEvOFpkKeVMixHLYOvIhOx4u3geEF9ImEWBI/U6kUO16FZIaTwDqRaKtQKJgHu9lshsPhQENDAywWS5adTzVBgrder4fD4YBSqWSFKDOZDMLhMOuHHo8HSqUSXq8XLpcLarUaBoMBFosFarUaRqMRsiyzTHfe758/d/zsgmQyiWg0yopiBgIBJBIJ+P1+hMNhpFIpRCIRJBKJSQdTpgv1Lb/fj0OHDrE6BOQhS6I6tYcsTyKRSMVe6Pkb0HwCOe+jniu05/5dCVTqcZ6viPguEAgEglIg4ntpEfFdIBDMV958801861vfyrLVjUajOH78eBlbVbvUQnwvSEj/5Cc/CQD4+te/Pu49yh4WTG1jMhl81jXvKU6C8kzWw2f2Au9lUlNRRb1ez6xTePG+3OQWEM19baIvKJ81PRvoHOSzkKE2UeY1ia9UJKZaR4KpzWRrw3vM89ZEfNXoeDyOWCwGpVLJBmsoK5+OTzKZZF7cuYNAuUJ6LBZDIpFAMBhkRTT8fj8CgUBW0dFiwHuwU5/PzaCnZaphNHuyUWv+73zHrxL7bDlGtO+77z5873vfw+DgIFauXIl7770X55577oTLv/jii9i8eTPefvttNDc340tf+hJuv/32rGX+8pe/4Ctf+Qq6urqwaNEi/Nd//Rc2bdrE3n/ppZfwve99D7t378bg4CAee+wxXHPNNVnr+NjHPoYHH3ww67UNGzbg9ddfL2g/J0LE9/nHRN95gUAgKBe1krFWSYj4Xnr4hLrp3mNP1b8nW898+W7MJAFRIABO2LyMjo6WuxlFJ9/3oBiuC3NJrcT3goT0ahCUKoFMJsMyZ6lIJnkYTxYYSPhOJpMs+zccDsPlciGdTkOv12dV/s5dF3lKkyUGeUADJyphy7KMjo4O1NXVQa/Xw263Q6PRIBqNMtuM3t5eDA0NMY+tchYdzB2ImOziQa+n02lWzVmn06Gurm5c5sVE2yJRNxqNIhgMIhAI5C0qST7qlMVM1cKrMRM9F6VSyarGkzc/Dbbkks9Gh88uB054lPHL8p8FwAZ66DN0/EOhEBPXSxU0JmpjpcN/T+iYkS96LBYb13/pxp4GQqiYazQaRTwer8kHqkceeQSf+9zncN999+Hss8/Gz3/+c2zcuBHvvPMO2tvbxy1/7NgxXH755fjkJz+J3/72t3jllVdwxx13oL6+Hh/84AcBAK+99hpuvPFGfOMb38CmTZvw2GOP4YYbbsCOHTuwYcMGAEAoFMIpp5yCW2+9lX0uH+9///vxm9/8hv1PfvfFRMT3+UNzczPWrl0Lk8mEd999F/v27auIQXKBQCAQlB4R30vP2NgYtm7diu7ubnR2dmLNmjUTetQPDw9j9+7dGBsbw86dOxGJRLLet1gsOPXUU9Ha2pr389FoFHv37sXhw4er5tkll1Qqhbfffht//vOfYbfbccopp2DRokXlbpZAUFIymQy6urrw2GOPoaGhAatWrcLy5csRCoXwxhtvoLe3F/v27YPH4yl3U2ua8lefnMeQj3QikYBGo0E8Hmfi90TWLCS6JxIJJoZFo1EEAgH09fXB7XajqakJZrN5QkGe7FySySQrjBiLxSDLMmw2GxwOBy644AIsXboURqMRTqcTkiQhEokgHA4jFAph586d2L9/P3w+H44cOVJ2IX0moh7dKAYCAQwMDECv10Or1cJgMEwpcJOwmEgkEAqF4Ha7MTY2hng8nldIp6KOVJTUYDBAkqSqF9LVajX0ej1SqRQMBgN0Oh3i8XjeApS8gMvfuJF4G4/H4ff7s/p0roUPP+Mi1wefX6ZUTLUt/vxW0s0qDQLF43E2eEZ+9xqNZtzxzGQyWb7zoVCI/Z1IJMq8N6Uf0f7+97+Pj3/84/jEJz4BALj33nvx7LPP4qc//Sm+/e1vj1v+Zz/7Gdrb23HvvfcCAFasWIFdu3bhnnvuYYL4vffei0suuQR33303AODuu+/Giy++iHvvvRd/+MMfAAAbN27Exo0bp2yfJElobGyc8X4JapNly5bhzjvvxKJFi/Dggw+iq6tLCOkCgaAiqJWMNUFt09PTg5///OfQ6XTYtGkTFi5cOKGQ3tXVhR//+MfYv38/S+Tiqa+vxy233IKLL7447+ddLhd+8IMfoKurq2qTYZLJJF566SW89dZbaGxsxBe/+EUsXLgwbyKXQDBfyWQy2L17N44cOYK6ujr8y7/8CxYtWoTR0VH87ne/w7PPPotIJAKv11vupualVuJ7wUL6iy++iHvuuQcHDhyAQqHAihUr8MUvfnHSKfC1Bi/+8cUy81mW0PK8LQn98Jm6CoWCZYzyntP8OsiahbLZScw3Go3Q6XQwmUyw2+1wOp3jhPRIJIJgMAibzQaLxcIsOaoNmg0QjUahVCqZiEu2NkD+Y0/Z/LFYLOsYTlRwlI4/X3S0Ei0yCoH2a6pCOXxhUa1Wy4qTkk882b3QsaWMc76/T6eIbLnhPcbpeOQbEKD/c8kt/jnZNK3ZFPvlryH8oJxCoUAymWRFY+l40+wX+qHrTiUEsmIEYr/fn/U6FcTNJR6PY/fu3fjyl7+c9fqll16KV199Ne82XnvtNVx66aVZr1122WX41a9+xQZQX3vtNXz+858ftwyJ7zPhhRdegNPphNVqxXnnnYf/+q//gtPpnPF6pkLE9+qFrsNqtRo2mw0tLS1oa2tDQ0MDzGYzEolExQyUCcoDDZQbjcYsWzOBoJTUyoN2pSHie2mJx+MYHh6GQqHA8PAw/H4/TCZT3mXdbjcGBwfR29ub9TrNCrZarWhqaso7QxIAZFmGw+HIurZXo6AeCAQQCASQTCbhcrkQDAbZDNtcQT1fDItEIlW536WGrGmnM0hB9461eO0l54GJdJDcJMFiEQqFEAqFEAwGMTo6yixvBwcH0dPTU9RtFZtaie8FKaS//e1vceutt+Laa6/FnXfeiUwmg1dffRUXXXQRHnjgAdx8883FbmdVQiKVQqFAJBJhwqQkScwmgy5eJHxlMhlWHDSVSrFM6FgsBo/Hg2AwyAQySZIgyzJ0Oh2A97JRI5EIPB4PYrEYXC4XYrEYFAoFmpqasHjxYjidTixatAjt7e2QJAkGg4EFKIPBAKPRiOXLl0Oj0WBgYADDw8Pw+XxM0K+GDp7JZBAMBjE4OAhJkqBSqRCNRiFJEsxmMwscdFGkQEw3PF6vF36/H8FgkNnk5IOEeV5Mnw+j5vx+8YMFfBCh42ez2dDe3g5ZltHc3IyWlhZoNBompEejUYyMjCAajWJoaAhdXV2IRCKsn8/GsoWONV9QlkTqXIG+UHGYjgXZImm1Wlagl18v+bhTQVSycqLCvjabDU6nE1qtFiaTKSsjJZPJIBKJwOfzIR6Pw+12Y3R0lAnb0xXVaf/IV57akTt7gj82sViMbZdsoEhULzfFCMRtbW1Zr//nf/4nvvrVr45bfmxsDKlUCg0NDVmvNzQ0YGhoKO82hoaG8i6fTCYxNjaGpqamCZeZaJ0TsXHjRlx//fXo6OjAsWPH8JWvfAUXXnghdu/enXdgoFBEfK9u7HY7Lr30UixfvhyLFy9GfX09VCoV1q1bhzvvvBOjo6PYvn07/vGPf1RFLBcUn0WLFuHjH/84hoeH8frrr+OFF15gNmwCQamolQftSkLE9/KRyWSwb98+3HfffTCbzXmX6e7uHndvqNPpcP7552PDhg1obGzE4sWLJ9yGwWDAJZdcAofDgb6+PmzZsgVdXV1F3Y9SEgwG8dRTT6G/vx9tbW14//vfj46ODvZ+IpHAK6+8gh07dmSJ6T09PRgcHCxHk6uKZcuW4dJLL4XNZpt0uUwmg7feegtbt24dl5w031EqlVi7di0uuOACGAyGvMu888472LJlC1wu15y0IRaL4cUXX0Q4HIbP58Phw4fnZDvFpFbie0FC+n/913/hu9/9blaW3V133YXvf//7+MY3viEC8f+DhHTghBiXTqehVCpZAUfgPYsXEqlJCA+Hw1mvUQaZQqFAOBxGIBCAWq1GXV0dLBYLsyRJJpMIBoMYGRlhYnwikYBOp0NjYyNWr14Nh8OBzs5OtLW1jcs2pkzuRCIBq9WKuro6vPHGG+jr65s0M7tQ8mXlFotgMIhwOMwKX8ZiMWbvYjQaswYyQqEQ80Lv7u7G8PAw4vE4gsHghIIin5nMi+nzRUin/aFCo3w/ofeVSiVsNhuWL1+Ouro6dHZ2YvHixVlCejgcxuDgIEKhEA4cOAC3281mCcymP/HHn0bV+df47w9fbHcm2yNRXq1Ww2KxwGq1wmg0oqGhAbIsZ2VyDwwMQKFQsO8hCek0cNbY2IiVK1dCr9ejsbERDocDwHs2Ml6vF729vQiHwzhy5AgCgQDzL59pdjoJ6XwBWMpC5AfeyAbK6/WyWgx03aimQDYZvb29WQ8tU4nO+a5Jk80wmegallvgdSbrzMeNN97I/l61ahXWrVuHjo4OPPnkk7j22mtntK7JEPG9urHb7bjmmmvwgQ98ACqVChqNBgqFAmvXrsXq1asxMjICj8eD3bt3i4ytGmXRokVoa2tDLBbDz372M7z++utCSBcIagAR38vLgQMHcOTIkQnv/+h5n4eE9Ntvvx2SJE1aG0ev1+Piiy/G+eefjz179uDgwYNVL6Rv2bIF27Ztw2mnnYaVK1fmFdJ/9KMfZVmP0gxoweQsXboUt91225Qe9KlUCn/84x/x+uuv16yQ/s///M+w2+15l/nf//1f/OMf/5hTIf2ll17Cq6++ynQ6QWVQkJB+9OhRXHnlleNev+qqq/Dv//7vs25ULv39/fi3f/s3PP3004hEIli6dCl+9atf4bTTTgNwQpT42te+hvvvvx8ejwcbNmzAT37yE6xcubLobSmUdDrNxCmyW6CsWaqUniv6USYtkC0a0ud4WwYA7O/cUSBeDCRbAxJHcy0maDuUoU5TxHMtZGYCL9ZT5jC/P7TdXOsbOg6FZhPztjpUSJUyh1OpFBOKgfemz9AgBomhM80Ens0IXKWRu0+5fUqtVkOtVkOn08FsNsNkMsFsNsNoNGYJ6Uqlknn60/vJZJJ5eBcCL/RTfyXBiBfS6bsFoCD7GLKtIY99o9HIvPB1Ol1WYWB6PxaLIRKJIJFIQJZlWK1W6HQ6ZpdEU+opI52OazKZhMVigUajQV1dHWw2G6LRKHw+H7tBnG7f4veRbKHoXNDrdDyi0SgbPOO/c5VAMUa0zWbzhNk/PA6HAyqValw20MjIyLiMcqKxsTHv8mq1mt1wTbTMROucLk1NTejo6Ch6ZkIp4/t8iO2VBg3eybKc9Tpdr41GIxobG7Fw4UJEIhG43e5xBc0E85toNAq3280SCKZzjVUoFGwweaJ7wUAgALfbLQZoBNOiVjLWKgkR38sLJbDMBIVCAa1Wy2bETgU9D+l0ujmxZtXpdLDb7VlJKel0Gh6PBz6fr+jbo4EFqhV39OhR9l44HMbo6ChLAhLMDJVKBVmWx90v5pLJZGC327FgwQJoNBp4vV74fL6quA6TzaHRaJxyWZoRHg6HIcsy7HY79Ho9GhoaYDAYJjxONpsNHR0dWdpCMpmEx+MZV+egUOg5vVqolfhe0BW2ra0N27ZtGze9aNu2beOm0c8Wj8eDs88+GxdccAGefvppOJ1OdHV1wWq1smW++93v4vvf/z4eeOABLF26FN/85jdxySWX4NChQxP6kJUaEoJJ2AuHw1leybyITOIc8J6tBIng9FuWZSYiUiFQEsEUCgVkWYZarUY8Hkc0GmVB2GQywWAwTOqJxQdtWZaZoD7TLEraN71eD71ezwRCg8HAsmN5u5BMJsP83BOJBDweD7MAoWKVM/1i0qg0eayp1Wr09/dnDSQAyBISg8EgotHolIIrf674n0r1+J4JufuW65tNsyFkWUZ7ezuWL18Oh8OB5uZmtLa2Zg2+xONx6PV6xGIxpFIpuFwueDweZDIZuFyuGd9U0nkjcZv82GnmAd9HKeudsq2pAPB0fN4UCgUMBgP7zixcuBDNzc2QJAkWiwVarZaJ0VSU1W63IxQKQa1Ww+VyobGxEaeeeirq6urgcDjQ1NQErVYLnU7HbkKpHQaDAVarFclkEg0NDWhvb4ff78dbb72Frq6uGVkr0flLpVIIhUJIJBJsUIBurPkBK/JRrLRM9FIGYq1Wi9NOOw1bt27Fpk2b2Otbt27F1VdfnfczZ555Jp544oms17Zs2YJ169ZBo9GwZbZu3ZqVAbZlyxacddZZM2pfLi6XC729vWhqaprVenIpVXyfL7G92jAajbj66quxatUqHDt2DA8//DD2799f7mYJSsjBgwfx29/+Fr29vTh8+PC0BrU1Gg0uuOACXHPNNWxWE08mk8HLL7+MP/7xj3OWlSWYX9TKg3YlIeK7YLZ0dnbiwx/+cFYWcygUwmOPPYann356zmwhe3t7cf/99+Oxxx5jryUSCbz77rtMBxHMDTSr8ctf/jLcbjcef/xxPPnkk1VRX8Vms+Gf/umfpvXMNTAwgN/97nfYtWsXli5dig9/+MNYsGABFi1aNKGtCwCsWLECX/jCF7JEc4/Hg0ceeQQvvPBCTcarWonvBQnpX/jCF3DnnXdiz549OOuss6BQKLBjxw488MAD+OEPf1jUBn7nO99BW1sbfvOb37DXFixYwP7OZDK499578f/9f/8fm97+4IMPoqGhAb///e/x6U9/uqjtKRQStgBkBZncgpe58JYhNLpMRUdIEOOLOZKIS6IicCLQkDc7earTe/kg8Z7fjlqtLmgkjARPspSor6+HzWaDVquF2WxmWcQ0mBAOhxEOhxGNRqFSqeD3+6FSqZgIWki2bDqdRjAYRDAYZG3KLfhYaHFHulCQmDqbIpGVBO0TDQzkHnuVSgW9Xg+TyQSbzYampiY4nU44nU7YbLas2Q6JRIL1H6/Xi+bmZsiyjL6+vhnbW/CWMpRxQf1Up9ONm7VB/vbRaJQNDFDtgelAfugmkwn19fVoampiWZ28IJ1Kpdh3lLLyotEo6uvrsXz5cjQ0NMBoNE6azWcwGFBXV4dMJgOj0Yi6ujp4PB709vaiu7ub7f90+z/1w1gsxuok5No40e9K7bOlDsSbN2/GLbfcgnXr1uHMM8/E/fffj56eHtx+++0AgLvvvhv9/f146KGHAAC33347fvzjH2Pz5s345Cc/iddeew2/+tWv8Ic//IGt86677sL73vc+fOc738HVV1+Nv/3tb3juueewY8cOtkwwGMSRI0fY/8eOHcOePXtY/YFgMIivfvWr+OAHP4impiZ0d3fj3//93+FwOLJE/2JQqvg+X2J7tSFJEtauXYu1a9fizTffxNatW4WQXmMMDAzg2WefxTvvvDPtz6hUKixfvhybNm3KK3JRIsTf/va3YjZVMI+plQftSkLEd8Fsqa+vx8UXX4z169ez1zweD9555x08++yzc7Zdt9uN7du3z9n6BZPT0dGBjo4OBAIBHDx4EM8880y5mzQtjEYjzjjjDFx//fVTag4HDx5kfayxsRGXXnopTj755Cm30draitbW1qzXBgYGsHPnzhk9t88naiW+FySkf+Yzn0FjYyP+53/+B3/6058AnBiNeeSRRybM3CuU//3f/8Vll12G66+/Hi+++CJaWlpwxx134JOf/CSAE4LD0NAQLr30UvYZSZJw3nnn4dVXX80bjElYIsrp90RZ3rmdhkQvEgk1Gg1kWWaZt7IsM3sNlUqVVTyQvJlTqRSzuJAkCYlEAj6fDyqVKqsYIi/skShIBQ3IN3y6lb/pIkWFSylz2WazQZIkVk2c9ketVo+7sJFdSCqVgizLzM88FoshHA4jGAyOs74p5LhP9v9018FnbZOfdaVl9RYCZfLzmfp80Ut+pgT98D7quT/Uzyh7PHdGwHTht8vbx/AWRLn2R+l0mi1Pwr5KpcqyEZpoW9QXSbCn9fDfGdoeDT7pdDo4HA4oFArU19fDYDAwn/Tp7q9Go4Fer2e1Cmw2W1ZR0ELI3VdeSBec4MYbb4TL5cLXv/51DA4OYtWqVXjqqaeYJ2NupfSFCxfiqaeewuc//3n85Cc/QXNzM370ox/hgx/8IFvmrLPOwh//+Ef8x3/8B77yla9g0aJFeOSRR7Bhwwa2zK5du3DBBRew/zdv3gwA+OhHP4oHHngAKpUK+/btw0MPPQSv14umpiZccMEFeOSRR4qeuVWq+D4XsR2orPheiSQSCXR3d2NgYADvvvsuPB5PuZskqBL4gdh85FoFCgSCykLEd8F0UalUaGtrQ3t7e9Yzz5o1a8bZJWo0GixevBjnn39+1jOK2+1GV1dXln+5oLqhZ/pqYrr3JgaDAatXr4bf78cpp5wyLTsYQW1TsHnWpk2bip4Jl4+jR4/ipz/9KTZv3ox///d/x9///nfceeedkCQJH/nIR5j3bK7fbENDA44fP553nd/+9rfxta99bc7bPl1yhSxedDSZTExAJ/9kSZJY9i15jvPWMOSJTII4LRsOh9Hd3Y1gMIj29nbYbDYmFJJ3MllfjI2N4fjx4+jt7WW2KLyQmg8SExUKBWw2GxYsWAC9Xo/6+no0NDQwWxreyzr3YkwCeTqdRmNjI1KpFAKBAMbGxhCJRNDX14fu7m7E43HmY17o8Z6tgEgZz+S/HggE2MBDtYuTyWSS+aeS1Q31KeC9mQYkMtMPicx80KLsceDEjbJer0c0Gh03G2E6KBQKZjUkyzL0ej0bbJIkKSvAZzIZaDQapNNpNgODMuypgOdkVikKhQI6nQ4WiwUmk4n5mlO/ze27Op0OmUyGDf4kEgnY7XY0NjayQaXpBHKyQ6J9XLhwIUKhEPx+P44cOTKrqXSVmnk+EeUY0b7jjjtwxx135H3vgQceGPfaeeedhzfeeGPSdV533XW47rrrJnz//PPPn7S9sizPaaZPLqWI73MR24HKi++VRjAYxF//+lf89a9/hd/vR39/f7mbJBAIapBayVirNER8F0wHrVaLyy67DB/+8IezvKFNJtO47FtZlvGBD3wA69evz/puvvrqq/jRj36UNeNSIKhU6uvrceutt2LTpk0wm81Ft86sJWolvhckpN92220477zz8NGPfjTrdb/fj8997nP49a9/XZTGASeEn3Xr1uFb3/oWAODUU0/F22+/jZ/+9Kf4yEc+wpbLFagm8/O+++67WcYftbvY3u6zIde+goRDyoqlv/lii8B7BU3JcoKE73g8DpVKhUQigUAgAJ1Ox7zI6XOUuU4Z1pSRHgwGEY/Hp+1PTm0nAdJoNMJut8Nut8+4aCmJfpIkIZPJIBKJwO/3Q6PRsGKh5YZ8pSlrmzy5q+kikA8+I533Secz0nlBmS8om2/kly80SxnlhZw/PiOd9/zOlxHP91feG5yWm47nf67F0WRZ9CqVChqNhlm8ACcKXVKdgZlA7U2lUswShjLra4laCcSVRKni+1zEdqDy4/tcww9G5yMWi6G7uxu7d+8WRSEFRYHvc+K6K5guIr6XHhHfy8t0MmPzxW7eYnOqdfGzcQv9npD+0NLSgrVr10Kv10+6vEqlymtvMTY2BoPBwJ65xPe2eqHzN1VSZTWj0+myvP9nA697ANWXyDZbaiW+F6TKPPDAA3jkkUewe/du3HvvvUwQi0QiePDBB4sqpDc1NeGkk07Kem3FihX4y1/+AuCEhxEADA0NZY0cjYyMjBvpJiRJmrGwVUr4zG3KuiWrlFw/6FwhnYItWbvQ6yREDw0NIRqNYt++ffB4PNDr9airq4NWq0UkEmH2Kfv370dXVxfGxsbg9/un9YUg6xadTofGxkY0NDSw7FzKxp1psVIAzE9dp9NleagPDw/D7XZneTzzGcn89kjcLuaXk7L/FQoFotEofD4fPB4PgsEg8wWfaip0pUF9JRaLwe/3s/2hAp10nGm2g1KphM/ng8/nY4M8BoMhS9ROJBKs4KXX64XL5WJVsWd6Tuj8kpjOb4f3ZSchnd5LJpNs5gaJ/nTDnvvDi1CpVIplz9MMCP47x0MDKkqlkn1/KYO9UJRKJfR6PStCWmtCuqD0lCq+z0VsByo/vs81Pp8PW7duxcjISN73/X4/Dh48WFU3qoLKZXh4GDt37sTQ0BBef/11MYVfIKhgRHwvL4sWLcL69esntIwgX+WxsTH2WiwWw86dO6HX67OeAdrb23H66aejrq6OvRaNRrFr1y4cOnQI3d3d6Ovrm3EbFy9ejPXr18Nut+PUU0+d1XNHS0sLrr32Wqxbtw4HDhzA7t27RWHQKuXIkSPYtWsXxsbGsGfPnjkrKjtf0Ov1OOecc6BUKrPukwTzi4Kvjk8++SQ++clP4sCBA/jTn/6UdSEvJmeffTYOHTqU9dq7777LPGsXLlyIxsZGbN26FaeeeioAIB6P48UXX8R3vvOdOWnTXEKWGQaDARqNBmazGSaTCVqtlv2ejpBOWdv0fiKRQDAYxOjoKGRZRjgcRl1dHSwWC9ra2liRRMpC379/Pw4fPoxYLAaPxzPlSJpCoYAsy2htbUVdXR2cTifa29shSVKW2DnTYwGAiZLpdJqJk+FwGOl0Gn6/P0skJ1/rXOsYEkFJKC0GlLWdSqUQDAYxNjYGrVaLpqYmJBKJrCzmaoD32Y9EInC5XBgZGYHX60UkEkE0GmWBM5lMwu/3Ix6Ps+WAEz55JpMpK2ucRPloNIqxsTEMDAzA7XbD5/PN6FzwXuR8FjqfCZ47WMN7pNPNIH9OaOCA7zc0K4P2k4R0ys7PZDJ5byyTySRisRizZDGZTKz/F4pSqYTFYkFjYyPS6TS0Wm3B66pGamVEu9IoRXyvtdheKkZGRvC73/2OCRa5UPHtWsuOEcwNvb29+MUvfoFdu3YhEokgEAiUu0mCKkHE9/Ig4nt5UCgUWLNmDf71X/8Vzc3NeZfZsWMHjh8/niWkRyIRPPPMM3jppZeynm8uuugidHR0ZJ2/YDCIJ598Eg8//DCi0eiMr8cKhQKrV6/G5s2b0dbWxhL4CmXp0qX453/+Z0QiETzwwAM4cOCAENKrkEwmg7feegv33HMP+vv7WcKgYGJMJhM2bdqEyy67DG+++SaGh4drSkivlfhesJB+0kkn4fXXX8cHP/hBrF+/Hk888QRsNlsx2wYA+PznP4+zzjoL3/rWt3DDDTfg73//O+6//37cf//9AE5c9D/3uc/hW9/6FpYsWYIlS5bgW9/6FvR6PW6++eait6cUTGZfwYuHJFDzGdj0N4mKfDHSTCaDeDwOhULBssyTyST0ej0T0kk09Xg8CAQCTDycDBLJ1Wo1y0AnX/eZFFic6nhQ8VWaYkbFH4H3Cn/msxzJl4VcjC8prYe8tmOxWFZh1mqc5szb+5AvOr8/BPWdRCLBZjGEQiEmuJMtiUqlQjQaRSQSQSQSQTAYRDgcZsVuZ3t8Ci1uxvuo81nufJFeWi/tJ/2mvsYfC+oDuXZJxYC+W9U2u6EY1EogrjRKEd9rMbaXglQqBa/XW+5mCOYZmUwG0WgUXq83656QBtJr6QFRUBxEfC8PIr6XFpVKxZ6JHQ4HnE4ny8jPpaGhAXa7HVarlT1TZjIZVoOLZ2RkBG63OyveezwejI6OYmhoaEbWbbltbGhomHRmwHTRarWw2+1IJpNwOp2w2WxIp9OIRqMVI6iT7a3X62U16Kr5WSuZTLJn7lAoNOm1MpFIwO/3w+v1slpnPKlUCpFIBIlEAmNjYxgeHsbw8PBc70JRSafTCIVC8Hg8zOmBT3Cje5tYLAalUsm+B7NFqVTCbDbDbDbDbreLRLgZfrZaKEhIpwuM3W7Hc889h9tvvx1nnHEG7rnnnqI2DgDWr1+Pxx57DHfffTe+/vWvY+HChbj33nvxoQ99iC3zpS99CZFIBHfccQc8Hg82bNiALVu2wGQyFb09cwUJdyQWkx86Xdi0Wi3zSucz0kkA5P3Q6AJB4id5XEciEeY3PjAwAOBEkDt8+DA0Gg2rhp5IJDA6OsqyvifLXCPrCUmSWGHF+vp6NgWtmMGIij9arVbodDo4nU74/X7EYjF4vV5Eo9Fx1iJ0bCKRCBOE6fd0tse3P9++0GuxWAzDw8NIJpNoamqCx+NBKpWCwWComqrPqVQKoVAIsVgMLpcL/f39GBoagtvtZkU66eJGWevxeBx9fX144403YLFYsGDBArjdbmg0GjbQEQqFMDAwgFAohKNHj+Ldd99FIBCAx+OZ0cWS9/3jZ1/QQAuJ17y1C+/bSn72NLsDAAuYNGBFNjB0g0fZm8lkEkNDQ8hkMpAkCVarFRqNhm0jlUphZGQEY2NjbGBKqVTCYDCMm445U2jQohb9BWslEFcSpYrvtRLbBYL5QDKZxI4dOxCPx7MeCAcGBgqyDxAIRHwvPSK+l57W1lZceeWVWLhwIVasWAGLxTLhsgsWLMAnPvEJDA4OYufOndiyZcuEWeWHDx/G/fffD4fDwV4Lh8PYtWvXjGectba24oorrkBnZyeWL18+aRsLQalUYv369di8eTPGxsawZcsWvPbaaxUxM+7o0aP4xS9+gcbGRpx55pm45JJLqua5PR+HDx/G//3f/2FgYAB79uxBJBKZcNkDBw7gJz/5Cerr63HeeefhggsuyLJO6uvrwxNPPIGjR4/i4MGD8Pv9pdiFouLxePDXv/4V77zzDhYtWoQrrrgiq65CNBrFtm3bsGPHDthsNlx++eVYtWpVGVs8P6iV+F6QusPvoFqtxi9/+UucdNJJuOOOO4rWMJ4rrrgCV1xxxYTvKxQKfPWrX8VXv/rVOdl+qSBhXK1WM/FclmUmovNCuiRJWZnawHvZxLlCOu/bTFnGo6OjCAQCeQuYUOefTkcmSxeDwQCLxcJGsknELjZ0DGKxGGw2G+rr6xEKhVjmND/aSNn4JJqTSDqd6Uh0s5nrn50LHbdYLIaRkRHEYjHmK69QKKrKy4/E8XA4DI/Hg6GhIQwMDMDn8zEhPXdZ4IRH6v79+yHLMrNwocEejUaDQCCAnp4eBAIB9Pb24tixY2yEu5CLJS+k8yI5Cem5VkfUx/nCoyRu2+12mM3mrBkMiUSCWQGNjo5idHSUjcan02k2I0Kn0zFxPplMYnh4GIODg6zArizLbBbEbODF+moKLoLqpJTxvVZiu0BQ7SSTSezatQtvvvlm1us00CsQCCofEd9LT1NTE6677jqceeaZ7Bl/IlpbW3HjjTcimUxClmXs2LFjQiG9p6cHv//978c9mxYy27exsRHXXnst83Qudj0mpVKJU045BStXrsTIyAgbKKgEIb2npwd//OMfodVqEY/Hce6551a1kH7s2DH87ne/w4EDB9gz6kQcOXIE3d3dTGs655xzsnSLwcFBPProo2zQoxpjvc/nw7PPPoutW7fife97H04//fQsIT0Wi+GVV17Bfffdh46ODpx00klCSBdMm4KulNu3bx83DWzz5s04+eST8corrxSlYbUIn5We+z//O9/rZFFBGdi5AnCuLQSf3Tsbiw2FQsF8y3U6XZYFxVxMjeIFbhpooOKq/Pby2d1M1R56n29/7jHPhc/SpkxmsjmhApV8pnSlQmJ0NBpFMBhEMBhEKBRCOBxGPB6ftH/QbAeyFBgZGWEZ6RqNBqFQCGNjYwiHw8xXrVBRmBeVSdynwSO6IePte3gBmn7TrI9cb3X+N91E0n6QRY3f72f+95IkZc36CAQCCIVCUCgUCIVCCIVC0Gq1s7pRJDsmKgRcCTedpaRWRrQrCRHfBYL8ZDIZuN1uHDp0CF6vFw6HY87qAxWbeDyOkZERBINB9PX1FTStfqqHcoFgJoj4XnpEfC89SqWSPUtMBT1T02cme26casb4TKBn6rm0n6BnL4PBgJaWFixfvpzVbitnkepMJsMSu4phOVpuKIEyHo9Pa1my/B0eHsahQ4dgMBjY+8eOHYPP55vWuioZGgDwer04evRo1j76/X4MDw8z/aO7uxsHDx6EwWCA0+ksOCGSkvF8Ph+6u7sRDoeLsi/VQq3E94KE9PPOOy/v6xdffDEuvvjiWTWoVuGFW94Xnc+spixv/n/evoTEQ97ehZanAon8eovhGa5SqWC1WtHU1MQsV+a6uCZ5RlutVqRSKbjdbgwPD8Pn84276eD3a7J95I9n7vHOFdT59ZGQrtFoEAwGEY/HMTQ0hGPHjqGurg6SJMFisTBP+0oU00kMDofD6Ovrw9DQELq6utDT04Ph4WH4/f5Jb9YikQhGRkagUqng9/tx9OhRduxUKhXi8TjC4TASiQSbEVGokJ5Op5mgnE6nswrRptPprPNEN0e8vVEmk4HFYoHFYoFarc7y2adzQ/2X+pharUYikYDH40FfXx80Gg0MBgP7XtG+0OCD0WiE2WxGPB5HLBZDc3Mzy2KfCXRTNzY2huPHj8PlclWMp2CpqJVAXEmI+C4Q5CedTuO1116D2+2Gw+HATTfdhI0bN1ZFQfGhoSE88MAD2LVrV1X6nArmHyK+lx4R3wXlxmAw4JprrsGaNWtw9OhR/OY3v8GePXvK3ayaJpFIYNu2bejp6cmajeB2u3H8+PEytqy4HDt2DD/60Y+yEiASiQQOHz6MVCqFsbExPPjgg9iyZQvWrl2LW2+9lRVInil+vx+PPvootm3bBpfLhaNHjxZrN6qCWonv0xbSN2/ejG984xswGAzYvHnzpMt+//vfn3XDahFeTOezY3nBnM9Cz1doNF9hTV5czC1SOtvRbCrMYDabYTQai1JcdDqQpYzZbEYymRy3XRJV6e+p1sUfa41Gk1XolT/mufBZztFolGUmu91u5s3OW45UopBOAwKJRIJllLtcLng8Hni9XsRisSkz0oPBIACwwYx8XuXFuDDyhT5VKlWWsJxbaJcEdF5IB04I5EajccKBDRqoAcDsWcLhMAYGBtiAAWWp8/YyVJA0mUzC7XZDkiQYjcZZTYWjIikul4sV/60laiUQlxsR3wWCqclkMuju7kZ3dzfsdjs2bNiAdDpdFUK63+/H66+/jqeffrrcTREIAIj4XipEfBdUElqtFqtWrcKqVauwd+9ePPnkk+VuUs2TTqdx5MgRHDlypNxNmVNcLhd27Ngx4fvBYBC7du0CcGIW3wc/+MGCtxWNRvHmm2/iiSeeqLnZ5EDtxPdpC+lvvvkmE3HeeOONCQXBShQKq4lcf3L+/4lep2OeuxxvdTHR+mcLiY7kh12q888XZiWxG3hvmhJ5o5PYybpdLAAA4whJREFUGY/Hx1mK8HYearWaTafj1zmVVQ2tnxfJo9EoXC4XUqkUPB4PfD4ftFotjEZjxVVtpkz0cDiMsbEx5os+OjrKfMwLyR7P1+cIPvObnwVAx5DOSe7ACH/eALCM8FyvdVoP2aLkeqjT92I6fZWfBUJ9jM9Cz/c9o8EUtVoNg8EAl8sFpVIJnU4HWZan3G4mk2HnxO/3w+Vywev1IhwOV6U/naDyEfFdIJgZiUQC77zzDp599llYrVYsX748q+hbJZBIJHDkyBH09PTg2LFjGB0dLXeTBAJBiRHxXZAPnU6HxYsXo7W1FStWrIDVai13k8pKJpPB8ePHsW3bNtTX12Px4sVob2+viu9FMBjEoUOHMDIygt27d7PkNoFAMLdMW0jfvn07+/uFF16Yi7bUPLwwl6+gIv+bFwP5z+UT9/Ktr1hQZrjJZGJFPksBX8iTtqtQKJBKpZhPNZ+ZT0I6P/hAmcVUiJWyjOk1ElD5dfHw2dH8336/H11dXTCZTLDb7bBYLNDr9cyTm9pfbsg6hKxxhoeHsXfvXhw+fBhjY2Pw+XyIRCIFi+j5PsfPutDpdJAkiQnONIBBXvvAezYrlO2dSqUQiUSYQJ5IJBCLxdj5yc2EJ496mmkw0/5JAjplHfL9aaL9jcfj6O/vx8jICOLxOJqamhAMBlFfX4+mpibWpyY6dul0Gi6XC729vfD5fDh69CiOHz+OZDJZ9T51M6VWRrTLjYjvAsHMCIVC+Nvf/oaXX34ZS5cuxebNm3HOOeeUu1lZhMNhPPHEE/jDH/6AYDCIoaGhcjdJIGCI+F4aRHwX5MNiseDGG2/E1VdfDYPBgMbGxnI3qaykUim8+uqrOHLkCBwOBz7zmc+gpaWl6IVX54Lh4WH86le/wssvv4xAICCs2wRlp1bi+4yvDslkEjqdDnv27BFVbYtMbhYvL4znyzbnRfTcz9HfE3Vk3hqGz7SdaeclQZqyuUspEPM+3CSe8gMFvJBOIizw3nHm7XL4fSDxNFdIz+eRTv/zgxzxeBzBYDCr6KRSqczKii63kM73jVgshlAohGAwCL/fD6/Xy4qCFns6Uq6FDnmc88VqDQZDlo0RcEJIJzEdOHHu6LV8g0vUFyijns94n0kf59ubmyE/Eel0mhUHpcKter0eRqMxqzBuPj9/Ko4aiUTg8/ng8/kQDAYRDoeLZo9TTdRKIK4URHwXCKZHKpXC4OAgBgcHoVAo4PV6kUgk2L1DJUBtfPvtt2vOFkxQ+Yj4XlpEfC8PZC85nfhASVn0zMo/r070jJ37DDRdNBoNWltbsWrVqrI/k1YKbrcbbrcbdrsdLperaq4zkUgE3d3d2L9//5xtg58xXiwK7bulgLQj/t5pqsRKvr/Mh8K1s6FW4vuMhXS1Wo2Ojg4mSgqKAy+AJ5NJ5v0ci8VY5jX/ZaYsWbIvAd7z606lUiwTlzyiM5kMTCYT9Ho90uk0HA4H4vE44vE48/YmEZUyX2dqI5HPQ7wcUN/kBxvo2JCNC1VGlySJZUdTRjp5pAPIGonOvYnJtdUh0T6TySAUCiGVSqGvrw+yLLPilolEApIksWKVQGmz0+niRJnc8XgcgUAAfr8f4XCYed7HYjHIsgwA4wLJdOEtWPR6PSvSabVaodFoYDKZYDKZoFKpYDQaIUlSlv84f1xSqRT7iUajrCJ5MBhEKpVCOBxGMBhEOp2G3+9nfZr6MfUJukGdLjT4wX+PpnOBp++z1+vFO++8g76+PjQ2NmJ0dJSdf51OlyXsR6NRBAIBxONx9PX1oaenB6FQCG63uyJvMkpFNQXUakfEd4Fg5rhcLvzf//0fjh49is7OTpx99tlZxawEAkF+RHwvHSK+l4ehoSE89thj2LNnD5YvX46zzjoLRqMx77L9/f3YsWMHhoaG8NprryEcDkOSJKxfvx6nnHJKXhE+nU5j7969+Pvf/45oNDrXuyOoUZYtW4YzzzwTJpOpaOus5L7b09ODRx55BC+//DJ7TZZlbNiwAatXr87SKI4dO4YdO3bA6/Wy13w+Hw4cOFDTMa4W9r2g+Sr/8R//gbvvvhu//e1vYbPZit2mmoQX0kkkBMDEbuCEqM5n3dLINi8S0shePB5HKpViGbkAYLVaYTQamZisVCoRi8WYeNfb24ujR4+y16YSHOkiwttplJKJsnrzeXrz/tq075IkQafTQaVSZVm78BYgExUZzSWdTjPP7lQqxYTpY8eOIRqNwmazQafTIZVKwWQyTem9PldQP6Ns6Wg0Cp/Px7LQlUol9Ho9EokE9Ho9FAoFE6ULma1AFjx2ux2yLMPpdGLBggXQ6XSw2WywWq1ZHvu5Fi18u6nt1KdpECCRSGBkZASDg4OIRqPM3ocGpBKJBDs3arWa7Qs/EDIRuf76080Kp++py+VCMBiESqVCQ0MD2traoNPp0NDQkCW0ZDIZ+Hw+DAwMIBKJYGhoCIODg2wQoxaCkaAyEPFdIJgZIyMj+MMf/gCNRoONGzdi2bJlQkgXCAQVh4jvpaevrw+/+c1voNVqcd1112HVqlUTCunHjh3D/fffj7179yIajSIcDsNiseCyyy7Dxz/+8bx1thKJBH75y19i3759FSdGCuYHCoUCJ598Mj73uc+hpaWlaOut5L7b1dWFn//851mDV3a7HV/60pewcuXKrNcPHjyI++67L6tYK9WgE8/v85uChPQf/ehHOHLkCJqbm9HR0QGDwZD1/htvvFGUxtUivL0DZdLyPySc82Ix/SYRnV+eMqUVCgV0Oh2zzSDRMh6PQ6FQIJFIwOv1Qq/XQ6lUIhqNTmmDwW+ftldK+OxgfqqNSqUad2x44ZSfmkPWMPQ3PzhA6yUmmlJHy/HFLFOpFBOhg8EgNBoNs06hAQyykaEM+bkS1Pn+QSIy2aLw4jBl5hsMBiQSCRgMBrY/0Wh02iIy7Qtl9suyzKxNKAtdlmUYjUYYjUY2kEHFaumY5xPSM5kMNBpN1sBFIpFAOByG0WhkGfXkm0/2NPx5oe/WRFO0+G3SsoUWXaUMeqVSiVAoBL/fj1gsxgZw6LwAgNfrZb70wWAQkUikoG3OJ2plalglIeK7QDAzaPAcAMbGxjA8PIy6ujoWT0sxWJ5IJBAMBrMSIDweD8Lh8JxvWyAoBBHfS4+I76UnmUzC5/NBoVBgbGwMIyMjrF5WLqOjo3C5XHC5XCzhqK6uDg6HAw6HI+/nEokEnE4nnE4ne9aYjihJcWtkZITNlJ2oXbVGJpNBMBjE6Oho1jGh41Qp9m2ERqOB1WpFfX191uvhcHhWYq5arYbRaIRWq0V9fT0cDgfsdnsxmgwgu+/yDgDJZJJZzJYL0sV4MpkMRkdHMTIyktXe0dFRjI2NweVylbiVlUutxPeChPRrrrmmyM0QANnFCkOhEDQaDXQ6HZRKJSuASdnqyWQyy+MbeM/ahTJxU6kUZFlGXV0dJElCU1MTnE4n8/5WqVSIx+OIxWJIJpOwWCwwGo0IBoM4cOAAIpEIEx8n6tTksR2JRABM7h1d7GPFW9jodDqYTKasjGYSQUkIJn86KnCp1WqZ2Et/A+/ZueQTdHPhBxv4opT0v8/nQywWg9frhVKpRE9PD6sGbjQaUVdXB5vNxtpQ7KImmcx7hVYTiQTL4KZjk0wmoVarYbFYmNVIe3s7vF4v6uvrEQ6Hcfz4cXR1dY2zSckHDQxotVo0NTWhrq4OZrMZbW1tMJlMMBqNsNlsrG9LkjTOhzzf8eYHOEhAp4GIdDoNSZJgs9kQj8fR2NgIj8eDYDCI7u5u+Hw+NqARj8fh9/vZzZHJZGIPErxNDw0weL1eeL1eRKNR1scLOQd0w0r9Y2RkBDqdLmu5aDTKMumFiH6CWgnElYSI7wJB4VBmUn19Pc4//3y8//3vZzZpc8nRo0fx17/+Fb29vey1aDSK3bt3CysHQUUi4nvpEfG9fGQyGbz11lv4wQ9+MG4Ag+jv78fAwAAUCgXWrVuHD3zgA3A6nTjttNMmFG9VKhXOOOMMfOlLX8Lo6Cieeuop7NixY8rncb/fj8cffxwHDx5EZ2cnNm3ahEWLFs16P+cD4XAYTz31FHp6erKeSU855RRcc801aGhoKGPrxuN0OnHzzTdnFTxPpVJ48cUX8fTTTxc8oN7e3s76xdKlS2E2m4vVZADZfZcf/Onr68Njjz2GgwcPFnV7syUcDuPJJ5/E8ePHx1m7CBE9m1qJ7wWpdv/5n/9Z7HYI/h8khEciEfab7Cg0Gg0TQHm/bxJ8+Yx0yiDW6/WwWq2QZRmNjY1oaWlhQjoJvySsUlawz+fDyMgIBgYGsryh80Gfj0QiUKlUJfVyJuuadDoNrVbLfLjJ95x8wHmvdN4DnZbls6eB8V7oU8Evmyu+h0IhVjQymUzCZDKhqakJSqUSFosFyWQSsiyzgZJiF/Kg8xOPxxEOh+FyuViGNGXuK5VKGAwGliWeSqXY7IRQKIR4PI7+/n62vskeyun4yrKM5uZmtLa2wmKxoLOzk/nE0/mZiIn2nz+HANi6AMBkMrGMe7vdjkAgAI/Hw2xdvF4vG0QIhUIs20OSJGZhQ9CsEBoRHxsbYwNOhUDfHSo8O9X5raYAIph/iPguEBTO8ePH0dvbC51OB1mWccEFF5RESO/v78df//pX7Nmzh71GsUzEFIFAAIj4Xm4OHz6Mrq6uCZ8DKPFGpVJhxYoV+PCHP8yeGSf6jFKpxOrVq7Fy5UoMDw+ju7sbr7zyypRtCYVCePHFF/Hyyy/jjDPOwBlnnCGE9P9HNBrFq6++itdffz3r9SuvvBLnnXdexQnpdXV1uPzyy7M0GHpuff755wsW0p1OJ66++mqceeaZk87gLhS+7/L3KXv27MHf//73ihPSJ+oXlVowVTD3zCr9dffu3Thw4AAUCgVOOukknHrqqcVqV03DC+KJRALRaJRlftODEWXxUsDlH5goI50XPXkbC/4HABNvtVotdDodYrEY8wmnoD4R1K5oNMqE/lLBe8LzPtsk1JJtC+8zzQ8+0H4XU7yeyA6HsuIVCgW8Xi+Gh4cRCoWgVCpZmy0WCwwGA3uNbpx4cT6fJzz95vsADTAkEgn4fD6Ew2HEYjG43W5mLUICMg0kkEhNGf56vR6ZTIYJztQfc6da8XY5er0eFouFDeBYLBaYTCY2C2C2vvCTfY7OKfVjg8GAuro6pNNpKJVKBINBZqlDdQfIF57aTzMZaHCJZjLQgNJMye1n+eyD6Jzx1jsiKJ+gVka0KxER3wWCmcPPlhsaGsK+ffuyinPp9Xo0NzdP6JE7Fel0GsPDwxgdHc2KEUeOHBln7aJSqdDU1ASHw5H1AOz1ejE4OFjw4LBAUAxEfC8fIr6Xh6meqXlo1u10bEToGYOsQqcLPWtMVROtmKRSKQwODsLlcuHQoUPMFq3SyPcc5vF4cODAAcTjcTgcDjQ0NJTE5iUYDLIaWna7HY2NjeNmsOcK3Xzi2VQoFAo4nU7U19dnrXfZsmUwm81Fny2fu+3cdhqNRixZsgRjY2Pw+XwVdb8ins+nR63E94K+GSMjI7jpppvwwgsvwGq1skJ5F1xwAf74xz+O82gSzAzeooU8lbVaLctKpyKZvFjMe6uTaEuFLfksbArKvC84fd5kMsFms0GlUjFRl4qWThT40+k0/H4/BgcHEY/H0dTUxIT+ufQF5TP30+k0K+BJWcoKhYJZl6RSKej1elY0k0TR3GNSzJFWyvbnC8KOjo4COOGl1dfXB61Wi9bWVnR0dECWZbS1taG+vh6SJKGurg6yLLMBglz7E4Iu6HQjRPsYCATg9/sRiUTQ29sLt9vNZg6k02k4nU60tbVBkiTIsswe9EnUJdufcDiM+vp62Gw2aLVaJi7n7isJ5R0dHVi0aBEMBgM6OjrgdDqh0WhgMBjm3AuejpHRaIROp2O+buFwGP39/dBoNOy4eDweACemNtLAC7UvmUyyfk+WLtTfZtIWANBqtTCZTNBoNMwnnrZFfYQsc6LRKLxeL/ubBs5qmVoJxJWEiO8CwexJJpN48cUX0dPTk+WxunTpUnziE5/AKaecUtB6o9EonnnmGfz1r39lA8LAicLWNHOM0Ov1uOqqq3DllVdmPQjv3LkTv/zlL9HT01NQGwSCYiDie+kR8V1QboLBIB5//HE89dRT8Hg8OHz4cLmbNG3efvtt/M///A+sViuuueYa3HTTTQUPis+Ew4cP4xe/+AW6u7uxceNG3HLLLbBarUVbv0ajwYUXXogbb7wxawad1WpFR0dH0bYzXVpaWvCJT3wCmzZtwo4dO/DrX/963P2NoLKplfhekJD+2c9+Fn6/H2+//TZWrFgBAHjnnXfw0Y9+FHfeeSf+8Ic/FLWRtQbv0UyCeDKZZEUZKWs11wqEL45I3uGJRCIrGz03Mx04IYRmMhlotVrIssyEeyrqOJnwSW0MBoOQZZm1DZg8e7gYx4j2jzKoSaAkmxReSM9kMswih7K2eIub3Czh2cAXKqUseBJHE4kE/H4/XC4X1Go1e40y0QFAlmWWIc5bvpDAzbeRz8onr/pkMgmv1wuXy4VQKITjx49jeHg4qwCtSqWCw+Fg2yOLFDq2yWSSib5k+0LHLBc67hqNBhaLBc3NzTAYDGx0m8TzuewP/PnTarXsR61Ws9kIQ0NDUKlUCIfDzIM8Go2yAQq+DgHN6JjNyDMJ+5TRbzabYbFY2GwPmsERDoeZh3o0GmXCeqWMvpeTWgnElYSI7wLB7MlkMuju7kZ3d3fW6263G9dee23B600mkzh8+DCee+65KQvKaTQaLFu2DJdcckmWmB+Px0vy8C8QTEY54vt9992H733vexgcHMTKlStx77334txzz53yc6+88grOO+88rFq1Kss+qdoQ8b16mK/3sIlEAgcPHsTWrVtLmglfDEZHRzE6OgqtVosVK1aUrP1utxuvvfYa9u3bh46OjqxB9GKgUqnQ2dmJiy66qCLuDUwmE0477TQAQCAQKIk9nqC41Ep8L0hIf+aZZ/Dcc8+xIAwAJ510En7yk5/g0ksvLWSVggngp1yRSEqCMInhJG6SSMpnDQeDQQQCAQBgojzwnpc3dXR+OjJZWfAi9ERkMhlEo1EEAgHodDoEg0Ho9Xpmr1FsPy1qVzKZZJ7TJHSSKE6ZV/SbxFUafNBqtex1/vdcQAMXudnkdJypOIVOp0M8Hsfo6ChkWYbT6YTBYGCZ1SRU51ZUJwE9k8kgEomwKtculwtutxvhcBi9vb3weDzM9kStVjPxljLQeYsY+k3CO/3keq2SOK7X69HQ0ABZltHQ0ACbzQZZllkmfbkgGx+FQgGTyYTm5maYTCZWcJT6OfVxGnTiByemupjzszqsVivMZjO0Wi2rS0DFfsnDX6/Xs+XJRodE+0gkAp/Ph3g8jmAwyP72er3Mq56K187XG2xB+RHxXSCYO7xeL15++WV4vd6CPh8KhXDw4MEZ2+gFAgHs27cPw8PD+Mc//lGx0+krHaPRiFWrVqGpqamgz6fTaRw5cgSHDh2qOhGp2nnkkUfwuc99Dvfddx/OPvts/PznP8fGjRvxzjvvoL29fcLP+Xw+fOQjH8FFF12E4eHhEra4+Ij4Xh3QQOxTTz0Fp9OJ5cuXo7Ozs+jP1ITb7cYLL7yA0dFRtLW1YeXKlUK8nIR0Oo3Dhw/jiSeemFJ4VqlUWLJkCZYuXZqVjOZyubB//3643e4pt7d3796C7xmqnZaWFlx22WVYuXLlnMROSjhYtGhRUb9f0WgU77zzDo4fP160dQomplzxvSAhnWwxcqEMZkFxIHGPMszj8TgT7shDm88s5zNoKQvXaDTC6XQiGo3C6XRm+Z9TxjQJh7FYDOFwGKFQiFlLUMb3RKTTaQQCAUQiEQAnpg0CJx426uvrix704/E4ExW9Xi/cbjfz5iaRWKvVMkGUzwrXaDTsOJKvOmV4z9XNCTDe5oUyx6mo59GjR5mdDtmSOJ1OyLLMvMZpYIJsawjeziUUCsHr9SIej8PtdsPj8SAWizGPdKPRiMbGRuj1etjtdsTjcWYZROeYH1ShAQt+YIWfbUB9r66ujvmoLViwAO3t7VnnoVyQ5Uwmk2EWM5SBHgwGEYlE4PF42KAT7/0+3esYWe9IkoTly5ezqubLly9ngwtWq5V9X6m/5drzANnFc10uF0ZGRhAOh7F//350d3fD4/Hg0KFD7LtdC9dakZFeekR8Fwjmjt7eXvziF7+AXq8v6PPpdBput3vGD5LDw8N48MEH8cILLyAUCjGrOcHMcDgc7KGrEOLxOB588EEcP34cwWCwyK2rLkod37///e/j4x//OD7xiU8AAO699148++yz+OlPf4pvf/vbE37u05/+NG6++WaoVCo8/vjjBbW3UhDxvTpIp9PYuXMnjhw5ApvNhn/+539GR0fHnD2r9vT04P7774der8cVV1yBzZs3CyF9ElKpFF566SW8/fbbU54TWZZx6623oqOjIyvuHz9+HPfdd9+0MmDD4XDNxuxVq1bhX//1XxEIBOYkdsqyjMsvvxy33HILS7QsBiMjI7j33nvR29tbk9fWWonvBQnpF154Ie666y784Q9/QHNzMwCgv78fn//85wu+uRTkJzdbmOwiSJjls5zzFS2Mx+OIRqPQarXMMoJE5lxv9VzRdDpZubwQT9uKRCKsOCWfFT7b4wCAZc3HYrGsIqfAe1n2vJUIL2Kr1WomrufzGy+F6Evb4C14qABmIpFAKBRi9j16vR4Gg4GdP51ONy7Lm3ziybKGvNC9Xi88Hg/zS49Go0in07BYLMz/nD/PqVQKCoUiS9TlM9Hz9QU6jpIkwWg0wmw2s4GAufZDnw789jUaDUwmE7RaLYxGIyukSt8BYGYXbr5Iq06nY4J5fX096urq0N7ejqamJsiyzOxc6HMTwRcZNRqNkGUZwWAQIyMjLHuQbHhIdJ9NoKoGhJBeekR8Fwjmjlgshr6+vpJsi2zaaNZgT08P3n333ZJsez6Qr3if2WxGW1sbli5dWtA6Y7EYmpqaoNfrswZD+ASYWqEY8T13ZoUkSVlWhUQ8Hsfu3bvx5S9/Oev1Sy+9FK+++uqE2/nNb36Drq4u/Pa3v8U3v/nNgtpaSYj4Xj34fD74fD54PB54PJ5Jvyv0TBmLxWY8Wwk4kT3b29sLhUKB/v5+BINBxGKxaRc7nQ7URn52fLWSyWTYeZkKvV6PoaEhRCKRLNHd5/Ph+PHjM4rJ0zkXpAFRMuRk/Ya0EapzVokYjUYYjUZEo1E0NjZCluWsGeWFQvFdr9ejsbERS5cuLaqQbjKZ4HA4oNPpspIVKdbPd2olvhf0rfnxj3+Mq6++GgsWLEBbWxsUCgWOHz+Ok08+GQ8//HBBDRFMTT5RnRcLeZsW+tL6/X709vbCaDTCYrGw7Fmr1QpJkpgAnkql0NPTg6NHjyIQCGB0dJQF5Km+CLTNSCSCvr4++Hw+OJ1OqNVqZvFBI9uFCKv8zcHw8DD6+/tZIUzKxtbpdOyiSKIwLwRTAM9nUTKX8EI+/1rueUulUszig/ZVo9EwAZ2KopJ9DcFnMUejUXY8aECDF1xjsRjLwKbjaDQaWZY+tSWdTsPr9aKvrw+hUAjDw8Pwer2IRCJsOY1GA6vVCp1Oh8bGRrS0tMBiscBsNo8boKgE6EaBvOEXLVqEQCCAWCyGYDDIzsF0+oUsy7Db7dDpdGhra8Py5cthNBrR3t6OtrY2yLKMxsZGVul8JhkkNPhjMBhQX18Ps9mMTCaD9vZ2+Hw+dHR0wOv1or+/H4cOHWLfgam8cqsVIaSXHhHfBYL5QTQaxYsvvohoNAqXy4Vjx46Vu0lVg0KhwMqVK/G+970va+p+fX09Fi1aVPB61Wo11q1bhzvuuCMrbg8MDGD79u3o7e2dVburiWLE97a2tqzX//M//xNf/epXxy0/NjaGVCqFhoaGrNcbGhowNDSUdxuHDx/Gl7/8Zbz88ssVKzLNFBHf5x/pdBpvvvkmXnnlFYyOjmLv3r2z+l4dPHgQv/71r+F0OnH66afjjDPOmHX/T6fT2LNnD2vjnj17aiZLN5FIYOfOnfjJT36SJdQeP34cg4ODRd/esWPHsH37dgwNDeH111+ftN7WkiVLcP7558PpdOKss84qqpBcbNRqNdavX4877rgDIyMjePnll7F///6C1sXHd4fDgdNOO61oA0aE0WjEJZdcApvNlqXdHThwAC+++CJ8Pl9Rt1dp1Ep8L+iTbW1teOONN/Dcc8/hwIEDyGQyOOmkk3DxxRcX3BDB1PBZ2dMdhfP5fEilUpBlGUajERqNBrIso76+HkajEYlEghW8PHr0KA4ePIhgMIixsTFEo9FpfQlomXA4jJ6eHmg0GkQiERgMBphMJtTV1UGSpIKmpFFGFdm5DA4O4uDBg8yWRKPRQJIkmEymLP93pVLJxHNaB29PwgfwubR14eFtePINgJAgqlAo2AWWX26iDO/cARb+h14DwCxfNBoNzGYzG2Ch4wK8N6vB7Xajp6cHgUAAg4ODzCaGllOr1bDZbKy4aGtrKywWS1b2QiWJ6VT0M5PJMG9Tv9/PCsfMZIBFlmW0trairq4O69evxyWXXMJseQwGA5s1ku9cTwZ/nmldmUwGzc3NSKfTCIVCOPnkkxEIBPDGG28gEAhgbGxM+KYLioqI7wLB/CAajeK5557DSy+9xAbbBdNDoVBgzZo1+OxnP5v1cEb3EoWiUqlwxhlnYM2aNVkxe/fu3Thy5EhNCenFoLe3F2azmf2fL1uNJ/dejJKSckmlUrj55pvxta99reDZB5WIiO/zj1QqhX/84x+499574XK5WFJWobz99tvo6uqCyWTCXXfdhdNOO60oQvru3bvxgx/8oChtrCYSiQReffVV7N69O681a7E5cuQIfvGLXzCtZDIhffny5bj99tvR2dkJSZIqXkg/44wzcOqpp6K/v58VTS7k2ZeP742NjSwZs5gYjUZcfvnluOSSS7La+Oijj2LPnj3zXkgvBtUQ3wu+Mm7btg3PP/88RkZG2Ejj73//ewDAr3/961k1SlA8aAqJUqlkBQzJJz2RSDAhnQoZknd0IVNMaVtUODEcDgM40fGp8Chl6E4mLpIITKI3FdGkIozUPkKlUmWJ5GR9wwvpiUSCFfik/aq0IF6IxchMoGMCnHjA9vv9zEJGo9Ewa5d0Og2fzwe/38/88kloBsCEYp1OB71eD51OB41GwzLmaZlKgm+PRqOBXq9HIpFgNw70XZjs81qtFiqVCiaTCfX19bDZbGwwwWw25/WwL7Sd/DromGYyGWbNY7PZUF9fD+DEeaXisdPNqq8WREZ6eRDxXSCofvgBesH00Gq1bPam0+mE1WqFxWIp+jZyBQubzYaGhga0tLSw19LpNILBIJs1N98oRnw3m81ZD9oT4XA4oFKpxmWnjYyMjMtiA04U5921axfefPNN/Mu//AuA9xJN1Go1tmzZggsvvLCgtpcbEd+rC3omGxgYyCtoJ5NJjIyMwOfzIRAIzHp79DyUTqcxMjKC/v5+mEwmmM3mafmmJ5NJ+P1+pgEAJ4SrYrax2iA72mIQCoUwODjIZojnMjQ0BLfbPWFBcY1GA4vFAkmS0NDQgLq6umldQysBsvbw+/15az1MRb74Plf7rlAoIMvyuO+Mw+FAU1MTEomEiO+TfBaojvhekJD+ta99DV//+texbt06NDU1VZxoJniPZDKJcDiMeDyOrq4ujI2NQZIkJvzxtikejwculwuJRCIrAE4XEqxTqRRGR0eRTqchSRIcDgccDge0Wi2sViuMRiPz1uazdvnM8UQiAZ/Px0T0oaEhRKNReL1e+P1+5pVOxR7VajXzcyPRntaTSqXYYAGArMxjyk6fq6x0XqzP9Rovtb81f36Gh4eRTCYhSRK6u7thtVpZGzOZDLP3iUaj8Pl8rEArDYIYDAa0traisbER9fX1kGV5xjYmpYauU2TNotVq0dDQALfbjUgkgpGREVY0NxdJkrBgwQI4nU60tLTgvPPOQ1NTE/NEp0K3c4lWq4Xdbmf2OUajEX6/H6+//jp27tyJSCTCCsvOF4SQXnpEfBcIBLXKwoULcf3116OzsxNLliyByWQqyXZbW1vxiU98AldccQV7LRaL4ZlnnsGzzz5bNBGmkihlfNdqtTjttNOwdetWbNq0ib2+detWXH311eOWN5vN2LdvX9Zr9913H55//nk8+uijWLhwYUHtLjcivlcfkUgETz/9NLq7u/M+Y5FdRLHv/WOxGLZt24bR0VE0NTXh2muvxemnnz7l58bGxvDoo4/ijTfeyGrjwYMH59XzSTlIp9P4xz/+ge985zsTzozq6+vD2NjYhOtobm7G9ddfjxUrVmDhwoWw2Wxz1dyKo1zxnWf16tXYvHkzXC6XiO+TfHYmlDO+F6T8/OxnP8MDDzyAW265pZCPC0oIZanS9J6hoSGoVCrIsgytVsveo2zyeDw+q45P26PsdpVKhUAggFAoBJ1OxzKbNRoNG/kB3hPSadQ2FotheHgYfr+f+XVTJjpllScSCajVauaRnkql2D4pFIosIT0SibCinhqNJqvIZCnIzX4vR5FI/vzQaDVlWJMHKJ+x7vP5WFYCtZ986HU6HRwOB5qbm1kxTZVKVRU35TSFS6lUwmq1wmazwe/3w+12T/gZjUaDpqYmLFq0CJ2dnTjjjDOYvyQ/GDSXqNVqNjJrNBrR1NSEUCiEYDCIrq4u+P3+rJkg8wEhpJceEd8FAkGt0tjYiCuvvBLr1q0racF0h8OBjRs3ZsWtUCiEoaEhbNu2TTxo5/nsTNm8eTNuueUWrFu3DmeeeSbuv/9+9PT04PbbbwcA3H333ejv78dDDz0EpVKJVatWZX3e6XRCp9ONe72aEPG9+ojH4/jHP/6BXbt2TbjMXDxTJpNJvPXWW9i7dy86Oztx6qmnTktI9/l82LZtG/73f/93zttYa9CAxKFDh6ac1T8Rdrsd73//+3HBBReUNMZVAuWK7zydnZ1YuHAhSxIV8T3/Z2dKueJ7QUJ6PB7HWWedVchHBTnkemXzv4sNZV+TyAwgy/6kmEU4+W1RQcdEIsEy3qkQKXlSkRhJwnc8Hs+ycNFqtSwjWqlUZrWTCnTyn6d9TCaTrKBqIpFgAioJ9+SfxGdbzyW5HubluqngfeLpWNNxyGQyrAAt30aFQgG1Wg2tVsumV5GtSyUWGJ0MlUrF7GnIJz5fRjntp9VqRXNzM9rb29HQ0MBmPRCl2nfaDg0I6XQ6VvzM6/UiGo1mFU8VCGaKiO8CgaCWkCQJbW1tsNvtOOmkk2Aymcoyuy73wV6j0aCtrQ3r16+H1+tFb28vXC5Xyds1X7jxxhvhcrnw9a9/HYODg1i1ahWeeuopdHR0AAAGBwfR09NT5lbOLSK+Vyflel6k7YbDYRw+fBivv/76lM87x48fx9jYWMXZp84nZtsf+CSwakSSJCxatAgbNmxAIBBgNd0mWrYS4juPQqEQ8b3IlCu+KzIFfBP/7d/+DUajEV/5yleK3qBy4Pf7i+6BOB14z3DgvazlmRQTnSkUACl7eC6FXdoWFQVVKpWQJIn9zXtqkxDLF2mkNpIQThnrlEFPWeb08EGfV6vVUCgUWb7etH61Wg2DwQC1Wg1JkpiYT0GlmIIoidXpdJpZ7FBxERpYoFkA5YA/ZjSgwfvH5wrpSqUSdXV1MJlMaGxsxAUXXICOjg5otVro9fqiF+qYK2ifotEourq6MDAwgOHhYezatQvDw8PsfaVSicbGRjQ2NsLpdOKaa67BunXrIMsyHA4HK3pRjgEEvl/19fWht7cXIyMj+Mtf/oKdO3cimUwiEolUvJju8/ny+p/RNflDH/pQwcVv4vE4fve73024DUF+RHwXCAS1RFNTEz71qU/hwgsvhNVqRWdnJ5ulV07S6TR6e3vR29uLgYEB3H///di2bVu5mzVtRHyvPER8FxSCTqdj9pZTEQ6HcezYMSEKVihr167F9773vaqt8QCcuP53d3djeHgY+/fvx89+9jPs3bs377Iivs8NIr6fYNoZ6Zs3b2Z/p9Np3H///Xjuuedw8sknjzP8//73v1+8Fs5zlEolsxkhYXsuR3FJFKWM9LmEtpVbZIME3NzCo0qlkhVhUqlUMBgM0Gq1UCqVzAuMRN9UKsVEaBIUKQOeF4XpNSqGCbw3YMEPHsyVGMqL6bRtPvu/nNPcaPtk6zMVdBx1Ol3WT7VYuhB8f9PpdDCZTAgGg2wAhs/Al2UZFosFDocDLS0tWLhw4ZwMuswUmpmhVCrhdDqh1+thNpths9lY4KqmczIRwtqlNIj4LhAIahW9Xo8VK1bgfe97X7mbkoVSqURHRwc6OjrQ3d2Nxx9/vNxNKioivpcGEd8FsyUajeLgwYM4ePBguZsiEECr1WLp0qVYunQpNBrNpGJrNcT348eP4/HHH8/SIKqdWonv0xbS33zzzaz/16xZAwDYv39/1uvzQbyZa/jsaFmWmV84iavRaLTsQiuf5c1bzxQjcz1XuJYkCUajEWq1GkajEXq9Hmq1Gnq9nt3kkVgbj8eZ7QhVBY/H4/D7/axoKlnV8O2kDGulUsmWIUGe4C1jZtOPc7fJZw/TbAN6vZouFgqFApIkwWAwsH5LAxvV+L2nGRK0P1QwlL6LGo0GLS0tWLt2LRwOB+x2e8X5ydHghizLMJvNWLBgAU4++WR4PB4cPnx4wqrtAgGPiO8CgaCWUKvVWL58OVauXImmpiY2/VcgmG+I+C6YazQaDVauXInly5dP2Y/i8Tj27duHw4cPV9UzsKB6qLb4bjAYcNZZZ0GpVGJ4eBhvvvmmmNFRJUxbSN++fftctqOmIPFRq9XCbDZDp9NlFYIkwZjPnC41lClPGd5kscL7qRcjc16hUMBoNKKxsZH5PdtsNlbQkoR0EjDJA52E9GAwiFAohJ6eHvh8PsRiMfj9/iyBnI4tCfiJRIJlFdMgBu0f7fts4TPQ+WKu9ENifjV5yCmVShgMBthsNlitViamV+vNt1KphF6vRyaTQTAYhCzLkCSJ9W2dTocVK1bg/e9/P7OzKVVh0ZlAdkkKhQJr166FxWLBsWPHWLHeaqZWRrTLjYjvAoGgltBqtbjkkkvwyU9+EiaTCVartdxNqjlEfC8NIr4L5hpZlrFx40Z87GMfm9LOwe1244c//CG6uroq3n5SUJ1UW3y3Wq246aabcOWVV2Lnzp341re+VfVCeq3E94KKjQpmDwm55OlNwYS3jSjHFA/edoX8yuk3tTHXGqVQaECBss9lWYbBYGDZ6eStzmcB8wI0L0LrdDpEo1E2EJF77PgMdfosv47cQpOFZKbzmej0Py+o5/6U29qlEMjbnnzuy12wYzbwnvp8f6eZCVqtFkajETabDUajEZIkVZSADmTb1Gg0GmZD43a7odVqq36aWK0EYoFAIBCUDqVSCavVio6ODuj1+nI3Z0poBh0VR+eTbaoVEd8FguqGntVNJhMaGhqwYMGCKYV0k8kEu93OrmUEXdfEd1swW6otvqvVajgcDjgcDhw/fpzVYKtmaiW+CyG9DJDASqIwWX6UW2Qlz2uyWDEYDFmiejKZRCwWQzKZRCgUQiAQYBnX0/VcJyGSss/pd0tLC/Or1uv1WYVYefGSRMN0Og2TycQKXaZSKdTV1cHj8SCVSiEajWYV8uSPeSKRYMeW9o1fP198dDr+6fkEdDqflIFONwj0d7Ey+ksJeYobjUbIslzVIjrBD9hoNBomnlNR1ZaWFjZrJNdLstLQaDRsZkcikYDD4YDH40EsFkMkEqmqwETUSiAWCAQCgWAizGYzrrjiCixYsADd3d3YunUr+vv7y92sWSHiu0BQvSgUCqxatQoXXXQR6uvrsX79+qzn6YmQZRkXX3wx6urqsp6bDx48iOeee67qM3EFAkHtxHchpJcBPiuaxHReSCcbklKK6eR/bbFYoNFo4HQ6UVdXxyxolEolEokEIpEIkskkRkdHkclkkEgkmOXLTLZFAjqNYre2tkKSpHHCdr7PkoBLomc8HodGo0EkEsHQ0BC8Xi8Tv0k0px8S0qkIKS/W817farUa6XR6St/0fOeHtsEXRCUhnfzdq80fHTix/1qtNssjvdIytGcCnXMS0OnHZrNh8eLFsFgsaGlpgcViKbjydCnRaDRobm5GQ0MDwuEw6uvrMTIygmAwyOoHCAQCgUAgqC4sFguuuOIKbNy4ETt27MC+ffuqXkgXCATVi0KhwCmnnILPfOYzaGpqYnWzpkKv1+Piiy/G+eefz15Lp9N48sknsXv3biGkCwSCqkEI6WWAtxhJJpNM2CVxdToiK1k6UDYtWTuQyEyjvIlEArFYjAn0+cQ0EpI1Gg10Oh0kSYIsy9DpdExo5C0vkskky15XKpWIRqPTtpAg+wzall6vzxLQqf3TyXYmMZzamEqloNVqodPp2HHNd+zpc/zxSCaTTFTnl+GzxvO1iX8/t6gof8zzzTiYLiRW80Vf+d+lJLcAbbWTW1RXqVSy2gUWiwU6na6q9pe+yzRTw2g0spoA1UitjGgLBAKBQDARlOwCgN2bVzsivgtqFYVCAavVCrPZPOH9eSAQgNfrnVESjFKpZDNqJ8Ln88Hr9Rb8HdLpdLDZbJBlGU1NTTCbzTO2z6DEJR5JkubFTOdKRKVSwWq1spnWsiyXu0lzAtVxM5vNsFqtVfnsq9Pp0NzcjAULFiAYDDKnhWqjVuK7ENLLAGVGAycCZTgczsqapoKeE3Uksj1Rq9Vob29HW1sbdDodGhoaYLFYmAVLKpXC4OAgjh07hkgkArfbDa/Xm7UulUoFSZKgUqlgs9nQ3NwMnU6XFeApU5vPtCbxOhKJZBXUnEwkJmsQSZJgtVpZYVGj0QitVptlqTITVCoVDAYDJElCIpFAY2MjgsEgFAoFQqFQVrY8HV+++KhKpWLtpocV3h+eLsSTCen8TALKQE+n04hGo+xckC3OTC4udJx5sZdmAvAzF0oFtUetVldlgMqF+htfC8Bms2HZsmVwOBxwOp1VdWNHA0FGoxGdnZ1QKpU4duwY3G73jGaNVBLVFFAFAoFAIBBMDxHfBbWIJEm45JJLcPnll+ed8ZpKpfDCCy/g0Ucfhc/nm/Z6jUYjrrrqKlx44YV5B9sSiQSefvpp/O1vf0MkEimo7QsWLMCHPvQhLF68GJ2dnZOK9oLKwGg04pprrsH555+P+vp6dHZ2lrtJc8KaNWtw4403orGxEStWrKiK2eS5LFy4EJ/5zGcwNjaGF198EX/+85/h8XjK3ayCqIX4LoT0MkAdiwTdid6fCBL9tFotnE4nFi9eDJPJhMWLF8PpdCKRSCAUCiGRSODQoUPMzzwSicDn82Wtn7LDNRoN9Ho9bDYbdDodG2HmBdx8tjPhcBgul2tcJnw+KFOWioparVZYrVZotVqWDT4T+G1KksSsXqxWKzQaDQKBwLjCoySk8+I4ieW8iE8Z8iSu5/NL5wdEKBOdftPAAtm50OsztcDJ9YqnfeE91ktp/0MDD7ne9dVMbka60WhES0sL6uvrYbFYqmY/+ZkLNLCWTCbh9XqrNnutVka0BQKBQCCoJUR8F9QqarUaq1evxvXXX583mzuVSiEUCuHJJ5+ckZCu0+mwbt063HTTTVCrx0s8kUgEAwMDeOqppwoW0hsaGnDZZZdh/fr1BX1eUHp0Oh3Wr1+Pf/qnf6ra58GpUCgUaG9vx1VXXYWOjo5yN6dg6uvrcemll7JkzCeffLIqhfRaie9CSK8gpttxDAYD6uvrYTAY0NHRgY6ODhgMBjgcDpaRTvYmoVAIwWAQPp8PyWQSwWCQCb2pVIr5hJNPNGUb88ItL9BRoU/KTKbl1Wo1szCZaD/IPoZEb/pcsS7q1FZJkpBKpbIsaXIz5XnP9Ewmw8RhXiDms9Rp33OFdFqGvO4pW5z3SJ/KE53WrdPpWGY+2d2o1eqs6W60L5T1Tpnu6XQasVgM0WiUDXhMNaiRuy/873zwlkTV6PE+EbwHPg0s6fV6GAwGaLXaqhHSeahgsNlshizLVbkPAkEto1Kp0NbWhtbW1iljZDKZxPHjx9Hf3z9vrssCwVzgdDqxcOFC1NXVoaOjY96KCgKBoPJoaGhg158FCxZMeP1RKBRobm7GmWeeiZGRkUnjOy3b0dEBp9OJlpaWCRPTxLPA3GIymdDZ2Qmr1Trlsj6fD0ePHoXf75/zdsXjcRw+fBgvvfQSzGYzFi1aNK02CgSCyRFCepmZ6UOvQqFAU1MTzjzzTFitVpx88slYtWoVy/TWaDRZYmdrayuWL1+OQCCALVu2IBqNIhKJYGxsDKFQCCqVivmd6/V6yLLMRNzcQMyLyeTBDIDZtSQSCZaVnQ+lUglZlmGxWGAymdi2ZvsgQ+IycGK6nMlkYmIoTevJl/3P27ukUinE43HmkU37zx8H3uYFyM5IJyE9NyOdstAnGplTqVRsUKKpqQkOhwM6nQ5OpxN6vX6ckE7Q/kSjUXg8HkSjUbhcLvT39zNBPRqN5j1elFVO2QokivMDCxNBx4n2qdrhB0PouOj1ejidTjQ2NjKP9GpDkiQ0NjZCq9Wip6cnb2ZKNVArI9oCQS6SJOH9738/br75ZuaNPBF+vx+//vWv8eijj+atDSIQCE5w6qmn4o477kBLSwsrkCcoDyK+C2oJhUKBtWvX4jOf+Qyam5snvf4olUqcccYZaG1thcvlmjS+q1QqnHvuubjtttvgcDgmFdIFc0tLSws+/elP47TTTpty2bfeegs/+tGPsH///jlvVyAQwF/+8he8+OKLOOmkk/DZz34W69atm/PtCmqXWonv1amu1Dh6vR6NjY0sYDY3N2dlkROZTAayLMNkMiEQCMDhcMBoNAIAE695v3USV/min7nw9h6UyU6fmaoYAp/9Tp/JFacLhRe7aTCBMtInWj8Jx/z7lJXOr5O3dsn9PF8gNpFIZGWk837sE8HbtxgMBlgsFuj1ejQ0NMBoNLKs/9zBBso4D4fDUKlUiEajSCQSGBsbY23JVwA2d3YBn30/Hfis9Gq60E0Eb1PEF92VZRmyLFetAE0DAvF4vGoHA4DaCcQCAQ/NjGlra8O6deumLAzl8Xjw1FNPVe33XCAoBQqFAjabDaecckpVT/2eL4j4Lqg1HA4H1qxZg7a2timXra+vR319PTweD5555hn2nJ37vKZQKNDQ0IA1a9bAbrdX7X0AX7Oq1PW/CiF3ZjcAmM1mrFixAqeffvqUn08mkzCbzeP0lrnY92Qyie7ubnR3dyOdTpckC15Q29RKfK9OlagGIYFPpVLBYrGgubmZeThPJhaTTUgikUB9fT3a2trg8Xjg8Xjg9/uZmEzBeTq2HfQZ3kJkusIqica8z3axg37uuqfy8yZhmL9BSSaTWQUoc21u+M/xn+eP50QXET7T3Wazob6+HpIkoaGhATabDZIkQa/Xs/M90aAGZc9bLBbodDoAJyw9otEoRkdHMTo6imQyiUgkwoR1uknRarVMYOXPP4n/Ex2neDyOcDgMnU437pxX280bnSuy36EBonyFZqsNlUoFWZaRSCSq1p5GIKhFFi9ejNNOOw02mw0nn3xy1Q7mCQQCgUAgmB2SJGH9+vX4yEc+gtHR/5+99w6Tozrz/b+dc5qcNKMZZSEECkYkE0wULCbINvZ6wQkWLtjG5rfrXW94lg0X1ru+rGxjGYMxBvsCWi/GIoNkgzBIgHLWjEaTQ0/nUJ2qurt+f+ieQ/Vo8vTMdE+/n+epR5rq6lOnqqvr7fqe93xfL/bu3Yve3l7+ejabxfHjx/H888+jsrISa9aswbJly4rud39jYyNuvfVWDAwM4NixYzh06FDBzrBTq9VYuXIlzj///JxZBS0tLaitrZ1QG1VVVbjxxhuxbNkyvk6SJBw+fBjHjh0bNzmRIIi5h57QigRmwaIsMFpdXQ273Z5TLFOJUnxXq9Wor6/H8uXL4Xa70dvbi6GhoRx/byaojmfvwWC2JcOF2NFQZl+PlEGfD5Ri6GTEejYYoFKpeDFSZfFR5f8Zymxmpag+3igc+yx1Oh0aGxtxzjnnwGg0wmq1cj/r4X7tI7UBgF8TsiyjsrISTU1NSKVSaG9vh0ajQTweh8/n40I6G8Rg+2NCOvss2ec5Uv9Z4YtoNAqDwcDtXYrtx5oSSZKQSqUgSVJO4V02awIovgEC4BOPdLVaDbPZXLTTPEtlRJsggDP3mvPPPx9/9Vd/hYaGBj4riSAIYr5B8Z0gxsdkMmHjxo247LLL0NbWhv/9v/93jpCeyWSwa9cuHDlyBFVVVXjwwQexZMmSoqv/sGLFCnznO99BPB7HL37xC7S2thaskK7VavHpT38a3/rWt+BwOPh6vV4Pu90+oTYaGxvxl3/5lxBFka+LRqP46U9/itbWVhLSiaKmVOI7CelFBBNXmW828zIfSygeKQvZaDTyAKv0Ux+ema4swsi2BXDWthMR0YsF9sVXHjM7v6OJy8rzMtGsfFZw1WKxwGq1wmg0wmQyTTp7WGk7o7TbMZvN3MNep9ONWDiWDToobU3GQym4j3SNFBMjzURgFOPxKGHXxVgzGoqBUgnEBMEwmUyorq5GTU3NXHeFIIgCRGkFKIoikslkUcY7iu8EMT4qlQp2ux12ux3BYJDPQFYSi8UQi8WQzWYRi8XOel2SJCSTScTj8YK9X2i1Wm5jx55bCw3WR5PJhIqKCtTV1eUI6ZNBr9ejoqIiZ100GkVlZSWcTif/rAp1MIEgxqJU4jsJ6UWCUghV2pVMJNAM98VWCmuZTIZbf4TDYYRCIRgMBm51oczEVnp+R6NRBAIBHphZcc3xLGHS6TRSqRRSqRQXY/Np78LsR1j7yoGBybYDgPcPOFtcZdsM/3c02HE6nU4sXrwYVqsVNTU1vCjqdLMHWPs6nQ7V1dXQ6XSIRqM550H5L/u/Uhwf68aXzWaRSCQQDAah1+t5gFcWLi0m2PGEQiFEIpGca4ZRiD/kJgr7rpOQThAEQRDzg8bGRnzta1/Dddddh7179+Ltt98uSs9biu8EMTu0trbijTfewODgIPbt24dUKjXXXTqLkydP4s0334Tb7cbevXsLso9Lly7Fxo0bUVtbi3Xr1o04qDEdDAYDLr/8clgsFrjdbrzxxhuzUoyUIPJNqcT34lVYSpDhYvpkRb6RLEOYkB6PxyEIAsLhMCKRCBKJBFKpFERR5OIiG9Fm9h6hUAihUIgL6azA5ljFPdPpNJLJJBfR853JrhSGmff1RK1qRuvz8Iz9kTL3J5qJrtFoYLPZ0NLSguXLl6Ourg5msxkGg2FantzsfUzUrqysxOLFi9HS0oKKigpYLBYe8Fn/lQK6Umwf61ww4TkajfLPcTrndy5hQnokEkEsFkMqlcr5PItZRFdmpM9EHYL5zJYtW9Dc3Ayj0Yh169bhT3/605jb79y5k/+gbmlpweOPP37WNi+++CJWrlwJg8GAlStX4qWXXsp5/b333sNNN92Euro6qFQq/P73vz+rDVmW8dBDD6Gurg4mkwlXXHEFjh07Nq1jJQiCIIqL+vp6fPGLX8S3v/1tXH311bBarXPdJYIgCpj29nY888wz2LJlCz744IMcO5FCoaOjA8888wwee+wxfPDBBwUppLe0tOCOO+7AN7/5TVx66aUwGAx5bV+v1+OSSy7B/fffj69+9atYvHhxXtsnCCK/FF8aaYmiLGIpSRLi8TgSiQR0Ot2Y9hpKITiVSkEQBMTjcZ51q/T3Zu1ms1kYjUbuY87EWeYnzcT3ZDKJVCrFrUGUfVCKy0qxnAm4kiTlZP9OJ2tWKf6y8yOK4rQtZzQaDXQ6Xc45UB5bNpvl+2Gfz2gwax2tVguj0citXfLpFa889+x86nQ6mEwmWCwWPnuA9Z15wSt97idSZDadTkMURb6w/RQLSh/7VCrFp88pBxTYdkBxZqUrP+Nitl2a7RHtrVu34jvf+Q62bNmCSy65BD//+c+xceNGHD9+HI2NjWdt39nZiRtuuAF33303fvOb3+CDDz7Afffdh8rKSmzatAkAsHv3btx+++3413/9V9x666146aWX8IUvfAHvv/8+NmzYAODMtNzzzjsPX/va1/j7hvMf//EfePTRR/GrX/0KS5cuxb/927/hmmuuQWtrK2w226SPlShMIpEITp8+jWQyibKyMpSVlRXlPYggiJkhmUzC4/EgHo/D7/ePWiC+0CmVjDWCmA7ZbBY+nw+hUAgdHR0QBGHUbdPpNIaGhtDa2pozy7mnpweCIBSkOM1gz9T57qPD4UBFRQVUKhUCgQCCweC0dAFmrTtTsBpv+ZipPl9Jp9Pw+XwIh8Po7u5GIpGY6y4RwyiV+E5CepHAxGtRFOHz+dDd3Y14PI6mpiZYrVbudT38gZuJ1vF4HIODgzh16hSCwSAPxEwczWazCIfDyGQy0Gq1CIVCvF12M2dejOl0GpFIhG+fyWRgMplyPJmVIh4TtrPZLBdytVotBEGAXq/nXu/TgYmFyWQSgUAAsVjsLFuTicKy9s1mM6qqqmA2m2G1WuFyuaDRaHimfiqVwsDAACKRCD/Ho4npOp0OlZWVsFqtqK2thc1mg8VimVYW+liwjGSDwYD6+noYjUb4fD5Eo1E+CMIevpSFUscaDGAZ6ZlMBkajEYFAAFarFTabrWgC/vCBJa/Xi97eXsRiMYRCIT44xAYVilXAUs40YYNdxchsB+JHH30U3/jGN3DXXXcBADZv3oy33noLP/vZz/DII4+ctf3jjz+OxsZGbN68GcCZYkl79+7FD3/4Qy6Ib968Gddccw2+//3vAwC+//3vY+fOndi8eTOef/55AMDGjRuxcePGMY9l8+bN+Pu//3vcdtttAIBnnnkG1dXVeO6553DPPfdM+liJwkOWZezfvx///u//jrKyMtx222347Gc/C71eP9ddIwiiQOjs7MSvfvUrtLW1obu7uyhtXYDSedAmiOkQj8fx2muv4fXXX0cwGMSJEydG3TYWi2Hbtm04dOhQzvPLwMAAfD7fbHS3oFCpVFi/fj2+9KUvwWQy4X/+53/w6quvku94kRMOh/Hb3/4W77zzDvx+P7q6uua6S8QwSiW+F5W1yyOPPAKVSoXvfOc7fF2pTHeXZZlnhAuCAL/fD7/fz4XpkS46tp5lEIfDYbjdbvj9/pwRXyYuMv/rQCAAn8/HF6/Xy//v8Xjg9XoRCAQQDochCAKy2Sz0ej30ej0vwsEyrpnAygK6KIo52exM0J3ul2Z4Vj2z6pisiA58IqQbDAaUlZWhqqoK9fX1aGlpwaJFi9Dc3IympibU19fD6XTyIqFjZdVrNBouxrPiospisflE6W2v1WrhcDhQVVXFBwKUFjvsc2AzBMbLSGefHzvHgiAgmUxO+hzPJcrM+lgsBr/fnyOiS5I0KcueQoR9F5jve7Eeh3L2wFQW4EyGr3IZLdtFFEXs27cP1157bc76a6+9Frt27RrxPbt37z5re+Zby36oj7bNaG2ORGdnJ9xud047zEtxMu0UMqUc35X09vbirbfewquvvoqTJ0+OObhJEETp4fP5sHPnTmzbtg0HDx5EMpmc6y5NiXzEd6I4oPg+dSRJwpEjR/Dyyy/jD3/4A9xu96jbplIpHDp0CNu2bcPvf/97vnz88ccjFiGd76hUKjQ2NuK6667DjTfeiCVLlhRF0hcxNolEAvv378fvf/97vPfee/D7/XPdJWIYpRLfiyYjfc+ePXjiiSewevXqnPWlNN1dKQx1dXUhHA7DaDRyIZcVrWRCoSzLCIVCPBO5v78foVAIiUQiZyqoUshlgqgoiojH41yM1Wg0vFAoy0JXFrdkQjKzQmF2JSwznQUupdd6OBzm+1ZaybB1YwnTw+1c2DEJgoBoNMqnsE32y6jRaGC322E2m1FWVoaFCxfC6XTC6XSiqqoKGo2GC66xWAzpdBoWiwXhcBjpdJpb4wwXP9RqNUwmE2w2G8xm86wV52QDAtlsFgaDATqdjovpUxG/lZY24XCYZ9VXVlbmXBOFnMnNBgOi0Si/VpjozGZPsIK4rHJ8IR/PSLDZH1P9HswnFixYkPP3P/3TP+Ghhx46azufz4dMJoPq6uqc9dXV1aM+uLjd7hG3Z9MOa2trR91mrIehkfbD3je8ne7u7gm3U6hQfD+bdDqN06dPY8eOHeNOI45Go+jq6iqqAc1Cor6+HosXL845z7FYDKdOnYLH45nDnhEEQRQ3FN8/YXBwEDt37kRdXR1PyhrtWbevrw+nT5+Gz+crqPgeDAbx0UcfIRQK8dg51VlzgiCgtbUVfr8fBw8ezJvY73K5sHTpUrhcLqxatQomkwk6nQ5Lly7F1VdfneMR7/f70dbWhmg0OmJbVqsVS5cuRUVFBc4//3xYLJa89HE8zGYzzjvvPESj0XH7OBkikQj27t2LdDqN6upqLF26FCaTKQ89JojSoyiEdEEQ8OUvfxlPPvkk/u3f/o2vL8Xp7rIso7+/H++88w6sViv8fj/C4TCsVisaGhrgcrm44J1Op9HR0YGjR48iHA7jyJEj6O7u5nYvSl9zlUrFBfhMJoNIJAJBEHJEROVIEbNx0Wg0MBqNMJvNXEhnArooinx7lhnOsuM1Gg23RUkmk9xzjIm9wBkxcCwxnYm6qVQKwWAQ8XgcQ0NDGBwcRCwWQyKRmLSAqNfr0dDQgNraWtTU1GD9+vWoqqqCzWbLsXZhonlDQwO8Xi96enqQSCTg8/m4BY5y3zqdDmVlZaitrYXVap1VIZ2J94IgwGg0QqfTTSlTHwB/XywWQ29vL6LRKERRRHV1NfeRn61jmwzss5BlGbFYDF6vF6FQCENDQxgaGkImk+HFRgVBQCQS4eetGH/QMwsoj8eDUChUtFmt+Zga1tvbC7vdztePJ0oOHzQZz+JnpO2Hr59sm/nqWzFA8X1kUqkU3nzzTezdu3fcGiKZTIbfx4jJoVKp8KlPfQr3338/qqqq+Pquri5s3ryZhHSCmCFKZep3KUPx/RNkWca+ffvQ19cHp9OJb3zjG7jjjjtG/E2azWbx4YcfYsuWLfB4PAUV30+fPo0f/ehHsFqtuOWWW3D//fejoqJiSm0NDAzgF7/4BXbt2oVIJJI3+5nm5mZ885vfxOrVq1FWVgaHwwG1Wo0bbrgBF1xwQc79Y9euXdi8eTNaW1tHbKumpgbf+MY3cOmll8Jut+f8TphJKioqcOedd+Lmm2/Ghx9+iP/6r//CyZMnp91uf38/fv7zn8Nms+Gaa67BAw88gIaGhjz0mCA+oVTie+EpXiNw//3348Ybb8TVV1+dE4jHm+4+WiBm2aaMYvMXZIJtNBqFx+OBz+dDKpWC3W6HXq/nIm8mk4Hf70d/fz8ikQj8fj9isViOQM0sQIBcoXw8kVWn051VjJRlrzMhndljMN901i4T8mOxGFQqFZLJJCRJ4u0oC1eO1Q/WHhNBE4lEziJJ0qS/jMwb3eFwwOVyoaqqCtXV1bBarXA6ndwrntmCRCIRqFQqRKNRnlU/UuEnlUoFg8EAo9EIvV4/a+KXSqXi4jaz2dFoNMhms3zwZLKwgRFBEKDRaBCLxXJmKRSikM5gFknMXogVGmXXpdIKSRRFGI3GohQrM5kMt+5hA1rFSD4Csd1uzxHSR6OiogIajeasTHGPx3NWJjijpqZmxO21Wi3Ky8vH3Ga0NkfbD3AmM722tnbK7RQiFN9HJpvNwu12T2rmAjFx2G8fNqNq5cqVqKur468bjUY4HI457CExU7DC4mz2JDE3lMqDdilD8T2XYDCIYDAIq9WKwcFBpFKpEa1GMpkMvF4vjh8/jqGhoTno6ejEYjG0t7dDrVZjzZo1I85yV84uHwmmEQiCgNOnT+Pw4cN56RuzknU4HFi2bNlZsyBqa2tzfkMDZ35Xj5WRbTQa0dzcfFZbM41er0dTUxMAwOv1wmg05qXdRCKBjo4OAMDixYv57PpiiIfsuilmy9LxUGpbzF2iGCmV+F64itf/44UXXsD+/fuxZ8+es16b6nT3Rx55BP/8z/+c347OIsrs2c7OTmSzWRiNRpw6dQo2mw2ZTIYX93S73bwwqSAIXBRk4rYy4DHfaPYlnuiFzILl8KCpVqtzRtCVr0uSxP2KWSa7wWCAw+GAzWaDRqPhNiTK97KbKLOuSCaTSCQSGBwcRDQaRTgc5r7rUykwajAYUF5ejvr6elRXV6O8vBxOp5N7miuFaLVajfLycqhUKoTDYZSXlyOVSvE+KI+dHSOz35lNYZYJ5mq1Gnq9ngdj5uGsvBbYgIjSHohdF0rS6TQv5mq32zEwMIBYLAaXy5Vj0VMoAjT7TqTTaXi9XnR1dSEajSISieRc88CZH4kDAwOQZRkNDQ1FmZGeSqXgdrvR19cHv99fMJksk2U2A7Fer8e6deuwfft23HrrrXz99u3bcfPNN4/4nosuugivvPJKzrq3334b69ev5wOCF110EbZv347vfve7OdtcfPHFE+5bc3MzampqsH37dqxZswbAmVkHO3fuxA9+8IMJt1NoUHwn5ora2lpcfPHFqKmpwYYNG2ZtujYxd8iyjFOnTuG5555DdXU11qxZgzVr1hT04P98plQetEsViu+jI0kSPv74Yzz11FM5yWMMWZaxa9cuJBKJOejdxJBlGSdOnMCvf/3rnGSVsrIyXHTRRWhubh7xfclkEh9//DGOHTuG3t5e9Pb25qU/NpsNF110EZYsWYLFixfPWuZ4MXP69Gk8//zzqK2txfnnn4+1a9eOeD0WAplMBocOHcK+ffswNDQ06gyCYmdwcBC7du2C2+3Ghx9+WLS1DUolvhf0r8fe3l488MADePvtt8cciZvsdPfvf//7ePDBB/nfkUjkLB/dQkaZbdrW1oaOjg4u1Gq12hwRlGV/M/EZQM62TFQHwMVS9r6xxLfRvLCZMM8+g9G2E0URgUAAarWaZwYbjUZUV1ejsrISWq0WFouFe6+z9yt92lnB03g8zrPumf/1ZIVDlg1vMplQU1OD5uZmVFRUoLq6GmVlZVzYV2ZxGwwGiKIIk8mEeDzOvZGz2exZdhpqtZpb4DDhejZhIjnrAysuy2YMsEELk8kErVabMxjDzrfyxiZJEoLBIMLhMPR6PaqqquBwOJDNZmGz2XggLhQhnc3SSKVS6O/vx8mTJyEIAgKBwFkj28xvOBaLwWQy5WQpFgOyLCORSKC3txft7e0YGhoacZYEcTYPPvgg7rjjDqxfvx4XXXQRnnjiCfT09ODee+8FcCZ29Pf349lnnwUA3HvvvXjsscfw4IMP4u6778bu3bvx1FNP4fnnn+dtPvDAA7jsssvwgx/8ADfffDO2bduGHTt24P333+fbCIKA9vZ2/ndnZycOHjyIsrIyNDY28iJdDz/8MJYsWYIlS5bg4Ycfhtlsxp//+Z/P0tnJLxTfibmksbERd999N9auXcvjIjH/OXLkCDo6OmC323H//fdj1apVJKQTRJ6h+D42oijij3/8I3bv3j3q8SaTyYIW0WRZxsGDB9HW1pbzTLt48WKUlZWNKqTHYjG8/vrreOaZZ/J6jE6nE5s2bcKtt94KvV5Pg+MT4Pjx4+ju7obVasX/+l//C+ecc07BCunpdBrvv/8+/uu//guRSASxWKyoBNeJ0t3djSeffBL79+/n+hhRuBT0r8d9+/bB4/Fg3bp1fF0mk8F7772Hxx57jI9GTXa6O/PiLmbYzYNZUAA4y0KFbTfajWa40K30Sp/I/odX11XawijF/JGq8Cp905mnOPPeNpvNOV7rALiYzopCMmuVeDzObTrY+qkWZGHHz+xl2GADy0JX2uGwPikHJZQWNyOhLMI6WwzfF5v2puyLXq+HwWDgAwlarRbZbBYajSZnQEZp16P8/FjhVTYowjLd2UDNaH2ZaZTXXDqd5tdJIpHgovpI08NSqRS36mGFOkfyvS40lN89NqAkCELJW7tMhttvvx1+vx//8i//gsHBQaxatQqvv/46n145ODiInp4evn1zczNef/11fPe738VPf/pT1NXV4cc//jE2bdrEt7n44ovxwgsv4B/+4R/wj//4j1i0aBG2bt2KDRs28G327t2LK6+8kv/NHhS/8pWv4Fe/+hUA4Hvf+x4SiQTuu+8+BINBbNiwAW+//XZRzpgAKL4Tc4ter4fT6ZyytytRnDBrCFEUEY/HiyY2st/HbNajslhesVIqGWulCMX3sZFlGfF4vOhFMpbUp8TpdMLr9Y7qd+73++HxeOD1evM6W1aj0cBms6GysjJvbRYLGo2GJx8qYc+7o90vmYZUyIM2oigiFovx+mZ+v3/UoqssSdNqtcJkMhVlgoQkSQiFQnmrFzBXlEp8L2gh/aqrrsKRI0dy1n3ta1/D8uXL8Td/8zdoaWmZl9Pdp4rSjmUiF7By5H+yF202m+Ue5MyehfmAq1Qq7kHJhNbhWfHKfSaTSQSDQWg0GiSTSfh8Pp49zX4wMfFXFEVIksQ9uplwywTDyVjSjEU+CgEOpxAqrrNzo9PpYLPZoFareda9TqeD1WrlPvvMnsbn88Hn80GSJESjUf7Djx1POBxGe3s7zGYzZFnmgnx5eTlsNtucWbywa4/ZuZw+fRqCIKCzsxN+vx+iKOZ4LTJCoRCOHTsGl8uFuro6Xpi3GLzjotEoEokEhoaG0Nvbi56eHgiCQNYuk+C+++7DfffdN+JrTNRWcvnll2P//v1jtvm5z30On/vc50Z9/Yorrhi3vyqVCg899BAeeuihMbcrFii+EwRBTIxQKIRXXnmFFyscHByc6y5Nm1J50C5FKL6XLj6fD1u3bh3R0gc4I+7u2bOnIJ6J5wuVlZW4+eabcc455/B1bODqzTffLGiLoPE4ceIEXn75ZQwODuLAgQMjPrcDZ2LCkSNH8KMf/QiVlZW46qqrcNVVVxVshv18p1Tie0EL6TabDatWrcpZZ7FYUF5eztfPt+nu02GqFy0T1CfzXmVmsiiKOUIj80Znwjbzph5J5GZCfCqVgkqlQiQS4dnfLEtaWRBVaVXD2p3Ol3UsJiL+Ds9SLxaYlYtOp0N1dTWampq4kG40GiFJEveaZwI5K1zJhHR2zgVBQG9vL/dft9lsvB2LxZJjHzRbsOxsdm35/X50dHQgFAphaGgI4XB41CIebGDAbrdj3bp1SKfTfIZEIX/OmUwGsVgM4XAYfr8fAwMDGBgYOGsAiyAKAYrvBEEQEyMajWLHjh3YunUrL0RGEIUKxffSJRQK4c033xzzeamYiygWImVlZbjxxhuxceNGvo5pJO+++25RC+kdHR147rnn0N7ePu7z7KlTp9DR0QGr1QqHw4HLLruMhHRiRiloIX0izLfp7rMBExmHC9vDrTsm2hYrRjlcSB9uB8K2H69f7P9MJFfazrBMd+Ux5ANlleRkMglBEGAymbhlDPPQZNY5bACBWYUw2xAmPo90nKzSNLOAmQ2Gf76sCrRWq+UDFRaLBSaTKacYKhvASKfTMJlMMJlMUKlU0Ol0OeeA7SOTyUCSJMRiMQSDQYiiCIfDwfdhNBrPEqPzKUoP7wsryBsKhRCPxxEMBiEIAmKx2LgzF9h7E4kEotEoAoEALBYLnypWaLDjyGQyCAaD8Hg88Pv9fMCpmH+slsqINjEyFN+JmSIWi6G9vR0mkwkulws1NTXklV1CZLNZuN1uHD16FA6HAzU1NXA4HHPdrVFR/s6aL1B8L20ovs9f5mKgTxRF9PT04PDhw7BaraitrS3IZ7Z8odFoUFVVhfLycixZsgROpzPnNwyrgTYRstksPB4Pjh49muMtbzabUVtbO+sWKclkEoODg3wWeTwen1CtL6YdTcfmdy6QJAlutxuhUAgdHR1Fb/kElE58L7qnhnfffTfn7/k23X02kGWZ26Mos72Z0DpRWxi2MHsV1hbLbmdtMS/tiXwx2HZMJB8uuirF9tFuksr3sL6Md0ysr4lEAoODgzCbzYjFYqiqqkImk4HJZOI2JUyojcfjGBgYQDAY5FNth4aGEI1Gz+pbJpPhwiwTlWfLKkQptDK/tPLyctTU1MBkMqG2thbV1dXQ6XTcY01Z1JW1EYvFIAgCQqFQzrWinB3Q19fHByEikQjq6upgtVrR0NAAi8UCnU4HvV7PP5d8iOnKzzeTySASiUAQBESjUZw6dQp+vx+BQAC9vb1IJBJIpVJjBthUKoVAIIB4PI7W1lZ89NFHcLlcWLlyJerr6wsyK519PgcPHsShQ4cwODiIYDBYVD8kRqJUAjFxBorvxGzR0dGBn/zkJ3C5XLjmmmtw5513ory8fK67RcwSqVQK27dvx6lTp9DQ0ICvfvWruPzyy+e6WyUFxffSguI7MZMEg0E899xzeOedd3DuuefirrvuwrJly+a6WzOG2WzGZz/7WfzZn/0ZnE4nli9fPuW2JEnCH/7wB3R2duaI7ytXrsTdd9+NFStW5KPLE6a/vx9PPfUU9u/fj6GhoaL3Cx+PQCCA5557Du+++y7XK4qdUonvRSekE9NHWZQQQI6QPlnhjY3+McGVtTV8H5NtUymYT5bhQjorWjpeNjzL9olEIggEAjAajYhGo3xE22AwQKPRQJIkbn0iCALC4TAikQii0SgEQeAFKoe3L0kSRFGERqOZ9ZsE+2zT6TS34rHZbDCbzbBarbBarTwjXafT8az1TCYDm80Gh8MBjUYDo9HIg6xy9gL7vCKRCBKJBEwmE6xWKzQaDVKpFMrLy6HX63k2+0yI0awP7HMJhUIYGBjggxssU3482IBDJpOB1+vlAvzChQvz3ufpojz/kiRhcHAQbW1tCIVCRT2Vj1EqgZggiNklGAziww8/hFqtRk1Nzby4XxITJ5PJoL29He3t7WhpacH1118/110qOSi+EwSRLxKJBA4fPozDhw8jkUjg85///Fx3aUbR6XRYvnw5rrvuumnbl2SzWXR0dKCjoyNnfTQaHbO+00wRiUSwd+9ebN++fdb3PRckEgkcOnQIb7755lx3JW+USnwnIb2EYRcqy/yeyoXL/K+ZuMqEa6X/2Wx8ITQaDVQqFbRaLc94ZtnxAHgGPiuSOpqwnslkEAqFoNfrkc1mcfr0aYTDYdhsNpSXl0Oj0fAq1/F4HO3t7fB6vejv7+cFT0eafsQy2MPhMGRZht1unxXfLuZVL0kSEokEP3YA3NeeedKz86VWq5HNZrnozV5T+sGPJoSzTHVRFBEKhaDRaCAIArRaLfdOZ9PPDAYD/6xYH1j7yn+BXOsWZfY5Ox6WaS+KIrxeLwKBAKLRKPx+Py9KO9mBmWw2i0AggPb2doTDYSxcuJAXZbVYLHNuA8DOA8u4HxoaQn9/P3w+HwRBmNA0OIIgiFJGlmX09vZi+/btKCsr4+sHBgbmRUFHYnxisRj27t0Lo9HIPZydTudcd4uL/adOncLg4OC8yFIjCIKYafx+P9577z243W40NjZi+fLl0Gq1aGtrQ0dHR471zMGDBxEKhUZtKxqN4sMPP4QkSaipqcHKlSthtVpn/BgEQcCJEycwODiIQ4cOIRKJTOr9KpUKixYtwg033ACfz4eTJ0+iu7t7Um0EAgH86U9/gtfr5es0Gg2WLl2KRYsWTbv+mSzL6OzsRGtra06iW0dHBzwez5TbTafTOHnyJF599VWUlZVh+fLlaGhomFZfCWIkSEgvUZQi8lQFdLYYDAYuCjPxk/lQKz3PZwq1Ws19vY1GI+x2O/f4ZtnfzOucZZyzG/bwfomiiL6+Pni9XgwMDEAQBDidTjidTu6hyrzQBUFAe3s7PB4PBEGAz+fjgu3wdtPpNPx+P/9/RUXFjJ0PJbIsIxKJIBaLIRAI8HOQzWa5VzsbCGGiOhPTWYBk27GFCe0jwQYr0uk0enp6MDAwALPZjIGBAZhMJlRUVGDBggXcl5aJ6szuBgD/7IZfo0r/c+ZjHo1GIYoifD4f3G43kskkF5NFUUQ0GuVWLpP17MtkMjyYV1dXo7KyEmazGXa7HQsWLJhTIZ2dm3Q6jc7OThw8eBBerxdHjhzhPxLng5dqqYxoEwQxN8iyjD179qCzszPnnp5Kpeb9dGLiDGxa9SuvvIILLrgA3/ve9wpCSBdFEdu3b8dTTz2FSCSSI2bMByi+EwQxE3R0dOCxxx6DyWTCrbfeiu985zswm814/fXX8etf/xqpVIpvG4vFxry3ut1u/PKXv8TWrVvxmc98Bn/1V381K0J6IBDAb37zG7z11luIx+OTFpa1Wi0+/elPY8WKFRgaGsJjjz2G3t7eSSWVdXd3Y8uWLTle8xaLBXfffTcaGxunLaRnMhm8//772LJlS85gRiqVmpaQzqzb9u3bh8bGRnz3u98lIX2WKZX4TkI6MS2Gi66M2fL/Zn1gYrBOp+M+3Gq1Glqtlgv6LHgwsRg4+8vKrEGY/UkgEODZ7ExIZoVFWfD1+/38PaOJtSwTPpFIjFjsMt9WJ8rZBqwoKjuOqdygJhN4meCdSCSgUqkgSRIXyzUaDex2OyRJgl6vh9Fo5OI8cPZ5UIr2Sj92ZUHQVCqFSCSCYDDIC4sGAoGzfN4niyzLiMfjvNgss/BRq9U5NQbGytCfCZRWOul0GtFoFB6PBz6fD9FodF4UKVFSTAGVIIjiIxwOIxwOz3U3iDlCkiQMDAwAACorKxGJRJBKpWa1MLwSFtsTiQSGhoZw6tQpxGKxWe/HbEDxnSCIfJNIJNDd3Q21Wo2BgQF+/3S73Whtbc0R0scjlUqhr68PALB8+fIJWYTmA1EU0d/fj9bW1im3YbfbYbFYYDAYeJ23yZBIJNDT05Ozzmq1YmhoCMlkctrPvpIkwePx4NSpUwgEAtNqS4ksy/D5fDypLhAIIJlM8pheKLXOMpkMt9ydiwK9M00pxHcS0kuAkW4Y+bi4mYg+mpDOrEHytb+R9g+cGXU1m80wGo0wmUxwOBz8RqnVaiHLMrcSSaVSSKVSUKlUXGgdSUxXFh4NBoPw+XwYGBjgHunsxuf1ermNxlg3wXQ6jVAohFQqBb1ej2g0CrVazUX/fKIUWlOpFLxeL68GzY43mUwiFApBkiQ4nU5YrVZuZ8OKjbIbeyQSQSgUQjwez7GHmUhBWnbs0WgUyWSSn3OdTgeHw8FnD5jNZuj1ej4YwgY72GfMstDZQAfzqI9Go5AkCeFwGMFgkP+fHed0rzsm4guCgIMHD/ICqpIkoaqqCjabDWVlZbPysK20tfH5fOjp6UE0GsWePXtw4MABRKPRvP4QKQRKZUSbIAiCmHsGBgawdetW7N69G6tWrcIll1wyK9mHStra2vDee+/B5/Pho48+mhezy0aC4jtBEDOJLMs4duwYfvnLX0Kv12Pfvn3zUrAciWw2iwMHDmD37t3w+Xw4cuTIlGvPKZEkCR9++CFPXJwOmUwGu3fvRjKZnHa/RiMSieDNN9/E4OAgGhsbcfnll6OmpmbG9jdRJEnCnj17sGfPHgwNDaGtrW2uu5RXSiW+k5A+z1GKkcOzsKdzoSo9yJUe6QylRchMBS3Wvlar5QUzTSYTF2eZXYksy9Dr9RBFEYlEgmdKp1IpiKI4opAOnJnuxbZl+wJyz99E7WvS6TQCgQDUajUMBgMikQg0Gg0v7pnv0VHWr2QyCbfbjY6ODj6IwNazEVqn0wmbzQadTpcjpKdSKT4AwLK9Y7EYJEma8A2SFcGMRCJQqVQIhUIYHByESqWC0WjkGelWqxUGgwFarRYmk+ksIZ0NXqTTae6FLooiH8RIp9M5An8+fiyw/rPBhI8//hiHDx/G4sWLYbFY0NTUhPr6etjt9pxZDjMJO76hoSF89NFH8Pl82L9/P/bt2zeqPz9BEARBEOPT3d3NRZcvf/nLOP/882ddSD927Bh+8pOfoLe3l892JAiCICaHLMs4fPgwFynZc20pkMlk8PHHH+PRRx/lz/v5EChTqRTeffdd7N69Ow+9BNcmZopQKISXXnoJr776Ki699FIsXbq0YIT09957Dz/5yU94siFRfJCQPk9RWk4oC4ECZwvAUxUdhxeAHO21mUaZGa8U9lmmPCucOby45njCJxNR8wFri2WJx+NxLhyz9cM/p6nsg/0rSRK3dGEPYspCo6wgqEaj4YMLkiRBo9Hw7Hr2g4P5qqfTaZ7lzwRd5TJe39h1p7REkWWZi9DpdJrvX1l8FAAXy9l0Z+Xxsf5O9bNSnu+RLH9Y39n5iEQi8Pv9sFgsMJlMCIfDMBqN0Ov1fFBkItfXeLA+KH3n2bH7/X74fD5eVJV9RvONUhnRJgiCIOaeTCYDQRCgVqt57RXgjC9svgX1bDaLaDSKRCKRE688Hg9CodC8txui+E4QxEzDEq/yQTKZhMfjgdPp5DEhn0lUsixDEARuHTuWuJrNZhGJRDA4ODhiZrgkSfB6vQgGg5MuVDoeTFsoBrLZLLc89fv9GBoayikkr1arZyS+Kxlenw8A4vE4fD4fn/E/3yiV+E5C+jxEo9HAYDDwIpwGgyFHWGdiLhMmmY/0ZC5cZdbvSFndzEN6IhYgU0Xpz878y1nRUWWxUZa1zgRmrVYLnU4HSZLmxNs6HA7j5MmTMJvNWLBgAZqbm6HT6XIKbk61bSYoDwwMYHBwELFYDENDQxAEIWfwJJFIwOfz8f1Fo1Ho9XrYbDYYDIYcaxdBEBAOh5FOp2EwGFBVVcWFdlbUcjJe5Ox6YO2r1Wou6isLnioz0lnf2WfIBPl0Oj2la0w5yMT2x/5VDg4oBXr2/8HBQezYsQM2mw0LFy7EqlWrYLPZsGjRIjQ1NUGn03GrmqmitMVhYnkwGMSRI0fg8/nQ19eHY8eOQRAE+P3+eTtVsVQCMUEQBFE4yLKM/fv34wc/+AEqKytxww034KqrrsqrjVs0GsVLL72EXbt25SS0dHR05BRem69QfCcIopg4ceIEfvzjH6OyshJXXXUVbrjhBpjN5ry1n0qlsGPHDmzfvh0+nw/Hjh0bddtEIoE33ngDXV1dI9aly2azOH78OBKJRN76V+x0dXXh8ccfR0VFBV9nsVhmJL4r6evrw29/+9sc+5Z0Oo1Dhw7N2xlnpRLfSUifhzABnRV4tFgsOVmyrBCkKIo8k3Ui9iRKlGIjs/pQwrKEZ/LLMNyjndm5KDPSmbULy0xnhS2HZzzPBuxcCIKA7u5u6PV66PV6VFVVcYuT6fiNMbFZFEX4/X50dnby4pvDR46ZrY1Go4Esy4jFYtDr9bDb7TAajdwqRVkIAwAMBgN/PR6Pc69yURS5CD3RczGdLPLpoBTp2aALG2xh14tStGf9ZaJ9IBBAMBiEWq1Gf38/otEonE4n1Go1ysrKeHb6dL3vlbYyXq8XfX192LVrFzo7OxEMBtHX1zfiINZ8olQCMUEQBFE4yLKM1tZWnDp1Ck6nE42Njbjyyivzuo94PI73338fzzzzTI6Qno/6LsUAxXeCIIqJnp4e9PX1wWAwwG634+qrr86rkC6KIvbt24dnnnkGyWRyTMeAVCqFjz76CB9//PGo25RKLJkobrcbL7/8ck4S5UzFdyU+nw9vvPEG3nvvvZz18/nzKZX4TkL6PIIJ5SwzW6fTwWAw8Ox0tg0TR5nwyUbgpipsjmSBMltfAqVdiNLig2XeM6GYrWdiKBP5lf7xSiF4JvvP9i9JEqLRKLxeL4xGIyRJ4lny7DNTWvOMdNzKDO1UKsU9zNlUodEyxYfbwDB/MnZOlAMwrL/AJ+eJ2Yyk02le9JOtSyQS3IqkUDKllZnurMCrWq2GyWTi/2cDMezakGWZDzYpi5yyYwPOTG/z+/0QRRFdXV0wmUwwGo2oqKiAxWLhRW6Vgz1A7vWmzH5n7TPbGlEU0dfXx6eY+3w+CILAz3ExBRuCIAiCKCay2SwkSUJPTw/27t077eJqSnw+H7xe74wnnRAEQRD5gT0DDgwMYP/+/bDZbPw1i8WCBQsW5KwbDUEQ0NvbC0EQ+LpYLIb+/n6uVYzHSGKlw+HAggULYDQaJ3xMsizD7XZjcHAwbzXGZhKdTof6+vqczHIl2WwWbrcbbrf7rOMZfs5Gi+/sPJpMpgn3i9UwGxwczPHiP3bsGEKhUFGcW2JykJA+T2ACukaj4QU3WTFHi8WSk32dzWZhMBh48U3ml80Ew8lavDBRfvj6mX4wYH1lGdPJZJIX82SWISwTnWVgJ5NJpFIpLooq7V/YOWKWNGwfM9Fv1p/u7m4Eg0Ho9XrU1dWhvLwcRqMRlZWVMJvNOUKs0r9b6WMeCAT4vyxLORQK8Zv2aN7ZTLxlxTstFgsqKipgNBrhdDrR0NDAM+WV54cJwCzQJxIJhEIhfjzd3d1IpVIIhUKIxWJ5P39TQafTcWHb5XLB5XLxDHyz2cztkNg5Zg+28XicZ94zETuVSiEYDEIURQQCASQSCWg0GrS1tcHhcMBkMqGhoQEulwtWqxV1dXUwmUwwm82w2Ww5syaUNkvxeByBQACSJMHj8WBwcJAXi2WzCljBGGbLNN8plRFtgiAIojBJJBJ49dVXsX///hETG6ZKKpVCV1dXycYqiu8EQRQj6XQaO3fuRGdnZ44dyPLly3Hvvffi/PPPH7eNrq4ubNmyBcePH89pt7e3d1rPdytWrMC9996LhQsXTvg9qVQK//3f/43nnnuuKKxgnE4nbr/9dlx//fUjWvQmEgm88MILeOGFF8YtZDpafL/gggtw7733oqWlZcL9SqfTeOedd/DrX/86x/c8Go2is7Nzwu3MB0olvpOQPo9gwjHz22bLcCGWCdBqtRrZbBY6nY4Lo1NhrqamsH2y0WHloswuZxnVTCBn/2fZ10qvdWW77PV8H5sygz8SiXBbFebrrhRcR8qSZxYubACEZSj7fD4uvrLBgon0hVm4sJFY5vFdUVEBq9Wa47M//L1MbA6FQrz4iN/vh1qtzhllnytYnzUaDbdbsVqtKC8vh16vh9Pp5OfaaDTmZKRns1nEYjEunrPBmVgsxjPwU6kUP06Px8MHsgKBAMrLy+F0OiGKIqxWK+x2O5LJJLeTYYVmWQHRaDQKj8eDRCKB3t5edHZ2IpFI8GIxpUipBGKCIAiiMEmn0+jo6EBHR8dcd2VeQfGdIIhiRJZl9Pb2ore3N2d9LBab8PNaKBTCgQMH8OGHH+a1bxUVFbjggguwYsWKCb8nkUhg7969M+YRnm8MBgOWL1+Oyy+/fEQhXRAE7N69G1qtdlwhfbT4bjQaJ61jZDIZ9Pb2YteuXfO+WPh4lEp8L45vDDEuTAxmWelKsU5ZUBEAtzxhr+t0OmSz2Ql5hivtRtgNlwnzTNCeTVsX4MyNK5lM8j6w88COTa1Ww2g0wmq1IpvNorKyEtlsNsc2hZ0j4BN/d6V9CRNU0+k0otEoBEHg+5vuMbDzxqpqG41GiKLIi48ajUb+2bHBDzZgwLLPWQY4y7SfqKWKRqPhgq/VakVTUxMqKipgt9thMpmg0+nGzMBiMyHMZjN0Oh1qa2t5gVJ27bFsa+VADbOPMRgMXMQePmWaWc6witupVGpS1xYTtbVaLex2O/eir6ysRE1NDfR6PVwuV44FC8sSZ32NxWKIxWJIpVIwGo0Ih8MQBAEajQaxWAzxeBzhcJifbzYDIBQKIZPJcKsdo9EIk8nE7XLYuWE2LkxQD4fDPPudZfnP10IkBEEQM0VjYyNWr14Ni8Uy4usejweHDh1CIBCY5Z4Rs015eTlWr16NqqoqdHd34/DhwznZYgRBEEThYTQasXr1ajQ3N0+5jc7OThw5cmRWMq0DgQDeeecdeDyecbdtbW2Fz+eb8r70ej1WrlyJJUuW5Og3a9eunZC1jBKNRoOVK1di06ZN8Pv9OHLkCLq6uqbct3zS0NCAc889F3a7na8rKysb85rQarVYtWoVNm3alCOkT+Z3n9vtxltvvYUTJ05MuK+SJOHgwYP03F5CkJA+j2DCMcu8ZYsym5gJsSy7Np1O84z0VCo1ZgY2E6hZ1jQrsMGEW0mSzhJMZxqWSR+JRKDVarlNCRNGDQYDF0wrKipgMplQW1sLk8kEq9UKl8uVM6igtE1hWd6JRAKDg4M4ffo04vE4Ojs7c7zHpyOms+z0bDYLr9eLQCDAhValrzYbwGCfDzvnysELJv5PdBSQ+YU3NjZi2bJlsFqtWLhwIT8nbBCCbTvS+4EzI8PsGrJYLGhqakI0GuVCeSwWw8DAwFlCut1uR0VFBQwGAyoqKnjgZ+1GIhFuZeLxePgPjskcm8vlgtlsRmVlJRYtWgSz2Yzq6moupDscDlgsFm7twsRttjBrl2QyCZ/Ph0gkglAoBKvVimg0CrfbzcVuSZK4Z7zb7YbH44FarYZOp8spjKv05Vd+VkrvfjZQMlL9gVKiVEa0CYLIL+eddx7++q//Gg0NDSO+/vHHH+ORRx4hIb0EWLBgAe69916sX78eL7/8Mnp7e0lILwAovhMEMRZ2ux2bNm3Cpk2bJpTsN5xsNosXX3wR3d3dsyKk9/X14cknn5yQPzmzZJ0qJpMJN910E+64446cTHKz2YyysrJJtaXT6XDllVdizZo16O/vxw9/+EN0d3cXxH121apV+Ou//uscqxpm0zqSNgGc0SWuueYaXHDBBTkazUcffTTh331tbW340Y9+NOm6KOFweEKOAPOdUonvJKTPE5jIOrx4ptK6RHnDUa5XirQjwYKX0q/bZDLBZDJBrVZDFEWk02luVcEEwtkqoKTcF8uABpBTRJJ5xTNbD5vNBpvNhvLycp51zYR0VvAxFotBq9XyrHTmZW61WmEymXjGdD4KlLL9DvczVw5eKIV0JvZPdZ/sc9dqtbBYLLDb7bDZbLBaraNm8I2GMrPfbDZzixSbzQaLxYJMJsNfZ8fArFaUPv42my3nGmQzDdRqNfR6fY7IPdZxD98HywRnx2e322G326HX63kf2bbK4rTsemIiOxthzmazsFqtkGWZZ+IrC/WyIqXE9CmVQEwQxNRgg6bKB0mVSoXy8nI0NTWhsbFxxPf19/fD4XDwhADgkzhcCvUn5issoUT5W4LVfGlubkZtbS1sNlvO565EWfSbmFkovhPE7DA8OWos0uk0JEma0+8Yu4/bbDbU1NSgubl5ykJ6TU0NbDYbotFozvrJzN6eKKIowu1257XN0dBoNCgrK8PChQunXQRbpVLB4XDA4XDwmepms5lfC8PjIfvNNZpuxJjqbyqWhKbRaOByudDY2DipWQkqlQpOpxNOpzNnfX9/P6+NNt51nkgk0N/fP6l+E59QKvGdhPR5ArMIGe4DPtwPHMCIrysLbCrR6/X8hupyubBw4UJeOJE9iLD3x+NxeDwexONxeL1e9PT08EKKM5lVq8zqBsDF2ebmZixevBhmsxk1NTUoKyuDwWCA0+nkmeomk4kXGx2etc/EZkmSYLVaUVFRgVQqhZaWFrjdbkSjUZw8eRJDQ0MQRRGxWCzvD+DKjGSlkD7ZorDDsVgscDqdMJvNqKurQ11dHT9v04ENzhgMBl413OPxcJsSds51Oh2qq6tRX18PnU4Hq9V6lg+7w+GAVquFKIr880ilUmOO9qpUKv7Z2mw21NfXo6ysDNXV1WhqauKfY1VVFS9AajQacwYs2M2fZdinUilIkgSDwQBBEOBwOJDNZhGNRqHVapFMJnmh0FAoNGc1A+YjpRKICYKYGhaLBVdeeSXOP//8nPgxfCrwcBYsWIAvf/nLuOKKK/i6ZDKJ999/Hx999FFJzwQqVrRaLTZs2IBLL70UBoOBr1+wYAEaGhqgUqmwcuVK/OVf/iVCodCIbXR3d2P79u0YGBiYpV6XLhTfCWJ2WLJkCa666iqUl5ePuZ0syzh69Cj++Mc/zpnHs0ajwQUXXIBLL70UlZWVOPfcc8cVbEdDpVLh3HPPxb333svtUwHA7/djx44daG1tzVe35w12ux0bN25EfX09enp6sH37dvT19fHX9Xo9LrnkElx44YXjCviJRAJ/+tOfsGfPnkn9pqqqqsLVV1+NlpYWrFy5Ei6Xa8rHo6ShoQF33HEHrrzyShw8eBDvvPNOQdRzm4+USnwnIX0eoRTImTXEeEK6skDnSOKswWBAdXU1ysvL0dLSggsuuABOp5N7jgPgInY0GkVXVxcikQhOnjyJUCjEA9dMP5QyEZ0JqRaLBYsXL8YVV1wBi8XCvbCZ0Mu2HSs4s2OUZRl1dXX8vDHBlHmgZbNZCIKAZDI5o0J6PrFYLKirq4PVakV9fT3q6+tzfPSnCjunTEivrq5GT08P2tvbEYlEYLVa4XQ6odfruYCvzLhXwsRwZnHCfMnHKqTKvNfZZ15fX4+amhpUVVVh4cKFsFgsKC8vR0VFBZ9hwbLXRjp25ffEbDYjHo8jEolAlmVEo1GoVCoIggBBECCKIiKRyLQHOQiCIIiJYbVasXHjRvzFX/xFzj2c2dyNxoIFC3DHHXfkxNdIJAJJkrBv3z4S0osQrVaLCy64AA888ECORyybVQYAK1aswKJFi0bNOH///fdx5MgREtIJgpg3LFu2DHfffTcWLVo07rb//d//jb17986ZkM4GRB944AH+vDhdIX3ZsmU59/z29nZ0d3eTkD4CNpsNN954I6699lp89NFHOH78+FlC+qc//Wl861vfGjf5LhQKIZFIYP/+/ZP6TVVdXY0vfOELuPLKK8f9LTcZGhsbcccdd0CSJDz77LPYs2cPCenEtCAhfR7BbC+UAjmbUsPEY7VaPWo2ujLIMEsLo9EIp9OZU5CSZfGyG6hyvywDjE0RAoBoNApRFGdMXFR6ijMB1eFwwOl0wmKxwGw2c7/4qbStJJvN8ilByWQS5eXlqKqqgl6v5yIqOxeFCpsKbzabYbFYuDf4VKbNjbUPNtWeedUbjUZu56LX6/nUsNH2q7Ro0el0MBgMOdfyWPtl+2QzJ0wmE79m2b7ZNa4spqr8vGVZ5vuSZRl6vR6ZTIZn1TNx3WQy8fWsLcpKzw+lMqJNEMT4mEwmuFyunCwoNtBvsVgmFcOYRZ0SWZZRVVWFpqamnAJViUQCwWDwLOs1ojAwm83892l1dTW3cRsJVg9nNJhlITHzUHwniJmD1YlitcEcDseo90WGLMsoLy/HggULAJwZXGbJQzMNi+9msxlVVVVjWnBNhpHu+Q6HA7W1tWhqaiq6+M4S0srLy2G326edADcclgxnMBj4rP3hsBndw39DDUeSpCnZzrCkuPGu18nCfvcZDAZUVlaioaEBOp0O4XA4Z8YCMX1KJb6TkD5PUHp7syxZ5rnNbDGAT4T0RCIBURSRSCR4gU4mdqvVajgcDu5NduGFF2LhwoWw2+1cNFYKkKxtq9WKBQsWQJIkbpcRDodx/PhxHDt2bMZ8R3U6HSorK2EymbBkyRJceeWVKC8vR01NDSoqKnKykaYLK7Sq1WphMpnwmc98Bueddx46Ozt5pW5BEBAKhQraY9PhcPDP1Ol0zkggZmK11WpFbW1tTmBkQXgi+1WpVDyYGgyGUTPFmIjudDpRU1MDl8uFuro6fh1UV1fzIrPs+hxNRGd/K+sHsPfpdDqIosiz5SORCKLRKC+Omk6nkUgkiuZHWSFTKoGYIIjxWblyJb70pS+htraWrzOZTDjvvPPyIn4ajUZcf/31aG5uzhkMP3z4MJ5//nn09PRMex9E/lm5ciW++MUvoqGhAcuWLcvb7z1iZqH4ThAzR11dHb70pS/h3HPPxYIFC8a1dQHOPPecd955+N73vge/349XX30Vr7322qzUfWLxvb6+HsuXL5+21ehYVFRU4C/+4i9wxRVXFFV8V6vV2LBhAzZt2sRtb0YSuomxUavVWL9+Pf7u7/4OPp8P27Ztw1tvvUX1cfJIqcR3EtLnCUqfcLVajWQyyS0mWFav0tolHo9DkiQkEgkkk8mcYhJqtZp7oldVVWHx4sVYtmwZH9UdTfxkBUjZFyCdTiMcDsPr9c5oho9Wq+UZ6AsXLsTatWtRXV0NnU53VtGp6aIcqbVYLLyYps1mQ2trKz+PLDu9EGGDAdXV1bzoRr6FdOCTgqZGoxEulwvpdJpnczMf9Yn2lwnf2Wx2xGwyZfFcdu2WlZXB5XLxxel0wmQy8dkJExXx2WI0Gvm1zaYbRqNRlJWVQavVcqFdFMWcbEZi6pRKICYIYnwWLFiAP/uzP8PSpUtz1ucrful0Opx//vk477zzctaXl5fjzTffLIoH7VKkqakJN910E5YsWTIjv2WImYHiO0HMHC6XC5/5zGdw9dVXT+q+uHDhQjQ1NUEQBHR1deGtt96aFSFdGd9n+j5us9lw2WWX8Qz8YonvKpUKS5YswW233YaqqiqKd9Ng0aJFaGlpQSgUQltbG7Zv3z7XXZpXlEp8JyF9nsEKUSqtVJQio0qlQiaT4eI5K+SovODVajWsViu3c2HWHxO9YatUKu5vDYDbhwDgXuz5gAm1rGBmTU0N6urqYDAYxrQMySdM1LXZbFiwYAE/T4FAIC9FQfMNO2darZYLyjM9mq1Wq7mly0SqfE8FNlik0Wj4vpSLchbFdK6L4VYzzLJGFEW+H6UlDEEQBJE/xqttkq99zPY+iemRr8/I4XBgzZo1MBqNcLvd6O7uptllBEEUBTqdDo2NjaipqcHSpUvhcrmmdF9UJhHNJBaLBc3NzXA6nVixYsWMJXaNhkqlQllZGdauXQur1Qq3242enp6Cv+fP1m8Su93OZ/x5PB50dXXN2L5GunZnmtm6zon5Cwnp8wgm2EqSBEEQuNUFy75VZqRLksQz2CVJyhHSNRoNamtrcc4556C8vBwOh4N7XE30ZmO1WtHQ0IB4PI7q6mo4nU7E43EIgpCXbF2WGa7X61FTU4NLL70UK1euhNPphNPpHLOAZL5g9iVarRb19fX4zGc+g2g0ip07d2JwcBAAIIpiwUwVYgI68xBnPqL5KuIxGlqtlnvnp9NpntkwlQGG0d6jFNBtNhvKysp4RrrT6YTNZuO+aGxAaTIML2JntVphMBgQjUbhcrmg0Wj4tceuc2L6lMqINkEQBDH3LFq0CN/+9rcRjUbxyiuv4IknnoDf75/rbs1LKL4TRH6xWq247bbbcMstt8But6OxsXGuuzQmtbW1uPvuu7Fhwwa4XC5UVlbOeh+WLl2K7373u4hGo3jppZfwi1/8AqFQaNb7UYgsXLgQ3/zmNxGJRPDGG2/g8ccfRzwen5F9Fdu1S4xNqcR3EtLnIUwcB8CLiTIhUKVSIZvN8szwkS50pT2Gw+GYUsVsJjZqNBpe7HO8QpGThWUGm81m1NTUYOHChVxMnY2MYKVQb7FYUFdXh2QymeMjX2iZySwjndne6HS6Ge8jG/QwGo1IpVJTniI41o2VzbhggjrLFmfLcF//qaD8DrGBGuW+WIa/JEkF97kXK6USiAmCGJ25zhpS3vsBurcUCjNxXdhsNqxatQrZbBbHjx+f8USDUobiO0HkF51Oh4ULF2LDhg0F7Z3N7tlWqxUrVqzAhg0b5qwvDocD5557LtLpNA4ePAiDwQCVSkX3GJz5fFauXAlZlnHq1CkYDIYZE9KL5dolJkapxHcS0ucp7CLMZrO8aJbyIXCsC5wJhQaDYVpCq1LcZJnb+RIYNRoNqqqqUFNTg4aGBm5BM1PWIRPpD6tuXVFRgZaWFgSDQQwODsLr9c56f0ZjpIfO2Zomr1KpIIoi949ngyzjIcsy4vE4otEowuHwiFPulNYuykECloE/GWuiiRyP8rpmAjoT00VRpB8BeaJUAjFBECPjcrnwqU99CvX19VizZg0cDses96G2thaf/exncd5556G1tRUHDx5EMpmc9X4Qn1BWVob169ejvr4ea9eu5bPeiOKB4jtBlB4GgwFr1qzBsmXL0NjYmFM8fC5Rq9VYvnw5br/9dni9Xhw4cACtra10ryGIKVAq8Z2E9HlONpvlnuSTyabS6/Uwm81cHJ4sw4VNo9GIdDqdN4GReWmtXr0alZWVqKqqgsVi4fuebbRaLSwWC0wmExYsWIDVq1cjEAggnU7D5/MVxE1BKWjPdoYf21cqlYLP50Mmk+FFSMfrgyzLEAQBHo8HsVhsRGsgpW0NE7eVGelsECcfx8ssk9iAk9FohCRJMJlMsFgsvCAqZTQQBEFMj+rqanzlK1/BZZddBrPZPCeC6ZIlS3D//fcjmUzi2WefxalTp0hIn2Pq6urwta99DZdeeinMZvOcDLAQBEEQk8NiseDGG2/EnXfeCaPRWDD3brVajQsuuAArV66Ez+fDo48+ivb29oKxZyUIovAgIb2EmIyox7adjhA4Xtb7VPvG3m8ymeBwOGCz2WbFomS8/rCsZ6PRCKvVCkmSuC3ORI9vIqLydFF+ttMZMZzKfjOZDFKpFNLpNCRJ4oMrI4ncrFgr81VPJpNIpVJ8hsVIsDbYZzGTAwYsM50t7DjYsZANwPQplRFtgiBGRq/Xo6KiAg0NDXPWB4PBgKqqKqTTaTidTrLuKgC0Wi3Ky8vn9LogpgfFd4IoPdRqNZxOJ+rq6qDVFpYMZbVaYbVauT1tqRehzGQySCQS/F+WmMlmlytniGu1Wm6tK0kSkskkotHolO1cieKmVOJ7Yd3BiIKAZQD7/X5ks9kp3QTZ+0RR5LYciUSC+2Uzn26VSgVJkiCKIhdOx/PCZpnA1dXVWLx4MWw2G89Gn2tUKhWcTieWLFmCQCCA1tZWqNVqHnxG2p4tLKOaifJqtTpH9M5kMkin05BlGel0ekxBeSSYKC3LMlKpFJLJJM+onkkrknQ6jVgshkgkgmAwCL/fD1EUodfrIcsy9Ho9HA4HTCZTjkARi8W4lUt/fz88Hg9EURy1WK1yYIAV0mVLPm/Kys9MWeSULel0GkajEQaDAZlMhhfzJSZPqQRigiAIgiglKL4TBEEULv39/Xj99dfR1dWFY8eOIRKJQBRF7Ny5E/F4HDqdjm+7aNEi3HDDDaitrcWBAwewY8cOeDwefPTRR5PWK4jip1TiOwnpxFlks1nE43EEAgE+sjiVNtiIZCKRgCAIXAA1GAzQaDRcwGWjnJlMZtwvHssC1ul0qKysREtLCwwGA0wm05SPN984HA40NzfD4XDA6XRy0XWs7Hy1Ws3tSNj/NRpNjjjMRGQmDDNxfqI3HCbAs7aSyST0ej20Wu2MFtTKZrNIJBLc45wJ6RqNBplMhtsH6fV6ZLNZngHA7FwSiQSGhobg8Xhyjnv4sSkHYpQi+kyJ6QB4vyVJ4gVV2f9ZgV1W8JcgCIIgCIIgCIIgCpmBgQFs3boVH374IU8MA4Bdu3bh448/ztn2iiuuwPr161FTU4MjR47gySefxODg4JQS/wiiWCAhnTgLWZaRTCYRiURgNBq5FQcTfCdiP5JOp5FKpbioWFFRAUmSuFe1RqPhonEymUQ8Hkcmk+H2Hel0GolEgmfzMhGUieiskCT7fyFNtWbiql6vh06n44I4GygAPhFilcUwmfjKhHSWkT5cAFaKwkpxfKKw97CMdIPBkKcjHxmWCZ9Op6HVauFwOJBOp1FWVoaKigqYTCaUl5fD5XIByPXyZ4MxoijyjPxkMsmvC+XgCxPM2XbKhZ2z4ed/KgwX7IeL+MprtdSnBeaDYhqZJohSRafToby8HFardcTXZVlGIBBAKBQa9zut0WhQVlYGh8OBpqamCRWlng3YjLOWlhbYbDb4/X6Ew+G57lZBo9PpUFFRMeqswWw2y6+LySCKIvr7+3Hq1ClYrVZUVFTkZMcRxQHFd4LIH5lMBh6PB6dOnYLZbEZFRcWU46darUZ5eTkWL16MeDw+4fdJkgSfz4dYLDal/RJjEw6H0dHRAUEQUFZWBqfTOWP7Yu4CyWQSNpsN9fX1o9rxVFVV8desVutZ1j3jXRf5vHaJwqAU4jsJ6cRZpNNp9Pf3I5VKoba2FgsXLoTVaoXBYIDFYhnTBoSJifF4HENDQ0gmk2hoaMCf/dmf8aBssVhyPMWVovvg4CCGhoYQiURw/PhxDA4OIpPJQBRFZLNZGAwG2Gw2OBwO2O12WCwWLlYXAsy6RqVSIZvNwmazwWazIZVKIR6PI51O5/hpWywW2Gw2nqHP7G7YuWEorV3YjIFUKgVRFCEIwlkDDqPBtolEIuju7obdbodarYbNZsu76MuEbUmSEIvFEI1G4XQ60dDQAJ1Oh6amJtTX18NoNOYIMKwfLIM9mUyip6cHAwMDEAQB7e3t8Pl8SCaTCIfD/JywLHe2L51OB0EQYLVaodVqx/Rjnwwso5/5vSeTSb6wz4TZD8mynGPtUwpBJZ+UytQwgih2ysrK8KUvfQmXXnrpiPdXQRDw4osv4rXXXhu3eJfFYsHNN9+M6667DmVlZVi6dOlMdXtSqNVqXHzxxXA6nfD7/di6dSvefvttyrYag7KyMnz5y1/GRRddNOp18dvf/hZvvPHGpIq69ff34xe/+AVefvllXHTRRfiLv/gL1NbW5rPrxAwzF/F9y5Yt+M///E8MDg7inHPOwebNm/HpT396xG1/97vf4Wc/+xkOHjyIVCqFc845Bw899BCuu+66Ke2bIGYaQRDw+9//HocOHcKiRYtw5513YvXq1VNqy2Aw4JprrsHChQsnFeP6+/vxzDPPYO/evVPaLzE62WwWu3fvRigUQmVlJT7/+c9j48aNs6KBrF27Fl/+8pdRUVEx4uuVlZVoaGiAWq3Ghg0b8Pd///c5Vqy9vb349a9/Pep1kc9rl5h7SiW+k5BOnEUmk0EoFEIymYRarUYoFOL+5mONDiptSFKpFMLhMERRhNPpxIIFC2AwGFBXVweXy5XzQMUEYkmS0N7ejs7OTvh8PgwMDMDn80GlUnGfdlbMwmw2cx/q4aLzXMOy7k0mE+8jy/IHPilMysRzJvSyjHQAI2bYKzOu1Wo1z2RPJBL8AXQiNx/Wl2AwiHQ6jerq6jwefe5+lLMTkskkXC4XFi9eDIvFgpaWFixcuBB6vR52ux1GozHnc0wkEojFYvwaKisrQyAQQCQSQTKZhEqlQjQa5eeGXUfMAke5SJKUk70uy/KUrhll9jnLdpckiRdOZf8COKvwKAm7k4eEdIIoDiwWCzZs2IDbbrttxNdDoRAOHz48odljer0e5513Hm655ZaCKkamUqnQ0tKClpYW+Hw+7Nu3Dzt27CAhfQysVisuuOCCUa+LYDCIAwcOTHpWYTgcxgcffADgTKy95ZZbpttVYpaZ7fi+detWfOc738GWLVtwySWX4Oc//zk2btyI48ePo7Gx8azt33vvPVxzzTV4+OGH4XQ68fTTT+Omm27CRx99hDVr1kyp3wQxk6RSKRw6dAiHDh3C+eefj+uvv37KbWk0GqxYsQIrVqyY1PtaW1uxffv2Ke+XGB1ZltHV1YWuri6UlZVhzZo1yGazMy6kq1QqNDY24vrrr8eCBQvG3X7hwoVYuHBhzrrjx49jx44do74nn9cuMfeUSnwvnCcUoqBgXliCIKCnpwdqtRp2ux11dXU8c5qJvkofauaFJYoiHA4HZFmG2WyG2WzmNixKAZOJjCxL22azoaqqCnq9HsuWLYPZbEYgEEBPTw8SiQTfb6HZuQxHWYyS2bew/jIBnXmTs4z6iRyPsjApK9bJrFmYkDuRrPRkMolAIIBUKoVIJIJ4PM4tafJ1XpmIbLPZsHjxYlRXV6OyshKNjY0wmUyoqqqCzWbjBU+H+7Sz42B++CqVCg6HA8lkElVVVQgEAujs7EQsFkM8HkcsFkM2m0UqlYIgCNDr9RAEAbFYDAaDIcejXzkFfCKCutK6hRXQZfuJRCIQBIHviw1sKL3ZSdQlCGK+UFNTg8WLF+fUJqmtrR1zUFar1WLp0qW46qqrEA6HcerUKXi93tno7oxQSIP3c4nD4cCSJUu4NdtwamtrUVNTM+r7dTodli1bhquuuionI93r9eLUqVOzbg8QDAZx6tQpBINBHDt2bNTi5kTx8eijj+Ib3/gG7rrrLgDA5s2b8dZbb+FnP/sZHnnkkbO237x5c87fDz/8MLZt24ZXXnmFhHSi4IlGo9i3bx+AM7YbixcvnhWrDLPZjPPPPx+JRAJerxft7e0QBGHG90vkH6fTiU996lOwWq1YtWoVjEbjlNuyWq04//zzeVIhcEY/6u3tRWdn51n1+Oi5mZgMcxXfSUgnzoJllDM7lZ07d2L//v2oq6vDOeecA5vNxjOEgTNelSwTl4mIlZWVaGpq4oKxVqvldhcM9iDKBFeNRoO6ujpUVFQgmUyirq4O4XAYra2teOWVVzA0NASTyZQjzDNhuZBQHpder+c/XJiYbjAY4HQ6odfr+fEoBxRGg1mEaLVanpGfTCZ5xjc79xMJPqFQCJIkcR+y8vJyGI1GOJ3OaQVKJewzr6urw4oVK6DX62GxWOBwOHgGPhsQYYsSk8kEm80GWZa5x74oili3bh3i8Th6enqwe/du+Hw+tLe34/jx40in0wiFQjAYDBBFEbW1tdBoNNxmx2w2w2q1Ttrihfm1p9NpxGIxeL1eXgS1r68PsVgMbrebF1KNx+N8+3wXOi0lKCOdIAqPNWvW4Fvf+laOlYbBYBjTWsNkMuHGG2/Ehg0b0NHRgR/96Ed49913Z6G3xEyycOFCfPOb38R555034utsJuJomEwm3HTTTbjoootyCom///77+NGPfoT29va893ksOjo68OMf/xhHjx7lM+CImSEf8X3452MwGEas+yOKIvbt24e//du/zVl/7bXXYteuXRPaZzabRTQa5c8+BFHIDAwM4Mknn8QLL7yAq666Ct/+9rdHzMzMN1VVVfjqV7+KW2+9Fbt27cJ//dd/zfp9nMgPCxcuxP333494PA6XyzUtP/bq6mp87Wtfy5mdlk6nsXXrVjz55JNUb2aeUSrxnYR0YkTYA00ikYDH40EoFIJKpUJ1dTUkSeJe4AC46K4U0l0uFywWC0wm07iipVIMZyI585l2uVwIh8M5XujDM7wLEaUwrvREZwMGymKkI4nIo6Hcjtm76HQ67hE+UWFYkiREo1Gk02kIgsCzrvI5RZ0dt9lsRl1dHWw2Gx9YmOw0NJb5mMlk4HQ6udd8V1cX1Go1hoaGoNFouN1KIpHIWVjBUuaVPvwGP9p5UxZ1VVoQsQK5yiWRSHArmUwmQwJ6HiAhnSAKC1Zwc+XKlWhqaprw+9hAeV1dHQwGA1wuFy/ErRRQieJAOeNs6dKlOP/886fUjvK6UDI4OMhr8ox3jTBrt+G/XyYzWM7iNUveOHTo0OQPhpgU+Yjvw20G/umf/gkPPfTQWdv7fD5kMpmzZs1UV1fD7XZPaJ//5//8H8RiMXzhC1+YUp8JYjZJJBI4ffo0AKC5uRnxeHzUZ7zxErkmg8FgQHNzMwDA4/Hw5CWK9flFaTOqtBLNJ2azGUuWLMlLW8rrgiFJEnbt2sVtepXPzSyu5/PaVKI8f3Rd5p9Sie8kpBNjwqwyMpkMvF4vTpw4AZPJBKvVCqvVyouFZrNZOBwOLFq0CNXV1SgrK+PC91SyxjUaDRfhq6ursWzZMjgcDu6BXeg3PqUXNwsGGo2G29vo9XoYDIYp+78qs9MNBgPUajUvpjkRATebzXLv+YGBAeh0Ou5b7nK5YDAY+I+f8T47JjKzfqnVauh0OpSVlcFms3Ef+OkcrxI2iFJeXo5zzz0XjY2N0Ol0kCSJi9qhUAgAMDQ0xPtntVphsVj4TAultQ67RtmxsvPHrIoymQyi0SgSiQSi0SjcbjcEQcDAwAC6uroQj8fh9XoRiUSQTqf5TAEmqBNTg4R0gph/OJ1OXHfddaipqUFvby927dqFQCAw190iJojVasWGDRuwdOlS/psv3yxYsACf+9zncOGFF+Lo0aPYu3fvqDYrnZ2deOGFF1BVVZXTxwsuuADLly8fd1+RSAQfffQR2tvb0dbWVtSWQ8VEPuJ7b28v7HY7Xz9StpqS4b9nJ1ov5/nnn8dDDz2Ebdu25VxnBFEMjHSPVFJTU4OLLroo7wWbGxoasGnTppz7OJEfUqkUdu/eze1PL7744lmZcZBP1Go1zj33XHzlK1+B1+vFnj17cPz4cfh8Prz22ms4ffo0Fi1ahAsvvBAOhyNv+5VlGSdPnsTHH38Mn8+HQ4cO0bN6nimV+E5COjEm2WyWF3ZkVhbDiyiyv5csWYJVq1ahpaUFZrN5Wn7barUaVqsVsiyjvr4ea9euhd/vR19fH06dOsULRxY6LENalmVoNBo+LYUtk8lGHw7L+DaZTNDpdBBFkQvpbBkNVgQ0m82io6MDg4ODcDqdyGazqKurg91uh16v5zYvY92Istks92bX6/VcoK6urubWKkysnu6oMjtf2WwWNTU1cLlcEEURdrsdGo2GFy5ra2tDKpWCw+HgGelscCCZTCKbzUKn08Fms8FkMnHfebVanTMIkkwmebFSv9+PaDSKcDiM7u5uRKNR9Pb2orW1FfF4HMFgEOFwmA+cKNshCIIgzlBRUYEvfvGLuPXWW/HHP/4R7e3tJKQXEXa7Hbfccgs+//nPQ6/Xw2q15n0fS5cuxX333Yd4PI5f/epXOH78+KhC+okTJ9Db25sz062urg5/8zd/g2XLlo37IBUMBvE///M/2LZtG699QhQHdrs950F7NCoqKqDRaM7KTvN4POMOBG3duhXf+MY38Nvf/hZXX331tPpLEHPBSPdIJevWrUN9fX3ehfTFixfz+/izzz6L48eP57X9UiaRSODNN9/Ezp07sWzZMlRUVBSdkK7RaHDhhRfi3HPPhcfjwX/+53/i5MmTcLvd+PWvfw29Xo8bb7wRS5YsybuQvm/fPvzwhz/E0NAQYrFYTo0WojAohvhOQjoxLsrM6uE3GuZ7zmw1lN7X0/EvV77XYDDAZrPxrHgAOdYZEx1xmi2UAio7bywDnInJ+fJ2VxZqncy0LmUGNrPqYQU7BUGARqPhxTtZ++x9w4+TzRIAwK1mlFn3zM4mX8cLgB8vG5xwOBwoLy8HAC7+s9kU7LhisRhUKhXMZjO3IFJa67BjVX5uqVQKyWQyJ9td2R4rdJpIJCCKIr8uydYlP1BGOkEUBqw2h16v5wOXU0Wj0fCHoqqqKlRUVKCsrAzJZBKJRCJfXSbyjMlkgslkQllZGaqqqlBVVTVjv730ej2f1VZZWcnjOyv0rYRZqinRaDTw+Xzw+/3j9tHv98Pr9WJoaCi/B0GMyWzGd71ej3Xr1mH79u249dZb+frt27fj5ptvHvV9zz//PL7+9a/j+eefx4033jilvhLEXDPSPVJJMBg8q9hjPlDex202W0E9qxc7sixDEAQIgoCysjIe76aCSqXi8X22YfvNZrN8/6zeGQB+XKyGG0t+myjZbBbxeByiKObYxrC4TzPQZoZSie8kpBPTQqPRwOVywWazoaqqCk6nE1arlReazAdmsxmNjY2oqKiA1+vlhRyTyWSOf1ahBGg24MAKgEajUW59wrKe89lfluWt9GMf6SakPE9M6GbbM6G7q6sLHo8HJpMJLpcLOp2O+9az7ZjorLTYYR5ta9aswfLly3lRz9nwsddoNKivr8enPvUpBINBHhwzmQwCgQACgQCi0Siy2SzMZjMCgQDC4TD0ej0cDgcsFgsvDKvM6JdlGbFYjPurezweRCIRhEIhdHV1IRKJwO/38wKjzAKJstDzBwnpBFEYNDQ04LOf/SwWLVrErdbywaJFi3DPPffA6/Xigw8+wJtvvpmXdon8otPpcOmll+Lqq69GRUUFVq9ePSu/uTQaDTZs2IC//uu/hsfjwVtvvYVdu3aNOw07Go1i27ZtaGtrG7ef4XAYx44dy2e3iQkw2/H9wQcfxB133IH169fjoosuwhNPPIGenh7ce++9AIDvf//76O/vx7PPPgvgzEP2nXfeiR/96Ee48MILebabyWTKa3YkQRDEdPB6vXj++eexe/fuKb1fp9PhiiuuwDXXXDOufcZsc+LECTz22GOorKzE5ZdfjmuuuYYnzE2EYDCIV199FQcOHMipe3b8+HFEo9GZ6nbJUyrxnYR0Ylqo1WrYbDZUV1ejsrISNpsNZrMZwNh2IJPBZDKhvr4eoiji6NGjXNhkQu5wf+u5hlmdSJKERCKBeDwOWZZhNBqh1WpzsrPzITSzNpjIPZZIz17X6/VcQGZLJpPB4OAgJEmCTqfj/XU6nSgrK+NFXlnBzlgsxkd4ZVmGTqfDihUrUF1dDYvFAqPROKMDHCzTXZZlPogTCoVw7NgxnDx5ErFYDENDQxAEAclkEgBgsVgQj8e51Qsb+GGZ7UxIZ5nlLPtcFEUMDQ1xIb2zsxPRaBTRaBTBYLBorIYIgiCmQnV1NW655RZceumlObOUpktjYyO++MUv8mLZ7777bl7aJfKLRqPBunXrcNddd8Fut89asXe1Wo3Vq1fjnHPOwdDQEPr6+iYkFgiCgHfeeQc7d+4cd1tlnRdi/nL77bfD7/fjX/7lXzA4OIhVq1bh9ddf50WTBwcH0dPTw7f/+c9/jnQ6jfvvvx/3338/X/+Vr3wFv/rVr2a7+wRBECMSCATw2muvTTkum0wmWCwWXHHFFQUnpJ8+fRpdXV0wmUwwGo24/PLLJyWkRyIRbN++Hb/97W9zntPZsz4xP5ir+E5COjEtmLc0K9o4E8IpE0yZUAycefBhWenMNmW2HuzGQpZliKLIBXRJknIsaGZDbB2+D2UWutlshlar5QVAlSI8K1bK7HtUKhVkWUYqlUI0GoVGo+EDAZlMhnuKsbbY9Cy2zWzOElCr1dxWxm63o6KiAjqdjldyTqVSiMViyGQy3J9er9fz10YS0tm0OTYlLBgMIhKJIBqNcjGeecOTiD4zUEY6QRQGLIbodLq8t6vVankdEeCMddvAwACOHTsGi8WCmpqaGfHhngqBQAAejwc+nw8+n69k7jPsdxirgzKbKBMAJvM7jxUKJwqTuYjv9913H+67774RXxv+8EyDegRBFBrMWm20OByNRuF2u8e08mHY7XbU1NTAZrOhoqJiTnUUrVaLuro6rFq1CoIgwO12IxaL5VjIut1uHD9+fFK/B/v6+vjMcWL2KJX4TkI6MS2Y57QyszffqNVq7rnOLGMymQyCwSD6+vr4g3a+H/CnSjQaRX9/PwKBAILBIL95s4fA4SOi0w1cw4V65c1LrVbDaDRCr9fDZrNhwYIFMJvNfPRZafeSyWS4OCwIArxeLy+8xQQDlvnPMriy2Syam5uxfPlylJeXo6mpCRaLhXujzwbsGJiH79KlS5FOp9HX1we32w23241QKARRFKHVajE0NASHwwGdTgeHw8Fta4xGIxfSWYFYlpEuSRICgQAX1SORCCRJ4ueAmBlISCeI0kMQBGzbtg0HDhxAc3Mz7rrrLqxdu3auu4VMJoNdu3bh//7f/wuv14v29nYSagliilB8JwiCmDhqtRobNmzAHXfcAafTOeI2H3/8MX75y1/mZN+OxurVq/G1r30NDQ0NaG5untNsdKvVittuuw3r169He3s7nnrqKRw8eJC/LkkS3nnnHfT09ExqMD8ej6OtrW0GekyMRanEdxLSiWnBstSMRiMMBsOMjGYqLTyU7SeTSYTDYWSzWV6IqhBIpVIIhUIIhUJIJBLcx50J3jNRiHK0dpV+6BaLBZWVlbDb7TAajTlCOnBGkGe+836/H5FIhI8CBwKBMQXjqqoqVFdXw+l0zknGGrtGdDodKioqsHDhQmSzWej1eqTTaZ55zoqqCoIArVaLSCTCs/QNBgO0Wm2OtYsgCEgkEpAkCZFIBPF4HJlMhs80IGaWUgnEBEF8giRJOH78OI4fP47Vq1fjlltumesuAThzT+nq6sIf/vAHKlBFENOE4jtBEMTEUalUaGpqwlVXXYWqqqoRt8lkMvjv//7vCbVXU1ODyy+/HIsWLcpnN6eEXq/HypUrsXLlShw4cAAvv/xyzuvZbBYdHR3o6OiYox4Sk6FU4vvce2EQRQ8TFpnNRb5hX0YmcDJR1Ofzobu7GwMDA9yHfK6+fMo+RqNR9PX1oa+vL6eQBct0ZiJtPoRYNuWJFf1Utssy+O12OyorK1FWVgaz2cxtTZj4zLLMWeY/s4ApKytDRUUF7HY7DAYDt+5hsPcYjUaUlZWhsrKSi/NzhVqt5oVSHQ4HTCZTjrDPzpeyEGwoFMopUur1euH3+xEIBBCJRHLsXdhnV0w3eWJybNmyBc3NzTAajVi3bh3+9Kc/jbn9zp07sW7dOhiNRrS0tODxxx8/a5sXX3wRK1euhMFgwMqVK/HSSy9Ner9f/epXc+pBqFQqXHjhhdM7WIIgiDGora3FlVdeiRtuuAHLly+fkVmHE8VgMGD16tW46aabcNlll6GiomLO+kIQBEFMHlbv7NVXX8XOnTsLZlCaDZS/9dZbeOONN9DZ2VkwCVMVFRW47LLLcNNNN2H16tVjZo5XV1fj8ssvx4033ohzzjmnYGbrE8R8hDLSiWnBPMFjsRj3K58JmEDMRNBYLIbTp08jmUyioaEBLS0tqK2tnVMRlwn9brcb+/fvRyAQwNDQEBfZmRWIwWCAJEncjmQ6WfysXZY5zoR6JpIbjUbU1taitrYWJpMJ5eXl0Ol0OX7zSpj1DPNDZ37p4XAYqVSKF3plIr1arYbT6URzczMWLFiAsrKyORfSy8vLYTKZkEwm4XK5YLFYuG99NptFKpWCJEkAzlgIDBcnlVW9lZn+ykEKEtJnh9ke0d66dSu+853vYMuWLbjkkkvw85//HBs3bsTx48fR2Nh41vadnZ244YYbcPfdd+M3v/kNPvjgA9x3332orKzEpk2bAAC7d+/G7bffjn/913/Frbfeipdeeglf+MIX8P7772PDhg2T2u/111+Pp59+mv+t1+snfYwEQRAT5dxzz8WDDz6IpqYmlJeXz/nU71tuuQWXX345jh8/jh/+8Ifw+Xxz1h9iepRKxhpBEJ8Qi8Wwbds27Ny5EytWrMBf/dVfobKycq67hWw2i927d2PLli3weDzwer0FY922ePFifPvb38bKlSvhcrnG9AhfsWIF/r//7/+DIAh47rnn0Nvby595CWK2KJX4XvAZ6Y888gg+9alPwWazoaqqCrfccgtaW1tztpFlGQ899BDq6upgMplwxRVX4NixY3PU49JCmSmu9OrO9z6UWdxsf4IgwO/3IxQKIZVKzWm2sPI8xONxBINBhEIhJJNJ3p/h/R+eQT4VlFn6rEAm2x/LGDeZTNwXndm8KDPRlYtareYWKRaLBRaLBUajkRcQVYrkyix2tm0hCHt6vR5msxlGoxE6ne6svrMBGTYok0wmeXHYWCyGeDyOeDyORCLBBw7YIAgVFp1dRvL+n8wyWR599FF84xvfwF133YUVK1Zg8+bNWLBgAX72s5+NuP3jjz+OxsZGbN68GStWrMBdd92Fr3/96/jhD3/It9m8eTOuueYafP/738fy5cvx/e9/H1dddRU2b9486f0aDAbU1NTwpaysbNLHWChQbCeATwaDWQwfTjabhSiKfKB4LmB9ZLOSSgm73Y7Fixdj+fLlqKysnNNiZBqNBjU1NVixYgVaWlpgs9nmrC/E9Jnt+E7MHhTfidFgCWcnT57E6dOnIQjCXHcJwJnr0e/3o7W1FW1tbQgGg3PdJWi1Wuj1ejidTixatAgrVqxATU3NmDPDrFYrFi1ahJUrV467LUHMFKUS3wteSN+5cyfuv/9+fPjhh9i+fTvS6TSuvfZaxGIxvs1//Md/4NFHH8Vjjz2GPXv2oKamBtdcc02OrQYxM2SzWYRCIbjdbvh8Pu4nzUTHfMBsXAYHBxEKhbiNDNtvX18fTp8+jba2NgwMDMxJZWZBEHD69GkcO3YMnZ2d8Hg88Pv9SCaTAHKFdlEUuU83E9onI6gr22FtRaPRnBkBWq0WRqMRJpOJFxY1Go0Tfghm2fI6nY6/32q18iliarUaBoOBt8/+P9z+ZbZR9psJ6uzY5zJTnpga+QjEkUgkZxmtkr0oiti3bx+uvfbanPXXXnstdu3aNeJ7du/efdb21113Hfbu3cszQEbbhrU5mf2+++67qKqqwtKlS3H33XfD4/GMdfoKGortBAB0d3fj+eefx5YtW7Bz504kEomc1/1+P15++WX85Cc/wWuvvTYnD7c9PT144YUX8NOf/hQ7d+5EPB6f9T4QxHyjVB60SxGK7wQxPZxOJzZu3IhvfetbuOWWW8jKjCgqSiW+F7y1y5tvvpnz99NPP42qqirs27cPl112GWRZxubNm/H3f//3uO222wAAzzzzDKqrq/Hcc8/hnnvumYtulwyZTAbBYBDxeBx2u50XYwSQN0E1mUzC7XYjGo3C7/dzATkQCCAUCiGdTqO1tRWZTAb19fVwOp2zPv04Go3i5MmT8Hq9aGtrw+DgIOLxeI44zs5LKpXixS4BcIF7MudLWUBTWRBzLCF9MvtgRUo1Gg1MJhP/bNmPYCakGwwGLlYzIX2uYbY1JpMJVqsVdrsdsizPqcBPzB0LFizI+fuf/umf8NBDD521nc/nQyaTQXV1dc766upquN3uEdt2u90jbp9Op+Hz+VBbWzvqNqzNie5348aN+PznP4+mpiZ0dnbiH//xH/GZz3wG+/btm1O7halCsZ0AgI6ODjzxxBM4fvw4kskkH3xmeDwePP/889DpdLjxxhuxatUquFyuWe/jL37xCxw5coTX1yAIgiBGhuI7QUwPp9OJTZs24bOf/SxPaiMIorAoeCF9OOFwGAD4lPbOzk643e6cbD6DwYDLL78cu3btGjEYp1KpnKzESCQyw72evzDbFTbtmYmtBoMBGo1mylOKlKNRkiRBEASEw+ERrVJSqRTC4TACgQAsFgvi8TgXgbVa7YxlImezWe5PLggCL1oZjUZ5Vv5o72NT1NPpNCRJ4n2d6H6VBV6VBUwZzHZF+S9bPxGU2zMBfjRrF+U2hZL1rbSqYf0qlL4REycfHmu9vb2w2+18/Xii8/DrRJblMa+dkbYfvn4ibY63ze23387/v2rVKqxfvx5NTU147bXX+INoMZOP2A5QfJ8pJEmC3++H2+2GyWSCzWbLy+CkJEkIh8OjZpozGzcAfGaa1WqF2WyG1Wqdsft6JpPhM72Ghobg9/sLYqo3QcwX8hHfieKA4nthM1PxXRRFRKNRJBIJhMPhs2Zep9NpBAIBuN1uGI1G2Gy2WbciUfYxGo0WTIFRrVYLq9U664kDBJEPSiW+F5WQLssyHnzwQVx66aVYtWoVAPCMvZGy+bq7u0ds55FHHsE///M/z2xnSwTmHZrJZOD3+3H48GFEIhE0NDRg+fLlMJvNU25bkiTIsgyv14v9+/djcHAQnZ2dZxXNiMViOHz4MLq7u7FkyRLo9XqUl5ejqqqK+4Pl82GbfcETiQR6e3vh9/vR1dWFDz/8EENDQ/D5fGN6uTIfdbVazUV1lvmt1+tHFK1lWea+3uz9yWQSkiTlZKOPJtDl4/hHEtELWahWer5TNnpxko9AbLfbc4T00aioqIBGozkr+9zj8ZwVXxg1NTUjbq/ValFeXj7mNqzNqewXAGpra9HU1IRTp06Ne2yFTr5iO0Dxfabo7e3FU089hddffx0XXHABbr311ln36D9x4gR+8pOfoLy8HFdffTU2btw4Y1laPp8Pv/vd73DgwAH09fWNOiuFIIipUSoP2qUOxffCZ6bie1tbG373u9+hp6cHJ06cOMsWze1249lnn8Uf//hHrFmzBrfddtuYv3tngvb2drz44ovo7u7GiRMncuyHCIKYGqUS34tKSP/mN7+Jw4cP4/333z/rtclkEX7/+9/Hgw8+yP+ORCJnTf8nJg4rdBmJRNDR0cGD0KJFi6bcptJTPBwOo62tDd3d3QiHw2eJ1IlEAqdPn4ZarUYqlUJ9fT2i0Si0Wi2qqqqg0WjGzSqdSv8kScLAwAB6e3vR0dGBY8eOYWhoaFy/c3a+VCoVz+jXarXIZDKwWCxQqVRcUFfuL5VK8YJrkUiEW8eIonjW/kYStqcjJo/0XmXW92Qz3meD4YVUieJjNgOxXq/HunXrsH37dtx66618/fbt23HzzTeP+J6LLroIr7zySs66t99+G+vXr+c2RxdddBG2b9+O7373uznbXHzxxVPeL3DGO7q3txe1tbWTOs5CJF+xHaD4PlN4PB689tprUKvViMfjuOaaa2ZdSO/u7kZvby+MRiMcDgeuvvrqGRPSw+Ewtm/fjpdffpn/HiEIIn+UyoN2qUPxvfCZqfg+MDCAl156CUeOHOHJXkoCgQDeeustqFQqfPazn8VVV10160J6f38/fv/73+PQoUMj9pEgiMlTKvG9aIT0b33rW3j55Zfx3nvvoaGhga+vqakBcGZUUykojJXNx7ydifwiSRKCwSA0Gg08Hg8GBweRSCRgNpthNpvHzVxmojIrpOn3+yEIAgYGBvgU6+HZ6Ox97EE3FothcHAQqVQKBoMBFouF/2symXgxysmIyqxfLBs8FoshHo8jEomgr68P/f398Pl8SKVSkwrCynYZTES32WwwGAxcqGbnN5lMIp1OQ6fTwWAw8Clpoijm3LRYpjv7l2W9T9R+hbWl/DyUHuzK15TWMoVy81MOxLD+EcR4PPjgg7jjjjuwfv16XHTRRXjiiSfQ09ODe++9F8CZh7j+/n48++yzAIB7770Xjz32GB588EHcfffd2L17N5566ik8//zzvM0HHngAl112GX7wgx/g5ptvxrZt27Bjx46ch8rx9isIAh566CFs2rQJtbW16Orqwt/93d+hoqIiR3wvRvIZ2wGK7zMJGyT2+Xw4fPgw/H4/ampqUF1dPW5MzWQyGBwchMfjyYkTbW1tZ/mij9cHNoh94MABWK1W/prFYkFDQ0POuong9/vR39+f8/uiu7sbwWCQYgdBEMQUofhePEwnvitJJpPo7+9HKBRCa2srBEEYM46y58pgMIijR4/mFJvV6XSor6/nMzynw2i/QSbSx4liNpvR0NAAm8024uupVAoDAwMIBALjtpVKpXD69Gns27cPNpsNCxYsIJ90gigwCl5Il2UZ3/rWt/DSSy/h3XffRXNzc87rzc3NqKmpwfbt27FmzRoAZ/yudu7ciR/84Adz0eWSJRaL8czxUCgESZLgdDqxbNkyLF26FFqtlnuXj4Qsy9xjPRgM4sMPP0RXVxc8Hg+6u7sRiUS4ODwcluHtdrvx3nvvwWAwoKWlBa2trbDZbFi5ciUaGxthMBhgt9v5D7HxRGUmKDN/t0QigdbWVrS3tyMSieDkyZNwu91IJpOIRCKTzlpjx6PT6eBwOGAwGGCz2bBo0SI4nU4YjUZYrVao1WqIosj9AQcHB+H3+xGJRNDe3o5wOMx901m2PHDGYy2RSOT4xk/kB5HSsicWiyESiSCZTEIURf46E+/ZelEUoVKpJuz1PlMoPeTj8TgEQeCDHERxMdsj2rfffjv8fj/+5V/+BYODg1i1ahVef/11NDU1AQAGBwfR09PDt29ubsbrr7+O7373u/jpT3+Kuro6/PjHP8amTZv4NhdffDFeeOEF/MM//AP+8R//EYsWLcLWrVuxYcOGCe9Xo9HgyJEjePbZZxEKhVBbW4srr7wSW7duHfUHe6FDsb14OXDgAB555BG4XC7cfvvt+MIXvjCuuJFIJPD666/jd7/7HY8jwJmMtMHBwUntP51O491330VXV1fO74nly5fj3nvvxerVqyfclizL2LNnD55++ml4vd6c/ra3t0+qXwRBTJxSyVgrRSi+Fy9Tie9KvF4vfvWrX+GDDz6YVHw/evQo/vM//zNHLK6oqMDXv/51XHfdddOeWZxIJPDGG2/gd7/7XY7PfjAYxMDAwLTaZixYsAB/+Zd/ifPPP3/E14eGhvDLX/4SO3bsGLctn8+HX//613jzzTexbt063HPPPVi8eHFe+kkQM02pxPeCF9Lvv/9+PPfcc9i2bRtsNhv3VXM4HDCZTFCpVPjOd76Dhx9+GEuWLMGSJUvw8MMPw2w248///M/nuPelhSRJfJTVYDCgsrIS4XAYlZWVkCQpx1d7JJh4m0gkEIlEuF9ZJBLhhUbHQpZlCIKAWCwGtVqNTCYDWZbhcDhQWVmJiooKyLIMi8XCpw+ONY1QeRNgomwsFsPAwADa2tq4lY3H45nyOWMZAKwPGo0GBoMBLpcLlZWVMJvNcDqd0Gq1XEhn50Gn00Gr1cJoNCIWi+UcExtZZ0VgJUninuwTgWV0s2xuJpSzdplnu0qlyvFuL4SbnzKbXlmQtRD6Rkye2f7c7rvvPtx3330jvvarX/3qrHWXX3459u/fP2abn/vc5/C5z31uyvs1mUx46623xnx/sUGxvXgZGhrC0NAQrFYrLrjgggllckmShFOnTuGdd97JEdKngizL6OnpyRnUAs4M5odCoUm3NTAwgA8++AD9/f3T6hcxu1BML37oM5yfUHwvXqYS35WwumXvvPPOpN7n8/ng8/ly1tXV1eH666/Piz1rJpNBe3s73n333UnNgpsMNpsNa9euxRVXXDHi693d3Xj99df5s/pYJBIJHD16FMAZe1Vlpv5EmI6QSRD5oBSuv4IX0n/2s58BwFk3paeffhpf/epXAQDf+973kEgkcN999yEYDGLDhg14++23izZTbz4Qi8X41C6tVgtBEKDX62G322E0GnOKVDKhlhUsDYVCCIVC6OnpQSgUQjKZnFQgZ8FDEAS43W6Ew2GYTCZ4vV6YzWZUVFTAZDJBp9Pl9IUJ/EqPc3YTSKVSSCQSXAAoLy+HyWSCKIqw2WxIpVKIxWJcuGXZ2uNhtVphs9lgMpnQ0tKC+vp6WK1WVFZW8gx1pV86s6aprKyEwWCA1WpFOp1GMBhEIBBAX18f7yObAh8Oh7m9DfOL12g0I84MYPYsLMM+lUrxTHylF7tSrGfZ+kzAMBgMs151Xdl/9lkJgoB4PM77Xgo3dIIoFii2Fz/pdBpHjx7Fiy++OG7GWiwWQ2tr64zODPL7/XjnnXcmVRiUZaQPL4JGnKGvrw+vv/466urqsGzZMixfvnzOZp2lUikcO3YMp0+fRmdnJxWAJYgCheJ78TOZ+K5kYGAgbxneiUQCe/bs4fXDJotKpcLChQuxatUq6HQ6nHvuudi0aVOOjZvb7cbhw4cnPQjPMBqNWLVqFZqbm7F48WJUVFSMuq3FYsGGDRv47HHgzG+Q7u5uHDlyBIlEYsT3DQ0NYfv27Whvb0dLSwtWrVo16mcyODiIQ4cOIRAI4NChQ9NOXCAIYnQKXkifiPilUqnw0EMP4aGHHpr5DhETIhgMIh6PQ6PR4OTJk7BYLDAajaitreUZ1kxwZX7joijC6/XC5/NBkiTEYjEu3k52RDybzXLrE41Gg9OnT0Ov18NoNKKyshImkwl2ux1lZWXQ6/XQ6XS8OKBSuGeBW6/X8ywKlUqFxsZGSJKEsrIyxGIxhMNh9PT0IBaLIRqNIhQKjdtnlUqF8vJyNDc3w263Y/Xq1Vi8eDHPStdqtTnFPPV6PR8ksNlsyGQySCQSWLBgARKJBI4dO4ZIJIJoNMoF/WQyCbfbDUEQ4HK5oNfrkc1modfrYTAYuECvUqm48J7NZrn/ezwex9DQEARByLHVYUVOgTPFftxuN/eedzgck/qs8gkbQAkGg3xQJhwOj1sAlihMSmVqWClCsb34SaVS2LFjB/bs2TPu4Gkmk0EoFDqrWHg+6evrwxNPPDFpH9FIJIJIJDJDvSpujhw5gh/+8Iew2Wz4+te/joULF07agz5fCIKAbdu24YUXXkA8Hoff75+TfhD5geL7/IXie/EzmfiuhNU4yweRSAQvvvgi3n777SkL6Z/73OfQ2NiIyspK3HDDDbj44otzrs8//elP+MEPfjBlId1ms+HWW2/F5z//eZhMpjGFdKfTiS984QvYuHEjXyfLMl566SX09PSMKqSfPn0aP/nJT2A2m3H77bdj4cKFowrpJ0+exObNm3Hq1CmeCEcQs02pxPeCF9KJ4oTZfQDgVi3spp9KpaDRaGA0Gnm2ejgczhHS81G4UtmHWCwGlUoFo9EISZJgNpsRi8WQTqeh1+v5wry/mee6RqOBSqXiIrpGo4HZbIbRaOTFNvV6PYAz2eXs/Szze6wbiVqt5p7tDocDLpcLLpdr1IKsynUsI0yn0yGTySCVSnHvdzYQwLLGk8kkP/bhXubDxWWllUsikeDZ3CMV7GTvZduyjHwAeZmGNxWU9kCsOC2zdSmmGzNxhlIJxARRjMiyjGAwiGAwONddAfBJIS8if8RiMcRiMZhMpgkVSJtJMpkMvF4vTp8+TUVg5wEU3wmicCmE+M7u+cr6JRNBrVZz+1OW2KZWq1FWVoaysrKcbbu6urjlUDqdzslWHwtW981isaC2thaLFi0atwaZVqtFVVUVqqqq+DpZllFbWwur1QqTycSfW5UkEgn09fVBo9FgcHAQgiDAbDaPuI9gMIju7m50dHSMewwsIS+RSPDjmUvYsSeTyRlNuiBmnlKJ7ySkEzMOy17OZrPwer0QBAEajYZnXLPM6XQ6jVgslhcRfThKr/NIJMKtP1jGOivCqdfr4XQ6YbFYYLFYUFdXx7PpzWYzNBoND87MAiWdTkMQBFRVVSGRSKC3txft7e1IJpMIh8Nn+ZqxjHOdToe6ujqsWLECVqt1TBF9NDQaDSwWCwwGA2pqarB06VKEw2H09/djYGAgp4/ZbBZqtRpGoxEmk4lbvbB9soAqSRIEQYDX60UqlUI8Hh8zm5sVXQ0EAjAajWhsbMzJpJ8N2OebTqfR39+PtrY29PT0IBwOk4hexJRKICYIgiCIUoLiO0EQM0FDQwOuuuoqNDQ0YO3atWPaBTU1NeHOO+9EX18fDhw4gPfee29cqzeNRoP169fj0ksvRWVlJVavXj3l512VSoVVq1bhnnvugcfjwa5du/DRRx+NKCRns1kcPHgQP/vZz0adGdba2jrhGQFtbW345S9/iaqqKlx44YW4+OKLeXLgbBOPx7Fz504cOHAAfX19Z9XAIYqLUonvJKQTMw7L3JYkCalUKifYsIIbSq+wmfoCsWzlcDjM+6AUrlnm+dKlS7nY3NzcjIqKCm4LM1wcZv1NpVJobm6GKIo4ceIE0uk0otEoMpkMBEHIOSatVsuz2uvr67FixQpYLBbodLpJB2ImpLMR7WXLlnFvc7fbjUwmg3g8DpVKxQcP2HtsNhsX0tVqNR8QSKVSEEWRZ+yP95mEQiGcOHECbrcb9fX1SKfT0Ol0yGazs+qVzqxp+vr6cPjwYXg8HkSjUbJ0IQiCIAiCIAiCmOcsWLAAd955J9avXw+dTjemONzc3IyvfvWrEEURTz31FPbu3TshIX3Dhg144IEH4HQ6YTAYppU4tmrVKixevBiRSATZbBb79u0bUUiXZRmHDh3CiRMnRt0fm6U+EVpbW9HV1QWz2YxvfetbWL9+/ZwJ6bFYDNu3b8fTTz8NURQnfAwEMZeQkE7MKoUgao4kDCuLnxqNRlgsFi52M9uX8YTuTCYDrVYLi8UCh8MBlUrFfchlWebHzjLSh7c93pSw0WCDAWyKWSaTOWt6FrN5kSSJ95PtU1lkNZlMQhRFvt1EPi+Wwc5seuLxOGRZHnHgYSZQHhsbLAiFQohGozQ1rMgplRFtgiCIQkaWZYTDYfT29sLhcMBut8+aV3o0GkU4HOYzGon5AcV3giDyhUajgdPphNlsRm1tLVwu14RiFLNsNRgMqKioQENDAwwGA8Lh8JjxRq/Xw2q15iUOarVaWK1WXsNsLFgNtHzALHCz2eycC9dsBj1LQiSKm1KJ7ySkEwTArVscDgcWL16M5cuXw2azwel0wmQyjSsIazQamEwmGAwGNDQ0QJZlbiETDAZ5Nn4mk4HRaERNTQ1vnxXpnK7gbLFYUF9fD4fDgVOnTkGj0eTY5LCMfFZYlM0OYPtlr7PirhMd9BAEAd3d3fB6vThx4gSam5vhcDh4cZfZ8EsPhULwer0IBoM4fvw4Dh8+jFgsRg/dRU6pBGKCIIhCRpIkvPvuu/D7/aiursamTZtwySWXzHhsz2Qy2LVrF7Zt2wafz4dDhw4VREIGMX0ovhMEkS9cLhc+//nP48ILL0R1dTUaGhom9X61Wo0LL7wQf/d3fwev14vf//73+OMf/0iiLkFMgVKJ7ySkEyWPSqWCXq/nmeS1tbVobm7mo82ssOdYMH91ACgvL4dWq0UkEkF7ezvPzGZZ3gaDAS6XC06nM8deZboYjUaUl5fzQYHhbbLMbQC8mEc+SCaT8Hg80Ov13NesrKwM5eXlqKyszMs+xiKbzSIej8Pj8cDn86G3txednZ05xWaJ4qRUAjFBEEQhk8lkcPToURw7dgwLFizA2rVrcckll8z4frPZLE6ePInf/va38Pv9dF+fR1B8JwgiX1gsFlx66aX44he/OOl6Y8AZLWDZsmVYunQpfD4fTpw4gXfffZeEdIKYAqUS30lIJwiAC+nMzoUVFJ2KwK3RaKDX67l9i8lk4h7lLCNcWeA0XzCvc6VNjTLbfKZgN8tMJoNgMIiuri5EIhFUVVXBZrNBp9PBbDbzAYnpDhooC4uyQqqDg4Nob29HIBDgFdpnomgtQRAEQZQqbPp1W1sbPvjgAzgcDixcuHDMYm5TQflboqOjA6IoUjwnCIIgRoQ98073uZq1MdOzrQqJbDaL3t5e7N69Gy6XC01NTbOSCCfLMgYHB9Hb2wuv1wu3201xnigqSEgnSh6VSgWr1Yrq6mqUlZXB6XTCYrHk+IdPBpbJrlKp4HK5UFVVxb3Dk8kk1Go1F9mnUmB0NNRqNS+qotVquVifyWRmPDBls1mk02m0tbUhGAzC5XJx+xiHw4Hm5mbYbDbuFz/VY1YeRzwex8DAAARBwIcffogdO3YgHA6jr68PkiTNaOFaYnYolRFtgiCIYiEUCuGFF17Ajh07cN555+Gb3/wmVq1aldd9nDx5Elu2bEF7ezvcbve4xd+I4oPiO0EQxNwjSRL++Mc/orW1FbW1tbjnnntw3XXXzYp12/vvv4+nn34aPp8PfX19ZN02TyiV+E5COlHyKAt1ms1mLkRPZWoY8InNSzqd5hnp6XQaGo2G70+j0Uw5432s42Cj6MMz0meDbDaLUCiEeDyOaDQKt9sNv98PALwwSjab5WI66/NEUN5UWZAVRRGRSASRSASDg4M4ffo0otEoYrEYBeJ5QqkEYoIgiGJBFEW0t7ejvb0dwBlhfbIxfTRYO36/HwcPHsTRo0en11miYKH4ThAEMfdks1n09fWhr68PDQ0NuPXWW/nzupJ8agpsJnt/fz8+/vhjBAKBvLVNzD2lEt9JSCcI5Irb053SxQRslUrF21O2mclkkEgkEI/H81Z5m7WbSqWQSqV40dDJ2psohXhln1kbyiKkI4nVLDM9FouhtbUV6XQaFRUVEAQB5eXlcDgcqKqq4pnzzFd+pHMuyzLfB6tSLooivF4vYrEYhoaGcOLECYRCIbS1tSEWi/GCrsT8oFQCMUEQRDHi8/nw1ltvoaOjAy0tLVi7di3MZvOU2gqHw9i3bx96e3tx6NAhBIPBPPeWKCQovhMEQRQW8Xgc77//PrLZLH8uV6lU047vSvr6+rB//374fD7s2bMHqVRq2m0ShUWpxHcS0gkCgFar5ZnobAQ2H2I680tXZp+n02kIggCNRoNkMpm3G0Y6nUY8HucWMul0elK2Lkz4Z5Ywer0+R0iXZRmiKObYpgxvm+0znU7jo48+wqFDh1BZWYmuri5UVFRg8eLFWLt2LaxWKxwOB/eJz2azPGOfoRTsY7EYYrEYwuEwDh48iP7+fvT29mLfvn0IBAKIxWKIRqPki04QBEEQs0RPTw+eeOIJGI1G3HbbbVi0aNGUH7Q9Hg9+85vfYMeOHUgkEgiHw3nuLUEQBEEQoxEOh/Hiiy/ijTfeyBHSpxvflbS1teEnP/kJTp48CUEQkEgkpt0mQcwFJKQTxP8jnwLsWG1ls1lIkoRUKoV0Op03G5JsNgtRFCGKIhfQJ3NMykz04cVQlQVFWVa6SqUasX1ZlvlgQTweh1qthtfrhSzLcDqdCIVCSKfTfD/Kf5WDF9lslu9LEAREo1GEQiH4/X54PB74fD74fD4Eg0Gk02mk0+npn0SioCiVEW2CIIhiRBRFeDweqFQquN1uhEIhWK3WKbUVCoXgdrvR29ub514ShQjFd4IgCHBNIBKJQBTFOe1LJpNBIBDIsVrJR3xXEggEMDAwgL6+vmm3RRQmpRLfSUgnCADJZBKRSARarRbJZBKZTIZnlE8WZm8iiiL3CxcEgQu9yWQSQ0NDiEajaGpq4kW0dDrdlPbHiEaj6O7uRjgcRiAQmPCNiInnWq0WJpMJer2eZ6SzbHEGy9xPp9NIJBJjFvVk2eHRaBTt7e0YHBzE4OAgOjs7YTQa4XK54HK5oNVquTc98MlMgFQqhUQigXQ6jUAgwP3P+/r6EAwGEY1GEY1GuY0NMf8olUBMEARRzMiyjKNHj+JnP/sZ7Hb7lNrw+Xw4depUnntGFCoU3wmCIICjR49i+/bt8Hq92L17d8ElhuUjvitpb2+H1+vNQ8+IQqVU4jsJ6UTJI8syHwnW6XQ8o3u4T/hEYRnnkiQhkUggEokgkUhw7+5kMgmv1wu9Xo9AIIBEIsH3kw8hPRQKIRQKTVhcZtnnOp0OZrMZBoMBarUaBoPhLGsXrVbLvcolSeKZ7yP5krP3CIKAjo4Obh3DBgxcLhfKysqg1+vhdDphsVgAfCKkx2IxRCIRpFIpBAIBBINB7gOfTqdzPNQJgiAIgpg7Tpw4gfb29inb4rHfTgRBEARRCsiyjGPHjuHJJ59EX19fwc6wnm58V5LJZCjWE/MCEtIJAme8vZPJJF9SqRT3S5+suJ1Op5FKpXhbTFRXen4zH/F4PI5gMMgDik6n4/7qE4HZuWQyGcRiMQiCgFgsNqkApbR0UVq7sPVsP+zv4dtPRMxm2zDxW61WIx6P8wx3ALzYCNsnOx5WvJTNFMinHQ5R2JTKiDZBEESxw6zfCGIiUHwnCKIYkWUZwWAQHR0dKCsrQ1lZ2bQytTOZDNcMChWK78RkKJX4TkI6UfIw+xFZlpFMJjEwMACXywWz2YyqqiqYTKYJtyPLMiKRCAYHBxGJROB2u+Hz+bh3OduOZXN3dXXh/fffh91ux7nnnouWlpYcW5XxSCQSGBgYgCAIaGtrQ2trK7c8mYjYzLLgdTodX7RaLV+UfRheyFOr1fLAOtGipqxPmUwGkUgEyWQSarUaPp+PD1goi7KyAQh2/igLvbQolUBMEARBEKUExXeCIIqRTCaD9957D16vF1VVVbj99tvxmc98Ji/Z2gQxHyiV+E5COlHyMAGd+aIza5RMJoOysjLIsjyh4MhuGolEAoFAAOFwmHt5s6KZbDv2NyvCabfbUVdXh4aGBi5mjyeky7IMURTh9/t5kS632w1BECZ1E2L+6GyfWq2W270oj1ulUvFseuU2k73hsfNQ6KPvxNxTKoGYIAiCIEoJiu8EQRQj2WwWbW1taGtrQ21tLT71qU/hyiuvJCGdIP4fpRLfSUgnCHwibouiCK/Xi56eHp6VLooidDodjEZjjr0Ju0mwDPN4PA5JkjA0NIS+vj5eZFS53fB9svepVCr09fXBaDTCYDDA6XTCYDBAo9FAq9Xm7C+bzSKZTEIURYTDYfT09PACo8w7fDI3oZH6N9r7lYMByvcSBEEQBEEQBEEQxGySSCRw5MgRVFZWwuVyYcmSJZOyW5FlGf39/ejs7ITX60Vvb++EZkCnUimcOHECf/jDH3IS4Kqrq7Fo0SIYDAb09PSgq6trRGuUbDaL48ePU2IZQRQhJKQTBMAzxAVBwIkTJzAwMIDKykqIoojy8nI4nU5UVlbyQplarTbHoiUSiWBgYACxWAzt7e04evQoYrEYgsEgF7dHIh6PQxRFBINBxONxHD16FFarFY2NjbDb7TCZTLDZbNBoNLwAiSiKGBoaQigUgiAI6O/v5x7iyWRy0sK2UkhXivUsE18pmo/2HoKYCUplRJsgCIIgSgmK7wRB5ItgMIjnn38eb731FtauXYsHHngAq1atmvD7s9ksdu3ahSeeeAJerxeDg4MTEtIjkQhefPFFvPPOOzlC+nXXXYf77rsPFRUV2LFjB5555hnE4/ER2/D7/QiHwxPuK0EUOqUS30lIJ4j/BxPGw+EwL3wZCAS47YnD4eDbAZ8U+kyn00gkEgiHw4hEIvD7/fD5fEgkEuMK28xfnBUMDYfDsNlsMBgMSKVSsFgs3EqFFS1NpVJwu93w+/2Ix+PweDyjBufJHLtSMGfT05TrhhcMLaYbHVGclEogJgiCIIhSguI7QRD5QhRFdHV1oaurC2azmduqTpR0Oo2hoSEcPnwYXq93Uu/r6elBT09PzvrFixcjkUhAkiQMDAzg4MGDEARhwu0SRDFTKvGdhHSCUMB8x1lF7lOnTsHtdsPhcKC3txdarRZ6vR46nY4L4Ol0mhcWTSaTGBoaQiKR4OL4RPfL2ovFYhgYGEA4HIbBYIDZbM7xJ5ckCcFgEIIg8P1P53hZm8CZHyKsACmAHA90ZdFPlh2fTqep+CcxY5RKICYIgiCIUoLiO0EQM4Hb7cbLL7+Mw4cPT/g9LCM9kUjkpQ8dHR3YunUrHA4H9u3bx5+zCaIUKJX4TkI6QSiQZRmpVAqiKCKRSCAUCkGtVsNiscBqtUKr1cJgMECn0/HCokxcjkQikCQJ6XQakiRN+ibC3svEdObFzhZldngmk+HtT2bEfSRYW9lsFnq9HgC4kM5EerYvdm5YP6dynARBEARBEARBEASRT7q7u/HEE09Ap9NN+D3smT4Wi+WlD0ePHkVXVxfUajVisRhEUcxLuwRBFA4kpBPEMJQ+4SzbmlmZaDQa6PV67pGeTCYhSRIXv8fyQ5/svmcL5T6Z1QxwRkRXViBnoj1bSEAnZgO6xgiCIAhi/kHxnSCIfCNJEgKBwJz2gdUtI4hSpRTiOwnpBDEG7CYgiiIEQeC2J8zyJJ1O80KlTFwuNpRZ7czPTaPRQKfT5XilMw95SZKQzWanPWhAEOMx3UEpgiAIgiAKD4rvBEEQBDH/KJX4TkI6QYwB+zIzAXk+wo6R+Z2rVCqo1WpotVqo1eocSxk2cEDZ6MRsUCqBmCAIgiBKCYrvBEEQBDH/KJX4TkI6QRAcpWjO7GyUr5GAThAEQRAEQRAEQRAEQZQiJKQTBMFRiuUsO52tV75OELNBqYxoEwRBEEQpQfGdIAiCIOYfpRLfSUgnCOIsSDAnCoFSCcQEQRAEUUpQfCcIgiCI+UepxHf1XHeAIAiCIAiCIAiCIAiCIAiCIAoZykgnCIIgCpJSGdEmCIIgiFKC4jtBEARBzD9KJb6TkE4QBEEUJKUSiAmCIAiilKD4ThAEQRDzj1KJ7ySkEwRBEAVJqQRigiAIgiglKL4TBEEQxPyjVOI7eaQTBEEQBEEQBEEQBEEQBEEQxBhQRjpBEARRkJTKiDZBEARBlBIU3wmCIAhi/lEq8Z2EdIIgCKIgKZVATBAEQRClBMV3giAIgph/lEp8JyGdIAiCKEhKJRATBEEQRClB8Z0gCIIg5h+lEt/JI50gCIIgCIIgCIIgCIIgCIIgxoAy0gmCIIiCpFRGtAmCIAiilKD4ThAEQRDzj1KJ7ySkEwRBEAVJqQRigiAIgiglKL4TBEEQxPyjVOI7WbsQBEEQBEEQBEEQBEEQBEEQxBhQRjpBEARRkJTKiDZBEARBlBIU3wmCIAhi/lEq8Z2EdIIgCKIgKZVATBAEQRClBMV3giAIgph/lEp8JyGdIAiCKEhKJRATBEEQRClB8Z0gCIIg5h+lEt/JI50gCIIgCIIgCIIgCIIgCIIgxmDeCOlbtmxBc3MzjEYj1q1bhz/96U9z3SWCIAhiGsiyPK1lKkw2luzcuRPr1q2D0WhES0sLHn/88bO2efHFF7Fy5UoYDAasXLkSL7300qT3K8syHnroIdTV1cFkMuGKK67AsWPHpnSMxQbFd4IgiPnFfInvxPSg+E4QBDG/KJn4Ls8DXnjhBVmn08lPPvmkfPz4cfmBBx6QLRaL3N3dPaH3h8NhGQAttNBCCy2zuITD4XHvySqVakrLePvIRyzp6OiQzWaz/MADD8jHjx+Xn3zySVmn08n/8z//w7fZtWuXrNFo5Icfflg+ceKE/PDDD8tarVb+8MMPJ7Xff//3f5dtNpv84osvykeOHJFvv/12uba2Vo5EIhM+vmKE4jsttNBCS/EtpRDfielB8Z0WWmihpfgWiu9nmBdC+gUXXCDfe++9OeuWL18u/+3f/u2E3k+BmBZaaKFl9peJBOKZ2kc+Ysn3vvc9efny5Tnr7rnnHvnCCy/kf3/hC1+Qr7/++pxtrrvuOvmLX/zihPebzWblmpoa+d///d/568lkUnY4HPLjjz8+4eMrRii+00ILLbQU31IK8Z2YHhTfaaGFFlqKb6H4foait3YRRRH79u3Dtddem7P+2muvxa5du0Z8TyqVQiQS4Us4HJ6NrhIEQRAK5FkoKKK810ciEaRSqRG3m0os2b1791nbX3fdddi7dy8kSRpzG9bmRPbb2dkJt9uds43BYMDll18+at/mAxTfCYIgipNSiO/E1KH4ThAEUZz8/+3df2xV9f3H8delv1togXbQFkppDRGwotDqJjQFBnMZCOIWUQGBLTMrrq7YRYqDBGSTH3MxugxxMMc22QYzrQ7JZmiVlhGNEKCz/BgqKxYZXYP8KMxhW+77+4ff3nlpudwW6L3n9PlIbkzP+dxzPq82/bzkc9tb+v1zjt9IP3XqlC5duqSBAwf6HR84cKAaGho6fM6qVauUlJTkewwZMqQ7pgoA+ILz5893eDw6OlqpqanXfP3evXsrIyPDb71ftWpVh2O70iUNDQ0djm9tbdWpU6cCjmm7ZjD3bftvZ+bmBvQ7ADhTT+h3dB39DgDORL9/LjLokWHO4/H4fWxm7Y61efLJJ1VSUuL7+OzZs8rMzFR9fb2SkpJu6Dy7W1NTkzIyMnT8+HElJiaGejrXjVtzSe7N5tZcEtk6y8x0/vx5paend3g+NjZWdXV1am5uvub7XN4DMTExAZ/TmS650vjLjwdzzes1xo3o9465dd1xay7Jvdncmktyb7Yblaun9TuuDf3enlvXHIlsTuTWXJJ7s9Hv3dPvjt9IT0lJUURERLtXHBobG9u90tAmJiamwy9GUlKSq76JvigxMdGV2dyaS3JvNrfmksjWGVf7R09sbKxiY2Ov2/2upitdkpqa2uH4yMhIJScnBxzTds1g7tv26n5DQ4PS0tKCmpsb0O/Bceu649ZcknuzuTWX5N5sNyJXT+l3dB39fnVuXXMksjmRW3NJ7s1Gv9/Yfnf8W7tER0crNzdXFRUVfscrKio0duzYEM0KAOAkXemSu+66q9347du3Ky8vT1FRUQHHtF0zmPtmZWUpNTXVb0xzc7Oqq6td3XP0OwDgWt2ofkfX0e8AgGsVyn53/E+kS1JJSYkefvhh5eXl6a677tL69etVX1+vwsLCUE8NAOAQV+uSJ598UidOnNDvfvc7SVJhYaF+8YtfqKSkRI888ojeeecdvfTSS/rjH//ou2ZxcbEKCgq0Zs0a3Xvvvfrzn/+syspK7dq1K+j7ejweLVy4UCtXrtSwYcM0bNgwrVy5UvHx8Zo1a1Y3foa6H/0OALhWN6LfcW3odwDAtQpZv5tLrF271jIzMy06OtrGjBlj1dXVQT/34sWLtmzZMrt48eINnGFouDWbW3OZuTebW3OZkc1NAnXJvHnzbPz48X7jq6qqbPTo0RYdHW1Dhw61devWtbvmK6+8YjfffLNFRUXZ8OHDraysrFP3NTPzer22bNkyS01NtZiYGCsoKLDa2trrEzrM0e8dc2s2t+Yyc282t+Yyc282t+YK5Eb0O64N/d6eW3OZkc2J3JrLzL3Z3JorkFD0u8fs/99ZHQAAAAAAAAAAtOP490gHAAAAAAAAAOBGYiMdAAAAAAAAAIAA2EgHAAAAAAAAACAANtIBAAAAAAAAAAigx2+kv/DCC8rKylJsbKxyc3P1t7/9LdRT6rRVq1bpjjvuUJ8+fTRgwADNmDFDR44c8RtjZlq+fLnS09MVFxenCRMm6ODBgyGacdesWrVKHo9HCxcu9B1zcq4TJ05ozpw5Sk5OVnx8vG6//Xbt3bvXd96p2VpbW7V06VJlZWUpLi5O2dnZWrFihbxer2+ME7Lt3LlT06ZNU3p6ujwej1577TW/88Fk+Oyzz/TYY48pJSVFCQkJmj59uj7++ONuTNGxQNlaWlpUWlqqW2+9VQkJCUpPT9fcuXP1r3/9y+8a4ZoNaEO/Owf9Hv7Z3NLtEv1Ov8Pp6HfnoN/DPxv9Tr+jC6wH27x5s0VFRdmGDRvs0KFDVlxcbAkJCfbRRx+Femqd8vWvf902btxoBw4csJqaGps6daoNGTLELly44BuzevVq69Onj5WVlVltba098MADlpaWZk1NTSGcefB2795tQ4cOtVGjRllxcbHvuFNznT592jIzM23+/Pn27rvvWl1dnVVWVtqHH37oG+PUbD/5yU8sOTnZtm3bZnV1dfbKK69Y79697bnnnvONcUK2v/zlL7ZkyRIrKyszSfbqq6/6nQ8mQ2FhoQ0aNMgqKips3759NnHiRLvtttustbW1m9P4C5Tt7NmzNnnyZNuyZYv94x//sHfeece+/OUvW25urt81wjUbYEa/h9t6Ggj97oxsbul2M/qdfoeT0e/ht6ZeCf3ujGz0O/0e6mxO1KM30u+8804rLCz0OzZ8+HBbvHhxiGZ0fTQ2Npokq66uNjMzr9drqamptnr1at+YixcvWlJSkr344ouhmmbQzp8/b8OGDbOKigobP368r4idnKu0tNTy8/OveN7J2aZOnWrf+c53/I5985vftDlz5piZM7NdXlbBZDh79qxFRUXZ5s2bfWNOnDhhvXr1sjfeeKPb5n41Hf1PxuV2795tknz/SHFKNvRc9Hv4rqdfRL9/zgnZ3NjtZvQ7/Q6nod/De01tQ79/zgnZ6Hf6PZyyOUWPfWuX5uZm7d27V3fffbff8bvvvltvv/12iGZ1fZw7d06S1L9/f0lSXV2dGhoa/LLGxMRo/Pjxjsj6/e9/X1OnTtXkyZP9jjs519atW5WXl6f7779fAwYM0OjRo7VhwwbfeSdny8/P15tvvqn3339fkvT3v/9du3bt0pQpUyQ5O1ubYDLs3btXLS0tfmPS09OVk5PjmJxtzp07J4/Ho759+0pyVza4D/3unPWUfv+cE7L1hG6X6Hc3ZYP70O/OWVPp9885IRv9Tr87LVs4iAz1BELl1KlTunTpkgYOHOh3fODAgWpoaAjRrK6dmamkpET5+fnKycmRJF+ejrJ+9NFH3T7Hzti8ebP27dunPXv2tDvn5Fz//Oc/tW7dOpWUlOhHP/qRdu/erR/84AeKiYnR3LlzHZ2ttLRU586d0/DhwxUREaFLly7p6aef1kMPPSTJ2V+3NsFkaGhoUHR0tPr169dujJPWmIsXL2rx4sWaNWuWEhMTJbknG9yJfnfGekq/OytbT+h2iX53Sza4E/3ujDWVfndWNvqdfndStnDRYzfS23g8Hr+PzazdMScpKirSe++9p127drU757Ssx48fV3FxsbZv367Y2NgrjnNaLknyer3Ky8vTypUrJUmjR4/WwYMHtW7dOs2dO9c3zonZtmzZok2bNukPf/iDbrnlFtXU1GjhwoVKT0/XvHnzfOOcmO1yXcngpJwtLS168MEH5fV69cILL1x1vJOywf3csMZ8Ef0e/rkk9/Z7T+p2iX6/nJOywf3css60od/DP5dEvzst15XQ7/6clC2c9Ni3dklJSVFERES7V18aGxvbvUrlFI899pi2bt2qHTt2aPDgwb7jqampkuS4rHv37lVjY6Nyc3MVGRmpyMhIVVdX6+c//7kiIyN9c3daLklKS0vTyJEj/Y6NGDFC9fX1kpz7NZOkJ554QosXL9aDDz6oW2+9VQ8//LAef/xxrVq1SpKzs7UJJkNqaqqam5t15syZK44JZy0tLZo5c6bq6upUUVHhezVbcn42uBv9Hv5Z6XfnZesJ3S7R707PBnej38M/K/3uvGz0O/3uhGzhpsdupEdHRys3N1cVFRV+xysqKjR27NgQzaprzExFRUUqLy/XW2+9paysLL/zWVlZSk1N9cva3Nys6urqsM46adIk1dbWqqamxvfIy8vT7NmzVVNTo+zsbEfmkqRx48bpyJEjfsfef/99ZWZmSnLu10ySPv30U/Xq5b+0REREyOv1SnJ2tjbBZMjNzVVUVJTfmJMnT+rAgQNhn7OthD/44ANVVlYqOTnZ77yTs8H96PfwX0/pd+dl6wndLtHvTs4G96Pfw39Npd+dl41+p9/DPVtY6o6/aBquNm/ebFFRUfbSSy/ZoUOHbOHChZaQkGDHjh0L9dQ6ZcGCBZaUlGRVVVV28uRJ3+PTTz/1jVm9erUlJSVZeXm51dbW2kMPPWRpaWnW1NQUwpl33hf/6reZc3Pt3r3bIiMj7emnn7YPPvjAfv/731t8fLxt2rTJN8ap2ebNm2eDBg2ybdu2WV1dnZWXl1tKSootWrTIN8YJ2c6fP2/79++3/fv3myR79tlnbf/+/b6/fB1MhsLCQhs8eLBVVlbavn377Ktf/arddttt1traGqpYZhY4W0tLi02fPt0GDx5sNTU1fmvKZ5995rtGuGYDzOj3cFtPg0G/h3c2t3S7Gf1Ov8PJ6PfwW1Ovhn4P72z0O/0e6mxO1KM30s3M1q5da5mZmRYdHW1jxoyx6urqUE+p0yR1+Ni4caNvjNfrtWXLlllqaqrFxMRYQUGB1dbWhm7SXXR5ETs51+uvv245OTkWExNjw4cPt/Xr1/udd2q2pqYmKy4utiFDhlhsbKxlZ2fbkiVL/BZxJ2TbsWNHh99X8+bNM7PgMvz3v/+1oqIi69+/v8XFxdk999xj9fX1IUjjL1C2urq6K64pO3bs8F0jXLMBbeh3Z6HfwzubW7rdjH6n3+F09Luz0O/hnY1+p9/ReR4zs67/PDsAAAAAAAAAAO7WY98jHQAAAAAAAACAYLCRDgAAAAAAAABAAGykAwAAAAAAAAAQABvpAAAAAAAAAAAEwEY6AAAAAAAAAAABsJEOAAAAAAAAAEAAbKQDAAAAAAAAABAAG+lAABMmTNDChQsdc93r7dixY/J4PKqpqQn1VAAAuC7odrodAOA+9Dv9DnSHyFBPAOiJysvLFRUV1W33q6qq0sSJE3XmzBn17du32+4LAEBPQbcDAOA+9DuAL2IjHehGLS0tioqKUv/+/UM9FQAAcB3Q7QAAuA/9DqAjvLULcBVer1eLFi1S//79lZqaquXLl/vO1dfX695771Xv3r2VmJiomTNn6t///rfv/PLly3X77bfr17/+tbKzsxUTEyMz8/v1sKqqKnk8nnaP+fPn+66zbt063XTTTYqOjtbNN9+sl19+2W+OHo9Hv/rVr3TfffcpPj5ew4YN09atWyV9/iteEydOlCT169fP79pvvPGG8vPz1bdvXyUnJ+uee+7R0aNHu/R5WrFihdLT0/XJJ5/4jk2fPl0FBQXyer1duiYAADcC3R4cuh0A4CT0e3Dod6Dr2EgHruK3v/2tEhIS9O677+qnP/2pVqxYoYqKCpmZZsyYodOnT6u6uloVFRU6evSoHnjgAb/nf/jhh/rTn/6ksrKyDt+vbOzYsTp58qTv8dZbbyk2NlYFBQWSpFdffVXFxcX64Q9/qAMHDuh73/uevv3tb2vHjh1+13nqqac0c+ZMvffee5oyZYpmz56t06dPKyMjQ2VlZZKkI0eO6OTJk3r++eclSf/5z39UUlKiPXv26M0331SvXr103333dak8lyxZoqFDh+q73/2uJOnFF1/Uzp079fLLL6tXL5YaAED4oNuDQ7cDAJyEfg8O/Q5cAwNwRePHj7f8/Hy/Y3fccYeVlpba9u3bLSIiwurr633nDh48aJJs9+7dZma2bNkyi4qKssbGxnbXLS4ubne/U6dO2U033WSPPvqo79jYsWPtkUce8Rt3//3325QpU3wfS7KlS5f6Pr5w4YJ5PB7761//amZmO3bsMEl25syZgHkbGxtNktXW1pqZWV1dnUmy/fv3B3xem6NHj1qfPn2stLTU4uPjbdOmTUE9DwCA7kK30+0AAPeh3+l3oDvwUhNwFaNGjfL7OC0tTY2NjTp8+LAyMjKUkZHhOzdy5Ej17dtXhw8f9h3LzMzUl770pavep6WlRd/61rc0ZMgQ36vOknT48GGNGzfOb+y4ceP87nH5PBMSEtSnTx81NjYGvOfRo0c1a9YsZWdnKzExUVlZWZI+/7W3rsjOztbPfvYzrVmzRtOmTdPs2bO7dB0AAG4kuj14dDsAwCno9+DR70DX8MdGgau4/C90ezweeb1emZk8Hk+78ZcfT0hICOo+CxYsUH19vfbs2aPISP9vzcvv09G9rzTPQKZNm6aMjAxt2LBB6enp8nq9ysnJUXNzc1Bz7sjOnTsVERGhY8eOqbW1tV0WAABCjW7vHLodAOAE9Hvn0O9A5/ET6UAXjRw5UvX19Tp+/Ljv2KFDh3Tu3DmNGDGiU9d69tlntWXLFm3dulXJycl+50aMGKFdu3b5HXv77bc7dY/o6GhJ0qVLl3zHPvnkEx0+fFhLly7VpEmTNGLECJ05c6ZT877cli1bVF5erqqqKh0/flw//vGPr+l6AAB0J7q9PbodAOB09Ht79DvQNbzcBHTR5MmTNWrUKM2ePVvPPfecWltb9eijj2r8+PHKy8sL+jqVlZVatGiR1q5dq5SUFDU0NEiS4uLilJSUpCeeeEIzZ87UmDFjNGnSJL3++usqLy9XZWVl0PfIzMyUx+PRtm3bNGXKFMXFxalfv35KTk7W+vXrlZaWpvr6ei1evLjTn4c2H3/8sRYsWKA1a9YoPz9fv/nNbzR16lR94xvf0Fe+8pUuXxcAgO5Ct/uj2wEAbkC/+6Pfga7jJ9KBLvJ4PHrttdfUr18/FRQUaPLkycrOztaWLVs6dZ1du3bp0qVLKiwsVFpamu9RXFwsSZoxY4aef/55PfPMM7rlllv0y1/+Uhs3btSECROCvsegQYP01FNPafHixRo4cKCKiorUq1cvbd68WXv37lVOTo4ef/xxPfPMM52aexsz0/z583XnnXeqqKhIkvS1r31NRUVFmjNnji5cuNCl6wIA0J3o9v+h2wEAbkG//w/9Dlwbj5lZqCcBAAAAAAAAAEC44ifSAQAAAAAAAAAIgI10AEEpLCxU7969O3wUFhaGenoAAKCT6HYAANyHfgduHN7aBUBQGhsb1dTU1OG5xMREDRgwoJtnBAAArgXdDgCA+9DvwI3DRjoAAAAAAAAAAAHw1i4AAAAAAAAAAATARjoAAAAAAAAAAAGwkQ4AAAAAAAAAQABspAMAAAAAAAAAEAAb6QAAAAAAAAAABMBGOgAAAAAAAAAAAbCRDgAAAAAAAABAAGykAwAAAAAAAAAQwP8BErYreQJZftMAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 28, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "#%% create masks\n", + "top = ig.allocate(0)\n", + "bottom = ig.allocate(0)\n", + "\n", + "top.fill(\n", + " np.asarray(ground_truth.array > 0.8 * ground_truth.max(), \n", + " dtype=np.float32)\n", + " )\n", + "bottom.fill(\n", + " np.asarray(np.invert(ground_truth.array < 0.4 * ground_truth.max()), \n", + " dtype=np.float32)\n", + ")\n", + "\n", + "\n", + "\n", + "roi_image_dict = {\n", + " 'top' : top,\n", + " 'bottom' : bottom\n", + "}\n", + "\n", + "show2D([ground_truth, top, bottom], num_cols=3)" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": {}, + "outputs": [], + "source": [ + "img_qual_callback = ImageQualityCallback(ground_truth,\n", + " roi_mask_dict = roi_image_dict,\n", + " metrics_dict = {'MSE':mse, \n", + " 'MAE':mae, \n", + " 'PSNR':psnr},\n", + " statistics_dict = {'MEAN': (lambda x, y: np.mean(x, where=y)),\n", + " 'STDDEV': (lambda x, y: np.std(x, where=y)),\n", + " 'MAX': (lambda x, y: np.max(x, where=y, initial=0))},\n", + " )" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABdEAAAGpCAYAAABia3+1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9eZxdVZk1jq9bdeehbs1VKTKCJISEgAREUBlEULBtRFCcEBVo6YCNYH9pgyJBFAR9eWPLbCM4NMPbrTTtDA6gSOiXQYSXKMgQMlaSmoc7V53fH/mtnXV2nVupSirzXp9Pfarq3nP22dPZz97rWfvZIc/zPDg4ODg4ODg4ODg4ODg4ODg4ODg4ODg4jEHN7s6Ag4ODg4ODg4ODg4ODg4ODg4ODg4ODw54KR6I7ODg4ODg4ODg4ODg4ODg4ODg4ODg4VIEj0R0cHBwcHBwcHBwcHBwcHBwcHBwcHByqwJHoDg4ODg4ODg4ODg4ODg4ODg4ODg4ODlXgSHQHBwcHBwcHBwcHBwcHBwcHBwcHBweHKnAkuoODg4ODg4ODg4ODg4ODg4ODg4ODg0MVOBLdwcHBwcHBwcHBwcHBwcHBwcHBwcHBoQocie7g4ODg4ODg4ODg4ODg4ODg4ODg4OBQBY5Ed3BwcHBwcHBwcHBwcHBwcHBwcHBwcKgCR6I77Bd4/vnncf755+Oggw5CIpFAIpHAwQcfjM985jN4+umnd3f2dgihUAjLli2r+v2JJ56IUCi0zZ/x0pgIcrkcli1bhkcffXTMd8uWLUMoFEJXV9cOPcPBwcHBYffjnnvuqWpL/vmf/9lcN3v2bPN5TU0Nstks5s+fj0984hN4+OGHA9MOhUK45JJLxnx+9dVXIxQK4R//8R8xOjpaNW/6zFAohFQqhSOPPBI333wzPM/b8cLvQVi5ciWWLVuGVatW7bY8rF+/HsuWLcNzzz035jvafgcHBwcHh2qYyDo1FArhW9/6FkKhEH75y19WTes73/kOQqEQfvzjH++SvH/yk5/E7Nmzt+veJ554AsuWLUNfX9+Y70488USceOKJO5Q3BweHnYPw7s6Ag8POxh133IFLLrkE8+bNw6WXXooFCxYgFArhL3/5C+677z4cffTReOWVV3DQQQft7qzuFNx6660YGBgw///sZz/DV7/6Vdx999045JBDzOfTp0/foefkcjlcc801AOCMvoODg8N+ANuOAEBHR4fv/7e97W345je/CQAYGhrCSy+9hPvvvx/vfve7cdZZZ+G+++5DJBKp+gzP83DppZfi29/+Nr7whS/g+uuv32a+9Jnr16/HTTfdhM9+9rMYGBjAlVdeOdli7rFYuXIlrrnmGpx44onbvYjfUaxfvx7XXHMNZs+ejSOOOML33QUXXID3vOc9uyVfDg4ODg57B1asWOH7/9prr8Xvfvc7/Pa3v/V9Pm3aNPzLv/wLvvvd71a1LXfffTdaWlrwvve9b6fld6rwxBNP4JprrsEnP/lJ1NfX+7679dZbd0+mHBwctglHojvs0/jjH/+IJUuW4L3vfS/+8z//E9Fo1Hz3zne+ExdffDH+4z/+A4lEYtx0crkcksnkzs7uTsGhhx7q+/+vf/0rAGDhwoU46qijqt63N5fZwcHBwWHnY1t2BADq6+vx1re+1fz/rne9CxdffDGWLVuGa665Bl/60pdwww03BN5bqVTw6U9/Gj/4wQ/wjW98w6dyn+wzZ86ciTvuuGOfItEni11t16dPn77DDnoHBwcHh30baq8BoKWlBTU1NWM+B4AzzjgD//Vf/4Xu7m40NTX5vvvrX/+KFStW4POf//y4zvm9Afb63cHBYc+BC+fisE/juuuuQ21tLe644w4fga744Ac/6FPOffKTn0Q6ncYLL7yAU089FZlMBieffDIAoKenB0uWLMEBBxyAaDSKAw88EF/84hdRLBbN/atWrUIoFMI999wz5ll22BRudX7xxRfxkY98BNlsFm1tbfj0pz+N/v5+370DAwO48MIL0dTUhHQ6jfe85z14+eWXd6B2toL5ePbZZ3H22WejoaHBKPOrbSfT7WurVq1CS0sLAOCaa64x2+4++clP+u7ZuHHjNsvp4ODg4LDvY9myZViwYAFuvvlmFAqFMd8XCgWcddZZuPfee/Fv//ZvEybQg1BXV4e5c+di48aNvs9LpRK++tWv4pBDDkEsFkNLSws+9alPYfPmzWPSuPfee3HssccinU4jnU7jiCOOwF133eW75rvf/S4OP/xwxONxNDY24swzz8Rf/vIX3zWcY7zyyis4/fTTkU6nMWPGDHz+85/3zSUA4LbbbsPhhx+OdDqNTCaDQw45xDgB7rnnHnzwgx8EAJx00knG7nLuceKJJ2LhwoX4/e9/j+OOOw7JZBKf/vSnAVQPAzd79uwxdnvdunX4h3/4B8yYMQPRaBQdHR04++yzsXHjRjz66KM4+uijAQCf+tSnxoSHCwrnMjo6ihtvvNHUeWtrKz7xiU9g7dq1vuuY/6eeegrveMc7kEwmceCBB+LrX//6uOF8HBwcHBz2XZx//vkolUq49957x3x39913A4CxddXw2muv4cMf/jA6OjoQi8XQ1taGk08+2ReWbKK2ysZEeYBly5bh//v//j8AwJw5c4z9ZFjUoPX3RHgIPueSSy7BD37wA8yfPx/JZBKHH344fvrTn46bdwcHh4nBKdEd9lmMjIzgd7/7HY466ihMmzZtUveWSiX8/d//PT7zmc/gC1/4AiqVCgqFAk466SS8+uqruOaaa7Bo0SL84Q9/wPXXX4/nnnsOP/vZz7Y7r2eddRbOOeccnH/++XjhhRewdOlSAFsW5MCW7ezvf//78cQTT+DLX/4yjj76aPzxj3/Eaaedtt3PDMIHPvABfPjDH8ZFF12E4eHhCd83bdo0/PKXv8R73vMenH/++bjgggsAwBDrxLbK6eDg4OCw92BkZASVSsX3WTg88anl+973Pnz961/H008/jbe//e3m88HBQZx22ml44okn8MADD+Css87aoXxWKhWsWbMGc+fONZ+Njo7ijDPOwB/+8AdcccUVOO644/DGG2/g6quvxoknnoinn37a7FL78pe/jGuvvRYf+MAH8PnPfx7ZbBb/7//9P7zxxhsmveuvvx5XXnklPvKRj+D6669Hd3c3li1bhmOPPRZPPfUUDj74YHNtuVzG3//93+P888/H5z//efz+97/Htddei2w2iy9/+csAgPvvvx9LlizBZz/7WXzzm99ETU0NXnnlFaxcuRIA8N73vhfXXXcdrrzyStxyyy048sgjAcAXmm7Dhg34+Mc/jiuuuALXXXcdamomp51Zt24djj76aJTLZVx55ZVYtGgRuru78atf/Qq9vb048sgjcffdd+NTn/oUvvSlL+G9730vgPHDw/3jP/4j7rzzTlxyySX4u7/7O6xatQpXXXUVHn30UTz77LNobm4213Z2duJjH/sYPv/5z+Pqq6/Ggw8+iKVLl6KjowOf+MQnJlUWBwcHB4e9H+9617swa9YsfPe738VnP/tZ8/nIyAh+8IMf4K1vfes2Vdynn346RkZGcOONN2LmzJno6urCE0884YtNPhlbtT244IIL0NPTg29/+9v48Y9/bLiKanmfLA/xs5/9DE899RS+8pWvIJ1O48Ybb8SZZ56Jl156CQceeOAO5d3BYb+H5+Cwj6Kzs9MD4H34wx8e812lUvHK5bL5GR0dNd+dd955HgDvu9/9ru+e22+/3QPg/Z//8398n99www0eAO/hhx/2PM/zXn/9dQ+Ad/fdd495LgDv6quvNv9fffXVHgDvxhtv9F23ZMkSLx6Pm3z94he/8AB43/rWt3zXfe1rXxuT5rZw9913ewC8p556akw+vvzlL4+5/oQTTvBOOOGEMZ+fd9553qxZs8z/mzdvrpqXiZbTwcHBwWHPB+1I0E+5XDbXzZo1y3vve99bNZ3bbrvNA+A98MAD5jNN684775x03mbNmuWdfvrpxr6/8cYb3oUXXuhFIhHvpz/9qbnuvvvu8wB4P/rRj3z3P/XUUx4A79Zbb/U8z/Nee+01r7a21vvYxz5W9Zm9vb1eIpHwTj/9dN/nq1ev9mKxmPfRj37UfMY5hj2XOP3007158+aZ/y+55BKvvr5+3LL+x3/8hwfA+93vfjfmuxNOOMED4P3mN78Z8101Wz1r1izvvPPOM/9/+tOf9iKRiLdy5cqqeWB9Bc15aPuJv/zlLx4Ab8mSJb7r/ud//scD4F155ZVj8v8///M/vmsPPfRQ793vfnfV/Dg4ODg47N0477zzvFQqVfV72pZnn33WfPaTn/zEA+B95zvfGTftrq4uD4C3fPnyqtdMxlbZ6+HJ8ADf+MY3PADe66+/PuZae/09UR6Cz2lra/MGBgbMZ52dnV5NTY13/fXXVy23g4PDxODCuTjsl1i8eDEikYj5+V//63+NucZWvv32t79FKpXC2Wef7fucW59/85vfbHd+/v7v/973/6JFi1AoFLBp0yYAwO9+9zsAwMc+9jHfdR/96Ee3+5lB2FG137awrXI6ODg4OOw9+P73v4+nnnrK9zMZJbrneYGfv+Md70B9fT2uueYavPLKK5PO189//nNj32fNmoXvfOc7+Pa3v22U0gDw05/+FPX19Xjf+96HSqVifo444gi0t7ebLdWPPPIIRkZGcPHFF1d93ooVK5DP58eEQpkxYwbe+c53jpkfhEKhMYeeLVq0yKdsf8tb3oK+vj585CMfwUMPPYSurq5J10NDQwPe+c53Tvo+4he/+AVOOukkzJ8/f7vTUHAuY9fTW97yFsyfP39MPbW3t+Mtb3mL7zO7nhwcHBwc9i986lOfQk1NjW8n8913341UKoVzzjln3HsbGxtx0EEH4Rvf+AZuuukm/OlPfxoTImyytmpXYLI8xEknnYRMJmP+b2trQ2trq7OfDg5TAEeiO+yzaG5uRiKRCDQW9957L5566in893//d+C9yWQSdXV1vs+6u7vR3t4+Jr5na2srwuEwuru7tzuv9sEosVgMAJDP582zw+HwmOva29u3+5lBmGzYm8liW+V0cHBwcNh7MH/+fBx11FG+n8mA9lnPJQG2EKW//vWvkcvlcMIJJ0z6/I+3v/3teOqpp/Dkk0/iBz/4AWbPno1LLrkEjz/+uLlm48aN6OvrQzQa9TnVI5EIOjs7DWnN+OjjhSih/Q+yoR0dHWPmB8lkEvF43PdZLBbzxYY/99xz8d3vfhdvvPEGzjrrLLS2tuKYY47BI488MuF62FGbvnnz5ik9GHSy9WTPGYAt9eTmDA4ODg77L2bNmoWTTz4Z9957L4rFIrq6uvDTn/4UH/zgB33EcRBCoRB+85vf4N3vfjduvPFGHHnkkWhpacE//dM/YXBwEMDkbdWuwGR5CGc/HRx2HhyJ7rDPora2Fu985zvx9NNPY8OGDb7vDj30UBx11FE47LDDAu+1DRSwxRht3LhxjHJu06ZNqFQqJjYaF8b2IR87SrJXKpUxaXR2dm53mkEIKnc8Hh9TFgDbpYpzcHBwcHAAtqjQf/KTnyCVSgWS74sXL8avf/1rEwf0pZdemnDa2WwWRx11FI455hh8/OMfx8MPP4xIJIIlS5YYxVlzczOamprGKOn5c+uttwLYerbHeIeJcbFqzzUAYP369dsdO/VTn/oUnnjiCfT39+NnP/sZPM/D3/3d301YSRZk04EtC+kgu27PMVpaWrZ5iNpksLPqycHBwcFh/8L555+Pnp4ePPTQQ/jhD3+IUqmE888/f0L3zpo1C3fddRc6Ozvx0ksv4bLLLsOtt95qDvrcEVu1M3gA5mkiPISDg8POhyPRHfZpLF26FCMjI7joootQLpd3KK2TTz4ZQ0ND+K//+i/f59///vfN98CW7VLxeBzPP/+877qHHnpou5990kknAQD+/d//3fd50MnkU43Zs2fj5Zdf9k0Guru78cQTT/iuc6pyBwcHB4eJ4pprrsHKlStx6aWXjlFlE0ceeSR+85vfoFgs4qSTTsJf//rX7XrWwQcfjCuuuAIvvPACHnjgAQDA3/3d36G7uxsjIyNj1PRHHXUU5s2bBwA49dRTUVtbi9tuu61q+sceeywSiQR++MMf+j5fu3Ytfvvb35r5wfYilUrhtNNOwxe/+EWUSiW8+OKLALbf7s6ePXvMHOW3v/0thoaGfJ+ddtpp+N3vfjeuA2MyeWBoGbuennrqKfzlL3/Z4XpycHBwcNg/8P73vx9NTU347ne/i7vvvhtz5871HVA+UcydOxdf+tKXcNhhh+HZZ58FsGO2ajI8wGTs50R5CAcHh52PiQeudHDYC/G2t70Nt9xyCz772c/iyCOPxD/8wz9gwYIFqKmpwYYNG/CjH/0IAMaEbgnCJz7xCdxyyy0477zzsGrVKhx22GF4/PHHcd111+H000/Hu971LgBblF8f//jH8d3vfhcHHXQQDj/8cPzf//t/d4jwPvXUU3H88cfjiiuuwPDwMI466ij88Y9/xA9+8IPtTnOiOPfcc3HHHXfg4x//OC688EJ0d3fjxhtvHFNnmUwGs2bNwkMPPYSTTz4ZjY2NaG5uxuzZs3d6Hh0cHBwc9kz09fXhySefBAAMDw/jpZdewv33348//OEP+NCHPoRrrrlm3PuPOOII/OY3v8HJJ5+Mk046Cb/97W+3K0b3P//zP+P222/HNddcgw996EP48Ic/jH//93/H6aefjksvvRRvectbEIlEsHbtWvzud7/DGWecgTPPPBOzZ8/GlVdeiWuvvRb5fB4f+chHkM1msXLlSnR1deGaa65BfX09rrrqKlx55ZX4xCc+gY985CPo7u7GNddcg3g8jquvvnrS+b3wwguRSCTwtre9DdOmTUNnZyeuv/56ZLNZHH300QCAhQsXAgDuvPNOZDIZxONxzJkzJ3Abt+Lcc8/FVVddhS9/+cs44YQTsHLlStx8883IZrO+677yla/gF7/4BY4//nhceeWVOOyww9DX14df/vKXuPzyy3HIIYfgoIMOQiKRwL//+79j/vz5SKfT6OjoGBOiBwDmzZuHf/iHf8C3v/1t1NTU4LTTTsOqVatw1VVXYcaMGbjssssmXU8ODg4ODvsfYrEYPvaxj+Hb3/42PM/D17/+9Qnd9/zzz+OSSy7BBz/4QRx88MGIRqP47W9/i+effx5f+MIXAOyYrZoMD8Ad8d/61rdw3nnnIRKJYN68eYEhaSbKQzg4OOwC7M5TTR0cdhWee+4571Of+pQ3Z84cLxaLefF43HvTm97kfeITn/B+85vf+K4d70Tw7u5u76KLLvKmTZvmhcNhb9asWd7SpUu9QqHgu66/v9+74IILvLa2Ni+VSnnve9/7vFWrVo05lZuni2/evNl3/9133z3mtO6+vj7v05/+tFdfX+8lk0nvlFNO8f7617+OSXNbYNpPPfXUNvNBfO973/Pmz5/vxeNx79BDD/UeeOCBMaeRe57n/frXv/be/OY3e7FYzAPgnXfeeZMup4ODg4PDno0gOxKEWbNmeQA8AF4oFPLS6bQ3b94879xzz/V+9atfBd4DwLv44ovHfP7nP//Za25u9tra2rwXX3xx3Ge+973vDfzulltu8QB43/ve9zzP87xyuex985vf9A4//HAvHo976XTaO+SQQ7zPfOYz3t/+9jffvd///ve9o48+2lz35je/2bv77rt91/zbv/2bt2jRIi8ajXrZbNY744wzxuS12hyDdpL43ve+55100kleW1ubF41GvY6ODu9DH/qQ9/zzz/vuW758uTdnzhyvtrbWA2DydMIJJ3gLFiwIrIdisehdccUV3owZM7xEIuGdcMIJ3nPPPefNmjXL2G1izZo13qc//Wmvvb3di0QiJh8bN24019x3333eIYcc4kUiEd+cxC6T53neyMiId8MNN3hz5871IpGI19zc7H384x/31qxZ47uuWv6D5h4ODg4ODvsOxluLK/785z97ALza2lpv/fr1E0p748aN3ic/+UnvkEMO8VKplJdOp71FixZ5//t//2+vUqmY6yZqq4Js0kR5AM/zvKVLl3odHR1eTU2NB8D73e9+53neFht4wgkn+K6dKA9RbR4VZOMdHBwmj5DnWYGVHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwAuJjoDg4ODg4ODg4ODg4ODg4ODg4ODg4ODlXhSHQHBwcHBwcHBwcHBwcHBwcHBwcHBweHKnAkuoODg4ODg4ODg4ODg4ODg4ODg4ODg0MV7DMk+q233oo5c+YgHo9j8eLF+MMf/rC7s+Tg4ODg4OAwCThb7uDg4ODgsHfD2XIHBwcHh30V+wSJ/sADD+Bzn/scvvjFL+JPf/oT3vGOd+C0007D6tWrd3fWHBwcHBwcHCYAZ8sdHBwcHBz2bjhb7uDg4OCwLyPkeZ63uzOxozjmmGNw5JFH4rbbbjOfzZ8/H+9///tx/fXXj7m+WCyiWCya/0dHR9HT04OmpiaEQqFdkmcHBweHfRme52FwcBAdHR2oqQn21xYKBZRKpR16TjQaRTwe36E0HPYMOFvu4ODgsGdhW7Z8Kuw44Gz5vgRnyx0cHBz2LOwKW75f2XFvL0exWPRqa2u9H//4x77P/+mf/sk7/vjjA++5+uqrPQDux/24H/fjfnbyz5o1awLH4Xw+77W3t+9w+u3t7V4+n59y2+Kwa+FsuftxP+7H/ey5P0G2fKrsODB5W37LLbd4s2fP9mKxmHfkkUd6v//978e9/tFHH/WOPPJILxaLeXPmzPFuu+22Mdf853/+pzd//nwvGo168+fPH2OPFNddd50HwLv00ksnnOf9Ac6Wux/3437cz577szNt+f60Jg9jL0dXVxdGRkbQ1tbm+7ytrQ2dnZ2B9yxduhSXX365+b+/vx8zZ87cqfl0cHBw2B+RyWQCPy+VSujs7MSaNWtQV1e3XWkPDAxgxowZKJVK+4/nex/FVNryU089FaOjoygWixgdHUW5XMbIyAhCoRCi0Shqa2vhySa8SqWCSqUCABgZGQEAeJ4Hz/MQCoUQDocRi8VQU1ODWCyGSCSCUChkFHLFYhHlchmVSgXDw8MoFou+e6LRKKLRKDzPQ6VSged5GB0dNc+KRCLm+3w+j3K5DGCLGg8AamtrEY1GEQqFzD01NTWora01ahJeS9TU1CASiZjramtrAWx578rlMkZHR1GpVDAyMmLqyPv/q1Ty+Txqa2sRj8cRDoeRTCaRyWQQDodRX1+PbDZr8hUKhUz9VSoV5PN5DA8PY2RkBENDQyiXyyiVShgeHjZ1DMCkG4vFTB2zLguFAmpra5HNZpFIJMz1oVAIxWIRuVzOlFnriNfxWv5dqVRMH2D5tV5ZF1p37D/lchmhUAixWMw8IxQKmTasVCqmrlkG9i1VULI/abuXSiWj+olGowiHw6a/2PdWKhVTVuaV9a+KotraWpNXlpv9mNfW1NQgFAohn8+jUCj4+hTrTZ/P8rGttO/rb+Zfn18sFjEyMoL+/n4MDAyY9Ox7o9HomPSpaKqtrUWhUECxWESlUsHQ0BCKxSJisRgymYzJG21AqVQy/TGXy6FSqZi+oO2j7wgxOjqKXC5nVLH8LpFIIJPJoLa2FpFIxPQFtmsul8PQ0JB5v7XOa2trMTIyYvod8xLU1gBQLpfNO6r5KpVKGBkZQTgcRm1tLcLhMBKJhBkHmKdyuYxisWjyodC2C4fDyGQyiMfjvvsLhQIGBwfNO5DP5/H0008H2vKpsOPA5G05w4XceuuteNvb3oY77rgDp512GlauXBm4nnv99ddx+umn48ILL8QPf/hD/PGPf8SSJUvQ0tKCs846CwCwYsUKnHPOObj22mtx5pln4sEHH8SHPvQhPP744zjmmGN86T311FO48847sWjRou0u874Kty53cHBw2HOxs2z5/rYm3+tJdMKehHICG4RYLIZYLLYrsuXg4OCwX2NbW3EzmUxVon1bsAkCh70fU2HLo9GoIciUfCIp5XmejzhTgo3XKLGqBGcoFMLo6Kj5OxQKGSKOhC3TJClI4p2fk0glwcnn828l4TzPM+QW77frSkloErUsP8m2SCRi0qypqTHEKZ9RU1MDz/MMAWkTxSQASYozXXUSjI6OmvtGRkYM4adlGhkZMcSzksCsT3UYAFucGrwOgCH31QnAuuTzlUSnw0PbRUlEPl/rVdufJDdJWZaHjgmmr3lUkpYOG+aVZVLyXx0WTJNEPtuAZWB/CCLqCSVPlcjVOgz6zb/5/rC9WFdsJ/4omHeC7UJHB/NkO39YT5FIxOecYpuwjXhPOBw2xDqJd16j7zeflUgkfM4wtuXIyIiv3/EevoO2c4pOEs0Xy8l72G7a1kyHZWRd8Vp16vFZfIbWm+aZeWEdMF2te6ap4wHbX50H6hBQsL+oA248W74jdhyYvC2/6aabcP755+OCCy4AACxfvhy/+tWvcNtttwWGC7n99tsxc+ZMLF++HMCW0CJPP/00vvnNbxoSffny5TjllFOwdOlSAFuI3cceewzLly/HfffdZ9IaGhrCxz72MXznO9/BV7/61e0p7n6B/W1dznHEYQvUYRfk0JuqZzB9B4c9HXvKGLGzbPmeULZdib2eRG9ubkZtbe0Y7/amTZvGeMEdHBwcHPYs7Mjken8z2PsyptKWK9HJ/0lCFQoFQ+KS4LJJPWCrIh2AIRRJyPMzJWFJAIbDYZ9alKQhiWRg6wSWpKgNXRgq8arP4f2jo6OGlANgCHqdJJMMYzp8phJsSuLzb1Xosx65CODzSALapCKJdyXLPc9DsVg0dcjrtP6V0Ka6n/khMcj06ByhAp6kLYk/JaG1LEFKayUSlYxlG6linCSuqs9VYc40+aMK9FKphFwu52s3pkXymmQt7yExSyjhq23J+lengTpjCO1TNuGubWA/k+W0SVdbNV8oFEzdFQoFo2hmWytJraS5TfgrMc62Zd9j3Wtd5fN5nwNHHQJsd6bBsrMutP3YHmw3viPqJNJ77LZXBxzbT8vJ/hnUR/h82/nC+9UhoPczD0xHCXTt0/p8viO8vlQqmbzbzo9tYUdJMt7L3QpEELlaKpXwzDPP4Atf+ILv81NPPRVPPPFEYPorVqzAqaee6vvs3e9+N+666y6Uy2VEIhGsWLECl1122ZhrSLwTF198Md773vfiXe96lyPRA7C/rsvdfNQPjuU6zk41XJ3vP9gXHCZ7Q97dmnziCD7tbS9CNBrF4sWL8cgjj/g+f+SRR3Dcccftplw5ODg4OEwENiE02R+HfQM7w5YriW3/3tYOCVW/8n8guL/qPXZ4DTvNauEwCFXH8n+CpJb+TyhpFvR3tXxsK39KSqrqW0PBaD6UEFWiUNXbeo3m384HiUH7OUFhUvQa+2+7rSbS9hNFtbbW/Orz7bqy2yGoXcZDNcU3n8vfdrifoDxs67l2uvbn+n9Qvuxrx3sPqikY7Z0Ldt2qk0ivV2IeQGBdVXtPtI3tvhRUNiXpNS2bOJ9ovQfVy3g7ECZiG/l8e3wZ75njYUftOPM7Y8YMZLNZ8xOkKt+ecCGdnZ2B11cqFXR1dY17jaZ5//3349lnnw3Ml8MWuHW5g4ODw94JtyafOPZ6JToAXH755Tj33HNx1FFH4dhjj8Wdd96J1atX46KLLtrdWXNwcHBwcHCYAKbKlpdKJZ+ilWpfKkpJ8FFlzP8BGIU1Qy0EgWpQ/m2rSKl0VmU0FalM2/O2KquVGGN4BipZbZKaKnoFY5ozPyQT8/k8QqEQEolEYOgSVeOrWoz5DSp3qVRCTU2NUZkXi0WfippqXap5mZ6WhWmrSpjpqzJXCXBbpUto22ldqEp/ZGTExIimqt0m8oNiymsZCA3tw/ZgPpRYZXn4PZ0ODN2iZbFDh/D52ha2ok8V1byepDLbQOslSH3P0Cg22avnCGhaSrqyrTW9SCRinCxsA8ZEp8qZz7BDw6hjK2gnBgCfOpz9gjsEbLB8fPd1kcddCfrsIIeUDVXFa13zN/ucxq/X/sK2tkPXaHntfDAtvhvs06xDz/PMu6/q+iBCXJ1bugOC74itqOd4NBmSf0dhx2MdL8THZMKFVLve/ny8NNesWYNLL70UDz/88H4R73VH4NblDjp+72/kmsPUY0/pQ2q3bWGLw/6FfYJEP+ecc9Dd3Y2vfOUr2LBhAxYuXIif//znmDVr1u7OmoODg4PDONgR77WbvOxbmCpbXiqVjPJZyXQNy0BSTwkwJbVVNW2raZmOTdooCQxsJVg11IqtMuc9/ExJfBL9JDGZVxJkGkrEJoR4L9NiCBKGgiCJr+SZlp35V/LRPhyRJBxjz9vEKPOnDgWGutF4zBr+AoCPMCZhqSFqWG9KMvI5JIDZzkrI8xo7rrwS9Xb78FrtS3q/hkYhNISGTbaGQiFDwGlf0fs073Z4E4W2sYY1sZXSNjTMkU2G2ySsOi/sd4DX2+Q3Y8mTRFdiWetWdyjYdaF5YdoaC555YR/VdFk+pq/hnDS0Dx1l+gx9NmGT3EoM2TsedPeE9heNn893xm4f22Gm5bPHFvYNHdPU8WaPB3ZIGc0T+5e+g1rnk1Giby94b11d3TYPNduecCHt7e2B14fDYTQ1NY17DdN85plnsGnTJixevNh8PzIygt///ve4+eabUSwWA+PL749w63KH/VGZ6rDvQ+fI+2Ifd2vyiWOvD+dCLFmyBKtWrUKxWMQzzzyD448/fndnycHBwcFhG9jVW8duvfVWzJkzB/F4HIsXL8Yf/vCHca9/7LHHsHjxYsTjcRx44IG4/fbbx1zzox/9CIceeihisRgOPfRQPPjgg77vb7vtNixatMgQBMceeyx+8YtfjKmHZcuWoaOjA4lEAieeeCJefPHFSZdvb8dU2HIlYJU8Y3/ROOUaH5iEJ9Ow+xlJKCVKgvpi0AGEQXnUNBVKMCrJOBGVZbV3Iyjch6pjbfLYJhRV5UoSkj8atkN/7Gdp+kw3iPCzYYfj0LJputVIUH0mAF9+1UFgh48B/DsLNARGtTAuSqxqaBnmL0h5HZSGqpK1T9rQMkwkNIrmQw/rtA+PVJWVtrsd2kcdUTahrP1D86Jkrob3sfuh1sV4fSSo39qHg9oq76D60zKMB82//g4aK+wfJb+1vpQsVwQ5UGxnib5H9lin9WKPe/YuEPudtet3POyoHZ+MLd+ecCHHHnvsmOsffvhhHHXUUcahUe0apnnyySfjhRdewHPPPWd+jjrqKHzsYx/Dc8895wh0C25d7uDgsK/Bnrfua9jVa/K9GfuEEt3BwcHBYe/ErvR6P/DAA/jc5z6HW2+9FW9729twxx134LTTTsPKlSsxc+bMMde//vrrOP3003HhhRfihz/8If74xz9iyZIlaGlpwVlnnQVgy4Fl55xzDq699lqceeaZePDBB/GhD30Ijz/+OI455hgAwPTp0/H1r38db3rTmwAA3/ve93DGGWfgT3/6ExYsWAAAuPHGG3HTTTfhnnvuwdy5c/HVr34Vp5xyCl566aXtPil9f0WhUACwNfSJkuSqxCSZxfAv7IvlctkX/kXDWGj4D/vgRapM+b8SsYQSo6qs5f0kEiORiFFRF4tFkz/7YFA7FIEqc5VILJfLJrQMP+OhoAzdAcBH+tfU1Iw5ZFDLXltba56nZDPzpoSerarW7xU2Oa31r+pdJaZVXR9EbjNPqrBXlbnuTLDD3ejOAOafbUSCWJ9rH8ZqK4D1R/uD/q19jf1InRVMS/sg694m8tRhwV0AJFF14aMhQfTZ7Dd6QKY+i79Vfc5DZcvlsjlYVJ1CtvrcDmuji1Rbaa9kd9D7FgptDYmkjgDmy34nta2YTw0zpDZGCXLtb6oG10OFtUx6yCnbjfWrKvZqfUZ3NWh5+TcPcbXbXR1yDN0Si8V8YVqYb7aZnZeJYEcX0JO9d1vhQpYuXYp169bh+9//PgDgoosuws0334zLL78cF154IVasWIG77roL9913n0nz0ksvxfHHH48bbrgBZ5xxBh566CH8+te/xuOPPw4AyGQyWLhwoS8fqVQKTU1NYz53cJgM1EG8txNRttPWYf+A2sx9ue2DBA77Enblmnxvxz6jRHdwcHBwcBgPN910E84//3xccMEFmD9/PpYvX44ZM2bgtttuC7z+9ttvx8yZM7F8+XLMnz8fF1xwAT796U/jm9/8prlm+fLlOOWUU7B06VIccsghWLp0KU4++WQsX77cXPO+970Pp59+OubOnYu5c+fia1/7GtLpNJ588kkAWyYey5cvxxe/+EV84AMfwMKFC/G9730PuVwO9957706tk30RtlraVhcDW7dkatgXDW1hq4GD1KS8zlYDKzFoK463pfRU4oyEI0MuBKmugyatSrTbRJnWAZ9hK6ztuOMso61A1jq2r9FYzlo2uy7sHQJBsMNK2IpfJZ2rqWbte5WI17Kow4DPHe9g2qD6134TpFgaT8lu36P32s4DwN/W29qtYD9f+2g1lb1NQmv7B4U1CVJY22FCmH99drV+x992HfJ/dd6oIt0m5W2llL4X+m7YTh1NV++1leh2W9njhF23dv1o/H/Nnx3qJqgf206HoHGLDqGg8DlB7WeXZU/DOeecg+XLl+MrX/kKjjjiCPz+97/3hQvZsGEDVq9eba6fM2cOfv7zn+PRRx/FEUccgWuvvRb/+q//apzhAHDcccfh/vvvx913341FixbhnnvuwQMPPGCc4Q4OOwt74ju2IxjPFjvse9D58f6Afd1R4DAxOCW6g4ODg8Nuw1R4vQcGBnyfx2KxMQeSlUolPPPMM/jCF77g+/zUU0/FE088EZj+ihUrcOqpp/o+e/e734277roL5XIZkUgEK1aswGWXXTbmGiXRFSMjI/iP//gPDA8P49hjjwWwRfHe2dnpe1YsFsMJJ5yAJ554Ap/5zGeq1IBDNdhEKUlRW72tCnI7nIdNVFKBCmwlxahCVZLOJt2UqFY1d1DYCFUC2yQcFdN2OBLArzxlHkmqqULcJvVURa75ofLYJlm1bnloJNW/9nVBZaQieqJgufQATX7GgybtwzYZRz7I8aEEo7aRhjNhmxJ6n5ZJlfZKfiYSCZMm60LDdRSLRV8bEKOjWw6NpEq4Wn3yME2qntl/eRCuHYveVtHbZVe1O+uvGrFsE91aP7xeQ8SogyroM5sgVltAdXRQeBKbwNby8CBT/UzfF7sP8Nl2XSo5bYeaYTqqItd3UYl8vmfsl/a7q4S5/d7bh+uyfm0njD6b77Pt+NG615A7rGeOLUqGVHOC2NjVSnRgS7iQJUuWBH53zz33jPnshBNOwLPPPjtummeffTbOPvvsCefh0UcfnfC1Dg7VsK8Rco5k3L/g2nvfgVOiTxyORHdwcHBw2G2YCoM9Y8YM3+dXX301li1b5vusq6sLIyMjYw4ea2trG3OYGNHZ2Rl4faVSQVdXF6ZNm1b1GjvNF154AcceeywKhQLS6TQefPBBHHrooeY5vM9O54033qhWfIcqsAknkkUMwWGrSDU8B++3CW+SkapEJkFlk/UEiSgqQJW8VwJWiW0Sc0qEMQTD6OgoCoWCIbsKhYK5X1W4TIekKENe2OB9DDWh6mmN567EPMG82NfbRK0NJWZtYltJyVAohFgsZp7Lz1WVH4vFzOGo6mSwSWoSpGzjoBAy9o4BDWdRjXjXz1nX8XgcmUzGR15WKhUMDw+jVCqZECee5yEajRpnn/YbW/2uB0aWSiUUCgXTR1gfsVjMHFiqZbAV29XKo7sHGJbFVjhXKhVzKKaStKx73q+7KPQwW935YYc80T6sRDXDwSiZTYeN5r+mpsaEpNGQJCyH9jXdkaGOLq1Lvm9aJptE1zrTfqUOAyXRSeyzjPrus760LuwdDUHhaHiN3sfxQsc29hW+m3RO6HjC0DJsXwCmv20Lu4NEd3DYV7Av9f99qSwOE0eQKMRh74Mj0ScOR6I7ODg4OOw2TIXBXrNmDerq6szntgpdYW83tJXJE7ne/nwiac6bNw/PPfcc+vr68KMf/QjnnXceHnvsMUOkb0/eHIJhk6Gq5NXv7bjnQdtRqxGo1Z7Ha2y1u/aboDa1r7e/U0W15hvwE+caksZ+frW+ZJef6dvPsYk9W+VLMtsuj/1cO3+22pkEseab7Wg7KbQtg8D7tB+wzJo3WxFeLb/alnY9MK+2Ali/V+V8tbFP2yLIOWPfp31Dy1RtXLXvV7K8WkgT+77x+rG924F1b/9o/Wp72yFK9Lc6vzSf1fqU9leS2UFQh1q1+lTYoWyYfjUiwW4vW1mvDh+7vnUHBHeW2H2QjiymZ+9isccXTY+7b7Sf6rUT2TniSHQHBwcHB4e9G45Enzgcie7g4ODgsFejrq7OR6IHobm5GbW1tWMU4ps2bRqjACfa29sDrw+Hw2hqahr3GjvNaDRqDhY96qij8NRTT+Fb3/oW7rjjDrS3twPYokifNm3ahPLmsG1wQkf1OaEkp01OU0Wqyk8SSXoYKYAxaepnVHYSJACpvlXySpWfinK57MsbsKUfRaNRQ6aRvLYPs7RJaSrxlWBTdbaSlSzH6OioL8wNy8G6VbVv0GGaqsLV9tA6IUgsKtHMwz6p6mUebFJPFdFU4LK+tf0Av+KX6TJNWw3PwzKrQQlnO4SHHZZD+xMJY9axhvFQhbGGVVGC3t55YJfFDoFDsGz251SfU52s/Vt3KFBBruFi7HdHy8PQNPxNpbe+Ixqmh32gWCyafDCdSCRi2lZJZua5XC6bPqi7IWwCnt9rfWgf1LrSvq7P1B0rqmpneCEtn+1YsQn6oLAseogs1eHFYhH5fN6MQwz5o0r2eDzue681fSrh9T1jn+Q4RQearYSfTPglBwcHBwcHBz/GE8o47J1wJLqDg4ODw27DrvJ6R6NRLF68GI888gjOPPNM8/kjjzyCM844I/CeY489Fj/5yU98nz388MM46qijTIiMY489Fo888ogvLvrDDz+M4447bpt5Z9iJOXPmoL29HY888gje/OY3A9iyjf6xxx7DDTfcMOEyOmyBkmRA8DbTWCxmCC6SWp7nGZUnySMNP6LhYWyiNEgVroQk72XcaiVr7fv4PckthmEgSUzytaamxhBstqPABkl0lk8JM5LxSrLyWeFwGJVKxYQgYd5sklFJdj3o0b4n6J0dT/nKe5RI5/c2KWmr4ElAqio5kUiYMDB0XnieZ9JWcrtcLvsIRkIJ2kql4suHrbRWEt2Ota/Q8CgsNwlO1nWQytsmsm11vraRhp6x67tUKo1xGGj8c9aPHa7HDm2kziSS33QUkURnmqw/rSeOi6xXdWxFIhFffSrJrI4ihl6ydwiog4jlUYeL1gn7i6ZhO5DsPq1jhzrw2Gfs9tK+YqvD6UCig6pcLhvngta7OoQ0zI22A/tzkCOMhD3zr+NCtZ0JQXBKdAcHBwcHh+qwd6HtiXBK9InDkegODg4ODrsNu9JgX3755Tj33HNx1FFH4dhjj8Wdd96J1atX46KLLgIALF26FOvWrcP3v/99AMBFF12Em2++GZdffjkuvPBCrFixAnfddRfuu+8+k+all16K448/HjfccAPOOOMMPPTQQ/j1r3+Nxx9/3Fxz5ZVX4rTTTsOMGTMwODiI+++/H48++ih++ctfAtgysfrc5z6H6667DgcffDAOPvhgXHfddUgmk/joRz+6XXWzP0NV49X6CIlDDQOiClyqxUki27GJNVSHqoKrhbkAxoZnULI+SEmuTgCbPCP4PObFVpMHPVvJNCVJSSZrWqxDPXg0SOFMNTuvs0Nn8H+qmW0Vr+1sqAaWg/kaL0THeGOLtgGvUbW73Ya2Ql/LxTYIijmu5Dmv13tt1X5Q31HV8Hiq4KD2Zl+y28T+rY4gTc8mY+3+RyLaJq4VLJd9qKX2RduJFBTaRPsjAB+BDvgP5tR7bBJYHTWaL5tIt507dnsA2z48V51rWiZ1lmhd6Huhuxfsfql9Rn+IoP6m4xSv0XzZTphq5QuCI9EdHBwcHBz2bjgSfeJwJLqDg4ODw27DrjTY55xzDrq7u/GVr3wFGzZswMKFC/Hzn/8cs2bNAgBs2LABq1evNtfPmTMHP//5z3HZZZfhlltuQUdHB/71X/8VZ511lrnmuOOOw/33348vfelLuOqqq3DQQQfhgQcewDHHHGOu2bhxI84991xs2LAB2WwWixYtwi9/+Uuccsop5porrrgC+XweS5YsQW9vL4455hg8/PDDyGQy21U3+zOoHiaRbiuHVe1JxTXDI1AtbhN27Kc8ZC+IwKqpqTHx+ElQaWgHjQ+tB/lRTU5inuEylETn/aoEVkKOeSYhb6ehKmg6GZTg40GKSpqREKdim4eZan0wFAjvSSaTJoSHKqSZH1VD53I536GZhIbdsJW7GjomHo/7VM3qQLBJWtYXv1O1uRKJSjzrZ5qO1hvrkep2hschsax5sEP2qNLaDumjxLnneSbciu5eYNr2bgpb9c78ahgSTYN1YxP8tvqbUIKXZY1Goz7CXklfOhii0ah5h+y+pir8oMNGNTyShp1hmZhXbR8NCaTpK8HNfNvvHZ9lK861n9pKdDuvLDfbmX1F3ycdA1guOks4RnGHAPPH94v51zA5ultD2013ADDv9u4Z7e/6ow6+anAkuoODg4ODQzB21EbuKjgSfeJwJLqDg4ODw36DJUuWYMmSJYHf3XPPPWM+O+GEE/Dss8+Om+bZZ5+Ns88+u+r3d9111zbzFQqFsGzZMixbtmyb1zqMjyBCloSiEncaSoIEEkk1AIbooipdla02ec7QGQy9QtiqTpJbqjzVfDDcSxBI5pIsVGUp88+86W/Arxjmvarq1oMw9eBCJdZICtqkmpKOlUrFxFFXMB37fluJbit2g+qAoT4Utqpcr7fbQb9jm2pMb/taJd+D8qpKZtthw36jpKWqibUN9XBNLYuS8UFhRqrlUz+vpqRW2HVqh4ghQWvH+rcJ5qCFFElc9nkSw/a14yny+Sx1JqiDopqSOmjnhPZvm7Sv1o/0MNGgerRjrfN/u41ViU7inPWqSnT2dQ1tYyvQNcZ/kJJe60PLpw4jPZCUdTZeWzo4ODg4ODg47M9wJLqDg4ODw26D83o7TDXscA5KUMZisTEEHBW844XwCIo1rNeRNNMY1rbiV0lsJeSUlFUFqYatAPyhXILIYVUv23VBaKgIOgdsBS/TtMO6kLBjHTI9VYeXSiWfQpvpsg3UCUB1MhXhSmzaeVdicVthT7Te7XZTorNaiBXmXYle7mCwHRYkyZkfPeAT2Eq407kSFPqD17Htg5TjpVLJtwtCVf7sv0EHWSqZyrSCQsKw72m9qHNJFfmqhtdy6Gd2fWtZ+b06kjzPHwrIdqQoqWuHPyI0n1qnbCPNE9tZFehB5QjqZ/qdlk/fG02bP7qLhGpzKs01DrrdLtwlo3HQbVW7XWd2WUOhkK8P8j1RwlwdbqqKd0p0BweHPQXjOTsdHBx2DG5NPnE4Et3BwcHBYbfBGWyHqQbJIpKFqi5neAoe1Af4lbokoOzwIAxPAoyNba7hI4LCH5D4sxXi+gx+z7woaciDBVmmcrmM2tpaE0JEF5RKMKo6VUNNUNnKZyaTSV88by5SNRwIyW4AvntZx6VSyZC9o6OjPhJdiUSS4TU1NaZMJBGZdpCCdzzHgLaHksQ2gcjPeA8w9tBZPn90dBT5fN7UGfNY7YBLtlMsFvORlQx3wjA3ShyXy2VTLltRzfpheYrFIoaGhhAOh00YGyX8GVbHdmAoCcxQPtpntQ7Yj1Q9r/WioXc03I3Whf6vcfTZn/Q9o/OE4YU0jBCJbQ0DZIeRYb5Uac0+qepuEtaqAifBzdAoNqHP9DRt9hv7M3u3ix6sy3dUQ/cwX+VyGblczoS3odNGiX32GXUcRaNRc4go+5tC20XLzHyxrHogK/PPfsl6YxihbcGR6A4O+zfsHU876xk6jo53RoiDg8Pk4dbkE4cj0R0cHBwcdhucwXbYGQhSkKpaM4hgrpYOSUqSq6pgtsMeKGlYLd2gUBr83CbQNbyDxku2YxcTqr5nmrYyn2napKPmTUNWaF0oOadOAU1f42KTkLXbQBXHdhgRm5zUfNjfaZns/Nrp2YdiVrvOVtATSpiTkNY+MR6JoHWnCLo+SGnP+rQdCKo6tsnfIOV7UKgaOk8U7B+qdNe8VEsvqNx2/1Rou9l9SUOP2PcEfR7UJ7RtlEi3w6LYYXwmalvsXQzqSFAnTlCoFTuf+lzbMWA/U0l57jgAgg8Ltce9oPawx5Lx3qcgOBLdwcFhV2BbNsfBwWH74dbkE4cj0R0c9mPYC7Wg0ADVCB8HBweHPRFKINnhIJRQ5SGgSprasYcBGFWmTXwpccW/lZhTgs5WiypZZhOCNhFnk8QMtcDnBU16bbJfP+e1PPzQVjTbjgCN16z5JvlNtbVNtBaLRaMyrlQqPjWybV8Yh90+YJPQsCmsk/EOJa1GaithqSE39OBHliUWi5nDZwuFgukX+jwlLVl/SghT/VssFsfEAdcDIGOx2Ji43lS92yF+qL6Lx+OIxWKm36oTQEl7qsvVWaL9S3cw2IQu79G8sX30PeH32q58JncoMH0NO6MKdNt5pHWl/U1J4yDHAvOgzifNYywWQyKRMAfy2qFv+H4psWw7k+x3hfnSXRSqege2hmWyQzqxHlR9zvEiyMEViUQQj8dNOBd1Bmrf0b7A+0dHR1EoFJDP580OB44D2r/53Nra2jFjl4ODgx86Pu+v2BVlVwGAW5s6ODjsTjgS3cFhP4dNoujiVVWE+/Pk0GHnwXm9HXYG7FjMJO6UMCc5xD5IMo2EaCQS8fUxDbnC+wD41OFKZFaLgw344w+rQlRDkWhIC42PrYS+jt+An+BTsjro2VruQqHgu09JNYaTIVSZT8LOth0MT1GpVBCNRg3RriS+5oUkpsZ75ndKviqByrqw88W8Bx0oyd82+RuJRHxhNzzPQzQaNY4WhqJRQpLlZFtpvdohTehQUHU7y0SiXR04/D8SiRgHhLYnr1ESWJ3hLAPv08M42U9Y18yf7iIIcjoRSqLbh13q/UqoV9t2P9592s+0jLbTJqhPabgSfW9raraEJkokEr55jzocQqGQCU+kceL1GbxH460rmc++qgeqatx/7fusS45HsVgM0Wh0TLtpeCptdy2bqs+ZT60TkuiDg4MYHd0aTocOBTrNbOfDtuCU6A77I1SIRLi+vHOxt5LnztHisDfArcknDkeiOzhUgS5KlBwJ2oq7N0LJDxI+dhl5nS4mHRymEs5gO+wMBJFVSgwFqV3tv4GtdsBWafI7EmhMNygMRxCUKLU/V5KXz7TDUDBtJWR1zGaYFjsfQYppJS+1Dkg+2uSzXTdaHiUSbQUsCU1bJa91pMSoTQRqWVg+Ktht9bSdB5tkVtLaDnmh7crr1JFht5cNVTbrPVrfQc4Veyzk30xP46Uracu/tTzqzFHS3a5P/TwI2uZ6nU3cBoUtARDYr7TPaP40XX6v/Z5Q1bj2+aB61La2nWR2PWqe7ffDBtvVTl8RtLvPrk8tI8um99i7XhT23NT+n/cDW89C0N9aNnWe6XxvojbWkegO+yNsm+iwa7G3OS8mk0c6VjkH1LF8b3UkOOz5cGvyicOR6A4OFnQ7LA9cU5UQD1oaGRlBLpfb68hlVY0lEglz8JVuC+YgWiwWjQqR23/3prI67PlwBtthZ8BWW5O4pKJaSS+N720rfQEEKqM1bRKctnNVFbC2mlPzp6p3DVtChTLT4LV2OiS6SbYzXX6vRKYqe7U8xWLRRyraCnZbmazkJ8OO2PHB1UlAW6JhQ9QBQWj9azgUhkKxQ4HwHiUFNewFy6p2jorboF0DBNNPJBJGhR6LxVAul81BkEFkPA/+jEQiZp7AQ2xtYlIPANV6IZGqbRCPx5HJZHz2m6FvIpGICQdj9xfWcZAyXwnkag6QIPW1Ohe4yFeHie6qqFQqY5wmepinPksV+Vqvmi+WOxKJmN0Odj9iX9CyM6/80XldTU2NL59sY7v8BMO91NTUIB6Pm3xrf7SdIUqGq8OG9WeT+7xHD5+1xxB9hh1KhuAhrJVKxcxX8/m86cNK2tPJVSwWUSgUJkUQOhLdYX/FjvZ9h+0Dx3ZgrLhtT8RE+whtQzKZREtLC6LRKAqFAgqFghnHOT67fucw1XBr8onDkegODgHQbb9cdHFbNxc75XLZqOG4YN0boIpBlku3swP+uLFcwHK7N793cHBw2JNhL6qUtFMylp8p8WirbknSVSoVX+xnVY7bKmgNVWKT3/yeRBpJQSWnVYlOkt6+n+XUspEwVcW6rcy102KIDCXqdDKtynAbupjVBawqcTUkix2CRfOpSm2my7zR3mrIGztNkqHqhFCCm6E8dFeBrUi2FeCe55nwGUF9w3a4kCQOhUI+p4g6NEimKvGq/VR3AGi6tiJbFdZ27Gol4m3FsvYFbQfmi3WsOyxslbOtomY5bFK9mpq6mgo9SNmufY91q+FabNJf3wemY4c+0c9s55cqzW2wj5GAt3cyaFntv7XsbEPtC/p+su50zLHzo3Vktw/zSkcOBSAan5/1qXVG4QTHHQcHB4c9DfYcScf8vXmNquvzdDptHPnAVsFDkJN7qvOwM9N3cNgX4GZHDg7YGn82HA6jsbERmUwG8XgcTU1NiMViRr1GdXapVEKhUEB3dzdyuRyGh4fR29s7RnU1kedSJZdOp81CWBc1VCNRRVQsFlEsFre7rFys6bN0qzgw9lBRz/N82+arxTd1cNgeuImaw1RCY5F73pZDDW0HoBKASpraIRiCQjRMRO2kxCkV2nwuMFYhrt/pNXY+lKgLyoMSaYylrWmR2A3KLwm7oGcxDZYp6LlKptO2UW1tHypp51/jq2uYMW0ntqnmS2Pdj46OGqcwVcLxeBy1tbXmIMl4PG5IdJZbn0WyUXcRKOHOHyrGWUbGqWb63FnA3QVUllUqFR+BORHYdattrPmk88QOoWIT9kHEsE2sB5GxGqOf9W3XU1DaulNA+5aStEHOFD7XVqLbabMeuMuEymt1puiPkun8GRkZMeOEHoiqOzxsh4Omow402yFSbd7EZ+l7yvSZJ31vWe90uun7FeS40PTZr/m/9g875BD/V2J/InB23GF/w95O2O4NqKmpQTabRSqVQjgcRjqdHnMIOHe60b5SsT04OLjd69VoNIpkMhkYUgzYsit9aGjI58QFJjcOqjOV9p3jPm2Szns4l2F4uZ21Q9z16f0brv0nBkeiOzhgC+mSTCaRTCaxYMECzJ49G+l0GgcccIAJ6UKVF4314OAgVq9ejYGBAbzxxhtYuXIl8vm8T7E9Hqh0r62tRXNzM2bOnIl4PI66ujqk02kf+dPX14d169ahUCigt7fXbGHeHvAAqXA4jFgsZkiGoEPwVKHH7c3cou7gMBVwW8ccphrxeNyoaUkkKXFpE9sc45TABbYqXm0ilaTwtmJTkkjX8VIV26r25CJJD3skEajjsx58STKM+WJaqtK1D6UMUlKTAGS5+DntRFCZ+Defb6thGdZEFVQ2ea/vvhK0bAMSnnqgKOvGDt2iC8xMJmMW28xDLBZDKBRCPB5HMpn0kaDMNwAMDQ2hr6/PqHYZToNEpJKQqm5PJpNIJBJIp9Oor6/3hVopl8vIZDIoFAoolUpjwmro87WP2vWp/ZHfaZ/UkHMat1/bk38DW0PIEJqu7rbgDxf0Snbzfu5kq0ak831h/9d0lBhmmDwln9kv+M4qka5kMf/mtnftVzwklm1mO8xYPo4VSqjzveJ9FFboTgBeq4p2z/PMO671ru8r55O20lydgFpHOm9T54m+UwxHQ8cC1Yv5fN53YCqv5xjANtL+wHJvCzsaWsDZcoe9DdtyaE8GTvlbHZFIBAcccACmT5+OTCaD6dOnI5VK+cbawcFB5HI5lEol9Pf3o1gsYv369XjllVfGiBUmimQyiY6ODjMPssfBnp4eI6hTQn+ipLYKBDimj46OYnh42Mw9GLaFRH04HEZdXZ1Zk1NYNxV90GHfQTUxw0Tg1uQThyPRHRwAs+CPx+PIZrNoampCOp1Gc3Oz8URzuz0X07FYDENDQwiHw+jt7UU8HjeLUiqigsDBrba2FrFYDNFoFKlUCtlsFolEAnV1dchkMgC2LoY5SQiHwygUCohGoz5F3GSgW5ntbdO6IOPiSrfTV1sgOzhsL5zBdphq6IIG8IcwCQqBQmhc7SDCmWlrCIptKdFU8UlyWwlKO096aKLmz1bBkkwMCoehYTk4fmt+7JAbRLWwG0HlC8oj86mknk0GalmCPlPbpPnTsBWsJw3Jo2QzSc5EIoFEImGIT5Lo/Ft3XxGlUsnsugpS+NrOCN1NRiU6w8BpODgNl6OEJecKSgwH9TvWgdYT8xTUT5iGpmWXNagNtH8p+BwS9+qYmagKL+g7rWN9Z23HzLbGen2ftPwstwoCdCzQMulOAyXnmZbmVVXo9vP13bCfwTLzeXq9qvqD3it9v+1dGvreahn0b3U02H1GwyTpO6XOjm3VvyPRHRwcpgoce7hGTqfTqKurQ0NDgxGacWyjOIzEciQSMWeT2Icojwcd2+lw53kj9q4crsU5vus4PBmhme4003Ee2Opw1Ws5b9F1uRs/HaYKbk0+cTgS3WG/hRrL9vZ2zJs3D5lMBvPmzcOMGTMQjUZRV1dnFICqTqRnetasWSgWiybUy9DQEF577TWsW7cu0PsdCoWMYq2urg5z585Fc3MzMpkMWltbDZnP+Os0/rlcDrNnz0axWMS6deuwfv165HI5rF69Gr29vdtFpNuLMn4OBJMbSlQ4ODg47MngoodjGYlMqk2VLFeyjWpnjVGu6m+9TkN2KKFsj6NKUClhxTxojO/R0VGTrn6vizRVRHHspsqYClkScswTdxCx7CR0NTwK86yhNLQOFFwoKpGtdWSTsUF2Q0nxamSuqpS1PVVxTId0OBxGQ0MD2traEIlEUF9fj3Q67Xu+HVtcfysxTQUx24b9SZXFsVgMmUwGiUQCBxxwAOrq6oxtVyf5yMgIUqmUcYrzkNGBgQEMDg6iUqlgaGjIKMqoxGZeNMQI8xK0Y4xtlEgkfCQq21RJUs/zjNqe74HOcVQBbtcP216V2HQM6HulYDpc/FPVHhTuh3m2t8lre7FvBTls9DMSDkp6a5lVMU5VeD6fRz6f9yntQ6GQ2UZPBwmw9ZBhrV+2hU3c6HjA3/bYYOdfz+RhH9fv+Xw6ZKhu58Gh+XzeqBpzudyY8wg41tARZNe1HWffwcFhC3bUcWSntb9gIqr7UCiE1tZWHHDAAUgkEmhpaUE2m0UymfQ5PTmekWDnLq/h4WG0tLSYcb2npwf9/f0+m6igjUilUpgzZw6y2SxisZhxwtM5rqFP29ra0NDQYEK8Ujm+YcMGDAwMbLMe1AnA37QzFAKout0WTKhDdH/qP3sSJiog2NXYk/KyL8OR6A77LbjoD4fD6OjowKJFi5DNZjFz5ky0trZWJY25qOC2cc/zTLzVgYEBDA0NobOzEwDGGLdQKIRUKoWGhga0tLTgLW95C+bMmWMOOwtSigFbJ2uVSgWrVq3CqlWr0NPTg76+PvT19ZlrJlpu+4ef6zUKW5HnPN8OUwXn9XbYGdDwFlQpkWSyVaYkGRkCRkNfcBcS01LFM+CPeWwrZ/mdHduYi0D7exLsdhxoVcPqGKxxxDlGk2wmGcf09KBLjU+txCjLw3yVy2WEQiHjNLYVykEHMI6neq7WTrYiXwl0phOLxXx5ZlgVkugM15HNZtHS0oJEIoGmpiZkMhkfKW6HI2G9s35Yj6VSyZw/QscF65v5jEajyGQyqKurQ0dHB5qamowjXNXpIyMjyGQyY8Lv0H5TPcddbCTRtW20rOr4UdvMcrBvcqu5tqndvgwno/Vu9z9CSWB+T3Jaw9xUU1FrH6LiX8Pz8H51GPA5+g7o5yyzOm9U0af9iJ9r3HuG31PHUaFQQC6X85VFt/Qz/j3vVyJd55W280PfMZ3T8Rm2Q4DvM8cyhqOxd6vwOSTJtXzDw8Pmb/YFdYioop3P0vmfhr0aD06J7rC/wfXZ7cdEiPTm5mYsWrTIhGSjnQfgs5c1NTVmB/fg4CCGhobMM2KxmAmJQoK9mpM3Eokgm81i4cKFmDlzpgm95nkeUqmU2ZXO/AwNDaG1tdXERuf6f2BgYEIkOrA1bJsKOvgcwH8GD0PzVQtp57DrYIsLgbF8z94KtyafOByJ7rDfgotcbvtOp9NIpVKIRqNjFhJBUOUdF9Ojo6PGY021FQcVXp9MJtHU1ISmpiakUimTh4kc4BQKhUzc9Eqlgrq6OqRSKRPzcjKLHVtBSQPO/OpgaHu7JzNQBm1/1gPSmJ6tmJtKlYfDngtnsB2mGkHbd0mmqcpWxz/bYapbcoNCjHC8DAqpwu/HQ1BYGH2+PZbzeapMV2KdBKX9XFtJTyUwx2M9MFFh50XthH5mQ9MLUunoPXb4GY0Xr2S11rWmqUSgxiDnbi6bGFdi1a4jtU2q6teDt5VsBGDimJJUDToUVclmloVl5XZx2nUu9tWxUK1t1BEwXj9W6FzE/tyuV3Vo6D3sa8w/HQZ6mGe5XDbvT9B2eiW39RlK8E5kDmbfq9BnKdmgO0F0Z4bWhd1H7TwHvRusm6AxJEgtqAS93UeD5kiaN5uEVyeLqhqDdiHYZdEY8UFjwUTaIKjeJgtnyx0cHAg677lGth3BtjKbzs9KpWJEaRwXga1kdNA4o8/iOSqxWMxni20BA8dszq0476hUKr5dcxMN60KSnPMzzhFUSEB7oTuZtnfctJ0YnDvRyTxeSFqHsdiX+Aq3Jp84HInusN8iFouhpaUFqVQKHR0dmD59OpLJJFKp1IQXDryurq4OM2bMQENDA15//XWsXbvWHAJaLBbNIj8ej2P+/Pk48sgjkUql0N7ejkQiMe7CV1FTU4OWlhak02n09fWZWOx9fX1YvXq1T1VWDTzxm4vdoEO2eF3QwWqTifXGdKPRKLLZrJncpFIp3yKxUqkYxVQul8PAwIBRcLlDTPdtOIPtMNXI5/MAtipmOf6SEIvH42ZsU+WrEr08+JELLC4w9DBKVbwSQUS2OiyV4OJ3+pv32+SZkpDFYtFcC8CElwgipT3PM7aH9cF8kwxmHTEPqi7n57RjQQoyJUQ13ISG5VDVP++Jx+NjlP28T0PYsA24U0DJRyqD0+k0EokE6uvr0djYaIhtu/6ZFslUm1jmApphPWhTE4mELwZpTU0NWltb0dHRgWQyiXQ6jVgs5qsjtatULisikQjq6upMyI1wOIzBwUETSkShSu4gIrdYLPrIUCXite9pOhp+JWingbYr48tS7c/6ZRtS/Tw6ujXMTqFQwNDQkGl/O5SITdyyr6mgoBrxr/2NYBm5vV7fJT1cmPnTd591ynfN3uWh2/lZ51ou++BXVYfb8zLdLcA65xilYYBUqc752MjIiCFoPG/r4fPcdcA8UcDB+ZvWFZ9PR4jusgnCROysI9EdHBwmgomOFTxENBqNYtOmTSYcC22YhtXq7u42NjCbzaK5uRmDg4Po7e3F8PAw3njjDd9ORAVDs8yYMcN3Jpru8tF5B9PheOx5nnEoR6NRNDQ0+NazE1nDMk0l6NPpNBoaGoyDfWhoyNhV7oAKOhhc6zboMz2km3aQu+lqamrQ2dmJrq6uXU4MT2R3wp4Cnber+HBfgFuTTxyORHfYbxEOh5FOp5HJZFBfX28O9rRP4N4WuGWsvr7eLIoZh1W3ZNFb3dLSgoMOOgiRSATpdHpSzwuFtoSDSaVSCIfDaG1tNVu/J7p9ngtNVWQBGBN/lNcFHbY1Uaj6k7HgOTHQhXK5XEZvby8KhQJCodCYrdQODg4OE4U6Bzk+k3TjQVBUENnxxjkecoGhBLlO8lWhay9alFi3HZMkgkm0adgVohpxCGwluHWiq2EkdLHHNDSUhR3DXFWwJN6DVPAcj7U+NJ+q5LZVWKqYZTpBIThYFtuhQQcInQIaQ5o2hjGj4/G4sY9B9afErard+Zsqskql4iOOuWjXdBiHlcQ740sr1EFuK+CZHp0AhULBbE+307CV0NoXdbEfRKDb/UX7Q9Bz1EnB6+mIicfjqK+vRyKRMCRGKBQyMWH5zvA35w78zl582u+KhopRpWHQ4kzLoQptuy5UKQ/AONB4HdtG32Xty3oODq/js1g+3WnHPLPcJO+1ju3yB+12YPq2Al37rtYtf9tb/e33lH2ZzyERFbT7wYkYHBwcdjU4b8tms4hEIujp6TFjNR2HHP9HR7ec/dDT04O6ujq0t7cjk8mgpqbGKKqD5kb6rHQ6jdbWVmQyGeMQ5xzF3h2tYcs4ZtrzhkQiAWCroGNbCBKMcU6TSqXgeZ7ZqVYul42jXW21vX7X8ulnOgdSJ0BjY6MJS7s7iOFq+d/TsTfl1WFq4Uh0h/0WVBclk0mjcrMXr5NJi4st3dalxE19fb1Ruuvic3sRiUTQ0NCAQqFg4otOBLrgLpVKZtFGgkS30NPbTY/7eKQ2jXgqlUI2m0U4HEZzczPq6+sRj8fR0tJi6judTo9Rog8NDaFcLmNwcBBdXV0olUro7u5Gb28vSqUSent7kc/nHbm+j8F5vR2mGqoSJYGmY61uy9XDMPU7YCvRpwpTLnYmEn7LVgzbCmVdhAU9V0OAcFGjxLlez4VdEAmrhzYGvTNBYVMAVLUpSuoB/m3FupjT2M0Mo8OFIkOQkYBkfQaVUVW46sylepc/3DFg17UStxrWY7zxwyZ4ma/a2lpz2BgX2iSLqX5WorWa0wOAye/o6ChSqZRRUDNNbR873+r0Yb+07TQ/07ZSQl6JdCVbOZ/hzjGq+zKZDOLxOJqbm32HbAIweR8ZGUFdXZ2JwU0lOg/r5Oe2U0XLqSFW9F1lvepz9b3UQ1/13bNJBN0pwc+Zrk1W684Tdd7wPp03quJflYr2exH0tx5+Op4gQh0GOn5oX9bvNL9K8muMfyKIMJ+ofXZKdIe9HfuaonRvRDgcNmFVM5mMsbH2+pohU7u7uwFsGdNbW1vN2TdDQ0O+w6szmQyam5tRKpUwPDxshBZ0ktfV1ZmDwUdGRow4LZ1Om3Exn88bu8/dPyT0k8mkWfe2traiUqmgv7/fKNEn0q/sOSDTKBaLyOfzGB4eNutxe7yt9jf/13PXUqmUsd+s38bGRkybNg3hcBhNTU04+OCDDUegc7SRkRFs2LABGzduNHOeqXK06jzNYffBrcknDkeiO+y3oGq8oaEB6XTaKHO2h9jmYp6Gv76+HsBWEiKdTmP69OnGkDOcyfaS9sCWBfj06dNRX1+PkZERxGKxCd3HxV0oFMLw8DCKxaLZQmwvBqmM4z3VyGtdmLe1teGQQw5BJpPBEUccgblz55qFNw9kYWgEghOG0dFRDA8PG8J85cqVePnll9Hb24vnnnsOnZ2dLl76PgZnsB2mGkrE2UpyJa3Y95SwVrVxEJTEJUmvY3k1kpKgTdDDCJUMU2Wrqmx5La+hc4B54j16PX9r6Br9juko4cZFIstiw1YUaxn0et2FpKp7OjcAIJfL+ZS3Su5p/hlaxc4PbS53Z1EdHUQaEqpktxF0PcF8U+nOnWSMCU7ClIt8dWxoXSqxHovFkEwmEYlE0NTUZOKHq9OG9+hvVe3zM6rU7PtUaa27BfSHdcxnk6TgtvhYLIb29nY0NTX5SHS2r+dtObRNndx0wnMLel9fHwYGBlAoFNDV1WXIdYYmUme9vrt2CBKKH/i5Etdc0PNejffNNmRarGuSIExf3xH7HdZdHOrMYL0yfb5vOlaoKp750n5HR5A9L9QxS9XyGhYqSMWojib7WTyENxTaenCpji28zu5j48GR6A57K8ZT8TrsWiQSCUybNs0ow1OplC+cFnd9x2IxrF+/HqtWrUIoFMLcuXMxY8YMFItFc7AnbV08Hkdra6tx6q5ZswaDg4OGPE8kEmhpacG0adMQCm0JTdbX14doNIqWlhaEQiFs3rwZ3d3dZgdaJBIxjmHP8zBt2jRMnz4dhUIBhUIBdXV1WL9+Pbq7u42NGa9fBTlji8Ui1q1bh9raWt8cjggiy23ws3Q6jfb2dlMX9fX1yGQymDVrFurq6sy8hee2JZNJ3w5xKuLL5TIefvhhPProoygUCujr6wucT423g6wa3Hu3Z8CtyScOR6I77LfQ7brjLZ4nk55uzdXFFw15IpEwcTV3hEAHtirpASCZTE4qPQ50qsTSPHEhrLHgtjUBYLnS6TQaGxvR0NCAjo4OzJw5E4lEwizAdTGv+eEzcrmciRPLuO+cuDCW8Y4cqOKwZ8EZbIedAZK6St7au42ClKHVVKCq/lQFMJ9jq17tv+3n2gS/PkOvU8KOZJf9m/faIbdU6RuUdtBz7bE5CPaiyVYT83+1q0HhbTQ/GnajGjQNm1y0nRlB5dQ6mYyt13FGCU+NQc507UWu7Vyw24G7wEgQjHeweVCf4ed2uvxcSVG7b9r9i+nQkUGSPx6P+0LXZDIZQ6Kz7EH55ZxAdxHU1tZicHDQqPi4U4D9V98z1pe2sT1X07IrmRxUh0qAa5ra91nHQUr2oB0MQc9QZ5G9A4DPsfPH/4PyHTQ31f5mO82C+kLQu6NjXZCafTJwJLrD3oztIf0cph5cSzKUmm2nuGbn2MWzWrgeph1RpTltdiwWMzYH2BqmjOd7UGFO9TjtPJ/NEGG0Y2qneCC553lmx7mekbI9uxzoZKaDlnMjznMmkh6fH4vFzLkxjPueyWTQ1taG+vp6H3fR0NCA+vp6lMtlJBIJ5PN5MwcolUomZnxNTQ3y+bxvp6PD3g+3Jp84HInusN+CSjElZSe7uLbToyGxD6qLRCLm5G9bhb29oGHkpIMTi6AFVLX8Mo8kX2wVIxel1QZVkgiNjY1YuHAhGhsbMWfOHCxcuBDpdBoHHHAAmpubzdbwbRH9LBPVAYcccggaGxvR19eH5uZmdHZ2Yt26dXj++edN+Bd3iriDg4OCKktVYpNE1wUIf5TsUiixruSWHX6CDkcl5rjoAvwKZ1WL2+Oqfq5nVOi4qcSfjn12fHMAgfZMyTSNDa7jfhCRzc80trStwGVdk4jklmv+HZSm2h07bAmVucyXfW6HHpjIHVWq2FK1si6cWU/a5hqeh/OCQqFgDobUECw8WLOurg6ZTMZHkGqYDM0ry2ET/TwMkt/RVrLueEAky6AOA3Vwq0pN219JYRL//E6vZflTqRSmTZuGVCqFhoYGtLW1IRaLmR17VOLzQFG+SzrnUac788lzUQqFAmpqajA4OIhcLmeUeqVSyfQH/ma4G60T1iuvKxaLZms9F/OqsFdFNvtsEIEN+J1D+hymo0p+bm23iWimpwp6/s85EEkibSPG8+d9fLY6BYLIe1uNrvM6ey6oOxxsp0U1sYQdWsjBYV+Dvif7Gwm0p6FQKGDTpk0YGBjA9OnT0d/fb2KNc8zjWJdKpTB79mxz76ZNm3zhTjhWj4yMYGhoCJ2dncjn8ygWi/C8LSFOGhsbjT3j3Kavr88c3qljOW09iXmGQwFg1Os8TNQOVVdtjklU64MqdCN0nB6vv1LVn0wmMXv2bMyfP9+cS0ZBXywWM2O/xpzv7e01YW3K5TJqa2vR09MDz/PQ0dGB008/HcPDw1i9ejV6e3vR1dWFVatWmUO03Xs0eahtdvW3d8CR6A77LWg0pkLZbBMy/FESnYeYBpEJ2wMlz7n4sg+o2xZUuaWHX00EnKBEIhE0NzfjuOOOw5w5czBr1izMnz8fsVjMRxgEKUD1f37PMgFAfX095s2bh8HBQcycORPd3d149tlnsXbtWt/WaYe9F87r7TDV4BjLxZQSu1wAAVuVp0pAKYIIZ2ALMcgxXhVCSnAqiarkJ0lBLoSUeLM/I5ms5LGSvZofJdA5Ea+mfmIaugtLiTf7HpK5zJOqr2wFX7lcNoQ2iWyqwEg4sqyMjc37lYBVstJWOTFttkE4HEapVEIkEkGxWPQtorUNNE1CSeaamhqjYmM5SKKzfhgGLplMoq6uDqlUyqeUCwKfq0Q7P+f8g+2h8d3tnQW2IwbYeiA4t4wHgaQynUta3/yedZRMJtHe3o6GhgY0NDSgtbUVkUgEiUTCKOWTyaRJi2Svhi/hb41zTwWckugkK2pra028Vz0YUw/15LPZH9lOVA2qEEDfMQ3Xoo4a2zHFutQ20z6in+s4ojHog0h0OkNInJN40bLwOu4o1DyyfXVM0Lyr48neKaPtbO/W0FBOQU49DYkzERLdKdEd9ma4/rdnoFgsYuPGjQiHw9i4cSP6+/tNnHOOQyTUuaYeHR3F0NAQNm3aBGDsmTc1NTUYGBjAhg0bjOPV8zyfc5j2VsPBVCoV3+6wTCZj8kmbQvW7TaLTqUtbsC1hW9D4Wa1PTnSsTSaTmDNnDpqbmzFv3jwcffTRSCQSpn4YO56HX/Ow0r6+Pp89UEdrbW0tOjo6cOSRR2JoaAh//etfsWnTJrz88svYsGGDIdEdJg8Vd0xmPJrqXTRuTT5xOBLdYb8FF35UQdlxZScDVaDTSKvnuRo5sSPY3YMVJxXpdBotLS1oampCY2OjOQyGi8yJ1mWQao+qskQigUwmg5GRETQ1NaGtrQ01NTXYvHmzTyXosPfBGWyHqYaqjm0C1iaKlLitpka3w0toWgolvpTQVlLMJq2DnmkTaCyTbinWPOn2YoWtXtK/7bjjdMAqYafPDjqAVcdsm5ylPVWyXheUdp41rSAFPWGH2VAClDbXVgjbeR0vfXvRaJPYWod2fegOB61bpmUT+0rq6rOC1NJK1JMcsA/MtdvNLhcJU+1/XLSRFGc8VKrzdJdbtXAqtvNH86COntHRUUPIk+AmcUyCuaamxhDfNnlrk71ad+MRDnod28h+p6vt2LCfT2j72wvfINJdwxCwHgEYcl/r1c6L3Z/UQbatuSXTU+eekvwKO5QV+9l4B51qHh2J7uDgsKPQ8U93yAQ5gO0wVXq/rsuDdojTDtCOcnym81bnSLbN47M5fgNbnbscY9XW7Krxraamxqy/s9ksGhsbjdqeebd3KwYJOnitOmFpu7hDkOKIRCKBZDJpzoKjit9h8tgT7KBbk08cjkR32G9RKpWwefNm5PN5TJ8+HcPDw/A8z8Rimwzo0R0aGkJPT49JlypperhVeTcVUNW7qrF2NkKhEOLxOA4//HAsWLAA06ZNw5FHHmm2jqnacyoQjUYxbdo0NDU1GbKnu7sbTz75JJ588kkXJ30vhjPYDlMNhsyKRCLwPM93sFMQ6Rc0ZlLpDGwdv7loskOBaFpUH9mkNRcvVE5rPuzr+EzuZtIFnO444rjHhRzJ0aCY5VpOXZRyscdtyfaClWVSRbi9CNVFmYYnoRqLeaYaOhKJmIWrEul2PnVRTNJPCUjdWp3P5zEyMoJMJoNSqWRsVDQa9ZVbyUdVdavDo1QqoVgsmt+6yGYZ+btQKPgO5aJz3iZquaikeo0LbDpGmBYP/dYQQrqA1T6oCje2jV6rfYzqO61XDbXT0NBgDkWfPXu2ObyN5aK6244Ry3eLbU2wnrUtufhubW1FpVJBNptFIpEwB5exnngAqS7m2Y/0PdH5D+DfGaE7TNgm+m6yX+i7azuQlFjRtPleavnUWaftzp0FJBvssDr2e8080InG95z9gN9r2WxnINPTOmEb8vlUwvN+ltHeTaMk0XhwJLqDg8OOgqIpjpG6A87efQVsHT8Z6ovzNo6RQ0NDyOfzJiyJrpGLxSJ6e3tRLBYxe/ZsZLNZJJNJVCoVs9tKw7BxLOTORo7rnHdxV1Q4HDbqdrWROxMct6PRKA488EB0dHSgpaUFixcvRnNzM0ZHR7Fp0ybjKGcYF87XVEAYj8cRj8eNXR8ZGTE7qWgbhoeHUSwWEYvFkM1mMWvWLIyMjGBwcBCvvvoqXnnlFSdumyS2x4YGCUT4uf6/s/NhP39/gSPRHfZbVCoVDA0NYWRkxBgE3U492bQKhQLy+TyGh4cxNDRkYqIB/vjrQSTF9kDVclTg7YoBjIN2JBLBjBkzcNhhh6GlpQWzZs1CU1OTuWaqngVsWRBms1kAWyZTxWIRfX19WLVqlYlNuiu9/Q4ODnsuuOBRkswmNpXoAqofEKjkmE22KpQstElhOjlJClZToNvPtO+zF4n8XsutilstVxDhxzrSkA2qOFcVMclHPkNJW71Py68knxJynueZ+OVKzNsxzxUagscOi6LqZSXu9T79m/mzCXR+p7vKuPDW+lcHhu46CIfDpkyqcmNdeJ5n4nwrNISMrWRTssBW9avazSaD9TfLZIdsU6VxJpNBU1MTGhoa0NjYiPr6et8zeJ32Fa0H3Xmn+db3gumQ8OBBbPl83oR3iUQiKBQKvkNH7fdJ7b2G9CF0bmTfr/nQa+1+wr5OVaIdQsVWh/Nv+91mvjiv1HpUlXiQEl3Lof1+PHWjzi3paGGbKTFOEl0JFJ6xo2Wm48/BwcFhZ4NEMEOo0PFpiw10VxGw9ewGHfN5rgnFaxpiFYAJB8bxkuR9JpPx7dphvjjHoTiOO6hCoZAJ4UK7oQKBXTV+0kHa0tKCAw880PxuamrC5s2bsXr1ap/tZN44v+F4z7jpo6Oj5uDQRCKBuro6I1hgnYbDYSQSCTQ2NsLzPORyOfT09EwZB7A/YXv5C3X+T+Y7hx2HI9Ed9luQjAWA3t5erF+/Hul0Gm1tbWO2LgeBi+nR0S0xxNavX4+BgQH09/ebuKxcTJVKJfT398PzPBQKBZ8SbkfyPzQ0hFwuZ+KJ2h5EVbLpgaa2mslWGI6HeDyOTCaDuro6tLW1ob29HfX19ZN2PGwvGMcuHA6jvb0dHR0dGB4eRk9PD3K53C7Jg8PUwXm9HaYaqqrhYgbYSjBxEaYKZRtBZJaSWAQJN5u0DrIdqnzmgo9gmnYYGP62iUA71Ai/q6aE57OVpA3KV5BNUgW3xk7X7dG6eNU88pmqPOezaTPoCLUPvQzKq0Lrin+XSiUMDw+jXC77dkRVGytYV1wA53I5DAwMoFgsmhihzD/jpNOG01Fuq75ZVyyvkqt2v1KHCYl0jQ3O9tGDKmOxmI8c1frXOlb1HttRofHXM5mMUaNzrkAS2SbvtT6VuFfVniqqtZ/xdyi05RBxHraeyWSQyWQQDocxNDRkYtyTeLafq04FQp06+j4qqcF7NC9KMANbY+5qmWxHi8IWSdgOH6bB75UEYv9QUlzDD7A/aD7UGWir0QlVovM5bFcNVaAOErax7oKoNibYcEp0BweHHYXneeYw7c2bN+Pll182h1lztxLtAtXfgH8ukEwmEQqFsGnTJqxfvx7Dw8MYHBwc8ywS7Tz7ZGBgwIytdsg8kvG8L2idnUgkUCqV0N3djeHhYfT19Y05hN2+n5+xTCw/7wtSGQeBdiwcDqO+vh5tbW2oq6szdcTDQTUP9pxW58O0P7yXinQ6NtSGkUhvaGgwZ5+kUimUSiWfCMFh5yDIoW9/N9n03Jp8YnAkusN+i3K5jP7+ftTW1mLVqlVIp9PIZrPwPM8sUnU7lw0ap0qlgnXr1uG5555Df38/Vq9ejaGhIZ8BHhoawrp169Df34/58+cbD+54JP1E8r9p0yZs3rwZGzduNAo4QhdLXKzaB8nxpHJ67Cdi7BoaGjB79mw0NTVh4cKFOOKIIxCJRMzEZWcjnU5j9uzZKBQKWLBgATZs2ICenh688MILjkTfC+EMtsNUg+MrSVpVtOpWX1V024saYGuMYF5LqDKZUOJMd+vwOlvVbYddUQKU8a6ZT57bYRPmXIxRWar2xLYFfHbQGK3EIklLYKzi1ibLqUZi/lTVpPmjfRkdHTUhVph+JBLxqYZra2sNOc1nqEqW15KE1XAbNTU1KBQK2Lx5s1E5c/GotlwVyTU1NSYcW6lUwsDAALq6ulAsFs1nlUrFKLJqa2sxMDCAWCyGVCplwqRorHrWqYbf4Gf2QtYm5/P5vPnR2O6qlqPTmveoAl/bUsfWICc5D0lNJBJob2/HrFmzfNu2Gb9cy8J82OFEtL+rwz7ovWJa3A5PRWA+n8fQ0JARBYTDYaRSKd/7q+kxNA7LzzrQOubfLBfrnQSCTTazzzAdW4Wu74XudCmVSsa5wlAEqrxnHgH4vlMHAX/TmaLvmLar1ruOI/ytoWHU2cLQA9wNoSS57Vyw22pbcCS6g4PDjoLEbSgUwksvvYTVq1cjmUzi8MMPx4EHHug72Lqvrw89PT3wPM8cfB2Px9HY2IhYLIY1a9aYdfng4OCYMYZrYM/z0NXVhXXr1hmbRJJeneu5XM6ozzUcVygUQl1dHerr6zE4OIhNmzZhzZo15qBRAMYO0L7YuxvT6TTq6urgeR56enowNDTkExDo+Bo01tKexGIxTJ8+HQsXLjSOfu7s0vkobQptIHeVsV4Yyq63t9eUmzYjHo8bW0IbmU6n0drailKphDfeeAPNzc3I5/Po6+tDPp/fSb3FoZrd3VFb7NbkE4Mj0R12CXQSHuRZ3RUvniqP9PmMdzswMIBQKGRimZOcsO9TFR4XbsPDw+jt7UV/f79ZbCtorGtraw1ZPRmVTxCY5vDwcCABTgNHD7ce3KVkhKrltxUShQuwTCaDbDaLuro6s/WtmlpwqlFbW2vitGazWTQ0NGBkZGSXKeEdphbOYDtMNew+pWMtx3xVCPMzQnfwMD0Nc2JDld+qYGU6SjRWs0O2wtbOg6qEVJVuq5xtRRGACR0OqKSyxkG2SVDWg73oqtYOzAevVzLcVvmS2GT9abxrfsfy2vWsKmnmi/aZ4SlsYldtebFYNOpzbs2mTdTQIaqqt4nkajsa7PbW+lEyVM82UWU5651EJ0lQdQxp/1MluIbWscGFMYmJZDLpI2B5TbVQI3ZaupU9aD5gk7ZMhwQvCXUeZsqdBNzNEAQ7zIrmTd8l9utQKOQTHGj52LdViT5eu+m7p9v2dWwJUiAyXTt8Ee/RUEEabkV3pmiYoKD20HJrn9A5oLaTjlf6jk0UjkR3cNh7MVHF867IB59PZzLtsq5XOX7quTAMT8dxjUK5vr4+MydQqN3VZ6jSXeeH3OWnO56YF2Crc7RQKGBwcNA4uHkN5y8ahkYdynQIq9jNHoPVttlzXBLaDMdSqVQwMDBg5jFB47nyAUxf7Rqd/MDWM1RoS3XXEp8bjUaRSqWQTCZ9SneHvQduTT5xOBLdYadBB9h0Om0URRx86elkTPJcLjflLyCNRjweRyKRQDgcNl5sVelwC/Po6Cg6OztRKpXMwjIajRoyGoBRbufzeWzcuBG5XA5r1qzBG2+8YZRUNqi0Gh0dxbp167By5Uqk02l0dHSgrq5uUmXiYr+/vx+rVq3C66+/jp6eHuPxjkajiMViiEajaGlpQTqdRiwWM1ullbDQCcrmzZuNEm5oaKhqWzQ1NeHQQw9Fc3MzGhsbt0nO7Aywb7W1tWHhwoXYsGED/vKXv1Rd4Ds4OOw/4OJFQ4goCR4UeoWklC5S7K2uNjkYFG5DySmbjNTvgS12SRdofJaqhmtqakwMaY3VrXnVA640hIkSuMyr3s+8kISlfdYQGQAMwUkVEm0lVbJcNFYqFQwODpqzRmgra2pqMDQ05FsccuGmqnBd5AWRpp635eDvZDJpnKlUzmu8aZajXC5jeHjYF/ud6ZCs5M/g4CBKpRIGBwfR29vri4dOslPjrtbW1po5DPNlk7asey2jhhbhdudisYjBwUEMDAwY9TuJAbY9VfeMTcq5DPNI4l/BslEdbTuMUqkU2trakEgkkMlkzFyHfUBtu5ZJoQt9rV8VCgDwpWcv0qn6TiaT8DwP6XTaVxZ9H3gf3wVu/dfdJKry1vmbhjDh72ohf7SegoQXQQ4TTd92FDB0ANPjO6bvstYLy6yhfUjeBO1iYR0zH+p8s3cKMA/aH4PIGnUyOTg47JuIRCJoaGhAPB5HLpdDb2+vsXF0qKujdqrBeQWdw3Tmav644zsej5udYFy7ep7nW7O+8MILAIDXX3/dF+rUBoVo5XIZa9euRaVSQV1dHebOnYt0Og1gK3Hc0NCApqYmjIyMmHkP80rbyPPQSNzTjhMUYzD2OpXj4XAYdXV1yGazqFQqiEajqKurM7yBhnqrRnDW19dj+vTpyGazSKfT5lrWK/MGwIRtGx0dNQenl0olozhPJpOGL2lpaTHXcj6dSCSQSCR896s6fcaMGTjmmGPQ09ODp59+GsPDw1PXWSYIxwU47Ao4Et1hp4ELlHA4jKamJrS2tprtt+FwGMPDwyb2KAncbSmhJwsuDpLJJBoaGhCLxdDa2moOyKCiWRfM69atQ2dnpzFkzHMymQQADAwMmPhpr732mjGYmzdvrjrRqFQqGB4eNludIpEImpqajJJ7ooofbs8aGBhAd3c3XnvtNfzlL38xi3kAhjBPJpOYPXs22trazLZs+/CtYrGI0dFR9Pf3IxKJYGhoyMQWDyIxQqEQmpubcdhhh6G5uRktLS1jCJudDSWlpk2bhlAohPr6ejz66KM+paLD3gHn9XaYanD8YigPKlt1rCI5DWxRLKtyl4RrkNpIocqioHAu+pkSkqpQJZmr7wGJOhLNSmxzay6wlcSn41Qdw0zHDgFD0lYRjUbNYlGVqkpE0jFLm0X7QQK3v7/fHAbJui8UCj7Vr8Zn1t9K4qkqShXeJPkTiQSampoMoawkOu9VJToJWo0rDWxZQNOWl0ols5imbbd3JqgzgwtKVa+RRNdQHjY5abclQ3zQCdHX12fiuXMxzTkKY8LG43Fks1lf/Hg6L0goMO86p1JSle2RTqcxbdo0JJNJ1NXVjSGcbUU1CRUSunwv+KM7D+g4UKeBbmdXEp0Og1QqhVAohEwmYxb29ryQ5bUPNLUdMlSy0+Gi7xv7gR6gqc4rrUPd4aF9kk4Clk+Vftq3NfQLyWhui1dCXvst86pOMx1jNH/az8aL367jgD1e2btydCyyQ1lVg1OiOzjsGKqpjnc2IpEIWltbUV9fj82bN2NwcNCMybFYbNydVlMBErdUMDc3NyORSJjvKfhas2aNsRN0MMdiMXieh4GBAQwPD2N4eBhr167F8PCwL2RfEGh7QqEQ1q5di+7ubrS1tZmwZrzG8zzU19ejrq4OhULBnH8WiUSMLSZJPTAwYMLMAME7tkh0x+Nx1NXVIRKJIJVKIZPJYGRkBMlkEv39/cjlcti4caMJE0aHsY1QKISGhgbMnTsX2WwWmUzGzH0TiYRRxzOmO+Om04nPXXeFQsHHmXjeloPQSeDzjBiKCxkGjyR5Op1GbW0tZs2ahebmZnR2duK1117DmjVrdryTTAI6955qTml/wO5Yk9966634xje+gQ0bNmDBggVYvnw53vGOd1S9/rHHHsPll1+OF198ER0dHbjiiitw0UUX+a750Y9+hKuuugqvvvoqDjroIHzta1/DmWeeGZje9ddfjyuvvBKXXnopli9fPuF8OxLdYUrBhSYHb6qg29ra0NTUZLYs1dbWGiNCpVptba1ZxHL70WQPpOAiVrc1hcNhNDQ0GE97U1OTUWUzjiwNiW5h5fdcOFJJPjAwYBRjVN3RMz1efrmQKhQK6O/vRzgcRl9fn8kjSRB7saQLMBLevb296OnpMcS8KgtJmCeTSeOF5mLRJtGBLYukWCyGRCJhPPr2ooppcyHMyY7GWNsd4CKZZAoVh45I33vgSHSHnQlb4QlsJb/tz+37JpI2f6sqXX8HIega+zMl6Pl5NXU2AJ/SmpjooleJPg0ZwTji0WjUt1U3nU6bBRYX2yQBuTDjos2OFa4qWt3WrOVmegAMGUo7SdtGJbrmkQS+hrogaUqyUUPLcOFIQtxW+AbVo6ZPhwQVWUzfdkLYCmOSyBoDvVgsGltuh2ahY0RDrSixq7ZZw95onG97W7neF+TM0L5FVFN3qdpeyWgl2JWIYX70/eHchT/aB2wbQeLZDqWjzistUzXYY8C2xgL9biJKN9sZpOUNGjv0XQ/Kt9ax5sMeR4Kcfzq3tHfH2HVgn2swkXm4I9EdHHYMuv6canCc4FkeOt7H43HU19cjm82iXC6jsbHR7MamClzHge15V/k8rnV1rKPQLpvNIhaLGWJanYnAVic07QMAY39zuZwh0fP5vCGMtwWOW+q05dpeQ9bpORXqUGbscj6b4VPsOqJ9pmOccxfWMedItNsMs5ZKpcx3dJIHgXMkWyyn9kHH8Wp2g/aFzgPb5umcTZ3WTJ/p6rkbDnsXdvWa/IEHHsDnPvc53HrrrXjb296GO+64A6eddhpWrlyJmTNnjrn+9ddfx+mnn44LL7wQP/zhD/HHP/4RS5YsQUtLC8466ywAwIoVK3DOOefg2muvxZlnnokHH3wQH/rQh/D444/jmGOO8aX31FNP4c4778SiRYsmnXdHojtMKah+rq+vx4wZMzB//nwkk0mjjNbFDdVElUoFPT096OnpQV9fH/70pz9h/fr1yOVyvtOtJ4JoNIpp06ahvr4eLS0tOOSQQ8yBH42NjUZVzsFdVUT2QkG3Uq1bt85sDVu7di26urpQKpUwNDTkM67bwsjICDo7OzE0NIRMJoN8Po+mpiY0NjZi5syZJuwMCW2qrYaGhtDV1YV8Po/Vq1eb0DHr1q0zkwUukBobGzFnzhzjMKC6yz40SlWLmUwG06dPN0QAt7ZTSUjnSCQSQX19PaZNm4aGhgajzt8doHoB2HJwa2NjI7LZrDkQbrIOGIfdA0eiO+xMaGgEwB9DmbBJpPGutck2e0GhIbP0gEciiKwMircepCAlSa6hWZSs1JAzWhab8FO1typvaZc9zzOK52QyicbGRhxwwAG+xbbWRaFQMArqzZs3o6urC8PDw3jttdfQ3d1txmSS61xE68GgemgVF9B0AHN3VSQSQSaTMX9TEaWHgKszwFbtU7E2ODiIcrmMnp4eDAwMGCc164KKaSq0eD8X0DzslIv3SCSCwcFBxGIxo+rmojYWiwHwE7+066yrUqlkDvDivMjzPKNQY6gTdeprvGwAZrcc1e1c0PK5FCYouayHS2obsLzsU4RNsAeRuSQjqJ62Vdf6nmn/5ZwnGo2iu7vbnDXDbfpKlutB6CyXkiusKyUFlACiupvCB33/1Hmj9ylU6MA21TBJGqefu1x0jmmrOnmtHnzK9uMcWeudYwufZRMVOr7we5IyFFPo4b6sB/ZLu76C4gnbcCS6g8OOY2e8B7S1tbW1mDt3Lo455hhzlhWFUByTc7kcDjvsMJ+Ce2BgAH/+85+xYcMGnxN4Ms/nTqr6+nocdNBBJmQL1+Rz5sxBa2srCoUC+vr6UCwWzc6rcrmM9evXo7e316QRiUSwbt06vPrqq+YezkHssGYTAce+np4evPjii9iwYQPi8bipp/7+fuO8TyQSaG5uxsaNG/HnP//ZEPe5XA7lchldXV1jyp/NZtHa2opoNGrWzrq7jXwDbR3PKGlubsbIyAjeeOMNDA4OVuUZUqmUCQ9LRbg63BmGhuO5LZLj3Io2vLu729ha+5n6uR7+zQNh7bR3NYLm5/saJuLE315MxZp8YGDA9zlDQgbhpptuwvnnn48LLrgAALB8+XL86le/wm233Ybrr79+zPW33347Zs6caRTj8+fPx9NPP41vfvObhkRfvnw5TjnlFCxduhQAsHTpUjz22GNYvnw57rvvPpPW0NAQPvaxj+E73/kOvvrVr066vI5Ed5hSkMRub2/HIYccgre//e1mwVvt4EfP88yhnBs3bkRXV5cZjO0XcTxwIdjY2Ihp06Zh5syZeOtb34rm5mbU19ejoaHBt921Wl74O5fLYdOmTeZ3T08P+vv7sWbNGqxfv367BhnP89Df328Msud5yGazmDFjBtLpNNLptFnwkASoVCro7+/H+vXrMTw8jJdeegl/+9vfjAqO5AeNZjqdRnNzM+LxuNkJUA1aH1Tx9fX1ma3pdBBw0Ubior6+HvX19eOmvSvAiWE6nTaK9J2p5nBwcNj7YCusgbHqcVXsagiHIOJQCeogspq2iEQiUU2BzvGbJC0/1xARgF9JpKQiD14k8ar5VZWrrdYNWhxxwUViM5PJoKGhwcTOJomu+VKHM+3YwMAA+vv7TbzxgYEBY0/0sE9VxirZR+cuVVtcOHPbt4Y4oUJdyVCetWIrzXngF4n/wcFBU3YAZq7CxabWs/Yd5rlcLiMSiZgDMdWG63XsJ+pQ6OrqMmew5PN5QwgTVK+xThiyRkl09jES9nR68zuG6uHCVxVnushWlbKtktb20T4f1JcBmPrWcwLs90frhPVFpzjLQjLEVkmzHymho7vtuM3fdoqpslqdRrqTjwh6P/Q7fq/X6G4Lzq0YR9Yeg2wHBOPjct6l/UzrT5/PPmIvqLWNea3uZtDQVtqP6HyxRSUuJrqDw94Ljq+RSAQdHR1461vfisbGRqOELpVK2LhxownXwTGV42xXVxdef/11bN68GQAm5FRTkMRPpVJobm7GwQcfjPr6eqPMTiaTmD9/PqZPn47e3l787W9/w9DQEBKJBFKplLED3H3W3NyMaDSKrq4u9Pf3mzjkQeeRTRQcB4eGhrB27Vr09PQgm82ivb0d0WgU+Xweg4ODZod9JpPB2rVr8corrxihQDX1O8UBrPO6ujqzxiY4LwBghH4UD9TW1mJgYCBQ1MH0qeDPZrOIx+O+eSQAX7tq2DIAxn7Sscp5Eh3OnGNSFELHK+0Wd42poz5IGLIrsa+S5zZskc6eghkzZvj+v/rqq7Fs2bIx15VKJTzzzDP4whe+4Pv81FNPxRNPPBGY9ooVK3Dqqaf6Pnv3u9+Nu+66y8zHV6xYgcsuu2zMNXaolosvvhjvfe978a53vWvfJNGvv/56/PjHP8Zf//pXJBIJHHfccbjhhhswb948c43nebjmmmtw5513ore3F8cccwxuueUWLFiwYDfmfP9BKLQlhmUqlUJTUxNmzZqFjo4OtLW1mcWwPaArqD5KJBLIZrM48MADEQ6HjRqdC86giTwXgFSap1IpzJs3Dx0dHSbGG1VJQQRGUHqq9GE8sfb2dsybN88Ysng8jkKhgO7u7glvGyN0qzcNWi6XQ1dXl9lGRkUZleB9fX3o7Ow09UHlkC6aSHJzYjKZrVRKItF4e97W2KEaY1QXY7ubrFYCSvO3u/PlMDnsiZMAh6nDrrbjNunkeZ6PVAIwhrDmb71G0+D3SjQq6WzfrySlfb8dH50/mm/dMqzhT0iCKSnH8gBbSTsbQWS/lp92ibaDYVsymYwhqFXVy/KxPHRoxuNxpFIpjI6OoqGhAZVKxcQMLZVKhuTXcjNNKrC4iGxoaDBEObd4kwyw61EdBLaymiFnqFwuFAqGVOdCUQ8Bs8lXrd8g9TU/50KV8dXVacNnUWFNotlOl/WsbW2HXNHdDNqWLLfGIVeFuMa9t20m71Mosc66099KiNuEvB1OhfWsZVUCmnlQAprp24dr6v92P7LbTYl7Pr8aOR7kVNJDd0ky6Pul6Qapw/W3htGx+47+rXVMp5O2q9337N865yZhru2rRArDL42MjPjeCdv5NhE4O77vw63J9x7oQZ0HHHAA6urq0NLSYshaOit195AdR5w7qtra2kwM7M2bN5sxY7yxgaHXYrGYb4c4D6vUkGo9PT2ora3F0NCQcSjTho+MjBgHNXfTUDzFtLizu1gsore3d8y5L5OB2vLh4WEUi0Wzts7n8+YgzbVr1xrxQLUzxNSWc95C2x9kG9XJau8WtNMF4LO/3MWuO/KGh4fN/XV1dQC22AQeCAr4D7u3/9c5KJ0ZDEWjUCU9w+eWSiUTvlfL4zB12Fk2d0fTXbNmjelvAKoKLru6ujAyMoK2tjbf521tbejs7Ay8p7OzM/D6SqWCrq4uTJs2reo1mub999+PZ599Fk899dSkyqbY40n0xx57DBdffDGOPvpoVCoVfPGLX8Spp56KlStXIpVKAQBuvPFG3HTTTbjnnnswd+5cfPWrX8Upp5yCl156CZlMZjeXYN9HOBzGzJkzMXv2bEybNg0nnngiZs6caeJs6/b2IFDxRq9rOp1GLpfDn//8ZwwODmLTpk1mC3YQoREOhzF37lwsXrwY9fX1WLhwIaZPn26IABrcbcXH1HSBLROQpqYmjI6OIpvNYu7cucjlcnj++efx6quvYuPGjXjyySexcePGCW9/CYVChuRm/FI9WFW3Aet29Hw+j97eXrMAZ2w0XXgzZi23gXGyMRFQqcBt4zxkLJfLAdiqJEgkEr5YbkFbiXcllCxJJpNIp9M+csxhz8dUbB1z2LOxq+24KmKVTFRSUGNVA/6+RFKLalXATzjzGo39rCpRJXL1eiUwNS2NvWkTkzYBqGEYlMDngpYKMj4rKHQLn03brCQtD71Kp9Po6OjwOaKpli8Wi74Y3SQYVRmfTqdRqVTQ1NSEjRs3olKpmHNFVEmtIWoYiqOjowOJRMI8Xw+I5A4su92YrsZLVcKebZVOp1FXV4disYhUKoW6ujrk83ls3rzZdzCnrTLWOlebx/KzjXjQaE1NjQnxQvKXC3OSlSoQ0HbhwpMqfFtBHOQgt+Oae57nOyiM9U9FIO05f2Kx2JjdgrrdX0OoUN1vk+Uamof9ne+NHevddi5x/qLOD6rbKCbQ+Ldc0Os7pLHwtZ8BMIevU3VnE9p6rb5zJE0499H3SQl+PWNHxxlNXx0M9pxUx5BCoWDIGRJKSh6pA0mdKPxMz78hcaMkDgnz0dFRc6YP32udP7EcE7GzO2LHeb/Dng+3Jt87UFNTg7q6OtTV1aG9vR0nnHACZsyYYQ6r3LBhg9nBq/ZR5yIML1pTU4NFixZhzpw5WLNmjVmbb0t93dzcjBkzZiCTyeDQQw/FjBkzkEwm0dLSgmg0inXr1uGNN95ALpdDsVjEG2+84bOVumOHO405XwGA1tZWE3qG9mXTpk14+umnjWpe518Tge5WouOfNjccDpud4cVi0ajHqx1eSpvIkDUM4cI1veZLRRSAP/yb7TilHeB8gvXT2tpqnBN0jPDA93g8junTpxvbwzBptIeaZ7VhnCPywNSRkREjeKR9Zv339PRgZGQEBxxwAObNm4dkMomGhgbEYjFDwrtxfnIIcpgAO9deTsWanGPPRGHPZ1VYMNHr7c/HS3PNmjW49NJL8fDDD5swetuDPZ5E/+Uvf+n7/+6770ZrayueeeYZHH/88fA8D8uXL8cXv/hFfOADHwAAfO9730NbWxvuvfdefOYzn9kd2d6vUFNTg3Q6jaamJjQ3N6OlpQWtra0Tvp9GAdg6+R8ZGTFGfmBgwBgc+z4uuLjtqrGxER0dHejo6DDX7Ei5SFhQCZfP5024mZGREaO+s7e/Visn86xECgCz5V1RqVR8W9H7+/tNvFR7ca/pBm2T3xbshZi95VeJFiX6dzeBzgWt5nt358thcnAk+r6P3WHHbVVqkHoX8JNXQRMxW7HOH1WBj6fWVAJN0+B9fIYS5rayVAk4Lmx4YCewVeVsL8hom/Q7VZgqyadEG8lbEqx2fGkNd8O0WAc8OMvzPKNIz+VySCQSZtHFONHMjxK/JNJ5lgoV6FzMM66nTXRr2YOcGLyW5H0kEkE6nTYkQCQS8Smsg/qCwraBvEcVZUrMcpGvCnTdTWany/bTNrIXuNrHtF9paCDtY6ocVJuu5KydF60/Lpa5SA/a9aX51DzZ6mb7es7lbBuuz9U45vbOA20DG7YjKqj+tC20T7G/aH+o5pgKai+7Xfi72njE99UuM+fI9thgw56f2f9z7LLb01bdsw+po248OBJ9/4Bbk+8dCIVCRlRVV1eHtrY2TJ8+HZ2dndi8ebOxwTq3APwHf3P8iEajqK+vRzweN45hOjarPZvCK4YYaW1tRVtbmwlnQmKaY93w8DByuZxvl7PunqIDENg61jDMm9pshjDbnjWg1oNdF3RiFotFdHd3jwkdU238sm22Otz5DMBvE/j5eLvfbFEH20nDt5FILxaLhsSnEMF23CvUOa7raq0Pfs/2IaHPXX+pVAqpVMrMHZ0Kfe/BrlyTNzc3o7a2dozqfNOmTWOU5ER7e3vg9TygeLxrmOYzzzyDTZs2YfHixeb7kZER/P73v8fNN99shELbwh5Potvo7+8HADQ2NgLYckprZ2enLz5OLBbDCSecgCeeeCLQYNODSEwm7rbDVnDRnUgkMHPmTBxxxBGor6/fIaWBGpzm5mYsWLAAbW1tWLlypfGCEvX19TjwwAORyWRw2GGHYe7cuWb7+c5AKLRFrT1t2jSEw2Fks1ls3rwZra2t2LRpE9atW1d1UqEqJR6yqoec8hqFKtx4r0427EW4TRptL6opM3WL2VQ9a0egi3LNz+7Ol4ODw/iYCjsOVLflaic4+R+P3NJxQyf79vX8XpWoQQRdEFGufwcpmvU5HPeZJ/1cY01SaU9iTNNhPdiLH6ZZU1NjlLU8EDMcDqOxsRENDQ1Ip9NGla75ZlxN2ieqyWnHuJgDgGw2a+KFt7a2YmhoCN3d3Sb2KhdgjBcaj8dxwAEH4IADDjB5shf3GtqG5WXe+HxVbwU5grlFub6+HuFw2KjJEomEiZOuRIKSrvaCWB0b9qTbdmrYThhVkrEMdv/jDjENuaKHdQY51HkvSQXGtuXCQBfodJhw678N3d2gMbNZLq1//U4X4PxfHQx6DetPn6mxz6nI5nZxtrPWRZAzQAUaXNzbRDnzrLHRmbdQKGRi7pPEIanMerGdALaTQ8cOJaxs5wKdKywrt+Hbcxy+b3qIKZ+hB8VqyCXmg+p9OrKoDtS0bIW7m085jIedbcsdtg/hcBizZ8/GoYceikwmg5qaGvT29mJkZASNjY1m506hUEA4HEYmkzGhXUiw8myu2tpatLS0oKamBuVyGatWrUIkEjG2XMcHEuexWAxvetObsHDhQrPTieeRUN1dKpXM7gXaH1Wgc3cx7aVN+OuuLmDLWEXlfSgUQi6XQ39//zadgDU1W3bg1dXVmflLOBw2O4I8zzMEdTgcRktLC+rq6nyOR4aIs9fH6kTn35xTFQoFc1YMDzH1PM/sDlKbWVNTY+LD6zxIxW5sy1wuZ8QGVPBHo1GfQr1cLpvdbrW1tSiVSqas3JUWCoV8YekaGhpMW/f09PhsWTweR1NTkyn35s2bsXnzZqPmdyS6QxCi0SgWL16MRx55BGeeeab5/JFHHsEZZ5wReM+xxx6Ln/zkJ77PHn74YRx11FFmDnvsscfikUce8cVFf/jhh3HccccBAE4++WS88MILvjQ+9alP4ZBDDsG//Mu/TIhAB/YyEt3zPFx++eV4+9vfjoULFwKA8TQExb554403AtO5/vrrcc011+zczO4HoLFJpVI46KCD8Ja3vMVsEd5ecCEAbNmqtXjxYvT19WFwcBAvv/yyzxg2NjZi8eLFaG1txYIFC3DooYfutBAjTC8SiWD69Ono6OhAe3s7crkcNmzYgJUrV2LTpk3jkugkKWisVWkG+MkWYMsij3XBGGx6GJZuv7MxVV7EakT6nrawYt50cuGwd8Ap0fcvTJUdB6rbcj1AEYCPELVJIv5tE1Z6v60gsmOBctFZTW2raaiSW1VE9qTNjk2qSnV+Fo1GDVkWRMCq+ppqU+aTjlk6cxnCq7m5Ga2trUgkEiYmuX3oIBdgwNaDOFXRzh1avN/zPAwMDJh4p5s2bQKw1XHMnWSZTAYzZ87EzJkzffGbtU3VWaDkvi5a9UBXtiUXhSREa2u3HEJeV1eH4eFhc5hWT0+PWYCSrLT7goYtoR1Xcl6dK2xr3q/hTkhiaigfhZLDXCyrQ153pWl/UgKU6ZM4DYfD5vAljaNKIp3vgvZB9h+GQ9E+yOexH+q7U1NTY9LU/k/U1m6JpW+/K1p3DOeSy+UwODiIUGhr6Bc9UFb7hLYV64J1qGlrOehs0H4JwGz1VbJCyROWQ3cBKpGvjhTdHcB8kSQpFAro6+szZDoJb60b3q9hpDRv7Ieq4NR7OJ7wYF2NL68KUJ1XTmSXJcvnlOj7F3aFLXfYPoTDYRx88ME44YQTMDo6ioGBAXR3dyMSiaClpQXAFmVmd3e3caRmMhkz1nMM4K6ttrY2E6LttddeMweSdnd3+97dRCKB9vZ2pNNpHHLIIVi8eDFCoRC6u7vR399vbBjHNR5SzpBxDDs2MjJiwq0BW5wsDFOn4b7sszFKpRIOOOAAJBIJdHZ2+hzi1VBTU4OmpiZzGCLnOX19fcbxkEqljOggnU4DgLFNlUrFiPyYJ1XGqx1mqLtUKoX+/n709fWZQ8np3Mjlcsjn82YsZ5kzmQyKxaI5MJ3zGdq1fD6PUChk5lnRaBTZbNYQ6CT5VZ3O0G5Ml+N9IpHw2XrODUOhEPr7+9HV1YXa2lrU1dUhFoshHo+bd97zPGzYsAEbN27E0NCQsWX7K3RONVnsDru4q9fkl19+Oc4991wcddRROPbYY3HnnXdi9erVuOiiiwAAS5cuxbp16/D9738fAHDRRRfh5ptvxuWXX44LL7wQK1aswF133YX77rvPpHnppZfi+OOPxw033IAzzjgDDz30EH7961/j8ccfBwBkMhljswie62h/Ph72KhL9kksuwfPPP28qQWGTpjrBtLF06VJcfvnl5v+BgYExJ8k6bBtcAPGHqmp7QTRZ6MIglUqZsCmq+KmpqUEymUR9fb3v8LGJxgDfkbzxGfF4HNlsFsViEZlMxkwqbDKDCzs9xEsJ9Gr1pZ/rAkfVXbaaSeOoqWJxW7CVmPbBpTZJrQvQ8d61XQElinTy4rB3wJHo+xemyo4D49tykkcakqCaSrlaP9Ln22OhXqNQUpPP5uc2eW6r0bUO9L3QsdkmTZV8D7IlqpbVz5RIVHJZf2xHQ7X07Wtoe7i4o4qLCiebkA6Hw2YeobGftbxqo4Lay1bq2vVh5xPYSj4yZmilUjF59LytseVt4l5tt70N236Wto19TTXbT/Wftrvt5OEzgt6PoPmATRrbRHhQ/w4im/WZthpf+7XWUxDBD2x1HqkTyH6m/VxVv7H/258xbzZ0Mcv3Iqhc9j32vdWuseuPdaiwHSw6f9HQMVqO8caJoDA8mpfxfghtJyXeJ6MedCT6/oddZcsdJge+x5FIxKjLac90jazOPxK+Ovba6z3apVQqhWKxGBg2hWRvXV0d4vF44Nil+QzamaPPVSenHrAc5JCtqalBIpFAKpVCuVxGX1+fCV8yXj2p49Ne52oeCXtctHeZaZmD5nFB0O+YJ9pF234H2W7Wm523anMm22ZoGWnr7GexXPxcr1NbzL5GJ789h3bYs7Gr1+TnnHMOuru78ZWvfAUbNmzAwoUL8fOf/xyzZs0CAGzYsAGrV68218+ZMwc///nPcdlll+GWW25BR0cH/vVf/xVnnXWWuea4447D/fffjy996Uu46qqrcNBBB+GBBx7AMcccs13lqoa9hkT/7Gc/i//+7//G73//e0yfPt183t7eDmCL93vatGnm8/Hi6XCx5rBjSKVSOOCAA9DQ0ID6+vopV4HzRHES5aoeo/p94cKF5tTvHSXvJ4t0Oo1DDz0UM2fORKlUwiuvvIK+vj709/cbxRQXl6r0i8fjvi3OEwGVdPSC00iROOZ2MoZ7GR4eRqVSQSqVmtC2FKZXqVQwNDSEgYEBs+0O2OKZ54FpuVwOw8PDRkG2sx0X44FKvkKhYPLNUAEOewccib7/YCrtOFDdlqsKCNiq9lRlMRePQSpZWyXKBUJQX1XiSQnzoF0x3EVkj8k2CWgTgbqQUpKOZVeyWW2KLp6BrXG/mQZtBlVWiUTCbKGORCIYGRkxiifuirIV1aqSpvI4HA6b/HDxy3AuPT09Zit0Op1GNBpFQ0OD2SKdSqXGkLSq7rLDbrBNqJ7TfKp94veq7lcb5nkeisWiOQSrUCigq6vLR2wyJAiV9lRx244S3WpN4oGOCT5byX7tB1pWqq+puKajnuXThS/nXuVy2RxKOTw8jKGhIZ+yWRfbGuKFSjmbfNd4s7bzPhKJ+OLlcwHNd4VEut4DwMwVuQsiFAqZA9MZa9cmBJSQ4VyQJJGq9O1n2aGd9H1ivfEe7qJkO9pOGN4T9G6rqptpKNSpoKQO25ptNDo6avoY86VOCW1r9kGOYzoX465F1qVCd0cw9JINdaQ4JbqDjV1lyx0mBx0XKR7g7hYeIMyxOZVKGfX50NAQ+vr6fGlx7OG4REXzwQcfjHw+j/7+frzyyivmuaFQCE1NTVi0aBGam5uRTCbNzgQ607krm85rhmPJ5/Mmj319fSbMFG1zd3c3BgYGEI/H0dDQgGg0ag6YDoVCyGQyRuFNe1JbW4t169b5SHEF1fccP3nuGNXTnueZeqQtL5fLxqbS5rBO1Xmhc1AVa3BuAcCUneM/QxjF43G0tLSYOQBV8f39/Yac1p1fNTU1xn6wjskT5HI5E2ueP7TZFJVwhxrDsTB9JeAZZozP1BCznBtonysWi+Z6rY8gJ8C+jh0t666uq92xJl+yZAmWLFkS+N0999wz5rMTTjgBzz777Lhpnn322Tj77LMnnIdHH310wtcSezyJ7nkePvvZz+LBBx/Eo48+ijlz5vi+nzNnDtrb2/HII4/gzW9+M4AtW2wee+wx3HDDDbsjy/sNGAOrvr7ekLUTjSM0EcRiMTQ1NZlFPRcI9fX1qK+vR0dHB2bPno329vYxKq9dAZ52PTIygrVr16K5uRnAlm25PCSUhooHvOhW7MlAPcRUFoTDYUPWc4sWiREa6YmeOsyFOwkPnpauseY4qWDsN27v353gBLFcLpst3+4EcAeHPQu7w44r6UVoXEqd9Cv5pESbqq+qpQmMPWxwvGs1nnGQmtg+ZJuLEi5qlCwneagkuiqYGMaB4DjPZ9NxOjo6ahbeDO3BdHVhZhP9quDSMBoaeqZSqZhDQrmVmVuFSQxz27atXrPVXNWcE3boG7aHKsBsVbaGRtG42eVyGf39/SZW+vDwsOk7LCOdBySR+b2tnta/2Z7az4LmLEqi0xbzeaqGJgnNHQOaHre+Kyltq8tZj2xf2v/R0VFf2BYNhaTEPRfHQWpEtb/2d7r7QOsPgI8g0GerWlDT1N19/M121DZXtZy2C98t7QsAAmO4Bin/bKjTTh09zCvHG1vtyfeM9a950XpTVbyGFOK1dr5Yh/Y4Y78nfNeDyqVjhoODW5Pv2aB90pAntGtcG9EB19jYiGw2i1wuh56eHgwMDJjvuHYNh8PGwUpBWEdHB0ZGRvDCCy/45gQUec2ePRttbW3o7+9Hb28vQqGQ2S0ejUZNCC6SxzpO5fN5Eyc8FosZMri/vx89PT1IJpOIxWI+hzp3xWcyGZN2oVDAxo0bjX3XuRPBw8XpeOf6sb+/H4VCwYQ70XkWSfbh4WGzrudcw949pGp2wH/+hYZxA2BsPR3LqVQKhUIBvb29JtQKneME0yOZzfkt7Wu5XDaCOs611Iao057PBYDBwUEjOiA4V1Dbq7ZMncQUtvGMA9a/Tcw7OOzt2ONJ9Isvvhj33nsvHnroIWQyGePVzGazRgH0uc99Dtdddx0OPvhgHHzwwbjuuuuQTCbx0Y9+dDfnft+GhijZGSpwXUhzgK6trUVTUxPa29vR1NRkBvLdBeYtlUqhra3NENvd3d1mMqLbz6ZCqa9ecVsBNjo6ilwuh76+PhNeh88MqisunOgFp7HWrViAn8SgYeeEigfD7Gpwsd/f32+U86q60n7D8tskgBp03TKnYWGcsd+5cEr0fR+72o7b4SUImwhk/9GFDu8PSkcV6bog08WBkt228sZWmNv5IpQs1L/ttJQYtaH2s5rN0TzpfRoiwx4reR8JeiUjWTYqnHi/KrH13JRMJjNmoarlsbd522Sgfqe7AexxwR7zbcWuqqeZR8aCZbqqAqY9J5EZVI8shyrGtExUAVOlRZWbqtqpzKNqnc4Opme3MRfTqoq2nQa6a4CKMSqaSU6oU8YmBuz+pP/bJK32V+aJ6mjtw6qYJNnDQzbVacAysgxKyLB/AVsdGiSP7B0CmmcVKPCzIDGIvmNaP5qGlpuwHTnq9NK5BuB3oGmYGz5DFffsm3QeVMuTOreq2UvbwWJfN9HdjDtij50t3zvg1uR7Nqj0TiaTxg6rk1xtQKlUMoRpJBIxKm57PNexn2tAjqsk2js6OpDNZjFr1iyzi41rRJ03kfzWOZTak9raWrN25Y4vYMvOdIZb41pW13UcS9W2xONxNDc3IxqNmrPVFOoo5pkgtKHqtGWe6VxNJBK+XXgAzDkqOg7qHLBQKKCnp8cnElAHLudFoVDI7BArFAom/vl44jA6H3p7e1GpVIxQAYBxIujB4boDTe0M28UWlrAPjMfzqI1hXvr7+8eco8K5mm2TlKPQ+TnnATsCe17iMD7cmnzi2ONJ9Ntuuw0AcOKJJ/o+v/vuu/HJT34SAHDFFVcgn89jyZIl6O3txTHHHIOHH34YmUxmF+d2/4JuZ95ZIT10AR6LxZBKpTB//nzMmzcP7e3tSCaT45IEOxM6wWhra8PixYvR3d2NwcFBrF692ii19GdHSX8aXHqMdQFFMqCnpwejo6NIJpPGeEUiETOpUoNC9dPg4CDWrFmD4eFhbN68GUNDQ76DsziJGB0dRXd3twldk0gk0NjYuIM1uf3o7e3FmjVrsGbNGvT09GB4eNhnqHlgDre3cfs+FWFKevEU8VKpZMofpChzmFo4g73vY1fbcSVkgbGLQUIJTo51XGhonGCFkpIcEzlO2OShKlO5OOFCTRcS+jdtqW7JjkQiPjJSlbYaPoILDxKuGqNSoUSt2g6Om3pgpi5obMcBQ+PwWaOjo2bhq8R6LBYziq36+no0NzejpmbLYV7pdBp1dXVmYQrAqN6UpFaS0Fa/af50cabl1tA96hTgopvEOM86iUQi6O3tHUNaM7Y7F7483JUEMa9TpVwsFjN55840YAsxkEqlTF/i9md1ZJD0L5VKJuRBXV2dISrYX3h9oVBAPp/3hWdhGoz3znAq5XIZvb295hAze5Gsi2xVLGs/UgeQfb8qy6lMY7/Q/kJCh6HiBgcH0d/fb7ay8x2gLacaUbems104ryGBTvWeOsn1PQt6LzQmv33Oik0yazvxXdT3UokVfe/0Hdb5iqri9fkM6aOEiI4nuoNAnW8a69duN7tc9pyvWj0FwZHo+wfcmnzPRiKRQEtLi1FY5/N5AFtsDdeNtKnDw8Po6uoy66OGhgafg4/jt47/3OHEtRLt5bve9S4sWLDApM8dTkFjcqFQMDYPGCuYi0aj8DzPOHZDoRBaW1vNWpNjDcdA2pShoSGT91AohObmZixYsACDg4N46aWXMDQ05BtnOOap3R8d3RJmjkSz2o9CoYBoNIq2tjZD6nM3H0l0e/cT89Ld3Y1cLod4PI6ZM2eauqaNzWQyaGpqQqVSwfr1680B5wzhMjg4OO4Y2dfXh1deeQXpdBozZsxAa2uriU+vu5ZGR7ccMjswMGBEdrS/ahttcZzOhW37Bfh3cHZ3d+O1115DX1+fr014D8/I4fWjo6NmR6LuriqXy9i8ebMJc7M9UPsX5CDeFdjbSHy3Jp849ngSfSINEgqFsGzZMixbtmznZ8jBgItsXdBOJXThqlvLstksWlpakM1m9wglOrBl4tLU1IRQKGS8yZpv++CmHYHWhV33VAnwRHJOdoCthBHBRR8nC0NDQxgaGjJxcm2VAAdWqtb1INUg1efOhOZlcHDQxKgjqcMJH4kDLkAZUocLcN02TgKipqbG5z0PIqEcpg7OYO/72NV23B6PqtkoXejwOs2PrYTWtIJIcyWqlDzjWKvkKMcWW4Wl+VAFl6arRJetkA2qBz57POh4r2Oo2hbbdmlcaXVI6KJY1cP84fibSqVMPHZ1fNjlUqIvKI+at6A21rZknXIBzXzzezq8NYSNTSSrGl0JZLv+qxGvfBYXt2x3DRlDgr9QKBjlMcuncVaVEOV3LJfGgdWFNMvA+UIoFDKku02K6/+su2qK7qA+RvuqhIUdboV9iaQN86KhSEgeq2pe50EkbLSOeJ8S2NoG2qfsdrTnSnrteIpAu611bGA++Lf+1r6lczvWH51bGsZH1en2O27/zXLZedc86fdaZ06J7kC4NfmeDYY20fjUOq4QHI9JDFOcpc40jtG287lYLJowLBQltbe3Y/bs2UZxTacvCXHaJHUc2o49wH9YNcc4PpuORT5bbVOQw5Pnrajj2oaOvxq7m3Yjl8v5xnDaoXQ6bRy/rHc7TR1LuT6lszydTpvrVSwIwIRhYVgUit303bPXpeVyGQMDA+ZZGtaFjtZwOOw7J0fT0J1aqsLX5wXNrYCx3AI5CA0Lo+3CvPC5dIiwH7L/MlZ7tedOFDuDn5rss/cm++bW5BPHHk+iO+y54EBPj+FUvzy6PUvVVNlsFq2trUZZvScgkUgYzy/jt9sL96mCpheUNo00Y7UPDQ0ZL6967kdHR5HP581CnWFc4vG4ORBISQo9mI1e5jlz5hjV4FTHxK8GTsDK5TI2bNiAF154AZs3b8bw8LBRq1Gpp4fS1tfXmz6jMX9JNtCBkMvl0N3djVKphIGBAfT19ZmDeaqd8u7g4LDngDuUbGWlTaYpQU4SSpWcQSpMTU9JJtv+6SGESspxEVktDIiSs0q8EVzsBaWrxHXQWOx5nlEg6wKWCjNdnDIN5kMXwfaPqqx18cjncCs0na5cjHJ3WTKZNAuooPA1Wi8sB/OtixQlJTm2KzFtO4R1saBkLfuPhnMJIpYZJ5RhUexFvIZzq6baikQiqFQqiMfjSCaTPjJAy8OwLlywqlNCncY6X4rFYshmswBg1F8kPVjPdLKTuLbDz9l1Z/dx2n91KPD52s9Yn+qMqFQqhoTo6elBZ2cnBgcHDYEAwGxLT6fTRl2ZzWbH2HLm1fM8Ix6g8p12W9XobCMlb5h3hTqOdOFvg+3L60noa7/h37rDjf3Frj8l99m2HJPs+Pra59g3bBGErR7kM1hn1UAyycHBYc8HSWYeIs7xWXcf0c5TAU37pGpxJVVDoZARI1GwxLO3SPT29vZi8+bNRtik8xOOORr+zXbqcXyjTeX4SNujto/3M/woy01bqQc0t7S0mHPVgnbkcHylHaL9pQ3mrh89T2dgYMDULQ9rDYW2qOUZM51Ets4JmLfu7m4TL5zl58GuIyMj2LBhg1l30u4DMLvW2BYa89zztoSMYTx4CsF4nTrOOTfgDsFEImHqknm0Y6/Trmj9q3OEjgU6HlatWoWhoSHk83kzZ2Uf1B3iPAeH9Q5snasw3ZaWFlOXo6OjZqdakB0Owu60X8527ttwJLrDdoOeT27dmmro4ls9pI2Njejo6KhKcuxqhEIhpNNpHHDAAUilUqivr/eFBNDF0VRCCQRd4NK45/N55PN5rF271hzQouT+6OioOUBUVU6ZTMZ47/mZGutKpYIXX3wRDQ0NOOyww4xSbqKHmE4FSFqsWrUK//M//4P+/n7jLKirq8OMGTOQSCTQ3t6O9vZ2o0hQJXo1En14eBidnZ0oFArYsGEDamtrUSwW0dfX50j0nQDn9XaYanAyzwWOLoCUlOa4rFtZSaaHw2EfKWZDSSo7fAzT4fdcbPC+8ZQpqtLReN22St1WzCr5b6umuYCh4ocOUU2fqh9VnnFhy0WVqpuVjOT3ukijo5b1S/WaLo4TiYRZRHFhyLJoHQNbw+woaPvUYaFkP9VWumOO+RuPRE+n00bRpwQxSUe2t+5kYpxYbQOq2lkvSnCzfFTJJRIJQ3BoPevfemCXEqokSUh4csGuCn89kE3JfL4jPCxcw6ZQ8cz+av9oH9fQcho+RYkTzj90NwZDp23cuNGElOP5LOFw2JA82WwW9fX1iEajaGxsRCqV8m0B17piHFnWU6lUMu3HerQdGlov2h+0/e13XO9RckjfHRIH6hShQ4np0+HH95Jl0bGFZI62u+ZT3wkdL5SQt/uUvmNB6ei7sy3siB0Per6Dg8PkQRKaJHexWPQpkZUsTaVSyGQyPketxv7WcY8xwzVWdy6XM39v2rQJ69atM4IjAIbEBeCzy7Yd5jjD3c0MkcLvOGaWy2UTaoTr0v7+fp8DkTuw6Zju6OhAPp9HNpsNdMJzfBsaGjIhU5i3eDyOdDptHLEsV29vrxlHOY43NDSgtbUVpVIJGzduNCpsFR5w/N24cSO6urp8IgGGxvU8z9gvzSvbKhKJoK6uDul0GkNDQ+js7EQ+n8fo6KhxKAwPD5s6APyh7JhmPB5HIpFAJpNBMpk0O7qDiH/OESkqIMnNOVapVEI6nTYO++HhYbz88stmbsG5Xn19PWKxmHl2IpHAnDlz0NTUZMrC/sr5Xltbm5k7Uei3Zs0aDA4OTohEt+d5uwOTefZEVPcqorTnr1MBtyafOKae2XPYb0ADogvsoO2i2wsudrio1C1pemDmngCS0FxI2qq5iXpMJ4Px6poGmwaOE6p8Pu+bXOk2NsZnzWQyqKurQ11dne/vbDaLbDbrOwROyQOdFO0M6MKdsVM1BA3VEolEwsTZ1fxrmfTH/l6v4wEtnEDqgV8OU4MgcmYyP5PFrbfeijlz5iAej2Px4sX4wx/+MO71jz32GBYvXox4PI4DDzwQt99++5hrfvSjH+HQQw9FLBbDoYceigcffND3/fXXX4+jjz4amUwGra2teP/734+XXnrJd80nP/lJn1MsFArhrW9966TL5zDWwVhtYqoEk36nBLF9TdA94+VBxwslo2yFvP5tL7r0xy5DkDM16HlKqusuKV7DhauS5Xa+7LxrffEeLsK4gNTPuDjjM6uFJbPrYqKwlebV0tFFt/7YhGm1/qPQvqL9yiZhg8rG77U9tL/Y/ZB1abeVOnS42KVjgqovbq3nAtV2/ChZP5k6D1rEVVv42XWqhDLJGc5LeA/newzXYv9o+fRvltf+W8tebaegEgiaf21PLZNdPjvcT1DfssP8jdfPqu0EsPMbVPdB/X9bz9P3YaJznR214/vb4tvBYWdAlcS2U1ntim0DbRtmjxG2bVNyGIAZp0nY6hiq47mOJ9uao9HmBdlY3q9EuNoVlpcOR72GoGOB9sAWBzCN8ZyIOn7ZDvpq12voMg1hprv1aEcSiYQJe8dde+l02hcKzz5sVeutWj3bc6UgcYFt01UNbrcBFfgDAwNmJ5heSwU6yXMefqs//C6dTqO+vh719fVIp9M+biKTySCVShmbrjZ0W9jXbMzO5lqcHd82dr+M12GvxfDwMNavX28OJ6ESmCqmHcXg4CBWrVplPKSpVMocDrmnEZn0opPEzWQyvkmMTcLsiDJdJya2sbShi+KBgQHfpCEWi2H69OloampCMplES0uLWXAyrrsq8HSLX7lcNjH3Vq1aZQ4zUbXkVLaPLmg3b96MF198EX19fXjxxRexbt06AFuUANOmTUNTUxPe9KY3IZ1Oo7W11SjRs9ksEomEz6Ou9cgt5MPDw2hoaDDqhXQ6jeHhYaxatSpwC93+ZjSmGjtSh5O974EHHsDnPvc53HrrrXjb296GO+64A6eddhpWrlyJmTNnjrn+9ddfx+mnn44LL7wQP/zhD/HHP/4RS5YsQUtLC8466ywAwIoVK3DOOefg2muvxZlnnokHH3wQH/rQh/D444/jmGOOAbCFiL/44otx9NFHo1Kp4Itf/CJOPfVUrFy50neAz3ve8x7cfffd5v9qcRwdxocqSlVRGURGE/b2VF7DRVoQgsh4JdmoDGZ8Sn5PaD4Y4mV0dNSnMuVCjuMpxy4uEIOer4spJfm0rKHQlhij/JxjWl9fH3p6ekz8Uf62CUPWlYaooJqNn3GhzcUVtybrYioejxulroa44G8+27Ynuhi07St3DNlxSm3QFiphyHagnaCd4/ZoOgH4XNrXoH6iu7nohLXzo4Sltj/rkA5iDefB+lfSlgtMnv9BpR7rgmmqc0aJXu7G4uJUy2AvvINIViWLma46YrSN+P3g4CA2b96MfD6PjRs3YvPmzWaewb7BQ17r6+vR2NhodpvxIFqqEpnPSqWCRCJhCPlkMolyuWwIB4ZpGx4e9oXjUXDepvWm/VGh/6sKXdtJHSHa7rxfSS4lN5SQ136u4xP/JhGj40A1Z6DudrHzxv6nuykno/jbXrh5lMOeCL7DewsYkzyfz2Pz5s3mEEyGAtHxheFIAPjsGA8BV2J1eHjYt0tIx8dkMok5c+Zg0aJF6OvrwxtvvGFCi9gOXtpC2iLad517AfDZKt5PG8g00+m0OayWNkWJaJ2vRKNRYws4D4nFYmhqakIkEjGhR/hMCvf0cHimSUU414KetyWESX9/v1HCMw9BfUfLTOg8lSHK6urqMGfOHGQyGd96nFzD4OAg4vE4hoeHjRKcxDLrn2Q77x8dHTUh06jk544COrB1pxP7jPYV3aWXSqXgeR42bdqEJ598EkNDQ3jxxRfNdSxjKpXCjBkzfM4A3VWm85O2tjZMmzbNqM43b97sizxAfiKfz5vDSzUMkU3+T6W4U9uL6U8lJpLezh6PduWafG+HI9EdthtUIDOsC7cUTRXxk8/n0dnZib6+PuTzeeOt5KJ0T4IqpkgQ8NAR25O+o+SyrUwcTwGuXmYuplWN1tLSggMPPNAXAqWaOovpcbsfsXHjRhSLRROnfkccBNuC53no7+/Hyy+/jE2bNuGNN95Ad3c3YrEYOjo60NLSgtbWVsycOdOQ6K2trb6FNxeQtloin8+jWCwin8+bbYu8jop3XsPJxs4y0A6Tg316O51BNm666Sacf/75uOCCCwAAy5cvx69+9SvcdtttuP7668dcf/vtt2PmzJlYvnw5AGD+/Pl4+umn8c1vftOQ6MuXL8cpp5yCpUuXAgCWLl2Kxx57DMuXL8d9990HAPjlL3/pS/fuu+9Ga2srnnnmGRx//PG+fLe3t29nLTgQqiAiWUjYTk1gK1GualwNTwIEE7L6W8OgEFxEVCPiuZhiCBlbnR5EXnme5wvxoGQcMFZBpp+r/eHCkmRnLpdDuVw225ptMtW2CcwH88q6C4fDZrFFcjCfz5vQYZ63Nc4obZGWWfOsxKKtYNPf9r1c+DI/QQp+XdSzrUKhkAn9oTvfNGSH3Ra0wUwv6DMNjULS1IYS08yzbhdX8psHhLHuSHxks1nEYjHU1dUhHA4bhXeQooz5JFnAXWUAzLZ5vhO2aMF2zNjkur436njgNZxj0GkzPDyMvr4+DAwMmPsYIi6TySAWi6GhocGEylMlGkl0DScTDocNkcEze7hAZ1gA/uiOPI4XVPmrKECVVqp4VCjxoOOA1rXWYbX5m95rO3i0HwD+g1tJIvCeoOcyn+rg4z1a97Sf1cYhB4d9HTqu7S1zfN3Zw8Mdga3iLbWZtC9aPjphSSCT2M7lcmZNa5Pd8Xgc7e3tOPDAA7FhwwZ0dXWZ59nzEs5bgsY/O+45AN9z1HkNbCFms9mssdt06lMQoGtZ2hN1iDM0is5B6EBVpyzzQdtCdTjP3KhUKhgcHDTlngiC+hPnHMlk0pxNdvjhh6OxsdE4SXldKBQyseeHh4fNTizODRkaLB6PGwcK7Xw+nzdlGh4e9rW15qWmZuvhruwrnueZsDPalv39/VixYgW6urpM+tr+8XgcTU1NRpjG8LJ0hpM7AYCDDjoIb3rTm4yzhiFeOK8h50R+hTvz7N2TQb+nAjrPd+v//RuORHeoCl1IUsWjKl5ewzjTfX19ZksOVSyTJYy5gBkdHcXAwAA6OzvR09ODwcHBPUp5bkMnIawz3VbFAX48VeNEwEmHbTQmMohzMsGY5+l0Gk1NTairqzNtOB6BzjS0DCwjJxEAxijZt7e8ungrlUro6+tDLpfD6tWrsWbNGnR3d6NQKBinhYacYcw4bnsLh8PGQ6/KLl0Ua+zXTCZjjDYNd0NDA3K5nPHac2KhcUydMZ08psLrPWPGDN/nV199NZYtW+b7rFQq4ZlnnsEXvvAF3+ennnoqnnjiicD0V6xYgVNPPdX32bvf/W7cddddKJfLiEQiWLFiBS677LIx15B4D0J/fz8AoLGx0ff5o48+itbWVtTX1+OEE07A1772NbS2tlZNx6E6dNGmxKlNbunfdj/kAs4mBfW3TYLpdRp32CajbGcj87mtXTxcZDJdJfgAGMJQyTetCy4AufjVw8ZI9OqilotRHfO1TtXuEbRTPIyZ8VO5KFJHhs4z7HaxnRT2AlXVS8wb5yhap7bijWO+fl4ttnVQe9gKMj5H1em8Lsjprd/ZYVls57jWqRLRVPSl02kTU51hx0goq13Sfqo/mj7D8JBYUXWirU7TsjM/qtjW+Y+dB7Z/b2+vUcKp84IEPskE/iQSCUPwaozwajsA+L4wFjDnOalUKvCwcLt/sY70PAMtPz+jo06JIyUkeJ2OB/os9i99x/i/XcdKLnmeZ8ImaUx126ETNGYpCa//6/zP/j0edsSOa94mg1tvvRXf+MY3sGHDBixYsADLly/HO97xjqrXP/bYY7j88svx4osvoqOjA1dccQUuuugi3zU/+tGPcNVVV+HVV1/FQQcdhK997Ws488wzzfe33XYbbrvtNqxatQoAsGDBAnz5y1/GaaedNun8O+zZUDuxpyEUCvlCWjCkB8cCEpNcK/Ieksm6i0ztgY4XumOFY0CxWERXV5cJqQlsDSFDxyXvVfUw80Hnrm1XbVtFwprEKsc5JWZ58Caw9VwbnktCG6J2yZ5DcG5Cx6rtfGQ5+Ju74Dm30bkR7SPH+cn2mXg8jvr6elNmkuL6LJL2bGv9IQlNx3cul0Ntba05gJP9gWWhQ4FzKD6Dtkzjnyuh7nmeqQOu+yuVCrq7u00sdmCrWpz1TxEbVfTcmcd8qaO3XC5jcHDQ2Gf2E82fnpVCYZ8dy31nYUdt3Z6OqViT7y9wJLpDVUQiEbMwe9Ob3oQZM2YgHo+jpaUF8XjcKHlCoS0Ha7766qvIZrPmACud/E8Uo6OjZvB8/fXX8cQTT6Crq8vEslQCf0+DqrCoYKaRj8fjvi1k20Ms0ygUi0UMDQ0Zwz8R8lbzNXv2bCxatAjpdBodHR3mEFEay22BhpV/j46OmtO4uT2rra3NGPXJ9gEFSeq+vj489dRTWLt2LV555RU8/vjjGBgYQCwWQ0tLC+rq6jBr1ix0dHSgubkZs2fPRjKZNHHVNO5dkKISgDkohY4ghqyJxWLI5XKoqalBY2Mjenp6AMBsa8zlcmYS6Q4enTymwmCvWbMGdXV15vMgFXpXVxdGRkbQ1tbm+7ytrQ2dnZ2B6Xd2dgZeX6lU0NXVhWnTplW9plqanufh8ssvx9vf/nYsXLjQfH7aaafhgx/8IGbNmoXXX38dV111Fd75znfimWeeCSyPQ3UoGWcThTahaBN7urAkmahQhbumy/+50FOoc5hpK6GvJDevVwLX/o6HOasiVrcdM3093JAqpcbGRuMY5Gc8JwMAMpmMWYjzIC0NeRJE5Gn+RkZGzOKnp6cHhULBOMR50KOtAFdboc4H1pkeuKkkuB0LFIBvpxrbVrf6ErpYZxto3esCXOOpkri0yUrmXduZefe8rQes6fMZPow7oLiQ1Z1eaj9VKRyNRlFfX49p06YZlVddXZ3PlrMMzJetYOaCmHXN7/v6+sx8i/MVng9CMkGdH9rXmGfWE+c9Wraenh7kcjn09fVh7dq1ZgHM9sxkMoY0b2hoMGVVkkEP2bTfUaYzOrolLAxJBB5cxxAEuVwOAEzdUwnJMrBe2K+DQrywT9qhlfS91H7Ia6jw1/CHSlqzfkk2KKHleZ7Z+cnDADV/thJe+xyh+VOSzc4Dy7It7GoSfXeFZps+fTq+/vWv401vehMA4Hvf+x7OOOMM/OlPf8KCBQu2u/wOeyb2VFKotrYWzc3NaGpqQiqVQkdHB5LJJPL5PAYGBsxaJpfLmbUNx5v6+nozdlBdrEprvvMc07mO5VrshRdeQG9vry/8Wn9/Pzo7O81uIsbzTqfTqFQq2Lx5MwYHBw2JriFQga1nctAZODo6aoRenueZEDUqNqCSGtg6pupal3ZCHY46DxgeHsbatWuNPaBzgfMFHfcYm5v1NjQ0ZOyjqtMrlYrvUM+JIBQKoampCQcffLDPORyLxYz95ByopqYGzc3NZjdWIpEw+aurq4Pneejt7cXAwAAGBgYwMjJiwvlks1lT1ubmZp94jAehjo6OmtA3bEOWj6FzNmzYgI0bN2JoaAivvPIKenp6sHr1anR2diKXy6GpqcmEXquvr0c8HkdDQwOam5t98dBZRrYR50pDQ0N49dVXTZx1AL6/a2trMW3aNJRKJSQSCTQ1NaG/v98naLPn+lONnUnS7244En3icCS6Q1Xo4rupqQkdHR1IpVKYNm0aksmkObCSXs/BwUGjarPJCGB8NQuv4ZahfD5v4mVu2rQJjY2NaGpq2mMJdBu6AFE1eigUMjFmt6csSgjo4myi+aEHt7293ZDMGpN5omWz27JSqRgvNA0nALN9HRirvNwWWG/lchn5fB6bNm3CmjVrsG7dOmzYsAFDQ0Noa2tDfX297zBRHgqqsde2pbAH/KEXWKZMJoPh4WGEw2HU19cbtUMymTQnj1P9sSfvlNjXwXafCIJUpeO1XTUVqn4+mTQvueQSPP/883j88cd9n59zzjnm74ULF+Koo47CrFmz8LOf/Qwf+MAHximRQxBsQkiJKcCvKq12roSSliTHqbAldMKpClw7HZu8tPsH1T32WGKPXRqKQ5Wv6hSgQkptMEm4VCrlIyNJoudyOXieZ9RKartUwc08KXGsz9LFMJ2MVK1x90YsFjPlsNXHLJM+L0jVrCoqWxnNsVydzCQGtC7VdtptaP8wfVXz2srhIAetqueUkFRbbh/CyrLbDmjts1SG6WKa5DaJZRIi9jzBLpf2YxLdqqgjcU5xhObB/rH7tpaRodD6+/sxNDSE/v5+DA4O+kgV9kuNmc+wPxoGiG3PNlDnijo8WPeMh05igPMnVWsGzaWU+FZiRMOh8HvtG8xTEImun2mfsOvW7oP8TOd/us2f+dOdM1oX6jCy31ftazpXs3eJ7Gzs6aHZ3ve+9/nS/drXvobbbrsNTz75pCPRHXYJ+P4y3FUmk0FbWxsymYw5m0zD0mnIJo6zFP4A1Q+X5PU6d2HM9Z6eHuNo9TwPhULBp0TXZ9nOZ6apMbNtFTq/j8ViY+ZVKlhQ7oBpq2gqyOFJUImuSm5Cx2V1aJIkp8CCim5V3U92rUtBgMY057jLPDNMj65TdYcY51W024VCwTg3GLKMtpOKcM4hampqzO5q1iF/mHYymTQ7Z3t6eoxjvKenB52dnejt7TXOaNaL9k86xnUXGZ9vnx/CNb/tzKD9pCMgGo36QgeqyFLnjvsbseuw6+BIdAcfdDE7Y8YMzJs3D6lUCgcddBAOOOAAc0AjjTQXqVSeRSIRo9BVFRPVvYA/jikH/IGBAXOA6N/+9jd0dXXhtddeMwagWCz6Dr7YFvG1q6ELcKqveGAVJyv0XANbF7HbMrqcLFAtVKlUDClhxzAbD/F43HiBW1tbzSGbzM+OQgmd1atX47XXXkPt/4+9N4+RLK2uxE9EZmTsS+6ZtXZV9ULTDTZuPD3dZvEsYOGZEcJGRvII2SMbGTXDgPsPZgCjwRv8sC2rbbEYRsiLLAbGwghbYoC2LNoGGg97s/TetWblGvu+ZMTvj9L58rybL7Iiq7KqMqvelVKZGct73/a+e++5595vbMwTkZ6cnHRRe0a/lWHHtdRoNFCpVNDpdNxhY8ViEd/97nexsrKCfD7vatYlEglMTk4im806phpLuRBU2M06YZuojBloiMViqNVqbp6z2axzPMnWVCc0UNqjy/WKes/MzGBsbGwbQ3xtbW0bk5yysLDg+/nx8XFMT0/v+Bm/a7797W/H3/3d3+Gf/umfcOTIkR3bu7i4iOPHj+PZZ5+9bN8C8QqdGu6rtq61dRoVaNS6wwTWlHFr60MDW6CVXhfYytQhE0xLe7Etds8g8KbgMK+veoNOpQVw6ZSEw2F3wGQmk3H778zMDHK5nHOQ6MjQWVVANBTy1mFWdpodAzorzWbTOVNM8WVt1m6364KaBALpJCkbVkE73oe6g3pPgUD9nG2T9kVfo+i4qxNHp5U/vC/rwtKpJoiggRgb+NDx49/KzrYgt12DnEuC5tls1h26SYdYwWRmRLE2rgITFkxXx5ltZvtarRaq1apzsum4qi6njlVHl/X1K5UK1tbWHNOedhHPuWFwhWw5Pme8rq3zns1mPRkCOpcW/OEaYT+1rdFo1NVZ1edA9wMNVvGaBIR0jSrQouQIC0gz4M7nmWVmdN4UJOD3NUOGa4jzY/cZimaj2ICcjhWFc2+BDb/PDpOr0eP8PnCwSrNtbm7ib/7mb1Cv1/HAAw9crouBBHLVMj097bKPZmdnMTU15Sl1pYeCMjs2HA6788VUNDuXe6OWtWTGUKPRwPnz51Eul7G0tOR8HoL0yt7W/4EtchJZ51pas9/vo1aruYAAA538PnWJBvNtwJb7huov1YGhUMiVkmOwWsF4+uk8nBLYKlOrgUteR3UDsQkA7swsvj+KaKbR5OQkFhcXMT4+jnK5jGaz6YLjkUjE1f8OhUIuu48kRsBb/pTZBtQZzWYT9Xod58+fRzgcRiqVQiwWQyKRwMLCApLJpEcfaXlWltI9e/asC4afO3cOS0tLaDQauHDhAiqVCsrlstM7jUYDhUIBqVTKVS7IZDJYWFjwlHkBtjIXtf3UyYPBwJW0sXgTM7BSqRSASzpvamoKkUjEHYCrNkEgo8v18slvBglA9EA8os7anXfeiZ/7uZ9DJpPB9PQ00un0NlYKHxjdPJeWllCtVl2d6omJCczNzbmIrUaVqXBXVlbcIZFf/epXcfr0aXfyMpVAo9HwpEntNyCdTipBdCo4RukHg4EHNOffZItZIF1BGaYyUbkxZW5UZZ1IJHDs2DFks1kcPnwY09PTnkPprlYUfHj++efxgx/8AJubmzh58iSOHDmCTCaDO+64A7lczjnE2l+m5XW7XaytreHMmTOo1Wr4wQ9+gKeffhqNRgMXL15EtVp1Y8K079nZWeRyOczNzTmAiCCDGomjCg2bwWDgyh4wlZFGBlPhALh0QmV8BTK6XC+FPTExgfvuuw+PPvqop8bpo48+ite//vW+33nggQfw93//957XvvzlL+PlL3+5C0A98MADePTRRz3O95e//GU8+OCDnna+/e1vx+c+9zl85StfwYkTJy7b3nw+j/Pnz2NxcXHkPgZySZSRrM++BTZtyqeC6H6MXAAeAM9PlC097D2/fVuBMgr3SA1uawkT9kM/rwwiAqyzs7M4dOiQYzulUqltDGdly3Ms6LQoU1eZQwo+sm88hLnVamFlZQW1Wg2NRgP5fN7DMGNpDTLXmLVEYFr7zXtrXVC+7xeAtmOic+8HousexGw4ZtrRUaYDqYA4s7jIFKMjqnVE+b7tA1l9WgaMDqwC7QRf6fim02nMzMy4AC8P6NIa4Gp3sEapAgwKsHI8tKYr1z2dbwCORcaU9lQq5Qm8aGAgn887R3ppacmlv9dqNecEK/ACwDNmrAdL9htTyWmD6vPl9zzbdUCQhmPJOrgsIaP1gdkPrn3OBxnxCqrQDtF7a0kBXYP6LGu7tfSQHynCjz1u37d7EYNTem8NAPqxzlnqgfubjscoslcg+kEozfaDH/wADzzwAFqtFlKpFD73uc/hxS9+8eidDSSQK5BQKITFxUXcf//9LtOW5DQ+f9FoFLlczvnj1GEvvPACWq2WpwTJzMwMpqamPLaC6sHV1VWcPXsW1WoVP/zhD7G+vu4pN8a9kjqMv3X/oa3A/Zw2TCgUQr1eR61WcxlyqVQK7XbbXYcEO2DrrBf9Yb8J/kciEVd6RktcETugjqZQXzG7hweqT09Pu2AE/fRms+n0F4UZ80py280+yKBHNBrF/Pw8Tp486fR2oVBw48I5Jo7AEnB6DoYGB9LpNBKJhOtTt9vF6uoqzp8/7+rSs7Tfy172MszMzCCTyWBqagpjY2MOb1EbZWVlBU8//TRqtRrW1tbcIaoM8qr+qtVqbj2cOnUKyWQSU1NTOHbsmJtjtp8BA9VPXKPEo3g4OMmDzGJj/6mzFhcXkUqlsLa25krZBP747iUA0UeXAEQPxCPqwCSTSWQyGVfygxu5n2j6NADnKJXLZefg2RRVTfNlelihUHCHTVGJKiNLN2xlGd1oUfaSTcvm+1TemoqrjhWNAf2OAvNUGDoGo25YZG3zgFhNcdvLMeAaICBeLBYRjUbR6XRcbbtEIgHAy7bSg0SKxSI2NjZQrVaRz+exsbHhnHDWxCNbgmAMgRetm6/MhN2Ifl7T2ajY+bcCdPthDR5UuZ4K++GHH8ab3/xmvPzlL8cDDzyAT3ziEzh37pw7XOzd7343lpaW8Fd/9VcAgLe+9a348Ic/jIcffhhvectb8Pjjj+OTn/ykS+0GgHe84x141atehQ996EN4/etfj89//vP4h3/4B0+5lre97W341Kc+hc9//vNIp9POKSeTtFar4f3vfz9+8Rd/EYuLizhz5gze8573YGZmxgP4BzKaKMCme4AF0SncdxVEJthLUZaSAlB6bV3L6mwpK96WafBrO19XAE3ZU9o/vY/2R/dGMpr4t81AUn2igXFthwYU6Fhyr6WOouNO551gNAFJZeIrUEwHUNllds40QGCBSDsHOr+qVy3wasfMbzz0NwAPSKp63k8nW11OEJ3jMIoO1zYzkKI6SMdDv2N/hul7O846Duqcc26YfcUgPNcA7bNWq4V6ve4AEgZU+FsBaj9AX/ukdc/5un02duoLsMXSVvDYZlv4BcX8vq/3t+xvHTO/PYbf0d9+39X5A7b2HV3bCuL7XUPXK9tpmfMUPwKHXTt+/Rx23ysVfvcglGa766678L3vfQ+lUgmf/exn8Su/8it47LHHAiA9kGsm1H9kGTN4ytIsBHCpHxjgs0Ex+ty8lgatCY5TVzODrFKpuD3dT2zQl+3le9QbuocPy2az+7HuPX77O/9Xu0oxAj/bRtvNz2k5GP2+7sMaKAXg8cm176MK9aeWN7FBURvkV/vS7zUNmGrAgDYcy9DQniiXyx7AemxszHMIPH35crnsDpQtlUqO0OYnDD5Ym03nX4kX2m72ndnmvJ6+z+sPBgNXjk3JI36ZgIGMLgGIProEIHogHkkkEjh58iQmJydx4sQJd2gJD5IcJtywJiYmXBT3zJkz+NrXvoZms+kO7eBnwuGwq3vV6/VQKpVQKpXQarVw8eJFlxZFpURAPpVKOWabpufeaGGKt5alYRAA2CpXwsg6a5sR0NYDslRp0zHVsbLR9FEkHo+7QzeZ5rWXokZRNBpFKpVyh40+9dRTSKVSeO6551xQZm5uzlPSpd1uY21tDbVaDfl8HmfPnkWz2UQ+n0ehUPCwH+hckxWXSqXcD4M9FuS+UiEQBcABUHpyOstE7KY+fSA3Tt70pjchn8/jd37nd7C8vIx7770XX/jCF3D8+HEAlw7MOXfunPv8iRMn8IUvfAG/+Zu/iY985CM4dOgQ/vRP/9TVUAWABx98EJ/+9KfxW7/1W3jf+96HU6dO4TOf+Yw7iAwAPvaxjwEAfvZnf9bTnj//8z/Hr/7qr2JsbAw/+MEP8Fd/9VcolUpYXFzEv/k3/waf+cxn3GE+gYwu1mmyAUo/0BzwMkZprKuxP8z5U7HAtgLhmuZs36MocGWBe4KVZBJR/9k2ETTL5XLuEClmH5GFpo4JWUN0Inkfjku1WsXq6qrvwclkIRMYZTkXMsC0hiiDrM1mE5FIxDnpmkrOMVJglc6Slr7QOWI72Hdl/LPsFgAPoDAMBNU6sQQnFMhUhi4Zb3a9aACCwvGkLcC22qCLBXY1iEuHm+n7ZA77ZVwoOK1rS0XHWAEKMhKZfaVzyYPqarWaI1uEw2GXrVWv1102YqlUwsrKiivZYwMiBFfYT63tyqAPwQW2R8dEnxGCG/osW9CZr/P7+ltLq/A7WqqGnwHgsdXUHtPyT34Arc4xr6XCdWvXD9erZjLyHgpEMJAFwHP4OwCPjantswEgHSddu/tJbnRptomJCXew6Mtf/nJ885vfxJ/8yZ/g4x//+FX1K5BA/GRiYgKZTAaxWAwnTpzAPffcg0QigWKxiFqt5tGT1Af6dzKZxOTkJMLhMM6cOYPvf//7aDQazpdRvxzYskH0zAoe6ugn/X7f7feDwcCDF2imLtnd9P24X9Nmot0QDoc9WT/8vs0CtIFQtp32DEulDLPX1AbkGHa7XeTzeQ8B0JIparWay2TSgPBuheX1kskkQqEQNjY23J7OQ7yr1aoLTDOrjOeGtNttB3IzeKJEBOASK30wuFR6Rq9FMPypp57C2bNnkUql3MGj7DOZ4u12GxsbG47QRka8n4TDYczPz+PIkSNIpVKYnJx0GW4s9euXTc+zL8bGxlAul1EsFl1J2HQ67WwL2ob084mrjI2NuWA9M8zGxsbcPAUSyLWQAEQPxCOxWAxHjhzB/Pw8FhcXkU6nd2SgU6ikeKhkMpnEk08+iW9/+9vI5/Puc0yrZYkM1iGzdWKtMCqqLDey7PaDsG2M1tO5VkdFWXfNZhNjY2NOEZBRQEOIn9eULR5kuRtlzXlhTXTWP7sWgQeCOTzZu9fr4YUXXsDp06cRj8dx4cIFpFIpzMzM4OjRo576os1m09XcKxaLWFpacqCLH5tLQSSe9M2DyPRglqvtD+/FMgP2hwDSTiUcAtlZrnfU+6GHHsJDDz3k+95f/MVfbHvt1a9+Nb7zne/seM03vvGNeOMb3zj0/cu1Mx6P40tf+tKOnwlkdLGsYMvaVFYxZRhTXPduZdgoI8kyQxWc5Wt0aFXX+Rn3fE+Dc9oeMsHpMCmwx/uR2UPHiCWubEaYgul0aOl4sp42AfJisejRa8quZkq3pv9yXICt7Ctgq043nTGmDUcikW0gqDrN6gyr823nT+eeY62ON8EFdbwVtKajyuuoo2eFzjoz+LguCILqPXXsLGBuRXUXQQc9VJPgB53dYdfROWA77Of0XnyfoAGvz8zCWq2GdruNaDSKVqvlHHmOGx106nLWRO/3+45IoQfaKoChjHPNmFDAmGCBAt42E4DXU1tKx0FBfGW465rQ58KCOQDc92wA3S993H6XfdUDfHXfsFmMlnnH//1AdC3/o8854AXRdVyUdallbbT915OJPorcyNJsw9rO2siBBLLXMj4+jmw2i2QyicXFRZw4cQLxeBz9ft+B1MraJYjOvSIWiznfb2NjA8vLy+5wyMsRskZ5Lqn3K5WK8//YHuoHZSPTVrEscdbGtsxjZbJrIFbtH+5zDEKSqDZK27WfWm6Nh42S8MYD0YlDXK0QL2GZsmKx6AIK1DvUqzxnhuPAc+nYXtpsVk8lEgmMj4+j2Wy68+y0nNrZs2cRCm2V2+Fay2Qy6HQ6KBaLaDQaqNVqKJVKHlvOT8LhMKampnDq1ClEo1Gk02mnu3hWSrFYRKFQAHAJm+D+S9uTpQA539T9BNFZyigSiaDZbDqfnyX4aMeqjg5kdAmY6KNLAKIH4hHWK+MBUrsFIq2Dwh+mkFExUslpGtTlHj46p7VaDcVi0bGOR1GU11Ko/EulkgMaduqLAhDc3JUFpO8zynqltb1ocOh87DUL3Yo6/WRsx2IxxxaPxWLb0q2oxAnGcF61Xqxfv/xYdNciQABsGWeaIaAH4NxqymMvJRi7QPZSCPyqI+m3LyhQZVNK9YeOlrJEFQxVsYxOZShbQMyvLfq3Xse+bwFeAmAKivtdj23ScRnGWPYbO6YF82/em7qKuh7YAmgJZOs4cq+nYzgs5dqCvH7jxPlQ/alMbB1D6lULVPPztE20vqvu+erI83oMbnCt2M/o960oq862V9togQPLkNOgho6RBXB13DgXbLff86L3VXDD2jBaQ57XIoCj2RNcmzpneg8FtW05Ag2OKwDjZz/awBnHk/e2n2Ub2G4AnnbouNo5tSUM7PVt8ELBK9oOvI4fqGXnR0sN2IChBZf8ggN6Hw0m2XHbrS11PfX4jSrN9p73vAeve93rcPToUVSrVXz605/GV77yFXzxi1+8bn0P5NaSUGir7MdgMHBsWwKrgDfjRIWvk4jV6/XctQimXq0QRK/Vap4MKc0eVhIB90vqV/qoBIbpQ+v+w++rDeG374VCWyzldruN9fV1x7y+nF9u9Qn1G21DANuyCa9E2NZIJOLIX2Tna1uUXU7bivu46knN0LM63s8npu4iyM71QBBb7VWtHKDX3Uk4biQIMvtRS+GRnMm+qD6LRCLu3DTiPOFw2LPW7VpQHEl99VECwIFsl8AnH00CED0Qj0QiEUxNTWF+fn7b4Y+jCDddbs6ZTMZFHrkBtlotj3M5StSLm2Oz2cS5c+eQTqexuLjoDi690VIoFPDjH/8YhULBHaA2rE+WPaQOnH4G8JYl2K0yCIW2aqgyPZqR5msFNAOXosnZbBZjY2OYnZ11hy+dOHHCsSG1DA/7fujQIfR6PVe+ggeTFYvFbaCAGkzWmNiJlXclosBLu912h9TY2r9Xa1jdqhJEvQPZa+HBSzTOlZlpDXYAHkdE9xAyuoCtfbvRaHjKdKko0GfZVNzftYyDgvSWzUpHhwAbnV0FzsiCtvcheKksK3VWLTBKoFB1krZVGaw8TIv9BbbYWwwo20PF2Fc6PtxLmTKtNV7V+SPwyvZbm4E/7IfOEx1KnW/N7tLra1/q9TrK5TLq9ToqlYoHsOj1ei6DyqZ4E4DX8SWrXXW+OsF+a0bXIr+reo5MP5bZUwaeDSLoOlPw27KXeR8dd65Ljo/NwOL7BM1Zko9BFIIZyqDWtdhsNj3AOu0C+8NgvGYeavaXZvzZ50oDGboOOe4cV7+9gXsBbSZ9HrmGNHhE1jrnQh18CueVz67+1pJIup7VLlSmvYLvXH+cK2Xxa/+47vQQPN0j7PPP++83Jjpw40qzra6u4s1vfjOWl5eRzWbx0pe+FF/84hfxmte85or7HkggO8n4+KWDpXO5HLrdLs6dO4fx8XGsra2hVCq5vUfZ3hSyfEulEkKhEDqdjivpWSwWHdB9NdLtdrG+vo5oNIrJyUlX4ot+UjgcRjqdRjQadfpfA+mRSASTk5PIZrPuO2Swc49OpVKewzI1uA1ssZgnJiawuLiISCSCH/7wh/h//+//oVQqYWlpacc9xpL5BoOB29tDoRBarZbbC68m8EDbLBKJIJvNYnZ2FrlczmMXch8Oh8PuAG/VuwTeNzc3XUkTBoD9dKHaaTy3pFarIZvN4siRI5iamto2n7Rl5ufn3bpaXl6+LOFxMBi48j/hcNiVEwyFQu66ZKhzLfBeHO9sNotUKoWxsTFkMhkkk0nHQm+3267/1GEkZLL/LBk4SqaFFb/g+60mgU8+ugQgeiAe4QbPyOhuRZ01TUGmg3k1QoehUqkgn88jmUzuG+Cy1Wq5FKXLMdEpdGavpagTdb2Y6ARkFLhPpVLIZDLIZrO+31Ewo9PpuPS2nerwqXFgWZXXQjS6TcWvbPRbTXkEEsh+FYK4ZGeT1aP7hbKIAW8NZX6GvzUwR8dPRQHIaDTq+b7ftSygTofSMk15bWXuUixQx8+zn7onWYayBdxt4FHb4veeZgeFw2HPXkhgcViftb9kL+9UuktZ6toPywzWueCP6gN+hs6yBVX5GgF+BgO419NR8wM1AXjeY5v1h23Ssjt2LvzAX11DCoZaXW7HY5gzbQFRHS8FcPW50Pvqe8rUY3keBR40CGKBex0vBUssC12BIS3hotfzA8n1793YBLpm2A7asBqgUea4siF1bnWMtQ3abgW0h7HQVZQVyTljiSe2WcvFKNNPSwZa9rxlddrnZj/KjSjN9slPfnJXbQwkkKsVguQEoavVKsLhsCPxcI+knaPf43PMYOfm5qYrCeZ3LsOVSL9/qZ55uVx2GcUENwk+Ezim3uf+zXrWJHsxg5A6RPdiHqLKe6otws8xyMxyN6urq652/E7ipzOvlY/O/ZnzwOxs9kvtFwaTSVQgtkLdZPW11TVWVP8Cl87By+VyHh3NOusE7NkGDdLvJJxjst25JjhXLB3T7/ddhgDtXgAeVnwymXTf55k5O2Ul2ID0qHItiYWB3LwSgOg3sVh2M2WnSCKZMVea5qXOGJ3p3W5mO0m328XS0pL7/5577vEcznk9N0IFUzc2NvDCCy+gUCigVCpdtzZcTqzCu54OERUwa+SParAxlWtiYsJ3LFVRKmijgIcaIVcq9j6sf8sfPiNXy8C61SWIegey12IzQ8jiUaCJouwVZdgq21hZ6VrewbI5WYPRgmr8voJd6vgoE5zgHPWv9mMnYMsPNNXXLfisTpOWpLIg5OWCkwoU23aoc2RtETreZCCzrmckEvEFydVu4Vz4gec2MMJ+aPsVULfXr9VqqNVqzpFk/zUQ4JfBoLW5bbttG1S38HqWYQ9sAaB6YJidS81mUyeXa8jPjtPgDa+rYLRmHpBlzZRq22ctOccxZ3vZbz5fBEg0OKKgtKbK20wJvZbfnNrUba47vt5ut51jzxqzrDfLQI6WgKJo/VheS/uigI/e2z7n+izp+uMaU9a/fl/tWrv+7DNgA168FkX3lFGDaqPq56u1gwJdHsjNJPY5vNr1zedS95t0Oo1EIgFga59QvaJ2iwLQPL9rL1jowKV9JZ/Pu0wtZvAQPA+HL5XliEajnoMe1b9ilq9m+JKExeB2uVx2OotAq/afY1QsFlEqlbC+vo5yuYxareZbFvRGCHUhgwyqV4AtndDpdNw5K8yEarVaAODsT/7P8WaGAWuPA3C12xlsiUQiSCQSyGazSCQS2Ny8dEabAtGK/9AOAoDJyUnEYjFnHw0TBjzC4bA7SJSvhUKXsqgY1FBigS1vyzWhLHb2jwed1+t1R3LQQP6VzEsglyTwyUeXAES/CUUdczXAqWAV+LMLnowiKtgreSC4GVMx7lXdNeCSInjuuedw8eJF9Pt9/Ot//a+RSCRcHffrKZubm+4Q0QsXLuCJJ55AoVBArVbbVxuJOtXX837ApZPBNeo+isRiMczOzqLdbmN1dXUbI48OdzgcdmA2f2h4qJN5NUC6AhFU0FrK5UqfkUC2JFDYgey1kP1EZ5KsFhrrWuoA2KpzSXaLsjkJKBFYpGOjAWKrT/l5WxqGTp4CxYD3MDA6AZY9bpnyyrxR0eC5BaL5eQVMQ6GQhw2rjH39rUCtit91tY32OwoG0AEaHx93ad909hUQtmCl1gDlfWxZDwUGAX+QgQ48QdbNzU2Uy2WXUaYHpCpITf0zMTHhGG/NZtMXRLdtoRPJ95WdbYFgHmymh9nqOCvgbMvWcExsH8LhrUNQtf/8scEjtpOAiI6ppk1rHXzqYJ17OvY2mMDD0Ki/yfr2Y6RTbN1fC9Lr+lMQnfdoNBqoVqsuYKL6nGA2n3Fdi5wbAu4WzCbAoyV9NKCgwQd+lmcCcH4tmK1zr/Pvx173yyrRdasZH5aJrkx1nWMNSu0kAYgeSCDe4N7lAlF+gd1h17T2ytjYmCudQvIb/XeWnFP7Q0urlctllMvlPQPRu90uLl68iLW1NZfFzjOw2H7uY6zjzj2b+1ij0cDY2Bjq9Tqq1ao7uDqdTiMUCqFcLqPRaLhra8kv6lQCzSsrK2g0Grh48SKKxSKq1eq+2V8IDrfbbTSbTc+5X9zP6WtS3+rBnMryp+4eHx9HJpPBoUOHEA6HsbGx4UqrlctldLtdN74stxoKXTqHrNPpoFwuu/v7gfvUBQsLC26ud6oxT9uI88kgCkujUQczOE+GuQar+XelUnGHhxJPqFarKBaLbqyINXHtBH751Ungk48uAYh+k4k6e3RALIg+zOEFvEx065CMInQwlSW8l6UuaCQw5ahSqSCbzXoAhmvNRlcWEQ8sUUdsrwIGeyEWhPBjBF6Le6pDruDVKKJr16+tFlSh86yKl+9f7VpgX1Sx689OWR2BjCaBwg7kWouChMqa5v7CPYOsWz/gWvXoTuxsv33HjyU8DFhWh1l1uRUF6hR4VQDXsszt3kxQWgF7BQa1ZIYF9W3f9G8LxA2bC4Kqfgd52nbtBELo+NrXOb7D5krBZh6+puCyApO8Bl/X14bNg37WT/zG1QKpfp9VXW51vJ0vv7XL9eYHump/OK6WCc/ftpbssPv4AUZsLwNIeh0/MMrv+35jqf/rONjMC7u+de3rNfS++h2/NqjY4InuN8M+b8fPPuO6Jvyef30W9JnQtWHHbC9swgBEDySQ4aLPpJ/eupwvYfeywWDgSqAQRNzpMHXqVOu/7IUoIE4Qn1lmBIL5OQC+/p0GPGn/2OwvnmVidZvurQSbq9WqC9xeLwLZqKK2gZaX0x8KP8O+Ulf6kQb87FIlDahvTWKJDfToNdUeBODJjhqlj7w3/XMA29poMQr7GuedbdVsDEsA0MNEA31y5RL45KNLAKLfRELAMh6PO+Uai8UAeMECOomMhKpCajabOHPmDGq1GqLRKE6ePLlNme0kehr2ysoKyuUyqtWqO1T0akUjsBcuXMBXv/pVzMzM4N5778W9997rOVzlWogGCdbX1/H4449jZWUFTz75pIuAXosaalci6vAxSsvT069l6Zt2u41SqeQ5GOZKZCfQgcZivV53JV9KpZJL/cvlcr6BpFFEFThT0RqNBsrlMkqlEsrlMiqVimNL3GpKI5BA9rvw7AXuEwp4cY/Wmopao5nMWHX0tMwIsOVMqJHP4KmCkPY8Cgap6TjzO8pEj0aj7vN0GC24aIV7PbDlbPKcjl6v5w7uUmdjmKOmAUmyc3mAGbNw9DAvPfCSQW5luNm+ap9brZZjWfHgMK37ybbZa6kzTqdKnUtN57X3V+eMtkSz2cTq6ioajQYqlYrLxFMQXR1IZQfbMiYKsmqglXNpMwQpyv7m9xVIZ/s14KDfIyjc7XYdw5/jGAqF3Pk0O9lyfJ1rr9PpOBvRsuSBredLnVoL4HBeNAChDHm1qXTOdnK0FQRSRrYCzQquUJdzbVgQibYz1zDn1zro+reuY11jHF+Wb/Kba6br63U5NhYk14AKRfcTjo+1dTQ1nmuK97IlYhRg03nT+QkkkEAuLxaEBLyHNdMvV11Gf1zJOiq9Xg+1Wg1jY2NIJpPodrtO90UiETQaDTz//PMolUpIp9OYnp722CvtdhsbGxtoNptYWlpyh2Tvpa/Ke128eBFf+tKXkMlkcPfdd+Oee+5BKBRCpVJBq9VCNBp1xDceUK7BwImJCSwsLACA06dKkOr3+8jn804n0wbJZrNIJpNot9t45plncPHiRaysrOzbvYt7MoMOPDeMezr36PX1dRSLRYyNjWFxcdHpMrXT+v0+yuWys1tJNAyFtmqah0IhZzMwgy4ajSKTySAej6PdbrvyMHp/JWuMjY25LIidpNVquUyHZDLp7EN+l+VkSIZkaRfeLxKJOPuPtisxLQ0at9ttrK2toV6vo16vO4b/fguaBHLzSgCi3yRCY3t8fByJRAKRSMTVE1ODmY4xlTIdGTp6rVYLy8vLqFarWFxcdOUxRgUhWRutWCxiY2MD1WoV9Xp9z4BGgiAAsLKygm9961vu9OY777zzmgLoFDqqhUIB3/ve9/Dss88in897aoftF6GRxIBJo9HYs8Nkhkmn0/Gk4ykTYVTZaQ4J9BBEZ701pmdPTEyg0+k4pXslQuOWaXBU9NVq1a3pqyl5FMiWBFHvQPZaUqmUczYULOV+SGYLAA87C9haU8oGj8fj7tq2nrqC17wef/MaCtApYMZrESTr9/ueQ6OUoUvRkiC2pIOC+gwAbm5uIp1Ou0C2Zf6yrXyNDhqDoa1WC4VCAZVKxVOeTQMEClbq2NgAhjp9oVDIld0B4NJ9I5GIq5/KsdB+636hKe7sm/2MBWAtGMsA89ramnP0STRQUFZBdAWJbWBFwUhl1SuQwnXlBxxrfXy9F8EEliShjqPYgHm323UHeO1UUk3HUtctnXyCO3ZMAXhKA3LdMUig5AsNImimIq/F93QcLICu7aUNpgCvZZ+pDcF7KAtT67izz3bc2Uf+EPjWa+ra09e1X7y+7j8cV8tqZzaMgtxcd1xj/IwVZW3ymjrOnC/NDtSAje5drNWu19hJrkaP8/uBBHIziF3L3NcJIKbTabcf0M8A4PYY+7yxbjUBUj7H1CmdTgfnz5/HxYsXcfToUUxPTzuSAH3mlZUVFItFrK+v72mJVdvvtbU1bGxsuJrYJ0+edGBwqVTCzMwMFhcXkUwmAWwdeMrxmJiYwNTUFMbHxx3ArAC6Bhw0gB+LxZDNZtFut3HmzBk899xzV1wf+1oL9Rtt03a7jUwm4+xWtR/y+TwGgwHm5+exsLCAwWCAjY0NN24cm2q16vZsDdSTSEmyAAAXYInFYo68wKAvdRRtC+pCDfBq6TgrSj7r9XrI5XLuwFgSOmKxGHK5HLrdrquvzgNIeX2uH5ZwsRlhwCWwfm1tzZ1tQts1kKuTwCcfXQIQ/SYRZUvRWeJp3tYY5+YUiUScU8eNp9/vu422VCo5dhaBassy4sNGZlS5XHZKtFQq7WkpFyvcgAFgdXUVZ8+eRTKZxPT0NFKplMdpvVrRUh75fB6lUgkXLlxwp34z8rtfpdfroVqtIpFIYGJiAplMZs+Z6GqwsVa8vjdqzXoqYRqLfu8r86terzs2Rr1eRzweR7PZ9DCqNN1vWL+5ThXo0frnBM61jt1+yTo4yBIo7ED2WrRUBQCPEa4AKsWCgfwOr0XnQnUp9yE6H7yXsmD1mlo+QvUir6NAtjrdw9a4AueA/wGfZHWz9BlriJKdrD+8Hg9o6nQ6qNVq7gDGYTXg6VyxHQT7FBDUsfYre0LmfCgUQrVaRblcdvaLZgPwu6oDtBwF50LtE/2bY8/9nVlGdOSUoafgop0Dvk4n1jKftY+6NnSOuL50znSMFEi265pzpEx1v+CNAtk2vd9vDvm61l21B2irE83+WZa61jDn9e0YcoyUhahsetZHp20ViUS2scIV3FcAQPtoa8haIJ3tssx1v+dJA2AKttvx52c0OKDrQAN62n/dX9Rm0XU3TOz86uc5Rvq867V177LXssGCYRKA6IEE4hU+N+Pj44hGoy6YqQHXzc1NR3qjnrQlSBjMJKObZ3bEYjGMjY2h3W5jZmYGkUgEU1NTntrpPLeCepVnd1xL4R5dLpdx8eJFdzBmLBZz9a+V2KD7E/dqDbSGQiF3AHm/30c0GvXocwCOtHfhwgV3kOh+9s9o99RqNYRCIZdhwPeAS/swQXDacQA8Z4so6ULXG20wrqVms+nqozMITxuR82PxHbaB65RBiZ1K/XL+arWau280GsXExITDlpgVx7lnHzTjSvUmx6rRaDj2Pu1S9cv3MwZzkCTwyUeXAES/CYQbKVnomUwG0WjUc7I1f7rdrkurAeCig/V63UV419bWMD4+jieeeAKhUAjZbBZ33303Tpw44crFkLFDZbm2toZ8Po+1tTU8/vjjWFpaQrFY9ACpey1MTSMgsLa2hlwuhwcffBC33367O4jiapnXg8Elhn6lUkGtVsM3vvEN/PjHP0axWMSTTz6JYrG4L+uuqTQaDZw7dw6VSgWDwQDT09N7ytjv9/vOaCkWizh37hxarZaLrpNlOAozvNVqudTDYYeXcKzL5TLGx8dRr9cxOzvrjAKufZ5WHg5vHXTi5xSq00wDoNvtYn19HUtLS6jX67hw4QLOnz+PQqGAUqnkUuZvNaWx1xIo7ED2WqwxTjANgKcsg2XRUmjYkxlDZy0UCjlnmPcB4IBp3o+ioDmdFu6TFjCzgBwD3QqC0pnQsh10apQZxCBfoVBwurrX67lU6mQyiUgk4g56UgCT9Ux5MBfP++B+p8AinSllajMVV8FVOsw2uMHrtFotrK+vIxKJOBZTIpFAr9fDzMwMJiYmXFv9HC0A7j0NPih4y3FrNpsuC295eRnr6+vodDoOmNASMcqO5rV1zSjjmIQFZTTzvjrH/A5BAjrOCsJqPy043+12sbGxgVqthnQ6jVQq5ewypjvHYjH0+31HpmCbNLjB8VMdxiAEmfhkLuqzMT4+jnQ67cAQMuKUqcY1wBrzCnzzPjq+nE+Wj6lUKg4cIoBOR1yfadXbZOjrWiD7jg44s8c0k4zzqAA6n1EF4fW3PgN8lvzY9X7zyzWh4D3nhWPILBQNpFhCipIC/EBu3feUtcrx0UOTeR0tKcTrj3o2UgCiBxKIV6hL4vE4JicnXVCYtoI+M5lMBgCc76PvdTodrK+vuwO4i8UiYrEYlpeXMT8/j8nJSTz44IOYnJxEqVTC2toaOp2OKzuZz+dx+vRprK6uekqBXUvZ3NzEc889h3q9jmw2i5/8yZ/E0aNHHeGJwL4Cq9yzS6USBoOBGyvqHOod6rxSqYSNjQ3U63V885vfxLPPPotWq4XV1VVPqdr9IjaIXavVcPr0aaevM5mM0/GDwaXSfgyOVKtVnD17FgCcftCyJ5RweOsQTwLnjUYDS0tLeP755105QQL3PJSU9o3aV4DXRrt48SLa7bbDEfxkMBigXC6j1Wo50h4zG8fGxhCLxdzBoOwD176OD3U521Iul3Hu3DkPJtBut3Hu3Dmsrq56KiscNNF+W4b/la5fu9Z2I4FPProEIPpNIOq4WSY6FRM/R2YMQUVuwOqUUqltbGzg7NmzyGazWFhYwOLioueayuqq1WooFApYX1/H+fPncf78ed+0tL0UjeIuLS2h1+thbm4Od911F44cOeL6o87KbkQ3A43mnz9/Hj/60Y/QaDSQz+fRaDT2rlPXSJgl0O/3dzxV+0pFQQGtI66A0Kj3pMN7uUNaCZjXajWEw2FXaiUWi7kMhXg87uoH0rFW4MMqK/aDZQvobLOUCwMpdNhvNYURSCAHQTQFlf8TIFTQnPuLMmn9gFn9IRBlQU4FBhVgVYNU90k6LQokqiPD9Fb9nywfpu1qXWntgzKHQqGQS3cm0MvAOwPQBOX5HYLodMJt5o0FMDmGCmKPj4976nZSFKBToLnRaHjKaDSbTczMzCCZTDpAmHNi2eWWYavAoI49g71kMZVKJeTzeXS7XZd+bEGOYQAl+2z12zAGsdZO93tdM6b8GMFqv/EsDk1nn5iY8IClBCF07fI6FA00KHOc5AqWgVPQJRqNurI7CsLb/o+NjTkwwALAw+aJzyQz0RicIABvbTnLGNea3nw+2H5mV5CJxz7q866ZDgqIK6Nb582WNLLMdb++8/ucKwXL/ebdb93pOhoGots2aHq+nrmgP7YtCuwHEkggo4s+R9TlDMpr1g+DyvSrq9UqwuGt0k8AXHCbe0yv10MsFnP7fDQaxaFDh3DixAmcOXMGhULBlbagD1MqlVAsFq9b/weDAYrFItrtNqampnDvvfe6ciX0nWxwXfXb5uYm4vG4s1E0QDw1NeXK41UqFTQaDSwvL+NHP/rRvvXJuB5UV9IvZzacssKBS7ZOKpXCxMSE8283NzddHXMGrHVd8LVoNOr0HLELrgsyvweDS4ewEjOygVUK7SZm3V8OrGZpFWI0PIeNZE22lZkTtF10zVv92Wg0XLaB2he0UZvN5r7NPFB7ZZTPWWxir+65F9cNxCsBiH6TiHXytS6lGtlq9HMjUlacSqPRwMrKigMmC4UCIpGIiwar4726uurKnPBAieuxobHPZPpVKhU8++yz6Ha7SKVSWFhY8LDyWSfbprPTqaECZ+S0XC67w1LJynv++efd69ciSKDzZZ3FKxVl2q2vr2NjYwOxWMzVnr1S4YbcbDaxvLzsDpTVcgAEUViLTw/WoXDcWS4nn8/vyETnvVmzPBQKYWNjA8AlQCaVSiGVSnlqgJIJr0CFOrx6yFw+n0e73cbq6iqWl5dRq9VcmSKyPwNltDcSRL0D2WshM5vsYzoTBL8UuFYQVkFTAmljY2Nub6DTqod6KZBuwWyKXpPvc+0qcKbBbbJ2LIhOUeYvr8/X9H9g66An6j06MJ1OBxMTEx7WOEu4UA8qMK/lZRQwt/e3gCeBO4KcFpRTUIFOHwAUCgWEQiEXDCUrjf1gX8mq58FXbDeBUp7TQZ3Eg6+LxSIqlYqnxIe2R5n3ai9ou60uURCZafz6utaQ1/mza8mOja5JHvjK6xIU1Rrplv3Oe3KOFITnumQAmfXveciqBXSYVq+v8160xxSI52/7DLJvDCaRJVcqldDtdpFIJNy8x+NxB0LZvgJbB67qmHG+WS6o0Wh4gCXuDWwv26fPr84b70nHXtPobbBCv8+5swE6nXe/4J0NDFm70O+6dl9R9jmz8fyAd12LfsGRy0nARA8kEK/4PVN8tgF/5i0At+9Z1rjqx263i7W1NbRaLdRqNcRiMczOzmJ9fR0XLlxwZ5o0Gg0P4/t6CvfXWq2G5557zp2xRiY5sOXvsl+21J1msw0GA+TzeTz11FPO3y8UCqjVatjY2NjXe4hf2zQDstVqoV6vu2CKEg36/b6zBxl0oVCHqz6lP9tsNrG+vo58Pu9IdNbv5uc0Y4lrVjEennPGevSj9JffY7tYq1/P+2FZOtU5tIEHg4Fbuyzbqs8G1z5Z6Pu1GsDl1qUfqW+YjPo5fYZ2+/3AJx9dAhD9JhELnuvffJ+bpxrVTDv2Y5qUy2XU63WEw2GcOXPGpdMyMqoHLbGmKJ0wZfFcyz6r00bH8l/+5V/wwx/+EJOTkzhx4gRSqRRmZ2exuLiIaDSKyclJd7CLHvClNc8rlQqKxSKeeeYZl0b0zDPPOOYzU5Svxaat7eKP1nG9EmHpG0a2p6enkUwmcfjw4asG0fv9S7Vln3zySaytrWFlZcWVQ2EdP9bTz2QyyGQymJ2d9TA6eXo82f3nz58fKUihh+CdPXsWxWIRpVIJoVAIqVTKgQATExPIZrMOaJmYmNgGevF070aj4Q4ruXjxIs6ePYt6vY7Tp09jeXnZAQK3mrK4VhIo7ED2WpgFQ2CQQT3LKLXAsAWXFFgF4AB1gt0EpegY08m19cqt40KniA6RApoECxnwpW7XEiHcu8gGVv2tfSKY3Wg00Gq1MD4+jmaziVQq5Q7w5HX5+Waz6fZVda4I4vNz2m8VsqG0LXooooplpCvLmoyparWKeDyO6elpZ4Nw/+Y1otEocrmcGw/u6ew3D0dttVoulZjB8VKpBAC+7bPlumyNes1M4DpRlq+WA+LY+dUq1+CJ3xpVh4jstVAo5GqWc1xoO+i68SsTpP0h843ZVY1GA+vr6w58KZfLnpI0vA/Xk4LIOm4KXPNvzq0ynNlGJTBwbcfjcWSzWec8J5NJ94zo2T4EYfiMa4kXkjq0LaVSCdVq1QVatO6qBaW5J0xMTHjAbT8hO5JzxXmz+4GOG8tDWdtOgXMNzFgAXQkrfmuT7WbJHxJnbBaOgie07TWoeDkJQPRAAvGKBk31mVPfB4CnhBZwqbQLa4rbOtncp0OhEMrlstMn3/rWt9yzrRlA3AtvRKkLDWZ/85vfdH75qVOnkEqlkMvlMDk5iVAo5PSDDTyw/41GA+12GxcvXsRXv/pVrK6uenT9tSwdu1fil5FEggaD+9FoFOl02hHNuG5Y0kb1C4Owel4I3+t0OiiXyzh79iyWl5c9pfeU9MBMeh7kqjYJ20USAv36Ufdqlp4jg35+ft6jw3q9ntOZfAYGgwGy2Szi8Tg6nQ7y+TxWV1c92RzFYhHFYtFlSxaLxWuGx1ypjMo+p4wKoI963WHvByD63koAot/EMqrxO0z0oCaWxGDNUtbDpJK0B0leL7E1vBjZpNPHw01ZU5U16VQBacSVDhY3ZrLrNzY2HDv5asBsK35sI1sPU9tHB09Bh1HaQmWtNWGBLRBaGWuXE3Xo9Zp6cI2tG0onlk4d/+a8MW2coMeo5VI09brZbLqagewfHW+tWUxDk+CG1gImG4BRdwaHuL5Zo1UBDgUnFNihWKVHBcUfWyLhVpNAYQey16LlNuxrumaU2Ukw24/BoWCYsmgVeCUQZvc+vqeOC597P0ao7vt+jGW//4ft27rH8L7U39wD6YBRt3DvtYx5ts0+c5ZFq2OtNZb5vwX6+L5N5SWLrd1uu0Cr9kX7THa0gqB0rPlDJ5wse+o+2grK0NbrK5Bo+6/lZ/iespO1LAzbxu/wczpWfE/LkuiYcGxVrxIc0fJ5w9awAsR+eohsbOprjg8zMghWs32WucY2cy71WdB76Xrhd/V1DaDrGT5KnLDrRw88o43G8eF7tFmZoaJsevbFBgR4H6a867OpgapwOOzKLGn2AgNOmvHJ7/tlCeiYWPa53tfvx++50/ItSqzRNu60xkaVAEQPJBB/Gbbv6fu2HNswve4XnAPgfJ79IOoHcb+iXx6JRFwZVvrldu+zgYfBYOBITuVyGRsbG1hfX7/m7be2mP2MtRf9/r6ccF0w0DwYDNwBrH62pLbDr30MtNP+ob2jtpyuRyVDWiyChDHaSn5ZlpfrG4MgvA5tIs4vy7YpxqGHn9J+YxCY9pHqdj/Spq5Bte2VyMD7+tmv+wmQtzIKEH41Evjko0sAot8koiAwAW9VRvzh5kMHVdPcdxJ1gpieo87Rtax97idUwJlMxh00kkqlHNBPh6FQKKBSqeDixYvuoFS+rw6ZphkTMG21Wsjn8+5QUaYxXe0mocymqakpxONxx7hi+jfrvyqITkXHGt3dbhf5fN5lAFwuQkylubKygu9973tIJpOoVCqYn59HIpHA7OysYyr5sfKUCUFm54ULF1AoFFAsFnH69GmUSiXfU7IZUWZdtpWVFU86NkFssh93c2An1x8PM+E8JRIJV7qGY83D6cjUU0eaZQxqtZorSbO+vo7l5WWX+s8xpnOaTqeRy+U8GQ7j4+OO4cmgCADP88n6d9VqFRsbG+61g1BfP5BA9rsQECVoSxaLBq1U9MBFe/AnsP1QQIJjO4GdCnQDl2pJW3CTYJ8eQEiHR4N9Wv6KmTSDwcDt16p/NQPIgpvAVokLZdUrGGjZ9xxP+0Nnh220Yh3paDS6zSn0K1thS9GRJc1yNLy2BnGZYaU1wAeDAZrNprNzKpXKtlIeDLBb51HHyw9Q5WdYe1QPXNdyM+p48m+bCaXACQBXRoVzoM6x1Yn1eh3NZtOxjTc3NxGLxQDAExxRu4frfDAYuMM2WROegWTqcQIfvDfXPQ/+1ICBjg8zNPgc2QC91n/X4BIDAizjNjEx4e7FA8p5EBmzNVgOhU66gghMVVenW20ptoXPki0XwywHguh6poCmoDODgynzGoTS3/pcaRaGfd60dIzN9iAgxb4yIKDCbA3eh+WhdC3ZoCIDaBqE8Fv/gQQSyOVF9yEATr+nUilks1kAcD4HsGWDaBnMg3hQoma8aGk6zeRZXl7GysqKJzDJfUj1rwZM6T+xNvi1Eu75Y2NjSCQSyGQyjvxFva4BZZLGSD5gG9vtNgBs84X9ZDAYoFAooN/vO18yk8kgm826THGeOxcKhZDL5ZBMJp2tQ8Cch2VfvHgRxWLRsdttaS7d/4vFogcP0fFXu+VKyqWojbixsYEnn3zSldelLs/lcs52ov7N5/NuLFmuR21U1vcnQ573okQiEXdmwNTUFNLptPtst9vFwsICTpw4gbGxMaysrLix53UYqLkaXOtagMlXe82rDXQHsl0CEP0mEDpFdMTpGCszhqJguzJ0LlfjSpl9N1qxqwPL0jIsE6LAxebmplMgZJVrv1Vp0JFRFhuwPbq8V+1nyvXs7Cyy2SwmJydx6NAhl64Uj8fdZwF4osWsGU4gQNlVl2tjv9/H+vo6CoWCS5eqVCoOYKZTOoyVTiOPDvcLL7yA559/3tXP56nyVjgHGuH3u7b+3o2w9hqBaAILrNEfjUY9IDqVtTq4rL1GEJ210alMFVyjcZdOp3H48GEkEgkcP34c8/PziMVimJ6e9jj5dHzp1K+urrrDcEKhkHP0h43fzSxB1DuQvRYF/RjIorNhSycoKOoHIPMzwNaBglx3zJZRnaFMYwJ8GsymUOeSWUOHhc6ZlmqhvuPewz5yH2MWGAGwdrvtdIyC2dy/Cf6TBaTBBY4d280gIPutbHwdW80GU+CWnyOIqzaKgpVaC1RZ9mxXvV73zBEzoLSvBAzZZvaVdcRp75Dxxc8PEz92MPuo7GQ6vnTceH8NOmiGnD3wk3OvJTa4FiyIrq8RTKXTGAqFXMadZhfYQAmDwY1Gw5UMoNOtJVD0eeB8cH0xIKDB8H6/74LInE8FgRUosUEmDbBwrhiQ4DVZhqjVarkScVzjWi6G64PgBv/mc6b2LsczHo9jamrKAT4ETXhPAikK/vN56vf7DozQQ0wVZNe9Q8F1tb/tM8QxYsYCf1hWUANa7Auvw7ZyPeoeZm0tZR3q/se+jiJX66AHujyQm02473Df5POcSqXQ7/ddqQzLvmbZqcv55ftRuFcz6EimOXVjrVbD8vKy5+yxUUUDftdKCKJPTEw4vzwajSKZTDomNPUeDycnCYpseb9Dqy8n9FXJ1E+n05ifn8f8/Lwrw1cqlRAOh11pUmBr39Xg97PPPovTp097wHIVjiP1o58/bj97JaJMdAYXGBCnXp2cnEQymUQikcDMzAwikQjW19exurrqdDbtIQb8mS1uA8EUln+LRqM4fPgw5ufn0Ww2nV9/11134RWveAXGxsbw5JNP4oUXXvDo0qWlJRSLxetODh1FroeeDHzy0SUA0W8SUedW2ehU0ArGaoouN6grXfg7gaHXSpQJpA6CrTOqn2W76GDZEibq4FyLaJ22OZFIuJ9sNotsNotUKoVYLOaJ3PN7KmSaMQqdy+UAwLEZ6JDtZHwpeAHApZHRmWaNNb2/stdqtZor26KMtVHW0V4HJPyurfU86/U6yuWyY2Wx5AsdbyrOXq/nqYnOuveafcBoOYM2ExMTmJubw5EjRxCPx3Ho0CHMzMwgGo06BoGCDDSuCFyxLWxXOp12gD0PweMzejMrpkBhB7LXooEuYAsMtSC4dTCoR2yZAwKRgH9g1S9Vlj96D12vCk5xzyIrVuulk2muBr3ux3o9ZXNb3cE+KDuZY2Xbpt8dZU/X8bLArWX0WwYy2251uB8jCtgCmBnQ15rWBN3J3vI7LNK2SQHMncZE+6D1rKm3CaYzYMB2EyzlulKWvep66uVut+vY5LwGf9s51TGi3qeOoV4jmEqA27KnFczQUj7D5t2uDc3a0DWvxAv7GttDIFqJDPqc8jnm+tfSNbYWPdtvMyb4Hb0354trDgCy2SxyuZyzD2gHsQ671jFXJrqt6cr6tbSJ+FtBMTu2OgZcw7yP7lk6PnZv8cuk0HHXfUtJF1p6xwYXtH2XkwBEDyQQr+hzrZlm9Xodg8HAE7TiM059dVBZo2qD+AXwgK0sKbVJ1Ia6EUI9zqw2nslBXWCD6NTr1AkkvjHIOzEx4ckqGGU++T5tAZK7mClNwLtWqzm9w328Wq2iVCq5YPJuAjDXY9xVj7FMC/tFTIbEhFKp5MZNnwvqV31GiGVoBgSzPWKxGBYWFjA7O+uIJq1WC1NTUy5bLhaLIZVKObub40HdTbtCs+Vvdgl88tElANFvAuEGQ8O7VCo5BcB6ojSstVwGWbs2zXRUUWeQok7jtRI62WSBkblNJhodLzqteiAFN291TCnX0mjR1LZTp07h+PHjjr2WSCRc1N6ys7TPNEimpqaQSqXQ6/UwOzvrDkh75pln3EnV1Wp1W1+4BhKJhGPwA3BOdK1W8xg0+h0C7VQk1WoVvV4PlUrFraH9oFz4LFQqFYTDYXdIGlPzCFoo+1CZggRd+IxQYU9MTODYsWOYn5/H3NwcXvayl2Fqagq5XA7T09PueaNjzt8WCOLzQaCi3W676PrS0hLW1tawsbGBb3/727h48aI7dX4/RsT3SgKFHcheC0szKAMd2CoZYUEoLavCvYF6jOCszU7S7yujU0FlsnX9dKLuDZ1Ox6Xqcp+fmJhwjF5tB/cVMrr1IEbu1dZppSiLnDoF8JbXUKfXlpGwrGwLyPOevL5fMNvWRd/c3PSURVH2K8eZ+oVzRECSoK8Kg8zaX3V62UcFMTQDS9nhvJ+OO9ORx8bGkMlkkE6nXWkvXkPZ+7SvtCY6PxePxx2jTIO1oVDIBXRZ2mSnfZJjyv6QPEEgmM4iwQvqHwaMWQ6tXq97HHM/MJ1zyXWta5/t4HeVjUf9CngPYdVngM6qPo+048hY5HyzbJwyvi2rUW1ULT+Ty+WcDZTNZt2zxrkkcEJAnf3yY75xDOr1Oqanp93BrzxXJZ/PuzJtNkCh5Be2V/ckrvPx8XHPGrLnxei+wT7y2n5p+LoPKDOfc6fPrmXuD5MARA8kkO1ifRICq8CWjUH/imA7dfpunwnaH/Y1tuNaiup3BiljsZjTbwRAAWBqasox8elLMnvnerTVytjYGA4dOoRDhw55Ss9ohhdtKwYzadsxcJ5KpVzbjx49in6/7/xy+ng7+XHUUQSD6eM//fTTALbK9IXDYdTrdUQiEbeu6KdSf+6n+vgUtcFYMjccvnRuHXUzgxW0BfQZsMFk6qlUKoVEIoHJyUnceeedyGQymJqawuzsLCYmJpyu51h1Oh23Lvv9vluLzDyIxWIeQsKZM2ewtLSEUqmEp59+Gvl8/sAGuEaVwCcfXQIQ/SYRdVyprPxSZlkygg6HZWntRpTJrY7UtQTQlQWkwLKmhWub6MwSGKDTZpmE11o4VhMTE5iensaRI0cQjUaRSqUca+5y36dTQyXb7/fdad2s7aXOpt816GzF43GnsLgWyuWyc2BpzKjxUK/XXVo8U4n344ap7DOtDaw1+XQdsB9kfiuIwP6HQpfq0B06dAhHjx7FT/3UT2FhYQHpdBrZbNaT0r4bobLq9XpYXFzEysoKLl68iKWlJZfSOWo6dSCBBHJJFADzY5T7sWMtWKqf8xMF1WzQU0FPBaBscJLPNgEy7s9k3zLQSYdOQW4a+grAAXD10hUEVWYb9zjbZrKUqatsfyh2PHlvdXY0aKFAOn9bcJ73t/W1NdhBAJIOI/dsPXBbr6UgvzKT2V7rkNlzQIYFIqhLmDKs52xwbhjQ6HQ6HnBBU8HpgBNk0DlilhJBFQtksp8EXcn653qg/tPgPIPBWhqu2Ww6vc6Dva3YIIldB2yXjp8GmRQ41z6wzby+Bkr4o4EoPp8ElXlt1qS12Ro6xhZITyaTyOVy7iwYrdOqAQfabLSTuFZsUGMwGLj511KBtJX07CG/ABzHwD5DvK8GkmxwQgNe3Dt0vmwGiwY47Pt6vd0y0QMJJBB/sRkxzITm89rpdNw+fKUybI/2A9avpVj/nOUsAbgsHQaKOS7UT9e7rZRwOOzKp1BHKAlKAWC2udvtOr1B20XtTdpQ586dc+D2TqI2IfU2g7C6XgB4MhmKxaIDnK8l9rIX4mcXXI2w9E4ikUAul8Px48cxPT2NmZkZLC4uukwyHjpPn5pkyl6v5yoCxONxLCwsuM/H43H0ej1XMjEej+Ps2bPXLSgVyMGQAES/yYSbk6ZoqlGs6aVq1O9GlIlEZ5GizK9rFa2zTECCnqpAlEmmEcyrKV1zpRIKhZBOp7GwsODqbpLJdjUAqYIRyWQShw4dqX4ZOgABAABJREFUQjqdRjgc9jCpycansz87O4v5+XlEIhGk02nE43HH6iM7oFKpuIg2wWUaApc7wHRYW9WRJcihxgo/p46mMqbYl92sK3VKFRhn1oauJXXy2da5uTksLi4inU7jJS95iVPSU1NTjiXqZ7zudmzC4TCSySSmp6cRDodx33334fDhw1haWsJTTz2Fer2OQqGAUql00ynvIOodyF6LBnUBb6kOZaerfuTnuF/aMhD6GQ2wKXNT92RlX5NpBXjLW1C4VytITrYp28I9i8FATW9lIDUU2qpDrnuf7nlktgPYtiez3RZ4px7V/zVd244PxS9Ar88s76/X0BJYCvjzWmQ0sx3csxWUJIOZ/VFwXr+nwQtl/WpghcLADA8b4wGXPNCcIKoCqwR9bd/9svh0/Bg8YbYBHXcb6GHWBBlZWlfeXlsDxFpqRLMRtdyP3Vtt5sJgMHBlZ+j4c+0SuOYa5RjYNukYKPiiopkRtAUs+9zadrqumKafSqVcGbaZmRl3IDhfI2vfpu3bsdDnWp9jZhZEIhG3jhggYfZeNBpFt9t1B7ra61kblu/bcgDWdrRBOY6V399cC377kF8pK/bzcnK19n6gywO52YR7iT5n9NEtSHu1618JP9wHGAhUv9/ve8DeHFpIPU3QV0kDmtHDfZylMq62rOyVSjweRzqd9mSFs920Da3O1iA1dTBtDZbqVFtwZmYGiUQChULBsZgpqvN4kOjExATS6bQjQySTSU/WIfUefXEN7O6VWHvWBpFvtKTTaae/jx8/jpmZGaTTaXfuWSgUcofKM7tUnwHaBrRVYrGYJ9jOsWbQZ3Z2FrFYDD/1Uz+FkydPIp/P4+LFi44xvx+y8PdSAp98dAlA9JtMbPqsZZWos3ElkUvdVJnqpIa7ApGjpoHuRiy4qimv6mBy01fmzpUc9nG1QkU0NTWFl7zkJUilUpicnEQ6nQawFa2+UqFiJzDfbrcxPj6OSqXiHOROp4NoNIqZmRnE43EcPXoUt912m0thZsSVxsza2houXLiAZrOJ9fV1bGxsbGMX7majJEjDgzYZOWbJAgIGVGAK/jcaDU89MnWeRxWuGaZJDgO9+TkGhyKRCO655x7823/7b5HL5XD33XfjyJEjntpr6gBfidCA5hxms1kcPnwYJ06cQLvdxlNPPYV//ud/Rj6fx/e//30X3LiZJFDYgey1WKDWMoCVjanPPAF0BhUJMGo5Fj8ATWt/avYOr6+lLNg2DWTr9fU6THVNp9OYnJz0lJpQljJZULw2wVC2Q9ttQW7ekwFBDYQTyPezFegY29qcei9gi+GvjGb+zX1W+8y+8LscG62jylIeyqhVtpuyyzn3ZGRrYF1tBAaRFUxln7V0XCaTwfz8vDsbgwdc8jsWONY1yX7rwaIKunMtkg3FOdJyG8qOZh12OoNkNrItPGSbwQeuGWWfk8mtgDbXFdvIZ0hB+1Ao5OqJknHI+/Ja9XrdpZuzrZaBzb5pAInXUOHzoutHAXUFkHgtnk/C2qiHDx92gIkGPyxw7/eM2GeI64MBHQa3gEukBq6t2dlZV67p4sWLaDabWF5eduPO66ldo8+vPjcUDQr5Be3UXvN7LpW1r3uW9k3X7SgSgOiBXG/ZSxB6r0WZ5tynlKyjz+3V+qRKSNL9nyUmu90u8vn8tmCm7ivKAr8ae1yDtPF43OksHjDKAzBpX9XrdY/NcT0lk8ng1KlTSCQSmJ+fx9TUFHq9nqceN7B1jkYkEvEQItSv1cCoEhpOnDiBXq+HZ599FsVicVs2FvXG4uIibr/9dk/5P+rDXq+HYrHodClL3yjZYS9FMx8JLrdaLd8ysddbQqEQ5ufn8aIXvQjpdBo/8RM/gRMnTnhA8sFggHK5DGC7ru73+w5wB+DJ2lO7qVwuo9/vIxaL4cSJEwCAl770pQCAJ554Av/4j/+IUqnkDoS9mSTwyUeXAES/CUWdFKssrwQ4t2KZQ1YRXy0z93KiDpQCELZffM/Wf7zcQ6598nMm9Bo7XUsdOjqb6XTaKd29YDBTyHrS2tx0nNkPOrGstxaJRNyBpoy4Mn2JhhfB591uqtahVaaeTZtW9hwAD4jO79LwJMgDYNcGxKgGIueL9dTm5+cxOTmJ2dlZTE9Pbxv7qxVei0qcDL/BYIBisYiZmRkAcHOmKd43gwQKO5C9Fl0XVg8SuFTGpQbENJjHPUnXqF5L2e3KptZ9i2IZyVqWgT/c3xQU7PV6iEajLkCqTjevb0FE7uX6N4MHlsFKJ5evkz2tdoT+PWxcVez/ZK7rGOqeb9lwFhhUsHk3AB/nk6x5nXsNrADwBDTYVrVxFKBm8FcDABzDYaxr2y4L3FJ4LQ3u6PUsUKx12Pk308r1IGu1h6hjLbuMa5jrURlpmubO1zSdneOhY0bH1o6FLTOk86FBBj+bjt8nOKVt1fsokM52knWYSCQQj8c9wL2ucwvMaQBk2NwSNLHMxX6/7w6ZI0uOwAQ/Z9cx22GDT3xNx3gnUgDHSr+r82uveTUSgOiBBOKVYc+n7n17HQCwfhdJAaM83wqkX6nQtlH2MrBFZlAbR/3zUXQ5f9u+XOk4akk264f6Xc9iA9oOSxpU37/f73sy1VSfcI5isZjLJNf68Jr1p+N3taV/7A/7TP2kwXnqKmZEUnR8rgVp0raZNlgikXBs9KmpKUxPT3tK5qj9qpmMam+r7W8z4hVwJ1NdAyYzMzPIZrPY3NxEs9l0evpm0WGBTz66BCD6TSzW4d2rayqYbGs2K1B9rR4mGiCdTgeVSgUTExNu01RnVg+IrFarHlahFRoeZAQzNTqTyXgOder1esjn856I8DDFEYlE3EEVMzMzyGQyDujea6EiHB8fx/T0NE6cOIF6vY4zZ86g3W47QJiKhynMNB42NzddvdRGo4GpqSlEo1GsrKw4BuAowK061uy/pssxbSqRSDiAQI0DYEsB2nS/SqXiDuLM5/PodDqoVquoVqseBXmlwjbMz8/jp3/6pzEzM4OXvOQluOuuu5zSZh+vtVApz8/P4/7770elUnF18qrVKk6fPo1isXjN2xFIIAdR6GS0Wi0HZNmyI8p0VaeWBrfuR+oM+u2BdIb0f7+9SJlo1pFSIJ/fZwCz0Wi4fZLOHkFTAvjUKwRf6XBQ5ymrXNtMvcHvs69aUoVgvvadAKkC+RaY01IcOu4WCGdfWQKE91awVTPOFFDnZ/2CHDxgluePEOTU+7FczmAwcI4rf/NwWjq5iUTCc4YJHUcFOvm3/dE5YRs4LwroDwYDFyxlgHtsbMyx4whYs00MSPN8Fc4nx0d1tw2MkF1uA8x8f3x83FO6RjPIyHTkYZwMAnNcOH5cgzrfZP232213sGmr1RpqXygwbV/T8jvsMw8by2azOHLkCJLJJObm5jA3N+eAdQL+fAYsQ14D9BrMAbYyPvk865yzDWxbMpn0ZIu0223EYjHE43G0Wi2sr6+7zACOgYIA9nraRn1f7e5hdu6wa2pQhuNh13Eggew3GZUYcyOEe8Mw8hYJSjYT7UrvpX6TliLRkh+jgH1XOpbcJ6hHec9Go4FIJIJcLodkMukAYj2D6nJtoi7nvs3sJ/aXTO1qtTpSO7nH8UBKlt0qlUro9/uudjawRbDQQ09JsgLg7sn+MIjNciycj6mpKRw9ehSdTgf5fB71et3pV56VNjU1hXA4jFqt5oLP1HmZTAa5XA6tVgunT5/G2traFc1TOBx2WEA0GkUul/OclRIKXSpjOjU15eaTeAsxFLV7mMlXLBZx/vx5p9t1PvciODM1NYW77roL2WwWCwsLOHbsmMcvZzZhs9lEIpHA9PS0s1upD4kHkWDA93UdAVuBC9pHtMc4FkePHsV//I//EbVaDd/4xjfw7W9/G51Ox10/kFtHAhD9JpdrYVyok2E3S8swuhbC+3e7XdRqNQ+TR6OKmrZcr9ddWrOfsUJlxXqZ8/PzSKVSOHToEGKxGFqtlvt54YUXnKGg9eetEETOZrOYnp5GKpVCPB6/JmPCvlNBHj9+HJVKBRsbGygUCpiYmEA2m0Uul3MKlOx1stYZZW61Wu70b4IIo7AFaERpCvXx48exuLjoObSD4L0GPCjWGWQJlm63i3K57A5aOXv2rEuLVmPsakH0cDiMubk5vOpVr8Lx48dx5MgR3Hbbbc7hvh7OpBqjc3NzmJmZcan4ALC6uop8Pn/TgOhB1DuQvRYFoK1RSza3gmLKiOWzp+/RweD/fsxXDS5TlE1LR5dOrQJUCgZrH7ivsTSbsnVjsRhyuZy7D78/MTHhAgcMgKpjo6AvWUbKeKYjpfupBWHZPu69KpbpbkFugnXK+lGn36+cBMeNDhz3DF5L26bfjcViyGazLohLxxaA52yPZrPp9liW4WD7CBrH43GX5aVrg+OpDDbLsFcQXdvHflkQneuL91UG2mAwcIAswdjx8XFks1kkk0nP/HDuWLtTx1QDOGqzKSDDc1M4fiQV8J7RaNSB+AzoKDjE9cUgPddjs9l09hkAV9fcr76rrhs7x7pWuF7JVKPddfjwYaTTaUxPT2N2dtYDJFmdznvpOuM9de6Uwc8fG0Rj2xjYSCaTmJycdDVaJyYm3Jkz+iwNA9U0KGXLsbBdDAbp9+2zpONpA2la8kjHaFjWhMrVEmcCXR6In2hw0k/287oZFsyi0LfZC9EsHa1JrpnE3Ps0m3evRO2hdruNUCiERqPhMnHYBgLoVp9f7tqJRMJlTs/Pz7sAM0uRdrvdkUB0YAsniMfjmJycRDweR6VScQFdSyQA4IB0JTK0Wi33Hf0cfVwCu6FQyNlqLKFGH5vnkpFVrfYgS66Oj48jl8thenoatVoN+Xz+qkH0hYUFpFIpHDt2DOl0Gs1mE7VaDeFwGKdOncKxY8dcQIFrikFe2kh8v9vt4syZM9jY2HDrWTPyLvcMjyK5XA4/9VM/hcXFRVc/ngEVAM6uaDabrmxuOBx2a0NL1BFEZzupc/VZUb2owevNzU0cPnwYP/ETP+EOBH7++efdONwMIHrgk48uAYgeyK6FhjU3HnUUryV4bkXTh3jasgXR6Zj4OWcqVHqxWAzT09OYm5tDMpl0dcQZ4Wy3244RzXqjwwwBAh3qeF8rEFaVFMHvdru9J3W7R7mvpjrlcjnMzMwgFos5xzsejzsWH51pOn9+adg6VzQqCCZ0Oh3kcjkX3FCmOoGQ3dbXY93heDyO6elpZLNZd2K3Bfqvl+jYkgk4NzeHfv9STbdEIuGMmYOuuA56+wPZX2KNdoK0ZJ7QOfLbF5WF6Vd2y+71CrTZdWyztJQ1qwCzBY4JBvL+FghjGwnGawkYmw3mB0LqNezndBwUpOb4KcirjH1tuwLKFkSw37OAvU1V5v1soFTvy7byN3UM9S8Z26zJzbnge4PBwFOvW7MObD181VvsL7/D4IVtF4Fv3teCwFYHqv5SdrNdJ7bv+r+mKFug2bZR54W6vN/vO/Y968EzqE5GIBnxw2wbvTedUYLzfBYJyOtcE2CxGRB+fdf20/5hyTiyF2l/ab91fHW/8APwdew4PxaIskEmvbZlkjM4wlrxWn6JDrwC2H7BAn2W2bdhz4ftu64V7auSYPS7o+rnQI8HEsjVixJpKLt9tlSvq81yrZ5RtSn4vzLj2+32Nhb65cp/UI9FIhFks1mXzUz2tga9K5WKA0tJnht2TQZ8qa+VWGCDrH66nrabLW/G162txH7ynn5+ObPSVOfpd7Us7aii7dEydCTSsawZ9X273UY4fKkkHQMgeq6cn/1AQkQymcT09DRisZjnEFSWWfGzBUdpP/Wj6nLNliJJgIF66kPiH0rE02xGkmLU1tK5tLaGBvk1eMK6+uVy2a3xm0ECXT6aBCD6LShqQFtHehThZ3kwlXVCNFX9WgoZeowq1ut1j0OpG7+m0FsJhUKYnp7Gbbfdhkwmg5/8yZ/EqVOnEI/HHRhMxd9ut3HkyBFcvHgRa2tr+Jd/+Resrq6i2+06NhWFKVpzc3PI5XLbmIbXQkKhkCuVwki7HpJGZeNXU9TWj6cSVFDGCu+TSqVw9OhRpFIpLCws4OjRo44pyQO8CLJbo4Ptpuh9qPwV5JiamsL8/Dx6vZ47+LRer+O5557DxsaGO7hmNxHhWCyGe+65BydPnsTJkydx9913Y2FhwffQsespfD7Hx8dxxx13YGZmBhcuXMDKygoAoFKpYHl5+UCfDh5EvQPZa1EdAGw5KMrm1HrYKlxTZAL5iTo43FeV6Usg2ZaQ4T5GQ1/fp2OijHEyd8liVrHlVLTP7LcCbXQ8tOyVH8NcGUTc/8imot7nZxQsZ7sVEKWjosK+qIOqeoCMJxWOMe+h+oPOLueVJctisRiOHDmC6elpJBIJzM7OOl3Og17JFK7X6+j3+6jX62g0Gq79HGOtX80yKgQ6mSVAB5nCNrGN/Lzud3Rs1XlXPQxsMeHJPGdQg/Ou40CQntekw8k5IyvLBpq1rQQtwuEwpqamsLCwgImJCed0067wW9tsNx1vlp8hcM61TwAkmUwilUq5MnIEWfL5vDtInO3l+Kuw3ZwXBk4OHTqEubk5x0iLxWIIh8PORlQAhGNFO1HHRB1nzcbTDAxrb/L6Op5c59wXyEpMJBKOvTc2Nub2EM3U4BxqSSbOowXIdEzYLw0ysH0UBYwsyMF+cb1dTq7W5g90eSB+cq3XhQWrb7Qo89VmB10JkO4XUL8W4geS8n69Xg+FQsGV3rQlQYYJz+9KJpN42ctehlOnTnnmi/tbv3+pxEalUkE+n8d3v/td5PN532uS1U0AmYD7YDBAPB53thxBWRKpSNii/qe+icfjHtKD2moEo6l/WTaFYDazvFlydmVlxe3T3O8JrDcaDdRqNTQaDY+tuZMw+BCNRjEzM4Njx44hGo26A9FZspb12qnjVlZWcPHiRWcf0YawhC1mfcViMRw7dgwzMzPo9Xool8uoVCpoNBo4e/YsCoWCb4B2lPYvLi5ienraZbJTH9Hu6nQ6btynp6ddhsDq6qpHN7JcWq/X21b+UG1IZo7xu9TtDNQwq5NB7zvvvBOveMUrcObMGXzsYx9DoVAYuX/7VQKffHQJQPRbVKh8VAntdvEr+02N9d1sklcjqrTpIALbncrL9YtRVILdx48fx+233+6Y1NFo1EUyCZSzJtqPfvQjFItF59iojI2NIZlMIpvNugOlrofwcLFut+tAEE3RtcC4jpN973LjRzCKdd8nJydx+PBhnDx50jHXtIbsKGNgnTwKAa1kMolcLod+v+9qopXLZeTzec9BqrsRno5+xx134OjRo64m3H4QAiysmTc+Po75+XlcvHjRGW8HGUQPJJC9FsscsiCcsqEtIwjYYlXR0PZj2tKwVrYQv+sHoqvjR0CbQJeyr7n/7hR05T3o/I2Pj7s9QB0V6zwPGxf2x742rHSJMvu1zdruYcwjtoe6g+3SrDarczTVluNns+Co51j/nIw11mKdnp52dajr9bpLxWXqO2tX9/t9x8JSJpbOHR1lLc3DdvMzOt7A1trTvigrTceG64HjxB+tqa7sOf0u72XZ6NoX1fsUOpFMkWYd22w269LKCSiQia5EBdqD/Nu23/aV64uAupbNY2q0sr39bAeOCZ8l2hxkLRIo0ZJ1vK+faHDI2pA6XvbAPLWjOZY6rgSr+TkeNE8mfjQadUE+zoMF4e3a4N7D8deAlGbP6fOrQL6uGz+b/VpnMQYSyI0W1R/7Bfzh8w94z4e6ElH9f62B9J2uOxgMXKmN3QgZyOl0GocOHcLtt9/uyHu0QQiqplIptFotxONxPPXUU0OvSX+V55PRbiKozX7QPqQ/zYxnXTPUl7TBlByg4CttDC3ppoFS4gfVatVj96ldyMz3nc5hsxIOh10Zurm5Odx2221OHzI4S0JAp9Nx9m6pVEKlUnEZ2jw3zdpgtBWYyb+wsAAAyOfz7uy4jY0NVCqVK1p34XAY2WwWc3NzmJyc9BACNWAfCoVcSRziNdVq1dmItC9JItSSfTbAbcvucW9gQKTZbKLRaKBarSISieDee+/Fq1/9aszNzeH//J//s+s+BnKwJQDRbzFRA9uyn9RpGPU6foa+MndGOYxSr6mbGl8DsM2Rsdf0u8flDAa9VyKRcCAw2dM8oZobN/uYyWRcVDibzaJUKiEUCjnFrtcn++paHCZ6uX5pZHUwGDilkk6nPQey0sGkkVAul1EsFt3hJtaI4/V5iCmBisOHD7u6bjpu+r296h/bQKBkbGzMHTSSz+exubnpDI6d0qvIBMxmszh06BBuu+02zM7ODnWyb5To2MXjcdx2221ot9t44YUXcOHChW1ZEAdJgqh3IHstyjRVYFeZ09RVNgtG9zp1aIbtZdR/3EfVCbbXVUBUHSk/QIuAMF8H4AEpFUQnqDeMWar/637O7/B+Cvxzj+Xfuu/a4IBeQ8FEHTv7GX5X+2KZ6Xa+mEGlYKfqZguik8WmpcQoBIZ5VgqBTDLPtV8KSnMeaN8omN/tdl2pEgU0tQ8aTNE5UtBSx57rl/+TMEDgmKVrtH/M0Gs0Go65RnadlrlTRj91IcdPgXMCCVzfdp1y3SlAq9fmM8Fx1fJ6/BzBiFAo5A47azab2w52tzagrkmy9QmSkDGo82YJH/pMKNjNvmkGgYLktn8KrvDa+tu2m3tGOp124D4PttNrcu41Fd2yOC1grs+237PI9rC9tryVBjzY/8vJ1QJ0gS4P5HoLn/X9tPaoC/n31TxX9NFtls2ViLWTdvv+lQiZ0ul02ulxjo1mAlF/A3D7fywWc/pOJRwOI5lMujKjLO2ieisWiyEU2srEo02j9qLiHQrmMjMb2Bp/AB79pxlq7AeZ7hYz4Py3220Ui0X3uWFCQJnnlRw6dMidCUJSBMvT8lB1Mu3ZF2ZuKcjuh72QCU52PVncJCUAwNzcnOtfsVj0lFcZJrQpYrEY5ubmcPz4ceRyOczNzbnz1BikYJndUCjkSBHsk8VC4vH4Nn3NMVYiigaceWDoYDBw48rg/NjYpQPff/zjH+PChQuYmprCi170IlSrVaytrR1Yclvgk48uAYh+i0k4vHUohjoIZFSNorTV6eKGRieL12LUj4yuy11TgQWmD+lGRwfKMsNUeP3dgPaMJE9PT+PEiROOST03N+ecHCpLtqPT6ThndXFxEe12G2trayiXy552MdWJJ4nvlh19NUJlTmcSANbW1pwiJ0OcYIOmOi0vL+P8+fNoNpuoVqu+KVxMmz5x4oQrg3P77bcjk8k4I8CCMHspvC7rmE9OTiKZTKJer+PixYsA4KLgLAPgJzyAbHFxEffccw8eeOABF1XfjxIKhZDJZHDffffh1KlT+PrXv44nnngCtVoNwMFUYIHCDmSvhfu633NPR0EZ5HYNWvaoMq+VpcrPKkOG+k6Z6hqw1XIy3Cf10FItt6WlHHhtMpGoa1kKgkxWYMux5PeUuayAO8dHnTZ7kBIABxRbJr+WFLGBAwr7TJ2pwLH+Zv+Y5cUxpgPLzwDejALVNeFwGKlUyjlbMzMzLihKdjXrozOzrN+/VAIln8+7YDLHnPfhmND5VUBTy+NwLLX8iwXR+bp+X0F6u/Y0G4JjxwO+eF2C6RxjOtmlUgmFQsEdwk4dr2nN/OEYaRk7HuCla1Dnza/kEZ8VZV6zH5oyznWr/WN6POuFNxoN5PN5dDodVCoVlMtljw2ogAZBA2b/5XI5Z4vQQdZnlqKOrgYwrM2i6ex+690Gw/QZZQBCa+3TDuNaHRsbw9rammev4fohY5LX0DR/XTf87WcfM+iibeTrujdxLWqAbxTmYwCiB3IQZb+tO91nKVfSRiVRaSmoKxVl7GpgUO9Hnb0XY0oglhniJLnxYGYt1cr78aBO6i09s4zCDKvZ2VlnDyjewGskk0kPYaDb7bqAuwZcqUupH7T2OPf4zc1NF+TWkiH8/tjYmDtsNBqNOh2o9mCtVsP58+ddJt0wGRsbw+TkJCYnJzE1NYW7774buVzOYT/9ft/pUgLLLDNDXcgAA+dB1wCwVZ+dZWjIYiewHI/HMTU15bL75ufnUSgUcPbsWbRaLVSr1R3Z6Rpgvv3223HfffchmUxidnbWlXXlmr5w4YLLLKQt1+/3nV3CeSVZjmMAbJUcpG7l2CqGUS6XUavVEI1GMT8/j0Qi4dbd5uYm1tfX8dxzz6Hb7eLYsWOYn5/H008/ja997Wsjg+hWJ++FXM3zGPjko0sAot9iok6CMoj8onOjXENTm7l5KfCgD/KwawFbziYdBk2LArYUuLJvLGvwasZDnTcCCn7pxwA8acOMvmpqloo6JnsNJA/rj/7tFyhhOpIyF+mw2pQlP/YCnV063blcDplMxrH+LJvwWvZR66Gm02lX3zadTqPX6zkmgZ9S0Oh0IpFwhpcyDveTsN+s6cd6dwq0HUQFFijsQPZalMWponUZNThqma16Hf5WdorVaX7Am4Lntl3AFiPb6mK93rDgK++vJViUnc3+aADbsmmVVWufQWVBK9uVY6Cf05TZYfOgoJzuU3p9bbMymrUfw8aebeHezSAKWdrKNLPsJPsZGyzRa/sxmOx4jrKWeH0b4PDTtfzhtRWMZRCF86BBDbLXyMyi46uBFb2fjgUZ3Tou2lf97k563g+U9nMY2T+y0fVZaDQaDmSwjGm9D9dYJBJx7Va7zM++9bMhdZ7ZFr9+DXtdr80fnV/+8BrRaNQx+TRL1I4R4D3cVJ9Lv/XqZ+/wtx+Ars+otVkDED2QQK6/XO0zof6fDf7vJHafpM+nwXM/XcU27xWQThCaukiZ3Lr/8TUAHpLCsD2aekL3OdUPmtlG289vfKhHNVNKyQmqJxTjsMFWwKvL9RBPLT/SbDadLvcT3k+z8FKplGPGW4LH5uamC2Lzfhp8YRtVX/E+HBdeLxTyHgJOIJyM9Ha7jUQigcFg4M6dGSZKvGDWAPEWlpGztjiD6xbPUl+AeI21izn+HGvtJ9noXBME4Zkh1+12USgUEA6HXQB/dXX1hmMIV4O/BD756HKgQPQPfvCDeM973oN3vOMdeOSRRwBcmrDf/u3fxic+8QkUi0Xcf//9+MhHPoJ77rnnxjb2OosqAAWZh31Wf9u/L3cfKimCyfybILqmWzOF2J7EzcggGThM2SJ7mxs7NyI9XblSqbgyHTyRW0GEK5UridZdyfduhBAc7/f7uHjxomPTJ5NJx1Qgw7FQKLjDrjRtjGtscnISi4uLSKVSuO2223DkyBFn6FxL8HyYqOEwPj6OmZkZ3HnnnS56zMPKWGdVvzc7O+sOEZ2cnLxuwY6rET4vZLEdOXIEoVAIpVIJ5XL5QKzHQG5tuda6vNFouCwiC4RbFjqwBYBqYNiCpjSsLfOY11YnknpQQS8Kn0/qRQLLbA+zu3hdbR8Ad137Ppmp1tmx36OuVlGWMxk+2mcVBYm1vif/pnOq32dwXIFjsoC0xIiymC3IryCxjrsVDRaQtUvGlzKvATinSteK/rZjpOtCy1zQkSZYYcF4O4d+QQot06HtYB/psGmKOg9h3dzcRLFY9OjrwWCAcrmMcrmMbrfrDu7kHA8Glw65ZemU2dlZdyArDyOzBAEFXdl+W65EnX+OMZ899pdsNWVR23IvdFQZDKCNooeW6vgyqJ9MJt1aU/KADTTpOOnfdMz9gCRdN8MyL3gN7jMsiWfXJ+87MTGBweBSTV+WpqvX645tyNI8LDXEa3FcFfi2wSJgq0yQtVcZqCIwAWwdaKq+hAZtAgnESuCX761o9nC9Xh/5EEmKgoaxWMwRisLhsNOzLE/hJwyiakA6Go1iYWHBlQJdWVlBp9NBPB5HLBZz9gf1bb1e9wRtr2YspqamkMlkMBhslSQlw1xBUgXPe72e5/BlwJtN1m63nY0IbAG+BGjb7bbnwErgUoYZz6SiXlK9z3GyOkuBZupu/ihoyz1+fHwca2trDqzlT6FQcKx3P/Ig543lPk+ePOkwGdbvpp3DkiRKGLMBe7vnq92m85rL5ZwNSza42iUcm2QyicXFRfd6qVTyXYOhUAjpdNrVQU8mkwiFLpVqYalWEh4Hg4GzXVSIXRDYJqu+XC67vvplkqkNo/2nLVGpVFwfdR5mZmYQiUTcOSz5fH5XJXyvhc9+kPCpgywHBkT/5je/iU984hN46Utf6nn9D/7gD/DHf/zH+Iu/+Avceeed+L3f+z285jWvwdNPP410On2DWnv9RZls1mD3kysB0PlZKtbLgejc4KwDQ6UXjUaRzWYRi8UwPz+Pubk5D6NYjXmm3HQ6Hayvr7t0INYhG1bi5VqJ37j6MX/2AyDLCDFB5E6ng2Kx6BxZlj1gajsP9rJABtfY5OQkbr/9dqTTaQei2wj7jQDS6fRzPRI8X19fR7PZ9KSr8Ttzc3N4yUtegpmZGUxNTfmCT/tNCKIDwPz8vAPRqeQPmtIMot63llwPXc6AoR8opPWYFTynEIDzA6LoIBD85vtkSQHeIPUwVqmCU9yfCSCzljMdUr5OsSA5r6UHayuzVJlWylBVMI06m4422TzaXv2fn+X4alo0HWsbgLCMr36/j2az6RxKOt7UUQA8B6zZ9G3aInavVhBTS7ZQR2m5ODq+eoAqX+e1CPoqOGHLr1hGlmWu69zrulC7iCw0gri2b3RMgS0HlyV8SCTQsl6DwQC1Ws2VQNHMMgW4CZzPz89jenoa4+PjSCQSHlCC7da/2TYtyaNjr2VJaKMpcKtswlAo5HGMac9xXth3HnZGB1mFh5yRhMFxtyCUnQ99HmxwyvaZ19WSQ37X0bNkCPzbwIyC/8piY31aex6NBlHIpFTwiEQCv1qwZDcqi1G/oyV1AC9gcrn6tdr/q9HHgS4/eBL45XsvBI5pq1wJiE4fPR6PI5PJuNJk1LMEeP2EgKfqxkwmg3vuuQcLCwuuXGa9Xkcul8Pk5CT6/T7K5bIrSUJQfSfW9Cj9YFkQMqkJovO6WoebfqyC6JqZRRCZpb2Yec3x0pJ2LHmmfi2DtNxTra6j/qKNxXOq1M5S4NyC1O122/lvCtD66Sc/YftIbnvJS16CVquF5eVlVCoVJJNJD4ieTCY919S+Ul+rvaaHWbPfDMInk0nUajVsbGy4flqyRTqdRiwWQ7fbRblcxoULF4b2J5PJ4NChQ8jlckgkEg5EP336NBqNBqampjA/P+9KCjNQxOBKp9NxNkI2m0UymUS73UY+n0er1cLExISbK1t/XoP9FNpl1WoV9Xrd6VIArt58PB7H0aNHkU6ncfbs2et6Dp6fXK0uDnzy0eRAgOi1Wg3/+T//Z/yv//W/8Hu/93vu9cFggEceeQTvfe978Qu/8AsAgL/8y7/E/Pw8PvWpT+E3fuM3fK/HQ5YolUrl2nZgj4XGMVNulYVLB4mbOGt40fEHttLMVfzSey8nlvWmr/t9lr8JUjDliJF3ArpU3OqoUdERZGCbWT6EIOlu+8BNk6lSPIySEWEFHqjcuEHzhxF4v2srY8oCEddKrNLVerNskzq0fM1GWK3jT4Yh542HrypQdaPAZ70vnfTBYOAUbDgcRrVa9TjQfIaYBUGlt58BdMBb60yNiButtK9UAoV968j10uU2aAtsGcJ+7HDuhX5/k2XDdvLaCpTqGh7GAPEDsHkfLUFB5ow6BQTyLPNX60Lr/fyY8no/fkYB4p2yiFTX2x+yzBnAZDDT6m/7N1nrHD/to6bC+rHhOd7aZmXbsa65BvA5VjYbwZY48eu3jgvXh5IW1E7Q+VB7TPUw72VtMcu+Z3tsGTv9PNemlmfj5/Te+l0GCThv1ON2brVtfnNp221tD9W12jYbbLfjrGuNGRQEQdhu1hrnZ20GiRV9BvyCGxbwsN/R+VJ72T5/fF2vp/2xY6ht5z5gsxf0OlpCUYMtw2q06/OmQQFtl2ZV6NrU9Xc5CUD0W0tuZb/cT+dSdB8iu1n3Yuon+119/vx8Wb978j56fbKqGUC3+/DldDx9PD3gkqWmgEv7FZm9rKdNQFvLUuk4XMnewLFqNBoIhULIZrMeH9Zek0QE+rF2j9Y9ze+HPv8wpjfvGw6HPbrcBsyHCb9DIN2Oh877sDb4Ce8bi8WQy+Xc2S+0DdRmtQdnAvD4jX7Asa2lz9d1PBVYH7beaO8BcD4rsRTFT7gGiQlpViP1I/WVtaf4wywMtQ31IFoA285k4b11LKgvY7GY57vUv/oaAM8zyFI6DCYdJAl88tHlQIDob3vb2/Af/sN/wL//9//eo6xPnz6NlZUVvPa1r3WvRaNRvPrVr8bXv/71ocr6gx/8IH77t3/7mrf7WohGTE+dOoU777wT8XgcCwsLyGazLhVpc3MTZ8+exXPPPYdGo4GlpSV3cBYBdeuA7gZI1w2Lm72fI2WdiUgkgqmpKcRiMczMzOC2225DPB5HKpVyYKfWgWX7dLNMJBLodruoVqtIJBIu2rq8vOx70Ncw0YhpPp/HCy+8gGKxiFwu52qjp9Npx7AngL6ysoLV1VWcP38ey8vLWFlZQa1W23ZPpp3V63XHEPIDBPZSrBPLgzLYT2BrrkOhkGOyWYVo10A0GsXMzAzi8TiOHz+OU6dOOebUTuDLjZBIJIJkMolYLIajR4+6EkB60C0Blenpadxxxx2YnJxEJpPZV/0YRTKZDO644w5ks1kUi0WcPn36Rjdp1xIo7FtHrpcu36lmpzJv+LxryYphTiywxWRX54nfsSxO60zQCeXew2yucDiMXC7nzjnIZDKIRqOONdbr9VCv11GtVt1exqCxMottcEBBNQWsCZyp/lPGsR8LH4BLL+Z7WnqNjDcy0ul0KAinh6xqEHAwGDiGtQLgFhjQ8SVLiv0kc4z2QTabRavVQjqddqxqsu11fqvVKqrVqjt0k7aTrUVPgkK323WEBVvblHOqLHY69CxFQrvLrw6rArfK/rJlPPhZ/s8giwZV2HYy8tTR5HyNj49jdnYWCwsLnlqhnHPth65hJTRwXtWh1UPWlIhg++z348cAYzvS6TRmZmbcHDGIws/QwVYQWteztoHtV5tX14UGXfjc6DzrfFmbjutE0/xt5gLHk+tRSSXAVm14FS0tQGCLa07bxPWggA9FGeccF1vrmNdg+/3sQT8JQPRbS25Vv9wGUC1gmE6nkc1mXVmN6elpBwZ3u10sLS3h7NmzHp9bAc9ms4n19XUA8GSX6Z7LZ5uZN/SHO52OO1Cbew11B0Fm1cEA3D7KfSCXy7kSnbYEysbGBgaDAY4cOeIJAHMvpF7hORbcY/T+Kpd75tfX1/HEE084myiXy7m9yZILqMeLxaIba8UkNItHwWXuc6VSCaVSCcDW+SA6TpohR+n3+55DRDX7StcI9T+zvK0+57V2Cs74CedtbGwMR48excte9jJnf62srDj9PxgMXImwUCjkgjs8RDUSiaBer6NcLnsY/s1mE2tra6hWq8hms1hcXMTY2BgajYarDkB7tNlsukyBTCbjaqFz/aouP3HiBOLxOOr1Op5//nm33vnZTCaDw4cPOxY5yZNHjhzxYFe0HWnjcC5TqZRbo6VSCevr667f0WgU7XYbtVrNPVd6OL3Fn7LZrAtK2APNuS44xqVSyWUUvuhFL8Ls7CzOnTuHpaWlkYMi+0ECn3x02fcg+qc//Wl85zvfwTe/+c1t762srAC4VNJAZX5+HmfPnh16zXe/+914+OGH3f+VSgVHjx7doxZfW+GmyZOCX/SiFyGTyeDEiROYm5tzjOput4tEIuGc70KhAMB7kIXd6Hf7kPN7NMBHiTgzQscUmPn5eZf+zYMs2E8/6ff7rgYbI+CNRgO1Wg3r6+ue/o0iNGJqtZqrt1UqlRxgQeYTU1qZclUsFl0N6kql4jZxOz5MQ74Rh0wo8K+gko7RqLUuNbI6OTmJmZkZT9r0fgKfyYbs9/uYnJxEq9Vyh4dahilPf2dZoYMkZB/MzMwgFAq5VMNAAtmPcj11uV8NZD+wy9Z75uvKqFGGGN/X1wmGaUBZPwfAAwLzPQVdM5kMFhYWnFMTj8edrul2uw5sp+PS6/WcTuF9uJcrKMj7K4DHv9lH9sGC5/oa204nXp0Pnm1CZ0x1Oa9PNpM6mbwH/242m579S4Ff3luBWo4f55kB0lqthmq1CgCulAaAbSnGJBzQCWOKeL+/nQlPRh/XE0FmdXwJZCvjWplxmuHG+VRglPOm462kB11/GhDn3Kvjp4e4KgGB77McCW0xW5qEzqStC6qgtWW963pXdr8Gbuyc6xrjdSh2XKPRKFKplBs/e4Ac50RrgCtAb58Bv6CXskXVWbbBMu2Ln62qz5Y+Q7rf8D2OMcsnMPhgRYMYBG6031r6gX3XtayBPGWy63OvjEIFoa5nqcRA9r/c6n65n53NZ4h1yOmXHzlyBO12G+Vy2emZ5eVlAN7DHLWsly2fpCA696pQKOTKcpAgxL2B5C9mVvtlWnGPpGgJmMnJScTjcU/Qr9froVaruRJgoVDIMYlZziQSibjztlTvWB2kMgwvoF++vLyMWq2Gu+66y+kY1S/8LIFREg8s25vf8QsOKshNG0yZxsMCiwq2D7NXKCRFaFm1UcdimKgNOTk5idtuuw3RaBTFYhHVatUTGKV+IEhN8J2EM2Ifat8NBpdKhLLGN20+DQKQSd5sNj04CIkHajOQHT49PY1IJIJyueyeBRWy6hk8AbZKz5GcwDaoXafPxczMDPr9PiqVCmq1GiKRCLLZLCYmJty6BbwYiNoLnIt4PI5kMol+f6skHvvD8aHtyrMGwuEw5ufnEYvFUCqVXAmkQG4+2dcg+vnz5/GOd7wDX/7yl3cEuKxCU7aInzB99SBKKpXC8ePHkUqlcOrUKRw/fhyJRAJTU1NIJpOuTlWv18PRo0fRbDZRKpVQqVSccmGKOOBlP3Gz05qwdBBUYfF7amircuOmTeePjjOjgOl0GpOTk85503qywHAAncJ20QlkjehMJoN2u+2iobsRRlybzSbOnDnjarvOzMwgFot5Sri88MILuHjxItbW1lCr1YbWY6djX61WEQ6HXR3ray16eAwV3JVGQalQeKhKNpt1CtgPmNoPog40DcrNzU13cJcGNljXn3VyD5qMjY0hlUqh3W57GHMHSYKo980v11uXc1+yALgCUWooq1OjulH3TQWj+D9BNV7PjxVq1ygd4VgshsnJSWfwz8zMuDRWBspZx5SlXhTwZVDX6mb2UdOx+b8FzWjw+wVCNbhu+0ImLFlPzNwiiOk3hzull3MvVmaZssbp4CuQyzlg+3lA9mAwcGd6FAoFd+1MJuO5Rq/XQ7FYRLlcRr1ed8Fmvbcys/VAMGVfaz/9/mY/lTXmtwYViOa60jGya0gBTnX0FZjVcjXst86bsu38yqFomQ99nXOo1+e4ELhVoNv2RQ/A5LXZXv5WvaBsczIQlT1NEMpvnWif/J5Nux7ZbwXfdb3pHsJr6ZzrutDv27nmd3ktPkckirCkk12HHA+/4APL2Nm2W8DMr91qx3OO9HOXk6vR49qOQPa3BH759mcimUxidnYWsVgMi4uLOHbsGBKJBI4dO4aZmRm0Wi3nR5IN3Wg0cP78eeTzeTc2w54B3Z9twJzt4fPX7XZRq9UwPj7u7ATd56y+AS7pcxKjcrmcs1F0H9C9SO0msrNZZxqAA+8rlYonq2e3zzjP8gKAM2fOAPDWbG80GlhfX0e328X6+jqKxaI7gHPYfrS5uYl6ve729HQ67bFZaNuwPI0NvivArMFIzV7UrDvqHy3Zt1d+GgkYLO1rM/QAuGeKADrgDQoTD1IAnPM6GAwcOUuBd9Wn1M0kU3Bc/ALwit3E43Fn22rJI9pyZKFzvNQ2om/f72+Vm1G9R+yFn1fbkyA416o9n0XtKGDr3BlWFuj1ekOz09gOZmnyswdNAp98dNnXIPq3v/1trK2t4b777nOvbW5u4p/+6Z/w4Q9/GE8//TSAS5HvxcVF95m1tbVtUfCbQUKhEGZnZ/GKV7zCsdDvueceTzoRsKVQWaqiUCi4uky1Wg1LS0se0EAVNEFHbiyabk0nk2A8D26ggiAzi6Aynf3BYODayDSdubk5x4JSpTIKKMuNkgdDMJW70Wi4TY7p4aPIYDBAPp9Ho9FALBZDvV7HmTNnkEgkcOjQIWf80DB4/vnnsbS0hEajgdXVVVd33m4e3W7XldABtk5wvpZCAKFcLruDXmjkXMnmRoXJ4M3c3BwWFhZ869bvJ2GbWB+Oxm2j0UCj0UClUnGGQTabdQy3gyaJRAJzc3Pu2dqPc3E5CRT2zS/XW5eTGaQHSylwp06TMsC07AaNegCeYK81uhWgJFhN0JW6AfDWWAyFLqWJ8iCixcVFHD582APeqS6t1WqO8cIgKfd5Mp3V6SXrh7rcAudsj9aW1DNTNCgObB1qOBgMXB1UsoV4ECrLpvDaFhCOxWKORUSmHdtEu4OgIoECBQ+VDW4zqJgxxjavrq46J7hQKCAWi2F6etplrzHAX6vVXCCc6fDtdttzABjHo9lsOlun0Wh4ghIUOnj8rTYWs6MssKnjpOxly2Rm/1Q4HhrA0TaxLwRmSTzIZrNIJBKeA0TVydfMAz+bjGPCtcjnptPpIBQKeWqtM+DOfipRg9di3/S5U4eZ3+EhY8q0Z+1kOuQK3vM5YOaFZiXYNWTBZ4qOhTLZdY9RJpwNTClrX4MPXAsMlnU6HeRyOUxMTGB6ehqlUsnZ2VpGQAMEui743PsFDGz7bIDQBhC1Viz3octJAKLfGnKr++V+QaXp6Wncf//9mJqawl133YW7777bkxXT6XRcWc277roLnU4HpVIJf/d3f4dSqXTZtc99gs8ky0fY/Yd6Kp/Pe/ZctTv8WOnxeBynTp3CoUOHnO9OQh6D01oGljqn1WqhWq1iYmLClcTMZDJIJBJot9u4cOGC278IbO9GqFPIJv7Od76DmZkZ/MRP/ARyuRzW19exsrLiSuCwnAYBVD/pdrsoFAqo1+uOLMd+soQNWfha4oQ+L+A9W4Tsai0zRruPNhjtQc7VXvma8XjclT3JZDKODEB8ZGxszOk/+r3UO/3+pcPoS6USxsbGHOFuMBh4APWFhQUAcPaC6jRrN/BgcF4b8J75QTyBWQsAXOkX2svAJb99YWHBY59o9gHHnetfs7nC4TDa7TaKxSKAS88ry7VwfsbHx12wKJVKueAzr6d2GwMN/X7f+QbxeNxjJ3AseA3qcGaKHDS/PPDJR5d9jRr9u3/37/CDH/zA89p/+S//BS960Yvw3//7f8fJkyexsLCARx99FC972csAXIoaPfbYY/jQhz50I5p8zYRGMcs3zM/PY2ZmBrlczuM8UeggUynwwAlN+7XXZ1RVD5rSwxa5aXCjo9NjGUpkn6uyVnYcHW5u7rthANu2M3jAa7LfuxU6gp1OB8Vi0dXVJjOw1Wo5Zvf6+jry+bwnBdxPqEgIZNuNaS83Vr0uHS8Fg+z9Rt3orAPLE7Ztzdj9KjRWlH3HtCwFnA5Kf6zQuObzehAlUNg3v9xIXW5ZXgomK4BH0JQ/1GH8jt0flIUObIGd1GnKEFaxe2oqlXKHiVpwnoFpBUuVXc52qKjDQgdH7QMF0fX72lY/cFf1HPdMgpZ64JMF6HTMdZzs+3SwlM3OceT3rPBe/J4ywQaDgXOUe72ec4LJsmJwgoF3AufKUua60LWhTCW1NezY6Rhrv3cKPPuNi31dgWUFQ3TcdQ3p/HLeSGrQjDLL8ud9bVaHrg1dHzouwxjguhaU7cj2axaI1QsKHNtnmJ/3Y8kpa53t17Hymwu/ebL3p/gFQew17P31N+1uZT/qQb29Xs8TnFIQX9eEsvB5fw1c+DFR+V0/0euMktkZgOi3hgR++XaJRCLI5XKYnZ11RKNwOOyIZ5ppw32EZSKoM3fyB9VXsZlM9nNk5/rpXO65VpjRmslkXKDe7gs2CKhBbfaL+AHBTwYI/XT+KMI9lfqZe1q1WkUsFnNlXFutFvL5vKtpvpMwkA/AZTGx7RwrHWNbOkbH1eobq5OsjtlrMJXYRzKZ9BwmqiXOCHDzIE0NrnAM9HwdAB77hv6+BsNV1EagDWZxEdtv2r+0Zfk9DTxr0ALYWn/aP722xaGUPGjf43OkgS6+ZwkQmpWovoHaQNYeINteya0HSQKffHTZ16hLOp3Gvffe63ktmUxienravf7Od74TH/jAB3DHHXfgjjvuwAc+8AEkEgn88i//8o1o8jUROs5M3Tl06BCOHj3qImnDNmZuoIlEAvPz8zhx4gRWVlawtLTkDpjghjU5OYlUKuVSzBnFJIjOiDDT0ggMM7qsB1Ryg9EDLFnGJZ1OO8BgL8pPcAOMx+PI5XKeyKuCJJcTtrvb7WJjYwPNZhMTExNYW1tDJBJxSpzMNpaM2cm50Ih3NBrF0aNHMRgMnNLYa2EfSqUSzpw545j5VIZkJKqC9zvshUL2YCwWQyaTcYffMQp7EETZaNPT02g2mx725n6s6b4b0QDSQQXRA7n55Xrrcgso8TVlZKlYw88PdCPbRQPH/IzWx9ZayjZ1lzUlGZzNZDKOLc5ra3vooDBVNhS6xGDnwV2lUsmzn4dCIXdwJPWMOlTsG50E7v/K+lamNxmoen2OrQXRlZ2kTC3tiwbUlXnMYKAGM/Q3P6vzYUFB9k9rlzIba2JiAuVy2TGOeA2Wx+H3+FvtGLab6dATExMOeGfgg2PEude0anUObSBAX2cQQvvHEnJkuXH+/II7yqy2WYmhUMgFwZPJpGML0iZTlpiC5jbQ5BdYUVY1HW0FrjluFky2tpmyzxXEsQEvrpVEIuFJG2dt11gs5mG6EyjRwz45Rn7Pvc6Lgh8WKFEHmn1XIMaPEW6FtglLLzAzk+cijI+PewILttQUx1pLCuh9uY45DsqWtO2xQRRl3R9EICCQayOBX75dqHfHx8dRLpfx/PPPAwDq9bortag+NQFPHtZYr9exurq6zRdThu/k5KSrC02AUDNuWKJS2bS6f1En2T2Qz3y73XZMZi2LxnIqDDLTh+X+QR+KfrES8ViWKhQKoV6v73pcubcBW+VkarUann32WSwtLaFSqTj2+ajZ59RJvV4P1WoVxWLRnctGO4z+YafT8Ry8zDFmCRUda83iyWQyzg4iK54Hl7KWNzPzVDRwPwy7CIVCTsel02nkcjmXTc2xZqm/cDjswHNblkZFQV+OET/barXcGmFfeBA7z+JQ35PrjrYf9Raz+QE4u2MwGGBychLT09PusFLambSvuSZpF3D96cHauVxu21xw3dJmoy5TG4Tlgkg6rNVqaDQaSCQSLoit4642NXWtjqkC82pTBXLzyoFHXd71rneh2WzioYceQrFYxP33348vf/nLSKfTN7ppeybKNp2cnMThw4dx5MgRpFKpoSA6HVU+7IuLi6hUKu5a+plIJILJyUnMzc0hHo+72m7cELh58WCM8fFx1Ot1FAoFVCoV37RY/c1NP5PJONYdD3m8GvCSGxjrT01OTnpAdD820zDh5zqdDtbX17GxseHuYfulm+ZO1yYgT6Vaq9UA4JoAnqqsCoUCzp4969jznGOyHpRRp/XxrTA4wdPmc7kcJicnD0ztbWULRKNRTE9Pu7Q8HgbLSPFBBdLphDOV/SBKEPUOBNhbXU5DVpksVrjvKcMK8NY+H8a6JViqgDSNd+pMYMsJ5vdsNhbTn+mQ0XFQsFmdgLGxMedEh8NhrK2teZhETE+mQ6iMGwJtfI1BY5biUIYS+2hrMtMJoT1CtpAtA0JRIJm/1a4gGE0HRT+rpUIsmK+MOIKJDBKrLidoqIQAsn4BOKYg7QZlntm1wrYSRKcuIajNdup+poAyx0edYw1wpFIpd7CkZpER6PdjdimITjtNwVSCHrSRWH6HIHo2m3UgugWqLdCqz4EGGvg350CdVQYf9JlUcNe2nz96zgyfRx3TaDTqyvlxLZCcQVCa39OAEP/W9tmAFd/3Yw/qeuYPr0Ng39q1mt3A7+rzwvZyjUUiEaRSKXfWCQEEXZd6f1saR0EI/SwBAxuo498cV+v4K0tzJ7kaPW7bE8jBllvBL1dRcLxSqTiSValUQqPRQCaTcXXS6X8PBgNks1kcPnwYhULB1fKmUO+zJMTU1JQLrHG/rtfrDsxst9sYGxtDq9VCvV73BWGVYQtsMYLD4bArzaL7u5YDVSERgG3c3NzExsYG2u02crkcjhw54gHRqYOuZFwZXOceWK1W8dRTT3lspd3sPQTDQ6EQqtUqCoWCO/+M52fVajW373I/ZDCb/SJrv1wue0gI4XDYZWzX63Wsra2h3W5jY2MDGxsbbh/X+v/WztRyKlbol1OfK7mNY91sNl22NYF/3odttHqNzHAAzubQgLbavywPrEQH20baeLRNadcMBgOXgRkOhzE5OYlqtYpSqeTGUu1qljJUe4QEjvHxcUxPTyOdTjt8ipmGDN4nk0lnp1Hnsv3sC8esWq06zCSbzTq9THtcSXd+2QbK/Ndshv0i1h4fJoFPProcOBD9K1/5iuf/UCiE97///Xj/+99/Q9pzvUSZPNwMLgf8WUfLplUpi0UPWNTUbMvW0ZRoPYB0J0XG+w+r2Xg1QifKXn9Y2tooosprlDTWYaLgDOvRA/Cwwq9mHLR/rAPPumLqfOm64ZzbNDM/oSLUmmcHDXDWZ4CAMxWhKriD0p+bUQKFfWvKtdTllvVrASNl19rvKNDHz9l9TwOqwBb7ORwOe5he+jllqGtbdP0roGedHN2/VY8C8DgI1Od+qd/WJlDQ0Iqycgm6W0auZeryb7/5sGAlHRP7ORuc8HMmLaPZgtNsM0FtBWw1q0DnnwEQe31+jvNLMFbT8G3/NRBigzBsM9+z31dw2i/V2m9s/cQGPrgWuD7sIWGjOFYWxFXnetja1nb6PUM6TuqU6nX0ejpmdPwHg4HH9tNnw+/50nGz9vCwMbXPiF2/OpYKaut6pz1tWd+j6kC/dW4zBWz7ufdw3VrSi+2fDRQCGPodOx4BiH5ryq3ql1Ns4FBZsXxfgWDVIfS57Z4TDl8q+ZJKpRz4Tr+R+pg+L4N43A+Gsb7tM2Z1AdvKfYqgoA0M++2P/Cz3KO4fmilzJWL3FeriqxVeh4ELPRhb55NjSp3MuSR4bAOXyu5nYJTnqRF4VtKGtfUutw/Sl2UgQ9uigK8GLbSMEO+huAn7aLPyeD/+5ngo43owuFQ+z9qjVgfRfuBYWla84iK0rayuU5t0p/Gx48n+kmSgWRW8JnGOzc1ND95h7UdrV+j19dnW+ThoEvjko8uBA9FvVfF7YHcjlsEFwLGTWcJlamrKHTxF1hY3GG5wY2NjmJ6eRjKZRK/XQz6fd5vSToqNylqZLnuZ5qI1Jf1YSLsR3aj9NmvrlO20aXCe1tfX8f3vfx/JZBInT57Ebbfd5gE7rlSo7LSEy9mzZ1EqlTzp3zRw1NEbVh+fEg6HkUgkXO19Hih3ENOTyA4YDAauJJEqUD9A5yAI199BVdZAoLAD2XuhngG8oJA+K6oLdQ+OxWLue3SEVecqSMo9lsY52bhaCoHX4n34PtNb6QjHYjEP2Ml7UdSppZHP9zXozYwvZQZbsYxcdRTppPX7fcTjcQDwOJBkYrG9FNWXfiC0AsvKildQlN8lA4gHsvEaBE4pZNaqg0R2Lz9vD0XUfoZCIc9hYQTdVUcqiE3GPs90YXYXr0OQndfRe9LRVkZxMpl036MD1mq1XKYU2Vm0r2xgxZIchgUwSJLg4WBkbSsr0gKnlkWljq+W2CFjza55ri0CRAzIW9uJY+UHvGgKN8dVMxdY5ojMMc2KUCac2r5+gSSOkQJRVrf4AUkWtLcBAn0+FNTQseV60ENt7bkMXMM2uMTrky1qGYPK6u/1ep7MQ15LywhxfCzYPgqZJADRA7mVhfsbWbfhcNhl+mjZLx7wyHIbk5OTjkWuEolEcPLkSZw8eXLbnstnU4HUTCaDfr+PlZUVd0j2TkKfaGpqyjGDafvoHk5AkwAwsYBQKOQOCScuwIBms9lEvV7H5uamO1jxSvxcW6fbT+yeuxtpNpvuEHKO7cTEhDuoU7P1NEjLEiPUf4PBwOlY2j6dTgflchlnzpxx800mtmaI2XMshgUpKOFwGJlMBjMzM4jH484GIlDPwMzk5KQra6LZdoPBpZryjUbD6bxoNIpyuYz19XX0+32PDUlbTYPMXOPsZ7vd9tRN9yuTqrpYWd8k/YXDYczNzSEUusQe10wAPcjT6u/Nzc1t5e4025CZBxwjlp+h3svlcg7PisViaLfbrtRdKBRCo9FwmQvqU3BtamY/D2nlgfU8THi/yKjPSOCTjy4BiH5AxILofG0337OOAR13OlepVMo56LY0hCr4VCrl6rRNTEx4UlWHCRWvArl7KVTSquiU7TXqNfjbsqZU/OZimPD9Wq2GpaUlxGIxTE1NodVqeU5bvxqh0bK8vIxKpYJCoYBms+kUu6aM05BRh2nYGIVCIQcUsMbufktPGlXC4UupymR12ANFDqooOLDbwFoggdysoodcEtgEvCCT7nkKhtFp0M+xtAiFjpCtHa7BSb90Tn6P32VaKR0S3adVzyub2ALtvC8DstTnyqr3K1HC7/G3gozqMHF8+FuDv1Znql73A9L9AHNrC9h208GyekzZz3ofDUwr4KD3YVvUgVXQ0DLdATiWVjQadfpVGUocD1tz2jr5BEwBuBIyGsTQbDKmZWvKtAXSd9Jh1HNkbNNpZpq92gPUJXY+1D7QvmmqtoICNiBNx1pZk+yLDW6RMUe7RWucqhMObNUfZTkULXWgz4ef3azrlWuAJWI4h35lCjXoxvXI/vE7fgEjjqM+U7yePZdAx3MYa1HHmO/pWKpjTwCBTEOOsWUW6n6oLDruf4EEEoi/qH7WfZqZr9xjBoNLWcms/8wyWzYgDVzaY+bm5nDq1Cm0223k83l3Dhn1h+4/3PPq9fpI/nUotHWWGIFUzS7nPhyLxTzlzKwQWGed60ajgUKh4EBQlnu5Ep/fLzNpL4VAN2vWk0SoREH2Q/dXW2YL2MI4uC8TtF1fX0epVPLFCwgSX84XVyFJIJvNIhQKeRjuAFxfUqmU59w6rhX2hQx86iiWsuV8avCD3+X6oH7h9VlSCNjSjby29lUDxgT9WZ+eBBCy7LnWlKBgs0S5ppT8oHY0sJVx0G63US6X0Wq1HJGAgfhsNuvs9k6ng4mJCVcah7a/6ksbqNb1AcAB7wy03GrA8q0kAYh+AISbAKNihULBbfR0loHtrDU+1GQ0ra2toVgsejYndU7VsR0mCi4r++ZyYKS2R53pvRR1NnYDnCujCPCm7vuNBe+jzpIq+2HKkky5fD6PCxcuuGgxnUAaUsMi0byPKvZarYZ2u4319XVUKhVXy00dKzqFVLRax8yPcaVjQ4Wm5WcOqtDIpDGrqWXqpB4koUHXarWuqvTQjZQg6h3IXosedK1AFf/2c8wURNc9AvAyqVWH2X1fdYkNLvOarNXIMyvGxy8dMjosUM420+EgsMrrKDtdD/pUvXy5YLBNP7X7ofaTDgngPYTTHmpo72GDFgC2lRZTO8EGBxXA5L15DW0rAWN+X9/XcVC7SR0wZVTz4Cy9v/aLB3hxXKxT5RfcVGYxmWPaNjIV6aBaPW3XHXW8khM0A0L7Yut16jjqNZWZzB9dH9ontZPsM2AZztounTO9jgZ0bN91jjTwZW0TdaI1+MLrKAPQj2Rg51kDNnZ96zyobWgZ37qGdG1oJgWfbR4KzyDbMEDfBql0v9Kx4N5jbVu2i9/rdDqeAB6/H9REDySQ4dLr9VCv11GpVBxL2OpcPh8886DZbKJSqWBpaQkbGxueQDyf2VarhXK57CnTQfZvv993meQaOBsVtFO7gv9zn+BepiXRNFOInwe2dA0Pjdzc3HRnstRqNef3XolvpeVkaKMosMvx0vHlZ0cZA+6/wCWi29jYmKslziwxHuiu1/fTfzxzot/vu8D3+vr6tnNS7BxY//Ny+yjv3+l0HJjOoDP9dAZMeW+OP/d2tRWVSJnL5dDr9VwdcQZ9+v2+A+dDIW85FD2Ek3pCQXqC/rQ5BoMBUqmUI2Dy3pubW2fzEMNgIErHCtg6awjYskc1UK9jSeG4kETHMWu1WigUCh7fQG1ctl9tILaB80DgfXJyEolEAuvr6y7odRD98sAnH10CEP0ACDckRgqfffZZ1Go13HnnnZiamvI90AuAc8JY6uOHP/whSqWSU3bqXPHncuxcddqV8XM5BTkMuN0r0FJZXDZ9d5ioA0UHk4qGDpgfcKzXppJiepPdaCnse6vVwjPPPIMLFy4gkUjg+PHjyOVyyGQymJubG5oJoA4lTyRvNps4d+4cCoWCC66w/+y3HXMFd+i4DZNQKOQOIWPaur53kCQUCjljjMAI08O5Ni278yAImRQ89f0gKrDrrbA/+tGP4g//8A+xvLyMe+65B4888ghe+cpXDv38Y489hocffhg/+tGPcOjQIbzrXe/CW9/6Vs9nPvvZz+J973sfnn/+eZw6dQq///u/jze84Q3u/Q9+8IP427/9Wzz11FOIx+N48MEH8aEPfQh33XWXpy+//du/jU984hPuMK6PfOQjuOeee3bdx1td6vW6xyFRIJb7ozp2Wk+cKdL8PJktDEYqK5bGvjJPCVZZPafAHY1uMrZisRimp6e3AXH8nw53s9lEPp/H+vq6c/boCDFDLJFIuDIsei32h8L9n/YFWap2bw+FQk6nDgYDdwBZt9t1zhCvzTHUtFf7jGq2GB0ZHUMA2wABBRIZcKaoDmcqM/tvAybKMKf+Vuec/WWZEwXEeS0NvnIsdC1ZG0TXnbULNjc33SFwrVbLOb88IEsBdwWWlQVHggWBCwWWFRTXci56to1dw5bFrbaOMq3ZJgsqc44UeOWzwbR5v7WhjGhtk4IMvCZrl/KZsjYonWQ+uwq88z62/IzaXfqcaykVbStF54Wf9dNpakvS7tB1Va/XUSgUUK/XUSwWUSqVHGPPguhaZkrHh/Oi42+DDHxONYhCph3XkmZ16vO8kwQgeiC3qjATuNvtYnFxES9/+csRDoedb0Y/vNfruT24VCphaWkJjz/+OLrdLhqNBgDvoYmlUgnnzp1zzGCC2uVyGQCQzWZdZvPa2porjzHqs9RsNlEqlZBKpdweSZ0AePf/YcE8ArPFYhEbGxvIZDJYXFxEJBLB+vq6A0avxGekXTMYDFz5j/HxcU/JWW0L9SxB7MuNA3V4KBRyZLSxsTG88MILGB8fx6FDh3D33XcjHo97Asjcv8lYJimCTOdz586hWCy6eR3WDoKwfhjDMOFcNJtNJBIJHD58GNls1nNYJoP7HA/6v2TKx+NxdDodd7h4KpXy3Js2JAmYtVrNzQXXCPs/MzPjWPu0IUulEkqlEsbHxx2wTDa76pfx8XHkcjl0u11UKhUXdKjVas4WYZkhMslZIiiXy2FzcxMrKysol8uIRqPI5XKurC/HUAmS09PTAODGZ3NzE8ViEcvLyy64xZJMnBdWaeBzx3IwJL7U63XUajVMTk7i9ttvx5EjR/CjH/0ITz/99EhllfajBCD66HLwihvfoqLRMYJmmuZrGVD8PFNteMJxo9HwpJtZ5TaKorscw81PFBC4Fg+ZHytnp/tYBjqdMf1RQFvr0KqRo6wuy8Lza1+v10OtVkOhUECxWES5XHb1yZjWr6xA/SGoQAYjna58Pu9Ada0NpuPA72tdUXW+ho0RFZ8ymA4agA5sLzeg65HPz0EUNZgOasq1Mjyu5Gc38pnPfAbvfOc78d73vhff/e538cpXvhKve93rcO7cOd/Pnz59Gj//8z+PV77ylfjud7+L97znPfhv/+2/4bOf/az7zOOPP443velNePOb34zvf//7ePOb34xf+qVfwr/8y7+4zzz22GN429vehm984xt49NFH0ev18NrXvtZzANQf/MEf4I//+I/x4Q9/GN/85jexsLCA17zmNahWq7sc0UB0v1T9qODYsP1Pg8N2b6coKK2sUj8drOArgTamiLbbbZfOqsFOBdEJYPKzTCXWMiXUQ1pmwi9TzM9ZsyU6VOdYwFTBQgXWh31Pf+vzqoxp21beywYAFHBUcNxmEHAcLDufwDGZ+lpaTgFSy3D2e1/7zPlkQMLqFa4Bq3sJXlKfk4Fer9ddqrOyABWQt3NlwW3OtR1na6/4jbXfGvTTlTo31ob0sy2HrcedGN72HtZms3aJflbnjp8luG7tN7/nxs+e87N/dpofv/1BbTLdizQ9ns+4rikNLNn/lbHuZ2Nr8MCOnX22tS/D+uwnV6vHbzXnO5CbRzY3L9Wepj2XSqWQSqVciRBl6OpzSPJTtVr19csJCCszl8CogqMM2itD+HJidTnvzXZa/9P6SFaX8zyPzc1NR0a4GlKS+p8sI8LXrZ9uiYA7+eK2D+wrg9fVatUFBPQ8EqsHrQ9N37zRaKBcLm+b18u1Qcf8cvOnezRLrnK8GYj2O6fO6kS1l6LRKJLJJBKJhOdcH2u7WD1EhjrJJ7y/rlGy5OPxuAvis60sJRQOh52dqwEQrgEli2r2Je9FIoSfzufveDy+ra18xhisVryEc2eJITqW/DwAx+aPx+Pb7NSDJDdCj3/0ox/FiRMnEIvFcN999+Gf//mfd/z8Y489hvvuuw+xWAwnT57En/3Zn237zGc/+1m8+MUvRjQaxYtf/GJ87nOf87z/sY99DC996UuRyWSQyWTwwAMP4P/+3/+7q3YHTPQDJqVSCU888QTOnTvnUrqj0air4UWlyAjdhQsXUCwW8cwzz2BjY8NtUIA3DYZgu9Y6taABNwuWj7D1XIfJYHAphb1Wq7l7sR7c1dQEV6el3W6jWq2iVqu5GpB+D7OykDT9SaO0ypTzY/irM8SUHh6uwr+5ufq1g5srDzWpVqtYW1vDysqKc/LI7uM86LzW63V3YEWxWHSBkWFzwLmjQlMn63Ib3qgZCgdBFFTgHDQaDZd2lcvlkEgkbnArdydkoOTzedTr9VvWEa1UKp7/aZhZ+eM//mP82q/9Gn79138dAPDII4/gS1/6Ej72sY/hgx/84LbP/9mf/RmOHTuGRx55BABw991341vf+hb+6I/+CL/4i7/orvGa17wG7373uwEA7373u/HYY4/hkUcewf/+3/8bAPDFL37Rc90///M/x9zcHL797W/jVa96FQaDAR555BG8973vxS/8wi8AAP7yL/8S8/Pz+NSnPoXf+I3fuIrRufVE9037TNjyHxpYoyPkt1fws8PKg1DUAebeqyAvwdNms4liseh0OJ0CphGrU0ynrN1uO+fMslnZRh5SpiAm2dXqcLAdLCNB9rNl3NpxImjHVFjqUE0ltqCsjgt1mRrddFr6/b6zRcikUufZArPUT6q3tUSMZhlp9hzBCNoDHEfeQ9cMHTDWLyfzDIA7BFT7R3a6DShoajU/z/YThOGcEjRRsFudV6aNc5y5JjWDwjKU1cFU4JljoQ6QzosC+RTLyuc42QCGCueW7Du2z09ncU1zfnQeNjc3EYlEnFPPaxGABuABkziftPd0rnSN0rbV/rMdtv9a8knHRDMELHjC+VYbjGAHf6tdTVBcgW2Ou322LWjE1/hZ3l8/Z4Mo+n1l6WtGQyCBBLJd6vU6zpw5g/X1dYTDYVdnm/sXD8i2xLbl5eVt16LOCofDnr1HM2/IHKb/SV+evi914E6kNfrNANy+yj1R9bMNsmvWNq8DwOl/AI41zoOxqa8IevqBbrovaRYM+8C9m+XauJdSP9CWIVNdQe/BYODev5ywr6FQCKVSCU8//bS7N+eHAW7668AWu5m23ahyJT6bgu4KPKt+oA2p7HSup3q9jlKp5Bjgg8HAHYZJhjkZ2bRJCRCPjY2hXC6j2Wyi3+8jn8+7bItqteruPzU1BQAuO4JjxbaxVn48Hsfs7KzT43w2aBuz7Z1OB7Vaza1vDShphifXr5ZHsjoP2LIB9DBd2qcqGxsbWF9f9+A59tliUKBSqWB1dRXr6+sum2w/ZIj7EYD2k5Dc9tGPfhQ/8zM/g49//ON43etehx//+Mc4duzYts+T3PaWt7wFf/3Xf42vfe1reOihhzA7O+v8cpLbfvd3fxdveMMb8LnPfQ6/9Eu/hK9+9au4//77AQBHjhzB//f//X+4/fbbAVzyuV//+tfju9/97sgZ4AGIfoPFj9WykxQKBXznO9/BxMQESqUSqtUq0uk0Tp48iZmZGU/k+sknn8QTTzyBarWKF154AWtrax5ngEAuAKfYB4OBJ4JsmWE09PVU5cvVfVKQmyB6u932dbSuRPr9vgdEV5aejic3Uo1cx+NxT1STzrg6Ecpw4v3U8efmyhRj1qpVRWfby9cvXry4jblFQEVfo6LU73IuR4n+WXbRKMJ23SwgugZGOHa1Wg3r6+tot9su3f0gSaPRwMrKCtbW1rYByQdFriZ6ze8dPXrU8/r//J//E+9///s9r3U6HXz729/G//gf/8Pz+mtf+1p8/etf973+448/jte+9rWe137u534On/zkJ9HtdhGJRPD444/jN3/zN7d9hsC7nzAdl4bm6dOnsbKy4rlXNBrFq1/9anz9618PQPRditY/pijYR1HgiPu0ljvTkge8HvdCLVeh+yMdGQLp/X7fU8qFjk2tVkM+n0etVnP6IhKJIJvNIh6PO8e41+uhVCq5uqmlUsmVANHyEdRFehAngWM6nAoMsh32AEvLtAHgmEp6z1Ao5IBL9o3jqe2i2IC0MvIILhBoJaCsALF1BPr9vmP68frWUSKLCthydBg0HwwupaIrO1zLmOhaGRsbc7U0eZ9+/1KZHeuYN5tNx2BTXU1gVfUQg/cMjhPUoGhAnXaNlvhQm4ZrUplROu6WnW0DEuy3ggha7kVBEwV3tU+0rdSe4v3ZbjrKHG89jI2iwQ+OeSwWc4FR3rter2NjY8PNs4LoHB9l4etzoPfiM6EH9tnggt1PlF3KezIT0Ja+4Vqzdh3XKJ9F2tbMONH1o+n6Ct5wbvk86W8F+hkIsvM+zK5TcGsU2/Fq9LjeL5BADppUq1U8++yzGBsbw8WLF/G9730PsVgMx44dw/T0tAd4u3DhAs6cOYNWq4V8Pr/tWtwL1H5Qv482Avd97pXUmwTgWbZyJ9+cvriC6BoEtEF1YOvAVNoy3P91L6d9WygUXJnRfr/vgF31Xy0Dn/sUdTX3HhJjWJpMs8e5xxJQZcBbbR0SD0YR3rNQKKBcLrvgeSwWc3qHukL1ogatr6Xo2GlGI3U17QrqFM1YGgwulcYhKSOTyThfmMF/gujAVpkzrfVfr9cd2YRj3mg0UCwWMRgMcOzYMSwuLqLb7WJ5eRmVSsXZByxNlEwmEQ6HkUwmkclk3L1JTNjY2HDBEOq+er3u0de8P/Uqg+e0Z2nHUPg3S7SEw2HHTNcx5Txubm66QND4+DjS6TQmJiacrUH9mkwmXfmlwWCA1dVV5PN5FIvFXZVXuhZiyT6jtGUvfPLdyI0it/2n//SfPNf9/d//fXzsYx/DN77xjQBEPwiiLCNlAO2k9AjSbm5uolKpIJ/Po91uOxY6QfRut+vKfPDwSXtdBYIZxQbgmNTKZlEQXZnouwFxbeqpZbj4sb53uh7HQxWJHrDoB6DbVB9Nbdbf+ll+395fnSg6+9zU6Xxzk/UbI7+5puNGg4Y/nCN1ygK5cuE4MkOCYMpBEc5/t9v1ZCYcxHWxFwr7/PnzyGQy7nU/FvrGxgY2NzcxPz/veX1+fh4rKyu+119ZWfH9fK/Xw8bGBhYXF4d+Ztg1B4MBHn74YbziFa/Avffe6+7D79nrnD171vc6gQwXZWRyT70S8Ej3Z2UQW12laazAVtCSzin1jF6fwBgAxwSnk6GOMZ02sp/UseZ11BlVFqyCwNaQVmBX2a7WERwGtNJppcOvrFf7eQtc6nsWJGDflU2sc0Kx9/LT1VaHE2DU1FwFjbVNHMud2q3p0ron2/Fk39TeIbCqbVN2sF2vOk78sWtxVNawguX2h3Op652BINoifuwuC85b582uI8tktO/5gf46XmyjzgUzAneaN9t/DXJoxomf7ca1rPuCPguWtal/W/Cc17fZJAp8cS51PaityrFgu/wCTcN0Kz+rJXEofuSPy0kAogdyM4gNxALby4Va4fPLYCiB3Ewm4wlkEcy1ZC97L70mA6sEQNU3pO9LlrUG70Z9nnhNBVx1r9L2azDVXkP3ELbBZqv7+cAU63/rXqeiOtLqCLX39Lqq9y83lypqZymo71cq5XqK9tsPX9Dx85svu8Y5Jpwna5f46WqrmxnUoF3DbAi/ayhupLqY79P25Xxx7P10mvZTMRW7dm2Q2dqG1v6146i4EbBlWzOYzQCRZlLeygeLjpodvl/IbZubm/ibv/kb1Ot1PPDAAzv2USUA0a+z6APP+kzAljPX6XRcBG2YE0An7ezZsyiXy5iYmEA6nUYsFvOwg5gC3uv1PLV3KWSib25uYmNjwzG7ut0uYrGYpw4Uay43Gg0sLy+7Gus0BHZ64AaDgQMDAGBtbQ39fh/ZbNZT72yYE25FmT8EDzc2NnDx4kUXjbftsYwmlq2Jx+POOWMUnZss58uvP/yt9b+4YXOO6VDRuBpF6er8KhCkG/z1cjb8nMODLBYs6PV6WFtbw49+9CNMT09jamoKc3NzQ8G1/SJqeJRKJTzzzDO4ePGiSzk7iHK17WZNs1HEDxTcac79Pm9f3801/+t//a944okn8NWvfvWq2xaIv2hpCcDrDOn8WdayBj9V1EGjvtLSIFpqgmC3PeBIdQX3n3K57MqilMtlhMNhV5NSWVQMElOP+KWVEkCkHcHDj2x5DYKNZC/Z8mfc69V50FqjvEa73XY2AA890zRsPyCVc2EdP6br9no9V5OUZWaUHcx5s06ZOkjqOJJRpax8PXiUZUHC4bBjQun4amCCDqKKOu1av5ptIlOOTqG1ASYmJhwBIhwObwvkcvz5Pdp2bKOWAbJzpNdQBjYBE2AreGOdXfab9U51XBkUIuOa16INZckhHDNlouk6s88l72uzKHiArtpIrGnKTEQAiMfjyGQyjmnGPmnZQb8SKdoXddrtWFqnn6Jr2oLpeh+uC44hSS8864glCdXO5L1ZxsGCAFwben8F3fQ6XJPRaHRbUEnnmGO0W0AukEAOssRiMcdk1iyaWq12WSA9FAo5NvjY2BhqtZoHOBoMBmg0Gq7sxbBDB2knFItFdwh5tVpFNBpFLBZz+qtcLiOfz6NarbrSoNTvuyFbdTodLC8vu8Mqs9msJ+tK7RaCo3yt2+169jSydLmnEYPwC4rr3kamN/cslvpIp9MueGv1smZq8aDsXq/nyn4wu5gs4mg06vCQ3ZKmlDR4o4BR7tfJZBLZbNZlTrMvtHfVFtJSb9SFiUQCk5OTbq2zLBCZ3mojqQ3EDIPx8XHMzs66DD2y3mdnZ9Hv95HJZFxb9G8K54ys8c3NTfd8hUIhVKtVXLhwAblcDsePH8ehQ4dQrVYdSXJiYgKJRMLpdcVYuEaz2axnLU1MTCCTybjDzdX2VOAd2LKZBoMBpqamkE6nXV85VvwOD2alPV+pVLC2toaNjQ0UCoVdlfa5FnKlmNHV6vJRssOBG09u+8EPfoAHHngArVYLqVQKn/vc5/DiF7941G4GIPqNEG5u0WjUbYI0uEOhkAdwtqKbwsbGBjY2Nq64HWoosy4WU1sYzWHaMyNrPMxSa4+PEtXlRhUOh1GpVJzCnZqa8mXCDBO9FwELOlCsoeVnmKizwEPG1OnTVF/An9VGsdHYwWCwzfkAtsAKC06M0sdRI+XXWtT5uxlEHWCC0OfPn0er1fINNO1XYR8ajQYuXryICxcuuGc4EH+ZmZnB2NjYNiW6tra2TdlSFhYWfD8/Pj7uTnof9hm/a7797W/H3/3d3+Gf/umfcOTIEc99gEvGweLi4khtC2S4cE9XwM6yO1XnqHOkzCfLStHrEphVkJk6joAwU40VjFIgj84PdWs4HHY6Se/vxzTSfYwgqwZwCazyezoW6nT4sdeUiUxRh4xOBJ0aAnx+zOhhjF69lwLDrIlJljsBCZshxuAyAWsF0ikaGNfa6QQ2+B3V2byvgrsEbq3ommLpHQYttEwcwQUF0dkWkh+ALSdYAwQ678po1+CMLRfEebekAF5D1x3tTQKzymzWvnDclTnNMWPb7QFw2n5ej3PGaym4zfvyOjrXmmKu19SsDc6Jzp9lrKsNrew7PxDdrn+uZT8WqT4f+qzrPfW54nNLG5YHExJUt6LAtwYHeG/2QbM52H99Tkj+8GPX8RnRdUCQLJBAbnbhPpNIJDx7T6PRcOS2nWQwGLjgNHDpDLMrFbLWW62WK6U2MTHhDi4ELtVir9Vqrsb1lfowBOxbrRZmZmYwPT3tSrZwb7FlUnUf5Z5NPUc/XEuE7CShUMjhIcym5z7FuWD5ELJ9ua9RZ+r5ImQDh8NhpNNp149IJLLrmuUUtSFvhCgrOhKJuAM6ge2lCv2yt5RcEIvFkEql3GHrtBc00M81x/kn0A3AETfHx8cdMM0qCdTt1J8kKmrwQe03zhXLnvB5W19fB3BpXln2UuvgUxfqD7MeSFDla71eD/F4HFNTU4jH487eVpvA4jr80WAzcSPaiOFwGJOTk5ibm0O9XnfVH8rlMqrVKqrVqhuTW01GyQ5XuVHktrvuugvf+973UCqV8NnPfha/8iu/gscee2xkID0A0a+z6AOvGxyZzNY4vh4PH50CbmKlUgmNRsMDorP2Jze7URjofvfhRkyHqlwuu3rUGv0f9oDYtLlCoeAOtPA75JTXseCH/bEOyW6E31OQhRuzpjjRKTkookwDy2w4aE4VlaUFkGq1GtbW1gDAKTw+l7tdB9dLer0eKpUK2u22O1h2p8N097tcaaSc3x1VJiYmcN999+HRRx/FG97wBvf6o48+ite//vW+33nggQfw93//957XvvzlL+PlL3+5A3QeeOABPProo57UsS9/+ct48MEHPe18+9vfjs997nP4yle+ghMnTniueeLECSwsLODRRx/Fy172MgCXmC+PPfYYPvShD43cx0AuiaaTAvA4A5Ylq86ggoQqytBVHc3AqAK8ygYiQMu9xwZU1fkhwHYlQUs/oJUsXbtXM6tMdaWCzPZ6/N+2SceMtgEZ2zxAimOj11RnVLO1aFNom6xTaHU1v+t3tooC7rqnq32hv3l9DYoruUHZR3Ye6UAqWMnPKZCtekXvoW1W0bYqy58gs2ZFcO55He2/DSYpAE69ofpOgx0a9OFryiAkq8ym4dv+qBM9bM9XO0mDP7wenyXaoASdyaDjfBCYVrBYnWXNrtPa9eyr31jo9fl9G4jTeeSc2+CRrhuy6LWmrR66yrZw3jWjgD9K3lCQh332G2MGL3TOuPfo/OizcDm5Gj2uYxNIIDdSVO/oob9Xuj6v1O9T24T6lcA6heC+X7nW3d5LDwvXQ8a5F0YiEccU575C0BrYCs7yjBUGlW3f1dYgEK77tOpO+vt2L9P9mWAmddFgMHA1rgkQ8/vcKw+a/wp4MRBiHhxD2mAMAhMcB7BN/1O0PA2JCqyPrmdnaHkxCvWUBi6YOUgbkDYt7U3FdqwNbUvgsS56JBJBpVJxvrnWu+fZc1z7qjMJeANbpYW63a478JZttUQJjhdF7SklLtCGYvCHWSckthLXOqgExL3wyUfNDr/R5LaJiQl3sOjLX/5yfPOb38Sf/Mmf4OMf//hl2w4EIPoNEW5q3ID4GpWQn3N1LYXAdqPRcIcjKMAMwDnddBY11XMU4UPZbrexvLzsUtCYsjU1NYVcLufYNpZRpgAoU8gLhQLOnz+PRqOBQqGASqXicYR0s9YTvXlAlaZ4q+PH7w4TVfL8jjIRATg2IsEMPwdlv8tgsJV6GI/HPYr0clHC/SZUouqwNptNLC0tYXV1FQsLC/hX/+pf4c4770Q0GnWsyv0ozWYTp0+fxvr6Op599lmsrq6iUCjcUJbE1cj1AtEB4OGHH8ab3/xmvPzlL8cDDzyAT3ziEzh37hze+ta3Arh0+MjS0hL+6q/+CgDw1re+FR/+8Ifx8MMP4y1veQsef/xxfPKTn3QHkwDAO97xDrzqVa/Chz70Ibz+9a/H5z//efzDP/yDp1zL2972NnzqU5/C5z//eaTTaafceYhkKBTCO9/5TnzgAx/AHXfcgTvuuAMf+MAHkEgk8Mu//MtXNDa3skSjUQeIc43QGaNwP+B7+jkFwSwgCngZwQS4+PlEIuEJ2tFJoSNuWc58n84KQT0b4LX6yQLn2i+K1jjld+jUUJ8S6OYeT0Yv78Pr01nl63S8VOdRf9N5ZVk4FfaRbWH/2VY9sEvLvSkYSuG49ft9p9N1nnjAljJuNViggXP7ngY/OAa8l7KL+RqdJi2bw3vT2VKmL+AFIZSxr8EVpqDbbDmy8LRECvuufSbYDmzV1eVYkAXGsWC7eH+Or3WmlR1OZ1XLydjnRsfKsr94LQ1IsO/MHOS88kDVQqHg2Jdra2toNpsutT+VSmFhYcEx5DhufN4JXnMe1ZZVprgN1uh5BApgs6/6Guea/eHc8p60BVkSqV6vo1wuOztc9wiOK21Y2pbsi+5xunYs+E0ggPNqa85a4VrgHFxOAhA9kIMoVpdyvZMRzeDwlYBhNhi7W1HCD/eRfD7v2U80o+ZKhaQ07ikaCA+HL5VAPXz4MHK5nCdgztKom5uXylI1m01Uq1Wsr6+7jDL7XI+PjyOVSmFsbMyBsZq1pcQHgp12H9OgMRnnkUjEc/AjMwpoX+vevV99u8sJdVexWESv18Pc3ByOHj3qOdgTgMNSqKM5psrAJxjNcYnFYjh+/DgAuCxGtYFoHwwGA5f9EIlEHAmSB6pvbnoPJuWYk/2u9qDOMXU79Xu1WkWpVMLZs2cxNzcH4NKBoMxWKJfLTv/Z4HE0GnXlXBhs73Q6KJVKnmAPACSTSRc0UFvKkge4xmm70lYolUqIx+Oo1Wp46qmnsLGxgQsXLqBcLo+UvbIf5Xr65DeS3Das/Vwbo0gAol9nUcNcnZbdMD6uhdCoJ1huGUy2DuuVPmB00judDqLRqAO+4/E4UqmUM+itk6vp3qwb32g0UKlUnPL2YwsoAGGZ5+rs+TGnLif6WTr3TPUhoMBorEZeD4qzwLnWrIODBp6raCBGAavNzUs14PTE8f04R8piq1Qq7uR4Pk8HVa6nwn7Tm96EfD6P3/md38Hy8jLuvfdefOELX3DG4/LyMs6dO+c+f+LECXzhC1/Ab/7mb+IjH/kIDh06hD/90z91J4ADwIMPPohPf/rT+K3f+i28733vw6lTp/CZz3wG999/v/vMxz72MQDAz/7sz3ra8+d//uf41V/9VQDAu971LjSbTTz00EMoFou4//778eUvfxnpdHpXfQzEW3qB+y8BI8Bb4kFBPorqBD8Gu5b/UMa7ZVKxDfxfQVL+Vh2roDq/ZwF07aOfKHBH50f7rfufHxhIHWbFsqyZccU9lYC4stcUwPcDp3UPVjYShWOj7DUCrjqm2nerlxUg30kP65rRwLdmMegYsn+cKwWcOe5+rHr2y4LM2m9lRamtonaGtlPXpv28kiE47rSVFIBlO/X+6iwqgz0SifjaUJblb+dGAWg7/ta+0DEIh8NufLnW6HgzKE6Aenx8fNvh9Tbgocw1fQ6s2Nf8mJV+Y8V2c+3YALcCYGwrfyzzj/M3LDihDLlhos+E/Q73CmCr9ItmgNjvD5MARA/koInfXqVrnc/n1a7tKxXdK/UA770mzFB/EUAiWOint5TJzX1f9QoPKGVddCuaVaNMc9V1FL5vCQ16X9pgBG43NzcdGO93lsuNxFn2QuiTU/dR52ggRe0OHSu14TiefE3PhQO8+7HVy1ryjj4zz6OjntWSeWoT2SC1HzmBujAajbqyKJFIxJ29o4Elfk/XKtcY2802EydSsgYDBlpKT5939Q+YLaZjw3GvVquec0201vpBk+vpkwM3jtz2nve8B6973etw9OhRVKtVfPrTn8ZXvvIVfPGLXxy57QGIfp1FlUaz2fSkqVKBWcfmRrTRz9BW9txeSKvVwsbGhkux4SFrPLwB2DLi9eTxcrnsDsRi2gyBfzU61LGz5Vz495UC6H6iDq6+xg1ajZGDsLkOBgMXqEilUo5pp8GVgyL9ft+xJJgKrgfB1et1PPXUU0gkElhYWMDLXvYy5HI5j9K/kULDotvtolAo4Mc//jGeeeYZnD17dldR00CAhx56CA899JDve3/xF3+x7bVXv/rV+M53vrPjNd/4xjfijW9849D3R9kzQ6EQ3v/+9+P9PoevBLI7UcDJGrwEt8nypU7WfXsYW4nGOOBlfJPtwpRirYUObDHKLFivoka/loEgyOXHnvZrI3WaOtzqqFjgXFnMOjYK7Oq9tCyKX2CBY0Oms185FwWe2TaOTzgcdmfFUPgenSVbu5mBDNVP6gzx+/rZwWCrlAewddiVdeY4zxx3rW1O/U7gkcA270nWHr/HNnCsSAjgvWzwIplMIpFIuH5zbemYc1w5ppwfzi37wrkgAM51lUwmHXuLa1BBdp1Dzbi4HBihASGOK8Wy+Tm+ulY4lyzLos5vo9HwnMtDUJzgz8rKCsbGxpBKpRzLjgA876+gmWWSsw0K7gwGA1cuQEXHQMfHBhn4Wc4Fs1PIuKtUKh47l+OlWSMapLH7iA1e0R7V4KEFqBQw175Y0CqQQG5G8bPLyHym7uQeeiU+mwJxV9tOBUv3WlSXMLNbs+CYDZVKpRyLV/EA1V/NZtMDIqotwfso9kF/nMxxBdcBuLId1E/AFunPEiEUPOb1NZjKfZX3u1xgd78KbQsNCvPw1FAohHg87rIpNBsR8GYX8lr8rX/T7tFgPQCXmUDdwUxB1kkHvOVkFDtiCZpsNusyxfxK8VHa7TaeffZZx7p/yUtegmw2i7GxMXeWTK1WQ7PZ9FQW6Pe3yh5p/ycnJ11Anv0jiK46T/Ue2z4+Po5cLufsAq5F6ux6ve4OFSU5NJDR5EaR21ZXV/HmN78Zy8vLyGazeOlLX4ovfvGLeM1rXjNy2wMQ/ToLlQjTpzRyqGyZG7WZ7+TkX63YzYlgZjgcxsbGhktVTaVSngPBgK3UezodTCdj+hmVpipTbnRM09E6orbm9dU6C1TmFmDWE8NtmtB+l36/71LEFES3AYGDIOwLD/xgzVSulWq1iu9+97tYW1vDi1/8Ypw8eRKZTGbPAixXK8oQWVtbw7e+9S18+9vfdlkYB1mud9Q7kJtfFERUAEnZOuoY+JXp8BN+RhndKkxVjsfjnmC0X/v424/txXuQ7aP3UTY1U65V1IFUII5grgKDPDSJ9yUIy7NQFLzmONoydMqCovNl90vVy3ZM7DPMMeR77D/PbKFeZ/8VtGY5Fc1CsEQAZabp3sMybwp8WD2hZAcFWTUIw/Ho9/sOAACwbQ4BeOrAk7mnjDzaglzPem4McMmGarVaDsTo9/vOdlKyAO1Nvk+nN5FIIJfLeTL0tIQA7x8KhVzqvrbfL8isY6pjpqwwZYJzfthegvha1iUcDjtnlQfJ12o1dwAtwX6e2cPDwnO5nAsUaLv1WaEtOEyXaMDAj6XHedUx5HcIQCiRgwEC2r+lUgnr6+suKGDZ6LRlFbTSNax9sXsax1uDYbymPoMMqGh5Qw1ojOITXC0IFejyQG60EEQmkG6zeHa7RvcSmL3WfiP3ZJax0X09HA5jeXnZ2SY261v3Ufrl1LWaaUd9UK/Xnf1BvZJIJJBKpVwZtF7v0plV5XIZwFaZHb+yX5pdxP1SCXiqk/v9vse+0Xbtxz3IBnk1QE8gnSVUJicnPbqadkGr1XJ2Ha+nuljnSu2e8fFxJJNJ9z1KLBZzr1EXxWIxd+BtNBp1BBXiBo1Gw5VTSafTyOVyaLVabi78pNVq4Yc//CGee+453H333a7cKgFzzh1LAtEeZLY2yXOdTgeJRAKzs7OIx+MeFruSIvQZo87lOEUiEVeOhusWAIrFIsrlsmOhLy0tXfUZBTdaboRPfiPIbZ/85Cd31UY/CUD0GyB0JjS6vZPDvdeiG6i2aa9FnXV1MOjk6mau7Ck/9hKdC5tSYx0VfoeK1DpAyhDS33shdkz5mt/PjRR1wil+a48KlqlVVDbKBNzvooAIjQmCDaooaNjxZG0eZqLK8kb0V40mMkSKxaKrSXcznPwdgOiBXAuxTiDXiqYkW1CMLE+CXX7XUmfaD2BSJ5Pv2YCtMqb0/nxNy1DYfZm67XIsYL2/396uYpnuCuRbe4HOGP/m5zUVWNvgB6ArIKj98QMuVMezrfp5Ou7qJPP6FiwEMNRZJgOOY0AWnd/rfE37q2npbKff2OtrBFQ1KKN2iQZ31HbhuJPxb9ehgqYcJwIGmtrNa1m2tP3bZh7wPb+1pHNv9azfZ1Q41/a3zqsGVuw9NOBSq9UwPj7uABsFEbRvlqHnZx/ZPuszwfFX1rk+TwqAs61k1LO2OYFzzRaxIJHfWrb2pN0TdP7sOHP92vf8QPtR/JIARA/kZhAN+Gk5sZtFdH9Su0cDfxR932/vtcFRtVsAb1kNtZn0f+5RyhRnQE/3UepifofCfYx4Cv+3GXa6nw0bi/1EcNtpzVEX0D9vt9vu/Be1H63etGLtMb+sJLXRNHhuy7ipKL6yUwCaAXO/MinsJwMyZHpXKhWXsaD30/voWrD2pY6PtaPt67qedU2z7Qw4MKhPIsR+DciMKoFPProEIPoNEhrJqlj4+1osQt3QyERSNpCmj16tcANKJpPIZrOIRCLI5XLIZDKOTaX1TYEtpdDr9dwhEGQOs86aBSai0airkaVpQVqmg8qeadDDNv29FCoYdbDUAPCrN3utRY2FWCzmGG1cb4wUK2tsMBi4gzFSqZQ7QIOZAvtd1Hhqt9vY2NjA+fPnsb6+vq3OYa/Xw+rqqkvDWlhYwOLiIu644w68+MUvdv293sY0ne1Wq4Vvfetb+Na3voX19XWcPn0a9Xr9wCtrIFDYgey9+O3x6owpyEwnkO/vlF6q7B1gOyBLRrGyunhPW2d4Jz10Of1kgwDq3FDvETjVflOsY6ltoTOsjqgGpHlYl6bPkp2jYC1ZQMpQB7bSX+lAWadZDwNlHwkWa78VyCQbifsl+6PMNAKo/Kz2myCrOoYcB53bwWDg+qrOKZnoCnrbdUOigJIElPHNcdHvRyIRz+GsHOtEIuFhN7NP/J6ykHlAWKPRQK/Xczqc/eW1dF4IfkSjUcTjcTd+vJe2U9uqNo4NMthgjF2/PBiUa1DHRwM6GhBnUFwPy221Wu7w+lwu52G+TU9PbyuvpwCSBZfYFzuX+jyzvfbgV77OsWLJp263i9XVVcc+X19fR7FY9PSB7D2uLV5LMxO4ntS25VjabBE73nzdL0BHYEAPGN6vIPpHP/pR/OEf/iGWl5dxzz334JFHHsErX/nKoZ9/7LHH8PDDD+NHP/oRDh06hHe9612u7irls5/9LN73vvfh+eefx6lTp/D7v//7ngPPPvjBD+Jv//Zv8dRTTyEej+PBBx/Ehz70Idx11127bn8g+1dskG0/yU4BzMtJLBZDOp322EETExOYmppyGXQ2A437KolUmgnOcpJatoN6NJVKuZJafqSfaDTq9DIPVo7FYu5gTLWhJicnkU6nHbNYmcTarlBo60Byrd0NbGVG8bvj4+OOPV2v12+Ib+4nep6ajiuwpVM2NzdRLpdx4cIFNBoNHDp0CAsLCxgbG3NjqWVLAWwLlFCXbm5eOpeO1QCYCcC573Q6ngx+vxJhPKtE9ZPamGNjW4fXDwYD1Ot1VKtVnD9/Hs8884ybVxW2r9frYWlpCf/4j/+IXC6Hu+66C/fee69rDw+PpX3H+uzAJbuEoLvao9o/2ogsQ6PjwzVGm1/71e128cQTT+DJJ590c9FsNocGLQ6KBD756BKA6DdQ/JytayXqKDIdho7bMJbLlYgFa6emphCLxbC4uIi5uTlXp1INfDoYdIyWl5dRrVbRaDTcYY9UlOqMjo+PI5PJOEczFothMBi4yCUP3yBzTJ2lay1+DC510q63aOSYp2RrlFUjwco40FSsarWKVCq1Y/rVfhNVduVyGRsbGyiVStvSETc3N1EsFlEsFhEKhfDEE09geXkZsVgMd95557Z0tusl6nw/++yz+Od//mdUq1Wsrq56nNxAAglkS4axYzSwqSxnwHsoo33WldWi7E0a4co61hIsdMoU1FLWr7JpKLY2uxXL5LJMH9XlbBfBVjoZ+jk6PWwX+6hjwRqiY2NjSKfTLsWXdUqpgwl406ktlUrO4db63OoYcvy0NqqWJKGu52etg8Pr2VrSWs5Ef+gUcqz5OvvnV1ZEx5yHl/G+WktUAwbKzOM1Cewri9oy0bV91L+6bhQ4pfAeCthybBjYUJaVMv5oD3JONHgwMTHhAiacIy3zogEBzR7gOChrHvAHpvg+15N+ptPpoFarbbNNCY5wfBQcGQwGyOfzLnDAoAEApNNp1z/LTlOig7LPeE39DteJXkOfMQ1S6XpvNBpot9soFotYX1935/pUq1W3bvhc2lr8fI1tYeCGwSe7h/ix7+zfHEu2T4EF/s3ndr/JZz7zGbzzne/ERz/6UfzMz/wMPv7xj+N1r3sdfvzjH+PYsWPbPn/69Gn8/M//PN7ylrfgr//6r/G1r30NDz30EGZnZ10t1ccffxxvetOb8Lu/+7t4wxvegM997nP4pV/6JXz1q191tVQfe+wxvO1tb8NP//RPo9fr4b3vfS9e+9rX4sc//rErGxTIzSP7DUi37dmtLxaJRJDJZDzntiQSCRw9ehTZbNbtrcCW3dPtdlEqlRzQSX2hQUK1Obg/ErBX4Jptpl1BXcvzLDKZjMMNut0uYrEYwuFLZV6z2SzGx8edD6f6h79pi0QiERcMVFvH6jmC6PvlbCnVJWpbqLCvzE7udruYnp52wZFyueyC5koU4dyoHcVgCMdMy/mxpI4tM2eD47wO52RiYmIbkMxAPEkq7XYb9Xod6+vrWFpa8gDuKhyDfD6P73//+4jH4xgfH8dtt93mbE5ek/Pc6XRc/fXJyUmXTU6bQYMzFMWIrP5WUgJtXJaOe+qpp/CNb3zDMeoPchmXQHYvVwSinz59GidOnNjrtgSyx0Kjf2xsDJlMxh02QRCbynJzcxOlUskxW/XQkFGFmyuBbdbnmp2dRTQadff3cwD1GqFQyLHXw+GwA9Z5QjMA5+wSOKfS1NOg6SACWwrHL3Xneok6kddTOKaM7kciEWSzWXdoJhVFs9lENBp1dbdrtZp7j85stVp10Wqmhe83A9MKlR0DMky52ml9k7Xe6/Vw9uxZPPvss0gmk5ienkYmk/EEJK6FEETZ3NxEoVDAhQsXUKlUsLS05IJLN5OiDqLeN05uVl1OUA3YXtpEGZi6L9vUbft8W9Y3nQ17yKV+TgOV3EsJKIdCIbePqmjJDRuA5XXpOCQSiW2MWBryCtDqoaX6WQ0mqJPE++iZIrFYDGNjY0gmk0ilUp7PWnCObeIh4dyHNUMMgGOy07nSs0o0YM6xUgaegtjKImef+JoNXltHiWCh2iT8WwFzLTHH+VEmuYLguj+zHQw4dDod1x+dJ7LsNXvABlS4hsjg0wPSFFRg4IJ91HXJvmiNcYL7um45/7TFdG416KKiQQWtE8/7KoCh65Hzxr5rpiJ/2G794Xf9Al9ksZGRxlRwDdBwjjlHlkmv7Hdd537Pu86PZXAyw7JcLqPdbru22PJyFA0cKYjOcePY21I8+n3NIrHBCw0KcU4s61/HdxS53kz0P/7jP8av/dqv4dd//dcBAI888gi+9KUv4WMf+xg++MEPbvv8n/3Zn+HYsWN45JFHAAB33303vvWtb+GP/uiPHIj+yCOP4DWveQ3e/e53AwDe/e5347HHHsMjj/z/7L15kKTrVd75ZGZtudfeVb3e29IV2mzDWCBLYAQeWxowg0ZItiJsYxs0itFojEAX7LAYGGvAwAgzCtlho7FihISCMMgRBIEV1owl2UYEICxzbbTfq7v03l1dS1ZW7llL5vzR83vrybe+qq7qrq5ebp2IiqrK5fve793OOc95znk/pN/8zd+UJP2//+//O3Ddj33sY5qdndVTTz2l7/7u7z7QMxymPKq6/H5JvJ4PW9LpW2c1AAR6AI416Oxtt2d8He92bWmwrBd+c6FQCOQz1j5+tGeESQrktnQ6HXQ5IDr4QaPRCPaIZzCR5cQBkM4ydjDdX6cPuKfrUerUt9vtHWeFSIPBQAKQbl85COpt9aD8UYv3NzXFaRd9zPN2u90B35V5Qr1z/NuhoaEBkpjbQXzP9SsAtDPfXeIACK+xNtA/XMuBbITXpe0SLZRAoa2363++J92qQ379+vUwv8CUCPh7IJvAvJMLXL96AMiJAV4yuFAoDGSI1et1LS0tqd1ua3V1dSBY8SjIsU++f7kjEP2lL32pvvu7v1vveMc79La3vS1EeY7lwRKYPdlsVi9/+ct18uRJ5XI5TU9PB8CUjfm5557T9evX1Wq1tLCwcGCWKxHlUqmkJ554IgCOs7OzIT3bN+sYOOBAr16vF6Lh7XZbZ86cUbfb1fPPP6+LFy9KUkhvLhQKmpycDCk4OJNsaDiTbIitVutIgHMHQFySWFj3UlBqmUxG09PTeuUrX6lSqaSpqSnNzc2FdvZ6PdVqNV28eFGtVktXrlzRCy+8MMAwqNfrunTpkqrVqvr9vk6cOCFpGwR5EKXfv5UyVqlUVK1WdePGDd24cSOkh+0ma2tr+vKXv6yRkRGtrKzo+vXrmpyc1Hd+53fqla985Y4U+8OWjY0NLS0tqdVq6atf/ao+97nPaXV1VRcvXtTVq1d3GKQPuxwr7Psnj6ouT8qqiRnXkgaMf68t7aCZtF1H3dlbDrqh/zDUAfkAHx2ETdo34nmMc0J6LTqOlFj0KZlB6LyNjQ2trq6qXq+HgChgZtxW7su9nYWNc5fNZsNvgu8ErGH6AgrTrxz+lUqlAtje6XSCwwSTx8FYruvgAI7l6Oho+HzMOAYABpBwB5B+cyCe50f3kYGFDgMA8PvzPJ7SyxzodrvBySVV2AFIDtgaHh5WsVgM7Doy5GDKbW7eOkwNJ4/nYz1yP4ID5XJZuVxuIJDBvPG+5mA2Z5dvbW2FlON6va61tbUdoDXXzmazwTFlXDyDwMFibCxsL57BGfjO4GeMPNgEeOKOuQcsWq1W6DOCRVx/c3NzgGXX798qS7KwsBDAH5iNsNhgInoWgrSdAeDggQPnHtTyOQt442zySqUSnO1r166FbMubN2+GsXBmf7xG6Sdnivt6SwrkQTJJEg9GxJkQzEsX9q/byWGB6LVabeB11pDL+vq6nnrqKf3Df/gPB15/4xvfqD/6oz9KvP4XvvAFvfGNbxx47U1vepM++tGPamNjQ8PDw/rCF76g9773vTs+A/CeJBx8ODk5ufvDHYE8qrr8fon7knc6t+Ogtcvw8LDOnTun+fn5AXIb5Uu73a5eeOEF3bhxI+gK1z+7iWf/0P7h4WFNTk4ql8tpcnJSp06dCsAmQX0v0UZZLcpbonOGhoYCAEr5qUqlEnQ9+hqmu2eIj42N7cjSq9VqWl1dlaQQUEin04HshN7q9XpaXl4O+yt9OTIyEuY5bYrB3djeQodyHWep+7g5EHuvZGRkROPj4xodHdX8/LzOnj07EPzsdDpaW1tTp9PR4uKirl69OjAnNzc3ValU1Gg0VCqVdPny5YDtEGxNOnyePdVZ/ID2zAfPxgOop/8I/mIjoYNzuVwIjFSr1UDa8zJBECOXl5dVr9fVbDb31ceA161WS88995wkqVAo6PHHH9eJEydULpd14sQJFQqFEFBg3WCTNxoNdbtdFQqFcOg489jtkkajoWq1Kkk6deqUTpw4oVarpRdeeEFra2u6ePGivvSlL6nRaGhlZSXM1QcxY+tO5Ngn37/cEQr0pS99Sb/2a7+mn/zJn9Tf+3t/T29/+9v1jne8Q9/xHd9x2O07lrsQZ5BNTExobm5OhUJBs7OzGhsbC85Iu91WpVIJpxkfFBR1Fvro6KgmJiY0PT0d0rLcQdtN/J4oXZQ6zGCcWwAEDn10VhbXckcWheP3OCoWepKzdTvxzyV9xzep221YOKTMgcnJSZ04cULz8/MDLMl8Pq9WqxWMGpxRnMj19fXg3ADMkPIVMxzvt3ifAFi0Wq3w21P+kwQgKpW6Vdc/n8+rVqvpla98ZTBOSFfbja16J23lb5xZyrY8++yzoQxNs9k80PUfBjlW2PdPHmVd7iCf/45ZyexfgEWxQ8Xn2C+dyeyOWlzD00F5advx9X2D+yTtRzEbGEDY2TfFYnGg9ieMVwcmAd7i5+T+DhLyPjqW++RyuZAqTMDaWczen85kx4ED5MQm4V68DxMdsNWzx9DbjCf3w1ZxZpHX6nTW9G5ZaD4+/Paa+F4GBoeePnNH1hnoztLiXg4oOKDMXMOBhYnugRoX2gB44GVFmIuMiTuOPr94ZsYP4IFAkvcb8zoGUt3Rp01epzZ+Pmd40QYfJ2dg+przH2dLOyDvoHasf8my63a7IRCEI++BNS/rw3h4RkC8Pvw171cHZADR2+22Op1OOBiNzMpmsznQVy4xy521zH2ciLIXE91Z9M6slTRgH3tGhQc46Pf92DWHBaKfOXNm4PV/9I/+kd7//vcPvLa8vKytra1A5kBOnDihhYWFxOsvLCwkfn5zc1PLy8uan5/f9TO7XbPf7+vJJ5/Ud33Xd+nVr371bZ/xXsqjrMvvl9xLEBVWOKQ22OGwv1utlhYXF4M+Ooj/GPucgJ25XC5kkhEcZn37fgKI7iUustlsYKz3+/0dB1ni/2ez2VDujc+4PvO9xgPrfj/eZ1+WFDKKCY6z54MLeMYAwWyCAogT3DwwnWTv3Y7t75/dz+eSxDPqwWhc57fbbWUymRAYx95xHUMwmWxr7D3a5vrb93b6xQOU9F+c3ej3RKc4sQEBePcydG4fe5spU7oXoc0FfUrwZWFhQcViUVNTUxofH9fW1lawVRk/J5fQZv6mXwjM8KzYdBBJIRNw73a7HUh59Xo92D2Pkhz75PuXOwLRX/3qV+uDH/ygfvmXf1mf+tSn9PGPf1zf9V3fpSeeeELveMc79MM//MOamZk57La+6MWNeHdaJe0wlCWpVCrpxIkTKhaLOnPmjM6cOaNsNquJiYngBHu5lEwmo+XlZa2urgbW1e02BxTs9PS0JiYmVC6XNT09rfHx8eDk3Qn7mo2XFLK5ubmwieEcAio4g86/z0aZdP8kpvi9kDhVyJWbp3LhFPM3KUgxIwlFCBAMi41oMe9tbGxoaGhIxWJR2WxWMzMzmpub0+TkpGZmZjQ1NRUUIAZRq9VSsVhUtVpVqVQKRguR2rW1Na2vr2txcVE3b95ULpfTxMREqDfKc91vQdlubW1peXlZFy9eVK1WU71eHzhk5XbS7/dVq9V05coVVatV/f7v/76uXr2qUqmks2fPhhp9BIq8TNFe/eBrFbboxsaGlpeXA6vgueeeU6VS0cWLF7W8vBwi6MdyLIcpj6ouh1njey+/WUfuOPqe4MCfvxZLDNzFABROnDuI0iDoxT0c9HI2KQxZnN+RkZFdS7N5eY5+vz/gVEnbtcfduXHGlgdcOYgJZ9sZ3VwrZnw5qBmXVkEXS1I2m1WpVBroZxwXF08J9jJzcckJB6IdZHfwNQ4UOMuM73MoGeze2HZxZhY2iLPaAGC9r6ampoK9RW1Ozmoh4AGYms1md7CD47Fxp5ssAWwF2ozzh6OKo+e16t2+wm5wIN3BjE6nMwCiewCBvnVQm/ns/Z8EkLvd5p/zueA2H0A0LHTAgpjFzbrxUkHMDUCb69evq9PpqFgsan19PQSmqI8bPw9t9dI2cZDK54Vned68eTMcolatVsNY0E/0R7y30H8eHPI+9H0iXmsw8GI2pe9VfC4G0PksQYSjtumuXLmiUqkU/o9Z6C5x225H6Ej6fPz6Qa759/7e39OXv/xl/cEf/MGu9zwqeVR1+cMmgMfsCbEPDcicz+c1PT2tycnJHb4ggfP5+XmlUik1Gg1duXJlX4Aj6zqdTgdbIZvN6sSJE+G+lFtxcNSDwsx5BxilQdsolUppampK0vZ+4gFaaduPJ1gJ2Y2svXK5HPY0gvMebJW290iAc2kwiMselZR5QQaf6y/HEPjb7+nAcxzIZd939jVtYr8nSOt94vYnbR0aGtL4+LhOnz6tfD6vU6dOaWZmJtho6GOwDpj+HsjH1wULaLVa6vV6gfwgKYDGHnDf2NgIn/XgBvaW6zrGhDHzuRLbADCy/ZBQxpdr9ft91et1raysBN83JpzsNbelW4fAwmTv9/u6fv26xsfHdf36dRWLRRWLRZXL5QGmeTqd1sTEhHq9XlgHjJsHbAj8gJE9//zzev7559VsNnXhwgWtra1pYWEhtP1RA9CP5WByV/UIhoaG9Ja3vEXf//3fr1/91V/V+973Pv3UT/2U3ve+9+ntb3+7PvCBD2h+fv6w2vqiFk8j9c2bDdUVGE7SxMSEXvKSl6hcLuuJJ57Q448/ruHhYeXz+eB446jy+StXrujy5cthg0iK0iIOBM/Pz+v8+fPK5/M6efKkisXiDtbOQQUnHsUDsLuwsKB6vR4Ukf+4ooQZiFI8KiDdGYdIEvMKcAQwZHJyUiMjIyqXyyoWi6HGV5yORnoSKVOAJZVKZSClmhS8yclJnTx5Uo899lgIcExNTQ04WMViUel0OtTtvHLlihqNRnAI19fXtbS0FNgTMzMzoY0oowcBQJc0kCZ//fp1feMb3wgHsBy0DEqlUgnp7pcuXVIul9Pc3Jy+4zu+QzMzM3r88cf1ile8IgBDnia4V3+wrprNpm7evKlWq6Uvf/nL+uY3v6lKpaIvf/nLWlpaCoDLXuvwYZfjqPf9l0dNl6+vrwej34EqL8vh9YRjMMWzdHyO+Zp2VjVgX8zi9HvvtR8AVLt+d+FMBtKyAc+TQHScolqtNpBqimONwwPYiC7CnsjlcoEVVywWB0pd0FfYDrQXwFVSAJElDexbgJn5fD44ipRAAXDwvpO2dZ0Dyw724cABMtN3MXtdUri+pyo7W9oPbXQgnPbgVKITva95Phxk+m1mZkbT09Nh3Lycy+bmrYNXyQDk+bDhHOT0fsnn8+FwVwIeOPbDw8Nqt9tKp9Oh76rVqlKpVMg69KwAzkpxtiAATiqVCn3vQR8HFTygH4POtNkzMfh+TH5w9qEDA9g5OP3UFPeyN0kgiBM4aAv9DYiwuLioYrGoZrM5EBD34JuvcQ9Y0BfMK+YyIP3a2ppqtZparVY4y4SABEw876M4SOdtx87djR3pwLgHmpjvHtzydcnrvnfFgSU+ux+5Gz3uz1QqlQZA9CSZnp5WJpPZwRBfXFzcwSRH5ubmEj8/NDQUwMDdPpN0zR/7sR/Tv/k3/0a///u/r9OnT+/9cEcoj5ouf5DFdTrzF3+u1+uFde+fLxQKoezE3NycZmdnw54AAEqplVQqpenpad28eVPLy8v7ykT1oPXk5KTm5uaUy+U0MzMTzlBhH4BF62WlRkZGgn7wPTUGTVOplObm5nTq1Cl1u11duXJFlUol7Nv43uyfsY8OeYvsIMcjIIe5HiYY4PuTlypBH3INQOhsNhvajy6CdBbvmdL2nu+gquus4eFhTU1NBd8cnQAJiqztdrs9ADh7sD+fzyuXy2l2dlZPPPGEyuWyZmdnNTc3p1QqFewi6sB3Oh1VKhXl8/mQtYaO7Ha7SqVSIVC7ubkZAu2bm5uh5B5YA+NKcNwzjgjAu13oAQMv/8IYuh4Ge3DGN88PiM7zXL9+PQSewWr24+cCwjebTaVSKV26dClkSkxPTyuXy+kVr3iF/pv/5r8JbWfcZmZmQpCKTIy1tbUw37GJyajo9/v60z/9U33jG98IJWgoeeZBkkdNjn3y/ctdgeh/8id/ol/7tV/Tb/3Wbymfz+unfuqn9I53vEPXr1/X//a//W9685vfrC9+8YuH1dYXpbhTzyKP2TDSNuPZnW/KnXAYJGVPcGbdweGzOB9JqbFJbUMhj46OBjbPYdXJdsYYaTo4uKQ5xUEEaZB1uNt7Ryk4MLTVD3ChTmqxWAz13cvlcgBkYRz6tQCIieDyGRSq34eINBH5+AA3+oboKwx2B024r7PfKRlAOwBTkKMG1H18MRAADVqt1o7DOJOM3yRxxmMqdStVnlrpqVRKxWJRy8vLARyB/bVXtghGR6/X0+rqqpaXl9VqtbS0tBQyQarVqtbW1gZYlI+qHCvs+y+Pmi53FqUDYtLOEiquMzH2/X+XGET0H64VB0uRJNYpf7Mvx8xTxFOjXZfjEPh+w2fcEWQfwfmNS1W4jmIv91ImMYDnbLT4Gf1/Z7o5wIqu8M971oA7vTHrPGlP3G0ccPLizyY5a86ySgqGOAOM78ZBj83NzYF09mw2G7LpALydXQ9AHAOYDii4w8pccGacl3NxtpnPd2eLA/zjjJOZ4XYfARfaGetzd7y9P5L0/m76K2nfd5vPx92DRJ594Pf04ImvCV7zeU8dfIIOgD1e/92DYFwbO4C2e0AFW2NjYyNkGLTb7VDOxYEib7ffx58pLq3jzEjvO7+er6WYNRivd5/LzHcPKO42nrvJYYHo+5GRkRH9+T//5/XZz35Wb3nLW8Lrn/3sZ/XmN7858Tuve93r9KlPfWrgtc985jN6zWteE0obvO51r9NnP/vZgbron/nMZ/T6179+oJ0/9mM/pt/5nd/R7/3e7z1wh3k+arr8QRbWpM999grWLvsJa5ADwckkYu0DJHqpppGRkVBG5SCEL9pCtpFnbfv+Snud+BXrzViP+DrNZDIDZ4j49ffyy/kds3h9T4z3M9//4gCk62lvn7/uZdv8GX1/BLtgbDyg7Ge7lUqlkK3njG/0FEEMDwhzL77j13NbDRvQ50ISHhPvlwRyU6lUaEM8Xt6fcTk0v6brFOzHJDsvySZkLrgdi50D8z/uK2/bfsRtQD9Ednh4OAQcqtVqwKPAqBgr2kHwiAAS5ZQajYaazWYocVutVgPu8WLICD/2yfcvdwSif/CDH9THPvYxPfPMM/r+7/9+feITn9D3f//3h4X4+OOP61/+y3+pl7/85Yfa2BebuCMLUMpm4KC6tK0YSHuWpJmZGc3OzqpUKoW0bAdG2SC3traCgweQPjo6elvwbmxsTKVSSWNjY+FefijJYUkqlQr1X0dGRtRqtcLGHqfd+muwl1AunqoUOxWHLSgvGD7OwBsfHw9pdmfOnAnMm9nZ2cBiIOLMmNEP/X5/wJms1WrhoJfFxcWQPgybhnnD4SUOoDvQALCB0eC1UKVBA2p5eVnf+MY3lM/nQ5vGxsY0NTUVovL3un9jQVFTwuX5559Xo9HQCy+8oMXFxdBfDlSlUtvstySwZbfr37x5U//5P/9n5XI5/emf/qk+//nPhz52higGMuPnRgQp9o1GQ6urq+p2u1pZWVGlUlG32w0H+rwY5Fhh3z95VHV5o9HYUeM53o8AtaRBx1dKTvNH4iCZO2DuQHAPrk+fehCb3+y78b35HumpnDnimUqZTCYcREYmE20aHx+XpIFUX3QSbWSv536wcOJ62HEZGALB7KkeJGA/xTlx8NuZ3s5scsfPmeL85n133pxU4P2FeLo214IwgGADuf20trYWHHQfXwcIMpmMxsfHwxjSDkD0kZERTU5Oanx8PDDuRkdHA7t6a2tLU1NTajQaoR20BbDbD8iCUYbedbsndo69TF+lUgk1VTkgjHGoVCqStg84w8ZKpVJBl3tJmaTAMH3EuHrww9eAA8CMu8871gHvw2xbXV0NjPparTbAsqa/6Y9YhzsIQltpO2D3tWvXNDIyoqWlJd24cSPYXcx/wBJnojMHaFe32w01zznQlVJKjUYjHHRMX8Dw8/5l7HifPqH0Aq9jt8TZGP7sgPsxcB/3i48Pr8dgVwxM7SZHCaJL0pNPPqkf/uEf1mte8xq97nWv00c+8hFdvnxZ73rXuyRJ73vf+3Tt2jV94hOfkCS9613v0j//5/9cTz75pN75znfqC1/4gj760Y/qN3/zN8M1f/zHf1zf/d3frQ984AN685vfrN/93d/V5z73uYFyLf/L//K/6F/9q3+l3/3d31WxWAy2Ngfo3S95VHX5gyYO5LLPs+eiX1i/lOBg7adSKU1OTmp+fj4A481mM+jtoaGhQP7p9XoBZKXcqt9f2nvNcX9Kd25tbanRaAzoDGqx4wfhI7E3uc5FZxH09UBdKpUKhL0YTMe/irPKJAUAM5VKDRDG8vn8wD7U7/eD/hsbGwtZ2x5k9YwogGvKcqRSKbVaLdXr9YFsfWkbMAYnyWazOnXqVMimR69DbmPv9kwqSeHcrc3NzeDfoYPx2Zkj/OYgTn/fgyr0ESxzz8Tyce/3+6pUKnrmmWc0NjYWzgGh/dhbjAmAMAGB3UB6nyvuNzO/+E1gHruKrAH0X6VSCSVYYHSDzbh9eDcCHpLJZPSNb3xDKysrA1hHPp8P5wIyNk5YgHyH7UGZl8XFRa2urg74C4+6HPvk+5c7AtE//OEP60d/9Ef1Iz/yI5qbm0v8zNmzZ/XRj370rhr3YhfSXwDliKol1eNy1g4pOeVyOdSs9qh3zGghMgqAjmNMmZfdFgX1WXO5nMbHx8NpxweJmO9XvMZlsViUpKAI4tqNngoMU5oNcTcW2mFKHOF2I2NoaEinTp3SqVOnVCqV9LKXvUxTU1PhZGnGAda9O7DS9jjjaDebTW1sbIRDKNvtti5duqQLFy4M1LXnALrdWE0xky1monNvSUGRc9J7Pp9XqVQKDrh0f5joGCKcnr22tqZr166pWq0GYIbnwrDyPt1rrksKCr/b7YaTuxmbTCYT1hoBBa9x70Zku93W0tJSMCA5+C12Xo/lWO61PKq6nJRLZ8PghDrjmcCqM6P5HTurSLx3OhDGXur7vjQIirkuI72WfYl9DJCT9gPMkrVULpcDC4zP4eTk8/lg8JMqLWnAacBx4LnRjYDBAAHYGR6sdt3gIKgDfIB8OCMepETHbW1taXh4eEcQHKcMFhf3xgGPs/GSdBpj5t/D8WSMGGtn/TMnaCvP4oxg2IGAKLDO0X9jY2MhmBpnlVHjlOciSwoQgTR+xqdaraparYbDrpvNZqgR7QCGz1H6DXY0gXZsIUCNTCYTQAU/fA07kLnujG5nVcbC+85i8xRtzxz0VGhfnzw/bDVACD+M04FhSBtxlgBj73OZsaSPKPuGneufhb3JuEIswL7hHhx6D9BRrVYDaYMySkn2JtdivXmKvpMafA/wgDxt8L3M74EfEINe7AVkSHgwJg6UMIa7jff9lre//e1aWVnRz/3cz+nGjRt69atfrU9/+tM6d+6cJOnGjRu6fPly+Pzjjz+uT3/603rve9+rf/Ev/oVOnjypf/bP/pne+ta3hs+8/vWv12/91m/pZ37mZ/SzP/uzeslLXqJPfvKTeu1rXxs+8+EPf1iS9D3f8z0D7fnYxz6mv/t3/+69e+DbyKOqyx80cX2Xy+WUy+XCXsuexDry8kkE/igbRUCOrOp8Pq9sNqvV1dXgE+D/x0z0/azLVCoVfPOtra2wj0rb56OgqyD2eOkL9uV4z/T9xPcdsAna5YFBAHxsEAB5SpFmMhlNTU2F/Y690TO12GOl7ZI5gMXohLgcGO2SFIKbDgy7nUaN+lKppJe+9KWhVj1jfeLECc3MzOwgT3jGFs8L4A9wjP4FpKU0D2RFDwR4wFS6VbObZ282m7uWJK3VaqrVaoEkQMbixMTEQMYDeqvVaoVa69hNu/nA6H8vV5r0GUh/k5OTmpiYULvd1vLyshYXF1Wr1XTjxo0QHKeMjtt/d6NnwEPoi0uXLg28XywW9dhjj6lQKKjRaKhararf7we7utPp6Nq1a4HUgDyIuu9YHhy5IxD92Wefve1nRkZG9J/+03/SX/2rf1XT09N3cpsXraCA/UAvNkYUlTPYnOHiB4HwHj8AhTiqvO6RNzb5OGU2SXAMSVd2B/ZeiBsvbOZEZT0F2xm/RDu9RptHPWMG3Z1KHBWWtllS/X4/gB/Dw8M6ffq0Tp8+rUKhoNnZWZXLZRUKhcB4YpzdcUdgFNAPgAo4/xwUhkOG4zwxMRGcdBgGHlBAUeP8eb/GgtKHhbW0tKROp6NCoRBq6mH0ef8elsTOIoZdpVJRq9XS8vJyMCi2trYCYE5pGxxXSSH67w61r6fbtcGNSOqcbm7eqsdP/Vnmqke56WdP5X+xynHU+/7Jo6rLne202xxBD0o7Dwl1HenCnulgViyucxEHyv3wRq/h7QCk7/Exyzjee5yJ6gyxJHGgOdaFPJ//Rj/c7nPOtHPn0p/Lr+F/x9lO/mzs70lpydwDIN/HxK8dp0jH/SppAKSkXxgHMsm8NiuZAKVSaQBEJ2WYTDLYdUn9SZu9vJuzxHu9WwdgOSguacAuTKqV7XOBseBe/j/tIUiADZhKpQLY4u3z8XaJGX3xPExaQ94WxtoDJrVaLQDn9Xo92CMe6AHwoX993THOMbgerwPaS/CHgBH9j50UZ5W5zqd9AAMeRIr7iHvH+028Z3ibfX0gfg+31329eF/53sIc8jZ4MJD2xsHC28nd6PH4+fYr7373u/Xud7878b2Pf/zjO157wxveoP/yX/7Lntd829vepre97W27vv+g2hyPqi5/0IQ90bN2fR15NrbvxYjvVfjzTozzYCVrmaDjfoR24e94hhvr3GuJs++iI9GBrp9in8gDoLQZvw+/c2trKwT5k/Yp19FJZED2bm8HQU58e2dkuz3EPkgGlqQBIh19XSgUgi6fmZkJZ30BArsPDjufeyUJr9MflHdDV4+MjIRMNOyDONvP+xrg3Q/Svp30er1wRhrBfoIlnF8GSzwuvet6inY4A9uZ6D7f4oAJmVkw6Gu1Wgji+KHs0napwniOck2e/aAS99Xm5mY4xB3/W9pm0uOfP6j7+1HKsU++f7mrmui3k9/4jd/QT/3UTx0r6wMITCc2+HK5HFJucNAAKL3chisfP6DElVfsgPPe+vq61tbWtLy8rGq1Ghg/8cncscQnft8rFnpS/2Sz2VAKg4gqGzGgKGUxiO7ygzOGI+eAyd0A6e5EAiaPj49rbGxMJ06c0Ete8hLlcjk99thjOnXqVEj3Jijijs1eTitGDeA895uZmdHW1pbOnj2rWq2m9fX1wF4jcg+QwKnWGGkw2RuNhpaWlgIgnRT19mj/c889p4WFBU1OTqrVamliYkJTU1M6efLkQKr/YQdXeP5WqxVSp5955pnQ9osXL6rT6Wh0dFRTU1MaGRnR1NTUwDwlmABbcWFhIbD+YJXsty0wLUhNrFQqA2CVNAigeJ28F5vSieVYYT/48rDpcthJgGCuHxwcikF0l6RyGThgu81ZHCFALL7nbDKCmUmMau7rQV5+KNPmLF6ejyAoWVcEknk2HLjYeYUVhnNJn9AXXr8biQFo3qe/cMQlBd3m+523n75hH/bUXgdWvR8AtGHi+yFYtMXZxbBtGTd32qTB4IQHZbk/Dj3l7jisjUw8Sndho8V1VL02qjPk+v3+QPu935Bisai5uTmtr6+rUCiEMjNOovA0bfqw2+0GOzDOKODezCWcRw44pTwB4E6hUAj2CRIHY7iW96OvHZ9bPscc9G42mwEwWFhYCAdzVqvVEAz34IEDOG4HSwogDmPrpYi8TbSVeeNlBhy8gbwQ62s/oI6/42BPUqCOeUGbfQ46EOSgvu8RrHHmagxO8V0H0T1IFO9fcVAM8M3JGreT+wGiH8vB5WHT5Q+KsGeMjY2FwClZ3tL2OQzsU71ebyCwRobT0NBQINyUSqVQmgTA09ceNZgp6eVt2U2y2awmJyeVzWY1Pj4eiFUAkhxMzV5Sr9clKbCXfT+lHAq6kL2KbCj3qyntCpbQ6XRCBh2AdtLZENhF6AOITdIgwErWu6SQCRyXpWI/BL+gZCaB4fX19XD2xejoqKanp/XYY4+FvuIeJ0+eVLFYHNhz/bBMD3B6Nh+YCYEU+oZn5ne5XA4ZaDFgLG1jGJVKRZVKRbVabYBFv5dsbm7q+vXrWllZUS6X0/z8vPL5vM6ePav5+fkwphze7Hu7E0fAjeg3n5foK7fBfJ6urKxoZWUllFRdWFgI76Ob0K9k8DmphB/3y+9WOp1OKNfmur5erwc9uxvL/8Umxz75/uWegugvts48DHEGlx8ICRPdQfQ4Yu0OAc5szFTjs/xm48cJjyOFe40h6WwYFPeShe4SOxMAnh69jZno9KG07TTfq/bSZzjepIlRZ+3s2bMBZKbvDvPeuVxOpVIp1I+r1+tBYaVS2yd/e8Te08VwZndjojv4Xq1WQx+fOHFCkgIbwedoEhvtIM8U/+9gNGyDlZUV3bhxQ7VaTWtra8FgYu2QWh87/kShq9VqCFAcdG5g/GFEtdvtA33/xSzHCvvBl4etn2MmLga/s4y9LIkD6DEbFLldgNidK77nTgH3cxAwfl8aPNzP+92Bau7BXuZp1jEbPQbHfT/mGrE4KOttSWKg8xvbw/vU+5zXnGnlwWKeyZ/BS9vELFl/HkBoZ9U66O5sXgervX8dMExqix8OCmBQLBbDeTOA6DHTHQfNAxsOMHtNeQdcmT9DQ0MBDPBgB5+L2WMxKJs0t3xcaZPXCQUMTqfTA+n8jCNj4vf2e/ra83vzmzFx1jr2WrvdDmVsYKNvbm6GPsc2duamS8z8TApqxQxrZ91J2xmdPj5ebsXvRbAiLpOUxPDbLYjAnPP/4/Xl9rgDUbsxPLmfn3EDCOLAezw+0iAIRBDodnIMoj8cctzPdy7oGQ+WsrbY+x14dlvDWbbspZy54LYI93BSnJcYu514hrgfKOrrE8IWPouzs93OYZ/2YCf7Nu974C2dTqvRaARMgXNPYiY6e34cBHX9Jd3avyh7w7N54BIGfxKDmkBurL/cDiuXywFkJiA+NjYWzrcCJO/1euG54r2YMY3tPrcx3CbDpvHSbr6v9/vbB3FSH59a6/tZu5DLCODAOu92u+F56DfIhug9t+vcBoK17naj9yXPwrMyr/DFOSsErCYmGlC+1gMqnA9wWPgIQa1jub0c++T7l3sKoh/LwcU3OBQhitbLubjSkwYPsvTUmrW1NXU6nVC3LZVKBeYTyrnT6ei5557T9evXw4EPzoZLEjcmUNRHIc4OkrYPTOt0OsFQcKXtZVyceYdhgBEQgym3A1FjR8p/u1P9kpe8RBMTE5qbm9Njjz2mXC6niYmJgZI8h90/sA4zmUxgwruD1W63g4KtVCpqNBpaW1vT5cuX1Wg0dPPmzVBqZK85gMLEwb9y5YpWV1dVq9XUbDY1NjY2cAhenLIYAzJJ13eDBZAI0Hx9fV3Ly8thzl67di0coubKGaaHp9Uj9P/w8LDK5bIkhfl0u5Iuu/U/DBXWKoftSNtZCjAlSHvbr4F8LMdyLLcXHFoEx8T3e1/fvte5E4e4kwurOc4a4rvOsMbJRk/iFHpJl5gVHwPK6CyegfJZOBqwrAiOwloCkHQnyUFi2st1YH35/fiss4jZw+hX+s9Tqx00BFgApPRggLcFveDAtYszeZ2t62ME2IlD50QDguixxMB1zFqXbun0+fn5UM/25MmTO2pa05+edRD3tTOEuWcMlHoggL7EweTANdeJgLhxnXVYbehdJ0c4SMuYYhdhI7jjD2HCbU/ahe3nZUScVBE/n4PxONYbGxuqVquqVCpaX18PB5Exli5xEMlBDN73gIiXVvE57MxHB218riWtERdAJUq4Ja0BlzjQ5M/kNpqvO29XEuvfxykJBAPk81rDZIfsJnGQ6bDt1GM5lodN2HdgMrPvseb5n31Y2q4Tjd3APg35aGRkJAB7rDl0+fr6uhYXF1WtVoMfj+zlL3BIKQcuQ47jO5ubtw57jIN8/FBuBKA33gvcVnFwHX8bXAH9A0iMT+lBVvZOAqO+D/O+35s9kcNa0ffSdsCZg9EBc2kH9k0ul9OpU6dUKBQ0NzenkydPBmwF8Htz89a5FtgBPIfXlO/3+8GWc+Kj92dcDof9nTPnYM0zXyCkMT+q1aoWFxdDtvVBAcrNze1DTl944YWQ0UWWmZcmwk5jDjGfec0P6KZ/sBnAAJaXl0MtePxoDlb1NeHn+nAf11UekCCTYWNjI2BTdyvYUmAwBJQA++82IHwsLx45BtEfEPFIay6XC+U3AOOIkOKgeXqmNMhEJ8K4uXnrAAv+r1QqwRnIZDLhUI92u61nnnlGV65cUafTCRvJ7YS2AvQfBRMdBw5ptVqh9rWnKrvj6uJONW12h9mdK+4XSxKAjrNHdHtqakozMzN6zWteoxMnTmhyclKnTp0KDJ+4lulhCkqx3+8HY4KDY3BQAVq++c1v6vr16+EgDsqjtFqtAQBgN4HRhILLZG4dsHnlyhWNjY3pscceCyfRT01NBeMTkN+dszgKzvVxLgHOq9Wqrl69qna7rWvXrunatWtaX18PdVSZ4wQyTpw4MQCCuTgQNjk5qWKxGFLoML72Kw52wG6YnJzU7OzsgCEK4E/dOlKzX6xK+zjqfSyHLaT9Mrc8sMre6Kx0Pw/BWaGIp7Kif2NdJG3vJzgnsMyy2WxI1/ZDvp09TXvjYLC0nXGVTqfVbrcDGOaMMtLG19bWAnjeaDQGynoA+nntbWn7UDAYdDFjx0tCADx6HxGMjx3tuEQZWU9e0oXvAHoCNMRrOw6+OmNrN3E2LUEM+tKDA5ICay4+ZJOybOfPn9fk5GQo5zI0NBQcRdpEn+bz+QCqug5bX18fANljgNnnEP3Ib9ha6HNSrbHXSP1HFwIu5PP5QK6QNAC6+nxn/vD8ADz1ej2Uq6EcmgMHccm2TCYzwHTzueKsQObZ6upqSNu+efNmcNAhfQBGxGxt+g3xPmRtYpdR3sftbP5mfPx9n+/Y1mQh+PwDAMIG8kwLLyHjxBb6KAamveSDfza2a5NsWu7jtq0HDBkzD+7EbNlYPFCxH7lb4OFYlx/LwyCjo6MaHx+XpAGA2s+bgrgFG5w9kD0bELvRaCiXyw0EQdn/19fXdenSJS0uLoZ9VLr9OqPkGHs1fhM6l30+nb5VWo7AKLqQ86UAXN1Wcd+KwICTqSjZAnvaM3J38yfZo9C1rkfivYdgBfswfZlKpQYwEgDSarWqmzdvqtfraWJiQqVSScViUd/yLd8S6p6fOnUqlNihnAd/E3jnXvFh0dgV6EwnGZD9iK7xcjDlcln9fl/tdlurq6vhbA2yr65fvx4IaVeuXAng+kHJVhsbG1peXlYqldLi4qKeeeYZDQ8P6+TJk5qZmVE+n9fJkydDf6EfPKAAqYDxYA41Go0wX0ZGRlStVnXt2jV1Oh2trq5qdXV1wFbxgOzExITOnTunfr8f/PZUKhXwAcrRSbcO4s3lcuFQ1cMA0QuFwkDJ2aGhoVCKhrJ2L2Z9dOyT71+OQfQHSNxhwEFJSvnmJ05l9fQaaZCtQo1Hd0QBTNvtdqiDfpBNyp3jowDQEXd23OFIYiwhzn6KnTEcX38/joAnSQy20Pejo6NBWZdKJZXLZRWLxQHw5F73l6cFAsoAHjnDCmVI5BhH/CBKBCMKAHtkZCREn2u1mvL5fKiphmHmrKk4HZu2YXTyQ9vq9XoA+vmNgYLxyjry0gl79TnsOWm7BMNB+xuDk5qDjP34+PgAiE7/ZDK36vMDrnm6/4tJjhX2sRy2oOtclzmzE4nZ586S8u/E+kNSAM9ixnscGPQf15nogZixmyTO4IVZDosLB43Xcfb80GIHaJPKN9CW/ex7zgB2RnP8k9QH/uxJrGvvx93GywFG16Vx4NvZbG5XxfrXv+f7NIw3wNN8Ph8OACeQ4uBsDOK6+P9Jzxr3QxJITPt4JrfzvCwfQCy6xD8bA+dJfc77XvKOeYf9Qls9IOXgPwAC14nv6Ux6/8H+xHZ1Jme8XuLxc4nnl5MjWMOAQDj4fg+u4aQTCBBch4CXA/C+j8T9GgPjgO5InKXBZz1zwEEUD4rsxipN+vF+8L7aTfZrCx6D6MfyKEu8P/hr7nfHepWAtesJzwqWNLD3oac2NzdDVtFB2+mAp++l7tfGfrDvUf53zESXBg9lT9L5cbbTXmubvYi9j3a6Xx/v4/6Mfj/u41mAfA72MSXYOGiTOvAeaPb9Ng50x88S6yQPfEuDthX624O1kPckDQR9+YnPUjmIuB4hgDM0NDRQX77Vau0IiCNxGR7a4IeQ8zkCSh5IcXvaQXSAenAJ75u4fxk/v99+hXnipZIgOVAxAIxA0sBB7k6quZO+f5jl2CffvxyD6A+IsNGy+ROVJcrJoR/UeI4ByLgWpUdCe72eVlZWtLi4GBi9bBKePlSv1wcY3fuR+xWxi++JsSLtZP6wEZJ6hIJ2UBkANFbOSQ63GwcxS2lsbEznz5/Xy172Mo2Pj+vs2bPh8FCUxf0IOJDNwKEmExMTkrbrhDmQvt/aa7HQH6SdDQ0Nqdls6vLly6EmOfXJiXzjmMaBEa9VDtODIA9AOsC6syP42w8gox9u10+Mux/2dztlQrtHR0f1kpe8RKdPn1apVNJjjz0WAicwQuijjY0NPfbYY4F998ILL6jZbOrSpUu6fv36XTujD6O82J73WO69uAHs65s92B0MSQOpu3yHz/pBgOjIpKBtDMJ6+jK60nUVa93BsySH1l9zhwbAlH0RByAut+Kgot8fYe9MArvZO/cK8BEcpB/p69g55PnjEmPxb2fs+v1TqdRAarqUDFjjOJVKpQBK8DrtJOAA+wx7KpvNBucKthpnmYyPjyubzapYLEpScBT7/X64Dll+Xg92a2trgAnsc5Bn8YD3XoQAJ0I4wx3WuLP9nSBAOrr3s+tNntltSq8nzj18Xfg8wT71s178sM3YdpK2MxgYW+q3AqZASvDrO4nEHVwfZ9YiQS7Ggs92u93QpqS+4EBVstkoB0d9Xn+euMzcxsaG1tbWwrjjjMeAhvczr7FfxMG1OKDkgR/ft/jtAZSYNBH3G3/H84p2EZDbjxzr8WN5FMVLuKTT6QBGlsvlkO2EH+PrCb+PWt7OymXPYP8mI4c9rNe7VYf7oLKxsRFITNQNlxR8kVi/sgeyJ25uboaz2PCLXTxAy3pnv3YCUhwAjnUYn+EHMhSfp30wudn/IQuy/3LtarWqlZWVcNArzwpJaW5uLpxLNj8/H4Bkz5aLSRfx/9zPx5z+8DOx+LwHWZNsOEnBT+QgbbLAXZ8dpvR6vZABPTw8rJs3b+4oTTc1NaXx8fFQDoaDcLEbwQpcp6P/8MsdR8DuQ8fAYM9ktsvEbW1thcNT+YxjJnHQeTfxgPHw8LBOnz6t6elpjY6Oqlgshqy6ycnJEKzC1nn88ccDe//q1auBVb+2tnaoY/AwyLEu35/cUxD9b/2tvxVOAD6W3cUdVwBAP1QUx8RTk92RkDSwWXsaDg5MtVpVo9FQo9HQ0tJSSJd1A/9hWTQxy0caBEFdIXr0GEeNvkI5u0L2jVtKrl3p4AzKEAOlUCjo9OnTetnLXjagrJMYVEchHvHmuYvFoorFYhh7Ishx+t1BhbEA+E6lUlpZWQl9ilOazWZVKBRCWh6OKcrSU8AwKoiix0aWf8/XR3za937EFbc76bcD0XHwH3vsMf2ZP/NnVC6Xdf78eRWLxV3HnetevXpVhUJBa2trajabWlhYOJR0tWM5lsOUh02XEwBzZrDrBmkQZPfgaszaRqfiQHgpknh/cKcPHSwNZi05G5TXnREbM3di3cw+2O12VavVAmMJgNTbDGOa5+F3vCe6s+KMbfbC3dhQrif9oKg4UOEBAWfnoaedeZbE+vF+8bRqF3e8GQfOpPB+p50OotN+dBKHhJL2TE10nLDR0dFgQzC+jN/Q0JDa7XZgWjGnAIS9re6Y0z5P3fe5Qt/xjAgOvB9ARkDF9SM61MEBT9HHzvS2wWwnSOB1eV0ymYzy+XzItiPFe319PdRXT9KjMVDv5Yn6/f4Ou9fnlrPguHZcVpDvOQPc7+mAkJeYGx0dDeUBTpw4EQA0ru/rmb+bzaZGR0dDKnq9Xg/j46CTzwlf/wTYeQ4PdPke5a85YOCMctYXc4a9iHXgwULaEwchWIucO3Qsj4Y8bLr8QRBKhOBHdTqdQJyitIsL6wwyTzqdDvWc3S7AL6We9N34X0hcZ1u65f+hu+LAHmsd3YEudHKZpIE9M7Z7fJ+JbQvXJ/zvRDdJA4Sp+Lvse4DevV5vIGDBtclQLhQKIXje7/cDjjIzM6OzZ88ql8tpeno6AOiUtfJn8X0xft3JX77Psk96P8Tseg+cOogsKcwR7Di+4312GNLr9VSr1VSr1XboSvTlmTNnND8/H+r3EzRCJ/lZLJQHcj2G/x6Ptwfp0WkEOZrNptbW1kJ2Nq+z5piTe0mMC4yMjOjUqVN66Utfqlwup5mZmVDCKJ/PS1KoxoDeT6VSunTpkjKZjNbW1kJG/cOCjx3L0cq+QfQvf/nL+77on/2zf1aS9OEPf/jgLXqRim+SvunEr8XsMN8E+ZvN2x0oSYmG890wyXFGPG38XgPFSZFcj1zG7Ch3zOOoOY6lM3+cpc61YxDdDSB3WijhQboYjtf9AM+ThGek3v76+romJiY0NTUl6ZYTedBSLnuJ948bbtI2kLO5uTnARHcQwQ0rBxFiJpw7hRipScbc7cQdbTf44us4qDUyMqJcLqdCoRDGn3q4e7EIAEZg6KdSqfBdwI4XC5h+NwG8Y8Pm4PJi1eW+HlnTAJ1JTp2D6B5UQ3yfTJqH/j3fBxyoj9vH97wdvMZ+EF/LdXksMZtqrz3Rn8fbHJeE8WAA7Yn3Od8/d+sT708Hij2wHbcv6fl2+7vX6w3UaueAZwcCHMT0cl7ZbDZkTfnhYbQj7iu3reJsvhj4TtIpfBe95+PvAHHcZwD//E6q9y9tA7nOcI/bAJju7XOwnqBDkuDk+oHvONgw6xgXJzx4cAMCCUEbPudn1zB3fA4hcSp6TA7x9RwHvvg+ARIC/T7+MWkltqcBVrhWzBD3NeRjHM/z+LNuz8b2TlJAzAN0cTDR52W8nvnfQb6DyN3ocb5/LAeTF6suP2pxQNkzwj3zLAaJWXv4n+zXZCTFuvmw5r/ve/gnEKj8nBVpW18R/HUiEc+NuF5ICogn2SCuE9xn9306aa9xO419m4BDKrWd4eeZa24LwbL2zDIPkvJD4DK2b8A0yGBCD1GL3e2V2G90IkBSJnQcWHeiG+eeYAckHdB9mOLXdPuSEr+cTwIojg3ih8+S8eD2Q5KNw/x3shyvSxrQd+h7aZsk4CQOtzmT9I4TX0ZHR0PAhOfkmtJ2KSVwA8a6XC4rnU5rcXHx8Dr8IZFjn3z/sm8Q/Vu/9Vt3GJ8ubhC/WMCfw5YYJE8ynuP3XNk4mOyRzPj7hyEomnq9rn6/r0KhcCjX3c99ORjMgUYYzu4o+aFPcbo7QC0sOJQ9isD7LRY3FrhXsVjUS1/6Uk1MTOixxx4Lh4gS2XwQhPEfHx/X8PCwJiYmtLi4qNHRUV2+fDmU+0FBHuS6/HaWljTIIKT0SjqdVrVaHXCm4z6KlSXGEMyOuPwA85GxiWvr3W7eY5Dx/BhCHn13hgIKeGJiQmfOnFG5XNbLXvYynT9/PqR+7jXutHt8fDwc4OYHvt64cUPNZnPfY/Awy7HCPlp5MenyJCaP7+/uLPK88QFf0k4GqQdSvR/dicxktg9YxBnCkaW+I06HH6jlQJs7Zq7PaJ87ca7341IRDlo7wOqgnLOmAACdfeaBSncs3XGi3W6XuJOIY8/fPA9MV4KggAzs6b734rx7/7gTzLjwHJ1OZ+DgLN4HZIcRxnWy2WxgH09PT2tiYiI44HyPdqXTt1L2sS8oX8KZF7CeHAjweee1cDkADnE2lTO2aPfW1lbIfuMwLmn7kNytrS11u92QuYDNRD/4PJEGbSgfN+wswPAYMOHzTqSAkdftdtVsNnfYo2NjYwHk8P6hnAsHovtaA9B2dloM3DCXGQvWCroc1qHXjkcKhYLK5bLGxsZ0+vRpzc/Ph5T9OBDmaz4OzK2vr2ttbS1kHbCOaAfzxu0mX5s+P1lXcUAhSWJSge/d3NsZqPEe4MAFfcV1fZ7sJscg+tHLi0mX308ZGRnRxMREyGwC7BwaGgr7CPsfLFppkL1NiVaA7a2tLa2tre0amLxTcZ9rfHxcp0+f1vr6upaXl8OBpgDb6C1KXKB3HSAGuGafcNIcAKXrBPfpisViKB0KGOv604FRD0J44NRtJz/rBRJWfAbIxsaGVldX1Wq1NDs7q1OnToXsMvfzAaspS0K5EEqYkK0Pkz2fz2t8fDzoasrfsK78EHHa6EEMfhyk9+z5Uqmk+fl5dTodDQ8PBxA7iVBwL8QDAIuLi1pbWxuYSz5v/JBUxp2sjDh4zDVd/2cymXBOH+D8xsZGCORwFs3W1pYqlcpAqVlJO9oSlxciIJHP5zU1NaXZ2Vn1erfOIGg2mxoZGQlZH1ybIAkkipe//OVqt9uqVCq6ePHii0o/Hfvk+5d9g+gXLly4l+140Ysbxq6w/L0YrIy/4++5YZz0GnI3Ex4njbpgRyFsyq7IcUy9thnGDU6pM7BiR8aNUP7mvSTnwb8vKaRpj4+Pa2JiQuVyWYVCYaCG2IMiqVQqOKLpdFrT09Oh1A+AD0DKfuZGPMek7UwIl92YkrcTjB6UIgwvghPOLHO2BYapO6V7gdoYAzi7sUHHM2DMcc/R0VFNTExofHw8/BwkaAIwMDY2pvHxcZXLZUl64ObNvZRjhX208mLR5fHeLg2yOgGKYoBd2i7t5MyrJBBir/nn93HGEfsMzhG62Vltrp+SnMzd9pgYAOU7Dsjtthc6YAmo586pt401G9sqziqK7RMHA6lt6ow270vYbbGj5sFVD3B4HznzDz2Aw+z7agxqugNGaRIP3NJ37ljyPDHADrMJPeV94Q5gPEYcVBqPIXqIw7lpv9eJpQSg61kywHDw0e20w9uFDeX2Ylw2xgELn0eA+DDIaSMgumeI8cM9uQ9rhfXiQW30OwEw7IA4wOPzM7Y5+B6gdkySgCEKCx1dnGQvx3uKpND/XAsWo89Jty32svGT7uHrh8/GgLivcQdP6Qu3mz1QyFzwdetrZT82zTGIfvTyYtHl91sA9ijbSQkOX9cQa9Bn0mD9cM+QZW+4V0QZ1tLo6KhKpVIAitfX1wfOd2FPQFcB7juz2/crt0nQm16nPNb56FLaxH7kQftYXP+5D+1luPhM0qGXgO3ch0xhP0vObbE4mEo/UbLHS9wUi8UQkPb70T7mgpczIRjp14/1Viq1nSE+NHTrLLGNjY0d2VX3WhhvL+3qY+GZAF7WEHHfHBuSMYoxKS+vS5/wd1w6ptlsBhIkbUIPJp3V4/Y9pVuwRbzUnbRdftYD8yMjIyqXy+p0OrclxD2KcuyT71/2jdScO3fuXrbjRS9x9JfN2H/7T5LTGjub/LhS9Gvd7WSHcbO1taWpqakdDJt7IVtbW6rX6wMHocbijtFegAN9HTurOBfuqLvQd0SnAVJnZ2c1OTkZWG+Hxfo/bEFxjYyMaHJyUqdOnVK73dbs7Gw4FIsoe5IA+g4NDWl8fFyFQiE4+el0OhxUCtOCg0YPCqI7cECqtKevJxltKFQUMHWDMYIxStyIQtHX6/VwuM3k5KTK5XKIZrvx1+12Va1Wtbm5qenpac3OzqpUKgX2yZ1IOp1WoVDQ9PS00um0rl27dsfXOpZj2UteDLo8dpZ8r3BQ2xna0naQkb8dTHanj7/jA/xg0zrjCXHAlf0Lx86BRXdgHfRmP/aSFgQ9HQjzupNSslHrAUGcUU9vjR1/t088u8eDmA7+O0AJQO1ZAXy20+mEGtKuH5LA7aRggjPLcepw2ng+AG0OvaJvt7ZuHYLd6XQCAIoO4/+4nIn3aeyAOzPfn9+dfgeo/TtJDrmkAYeUzDbSzLe2tgLQD1MdHeVgOw59Op0Oz8hvgGPK0RWLxXAv5hLMOa/x7QEXz36EzUeb40BDnDLt/zuT0eeeB8k9AyQWnp0gOkAKtWthgUoKddudSVgoFAbAFuZQUjDO2ZZui/NcHExKX8ZBuSRCy/DwcCIg4HsVz+77Wxxc83nH531dJIHotInffN6vcywPnrwYdPmDIF4bGjCOdR5nh7jdIGmH/vIDRl0fHZasr68H33htbU3VajXoQBj0yPDwcCB8+WHLtMnLv/CMHhCVtoOrKysrqtVqWl1dDbq40+mErGMP5Hu2uPcbEoPavOZ7H2QtD0xyHfzFQqGg2dnZEBTnen5N9IDbZrDy0a30iduAsY3lektSOBfE+9sDEtJ2xk8mkwlMd2yK0dFRbWxsKJ/PD5yDczvBLiLAns/nNTIyEmq2k1XGteLAayy85vMAWwJbybMufZ7wjDDNKfPmvrx/x9vi2WT0b7FYDOQ1sumwl70MarFYVLlcDucYxAEh7ysnOzCXsHsymYxmZmb0xBNPqN1ua3Fx8cDnFsR4w7E8WnJXdMevf/3runz58o7SDz/4gz94V416sYkrLhxzPzHYlYVvGp42Ezv67uT7355WereKu9VqaXFxUY1GQ3NzcwNpP4cNpNPWjY0NVSoV3bhxQ9VqNSjAO70mStxBhCRn14W+KxaLyufzKpVKOnHihB577LHARj/qCPJBBANkdHRU8/Pzymaz6vV6Onv2bHjuarW664bPAR25XE5PPPGETp8+HRzzdDqtlZUVXbt2Ta1WSy+88IKuXLmyqxK7nVAaBWeflEju5UrX676yFkhtHxoa0tTU1EBUnbWEsq5UKqpWq8rn8zp9+rSy2azGx8fDKd6so3q9rsuXL6vdbuvMmTM6d+5cqIl+J2NOeyYnJ3X27FmNjY3pueeeO/B1HlY5jnrff3nUdLmnhTrI5cBv7PjiHAJ68bqkAfAJR8AZuc6g9YwZB8F53wOCgJm8B2CJLgJcjK/DAWFecoG2uuPmwGIcjKdPuKcfSulMak8ndtCR7+MMo4sdxHfw2HUp9ggBV5hy3MODCFzLiQJcm1qX7OMA234YJqVNvN9Iu2bvh2HoJUb8TBP6iHZ7kNlBXsbdbSDmlfdZDLw4McIde0AP2pTL5QbIEhykNjIyEljgzAEHMrAXSVcmxZznpLwb6diMO30CQ56+o32MD/Oo2+2G5wNIcta5HxLGeBBsckDF2YcEGQBimCOI28/MQ+YV9gOAF0AK405fS1KpVArl1chkjINxjLcz5ZjXzvDM5/OamJjQ0NCQVlZWQuq67ylJdmYSeJSU1Udf+vViwT9g3VO6IQad/DkAHLxk1H7JIHejx/n+sdy9PGq6/EGQbrerlZWVAVIPhw6XSqWBNRyvaddn7MeUpvDSkYc1/zudTiiBMTU1FfZ8mOZ+2DPEItpCWTXXRTHGEB9Avb6+rmazqRs3bmhhYWGgVBbMX+wi/Db2GS8v5fus2y3MYydESIPZcm4XeBB8cnJS586dUy6XC3uf6xC3BSjbQjkPPhN/1rP1fM9Dn/X7/WBnxHaPEyH4PPcsl8shuJvNZtVoNCRJ4+PjIXDj54rtJul0OuiyQqGgs2fPKp/Pa2VlRTdu3FCn09Hi4mIoKehEkt2yLX0OpFKpUKYOxraTGdwXT6fTAVznAN319XXlcrmBw7q9jBjjTzkd5tLw8LDK5XIgqnhJpVTqVh335eVldbtdlctlTU9PB5JB/GweAMf+cLsLuzqTyejcuXMaGxtTpVLRU089dWAQHfstDqY9yHLsk+9f7ghEf+GFF/SWt7xFX/nKV3YwIaTkgyKOZW/BIXGHwJUDAJ47Ju5c78ZAj68lbW/gbEDckx++d7vFgOOayWQGDpe4F2x07wfqfDoLLO43adsA2M+i5rnpz5hFFn+WH4AQAN4H7TDRvQRjI5fLBaW2V/tROkT4c7mcJiYmND09HZxU+q3VaoVr49DvpqR3EzdGna3pc8zZWDj0ziBDMWKw+anuqVQqnCzu9VMBZ6g3CzvPDTBSFOm3mLV4UMExx5B7GObPYcmxwr5/8ijr8rhsBL/dqXHGmH8vBo6cJQ6o56xYB8J3A97i/Yw9LYm5S7scHE/6Pvrb70k7XA+yf8Xi+2T8kwR+e5/5M3lGV5LE7wHUeS3x2F6hb9128d/eH+6Eu1PIZwG/U6nUAKPL932eza8R22TMAXQBn4kZ+N4uvpM0J5LG1e0W39/iOcL/ABLO7IqBfJ5N2g4w8TkceWfjo8udjYezT8CA4ADtju3IOFATM6p9LsTzIw58+VyI56vPmaRMSwfrAZ7pQ7eh+ZzbP0ltc0naJxxo8vq7/nlf1z5OMeCS5BfE1/H/PcDk14ntZL92/Blpe74eRL8eg+j3Vx5lXX6/xf0IhLWeNO/jPcn1WKxnfS26T8N1knTBftqaSqXU6XTUbrd3HKzpcwM7xG2aJJ83bivXQbdyLz9A1J/dgwW3exb/jLeVPTvWM7GeRL+h06j13ul0dvXnXW97eSuCrE5O9D6Kx44xcIn1RGxj8BnsTMqQAFZz7oqva7+WtG23EjjGfy2VSioWi4G0MDIyorW1tR1BXf7ea2zifna/lXmQ9H0nQsR62g889/5zkgrjAyAfn4+Cnq3VaiEg4ufR+HyN55Pbsz4fGFdKyXLOy53Iw+bPH/vk+5c7AtF//Md/XI8//rg+97nP6fz58/riF7+olZUV/eRP/qR+5Vd+5bDb+KIQFAHKiA3fU1J9sbsDzvfZmPgO38dR7Xa7Gh0d1blz55RKpQJAKCkcOtVoNHTt2jU1m82BKHCSrK+vq1arqdvtanFxMUQkJycn76q0RSz9/q0aXa1WS7VaTYuLi1pYWNhxgFbcL6QPEUHeL5guaQAU2A1QHh0d1YkTJ3TixAnNzc1pYmJCpVIplAN40CWdTodo7tTUlE6dOqVUKqVGo6FLly4NBFO8HMq5c+f0bd/2bSqVSnrpS1+qkydPBoMlnU5rdXVV8/Pz4RCbdPpWiRfm1UHbGKeB7waio6hxgtPpdDDsUqlUODwExQ+g4hkIRPBPnjwZMg1gmGOwjY2NhXU2NzcXUv+8zu2dCMbfvQhCPchyrLDvnzyquhx27V57uDtIrjfi4HLsOLu4QQ6LBlA5dspi9pHvZ/1+P+godFoMfvEajhJM8X6/H5wuabscDGWnAIxxbr2Uhj+3l/9A73MvfnP92Al3HYsD5E6lr3EOcup2u1pYWFCtVgtsthiM95rScaCcIKj3ife1Z9+Rrg6LPOkwNxwvZ/LjyDGmvIa9BrDCs8K0Q784I8sZ6fFBsqlUKjj6sM0Ye+4Py9uzJaj3CZuQ+Vuv1zU6OhpS+/3gLWekF4tFTU5OamRkRDMzM4GJ7oeZwuJznUoNdBcPXADieKo064F+8aB0/D6vOWDiNd29L9129gPbSOH3g2G9/wFEsBE9BT7OpvD1zr1c9+Bww87zOu7j4+M79pIYOJO2yS0OmsfPx3xnXu7Wdw5SOLjhGXhxuRZs5hiA3S9B4BhEv7/yqOryB0EcRIeJzp7caDQG9CgZUdQ8Z+9kbXo5F2pv9/v9sF8Bfkq3yEiU8vB9/HZthWC2vLws6VapKuwO9KljBR5w9P2CZ3V8AWAxk8mo2WyGwxppaxz05v9WqxXsCt/T/bMxcO7i+yE6kWfhdUmB9Q6+USgUQklOL7fG/gspwsFzPuMHmzcajcAOZzzRcdJ2wNf3WRe/vvuw6Cz6sde7lTVWKBQ0MzOjl7/85Tpx4oReeOEF1ev1HfYoxLepqSnNz89rdHRUMzMzKpfLymazmpmZ0djYmE6ePKknnnhCrVZLf/iHfxhK8XpJnP1iJLGN4rYef8Pm7vf7wVZwUh1Afr1eH7CdfS74XB0bG9OZM2dUKpUG7CpK6FarVTWbTaXTaU1MTGhubi7gUYVCIWRZcFgs6zUOeMTzlswRSuEcVOJgwMMgxz75/uWOQPQvfOEL+g//4T9oZmYmbAbf9V3fpV/6pV/Se97zHv3X//pfD7udj7y4cc4GRf01HGKMXwfbSBNxQxsn3FleMK7GxsY0Pz+vXC6nEydOBOB0dXVV9XpdS0tLarVaQcHuBT5jCJDqViqVQl1JHPrDAAPpi2q1qrW1NS0vL2tpaWlgc8Jo8L7xg7CSNsq97ue/Y0H5jYyMaHp6WvPz80FpYaw8DEJkd3h4WOPj45qbm5MkXbt2LaRfeYkeIrunTp3Sn/tzf07j4+N67LHHND8/PwAc1Ot1zc/Pq16vh5qzlUpFKysr+wbR3UiJAfP4t38eRc66wJD1VDzaKiko4+HhYZ08eVLlclkTExM6ceKEyuXywGFhSDabDdkXk5OTA6e+3+14vBhB9GO5f/Ko6nIYtS4xCMueIG0fYBwD27HRzL7vTrG0zSbFMQS49X0pZgA7aO/sZmfmSNsBctru18IZ4DBE6VZAnPRfDqjiujhoXlYDR4JnRW+yD3ntbPSqO6z+fWyVOAXb+77VamllZSWkFa+trQ08M2OwF0uJ/mX8hoaGlM/nB5xTxpf2AbLiFDHuXJdn9PGNwUp/FvRLnLbszGOAe9rgZU6cGQVYyXex4RgPSWFMYBXyHQBxL+dCWZJWq6V8Pj+gy72Wb6lU0tTUlEZHRzU9Pa3x8fEQkEilUgGMILCCvScpACbYYB4UwHZijsbBFL7DZ31dMJ4xiA5Zgr6IU6R9PcPey+VyKpfLQYfHdqCzDJ2JzzjRZn47CzFmVY6MjCibzYY9gM9xGJ3PJQ8gIIyLzzPvM+aElyB0FqPbNTyrr3vmnDNRGQOehznmn/e+OJYHVx5VXf4giO9z0nY2D/4lWbeSQpCW0o+dTmdgT/Wyk+yrqVQqZPxMT0/rxIkTkhTqjHPQ435BdPbDlZUVdbvd4N858OzZwU4s8mclM5ZgI3sWQVaekZJscWDV98fblcHYL4Dr+3BMcpC2yWGQoDgINpVKhbFw8BR7we0xbBAP4jMGANyxHeh7q++XrgtjkJ75AMbRbDaVSqVCHfNer6eXvvSlwZd+9tlnB57Vy+ScOXNGr3rVq5TL5TQ1NRX8UoLs6LVms6nLly/rmWeeCbbqQfARSQPkM4gZPn6uh/z6lFbhTDtngCcJgWky/s+cOaPJyclwLl4mc6tm+dTUlMbGxrSwsKBer6dyuazZ2dlQkjWXy+0IGnugJBa3uSkPFx9Au19J8iOO5dGRO7KMtra2gsM2PT2t69evS7p1yMkzzzxzeK37/+XatWv6W3/rb4X6Xt/6rd+qp556Krzf7/f1/ve/XydPnlQ2m9X3fM/36Gtf+9qht+MoxB0zlCyRazau+AfnMOkHJ47NtFwua25uTidPntTc3JxmZ2c1OzsbXpufn9fc3Fyo9XY7BgpKrN1uq1qtqlarDSjUONXqIOJsejZNWGvOBpO2DQdn3sROzmEJShanh+jqwwiAuvNF+hhp2/4sOO+kxlECxg8o8/RwrkVZFIDng0rMTkj68fdippfPC+YG8yNO/aYfeHbP9KCf3MjiPdbanShYFwCeO1XWD6vsNq77/TmWO5ej1OVHqcedbe1gNveJ5068ppGY5bnb3h5fM74XAJ/rahxoP0DJ9yScWWdUEwTEqYC1BtuKn/h/QNO9ADHa7PaHt9cdCz4fs3Tja7EHe+kWz5BLAhOTxjIeQ8Yk1gF+f3dYXZ/FICV7OoEUDzLEznB8D9cZ/v147kka0D9+LdfBXgYk1qvxnOLvpGwHPxjVA83x50hVzuVygYmN/o9LvfDjTO2kgLbPjSSd63OI+RHbbF5izW1fXwe+nuLrZjKZgfZ6uZr4h/c8+yQeY88AiDNckn587cZj7IE6l3g+70YkcDvK7V8PSsT3jO/tQYvd5pnPt/2AAHerx491+d3Jo6rLHxTx9RXrHAJ8XposDjQjsNo3NzeD31UsFjU7O6v5+fmQ2Tw3N6dTp07p7Nmzmp+f19TUlMbHx5XNZvflY7KPwnZvNpuq1+shUBbv47EO282nI3hAMBo2+lEChUk6H8lkMioUCiqXywE8R9zG8QPU/boeZHD7p9/vD/RX7A8mZUz7no6ujm0mv4frt9g+3c1uQ/cBOAM6x1nbTiQYGRlRqVRSPp/fQTY5qMR2Tdx2PuP++H78+lgPe4aU24zYAoD5ZE6QhZ5kXyf1c2y7I+BPHEz/YpBjPb5/uaPV8+pXv1pf/vKXdf78eb32ta/VL//yL2tkZEQf+chHdP78+UNt4Orqqr7zO79T3/u936v/5//5fzQ7O6vnn39e4+Pj4TO//Mu/rA9+8IP6+Mc/rpe97GX6x//4H+uv/JW/omeeeSaUK3lYBOZsHLXs928xUTjkyd/je/zudDra3NxUu91WvV5XJpMJkcmTJ0/qL/yFv6Dp6emBwxBhjy0vL2tqakorKyv66le/qj/+4z8Oh34lLQ6UwMLCgur1ukqlkiQFhu709HRwOvbLZuFesM+73a4uXLigCxcuqNvtqlKp7NjMMEyknad8H+aiTqUGT/6enp7W3NycxsfHd9TTfBgEBUvaVyqVCoZxv98PKUxDQ0MaHx8Pxt7s7KzK5XI4AZtrSQqpcxxcurq6OsCy2s94OAgO4wqj051JV66uIGOn3ZmeXNfv46w+apwnASk8pzMxqtVqMDJhoxxUtra2VKvVdOPGjXA4yotF7kbxvtgU9mHLUenyo9bjHO7JOvcSJTGTmj0dVrLvUQ4owbZJcoicpea6zllGGxsbgT0Ni8nZ3uhyBxY5DAvnJ5VKhTRdssk8YAkTfGNjIxys2Gw2tby8rH5/myHrz4Z4ULDRaIR2bmxshMyymGntIEJSyqof4EmJuEqlokqlEoKGu4Ho6XQ6MIjZ39FFsROVSqUGUq8ZG0pvxYEJB+MBnXG8i8ViCBAT0EwCrZk3XIM5586ijyekhpj95HXtYf8y/gRB4lIfzAU+j/NISRjY1ysrK6EvsMNgTA8PD2tyclLz8/MaGxsLutzHcHNzM/RDuVwONVVJO49L+MT90+/3Q4q1M/8ciCbL0terjzlj4Oy3pHnLczIWjOPk5OTAPPLPYlPTn86Q5zNxmScHI6TtEk+eZbC+vj5wYC7jh8Dq9znC6x7Q4T0AHFLhaat/10F7gC/+jucjfU1/kfnh5XDi8kW3k7t1oI91+d3Jo6rLpeSzAo5SYj/Ey0pR2oosW4JynjXkWSiUQU2nb5WdKBQKmpiY0Mte9jKVSqVwzhT708bGhpaWlvTUU09peXlZ169f14ULFxL3Qhe3OzY3N3Xx4kVVKhUVi0VNTU0NBOO8LEin0wl6zA9jxrenpGqn09HNmze1tLQ0cCjpUche+1Eul9P58+d15swZnThxYofuwdfyrH63+RyUBUDd2toK2X5kV6GP3R9lr8VuQ+ejp902xGbhkFkCEuz/MOGRpDkPQ565MD4+rnw+H0qoYSM4qNzpdFQsFvWKV7xC1WpVzzzzzB35m/QZAZU4gxJ9R997NvhBAi4eOKY/3Z9vNBrBzsD+2dzc1LVr14Ke6/VuZUACqjPP0+n0ALjOc3mWwOLiop5++ml1u90jneP3U4598v3LHYHoP/MzPxMUxj/+x/9YP/ADP6C/+Bf/oqampvRbv/Vbh9rAD3zgAzpz5ow+9rGPhdcee+yx8He/39eHPvQh/a//6/+qH/qhH5Ik/fqv/7pOnDihf/Wv/pX+p//pfzrU9txrcUMW1tbIyEg4EAPDN65j6tFANhnKwQBgTkxMaHZ2Vo8//rjm5uZCDVBpO5pZKpW0tram8fFx3bx5c8Bx26vNjUYjbOarq6th45uYmBioRbkfYQGjYNrttiqVihYXFwObLW7PURpWzkgi3RkD5GFLe3UHm2chku3PA7PL2eXORHdAhoNNJIWDTWq12kDds/0C6cxrnDr+5n3/rEfBY0ZnUuQ7Fp4xZhIk9RltwIjxNOs7FeorHjWr437LscK+f3JUuvyo9Tj7M3PLgVMPonmNyrguI8L7ceDNxYGmOPDGnuQlXnDg+AHkS3Lm+A3g50AobCvX5QTEh4aGwrkU2BHcey/gGuCS4DoAIm3crdRFnB3mwHe321W73Q61z3EcYyAw7nfvL5hGcd/5GMTPwnigR7hG/DkHoWEnDw8PDzh8ScETZ+x56jtgLIETSWEs4/Ia7ojTj9hwZBzEJASfizHDnO/QPn9O+tTZhcViMQSASbf2EjY+R8fGxoIOBjCIx4HvsWZivehsPV83SWPpJfkcuI7Fn1/aLs3DT1ySzQFyxoh1FgfRYqampIHSCnGmCvMVoNw/wxjy3NzLx5Nx98/6M/prfIe5xHygn3kGJyXwHt8hgOdleWKA/xhEf/DlUdXlSezd+yGsV/craA/kNc9qdX/C/RH2NN4vFouanp7WY489psnJSY2Pj2tycnJgf7xx44Zu3rypTCYTarDvR9CxqVRK1Wo17HWzs7OhPrq07fuwv/EcvAawm06nw/lkjUZDtVpN1Wr1UPyfw5Lh4WFNTExoZmYmkAS9DBfAb7fbDXoinl/oasgXvV4vZGmj+5yJTjDS68dL24QNbEDX9dJ2/XrPTIzny177KngRc9EPAk96pkajofX19VC+Dd//TgV9FWdfuA3Ib8eo9qNPEF//MeudsQQMxw7b3NxUrVbT8PCwGo2GCoXCjiwRyuw5uc7vyf2azaZWVlb2tD8eNTn2yfcvdwSiv+lNbwp/nz9/Xl//+tdVqVQ0MTFx6Czcf/Nv/o3e9KY36a/9tb+mz3/+8zp16pTe/e53653vfKck6cKFC1pYWNAb3/jG8J3R0VG94Q1v0B/90R8lKmzSrpBarXaobb4bcYOVyBd1PdkkUITurLuCbrfbIfLWaDSCgzQzM6OJiYmBkh3OyJJu9d3ExIQkhdQxr4d5u3ZzyCipXrDZSBf2KKsLyr7X6wUwvl6vh2tVKpUd7J07lbsxyHCqcFRx0vygsIdRYE3EIIKDJc4G81pqsfJBsXrNP1f0B+lzDBlJYd7Hxgj3JKIMiITSi8GdJOn3+4FNwkFqlECIQTTusbGxoWazqVqtFvoul8sFg3Q/hq7X6F1aWtKNGzeCoXM3kjQXX2zK7VhuL0ely++FHpd21+U4jjErWBoEl9zZ2Eu/xVksDrJJ206ns4M9zVbaTsnt9XoB3HSQ2Nlt7pjznu+hcekPADTahRMPsL62thYAQwcLAQbiZ2H/BoAHAPcyGQ4wstfTbnSDZ8Wtra0FR84PX7sdkI6DSt8RHPExZIxwXl1PxLYG1+v1emHPJthbKpVULBZVLBYDOE5bKT/D/bBlxsbGgk0Q16SmXZubm0FnpNNpNRqNwCzmeXycPZsKAoXfl3mDriM4AFgM+5Gx8sCypBD0534ANh50Qt/7uTpuZ7L24rJ9cbDKMxRoJ+xsB4a9jJkDVd4v6EUHlukXGP2p1PYh4r1eT8VicQBc5p5OQvFxioNWZKX5vRhvn7M+ZvV6PZQeJCDia5sx9r52sMDr28fzyfv4du/vZoPEAFAcVDyWh08eVV1+P5jnuwl+AsHp9fX1EDhF/3nwF1/cA6McwMneXCqVQnASn5/9hr1hfX09AOuVSuXAZK2tra2QCcY+7OWtMplMuC97FnYK+yr6o1qt6ubNm6FETBIIeT+F/up0OonEKPSk6wH0q9tR7MnoVLezCJgQhEylUgHf4P6OV7DPo/89y9lr5fM6/iSZYJ6F7RIHxfmJ7Qra4Vl8SWVj9iv0lZPJeG7e5/4eCKfNB92PPDDspcgIAkB44HOtVitkwM/Ozob2UMuekodup0uDJf68HEzsQ+zVTg9aH8ujL3cEov/oj/6o/uk//acDaVmTk5NqNpv6sR/7Mf3ar/3aoTXwhRde0Ic//GE9+eST+umf/ml98Ytf1Hve8x6Njo7qb//tv62FhQVJCgdxICdOnNClS5cSr/lLv/RL+t//9//90Np4N+IOB7/ZkDjMAEcOYx5wz9k8vlniuALO4Rw+/vjj4QDMuFYYm2IulwsHLJJ658b+bsIm02g0dPHiRWUyGRWLRV29elXDw8M6ceKEJicnQ2122FUIaUaA8I1GIxx0iqOIkXKnm1PMFqLPDio4VqR3weR62FjoLplMRvl8PqSQj42NBdBEUjACR0ZGgrHLPHPn2SPTAMReM+8gY4ezydxDUXr6u6QBxhvtxGAEALjdvGG9VatVjY6OqtlsBkPGDQ/agiF89epVPf/88+GzxWJRo6OjKpVKO9hvSdJut7WysqJGo6ErV67oueeeu+vUyDi44M/9ICr246j3/ZOj0uX3Qo9Lu+tyX/PsSe7gOisXSaqPGWd6xTojnn8xMB8LzhYOAM42AVnazn7W6XQGAgF8hmAnP5IG9lecBkq/rK2taXh4OOxd7C9JtcLdQep0OsFBox4qB0y7A4gDxW/AcQLiODUxoMrnYoDS9bQHMhEHURk7AAscW29fOp0Oc8JfBzSfnJzU9PS0ZmZmNDs7G8rQNZvNYHvU6/UA8jg7nxRvt8m8tAa6EJ3BPKNPKcPjKdE+ls6ii4PH1Jf3OZTJZEIGQTabDYGUWq2mVqsV7BZPN3e2ngeJnciBDvfALxkG9LsDEQADzsaDxb6xsRHGyFPP0eVOJnH2IPOWOeTzg6BEr9dTrVYLQHg+n99BPEmqge4Bi3a7rVTqVpk7dDntg6FJW7HX6SvKIi4uLob14Ew87wvAN2f3+5yO+4U9I8kW932O/cL3O19bvt58DcJK5DtuV91Ojpno91ceVV0u7V2+46gFYI09x20ID0zDYiUQDojO2uTcktnZ2XDwIWWyyATzA6bPnDmj06dPa2lp6cB1rCmjlk6ntbS0pEuXLmloaEgzMzOanJxUOp0OusMzqTzoV61Wgz7nmdg7HqS1S6CCMiwE3ovFogqFwgAYzjNg73h5XABvypOiMwiScsgowHe/3w+BafAMtxvxRz0TC/3nJbfwxSmtRmlVdA76UNKA3vNzP4rForLZrLrdbjhcVlIIHqRSqYFa7wcVJw2gb7xKgJdyAS+IbZcY+9pN3A70kmZkEGD30HfSLdLI888/r9HRUZ0/f34AfO/3+8pms+Egei/PRJsajYYqlUrALpIIg0ntRL8y7g+rHPvk+5c7AtF//dd/Xf/H//F/7Kht1m639YlPfOJQQfRer6fXvOY1+sVf/EVJ0rd927fpa1/7mj784Q/rb//tvx0+FzutzjyJ5X3ve5+efPLJ8H+tVtOZM2cOrc17Scz68o3EgfSYxeNppr5x+W8UgrPNvMYhEcq9IoEY0s5E3gsUiIVNk2uxsZNyjsJx5k2/3w8Oph/iwO+4LulBJI4y+2s4ft7f+93QPaodp+8/jMIz+fP4uMfzy4GSOL3e514SE/0ggjJC2Tnz0R1Dj7bTLgcjbjeuzhQAQHDmJfOFtYjBgLEG4IIRDCM9Bn+4Fz8A/o1GY4fCPqj4GDijzOf3nWQD3Gs5Vtj3T45Kl98LPS7trss9+2SvfT0piO1t9ms4Y5rP+Tp1XbKbg4DzApjrwL4Hqx1kc6aXl9mIQct4z4jZprTHHUd+J4F1gHi+j8asbj8bgufytFlqsqLbHTCPbZgkHer6ezc96993Zn08xj4e3n84Z56B5QeqYT8lzUNvV+wc+lzx/Redhq50YNVLvfhYub3owZ+YAe5j7m1y0MAZ585E9wwz/+12pI+Xg8IOePO6O9JxECruA2e0SdtnCXhfert3Y11zTZ7JU+T9zAEPjsX97XPegxnxGMSss5id730W90ESoM4z0C6fX96/PveY9x4E8f6K14v3FcBP0vtut+zX/j8G0e+vPKq6/KjF17W0c17GdjR7Bvutg9D4IV4b268DOOhrjD1ZUtiHKcmKT71ffxyhnewRBFnJEAfEdT3htsjGxkYIwjoucad+ubc/xkJob9Lvgzyv77nsZUngbZKv5XsfAXe3AeKsN58vXDP2PWmT+5J+L7cjPCgfH+Idg+j+PG6r8brrWr7rWVd3On7x9WP95rYC948DTvu9t9vg4EE+X/mf9UYmAngUJV/obwfz/R78T0DdiYL7bWtsA+4nYPCg6b5jn3z/ciAQvVarhc6t1+uBFSXd2lQ+/elPa3Z29lAbOD8/r1e+8pUDr73iFa/Qb//2b0uS5ubmJEkLCwuan58Pn1lcXNwRCUecvXUUEoOuHlFMUlqe+sLrsH5gxAwNDYXDoSQNKF1Sr90RarfboRYpm1uSImbTgRXuabz7FRZRt9tVtVoNzKjl5eWBiLff3x24ZrMZNj4/LOygfT42Nqbx8fFwaFixWAz3xWmkP9bW1rSysjLADNpNHDyP2UMPq9AnPEts2DkT4erVq3r22WdVLpcDoOzfqdVqqlQqajQaeu655/TMM89obW3tjtjVPu9gBfqhINJ26r4Hj2BK7DfS3uv1wmF6/X5fFy5cULFYVKlU0vj4+ADg0Wq1dP36dbVaLd28eTOcAfDlL39ZS0tLKpfLOn/+vEqlknK5nEqlUljn0q209dXVVXW7XS0sLOiFF15Qs9nU5cuXDxwwcuPd6+HBbnBDDqOg1+sNMCLvtxwr7KOXo9bl90KPS7vrchjU7ig5cCgNOkruFLsD7PoHZ8x/YlDZHZn4dUkBoEN3uEPsTgnXYR/jGjHY6d9jH/T2osebzabq9Xoo8UZdVf9xFpY77jFbnYOX/dlcl7PPuHjQ1bPnPM04PrSUZ/KDvAG2uX+32w3Xpc56LICqnpbrIKVfk/NAkthS3n7e6/V6gbHG9bDh2Hu5Rz6fHwDpGS8vneLs5Bj4oM88KyCTyQRGluso5qA7stiNqVQqpF1XKpXQv5VKJRwS7jYcfQyIApuOPSMJ8HZ9jIyMjAz0eUxAiINUrvv9GZgX0mC5N+YsYxC3Fda/zzX0uWfNOYC8tbUVsvLiM4R4Pr6/uroayhysrKyoWq0OPFf8bLzuZWDoL+ZKKrV9eK1/3wEJd/yxXzwo5vsLc9fLNCTZ9jAa+/3+QEbiXnIMot8fedR1+VEJa8bPhiAI7D66z1P+50wpPzchlUopn88rm82G68R7GkScsbExTU9Pq1QqBUJNDMqSleZngjkz+aDEm36/r0ajEcBI3yu4lgPRsNB55jtdr9gVrtsJDsD0pkyMZzIllZR1G8z1Yz6fV6lUUj6fV7FY1NDQUDjvy3WutDPTK5PJhOCC22hOGCO4Pjo6qnw+P3CwONdKArqZQ2QleBDfs6XwxdmHNzc3Q1YZe7JnXm9uburKlSv6z//5P6tQKOixxx7TiRMnBny99fV1tdtttdttXblyRRcuXAjkxYOK41XYpa7T+Eyvt11RQdre4/eLKeG3bm7eOuDzK1/5ivL5fCjhwhwaHh5WvV7X9evXQ4lVbIOnn346ZJiPj4+H7MHJyUmlUqlwADjzSZKWl5d19epVdTodLSwsDPgPe7U1/hx7AFkFXtqNe3kZqwdFBx775PuXA4HogEmpVEove9nLdryfSqUOvUzKd37nd+qZZ54ZeO2b3/ymzp07J0nhkMzPfvaz+rZv+zZJtxy2z3/+8/rABz5wqG25U8FopRZXLpcbcFxxoFAUHin0CBsbuR8Kxabt0U6cWBwqwOKkshpJbAGieIDod8qMhQWUSt061CRm8sT3vdvoM8L1x8bGNDs7q2w2q9nZWc3NzQ0Axd1uN9RpZcMExNwLRGcDTIoSP6ziz4Ry8hpsMBEymYyuX7+u559/XuVyOTh4HhyqVCq6efOm6vW6Lly4oBdeeCGktx1UWAseefaadh5dd/bYQcHoXq83cOAd2RNTU1M7TvGu1Wq6dOlSyJZYW1tTv9/X1772Nb3wwguanJxUt9vV1NSUpqamAkjEHAcwr9frunTpkr761a8GY+agB5dg9GUyGRUKBZXL5WDQkdpOn3AQUFLJgGN5cclR6/Kj1uOA6C4OYPX7/YE62w6w+6FSflgYgCgBKkmJ92B9SUrUIw5k9Xq9gQC7C46P10dOp9MDNbMdMOP+7gjjpKP/AdFbrdYAqMa+T98RrNzY2AiHZeEIcQaIA784fJLCXkZgD4fTU8RpK3tTnG7rQCGgMQFx6lnioHnddXe8XSe4TeGALHoPZ572JtknXNftGGf1Eyh1EN2Zwl4Gx+0FZ/VxPbdDvN96vV5gzLve9fddXzqQ7jqd9q2uroYx9rNyAIQIkm9tbQX7EWffgQQHmNx+crAnPowtKVsq1kn+moMdXBN7Nx5PD7anUrdS8cvlcugH1hwEEwJWzWYzzAf2hnq9rvX1dRUKhUBicTuDkg0rKyvBjmStebtpM2vTn9kZ+Kwx9xv8kGT2IfYLz85zJ937kH5j3vlai8dOUsjM8DYfy4Mpj7ouPyphfeRyOU1MTGhzc1Nra2thvcf2A8KeApjKawDyIyMj4QBOt+8JNOIXUVJsYWEhlD4DIAQM9QCrpAG9c1DgC19kL3JTUtAgyX8/iNBXYBiUQwPkpsSlZ/V4oNEFveJ7MvqrUCioUChofHw8+IzYLT6mMYkBEJ39F12AHeWvU8KTcfJzOfjtAVBnaHNenJdgczvIg/sEc6md7/gQGMv169fV6/VCWVb6h/s3m02trq6q2Wzq+vXrunz5ctB7B5U4qyEOGmAb8py09aA+J3gUP81mU0NDQyqXy5qenh6wIer1ui5fvhwCUPT3s88+q+eee07FYlFnz55VsVjUxMREsFGXl5dDwJu+unnzpi5cuBACVgfBEWIBRwBj8HFGfE0fy8MlBwLR/+N//I/q9/v6S3/pL+m3f/u3NTk5Gd4bGRnRuXPndPLkyUNt4Hvf+169/vWv1y/+4i/qr//1v64vfvGL+shHPqKPfOQjkm4t2J/4iZ/QL/7iL+qJJ57QE088oV/8xV9ULpfT3/gbf+NQ23InwibqBz9gGDtDXdqO+uLExUZtOn2rxmWxWAyneudyOUm36muioKnhyCna/f4tJnulUlE2mw2HjdImNj0WebVaVbVaVaPROBSwbTdQPMnQv1vBYYIZQN05jBkHLPr9fugHAEgUdhw5vd2zPSrixlj8bMxF5tL6+romJiYGDkNJp9NaXV0dqGvvdcndab6TdmEAxWUInF2QxBjZ7z2k7fq6/X4/rFecVJxq6iJ6RB0ntt1ua3V1VdJ2xN7BoVarpeXl5QBqe+r3QQUGB0Yi8xmgy0EUL8VDfWRnZd4vOY56H70ctS4/aj0eO1vxHHPQzV9zYBjD3cX3HAcCY/YJr8W63QHA2FnygHgMrjuDut1uq16va2hoSI1GI7SFe3kpFZxkz05L0sPuBHmfAcj589G3BPfj/cNBBs+4c8a/39f/9tfcoXSGFvfwMXEwAafa2+zAdczQ9es5SIKDSr/RTu8X1zfopLj8Cd9zBzvuf58TPIPPAdoYA/DeZ7sB2d7/3jfMdScPQNKQFFiBHoilb5xB56zwOFixmyQ9w0HszDhbwa/pQSSekcABh83RHw48M2YeCJE0cBAu9/EsTRxjguCeBeBg+W7AkwezeB6vtctvFwfKee44kOC2ls8d7hnfn+/Hdtp+QfS70eN8/1gOLo+6Lr9Xwp7se6gHp3gfO1raGUx14pEHl6Vt2xx7nEwqdApB4Gq1qlwup3q9rtHR0cBKxacaGRlRu91WpVJRq9VSrVYb0Ff++6Byu+8nvR6D6vsRDwiSFUR2FqRC+sozrdjHbgf2smfF4KSPrZMUHehmr2YP9kwpPsuYOwHJA9Wue+JMx6R2IswfD+x6FpSXJvGDvZNsNciS0q0MMzLvCQLU63VVq9UQDHCywd1KPCfcLnIdeDf3ismmno0uaddSqPzPmSpOzkin01pbW1O9Xpe0PWb0z0F9490yxvyQ1XicY/LfneAAhy3HPvn+5UAg+hve8AZJt07fPnPmzJEwFL79279dv/M7v6P3ve99+rmf+zk9/vjj+tCHPqS/+Tf/ZvjMP/gH/0Dtdlvvfve7tbq6qte+9rX6zGc+s6M23FGLO8mlUmng8IfdDH7qhsMcZXMfHx8PbKzHH398IKWF7/f7t9JFTp06pW63q6tXr+rChQvq9Xp6/vnn1Wg0wuGia2trKpVKKpfLSqVSwZG6efOm/tN/+k9aXFzU17/+9QCC3ouFfS8W29DQrdOYS6WSJiYmdP78+XCQqR9gxWcxkEj1aTab+uY3vzngVCaByb7xPQqsXowJf57YKcZwuHHjhjqdjsbGxnTx4kVNTU0NgOi1Wk2rq6vqdDpaWlrS2tpamD+wKtwIPGiUNwYI/BkcRLiTPuj3bzHbbt68qUwmo8XFxcDI4n1nr3kfecmCL33pSyGY4+m10na9NcD6RqMxALjsV1KpW9kWk5OTGhkZ0dTUlCYmJkKpJ8AQrk1QibRQN07vJ5B+rLCPXo5alx+1Hnf2C7rR02cB0HYzZPkf8NT1Ns6ypyLzXWcOu1CezFOYx8bGQjYPhz2y/2Bs0wYyeba2tnTlyhWtra1pfHxcm5ub4WBr2FM889rami5cuKBaraYbN26EElKAZTBu3QZBHJCPAxJJzgXsZAfhAA9IRwYciAN37rTGTOVcLhcC4PQ5wX4PnPb7/YEyKzwTwU7exx7zEmxxOQ36PJ1OhwOm0PnOsnKHiHtxPVjxzv72eUebcLKkbTCYTCgPujAHIVnE/RTrRs7s6PV6AZCH8ea6vtPpqFKpKJXaLtMDuOFZZvGa8pI3XA+WurStcxycAshlzOMMDF83SfuRs/p87oyOjg6AID5HYa9BjnDHmzb5/gA4vba2Fubr4uJi6H/WmAMFAByeTcZ657oe3HEg24E8bAX0NwefAaL73HY7x+u2cm0n6rhd5IE+fmPf0F9OCuDzccZNkhyD6PdHHnVdftjCGuLgbbfv2Y9ZS+hkdEKv1wvl0LC/R0dHVS6XNTs7G/ZYD3xKCqzozc1N3bx5U9evX9fGxoYuXryoxcVFLSwsKJfLaXp6eoAMUy6XVSgUdPHiRf3hH/6hLl++HPQ4178bgPJuvrdb3/pvrp/JZDQ5ORnK25BVhk8ibbObsYecCEDgIWbNswcznvj0HuCnLc4CpvQKGdabm5tB93EIKXYL/hGEBLcRpW37xQ+rhszH3OH50IHYgJRryWRund/h528RoL1582YoN4s9k4THAPwODw+r1Wrp2WefDXN8eHg4kLY4+NoPrT9scd1xJ75tkuB7kyECA5/re+A7SSifSpYVpdmouiBtz1vshYMItkgmkxmwd/3w+YmJiTC+zM9CoRDmNxn891uOffL9yx0dLHru3DlVq1V98YtfDCfQu/jhIochP/ADP6Af+IEf2PX9VCql97///Xr/+99/qPe9W3G2GQrD2d9JEtd6bLfbymQywcmemJjQ3NycisXiDiaddGvx5/N5ra+vq9FoBAcKUHNkZERLS0sh9RpgmZTUSqWiK1eu6Nq1a1paWrqjzeR+Sjp96zTtiYkJTU5OampqKpyunSQEIVDcjUZD165dG2AjJEV9pZ2HUj3MgjJ1hzLeSPmf2rqZTEaNRkM3b94MCiSVSg2UDcGZRNzAP+hG7YD+vQR9Nzc31Wg0wv8xUL+bOADTbDbvWfu8TaQuoqip/0dZAoAmvoOxWa1WA7Njt7VxVHKssO+fHKUuP0o97uUR2M+cZRsDDc4gxUlxUI3vObNkt4O6MaLje9C3STUvYWTFLCmuD1C2ubkZslfW19dVLpfVarVULBYHWONkzKysrGhtbU1ra2sh8OdgHM8W67EYWAf8c0eGfnQGlrPBnMkXM41ppwOaMRswdjQBBrGNEN8D3OZi72Mc+W7MXMcRd33O/3GdbBwgntVL9zjjCQcV4J/nYR650xazh2MAxoFlAAkHYmOdGjPHHWxnbfhcB5jodrsD5XdoL3rd54jPGwB1mNneDu+zJADcGVm7gX8xazruE/++A+M4qZ4t5qDKbnovlUoNHF7G98n24nvcyzNXkg4Tdf2L7e9BBYIr6HAPPjnj3wMuiN/H54UHKXweJZUw8NI2fv2D2rXHIPr9lUdVl98LYd4TrPK57nsXQXIPMLnd7GdpUPsY/SNpYD/IZrPBt0B3VCqVkLV69epVdbtdTU9Ph/PO8Pt7vZ4uXryop59+euA57nbNHab4npK0T2ezWZVKJY2NjYVsefpMUqidTUCX1zKZjNrtdvDVY3Ed51k7rqskhYAqBAY+A8bBdQBYCdi7roTI4EFaP//ExwP96P6qBxXYd/0gc+wmD4Y7g9yzpWJB/6ZSKbVarTA3JycnNTY2FjLDCXjfS1zH19Nh+eoekHBdxvjcTiCmShpYo/v9/u0kZp2zDiAYMh5k+OFnEKwh2+RBkGOffP9yRyD6pz71Kf3Nv/k31Ww2A5iLpFKpQwfRH1ZxZ9vrQe4FWrHocFJwYsbHxzUxMaHx8fHbgvC8n8/nVS6Xw4ZPVPMrX/mKrl+/romJCU1NTQ2A6EtLS7p06ZKWl5cH0sbul8TPudcCpc8A0TFo9gMS4qxQs57oYBxFdVYCbC+U8MO8eWAQAM5Q+mO38Y+ddzcGMD4xQFxZO6MdBegGiQPRR2UgxgbfbvIgjS/7CCAV7FjYEPzGue71euH9Xm+7rm7MdjyWF5c8qrqcPSd2WhykxRmSth0QByClneuMIHh8FoY7jkl10p0BjeOey+VULpcDSMx69HXpYCA6hnW9sbGhSqUSDouCZcsz12q1cEgZTGR3OGkrzLt4T47FQYYYiPT+dduFPkK3bm3dqlnq/QsQ62nNfNf7jWsxnjFY6Qx3DybQbndcPUsH55jDVymVl0qlBlhfzuxlfByUpE+5jzuR9Dljl8vlAkuctvj85DndXsTOiBnJrj+xRzgXp9PpBIa4O/TMEXS1pDC/maMASO5s+nhzDcaV4ArX8HmSlHkJYAI44raWr1FvK9/l2b3fk8B0n6NJc9rXgjvp1J71/uUZfYx8fbqt5GPtzFbu42PBGFDmAEY6IHqcdeDX8PngARRfr/5+DPTwtwcZ4r44lodDHlVdftjieiYpQOd7imddxfZ/JpNRsVgMOpzME8696Pf7A6XAEIJkHrhvt9u6evWqarWaVlZWtLKyEnzZ0dHRcIbSwyBxUNvtAWwdMu4lDZRKi4OE7IEcFgpDPT7g1IOV6D8ObPWDkZPsNifMubA3Yzehr7xkDM8T6xxsF64RB6CxHQBPh4aGBgiLw8PDYe7EeiWdTt92b6av3SccGxsL841AeTxWzHs/7NL9Y372wy6/l/5yDKjfyfd3W9d30yafh9hPBNniIDcZdOwb2Mi8/rBjSi8WuSMQ/Sd/8if1oz/6o6HO2bHsFJwDmD04ybcDrIhaAXRls1nlcjnNz8/r9OnTYaFxj6Tvc7L45OSkTp48qVarpZs3b6paraperwcmerFYDIfSkOrUbrdDqs9uzvRRiQcd3HFN2rwxfIaHhzU1NaVTp06F6N9+xJXrxMSEZmZmQmAhKZ0d5xTHe2Ji4qHe8La2tsKhczz3bmlj7kS6k4zjTc3+mKGJuOPJfdbX1wM7mpq/DrbfK3GDOXYskQdtXB0IJOjjwBx1B710jhubZGtgJDnr/n7IcdT7/smjqsvjwzidBcy+hTMGkOr1MgG9CArCNEP/cg4BzpQ7izhNrDcPJo6MjGh8fFzlclm5XE6zs7MBxHS2L9dAl8Ng8bIZjUZDly9fDuu5UCgE5126VV5kaWkpHK5YKpUkaQC4lQbXEH3C3uCfiUtG+He9nJcD6YDjMXBNH+PUefDfgxWAi34t7gvI7aV36GtSqZ1lxP3d0WH8s9mslpeXg4OKPUA5O9d5iDuXziTv9/sDqdyebg544Ew4vh+X7KAvKDlHNgH3dNAU/c0BspzbUavVVKvVwuGhHnwgGJHNZgOQS9vK5XIAD/yzPAvPzxqIHfIYoPK+QO8DuJO1wfxy/eaBCO4Vs6+x8Zydz5zzID3EANoTf5908FQqpY2NjeDM+g8ZEHEteJ45nuvxGooDP8465xA85nxcBo4+gSlPW90Oi7M0JA2sS++nmCno9o+vUeb07eRuSQ/Huvzu5FHV5XtJkn9xu3mE3eyHB8d7O3tHq9VSt9sN+sdleHhYMzMzOnnypDqdTsi+HR8fD0FEDmP2PR8mNtniW1tbqlar+tKXvhRKjVDKibMX1tfXtba2dgg9dviym48nKehw/JRcLhf2NvyTdrs9gJe4f5jP5wMQXqlU1Gg0AjsbIJ39F3yATOhCoaDh4WGVSqUwHpAaHUCHCZwErALeS7eA5Xq9rlQqNVD6hUOgGScAUoDqGDxH/3nprHQ6HcqB8TlwBj8vy/XtXgQ3Kh/Q77SX+e42IPs2z7K1tbXjsE3sothv300Ocy+Pg8DSINP9Tu51t99Pkn6/H8aKDPGhoSEVi0UVCoUwRwDMmYeUJoRcAUu92Wzet0D2sU++f7kjEP3atWt6z3ve86JR1Hcq7gzEzN3bfUfSQM1IWCruaO32fT6DAsMgdqZdJpMJNb5SqVQwFjY2NlSv1+97CRd31GLWW5JRz+cATFxp7Pd+9J2zDePvu+MKGzCujf0wCoADz5P0TDHrMHYa4xIF7sxyD2kbxMAx53ukwKOEkMMG0pNYg94PjG/M2nqQxIGWmKnp4+Ksh/i9g6yPeynHCvv+yaOqy50F6+ygWGJQi+9Kg/o7iREd6ybfHwGzvRyMA8POPgdw9Xb6NQBlR0ZGQskF9k9nC8VZbgQG2E9Z7w4AxnsrTl4MAjrjNQbRcQpiJrX/7w6LBwtoh3/Wf/ue5m1MsoHiAEQs3v7YEUX3+UGirgf8Hg7WJl2fe+w2n7zt3gb/fpINx/jFTGKe20sQ8TweXPC2+/38XsxRfrwOPCBFrHt43R3zJBDZ2xv/HY9X3E/xvPBniOcObUnKCIjTwf0aThrh+95W3ne7IAaifT77HhTfP35W18n+g+7mmnE2DX3v9/Dnc9aiz0ts6Ph3PFb++3ZyDKLfX3lUdflhy276w8VtAtZRfA3AUgLdse8QB+AQfFQPSHupCWcBQ257UMQDx7tJbE8k2QS8hp+J/nG7BPGyYQDvewH36DwvpeOBag+YeLv8nr6X+Z4eM+tjbMd1OZ/10nc8M59Fp6BjuScYjROg/BpJtge/YwyDNvK6pB0H2WNjMpcbjUZ4P7bj9otl3an4/PDniu2xu9UXh61vnNggbWcjJGEM0k4yovvnMQnhqOXYJ9+/3BGI/qY3vUl/8id/ovPnzx92ex4pSTL6D/p9d2wOurgA391ZZeNGaTsji9dvl6ZzLyV2oHEknBFFNC/pe+6QJIEm+xFP3U/qayKFrVZLq6urWl5e1uTkZGB73c2YH7XQp51OR9VqNZTxIdLsDjKHjVEmaGhoSIVCYeAwLPreo/3eFxiObsSQZpbNZkNKOqyOWq0WWOl3e8At41IoFDQ3NxcYd+Pj48G57PW2yx7BLlldXX0gU5tjY8Ideje+dlNqLzZldyw75VHV5c7wQZyx5GxkabAMGmAl+pO0bVTI0ZEAAQAASURBVA4H4vCgJFDL74lB3e/3lcvlAst0dnY2HFwFo92dA3cmuQ6/3SFz1qm/533gbUWfOcs3CcR01j7tJzuOe+/mRPEezoOXkIprh7uDxHc88BGDxf58Xi5kdHR04CBw2oCu4bP+g33h7SAFvFQqhT6CTcYccbsE3UUmges0t9NoUwxAx8/pTGyu73rUJQYz3IHDPkFf8gyw4/r9WyVYYJ8xR2D9ZTKZUJsbfezABP3PM3EtB4353+cabQJYIIgeA+48tzuY8ZjR1zj+zDVKKdBnnU4nHEJGpp2TIGJAg/VEGx3EjwMq/reDKMy5GKTwIIaTBfYi2TjQtlvQxvcZ5roDedj2caDB57+Pm89NxvpYHnx5VHX5XnJQG9YBOmmwRBW/2fN4jfnP3pBO38q6zWazYf/v9/uanJzU1tZW0HesRwhd7JnZbFbFYjHxoEzaRMbRg+B3xMFWlzgwyef9sxsbGwMB/HQ6PcDEZl9Ej/qe1Ww2tby8HPZmGPq1Wm3X9uIrwnCn/jqguusV/FoPdqRSqYFDtLHRhoaGVCqVdpDB2CcpqceYu+6QNGCDoe/T6XRgr6fT6cB69z2YgPjw8LDGx8fV7Xa1uroaCBXobOaklwFivvl8d9ID/QXWRJWDUqkU+gJ7tNPpqNFoDNReP0wfkqysoaEhTU9Pa3Z2NozF1taW6vW6rl+/rna7PWC7Pkji9ls+nw9zmgAZJId0Oh3W/mGTBI/laOWOrKO/+lf/qv7+3//7+vrXv64/82f+zI40px/8wR88lMY97OLK+iCRO3cqAXTdyT/INUhVYsMEhJa2D9pA7udCjiOpbEQ8c8wMiDfQOJLnTt5B20FfJ4Ho9F+v11Or1VK1WtXKykpg76OQHhYQHWVEORUOouMUcBTpyMiIyuWystmspqamQhkCgg3Szjm+Vx8w19xwmpiYkLQNZqyvr+vGjRuhz71W8Z0Ihkq5XNb58+c1Pj6u06dP6+zZs8FJJpXt61//uqrVqq5du6a1tbUHTtHF4MlugHnM/Lvd5++XPCjteLHJo6rLnX3pxj7Oi2fDSNssI4BRZ5kBMOLg+OGA6IhYbzkTXdpmtg4PD2t6ejqkd6KjHKBzBwzhHn6oZ/wcAAK+tinREQNozpSOdSm6z8tvuOPpwQP+91IZnsWFA8Z7vhe5kxkTDpy95/rfa25LCgAGgC/ALP0PgBsD+FyX+0sKgXH60RldDn6T9gxw62Ap13Pw1+dWrCO9njZnkTiDCQfY+8vb7q+5feSHoHF/9LXPJ8oUDQ8Pq1wu73Dincnsc8yBAb8mrEEAEuY84uuBvokzqLwP6f8YsCYgMDIyEsoslUollcvlgfXUbDYHstw8dTq2Iz1IwJx34CPu+93+7/V6Awd7e1abA2wOovva9OvEwRfGwdeK63jmLfd0eym+RwyK7eZjHMSOPtbj908eVV1+2OLrKa473O/3Va/XVa/XlclkVC6XQ1knyFupVCqUWWVPZe04uxi9JG2XUMO+KJVK6nQ6iQcJ3u8yqi5uLyRlrqK/vA/RA+zDAMDoTkhbrtPYs6Ttwz4pd0MZG0hbfH434fsEIorForLZrNrt9kAgRNou18JeiV7ADpAUgGl05MbGRggCeGZSq9UKpXtKpdJA8Jf2U+YUn9b1nZfw8gNEyYwbGhrS+Ph48I+bzaYymUyYh+Pj45qZmRlgobsOcFuR+Uj7eI3gNfYpc31oaCiQ2YaGhkLfHqY4+P/444/rla98pdLpdMjGWFhYCAHxByG4tJf4s0gKOJtnrLBmGIsHLShwrMv3J3cEor/zne+UJP3cz/3cjvfYOI9lsO7iQRaIL7I4JWw3xspuQmrvbgviqBeKG/FJf+MExA6Mz6nYoeB33F+xEtuPoHT2qsftjC/qolO7zJlwD7rwrET5qana7XbDc2P8EOV2wzEpVWm/Eo+Jp127sYGTT5q99/1BhIj8yMiISqWSJicnNTExoVKpFGoJM+br6+uanJwMhgMMea9N9yCIgwFegkdSiHY7K90/x2cfhDJEdwPm38n3fvVXf1X/5J/8E924cUOvetWr9KEPfUh/8S/+xV0///nPf15PPvmkvva1r+nkyZP6B//gH+hd73rXwGd++7d/Wz/7sz+r559/Xi95yUv0C7/wC3rLW94S3v/93/99/ZN/8k/01FNP6caNG/qd3/kd/Q//w/8wcI2/+3f/rn7913994LXXvva1+uM//uMDP+N+5cWiy2Pd4KypGEiKSyr4HueAF3/zOuL7fxJQ7K8nzf0YNPPv+/M4aMtrfg1/TxoE5eLPJ93f7RbP8PLni8F078NYl3s97SRxIDAOnCfpmCQmFG3zzDsPGvgP14gzd2IWfFK/EBwgLdqD60nX8L06Bj8d/Ga9MU5eliVOZd4tGOp7fdyOJPD9dqBwfH360zMOXH86gOtMcy9L43PR56/fJ86mckCHvoeJPjQ0FM4GYd+iXwEmYIRKGujr2z07zxGLM8tjicclXnMATX4PD0TFIIc0uAfEpfe89rs/+172bzzX7jaofhjfP5Y7lxeLLr9bYd/1/YTXCVABQlJ2zWtm+37N+SEeyEKS9ivf153F/CCJ63Jp73JkrkdjHRT/jvdc39cYA3SHB5LR3QRxb3fgIiC6H6wtaQcBgXa5fvF7uU7259vNhvOgb1L2kF8vyVbztpBluL6+HkBzMrliHUEg38kS/MRECW9XbAMw7j7OvjZ4PknhYHQC9t6fBxXGOZfLaWJiQmNjYyoUCuEsD4LP7XZbExMTymQyarfbarVau5Iq76f4GDJfnWxDv8eBbp8f95u0d9Q++cMsdwSiP0gT9kEWT7d2YHcvR9IVNcyoVCoVIo+efruXEO3lsMb4sKGjFt+YUTLOfImZbm58pFLbBym5EkqKsm5sbKjdbqvRaASGwH4Bbfq+3W6rWq2q3W4nGp7ct91u6/r169rY2ND09LQqlYq2trZC6v+DLh49X15e1pUrV3T16lVVKpUQDJiamlKpVFI2m9Xs7GxIX4SteZjBAo/YkyqZyWQ0MTGhTqejGzduhAPT1tbWDuQUjIyM6OzZs5qZmdHp06f17d/+7ZqYmAiH+LgTOTk5qcnJSXU6HZXL5ZCxsbS0tGca4VGJsyY47Kbb7QZQARapHywKu6LRaIS0vHq9PnC4zf18nqNS2J/85Cf1Ez/xE/rVX/1Vfed3fqf+5b/8l/q+7/s+ff3rX9fZs2d3fP7ChQv6/u//fr3zne/Ub/zGb+gP//AP9e53v1szMzN661vfKkn6whe+oLe//e36+Z//eb3lLW/R7/zO7+iv//W/rj/4gz/Qa1/7Wkm3mAh/7s/9Of3Ij/xI+F6S/Hf/3X+nj33sY+F/WJ73Su732N9rcdDJnZderzeQduuOBzppdHQ07HMeNCTlVBpkHzvzL8nZdOfMg4C7gYT8zz0wyEk3hz3E+6TYAvC6neFgLA6q7yNxf+GAOQsNVrS3izZ5vxFkjZ1uD/DFACO2koMY/X4/6H23exxMdMCQMXFGV6vVCgAv7e10OoGR7Cn2zgqHce1zhucZGxsLzhzzYn19Xaurq6H0SbyvplKpUCLAnWXGhb2c8QFIoORev98P9oh/34OoDjR4cN/nWuywOzsNHeI2GP3F9Zk7ZGiQrcG489ydTieAzFyzUCiE+5Fp1u12w+F6PIc79A5OeRAnn88rm82qUChofn4+tCObzYb1hg3MwXS0j3T4TqcT7sH9YI4llX7ygABBagdffL0xTr63ePDG2e3MC2fpFwqFgYyI2G8AINrY2Ai2KgxJd94dEPS17WxX9hvWXlJgcD964hhEv7/yqOvywxD2R0kDB16iV3u9nkqlUjiMslgshv2j2WyGM8M49G9paSmUyiKY5yAv4Cbs83Q6rbW1Na2srNz2cMb7JSMjIyoWi0qn06FECfsQPjt2Ez5EHPzEFnGbh/2JgKfbXOxN4BT4z+ybHCzabDYDoWk3WV9f19LSkjY2NpTNZjUxMREIVARw2Sfjg8u9fCy6udVqDYD66DU+S5tzuVwog0YpFWwoB/a9pIfbfGAK6MdOp6PFxUVdvXo1ZIhXKpVwTebmxMTEQKk2bAhsNPSE6zfuTYCAZ4p1DXgIz8Lh9NPT0wHMvnz5sqrV6m0Jm0kyNDSkyclJ5XI5zc3N6VWvepVKpVLwZdPptCYnJzUyMqITJ05oampKnU5Hly9f1vPPP69ut6u1tbXEskj3Q9iDwd7Q5dinxWJRIyMjwa6iz7CHGo1G2Fvu535+DKLvX46L3d1DiR2cmAmWJA6io9g5UAzFwUZ4O9na2grG9v1mIbhj5Cw/Nkpn+8VAOpLksDj4iXLC8cbJ2Y/4NTxdK2kj45qcmJ7JZMJGjlH2MEi/3w/P2mw2tbq6qpWVFTWbzaCo8/m8Jicnlc1mNTk5GcCJvebw3YrPBZQQLHn6ntSy/crQ0JAmJiY0Pz+vU6dO6ezZswEIidfk5uamisWiNjY2Qr37oaGhkFb4IAjzkvHD2AGIcUYFDr2zM2A1HNToedjlgx/8oN7xjnfof/wf/0dJ0oc+9CH9u3/37/ThD39Yv/RLv7Tj8//X//V/6ezZs/rQhz4kSXrFK16hP/mTP9Gv/MqvBDD8Qx/6kP7KX/kret/73idJet/73qfPf/7z+tCHPqTf/M3flCR93/d9n77v+77vtu0bHR3V3NzcYTzqsZg4qOVrnYAu+giGKGA0+smZJF5iwtmcscQMK9asfy9mqvr34rY6aLqxsTHg9AAOONPIr+PsFvSiO7h+b77v9/c+QhyAdSfby4Ygrtv9uf1agPxeDxud7s6dg/i+vzkTbGxsLOg3+sXtMWcP+uHrHnTEYfZ5w/jjlHtpG2k7WOP94k6578vOVvK2+Rj5OSAOoPve7valAxZx9pT3eQzC+3jG89bZf4wz4BCBJp6fjAOAWgfRPZhC4KHRaKjVag2w2LmHz3nmIPOaMS4UChofHw/jgW1MfxDMWV9fD1ll8fV97icB4d6GeP7zHWel+xjHNizC/sJzA+x59gsBHk/5d2AEfY9OZ17HwL+XaPH2+j1pU1JA7X6z4o7lWA5TmPvug0oaANd5r1QqaWxsLOxRMdjbaDSCPojL50jbgT/PmJEUQNK9wOD7JR4wZ09xsJfa1ZJ2LesR+82x3cIe7vsbusZB6PX19XCPzc3N4Pft5ftBGJKkSqWixcVF5XK5UNZlc3NTjUZD6+vr4ZwbgtZuWzgG43uwtPOQZklBJ8X2orfLD/mObSzuB5jearVUr9e1urqqSqWiWq0WfFDmpWeHu11HGyUN2EDoAt/PY0A/tjk9uAuRoVAoKJ/Pq16va2VlJdT8vpMMcc4LmpmZ0fnz5zUxMaFmsxnWFtni/AaXWV5eVrPZfGAAdGnbnoDMiR530qHbJNjt+OOUMbrbgPSxHJ3cMYj++c9/Xr/yK7+ib3zjG0qlUnrFK16hv//3//6eafEvJnFAVtLA4REsImkwDcoXFN8FFF5dXQ31u2IGnV8D4Hxz89ahjDBP74eydkfeT4qGYezPEdfDRGKnHoeRiD8bqjuEtVpNS0tLIVLr7UgSGG/tdjuw2Kmftlc0cGvr1uGsqVRKlUpFy8vL6vVupQ8Xi8UdCulBEuZarVZTpVLRysqKVldXtba2ps3NTZVKJWUy2wfqoaTvhwBceJ9SJ81ToPcSngVmfVJ9P78fhhUKPpVK7Tt4dZTiwAdMA/YJDtxzBxvWOq89CCD6YUS94wyB0dHRHeO1vr6up556Sv/wH/7Dgdff+MY36o/+6I8Sr/+FL3xBb3zjGwdee9Ob3qSPfvSjodbjF77wBb33ve/d8RmA94PI7/3e72l2dlbj4+N6wxveoF/4hV/Q7Ozsga9zEHkUdbnX5UYcBGRPifVPDHoBREnbwBysT2nn4Zh8ThrUYwTBYQRR49KBMgdjY4ATBi11WR3MQ7hfDJDj7Hk/xOstCbTns/4d+oPPelkTHF+AbP9er9cbAA29fTFQ6anznU5noFxK3Hb+xq7CGeY9B4H5G3C53+8PpF5TR5XsrJhJHTPnnBjg78Wp+v7dmIUf9wGvweSLWWU8q89Vruulh7Cv/LAw3vd7+Xgz3xwAdoa7kxR8/mMb+NpyUMLBZYT5weG6OJXMdwcp6Ef/G7IC4DnAl9+D+QnIgCM+PDwcMtri5/dn9fHbLaPRP+MAgrfFAwTxeqJf+ImDWj7eHuSBIZkULHEmOXPI+9TbHffrbnbyMRP94ZBHUZcftjhAShZMzKRGB+FncEBxnF1OpvjW1lYgTzkwz/5CJm2v19PKyspAPe37KdlsdqDmO/4rpa/YXzKZW/Xh4+A4rHX/vvcf0uv1VK/XlU6nAwBLNpyTC3yP82Af+tv3qt0EEB0w2g8UzWazYT/c2NgIZ1egK10vYR/4M6D3YsyGwLfbB/5c/n3XLdgtTjLY2NhQrVYL+zrPnk6nA54BeI7N5bqGIKsHG2KbBR3tOgfblrbG5cT8+u47jo6OqlAohABJXJJkrzmeyWQ0Pj6u+fl5TU5OhiC8VxyAPBfr5N0C1A+K8Nz4GcyvTCYTbIVerxfIBPgHDwKAfhg++YtF7ghE/43f+A39yI/8iH7oh35I73nPe9Tv9/VHf/RH+m//2/9WH//4x/U3/sbfOOx2PpTChrm5uRkcSDblON2aTYy0MRQBQO7ly5e1srKi6enpwLKCKefS6XS0vLysdruthYUFLSwsDNQCO0oB1CPaSAowEfkYxIidLd+ESanb3NwMJ22z+Tj7fGNjQzdu3FCj0dDMzIyKxeIAqycWrl+v17W8vKxGo6Hl5WWtrq4OgBhJ0u12dfPmTVWrVZ04cULPPfdcGJ+pqakBZ/dBEuZat9vVjRs3dOXKFT3//PO6dOmSrl+/rtHRUc3Pz2t4eFhzc3OamJgYMA6OUnAex8bGQjoXqc7tdlu1Wm1PEB1lOzIyorm5uXCgKHORz7h40GdyclJnz57V6uqqrl+/fk+f9U6EoBkGUbFY1OjoaEiRazQaIeW01Wrp5s2bgZXHKef3W+kdhsI+c+bMwOv/6B/9I73//e8feG15eVlbW1s6ceLEwOsnTpzQwsJC4vUXFhYSP7+5uanl5WXNz8/v+pndrrmbfN/3fZ/+2l/7azp37pwuXLign/3Zn9Vf+kt/SU899dQ9C+A8qro8l8vtWkfb2UKeiZK0t2HMu8EO+Abr2vcL5rKD4DCKSYvudrshjRhQD8BP2gasPOUTxi56POnQQmf6xiCpO7X+PQc+nekbs09xnOgD9CkgtKdFcw2C0x7gd32Kcxiz9NnbAYB7vZ5yuVz4P+mgSRxM7hszyQhCEFTkoCfa3Ov11Gg01Ov1lM/nVa1Wlc1mw2HaPn8cNMcGcxAbx8/7MJ1ODxwk5teKgW3sGX9G5kc6nQ4AMkx5HFoC/4A4sB/pc/ouZsL5eLgTx7xljOjLoaEhtVqtcC0H7x18iAMD/GassF3JjGK+SNt19Zm3zFnmXz6f19TUlPL5vAqFwg4wgWd01iRBEthrZHBhYztTkGuwT+wGLsdrKV4jjCef9XXJXIjLCHBvromt7MAEJQchf3S73R2BOK6DrexrnTaw3vgsc5X3kf1k/R2D6PdXHlVdftjCPO92u1paWgrgKr4iZZSwk9mPvewU6waG8Pj4eKgTXSwWwwHNYADValUXLlwIGbVk+97PDPF0Oq3x8XFNTU0Flne32w3ZPehFfO6TJ0+qXC4HH7nb7YaSWgDW6FpAbNb05uamlpaWVKlUNDMzo4mJiXDIMsLe5mQAMm39IE8HUpP2jI2NDVUqFaXTt8qRUgZ3ZGRE5XI52BPobLdhALTBbPw+gJxuK8XAOPu/2wPYdwQ+vc1DQ0PhYG/2706no5s3bwZSnx8sCrkNH9YzKNHR9DeEB9eNcZDZ92xn/WNreZAfIhbvMz8gpXU6HdXr9WC3khUVB6lcRkZGdO7cOX3Lt3xLsMXQw9gCEAl4lpi88KDhKwjPDKnS7Vdf981mU4uLiwNZhfdbjkH0/csdgei/8Au/oF/+5V8eYN/9+I//uD74wQ/q53/+54+V9f8v7kizQNxQ9g0Ao5/PxwwgmFG5XE7dbncAfPb7kUaCk3C/SjagaLyOGoADGwkKjM0wBj3cQUHcyMFJkgZTXUk/I/XHWVOxI0Qfo+DoM5zJvQQgutfrqdlsql6vB/ZvHAF+kIR+dSCaWlydTiekaPPbMyfuhzBuHKBC20j9282Yiq8xMjIyEL3f7ZkcSOJ+ZE88yOLrjNR2WCQYdhi5D4qylg5HYV+5ciXU65P2LnmVxLbda37vxs711w96zSR5+9vfHv5+9atfrde85jU6d+6c/u2//bf6oR/6oQNda7/yqOpyz2xycZ0EUBeDiQ74JTlsXgaB68UAXgyie41ir/0NMOhAnKQBm8F/cNbcAUpaO/Ha9s/59128H+LrJt3LQWAvzRa/70EIntsDzDG4iH7C8eTHAxoOBnrwPcmeim0rfrstJikcEgfgTttpl//2eRK/7nab952XRPH+dtCA3zFjPf4cfeDBk6TPAwJ7P/G3z+247fFv71PGgXnLevAMhXiOJvVXvA53Y5XRDmchelnApAC/Ax30kx8SiP3p5BJf7zGLbrdxlwYP6PQATvzc8Zr0/2PbNA5qMV4+v+M9wcfA1xqf8fUd95cH7pKIH8cg+oMvj6ouv1cS7ycEzXwPwH/Gbo7XNWuL98mGYl9mLwCQB2SM9/f7IQRmx8bGAvDZ6/WC/+DkAD6XzWZDQA7dQjCVACS6IWaYA4qSBcvnYnvL7SG3gZL21CThXthazvD1jB/XP3Fw3IPb8XM4m9vF7T3fb31e8b6D2nHpLj7rGUZgHU5ecAwo1k/0GbJbENhtEXSKtF2GKCkIHutjbD/8Zb7v199NnBRAMCO+l5f545m59oOIryAO9jsLHfHsAZ7xQdGBxyD6/uWOQPQXXnhB//1//9/veP0Hf/AH9dM//dN33ahHRZhMnlZELcikyCCflbbZsO6493q36kA988wzgWUEy4YF2G63wwFXa2trOxhl91qcMTU2NhbStvL5vHK53ED9OJh8rsBc3BF1R5o0M+pzbW5uhgPE2HSJfD/99NPK5/PK5/PhsBR+AJG3trZUqVS0tLQUSl7sp89Q1ltbtw6YeeaZZ7S0tKSJiYnAYPM64g+C9Pt9NRoN1Wo1VatVPffcc3r66ae1uLgYnMtCoRAO83CldT/Fge1cLqfZ2dkQFYf1sJsSQiHsV1n5exiHDxLoLG07wcViUWfOnFE2m9X8/LympqZCCvvw8HBgU46Ojmp8fFylUikcFvQgHmp0p8JhUHsJh+HEDPHFxcUdTHJkbm4u8fNDQ0Oampra8zO7XXO/Mj8/r3PnzunZZ5+9q+vsJY+qLsf5c3EA09eyM9FjsNm/GzsQMEo8wOcOFs6M39udlW63q1qtFhxRWEAO9OKYwp5154o24qQl7dP+LLQltjtwKNGf3mb2Su7hgLWkHc8bO0Dex3G2WZxuzLP7NdHRvV5vR5DQdbn/eACiWq2G8iytVisEvb02KOBBpVIJzg4HV8JeHh4eDodCbWxsqNFoBPtleHg4sLi8rIY7uDjKTipIClo4uOLzNck26vV6gVnd7XZ1/fp1VavVEAzHwc1ms+HanU5H0k4Q2ksWOeDvjHVnsDNHPBDg7HJfKz6HYgY8/3uAoN/vD5Rq41kIfkMUaTabSqVSYX74deO/Je0gRsTrgGfg/t5uxiIpAMX13UbY2toKtq3bLgTSfB04Ix3buFwuh4MIY2A8lUoF2xrwIga/PQhCG3cLXPn8SrJzUqntkjDH8uDKo6rLj0I2NzfVbDYHANRerzdwMDPMXPalTCYTyiYODQ2FDOalpaWQvcR6or61s3Olew84uS51XeP7JfuP++foBWfR0h+9Xi/s9e5Lsz9SehP/GNIAdk273da1a9e0srISdKLbLr4/Um4Uktt+gXTer1Qqevrpp0OWAfoa/8h1NEF0138EUNh33c4Co5mamhoI+EuDJAi+S1+QjU8pM7AQiGzNZlOXLl0KB3bS59ggQ0NDA3XQ3cZgLCn7EgdjHZNiXnsQFpsZuyi2rWKSgo8DdnA6nR44m2Mv2dzc1MrKiq5evapisahTp06FfkEXYzdil6XTaZXL5YBRVCqVPe9xP4QxIiv85MmTwW7a2toKWZPYt9iO1Oo/lodH7ghEP3PmjP79v//3eulLXzrw+r//9/9+R1r9i11QHtROcwfKNyZn8fimgfFNOni73dbKyorS6VspaK6scboBho8aQJe2N1I2ERzPXC6nfD4fFEgMou8GAjhTHINkeHg4gBDOTEfpkQJFehFlOaanpwei67CwATMqlcqOlPO9hHFJpVJaXFzUN77xDY2Pj2tubi6UkmEjle7tYZz7ERyner2uGzduqFKp6Nlnn9VXvvKVcCr4yMhIOEzUD6R6EIS1kc1mdeLEiWBYraysBGMlHjtnhDC2B3EIPTPkQYmw+t5RKpV09uxZlUolzc/PB6DYa/0S0CmXy8GYfJAOST2qqPfIyIj+/J//8/rsZz+rt7zlLeH1z372s3rzm9+c+J3Xve51+tSnPjXw2mc+8xm95jWvCayL173udfrsZz87wAD7zGc+o9e//vUHeZQdsrKyoitXrmh+fv6urrOXPKq6nGwnN/pZ9zHLNAbgYjBY2naKANj6/X4I5qJTcCCckR2D0BjSDjCmUtslGyQNgOQOKnr5CQe6pZ1M1pg95Q6NA3gxO1UaLOvh14mZWkmAJff273Fdr7GJDmdMHMR1NhaMKoIJXqqEfue7ScyeWq0WwHPKXvT7/QD2AizjQPMskBT4Hk5rJpMJrEIHxj2F2XUF7XUbD3vIAX93auk374skEARAolKpqNVq6dq1a1pcXAxzhO+TIl2v19XpdMJc48d1hevJGCj3eRXPYWfa8Z14LjmgwPjx3dhBh93pDEnmCcA6xIn40L+YSchz+bj4XKbtXo7H13v8TM6yZIxxiHGAYbkzR2OmXwxMsG+Mj49reHh4ICjMGsb+BUQn05JSBz6G9GNSIAtQ3MEPXkvaV/z/veRu9Ph+73Esu8ujqsuPQjY2NlSv18Pe5KDxxsZG8IvS6XQAvNLpW/W9i8WiWq2WlpaWwvqP57IH445S4j3G176D6/jrgOPsn5S9ZP8CyKZcTUxIwj+H4MYBkW4TtNttXb16dYCh6z4Nn+33b5VFazQaA4Hl/Uq/39fKyoparVYo+1UqlULgww+Z7vf7wT7gu5IGgrj0CftsJnPrfDfKnfKsMWkSHecZ6qOjo6GMC/ZBq9XS9evXVavVdPHiRV24cCFgPjCx0Q8efPASethCnBUCRhHbvtiYbgt7VQA/jJRDZp04wdjHZBSyGihJfLvxguyYTqc1NzenkydPhj4ZGxsL8ymdToc+y2Ru1eeHMPYgnlUGcTSbzWpmZkYnT54MRI12ux3WGzYcJYu8jM39lKPyyR8FuSMQ/Sd/8if1nve8R3/6p3+q17/+9UqlUvqDP/gDffzjH9c//af/9LDb+EiIM4swhON6XBjjXuMKh4L66F7qBUUubYPonvp01OIbOc+GQeInnnstWncQ403aHSCUA8pE2lbYkgZACK4J+I4x1Gw2B1Kn/HAmnN87MXS4T6vV0tDQkNbW1rS6uhoUsx+ker9AaRw45lK1WlW1WlWtVlOz2QylURyYiIGZB0VYIwBZGCEOysTic4CU7r1K7jgTlBT/OP1Qun8Kg7XDuQKAhp6eyPhRuw6Dw+u2PghylAr7ySef1A//8A/rNa95jV73utfpIx/5iC5fvqx3vetdkqT3ve99unbtmj7xiU9Ikt71rnfpn//zf64nn3xS73znO/WFL3xBH/3oR/Wbv/mb4Zo//uM/ru/+7u/WBz7wAb35zW/W7/7u7+pzn/uc/uAP/iB8ptFo6Lnnngv/X7hwQX/6p38aau43Gg29//3v11vf+lbNz8/r4sWL+umf/mlNT08PAP6HLY+qLnfHEX0bg2quZ3z9+2ecWRqDw87oknYepC1tM3viWp7x/dzJwYHxe3gQOYnh4/bFXuJtANiPnzVpH3XwPNbZMcjrfej9xfuUSXE7wZ05Z/q6Po4DmezFDqKjBwDR2bv9mZx9Fz8Pr3MNQHTYVdhrMBV9fDxIQRYhgL+DGAAH3vfOdJO2a96788rfDqjCyIbNxPkY8XyI7Ssfq5i8IW3XIXUw1ZnrcRkVxixmajNXff34mvS2uU5yADue63FwBRa2B1/oJw84ePkTSQM2hPcB2Y4e1KD/Y4mZevSZf9ZZgEnr01mEzJe4TrrvQ/gLzJHY9kWS9qgkiYMPDrD5eNxOjkH0+yuPqi4/CvG5y/7N/g5YWigUBnQW+6D76Q9CmRYX1wNxENxBV2nwQOJY57h4ENHPgUGvOTDs5zkQNGUvjnV+DKK7Xr3T/uQa3W5XjUZDq6ur2tra0tTU1A49kQTUe6Ah3ufj/uR+rutcdzEGrjsBtPv9W4fY1mo1ra2thdKyMQs+xk24ZxJm4jYdn/MARWyPeqDf7WeXJP2GMNb9fl+1Wm3ADthNeH6Ij1w7SV8xll4+CbLAgyK0G78cxrnPBffL2V9ifXu/5RhE37/cEYj+P//P/7Pm5ub0f/6f/6f+9b/+15KkV7ziFfrkJz+5K6PvWG4Jm1cmk1GxWAwpKTMzMyoUCgOHbeJEkJbcbrcDi5i63XGUdj8pNPdC3AngoKdcLhcOnSAqx2cw+r12VryJsKGy0fBsODrUZoOJTrTXlbMfTtFoNAYUhm/KdwqgI41GQ9euXdPq6qq+/OUva319XbOzs0qlUpqfnw9jfdRAOs/TarW0urqqTqejr3/96/rSl76k1dVVPf3007py5YpyuZxmZmY0Njamcrk8AC48aIKRm07fOhjnxIkT6nQ6WlxcTDxklHlw5coVSbcYO56VEAPjsN/W19e1vLysy5cvq16vh9Pck8C1ozSc3YnO5/MaHx9XuVxWoVAYSLGUFGoZkiI+NTWlkZGRAx96eS/lKBX229/+dq2srOjnfu7ndOPGDb361a/Wpz/9aZ07d06SdOPGDV2+fDl8/vHHH9enP/1pvfe979W/+Bf/QidPntQ/+2f/TG9961vDZ17/+tfrt37rt/QzP/Mz+tmf/Vm95CUv0Sc/+Um99rWvDZ/5kz/5E33v935v+P/JJ5+UJP2dv/N39PGPf1yZTEZf+cpX9IlPfELValXz8/P63u/9Xn3yk59UsVi8o77Zjzyqutx1jDR4qCU6x+ddks50ABgALnb42CNhLrMmOSQJZ9Id7KSsMU9XJmCH/uc7OJRJrHJeg6UKiM8zevvRde4Ixu0j0EaKt7OAnAnltR5jx8qdZXfQAJLR79lsNjif/X4/AN9xQAGWjpckIXjo4+XsMZxR37MdDHYmXqFQCPslDh0sb5h3hUJB+Xw+2DU8P9enz8rl8gBg7nqUuZJKpUL6toPju5V7IRiwsbERyq8tLCzo2rVr4SD5arUamO5+uCdgKwF9B059LAm4MidcyB5wokfsjMdlCmBnO8gUB3AYQ/qBNYDtlgQCdzod1Wo19ft95fN5bW5uamxsTLlcboApR8bi5uZmOJy32+2GeYej6zq83791kLmXfnPwxwWGHDZpzF73/nV7yoEUmJ+FQiEcTE/bXLy8E33c7XYTy7L5PuGZK3wvCQSBeergl7R9VsDt5BhEv7/yqOryoxJ0e6FQCCU6JIU9fWZmZuCwzU6no6tXr4ZyIx74flCEvYj9jr0Gv6dQKAyA55J2BBX9MEfEPwtInkqllM/nw/4hbQOG7KVkJXFAJ/szn0Wn0If7YTPvJdxTkp599lmtra3pxIkTwa5xJvNu+zvlWLGXPJue+UBAGyY6do+D7GSlewa+Z8M///zz+uY3v6lGo6HLly9raWlpYBziM+QYX2wddGw6nQ6kOD7jfeF2Jc8Snw3khAL0NZ9l3P199NfMzEwY1+Xl5duuic3NW4fzdjqdgWvzHt8j67NWq2lra0uXL1/WxYsXA/v/qCSJKOLvoddLpZJOnz4dDoBfXFyUtG2jYmdKClmR+7nvUe0txyD6/uWOQHRJestb3nJPGXKPsrihXiqVVCgUdObMmZCqg6PDRre+vh7SkpaXl1Wv1yVtG7cPwqRFUeCo+Y8fzojT4Kyo3SQJVMcB8Mg2Tj8OHukygBU4481m8549P0GNVquly5cvh1S2xx57LNQnA5y+3XMftuCcE+G+fv26nn/+eVWrVS0sLISaYpT8YJweRABdGlTw2WxWpVJJw8PDe9ZGQ1nDKmm32yE9ExAGwfF09kKj0Qg1490IkQaVxlGsRZQ1rLVsNhvKDSQd0DY6Oqqtra1QUgmm3YtV3v3ud+vd73534nsf//jHd7z2hje8Qf/lv/yXPa/5tre9TW9729t2ff97vud79pwb2WxW/+7f/bs973Gv5FHU5TGLxo1CD6J6uZUkiVlR7iC6ADQ7iE4gGaeGfQNQj5Rf2uHlWpzdxvdigE7aPkjQ9R+1o2l/DMbGrJj4WXEAPTOJ8zEceHen0gN3Hlh0ZzJmbgFaODMKsBfnlLqcni1GW9H/ccDAS9+0Wq0djrEDAwj7KHso491oNEJAFbAWljb9QhCf54NI4MC0z0NqX0saAHlxZKnZ6ixBB6c5t6Xdbmt5eVk3b95Up9PR6uqq6vX6wFk5vufQtnjcGUMAf2wqJxwwx+Mgkpcw8TH04I2Xc8Fu8+AFaeeuu7iuswC9DwmUDA8Ph6BKUuCh19s+HBDAGdCGecNhgD5vsWW93XGGJ30AsMG88YCPrxPvc/rAySejo6MqFothHnp9eeY8bSH9m/Uep4DHGQC+PrwNfJb/2Tuw2QFpHgQf41huL4+iLj8qYY6Pjo6qXC4PrO1yuay5ubmBNbm2tqabN28OlE990MTXLWuaUhnsWdLg+R3u+7E/JV0X8gD7t+tiPoPd42xtt7di3XzYwr3W19e1tLSkWq2mTqejV7/61eFMIy+3lSReO52gKHu0kxfRSa6rsb/4nu/70i0MZ3V1Va1WSwsLC7p8+XIoUVqv14MtEGcQIE4E9H7NZDIheIBd4QesIj6GsR3sepTxZnzjQHwqlQqlS4aGhnTlypVAfNwri6nXu3XeD/gMulfaDqB4YL1Wq2ljY0MrKytaXl4OevCo5HZgtgdZJiYmlMvlAviPfmU8PEPxWB5euSMk5Ud/9Ef1hje8QX/n7/ydgddrtZp+4id+Qr/2a792KI17FGVkZCTUCZ+entbc3FwA03GcAF3doC+VSmGjW1tbU6FQ0PLycnC476cSRyl4KioRXv5OYuMcFKRNcvzc8XSnCKciiZl8LwRFA+N9aWlJknTx4kWtr69rbm4uGDHUnosNlsNsC8qLMkCVSkUXL15UvV7XlStXtLCwENjVnoLnNWYfBsGgAXzZTcmhrGGVvPDCC6pWqyoWiyG4gZFDjXwYkTAwM5lbBwk5YwFn2RlfGDb7iebGQIWz+3b7ro8vc84dfAcLHTTzYNODZPAfR73vn7wYdHk8R9zJ8RrAOArsywC17gQ528T3TM4n8YCxs4Zg6fpvgFPa4wx1d4oc4IsFUFIarH/qjC7/vgNmScY7zyltBwb8AKzdnG2AQ0mh/b7neLmJOAjhzhhOk2cHOSCbBP7vNs6MVdLrznDCfgC8x/YCxIdlNjY2Fg6aoz94TgBqrs0Yexu8HA8gNd91ADbJoadmL8z1xcVFdTodLS8vq1qthhqnPld97nHdeF6ht2KGVdLccF3lpVOcjefX9f8dfPf+j53sON0doc/QtV7bnQyO+LsABw7k+9yLMxhi9jYBLn4nsbH9nrF96vuFg1LODGQfkG6dhdBqtQYAi9g2iPvQ2+595oEOn0sxI10aLM9AII4AiV/rdnI3etzbcyx3Ji8GXX6vxDPJPBuD+tkjIyMhGOeAMGdgSdus71qtFsp5PgjC+k0KfhPEjH2OOBgpDZaCcz3pQcyhoaFQnsNZt+AYezF575WwN6Ifa7WaLly4oG63q5mZGZ09ezYER/byfb0PyYR3EL3f7w8A65J2YB/YNQDH1WpVN27cULPZDCA/hDzaA4Odg215PQ4sx0z6WC/FGZgA/DwLz4hOduwEncRnHG9x3cwZdENDQ5qeng6+9G5AN2tmY2NDa2trwS8H8HfbjDPuwLxYp+h2MCh/BoLAh4UDeT/s9r7bP9gc9JX7E/vFfZLW4r2WY598/3JHIPrHP/5xffKTn9RTTz2lD33oQ2Ext9tt/fqv//qxst5FUqmUisWizp07p3w+r8cff1znzp0L6bdJzgOTuVAoqNfraWpqKhxk8uyzz4bDrKgpdb+eC9Ydad+wY/P5fHDGnQV1p8Axm6ovVAcInJ3vaeFHsbC5//Xr11WpVDQ+Ph7qr50/f16dTkfFYlEnT54MEVvS6w5TcBo7nY6uXbumarWqa9eu6amnntLKykpIG0NJMVb8PMgsdBcAcQAMSigkRb83Nja0sLCg5eVlra2tqdlshtPAz5w5E9iDY2NjarVaIcWs0+loZmZmoNahR/85+IWSS9TYJ0ARR/eTngGDlH53NmqSuOHBHHcA351sB9kxbp0t8SDIscK+f/Ko6nLmvf/vAKeD07E4+OWCE4ieHhsbUz6f18jIiMrlcsiIQQ/idOGoeD1J7ttutyXdKgeGkw5QG0vMKuc1SoD4/XjW+KwUaduxo1/YM6Rb+pV9dGhoSMViMehu2M2IA/ae9eVBPZ4JvQ0bBya4XwPxMxt4PQbkPZ2Y5+C3g9IxC9z7DfY1wX4CH874XVlZ0dramsbGxtRoNJTP53XixAlJCuNP6RTvC4BXMhK8/Q4qMx4xMy+25brdrm7evBkc7StXrqjZbKpSqWh5eTk48MxNP7yUeYdOwTbw13A8mUt+uJ479DyjHwZH32J3OfDsGRQeUHBwHYGdJWmA3UifsS6wm3gWMgvQgd5+sgO5BuzqQqEwsB/EARsvAxSfq+PBKdrNszHHmT++JpLAegdFONwegkUul9uxzuI57IExD3DF4tkV7D18z4N48Tzk3vs5vO0YRL+/8qjq8qOQfD4f/AB8MohupVJJnU5Ha2tr2tzcDJk+6XRajz32mE6dOjUARn/1q1/Vl770pV2BuxgUu5fzHjwBnYmuQ38S/PfMOAfZaaPvFRCXpFtlQpvNpoaGhjQxMaFCoaC1tTWtra2FM0TANtBPu9ld90J8rwYrWV9f1+/93u9pbGxM3/qt36pyuRwyDwiES9vlydgL0TOSAoDu+gm94uIl/bDRut2ulpaWgu5++umnVavVtLS0pIWFhQFdMTIyoqmpqYCj8Do2WSqVCkFkL7uFDSclEyawUdLpdAiie2aCl81zvxcpFouBaY5dQx10bLxv+ZZvCWdB7QWiE7C+cuWKPve5z2l0dFSTk5MBI+FZyLYDYB8fHw/2ADYl5ZHxiTc2NnTz5k1Vq9U7m0C7tHk38XWCDUAJQIIVbt9K28EZaXdiaUyyu9dy7JPvX+44p//f/tt/q3e+8536xje+oX/9r/+1JiYmDrNdj5y485HP51UsFlUqlVQul4PxvVuJBWfQ4KwA+uHoHGVKi4uzY9iE3cmNGVGHAc46G8qBDRQ09wUkPsooHsoaJ5g63aVSKRxqgtKmrTFgcDf3doB1fX1dzWYzHHS6uLiopaWlAAz0er0AAsXR8odF3GF2Jz9WNqybbrcbapQ1m81QAx5QB9YhtVPd8XbAAMea0kEodoAuyjHtBqD7HPa0LgA2Z5UnXcMNG2eXO9PUQYK47NGDpOiOFfb9lUdRlzso5uLAU8ySlbZZW/4/v9lfHLDGKcWId0c1aS9iz5c0cB0PegF+x0xvD5D58/C+62Le8wCzg21JOtH3JGySOJPM2+mMX0k7AEP/2/c1guDObOL+9I8zdn1MD7LeeRa+63WqkThNGjCZz1PSa3NzU/V6PZTFIvjhdlu8Z8dziD4BaIeV5vMkHlcEMLjZbKper6tWq6nVaqnRaIQydTDEsIccDHE9wtjxnHGQw+dRUn/7+4ytB2K8v31OOxMvTnn38YjHwq8JoAEIQNk1SUG/OxklzrxiPtA/fk3ve3eGAQs8KJU0n1j7zDvmvwdEfG369Xkm6rWzVnYjWMT962PjYxgHkuJxi8fXAXb+jlmPu8kxiH7/5VHU5UchQ0NDIUMYQb9ns9mBjBYykGAJs3cCLFNnfC/A66h8UvZBtzOcDevAKe3x4CDXAFDmdd/LPchKAIL9ww/iTtrTj0r8uTqdjpaWlpTJZHTmzBl1Op1Q5sbL28Q62W05DxDj9yVhON7nCH4jh4iurq6qVqupXq+HzDcfNwBz3699DPwZ47715/D2O3Dr+s5fi8Fz/1zSGIJDQTCJa5zvJlyr1WppcXExkFjAJqRbwQRIbZRJGxsbC2eh+JkonGnDZ+O+28+aiwkCsex2Dbd3PAADPhFnvvL8B2nbUcixT75/uWMQ/ZWvfKX++I//WG9961v17d/+7frUpz6lycnJw2zbIyNEOCnLMjc3FwD03Q7lisVZS7DDKAdDatB+Dv85TPGNHCABQJOIflIZl8O8P9f2E8FHR0cD48bBzKNa3CieTqejGzduhPSkzc1NFQoF3bhxQ2fOnFE2m9Xs7GxgLnLwqgMWSYGHGEDlN0wtnOxms6lvfvObunnzpm7evKnnn38+KG2ceGdg79dZelCE8e/3+2H+oVD3quPpyr5er2t1dTUwDFB8AGGwNLgfRgiGI4p9a2tLpVJJ9Xpd3W5X+Xw+gPH1en0AtBsbG9PMzEyom0apHwAPmArNZjOk+3mdZO5P6ui1a9dUq9UCOB6Xpmk2m1pfX9fNmze1sLAQ2OjHcizSo6nLMWLjfT92EOP/HXiMQSoPeg0N3TqIcnx8PNRQLZVKO9ig8e/4ngDKfgAlejwGyPfSoe4UoRMA/bgOe4IDqw5u4mzAnibg74ECgDkcPd9r0En0Hf0Zs84IeLtznRSkIDDp4Lu/H4+h96sH1JOcwKSgA32FY8z/9CsAZ71e1+LiYjhbA3sMcBxdkslkVKlUVK/XB/Zs+h9AgbHy7CPGBkYVNVNv3rypRqOhtbW1wKzjWbyUEEEdWIh8hvvGTHe34Zyc4H1MZlUqlQosNuaNS8y6dtuVvoz7Ar1KQFpSYEbCtPO15HXYYZ4549KzCZC4TzxrLQ6AuA1JNgUp2R6UBmhLp9PK5/OB0eh9Biuz0+mo0WiEec1zrq+vK5PJhPcBBPyQcOZWt9vV1tZWmFeABb5WWGMeJIgBlt2yOHzc2If2w0I/lgdDHkVdfhSSyWQC8Mfac50Hoxj9SJaIZ1pJt/ambDarqampkLkS++VxQPNeCW2BCe7MZHzNfn/7YEre47V0Oh18U3yqbrc7EAz27CMCy+vr6wNMaAKZsNI9S+mgzxPLnfSf24ZXrlzRf/gP/0H5fF4zMzOByTw5ORnKhPr+yF7q5AACBWAelHT1A1MlDRDbvvGNb+j69etaW1vT4uJi8BVdl2MjNZtNbW1tDYDpXJdsOrfjJAWf3u1GMtAkBbxhc3Mz6BwPPnt2HKA2ulAaJA84ZhCXKPODsG8nvd52BjYZA9L2wZtkQHBvytsUi8WQTeckAsbk9OnTobRMtVoNOtQzxb3f0+m0pqenderUqXDmSnzGTqvV0tra2o5sV65VrVb1/PPPa2xsTKdPnw6fQUe3222trKxoc3NTN27cUKVSCcz53fqGexzLgyV3BKKzKUxNTelzn/uc3vWud+kv/IW/oF/5lV851MY9KpJKpYJiHh8f18mTJ1Uul0Nt9NuByx7RBozf2trSzMyM1tbWVK/XVa1Wtba2dhSPM9AuHGEH0XHiYobwvbg/DiKbqqTQBlLPHGw+CkHxttttXbt2TalUSisrK7px44ay2ayuXr2q8+fPq1Qq6aUvfakmJiZULBY1PT0dHGFnNMV9544fDlS73dba2prW19e1uLioxcVF1et1fe1rX9O1a9dUqVR04cKFEHDZ2NgIh1kVCoWHqoyLCw6xH7KJsbeboKT7/VvnC6ysrIT0TNgTHlSIMwU82gw7BUC72Wyq1WppdHQ0HPyGcsT5zmazOnv2rKanp3Xu3Dm96lWvCiekZzK3DqR94YUXtLq6queff171ej0cJuwgeiqVCqn9+Xw+GFIElDKZjNrttiqVirrdrq5fv67r168PpOo9CHIc9b5/8qjqcgza+CClWNx5jLOnJIVyYNK204IuLxQKmpqa0ujoqEqlkkqlUgA+k2oPx/d1J4i9mLbwPYB8HJl4f3YHBn0cl2WIA2sxyM/12fMciOWQVAcRHIz2UlQOCPM+ZTnQwZJCwIA+dxuCPoG148Dy2NjYrk6Gs3qwC+gfZ4/5nh0zrgFivfa2g7dee5P+ICBJHwGu8ky1Wi04g555ELOzmKuxU9ZoNIJeuXr1ajhElMA8/YP9AxML+8sz9Nye8MNY6SfmoQc33Hlz4JfrANLEjjTzFqAmlUoNgAyML2PF73w+H8ZmdHRU3W43OPA+7wBmcJ7pT553a2srsEoZZ4LstMUZkz53vV848AwGahxkoeTR8PCwxsfHdeLEiTC30+m0Op2OFhYW1Gg0QjDd67oz9oBMjUZD6+vrA+QafgBgOKiM8hKUcnTwwuuwJoF2bjvz/Mxz2sM4MH63k7vR4962Y7kzeVR1+VEIAF2hUFCpVApsctdJZJqx5zmwjL2QTqdVKBQ0MzOjZrMZAl+xHMVch807Pj4+4Me4rqfEo/eDt5lyL+w57HvtdntA5/d6vUDW6ff7gYXcbrdDuUuC8vTZnZR0SWIHH7QvsQEk6cKFC7p69apGRkb0xBNP6PHHH1exWNT58+c1OTk5YC/RL25LEHjJZG6VxiH4Wq1W1Ww2B7AH/Lharaavfe1runTpktbX19VoNAYIG4C/BGc516xQKARAGZ0HuUDSgA1VKBTCGHBdB9GphuCBXfAa1/secOl0OkEfeE30mBHPM3vgfT9C4BbyV0wmIfODIHc2mx0IXrh+9KyCmZkZDQ8Ph1r4MP6l7cwr7AgII2fPntVrX/tajY2NqVqtBnLc8vJy8OsZt/gZJIXsArJW6EMEIgbn2iwtLQ3YyPF8PWo59sn3L3cEonsnDQ0N6f/+v/9vvfKVr9S73/3uQ2vYoyQoYRwvNqCY7XO7ayA4fQ4e7pb2ea/FI50xs8wd9XsFznJdZ7N5v8ZtOUrBQZE0wDKqVqtaXl5Wt9tVqVQKxpi0fcANjDBABhevP4uC7Xa7WltbC8ynWq2mRqMRHKy4hIePTVIt/odJGOPbPYfPES9V4FF/BzpiEF3aBp1iRYGTjnGVz+claaA+soPoExMT4Wd8fDwoWcZ8YmJC6XRaKysr4TBTDAQEY5C5g6POvgCIjgFAvfajDCjtR44V9v2TR1WXe51nn+t77Q0xuzlmb/K6NJgFFTN2Y/YS14kB5nju+v7jjsxu7QX4wvHy0iVJ3/dnjB0lf3bvI/+8f4Znvp1u9e/zOfa5+JnR24CggLD+E49n3Mdxn8IW80BI3F4HCT2NOXaQuLYHYWEYSwrAAu12Z9D70MEZbzsguusc2NgerI2fM9ZRcTDc52PcDp45KVDv7aONcZ84I9vvEdt/8VyI57qvn/j9+Pvc16+dJDF7PR7L2B6K54mkHW1kfD14T9Ail8uFYLgHb8iOo0YwczK2JQjeMK/a7fZA4AMQhOCJz4d4j/PrOtAVC9eP9zuf/wQ5bifHIPr9lUdVl99LcZ/AM6RifcBekqRDXb/7vrHfdXOvJGnfdIltFfSBZ28RMIwZxa5vks4dYU9x+8j9qrt5nsMUzyoiw4tMH/S4B5bdxor3SAK73W43gOUOKEOwarfb4fDQWI/5XHS/1PWFtL2nJ9l+fC6pTBmv7WZb+uuM227jjo3G67vZiLQvyZ72e7nO94PefQ75+14qSBoMIjB20jZpA+CdPofcwLodHh5WuVwOJV4JRHAtsjA4L8UPlo91F/3f7/cD9uPkFZ8HnmX+oMixT75/uSMQ/T/+x/+4I0XsySef1J/9s39Wf/iHf3goDXuUhGgeB22SMnY3yoRrEmUGdN1rozpsccXChkdwwMtT3EsA3RlWREZdAbnzvds1+L2bocHvO9kc+E6n09HKyko4IOPSpUvK5XJ6+umnQxrwzMxMOKSuUCgEVmBspPhBkgCk1N7s9XpqNBoBXG82mwHgLZfLymazQcHHrMOHEUSPgwEA2YDWCOsFRXnmzBnlcjnNzMxodnZWIyMjoXSBs+OS5gWvEchypQ/TgnHO5/NKp9PBYOr3+5qfn9d3fMd36PTp05qcnNTJkycHDmpbX19XqVQKpQLa7bZWV1d18eJFXb58eWAettvtUN+v0Wjo+vXrA+vPa/pSRxfD8UGRY4V9/+RR1eUAmknz3J1LB27RHxi/8UGQMGCS5hyMImk7hdUdHXc4+JtgKCAk2TAc1OXf9T2IPQeniH3DnXa+RxscmIwZrrzPczqT2p2yJPDf33eHwp077hc7RP4ajKL4vVwuF5wY+goQkef38YLlnBQQcADWHURPx2fOOECJ0HbStWFTN5tNjYyMhDM2CISz78dpw7HTyxhxT7LDvD4r6cT0N/aepIHx8wMtmYteugVbKZfLDfQn8x4mGPOca8XzmWfytHbGWdouFxKD6fQnrHcXZ+OxHr1sTAz8SwrsctiVXraAvuKHgHMqlQrM7aSx8LkSZ6rApMdOyGazmp+fVz6fD6xPD/aMjo5qa2srsAgBwre2tkL5PYIkjMfQ0JC63a5qtdrAM3tmBsEZmO2+v3hfxn/78yDOtPSsEeaNr4+95BhEv7/yqOryeyXpdDqUOikWiyoUCuFgSM6ZcHFd5vs566XVaoU9Pw4cH6W4DmV/cFCffdB1P/oXPcue0el0dOXKlXDt3crP4gP53tfvb5fZ9Ewh7nlQiYOe6JPD2De2trZCxtDw8LCeffbZ4BuPj48HFn0+nx8IbLrOwI/e2NjQ0tKS6vX6jgAxGUgbGxsDmY8epM5kbpX95TBRCFaxHkDwPR2MJevJgeVmsxkCs+12O5TpYex6vV54H724tbWlarUaSowVi8VgI2GTYDd7SV2eGb8azKLdbu8A6rEBwbNGR0d14sQJzc/P7wi2YzOApfX7fdXrdbXb7ZAdOjQ0pFqtFogO0i29NzY2pnPnzmlzc1M3b94MNhcBjdnZWX3P93yPTp06pVwup8nJSWUymbCnuq796le/qmq1qlqtFrItJA3MC8aC7EG3fSnR5/14t/rzMOXYJ9+/3BGI/oY3vCHx9b/8l/+y/vJf/st31aBHUVj8MIy9zMlBxTcoNnZSpe6HwnbnPE6HPwjT/k6FDYs2uEO3n3rs7uAlKXbf8O9mc/BUaJTryMiIrl27FiKfs7OzGh0dDexkQASUFG0ghXxzc1Nra2thA+dZcMpwqlFUhUIhMJgajcYAeHS/WRN3Kzi5GDGxEGkmZXNqakrFYlFTU1Oanp4OjAN3/m8nzjrB8ZcUAhIYOrAJUZRzc3N6yUteovPnzyuXy6lUKg3sBb1eL9R5W19f15UrV1QoFLSysjLARpAUMg+kW4Y/nyFKT6kfDLQHKdp9LPdfHlVdnnSAjzSoPwHcPBDsYCaglrTN/HFgebf7sc79EML4RxqsHc3+RbvQRbvppZjJ6uChSwy+811ngvNczj4DzHOJAcY4wOxMZd4jrZa9N2bJOtAe2zCAxV5fE/CWPd6dFVi8SW13ByZ+JmdSO3CclLGDY4nO5b44sTwvzqQHVJKY5vQZ9+PclKmpqcBy5qAs+pa5wpgBknA9B3ccUI8DFgTk3YHjWei/mGnpIKvfy9PZ6Sfvd8YK+4y2xOuT/vHsAw9w+Lj2er3Q3wA1cTbabsCy624v7eJz3O/rYBP6NZPJqFAoaHJyUqVSSWNjY6EMBDYYgAjzGPJCo9EI4AmgipcCIqDh9inzQ9KOv30Nxu2P11ss3l/0kwenDguoOpZ7K4+qLr9Xwj5IFgmlsPysCfYEPy/CdYgHngnMEaS93yB6DPI6wOfBSdoKY5dn3traCucypdPpsI/FAXu3pzy4j1+OXne/6G775bD7td+/VdozLolbLBY1OzsbynWRIewkpWazqX6/H87c2NjY0Orqagiq0O9gP34eSCqVCsAwAVUvLcTf3q98VtpmXzthBJ1CmSFAeC+RQva6z41+vx+C6MyFfv9WSblOp6PJyclQ7oSyY+hF9G98iCdl1bLZrFKp1MA9EfQ8Zwlks1lNTk5qfHw82FDoReYd5xKQNdBoNAJzPJvNBpvISTSA7PTV8vLyQCCmVCrpVa96lV7+8pcPlDylpKHb4s1mU//1v/7XoCc9+BCPBWB70rqMfYJjefhk3yD6k08+qZ//+Z9XPp/Xk08+uednP/jBD951w47lwZNYaSal495r0Hw/ktQe3wDdoXagfy8QPXZO/fWDiju4fjAYRl2n01G9XlcmkxmI4iMoQKKYKF6MFIwX7oUDhtPmDqor+YddfFxjMAb2XS6XC6wTjObYWb/TvvCADoYjjjVGQDqd1sTEhHK5XAAA4vvRXumW4i8Wi1pfXw/st93EWZW0I6ne64Mmx1Hvo5UXgy6PQfQ4WOqsWGeT8Rvw0VnE0i2d5wcDwjpLEjemkfj+OGM4UBsbG+HAJxwUZ255lokH7pxJj24hSIqjllQnPG5vEuMXYDn+ngMGXi7M7QKcLtc13p+upxzEjpnPMSgMIOrAMjWwkTh4EgPp/qw+H5JAYm+bAw/+Hnuv9z/pus5i8rb43sdvn1cEd+JybMwLv7/bM/4MPkYxuOzf7/V6O8DamIlO270ea5Jj6My5GHTyeeltcRss/s7/x967x1i6Vuedz67bvu+6dPWVc+ESGAMeO5YZIXBs40kgwiOHEFsmEwmRxCCjk3EMRxqPz9iMj+3YiNhCLY+NsSUnOOOA+cMhnkhWAszEeDBHI4HBMwMZMpjD4Zw+fan7vtZ17/mj9Xvr+VZ9u2pXd3V3dfde0lZV7dr7+97b9661nvWs9fp64fsA4BANAMMjeOXfjaQI2hrvQ598DaDXB4NBJljiWZe+NgDmfax4TqOtGfvOesl7DqO+9Gcq77n2fvmY8HkfKx8L1sCo9tDtggFjXX58eRh0+Z0S1ynxuXd/LPqKkjJ7AjqZTDIYybfKuL5VGebzsl+Siett8owgzyTz/gGMsudG30raLyGF3tnc3Ez7Ad9FPzKWeX5nBP4j0O9g8t0gBPX7/eRrk2ko7RMSvK+M5d7eXsoQd3IA+oN+5gX2nRTB99inXd9H/VwoFDJMdA/08pOyYv4/2uI/6Tdgvx9wzT18/GmX2xi8B4lgmA6hLZRa4TU5OZnRf/z0w0adoID9DPA9GAwSyO52vs8fmWuw68+fP69C4WbWH2RD96PdbpmcnNTi4mIKeHN4fN69fF6jzXhadd698Mk/8pGP6Nd+7dd09epVvfa1r9Xly5f1/d///UM//7nPfU5PPvmkvvrVr+rSpUv6mZ/5Gb33ve/NfOaP/uiP9IEPfEB/9Vd/pVe84hX6lV/5Fb397W9P///gBz+of/Nv/o3+3//3/1W5XNYb3/hGfehDH9J/8V/8FyO3e2QQ/ctf/nJi//zFX/zFoQ/FWA7KaQaxRhFXZrxg/jjjOzqmd0PcYPAXSprf2QC91IsruKhU3JhwxeF1pdlojzO3vtFubGxoYmJCa2trun79esZBZLOOhlieoqzVaqksCRFvaT99DoeOg7K8Fvgwg+Z+E2e4IYxfqVTSwsKCFhcXNT8/rwsXLqQapoDTtxMAwvhj/qhjzrro9/sJtD979qzOnDmTmAZ5DjVzw0HEHF54WPsA/7gGctr3njGIfnflYdDlsDgdCKI/OEAAYe78eXql1x12cLLb7SZHp9VqpT2XfQSnI89BYo/ixcGbOGA4KbBo4sFMwxwgB2VpP3s7fXanzHUb13Ggm+8S6GU/8nY4AOEgrx/M7IdhDXMsnLUk7acrA+biKPJeLJEiKVMChdRh7yP7soMe0n7AwX/n+74mAMSZdz8QHvuA7DAHO9vtttrttvr9fvp/XIvOxOK63W432Rg4zQD40Smlfc5Ko/8+vu4s+3qmDx64oW3MRQSx80ByB37zzulxHZvnuDsg4GC/O8KszUajkUAhSjJwPpBf2+fCg0O8RxuHtdWBJeaoUCiksj3YEPwdg/F8dmpqSr1eL52Vwr7DmEZCg+tyZ7V5VkEsj8T6Zb1HosdgMMjUgfV7M6elUinzPBwnAD8G0e++PAy6/E4JzwN+kZQ9M2JyclL1ej2Bj71eLxO8xa9iHyB7mBKKHtg+KckLkiGRHOa6vFQqaXFxUZVKRZubm+p2u5KUSolub29reXlZ3W73AFjYaDRSQDwGYaX9vZOxoRTV7u6uyuVy8oU8OycSghxU5rPYRdwXe21ra0tra2tDDxk/Sdne3k7ZQ5TXisFMD8B40JP2+6GSZIA5q9qF4LmXsnPigO/NjFGsfS4pkeomJydVrVbT3l6pVJKN6tgH7aCdbodSVmYwuFk6RcqWoXNgHxvFS8VhU+QFlHjGeJ09e1alUkmDwSAx+QlK8Vwx72RNwLqXpNXV1dS3M2fOJIyF9U5beB4k6cKFC1pcXEyM/9XV1UwWKVn7TmosFot6zWtek8rm3LhxI7Mv+PORR5S4U7rObavb9avvpk/+yU9+Uu973/v0kY98RN/3fd+n3/md39Fb3/pWfe1rX9Njjz124PPPPvusfviHf1jvec979Ad/8Af68z//cz3xxBM6e/asfvRHf1SS9Mwzz+gd73iHfvmXf1lvf/vb9alPfUo//uM/rs9//vN6/etfL+kmEP9P/sk/0X/1X/1X2t3d1c/93M/pLW95i772ta8lW+0oGRlE/4//8T+m3//0T/901K+NJchJPDzDHtA7JQ5SSwcPiMoDDPjevZZhUXmcTT+cIm+TR1G408mL6+O0HGce+Lwzhw9rv4tHNWE0w5CEleR9cTaj9/V2gePTJNEgc6HfpJUBZpdKpTT/JzEGfg2MDlLypZupgZVKRbVaLSnjYUwV5gUjDKDgMDnNke3DZAyi3115GHR5BJAQgom+lzuwxnv87kFSdAjgLi8cIhwIPitlA7LuqDhohx7AGfKDx50962CwB4jjffIclhgoHcbicj3pgLuPAfeJjhTf516AmgQKIivfQUF3Rl3HRsDf2+N9YK/MY+PjDDpYmBcwj46x63neZ46j+PdwIAHWe71eYqzF+tIAA26TeHkX/4m4/RXnzsuw5DnXfH9YH/zZ4L4eiOC+w8q/ObsZWyS22//2ORjWPm8X/0Ov4tgCFnkwie/62EVg3dsc2xKdX78/QS9/TqNNxV4QMwCj3s8LKvja9qwa+hJtOAdvfC7y5tjHlGt5OxygP+xaedceg+h3Vx4GXX6nxPfrqJukbLkXKX9v4Nlzxq8HxE/St4rBwfi/6OfG/YE9s9+/WfuaPQn9jL3jfn5edo3rbK4f9R+AOez8uMdFG8j31liCzH112no3fFb30T1AeRgTnnb5fsyaiHZc/Cz/w4bDVvX78tPBfA9+x0AKaxJ9zb1cZ+WJ34cAtZ9Fk/dZtxedAHGY7sBu42wTyChbW1sZYgZjBYHCMwV5EfAfDAaJyAEI7s9LHJu5uTmdPXs2BRWcQEH/GDP6ODExkRjsMSB0mB67W1jd7d7nbvvkH/7wh/UTP/ETeve73y1Junz5sv7Df/gP+u3f/m198IMfPPD5j370o3rsscd0+fJlSdKrX/1qffGLX9Sv//qvJxD98uXLevOb36ynnnpKkvTUU0/pc5/7nC5fvqxPfOITkqR//+//fea6//Jf/kudO3dOX/rSl/QDP/ADI7X92DXR2Ri/8pWv6Du/8zuP+/WHUmDocCLv5uZmYswcBYxFcWXFKdCkDp0049SNaRzUCEbzApj0uqZ32yh2B1vadyph5cEQBMB05pYrIMQdDa8RiUKhREqsIZnXbzcSYC95ZBPDo9/vpwNAHMzhGnkRTVckMfXa14sDAf57HLf7UfKcQ0kZELper2tubi6B2Ld6LsGogoFQq9U0GAwSWw2g57Ax538cWNjpdA6wUscyltuRB1mXs9dG/er6y8sgOGCLEZ2X1ZEH+OGkwJjywFw0aGEB5d2b/R/HHb0VAV0H0N1Zc13hTlMcC5wzB+XQ7zjbOKzslX4v7w97mbP1KZvl+lXaP3AVcaDWgXoyAGD/dbtdbW1tpbMlqO1ZKBTSPs5P9DoHY0a9AKjJWLgeJG07AsBxn6Zf6BaAAvQJzqbbBehjZ6pLyoDBBBwAKnCUGT8PRnhwIIKde3s3a7ZH3ebsRF9DOPg+Rn6oJCnS2FAwsuNZLc5E42/+5wCtPwsOEtBGz2501j/nCvkhb864c+ZnLAnk4D7zyzh6cCTartGJ9zFkvj0g52CG28l818eDv7EBY2CEtvle4Zklw0Burk2bY63iCELt7e0loN/Xml/7brA+x3Lr8iDr8jspDmy6fgU4b7fb6na7mbOF3Ibn83t7Nw9glKT19fVks+eB87cqcY+U9rN3pqenVa/XUzkRz+jhfIVms5ky69gHW61WOuiYetjso+gJ9gRASh83mNUOoGMDAGZ6QJlAMvsnbGV0eV5AD/3o2XCzs7OqVCrps4PBINkM/n3PWjtK6C/say+9It2sg00W4mF+G+OD/8dhmQQw+v1+yk5ibhwInpiYSCVbEcbC9RHtiuQP7gt5y20QD8J6QMT1g3RTJ83Ozqb/xSCN60rX4bR5dnZWjUZD3W5X6+vrarVaGfvPCRYc6EtZNsbFz73BLsF2Bf+irdRPZx24Ten6Gl3rh6BiL/X7N7PFPYjkY4VtPDl5s9TMjRs31Gq1DoD0h0kMOp20RJv3Xkqz2cz8TYAkyvb2tr70pS/pZ3/2ZzPvv+Utb9EXvvCF3Gs/88wzestb3pJ572//7b+t3/u939POzo6mp6f1zDPP6P3vf/+BzwC85wlnIsQDug+TY4PoU1NTevzxx09UOTzoQuTXAVI/EOk44pHQXq+XNqi8COGtCg+6pyIRJZSyB1Txe61WS4phWHTzTkncONwg8pqdOBc43Dhmkc3jwnWcseDRUNKuXRHSDhfGampqSvPz81pcXNTMzIxmZ2dT5BWQ4Pr161pZWUlzPGxTdBCGtg1jVvjn/Hv++/0u0SFnfqvVqmq1mubm5rSwsJAOCvHU75MUB878Hg70HBUtdjCj3W4nY/dBlXut8B9GeZB1uYOa0WiNjC6eM6+JHgPSrh9cv2Cg4yS5gwFg6yAietUBNUA8r60Ji4b9zB1YB7TdwXWnywHxyATzvjk46N/BNuGwJnSK6wtnqjkwDMDp/3dQGen3+8mB9yCCs9larZa63a62t7fV6XSSc0W9UQLSOGTsr5EpjaOEAx+ddWeWeSo77fS1Uijsl+ggs4g1QF+9HAvO/MTERHLwmMtSqZTGyjOjfB0yf6wvHO3d3d2Mfslzpr2PMYDLvHs/AfnRNZ76T7kcQBJKm3C9Xq+XmGAe0GHM+G5ci/STuXPSAw4R5AMy70j/dhvUD0PDPmPcmQcPOjGu/B7fiwF51oTfy4MCEYjz8oG+nnw/8bGIQpsiSYI1Gsso8B2uz2eYd4Ay5ieeuxDXCiAMJKBR5G7r8XtRR/XP/uzP9Gu/9mv60pe+pKtXr+pTn/qU/u7f/bt3qosjyYOsy++UODjn44b+oNYxOoq9kbrNTiTb2dlRu93W3t6e1tbWtLGxkc6rOmnBH5eUnudisaj5+XlVq9XkS7LvonPX1tbUbreTXz8xMaGNjQ11Op10TfqDrkE/4Itubm5m9hjsBklJZ1OiA72HbQWITjAQAJPsLABOt5co18U+75k8HhgdDAbqdDpJb7G3ovNH2ZcAV0ulks6dO6dKpZL2PuwTal8fdT0+Mz09neYFMLtQKCRchbXlh6L7uDEGDlrHIClC1hu2BPfEbvJ2M7f+N/phcnJS8/PzOnPmjPb29tL3XVcx7zw7U1NTGVvh4sWLeulLX6r19XV9/etfV7PZzNwf2xKwfnZ2NvnkjiF5cAZdxRrZ3NxMdlGlUkmlap2YQd+iLqTkLWPe6XQyz5f/5LNORNna2tKLL76ojY2N1LdRBL0f/YuTkpO85u1e69FHH838/Qu/8At6+umnD3xueXlZe3t7On/+fOb98+fP69q1a7nXvnbtWu7nd3d3tby8rIsXLw79zLBrDgYDPfnkk/obf+NvHCsQfUto58///M/rqaee0urq6q18/aETN1qdSeVO42EL1llazvjhIAUYVCclDip7qjGOjf/trCFn4NxtyVNskYUX2+s1UmP7efn7fMfZUn69mDLv4kBLrVZTvV5Xo9FQo9FISoS/AS4wag4DevOA9OhMOyMuMv8cHLnfJTJKJR1Yww6suVFy0uLXZv34eMM08MNgfE4womBittvtkY3B+03i/nbc11huXR5UXe77etzfHQyTlAHM4v7h+0Qe6HWY/nbA0PeBvOvE4O+wPvl989oc25H3vrfFGbyuz5zVfRjgF/92B5t+xTbm/T1MT/n/vB9eGsOD+rR12NxHPR/tlzxdcNjYeT18P4/E7SXejzZD1EvuPHoZl8N0tJMDIvPc15R/N+6dPmc+hvGzw9aYr++4piMIHK/jbXNA3UHdPCbcYc92XAd5oEPe85f3+2Gf9/Xp9V/jOA17RuNelGd3ertjAMKvFecljoev92G2etzrfHxHyZi9XT1+XF1OHdWf+7mf05e//GV9//d/v9761rfq29/+du7nqaP6/d///fryl7+s//F//B/1T//pP9Uf/dEfpc9QR/Wd73yn/vIv/1LvfOc79eM//uP6P//P/zN9ptPp6Lu/+7v1m7/5m8dq752WB1WX30nxfQibPNrZeXtQXlCdn35ux50gJ+X5NNGvjWdeSdnzP/L2d98nI7Eq6oW88WOs/GcUxmmYXeQ2ie9Vrp/pf7RRXN9GH2+Y+PWKxWIiABCkhSENiTCCvEdJ9LM9GBP3O9/LwYliSTYPGiDDcJeoLyQdsKXybNe8fThvn3Y9FnWNpAO6PdrUPq+R+OD6J/rSrv/8s4DT0Z+ObXYCDGQED/ZEWysG/QeDQSJKkKXyoMlJ6PHnn39eGxsb6UVZlWESn1X2ieN8Pr5/nGv+d//df6f/6//6v1Kpl1Hl2Ex0SfqN3/gNfeMb39ClS5f0+OOPHyjA/hd/8Re3ctkHVmBc7ezsaHV1Vc8//7zW19f1kpe85EAKuDRcAfHwbmxsaHt7W9euXdMLL7yQgLaTkImJ/QNEUCaevhudEjYiFE001P2huhNgpSsDT2MjWkkKlUcR/bTpoxStb/jOMkIZsgmjAIjmOnOnUCio0WjokUceUalU0ktf+lJdvHgxHRZZLBYTYLqzs6Nz587p6tWrarfb+uY3v6nV1dVknLkQHd/b20tpU1yLFDnGfnNzU81mMzH6iHxjOMIAux/FjVeCU/Tb08Wq1Wom/f5OiwMcg8EgMSop57S6uqp6va6FhYWMkbizs6O1tTX1ej194xvf0P/9f//fWl1dTYeXPGhyKw60f3csty4Pqi6vVqtpn0fi/uY1FCNL2hk36BMHbCVlGMVe2zoewDUMhPYSIt1uN7Fo/KCkPEasB80j6Mp7lKeAreXAmQePaauzz3BEXWfSB8bKnUP6GVmy3tetra3EQnOdjf7id3QSDg3sNxzPQqGQ5nZqaiplwAFou4PNuESWrTP5sGlgyTFuvl7oB9clGD4zM6OFhQWdPXs2E5Tv9XoqFova3d1NTPXt7W1NTU1lyrRJUqVSUbVazdhUpN6j07BpPEOCuaYvMMO8DIevH9YF9+C6rFnGAgCFNcZcMl+U0SGtnXYz1v5s0Ubepz88Tw7WABywjjc3N9MacIcb4MQD4h5Eoa1eps/bEAFsf7YimOSOOZ/hOthqrE0YjNiatI1nG6Yqz/ZgMMhkyfh8efu8LIPvAe7oY/f6HhMZ9L6+uHeeDeTgE3NEf46S29HjfP84cq/qqL71rW/VW9/61lvt5h2TB1WX30lBPzabTX3rW99SpVLR/Py85ubmNDExoUajkfZLMsU4Twm/HsYwOmlzc1PXr19PPt1JS7FYVL1eTz4bzG7+huUrZfVyHjDujHPOXYJx3e/3NTs7q3q9Lilb4snBURjBgNiQgNxfjsCr35+92g9t9AOYXR9zTfQ37GtJyRbY3t7W6upqyg7PE/ZKWPnT09O6ePGizp07p3K5rPPnz6tararX62ljY0NbW1vJd9ze3tb6+npi+0f94dLr9XT16tVMNlKhsJ/J5qVW+P7u7q5WVlbU6XRUrVZ14cKFVOoGWwTyFfba5ORkhuHPdXyvR++4ngO/oN3OtF5fX096mSATNhLjnxeYZU288MILarfbid0esSBenFXmWXLYoHxW2i8ZyHtRX9Nu5gpwG4yD709N3SyfS3m8TqejZrOZ7Er8c+wqf47Q9zdu3EggcafTGVl3+fN4muUkfHJIoUfJ4uKiJicnDzDEb9y4cYBJjly4cCH381NTUzpz5syhn8m75k/91E/pf/1f/1f92Z/9mR555JEj2+xySyD6vU5du98Ex7BQKKjdbmt5eVmbm5tqNBpaXFzMODKHXYMNjZIwa2trWl5eThvHSYhHBYvFosrlcnKwPTXcDfboeEfA4KiI0kkISsNBg8HgZppbdBaPE0l24Ts+RpIyDpZnCUj7CqBarer8+fOq1+t6/PHH9dhjj6W0ZNKWCbQwluvr67px44aazeZQNhrvb21tpRRyJILo7XY7KUKcU4AkUpvuN3HjjL6gpDCSUNJ34jDRo4S1yBxRemlmZibNh6eLTUxMaHNzUysrK2q323rxxRf1rW99K6WI3o9zNJbTKw+qLuc59z3anR0EEB1g0/cEDxg7w4m9A8eC67D3UmIDvcfPqDcB4Qn+wTyK52s4sCbt16n2a3mfImjpAORgMMgw1rz+OY4a+1EUHxt3oukL/Qcw5nPYLQ7+u8PI2DuI7nVaSadmHCiDNjV1s5yKH/zmDCbaFtlvgLDugErKOINRPADBuJVKJTUaDZ05cyYDUHuaMPrHA+s+p9VqVZVKJTOHOzs7KeDqjjffjWuUQAggDvMS1wPj4+/5Oqf/Xg6OsfSyQrC2HLh24Jb+OUsbAWR2h9gBep4HD67EOXB2tIPokXnn/fW2+FqIDPG8oJeD2B7EoHRBv79/dgFzQP8oI+SZZ146yNeaz20e+80/53PozDvPRojMPeyheF9/PnjfA2GxbM2dllFqqZ6mOqqnRR5UXX4nhWe+2+3q+vXrCVSmbBR+A+sDn5JzJLzGN+dw7O7uam1t7Y6dYUTwOD6T7KPoJfZZ7ABKm0jZkq3sp5QYoUxpv99PZWs8G4X7AAhSMosAM76ok9ecVOCCfnT9A6COTkT3sP86oYGAe6FQSCVIOp2ONjY2Mvt1FPo/MzOTCIAXLlzQ448/ngHRm82mKpVKCqAApBI8icGBeC8AffqEnwfxTsoeHE0/m82mms2m5ufntbCwkLFxIBxgZ+Vlv7s+Y92CTUSJNiZELi9x4jYcNiTtx7b0wDRlNTjLywkYro/4rgcJaDO6ygP+6Deux++8Txu99r9niRG44Hp7e3tqtVqJYDg7O6vBYKBqtZrG3AkjnM+ztrampaWlVEN7VBn77wdlZmZG3/u936vPfOYzmbJpn/nMZ/S2t70t9ztveMMb9O/+3b/LvPfpT39ar3vd69K6ecMb3qDPfOYzGX3+6U9/Wm984xvT34PBQD/1Uz+lT33qU/rTP/1TvexlLzt2+2/JMvqFX/iFW/naQy84iM1mU7u7u4mJ6gd4eVRN2neGAAebzWbanHjwT7LMgyvMmDIb02Z9MxwmREvvBGgZlbkrg8i+GeYc36rgcLAp45i7MSDtKyXYATCiObgEY81rplLDe2dnJwG/sMvjPOP8AOjEyDuf9xJCDmQAPLtjdz9JDGDEdKxonN0t8Pww2d7e1vXr1zU9PZ1q/vrz1u12de3aNXU6Hb344ouJwRYzER4UOYmo91huTR5UXT4sFTQyoTHGnW0Z9w72Dd87+D7B0s3NzeSQRtaotA8ect1CoZCygjww7vuxPxcOOFPv2Zm2eQwXBx1j0DsCkd63WP/SQXLP+OIe/B+nxbOm3AHxMmP+XmSiez+cDc9cUAPdgwC0k5+R3RxZeA7uM7bOnnZ2F06d3xO9zHtRpzjozlrBMfTxc6CY36kturOzc2D9+Zh4gMbT3ln/0v5hrowJcxSDOhFsdXa6n+OBkOkWv8taz2PY8awcpoO93BmkArftHBzw12G2izv3/mx6kMt/px3+/SgeJGBMeS6dMb+3t19TFlaeAxFxvcdx8bnyoAP/c/3ne4HbxOxxPlduA8bgA+/HINRRcjt63Ps1Si3V01JH9TTJg6rL74Y4yLyxsZECN+gA9HLUXWSW9Pt9bWxsJB99GKh6qwLgHe2UaNfQVjKGKCvD52BA5wGnbhvA0gVUl5TZ6yI73PW+v2DzEuCL2IFntEcdxj098Em/eQ+7ivvj49IvmObs1bHPHErpNbJ9fwXkx+6AIc+eGl9RfJxpl2MRjJnbTNzb54T3or724LnbUAD8PtboHNpPH5x04H3nO+5PUyc+rgsCNnljcdj4ILQlZvC73o5jErMUGFv66ERGnh1fM6VSKRPM39nZSYfvNptNra6upky/mZkZ7e7uqtlsamtrS8vLyw+sPy7dfZ/8ySef1Dvf+U697nWv0xve8Ab97u/+rr797W+n80qeeuopXblyRf/qX/0rSdJ73/te/eZv/qaefPJJvec979Ezzzyj3/u938uUYvnpn/5p/cAP/IA+9KEP6W1ve5v++I//WJ/97Gf1+c9/Pn3mn/yTf6KPf/zj+uM//mPV6/Wk52dnZ1Uul0dq+23RC770pS/pP/2n/6RCoaDXvOY1+p7v+Z7budxDIe12W88991xKG1lfX1e1WtXFixfVaDQyadXuCJI+tLq6qm9+85tqt9vpFPDI2LlVYXNCoeAoolQd5PcosTt4DhbQJiKAJwliS1lgwZ1xnEBvowMqt9sO5sYVmLME3WFHYc7Pz+vSpUuanZ1NaWMETzilHKAUQ6VYLGpxcTGl+pMOnzcOlPlBuXBSvDuFONTulHa73TR/EXy+H4Q1AJO/2+1mmHcOtMQaendT/H6tVkvPP/+8Wq1WOhSFeaO0wPXr19XtdtVsNrW0tJQJfjxoMgbR7708aLqcZ93ZKvwO2OVZS/EQPZwLP4DaSxoA9LXb7RRIBUjf2dlJ7ODooLpTgj4nfZq00Lyame5MAi6ifyYmJhLo6PoBdhm60Eu3OCDsTF5JaT9l3AD8KUUySiAy6inGB93IKx4sGkG92GacH/bMmAaMLmS/hDEm7TtlztCXlD5D6ZhC4WbJGMBzGF8EvhuNhs6ePatyuaxGo5FS+z0Q7UF01mKv11OhUMicY+PgDCVCIEqwvtbW1tJaxBbjMFNn5pEt4U42DDq3ldzGdFY+tooD/M5E92y4breb0tn5vDvz/nwhOzs76vV6mpycTGPpQRJslK2tLW1sbKjdbqd5hVEWgzFIBMP9uXP2Nf/3gI+vV38GGCsPqHAfr3vcbrcTK91LExSLxQTssP57vV7qA1mS9N1BcQ9ouL3CnuY2rGeuYOM569CzBvwgWsYiluzJC5SNIicFoj///POZNPDIQneJ+5CDbaN+Pr5/3GueNnnQdPlREoNJtyKbm5taXl7WxMTNclzLy8sqlUp6/PHHNTc3lwEYfU/kANFms6mrV6+q1+sd6zDLUWV6elqzs7PJD2e/ir4n9gH7V7vdVrfbVaVS0WOPPaZ6vZ5hFDtw7aBsvV5PYCm6FICaDHUHrgeDQcq0QW9BLuMAaHww7Kn4zDm7mb0Ivw4AGBY3gYG9vb20v2NLYEewd9fr9aSzOHiUe87Pz+sVr3hFspM8i65QKKT3fT9dX1/XlStXMnbMsLmmDwQ0tra2ElkOYJZ2u//NGvPyZZ5N6P+v1WopcxD90mq1MgFdfpL15uC6ZzTETEHPtqhWqynrrtlspnuwDvwVxyBm0TuwTv+2t7dTGSEOEcc+YO6xq8gSoc2sd19XnU4n6b1qtZohoNTrdc3NzWl3dzfdk2dFUjqHbDAYpGxBPks9dF9LD5rcbZ/8He94h1ZWVvRLv/RLunr1qr7zO79Tf/Inf6LHH39cknT16tXMWScve9nL9Cd/8id6//vfr9/6rd/SpUuX9Bu/8RupLJskvfGNb9Qf/uEf6ud//uf1gQ98QK94xSv0yU9+Uq9//evTZ377t39bkvSmN70p055/+S//pf7hP/yHI7X9lkD0Gzdu6O///b+vP/3TP9Xc3JwGg4E2Njb0Qz/0Q/rDP/xDnT179lYu+1AIRu7m5qaq1WpiGVPjjE0Aox2nvtPpqNVqaX19Xaurq+p0OonFdpLK2qPCrlgdfHRmj0uesemb8Ukbo74ReyTeFYQ7IScJ4vu1ANU9vSky4FFgvLxMDiC6dNMQKpfLqlQqqbbqzMxMYhYME1deOOY+Rz5GLl5S4H4DJJl7DJBYBsGZmABJkXF1pyXvXjs7O1pZWdHq6mrmmecZ29ra0o0bNxIbEbDiQZUxiH7v5EHW5XmglKRcXeGBX/YTBxbzgGMHq/jf3t5eBsiMLHYHujjLBAD8sAPCndnL7w5AsufTLmm/hreUZZzGdnkQ3EF8xg2nD8adZ1rFa+PYRpaOA58eaPbgLu13NhHgnqf8kk6PY4hjyTWdJUZb3A5w4JS14AAt4+YsMhw5QGwvDcZ147i5reRgt7fPGXKMMaU/ACdYi4Dk/X4/pcD7HDkYEhnpzBPXknRg/t1ucSa6f4f+OQvN59oBewe0/Xmhr07G8PnAJqFEoc+bz7Pbf5Ht5uuR7zuL0uc2CuPE//NKG/GZ6FCzX3AQHX31gInbJ6PYxHEM3a70PrPOmRe+A4jjWQ2IMxp9PDwgEYMhw+SkQPRRaqmehjqqp00eZF1+pwUwWNrPvKpUKmq32weef/ZKgOXNzU11Oh0tLy/fkRrotAkAPe7F/J/3CCS7jcEeSMkZAtq+P3IN/FX+HzPI0LFuE7Hnw1B2X4xr8nkH7n2/Rj+6nnBw2dnTrnMYD9rJ/zxIjN0Vmc6A7OVy+QCQzXWp1Y7OR/dGnTNM/DPsy/ij6ISYjRQDwa7jfSwYM+wQ7oct4To2lquL8+j7P2Pp+pb1Mzk5qXa7nbGjYiWAYf2P79Nfn0NKJ0Ub18cBW8XXnqSEm0nKBLZ5Xj0zj3lF9znRY2NjQ8vLy+r3+6rX6wlEJ2B+WODkQZB74ZM/8cQTeuKJJ3L/97GPfezAez/4gz945DkfP/ZjP6Yf+7EfG/r/k5jDWwLRf+qnfkrNZlNf/epX9epXv1qS9LWvfU3vete79E//6T899ummD5vwkLdaLUlKNTNh55TL5QPMOZjo7XZbrVYrsdFO6kF2hyzPOYufjSA6Sg8mE9dwA9wN9lsFMl1xkbbmjopv+rFvd1KcFegHfEVHLirFvJ/DPjeq0HfahKKl5l00iNzBQ/HmpaifRqH+HvXFY8Rbun3n7qTFwR2YbFL2tHDAtQc5ZWws914eVF2OfogAn+99DjC6sPc56OmAtO+dMJfduRwMBup0Opn0ZZ5tdwz9HAt3/JwF6sHVvNIkAGTcO/YDwBkmPU6F13enT+ydvo/6/R3UjA6xs4TY39yWiEBnZHChq5gXroVTTVq1l6DhMz7+/M288R0Hq2Gq81n65+XY3HHjXuhPHGmcMF9f0QF38oCXKoGd7MBxs9nMlHJx1rWkBKJz4Lunnzs70u2FCIAyThFoQPhuuVxOa4E5cGAb29P1Kv2I/Xe2Nf3BfmVeuWYsx+bCusoDZtxm9TXq9+d95sOJBRFY97UdbckIYnlwCJCc4A62qYP+eUy9+L73zZ9rD47EPnjZI9+PfHx873AA39eNs9J93k6T3Ms6qqdVHlRdfpSctG1PaZd+v6+rV6+mDF+eI/TP3t5eKrVIyaZRxfXicT5P+7hXpVI58DkPoqInvN55tCHQH17ygmv5Z12vkgkHGCll7QL2ajLz8Gl6vV7Ss5JSQBqdAOsZ9jlBc/eDsUscxJX2gxsEuvPGMAL37O/sn+gjP4eBcfCD6m/HN46g78LCggqFQiZw7mPY6XS0t7eX2sW92e/jIdeMGzYf2e6A6z5XTs5we9f1INcpFApqtVrp/364KPrCD/P089diwNeDEp5hV61Wk64h+BODJP4aDAYpQ4I+sA58nbldwJrxA0FLpVJqa/S7nZxyUlUfxvLgyC2B6P/+3/97ffazn02KWpJe85rX6Ld+67cOHNwylqy4Ic1hgRMTE7py5UraxIk2s8nv7e0faECK8p2IhEXwnN8PeyEe4XW2FcrXlaBvbrciKApYAACS7vg72+dOCtdHCeC4R8coginRAYzR5mH/H0UcxCD1rlar6fz58yoWi5lU5OvXr6c6YJQjiODAaRUML07IBpjwcTptCo91yZrt9XpqtVqZwFMEnB50uRdR77HclAdVl7MPoAscBHInKo9RzU8vIeLlYbwsFowvZ/7EQz+dPeOGOLo8rmFPT+X6EfjNY9M6w1hS2sthsLl94eVmcKa4F84c+6s7rNK+A+YgNYGH6IDx8u8DOEbA2QPNjJ8D5pQgcTslluYCOAQUcwYSpe+YK2k/YIL+hmnlID6MJrLHyCYjQOH7tut7bxM/ARQAkdHFu7s3D6MjeOqsfwDO6enplFpMHVcHQ+gr69fbwBw4iM5Y4TAy3oVCITnIvi4oe7O7u5sce67hQRjaGteVg7EEjmFGFgqF5HgPI4f4s5NnJ/GM+brzZ5QxYq541tgf3En36zjQ7kw3rsN3u91uqovMeLo9OixgkUdY8Nq1Xm4pggK+t9Fu+hWfQw9esQZ437MsfB9hvxsldf127ZXjfvde1VFtt9v6xje+kf5+9tln9ZWvfEULCwt67LHHbrn/tysPqi6/28IeBGnNWb9uC/T7/UTeicG6wyT6csdd9zyP7i/6tT27FT3IHoPfF3W6l61yO8izmj247GAsepk900vOoOvI2Ol0OmmPGQwGqtVqmp2dVb/fT+UrvRzMwsKC6vV62nejLedlVtA5ExMTqRSI65+8sWL8+/1+JsOsXC4nWwAdjM3kNuOt4BgeBKjX6zp37pyKxaI2Nja0traW9Am2CsF17A7PbpeUyo5glzogziHsxWIxjS+kBAIcgPDlclmzs7PJjmB+fe1Q779YLKaSd67bAeVbrVYq9+IHcHNdSH2cb8PaY6w5WBVbbHJyMmN3c6/BYJCCLxAx8uxIaT/I4pgaz4CX5OMgcPQZ9jBz9zDI2CcfXW4JKeMhjALzYiyjiUd4JSUFh9PEBuAOTGRw3QlxZzDvYeJv/+mAeV5EHmUXnWzkMGUU7+OMJAccfFzu9oMcGVDeTx8fV5DMrb/8/97H425qKBBAdNhrnDRPahs1/RxswEAcxtQ8DeJOcN6BqdFIvZfAdN5z4r9Hg/Zhk7HCvnfyoOpyZ3IPY4A6YO7/j87psOBW1JP8zGOrsKc6qOb7wDDJuwd6Iy9DycE2T5vGQYngvpRl0vITXQBoGu+Tp2eHBXpjX+M+HMFBZ8Q6iD7MCc67ts+tX9/1MOOFnnMny8HIPMaz62vGLc5lBC7d+fN06bwxcSCT9uAYEwRxED0GKfLsocPsLW+nz4G/aAOg62Bw8LC4o0CFvIARYxzHxT/jTLb4LMf1E0kgeZ/LY3czRt6neI1he2K07/x9+uUliuiXj623we/jAfbYniisOf+c/3TAnft5O3wNuq09CkB4t0H0e1VH9Ytf/KJ+6Id+KP395JNPSpLe9a535aad3y15UHX5vRDWsh/Kyd7owTx8qbvRHvcJjxLfV/i8Ewvc5/Ag6GHZ7b5HeKCQ70cWurc3Bh4jySwPY+A9zwjK0495e1Pcs/mu73HeDr9vbEfU2bebleM6hiyBSqWSzmUBeI56wfW8j3XsZ7xPtFtiH48aA9eFjkVEm83nhrU0jLntusXbm6d/Y79GGVfa4f2J14jrKT7b9wpLOg0y9slHl1sC0f/r//q/1k//9E/rE5/4hC5duiRJunLlit7//vfrb/7Nv3miDXwYBEMbI5f0F14o8zsJoPtGw/09Yu2bsdeYpD0YEw76+mfZnGC7eJq8dLgD7g5Kv7/PytvZ2ckwovLkTjPRXQCicXY9NajdbmtlZUXb29uq1WrpQLTd3V3NzMxk6qGurKxoeXlZq6urWl9fV6vVSumFowhR5kqlope//OW6cOGC6vW6Lly4kA6zgiHQaDS0tLSkwWCgdrutdrutM2fOqFQqHXC8T4t4xkGz2dSNGzcy0WIp69RubW1l0gr5/90QV8SsB1+/py1N+l7IWGHfO3lQdTmpmugkdz48ZTWC7TCuSDFFf7gTFZmtztJysJZnvN/vJ0a4i4O8EahyNrk7Ur7eccKijuM90mNJUaZMHDqX/g8Gg8QSY7+kpAt7lAOr8TBSB3jdToiAnAcPGD9PjceWACimrbC9vZ9c2xlDeXup16N2B9DXA/2B5cV8RueLNna7Xa2trSXGHSnWPv/0f2dnR91uN7HAYJVxb/8887O7u5sActhnMzMzWlxcVK1WS+w1dDTjSTYWB3TFurGxpA999bHhEErGn7HjGrDzmKe9vb1M/XgHPlgbbgO6g8ucorfb7XY654esMh//SqWS6S81eD2Twa/L2AIixmAIbaL9ngGQF6ByQCiC/MMyAKLNxv9YS7Qh2r8eMIrnEXlfo9MfnwEPGmDHE/xAANWwWSNbP5bFGiZ3G0SX7k0d1Te96U2n0u54UHX5SUsk2Bwm/N+fbw/q3Uq5xcMAy2GCr0NGFOxs9uN4LfAE17Uwb52dTYkQSm+gJ2Bye2kUmN4E1xkHSRm7oNVq6caNG9rZ2VG9Xle9XpekZI8whhzIyvenpqY0NzeXmO87OztJ901MTCQ2O6VA0B3oWt8z6T+HOdNv9u+YXYUug5Xdbrc1OTmZdMLOzo6uXr2qlZUVbWxsZOyO4wolXGq1mhYXF/WqV71K1WpVS0tLunHjRuonffMzs9AVjJmXLcE26ff3D9gcDAapggG6LeJIbl+hS7AJHMNhXFn3tMXt6VKppL29vZQd7jam24LdbldLS0uq1Wpqt9tqNBoZvVypVJINVigU0li4rck9PUOA54E1GvV1XjDacTZKLI4arLrfxP2Tw2Tsk48utwSi/+Zv/qbe9ra36aUvfakeffRRFQoFPffcc/qu7/ou/S//y/9y0m18KMQdNa+XhVIYhbV2u+LAI5soxrWzp6V9Npw7X2zSAMe+2SEeHYxpN8PaI+0b8ihfNsk8cNlTy9xxu9PikVCACoAIyo6gYBqNRjJOZmZmMsq62WxqfX1dzWYz41iOOvdeX+zixYt6+ctfrlqtlguiDwY3U7NarZZeeOEFbW5uqlwuZxyu0wqk7+3drBe3vr4+lBHC+Hu91bsZWEFwcJ3deVj917GM5W7Ig6rLu92upP2DvNGdExM3S5BEVqgDSTiDDmzhXKDfCJY62O61iHnee71eJsjrQB5/u+5H0IkOlrnzQ18cZGfP9hrolBzhvcjwwRnyuq6USWNcPLjgzOjYTk/TdsDBQT7vB2PGdSkJ56nlpM5LWUADiYFID0w4i8zBjuhUMT6sC3eqCHr6fTc3N9VqtTLlcqamplLAwkFRdD+1zklT5978dGDbWcvValXValXFYlGNRkP1el2NRkPz8/Op5IrP097eXsYJp2+sdZxMxtdr3WPfOcuca3obHZDlpz9DLnmkC9oSCSKsQWdEuj3sGYfYnsyzj2W0KR1AdzCafriz7jZ2ZPqxHiJLLQaG8gghUcc74B3BKP/pLE/+Zo78uffXsDbE68d9xZ/LGCS4FbBwLHdXHlRdflISny1pNMAnT+/crhzX5t/b20s2jeuqvLKbvrf4HgpA7M8zdkS/v3+uWK1WS/aD2yv87gSgGFwARL927Zo2Nzd18eLFVLedGuMO4jMXHhzAv9/Z2Ukgv+s2af98EK7nOpPxkpQ5EN2D4rGUmoOug8FAvV5PpVIp+Zfb29uJ0MY5Nrcqk5OTajQaWlhY0IULF/T444+rVqul+uDb29tqNpsZMNf1jWcBuE6nzC8vQHfmCj3LdWLA27MtHPuRsmec+MuzBbkGAQzA+7yANGUCsZG3t7czpWMorcO65//YLZ496HXQOfTV25gH+DN+/OR3L/X3IMqoIPpYRpdbAtEfffRR/cVf/IU++9nP6j/9p/+kwWCg17zmNfpbf+tvnXT7HkqJBnp83el7swk6E92VKUrTWTB8FnDWQfTIVHPnK15byk/TdqY7bCuPiLuSvxcgqSsgNnRPg9/c3Exg7+rqanK4d3Z2EhOdVK7V1VWtrq5qY2MjvXccsBVwxWvgYnTMzMykTAOiuMViMYE9MLpRgA5inAZhfaJYvbbsMEcVMIE1k+cs38n24mTnAeijZhc8yDKOet87eVB1uQPZrjt59iNYFBk30XF2cNyBusgQ5TvONEUfeNDY20F7XdCNfo3ojHiZE2nf0XEg2D/v7XK9TWDAg40+BlEc3Pd7RBsl7/f4Hm3xvTBvH49j5UAqwVOfY/5mn41z4unU2CboS/rI3Pt9na2EjseB97qf2E29Xi8dqAbrzdeNB0kczOXeBD9iwMYDKfztJXsiKDA5OalKpXIgOIN4gMbBdJ+PvKAIbUSiDefPj1+HdUOQAoAkTy86+MH9HbCP4Liv+fhcxbXFdwaD/YPlhq1DZzJ65qCXRmAO/bsAA9GBjyC4i4P8Djbl2Qu+N+Wx7liXo+rZ+Az5tY763u3o47Euvz15UHX5SYnr/xggu5+EvZL2z8zMZAht7mN7qUuye5wQh54gywgAE7sg2jroRQ/+0w5nKft7MNzRBa5/XE94zWvP6gIE92CjB7a5l/v+rpsqlUpmLHzet7e3tba2ps3NzRS839raUqvVknQzo5EMcs6wIxhx3P2O9lHCBeDcA6PoUgIHAOr47K7f84LEkOT8jBq3T2ObmRcfQ5+jeA3/v9+fucaG9LN+4k9+d5uDuWSNEBjwtvsaBC/hvVgiLW/t0lawJz7HfBOkIvhwkkGz0yKu24/63NgnH01uGR373/63/03/+//+v+vGjRvq9/v6yle+oo9//OOSpH/xL/7FiTXwYZZhzsSdFBhBXpOLTSWWmeG9wWD/cAdKl3CYBOw0gNnJyUltbW1lnNY8h5y2sMmi7HFMcV5IX/JD4EgFku5uORdnDfnGPRgMtLGxof/v//v/NDMzo06no9XVVRWLxXToB6z67e1tvfDCC7py5Yo2Nze1srKiXq838qaGEVSpVNKhLY1GI6WBz8zMJGU1PT2tubm55BByyOXq6mo68GNubu7UgOgo3m63m8ZndXU1HS6bNz5bW1vpELNOp6N2u505oOVutBfjgpR+yvMQqHjYlE6UscK+t/Ig6nKMYC+9wvux7Ja0z2jx70Y2qzOIXX85QIazipOHM+KM4Mgqcj3nLFN3Vh1EdpDc2d+xba5PYaJxX+7ph5V7VpePmTsq7uz5T2+nM3sc8I7POU5iDCj4Z/w99koAVL7vtdwjI9d/d0exVqslW6FUKiXm08zMzAEwHn3ph7z2er3M96enp7W1taVisZhhv5FRtrm5qbW1NbXbbZXL5Vy96sxkwFj0drFYzNwL0IFMg4mJCZXL5TSXsNF9ndTr9cy6xRllPPmdNHbsMmeSsy75DmeuFAqFDLDt88e8AM442EtKP2OKI+sBLcaFzwwGN5mCBBecEYeNGssg0RZfnzwfHjhxBzo60QAEZAv6geyAGpTY8fUMA9P7wjgSlImla3w/og9xD3CShu89/vxE8D6Kvx+d6xgYPErGIPq9lwdRl5+k5AF695vg90xPT2t2djbpLHQheqxQKCRfM+pFDyTs7e2pXC6ncmHdbletVivt9673YxDWQXNAcOyMiYmJpPf4DnsRe6KDuxsbG6m8aaPR0NTUVOor7YZ9Tok039MhjEn74DqHge/u7qYSqW4rra+v6+tf/7qmp6d17tw5zc/Pp/14enpazWZT169fT+eHMS5+KOUogl/OgZyLi4u6ePGiarVa2ucpKYdvDuHuueeeU6vVSiX56A/6l8Dv1NSU5ufnM6QISZk5ZI6wG6Ptia3nthLfZ/4Gg0FGv6Lfm82mrl27lnxuX2vxefOAPS+A8X6/rzNnzqQDZ8mK9DXIvExMTOjcuXOanZ1N9gRtov2sCezdfr+fORB+ZWVFzz33XLL5q9VqxtZ4kOQ4gfSxTz6a3BI69ou/+Iv6pV/6Jb3uda/TxYsX7yiT82GXu70g3Vn1mq7uuOeB6O5gACJEB8eVKM4cbCp3mhy4iG1xtjSpyGzWHm281wJLDUGpTU1NqVarJeVHyhpO787OjlZWVrS6uprS6o8bEcWJhMVGah4v5m9vby8pdkr2wAwjNczT9e6luAOJsqUGbB4LHfE+8cLovFuCocJ69dIyp2Gt3msZK+x7Jw+qLme/iEEq2CfO5s1jejvw5j8R/3xksJOuHMFs12t+/WFMVBcPyjoDHd0Z+xjZ8Q5iOxsdEB39FEHwPIn9jiwn/s/fDpr6sx6Bwbw59M/wcjY0ziQv/0zcG+gTwL8HNzwgwDV8vriXj53/Hz2LrYLextnHZgH45t4+Hj5f7qx6SR70t48b3/N1gVMaAxpuv0V2FvrJ06O9bI9fx3WuswrjunVmGNfp9/czIAB/nNXta8zXr8+3Z0y4feTPt3/f12N8n/tF5r2DLRF0wkZyZqePqafc+94Q2xFJMj5O8Z6Mg6SMbcma9ec7iu9RSATQ4/89q2AUMsoYRL+38qDq8rFkxfU29cZ57j0rBtC02+3mPlv8H7IbJUDxtbFhYhDVyQPx3tg/XJ+2EuRF8vYj9Ca2xczMTCLnDQaDVPsakBhhrwdkdZutWCymsiDr6+sH9ijKtABg12q1tA9PTk5qbW1Ny8vL2t7eVqfTSWftHBdAp0/45BwmChOdMWFcCQo0m82U+cZnANkJePPTs9qi/o+s8WESsyUjC93JHdidXoFgfX096cWjJNp12B/YWD6vcRw5D29iYr98jK89193RRnX7mzVA5gFzgN3ysOqksU8+utwSiP7Rj35UH/vYx/TOd77zpNtzQHZ3d/X000/rX//rf61r167p4sWL+of/8B/q53/+5zMPxi/+4i/qd3/3d7W2tqbXv/71+q3f+i299rWvvePte9DENxmAXVLDiAK7s8GGB/sJB8fTeNkMUUxe6mVzc/NAWrq3xUF0mGDUJPO0NpTuaRVXFCsrK4lttrKykhQigPDq6mqqnXorKUUoNOqwwkjzA1ZgrMHOpu46h6osLS0l8B0lVCqV7jh7Owob8u7urjqdjra3t9OBq25gDfsuYzE5Oal2u50OsuEgE4/Sn3SbJSUjdmtrK7HXyNSIynwsY7nbcrd0+b3Q4zBw+d2dsxgUdmPd2em0zVmf7lRI+6nIzpRGImPdnQ53eqNzgyMUdcBh+5QHkx2odGcgBhdcV9Nvv4cDpXGfdMDa2fAOfkfg2Rlz/lmcF3fWHJSUlCn34WVocN6dye2p48wXLCZnVjkLnn74uOcxtScmJhKDnj4QgHBd3u/31W63k16fmppKLEHGz8eKNnt5MsYsBhQi2Ly3t5f0OLVUmR8CJO12O9WYlZScRdoRGfsxoESbCoVCSv33A0pdYkDF2Yy+/unDKHYFwSlJybahP6w/nF9/BuN65lnndy/D4zo5BlH8M74eCAD4noBE1iZtcbDLg2BexsCvFYNkgFl8h2vG59NBeL8eYMthMuq+M5bTIQ+yLh/LvrAPSUqMX3QQ+xSM3GEAupQtd1koFLS0tJTISc1mM4Hm7GvUYafEqAc1fW/EpvAgLzYQmTpuc5RKpQxuwH7obGWE9eVgOXuTZ9D7Zz1Y6Wd6uO7f3d1NviF7a6FQUK/XS764ZzUex2/js9gTBI0pIYNN4XYS5UU4xBSsw4HybrerWq2WWPtuK7htgczMzCTGNuMVfVDGmqC/l5hxOxJ7jWoAPk6jZFe7rlxfX092OUz7vb09LS0tpba4DQcR8cyZMykbMI6j40k+DrEkHvPqmaMEl8a++VhGkVsC0be3t/XGN77xpNuSKx/60If00Y9+VL//+7+v1772tfriF7+of/SP/pFmZ2f10z/905Kkf/7P/7k+/OEP62Mf+5he9apX6Z/9s3+mN7/5zfr617+eIrVjGV1QFDh/KBOAAGc7uWPsNc3cofGI+OTkZAJj/bCzyGqjHThDXB+l73VQJaWUptPG7KX/7lhvbW3p2rVrGcfeHWZ3MI/bH4wpTjFvtVpqNpvq9/uqVCrJEABc5hDTdrudjBD+hqEuKf0eGV53Wuj/9va2VlZW1Gq1tL6+rqWlpQOlGvKEz/T7fa2trSUFPTc3J2m/9tpJC4ob8LzX62l1dVXLy8uZUi5jGUe976XcLV1+L/S4l2vxMzlwpCJLFJDL97k8AC4yzweDgTqdTkpj9hrIOJ6uM+Mh3FHQee64+UFazrZF2OMAVN05jM6oO1rsn5QzGcZej0BnHvDs2Wl+MGTc53BavB2c2+EAt9sFrvc9oO6lMBh37hkZVHl1Nn3snNkMQMpceaDEy5bw+8TERGJGRZCfg6o8Kyyy5T3o4d93YNftKhxrBzJIN/fDSzc3N9VutzU1NZXKuXD4FiVoIpDuOt6Z04zN9PS0qtVqKhngYIWD2Q4ME2CYmJjI1EwdDAaZjEXWsK9vB/E5u6XT6SSwhdJszmBjTCMLLQaTeJ79PWkf/I5MOXe6sZfIIHTmHs8813JwXFIiNPiewud4jjy4wjPE+vWsTn82+T0yUhkfX/NeLibadG5X5bHU8+R29DjfH8uty4Osy8eyL+4jUi5sYmIi7a/tdjvj9xwm8WwxgFH0s+8vHDja6/W0vr6esAH2hgjiOnMYvQPTHXC/VCqpXq9n+uTlY90Xpj2SDvhsg8EgU0YWWyYCupQzZV+lr3t7e1pZWdHa2pqkbAA5BrtvZ85oe7fbTfYCpcCYL8q4rKysZPxyx1RgTp85c0YveclLEjbj9iTXo92lUkmVSkWDwSAdkoquQkczNoDilJ/xQ8zpQ6lUSqV/1tbWkl87CgvdWfc3btzQ+vq6zp49q+/4ju9QrVZLPn6hUEj3B2inDC32MDY2OBPXhyyA3VgoFDKkGvRqrOHuc/awytgnH11uCUR/97vfrY9//OP6wAc+cNLtOSDPPPOM3va2t+m/+W/+G0nSS1/6Un3iE5/QF7/4RUk3J+zy5cv6uZ/7Of29v/f3JEm///u/r/Pnz+vjH/+4fvInf/LANYmyIUQgx5IVN8IdEMfwd0fQI5D+EEWWlUfMnfHjDrPf3xlzfC9GO0972k2MDrPROyAzLHqM5DG9DrsfCoJa5yhu5oqyO0SR/QRzxrZQKCS2N4GACELcKUDdwQUUXa/XyyjqUVPGfCw2NzcTc8zT90+iP9FBZ6y5n6f0n7Zgz72UscK+d3K3dPmd0OPS4brc2S4erPU9LO69eSwmSRkQyvUg+4uzw7wGsQOSDjy7bnM9Ju2zgbxUBIChA4x5a98d2AiiO0gY//bxcr3soKL/jPfza7I3R6DeP+/v5z3/PrYOZjIezrR2Vhlz4/PoYLr/HT/r8+Mvf98zB3ztRFspsuN93cT7xfnw9/1vd6IjAI9Od5Y///Ox43PYIHEt+vj7z9jGGIg4jsQ+5s2HP7uMV+wDOpx54juRXce6iCC6s7N9Ln2ujpoXXxvONveX3zfuCw7iO7ucOR4mHuQYtqZ9PztK/LO3o4vHIPq9kwdZl49lX/w58cChBzCPw6RlD4uBWWm/BJjfK2Zl+f48zCaRdMB3RAA0R+mvtL83e+m1vP5EQoF/N0/yAv5HSSRZHCZuK+CLTk9PpywmArP85OU2Qp6tFYO89DlmRnkw1fVDzHiKr9hPaT/o72VSvcTbqOJ4kOMig8EgjYu0ry9j4DmO7TDsJGZeOa6Qh1s97DL2yUeXkUH0J598Mv3e7/f1u7/7u/rsZz+r7/qu70rpHsiHP/zhE2vg3/gbf0Mf/ehH9Z//83/Wq171Kv3lX/6lPv/5z+vy5cuSpGeffVbXrl3TW97ylvSdYrGoH/zBH9QXvvCFXIX9wQ9+UL/4i794Ym28H2UU4NmVEZtkHntPOngIahTf/HzzdsU6zEF3oMJ/l7Ipt3kPvhsBd1Oi8zXMuHCFxnuIM5R8rFxR5qVOuQH17LPPqtVqqV6va2VlRcViMVPD7LnnntPS0lKKeLvy3N7e1vLysrrdriqVinq9XqrlVq/XM6naJynO9iNivrm5qaWlpVQHfVRjxw3EtbW1xDyoVqvp4NW5ublM3X7G/jjic0yKG6V7rl27pl6vp+Xl5XR4zpiFvi9jhX135V7o8juhx6XhurxYLGayZzj7gT5LB8t+SPsMmbgP5OkRdwBId+besHv4vqc/4yi5s4oD4o6Sg7HDWKuRRctP3+P9e65rHFiObHnakMemJfiIXeCsaWmf3cb4OZDojqQDjvQBvROFmqQ47+549fv9NGe0C5uCtvpceq16D3jAvkNHeACUsXSA2teDO2nYTNwrijuMLq4TvF4596UW6OTkZKoz645zrL3O/WHlUdIF+8BBCAcZWI+0IzINncUV++W/O6AT1ybsun6/nwJEU1NTqUyMP7usDQLh6FXS2QuFQirrAmPNs0k8m4E2+/qMgS7vd79/86A8L8tGG6Id6s+zZ1PQt6mpqcTen5ycVLlcTvPqQQCuRdacS2yn6z/WO+MZgbQ80obbpwBTefb4KDb0GES/+/Iw6PKx5Is/LwCzDjQe91peRsz3BAc1pX1bhfvGPSlmWHPYsQct0SF+ECQ+KPsQZfe4DrrEs9nR0ZKS7iBTixJqrpe8dBc22Khj5YBzXhDUg9N5Qjt6vZ5eeOEFra6uan5+Xjs7OyqXyylTeWtrK2WD+zVdv9Dmra0traysJCCbbEg/XFbat3Vd53o9/QjOY+d56UPPkrp+/bqef/755FeTITYqOYy+MF+Fws3DQmHYe+kayrwwdmRxcT8y77AbuCZriTJCjCs2Xbfb1fb2tprN5lj3BBn75KPLyCD6l7/85czff/2v/3VJ0v/z//w/mfdPmpn6P/wP/4M2Njb0Hd/xHcnY/JVf+RX9t//tfytJunbtmiTp/Pnzme+dP39ezz33XO41n3rqqYzx0Ww29eijj55ou0+zOItlFCDdN9lblQi457Ulb+349/Ii0pIyEXgcCBTB3ZQYMXa23LBxPmqzAtzw9CdPh8+7trPorly5ovX1ddXrdXU6nUz9uc3NzaTMMUZ8rPv9myVQ1tfXVa1WJUmVSkULCwsqlUoZsOkkBZBhZ2dHGxsbun79ura2trS6unrsE7MZ352dnXRIS7/f1+zsbKprS001T4u+1fWDcYDDTVra5uamNjY2Ug3D232exjKWW5V7ocvvhB6XhutyADVKhJRKpVSPk33OS1k48ObgtLS/F3jAVtoHufkbtruXJXEWlwPAnm7N/gTo5cCWZ3A5A8vbEoFvzw7zNG3p4IGNfuC3A4fObpP2D490Nj/tRtcwFn7oozvBcc/L0/3uzPM316QWK2Mp7Tv0sW0+FzjSjK+X9KHfe3t7yRF0RjcAtjOunDHMmPq68D4BoPpcDtv/I+DJXDKHhUIhpX7zk0wy7A0PvNBXnGkAec9uiExmZ3LjmDpgQju8D9E+87l2kJ/fsTU8AAVo4mnXvs7pE46xpARuF4tFlctlVavVdK1yuXyAqBFJGfQlPhP+XPka8EPBeQEi8QzSTliaHqTyfcFLPnEfB2Q8iMX/DhPawFrLC0RxPe4Xs0gjU9QzN0bJ+hvL3ZeHQZeP5XA5CR+dfeCw/0ed6/9ziTYKe1G0o6R94BnQc2trK6ObXY868EoJD/SZpBRIxe/y816krO3je/Wo4vthLKtFGw8D0V3vXLt2TYVCQRsbG5qenla5XNbS0pKuXbuWbJ24h7sNgXAoZr/fz5x/tri4qGq1mnnu3W7CBoJg5vcggIsOjrbf7u6u1tbWdP369UxW4GESsSbHLVi/1OPHvmF8IcDgV7ve3tvbrx/PmpiZmUn2HuSWcrmc7J9Op5PKwnLN+11iIGssd09GBtH/43/8j3eyHUPlk5/8pP7gD/5AH//4x/Xa175WX/nKV/S+971Ply5d0rve9a70uWgkHAaCwVJ7GOVuA8tHCfN0GMjsP4d9xh09//tu9zcaNB7VH1U8wk0NMGcxwWpyJyjvHih1Dtbc2NhIQISXdHEgKIqDNKRXoaxphx/Y5oDIYeylvPEB5KAEze7ubmKeEzTIe85HFYyIra2tdMp6qVRKNWPzUsUOC+7E9uOMUoeWn91uN8O8G7Ye3KH3sXQ2rINrEcS4X2Uc9b67ci90+Z3Q49JwXY5zg0OWV0PTfzpLCmDMX1FPOXPXWUn8jz3Tmb0RgIvAatxT6IekjDMTA37Swb3WwT3+H1nRzvKlLQSk3eGM/XOAm6AkDi77IPf3+cvTMQ6SHlbmKmYMxL7Gmvfx4Fhnieft3cPWGYBkXo1p5oAxyxPGLq6fYWuaefD/c18CL9yvUCgk4CHaPH7gZ3RefX17oMfB33hAG9dxXe3veTuxfwDd0et+MKyXyvFAjTOhuT/r3IFpz3qAzQiT3VmZrsddf+atARf6gv3kPz1wQ/u4vpdd8vHl+fPzGGhXZH0z5rTPyxlFO9eDGawNnoe8QKDPKZ/1tcY1HTAaZgNFuR09zvfHcjx5GHT5WA6K65NRyHAncT8vJTbK5+Oe40QC/1z0u9iX2IdisDfacp7NRxBROphVlWfX0YZRhXagX7E36J8T544CltG3MKkJCh/mj0dxXec4ANfz7C5AZEkpO81tGMYWuw57Y2NjI5WW4aD0eJbKSQikOdYXcwR5we0GzzRzm5gxcRIjJAPOLer1eqk/o5aFRVwn8ruPw73SYSd937FPPrrcUk30uyn//X//3+tnf/Zn9ff//t+XJP2X/+V/qeeee04f/OAH9a53vUsXLlyQpHRKOHLjxo0DkfCHXdxwl07PYh8FKB/2PRQjTri0X0sWwPluiDuQRLlRiMdVNs6mW1hYUKVSSSlJOM4oltXVVXU6naQ0fPPb27t5ANfm5qZarZZWV1eTA87YAaI78O9Cf0jbmp6e1ubmZgLRYaRz2BjGBVHuPNDDDSf6AVN8e3tb7XZbzWYzAd6UJMA5jI77KAYHfQWMl24a7e12W71eT8ViUQsLC6kPpAu6gZE3386041rdblfXrl1Tt9vV6uqqrl69mtgFw9YB7DsAINrhDjasDYILGDn3e2mYscJ+8OVu6/FKpZIOJHJ9F8EnN34prQBoxe8uEbianp4+AA6wr0n7JUK8DATnOsTv+L6MowB7FWa9O3AY8gB6OHPOLMUh9b7E/dLBTndM8gKjg8Egk7rr+sOdV77r98xjftFfLxfnZTfIvmIs6CPAAexgxgenEcfRxcF/AgYOPHJdBzBxHPkOoGa5XE46GseT//s1IgDp//dx8uADLCra5mnnrAs/RJVxQ3dMTk6q0WioUCgkdpfre9YKbH3WEDrF2032hvcBZzfakf5swQL09/LK/Pg6iYeXSfvnCzigQqAaFiIZBzj2k5OT2t7eVrFY1PT0dLKfuK8/b1J+KUJsLPrqpANfPx7Moq3+HGMjwaarVCq5+1EMNPl4eyYD6wISBetD2j9UlPVRLpfTmuSzEdiPtjfPnT/3EZAfJmMQ/eGQsU+eL3fbr75Vv/lWBAAWvXuYzxV1JbqQM7lc0F/Sfpm1mZmZpA8lpcAK+s0D5Ds7O0m/8fKAuzONXYfgn6KrjiNTU1NqNBrJ3gBj4HB07ukM/GHS7XZ15cqVVKKNGuijgug7OztaX1/PgPqSUgnUUqmkxcVFTU9PJwxAkhYWFpKNFEvgAZw3m03t7e3p6tWryUbERvHSdqOsvzy7L77XarX0jW98Q1NTU5qbm9Pc3FwaU7eLJSW8wfWsB/sJrg8GA21sbCS7dWlpKZEAAexHnX/sDOy+vBIzxwmAnGYZ++Sjy6kH0UlPccHJlaSXvexlunDhgj7zmc/oe77neyTddFw/97nP6UMf+tBdb+9Y7o3kASOjsGfuRBtiGZfjRms9usqJ2mzaKL3NzU1NTU2p1WolxZkHpnqk9XbSljytPKZ24ax6DUavpZoHQDNOniYPa7vT6aQSM86cc8fPmQ7H6YOkFFTAyKhWqwl4YW/x4EtkVEpZ9iaAASeao6D5SW07DMth4mnf5XI5tYe2wDrEmc9jsd6PMlbYD77cbT0O4DozMyNpnyXke4eUzRzieSYAO2xtxfXqYDOGtJdhwVFjD3A2loOseQCfl3/AUcgro+XBNi9Jxf3jfuzA52GfjW3EuQXYjc4UY5FXzznPOfT3yJiinAqMY3dSXfc4SOtjBOOX+Yj39OB7BP8d/Jb2GfK+/3sf41jFz+WxjH29eNDGWU0O7rNuCTR4qrsD935dnL29vb0Ma8yv7axvDwr72p6YmEjjzj0A473PPpduK/jzhp73NewBagdQaK+Pkc+bzw1rsFgspjXEmO7t7aU9wOcirv/4XjzkzZlw9CcGSng2HLT29ehMdLdrvG95wSifo/iZqPt5VgDeIZjE9RfnPT4LcQ2MCpSMQfQHX8Y+eb5EPfCgyahkHbclfH+nJJbrHgfkPYDPXoq/64C8X9MDi5Qf8XYOBvslVmJmjWcNjTpffJeAqGf44WtPTEwkksRR14WJHskDo4oTGfAXJR0oiedM9H6/r0ajkfoTbRHsV3zNdrt9ICBwJ3xOAgLMea1WSwFxGPR+T/o6PT2dCCB8Bt3vZYIo5QIJEOB7mMSgmNt9MzMziaDjGMD9TmhDxj756HLqQfQf+ZEf0a/8yq/oscce02tf+1p9+ctf1oc//GH943/8jyXdXNjve9/79Ku/+qt65StfqVe+8pX61V/9VVUqFf2Df/AP7nHrT5ccV2HcD+IMGmeib29vJyd3GCP6pNvhdT9vlYUu7R8QBYuqVqslpU3E2l9E3HGW3dk7Crg9qh21Wi0B+efPn0+1hQH0PZoPYwtl7KBEHCucTQwAGAXb29upHziqruQj0OR1W0cdZzc8UNrFYjGx4YvFour1enL0KaPjRjLzioLHAEBJLy8vJ6VNMCACb5JULpdVq9U0NTWl+fl5zc7Oanp6Wo1GIzEFHURnba+vryeW4erqauak9LGM5bTJ3dbjDhIBJLEf+6GeDlb796R9MA3B4HbgEvEaw+wN7uCxrznDKjqTtIX3pqen094wMzOT9gNnmEdAb9Sxoe3+PS9p43rVnWHaz57mpVt8DBkfP+zM98EIvO7u7qb+ObCHLolBA3doGCtezpzNuyfigVCfexxvrx/qzlYsdeFM6XhNrispw/xiT8fx97FwEJoDqqnNDQjNWHmbuIb3xV+A4eVyWbOzsyqXy2ldDQYDraysqNlsZmqPomui/vUx5J5e0z+v3JgHF2ifMxXzAkoRvGeNwk4k6LK7u6tWq5WeKQ/uw0534N7nk989yOBMdPSuBzS4t5R9Xr0cBW2p1+upLcyB7xFc37PVDrMd3dakHdE+YY1h60Tbycfb2f6+BzloNZaxIGOf/KC4X30S/nV8Vo/7/3st2ATOHvaMKc+mY//lMOlCoZCxuyjRxT7pgUL+PxgMMmVFsYk8S452OOB5HLDQ/Wn6QWCUPvMZgF0OpPZSL0jcs48j7M3lcllnz55NGeGMBX6opOSDNpvNlFW3tLSkXq+X0evs9f1+X6urq6ndw8rFSvtYhQc2sBGPy/BHBoObrHEy37FHPOuLg+Z5DzsADMLJKhDbOEwUX/mwefeAd6VSSdlkc3NzKTuPuZyfn082Gvfp9XqpLWN5sOXUg+j/8//8P+sDH/iAnnjiCd24cUOXLl3ST/7kT+p/+p/+p/SZn/mZn1Gv19MTTzyhtbU1vf71r9enP/3pdPrwWPbltCrd2xEUF/VZYSNJWWfiTjoDHo2EKez1zY4T6Qa4LZVKqtfrmp+fV6lU0uzsbIrMAt7u7e2pWCwmpcI4MBaw125FJicntbi4qLNnz2phYUGvfe1rNT8/nzm8Y3l5Wc1mUysrK/rWt76l1dXVTH/dSXZgBmPE6wPnjROMUne4nd2GoQKQP8o4e7kfQILp6WmtrKyoWq1qZmZG8/PzCWAgzdyNPu5J+RZA9FarlcD4aKy5YHQ0Gg098sgjqlQqeuyxx3Tx4sWULhjLuTBW29vbWllZUbfb1fXr1/Wf//N/Tqz3UcfgtMn92OaxjC53W48DMqIbAMQiSxZDGDDTHQF3AJ0Z6wAfz6bXkOT7W1tbGTASQNkPTXTGNAChl++q1+upL3w2Mmb9npFZEwOZ/rv3xUFud6by0lPj/WCLR8DNGet83sfSXzCgnL2LLnSHO7K7aaeX4MK5dXZ1nm6JLHXXU86wj/1y0Nf/52Pp6wsWnZfrAlAnXdlZeJT8YZxwzCgXRqkOxsTJAnHevWYr5Y2q1WoKiNfrdc3Ozqrf76tSqWh5eTmdR4JuA9h18N9Z0Q5O5LGeGTNKLPkcx/GLoIIHkX2+JSUHm7Fy8gSZXNPT06n0HCVV4j3oh9c7d93tc+HlTtDPrE8cb89SICDuWRQE9ZwpB9hSKBQytoU/N/zu7fBAkwevPA2e9eNgkgcnAP79ufRzBQClRpGxHn/w5X7wye8WWexOsM99T8zzHWKg/7Q9czGIzHvYApTu8qycQqGQfK+dnR21Wi3t7u6qUqmoUqkkwtPa2lryx0qlkvr9fiqr4XWxI+HJfU0nVBxn7NxeQYdDdJOUggNun7XbbS0vLyf7kAwut1+OC6Sj86enpzU3N6e/9tf+mubm5pIu2tnZ0ZUrV3Tjxg1JN8ukcJDm+vq69vb2tLGxcQAPcZDaD7ofBqCzDsmUd9u50+ncMohOm3u9niYnJ9VqtVQul1NmvmchTk9P69KlS1pcXNT29rZefPHFBLiTlbC0tKT19fWMPXZU8AQm/PT0tC5cuKAzZ86oWq3qkUceUb1eV6vV0srKinZ3d9OBtjs7O1pdXVWv19ONGzeS3XDans9R5X5t992WUw+i1+t1Xb58WZcvXx76mUKhoKefflpPP/30XWvXwyiRHZRn3N8rcQWHEve09luN+I5yX8QdLWcRHXczcvaYpwPjoHFdlAj13TBKcCjdyT9uO/huqVRSrVZTo9HQ7Oys5ubmknPoLKp2u53GwFPg80B0Z4HmpUBx7wiaxL7ANsgznI4SB+FpB04rrEjqqgK4ez/c0eVgGEAOIt0YEXlGsNeBrdVqKpfLqtfrCTzHoHRggbHi2lNTU+p2u6pWq5Ju1maLjLL7QW7lGfHvjuX0y93W4w5oIs4U8zXnAKZ/zsEqB1z5PM4f34nAPN93VqkzbT0wyH4Nw4kAHo5aXtkQ9FoeYOAOA46rj03U5fweJQJ2h4nbBT4GEVh1Pe0Au/8dWcver7z/O5tqGEia116/pn/evxcDD+zdrqMig9rbi/7g/3wPoNXTkh1kjf3ysaONeWe++Fj6eHldedYWteT7/X7KMgMkiGz+2Cf/CUjigYc4JlzbxzMGpnycD3PysY0io9wPX6WteYenu23IOGG3ePDIbTmeZX9uI2DuKf68B2DkthBAgDMbYTBKShmGjE+ejePPf96zyfc9KDYMDPEx8Wty71Fs+9vR43x/LKdfxj55Vu4kYH+ca0db4DQ8T67T0YNxT0PQUdhLvmfnZSFHe4xr8B5/++ejX37cMYp2k+sCfDLHG7a3tzP2wq34qnltgHVOlnitVkvXJ2AP0Q2d7FnqeWVHPMgbWfN5bYi+uc/PMLt0VEGXk3lPn7kXgRBK2xKg2NzcTEQD+kkAYxShD9PT0ylTj0BOuVxWtVpVrVbT3t7NM9AmJ2+ej1MqlRJ5cmJiIgXxY2WA+0XGPvnocupB9LGcDoE9Nz09ndhx7gC3Wi11u91jMYJPUvy+HIDi7ClnNJ0UI90dWpjh/X4/c+jVqIEFV0quID1lzFn1OLCVSiU5X/yvVCql+1MixcsYHCXcp1qt6vHHH9crX/lK1et1LS4uqlqtJueeOabczLVr11QqlbS2tqbr168nRZcHLDhQkTcWbhC4wxpBdMZ/mCN5lLjD3Gw2E2ut2WxmWI0OmLhzDfvNlbUzEfOkWCzq3LlzqlQqeslLXqJXvepVqlQq6TCViYmJDDvRDTfG48yZM6nkC2D6N7/5zfQcAObfDzJW2GM5aXHw1wFn6SBI5K8ItOOARNYyn/NUZZ63yMwFyOJgUFJDYdbEICHMHsq5sNd64M+dTAelaXME9L3/XvIEx8SvH7OocFYiYOvj6kxxLzUR06kdlC4UCpl61V6+ivbRnxhU9b54UMPrn3LPOEYTExOJkewAqdd5d91Ne2mTBza87AWZAg5aRoCS+3MoGe10proHdmu1WirV1u12tbm5mQsuR8ATB4+ALgB6rVZLTiFl2WD2nT17VuVyWZ1OR5LUbre1traWOTw2lkKinaz7uN58jWxvb2tmZiatA7INYn13B/79mXRiAc8B/aU9jA/lb6amplL/GYM8kJj2UXLJWXgxkMZadTYg9hpMe7829en9Xr5med663W6aM2f887znBQajzePgiO9NHoTx70Ubw0sluN2cB7pEGYPoYzktcrfW0u2u+WHXPMw/inpdUvLXAKF9nx7l2R1VjguMej/Yy2gjex1lRdCfAKHoC+47Pz+fyoi6L+iCrnEmPySnGBA9LumPPZGsIt6DHU3pL9cZAKoErZkXdOqt+KxTU1N65JFHdP78ec3Nzenxxx9XvV5PGMTU1FQ6TJQMaXTgYffLs2+HCeQ95iBmk0PqO8oXPkogqu3s7GhycjIRxTygvbOzo6tXr6ZyLpS8o22UtTlKILUxvq961auSfU6fyQjkMHvGALtzfn5e8/Pzyb7q9Xq6fv26bty4cSAwdJpl7JOPLmMQfSxHCo4OTtf58+dVLpczTjvsqcMinXdSHETY3t5Oyh6wH2XMZ08KSHd2MEwsyqm4sTOKAJI6E9HrvPLCAOFzXtsUEIBUZ5x2Z0YfJQAF1WpVly5d0itf+UoVi8UE2rpQr25qakqXLl1KQP61a9duuYzMYSB6HhvBmQ3+/1EEg4cyPH5/xiIytPKAg+OwP2ZmZnT27FnNz8/r0Ucf1Ste8YoMcDZMfM0CfFSrVdXrdfV6PW1tbWllZSU55fcLiD6WsZy0RIM+gujIMOaSlC1vEPcbD55KOvAZ31cASQFcI4jOXs7BUOVyOe35eYcXRafFmbS02wMItM8Z0NzXy4IA6rVarVQaDEec9jsrFQcpsmGd/eRjRZv9nAnf29n7fB908J15cnaaB4+5pwd5IxMIfRjL6FDPcliqNzqRtjOXAKketEEf+Rz4mnMQnTEBRGBemM9qtZocScBYB+Tpbwzy4sy7foQpjYPHTwIKCwsLajQaarVa2t7eVrlc1t7entbW1iQpc+aGr8WjbD3u7wfGYjMQSHHAnT5F0Niz7jxwztwDvNBWt5d8vmJQmuANB5D5WvXPxqAKa6LRaKRxrdfr6bMRsPZ5Yo0TtNrb20trIpadwrbOC+I7uSDawNjBHpCK65BrxrrqXiImZsGMZSxjuXMyCoAV/z85OZnKdXkZuVH251HF94fj+lcuxWIx7ckAz4VCIe1/fpizZzQ3Gg3Nzc1ldPUwUJ89i8+SYXQ7AB8AOnpY2j94e2pqKmUyRx8Rohulapz8cKvtuHDhgl71qlepWq3q4sWLKpfLarVayb6Zn59XtVpNJDrG8CgZpU1uQ0r7NdBdb9JOt4VvRdCPsNG9pCrXXl9fz3z+VsUZ5JcuXdJ3f/d3q1wua3l5OZ0Lg26W9mvxYy9OTk5qdnZWxWJRtVpN9Xo9tZtSq7cz72M5nTIG0e8TOSoNKEamT0LYtCYnJzU3N6dGo6FaraaLFy+qUqkkJw1jfmpqSltbW1pdXc04cXdDHMTEKabOqpQtkZLnEI0iMVLrbGR/uTMzqngKsAMW3h8vgcJm7I6hzwOMIgfTI6NxmERww9l2eZ91hhiR2ZOS4xhrJ3lPnPRhrC8H6EZd44wTjMB6va5qtXog1XsUcWeX2qeVSkWNRkPdbjeV17kfZBz1HsudEteLw9ZKfO4iEyzuuf6ZeF32Q94DKHPmzjAQ3dNVI3CFg+LsMmf5xCBe/IleAfjDYQWwB1DzvQ/mDf3wIGUcC98r8/ZDB9pjzXNPc45gnpeS8ffj/Ma5I4Do4LYHFGAxeaDAAxVxX3dmsacve3siCOzApX/ev0NZD7+uZwg4+Ovj5u3hfv6T3z2IEddEfJ/rOWs6vmiv3wNbI+8Zc7Db5wvnE5bzYSB63rx7WwEHvCYuP72v/reDx3x+WEA8gkdxXcTsCcbIAZ7DfjpQ74GkUqmUOcvB5zqC27FN3s4IfPlz7GPl4vvAqPr5dvS4t28sY7lfJG9vut3n4Dj39oyixcXFtGeQTUX2EuUmTwOxZm9vL+ED+Ok+juynvv+4PnY/Wzrol3EPPjsMPB8GwB8m7PcEvGEhewlTfG10iwfVox3h/viobfGAO0Flz1ZyQgIM7jjGJyGuw9zOpM8xaHtS94zjdVLPGoEoSImMnevWvEwvaT8g76QPt3fL5XKGsX7aZeyTjy5jEP0UiztL0cGWshvKcZhBo4rXg/rrf/2v65WvfKVqtZoeeeSRVIeZez///PO6fv26VlZW9KUvfSmV84CRfTeEvnNQ087OTiZqChsv72TwowBMd8I8LYcSNtTGpqwH4P2ofZ+amlKlUklpeV5Ti3tISps6c+110GGiw1CnDQQ3SH/GCBkmALNE3WFN5SlE3kNRVKvV3MO7jiN5SjJu6lGZnrRS9WvmgULHvRdMi2KxqIWFBT3++OO6ePGiZmdnE5B1K2PGwWW7u7t65JFHtLu7q42NDXW7XXU6nbtm0N+OjBX2WE5anA2EsxZB71h2AXFmN99zZqcDV562GwFNfw9nF7YLoHks5yLl1//c3t5OBxXB0nIg30HbvEwwwPvp6WnNz89rbm4ulWajLQTjNjY21Gq1tLm5qVKppE6nkwHuaY+kDOMc8WfS2+dBBBj2cezz+s89fKzoJ862A8KU1cI28XnnerTfGW+dTicd/MX1HLyMQGke4I/j5aVvBoNBhjEcAUyu6QePoss924Fxi2vMf+d/Xm7N54prYgtMT09ra2sr9cXPYPGzWCIoy5gSFKb/boMCJvhcOhMdW8QZcr6WPYjvzxz39YC9B1uYY2dxT05OpkxBd+7JDMkLztBG7wOMM89UgNVfLpdTTXQ/pDSmutNOHxf6Q71VCBJbW1taWlpK/WO9+/qKQY1o47mN6+slBlz8sxGgGoUoMAbRx/IwCTotZgYd5V+dlExPT+uv/bW/ppe97GUql8s6d+5cyhBn/1pfX1er1dLq6qr+8i//UktLS7d8v5PyJXq9nq5evZoy4Tg0krGcmZlRvV5P2Tno4U6nc6A0h5foYp/d2dlJAQP2/Lh/sacfBy9xLGZhYUHnzp1Tr9fT6upqAtHRq/jvW1tb6aBuSUkXoTPBSI5T8mRiYkLValXz8/MaDAZqt9vpuwSSAdEBhvv9/oEs8tsRMqVch5BNWSgUcu3l2xW3Qe6EriiXy3rpS1+aglErKysZW4f7gv9Eu8z77fq/Vqvp/PnzaR2MWp/9XsrYJx9dxiD6KRdnneBY4FS4snRm7K1EWPME1hoK+uUvf7nq9boee+wx1Wq1DIBPWZFSqaSvf/3rWl1dvScPE5sc4+AHTaFgcCQis+4oIN2dcNhrvNg8HeAeVTy67bU7cZhQWM5Opz3O5CPaTTtJNaN/Djgc1R4HCo6KYjsrzI3Kk5AIpDsz6m4AxCd5D4yncrms2dnZVDvtdtj7nrlQr9e1sLAgSSdqMN1pGSvssZy0OAuX9RUZyXwO8Qwl33fY62GRuAPmYJMDc84ImpiYSCAbKcHs9TBU8sT3OGdJ46x5W72kQ7yGs2U5MImDiynRBfOVa01PT2cyWnAGIyDt7RwmtMEdPK8fLh1k0tIXgFlnrvs1fY486On2UGwr8ykp4/x67e8IejqBwcHwPHa+60wH4ocxqiNozPuDwSAB67Eu/bDx5nt+Hxx3Dwy43cjYe8ZZZJ/zk/45ywqH3YFmb08EoSMhINqsPk55LE/mg7awrnZ3d1PNdQ9+8D3qpLv4uvL1FdejS9xHPPDAus4LwPvfcV1yH+wnDipzex/xYJvvD7H9XBub0AMew/oW+0j/RpExiD6Wh03Yf3ztjxJwOkpctx1274WFBT366KOqVCrpnCX2z36/r+XlZW1sbKhYLOrrX//6bbfrJARAHP1Rr9eT7kGneplQ9jdqpbvejXu8l2ajNFecDw/e38pcAZJXq9VUjsb1CjYOvrfbjfjvrk9vZd+EgEHwH/sg2lbb29sHzvU6CfFxzSN7YmOd9J5+J3XE1NSUZmdntbi4mNaQtO9j+zw5GO418j2zkbklOM617gcZ++SjyxhEP4XCRuebH3W33Kh2R5HSJTChhxnp0ugs2kqlosXFRc3Ozur8+fM6d+5cqsFcLpfTNfb29rSwsJA21rNnz6rT6ajVamVY2XdLPH0q3p8NPo7lUcrFwXGi29Th9GiyO4mjCIrN2V8wwD06nwdku7OGsNkzBtPT04ml7oyywwItGCzFYlHdbletVisBP9EJY0y2trbUarW0vr6ubrd7286Up+X5wVgRQPesgLsBqt+qFAqFVGeeYBPP9EkYNn797e3ttIYYn9M6LmMZy50QZxpL2QMuXdzhZD+hFjFsEmebx+8CIHqA1sFW6i3jdLkuB6z24KekzN4GWO6ZJeh32iBl65Cjm7w9ZJUVi8UE6FO7kb0CnS7t1xtfW1tLY0fNTxd3pryUBnqH9pANFkF0B/vinKCfec+BPYBiD37HNFo+F/Vx1OUelPCSaR4wd2Dedbz/P5aB8eAyYAs6nrY5E522OTjg33eGuwPO8V4eMKLNAMjM4e7ubqa+uLRf87zX66UACmwyZ4Q7y5uMtUKhkOp/ehuHgeC0MT5THijnvh4I4nqekcD7gBZ83u0+J1LEdZtnX3lJlij+jDvAzFg7KO/jH6/l69JJEE5IAEj39exseP9unsRAH33ycfexjN8jODGWsYzlpvh+4fs5gq7t97MHSLqujs9uXsBtmOCHVatVNRqNVIfZs4+8Lfgc+JJ5OvdeyGAwSCA07UK3uM+CbqQEnevpfr9/INMK+21YP2OwHYl2gxMKJicnk91EyRyY8eigOH+RTMeZJDEziP7mZRAOG7dWq6UbN25k9JD7yJLSWKytrWl1dVXtdvu2AzwevEBnRL03MTGRsgFPy1obJtgNxWJR9Xo9g7M5XgLGxnOGLs1jxseAQrVaTWvksDPPxnJ/yhhEP4XCQ4gy5uH1VGJ3KnGsAQCkfYXiaa5sev46bFNtNBp66Utfqvn5eb385S/Xy1/+8swBk5EJ12g0VC6X9Y1vfEN7e3u6fv261tfX77oRTt9wjAuF/TQb0noBN3DmPQqOeP8crKU0ioPorvhHVRqudIgswwjEYPAD5zzi632VstFSrh3TCmE90odh7SQVfmJiQmtra1pZWVGtVkuGGNfHOSQavrS0pGvXrqnZbN6Wsnagwhl8Ma1bUgYAOQkGyJ0S2KgLCwuan59P9dCdpXc7UigUUtBLkmq1WmIqHDcz4m7LOOo9lpOWzc3NtM9FcNNLV8QMHgKInmEk7es4fncHSzpY6gPAjoM7q9VqKtfFy0E9Uo/dKdnZ2VGr1dLu7q46nU7GCcJp8ewk9np0k9+rXC5rbm5OpVJJs7OzajQaKpVKmp+fT/qmUqlIuqknut2ums2mNjY20v2azeaBIKwDql6/m0OXNjc3E4hfrVYzbCmcPJha6F4Hhh2kYK93GygyiyUlZr2kA3oBp5X/UT+WufZ5d/1DvwE5WS8+H4yF6yzmOGYgsIYcROcaDlizxnZ3d5Ozl+esswYdGKd96IBOp6P19fVEeuBaPB/0n2D4xsZGGt+89Pfd3d1Uj5e5iodhejsjoBuBWw+EOzuegJADyJQmirYbwRu+h03MXJJtQSDK58eF+wwjG3CvYZ/BvvTATrRPfN5ihiFAma8nxjyWyol7AOsqb434uOfZSzEz5DgZcrdLYhjr8rHcD4JPFvcA99spp7m2tqZut5vJEvE9kr2f/XeUZ6BUKmlubk71el3nzp3T+fPnDwTa+InP1ul0kk+Jr3oaZGtrSxsbG5k9XTp4VgRgJDqm2Wwmf9zrq+eRH/Ik73+eCYZOpLQMjHlsmO3tba2srKQ66G4nSMroVWk/Y6FcLie90+v1ku3jTPvDBFt1eXlZ3/rWt9IZdei1SCajdM7Vq1fTurtV8UA2NpgHLXgVCoVMOZPTvK8XCgU1Gg01Gg0tLCykDE3PGuh2u+p2u5qenk52fKvVSn2MBA9pP6uP3yuVSiIc3A8y9slHl5M7AXAsJyKujCMDydNt43vRgeflzlzez2EAHp/BSYrsWZw7r+HpkVp3cm6l7ychKDJeAL7+018eCfe0HF5534mfP+4G4vPjc+vK6rBx8f/5vPvLU+VGAW09aMBJ7yj8OAbb29va2tpKKW3Uoz8J8SjwUa/Trqyl/fq3MbvgpMSfSV9Dp11iYO+4r+PKRz7yEb3sZS9TqVTS937v9+r/+D/+j0M//7nPfU7f+73fq1KppJe//OX66Ec/euAzf/RHf6TXvOY1KhaLes1rXqNPfepTmf//2Z/9mX7kR35Ely5dUqFQ0L/9t/82dxyefvppXbp0SeVyWW9605v01a9+9dj9G0s2iOz7SN7a8aBd/In4/hr3XAerfS93nezPvevxPPZTZEpFHRP1TB7bNz4bOPzeVge0Ae385X06ah+hzw4MRGZ+tGFGBeg8cMrcuB5yHR91cdQNkU0evxN1Sp5Oj/Pj68XXFEBAXC95Y+dAvbc3fj/ahR6IHzZPrGMvBRRtGN6HbACDMoKvefaov9x+8b4e1q48lj9jEZn+fIZXXOPeRrdz41h7G+P45kl83vx7cS/xz0RbPA/scolrJY80MSwg4cGnvGv5uA/TpR50imv8KLldPX7a7bexjOUoX8t9Lg+W+94U98WjfPEoZLgByhGcjcE8D8K67j9pv+N2hH09z6ce5lv7/hl1eCRMHEfiHESd54xvv2+8Bv0aZoP5Nd0/H9VfGwxukhM6nU7yy+MYoMvdN48ZycddA1FH5umNw+zU0yg8I9i7bhvk+ejR9op2m4vrfJ7X4wSl76WM9fjoMmainzLxjRYFGR9yj9BKWTayM3acieyOGi8Hj/MUD04293YDwBV2BA74DpG4KBE49vYhvjlHEOQ4wnWIGBcK+wdNuVJ0R8f7585drIUOy8sdmuPIMMd0WGDkuNeUlJgHXHcwGBxQAHljRmT82WefVa/X0+zsrDY2NlSr1dJ67Pf7Wl1dTQfXPP/881pbW9PW1laG5VkoFNK4jbrR8n9ncjkjzf/vGRmnWQg28XyfZMBIUu5aGpaSfprkdhTvcb/3yU9+Uu973/v0kY98RN/3fd+n3/md39Fb3/pWfe1rX9Njjz124PPPPvusfviHf1jvec979Ad/8Af68z//cz3xxBM6e/asfvRHf1SS9Mwzz+gd73iHfvmXf1lvf/vb9alPfUo//uM/rs9//vN6/etfL0nqdDr67u/+bv2jf/SP0vei/PN//s/14Q9/WB/72Mf0qle9Sv/sn/0zvfnNb9bXv/511ev1Y47Mwy3sNbGUVwS/vASKOyAwQDnIMU+i48y+SgCZ5z3PUUJnwJKlJreUPVgz6tYIrlIixXW4l79y1rU7DAS7PTjOwaKugyLQyn5MO9xWoea76ys/7Jq28n8v55EX8M/Tu3Hc89KYXSd4RlPUo/3+zQPBNzc3cx3w6BD7HDMG7uD7+oGB73qca/nvCGuxUChkmILMpe/pLpEJ6evJ18JgMFCn05GklInHQZj1el2FQiFl2HU6Ha2urqYDzRnXuNadqY+jiM7hPvTLgxh+Hf+/21E+T7wfgXlfi9F2JJiDYx+BdLezaUO0i5gPfx6xxz1YDZkAhiJr0oNKzKtfm7/9GYiZKaOAK95GxsNr0/rz4M8Z2Q8ROPc1P8xGzJPbdaBPu/02lrFIWTvb97wYiJWUypjxvElKz32hUEisdg9YHvUcFYtFzc/Pa3Z2NrGjyTTC1+P559XtdnXu3LmU0baysnKAjc5n8/Z89NtJP6PoKnxExoi9Z3NzM7OfYjf4YZwxGHurILrbVmSyTUxMpICys8iZKwewPWgi7duUjCnve4CX9eH2zVGyu7ur5eVlbW5uqtFoaHt7O5Pl2O/3tbGxkTLPms3mgbnzM9ewr45ad/5/z4jy8Udn3sr43yuJweLYB38uIRb6gfX87jZQni0TfY/TLHfTJ7/fZQyinzJBsaKg3WiPDlT8HkrIHTFPlY7AMP9DkUVhU+DeEdD1iGQE8PhOnvHvbCBX9q5Aaac70AABx3lIfdNnc9ze3k5tGAai893IinLH2a9/qxIdbf8ZnbGjwFAPrnhwwueFuYoR5Thmg8HNlOdvf/vbunHjhubn57W9vZ1K+aD4X3zxRS0tLandbuvKlSvqdDpp/h0Q8RTw44ybp4jFuTnOde61sNZ4nkad0+Ncn3s46+S0pG3eaWk2m5m/CUBG+fCHP6yf+Imf0Lvf/W5J0uXLl/Uf/sN/0G//9m/rgx/84IHPf/SjH9Vjjz2my5cvS5Je/epX64tf/KJ+/dd/PYHhly9f1pvf/GY99dRTkqSnnnpKn/vc53T58mV94hOfkCS99a1v1Vvf+tah7R8MBrp8+bJ+7ud+Tn/v7/09SdLv//7v6/z58/r4xz+un/zJnzzmiDzc4vsMwHAMRDq7lbIi7ixSgiM+o1FP+L4L8O6sc3S660P0L04YrCGAcXS9s94iiO56woPhOEfSQaARB9EBdAf9pewBk9gGeZlafJY05UajcSBw7o5jBATj/ud2hYONXmYFoa1kxrnT4p91EJ0UfOZYUmJpua4/TKI+Yw59LfT7/QSi49w60B+BX35iX/iYMJ9uf7mgT+irO/URpIeNxjqjPn6tVsuA6Jubm1pdXdXW1layQ329eZv9eeFzrrNjJkgMgPjaimMYgx4OMrsdhl0YCSYTExOp/M9hejZvTiLLMNq1fl4RzwgvQGz64hkqzKmPkdsCXh4qL8PA7VF3zv05I2jFWnGQhD6xloaBTnmM9LGM5WEW32Oir1soFBKY5lky2BD+jFIiTlLGxmBvOwqsBkSnDEWlUtH29rba7fYBEB3d3uv1tLi4mErLUNYr2hNRv7ndcSeYxb7PAKZL2QOkfd+MOu2kBf+Y/bffv1kScGJiImNTRuBYurmn4nO4bel7vPvl0r79RED/KHyDPXx5eVlra2vpDKxqtZpK8u3t7emFF17Q8vJyZl0g6JlSqaS9vT31er2R/WknKkSd4PrlfhJ0v2dAOFnPx4Y16jqVNYB/nxfQz8OY7hfsYiyHyxhEP2US2VjROeAzLq4II1vKWVRsDM7yioC4y+7ubqZMB8wiFDT3dmd3a2srpRBhLLiChgHkkfzIEvONGqfEa8Yexp4/Shyg96j7sMhbHhP+dhk3w+SwOb7V60UnjPePYjbxXdbJ1tZWqnUOe2Jvb09ra2tqt9vq9XqZyGsE0T16n6eAj5K7rXAYn5jShYN/HFY94o7/nepPZGPcD4r6JKLejz76aOb9X/iFX9DTTz+deW97e1tf+tKX9LM/+7OZ99/ylrfoC1/4Qu71n3nmGb3lLW/JvPe3//bf1u/93u9pZ2dH09PTeuaZZ/T+97//wGcA3keRZ599VteuXcvcq1gs6gd/8Af1hS98YQyiH1McND5sv8PRiaUr/Hl3Jy6yYaP+jEC938cZ4lyP+0bnMD4TcR93IBIHnCBx3p4fAfDoFDsYSp1wDoeKIKcDuQCJXgImb6zjPsp9HZiNc4IjGplS0Y6J4s6cM5GZP74TWbrex9gmt5+kLEvdAwr+P9ej0Z7zdeRzEMHc+F4E3vPIB9g13m5+p82w7/261DaFeefjdRQIzU8nSLAW3E6LddKjHPUcuc0WgWT/PpIHRPN5wKJhgeYIqvOcRceal18L8J7vxs/6nMb3JI1kH7kt68zxyHyM+xfi9/DP5N1nFLldu/h+sFXG8nBKHhA2zE+P+79/Vtovx8JneOb8ejEI7kK20OTkpHq9XirBFXWTtB8kbrVaqbaz+y6+35I97iCxB245Q8NtB9+DbsWvixLB3HiPO71H5O3RrlfBK2LAn9/jddwXJkDNGGGzeeD7sP7F9cWYc26Jl8KhrGpeoMTxGNf/d2ufPwlxu0c6WLlgVPG1K2XtfZ6TGEwmaA8GwvcdeMcWGAwGxyrVc1rkJHzyh0XGIPopEwx1ZyQPcyhcfFNHEZIOivEcgXUk1rDi1el0Erv42rVrqVavbxZ8f319XWtra7p+/bquXr2qF198Uc1mU4VC4cAJ4bCZnWkfWUdsRDCVOHRjd3dXzWYzKQnA2+M8uGyC7mAzdlGiMvf3TkKOArRHmfu8aw671lEbua8/Bw46nY6+8Y1vZNbZYDDIBFf6/X5K66fsC0qJSC1lC241AHI3xI2MWq2mRqORMaA5DAeAyZklw2QwGKS+R5DiJJSrPy/+inXwTqOchMJ+/vnn1Wg00vt5LPTl5WXt7e3p/PnzmffPnz+va9eu5V7/2rVruZ8npfLixYtDPzPsmsPuw/fidZ577rmRrzOWm9Lv9w8cMBkFsNgznWAs59Wp9PIMw9itEYxif4+ZXrBk0V/uQOP4uGHvLCdvFyw2GMvOQnZHmUNK9/b21O12tbm5mb6HrQCIury8rNXVVW1sbKjVaqnT6WQOYpyYmEh2APq7VCqpVqtlSpJJB59tAhb89NRZZ/Lxs9PppP3Vnc8IXsS5d9CWPrIWaIeXXvG5g6kf54u54W/WDYCpBzV4cS13YN2+c8A7ghP+PveFqezrwp1J9DL3iesXXby6upqeEdaQA/de0sjbEYGXGHzi/+VyOZUp4LBTyBWIO/gOMHlf4hw4m5PSKZ56H4Ek1irrhuu7XdLpdDIOc7SFnSFJu/05w2HmGZmcnEyEEieNeEAoBs14z+1Rtzcd1Irj52CIl6jh5YxzT0P3a8bUfr//qPb1GEQfy4Mq6Diyp9kvYZJL+6Uz3deWsmc1FAoFVSqV5KOzvwwGg0x2C89st9tNZd6QtbU17ezsqFar6cKFC1pcXJSUDfpJN3XfjRs3tLKyoqWlJX3jG99IB0x6aTRA/fn5+aTPY4BgYmIiZci53USgfWdnRxsbG0cejHmY5D3/MdB/J4U90gMZvJj/hYUFDQaDVE7G9SZzJu3bHbVaTWfOnNHU1JReeOGFZOfDHO92u6kEKutgmLD2aCtrZ3V19QCgnAfMc26dZ7zjl48SvI02yb0UMAafp93dXXW73WMT1bxEC3Y2NefdnsBOhkg4Pz+viYmJFKiiHZ7xJ0mVSiVlJHqA7DTLGEQfXcYg+ikTj3hHg38Y2Obv+2bqSsCdezYEr1/pQDIPAezjiYkJtdvttKnU63VNT0+nB213d1e9Xk/tdlvtdlutVisB3Q4AcPLx/Px8qsOKMz6stikKv9vtJofagUEcl+PK3VLMo8pJRylxfg+7bow+u+PpILp002kFhPHILRKNTH53ZxVn9LSnfPkz6OAQ/SGg41HpUdaRr2d30k9K3BH3wNhpl5NQ2KS2jiLxmYjOxyifj+8f95on1bax5IsDiew5/izwbHgA0IHvwxiszqp2Fo/rWQdCC4VCclr5vAe8SMHO0918hz1ZUmZvdiCWz1GuzPvL3sP/HcwDpAXk63Q6ajabarfbySGIpVRw+Mvlctr7+d2DF87CxaHDefNr4UAyZl7bGxDdxzayavPm31lGkYHu4+Lp2D7WzjrOA+p93BxsiKC1A+v0wz8XbREfK38vr5xLzOCjz84oxPHmnthTDkLTzghiR1A/b++LY85z53PGODGmnm3AWj2q7Io/b27bOili2PPKT+aCewF2+1zG/SBPHIh2QANQ221s5jsC9D5meS/+P2zc/f4EK3zP8u9gg/l8xKBUXv98HRwlYxB9LA+qeDAs+uW+r/i+zt++L3Ed3ndmMtf1Eh8RQJf22eW9Xk/r6+tqtVqZEi7S/t7QbDZ17do1raysaGVlRWtrawf6RfsrlYqq1eoBf5w21et1zczMpBIh+P3okna7ffIDr7u3L7h94PqX+cPecV0R59uvhW6rVqsJL2m1WioUbpbsq1ar6na76vV6IwUf0FsI7ex2u5KyZeywz3zfBodx29b11Sh+xmnZo5kL9Bo2I3jQqD65lM3S9DF229xLGu3u7mYCElwDGxubEruVs4DuJz9uDKKPLmMQ/RRKNKRvV5w9HJ1rd0zixrO9vZ0Opfj2t7+tarWqWq2mbrerarUqaX8Dev7553X9+nUtLy9rY2NDOzs7mpqaStG6RqOh2dnZDBOdA0id5Uv/JWWcX8BZgFgUkLObcYbup4fYHSt3Mt25PMxxzRN3riJryp1iFKh0U+kSLaWetM8JSopUMQ4d4z3ElXFkM4yqqO+1uMG4sLCgCxcuZJiD3W5Xg8FAvV5PzWYzKdvDhCg2RidGMOv/dseF68MczUvne9hlcXFRk5OTBxjiN27cOMAARy5cuJD7+ampKZ05c+bQzwy75rD7SDcZ6RcvXrzl64zlpkS2susWB5BgiPJ/3+/YKx10c4lAGN/zsirs43nMaWen5QFZEQyMwLlfi73ef/o12LcHg4E2NjZULBbV7XZTvVTP+lpeXtbKykpiwXHoYq1Wk6RUzqtQKKT9i9rq6GlAVNhZDkTj3AE6Tk1NJefH91LXVR7Y9PtHNnfstzOcHXD2LCJnGjMf6D+fZ5/3yMpi3GOZunjAWwTQXfKAWQdJGQfX39yTPkfw2gEB2otDHxnWrBP/fhQPcvA7WRYcTOuAvAPJznqjHwDZvs59Hj1gz7rheY0MT28z12aNsC69/jDzg63qDM0YrOBeONQ4zNFm9na7/UXgzMEZfzYjcw6mvTPHI7judjI/Dwu6Dts7fD0yxm573i9221jGcqeEPY+AsQPWgGYOrHrg0kuD5flfMSDvQfnDhKyxZ599VtPT04nc5oeVXrt2TUtLS9rY2Ei6gkOl2RfZG+v1uiqVSmqnlA0E+95Bu6kBTWmLarWaMsfRW3nnrZ128fFn7ydogO6MQVvfk5kHSWq1WpqYuJl56DWz0Xu1Wk3T09OJ4S9lcRl0FfiLpMScdtna2srUN2et+ZwhYC/4pB7sOa3+ottTs7OzWlxcTKQQMCBJCUzH3j1MmEsvWwyOVKlUMnaY4xo7Oztqt9uJlOAYDTbOzMxMCoStrKyk7PWxPFgyBtFPmbjjFJ20w5hXw8SdFTeE8wDOKKRxU+v02rVrajQaevnLX67Z2dnkJOzu7uqb3/ymXnjhBfV6PV27dk3dbleNRkNnz55VsVjU3NxcOnjMAdq8KG4cj8HgJvud+y0sLCTA8Pr169rc3NT6+npKUY4OyWkVd75jajCOF/0hmHCYMxMj6V5vF4PGT9WW9sGFWq2WyvWUy2VVq9XM2gBk2du7WQf9xo0b2tnZUbPZTJFwB6w8cOPvR7bGaZRisaizZ8+qWq3q0qVLeuyxxzJplu12W5VKRe12W1evXlWr1Toy8NXv91Mmx/T0tFqtlur1elK2tzMerKN2u62lpaVUpx5D9rQ/C3cr6j0zM6Pv/d7v1Wc+8xm9/e1vT+9/5jOf0dve9rbc77zhDW/Qv/t3/y7z3qc//Wm97nWvS0byG97wBn3mM5/J1EX/9Kc/rTe+8Y0jt+1lL3uZLly4oM985jP6nu/5Hkk3jcHPfe5z+tCHPjTydcZyU/zALwfI2QNhr+AcugMMMIiBPDGxX/M77l15wbOYKu3MLv8uTmgE6h0ok7JlO/L2TwczcVppvwOYrVYrHV7Vbrczh1LhhOB4kzKODVCpVDQ3N5eYy14uaTAYpEOtvJxLHihOv9FtpVJJ29vbKSjrZS8cmPDrAti7DeGgpc85LDsHAWBvUU6n1+sl0JS5KJfLmYC2zwe60NeArxVnfBWLxeT4xcCOiwd3HDT3cWB8PAABmOvBC8YoAsHMxc7OjsrlcuYcG0AiZyvnsZNpS6fTSWPgNoK3wcEhH0e3eVx83hxA8jrj3jbGmOec70WQnvJM5XJZlUolwyoFtKDcEWn6zizNC8TgREcH2+ePIIKXKfJ6xD7vtJV5JdhOzeN4LgHfcyCe5yBvbXF9MkTiwWiSMmn9cb5GAcJul8By2u2UsTy8Esu9oX/4H+Ub/FBCD2p6MNODadgWrv+9Trb7fPH52NnZ0Te/+U2tr6+rUqno/PnzCRyn3vbzzz+va9euJaBxenpac3NzunjxYmbfnJmZ0ezsrIrFYgJj9/b2VCqVDrSPPRf7hbbNzc0l3bqysqKtra1MqaxblWH9v1PCHElZ+wGcgc8wf/gBrAP86WKxqJ2dHd24cSNlHRCkGAwG6fDxM2fOaDAYaHV1NWXgOWEAu+rMmTOJbLOxsZFsJq7XarUy/r0zq9FljGG5XFa9Xk9lS1y3nlaZmppSrVbTzMyMzp07p5e//OWamJhIvu7m5mZavxsbGwkMP0yYh+3tbRWLxVRJAcxKknq9XjqMHfttc3NTGxsbkm7iBTwH/MRW2Nvb08rKitbX19OZBPeD3C2f/EGQMYh+CiUa2Q6iSsPLC+Qt3ttZ0M6Qgb22u7urubm5pBhxDFZXV7W2tpaUtbSfckOqN+k3HsUfVZz9hZOzu7ubapei1P2zd1tGCQj4T3/fAyfe16PA2bx7xACMz2O8Hs49JVhwNJmrPBAdZeUKOoI6x+n/KHIckPl2594NZcbD68QPBgNVq1UNBoMUEBolgs8YwjLb3t5OINqtiq8VIuoAAfcDgC7dXYX95JNP6p3vfKde97rX6Q1veIN+93d/V9/+9rf13ve+V5L01FNP6cqVK/pX/+pfSZLe+9736jd/8zf15JNP6j3veY+eeeYZ/d7v/Z4+8YlPpGv+9E//tH7gB35AH/rQh/S2t71Nf/zHf6zPfvaz+vznP58+02639Y1vfCP9/eyzz+orX/mKFhYW9Nhjj6lQKOh973uffvVXf1WvfOUr9cpXvlK/+qu/qkqlon/wD/7BLY3NwyxHlYZAfM/OA6cBpvy9w1hiw/43bJ06Wz22Nwa9/ffIfnLdEZ1v9ibASEDrQqGQfsKC8vNHHOh00BKnwXVJZKvRHw/Y0h5njwPcedmLYfPm187TO5HxPmwMHQx2vchn3HF2UNL11zCd5+y1yDAc1r9o7/krryyXzzn6CACb+7o95CwzsiQc5PWgTxQHib1NAPARZPa/EV/j/lzybDkw7p+NwQvvM98ftl78efMgFGvUD9HzmsZc059Jt4Mc5HdgzO/rYxXnKU/XcS3/HgExB91dn/vYcM9YAigG5HzNuq3s1/P0dB/XUez1MYg+lgdZXFe4LvGsjcPWsD/Dvp/HvYXrHmW/DwY3g21kflcqlbSvA+C12+10lpiDvoDj3N+D1DEzj0BAng3iLz8HhWwnSrqetmfbg7tH4Sau0+Ih1DHg7PbQ5ORk5mwqMgHiOsIGyisThM4iuwC8A1vNdYNnAA7LQPb7embBSclRuvh2r82YeCDL5yTq8lGE+cCm2d7ezthPw2xNz6Skfb6u3DaDrHFUxvppkbvpk9/vMgbRT5k4CwmQzTfxaMyyYN3hZVPxGlkxpcwdyTxn0q+/t7eXFDV11UqlUmYDbzab6cTwubk5TU9Pp5QbDtfyA1mOK3wHZ55r4XCwacJQ97SmOykoIZQcDqwfACYpbdCk9/hhab6BDwaDxHpEeUYFm+fAu4HGtfb29lLaF4yzmLI8Pz+f0vjm5ubS2EYQyuv11et1SUr94XrOlvM0dvrf6/WSUXHU3DCuDsw4ky8aLfSbtc09IgAx6pyS7kZpG1IgWcswLsi8gL3BHEZhnQ4GAzWbTb3wwgva2trS2bNnMzXkI3vwKNnZ2Uk1Ca9evapvfetbmfML7geFdjcV9jve8Q6trKzol37pl3T16lV953d+p/7kT/5Ejz/+uCTp6tWr+va3v50+/7KXvUx/8id/ove///36rd/6LV26dEm/8Ru/oR/90R9Nn3njG9+oP/zDP9TP//zP6wMf+IBe8YpX6JOf/KRe//rXp8988Ytf1A/90A+lv5988klJ0rve9S597GMfkyT9zM/8jHq9np544gmtra3p9a9/vT796U+n520so0sETBEHOV3c6PagmINVvs8hfBZnR9ovYRJBXwfg4t7koFUsvxHXOPdnT4FF7CVRqHft9bi91iNnOly/fj0xptAZMHILhUJi7larVc3OzmacQPqK/oslU4aBhj4/PieA1uyHzr5Fp3qf6EsEmyM4S78BfV1P+F5PmblGo5FS4wFKfc1sbW2lmrAORjpjmnbB/otjQx886OGAJ/1xXe7AqtfxRt9Sp7NYLKZzPDzrgjWFDh8MBglMQZ9NT09n2sN9nYkMU9LbSbu3trYSKMCccSAd4+m6GvAnrn9AAn/OcErjMxwBaF9TkpI9BfuOkgylUimBPNhjZCh4rWLWq7PrGQfmIpZlcnslBgcimOZzhO2/sbGhZrOpra0tra+vq91up/97/2MwbXNz84DTz71oE+302sx5ewzjP6r9NAbRx/IwCM9h1GGUKHX2OT6PB+P8nA/XzXzG9TNs4mE+BZ+DLet71GAwUKfTSfW2fT/Gp/HAs+uvGHSjLbz8nBL3gbEP5ubmki/kdaJvBUQ87r7g4xmDirST89m63a6azeaBPZB+81n0K9fDj/aMBJ8vHxvE92vf77HhYClPTEykg7lnZmZSadFyuZz2Yg9auJ0zPT2t3d3dhMe4rnF7oVAopJKf+I/HIV1hz7gNMD09nch3fk/657bUrQj38iwODvgsFApqtVqpxFrEXw4T5mV7e1svvPCC1tfXdf78+fQ8A5T7uvKgNZgUdidt5Wer1dKLL7544GD10yxjEH10GYPop0xwLPb29lLNKleM7hzyeUkZZhXKKz4IcXNDsXnUO+8B2Nvb0/r6ekpfee655zL/LxQKacOpVqu6ePFickQXFhYyDJ/bETYvoo0oNq8JSWoOm9WdfKCdXVYqldRoNNIBLUSMke3t7ZTaxgGdruAwrPr9vorFYvrdDTK/nwMV/B8HzKPfgCu8vIb55OSkZmdnde7cuUz7h80T78/OzqparaZ0vW63m5xJTyFzwNtBdHe8DxtX1hWsMZxxZ7SxdglOeKp9LCMwqkxMTCSwHBCd8eGkbUkppaterycGB/fOW3dkaQCikw5+9uzZdM/jgOgYcxzie/36dT333HPa2tpKddvHclCeeOIJPfHEE7n/A9B2+cEf/EH9xV/8xaHX/LEf+zH92I/92ND/v+lNbzpyPgqFgp5++mk9/fTTh35uLEdLZNm6g+BMVgRwlu9K+0FBvptXzzAvsOf7X/yflGWk8TdGOW2NTDT/PYKNOLVeh5S0cm9DBJ7ZjyYmJtI13FHBceMQrEajoYmJCfV6vQQ+OmMqAujRpnAGcmSCeSDCA9KAFZQocSCQ+UXv5TEF/b7sza6DYCWzv5fL5VR6DlAf3Ut/SX92fSwptYNzWniPNejrz1P3I4juYKkHNxxEd/uAdTs9PZ3SyNFJnlUAwAHQUygUtLW1lRxv5pbgO+3yvkSihj9P9J9nD3swlvlh3lhnPh9e8sSfZX92cFwjgMzYxfcoQcQ6pv4vILq0X2O22Wym54J0e+8jc+dt53OxXI8/F75WIujv9hrBAw4CpE2000kx3I91HOfGAzysFW9XqVQ6ECxEPFDiAY6xjOVhFwcDfZ8CuOM5g4Ha6XQy+svP7/KAG/u4g+iHkc4ImlELenV1NfN/D/yRFe7l2Nj3HUPwvTcStvyMBvZrdCTth93uuovA5O2CqKOKBzOdqIB9UiqVdObMGVWr1XT2S975FoCxBKYBVLG70IsOoOYFfvP8afZXP6TVg/WUxyuVSonc5kx/z6pCv5RKJdXr9XQt1pAD9vRzd/fm4eIEzyPDPo4nEnVqv99PuolyK/jCzLefz3UcoD4KuojrMM/o8nK5rPX19WTjjKqz0M2A6OjS8+fPJ1/fySjoeA9Og0l5v5n3Vqulq1ev3nZZo7GcThmD6KdQHORmY3X2VYyyuvMR2Sp51+XhjyDBYQ/4MJaPlGVjA2xH5vmdMMJxaCSle0rZk6mHpTXdrrCZ4ux72Y9qtZocFMSdIHcgcZBxLDG+nPXovzN/eem4zl6Lr5gWztihDIelYh/Wdwc9JCXD0JkarI2Y8RCv5YaPM9n9kFPY2h6FZx0zxgSRCK7goDqTwr+TJ8yFp2vB4HBm5sTEhGq1mubm5tL9uHY8cNWvjWFB/bVms6nd3d10WK+PSZ4B43Pd6XRSXfpOp5PS0Y4bOLiXMo56j+WkxY1YfxbyACNJGWcEwQmT9oFx/75/x7/rYLqDxXzP9Xoe+4nPRt3sTpYb8f557487cV7aw8eEetpxb/bvecAyjxXnwQDvd9QltJ9rMA44F86QZf930DCP0RslsgOH6TPXYVyfgC2EAEBnrsM4QGxAD8c92llXPo/eLuYtAhc+jnnXcz3qEvVFDNQM6z8ADmPg7DbuEddhDP7kXTcGTLiPH7jnzqb3jzT4+DxhV7idkkco8bbEMaKPzizEAcYRJ5gQszfjOkdYw4ATvBef19guH08HObA98rJE3QY4bH4dVEfi/eLY3K7NcDt6nO+PZSynXdBdkY3q5R49+8e/E/dl37PdfzjOszBsX5KUAVrRa9Q4d30qZQ/l9r1vmN/mWWjscR4Q7/dvnnlSq9Uy+9nt7hNHCe0nYOuAK8FDSpZWq9XESs8LyKOXXB/53LnedRCdM2bwPRlfXwPxFa/rgec8m4+2YJ+4jTosqzkvUH/YXLhfzt+FQiGNHwEUzlkhUOO2D2sk3pOfPkajzi998GD9zs5Oytptt9tp3Xn2/WF99fbhn9M/xyXy7Ft0LaWTOLDVyS33k34b++SjyxhEP2XiACSnC2MQ8wA7iM7DyaEmsIjYWH1zRcH75sUGdlgkcpg442Z2dlbz8/Oq1WpaXFxMJ04fxmy+XWFznpqa0uzsbIYlB5ja6XROPPrt7PPFxUVVKpXEuoe9R3QaodzH7u7N+vEcfLG8vJwOCCElz0FlSalcjTuQ0UGkv6wF1gOHbvj9AadhZtVqtQyLcJT+S/vMt7m5uVTzi3Z4WpuzBn1zLhT2mebFYlELCwvJkfVDaL3Wax5YwE8PRgAkO7i8traWWAesi7wNf3t7W+vr69re3talS5dUq9VUq9V08eJFLS4uqtfrqVarJQbaxMSEut2uXnzxRS0tLanX6+n69euJDR7vsbW1pWvXrml6ejplTlQqFV28eFHnzp1LrJF4MKKzEzc2NrS5uamlpSX91V/9VSors76+ngm83A8yVthjOWmhxAISwSp39tAjzqKSdCAQGPdcHByM61iP0r8L84f7Ax7Gki/oZWe6RiDWnV8H6xCcZFhUODA+FhH08z4SsCedmJJysJj8sFC+i9Pszir9j2A5AWV0Htf1IDglszh41B1NZz8Nc/xpF/31vrs9RAC5XC5rfn4+6R50oo+b78c4yTANnZQAo9iZyAAKCLqaAyRpE2sAcVY49kHsYywzQpAWp/sw8IY+8T8AbP+dv501H9ciupz24Eyjv0n1LpfLmUCMA8VOBOHcHXdsCRD7+OQBEz73PgbYE8ViUY1GQ41GI9lb7BcTExMZBjo2FM+Jl6mjH9ib9Nftc0gVeeuQ/tKvbrebDvRtt9uZWrqMUSy14M9bDJp5gC+Ce57l4ePEOsgD4I+SMYg+lgddeIbwzfGzvIRWJCzB2MUf8GfXn03+7+Uub+eZQodXq9V0UCL+FYSkvEA8fiF7YafTSddz8pKUPVTRbSvsBvyazc1NPfvss7px40bGrrkTAh4AkY09EeB3enpajUYjZWzNz89re3tbq6urajab6UB1ANCVlZVkK2Dn1Wq1xBSH5AWrm73U9SH2GrYT6yYvM5t5q1QqmcAH2dyuE50oQHCYrAcOjndSJfu9H1zr//OANfqLA2cJxExOTur8+fM6e/asdnZ2tLy8rE6nk9YafeXasYQsOhPfd3l5We12+8h5jTYSWXRzc3N65JFHEv7S6XS0sLCgWq2mXq+nF198USsrKxlbwcXBfn4uLy/r61//ukqlkmZnZ1Opv/n5+TQf9Xo96VIy/q9cuZLKqa6urmpnZ0dra2v3nW4b++SjyxhEP4XCphZThol4O3vHNyo/+JGHG4eYzTYPRL9dRT0xcbOG1+zsrCqVSoru5rHRTlLYVCUl5wzgAIf1TpyGjJNC/dRarZbqv6PAYjkXUvQctGi329rY2EgOFzVbUQ7ODGNzjwC7G0DMPxu6O2gost3d3aQIcW4B/I8zVz4G5XI5geY4YKMGLnA8SaOv1+uq1WpaWFhIysrZaxHIcnHHHCMNpjeBJYzYww75ALDgd/o4OzurhYWF9HxhCHDqNtfb2NjQ6urqAaAfoWYdhjTGpgdgnDnqpSkom8Np3zdu3NCVK1cSI512308yVthjOWlxAFw6WF5kb28vA7pGtrY7F1JW1/Bcs3fxXZhPXD+yzLxO9u7ubib9mb3TnVn28jwQPbLi/Tnw9rDHR4AsAmVuK6BH/eWsO3dEvL3+HEdd4iCzg4LoKS8vQVucxeR1qiNgmne/PAfdx4h+kiYNwAvA4HswOgNneHt7O7U1L+vNwQQcZdaU60gcQQDvvEOmPQCBvebBHwdiXN+w/uM4xL12YmIirQ/S1Z055mQN+ph3HZ41Bw48yMScMm7OJuO6Dg743+huwG1/liMQEJ8Rf648WEbmIA4wpQ0ATjY2NtTpdBJY5ll9nhXB8wxowrPkNpYfPs5Y+Zj6s06QHyKC21I+Lh4MwdZ3EJ29zVlzDhQ4cOBj5Iy9+IwfJWMQfSwPg3iwz8t6VCqVtCc5EA5YjX+GXvb9m70nL8voVoX9zglT6De/v9ssDo4DonM+Sl65SfZ0xgK7B1sC1ne329XS0pLW1tZSIP6otku3tidgSwDoooMajUYq50XWOO1zMiHBcSlbjg1dT8AkntECOE67se9qtVrafz0omsfM9zXhWXF830vuIQ6kx8w69F4c12E+elwTkAUZN0qqXrx4UZcuXdLOzo4mJyfVbrfTeEL65Bq0mTUk3WSKQ/CjTPBR4sEnD+qXSiXNz8+ns33AfAiGbGxsaH19PfU7Sp6ea7VaunHjRgqAeVYi69vHl8Da+vp6IkkuLy9nas07eeC0y9gnH13GIPopFjYKHDce4LxyLs5a8Yfdwc3ogLjjeysLHwfMS12Uy+WMg3e3hLbs7u4mIL9QKGTqj5+EoAgAPmEpY6BE4DdunJTtQDHzO04UPzc3N5OChuUEm8oBnwgce5SXjd3TyhzkcJDpduZqGDs+b+wYP5hqBCGKxaLOnDmTAhBHHah71H1Yg87EgPHd6/USwxEmYDQiaasz4KgviwEIg5Gadc1mM83R0tJSAj4oc+PC3wDim5ubyQiAKcEYMNcEQra2trS6uqput6vV1VW12+0ERo1lLGPZL0/g4Foe0OvMUmfhRGaz/1/KptzyfnSIHEx3h8mZ3M6URVd4+SlnHHlb2GvdeYplOWKgNc9ZiOC8Owg4h3kOnt8/6voYDOAV+4KTzzh6CRdn9DHWHvD3NvsYOEjo40NfEfZUP0Aa3QOwHteQO54ETKhDClCOvRb1CTZaBNGx25wc4WBmXAM4Y9gBXvPWgYcIdke97/PJ725jeMA+T/e6o4/jTO1YZ0ITjPDsibw2MJ4ekGDNDHu2fFw9qO1rjznxkkXx2aK9zOXMzIzm5uYSs5AgB88TbaLtPLue3YHTTb8ADxxYwN6DXOFnxvh8MaaMA/3mvv4s+x7G34xj3MPiWuJ7cYwfNqd4LGM5TBzMdP/Laz/H8hFessv3f9cxt+OL5wm+Fv4POp39B13EvkZgHvBcUgYA9WBc3H+jvve+4pNKSvsgem5YX48zBugSzy6DcU8gk/e95E60T/Dpp6amEqENf5zPM7cc4up2XMySYnwI/vr5JDHDiGug07FJCDhwH8h5Dob7WTjMBf11nXAUiOv2MGQuss3BPADRB4NBCvh6cNnH19c4tk3EACYnJ3XmzJlMvXnIFZEQ5s+HY0/b29sps5/+e917fOtOp6Pr16+PRDRjXHd3d7W+vq7d3d102H2lUsmUaaHPZC1AZov27liPPpgyBtFPsbDRspH6JuQguqTMZuwPrbNN3IHj/7fzYE9NTSXHaXZ2Nm2GgH93U6hhOjExobm5OUnS+vp62gBdsd+OkBbGwalnz55NEW5KyuSVsCkWi2lDxbmsVqvq9XqanJxMp6gzN17CBeXvRkC8PorMnUlKCBCAQamhrEcFvw8Td5APEwdfZmdndfHiRZVKJZ07d04LCwvJIQcMcFboqO1zYAdjj3TqwWCgM2fOJMd4dXU1HcZ55cqVZBjFEg4odE5xdyOQVLKpqalMatnS0lJiorfb7VzjimePaPzExISuX7+eWCIEFtx5x/He2dlRq9VKRgPK/KQYLHdbxlHvsZy0YMj7WRTsfV73GZDPgSR3LsvlcvpsFK87yXOJOJgLKOrsZBhpzlCJLBlPG/c92+/BnuflZLyGo6QMKOfOekw7J/CL4+17oI+NH9rEdR1Y59r+8gMynSXMYWs4fe7oMUalUinpRy/xISlz2LSD8G4P5YGvzDeMZHQ6gAN1suM5H3yfffrMmTMqFova2trS2tqaer1e6j/OI3+7LvZ+YNvRJnQRzDZ3tpkL7B2cbcB0+sghuFEnxKAH9+U7AMDOaMYZdzCWMa9WqynFmbRn1rivW3f6WUcRpPc6tp61AVjhmRuu4xmbZrOZ7k2ZIOwhaT+FHWCEuWI8OaAMG6BWq6nVaml3d/8w+BiodqCa/xcKhUSCmJycVLPZTMz+mIHgzySOuYMPvDgEFXuevjhBhrnHfvLMEp9PHH5+h7Tgcis24e36E2NdPpb7QQh8Stms8WazKSl/HfNsuF3gezF7Qx5T9lalUCioWq3q7NmzGf8Kv1DKniWG7O7uamNj44B94CC671n0jT0fABRgulwuZ9j67D8nAS763gZ5jczwer2eyQSKZAn0MvYC52Ggj8kyXltby+hg/DZ0ZavVUqFQSP4jYyTt+2zop2azeYDM4fYX+pyD3Cnttbu7mwh7PpfdblfXr19P+p5r4vd6kPSo/Rlba2ZmRo888oguXrwoaR9bYq3QPw6+5uBY2oQOd13p+p6ANSX7KDuDL7u7u6ulpaWUgYa4XTk5OalaraZSqaR2u60XX3wxYwuAR+3t3TwgdGNjQ9euXdMXvvCFXBA9Bhi2t7dTtvjGxkbG3y8Wi6nMEeMCgRN/323U+1GvjX3y0WUMop9y8egbRnNkk8QItoPm7vw6++ekAOWYNn4na6AfJvTVU2hpiwcQTkJiKRSi/Di2kZnn7ev3++l7sI75nqQDmy/GhztrDpDwOYAKWBIAFp6Odi+ZRa7MMRI42KXRaGSAlZO4l6TMGEnKMC5Q+g6MM9aR5RnZa/yPdUBEHTDGa9kd1Sc3nGGlTU1NpbURgToMNWr23c/gucvDpnjHcmcFAFPaB6kwvvm/A5d5wboYaPT/u45FXP8iEUSXlHFOHWyNDrQ7W34v3xP8vs6+jszkYZIXXPaxiX3mpzuitC9eN+/l9/Lxj33iPjCUHBDME78WoLez5qLj6mPpZUe8vnjsp/eBz6DLec/Tfn1+mGtpP2tM2idK+JjlMdW4ho+Nr81oEw4DKOJnI6Ae33O7hc/4+nA7iIAE7ERnj+c9J94Gn0PEx1pSpsSMjzVj5KV1YjDGA0m+HvisO/i7u7upLw4OxGCMB6LynhNn9ccyNZxb48Kc561RKXu4bny2ow/g8xgDYVzDg4r+Px+749pjYz0+lgdd8gCmCBpGOcxW8P31JIVnO9bmlrJlLaLtk3eosV+T9vPKC1a7HvOgg+vXk+ynBw795eXoXL/RRm8z5DZpv449pWwQD6j7OLHHxzFgXaATvczPsH64fvNgO7qQuYxYi9s83s+jxtrv6eeX1Ot1DQaDBGyzlggSewlh+hSDFHm2ZSSySErBHUgElA4aBua6/QNr3AUCDIGeQqGgTqdzILsyXtPnLpY2Y7xnZmYyB4/C0idg/6BkhI91+WgyBtHvE8Hgjc5UBM45QMRLrEjKGPM86NTkZoM/riKHiU7qlKfu3gtBWRDh3Nzc1MzMzIHDNW7n+jB3qPtOjTkMlWGOvjuKzE2/31etVsuw0Zhjby+Ghx9k6awzV+yurCN7DgFoB0xGedG+UcXZUwC6UTAGYJ1XKhXNzc3p3Llzif0VwZM7JfSNWvaMTalUSod9rq+vp8NWKU/ktelQpNGh5Vmo1WrqdrvpUJNohB0mzlqU9p9ZN3x9jvMAsPtRxlHvsZy08EyWSqUDYJcDoOxPkUHj68oBKOlgcM33aSm7J3tZCt8jXY8XCoWhDDScOkqUYcQDFvqhjx7gc0cm3s+dSdo/DEx2p9frqCLuPHkgmD77YZiMj2ccOdifp3scYPf7wgJDtwwLLJOtI+0DB+5k00fu7aVV+Jt9mf2WNQRwOz09nZjSDmozVqyBCKK77cb/JycnU21sB2eZO59Drg17Gb3PPXwNutPpmQpua2xtbWUC8A6UYPf4AWOFQkH1ej2VHsMWxNkHYOB5Yk34fLqzGoMW8T1f1+jiPEDcyQm84toa9jywJqvVapo3WOAOLDnr3Ncp2WMePPDyLnyfgLiUzeLICySxTgEW9vb21Ol00vx5n3y+IuDF+olBDZ7XSDjxPoyiZ29Hj/P9sYzlQRT2FLfpJydv1ukul8vqdrtaXl5OvjnM4lsRgpp+1pI/1+wlfJZDKymJAZsbsJTDlyGMDQaDdAYUtbKlff9kcnJSs7OzmTZNTk5qbm5OtVpN6+vr2tjYuO39AuE67L9uG8XgAbrd/WPexzf3PTfPN3Vg2fWT76ODwSDZBTCq88p6xuuiI/wsM8BqCFaFQkHr6+uZwI1nLcMSbzabmcO48+49MzOjM2fOJD+XcjblcjlzeG4kebjd62NG+z1gkKdn/f98d2rqZr15bA9sobW1NXU6nUyghHaROVAul5NejfYw418oFBJpD9wi6sI4H/6z3++nDDevbuDBkweB0CaNffLjyBhEv48kPtQubOaVSkXnz59XtVrV3NycFhYWMs4HaWc7Ozu6evVqSrO+FUbr9PT0gcNKTjrKfFzBqZakXq+XamEPBvus7lsRZ6ZxsAggK/W989iM8RqSMmnrlUolgQ3uWDLHKAJ3PPNAEpSXA0b+fxeUtIPowwyGYcJ6weH39DwXlGOtVtPjjz+uhYUFVSoVzc7OpoDL3Vov3IfU836/n9IdAS329vYSGM7ceqYBxpUDNyjyarWqra2tDJjebrePBaJjqBxmRD9sSmosYzmuODguKVe/uaOUB8q55DkC7KOwVGBNOwiPse2gWQSw4v7A317Ca35+XmfOnEn3gaVEiRM/e8HtBAdu/foxQJfH4oqMJ8Yyb1yc0Y/TR6pvr9dLJWJw4NGBfC8GfB1UdLYw/aJvjIfrRGdxe51sBHvFgXTa4OVnGLcIKLNmnLnlZWpov4PorAt0M0487WcsASIAKdA9cQ0zHwAuOzs7Kb052gLUYveSd1yD/+Psux6MTHK38UiRr9VqajQaCSTCmY1ghTucLv68DBs/fw97AX3sdg7vA274PMXgD23yZ4FnAHIDa6lcLqdgEM65j6EDU5F5XigUMofNud2EjnemaAT8sTVIFwdk8H0tBnm4l9+TvwmoOBvQnX/aH8GPsc0xloddPCh13O/5OUeuYxcXF1Wv17W+vp7qcFNb/VafOchJxWIxlVv1gD/7LKQ79pRms6n19XUtLi7q7Nmzmp6ezpzzRKkRz4j16xNoxD+mzCUs4UqlksbwypUrJwags88CwnpJMOykqAO8dGdkf6NHnNjmQl+H+XUOogN+H0V4Ys91+4NsJQfs+Vyz2dTm5qZKpVIqMUL7OVDz+vXrR4KhxWJRFy9e1OzsbDoXxsmWgNXOcncsRMra0bEPUY8wZmRTE5zneeD+rF1K4AGiO9kFghrXx4bZ3d1NYy/tnyUmKZXt4xwxtzfjOOX5AL1e78BnHbAfy8MnYxD9ARB3KnAQiSzG9GRp/+RtGNXUnMxjLR91XwcS7yYgelibpKxTf5LtcqV7GPP8qPYNu0bcoB0kjyyh+H8U9VGK06OmGETHKcXjTENP1/N70lZq4sFSAxQ4Lmh/kuJrBCCEKHy1Wk1KPWZV5I37nZKHyWkdR73HctISDX1AOv8fz39kbfpPv560DxpjvDtD2NnLnhHk5TmkrDMRHQwH9XAKYZ+zb3r9a5hJsKId+HR94GBb7KuPlbct7z1vs4s7Sw7CxutEWyHqzgj++b187H1u877r3/fvRXEdnCe+N7m9g8PoNkbUn3FdOYs5z6nO0+VcJwYS/PP+d5xzB4v987Ftfs/YPmd/O+DrLH4nT9BOH5/YTsBcXyeMjYO2sc1cP4/1hS7H7oBMEQkOEXj3ZyLaZ/H9PMaZBwG8/by4t8+Pz8thhAckAv4OJrA+4tz7NeljfKZHsY19bztMbkePe1vHMpYHRdgn8XsAO2M5Ds+aY//AhjguQBftnli6xQU/DtsgBqqjL+qBZP+8Xz/uld6uvKyykxCuHckQ0v55aXkS9/7DXkeBrP6+67dR90XfuwHRCQBI2TNDCBa7n0pAepSse8YJnIjgA2OBjuj3++n+jiO5LReZ2KwB1sgwHRszB3n5PXguONyUw05jdhrjkmcjud49CXkY9NTYJx9dxiD6AyBTU1M6f/58Spe6cOGCyuVycnqikqjVahoMbrLnGo2Gut2uvvWtb+natWsHlO4wwZDngAg2tuOCyicthUIhc0AaL9hYJ/GAuyPifx/n+xGM5/0o7li7M5/3uVEBXuZ4e3tb6+vrkm5GaM+dOzcUoECIwsPM4vBWgCIpWy/8JS95SVqPlHOJ4PS9FJhek5OTevTRR3XmzJlMml+hsJ96hoGCEelGLp/hb1LjvV7cWPJlrLDHctISwSEMdgxu2C6A1A5sOds0D+SN9ZWlbBmQTqeTHCA/9BfHJjrPEWCu1Wqp5BeHY1WrVdXr9Ux72Kv7/X5ik+3t7aW9GWYOe31euRfGhvu7U+ZMdG9/rIFJ/xFSwHGoKHfmAYHIgo2vPHatz21MUY+gJv0FIMBecQADR9L77Oxlv97k5GQ6+8JTitn7yWpyVn1cNzDGvU/O7ud7DrQyzxMTE8mu8bRpxgN95OnMzmx3uyjaL4yRH2zpdVABfur1emIT8sKpZbxi5hz3GQwGmfqpHGxHv70fDuI78AJALe0f5Mu88pNskEKhkA4Up03ULR0GZtNud+jdqefZj8AIDNKZmZmMIx+B+Dz7jPbxeWfXI6wZ+igpHRrna4b5Z0w9C8VBDA+C+FrIC6Bx/VGyOMcg+ljGsi9TU1Mp8xbGMEFIB5K73a4KhYIeffTRpCfQoVeuXNHy8vKx7ut6e2trS61WK5WbRHewZ3Q6nXR48uTkZPLPsCG8BB22RL/fV6VS0WAwSPvVYDBIeqJQ2M++cf1L23xPzwuGHlfYN6rVqs6cOSNp30+t1+spg6/X6x2onc33Y4Dc/0aneIb3YcI+7PvyKH3wIOjq6moqR9toNFKJnUajIUlqNBra2tpKtkihUFCr1dL6+nryQckQiKV6Jycnde7cOS0uLqpYLGp+fj5T9lBSstv6/X76H21025kyQOgdxo6SQv1+P9nCeUEj+o5fjb5k3U1NTemxxx7TY489lmnf3NxcqgQwOzur+fn5pIc9i8PtSaou4JfH9TOWfRn75KPLGER/AAQH5+zZs6nmNCnAUdgcpf2a5t1uV0tLS8lROQpsdqD1qAM174W4MsxjFN+qxL4dFzw/7LpHXed2HZS8a5FSJd1UNgsLCwn4OEw8TZ50/cj4w/iYm5vTxYsXVSwWVa/Xh67LeyUeZV9cXEzAF4EBd1SdNRfZc842xdg6iTr8D4OMFfZYTlqcSeOMKfYlz0CRlHF4nNUZ93ycEvaGyHBiTwWEBER3cIr2AHxyXUAyUllLpZJmZ2czwWo+G/dpWOgAxzixgKMwm6Ts4V5eVsVZ+RFc41o4Uux/OEbuCHEvruOHjueB0HHMPRU4jxEXQWAHO5kDZ2QxVu7Ae1vcXvDrc23S2b2MCWCEA/OAqIDWEbBlLlxYC64n4p4WmVl83oPvsN6i7uE9Z4bHQDlt83Hj5aUHyFxkDbLuHCiPgSIHoH0sYgo0jDbP5pD2n1c+w7U8IMTnCIgzfjMzMymQxGciyz+CCw505+kW3h8GqHhQJrK+fW4jkO5z5HuOB5Sc+c9ac9uENREZ/ZEJyLh5GyNLMIL/Yyb6WB52ybMHDpOJiYnkj+P/eNB8MBgkoNrPMkN/9no9ra2tHbudvr9jg3i9a/ZOAPter5e+hz0AIOnnWTg4yVkt6HFpH0AFRHa9Hglnbp+dhADs1mq1VM6E4CTZ9m4XuV5ycRvB23pcwD/WEB9F3NbpdDra3t5OQQCypCFSAGBHEkK73U72KSXAYkB/YmJC9Xpd58+f1+TkZBofzyhH1zBW9MkD0uVy+UDQlhI6ZIK5regYkZMoaC82MLYM9sr8/Hy6V7vd1t7eXiKJ+tl/k5OTad2yXt12dVJBJLfdru45KYLmaZGxTz66jEH0+1jcsWIjoVbzKOKRVkrAUGd1VDb6aQHOo3i7TqqNDj4769gZUqNcAwXLhu7K625uQBhRGApra2vq9Xopiuzj5g55p9NJh9DkHZYCg5I0LMqjnBb2+TCJzwMGE3Vi2+12AoMAVqhZh+HWarXUarXU6XQSm+NhUypjGctpEpwinm8vJwVw6ozUyNR2R8WBX/7nn/Ea1dFQjywsnImJif1DuwBjSf/2uujREXXmktfk5h7OABtlbNxhjCnX3n8HrSNjmN9xkmKf47Vdr3gdbwc6I1OM/TeCtHzPv5vXHwdznalErWmcQUmZ+wCQOkjhOhKQPAIOvjZiQCU65VzTAxY4rnkOvDv87pA6axAwwZnFOM2Uc4sMawdGvI5vZGxHcDg+Mzjk7pgzphG8zVurDlz4/fKAYQfXCd4w9/1+P/3kGQU8or9+IDvnvAASuG1AWx2MigECKZtl4Layr59o80WGnK8FXy+sR4AG1j+fj0x0D9bFtsXn2YMeYxnLWPblqGfC7QeC9Oh13xewOzwoje7I02NHidsS/mzjg2E7uF0SQeFh/jx7A7rGdZL3A/a174VuX7jtRDs9cHpY37jHMGHPXl1dTTZTpVLRxMSEms2mJiYmErGBPrsNRv8Y/16vl8gQw8qv3UlhL4fQhS8Zz2rx9dJsNjNn5OSBxcwHRA1JyYf1sRgMBuk9D8gQhHAyiQfn0R/oWMdLnG3udoavFZ4dtzfApPz8vl6vp1arpZ2dHW1sbKTyNj5fnpmJP+6A/UnKWFc+vDIG0e9jccBvbm5OZ86cyUQQR/k+ypWIp280R0l0Jk+LuCEQnbVbFd/wOTBtcnIyRfklZUrnHCY4uZRFIf3/OPXTTkIAhrvdbjIYYukA1hKKbHd3V+12OzG1aTdSKBTUaDT0+OOPq1wu6/z582o0GgeAqdMm0QglTbFQKGh1dTVzmJ+n9jOPW1tbunbtmpaWlrS8vKylpSWtrKwMPXB1LPsyjnqP5aQlrgtnQ3tQz+tnAu7xP4KcMKtwApw14+/B+mm328kBQfcAwnF90rr56eeYzM7OpgONYY/Rdme8RHDRHVvAyggy+isC217mJB7WKSnjTHJvZxkh9Iv32Vsd1GR888ADZzwxdsyhs8p5D+ctlq7BuYPBjzhwjoMH+Mh8c3/GEFAWBh7X8cAFwCw2go+Hs7sdkPB59DF0sNtZW3FdO1Mbp3lnZ0ftdjtzz4mJCW1tbWXSsGGqkd7spWa4D/YAfY/stMjQc+aXr0UHvx2w9/n1tQbg73PhoHlkbftzyfrLy470MjAEuL3tfBbQgrIzZIjUarXkrPt5BwjsN2dZept5fhlHZ5I7wEPfGUvPWolZJB6QooySM9g9IyMPuPBgkksMqBwlt2u7jnX5WO5n4fkGPIfYVqvVkk7Y2dlJZLcYlI++9HHAPkqxoLt5pmu1ms6dO6d+v5+AxLhnoB/Q+b43RV0wMzOTIQmgs/b29tRut9Xr9Q5kzLh+Akx1XXpYqSjXD4cB2Xt7e1pZWVG321Wj0dArX/lKzc3NaXt7W1euXFG/388crO1nZ5TLZRUKhQzxaX19XSsrK0k/3k0QnYAu9+52uymrgZJxjI3rDbCESEBw/Ya9UK/XNT8/r83NTV29elXtdluzs7M6d+5cCjy0221J+wdfk3kO2QA9xFln3M+D/oDYzDHldGgL3+E9ruu6z3UtcwEegQ5kXXMdf7aYy2azmQ4qjcGFeyGjBIfulYx98tFlDKLfx+LOubOHb+UaKF+cvKO+Ex2D0wSiu5x02xwwcTY5YExkR8XvOmDjwMvdBtARTzvrdDrJuHCQaWJiIp2QTbkC2Nl5TAYc70qlklhsp3V9uABsuAEyGAwSONPr9VL9dEkHQPRut5vK28DSj6l0YzkoY4U9ljspkWEdGcV5OsIN3MgwzQOc8kpheJDaA87sqc6OjzW6I+DswLG3FYdhWPv5zDBxG8LHwX+PwJs/c3GvjECAs7hjuRhnfjGmDv55P5zRzhzkzVME+h249DnzPvnn8z7H/Q8LxrM+vC+0z53a2KZhEts17PMOMngpFF4444DGjLsHLgDPoy7nJ2tyGHPcbR5vp48dP5m/aDceRXSIbcsbi/gcOKutUNg/24TfaaMDylwb1p+z5zxzhXI+voZ9rhhPwP44rnnPsveT79MeL88CiME1YlDKmf60PT5jcUwdUL9VGYPoYxmLMro9ss4dGGefQLAZfB9ifz/q2fL9yZ9jWMdkRhEUdj8nr93x2vzfdU30d9ElHiTkezHwH22vk3j2YT5DkigWi6m+fLQX3Abzs0LYy712dp7dc6fF7ZNod7otQnAGoodnwEVxhjd4EXYCfXUd7ZlN3B/MAnsH3CMCwqw1f3FNaZ/8kAcksz75LBkEPhdeMaHT6SS/nEAQ40dpJHx0DyiPZbiHTecLAADXI0lEQVSMffLRZQyi38fiwICUf+DkKMKm5dHFvM+4o4R4WtFpEd8AnPV0Utfu9XpqNpvq9/va2NjIODaxTADiwHm73Va73Van09H6+nqKkN7LMYRVjrLa2trKOLrOcnK2kxtr5XJZU1M3D6uljlmpVLovAPQo9JtsARzv5eVlTU1Npb4Snd/e3tYLL7yQIt6tVuvURLxPu4wV9lhOWgaDQYZd5Wd3OIjpDkFMjyV9FVAt71AqxGtwc1836nFcYBTxf5w5dyociI6MolGAbsT3b+4v7aeTe31WZ8zTH0mZGt7oNMbM7+HOqIv/34E9Z4Hj/Mb2ez8ZIySWvfA9JALQeWsDB9GZ6Mw1mQI+DxMTE+lzPh+bm5vqdDopk6vX66Xr+1i7rmQ8uBZt9GC6M74j2BkBff7v48BncDIR1jTBbgdpfJ5Ye1571IEdv48HI3xeYtDEwWyfWwd+WHcElFy2t7cTy9Jr5sf14gEVXz8RcPC14i/fD3Z2dhKTrt/vpz4A1DjI7oB3bEtk23MtJ614/xHm0P+mLz5WcQ793nyP/vO7jw+fyfs9rsFhMgbRx3K3xX2Le71+HLijLV4+wvc0bAkyg1zXsO9I0uzsrAaDm6VSODQyT5yxi72xs7OTSlIREGTP8OsAQLKn0Rdp/wBIt6WkfX+Wvc0B/GKxqEajkfY3Hw/2KcBttyUOG9Oj9hb23cFgkM54i3puZmYmnSXh+z/XbbVa2tjYSNlknk10r9eWpKSLYvCBfh/lay4sLOiRRx5RuVzW3NxcslexdwCusTN5D3vVsypiiR6yEljLHgTmHBVpXyfFw8gJIHkggL54mWK+s76+rtXV1fTe5uZmJsjjNub169e1urqazhnwjK97KadhTQ2TsU8+uoxB9PtYPLIYQdvjChvp9vb2AdATBe8bFD9PK4gemW0n1b5+v59Smvb29rS2tpaUCEYSytoF53V3dzcpa0B0Tre+l2MIIFAoFNJp8Xnic+8yOXnzgJJSqaSFhQUtLi7e1wA6TI3t7W1tbGyo3+9raWlJe3t7qd7e9PS0er1eOszlxRdf1MrKinZ2dlK9trGMZSx3XzD0cQRiiRIMfS/fwe/oCwBeL78l5WdfOcPF2ao4FQ7iVyqVzAGVeWz1CJDngbARSHY95+CvA5jSwRIrzoaPoCj9LxaLqlarycl3lpxnsjkLyEF5ZzJzbRhQ8bBN+uhtZS5j8INXLD+X956DtT7n1PmEseY16H1cYlo3AHWr1UrBVNZI1I8OFsT5cAa5M4lj+R4H5r2fziz2YMvExM0yMpQkkW464gDRsNFIZ3dAG/uFQHisKR/Ba2dC0z9/1niPPvn1fF6cDef99HXt7DZf4z7uEUBnXZJVBqg0jMnn4ImzLmMZKK4zbM05KO5AkweyANLz2pzHmssLovCeBy5oE+vA+xRZ+w6e01YP5MR+jWUsp0EcTJTuLYDjwDn7CPuD63qyWicnJ1Wr1VQulzO6bHNzM+mRubk51et1tVotdbvdoT5Fv99PZzywDxSLRfV6vVTezDNreJ797BV8GteJDna6oKuk/ZJe7Bkckjo1NZUhiBWLxfRZAs6jyKh+MXttp9PRtWvX1Gw21Wg0dPbs2czZMu6Lu923sbGRzvpCD/nautfiY+4yavsWFxf1Xd/1XSqXyxn9x5xRrhRdUiwWNT09rdnZ2Uy5Fml/jW1tbWlpaSmdFwbYTW3yiYmbB7vOzMxkArfYAgQ93M52EsDExEQirOF3c19Kyu7u7mpjY0NSlkDB/5aWlrS+vj5SMGYsYzmujEH0+1hOclNw0Nmd+Wj0+30j88ydxHspEUQ/6Y0TBxyQZXNzU8ViMdUUjwCLpJRWRD1NjIiYpnSv5VaNUdieGGWsm5gaeL+Js9i2trYyaX5EwDFUMQZwyscymoyj3mO5G8I649mMJQ5i0HVYKm/e/s77eTrTmeiRAY6T5sCXXy+2P/ZlmO6gj74Hcz0HMr1kjF87puJyDwf4HAyNYKWzc/PGy22XyPbygH3eGOddJ14zsrIiYBh1EzqdPrkzSRsdTOW9qBO8LYc54D5ezngb1s9h3/dxywO2fVwcZAeAdhvO2dK+hn0c4n3yAOejdL73LbbRbUi/DsGXvLVE4Iq2+Bp0wNj/xn4DPOdn3kHgHqSImRIRxPd+OWvTr+VjGb/jn3MmuN/f+8naYXwc8Mpb88PmIe99xoxn4ii5XTt7rMvH8qBJ3Md8f/Pn2n1WD8rFa/nvbm/E9/2ZjVknft0YkIv61LNoEG9vvKf/HUuvxX7fKWEvn5yczJQz8/IkkSFPgBXm/mnNID5um9wOBZuQ9kvvMDbYhF66JWIovo78Wr52ff1EXRz7Ee1ttxnz+uy2nbcZTMWDQ1zXS9WMZXQZ++SjyxhEv4+FzWNqaipFm0c1eF1QIO12O0Wgp6amVKvVNDs7m6LUHIbCyw9Dc2M+z6m4W0L0nxpYvE5KKQ4G+wfBDAYDXb16VcViMZ2MPT09ndgFLpubm4mxvLq6qvX1dW1tbaXvnRYQ/ValWCzq3LlzqZRLrKF6PwogQ71eTwewXL9+Pf1P2jdGYILEw8rGcrSMFfZYTlryWJzR+MbIxunyAxa9pIuUPXgYx5XvS8rd7xworVQqKpfLGUYaLFi+n3cgeHRQ0T/Svv6PDggOhNc/5aCzyA72YCdOCI6ktO8wR5Y7rHAvV+NMcQfEHSyQlPbLyASjXxyqirgD5457fJ+2ErB2INKDBTCvHICgzFqhcLNUx87OTipRRlu8rid9WFtbU7PZzLD8vN1xTXp9cRj8sLTySnnk/e3rweuN5n02D7B1sMZZX6w/7D0/ZJbnJQY8/N7MBWvKAfoIGvn9/JoeUPJatX4P+uVri2eR4Ee/30/f39rayqSKkxZPOQEyCyFEcH3azBp3EMEDcTwPECKY11KplLEXYx+QYfZ63hi7fe7ZDADonoHiAaAofM/Z6w6CxAyCUfTsGEQfy90WD5CdNkGX+GHE/X4/HWYpKQXusEEiCIkfi4+IzgYYnZubU61Wy+hy9jj2IQDGmPHDs83+7jYQez3+DNefmJjIsNulfUA12hZuszAew8rFnqTs7OxofX09+dv0k6wqssH9f4PBQEtLS1pbW0u6wLPd7lcplUo6f/68qtWqarWa1tfXE/mLcjdue2L3cSYIOgbfttVqSZLq9bqq1Wpij2PLcgiqB575rgeUvIwf+pGDu6emplJAw21GSal87mAw0OOPP66dnR1du3ZNS0tLknTg+QHbOilh/Ubf4kGTsU8+uoxB9PtY2Lhw+qkrdVwQneuwcaLsKpWKFhYWNDMzkzZNPusPikec7zXz2Fl0XgfuJCORbmSsr69nUnJnZmYyji3j1Ol0krO9vLys9fX15MDd74dPoogbjYbOnDmjWq123wPoCGnt/X4/1drjWYvsubHcmowV9ljulDgwFEE8B0M9gwR96sxjSQdAdK7V7/cz54nkgeGkorp+ZA9xvXkYWzQ6Bw5Ce5ucdYzjgoPizPF4ba8P72Cl99OdaZx0B4cd3Pb7RKaS61DASewKgvIAt5Ed58+8g8EOqjOXhznzXkrHAYNYkoSa5qwLt7larZba7fYBEDzaQs46jy8OqYQBTxu9vVEikM49HBz17+YB6dwjZhWwVpkHH6M8Rlm0rQio5DEVnd0cQV4H0730CX1gnUfGGnPv9e0dUPYgDfMGYE4GGSn+Djg50O/AgK9F+ss6ZqwAp2L//Bl25qYz6eM8+dpmrXuAIZaM4f3DnhtfLw6kR1vU23aUjEH0sdwLOa3rhgBcqVRKQHjMAGIfcjCSwCU6iX3KwWw+U6/Xtbi4mHmGIcRJSmxsKXueAvsU2XEe1Jb2Dw5lzyRQSDDSbYR4uCR9R3y/9yynOyX4avS5VCqlWuj0iaxhtzM2NjZS2Y8HRaanp7WwsKDZ2VlNTk6q2+1qMNgvoTI9Pa25ubkUBCaIEjOud3d31W63tba2lmws7Do+VygUcs9S8ywI/Oler6dOp5PRd5AbsB3Qxb4mAdar1aoWFxe1tbWlK1euaG1t7cTHLs9u9EDAGEQf/t2HScYg+n0s7pAC0s7MzKRo3lGCQ0h5EVg4pVJJklSr1VSv1zUzM6NqtZpqt7nzi4xyv7sh3ieU/Umw0CPoIO07Vl6SxcEC2sNPghTuhN/vGw6GG/VVi8XiqVkLJyEYrdQY5ERzZ+UN+05cM3lMvrGMZSwnLw7CSVnQCqMcB4D3vCY6e7MDhLHEBQIQyb6X5yQ66O5629nAOLvb29vpWjCm3XjPK7PiesfbzzhwXkd0Yl1PRSAvlvVwNrcD6cOAav6OACAsJK/T6oCrA7ejio9nnl5FR6GnqPPNPVkf7vAxXzG44s4m98oDzRG3lYaB2nE9OCgbQWMH4IfVSPW17O3A2fV58usztzDk41g4sz0CJ95XL+sSAzfe/gigI4ytr8G8a3jAiDH0LBRfzzxnMTATxy7vfQdb8pivHpjhb9rhJIsIUjvhJY/d5msyCs+sB7ho3+7ubiYAcJjEeY3P84NAhhjLWO627O3taX19PQUjvaRbDOi6bpf2z1ghyEeAmYB4vV7X9PS0Go2GqtVqxi/nc4g/w9EG8tKbDoby8j3EdT+BQ0kZ1jZ7UKfT0dTUlPb2bp6n0u/31W63E1h9t4hjHpxg/Nnv2JfzdOWDIgQ/yIpCID+g58m289I3ECP4DOf67O3tJVuK+ZUOHiTu2U1OXGHNl8vlA7rZs0Glg2XvPPCPvcQ6zQvoHzYueTa5j1HUfW7Ljv33sSAPDtr1EAqbxvb2tm7cuKGdnR01Gg099thjIwGZvV4vnUa9urqqjY0NlctlnT17VqVSSYuLi7p48WICDyOzxjc7Iuswqu62+AbHgZ2tVivVLL2dTc+B1Dz2nqTMAWnOfPeUItLLOp2Oer1eLvPofhIYFZzc3Wg01Gg0Mqe43+/CnJdKJdXrdc3Pz2cCNFHcQHCjczAYpDRIntuxIr4p46j3WE5aXF9FYNmBY9+//XBQBwNh0MC09kMBcSAiY5f33KFwJhT3dtY7rDEcPdKPua+z03AMnZXuKdiwx2C/U3rNgwAA2jglXIs20W8PIEbwPLK53Vn3fc6BZwL2u7u76nQ66TDzCOLGgL2DtzFg7SwlZ6b7dRnPer2uubm5FLigv4iDCA7Ke9q919GOTPA8GyGyshkv+uLlSPg7gvPuUOLgAu5L+4EjSATOLGS9w7bPO/TbgR7K90WQ2n/37yH+PPX7/eR8x+AITm9eliD3IZ3cSw65LSYp8/z4IX7+PPF5z0zw4Ahj6/f2Z5qxBqCn3YwB+t3XGs+NM9qdOOFZA8yFz3vMZPSgBJ9lrcQU88igp4387cAF1+e9yGTPCxgMk9vR497XsYzlQZCdnR19+9vf1tWrV3X27Fl9x3d8h+r1etIf7AOQ1iCpdbtdtdttbW9va319PR2aKN3cN2dnZ/WSl7xEpVJJ8/Pzqtfr2tra0traWtp/YxDXA/HoB+45MzOT9GC3203sefYCt3HYD/wAZsBxbIbt7W1dv35dhUIh+YWbm5t6/vnndf369cz9peGB5ZMQDqD0jDlpH/DFBvESOHfLLz/O3nqrMjk5mewdJ0pyQCflZwHIpX07DpC9Wq2mNYANVK1WU2UC9J0HIlznEgRyHVQqlTQ7O5vWEt9tNpuZ9YrdG88R4iyyzc3NVDXBSyYdJdg4rFcvMRiBdJdhQfRblbuxBm5Fxj756DIG0R8AIfWFE5IxrvPY0wiOAGlmbCQwiXG6q9VqAkodHHfWj7/nxvfdFne+PB3pdhQi/UMB+6bnIIE7mbFNDgbgND4oIKo7mdTedQfxfhd32klTJ/qd91lpP8qN4YaTHVmXY7kpY4U9lpOWGMh1ANCBVwfLHbjMAwwdCIzM4Pg3OtCdV9cRGOsebEVwOHBq4hqPQL8HCfwV9y4P6uHgMAZ5tkJkATkoGPvtOnEYe4d2OQOd+8dxjdfIk+jsHBacZAywZfwcF8Ywr//OoHL2f142Ht9hbCQNtT/cVopr7iimU2Rm5d3fQVaEeR6mfzyIwYt2xjWSN17ep7x+5LHJaVcUX9+x7wDHMfgzbAz9OfMx4n/xvnlt5VnywIb/pG0OXvtn4n29P1yb9nj/HNDwtsZ5JWjgIL23NTJR47wN+9xxgPQxiD6WsewLAKIkVavVBAjG4KbrU2k/+wQ9SYkMdBaZ4aVSSaVSScVi8cBz6s9yXnDbDy/1wGL8vu/5vg8SwHVAXVLagwjslkolTU9PJ+CcgMBJPuuH+ZreV/bG2C8PXsdxut8FnYTfinhJIM8yhJ3vNgDvRxvSiRSMndvKvv7QL05u8Ew3J1vs7u6mtrl+BNQH+Hbb1W2VwySuYe7tGYhHzftJAuinVcY++egyBtEfACF9ig3ID9GAfcYLNtLu7q42Nja0urqqra0tdbvdtLlUKpWkpONBWJIyDpWzYmABEcV2R+lOC8D55uamWq2W1tfX1el0MptjLLERnW43IDBWYFaXy+UUveWzAPZ7e3uqVquq1+uamppK9eOZG8aMQ2RI0RvFYT7NUigUVCwWU6mfB4mBHqVQKKhcLqvRaEjKT5HmWSkWi5qbm0sH+WFkzMzMpKg87IexjBX2WE5eAJF9f3cgCqPewewIaOMs4CjklUFxAApD3pnl/h0MdGebOgjHT69hSok2Um4Hg0HKhIF97UxcB+Giw4PgnPs9HXwE4KYN3JvSMh6A4BoeQKbPOEX89JrizsQjQI/+yANGua5f3/vkQKSD0+y/ztqr1+taWFhQobB/YNbOzo5KpVJKT4alFMuK0F/a4Kxo2pTH1ka4DkxlAHoPMri4A+p/eyaEO6c+lz43Eaz35wCbkYwDX2+eMu1MxAhMe/+xCX3uosPozrGXBqD9DsQ4sO1reWZmJpP9J2WZYnwfu1TaPwSvWCweKK3HWudzjC9MPW8LJI3d3d1U65i2FwrZsi2RYOE2M+vFx9Ln2p+HWDbQiRk+Bh4cYv37fXyshwXPXPLIIXlyL0D0j3zkI/q1X/s1Xb16Va997Wt1+fJlff/3f//Qz3/uc5/Tk08+qa9+9au6dOmSfuZnfkbvfe97M5/5oz/6I33gAx/QX/3VX+kVr3iFfuVXfkVvf/vbb+u+Y3m4pdvt6vnnn09scQf/2L9hw1IvGp8afTE3N5d8C/yt3d39QzKlfXCUEi/4mhMTE8l/LRQK6TDSiYn9EhqArbCSC4X9Q0rZM9mvyVJCf01MTKher2tiYr8mO3sGjOHBYJCxkaLkAZgx2DoYDBK+4YFxPssYeP122s+Y0X50NyTCPCbynZS77bvE4HG/309YEDrLSYFu28SANlkLkjJ2bB6JkPmJh9vDivfv+dojIM1zEAM6tVpNpVJJzWYzHZSKPZzXb84QwN70tcgaGctNGfvko8sYRH8ApN/vq9lsqlAoqN1uq9vtamZmRrOzs8lZJOq2tbWljY2NdIL1yspKJkKLgmKDQhm55DGIALAx2Nmo7gaoirHQ6XTU7Xa1tramlZWVTK02jAuUMsof5embBhtstVrVhQsXVKvV0lj6WABiYOgwxhzKxRi5w7q5uZnq1wMs3K+bTqGwf/o8GQv3opTP3ZCJiZvlAGZnZxOI4UJkHQBmcXExGa2wMzAQKMcwBtHHMpY7J16uxUFuaR/IkrIHE7p4ABmQEYmAJHoOZ5h7+/ccRPfgbtSnOALoZK/lLe2XC8OR8VIgktLnHfyPqdg4Je7EOyhHiRUcUvY2HFPaHzOx6IezvADm+R57nzOSHBAGHPDr0xcCHz6m/ET/emACvU+Zurm5OTUaDc3Pz6tQKCSbYW9vT71eL8OCYi62trbSteL8RyY/dkWeM05bHQRg3viOl4Zxic4p/fKMBWyRvPUZgXUHYh2AoV48DEevkepOpoOx3s/IQMuzbXysnJzha8hLCvn4Mgesb356DWH6CgjkgD32bKlUSiA2z5uD6AQTSqWSGo1GpvzNYHCz5ALBLErk+Nrw+ffnIs5pZD/mHV7MNbBnYw3fvNJynuHR7/dT/Vp/f1TQwIH60ySf/OQn9b73vU8f+chH9H3f9336nd/5Hb31rW/V1772NT322GMHPv/ss8/qh3/4h/We97xHf/AHf6A///M/1xNPPKGzZ8/qR3/0RyVJzzzzjN7xjnfol3/5l/X2t79dn/rUp/TjP/7j+vznP6/Xv/71t3TfsYyl0+noW9/6VqbGNP4TpZ7a7XZ6vnnG0XWlUklnzpxJ55RRps1LRAIwl0olVSoVDQYD3bhxQ51OJ+l5fBDIdZLS/oX+RN9LSv4qADv6mT3bbYlGo6FKpZIOr6Rd7JX4TXmZQrQlBoQ9u4f9a3p6WrOzs0lXlcvlDHOekjfT09Pa2NjQ0tKSBoNBIgaCjRSLxYSZsJf3er0HCkzN64vbLo5hONM71u93vYENB1GEz7ne95/4wBxYTqCl1+ulNvJiTrytm5ubmXNpJGl+fl6Li4uJDLq5uamJiYlMQMnHAHLn4uJiqsXuJflipte9lEjUGcvplntKG/2zP/sz/ciP/IguXbqkQqGgf/tv/23m/4PBQE8//bQuXbqkcrmsN73pTfrqV7+a+czW1pZ+6qd+SouLi6pWq/o7f+fv6IUXXriLvTgdwsZIiZbNzU11u111u131er3M79STwpmNab+u0JDDwHCcBoB0otd3o3QFCpl+E3mO0X4/+NJfGBXObsNggIXkL5hs/l6j0VCtVktsdQ8g8IoHs+UxgA4T2hbTq2Ka1XGco5MQZzo9SMZHnnhZhLy+OjgQU+G8Jt+w7z+s4kDPrbzGcu/ltOnyYQzcPKZMfM+BvaP2VF9/Dqo6G+aoNevXdlAdvYo+hf3q+tXB1zwmszuqPhaMR3RY4udjH2PbD3sm43vOOPKAtTtRjKOzwnhF8NW/5+9FuyXqdJxv/91fgPpRh7tz4/10gNc/F9eNfyZej7FAX0SAOU9icCEy80edI5e8sXWdljcO0ZaJz9ywew9jPHtgxgH/ON4+79Em8rHIe94i0SOuG2+bz0XU6VGXx7F15rjvMzGQcZQey7MXh4HzPpa+78X7e/kq3rsdvXq7epx7NpvNzIsgVpQPf/jD+omf+Am9+93v1qtf/WpdvnxZjz76qH77t3879/Mf/ehH9dhjj+ny5ct69atfrXe/+936x//4H+vXf/3X02cuX76sN7/5zXrqqaf0Hd/xHXrqqaf0N//m39Tly5dv+b73m5w2Xf4gCAAgPip63ANx/r5nnSB5NonvMdLBff//b+/NwyyrynPx95yqM9fY1bNAC4REFDUKkYBGMCoG5xGMxiHXGAnXyKBXIOpPNBGC5jFEnKKXKyqJcO+jJmqIoUkUw6UjChInLg5p7Aa6qa6u+YxVdfbvj37eVe/+ap+qU93VXdP3Pk89VXXO3nuNe31rvd+7vsV1sQ0jmjSW2HB2FnxHdY6TNP6zvFEUhTKSdNWyqF3W0CL8W0VZTEeV8IVCIYScLRaLKBaLYQ3O79QhrE52XZ/Z+cdixz5rh9pdix/NNSDrlQ6IJLtrbUSr/Nm+YWHHb1sX9jol8NmXdC5BzFd/OsdKmpu0uieJO1FuZqWsy5d7XbsUdny9YFmV6OVyGU996lPxh3/4h0EJoPjwhz+Mj370o7jpppvw67/+6/iLv/gLPP/5z8eDDz6I7u5uAMCll16Kr3/967jlllswMDCAd77znXjxi1+Me++9d82qYucDD8qgwoYKdf6o+lpV2ASNvRLRVLMkqaO4yB8dHcWBAwfQ2dkZlPClUgl9fX0xo7LUZaVxPnjwIA4cOBDirlUqlaAm7+joCAS4GjmG1WCdjY2NIZ1OY2BgAD09Pejr68PJJ58cDszs7++PGXVOUjhZoEHgxEiNT6sF8kKDth5mR6Uen8N8AIi1K9uvldFbKlAJxnAux2LXwXKBCo1isRjeL/u9kiTa1hoSQh0OnASvdxyJ4fX6WxlYabacccW1b9kJu5JXSkaqMlTfcx1Lbb/TQ0n5bGBWWUUFj4WmxR+Svdzazefo9laO7RzndRHCzzo7OxPPBdFyc5xqRXBSFceFPnfVtCJK9V5dpOmiiflkmThuqnrYKl/ZPvyb+VBlPA9/5DZhKv14sNamTZswMDAQ/gcOHbBFJRbnEnRM6NyIdUCbrwdY6TjPMvFgVBKAVAFqP9O6AhC2m2v/4b3W+aA7HZQE1nkG61n7Pa+xZeT8zu5coO1i/bKdeI/uwLNOnFQqFYQVVKLZvqZ9hEQP64TxWXWHo50vpdPpEHaG8xF9FjBXER9FUWwuxXdM20vB/Nl5F/M0MTERFP2sU3vgLtuUKjndWcL2ZBtbJ16ruYJ1uGndcD6oZJveo3mx5BzrnmUF5p4xkYQjXUDz3uOPPz72+fvf/35cffXVsc8ajQbuvfdeXHnllbHPzzvvPNx9992Jz9+1axfOO++82GcveMELcOONN4YDnXft2oXLLrtszjUk0Q8n3dWGlWbL1wKazUOhMzgmclzlb2vL7S457jprNptBRc75jY4ptJ9jY2OYmZnB6OgoRkdHY4QqgDm2is+v1WooFArhGo57wGy4KIZ/bTYPHTDZ1dUV+AaquamQHx8fD+pg/uZOrHQ6Hchvaz84FpTLZUxMTACYDfXR29uLHTt2oKenJ+wWUjtH5b46O1WdTHsFzB5yyb91PpMES7TbdTnbRHcS2J1Kuk5s14m6GHR0dKC/vx89PT0hrKzusmP/YnsyxIpCbRdtotpGOjKA2blIR0dHaEu1M+RY1AbRWcT8WjumPA3znErNKtXVzvN/bVdbFkuSZ7PZcJAv52TM03zz9KVsp1bPWglrWl+Tt49lJdHPP/98nH/++YnfRVGE66+/Hu95z3vwyle+EgDw+c9/Hlu2bMHf//3f421vexvGxsZw44034otf/CKe97znAQBuvvlmHH/88bjjjjvwghe84JiVZaVABz0uDtoBO75u8dXFctLgpIPxxMQERkZGwoDHBQJjrx0NDx8dATTQDOFSLpdRr9eDB5rbtwYGBuaQ6Pl8Pgzm3PbW1dWFDRs2YGBgANu2bUNfX19wCHARaOuAHvfp6WkMDw/HYmwpaaATp4XqRBfGHPT5tz10rtFoBBIBSN5mv9RQct+qv9YaaKi51TGprFaxZ9WEy7VbYKXDDfbqx0qz5SRk7WJU/7fElR4KqAuBpGdbaDgVSw5ysZSkKrP55a6pbDYbbAodAiTkkxTdhM2zhk2xhBowOyZZdbHmi2XjltpW6hOGxLD32x+SuaxjtWVRFAXCnvVEm60HTXGBpvYunU4HYpmg3WRItr6+vrB7jGkztAdJdG41VmLUzo/osE4K+cOFvKqQSfZq3hQk2bPZ7BwVflIfIqnNutQ6ZV40z0n93hIGurhXksE6iJkenRicz5A8SKVSYXu49hu2pXVGWSJdnSrqeGFdsz/ztx6Oxvjq1Wo1pMsftbmqkmOdM7560jugxDgdXUwrk8mEkCrMK/uhOuvYx1jXSXMm69RQUsGOH63ISN7HNlDygG3I/LKv6veEKizbmdstFYm+d+/ecPYMgJizgRgaGsLMzAy2bNkS+3zLli3Yv39/4vP379+feP309DSGhoawbdu2ltfwmYeT7mrDSrPlawF8Hw8XOnZoiCq1uwDC2EtV++TkJCYnJ5HP59FoNGJEu+6s5fPL5TKAQ8QqxyIV4EVRFMR5MzOHzg+h/dZzWjhvGR8fx+DgYEx1DMwS4hSrpVKHQs3aedLMzAzGx8fD+M/d4Zs3bw4x4hl6RkOAWbEa80UHhjoOaVc4X5yPQLdkakdHR7DrJOxpSzR0nSVmaX+Sdg8eKVKpFEqlEjZu3BjahofTcnzn/EXnJeps13KqQ4DlJrlN7kPDweg8gWeG6HwGmCXeNR3OcZREj6Io5qi3ogudVyivYp0Wds1NRw4w6xyqVquJNnU9Ct6WY02+HOebfOc738FHPvIR3Hvvvdi3bx+++tWv4uUvf/mi8r1iY6Lv3r0b+/fvjykHcrkczjnnHNx9991429vehnvvvRdTU1Oxa7Zv347TTjsNd999d0tjzZjExPj4+NEryCoDjU1nZ2cI/cJFii7MqNqpVCpBbcRtYx0dHWHQZngTntK9mEm5wi7WaaC43bNcLsdiZ3FgtTE+7XYrTia4tZtebG4J4338mwM786QLUv1OF4XA7GFuGu+ulUpc1cxUp/EATyVZmA6fTxKf7cU6UuXiUkPzutaJ4fkcIOpMUfUdJ2ncocBtm0dzh4DDsZKwHLbcjnk6ZvMzHYP1fdT3mwucJFW6Tsx18q3EPMeLVopSVTTxt1UpK2GspJzNky6q9dlU8CjpaAl1tauqxqY95+4mli2JdFc1kS5GlSTVreBWSct7SACoeludk1o2LuS4AON4y/to/3UOo4tm2kkuoFnXtOUqKmBf05juOp9J2hJsnapMdz5bqXMJ7b9cjGs9WNi61r7J9ta6ZrtzsZ0Eza8l6bVfJ70jnAOxTMyL7UdJdWDViWwnJdBt2mxPqwi08x9dzGsZlazm/Xp4KRf+KiDhfboDQetLf2v9k3jQ+bAdVxSqhNdQiUnOPztf1rbRNmolBmBeWznrjia487MdJM3D5nu3kq63n7fzzMWmu1bg6/LlAcVxUXQoxvj4+Hggv61d1LmC2i/GXOehoByLSXbqbiF1oKkimOMq0+BZC8BsfPRarYbJyclgMy0xzWcxLeadzky1GXpIqpLV6rTWuZcVqul6TcdZ2nByHDz4lGu1+cj0dDoduACS+urkTqfTKJVKwVmZzWbD+l8dtXaH4FKCa3/Ns0LrnXML5SvUSQzMniGktk9Jdy2TzglZH3TKsPyWxGYfUueHpqNnsxDkQBYSJqq91cNMmc9KpYJyuRw768dxbLFc55sstOuqHaxYEp1e/SSP/69+9atwTTabRX9//5xr5lMFXHvttfjABz6wxDle/eAC9uDBg+F0bW4tLxQKYSHOgXJiYgLDw8Oo1WoYGhrC8PAwUqkUxsbG0NHREU5NzufzYXsRB1Sd+LeTL1Ul6fawxx57LIRwGR0dnaP86uvrQ7FYRG9vL3p7e4PxpYHjlmFOUjo7O7Fx40YMDAxgw4YN6O/vR29vb1Cy2ckKiWsO3iRIeVgVjdPk5GQg/CuVSqLXHZglPBibdWBgIBD43d3dYRJBA0JDoFvMJyYmwsGlBw8eRLlcDuq5pVwMqXKylcJuLcGqFiwJRSVjs9lELpcLRDoX9uPj42FyuZoPlF1qLIfX23HssBy2vFarhYk/MDdWKIDYYjNpIm4JQH6uY50S5CQilUQnmcvnM12bFzqaeQ8XMCT1OL6r/dWtxAol0fk3D4Du7OxEd3d3WOTx2RyTNPb6zMwMKpVKTGWvi2mFEv+6QOS9qurWxSR3bNEBqYszu1BmuiRJWc9UAlOhR4dzZ2dnULr19vaiWCwGpzi3IrPtWdckHJVY5zb3sbGxsE2dB68yTyQg+AzWifYtCgqoZKb6ztoCXeCpfWfafIaFXq+HTWaz2bAQ1YWvkiF0OllSWt8fJXHpmLAOA+13zIeqqvW9se+QJbqZT5JF6vBQpwXtsZI8qsjkXFYX/Myfbinn7g9eo6IHmxbnAVSBcpeg7kBgGsyTkvra5/gOa96SHBMUeHCuwbzrNer8Y5p8r/kO8R3V9tK257ulfbwdHIkd5/3tYuPGjejo6JhjGwYHB+fYGWLr1q2J13d2dmJgYGDea/jMw0l3LcHX5csDHqBIJy/JWYbs0PUxx3N7jgrDselacmBgIIwVVIfb3bYcE0qlUnAS9vf3xxze09PTYV07MTGBffv2hbWx2hbOH7q6ugKvoOHQAIS1fRRFIdyLzimYP66Di8UigLkhsfgsHdd4aPnExEQINzM0NBTG+nw+HwhoS6iq4GHz5s2hDJxLDQ0NYXR0FJ2dndi+fTt6e3tRr9eD82JoaCjsZNF6Weo1DOcs6XQaXV1dIQyt2lYKBhluRed/ALBhw4bQrzgXpE2lLSVJT3vGOQrrnXaTZ8iVy2WMjo5ienoamzdvxpYtWzAzM4OhoSFMTEzEnCS0j+zrnPuqDVdnkPZZdQKzX7CPDw8Ph3j7DJk4MTERDpefb7fIelKjL8Wa3DpBKVRNgp4zAhw6m+Rf/uVf8KlPfQrXXnvtnOv1fBMAOPXUU/H9738ff/VXfxXIcD3fBACuuuoq3Hnnnbj++uvxpS99CcD8u67axYqPv3A4Hv+FrrnqqqswNjYWfvbu3bskeV0L4OBIDy23VuuCQhfb9OLSmPLecrmMcrmMSqUSO/261VbiVtCBkAttbnOvVqthuxoNOIliGk06ATjItvpb/1cSmz8ceHWiYZX1SqyyrpImMzZ+rgWNPScZPMyUxkgPNmVMuqQDT1kGu0V7KaEk0lqHVeTpbyB+RgAP99X3Q1WMrkSPw5JG7f44Vg+OpS3XhYoSuWp/lFi0UGWoEmLME8ujyie7y0nHXauISkov6cwEpmNtiu5oslDymjZa7bgSZiyf2iP9X9OyISss8cu60WdY+91K7a420pZNVWSWPFWFudaxLrJp1zXkh95jFerahjqm2/xZ4tmqzi3Zq2R7q/mEkhh2rtIqLri+K1YFxr7FutE+rO3diuBWIkXJCO2rep/2WyWO7fun75C9h7/tXNH2UyV/7Tunbanl1ffevvv6nmqf5XyzVquhUqmgWq2GuaaqybX9rEJfHXN27LEK+VZ2zda9VVvacYPp2XeOz7eOL36medXr28Hh2vHF2vJsNovTTz8dO3fujH2+c+dOnH322Yn3nHXWWXOuv/3223HGGWcER0Gra/jMw0l3LcLX5ccWJDMpwpqcnAyxpjX0xXx2tlarhTW5KrA5jqmjWnetWHvLEGnFYjGI0HSnNfPIXep2vOf4bEN/WCU8gBDzvFAohO9sqBbmTfOp39v5Fsl/rtG4LtPdUkn9VO0fRQlcg6vIkDvIuSbv7e1Fd3d3EA/qbqyjtYbR+RodploP6vSnjVOhA6/ROa2107pLjGBf0/kmhZN0AJGop6CBdUEyXp27ai95b1Ko4XbmRXSOMGY/3wGN4e/r8lkcqR0//vjjg3i1t7c3kQwHZs8ZseeVHM75Jt///vdD/2p1zVKfXbJi5aNbt24FcMirvW3btvC5evy3bt2KRqOBkZGRmNd7cHBw3gnNfB6R9Q6qqKempjAyMhIMXqlUCltyOMhOTEwEz2KlUok9I5VKoVarYXh4OBjaiYkJZDIZdHd3hwHcLjhsXjh4clCenp7G6OhoGPzGx8fD4jaJ3OD/Sc/nd0l1oIu5VgMF64JqJ+brsccew/79+8PEp9lsolwuY3h4OHhrrQFV1R3Vc7lcDgMDAygWi7GY6Oq1Zx5VtUhDTyPa2dmJWq2G0dHR2OE1jqUFDTC3TtZqtdBWURTFDLXX/yyWwuvtWLlYLluuC0Ed/zl20i7xbyXcgLjCUxdvVHPqYkv7sKZj1e066adCl/dwHNfFKGM7c8GreVVynYsEYHZBop9RwcxdUVxY6a4sEtdUw+tij4vMJEJbnQgsCwn6SqUSnIqMM057DSCmHlbSV8nsJFhllc4V+AySAqoW5/NIfmp+Cc5naDOHhoaCwo67vVhPqtJnnbM+WA4urKlEV0WwtiPzr3nhdVw00nHP30yH+dHFsn7P9mYbaUx3Kv3UAaL1qvZK51VKoOg9Sepl9gfGpKUSzpLn+o7Y98KS0vousQ8xz7pzwirbWB72aSX4dXGufYW/mSZVndoWdN7Yd1xjo2v4AyU4tHxsQ6r+rQMjqb60nlluDemgdWodD0qy2D7F6+dT6Gk+jsQeL/beyy+/HG94wxtwxhln4KyzzsJnPvMZ7NmzJ8RFveqqq/DII4/gC1/4AgDgoosuwsc//nFcfvnleOtb34pdu3bhxhtvDKo0ALjkkkvw7Gc/G9dddx1e9rKX4R//8R9xxx134K677mo73bUMX5cvH/h+TE1NhfATOgbrORAc0zhnUNAGz8wcOniUoVdpm7LZLLq7u2O2V8NaKVlfLpdj54dQ2TxfWAy1dbQvTIP3dXV1AUBYVwOIOZX1HAyOa5pHQh0Fo6OjmJiYCPXTbDaDQ1QPHtU8EalUKojU9FBo2rp0+lAIl/7+/pAvloXk/4YNG8Jca2JiIsQK10PKlwKpVCoo5JlPzndolzmnBBDmALyGtpWq8qTdmjrfs3Mu2irtT7T53d3d4RBn8jm8F5iNq8/21dC17DecT9mdiws5ZbXdVXXejm1j+usFS7Emb+dsE2D5zjdZKqxYEv3EE0/E1q1bsXPnTjztaU8DcOgFu/POO3HdddcBAE4//XRkMhns3LkTF1xwAQBg3759+PGPf4wPf/jDy5b31YyZmZnYlpyJiQmk04dim9PTysk/Fed2ocUBlwY2lToU4oXe5N7e3uCFLBaLMe8xwXQ40DJuFU8epwHSmGtM1y5GrKovSSGUpKywSi27wFRyf3R0FA8//DBqtRr27t2LRx99NDaxIOGvIV4U9G5nMhn09/djy5YtsXAuSXVkwTzSgHJCUSwWMT4+jmq12tKDfLhYr4S89nX9TNVrtm+1u/vC4VhLWC5bbtVItAVKqlmyTR2fakO4cEulUrFwZLqA47uv32noFz6TUEcoMLsYoT3lVmDd2aLKK5KrTJ8OUksmK0joacxxEmZcSOrChflqNBqoVCrBBjKkiqqr9NAnLnJIPHOxqKo1LvZ0OzcXX1yAJamvrfqZeVJ1uFXOkbRVlZMuDvX5dIJWKhUMDQ1h//79oSx6qFtnZ2dMuaWLb7atloN2nOXTsrDfabmA2QPY2K9s6BetN6t+n56ejjmCdM5B4oBzOn6fpIzWz9QBRfJV5xL8jMSCde7U6/VAQqgyX+2pnc9Zglm/0/dB86sOEoaz4eeck3HBzvfdhi3i+8U+pf2Lz2dIBd0Rwfu13lkuvgNU1LF8qqJk37LkOPuOtrPtx7YdgNn46fquqLpQHSQaMkmfryTTSsGFF16IgwcP4oMf/CD27duH0047Dbfddht27NgB4JD92LNnT7j+xBNPxG233YbLLrsMn/jEJ7B9+3Z87GMfi8VCPfvss3HLLbfgve99L973vvfh5JNPxq233hpiqLaT7lqGr8uXF+r8oxN3cnIyhCZhCCadl1hwHEqn00H8RvV0JpNBoVAI9oa2nYS57gQnSc9QG0w36SBNQtdC6nzVXS8MBdTR0YFqtYqRkRFEUYTNmzeju7s7RqZzfsA5DcvDdGjHa7Ua9u3bh8ceeywoozs7O8P3rUK3aL77+vqwffv2OZ+TJO7p6Qn2kfOfVCoVYn8zvFy9XseBAwcwOTkZc3wsFThHZbiZKIqCree8Y2JiAuVyORDomUwGU1NTYQ4cRRHK5XJMEADM2jXrnKdNYWgyOos19n2hUEBvb2/Y9UDnC4DYAajsR5yDsq2sUEUdRnaHWhLYR5K4nvng6/XDw2LONgGW73yTI8WykuiTk5P4xS9+Ef7fvXs37r//fmzYsAEnnHACLr30UlxzzTU45ZRTcMopp+Caa65BsVjE6173OgBAb28v3vKWt+Cd73xniGH9rne9C09+8pPDqeCOxYOdkZ5dDpyqbuPAzAWWLuL0OarO5TM0tjrv0wUIB0Il0bnlhp/ZQ850UaAeUC5udFHDfKnhVuKhVRgAu7WVCywNbcOtclSbM5+6Fb5V+ADdUq6TBM3/QoMKCQTGrtOQNFyoLfWWpfVCDLdbzvVSH0uFpfB6O5YXK82WKwEOIJFoBBD7nvcB8VAYStbpbwurxrUqc1V36nWE2l21GST71J7a+5SstPYlySar3bPvn807oeoxJSVnZmbC4otl1G29DGPG+QLtIO/VhSftIO2VKtKt01vJSWvPbXm03LTrSiDqczTf+sP7mC/rVFcwv7pF3m411+uYF53kq/qYv5OU4UnpqjODi11VIms7JpVD66XV+LzQXEQJb0vM63VJogf2YZuGvpdJjmw7D1W1NfPB/22/sQp8K+oA4o4uAMFZofMqrX/No6rLVdVu88W+rZ/Z+uc4xDT5PjFtJc1btV0rAQmfv9h54pHOew7n3osvvhgXX3xx4nc33XTTnM/OOecc3HffffM+89WvfjVe/epXH3a6qx0rzZY74rBrcDoG+WPXijru87faAHXiRdGhs1YYE5y2nYQ50+D6lmGtACSO3fqjO/nU+atQ2wbMrrHVial2nGOgtVPqGNawmlTds6xJ84Uk6LyE+eLcRW2X3SHOMVh5jmazOWdtr3ORpYbaPt1d1Kqceo/aSn6vTm2bjv7We5Un0h2OSe2tc/Kk+VBS/hdDjPqacWEcyzX5cp1vslRYVhL9+9//Pp7znOeE/y+//HIAwJve9CbcdNNNePe7341qtYqLL74YIyMjOPPMM3H77beju7s73PPXf/3X6OzsxAUXXIBqtYrnPve5uOmmm+aovByLB1U6qVQqGCwgfhAR1Xm6HZ4DGhUsHEh52AW3wlIppsouu6jl/VyIKzFNz25Hx6FDT0qlUiDP6fnctGlTzHMNIBbDXQ8Yoep+eHgYwKGFzsaNG2NqJV1Y1ev1cLDq4OAgHn74YVQqFezbtw8HDhyIGQk+I2lwote1p6cnHMLa29uLzs7OoNRLMlpJYD0Ch4wYD5ABDnkGOzs7g+f9SI0JJzY85GatGyf2Z07k1np5jxWcRF/9WGm2nFvDlQBvtf2U47Mu1uiM5DNoQ3SxpASkqtqpxlGylNBFCICYTaXCjGGfarVaTP2sJJm1BZp/fbYS04QuargI5TW0H7xe7Rcd2qqiZXgOmwbvnZycjIXNUGKO91EZ1tfXF8KWqXpLSVYLquIqlUpQvSvZrw7usbExzMzMIJ/Ph4MWmT5DsjUajXBIeaVSwejoKEZGRmLKZQ11w7rS81F0Uc3zVdiHtI50cUqnCfPFg0fVaWPnRwolzTs7O5HP50PftvG/dQ5VLBZDP1YnP9tZxQOc7+k7ovnQ/1kvURQFJb0NfcN+Z+tSyQeWjf+r0IHvE+dmesA5nRdsL30/9Z1haIQkxSbLre8x86dxWVk+PUSYdcW8RtEhQUOpVIo5u1q9z3p2AccdPXCY/2u9JznWWNfaxpYEsW1IIkP76koM5+I4OlhpttwRhxLgPAuM744S1Hq9EsZA3BnI7xnahLHT1Z5xzNO5Dp9pSXNgdl6Tz+eDkljjgiuJTJtCRTvX1QDC/CeKIkxMTITxa9OmTZiZmQnnhpG81/lUs9nE+Pg4fvWrX6FSqWB8fDwcOK/Oh/mchaxL5pkHkisHocQzx0nmR8dkrTvGCO/s7Ax1rbvajgSsw0qlgmazGXbAkffgvKKrqyu0Kx0h1hbxey0DMGtfOZfQvmEdApVKZQ4Rzucm2Qydj/L5lUolthNL54Kcb7NtjwbWm206lmtyPWfkFa94Rfh8586deNnLXpZ4z1lnnYWvf/3rsc9anW9y2WWXxa5Z6rNLlpVEP/fcc+et8FQqhauvvhpXX311y2vy+TxuuOEG3HDDDUchh+sbahTsdk5O7mkMSDIoGGOLXmye5lwulwHEt7wmqdhpCK2XmddyUcLtXxs2bAhbzLmFmyeKq5e8XC6Hw0Q4cWC4mFTqUOgZGhr+TVJF1UX1ej0Y5pGRkbBFa3h4GKOjo20NJiwzTyznNiw6BJj3xYALrJmZmRAuZ3p6GoVCYY5RPFJoyJq1bmhUxbjWy3os4ST66sdKs+V6mCQJRp2UqyJHFalKGnOBR1LSkmR0LgOzY4NVvttJvS4i1P7podPlcjkseCYnJzE9PT3HKcD7tBwa310d03bRwYUcFWZKELKudGHIe5g/5i2dTgfnujpvddHOLeBKGFsFGgnm3t7eEOKtq6sr2Gs7F9A0qIajDbcxYEkMsy6VANAQatztRscFDyzn30pEqgqayjpVyyvxzTkSSVWr7LJlUdusz+KCvdW9zJeKE1h+G3qIdaaOAavqV0eEVVgr8a9jN++3/UHzqeS7JZF14cznJ5EQmja3zWu/UqcZ86v9WN9x3XWgSkN1+NjnqoOG5A+vZRtTVKKklbYJHTvsQ3buqzs9WE4AwTmiTsFWsO8Kd3FaNb2SHuq44PN1XFsoPSfRVz9Wmi13xKHvmQoC1A5ZG8ux1M5zkp4FHCKvFwtdy6tznGegbdy4MeZo0fts+CiG+qDgq9lshjjwHR0dYV3Oc9qYnp4/kUqlUKlUsH///uAoZRnJRSwE2jE98Jufc46ou52URFe7DsSdnZzPRdGh8Ktsj8Ml0e0YTnEB56hq1wGgu7sbhUIB09PTQUjIMtp+Y6MNaL0kOeDVOUtCn3NYHkZryfaknU/swxRwcC6uhLwVfxwtEn294VivyZfrfJOFdl21gxUbE92xcqHGkkYkabEeRdGchXnSIpjGPYlEty8zF76dnZ3o6urCwMAAcrkc+vr6Qhw1DYVCEpngop950W1eHMS5IM9msxgdHY2pmLR8JM+r1SrGxsbCYZI2bul84AKSi1/dvm4XV4uFqtPs8623+HDAyYqeAr5WoWVdDw4Dh2M1I2nc5IIgaXzW3SW6s0p3WAFziSneowtXVdQmXd8qn0n2TglZJUF1EcxnqgpXba4uMJPqSdNoVXdKdCaRfqxDhQ0ZwgWc2iIurKg+pxO5WCyGZ9rnKCmoCmU6OHUewvZmXHlLdFPBTPWdzgfUOZxE5M9XV9aG6y4C2yd08ak2Omm7O/tEkhPICg1UxW/zYOdiNkyPEuiWRLd9VPtFUqijpDLoYpv5VCLfLty17yuUzFYSJek9S6oHW3+WpLfzJCUS9DqtM5ZF61idCpyj8qAtbbMkB5n+rURX0vwwSUmo5A3zxPrSMmhetI3bIewdjrWKpVgrLQf4zuv6kqQkx8ylUj/rnIkHSPJvxuLmbnF12toxGUBwaNPZqLaXazDuGqdzmQ5LjsU8e2JsbKzl2rSddiWHoCFRrd1O2qnFuqUAgzumuGtA55a0+TbE3GKQdI/mKZvNxtpZ7bjabd15YPuPfqZ2k8+zcxZ12tDJYwUHOje0Ao6kuQjTUDtN8QPP53OsPizX+SYL7bpqB06iOxYFHei4lYqKaatE10NJdNDVbTy6yEiCfk9l16ZNm9DX14e+vj7s2LEDhUIB3d3d6OnpiamAgHicNqZNontiYgLDw8PhpGx6pw8ePIjx8XGMjY2h2WyiVCqhp6cHAwMDse1itVoNBw4cQLVaxdDQEB599NFgKBdbl9lsFsViEcViMXZY25GS6Ay3UygU0NXVhXQ6HQ57TbreYj6DTi/z5ORkUL6vVWhZuU3OsTQ41l5vx9oHx1aOaUqyUhmjhBMXk7oYpE3ThQUwS2hpjE6qrviboSSoeuffwNwDRWmfdMHARQVVSrrwoBrcPqNUKs35jMqiVo5ZPTOEtoLXqWObCy3+rapzDWsDzCrhm81mUPnqQolbvBnCpaenB319fXjc4x4XyHTumuJ2devA1HkB66tWq6FarQaCMp1Oh63AJMsZXoU7vdjWtVoNQ0NDqNVqGB0dxejoaFC4E7qY075jSUv2AZKl2naWvFWiQA+npHpdQ7gwLSU6+Qwlgjmf4EKefUXD9CjBzhAyGk6G74s6L2ze1eGURATrPVpPVJZNTU3Ftmdr/+f3dLSwP6ndZd4nJyfDrgimqdexPKp0t6SNbmdXolnrXolnJdLpbKEqPmluwLTZr1lvuiuAY46+V/yb6VBdyHm3dQ4k7YBhnQKzitQk5xDTUuKEc8h2cCR2XMvpcKwUqC1c6XN+dfCpjeI7zHChdBTPzMyEnVZHinQ6HXZSb9q0Cb/+67+OUqmEcrkcQnEMDAygp6cHjUYD5XI5thOJcdYZym5oaCgQ6ax3Jfx/9atfIZfLYfPmzdi2bRs6OjpCODeux/k8xm9nPq29nq9di8Uitm3bhnw+j4GBAeTzeUxPT6NSqYSQMBpnvbu7O3agel9fH7Zu3YpsNovBwcFw8Cl3SnIexPFeQ/Mwf4dLqtNekRuhOJBg3XJep0p0PTeG4786X9RGcp5K+6Vzxmbz0Bl43IlFu8X3iva7VqvFIgdwTsY0p6enY7sBGIJmamoKjz32GIaHh+fM19Yi1LYfzfFoOdbky3G+ybkL7LpqB06iOxYFqzpSb6pVIHGRoCRAqw7bTkfmxL5UKqGrqwt9fX3YsGFD+J8L4yQ1DxeFXLzw+0ajEQw3F4Z6WMrIyEgYzJVIIIk+PDwclOjcMraYwU0XQFxE09t6pEp0rTMuoG3seuvE4O92BxYlp1b6JPNIEEVRiBO71lX3xxpOojuWGtYWqSOX6mZLNJHI0vFSlcTAXAW6VVSpPWy1GNKtyyT0rMKZ0FASSmLad4b5tQqj+ZTolnxbyN7wO4YHY70qQWd/W5Kdz1CymKS5KtILhUKMICbJSoKUai7WLfPBxRZB28TwGaqc0l1f1Wp1jhJdF7RJda51orDKLm07CyVLdSdDu/bf9kWCyjENQWcJV3UKWSW6FT7wfk3Xzh2UYF4o30r4axpaJn1PtJyaJh0FXJBzJ4JtJ3UKaVtoGW2/1b5C6DzJLmZZb63muZzjAYdIFBurXpV8NoQK64B1klQXmq+k/GnbM79J7WIJEgBzxo4kOInuWGuw79Jqgo4P3MFdLBbD+0+H6VKAYxvDt2zZsgXd3d0YGRkJ6XOHWWdnZ0y0oM+gfScZbsvD8X5iYgL1ej2cIdbR0YFyuRx+BgcHQ9hYrYfFrnM7OztRKpVQKBRiZ+Ko3dCQOjonYflIlFOlrtfy93z2/khIdJLgFHXYcGm8Zr4QYdouaoes3VEnrgpPWGcq2NBdY8CheZrGyQdmuQXd+c00OP8kDzM+Ph7mLsuBxfImR5KO8jZHC74mbx9OojsWDR0k9XeSl5cGWyfwhzMhoSEqFovYvHkzNm3ahN7eXvT19SGfz4ctY3YA17iUTLerqyuo0nt6ehBFUThUTBf7PGSM3mwqnlSJOD4+jkajcdiHddp6WepJmy7otI1aKcWSFsq62FZEURTKXiwW5ywI1xJorCcnJ0O8PofDsTKhsX+BeAgUHcdonzheKZHFhYNVoqmTVu9T53LSOK52yCrbGG5EHXWELlCo9rGhWzRPSqJz4adgXtsha7kwUcIvKU652j3WmeZd661YLIaYnLThjJvKcmlaTF+fR9tOVfn09HQIAaNOcqs4Zv2QjFRCgWelVCqV4FhX57qd82gf0l0PurC2ZKclsnmvJetJyFLJTiGCLt61fdTGa3uoOoyx3wGEwza5IO3s7AxnxLA+dNFvF262zS0xrcSCOl/sbkUlt3kN25DgDg4Ne5N0VgzbUAUemhedz2gd6kF39pkkGHSORMU520WdRUrIW8cD+wPLTcWdOgK0vqxTAYgfqJrUH3UOrHWo45T2wSSnRFIbr7eFscMBxJ2UKxk6RujYoLubuF6jcIwOag2Btdhyarxw2nE9z4TzGet0Zf6USKYgLpPJYHBwMIRYtXniDreZmRmMjo6GZ3E3OUVw1kbpeNzuuEaegDu11BFv51v6fLU/lUolzGfU/qnjX8linWvos5Wk191FSfmgCDCTyaBcLiOTycTEgTzknKFzpqamQtiaVCoVDmunkp351vmFzjm0TMDsYdr8jDaOSvju7m50d3cjnZ6Nm8/86E6xKIrCrr50Oh12gheLRfT396NWqwWnzHK+p8cqXbfHKw9OojsWDV38WdWVQhfQRxJXMZU6tH2VW7+PO+44PO5xj0OxWMTAwEDs4FBer+CCGzhk9Pv6+kI8yk2bNgVjNz4+Hq4nacrTrJPyT2+zXZQtplx2QqExwY4UduGnREw75L0lSZImJVTpFwqF2Hbww3WWrESwncvlcoiB7yT60sG93o6lBglpkk46OW9FLFtyGcAcMkwXSUpUZbPZOU7cVuOfVQJF0aHdTxxLudixNpb5psOYRJwds9WRSXJQdwqpyt4SwJpHLiAZSoXkvi74NNSHJayVyOXvVCqFrq4u9Pf3o1AoYOPGjejv7485woHZEBmMZ27bgDa9WCyGBXNvb29QWrEOdA7Cszu4QNT2pLqN24vpVOdiXfOvYW2SFFw6L7DhQzT2qZKd1slDkp/tpSStOmG4ONX8qFqZ6kCq8ZWsZR2ynavVaiDOG41G7BA1litpEWeJcO3bOtdQVby+V5ZET6VSwXlA55KS06wz+w7zHUql4qGNkt433T3Hd0j7iqrWrcKOJA638bOtdYeLKhKtc4Hfcxt/Op0Obcj8sV30XdR+ZR1T2o8BhNBF6gTQvqbjhI5V9tD5pHlfKxyJHef9DsdKwmLXdMsJ2gcNkaWxvPm+UwzEsYQOVdrRxUDPNNm4cSM2bNgQwoaSIKYjmnaJYxLHOe6gYxz1bDaLhx56KIR8STprhc7earWKwcFBAHOdpEllWWz5ms1mCBFiD66kgyLJCazj+/j4eLBl5B3S6dnwZZzjWGLcOmnp7OV8kelyfGd9R1EU4oSn02lMTEyE9tcQOpyLcL4TRRG6u7uDQ+LgwYPhjBqq2Qnu2GNZWX7OB2lf1f4xHGqz2cS2bdtCPymVSiEv7Csq8GAeuPN/amoKO3bswNatW1GtVpHL5Q6r7y4GSU7m5cCR2thjkc5y19GxhpPojsPGYl6WI32xaFx5UAljiikp3Ar6HY0HjQJjpCad7KwLDTU+Wp6jMck6GoNQ0jOTlHFJ19i/rUJKt13ZbV6rHVYF5uFclh5usB1LjSTnnyX6Wjn6kuyAfq4qGSV2k+yDJaFUpQ0gZl9UyZqkbrLOa/1by8gFk3Wetgrr0Mo28Jk25nm7sEQrbS/V0Vzg6zZfrbOFlEVKDOoPydGkNuHz7MKci1gbzkTb3tpK67wA4v2uHcd6q3ZIIi95rc2frSNLaivRqqSwEvKq+G8V+z0J2i9sn9f60DrU7/R/WwaSxbY/aJ3avDEkk62X+fqUkvyavlXTq1BEHRa2PmzcfqZhP2M7AbPhd7ROksqRRKxrGdTho44YLZv2CyVi1PmS5FRbCE6iOxzLAzvWEdZWtWtb24GOmyTsqXDWfKgNSRqzNJ+6046kbdLBp63s+FKD47naQ3Vi2vzwt9oGFdoBcSEGn2fbQ+cFSWtzOz4nzVmZd8YP5+dWCHI4dZL0mdryJDttd2kl2WF9HuuPQhDaNxWErBRye63B1+Ttw0l0x6KhC3/dZg3M3dqjh1MdTtxsGpBSqYSNGzfO2f69EIFuoUrEnp4ebNy4EdlsFpVKJXaAhh0IrJFcCqihobHLZDJzJhpH+nytf257SlIy2QWzGkZLDjB/nGDUajWMjY2FGHKq5lzNoHe8UqlgcnIS4+PjsbA1jiOHG2zHUmNycjIW9oSLMqtEt/ZISTsAcybyqkqlfQPik37+TxVtFEWxMcMqYzk2U4WjRCavo7OXCieqZ7n9ls9IItCVkAQQG9Mt4cw6SKVS4RBWKpht6BBVlGm5+Z3mn3Yhk8kEG14oFFAqlVAsFpFKpYIiS5+lC1clX/nDuOqNRgP5fD5m5ywxap0qbCPWAUMAKUnd0dERU4+lUqkQVo79gcpy5l2JSaqBLYnAHx62RSWghh5R2631bcPr8DtLjmt9AYeUc6VSac5cjP2TB45TiUanBPsY+5G2syrorFJet5/bHR66LZ1KPyWpqYJnuBkSEdzppm2rC2mtZ+s04i4E5pnPbxXvuxV5oWFpZmZmwg4S4NBuB6tCVwJeCSb+WDJD213HB5176e6MpJ01fLdTqVSM2GJ+VPHIemDf0nrUtl4ITqI7HMuDViSqvlN2B7ISxIf77pH0zufz6O3txcDAQLCTzeahcGQM1QEgzHE45qkDV8N2bdmyBcViEcPDwxgcHFy2HQHMF3f9dXd3I4oO7cC2cz+18xpujIptHe9LpVI45FXnh5ynMXztzMxsHHPdLWDnbK3G3qmpKQwPD6PRaKBYLKKnpwednZ0oFovhDDnu4GO8/FTq0E4uthN3wnGnF+dd3LVmd3laxzjzWCgUQl4Zo73ZbMZU8zxQnWl1dHSgUCggl8sF280Y6Az5Y2PnHw2sN9vka/L24SS6Y1FQ4pcDux7mlBSHVhdYhxM3PJ1OhxhYPT096O7uRqlUii262gUXHZlMBo1GA729vejo6MDQ0BA6OzvnnVQcjcFB61KVYEpgLxWRrluY7eIuacHItHWxbRfobO96vY6JiYnY1ry1AC68edBNuVxuS2HocDiWDwy5ROJZySaSeUm7ZqyyRYkwG64FiJ85oQ5REl2qblZlK6/X7a90cNIGUA3L9EiGKYnO8ZaksRKHScpZLaM6AawjleSwhnFppbC1xKXaEV04MmQLDwLnYaK5XC62QFTFcpIzWclEEpr8YegZlilJMa6KZj1AVMNysCwkCbRuqLjjQjlJDcdFt9pamzafz8Wy2lslF+w2eHU4qB2ybWj7Nkl/1rXOCdLpdAhdx/jodABo/dsFMoBA6Kpaj++FVTXrXCOVSoV8sC54jRLuetAY+4RV6tm+yP5o+ydVefqeKOltnRL6PE2TY4mGcOH/JK+T1P9ah9q39Vpg9kwH7Tf6w/ogGUVCg99xPNEy6Hih0HrXdltvi2GHY7VjPlKV778S2EDcsbtYcFzLZrMolUro7e2NzWtIPPNaDT3GtLnm1t3M/f394ZytoaGh2Hh9LMcl2kraCZLLtEHq4LQh2Biru1KphHkRfzgPGh8fj4kZWMZsNotCoRBsAJ216jxNsvEWMzMzIXRPOp1Gf39/2AVIwpphVfi//Zt9hSHvms1mEDHqPFfzlLTzCZgl0sm1UKhRrVaRz+eDWIXzMtorfs753cTERHAO0AnvcCwHnER3LBqcZHMQTFqsUvmjhvFwjLUuQuxBaEdCLvN+GjuNIakLFVULHo4DYD6oWoAebxoK1pfGITuc59NAazxbXXhbY2xVXWqw5wPV6Dz0QxdhR9JOywlOECqVCiqVSuyAHF9gLh3c6+1YalBBQ5vBv5WITArHAMzdZmw/U9BW6HipJDrHWw0BlbSTy9pGtU9U+Gh5ksh8dQrwWVy8WUcoYZ0FCtoklkEJTA0/oc9JIg5tW6hCXvORRLpqfdh42jZPJNEtach2V+W4jaGp9WChjogkQl7DYACzpC/zxh0C2k7WPqqKHIhvU1cSlX3F5pufMx9KTiQ5NyxhqsSundtxsZzUZnyWbTeF7Xva/vaZSU4gPWzWhu/T95n5VmgfZX9W9bz2Z90FoE4NJdltG1hnlTpCNPa99gvNm76/7KPAbHgXJeR5j+2HSeXm55yH63ihClCWQfN0uPO2I50XuS13OA4Par/03VbHJs8E4Y6nw12TK+jUp1NR7Y7mJWl9meSMpx2k+plzBjvuafmO5rih9lvtKW2JnU/Ze4H4bh8eJs0dWOpE1nLozkT9TkUbQNz+qROYIPnN9qddUxvPs1/U8W9ttooW1G7TnvO7JJuhcw2Nj2/tr9o41hUdLzwIt6urK/SJ0dFRJ9GPEnxN3j6cRHcsChyoU6lDW25UgWMJX3oZqfiyp3QvBDWq2Ww2HGBCQ3S4RLouaqgC6+npwcDAQFhw0NDR8DCcR5Ia70hAQ8JDN6anp1EsFtHV1RUMS6vtxvOBxo/bopj/crkclHpKoCeR6brI00lOUtnr9ToGBwcxPj6OVCqFTZs2zVFgrSaw/iYmJvDII4+gUqlgYmJiyR0pjmNvsD/5yU/iIx/5CPbt24cnPelJuP766/E7v/M7La+/8847cfnll+MnP/kJtm/fjne/+9246KKLYtd8+ctfxvve9z788pe/xMknn4wPfehDeMUrXrGodN/85jfj85//fOyeM888E//xH/+x6DKud9BW5PP5GAmtUNIMmBuSTBcMer+qhJVgVnKcJBq36yaR17ooI7GneclkMiFsSFdXV1AMqe1T+8dFjSVdk8hxq2DWhasqz2n/LNlnF5VMR0lFloUhS2i77SGiuihttSBVO8jtv+qg7+joQE9PDwqFQrB5ANDV1RX6QC6XQzqdRqVSiW2L1vaxpIKqnVUZrQoxe4+WgYtUu/DkNax3/V/V0iSy9bm6uNb+q+3BeRcXyNrOrEsS63b3oIZ2KRaLYb7FrdpKuLPPMC3rBGIdME0lR9j+7GMkuKnO50K6UCiEeZltC82X3XmhAgX2m3K5HLaEUxWpJLk6Pqanp0M4G9turfq7jinWQca+rw4XBdNRwYj2jVZOFHWEcGzQHS4kbNLpNAqFQiwkEOtqIadhO3bWSXSHY/lAm6SOXZ79RZvCcZZhOfSdXez7l0qlQphVhgLhri6Og7VaLYS4IimqdldBe6C7pRjKg6HRGAaEZaF9PVqYnp5GpVIJNpG2l3MQrQsl/HUuw9BfDNGi6/2xsTHU6/WYuI3qcdpgHZ/1kHHOe7hDkXMiS8ZPTEyE+Q/tK1XelUoFIyMjmJycDIdxq82JoigWjqZQKCCVSoU20TmNth3zqHNnzkump6fDbj5gtt11LsEdDOReJiYmkM/nceKJJ6KzsxO7d+/Ggw8+iFqthnK5fHQafx3DSfT24SS6Y9HQxQm3jNqttQBiW44PNx66VaJTTXYkSnRdKHCiwe1TXDjxgDIaplYha44UWpdcbFuF4uGC9c6FtMa2BRY+nEQXzPZvCxo7eo3XCtlcq9UwMTERJlBroUwrDcfSYN9666249NJL8clPfhLPfOYz8bd/+7c4//zz8dOf/hQnnHDCnOt3796NF77whXjrW9+Km2++Gf/3//5fXHzxxdi0aRNe9apXAQB27dqFCy+8EH/+53+OV7ziFfjqV7+KCy64AHfddRfOPPPMRaX7e7/3e/jc5z4X/ucE3LE46EGTJKM05AGVTa3UUEA8BIpV7gLJ4cpUda5bfZMUS2oX7YJWbZP+WBWq5l2hiljmn9cwXX5u86UkLn9b4pWEncbDVKKdz6W91h1fqkZnXrUeFWrr1XmgzgKWlWeksIyqRNdFvJKmNv2k8UT7RZIS3RIR+gztG1Sa6zW6s07JcNu/+L8Svba9WWZVGdoy2T5uFe98DucN2Ww2kM02TTs/07pRxbOWRZ0TLLvG1bcOG767VFTzb/3hc6hgs/Wiyjslk6gwtA4p27fs85LAeZuWQ/sV60FD6liok0/zo3026d1nOlZYYvsT57TqwON1vEfTaaUabQUn0R2O5YW1RWpXdS2rZ48cCRhLm+E/7FzGrpd17NN8qg2hwxFA7FwbDdmm8xu1nUsN2kLaH1VwWyekFWMwb/yeu92np6cxOTmJWq0WwnZZW0PuhCQ07VsSB0EbmSRWi6IohKNR0QF/6FDhGSj2jDu1FTqHSrLB7G8UVaqt532sT7U/nKfZ3Va8h+vvTCYThBIPPfQQhoeHY44Mx9LBSfT24SS647ChBgZA7G9gdvtsEoHQDtQQq/fVkg2HAxrhTCYT1N/9/f3Bu0uDQiNHwoBG50i837qIVWPFLUuTk5MoFouxA6N0sT1fmYDZw76mpqZQLpfDjyr4kgY6S5C3IgeS7iXhQi/60NBQOMiEB8etFqjzRNUCSzXxdCw9xsfHY//ncrmgdFB89KMfxVve8hb80R/9EQDg+uuvx7/8y7/gU5/6FK699to513/605/GCSecgOuvvx4AcOqpp+L73/8+/uqv/iqQ6Ndffz2e//zn46qrrgIAXHXVVbjzzjtx/fXX40tf+tKi0s3lcti6desR1oaDqh8qP0ncAvFwKq0WYRr6gGMXbY8qza06FZhdeOiBiJaUswSbOpm5IMrlcigUCmHxqM5qTSeKoliIEo7/ajs0PV0AknhrNBpBCaTOVuaL39lxXBXiGopCSVTeb4k5XeCrEl1tO4lxDeOheVAlMp/DRVkqlQpbzfW6qampoMrioZBaL3yGjR1r09ZrWCb+ZrvroZlUjFlSmwtjdVRrW/Ezqri0rpLKbPPK9LjA5d/8nO2mZEC1Wg3XM5wLF9EKK0jQtrcKer5DOveh0tsuwpvNZkzNp4Q625355TvMZ2p5SR7RyV8ul2PvyszMTKg3bRcVMmgMdQuSC5ZI0brRtuRhaToH5DV67oBujU8ag6xDTAUOtk9adaD2L30+3yHel/S+OxyO1QElUDme2l1oRwo+l+OVDWVG28SxhTtiSJqqCpvjjZ7Fks1msWnTJszMHDrfho58jt9jY2MYHh5OJKKXChwvx8fH8fDDD8d2xus4riHBWBe6G1HPP5mYmMDo6GjY3a62OpVKBdW9zkusEIRlZh3Ox0lw/jA6OhrmRMViER0dHeju7g55syFz1TlvhRic2+juJ3veiPa9KIpiQgx1sFOdzvRp+2nPuPvv4MGDyGQyITa7w7HccBLdcdjg4AggxN1SLES8tgM1GBrTm8bmcCb61kPabDbR29sbIww4aNNAcRsZt6sdCYluCQGWY2JiImbMuP282WwGtXwrIl2dDSQH6vU6RkZGMDY2hsnJyeD9tukqadGKXE/6W9FsNsP2s+HhYTz66KNhkkEia7UsyKampjA2NoZarYYDBw7gwIEDIcSBY+mxFF7v448/Pvb5+9//flx99dWxzxqNBu69915ceeWVsc/PO+883H333YnP37VrF84777zYZy94wQtw4403YmpqCplMBrt27cJll1025xoS74tJ99vf/jY2b96Mvr4+nHPOOfjQhz6EzZs3t64ARyKKxSJKpVJQSBFczCjRpqSSLhaUFFTynM5C2iXr0FVbpUS6JaiUWNfdTjz0KZ/Po6enB7lcLqayJpRoZGxIJcqUOFbCX0l0tZ/2sEnrKFBFLMurqnQewMnnArPKVlUwMY90TNM5zXpl2WgDeS8X6GqnlOBl3XPLNBejGouddUFbxf/VcQogRnBqffM73a2QdPClxpKv1+uJuwisk0PnUOrAYDuo/dbyUrHGerb513yzbVTJpk4Q5oVpURWoB3spYc3nqtJe3xsl89lfbd0VCoU56kTWm1W76YG66jRg3atSj+lxh9z4+DhGR0djdpx55mKf7acxaW14FU2P+VIyxTrM9D1ivdvwUMCs+pDP0+fqLgY+w+4moENA57fWcWfnrerAUSgR3244viOx47zf4XAsDegM1XAcS/2OUWhG+0rhio751rmfz+dRKpXC2psOW6LRaKBarWJqagqFQgEnnHBCGA91F1mz2cSjjz4aQpTSCbmUYDrT09N47LHHMDIyglKphJNPPhl9fX0xJzjDyKmTgIdxkkPo6upCo9HA0NAQ9u3bF5zgNiRKd3c3SqUS6vU6hoeHw1qjUCiEugRmd4DbtXwSqtUqDhw4gHw+j66uLvT19SGTyaCvry+ECtR5hIbsU7vENuJ8laFdGo1GcAqogEV31XMepLaS8y/OMziH0XBrmUwGjUYDjz76KJrNJoaHh51EP4pYijX5eoGT6I4jwpGS5O1CVVe62DkSJboOwjR8XDTaLcJcjFu1fbvQxaAuAJMW6xpHld54IHmrLaELNPXkU0Gti/qkNFkn7SjRW8GS+FT9qcJsJRPp6rCp1WohbqqSSo6lx1IY7L1796Knpyd8nqRCHxoawszMDLZs2RL7fMuWLdi/f3/i8/fv3594/fT0NIaGhrBt27aW1/CZ7aZ7/vnn4zWveQ127NiB3bt3433vex9+93d/F/fee29ieRytoWFDrKJmvr5mCXH7nSXA50Or8VOfQah6l/m25C+QHH5F86O2MYmYtA4DzZO9V59n64f54O8klXarOlEFuv5uVadJ9s5+z7rT9tMwMkpKKkHYqr2S0lMFtT7Hkqfq3Of/VinH72y62gZK6HIhT6JdVV5J9bZQnTFdLRehxD3tn5ah1bxFn8XyJ/UdzSvzyXpkG+r8LiktO09R5432ZRIA6tBSpdxC89f53llty1aOhaQdh9r2tg/wHpufhdpSn2OdJrau9DM7H7ROsMXASXSHY2XhaBDnCpLkuVxu3vV4q/lUK+j4r+tfHWejKJqjnD4c6Jit4yI/40+z2UStVgvOZNpCm2fruCRvQXtKwQCdC0ljvXXK2nG71Tp9PmjIWN2VYJ2kSfYg6X8tf6v5AGFD39i5iwojk9IkGU+hg4dWPbpwEr19OInuWLFQUrNSqQQV0eTkZNiClMvlFmU8dVHaaDRQqVRi4VlU8URVFtWBnCi0q8zh8wCgUCigu7s7KK803+n0bBx0GpKRkZFYqJlsNhsOG1WPPMtERRrDqUxMTGBqagpDQ0OYmJgInuOkrVb6v11EJRm6hQbJSqWC/fv3x7zRuVwOPT09KzbGMycY09PTGBkZwd69ezE5OYmRkZGW4W8cS4OlMNg9PT0xEn0+2PFiIWdc0vX283aeudA1F154Yfj7tNNOwxlnnIEdO3bgn/7pn/DKV75yviI5DBink6oW9jGNFa3bTDkO2tjDupiziy2NYUxnpSWfVak034JDFd20D7RBxHzEvTqZeS0/528lR2nvLEHPe+cjL3VhaWNo2vrTdLmra2JiIqY4ooKM46zaOK0DPQxUw9CoypdqXKt4SiI6mT8N48L7aac0vAvvy+VywZZ3dXWhUCjMaQtdSLNcVHdrnHa9h+du1Ov1UFf6jHK5jFqtFovtrot56/DgTrtsNpu4WNa0bftr/9DDNUlc8MBb63Dhs1QRaN8lznf0egBh58HMzEwIbcd3gs+k+k23zbO/qnqfuxp48Fij0Qj1xzLYOZD2E1XT277SCmxXrX+qDHXnB+tV61zfTZ2T8Te3wbeK+a75U6U/n2EPVbZOPX1/LeHfbggIJ9EdjmOPI3F8HQlo0w4cOIBarYbHPe5xAA7ZaYbQUjVxV1dXGN9HR0fnOIZ1t52GLaFdY2hVph1FUVCrd3Z2YnJycsHdwnYOzjjlzF+xWAx8w9TUVGwuoHZ5//79mJiYiM2ddLc4MLvzivUwMjISDrYeHx8Pc08tDzB7sKhV1+tOeHW2ttvuDO/aaDQwMjISdrpbAYeKHHRdTB6ENoH1yXJbxyxtK3d0MaZ5Op1GtVoNIThZBs59bGg/zgGq1SoGBwdRrVZRqVRc1HYU4SR6+3AS3bGiQYNRr9fDoMtQJYwVu1hwscVtY1Qc60KC4Vu4QOXBbhrTs12kUodCmvT39yObzYatWrpIomp8enoao6OjGBsbCwatUqkgn8/H4qKx3KpW44Ge4+PjGBsbQ6PRwPDwcDA4Gg+TBrgVia51b38vhGq1Gtqnu7sb+XwehUIhxPddqeDkb2xsDPv27Qt1uNRbBB3Lg40bN6Kjo2OO6nxwcHCOSpzYunVr4vWdnZ0YGBiY9xo+83DSBYBt27Zhx44d+PnPf95eAR0B9kwJ3anDd5p2gKFFrHKW99mFlzpXNaSCHhKlBKGOrUnjrDppGYJFY4EnLZKTHDKWmFQltCXRudjkb0sAWkWtgostdSaxLpSE1LrTcBuVSiUQptaOaV6UTNe2UvWsKr00tA7DfqiNTVKr2XphWXm/9huWMZvNhu3opVIJhUJhji2v1WrhmbqDjmRBoVCI2RXaeXsAuDoY+H2z2QyL1lb2nO2jc5lWfceC8wnt43qoO8MNWUeJ3VGgzhibV405zjyx77PsujXekrk2pAmAmNqcirVarRbqjU4KgsS0hqjRPq4EvvY1rUPWM6/VXQ+M7QogkB8qlFCyge+eKvY0/ju/0/FMoX1Yw7Dw2fa+pLlcKyeLltvhONZYLpJ4NYA2bjnqJoqiQDaT4AUQYn5PT0+HcTCdTqNQKKCrqysQ7xoGhnMKOnx1bKZdpthNxVzT09Nh3rTQIZNJKudMJoNisYhMJoONGzeiv78fU1NTGB0dDYdtchfo2NhYKOvBgwcxMjISnptOp9HX14f+/v7YXFId9GNjY6E8PJujVb1Wq1VUq9XwP+uV9ksdn+22vcZWHxsbCyHF6ISwh3ty3sKdXDzktaOjI7Q1gJiTnfM+nfNQYNLd3Y2uri5kMhnU6/XYuSsM7Vev14PzQUUB/H54eBgTExM+FjhWDJxEd6wKTE1NhROa1RPJRXgr5RxBo0vPaL1eR6VSweTkZBjMaZi4kKMRVEOyGFUyyXclSWiI7FZbjbdJopxKOy6QeK+SILp4onqLiivdsmU9iywr60QVk7be7P3tlJ/3VatVTExMBO8+gOCQWMwOgqMFnSgwbryqANzbffRxrLze2WwWp59+Onbu3IlXvOIV4fOdO3fiZS97WeI9Z511Fr7+9a/HPrv99ttxxhlnBCXtWWedhZ07d8biot9+++04++yzDztdADh48CD27t2Lbdu2tV1GxyyUKCLBqpN7VW4TSgQDyWS1KqQIkp+qPrKxxwmSbPqbB+GSPNPFpf4k5UPL1Gq8UgIvieBUKAmuJKrugFKS3RKL9hlJ+eBisF6vx0KbqV209pxltmVnfeuhVty2rOoqKpt1YaskOstm1fnMC+02F5z8v5VzxH6mxC/7o+aJ8xL2JXUOWHXyQmOmqtdsH7f1aNueYL2QCCa5z+3gWo6k9HWhz3Ir2Z80H7E7HVQpbt89ddSQZGe9aSgarT+7K8TWiUKJ9FaEhSWjNRa8vjckhXiP7dvaVzVNzSffPzpHrJLc7iSxfZHpJjkGW9WBfrcQXInucKwv8J3n2Euim5+TGNezJHReoWMdn1Gv18MazK49SbKrXVOivV2oXU8i13UsVsc0FfK2/KwDdZqnUqkg0lNneLs7e5Lq2jqpDwdRFIU6Jn+iO+QpWuDzdV6mNkwdOMwTyW8q89VuqrOdnIh9nh4sqmfK8GwT3xV+bHCs1uRrAU6iO1Y8oujQtrEoilAul9Hf349msxkL6UJiFmit0uPieXh4OKi1/+u//gvlcjkcRMctytx2plvQJyYmwiK3HXR2dqK7uxvZbBa9vb3hIA+7TZgGisq8KDq03ZhbwKrVKvL5fPCMk0ynMeSCkVvomEcldJIMPw1gKxIASI7R2k57RdGhrXaDg4MYHx9HqVTC9PQ0ent70dXVhYGBgdhEajkQRVHY7l2r1fDQQw9hcHAQ9Xo9hMBZbwZhOXAsDfbll1+ON7zhDTjjjDNw1lln4TOf+Qz27NmDiy66CABw1VVX4ZFHHsEXvvAFAMBFF12Ej3/847j88svx1re+Fbt27cKNN96IL33pS+GZl1xyCZ797Gfjuuuuw8te9jL84z/+I+644w7cddddbac7OTmJq6++Gq961auwbds2PPTQQ/izP/szbNy4MUa8O9qDVcZy8k1FLyfp9vAiJa8tkauLBY69dMAyLBjHPSXqOZ6TLOaikgdF8W+G+GI6VuHDcZILFSUKuYClY5mLVmv7VB2tCjCrGCZ0kcVFEVXyrci4+doEQFgMUU3NXUtdXV1zCOtWizCWp1KpBIUx1V08uIwLw3w+HxboUXRIPUd1MhdoLCPLqeE22CcYwoTbvtWWK/nLMGy60FWCl4tILhapshobGwsHqrEt7WKbi0xLyNpFLvsd+4cljq1zXJXU7CPsa3wOz4Uhgc7+mhRiRIkEDcvC+uKhoao053sYRVFsJ6DuoLO7G9jP0+l02EXGutZ3Q3dcJBHh6mTTOtX+YNXzrG+SOZyXqaqe9yjBrelqm3EMIpmgZeN1/F7HJXUE2T6RRBSl0/HwMlbVb8e+xc77Dhc+13IkwftFayz2nTsaqnXOq0ZHR/HYY4/Fnp/P58MBnM1mM4Qz4RxCndy0fWNjY9izZw/K5XKwSZlMBps2bUJvb2/YpTQzcyjsFwl32vH58gnM7vLhs3V8VRKYa3GOlZlMBr29vYHYVQEWgNh8kHMSzkvUhumYOx9U1MZ7yT3MJ5hYCM1mM4SW4WGn2WwWGzduRG9vLzKZTOyQaxUMUB2vB42y3qrVarC/GzZsQHd3d/icPEWlUglczaZNm0LoGoap4w7SWq0W1uCDg4MhPK0q4B1HD06itw8n0R0rHlEUxQhNxvzu6Dh0IrQqdFot6pVMoOEdHx/HyMhIiKWmXnM1DiQrVG3YDkg45HI55PP5QPYnQbdCcfEFIGaE1aBxscuJB8vFBXA7Hlu7oEtSoisRsNjBkZMmKuTHx8fDBIYTleUCy6JbvoeHh8MhkItpZ8eR41gZ3gsvvBAHDx7EBz/4Qezbtw+nnXYabrvtNuzYsQMAsG/fPuzZsydcf+KJJ+K2227DZZddhk984hPYvn07Pvaxj+FVr3pVuObss8/GLbfcgve+97143/veh5NPPhm33norzjzzzLbT7ejowI9+9CN84QtfwOjoKLZt24bnPOc5uPXWW9Hd3X1M6matQYl0JV+VhNXFDBd1QOszIvg3n6dhIxiyQbeiKkFllT2ZTCbEbe/s7EQ+nweAQMDqIs9u21ZCX5VZ/CzJkUybYMdzq0jXcVnVYqoYPxLHJx293KKti1itI90WzbpUwpC2jmQ424JtSSeEqreUYFWlsiqB51OiM5Qa5wnaNuqMYHurGp8LbhLLnK/w81qtFmwlSXSCxCrT0ja2zm9LkKtyW3efWVhCXPsv+zXzz8W8dXZo+homRetR38Wk3Q1KuLPetCx6LbenA4iFxLPhcPQ91LmH1oOtE90JkrQzwtYRCXp1SvBzew9/a1vp+67pav+yTi/mW+e3SWIILZOW1ZI09vNWddMK620B7XCsFhwNsZI6AilIIgHNsYrzGg1HZsdW2kSuzUdHR4NSmj+bN29GoVAItlNtUbthN5lfFUuwbnRewbzbXUyZTCbMO/i52neWjzvck2x5O1BbqII3tceHCwpAuAsQQDizjOXmPIrzDhXGEXZnGduP11IkoXWrDgkKFTkHZP1qaLNarYbx8XEMDw8fdnkdhwe35e3BSXTHqgAH4Hq9jgMHDgT1H9VmVJLbxTcXGFyg1ut1PPzwwxgdHQ1qdA3nQsWZqtdmZg4dhEIFXatYZhZKlKjaaiGQzI+iKBx0wkM6NV4sF01WSbWYrV5KEFBpp6Fl+DwNF5OkyEoqO8vChevY2FhY4NLIMqaskhhHA9oXdGvYyMgIhoeHwwSQ5XMDsnZx8cUX4+KLL0787qabbprz2TnnnIP77rtv3me++tWvxqtf/erDTrdQKOBf/uVf5r3f0T4sgZdElqna2JKBJFaTyHMdA+12Yy54VJ1MZypDe9GZyp1HHG+V1LY/SripE0CdAbqIpNNV80PnJZ+lCmYlgVvZqaSwIErcq8I6Se2rcbYBBDU6SXUAQYHM/JBoVeK9XC4HZdLw8HBwMutilXVKlZuGRaF6nc4O9gPmUXcisM5ahXBRpwXLzz5lHTDMi1WvK/HOMithrKRsknPELvIBhPlD0u4CvUfnM6o8Zn2xDrU8VMRRGa3iBV3oa17tIprtnUQaa1n0uXoIMP9WVTXFFfp+MG0+k/Ma7Sda/xwrbN5ZN0oo6HOUxNb647P4Tljnh74P2h9054rOZ7PZbEwgoY4aS9bbfqLEu9aDdXjo/zqPczgcDgVtZr1ex8GDB1Gv15HP58PB2yRQ1QFJRbKOOTMzMzhw4ADGx8fDzmAdS6empnDgwIHYgdFUv9tdXwuho+PQIaI814OEOndaWZW3FX3R/qgNAxCbD3D8P9y1pIoJ6JDg2WIAQtgc1s3hkOta941GA+Pj43j00UfDvDSfz8fmu2qTaRtol6nML5VKoe7Yxsy7htVTe8I2qNfreOSRRwAAIyMjGBoaCg4Sh2Olwkl0x6qAEgWPPPIIhoaG0NfXh2q1imKxGDvUg9uFdHvWxMQERkdHUavVsHfvXhw8eDBs/2U8bB7mydhgqmgiybqYbVQ0HqVSCfl8vi3ltRI66XQaPT09QVHX1dU1x3Nvt+gvNmYYF+6FQgGbN28OZD0PPqWhLpfLGBoaCjHe5pscqCODi/AoijA0NISDBw+iq6sLw8PDyOVy2L59OzZv3hyUmEdzscb+MzExgX379qFareLAgQN47LHHwkQwKYax4+hCSYnDudfhsGDICYJ9TPsLbQUXKrQZvCZJ2aQLOFUyq1pWn081Dp/PsZYKdDoQmUdg7kGd/I6LM+6KUuWtKqM0fARJO1UUEUqYq9KZpKkS30xb69LaG9adJXrT6XQIN6OqbyX/crlcOPOEZLmS1row5Q6yRqOBAwcOYGJiYk7b836qmZSEr1Qq4eAzLug4V5iZmQl9woZ0oUpKHeKsB21Dkp1aF6xXkuhKTFunSzo99+BNYJZwVuh8hESALnZrtVpQ4yftKqMCnrCOEabLtPl9tVoN6fBdU2Ua603TVFKbDnk9QFfrnHXc2dkZI6P5LIZk0ndjdHQUIyMjYWHPutZ5BcMT6U4A68jg3EphnU6sT91VwPduZmYmFlJJHRnWoaHp83+WW9uSdaM7KFR1bslxJZZ0FwLLwOez3+s8Up2FOh9dCEdix3m/w+E4urBj0JFAQ27t2bMHHR0d6O7uxtatW5HP5zExMYGhoaEQCqVQKKBWq2FkZCSmaq7X69izZw+GhoZi45DmmaFAVAl+OGveTCaDgYEB9PT0hHE0nU6Hdb/aVDv/YtoU5ZFspv1ifjhOL4bcV3As5XyRed6yZQuiKAoHbNbrdYyPj8fix7cDtRkMdzY0NISJiQlkMhmccMIJKJVKiKIo7PQjia+CAgoZKpUK8vk8enp6YuHpmB+S/+qwt6ECJycn8dhjj4Wd4Tz3rp0dBo6lha/J24eT6I5VAxoyej2z2SwmJyeDYooLMhLgSi7wwEiS4eVyORY3k8ZS43ypl5eGZrEDxHzKvvnu4aJJY6Dbrc80skkKtXbT0W3vDDtDZT+AQESQGNAtw0l1oXnX56sSXOP31mq1EA9NFVmqSNNnLwTNk6rEmK5OgGioq9XqEakGHEcGN9iOowGrgFIVthJ9SeNKq35lFeF24WLJUBJiOp4nHRxqwyi0ylOS0km3HLcqu81fkl2yn6va2ubDLmx0G3SrutN8kuDUsFkkTNXW8pla3wzdQpVSo9GI1bsuvJTYtOr9+dpYCW7WhZKoWm6tb0ucL/Tb2rqk/mgdEzbfTJt9jIQ/65TEQ1I/iaIodugl86F/a77UWaD9kP+rqt/2aZZDlc5MW/uaktv8W1XSSmZYckPJYFtWJbO5u0HnHESrd89ew35l24JlXAyh0epd5N86n1ICX8tmy2rnQklltf086fp24SS6w7HysdTvma6vgEM2h2decCzm+rKjoyOEvlOFMeOJM+Z2q/xaZ9/hgGO3nhujaak9Wmj9rkIxu1bVn8XmVXcA8SebzaJQKCCKDp3ZxjN49ByThQR++lwrMtGzdlScoWIRi6T5NEl0u8NNnRN0OqsAsNFohPU4+4hjeeBr8vbhJLpjVYHGemZmJng6M5kMHnvsMXR1dcXimnNwpvqMh5qMj4+HrUYc1HXRTbWhqrIO12irp/xwCHg9dE4PrgIQlEnMt8Zwayetzs5ObNiwAT09PSgUCti0aVNIh15iLpIZSqbRaIS44TamLIlwKtn5mZLoqpZsNpt45JFHcODAAWSzWfT09AQiv1Qqhbbkc1sRXgTLzbxR8cbQLRMTE2GiNjo6Goz2YrcDOpYWbrAdRwscb6gMonqbByNRsaukn46vXABo2BS1K3ofMLuTiGM3F1jc4cNwYdyiq+O5bm/W/KdSqZB3Kqo1FruSkuq4ZNrq2FQ1uarONd65kvW6ONIycncRn2mV1ZaAY56UeFU1LW2Lql61DKoo566y6elplMvlsGDnvborQNXPtAlaB7rYUzV+EqmsxLFuodZrLFFuF9atbBhtHfNqw23wb+aVJLmSygyPpurrcrkc8s48M62Ojg5Uq9VYaLjp6ekw50ilUsGpzkO/SqVSLN98Lv/WsrYCHR0MBcM5gr6LfJaKJiiEYF9Q9R1tvSXZVXSgThDbT+k4oWpfd22wzvWwTy2nOgL4LPYRgvlUYkH7g5Lj/J6/9W/Ohzg/ZVrqiGL/TXKYJDnbgHhYG3XKsIzt2Fkn0R0rGfp+rkccq3LX63UMDQ3FxAPpdBqPPfZYOHSbYzXzxd3O8+XRriEPF1wL2nBf5XI5zDdok6zIgb9LpVJYq1J9rfkj0d1oNILQr93xsaOjA729vSgWi7E5WrFYDIruDRs2BFV/sVgM4ViGh4db1k8+nw8cCc9o432cQwGH5qGDg4Nh7qD1xh2UDKdH+8d46hQmMmSO2m8l+rkTbXr60FlptOd8rqvPlxe+Jm8fTqI7VhV04UsDBSB4ulOpVNg2r+orbklqZYj1s6WKwaVpHa5RoEqcRLqGO9FFH8s8nxJQQePX39+PLVu2IJfLob+/PyzkrfKt2WyiVCqFcoyNjcW2d7PeOzs70dXVhf7+fqTTs/F/1RFRqVTCFrSRkZGw5XxgYACFQgHd3d3YuHFjODmcIQ9Ipqs6QFVuJGempqZCnNzR0VGMjo6GWPpchHNr/3ob8B2O9QZO3qlaJgGt4RZ4HTBLUGp4Cd21ZEl0giQUwzAoic3dPbqAsXlUqPIWQEwdVKvVYk4BJYFV8a4EHZ9FQprQfPK6JMWyjrm680lVshaaNvOkjgjWK0lLkuga2oN2jQdsT09Px2JfcxxXolHDfzA92h9bNvYNVXID8TM0LEjIa5q23K0UzvOp/0lsWxLXLuCtwpj5J9HN80203emsYLia7u7uYK9VfUaHDfOSz+dRLBaRyWRQKpXCDjXWDedVuq3fEtZ2N4j2s1RqNmSc9he9ns8vl8sYHx8PIgfGRWf7si8pkaG7y1R9qG3Ea/V94VzFhtXR8EJ8rjrbVJRhQ8OpoMLu1mN/0zAz7AfqaMvn8zHyXN8nHW9UIah1ofXB39oHk3b+HY6S0uFYSbBjr/fno4dGo5F4EORC9b9Qm+hYdiTtRxKd9k7nWlEUhbWohmTjWpdzDdrBYrGI3t7eMLfR0Fj5fD7Ed59vPmHR0dGBnp4ebNiwIWYTKMSgHSuVSpiamgq/AWB0dLQliZ7L5dDX14dsNovu7m4Ui8VwThx38wGz8en37dsXyHDyAt3d3SGkHg9+3bZtG7q6utBoNMLBoly3a/hBFbfxTDqKGrWOHI7VBCfRHasWuvWKi0iGc6HHmwswjU92rAZqLtwbjUYgu5NUegpVuqnnVg24XqsL63YnFrrIZfx4JaiTrtd86xZxOhzss1RdpoePcfsZVWd0bJAQYXp0HOjiXvOoCjKryJqamgqebh5UQ0PeigBzLB/c6+04GlAnpg3joQRTUlgEJfoAxBYzqiqyimWrQFYlkf7Ml2c7xgOzSnh1ymooF03PptPuO8IxWqFEWhJZnPR7vufzdyu1O39IHnJXGclWYJbE18VvUtpMY6Ht2Gw3EqT2EHDdDUD1vSqGNS+t7GererBtp44KG5ebedH2tLsOWvUvllN3LOjnGupE/0+K3c5ya/pUoWm5kkh/YHa3Hx0FSuZbsQFtNh1GJMrVOaI7C5JEEnyuCgxsX7RImme0agPWC/uGdfAn9Q3mmwS6PsdeZ/OozjKS7eoEsO2l886kd2Uh+5vk/EmCK9EdKxUL2QHH0kIdjLrLhY7cRqOx6Pd9KccHdTzy3BraDVWhc7zUNSYwG+6KtsnOBbkOtfPNdsF86ZxVnfdK1uva2+6U0nR1fqDvQi6XiznB1REMIDjguXO7o6MjhF2hqAFAING1/M1mM+wW5Gd0glMU4uvxlQdfk7cPJ9Edqx6pVArd3d3YsmULMpkMNmzYgGKxiEqlEk4MP3jwICqVyjF9wdXjDRzy4tpFqEK3lU1MTMRUVQACGQ0gLOqprqRBbSeuNw10oVBAqVQK29GsCkxBQx1FEYrFInp6eoJ3udFoBHUbt4zxmRrOhXnjgp8TAYYkGB0dDfl77LHHAqFB8ly311kSXR0O6oTQA16Y3yNd7DmWFm6wHUcDHJtmZmZCOC86Nm2f04P8OM5wbIqiKJzdoAspJe908cIFGXcKcexUdbii1SJLxzSe48C8cMznIoRks55xoc8BEAvnYh2yllxkOSyhnKQqJkGRVC5dkHHhSpulSKfTQaHf29uL/v7+oH7OZrOo1WrI5/PBoaoxO62yXsts69QqbZl/pq+HZgEIimcullOpVFB5W5JflddJxKkqtfkse84JbSZ3Q7AM2j+UwOfBZrTn3I2n6nUuUpVA1XmF9l1ew91f2q+UnGWZuUOOYXas85/hk1r1kXw+Hw6es0o7kv4UQoyPj2NiYgJRFMVEEeqMsUpr2n0bjk8Je+0TGs7Ehh8CkOjYUOJc/+ZzdL5inXqc3/A+bQt12rGP8DnclahqfvadVmMM02e69hBSfb6q69s9c8dJdMdKxlpXuVrn3XKCY72uBWlfJycnsW/fvkXHvF6qdRtJ3Eajgb6+vrADmzako6MjHKAJzI753A0HzNp47sTivCCfzwfx1vj4eJg3LIYkTqfT6OrqwsDAACqVStg5WS6XcfDgwTA3pSM6n8/H6tqGESPJr3NQitMAYPPmzWg2D4W8HRsbixH3nDunUqkQBjWVSsXs19jYWKg/3UlF54PaF9aDikION1Su4+jB1+Ttw0l0x5pALpcLJC5P3mbIkM7OToyPjwM4ti84tyJPT0+jUCjMWcgmIYoi1Ov1YKx5rRocJZB1kdfuVjfd8q9hcBZaKFHJxQWvLnb14BM9RIaLNSVcWA5d9OmuAZumquZbkei6sHbDvLrgBttxNKCTdT3IqtViWsOI6EJFz39o1d+SFMCqqm5HHZ6klrPpKymou5RUiUpi1qqjmKdWsNeqEjkpz62UrUnPUoVwEoFJApGkLO1IqVQKcTgZa7NcLsccyklla1f9RfJbyXNLGqqzBECwZywj60mJdC4gk8DFqVWxa36oRFdFOutQD+G2in11hOvC3aqitW+oOq3ZbIbnsV70PiIp1r7GX+e7w7kM+7b2S3VOdXZ2olAoBPI+l8uFg2b1WVSy6buoBHGSw0GdXuyvJNvV4UWwPtRBxHRsm7L99B5VNWp7Kbmt74M+U8l2dRDYHQsaCoaOQs63tB0572J5NT3Ni4bhsZhvzFA4ie5wLC9WGpFOG84wnxQqHDhwYNkOjuRakeNxsVhELpcL45fdlcZ5DglpYJZEpy3itSST6/V6EO0tVmVN+1csFmOiBx6+yrlps9lELpdDqVQKjnfWL6H3qxKdNjqdTodzVACEPGs/YpnViUCQXKet5I86nh2rD74mbx9OojtWLYrFIjZu3Ih8Po+TTz4Zv/ZrvxYO+qASfevWrajVati9ezc6OztRq9UwOjqKSqVy1POnqsdarYaDBw8im83GiGsAc7a4TUxMzPF40wiqam16ehqVSgX1en3RMb6PdGuj3YKuC0hV5iVti9bPLLmUVIdKvCcRD2q4fVuYw+HQONgaBgWYDdVCFQ9DgGk8bFVNk8TjYorX8FlJ5Lcd03SsV5WOKmi56OD3qjRXMo0gaRZFUbArdkeRjp+abzv2WgKQ12hICEu8tqPs07FZ20JjpVP51dfXh0KhgI0bN2LLli0hdmc+n0e1WkUmkwl2jtuB2T4aViRpG7bu0lKCU50OJPG1fPqjea9WqzEHsrafEqEaM1y3LyupbG0fyWJeS2g+9BDWJOeMLoJU3axhTawq2joLrKKZ99jdB+w3djt5Uv/QRT3rn21I2DAlmh+N+Z20684q/7Ws6rzQcjIt7fv6nmqb6v1JDgley/QsSc/60jFJhRFJJDrrRncDaH3qu63P4vX8XsPfcP6l7wUwq7pkfRzpPNHhcBw7HKkjaymQzWZDHO2tW7di27ZtyGazQaldrVaxbds2NBoNHDhwAI899himpqZQqVSW7DyyhcAxu1arYXh4OGa3uAMrnU6HXXMzMzOoVqshf7rupU3g2V52x/ORtAcdEc1mE8ViEd3d3YEj4O6jpB1m6jBm6FSWic+10N2YJOvbyb/aH+vYdjjWOpxEd6xa9Pf34ylPeQo2bNiApz71qXja056GTCYTyARVL913330olUoYGxvDAw88cMxIdIYTiaJDCnMeCNLV1QVgdsHI7frctlUul2OLbBpnVclR/aXKxMUYL10kHc5iyRLhqoiz6isljpSsoJIuiYhiHdrwCa2u09+O1QP3ejuWGlSsatgPklkcV7nY499UbirpWalUgsqT4xljRFqyWsM3AHEiXR2JzANJL5KtlhQkwWaV6ABiJDRwKCxGoVCIkZqaLyXt6Mi0BLqqi21ZAMTI3/kIdCUVNQyGkqVMj4rjvr6+cEDVCSecgB07diCXy6GnpweFQiGEZqvVasjlcmg2m+HQLhLK3B1lCU8udDWsFxfDtEVcQFqVuSr/aZ/5XA2Z08qxqw5uvdcq2vQZtVoNlUollg91CAEI6m0l8tUxo/eyb/OdYHsAcw/M5ee2f6gjQsF2bDabc8QBOq6rQ0P7Eg/6BQ6JIqampkIbcEGvpLBuG9fnan9MUntTqEB1u50v2J0D2i48NI7XW9U260QPck3KC5+l3+t4o3MlVdJzDEuKT29V5XTmcJefJccZOk+dFtpXbLgatm07anRXojscy4eV8v4Ui0Ucd9xxKBaLQdxGxTSd/V1dXUilUrjnnntw1113YWJiAo8++ugxJdGjKML4+HgIx6JzQ4oqlJBmaBUdc9Pp2bPYdH7INX87baJjuV4fRVEIg5NOp9Hb24uBgQE0m01MTk6iUqnMGZeZXwoMstlsOEyU8wB11Or93C1Ah4bOhVrN9zgvWUk7IBxHDl+Ttw8n0R2rFplMBn19fdiwYQMGBgawcePG4G1VkmJ6ehoDAwPo6+sL22uPFXQRQ0I/k8mgVqsFRRIX1bVaLSjSGTNViR8ugnXBpIq1xQxe6iVXT3a7UKWULuqSiPmkxR5hCYSF8qy/HWsDbrAdSw1VeSYpRbljRuM9A3FSjgsSJdE5HieNmUq82d02qlxSotqqdyyJrmRaEjmn6dkDN1WBy2dY2B1FNv+E2oqk75IUwHqf7hKy9cCFKGNi0yHA34VCAQCCOorXzMzMxGJAK7GpedJ6sPWoRLGtg6T20NjutN9qk/U+60RX1TDrPEnxa1X/2s7aF7Q+bbqqqGbZVIlv23Q+VbfuHFB1t71W61Fhdy3Yv0ncKonPz3XRz3S0nVulYaHkvSUR9P1Qx1g7cyJLwtu+tdCcRdvC3svvmU+7U8W2Q1Kb2HEnKe+2P2iZbJ9dqC6cRHc41jc6OjqCarq7uxs9PT1Bic7fAwMDSKfT2LBhAwqFQgjVdqzB+OhWEEaxl9rapBAlFCTQvtswe+0gyc6okl1FDplMZk54N2sDdJ6j862kXW+ah1ZzVn4/X3l87F5b8DV5+3AS3bHqwAG+t7cXJ598MrZt24YtW7bMObhN1YKbNm3CqaeeiqGhIezevfuY57nZbAZiXA8bpVHTA0ioUlMjyVAvagS5SF9sGBMS9dyWzq3phUKh5URGDXOtVsPk5GTwdiuxQNKAxAFDu2hZ9HqNO7zeBl/HIbjBdiw1dEyhApW7ZQqFAjKZTCBoNWawOjsbjUYg23VhoYSdDb+gixHGtaSaKJ/PA0AsziavtyE3ONbbdPi3fk47p3nRMdaq1+kU4D1aPr1fYUk+/dz+1oWn2gdVybNeqZAqFAro7e1FT09PCMdGZzcdIdlsFqlUCqVSKRzSzV1ndDKTeNWykpAtl8uhzjXWty6S9X9VofE+tY90YlNJbcci2mfdIUZbqISo3WKt/ULvseFq7CFeVKDp4lftrzrieViZDQWXpK6mopn9hnae12mZrCPDOgLs9/YQM84b2I72vbI7O6wzS50kqvCz6mtC54sdHR0hVq4Sy3xHkg4n5TNYF3a3nKroF3Ji6TP12RrzXJ0u9twD7VckdtjX+Y7w4Du9lveqQ0bHsVZ1Z+EkusPh6OrqwuMf/3j09/dj06ZNwY5XKhVUKhVUq9XYjqy+vj6k02ns37+/7TSs0/pwoSIy+7cdk5PGQNqqdDqNcrkcW8O3my87h5qZmcHk5CQOHjwY7A93eNFuA3PDe01PT4edeRqajfNA7rRLp9NhjhtFUYhZX6lUAjdhFff8vZBTeL1hIefCUt1zrOFr8vbhJLpj1YGGo7u7GyeffDJOOOEEdHd3hwVj0rWbNm0CAGzYsAG7du065gOZLu5Izlgk5Yf3kPheCpAYSKcPxT6rVCrI5XKxuMBJeSMhoyQ6F+AaQ1i3XCv5o+pQ++MkusPhWCpwnOG4wsVDJpNBd3d3UD6XSiWkUocOR2LYBC5EVJmqZJiC47gSUiSseECmHvqk5Jo6QTUcB5/XSnVL2FAXzBudmFzM0YlA4lhjWvNzJSWVRFe7laRmJZTMY7iUZvPQFmg9RFrJUH6mJHpvby+6urqCc4N1FEVRWAQWi0V0dXXFiHUALR0GdEJzAcp2sfnXhad1+qq6XmPn0zGudWUXttzurDvkkpwjhCWB2S60q9ZRoWnROc4t5oz1rs9keBr2E7aVKuqVBNDyKslLIl3riWnYcmhZk9T+fF+VtLUEOZ+hRLJVoOt7yP7ONOYj0S0po89RJZ+2Md8h/p9E4Cc5JXSeo+9DkhiCz0tyKKhyvNUP33Hew7GAYV20X9vdC/M51RwOx9rCUhHTpVIJj3/844OwjWMX14y5XC44K6enp9Hb2wsAi9ohrg7SI103Jj2Dtq2de+k8ZRgUfr6Y9BXN5qFQdcPDw+FcGNoyhv5ShTqhc1c7B7GOeJ6lxrE+m81iZmYmhLexh74qkc48rvf1equ58EL36NzHsfrhJLpjVaPVVtWka6xSfTmxnAMo0242Z08RbzabIdasqho5waB6TeMM66JPVWVczHPrmSqmuEDWA/t065lj/cG93o6jAZKIXHDQBpBYBGbDO9AJaENe2MVDq7+VzNPvVb1u7Y4lyyxBqmOjqk2Tnqfjpz6DebCkGOskibDjM5RI5uTfkpdKCus9SrzpPUmhOZKerYSz/bH3a140HjzbV/Nn60TrScutTt0kFXQSrMpan8f/LembRFzo7/n6jFWA6242zWtSv9L+rn1HF3h0gqsSj2WkfdfyaR9lWfV/zZctU5INsPXRao7Q6t2zJHdSnTabzdgukCSVt1Vn63tj30XrHLHvoTpqLOabl2odK4Fun5XUh/T5eqiydSrYvqmft2Nnj5TQclvucCw/jvQ91DmLHZvU8cv5GEUGrcQC8+VzpY0ZS5EfOud5Hg8dEYVCIYgGWJdTU1NB2c/d6oQKPOg8J8FuBQK6M1zD0Vg7shpU1Csdq6H+fE3ePpxEd6w66EJIF8jzXa/qpvX2kieBhvrAgQMol8solUpoNBrI5/PI5XIh9ICqz3mw2+joKCYnJ2MhE6ampjA+Ph7bbkbjT4UBvfuVSgXj4+Nhiz2Nv7fL+oQbbMdSgws02glV5mrYKqpwq9VqGLv0EFK7sLOkm0LtkoYUUeU1gBhxacNacSzV2ND2Jym2ZbPZDDuV9EwN1oHmRw9l5L2q7JqamgpKJL5fPHyTRFwSCc1dSVbJxEVyPp+PEb/q1LYkOslwJYC1ntQRYNuJz2VZqMZnu+phXaxrpsX60NAdevA11VyEEpNKQNp82+t5KKk6C2gH7SHhVhGsZZ6ZmUGlUgkhibLZLDKZTAgjRKW/9otarYaJiYnYGSxab+xLSriTOGfbaBgdlkvHYu0jeq6AJZn5nSWb2feUdNH88G97IC5hQ+gokpwTdKzZd5v9RndtsC2SysJ07UFzNpxLK2W3kvdKYKhDqlW51ImhfUXHCwol9D3kta0cFDYufSs4ie5wrF4s1fs3PT2N8fHxoKLOZDJhjJmamgph7rLZLCYnJ9HV1YXp6elFKdF1DFtrmJmZwejoKMrlciDPOzs7sW3bNvT39wc7Uy6XUalUMDo6CgCYnJwM9ofjfhRFKJfLABB2ndn5FcPQ8LBS2n4rLtD6Xov1vlgcTh2slnrzNXn7cBLdsSrRSum1EKyHdT2DW+y4BaxQKIRFlYYGmJmZQblcxsjICKrVaiC+7aKQW81IUjDmrS7WSMhXq9WgSPdQLusbbrAdSw0le4FZEljV6Krctec7kES324ZtaApCx0JVASeFsFAlkJLjdDLqAYuqwrVpWNJWf2zccw33QnJNFU36TC7SFK0IdA0tQZJaF2s86JvOVNY707Oqfkumsw6UQLXvvFWIa9uQJFZlfDqdDso3EqSt6lFVyVp3Ns9APIQMn5Wk0NbreT+vsbH8W22x1zao1+uxtNn2JHyZXzogaHfZ3+0uB16r/SKVSsVinnOhbncPJO0K0DmaVWzb+ZvdAadqcPu+2LqgY0adIa12HiYpyS0Rz+/ZFnY3R5JqW/sN25V1184uyCTC35LpJOTnI7Zt/lT5qU6sVCoVC0lk85G0g6QVnER3HCuoiMqxssCwItVqFblcLnyuNpjh7bLZbPhtQ9othLXa9lEUoVaroVarIZ1OhzPL+vv7Y+Q3BQBcd6st1x16nP9wfKaQhA5VOu85J2gVymat1rdjLnxN3j6cRHesOvAlnZycxCOPPIIoirB9+/agvlLig4uJkZERPPTQQzh48GDwzK53KDlRr9eDkjyXy2FychLALKHTaDQCeZ50aApJFE4AJicngxJOF24k0amCs4d1ORwOx5FCY3ECcXKKJKU9zFmVwPpbCUElbJUgtaQeCWMNTULQJnFcpaMyiUTXe5TIBeIxqpVUV0cBHQck0Um+WfLYwhLTSsgrqcb6s2FwWOakvCiBSWKW25c7OztDfHrmk+3Dw7C4a6Berwcyl/WhNp91yf81JjzLouo3jf1N6N9UIye1qb1eFb62j2gcU/1O21h3D9iQIbxelfraf5hGZ2dnqDcukklwsP7sTgBtH/ZRHpxq297GXGff0gW71lkr8LtWdWufq3WozgLOM/g509fnJanQ+Tn7g16b5FBiWupAIZJiuVuHkP2t/VWdCZakZz1YZ0yr+ZP2Lat813pJKh9Jf61Dh2OlYC2tGdaaQ6Ber2P//v2o1Wro6upCb29vbG6QzWYD+Ts6OopHH30UY2NjqFQqa64ujhSst+npaYyNjWHv3r0AgNHR0UCe6xyH4zXvSXLCco3OHVI8xLtarXq9OxyLhJPojlUHGuORkRHcf//92Lt3L57+9Kdj06ZNyGazYYHDxffU1BT27t2L733vexgZGcHQ0NAyl2DlQNVptVottp0eiIfLSYqVRtCjTUKkWq3GiABdLGr8tiQ1l2N9wb3ejqVGPp8PCwTurNFwJQBCaAue91Cr1WILDQAhLjQVUxzTCLtIoeNQ1VVKVKqiWh2TughKUltznCYs6QrEDz/luMuwJao8t4srfaZVBLPe6AxVJzXzRWeEhlphmhrSi6p0kuNMs1aroVwuY3R0FNPT0+jq6kJfX18g/UkAj4+Ph7BhdPiq+tguJkksUxVPxwZ/K/mqbWnP+iChqNcrmaz1yPbVEDLWwaC21SrP2cZK+LdydlCVrE6VqampEO+aJKjWIduJ56Bks1kUi8VY/ait5rxAyefOzk7MzMyEMD38jj8sO8ubz+djczELviPcuWZDkKizn2W1jpCOjo7wbBtux8IS6douhUIhVm8a2khV2blcLnZQLoBY2AK2fSunmzoqWM92hwOdAlbFD8QPFdZ60TKSJNHdE2yjjo4O5HK5WDgpWyfM00LqeU3TleiOlYDVQsaq4GutYHx8HA888ABKpRKOO+44HHfccWE8Y5jQRqOBarWKhx9+GD/84Q8xOTmJ8fHxYH98d/Ih6Hx13759OHjwYPgsiSTnb3WMqq3hrqNqtRrmadyVx51p82G1vFeOI4OvyduHk+iOVYtGo4GxsTGk0+kQ45MLFS4euE1/YmICIyMjGBkZmXPy9HqHXcADh3dSuy74uOjjQl8X86225TvWJ9xgO5YaSl4rOcXxB5glgK2aR1W1GmrDklhJ6k4bHkJ/NA/qUORiSMOAJKlQk/63/Z9p21AuNmxIu9Dy2HJpXnQ8Z32rctmqnVVpy/qo1+vIZrPBZqvd4FZj3XJsd0Qp8a1/q3I3KU+ajuY/qd4XCqFh8zHf2KYLUnudkp5JqmSF2lo6KNj2qobXXQ+tHCmWMFVFm93NwfpLUprz2VoOXdjbUCM2fEhSWBNbXtaT9m91Kug1Nt1W6nQ+Tx0UltzmdRRr8FkaM13L3q6KOylEi5Lvrb5LAsuk74JVx+vYaPsY79GxcCE4ie5wHB7WEpHO+NoUCqjd5RyEDvByuYzx8XFUq9VA8K6VelgqsD7sWTPt3GM/0x16tOF2V5vD4Wvy9uEkumPVYnJyEr/85S9RKpUwPT2NgwcPIpfLoaurC7lcLoQoqdfr+NnPfoaf//znQfXmaA+HMyBaxZUq5RYiFhzrD26wHUuNer0eiEUdc5RUpMqUBKOqowGEAxTT6TTy+Tyy2WyM8OPigwQaSTwNX6LKWkLJcxv/3BLArchygmrYfD4f1PeqlNZdWRrWwZLjCnu4ol1c6c4kVcjzPnXIqqJVnQ5Mk/dXq1UMDw+jUqmEz6kIpvKKqv2JiQlMTEyg0WigVqsFVRYX5vp85kvbkoSuOkqYZxsjXPPP9rffsR/Ygzat04A/GupHn2UdFeyDlvBk+VSJbJ0mSW3Xzlip/ZntoCHX1KkRRVFIi+W3DquknWtJ/bvVPdZho+2ruyuURE+lUqGtW5U/iWhXJ791Rtm2tcQ5CXfWlxIetk8kOZu0zbSebHvwc/4wL6qC17AvrZwvmid1OGpbJYV5mQ9OojtWClZLXzrW+TwWJDXt+fT0NO655x7UarWwq4y2Y3JyElNTU3j44YcxOjoadozpfM2xtND5n12ft9svvF3WB3xN3j6cRHesWvA06XQ6jQMHDuDnP/85crkcNmzYgK6uLpTLZQwODqJWq2F4eBhDQ0OugG4TR1pHqspzOByOYwkqoEgAqqJW46AzXrSSp8ChxSZDkJAMz+VyMfJPYzCTTFOSlGFMNCwDMLuYUdJNoUr0pG25SrCSJM/lciiVSjHST6+lcpvPZV6T1PKqpk3anWTzr4eF8Tol5Fi3Wr+WbK3VahgaGkImkwlEuaqK9QCtRqMR4qOTRGdoHBKIeqgmSU62C/sFiXE9RDupnaampgIJb9XjjUYjlg7bWhXu/J59SUPJ2J0OSuoqgarhNqyyD0AIa2PD7TCvSXa4lY1XUpfkh4a4IRHCd0DzpO/EfA6gpD7Be9R5YvPL9yGbzSaWRcMPkRhnG+kzOQ/UPs88qTNCCfWkcCsMi5L0zugcyLaxdfJY6D2q9Nc8a99Kp9OxUDlKwCv0OVo+hkTS913DDDkcjqODY7UeVftxNNOcmZkJ8c2///3v4/7770c2m8XGjRvR3d2NarWKoaGhsDNKx2fH0YPaT4Wv0R2Ow4eT6I5VC12gV6tVTExMhMOyqFwbGxsLijU/xNLhWHlwr7djqUF1jRJBXECo6pjfqfKVpJQS0jYkCgk6GwYiKeSJVcHbn/lCtZD00rQIVZEmHfypCtykHUC6qJ4Pmn+rWp8vzIMSxJZAt6EleA1J8lqtFlMH8xBWOkP0QFNL8Fp1cpLC2+bzcJGkpG7Vn0iyLzY9VUi3E1rjcJ6v5CqfoeSx1msS9D5bz3pfO3ljO1riWUljJaJtnWj66sxge+h7oX1P+0879WzrQnekZDKZWLghW3c2dNBCIXsWgq13+45pWe17QUcJgECmazigdvPmSnSHw0HobjWew5FOp8P5Mwwt5u+941jskHC0D1+Ttw8n0R2rHlEUoVwuB3XZwYMHg3qL6jUbP9XhcKwMuMF2LDV4SDLDbdhwLUrOArOqSx7Gmc1mkc/nw6GLVt2tBCmAcMiihoCwJD6J/Gq1inq9jkqlErY1a8gGJd6s+pn5Bw4RXsViMRzYxYNPbfgLJZ5JzPO5GqbCku4aK97mhfnT+OZ2K7aSoVSpWwJUFePMJ53h2i6qplZCuVaroV6vx0LLaB6VuGZZ1dlg1Xk6nijxrs4JgmXTAxi1b/G5ukMhm82Gsti6UqjzgX2HQgCtT4Ulj5UAt98n9Q9tS9YRd2B0dnaGsDl2F4HuRLBOpaTdDHpgrD0YlUIHllV3FWg96/vIerJ1qWp63s8wNNaBlU6nUa/XUa1Wg7qc9cLvbZl1POFOgFKpFHtms9kMc1Btb3sIr20rpsM+pbsbbJtrXWioF4V1QNj06HTT8jJtOrYWgpPoDsfKxXK+XzMzMxgbG0O5XA7jyWrZ4WLnR46lxbHaIeFoH74mbx9OojvWBHjgmMPhWH1Yb4bXcXRBMoiKZZLolqTSH4anyOVyyOVyyGazIQQIMEuKcdKv4Tr0UEFVGytZzx9uYWZIEj1E0xLASkbyeSTnGRYkl8uFsDFaNk1fSe4kEnm+OlGiVe9VYq4VeackMKFktJaN6TGedJIimb/T6XQgMqlo448S80qaK5GepJi2sOS53V2g5SPxnOToIBHMNmpFoCeplpX4JfGaFD97Iaji2Sqsk8KOsH1J/iuhatXTVv1v60qJdX2HeE8SQa3P0z5lFdSq/Lfl1TbQstowM1p+jheqxE7aBcLPbQgYhrPhWKN9Xx1BSbtKkqA7QJIU/tpHoygK/UsdIzYdbVvNk/ZhfZ8bjcaCqnzNr8Ox3rESiNeVREpGUYRqtbrc2XCsUKykvuo4BG+P9tDezOgo4Tvf+Q5e8pKXYPv27UilUviHf/iH8N3U1BSuuOIKPPnJT0apVML27dvxxje+EY8++mjsGfV6HX/6p3+KjRs3olQq4aUvfSkefvjhY1wSh8PhcDjWJ1aaLVfSmoSWJXiVjMtkMoE8p6pcD4DU30pcqeqcxCiJXSXL9Te3M5PYt/GZCX0+SXr9YR5J1FpiN0nppXknlDRLIq5ZdqbHNKyaP+nZSVDijvdpvpVMZj0o4a9OCSWkLYGredc6ZFuRaFRVcRK5aUl0VcK3Io4JPWhW6y0pXIktow31Y8MLJYXsUOeHbVMF701y8PBHVcn2PWBZgFk1e5K6uxU5rApq+y6xrtRJYvNlD7W1dWDrV9Ow7an9T5XXfEc19r+2e6ty2/T08FG+r/qj78tCedNya7ravho+yIbpUdW7/q391Dp91EHoWPtYabZ8NeJId2UsVR4cjtUA76uO1YplJdHL5TKe+tSn4uMf//ic7yqVCu677z68733vw3333YevfOUr+NnPfoaXvvSlsesuvfRSfPWrX8Utt9yCu+66C5OTk3jxi1+8arYKORwOx3qGVb8u9sex/FhptpxENYnrpPMwSBYxLEpPTw+6u7tRLBZRKBRihLoeCMn/M5kM8vk88vk80ul0IPxqtRqq1Sqq1SrK5TIqlUr4PTExgfHxcYyOjmJycjKmkLekuRLX2Ww2hJhJ+qECVolH6zxQ0pK/rdrchp1QtbumpYeiqsLfKr6BuQskJToV+iwSiEpAAocISoZpYxgXkpqWiFUCU9uKod5YR0m7FJhPhrFRQpKKZSrEW6nV2b8YHkjV3EwfQOz5SSS9tgX7AcOsqPpdSVVV6Gu5LHEfRVE4YJf9luQxVdnsh0mkryW5WZfqwGBdal9km7Ac+q51dHTEnmvfJeaRcXXZTtqX1Tml7606nZIcF3pI7djYGCYmJsI4wvpg+6vjgX2R0BBL3NWi/7MvZrPZObs6LNGtdW3HNfue6zuu5DfrSHeu8PlaL2wThrIqlUooFApzDnJNwpHacbflKwMrzZbPh4V2EzkcR4q1Pja1eoeO1bvl4//Kg9vx9rGs8oLzzz8f559/fuJ3vb292LlzZ+yzG264Ac94xjOwZ88enHDCCRgbG8ONN96IL37xi3je854HALj55ptx/PHH44477sALXvCCxGdzAUaMj48vUYkcDofDsRgcidFdbwZ7pWKl2XIu1jWUAn/bsCD8rWR5EslGWIU0EA+bYslPIE4QK/lsr9O0+GybD4YsUbKdaVuyMinf+tuGt2iVH02L5VXSnaFwbP0obCgdLRvzrt/Z+tB7VYGbdL1VoyeFodE8tRpH7PW8VutaCX6b56Q+pHWsdaXpaBr6rCRlvAWJby2fhSqc7WdAPFY920ffCebRlsmq8234En3/bB5teZLqgH8ztBDD29h6YB/RtrFq9CSoQ8J+xvxoWfgO8F2y5VPnjt6vfdHep/fatEnUM2yL7oBR2LrVNPRH00mlUqEsJOGVmF8IR2qL3ZavDKw0W54EJ84djqWFhlTx92t9w9fk7WNV7dEbGxtDKpVCX18fAODee+/F1NQUzjvvvHDN9u3bcdppp+Huu+9uaayvvfZafOADHzgWWXY4HA7HPHCDvf5wtG257ReWoKIqk8pXKjCVZNPwHzZeNNMgEU5laBJJSHIqSbXNgyapVlVivrOzM/aZEtokNZOIZC2vvYeEmZLQNuay/q2HcWpICaqclYCz9a+EIaGqeFXfArPEpVVzU32uKmPdWZBUVrtzgG3MOmP5SRRqn7Eqai4ueeYK02cbJRHEqgCempqaQ3wrMakEqYYT4XdWvakEt8brZ/m03myoEW2HpAUzy8B42rY/J8Xd1/+ZX5ZJ25oKc80f30P9W4lsxuS2edV6Zd9UKIlvQ8ywDq26Wutawwqpk0hj2itJr6S29ld1Num7bYl1rbukctg6VjW8fm8dOFoGvjvqNAQQ6lffA92pot/NByfR1yeWY13ufcWxmmFt7nIiKX3a/eXOm2N54Gvy9rFqSPRarYYrr7wSr3vd69DT0wMA2L9/P7LZLPr7+2PXbtmyBfv372/5rKuuugqXX355+H98fBzHH3/80cm4w+FwOBwOAMfGllv1qpJR/M0QHxryg0QhiU7+reQ3iTM99JGhMID4gaDAoQUTCS8lyVTZzRAK+rnGNdb8qzqU5KuG52Ca+luVr5bg0+ex3LyXIUNIyJJMrtfrMYJS65af8xk2pIcNX0FYZ4AlnjV+uVXxK/GubaeHw7Iu9SBSmwc+I5PJxJ6t4V9YFoVVXWucfCXsWR4e1snnMLSLOgqUlGWaSmiSdGYf1fAddreBrWdtIxvTn3nSEEOqTtYyaR0lEejqgNG+oP2SdaHhbFhHGq5E653p6Dtin01MTU3FHCPqXLG7CvhcjZNPaJvT0aGHCStRr/lkPetuDX2X9d1NcjJoefRZ9Xo9lEX7YZLKnM/m8xlWhuW2u0To4NM+43BY+Lrc4Tg8rHSSeiXnzeFYKVgVJPrU1BRe+9rXotls4pOf/OSC1ycpoxScQDocDodjeeFe7/WDY23LkxTaJNxUda4EnJKg9j77bBJuqna1RLE+l9AQGfxff1tFuM2j1oslSXlNUl0oQWph82jjms+nNNa8twJDRdh6XSpY9bp+btNtld9WqixtZ3uvOjk0Lf7orgFtT+aNpCUQP3iU9aWhNJJU47acSfm3qnDr5LFI2nXRql5afd8ulPBP6h9JYWGIVn1uob5oFez6DiXtqmCdqUKPv7W9rOpfSXr73mqZLZLyY59rHR/sa8BsO9sfOtxU/Z5UVkXS2JcEV6KvL/i63OFwONYefE3ePlY8iT41NYULLrgAu3fvxr/9278FbzcAbN26FY1GAyMjIzGv9+DgIM4+++zlyK7D4XA4FgE32OsDx9KWWxUmCeHOzk4UCoWg2qWKU8N92IMkVTWtauDp6WlUq9WgSqXiVdXAJFaVCCVRoIR0Ekml5LmG/1AFsCpT+QyrguZ1VG/bw0OZliqOCSUG+ZtKbgBBrapkoJLG/A5AUBSzfpVQ1vza8BWax/lIeLaPJR+1zbQfaFqWVGTe9eBRKuH1+VbdrES+zR/Lp3H3NZwO+1Sj0Qj9impp5tneR2g+lDTn85inJJW8Hs5pnSu2n2jaLItVyNtdIBoaxb5TNpwQQ4yoOpz9RR0LesipOk00HIzdAaFgXSYpzllv9h3TttezCNgvWBb2aW0L9j1blzo2sR10t4rdiaH1xXrS9lMFuo4XAMJ16XQ6tlNE+x/zy/wwD2yX+eAk+vqBr8sdjsNHkrPSsb5g54YrCb4mbx8LywuWETTUP//5z3HHHXdgYGAg9v3pp5+OTCYTO+hk3759+PGPf+zG2uFwOFYBkhRzi/lxrHwca1uuIRLYR0gg5vN5FItFZLPZWPxsJUOVRNfnqYqTBGSj0UCj0YiRhfYePltDi5AYt4f2WSW1Kuctaajkti2nJRH1WiX9kp7P/KnDgOVUgpEEm60v2xYkG20scz3E1TobkpS3SUgKx2KJeKuY1jAlhNYJr7Wx4209Kylt+06rnQsA5hx2qm2pdT01NRXS1J0TqnDWstt0te2VfM7n88GZ1EoNbe/X+lXltaqvWymbVSGdRKSzfJlMJjiz2A+1Tllv+pl1xmj/bdUGDPXDswg0HZtHrWtb59pmOhbo4cF6r5ZVnRoaH9866tQBZvNhr7Pvtl4/PT2Ner2OWq2Ger0+J1SOlsc6ldo9WNRt+dqHr8sdDofjyDDfvGu54Xa8fSyrEn1ychK/+MUvwv+7d+/G/fffjw0bNmD79u149atfjfvuuw/f+MY3MDMzE+KpbdiwAdlsFr29vXjLW96Cd77znRgYGMCGDRvwrne9C09+8pPDqeAOh8PhcDiOHlaaLVdij+RhLpcLJLYl15JCciSRr0pcaXxufQaRFNqD0GfwXiXWlHTXz2w++BxNO0n9rPGeLRGsebWqcD3sUsOZKPmnh5YSrHsqg+1iQdNVxSyVxnqdrVeFErQKGypHnR+aV3u/lkFJXtueltBV1Tswq15W54L2Adt+duHBOlGyPQm6c0BV5Za41TQ1PRLONn1tZ1vfSWjVDqw/W9/8rfWh713STgYlcnXXBZ0YSe8e+7Hmxe4Osf2L6XO3gobhaVUnTEvTSerHuguAafN+9pVW7xKJcELLTaW+OoaS8qn9Uw9mtd9zXOP39sBTx9rFSrPlDofDsVSwtnq5MJ8wxLF6sKwk+ve//3085znPCf/zUJE3velNuPrqq/G1r30NAPCbv/mbsfu+9a1v4dxzzwUA/PVf/zU6OztxwQUXoFqt4rnPfS5uuummtpQTDofD4VheHMmEZiVMhhwrz5Y3Go0wWe7o6ECxWESxWAwHCpJ0UoVsNptNVHpbYpWqz3q9jkqlgmZz9tBIVZirKtiGOyE5R1LMHiZKAp0Heyalb9W/1hEAIKhN9WBTkmVMi9eTDFYVKlW1Nq+5XC4WYsQqWgklkS0ZrWVV8pTEp9ZHK4KWxL7dKcC8KlnKz7QOrKLXhspodVAmVcuM42uV/rxeiVMlN9WJYtXcVGSzT2rfSKoHlo9KaJaRZVZnAO9XkpwhebQ/MY9JizzrXGrVNnym5oHQQ3b1YExtQ5Zteno67Ipgv+FhpHyfeY91XrQK16K7QphPJfRzuVws7ImS/ABi77a+T1pu9ks6wpTwVyeC5oHl1H6ninLWJcOtpFKpcEAo68CSBKwzfS+YpjoX1THIa5n/duzskdrio2nLR0ZG8I53vCPYoZe+9KW44YYb0NfXN29+PvCBD+Azn/kMRkZGcOaZZ+ITn/gEnvSkJ4Vr6vU63vWud+FLX/pSsFmf/OQncdxxx4VrPvShD+Gf/umfcP/99yObzWJ0dPRoFXNJsNJsuWNtwzqgHY6jBRWJzDdvORZYyaptX5O3j2Ul0c8999x5K7ydxsjn87jhhhtwww03LGXWHA6Hw3EM4AZ79WOl2fKZmZkYeZlOpwNJrvGMFZZAt/m2xKcSp3wukHyIqH2OTuKVBLfhKZLyk3Qv0UrtroSwVQEz7SS1vJJqlphrpQJOqlNLMmpe7feq/k2qTwurqp/vuqSFi11QKZFu88sfdZKw7jRmtVWxa31onjVf/FvV5UxLy6ZKbiWgVXU9n8rdpmWf3UrJ3KpeWn2elKYtg+3Prch7VaNrG9jdE3q9vke2Hfh5q36p6mv+3ar/Jo1tLJN1otnQQ5aYT+rr6viwfZVEf6tn210YzJs68egQ0vbge2/zOB9WMon+ute9Dg8//DC++c1vAgD++I//GG94wxvw9a9/veU9H/7wh/HRj34UN910E379138df/EXf4HnP//5ePDBB9Hd3Q0AuPTSS/H1r38dt9xyCwYGBvDOd74TL37xi3HvvfcGwrjRaOA1r3kNzjrrLNx4441HrYxLhZVmyx3rAzqGO7HuOBrQHWqO1vA1eftY8QeLOhwOh2Ptwg22Y6lBBTpV54x/Dsw9RNKSoUoiqjKaP4xV3Wg05sQ4VmW1VaZSEa6HiZIE1RjPGnLGEo1KihOW9KTadGpqKijQVSmueVX1PQlU5k/jc2uZeF8SAQvMxr22dan3q3LfOhlYB1Y1pHXIeuRvDd1i25QkqLZ5kgOBn7Od9VoqhDX/urNA20aJTg2VovXCPmrJZG1TVbHzepZVw5Lw0EeSqUqm83Obz6S6SCLcFdqmtgzW0aJ9X+sjSa2tB3eqc0jJbyWAtY74mRLR/M46POx9NgyTzWdnZ2dQwfM+S9zr8/QzDYei39v3WsuUyWRQKBTCGEPVuZL43GGjccu1HPxhe2h/1fKzzXgt28M6JaIoCgeMLoSVSqI/8MAD+OY3v4n/+I//wJlnngkA+OxnP4uzzjoLDz74IH7jN34jMS/XX3893vOe9+CVr3wlAODzn/88tmzZgr//+7/H2972NoyNjeHGG2/EF7/4xRCm5Oabb8bxxx+PO+64Ay94wQsAAB/4wAcAADfddNNRKZ9jZcMJ4daYT7DgcCw1knZqOebC1+Ttw0l0h8PhcDgcawYMjVAqlWJkMb9T4s2qvpNU5EpG68F8GiIjKSSLEvd8Bsk6hutgSAb+rWEmrPpd86KhIDTfeqghyTglK1WVT7KaafGH95OwBhBCy7A+WS6r8mXZlbRlnaRSqRiJzjrSiTfT0LZk/lmmWq0WI2+VnNT21BA3qhRPIoKVtE1yVJAQp2OG96uDRR0QrAs+W0lxJYeTDqTVsjDder0+J2QM+0sqlQoxrlWpriFOSMRq/pJ2Osy3zdm+G2wfdb4oEWvDNyQp0G3okiQkLcySCBirmGYft89gHWhetc01XrqS1Or0skQ6+yD7Za1WixH47Dc6JjAvSqizP3N8UWU8688qxZk/u3sllUohn8/PcTIBCOFg2B+to0P7UVJInKOF8fHx2P8MmXS42LVrF3p7ewOBDgC//du/jd7eXtx9992JJPru3buxf/9+nHfeebF8nHPOObj77rvxtre9Dffeey+mpqZi12zfvh2nnXYa7r777kCiO9YvrJ1xHEI7O1scqwftEtPL/S5YsYLDcaSYfw+mw+FwOBxHEUqqHM6Pw2GRpORNWrgtFI4EiB8WOZ9y2KZhSbskpe9C4RKUbFSCc75+b4lWDZWhpKFVydp8W0JVlb1JeZ4vdIV9hiX7WtULy6PErxKuti2Snp+khp8PWg5bN0ntZEOoJKmx2yUN9DqtGz7TEuSEOoXmS8/mzV7XTpxQ1m0rtFLV631JTgyrkNfn2b48X9r2b9vvW71vrfpGq7K2Glfsu2TLp0S9DTmlh9WSgNcdDEkKeILPtU43fmbrTseSpJ0t/LtdO3ukdpxpHH/88ejt7Q0/11577YJpz4f9+/dj8+bNcz7fvHlzOBQz6R4A2LJlS+zzLVu2hO/279+PbDaL/v7+ltc4HA6Hw7Ga4Gvy9uFKdIfD4XAsG47E6K43g+1oD1R98rfGK+dvfp4U25uKUo0drOFD9NBAAHNCJqg6l89S1a0SejbMh6q3lcCnip1pM58k7ZLCuChxzzIqQUfylepXIK5+V0WxPTSVsAefkuzjM6anp2OHK2azWRQKhVCupPjyVLKrop7lajQasVA6rE+2AZXyWk7Wqx6Cqu3BemUs/Xw+DwAhLRtCg9dRpR9FUciThqlRxbIuMJIOk7Q7F0hs6u4FS3hyt4AqwbRf6a4B1rfmyyrBtf34THXC6POtup7PZ/6JXC4Xi8tvSXXtg1RXs2+zrpN2O/A+Jao1pI2qr7VOWG92R4KWK+lAWQVDRWn+tP2039VqtXB/LpeLHeap5eT9fFZnZ2c4wFjDyiQ5G1gW/tb2tuFekpxDBD9j+s1mM7wDC+FIbTHv37t3L3p6esLnrVToV199dQiV0grf+973ACQ7lazjKQn2+3buaecax/qAOqQds/D6WFtotz293VcHfE3ePpxEdzgcDseywQ22Y6mhhKo9mJHkIQldJQKTQluQiGJ4BY03bUkzJR5J2in5aftrUggZq2wGZslSIknNbUM9KFGsjgKrJCbpo3lX8lCJdHs/71EHAmEJZ15P5wbLqspZrRc+Q0PpaJiZpLok+achY5hnEq/aDqpwV+WuhquxeVPHhraTOj+SYmdrXWvdsq+wXvV/zV+S+l6J4yQlupKhURSFgyRZH6xH21daqbVJMCsRq+S0qqEJtgXD0Wib8FoSwFp27UN2BwbLr84Dq7ZWx5DWhT5H64vEO59h4+LbnQXq6LG7PbRtOW6wDoBZMl37BfuNpmkdCOrUY/osK9Oz+VxIwa91qe2qdddOOJelItF7enpiJHorvP3tb8drX/vaea95/OMfjx/+8Id47LHH5nx34MCBOUpzYuvWrQAOqc23bdsWPh8cHAz3bN26FY1GAyMjIzE1+uDgIM4+++wF8+9YHzhWc9RWu7ocDodjMfA1eftwEt3hcDgcDseaQSaTCWpkEoYkqFQJropYJZ+UAFYyW8lUQknsJIKa31nVtSVYLaxSVgk2VZwmEYlKnLUKY6F5TSJ79bfeo2W292hMcHVAsC3YHrxer21nO2iSI0Lzpkp5Ep16MKPeq3HWCd0ZwPRszHKSmFpvlqjU51jFNq9nHpLajG2qZCyfZ+PtU4me1H/5LH2GPfg1qU4XChmi1yf14ySVM0ljVZsT+rxW74R1VlhVflIbaP5s37Lp2Ot1B4mmZctmSf+kOlCHB3ezJOWVIOGfSh06L4F9iPfxXbK7MZLaQh0tmpYl3JlP6whgn1tp2LhxIzZu3LjgdWeddRbGxsZwzz334BnPeAYA4Lvf/S7GxsZakt0nnngitm7dip07d+JpT3sagEO7Uu68805cd911AIDTTz8dmUwGO3fuxAUXXAAA2LdvH3784x/jwx/+8FIU0eFoG74DwrFc0Dmow7GesPJmRg6Hw+FYN3Cvt2OpUSqVUCgUAgFlD/SjepqHeWp4EyWCVfmpB4my31lSmWBafFaj0UC9Xo89n/fpIZVAsspWVcq8TwkzJRep1lbSz4ZxUGJXCVWr9FUouaYK/FQqFSOVGX5ieno6/N1sNpHJZJDP54MzQOtVD12lYtzC5s06ErLZLLLZLDKZTCycD//WgxrZhgxV0dHREdTBvIfp1Gq1WFl5H4CYU4DQ/pbJZJDL5WJKfpY7iqJQ9qSwGdbBw3ZiPabThw69rFQqIS9at7bdbNgQdWZYRwHTVzW39jU6H/QwXX2m5ledQLa9CevwUSU/oSFWpqen5zw/SXGtYZY0XAzT0LrSd4BtyDzSeaY7S7SeWC/q0MhkMpiZmUGtVsPMzAwajQYqlUoYdzg2aTtpX2YfZP+o1+uBSNfxgGGEtN60XFovGhpFif0k8p3hZFiOhbBUSvSlxqmnnorf+73fw1vf+lb87d/+LQDgj//4j/HiF784dqjoE57wBFx77bV4xStegVQqhUsvvRTXXHMNTjnlFJxyyim45pprUCwW8brXvQ4A0Nvbi7e85S145zvfiYGBAWzYsAHvete78OQnPxnPe97zwnP37NmD4eFh7NmzBzMzM7j//vsBAL/2a7+Grq6uo1Jmx/qEz4cdxxpJu9a8Hx4ekoQsywFfk7cPJ9EdDofDsWxwg+1YamgoF0vwAQhkopLgOoEluaQKchtWIkn1RdJRla9KcKtyFJgNA5Ok3FUoEamqUi1PkqLZ3m9V6a3SXkjxzd+q2lUyU+OxMy8aWidJhb5Q2AlbXls+Ja+TlOhKUmqaJEqTQnEkqZfZJ7QOkqDp250ATNvuIFDniv5Wolp3V9BZMR9s2JRWKvNWaOc6vcb2K+u8UucHMDfEzXxp67VJfcXuoLD9WHeAtCoX203zyXQZ7ibp3eD1tg31eyXlWRdJ/cd+xv5BhwD7AcO6WAW5PkPHLE1vIeWqkvLt9IGVSqIDwN/93d/hHe94B8477zwAwEtf+lJ8/OMfj13z4IMPYmxsLPz/7ne/G9VqFRdffDFGRkZw5pln4vbbb0d3d3e45q//+q/R2dmJCy64ANVqFc997nNx0003xULh/H//3/+Hz3/+8+F/Ktu/9a1v4dxzzz0axXU4HI5jitWiRl/p+VwJ+fM1eftwEt3hcDgcywY32I6lRj6fD4f3WRLIqldJjgGzB/Fp6IWkUCxKtlqiTUlkVaJTBathGqiStiEhlFScLxSFktFUNwPJISdIwDHUjebFhhXhs6io1YNZbXgHJYSjKApqYz18lUQfVa9KsrPeGCddY9gnEexaFySW9QBZ/k0C2+4KUPI8KYyMfmcJX9t/tA70e1V7J4X1SBq3NDQM49+rklrLxHZL+l6V5XweMHtAaRRFQeWsbcq20XwmOQmoAtf/mZZer58xf+qAsXVn0ySRncvlYjss7H1WIc+/lfhmmnpwp20Pzav2ce6M0GvVkcLrlSTXfCnJzWsajQZqtVp4vzTUlPYFpg8c6pc8w0EdU5pW0hjC/zV/NtSQQtuP/y/k5NPrDxdH05Zv2LABN99886LST6VSuPrqq3H11Ve3vCefz+OGG27ADTfc0PKam266CTfddNNisus4DCSFVHI4HEcXOm6uhvVY0rxhpcCKAJY7H8f63tUIJ9EdDofD4XCsGeTzeRQKhXBApBLMllwCZhXeJIFJZDYajRCKodVhlnymkmAkpRuNRoxET6fTMYLfhjdhXvhM/mgMZZJaSpaSYExSm/KZJKdzuVwIMaL51zAsDEvBeywBqnm2xPT09HQsBIq9Xg/KZLlIWtqQFElqdW0DS5zr/6raZr6V6OcPyX5Ng84TbedWamltd5KlSTsgrNJer6XDgg4GHsLJkB/qvFAyXdXJ/FwdPtoPtLx0LhHqrGH/Zf7pcFHSWNX6fF9sn1BSneXU+uT9zCfzzfuYNutOQ/7oYa9av9oXSSSzLdkntO5t/m3+1PmkjhUl9Hkd61jbknXFPs12qdfrqFQqsfzob747wCGnF59l0+X7bwlEbXd9to6D+Xw+1u7aXmyTVo4Uh2O5YHexAHMdPU6kOxzHDquNOLVCiJWU/5WUF8fC8JmRw+FwOJYNqgQ9nJ/F4pOf/CROPPFE5PN5nH766fj3f//3ea+/8847cfrppyOfz+Okk07Cpz/96TnXfPnLX8YTn/hE5HI5PPGJT8RXv/rVRacbRRGuvvpqbN++HYVCAeeeey5+8pOfLLp8DsyJMw5gTp9RQjZJaWo/U6LbQok7+wySfUoOKjGaFF5ioQn+fO+CjbOsPxpr2qbBsiWFMVkoT3q/3qtpJT1fiemkWN22DZLKpcplVdcmxXkm5gsdY9PT5ySRiTZfWu75nmt3G2gfmE/1bAl7W2btW/ZZSX1pvnrS/CnJrPnVvt/OeJxEylrngr3eHojaLqk7n71o1Ye1fdQhktSeSekl7Z6wO0fUgZS008WONdr/7Bii75jmMalddTxKgu3nSbsuWuFI7biTBw6Hw+FwLC+Ww46v1HX5QnAS3eFwOBzLhmNpsG+99VZceumleM973oMf/OAH+J3f+R2cf/752LNnT+L1u3fvxgtf+EL8zu/8Dn7wgx/gz/7sz/COd7wDX/7yl8M1u3btwoUXXog3vOEN+M///E+84Q1vwAUXXIDvfve7i0r3wx/+MD760Y/i4x//OL73ve9h69ateP7zn4+JiYlF1qiDJLoesqk/lkhiOJSpqSnU6/WgHLfxhAkNN2IJMT1Qk+lkMhmUSiUUi0UUi0UUCgUUCoU5xLEqWi0xqepjm18qeK1imT88yDCbzYa6IbGtz6LaV+PAA7PhLRgGxCq5GfqGan0bk57lsmFjeKCn/qTT6fCser2Oer0e1MRRFMXyksvlkM/nYweKajgXlo35tHWqIVGsaptqbD5bD9Ek9NlUvtvr2Hf0WqatKm3NO+tK24QHj2rd684Cti9/M/SHpptEUGuetW6o5NZ+ZRX/umNA+5CtYw2tY0lpJZaVUGY9sUz6o23MvNqyaBpJDi5C3yv2Nw1Rw/fHpqlji5LgUXToMNBarRYO/dQ+YA8sZrvqu8ddMLojgn1E88J21vMG2A95reZZ0016z5OcUhoSaT44ie44FkjqL/YdXCmwIa4cKwPWae1YfTiS9nO7Mz+OtR1fyevyhZCKvAdhfHwcvb29y50Nh8PhWHMYGxtDT0/PnM+XctxtlYbFmWeeiac//en41Kc+FT479dRT8fKXvxzXXnvtnOuvuOIKfO1rX8MDDzwQPrvooovwn//5n9i1axcA4MILL8T4+Dj++Z//OVzze7/3e+jv78eXvvSlttKNogjbt2/HpZdeiiuuuAIAUK/XsWXLFlx33XV429vetsgaWZ9gn3rZy16Gzs7OWKxzqwolKUWyncQlSWmGkAAQiK5W0BArStIpAU5yr1QqBYKT5BRjiJOM1Ocyz3y+EsIk6TRcC6F/k3BOpVKBWNNQFvV6HdVqFTMzM5icnEStVgsEdzqdRi6XQ7FYjBGg+vxarYZyuRwjAIHZONjZbBalUikQsSy3En9si1qthlqthqmpKUxMTKBarYYQMcwzw80Ui0VkMhkUi0UMDAwgm80in8/HQlWwHUhIjo+PY2RkJEa6dHZ2BqeGqraVzCVI7uvUOZVKIZ/Po7OzE/l8Hl1dXaGuWNfsV9rumk6lUsHU1BTK5TKGhoYwNTUVI9aLxWIgTYvFYsxRoapphh9qNpuoVquh3viTyWTQ3d0dc4hEUYRarYZ6vR7aDZgNi2QdB5OTk+Hd0D7G/BQKhZijQ/tLvV7HgQMHUC6XA9ncbDbR1dUV6i2fz8dC8jAsC9uQYZbUMaL9n/2afTeVSsXOH2DbKLHOOOUAUCgUQix2Oob4vabF9lVnhZLl9j0kenp6wvuQRPprGCW2Own3ZrMZ3hG+F6wPjh3sG7yW7yP7LJ1PTJ/jB8NL2XqpVqv493//90Q7u9Trp3ZtuWNtYy2syzU02Xw7QNYz1EYfq/uTwl05Vg/s3M7bcPE42rZ8MXZ8pa7L24HHRIfHIHI4HI6jhWMxvo6Pj8f+p2JR0Wg0cO+99+LKK6+MfX7eeefh7rvvTnzurl27cN5558U+e8ELXoAbb7wxkFy7du3CZZddNuea66+/vu10d+/ejf3798fSyuVyOOecc3D33Xc7id4m2NdIfM1Houv/SqIrSU1SKolMtenqjyXRNR4yFcQk8ZhfklaLIdFV/UrlLGH/1ljrLJOSflYly2tUeU4luFXW6b1aV0ogMCa8De2i/5MstfmxCna9T9X0VLGrup/twDpOeq72AVVRJ7W71rnWL3cDaF1puBNVt/NeS9ZbRbPdPcEfe8Cm9ifbrtpX2H7sg0qi23ZjuyYdJJq0m8Mq+fVzJdHtbgfbhrxf+4XeZ9tQ20z7tr5Puujmc1V5r32cZSSZrHmy44ju1LB1PR+JrvWq75Qq55lPjclOEl13KNh3RWHzov1a25V1wHdESXStF18rOY4V1kJf03HekYwjrZvDud/bZXVD283b8PBwtOutnTU5sLLX5e3ASXQABw8eXO4sOBwOx5rExMREonc7m81i69at2L9//xE9v6urC8cff3zss/e///24+uqrY58NDQ1hZmYGW7ZsiX2+ZcuWlnnYv39/4vXT09MYGhrCtm3bWl7DZ7aTLn8nXfOrX/2qVdEdBrTlt9122zLnxHEs4HM3h+PYIcmWL5UdB4CtW7eGw2Qd6xtrYWxfSaFlHLNw4nX1w9vwyHA0bXm7a3JgZa/L24GT6AA2bNgAANizZ8+q3z6mGB8fx/HHH4+9e/eume2RXqbVg7VYrrVYJuDolCuKIkxMTGD79u2J3+fzeezevXveMBntpmPVfkkebyLpsLWFDtaz19vP23nmUl3jaI21aMt9zFk9WItlAtZmudZimYBjb8uXyo4DCOGYHA635asHa7Fca7FMwNos11osE7B6bfli1+TAyl6Xzwcn0TG7DbW3t3dNvYBET0/PmiuXl2n1YC2Way2WCVj6ci20+GH84mOBjRs3oqOjY46XeXBwcI43mkjyyg8ODqKzsxMDAwPzXsNntpPu1q1bARzysG/btq2tvDnmYi3bch9zVg/WYpmAtVmutVgm4Nja8mNpxx3rA27LVx/WYrnWYpmAtVmutVgmYG3b8pW8Lm8HfmS0w+FwONY8stksTj/9dOzcuTP2+c6dO3H22Wcn3nPWWWfNuf7222/HGWecgUwmM+81fGY76Z544onYunVr7JpGo4E777yzZd4cDofD4XA4HA6Hw+FYTVjJ6/J24Ep0h8PhcKwLXH755XjDG96AM844A2eddRY+85nPYM+ePbjooosAAFdddRUeeeQRfOELXwBw6MTvj3/847j88svx1re+Fbt27cKNN94YTvcGgEsuuQTPfvazcd111+FlL3sZ/vEf/xF33HEH7rrrrrbTTaVSuPTSS3HNNdfglFNOwSmnnIJrrrkGxWIRr3vd645hDTkcDofD4XA4HA6Hw3H0sFLX5e3ASXQcitXz/ve/f8GYPasNa7FcXqbVg7VYrrVYJmDtlsviwgsvxMGDB/HBD34Q+/btw2mnnYbbbrsNO3bsAADs27cPe/bsCdefeOKJuO2223DZZZfhE5/4BLZv346PfexjeNWrXhWuOfvss3HLLbfgve99L973vvfh5JNPxq233oozzzyz7XQB4N3vfjeq1SouvvhijIyM4Mwzz8Ttt9+O7u7uY1AzawNrsR+vxTIBa7Nca7FMwNos11osE7B2y+VYX1iL/XgtlglYm+Vai2UC1ma51mKZgLVbLouVvC5fCKnIj7h1OBwOh8PhcDgcDofD4XA4HA6HIxEeE93hcDgcDofD4XA4HA6Hw+FwOByOFnAS3eFwOBwOh8PhcDgcDofD4XA4HI4WcBLd4XA4HA6Hw+FwOBwOh8PhcDgcjhZwEt3hcDgcDofD4XA4HA6Hw+FwOByOFlj3JPonP/lJnHjiicjn8zj99NPx7//+78udpUXh2muvxW/91m+hu7sbmzdvxstf/nI8+OCDsWuiKMLVV1+N7du3o1Ao4Nxzz8VPfvKTZcrx4nHttdcilUrh0ksvDZ+t1jI98sgj+IM/+AMMDAygWCziN3/zN3HvvfeG71dbuaanp/He974XJ554IgqFAk466SR88IMfRLPZDNeshjJ95zvfwUte8hJs374dqVQK//AP/xD7vp0y1Ot1/Omf/ik2btyIUqmEl770pXj44YePYSnimK9MU1NTuOKKK/DkJz8ZpVIJ27dvxxvf+EY8+uijsWestDI5HK3gtnzlY63Y8rVmx4G1YcvXoh0H3JY71hdWsy1fD3YccFu+kuG2/BBWos1zW77GEK1j3HLLLVEmk4k++9nPRj/96U+jSy65JCqVStGvfvWr5c5a23jBC14Qfe5zn4t+/OMfR/fff3/0ohe9KDrhhBOiycnJcM1f/uVfRt3d3dGXv/zl6Ec/+lF04YUXRtu2bYvGx8eXMeft4Z577oke//jHR095ylOiSy65JHy+Gss0PDwc7dixI3rzm98cffe73412794d3XHHHdEvfvGLcM1qK9df/MVfRAMDA9E3vvGNaPfu3dH/+T//J+rq6oquv/76cM1qKNNtt90Wvec974m+/OUvRwCir371q7Hv2ynDRRddFD3ucY+Ldu7cGd13333Rc57znOipT31qND09fYxLcwjzlWl0dDR63vOeF916663R//t//y/atWtXdOaZZ0ann3567BkrrUwORxLclq+csbQV1ootX4t2PIrWhi1fi3Y8ityWO9YPVrstX+t2PIrclq/kMkWR23JiJdo8t+VrC+uaRH/GM54RXXTRRbHPnvCEJ0RXXnnlMuXoyDE4OBgBiO68884oiqKo2WxGW7dujf7yL/8yXFOr1aLe3t7o05/+9HJlsy1MTExEp5xySrRz587onHPOCcZ6tZbpiiuuiJ71rGe1/H41lutFL3pR9N/+23+LffbKV74y+oM/+IMoilZnmaxha6cMo6OjUSaTiW655ZZwzSOPPBKl0+nom9/85jHLeyskTUIs7rnnnghAWKys9DI5HITb8pU5lhJryZavRTseRWvPlq9FOx5FbssdaxtrzZavJTseRW7LV3qZoshteRStDpvntnz1Y92Gc2k0Grj33ntx3nnnxT4/77zzcPfddy9Tro4cY2NjAIANGzYAAHbv3o39+/fHypnL5XDOOees+HL+9//+3/GiF70Iz3ve82Kfr9Yyfe1rX8MZZ5yB17zmNdi8eTOe9rSn4bOf/Wz4fjWW61nPehb+9V//FT/72c8AAP/5n/+Ju+66Cy984QsBrM4yWbRThnvvvRdTU1Oxa7Zv347TTjtt1ZRzbGwMqVQKfX19ANZGmRxrH27LV/5YupZs+Vq048Dat+XrxY4DbssdqxNr0ZavJTsOuC1f6WUC3JYDa8fmuS1f2ehc7gwsF4aGhjAzM4MtW7bEPt+yZQv279+/TLk6MkRRhMsvvxzPetazcNpppwFAKEtSOX/1q18d8zy2i1tuuQX33Xcfvve97835brWW6b/+67/wqU99Cpdffjn+7M/+DPfccw/e8Y53IJfL4Y1vfOOqLNcVV1yBsbExPOEJT0BHRwdmZmbwoQ99CL//+78PYPW2laKdMuzfvx/ZbBb9/f1zrlkN40mtVsOVV16J173udejp6QGw+svkWB9wW76yx9K1ZsvXoh0H1r4tXw92HHBb7li9WGu2fC3ZccBtObGSywS4Lec1q93muS1f+Vi3JDqRSqVi/0dRNOez1YK3v/3t+OEPf4i77rprznerqZx79+7FJZdcgttvvx35fL7ldaupTADQbDZxxhln4JprrgEAPO1pT8NPfvITfOpTn8Ib3/jGcN1qKtett96Km2++GX//93+PJz3pSbj//vtx6aWXYvv27XjTm94UrltNZWqFwynDaijn1NQUXvva16LZbOKTn/zkgtevhjI51h/WwhhDuC1fuWVai3YcWD+2fK3accBtuWNtYLWPMcRaseOA23LFSi4T4LZ8PqyWMrotXx1Yt+FcNm7ciI6Ojjmem8HBwTnerdWAP/3TP8XXvvY1fOtb38Jxxx0XPt+6dSsArKpy3nvvvRgcHMTpp5+Ozs5OdHZ24s4778THPvYxdHZ2hnyvpjIBwLZt2/DEJz4x9tmpp56KPXv2AFidbfU//sf/wJVXXonXvva1ePKTn4w3vOENuOyyy3DttdcCWJ1lsminDFu3bkWj0cDIyEjLa1YipqamcMEFF2D37t3YuXNn8HYDq7dMjvUFt+Urt5xr0ZavRTsOrH1bvpbtOOC23LH6sZZs+Vqy44DbcsVKLhPgtpzXrFab57Z89WDdkujZbBann346du7cGft8586dOPvss5cpV4tHFEV4+9vfjq985Sv4t3/7N5x44omx70888URs3bo1Vs5Go4E777xzxZbzuc99Ln70ox/h/vvvDz9nnHEGXv/61+P+++/HSSedtOrKBADPfOYz8eCDD8Y++9nPfoYdO3YAWJ1tValUkE7Hh5GOjg40m00Aq7NMFu2U4fTTT0cmk4lds2/fPvz4xz9eseWkof75z3+OO+64AwMDA7HvV2OZHOsPbstX7li6Fm35WrTjwNq35WvVjgNuyx1rA2vBlq9FOw64LSdWepkAt+XA6rV5bstXGY7F6aUrFbfcckuUyWSiG2+8MfrpT38aXXrppVGpVIoeeuih5c5a2/iTP/mTqLe3N/r2t78d7du3L/xUKpVwzV/+5V9Gvb290Ve+8pXoRz/6UfT7v//70bZt26Lx8fFlzPnioKeAR9HqLNM999wTdXZ2Rh/60Iein//859Hf/d3fRcViMbr55pvDNautXG9605uixz3ucdE3vvGNaPfu3dFXvvKVaOPGjdG73/3ucM1qKNPExET0gx/8IPrBD34QAYg++tGPRj/4wQ/CidjtlOGiiy6KjjvuuOiOO+6I7rvvvuh3f/d3o6c+9anR9PT0iivT1NRU9NKXvjQ67rjjovvvvz82dtTr9RVbJocjCW7LV85YuhBWuy1fi3Y8itaGLV+LdjyK3JY71g9Wuy1fL3Y8ityWr1S4LT+ElWjz3JavLaxrEj2KougTn/hEtGPHjiibzUZPf/rTozvvvHO5s7QoAEj8+dznPheuaTab0fvf//5o69atUS6Xi5797GdHP/rRj5Yv04cBa6xXa5m+/vWvR6eddlqUy+WiJzzhCdFnPvOZ2PerrVzj4+PRJZdcEp1wwglRPp+PTjrppOg973lPbMBfDWX61re+lfgevelNb4qiqL0yVKvV6O1vf3u0YcOGqFAoRC9+8YujPXv2LENpDmG+Mu3evbvl2PGtb31rxZbJ4WgFt+WrA2vBlq81Ox5Fa8OWr0U7HkVuyx3rC6vZlq8XOx5FbstXKtyWH8JKtHluy9cWUlEURYevY3c4HA6Hw+FwOBwOh8PhcDgcDodj7WLdxkR3OBwOh8PhcDgcDofD4XA4HA6HYyE4ie5wOBwOh8PhcDgcDofD4XA4HA5HCziJ7nA4HA6Hw+FwOBwOh8PhcDgcDkcLOInucDgcDofD4XA4HA6Hw+FwOBwORws4ie5wOBwOh8PhcDgcDofD4XA4HA5HCziJ7nA4HA6Hw+FwOBwOh8PhcDgcDkcLOInucDgcDofD4XA4HA6Hw+FwOBwORws4ie5wOBwOh8PhcDgcDofD4XA4HA5HCziJ7nAIzj33XFx66aWr5rlLjYceegipVAr333//cmfF4XA4HI7Dgttyt+UOh8PhWN1wW+623OFYiehc7gw4HOsBX/nKV5DJZI5Zet/+9rfxnOc8ByMjI+jr6ztm6TocDofDsVbhttzhcDgcjtUNt+UOh+NI4CS6w3EUMTU1hUwmgw0bNix3VhwOh8PhcBwG3JY7HA6Hw7G64bbc4XAsBTyci8Nh0Gw28e53vxsbNmzA1q1bcfXVV4fv9uzZg5e97GXo6upCT08PLrjgAjz22GPh+6uvvhq/+Zu/if/1v/4XTjrpJORyOURRFNs29u1vfxupVGrOz5vf/ObwnE996lM4+eSTkc1m8Ru/8Rv44he/GMtjKpXC//yf/xOveMUrUCwWccopp+BrX/sagENbv57znOcAAPr7+2PP/uY3v4lnPetZ6Ovrw8DAAF784hfjl7/85WHV0wc/+EFs374dBw8eDJ+99KUvxbOf/Ww0m83DeqbD4XA4HEsBt+XtwW25w+FwOFYq3Ja3B7flDsexg5PoDofB5z//eZRKJXz3u9/Fhz/8YXzwgx/Ezp07EUURXv7yl2N4eBh33nkndu7ciV/+8pe48MILY/f/4he/wP/+3/8bX/7ylxNjmJ199tnYt29f+Pm3f/s35PN5PPvZzwYAfPWrX8Ull1yCd77znfjxj3+Mt73tbfjDP/xDfOtb34o95wMf+AAuuOAC/PCHP8QLX/hCvP71r8fw8DCOP/54fPnLXwYAPPjgg9i3bx/+5m/+BgBQLpdx+eWX43vf+x7+9V//Fel0Gq94xSsOy7i+5z3vweMf/3j80R/9EQDg05/+NL7zne/gi1/8ItJpH1ocDofDsXxwW94e3JY7HA6HY6XCbXl7cFvucBxDRA6HI+Ccc86JnvWsZ8U++63f+q3oiiuuiG6//faoo6Mj2rNnT/juJz/5SQQguueee6IoiqL3v//9USaTiQYHB+c895JLLpmT3tDQUHTyySdHF198cfjs7LPPjt761rfGrnvNa14TvfCFLwz/A4je+973hv8nJyejVCoV/fM//3MURVH0rW99KwIQjYyMzFvewcHBCED0ox/9KIqiKNq9e3cEIPrBD34w733EL3/5y6i7uzu64ooromKxGN18881t3edwOBwOx9GC23K35Q6Hw+FY3XBb7rbc4ViJcLeUw2HwlKc8Jfb/tm3bMDg4iAceeADHH388jj/++PDdE5/4RPT19eGBBx4In+3YsQObNm1aMJ2pqSm86lWvwgknnBA80gDwwAMP4JnPfGbs2mc+85mxNGw+S6USuru7MTg4OG+av/zlL/G6170OJ510Enp6enDiiScCOLQd7nBw0kkn4a/+6q9w3XXX4SUveQle//rXH9ZzHA6Hw+FYSrgtbx9uyx0Oh8OxEuG2vH24LXc4jg38YFGHw8Ce1p1KpdBsNhFFEVKp1Jzr7eelUqmtdP7kT/4Ee/bswfe+9z10dsZfRZtOUtqt8jkfXvKSl+D444/HZz/7WWzfvh3NZhOnnXYaGo1GW3lOwne+8x10dHTgoYcewvT09JyyOBwOh8NxrOG2fHFwW+5wOByOlQa35YuD23KH4+jDlegOR5t44hOfiD179mDv3r3hs5/+9KcYGxvDqaeeuqhnffSjH8Wtt96Kr33taxgYGIh9d+qpp+Kuu+6KfXb33XcvKo1sNgsAmJmZCZ8dPHgQDzzwAN773vfiuc99Lk499VSMjIwsKt8Wt956K77yla/g29/+Nvbu3Ys///M/P6LnORwOh8NxNOG2fC7cljscDodjNcFt+Vy4LXc4jg3cNeVwtInnPe95eMpTnoLXv/71uP766zE9PY2LL74Y55xzDs4444y2n3PHHXfg3e9+Nz7xiU9g48aN2L9/PwCgUCigt7cX/+N//A9ccMEFePrTn47nPve5+PrXv46vfOUruOOOO9pOY8eOHUilUvjGN76BF77whSgUCujv78fAwAA+85nPYNu2bdizZw+uvPLKRdcD8fDDD+NP/uRPcN111+FZz3oWbrrpJrzoRS/C+eefj9/+7d8+7Oc6HA6Hw3G04LY8DrflDofD4VhtcFseh9tyh+PYwZXoDkebSKVS+Id/+Af09/fj2c9+Np73vOfhpJNOwq233rqo59x1112YmZnBRRddhG3btoWfSy65BADw8pe/HH/zN3+Dj3zkI3jSk56Ev/3bv8XnPvc5nHvuuW2n8bjHPQ4f+MAHcOWVV2LLli14+9vfjnQ6jVtuuQX33nsvTjvtNFx22WX4yEc+sqi8E1EU4c1vfjOe8Yxn4O1vfzsA4PnPfz7e/va34w/+4A8wOTl5WM91OBwOh+Nowm35LNyWOxwOh2M1wm35LNyWOxzHFqkoiqLlzoTD4XA4HA6Hw+FwOBwOh8PhcDgcKxGuRHc4HA6Hw+FwOBwOh8PhcDgcDoejBZxEdzgcibjooovQ1dWV+HPRRRctd/YcDofD4XAsALflDofD4XCsbrgtdzhWDjyci8PhSMTg4CDGx8cTv+vp6cHmzZuPcY4cDofD4XAsBm7LHQ6Hw+FY3XBb7nCsHDiJ7nA4HA6Hw+FwOBwOh8PhcDgcDkcLeDgXh8PhcDgcDofD4XA4HA6Hw+FwOFrASXSHw+FwOBwOh8PhcDgcDofD4XA4WsBJdIfD4XA4HA6Hw+FwOBwOh8PhcDhawEl0h8PhcDgcDofD4XA4HA6Hw+FwOFrASXSHw+FwOBwOh8PhcDgcDofD4XA4WsBJdIfD4XA4HA6Hw+FwOBwOh8PhcDhawEl0h8PhcDgcDofD4XA4HA6Hw+FwOFrg/wftn2vrZ40nEQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 30, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "algo=FISTA(initial=ig.allocate(0), f=F, g=G, update_objective_interval=10) \n", + "algo.run(500, callbacks=[img_qual_callback])\n", + "show2D([ground_truth, recon, algo.solution], title = ['Ground Truth', 'FDK Reconstruction', 'TV solution'], origin = 'upper', num_cols = 3)" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 31, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAGsCAYAAAAPJKchAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAt2UlEQVR4nO3df3RU5b3v8c9MJpkESMIvCQQCxh9UFKWaVJtQ6u94UOl1nV6lR1uoQm9Tf0JqT42cVZTlauw51UU9CmoVOd5yCqsHdXF7qJreVkCwVwmkIlClgiZAYgxKEn7l1zz3j8xMMskEMmFmPyT7/VprVpI9e2Y/88jy+cx3P/vZHmOMEQAAgCVe2w0AAADuRhgBAABWEUYAAIBVhBEAAGAVYQQAAFhFGAEAAFYRRgAAgFWEEQAAYBVhBAAAWEUYAQAAVg2oMLJx40bNmjVL2dnZ8ng8eu211xJ+zAMHDui73/2uRo0apSFDhuirX/2qKioqEn5cAADcYkCFkaNHj2ratGl6+umnHTnel19+qenTpys5OVl/+MMftGvXLj3xxBMaPny4I8cHAMANPAP1Rnkej0evvvqqbrnllvC2lpYW/cu//ItWrVqlw4cPa+rUqfrFL36hq666ql/HeOihh7R582Zt2rQpPo0GAAA9DKjKyKnceeed2rx5s1avXq33339ft956q/7hH/5Be/bs6df7rVu3Tvn5+br11ls1ZswYXXrppfr1r38d51YDAOBug6Yy8vHHH+v888/X/v37lZ2dHd7vuuuu0+WXX66f//znMR8jNTVVklRSUqJbb71V7777rhYsWKDnnntOc+bMicvnAADA7Xy2GxAv27ZtkzFGkydPjtje3NysUaNGSZI++eQT5ebmnvR97rnnnvCclEAgoPz8/HCQufTSS7Vz504tX76cMAIAQJwMmjASCASUlJSkiooKJSUlRTw3bNgwSdL48eO1e/fuk77PiBEjwr+PGzdOF154YcTzU6ZM0dq1a+PUagAAMGjCyKWXXqr29nbV1dVpxowZUfdJTk7WBRdc0Of3nD59uj788MOIbR999JEmTZp0Wm0FAACdBlQYOXLkiP7+97+H/963b58qKys1cuRITZ48WXfccYfmzJmjJ554Qpdeeqnq6+v1pz/9SRdffLFuvPHGmI+3cOFCFRYW6uc//7luu+02vfvuu3r++ef1/PPPx/NjAQDgagNqAutbb72lq6++usf2uXPnauXKlWptbdVjjz2ml19+WQcOHNCoUaNUUFCgRx99VBdffHG/jvn73/9epaWl2rNnj3Jzc1VSUqIf/OAHp/tRAABA0IAKIwAAYPAZVOuMAACAgYcwAgAArBoQE1gDgYAOHjyo9PR0eTwe280BAAB9YIxRU1OTsrOz5fX2Xv8YEGHk4MGDysnJsd0MAADQD9XV1ZowYUKvzw+IMJKeni6p48NkZGRYbg0AAOiLxsZG5eTkhMfx3gyIMBI6NZORkUEYAQBggDnVFAsmsAIAAKsIIwAAwCrCCAAAsIowAgAArCKMAAAAqwgjAADAKsIIAACwijACAACsIowAAACrCCMAAMAqwggAALCKMAIAAKwaEDfKS5S1Ffv1wcEGZWWk6q7puUrxkc0AAHCaq8PIho8+17q/HpQkfSUrXVdfMMZyiwAAcB9XlwKuvzAr/PuR5jaLLQEAwL1cHUZmTctW4bmjJEkBYyy3BgAAd3J1GJEkr8djuwkAALia68NIKItQGQEAwA7CSDCNkEUAALCDMBL8GSCMAABghevDiDeYRgylEQAArHB9GOE0DQAAdrk+jIQrIyKNAABgg+vDSGjWCHNGAACww/VhpHPOiN12AADgVq4PI6wzAgCAXa4PI6EVWIkiAADY4fow4uHSXgAArCKMcGkvAABWEUaCP5kzAgCAHa4PI14qIwAAWOX6MMLVNAAA2EUYsd0AAABczvVhJHSahsoIAAB2xBxGNm7cqFmzZik7O1sej0evvfbaKV+zYcMG5eXlKTU1Veecc46effbZ/rQ1MViBFQAAq2IOI0ePHtW0adP09NNP92n/ffv26cYbb9SMGTO0fft2Pfzww7r//vu1du3amBubCCx6BgCAXb5YXzBz5kzNnDmzz/s/++yzmjhxopYuXSpJmjJlirZu3apf/vKX+va3vx3r4eOOS3sBALAr4XNG3nnnHRUVFUVsu+GGG7R161a1trZGfU1zc7MaGxsjHonCpb0AANiV8DBSW1urrKysiG1ZWVlqa2tTfX191NeUlZUpMzMz/MjJyUlY+1gOHgAAuxy5mia05HpIaODvvj2ktLRUDQ0N4Ud1dXXC20YWAQDAjpjnjMRq7Nixqq2tjdhWV1cnn8+nUaNGRX2N3++X3+9PdNMkdV30zJHDAQCAbhJeGSkoKFB5eXnEtjfffFP5+flKTk5O9OFPyRs6TcP1NAAAWBFzGDly5IgqKytVWVkpqePS3crKSlVVVUnqOMUyZ86c8P7FxcX69NNPVVJSot27d2vFihV68cUX9eCDD8bnE5wmj0KLnlluCAAALhXzaZqtW7fq6quvDv9dUlIiSZo7d65WrlypmpqacDCRpNzcXK1fv14LFy7UM888o+zsbD311FNnxGW9UmdlhEkjAADYEXMYueqqq0565cnKlSt7bLvyyiu1bdu2WA/lCI+HyggAADa5/t40HuaMAABgFWGEOSMAAFjl+jDi5UZ5AABY5fowwgqsAADY5fowwl17AQCwy/VhJHTb3gCTRgAAsML1YYTKCAAAdrk+jITWPAswZwQAACtcH0a83LUXAACrXB9GuJoGAAC7CCPMGQEAwCrCSPAnc0YAALDD9WGEOSMAANjl+jASmjPCMiMAANjh+jASujcNs0YAALDD9WEkNIE1ELDcEAAAXIowErq0l8oIAABWEEaC19MwZwQAADtcH0a84UXP7LYDAAC3cn0YYQVWAADscn0Y4a69AADY5fowEsIKrAAA2OH6MMIKrAAA2OX6MNK5AitpBAAAGwgjwZ9EEQAA7HB9GPF6Q6dpiCMAANjg+jASroyQRQAAsIIwwgRWAACsIowwgRUAAKtcH0ZY9AwAALtcH0Y654wQRwAAsMH1YYRFzwAAsMv1YUTMGQEAwCrXhxHmjAAAYJfrw0hozkiANAIAgBWuDyPeYA8wgRUAADtcH0Y8YgIrAAA2EUaC52kMs0YAALCCMBJMI4GA5YYAAOBSrg8jXiojAABY5fowEpozwtU0AADY4fow4g2vB2+1GQAAuJbrwwh37QUAwC7CCCuwAgBgFWEk+JPKCAAAdrg+jHDXXgAA7HJ9GAkvekYaAQDACteHEe7aCwCAXa4PI+JqGgAArHJ9GGHOCAAAdrk+jHReTWO1GQAAuJbrw0hnZYQ0AgCADf0KI8uWLVNubq5SU1OVl5enTZs2nXT/VatWadq0aRoyZIjGjRunO++8U4cOHepXg+Ot82oau+0AAMCtYg4ja9as0YIFC7Ro0SJt375dM2bM0MyZM1VVVRV1/7fffltz5szRvHnztHPnTv3ud7/Te++9p/nz55924+PBw117AQCwKuYw8uSTT2revHmaP3++pkyZoqVLlyonJ0fLly+Puv9f/vIXnX322br//vuVm5urb3zjG/rhD3+orVu3nnbj44G79gIAYFdMYaSlpUUVFRUqKiqK2F5UVKQtW7ZEfU1hYaH279+v9evXyxijzz77TP/1X/+lm266qdfjNDc3q7GxMeKRKF4WPQMAwKqYwkh9fb3a29uVlZUVsT0rK0u1tbVRX1NYWKhVq1Zp9uzZSklJ0dixYzV8+HD9+7//e6/HKSsrU2ZmZviRk5MTSzNj4uHSXgAArOrXBNbQAB5ijOmxLWTXrl26//779bOf/UwVFRV6/fXXtW/fPhUXF/f6/qWlpWpoaAg/qqur+9PMPglXRhJ2BAAAcDK+WHYePXq0kpKSelRB6urqelRLQsrKyjR9+nT95Cc/kSRdcsklGjp0qGbMmKHHHntM48aN6/Eav98vv98fS9P6zcMKrAAAWBVTZSQlJUV5eXkqLy+P2F5eXq7CwsKorzl27Ji83sjDJCUlSTpT5mlwmgYAAJtiPk1TUlKiF154QStWrNDu3bu1cOFCVVVVhU+7lJaWas6cOeH9Z82apVdeeUXLly/X3r17tXnzZt1///26/PLLlZ2dHb9P0k9eKiMAAFgV02kaSZo9e7YOHTqkJUuWqKamRlOnTtX69es1adIkSVJNTU3EmiPf//731dTUpKefflo//vGPNXz4cF1zzTX6xS9+Eb9PcRqYwAoAgF0ec2acKzmpxsZGZWZmqqGhQRkZGXF97/f3H9a3nt6s7MxUbSm9Nq7vDQCAm/V1/Hb9vWlCi56d8YkMAIBBijDCvWkAALCKMMIEVgAArHJ9GPF6OE0DAIBNrg8jHu5NAwCAVa4PI14u7QUAwCrXh5HQHXWYMwIAgB2EEeaMAABgFWEkdDVNgDgCAIANrg8jXE0DAIBdrg8joTkjTBkBAMAO14eRzqtpSCMAANjg+jDSuQKr3XYAAOBWhJHQomfMGgEAwArCSDCNUBkBAMAO14cRb3gGq9VmAADgWq4PIx6FKiOkEQAAbHB9GPGG54wAAAAbXB9GFL6ahjgCAIANrg8j3LUXAAC7XB9GPF1+Z+EzAACc5/owEqqMSFRHAACwwfVhpEsWYd4IAAAWEEa6VkYstgMAALcijFAZAQDAKteHEeaMAABgl+vDSOTVNNaaAQCAa7k+jERURpg1AgCA41wfRiLnjNhrBwAAbkUY6RJGWPQMAADnEUa6zBqhMgIAgPMIIxEzWK01AwAA13J9GOk6gZV1RgAAcJ7rwwiFEQAA7CKMsAIrAABWEUZYgRUAAKtcH0YkyRvMIyx6BgCA8wgj6qyOUBkBAMB5hBF1qYwQRgAAcBxhRJ0LnzGBFQAA5xFG1HlFDVEEAADnEUbUGUYCrAcPAIDjCCOKXIUVAAA4izCizlVYmTMCAIDzCCPqrIyQRQAAcB5hRAqXRqiMAADgPMKIulRGLLcDAAA3Ioyoy6W9VEYAAHAcYUTMGQEAwCbCiLpeTWO1GQAAuBJhRF1ulMesEQAAHEcYUdcVWO22AwAAN+pXGFm2bJlyc3OVmpqqvLw8bdq06aT7Nzc3a9GiRZo0aZL8fr/OPfdcrVixol8NToTwXXupjAAA4DhfrC9Ys2aNFixYoGXLlmn69Ol67rnnNHPmTO3atUsTJ06M+prbbrtNn332mV588UWdd955qqurU1tb22k3Pl5Cd+1lAisAAM6LOYw8+eSTmjdvnubPny9JWrp0qd544w0tX75cZWVlPfZ//fXXtWHDBu3du1cjR46UJJ199tmn1+o4C1dGCCMAADguptM0LS0tqqioUFFRUcT2oqIibdmyJepr1q1bp/z8fP3rv/6rxo8fr8mTJ+vBBx/U8ePHez1Oc3OzGhsbIx6JFJrAygqsAAA4L6bKSH19vdrb25WVlRWxPSsrS7W1tVFfs3fvXr399ttKTU3Vq6++qvr6et1999364osvep03UlZWpkcffTSWpp2W8KJnjh0RAACE9GsCa6iSEGKM6bEtJBAIyOPxaNWqVbr88st144036sknn9TKlSt7rY6UlpaqoaEh/Kiuru5PM/vMw71pAACwJqbKyOjRo5WUlNSjClJXV9ejWhIybtw4jR8/XpmZmeFtU6ZMkTFG+/fv1/nnn9/jNX6/X36/P5amnRZWYAUAwJ6YKiMpKSnKy8tTeXl5xPby8nIVFhZGfc306dN18OBBHTlyJLzto48+ktfr1YQJE/rR5PgL1XS4Nw0AAM6L+TRNSUmJXnjhBa1YsUK7d+/WwoULVVVVpeLiYkkdp1jmzJkT3v/222/XqFGjdOedd2rXrl3auHGjfvKTn+iuu+5SWlpa/D7JafCGJ7BabggAAC4U86W9s2fP1qFDh7RkyRLV1NRo6tSpWr9+vSZNmiRJqqmpUVVVVXj/YcOGqby8XPfdd5/y8/M1atQo3XbbbXrsscfi9ylOU3JSRyZra2cJVgAAnOYxA+DcRGNjozIzM9XQ0KCMjIy4v///ePpt/XV/g16cm69rp0Sf+wIAAGLT1/Gbe9NISk1OkiSdaKUyAgCA0wgj6gwjx1vbLbcEAAD3IYxISiOMAABgDWFEUmpyRzc0E0YAAHAcYURSWkqwMtJCGAEAwGmEEUl+X3ACaxthBAAApxFG1LUywtU0AAA4jTAiKZXKCAAA1hBGJKWldHTDCeaMAADgOMKIuix6RmUEAADHEUbUZdEzKiMAADiOMCKWgwcAwCbCiFiBFQAAmwgj6lyB9QRhBAAAxxFG1FkZIYwAAOA8woiYMwIAgE2EEXW5mobKCAAAjiOMqHM5eE7TAADgPMKIpFRfRzc0twUUCBjLrQEAwF0II+qsjEgdgQQAADiHMKLOG+VJzBsBAMBphBFJXq9HKT7WGgEAwAbCSFBo3giVEQAAnEUYCeKKGgAA7CCMBKWyCisAAFYQRoLSWIUVAAArCCNB/tAqrC1URgAAcBJhJCgtdOfeNsIIAABOIowEpVIZAQDACsJIUHjOCCuwAgDgKMJIUPhqGiojAAA4ijASxKW9AADYQRgJSk1mBVYAAGwgjASxzggAAHYQRoJCYYTKCAAAziKMBIXmjDQTRgAAcBRhJCg1hcoIAAA2EEaCUn3BFVgJIwAAOIowEpRGZQQAACsII0GpPq6mAQDABsJIUKgywmkaAACcRRgJYtEzAADsIIwEsRw8AAB2EEaCQmHkODfKAwDAUYSRoPBy8G1MYAUAwEmEkaBQZaSlLaD2gLHcGgAA3IMwEhSqjEjMGwEAwEmEkaDUZK88no7fjzFvBAAAxxBGgjweT+edewkjAAA4hjDSxZDgwmfHWtsstwQAAPcgjHQRmsTKaRoAAJxDGOkiVBnhNA0AAM7pVxhZtmyZcnNzlZqaqry8PG3atKlPr9u8ebN8Pp+++tWv9uewCZeW4pNEZQQAACfFHEbWrFmjBQsWaNGiRdq+fbtmzJihmTNnqqqq6qSva2ho0Jw5c3Tttdf2u7GJNiR8moY5IwAAOCXmMPLkk09q3rx5mj9/vqZMmaKlS5cqJydHy5cvP+nrfvjDH+r2229XQUFBvxubaJymAQDAeTGFkZaWFlVUVKioqChie1FRkbZs2dLr61566SV9/PHHWrx4cZ+O09zcrMbGxoiHE9JSmMAKAIDTYgoj9fX1am9vV1ZWVsT2rKws1dbWRn3Nnj179NBDD2nVqlXy+Xx9Ok5ZWZkyMzPDj5ycnFia2W/hyggrsAIA4Jh+TWD1hJYqDTLG9NgmSe3t7br99tv16KOPavLkyX1+/9LSUjU0NIQf1dXV/WlmzIaEJ7AyZwQAAKf0rVQRNHr0aCUlJfWogtTV1fWolkhSU1OTtm7dqu3bt+vee++VJAUCARlj5PP59Oabb+qaa67p8Tq/3y+/3x9L0+KC0zQAADgvpspISkqK8vLyVF5eHrG9vLxchYWFPfbPyMjQjh07VFlZGX4UFxfrK1/5iiorK3XFFVecXuvjbAjLwQMA4LiYKiOSVFJSou9973vKz89XQUGBnn/+eVVVVam4uFhSxymWAwcO6OWXX5bX69XUqVMjXj9mzBilpqb22H4moDICAIDzYg4js2fP1qFDh7RkyRLV1NRo6tSpWr9+vSZNmiRJqqmpOeWaI2eqISx6BgCA4zzGGGO7EafS2NiozMxMNTQ0KCMjI2HHeW37AS1YU6np543SqvlfT9hxAABwg76O39ybpgtO0wAA4DzCSBeswAoAgPMII10MoTICAIDjCCNdpCUzgRUAAKcRRrroPE3DCqwAADiFMNLFEH/wNE1ruwKBM/4iIwAABgXCSBfD/B2naYzhZnkAADiFMNJFWnKSQvf7O8qpGgAAHEEY6cLj8WhocBXWo81URgAAcAJhpJuhwXkjR5upjAAA4ATCSDedlRHCCAAATiCMdDM0OImVOSMAADiDMNJN52ka5owAAOAEwkg3nKYBAMBZhJFuQqdpjhBGAABwBGGkm9BpGu5PAwCAMwgj3XCaBgAAZxFGuhnC1TQAADiKMNLNMK6mAQDAUYSRbpjACgCAswgj3YTmjBzjNA0AAI4gjHTTWRnhNA0AAE4gjHQzNIUb5QEA4CTCSDfDUoOVkROEEQAAnEAY6SY9NVkSE1gBAHAKYaSb9NTOq2naA8ZyawAAGPwII90MC05glaiOAADgBMJIN6nJSUpJ6ugWwggAAIlHGIkidKqm6USr5ZYAADD4EUaiGBYOI1RGAABINMJIFOlc3gsAgGMII1Gk+zsu723kNA0AAAlHGImC0zQAADiHMBJF17VGAABAYhFGokj3czUNAABOIYxEEVoSntM0AAAkHmEkCq6mAQDAOYSRKEITWBsJIwAAJBxhJIrO0zTMGQEAINEII1FkpnWEkYbjhBEAABKNMBLF8GAYaSSMAACQcISRKEKVkcOEEQAAEo4wEsXwIR1h5FhLu1rbA5ZbAwDA4EYYiSI0gVVi3ggAAIlGGIkiyesJrzVy+BhhBACARCKM9CJ0qobKCAAAiUUY6UUmV9QAAOAIwkgvhqelSJIOH2+x3BIAAAY3wkgvwgufMWcEAICEIoz0IjM8Z4T70wAAkEiEkV6wJDwAAM4gjPSicxVW5owAAJBI/Qojy5YtU25urlJTU5WXl6dNmzb1uu8rr7yi66+/XmeddZYyMjJUUFCgN954o98NdsrIIR0TWL88ShgBACCRYg4ja9as0YIFC7Ro0SJt375dM2bM0MyZM1VVVRV1/40bN+r666/X+vXrVVFRoauvvlqzZs3S9u3bT7vxiTRyaEcY+YIwAgBAQnmMMSaWF1xxxRW67LLLtHz58vC2KVOm6JZbblFZWVmf3uOiiy7S7Nmz9bOf/axP+zc2NiozM1MNDQ3KyMiIpbn9VvHpl/r28i2aMCJNb//0GkeOCQDAYNLX8TumykhLS4sqKipUVFQUsb2oqEhbtmzp03sEAgE1NTVp5MiRve7T3NysxsbGiIfTRlEZAQDAETGFkfr6erW3tysrKytie1ZWlmpra/v0Hk888YSOHj2q2267rdd9ysrKlJmZGX7k5OTE0sy4GDmsI4wca2nXidZ2x48PAIBb9GsCq8fjifjbGNNjWzS//e1v9cgjj2jNmjUaM2ZMr/uVlpaqoaEh/Kiuru5PM09Lut+n5KSOz0R1BACAxPHFsvPo0aOVlJTUowpSV1fXo1rS3Zo1azRv3jz97ne/03XXXXfSff1+v/x+fyxNizuPx6ORQ1P0WWOzvjjaouzhaVbbAwDAYBVTZSQlJUV5eXkqLy+P2F5eXq7CwsJeX/fb3/5W3//+9/Wf//mfuummm/rXUgtGDu0IRIeojAAAkDAxVUYkqaSkRN/73veUn5+vgoICPf/886qqqlJxcbGkjlMsBw4c0MsvvyypI4jMmTNHv/rVr/T1r389XFVJS0tTZmZmHD9K/I0c2rHw2RdHmy23BACAwSvmMDJ79mwdOnRIS5YsUU1NjaZOnar169dr0qRJkqSampqINUeee+45tbW16Z577tE999wT3j537lytXLny9D9BAoUrI0eojAAAkCgxhxFJuvvuu3X33XdHfa57wHjrrbf6c4gzApf3AgCQeNyb5iRGBy/v/byJ0zQAACQKYeQkxmSkSpLqCCMAACQMYeQkxqR3zBkhjAAAkDiEkZMYkx6sjDSesNwSAAAGL8LISYzJ6FxnpLU9YLk1AAAMToSRkxg5JEU+b8eS8PVHOFUDAEAiEEZOwuv16KzQvJFGwggAAIlAGDmF0CTWz5g3AgBAQhBGTuGsdC7vBQAgkQgjpzAusyOM1DQct9wSAAAGJ8LIKYwfkSZJOvAlYQQAgEQgjJzC+OHBMHKYMAIAQCIQRk6ByggAAIlFGDmFCcHKSG3jCRY+AwAgAQgjpzB6mF8pSV4FjFTbwOW9AADEG2HkFLxej7KHd1xRw7wRAADijzDSBxNGDJEkVX9xzHJLAAAYfAgjfXD26I4w8smho5ZbAgDA4EMY6YPc0cMkSfvqCSMAAMQbYaQPzhk9VJK093PCCAAA8UYY6YNzzuoII58cOqpAwFhuDQAAgwthpA/GD09TcpJHJ1oDquHuvQAAxBVhpA98SV5NHNkxifXvdUcstwYAgMGFMNJHF4zNkCT9rabRcksAABhcCCN9NGVcuiRpN2EEAIC4Ioz00ZRxHZWR3TVNllsCAMDgQhjpo1AY+fjzI2pua7fcGgAABg/CSB+Ny0zV8CHJagsY/Y3qCAAAcUMY6SOPx6NLc4ZLkrZVfWm3MQAADCKEkRjkTRohSar4lDACAEC8EEZicFkwjGwjjAAAEDeEkRhMmzBcSV6PDjacUPUXx2w3BwCAQYEwEoOhfp8umzhckrTho8/tNgYAgEGCMBKjb55/liRpI2EEAIC4IIzE6JuTO8LIlo8Psd4IAABxQBiJ0cXjM5WV4deR5jZt+qjednMAABjwCCMx8no9uvHicZKk379/0HJrAAAY+Agj/XDzJdmSpDd2fqbGE62WWwMAwMBGGOmHyyYO1+SsYTre2q5XKvbbbg4AAAMaYaQfPB6P7rhikiRp5ZZP1NYesNwiAAAGLsJIP/3PvAkaMSRZnxw6pv/D3BEAAPqNMNJPQ/0+zZ9xjiTpl298pOMtXOYLAEB/EEZOw13TczV+eJoOHD6upf/3I9vNAQBgQCKMnIa0lCQtnnWhJOn5jXtZIh4AMGAYY9TSFtCxljY1HGu1upCnz9qRB4mii8bqO1/L0er3qvWj31Ro1fwrdOnEEbabBQBIoEDAqDUQUFu7UVu7UUt7QG3Bv1vbA2oLdAz0bQGjtvaAWtuN2gIBtYZ+D/4dfZ/ge7R3HqPzdR37d/wd2ie4PUo7Qq/puY9Re8BEfKZnbr9MN10yzkp/Ekbi4NH/cZEOHD6uTXvqdefK97T8jjwVnDvKdrMA4IzUHugcsEODcPTBt3Pg7Ry8TY9Bv/tA3THAh/bpHgI6B+auxz1lCOjWrm7j+KDQFrB3ZajHGHPGd2ljY6MyMzPV0NCgjIwM282J6mhzm7774v/T9qrD8nqkkusn639981yl+DgTBiB+2nt8Kz7ZoNnL4Bs4+bfz2EJA5Lfznu0KvU9nOwbjQC5JyUke+bxe+ZI8Sk7yhv9OTvLIl+SVz+tRiq/jpy/4fHKSN2KfZG9wW/i5ju0pofdI8ig5yjE6/+59n/Axur131789Hk9c+6Sv4zdhJI6Ot7Rr0Ws79Mq2A5KkSaOG6IFrz9dNl4yT35dkuXWAuxnTUZbu/k062rfkHt/O+1g+D5fCo3w7jwwBJyvjn/zb+pn/f+z+SQkOor5ug3Fvg2ZyeH+vUnxdBmSvV8k+Ty8DfGhgDg3wwfcI7hNtoE4Jt6XzGCnB9+o66CdiIB8MCCOWGGP06vYDKvvD3/R5U7MkafSwFN18Sbaum5Kly3NHUi3BgGOMCQ6apx6oIwbb0PMRg373c989vzlHG/SjfTtv7fIe0UNAZBl/MPJ41DEAd/nWGzlo9vVbcWif0ADfZR+vR8m+yBDQY9A/yUAd/nbeyzf/JAbyQYswYtnR5jat3PKJ/vc7n6q28UR4+9CUJH114nBdmjNCU8dn6rwxwzRp1BAlJxFQBitjzEm+Ufcsh0fs2+351m4T0VoDAbW2mR7fuKOXz/v27by3Ng1GXo+6fSvuHJA7Bvju35wjv61HfoPva4m+85t21BK9L8o3/3A7ug/wXiV5GcRx5iKMnCFa2wPa8OHn+uPuz/TH3XWqP9LcYx+f16NJo4Zo/IghGpvh19iMVI3NTNNZ6X5lpPqUOSRZGanJykhL1tCUJNd8gwh9G28PRA7k4ZJ4P8+PR3wTj3iPnoN1a8Cote0UgSE8oz64f7cg0X3G+mCR5PVEGTRPfV47emm8++DdtxJ9r+fMT/YNvsvzDORAYhFGzkCBgNHfaptUWX1Y26q+1N9qG/Vx3VEdb+37td1ej5SemqzUZK/8viT5fV75u/7u6yivJnk98npCD8nr7fw9VBL1ehTexxijgJGMjIxRcIJZ6PeOn0bq+GlM8PeO17Qbo/b2UHDoHIAjf3YM0O09ngt0/t0euX2QjuGSFBxgQwNl92/C0SeihSexeSNL3H2Z3NZZou8+eEf5dt7boO+N/HbuZSAHcAoJDSPLli3Tv/3bv6mmpkYXXXSRli5dqhkzZvS6/4YNG1RSUqKdO3cqOztb//zP/6zi4uI+H2+whJFoAgGj2sYT+vjzI6ppOKHahhOqbTyhzxpOqP5Is5pOtKnxRKsajrcO2lJ5LDweBQfG/p8f93kjy/E9BuuIffs+0S303hGT6aJMhGOiGwC36Ov4HfM6I2vWrNGCBQu0bNkyTZ8+Xc8995xmzpypXbt2aeLEiT3237dvn2688Ub94Ac/0G9+8xtt3rxZd999t8466yx9+9vfjvXwg47X61H28DRlD0876X7GGDW3BdRwvFVNJ1p1ojWg5raAmtva1dzWcWlec1tAza0dfweMUSBg1G5CFQyj9oDC2wPBikfo4fV45FHHHYk9HsmjjsqJxxO5zePpqM6Efvd4POEJaOGfSR4leb09t3u9XZ6Psj3i9Z3bu54OoKwOAINPzJWRK664QpdddpmWL18e3jZlyhTdcsstKisr67H/T3/6U61bt067d+8ObysuLtZf//pXvfPOO3065mCujAAAMFj1dfyO6RKOlpYWVVRUqKioKGJ7UVGRtmzZEvU177zzTo/9b7jhBm3dulWtra1RX9Pc3KzGxsaIBwAAGJxiCiP19fVqb29XVlZWxPasrCzV1tZGfU1tbW3U/dva2lRfXx/1NWVlZcrMzAw/cnJyYmkmAAAYQPq1uEX3yXfGmJNOyIu2f7TtIaWlpWpoaAg/qqur+9NMAAAwAMQ0gXX06NFKSkrqUQWpq6vrUf0IGTt2bNT9fT6fRo2KfjM5v98vv98fS9MAAMAAFVNlJCUlRXl5eSovL4/YXl5ersLCwqivKSgo6LH/m2++qfz8fCUnJ8fYXAAAMNjEfJqmpKREL7zwglasWKHdu3dr4cKFqqqqCq8bUlpaqjlz5oT3Ly4u1qeffqqSkhLt3r1bK1as0IsvvqgHH3wwfp8CAAAMWDGvMzJ79mwdOnRIS5YsUU1NjaZOnar169dr0qRJkqSamhpVVVWF98/NzdX69eu1cOFCPfPMM8rOztZTTz3FGiMAAEASy8EDAIAEScg6IwAAAPFGGAEAAFYRRgAAgFWEEQAAYBVhBAAAWBXzpb02hC744YZ5AAAMHKFx+1QX7g6IMNLU1CRJ3DAPAIABqKmpSZmZmb0+PyDWGQkEAjp48KDS09NPekO+WDU2NionJ0fV1dWsX5Jg9LUz6Gdn0M/OoJ+dkch+NsaoqalJ2dnZ8np7nxkyICojXq9XEyZMSNj7Z2Rk8A/dIfS1M+hnZ9DPzqCfnZGofj5ZRSSECawAAMAqwggAALDK1WHE7/dr8eLF8vv9tpsy6NHXzqCfnUE/O4N+dsaZ0M8DYgIrAAAYvFxdGQEAAPYRRgAAgFWEEQAAYBVhBAAAWOXqMLJs2TLl5uYqNTVVeXl52rRpk+0mDSgbN27UrFmzlJ2dLY/Ho9deey3ieWOMHnnkEWVnZystLU1XXXWVdu7cGbFPc3Oz7rvvPo0ePVpDhw7Vt771Le3fv9/BT3FmKysr09e+9jWlp6drzJgxuuWWW/Thhx9G7EM/x8fy5ct1ySWXhBd+Kigo0B/+8Ifw8/Rz/JWVlcnj8WjBggXhbfRzfDzyyCPyeDwRj7Fjx4afP+P62bjU6tWrTXJysvn1r39tdu3aZR544AEzdOhQ8+mnn9pu2oCxfv16s2jRIrN27Vojybz66qsRzz/++OMmPT3drF271uzYscPMnj3bjBs3zjQ2Nob3KS4uNuPHjzfl5eVm27Zt5uqrrzbTpk0zbW1tDn+aM9MNN9xgXnrpJfPBBx+YyspKc9NNN5mJEyeaI0eOhPehn+Nj3bp15r//+7/Nhx9+aD788EPz8MMPm+TkZPPBBx8YY+jneHv33XfN2WefbS655BLzwAMPhLfTz/GxePFic9FFF5mamprwo66uLvz8mdbPrg0jl19+uSkuLo7YdsEFF5iHHnrIUosGtu5hJBAImLFjx5rHH388vO3EiRMmMzPTPPvss8YYYw4fPmySk5PN6tWrw/scOHDAeL1e8/rrrzvW9oGkrq7OSDIbNmwwxtDPiTZixAjzwgsv0M9x1tTUZM4//3xTXl5urrzyynAYoZ/jZ/HixWbatGlRnzsT+9mVp2laWlpUUVGhoqKiiO1FRUXasmWLpVYNLvv27VNtbW1EH/v9fl155ZXhPq6oqFBra2vEPtnZ2Zo6dSr/HXrR0NAgSRo5cqQk+jlR2tvbtXr1ah09elQFBQX0c5zdc889uummm3TddddFbKef42vPnj3Kzs5Wbm6uvvOd72jv3r2Szsx+HhA3you3+vp6tbe3KysrK2J7VlaWamtrLbVqcAn1Y7Q+/vTTT8P7pKSkaMSIET324b9DT8YYlZSU6Bvf+IamTp0qiX6Otx07dqigoEAnTpzQsGHD9Oqrr+rCCy8M/8+Xfj59q1ev1rZt2/Tee+/1eI5/z/FzxRVX6OWXX9bkyZP12Wef6bHHHlNhYaF27tx5RvazK8NIiMfjifjbGNNjG05Pf/qY/w7R3XvvvXr//ff19ttv93iOfo6Pr3zlK6qsrNThw4e1du1azZ07Vxs2bAg/Tz+fnurqaj3wwAN68803lZqa2ut+9PPpmzlzZvj3iy++WAUFBTr33HP1H//xH/r6178u6czqZ1eephk9erSSkpJ6pLu6uroeSRH9E5q1fbI+Hjt2rFpaWvTll1/2ug863HfffVq3bp3+/Oc/a8KECeHt9HN8paSk6LzzzlN+fr7Kyso0bdo0/epXv6Kf46SiokJ1dXXKy8uTz+eTz+fThg0b9NRTT8nn84X7iX6Ov6FDh+riiy/Wnj17zsh/z64MIykpKcrLy1N5eXnE9vLychUWFlpq1eCSm5ursWPHRvRxS0uLNmzYEO7jvLw8JScnR+xTU1OjDz74gP8OQcYY3XvvvXrllVf0pz/9Sbm5uRHP08+JZYxRc3Mz/Rwn1157rXbs2KHKysrwIz8/X3fccYcqKyt1zjnn0M8J0tzcrN27d2vcuHFn5r/nuE+JHSBCl/a++OKLZteuXWbBggVm6NCh5pNPPrHdtAGjqanJbN++3Wzfvt1IMk8++aTZvn17+PLoxx9/3GRmZppXXnnF7Nixw/zTP/1T1EvHJkyYYP74xz+abdu2mWuuuYZL9Lr40Y9+ZDIzM81bb70VcYnesWPHwvvQz/FRWlpqNm7caPbt22fef/998/DDDxuv12vefPNNYwz9nChdr6Yxhn6Olx//+MfmrbfeMnv37jV/+ctfzM0332zS09PDY9yZ1s+uDSPGGPPMM8+YSZMmmZSUFHPZZZeFL5dE3/z5z382kno85s6da4zpuHxs8eLFZuzYscbv95tvfvObZseOHRHvcfz4cXPvvfeakSNHmrS0NHPzzTebqqoqC5/mzBStfyWZl156KbwP/Rwfd911V/j/B2eddZa59tprw0HEGPo5UbqHEfo5PkLrhiQnJ5vs7Gzzj//4j2bnzp3h58+0fvYYY0z86y0AAAB948o5IwAA4MxBGAEAAFYRRgAAgFWEEQAAYBVhBAAAWEUYAQAAVhFGAACAVYQRAABgFWEEAABYRRgBAABWEUYAAIBVhBEAAGDV/wdMZ/hPXdwyMgAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.plot(range(501), img_qual_callback.metrics_store['global_MSE'])" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 32, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAh8AAAGdCAYAAACyzRGfAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABmgUlEQVR4nO3dd3zb9Z0/8NdXe1iWpyzv2LGzB1kkYSVhpORKeoy7FspxpJMyUrh0Ar+W0PYIdHDQg9KWtpDeQcNxzCs0JIyEQggJGWQ520ns2PK29tb398dX+tqy7BAnGrb1evL4PiR/9ZX01TcmeuX9WYIoiiKIiIiI0kSR6RMgIiKi7MLwQURERGnF8EFERERpxfBBREREacXwQURERGnF8EFERERpxfBBREREacXwQURERGmlyvQJDBSJRNDS0gKTyQRBEDJ9OkRERHQWRFGE0+lEWVkZFIoz1zZGXPhoaWlBZWVlpk+DiIiIzkFTUxMqKirOeMywwsdTTz2Fp556CidOnAAATJ06FT/+8Y+xbNkyAFLqefDBB/H73/8ePT09mD9/Pp588klMnTr1rN/DZDLJJ5+bmzuc0yMiIqIMcTgcqKyslL/Hz2RY4aOiogIPP/ww6urqAABr167FP/7jP2LXrl2YOnUqfv7zn+PRRx/Fs88+iwkTJuBnP/sZrrrqKhw6dOisTgaA3NSSm5vL8EFERDTKnE2XCeF8F5YrKCjAL37xC3z1q19FWVkZ7rnnHvzgBz8AAPj9fpSUlOCRRx7Bbbfddlav53A4YDabYbfbGT6IiIhGieF8f5/zaJdwOIx169bB7XZj4cKFaGxshM1mw9KlS+VjtFotFi1ahC1btgz5On6/Hw6HI24jIiKisWvY4WPv3r3IycmBVqvFt771LbzyyiuYMmUKbDYbAKCkpCTu+JKSEvmxwaxZswZms1ne2NmUiIhobBt2+Jg4cSJ2796NrVu34vbbb8ett96KAwcOyI8PbOsRRfGM7T/33nsv7Ha7vDU1NQ33lIiIiGgUGfZQW41GI3c4nTt3LrZv347HH39c7udhs9lQWloqH9/e3p5QDelPq9VCq9UO9zSIiIholDrvGU5FUYTf70dNTQ2sVis2btwoPxYIBLB582ZcdNFF5/s2RERENEYMq/Jx3333YdmyZaisrITT6cS6deuwadMmrF+/HoIg4J577sFDDz2E+vp61NfX46GHHoLBYMCXv/zlVJ0/ERERjTLDCh9tbW245ZZb0NraCrPZjBkzZmD9+vW46qqrAADf//734fV6cccdd8iTjG3YsOGs5/ggIiKise+85/lINs7zQURENPqkZZ4PIiIionPB8EFERERpxfBBREREaTXseT5olPA5gN6TgLsT8HRJm98BhAJA2A+Eg4CgAFRaQKkFVBpAbQAMhYCxuG8zFAIKZlQiIkoeho/RLhwEbHuA0zuBlt1A52Gg+zjg6UzO66t0QF41UFAD5NdItwXjAcskILccOIvVC4mIiPpj+BiNvL3Awb8Ch98Cjr0HBJyDH2coBHJKpFtDAaAzR6scWkCpBiJhIBwAQn7pNuAC3F2Au0MKL55uIOQDOg9J20DaXMAyObpNkW6t0wF9fko/PhERjW4MH6OFKAIntwA71wIHXpNCQYwuDyifA5TPBkqmAgW1UpVCd55DlcNBwN4M9DQC3Y19t11Hpc3vAJo+lrb+8scBZbOA0guAsguA0pkMJEREJOM8H6NB4/vAew8Bpz7q22eZAkz+AlC/VPqiT3e/jFBACiDtB4D2Bmlr2wv0nhr8+PwaKYiUzQLK50q3GkNaT5mIiFJnON/fDB8jWfdx4I3vAMfelX5WaoGZNwKzb5WqHCOxv4WnG2jdLfU/id32nkw8TlAC1mlAxYVAxTygcp4UUEbiZyIios/E8DHahUPA1ieB99YAIS+g1EiB49JVQG5Zps9u+PoHkpadQPMngLM18ThDUV8QqZgHlM0GtDnpPlsiIjoHDB+jmaMFePErQNNW6eeay4BrHgMKx2f0tJJKFKW+JM3b+7bWT6VOr/0JCsAyVQojlfOlQFJQy+oIEdEIxPAxWp3aCqy7WRppos0Frn4YuODL2fFlG/RJQ4abtwNN26TqiKM58ThDkRREYoGkbBag1qf/fImIKA7Dx2h04DXgpW9IE4CVTAe+uHZsVTvOhaMlGkSigaR1d2J1RKECrDOAyguj23zAXJGR0yUiymYMH6PNp+uAV74FQAQm/gNwwx85EmQwQZ/UPNO8LTrEdxvgaks8zlQWH0asM6QZXImIKGUYPkaTvf8LvPwNQIxInUqv+Q9Aocz0WY0OoigN7W3e3hdGbHsBMRx/nFIrNc/IfUcuBEwlmTlnIqIxiuFjtDi+CfjvG4BICJj9r8A1j3MdlfMVcEtTzTdvk8JI0zbA2514XF51tO9ItEJimQooOeceEdG5YvgYDToOAX+4CvDbgWn/BFz/NINHKogi0HVMqozEAkl7A4ABv/ZqozR3SmxUTflsIMeSkVMmIhqNGD5GOr8T+N0ioPuY9GX3r68Dal2mzyp7+OzSaJpYc03zJ9JU8QPllkdnZJ0t3ZbN4jTxRERDGM73N+vM6SaKwF9XScEjtwK48XkGj3TTmYG6K6QNkBbY6zjU12/k9A5pdWDHaWk7+Ne+5xbURoPIbCmUWGdwIjQiomFi5SPddj0HvHaHNL34V94EqhZk+oxoMH6nNLLm9E6gZZc0M2vPicTjBAVQNLFfdWS2NG28Spv2UyYiyiQ2u4xUjhbgyflSif/y/wdc9r1MnxENh6e7L4i07JaCibMl8TiFGiiZEl3ZdyZgnSn9zMnQiGgMY7PLSBRrbvE7gPI5wCWrMn1GNFyGgvjmGgBw2qRAcnqnFEpO75RG17R+Km0xghIonhgNIzOit9MB3RgL2EREZ4GVj3TZ/wrw4grpX8Xf+jtgmZzpM6JUiM090rKzL4C07pGmzB9MQW1fGCmdIVVJcorTe85EREnAysdIE/AAb/0/6f6l32HwGMsEAcivlrap10n7RFFqcrPt6Qsjtj2AvQnoPi5tB17tew1TmRREYlWSkqnSvCQcik1EYwTDRzps+U9pkTRzJXDJPZk+G0o3QQDM5dI2cVnffndXXyCJ3XYdk/qROFuAw+v7jtXkAJYpUt+RkmlSILFMAfR5af84RETni+Ej1RwtwAf/Id2/6kF2OqQ+xkJg/BJpi/E7Adu+aBjZA9g+lYYBB1zSJGnN2+JfI7dCCiL9t8I6QKlO72chIhoGho9Ue/+XQMgrTSY29fpMnw2NdFoTUL1Q2mLCQaki0rYPaD8AtO2XNnuTVFFzNANH3uo7XqmROreWTJOqI5bJQPEkabVfQUj/ZyIiGoDhI5V6m4Cdf5buX/4j/sVP50apBiyTpK0/b298GGnbL/0ccEkL7Nn2xh+vyZFCSfFk6dYSvTVX8neTiNKK4SOV/v5LIBIExl0K1Fya6bOhsUafB1RfJG0xkQjQe7JfKNknNdt0HZVCyekd0tafJgcomtBXISmOBp3cCnZyJaKUYPhIFUcLsOu/pftL7svsuVD2UCiAghppm/T5vv2hgDSqpqNBCiPtDfGhpCU6T0l/amO0UhINI8X9KiUMJUR0Hhg+UmXb00AkBFQN+JcpUSaoNIM33YSDUiiJhZFYOOk8AgTdg4cSlV7q1FpUL1VMYreFdYDGkL7PRESjFsNHKgQ8wI5npPsL78jsuRCdiVIdrW5MjN8fDgLdjYNUSo5IHajb9krbQOaqxFBSNAHIsbBfCRHJGD5SYc8LgLcHyKsCJv5Dps+GaPiUaqB4grT1Fw5JfUo6j0gr/3Yejt4/JP3O209J27F34p+nNQ8eSgpqOCyYKAsxfCSbKALbfi/dn/8tQKHM7PkQJZNSBRSOl7aJV8c/5u7qF0gO9wWU3pOA3w6c/kTa+lOogPyaaBipk5puCsZLt6yWEI1ZDB/J1rJLGmmg0gEX3JzpsyFKH2MhYBwwRwkABH1Sv5L+gaTriHQ/4JLudx0BDg14PY0pGnTq4m8LxnNmV6JRjuEj2T79i3Q76Rr+BUkEAGpddFr4KfH7RRFwtkphpOOwNPKm6yjQfUxanC/gBFp3S9tAxuK+CokcTOqkZhzOIkw04jF8JFPID+x9Ubp/wU2ZPReikU4QgNwyaatdHP9YyA/0nOgLJF1Hga7j0q3LBrg7pK1p68AXlWZyjQsk0WaivGqp2YiIMo7/JybT4bekTnemUqB2yWcfT0SDU2kHH4UDSOvfdB2LVkmO94WTzqNS3xJ7k7Qd3xT/PIUKyB8HFNQmbnlV7PhKlEYMH8m05wXpdsaX2NGUKFW0JqDsAmnrTxQBT1c0jBzrVzE5JoWUkLdv30CCEsirHCKYVEtNR0SUNAwfyRLwAEejwwun3ZDZcyHKRoIAGIukrWpB/GORCOA4LYWQuK2xL5j0nJC2Y+8OfGGpKaegJjGY5I8DNMb0fD6iMYThI1mOvyf9BZZXBVinZ/psiKg/hUKqbORVArWL4h8TRcBpGySYRMNJwNnXlNP4fuJrm0qjYSQaTvL7hRRdbno+H9Eow/CRLA1/lW4nXcO5CYhGE0EAckulbdzF8Y+JIuDuHCKYHAN8dmnEjrMVOPlh4msbivqCSV61VCnJHwfkV0uhhc2zlKUYPpIhHAIO/026P+mazJ4LESWPIAA5xdJWNT/xcU93X9NNbOuJ/uzuADyd0ta8LfG5So20SF8sjOSP6xdQqgF9foo/HFHmMHwkw6kt0igXQyFQOchfUEQ0NhkKpK1iTuJjPocURLqOSX1Jek9G+5WclJpwwgGpetJ9bPDX1pkTqyX544C8cVLzkUqbqk9FlHIMH8lw+C3pdsLVnEeAiCS6XKB0prQNFA4Bzpa+MDIwnLjbpSYd2x5pSxCdIyVWLcmrlPqbmaP9WnIrpJWMiUYoflMmQ+Nm6Xb85Zk9DyIaHZQqKSzkVQE1gzwecEuzvA4VToJuafSO4/TgfU0gSH1K8iqjgaQqer+qb5/GkNKPSHQmDB/ny90F2KJLi9csOvOxRERnQ2MELJOlbaBYJ1g5jJyQmnF6m6TAYm8CQj6psuJsAZo+Hvw9DEUDwkm/ykleldTsQ5QiDB/nK1b1sEyVOqUREaVS/06wFXMTH4+FE/spKYz0NiWGE7+jrzNsy67B30drTmzO6X9rKJKGMBOdg2GFjzVr1uDll1/GwYMHodfrcdFFF+GRRx7BxIl9UyCvWLECa9eujXve/PnzsXXrwDUYxohY+Bg4dwARUSb0Dyflg3SEBQBvbzSQ9A8np/rCiadLmqq+zQ607Rv8NZQaILdcmoAtdmsul4JJbrl0n9UTGsKwwsfmzZtx5513Yt68eQiFQrj//vuxdOlSHDhwAEZj3yx/V199NZ555hn5Z41mDHd8Oh4NH2xyIaLRQp8nbUNNiBhwx4eSgUHFaZNG6/Q0SttQtLl9QcRcIXWEjYWU3OjGqeuz0rDCx/r16+N+fuaZZ2CxWLBjxw5cdtll8n6tVgur1ZqcMxzJek9J/+MJSqD6okyfDRFRcmiMgGWStA0mHJQmVrM3A/bTgKO57769WfrZ2yM173Q4gI6God/LWNyvclIxoJJSAeSUcDK2Mei8+nzY7XYAQEFBQdz+TZs2wWKxIC8vD4sWLcK///u/w2KxDPoafr8ffr9f/tnhcJzPKaXXyS3SbdksTqNMRNlDqe7rpDqUgDsxmMTdPw0EPdJkbO4OoHX34K+jUEkjd3LLpeHFsU3eVwrkWDm0eJQ55/AhiiJWrVqFSy65BNOmTZP3L1u2DP/8z/+M6upqNDY24kc/+hEuv/xy7NixA1pt4qQ4a9aswYMPPniup5FZzdulW04sRkQUT2MEiidI22BEUaqO2KOBxHE68b6jBYiE+tbWOROjJTpNfnk0mPQPKmXSY1pT8j8nnRNBFEXxXJ5455134o033sAHH3yAioqKIY9rbW1FdXU11q1bh+uvvz7h8cEqH5WVlbDb7cjNHeHVhN9dBrR+CvzTM8C0xM+WKZ6gB13eLriCLnhCHriDbnhCHgTDQQCAIAhQQAGFoIBBbUCuJlfatLkwa8xQK9UZ/gRERAAiYcDV1hdIHC3S5myNvx8OnN3raXMHCSb9Kii55dJM1Vyf65w4HA6Yzeaz+v4+p8rHypUr8frrr+P9998/Y/AAgNLSUlRXV+PIkSODPq7VagetiIx4AQ9gi/YCr5iX9rf3BD040HUAx+3Hpa33OFrdrejwdsAddJ/z6woQUKQvQmlOKcqMZSjNKUVNbg3G543H+LzxMKq5fDgRpYlC2RcShiKK0ugcx2nA0SrdOlsH3G+R+p/Ets5DQ7+eUgOYrNEKilUKJzkl0ftWqYnHZJVG8jCknLNhhQ9RFLFy5Uq88sor2LRpE2pqBpuaL15XVxeamppQWlp6zic5IrXuBsSw9ItoPnMASwZRFLGvcx/eOfUOttu240DXAYTE0JDH61V6mNQmGNQGaVMZoFFqIIoiYv9FxAhcARecASccAQecASdEiOjwdqDD24E9HYnTOpcaS1GbV4sJeRMwpWgKphZORUVOBQT+T0hEmSAIgLFI2gabyj7G75QCibMlMZjENneHVEWJDTs+E5UuGkpKAVNJXygZGFL0+QwpgxhW+Ljzzjvx/PPP47XXXoPJZILNZgMAmM1m6PV6uFwurF69GjfccANKS0tx4sQJ3HfffSgqKsJ1112Xkg+QMbH+HhVzU/qL1eZuwwuHXsCbjW/itOt03GMWgwUT8idgvHk8avNqUWmqRLG+GMWG4nOqUETECHp8PbC5bWhxt6DF1YLTrtM4bj+OY73H0OntRKu7Fa3uVnx4um9K51xNLqYWTsXUoqmYVjgNMy0zUaQvOu/PTkSUNFoTUGwaug8KAIQCgMvWF05cbVJAcUZvXW3SMGNfrzSLbO9JaTsTpSYaREr6hZJoaOkfWPQFWTVp27D6fAz1r9tnnnkGK1asgNfrxbXXXotdu3aht7cXpaWlWLJkCX7605+isrLyrN5jOG1GGfXCLUDD68CVDwKX3JP0lz/ScwR/2PsHbDixQa5w6FV6LKpYhEvKL8Fc61yU55Qn/X3PxO6341jvMRztPYpD3Yewv2s/DvUcQiiSWIGpNFVilmUWZltmY5ZlFmrMNayOENHYEPT2BRGnLT6kuGx9+73dZ/+aCjWQY5GGHueUSJPEGS1993NKoj9bRmyTz3C+v8+5w2mqjJrw8avJUvluxZvAuIuT9rJd3i48uftJvHTkJUTECABgTskc3DjpRiyqWAS9Sp+090qGQDiAI71HsL9zPw50HcCezj042nMUIuJ/rcxaM2YVz8Jc61wsKF2A+vx6KITsSflElIVC/mgw6V85GSSkeDqH97pKbWJQ6R9Ocix997WmtAUVho9Uc7QCj04CBAVwb7M0pOw8iaKIV46+gl9s/wVcQRcA4IqqK/CNGd/A1MKp5/366eQIOLCnYw92tu3E7o7d2NuxF76wL+6YfG0+5lnnYX7pfMwvnY8qUxUrI0SUnUIBwN0uhRNXh3Trbgdc/bbYz/5hzoWl0vULI/2DSjEw5yvSCstJwvCRaoc3AM//M1A8CbhziBUjh8ERcOBHH/wI7za9CwCYXDAZ35v3Pcyzpn8UTSoEw0E0dDdgZ9tOfGz7GDvadsAb8sYdYzVacaH1QiwoXYD5pfNhMQw+KR0RUVYLeqWOsXIwaYv+3JYYVAKuoV9HoQZ+1JHUqkjKh9pmvba90m3JtDMfdxYa7Y349rvfxgnHCagUKnx71rfxr1P+FcpzmE7YGwij0+WH3RuEwxdE/1ipEASYdCrk6tQw6VQw69VQKNJTaVAr1ZhRPAMzimdgxbQVCIaD2Ne1D1tbt+Lj1o/xacensLlteP3Y63j92OsAgPHm8VhYthALyxZiTskcDvElIgIAtf6zZ5eNCXgGVFD6BZVwMKP9Rlj5OBcvfgXY/zJw5Wrgkn8755fZ27EXt719G5wBJ6xGKx5f8jimFE45q+c6fUFsP9GNrce78WlTL050udHm8H/2E6M0SgVK83QoM+tRka/HRKsJk0tzMclqQmFOeudd8Ya82NW2Cx/bPsbW1q1o6GqI6zOiElSYUTwDC8oWYGHpQkwrmgaVgrmZiGgkYbNLqj0xD+g8DNz8ElB/5Tm9xK72Xbj97dvhDroxo2gGHr/88c8cnhoMR7B+nw0v72zG+0c6EY4k/tHp1AqY9WqYdGqo+lU2AuEIXL4QnL4QvMHwGd+nzKzDhTUFuLCmEBfWFGB8sTGt/TF6fb3YZtuGj1o/wkctHyUMMc5R52CedR4WlC7AwrKFGJc7jv1FiIgyjOEjlYJe4KEyQIwA3zkkjc8epkPdh7Bi/Qq4gi7Ms87DE5c/AYPaMOTxvmAY/731JP74QSNa7X0dN6sLDVhYW4i546SAUFNkRJ7hsxdXCoYjaHP40NLrw+leD052eXCw1YkGmwMnuzwJxxflaHBJXREWT7TgsgnFKDCmdwGnJmcTPmr5SG6mcQTiO1xZjVYpiJQuxPzS+SjUF6b1/IiIiOEjtU7vAJ6+HDAUAd87Ouw2s1ZXK/7lzX9Bu7cdsy2z8durfjvk8FlRFPHmXhseXt+Apm6pg2axSYsb51Xi2lnlGF+cc94fZyCXP4RPm3rxcWM3tjV2YdepXvhDEflxQQBmVuRhyUQLFk8sxvRyc9r6jgBAOBLGwe6D+Kj1I2xt2Yqd7TsRjATjjpmYP1GuiswumT3ihicTEY1FDB+ptGMt8H/fBmoXA//62rCe6gv5cMvfbsHB7oOoy6vDs1c/C7PWPOixLb1efO9/P8WHR7sAACW5WvzblRNw3exyaFXD74x6rvyhMHad6sXmwx1472A7DtqccY8X5Whx1RQLlk6xYuH4QujU6Ts3oK+/SKyJ5lBP/JoNaoUasyyzsLBsIeZb52NS4SSoFVw4j4go2Rg+UunN7wHbfg8svAv43L+f9dNEUcSPt/wYrx59FfnafLxwzQsozRl8vZvXP23B/3tlLxy+EHRqBW67bDxuW1QLgybznSxb7V5sPtSBTYc68MHRTrj8fbObGjVKLJ5owVVTSrBkogVmQ/q/5Lu8Xfi4Veq4+lHrR7C5bXGP61V6zCiegTmWOZhdMhszimewMkJElAQMH6n0p2XAqS3Adb8DZt541k979eir+NGHP4JCUOB3V/0OC0oXJBwTDEew+vX9eO5jaUGjmZV5+I8vzkRtCppXkiEQiuDjxi5s2N+GjQfaYHP09UdRKQQsqC3E0qkluHJyCcry0v8FL4oiTjpOylWRHW07EvqLqAQVphROweyS2ZhtmY3ZJbOHrEYREdHQGD5SRRSBR6oBnx341geAdfpZPa3F1YLrX78e7qAbK2etxDdnfDPhGLsniDue34EPj3ZBEICVl9dj5eV1UCtHxxTkoihi72k7Nuxvw4YDNhxui5/cZnq5GUunlOBz06yot+RkZHRKRIzgaO9R7GrbhR3tO7CzbSfaPG0Jx9Xl1WG2ZTYusFyAC4ovQIWJq/YSEX0Who9UcbUDv6wHIAD32wC17jOfEhEj+PqGr2O7bTsuKL4Az179bMIEYqd7vbjlDx/jeKcbRo0Sj984C1dOKUnRh0iPE51ubDwgBZFPTvbETXhWU2TE0iklWDrVilmVeWntsNqfKIpocbdgZ9tO7GjbgZ3tO9Fob0w4rkBXgBnFMzCzeCZmFs/EtKJpbKohIhqA4SNVTnwAPPt5IH8ccPenZ/WUlw6/hNUfrYZepcdLy19CZW786r7NPR7c9PRWNHV7UZ6nxx9unYvJpSPsc5+nTpcf7zS0YcP+Nvz9aCcC/UbPWExaXBUNIgtrC6FRZbbS0+3rlisjn7Z/igPdBxJW7VUJKkwomCCHkZnFM1GeU87qCBFlNYaPVPnkT8Bf/w2oXwrc/OJnHt7r68XyV5ej19+L78/7Pm6Zckvc4/2DR3WhAeu+uQCl5rH9L2qXP4TNhzqw4YAN7za0w9mvw6pJp8Llkyz43FQrFk0ohlGb+Q62/rAfDV0N+LTjU2lr/xTt3vaE4wp1hVIQsczEBcUXYErhFOhUn10ZIyIaKxg+UuVvPwQ+fuqsR7o8+NGD+N/D/4v6/Hr8zzX/EzcleLc7gOt+8yFOdnkwrtCAv2RB8BgoEIrgo+NdeGu/DRsPtKHD2Tc9vEalwKV1RfjcVCuumGxJ+5TvQxFFEa3u1rgwcrD7IEJiYnVkUsEkzLTMxIyiGZheNJ19R4hoTGP4SJX/uh449g6w/NfAnFvPeOjhnsP4p9f/CSJEPHv1s5hTMkd+zB8K41/+8DG2n+hBZYEe/3PbwqwLHgNFIiJ2NfViw34b3tpvw4l+M60qBGDuuAJ8bqoVS6eUoLJg6NlgM8EX8uFA14G+QNLxKTq9nQnHmbVmTCuahmmF0zC9aDqmFU3jbKxENGYwfKTKf0wH7KeAr6wHqhee8dC7370b7za9i6uqr8Kjix+V94uiiFX/8yle2XUaJp0Kr9xxEeosplSf+agiiiIOt7nw1n4bNhywYd/p+OGxU8tysXSKFZdPsmBqWW7GOqwORRRFnHadloPIvs59ONh9MGEmVgAoM5ZhWlFfGJlSOOWMU+0TEY1UDB+pEPAAD0UnBfveccA49L9Y93fux41v3AiFoMArX3gFtXm18mNPbTqGR9YfhFIhYO1XLsQl9WdeTI6kvjEb9rfhrf02bD/Rjf7r6RXlaHBZfTEWTSzGJXVFI6Z5ZqBAOIDDPYexr3Mf9nbuxb7OfWi0N8at3gsACkGBWnOtHEamF01HXX4dZ2UlohGP4SMVWj8FfncZoC8AfpA4HLO/29++HR+c/gDLa5fjoUsfkvdva+zGjb//CBER+Nm10/AvC6pTfdZjTpfLj3cOtmPjgTZsOdoJd6BvhV5BAGaUm7FoghRGZlbkQTWC50lxBVw40HVADiN7O/cOOu+IVqnFxIKJmFIwBVMKpa02r5aBhIhGFIaPVNj7v8BLXwOqFgJfXT/kYcd6j+Ha166FQlDg/679P1TlVgGQOpj+w+N/h83hw/WzyvGrL85k58PzFAhFsONkDzYf7sD7hztwoDW+eSZXp8KC2kIsHF+Ii8YXYUJJZiY3G44OT0dcdWRf1z44A86E49QKNSbkT8DkwslSICmYgrr8OmiVI7PyQ0Rj33C+vzM/lnG06Dws3RbVn/Gwvxz8CwBgccViOXgAwI9e2webw4faIiN+eu20Ef8lOBpoVAosHC+Fix8um4R2hw/vH+nE5sMd+PuRDvR6gthwoA0bDkjVhKIcDebXFuKi8YVYWFuImiLjiPtzKDYUY0nVEiypWgJAmqTulOMUDnQdQEN3g3Tb1QBn0In9Xfuxv2u//FyVoML4vPGYUjgFkwsnY3LBZEwsmMgJ0YhoxGHl42y9uALY/wpw1U+Bi7896CGOgANXvnglvCEv/rj0j7iw9EIAwN/2tuL253ZCqRDw6h0XY3oF1w5JtXBEmu59y7FOfHSsC9tPdMMXjMQdY83VyeFlfk0BqgoMIy6MDEYURTS7muUgEgslvf7ehGNjfUgmF0zG5MLJmJg/ERMLJnL9GiJKOja7pMJvLwVse4Ab/wJM+odBD1m7fy1++ckvUZdXh5e/8DIEQUCvJ4ArH92MTlcAdy2pw3c/NzHNJ06A1ETzaXMvthztwkfHO7HzZC8C4fgwYjFpMa+mABeOK8C8cQWYZDWNuJE0QxFFETa3DQe6D8ih5EDXAXT5ugY93mq0YlL+JEwomIBJBZMwMX8iKkwVUAgjt48MEY1sbHZJNlEEek5I9wtqhjzs1aOvAgBumnST/C/oX204jE5XAPWWHKy8oi7FJ0pD0agUmBcNFXejHr5gGDtP9uCj41346FgX9jTb0e704409rXhjTysAacbVudX5mFdTgPk1BZhenpfx6d+HIggCSnNKUZpTiiuqrpD3t3vapSDSLQWSwz2Hcdp1Gja3DTa3DZuaN8nHGlQGTMifgIkFUnVkYv5E1OfXs9mGiJKOlY+z4e4CfhEdLnu/DVAn/mV8pOcIrn/9eqgUKmz64iaYtWY0tDrw+V//HRER+Ms3FmDheE4oNVL5gmF82tSL7Se68XFjN3ae7IkbSQMAWpUCF1Tm4cIaKcTMrs5HzgiYAn64nAEnDvccxsHug/Lt0Z6jCEQCCccKEFCdW42JBRMxqWCSFE7yJ8JisIyKJioiSh9WPpKtJzq01lQ6aPAAgL81/g0AcEn5JTBrzRBFEQ/+335ERODz00sZPEY4nVqJ+bWFmF9biLsAhMIRNLQ6se1EN7Y3dmP7iW50uQP4uFEKJwCgVAiYUpobrajkY051Piy5I389F5PGhDklc+Jm3Q1FQjjpOImD3QdxqOcQDnVLW5evCyccJ3DCcQJvnXhLPj5fm48J+RNQn1+P+vx61OXVoS6vjhOkEdFZYfg4G93R8JE/eJOLKIpy+PiHGqk/yN+PdGLr8W5oVQrc+w+T0nKalDwqpQLTK8yYXmHG1y6pgSiKON7pxvbGbmxr7Ma2E91o7vFi72k79p62408fSr8jFfl6zKnOx+wqKYxMsppG9FwjMSqFNFJmfN54fB6fl/d3ejulINJzSKqUdB/GCccJ9Ph78LHtY3xs+zjudSpyKlCXX4f6vHpMyJ+Aurw6VJurOScJEcVh+DgbscrHEP099nbuRbOrGXqVHosqFkEURTz2tjQ0918WVKMin/8aHO0EQcD44hyML87BjRdKQ6hb7V5si1ZFdp7sxUGbA809XjT3ePHa7hYAgEGjxMyKPMyplsLIrKo85Bk0mfwow1KkL0JReREuLr9Y3ucL+XCs9xgO9xzGkd4jONJzBEd7j6LT24lmVzOaXc3Y1LRJPl6lUKHGXIP6PKlKErstNZay6YYoSzF8nI3PqHy8feptANLcHga1Ae8f7sDOU73QqhS4bVHtoM+h0a/UrMc/XlCOf7ygHADg8ofwaVMvdpzswY6TPdh5qgdOX0jq1Hq8b9RJnSUHs6vy5ApJbXEOlKNkVA0A6FQ6TC2aiqlFU+P2d/u6cbTnaFwgOdp7FO6gG0d6pH3oNzmwUW1EXV6d3GxTn1eP2rxaFOoKGUqIxjiGj7PxGZWPD09/CABYVLkIAPCf7x4BANw8vxoW08jvA0DJkaNV4eK6IlxcJ63XE4mIONrhkoLIyR7sONWD4x1uHG134Wi7C//zSTMAwKhRYmq5GTMrzJhRkYcZFeZRM+dIfwW6AlxYeqE8vw0gNUm2uFvkUHK45zCO9h5Fo70R7qBbXnyvP7PWjPHm8ajNq427ZSdXorGDo13Oxi8nAi4b8I13gfI5cQ91eDpw+YuXQ4CATV/ahNZuJT7/6w+gUgj48IeXo2QUdECk9Ol2B7DrlFQZ+eRkD/adtsMzYFQNAJj1asyoMGNGhRnTy/Mws9IMa65uzHz5BsNBnHCcwNHeo3JV5Jj9GJqdzQmL7cXkqHPkIDI+bzxqzbUYnzceVqOV85MQjQAc7ZJMAY8UPIBBm122tGwBAEwunIwCXQF+sXUvAODqaVYGD0pQYNTgiskluGJyCQBpJtaj7S7sae7FnmY79py2o6HFAbs3iL8f6cTfj3TKzy3K0WByaS6mlOViSmkuppbloqZodDXZxKiVanmkzLKaZfJ+X8iHE44TON57HMfsx+TbU45TcAVd2NOxB3s69sS9ll6ll4NI7Ha8eTzKcsqgVCjT/dGI6CwwfHyW2ORiOjNgKEh4+MMWqcnl4rKL4fAF8dru0wDAFWvprCgVAiZaTZhoNeGf51YCkGZjPdzmxKfNvdjTJAWSw21OdLoCCYFEp1ZgkrUvkEwpy8UkqwkGzej8X1un0mFSwSRMKogfIRYMB3HScTIukBzrPYYTjhPwhrwJ69wA0mrANeYa1JprpS2vFjW5NajKrYJGOXo6/RKNRaPzb6h06hm6s2lEjGBry1YAwMXlF+OVnafhCYRRb8nB/JrEoEJ0NjQqBaaVmzGt3Iyb50v7vIEwDrU5caDFgQOtdhxocaCh1QlvMIzdTb3Y3dQrP18QgJoioxxGYrfFOdpR22yjVqpRl1+Huvz4WYJDkRCanE1xgeS4/Tga7Y3wh/042H0QB7sPxj1HIShQkVOBGnNN3FZrruWaN0RpwvDxWbqH7mza0N2AHn8PjGojZhTPwE/+dxsA4Ob5VaP2L3kamfQaJS6ozMMFlXnyvnBExMkuNw60OrC/xRENJg50OP043uHG8Q43/hqdKh4ACo0aTLSaMMkqVUcmlZpQbzFBrxm9TROxYbw15hpcgb5p5cORMFpcLXGB5IT9BI7bj8MVdOGU8xROOU9hc/PmuNcr0BVgXO64hGBSZmQTDlEyMXx8lt6T0m1eYjPKzradAIA5JXPQZg/i06ZeKATg8zPK0nmGlKWUCgG1xTmoLc7BNf1+59qdPjS0OuUwcqDFjuOdbnS5A9hyrAtbjvUN+1UIwLhCIyaVSqFkotWEydZcVOTrR82ieoNRKpSozK1EZW4lFlculveLoohObyca7Y3S5miU77e6W9Ht60a3rxs723fGvZ5GoUG1uRq15lopkORKoaQ6t5qzuhKdA4aPz9LbJN3mVSY8tLt9NwBglmUW1u+TOqXOG1eAYpM2XWdHlMBi0sFi0mHRhGJ5nzcQxpF2Jw62OnHQ5sRBmwMHbU50uwM43unG8U433txrk483apSY0L9KEr1vNozumUoFQUCxoRjFhuK4IcEA4Al6cMJxoi+YRMPJSftJBCKBvrlKBig1lvZVSXL7qiVF+iJWQImGwPDxWezR8GGuSngoNj/BzOKZePgD6S/uf5hemrZTIzpbeo0yOodInrxPFEV0uPw4ZJNCSYPNgUM2J460ueAOhLHrVC92neqNe51Ssw6TrCZMtOZicqnUUba2KGfErvY7HAa1AVMKp2BK4ZS4/eFIGC3ulvhQEt16/D1odbei1d0qj3yLMalNGGceh6rcKlSbqlGdK21VuVUwaUzp/GhEIw7Dx2cZovJhc9vQ5mmDUlCiWF2PHSelUS9XT7Om+wyJzokgCHKV5NL6vipJKBzBiS43GlqdUjCJVkmae7xotfvQavfhvUMd8vEqhYBxRUZMKMlBncWEeksOJpSYUFNkHBOhRKlQotJUiUpTJS6ruCzusR5fjzw0uH8zzmnXaTiDTuzt3Iu9nXsTXrNAVyCHkercalSZquRgolcNvngl0VjC8HEmPjvgt0v3zfHhI9bkMrFgIt4/3AsAmFudz7k9aNRTKRWos5hQZzFh+cy+/Q5fEIdtfc02sYqJ0x+SZ20F+ppulAoB4woNqLeYpGBSIt3WFBmhVY2Nzpv5unzk6/IxyzIrbr8/7MdJx8m47ZTjFE46TqLL1yX3LdnVvivhNS0GC8blJlZMKkwVHCJMYwbDx5nEqh76AkCbE/fQ7o7dAIALii/AB4ekeRcun2xJ59kRpVWuTo254wowd1zfMHJRFGFz+HC4zYUjbVKTzZF26dbpD+FYhxvHOtxY328KDqVCQHWhQa6Q1FlyUG8xobbYCJ16bIQSrVKLCfkTMCF/QsJjroALJ51SGDnhOIFTjlPyfUfAgXZPO9o97dhm2xb3PIWgQKmxFNW51XIlJrZVmCpYMaFRheHjTOyf3dl0RtFM/OVv0uiBi8cXpevMiEYEQRBQataj1KyP6+AqiiLaHH4cbnPiSHs0mLS7cLjNCacvJA8Ffmt/m/wchQBUFxoxvjgHdZYcjC82YrwlB+OLckZ9R9f+cjQ5mFo4FVMLpyY81uvrTQgmscqJJ+TBaddpnHadHvR1i/XFchAZGE7ytHns/EojCsPHmcQqHwOaXHwhHw51HwIAGMTxcPiOwqRVYWrZCFmLhijDBEGA1ayD1azDZQNCSbszGkr6VUkOtznh8IXQ2OlGY6cbbze0xb1eUY62L4wUR4NJcQ7K80b3kOCB8nR5yNPlYWbxzLj9oiiiy9clB5EmZ1Pc5gw40eHtQIe3I2GYMCCtizNUMCkxlHAOE0o7ho8zsZ+SbvPiR7oc6TmCkBhCga4Ah09L/9POry2ASjn6O9cRpZIgCCjJ1aEkN76TqyiK6HD6cbjNhWMd/bZ2N2wOHzpdfnS6/Pi4sTvu9XRqBWqK+sLI+GjFpLYoZ1RPnjaQIAgo0hehSF+EOSVzEh63++0JgSS2tXva4Qq60NDdgIbuhoTnqhVqlOeUJ4SSSlMlyk3l0Co5dQAlH8PHmQxR+TjYI03XPLlgMj46Lv1luKC2MK2nRjSWCIIAS64OllwdLqmPb750+oJo7HTLYSQWTBo73fAFI2hodaCh1ZHwmuV5+mjzTQ7GW6RwUltsHNXTzA/FrDXDrDVjWtG0hMd8IR+anc3xocTVhGZnM067TiMYkVYYPuE4MehrF+uLUZZThvKccpTnlKPCVCH/bDVaoVaMnSYxSh+GjzMZos/HwS4pfNTnT8Cf/i6Fj4vY34MoJUw6dcIcJYA0JLipx4tj7f2rJW4cbXfB7g3idK8Xp3u92Hy4I/71tCrUFBtRUyRVSGqKjagtMmJckRE52rH3V6JOpRt0XRxAmsPE5rHFBZP+QcUddMvNObF5jfpTCApYDVaUm8pRZixDuakcFTkVKM8pR1lOGSwGCxQCK8KUaOz9n5ZMn1H50ItVcAfCyDeoMcnKSYOI0kmlVKCmSAoRV6JE3i+KIrrdgehIG5ccTo52uNDc44XTH8KeZjv2NNsTXrMkVxt9Tan5Jvb6lQUGqMdgs6pSoZQrGgtKF8Q9Jooiev29aHG1oNklVUlOO0/LnV5bXC0IRAJocbegxd0y6OurFeq4qklZTpkcTspN5cjX5o+5KhSdHYaPoQR9gLtdut+vz0c4EpanWHY7SwA4MKe6YEx1eiMazQRBQGGOFoU5Wlw4YHVpXzCMU90eabRNpwuNHW65k2uXO4A2hx9tDj+2Ho/vW6JSCKgqMMhhpLY4J3prhMU09ppxAOk6xuYxmVqUODInIkbQ6e3EaddpNDub0eJqkYPJaddp2Nw2BCNBuZPsYPQqvRxKSo2lKMspQ5mxDKU5pSg1lqJIX8TKyRg1rPCxZs0avPzyyzh48CD0ej0uuugiPPLII5g4caJ8jCiKePDBB/H73/8ePT09mD9/Pp588klMnZr4yzui2ZulW7UR0OfLu085T8Eb8kKn1KGpzQDAgZkVXIabaDTQqZWYUGLChJLESmWvJyAHkePRUHK8043GThd8wYi8Bs5ARo0y2oyTg9poIImFFJNu7PaHUAgKWAwWWAyWhEnWACAUCaHN0yZXS2LVkxZXC047T6Pd2w5vyIujvUdxtPfooO+hVqhhNVpRZiyTbgeElBJjCSdeG6WGFT42b96MO++8E/PmzUMoFML999+PpUuX4sCBAzAajQCAn//853j00Ufx7LPPYsKECfjZz36Gq666CocOHYLJNIqaJuSRLpVAv3/VxIbYTsifgH0NTgDAjH7LnBPR6JRn0GBWlQazqvLj9kci0kRqchiJVU063Wjq9sAdCGPfaQf2nU7s9Fps0kb7lkh9SqoLDKguNKK60ADjGOxf0p9KoZKbWwbjD/vlakmLqwWt7la0uFpgc9vQ4m5Bu6cdwUhQ7n8yGAHSKKDSnNK4iknsfpmxDDmanEGfS5k1rN/+9evXx/38zDPPwGKxYMeOHbjssssgiiIee+wx3H///bj++usBAGvXrkVJSQmef/553Hbbbck781SzRyfyMVfE7T7YLfX3qMmtx4fRfwVNL2flg2isUigElOXpUZanx8V18R3LA6EITnX3VUpiVZPjnW50uvzocErbtgFDhAFp7pLqQkNcIJE2I/IN6jHZlNOfVqmVVwAeTDASRLunvS+Q9AsoscX8/GG/3CF2T8eeQV/HpDbFhZMyYxmsOVI1pdRYikJ9IZt2MuC8orfdLnXYKiiQ2lUbGxths9mwdOlS+RitVotFixZhy5Ytg4YPv98Pv98v/+xwJP7rISMc0Q5UuWVxu2OdTY2Q+oFUFuhRYGTZjygbaVR96+AM5PAFcSIWRjpcONntwckuD052udHjCcpzl+w42ZPwXJNWheoiA6oL+kJJVYER44oMKDHpsqKPWWz+kaEqJ6IootvXLQeRwaondr8dzqATzh4nDvccHvR1VAoVSgwl0mYsgdVohdVglW6jGzvGJt85hw9RFLFq1SpccsklmDZNGltus0mLSpWUlMQdW1JSgpMnB+9wtGbNGjz44IPnehqp44hWPnLjf/EPd0u/wF6PtI7LwOF/RESAtBbOYEOEAcDuDeJUlwcnu91yIDnZ5cGpbg9a7T44/aEhm3K0KgWqCvoCSVWBHpUFBlQWGFCRr4dBM7abc2IEQUChvhCF+sJB5zcBAHfQjVZXK1rcfdWTFneLvK/T24lQJHTGaesBQKPQDBlMSgzS/lxNLgPKMJzzb+ldd92FPXv24IMPPkh4bOAfgCiKQ/6h3HvvvVi1apX8s8PhQGVl4loqaTdI5SM2hTEAtLSZwc6mRHQuzHo1pleYMX2Qvz98wTCaolWSE11unOr24ESXB6e63Gju8cIfikjr5bS7Bn3tohwNKvKlMFKZHw0m+QZUFkhNR2NxyPBQjGrjkHOcAFKn2E5vJ2xuW9/m6bvf5mlDp7cTgUjgjH1PAGnkTiyIyJshPqSw/0mfcwofK1euxOuvv473338fFRV9fSKsVisAqQJSWloq729vb0+ohsRotVpotSNw+t5BwkejvRGANOPfgWMBAKx8EFFy6dRK1JeYUD/IiJxQOIKWXh9OdrvlQNLU7UVTjwdN3R44fCF0ugLodAWwu6k34fkKASg161FZoI8GEkPc/eIcbVY06cSoFCo5HAwlGA6izdM2aDBpc0v7e/w98Ia8Z5wpFpDW2CkxlKDYUAyLwYISQ4k8Yii2FeoKs2KtnWGFD1EUsXLlSrzyyivYtGkTamriOwrV1NTAarVi48aNmDVLGnoVCASwefNmPPLII8k763RwxsJHX7NLLHxU5FTjfbsPggBMY2dTIkoTlVKBqkIDqgoNuLQ+8XG7N4imbg+ae6QmnP7BJFY1ic38uhWJnWA1KgUq8vVypaRKrpoYUJ6nR14WdIQdSK1Uo8JUgQpTxZDH+EK+voASDSYDKynOgBOuoAsuuwvH7MeGfC2loEShvlAKKfpoSDH2Cyl66Xa0V1GGFT7uvPNOPP/883jttddgMpnkPh5msxl6vR6CIOCee+7BQw89hPr6etTX1+Ohhx6CwWDAl7/85ZR8gJQIeABvtBPYIJWPXKUUSKoLDGNyOmYiGp3MejXM5eZB/1EUiYjodPnR1D+YdHui4cSLVrsXgVAk2kE2cT4TADBolCjP06M8Xy/fVuRLwaQiX591lZMYnUqH6txqVOdWD3mMJ+iBzW1Du7cd7R5pa3O3yffbve3o9HYiLIblfWdiUBnk6kmskjKwmlKoLxyxa+8M65vzqaeeAgAsXrw4bv8zzzyDFStWAAC+//3vw+v14o477pAnGduwYcPomuPD2SrdanIAba68+7j9uHQnKHU2nWTNHfhMIqIRSaHoW7xvTnVBwuPBcAStvT4pmESrJU09XrmS0ukKwBMIn7G/iUapQGmeTgomA0NKngFWsw4aVfb0OenPoDagNq8WtXm1Qx4TjoTR5euSgolHCiYdng75fmxzBV3whDyf2cwjQOqUG6ugFBuKUawvlsKK3oKLyy+GSpGZf0APu9nlswiCgNWrV2P16tXnek6ZJ490KYubYCxW+XC7pP9xJ3I9FyIaI9T9mnQG4wuGpSabHq9829zjke/bHD4EwpHo6B3PoK8hCECJSTegcqKXKydledkzWmcwSoVSrlpMw+AjeACpiiJXT/oFkw5vX1Dp9HQiJEodaju9nWjoboh/L0GJnbfsTPVHGlL2/imfySCdTYORIJqd0pTrtk6ppMnF5IgoW+jUSowvzsH44sH7GgTDEdjsvoSAEutjcrpXataxOXywOXyDzm8CAHkGNUrNepSZdbCadSjL06M0dt+sh9Wsg0499jtknolBbcA48ziMM48b8piIGEG3r1sasePplCZj83TIt0ExmNHJ1Rg+BjPIHB9NjiaExBD0Kj2O25QAREwqZbMLEREgVU5i840MJhIR0en2JwaTfrdOfwi9niB6PUE0tA494WSBUYNSsy666VGa13e/zKxHiVkLrSq7A4pCUKBIX4QifRFQmOmzScTwMZgzDLMtM1SjPSRCp5Ym+iEios+mUAiwmHSwmHQJ6+fE2L1BtNq9aO31odXuQ6vdi5ZeH2wOaV+L3QtfMIJudwDd7gD2twwdUIpyNLDKgUQHq1mPsjwdrLlSFaUklxWUTGL4GMxg4cMRHemikqohE0tMUGZhr24iolQx69Uw69VDduYXRRF2b1AOJC29UkBptfuigUW67w9F5PlOBpslNiZXp5KDiLRpYY12yrVG9xXlaKDKoonZ0oXhYzCDNLvEKh9CdKQLO5sSEaWXIAjIM2iQZ9BgStnQAaXHE0RLrxe2WPXE7oPN7kNLrxdt0T4nvmAEDl8IDp8Lh9sGH70DSBOzFeVoYTVLVRurWYsSkw4l0dBijYYWsz775kA5Hwwfgxmk8nHSIa1N43TmAQAmcpgtEdGIIwgCCowaFBg1Q04CKYoiHL4Q2hw+KYzYfWh3+uX7bU4/2uw+dLj8CEdEtDv9aHf6AdiHfF+tSiGHEUu0glISvV9s0sJi0qHYpEWuTsWQAoaPRCE/4JbWb+lf+YgtOtTWbQTAkS5ERKOVIAhyE8+EQaaxjwlHRHS5/Ghz+OWKSXv0NravzeFDjycIfyiCU93SBG5nolUpomEkPpQM/HmsN/cwfAzklGZthVIL6KVOUd6QF53eTgBAS6fUyfRMv7BERDT6KftNzDYdQy+l4QuG0eHsCyhyWLH70OH0o90p3Tp8IfhDETT3eNHc4z3jewsCUGDQoHjIkBK9zdXBqFGOumoKw8dAsfBhssoTjJ12SlUPo8oEZ9iAXJ0KRTmaTJ0hERGNIDq18ozDjGNiIaXd6UeH09fvfv9bHzpdAanq4g6gyx3AQZvzjK+rVyul5p0crXwrVU+iW7SSUpSjHTEjfBg+BnL1Cx9RzS5pcjGzugQ2AHWWnFGXMomIKLPONqREIiK6PYGEUNL/59jm8ofgDYbPOLNsfyadCsXRUPLcN+ZDnaGmHYaPgZyDhI/ozKYasRgAhpzhj4iI6HwpFIJctZhceuZj3f4QOl39QopD6jzb6fJHhxtL+ztdfgTDIpy+EJzRzraZCh4Aw0eiWPjISax8hAPSmi51FoYPIiLKPKNWBaNWhepC4xmPE0URDm8IHS4piLj9oTSd4eAYPgY6Q+XD6ZKG17LyQUREo4kgCDAb1DAb1CPiH9BjdxzPuRqsz0c0fHT0SMlyJPzBERERjVYMHwPJzS4lAKRSVazZxe/Nh0apQEW+PlNnR0RENOoxfAwkN7tIvXw6vZ3wh/0QoIAYzENNkXFMT/xCRESUavwW7S/kB7zd0v1os0us6mFSFQFQYrzlzJ16iIiI6MwYPvpztUm3So08u2msv4c6Osy2jp1NiYiIzgvDR3/OaPjI6ZvdVB5m65fCSC3DBxER0Xlh+OjP2SrdmkrkXTa31AfE45HWcqkqPPPMdERERHRmDB/9xZpd+g2zbXNL+xxuqa9H9WdMi0tERERnxvDRX6zy0W9201jlIxIww6hRosDIBeWIiIjOB8NHf85BKh8eaZ8YMqOq0MgF5YiIiM4Tw0d/cp8PKXy4Ai64gi4AQCSYxyYXIiKiJGD46G9An49Y1UMtGAFRw86mREREScDw0d+APh+x/h6qiDTMtoqVDyIiovPG8BETCgCeLun+gMpHOGgGAFSz8kFERHTeGD5i3O3SrUIN6AsA9FU+vF5pYjFWPoiIiM4fw0dM/9VsFdJliYWPkD8XSoWAsjyuZktERHS+GD5i5NVsE4fZRkJmlOfpoeZqtkREROeN36YxA4bZAn2VDzGYxyYXIiKiJGH4iBlsavV+lY9Khg8iIqKkYPiIGTDM1hlwwh10AwDEoBkV+ezvQURElAwMHzHy1OrSiraxBeWUojTBmDVXl6kzIyIiGlMYPmJcsQ6npQAAmyf6c1ia46M0j+GDiIgoGRg+YvoPtQXQ4ekAAAT9JgBAmZnNLkRERMnA8AEA4SDg7pTuRysfnd7O6EPSBGNWMysfREREycDwAQCudgAioFABhkIAQIdXqnxEQrkoNGqgUyszeIJERERjB8MH0Nffw2iRZzeNVT7EUA6rHkREREnE8AEMOrtpX/jIRSn7exARESUNwwcwaPiIdTgVQyaU5GozcVZERERjEsMHkBA+RFGUKx+RkAkWE5tdiIiIkoXhA+jr8xGd3dQddMMX9gGQKh8WVj6IiIiShuEDSJjdNDbSRRB1gKiBxcTwQURElCwMH0C/FW3LAPR1NkVImmCMzS5ERETJw/ABJPT5iIWPUHSCMTa7EBERJQ/DRzgIuKVmltjsprGRLpGgCYIAFBo1mTo7IiKiMYfhY5DZTfvm+DCh0KiFSsnLRERElCzD/lZ9//33sXz5cpSVlUEQBLz66qtxj69YsQKCIMRtCxYsSNb5Jl//BeWis5vGOpyKoVx2NiUiIkqyYYcPt9uNmTNn4oknnhjymKuvvhqtra3y9uabb57XSaaU3Nk0cXbTSDgHhTlsciEiIkom1XCfsGzZMixbtuyMx2i1Wlit1jMeM2LI4aNU3tV/anX29yAiIkqulHRm2LRpEywWCyZMmIBvfOMbaG9vH/JYv98Ph8MRt6XVYFOre/umVs9n+CAiIkqqpIePZcuW4bnnnsO7776LX/3qV9i+fTsuv/xy+P3+QY9fs2YNzGazvFVWVib7lM7MFR8+AuEA7H47gFiHU4YPIiKiZBp2s8tn+dKXviTfnzZtGubOnYvq6mq88cYbuP766xOOv/fee7Fq1Sr5Z4fDkd4AIlc+pGaXbl83AECAEmJYz8oHERFRkiU9fAxUWlqK6upqHDlyZNDHtVottNoMjigZ0OzS5esCACgiJgAKVj6IiIiSLOUTWHR1daGpqQmlpaWffXAmDOhw2u2VKh+IGAEA+QaGDyIiomQaduXD5XLh6NGj8s+NjY3YvXs3CgoKUFBQgNWrV+OGG25AaWkpTpw4gfvuuw9FRUW47rrrknriSRHyAx6p0hELHz3+HgBAOCiFDw61JSIiSq5hh49PPvkES5YskX+O9de49dZb8dRTT2Hv3r3485//jN7eXpSWlmLJkiV44YUXYDKZknfWyeKKrmar1AD6fAB9lY9gwACAlQ8iIqJkG3b4WLx4MURRHPLxt95667xOKK369/cQBABAt18KH2LICEEA8hg+iIiIkiq7Fy0ZZIKxWOVDDOcg36CBUiFk4syIiIjGrCwPH4kTjMX6fIhhI/IN6kycFRER0ZiW5eFj6MpHJJSDQiMXlSMiIkq2LA8fn1H5MLLyQURElGxZHj6ilY+cvvARm+FUDOWggJUPIiKipMvy8BEdahutfHiCHnhDXgBS5aOAlQ8iIqKky/LwEd/nI9bkIkANRLSsfBAREaVA9oaPoBfw9Ur3o5WPHp8UPlSiCYDAdV2IiIhSIHvDR6yzqUoP6MwA+vp7IBxd14Xhg4iIKOkYPvrNbtrlldZ5CYei67owfBARESVdFoePxDk+Yn0+5HVdGD6IiIiSjuGj3xwfsQnGYivaFnBdFyIioqTL3vBhPy3dmsvlXf0nGNOpFdBrlJk4MyIiojEti8NHk3RrrpR3dfmkPh+RUA7Mes7xQURElArZGz4c0cpHbr/Khy9W+WD4ICIiSpXsDR/2ZunWXCHv6pta3Yg8Pft7EBERpUJ2ho+QH3BFp1aPhg9RFPtVPozIZeWDiIgoJbIzfDhapFuVDjAUAgA8IQ/8YT8AaVE5NrsQERGlRpaGj379PaITjMWaXJTQAqKG4YOIiChFsjN8nKG/h0YwSQ8xfBAREaUEw0dU/KJygFmvSvtpERERZQOGjyh5UblIjvSQgZUPIiKiVMjO8DHIHB+x8BGJLirHZhciIqLUyM7wcYbKRyjI8EFERJRKWRo+Yuu6JPb58Pv00kMMH0RERCmRfeHD5wD8dun+IM0uPr8UPjjJGBERUWpkX/iI9ffQ5QHaHHl3rPIRCUU7nDJ8EBERpUT2hQ+vFDJiM5vGxFa0FcNG6NVKaFXKdJ8ZERFRVsi+8BGSplCHSifvEkURvb5e6X7IyKoHERFRCmVx+NDKuzwhDwKRAACp8sHwQURElDrZFz7CieEj1tlUreC6LkRERKmWfeEjJFU4oNTIu2KdTfWKXAAc6UJERJRKWRg+fNJtvz4fsfChjYYPVj6IiIhSJ/vCh9zs0lf5iDW7qMAVbYmIiFIt+8KH3OzS1+ejxy9VPhQRzvFBRESUalkYPoZudkE4tq6LKt1nRURElDWyL3yEo5UPVWKH03BsRVsDKx9ERESpkn3hIzbPxyDNLoEAF5UjIiJKtewNH/3m+ZBXtPUzfBAREaVa9oWPM0wy5vZI/UAYPoiIiFIn+8KH3OyS2OfD7Y2FD03C04iIiCg5sjd8REe7+MN+eEIeAEAk1uGUlQ8iIqKUyb7wMaDZJVb1UApKIKKDXq2ERpV9l4WIiChdsu9bdsDaLrH+HiZ1HgCBVQ8iIqIUy8LwET/JWK+vFwBgVJkBsMmFiIgo1bIvfAyYZKzbL1U+dFxUjoiIKC2yL3wMmGQs1udDI0jhI5fhg4iIKKWyN3wM7HAKLipHRESUDsMOH++//z6WL1+OsrIyCIKAV199Ne5xURSxevVqlJWVQa/XY/Hixdi/f3+yzvf8DRjtEutwKnBFWyIiorQYdvhwu92YOXMmnnjiiUEf//nPf45HH30UTzzxBLZv3w6r1YqrrroKTqfzvE82KYZodhFDBgAMH0RERKk27LXjly1bhmXLlg36mCiKeOyxx3D//ffj+uuvBwCsXbsWJSUleP7553Hbbbed39kmw8Bml+iicqFgLHwM+5IQERHRMCS1z0djYyNsNhuWLl0q79NqtVi0aBG2bNky6HP8fj8cDkfcllJDTDIWCETDh4GVDyIiolRKaviw2WwAgJKSkrj9JSUl8mMDrVmzBmazWd4qKyuTeUqJBqztEqt8eH3SvB95XNeFiIgopVIy2kUQhLifRVFM2Bdz7733wm63y1tTU1MqTqlPv7VdQpEQ7H47gL4VbTnUloiIKLWS2sHBarUCkCogpaWl8v729vaEakiMVquFVqsd9LGkC4cAMSzdV2nR6+8FAAgQ4HBrAETY4ZSIiCjFklr5qKmpgdVqxcaNG+V9gUAAmzdvxkUXXZTMtzo3sf4eAKDSyv09zFozXP6IdJ/hg4iIKKWGXflwuVw4evSo/HNjYyN2796NgoICVFVV4Z577sFDDz2E+vp61NfX46GHHoLBYMCXv/zlpJ74OQn1Cx/KvvCRq8mDKEq7GT6IiIhSa9jh45NPPsGSJUvkn1etWgUAuPXWW/Hss8/i+9//PrxeL+644w709PRg/vz52LBhA0wmU/LO+lyEQ8DL35DuCwpAqZLXdTGppUXl9GolNKrsm/SViIgonYYdPhYvXgwxViYYhCAIWL16NVavXn0+55V8YgQ4+rZ032gB0DfM1qDkirZERETpkj0zaimUwJWrpfs1iwAAvb5eAICWK9oSERGlTXaFj0v+LW5Xl68LQN+KtgwfREREqZfVHRw6vZ0AAKUohQ/O8UFERJR6WR0+urxS5UMIs/JBRESULlkdPmKVDzGUA4Dhg4iIKB2yOnzE+nyEgkYADB9ERETpkLXhwxP0wBvyAgD8Pil85HFFWyIiopTL2vARa3LRq/Rw+ZQAWPkgIiJKh6wNH7Eml0JdIXo9QQCAmZUPIiKilMva8BGrfBTpi2D3RsMHKx9EREQpl7XhIzbMtlBfCHu08pHH8EFERJRyWRs+YpWPAl0hnP4QACDPoMnkKREREWWFrA8fOap8eV+uLntmmyciIsqUrA0fsQ6nOoW0oq1Jq4JKmbWXg4iIKG2y9ts21udDAyl8cKQLERFRemR9+FCK0fDBzqZERERpkZXhQxRFuc8HwtK6LpzdlIiIKD2yMny4gi4EIgEAQCgQnVpdz5EuRERE6ZCV4SNW9TCpTfD4panVc9nsQkRElBZZHT4K9YXo9UoVEDa7EBERpUdWhg/ObkpERJQ5WRk+2jxtAIASQwnXdSEiIkqzrAwfNrcNgBQ+eqPhg80uRERE6ZGV4UOufBhL0OuR+nyYOdqFiIgoLbIyfLR72gHEml2kReXY7EJERJQeWRk+YpUPi8ECO0e7EBERpVXWhY9wJIwOTwcAwKQqQjAsAmD4ICIiSpesCx9dvi6ExTCUghIq5AIA1EoBerUyw2dGRESUHbIufMSqHoW6Qji9EQBSZ1NBEDJ5WkRERFkj68KHL+wDABjUBs5uSkRElAFZFz5CEWl0i0qhgoMTjBEREaVdVoePXk6tTkRElHbZGz4ElTy7KSsfRERE6ZO94aNf5cPMPh9ERERpk3XhIyhKgUOlUKHHLXU4LTRyanUiIqJ0ybrw0b/y0R1d1yWf4YOIiChtsjp8xCofBQaGDyIionTJ6vDBygcREVH6ZW34UCvUfZUPhg8iIqK0ydrwoRSU8lDbfDa7EBERpU3WhY9gRAockYgCorSgLadXJyIiSqOsCx+xykc4In30XJ0KamXWXQYiIqKMybpv3Vj4CIWlj87+HkREROmVdeEj1uwSCgkAGD6IiIjSLevCR0iUKh/BMMMHERFRJmRf+Ig2uwSCUvjgSBciIqL0UmX6BNJNDh/SDSsfRESjQDgcRjAYzPRpZD21Wg2lUnner5O14cMX/R3m7KZERCOXKIqw2Wzo7e3N9KlQVF5eHqxWKwRBOOfXyN7wEYj2+WCzCxHRiBULHhaLBQaD4by+8Oj8iKIIj8eD9vZ2AEBpaek5v1bSw8fq1avx4IMPxu0rKSmBzWZL9ludk77wIc0wxsoHEdHIFA6H5eBRWFiY6dMhAHq9HgDQ3t4Oi8Vyzk0wKal8TJ06FW+//bb8czLah5IlFj680rIuKDBydlMiopEo1sfDYDBk+Eyov9ifRzAYHFnhQ6VSwWq1ntWxfr8ffr9f/tnhcKTilGSxobYeOXxoU/p+RER0ftjUMrIk488jJUNtjxw5grKyMtTU1ODGG2/E8ePHhzx2zZo1MJvN8lZZWZmKU5LFJhnzB9nng4iIKBOSHj7mz5+PP//5z3jrrbfw9NNPw2az4aKLLkJXV9egx997772w2+3y1tTUlOxTihNrdhFFBZQKASZd1vW5JSIiyqikh49ly5bhhhtuwPTp03HllVfijTfeAACsXbt20OO1Wi1yc3PjtlSKhQ+ISuQb1FAoWM4jIqLkEQThjNuKFSsyfYoZl/J/9huNRkyfPh1HjhxJ9VudlfjwwSYXIiJKrtbWVvn+Cy+8gB//+Mc4dOiQvC82YiSbpXx6db/fj4aGhvMaD5xMcviAgsNsiYgo6axWq7yZzWYIghC37/nnn8f48eOh0WgwceJE/Nd//Vfc8wVBwFNPPYVly5ZBr9ejpqYGL774YoY+TWokvfLx3e9+F8uXL0dVVRXa29vxs5/9DA6HA7feemuy3+qc9PX5UMJi4kgXIqLRRBRFeIPhjLy3Xq0875Eer7zyCu6++2489thjuPLKK/HXv/4VX/nKV1BRUYElS5bIx/3oRz/Cww8/jMcffxz/9V//hZtuugnTpk3D5MmTz/djjAhJDx/Nzc246aab0NnZieLiYixYsABbt25FdXV1st/qnMSG2kJUopjhg4hoVPEGw5jy47cy8t4HfvI5GDTn97X5y1/+EitWrMAdd9wBAFi1ahW2bt2KX/7yl3Hh45//+Z/x9a9/HQDw05/+FBs3bsR//ud/4je/+c15vf9IkfTwsW7dumS/ZFL19flQMHwQEVFaNTQ04Jvf/GbcvosvvhiPP/543L6FCxcm/Lx79+5Un17aZN040/4dTotzGD6IiEYTvVqJAz/5XMbeOxkGNt2IonhWzTljabK1lHc4HWlik4yJohKWXF2Gz4aIiIZDEAQYNKqMbMn48p88eTI++OCDuH1btmxJ6MuxdevWhJ8nTZp03u8/UmRv5QMKVj6IiCitvve97+GLX/wiZs+ejSuuuAL/93//h5dffjluPTQAePHFFzF37lxccskleO6557Bt2zb88Y9/zNBZJ1/2hg92OCUiojS79tpr8fjjj+MXv/gFvv3tb6OmpgbPPPMMFi9eHHfcgw8+iHXr1uGOO+6A1WrFc889hylTpmTmpFMg68JHICyFDwFKFHCeDyIiSqEVK1YkzGh6++234/bbbz/j88rKyrBhw4YUnllmZV2fj1C0z0eeXgclp1YnIiJKu+wLH9F5PnI0bHIhIiLKhKxrdglH+3yoFVn30YmIaBQQRTHTp5ByWVX5EEUREUQAAGoVwwcREVEmZFX46BtmC6gV6gyeCRERUfbKqvARm2AMADRKhg8iIqJMyKrwIS8qB4YPIiKiTMmu8BHpHz7Y54OIiCgTsiZ8hCNh/PeB/wYAiKICGmVyFggiIiKi4cma8BERI3h679PRH9RQq7LmoxMR0QgmCAJeffXVsz5+xYoVuPbaa8/rPU+cOAFBELB79+7zep1zlT3fwAJwVfVVGG9YCJ/tWmiU2fPRiYgoM2w2G+6++27U1dVBp9OhpKQEl1xyCX7729/C4/Fk+vQyJms6PqgVajy6+FE8+d5R7N5xCGolp1YnIqLUOX78OC6++GLk5eXhoYcewvTp0xEKhXD48GH86U9/QllZGb7whS9k+jQzIuv++R8KSzPHqVn5ICKiFLrjjjugUqnwySef4Itf/CImT56M6dOn44YbbsAbb7yB5cuXD/q8vXv34vLLL4der0dhYSG++c1vwuVyJRz34IMPwmKxIDc3F7fddhsCgYD82Pr163HJJZcgLy8PhYWFuOaaa3Ds2LGUfdbhyrpv4GA4OsMpwwcR0egjikDAnZltGNOed3V1YcOGDbjzzjthNBoHPUYQEivwHo8HV199NfLz87F9+3a8+OKLePvtt3HXXXfFHffOO++goaEB7733Hv7yl7/glVdewYMPPig/7na7sWrVKmzfvh3vvPMOFAoFrrvuOkQikbP+DKmUNc0uMbHwoWGHUyKi0SfoAR4qy8x739cCaAYPEgMdPXoUoihi4sSJcfuLiorg8/kAAHfeeSceeeSRuMefe+45eL1e/PnPf5ZDyxNPPIHly5fjkUceQUlJCQBAo9HgT3/6EwwGA6ZOnYqf/OQn+N73voef/vSnUCgUuOGGG+Je949//CMsFgsOHDiAadOmndPHT6as+wYOyJUP9vkgIqLUGljd2LZtG3bv3o2pU6fC7/cnHN/Q0ICZM2fGVUsuvvhiRCIRHDp0SN43c+ZMGAwG+eeFCxfC5XKhqakJAHDs2DF8+ctfRm1tLXJzc1FTUwMAOHXqVFI/37nK2soHm12IiEYhtUGqQGTqvc9SXV0dBEHAwYMH4/bX1tYCAPR6/aDPE0Vx0OYYYPBmmqGOWb58OSorK/H000+jrKwMkUgE06ZNi+sXkknZFz5C7HBKRDRqCcJZN31kUmFhIa666io88cQTWLly5ZD9PgaaMmUK1q5dC7fbLT/nww8/hEKhwIQJE+TjPv30U3i9XjnEbN26FTk5OaioqEBXVxcaGhrwu9/9DpdeeikA4IMPPkjyJzw/WfcNLPf5YPggIqIU+s1vfoNQKIS5c+fihRdeQENDAw4dOoT//u//xsGDB6EcZKbtm2++GTqdDrfeeiv27duH9957DytXrsQtt9wi9/cAgEAggK997Ws4cOAA/va3v+GBBx7AXXfdBYVCgfz8fBQWFuL3v/89jh49infffRerVq1K50f/TFlX+WCfDyIiSofx48dj165deOihh3DvvfeiubkZWq0WU6ZMwXe/+13ccccdCc8xGAx46623cPfdd2PevHkwGAy44YYb8Oijj8Ydd8UVV6C+vh6XXXYZ/H4/brzxRqxevRoAoFAosG7dOnz729/GtGnTMHHiRPz617/G4sWL0/Cpz44gisMYO5QGDocDZrMZdrsdubm5SX/92/7rE7y1vw3/ft003Dy/OumvT0REyeHz+dDY2IiamhrodLpMnw5FDfXnMpzv76xrewhykjEiIqKMyrpvYPb5ICIiyqys+wYOhDjUloiIKJOy7hs4yA6nREREGZWF4SPa54PTqxMREWVE1n0Ds88HERFRZmXdN3CA06sTERFlVNZ9A7PPBxERUWZlX/jg2i5EREQZlXXfwHKfD3Y4JSIiyois+wZmnw8iIkq1FStWQBAEeSssLMTVV1+NPXv2DOs1rr322rh9J06cgCAI2L17d3JPOM2y7huYfT6IiCgdrr76arS2tqK1tRXvvPMOVCoVrrnmmkyf1oiQheFD6vPBobZERJRKWq0WVqsVVqsVF1xwAX7wgx+gqakJHR0dAIC9e/fi8ssvh16vR2FhIb75zW/C5XIBAFavXo21a9fitddek6snmzZtQk1NDQBg1qxZEARBXqk2EongJz/5CSoqKqDVanHBBRdg/fr18rnEKib/8z//g0svvRR6vR7z5s3D4cOHsX37dsydOxc5OTm4+uqr5fNLJVXK32EECUdEhCPscEpENFqJoghvyJuR99ar9BCEc6uau1wuPPfcc6irq0NhYSE8Hg+uvvpqLFiwANu3b0d7ezu+/vWv46677sKzzz6L7373u2hoaIDD4cAzzzwDACgoKMC2bdtw4YUX4u2338bUqVOh0WgAAI8//jh+9atf4Xe/+x1mzZqFP/3pT/jCF76A/fv3o76+Xj6PBx54AI899hiqqqrw1a9+FTfddBNyc3Px+OOPw2Aw4Itf/CJ+/OMf46mnnjr/C3YGWRU+Yk0uAGc4JSIajbwhL+Y/Pz8j7/3xlz+GQW046+P/+te/IicnBwDgdrtRWlqKv/71r1AoFHjuuefg9Xrx5z//GUajEQDwxBNPYPny5XjkkUdQUlICvV4Pv98Pq9Uqv2ZxcTEAoLCwMG7/L3/5S/zgBz/AjTfeCAB45JFH8N577+Gxxx7Dk08+KR/33e9+F5/73OcAAHfffTduuukmvPPOO7j44osBAF/72tfw7LPPnsPVGZ6s+gaOCx/s80FERCm0ZMkS7N69G7t378bHH3+MpUuXYtmyZTh58iQaGhowc+ZMOXgAwMUXX4xIJIJDhw4N630cDgdaWlrkANH/9RoaGuL2zZgxQ75fUlICAJg+fXrcvvb29mG9/7nIssqHKN9XK7IqdxERjQl6lR4ff/njjL33cBiNRtTV1ck/z5kzB2azGU8//TREURyyCedcm3YGPm+w91Cr1QnHD9wXiUSQalkTPkLhCH706j4AgFIhQKFg5YOIaLQRBGFYTR8jiSAIUCgU8Hq9mDJlCtauXQu32y1XPz788EMoFApMmDABAKDRaBAOh+NeI9bHo//+3NxclJWV4YMPPsBll10m79+yZQsuvPDCVH+sc5I1//yPiMAbe1sBAPkG9WccTUREdH78fj9sNhtsNhsaGhqwcuVKuFwuLF++HDfffDN0Oh1uvfVW7Nu3D++99x5WrlyJW265RW4OGTduHPbs2YNDhw6hs7MTwWAQFosFer0e69evR1tbG+x2OwDge9/7Hh555BG88MILOHToEH74wx9i9+7duPvuuzN5CYaUNZUPhQDcuWQ8AOCy+uIMnw0REY1169evR2lpKQDAZDJh0qRJePHFF+XhsW+99RbuvvtuzJs3DwaDATfccAMeffRR+fnf+MY3sGnTJsydOxculwvvvfceFi9ejF//+tf4yU9+gh//+Me49NJLsWnTJnz729+Gw+HAd77zHbS3t2PKlCl4/fXX40a6jCSCKIriZx+WPg6HA2azGXa7Hbm5uZk+HSIiyhCfz4fGxkbU1NRAp9Nl+nQoaqg/l+F8f2dNswsRERGNDCkLH7/5zW/kVDRnzhz8/e9/T9VbERER0SiSkvDxwgsv4J577sH999+PXbt24dJLL8WyZctw6tSpVLwdERERjSIpCR+PPvoovva1r+HrX/86Jk+ejMceewyVlZUpn66ViIiIRr6kh49AIIAdO3Zg6dKlcfuXLl2KLVu2JBzv9/vhcDjiNiIiIhq7kh4+Ojs7EQ6H5XHKMSUlJbDZbAnHr1mzBmazWd4qKyuTfUpERDSKpWPGTTp7yfjzSNk8H2czzSsA3HvvvVi1apX8s8PhYAAhIiJoNBooFAq0tLSguLgYGo3mnKcep/MniiICgQA6OjqgUCjk2VbPRdLDR1FREZRKZUKVo729PaEaAgBarRZarTbZp0FERKOcQqFATU0NWltb0dLSkunToSiDwYCqqioozmONtKSHD41Ggzlz5mDjxo247rrr5P0bN27EP/7jPyb77YiIaAzTaDSoqqpCKBRKWOeE0k+pVEKlUp13BSolzS6rVq3CLbfcgrlz52LhwoX4/e9/j1OnTuFb3/pWKt6OiIjGMEEQoFar41ZfpdEtJeHjS1/6Erq6uvCTn/wEra2tmDZtGt58801UV1en4u2IiIhoFOHaLkRERHTeuLYLERERjVgpG2p7rmKFGE42RkRENHrEvrfPpkFlxIUPp9MJAJzrg4iIaBRyOp0wm81nPGbE9fmIRCJoaWmByWRK+mQysQnMmpqa2J8khXid04PXOX14rdOD1zk9UnWdRVGE0+lEWVnZZ84BMuIqHwqFAhUVFSl9j9zcXP5ipwGvc3rwOqcPr3V68DqnRyqu82dVPGLY4ZSIiIjSiuGDiIiI0iqrwodWq8UDDzzAtWRSjNc5PXid04fXOj14ndNjJFznEdfhlIiIiMa2rKp8EBERUeYxfBAREVFaMXwQERFRWjF8EBERUVoxfBAREVFaZU34+M1vfoOamhrodDrMmTMHf//73zN9SqPK+++/j+XLl6OsrAyCIODVV1+Ne1wURaxevRplZWXQ6/VYvHgx9u/fH3eM3+/HypUrUVRUBKPRiC984Qtobm5O46cY+dasWYN58+bBZDLBYrHg2muvxaFDh+KO4bU+f0899RRmzJghz/C4cOFC/O1vf5Mf5zVOjTVr1kAQBNxzzz3yPl7r5Fi9ejUEQYjbrFar/PiIu85iFli3bp2oVqvFp59+Wjxw4IB49913i0ajUTx58mSmT23UePPNN8X7779ffOmll0QA4iuvvBL3+MMPPyyaTCbxpZdeEvfu3St+6UtfEktLS0WHwyEf861vfUssLy8XN27cKO7cuVNcsmSJOHPmTDEUCqX504xcn/vc58RnnnlG3Ldvn7h7927x85//vFhVVSW6XC75GF7r8/f666+Lb7zxhnjo0CHx0KFD4n333Seq1Wpx3759oijyGqfCtm3bxHHjxokzZswQ7777bnk/r3VyPPDAA+LUqVPF1tZWeWtvb5cfH2nXOSvCx4UXXih+61vfits3adIk8Yc//GGGzmh0Gxg+IpGIaLVaxYcfflje5/P5RLPZLP72t78VRVEUe3t7RbVaLa5bt04+5vTp06JCoRDXr1+ftnMfbdrb20UA4ubNm0VR5LVOpfz8fPEPf/gDr3EKOJ1Osb6+Xty4caO4aNEiOXzwWifPAw88IM6cOXPQx0bidR7zzS6BQAA7duzA0qVL4/YvXboUW7ZsydBZjS2NjY2w2Wxx11ir1WLRokXyNd6xYweCwWDcMWVlZZg2bRr/HM7AbrcDAAoKCgDwWqdCOBzGunXr4Ha7sXDhQl7jFLjzzjvx+c9/HldeeWXcfl7r5Dpy5AjKyspQU1ODG2+8EcePHwcwMq/ziFvVNtk6OzsRDodRUlISt7+kpAQ2my1DZzW2xK7jYNf45MmT8jEajQb5+fkJx/DPYXCiKGLVqlW45JJLMG3aNAC81sm0d+9eLFy4ED6fDzk5OXjllVcwZcoU+S9aXuPkWLduHXbu3Int27cnPMbf5+SZP38+/vznP2PChAloa2vDz372M1x00UXYv3//iLzOYz58xAiCEPezKIoJ++j8nMs15p/D0O666y7s2bMHH3zwQcJjvNbnb+LEidi9ezd6e3vx0ksv4dZbb8XmzZvlx3mNz19TUxPuvvtubNiwATqdbsjjeK3P37Jly+T706dPx8KFCzF+/HisXbsWCxYsADCyrvOYb3YpKiqCUqlMSG7t7e0JKZDOTaxH9ZmusdVqRSAQQE9Pz5DHUJ+VK1fi9ddfx3vvvYeKigp5P6918mg0GtTV1WHu3LlYs2YNZs6ciccff5zXOIl27NiB9vZ2zJkzByqVCiqVCps3b8avf/1rqFQq+VrxWief0WjE9OnTceTIkRH5Oz3mw4dGo8GcOXOwcePGuP0bN27ERRddlKGzGltqampgtVrjrnEgEMDmzZvlazxnzhyo1eq4Y1pbW7Fv3z7+OfQjiiLuuusuvPzyy3j33XdRU1MT9zivdeqIogi/389rnERXXHEF9u7di927d8vb3LlzcfPNN2P37t2ora3ltU4Rv9+PhoYGlJaWjszf6aR3YR2BYkNt//jHP4oHDhwQ77nnHtFoNIonTpzI9KmNGk6nU9y1a5e4a9cuEYD46KOPirt27ZKHKz/88MOi2WwWX375ZXHv3r3iTTfdNOgwroqKCvHtt98Wd+7cKV5++eUcLjfA7bffLprNZnHTpk1xQ+Y8Ho98DK/1+bv33nvF999/X2xsbBT37Nkj3nfffaJCoRA3bNggiiKvcSr1H+0iirzWyfKd73xH3LRpk3j8+HFx69at4jXXXCOaTCb5e26kXeesCB+iKIpPPvmkWF1dLWo0GnH27Nny0EU6O++9954IIGG79dZbRVGUhnI98MADotVqFbVarXjZZZeJe/fujXsNr9cr3nXXXWJBQYGo1+vFa665Rjx16lQGPs3INdg1BiA+88wz8jG81ufvq1/9qvz3QXFxsXjFFVfIwUMUeY1TaWD44LVOjti8HWq1WiwrKxOvv/56cf/+/fLjI+06C6IoismvpxARERENbsz3+SAiIqKRheGDiIiI0orhg4iIiNKK4YOIiIjSiuGDiIiI0orhg4iIiNKK4YOIiIjSiuGDiIiI0orhg4iIiNKK4YOIiIjSiuGDiIiI0ur/A3HCfApc2TPDAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.plot(range(501), img_qual_callback.metrics_store['top_PSNR'], label='Top')\n", + "plt.plot(range(501), img_qual_callback.metrics_store['global_PSNR'], label='Global')\n", + "plt.plot(range(501), img_qual_callback.metrics_store['bottom_PSNR'], label='Bottom')\n", + "plt.legend()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "cil_testing2", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.12" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/v24.2.0/.doctrees/nbsphinx/demos/deriv2_cgls.ipynb b/v24.2.0/.doctrees/nbsphinx/demos/deriv2_cgls.ipynb new file mode 100644 index 0000000000..3cce6a2e50 --- /dev/null +++ b/v24.2.0/.doctrees/nbsphinx/demos/deriv2_cgls.ipynb @@ -0,0 +1,645 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "id": "602dbdfe", + "metadata": {}, + "outputs": [], + "source": [ + "# -*- coding: utf-8 -*-\n", + "# Copyright 2023 United Kingdom Research and Innovation\n", + "#\n", + "# Licensed under the Apache License, Version 2.0 (the \"License\");\n", + "# you may not use this file except in compliance with the License.\n", + "# You may obtain a copy of the License at\n", + "#\n", + "# http://www.apache.org/licenses/LICENSE-2.0\n", + "#\n", + "# Unless required by applicable law or agreed to in writing, software\n", + "# distributed under the License is distributed on an \"AS IS\" BASIS,\n", + "# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n", + "# See the License for the specific language governing permissions and\n", + "# limitations under the License.\n", + "#\n", + "# Authored by: Bill Lionheart (University of Manchester),\n", + "# Edited by: Margaret Duff (STFC - UKRI)" + ] + }, + { + "cell_type": "markdown", + "id": "6f8acbea", + "metadata": {}, + "source": [ + "# 1D inverse problem demo using deriv2 from regtools" + ] + }, + { + "cell_type": "markdown", + "id": "5dc422b7", + "metadata": {}, + "source": [ + "We roughly translated deriv2 (P. C. Hansen, Regularization Tools Version 4.0 for Matlab 7.3, Numerical Algorithms, 46 (2007), pp. 189-194.) to Python. The righthand side vector b is made as Ax so is \"exact\" as a vector. We will look at the singular valued decomposition (SVD) and regularized solution as an example of a mildly ill posed problem and show how to recostruct using the Core Imaging Library (CIL. See Jørgensen, Jakob S., et al. \"Core Imaging Library-Part I: a versatile Python framework for tomographic imaging.\" Philosophical Transactions of the Royal Society A 379.2204 (2021): 20200192. and https://tomographicimaging.github.io/CIL/nightly/index.html). " + ] + }, + { + "cell_type": "markdown", + "id": "7f0222cb", + "metadata": {}, + "source": [ + "This notebook was developed as part of the CCPi CIL Hackathon https://ccpi.ac.uk/events/byod-cil-hackathon/ in March 2023 in Cambridge as part of the Rich Nonlinear Tomography programme at the Isaac Newton Institute for Mathematical Sciences https://www.newton.ac.uk/event/rnt/. The CIL is supported by the CCPi EPSRC grant EP/T026677/1 and the Isaac NewtonInstitute by EP/R014604/1 The author would like to thank the Isaac Newton Institute for support and hospitality.(c) W.R.B. Lionheart 2023. Apache License" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "b2a54694", + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "from cil.optimisation.algorithms import CGLS\n", + "from cil.optimisation.operators import MatrixOperator\n", + "from cil.framework import VectorData, BlockDataContainer\n", + "from deriv2 import deriv2\n", + "from cil.optimisation.operators import BlockOperator,IdentityOperator" + ] + }, + { + "cell_type": "markdown", + "id": "d33631d9", + "metadata": {}, + "source": [ + "### CIL version 23.0.1" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "751f22b8", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "23.0.1\n" + ] + } + ], + "source": [ + "import cil\n", + "print(cil.__version__)" + ] + }, + { + "cell_type": "markdown", + "id": "250103e8", + "metadata": {}, + "source": [ + "We set up a 1D inverse problem, in which the forward model integrates twice. The notebook will first set up and solve a basic formulation of the problem using just python/numpy, and after that using CIL.\n", + "\n", + "Consider a discretization of a first kind Fredholm integral equation whose kernel K is the Green's function for the second derivative:\n", + " $$\n", + " K(s,t) = \\begin{cases} s(t-1) , s < t \\\\\n", + " t(s-1) , s \\geq t \\end{cases} $$\n", + "\n", + "and $$ \\int_0^1K(s,t)x(t)dt=b(s). $$\n", + "\n", + " For this notebook, consider the case\n", + "$$ b(s) = (s^3 - s)/6 , \\ \\ x(t) = t$$\n", + "\n", + " where the integral is disretised using the Galerkin method with orthonormal box functions, with interval size $1/n$.\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "27770924", + "metadata": {}, + "outputs": [], + "source": [ + "\n", + "# Test of one dimensional inverse problems using deriv2 from reg tools\n", + "n = 100\n", + "A,b,x = deriv2(n,1)\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "id": "113e7dc1", + "metadata": {}, + "source": [ + "The functions $b$ and $x$ can be plotted:" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "336dc870", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAGdCAYAAADAAnMpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABGy0lEQVR4nO3deVxU9eI+8GcYGFYBBWURJNwXBBTS0LyVFWZmaRl067Zd6+bttiBaV6Ob6a1oc6lMu5XVt/trQS2XikzqlnuLCIjiDgqyiIAw7LN9fn+cYRNQBmHOLM/79TqvmTnOwIcjcB4+5zxnFEIIASIiIiKZOMg9ACIiIrJvDCNEREQkK4YRIiIikhXDCBEREcmKYYSIiIhkxTBCREREsmIYISIiIlkxjBAREZGsHOUeQFcYDAYUFRWhT58+UCgUcg+HiIiIukAIgerqagQGBsLBofP5D6sII0VFRQgODpZ7GERERNQNBQUFCAoK6vTfrSKM9OnTB4D0xXh6eso8GiIiIuoKtVqN4ODg5v14Z6wijDQdmvH09GQYISIisjKXO8WCJ7ASERGRrBhGiIiISFYMI0RERCQrqzhnpCuEENDpdNDr9XIPpVcolUo4Ojqy2kxERDbHJsKIRqNBcXEx6urq5B5Kr3Jzc0NAQABUKpXcQyEiIuoxVh9GDAYD8vLyoFQqERgYCJVKZXOzB0IIaDQanD9/Hnl5eRg2bNglLx5DRERkTUwOIzt37sQbb7yB9PR0FBcXY9OmTZg1a9YlX7Njxw4kJibi8OHDCAwMxLPPPot58+Z1d8xtaDQaGAwGBAcHw83NrUc+piVydXWFk5MTzpw5A41GAxcXF7mHRERE1CNM/vO6trYWERERWL16dZeen5eXh1tvvRVTpkxBRkYGnnvuOTz11FP46quvTB7spdjDTIE9fI1ERGR/TJ4ZmT59OqZPn97l57/33nsYNGgQVq1aBQAYNWoU9u/fjzfffBN33XWXqZ+eiIiIbEyv/6m9b98+xMbGtlk3bdo07N+/H1qttsPXNDY2Qq1Wt1mIiIjINvV6GCkpKYGfn1+bdX5+ftDpdCgrK+vwNcnJyfDy8mpe+CZ5REREtsssJyFc3G4RQnS4vsnixYtRVVXVvBQUFPT6GImIiEgevR5G/P39UVJS0mZdaWkpHB0d4ePj0+FrnJ2dm98Uj2+OR0RE1Ht+zS3H/et+Q51GJ9sYej2MxMTEIC0trc267du3Izo6Gk5OTj3++YQQqNPoZFmaZny64vz58/D398crr7zSvO63336DSqXC9u3be3y7EBERtdao0yM59Qj+/MGv2HWiDGt+PiXbWExu09TU1ODkyZPNj/Py8pCZmYl+/fph0KBBWLx4MQoLC/Hpp58CAObNm4fVq1cjMTERjz76KPbt24d169bhiy++6LmvopV6rR6jX/ihVz725eQsmwY3Vdc2af/+/fHRRx9h1qxZiI2NxciRI/GXv/wFjz/+eLsTfomIiHrSsZJqJKRk4kixVBCJjw7GvOuHyDYek8PI/v37ccMNNzQ/TkxMBAA8+OCD+OSTT1BcXIz8/Pzmfw8NDUVqairmz5+Pd999F4GBgXj77bdZ6wVw66234tFHH8V9992Hq6++Gi4uLnj11VflHhYREdkog0Hg472n8dq2o9DoDOjnrkLynWMxbYy/rONSCFOOLchErVbDy8sLVVVV7c4faWhoQF5eHkJDQ+Hi4gIhBOq18rxZnquT0uRL0dfX1yMsLAwFBQXYv38/wsPDO33uxV8rERFRVxVX1WPhhizsOVkOALhhRH+8NiccA/r03v7kUvvv1qz+vWkuplAounyoxBLk5uaiqKgIBoMBZ86cuWQYISIi6o6tWUV4flM21A06uDg54PkZo3HfxEEW815u1rPXtkEajQb33Xcf4uPjMXLkSMydOxfZ2dntrstCRETUHVX1WizZcgibM4sAABFBXlgZH4nB/T1kHllbDCMySkpKQlVVFd5++214eHjg+++/x9y5c/Htt9/KPTQiIrJye0+VYeH6LBRVNcBBATwxdRienDoUTkrLe58zhhGZ/PLLL1i1ahV+/vnn5uNo//3vfxEeHo61a9fi73//u8wjJCIia9So02P59uP4YFcuhABCfNywIi4SUSF95R5apxhGZHL99de3e2+eQYMGobKyUp4BERGR1TtaokbCl5k4WlINALjn6mD867bRcHe27N29ZY+OiIiILstgEPhoTx5e33YMGr0BPu4qvHpXOG4ebR3nIDKMEBERWbGiSqmyu/eUVNm9ceQAvHpXOPr3cZZ5ZF3HMEJERGSlWld2XZ2U+Ndto/HnCcEWU9ntKoYRIiIiK1NVp8W/thzC1iypshsZ7I2V8ZEI9XWXeWTdwzBCRERkRfaeLMOCDVkormqA0kGBJ6cOxRM3DIWjBVZ2u4phhIiIyAo0aPV484dj+HB3HgDgKh83rIyPxLhBllvZ7SqGESIiIgt3pFiq7B47J1V2/zxhEJ6fMcriK7tdZRtfBRERkQ0yGAQ+3J2LN3843lzZfe2ucNxkJZXdrmIYkcn111+PyMhIrFq1Su6hEBGRBSqsrMeC9Zn4NbcCAHDTKKmy6+thPZXdrmIYISIisjBbMgvx/OZDqLbyym5XMYwQERFZiKo6LZ7fcgjf2Ehlt6ustwdkA3Q6HZ544gl4e3vDx8cHzz//PIQQcg+LiIhksOdkGW55aye+ySqC0kGB+TcNx8Z5MTYfRABbnBkRAtDWyfO5ndwAE6bQ/u///g9z587Fb7/9hv379+Nvf/sbQkJC8Oijj/biIImIyJI0aPV444djWGes7Ib6umNlfCQig73lHZgZ2V4Y0dYBrwTK87mfKwJUXU+wwcHBWLlyJRQKBUaMGIHs7GysXLmSYYSIyE7kFKkxP6WlsnvfxEFImjEKbirb2z1fCg/TyOiaa65pczJSTEwMTpw4Ab1eL+OoiIiot+kNAv/ZcQqz3t2DY+eq4euhwkcPRePl2WPtLogAtjgz4uQmzVDI9bmJiIgu4eyFOixYn4Xf8poqu3549a6xNlnZ7SrbCyMKhUmHSuT066+/tns8bNgwKJVKmUZERES9RQiBzZmFeGHzYVQ36uCmUmLJzNGIi7bdym5X2V4YsSIFBQVITEzEY489hgMHDuCdd97B8uXL5R4WERH1sMo6DZI2H8J3B4sBAOMGeWNVfCRCfKzjj+fexjAiowceeAD19fWYMGEClEolnnzySfztb3+Te1hERNSDdp8ow8INWShRS++y+/SNw/D49UOs+l12exrDiEx++eWX5vtr166VbyBERNQrGrR6vL7tGD7aI1V2BxsruxF2VNntKoYRIiKiHpZTpEZCSgaOn6sBAPzlmkF47lb7q+x2FbcKERFRD9EbBD7YlYvl249Bqxfw9XDG63PGYupI23qX3Z7GMEJERNQDzl6oQ+L6LPxurOzGjvZD8p1j4WPHld2uYhghIiK6AkIIbMooxJItUmXXXaXEkpljcHd0kN1XdruKYYSIiKibKus0SNp0CN9lS5XdqJC+WBEXwcquiWwmjNjDu93aw9dIRGQtdp04j4UbsnBO3QhHBwUSbhqGedexstsdVh9GnJycAAB1dXVwdXWVeTS9q65Oejfipq+ZiIjMr0Grx6vfH8Une08DAAb3d8eq+EiEB3nLOi5rZvVhRKlUwtvbG6WlpQAANzc3mztGJ4RAXV0dSktL4e3tzcvFExHJ5FBhFeanZOJEqVTZfSAmBIunj4Krir+Xr4TVhxEA8Pf3B4DmQGKrvL29m79WIiIyH71B4P2duViRJlV2+/dxxhtzwnH9iAFyD80m2EQYUSgUCAgIwIABA6DVauUeTq9wcnLijAgRkQwKKqR32f39tFTZvWWMP165cyz6uatkHpntsIkw0kSpVHKHTUREPUIIga8OFOLFrYdR01TZvX0M7o5iZben2VQYISIi6gkXajVI2pyN1OwSAEB0SF+siIvEIB83mUdmmxhGiIiIWtlx/Dye2ZCF0mqpsjv/5uGYd90QKB04G9JbGEaIiIjQvrI7pL87VsWPw9ggL3kHZgcYRoiIyO4dKqxCQkomTrKyKwuGESIislt6g8B7O05hZdpx6AwCA/o44427I3Dd8P5yD82uMIwQEZFdKqioQ+L6TPxx+gIAYHqYP16ZPRZ9Wdk1O4YRIiKyKxdXdj2cHfHi7WNw1/iBrOzKhGGEiIjsxoVaDZ7blI3vD0mV3auvkiq7wf1Y2ZUTwwgREdmFX46V4tmNB1Fa3QgnpVTZfexPrOxaAoYRIiKyafUaPZK/P4JP950BAAwd4IFV8ZEIG8jKrqVgGCEiIpuVfbYKCSkZOHW+FgDw0KSrsGj6SLg4sbJrSRhGiIjI5ugNAmt/OYlVP55gZdcKMIwQEZFNyS+vw/z1mUg/w8qutWAYISIimyCEwIb0s1i69TBqNXp4ODti6e1jcCcruxaPYYSIiKxeRa0Gi78+iB8OnwPAyq61YRghIiKr9rOxsnuelV2rxTBCRERWqV6jxyupR/DfX6XK7rABHljJyq5VcujOi9asWYPQ0FC4uLggKioKu3btuuTzP/vsM0RERMDNzQ0BAQF4+OGHUV5e3q0BExERHTxbiRnv7GoOIg9PvgrfPHktg4iVMjmMpKSkICEhAUlJScjIyMCUKVMwffp05Ofnd/j83bt344EHHsDcuXNx+PBhbNiwAX/88QceeeSRKx48ERHZF53egHd+OoE71+xF7vla+Hk6479zJ2DJzDG8dogVUwghhCkvmDhxIsaPH4+1a9c2rxs1ahRmzZqF5OTkds9/8803sXbtWpw6dap53TvvvIPXX38dBQUFXfqcarUaXl5eqKqqgqenpynDJSIiG3GmvBbzUzJxIL8SADAjPAAvzwqDtxsru5aqq/tvk2ZGNBoN0tPTERsb22Z9bGws9u7d2+FrJk2ahLNnzyI1NRVCCJw7dw4bN27EjBkzOv08jY2NUKvVbRYiIrJPQgis/6MAt761CwfyK9HH2REr4yOw+s/jGERshElhpKysDHq9Hn5+fm3W+/n5oaSkpMPXTJo0CZ999hni4+OhUqng7+8Pb29vvPPOO51+nuTkZHh5eTUvwcHBpgyTiIhsRHlNIx77bzqe/eogajV6TAjth+8TpmD2uCBeO8SGdOsE1ou/AYQQnX5T5OTk4KmnnsILL7yA9PR0bNu2DXl5eZg3b16nH3/x4sWoqqpqXrp6OIeIiGzHz0dLMW3VLmzPOQcnpQKLp4/EF49eg6C+vHaIrTGp2uvr6wulUtluFqS0tLTdbEmT5ORkTJ48Gc888wwAIDw8HO7u7pgyZQpeeuklBAQEtHuNs7MznJ2dTRkaERHZiDqNDi9/dwSf/SYVI4b7eWBV/DiMDuQ5g7bKpJkRlUqFqKgopKWltVmflpaGSZMmdfiauro6ODi0/TRKpXTGs4nnzhIRkY3LKqjEbW/vbg4ic68NxdYnrmUQsXEmX/QsMTER999/P6KjoxETE4P3338f+fn5zYddFi9ejMLCQnz66acAgJkzZ+LRRx/F2rVrMW3aNBQXFyMhIQETJkxAYGBgz341RERklXR6A9b8cgpv/XQCeoOAv6cLlsdFYPJQX7mHRmZgchiJj49HeXk5li1bhuLiYoSFhSE1NRUhISEAgOLi4jbXHHnooYdQXV2N1atXY8GCBfD29sbUqVPx2muv9dxXQUREVuviyu5t4QF4edZYeLk5yTswMhuTrzMiB15nhIjI9gghkPJHAZZ9m4M6jR59XBzx7zvCcEdkIJsyNqKr+2++Nw0REZldWU0jFn2VjR+PSO+ye83gflgeF4mB3q4yj4zkwDBCRERm9dORc/jnVwdRVqOBSumAhdOG45FrB8OB77JrtxhGiIjILOo0Orz03RF8bmzKjPDrg1X3RGJUAA+/2zuGESIi6nWZBZWYn5KJvLJaAMAj14Zi4bQRfHM7AsAwQkREvUinN2D1zyfxzv9OQm8QCPBywfK7IzCJlV1qhWGEiIh6RV6ZVNnNLKgEANweEYh/3xHGyi61wzBCREQ9SgiBL34vwL+/zUG9VqrsvjQrDHdEDpR7aGShGEaIiKjHnK9uxKKvDuKno6UAgJjBPlgeF4FAVnbpEhhGiIioR/yYI1V2y2ulyu6zt4zAXyeHsrJLl8UwQkREV6S2UYeXvsvBF78XAABG+kuV3ZH+rOxS1zCMEBFRtx3Iv4DElEycLq+DQgE8OmUwFsQOh7MjK7vUdQwjRERkMq3egNX/O4nVP0uV3UAvFyyPi0TMEB+5h0ZWiGGEiIhMkldWi4SUTGQZK7t3RAZi2R1h8HJlZZe6h2GEiIi6RAiBz3/Px0vfHkG9Vg9PF0e8NHssbo8IlHtoZOUYRoiI6LIuruxOGuKDN+9mZZd6BsMIERFdUlrOOSxqquw6OuDZaazsUs9iGCEiog7VNurw729z8OUfrOxS72IYISKidtLPXEDi+kycMVZ2/zZlMBJZ2aVewjBCRETNtHoD3vnpBFb/fBIGAVZ2ySwYRoiICACQe74G81MykXW2CgAwKzIQS1nZJTNgGCEisnNCCHz2Wz5e/q6lsvvy7LGYycoumQnDCBGRHSutbsCir7LxP2Nld/JQqbIb4MXKLpkPwwgRkZ3afrgEi77ORoWxsvvPW0bi4UlXsbJLZscwQkRkZ2oadfj3NzlI2S9VdkcFeGJVfCRG+PeReWRkrxhGiIjsSPqZCsxPyUJ+hbGy+6fBSLyZlV2SF8MIEZEd0OoNeOvHE1jzi1TZHejtihVxEZg4mJVdkh/DCBGRjTtlrOweNFZ27xw3EC/eMQaeLqzskmVgGCEislFCCPz31zN4JfUIGrQGeLk64ZXZYzEjPEDuoRG1wTBCRGSDStUNeGbjQew4fh4AMGWYL96YEwF/LxeZR0bUHsMIEZGN2XaoBIu/PogLdVqoHB2w6JaReIiVXbJgDCNERDaiplGHpVsPY0P6WQDA6ABPrLonEsP9WNkly8YwQkRkA/afrsD89ZkoqKiHQgE89qchSLx5OFSODnIPjeiyGEaIiKyYRmfAWz8dx9pfTrGyS1aLYYSIyEqdLJUqu9mFxsru+IF48XZWdsn6MIwQEVkZIQQ+3SdVdht1Bni7SZXdW8eyskvWiWGEiMiKnDNWdneysks2hGGEiMhKfJ9djMWbslFZp4WzowMWTx+JB2JY2SXrxzBCRGThqhu0eHFrDr46IFV2xwRK77I7jJVdshEMI0REFuz3vAokrs/E2QtSZffv1w1Bwk2s7JJtYRghIrJAGp0Bq348jrU7TkEIIKivK1bGR+Lqq/rJPTSiHscwQkRkYU6WViMhJROHCtUAgDlRQVgyczT6sLJLNophhIjIQhgMAp/uO43k7482V3aTZ4/FdFZ2ycYxjBARWYBz6gYs3JCFXSfKAAB/Gt4fb8wJh58nK7tk+xhGiIhklppdjOdaVXafu3UUHogJgULByi7ZB4YRIiKZqBu0eHHrYXx9oBAAEDZQquwOHcDKLtkXhhEiIhn8nleB+SmZKKysh4MC+Pv1Q/D0jazskn1iGCEiMiONzoCVPx7He8bKbnA/V6yMi0Q0K7tkxxhGiIjM5Pi5aiR8mYmcYqmye3dUEF5gZZeIYYSIqLcZDAKf7D2NV7cdhUZnQF83JyTfORa3hLGySwQwjBAR9aqSqgY8s7GlsnudsbI7gJVdomYMI0REveTbg0VI2nQIVfVauDg5IOnWUfjLNazsEl2MYYSIqIepG7RYsuUwNmVIld2xA72wMj4SQwd4yDwyIsvEMEJE1IN+yy1H4vqs5sruP24YiqduHAYnJSu7RJ3p1k/HmjVrEBoaChcXF0RFRWHXrl2XfH5jYyOSkpIQEhICZ2dnDBkyBB999FG3BkxEZIkadXokf38E93zwKwor6zGonxs2zIvBgtgRDCJEl2HyzEhKSgoSEhKwZs0aTJ48Gf/5z38wffp05OTkYNCgQR2+Ji4uDufOncO6deswdOhQlJaWQqfTXfHgiYgswfFz1Xj6y0wcMVZ246KD8MLMMfBw5uQzUVcohBDClBdMnDgR48ePx9q1a5vXjRo1CrNmzUJycnK752/btg333HMPcnNz0a9f9y7qo1ar4eXlhaqqKnh6enbrYxAR9TSDQeDjvafxmrGy289dheQ7x2LaGH+5h0ZkEbq6/zZp7lCj0SA9PR2xsbFt1sfGxmLv3r0dvmbr1q2Ijo7G66+/joEDB2L48OFYuHAh6uvrO/08jY2NUKvVbRYiIktSXFWP+z/6Df/+NgcanQE3jOiPbQlTGESIusGkOcSysjLo9Xr4+fm1We/n54eSkpIOX5Obm4vdu3fDxcUFmzZtQllZGR5//HFUVFR0et5IcnIyli5dasrQiIjM5pusIiRtyoa6QSdVdmeMxl8mDmJll6ibunVA8+IfOCFEpz+EBoMBCoUCn332Gby8vAAAK1aswJw5c/Duu+/C1dW13WsWL16MxMTE5sdqtRrBwcHdGSoRUY+pqtdiyZZD2JxZBAAID5Iqu0P6s7JLdCVMCiO+vr5QKpXtZkFKS0vbzZY0CQgIwMCBA5uDCCCdYyKEwNmzZzFs2LB2r3F2doazs7MpQyMi6lX7TpVj4YaWyu4TNwzFk6zsEvUIk36KVCoVoqKikJaW1mZ9WloaJk2a1OFrJk+ejKKiItTU1DSvO378OBwcHBAUFNSNIRMRmU+jTo9XUo/g3g9bV3YnIZGVXaIeY/JPUmJiIj788EN89NFHOHLkCObPn4/8/HzMmzcPgHSI5YEHHmh+/r333gsfHx88/PDDyMnJwc6dO/HMM8/gr3/9a4eHaIiILMXREjXuWL0H7+/MhRDAPVcH4/unpyAqpK/cQyOyKSafMxIfH4/y8nIsW7YMxcXFCAsLQ2pqKkJCQgAAxcXFyM/Pb36+h4cH0tLS8OSTTyI6Oho+Pj6Ii4vDSy+91HNfBRFRDzIYBD7ak4fXtx2DRm+Aj7GyG8umDFGvMPk6I3LgdUaIyFyKKuuxcEMW9p4qBwBMHTkAr90Vjv59eB4bkam6uv/m5QGJiIy2ZhXheWNl19VJiedvG4V7J7CyS9TbGEaIyO5V1WvxwpZD2GKs7EYEe2NlXAQGs7JLZBYMI0Rk1/aeKsPC9VkoqmqA0kGBJ24YiiemDmVThsiMGEaIyC41aPVYvv0YPtydByGAEB83rIyPxPhBbMoQmRvDCBHZnSPFasxPycTRkmoAwJ8nBOP5GaPhznfZJZIFf/KIyG4YDAIf7s7Fmz8cb67svnpXOG4e3fEVpInIPBhGiMguFFXWY8H6LOzLlSq7N44cgFdZ2SWyCAwjRGTztmQW4vnNh1BtrOz+67bR+POEYFZ2iSwEwwgR2ayqOi2e33II32RJld3IYG+sjI9EqK+7zCMjotYYRojIJu09WYYFG7JQbKzsPjl1KJ64YSgcWdklsjgMI0RkUxq0erz5g1TZBYCrjJXdcazsElkshhEishlHitVI+DITx85Jld17Jw7C8zNGwU3FX3VElow/oURk9Tqq7L52VzhuYmWXyCowjBCRVSusrMeC9Zn4NbcCAHDTKKmy6+vByi6RtWAYISKrJITAlswi/GuLVNl1U0mV3XuuZmWXyNowjBCR1amq0yJpcza+PVgMABg3yBsr4yJxFSu7RFaJYYSIrMqek2VYsD4LJWqpsvv0jcPw+PVDWNklsmIMI0RkFRq0ery+7Rg+2iNVdkN93bEyPhKRwd7yDoyIrhjDCBFZvJwiNRJSMnD8XA0A4L6Jg5DEyi6RzeBPMhFZLL1B4INduVi+/Ri0egFfDxVenxOOqSNZ2SWyJQwjRGSRzl6ow4L1WfgtT6rs3jzaD6/eORY+rOwS2RyGESKyKEIIbMooxJIth1HdKFV2l8wcjbhoVnaJbBXDCBFZjMo6DZI2HcJ32VJld/wg6V12Q3xY2SWyZQwjRGQRdp8ow4INmTinboSjsbL7d1Z2iewCwwgRyapBq8dr247i4z2nAQCDfd2x6p5IhAd5yzouIjIfhhEiks2hwirMT8nEiVKpsvuXawbhuVtZ2SWyN/yJJyKz0xsE3t+ZixVpUmW3fx9nvD4nHDeMGCD30IhIBgwjRGRWBRVSZff301Jld9oYPyTfGY5+7iqZR0ZEcmEYISKzEELg6wOFWLL1MGoadXBXKbFk5hjcHR3Eyi6RnWMYIaJed6FWg6TN2UjNLgEARIf0xYq4SAzycZN5ZERkCRhGiKhX7Tx+Hs9szGqu7M6/eTjmXTcESgfOhhCRhGGEiHpFg1aPV78/ik/2ngYADO7vjrfix2FskJe8AyMii8MwQkQ97lBhFRJSMnHSWNl9ICYEi6ePgqtKKfPIiMgSMYwQUY/RGwTe23EKK9OOQ2eQKrtvzAnH9azsEtElMIwQUY8oqKhD4vpM/HH6AgDgljH+eOXOsazsEtFlMYwQ0RURQuCrA4V40VjZ9XB2xJKZozEnipVdIuoahhEi6raKWg2SNmXj+0Mtld2V8ZEI7sfKLhF1HcMIEXXLL8dK8czGgzhfzcouEV0ZhhEiMkm9Ro/k74/g031nAABDB3hgVXwkwgaysktE3cMwQkRdln22CgkpGTh1vhYA8NCkq7Bo+ki4OLGyS0TdxzBCRJelNwis/eUkVv14AjqDwIA+znjj7ghcN7y/3EMjIhvAMEJEl5RfXof56zORfkaq7E4P88crs8eiLyu7RNRDGEaIqENCCGxIP4ulWw+jVqOHh7Mjlt4+BneOH8jKLhH1KIYRImqnolaDxV8fxA+HzwEArr5KepddVnaJqDcwjBBRGz8fK8Wzxsquk1Kq7D72J1Z2iaj3MIwQEQCpsvtK6hH891dWdonIvBhGiAgHz1YiISUTuazsEpEMGEaI7JhOb8DaX07hrZ+kyq6fpzPevDsCU4axsktE5sMwQmSnzpTXYn5KJg7kVwIAZowNwMuzw+DtxsouEZkXwwiRnRFCYMP+s1j6jVTZ7ePsiKV3jMHscazsEpE8GEaI7Eh5TSMWf52N7TlSZXdCaD+siItAUF9WdolIPgwjRHbi56PSu+yW1UiV3QWxI/DolMGs7BKR7By686I1a9YgNDQULi4uiIqKwq5du7r0uj179sDR0RGRkZHd+bRE1A11Gh2SNmXj4U/+QFlNI4b7eWDzPyZj3nW8dggRWQaTw0hKSgoSEhKQlJSEjIwMTJkyBdOnT0d+fv4lX1dVVYUHHngAN954Y7cHS0SmySqoxG1v78Znv0k/n3+dHIqtT1yLMYG8dggRWQ6FEEKY8oKJEydi/PjxWLt2bfO6UaNGYdasWUhOTu70dffccw+GDRsGpVKJzZs3IzMzs8ufU61Ww8vLC1VVVfD09DRluER2Sac3YI2xsqs3CPh7uuDNuyNw7TBfuYdGRHakq/tvk2ZGNBoN0tPTERsb22Z9bGws9u7d2+nrPv74Y5w6dQpLlizp0udpbGyEWq1usxBR15wpr8Xd/9mHFWnHoTcI3BYegG0JUxhEiMhimXQCa1lZGfR6Pfz8/Nqs9/PzQ0lJSYevOXHiBBYtWoRdu3bB0bFrny45ORlLly41ZWhEdk8IgZQ/CrDs2xzUGSu7y2aNwaxIVnaJyLJ16wTWi3+xCSE6/GWn1+tx7733YunSpRg+fHiXP/7ixYtRVVXVvBQUFHRnmER2o6ymEY9+mo5FX2ejTqPHxNB++D5hCmaPC2IQISKLZ9LMiK+vL5RKZbtZkNLS0nazJQBQXV2N/fv3IyMjA0888QQAwGAwQAgBR0dHbN++HVOnTm33OmdnZzg7O5syNCK79b+j5/DsxoMoq9HASanAwtgReISVXSKyIiaFEZVKhaioKKSlpWH27NnN69PS0nDHHXe0e76npyeys7PbrFuzZg3+97//YePGjQgNDe3msImoTqPDS98dwefGpsxwPw+sih+H0YE8yZuIrIvJFz1LTEzE/fffj+joaMTExOD9999Hfn4+5s2bB0A6xFJYWIhPP/0UDg4OCAsLa/P6AQMGwMXFpd16Iuq6zIJKzE/JRF6Z9C67c68NxTPTRvBddonIKpkcRuLj41FeXo5ly5ahuLgYYWFhSE1NRUhICACguLj4stccIaLu0ekNWP3zSbzzv5PNld3lcRGYPJRNGSKyXiZfZ0QOvM4IEZBXJr3LbmZBJQBgZkQgXrojDF5uTvIOjIioE13df/O9aYgsnBACX/xegH9/m4N6rR59XBzx0qww3BE5UO6hERH1CIYRIgtWVtOIRV8dxI9HSgEA1wzuh+VxkRjo7SrzyIiIeg7DCJGF+jHnHP751UGU12qgUjrgmWkjMPfaUDiwsktENoZhhMjC1DZKld0vfpdOBB/h1wer7onEqACeL0VEtolhhMiCZORfwPyUTJwur4NCATxybSgWxLKyS0S2jWGEyAJo9Qas/t9JrP5ZquwGerngzbgITBrCyi4R2T6GESKZ5ZXVIiElE1nGyu4dkYFYdkcYvFxZ2SUi+8AwQiQTIQQ+/z0fL317hJVdIrJrDCNEMjhfLVV2fzoqVXZjBvtgeVwEAlnZJSI7xDBCZGZpOeewqFVl99lbRuCvk1nZJSL7xTBCZCa1jTr8+9scfPlHAQBgpL9U2R3pz8ouEdk3hhEiMzhgrOyeMVZ2H50yGAtih8PZkZVdIiKGEaJepNUb8M5PJ7D655MwCCDQywXL4yIRM8RH7qEREVkMhhGiXnLqfA0SUzKRdbYKADArMhBLWdklImqHYYSohwkh8P9+y8fL3+WgQWuAp4sjXp49FjMjAuUeGhGRRWIYIepBpdUN+OfGg/j52HkAwKQhUmU3wIuVXSKizjCMEPWQHw6XYPHX2aio1UDl6IB/3jISD0+6ipVdIqLLYBghukI1jTr8+5scpOyXKrujAjyxKj4SI/z7yDwyIiLrwDBCdAXSz0iV3fwKqbL7tz8NRuLNrOwSEZmCYYSoG7R6A97+6QTeNVZ2B3q7YnlcBK4ZzMouEZGpGEaITHTqfA3mp2TioLGye+e4gXjxjjHwdGFll4ioOxhGiLpICIH/9+sZvJx6BA1aA7xcnfDy7DDcFs7KLhHRlWAYIeqC0uoGPLvxIH4xVnavHeqLN++OgL+Xi8wjIyKyfgwjRJex7VAJFn99EBfqtFA5OmDRLSPxECu7REQ9hmGEqBM1jTos3XoYG9LPAgBGB3hi1T2RGO7Hyi4RUU9iGCHqwP7TFZi/PhMFFfVQKIDH/jQEiTcPh8rRQe6hERHZHIYRola0egPe+vEE1vzSUtldEReBiazsEhH1GoYRIqOTpVJlN7vQWNkdPxAv3s7KLhFRb2MYIbsnhMB/fz2DV1pVdl+ZPRYzwgPkHhoRkV1gGCG7VqpuwDMbD2LHcamyO2WYL96Yw8ouEZE5MYyQ3dp2qBiLv87GhTotnB0dsGj6SDwYw8ouEZG5MYyQ3alu0GLpNznY2Kqy+9Y9kRjGyi4RkSwYRsiu/HG6AvNTMnH2glTZnXfdEMy/iZVdIiI5MYyQXdDoDFj143G8t+NUc2V3ZXwkJoT2k3toRER2j2GEbN7J0mokpGTiUKEaAHDX+CC8ePto9GFll4jIIjCMkM0SQuD/9p5G8vdH0agzwNvNCcmzx2L6WFZ2iYgsCcMI2aRz6gYs3JCFXSfKAAB/Gt4fb8wJh58nK7tERJaGYYRsTmp2MZ7blI1KY2X3uVtH4YGYECgUrOwSEVkihhGyGdUNWizZehhfHygEAIQN9MSq+HEYOsBD5pEREdGlMIyQTfg9rwKJ66XKroMC+Pv1Q/D0jazsEhFZA4YRsmoanQErjZVdIYDgfq5YEReJq69iZZeIyFowjJDVOnFOquweLpIqu3dHBeGFmazsEhFZG4YRsjoGg8D/7TuNV42V3b5uTki+cyxuCWNll4jIGjGMkFUpqWrAMxtbKrvXGSu7A1jZJSKyWgwjZDW+PViEpE2HUFWvhYuTA5JuHYW/XMPKLhGRtWMYIYunbtBiyZbD2JQhVXbDg7ywIi6SlV0iIhvBMEIW7bfcciSuz0JhpVTZ/ccNQ/HUjcPgpGRll4jIVjCMkEXS6AxYkXYc/9kpVXYH9XPDyvgIRIWwsktEZGsYRsjiHD9Xjae/zMSRYqmyGxcdhBdmjoGHM79diYhsEX+7k8UwGAQ+3nsar207Co2xsvvqXeGYNsZf7qEREVEvYhghi1BcVY+FG7Kw52Q5AOD6Ef3x+pxwDOjDyi4Rka1jGCHZfZNVhKRN2VA36KTK7ozR+MvEQazsEhHZCYYRkk1VvRZLthzC5swiAFJld2V8JIb0Z2WXiMiedKsfuWbNGoSGhsLFxQVRUVHYtWtXp8/9+uuvcfPNN6N///7w9PRETEwMfvjhh24PmGzDvlPlmL5qJzZnFsFBATw1dSi++vskBhEiIjtkchhJSUlBQkICkpKSkJGRgSlTpmD69OnIz8/v8Pk7d+7EzTffjNTUVKSnp+OGG27AzJkzkZGRccWDJ+vTqNMjOfUI7v3wVxRVNSDExw0b5k1CYuwIXjuEiMhOKYQQwpQXTJw4EePHj8fatWub140aNQqzZs1CcnJylz7GmDFjEB8fjxdeeKFLz1er1fDy8kJVVRU8PT1NGS5ZkKMlaiR8mYmjJdUAgHuuDsa/bhsNd1Z2iYhsUlf33ybtBTQaDdLT07Fo0aI262NjY7F3794ufQyDwYDq6mr069f5xasaGxvR2NjY/FitVpsyTLIwBoPAR3vy8Pq2Y9DoDejnrsKrd45FLCu7REQEE8NIWVkZ9Ho9/Pz82qz38/NDSUlJlz7G8uXLUVtbi7i4uE6fk5ycjKVLl5oyNLJQF1d2p44cgNfuCkf/Ps4yj4yIiCxFtw7SX1y5FEJ0qYb5xRdf4MUXX0RKSgoGDBjQ6fMWL16Mqqqq5qWgoKA7wySZbc0qwrSVO7HnZDlcnZR4eXYY1j0YzSBCRERtmDQz4uvrC6VS2W4WpLS0tN1sycVSUlIwd+5cbNiwATfddNMln+vs7AxnZ+6wrFVVvRYvbDmELcbKboSxsjuYTRkiIuqASTMjKpUKUVFRSEtLa7M+LS0NkyZN6vR1X3zxBR566CF8/vnnmDFjRvdGSlZh76kyTF+1E1syi6B0UOCpG4dh498nMYgQEVGnTK4xJCYm4v7770d0dDRiYmLw/vvvIz8/H/PmzQMgHWIpLCzEp59+CkAKIg888ADeeustXHPNNc2zKq6urvDy8urBL4Xk1KjT480fjuHD3XkQAgjxccPK+EiMH9RX7qEREZGFMzmMxMfHo7y8HMuWLUNxcTHCwsKQmpqKkJAQAEBxcXGba4785z//gU6nwz/+8Q/84x//aF7/4IMP4pNPPrnyr4Bkd3Fl988TgvH8DFZ2iYioa0y+zogceJ0Ry2QwCKzbnYc3fpAquz7uKrx6VzhuHn3p84eIiMg+9Mp1RoiaFFXWY8H6LOzLlSq7N44cgFdZ2SUiom5gGCGTbcksxPObD6G6QQdXJyVemDka91wdzHfZJSKibmEYoS6rqtPiX1sOYWuWVNmNDPbGyvhIhPq6yzwyIiKyZgwj1CV7T5ZhwYYsFFc1QOmgwJNTh+KJG4bCkW9uR0REV4hhhC6pQavHGz8cw7rdeQCAq4yV3XGs7BIRUQ9hGKFOHSmWKrvHzkmV3XsnDsLzM0bBTcVvGyIi6jncq1A7BoPAh7tz8eYPx5sru6/dFY6bWNklIqJewDBCbRRW1mPB+kz8mlsBALhplB9evWssfD1Y2SUiot7BMELNWld23VRKvHDbaMSzsktERL2MYYRQVafF81sO4RtjZXfcIG+sjIvEVazsEhGRGTCM2Lk9J8uwsFVl9+kbh+Hx64ewsktERGbDMGKnLq7shvq6Y2V8JCKDveUdGBER2R2GETuUU6TG/JSWyu59EwchiZVdIiKSCfc+dkRvEPhwVy6Wb5cqu74eznh9zlhMHcnKLhERyYdhxE6cvVCHBeuz8FueVNm9ebQfXr1zLHxY2SUiIpkxjNg4IQQ2Zxbihc2HUd0oVXaXzByNuGhWdomIyDIwjNiwyjoNkjYfwncHiwEA4wdJ77Ib4sPKLhERWQ6GERu1+4RU2S1RN8DRWNn9Oyu7RERkgRhGbEyDVo/Xth3Fx3tOAwAG+7pj1T2RCA/ylnVcREREnWEYsSGHi6qQ8GUmTpTWAAD+cs0gPHcrK7tERGTZuJeyAXqDwPs7c7Ei7Ri0eoH+fZzx+pxw3DBigNxDIyIiuiyGEStXUCFVdn8/LVV2p43xQ/Kd4ejnrpJ5ZERERF3DMGKlhBDYlFGIF7YcRk2jDu4qJZbMHIO7o4NY2SUiIqvCMGKFKus0SNp0CN9lS5Xd6JC+WBEXiUE+bjKPjIiIyHQMI1Zm14nzWLghC+fUjXB0UGD+zcMx77ohUDpwNoSIiKwTw4iVaNDq8er3R/HJ3tMAgMH93fFW/DiMDfKSd2BERERXiGHEChwqrEJCSiZOGiu7D8SEYPH0UXBVKWUeGRER0ZVjGLFgeoPAf3aewsq0482V3TfmhON6VnaJiMiGMIxYqIKKOiSuz8Qfpy8AAG4Z449X7hzLyi4REdkchhELI4TAVwcK8eJWqbLr4eyIJTNHY04UK7tERGSbGEYsyIVaDZI2ZyM1uwSAVNldGR+J4H6s7BIRke1iGLEQO46fxzMbslBazcouERHZF4YRmdVr9Hj1+yP4v31nAABDB3hgVXwkwgaysktERPaBYURGhwqr8PSXGTh1vhYA8NCkq7Bo+ki4OLGyS0RE9oNhRAZ6g8B7O6TKrs4gMKCPM964OwLXDe8v99CIiIjMjmHEzAoq6jA/JRP7z0iV3elh/nhl9lj0ZWWXiIjsFMOImQghsDH9LF7cehi1Gj08nB2x9PYxuHP8QFZ2iYjIrjGMmEFFrQaLvz6IHw6fAwBcfZX0Lrus7BIRETGM9Lqfj5Xi2Y0Hcb66EU5KqbL72J9Y2SUiImrCMNJL6jV6vJJ6BP/9lZVdIiKiS2EY6QXZZ6vwdEoGclnZJSIiuiyGkR6k0xvw3o5TWPXjCegMAn6eznjz7ghMGcbKLhERUWcYRnpIfnkd5q/PRLqxsjtjbABenh0GbzdWdomIiC6FYeQKCSGwYf9ZLP1Gquz2cXbE0jvGYPY4VnaJiIi6gmHkCpTXNGLx19nYniNVdieE9sOKuAgE9WVll4iIqKsYRrrp56OleGbjQZTVSJXdBbEj8OiUwazsEhERmYhhxET1Gj1eTs3B//s1HwAw3M8DK+MjMSaQlV0iIqLuYBgxQVZBJeanZCK3TKrs/nVyKJ69ZQQru0RERFeAYaQLdHoD1vxyCm//JFV2/T1d8ObdEbh2mK/cQyMiIrJ6DCOXcaa8FvNTMnEgvxIAMCM8AC/PYmWXiIiopzCMdEIIgZQ/CrDs2xzUGSu7y2aNwaxIVnaJiIh6EsNIB8prGrHo62ykGSu7E0P7YTkru0RERL2CYeQi/zt6Ds9uPIiyGg2clAosjB2BR1jZJSIi6jUO3XnRmjVrEBoaChcXF0RFRWHXrl2XfP6OHTsQFRUFFxcXDB48GO+99163Btub6jQ6PLcpG3/9ZD/KajQY7ueBLf+4Fo9dN4RBhIiIqBeZHEZSUlKQkJCApKQkZGRkYMqUKZg+fTry8/M7fH5eXh5uvfVWTJkyBRkZGXjuuefw1FNP4auvvrriwfeUzIJKzHh7Nz7/Tfoa/jo5FFufuBajAz1lHhkREZHtUwghhCkvmDhxIsaPH4+1a9c2rxs1ahRmzZqF5OTkds//5z//ia1bt+LIkSPN6+bNm4esrCzs27evS59TrVbDy8sLVVVV8PTsuYCgz/kWe3//HSkngLMGH2g8BiIp7k+YPGxAj30OIiIie9XV/bdJ54xoNBqkp6dj0aJFbdbHxsZi7969Hb5m3759iI2NbbNu2rRpWLduHbRaLZycnNq9prGxEY2NjW2+mJ4mhMCv33yAKfW/YErTELQAvlQBngMB72DAKxjwCrrodiDg5Nrj4yEiIrJXJoWRsrIy6PV6+Pn5tVnv5+eHkpKSDl9TUlLS4fN1Oh3KysoQEBDQ7jXJyclYunSpKUMzmUKhAEImI/WoFhP71cNHVwpUFwF6DXAhT1o64+ZrDCdBgPeglvteQYDXIMDdF2D9l4iILFmDGig6ABT8AZz9A4h9Ceg/XJahdKtNc/F1NoQQl7z2RkfP72h9k8WLFyMxMbH5sVqtRnBwcHeGekkxcc+grOYp+Hi6SCv0WkBdBKgLgaqzQGW+dFtVYHxcAGhrgboyaSnO7PgDK51bhZOmWZWBLY89BwIq1oSJiMhMDHrg/DGgcD9QmC4FkNIcAK3O1Bh1m3WEEV9fXyiVynazIKWlpe1mP5r4+/t3+HxHR0f4+Ph0+BpnZ2c4OzubMrRucXBQYEBTEAEApRPQN0RaOiIE0FAphZKqs22DSlUBUFUIVBcD+kag4pS0dKb17ErT4jmwJbx4+AEO3So7ERGRPRNC2i8VHZCCR+EBoCgD0NS0f67XICD4aiDoaiBksvnHamRSGFGpVIiKikJaWhpmz57dvD4tLQ133HFHh6+JiYnBN99802bd9u3bER0d3eH5IhZNoQBc+0pLQHjHz2maXWkTVIz3KwukWRdNzeVnVxwcAc/AlpmUptkVz6CW+y7ePBxERGTv1MXSvqQoUwodRQeA2vPtn+fkDgwcLy1BxgDSx9/co+2QyYdpEhMTcf/99yM6OhoxMTF4//33kZ+fj3nz5gGQDrEUFhbi008/BSA1Z1avXo3ExEQ8+uij2LdvH9atW4cvvviiZ78SS9Gl2ZWqDmZWzkpBpbJAml0x6KTDRJUdV6YBACoPY1AxhhXPpsAysGWmhYeDiIhsgxDSPqP4IFCcZVwygZpz7Z/r4AgMGC0Fj8DxQFA00H8k4GCZ7zJvchiJj49HeXk5li1bhuLiYoSFhSE1NRUhIdLOt7i4uM01R0JDQ5Gamor58+fj3XffRWBgIN5++23cddddPfdVWBOFAnD1lhb/sI6fo9cBNSXSYZ+msNJ0HkvTUl8hzbCUHZOWzrj2vSikGG89B0ozL54DASeXzl9PRETmp9cBZceBkmyg5KBxyQbqL7R/rsIB8B0BBI4DAiOl8OEfZlXNT5OvMyKH3rrOiFXT1BkPBxW0DSrqQinENB0O6go3n5aA4tUqpDQHlkCr+qYmIrIqNaXAucOtlkPA+aNSu/NiDo5A/1FAQIR0ukBABOA/FlC5m3/cXdAr1xkhC6JyA3yHSktHmg4HqQtbzmFpHVSa7uvqgbpyaSk52Pnnc+3bEk76BLQKKq3uO3vyHBYios40VAGlR4HzR4DSI1LwKD0inT/YEVUfKWg0L2HSoRfH3i94mBvDiK1qfTjIb0zHzxFCmvJrqjM3h5WilhCjLgS0ddLz6i9Iib0zTu5SOOkT0Cq0XHTr4Qco+W1HRDasrkI6xHL+KHDeeFt6RLqWVYcUQL9QwC/MuIyRgofXILtpVXKvYM8UCsCtn7R0dv5KU51ZXdw2pFQXGR8XS+saKqVrsJSflJbOPyngMUA6g7tPYEt46ePf9ta1n938EBKRFTLopYJB+UkpeJSdMC7HgdrSzl/XJxAYMFI61OI3Wprp6D/S7ssGDCN0aa3rzH6jO3+epk5qAamLOrktlk7KNeikM79rzklngnfGwUmaRenj37J4tL5v/Dc3X4YWIuodQki/v8pPARW50rWjyk9JAaQit+NzOpp4BQO+w6Wg0X+4FD76j5Bmq6kdhhHqGSo3wGeItHTGYJCOjaqLgOoSaXalukT6Ya8ukQJLdZF0/opBC6jPSsulKJTSTIuHnzGg+LXcb16M/27nf3kQUQf0WqkIUGF8G5CKPODC6ZbH2rrOX6t0BvoNlsKGr3HxGSrdOnuY7UuwBQwjZD4ODsZgcJl3RdZppGnO1kGlukSaWak+13Jbex4QeuNzii//+VV9Wj6/xwDAvem2f8tjd1/pvoWemU5EJjIYf0c0XbepMh+4cAaoPCPdqs8CwtD56xVK6T3IfIZIwcNnaMviFWSx1+2wNgwjZHkcVS2XyL8Uva4ltNSck+pxTYeAqkvaPtY1AJpqoKL60pfpb+LkDnj0l4JKU0hxb3rsKy1uTbc+0sXuiMi8WrcGqwqlYNH6+kxNV70W+kt/HEdX48UqQ6UTSZtu+w2Wggh/vnsdwwhZL6Vjy3VQLkUIoLG6JbDUlhqDStP989K/1Z6X1ukbpZNxL9RK07Vd4eLdElDcfAB3n5b7bj7Gf+snnZjr5gM492ENmuhSmv/YMJ5z1jQD2nTSfNM5aV25npKDo3QOh/cg4xIi3fa9Slo8BvDnUWYMI2T7FArAxVNafIdd+rlNwaX2PFBbJv0ybL5/vtV94+P6CmmKt6FSWi7ZJGrFwalVOOknnSB88ePmpZ+xpt2XF58j62Yw/qw0Bf/mPwJazWw2HYqtLUObd5S9lOYrTV/0DulewYB3sPGNR3k4xZIxjBC11jq4XOpk3CYGvXT9lVrjGx/WlRvvl7csbR5XSBeaM2hbDiGZwtFFmoVx9e7g1ku67+LV8tjZ07jeU7rPX8jUU4QAtPVSIK+rMN4av8frKtr/PDQF+csdMmlNoWzVqDNW/5uvEB3YcnkAnuNl9RhGiK6Eg7LlHJKu0tS1/cXd/Mv8Qstt81IB1FdK94VeOvelxngyb3eoPIwBxRhOnPu0Wpoee0i3qta3HtKtykP6xe/kxkq1LdA1SjOBjWqgQd1y21BlvF8lff81VEkzGvWVxlvj96q+sXuf18XbeOK4n3Ruloef9Liptt9c3fdhgLYTDCNE5qZyk5bLnaDbWtPho6aQ0mbHUNmys2ioatmBNO1MGtTSbAwgHV/X1FziSpAmcHKXgknT4mT8upzcLrrvKt06uhjvu7bcd3RpWZyMt0qVcZ2q5bE9Hs8XQqqd6hul0KBrkG619dJ9bR2gbbqtl85z0tZLYVdbK91qao3/57Ut9xurjbc13Q8TrTk4tpwL1XzI0eeik7z7GU8E7y/9m6Pqyj8v2RSGESJr0PrwUd8Q01+v07SEk9Z/BTdWt/xl3Hy/9Q5LLe3EGmtadmZNx/G1tdJS26NfacccnKT341A6Sdd2UDpJi0PTrWOrx47SrYNSWq9wkG4dlNK0v8LBeN/hokUBQNFyC7SEoDbvJyqk84SEaHXfIJ0PIQzSDJZBb7zVSesNOuOilf5Nr5Xu67XShbP02lbBQyOFDb0GXT5n4ko5uUuzYE2H9Fof4mt3CLBv2/OaVB72GRapRzGMENkDRxXgaOLhpI4YDMa/xOuMf3HXtfzl3fQXeuv7rdfpGlr9VV9vvN/qL35d0+PG9n+xG7SARntlY7d2zTNGzsZZJdeWmaamGSiVu/FxB7NWTYfaWh96azo0x0MhJDOGESLqOgcH407MA8BlLl53JYSQZgZ0DdKMQVNAabrfPKtgnE1onm0wzkDota1mJoy3wtAyY9F0H0L6XE2zG02zHU1jgEC7WRJAmkmBomVGRaFoP+vSNBvj4Cj9W/PsjWPLfaWTFDKUKmmdo7M08+Ooalnv5Cqt4zk6ZMMYRojI8igU0o7ZBt8qnYjaY9QmIiIiWTGMEBERkawYRoiIiEhWDCNEREQkK4YRIiIikhXDCBEREcmKYYSIiIhkxTBCREREsmIYISIiIlkxjBAREZGsGEaIiIhIVgwjREREJCuGESIiIpKVVbxrrxDSW3qr1WqZR0JERERd1bTfbtqPd8Yqwkh1dTUAIDg4WOaREBERkamqq6vh5eXV6b8rxOXiigUwGAwoKipCnz59oFAoeuzjqtVqBAcHo6CgAJ6enj32cak9bmvz4HY2D25n8+B2No/e3M5CCFRXVyMwMBAODp2fGWIVMyMODg4ICgrqtY/v6enJb3Qz4bY2D25n8+B2Ng9uZ/Pore18qRmRJjyBlYiIiGTFMEJERESysusw4uzsjCVLlsDZ2Vnuodg8bmvz4HY2D25n8+B2Ng9L2M5WcQIrERER2S67nhkhIiIi+TGMEBERkawYRoiIiEhWDCNEREQkK5sPI2vWrEFoaChcXFwQFRWFXbt2XfL5O3bsQFRUFFxcXDB48GC89957ZhqpdTNlO3/99de4+eab0b9/f3h6eiImJgY//PCDGUdr3Uz9nm6yZ88eODo6IjIysncHaCNM3c6NjY1ISkpCSEgInJ2dMWTIEHz00UdmGq31MnU7f/bZZ4iIiICbmxsCAgLw8MMPo7y83EyjtU47d+7EzJkzERgYCIVCgc2bN1/2NWbfFwob9uWXXwonJyfxwQcfiJycHPH0008Ld3d3cebMmQ6fn5ubK9zc3MTTTz8tcnJyxAcffCCcnJzExo0bzTxy62Lqdn766afFa6+9Jn7//Xdx/PhxsXjxYuHk5CQOHDhg5pFbH1O3dZPKykoxePBgERsbKyIiIswzWCvWne18++23i4kTJ4q0tDSRl5cnfvvtN7Fnzx4zjtr6mLqdd+3aJRwcHMRbb70lcnNzxa5du8SYMWPErFmzzDxy65KamiqSkpLEV199JQCITZs2XfL5cuwLbTqMTJgwQcybN6/NupEjR4pFixZ1+Pxnn31WjBw5ss26xx57TFxzzTW9NkZbYOp27sjo0aPF0qVLe3poNqe72zo+Pl48//zzYsmSJQwjXWDqdv7++++Fl5eXKC8vN8fwbIap2/mNN94QgwcPbrPu7bffFkFBQb02RlvTlTAix77QZg/TaDQapKenIzY2ts362NhY7N27t8PX7Nu3r93zp02bhv3790Or1fbaWK1Zd7bzxQwGA6qrq9GvX7/eGKLN6O62/vjjj3Hq1CksWbKkt4doE7qznbdu3Yro6Gi8/vrrGDhwIIYPH46FCxeivr7eHEO2St3ZzpMmTcLZs2eRmpoKIQTOnTuHjRs3YsaMGeYYst2QY19oFW+U1x1lZWXQ6/Xw8/Nrs97Pzw8lJSUdvqakpKTD5+t0OpSVlSEgIKDXxmuturOdL7Z8+XLU1tYiLi6uN4ZoM7qzrU+cOIFFixZh165dcHS02R/3HtWd7Zybm4vdu3fDxcUFmzZtQllZGR5//HFUVFTwvJFOdGc7T5o0CZ999hni4+PR0NAAnU6H22+/He+88445hmw35NgX2uzMSBOFQtHmsRCi3brLPb+j9dSWqdu5yRdffIEXX3wRKSkpGDBgQG8Nz6Z0dVvr9Xrce++9WLp0KYYPH26u4dkMU76nDQYDFAoFPvvsM0yYMAG33norVqxYgU8++YSzI5dhynbOycnBU089hRdeeAHp6enYtm0b8vLyMG/ePHMM1a6Ye19os38q+fr6QqlUtkvYpaWl7RJfE39//w6f7+joCB8fn14bqzXrznZukpKSgrlz52LDhg246aabenOYNsHUbV1dXY39+/cjIyMDTzzxBABppymEgKOjI7Zv346pU6eaZezWpDvf0wEBARg4cGCbt0ofNWoUhBA4e/Yshg0b1qtjtkbd2c7JycmYPHkynnnmGQBAeHg43N3dMWXKFLz00kucve4hcuwLbXZmRKVSISoqCmlpaW3Wp6WlYdKkSR2+JiYmpt3zt2/fjujoaDg5OfXaWK1Zd7YzIM2IPPTQQ/j88895vLeLTN3Wnp6eyM7ORmZmZvMyb948jBgxApmZmZg4caK5hm5VuvM9PXnyZBQVFaGmpqZ53fHjx+Hg4ICgoKBeHa+16s52rqurg4ND292WUqkE0PKXO105WfaFvXZqrAVoqo2tW7dO5OTkiISEBOHu7i5Onz4thBBi0aJF4v77729+flOdaf78+SInJ0esW7eO1d4uMHU7f/7558LR0VG8++67ori4uHmprKyU60uwGqZu64uxTdM1pm7n6upqERQUJObMmSMOHz4sduzYIYYNGyYeeeQRub4Eq2Dqdv7444+Fo6OjWLNmjTh16pTYvXu3iI6OFhMmTJDrS7AK1dXVIiMjQ2RkZAgAYsWKFSIjI6O5Qm0J+0KbDiNCCPHuu++KkJAQoVKpxPjx48WOHTua/+3BBx8U1113XZvn//LLL2LcuHFCpVKJq666Sqxdu9bMI7ZOpmzn6667TgBotzz44IPmH7gVMvV7ujWGka4zdTsfOXJE3HTTTcLV1VUEBQWJxMREUVdXZ+ZRWx9Tt/Pbb78tRo8eLVxdXUVAQIC47777xNmzZ808auvy888/X/J3riXsCxVCcG6LiIiI5GOz54wQERGRdWAYISIiIlkxjBAREZGsGEaIiIhIVgwjREREJCuGESIiIpIVwwgRERHJimGEiIiIZMUwQkRERLJiGCEiIiJZMYwQERGRrBhGiIiISFb/HxmGn7N1wWwRAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "\n", + "plt.figure()\n", + "plt.plot(np.linspace(0,1,n),x, label='x')\n", + "plt.plot(np.linspace(0,1,n),b, label='b')\n", + "plt.plot()\n", + "plt.legend()\n", + "plt.show()\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "id": "84dfaf27", + "metadata": {}, + "source": [ + "This has made a A, x, and b where Ax=b. We can check check this is the case up to floating point error: " + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "6d854bd7", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0.0" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "np.linalg.norm(A@x-b)" + ] + }, + { + "cell_type": "markdown", + "id": "554b487c", + "metadata": {}, + "source": [ + "Now make a version of b with noise" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "35d30bb8", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjgAAAGdCAYAAAAfTAk2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABx4ElEQVR4nO3deVxU9f7H8deZYRgWYRQREEXBfVfcEM2lVFxSs01No2zx2s+8Zptlm5ZdTSu1stXKul7LFsM2I/dd3HEDwQVXBFzYZGfm/P44ShG4oA4Hhs/z8ZgHw3e+Z3ifEzkfzvme71dRVVVFCCGEEMKBGPQOIIQQQghxq0mBI4QQQgiHIwWOEEIIIRyOFDhCCCGEcDhS4AghhBDC4UiBI4QQQgiHIwWOEEIIIRyOFDhCCCGEcDhOegfQg81mIzExEQ8PDxRF0TuOEEIIIa6DqqpkZmbi7++PwXD1czRVssBJTEwkICBA7xhCCCGEuAEnT56kbt26V+1TJQscDw8PQDtAnp6eOqcRQgghxPXIyMggICCg6HP8aqpkgXP5spSnp6cUOEIIIUQlcz3DS2SQsRBCCCEcjhQ4QgghhHA4UuAIIYQQwuFIgSOEEEIIhyMFjhBCCCEcjhQ4QgghhHA4UuAIIYQQwuFIgSOEEEIIhyMFjhBCCCEcjhQ4QgghhHA4UuAIIYQQwuFIgSOEEEIIh1MlF9u0l4t5hXy+4Sg2FZ7p20TvOEIIIUSVJQXOLbTzeCpzVx7C2cnA8E4B1KnuqnckIYQQokoql0tUH330EUFBQbi4uNChQwc2bNhw1f7r1q2jQ4cOuLi40KBBAz755JMSfZYsWUKLFi0wm820aNGCiIgIe8W/bj0ae9OlgRf5hTbmrojXO44QQghRZdm9wPnuu++YOHEiL7/8Mrt376Z79+4MGDCAEydOlNo/ISGBgQMH0r17d3bv3s1LL73EhAkTWLJkSVGfLVu2MHz4cMLDw9mzZw/h4eEMGzaMrVu32nt3rkpRFF7t5k5b5TBLdp3iUHKmrnmEEEKIqkpRVVW15w8ICQmhffv2fPzxx0VtzZs3Z+jQocyYMaNE/xdeeIFffvmF2NjYorYnnniCPXv2sGXLFgCGDx9ORkYGf/zxR1Gf/v37U6NGDb799ttrZsrIyMBisZCeno6np+fN7F5xh1fBtw+QbPDmtswZ3N6iDp891PHWvb8QQghRhZXl89uuZ3Dy8/PZuXMnYWFhxdrDwsLYvHlzqdts2bKlRP9+/fqxY8cOCgoKrtrnSu+Zl5dHRkZGsYdd1O0ELhZ8C07zqNMfLI9JZufxVPv8LCGEEEJckV0LnHPnzmG1WvH19S3W7uvrS1JSUqnbJCUlldq/sLCQc+fOXbXPld5zxowZWCyWokdAQMCN7tLVuXhC39cBeMZ5KbVIZWbkQex8kkwIIYQQ/1Aug4wVRSn2vaqqJdqu1f+f7WV5z8mTJ5Oenl70OHnyZJnyl0mbEVCnI2ZbDi85f8e2hAusjT9rv58nhBBCiBLsWuB4e3tjNBpLnFlJSUkpcQbmMj8/v1L7Ozk5UbNmzav2udJ7ms1mPD09iz3sxmCAgbMAuNuwnvZKPLMi47DZ5CyOEEIIUV7sWuA4OzvToUMHVqxYUax9xYoVdO3atdRtQkNDS/Rfvnw5HTt2xGQyXbXPld6z3NXpAMEPAjDN+b8cPJPGr3sTdQ4lhBBCVB12v0T1zDPP8Pnnn/Pll18SGxvL008/zYkTJ3jiiScA7fLRQw89VNT/iSee4Pjx4zzzzDPExsby5Zdf8sUXX/Dcc88V9XnqqadYvnw5M2fO5ODBg8ycOZOVK1cyceJEe+/O9es9BcyetFSOcr9xHe8ujye/0KZ3KiGEEKJKsHuBM3z4cObOncsbb7xBu3btWL9+PcuWLaN+/foAnDlzpticOEFBQSxbtoy1a9fSrl07pk2bxvvvv8+9995b1Kdr164sXryYBQsW0KZNG7766iu+++47QkJC7L0716+aD/R8AYAXTd+RduEsi7eXPvePEEIIIW4tu8+DUxHZbR6cfyrMh0+6wbl4Nltb8ILzZCInDcTdLCtkCCGEEGVVYebBqfKcnGHox6jOHnQ1xjC7YBoL1+7TO5UQQgjh8KTAsbe6HVEeWkq+yZNOhnhu2/wYqeeS9U4lhBBCODQpcMpD3Y44PfIb6YonrZQj5H8xEC7K3DhCCCGEvUiBU04M/m2JH/gdKWp1fHMOU/BFf8iQW8eFEEIIe5ACpxx17BjKdN93Oa3WxJR6GL7sDxcS9I4lhBBCOBwpcMqRoig8PKg39+dNIcHmC2nHtSInJfbaGwshhBDiukmBU86C69WgTctWDMufwilTEFxMggUD4fQuvaMJIYQQDkMKHB08168J55Xq3Jk5mYvebSHnAnw9RIocIYQQ4haRAkcHjXw8uL9DAOlU4/8Mr6EG3gb5mbDhXb2jCSGEEA5BChydTOzbGLOTgQ0n8tjR5Bmt8eg6bfZjIYQQQtwUKXB0UtviyuiugQC8ttWI6uatncU5tU3fYEIIIYQDkAJHR//XqyEeLk7EJmdx0itUazy8Ut9QQgghhAOQAkdH1d2ceaJnQwAWJGtfpcARQgghbp4UODp7tFsQPh5mfs5shooCSfsgM0nvWEIIIUSlJgWOzlydjTzVpzEX8CSGBlrjkdX6hhJCCCEqOSlwKoBhHQMI8nZnVWFrrUEuUwkhhBA3RQqcCsBkNPBcWFPWWdsCYDu8GmxWnVMJIYQQZZeeU8CA9zYwY1kshVabbjmkwKkgBrb2w+rfgQzVDUNuqsxqLIQQolLadOgs586cYEVsMk5G/coMKXAqCEVReH5ASzbYWgGQvu8PnRMJIYQQZbd/3y62u4zju4KJYJMzOALo1sibM97dAEjdu0znNEIIIUTZqKpKztHNADh71ASDnMERl9zWfwQA9XIOcvDoMX3DCCGEEGUQcyaDpnkHAHBv3E3XLFLgVDDNmjYj0TkIg6Ky+vfv9I4jhBBCXLe1cWfpaIgHwKl+V12zSIFTAbm37AeAT8pGthw5r3MaIYQQ4vrsij1MI0Oi9k1AZ12zSIFTAVlaDwCgp2EPM/+IQVVVnRMJIYQQV5eeU4DxtLZgdIFXE3Dz0jWPFDgVUb1QbCY3ainp2E7v5s8DsnSDEEKIim3T4XO0V+IAMAWG6pxGCpyKycmMoXEYAAON25j1Z5yukyUJIYQQ17I2LqVo/A31pMARV9LiLgDudNrG0bMX+WHnKZ0DCSGEEKVTVZWouFO0UY5oDfVC9A2EFDgVV+MwcHIlgGRaKseYuzKenHxZvkEIIUTFE3smE9+LB3FWrKjuvlAjSO9IUuBUWOZq0LgPAMPddpGckcdXm4/pm0kIIYQoxdr4vy5PKfVCQFF0TiQFTsXWYigA97hsB1Q+WnuYtOx8XSMJIYQQ/6TNf6MNMK4I429ACpyKrUk/MJqplnWCAbXOk5lbyEdrj+idSgghhCiSkVvAruPn6VA0wFj/8TcgBU7FZvaAxn0BeCHgIABfbT5GYlqO9vqaGfBFP8hJ0ymgEEKIqm7ToXMEqaeprmSByQ382ugdCZACp+K7dDdV/eQVhATWIL/QxtyV8bDvR1j3FpyMgiOrdQ4phBCiqloTl/LX5ak6HcBo0jfQJVLgVHRN+oPRGeX8IaaGav+5tu/cgfWXp/7qczZOp3BCCCGqMlVVK+T4G5ACp+Jz8YSGvQFofmE1g1p48Z7pA4wFF8HorPU5G6tjQCGEEFXVgcQMUjLz6GQ4pDXU66JvoL+RAqcyaDlU+xrzM296LKGNIYFUtRoJIVO1djmDI4QQQgerD6ZQi1TqKcmgGKBuJ70jFXHSO4C4Dk36g8EEZw9S/aw22Pi5grGY4uvwCcD5w2AtqDDXPYUQQlQNqw7+bXkG35baVYcKQs7gVAau1aHhHUXfZrX/F5uMnYg85UShkzvYCuG83D4uhBCi/JzNzGPvqTQ6XR5/E1BxLk+BFDiVR5th2tfa7XAf+CaPdgsCFA7b/LX2S2d2hBBCiPKwNi4FVYXbzZc+fyrQ+Buwc4GTmppKeHg4FosFi8VCeHg4aWlpV91GVVWmTp2Kv78/rq6u9OrViwMHDhTr89lnn9GrVy88PT1RFOWa7+kQWt0LD/0Co38DJzNjezakupuJffm1tddlHI4QQohytCYuhSbKSYKsx7RhFH+70lAR2LXAGTlyJNHR0URGRhIZGUl0dDTh4eFX3WbWrFnMnj2befPmsX37dvz8/Ojbty+ZmZlFfbKzs+nfvz8vvfSSPeNXLIoCDXpqk/8BFlcT429vxCG1DgDWFLmTSgghRPnIL7SxIf4cdxk3aQ2N+4Kbl76h/sFug4xjY2OJjIwkKiqKkBBt2ub58+cTGhpKXFwcTZs2LbGNqqrMnTuXl19+mXvuuQeAr7/+Gl9fX7755hvGjh0LwMSJEwFYu3atveJXCg92qc8r6xtAAaQd30dNvQMJIYSoEnYcu8DFvHzudtmiNbS+X99ApbDbGZwtW7ZgsViKihuALl26YLFY2Lx5c6nbJCQkkJSURFhYWFGb2WymZ8+eV9zmeuTl5ZGRkVHs4QhcTEb69OwJgGdWAmkXs3VOJIQQoipYfTCFDko8/pwFZw9oOkDvSCXYrcBJSkrCx8enRLuPjw9JSUlX3AbA19e3WLuvr+8Vt7keM2bMKBoHZLFYCAgIuOH3qmj6hnYkFzMmrCz+c73ecYQQQlQBqw+mMPTy5anmg8Hkqm+gUpS5wJk6dSqKolz1sWPHDgAURSmxvaqqpbb/3T9fv55trmby5Mmkp6cXPU6ePHnD71XRGI1G8r0aA7A/eiunLy/EKYQQQtjBsXNZnDyXzp3GrVpDm4p3eQpuYAzO+PHjGTFixFX7BAYGsnfvXpKTk0u8dvbs2RJnaC7z8/MDtDM5tWvXLmpPSUm54jbXw2w2Yzabb3j7is4joBVc2E+g7SSzl8fz7rC2ekcSQgjhoFYfTKGHYQ81lIvg7gNBPfWOVKoyFzje3t54e3tfs19oaCjp6els27aNzp07A7B161bS09Pp2rVrqdsEBQXh5+fHihUrCA4OBiA/P59169Yxc+bMskatMpRazQBobDjNh7tPMaZHEM38Ks5skkIIIRzH6oMpDDNeGhfb6l4wGPUNdAV2G4PTvHlz+vfvz5gxY4iKiiIqKooxY8YwaNCgYndQNWvWjIiICEC7NDVx4kSmT59OREQE+/fvZ/To0bi5uTFy5MiibZKSkoiOjubw4cMA7Nu3j+joaC5cuGCv3anYLhU4HVyTUVWY+YdM+ieEEOLWu5hXyP6EU/Q17NQaKujlKbDzPDiLFi2idevWhIWFERYWRps2bVi4cGGxPnFxcaSnpxd9P2nSJCZOnMi4cePo2LEjp0+fZvny5Xh4eBT1+eSTTwgODmbMmDEA9OjRg+DgYH755Rd77k7FdanA8beewtmgsibuLFuOnNc5lBBCCEez8dBZble346rko3o1BP/2eke6IkVVVVXvEOUtIyMDi8VCeno6np4OcCnHZoXpdaAwhznNF/Pebhtt61pY+mS3mxqcLYQQQvzdcz/sYfDe8fQ07oVek6HXi+X688vy+S1rUTkCgxG8tTupHm2Sh5uzkT2n0lm278ZvrRdCCCH+zmpTiY6N5zbDPq2hAk7u93dS4DiKS5epLJmHGdO9AQBv/3mQgtSTsPt/2lkeIYQQ4gbtPpFKp7wtGBUVm397qNlQ70hXJQWOo/DRChzOxjGmRwO8qzlz5nwaWZ8Php+fhOhF+uYTQghRqa2ITaanYS8AhqYDdU5zbVLgOIpalwucg1QzO/FU78aMc/qZ6lkJWntMFR2ALYQQ4pZYc+A03Qz7tW8aVayVw0tjt8U2RTm7XOCciweblRGBF1Gc/lbUJKyD3AxwcYBB1UIIIcpVwrksLOf34GHOweZaE0PtYL0jXZOcwXEUNQLBaIbCXLiQgOm3p3DCynJrB46q/mDNh8Mr9U4phBCiEloVm0xP4x4ADI3uAEPFLx8qfkJxfQxG8G6iPf9jEpzegersweJaT/GntYPWfvB3/fIJIYSotFbEJNPToBU4NOytb5jrJAWOI6l1aYboI6sAUPpOZeyg21hu7QiANf5PKMzXK50QQohKKDUrn4Tjx2htOKY1NKz4429AChzHcvlOKoCALtDhUUIa1MS7aSgpanWM+ZlwbIN++YQQQlQ6a+NT6Ip29xR+bcDjxhe/Lk9S4DiSWs21r0ZnGPxe0TXSSQNasNKmXaZK2fGTXumEEEJUQitjUorG39CoclyeAilwHEvjMOjwCNzzWbGzOY19PchtOAAAY/wfqDLpnxBCiOuQX2hjfXwy3S/PXtyoj76BykAKHEfi5AyD50LLu0u8dOeQYVxUXalpO8/WTavKP5sQQohKZ2vCeernH8ZbyUB1rgZ1O+sd6bpJgVNF+HpZOOndDYCjG76j0GrTOZEQQoiKbmVMMj0uzV6sBPXU/pCuJKTAqULqdxsGQKfcLXy/45TOaYQQQlRkqqqyMjZFWzkcKtX4G5ACp0pxa9Efq+JEY8Npflqxhqy8Qr0jCSGEqEjys8GmneE/kJhBRtp5Oijx2mtS4IgKy8WinWIEOuRs4fMNCToHEkIIUWEcWQ3Ta8O8DrDpfdZFH6Sr4QBOig1qNtJmzK9EZC2qKsbQ/E44uooBxq2MXH+YB0IC8PFw0TuWEEIIvR1aoX29cBRWvMoYTCQ7VdfaKtHdU5fJGZyqptkgVKMz7QxH6V64lfdWHtI7kRBCiIrg3KXPgxZDyavVGmcKCDCc1doqyfIMfycFTlXj4YvSdQIAr5oWsnT7YQ6nXNQ5lBBCCN2dP6x97TyGr1t9xZC8aax2HwAdRkPD23WNdiOkwKmKuj8LlgDqKucYa1jKzMiDeicSQgihp8J8SDuuPa/ZiD9jUtirNuT0bW9pM+MbTfrmuwFS4FRFzm7QfwYAY42/ER+7h20JF3QOJYQQQjepx0C1gXM1UlQLu06kAtC3hZ++uW6CFDhVVbNB0LA3ZqWQqU5fM/33GFRV1TuVEEIIPVy+PFWzIStjz6Kq0DagOn6WynsTihQ4VZWiwIBZqAYTtxv3UCtxFcv2JemdSgghhB6KCpzGLI/RPgvCWlSOVcOvRAqcqsy7EUrXfwPwmtNC5kbuIb9QlnAQQogq57x2B1WeJYjNh88D0K9l5b08BVLgiB7PYfOsQ4DhLHdlfMP/oo7rnUgIIUR5O38EgAN5PuRbbTSo5U4jn2o6h7o5UuBUdc7uGAbMBLQBx3+sWkl6ToHOoYQQQpSrS5eoVqZ4AJX/7A1IgSMAmg/G1mwwJsXKy9aP+Hh1nN6JhBBClJfcDLiYDMBPx7VBxZV9/A1IgSMuMQx8mwKTB+0MR7FFfcKp1Gy9IwkhhCgPF7TLU3ku3iTlOePraaZt3er6ZroFpMARGs/aOPV7E4CJhu/58te1usYRQghRTi6NvzltrANA3xa+GAyKnoluCSlwRBGl/UNc9OuCm5JHr0PT2XcyTe9IQggh7O3SGlTRWd4ADGhVW880t4wUOOIvBgPV7vuQAsVED+M+1i/5QCb/E0IIR3dpgPHBAh9quJkICfLSOdCtIQWOKM67EdmhzwHwQOonrN97WOdAQggh7OpSgZOg1iashR9ORscoDRxjL8QtZen9LOdcAvFSLnLq97cotMrkf0II4ZBUFfXSGJyjam36t678t4dfJgWOKMlowm3gGwDcnfcrP2/YpXMgIYQQdnExBSU/E6uqkGr2p1tDb70T3TJS4IhSubUeQoqlDW5KHtZ1s8jMlcn/hBDC4Vy6PHVKrUXP5nVxdnKcssBx9kTcWoqC113TAbjbtpLvItfpHEgIIcStpl66g+qoWpsBrRzn8hRIgSOuwqlBd8769cCkWPHd9S5n0nP0jiSEEOIWOnv8AAAnDf70aFJL5zS3lhQ44qq879Im/xts2Mw3P/+ucxohhBC3UvrJWACcfZvgYjLqnObWkgJHXJVSuy2pDYYA0OHw++w/na5zIiGEELeCqqo4pycAENikjc5pbj0pcMQ11Rj0OlaM9DLsISJisUz+J4QQDiD2dCq1bWcAaNOmo85pbj27FjipqamEh4djsViwWCyEh4eTlpZ21W1UVWXq1Kn4+/vj6upKr169OHDgQNHrFy5c4N///jdNmzbFzc2NevXqMWHCBNLT5cyC3Xg1ILt1OAB3p3zE6pgzOgcSQghxs7bs2o2zYiVfMePmXU/vOLecXQuckSNHEh0dTWRkJJGRkURHRxMeHn7VbWbNmsXs2bOZN28e27dvx8/Pj759+5KZmQlAYmIiiYmJvPPOO+zbt4+vvvqKyMhIHnvsMXvuSpXn0f9Vco3VaGU4xp5fPqBAJv8TQohK7UjsHgByPOqDwfEu6Ciqna43xMbG0qJFC6KioggJCQEgKiqK0NBQDh48SNOmTUtso6oq/v7+TJw4kRdeeAGAvLw8fH19mTlzJmPHji31Z/3www88+OCDZGVl4eTkdM1sGRkZWCwW0tPT8fT0vIm9rFpyN36Iy8qXuKBWY3nvPxjRw/Gu2QohRFUQn5zJ4vcn85ppIQVNh2B6YKHeka5LWT6/7VaybdmyBYvFUlTcAHTp0gWLxcLmzZtL3SYhIYGkpCTCwsKK2sxmMz179rziNkDRjl6puMnLyyMjI6PYQ5SdS+i/SKvWEC/lIuqa6WTI5H9CCFEp/b73DEGKNtzA5NNY5zT2YbcCJykpCR8fnxLtPj4+JCUlXXEbAF9f32Ltvr6+V9zm/PnzTJs27YpndwBmzJhRNA7IYrEQEBBwvbsh/s5owmPouwDcb/uT73+P1DmQEEKIslJVld/3/VXgULORvoHspMwFztSpU1EU5aqPHTt2AKAoSontVVUttf3v/vn6lbbJyMjgzjvvpEWLFkyZMuWK7zd58mTS09OLHidPnryeXRWlMDa6nZS6/XBSbLTaM52T57P0jiSEEKIM4pMvcjjlIg0Ml04cOGiBc+0BK/8wfvx4RowYcdU+gYGB7N27l+Tk5BKvnT17tsQZmsv8/LRpopOSkqhdu3ZRe0pKSoltMjMz6d+/P9WqVSMiIgKTyXTFPGazGbPZfNXM4vrVuvdt8t9bQxdDDF8s+YzH/vW03pGEEEJcp9/2JhKgJOOvnNcapMDReHt74+197dVGQ0NDSU9PZ9u2bXTu3BmArVu3kp6eTteuXUvdJigoCD8/P1asWEFwcDAA+fn5rFu3jpkzZxb1y8jIoF+/fpjNZn755RdcXFzKuhviJig16pPW4Ul8ds6h/+kP2H10BMENal97QyGEELpSVZXf957hQeNKraFRH3Dz0jeUndhtDE7z5s3p378/Y8aMISoqiqioKMaMGcOgQYOK3UHVrFkzIiIiAO3S1MSJE5k+fToRERHs37+f0aNH4+bmxsiRIwHtzE1YWBhZWVl88cUXZGRkkJSURFJSElar1V67I/7Bp/8LpJp8qKOcJyriQ5n8TwghKoHYM5kknrvAcONaraHTGD3j2FWZz+CUxaJFi5gwYULRXVFDhgxh3rx5xfrExcUVm6Rv0qRJ5OTkMG7cOFJTUwkJCWH58uV4eHgAsHPnTrZu3QpAo0bFT6slJCQQGBhoxz0SRUyuOHUbD2tfIyz9R37b8wSD29XVO5UQQoir+H1fIoONW6iuZEH1+tC4r96R7MZu8+BUZDIPzi2Sl0nerGaYrRd5wTSZ1yc973CLtQkhhKNQVZXb317Dhxcn0tJwHPq+Ad2e0jtWmVSIeXBEFWD2wNBZm0H6nrwIvtyUoHMgIYQQV3IgMQOv1D20NBxHdXKB4KuvLFDZSYEjboop9P+wKU6EGA6yYU0kZzPz9I4khBCiFL/tPcNDTssBUFrd57CDiy+TAkfcHM/aKG2GATDK9gtzVsbrHEgIIcQ/qarKlr0HGGjQxrDS2XEHF18mBY64aUrXfwMwwLCNTdu2czBJlsIQQoiKZN/pdHpkLMNZsWKt0xH82+kdye6kwBE3z7cFNOqDUVF5xPgH//k9Vm4bF0KICmRZ9ElGOq0GwBhy5aWNHIkUOOLWuHQWZ5hxHfsOJbAmLkXnQEIIIQBsNpWM6KXUVi6QZ/aCFnfpHalcSIEjbo2gnuDXGjclj1HGVbz5eywFVpveqYQQosrbcTyVu/J/A8DYYTQ4VY2li6TAEbeGokCodhYn3LSaY2cz+V/UcZ1DCSGE2L5lDSGGg1gx4tTF8QcXXyYFjrh1WtwFrjXw4xw9DHuYu/IQadn5eqcSQogqq8BqIyD+awDO1x8Anv46Jyo/UuCIW8fkAm0fAGCM+wbScwqYu/KQzqGEEKLq2rrvIP3UTQB43TFB5zTlSwoccWu1fxiAroXbqUUqC6OOczjlos6hhBCiarq48TPMSiGn3FrgVD9E7zjlSgoccWv5NIOAEBTVyou1d2G1qUxfFqt3KiGEqHJyc3PocDYCgPyOVePW8L+TAkfcepfO4gyxrsTZqLL6YArr4s/qHEoIIaqWgyv/Sy0ljbN4Edh9pN5xyp0UOOLWazkUzJ6YMo7zasvzAEz7Leav28bPxkF+ln75hBDC0akq1fd9AUBM3WEYTM46Byp/UuCIW8/ZHVrfD8Bww2q83J05nHKRRVsSYMVr8GFn+KIfFModVkIIYQ9ZRzYRmBdHnmrC7/Yn9I6jCylwhH100C5TOR9axuSetXCmAN+V/4ZN72mvJ++DDe/qGFAIIRzXhVXvA7DauSdNGgTqG0YnUuAI+6jdFmq3A2s+9+b/yo/ubzOATVgxQvCDWp8N70DyAV1jCiGEw8k6h/+ZFQCktn4MRVF0DqQPKXCE/Vw6i2PY+A5trPvJVF0ZXfAC8SEzoOmdYCuEn58Ea6HOQYUQwnGkx63HiI04W126du2pdxzdSIEj7KfVfWBy0557+DO77ntssLZi2u+xqHe+A2YLJO6GqA/1zSmEEA7kRLS2avhRtzYEervrnEY/UuAI+3HxhP5vQYuh8PhKRt8zCJNRYcOhc6w+bYR+/9H6rZkO5w7rGlUIIRyFKXEbANUaddM5ib6kwBH21eFhGPY1WOpQv6Y7j3YLAuDN32PJbz0SGtwOhbnwy7/BJquPCyHEzThyOoWGBdofjK1C++mcRl9S4IhyNf6ORnhXM5NwLouvtxyHwe+ByR1ObIa4ZXrHE0KISm3bppWYFCupxprU8G+kdxxdSYEjypWHi4lJ/ZsC8P6qQ5x18vvrrqqja/ULJoQQlZzNppIRvxGAHL9OUEXvnrpMChxR7u5rX5c2dS1k5hXyzp9xUL+r9sKJLfoGE0KISmz7sQs0ydsPQK2WVffuqcukwBHlzmBQmDK4JQDf7zxJrKmV9kLyAchJ1TGZEEJUXkt3naS94RAApsBQndPoTwocoYsO9WswtJ0/qgqvrEpBrdkIUOHEVr2jCSFEpZNbYOXg/u1YlGysTm7g21rvSLqTAkfo5sUBzXE1Gdl5PJUT1dpqjcc36RtKCCEqodUHU2hREAOAIaATGJ10TqQ/KXCEbvwsLjx5e0MAvjrlrzXKOBwhhCizn3adpoMhHgClXhed01QMUuAIXT3evQEBXq6syNYKHRJ3Q36WvqGEEKISuZCVz9q4FDopcVqDFDiAFDhCZy4mIy8PbMEptRZnVC9tfapTO/SOJYQQlcbvexPxsl0gwHAWFAPU7aR3pApBChyhu34tfeneuBbbbM20BrlMJYQQ123JrtN0NFw6e+PbEswe+gaqIKTAEbpTFIUpg1uwQ9UKnNTYtfoGEkKISuJwSibRJ9PobNTG31BPbg+/TAocUSE08vGgTtveALgm7yQ/L1fnREIIUfH9uPM0AL1cj2oNASE6pqlYpMARFcbIQX1JwwMX8vljRaTecYQQokKz2lQidp/CjVzqFRzRGuUMThEpcESF4elqJstXGxx3ePsKUjLlLI4QQlzJhkNnSc7Io7vrMQyqFSwBYKmjd6wKQwocUaHUbnMHAG1tB5gVGadzGiGEqLh+3HkKgBF+iVqDXJ4qRgocUaEYArWFNzsZ4liy8wS7TsjaVEII8U/p2QUsj0nGgI3QnLVaY325PPV3UuCIisWvLZjcsSjZNFVOMeXnA1htqt6phBCiQvl1byL5hTae8NqFS9phcKkOre/XO1aFIgWOqFiMThDQGYDuzvHsO53O9ztO6hxKCCEqlh93nsKIlbHqD1pD13+Di0XfUBWMXQuc1NRUwsPDsVgsWCwWwsPDSUtLu+o2qqoydepU/P39cXV1pVevXhw4cKBYn7Fjx9KwYUNcXV2pVasWd911FwcPHrTjnohyVb8bAA/4adeXZ0UeJC07X89EQghRYVye++Y+pw1Yck6CW00IeULvWBWOXQuckSNHEh0dTWRkJJGRkURHRxMeHn7VbWbNmsXs2bOZN28e27dvx8/Pj759+5KZmVnUp0OHDixYsIDY2Fj+/PNPVFUlLCwMq9Vqz90R5eXSdeSgc2t5sfoq0rLzeHd5vM6hhBCiYvhx52lMFPK8y89aw21Pg7mavqEqIEVVVbsMcIiNjaVFixZERUUREqKN7I6KiiI0NJSDBw/StGnTEtuoqoq/vz8TJ07khRdeACAvLw9fX19mzpzJ2LFjS/1Ze/fupW3bthw+fJiGDRteM1tGRgYWi4X09HQ8PT1vYi+FXdhs8MNDEPsrAButLZlU+ASfjb+LVnXkFKwQouqy2lS6vrWKPlm/8x/Tl1DNFyZEg7Ob3tHKRVk+v+12BmfLli1YLJai4gagS5cuWCwWNm/eXOo2CQkJJCUlERYWVtRmNpvp2bPnFbfJyspiwYIFBAUFERAQUGqfvLw8MjIyij1EBWYwwLCFMGgOmNy4zXiAP5xfYPn3H2KnelwIISqF9fFnScvIZIJpqdbQ/dkqU9yUld0KnKSkJHx8fEq0+/j4kJSUdMVtAHx9fYu1+/r6ltjmo48+olq1alSrVo3IyEhWrFiBs7Nzqe87Y8aMonFAFovlioWQqEAUBTo+CmM3kO8XjEXJ5pn0mWz/5VO9kwkhhG4Wbz/BA8bV+HIBPOtA+4f1jlRhlbnAmTp1KoqiXPWxY8cOQFtE8Z9UVS21/e/++Xpp24waNYrdu3ezbt06GjduzLBhw8jNLX3m28mTJ5Oenl70OHlS7sqpNLwb4TxmBQf87wPAbffnZOQW6BxKCCHKSWI0RL4Evz5F7nePcfehyUx0WqK91uM5MLnoGq8icyrrBuPHj2fEiBFX7RMYGMjevXtJTk4u8drZs2dLnKG5zM/PD9DO5NSuXbuoPSUlpcQ2l8/GNG7cmC5dulCjRg0iIiJ44IEHSryv2WzGbDZfc99EBWU00Xj4dArnRNCKQ3z0yx+MGzZE71RCCGFfNhv8MBpSEwBwAfpfPi1RIxDaPahTsMqhzAWOt7c33t7e1+wXGhpKeno627Zto3NnbV6TrVu3kp6eTteuXUvdJigoCD8/P1asWEFwcDAA+fn5rFu3jpkzZ17156mqSl5eXhn3RlQWzhZfzgX0xvvkcsx7vyHmtl608JcB4kIIB3Zis1bcOFdD7fpvPt18hlNZCoM7NCDkjrvBqfRhGUJjtzE4zZs3p3///owZM4aoqCiioqIYM2YMgwYNKnYHVbNmzYiIiAC0S1MTJ05k+vTpREREsH//fkaPHo2bmxsjR44E4OjRo8yYMYOdO3dy4sQJtmzZwrBhw3B1dWXgwIH22h1RAXh3fxyAocaNvLF0tww4FkI4tt3/0762uocdgf/irYwwfjL2p+Wd46C6jCW9FrvOg7No0SJat25NWFgYYWFhtGnThoULFxbrExcXR3p6etH3kyZNYuLEiYwbN46OHTty+vRpli9fjoeHBwAuLi5s2LCBgQMH0qhRI4YNG4a7uzubN28udVCzcCANe2N196Wmkkn1U6v5addpvRMJIYR95GbAgaXa8+BwFm/Txo4ObuNPNXOZL75USXabB6cik3lwKrGVr8PG2ay2tmOS+RVWPdsLi6tJ71RCCHFr7fwKfn0KvJuQ8dgmOk9fRW6BjZ/GdaV9vRp6p9NNhZgHRwi7CNYG1fU07sV4MYk5K2SGYyGEA9q9SPsa/CC/7DlDboGNxj7VCA6ormusykQKHFG51GwI9bpixMa9xvX8d8sx9p9Ov/Z2QghRWZyNg1PbQDFCmxFFCw4P7xRwzWlWxF+kwBGVT3ttPbNH3DaiqjZe/Xk/NluVu9IqhHBUlwcXN+nHgUwX9p5Kx2RUuKd9XX1zVTJS4IjKp8Vd4OxBrYJEepkPsftEWtFfOEIIUalZC2DPYu15u1F8v137ty2spR9e7nJbeFlIgSMqH2d3aHUPAC/V3gnAW5EHuZCVr2cqIYS4eYdWQFYKuNciJ7APP+3W7hYd3lFuCy8rKXBE5RSsXaZqdG4lt9e6SFp2ATP/OKhzKCGEuEmXL0+1Gc6vB86SmVtIPS83bmt07Ql2RXFS4IjKqW5HCOyOUpjL++5fomDjux0n2Xn8gt7JhBDixlxMgUN/as+DH2TR1hMAPNC5HgaDDC4uKylwROWkKDDkAzC54ZEUxbsNdgPwcsR+Cq02ncMJIcQNiI8EWyH4t2d/gT97TqZhMirc31EGF98IKXBE5eUVBL2nAHD32U9o7prGwaRMvtp8TN9cQghxI05EaV8b3s4327SzN/1b1ca7miwWfSOkwBGVW+d/QUAXlIIsvqz5P0Bl9op4EtNy9E4mhBBlc6nAyfHrxM+XBhePCqmnZ6JKTQocUbkZDHDXh+DkQu1zm3neZzvZ+Vbe+DVG72RCCHH9Lp6FC0cA+PVCXbLyrTSs5U5IkJfOwSovKXBE5efdCG5/GYAncr/E35BK5IEkVsUm6xxMCCGu08mtAKi1mrNgVxoAI0Pqy8zFN0EKHOEYQp+EOh0w5mfwQ42PMZPPaz8fICffqncyIYS4tpPa5alzXu2IPZOB2cnAve3r6ByqcpMCRzgGgxHu/gxcqlMnaz+fuX3MmbQs3l99SO9kQghxbSe0MzgrLwYBMKiNP9XdZObimyEFjnAc3o3ggW/B6ExP21ZedVrI/PVHiE/O1DuZEEJcWUEunIkG4IvjPgCMlMHFN00KHOFY6neFuz8F4BGnP3lY+Z2XI/bJYpxCiIorcTdY88l2rsnhwlo08/Ogfb3qeqeq9KTAEY6n1T0Q9iYAr5oWUevEH7IYpxCi4ro0wHi7tTGg8FBooAwuvgWkwBGOKXQ8dB4LwBzTx3yzbBVnM/N0DiWEEKW4VOCsz22Ih4sTQ4P9dQ7kGKTAEY5JUaD/DGwNbsesFPCc9Qve/O2A3qmEEKI4VS0qcHbamjKsYwBuzk46h3IMUuAIx2UwYhg0G5vRTA/jPvL3LWV9/Fm9UwkhxF/OH4bs8+SqJg6ogYR3qa93IochBY5wbF4NMNw2EYBXTQv5T8R2mRtHCFFxXFqeYY/akG5NaxPo7a5zIMchBY5wfLc9jc1SD3/lAndnfiNz4wghKozC41sA2GlrwsOhgfqGcTBS4AjHZ3LFMHAWAI8Zl7F6/QYOJmXoHEoIISD78CYAjru3pmeTWjqncSxS4IiqoekAaDIAk2LlNeMCJi/Zi1XmxhFC6EjNOodn1jEAWoX0xWCQW8NvJSlwRNUx4C1UowvdjAeoe/oP/hd1XO9EQogq7NCOVQAcVuswpEsrndM4HilwRNVRIxCl+zMATDV9zZeRUSSm5egcSghRVR2LXg3AhZrtsbiZdE7jeKTAEVXLbRNRfVtRU8lkivoxr0bsQ1XlUpUQonwlpuXgdX43AHXb9NI3jIOSAkdULU5mlHs/x2Y0c4cxGr/D3/L7vjN6pxJCVDE/rN9FO0W7o9O/TW+d0zgmKXBE1ePTHEOfqQC87LSIL39eSXp2gb6ZhBBVRnZ+IVm7fsRJsZHu1Rq8gvSO5JCkwBFVU8gT2AJ74qbk8VrBHN76fZ/eiYQQVcSSnafob1sPgEfHB3RO47ikwBFVk8GA4e6PKXT2pJ3hKL57PmDzkXN6pxJCODibTSVywxbaGw5jw4Ch9X16R3JYUuCIqstSB6fBcwAYb1zKgh8iZBkHIYRdrYlLIThduz1cDewBHr46J3JcUuCIqq31fRQ0H4qTYmNC9jzmrojRO5EQwoF9ufEoQ43a7MXGtsN0TuPYpMARVZ7pzrcpMHnS2nCMwi2fsudkmt6RhBAOKPZMBmlHd9LIkIhqdIHmg/WO5NCkwBGimg+m/tMAeMb4Pe/8sJL8QpvOoYQQjubLjQlFZ2+Upv3BxVPnRI5NChwhAIIfoqBOZ9yVPB5K/ZBP1h7WO5EQwoGcu5jHr9GnGGzUVg+n9f36BqoCpMARAsBgwHTXB9gUJ/oadxG39hsOJWfqnUoI4SD+u+U4weoB/JRUVBcLNO6rdySHJwWOEJf5NEO5bSIArxq/4rXvo2TFcSHETcvOL2ThlmMMNVy6PNViKDiZ9Q1VBUiBI8TfKD2eo7B6EH5KKo+kzOCb1Tv1jiSEqOR+2HGK7OwsBjpt0xrk8lS5kAJHiL8zueI05D1sGAgz7uSuDYM5t/I9sBbqnUwIUQkVWm2sXL+Ot0zz8SAbPOtA/W56x6oS7FrgpKamEh4ejsViwWKxEB4eTlpa2lW3UVWVqVOn4u/vj6urK7169eLAgQNX7DtgwAAURWHp0qW3fgdE1dSgJ8qjkSSYGuGpZOO98TXUT7tDzM+w9wdY/zb88m9YeDds/1zvtEKIikhV4chqLnw2hIW5E7j70t1ThD4JBjm3UB7sepRHjhxJdHQ0kZGRREZGEh0dTXh4+FW3mTVrFrNnz2bevHls374dPz8/+vbtS2ZmyQGfc+fORVEUe8UXVZhSLwTTE2uZanucC2o1lJQY+P4h+OlxWP0m7PovHFkNkS9BYZ7ecYUQFYmqwuKRsPBufJI3YFMVDtfsBY/8AV3G6Z2uynCy1xvHxsYSGRlJVFQUISEhAMyfP5/Q0FDi4uJo2rRpiW1UVWXu3Lm8/PLL3HPPPQB8/fXX+Pr68s033zB27Niivnv27GH27Nls376d2rVr22s3RBVWt6YHDQdO4PalnXneeQnDvQ5hsvhD9XpQoz5s/RRyLkBiNNQL0TuuEKKiSD4AccuwGUx8nX8H3ygD+O7RUeDurHeyKsVuZ3C2bNmCxWIpKm4AunTpgsViYfPmzaVuk5CQQFJSEmFhYUVtZrOZnj17FtsmOzubBx54gHnz5uHn53fNLHl5eWRkZBR7CHE9RnWuR/MG9Xgl/2HC3T7C9vBvcPfH0OtFqN9V63Rii74hhRAVS3wkAHucO/B64cOEduyElxQ35c5uBU5SUhI+Pj4l2n18fEhKSrriNgC+vsUXH/P19S22zdNPP03Xrl256667rivLjBkzisYBWSwWAgICrnc3RBVnMCjMurctriYjUUcv8L+tx/96UQocIURpLhU432e2xKDA47c10DlQ1VTmAmfq1KkoinLVx44dOwBKHR+jquo1x8388/W/b/PLL7+wevVq5s6de92ZJ0+eTHp6etHj5MmT172tEPVquvFCf+2S6oxlBzl+PuvSC120ryeiwCZLOwghgItn4ZT2GbjaGsyA1rWpV9NN51BVU5nH4IwfP54RI0ZctU9gYCB79+4lOTm5xGtnz54tcYbmssuXm5KSkoqNq0lJSSnaZvXq1Rw5coTq1asX2/bee++le/furF27tsT7ms1mzGaZVEncuIdCA4k8kETU0Qs8/8NeFv+rCwa/NmByg9w0OBcHPs31jimE0Nuh5YDKflsQyXgxtoecvdFLmQscb29vvL29r9kvNDSU9PR0tm3bRufOnQHYunUr6enpdO3atdRtgoKC8PPzY8WKFQQHBwOQn5/PunXrmDlzJgAvvvgijz/+eLHtWrduzZw5cxg8WFZmFfZhMCi8fV9b+s1dz7ZjF/hq8zEevS0I6naChHVwfLMUOEKIostTq2zB3NbImzZ1q+ubpwqz2xic5s2b079/f8aMGUNUVBRRUVGMGTOGQYMGFbuDqlmzZkRERADapamJEycyffp0IiIi2L9/P6NHj8bNzY2RI0cC2lmeVq1aFXsA1KtXj6CgIHvtjhAEeLnx0kCtiJn150GOnr0I9UK1F09E6ZhMCFEhFOZhO7wKgFXWYJ68vZHOgao2u86Ds2jRIlq3bk1YWBhhYWG0adOGhQsXFusTFxdHenp60feTJk1i4sSJjBs3jo4dO3L69GmWL1+Oh4eHPaMKcV1GhdTjtkbe5BbYeO6HPVgD/jYORwhRtR3fhKEgixS1Os4B7enSwEvvRFWaoqpqlVtNMCMjA4vFQnp6Op6ennrHEZXM6bQc+s9ZT2ZeIa/2rcdjG3uCaoWnD4Clrt7xhBA6yf3lOVx2zWdxYS98H5zP7c1K3kksbk5ZPr9lvmghyqhOdVdeHdQCgJmrT5HjrV0mlbM4QlRhqkrugd8BOGTpRq+mtXQOJKTAEeIG3N+xLnc08yHfauPPjECtUebDEaLKyjp9gOp5ieSpJjr1vkeWEaoApMAR4gYoisJb97SmupuJPzIvDW4/LgWOEFXV3tXfARDt1Jq+7RrqnEaAFDhC3DAfTxf+M7Q1O23aXYFqSgzkpOqcSghR3nILrLgcXQ6AqcVAjAY5e1MRSIEjxE24s01turVrzlGbHwoqeQlb9Y4khChnERv30kaNA6B1r/t1TiMukwJHiJv0xpBW7HfSBh1vW/ebzmmEEOUpt8DKwY0/YVRUUqs1xlQzUO9I4hIpcIS4SRY3E006hQFgPrONjYfO6ZxICFFevt16nLsLtLunPNoN0TmN+DspcIS4BZp11gqctsoRXvp+O2nZ+TonEkLYW26BlZg139LOcIRCowtOXZ7QO5L4GylwhLgVvBqguvtgVgrxuRjDy0v3UwXn0BSiSvk2KoExBYsAULqMg2oysV9FIgWOELeCoqDU19alGuW0ht/3nmFp9GmdQwkh7CW3wMqxtV/RxHCaPJMnxtue0juS+AcpcIS4Vbo8CYqBu40b6GfYxmtLD3DyQrbeqYQQdvDtliM8XrAYAGP3p8G1ur6BRAlS4Ahxq9QLgW7aX3Fvm7/EJe8cz36/B6tNLlUJ4Uhy8q2krP2UAMNZss21ZOxNBSUFjhC3Uq+XwLc1nmoGb5s/Z9ux83y6/ojeqYQQt9B3mw/yqPUHAJzveAGc3XROJEojBY4Qt5KTM9zzGRjN9FJ28YBxNbOXx7P3VJreyYQQt0B2fiEX18+jlpLORdc6OHV4WO9I4gqkwBHiVvNtAb1fA2CK8yLqqGd4anE0WXmFOgcTQtysResPEG5dCoBL2KvaHzWiQpICRwh76DIOArvjoubyvstnJJy7yOu/HtA7lRDiJqRnF5C48X9YlGwy3QNxajtM70jiKqTAEcIeDAYY+jEYzbRVD9LEcJrvd5zit72JeicTQtygT9cfYYhtNQDuoY+CwahzInE1UuAIYS/VAyCoBwCvNDoOwOSf9nE6LUfPVEKIG5CSmcvGTesJNhzGpjhhaPeA3pHENUiBI4Q9Ne0PwG227bQLqE5mbiFPL46WW8eFqGTmrT7MXap29kZp2l9mLa4EpMARwp6aaAWO4dR2PrgrAHdnI9uOXWDe6sM6BxNCXK+TF7JZsu0Idxs3AKC0f0jnROJ6SIEjhD1Z6oJfa0Al4NxGpg1tBcB7q+LZlnBB32xCiOsyZ0U8PdUdeCkXwaM2NOytdyRxHaTAEcLeLp3FIT6Se9rX5Z72dbCp8NTi3aRm5cPhlbBnMcjinEJUOPHJmUREn2a4ca3W0G4kGJ30jCSukxQ4QthbkwHa18OroTCfaXe1ooG3O2fSc5nx7XLUb0ZAxFiIj9Q3pxCihFmRcfirZ+lu3Kc1BD+obyBx3aTAEcLe/IOhmi/kZ8LxjbibnfhgZDDORgPtj81HsRVo/SJfhIJcfbMKIYpEHT3Pythk7ndajwEVAruDVwO9Y4nrJAWOEPZmMEDjMO15nHaWpqW/hbd6uXGfcT0AVmdPSD0GWz7QKaQQ4u9sNpXpy2JRsPGw6yatUQYXVypS4AhRHppeukwV/0fRWJu7M/6Hk2JjtbUd05XHtNc3zIb0UzqFFEJc9uveRPaeSqeP+SA1CpLAbIHmg/WOJcpAChwhykODXmA0Q9oJSImFlIMo+7TViBe6jOKL9I4cdm0NBdmw/FV9swpRxeUWWJkVGQeovOKlzX1Dm2FgctU1lygbKXCEKA/O7tCgp/Y8/g9YOx1Qoflgxj94P04GAxPSHsCGAQ78BMc26hpXiKrs683HOJ2Ww7Bqe6mfuhkMJgh5Qu9YooykwBGivFy+XXz7lxDzM6BAr5foUL8GLw5oRowayGLrHVqfZZPAKquPC1HeUrPymbfmMK7kMsX0X62x67/Bu5G+wUSZSYEjRHlp0k/7mnFpjE3r+8C3BQCP3RZE3xa+zCq4nwyqQcoB2P65TkGFqLreX32IzNxCplb/A/ecM2AJgB7P6R1L3AApcIQoL0WzGgOKEXq+WPSSoii8c19bqtXwYVbB/QCoK6dCykEdggpRRax/B95vDzG/AJBwLouFW47TUDnN/flLtT7939IuMYtKRwocIcpTy7u1r8GjSpzytriZ+HBke76nD+utrVEKc2DJYzI3jhD2UJgPm96HC0fg+3BYOo63f9lOoc3G+5ZvMNgKtOkdmt2pd1Jxg6TAEaI8dZ0Ao5bAwHdLfbltQHVeGtiSZwv+j/OqJyTvhxWvlXNIIaqAYxsgLx2cXAEFohcx+djjvGD6npa5u7W7HgfMBEXRO6m4QVLgCFGejCZo3AecnK/Y5eGugYS0ac6zBWO1hm2fQtwf5RRQiCri4O/a17bDKXjod84oPgQYzvJ/xp+19u7PyKzFlZwUOEJUMIqiMPPeNpzy7s7nhdoEgerScZBxRudkQjgImw3ilmnPmw3iq1O16ZsznZ+VS3cx1mwE3Z7SL5+4JaTAEaICcjc78cmDHZhnGMV+WyBKzgX4aQzYrHpHE6LyS9wNmWfA2YOz3iG8v+oQF3Ejb+D7MG4rPL5SJvVzAFLgCFFBNfKpxn/u68iEgvFkq2ZtzMDu/+kdS4jK7+Bv2tfGfXl7VQKZeYW0qWvhvg51wacZuNbQN5+4JaTAEaICu7NNbW7v1o13C7VbxwtXvgG56TqnEqKSu1TgHPe5nR92avNSTR3SEoNBBhQ7EilwhKjgXhzQjJi6wzliq41Tzjny18zSO5IQldfZeDgXj2owMXmvH6oK9wTXoX09OWvjaOxa4KSmphIeHo7FYsFisRAeHk5aWtpVt1FVlalTp+Lv74+rqyu9evXiwIEDxfr06tULRVGKPUaMGGHHPRFCPyajgfce7MwHzo8CYNj6Cbazh3VOJUQlFafdPXXGqzObTxdQzezECwOa6RxK2INdC5yRI0cSHR1NZGQkkZGRREdHEx4eftVtZs2axezZs5k3bx7bt2/Hz8+Pvn37kpmZWazfmDFjOHPmTNHj008/teeuCKErHw8XHnpoDGttwThRyPFvJ+odSYjK6dLt4V+caw7As2FN8PV00TORsBO7FTixsbFERkby+eefExoaSmhoKPPnz+e3334jLi6u1G1UVWXu3Lm8/PLL3HPPPbRq1Yqvv/6a7Oxsvvnmm2J93dzc8PPzK3pYLBZ77YoQFUL7ejXI6vU6BaqRoAsb2LNmid6RhKhcMs7Aqe0A/JIbTEt/T8K71Nc5lLAXuxU4W7ZswWKxEBISUtTWpUsXLBYLmzdvLnWbhIQEkpKSCAsLK2ozm8307NmzxDaLFi3C29ubli1b8txzz5U4w/N3eXl5ZGRkFHsIURndeUdPtta6D4Bq617lWHKavoGEqEwuzX2zy9aIc0oN/nN3a5yMMhTVUdntv2xSUhI+Pj4l2n18fEhKSrriNgC+vr7F2n19fYttM2rUKL799lvWrl3Lq6++ypIlS7jnnnuumGXGjBlF44AsFgsBAQE3sktCVAidR88kXfGkIaf5/cs3ycwt0DuSEJWCLVa7PLXc2pGRnevRLqC6voGEXZW5wJk6dWqJAb7/fOzYsQPQZmT9J1VVS23/u3++/s9txowZQ58+fWjVqhUjRozgxx9/ZOXKlezatavU95s8eTLp6elFj5MnT5Z1t4WoMJyr1UDp/SoAD+cu5M2Fy7DaVJ1TCVHB5aajJqwDYLtLKJP6ycBiR+dU1g3Gjx9/zTuWAgMD2bt3L8nJySVeO3v2bIkzNJf5+fkB2pmc2rVrF7WnpKRccRuA9u3bYzKZOHToEO3bty/xutlsxmw2XzWzEJWJZ9fHuLj/R6olbeW+k2/y7p+NmDSgpd6xhKiw0lfPwaIWctjmz6ghfbC4mfSOJOyszGdwvL29adas2VUfLi4uhIaGkp6ezrZt24q23bp1K+np6XTt2rXU9w4KCsLPz48VK1YUteXn57Nu3borbgNw4MABCgoKihVFQjg0g5Fqw+dT4OROJ0M86sb3Wbr7tN6phKiQ1CNr8dg2F4BlXuHcHVxH30CiXNhtDE7z5s3p378/Y8aMISoqiqioKMaMGcOgQYNo2rRpUb9mzZoREREBaJemJk6cyPTp04mIiGD//v2MHj0aNzc3Ro4cCcCRI0d444032LFjB8eOHWPZsmXcf//9BAcH061bN3vtjhAVT436mAa9A8DTTj+wYMnPRJ9M0zeTEBVNZjJ53z+KAZXvbHcw+MGnrjlMQjgGuw4fX7RoEa1btyYsLIywsDDatGnDwoULi/WJi4sjPf2vqecnTZrExIkTGTduHB07duT06dMsX74cDw8PAJydnVm1ahX9+vWjadOmTJgwgbCwMFauXInRaLTn7ghR8bR9ALXZYJwVK28b5jH+680kpefqnUqIisFmJf/7R3DJO0+sLYDMXm8S5O2udypRThRVVavc6MSMjAwsFgvp6el4enrqHUeIm5N1HttHXTBkpfB1YV/21gjjP3fUwCU7UZv3o1FvaNxX75RClL81M2DdW2SpZp6t8T7z/j1Mbguv5Mry+S0FjhQ4whHE/wnfDCv9Nedq8NwhcHYr30xC6OnoWtT/DkVB5ZnCJ3l83Iu08Jd/7yu7snx+SykrhCNo0g+6TsBmNHNK9WarrRn7vPpBNV/IvwjxkXonFKL85Gdji/g/FFS+LbydOj0eluKmCpICRwhHETYNw6sp7Lx7PcPzX2Nw4sPs9x2ivbbvR32zCVGeoj7EkJnIKdWbhdX/j/F3NNI7kdCBFDhCOJi72tXh6T5NAHjuYGOt8dByyEnVMZUQ5eTiWQrXzwHg7cLhTLu/E2YnuQGlKpICRwgHNKF3I4a28+egtS7xaj2wFUDML3rHEsLuclf+B6fCLPbagvDrNooO9b30jiR0IgWOEA5IURTeurcNnQO9iCjUJsnMi/5O51RC2Jd6Nh5T9NcALPQYwzNhshxDVSYFjhAOysVk5LOHOrCn+h0AmE5uJvPsCZ1TCXGTbFb48VFYcCec2lHspcQlL2LExmpbe0aPelAuTVVxUuAI4cCquzkz87HBRCvNMKDy8/8+IL/QpncsIW7crv/C/iVwfCN83gd+fxZy0zl7YA11klZRqBpI6vwSLf0teicVOpMCRwgHF+Dlhk/XBwFok7qCF5fspQpOfyUcQfYFWPW69tw/GFBh++eo8zqTH/FvAFa59mPYgN76ZRQVhhQ4QlQB/l0fwKYYaWNIIDp6O7P+jNM7khBlt/pN7W5Anxbw2Ep4+FfwaohyMYk6hSfJUs00f2CGzFYsAClwhKga3L0xNNTG4gwxbubjtUf4YmOCzqGEKIMze2DnAu35gFlgdIKgHuwf8gfvW+/lrGphX6sXqFc/SN+cosKQAkeIqqL1/QCM9tgBqEz7LYalu0/rm0mI66GqsOx5UG3Q6l4I6g7AxbxCxv8Qw+yCe3ml0U+E3PeMzkFFRSIFjhBVRbOB4ORK9ZwTzGpxAlB57oc9rIlL0TuZEFe39zs4uRVM7tB3WlHza0v3c+x8Nv4WF2be2wZFUXQMKSoaKXCEqCrMHtBCW7ph2NHJrK4xg+7sYtz/drLrhMxyLCqo3AxY/qr2vOfzYKkDwE+7TvHT7tMYFHjvgWCquznrGFJURE56BxBClKMBs7TVxXf/jwY5+1ngvJ8YW32Wf3kb/t1b4uftDc7u4OYFdTtr4xyE0NO2TyErBWo2gi7jAEg4l8UrS/cDMLFPEzoFymzFoiT510uIqsS1OgyaDT0nwZYPUXd8QYv847TgOGz4R9+uEyBsWmnvIkT5ObpO+xr6JDiZyS2w8u9vd5Gdb6VLAy+evF0W0hSlk0tUQlRFHn4QNg1l4n5ye7zKKufbibR2YpvShnzfdlqfrZ9A6jE9U4qqzloIp3dpzwO6APD6rwfYfzqDGm4m5g4PxmiQcTeidFLgCFGVuXnhcsdztJvwHW9Xf4VhOS8SdnEq+fV7gjVfm3dECL2kHICCLDB7Qq1mfL/9JN9uO4miwHsjgvGzuOidUFRgUuAIIahZzcyix7sQ4OXKsfPZPHV+KCoK7PsBEnfrHU9UVSe3aV/rdmL/mUxe+Vkbd/Ns3yb0aFJLx2CiMpACRwgBgJ/FhW8e74Kvp5k/zvmyxrmX9sLyV7V5SIQob5cKnBy/Djzxv53kF9ro09yHcb1k3I24NilwhBBFArzcWPR4F7yrmXk1YygFOMGxDXB4pd7RRFV0cisA8w55cSo1h3pebrw7rB0GGXcjroMUOEKIYhr5VOPbMSHkutfhy8J+AFj/fBVsVp2TiSolMxnSjqOi8PUJb8xOBj55sAMWV5PeyUQlIQWOEKKExr4efDOmC98430+a6o7xXCw5O/6ndyxRlZzSLk8dtNXlIm7MuKc1Lfw9dQ4lKhMpcIQQpWrq58Gn/+rNl4Z7AciKfJ30zEydU4mqIiVmPQC7bE0Y26MB97Svq3MiUdlIgSOEuKJmfp4MeORVkqiJt+08X3w6h9SsfL1jCQeXlJ7Lmf3aBH85fh2Y1L+ZzolEZSQFjhDiqprX88HQ6VEAbs/4mQfmR3HuYl7Jjsc2wdZP5Y4rcVNy8q3839dbaGY7CsCIe+6VyfzEDZECRwhxTT49/4VqMBFsOIxT8h6Gf7qFpPTcvzpknYdvhsMfk+DIav2CikrNZtNWuOfMHsxKAVYXL6rVbqp3LFFJSYEjhLi2aj4oLYcCMNZ1DUfOZjH8sy2cSs3WXt84G/Ivjc+RAkfcoBl/xPL7vjN0cjoEgLF+F1Dk7I24MVLgCCGuT6cxANypbKJFjUKOn8/m/k+2cOxIHGyb/1e/o2v1yScqtc83HGX+hgQAHg5I0RrrdtIxkajspMARQlyfgM7g2xqDNZfFnY7QsJY7Z9Jz2b3wRbDmQe22Wr/k/XAxRd+solL5ZU8ib/4eC8CL/ZtSJ3Of9kJAiI6pRGUnBY4Q4vooCnR+HADPff/lh7FdGFg7kyHqGgCiW78Mfq21vkfX6ZVSVDKbj5zjue/3ADC6ayBj25og8wwYnMA/WOd0ojKTAkcIcf1a3w9mC6Qm4HVmI+/7/o5RUVlh7cD9v1s54tFZ63d0jb45RaUQk5jB2P/uJN9qY2BrP14d1ALl1HbtRb/W4Oymb0BRqUmBI4S4fs7u0G6k9nz5Kzgd/AUVha1BT1JgVXn9wKUVno+skdvFxVUdTrnIQ19uJTOvkM5BXswe1k67HfzyCuJyeUrcJClwhBBl00m7TMVZbcyE0mY4k0ffw4Nd6rHV1ow81QSZiVjPxusYUlRkx89nMerzKM5dzKdFbU/mP9QRF5NRe/HSApsEdNYvoHAIUuAIIcrGuxE0uF17bjDB7ZMxGhSm3dWKpwe0YbutCQA/fP9fcgtkgU5R3Om0HEbO30pyRh6jahzkF/MrWD5tDzODYFotOBOtdawrBY64OU56B6jIrFYrBQUFescQOjOZTBiNRr1jVCw9noNjG+C2p6FGIACKovBEz4bEJIdBzAFqJm/mgflRfP5QR2pWM+ubV1QIKRm5jJofxem0HHp4pfJm/tsoSTklOwZ2B4usPSVujqKqVe9CeUZGBhaLhfT0dDw9S65Oq6oqSUlJpKWllX84USFVr14dPz8/FJl07C/WQjAYS07ElrgbPuvFRVxpl/sptb08+OLhTjTx9dAnp6gQUjJzGTV/K4dSLhJU3Yk/PabhfHafVsz0ngLmauBcTfvqUl0m+BOlutbn99/JGZxSXC5ufHx8cHNzkw+1KkxVVbKzs0lJ0eZ1qV27ts6JKhDjFf758GsLrl5Uy7lAmOUUyy4EcveHm3hvRDB9WviWb0ZRIZxJz2HU/K0cPZeFn6cLPzeLxDl6H7h6wT2fgae/3hGFA5IC5x+sVmtRcVOzZk2944gKwNXVFYCUlBR8fHzkctW1GAzQoCcciODdDqmcT2jP1oQLjFm4g0n9mvFEzwbyR0NVYbNxIjWXkZ9HcSo1hzrVXfmpbxaev36mvT70IyluhN3IION/uDzmxs1N5l8Qf7n8+yBjsq5Tg14AuJ7cwMLHQhgZUg9VhZmRB3nm+z0y+NiR5aZrq8rP64T6Zi1OzxtIl4xIWnnZ+DG8Ib6rJmr9Ov8Lmg7QNapwbHYtcFJTUwkPD8disWCxWAgPD7/muBZVVZk6dSr+/v64urrSq1cvDhw4UKLfli1buOOOO3B3d6d69er06tWLnJxSBqvdIPkLU/yd/D6U0eW7rE5tx7nwIv8Z2oo37mqJ0aAQsfs09368mRPns/XNKG6t5Bj4dSK821xbVf5cPIqtkFB1N++YPuXX3Eeo/d1AyD4HPi2h7zS9EwsHZ9cCZ+TIkURHRxMZGUlkZCTR0dGEh4dfdZtZs2Yxe/Zs5s2bx/bt2/Hz86Nv375kZmYW9dmyZQv9+/cnLCyMbdu2sX37dsaPH4/BICekhKgQatQHrwagWuHYRhRF4aHQQP77aGe83J05kJjBoA82sOagrFnlEE7vhE97wM4FUJBFtqUx/+FRBuTNYKHLKAprNkOxFUDGKXByhfu+BJOL3qmFo1PtJCYmRgXUqKioorYtW7aogHrw4MFSt7HZbKqfn5/61ltvFbXl5uaqFotF/eSTT4raQkJC1FdeeeWGs6Wnp6uAmp6eXuK1nJwcNSYmRs3Jybnh93cE9evXV+fMmWO39z9z5ozap08f1c3NTbVYLHb7OaVJSEhQAXX37t3XvY38XtyAX59W1SmeqvrVYFXdt0RVUw6qamGBejo1Wx0yb6Na/4Xf1Pov/Ka+uzxOLbTa9E4rbsbP47X/1vN7qxuW/6Q2ekn7b3vfx5vUtKx8rU9yjKpumK2qR9frm1VUalf7/P4nu53y2LJlCxaLhZCQv6bb7tKlCxaLhc2bN5e6TUJCAklJSYSFhRW1mc1mevbsWbRNSkoKW7duxcfHh65du+Lr60vPnj3ZuHHjFbPk5eWRkZFR7OGIRo8ejaIovPXWW8Xaly5dWuZLLNu3b+df//rXrYxXzJw5czhz5gzR0dHEx8uMtw6pcV/ta8I6+PER+LAzTK+Nf8S9fD/cn/Au9QF4f9UhRi/YRkpmro5hxQ0rzIeYXwBYWvMxHlzlTIEV7mxdm4WPhWBxM2n9fJpr8yYFddcxrKhK7FbgJCUl4ePjU6Ldx8eHpKSkK24D4Otb/FZSX1/foteOHj0KwNSpUxkzZgyRkZG0b9+e3r17c+jQoVLfd8aMGUXjgCwWCwEBATe8XxWdi4sLM2fOJDU19abep1atWnYdaH3kyBE6dOhA48aNS/09ARnQW+k17gdD5kFwONTpCCZ3sObD8U2Yf3qUaYOaMGd4W1xMBjYcOsfA9zawLv6s3qlFWR1ZDblpZDjV5Jmt1QB4/LYgPngg+K/lF4TQQZkLnKlTp6IoylUfO3bsAEofmKmq6jXPJvzz9b9vY7PZABg7diyPPPIIwcHBzJkzh6ZNm/Lll1+W+n6TJ08mPT296HHy5Mmy7nal0adPH/z8/JgxY8ZV+y1ZsoSWLVtiNpsJDAzk3XffLfZ6YGAgc+fOLfp+6tSp1KtXD7PZjL+/PxMmTCh6LT8/n0mTJlGnTh3c3d0JCQlh7dq1V/zZgYGBLFmyhP/+978oisLo0aMB7b/7J598wl133YW7uztvvvkmAL/++isdOnTAxcWFBg0a8Prrr1NYWFj0funp6fzrX//Cx8cHT09P7rjjDvbs2XPNY3Xw4EG6du2Ki4sLLVu2vGpmcQMMBmgfDnfNgzGrYPIpeGKTNolb4i5Y8Rp3B9fl1/G30czPg3MX83n4y21MXxZLfqFN7/TiOuVFfw/Aj7mdUBUDUwa34JVBLTAYZGC+0FeZ58EZP348I0aMuGqfwMBA9u7dS3JyconXzp49W+IMzWV+fn6Adibn7xOqpaSkFG1zub1FixbFtm3evDknTpwo9X3NZjNm841PFa+qKjk63dbqajKW6fKS0Whk+vTpjBw5kgkTJlC3bsnpznfu3MmwYcOYOnUqw4cPZ/PmzYwbN46aNWsWFRt/9+OPPzJnzhwWL15My5YtSUpKKlZAPPLIIxw7dozFixfj7+9PREQE/fv3Z9++fTRu3LjE+23fvp2HHnoIT09P3nvvvaJ5ZgCmTJnCjBkzmDNnDkajkT///JMHH3yQ999/n+7du3PkyJGiS2dTpkxBVVXuvPNOvLy8WLZsGRaLhU8//ZTevXsTHx+Pl5fXFY/V888/z9y5c2nRogWzZ89myJAhJCQkyPxH9mIwgF8ruPsT+HYEbP0YArvRuPlglj7ZjRnLYvl6yzEubFrAjuh9NA3uRs3goeDbUma1raBiTyRTP/Z3AJYbuvHxiA70b+WncyohNGUucLy9vfH29r5mv9DQUNLT09m2bRudO2uLpm3dupX09HS6du1a6jZBQUH4+fmxYsUKgoODAe3swLp165g5cyagFU/+/v7ExcUV2zY+Pp4BA+wzp0JOgZUWr/1pl/e+lpg3+uHmXLb/THfffTft2rVjypQpfPHFFyVenz17Nr179+bVV18FoEmTJsTExPD222+XWuCcOHECPz8/+vTpg8lkol69ekX/TY8cOcK3337LqVOn8PfXJux67rnniIyMZMGCBUyfPr3E+9WqVQuz2Yyrq2tRUXvZyJEjefTRR4u+Dw8P58UXX+Thhx8GoEGDBkybNo1JkyYxZcoU1qxZw759+0hJSSkqYt955x2WLl3Kjz/+eNVxROPHj+fee+8F4OOPPyYyMpIvvviCSZMmXXEbcQs0HQBd/w2bP4ClT4Jfa1xqBPJ6Twv/TvwY7+SNkA9s3Qxb30atXg+l6UBo/5BW7Igbl5cJihGcb/7y8y97Elm95BPmGnI5o/jw+v+Npmntq0+dL0R5stsYnObNm9O/f3/GjBlDVFQUUVFRjBkzhkGDBtG0adOifs2aNSMiIgLQLlFMnDiR6dOnExERwf79+xk9ejRubm6MHDmyqM/zzz/P+++/z48//sjhw4d59dVXOXjwII899pi9dqfSmTlzJl9//TUxMTElXouNjaVbt27F2rp168ahQ4ewWkueqbr//vvJycmhQYMGjBkzhoiIiKJLRLt27UJVVZo0aUK1atWKHuvWrePIkSNlzt2xY8di3+/cuZM33nij2HuPGTOGM2fOkJ2dzc6dO7l48SI1a9Ys1ichIeGaPz80NLTouZOTEx07diQ2NrbMmcUN6D1FWy06Lx1+eAS2fwEfheKdvBHVaGaZx32ssLYnVzWhpJ2ArZ/A/N5wvuy/U+KSvEyY1xk+7wO2G78EmF9o4z+/xzDh2930V7WbP2p0fkCKG1Hh2HWphkWLFjFhwoSiu6KGDBnCvHnzivWJi4sjPT296PtJkyaRk5PDuHHjSE1NJSQkhOXLl+Ph8ddCfRMnTiQ3N5enn36aCxcu0LZtW1asWEHDhg3tsh+uJiMxb/Szy3tfz8++ET169KBfv3689NJLJc7KlDYOSr3KmqsBAQHExcWxYsUKVq5cybhx43j77bdZt24dNpsNo9HIzp07SyxhUK1atTLndnd3L/a9zWbj9ddf55577inR18XFBZvNRu3atUsdP1O9evUy/3yZ0K+cGE3aXCifdtfG4yTu0toDQlDu+pABNRvx7baTdPt9N8EFe5hg+pk2hYdRl45DeWSZtsinKJtjGyEzUXucPQi+La69zT/f4lwWExbvZu+pdDzIpo/THlDBJXiYHQILcXPsWuB4eXnxv//976p9/vnBqigKU6dOZerUqVfd7sUXX+TFF1+82YjXRVGUMl8mqgjeeust2rVrR5MmTYq1t2jRosRt9Zs3b6ZJkyZXXGfJ1dWVIUOGMGTIEJ588kmaNWvGvn37CA4Oxmq1kpKSQvfut/72z/bt2xMXF0ejRo2u+HpSUhJOTk4EBgaW6b2joqLo0aMHAIWFhezcuZPx48ffbGRxvaoHwNBL43GcXKD3axAyFgxGFGBkSD26N/bm+R99+L+j9fjT/ALVTkaRtOI9/Po9o3f6yidhw1/Pj28qc4Hz065TvLp0P1n5ViyuJhZ2OIfTjnzwbiqXDkWFVPk+tcV1a926NaNGjeKDDz4o1v7ss8/SqVMnpk2bxvDhw9myZQvz5s3jo48+KvV9vvrqK6xWKyEhIbi5ubFw4UJcXV2pX78+NWvWZNSoUTz00EO8++67BAcHc+7cOVavXk3r1q0ZOHDgTe3Da6+9xqBBgwgICOD+++/HYDCwd+9e9u3bx5tvvkmfPn0IDQ1l6NChzJw5k6ZNm5KYmMiyZcsYOnRoiUtef/fhhx/SuHFjmjdvzpw5c0hNTS02/keUg6b94f82g2sN8Cy5UnuAlxvfPN6F/22tzbuR4UxhPpbNM/gkqyUPDepdKf/w0M2x9X89P74JOo+5rs0ycguY8vMBInafBqBzkBdzh7fD/7dPtQ6t75NB4KJCkrUNHNy0adNKnCVr374933//PYsXL6ZVq1a89tprvPHGG6UOMAbtUs/8+fPp1q0bbdq0YdWqVfz6669FdxstWLCAhx56iGeffZamTZsyZMgQtm7dekvmG+rXrx+//fYbK1asoFOnTnTp0oXZs2dTv742SZyiKCxbtowePXrw6KOP0qRJE0aMGMGxY8eueLfeZW+99RYzZ86kbdu2bNiwgZ9//vm6BtCLW8y3RanFzWUGg7bMw9inpxHr2gFXJZ8O0a/Q7901RO5P0n6/rYUQFwmxv8FVLrdWWdkXIGn/X98f33xdx2llTDJ9Z68jYvdpjAaFZ/s24dsxXfA3ZcGRNVqnliUvHwtRESjq1QZfOKiMjAwsFgvp6el4ehYfGJebm0tCQgJBQUG4uMhaKUIjvxcVRNoJCud1wakwizcKwllq7cakWlu51/YnpqxErU9QTxg8V1sLS2hif4XvHoQaQZCRCNY8GL8TvEu/9Hv+Yh6v/xrDL3u0YxpY04137m9Lx8BL0y5s/wJ+fwZqt4Wx60t9DyHs4Wqf3/8k53eFEJVH9Xo49X8Tfnual5wX86LtW5wztTv6so2euCr5KAnr4KOucPtL0GUcGG/inzlVhTPR2pkhv9bQcugt2Y1yd3n8TaPekBKrXaI6vqlEgaOqKj9HJ/LGbzFkZmVzh3EfE2vH0Dp3J8o3WWAr1BZQteZrG7S6r5x3RIjrJwWOEKJy6fAIxPyM09G1oMAxczM+yOzFb7YuNHBO59MaC6mXvgNWvAr7l2h3a9Us4x2W54/Avh+0x/nDf7WfngB9pla+u7iOXSpwArtr452Ob9IuU3V4uKjL3lNpvPFrDDkndvOy0x/0c9lFNbLg3BXe07UGtL7f/tmFuEFS4AghKhdFgfsWwO6FUP82Aut2YMSxCxz6LYa9p5zpkfw0D7tsZLLT/3A5Ew1LHoMxa65/IOy6t2HNm3997+QCdTtpRcLm97WC5575YC77NAi6uHgWUi7NhxXYHVwswNtakQOkZObydmQcP+46hYd6kc3maVRTcrT+1fygxRBoPhg864DBSSvuDE7akhsmuVwrKi4pcIQQlY+bF3R7qujbToFe/PxkN/48kMS7y+P5OqU7y2nBKpfncUvcTda+X3Bvc9e13zf7Amx4R3ve8A5oMxya3QlmD9j7A/z8JMQtgy/7wQOLtVvdK7rLZ298W4F7TQjorBUo6Sf5/Nd1zN2Ry8U87TLfG/WiqZaSAzUbw5APICBEW2JDiEpIfnOFEA5BURT6t6pN5MQevDeiHeaaAXxZqE3QeXrJK0z//QBJ6blXf5M930JhLvi2hgd/grYjtOIGoM398MgycPeB5P0w/3Y4G2/nvboF/n55CsiwOXPGvRkAMVuWcTGvkLYB1fnp/7owtOAPrW/ok1A/VIobUanJb68QwqEYDQp3tavDymd6Uu/OF7iIO02UE5zZ9A3dZ63m2e/3EH0yreTs3aoKO77Unnd6tPRLWnU7wpjVWgGUdRaWv2L/HbpZlwYYp/t1Yc6KeG57azU/pwYB0Nf9CB+Nak/E/3Wlff5uSE0AswXayMzEovKTAkcI4ZCcjAaGhLbE/faJAEx2jcBmLWTJrlMM/XATgz7YyDdbTxRdniFhnTa+xtkDWl/lA756AAz7Wlu08tCfcGKr/XfmRmWcgfOHsKHQ+8cC3lt1iIzcQk56tAOgv8dRBraujcGgwPb52jbtRoKz+5XfU4hKQgocIYRDU7r8H7jVxN96mtV9znBPcB2cnQwcSMzgpYh9hPxnJc//sIdzay7N5N12+LUHENdsCMGjtOerp1W4yQUv5hWyZOcp3vtCOyN1wFafc1Y32gZU54MHgnnj348DCsqFI5CZBKnHIf5PbeNOsmixcAxS4AghHJvZA257GoD6++Yx+97mbJ3cm1fubE4Db3ey8q2s27mP6idWAPBhZk92HLuA1XaNoqXHJDA6a2Ncjq618078Q95FOLO3WGFVYLWx5mAKE77dTcc3V/DsD3vwOb8dgBTvECLGdeXnJ7sxuK0/Rrfq2rw+oN1NteNLQIUGvcC7cfnuixB2IndRiVIFBgYyceJEJk6ceMvfe+3atdx+++2kpqbe0IrfQpRZp8dh8zxIPwG7/kuNzmN4vHsDHrstiG0JF8j88z84JdvYZmvK29FGiN5CDTcTPZrU4vamPvRoUgsvd+fi71k9ADo+Cls/gVVvaMVBeazJlHEGvroTLhwht8tE/vQdw9r4c6yNSyE1u6CoWwNvdwYUHoJc6N3/PqhXo/j7BN4GSXvhyGo4uExr63R961MJURnIGRwHMnr0aBRF4a233irWvnTpUpQy/sO7fft2/vWvf93KeELox+QKPZ7Tnq9/By4cBbQ7r0LqW+iTrd095N71X9wdXAcPFydSswv4OTqRid9F0+HNFdz5/gam/Lyfn6NPczrt0jwx3Z8Fkxsk7tJuH7eztOSTZM0fCBeOAOASNZeEJa8Ssfs0qdkF1HR3ZnTXQH5+shurHm9A9dxT2lih+qEl36x+V+1r9DeQcwE860KT/nbfByHKi5zBcTAuLi7MnDmTsWPHUqNGjWtvcAW1atW6hamEqADaPwybP4C04/BRqFbwdJ0Ah5ZDZiK4edOyTzhznMwUWG3sPpHGmrgU1hxM4WBSJgcSMziQmMHXW44D4OtpppmfJ//yvo9uZ/5Lzp+vk1f3DizuLmX7g0JVIS8DctIgNw1yUsk3uHDcpTlHzmVz5GwWR1Iucuz4MWZefInGhtOcUr352dqVJ51+YaLTT7QP9MZ8x4u0r18Dk/HS363Rlwou/+C/bnX/u3qXChzVpn3t+MjNLWshRAUjv80Opk+fPhw+fJgZM2Ywa9asK/ZbsmQJr732GocPH6Z27dr8+9//5tlnny16/Z+XqKZOncqXX35JcnIyNWvW5L777uP999/njTfe4IcffmDfvn3F3r9Dhw7ceeedvPHGG1fMsGnTJl566SXi4uJo27Ytn3/+Oa1bt765AyDElTg5w0M/w69PaXdMrX4T9n6vzVQMEPwgOJkBMBkNdA7yonOQFy/0b0ZSei7bj11g5/FUdh5PJeZMBskZeSRnnGU3t7HR/COeqXG8MH0ay43d8fV0KXpUMxtxNTnh5myklu0s9dO24pmVgGf2CWpkH6d63imMamGxqM6Am1qTY9au/GLtRopanW+d/0Njw2lSlJr8t9EHBDZuRXpmWywbp9Hj1Gdwyhfq/h/E/AH7foTDK7U3C+pe+vFwrwm1msPZWDCYoP1DdjrwQuhDCpzroapQkK3Pzza5lem6vtFoZPr06YwcOZIJEyZQt27dEn127tzJsGHDmDp1KsOHD2fz5s2MGzeOmjVrMnr06BL9f/zxR+bMmcPixYtp2bIlSUlJ7NmzB4BHH32U119/ne3bt9OpUycA9u7dy+7du/nhhx+umvX555/nvffew8/Pj5deeokhQ4YQHx+PyWS67v0Voky8grQiZ9+P8OdkOHd5oj5FO4NxBX4WFwa39WdwW38AsvMLOZCYQXxyJoeSL/LH4fsZnvE1k0zfEZXXguPna3D8fPF/M9oph1noPAOPy8sg/EOuaiIdd9JVd/yUC9RRzvOE06884fQr+UY3nK3Z2Nx98Xn0D14qWlvrOTAbYNXr2t1c69+Bwr+9f+22Vy9cgrprBU7LoVDN5xoHT4jKRQqc61GQDdP99fnZLyWWeU6Ku+++m3bt2jFlyhS++OKLEq/Pnj2b3r178+qrrwLQpEkTYmJiePvtt0stcE6cOIGfnx99+vTBZDJRr149OnfuDEDdunXp168fCxYsKCpwFixYQM+ePWnQoMFVc06ZMoW+ffsC8PXXX1O3bl0iIiIYNkwmGRN2pCjarMSN+2iDg3cs0JZkqBF43W/h5uxEp0AvOgV6aQ150+HjNdRNO8Emv3fZ32cRJ63VScnIJSffSrW0WEbEvI2rNYcz5iASqgVzwaU+aW6BpLvXw9nTj+qeHnh7mPF2N5PrpuJxZi3Kvh/g0HKcrdng7oPhkd9LLhza/RmwWbX1swpztP1ofb+20rdPs6vvSM8XtJmZOz5apkMoRGUgBY6DmjlzJnfccUexy06XxcbGctddxdfl6datG3PnzsVqtWI0Fl8p+f7772fu3Lk0aNCA/v37M3DgQAYPHoyTk/brM2bMGB599FFmz56N0Whk0aJFvPvuu9fMGBr618BHLy8vmjZtSmxs7I3srhBl51oDBs2BPq9rZ0pvhrkaPPwbfD0IU9pRgleNJHj0b2BpACkH4auJYM2EgC7UfnAJta9noU6vodqZlZxUOLJGW0PKUvKMLAA9n4eATuBcDep0uP6zvu7e2rZCOCApcK6HyU07k6LXz74BPXr0oF+/frz00kslzsqoqlpiEGSJaev/JiAggLi4OFasWMHKlSsZN24cb7/9NuvWrcNkMjF48GDMZjMRERGYzWby8vK49957byh3We/2EuKmuXjemvepUR9G/w5fD9aWPFgwEIa8Dz+Nhezz2mDfUd+XfRVy1xrQ6p5r92vQ64ZiC+GopMC5HopSKacuf+utt2jXrh1NmjQp1t6iRQs2btxYrG3z5s00adKkxNmby1xdXRkyZAhDhgzhySefpFmzZuzbt4/27dvj5OTEww8/zIIFCzCbzYwYMQI3t2sXZlFRUdSrVw+A1NRU4uPjadbsGqfUhajIqtfTipyvBmlFzn8vnSn1baUt3uli0TefEFWIFDgOrHXr1owaNYoPPvigWPuzzz5Lp06dmDZtGsOHD2fLli3MmzePjz76qNT3+eqrr7BarYSEhODm5sbChQtxdXWlfv36RX0ef/xxmjdvDmh3R12PN954g5o1a+Lr68vLL7+Mt7c3Q4cOvbGdFaKisNTVVh3/apA2X03NxhC+FNy89E4mRJUiE/05uGnTppW4/NS+fXu+//57Fi9eTKtWrXjttdd44403Sh1gDFC9enXmz59Pt27daNOmDatWreLXX3+lZs2aRX0aN25M165dadq0KSEhIdeV7a233uKpp56iQ4cOnDlzhl9++QVnZ+drbyhERefpD4/+CQPfgUf+gGoyr5QQ5U1Rrzb4wkFlZGRgsVhIT0/H07P49ffc3FwSEhIICgrCxcVFp4SVj6qqNGvWjLFjx/LMM8/oHeeWk98LIYTQ39U+v/9JLlGJm5aSksLChQs5ffo0jzxy5blEhBBCiPIiBY64ab6+vnh7e/PZZ5/d1PIQQgghxK0iBY64aVXwKqcQQogKTgYZCyGEEMLhSIEjhBBCCIcjBc4V2Gw2vSOICkR+H4QQonKRMTj/4OzsjMFgIDExkVq1auHs7CzLB1RhqqqSn5/P2bNnMRgMMk+PEEJUElLg/IPBYCAoKIgzZ86QmKjT+lOiwnFzc6NevXoYDHLSUwghKgMpcErh7OxMvXr1KCwsxGq16h1H6MxoNOLk5CRn8oQQohKRAucKFEXBZDJhMpn0jiKEEEKIMpLz7UIIIYRwOFLgCCGEEMLhSIEjhBBCCIdTJcfgXF5aICMjQ+ckQgghhLhelz+3r2eJoCpZ4GRmZgIQEBCgcxIhhBBClFVmZiYWi+WqfRS1Cq6UaLPZSExMxMPD45bf+puRkUFAQAAnT57E09Pzlr63+Isc5/Ihx7l8yHEuP3Ksy4e9jrOqqmRmZuLv73/Necmq5Bkcg8FA3bp17fozPD095X+eciDHuXzIcS4fcpzLjxzr8mGP43ytMzeXySBjIYQQQjgcKXCEEEII4XCkwLnFzGYzU6ZMwWw26x3FoclxLh9ynMuHHOfyI8e6fFSE41wlBxkLIYQQwrHJGRwhhBBCOBwpcIQQQgjhcKTAEUIIIYTDkQJHCCGEEA5HCpwb8NFHHxEUFISLiwsdOnRgw4YNV+2/bt06OnTogIuLCw0aNOCTTz4pp6SVW1mO808//UTfvn2pVasWnp6ehIaG8ueff5Zj2sqrrL/Pl23atAknJyfatWtn34AOoqzHOS8vj5dffpn69etjNptp2LAhX375ZTmlrbzKepwXLVpE27ZtcXNzo3bt2jzyyCOcP3++nNJWTuvXr2fw4MH4+/ujKApLly695ja6fA6qokwWL16smkwmdf78+WpMTIz61FNPqe7u7urx48dL7X/06FHVzc1Nfeqpp9SYmBh1/vz5qslkUn/88cdyTl65lPU4P/XUU+rMmTPVbdu2qfHx8erkyZNVk8mk7tq1q5yTVy5lPc6XpaWlqQ0aNFDDwsLUtm3blk/YSuxGjvOQIUPUkJAQdcWKFWpCQoK6detWddOmTeWYuvIp63HesGGDajAY1Pfee089evSoumHDBrVly5bq0KFDyzl55bJs2TL15ZdfVpcsWaICakRExFX76/U5KAVOGXXu3Fl94oknirU1a9ZMffHFF0vtP2nSJLVZs2bF2saOHat26dLFbhkdQVmPc2latGihvv7667c6mkO50eM8fPhw9ZVXXlGnTJkiBc51KOtx/uOPP1SLxaKeP3++POI5jLIe57fffltt0KBBsbb3339frVu3rt0yOprrKXD0+hyUS1RlkJ+fz86dOwkLCyvWHhYWxubNm0vdZsuWLSX69+vXjx07dlBQUGC3rJXZjRznf7LZbGRmZuLl5WWPiA7hRo/zggULOHLkCFOmTLF3RIdwI8f5l19+oWPHjsyaNYs6derQpEkTnnvuOXJycsojcqV0I8e5a9eunDp1imXLlqGqKsnJyfz444/ceeed5RG5ytDrc7BKLrZ5o86dO4fVasXX17dYu6+vL0lJSaVuk5SUVGr/wsJCzp07R+3ate2Wt7K6keP8T++++y5ZWVkMGzbMHhEdwo0c50OHDvHiiy+yYcMGnJzkn4/rcSPH+ejRo2zcuBEXFxciIiI4d+4c48aN48KFCzIO5wpu5Dh37dqVRYsWMXz4cHJzcyksLGTIkCF88MEH5RG5ytDrc1DO4NwARVGKfa+qaom2a/UvrV0UV9bjfNm3337L1KlT+e677/Dx8bFXPIdxvcfZarUycuRIXn/9dZo0aVJe8RxGWX6fbTYbiqKwaNEiOnfuzMCBA5k9ezZfffWVnMW5hrIc55iYGCZMmMBrr73Gzp07iYyMJCEhgSeeeKI8olYpenwOyp9gZeDt7Y3RaCzx10BKSkqJ6vQyPz+/Uvs7OTlRs2ZNu2WtzG7kOF/23Xff8dhjj/HDDz/Qp08fe8as9Mp6nDMzM9mxYwe7d+9m/PjxgPZBrKoqTk5OLF++nDvuuKNcslcmN/L7XLt2berUqYPFYilqa968OaqqcurUKRo3bmzXzJXRjRznGTNm0K1bN55//nkA2rRpg7u7O927d+fNN9+UM+y3iF6fg3IGpwycnZ3p0KEDK1asKNa+YsUKunbtWuo2oaGhJfovX76cjh07YjKZ7Ja1MruR4wzamZvRo0fzzTffyDX061DW4+zp6cm+ffuIjo4uejzxxBM0bdqU6OhoQkJCyit6pXIjv8/dunUjMTGRixcvFrXFx8djMBioW7euXfNWVjdynLOzszEYin8MGo1G4K8zDOLm6fY5aNchzA7o8m2IX3zxhRoTE6NOnDhRdXd3V48dO6aqqqq++OKLanh4eFH/y7fHPf3002pMTIz6xRdfyG3i16Gsx/mbb75RnZyc1A8//FA9c+ZM0SMtLU2vXagUynqc/0nuoro+ZT3OmZmZat26ddX77rtPPXDggLpu3Tq1cePG6uOPP67XLlQKZT3OCxYsUJ2cnNSPPvpIPXLkiLpx40a1Y8eOaufOnfXahUohMzNT3b17t7p7924VUGfPnq3u3r276Hb8ivI5KAXODfjwww/V+vXrq87Ozmr79u3VdevWFb328MMPqz179izWf+3atWpwcLDq7OysBgYGqh9//HE5J66cynKce/bsqQIlHg8//HD5B69kyvr7/HdS4Fy/sh7n2NhYtU+fPqqrq6tat25d9ZlnnlGzs7PLOXXlU9bj/P7776stWrRQXV1d1dq1a6ujRo1ST506Vc6pK5c1a9Zc9d/bivI5qKiqnIcTQgghhGORMThCCCGEcDhS4AghhBDC4UiBI4QQQgiHIwWOEEIIIRyOFDhCCCGEcDhS4AghhBDC4UiBI4QQQgiHIwWOEEIIIRyOFDhCCCGEcDhS4AghhBDC4UiBI4QQQgiHIwWOEEIIIRzO/wNIrlWT9zGyPAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "bn= b + 0.001*np.random.randn(n)\n", + "plt.figure()\n", + "plt.plot(np.linspace(0,1,n),b, label='Noise free b')\n", + "plt.plot(np.linspace(0,1,n),bn, label='Noisy b')\n", + "plt.legend()\n", + "plt.show()\n" + ] + }, + { + "cell_type": "markdown", + "id": "cd88fee8", + "metadata": {}, + "source": [ + "$A$, $x$ and $b$ are stored as Numpy arrays. Just as in Matlab we can look at the singular value decomposition (SVD). On a log scale we see the singular values decay as a negative power as expected for an operator that approximates the inverse of two derivatives.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "761ac845", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiwAAAGxCAYAAABBZ+3pAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABFpElEQVR4nO3deXxU5cH28WsyM1mAJEACgUCAoJbFFJdEKSCKgkFAFMWKqEgFbFM3INoHESyLS3CpT2pleZWgtShQCyoqKqEiBUllEVCBKjwCQUgKCZIEgaz3+wfMwJCEzCSTOQF/389ngDlznzP3OZPl4t6OzRhjBAAA0IAFWV0BAACAmhBYAABAg0dgAQAADR6BBQAANHgEFgAA0OARWAAAQINHYAEAAA0egQUAADR4BBYAANDgEVjOQTabzavHZ599ps8++0w2m03/+Mc/rK62Xn/9ddlsNu3evdvqqkiSdu/eLZvNptdff93qqtRKhw4d9Jvf/MbqatTZP//5TyUlJalx48ay2Wx69913qyy3f/9+TZ06VZs3b6702m9+8xs1adKkfit60l/+8hddeOGFCg4Ols1m0+HDhwPyvoHm+tnx2WefWV2VerVt2zZNnTrVsp9LL730kmw2mxISEix5/3OJw+oKwHdZWVkez5988kmtXLlSn376qcf2rl276ssvvwxk1c5q0KBBysrKUuvWra2uChoIY4xuv/12/eIXv9DSpUvVuHFjderUqcqy+/fv17Rp09ShQwddeumlga3oSZs3b9bDDz+sMWPGaOTIkXI4HAoPD7ekLvCPbdu2adq0aerTp486dOgQ8PefN2+eJGnr1q364osv1L1794DX4VxBYDkH/epXv/J43qJFCwUFBVXa3tC0aNFCLVq0sLoa9aa0tFQ2m00OB99W3tq/f78OHTqkW265RX379rW6OjXaunWrJOm+++7TlVde6ZdjHj16VI0aNfLLsXx17NgxhYWFWfLe9cXK6+lrPTZs2KAtW7Zo0KBB+vDDD5WRkUFgOQu6hH4mSktLNWnSJMXGxioiIkL9+vXTt99+W6ncihUr1LdvX0VERKhRo0bq1auX/vnPf9Z4/IqKCj311FPq1KmTwsLC1LRpU3Xr1k1//vOf3WWq6hLq06ePEhIStH79evXu3VuNGjVSx44dNWPGDFVUVHi8x9atW5WcnKxGjRqpRYsWeuCBB/Thhx9WaraurqukT58+6tOnz1nPY+fOnbr33nt10UUXqVGjRmrTpo0GDx6sr7/+2qOcq7n8b3/7mx555BG1adNGISEh2rlzZ6VjlpaWqmXLlhoxYkSl1w4fPqywsDClpqZKko4fP65HHnlEl156qSIjI9W8eXP16NFD77333lnrLVXf5VZd0743n/XBgwf129/+VnFxcQoJCVGLFi3Uq1cvrVixosb6rFmzRn379lV4eLgaNWqknj176sMPP3S/PnXqVLVt21aSNGHCBNlstmr/h/vZZ5/piiuukCTde++97m7PqVOnepTbuXOnBg4cqCZNmiguLk6PPPKIiouLPcqUlJToqaeeUufOnd3ndO+99+rgwYNnPZ8+ffro7rvvliR1795dNpvN4+ts3rx5uuSSSxQaGqrmzZvrlltu0fbt2z2O4eq6+vrrr5WcnKzw8HD17dtXM2fOVFBQkA4cOOAu+6c//Uk2m00PPPCAe1tFRYWaNWumRx55xL1t2rRp6t69u5o3b66IiAhdfvnlysjI0Jn3te3QoYNuvPFGLVmyRJdddplCQ0M1bdo0SdJ//vMf3XDDDWrUqJGio6OVkpKioqKis16P09X0WUunvj4zMzN17733qnnz5mrcuLEGDx6s77//vtIxvfn6nDp1qmw2m7788kvddtttatasmS644AJJJ8LAHXfcoQ4dOigsLEwdOnTQ8OHDtWfPHo86/frXv5YkXXvtte6vq9O7ievyudYkIyNDkjRjxgz17NlTCxcu1NGjR2vc7+eKwPIz8fjjj2vPnj2aO3euXnnlFe3YsUODBw9WeXm5u8z8+fOVnJysiIgI/fWvf9Xf//53NW/eXP37968xtDz33HOaOnWqhg8frg8//FCLFi3S6NGjverfz83N1V133aW7775bS5cu1YABAzRx4kTNnz/fXSYnJ0fXXHONvv32W82ePVtvvPGGioqK9OCDD9b6mlRl//79ioqK0owZM/Txxx9r5syZcjgc6t69e5UBb+LEicrOztacOXP0/vvvq2XLlpXKOJ1O3X333Vq8eLEKCws9XluwYIGOHz+ue++9V5JUXFysQ4cO6dFHH9W7776rBQsW6KqrrtKtt96qN954w2/n6e1nPWLECL377rv64x//qOXLl2vu3Lnq16+f8vPzz3r8VatW6brrrlNBQYEyMjK0YMEChYeHa/DgwVq0aJEkacyYMVqyZIkk6aGHHlJWVpbeeeedKo93+eWX67XXXpMkTZ48WVlZWcrKytKYMWPcZUpLS3XTTTepb9++eu+99zRq1Cj97//+r5599ll3mYqKCt18882aMWOG7rzzTn344YeaMWOGMjMz1adPHx07dqzac5o1a5YmT54sSXrttdeUlZWlJ554QpKUlpam0aNH6+KLL9aSJUv05z//WV999ZV69OihHTt2eBynpKREN910k6677jq99957mjZtmvr16ydjjMe1X7FihcLCwpSZmenetmHDBh0+fFj9+vVzb9u9e7d+97vf6e9//7uWLFmiW2+9VQ899JCefPLJSufw5Zdf6g9/+IMefvhhffzxxxo6dKj++9//6pprrtE333yjWbNm6W9/+5uOHDni9feWN5/16UaPHq2goCC99dZbSk9P17p169SnTx+PnxW+/iy69dZbdeGFF+rtt9/WnDlz3NelU6dOSk9P1yeffKJnn31WOTk5uuKKK5SXlyfpRDf1M888I0maOXOm++tq0KBBkur+uZ7NsWPHtGDBAl1xxRVKSEjQqFGjVFRUpLffftur6/6zZHDOGzlypGncuHGVr61cudJIMgMHDvTY/ve//91IMllZWcYYY3766SfTvHlzM3jwYI9y5eXl5pJLLjFXXnnlWetw4403mksvvfSsZV577TUjyezatcu97ZprrjGSzBdffOFRtmvXrqZ///7u53/4wx+MzWYzW7du9SjXv39/I8msXLnSva19+/Zm5MiRld7/mmuuMddcc437+a5du4wk89prr1Vb57KyMlNSUmIuuugiM378ePd213W9+uqrz3rOLl999ZWRZF555RWP7VdeeaVJTEw86/uXlpaa0aNHm8suu8zjtTPPs6rre3pdXdfIl8+6SZMmZty4cV6d4+l+9atfmZYtW5qioiKPc0lISDBt27Y1FRUVxphTn8Hzzz9f4zHXr19f7ec1cuRII8n8/e9/99g+cOBA06lTJ/fzBQsWGElm8eLFVR571qxZZ62D6xqvX7/eve3HH380YWFhlb7HsrOzTUhIiLnzzjsr1XPevHmVjt22bVszatQoY4wxxcXFpnHjxmbChAlGktmzZ48xxpinn37aOJ1Oc+TIkSrrV15ebkpLS8306dNNVFSU+zobc+LrxW63m2+//dZjnwkTJhibzWY2b97ssf3666+v9L1VFW8/a9e1u+WWWzz2//zzz40k89RTTxljfPv6nDJlipFk/vjHP561jq46HTlyxDRu3Nj8+c9/dm9/++23qzxPf32u1XnjjTeMJDNnzhxjjDFFRUWmSZMmpnfv3l4f4+eGFpafiZtuusnjebdu3STJ3Ty6du1aHTp0SCNHjlRZWZn7UVFRoRtuuEHr16/XTz/9VO3xr7zySm3ZskX333+/Pvnkk0otCWfTqlWrSuMBunXr5tF0u2rVKiUkJKhr164e5YYPH+71+3ijrKxMzzzzjLp27arg4GA5HA4FBwdrx44dlZqBJWno0KFeHfeXv/ylEhMT3a0EkrR9+3atW7dOo0aN8ij79ttvq1evXmrSpIkcDoecTqcyMjKqfP/a8OWzvvLKK/X666/rqaee0r///W+VlpbWePyffvpJX3zxhW677TaPmTt2u10jRozQDz/8UGVrVV3ZbDYNHjzYY9uZX0cffPCBmjZtqsGDB3uc+6WXXqpWrVrVakZMVlaWjh07VqkbMi4uTtddd12VLQJVfd307dvX3dW2du1aHT16VKmpqYqOjna3sqxYsUI9evRQ48aN3ft9+umn6tevnyIjI2W32+V0OvXHP/5R+fn5Hl1Mruvxi1/8wmPbypUrdfHFF+uSSy7x2H7nnXfWeO61+azvuusuj+c9e/ZU+/bttXLlSve5+/qzqKrreeTIEU2YMEEXXnihHA6HHA6HmjRpop9++smr7yV/fa7VycjIUFhYmO644w5JUpMmTfTrX/9aq1evrtR6gxMILD8TUVFRHs9DQkIkyd0E/t///leSdNttt8npdHo8nn32WRljdOjQoWqPP3HiRL3wwgv697//rQEDBigqKkp9+/bVhg0bfK6bq36nN8/n5+crJiamUrmqttVFamqqnnjiCQ0ZMkTvv/++vvjiC61fv16XXHJJld0Fvsx4GjVqlLKysvSf//xH0oluhZCQEI/QtWTJEt1+++1q06aN5s+fr6ysLK1fv16jRo3S8ePH636C8u2zXrRokUaOHKm5c+eqR48eat68ue655x7l5uZWe/wff/xRxpgqr01sbKwk1dilVBuNGjVSaGiox7aQkBCP6/bf//5Xhw8fVnBwcKVzz83NdXcV+MJ1LtWd75nn2qhRI0VERFQq269fP2VnZ2vHjh1asWKFLrvsMrVs2VLXXXedVqxYoWPHjmnt2rUe3UHr1q1TcnKyJOnVV1/V559/rvXr12vSpEmSVOlrtqo65ufnq1WrVpW2V7XtTLX5rKt7L1e52vwsqur977zzTr388ssaM2aMPvnkE61bt07r169XixYtztr15+Kvz7UqO3fu1L/+9S8NGjRIxhgdPnxYhw8f1m233Sbp1MwheGI6AyRJ0dHRkk6sMVHdbKOzhQOHw6HU1FSlpqbq8OHDWrFihR5//HH1799fe/furfOo/aioKPcPstNV9YszNDS00kBLScrLy3OfZ3Xmz5+ve+65x92vffq+TZs2rVTeZrPVUPNThg8frtTUVL3++ut6+umn9be//U1DhgxRs2bNPN4/Pj5eixYt8jh2VedzJtcv6zPLnvlL2JfPOjo6Wunp6UpPT1d2draWLl2qxx57TAcOHNDHH39c5b7NmjVTUFCQcnJyKr22f/9+jzoEWnR0tKKioqqte22mKLsCd3Xne+a5Vvc14xqkuWLFCmVmZur66693b588ebL+9a9/qbi42COwLFy4UE6nUx988IFHWKtuLZuq3jsqKqrK76OzhVKX2nzW1b3XhRde6FHel59FZ55XQUGBPvjgA02ZMkWPPfaYe7trjJg3/PW5VmXevHkyxugf//hHlWtk/fWvf9VTTz0lu93u9TF/DmhhgSSpV69eatq0qbZt26akpKQqH8HBwV4dq2nTprrtttv0wAMP6NChQ35ZkMk1KHDbtm0e2xcuXFipbIcOHfTVV195bPvuu++86oaw2Wzu1ieXDz/8UPv27atFrT01a9ZMQ4YM0RtvvKEPPvhAubm5lbqDbDabe0Eyl9zcXK9mCblm2Jx57kuXLvV4XtvPul27dnrwwQd1/fXXn3V9n8aNG6t79+5asmSJx/9kKyoqNH/+fLVt27ZSt4Q3zmwVrI0bb7xR+fn5Ki8vr/K8q1sD5mx69OihsLAwj0HikvTDDz/o008/9Xq6duvWrdW1a1ctXrxYGzdudAeW66+/XgcPHtSLL76oiIgI92wpSe5p9Kf/Yjt27Jj+9re/eV3/a6+9Vlu3btWWLVs8tr/11ls17lubz/rNN9/0eL527Vrt2bPHPYPPHz+LbDabjDGVvpfnzp3rMdFAqv7ryl+f65nKy8v117/+VRdccIFWrlxZ6fHII48oJydHH330Ua2Ofz6jhQWSTvSf/uUvf9HIkSN16NAh3XbbbWrZsqUOHjyoLVu26ODBg5o9e3a1+w8ePFgJCQlKSkpSixYttGfPHqWnp6t9+/a66KKL6ly/cePGad68eRowYICmT5+umJgYvfXWW+7ulaCgU9l7xIgRuvvuu3X//fdr6NCh2rNnj5577jmv1oC58cYb9frrr6tz587q1q2bNm7cqOeff949/bauRo0apUWLFunBBx9U27ZtPf637Hr/JUuW6P7779dtt92mvXv36sknn1Tr1q1r7Ne+4oor1KlTJz366KMqKytTs2bN9M4772jNmjUe5bz9rAsKCnTttdfqzjvvVOfOnRUeHq7169fr448/1q233nrWuqSlpen666/Xtddeq0cffVTBwcGaNWuWvvnmGy1YsMCn/426XHDBBQoLC9Obb76pLl26qEmTJoqNjXV3PXjjjjvu0JtvvqmBAwdq7NixuvLKK+V0OvXDDz9o5cqVuvnmm3XLLbf4VK+mTZvqiSee0OOPP6577rlHw4cPV35+vqZNm6bQ0FBNmTLF62P17dtXf/nLXxQWFqZevXpJkuLj4xUfH6/ly5frpptu8ljnZ9CgQXrxxRd155136re//a3y8/P1wgsvVPpFfTau761BgwbpqaeeUkxMjN58803391ZNfP2sN2zYoDFjxujXv/619u7dq0mTJqlNmza6//77JdX9Z5EkRURE6Oqrr9bzzz+v6OhodejQQatWrVJGRkalllLXCrOvvPKKwsPDFRoaqvj4eEVFRfntcz3dRx99pP379+vZZ5+tcpmFhIQEvfzyy8rIyNCNN95Yq/c4b1k33hf+4s0sobfffttje3UzZFatWmUGDRpkmjdvbpxOp2nTpo0ZNGhQpf3P9Kc//cn07NnTREdHm+DgYNOuXTszevRos3v3bneZ6mYJXXzxxVWeU/v27T22ffPNN6Zfv34mNDTUNG/e3IwePdr89a9/NZLMli1b3OUqKirMc889Zzp27GhCQ0NNUlKS+fTTT72aJfTjjz+a0aNHm5YtW5pGjRqZq666yqxevbrSvtVd15qUl5ebuLg4I8lMmjSpyjIzZswwHTp0MCEhIaZLly7m1Vdfdc+GOF1Vs6G+++47k5ycbCIiIkyLFi3MQw89ZD788MMqZ0HU9FkfP37cpKSkmG7dupmIiAgTFhZmOnXqZKZMmWJ++umnGs919erV5rrrrjONGzc2YWFh5le/+pV5//33Pcr4MkvImBOzfDp37mycTqeRZKZMmWKMqf57oKrrVlpaal544QVzySWXmNDQUNOkSRPTuXNn87vf/c7s2LHjrO9f1Swhl7lz55pu3bqZ4OBgExkZaW6++eZKs9rO9r1qjDHvvfeekWSuv/56j+333XefkWReeumlSvvMmzfPdOrUyYSEhJiOHTuatLQ0k5GRUel7rX379mbQoEFVvu+2bdvM9ddf7/G95apLTbOEjPHus3Zdu+XLl5sRI0aYpk2bumfhVHXdvflZ5Pp8Dx48WGn/H374wQwdOtQ0a9bMhIeHmxtuuMF88803VX7fpKenm/j4eGO32yv9TPDH53q6IUOGmODgYHPgwIFqy9xxxx3G4XCY3Nxcr475c2Ez5ozVhYBzyG9/+1stWLBA+fn5XndZAQi8119/Xffee6/Wr1+vpKQkq6uDcxBdQjhnTJ8+XbGxserYsaOOHDmiDz74QHPnztXkyZMJKwBwniOw4JzhdDr1/PPP64cfflBZWZkuuugivfjiixo7dqzVVQMA1DO6hAAAQIPHtGYAANDgEVgAAECDR2ABAAAN3nkz6LaiokL79+9XeHh4rRalAgAAgWeMUVFRkWJjYz0WAT3TeRNY9u/fr7i4OKurAQAAamHv3r1nXVX8vAksrpuW7d271+s7ZgIAAGsVFhYqLi6uxpuPnjeBxdUNFBERQWABAOAcU9NwDgbdAgCABo/AAgAAGjwCCwAAaPAILAAAoMEjsAAAgAaPwAIAABo8AgsAAGjwCCwAAKDBI7AAAIAGj8ACAAAaPAILAABo8AgsAACgwTtvbn5YXzLW7NLeQ0c1/Mp26tTq7HeSBAAA9YMWlhp88NV+vb52t/bk/2R1VQAA+NmqVWCZNWuW4uPjFRoaqsTERK1evbrasjk5ObrzzjvVqVMnBQUFady4cVWWW7x4sbp27aqQkBB17dpV77zzTm2q5nfOoBOXqLzCWFwTAAB+vnwOLIsWLdK4ceM0adIkbdq0Sb1799aAAQOUnZ1dZfni4mK1aNFCkyZN0iWXXFJlmaysLA0bNkwjRozQli1bNGLECN1+++364osvfK2e39mDbJKkUgILAACWsRljfPpN3L17d11++eWaPXu2e1uXLl00ZMgQpaWlnXXfPn366NJLL1V6errH9mHDhqmwsFAfffSRe9sNN9ygZs2aacGCBV7Vq7CwUJGRkSooKFBERIT3J1SDERlfaPWOPL14+yW69fK2fjsuAADw/ve3Ty0sJSUl2rhxo5KTkz22Jycna+3atbWrqU60sJx5zP79+5/1mMXFxSosLPR41Aen/cQlKqOFBQAAy/gUWPLy8lReXq6YmBiP7TExMcrNza11JXJzc30+ZlpamiIjI92PuLi4Wr//2bi6hMrKCSwAAFilVoNubTabx3NjTKVt9X3MiRMnqqCgwP3Yu3dvnd6/Ok77ycBSUVEvxwcAADXzaR2W6Oho2e32Si0fBw4cqNRC4otWrVr5fMyQkBCFhITU+j29ZT85S4gWFgAArONTC0twcLASExOVmZnpsT0zM1M9e/asdSV69OhR6ZjLly+v0zH9xRlECwsAAFbzeaXb1NRUjRgxQklJSerRo4deeeUVZWdnKyUlRdKJrpp9+/bpjTfecO+zefNmSdKRI0d08OBBbd68WcHBwerataskaezYsbr66qv17LPP6uabb9Z7772nFStWaM2aNX44xbpxuLuEaGEBAMAqPgeWYcOGKT8/X9OnT1dOTo4SEhK0bNkytW/fXtKJheLOXJPlsssuc/9748aNeuutt9S+fXvt3r1bktSzZ08tXLhQkydP1hNPPKELLrhAixYtUvfu3etwav5BlxAAANbzeR2Whqq+1mH543vf6I2sPXr4uguVmtzJb8cFAAD1tA7Lz5EjiHVYAACwGoGlBoxhAQDAegSWGjhc9xIqZ5YQAABWIbDUwBVYuFszAADWIbDUwHHyXkKlzBICAMAyBJYauMawlLNwHAAAliGw1MDBzQ8BALAcgaUGrmnNpYxhAQDAMgSWGjjpEgIAwHIElhq4luZn0C0AANYhsNTAvXAc67AAAGAZAksN3INuGcMCAIBlCCw1cK3DwiwhAACsQ2CpgdPdwkKXEAAAViGw1MBOlxAAAJYjsNTASZcQAACWI7DUwD1LiBYWAAAsQ2CpgbtLiGnNAABYhsBSA3eXEC0sAABYhsBSAzuzhAAAsByBpQbOIAbdAgBgNQJLDVyDbrmXEAAA1iGw1MC1ND93awYAwDoElhqwND8AANYjsNSAmx8CAGA9AksNTi0cR5cQAABWIbDUwHFyllBpuZExtLIAAGAFAksNXF1CkkSvEAAA1iCw1MDVJSRJpSzPDwCAJQgsNXAtzS8x8BYAAKsQWGpgP61LqJypzQAAWILAUoPTx7CUMlMIAABLEFhqYLPZTlvtlhYWAACsQGDxgqtbiEG3AABYg8DiBSfL8wMAYCkCixfsLM8PAIClCCxecLI8PwAAliKweMG1PD9dQgAAWIPA4gW6hAAAsBaBxQvuLiFmCQEAYAkCixccrllCtLAAAGAJAosXXAvHMYYFAABrEFi84LpjM0vzAwBgDQKLF+wnZwlx80MAAKxBYPGCM4h1WAAAsBKBxQvuLiFaWAAAsASBxQuuheO4WzMAANYgsHjhVAsLXUIAAFiBwOIFWlgAALAWgcULrnVYSgksAABYgsDiBQdL8wMAYCkCixdcLSx0CQEAYA0Cixdc9xJiWjMAANYgsHiBuzUDAGAtAosX7O6VbmlhAQDACrUKLLNmzVJ8fLxCQ0OVmJio1atXn7X8qlWrlJiYqNDQUHXs2FFz5sypVCY9PV2dOnVSWFiY4uLiNH78eB0/frw21fM717RmluYHAMAaPgeWRYsWady4cZo0aZI2bdqk3r17a8CAAcrOzq6y/K5duzRw4ED17t1bmzZt0uOPP66HH35Yixcvdpd588039dhjj2nKlCnavn27MjIytGjRIk2cOLH2Z+ZHp7qEaGEBAMAKDl93ePHFFzV69GiNGTNG0omWkU8++USzZ89WWlpapfJz5sxRu3btlJ6eLknq0qWLNmzYoBdeeEFDhw6VJGVlZalXr1668847JUkdOnTQ8OHDtW7dutqel1/Z3S0sBBYAAKzgUwtLSUmJNm7cqOTkZI/tycnJWrt2bZX7ZGVlVSrfv39/bdiwQaWlpZKkq666Shs3bnQHlO+//17Lli3ToEGDqq1LcXGxCgsLPR71hUG3AABYy6cWlry8PJWXlysmJsZje0xMjHJzc6vcJzc3t8ryZWVlysvLU+vWrXXHHXfo4MGDuuqqq2SMUVlZmX7/+9/rscceq7YuaWlpmjZtmi/VrzUG3QIAYK1aDbq12Wwez40xlbbVVP707Z999pmefvppzZo1S19++aWWLFmiDz74QE8++WS1x5w4caIKCgrcj71799bmVLziPLkOC2NYAACwhk8tLNHR0bLb7ZVaUw4cOFCpFcWlVatWVZZ3OByKioqSJD3xxBMaMWKEe1zML3/5S/3000/67W9/q0mTJikoqHKuCgkJUUhIiC/Vr7VT9xKiSwgAACv41MISHBysxMREZWZmemzPzMxUz549q9ynR48elcovX75cSUlJcjqdkqSjR49WCiV2u13GGHdrjJXsLM0PAIClfO4SSk1N1dy5czVv3jxt375d48ePV3Z2tlJSUiSd6Kq555573OVTUlK0Z88epaamavv27Zo3b54yMjL06KOPussMHjxYs2fP1sKFC7Vr1y5lZmbqiSee0E033SS73e6H06wbuoQAALCWz9Oahw0bpvz8fE2fPl05OTlKSEjQsmXL1L59e0lSTk6Ox5os8fHxWrZsmcaPH6+ZM2cqNjZWL730kntKsyRNnjxZNptNkydP1r59+9SiRQsNHjxYTz/9tB9Ose5cd2suZZYQAACWsJmG0OfiB4WFhYqMjFRBQYEiIiL8euxF67M1YfHX6tu5pTJ+c4Vfjw0AwM+Zt7+/uZeQF1xL85cyhgUAAEsQWLzg6hIqZ5YQAACWILB4wd3CwqBbAAAsQWDxgoOl+QEAsBSBxQsO1mEBAMBSBBYvOOx0CQEAYCUCixec7psf0iUEAIAVCCxe4G7NAABYi8DiBQdL8wMAYCkCixcYdAsAgLUILF7gXkIAAFiLwOIF992aaWEBAMASBBYvuAfd0sICAIAlCCxecAbRwgIAgJUILF44tTQ/gQUAACsQWLzgYOE4AAAsRWDxgmsdlgojVdAtBABAwBFYvODqEpIYxwIAgBUILF5wdQlJdAsBAGAFAosXHEGnLhN3bAYAIPAILF44vYWF5fkBAAg8AosXgoJscmUWFo8DACDwCCxecs0UKqWFBQCAgCOweMl9x2bGsAAAEHAEFi+5Aksps4QAAAg4AouXXHdsZtAtAACBR2DxkuuOzaUMugUAIOAILF5ytbBwA0QAAAKPwOIlu/sGiAQWAAACjcDiJdf9hFiHBQCAwCOweMl5cnl+WlgAAAg8AouX6BICAMA6BBYvOekSAgDAMgQWL7mW5qeFBQCAwCOweMndJcS0ZgAAAo7A4iV3lxBL8wMAEHAEFi/Zg1g4DgAAqxBYvOQMooUFAACrEFi85Fo4rpQWFgAAAo7A4iVHEHdrBgDAKgQWL51qYaFLCACAQCOweMnB0vwAAFiGwOIlx8lBt3QJAQAQeAQWL9ElBACAdQgsXqKFBQAA6xBYvOS6lxDTmgEACDwCi5cc3K0ZAADLEFi85HCvdEsLCwAAgUZg8dKpac20sAAAEGgEFi+579bMGBYAAAKOwOIlOwvHAQBgGQKLl5wMugUAwDIEFi/ZGXQLAIBlCCxecq3DwhgWAAACj8DiJae7hYUuIQAAAo3A4iW6hAAAsE6tAsusWbMUHx+v0NBQJSYmavXq1Wctv2rVKiUmJio0NFQdO3bUnDlzKpU5fPiwHnjgAbVu3VqhoaHq0qWLli1bVpvq1QsnXUIAAFjG58CyaNEijRs3TpMmTdKmTZvUu3dvDRgwQNnZ2VWW37VrlwYOHKjevXtr06ZNevzxx/Xwww9r8eLF7jIlJSW6/vrrtXv3bv3jH//Qt99+q1dffVVt2rSp/Zn5GXdrBgDAOg5fd3jxxRc1evRojRkzRpKUnp6uTz75RLNnz1ZaWlql8nPmzFG7du2Unp4uSerSpYs2bNigF154QUOHDpUkzZs3T4cOHdLatWvldDolSe3bt6/tOdUL7tYMAIB1fGphKSkp0caNG5WcnOyxPTk5WWvXrq1yn6ysrErl+/fvrw0bNqi0tFSStHTpUvXo0UMPPPCAYmJilJCQoGeeeUbl5eXV1qW4uFiFhYUej/rkWpq/lMACAEDA+RRY8vLyVF5erpiYGI/tMTExys3NrXKf3NzcKsuXlZUpLy9PkvT999/rH//4h8rLy7Vs2TJNnjxZf/rTn/T0009XW5e0tDRFRka6H3Fxcb6cis/sdlcLC11CAAAEWq0G3dpsNo/nxphK22oqf/r2iooKtWzZUq+88ooSExN1xx13aNKkSZo9e3a1x5w4caIKCgrcj71799bmVLzmDGLQLQAAVvFpDEt0dLTsdnul1pQDBw5UakVxadWqVZXlHQ6HoqKiJEmtW7eW0+mU3W53l+nSpYtyc3NVUlKi4ODgSscNCQlRSEiIL9WvEwbdAgBgHZ9aWIKDg5WYmKjMzEyP7ZmZmerZs2eV+/To0aNS+eXLlyspKck9wLZXr17auXOnKk7rbvnuu+/UunXrKsOKFRh0CwCAdXzuEkpNTdXcuXM1b948bd++XePHj1d2drZSUlIkneiqueeee9zlU1JStGfPHqWmpmr79u2aN2+eMjIy9Oijj7rL/P73v1d+fr7Gjh2r7777Th9++KGeeeYZPfDAA344Rf9wLc1fSpcQAAAB5/O05mHDhik/P1/Tp09XTk6OEhIStGzZMvc05JycHI81WeLj47Vs2TKNHz9eM2fOVGxsrF566SX3lGZJiouL0/LlyzV+/Hh169ZNbdq00dixYzVhwgQ/nKJ/OFiaHwAAy9iMawTsOa6wsFCRkZEqKChQRESE34//n9xC3ZC+WtFNgrVh8vV+Pz4AAD9H3v7+5l5CXnKvw0KXEAAAAUdg8RKDbgEAsA6BxUtMawYAwDoEFi+579ZMCwsAAAFHYPGS/bQuofNknDIAAOcMAouXXEvzS7SyAAAQaAQWL7nGsEjcTwgAgEAjsHjJ1SUksXgcAACBRmDxkmvQrUQLCwAAgUZg8dJpDSyMYQEAIMAILF6y2Wxy2rmfEAAAViCw+MC1PD9dQgAABBaBxQen7thMYAEAIJAILD5wTW0uY3l+AAACisDiA4edOzYDAGAFAosPuGMzAADWILD4wH3HZmYJAQAQUAQWHzBLCAAAaxBYfHBqlhAtLAAABBKBxQeuQbe0sAAAEFgEFh8w6BYAAGsQWHzgHnTLOiwAAAQUgcUHTtegW1pYAAAIKAKLD+wszQ8AgCUILD5gaX4AAKxBYPGBe1ozs4QAAAgoAosP3NOa6RICACCgCCw+cNpZOA4AACsQWHxgZ2l+AAAsQWDxgZOl+QEAsASBxQenFo6jhQUAgEAisPjA1SXE0vwAAAQWgcUHTtZhAQDAEgQWH7hWui2lhQUAgIAisPjAaadLCAAAKxBYfOBa6Za7NQMAEFgEFh+4AgstLAAABBaBxQeupfmZ1gwAQGARWHzA3ZoBALAGgcUHdAkBAGANAosPHCcXjmNaMwAAgUVg8QFdQgAAWIPA4gNXC0sZLSwAAAQUgcUHtLAAAGANAosPXINuaWEBACCwCCw+cK3DUsY6LAAABBSBxQdOdwsLXUIAAAQSgcUHdrqEAACwBIHFB066hAAAsASBxQeuWULcrRkAgMAisPjAztL8AABYgsDiA3eXEIEFAICAIrD4wM4sIQAALEFg8YEziEG3AABYgcDig1ODbgksAAAEUq0Cy6xZsxQfH6/Q0FAlJiZq9erVZy2/atUqJSYmKjQ0VB07dtScOXOqLbtw4ULZbDYNGTKkNlWrVw73oFu6hAAACCSfA8uiRYs0btw4TZo0SZs2bVLv3r01YMAAZWdnV1l+165dGjhwoHr37q1Nmzbp8ccf18MPP6zFixdXKrtnzx49+uij6t27t+9nEgAszQ8AgDV8DiwvvviiRo8erTFjxqhLly5KT09XXFycZs+eXWX5OXPmqF27dkpPT1eXLl00ZswYjRo1Si+88IJHufLyct11112aNm2aOnbsWLuzqWeuFpZSWlgAAAgonwJLSUmJNm7cqOTkZI/tycnJWrt2bZX7ZGVlVSrfv39/bdiwQaWlpe5t06dPV4sWLTR69Giv6lJcXKzCwkKPR31zjWFhHRYAAALLp8CSl5en8vJyxcTEeGyPiYlRbm5ulfvk5uZWWb6srEx5eXmSpM8//1wZGRl69dVXva5LWlqaIiMj3Y+4uDhfTqVWHCdnCZWWGxlDaAEAIFBqNejWZrN5PDfGVNpWU3nX9qKiIt1999169dVXFR0d7XUdJk6cqIKCAvdj7969PpxB7bi6hCSJRhYAAALH4Uvh6Oho2e32Sq0pBw4cqNSK4tKqVasqyzscDkVFRWnr1q3avXu3Bg8e7H694uQYEYfDoW+//VYXXHBBpeOGhIQoJCTEl+rXmatLSDpxPyF7kD2g7w8AwM+VTy0swcHBSkxMVGZmpsf2zMxM9ezZs8p9evToUan88uXLlZSUJKfTqc6dO+vrr7/W5s2b3Y+bbrpJ1157rTZv3hyQrh5vuZbml1ieHwCAQPKphUWSUlNTNWLECCUlJalHjx565ZVXlJ2drZSUFEknumr27dunN954Q5KUkpKil19+WampqbrvvvuUlZWljIwMLViwQJIUGhqqhIQEj/do2rSpJFXabjX7aV1C5UxtBgAgYHwOLMOGDVN+fr6mT5+unJwcJSQkaNmyZWrfvr0kKScnx2NNlvj4eC1btkzjx4/XzJkzFRsbq5deeklDhw7131kEyOljWJjaDABA4NjMeTLdpbCwUJGRkSooKFBERES9vc+Fjy9TWYXRvyf2VavI0Hp7HwAAfg68/f3NvYR8xB2bAQAIPAKLj5wszw8AQMARWHxECwsAAIFHYPGR0+4KLLSwAAAQKAQWH7mW56dLCACAwCGw+OhUlxCBBQCAQCGw+MjdJVTOGBYAAAKFwOIjh/3UHZsBAEBgEFh85FrttpwuIQAAAobA4iPXHZtZmh8AgMAhsPjIziwhAAACjsDiI6e7S4gWFgAAAoXA4iN3lxAtLAAABAyBxUeuheMYdAsAQOAQWHx0qoWFLiEAAAKFwOIj99L8tLAAABAwBBYfOViaHwCAgCOw+MjB0vwAAAQcgcVH7hYWZgkBABAwBBYfue4lRJcQAACBQ2DxEXdrBgAg8AgsPrIz6BYAgIAjsPjo1LRmWlgAAAgUAouPTnUJ0cICAECgEFh8ZGfhOAAAAo7A4iMG3QIAEHgEFh+5Bt2W0sICAEDAEFh85Dy5Dks5Y1gAAAgYAouPHO4WFrqEAAAIFAKLj1xdQuV0CQEAEDAEFh+5uoSY1gwAQOAQWHzkultzKbOEAAAIGAKLjxx0CQEAEHAEFh+5luZnWjMAAIFDYPGRg4XjAAAIOAKLjxwszQ8AQMARWHxECwsAAIFHYPERg24BAAg8AouPHCfXYSllHRYAAAKGwOIj58kWljKW5gcAIGAILD6yuwMLLSwAAAQKgcVHwY4Tl6y4lBYWAAAChcDio6jGIZKkvCPFMoZWFgAAAoHA4qOWEScCS3FZhQqPl1lcGwAAfh4ILD4KddoVHuqQJB0sOm5xbQAA+HkgsNRCy/ATrSwHCostrgkAAD8PBJZaaBkeKkk6UERgAQAgEAgsteAax3KALiEAAAKCwFILdAkBABBYBJZaoEsIAIDAIrDUAl1CAAAEFoGlFlq4uoRoYQEAICAILLXg6hI6yBgWAAACgsBSC64uoaLiMh0rKbe4NgAAnP8ILLUQHuJQqPPEpWMcCwAA9a9WgWXWrFmKj49XaGioEhMTtXr16rOWX7VqlRITExUaGqqOHTtqzpw5Hq+/+uqr6t27t5o1a6ZmzZqpX79+WrduXW2qFhA2m42ZQgAABJDPgWXRokUaN26cJk2apE2bNql3794aMGCAsrOzqyy/a9cuDRw4UL1799amTZv0+OOP6+GHH9bixYvdZT777DMNHz5cK1euVFZWltq1a6fk5GTt27ev9mdWz1iLBQCAwLEZY4wvO3Tv3l2XX365Zs+e7d7WpUsXDRkyRGlpaZXKT5gwQUuXLtX27dvd21JSUrRlyxZlZWVV+R7l5eVq1qyZXn75Zd1zzz1e1auwsFCRkZEqKChQRESEL6dUK/e/uVHLvs7VlMFddW+v+Hp/PwAAzkfe/v72qYWlpKREGzduVHJyssf25ORkrV27tsp9srKyKpXv37+/NmzYoNLS0ir3OXr0qEpLS9W8efNq61JcXKzCwkKPRyDRJQQAQOD4FFjy8vJUXl6umJgYj+0xMTHKzc2tcp/c3Nwqy5eVlSkvL6/KfR577DG1adNG/fr1q7YuaWlpioyMdD/i4uJ8OZU6a0GXEAAAAVOrQbc2m83juTGm0raayle1XZKee+45LViwQEuWLFFoaGi1x5w4caIKCgrcj7179/pyCnXmHsPCLCEAAOqdw5fC0dHRstvtlVpTDhw4UKkVxaVVq1ZVlnc4HIqKivLY/sILL+iZZ57RihUr1K1bt7PWJSQkRCEhIb5U369aRpxcPI4uIQAA6p1PLSzBwcFKTExUZmamx/bMzEz17Nmzyn169OhRqfzy5cuVlJQkp9Pp3vb888/rySef1Mcff6ykpCRfqmWJlizPDwBAwPjcJZSamqq5c+dq3rx52r59u8aPH6/s7GylpKRIOtFVc/rMnpSUFO3Zs0epqanavn275s2bp4yMDD366KPuMs8995wmT56sefPmqUOHDsrNzVVubq6OHDnih1OsH67AcuinEpWUVVhcGwAAzm8+dQlJ0rBhw5Sfn6/p06crJydHCQkJWrZsmdq3by9JysnJ8ViTJT4+XsuWLdP48eM1c+ZMxcbG6qWXXtLQoUPdZWbNmqWSkhLddtttHu81ZcoUTZ06tZanVr+aNQqWI8imsgqjvCPFim0aZnWVAAA4b/m8DktDFeh1WCSpR9o/lVNwXO8+0EuXxjUNyHsCAHA+qZd1WODp1Gq3zBQCAKA+EVjqoAWLxwEAEBAEljpoGcFMIQAAAoHAUgeuLqGDLB4HAEC9IrDUgft+QizPDwBAvSKw1EELFo8DACAgCCx1wP2EAAAIDAJLHbgG3eYdKVF5xXmxnA0AAA0SgaUOopuEyGaTyiuMDv1UYnV1AAA4bxFY6sBpD1LzRsGS6BYCAKA+EVjqiIG3AADUPwJLHbWMODG1+SBTmwEAqDcEljpiphAAAPWPwFJHLekSAgCg3hFY6ujUHZsJLAAA1BcCSx25xrDQJQQAQP0hsNQRXUIAANQ/AksduW+AWFQsY1jtFgCA+kBgqSPX8vwlZRUqPFZmcW0AADg/EVjqKNRpV3ioQxLjWAAAqC8EFj9gHAsAAPWLwOIHp8ax0MICAEB9ILD4QfuoRpKkbfsLLa4JAADnJwKLH/S6MFqS9K/v8iyuCQAA5ycCix9cdWG0bDbp2/8WKbeAbiEAAPyNwOIHzRoHq1vbppKkf3130NrKAABwHiKw+Mk1v2ghSVq1g8ACAIC/EVj85JpfnBjHsmZHnsorWPEWAAB/IrD4ySVtmyo81KGCY6Xa8sNhq6sDAMB5hcDiJw57kHpf5JotRLcQAAD+RGDxo6svOjGOhcACAIB/EVj86OqTA2837z2sgqOlFtcGAIDzB4HFj2Kbhumilk1UYaQ1O1lEDgAAfyGw+JmrlWXVdwcsrgkAAOcPAoufudZj+dd3eTKG6c0AAPgDgcXProxvrhBHkHILj2vHgSNWVwcAgPMCgcXPQp12de8YJUla9S2zhQAA8AcCSz1wdwuxTD8AAH5BYKkHrsCS9X/52km3EAAAdUZgqQcXtmyi6zq3VFmF0dSlWxl8CwBAHRFY6smUwV0V7AjSmp15WvZ1rtXVAQDgnEZgqSftoxrr/j4XSJKe/GCbfious7hGAACcuwgs9SjlmgvUrnkj5RYe10uf7rC6OgAAnLMILPUo1GnX1Ju6SpIyVu/SzgNFFtcIAIBzE4Glnl3XOUb9usSorMLoiXcZgAsAQG0QWAJgyuCuCnEEKev7fL2+drfV1QEA4JxDYAmAuOaNNLbfRZKkae9vU/qK72hpAQDABwSWAPn9NRfo4esulCSlr9ihSe9+o/IKQgsAAN4gsASIzWZTanInPTkkQTab9NYX2fr9/I06XlpuddUAAGjwCCwBNuJX7TX7rssV7AjS8m3/1R2v/Ftf/XDY6moBANCgEVgscENCa70x6kqFhzq0ee9h3fTy53powSZl5x+1umoAADRIBBaL/KpjlD4a21u3XtZGNpv0/pb96vviZ5q6dKv2HT5mdfUAAGhQbOY8ma5SWFioyMhIFRQUKCIiwurq+GTr/gLN+Og/Wr0jz73tig7NdPOlbTTwl63VvHGwhbUDAKD+ePv7m8DSgKzZkaeZK3fq37vy5fpUHEE29bwwWj06RunK+Ob6ZZtIBTtoGAMAnB8ILOewnIJj+mBLjt7dvE9b9xd6vBbqDNJlcc3UrW2kfhETrk6twnVhyyYKddotqi0AALVHYDlP7DxQpFXf5Wndrnyt23VIPx4trVQmyCa1a95Icc0bqW2zRoprHqa4Zo3UOjJULcND1TIihEADAGiQ6jWwzJo1S88//7xycnJ08cUXKz09Xb179662/KpVq5SamqqtW7cqNjZW//M//6OUlBSPMosXL9YTTzyh//u//9MFF1ygp59+WrfccovXdTpfA8vpKiqM/u/gEa3f/aP+k1uo/+QW6dvcIhUcqxxizhQe6lCL8BA1bxSsZo2D1ayRU80aBysyzKnwUKciQh2KCHUqPNShxiEONQlxqFGwXY1DHApxBMlmswXgDAEAPzfe/v52+HrgRYsWady4cZo1a5Z69eql//f//p8GDBigbdu2qV27dpXK79q1SwMHDtR9992n+fPn6/PPP9f999+vFi1aaOjQoZKkrKwsDRs2TE8++aRuueUWvfPOO7r99tu1Zs0ade/e3dcqnreCgmy6KCZcF8WEu7cZY3SwqFg7Dx7RDz8e0w+Hjmrvj8e099BR/bfouA4UFqu4rEJFx8tUdLxM3+snn9/XHmRTmNOuUKddYcFB7n+HOIIU4rAr1BmkYEeQgu0n/3YEKdhuP/m3TU57kJyOIDmCbAp2BMkRFCSH3San3SZHUJCcdpvsQSded9htsgfZZLe5/h0ku82moCDJERQke5AUZDtRxvW3Pcgmm02y21z/dr1+ouyJx4l/22wifAHAOcjnFpbu3bvr8ssv1+zZs93bunTpoiFDhigtLa1S+QkTJmjp0qXavn27e1tKSoq2bNmirKwsSdKwYcNUWFiojz76yF3mhhtuULNmzbRgwQKv6vVzaGGpDWOMCo+X6WDRcR0oKtbho6U69FOJDh8t0Y9HS1VwrFRFx0tVeKxMRcUn/j5aUqafist17Dxdhff0IGM7Lci4A41OhEObPEPO6c+DToaeM/dzldPJ52dyvX6i/In9Km0/7TXbyTdxvXby0Kfe57RjyeP1M49/ssxp+5xeJ9d+p79mq+L1U/vZqil72nHPuAKe73lGmTOO47nfGcep4pi+7lfdxjPrfPp7nO04lct4F4or7efVbjXX0bu9aq5P1cepXeCvzf8T/Plfi5/zf1T8eeqjesUrrnkj/x1Q9dTCUlJSoo0bN+qxxx7z2J6cnKy1a9dWuU9WVpaSk5M9tvXv318ZGRkqLS2V0+lUVlaWxo8fX6lMenp6tXUpLi5WcXGx+3lhYWG1ZX/ObDabIsOcigxz6sKW4TXvcJryCqOjJWU6VnIivBw9+fexknIVl5WruLRCxWUVOl5aruKyCpWUVaikvML979LyU4+SMqPS8gqVVVSotNyorPzk3xUVKq8wKi03J/+uUIUxKqswqji5vcKceM21vfzka+XGqKJCKj/5urcqjFRhjKTzYvgWAATM4Eti/R5YvOVTYMnLy1N5ebliYmI8tsfExCg3N7fKfXJzc6ssX1ZWpry8PLVu3braMtUdU5LS0tI0bdo0X6oPH9mDbAoPPTHG5Vxg3MHmRCA58TgRvFyvGZ14zbi268TYIGMko1NljKvMyb9dr5/+7wpzotyJrOQ6xsnXq2i4rDi5n04vd9p+rnM4ebgz3s/zdXPGe+q0453696l9VE2Z0/8++bbu8sb9x6l9PPar9Lz6MqrielTa35sylUpUvV/lMlVsO+NoVZfxz3G8UeX5e3Esb+pYeZ/aVbI29fHrwb05jF+O4rfq1P79G+h/qGIiQi17b5/HsEiVm9aMMWdtbquq/JnbfT3mxIkTlZqa6n5eWFiouLi4miuP85bt5LgXAMD5x6fAEh0dLbvdXqnl48CBA5VaSFxatWpVZXmHw6GoqKizlqnumJIUEhKikJAQX6oPAADOUT4tmRocHKzExERlZmZ6bM/MzFTPnj2r3KdHjx6Vyi9fvlxJSUlyOp1nLVPdMQEAwM+Lz11CqampGjFihJKSktSjRw+98sorys7Odq+rMnHiRO3bt09vvPGGpBMzgl5++WWlpqbqvvvuU1ZWljIyMjxm/4wdO1ZXX321nn32Wd1888167733tGLFCq1Zs8ZPpwkAAM5lPgeWYcOGKT8/X9OnT1dOTo4SEhK0bNkytW/fXpKUk5Oj7Oxsd/n4+HgtW7ZM48eP18yZMxUbG6uXXnrJvQaLJPXs2VMLFy7U5MmT9cQTT+iCCy7QokWLWIMFAABIYml+AABgIW9/f3PbXwAA0OARWAAAQINHYAEAAA0egQUAADR4BBYAANDgEVgAAECDR2ABAAANHoEFAAA0eLW6W3ND5Fr/rrCw0OKaAAAAb7l+b9e0ju15E1iKiookSXFxcRbXBAAA+KqoqEiRkZHVvn7eLM1fUVGh/fv3Kzw8XDabzW/HLSwsVFxcnPbu3cuS//WMax04XOvA4noHDtc6cPx1rY0xKioqUmxsrIKCqh+pct60sAQFBalt27b1dvyIiAi++AOEax04XOvA4noHDtc6cPxxrc/WsuLCoFsAANDgEVgAAECDR2CpQUhIiKZMmaKQkBCrq3Le41oHDtc6sLjegcO1DpxAX+vzZtAtAAA4f9HCAgAAGjwCCwAAaPAILAAAoMEjsAAAgAaPwAIAABo8AksNZs2apfj4eIWGhioxMVGrV6+2ukrntLS0NF1xxRUKDw9Xy5YtNWTIEH377bceZYwxmjp1qmJjYxUWFqY+ffpo69atFtX4/JGWliabzaZx48a5t3Gt/Wvfvn26++67FRUVpUaNGunSSy/Vxo0b3a9zvf2jrKxMkydPVnx8vMLCwtSxY0dNnz5dFRUV7jJc69r517/+pcGDBys2NlY2m03vvvuux+veXNfi4mI99NBDio6OVuPGjXXTTTfphx9+qHvlDKq1cOFC43Q6zauvvmq2bdtmxo4daxo3bmz27NljddXOWf379zevvfaa+eabb8zmzZvNoEGDTLt27cyRI0fcZWbMmGHCw8PN4sWLzddff22GDRtmWrdubQoLCy2s+blt3bp1pkOHDqZbt25m7Nix7u1ca/85dOiQad++vfnNb35jvvjiC7Nr1y6zYsUKs3PnTncZrrd/PPXUUyYqKsp88MEHZteuXebtt982TZo0Menp6e4yXOvaWbZsmZk0aZJZvHixkWTeeecdj9e9ua4pKSmmTZs2JjMz03z55Zfm2muvNZdccokpKyurU90ILGdx5ZVXmpSUFI9tnTt3No899phFNTr/HDhwwEgyq1atMsYYU1FRYVq1amVmzJjhLnP8+HETGRlp5syZY1U1z2lFRUXmoosuMpmZmeaaa65xBxautX9NmDDBXHXVVdW+zvX2n0GDBplRo0Z5bLv11lvN3XffbYzhWvvLmYHFm+t6+PBh43Q6zcKFC91l9u3bZ4KCgszHH39cp/rQJVSNkpISbdy4UcnJyR7bk5OTtXbtWotqdf4pKCiQJDVv3lyStGvXLuXm5npc95CQEF1zzTVc91p64IEHNGjQIPXr189jO9fav5YuXaqkpCT9+te/VsuWLXXZZZfp1Vdfdb/O9fafq666Sv/85z/13XffSZK2bNmiNWvWaODAgZK41vXFm+u6ceNGlZaWepSJjY1VQkJCna/9eXO3Zn/Ly8tTeXm5YmJiPLbHxMQoNzfXolqdX4wxSk1N1VVXXaWEhARJcl/bqq77nj17Al7Hc93ChQv15Zdfav369ZVe41r71/fff6/Zs2crNTVVjz/+uNatW6eHH35YISEhuueee7jefjRhwgQVFBSoc+fOstvtKi8v19NPP63hw4dL4mu7vnhzXXNzcxUcHKxmzZpVKlPX350ElhrYbDaP58aYSttQOw8++KC++uorrVmzptJrXPe627t3r8aOHavly5crNDS02nJca/+oqKhQUlKSnnnmGUnSZZddpq1bt2r27Nm655573OW43nW3aNEizZ8/X2+99ZYuvvhibd68WePGjVNsbKxGjhzpLse1rh+1ua7+uPZ0CVUjOjpadru9UiI8cOBApXQJ3z300ENaunSpVq5cqbZt27q3t2rVSpK47n6wceNGHThwQImJiXI4HHI4HFq1apVeeuklORwO9/XkWvtH69at1bVrV49tXbp0UXZ2tiS+tv3pD3/4gx577DHdcccd+uUvf6kRI0Zo/PjxSktLk8S1ri/eXNdWrVqppKREP/74Y7VlaovAUo3g4GAlJiYqMzPTY3tmZqZ69uxpUa3OfcYYPfjgg1qyZIk+/fRTxcfHe7weHx+vVq1aeVz3kpISrVq1iuvuo759++rrr7/W5s2b3Y+kpCTddddd2rx5szp27Mi19qNevXpVmqL/3XffqX379pL42vano0ePKijI89eX3W53T2vmWtcPb65rYmKinE6nR5mcnBx98803db/2dRqye55zTWvOyMgw27ZtM+PGjTONGzc2u3fvtrpq56zf//73JjIy0nz22WcmJyfH/Th69Ki7zIwZM0xkZKRZsmSJ+frrr83w4cOZjugnp88SMoZr7U/r1q0zDofDPP3002bHjh3mzTffNI0aNTLz5893l+F6+8fIkSNNmzZt3NOalyxZYqKjo83//M//uMtwrWunqKjIbNq0yWzatMlIMi+++KLZtGmTezkPb65rSkqKadu2rVmxYoX58ssvzXXXXce05kCYOXOmad++vQkODjaXX365e/otakdSlY/XXnvNXaaiosJMmTLFtGrVyoSEhJirr77afP3119ZV+jxyZmDhWvvX+++/bxISEkxISIjp3LmzeeWVVzxe53r7R2FhoRk7dqxp166dCQ0NNR07djSTJk0yxcXF7jJc69pZuXJllT+jR44caYzx7roeO3bMPPjgg6Z58+YmLCzM3HjjjSY7O7vOdbMZY0zd2mgAAADqF2NYAABAg0dgAQAADR6BBQAANHgEFgAA0OARWAAAQINHYAEAAA0egQUAADR4BBYAANDgEVgAAECDR2ABAAANHoEFAAA0eP8fauGraF6YBm0AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAG2CAYAAACDLKdOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABZDElEQVR4nO3deVwU9f8H8Nfswu5yiRyCglziiSgIooInmphnZlppIVqZmn7NtMvMzLLsVDNRMzO0POjwSi3FvFBQ8b6vFEEBEQ9OuT+/P4z9hRwuuDCwvJ6Px/7B7OzMe3dmdl/MfD6fkYQQAkREREQGQiF3AURERET6xHBDREREBoXhhoiIiAwKww0REREZFIYbIiIiMigMN0RERGRQGG6IiIjIoDDcEBERkUFhuCEiIiKDYhDhZsGCBZAkCZ6enhV6XY8ePdCjR4+qKeoRdu/eDUmSsHv3blnWrytJkvDhhx9W+HUJCQn48MMPcfz4cb3XdOzYMXTv3h2WlpaQJAnz588vdb6srCx8+OGHpX7GH374ISRJQkpKit7rq6hRo0bB1dVV7jK0wsLCIEkSYmNj5S6lwmJjYyFJEsLCwuQu5bF9++23aNq0KVQqFSRJwr1790qdLyoqCh9++GGpz7u6umLAgAFVWyiA3NxcjBs3Do0aNYJSqYS3t3eVr1MuRd8dhm7r1q2V+u7XlyFDhkCSJEycOLFSrzeIcLN8+XIAwJkzZ3Dw4EGZqyHgQbiZNWtWlYSbl156CYmJiVi7di2io6Px/PPPlzpfVlYWZs2aVeMD5IwZM7B+/Xq5y6Aa5Pjx45g0aRICAwOxc+dOREdHw8LCotR5o6KiMGvWrDLDT3VYvHgxvvvuO0yfPh379u3DTz/9JFstpB9bt27FrFmzZFl3cnIyNm/eDABYtWoVsrOzK7yMWh9uDh8+jBMnTqB///4AgB9++EHmiqiqnT59Gk888QT69u2LTp06oWHDhnKX9Fjc3d3Rrl07ucuoMllZWXKXUOucOXMGADBmzBh06dIFnTp1glKplLmqsp0+fRomJiaYOHEi/P390aZNm8de5v379/VQWcUVFBQgJydHlnVXpZpyHOqyXVeuXIm8vDz0798f9+7dw7p16yq8nlofborCzGeffYaAgACsXbv2sTbinTt38Nprr8HR0REqlQpNmjTB9OnTS+zs9+7dw8svvwxra2uYm5ujf//+uHLlSqUv4xTZtGkT/P39YWpqCgsLC/Tu3RvR0dEl5tu4cSPatm0LtVqNJk2a4JtvvtH5dGmPHj3g6emJyMhIdOrUCSYmJnB0dMSMGTNQUFDwyNefPn0aTz31FKysrKDRaODt7Y0VK1Zon9+9ezf8/PwAAKNHj4YkSTp9Lo9abtHlkvz8fCxevFi73NLExsaiQYMGAIBZs2Zp5x01alSx+W7evInhw4fD0tIS9vb2eOmll5CamlpsHiEEFi1aBG9vb5iYmMDKygpDhw7FlStXHvlZ3bp1C6+++iqcnJygVqvRoEEDdO7cGTt27NDOU9plqaLTsT/99BNatWoFU1NTeHl5af+b+S9d9oXyLtfosm0iIiLw1FNPoXHjxtBoNGjatCnGjh1b4rJe0XqPHj2KoUOHwsrKCu7u7qUu88SJE5AkqdR/SP78809IkoRNmzYBAC5fvozRo0ejWbNmMDU1haOjIwYOHIhTp06VWzdQ9mW/0o4XXbf1sWPHMGDAANjZ2UGtVsPBwQH9+/fH9evXH1nP8uXL4eXlBY1GA2trazz99NM4d+6c9vkePXrgxRdfBAB07Nix1P32v+/hrbfeAgC4ublp9/OHz1b+9ddf8PHxgYmJCVq2bKk92/1fSUlJGDt2LBo3bgyVSgU3NzfMmjUL+fn55b4fSZKwbNky3L9/X7v+ov0sOzsb06ZNg5ubG1QqFRwdHTFhwoQSZ5mKLp+tW7cO7dq1g0ajwaxZszBs2DC0bt262LwDBw6EJEn49ddftdOOHj0KSZLwxx9/AHhw3L322mvw8PCAubk57Ozs0LNnT0RGRhZbVtFx8cUXX2D27Nlwc3ODWq3Grl27AABbtmyBt7c31Go13Nzc8NVXX5X7WTzsUdsaeLB/mpub48yZM+jVqxfMzMzQoEEDTJw4scRvma77Z9F3/N69exEQEABTU1O89NJLAIDw8HAEBQWhUaNGMDExQatWrfDuu+8iMzOzWE2hoaEAoN2m/71U/bjbVZfPzd7eHitWrICJiUmp++sjiVosKytLWFpaCj8/PyGEEMuWLRMARFhYmE6v7969u+jevbv27/v374u2bdsKMzMz8dVXX4nt27eLGTNmCCMjI9GvXz/tfAUFBaJLly5Co9GIzz77TGzfvl3MmjVLNGvWTAAQM2fOfOS6d+3aJQCIXbt2aaetWrVKABBBQUFiw4YNIjw8XPj6+gqVSiUiIyO18/35559CoVCIHj16iPXr14tff/1VdOzYUbi6ugpdNmn37t2FjY2NcHBwEAsWLBDbtm0TkyZNEgDEhAkTis378Ps5f/68sLCwEO7u7mLlypViy5YtYvjw4QKA+Pzzz4UQQqSmpooff/xRABDvv/++iI6OFtHR0SI+Pr7MmnRZbnJysoiOjhYAxNChQ7XLLU12drb466+/BADx8ssva+e9fPmyEEKImTNnCgCiRYsW4oMPPhARERFi7ty5Qq1Wi9GjRxdb1pgxY4SxsbGYOnWq+Ouvv8Tq1atFy5Ythb29vUhKSir3s+7Tp49o0KCBWLp0qdi9e7fYsGGD+OCDD8TatWu184SEhAgXF5cSn7urq6vo0KGD+OWXX8TWrVtFjx49hJGRkfjnn3+08+m6L1y9elUAED/++GOJGh/exkXb7urVq9ppixcvFnPmzBGbNm0Se/bsEStWrBBeXl6iRYsWIjc3Vztf0efq4uIi3nnnHRERESE2bNhQ5ufTrl070blz5xLTn332WWFnZyfy8vKEEELs2bNHTJ06Vfz2229iz549Yv369WLw4MHCxMREnD9/vtz3Wdrn+99a/0uXbZ2RkSFsbGxE+/btxS+//CL27NkjwsPDxbhx48TZs2fLfK9CCPHpp58KAGL48OFiy5YtYuXKlaJJkybC0tJSXLx4UQghxJkzZ8T777+vfR//3W8fFh8fL/73v/8JAGLdunXa/Tw1NVUIIYSLi4to3Lix8PDwECtXrhTbtm0Tw4YNEwDEnj17tMtJTEwUTk5OwsXFRXz33Xdix44d4uOPPxZqtVqMGjWq3PcUHR0t+vXrJ0xMTLTrT05OFoWFhaJPnz7CyMhIzJgxQ2zfvl189dVXwszMTLRr105kZ2drl+Hi4iIaNWokmjRpIpYvXy527dolDh06JJYsWSIAiISEBCGEEHl5ecLCwkKYmJiIMWPGaF//+eefCyMjI5GWliaEePB9Mn78eLF27Vqxe/dusXnzZvHyyy8LhUJR7Du3aH9xdHQUgYGB4rfffhPbt28XV69eFTt27BBKpVJ06dJFrFu3Tvz666/Cz89PODs76/Q9q8u2FuLB/qlSqYSzs7P45JNPxPbt28WHH34ojIyMxIABA4otU9fvou7duwtra2vh5OQkvv32W7Fr1y7t9v7444/FvHnzxJYtW8Tu3bvFkiVLhJubmwgMDNS+/vLly2Lo0KECgHabRkdHi+zsbL1s1/Ls379fABBvvfWWEEKIF198UUiSJK5cufLIz/y/anW4WblypQAglixZIoQQIj09XZibm4uuXbvq9PqHw03RgfTLL78Um+/zzz8XAMT27duFEEJs2bJFABCLFy8uNt+cOXMqHW4KCgqEg4ODaNOmjSgoKNDOl56eLuzs7ERAQIB2mp+fn3BychI5OTnF5rOxsdE53AAQGzduLDZ9zJgxQqFQiGvXrmmnPfx+nn/+eaFWq0VcXFyx1/bt21eYmpqKe/fuCSGEiImJKfPHtDS6LreopodDWGlu3bpV5vYo+mH74osvik1/7bXXhEajEYWFhUIIoQ1TX3/9dbH54uPjhYmJiXj77bfLrcHc3FxMnjy53HnKCjf29vbaL2shhEhKShIKhULMmTNHO03XfeFxw81/FRYWiry8PHHt2rUS+1HR5/rBBx+U+56LLFiwQAAQFy5c0E67c+eOUKvVYurUqWW+Lj8/X+Tm5opmzZqJN954o9z3qWu40XVbHz58WAAoN7SV5u7du8LExKTYP0pCCBEXFyfUarUYMWKEdlrRNoiJiXnkcr/88ssyt5eLi4vQaDTFjun79+8La2trMXbsWO20sWPHCnNz82LzCSHEV199JQCIM2fOlFtDSEiIMDMzKzat6J+Lh4+x8PBwAUAsXbq0WJ1KpbLYfiDEgx9ZAGLlypVCCCH27dsnAIi3335buLm5aefr3bt3se/Ih+Xn54u8vDzRq1cv8fTTT2unF+0v7u7uxUK6EEJ07NhRODg4iPv372unpaWlCWtr60d+z1ZkW4eEhAgA4ptvvik27yeffCIAiH379gkhKvZdVPQd//fff5dbZ9GxvGfPHgFAnDhxQvvchAkTSn2f+tiu5XnppZcEAHHu3DkhxP//Vs6YMUPnZQghRK2+LPXDDz/AxMRE26DU3Nwcw4YNQ2RkJC5dulTh5e3cuRNmZmYYOnRoselFp4T//vtvAMCePXsAAM8++2yx+YYPH15imfn5+cUeQohS133hwgUkJCQgODgYCsX/bxZzc3M888wzOHDgALKyspCZmYnDhw9j8ODBUKlUxeYbOHCgzu/VwsICgwYNKjZtxIgRKCwsxN69e8t83c6dO9GrVy84OTkVmz5q1ChkZWWVeglNF1W13Ed5+DNo27YtsrOzkZycDADYvHkzJEnCiy++WGw7NmzYEF5eXo9srNyhQweEhYVh9uzZOHDgAPLy8nSuLTAwsFgjUnt7e9jZ2eHatWsAoLd9QRfJyckYN24cnJycYGRkBGNjY7i4uABAidPsAPDMM8/otNwXXngBarW62OWyNWvWICcnB6NHj9ZOy8/Px6effgoPDw+oVCoYGRlBpVLh0qVLpa6/MnTd1k2bNoWVlRXeeecdLFmyBGfPntVp+dHR0bh//36JS0xOTk7o2bOn9vtF37y9veHs7Kz9W6PRoHnz5tr9CHjw3gMDA+Hg4FDsvfft2xfA/3/nVcTOnTsBoMT7HTZsGMzMzEq837Zt26J58+bFprm7u8PV1VV7GTciIgJt2rTBiy++iKtXr+Kff/5BTk4O9u3bhyeeeKLYa5csWQIfHx9oNBrtPvv333+Xur8MGjQIxsbG2r8zMzMRExODIUOGQKPRaKdbWFjodGxVZlu/8MILxf4eMWIEAGgvkVX0u8jKygo9e/YssZ4rV65gxIgRaNiwIZRKJYyNjdG9e3cApR/LD9PHdi1LRkYGfvnlFwQEBKBly5YAgO7du8Pd3R1hYWEoLCzUaTlALW5zc/nyZezduxf9+/eHEAL37t3DvXv3tMGkMtfobt++jYYNG5a4Dm9nZwcjIyPcvn1bO5+RkRGsra2LzWdvb1/s79jYWBgbGxd7lPUlUbTsRo0alXjOwcEBhYWFuHv3Lu7evQshRIl1lbb+8pQ2b1HD3KJayqqzrBof9dryVNVyH8XGxqbY32q1GsD/N3q7efOm9vN+eFseOHDgkV3Jw8PDERISgmXLlsHf3x/W1tYYOXIkkpKSKlxbUX1FtelrX3iUwsJCBAUFYd26dXj77bfx999/49ChQzhw4ACA0hsIlrYtS2NtbY1BgwZh5cqV2vZeYWFh6NChQ7G2FlOmTMGMGTMwePBg/PHHHzh48CBiYmLg5eWlt4anum5rS0tL7NmzB97e3njvvffQunVrODg4YObMmeWG10cd49W1jwPF9yPgwXv/448/Srzvom1QmSETir4ni9q+FZEkCQ0bNizxfsvaZ3r16qX9wdyxYwd69+6NNm3awN7eHjt27MD+/ftx//79YuFm7ty5GD9+PDp27Ijff/8dBw4cQExMDJ588kmd9te7d++isLCw1M4KunRgqOi2NjIyKrGdHv4+ruh3UWnrzsjIQNeuXXHw4EHMnj0bu3fvRkxMjLbBri7Hkr62a2nCw8ORkZGBZ599VvubnpqaimeffRbx8fGIiIjQeVlGOs9ZwyxfvhxCCPz222/47bffSjy/YsUKzJ49u0I9DGxsbHDw4EEIIYoFnOTkZOTn58PW1lY7X35+Pu7cuVMs4Dz8g+Xg4ICYmJhi01q0aFHmugEgMTGxxHMJCQlQKBSwsrLS1nbz5s0S8+nyg1mkvNeX9mX43zrLqhGA9jOqqKpa7uOytbWFJEmIjIzUBp//Km3aw6+fP38+5s+fj7i4OGzatAnvvvsukpOT8ddffz1WbVZWVjrvC0X/fT7cMF6XH9TTp0/jxIkTCAsLQ0hIiHb65cuXy3xNRcYBGT16NH799VdERETA2dkZMTExWLx4cbF5fv75Z4wcORKffvppsekpKSmoX79+ucvXaDSl9n55+MegItu6TZs2WLt2LYQQOHnyJMLCwvDRRx/BxMQE7777bql1POoYl2sfBx6897Zt2+KTTz4p9fmifzIqouh78tatW8V+CIUQSEpK0nY6KFLWPtOrVy/88MMPOHToEA4ePIj3338fANCzZ09ERETg2rVrMDc3R6dOnbSv+fnnn9GjR48S+1F6enqp63h43UXHVmnfqRX5x0TXbZ2fn4/bt28X++59+Pu4ot9FpX2eO3fuREJCAnbv3q09WwOgQsMI6Gu7lqaoc8HkyZMxefLkUp/v06ePTsuqlWduCgoKsGLFCri7u2PXrl0lHlOnTkViYiL+/PPPCi23V69eyMjIwIYNG4pNX7lypfZ5ANqdIjw8vNh8a9euLfa3SqVC+/btiz3KGquiRYsWcHR0xOrVq4tdusrMzMTvv/+u7UFlZmaG9u3bY8OGDcjNzdXOl5GRUWpPmrKkp6dre6IUWb16NRQKBbp161bm63r16qU9QP5r5cqVMDU11X7BPHwG5FF0XW5FVLSG0gwYMABCCNy4caPEtmzfvn2Furw6Oztj4sSJ6N27N44ePVrpmopUZF+wt7eHRqPByZMni03fuHHjI9dT9OX08Jfnd999V9nSiwkKCoKjoyN+/PFH/Pjjj9BoNCUu8UqSVGL9W7ZswY0bNx65fFdXVyQnJxcLgbm5udi2bVux+SqzrSVJgpeXF+bNm4f69euXu139/f1hYmKCn3/+udj069evay/LVoa+9vPTp0/D3d291PdemXBT9H4efr+///47MjMzdX6/vXr1giRJmDFjRrHvpyeeeAK7du1CREQEunXrVuyyUmn7y8mTJ3W+vG1mZoYOHTpg3bp1xcZYSU9P1/bIKk9ltvWqVauK/b169WoA0A40q4/vooocy2XtV/rarg87d+4coqOj8cwzz5T6u96rVy9s3LhR5zOctfLMzZ9//omEhAR8/vnnpY4w7OnpiYULF+KHH36o0OicI0eORGhoKEJCQhAbG4s2bdpg3759+PTTT9GvXz/tac8nn3wSnTt3xtSpU5GWlgZfX19ER0drQ9B/28zoSqFQ4IsvvsALL7yAAQMGYOzYscjJycGXX36Je/fu4bPPPtPO+9FHH6F///7o06cPXn/9dRQUFODLL7+Eubk57ty5o9P6bGxsMH78eMTFxaF58+bYunUrvv/+e4wfP77Y9fmHzZw5U3t9/oMPPoC1tTVWrVqFLVu24IsvvoClpSWAB9fKTUxMsGrVKrRq1Qrm5uZwcHAo80tS1+VWhIWFBVxcXLBx40b06tUL1tbWsLW1rdBowJ07d8arr76K0aNH4/Dhw+jWrRvMzMyQmJiIffv2oU2bNhg/fnypr01NTUVgYCBGjBiBli1bwsLCAjExMfjrr78wZMiQCr+f0ui6LxRdq1++fDnc3d3h5eWFQ4cOab9Ay9OyZUu4u7vj3XffhRAC1tbW+OOPPyp0irg8SqUSI0eOxNy5c1GvXj0MGTKkxPYeMGAAwsLC0LJlS7Rt2xZHjhzBl19+icaNGz9y+c899xw++OADPP/883jrrbeQnZ2NBQsWlBj2QNdtvXnzZixatAiDBw9GkyZNIITAunXrcO/ePfTu3bvMOurXr48ZM2bgvffew8iRIzF8+HDcvn0bs2bNgkajwcyZMyv1+RX9qH3zzTcICQmBsbExWrRoUeY/UqX56KOPEBERgYCAAEyaNAktWrRAdnY2YmNjsXXrVixZskSnz/q/evfujT59+uCdd95BWloaOnfujJMnT2LmzJlo164dgoODdVqOnZ0dPD09sX37dgQGBsLU1BTAg3Bz584d3LlzB3Pnzi32mgEDBuDjjz/GzJkz0b17d1y4cAEfffQR3NzcHtm1vcjHH3+MJ598Er1798bUqVNRUFCAzz//HGZmZo/8nq3otlapVPj666+RkZEBPz8/REVFYfbs2ejbty+6dOkC4PG+i4oEBATAysoK48aNw8yZM2FsbIxVq1bhxIkTJeYt2q8+//xz9O3bF0qlEm3bttXbdn1Y0Vmbt99+Gx06dCjxfHp6Ov7++2/8/PPPeP311x+9wAo1P64hBg8eLFQqlUhOTi5znueff14YGRmV21X34d5SQghx+/ZtMW7cONGoUSNhZGQkXFxcxLRp04p1bxPiQY+O0aNHi/r16wtTU1PRu3dvceDAgVJbvZemtK7gQgixYcMG0bFjR6HRaISZmZno1auX2L9/f4nXr1+/XrRp00bbhfCzzz4TkyZNElZWVo9cd/fu3UXr1q3F7t27Rfv27YVarRaNGjUS7733nrbrbRGU0tvo1KlTYuDAgcLS0lKoVCrh5eVVai+cNWvWiJYtWwpjY2OdepHpulzo2FtKCCF27Ngh2rVrJ9RqtQAgQkJChBD/31Pm1q1bxeYvq6fQ8uXLRceOHYWZmZkwMTER7u7uYuTIkeLw4cNlrjs7O1uMGzdOtG3bVtSrV0+YmJiIFi1aiJkzZ4rMzEztfGX1lirtPbq4uGjfQxFd94XU1FTxyiuvCHt7e2FmZiYGDhwoYmNjdeotdfbsWdG7d29hYWEhrKysxLBhw0RcXFyJ15b1uT7KxYsXBQABQERERJR4/u7du+Lll18WdnZ2wtTUVHTp0kVERkaWOIbL6hW2detW4e3tLUxMTESTJk3EwoULS+0KLsSjt/X58+fF8OHDhbu7uzAxMRGWlpaiQ4cOOg9BsWzZMtG2bVuhUqmEpaWleOqpp0r0RqpIbykhhJg2bZpwcHAQCoWi2PeKi4uL6N+/f4n5S/vuu3Xrlpg0aZJwc3MTxsbGwtraWvj6+orp06eLjIyMctdfWm8pIR70zHrnnXeEi4uLMDY2Fo0aNRLjx48Xd+/eLTZfWXUWeeONNwQA8cknnxSbXjT8xsmTJ4tNz8nJEW+++aZwdHQUGo1G+Pj4iA0bNpQ41or2ly+//LLU9W7atEm7rYqOrbL2m9Losq2LPruTJ0+KHj16CBMTE2FtbS3Gjx9f6ueuy3dR0Xd8aaKiooS/v78wNTUVDRo0EK+88oo4evRoieMmJydHvPLKK6JBgwZCkqRi3wn62q5FcnNzhZ2dnfD29i5znvz8fNG4cWPRpk2bRy5PCCEkIcrovkMVtnr1arzwwgvYv38/AgICqnXdeXl58Pb2hqOjI7Zv317uvD169EBKSgpOnz5dTdVRdarIvkBE8ho1ahR+++03ZGRkyF2KQamVl6VqgjVr1uDGjRto06YNFAoFDhw4gC+//BLdunWrlmDz8ssvo3fv3mjUqBGSkpKwZMkSnDt3Dt98802Vr5tqFu4LRETFMdxUkoWFBdauXYvZs2cjMzMTjRo1wqhRozB79uxqWX96ejrefPNN3Lp1C8bGxvDx8cHWrVtLjPVAho/7AhFRcbwsRURERAalVnYFJyIiIioLww0REREZFIYbIiIiMigG16C4sLAQCQkJsLCwqNCwz0RERCQfIQTS09Ph4OBQqcFw/8vgwk1CQkKJO0sTERFR7RAfH1/hEbEfZnDhpmjI8fj4eNSrV0/maoiIiEgXaWlpcHJyqtCtQ8picOGm6FJUvXr1GG6IiIhqGX00KWGDYiIiIjIoDDdERERkUBhuiIiIyKAw3BAREZFBYbghIiIig8JwQ0RERAaF4YaIiIgMCsMNERERGZQaGW6efvppWFlZYejQoXKXQkRERLVMjQw3kyZNwsqVK+Uug4iIiGqhGhluAgMD9XJvCSIiIqp7Khxu9u7di4EDB8LBwQGSJGHDhg0l5lm0aBHc3Nyg0Wjg6+uLyMhIfdRKRERE9EgVDjeZmZnw8vLCwoULS30+PDwckydPxvTp03Hs2DF07doVffv2RVxcnHYeX19feHp6lngkJCRU/p0QERERoRJ3Be/bty/69u1b5vNz587Fyy+/jFdeeQUAMH/+fGzbtg2LFy/GnDlzAABHjhypZLkl5eTkICcnR/t3Wlqa3pZNREREtY9e29zk5ubiyJEjCAoKKjY9KCgIUVFR+lyV1pw5c2Bpaal9ODk5Vcl6iIiIqHbQa7hJSUlBQUEB7O3ti023t7dHUlKSzsvp06cPhg0bhq1bt6Jx48aIiYkpc95p06YhNTVV+4iPj690/URERFT7VfiylC4kSSr2txCixLTybNu2Ted51Wo11Gq1zvMTERGRYdPrmRtbW1solcoSZ2mSk5NLnM0hIiIiqgp6DTcqlQq+vr6IiIgoNj0iIgIBAQH6XFUJoaGh8PDwgJ+fX5Wuh4iIiGq2Cl+WysjIwOXLl7V/X716FcePH4e1tTWcnZ0xZcoUBAcHo3379vD398fSpUsRFxeHcePG6bXwh02YMAETJkxAWloaLC0tq3RdREREVHNVONwcPnwYgYGB2r+nTJkCAAgJCUFYWBiee+453L59Gx999BESExPh6emJrVu3wsXFRX9VExEREZVBEkIIuYvQp6IzN6mpqahXr57c5RAREZEO9Pn7XSPvLVUZbHNDREREAM/cEBERUQ3AMzdEREREZWC4ISIiIoPCcENEREQGxWDCDRsUExEREcAGxURERFQDsEExERERURkYboiIiMigMNwQERGRQWG4ISIiIoNiMOGGvaWIiIgIYG8pIiIiqgHYW4qIiIioDAw3REREZFAYboiIiMigMNwQERGRQTGYcMPeUkRERASwtxQRERHVAOwtRURERFQGhhsiIiIyKAw3REREZFAYboiIiMigMNwQERGRQWG4ISIiIoNiMOGG49wQERERwHFuiIiIqAbgODdEREREZWC4ISIiIoPCcENEREQGheGGiIiIDArDDRERERkUhhsiIiIyKAw3REREZFAYboiIiMigGEy44QjFREREBHCEYiIiIqoBOEIxERERURkYboiIiMigMNwQERGRQTGSu4CqMu33k1Cbmut3oRLg7VQfQ3waw1xtsB8dERFRrWawDYqdJv8Chdq0StZhrjbCUN/GGOnvgiYN9BygiIiI6iB9Nig22HDzzdbjMDGz0Ouys3ILsPHEDVy5lamd1r15A4wKcEX35g2gUEh6XR8REVFdwXBTjqruCl5YKLDvcgpWRMVi54VkFH16rjamCPZ3xbD2jVFPY6z39RIRERkyhptyVOc4N9duZ+Kn6GsIPxyP9Ox8AICpSokhPo4I8XdFM3v9njkiIiIyVAw35ZBjEL+s3HysP3YDK6JicfFmhnZ656Y2CPF3Ra9W9lDykhUREVGZGG7KIecIxUIIRP9zG2FRsdhx7iYK//1kG1uZYKS/C55t74T6pqpqrYmIiKg2YLgpR025/cL1u1n46cA1hMfE415WHgBAY6zA0+0cERLgipYNeWsIIiKiIgw35agp4abI/dwCbDpxA2FR13AuMU07vaObNUYFuKK3hz2MlBxLkYiI6jaGm3LUtHBTRAiBmNi7CIu6im1nbqLg32tWDpYavNDJBcM7OMPajJesiIiobmK4KUVoaChCQ0NRUFCAixcv1rhw818J9+5j1cFrWHMoHncycwEAKiMFnvJyQEiAKzwdLWWukIiIqHox3JSjpp65KU12XgE2n0zEiqhYnLqRqp3e3sUKIQGueNKzIYx5yYqIiOoAhpty1KZwU0QIgaNx97AiKhZbTyUi/99LVvb11Hih44NLVg0s1DJXSUREVHUYbspRG8PNf91My8aqg3FYfTAOKRk5AACVUoH+bRthVIArvJzqy1sgERFRFWC4KUdtDzdFcvMLsfVUIsKiYnE8/p52urdTfYwKcEW/No2gMuIlKyIiMgwMN+UwlHDzXyfiH1yy2nwyEbkFhQAAW3M1RnR0xgsdnWFfTyNzhURERI+H4aYchhhuitxKz8HaQ3H4+eA13Ex7cMnKSCGhb5tGGBXgAh9nK0gSb/NARES1D8NNOQw53BTJKyjEtjNJWBEVi5jYu9rpno71EOLvioFeDtAYK2WskIiIqGIYbspRF8LNf52+kYoVUbHYeCIBufkPLllZm6kwvIMTXuzkgkaWJjJXSERE9GgMN+Woa+GmyJ3MXKyNicPP0deQkJoNAFAqJPRpbY8Qf1d0cLPmJSsiIqqxGG7KUVfDTZH8gkLsOHcTYVGxOHDljnZ6q0b1EOLvgqe8HWGi4iUrIiKqWRhuylHXw81/nU9Kw4qoa1h/7Dqy8x5csqpvaozn/JwQ3MkFja1MZa6QiIjoAYabcjDclHQvKxe/HI7HyuhruH73PgBAIQFPtLLHqABX+Lvb8JIVERHJiuGmHAw3ZSsoFNh5PhkromKx73KKdnpze3OM9HfFEB9HmKqMZKyQiIjqKoabcjDc6OZycjpWRF3D70evIyu3AABgoTHCs+2dMNLfBS42ZjJXSEREdQnDTTkYbiomLTsPvx6+jp+iYxF7OwsAIElAzxZ2CAlwRZemtlAoeMmKiIiqFsNNORhuKqewUGDPxVsIi4rFnou3tNObNDBDiL8rnvFtDHM1L1kREVHVYLgpB8PN47tyKwMro6/htyPXkZGTDwAwVxthqG9jjPR3QZMG5jJXSEREhobhphwMN/qTkZOPdUevY0VULP65lamd3q15A4wKcEGP5na8ZEVERHph0OEmPj4ewcHBSE5OhpGREWbMmIFhw4bp/HqGG/0TQmDf5RSE7Y/FzgvJKNpjXGxM8UoXNzzn5wyVkULeIomIqFYz6HCTmJiImzdvwtvbG8nJyfDx8cGFCxdgZqZb7x2Gm6p17XYmfoq+hvDD8UjPfnDJyrG+CV5/ohmGtHOEkZIhh4iIKs6gw83D2rZtiy1btsDJyUmn+RluqkdWbj5+PXwdobsuIzk9BwDgZmuGyU80w8C2DrxcRUREFaLP3+8K/5u9d+9eDBw4EA4ODpAkCRs2bCgxz6JFi+Dm5gaNRgNfX19ERkZWqrjDhw+jsLBQ52BD1cdUZYSQAFfseSsQ0/u1grWZCldTMvH62uPo+00ktp1JQg3PzUREZKAqHG4yMzPh5eWFhQsXlvp8eHg4Jk+ejOnTp+PYsWPo2rUr+vbti7i4OO08vr6+8PT0LPFISEjQznP79m2MHDkSS5curcTboupiolJiTLcm2Pt2IN4Mag4LjREu3EzH2J+O4KnQ/dhz8RZDDhERVavHuiwlSRLWr1+PwYMHa6d17NgRPj4+WLx4sXZaq1atMHjwYMyZM0en5ebk5KB3794YM2YMgoODHzlvTk6O9u+0tDQ4OTnxspRMUrPy8H3kFSzff1U78rGfqxWmBrVApyY2MldHREQ1layXpcqTm5uLI0eOICgoqNj0oKAgREVF6bQMIQRGjRqFnj17PjLYAMCcOXNgaWmpffASlrwsTY3xZp8WiHw7EK90cYPKSIGY2Lt4fukBBP9wEMfi7spdIhERGTi9hpuUlBQUFBTA3t6+2HR7e3skJSXptIz9+/cjPDwcGzZsgLe3N7y9vXHq1Kky5582bRpSU1O1j/j4+Md6D6QfNuZqvD/AA3vfCsSLnZxhrJQQeSkFTy+KwisrYnA2IU3uEomIyEBVyXj6klS8p4wQosS0snTp0gWFhYU6r0utVkOtVleoPqo+DS01mD24DcZ2c8eCvy/h96PXseNcMnacS0b/to3wxhPN0dSOIx4TEZH+6PXMja2tLZRKZYmzNMnJySXO5uhbaGgoPDw84OfnV6XrocpxsjbFl8O8EDGlOwZ6OQAAtpxMRNC8PZj6ywnE/XvTTiIiosel13CjUqng6+uLiIiIYtMjIiIQEBCgz1WVMGHCBJw9exYxMTFVuh56PO4NzPHt8Hb48/Wu6O1hj0IB/H70Onp+vRvT159CYup9uUskIqJarsKXpTIyMnD58mXt31evXsXx48dhbW0NZ2dnTJkyBcHBwWjfvj38/f2xdOlSxMXFYdy4cXotnGq3Vo3q4fuR7XE8/h6+3n4BkZdSsOpgHH49ch3BnVwwvoc7bM15uZGIiCquwl3Bd+/ejcDAwBLTQ0JCEBYWBuDBIH5ffPEFEhMT4enpiXnz5qFbt256KfhROEJx7XTwym18vf0iDsXeAQCYqpQYFeCKsd3cYWlqLHN1RERU1erU7RcqiuGm9hJCIPJSCr7efgEnrqcCACw0RhjTtQle6uIGc3WVtH8nIqIagOGmFKGhoQgNDUVBQQEuXrzIcFOLCSEQcfYm5kZcxPmkdACAlakxxvdwR3AnV5iolDJXSERE+sZwUw6euTEchYUCm08lYn7ERVxJyQQA2FmoMbFnUzzn5wS1EUMOEZGhYLgpB8ON4ckvKMT6Yzfwzd+XcP3ug95UjvVN8HqvZhji4wgjpV47/RERkQwYbsrBcGO4cvMLEX44Hgt3XsLNtAf3E3OzNcPkJ5phYFsHKBS6DRRJREQ1D8NNKdjmpu7IzivAzweuYdHuf3AnMxcA0MLeAm/0bo4+re11Hg2biIhqDoabcvDMTd2RkZOPsP1X8d3eK0jPzgcAtHG0xNSg5ujevAFDDhFRLcJwUw6Gm7onNSsPy/ZdwfJ9V5GZWwAA8HO1wtSgFujUxEbm6oiISBcMN+VguKm7bmfkYMmef7Ay+hpy8h/cfLVHiwaY3q8VmtlbyFwdERGVh+GmHAw3dDMtGwt3XsbamDjkFQgoFRJGdHDGG72bw9pMJXd5RERUCoabcjDcUJGrKZn4dOs5RJy9CeDBaMeTejbDyAAXjpFDRFTD6PP322AGCAkNDYWHhwf8/PzkLoVqCDdbM3w/sj1Wj+kIj0b1kJ6dj0+2nkPQvL3463QSDCzXExHRv3jmhuqEgkKB349cx5fbL+BW+oMxcjq6WWPGAA94OlrKXB0REfGyVDkYbqg8GTn5WLL7H3wfeQU5+YWQJOAZn8Z4q08L2NfTyF0eEVGdxXBTDoYb0sWNe/fxxV/nsfF4AgDAVKXEuO7uGNO1CW/MSUQkA4abcjDcUEUcjbuL2ZvP4mjcPQBAI0sN3n6yBZ7ycuTtHIiIqhHDTTkYbqiihBD442QiPv/zPG7ce3BjTq/GlpgxwAPtXa1lro6IqG5gb6lSsLcUVZYkSRjk5YC/p3bHW31awEylxInrqRi6JBoTVh9F/J0suUskIqIK4Jkboockp2dj7vaLCD8cDyEAlZECL3V2w4RAd1hojOUuj4jIIPGyVDkYbkhfziakYfaWs4j65zYAwNZchSm9W+A5Pyco2R6HiEivGG7KwXBD+iSEwI5zyfh06zlcTckEALRsaIH3+3ugSzNbmasjIjIcDDflYLihqpCbX4ifD1zDN39fQur9PABAr5Z2mNavFZramctcHRFR7cdwUw6GG6pK97JyMX/HJfx84BryCwWMFBJe7OSC13s1gxVvyklEVGkMN+VguKHq8M+tDMzZeg47ziUDACxNjDGpVzMEd3KByshgOiESEVUbhptyMNxQddp3KQWzt5zF+aR0AEATWzN8OKg1ujVvIHNlRES1C8e5KQXHuSE5dGlmiy2TumLOkDawNVfhSkomRi4/hHE/HdEOCEhERNWLZ26I9CT1fh7m77iIldHXUFAooDFWYGJgU7zStQk0xrxfFRFReXhZqhwMNyS3c4lpmLnxDA7F3gEAuNiY4sOBrRHY0k7myoiIai6Gm3Iw3FBNIITAphMJ+GTLOSSn5wAAnmhlhw8GtIazjanM1RER1Txsc0NUw0mShKe8HfH31O4Y09UNRgoJO84l44l5ezAv4iKy8wrkLpGIyGDxzA1RNbh0Mx0zN53R3sqhsZUJPhjggd4e9pAk3sqBiIiXpcrBcEM1lRACW08lYfaWs0hMzQYA9GjRADMHtoabrZnM1RERyYvhphwMN1TTZebkY+Guy1gWeQV5BQIqpQJjurlhQmBTmKqM5C6PiEgWDDflYLih2uKfWxn4cNMZRF5KAQA4WGowY4AHnvRsyEtVRFTnMNyUg+GGahMhBLaduYmPN5/VDvrXtZktZg5szRtyElGdwnBTDoYbqo3u5xZg8e7LWLL3CnLzC2GslPBSFzf8r2czmKt5qYqIDB+7gpeCt1+g2sxEpcSUoBaIeKMbera0Q16BwHd7rqDX17ux6UQCDOx/ECKiKsUzN0Q10N/nbmLWH2cRdycLABDgboOPB3vCvQEvVRGRYeKZGyID16uVPba/0Q1TejeH2kiBqH9uo+/8SMzlAIBERI/EcENUQ2mMlZjUqxki3uiOHi0aILegEAv+voQn5+9F5KVbcpdHRFRjMdwQ1XDONqb4cZQfFr3gA/t6asTezkLwD4cwac0xJKdny10eEVGNw3BDVAtIkoR+bRphx5TuGN3ZFQoJ2HQiAb2+2oOfomNRUGhQTeeIiB4LGxQT1UKnrqdi+oZTOHk9FQDg1dgSnzzdBp6OljJXRkRUOWxQTFTHtWlsifWvdcZHT7WGhdoIJ66nYtDCfZj1xxmkZ+fJXR4RkawYbohqKaVCwkh/V/w9tTsGejmgUAA/7o/FE3P3YOupRI6NQ0R1FsMNUS1nV0+Db4e3w4qXOsDFxhQ303Lw2qqjeCksBvH/jpNDRFSXMNwQGYjuzRtg2+RumNSzKYyVEnZduIXe8/YgdNdl5OYXyl0eEVG1YbghMiAa4we3cfjz9W7wb2KD7LxCfLntAvoviMTBK7flLo+IqFow3BAZoKZ25lg9piPmPecFGzMVLiVn4LmlB/D2bydwLytX7vKIiKoUww2RgZIkCU+3a4y/p3bHiI7OAIBfDl/HE3P38GacRGTQDCbc8K7gRKWrb6rCp0+3wW/j/NHUzhwpGbmYtOYYRrPBMREZKA7iR1SH5OQX4Ls9V7Bw52XkFhTCxFiJqUHNMSrAFUZKg/lfh4hqIQ7iR0SVojZ6cDPOPyd3RQc3a9zPK8DsLefw9KIonL6RKnd5RER6wXBDVAe5NzDH2jGd8NmQNqinMcKpG6l4KnQ/Pt16Dlm5+XKXR0T0WBhuiOoohULC8x2csWNqdwxo2wgFhQJL915Bn/l7sefiLbnLIyKqNIYbojrOzkKDhSN8sHxUezjWN0H8nfsIWX4Ik9ceQ0pGjtzlERFVGMMNEQEAera0x/Y3uuGlzm5QSMCG4wl4Yu4e/Ho4nt3GiahWYbghIi0ztRE+GOiB9a91RqtG9XAvKw9v/XYSLyw7iNiUTLnLIyLSCcMNEZXg5VQfmyZ2xrS+LaExViDqn9voM38vluz5B/kFvE8VEdVsDDdEVCpjpQJju7tj++Tu6NLUFjn5hfjsz/MYvGg/ziSw2zgR1VwMN0RULmcbU/z0cgd8ObQt6mmMcPpGGgYt3I8v/jqP7LwCucsjIiqB4YaIHkmSJAxr74QdU7ujX5uGKCgUWLT7H/T7JhKHrt6RuzwiomIYbohIZ3YWGix6wRdLXvSFnYUaV1Iy8ex30Zix4TTSs/PkLo+ICADDDRFVwpOeDRExpTue93MCAPx04BqC5u3FzvM3Za6MiIjhhogqydLEGJ890xarX+kIZ2tTJKZm46Www5i05hhuc/A/IpIRww0RPZaAprbYNrkbXu3WBAoJ2HTiweB/G47d4OB/RCQLhhsiemwmKiXe69cKGyZ0RsuGFriblYfJ4cfxUlgMElPvy10eEdUxDDdEpDdtG9fHH//rgjeDmkOlVGDXhVsImrsXaw7F8SwOEVUbhhsi0itjpQITezbD1te7oJ1zfaTn5GPaulN48YeDiL+TJXd5RFQH1Lhwk56eDj8/P3h7e6NNmzb4/vvv5S6JiCqhqZ0FfhsXgPf7t4LGWIH9l28jaN5ehO2/isJCnsUhoqojiRp2rrigoAA5OTkwNTVFVlYWPD09ERMTAxsbG51en5aWBktLS6SmpqJevXpVXC0R6SI2JRPv/H4SB/8d8M/P1QqfP9MWTRqYy1wZEdUU+vz9rnFnbpRKJUxNTQEA2dnZKCgo4LV6olrO1dYMa8Z0wseDPWGmUiIm9i76fhOJ73gjTiKqAhUON3v37sXAgQPh4OAASZKwYcOGEvMsWrQIbm5u0Gg08PX1RWRkZIXWce/ePXh5eaFx48Z4++23YWtrW9EyiaiGUSgkBHdywbY3uqFrswc34pzz53k8szgKF5LS5S6PiAxIhcNNZmYmvLy8sHDhwlKfDw8Px+TJkzF9+nQcO3YMXbt2Rd++fREXF6edx9fXF56eniUeCQkJAID69evjxIkTuHr1KlavXo2bNznqKZGhaGxlipUvdcAXQ9vCQmOEE9dTMeDbSCz4+xLyeBaHiPTgsdrcSJKE9evXY/DgwdppHTt2hI+PDxYvXqyd1qpVKwwePBhz5syp8DrGjx+Pnj17YtiwYaU+n5OTg5yc/x8NNS0tDU5OTmxzQ1QL3EzLxvT1p7DjXDIAwKNRPXw1zAseDjx2ieqaGtvmJjc3F0eOHEFQUFCx6UFBQYiKitJpGTdv3kRaWhqAB2907969aNGiRZnzz5kzB5aWltqHk5NT5d8AEVUr+3oafD+yPb553hv1TY1xNjENgxbuw/wdF5Gbz7M4RFQ5eg03KSkpKCgogL29fbHp9vb2SEpK0mkZ169fR7du3eDl5YUuXbpg4sSJaNu2bZnzT5s2DampqdpHfHz8Y70HIqpekiThKW9HRLzRHX1a2yO/UGD+jkt4KnQ/ziSkyl0eEdVCRlWxUEmSiv0thCgxrSy+vr44fvy4zutSq9VQq9UVKY+IaqAGFmosedEXm08m4oONp3EuMQ1PLdyP1wKbYmJgU6iMalznTiKqofT6bWFrawulUlniLE1ycnKJszlERA+TJAkDvRyw/Y3u6OvZEPmFAgv+voRBC/fh9A2exSEi3eg13KhUKvj6+iIiIqLY9IiICAQEBOhzVSWEhobCw8MDfn5+VboeIqp6DSzUWPyiL0JH+MDaTIXzSel4KnQ/5m6/wLY4RPRIFe4tlZGRgcuXLwMA2rVrh7lz5yIwMBDW1tZwdnZGeHg4goODsWTJEvj7+2Pp0qX4/vvvcebMGbi4uFTJm/gvjlBMZFhSMnIwc+MZbDmVCABo2dACXw71QpvGljJXRkT6pM/f7wqHm927dyMwMLDE9JCQEISFhQF4MIjfF198gcTERHh6emLevHno1q3bYxWqK4YbIsO05d+2OLczc6FUSJjQwx0TezZjWxwiAyFruKnpGG6IDNftjBx88J+zOK0a1cPXHBeHyCDU2HFu5MQ2N0SGz8ZcjdAXfLBwRDtYmRrj3L/j4nB0YyL6L565IaJa6VZ6Dt7fcArbzjy4PYunYz18PcwbLRpayFwZEVUGz9wQUZ1XNC7ON897w9LEGKdvpGHAt5EI3XWZdxonquMYboio1vr/0Y274YlWdsgrEPhy2wU8szgKl27yTuNEdRXDDRHVenb/3qNq7rNeqPfvncb7f7sP3+35BwWFBnXlnYh0YDDhhg2Kieo2SZIwxKcxIqZ0R2CLBsjNL8ScP8/j2e+iEZuSKXd5RFSN2KCYiAyOEAK/Hr6OjzafRUZOPkyMlZjWryVe7OgChUK3+9wRUfVig2IionJIkoRn/Zzw1+SuCHC3wf28Anyw8QyClx/EjXv35S6PiKoYww0RGazGVqb4+eWOmDWoNTTGCuy/fBt95u3FLzHxMLCT1kT0Hww3RGTQFAoJIQGu+PP1bvB1sUJGTj7e/v0kXgqLQXJattzlEVEVMJhwwwbFRFQeN1sz/DLWH+/1awmVUoFdF24haP5e/HEiQe7SiEjP2KCYiOqcizfTMeWX4zh9Iw0AMKBtI3z8lCeszFQyV0ZUd7FBMRHRY2hub4H1r3XGpF7NoFRI2HwyEUHz92LX+WS5SyMiPWC4IaI6yVipwJTezbFufADcG5jhVnoORofF4N3fTyIjJ1/u8ojoMTDcEFGd5uVUH1smdcXLXdwgScDamHg8OX8vDly5LXdpRFRJDDdEVOdpjJWYMcADq1/pBMf6Jrh+9z6Gf38AszefRXZegdzlEVEFMdwQEf3L390Gf03uiufaO0EIYNm+qxj47T6cvpEqd2lEVAEGE27YFZyI9MFCY4zPh7bFspHtYWuuwqXkDAwO3Y+FOy8hv6BQ7vKISAfsCk5EVIbbGTmYvv40/jqTBABo51wfc5/1hputmcyVERkedgUnIqoGNuZqLH7RB3Of9YKF2gjH4u6h3zeR+Ck6lrdvIKrBGG6IiMohSRKG+DTGX290096Ec8bGMwj5MQY3efsGohqJ4YaISAeO9U3w88sdMXOgB9RGCuy9eAtB8/Zi80nevoGopmG4ISLSkUIhYXRnN2yZ1AWejvWQej8PE1cfw+S1x5B6P0/u8ojoXww3REQV1NTOAuvGd8b/ejaFQgI2HE/Ak/P3IupyitylEREYboiIKkVlpMDUoBb4dVwAXG1MkZiajRHLDuKjPzjwH5HcDCbccJwbIpKDr4sVtkzqihEdnQEAy/c/GPjvTAIH/iOSC8e5ISLSk53nb+Lt304hJSMHxkoJU3q3wKvdmkCpkOQujajG4zg3REQ1UM+W9tg2uSt6e9gjr0Dg87/OY/jSA4i/kyV3aUR1CsMNEZEe2ZirsTTYF58/0wamKiUOxd5B328i8fuR6xz4j6iaMNwQEemZJEl4zs8Zf77eFT7O9ZGRk4+pv57AxNXHcC8rV+7yiAweww0RURVxsTHDL2P9MbV3cxgpJGw5lYg+8/di3yV2GSeqSgw3RERVyEipwP96NcO61wLQxNYMN9Ny8OIPB/HxZnYZJ6oqDDdERNWgbeP62DypC174t8v4D/uuYnDofpxPSpO5MiLDw3BDRFRNTFVG+OTpNvghpD1szFQ4n5SOQQv3Y1nkFRQWsrExkb4w3BARVbNerezx1+Ru6NXSDrn5hZi95RxCfjzEu4wT6YnBhBuOUExEtUkDCzWWhbTH7MGe0BgrEHkpBU/O34u/TifJXRpRrccRiomIZHY5OQOTw4/h9I0H7W+ea++EDwZ6wExtJHNlRNWHIxQTERmQpnbmWDe+M8Z1d4ckAeGH49F/QSSOx9+TuzSiWonhhoioBlAZKfBu35ZY/UonOFhqEHs7C0MXRyF012UUsLExUYUw3BAR1SD+7jb48/Vu6N+2EfILBb7cdgHDlx7A9bu8PxWRrhhuiIhqGEtTYywc3g5fDfOC2X/uT7XpRILcpRHVCgw3REQ1kCRJGOrbGFtf7wpvp/pIz87HpDXHMOWX48jIyZe7PKIajeGGiKgGc7Exw6/j/DGpVzMoJGDd0Rvo900kjsXdlbs0ohqL4YaIqIYzViowpXdzhI/1h2N9E8TdycLQJdFYuPMSGxsTlYLhhoiolvBztcbW17tioJcDCgoFvtp+EcO/P4Ab9+7LXRpRjcJwQ0RUi1iaGGPB8974uqix8dU76Dt/L7aeSpS7NKIag+GGiKiWkSQJz/g2xpZJXeHV2BJp2fl4bdVRvPv7SWTlsrExEcMNEVEt5Wprht/GB+C1Hg9GNl4bE48BC/bh9I1UuUsjkhXDDRFRLWasVODtJ1ti1csdYV9PjSspmXh60X4si7yCQjY2pjrKYMIN7wpORHVZQFNb/PV6N/T2sEdegcDsLecwOiwGt9Jz5C6NqNrxruBERAZECIGfD8Zh9uazyMkvhK25Gl8/64XuzRvIXRpRuXhXcCIiKpUkSQju5IJNE7ugub05UjJyELL8ED7Zcha5+YVyl0dULRhuiIgMUIuGFtg0sQuCO7kAAL6PvIpnFkfhakqmzJURVT2GGyIiA6UxVuLjwZ74LtgX9U2NcepGKgYsiMS6o9flLo2oSjHcEBEZuD6tG2LrpK7o4GaNzNwCTPnlBKaE8wacZLgYboiI6gCH+iZYM6YTpvRu/uAGnMduYMCCSJy6zjFxyPAw3BAR1RFKhYRJvZohfKw/HCw1iL2dhSGLH4yJY2AdZ6mOY7ghIqpjim7A2af1/4+J81JYDG5ncEwcMgwMN0REdVB9UxWWvOiLj59qDZWRArsu3EK/BZGI/ue23KURPTaGGyKiOkqSJAT7u2LjhM5wb2CGm2k5GLHsAOZGXEQBb91AtRjDDRFRHdeqUT388b8uGObbGEIAC/6+hOHfH0BSarbcpRFVCsMNERHBVGWEL4d5Yf5z3jBTKXHo6h30/WYvdp6/KXdpRBXGcENERFqD2zli86SuaO1QD3ez8vBS2GHeuoFqHYYbIiIqxs3WDOteC8CoAFcAD27dMOy7aMTfyZK3MCIdMdwQEVEJaiMlPhzUGt8F+6Kexggn4u+h34JI/HU6Ue7SiB6J4YaIiMrUp3VDbH29K9o510d6dj7G/XwUMzeeRk5+gdylEZWJ4YaIiMrV2MoUv4z1x9juTQAAK6Kv4ZnFUYjlHcaphmK4ISKiRzJWKjCtbyv8OMoPVqbGOH0jDQO+3YfNJxPkLo2ohBobbrKysuDi4oI333xT7lKIiOhfgS3tsPX1rmjvYoWMnHxMXH0M7284hew8XqaimqPGhptPPvkEHTt2lLsMIiJ6SCNLE6x9tRNe6+EOAPj5QByGLOJlKqo5amS4uXTpEs6fP49+/frJXQoREZXCSKnA20+2RNhoP1ibqXA28cFlqi0n2ZuK5FfhcLN3714MHDgQDg4OkCQJGzZsKDHPokWL4ObmBo1GA19fX0RGRlZoHW+++SbmzJlT0dKIiKia9Whhhy2TusDP9cFlqgmrj+ID9qYimVU43GRmZsLLywsLFy4s9fnw8HBMnjwZ06dPx7Fjx9C1a1f07dsXcXFx2nl8fX3h6elZ4pGQkICNGzeiefPmaN68eeXfFRERVZtGliZYM6YTxv97mWpl9DUMXRyNuNsc9I/kIQkhKn3rV0mSsH79egwePFg7rWPHjvDx8cHixYu101q1aoXBgwfrdDZm2rRp+Pnnn6FUKpGRkYG8vDxMnToVH3zwQanz5+TkICcnR/t3WloanJyckJqainr16lX2rRERUSXsOp+MN345jntZebDQGOGrYV7o07qh3GVRLZCWlgZLS0u9/H7rtc1Nbm4ujhw5gqCgoGLTg4KCEBUVpdMy5syZg/j4eMTGxuKrr77CmDFjygw2RfNbWlpqH05OTo/1HoiIqPICW9ph66Su8Pl30L+xPx3BBxtPIys3X+7SqA7Ra7hJSUlBQUEB7O3ti023t7dHUlKSPlelNW3aNKSmpmof8fHxVbIeIiLSjUN9E4SP9ceYrm4AHlym6r9gH47G3ZW5MqorjKpioZIkFftbCFFimi5GjRr1yHnUajXUanWFl01ERFXHWKnA9P4e6Na8Ad769SSupmRi6OIotHexhrWZClZmKvRsaYfeHvaPXhhRBen1zI2trS2USmWJszTJycklzuYQEZHh69qsAbZN7oan2zmiUACHYu/grzNJWHMoDmNWHsaHm84gr6BQ7jLJwOg13KhUKvj6+iIiIqLY9IiICAQEBOhzVSWEhobCw8MDfn5+VboeIiKqGEtTY8x7zht/TOyCb4e3w8dPtcaIjs4AgLCoWLzw/UEkp2fLXCUZkgr3lsrIyMDly5cBAO3atcPcuXMRGBgIa2trODs7Izw8HMHBwViyZAn8/f2xdOlSfP/99zhz5gxcXFyq5E38lz5bWxMRUdXZfiYJU345gYycfNhZqLH4RV/4uljJXRbJRJ+/3xUON7t370ZgYGCJ6SEhIQgLCwPwYBC/L774AomJifD09MS8efPQrVu3xypUVww3RES1xz+3MjD2pyO4nJwBY6WEDwe1xogOzpVqp0m1m6zhpqZjuCEiql0ycvLx1q8n8OfpB+01n2vvhFlPtYbGWClzZVSdauw4N3JimxsiotrJXG2ERS/44J0nW0IhAeGH4/Hc0gNITL0vd2lUS/HMDRER1Rh7L97C/9YcQ+r9PNiaq7DoBV90cLOWuyyqBjxzQ0REBqlb8wb4Y2IXtGxogZSMXIz4/gBWRsfCwP4PpyrGcENERDWKs40p1r0WgIFeDsgvFPhg4xm8/dtJZOfxTuOkG4YbIiKqcUxVRljwvDfe6/egHc6vR67juaUHkJTK8XDo0Qwm3LBBMRGRYZEkCa92c8eKlzqgvqkxTsTfw4Bv9+Fw7B25S6Majg2KiYioxou7nYVXfzqM80npMFZKmDXIUzvKMRkGNigmIqI6pagdTv82jZBXIPDe+lOYvv4UcvN5XyoqieGGiIhqBVOVERaOaIe3+rSAJAGrDsbhhWUHcCs9R+7SqIZhuCEiolpDkiRMCGyKH0Law0JthJjYu3hq4T6cvpEqd2lUgxhMuGGDYiKiuqNnS3tsmNgZTWzNkJCajWcWR2Hj8Rtyl0U1BBsUExFRrZV6Pw+T1x7Drgu3AADje7jjzaAWUCp4483ahg2KiYiIAFiaGGNZiB/GdXcHACze/Q/GrDyM9Ow8mSsjOTHcEBFRraZUSHi3b0t887w31EYK7DyfjKcXRSE2JVPu0kgmDDdERGQQnvJ2xK/j/NGwngaXkzPwVOh+7LuUIndZJAOGGyIiMhhtG9fHpomd4e1UH6n38xDy4yGE7b/KG2/WMQw3RERkUOzqabD21U4Y4uOIgkKBD/84i/c44F+dYjDhhl3BiYioiMZYia+HeeG9fi0hScCaQ/EI/uEg7mTmyl0aVQN2BSciIoO28/xNTFpzHBk5+XCyNsEPIX5obm8hd1n0EHYFJyIi0lHPlvZY/1oAnK1NEX/nPoYsisKu88lyl0VViOGGiIgMXjN7C2yY0Bkd3ayRkZOPl1fEYFnkFTY0NlAMN0REVCdYm6nw08sd8byfEwoFMHvLOUxbx4bGhojhhoiI6gyVkQJzhrTBjAEeUEjA2ph4jFx+EHfZ0NigMNwQEVGdIkkSXu7ihh9C/GCuNsKBK3fw9KL9+OdWhtylkZ4w3BARUZ0U2NIOv48PgGN9E8TezsLTofux/zJHNDYEBhNuOM4NERFVVIuGFtg4sTN8nOsjLTsfIcsPYc2hOLnLosfEcW6IiKjOy84rwDu/n8TG4wkAgDFd3fBu31ZQKiSZK6s7OM4NERGRHmmMlZj/nDem9G4OAPg+8irG/nQEmTn5MldGlcFwQ0REhAcNjSf1aoYFw9tBZaTAjnM38ex30UhKzZa7NKoghhsiIqL/GOTlgDVjOsHGTIUzCWkYHLofZxJS5S6LKoDhhoiI6CG+LlbYMKEzmtqZIyktG8OWRGPn+Ztyl0U6YrghIiIqhZO1KX4fH4DOTW2QlVuAV1YcxoqoWLnLIh0w3BAREZXB0sQYYaM74Ln2D27ZMHPTGcz64wwKCg2qo7HBYbghIiIqh7FSgc+eaYO3n2wBAPhxfyzG/XwEWbnsSVVTMdwQERE9giRJeK1HUywc8aAnVcTZm3h+6QEkp7MnVU1kMOGGIxQTEVFVG9DWAWvGdIS1mQonr6fi6dAoXLqZLndZ9BCOUExERFRBsSmZGB0Wg6spmbDQGOG7YF8EuNvKXVatxhGKiYiIZORqa4Z14wPQ3sUK6f/ek2rd0etyl0X/YrghIiKqBCszFX5+pSP6t22EvAKBKb+cwIK/L8HALojUSgw3RERElaQxVuLb59thbLcmAIC5ERfx7u+nkFdQKHNldRvDDRER0WNQKCRM69cKHw/2hEICwg/H4+UVh5HBm27KhuGGiIhID4I7uWBpcHuYGCux9+ItPLskGjfT2FVcDgw3REREevKEhz3WvtoJtuYqnE1Mw5BFUbjIruLVjuGGiIhIj7yc6mPd+M5oYmuGG/fuY+jiKBy4clvusuoUhhsiIiI9c7Z5cNNNXxcrpGXnY+QPh/DHiQS5y6ozGG6IiIiqgJWZCqte6YgnWzdEbkEh/rfmGL7fe4VdxasBww0REVEV0RgrEfqCD0YFuAIAPtl6DrP+OMu7ilcxhhsiIqIqpFRImDnQA+/1awkACIuKxcTVR5GdVyBzZYaL4YaIiKiKSZKEV7u5Y8HwdlApFfjzdBKCfziIe1m5cpdmkBhuiIiIqskgLweseKkDLDRGiIm9i2cWRyH+TpbcZRkcgwk3oaGh8PDwgJ+fn9ylEBERlcnf3Qa/jQtAI0sN/rmViSGLo3AmIVXusgyKJAys2bY+b5lORERUVRJT72P0jzE4n5QOM5USS4J90bVZA7nLko0+f78N5swNERFRbdLI0gS/jPOHfxMbZOYWYPSPMfj9yHW5yzIIDDdEREQyqacxRthLfhjk5YD8QoGpv57Awp2XOBbOY2K4ISIikpHaSIn5z3ljbPcmAICvtl/Ee+tPI7+gUObKai+GGyIiIpkpFBKm9W2Fj55qDUkC1hyKw6s/HUFmTr7cpdVKDDdEREQ1xEh/Vyx50RdqIwV2nk/G80sPIDk9W+6yah2GGyIiohqkT+uGWPNqJ1ibqXDqRiqGLIrC5eQMucuqVRhuiIiIahgfZyv8Pj4ALjamuH73Pp5ZHIWDV27LXVatwXBDRERUA7nZmmHd+AC0c66P1Pt5CP7hEDYevyF3WbUCww0REVENZWOuxpoxndDXsyFyCwrx+trj+PZvdhV/FIYbIiKiGkxjrEToCB+82u1BV/GvIy7izV9PIjefXcXLwnBDRERUwykUEt7r1wofD/aEUiHh96PXMXI57ypeFoYbIiKiWiK4kwt+CGkPc7URDly5g6cXReHKLfakehjDDRERUS3So4Udfh8fAMf6JriakonBofux71KK3GXVKAw3REREtUyLhhbYMKEz2jnXR1p2PkJ+PIQVUbFsaPwvhhsiIqJaqIHFg55UQ9o5oqBQYOamM5i27hRy8gvkLk12DDdERES1lMZYia+f9cJ7/VpCIQFrY+Lx/NIDuJlWt2/ZUCPDjZGREby9veHt7Y1XXnlF7nKIiIhqLEmS8Go3dywf5Yd6GiMci7uH/gv21ekRjSVRAy/Q2draIiWlco2j0tLSYGlpidTUVNSrV0/PlREREdVcsSmZGPfzEZxPSodSIeGdJ1tgTNcmkCRJ7tIeSZ+/3zXyzA0RERFVnKutGda9FoCnvB1QUCjw6dbzGLPyCO5m1q3xcCocbvbu3YuBAwfCwcEBkiRhw4YNJeZZtGgR3NzcoNFo4Ovri8jIyAqtIy0tDb6+vujSpQv27NlT0RKJiIjqLFOVEeY/543Zgz2hUiqw49xN9FsQieh/6s5lqgqHm8zMTHh5eWHhwoWlPh8eHo7Jkydj+vTpOHbsGLp27Yq+ffsiLi5OO4+vry88PT1LPBISEgAAsbGxOHLkCJYsWYKRI0ciLS2tkm+PiIio7pEkCS92csH6CQFoYmuGxNRsjFh2AHP+PFcnelM9VpsbSZKwfv16DB48WDutY8eO8PHxweLFi7XTWrVqhcGDB2POnDkVXkffvn3x8ccfo3379qU+n5OTg5ycHO3faWlpcHJyYpsbIiIiAJk5+Zj1xxn8cvg6AKCFvQW+HNYWbRvXl7ewh9TYNje5ubk4cuQIgoKCik0PCgpCVFSUTsu4e/euNqxcv34dZ8+eRZMmTcqcf86cObC0tNQ+nJycKv8GiIiIDIyZ2ghfDPXCd8G+sDFT4cLNdAwO3Y/Zm88iMydf7vKqhF7DTUpKCgoKCmBvb19sur29PZKSknRaxrlz59C+fXt4eXlhwIAB+Oabb2BtbV3m/NOmTUNqaqr2ER8f/1jvgYiIyBD1ad0Q29/ohkFeDigUwLJ9V9Hr6z3YePyGwY1sbFQVC324y5kQQuduaAEBATh16pTO61Kr1VCr1RWqj4iIqC6yMVdjwfB2eNrHER9sPI34O/fx+trjWL7vKt7s0wJdmtrWim7jj6LXMze2trZQKpUlztIkJyeXOJtDRERE8ghsYYeIN7rjzaDmMFMpceJ6KoJ/OIRnFkfhr9NJKCis3Wdy9BpuVCoVfH19ERERUWx6REQEAgIC9LmqEkJDQ+Hh4QE/P78qXQ8REZEh0BgrMbFnM+x+KxCjO7tCZaTA0bh7GPfzEXT9fCe+3n4BF5LSa+Ulqwr3lsrIyMDly5cBAO3atcPcuXMRGBgIa2trODs7Izw8HMHBwViyZAn8/f2xdOlSfP/99zhz5gxcXFyq5E38F0coJiIiqrjktGysiI7F6oNxuJuVp53uWN8EHZtYo42jJVxtzWBnoUYDCzXsLDR6Xb8+f78rHG52796NwMDAEtNDQkIQFhYG4MEgfl988QUSExPh6emJefPmoVu3bo9VqK4YboiIiCovO68A28/exKbjN7D3Ugpy8wtLzOPjXB/rXuus1/XKGm5qOoYbIiIi/bifW4BDsXdw5NpdnE9MQ9ydLKRk5KK9ixWWBPvqdV36/P2ukt5ScggNDUVoaCgKCgx/5EUiIqLqYKJSonvzBujevIHcpVQIz9wQERGR7GrsCMVEREREcmO4ISIiIoPCcENEREQGxWDCDQfxIyIiIoANiomIiKgGYINiIiIiojIw3BAREZFBYbghIiIig8JwQ0RERAbFYMINe0sRERERwN5SREREVAOwtxQRERFRGRhuiIiIyKAYyV2AvhVdZUtLS5O5EiIiItJV0e+2PlrLGFy4SU9PBwA4OTnJXAkRERFVVHp6OiwtLR9rGQbXoLiwsBAJCQno2bMnDh8+rNNr/Pz8EBMT88j50tLS4OTkhPj4eDZW/peun51cqru+qlqfvpb7OMupzGsr8hoeh5XH47B61sfj8P9VxXEohEB6ejocHBygUDxeqxmDO3OjUCjQuHFjGBkZ6fyBK5XKCm2cevXq8Uv1XxX97KpbdddXVevT13IfZzmVeW1FXsPjsPJ4HFbP+ngclqTv4/Bxz9gUMdgGxRMmTKiSeam4mv7ZVXd9VbU+fS33cZZTmdfyOKweNf2z43Gov+XwONSNwV2WqkocQ4dIfjwOieRX049Dgz1zUxXUajVmzpwJtVotdylEdRaPQyL51fTjkGduiIiIyKDwzA0REREZFIYbIiIiMigMN0RERGRQGG6IiIjIoDDc6MnmzZvRokULNGvWDMuWLZO7HKI66emnn4aVlRWGDh0qdylEdVJ8fDx69OgBDw8PtG3bFr/++qssdbC3lB7k5+fDw8MDu3btQr169eDj44ODBw/C2tpa7tKI6pRdu3YhIyMDK1aswG+//SZ3OUR1TmJiIm7evAlvb28kJyfDx8cHFy5cgJmZWbXWwTM3enDo0CG0bt0ajo6OsLCwQL9+/bBt2za5yyKqcwIDA2FhYSF3GUR1VqNGjeDt7Q0AsLOzg7W1Ne7cuVPtdTDcANi7dy8GDhwIBwcHSJKEDRs2lJhn0aJFcHNzg0ajga+vLyIjI7XPJSQkwNHRUft348aNcePGjeoonchgPO5xSESPT5/H4eHDh1FYWAgnJ6cqrrokhhsAmZmZ8PLywsKFC0t9Pjw8HJMnT8b06dNx7NgxdO3aFX379kVcXByAB3cyfZgkSVVaM5GhedzjkIgen76Ow9u3b2PkyJFYunRpdZRdkqBiAIj169cXm9ahQwcxbty4YtNatmwp3n33XSGEEPv37xeDBw/WPjdp0iSxatWqKq+VyFBV5jgssmvXLvHMM89UdYlEBq+yx2F2drbo2rWrWLlyZXWUWSqeuXmE3NxcHDlyBEFBQcWmBwUFISoqCgDQoUMHnD59Gjdu3EB6ejq2bt2KPn36yFEukUHS5Tgkoqqly3EohMCoUaPQs2dPBAcHy1EmAMBItjXXEikpKSgoKIC9vX2x6fb29khKSgIAGBkZ4euvv0ZgYCAKCwvx9ttvw8bGRo5yiQySLschAPTp0wdHjx5FZmYmGjdujPXr18PPz6+6yyUySLoch/v370d4eDjatm2rba/z008/oU2bNtVaK8ONjh5uQyOEKDZt0KBBGDRoUHWXRVSnPOo4ZC9FoqpX3nHYpUsXFBYWylFWMbws9Qi2trZQKpXF/jsEgOTk5BLplYiqBo9DIvnVpuOQ4eYRVCoVfH19ERERUWx6REQEAgICZKqKqG7hcUgkv9p0HPKyFICMjAxcvnxZ+/fVq1dx/PhxWFtbw9nZGVOmTEFwcDDat28Pf39/LF26FHFxcRg3bpyMVRMZFh6HRPIzmONQtn5aNciuXbsEgBKPkJAQ7TyhoaHCxcVFqFQq4ePjI/bs2SNfwUQGiMchkfwM5TjkvaWIiIjIoLDNDRERERkUhhsiIiIyKAw3REREZFAYboiIiMigMNwQERGRQWG4ISIiIoPCcENEREQGheGGiIiIDArDDRERERkUhhsiIiIyKAw3REREZFAYboiIiMigMNwQERGRQfk/j9kKkaBE6cYAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "u, s, vh = np.linalg.svd(A, full_matrices=True)\n", + "plt.figure()\n", + "plt.plot(s)\n", + "plt.title('The singular values of the forward operator A')\n", + "plt.show()\n", + "plt.figure()\n", + "plt.loglog(s)\n", + "plt.title('A log-log plot of the singular values of the forward operator A')\n", + "plt.show()\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "id": "ad79f585", + "metadata": {}, + "source": [ + "Solving the least squares problem $\\min_x\\|Ax-b\\|_2^2$ demonstrates the ill-posedness of the problem:" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "cab55e6b", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "
" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjMAAAGdCAYAAADnrPLBAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAADAe0lEQVR4nOydd3gc1dX/v7NVvViyJcuWuzEYG9uYagOm11BCCC0vwUmA5AUCxJBCSMCQACEBQgIB8iO0AAFekpACBGy66baDAeOOO7ZcZKtLW+f3x+69c+fu3NlZaVe7I53P8/gB7Y5Gd2dn7j33nO85R9N1XQdBEARBEIRL8eR7AARBEARBEH2BjBmCIAiCIFwNGTMEQRAEQbgaMmYIgiAIgnA1ZMwQBEEQBOFqyJghCIIgCMLVkDFDEARBEISrIWOGIAiCIAhX48v3APqDeDyObdu2oby8HJqm5Xs4BEEQBEE4QNd1tLe3o6GhAR6P2v8yKIyZbdu2obGxMd/DIAiCIAiiF2zZsgUjR45Uvj8ojJny8nIAiYtRUVGR59EQBEEQBOGEtrY2NDY28nVcxaAwZlhoqaKigowZgiAIgnAZ6SQiJAAmCIIgCMLVkDFDEARBEISrIWOGIAiCIAhXMyg0MwRBEP1NLBZDJBLJ9zAIoqDxer3w+Xx9LptCxgxBEESW6ejowNatW6Hrer6HQhAFT0lJCYYPH45AINDrc5AxQxAEkUVisRi2bt2KkpISDB06lAp1EoQCXdcRDoexa9cubNiwARMnTrQtjGcHGTMEQRBZJBKJQNd1DB06FMXFxfkeDkEUNMXFxfD7/di0aRPC4TCKiop6dR4SABMEQeQA8sgQhDN6640xnSML4yAIgiAIgsgbZMwQBEEQxABj7ty5OOuss/p8nvnz52P69Ol9Pk+uIWOGIAiCyNri11s0TcM//vGPvP19wvo7uO666/Daa6/lZ0AZQAJggiAIgugD4XC4T2nFhUxZWRnKysryPYy0kGfGxWzZ04U/vvUF2nuoMBdBELllxYoVOPXUU1FWVoa6ujpcdNFF2L17N3//5ZdfxhFHHIGqqirU1NTgK1/5Cr744gv+fjgcxpVXXonhw4ejqKgIY8aMwe233w4AGDNmDADgq1/9KjRN4z/L2J0DANauXYujjjoKRUVFmDx5MhYuXGjyNrz55pvQNA0tLS38d5YtWwZN07Bx40YAQHNzMy644AKMHDkSJSUlmDp1Kp5++mnTOI4++mhceeWVmDdvHmpra3HCCSc4ukZ//etfMXXqVBQXF6OmpgbHH388Ojs7LT/r3r178Y1vfINnxU2cOBGPPvoof/+zzz7Dsccey8912WWXoaOjw/Jc7Brfc889ptemT5+O+fPn8/eB1O9ADjPF43HccsstGDlyJILBIKZPn46XX36Zv79x40Zomoa///3vOOaYY1BSUoJp06bh/fffV44tG5Ax42Luf/ML3P6fVfj3J9vzPRSCIBTouo6ucDQv/7JVtG/79u2YM2cOpk+fjiVLluDll1/Gjh07cO655/JjOjs7MW/ePCxevBivvfYaPB4PvvrVryIejwMAfv/73+Nf//oX/u///g+rV6/Gk08+yRfMxYsXAwAeffRRbN++nf8sY3eOeDyOs88+G16vFx988AEefPBB/PjHP874s/b09GDmzJl44YUXsHz5clx22WW46KKL8OGHH5qOe/zxx+Hz+fDuu+/ij3/8Y9prtH37dlxwwQX49re/jZUrV+LNN9/E2WefrfyOfv7zn2PFihX4z3/+g5UrV+KBBx5AbW0tAKCrqwsnn3wyqqursXjxYjz33HN49dVXceWVV2b8eRlOv4Pf/e53uOuuu3DnnXfi008/xUknnYQzzjgDa9euNR13ww034LrrrsOyZcuwzz774IILLkA0Gu31+NJBYSYXwzwy5JkhiMKlOxLD5BtfycvfXnHLSSgJ9H2af+CBB3DggQfitttu46898sgjaGxsxJo1a7DPPvvga1/7mul3Hn74YQwbNgwrVqzAlClTsHnzZkycOBFHHHEENE3D6NGj+bFDhw4FAFRVVaG+vl45DrtzvPrqq1i5ciU2btyIkSNHAgBuu+02nHLKKRl91hEjRuC6667jP3//+9/Hyy+/jOeeew6HHnoof33ChAn49a9/zX++8cYbba9RR0cHotEozj77bD7uqVOn2n7WGTNm4KCDDgIAk7fqqaeeQnd3N/785z+jtLQUAHDffffh9NNPxx133IG6urqMPjPg/Du488478eMf/xjnn38+AOCOO+7AG2+8gXvuuQd/+MMf+HHXXXcdTjvtNADAzTffjP333x/r1q3Dvvvum/HYnECeGRcTiycs+micSqYTBJE7li5dijfeeIPrJ8rKyviixEJJX3zxBS688EKMGzcOFRUVGDt2LIDEogwkBMbLli3DpEmTcNVVV2HBggUZj8PuHCtXrsSoUaO4IQMAhx9+eMZ/IxaL4dZbb8UBBxyAmpoalJWVYcGCBfxzMJiRwUh3jaZNm4bjjjsOU6dOxde//nU89NBD2Lt3r3Ic//u//4tnnnkG06dPx49+9CO89957ps86bdo0bsgAwOzZsxGPx7F69eqMP7NT2trasG3bNsyePdv0+uzZs7Fy5UrTawcccAD//+HDhwMAdu7cmbOxkWfGxTBjJkbGDEEULMV+L1bcclLe/nY2iMfjfNcvwxaq008/HY2NjXjooYfQ0NCAeDyOKVOmIBwOAwAOPPBAbNiwAf/5z3/w6quv4txzz8Xxxx+Pv/71r47HYXcOq3CNXLiQFWcTj5Wbgd5111347W9/i3vuuQdTp05FaWkprrnmGv45GKIhAaS/Rl6vFwsXLsR7772HBQsW4N5778UNN9yADz/8kBt+Iqeccgo2bdqEF198Ea+++iqOO+44XHHFFbjzzjuh67qyKKPqdY/Hk3KNetsIVf4bVuPx+/0px7OQYy4gY8bFkGeGIAofTdOyEurJJwceeCD+9re/YcyYMfD5Uj9Lc3MzVq5ciT/+8Y848sgjAQDvvPNOynEVFRU477zzcN555+Gcc87BySefjD179mDIkCHw+/2IxWJpx6I6x+TJk7F582Zs27YNDQ0NAJAiOmWhlO3bt6O6uhpAQgAssmjRIpx55pn4n//5HwCJBXjt2rXYb7/9+nSNgMS9MHv2bMyePRs33ngjRo8ejeeffx7z5s2zPH7o0KGYO3cu5s6diyOPPBI//OEPceedd2Ly5Ml4/PHH0dnZyY2qd999Fx6PB/vss4/yXNu3G/rKtrY2bNiwwXRMuu+goqICDQ0NeOedd3DUUUfx19977z0ccsghyt/rDyjM5GJiOvPM5M7aJQhi8NDa2oply5aZ/m3evBlXXHEF9uzZgwsuuAAfffQR1q9fjwULFuDb3/42YrEYqqurUVNTg//3//4f1q1bh9dffz1lgf7tb3+LZ555BqtWrcKaNWvw3HPPob6+HlVVVQASmpDXXnsNTU1NyvCL3TmOP/54TJo0Cd/85jfxySefYNGiRbjhhhtMvz9hwgQ0NjZi/vz5WLNmDV588UXcddddKccwD8rKlSvx3e9+F01NTWmvXbpr9OGHH+K2227DkiVLsHnzZvz973/Hrl27lEbSjTfeiH/+859Yt24dPv/8c7zwwgv82G984xsoKirCxRdfjOXLl+ONN97A97//fVx00UVKvcyxxx6LJ554AosWLcLy5ctx8cUXw+s1e+6cfAc//OEPcccdd+DZZ5/F6tWr8ZOf/ATLli3D1VdfnfYa5RIyZlwMeWYIgsgmb775JmbMmGH6d+ONN6KhoQHvvvsuYrEYTjrpJEyZMgVXX301Kisr4fF44PF48Mwzz2Dp0qWYMmUKfvCDH+A3v/mN6dxlZWW44447cNBBB+Hggw/Gxo0b8dJLL/HQz1133YWFCxeisbERM2bMsByf3Tk8Hg+ef/55hEIhHHLIIbjkkktw6623mn7f7/fj6aefxqpVqzBt2jTccccd+OUvf2k65uc//zkOPPBAnHTSSTj66KNRX1/vqJhgumtUUVGBt99+G6eeeir22Wcf/OxnP8Ndd92lFCgHAgFcf/31OOCAA3DUUUfB6/XimWeeAQCUlJTglVdewZ49e3DwwQfjnHPOwXHHHYf77rtPOb7rr78eRx11FL7yla/g1FNPxVlnnYXx48ebjnHyHVx11VW49tprce2112Lq1Kl4+eWX8a9//QsTJ05Me41yiaZnK3evgGlra0NlZSVaW1tRUVGR7+FkjQsf+gDvfdGMS44Yi599ZXK+h0MQBBKpvRs2bMDYsWN73QGYyB6apuH555/Pa3Vjwh67Z8bp+k2eGRcTJc8MQRAEQZAx42bilM1EEARBEJTN5GbIM0MQBGHPIFBSECDPjKuJUzYTQRAEQZAx42aiMfLMEARBEAQZMy7G8MyQMUMQBEEMXsiYcTFUZ4YgCIIgyJhxNbw3U4yMGYIgCGLwQsaMi2HtDMgzQxAEQQxmyJhxMUwATNlMBEEMZubPn4/p06fnexg4+uijcc011/Tr39Q0Df/4xz/6fJ4xY8bgnnvu6fN58gUZMy4mTp4ZgiCySFNTE66++mpMmDABRUVFqKurwxFHHIEHH3wQXV1d+R5er3nzzTehaRpaWloK8nz9yWOPPcabe4osXrwYl112Wf8PKEtQ0TwXE6UKwARBZIn169dj9uzZqKqqwm233YapU6ciGo1izZo1eOSRR9DQ0IAzzjjD8ncjkQj8fn8/jzj7hMNhBAKBfA8jLwwdOjTfQ+gT5JlxMXHKZiIIIktcfvnl8Pl8WLJkCc4991zst99+mDp1Kr72ta/hxRdfxOmnn86P1TQNDz74IM4880yUlpbyztMPPPAAxo8fj0AggEmTJuGJJ57gv7Nx40ZomoZly5bx11paWqBpGt58800Ahsfjtddew0EHHYSSkhLMmjULq1evNo31V7/6Ferq6lBeXo7vfOc76OnpUX6ujRs34phjjgEAVFdXQ9M0zJ07F0AiLHTllVdi3rx5qK2txQknnJB2nHbnA4B4PI4f/ehHGDJkCOrr6zF//nzb6/7mm2/ikEMOQWlpKaqqqjB79mxs2rSJv293Ta3OJXuMli1bBk3TsHHjRrz55pv41re+hdbWVmiaBk3T+PjkMNPmzZtx5plnoqysDBUVFTj33HOxY8cO/j4L7T3xxBMYM2YMKisrcf7556O9vd328+YKMmZcDHlmCMIF6DoQ7szPP4el/Jubm7FgwQJcccUVKC0ttTxG0zTTzzfddBPOPPNMfPbZZ/j2t7+N559/HldffTWuvfZaLF++HN/97nfxrW99C2+88UbGl+yGG27AXXfdhSVLlsDn8+Hb3/42f+///u//cNNNN+HWW2/FkiVLMHz4cNx///3KczU2NuJvf/sbAGD16tXYvn07fve73/H3H3/8cfh8Prz77rv44x//mHZsTs5XWlqKDz/8EL/+9a9xyy23YOHChZbnikajOOusszBnzhx8+umneP/993HZZZfxa53NawoAs2bNwj333IOKigps374d27dvx3XXXZdynK7rOOuss7Bnzx689dZbWLhwIb744gucd955puO++OIL/OMf/8ALL7yAF154AW+99RZ+9atf9WpsfSWnYaa3334bv/nNb7B06VJs3749pQ373Llz8fjjj5t+59BDD8UHH3zAfw6FQrjuuuvw9NNPo7u7G8cddxzuv/9+jBw5MpdDdwXkmSEIFxDpAm5ryM/f/uk2IGBtnIisW7cOuq5j0qRJptdra2u51+OKK67AHXfcwd+78MILTUbGhRdeiLlz5+Lyyy8HAMybNw8ffPAB7rzzTu7JcMqtt96KOXPmAAB+8pOf4LTTTkNPTw+Kiopwzz334Nvf/jYuueQSAMAvf/lLvPrqq0rvjNfrxZAhQwAAw4YNS9GLTJgwAb/+9a/5zxs3brQdW7rzHXDAAbjpppsAABMnTsR9992H1157DSeccELKudra2tDa2oqvfOUrGD9+PABgv/324+/feeedWbumABAIBFBZWQlN01BfX6887tVXX8Wnn36KDRs2oLGxEQDwxBNPYP/998fixYtx8MEHA0h4oR577DGUl5cDAC666CK89tpruPXWWzMeW1/JqWems7MT06ZNw3333ac85uSTT+YW4vbt2/HSSy+Z3r/mmmvw/PPP45lnnsE777yDjo4OfOUrX0EsFsvl0F2B4ZmhbCaCIPqO7H356KOPsGzZMuy///4IhUKm9w466CDTzytXrsTs2bNNr82ePRsrV67MeBwHHHAA///hw4cDAHbu3Mn/zuGHH246Xv45E+TP0VfEsQOJ8bOxywwZMgRz587FSSedhNNPPx2/+93vsH37dv5+Nq9pJqxcuRKNjY3ckAGAyZMno6qqyvS3x4wZww0ZwP6z5pqcemZOOeUUnHLKKbbHBINBpYXY2tqKhx9+GE888QSOP/54AMCTTz6JxsZGvPrqqzjppJOyPmY3wevMUNE8gihc/CUJD0m+/rYDJkyYAE3TsGrVKtPr48aNAwAUFxen/I5VOEo2hnRd5695PB7+GiMSiVgPWxATs9+P52jTJn+OTMZphSyE1jTNduyPPvoorrrqKrz88st49tln8bOf/QwLFy7EYYcdxn9fRLymMn0de7q/Ib+e6WfNJXnXzLz55psYNmwY9tlnH1x66aUmq27p0qWIRCI48cQT+WsNDQ2YMmUK3nvvPeU5Q6EQ2traTP8GItTOgCBcgKYlQj35+KdY9GRqampwwgkn4L777kNnZ2evPuZ+++2Hd955x/Tae++9x8MmLFtG9DyIIttM/o4oRQCQ8rMMy1By4tF3Ms5MzueEGTNm4Prrr8d7772HKVOm4C9/+QuA9Ne0t2NPN+7Jkydj8+bN2LJlC39txYoVaG1tVf7tfJNXY+aUU07BU089hddffx133XUXFi9ejGOPPZa7M5uamhAIBFBdXW36vbq6OjQ1NSnPe/vtt6OyspL/E11lAwVd1412BmTMEATRR+6//35Eo1EcdNBBePbZZ7Fy5UqsXr0aTz75JFatWgWv12v7+z/84Q/x2GOP4cEHH8TatWtx99134+9//zsXmBYXF+Owww7Dr371K6xYsQJvv/02fvazn2U8zquvvhqPPPIIHnnkEaxZswY33XQTPv/8c9vfGT16NDRNwwsvvIBdu3aho6NDeayTcWZyPjs2bNiA66+/Hu+//z42bdqEBQsWYM2aNdxgSHdNZSZMmIDGxkbMnz8fa9aswYsvvoi77rrLdMyYMWPQ0dGB1157Dbt377asH3T88cfjgAMOwDe+8Q3897//xUcffYRvfvObmDNnTtbDcllD7ycA6M8//7ztMdu2bdP9fr/+t7/9Tdd1XX/qqaf0QCCQctzxxx+vf/e731Wep6enR29tbeX/tmzZogPQW1tb+/QZColoLK6P/vEL+ugfv6Afccdr+R4OQRBJuru79RUrVujd3d35HkrGbNu2Tb/yyiv1sWPH6n6/Xy8rK9MPOeQQ/Te/+Y3e2dnJj1PN5/fff78+btw43e/36/vss4/+5z//2fT+ihUr9MMOO0wvLi7Wp0+fri9YsEAHoL/xxhu6ruv6G2+8oQPQ9+7dy3/n448/1gHoGzZs4K/deuutem1trV5WVqZffPHF+o9+9CN92rRptp/tlltu0evr63VN0/SLL75Y13VdnzNnjn711VenHJtunJmc78wzz+TvyzQ1NelnnXWWPnz4cD0QCOijR4/Wb7zxRj0Wi/Fj0l1T+bt455139KlTp+pFRUX6kUceqT/33HMp1+973/ueXlNTowPQb7rpJl3XdX306NH6b3/7W37Mpk2b9DPOOEMvLS3Vy8vL9a9//et6U1MTf/+mm25Kuea//e1v9dGjR1t+VjvsnpnW1lZH67em6w5z9/qIpmkp2UxWTJw4EZdccgl+/OMf4/XXX8dxxx2HPXv2mLwz06ZNw1lnnYWbb77Z0d9ua2tDZWUlWltbUVFR0ZePUTCEo3Hs87P/AAAaKovw3vXH5XlEBEEAQE9PDzZs2ICxY8eiqKgo38MxEY/riOs6fN68KwwIgmP3zDhdvwvqjm5ubsaWLVu4en3mzJnw+/2mHP3t27dj+fLlmDVrVr6GWRCIoSXSzBAE4YT1uzuxqqkd0RhlQBIDi5xmM3V0dGDdunX85w0bNmDZsmUYMmQIhgwZgvnz5+NrX/sahg8fjo0bN+KnP/0pamtr8dWvfhUAUFlZie985zu49tprUVNTgyFDhuC6667D1KlTeXbTYCUmONRIM0MQhBNC0Rjiuo5ITIfPXgJDEK4ip8bMkiVLTIV95s2bBwC4+OKL8cADD+Czzz7Dn//8Z7S0tGD48OE45phj8Oyzz5ry1n/729/C5/Ph3HPP5UXzHnvssbRitIEOeWYIgsgYnf2H5gxiYJFTY+boo4+GnSTnlVdeSXuOoqIi3Hvvvbj33nuzOTTXIxoz5JkhCMIJbKboH6UkQfQfBaWZIZxj9sxQ/JsgiPTo0n8JYqBAxoxLIc8MQRQ2/ZQomhFsTIU4NmLwko37kYwZlyIKgEkzQxCFA9PzhcPhPI/EjLhgkC1DFBKscJ/cHiETcqqZIXJHLGaemOJxHR6Ps9LlBEHkDp/Ph5KSEuzatQt+v5/3y8k3cV2HHk0YWKGQFz0aNesl8ouu6+jq6sLOnTtRVVXVp8QeMmZcSkzaWkXjOgJkzBBE3tE0DcOHD8eGDRuwadOmfA+Ho+s6drb0AABirQEUBwZ3RihROFRVVSkbTjuFjBmXEpNEv6SbIYjCIRAIYOLEiQUVauoMR3Hp84mmhdefsh+OH1uX5xERRCK0lI1SK2TMuBS5gGcio4l2WgRRKHg8noJqZxCKR/BleyK01BUvrLERRF8pjGAukTFyOjZ5ZgiCsEOcMyLUzoAYYJAx41Lk0jKU0UQQhB2izi4SJWOGGFiQMeNSyDNDEEQmUAsUYiBDxoxLiVtkMxEEQaiICuUcwhRmIgYYZMy4FHFiAsx1ZwiCIGREz0wkSvMFMbAgY8alpNaZoZ0WQRBqotTPjRjAkDHjUmSNDGlmCIKwQ5wjKMxEDDTImHEpsvFCmhmCIOygMBMxkCFjxqXIAmDyzBAEYYfJmCHPDDHAIGPGpcgCYPLMEARhh6iTIc0MMdAgY8alpHpmaHIiCEKNSTNDYSZigEHGjEuRPTGyp4YgCEIkSmEmYgBDxoxLoWwmgiAygTQzxECGjBmXQtlMBEFkgtkzQ/MFMbAgY8alkGeGIIhMiJNnhhjAkDHjUsgzQxBEJpBmhhjIkDHjUlLaGdDkRBCEDWLGIyUMEAMNMmZcCnlmCILIhCi1MyAGMGTMuBTSzBAEkQmUzUQMZMiYcSnkmSEIIhPE0BIZM8RAg4wZl5LqmaHJiSAINaLOjjQzxECDjBmXklIBmDwzBEHYECPNDDGAIWPGpcRJM0MQRAZQajYxkCFjxqWkpmaTMVOI3Pf6Wlz08IcIR2nxIPJLLEap2cTAhYwZl0LZTO7gyQ82Y9Ha3Vi5vS3fQyEGOZSaTQxkyJhxKZTN5A5C0RgAcusT+YdSs4mBDBkzLoWymdwBa+hHO2Ei34ihaWo0SQw0yJhxKeSZcQdMK0OLB5FvYsI9GIvrKUkEBOFmyJgpUHRdR2t3RPm+bLyQZqbw0HWde2RIAEzkG3nOiJA3lxhAkDFToMz/1+eY+YuFWNVkLRyNy9lMZMwUHBGquEoUEPKGh7yFxEAip8bM22+/jdNPPx0NDQ3QNA3/+Mc/TO/ruo758+ejoaEBxcXFOProo/H555+bjgmFQvj+97+P2tpalJaW4owzzsDWrVtzOeyC4JOtrYjGdazd0WH5PnlmCh9RJ0PGDJFvUgpt0j1JDCByasx0dnZi2rRpuO+++yzf//Wvf427774b9913HxYvXoz6+nqccMIJaG9v58dcc801eP755/HMM8/gnXfeQUdHB77yla8gFovlcuh5pyeS+HxRhStYjndT3YjCIyKElijMROQbOUmAROmEFRt2d6I77L711ZfLk59yyik45ZRTLN/TdR333HMPbrjhBpx99tkAgMcffxx1dXX4y1/+gu9+97tobW3Fww8/jCeeeALHH388AODJJ59EY2MjXn31VZx00km5HH5e6WbGjMJIYbssv1dDJKZTNlMBYvbMkLFJ5BfZdqF7kpBZu6MdJ/z2bZwwuQ4PffOgfA8nI/KmmdmwYQOamppw4okn8teCwSDmzJmD9957DwCwdOlSRCIR0zENDQ2YMmUKP8aKUCiEtrY20z+30RVmnhnrCYd5ZoI+r+1xRP4Imzwz7tvpEAMLecMTIW8hIbF5TxcAYFNzZ55Hkjl5M2aampoAAHV1dabX6+rq+HtNTU0IBAKorq5WHmPF7bffjsrKSv6vsbExy6PPPT1pjBn2esCX+ApJM1N4kGeGKCRSm9OSMTOY2LC7E8fd9Sb+ulStOWX3SMiFhm7es5k0TTP9rOt6ymsy6Y65/vrr0drayv9t2bIlK2PtL3RdR1cyzBRTxLVZAaxg0pghz0zhYfLMkD6ByDPyhiccpTljMPHuut34YlcnXvpsu/IYJmsIRdw3X+XNmKmvrweAFA/Lzp07ubemvr4e4XAYe/fuVR5jRTAYREVFhemfm0hoYBI3lcpIYQWwyDNTuEQom4koIFLqzNA9Oahgol67751563pcGBbPmzEzduxY1NfXY+HChfy1cDiMt956C7NmzQIAzJw5E36/33TM9u3bsXz5cn7MQERUkiuNGfLMFDyiZ8btC8eu9hDeW7cbuk73mVtJrTPj7nuSyIx0SSWAEQ53o2cmp9lMHR0dWLduHf95w4YNWLZsGYYMGYJRo0bhmmuuwW233YaJEydi4sSJuO2221BSUoILL7wQAFBZWYnvfOc7uPbaa1FTU4MhQ4bguuuuw9SpU3l200CE3XSA2uMSkwTAlM1UeAwkzcxP/vYpXlu1E89fPgszRlWn/wWi4KCieYMbI6nExjOTnLNC0ZgjyUchkVNjZsmSJTjmmGP4z/PmzQMAXHzxxXjsscfwox/9CN3d3bj88suxd+9eHHrooViwYAHKy8v57/z2t7+Fz+fDueeei+7ubhx33HF47LHH4PV6czn0vNIVjvL/V+2eDGMm6ZmhiangCA+gOjNftnQDAHa09eR5JERvIc/M4IbVLrMzYiPJeySuJ7z9fi8ZMwCAo48+2tYtrWka5s+fj/nz5yuPKSoqwr333ot77703ByMsTJx4Zlg7A9LMFC7ipOF2AbCTiZAobOQdORkzgwu2SbZbK8Sq0D2RGPzevOcIOcY9Ix1EiJoZ1eLBPDGkmSlcTJoZl3tmuiPpxYMAlcgvZCjMNLjpTupg7J5h8R5xW3o2GTMFiNkzY5+aTZ6ZwiUcE41Sd00MMszAtgtn/mnRehxw8wJ8sqWln0ZFZAJlMw1uupOeGbuNr2jgkjFD9BlH2UwpFYDddeMNBiJCHQ+374J7khObXbjsg/V70BWO4ePNe5XHEPmDNDODGyObKb0AGABCEXelZ5MxU4CInhnVTphNTOSZKVxC4sTgsl2OSCyu85CZ7UQYZ5kQ7v2sbkXXdVz+1FJc+uclSp2iPJeQMTO4MOrMpBcAA0CPy9KzcyoAJnpHZp4Z0swUKpEBUmemJ5Jew5V4L1lwy2WT4ECgIxTFS58lCpC29URRWexPOSamk2ZmMJNJajaQSM92E+SZKUC6wg40M5JnhlKzC4/wAKkALHoKIzYTIQuruW0SHAi09xjlHFTeM3nOcPM9SWROj4OieVESABPZJJMwE3XNLlwGimfGlF1n08+HGTrkmel/OkKGMaMKObM5otifmDPcfE8SmdPlpJ0BCYCJbJJJOwNDM+OuG28wIHpmwi72nImeFjsXdUSoHkr0L+09Ef7/EWVoOvH9FPmZZyb/92QsrmPZlhbXF5V0A1wAbFdnRni+e0gATPQVk2cmTZiJNDOFy0CpM9Mddtb9m3ltyDPT/zgJM7FddyF5Zv7236046w/v4v4316U/mOgTTsorUGo2kVVEzUz6MBNlMxUqZs+MuyYGESdhT0AIM5Fnpt8Rw0zpkgaKCsiY2bKnCwCwOflfIjdEYnF+XzgWAJNnhugrPRk0miQBcOEyULpmmwTAdp4ZFmYiz0y/Y/bM2IemDWMm/3MGm+vonskt4gY5rgPxNLoqgDwzRBYwCS4dpmaTZ6bwEBd+N4eZnKZms0WUNDP9T0eP8+a0hRRmYiFJt+kz3IZ8fVVZieI94bbvhIyZAqTLQTuDqOyZIWOm4DB1zS6AXXBv6SHPTMEjCoCV2Uwx5pkpnNRs5vWj0GRuET0zgNp7R9lMRFbpcaCZYV2zWWo2ZTMVHqIXoxAWjt5iyq6z+RzMeKOFqf9pN2lm0nhmAknPjE2afX/BDGUSjeeWbqfGDIWZiGzSFUkv5mOLSsBLnpl88dPnP8P3nliqLB8vTgZuTj3tdhpmSt6D5Jnpf8xhJvuFqshHYabBRrfDMJNoCLstXEztDAoQJ3Vm2MtBP2lm8kE8ruMvH24GAOxsD6GuoijlmAFZAdhBmIk8M/2PKABWJw0k68wwz0wBzBlswSRjJrc49syIYSaXbUrIM1OAOHHr82wm8szkhbAphVEhphO8MdG4rswgKHTEEIDKmNF1nXsE3DYJDgTE1Ox0AmDumSkAbyGFmfqHFM+M4h4RX3ebZ4aMmQKkO4PU7KDfa3sckRvEEJLqoZdry9j1NSpkeiLpPYXi6+SZ6X9EAXC62lTFgcIRADMjxm0Lp9voCkdNPzt5jt22KSFjpgDpyqSdgdcIM6m0G0T2ESdflVBOXiwKoa5HbxA9hSrtj5tTOgcCTgTAKb2ZCmADRJ6Z/kF+JpVZsibPjLu+EzJmCox4XDfdRFZhJl3XBc+M8RWSd6b/CDvxzEiTgVtFwN0OPDNyGXQyrPsXU9E8pxWAC+B+ZF488szkFjk1O51IHHDfpoSMmQJDdtFbTUziS8wzozrWLbht8TOFmRS7ypQwUwG49XuDkzoz4uu67u72DW6kI00FYF3XjWymAiyaF4nptBnLIbJmhurMEDlHtqCtHnDRjTwQPDOvr9qBGb9YiNdW7sj3UBxj9swojJkB4plxUgFYXhjdNhG6mWgsnjbjTJwaCsuYiVn+P5Fd5GwmZQVgF6dmkzFTYKTcdBaLh3gfBr1e/v9u9cwsWrsbLV0RvLNud76H4pjehJkKYfHoDU5Ss+WdHi1M/YeYyQRYb2rE14oLqDeT6NWkeyZ39Co122UbEjJmCgzZHWgl1BI9M6ydQeLY/E9OvYE9aG6azEIOPDMDUQCsKhUgh5XclgnhZkS9DGAt7BXnhkJpZxCL66b7psdli6ebSA0zORAAu+wZJmOmwHBiQYv2jd+rQdOSx7o09Zc9aPJnL2TCTjQzA8YzI9aZcRpmcs936XZkY8ZqoRLnhkJpNCnfI27azLiN1DCT4jl2cYkFMmYKDKaZCdo0kBQnJq9Hg8+TsGbc6plhn1nePRQy4ZiYmm09brbwM5G229y2jFCvwkzu/KxuJNMwE68AnGdPoXyPkDGTO8gzQ/Q77IEuL/IDUExMycwfjwZomgafJ2n4uDSMwT5zt4seHvFBtzJSdN1woZcEC2Mn3FucaGZSwkwu29W5mY5QxPSzlZEiborYRinf96O8wJIBnDt6k5rttmeYjJkCg910FUWJtllWqnNm4HiTHpmB4pnpcVOYKU1xKXGyKA0kv8sBYMw4EQ4CtDD1J07CTOKcwTyF+b4fZU9MiDwzOSPFM6MsmkcCYCJLdHPPTGIB1HWk9PSRjRmvN/Fft2YzdbswzGSuM5M6btHYKXW7Z0asAOygzgzgvl2dm3EiAI4Kc4afGzP5DjNJnhm6Z3KGrJlRbXxFI6cnEnNV/S8yZgqMbinMBKQaKdyY0QaGZ4YLgN1qzFjsYETxb2nQl3zNfd9PSkVqxT0mGznkmek/ZGPGKgOSbYh8Hg3+AgkzpWpm6J7JFWxuNUKM1oUVxdfjurs2yGTMFBjdyYZgZckFEEh1CaZ4Zjya5XFugXtm3BRmSmPMsIXC69F4l2I3VsWVP1tM0f1bDjORZ6b/kDUzVqFAk2cmOV/k25iRPZokAM4dbG6tKE5sku1CkSJuCjWRMVNgdIcTNw8LMwE2nhmumfGYXs8XPZEYvvbAe7hrweqMfo91dHXTZGZuNGkRZkpOAgGvx9gJu2hiYFh5y6x0XPLCSLvs/qNDDjNZGDPMW+MTwkxxPb9zhhxWonsmd8jyBbtQpIibdExkzBQYXZHExGQKM0mTE8tm8iaNGMMzk19jZvmXrVi6aS+eXbwlo99jk5ibwkzp6swwL0zA50HAWxg74d5gacxYLJYpmhkXfZduh4WZWAFN60KbgmdGKLSZz3uSUrP7D7ZhrChSe2as7gU3FTIkY6bAYBk9pUGvshie4ZlJ/Fwompm2noS7u1Oqe2FHNBbnC3+3iwRn6cJM7H2/1yMILt0zMTCYe7pcDHtaToRSNpOLJkG305583oaUBAAodt0xUQCs8dfza8yQALg/iMd1bjgyz4xVKFJcP0qTtYjctCkhY6bAYGnKxQGv0kiJcTGf5JnJc3YC2yF2RWKWugorxJ2/rrsnRhtK05uJLRJBn2HMhF1YB4gtOKVBHzeurbQ/qZ4Zd3yPA4H25CaiqiS9HsLn8cDvET0zeQwzReie6Q/EuYp5ZqxDxYl7QdOA4mQ5CbfMxwAZMwUHW9yL/V5lMTw2MbE5qVAEwG3diUlV153vsmTRr1tczc49M5qrPTPs+yjyG0aZpcBU1szQLrvfYBWAq5OeGatwsxGa1uDxaHzOIM/MwIeFmAAjscRaJJ6cszwenvVExgzRa9jiXiJ4ZlQCYGbs+NLUmWntjli+nm3aBCGiXGJdhVurgKbVzDABsM/DtQxyryY30M2NGa9tFozsdXKLUToQYALg6lLmmVGHENic4i8AHZdsvJBnJjeIadlsLrLs3yWEIoPJZqRueo7JmCkwxMWDGSmyoI97ZpJufyYEjllMYv/4+EtMu3kB/m9JZqLc3iDWu+gKOXsI5DLbbhEBp81mihmaGVcLgIWwp9+mRkVq0Tz3fVa3wp67Ku6ZsV+oABRE4TwSAPcP4jNst/Flz7DPqyGYLCfhpuc478bM/PnzoWma6V99fT1/X9d1zJ8/Hw0NDSguLsbRRx+Nzz//PI8jzi1sMS8J+LiRIk84KZ4Zm2ym5V+2AgCWbWnJyXhFWOwe6L1nxi21ZtK1MxA9M4Zmxj0TA8Mq7GlllKWEmWhh6jfaeZgpvWcm1ZjJ3z3JxKVsU5bte+adtbvx/ac/xp7OcFbP6zb4muL3GqFim9Rsv9eDoqRnhgTAGbL//vtj+/bt/N9nn33G3/v1r3+Nu+++G/fddx8WL16M+vp6nHDCCWhvb8/jiHMHt6L9NgJg1mhSKppnlc3EFtCWrtw/0GKYSfa4qJCNF9d4ZtI0mhQ7Zht1ZtwnAGafs9jvtfUwyWEmN+3o3EwoGuOGs51mhnlrvFKYKZ+hT2a8VCYLuWU7xPzQovX49yfb8PqqnVk9r9tgc3GRIF2w3pAYoUjSzPQSn8+H+vp6/m/o0KEAEl6Ze+65BzfccAPOPvtsTJkyBY8//ji6urrwl7/8Jc+jzg18JxzwcJegfONFFanZVu5lNlm1dOVeNyN6ZpymZ7tWACx6Zix7MyVeEz0zrgwzmcKe6cNMbkzpdDNiwTxmFFjdZ6maGfUO3Yp31u7GtpbuPo1Vht1bLDyWbQEw0wqKAliZaCyO5V+2Os6+dCOGt994hm0FwF4PDzO5ZT4GCsSYWbt2LRoaGjB27Ficf/75WL9+PQBgw4YNaGpqwoknnsiPDQaDmDNnDt577z3l+UKhENra2kz/3AJPzfb7lJ6ZODdmzKnZlp6ZpDGzt1+MGWPS6LSZQES6XBpmStebiXlhAl4jM8D1AmAbzwwLM5UVFXZKZzgax9od7a6pZ5QOFs4tDXgR9CcWoGyHmT7f1or/efhDXPPssmwMmcM8MYZnJrvPPrs2dnPK/W9+ga/c+w7++t+tWf3bhYTo7ffbbHzZJiWhmSHPTMYceuih+POf/4xXXnkFDz30EJqamjBr1iw0NzejqakJAFBXV2f6nbq6Ov6eFbfffjsqKyv5v8bGxpx+hmzSI4i1VJV9uWcmGWu208yEkpNVaz+EmXrjmelxa5gpjTETEgTA+cwcCUVjfVokDPGgfWo2mwhZ6meh7uhufXEFTvjt23hzza58DyUrsA1EWZF68yO+xnRP/J50sFit39UJAPhyb3Y9Mz3cM5N5mOmht9fjzD+8a5upybxWdufd2Jz4bCu2uWfDmynGM+yz9a6yDYnXo6HITwLgjDnllFPwta99DVOnTsXxxx+PF198EQDw+OOP82M0Vq0ria7rKa+JXH/99WhtbeX/tmzJfSZPNtB1nXsqSgJe5eIRTymap+7NxCarln5Iz27rFjwzjrOZzEaPW4yZcJqieYUgANZ1HWfc+y6OufPNXjd+7BEEwHa7+Qj3zCQWpkKdBD9NCuLZAu12uDETNIwZq4JoUZVnxkF4ZVd7CIB9uKY39Ehan0wM4KcXb8YnW1rw3017lcewzZVd+Ir9zabWHsd/22108WfY2FhZpmYzAbCpzow75mOgAIwZmdLSUkydOhVr167lWU2yF2bnzp0p3hqRYDCIiooK0z83EInp3CAp8nuVxfDYTedJ0cyoBcBd4VjOb0zRM+N04ut2aXpmWLiW4vdmvJb/dgahaByrd7Rje2sPtrX0brIWjRmVhkt8rbzAPTPMuyA3Z3Qr7JkrL/Lbes64Z8YrGTMOjM7dHQljxukGxSmyADgTA5htnNp6rDdpsbiOzqRHwu5eZF6bHe0D15jp4bXLRIM3TWo2rzNTmJsSKwrOmAmFQli5ciWGDx+OsWPHor6+HgsXLuTvh8NhvPXWW5g1a1YeR5kbxNiuKNZK0czokmeG1aOxyjIRJojWHOpmorE4nzwAoMPhxNcte2ZcqJkBUvUwpqJ5earpIV5LtrvO+Bys4JbJM6MOM7HeL4U4CYaiMexMXgenmq5Ch+lCyot8tg1n+QZIy7xoHrt3wrF4VnVfoZQwk/Nnnxlx7QqjVPx+7e5F9jd3DGDPjKh783KD1yabSRAAk2cmA6677jq89dZb2LBhAz788EOcc845aGtrw8UXXwxN03DNNdfgtttuw/PPP4/ly5dj7ty5KCkpwYUXXpjvoWcddtP5PIkS+EYanaSZiZlTs209M8Lkk8tQk1xXxqlnxq1F8+RJXX7oxd5M+aoALIqre2/MGKnZ3EVtKR5MhpmCTABs/T3uag/hT4vW90upAJkdrcY1UC2CbkM0Znw2IQRWeFPOZnIS+tzVYVy3TJrIpoMZGVUZCoDD0TjfTKi+R9HzZndeNt/sbA9lPaMpHI1jR1v+jaQuKwGwZTYTCzNpQp2ZwtuUqPClPyS3bN26FRdccAF2796NoUOH4rDDDsMHH3yA0aNHAwB+9KMfobu7G5dffjn27t2LQw89FAsWLEB5eXmeR559mAFQnExvVWUpxbhnxnmdGQDYm8PiUfKk0uuieW4xZtJUvLXqzdTfmhnR67Wrl250UwVgr9ooi0jZTKrd8CPvbsADb36B7nAM3z9uYq/G1Fu+FFKLs7ko5xNRM2OXbs1uPVkz46Q57W7RmAlHUV0a6NOYGUzLwlOzHS6cYji7XRFmandozLC/GY3r2N0ZwrDyIkdjcMIVf/kvXl+1E6/Om4OxtaVZO2+m9Ag6TJ/NPcI2KW6tAJx3Y+aZZ56xfV/TNMyfPx/z58/vnwHlEbHaKgDlTjgmuYwLwTMjx66dtjNgi2XA50E4Gk/JbipU5B2L/DMzXBIC4PxkM4leL3F3nQnMw2JqfGoZb0+GmdJ4ZnYnPUTb87BjFY0Zp8Z2ocMW7fIiv23D2ZiwUAGZpWaLXr1s6mZSNTOxtMkdgNlQUXpmQsZ8ZGfMiPWQdrRm15hZs6MdsbiOJRv35NWYETfJdt5Vo2ieIAB2yeYSKIAwE2HAxZbcM2PfNdvwzKizmURvQC5d+/Kk4lSTwAy4muRuz72eGfO4Dc+MUAE4n8ZMb8NMrHqo34uAL70AWPTMWNVyYfdFPsJM2wakMZNYtMuCPvgV8wUgZjNJqdlp7sl4XMfuDuO7yuZ143VmkpqZuO5MV2Y2Zpx4ZtSfUZxvsh0SYobful0dWT1vpoihYp+iRU7iNdEzQ3VmiD4gxjYBqIvm6eY0S8eemRwKgNskr49TNz77zEO4MVP4D080FheyzqwfeksBcD+3MxAFwDv7KAAu8nscTYTlydRswDqsxoTh+eiXYzJmBrBmxur7UVUAlttQyLR0R0zzT3Y1M8kwU7FxzzipAmwOM6k8M4Ix4yA1GwCaMjBm1u1sxwfrm22PYWHeL3bmtwxAt+CZsdNVReOGZ8aoM+OOzSVAxkxBIeoTACjrRsgdcA3NjH02Uy7DTGxSYWN26o5miyU3ZlwQZhIX6fIiw0Uuwhb3QB5Ts7PimXFYZyYqFc0DrHfEbDHsj/YaMgM7zOTj3hareSA1m0md1SIi3zfZqjWj6zrfAFQU+8EiS05EwG0OjBnxdbs5pbeembmPLsaFD32AnQotmlgz7Iu8e2bE2mU2GW+8nISRmk2eGaJXiDcdYMS3++SZ6bcwU2KCqatIxJwdh5kkz0yh1icREQ1Elopsp5kJ5Mll22USAPfOmOkxCYDVuzpm4BT7vbwLstWujhkze/MQZhqIAuAOLgD2K8PSgJVnxlmYabektXJacoGhqgMjPgtFfq+g0Uj/jIgNbVXnFz1vqudO13WTwe20cF40FsfWvd2I68DONuvnKhFmTfz/5j1defVwdAmhYnvvampqthvmYwYZMwVEd0qYyXpykqt5GnVm8hhmSk4e9ZUJY8Zx1+zkw8KqgLpBM8MmR69HQ2nAuhdRWOjNlCsB8J8Wrcc/l32pfF+8ls2dYUtNVTpYlVbRM2MVmmCvBXxCjQqLhamDGzORfu2PpOu6KczUPkCMmXYxzGRTAZj3ZvJmFmaSjeBMjMA/v78RB8xfgJeXb095T1wki3xGWMPJ4ulEACx+v6pzys+s0zCT6OFWzXPiZi4W17G5ucvRuXNBd9jYJNun7xup2aSZIfpEl9BDA1B3w+YTE3MZ22SZiMZMLnfDzDPDjBnHqdlhSQDshjBT1Kghoyr7HeYuW7FoXvYmhq17u/DLF1fi+r9/pjxGnGhjcb1X378oALaNtwviwSJePVTtmQlH4xkZri8vb8LvXl3bawNob1fEtAsPR7NbAC5fcAFwkc823Tqq0MxkGmbKJDz34YY9AIBPtramvCfW1PJ5PSjinoD034mT1GwndWbk152GmUQPt8oDLc9j63bmL9RkquJtl5EYF59h9YakUCFjpoAw9AnmbtjyjcdTs9PUmYnHddPv5tIzw3ZI9ckwUzgad7R4c8+Mi8JMIUHcq4otR4Rj7Crn9pbNexI7va5wTLkod0kLT6ahJl3XTdVD7YwyUSNkV6NCrBKdSSf3G/+5HL99dQ1WNbU7/wACzCtTXWKITQdCqIkLgIPmCsCy0cd0NLzOjE1mmogcZsrkmu1MGgdWYmtmtLBFkxvAjgTAxvk6QlFLA1c0clQGkvz6DkXISGZPp+CZUYTdZCMnn7qZLosNiZ3uzeugN9Ou9lDBbTzJmCkgDHdg0jOj2GnJ8W+VZkbOJrHrMNtXZGMGcFZrhuk63JSazR5w08Kt0MyIqdnZLJondjBWiTJlF3imxoxojIiZEOni7SrPTEQqh++0iGMsrvM6Ob1Nn92avF6jakr5RO12EbCu66Y6MyycCaRubFI8MzbaCRF2zzDdl9PwMWAYB1bXuUcwksX/OgszGfNYXDcbyAzxb3ZHYpYGD/tbTOPV2h1x9PfFTDyVZ0ZOgMinZ8YkALYp42ESANt4yvZ2hnHkr1/HBQ99kKsh9woyZgqIbukBVxkpMZVmJm69oDJyGWZiQryasgDfwacTAcfjhgCv2kXGDA8z+W3CTEIoKiBUzs2WTkRsHGk1mQPmdgZA5unZ4s6ryGeflRWxmAhlz4y8q3fqKdzbFeZiyt6mdDPPzMiqYi7adrsx0xMxSgSUFfn45gewmDOkFihOq1IzI3LUkBIAzq+Zruvc8LTStRjGTGIcQX8mYaao9HPqfSSP08pLKGZSMp2iExGwOI/K3k9+bumZ/CKLXdojsTh+8rdPceuLKxwdL2bJ2m5ITKnZas/MxuZO9ETiWP5la9ZbQPQFMmYKCLkCsCrlOuYwm0kOP/RE4jkL47QJO8SSYGL86VzSokvZjZqZhGdGEWay0MwA1rHq3vBliyEodDqhZuqZ6RE8UD4hxdxKkyGGmVSeGXmBcWpciwZMc0ffjJmGqiKePl6oYaYte7rwxPsb0z6r7ckqt5oGlAa8fB4AUu+zFM+MT61/EmH3zJiaRAVbp9esrTvKnwmxGi8jJczkU+usUs4tGS9WxpL8mpX2Q/QOMa2fExGw2TNjH2Zi1Y2/2NWRtY3MHf9ZhWcWb8FDizYoNUOMSCzOv/sSvy9NBeD0GxLAuLbRuI49echKVEHGTAEhqs4BoZ2BIsxk1Jmxdh2K/YHYsbkKNbGHqrzIxzN8VA86Q1xsWX+WUDReUNa+FYZmxqt86MWieWzhALInAhY9M6rdMgs/scU7U2OGfT9MF2SXlWXquOtXeWbM94PTUgGiAbO7s3cp5ttamTFTjNLk9ch2RtPaHe1YtHZXn8/zq/+sws//+TleXt5ke5zYl0nTNLMxI31HxpyR/C4dhpmYZmZMTWaemR3t9vcnM5SZ4dvbbKbEz6lzmvyalRZH9IQPKw8mxu3AmBHDo6oQL3t29q0vh8+joSscw/YsdOb+z2fb8ad3NvCf03k3xbBgUcCjzJAFBIM3TZ0Z0ZhUpabnAzJmCgieOSK3M0gTZkrnmQn6vLzKZq5CTW3diYe6osiPUoeeGUOY5uG/AzgTAeaaUDSmNDxM2Uy8u6wqm8loNAlkrwqwmGas0jGw11mIINP+TLKnkNeosKln5BdKoaf3zDgzrJsFA2ZPLz0zTGPUUFWcE8+MruuY++hiXPTwR9i6t29puEzcnc5LwIS1rB+W1yMazfbNaZlhahdmisV17oUYnewt5FQzI4ZrrATA7HlhWUyGADjzMFObxfnle83KSApx75CHe2acGDOiN0JVHJR5ZiqK/RidNAT7KgLesLsTP/zrp6bX0hkz7HN7PVrSw+pgQyIIgGNxPeVY8fqrigbmAzJmCgimcSiRGk2mdM2WUrN5OEqawLjr3+fh/U9yldEkemaYgDltmElYLNmkBuQ/1NQVjuLo37yJcx54z/J9UzaTIswkembEHbNq8cgkTVjXdUcF4Nh1HFObNGYynHjkXmG8x5RN1+xEmMmZZqZXYaZeama+THqyRgjGTDZbGmzZ082/k77WFGELarpnVRT/AjB5Z1LmDKlqOPsu7cJMzZ0hxPWEQLaxuhiAcwNQNAqsBcByNhMT0jsXALMQjlWYSf5urbQ44vzDEheaWtMb/Jl4ZkoDXowfWgagbyLg7nAM//vkUnSEojhkzBBMGJY4Z7pnSGyRo2nGxsq2a7bHSM0GUp9j0evV2zYpuYCMmQJCrLYKGBOPbBk79cyEhDAT88zkogpwOBo3SpMX+flikW4X1yVkb3mEQk35FgEv29yC7a09+GSrtcAtHEuGX3zqNGT2nQV9HmiaxrNBrHZEv3hhBabfsgAbdzsTCTZ3hk1/L71nJrGrzlgzIzSoAxLFtADrukfsMvkEHZG8G5YnfqeGtRhm6o0x0xOJ8XDJiKpi3gwzmwLgj7fs5f/f2w7lQOJasrGmCwkzLQr7PACUO29VnRm7MBO7X4aUBlGRnD+cXjNxkXMiAC6y0WjIME/MiKri5PnN1ykW13mIm53fak4Rw0yscrkzz4zx95SamZBRM4wZHr31zOi6jp//czlWNbWjtiyI+y6cgdqyRFg+XYsaVYucmEX6vpiRKOr8ZAOTeeGB3lcWzwVkzBQQXRGjIRigbjSZUgFYIRQWS+qzCru58MyIk0lZkY9rftJNfN3ShMY+t5VLeM2Odpx8z9t48dPUaqLZ5uMtLSljFHFUNE/omg3AlNEk8+GGZnSFY/ho4x5H4xPTsgH1dWZjZ27u3mpmirin0LpqrLhw+oWCW/JuWC6F79QzI4aZmnthKLCQR7Hfi6oSP9fMZNWY2dzC/393L0NhgOENAYDWbvvziH2ZGKoCmil1ZhxUpWafY2h5MOPQnGgUhCwKFLJnPCjXmUmzkQlFjbpKDdyYMY9J/F5ry4LK87L7M+jLTABs8syk0auJnpneNpx84dPt+OvSrfBowL0XzMCwiiJhPre/R7rZmsJCxWLIW64sL4SKPcmwFJDGM5PlTuN9gYyZAiKlnYFi9xSXPTOK5mFi1g0PM+VAANwmCBG9Hk3wzKQxZqS6Ouxzd4dTJ9g3Vu3EqqZ2/OWjTVkbtwpxYbIyZiyL5tn0ZgLsFw/mQZGNFBWiXibx+/YT6uikZqatJ5pRNptsbKoqAJuNGbWBxxZCdk2camb6ms30pZDJpGka15hkUzMjGsByoblMEAWV6TwzogCYofqO5A2Q38a4ZjDjt7YswDcoThvIyh4O+VozbYyhmXEmABYNl+Gs2rjCmAl4PTwUZW3MGF6LuoqE0eMoNdtBNhP3OgcNz8y6XnpmXlu5AwDw7dljcfj4GgBAVXI+39uZzjNj9q6aM96k51jy3qk8rGbNDHlmCAvkbCafwuOS6pmxVqiHhaybquKEJZ8LAbColwHAU7PTNaWTBabcmLGYeJiCfuX29pz29NF1HcuEkIGVfsecmp3qHtd1nRugbNGwq+vB/oZspKj4UjpOtcCwCbWusojvsjLxzsjfj6oCsHjf+b0eG89MYhIcmdRf9CabqTsSy7hzM7teI6oTRl22PTM9kRhWbDNK9u/uwwQvCirTeVF59V/BM5MuaSClnYFN5iC7V0TPTDjmrA2EXE1XJcjldWb4wml/7rakgVcW9AmaGfN16hA8Vqp7ERCMdZ+Hh5l2tvfYzi/haNyUBae6F5kAuCTgxbihRpi3N9mkzOjfp76cv8ayP1vSeO+6Jd2bTyisqPLMsE20KiuxjYwZIh2qOjPyhBOXMhNU4ShRhMrKuLfmJMxknlTZYqFywTK6pHhukZ0xk4zT7ukM90mTkI6te7tNYQI7z0zQ57X0QogGi+GZUWsU2N+QjRQV8nHpRYg+DE2mnmZy7WQBsMpTyIwbj5a4Z9N5ZkYmjQqnFYBlnUym3hlmJI6oSixYbGFWNSnMlM+3tZmuSbY8M+kFwGwTYbRoSF/OwRz2tA8zGcZMqeD9cWJMyuEH+VrLAuBghp6Z8iIfn29Sw0yGlsiu+FtIuL+HlSfujUhMty3MKBvgqirnogC4vMjPPT+90c0wbzoLLQEQNJDpUrPNYSYWhgTUiSXsHlIlN5hSsymbibAipQJwmnYGHimbKcVtyESoXo/hlsyBZ4btltikatSZcaaZ4Z6ZAAszpU4Q4u5rdS/78zjhv5v3mn62Gku63kziwsYWjaCNALgrU89MMhzF9ABWHrBw1CiWVRzwGsZMBjspueS8KlTG3dNeuWaIdTYT88y09UTTFm0DUqv+ZloFmKdlVyb+brZTsz9O3jPsPu6LZkb0aLSlFQCrw0xy5+yUFigsNdtBmGloWTBR/NFhG4h4XOc7dnZN0nlm+D2TxutjNmYS842cmi2GvVkYy+o5NvUd83m4qNZONyOHRpXtDKSmwVwE3IuMJmZAiX3FmGGTbj5n15l5+z0ejbdvSA0XG6nZAJRlJ0xhprZQTj3lmUDGTIEglvaXw0xKl7E3jWeGCbp8muGWzKFnpkLyzKSLr3cLrljAmPisdmfihLVqe+6MGVEvA1hnCpkFwKm9mcQFIiCHmaKpiwx7bVtLj6OCgawA3D51Zckxpk6o4uRd0ktjRo63qyoAR4SwGwClZ4YZXSwLBUivCxG7fbP02eYMC+eJBfMAZD2bielljpxYC6CPnhlhp9sesjf2rATAPkUBTZVmxi7MJHpmANEItH+u93SFEY3r0DRDfC5XAebGjFxnJq1nJnGeiiK/4JmxDjOVBX22WhzuHUrer8w7Y5fRxAxpZtirPTOGABiAIQLuRVsD5sGsEj0zDktt8FpeASPVmntYU+4RFmZinhnrMJN4vUPRuGWdn3xAxkyBIBaKS81mst5lpXpmrFOzA4JnJhcVgNt6ZM+Ms6J5bLEschRmMsa9sqmtjyNWIwo5AUWxLVbmX5HNxDwXPo9m9MLxWRcpEw2RcCzuqMIt8zRMTO72rBYXlhnHivb1yphJ8cxYe5fEvkzi8bIomn3WiiIfN3zTiYDFvkzjhyW0B5l6Pli1ZGbMGJqZ7JQAWJY0gE+YXAcgEQbr7W5V1iDYLRSWAuA05RzYQmXXZ4thCIAT9w4XAafxuDJjoKY0yD0IqWEm871V5MtmmMmov2Pn8eFjSH4untFkU2uGGdbsXuoMW3ftNlKzE+fmIuAMPTPRmGEsVAmemSrH2Uzm2mWAUGIhjWdGZWDK1zvT+lW5goyZAsFUdtpnFmul67Oi2o2JmpncCoDNO8SSoLMwE1twSxyFmYxz5SrMJAo5G5ITm51nJqCoMyOnZYv/Lxeckw23dBlNXeEoNwAm1pXz11KPM4fwhpb1QTPjN9+PcghDrE8BQKlTYItMScDHG4umux/38F2pn4s0MwkziQUGWXiLF82z6BmUKTvbevBlSzc0DThuv4QxE47FTbU4Mj2fiN1iZSUAVoWm2a6bbYB4yNAuzKT0zNh/Nqb7qasIKr1g3CsibWSseiiJiBsntnlqD9kJgNUen27JO+Sk1gy799i9FNftm1gyw5l5ZtZnqJkRjVmmkwGMkFOmdWYAtfbNEACrNTOJTu3mhI9CaWlAxkyB0C0UefKkyVJiAmDjuDSp2T6vY7dkb2ATDCusVZbMZkpXNE8uElhsU+BKFJ2t3dHhSGuRKUzIWVsWxISkoWBfZ8ZrqZkRNTUMlQBYNtzEnktWMF1NWdDHwy5Wi4uc9s4WpEwmHlkAzEWjUksGsfovYLinVZqZ0qCP7yzTiYCZ2HdIaYA3I82k1szujjDC0Tg0zVis2CTsNM3YDubJm1RXjiGlAX7u3orUZc+MnSfVSgCsrACsyGaSawYxwtE4nyuYIVzq0JhhxkBdRRFPg0+pyMt6M/kkL0CaVibixqlC4Zlh18UcZrLyzJhFyPUOjBl2vzL9FWB9PTq54W72zGza05VRtW9m7JdLXdHZ89PaHUn5rkWsjBlVs8loigA4daPWGY7xOkjMQCuUjCYyZgoE7g4MiAWw7G861s7Ap2h7EBYWGWbMhKLxrLcLSPHMBJxpEuRsJjvNjDhhhWNxbHBYLTcTmJBzxqgq7i3qtvB6WLYzEMYsdsxmqLJHZINP7IZthViWny8uFt9nl5TmP6wX2UypgnTV/Wje0al2w8x4KAv6jJ1lGuOa6WNqSgOoSS6qmWQzMeNvWHmQG5eligW2NzCN1YxRVQCMhb83upl4XOehHWa42e28O6zCTAqRtlw13NDMWC+s7Lr7PBpPgXYantvhyDMjhZkyzmYSPDM95lAPS50uS+OZYZ7D4kDimPrKZK0ZO89M0rioLQ/y+cpq09YlbSaGJdPbY3Edm5qdz13MMyeGmACjlYOu2wvFuyTvKgBls8moLAC2CKEzQ9Hn0bgeqlAymsiYKRDkgnmATWq2FP9WZjMJi25Z0Md3ZelqE2SKvEPkRfMyrDNTpAgzRWNxPhmy7r2rchBqYrvs6Y1VRsjLxjMjhpl6LMJMQcEzwxZSeVcmn9+pZ6ahqki4zlZhJnM1aeaZyaQGinxPqkTM4ai5po5KONjBPTNex9kYzK1fUxrEEOaZySDMZFwvYyct1kyxStnNBG4AN1YDMPQlvTFmROEs2/XaLVTtFmEmdQVg85wRUIQ9GaJehnmAyxw2kGUds+sqipRp8Km9mRzWmRFCHOxzx+K66TkyhZlstDjcG548Zhjvz5TeMzOkJGA01JU2PLqumyoAA4m+WeOT9WYySc9mRfHEtGzAmNMBe4O3R9rUAHYtL+RNSapXS9y4DuuFtzeXkDFTIMheCkDtcZHj39y1LBfN454ZDZqm5SzUZHTMZp4ZpwJg84OmKpon7uoOHjMEALAqByLgZcIum30PlpoZoe+SvWfGKFCl6lIsG25b02hmmKZmRHUxL05o5ZmRr60oAHYqTpUrAKsWStkTFVR5ZsKGJ8EoFZDGM8PCTGUBnjqbSTYTL5gnGDOlwjPWl1BTNBbHp1sTGivmmaktT4yxN4Xz2KKQ8ELZZx/G47qRmm0qmmevs2Oha2NBs74X5EwmwPAypNPC7RTCTOk9M3Jo0mk2U6JtCvu8orHEtURBn22LFB7qYgJgJ5qZ5PdRXRoQGuqazx2KxnkoRpzPx/dCBMwMlSrJmAEM74zdhkDWzgHqLFknnhmxDAfL/qIwE2FCFlsCxk2V2s6Ave9UM5M4j5ObvzcwAV6F5JlRKf0ZchhDZcywiarY78WUEZUAsp+evSMp5PRowAEjq2yrEbOHO6ioMyNfd0CdPSIbS+lqzYiehlKhO7l8nQ3jOHEM8xhkIk6V70mWkaXa0dnF2tk4gUS4wmlvGVOYqTTxGfZkEGayMmZ8Xg//TH2pNbN6Rzu6IzGUB33ck2J4ZjJ/xpi7fmh5UdqNR1ckxrO8yoOCZkbRzkCtmYlbPqNiKwOGUwGwGGZSaWbYvdHbMFNFsR+apgmen0jKMWVFPqEYn7ryNvPMMGNmb1dEOQ7umSn1842CLMAXn2lRNtCb9GyrGjOM6tL0zYPlORZQi8Qjcmq2RasW4/r7MCxZCJDCTIQJOeQC2LUzSHpm0mQzyUJUtoBkuwqwKpsprtu7jeW4smoXxUSQFcU+7Jss6Z3tMBPTPuxTV46yoNEs02k7g2hc5wuI3JeJHQtYGTOJa8cWjXRVgLcKizPzzETjemrKt5SSWeT3cs/Zrg5nk4+ccSIa1+ICKIeZrHQKoWiMG+WlgmbGeZgpwMNMuzudpz5bhZnYGIC+VQFm98z0UVX8WexLmIl5ZoaVG12qVQJgUbvArjegrgXENjrMmyt2RbYSkIpNJhk8rJJWM9OT/BwOPDNynZkMiuaJ/xWzfrhmJujnAmMrYbER6kocU1Xi58+sqoQBux+rSwLKelrM2Av6PHyjCfQuPZs9H2ImE8NJ82ArLaZPpcVkLVg8Zm+ZuCnhYb6g30gqIM8MIWIdZlLEv5M/pvXM8DBT4pxVOWo2KYryAHNNAzuXtLzz53VmwtaemfIiP/atrwCQWPTberL3OT7ewsS/1bZjAQRNjN9j0sWw622bmi0tMuwasF1ba3fEVji9TTBmSoUJStYnyQUJAWQ8+ah6MwHme00Oq1lNguL4SgNeI5vJcZgpyEMv4WjcccE7ucYMg2c0ZdjnSYQbM41V/DU2xl4ZM1xrEuSlFFT6tg7B+6BpxoLJ68yoKgCzQps2PXqA1BozgLOeVtFYnH/2hGaGpU87qwAcjlp7ihiyPk8UATM6BF2N3XNsCIANXQvzzqhEwMy4GFIaUHpm5LRsBtPMbNjd6dgYZ4aKfZjJxpjh60p6g9cosaAW8ps1M4lrtYs0MwOTK/7yX5x+7zsZFScDrD0z3EhJaWcge2bS92YCgMoc1JrRdZ3HUSuKfXxcTnQzqmwmObTTJsTJK0v8vAZMNuvNyFkpJTYCYKMYoddkzDB3bFhKVQbUAmB2DYaWB/nkpAo1xeI6FyeOqC6GV9iVy4uylXHMJx+nxkxKF3dxATQ+hxFmUntmOoTdqs/rySDMZHhmSgI+PhantWa2WYSZAMPL0JeMJsMAruKv1fJ6Pr0JMzHPjBFmUgmA2yQPBUOls1NlMwHWzU/FJpMMZjzb9Wba3RFGXE/8nZrSgFHTR9p4pAqAjfvUqm4LQ+WZEcNMYpsHu6J5cpgJgG337J5IjD9X1aUBoW2LtWdGnMsBoHFICTxaYnxOswqZMWMZZnLwDBnrSvqMNyfhYrHODwsztYeiWc+Q7Q1kzGSR5o4QXvx0Oz77shXfe3JpRpkSVjtpdc0I8/vpejMZYabsN5vsiRg9gMR6FypxnIi6a7b5c8i9nyZlOdSUEHK2AAAOTC5MxQ48M4HkwsyuP3vo5esOqLtmiwI95j1QFc7b2d6DaFyHz6Nxw6RUcZ1lATCAjKsAp/ZmMj6PuJuPpISZjEmQ7UBF8S8AxwJgHmZKejwMz0d6Y6E7HOPGkGzMlDnwMtjR2hXB+qT2YXoykwkQwky9cL3z8EyFYdiqQggdQihFRKWzS9XMGIapVc0muWAe4Cw12wgxJbKgyi3CTLqu87AP02UUCc+KSq+SKNhm9gJb1ZoRDZ4iRX8hwDBwRIPfrnAe2wT6PBrKgz4e5pWzCdkzzQxmRtDn5U1WNzjUzbC/yYpMijgpb2BZZ0aV8eYoNdvQzJQHjetbCLoZMmayyGdftvL/X7ppL3769+XOM0ek0v6AXc2IxM9p68xwD0Li/Vw0m2Q7Io9mzhIxCuepF4uUbCammVGEmZiOYN/hiVDTqu3ZyWha1dSOnkgc5UU+jKstM43Fvmu2eSJmD72oqWFw8aycmi1cA7bgqnQzzMipryziBlSJIj1UFgADmRszsrHpV3hmuHDQY64cChjXShT/AuD6l5Yutf5F7MvEjjdqzaT/DKwnU2nAy72GjL4aM8uSxu+YmhI+NsBcZybTlgYmz0wazQxPPw5ae2ZkA4VtdNh9o2ma0DjUQjNjEWZykpptGGTmDuUdUp0odmnEprpsbCqdXSga55sBZiTJAuBYXOf3flnQp6xdFYnF+XwpembqbdKzeZp0aQCapik9M7IWUGRsrRFqcgIz9istNDOVDsobGJqZ9OtKigDYogKwGObTNK2gMprImMkiy5PGzMRhZfB6NPztv1vx0KL1jn5XLu0PqIW9ssvYp7C05TBTLppNih1qxdh9usJ5um7UhmCGg6o3kxhmApB1EbBYX4aF7uwKYsnC6qDf7I5lVVWdFM0zroEPI6oSE4PSmLEQs3LXf0g1ofbOM6PrutC7JjF2TdMM8aDJM5N0T/vMnhnACL2x3TwzZpiLPBLTLVPLAXNfJnY8KybnJMy0MblgjKwuMd2bgPUimwmfCPeMCEvNDil0PW+s3on5//rcsgosFwBXGAJglb5NLinPSNuc1uMRjrW+JwF7z4ytMZO8t+pYC4QiY8FnY+gJG39PNCS4WFfhmWHzgKYBZQEWZjJrZsRrXlakrgAszjFBQUDN+jPtsHhG9kqZRWrPTKqXnZGpMdPaZQiOZZx4Zni9KQfZTHJqttFiwsIzU2QUAwQKo9YMGTNZhNWcOO/gRvz8tP0AALf/ZxVeW7kj7e/Kpf0Bm6J5uvl9NoHpOkxdl+WsmlwIgOVWBgxe0E2xUIWFnVFazUy32bXMRMCrm9rT7n47QlGs3WFv9CzZuAeAeWGyq08RFlKzxf9yzYxNarZcPl40OkYk+72oNDOWNVMUfbC6I6kTaib9mcIxoVaG335Xx3b2zGDzeTSwJA7mrerkYRHDC8eum6qlgdiXiV2/mgwK5y3/MuG527+hIuU9J2JWO1ZsS5yblQpglASMTDirUNgvX1iBx97biAUrmkyv67pR/XdYedDUGNbqHreqMQPY9WZiGyDjNVXto55IjC9a1mEm9TUTa8wA5urE7B5lISaPZvb2GfoW6zlDbKzJNh1ys0k2NlbQUtUmgT3Xmmb2JDKP0g4Lz4yYyQSgV56ZcUkR8PoMPTNWxowxn1s/C/G4zo04c5gpVZag67rR809OzRY1M0wfmZyLCyk9m4yZLMI8M1NGVOLiWWNwwSGjoOvAVU9/jDVpFlQrwabfocvYK8a/BWNGFKoCMDIkshpmMhsaDLZrUU184u6Ma2aUYSazwHjc0FL4vRo6QtG0RebmPbsMJ97zNt5bt9t6HJEYXlu5EwAwZ5+hxvhtiualeGakMJOVZob9f4pnRtg5pdPMWIlZVUJrq2JZmXhmTLtnseOuhYdJDjNpmpayI+6QwkxA+tRSsS8TI5OWBsuTTUP3lwwOAMqUYaewzu37DU81lFTp2eFoHBubE+0qxJA0kLgGzKgQxeDhaNwy7KISAKtaoDA9hNeTek/Khg+7PwI+jymMZQiA02tmmJA26PPweYx5wUQtlugxs+ujBIheAWOuYfMO21Rxj1Vy3EzEKmvf2P1d5DOPwS6bSQ55qrKZ5L5MIpl4ZnoiMb6xqypNDTMZ/c2snx/RgLNKLBHDi+K6kZKaragADIDCTAOR5o4QtrX2QNMSO0FN03DLmfvjsHFD0BmO4Q9vrLP9fdtsppR2Bub32SICmENSqWGm7FcAVrm72aJlVWofMMJqfq/GF8h02Uxs4vJ7PZgwLH2oqbU7gtdX7YSuA09+uMnymDdW7URHKIoRVcU4cJQh5FSFvHRdT/F4yap/u9RsVTuD4oBhzKg8M1ZpxpnsDtkuyokxw8bl82iKcJmFAFgw3mQDj90HYjp5Og2XWDCPYXhm0n+Gz9nmwsIzU+4gZKKiIxTFpqRRYm3MWFcB3rynkz+fn39p1nuxxaC6xI+gz4uyoI8/31Y7b6Mvk3mR86rEnbpZAAyoCzny6r9lQdNCX5pmgwIYBfOYh0MsbMd+j3sLpGwfVeVohtVck+KZ6TF7rKzE6IBQ/ddvXgJFY0b2iHHPTPIeVNWZ6VYIgAHDmNnU3GnbIBIw5mlvUnAsUy00m7RCNOCsNiTiJlk0aFM1M1ap2Yn7rjcNbHMFGTNZgu20xtaWmhbdb80eCwB8R6bCqjcTu+lU7Qy4Z8ajpbwHpHoIRGMmXXimqbUHy5K6ADvkVgYMJgZW6SGMLuHG52WfPRrXTROsHKcFgP2SupnVNm0N3lqzi0/qr67YaemR+tcn2wAAX5k2nLuuAcMISOkTFde5joMZMYY71iwANvVmUojuxDDTyKSR0tTWY6ljEFsZMFRGo2U2E/NqdIYtzy9iVZEaUIWZUgXP8i6702KCT9efSezLxGDZTOk8M2xzAQCTbcJMcv0TJ7B7rq4iaPIaMVSemXU7jd348m2tpmdQLDQHJIwAOxEwO/cQaceu9uaadXaA8V3KYSartGxA6GkVjSvvnx1SmAkwDIt2C8+MiF0fJfH3rY2ZpGdG6lclerrFcInq/q6rDMKjJT7jDmmBFvsyATaeGT6XpxogDZXFCPg8iMR0pQeWwYzYqmS1Yxl2f3SEopYaLLYhkYv3GQ1jhQ2JsG7Y9WZqkwxKrpmhMJNz7r//fowdOxZFRUWYOXMmFi1alO8hmWAhpqmSS3tEmt02QxbDAmbPjDjxxVI8M9bVPA0PActmShYdi8Uts3QYO9t6cPp97+CsP7yLVz5vUh4HiL1SzJNqOrGglUC1SCjsJI7PSpfD0rNX2nhmRK1SOBbHv5OGizj211clQkynH9Bgek/0EonXXpwQVZoZ695MqjCTManWlgUR8HoQ161TQ40wk7FQlCr6M8mNJoGE8cDumXTGAC+DLrnKnYSZgNRdnWWYqdTeUyj2ZWI4bTb5eVLTMqamJCUECjgvzW8F08tYeWWAREdlILXWjNhgsKUrYgqR8kymCsOAsEvPZtk2wyvNKeeqnktyajagLp7GNFViJhNg9vKprhv7HPWiMRM0Fl3AMCSCklckXbNJuWAeYMw77NyirgZQp3xbbaaAxAZlXLKA5UppoyT2ZQLUXlEWOrbyzHg8GsbWMN2MfSVgFj6SO2YzEi0dEv9v5b2zSssGrBNGxL5+fkep2Uwzk1ntqlziCmPm2WefxTXXXIMbbrgBH3/8MY488kiccsop2Lx5c76HxvlMYcywkMCu9pBt3Rm7dgaA2UiRU7OFw0w3qNgQEUh4S9gCq1pAIrE4rvzLx/zmvP7vn9la3Va7pcTfsl8srHZGAa+HfxZRN2Pl/UmXnh2NxfHm6l0AgFOn1gMA/rp0q+mYhSt2IBSNY9zQ0hSRKJsAYnHdtDCIOyDmiZDDTLKmBkgvAC4OeOHxaBjOMpqkXVtrd4TvOhtMmhnnnhmPR+MhkHSTj9X9KH4O067OIsyU4pkJmRcZQIj5ZxBmqnWYms2MGSu9jDiO3mQzrUj2BZusMmYUnhm5W/Ln2wzdDHvGmGcGACpL1J4ZlnY+vLLI9LoRZjKLO+UMSECdYbe7PbWVAZC4n9nvWHlcQ9EY96bVCUaZ3J+J1XcRM5kAMSSkyGbqtvPMSGGmpAHl83r4PCoaSXwM/lSDg2VLrpTmFrEvE6DOZupUGBEMp7oZ5km2qv4LJL5LZvBa1Q7jadkpz3Cq945tSDTNKMYqz2sxoblpqmcm/8ZMqh+sALn77rvxne98B5dccgkA4J577sErr7yCBx54ALfffnueR5fgs62G+FekusSPIr8HPZE4mlp7MDpplct0W2gcfILbPhrXwZ59eWJiKbPRuG6tmUkKgDVNQ2VxALs7QtjbFU4p8Q4Av355FT7auAdlQR/qK4uwbmcHfvTXT/Ho3IMtXZ1WuyVAzLKxnpis6qBomoZivxed4ZjJM2Pl/WFhpg27O9ETiaVMSks27UVrdwTVJX7MP2N/LPh8Bz7Z2oo1TW3YJ9kj5d/LtsKDOM48oA5aPAYgee10HcVaDAEk/m53VycCxX4AOsI9PShCCAEv4Il2AbqOCk8IpehGrKcN6CmHJ9yOcnShTO8EulsA6CiJt6MSHQiE/UDXHv53guE9GIIuVMRagA4N+5X1oLO5Fc07NgNDo4kx6Tp27mxHHfagstiHku4dQDcA6KjTd6EBu+Hv8AMtZWAxsKrwNni0KCp6vgT27OWf7YCSZqxtb0fH9lVAUY1wxXT+u4AObeceTNC2YqynBNi5ko93IjYhoHXBv6sSKErc6zUd6zBZ24aG7jiwPQToOvbDBvi0NgR2BoGSIahqWYMDtJ0YE4oBWzsA6Jgc24gZ2laU7eoAWEhTGEPV7tU4SNuN/cI9wKZmQNcxvDOEQ7WV8HYB+oYANGjG98Z/X0dk3VrM9jTj5KIW4IvUczfuacEczxo0dhQBa0QjQzedR/49AKjYuAInejpxjL4bWLk25diZHbtwqmczRm9fBSxfy3+3YcsqnO7pQnnQh45QFNFl64B4Q+J73LgVZ3l24ZjQUOCTlYCu45TYeozztKFqzQYgXM3PE4/HcWT7Z4h5dYzf2gQ0G8/Q9B07cIG3CQfuGgIsWQzoOuK6jv/xLgcAFH+yFUh6QM6MrMMh3m4MXbkSaC7nn3P8hm34lncPjmqrBd5fZLo3vhtYje5wDIEPVwJlAdPn7ukO43veLxKL7NLVfLzn9WzFQd4ONC5/H2ipRMOOdlzp3YYR4SDw1vv83Od2bsUhvg6M/3wRsLci5dpPXd+Ma317MHVvBfDaMAA6xnaE8EPfZhR3eYGFb2Lylhb82NeMfdrKgIX/AnQdN/g3IByLo/iNt4Dk4j+6uRM/8zVhWE8QePkl09+5rHMvZvpaMHZZKdBVy8dx3q5tONEXxiGfDwW+LMY+HSH80rcdZZ1e4N/P82tx1pZdmOnrwsy11UBrKT8v+8/lbS04zteGCUtLgZ3Vyvtsv90duMe/F/UdRcBfh1jcn8Dd2g50+WMY8tKTAAs5Jt8b0RnGA/5mlMW8wDOP8Pe+ub0Nx/m7MG55KbAjMWdURKL4k383vBqApx4DAIwNRfGovxn+kAd48n7EY3E87t8NDTqG/O3/AZqG8bEYnvDvgRbWEX/sXnhmfhOYeg7ygaZnWtmpnwmHwygpKcFzzz2Hr371q/z1q6++GsuWLcNbb72V8juhUAihkGEptrW1obGxEa2traiosN5N9YrFfwI+eRaRWAyffdkKDcABIyvBowvJS7uqqQ2haBzja0t4aqp8467d2Y5IVMeYmmJuScf1ONbs6IAGHROGlfHzfrEzkZI8uqaEZy9s2N2BuA6MHlKc3Ino2LKnC7G4joaqooRmQ9exvTWhxxhWHhRcsInJqjsSw94uJkQMwOcB9nSEoCPhFSkR3cLJ8bf3RBCKxlAa8KLY7+Gv90Tj6A5H4fd6UBbwQHyYgYQmpjsSg88DlPh9/P2ucBTQdRT5PWC/FYoYpfCTSejQkdxR6rqRCiwsKrqe1LZogAcFfYsTBEEMDI6fDxzxg6yesq2tDZWVlWnX74L3zOzevRuxWAx1dXWm1+vq6tDUZK3nuP3223HzzTfnfnCtW4GtH8EP4EC2zm9LPWxfIBHQ26M+1UR2zF7jNQ+Afdl5hczi8RoAzXzsWPZai/FaIzuJ4C0dzl6z8HAWAyhmhlgyylHHfg4l/0mUAyjXAESS/5IUASjSAMQBWESp/AD8bFMtRBlKkPwcSc+txs4DAIKTRwMQYP8jbIzF9y0cSa4hDo13OGY/x+M6NE0z0ms1DTE9oXnweAB/0gOnQ0NPJAYdGooD3oT3InmunmgckZjO63AAGsD/jMbPG47F0RGKwefxJOPjLLMmikg8joriAIJeD6BpaOuJoDsSR1nQn/TIadjTFUZPNI6q4kRPpd2dIfRE9US34YAP0BJZIM2dYRT5vQl3taaZxrC1pQfhaBzDK4sFl72G9bu7ENd1jKopRcDnNY8didtkzY6Et2ViXYVJU8YO64nqWLuzA16PhsnDK6WbxRiD+f8T1+/zbW3QNA0zGqsNb6VwbFsoipXb2xDweTGjsTpxPaMxLNnUAk0DJjdUYvmXbfD5PDhkzBBomoZPtraitTuK/YaXY2gy1LR2Zye+bOnBqJqSRGXq5N9q64lg8cYWBH0eHDFxqGmMm5o7sXpHB4ZXFmHqyIQ3JxrX8erKndABnDi5PuHR1TS8v74ZzZ0RzBxVjeHcS6vhnXXN2NMVxkFjhqChsli4NhpeX7UTLT1RzJ5Qi7ryItN7W1u68P4Xe1BTFsSx+9bxYS3e1IIvdnZg/xGVmDqiEut3deKDDXvQUFWCoyclx69peHfdbqzf3YUDR1Unwr7S9V+0rhnrdnZg5ughOGBkwisYjul44oOE3ODiWWPw0ca9+HxbG6Y3VuHgMQlvxl8Wb0FbTwxfnTEiKUzWsLKpDW+u3oVRNaU4bepwPgYgUeDx0fc2AgD+d854+Lxe6NDxhzfXIxbXMXfWWFSWBNDWE8GfFm2E16Ph6uP34dfhmcWbsWVvD06f1pAIWQnXCAC2tvTgyQ82oaLYj8uPnqC41zS8unIH3l/fjMPG1eCEyfWmMbL/f/KDTVi7swNnTh+RyMYU7uPl29rxzOLNGFVTisuOHMffe+mzJixatxtHThyKU6cmtII7O8K4c8FqFPm9uOWMKYCmobU7gl+8uBKapuE350zDly09uGvBapQV+XHLmVP4eG/69+do6YrgBydOwph9DkW+KHhjhiGHOHRdtwx7AMD111+PefPm8Z+ZZybrHHAeMOIgvPjZdvxj2TYcMrYGlx41no2YDRyPvrsBb63dja/OGIEzp48UTmAsJJc98V90ReL4zTkHJOPgGnQA33j4I+jQ8OD/HJhsFKnhGw9/iFhcxx++cWAy00PD3McWozMUwz3nz8CIZP+PC/7fBwjFdDz4PwdiWEVisrrtpVX4aONefO/ocTh5/8SN3BON4drnPsXmPd2Y0lCBX3x1Kl8A4jrws38ux7ItrZhYV4Y7vz49qZtIPEzXPvcJPvuyDTecui/mTKrjn2vRul2Y/++V2L+hEr8/f0bKA/3vz7bjrgWrMWv8UNx29lT+3kWPfIQNzV343XnTMXN0NXa1h3HW/e/B69Hw1o+OgaZ5+LE72ntwzgPvIxzT8cD/zOQP86bmLpzz4PvwejS8eu0clAX9CMd0nPy7RWjpiuD3F87Ao+9uwtJNe3HN8RMxd9ZY/l2J39sxd76FXR0hPPe9w7Hf8MTkuWJ7O8558H0MKy/Cmz88BgDws39+jueWbsU1x0/E/86ZgKue+Rgvf74DN56+P/7n0NEAgHe+2I2LH12CSXXleOnqo/jf2efnLyMci+O9Hx+LhuoS/N/iLfjR3z7FUfsMxZ+/fQi/U+54aSX++PZ6fGv2GNx0+v789Zc+2YbvP/0xDh9Xg6cvOwxAwlt2wPwFAIBVPzvZFIK775XVuO+NdfjmgaOTE5I1/1q6Fdc99wmOnjQUj33LGMclD7yHJZv24sGvH4iTpwwHAPz8mY/xz2Xb8LPj98MlR44DAPz4z0uwcMUO3HbqVFx46Chcev+7+HhzC/547kyctH9Cw/TByh34zuNLMHVoJf79/SNSxnDGLxZiTziMl79xJC+UCADf+s0b2NTchefOPJwvWCKL1zfj/P/3AUZUFePdK461/Hx7Wrpx+q9eh9+rYe13TzW9t/zLVty1YDVuOG0/XgKA8eqn23DlXz7GtMYq/POS2Zbnbt7difPufBMl8GLFt04GACxZtxsX/ulDjK0txX++cyS+edMriEV0fHDWcaivLMKVv34dWyLd+Ntph2Po6MRn+vfCNfj9a2vxP2NG4ZdnTeXnf295E763dimm1VfhiAvNY3j93Q24+d8r8JWG4bjv/AMBAF09EXwveT+s+fop8CY9sn/404d4p2U3fnfwdJw5fQQ/x8/vfBMbIp34v2MPR8NY8/X9wwPvYemmvXhwpvH982vz7gbMX70CpzUOx7FnHWi8/tJK/HHbelzSOBZTvzIZ77y/ETeu/RynDq/H0afP5Me98PfP8HTTZswbvw/2P25iynV94s9LsGDbDvxy6hQccFjiufLFdfzy3Zeg68DpRx6Hv3euxl83b8WPJk3CwUlD4ZHP38K6jg5Mm34Y6sYnQqsfvrsBd3y+AqcNG47Tjj/Q9HdKdR2PLFmIvV0RHL3fEZg6shLd4SjuXPAKAOCS404Cgj7oXRH8/s0FQAz439mncI3ck58uwvJYGw6adjD2nTQs5XOUdIbx4LsLoXUC3z70ZEvdDgC88uUneC62FUPGTcIJh0+wPGbpxmV4fvuXaBi2Lw48dLzpvdVLt+LJDz7BUVVDcdnBxjP82e5VeHr1FyiuGYtTZ04GAOxtasf//edt1BQFcMuBJwAA9K4w/vqvhQCA26eegq2b9uLv8Q8wrqQUmHY0P9+yRe/gk45WnDZ0JsYMq7ccZ39Q8MZMbW0tvF5vihdm586dKd4aRjAYRDAYtHwvqwzbDxi2H/61ZAkWxhtw6L77AZPGpRzWvmUt3ly9BvWeRpw58YCU93Vdx2uRMGJxHZ4JxwKsRgOAD9GNWFxHz8gjUJl8/f1YG+I6EBs1G0ju4j71dmGPHkZX/cFAXTl0XccHseZEqGXUofy4vUOCWLZhK74ITAJGJh6Q37+8Ci82D8ew8iAennsEfIII0QPg+9+YhJPvWYQVTRGMXVmMa/guBPg82ow1ejtQtz8wzCg6p7fU4Au9Df5YOTDUOJ6x0+/FRr0NB5Q2AEOMa9YS/BJb9Va0FjUA1XXYG27HlxiK6iI/tKpRpnPUVQJHHtSFv3y4GXd/0I4npyQezAUfr8cuVGH2uBqU1SQm6QCAOTP2w6PvbsTv39uLxZuj0FGOEw6aDJSkaocAIB4sR0eHF50oAYKJRa1bi6ILRYj7S4BAwmj0BooRQgBdcT/gL0JX3Icw/PD5g4AvId7z+YOIwYtQXAM8yRT0WDwpCNZQktQYqWrNsOrSqu7PYgVgpr/yaOb0cAAYVZMYc7q0+3QCYFHIbFUk0BAAyxWAnQmArfoyMWpKA9jU3KUUAbPMQqvKvwyWLhyJ6QhFY1zsCACPv7cRb6zehbIiP+69YIbp95godPJws5EjwkTWXeEYusJRlAR8XPw7fmgpivxeTBxWhlVN7Vj+ZSvqKoJGKwPh2atSZDM1JcW/DZL4F7CuACxmqvisUrOltF65bL+IUaQxVQu3wyIjC0jtg8VTs1MEwOnqzKQKgD2eRB2b9p4o2nuilj2rrKoAMwGwnFEFJDbO+w2vwHtfNGPl9jZMHVnJhc0BnyellxyQeObY/c9ai8jCW0Z1iR+VxX60dkewsbnTZKiLsErtqmwm8T2rhq1d/Bk2f0arwopRqS8TANMzEYrGlckeCU9ia95FwAWfzRQIBDBz5kwsXLjQ9PrChQsxa9asPI3KjEr8y2hI00AwEjOEu7KVziYftmDoum60MxA8U3KBPVM9FK9xTqPWTOLh3NUewqPvbgQA/OKsKabJlDG8shjzz0gYCk99uNnUMsGqBgwg1D9R1plJ7Rki/swab7Yr2iUw/nfOePg8Gt5ZtxtLNyXieK8mU7KP29ds7H7twIRX7KONe6DrwEGjq1OMA8uxCJOrVasCJ72Z/BbF5rqE87LvndWQ+XJvN08Jf++L3Xh/fTN8Hg0nTjbvfEosssbEgnmy9/KYScOgaQnjyK5cQI8iddWqkWE4mvp55SZ1nVJvJsC+t4xVXyZGDc8Wss6C+lzRakBELN4nZzSxlOnXV+5IWVhXJjOZVGnZQGLxZp+fZQZ9keySPD6Z9rt/Q2Jsn33ZiraeKL9OYgZRpaLOzPZkWna9hTFjvVAlLqSYqQJY35OxuM7/nlUWDU9pt2ggy1oAiDVmAKHOjFQ0L+iXjZk0FYBD1mUgKoT+TEa2jXEMr18jzEWqOjMMZmCsSBqv7B4dUhLgz5Q5uyv1+Su1KHQHJIwlntFk0z27xaYvE4NVdW+1SM3usahdBhgZb6YKwFJfJsC8EeqJxJSta4yWBmTMpGXevHn405/+hEceeQQrV67ED37wA2zevBnf+9738j00U3Eu1U6wIZluq1o8xMJsKUXKkpMPM3bEbCVz0zjzcaYUYuGmlJtN3v/mOnRHYpjWWIUTJ1t7ugDg1KnDURrwYld7yFSKXZ3NZF1mn2FVVwcw6pqw9420bGtjpnFICTdSfv/aOrR2RbBkU0JMdPx+5s+zf0MFT7sEgDOmm2vLyBRbtDQISX2ZxP9nDdlY76aAxTFiGqyVB4Wl2nZHYry44R3/WQUAuPDQUdyzwrDqgWVVY4YxtDyIg0YntBQLbGoI8Toz0v1olc4btagzI++yeS8hi6J5VkW/rPoyMdI1mzTaiqgNDq9HU3oZtrYkClx2hmNYtNbcBoN5ZuyMGU3TeHo2q9nCPTPJTDo2ts+3tfJ+RpXFftP1rlKkZjNjpqEy1RC3qhpuVWMGML5L0fBp645wI9LKI2DXn2lHu7mVAUNOgzeK5kl1ZpjRkaY3k+wZEAvnsfmozOSZST2v6v5m7DfcnJ4tV/9l8PRswZjptHn+GONq0/doYt4WO88Mq9Vk1dLAKmMUMDYksTSeGY9H4/eInWdmGG+Tkt/Cea4wZs477zzcc889uOWWWzB9+nS8/fbbeOmllzB69Oh8D40v7OOEyr8yRuG81BLZgLl0fEAKC1h5XBiirlE+Tm3MGM0mt7V046mkeO6HJ05SapCAhMvxqGTvoteShebiQt2B1ArA6h0cYN2LCjBcotyYUbRLELn8mPEJTc2aXfjda2sRi+uYOKwsZeHXNA3nzEwYPh4NOEWK+csUS6ESQOGZkbwQERvPjPi9dFt4UIqSxfOAhCfvP8ub8MnWVpQEvPj+sak6AqveTFY1ZkSYZuWVz9UNUNNXALYPM4k1KnRd5+MTd6t2Rb+s+jIxjCrAqTvBrnCUGw5TGtSeGXEsbMcPJBb+7S3GpPyfz7bz/9/bGeaGhGgUW8EK57FaM+t2sjATM2YSY1v+ZZtRME+q66Iqmrc9GWay9MxYhJnYQuWRnm+/RZiJhZjKg74UIxKwLzbIKubWSd7dcqkPlsqQSNfOgDU5lOdZsdYM8/6IDTitPD4hRUsFBjNWV25vg66LIU9p08Y9o4kx67pueGYsGk0ynNSa4XVmim08M2xzalU0TxkqZt5V8Rm2NnjFuc3oeyV5Zlh/pjy3NHCFMQMAl19+OTZu3IhQKISlS5fiqKOOyveQAAiVf0eqJ856abcto7rpgNTJKa7be2aY+58VzPN6NFOhLLHZ5L2vr0U4Fsdh44Zg9gSx5og1x+6bELOxyrqd4SgPeanqzPRE4pY9SNiEJceV2TUIcWPG3jMDAKNrSnFWUsD4yLsbAADH7WftZTpn5kjMGFWFS44cl1IUTIYZA6LnTC5EmPh/695M4jFWHYpVBh2r8Lt5TxfufCVRr0M1XrGeDzOUrZpMijBj5qONe5Qdqw3PmRRvt6oAbGG8iZ6ZUDTOjWzRmBGLfsnPhVXBPMaQUqMtg8zK7e2I64nCdcMqUhd7EaM/k/H97mjrMW0YFq7cwb9PtksfNcS6qrDIUNafqSOEjlCUG0Hjk12TJw+vgKYlWlewisKy1iStZ6bKSjNjDksDas+MzyLMxL0BFo0NgTSaGdaSQQ4zsQrAPeYwU4pmRqqkLaLrulB9VvbMsDBTRCiaZ6GZsawAbL0ETqwrg8+joa0n8d3JHbMZ/HokN23hmDHf2Xlmxg61N2Z0XefPRLXiuwDUuipAmGMVFYAjwn0etXiGAXOrlnSeGQozuRxV5V+RoM/LFyIr3YxdWMArxcAz9cyIJfUBQ6ewbmcH/m9JoiLuD0+y98owjtk3obf4fFsbtrd285vb79VSJgWxlLeVd0bpmZEMCGM3Zq9Vv+KY8aZKyMfvl5pFACR2Ms9fPhs/PXU/2/MBxo7OFGaKMC+EMW65N5PRzsBKMyN4ZiLWuiGmm7n39XVYv7sTNaUBXHrkWMsxsokqFte5MWXVKkKkcUgJ9htegVhc5/oiGZVnxmrnzz6TuZ2BUc1V3MXLu1Xen0kyTKz6MjFqbfozsaq6diEmPhYeMjEWAqaXaRxSjKHlQbT3RPHuF4lQ0woeYrL3yiTGmPTMtIe5LqK2LMB30qVBHw81vLYq8R3IHg2mTWjriXCdWjyuc6Oh3iLMJIebxf/3emTPDPsujXsynU5D1aakKxzl80FKmEnyzIQUhrIsGhfpiRgGsZ1nxvAUC5oZC8+M0WjS+hkJ+rzci7Zyexu/P1OMGd4bLWb6L6B+/oD0npmOUJR/XjvNjF1/M9W6YlcB2OeVPTPGtUuvmaEwk6tZ/mV6sSFgLwLuUehHgNTJKa7UzHhMx/HOzpKlXSmo32NxHcdMGoqZo1PTW62oLQtiRmMVAOC1lTtNHVRlYygglBHvstjFqfqGyN2q5V4gKsYNLcMZ0xIamCGlAcwQOmD3lhJJvwNYX1e5N5NVKCrgS90Fq4wOpoVgnoArj52g9ASIFaPZ+ZiRVGLj5j5p/4TnStV7S9W7xsrDxI03X6pnJhSJ83EV+T0pC6oqG8OqLxOjhntmUneCXC+TJsQEGLv3dkEAvHVvQi/TWF2Ck5MeLBZqciL+ZYgtDVjYi/X8YbA5Y8nGhMZraIV1mEnXjTHu7gwhEtPh0VLDUoD1rpt7ZqS5wKr5KfseKhXPm0oAzEJMJQGvySsi/g4LU6gMCSttC4P9rkczmtgymDHT0hXh95o5zGQOXQPqZpciom5mT5e1ZqZU8swwUX/A57EM0zHGJCvB7+kMWzbAZZ6WIr/HdoxVNiL6bkUozcojZyUABoSNWiTGveSpnpmEEb67I5y2E3guIWOmDzR3hLhxYpcGChihAysRsF1YQL7xxJtFXBdUnpmA5MqVMxSuPXGS7bhlWPjm9VU7bfUsmmYILK3EgqrQmpxB1KZoZGnFvBMmYfLwClx+9PiURbM3GJlVomcmKQD2i8aMOcxk1ZuJGT8xoeWEyqATu2I3DinGhYeaU9JFvB6Nj5PtllVeLxEWanp77W5L/QMPBSgmwqjFROj3iMaMsTB1WKRlM6pLjLCniH2YSS0ANjYX6Q0OtuCJIRPWE2tkdTFOSfb0WrBiByKxuCPxL6NWCDMZadmSMZM0uNgzK2cSBn1e/gwxTQTT8wwtD1oullbZZlYdsxPHpqbZO/XMdEgblC17DCNQ3tiImhld19VhJptGk21C+Cj1/Im5gfWrSozTODf7OyExzKS4v0X25bqZdi6wHSKJcXlvtDDzzLCNhPq8ifH5eDNOK+/MXgd6GcAwZkLRuGmeAoSM0ZQwU2rGGxMDy558cW4TN68itWUBaFpiblOJ8vsDMmb6gBPxL4Pttq2MGbYbsprsVdlMXo9meqhlhbqVbgMw1444dWp9Wo+SzHHJ8M2763ZzwZfK0DAybSyMGYVXQhbdquK0VoyqKcFLVx/JC7f1FZYFYOWZCVqmIcthJiENVvge2Pvdipi22DPr2hMmmeo9WCHXmkknAAYSAtbRNSUIR+N4a82ulPdVxqZVNlPY4vOK3ior8S9D5ZnZ06kWADNDYU9n2OSpDEVjWLsz4T3ZPwPPjFWYaWR1CQ4ZMwRDSgNo6YrgnbW7uYhX1WDSNMbyVM/MhGHWnhmGHJ4BUkXA2xXdshm8I3LMwjOjCDOZPTPqGjOAkY0mN1fczIyZISUWv5O4znE9cV+pumYHbcJMqqzJxGuJ8zNDz6hunYAt5j2Wnhn1EiiKgFXZTHLWphPxL8Mu1NTiIJMJSFxb9r3KoSbV/GIdKrY2eK0EwHKyh8/r4ZuOfIaayJjpA0YKaPqJs0HIaJJhAsB9LDIk5J1WLCny9Eq7E+6ZiUlhJsmYKfZ7MbyyCH6vhnknpBazS8ekunKMqCpGKBrHy8kQhcrQKLFJ4+xShDFUmpl0YaZcUGyhmbGuM2POZrISCYsLPXtf5ZGbNrIKRX4PDhpdzUNndpRIGRXpNDNAwnNmZDWlhppUqfO87pGwq7MOM6V6Zqwm+CEqz0wyzMRqyoiwBSWuG4XFAGDtjg5EYjoqi/0YWW292IuUWXgZWFr2yOpi+LweHo677411CMfiKA/6HJ27VqiF88VOVmPG3GR2suTNtarxJNeaaVJ0y2bw+cKizoyczRSw8OIY6cDWHgF2r8nPNPPMjLIwZkoCXp611tETVYZ4eGq2pTGj3tQwA4dlecmLrXU2k71IHjDCTBuaO7nXRzauZc+Mk7Rshp0IeK+DGjNA4jlWhZpUc6yVSDzKPTOyjskQT6uyyQDwFhz5FAGTMdMHNE1DXUWQ9wmxw04zs9xGRMwKHPHUbIUFraozI2tmNE3Ds5cdjhevOjKlVLsTNE3j4toFaYyZUkkcJ2Io7a0nntQwU/8Xqy6x2NGFLDxe3BWbnCwj0dSJQQzBsPeNMJP5s9VXFuHD64/Hk5ccaipypqJU8oAZRpL9NWML9eurdqbUeVEKgJn2J2ofZjJ7ZpI6BqswU6m1gLGZC4BTJ3O/18MXeTE9W6wv40TQzkMmJs1M4vlk5RRYyf6lydpF+w13dm5mzOxs6+GLlRxmqiz2Y7RQPsBKA8M9M93OPDNc3GnSzFiLO62qObek8cyUKjQzm7kxkzouTdMM3Uwoqgxh2oeZ1OFmlpXGro18n7F7MZM6M0DCuKwtC0DXgU3Nic8nGxeyZqabe2bSGzN2tWacemYSx1hvCLoVmyWfJ/UeUadmW4WZUp9jXmsmj+nZZMz0gSuOmYAPf3o8vjXbOtNEZISiTL2u67YZUSkCYN3amEnRzPDdcurEO6qmBPvUZW7IMI5N6mbYwq4KsckPuojKK2FoZlgFYOs4bX/ACviJYTL7OjPJonkWXjGPRxOqOSc1M4r0dCAh1LabaEX4dU4aDSxWni5uP6OxmmfsvL++2fQemwjlUIBVhdmIxb0WFDwzRpgpdTy9CTMBRq0ZsQrwcpbJ5CDEBBiTMhtfPK7z53Nk0sMwa3yNSQzrJJMJAIYmjZnOcAzhWBxBn8ey2rQ4Vjk1G0hNzzaMGYVnxjLMlPivSjNjCjN1snRg6+teZpHODgjGTE2qZwYwDI6OnqghAPbJXgAjA05GlZYNGN8jm4/KFJ4ZUVOiMqhkZH1UimdG2rB1OtCrMeyqALek8ZCJVCueIVWYySdtkAFBACynZgtzW7tNmQwjPZvCTK7GidiU1YTY2R4yPaxb93ajtTsCv1ezNDBkl6DhMpaOk7OZFJ6ZbHDYuCGmnYdKM1OqmPgAdRiDx7dTwkx58MxIhhVgLe6VC8RZ1V0Rf47wMJNzl7TtOKV0WR5msjAeRDweDSckqz6/vNwcamILjio1O12dGdEz02GjmbESAIt9mWosspmA1CrAG3Z38s+wv0MdWKkkUN/ZnsgU8nk01CUnZ7/Xw68R4Ez8CyTuV/HZGze0zNLLxkLU5UGfZfYZL1efvB4slDLcosYMkFrKQfz/VM1MapipxaaVAWAYpGKYSdd1bG5Wh5kAc3p2SOmZSQ0HMew1M+bXZM+MEfIUyyKk18wAqcUR03lmumxCqjKiZkYupppOuyRSyWqHdVt7Zpy0JImqBMBCcgG7ZlZz8clT6vHDkyZh1oTatOPNFWTM9BNDSgN8gt/RarjimFdmUn15ir4FUKdmyxa0Opsp+19x0OfFkRONppLKMJOFZ4OhyuTpSzZTtpENK0AMM1nVmYmbUpbla89+TtHM9NGYka9zl43HR4bpZhau2GHKlGO9sVI0MxZpndwzo8hm6rSZ4K08M3Z9mRhievam5k5c8P8+wO6OMCbVlStrDMmUJe8ptjCztOzhVUWm5+uUKUY/LFnnokLTNJMhJot/GdMaE8bMSIURUJmhZ8ZK3GkkDVjfj5FMwkzJ7zAcjfPvvbU7wivvjqxWGDNCGrxSMyPVaxKx18xYF9GTz2stAHbumSn2e1Oeh5Q6Mxk8041DSuDzaOiOxNDUZvZoOOnLxLDqcRaNGWGhTATAcmo2856JHlCrcPFx+9XhimMm4MAslMToLWTM9BOapnE3s6ibSVd0T9XOQBbzGUaPXOukbwuliuOEBSOdZkYWCya6RSfGJy+4omYmHI3zXVpejBkmAI44DDMlx8yQvWJySwNVFeRM4QJgVmdGaJOQjsPH1aC8yIfdHSG8u87oQ6QumpcqHrQMMzGdQiTOx+XUM8O8LZXFqX2ZGMxQ+GRLKy586EM0tfVg4rAyPHXpoY4+N2Bk5rD7kz2XcjjoiIm1GDWkBA2VRRmFZ2sF8bIs/mUcPq4Gvzhzf/zq7KmW74vZTGLBPGU2k6W4U1EB2GM2roH0wlPxO2QLOAsx1VUElcaBaDim680kNt5lZGTMSPeZXFU88f/WNVhkRGPGKuSZ4pkJO/fM+L0e7smSQ0283o8jzQzrz2Q8Q//d3ILuSAyVxf4Ub5mViD+m8N6xjdqudqOOkLyRLhQKc1QDlAYL3Uy6jChuRSdvNlWapUozk4swE2BUAwbUmUaqztliqrNdBWDmWgZS4+D9gZxZBaiK5hlhJnGXK197uUhZtjwzcrpsJuGrgM/DG3U+/M4G/rq6r4t5VyeG1XwWnplQxPDMlFmEvYwKphF+XYxMJvWulIWZ/vbfrfiypRvjhpbiqUsPNRkQ6WBl9ju5Z8ZIyxYJ+rx48aoj8MoPjnKsYwKMFHIgVfzL0DQNFx0+BtOSxShlxGymdAXzAEUF4OT3I4e5ZMO0JxLjmweV8FTsFN2RvM8222QyMQzNTISHe1RhJjYWkbZMwkxpsplicZ0/x+m+z/FDy/h1smorkFJnxmGIl8EKKbLq0gwW7nPimTH6MxnzJWs5c/SkoSnGh1WtKP4MK+rMsB5j+dhUOoWMmX5E7p6t67ptJhOQmnKtKk1u1Jkxh5nkOjPZorYsiEPHJioHqyaxUkUaJ1soNS11fGKdmXahUFY2iuBlivOieYagTmwamrJ4SJ2zs2XMlEgpxk7qzIh8a/YYaBrw1ppdWLezHRGhv0xQYcyEJQ0XYDbeRJ1CujozrODWgb9YiCv/8l/865NtAKwzmRhiyvaYmhI8felhlqnNdjD9B7vPWJjJKvW6vMifsQjd7JmxNmbSITaGZXVUhpUXKXfHPAwoijtVXbN95kWNeWV8Hs0ylMCQa6vY1ZhhsPOxyuNAatE8cS6QjRk7z4yq4jCDh5mS4Svx3Ok0MwGfh2d9WhkWqjozTp+9mckO9os37jG9ni7cJ2Ll3WRtSqx61FlppdIJgJlnxkm9r3xBxkw/wj0zSRHfly3d2NuVEP9OUnThlZXnMUU2k5zFYFW4Ldv8/vwZeHTuwdyokSlVFNgSUwblNFdRM5PPtGwgg3YGwoTYwftVpT5aRpjJXAHY6cSnIkUzk6GRNLqmFCckJ72H39lo9pylEQ+K4QyrMFM4Gud6CitjpsjvxQ+O3wc1pQG090Txwqfb8fRHmwGoM5kAwzgYNaQET192GOrSNJW0gmczhc2eGauso97ACudpmiH2zBTumemKcL2MVbdsBs82E74XVQakbJiyTKaqkoBt+rncn8muxgyDeUt2Can0cqacx6NxA6tHKhVgV+PEKxlf8jHMu8CeN5Mx4yAMzzLYrO7HVM9M+lYiIock587FG/eaRMAsZOQkm0muM7Nxdye+2NUJn0fDnH2Gphxv2WiSCYCle4RtSphnhowZAoBYayYxKTGvzD515coqr3JNAKVnRnIvW2XdZJthFUXJcJP1xGcU2LIOM1kt4kXJ5nPdkRjauvOXlg3YN5oUPRaiYcNCY1bXXa6ea4Ry+jZByJqZrgw0M4zvHJEoL/D3/27lnkOvR0sxhgOSAFgMq1mFmQBjYlbt9q86biI+uuF4/O1/Z+GKY8Zj3/pyeDTgKIuJmDF7Qg2evvQw/PvKI5T6kXSIdWZ0XRdaGagX5UxgnpkRVcW99r7xbKbuCM9ksuqWzWDzQlw3kgXUmhlzmInt7NPVNimVijQ6CTOx7353codv5ZUFDMFpJp4Z+XV1mCnpuRT6Jzmp43RUMtnBqmUN37AljZjODDcoU0dUosjvwZ7OMK8UHY3FefsGZ3VmmIg+8f0xr8whY4dY9tiybDSZxjPD6j7lay52QuGaWQMQudaMk47bXhY+ipk1M2nrzPSDMZMO+UFnqCpTAoYnQNeFOG0e0rIBY0IKReOIx3V4PJqlZ8aXbKoZjevcC2HpmRG8FUA2NTMsoyJZuMvGWFRxyNghmDKiAsu/bMOfFiW0M1aeM1lgavLMWLQzAIyJ0Mozw/B6NMwcXY2Zo6vxw5P2RTQWtxUaapqGw8fXOP14lrDrFo0n+gVtZTVmHFT4dQIT/U4bWdXrcxhhpjCamGemQj0+8ZpF4zoCHo2LO1M8M1LYk4lO04U25PRsR5qZpIHBnukiX+q9BSQ3CULGE6M9ZJ/VWF7kw/bW5P/LAmCWlciF987Ev4wzpzfgsHE1lu0mZMMuk9RsIDE/T2+swgfr9+CjDXsxYVg5N2QAoMpB5XMjzJS4Rq+t3AnAOsQEqPqrWRdWZM8xcxrloxK7U8gz04+IAuBEsbyE6MuuHYJf5ZlRLDI8m4kvurnJZnKC8aCbjZkem92LaOCwzI18ic5EI4MZCCotEvuZ7SCtdp2yANhpcbt0lEi9mbgAOAOxqqZpuOSIcQCAf3z8JQBrY1OuM8Or/3rNvcL8XqNDNqvS66QqKqM/MibEBWfD7k6Eo3F4PZoy7TlTjpo4FE9+51D88qwpvT4HWzx6InFsbE5kvNh5ZkSDkoUOoorqrgFpUePNDdOENsQwUyQW5y1aHHlmkuJulVZFVQXYKNim8swYc0SKZkbYRMTjuqO+TCKapqG+ssjS+BJD0bG43qsNyiFjWKgpoZth30N5kc/RcyDqqlq6wvgoeR5ViQKrbCa2vvhTumabPweFmQgARm2IrnAMLV2RtOJfILWdgbs8M+bwB8OuS7jf6+ET8s48i87EeDozZlgNjBRjxs/EpOowk6xRUGUMZYq4O4zHja7EmRpJp04djrqKIL+HrCZ7uVw+M2rk+hSAcY3YTtPOM5MPPB6NG1irdyQ2FvUVanFtb85/xMRaZTVdJ5QHfbxA5qqmdgD2mhlxXoikSRqQ70enolNeBTgcxbaWbsTiOoI+D4YqMqwAI/TDPTOKe96qw7Wu62krgYtzhDxfiH8rFI07rjHjBPGe7o7EjEaTDrOZAODgpG7mow0JIySTGjPicbG4jhc/245YXMfEYWUYXWOt05KTRQDD8JXvEXkOIGOGAJB4eFi65pJNe7GnMwyfRy3+Bey7ZpuP85jeLwxjRiEAVlT/ZbBJhntm8uTa9Hg0/jAz8aDqurKF2xAAp+7i/JLeJNPMBxUlQq0LUbybiWYGSHymbx4+hv+sMjYB4zpYdcxmyItFoRkzgLHIMkNhRJZCTNnC49H4/c/COXYaIXFnHZM0M6oMyNQwk1PPTMwUYrITDZdJZRqUxoxQbJHBvB6AnWZG8MzYGDPdQvp5XzcRQOK5Z5e1KxTNWAAMAAeOqobXo+HLlm582dKdUV8mIPH52Dz116VbAahDTIAgAI7pXHQselhFZC0npWYTHBZqYp2KJ9aV2+4Q5AnHqWcmwsNM/Z/SzFAVzVM1QGOw13e25b+2AZuU5DCTyphhO0hLAbCkUVBVQc4UsaEnWyw0zbkbXeQbh47iv2c1Ljm7Lqpo3QCkeq/s0n3zBbt2q5PGTLb0MtmE6SaYbsEuDObxaHxxZToIls0ke896HWbivcCijvQyQKoRoioZYRVmYs+U16MpDX+TZyZoni9EIXtPJMafZTmE0hs0TTM8o+FYrzYopUEfFxcv3rAnbedyK5hQ/OPNLQDUISbAbLDE+HphLwBm5Cuz1AlkzPQzDcldFStqNHWEfXn0FM+MMjXbus5MXj0zQtqimHZoCFStHwy2iLKmZfl0bcq1ZqzaGYg/d9gIgMVspnA0zg2Ckj5mM4mdjO3S3p1QVRLgRfSsjOyAz1oAbPV5Uz0z+dNvqShPMWayk8mUTcSMFLuCeQy51gwzVlRhJiObyakA2NikOKkxAxgFChlpPTOCh5GFbsuCPuU9bZfNJJ+Xh5myNDeWCLVmepNJCBi6mY827smoxgxD9OIMKQ1ghk1bAVkknvivogKwNM8VcjYTGTP9DPPMMOvbTi8DpPbCSeuZSR4XynEFYCewxSsa17kRAKTP4inmYSaWzZS/B4jtFLvShZn8TB+S1MxY1pnR+DnsqiBnirhTZq0X+hK6uvLYCZg9oQbfOHRUynvcRS2HmSy6s8u7ukwn+P6ALcyshsvILNWYySaVwg7drmAeg29spDkjJTVbuB+B3gmAndSYAaxCP9afgS2eomemtds+LRswe2+tPIBiFeCeNGHuTBE3bV29FPUz3UzCM5P8HjKY90Rj5phJw2yLjPpMuipZyG/+XtykmSnckQ1Q5EwEu0wmILXnkjKbqZ97MzlBXLy6wjFT3yVAHWaSj8vnA8Q+A5sAuZGYRjOTTgDMPChWtVwyHmNy8o7rRl+jvkzUwyuL8dQlh1m+51fs+uUsCMDsxi/2e/NSxTkd8sJXyGEmwF78y5CzVVSaGblmkFPPjKh/cRpmUnWylrFqCtnuoNksmyOCPo/lsydWATY8M9mZG5lnpqUrzK+l09RsxsFJz8zanR28/1cmYSZR55Su0aposMhFVlXtDBiUmk1wxOqiXo9mamRmhayFUXtmzFqGQggzeT0aN1jE9Ox0KcmykZNPzQxvNpkMlalTs82l8S09M0wzE9WNHVwvw0EiYqNKlvra19CVCrmfj22YSbhGhSj+BayMmcIOM9mlZTPk/lm8iaDXOszEQgy8yWSa7Cv23HaEotjcnDRmajI0ZhSGhJUAOF3BPPE91THs7/WEBQFwljwzbMMjdpbO9NxDSgO8s/pba3YByDTMlPjOAl4PjrQpNgkk5mU25UTS9PyTqzQXsmeGjJl+pkEwZiYOK0ubHigXOMq0N1M+jRlA6F0iFM7rTpMaKU8E+dwNFAt1JMTuwkoBcMhZBeB0GV2Z4BGEkazCarYmahl5obTqmM0QPTNWTSYLATH8oWnOPB/9jRhCsCuYxzA2QGbPjEeTjRlmmCa6VLd2O8uiYYbJtpZunnbfmMYIlMW76erMhIQwE6uMa/fdMNGvSmQuGkndGdaZSQcL87L+RX6v1qt5l3lnmO4uk5R+ZvgcOm6II6G9X25/w40ZewEwaWYIjmjMpNPLAM7bGRRiNhMglNoXPDPpFP+yZ6YwBMBRk+4ntc6MnJptn82Urb5MDGN3GMrqeWW4zoJ7ZqwnQcAdnhlxXPUVRXk3/q3ou2dGpZkxPmtzZ4hnS7HMGBXsmq3fnSjiN7Q86Mh4FhfZdHVmRM/Mko17AQAHjVaLWvcfUYHSgJf3OpIpttDMqFrIZAoL87Jnr7cp34eMNX8+q1YEKs6ZORJHTqzFtSdOcnS8rLFUVQCWv6dCzmYq3JENUGpKAwj4PAhH45g6Mr0x45U1M06zmRTajv5GrEnBSCfAS32A8pmaLXhmBGNGDiOlhJksNTOJ7ygUjaett5EppUEvdncYu8NcGTNGOq85zGQVVhM9M4VqzIgLbCHqZQDzouZIM+M1e2aMDZB1ajZg3DelAW/aOYN9l+y86fQyjLIiHy+EmS6biXlmorE4/rs5YcwcrDBUgITOa+nPT1CmfAcFLU62w0yyZ6a39zrzzDCcFs0DgHFDy/DEdw51fLzPqwGR1CrR8iZMvJ6alrkWqD8pvG3IAMfj0TAh2fF3ps1Og2E0BZMKYGn2nhkeZspjOwMgtaNz4v/T1JkJFE6ctoiPPyZcU0+KzsUIM6Xvmh2JxbNWMI8he2aKczTpsN18XE8sZirhIGD2zBRijRlANmYKTy8DmI0ZJ0012VwgZ0CmamaMn5mR4UR0Kn+XTo0ZsWeSrMVgyALgz7e1oSscQ2WxH/sMUxcXTfyuWn8mZjN1Z1sAnCWv6MjqEjQIxmomxkymGHopFmZKn5pdFvQ5asyZLwpzhhng/OEbB2JTcyf2b3DimTHfdKwTrter8szI2UyF4ZkRO2enKxYnGjkBnydr3oveUCJkVoUU4l/xNZVAGDAbMz1pau1kCtOkGALgXGlmzGmdEbuiecKC5QbPzIgCTMsGzAaGk75RfqkauCqbSfx5V7IMQnVpei+ovFinqzHDEPVJaQXAyeeD9Ss6aHR1nxZSMUMyxD3DWdLMJJ+9XdyY6f29fsjYIfjHsm0AgCoH30VvkTumO/HMFHL1X4A8M3lhbG0pjp5knz7H8EsuY7VnxhwnDxWIMcMWi03JJnlA+q7OojGT7weId9wVPTOWqZ/mz2KVbi2mwmarYzYj1TOTWwEwwIwZu2wmIcyUo/H0FXGBLdQwExPkOimYB6irhsu7bk3T+D3JFmIn3oDeembE31Pdn0HBgwIY/YrsQkxOYF7CnkiM63GytUniz14WQrzsc3o9Wkr372yiEvLL3juPx7hHCjmTCSBjpuCRhVpxlZhPDjPZ9MzpT47dN2G0/WnRBl5gqztdf5aAaMzk9wEqtgoz2XhmGHbtDMKxeK86W9tRyj0zudXMyDUqojb3mds8M4UaZhpbW4oDR1XhnJkjHTXBlDMg2UZIzmYCjO9tZ7IPmpMwk/xdOjdmjI2Jqvoue456oolSCEs2JfUyY/pmzLDnOBSJGfNPlsJMvGhlFkLHs8bXQtMShnVfSzbYodZVqYtf5ntjmY7CnGEIjizs5WmWDrOZVIK4/uLsA0fguaVb8MH6PbjhH8vx+LcOTlvyW1zgy/NcpKnYFGay7pgNpPZ5sdIqiU0ac5XNxMI+uTJmWI0KXU+2ZbAJM5k8M64wZgrTM+P3evD3y2c7Pl6VASlvgIBk7aNwjGtmnNQ2Cfg8CHg9fMPkWDMjhpkctDP4YlcH9nSGEfR5HGV+2mGkZse516coW8+edG/LP2fC2NpSPHXJoY48cH3BJ+mq2L2iChe3h8gzQ/QRXj6eaWZ0hWfGq9DM5FkArGkabvvqVAR8Hry9Zhf+uWybkc2UptEkkH/PDM9mytAzY1V3RSw4l806M0Cq6z9XAmDAXAU4ahdmckGdGdHIGu4g7dkNGMaMtOu28J6x+SUTATBgVL0N+DyOF15nqdksHBTH4mRK9vTGqj6Hy8UwU3eWezPJGT591avNGl+LCWnEzn1FGWay9MwkPg8ZM0SfkI0UdvMpPTOxwiqaByTSBq86dgIA4JYXVvD0ZaVmxhRmyq9npshCAOwozJSmzky6jK5Mka9lrjwzAOBnu7qoqJlxZ5hp1JAS7FtfjlOn1met7ki+kReqqI1nhtWh2pWBZwYwFvDG6mLHwlyTAFiZzWR4ZhYn9TKq2jGZEBTO25OmaGemlEiGeqHe6yJcV5UmNRswnuNCbmUAUJip4JGNlJjKMyOEo+JxnU9ghWDMAMBlR43Hvz/ZjtU72vlr6VzNAFBRnGfNjNDOQNUx2+o1u95Mkaie9TCTPIHm1JhJhiaicedhpkJNzQ74PPjP1UfmVJ/Q36hboFjckz7mmUloZpymA7Pv02mISfwdIDUsy+B1ZqJxfJTMZOqrXkY8b3ckzp/jbDeaZORKfJ9NfB7Z4FWXWCDPDJEVfFJqdkwh5hNTuO3K7ueLgM+D286eCnHYTrKZ8l0+W2w0GbYtEOfAMyM2muRhpuxMEPK1zJbHxwp2T4ajurJyKCB5Zgq42NZAMmQAsTaVOQPSUjPjNcI6QPpWBgwmOM/EmCl3lJqdGM+2lm5s3dsNjwYc6KAeVzrE+jXZFgDLz16hZu6J8FCkg0rezOuc77k4HYWx0hFKUsV85tfl42Jx3VR2P9/ZTCIzR1fjosNG85+d9GbKt2aG1aLoChv1KRxpZuwaTeagaF6qZyZ31y0gZELYVgAWFgvZFU/kDllnF1OEphPHml9z6plh95vTGjOArJmxDzOxOWz/hsqsePWKxTBTNNt1Zvrv2csWRjZTepE4ZTMRWcEn7bLiinYGoms5InpmHKRy9ic/PGkSln/ZioaqYss0QEASAOc9mynxiIiNJq2L5jkJMyX7GkXj6I5kOTW7H13dPqH4n9OieYUaZhqIMKFvzIFnRr5PnRozX50xArvaQzhhcp3jcWXSm4lx0Ji+e2XEvxfKQW8m2ROTyxBvtpA7pttV8p4wrAwfbtiDSfVl/TfAXkAzTIHjk6t5xtL1Zorblt3PN+VF/rRppkWmMFO+PTPOiuY5qjNj0c4ga0Xzgv03oYrdlu3bGRR+avZAxC95c1UbICDVCK10GGY6+8CROPvAkRmNq8xRarZ5PIdkQS8jnrdb6M2UPQFw9lKz+4tMUrNvPmN/fG/O+Iy8cPkgr9v2MWPGQNM007+f/OQnpmM2b96M008/HaWlpaitrcVVV12FcDicpxH3P7KYz4lnppAymXpDIWUzMaOgK5JGAOxAM2O0M8iBAFhOD82pMSN6ZtSp2eSZyQ8+4T4D7D0z4mtej5bTsG65WDRPEWaShcEHZcuYST6zLd3G2pGtjYTsXc1VK5FsIhZW1HXdNszk83oK3pABCsAzc8stt+DSSy/lP5eVGa6sWCyG0047DUOHDsU777yD5uZmXHzxxdB1Hffee28+htvvpIr5rAXARgq3XjAds3tLIQmA2e4tFtfRGVJ3xHYSZhIrAHenqbWTKaWSZyaXYSYx9Zd5Cq2MN/LM5AdZ3MmSBqw8M+J9WlXsz6kn11lvJmM842pLMTRLxeOYkdTSFRHGkJ350evRUOz3Gm1aXKAP85t0bzp/3UmF6UIl7zNMeXk56uvrLd9bsGABVqxYgS1btqChoQEAcNddd2Hu3Lm49dZbUVFR0Z9DzQupaZaJ11MFwMYCI4aZ3EhxAaVmix4ONhHaNZpkpO+anXgtV+mhuRQhMsM5HItzw9kyzCQsTG7YrQ4UZHFn1CZTRbxPnWYy9ZaKIh/qKoKIxdXh40RoPFFhOhsp2Qw2p7AaVz6PltWFuzQoGDNuEAB7DO8d2yADhZUwkil5X+3uuOMO1NTUYPr06bj11ltNIaT3338fU6ZM4YYMAJx00kkIhUJYunSp8pyhUAhtbW2mf25F1szw1GxFmEnMZrKqQusGgj4PT+HOd5jJ7/Vww7Gl286YceCZEdoZ9KRp6ZAp8m4wl6nZomfGLsw0tDyIYr8XY2tL+9TxmMgMo5yD3Hcn9Vhx8XIq/u31uLwevHz1UVjwg6OUhoSmadxr09fmkiJyWCvbz4f4HLsiNVvw+Js8MxYGr1vIqwl59dVX48ADD0R1dTU++ugjXH/99diwYQP+9Kc/AQCamppQV2dWy1dXVyMQCKCpqUl53ttvvx0333xzTsfeX/i8ZqGW0jMj7Mbs0mXdgMej4XtzxmN3ewjDK/NfYr444EV7TxQtSXeKZZjJL3tmrPrgGNlMbPrIhWYm6PMoM8WygdiWwagcmvr3yov8WPCDo1xRRGwgYYSmzZoZq6J5PpNnJrfGDABUl6b/GyOqi7GpuROzxtdk7e/KYl9V0b7eUuqgI3gh4RfqkjFjF7DWzLiFrBsz8+fPT2tILF68GAcddBB+8IMf8NcOOOAAVFdX45xzzuHeGsC6oJWu67ax3euvvx7z5s3jP7e1taGxsTHTj1IQiFlK4n8dZTO5uDz7j0/eN99D4BT7E8ZMa9IzY11TxWP7MyCmQxqTR7YyKsSdZq5TQ8VwWdjGMwNkVoeEyA5eqdCmqp8bYL6XnbYyyDVPfudQtHSH0VCVvcaf8nOWrRozDNEbU8gFIhle04aE6TCtaxG5haxf9SuvvBLnn3++7TFjxoyxfP2www4DAKxbtw41NTWor6/Hhx9+aDpm7969iEQiKR4bkWAwiGAwt11H+wtRdQ4AzCOYms0kVAB2eTZTocF2WsyYkb0wQGqYyU4zI5Itw8Pj0VAa8KIzHMt5zF7MyrILMxH5ISVpQFHOQTwWcOY16Q/qK4tQn2WPrBxmylb1X4aYju0KAbAgS2DFFd0s/gVyYMzU1taitra2V7/78ccfAwCGDx8OADj88MNx6623Yvv27fy1BQsWIBgMYubMmdkZcIGTWgE4nWfGyGYKuvzmLBSKpUwIuyaSqp8BK5GwllUjoCToQ2c4lnM3t5gJYRdmIvJDSgVgB+0MgNwLgPOJbLxkyyPKYJ4Zr0dzRXhfTN9nRq/fxV4ZII+amffffx8ffPABjjnmGFRWVmLx4sX4wQ9+gDPOOAOjRo0CAJx44omYPHkyLrroIvzmN7/Bnj17cN111+HSSy8dFJlMgFnYK/53INeZKTSYcdDWkzRmLHZ1Xo8Gv1fj2ia7OjP8vDmYUHeh/8JM4ah9nRkiP/AyDVITwXRF83ItAM4nHo+GgM/D58ZcCYBLAt6CK1RqhZUA2O2embyNPhgM4tlnn8XRRx+NyZMn48Ybb8Sll16Kp59+mh/j9Xrx4osvoqioCLNnz8a5556Ls846C3feeWe+ht3vyK3auTEj15kRPTMsm4l2y1mBGQdJ6YGlHibxujFB+i2O8Xo0iOtJtj0obELNZSYTYG5+atfOgMgPvLqrNGdYpc+bs5kGrmcGMNeVsQoV9wVW58kNrQwAswCYGbtuXy/y5pk58MAD8cEHH6Q9btSoUXjhhRf6YUSFCVs4dB2IC8pzlWcmFtcRcnnRvEJDNg5U1zXo86AjlDxGsbj7vR6eOp9tbQurspvrCTWQzMqKCJ4Zq4WSyA+yzo6FqOVCm4AcZhq4nhkgEVpqS9aZyXaYiT3LbhD/AmKWbNxWU+UmaLUrcMQbLGFFq3ozGV8lq2Hi5mymQqJYmqDsjBl+jMKYEV/Puqub7w5zO6GKmgy3lwEYiPik0HSca2bSpWYPcM+M8LzlIsQLuCMtG5CqeNvcH27C3aMfBIiuv2g8ru7NJBzHmhjSApMdiiWXtDLMlJwgfR5NmeIoGkLZnvjYrjD3AmCxN9PAiLcPJMRdNwDlBggAAv1YNC/fiAaMqjdUb2HZTK7xzAihSC4Adrl3lWagAifFM5OmazYAdEXUPYSIzJE9Hek8M3b6EfG9bIeD2PlyLwAWxYMDYyIcSPilOjP2mpnB5JnJnVeUtWcoy2GjzmwihiIHyobEHVd+EOMXXH/RmK4sgCUaN6wjs8qDQGRGSvVQRfiOXW87I1JsMZHtCbWiOLEYqfreZAurOjPkBSwc2FzgxDPDvsuSgFd5Xw8UgibPTHY/6wn71eHsA0fg6zPdUZzVVF4hKQB2c/VfgIyZgsfj0XjjtWg8zndZsphPzG5iYSbaLWcH2dORLpvJ1pjJoWfmgkMa0dIVyfmEaiUedPuubiDBU7Md1ZlJvDbQQ0yA2YDJdjuD6tIA7j53elbPmUsMg1cXakW5+xkmY8YF+DyJ+iUxm2wmTzLtN66Dd2+lMFN2cJzNlHRj23kpTALgLBszE4aV465zp2X1nFZYtzMgw7lQ8KdkM7Fy9WrPzEAPMQHm1Oxcly8odPxCA2PmwaNsJiLn8LoeMR0xhQBYPK6bC4AH9wObLYoce2bSh5lMAmC/O/cSYiNDFsKgMFPhkEmdGdYgcVj5wGj/Yoe4eci2ANhtiN5Vdn+4fUPiztl0kCG2NLCrCeD1aEAM6AqTADiblDiuM5M4zm5SyGWYqb9gnyEUjQsLJd1rhYIqzGQ1Zxy33zBcecwEnDylvv8GmCfElgbZ1sy4DZMAeICkZpMx4wK8fHJSp2YDhtHDPTNkzGQFORyk8kI4EgALho5balLIsImQGc2A+3d1AwleByimIx7XwZq0Wy1WJQEfrjtpUn8OL2/kMpvJbfj5BtlIzXZ74Uta7VyAODnxzASL+Dczeow6M+6+OQsF2ehQiQeZZsZparZbJ9SAdJ8B7hcPDiTEvjssLA24XxPRV4pyWGfGbZgbTQ4MAbC7Rz9IECt6xm3i3+y4LvLMZJUUAbDSM+O1fV9+z61hJmZckzFTmPgEcScLMSVeH9zGTC5Ts92GT0jNjgyQ1GyagVyAKRXWps8K23lRNlN2kY0OVUjFWZgpd9lM/QVrosnCTB6Ndv2FhNicNhonzwxD9MYMdmPGLySVkGeG6DcsPTNWfVY85kWGspmyg+iZCfo80CwMSfYekMYzMwDSQ/2SNovEv4WFuFDFYmTMMIrJM8MRN8iUmk30G14xm4l5Ziy+OXZcT4S6ZmcT0YNid02ZG9t50Tx36u/ZZ+iKUA+wQkQsiGbSzCiM8MFCLhtNug2jArBum7rvJmgWcgFiESyjnYGVZ8Z8M5Ixkx1kz4yKsmTNDjsjJSC2M3BpmMknCYApk6mw8AvZj0bBPCibnw4WzGGmwT03esUwE6szQ6nZRK7ximl0vGaE+jgGLTLZQTRO7PrXnD6tAZv3dOHcg9TtBAZCnRnmiQlHWUqnuyfBgYZYQyQ2QGqIZAOqM2PgE9aUyABJzSZjxgWImhmjAFbq5CQbM9RoMjuI19HO2zWkNICff2Wy7bkGQmq2bLxQmKmwECsA2xXZHGwUkWaGI3r7SQBM9BtiTYCYTZ0Z2bImAXB28Hg07pbuq4EoGkNu9czIHj+37+gGGmIFYLvqv4MNqjNjYBIAU2o20V94rTwzFguI7K0hzUz2YKGmvl7TAZGaLe3g3L6jG2hYFtl0+UKVDZgB49HIm8gz3sQWOS7flAzub9Ql+IUCR3aeGT8JgHMGCwn1dRIUqzK7NcxExkxhI3rOuK6JjBnumSnye5XlFQYLRpVoY4NMAmAi53gdds2WXyNjJnswL0qwj+5ptvAHvB7XCmflsBIJzQsLcR4IRWMprw1WRlYXo7LYj0l15fkeSt4RCyuSAJjoN7igLxYHKxth2WiSFpmckS3PDDNm3BpiAlKvAXlmCgvx+2A1p8gzA5QX+fHuT46lxAgYXhhdN7x3bn+OyZhxAWwiCictaEDRaFJyEwZJAJw1mPHRV28X+323in8BMpoLHdFw6WGeGfqOABi1oAY74jPM2t+43eB1tyk2SGA3XigiGDM2jSYZFGbKHswzY1dnxgnMq+FWvQxAmplCxxRmSs4Zg736L2FGrDvUExkYbUncPfpBAvO4sPg3oPLMkDGTK0qy5JnxJysAuznMJAsFyZgpLDRN4xsb0swQVlh5ZtzuYaVZyAX4+cQkeGasNDPCa16PRhNYFil20Hcpk/O42d3t95nvK7e7pwcisjeXKgATIqZQZGRgNJp074w6iPA6NGbE1wZ7HYVsw7OZ+mjMHDFxKM4/uBGnHTA8G8PKC/LC6CcPYMGR+I7ihmbG5QsVkV2Y9y4a19HNeqy53OAlY8YFsFhmKGKEmazmJtHadrvLsNCoKQsCAIaUBPp0nrKgD7/62gHZGFLekO8tMpwLjxTPDM0HhITPmzBmmMHr9nuEjBkX4JM8M16PZln0ScxmCvRRqEqYmTtrDGrLAjhjWkO+h5J3xF0dQGGmQoR5z5i4kzwzhIzf40EP4ugJDwwBMBkzLoBNROGofWxTXFSolkJ2GVIawDcPH5PvYRQMfq8H0XjSPU33WsHB5gK+6yZjhpBgnhguAHb5PUKzkAtgbn3umVGkWYrp2pTJROQS0SVNYabCQw4zeSg1m5BgnphuSs0m+gs5NVu1y/KRAJjoJ8T7i3b9hQdLl2cbILfrIYjswzwxA6VKNK14LkDWzHgUN50pm4k8M0QOERdHCjMVHjzMxDUz9B0RZmRPjNsNXrrDXUBqzYj0nhnKZiJyiVgoz+2x9oGIXM7B7btuIvvI94TbaxG5e/SDBLmap9ozI2Yz0VdL5A6TMUMhzYKDfSeUzUSoGGg91mgWcgE+Of7tRDNDqdlEDvFTmKmgYQtVD3lmCAWyJ4YEwETO8Ump2arMBKoATPQX4kRIC2XhIWtmVN5cYvAie2Lc/hzndMW79dZbMWvWLJSUlKCqqsrymM2bN+P0009HaWkpamtrcdVVVyEcDpuO+eyzzzBnzhwUFxdjxIgRuOWWW6Drei6HXlCkxL8V7kCqM0P0F6I3hkKahYfP48ybSwxeZE+M28PFOS2aFw6H8fWvfx2HH344Hn744ZT3Y7EYTjvtNAwdOhTvvPMOmpubcfHFF0PXddx7770AgLa2Npxwwgk45phjsHjxYqxZswZz585FaWkprr322lwOv2AwwkzJ+LeDOjNuj38ShY3fJDZ39yQ4EDGSBkgzQ1gjG7huv0dyaszcfPPNAIDHHnvM8v0FCxZgxYoV2LJlCxoaEmXi77rrLsydOxe33norKioq8NRTT6GnpwePPfYYgsEgpkyZgjVr1uDuu+/GvHnzLMv6DzS4ADhin5rto9Rsop/wU52ZgkYu50DfESEjb0LcvgHO64r3/vvvY8qUKdyQAYCTTjoJoVAIS5cu5cfMmTMHwWDQdMy2bduwceNGy/OGQiG0tbWZ/rkZHmaK2U9MlM1E9Bc+qjZd0MjNaanODCEjyxVIANwHmpqaUFdXZ3qturoagUAATU1NymPYz+wYmdtvvx2VlZX8X2NjYw5G338wizmdANhcAZiymYjcYa4A7O5JcCDip2wmIg3yc+v2elEZz0Lz58+Hpmm2/5YsWeL4fFZhIl3XTa/LxzDxryrEdP3116O1tZX/27Jli+PxFCLyrkolAKYKwER/4SN9VkHjpa7ZRBpSiua53DOTsWbmyiuvxPnnn297zJgxYxydq76+Hh9++KHptb179yISiXDvS319fYoHZufOnQCQ4rFhBINBU1jK7cgWsyPPDBkzRA4xFc2je63g8EuaGTJmCJnUMJO775GMjZna2lrU1tZm5Y8ffvjhuPXWW7F9+3YMHz4cQEIUHAwGMXPmTH7MT3/6U4TDYQQCAX5MQ0ODY6PJ7cgTkVozI4aZ3H1jEoWNuZ0BGTOFBluYYvGEF5vCTISMLAB2+z2S01lo8+bNWLZsGTZv3oxYLIZly5Zh2bJl6OjoAACceOKJmDx5Mi666CJ8/PHHeO2113Ddddfh0ksvRUVFBQDgwgsvRDAYxNy5c7F8+XI8//zzuO222wZNJhOQajErs5lIlEn0E34KMxU0csiAPDOEzEDrzZTT1Owbb7wRjz/+OP95xowZAIA33ngDRx99NLxeL1588UVcfvnlmD17NoqLi3HhhRfizjvv5L9TWVmJhQsX4oorrsBBBx2E6upqzJs3D/Pmzcvl0AuKlLLTytRsIZvJ5fFPorDxUZipoEldqMiYIcykFs1z9z2SU2PmscceU9aYYYwaNQovvPCC7TFTp07F22+/ncWRuQunxY2oNxPRXwQozFTQyBsgSs0mZETjxevRXB/poDvcBcjGi8qYoWwmor8QDWe/z92T4EBE3mWTo5aQGWj91egWdwEp8W9VNhNpZoh+QgwtuT3WPhBJ3QDRd0SYMeve3H9/uP8TDAKchplMFYBdHv8kChtx8iN9VuEhb4AGws6byC4+KczkdmgWcgFyNpMzzQx9tUTu8FOYqaCRa1MNhMWKyC6iR9Xt4l+AjBlXkCrmc1JnhgTARO6gMFNh4x1gBdGI7CNufgfCM+z+TzAIcCoAJs8M0V+Y+4DRvVZoyBlm5JkhZMRQ5EAwdmkWcgEpmQkKATBlMxH9hXh/UZip8EgpVU/GDCFBAmCi33HumSFRJtE/mNM66V4rNGTjRdXPjRi8mMNM7r8/aBZyAb3SzNBumcgh1M6gsEnJZqLviJAwh5ncbwq4/xMMAhxnM3lJAEz0D8wt7RsAlUMHIqnlHGiqJ8yImxDyzBD9gvM6M6SZIfoHZswMhFj7QGSgdUQmso8pVDwAPHc0E7kApx1wKZuJ6C/Y5EchpsLEqc6OGLyIBsxA6K/m/k8wCEjxzFA2E5FnAuSZKWhkI5M8M4SMn1Kzif4mZZeluPEom4noLwzPDN1nhYicNOAhY4aQENeVgSAA9uV7AER6nHpmiv1eaFrCkCH3P5FLuGaGsuYKkpQKwGTMEBKmjMQBcH+QMeMCNE2D16MhFtcBqCemyhI/bj1rKsqLfJRhQuSUsbWlCPg82Le+It9DISygCsBEOkTv3UC4P8iYcQmiMWPnMr7w0FH9NSRiEFNXUYTFPz0epUEqAVCIpFYAdn8YgcguvgFWAZiMGZfg92gIJ/+fXMZEIVBZ4s/3EAgFTss5EIMXEgATeUGcjEjMRxCEHSkVgGnOICSoazaRF0xWNE1MBEHYQJ4ZIh3imjIQEkbImHEJJs8MiXsJgrBB1kCQMUPIiKElCjMR/cZA63BKEETukI0XmjMIGVM7AwozEf2FGAOnXRZBEHbIYQOaMwgZajRJ5AUfCYAJgnBIqgCYpnrCzECrAOz+TzBI8FKYiSAIh6QIgAeAJoLILiQAJvKCaDmTAJggCDuctkAhBi+Umk3kBdONNwCsaIIgcoccNiDNDCHjo6J5RD4QbzbyzBAEYYfsmaHQNCFjajRJxgzRXww0lyBBELlD3mmTZoaQMTeadP+a4v5PMEgQ3cQDQHhOEEQOkbtmk2eGkCHPDJEX/N6BZUUTBJE7PB4NYjSaNDOEjKZp/L4YCN5+93+CQQJ5ZgiCyAT/AKvwSmQf5rEjATDRb/hMxgx9bQRB2GNOGsjjQIiChXn8KcxE9BsmsRZlMxEEkQa2AfJ6NGg0ZxAWUJiJ6HfEbASKfxMEkQ5WR4TmC0IF88iQZ4boN/weMmYIgnAO10PQfEEoYB6ZgSBdcP8nGCR4TTUBaHIiCMIeP3lmiDQwXRUJgIl+w0eeGYIgMsBLnhkiDVwATJ4Ze2699VbMmjULJSUlqKqqsjxG07SUfw8++KDpmM8++wxz5sxBcXExRowYgVtuuQW6rudy6AWHaDmTAJggiHSwOYM2P4SK4ZVFAID65H/djC+XJw+Hw/j617+Oww8/HA8//LDyuEcffRQnn3wy/7myspL/f1tbG0444QQcc8wxWLx4MdasWYO5c+eitLQU1157bS6HX1CQZ4YgiEzweyjMRNjz+wtmYPOeLkwYVpbvofSZnBozN998MwDgsccesz2uqqoK9fX1lu899dRT6OnpwWOPPYZgMIgpU6ZgzZo1uPvuuzFv3rxBk3JImhmCIDJhIKXdErmhtiyI2rJgvoeRFQriLr/yyitRW1uLgw8+GA8++CDi8Th/7/3338ecOXMQDBoX/KSTTsK2bduwceNGy/OFQiG0tbWZ/rkdP6VmEwSRAX4KMxGDiLwbM7/4xS/w3HPP4dVXX8X555+Pa6+9Frfddht/v6mpCXV1dabfYT83NTVZnvP2229HZWUl/9fY2Ji7D9BPeCnMRBBEBrA6MyQAJgYDGRsz8+fPtxTtiv+WLFni+Hw/+9nPcPjhh2P69Om49tprccstt+A3v/mN6Rg5lMTEv6oQ0/XXX4/W1lb+b8uWLRl+ysLD5xX7rNDkRBCEPV4PeWaIwUPGmpkrr7wS559/vu0xY8aM6e14cNhhh6GtrQ07duxAXV0d6uvrUzwwO3fuBIAUjw0jGAyawlIDAdGA8dDkRBBEGijMRAwmMjZmamtrUVtbm4uxAAA+/vhjFBUV8VTuww8/HD/96U8RDocRCAQAAAsWLEBDQ0OfjCa3IU5I5JkhCCIdPspmIgYROc1m2rx5M/bs2YPNmzcjFoth2bJlAIAJEyagrKwM//73v9HU1ITDDz8cxcXFeOONN3DDDTfgsssu456VCy+8EDfffDPmzp2Ln/70p1i7di1uu+023HjjjYMmkwkwC4A9g+hzEwTRO9icQZsfYjCQU2PmxhtvxOOPP85/njFjBgDgjTfewNFHHw2/34/7778f8+bNQzwex7hx43DLLbfgiiuu4L9TWVmJhQsX4oorrsBBBx2E6upqzJs3D/Pmzcvl0AsOMTWbJieCINJBmhliMJFTY+axxx6zrTFz8sknm4rlqZg6dSrefvvtLI7MfZBmhiCITDCymfKetEoQOYfucpcgtjMgzwxBEOnwk2eGGESQMeMSqJ0BQRCZ4CUBMDGIIGPGJfionQFBEBlAqdnEYIKMGZdAXbMJgsgEH2UzEYMIMmZcAttdaRoJgAmCSA/VmSEGE2TMuAQ+MZFXhiAIBzCPjOjVJYiBChkzLoFNTOSVIQjCCSw120up2cQggO5yl+Cl+DdBEBnAPTM0ZxCDADJmXIKfwkwEQWQACy9R+xNiMEDGjEvgpckp/k0QhAPKi/wAgLKgN88jIYjck9N2BkT24DUjaJdFEIQDzp4xAp2hKL46Y0S+h0IQOYeMGZdATeMIgsiE6tIArjpuYr6HQRD9AoWZXEJVSQAAUFHsz/NICIIgCKKwIM+MSxhbW4rfnjcN42rL8j0UgiAIgigoyJhxEV+dMTLfQyAIgiCIgoPCTARBEARBuBoyZgiCIAiCcDVkzBAEQRAE4WrImCEIgiAIwtWQMUMQBEEQhKshY4YgCIIgCFdDxgxBEARBEK6GjBmCIAiCIFwNGTMEQRAEQbgaMmYIgiAIgnA1ZMwQBEEQBOFqyJghCIIgCMLVkDFDEARBEISrGRRds3VdBwC0tbXleSQEQRAEQTiFrdtsHVcxKIyZ9vZ2AEBjY2OeR0IQBEEQRKa0t7ejsrJS+b6mpzN3BgDxeBzbtm1DeXk5NE3L6rnb2trQ2NiILVu2oKKiIqvnJgzoOvcPdJ37B7rO/QNd5/4hl9dZ13W0t7ejoaEBHo9aGTMoPDMejwcjR47M6d+oqKigh6UfoOvcP9B17h/oOvcPdJ37h1xdZzuPDIMEwARBEARBuBoyZgiCIAiCcDVkzPSRYDCIm266CcFgMN9DGdDQde4f6Dr3D3Sd+we6zv1DIVznQSEAJgiCIAhi4EKeGYIgCIIgXA0ZMwRBEARBuBoyZgiCIAiCcDVkzBAEQRAE4WrImEnD/fffj7Fjx6KoqAgzZ87EokWLbI9/6623MHPmTBQVFWHcuHF48MEH+2mk7ieTa/33v/8dJ5xwAoYOHYqKigocfvjheOWVV/pxtO4l03ua8e6778Ln82H69Om5HeAAIdPrHAqFcMMNN2D06NEIBoMYP348HnnkkX4arXvJ9Do/9dRTmDZtGkpKSjB8+HB861vfQnNzcz+N1p28/fbbOP3009HQ0ABN0/CPf/wj7e/0+1qoE0qeeeYZ3e/36w899JC+YsUK/eqrr9ZLS0v1TZs2WR6/fv16vaSkRL/66qv1FStW6A899JDu9/v1v/71r/08cveR6bW++uqr9TvuuEP/6KOP9DVr1ujXX3+97vf79f/+97/9PHJ3kel1ZrS0tOjjxo3TTzzxRH3atGn9M1gX05vrfMYZZ+iHHnqovnDhQn3Dhg36hx9+qL/77rv9OGr3kel1XrRoke7xePTf/e53+vr16/VFixbp+++/v37WWWf188jdxUsvvaTfcMMN+t/+9jcdgP7888/bHp+PtZCMGRsOOeQQ/Xvf+57ptX333Vf/yU9+Ynn8j370I33fffc1vfbd735XP+yww3I2xoFCptfaismTJ+s333xztoc2oOjtdT7vvPP0n/3sZ/pNN91ExowDMr3O//nPf/TKykq9ubm5P4Y3YMj0Ov/mN7/Rx40bZ3rt97//vT5y5MicjXGg4cSYycdaSGEmBeFwGEuXLsWJJ55oev3EE0/Ee++9Z/k777//fsrxJ510EpYsWYJIJJKzsbqd3lxrmXg8jvb2dgwZMiQXQxwQ9PY6P/roo/jiiy9w00035XqIA4LeXOd//etfOOigg/DrX/8aI0aMwD777IPrrrsO3d3d/TFkV9Kb6zxr1ixs3boVL730EnRdx44dO/DXv/4Vp512Wn8MedCQj7VwUDSa7A27d+9GLBZDXV2d6fW6ujo0NTVZ/k5TU5Pl8dFoFLt378bw4cNzNl4305trLXPXXXehs7MT5557bi6GOCDozXVeu3YtfvKTn2DRokXw+Wi6cEJvrvP69evxzjvvoKioCM8//zx2796Nyy+/HHv27CHdjILeXOdZs2bhqaeewnnnnYeenh5Eo1GcccYZuPfee/tjyIOGfKyF5JlJg6Zppp91XU95Ld3xVq8TqWR6rRlPP/005s+fj2effRbDhg3L1fAGDE6vcywWw4UXXoibb74Z++yzT38Nb8CQyf0cj8ehaRqeeuopHHLIITj11FNx991347HHHiPvTBoyuc4rVqzAVVddhRtvvBFLly7Fyy+/jA0bNuB73/tefwx1UNHfayFttRTU1tbC6/WmWPg7d+5MsTgZ9fX1lsf7fD7U1NTkbKxupzfXmvHss8/iO9/5Dp577jkcf/zxuRym68n0Ore3t2PJkiX4+OOPceWVVwJILLq6rsPn82HBggU49thj+2XsbqI39/Pw4cMxYsQIVFZW8tf2228/6LqOrVu3YuLEiTkdsxvpzXW+/fbbMXv2bPzwhz8EABxwwAEoLf3/7ds9SyNRFMbxs3EyEALpAwPaiGCnDhEjMo0fwU5CLCws1coPYG0RiKmCXT6EKXTAfgJiBEGwEG2FSNrHYjG7rvuScTeJd/n/4DaTGzhzGHIfbubmbW1tzQ4PD9k9/0cmsRayM/MLvu/b0tKStdvtN9fb7baVy+WffmdlZeXd/NPTUwvD0LLZ7Mhqdd1Hem32dUdma2vLWq0W/3kPIW2fC4WCXV5eWqfTGYydnR2bm5uzTqdjy8vL4yrdKR95nldXV+3h4cGen58H125ubiyTyVgQBCOt11Uf6XO/37dM5u2yNzU1ZWbfdg7w9yayFo7s1eL/wOuxv2azqW63q93dXeXzed3d3UmSDg4OVKlUBvNfj6Pt7e2p2+2q2WxyNHtIaXvdarXkeZ7q9boeHx8H4+npaVK34IS0ff4Rp5mGk7bPvV5PQRBoY2NDV1dXiuNYs7Oz2t7entQtOCFtn09OTuR5no6Pj3V7e6uLiwuFYahSqTSpW3BCr9dTkiRKkkRmpqOjIyVJMjgC/xnWQsLMH9TrdU1PT8v3fS0uLiqO48Fn1WpVURS9mX9+fq6FhQX5vq+ZmRk1Go0xV+yuNL2Ookhm9m5Uq9XxF+6YtM/09wgzw0vb5+vra62vryuXyykIAu3v76vf74+5avek7XOtVtP8/LxyuZyKxaI2Nzd1f38/5qrdcnZ29tvf28+wFn6R2FsDAADu4p0ZAADgNMIMAABwGmEGAAA4jTADAACcRpgBAABOI8wAAACnEWYAAIDTCDMAAMBphBkAAOA0wgwAAHAaYQYAADiNMAMAAJz2AqR5lA49+HpFAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "xlq=np.linalg.lstsq(A,bn,rcond=None)[0]\n", + "\n", + "plt.figure()\n", + "plt.plot(np.linspace(0,1,n),xlq, label='Least squares solution')\n", + "plt.plot(np.linspace(0,1,n),x, label='Ground truth solution')\n", + "plt.legend()\n", + "plt.figure()\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "id": "44ed725c", + "metadata": {}, + "source": [ + "We see the solution matches the observed data well:" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "28589f81", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "4.213659415696782e-15" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "np.linalg.norm(A@xlq-bn)" + ] + }, + { + "cell_type": "markdown", + "id": "54c64567", + "metadata": {}, + "source": [ + "However this is not a desired solution to our inverse problem. Now, instead, solve using Tikonov regularization: " + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "e14a076f", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "
" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAGdCAYAAADAAnMpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAByRElEQVR4nO3dd3QUVRvH8e/upndIICSU0CF0CB0BpQpIkaogVUpUpKkoolLUF0VFsFAEAVFApIqIQEQ6KC3UUEMglIQQSnrdve8fK5FAgCQkmWzyfM7Zc9zZKc8Ocfe3d+7cq1NKKYQQQgghNKLXugAhhBBCFG4SRoQQQgihKQkjQgghhNCUhBEhhBBCaErCiBBCCCE0JWFECCGEEJqSMCKEEEIITUkYEUIIIYSmrLQuIDNMJhPXrl3D2dkZnU6ndTlCCCGEyASlFDExMXh7e6PXP7z9wyLCyLVr1yhdurTWZQghhBAiGy5fvkypUqUe+rpFhBFnZ2fA/GZcXFw0rkYIIYQQmREdHU3p0qXTvscfxiLCyN1LMy4uLhJGhBBCCAvzuC4W0oFVCCGEEJqSMCKEEEIITUkYEUIIIYSmLKLPSGYopUhNTcVoNGpdihBCPDGDwYCVlZUMZyAKhQIRRpKTkwkLCyM+Pl7rUoQQIsc4ODjg5eWFjY2N1qUIkassPoyYTCZCQkIwGAx4e3tjY2MjvySEEBZNKUVycjI3btwgJCSESpUqPXLAKCEsXZbDyM6dO/nss884dOgQYWFhrF27lm7duj1ymx07djBu3DhOnjyJt7c348ePx9/fP7s1p5OcnIzJZKJ06dI4ODjkyD6FEEJr9vb2WFtbc+nSJZKTk7Gzs9O6JCFyTZajdlxcHLVr1+abb77J1PohISF07NiR5s2bExgYyLvvvsuoUaNYvXp1lot9FPnVIIQoaORzTRQWWW4Z6dChAx06dMj0+nPnzqVMmTLMnDkTAF9fXw4ePMjnn39Ojx49snp4IYQQQhQwuR679+3bR7t27dIta9++PQcPHiQlJSXDbZKSkoiOjk73KGwmT55MnTp10p4PGjTokZfD7l9fZN7TTz/NmDFjnng/efFvoNPpWLduXa7s++LFi+h0Oo4cOfLE+8rNOoUQBU+uh5Hw8HA8PT3TLfP09CQ1NZXIyMgMt5k2bRqurq5pj4I2SZ5Op3vkY9CgQbz55pts3bpV61JFFhTGf7OHBbCwsLAstaAKIQq3PLmb5v67W5RSGS6/a8KECYwbNy7t+d2JdgqKsLCwtP9esWIFH3zwAWfOnElbZm9vj5OTE05OTlqUpzmj0YhOp7OY6+VKKYxGY6H+N7tfiRIltC5BCGFBcv3TvkSJEoSHh6dbFhERgZWVFe7u7hluY2trmzYpXkGcHK9EiRJpD1dXV3Q63QPLHtfkf+jQIYoXL87HH3+cbvmPP/5I2bJlcXV15YUXXiAmJibttaSkJEaNGkXx4sWxs7Pjqaee4sCBA2mvb9++HZ1Ox9atW6lfvz4ODg40bdo0XVACmDNnDhUqVMDGxoYqVarw448/pr324osv8sILL6RbPyUlBQ8PDxYtWpThe1m8eDFubm5s2LCBatWqYWtrm3YHwfjx4ylZsiSOjo40atSI7du3p9t2/vz5aXdSPf/888yYMQM3N7e01zO6vDVmzBiefvrph51afvrpJ+rXr4+zszMlSpSgb9++REREPHCeNm/eTP369bG1tWXXrl0P/Jtt376dhg0b4ujoiJubG82aNePSpUtpr//222/4+flhZ2dH+fLlmTJlCqmpqWmvnzt3jhYtWmBnZ0e1atUICAh4aM13rVq1ipo1a2Jvb4+7uztt2rQhLi4OMN8GP3XqVEqVKoWtrS116tRh06ZND93X3X+Xe61bty7tR8TixYuZMmUKR48eTWvVW7x4MfDgZZrjx4/TqlWrtLqGDx9ObGxs2ut3/50+//xzvLy8cHd357XXXnvopdyHycx+MrqE5Obmllb73ctVv/zyC82bN8fe3p4GDRpw9uxZDhw4QP369XFycuLZZ5/lxo0bDxx7ypQpFC9eHBcXF0aMGEFycjIAS5Yswd3dnaSkpHTH7tGjBwMGDMjS+xQiR13cA0u6QXKcZiXkehhp0qTJAx+iW7ZsoX79+lhbW+f48ZRSxCenavK42+KT27Zv307r1q2ZMmUKEydOTFseHBzMunXr2LBhAxs2bGDHjh188sknaa+PHz+e1atX88MPP3D48GEqVqxI+/btuXXrVrr9T5w4kS+++IKDBw9iZWXFkCFD0l5bu3Yto0eP5o033uDEiROMGDGCwYMHs23bNgD69evH+vXr033RbN68mbi4uEd2WI6Pj2fatGksWLCAkydPUrx4cQYPHsyePXv4+eefOXbsGL169eLZZ5/l3LlzAOzZswd/f39Gjx7NkSNHaNu27QPhLDuSk5P58MMPOXr0KOvWrSMkJIRBgwY9sN748eOZNm0ap06dolatWuleS01NpVu3brRs2ZJjx46xb98+hg8fnvZFvnnzZl566SVGjRpFUFAQ8+bNY/HixWn1m0wmunfvjsFg4O+//2bu3Lm8/fbbj6w7LCyMF198kSFDhnDq1Cm2b99O9+7d0/4uZ82axRdffMHnn3/OsWPHaN++PV26dEk7n1nVp08f3njjDapXr05YWBhhYWH06dPngfXi4+N59tlnKVKkCAcOHGDlypX8+eefjBw5Mt1627ZtIzg4mG3btvHDDz+wePHitICQFTm1n0mTJvHee+9x+PBhrKysePHFFxk/fjyzZs1i165dBAcH88EHH6TbZuvWrZw6dYpt27axfPly1q5dy5QpUwDo1asXRqOR9evXp60fGRnJhg0bGDx4cJbrE+KJmYyw/VP44Tm4sA12zdCuFpVFMTExKjAwUAUGBipAzZgxQwUGBqpLly4ppZR65513VP/+/dPWv3DhgnJwcFBjx45VQUFB6vvvv1fW1tZq1apVmT5mVFSUAlRUVNQDryUkJKigoCCVkJCglFIqLilF+by9QZNHXFJKVk+nWrRokXJ1dX1g+aRJk1Tt2rXTng8cOFB17dpVrVu3Tjk7O6tly5Y9sL6Dg4OKjo5OW/bWW2+pRo0aKaWUio2NVdbW1mrp0qVprycnJytvb281ffp0pZRS27ZtU4D6888/09b5/fffFZB2fps2baqGDRuW7ti9evVSHTt2TNunh4eHWrJkSdrrL774ourVq9cjzwGgjhw5krbs/PnzSqfTqatXr6Zbt3Xr1mrChAlKKaX69OmjOnXqlO71fv36pTufd8/bvUaPHq1atmyZ9rxly5Zq9OjRD61v//79ClAxMTFKqf/O07p169Ktd++/2c2bNxWgtm/fnuE+mzdvrv73v/+lW/bjjz8qLy8vpZRSmzdvVgaDQV2+fDnt9T/++EMBau3atRnu89ChQwpQFy9ezPB1b29v9fHHH6db1qBBA/Xqq68qpZQKCQlRgAoMDFRKZfy3uXbtWnXvx8b9f6d33Vvnd999p4oUKaJiY2PTXv/999+VXq9X4eHhSinzv5OPj49KTU1NW6dXr16qT58+Gb6Xh8nMfjI6h66urmrRokVKqf/Ow4IFC9JeX758uQLU1q1b05ZNmzZNValSJd2xixYtquLi4tKWzZkzRzk5OSmj0aiUUuqVV15RHTp0SHt95syZqnz58spkMmX4fu7/fBMix0RdU2pRJ6UmuZgfa/yVSozJ+cM84vv7XlluGTl48CB169albt26AIwbN466deum/UIICwsjNDQ0bf1y5cqxceNGtm/fTp06dfjwww/56quv5LbebPjnn3/o0aMHP/zwAy+++OIDr5ctWxZnZ+e0515eXmmXF4KDg0lJSaFZs2Zpr1tbW9OwYUNOnTqVbj/3/sr38vICSNvPqVOn0u0DoFmzZmn7sLa2plevXixduhQwj0vz66+/0q9fv0e+Nxsbm3THPXz4MEopKleunNYXw8nJiR07dhAcHAzAmTNnaNiwYbr93P88OwIDA+natSs+Pj44OzunXdK59+8aoH79+g/dR9GiRRk0aBDt27enc+fOzJo1K11foUOHDjF16tR0723YsGFp0xqcOnWKMmXKUKpUqbRtmjRp8si6a9euTevWralZsya9evVi/vz53L59GzD3u7p27doj/+1yy6lTp6hduzaOjo7pjmsymdJdAqxevToGgyHt+b1/v//73//Snav7/y3u9aj9ZMW9f493O+HXrFkz3bL791u7du10gy82adKE2NhYLl++DMCwYcPYsmULV69eBWDRokUMGjRIRo0WeevcnzD3Kbi4C6wd4fl58PwcsNWuz1uWO7A+/fTTj7wckVFzaMuWLTl8+HBWD5Ut9tYGgqa2z5NjZXTs3FShQgXc3d1ZuHAhnTp1emC+ivsve+l0OkwmE/DwTsNKqQeW3bufu6/d3U9m9tGvXz9atmxJREQEAQEB2NnZPfbOCnt7+3T7MJlMGAwGDh06lO6LBUjrJJpR7ff/ber1+geWPaofQlxcHO3ataNdu3b89NNPFCtWjNDQUNq3b5927f+ue79cM7Jo0SJGjRrFpk2bWLFiBe+99x4BAQE0btwYk8nElClT6N69+wPb2dnZZfj/2OO+sAwGAwEBAezdu5ctW7bw9ddfM3HiRP7555+0/lmZ+fe/K6vn7mEedYx7lz/q79ff35/evXunvebt7f3Q4z1qP3efZ+Z9ZfT/wf3L7t3vo9zdvm7dutSuXZslS5bQvn17jh8/zm+//ZapfQjxxIwp8NeHsGeW+blnTei1CDwqaVsXedBnJK/pdDocbKw0eeT2rxsPDw/++usvgoOD6dOnT5a+GCpWrIiNjQ27d+9OW5aSksLBgwfx9fXN9H58fX3T7QNg79696fbRtGlTSpcuzYoVK1i6dCm9evXK8kRfdevWxWg0EhERQcWKFdM97t6pUbVqVfbv359uu4MHD6Z7XqxYsXQtEsAjx9E4ffo0kZGRfPLJJzRv3pyqVatm61f1ve9jwoQJ7N27lxo1arBs2TIA6tWrx5kzZx54bxUrVkSv11OtWjVCQ0O5du1a2r727dv32OPpdDqaNWvGlClTCAwMxMbGhrVr1+Li4oK3t/dj/+3uVaxYMWJiYtI6wMKD587GxuaxM2VXq1aNI0eOpNvPnj170Ov1VK5c+bHvCcwtTfeeIyur7N8IeP/fxLlz53Jsks2jR4+SkJCQ9vzvv//GyckpXQvX0KFDWbRoEQsXLqRNmzYF6k5BkY/dvgSLOvwXRBoMhaF/5osgAgUwjBR0xYsX56+//uL06dO8+OKL6e6+eBRHR0deeeUV3nrrLTZt2kRQUBDDhg0jPj6el19+OdPHf+utt1i8eDFz587l3LlzzJgxgzVr1vDmm2+mraPT6ejbty9z584lICCAl156Kcvvs3LlyvTr148BAwawZs0aQkJCOHDgAJ9++ikbN24E4PXXX2fjxo3MmDGDc+fOMW/ePP744490obBVq1YcPHiQJUuWcO7cOSZNmsSJEyceetwyZcpgY2PD119/zYULF1i/fj0ffvhhlusPCQlhwoQJ7Nu3j0uXLrFlyxbOnj2b9sX/wQcfsGTJEiZPnszJkyc5depUWusJQJs2bahSpQoDBgzg6NGj7Nq1K11n5Yz8888//O9//+PgwYOEhoayZs0abty4kXbMt956i08//ZQVK1Zw5swZ3nnnHY4cOcLo0aMz3F+jRo1wcHDg3Xff5fz58yxbtuyBls+yZcsSEhLCkSNHiIyMfOBOETC3lNnZ2TFw4EBOnDjBtm3beP311+nfv/8DYxDlhVatWvHNN99w+PBhDh48iL+/f451pk9OTubll18mKCiIP/74g0mTJjFy5Mh0t6n369ePq1evMn/+/HSdw4XINUHrYV5zuHIAbF2h94/Q6Quwzj/zHUkYsUAlSpTgr7/+4vjx4/Tr1++xv0zv+uSTT+jRowf9+/enXr16nD9/ns2bN1OkSJFMH7tbt27MmjWLzz77jOrVqzNv3jwWLVr0wK2y/fr1IygoiJIlSz7QTyGzFi1axIABA3jjjTeoUqUKXbp04Z9//kn7JdmsWTPmzp3LjBkzqF27Nps2bWLs2LHpJhRr374977//PuPHj6dBgwbExMQ88jbKYsWKsXjxYlauXEm1atX45JNP+Pzzz7Ncu4ODA6dPn6ZHjx5UrlyZ4cOHM3LkSEaMGJFW14YNGwgICKBBgwY0btyYGTNm4OPjA5gvkaxdu5akpCQaNmzI0KFDH3unkIuLCzt37qRjx45UrlyZ9957jy+++CLtEtmoUaN44403eOONN6hZsyabNm1i/fr1VKqU8S+jokWL8tNPP7Fx40Zq1qzJ8uXLmTx5crp1evTowbPPPsszzzxDsWLFWL58eYbnYvPmzdy6dYsGDRrQs2dPWrdunen5rXLaF198QenSpWnRogV9+/blzTffzLFJNlu3bk2lSpVo0aIFvXv3pnPnzg+cMxcXF3r06IGTk9NjJxkV4omkJMLvb8Iv/SExCko1AP9dUK2L1pU9QKce1QEkn4iOjsbV1ZWoqKgHxhxJTEwkJCSEcuXKyayWgmHDhnH69Gl27dqldSmikBk0aBB37tzJ1DD4bdu2xdfXl6+++uqR68nnm8i2yPOwchBcP25+3mw0tHofDDk/pMajPOr7+155MgKrELnl888/p23btjg6OvLHH3/www8/MHv2bK3LEiJDt27dYsuWLfz111+atQyJQuDoz7BhHKTEgYM7PP8dVGqjdVWPJGFEWLT9+/czffp0YmJiKF++PF999RVDhw7VuiwhMlSvXj1u377Np59+SpUqVbQuRxQ0SbGw8S04au4oT9nm0H0+uHhpW1cmSBgRFu2XX37RugQhgIyHNbjfxYsXc70OUUiFnzBflrl5DnR6aPkOtHgT9Lk75EROkTAihBBCWCql4OBC2DQBjEng7AU9FkDZp7SuLEskjAghhBCWKOEO/DYKgn41P6/UDrrNAUcPTcvKDgkjQgghhKW5cghWDYY7l0BvBW2mQONXQW+ZI3ZIGBFCCCEshckE+76BrVPAlApuPtBzEZTy07qyJyJhRAghhLAEcZGw1h/OB5ifV+sGXb4CO1dNy8oJEkaEEEKI/O7iblg9FGLCwMoOnp0GfoOhgMz4bJkXl4SmJk+eTJ06dbQug6effpoxY8bk6TF1Ol2mRth8nLJlyzJz5swn3o8QooAzGWH7J/BDZ3MQ8agMw/6C+kMKTBABCSOaCg8PZ/To0VSsWBE7Ozs8PT156qmnmDt3bo7NIqqF7du3o9PpuHPnTr7cX15avHgxbm5uDyw/cOAAw4cPz/uChBCWIzoMlnSF7dNAmaBOPxi+HTyra11ZjpPLNBq5cOECzZo1w83Njf/973/UrFmT1NRUzp49y8KFC/H29qZLl4wnM0pJScmxWUa1lJycjI2NjdZlaKJYsWJalyCEyM/OBcDaERB/E6wd4bkvoXYfravKNdIyopFXX30VKysrDh48SO/evfH19aVmzZr06NGD33//nc6dO6etq9PpmDt3Ll27dsXR0ZGPPvoIgDlz5lChQgVsbGyoUqUKP/74Y9o2Fy9eRKfTceTIkbRld+7cQafTsX37duC/FoetW7dSv359HBwcaNq0KWfOnElX6yeffIKnpyfOzs68/PLLJCYmPvR9Xbx4kWeeeQaAIkWKoNPpGDRoEGC+rDJy5EjGjRuHh4cHbdu2fWydj9ofgMlkYvz48RQtWpQSJUo8MEPq/bZv307Dhg1xdHTEzc2NZs2acenSpbTXH3VOM9rX/S02R44cQafTcfHiRbZv387gwYOJiopCp9Oh0+nS6rv/Mk1oaChdu3bFyckJFxcXevfuzfXr19Nev3tp7Mcff6Rs2bK4urrywgsvEBMT88j3K4SwMMYU2PI+LO1pDiIlasKInQU6iEBBDCNKQXKcNo9MToB88+ZNtmzZwmuvvYajo2OG6+juuxY4adIkunbtyvHjxxkyZAhr165l9OjRvPHGG5w4cYIRI0YwePBgtm3bluVTNnHiRL744gsOHjyIlZUVQ4YMSXvtl19+YdKkSXz88cccPHgQLy+vR05EV7p0aVavXg3AmTNnCAsLY9asWWmv//DDD1hZWbFnzx7mzZv32Noysz9HR0f++ecfpk+fztSpUwkICMhwX6mpqXTr1o2WLVty7Ngx9u3bx/Dhw9POdU6eU4CmTZsyc+ZMXFxcCAsLIywsjDfffPOB9ZRSdOvWjVu3brFjxw4CAgIIDg6mT5/0Hz7BwcGsW7eODRs2sGHDBnbs2MEnn3ySrdqEEPnQ7Uuw8FnY++9szg2Gwct/gkdFbevKAwXvMk1KPPzPW5tjv3sNbDIOF/c6f/48SqkHJsry8PBIa3V47bXX+PTTT9Ne69u3b7qQ0LdvXwYNGsSrr74KwLhx4/j777/5/PPP01oSMuvjjz+mZcuWALzzzjt06tSJxMRE7OzsmDlzJkOGDEmbfO6jjz7izz//fGjriMFgoGjRogAUL178gf4SFStWZPr06WnPHzdXx+P2V6tWLSZNmgRApUqV+Oabb9i6dStt27Z9YF/R0dFERUXx3HPPUaFCBQB8fX3TXv/8889z7JwC2NjY4Orqik6no0SJEg9d788//+TYsWOEhIRQunRpAH788UeqV6/OgQMHaNCgAWBuBVq8eDHOzs4A9O/fn61bt/Lxxx9nuTYhRD4T9Cv8+jokRZlv1e36Lfh2fvx2BUTBaxmxIPe3fuzfv58jR45QvXp1kpKS0r1Wv379dM9PnTpFs2bN0i1r1qwZp06dynIdtWrVSvtvLy/z7I4RERFpx2nSpEm69e9/nhX3v48ndW/tYK7/bu33K1q0KIMGDaJ9+/Z07tyZWbNmERYWlvZ6Tp7TrDh16hSlS5dOCyIA1apVw83NLd2xy5YtmxZE4NHvVQhhIVIS4fc34JcB5iBSqiH47y5UQQQKYsuItYO5hUKrY2dCxYoV0el0nD59Ot3y8uXLA2Bvb//ANhldzrk/zCil0pbp/x0SWN1z6SglJSXjsu/pDHt3e5PJ9Nj3kR33v4+s1JmR+zvy6nS6R9a+aNEiRo0axaZNm1ixYgXvvfceAQEBNG7cOG37e917Tu/3pLU/7hj3L8/qexVC5HOR52DlYLh+3Py82Rho9R4YLP8GhawqeC0jOp35UokWj0ze8+3u7k7btm355ptviIuLy9bb9PX1Zffu3emW7d27N+2yw927Ne795X9vJ9GsHOfvv/9Ot+z+5/e7e4eM0Wh87P4zU2dW9pcZdevWZcKECezdu5caNWqwbNky4PHnNLu1P67uatWqERoayuXLl9OWBQUFERUV9dBjCyEs3JHlMK+lOYg4eMBLq6HtlEIZRKAgtoxYiNmzZ9OsWTPq16/P5MmTqVWrFnq9ngMHDnD69Gn8/B49z8Bbb71F7969qVevHq1bt+a3335jzZo1/Pnnn4C5daVx48Z88sknlC1blsjISN57770s1zl69GgGDhxI/fr1eeqpp1i6dCknT55Ma8XJiI+PDzqdjg0bNtCxY0fs7e1xcnLKcN3M1JmV/T1KSEgI3333HV26dMHb25szZ85w9uxZBgwYADz+nN6vYsWKlC5dmsmTJ/PRRx9x7tw5vvjii3TrlC1bltjYWLZu3Urt2rVxcHDAwSF9C1qbNm2oVasW/fr1Y+bMmaSmpvLqq6/SsmXLHL+sJYTQWFIsbHwTji43Py/XArrPB+eH9ysrFJQFiIqKUoCKiop64LWEhAQVFBSkEhISNKjsyVy7dk2NHDlSlStXTllbWysnJyfVsGFD9dlnn6m4uLi09QC1du3aB7afPXu2Kl++vLK2tlaVK1dWS5YsSfd6UFCQaty4sbK3t1d16tRRW7ZsUYDatm2bUkqpbdu2KUDdvn07bZvAwEAFqJCQkLRlH3/8sfLw8FBOTk5q4MCBavz48ap27dqPfG9Tp05VJUqUUDqdTg0cOFAppVTLli3V6NGjH1j3cXVmZX9du3ZNe/1+4eHhqlu3bsrLy0vZ2NgoHx8f9cEHHyij0Zi2zuPO6f3/Frt371Y1a9ZUdnZ2qnnz5mrlypUPnD9/f3/l7u6uADVp0iSllFI+Pj7qyy+/TFvn0qVLqkuXLsrR0VE5OzurXr16qfDw8LTXJ02a9MA5//LLL5WPj0+G71UUDJb8+SYyEHZMqa/8lJrkotRkN6W2T1fKmKp1VbnqUd/f99Iplcn7UTUUHR2Nq6srUVFRuLi4pHstMTGRkJAQypUrh52dnUYVCiFEzpPPtwJCKTiwADZPBGMSOHtDjwVQttnjt7Vwj/r+vpdcphFCCCFyS8IdWP86nFpvfl75Weg6GxzdNS0rv5EwIoQQQuSGKwdh1WC4Ewp6a3MH1cavFqgJ7nKKhBEhhBAiJ5lMsO9r2DoVTKng5gO9FkHJR9+YUJhJGBFCCCFySlwkrPWH8/9OS1H9eeg8yzyqqngoCSNCCCFETgjZBauHQmw4WNnBs5+A3yC5LJMJBSaMWMBNQUIIkSXyuWYhTEbY8SnsmA4o8KhivizjWV3ryiyGxYeRu0Nkx8fHZziMuhBCWKr4+HjgwakARD4SfQ1WD4NL/47eXPcl6DA9U5Omiv9YfBgxGAy4ubmlTRjm4ODw0LlEhBDCEiiliI+PJyIiAjc3NwwGg9YliYyc3QLr/CH+Jtg4wXMzoVYvrauySBYfRoC06dllBlMhREHi5uaW9vkm8pHUZNg6BfZ9Y35eohb0WgzuFTQty5IViDCi0+nw8vKiePHi2Zo1VQgh8htra2tpEcmPboXA6pfh6iHz84YjoN2HYGWrbV0WrkCEkbsMBoP8zyuEECJ3nFwL60dBUrT5Vt2us8H3Oa2rKhAKVBgRQgghclxKAmx+Fw4uND8v3cg8t4xbGW3rKkAkjAghhBAPc+MsrBwEEScBHTw1Bp6ZCAa5wyknSRgRQggh7qcUHFkGG9+ElHhwLAbPz4OKrbWurECSMCKEEELcKykGfn8Djq0wPy/XErrPB2dPbesqwCSMCCGEEHeFHTNflrkVDDo9PPMuPDUO9HJzRG6SMCKEEKJAiE1K5fCl21jpdfh6uVDE0SbzGysFBxaYO6oak8GlpLmTqk/T3CtYpJEwIoQQwiIZTYrDobfZfS6SvcGRBIbeIdX033w+JVzs8PVypmZJV15sVAYv14dMGZJwG9a/Dqd+Mz+v3AG6zQaHonnwLgSATlnATEzR0dG4uroSFRWFi4uL1uUIIYTQ2N7zkUz5LYgz12PSLS9d1B4dOkJvxadbbmetZ+hT5fF/ugJOtvf8Dr+8H1a9DFGhoLc2D2DWyF9m2s0hmf3+lpYRIYQQFiP0Zjwfbwxi88nrADjbWdGycjGequhBs4oelC7qAEBMYgpnwmMICovmt6PXOHDxNt9sO8/PB0IZ3aYyL9YvidXf38DWqaCMUKSceaZd77pavr1CS1pGhBBC5HtRCSnM2xHMgt0hJKeaMOh19G/sw5g2lXBzeHTfEKUUW4Ku88kfpwmJjMOdKOY5zad+6mHzCjV6mCe5s5Pvl5wmLSNCCCEsXlRCCgt3h7BwTwgxiakAPFXRgw86V6Oyp3Om9qHT6WhfvQStqhZn2x8rqXvwXYql3iYRG263+AivZ4bLZRmNSRgRQgiR70QlpLBoTwjf7/4vhFT2dOKNdlVoV80TXVbDgzEV6x2f0u7gZ4Dior40wxNGcm1HWeaVuUmzih45/yZEpkkYEUIIkW8kp5pY+s8lZm09x5148yzslT2dGN26Mh1qlECvz0YLRtRVWD0UQvean9ftT5GnP6bIz0GcDbnFwIX7md6zFt3rlcrBdyKyQsKIEEIIzSml2HzyOp9uMvfrAKhY3ImxbZ4ghACc2QTrXoGEW2DjBJ1nQc2euAJLXm7ImyuP8dvRa4z75ShRCSkMblYu596UyDQJI0IIITR1OjyaD9adZP/FWwB4ONkyrm1letcvhZVBn72dpibD1imw7xvzc6/a0HMRuFdIW8XWysCsPnUo4WLL/F0hTPktiCIONnSrW/JJ35LIIgkjQgghNJGYYuSrref4bucFUk0KO2s9w5qXZ0TL+8YCyapbIbBqCFz7926ZRv7QdipY2T6wql6v492OvqQYFYv3XuTNlUdxc7Dm6SrFs398kWUSRoQQQuS5vecjeXftcS7eNA9O9mz1EkzqUu3ho6Rm1ok18NtoSIoGOzfoNgeqdnzkJjqdjg+eq8atuGTWH73GKz8dZtmwRtQtU+TJahGZJmFECCFEnomKT+HjjUH8cvAKAJ4utkztWoP21Us82Y5TEmDTO3Bosfl56cbmuWXcSmdqc71ex+e9anM7Ppld5yIZsvgAK/2bULF45m4fFk8mmxfjhBBCiKzZcjKctl/u4JeDV9DpoH9jHwLGtXzyIBJxGua3+jeI6KD5GzDo90wHkbtsrPTMfcmP2qXduB2fwoDv9xP17x09IndJGBFCCJGrbsYmMXLZYYb/eIiImCTKF3Nk5YgmfNitBi521tnfsVJw+Ef47mmICALH4tB/DbT+AAzZa/h3tLVi0aAGlHV34FpUItP+OJX9+kSmZSuMzJ49m3LlymFnZ4efnx+7du165PpLly6ldu3aODg44OXlxeDBg7l582a2ChZCCJH/KaU4duUO0/44Rdsvd7LhWBgGvY5Xnq7AxlHNqV/2CWfETYqBNcNh/UhITYDyz4D/bqjQ6olrL+pow2e9agPw84HL/H1Bvq9yW5bnplmxYgX9+/dn9uzZNGvWjHnz5rFgwQKCgoIoU6bMA+vv3r2bli1b8uWXX9K5c2euXr2Kv78/lSpVYu3atZk6psxNI4QQ+VtCspFrUQlcu5PA7nOR/H48jCu3E9Jer1rCmc961qZmKdcnP1jYUVg5GG4Fg84ArSZCs7Ggz9nG/nfXHmfZP6GU93Bk4+jm2FkbcnT/hUFmv7+zHEYaNWpEvXr1mDNnTtoyX19funXrxrRp0x5Y//PPP2fOnDkEBwenLfv666+ZPn06ly9fztQxJYwIIUT+EhGTyM/7L7MlKJwrtxPSRku9l721gVZVi9Oxphdtq3liY/WEYUEp2P8dbHkPjMngUgp6fg9lGj/Zfh8iOjGFNl/sICImiZHPVOTN9lVy5TgFWa5MlJecnMyhQ4d455130i1v164de/fuzXCbpk2bMnHiRDZu3EiHDh2IiIhg1apVdOrU6aHHSUpKIikpKd2bEUIIoS2lFIdD77Bk30U2Hg8jxZj+t6yjjQEvN3uqlnCmY00vnqlSHHubHGpNSLgNv46E0xvMz6t0hK7fgsMTXu55BBc7a6Z2rY7/T4eZuyOY52p7UbWE/CDODVkKI5GRkRiNRjw9PdMt9/T0JDw8PMNtmjZtytKlS+nTpw+JiYmkpqbSpUsXvv7664ceZ9q0aUyZMiUrpQkhhMhFp8KimbDmOEcu30lbVq+MG30b+VDd2wVvN3tc7KyyPoFdZoT+A6tfhqjLYLCBth9CoxF5MtPuszW8aFfNky1B13ln9XFWv9IUQ3aHphcPla02s/v/2JRSD/0DDAoKYtSoUXzwwQccOnSITZs2ERISgr+//0P3P2HCBKKiotIemb2cI4QQImelGk3M3n6eLt/s5sjlO9hY6enlV4rfRj7Fmleb0dOvFL5eLrjaW+d8EDGZYNcMWNTBHESKlIOXt0Bj/zwJIndN7VoDZ1srjly+w09/X8qz4xYmWWoZ8fDwwGAwPNAKEhER8UBryV3Tpk2jWbNmvPXWWwDUqlULR0dHmjdvzkcffYSXl9cD29ja2mJr++CwvUIIIfLOhRuxvLHyKIGhdwBo4+vJ/7rXoLizXe4fPPYGrB0BwVvNz2v0hOe+BLu8v0xSwtWO8c9W4f1fTzJr6zl6+pXC8UmGqxcPyFLLiI2NDX5+fgQEBKRbHhAQQNOmTTPcJj4+Hv19PZwNBvM1xCz2nRVCCJFHfjlwmY5f7SIw9A7OtlZ80as28wf45U0QubAd5jYzBxEre+jytXk0VQ2CyF0vNixDWXcHbsUl88O+i5rVUVBl+TLNuHHjWLBgAQsXLuTUqVOMHTuW0NDQtMsuEyZMYMCAAWnrd+7cmTVr1jBnzhwuXLjAnj17GDVqFA0bNsTb2zvn3okQQognppTiiy1nGL/6GIkpJp6q6MHmsS3o4Vcqd/qD3MuYCn99BEu6Qex1KOYLw7dBvQF5elkmI1YGPaPbVALgu50XiEmUkVlzUpbbmfr06cPNmzeZOnUqYWFh1KhRg40bN+Lj4wNAWFgYoaGhaesPGjSImJgYvvnmG9544w3c3Nxo1aoVn376ac69CyGEEE8sOdXEO2uOsebwVQBGtarI2LaVcz+EAERdhdVDIfTfOzPrDYRnPwEbh9w/diZ1qV2Sb/46T/CNOBbtucio1pW0LqnAyPI4I1qQcUaEECJ3RSem8OpPh9l9PhKDXsf/nq9BnwYPDmSZK85sgnWvQMItsHGGzjOhZs+8OXYW/Xb0Gq8vD8TZzordb7fC1f4JhrMvBDL7/S1z0wghRCF39U4CvefuY/f5SBxsDCwYWD9vgkhqMmx6F5b3MQcRrzowYke+DSIAnWp6UdnTiZjEVL7fdUHrcgoMCSNCCFGIHbp0i67f7OZ0eAzFnG35ZUQTnqlSPPcPfOsCLGwHf39rft74VfNtu+4Vcv/YT0Cv1zG2TWUAFu65yO24ZI0rKhgkjAghRCG16tAVXvzuHyJjk/H1cmHtq02pUTIH5o55nBOrYW4LuBYI9kXgxZ/h2WlgZRlDOrSvXoJqXi7EJqUyX1pHcoSEESGEKGSMJsW0jad4c+VRko0m2lf3ZJV/E0oVyeXOosnxsH4UrBoCyTFQpol5pt0qHXL3uDlMr9cxtq25dWTx3ovcjE16zBbicSSMCCFEIXIjJonBiw8wb6f5F/3rrSoyp59f7g/iFXEa5reCwz8AOmjxFgzcAK6lcve4uaSNb3FqlXIlPtnId9I68sQkjAghRCGx7XQEHWbtZOfZG9ha6Zn1Qh3eaFcFfW7OtaIUHF4C3z0NN06BY3EYsA5avQcGyx3FVKfTMebfcUeW7L0krSNPSMKIEEIUcIkpRiavP8ngxQeIjE2maglnfnv9KbrWKZnLB46GNcNg/euQmgAVWsEre6D807l73DzyTBVz60hCirSOPCkJI0IIUYBdvhVPt2/3sHjvRQAGNS3LuteaUdnTOXcPfO0IfNcSjq8EnQFafwD9VoNTHtypk0ekdSTnSBgRQogC6lRYNN3n7OV0eAzujjYsGtSAyV2qY2dtyL2DKgV/z4Xv25pv33UtDYP/gOZvgL7gfeVI60jOKHh/GUIIIThw8Ra95+3jRkwSVUs4s3F0c56pmsutEvG34Od+sOltMCZDlU4wYieUaZS7x9WQtI7kDAkjQghRwGw9dZ2XFvxDTGIq9X2KsGJ4Ezxdcnm23dC/YW5zOPM7GGygw3R4YSk4FM3d4+YD0jry5CSMCCFEAbLm8BWG/3iIpFQTraoW58eXG+HqkIvzp5hMsOsLWNQRoq9A0fLwcgA0GqH5TLt5RVpHnpyEESGEKCB+O3qNN1YexWhSdK9Xknn9/bC3ycX+IbER8FN32DoVlBFq9jJflvGuk3vHzKfStY7slNaRrJIwIoQQBcBfp68zdsURlIIXG5bh8561sTbk4kd88DaY0wwubANrB+j6LXSfD7a5fJdOPnVv68iPf1/ilsxZkyUSRoQQwsLtC77JKz8dJtWk6FrHm4+61ci9gcyMqeaWkB+fh7gIKF4Nhm2Dui8VmssyD/NMleJU93YhPtnIoj0hWpdjUSSMCCGEBTty+Q5DfzhAUqqJNr7F+bxXbQy5FUSirsDiTuY+IijwGwTD/oLiVXPneBZGp9PxequKACzec5GohBSNK7IcEkaEEMJCnbsew6BF+4lLNtK0gjvf9K2Xe5dmTm+EuU/B5b/B1gV6LoLOs8DaPneOZ6HaVStBZU8nYpJSWfLvQHPi8SSMCCGEBboZa57w7k58CnVKuzF/QP3cGcwsNQn+eAd+fhESboN3XXMn1Rrdc/5YBYBer+O1Z8ytI9/vCSEuKVXjiiyDhBEhhLAwSalGRvx4iCu3E/Bxd2DhoAa5M+vuzWDzSKr/zDE/bzIShmyBouVy/lgFyHO1vCnn4cid+BSW/nNJ63IsgoQRIYSwIEopJqw5zsFLt3G2s+L7gQ0o6miT8wc6vgrmtYSwo2BfFF5cAe0/BqtcOFYBY9DreOXpCgB8tzOExBSjxhXlfxJGhBDCgszZEcyaw1cx6HXM7lePisWdcvYAyfHmWXZXvwzJMVCmKfjvhirP5uxxCrjn65akpJs9kbFJ/Lw/VOty8j0JI0IIYSE2nQhn+qYzAEzuXI3mlYrl7AEiTsH8VnB4CaCDFuNh4G/gWjJnj1MIWBv0aa0j83ZeIClVWkceRcKIEEJYgJDIOMb9cgSAgU186N+kbM7tXCk49AN89wzcOAVOnjDgV2g1EQy50BelkOjpVwpPF1vCohLZcDRM63LyNQkjQgiRz6UYTYxZcYT4ZCONyxfl/eeq5dzOE6PNl2R+GwWpCVChFfjvgfItc+4YhZSdtYH+jX0AWHHwssbV5G8SRoQQIp/75q/zHL18B2c7K2b0roNVTo0lcvUwzGsBJ1aDzgBtJkO/1eCUw5d/CrEefqXQ6WB/yC1CIuO0LiffkjAihBD52KFLt/lm23kAPn6+Jt5uOTDImFKwbzZ83w5uh4BraRiyCZ4aC3r5WshJXq72tPi3b8+qQ9I68jDyVyeEEPlUbFIq4345gtGk6FbHmy61vZ98p/G3YPmLsHkCmFKg6nPgvwtKN3zyfYsM9WlQGoBVh65gNCmNq8mfJIwIIUQ+9eFvQVy6GU9JN3umdK3x5Du8tM88pPvZP8BgAx0/hz4/gX2RJ9+3eKjWvsUp4mDN9egkdp67oXU5+ZKEESGEyIc2HLvGioOX0engi961cbW3zv7OTEbY+Zl5krvoq+BeEYZuhYbDCv1Mu3nB1spAt7rm26NXSkfWDEkYEUKIfGb3uUjGrTgKwIgWFWhc3j37O4u5Dj8+D399BMoItfrA8O3gVStnihWZ0svPfKkmIOg6t+KSNa4m/5EwIoQQ+cjh0NsM//EgyUYTz1YvwZvtKmd/Z+e3wtxmELIDrB2g62x4fh7YOudcwSJTqnm7ULOkKylGxbrAq1qXk+9IGBFCiHziVFg0gxbuJz7ZSPNKHsx6MZu38RpT4M/J8FN3iLsBxaubW0Pq9pPLMhrqXb8UAL8cvIxS0pH1XhJGhBAiH7gYGUf/7/cTnZiKn08R5vX3w9bKkPUd3bls7huy+0vz8/pDYNhWKFYlZwsWWdaldklsrPScDo/h+NUorcvJVySMCCGExq5HJ9JvwT9Exibh6+XCwkENcLDJxjDspzaYL8tc/gdsXaDXYnjuS7DOgbFJxBNzdbCmQ40SgLl1RPxHwogQQmgoJjGFQYsOcPVOAmXdHVgypGHW75xJTYKN42FFP0iMAu96MGInVH8+d4oW2Xa3I+tvR8NINZo0rib/kDAihBAaSU418cpPhzkVFo2Hkw1LhjSimLNt1nZyMxgWtIH988zPm4yEIZuhaLmcL1g8sSYV3HFzsCYqIYVDl25rXU6+IWFECCE0oJTinTXH2H0+EgcbA4sGNaSMu0PWdnJspXlumfBjYF8U+v4C7T8GK5vcKVo8MYNexzNVigPw1+kIjavJPySMCCGEBj7fcoY1h69i0Ov4tl89apZyzfzGyXHw62uwZigkx4JPM3hlD1Run3sFixzT2tccRv48dV3jSvKPbPSQEkII8SSW7w/l223BAEzrXjPtl3KmXA+ClYMg8gygg5bjocV4MMjHuaVoUbkYVnodwTfiuBgZR1kPR61L0py0jAghRB46HHqbD349AcCYNpXoXb905jZUCg4ugvnPmIOIUwkYuB6eeVeCiIVxsbOmYbmiAGyVSzWAhBEhhMgzkbFJvLb0MClGRceaJRjdulLmNkyMglWDYcMYSE2Eim3AfzeUa5Gr9Yrc06qquTVsq1yqASSMCCFEnkg1mhi1PJCwqETKF3Nkes/a6DIzGurVQ+ZOqifXgt4K2k6FvivBqVjuFy1yTRtfTwD2h9wiOjFF42q0J2FECCHywBcBZ9kbfBMHGwPzXvLDyfYxl1aUgn3fwvft4fZFcCsDgzdBs9Ggl49uS1fWw5HyxRxJNSl2nr2hdTmak79oIYTIZZtPhjNnu7nD6vSetajk+ZiJ6uJuwvIXYPO7YEoB3y4wYheUbpAH1Yq8crd15K9T0m9EwogQQuSiCzdiefOXowAMaVaO52p5P3qDS3th7lNwdhMYbKHj59B7Cdi75X6xIk/d7Tey7UwERlPhnjhPwogQQuSSmMQUhv94iJikVBqULcKEjlUfvrLJCDummye5i7kG7hVh6J/QcJjMtFtA1fcpgoudFbfjUwgMLdyjsUoYEUKIXGAyKcb9cpTzEbGUcLHj2371sDY85CM3Jhx+7AbbPgZlgtovwvAd4FUrT2sWecvKoOfpKncHQCvcl2okjAghRC746q9zBARdx8ZKz7z+fhR3tst4xfN/wpxmELITrB2h21x4fi7YOuVtwUITd0dj/et04b7FV0bKEUKIHLblZDgz/zwHwMfdalC7tNuDKxlT4K+PYM9M83PPGtBzERSrnGd1Cu09Xbk4Br2Os9djuXwrntJFszg/UQEhLSNCCJGDzl2PYeyKIwAMalqWXhmNsHonFBZ1/C+INBgKQ7dKECmEXB2sqe9TBCjcE+dJGBFCiBwSnZjCiB8PEZdspFG5okzs5PvgSqd+M98tc2U/2Lqa75Tp9AVYP+QyjijwWlYxD2C353ykxpVoRy7TCCFEDjCZFG/8cpQLkXF4u2bQYTUlEba8Bwfmm5+X9IOeC6FIWU3qFflH0woewBn+vnATo0lh0Be+u6ekZUQIIXLA7O3n0zqsznnJDw8n2/9ejDwP37f5L4g0HQVDNksQEQDU8HbB2daK6MRUTl6L0rocTUgYEUKIJ7TtTARfBJwF4KOu93VYPboCvmsJ4cfBwR36rYJ2H4LBWptiRb5jZdDTqLw7AHuDb2pcjTYkjAghxBO4dDOO0csDUQr6NipD7wb/dlhNjoN1r8La4ZAcC2Wbg/8eqNRW24JFvtS0QuEOI9JnRAghsikh2ciIHw8RnZhKndJuTOpczfxC+AlYNRgiz4JODy3fgRZvgt6gbcEi32pa0RxGDoTcIjnVhI1V4WorKFzvVgghcohSivGrj3E6PAYPJxvmvFQPW4MeDi6EBa3NQcTZCwb+Bk+/LUFEPFLl4s64O9qQkGLkyOU7WpeT57IVRmbPnk25cuWws7PDz8+PXbt2PXL9pKQkJk6ciI+PD7a2tlSoUIGFCxdmq2AhhMgP5u64wG9Hr2Gl1/Ft33p42SbDykGwYSykJkKlduC/G8o+pXWpwgLo9Toap12qKXy3+GY5jKxYsYIxY8YwceJEAgMDad68OR06dCA0NPSh2/Tu3ZutW7fy/fffc+bMGZYvX07Vqo+YMEoIIfKxbWcimL75NACTulSnke1FmNscgtaB3grafggvrgBHD03rFJalWQXz30th7DeiU0plad7iRo0aUa9ePebMmZO2zNfXl27dujFt2rQH1t+0aRMvvPACFy5coGjRotkqMjo6GldXV6KionBxccnWPoQQIidcuBFL12/3EJOYyosNSvE/r53o/pwCphRwK2Me0r1Ufa3LFBboYmQcT3++HWuDjmOT2mNvY/mX9jL7/Z2llpHk5GQOHTpEu3bt0i1v164de/fuzXCb9evXU79+faZPn07JkiWpXLkyb775JgkJCQ89TlJSEtHR0ekeQgihtZjEFIb/eIiYxFSeLq3n44SP0G15zxxEqnWFEbskiIhs83F3wNvVjhSj4sDFW1qXk6eyFEYiIyMxGo14enqmW+7p6Ul4eHiG21y4cIHdu3dz4sQJ1q5dy8yZM1m1ahWvvfbaQ48zbdo0XF1d0x6lS2cwt4MQQuQho0kxdsURzkfE8qxTMN8njEV/fgsYbKHTDOj1A9i7aV2msGA6nY4mhfRSTbY6sOp06YeqVUo9sOwuk8mETqdj6dKlNGzYkI4dOzJjxgwWL1780NaRCRMmEBUVlfa4fPlydsoUQogc8+mm0/x1Kpyx1muZY5yEITYMPCrDsL+gwcvwkM9AIbKi2b+3+O4rZJ1YszTOiIeHBwaD4YFWkIiIiAdaS+7y8vKiZMmSuLq6pi3z9fVFKcWVK1eoVKnSA9vY2tpia2v7wHIhhNDCz/tDWbfzED9Zf0tTQxAooE4/6PgZ2DhqXZ4oQJr8e0fN8atRRCWk4GpfOEbqzVLLiI2NDX5+fgQEBKRbHhAQQNOmTTPcplmzZly7do3Y2Ni0ZWfPnkWv11OqVKlslCyEEHlnb3AkW379iY22E8xBxNoRnp8H3WZLEBE5zsvVnvIejpgU7A8pPP1GsnyZZty4cSxYsICFCxdy6tQpxo4dS2hoKP7+/oD5EsuAAQPS1u/bty/u7u4MHjyYoKAgdu7cyVtvvcWQIUOwt7fPuXcihBA57EL4bc78OI6F1p/ioYtGedaAETug9gtalyYKsLutI3vOF55LNVkeDr5Pnz7cvHmTqVOnEhYWRo0aNdi4cSM+Pj4AhIWFpRtzxMnJiYCAAF5//XXq16+Pu7s7vXv35qOPPsq5dyGEEDksOuw8CfP7MpgzAKT6vYzVs/8DazuNKxMFXdMKHiz9J5R9hagTa5bHGdGCjDMihMhLqSd+JWn1qziqWGJwwNT5a1z9empdligkbsUlU+9Dc3eIw++3paijjcYVZV+ujDMihBAFWkoi/P4GVqsG4KhiOaoqcr3vnxJERJ4q6mhD+WLm/kiBobc1riZvSBgRQgiAyHOwoA0cWADA3NTO3Oj1KxUrV9e4MFEY+ZUpAsBhCSNCCFFIHP0Z5rWE68e5qVwYmPw2pjaTaVND7vgT2qjnYw4jhy4VjjCS5Q6sQghRYCTFwsa34OgyAPZTnZFJr9K0TnVeaVlB4+JEYeb3bxg5ejmKVKMJK0PBbjso2O9OCCEeJvwEfPc0HF2G0un5wbYvLyROwKt0OT7pUeuho0oLkRcqFnPC2c6KhBQjp8NjtC4n10kYEUIULkrBge9hfiu4eQ6cvZhfbhaTop7Dw9me+f39sLO2/NlShWXT63XULVN4LtVIGBFCFB4Jd2DlQPh9HBiToFJ7tj69hv8FuaPTwcw+dSjuIuOIiPyhMHVilT4jQojC4cpBWDUY7oSC3hraTCas2mDGzdoDgH/LCjSt6KFxkUL8p56PG1A4WkYkjAghCjaTCfZ9A1ungCkV3Hyg5yKM3vUYu+BvohJSqF3KlXFtK2tdqRDp1Cnthk4HV24nEBGdWKBb7eQyjRCi4IqLhGW9IeB9cxCp1g38d0EpP+buCObvC7dwsDEw64W6WBfwuxWE5XG2s6aKpzNQ8C/VyP99QoiCKWQXzH0KzgeAlR089yX0Wgx2rhy5fIcvA84CMLVrDcp6yOy7In+6O97I4dA72haSyySMCCEKFpMRtn8CS7pATBh4VIZhf0H9IaDTEZuUyqjlgaSaFM/V8qJHvZJaVyzEQ/kVkjtqpM+IEKLgiA6DNcPg4i7z8zovQcfpYPNfy8cHv54g9FY8Jd3s+fj5mjKeiMjX7raMHL8SRVKqEVurgnnbubSMCCEKhnMBMLeZOYhYO8Lz30G3b9MFkV+PXGXN4avodTDzhTq42ltrWLAQj1fW3YGijjYkG02cvBatdTm5RsKIEMKypSbDlvdgaU+IvwklasKInVC7T7rVLt+K5721JwB4vVUlGpQtqkW1QmSJTqejXhk3AA4X4Es1EkaEEJbr9kVY1AH2fm1+3nA4vPwneFRMt1qq0cSYFUeISUrFz6cIr7eq+OC+hMin/uvEWnDDiPQZEUJYppPrYP0oSIoCO1fo+i34ds5w1a//Os+hS7dxtrViZp86BX7SMVGw1LunE6tSqkD2c5IwIoSwLCmJsPldOPi9+XmphtDze3Ark+Hqvx65ytd/nQPg4+41KV3UIa8qFSJH1C7lhkGv43p0EteiEinpZq91STlOfh4IISzHjbOwoPV/QeSpsTB440ODyIZj1xi74ggmBf0b+9CltnceFitEzrC3MVDd2wUouLf4ShgRQliGI8vgu5Zw/QQ4eMBLq6HNZDBkfEfMphNhjP7ZHER6+ZViSpfqeVuvEDno7qWagtqJVS7TCCHyt6RY+P0NOPaz+Xm5FtB9PjiXeOgmW06GM3JZIEaTonu9knzSoxZ6fcG7zi4Kj9qlXQE4cTVK40pyh4QRIUT+FXbMPNPuzfOg08PT70LzcaDPeOCnFKOJXw5eZvL6k6SaFF3rePNZz9oYJIgIC1ezpDmMnLwWjdGkCtzftIQRIUT+oxQcWACbJ4IxCZy9zZ1UfZpmuHpiipGVh64wd3swV+8kANCplhdf9JIgIgqGch5OONoYiEs2Enwjlsr/TqBXUEgYEULkLwl3YP1IOPWb+XnlZ6HbHHD4b5AypRQ3YpM4dz2WI5fvsGTfRa5HJwFQzNmWES3KM6hpWbmFVxQYBr2O6t6u7L94i2NXoiSMCCFErrl8AFYNgahQ0FtD26nQ+BXQ6Qi+EcuvgVfZd+EmZ6/HEpWQkm5Tb1c7/J+uQO/6pbGzLpjzd4jCrUZJcxg5cTWKnn6ltC4nR0kYEUJoz2SCfV/D1qlgSoUiZaHnIm64VGfD3ousC7zK0SvpO+7pdeDj7kiFYk608S1O93qlsLGSlhBRcNUqZe43cuzKHW0LyQUSRoQQ2oq9Aev84fyf5ufVuxPV5nNm7b7Okn1bSTUpwNxM3aKSBx1relHd25XyxRylBUQUKjX+7cQaFBZNqtFUoC5DShgRQmgnZCesHgax4WBlh7H9NJamPMOXXx/idrz5Mkzt0m48X8eb52p74+Fkq3HBQminvIdjWifW8zdiqVrCReuScoyEESFE3jOmws7psGM6oFAeVThQ/wsm7jJxLiIIgMqeTrzXqRotKhfTtlYh8gm9Xkf1kq7sD7nF8StREkaEECLboq/B6qFwaQ8AYRV6MSbqRf5ZFw1AEQdrxrWtzIsNyxSoZmghckKtf8PIiatR9KpfWutycoyEESFE3jm7Gdb6Q8ItjFaOfO3wGjNP1gESsbPWM6BJWV57uiKuDhkP8S5EYVfzbifWAjYSq4QRIUTuS02GrVNg3zcAnNNXYFjcq1yM9cLWSs9LjX0Y0bI8xZ3tNC5UiPzt7kisQdcKVidWCSNCiFylboUQt2wgTpFHAViU2p5pqX3RW9syqEEZXn26AsVdJIQIkRll3R1xsrUiNimVcxGx+HoVjH4jEkaEELkiOjGFwxsX0eDYJJyI545yZHzKcK6WaM37DcvQpbY3rvZyOUaIrNDrddQo6cLfF25x/GqUhBEhhLifyaQ4HHqbXw9eoMbxafTRmccOOawqs8X3f7z+VMO0a95CiOypWdLVHEauRNG7gHRilTAihHgiJpMi8PIdfj8WxsbjYTjGBPON9Vf46i9jQsfJckOo1PMj6jk6aF2qEAXC3cHPjhegTqwSRoQQWaaU4uS1aH47eo0Nx8L+nSlX0cuwgyk2P+CgSyLZzh3rnguoWbGV1uUKUaDUKuUGmEdiTTGasC4AnVgljAghMu16dCLL/gnlt6PXuBAZl7a8mE0yc9x+on70v0O6l38am+e/A2dPjSoVouDyKeqAs60VMUmpnLseSzVvy+83ImFECPFYyakmFu0J4aut54hLNgJga6WntW9x+vlE0eTw++hvBYPOAM+8C0+NA73l/1oTIj8yd2J1Zd+Fm5y4GiVhRAhR8O08e4PJv53kwg1zS0id0m4MbOpDm6rFcT62GLZMBGMyuJSEHt+DTxNtCxaiEKhZyhxGjl29Q+8Glt+JVcKIECJDd+KTeWf1cTadDAfAw8mWCR2q8nzdkuiT7sCvg+H0BvPKlTtAt9ngUFS7goUoRGqmdWKN1riSnCFhRAjxgPMRsQz94QAXb8Zj0OsY1LQso9tUwsXOGi7vh1VDIOoy6K2h3YfQyB90Oq3LFqLQuBtGThWQTqwSRoQQ6ew4e4ORyw4Tk5hKSTd7vhvgR3VvVzCZYPeXsPVDUEYoUg56LQLvulqXLESh4+PugLOdFTGJqZy9HmP+f9SCWXaUEkLkGKUUC3eHMHjRfmISU6nvU4RfRzYzf8jFRsDSHvDnZHMQqdETRuyUICKERnQ6HTX+DSAnCsB4IxJGhBAopZjyWxBTNwRhUtDTrxRLhzXCw8kWLuyAuU9B8F9gZQ+dv4IeC8DO8nvwC2HJ7o5mXBAGP5PLNEIUckoppm4IYvHei+h0MKFDVYY1L4/OZIS/PoadnwEKilWFXouhuK/WJQshuHckVsvvxCphRIhCTCnF9M1nWLTnIgCfdq9lvk0w6iqsHgqhe80r1hsAz34KNjKkuxD5RUHqxCphRIhC7Kut55mzPRiAD7vVMAeRs5thrT8k3AIbZ+g8E2r21LZQIcQDCtJIrJYbo4QQT2TO9mC+/PMsAO918qV/fS/YPBGW9TYHEa86MGKHBBEh8im9Xkf1kuYAYumdWCWMCFHIKKX4MuAsn246DcBb7aswtLoOFraHfd+YV2r8Kry8BdwraFipEOJxahaQGXzlMo0QhUiK0cS7a46z8tAVAMa2qcxrxY7BvNGQFA32RaDrbKjaUeNKhRCZUUPCiBDCksQmpfLq0sPsPHsDvQ6mda5En5vfwKrF5hVKN4ae34NrKU3rFEJk3r2dWFONJqwstBOrhBEhCoGI6EQGLz7AyWvR2FsbWNTJmcaHB0JEEKCD5m/A0xPAIB8JQliSsu6OONlaEZuUyvkbsVQtYZmdWC0zQgkhMi08KpGec/dx8lo07g7WbHn6Eo239jQHEcfi0H8ttH5fgogQFkiv16XdRXP8iuVeqpEwIkQBdiMmib4L/ib0VjxViujYUWk5pXeNh5R4KP8M+O+GCs9oXaYQ4gncvVRjyXfUyE8hIQqo23HJ9P/+Hy7ciONp56vMt5mN9ZkQ0Bmg1URoNhb08ntECEtXEO6oydYn0ezZsylXrhx2dnb4+fmxa9euTG23Z88erKysqFOnTnYOK4TIpKiEFPov/IfT4dGMdNjKIuNErKNCwKUUDN5o7iMiQUSIAuHuHTVB/3ZitURZ/jRasWIFY8aMYeLEiQQGBtK8eXM6dOhAaGjoI7eLiopiwIABtG7dOtvFCiEeLy4plcGL9nP56jUW2s3iTdP36EzJUKUj+O+CMo21LlEIkYPKezjiaGMgMcVE8I04rcvJliyHkRkzZvDyyy8zdOhQfH19mTlzJqVLl2bOnDmP3G7EiBH07duXJk2aZLtYIcSjJSQbGbL4AFzezx9279KK/aC3hmc/gReWgUNRrUsUQuQwvV5HdW/LvlSTpTCSnJzMoUOHaNeuXbrl7dq1Y+/evQ/dbtGiRQQHBzNp0qRMHScpKYno6Oh0DyHEoyWmGBmxZD/1Qhfzi81UvImEouVhaAA0fgV0Oq1LFELkkhoW3ok1Sx1YIyMjMRqNeHp6plvu6elJeHh4htucO3eOd955h127dmFllbnDTZs2jSlTpmSlNCEKteRUE+8s2crQS1NpYX3cvLBmL+g0A+wsc9wBIUTm1Sz17+29FhpGstWDTXffLyyl1APLAIxGI3379mXKlClUrlw50/ufMGECUVFRaY/Lly9np0whCoUUo4lvv1/AxNChtDAcx2iwgy5fQ/f5EkSEKCTu3lETdC0ao0lpXE3WZallxMPDA4PB8EArSERExAOtJQAxMTEcPHiQwMBARo4cCYDJZEIphZWVFVu2bKFVq1YPbGdra4utrW1WShOiUEpKTuKvueMYfXMpep0izrUSjv1+hOK+WpcmhMhD5TyccLAxEJ9s5MKNWCp5OmtdUpZkqWXExsYGPz8/AgIC0i0PCAigadOmD6zv4uLC8ePHOXLkSNrD39+fKlWqcOTIERo1avRk1QtRiN0JC+HCZ8/Q4dZP6HWKq+V74/jaTgkiQhRCBr2O6t6We6kmy4OejRs3jv79+1O/fn2aNGnCd999R2hoKP7+/oD5EsvVq1dZsmQJer2eGjVqpNu+ePHi2NnZPbBcCJF51w+sxe731/Elhlhlz+Vm0/BtN1jrsoQQGqru7cqBi7c5fjWK7vUsa8LLLIeRPn36cPPmTaZOnUpYWBg1atRg48aN+Pj4ABAWFvbYMUeEENmUmkz4mrcpEbQQgNO6Cti8uBjfKrU0LkwIobW7/UZOXrO8O1B1Sql839MlOjoaV1dXoqKicHGRDnmikLp1gTtLXsLtzkkA1tt1pfGIrylexFXjwoQQ+UHQtWg6frULFzsrjk5ql+GNJXkts9/fMjeNEBZAHV9F8rpRuBnjuK2cWOb1NkOGvIa9jUHr0oQQ+USF4o5Y6XVEJ6ZyLSqRkm72WpeUaRJGhMjPkuMx/vE2hsAl2AL7TVX4p+50XuvaEr1e+189Qoj8w9bKQMXiTpwOj+HUtWiLCiMyU5YQ+VXEaYzfPYMhcAkmpeMb4/MEd/iZ159/WoKIECJDVUuYb+k9HW5Z/UYkjAiR3ygFh5dg+q4lhsjTRCg3hvMetQd8xotNymtdnRAiH/P1MvfLOBUWo3ElWSOXaYTITxKjYcNYOLEKPbDTWJPpDuOYMaQtlS1sECMhRN5LCyMW1jIiYUSI/OLaEVg1GG5dIBU9X6T0ZmvRF1gytAklXO20rk4IYQGqepl/tFyMjCMh2WgxndwljAihNaXgn3kQ8D4YkwlT7ryW/DrGkg1YMbghRRxttK5QCGEhijvb4eFkQ2RsMmevx1C7tJvWJWWK9BkRQkvxt+DnfrDpbTAmE2BqwLNJ07Ar34SlwxpLEBFCZFnVEnf7jVjOpRoJI0JoJfQfmNsczvxOqs6aSSkDGZY8hobVKrBwUAOcbKXhUgiRdb7/XqqxpDAin3ZC5DWTCfZ8CX99DMpIuJU3L8e9xklVjiHNyvFux6pYGeR3ghAie/7rxGo5d9RIGBEiL8VGwJrhcGEbAFsMLRgbOxCjtSOzetSia52SGhcohLB0916mUUrli2HhH0fCiBB5JXibOYjERZBqsOeDlIEsS2xO6aIOzHupPtW8Zd4lIcSTq1jcCSu9jhgLGhZewogQuc2YCtunwa4vAMV1u/L0jXqFYFWSFpWL8dULdXBzkI6qQoicYWOlt7hh4eXCtBC5KeoK/PAc7PocUPzp0IEWdz4gWJVk5DMVWTSogQQRIUSOu9tvxFKGhZeWESFyy+mN8OurkHAbo7Uzk9Rwfrrlh6ONgVm96/BsjRJaVyiEKKB8vZxZG2g5w8JLGBEip6UmQcAk+GcOALdcq9Pr5nCCU4tRvpgj3/X3o2JxGdpdCJF7LG2sEQkjQuSkm8HmId3DjgKw26MPg690IgUr2vh6MqNPbVzsrDUuUghR0N29TBNy0zKGhZcwIkROOb4KfhsDyTGY7IowzXYU869UQaeDN9pU5rVnKqLX5/9b7IQQlq+Ys23asPBnrsdQJ58PCy9hRIgnlRxvHs798BIAooo1oO/tYZy844SLnRWzXqjLM1WLa1ykEKKw8fVyYde5SE6HRUsYEaJAizgFKwfDjVModOwoMZCXL7bGiIGqJZyZ+5IfZT0cta5SCFEI3Q0jltBvRMKIENmhlLkl5I+3ITWBFPtivKNGsfpiBQAGNvHhnQ6++f46rRCi4Kpa4t85aixgWHgJI0JkVWI0bBgLJ1YBEOLaiD43BhNhcsHTxZbPetamReViGhcphCjs0uaosYBh4SWMCJEV1wLNl2Vuh2DSGfiaF5h5vQMKPZ1re/Nh1+oyiJkQIl+oUMwJa4NlDAsvYUSIzFAK/p6DCvgAnSmFcF0xXk18jcOqMuWLOfL2s1VpX10GMRNC5B82VnoqFDMPC386LH8PCy9hRIjHib+Fce0rGM5tQgdsMjZgfMow7F3c+aRNZXr6lcLKIDMrCCHyn0qezpwOj+F8RCytfT21LuehJIwI8QjRZ3aiWz0U5+TrJCkrPkp9id9sOuLfugKDm5aTDqpCiHytUnEnAM5ej9W4kkeTMCJERkxGrm74H56HZ2CFiQumEnxo/xZPt2zD3vqlcLCR/3WEEPlfZU9zGDkfkb/vqJFPVCHuF3OdyCUDKXljHwAB1k+T3P5z5tetIJdjhBAW5e48WOciYvP1HTUSRoS4hzr/FwkrXsYj5Rbxypafi42mz7C3cbSV/1WEEJbHx90Ba4OO+GQjV+8kUKqIg9YlZUh+5gkBYEzBFDAZ9VN3HFJuccpUmoXVFjHw1XcliAghLJa1QU95D/OlmnMR+bffiIQRIe5cRi3qhH7Pl+hR/GRszYE2KxnZpxMGmdhOCGHhKt7tN5KPO7HKTz5RuJ3agPr1NXSJd4hW9kw0Due5F1+VMUOEEAXGf3fU5N9OrBJGROGUmgRb3of989ABR0zlGZ3yOm/37SBBRAhRoFT2/K8Ta34lYUQUPjeDYeUgCD8GwHepnfgstQ8f96hHx5pe2tYmhBA57G7LyPl8fEeNhBFRuBxbCRvGQHIsidZuvBI3jG2murzXyZfeDUprXZ0QQuQ4H3dHrPQ6YpNSCYtKxDsfDgsvYUQUDslx8Md4CPwJgEj3+jx3dSDhuDOqdSWGNi+vcYFCCJE7bKz0lPNw5FxELOciYvNlGJG7aUTBdz0Ivnvm3yCi43y112gaNoZw3BnUtCxj21TSukIhhMhVlf69o+ZcPu3EKi0jouBSCg7/AH+8DamJ4FSCY40+o+cma5JNJnr6leKD56rly+unQgiRk8wjsYZzLp/e3istI6JgSoyGVUPgt9HmIFKxDUef+40+W2xINproUKMEn3SviV7GERFCFAJ356g5l0/nqJGWEVHwXD1sDiK3Q0BvBa0/4HCplxi46CAJKUZaVC7GzBfqyDwzQohCo9LdOWqu5887aiSMiIJDKfh7NgRMAlMKuJYhvut3fHbShR82/I1JQcOyRZn3kh+2VgatqxVCiDxT1sMBg15HTFIq16OTKOFqp3VJ6UgYEQVD/C1Y9wqc3WR+7tuFrZXf570VlwmLugVAl9refPx8DextJIgIIQoXWysDZd0dCL4Rx7mIGAkjQuS4S3th1csQcw1lsCXE710+vt6UrSvOAVCmqAMfdatBi8rFNC5UCCG0U6m4M8E34jh7PZbmlfLX56GEEWG5TEbYNQO2/w+UiTv2PrypRvPnzhLADaz0Ooa3KM+o1pWws5bWECFE4VbJ04lNJ+F8PuzEKmFEWKaYcNTqYegu7gRgjbE5790eTDx2ONla0aWON4OblqXSv3MyCCFEYXf38zA/3t4rYURYnFtH/8Buwys4pNwmXtnyfspgVptaULeMGy82KEOnWl442sqfthBC3Ove2Xvz2x018oktLIJSisMhEdz8bRLtbi8H4JSpDG/rx1KvcSM2NSxN1RIuGlcphBD5VzkPR/Q6iE5M5UZMEsVd8k8nVgkjIl9LSjWy4WgYv+/az2u3/kc7vblT6hb7TiS0nsovtctJfxAhhMgEO2sDPu6OhETGcS4iVsKIEI+TkGxk2f5QvtsZTJ3Y3XxpPQ9XfTwJeidutv6cds1e1LpEIYSwOJWKOxESGcfZ6zE0q+ihdTlpJIyIfCU2KZWf/r7Egl0XiImNZYLVMgbZbAEg1ase9r0XUapIWW2LFEIIC1XJ04ktQdc5F5G/OrFKGBH5QlKqkR/3XeKbbee5E59COV0Yy+y/obIKMa/Q9HWsWn0AVjbaFiqEEBbsv2Hh89ftvRJGhKaUUmw8Hs6nm04TeisegOGuBxifOhcrYwI4uEO3uVC5ncaVCiGE5av47x01F27EaVxJehJGhGYCQ2/z4YYgDofeAaCMk+KHEispd2WdeYWyzaH7fHDx0qxGIYQoSMp5OAJwMy6ZqPgUXB2sNa7ITMKIyHMpRhNfbT3Ht9vOY1Jgb23g3fom+oVOQn/lHOj00PJtaPEW6OVOGSGEyCmOtlZ4uthyPTqJ4MhY6pUponVJgIQRkccuRsYxesURjl6+A8DzdbyZUnI/LtvfB2MSOHtBjwVQ9iltCxVCiAKqvIcT16OTuHAjTsKIKFyUUqw8dIXJ608Sn2zExc6K6Z3L8mzw/2DrOvNKFdvC83PBMf/cbiaEEAVN+WKO7Ltwkws38s8dNfrsbDR79mzKlSuHnZ0dfn5+7Nq166HrrlmzhrZt21KsWDFcXFxo0qQJmzdvznbBwvKkGE28vfoY41cdIz7ZSKNyRdn6ghPP7uoFQetAbwVtP4S+v0gQEUKIXFa+WP7rxJrlMLJixQrGjBnDxIkTCQwMpHnz5nTo0IHQ0NAM19+5cydt27Zl48aNHDp0iGeeeYbOnTsTGBj4xMWL/C86MYXBiw7wy8Er6HUwvn0lltc4QLFfusCdS+BWBoZshmajQJ+tbCyEECILyhczd2K9EJl/WkZ0SimVlQ0aNWpEvXr1mDNnTtoyX19funXrxrRp0zK1j+rVq9OnTx8++OCDTK0fHR2Nq6srUVFRuLjI/COW4uqdBIYsOsCZ6zE42Bj4rkdZnjrxAZz7t2WsWlfo/BXYu2lapxBCFCahN+Np8dk2bKz0nJr6LAZ97k2Yl9nv7yz1GUlOTubQoUO888476Za3a9eOvXv3ZmofJpOJmJgYihYt+tB1kpKSSEpKSnseHR2dlTJFPnDiahSDFx8wT8bkbMvP7U2U//N5iLkGBlt4dhrUHwL5aNZIIYQoDEoWscfGSk9yqomrtxMo4+6gdUlZu0wTGRmJ0WjE09Mz3XJPT0/Cw8MztY8vvviCuLg4evfu/dB1pk2bhqura9qjdOnSWSlTaGzn2Rv0nrePGzFJ+BZ34E+/vyn/ex9zEHGvBMO2QoOXJYgIIYQGDHodZf8NIMH55FJNti7S6+77ElFKPbAsI8uXL2fy5MmsWLGC4sWLP3S9CRMmEBUVlfa4fPlydsoUGlgXeJUhiw8Qn2zkuXI6fnP7HJe/PwNlgtp9Yfh2KFFT6zKFEKJQK++RvzqxZukyjYeHBwaD4YFWkIiIiAdaS+63YsUKXn75ZVauXEmbNm0eua6trS22trZZKU3kA9/vDuHDDUEAvF3xMv63PkMXHwnWjvDcDKj9gsYVCiGEgP86sYZYYsuIjY0Nfn5+BAQEpFseEBBA06ZNH7rd8uXLGTRoEMuWLaNTp07Zq1TkW0opPvnjNB9uCMKKVJb6/M4rV942BxHPmjBihwQRIYTIR/Lb7b1ZHvRs3Lhx9O/fn/r169OkSRO+++47QkND8ff3B8yXWK5evcqSJUsAcxAZMGAAs2bNonHjxmmtKvb29ri6uubgWxFaMJoUE9ce5+cDlymlu8GqYgsocf24+cUGQ6Hdx2Btp22RQggh0km7vddSw0ifPn24efMmU6dOJSwsjBo1arBx40Z8fHwACAsLSzfmyLx580hNTeW1117jtddeS1s+cOBAFi9e/OTvQGgm1WjirVXHWBt4lQ6G/cyyX4hNdDTYukLXb6BaF61LFEIIkYEK//YZCY9OJC4pFUdbbQdkz/I4I1qQcUbynxSjiTE/H+HP45d433opLxn+vXRXsj70XAhFfLQtUAghxCP5fRjAzbhkNrz+FDVK5s6VilwZZ0QIgKRUIyOXBRJ8KpB1tl/jq7tkfqHZaGj1Phjyx5TUQgghHq58MUduxiUTfCM218JIZkkYEVlyOy6ZMSuOUPT8Gn6zWYijLgkcPOD5eVDp0XdJCSGEyD/Kezhx4OLtfNFvRMKIyBSlFBuOhfHprwcZkzKfnjY7zS+UbQ7d54OLl7YFCiGEyJL/5qiRMCIsQHhUIu+tO8GV0wdYbP0VFQ3XUDo9upbvQIs3QW/QukQhhBBZ9N/tvdqPNSJhRDzU5VvxrA28yvydwXRJ3cy3Nj9iq0tBOXuh67EAyj6ldYlCCCGy6b+Bz+IyPZJ6bpEwItKJTkzhj+NhrD58lf0ht3Ahjk+s59PJer95hUrt0XWbA47u2hYqhBDiiZQp6oCVXkd8spHw6ES8XO01q0XCiADgTnwyc3dc4Ie9F0lIMQJQR3+e7+y/pbjxOkpvja7NZGj8KuizNaWREEKIfMTaoKdMUQcuRMZx4UachBGhndikVBbtDuG7nReISUoFoFIxB6YU20aTi9+iM6aCmw+6nouglJ/G1QohhMhJ5Ys5/htGYmlW0UOzOiSMFFImk2LpP5eY+ec5bsYlA1C1hDPvtixG85Pvozv/7yBm1bpBl6/ATobuF0KIgqZ8MSc4FUGwxrf3ShgphM5dj+Ht1cc4HHoHgLLuDoxrV4XnnM+jX/s8xISBlR08Ow38BoOGnZqEEELknnIe+eP2XgkjhUhSqpE524P5dtt5UowKJ1sr3mpfhb4NSmK95wtY9ykoE3hUhl6LwbO61iULIYTIReXvhhGNb++VMFJIHA69zdurjnEuwvwH17pqcT7sVgNv/R1Y+jxc3GVesc5L0HE62DhqV6wQQog8cXeskat3EkhMMWJnrc24URJGCrj45FS+2HKWhXtCUAo8nGyY3KU6nWp6oTv/J6wdAfE3wcYJOs2A2n20LlkIIUQe8XCywdnOipjEVC7ejKNqCW0mo5UwUoDtDY7kndXHCb0VD0D3eiV5v1M1itgCAe/D3q/NK5aoCT0Xg0dFzWoVQgiR93Q6HeWLOXH08h1CbkgYETkoOjGFaRtPs3x/KADernZ83L0mz1QpDrcvwrIhcPWQeeWGw6Hth2Btp13BQgghNNO4XFHc7K1xstMuEkgYKWC2nYng3TXHCYtKBOClxmV4+9mqONtZw8l1sH4UJEWZb9Xt+i34dta2YCGEEJqa0NFX6xIkjBQUd+KTmbohiDWHrwLg4+7Apz1q0bi8O6Qkwoa34eD35pVLNYSe34NbGQ0rFkIIIcwkjBQAm0+G8966E9yISUKng5ebleONdlWwtzHAjbOwajBcP2FeudkYaPUeGKw1rVkIIYS4S8KIBbsdl8yk9SdZf/QaABWKOTK9Z238fIqYVziyDH5/A1LiwcEDus+Dim00rFgIIYR4kIQRC7XpRDjvrTtOZGwyeh2MaFmB0a0rme8RT4qFjW/C0eXmlcu1gO7zwbmEtkULIYQQGZAwYmGiElJ4f92JtNaQSsWd+LxXbWqXdjOvEH4cVg6Gm+dAp4en34Xm40CvzUA2QgghxONIGLEgBy/eYvTPR7h6JwGDXod/y/KMal0JWysDKAUHFsDmiWBMAmdv6LEAyjbTumwhhBDikSSMWACjSfHNX+eZtfUsJgVlijow64U61C3zb9+QhDuw/nU4td78vPKz0G0OOBTVrGYhhBAisySM5HPX7iQw5ucj7L94C4Dn65Zkatfq5nFDAK4cNN8tcycU9NbQdio0fkVm2hVCCGExJIzkY9vORDBuxRFux6fgaGPgo+dr8HzdUuYXTSbY9zVsnQqmVChSFnouhJJ+mtYshBBCZJWEkXzIaFJ8GXCWb7adB6BmSVe+6VsXH/d/Z9KNizRPcHf+T/Pz6t2h80zzqKpCCCGEhZEwks9ExCQyevkR9l24CUD/xj5M7OT737TOITth9TCIDQcrO+jwKdQbKJdlhBBCWCwJI/nIrnM3GPfLUW7EJOFgY2Ba95p0rVPS/KLJCDs+hR3TAQUeVaDXIvCsrmnNQgghxJOSMJIPJKea+HzLGb7beQGAyp5OzO7nR8XiTuYVoq+ZW0Mu7TY/r/sSdJgONo4aVSyEEELkHAkjGgu+Ecuo5YGcvBYNmGfZndixmnleGYCzW2CdP8TfBBsneG4m1OqlXcFCCCFEDpMwoqFfj1zlndXHSUgxUsTBmk971KJd9X+HbE9Nhq1TYN835uclakGvxeBeQbN6hRBCiNwgYUQj649eY+yKI5gUNKvozozedfB0sTO/eCsEVr8MVw+ZnzccAe0+BCtb7QoWQgghcomEEQ1sOhGeFkRebFiaj7vVRK//926Yk2th/ShIigY7N+j6Lfg+p2m9QgghRG6SMJLHtp2J4PXlhzGaFN3rlvwviKQkwKYJcGiRecXSjaDH9+BWWtuChRBCiFwmYSQP7T0fif+Ph0gxKjrV9GJ6z1rmIHLjLKwcBBEnAR08NRaeeRcM1lqXLIQQQuQ6CSN5ZM/5SIb+cJCkVBNtfD2Z+UIdrPQ6CFwKG9+ElHhwLAbPz4OKrbUuVwghhMgzEkbywIZj5s6qKUZFi8rF+LZfXaxT4+D3N+HYz+aVyrWE7vPB2VPbYoUQQog8JmEkl/2w9yKTfzuJUtCpphcz+tTG9sZJ82WZW8Gg05svyTw1DvQGrcsVQggh8pyEkVyilGJGwFm+/ss82d2AJj5Meq4ahoMLYMtEMCaDS0lzJ1WfJhpXK4QQQmhHwkguUErx/q8n+OnvUADeaFuZkU080K3sD6c3mFeq3AG6zQaHohpWKoQQQmhPwkgu+PLPc/z0dyh6HXzUrSZ9vcNhXneICgW9tXkAs0b+MtOuEEIIgYSRHLf0n0t8tfUcAB91rU7flNWw8ENQRihSDnouhJL1NK5SCCGEyD8kjOSgLSfDeX/dCQDebu5O33PjIHir+cUaPcyT3Nm5aFegEEIIkQ9JGMkhBy/e4vXlgZgUTPSNYOipsRB7HazsocOnUG+AXJYRQgghMiBhJAecj4jl5R8Okpqawleem+kcshQdCopVhZ6LwLOa1iUKIYQQ+ZaEkSd0Oy6Zl384gH1COMuc51I96qT5hbr9ocN0sHHQtkAhhBAin5Mw8gSSU034/3SICrd3M8NuHm4pMWDjDJ1nQs2eWpcnhBBCWAQJI9mklGLymkDaXp7FUJs/zAu9apsvy7hX0LY4IYQQwoJIGMmmFZt30ufEGGpbXTAvaPQKtJ0CVrbaFiaEEEJYGAkj2XBs8yI67puAiz6BJCsXbHvOg6odtS5LCCGEsEgSRrIiJYFrK8ZQ6/zPoIOLDjXxGb4M3MpoXZkQQghhsSSMZFbEaWJ+6o939FlMSsdGtxdpP3IWOmsbrSsTQgghLJqEkcdRCgJ/wvj7mzgbE7mhXFlW8j1eGTIUayu91tUJIYQQFk/CyKMkxcCGsXB8JQZgp7Emf1adwgcvPIOVQYKIEEIIkRMkjDzMtSOoVYPR3bpAqtIzI7UXd+q9ykfP10avl2HdhRBCiJwiYeR+SsH+71Bb3kNnTOaqcmdU8khqNW3Px89VQyfzywghhBA5KlvXGmbPnk25cuWws7PDz8+PXbt2PXL9HTt24Ofnh52dHeXLl2fu3LnZKjbXxd+CFS/BH+PRGZMJMPrRMWka7Tt05QMJIkIIIUSuyHIYWbFiBWPGjGHixIkEBgbSvHlzOnToQGhoaIbrh4SE0LFjR5o3b05gYCDvvvsuo0aNYvXq1U9cfI4K/QfmtYDTG0jBiskpAxip3uSTfi0Y3qKCBBEhhBAil+iUUiorGzRq1Ih69eoxZ86ctGW+vr5069aNadOmPbD+22+/zfr16zl16lTaMn9/f44ePcq+ffsydczo6GhcXV2JiorCxcUlK+U+nskEe2bCXx+BMnJZ58Uria8R5lCV+QPrU69MkZw9nhBCCFFIZPb7O0stI8nJyRw6dIh27dqlW96uXTv27t2b4Tb79u17YP327dtz8OBBUlJSsnL4nBcbAUt7wNYpoIxs1j1Fh4QPifeoydpXm0kQEUIIIfJAljqwRkZGYjQa8fT0TLfc09OT8PDwDLcJDw/PcP3U1FQiIyPx8vJ6YJukpCSSkpLSnkdHR2elzMwxmeDH5+H6CUxWdnxsGsz38U9RxdOFpcMa4eEkc8wIIYQQeSFbHVjv7z+hlHpkn4qM1s9o+V3Tpk3D1dU17VG6dOnslPloej20mUJS0ar0MU3j+/jmVC3hwjIJIkIIIUSeylIY8fDwwGAwPNAKEhER8UDrx10lSpTIcH0rKyvc3d0z3GbChAlERUWlPS5fvpyVMjMtyLEhTW9P5kC8J9W9XVg+rDHuEkSEEEKIPJWlMGJjY4Ofnx8BAQHplgcEBNC0adMMt2nSpMkD62/ZsoX69etjbW2d4Ta2tra4uLike+Q0k0kxZkUgNxNM1C7lyrKhjSniKPPMCCGEEHkty5dpxo0bx4IFC1i4cCGnTp1i7NixhIaG4u/vD5hbNQYMGJC2vr+/P5cuXWLcuHGcOnWKhQsX8v333/Pmm2/m3LvIBr1ex+x+9WhbzZMfhzbC1SHjYCSEEEKI3JXlEVj79OnDzZs3mTp1KmFhYdSoUYONGzfi4+MDQFhYWLoxR8qVK8fGjRsZO3Ys3377Ld7e3nz11Vf06NEj595FNlUs7sz8AfW1LkMIIYQo1LI8zogWcnWcESGEEELkilwZZ0QIIYQQIqdJGBFCCCGEpiSMCCGEEEJTEkaEEEIIoSkJI0IIIYTQlIQRIYQQQmhKwogQQgghNCVhRAghhBCakjAihBBCCE1JGBFCCCGEpiSMCCGEEEJTEkaEEEIIoaksz9qrhbtz+UVHR2tciRBCCCEy6+739uPm5LWIMBITEwNA6dKlNa5ECCGEEFkVExODq6vrQ1/XqcfFlXzAZDJx7do1nJ2d0el0Obbf6OhoSpcuzeXLlx85tbF4cnKu84ac57wh5zlvyHnOG7l5npVSxMTE4O3tjV7/8J4hFtEyotfrKVWqVK7t38XFRf7Q84ic67wh5zlvyHnOG3Ke80ZunedHtYjcJR1YhRBCCKEpCSNCCCGE0FShDiO2trZMmjQJW1tbrUsp8ORc5w05z3lDznPekPOcN/LDebaIDqxCCCGEKLgKdcuIEEIIIbQnYUQIIYQQmpIwIoQQQghNSRgRQgghhKYKfBiZPXs25cqVw87ODj8/P3bt2vXI9Xfs2IGfnx92dnaUL1+euXPn5lGlli0r53nNmjW0bduWYsWK4eLiQpMmTdi8eXMeVmvZsvo3fdeePXuwsrKiTp06uVtgAZHV85yUlMTEiRPx8fHB1taWChUqsHDhwjyq1nJl9TwvXbqU2rVr4+DggJeXF4MHD+bmzZt5VK1l2rlzJ507d8bb2xudTse6deseu02efxeqAuznn39W1tbWav78+SooKEiNHj1aOTo6qkuXLmW4/oULF5SDg4MaPXq0CgoKUvPnz1fW1tZq1apVeVy5ZcnqeR49erT69NNP1f79+9XZs2fVhAkTlLW1tTp8+HAeV255snqu77pz544qX768ateunapdu3beFGvBsnOeu3Tpoho1aqQCAgJUSEiI+ueff9SePXvysGrLk9XzvGvXLqXX69WsWbPUhQsX1K5du1T16tVVt27d8rhyy7Jx40Y1ceJEtXr1agWotWvXPnJ9Lb4LC3QYadiwofL390+3rGrVquqdd97JcP3x48erqlWrpls2YsQI1bhx41yrsSDI6nnOSLVq1dSUKVNyurQCJ7vnuk+fPuq9995TkyZNkjCSCVk9z3/88YdydXVVN2/ezIvyCoysnufPPvtMlS9fPt2yr776SpUqVSrXaixoMhNGtPguLLCXaZKTkzl06BDt2rVLt7xdu3bs3bs3w2327dv3wPrt27fn4MGDpKSk5Fqtliw75/l+JpOJmJgYihYtmhslFhjZPdeLFi0iODiYSZMm5XaJBUJ2zvP69eupX78+06dPp2TJklSuXJk333yThISEvCjZImXnPDdt2pQrV66wceNGlFJcv36dVatW0alTp7woudDQ4rvQIibKy47IyEiMRiOenp7plnt6ehIeHp7hNuHh4Rmun5qaSmRkJF5eXrlWr6XKznm+3xdffEFcXBy9e/fOjRILjOyc63PnzvHOO++wa9curKwK7P/uOSo75/nChQvs3r0bOzs71q5dS2RkJK+++iq3bt2SfiMPkZ3z3LRpU5YuXUqfPn1ITEwkNTWVLl268PXXX+dFyYWGFt+FBbZl5C6dTpfuuVLqgWWPWz+j5SK9rJ7nu5YvX87kyZNZsWIFxYsXz63yCpTMnmuj0Ujfvn2ZMmUKlStXzqvyCoys/E2bTCZ0Oh1Lly6lYcOGdOzYkRkzZrB48WJpHXmMrJznoKAgRo0axQcffMChQ4fYtGkTISEh+Pv750WphUpefxcW2J9KHh4eGAyGBxJ2RETEA4nvrhIlSmS4vpWVFe7u7rlWqyXLznm+a8WKFbz88susXLmSNm3a5GaZBUJWz3VMTAwHDx4kMDCQkSNHAuYvTaUUVlZWbNmyhVatWuVJ7ZYkO3/TXl5elCxZMt1U6b6+viiluHLlCpUqVcrVmi1Rds7ztGnTaNasGW+99RYAtWrVwtHRkebNm/PRRx9J63UO0eK7sMC2jNjY2ODn50dAQEC65QEBATRt2jTDbZo0afLA+lu2bKF+/fpYW1vnWq2WLDvnGcwtIoMGDWLZsmVyvTeTsnquXVxcOH78OEeOHEl7+Pv7U6VKFY4cOUKjRo3yqnSLkp2/6WbNmnHt2jViY2PTlp09exa9Xk+pUqVytV5LlZ3zHB8fj16f/mvLYDAA//1yF09Ok+/CXOsamw/cvW3s+++/V0FBQWrMmDHK0dFRXbx4USml1DvvvKP69++ftv7d25nGjh2rgoKC1Pfffy+39mZCVs/zsmXLlJWVlfr2229VWFhY2uPOnTtavQWLkdVzfT+5myZzsnqeY2JiVKlSpVTPnj3VyZMn1Y4dO1SlSpXU0KFDtXoLFiGr53nRokXKyspKzZ49WwUHB6vdu3er+vXrq4YNG2r1FixCTEyMCgwMVIGBgQpQM2bMUIGBgWm3UOeH78ICHUaUUurbb79VPj4+ysbGRtWrV0/t2LEj7bWBAweqli1bplt/+/btqm7dusrGxkaVLVtWzZkzJ48rtkxZOc8tW7ZUwAOPgQMH5n3hFiirf9P3kjCSeVk9z6dOnVJt2rRR9vb2qlSpUmrcuHEqPj4+j6u2PFk9z1999ZWqVq2asre3V15eXqpfv37qypUreVy1Zdm2bdsjP3Pzw3ehTilp2xJCCCGEdgpsnxEhhBBCWAYJI0IIIYTQlIQRIYQQQmhKwogQQgghNCVhRAghhBCakjAihBBCCE1JGBFCCCGEpiSMCCGEEEJTEkaEEEIIoSkJI0IIIYTQlIQRIYQQQmhKwogQQgghNPV/jShYZTzTT+wAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "reg_param= 0.005\n", + "\n", + "Atik=np.vstack((A,reg_param*np.eye(n))) \n", + "\n", + "btik = np.hstack((bn,np.zeros(n)))\n", + "\n", + "xtik = np.linalg.lstsq(Atik,btik,rcond=None)[0]\n", + "plt.figure()\n", + "plt.plot(np.linspace(0,1,n),xtik, label='Tikhonov regularised solution- numpy')\n", + "plt.plot(np.linspace(0,1,n),x, label='Ground truth solution')\n", + "plt.legend()\n", + "plt.figure()\n" + ] + }, + { + "cell_type": "markdown", + "id": "5e35764d", + "metadata": {}, + "source": [ + "This solution is an improvement, although we still have this odd behaviour at the end of the interval. " + ] + }, + { + "cell_type": "markdown", + "id": "9c93e53f", + "metadata": {}, + "source": [ + "Now convert the matrix and operators to CIL types so we can use inbuilt optimisation routines and regularisers in CIL: " + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "7ab3314c", + "metadata": {}, + "outputs": [], + "source": [ + "Aop = MatrixOperator(A)\n", + "bop= VectorData(bn) \n" + ] + }, + { + "cell_type": "markdown", + "id": "1a523f4b", + "metadata": {}, + "source": [ + "We run CGLS to solve the un-regularised least squares problem $$\\min_x \\|Ax-b\\|_2^2.$$ We choose a small number of iterations to implicitly regularise via early stopping: " + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "a8bd2985", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " Iter Max Iter Time/Iter Objective\n", + " [s] \n", + " 0 4 0.000 2.16038e-01\n", + "-------------------------------------------------------\n", + " 4 4 0.081 \n", + "Stop criterion has been reached.\n", + "\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAGdCAYAAADAAnMpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAB5T0lEQVR4nO3dd1zU9R/A8dexN8gUFQE3bsVt5rZyr7Sf5ra0tDRbmpajzHZmpeautDJXmZo5cq/cC9woqCACsvfd5/fHyRWKCggcB+/n43GP+n7v8/1+3/e94+7tZ2qUUgohhBBCCCMxM3YAQgghhCjdJBkRQgghhFFJMiKEEEIIo5JkRAghhBBGJcmIEEIIIYxKkhEhhBBCGJUkI0IIIYQwKklGhBBCCGFUFsYOIDd0Oh03b97E0dERjUZj7HCEEEIIkQtKKRISEihXrhxmZg+u/zCJZOTmzZv4+PgYOwwhhBBC5ENYWBgVKlR44PMmkYw4OjoC+hfj5ORk5GiEEEIIkRvx8fH4+PgYfscfxCSSkaymGScnJ0lGhBBCCBPzqC4W0oFVCCGEEEYlyYgQQgghjEqSESGEEEIYlUn0GckNpRSZmZlotVpjhyKEECbN3NwcCwsLmUpBFJkSkYykp6cTHh5OcnKysUMRQogSwc7ODm9vb6ysrIwdiigFTD4Z0el0hISEYG5uTrly5bCyspJsXggh8kkpRXp6Ordv3yYkJISqVas+dLIqIQpCnpOR3bt38+mnn3L06FHCw8NZt24dPXv2fOgxu3btYsKECZw9e5Zy5crx1ltvMXr06PzGnE16ejo6nQ4fHx/s7OwK5JxCCFGa2draYmlpybVr10hPT8fGxsbYIYkSLs/pblJSEvXq1eObb77JVfmQkBA6d+5Mq1atOH78OO+88w6vvvoqa9asyXOwDyOZuxBCFBz5ThVFKc81I8888wzPPPNMrsvPnz+fihUrMnv2bAACAgI4cuQIn332GX369Mnr5YUQQghRwhR66nvgwAE6deqUbd9TTz3FkSNHyMjIyPGYtLQ04uPjsz2EKM6GDh36yObK3Jg2bRr169d/7PMUpNy8tp07d6LRaIiNjS2SmB6luMVT0Pz8/Az/wBOiJCj0ZCQiIgIvL69s+7y8vMjMzCQqKirHY2bNmoWzs7PhURIXySuoH6/80mg0/Pbbb0a7vsj5PXjjjTfYvn27cQJ6gK+++oply5YZttu0acP48eONFk9xYOy/38OHD/Piiy8a7fpCFLQiaRS8d3SLUirH/VkmTZpEXFyc4REWFlboMQrTkZ6ebuwQCo2DgwNubm7GDiMbZ2dnXFxcjB1Grj2oxrUk8fDwkA77okQp9GSkbNmyREREZNsXGRmJhYXFA790ra2tDYvildbF8YKCgujcuTMODg54eXkxaNCgbDVJmzdv5oknnsDFxQU3Nze6du3K5cuXDc+np6czduxYvL29sbGxwc/Pj1mzZgH6Kl6AXr16odFoDNv3etg5AC5evMiTTz6JjY0NNWvWZOvWrdn+tZ9TVfmJEyfQaDRcvXoVgOjoaP73v/9RoUIF7OzsqFOnDj///HO2ONq0acPYsWOZMGEC7u7udOzYMVf3aPXq1dSpUwdbW1vc3Nzo0KEDSUlJOb7WO3fuMHDgQDw8PLC1taVq1aosXbrU8Pzp06dp166d4VwvvvgiiYmJOZ4r6x7fW41ev359pk2bZnge7n8P7m2m0el0zJgxgwoVKmBtbU39+vXZvHmz4fmrV6+i0WhYu3Ytbdu2xc7Ojnr16nHgwIEHxvb666/TrVs3w/bs2bPRaDRs3LjRsK969ep89913QPZagKFDh7Jr1y6++uorNBpNtvcS4OjRozRq1Ag7OztatGjB+fPnHxgHwI0bN+jfvz9lypTBzc2NHj16ZDvf4cOH6dixI+7u7jg7O9O6dWuOHTuW7RwajYb58+fTo0cP7O3t+eCDD7I9n5SUhJOTE6tXr862/48//sDe3p6EhIQcY3vQ52fatGl8//33/P7774Z7sHPnTuDRn5Osezl9+nQ8PT1xcnJi1KhR2RLsrM/72LFjDX/fU6ZMMfwjDu7/fGk0GhYtWkSvXr2ws7OjatWqrF+/PtvrWb9+PVWrVsXW1pa2bdvy/fffl+imLJEHV/fBDz0hPefvx6JQ6MlI8+bN2bp1a7Z9W7ZsoVGjRlhaWhb49ZRSJKdnGuXx3y+LxxEeHk7r1q2pX78+R44cYfPmzdy6dYt+/foZyiQlJTFhwgQOHz7M9u3bMTMzo1evXuh0OgDmzJnD+vXr+fXXXzl//jzLly83/OAdPnwYgKVLlxIeHm7YvtfDzqHT6ejduzfm5uYcPHiQ+fPn8/bbb+f5taamphIYGMiGDRs4c+YML774IoMGDeLQoUPZyn3//fdYWFiwb98+vvvuu0feo/DwcP73v/8xfPhwgoOD2blzJ717937ge/Tuu+8SFBTEn3/+SXBwMPPmzcPd3R2A5ORknn76acqUKcPhw4dZtWoV27ZtY+zYsXl+vVly+x589dVXfP7553z22WecOnWKp556iu7du3Px4sVs5SZPnswbb7zBiRMnqFatGv/73//IzMzM8Zxt2rRhz549hs/Krl27cHd3Z9euXYC+afXChQu0bt06x3iaN2/OCy+8QHh4OOHh4dmaUSdPnsznn3/OkSNHsLCwYPjw4Q+8B8nJybRt2xYHBwd2797N3r17cXBw4Omnnzb8OCckJDBkyBD27NnDwYMHqVq1Kp07d74vgZg6dSo9evTg9OnT913T3t6e5557LltyCfp737dv3xyXNn/Y5+eNN96gX79+PP3004Z70KJFi1x/TrZv305wcDA7duzg559/Zt26dUyfPj1bmazP+6FDh5gzZw5ffvklixYteuC9BJg+fTr9+vXj1KlTdO7cmYEDBxITEwPok9a+ffvSs2dPTpw4wahRo5g8efJDzydKAZ0Wdn0C33eFKztgzxfGi0XlUUJCgjp+/Lg6fvy4AtQXX3yhjh8/rq5du6aUUmrixIlq0KBBhvJXrlxRdnZ26rXXXlNBQUFq8eLFytLSUq1evTrX14yLi1OAiouLu++5lJQUFRQUpFJSUpRSSiWlZSjftzcY5ZGUlpHr1zRkyBDVo0ePHJ979913VadOnbLtCwsLU4A6f/58jsdERkYqQJ0+fVoppdQrr7yi2rVrp3Q6XY7lAbVu3bqHxviwc/z111/K3NxchYWFGfb9+eef2c67Y8cOBag7d+4YymR9bkJCQh543c6dO6vXX3/dsN26dWtVv379bGUedY+OHj2qAHX16tWHvsYs3bp1U8OGDcvxuQULFqgyZcqoxMREw76NGzcqMzMzFRERoZS6//309fVVX375Zbbz1KtXT02dOtWwndN7MHXqVFWvXj3Ddrly5dTMmTOzlWncuLF6+eWXlVJKhYSEKEAtWrTI8PzZs2cVoIKDg3N8PbGxscrMzEwdOXJE6XQ65ebmpmbNmqUaN26slFLqp59+Ul5eXoby97621q1bq3HjxmU7Z9Z7vW3btmz3CDD8bd5r8eLFqnr16tk+X2lpacrW1lb99ddfOR6TmZmpHB0d1R9//GHYB6jx48fnGE/WZ+/QoUPK3Nxc3bhxQyml1O3bt5WlpaXauXNnjtd51Ocnp7/f3H5OXF1dVVJSkqHMvHnzlIODg9JqtUop/f0NCAjIdl/efvttFRAQYNi+9/MFqClTphi2ExMTlUajUX/++afh+Nq1a2eLd/Lkyff9ff7Xvd+tooSJD1dqWVelpjrpH2tHK5WaUOCXedjv93/luWbkyJEjNGjQgAYNGgAwYcIEGjRowHvvvQfo/0URGhpqKO/v78+mTZvYuXMn9evX5/3332fOnDkyrPchjh49yo4dO3BwcDA8atSoAWBoirl8+TIDBgygUqVKODk54e/vD2C490OHDuXEiRNUr16dV199lS1btuQ5joedIzg4mIoVK1KhQgXDvubNm+f5GlqtlpkzZ1K3bl3c3NxwcHBgy5Yt2T5DAI0aNcq2/ah7VK9ePdq3b0+dOnV49tlnWbhwIXfu3HlgHC+99BK//PIL9evX56233mL//v3ZXmu9evWwt7c37GvZsiU6ne6RzRCPIz4+nps3b9KyZcts+1u2bElwcHC2fXXr1jX8v7e3N6BvDs2Js7Mz9evXZ+fOnZw+fRozMzNGjRrFyZMnSUhIYOfOnTnWiuRGXuI4evQoly5dwtHR0fAeurq6kpqaavicR0ZGMnr0aKpVq2bo0J6YmPjIz8e9mjRpQq1atfjhhx8A+PHHH6lYsSJPPvlkjuXz+vmB3H9O6tWrl62/R/PmzUlMTMzWN65Zs2bZ+tQ1b96cixcvPnTtrf/ee3t7exwdHQ33/vz58zRu3Pi+eyJKqUvbYV5LCNkNlvbQcz70mgfWDkYLKc/zjLRp0+ahzRH/7XWfJad23sJia2lO0IyniuRaOV27IOh0Orp168bHH39833NZX/DdunXDx8eHhQsXUq5cOXQ6HbVr1zZUbzds2JCQkBD+/PNPtm3bRr9+/ejQocN97eYP87Bz5PQZuLdDctakSf8te2/nws8//5wvv/yS2bNnU6dOHezt7Rk/fvx9nVT/+wUPj75H5ubmbN26lf3797Nlyxa+/vprJk+ezKFDhwyJ238988wzXLt2jY0bN7Jt2zbat2/PmDFj+Oyzz1BKPbCz9YP2m5mZ3XeP8tuxMqcO4Pfu+2+TZ9ZzWc0wOWnTpg07d+7EysqK1q1bU6ZMGWrVqsW+ffvYuXNnvkfL5CUOnU5HYGAgK1asuO85Dw8PQJ8Q3759m9mzZ+Pr64u1tTXNmzd/5OcjJyNHjuSbb75h4sSJLF26lGHDhj3w/cvr5wdyfl+y5GaJisddxuLeZm+NRmO49znF9rDvcVFCaTNgx0zY+6V+26s29F0KHtWMGxdFNJqmKGk0GuysLIzyKKg1cRo2bMjZs2fx8/OjSpUq2R729vZER0cTHBzMlClTaN++PQEBATn+q83JyYn+/fuzcOFCVq5cyZo1awxtyJaWlrla4fhB56hZsyahoaHcvHnTUPbeTpNZPyjh4eGGfSdOnMhWZs+ePfTo0YPnn3+eevXqUalSpfv6Q+TnHoH+s9CyZUumT5/O8ePHsbKyYt26dQ88p4eHB0OHDmX58uXMnj2bBQsWAFCzZk1OnDiRrfPrvn37MDMzo1q1nP+IPTw8sr3u+Ph4QkJCspV51Hvg5OREuXLl2Lt3b7b9+/fvJyAg4IHH5UZWv5G///6bNm3aAPp/NPzyyy8P7C+SxcrKqkBWx27YsCEXL17E09PzvvfQ2dkZ0H8+Xn31VTp37kytWrWwtrZ+4JQAj/L8888TGhrKnDlzOHv2LEOGDHlo+Yd9fnK6B7n9nJw8eZKUlBTD9sGDB3FwcMhWy3jw4MFs587qL2Nunr9/8NSoUeO+fklHjhzJ17mEiYoNg2Vd/k1EGg2HkduKRSICJTAZMSVxcXGcOHEi2yM0NJQxY8YQExPD//73P/755x+uXLnCli1bGD58OFqt1jDyYMGCBVy6dIm///6bCRMmZDv3l19+yS+//MK5c+e4cOECq1atomzZsoYhmn5+fmzfvp2IiIgHVj8/7BwdOnSgevXqDB48mJMnT7Jnz577OsRVqVIFHx8fpk2bxoULF9i4cSOff/75fWWy/gUaHBzMqFGj7ht9lZNH3aNDhw7x4YcfcuTIEUJDQ1m7di23b99+4I/4e++9x++//86lS5c4e/YsGzZsMJQdOHAgNjY2DBkyhDNnzrBjxw5eeeUVBg0adN8cOlnatWvHjz/+yJ49ezhz5gxDhgy574ckN+/Bm2++yccff8zKlSs5f/48EydO5MSJE4wbN+6R9+hhnnzySRISEvjjjz8MyUibNm1Yvnw5Hh4e1KxZ84HH+vn5cejQIa5evUpUVNRDa2AeZuDAgbi7u9OjRw/27NlDSEgIu3btYty4cVy/fh3Qfz5+/PFHgoODOXToEAMHDsTW1jZf1ytTpgy9e/fmzTffpFOnTtl+/O/1qM+Pn58fp06d4vz580RFRZGRkZHrz0l6ejojRowwdJieOnUqY8eOzTb9elhYGBMmTOD8+fP8/PPPfP3114/1no8aNYpz587x9ttvc+HCBX799VdDLbYsLFoKnNsI85+AsENg7QTPfg9dvwTL/P0tFYoC761SCPLSgdVUDBkyRAH3PYYMGaKUUurChQuqV69eysXFRdna2qoaNWqo8ePHGzq1bd26VQUEBChra2tVt25dtXPnzmwdIhcsWKDq16+v7O3tlZOTk2rfvr06duyY4frr169XVapUURYWFsrX1zfHGB91jvPnz6snnnhCWVlZqWrVqqnNmzff1ylz7969qk6dOsrGxka1atVKrVq1KlsH1ujoaNWjRw/l4OCgPD091ZQpU9TgwYMf2WHyUfcoKChIPfXUU8rDw0NZW1uratWqqa+//vqB78f777+vAgIClK2trXJ1dVU9evRQV65cMTx/6tQp1bZtW2VjY6NcXV3VCy+8oBIS/u3sdW+Hxri4ONWvXz/l5OSkfHx81LJly+7rwJrTe3BvB1atVqumT5+uypcvrywtLVW9evUMnRKV+rcD6/Hjxw377ty5owC1Y8eOB75epZQKDAxUHh4ehs9UdHS00mg0qm/fvtnK3fvazp8/r5o1a6ZsbW0N72V+OyuHh4erwYMHK3d3d2Vtba0qVaqkXnjhBcPf+rFjx1SjRo2UtbW1qlq1qlq1alWOnTfv7QicUzxKKbV9+3YFqF9//fWh9+ZRn5/IyEjVsWNH5eDgkO1e5/Zz8t577yk3Nzfl4OCgRo4cqVJTUw1lWrdurV5++WU1evRo5eTkpMqUKaMmTpyYrUNrbu6Bs7OzWrp0qWH7999/V1WqVFHW1taqTZs2at68eQ/tYGyq363iPzJSldr01r+dVBe0VSompEhDyG0HVo1Sxb/hMD4+HmdnZ+Li4u6bcyQ1NZWQkBD8/f1lZcliQKPR5GolZyGMYcWKFYwbN46bN29iZWVV5NcfOnQosbGxD539uE2bNtSvX7/Qp3ufOXMm8+fPf+CkkvLdauKiL8PqYRB+Ur/dfCy0nwoWRfu5f9jv93/luQOrEEKYmuTkZEJCQpg1axajRo0ySiJibHPnzqVx48a4ubmxb98+Pv3008eaK0cUY6dXwx/jIT0BbF2h13yoZpyBHbklyYgQosT75JNPmDlzJk8++SSTJk0ydjhGcfHiRT744ANiYmKoWLEir7/+eqm4F5laHWduxhMZn0p0UjoxSelEJabh4WhNt7rl8HEtQdPqpyfD5rfhmH4IOxVbQJ9F4FzeuHHlgjTTCCGEuI+pf7cqpdgadIuPNp/jyu0HT3Me6FuGnvXL0aVuOVztTbjGLDIYVg2D28GABp58E1q/DebGrXOQZhohhBCl0vHQO8zadI5/ruqnMnC0saCyhwPuDla42ltRxt6Kszfi2Xc5iqPX7nD02h2m/xHEiFb+TOhYDWuLgpkzqkgoBceXw6Y3ITMFHLyg9wKo1MbYkeWJJCNCCCFKhNQMLW+vOcXvJ/TzH1lbmDGylT+jWlfGyeb+tdBuxafyx8mb/HbiBmduxPPdrivsvhDF7P71qV72/jWLip20BNjwGpxepd+u1FafiDh4GjeufJBkRAghhMnL0Op4ecUx/j4XiUYDfRtWYEKnang7P3guDS8nG0a2qsTIVpX462wEk9aeJjg8nm7f7OWtp6ozvKU/ZmbFdB6Wmyf0o2ViroDGHNpNgZbjwcw0pw+TZEQIIYRJ0+kUr/96kr/PRWJtYcayYU1oXtktT+d4qlZZGlR04e3Vp9hx/jYfbAxm14XbLBzcCJsCWuqjQCgF/yyALVNAmw5OFaDvYqjYzNiRPRbTTKGEEEII9B1V31t/hvUnb2JhpmH+84F5TkSyeDrasGRoYz7oWRtbS3P2XIxi+h9BBRzxY0i5Ayufhz/f0ici1TvD6D0mn4iAJCNCCCFM2GdbzrP8YCgaDXzRvz5tazxefwmNRsPzzXz5blAgGg38/E8oa45eL6BoH0PYPzC/FZzbAGaW8PRH8NxPYOdq7MgKhCQjIs+mTZtG/fr1jR0Gbdq0yffqsvml0WgeOntmbvn5+RX6DJtClHTL9oXw7Y7LAHzQszbd65UrsHM/Wc2Dce2rAjD5t9Oci4gvsHPniU4He2fDkqchLgzK+MOILdDsJShB6wpJMmJEERERjBs3jipVqmBjY4OXlxdPPPEE8+fPJzk52djh5dvOnTvRaDTExsYWy/MVpWXLlhkWJ/yvw4cP8+KLLxZ9QEKUEMHh8Xy46RwAbz5VnYFNfQv8Gq+0q0qrqu6kZuh4efkxEtMyC/waD5V4G1b0hW1TQWmhVm8YtRvKNyzaOIqAdGA1kitXrtCyZUtcXFz48MMPqVOnDpmZmVy4cIElS5ZQrlw5unfvnuOxGRkZWFreP0zN1KSnp5fKabkBPDw8jB2CECYrLVPLaytPkK7V0SHAi5fbVC6U65ibafjquQZ0mbOHK1FJvL36FN8MaFA0Kx2H7IE1IyExAixs4JlPoOHgElUb8l9SM2IkL7/8MhYWFhw5coR+/foREBBAnTp16NOnDxs3bqRbt26GshqNhvnz59OjRw/s7e354IMPAJg3bx6VK1fGysqK6tWr8+OPPxqOuXr1KhqNhhMnThj2xcbGotFo2LlzJ/BvjcP27dtp1KgRdnZ2tGjRgvPnz2eL9aOPPsLLywtHR0dGjBhBamrqA1/X1atXadu2LaBfsl2j0TB06FBA36wyduxYJkyYgLu7Ox07dnxknA87H4BOp+Ott97C1dWVsmXLMm3atIfe9507d9KkSRPs7e1xcXGhZcuWXLt2zfD8w+5pTue6t8bmxIkTaDQarl69ys6dOxk2bBhxcXFoNBo0Go0hvnubaUJDQ+nRowcODg44OTnRr18/bt26ZXg+q2nsxx9/xM/PD2dnZ5577jkSEhIe+nqFKIm+3HqRcxEJuNlbMat3nUJNDlztrfh2YEMszDRsPB3O8oPXHn3Q49BpYccs+KG7PhHxqAEv7IDAISU2EYGSmIwoBelJxnnkcmb96OhotmzZwpgxY7C3t8+xzL1/XFOnTqVHjx6cPn2a4cOHs27dOsaNG8frr7/OmTNnGDVqFMOGDWPHjh15vmWTJ0/m888/58iRI1hYWDB8+HDDc7/++itTp05l5syZHDlyBG9vb+bOnfvAc/n4+LBmzRoAzp8/T3h4OF999ZXh+e+//x4LCwv27dvHd99998jYcnM+e3t7Dh06xCeffMKMGTPYunVrjufKzMykZ8+etG7dmlOnTnHgwAFefPFFw70uyHsK0KJFC2bPno2TkxPh4eGEh4fzxhtv3FdOKUXPnj2JiYlh165dbN26lcuXL9O/f/9s5S5fvsxvv/3Ghg0b2LBhA7t27eKjjz7KV2xCmKrDV2P4bre+n8iHvevg4Whd6NdsWLEMkzoHAPDpX+eJTU4vnAvF34Tvu8Ouj0DpoMHz8MLf4FWzcK5XjJS8ZpqMZPiw4Dox5ck7N8Eq5+Tivy5duoRSiurVq2fb7+7ubqh1GDNmDB9//LHhuQEDBmRLEgYMGMDQoUN5+eWXAZgwYQIHDx7ks88+M9Qk5NbMmTNp3bo1ABMnTqRLly6kpqZiY2PD7NmzGT58OCNHjgTggw8+YNu2bQ+sHTE3N8fVVd+729PT877+ElWqVOGTTz4xbF+9evWhsT3qfHXr1mXq1KkAVK1alW+++Ybt27fTsWPH+84VHx9PXFwcXbt2pXJlfbVuQECA4fnPPvuswO4pgJWVFc7Ozmg0GsqWLfvActu2bePUqVOEhITg4+MDwI8//kitWrU4fPgwjRs3BvS1QMuWLcPRUT8z5KBBg9i+fTszZ87Mc2xCmKLEtExe//UkSkHfwAo8VevBf1cFbWgLP1YdCeNcRAJzd17mnc4Bjz4oLy5uhXWjIDkarByg65dQt1/BXqMYK3k1Iybk3tqPf/75hxMnTlCrVi3S0tKyPdeoUaNs28HBwbRs2TLbvpYtWxIcHJznOOrWrWv4f29vbwAiIyMN12nevHm28vdu58W9r+Nx/Td20MefFfu9XF1dGTp0KE899RTdunXjq6++Ijw83PB8Qd7TvAgODsbHx8eQiADUrFkTFxeXbNf28/MzJCLw8NcqREk0c2MQoTHJlHex5b1uRVtbYG6m4e2nawCwbP9VbsSmFMyJtRmw5V19R9XkaChbV99JtRQlIlASa0Ys7fQ1FMa6di5UqVIFjUbDuXPnsu2vVKkSALa2909fnFNzzr3JjFLKsM/s7pTA/12UOSMjI+ew/9MZNut4nU73yNeRH/e+jrzEmZN7O/JqNJqHxr506VJeffVVNm/ezMqVK5kyZQpbt26lWbNmhuP/67/39F6PG/ujrnHv/ry+ViFKku3Bt/j5nzA0Gvjs2Xo5rjVT2NpU96BZJVcOXonh8y3n+aJf/cc74Z1rsHo43Dii324yCjq9DxaF3/RU3JS8mhGNRt9UYoxHLjsXubm50bFjR7755huSkh68tPXDBAQEsHfv3mz79u/fb2h2yBqt8d9/+f+3k2hernPw4MFs++7dvlfWCBmtVvvI8+cmzrycLzcaNGjApEmT2L9/P7Vr1+ann34CHn1P8xv7o+KuWbMmoaGhhIWFGfYFBQURFxf3wGsLUZpEJabx9ppTAIxo6Z/vGVYfl0ajYdIz+r/JdcdvEBz+GHOPBP2un8TsxhGwcYZ+P0LnT0plIgIlMRkxEXPnziUzM5NGjRqxcuVKgoODOX/+PMuXL+fcuXOYmz98LYQ333yTZcuWMX/+fC5evMgXX3zB2rVrDR0kbW1tadasGR999BFBQUHs3r2bKVOm5DnOcePGsWTJEpYsWcKFCxeYOnUqZ8+efegxvr6+aDQaNmzYwO3bt0lMTHxg2dzEmZfzPUxISAiTJk3iwIEDXLt2jS1btnDhwgXDD/6j7um9qlSpgo+PD9OmTePChQts3LiRzz//PFsZPz8/EhMT2b59O1FRUTnOH9OhQwfq1q3LwIEDOXbsGP/88w+DBw+mdevWBd6sJYSpUUoxcc0pohLTqVHWkTeeqv7ogwpRPR8XutT1Rin4ePO5Rx9wr4xU2Pg6/DoY0uKgQmMYtQdq5jyVQ6mhTEBcXJwCVFxc3H3PpaSkqKCgIJWSkmKEyB7PzZs31dixY5W/v7+ytLRUDg4OqkmTJurTTz9VSUlJhnKAWrdu3X3Hz507V1WqVElZWlqqatWqqR9++CHb80FBQapZs2bK1tZW1a9fX23ZskUBaseOHUoppXbs2KEAdefOHcMxx48fV4AKCQkx7Js5c6Zyd3dXDg4OasiQIeqtt95S9erVe+hrmzFjhipbtqzSaDRqyJAhSimlWrdurcaNG3df2UfFmZfz9ejRw/D8vSIiIlTPnj2Vt7e3srKyUr6+vuq9995TWq3WUOZR9/Te92Lv3r2qTp06ysbGRrVq1UqtWrXqvvs3evRo5ebmpgA1depUpZRSvr6+6ssvvzSUuXbtmurevbuyt7dXjo6O6tlnn1URERGG56dOnXrfPf/yyy+Vr69vjq9ViMdVXL5bVxy8pnzf3qCqvrNJBYff/xtgDCG3E1XlSRuV79sb1L5Lt3N/4O2LSs1tqdRUJ/1jy7tKZaYXXqDFwMN+v/9Lo1Qux6MaUXx8PM7OzsTFxeHk5JTtudTUVEJCQvD398fGxsZIEQohRMlSHL5bQ6KS6PzVHlIytEzpEsDIVpWMEkdOpv5+hu8PXKNuBWd+e7klZmaPaKY/uRI2vAYZSWDnBr0WQNUORROsET3s9/u/pJlGCCFEsZOh1TF+5QlSMrS0qOzG8Jb+xg4pm1faV8XeypxT1+PYEhTx4ILpSfDbGFj3oj4R8WsFo/eVikQkLyQZEUIIUex88/clTobF4mRjwWfP1nt0zUMRc3ewZvgT+gTp678vkWMjw62zsKAtnFgOGjNo8w4M/h2cvIs42uJPkhEhhBDFypkbcXyz4xIAH/SqQzmX+6c7KA6Gt/TH3sqcszfj+fvcf+b8UQqOLIWF7SDqPDiUhcHroc3bYPbwwQmllSQjQgghio30TB1vrj6FVqfoXKcs3esZaUbtXChjb8XzzfWrBc/Jqh1JjYPVw2DDeMhMhSod4aV94N/KuMEWc5KMCCGEKDbm7bxMcHg8ZewsmdGjtrHDeaQXWlXCxtKMk2GxHDu4A757Es6uAzML6DgDBvwK9u7GDrPYKzEzsJrAoCAhhDAZxvhOPRcRzzc7LgIwrXst3B2K/wRg7g7WDGxSEXVwHnX/+hnIBOeK0HcJ+DQ2dngmw+STkawpspOTk3OcRl0IIUTeZU3Qd+8yBIUlU6vjzVWnyNAqOtb0KtbNM9kkx/BW7HSsLf8CILriU7j97zuwLWPkwEyLyScj5ubmuLi4GBYMs7Oze+BaIkIIIR5OKUVycjKRkZG4uLg8cjbogvLd7iucvhGHs60lM3vWNo3v8dCDsHoE1vHXydRYMi39eS5l9OMXSUTyzOSTEcCwPLusYCqEEAXDxcXF8N1a2C5FJvDVNn3zzHtda+LpVMwnsNTpYN+X8PdMUFpwrUzM0/NZ+X0UGSF3OHw1hsZ+rsaO0qSUiGREo9Hg7e2Np6dnvlZNFUII8S9LS8siqxHR6RTvrD1DulZH2+oe9G5Yvkium2+JkbD2RbiyQ79dpx90/QJPa0f6Bp7m539C+frvS/wwvIlx4zQxJSIZyWJubl5kf0BCCCEe3+qj1/nnagy2lua8X9ybZ67s1CciibfA0g46fwr1BxpWbH+5TWVWHg5l94XbXLiVQDUvR+PGa0JkaK8QQgijiE5M48M/gwF4rWNVKpSxM3JED6DNhL8/gB966hMRz5rwwg5o8LwhEQHwcbWjU01909bSfSFGCtY0STIihBDCKGb9eY7Y5AxqlHVkWDFbe8Yg7gZ83w12fwooaDgEXvgbPGvkWHxEK/3rWHvsBjFJ6UUYqGmTZEQIIUSRO3glmtVHr6PRwIe962BpXgx/js5vhvlPQOh+sHLUzx3SfQ5YPngaiUa+ZahbwZm0TB0rDl4rwmBNWzF894UQQpRkaZlaJq87DcCAJhVpWLGYDYXNTIe/JsPP/SElBrzrw+jdULvPIw/VaDSMuLuA3g8Hr5GWqS3kYEsGSUaEEEIUqQW7rnD5dhLuDta89XTOzR1GExMCS56CA9/ot5u9DCO2gGulXJ+icx1vvJysuZ2QxoaT4YUUaMkiyYgQQogicy06ia/vrsj7btcAnG2LZobXXDmzVr+2zM1jYOMCz/0MT88Ci7xNS29pbsbg5n4ALN4bIsuV5IIkI0IIIYqEUor3fj9LeqaOVlXdi8+U7xkpsOE1/Wq7afHg0wxG74UanfN9yoFNK2JjaUZQeDwHr8QUYLAlkyQjQgghisSfZyLYdeE2VhZmzOhRTOYUuX0BFraHI0sADbR6HYZuBBefxzqti50VfRpWAPS1I+LhJBkRQghR6BLTMpnxRxAAL7WujL+7vZEjAk78BAtaQ+RZsPeA59dA+/fAvGDmAx1+tyPr9nO3uBqVVCDnLKkkGRFCCFHovtx6gYj4VHzd7HipTWXjBpOWCOtGw28vQUYy+LeG0fugSvsCvUxlDwdaV/NAKVh7/EaBnrukkWRECCFEoQq6Gc+y/VcBmNGjNjaWRly2I+I0LGgDJ38GjRm0mwKD1oGjV6FcrmcDfb+YjaduSkfWhyhRa9MIIYQoXnQ6xZTfTqPVKbrU8aZ1NQ/jBKIUHFkMm98BbRo4loM+i8CvZaFetkOAF1YWZly+ncT5WwnUKOtUqNczVVIzIoQQotD8cOAqx0Jjsbcy592uNY0TREos/DoYNr6uT0SqPqUfLVPIiQiAo42lIQHbeErmHHkQSUaEEEIUihNhsczcpF8I762na1DW2abog7h+FL5rBcHrwcwSOs2EASvB3q3IQuha1xvQJyPSVJMzaaYRQghR4O4kpTNmxTEytIpnapdlcHPfog1Ap4OD38K2aaDLBBdf6LsUKgQWbRxA+7tNNVeikggOT6BmOWmquZfUjAghhChQOp1i/MoT3IhNwd/dnk/61i3aOUWSovXrymyZok9EavaEUbuNkogAOFhb0Lb63aaa0zeNEkNxJ8mIEEKIAvXNjkvsunAbG0sz5g5siKNNEU75fnWffqXdi1vA3Bq6fgnPLgNbl6KLIQdd62aNqpGmmpxIM40QQogCs/diFF9uuwDABz3rEOBdRE0SOi3s+Rx2zgKlA/dq+maZsrWL5vqP0K6GJzaWZlyNTubszXhql3c2dkjFitSMCCGEKBCXIhN55edjKAXPNfahb2CForlwQgT82BN2zNQnIvX+By/sKDaJCIC9tQXtangCsEFG1dxHkhEhhBCPLSwmmecXHeJOcgZ1KzgzrXutornwpe36ZpmQ3WBpDz3nQ6/5YO1QNNfPgy517jbVnJYJ0O6Vr2Rk7ty5+Pv7Y2NjQ2BgIHv27Hlo+RUrVlCvXj3s7Ozw9vZm2LBhREdH5ytgIYQQxUtkfCrPLz5ERHwqVTwdWDasSeHPsqrNgG3TYXlvSLoNXrXhxZ1Q/3+Fe93H0LaGB7aW5oTFpHD6RpyxwylW8pyMrFy5kvHjxzN58mSOHz9Oq1ateOaZZwgNDc2x/N69exk8eDAjRozg7NmzrFq1isOHDzNy5MjHDl4IIYRxxSanM2jxP1yLTsbH1ZblI5riam9VyBcNg2VdYO8X+u1GI2DkNvCoVrjXfUx2Vha0C9A31cgEaNnlORn54osvGDFiBCNHjiQgIIDZs2fj4+PDvHnzcix/8OBB/Pz8ePXVV/H39+eJJ55g1KhRHDly5LGDF0IIYTyJaZkMWXqY87cS8HS0ZsWIZoU/sdm5TfpmmbBDYO0Ez34PXb8AS9vCvW4B6XZ3ArRNZyQZ+a88JSPp6ekcPXqUTp06ZdvfqVMn9u/fn+MxLVq04Pr162zatAmlFLdu3WL16tV06dIl/1ELIYQwKqUUr608wcmwWFzsLFk+sikV3ewK74KZafDnRPjlf5AaC+UDYfQeqNWz8K5ZCJ6s5oGluYawmBRCo5ONHU6xkadkJCoqCq1Wi5dX9tUNvby8iIiIyPGYFi1asGLFCvr374+VlRVly5bFxcWFr7/++oHXSUtLIz4+PttDCCFE8bF4bwhbg25hZW7G0qGNqeblWHgXi74MizvCobs18M3HwrDNUMav8K5ZSOysLKjv4wLA/stRxg2mGMlXB9Z7Z9JTSj1wdr2goCBeffVV3nvvPY4ePcrmzZsJCQlh9OjRDzz/rFmzcHZ2Njx8fHzyE6YQQohCcPTaHT768xwA73arSYOKZQrvYqdXw3etIfwk2LrCgF/hqZlgUcj9UgpRi8ruAOy7LAM5suQpGXF3d8fc3Py+WpDIyMj7akuyzJo1i5YtW/Lmm29St25dnnrqKebOncuSJUsID8+5zWzSpEnExcUZHmFhYXkJUwghRCGJSUpn7E/HyNQputb15vmmFQvnQunJsP4VWDMC0hPAt6V+pd1qTxXO9YpQi8r6RfoOXI6SIb535SkZsbKyIjAwkK1bt2bbv3XrVlq0aJHjMcnJyZiZZb+Mubl+yNeD3gRra2ucnJyyPYQQQhiXTqeY8OsJwuNSqeRuz0d9CmnNmchzsLAdHPsB0EDrt2HwenAuX/DXMoL6FV2wsTQjKjGdC7cSjR1OsZDnZpoJEyawaNEilixZQnBwMK+99hqhoaGGZpdJkyYxePBgQ/lu3bqxdu1a5s2bx5UrV9i3bx+vvvoqTZo0oVy5cgX3SoQQQhSq+bsvs/P8bawtzPh2YEMcrAt4RRGl4NiPsKAN3A4GBy8Y/Bu0fQfMS87qJdYW5jT2cwWk30iWPL+7/fv3Jzo6mhkzZhAeHk7t2rXZtGkTvr765aHDw8OzzTkydOhQEhIS+Oabb3j99ddxcXGhXbt2fPzxxwX3KoQQQhSqk2GxfL5Fv+bMjB61Cn7NmbQE2PAanF6l367cDnp9Bw6eBXudYqJFZXf2XIxi/+VohrX0N3Y4RqdRJtBgFR8fj7OzM3FxcdJkI4QQRSwtU0u3r/dy4VYi3eqVY85z9Qu2eSb8JKwaBjGXQWMO7aZAy/FgVnJXLDl1PZbu3+zD0caC4+92xMK8ZL7W3P5+l5x6LyGEEIXi2x2XuXArEXcHK2Z0r1VwiYhS8M9C2DIZtOngVAH6LoaKzQrm/MVYrXLOONpYkJCaydmb8dS7O9y3tCqZqZgQQogCcfZmHHN3XAJgRo/alCmoqd5T7sDK5+HPN/WJSPXO+knMSkEiAmBupqFZJf2omn3Sb0SSESGEEDnL0Op4a/UpMnWKZ2qXpXMd74I5cdg/MP9JOLcBzCzh6Y/guZ/AzrVgzm8iWhqG+Mp8I9JMI4QQIkcLdl/h7M14XOwsmd6j1uOfUKeD/XNg+wxQWijjD32XQPmGj39uE9Siin7ys8NXY0jL1GJtUcgrHRdjUjMihBDiPhdvJfDVtosATO1WE0/Hx1wAL/E2rOgL26bqE5FavWHU7lKbiABU9XTA3cGa1Awdx0NjjR2OUUkyIoQQIhudTjFx7WnStTra1/CkZ/3HnGwsZLd+pd3L28HCBrrN0deI2JTu0ZEajcYwG+v+S6W734gkI0IIIbJZfew6R6/dwc7KnA961c7/6BmdFnZ8CN93h8QI8KgBL+yAwCFQGDO3miBDMlLK+41InxEhhBAGcckZhkXwxneoirezbf5OFH8T1rwA1/bqt+s/D50/ASv7Aoq0ZGh5t9/IibBYktIysS/oWW1NhNSMCCGEMPh0yzliktKp6umQ/5lBL27VN8tc2wtWDtB7EfT8VhKRHPi42lGhjC2ZOsU/V2OMHY7RSDIihBAC0M8KuuKQfjmPGT1qY5nXWUG1GbDlXX1H1eRoKFtX30m17rOFEG3J0fzufCP/hEgyIoQQohTT6hTv/nYGpaBn/XI0v9uXIdfuXIMlT+uH7gI0GQUjt4Fb5YIPtoQJ9C0DwLFrd4wcifGUzsYpIYQQ2aw8HMbJ63E4WlvwTueAvB0c9Dv8/gqkxYGNM3T/Bmp2L5xAS6CGd5ORU9fjyNTqSuw6NQ8jyYgQQpRy0YlpfPKXvtPqax2r4emUyzlFMlJhyxQ4vFC/XaEx9FkMZXwLKdKSqYqHA47WFiSkZXIuIoHa5Z2NHVKRK33plxBCiGym/xFEbHIGNco6Mrh5LhOJqEuwqMO/iUjLcTDsT0lE8sHMTEP9ii4AHA+LNWosxiLJiBBClGLbgm6x/uRNzDTwcZ+6uWsiOLkSvnsSbp0GOzcYuBo6zgBzy8IPuIRqUFHfVHO8lPYbkWYaIYQopeJTM5jy2xkAXmhV6dHL2Kcnwaa34MRy/bZfK+i9EJwKaAG9UqxBKa8ZkWRECCFKqVmbgomIT8XPzY7xHao9vPCtIFg1FKLOg8YMWk+EJ98As9K7uFtBanA3EQyJSiImKR1XeyvjBlTEpJlGCCFKof2Xovj5nzBA3zxja/WApEIpOLoMFrbVJyIOZWHwemjztiQiBcjFzopKHvpJ4Y6Hlr6mGklGhBCilElOz2Ti2tMAPN+sIk0rPWBOkdR4WD0c/hgHmalQpSO8tA/8WxVhtKVHw6x+I6VwBV9JRoQQopT57K8LhMYkU87ZhrefrpFzoZvH9Z1Uz64FMwt9B9UBv4K9e9EGW4pk9Rs5VgprRqTPiBBClCI7zkWyZF8IADN718HR5p4RMErBwXmw9T3QZYBzRei7BHwaGyHa0iWrZuRkWCxancLcrPSsbCzJiBBClBLhcSlM+PUEAENb+NG2umf2Askx8PsYOL9Jvx3QDbp/DbZlijbQUqqalyP2VuYkpWu5cCuBAG8nY4dUZKSZRgghSoFMrY5xv5zgTnIGtcs7ManzPc0zoQdhfit9ImJuBZ0/g34/SiJShMzNNIbh1aWt34gkI0IIUQrM+fsS/4TEYG9lztf/a4i1xd2RMDod7PkclnaG+OvgWlm/wF2TF0BTepoJiouspprS1m9EmmmEEKKE238piq//vgjAh73r4O+uH0JKYiSsfRGu7NBv13kWun4J1o5GilSU1k6skowIIUQJFpWYxriVJ1AK+jfyoUf98vonLu/QJyJJkWBhC10+g/oDpTbEyLKmhb9yO4nY5HRc7ErH5GfSTCOEECWUUopJa09zOyGNqp4OTOteC7SZsP19+LGXPhHxrAkv7oQGz0siUgy42lvh52YHlK6p4SUZEUKIEmrNsRtsDbqFpbmGr55rgG1KBHzfFfZ8BihoOARGbgfPB8w1IoyiNE5+JsmIEEKUQDdiU5i+/iwA4ztUo2bCPpjfEkIPgJUj9FkM3eeAlZ2RIxX3MiyaV4r6jUifESGEKGF0OsVbq0+SkJZJYx97XkpbAj9/q3/Su75+EjO3ykaNUTxYVr+RE6Gx6HQKs1Iw+ZkkI0IIUcL8ePAa+y5FU8XyNj9qPsHs4An9E81ehg7TwMLamOGJR6hR1hErCzMS0jK5FpP87+inEkyaaYQQogS5cjuRWX8G08XsIJusJ2MTeQJsXOC5n+DpWZKImAALczNqlNUPrz57M87I0RQNSUaEEKKE0OoUk379h3fVQr61moNVZiL4NIXRe6FGF2OHJ/KgVjn9VPBnb8YbOZKiIc00QghRQqz562+m3RpHgEUYCg2aJ16Dtu+AueWjDxbFSs1yzkCYJCNCCCFMR+SeJXQ9OBE7szRSrVyx6bcIqrQ3dlgin7JqRoIkGRFCCFHspSWiNk7A89RK0MAZ6wbUGvsLOJY1dmTiMQSUdcJMo59BNzI+FU8nG2OHVKikz4gQQpiqiNOwoDWaUyvRKg1f6frj8uIfaCQRMXm2VuZU8nAASke/EUlGhBDC1CgFhxfBwvYQfYkI5cpz6e/i2nkyFdxkkbuS4t9OrCV/RI0kI0IIYUpSYmHVENj4OmjTOGrdlGfSPsTcvwUDm1Q0dnSiANX0Lj0jaqTPiBBCmIrrR2H1MIi9BmaWHKk2nr4n6mNracEnfeqVipk6S5Na5ZyB0pGMSM2IEEIUdzod7P8alnTSJyIuvkT1X8/Q4MaAhjefqk5FN1ljpqTJaqYJjUkmPjXDyNEULklGhBCiOEuKhp+fgy1TQJcJNXuiRu1m4kFLEtMyaVDRhSEt/IwdpSgEZeytKOesH0UTXMJrRyQZEUKI4urqPpj/BFz8C8ytoeuX8OwyNlxIZltwJJbmGj7uUxdzaZ4psWqWkqYaSUaEEKK40Wlh16fwfVdIuAnu1eCFv6HRcO4kZzBt/VkAxrStQjUvGT1TkpWWaeGlA6sQQhQnCRGw9gUI2a3frjcAOn8K1vo5J97fGER0UjrVvBx4uU0VIwYqikJpGd4ryYgQQhQXl7bDulGQdBss7aHrF1DvOcPTuy/cZu2xG2g08FGfulhZSOV2SVfzbjJyKTKRtEwt1hbmRo6ocMgnWQghjE2bAdumwfLe+kTEqzaM2pUtEUlJ1/LOutMADG3hR8OKZYwUrChK5V1scba1JFOnuHgr0djhFBpJRoQQwphiw2BZF9j7pX670QgYuQ3cq2YrNm/XZa7fSaG8iy1vdKpuhECFMWg0mlLRVCPJiBBCGMu5jfrRMmGHwNoJnl2mb5qxtM1WLDQ6mfm7LgPwbtcA7K2lhb00KQ2dWOUTLYQQRS0zDba+B4fm67fLNYS+S8DVP8fiMzYEkZ6po1VVd56qJYvglTalYSZWSUaEEKIoRV/WT+keflK/3XwstJ8KFlY5Ft9xLpJtwbewMNMwtVstNBqZU6S0yaoZCQ6PR6tTJXJeGUlGhBCiqJxeDX+Mh/QEsHWFnvOg+tMPLJ6WqWX6H/o5RUY84U8VT4ciClQUJ5U8HLCxNCM5XcvV6CQqe5S8z4H0GRFCiMKWngzrX4E1I/SJSMUWMHrvQxMRgEV7QrganYynozWvtK/60LKi5DI301C9rL52JKiENtVIMiKEEIUp8hwsbAfHfgA08ORbMOQPcC7/0MNuxqbwzd+XAJjcJQAH6bRaqpX0Tqzy6RZCiMKgFBxfDpvehMwUcPCC3gugUptHHpqp1fHGqpOkZGhp4udK93rlCj9eUawFlNVP+3/hVoKRIykckowIIURBS0uADa/B6VX67Upt9YmIg2euDv/oz3PsvxyNnZU5M3vVlk6rwrAGkSQjQgghHi38JKwaCjFXQGMO7aZAy/FglrtW8d9P3GDR3hAAPn+2HlVlITzBv8nI9TspJKVllri5ZvLVZ2Tu3Ln4+/tjY2NDYGAge/bseWj5tLQ0Jk+ejK+vL9bW1lSuXJklS5bkK2AhhCiWlIJD38GiDvpExKkCDNsErSbkOhE5cyOOt1afAmBM28o8U8e7MCMWJqSMvRXuDtYAXIwsedPC5zm1WrlyJePHj2fu3Lm0bNmS7777jmeeeYagoCAqVqyY4zH9+vXj1q1bLF68mCpVqhAZGUlmZuZjBy+EEMVCyh34fSyc26Dfrt4ZenwLdq65PkVMUjqjfjxKWqaONtU9mNBRpnwX2VUv60DUpTQu3Eqgvo+LscMpUHlORr744gtGjBjByJEjAZg9ezZ//fUX8+bNY9asWfeV37x5M7t27eLKlSu4uur/MP38/B4vaiGEKC7C/oHVwyEuDMytoOP70HQU5KGfR4ZWx9ifjnEjNgU/Nzu+eq5BiZzYSjyeqp6O7LsUzYWIktdvJE/NNOnp6Rw9epROnTpl29+pUyf279+f4zHr16+nUaNGfPLJJ5QvX55q1arxxhtvkJKS8sDrpKWlER8fn+0hhBDFik4He2fDkqf1iUgZfxixBZqNzlMiAvDBhiD2X47G3sqcBYMb4WxrWTgxC5Nm6MRa2ptpoqKi0Gq1eHl5Zdvv5eVFREREjsdcuXKFvXv3YmNjw7p164iKiuLll18mJibmgf1GZs2axfTp0/MSmhBCFJ3E27BuFFzert+u3Qe6zgYbpzyf6qdDoXx/4BoAn/erb/jBEeJe1cvqZ169WAJH1OSrA+u9w8yUUg8ceqbT6dBoNKxYsYImTZrQuXNnvvjiC5YtW/bA2pFJkyYRFxdneISFheUnTCGEKHghe/Qr7V7eDha20G0O9Fmcr0Tk0JVo3vv9DACvd6zG07VlETzxYFU89YlqeFwqcSkZRo6mYOUpGXF3d8fc3Py+WpDIyMj7akuyeHt7U758eZydnQ37AgICUEpx/fr1HI+xtrbGyckp20MIIYxKp4Uds+CH7pAYAR414IW/IXBInptlAMJiknlpxTEydYqudb0Z265KIQQtShJnW0u8nW0AuBRZsmpH8pSMWFlZERgYyNatW7Pt37p1Ky1atMjxmJYtW3Lz5k0SE/9t47pw4QJmZmZUqFAhHyELIUQRi78J33eHXR+B0kGD5/WJiFfNfJ0uKS2TF344QkxSOrXLO/Fp33oysZnIlax5Z85HlKx+I3luppkwYQKLFi1iyZIlBAcH89prrxEaGsro0aMBfRPL4MGDDeUHDBiAm5sbw4YNIygoiN27d/Pmm28yfPhwbG1tC+6VCCFEYbi4Vd8sc20vWDlA74X6YbtW9vk6nVKKN1ef5FxEAu4O1iwY1AhbK/MCDlqUVNXurtxc0mZizfPQ3v79+xMdHc2MGTMIDw+ndu3abNq0CV9fXwDCw8MJDQ01lHdwcGDr1q288sorNGrUCDc3N/r168cHH3xQcK9CCCEKmjYDts+A/XP022XrwrPLwK3yY5124Z4rbDodgaW5hu8GBVLORf5RJnKv2t01ai6WsGYajVJKGTuIR4mPj8fZ2Zm4uDjpPyKEKHx3rsGaEXD9sH67ySjo9D5YWD/WafdfjuL5RYfQKfigZ22eb+ZbAMGK0uREWCw9v92Hu4M1R6Z0MHY4j5Tb3++SNbm9EEI8rqD1sH4spMaBjbO+SSag22OfNjwuhVd+Oo5OQZ+GFRjYNOcZq4V4mKp3m2miEtO4k5ROGXsrI0dUMPI1tFcIIUqcjFTY+Ab8OkifiFRoDKP3Fkgikpap5aXlx4hOSqemt5OsxCvyzd7aggpl9E17JanfiCQjQggRdQkWd4DDC/XbLcfBsD/BpWBqLz7YEMyJsFicbCyY/3wgNpbSYVXkn2EmVklGhBCihDi5Er57EiJOg50bDFwDHWeAecFMyb7i0DV+PKifYfWr5xpQ0c2uQM4rSq+qXlkjakrO8F7pMyKEKJ3Sk2DTW3BiuX7br5V+2K6Td4FdYsf5SN797d8ZVtvW8Cywc4vSq3oJrBmRZEQIUfrcCoJVQyHqPGjMoPXb8OSbYFZwzSdnb8YxdsUxdAr6BlaQGVZFgflvM83DlmMxJZKMCCFKD6Xg2Pfw59uQmQoOZaHPIvBvVaCXCY9LYfiywySla2lZxY0Pe9UpET8Yonio7OGARgN3kjOISkzHw/HxhpwXB5KMCCFKh9R4+GMcnF2r367SAXp9B/buBXqZhNQMhi09zK34NKp5OTB3YCBWFtI9TxQcWytzfF3tuBqdzMVbCSUiGZG/ECFEyXfzuL6T6tm1YGah76A6YFWBJyLpmTpeXnGMcxH6H4glQxvjbFswHWGF+C/DGjUlpN+IJCNCiJJLKTgwFxZ1hDsh4FwRhm3WD901K9ivP51O8fqqk+y5GIWdlTmLhzSiQhkZOSMKx7+dWEvGiBppphFClEzJMfD7GDi/Sb9doyv0+AZsyxT4pZRSTP/jLH+cvImluYb5zwdSt4JLgV9HiCxZw3svlpCaEUlGhBAlz7UD+rVl4m+AuRU89SE0HgmF1In0678v8f2Ba2g08Nmz9XiymkehXEeILNX+00xTEkbUSDIihCg5dDrY+wXs+BCUFlwrw7NLwbteoV1y+cFrfLH1AgDTutWiR/3yhXYtIbJU8rDH3ExDQmomt+LTKOtsY+yQHoskI0KIkiHhFqx7Ea7s1G/X6QddvwBrx0K75G/Hb/Du7/pJzV5tX5UhLfwK7VpC/Je1hTm+bnZcuZ3ExcgEk09GpAOrEML0Xd4B85/QJyKWdvqVdnsvKNREZPXR67z26wmUguebVeS1DlUL7VpC5KSap/7zfbEEdGKVZEQIYbq0mbD9ffixFyRFgmdNeGEHNHi+0PqHAPx6OIw3V59EKRjYtCIzussqvKLoGTqxRpp+MiLNNEII0xR3Q99JNfSAfrvhEHj6I7Aq3OG0Px0K5Z11pwEY3NyX6d1rSSIijKKKpz4ZuRRp+iNqJBkRQpie85vht9GQcgesHKHbbKjTt9Av++OBq7z7+1kAhrX0472uNSUREUZT1fPfuUZMfUSNJCNCCNORmQ7bp8OBb/Tb3vWh7xJwq1yol9XpFJ/8dZ75uy4DMPIJfyZ3CTDpL39h+ip52GOmgbiUDG4npuHpaLqdWCUZEUKYhpgQWD0cbh7Tbzd9CTpOB4vCXZcjNUPL66tOsvFUOADjO1RlXPuqkogIo7OxNKfi3TVqLt1KlGRECCEK1dl1sP5VSIsHGxfoORdqdCn0y8YkpfPCD0c4eu0OluYaPupdlz6BFQr9ukLkVhVPR/2CeZGJtKhSsGstFSVJRoQQxVdGCvz1DhxZot/2aQp9FoOLT6Ff+srtRIYvO8zV6GQcbSz4blAgLSqb7pe9KJmqeTmwLfgWF028E6skI0KI4un2BVg9DG6dATTwxGvQ9h0wL/xVcHdduM3Yn46RkJpJhTK2LBvWmCqehTdniRD59e8aNaY9vFeSESFE8XPiJ9j4OmQkg70H9PoOqrQv9MsqpVi8N4QPNwWjUxDoW4b5zwfi4Vi4/VKEyK+sETWXTHyuEUlGhBDFR1oibHoDTv6s3/Z/EnovBMeyhX/pTC1T1p1h1dHrADwbWIEPetXG2sK80K8tRH5V9nBAo4HopHSiE9NwczDNxFmSESFE8RBxGlYNg+iLoDGDNu9AqwlgVvjJQFxKBiO/P8zhq3cw08DkLjUZ3tJPRsyIYs/WypwKZWwJi0nhYmSiJCNCCJEvSsGRxbD5HdCmgWM56LMI/FoWyeWjEtMYtPgfgsPjcbSx4NsBDXmymkeRXFuIglDV09GQjDSr5GbscPJFkhEhhPGkxML6VyB4vX67aifoOR/si+YL9WZsCs8vPsSV20m4O1izfGQTapR1KpJrC1FQqno68Pe5SC7dMt0RNZKMCCGM4/pRWD0UYkPBzAI6TIdmL4NZ0azfeTUqiYGLDnEjNoXyLrYsH9kUf3f7Irm2EAUpa40aU14wT5IRIUTR0ung4LewbRroMsHFF/ouhQqBRRbCuYh4Bi3+h9sJafi727N8ZFPKu9gW2fWFKEjVvPQjaiQZEUKUaHeS0jl5PZZT1+MIi0nGydYSV3sr3OytcLW3wtvZlopudjjbPmIOkKRo+O0luPiXfrtmD+g2B2xdCv01ZDl4JZoXfjhCQmomNco68uOIpjJ0V5i0yndrRm4npBGbnI6LnZWRI8o7SUaEEDk6FxHPoj0h/BMSQ2hMcq6OcbGzpKKrHT6udpR1ssHT0Rqvu//1TzpJ2W1j0STcBHNreHoWNBoORThi5c/T4YxbeYL0TB2NfMuwaEgjk/ziFuK/HKwtKO9iy41YfSfWxn6uxg4pzyQZEUJkE3QznjnbL7L5bES2/f7u9tSt4ExlDwcS0zKJTkwnJimNmKR0bsSmEJWYTmxyBrHJcZy6Hmc4zgwdY8x/o6nFGjQaRaimPIs838UsvC6uf1/C0cYCRxtLHKwtsLUyx0wDGjRoNGCm0eDvbk9Z58dfAOz7/VeZ9sdZlIJONb2Y878G2FjKHCKiZKji6aBPRm5JMiKEMGEXbyXw6V/n2RJ0C9BXWHSu403/Rj7Uq+CCs93Dm2CS0jIJjUnmWnQy1+8kE5mQRmrMDfqFvU/ttBMArNG24t2MYSSH2EDI1VzH5uVkTb0KLtTzcaGRbxka+7liZpa7GpXk9Exmb7vIgt1XABjYtCIzetTGPJfHC2EKqno6sOvCbZNdo0aSESFKOaUUKw+HMXX9WdIydWg00LVuOV5tV4WqXrlfj8Xe2oIAbycCvO8Ojb20DdaOgrQosLRD1/kzWlTqzaKoJEKikgiNSSY+JYP41EwSUjNJSM0gJV17NyZQKDK0imvRSdyKT2NL0C1DolTexZZnG1Xg2UY+D+x4mpSWyY8Hr7Fw9xWik9IBeL1jNca2qyKTmYkSJ2uNGlOdFl6SESFKsaS0TCavO81vJ24C8GQ1D97rGvB4i8JpM2DHTNj7pX7bqzb0XYqZRzW8AW9n2zytfpucnsmZG/Gcuh7L8bBYdl+4zY3YFGZvu8hX2y/yRBV3An3L4GhjiaO1BQ42Fly5ncjivSHcSc4AwMfVlrefrkHXuuXy/7qEKMay/mZNdcE8SUaEKKWCw+MZ89MxrtxOwtxMwxudqjPqyUq5bv7IUWworB4B1//RbzcaDk99CJb5HzZrZ2VBE39Xmvjr28FTM7RsPhPBysNhHLgSzZ6LUey5GJXjsf7u9oxpW4Ue9cthaV4085cIYQxZNSMR8anEp2bgZFP4q1sXJElGhChltDrFsv1X+WTzOdIydZR1suHrAQ0ev9PbuY3w28uQGgvWTtB9DtTqVSAx/5eNpTk9G5SnZ4PyXItOYv2Jm4THp5KYmkliWiaJqZmYmcFzjSvSta43FpKEiFLAycaSsk42RMSncikykYYVyxg7pDyRZESIUuTK7UTeWn2KI9fuANC6mgdf9Kv3eItrZabB1vfg0Hz9drmG0HcJuPoXQMQP5+tmzyvtqxb6dYQwBVW9HIiIT+XirQRJRoQQxY9Wp1i6L4RP/zpPWqYOeytz3ukSwIAmFR+vM2f0ZVg9DMJP6rebj4X2U8FC5u4QoqhV8XRgz8Uok+w3IsmIECVcXHIGo5cf5cCVaACeqOLOR33qUKGM3eOd+PRq+GM8pCeAbRn9AnfVn378gIUQ+VL1bifWS7clGRFCFCPX7yQzdOlhLkUmYm9lzpSuNXmusc/j1YakJ8Pmt+HYD/rtii2gzyJwLl8wQQsh8qWSh36hxyu3k4wcSd5JMiJECXXmRhzDlh3mdkIaZZ1sWDqs8b9zgORX5DlYNRRuBwMaePINaD0RzOWrRAhjq3R31enrd5JJy9RibWE6MwzLN4gQJdCuC7d5eflRktK1VPdyZNnwxng7P8aqtErB8eWw6U3ITAF7T+izECq1KbCYhRCPx8PRGgdrCxLTMgmNTs7TpIXGJmPehChh1hy9zvBlh0lK19KishurXmr+eIlIWgKsfRHWj9UnIpXawkv7JBERopjR3F3LCeBKlGk11UjNiBAlyNJ9IUz/IwiAXg3K83GfulhZPMa/OcJPwqphEHMZNObQbgq0HA9m8u8YIYqjSh72nL4RZ3L9RiQZEaIEUErx1faLzN52EYDhLf2Z0iUg/7OpKgX/LIQtk0GbDk4VoO9iqNisAKMWQhS0rJqRkCjTGlEjyYgQJk6nU7y/MYil+64CMKFjNV55nMXgUu7A72Ph3Ab9dvXO0ONbsDO9ZcmFKG0qeeinhZeaESFEkUnP1DFx7SnWHrsBwLRuNRna8jFmPg37R7+2TFwomFlCpw+g6SiQVW6FMAmVDDUjkowIIYpAVGIaLy0/yuGrdzA30/Bp37r0blghfyfT6WD/HNg+A5QWyvhB36VQvmGBxiyEKFxZzTTRSenEJWfgbGcaC+ZJMiKECQoOj2fk90e4EZuCo40FX/+vAW2qe+bvZIm3Yd0ouLxdv12rN3SbDTbOBRavEKJo2Ftb4OVkza34NK5EJdLARNaokWRECBPz19kIXlt5guR0Lf7u9iwa0ojKd9uJ8yxkD6wZCYkRYGEDT38EgUOlWUYIE1bJ3UGfjNxOkmRECFGwlFJ8t/sKH/15DtCvMfPtgIb5q4bVaWHXJ7D7E1A6cK8Ozy4Fr1oFHLUQoqj5e9hz4Eq0SfUbkWRECBOg1Smmrj/D8oOhAAxt4ceULgFYmOdjvo/4m7DmBbi2V7/d4Hl45hOwsi/AiIUQxlLJMPGZ6QzvlWREiGIuJV3LKz8fZ1vwLTQaeK9rTYbld8TMxa36/iHJ0WBpD12/hHr9CzZgIYRRmeKCeZKMCFGMRSWmMeL7I5wMi8XawoyvnqvP07W9834ibYZ+pMz+OfrtsnWg7zJwr1Kg8QohjK+Su74P2dXoJHQ6lf/JD4tQvuZ0njt3Lv7+/tjY2BAYGMiePXtyddy+ffuwsLCgfv36+bmsEKXKzdgU+s7bz8mwWFzsLFkxsmn+EpE712DJ0/8mIo1fgBHbJBERooSqUMYWS3MNqRk6wuNTjR1OruQ5GVm5ciXjx49n8uTJHD9+nFatWvHMM88QGhr60OPi4uIYPHgw7du3z3ewQpQW4XEp/G/hQa5GJ1OhjC1rXmpBI798zIAa9DvMbwU3joC1M/T7Ebp8BpY2BR+0EKJYsDA3o6KrHQBXbptGv5E8JyNffPEFI0aMYOTIkQQEBDB79mx8fHyYN2/eQ48bNWoUAwYMoHnz5vkOVojSICIulQELD3EtOpmKrnb8Oqp53ofuZqTCxtfh18GQFgflG8HoPVCze+EELYQoVvzvNtWYyoiaPCUj6enpHD16lE6dOmXb36lTJ/bv3//A45YuXcrly5eZOnVqrq6TlpZGfHx8tocQpUFkfCoDFh4kJCqJCmVs+fnFZpRzsc3bSaIuwaIOcHiRfrvlOBi+Gcr4FnzAQohiqbKJdWLNUwfWqKgotFotXl5e2fZ7eXkRERGR4zEXL15k4sSJ7NmzBwuL3F1u1qxZTJ8+PS+hCWHyIhNSeW7hQa5EJVHexZafX2hG+bwmIidXwobXICMJ7Nyg13dQtWPhBCyEKLb8DcN7TSMZyVcH1ntXA1VK5bhCqFarZcCAAUyfPp1q1arl+vyTJk0iLi7O8AgLC8tPmEKYjLCYZPrNP8CV2/pE5JcXm+Fzt803V9KT4LcxsO5FfSLi1wpG75VERIhS6t/Ve02jz0ieakbc3d0xNze/rxYkMjLyvtoSgISEBI4cOcLx48cZO3YsADqdDqUUFhYWbNmyhXbt2t13nLW1NdbW1nkJTQiTdeFWAoMWH+JWfBoVytjy08g8JiK3zsKqYRB1HtBAm4nw5JtgZl5oMQshiresmpEbsSmkZmixsSze3wd5SkasrKwIDAxk69at9OrVy7B/69at9OjR477yTk5OnD59Otu+uXPn8vfff7N69Wr8/R9jqXMhSoDjoXcYtuwwsckZVPNy4McRTfFyyuVIF6Xg6DLYPBEyU8GhLPRZCP5PFmrMQojiz93BCkcbCxJSM7kWnUz1so7GDumh8jzp2YQJExg0aBCNGjWiefPmLFiwgNDQUEaPHg3om1hu3LjBDz/8gJmZGbVr1852vKenJzY2NvftF6K02X3hNqOXHyU5XUuDii4sHdoYFzur3B2cGg9/jIOza/XbVTpAz/ng4FF4AQshTIZGo6GSuz0nr8cREpVY8pKR/v37Ex0dzYwZMwgPD6d27dps2rQJX199T/3w8PBHzjkiRGn319kIxv50jAytolVVd74bFIidVS7/HG8cg9XD4M5VMLOA9u9B81fALF9dwIQQJVQlDwdOXo/jsgmMqNEopZSxg3iU+Ph4nJ2diYuLw8nJydjhCPFYNpy6ybhfTqDVKbrU8ebL/vWxsshFIqEUHJoPW94FXQY4V4S+S8CnceEHLYQwOXO2X+SLrRfoG1iBz56tZ5QYcvv7LWvTCFGE1h2/zuu/nkSnoHeD8nzSt27uVt5NjoHfx8D5TfrtGl2hxzdgW6ZwAxZCmKx/F8wr/iNqJBkRooj8ejiMt9eeQino38iHD3vXwTw3C1iFHoTVIyD+OphbwVMfQuORkMNweiGEyJI1osYUZmGVZESIIrD84DWm/HYGgEHNfJnevdajV9LU6WDfl/D3TFBacK0Mzy4Fb+NUtwohTEtWMnInOYM7SemUsc9lB3kjkB5vQhSynw6FGhKREU/4M6NHLhKRxEhY3hu2z9AnInX6wahdkogIIXLNzsoCb2f9VAFXoop3U40kI0IUol/+CeWddfq5dkY+4c+ULgE5zlaczeUdMK8lXNkBFrbQ/RvovQCsi/fQPCFE8ePrpp9A8Vp0spEjeThJRoQoJL8eCWPS3URkWEs/Jj8qEdFmwvb34cdekBQJnjXhxZ3QcJD0DxFC5Iufm76pprgnI9JnRIhCsObodd5eo++sOrSFH+91rfnwRCTuBqwZCaF3V79uOASe/gis8jAtvBBC3KPi3ZqR0BhJRoQoVVYdCeOtu4nIoGa+TO32iETk/Gb47SVIiQErR+g2G+r0LbJ4hRAll69rVs1I8R5RI8mIEAXo+/1Xmbr+LAADmlZkevdaD05EMtNh+3Q48I1+27u+fhIzt8pFE6wQosQzlT4jkowIUUC+3XGJT/86D+hHzTy0s2pMCKweDjeP6bebvgQdp4OFrFYthCg4Wc000UnpJKZl4mBdPH/2i2dUQpgQpRSfbTnPtzsuA/Bq+6q81qHqgxORM2v1i9ylxYONC/ScCzW6FF3AQohSw8nGEld7K2KS0rkWnUStcs7GDilHkowI8RgytTpmbAjihwPXAJj0TA1GtX5AM0tGCmyeBEeX6rd9mkKfxeDiU0TRCiFKo4qudsQkpRManSzJiBAlTXxqBmN/Os7uC7cBeL9nbQY188258O0LsGooROr7k/DEBGj7DphbFk2wQohSy9fNjhNhsVwtxv1GJBkRIh+uRiUx4vvDXL6dhK2lOV/0q8czdbxzLnziJ9j4OmQkg70H9PoOqrQv2oCFEKWW7925RkJjiu+IGklGhMij/ZeieGnFMeJSMvB2tmHh4EbULp9D1Wdaoj4JOfWLftv/Sei9EBzLFm3AQohSzde1+I+okWREiFxSSrFs/1VmbgwmU6eo7+PCgkGBeDrZ3F844rS+WSb6EmjMoM070GoCmJkXedxCiNLNFIb3SjIiRC4kpWUyae1p1p+8CUCP+uX4uE9dbCzvSS6UgiOLYfM7oE0Dx3LQZxH4tTRC1EII8e/w3ptxKaRlarG2KH7/KJJkRIhHuHI7kdHLj3LhViIWZhomdQ5geEu/+4fupsTC+lcgeL1+u+pT0HMe2LsVecxCCJHFw8EaOytzktO1XL+TQmUPB2OHdB9JRoR4iL/ORvD6rydJTMvEw9GauQMb0tjP9f6C14/C6qEQGwpmFtBhOjQfIwvcCSGMTqPRUNHVjnMRCYRGJ0syIoQp2XPxNi+vOIZWp2ji58o3Axrc3z9Ep4OD38K2aaDLBBdf6LsUKgQaJWYhhMiJr5s+GblaTNeokWREiBxcikw0JCI96pfjs2frYWlulr1QUjT8NhoubtFv1+wB3eaArUuRxyuEEA+TNby3uHZilWREiHvcSUpnxPeHSUjNpJFvGT7pW/f+ROTqPlgzEhJugrk1PP0hNBohzTJCiGIpa0RNaIwkI0IUe+mZOkYtP8q16GR8XG35blBg9p7nOi3s+QJ2fghKB25V4dmlULaO8YIWQohH8HXNqhmRZhohijWlFJPXneafkBgcrS1YPKQxbg7/WUU3IQLWvgAhu/Xb9QZA50/Buvh1BhNCiP/KqhkJi0lBq1OYmxWvWlxJRoS4a9n+q6w6eh0zDXw9oAHVvBz/ffLSdlg3CpJug6UddPkc6g8wXrBCCJEH3s42WJhpSNfqiIhPpbyLrbFDysbs0UWEKPmCbsYza9M5ACZ3qUmb6p76J7QZ+pEyy3vrExGv2vDiLklEhBAmxcLcDB/DtPDFr6lGkhFR6qVmaBn3y3HStTo6BHgxvKWf/onYMFjWBfZ+qd9uNBxGbgOPakaLVQgh8qvi3WQktBiOqJFmGlHqzdwYzMXIRDwcrfm4Tx39zKrnNsJvL0NqLFg7Qfc5UKuXsUMVQoh8y+o3clWSESGKl21Bt/jx4DUAPn+2Hm42wJ8T4dA8fYFyDaHvEnD1N16QQghRAAw1IzHFr5lGkhFRakUmpPLWmlMAjHjCnyfd4mFxHwg/qS/QfCy0nwoWVkaMUgghCoZfMZ74TJIRUSrpdIo3Vp0iJimdAG8nJvqcge8mQHoC2JaBnvOh+tPGDlMIIQqMYeKz6GSUUvcv9mlEkoyIUmnp/qvsvnAbZ4sMfim7Ast1P+ufqNgC+iwC5/LGDVAIIQpY1miahLRMYpLSs8+jZGQymkaUOkE34/n4z3NU0Vxnl8sMnIN/BjTw5Jsw5A9JRIQQJZKNpTll7y72ea2YTQsvyYgoVVIztIz7+Rg9+JuNNu/ikngZ7D1h8G/QbgqYS2WhEKLk+m9TTXEi37yiVPl0/RFejv2EXpb7QAGV2kDvheDgaezQhBCi0Pm62XEoJKbYdWKVZESUGof27WDgydFUMo9AaczRtJsMLV8DM6kgFEKUDr5uxXPBPElGRMmnFAm759Jgx3tYmWUSZ+WF8/M/QMVmxo5MCCGKVNZcI8Wtz4gkI6JkS7lDxtoxOF7cCMABy6Y0fOUncHQ3cmBCCFH0spKRsGKWjEj9tCi5wg6jndcKy4sbSVfmfKoZhsfINVhLIiKEKKWyhvdGJqSRmqE1cjT/kmRElDw6HeydjVr6NObxYVzVeTHCYibdR71PFS9HY0cnhBBGU8bOEjsrcwBuxKYYOZp/STIiSpakKPjpWdg2FY0ukz+0zRhm9RlTRw2iellJRIQQpZtGo8GnTPFrqpE+I6LkCNkDa0ZCYgRpWDEtYxA77Tvz04vN8Xe3N3Z0QghRLPi42nL+VgLX7xSfmhFJRoTp02lh1yew+xNQOi6p8oxJf4VE5+qsfKEZFe9O8iOEEAIqZNWM3JGaESEKRnw4rH0Bru4BYGVmG6ZlDqZB5fL8+Fx9PB1tjBygEEIULxXK2AJwPUZqRoR4fBe3wboXITmaFGyYlD6c9eoJxnWoxth2VTA3Kz4rUgohRHGRNaLmutSMCPEYtBnw9/uw7ysAgpSfvlnGwY8VzzWgeWU3IwcohBDFV1bNSJj0GREin2JDYfVwuH4YgGWZnZiVOYAmVcvxZf/6uBejJbGFEKI4yuozEpOUTlJaJvbWxk8FjB+BELkV/Af8PgZS40jAnjfSX2A7TXnjmeq82KoSZtIsI4QQj+Rsa4mTjQXxqZlcv5NSLKY9kGREFH8ZqbBlChxeCMAJXRXGZryCcq7IrwMa0LBiGSMHKIQQpsXH1Y6zN+MJi0mWZESIR4q6BKuHQsRpAOZnduOzzGfpUKsCH/epi7OdpXHjE0IIE+RT5m4yUkw6sUoyIoqvkythw2uQkUQsToxPH80+TQOmdAtgSAs/NBpplhFCiPwwDO8tJp1YJRkRxU96Emx6C04sB+Cgriavpo/B0qUcqwY2pL6Pi3HjE0IIE+dTzFbvlWREFC+3zsKqYRB1Hh0avsrozdfaXrQLKMvnz9aXZhkhhCgAPq5SMyLE/ZSCY9/Dn29DZirRGlfGpr3EIVWLN5+uwejWlaRZRgghCkhxmxJekhFhfKnxsGE8nFkDwD7q82rKKHR27vzwv4Y8UdXduPEJIUQJk9VnJCE1k7jkDKPXOksyIozr5nF9s8ydEHQaCz7OeJYFmV2oVd6F+c8HGrJ3IYQQBcfOygI3eyuik9IJu5OMs52zUeORZEQYh1JwaD5seRd0Gdyx9GJE4kscU9Xo07ACM3vVxsbS3NhRCiFEiVXB1Y7opHSu30mmdnnjJiNm+Tlo7ty5+Pv7Y2NjQ2BgIHv27Hlg2bVr19KxY0c8PDxwcnKiefPm/PXXX/kOWJQAyTHwywDYPBF0Gfxj3YLWCe9zgmpM6RLAZ8/WlURECCEKmU/WGjXFYPXePCcjK1euZPz48UyePJnjx4/TqlUrnnnmGUJDQ3Msv3v3bjp27MimTZs4evQobdu2pVu3bhw/fvyxgxcmKPQgzG8F5zehM7NituUL9Isbg87ahcVDGjOylXRUFUKIopDVDF4cVu/VKKVUXg5o2rQpDRs2ZN68eYZ9AQEB9OzZk1mzZuXqHLVq1aJ///689957uSofHx+Ps7MzcXFxODk55SVcUVzodLDvS/h7JigtqU5+DI5/iX9SffBxtWXxkMZU8zL+lMRCCFFarDh0jcnrztCuhidLhjYulGvk9vc7T31G0tPTOXr0KBMnTsy2v1OnTuzfvz9X59DpdCQkJODq6vrAMmlpaaSlpRm24+Pj8xKmKG4SI2HdKLj8NwC3/XvQ+XIvbqdb0bCiCwsHN8JNVtsVQogi5VOm+Ex8lqdmmqioKLRaLV5eXtn2e3l5ERERkatzfP755yQlJdGvX78Hlpk1axbOzs6Gh4+PT17CFMXJlZ0w/wl9ImJhy/mms3ji4nPcTreiZRU3lo9sKomIEEIYwX+nhM9jI0mBy1cH1nvb9JVSuWrn//nnn5k2bRorV67E09PzgeUmTZpEXFyc4REWFpafMIUxaTPh7w/gh56QeAs8a7K3/Wq67fUnLVPRroYni4c0xs5KBnQJIYQxlC9ji0YDKRlaopPSjRpLnn4J3N3dMTc3v68WJDIy8r7aknutXLmSESNGsGrVKjp06PDQstbW1lhby7+WTVbcDVgzEkLvNt01HMJmn/GMWXUOrU7RuU5ZZvdvgJVFvnJhIYQQBcDawhwvRxsi4lMJi0nG3Yi11Hn6NbCysiIwMJCtW7dm279161ZatGjxwON+/vlnhg4dyk8//USXLl3yF6kwDec365tlQveDlSP0WczuGu/yymp9ItK7QXnmPCeJiBBCFAfFZfXePNeRT5gwgUGDBtGoUSOaN2/OggULCA0NZfTo0YC+ieXGjRv88MMPgD4RGTx4MF999RXNmjUz1KrY2tri7GzcSVZEAcpMh+3T4cA3+m3vetB3KUcTXRm16BAZWkXXut58+mw9zM1k6K4QQhQHPq52HLl2x+hr1OQ5Genfvz/R0dHMmDGD8PBwateuzaZNm/D19QUgPDw825wj3333HZmZmYwZM4YxY8YY9g8ZMoRly5Y9/isQxhcTAquHw81j+u2mL0HH6ZyPSmf4sgOkZGh5spoHX/SrL4mIEEIUIxWKycRneZ5nxBhknpFi7Ow6WP8qpMWDjQv0nAs1uhAanUzf+fuJTEijYUUXlo9sKp1VhRCimPn1cBhvrTlFq6ru/DiiaYGfv1DmGRHCICMF/noHjizRb/s0hT6LwcWHyIRUBi05RGRCGtW9HFkyVEbNCCFEcVTB1UT7jAjB7QuwehjcOqPffmICtH0HzC2JS8lg8OJ/uBadjI+rLT+OaIKLnZVx4xVCCJGjrInPbtxJQadTmBmpKV2SEZE3J36Cja9DRjLYe0Cv76BKewBS0rWM/P4w5yIScHewZvmIpng62Rg5YCGEEA/i7WyDuZmGdK2OyIQ0yjob5ztbkhGRO2mJsOkNOPmzftv/Sei9EBzLApCh1THmp2McvnoHRxsLfhzRBF83eyMGLIQQ4lEszM3wdrbh+p0Uwu4kGy0ZkckexKNFnIYFbfSJiMYM2k6BQb8ZEhGdTvHW6lP8fS4SG0szlgxtTIC3dDQWQghT8O+IGuMN75WaEfFgSuk7qG6eBNo0cCwHfRaBX8v/FFF8sDGYdcdvYGGmYd7AQBr7PXgRRCGEEMVLv0Y+tKnuSZ3yxpv7S5IRkbPUOP2Q3aDf9NtVn4Ke88DeLVuxBbuvsGRfCACfPluXtjUevOaQEEKI4qd3wwrGDkGSEZGDG0dh1TCIvQZmltBhGjQfA/cshrj22HVm/XkOgCldAujVwPgfaCGEEKZHkhHxL6XgwLewbRroMsDFF/ouhQqB9xXdeT6St1afAuDFJysxslWlIg5WCCFESSHJiNBLiobfXoKLf+m3a/aE7nPA5v42xJNhsby84hiZOkXP+uWY+HSNoo1VCCFEiSLJiIBr+2H1CEi4CebW8PQsaDT8vmYZgH9CYhi9/CjJ6VpaVXXnk771jDZJjhBCiJJBkpHSTKeFPV/Azg9B6cCtKjy7FMrWub+oTrFgzxU+/es8Wp2ibgVn5j0fiJWFjA4XQgjxeCQZKa0SImDtixCyS79d73/Q+TOwdrivaFxyBq+vOsG24EgAejcozwe9ast6M0IIIQqE/JqURpe2w7pRkHQbLO2gy+dQf8B9xZRSHLgczVtrTnH9TgpWFmZM716L5xr7oMmhCUcIIYTID0lGShNtJuyYCXu/0G971daPlvGolq1YplbHpjMRLNx9hdM34gDwdbPj2wENqW3ESXGEEEKUTJKMlBaxYbBmJIQd1G83Gg5PfQiWtoYiqRlaVhwKZcneEG7E6peTtrYwo18jH954qjrOtpbGiFwIIUQJJ8lIaXBuk37YbmosWDvph+zW6mV4WinFptMRzPozmOt39EmIm70VQ1r48XwzX1ztrYwUuBBCiNJAkpGSLDMNtk6FQ/P02+Ua6JtlXP0NRU5dj+X9DUEcvnoHgLJONrzaviq9G5bHxtLcGFELIYQoZSQZKamiL8PqYRB+Ur/dfCy0nwoW+lqOuOQMZm4K4tcj1wGwtTRnVOtKvPhkJRklI4QQokjJr05JdHo1/DEe0hPAtgz0nA/Vnwb0TTJ/nongvd/PEpWYBuiH6r75dHW8nW0fclIhhBCicEgyUpKkJ8Pmt+HYD/rtis2hz2JwLg/ArfhU3v3tDFuCbgFQ2cOej/vUpZGfq7EiFkIIISQZKTEiz8GqoXA7GNDAk29A64lgboFOp/j5cCgf/XmOhNRMLMw0vNymMmPaVcHaQvqFCCGEMC5JRkydUnB8OWx6EzJTwN4T+iyESm0AOBcRzztrT3MsNBaAuhWc+bhPXQK8nYwXsxBCCPEfkoyYsrQE2DABTv+q367UFnovAAdPktMz+Wr7RRbtCUGrU9hbmfN6p+oMbu6LhbmsJyOEEKL4kGTEVIWfhFXDIOYyaMyh3WRo+RpKo+GvM+G8vyHYMHHZ07XKMrV7TemgKoQQoliSZMTUKAX/LIQtk0GbDk4VoO9iqNiMS5GJTP/jLHsuRgFQ3sWW6d1r0aGml5GDFkIIIR5MkhFTknIHfh8L5zbot6t3hh7fkmDmyDebglm8N4RMncLKwoxRT1bi5TZVsLWSDqpCCCGKN0lGTEXYYVg9HOJCwcwSOr2PtvEoVh29zmdbjhKVmA5AhwBP3u1aE183eyMHLIQQQuSOJCPFnU4HB76G7TNAlwll/KHvEvanVuT9b/YRHB4PgL+7Pe92DaBdDWmSEUIIYVokGSnOkqJg3Wi4tFW/XbsP11vOYsbWMLYEHQLAycaCcR2qMaiZL1YWMkpGCCGE6ZFkpLgK2QNrX4CEcLCwIaPTLL6Jbcn8b4+RlqnD3EzDwKYVGd+hmqyqK4QQwqRJMlLc6LSw+1PY9TEoHcqjBgcafMpbOzK5fucSAM0ruTG9Ry2qeTkaOVghhBDi8UkyUpzEh+trQ67uASCx5nO8njCAv9YnAODtbMPkLgF0qeONRqMxZqRCCCFEgZFkpLi4uA3WvQjJ0SgrBzb7vc24U1VJz0zE0lzDyFaVGNu2CvbW8pYJIYQoWeSXzdi0GfqRMvvnAJDgEsDotLHsO1UG0PFEFXem96hFZQ8H48YphBBCFBJJRozpzjVYMwKuHwbgL/vuvBrRmzSs8HKy5t2uNaVJRgghRIknyYixBK2H9WMhNY5kMwdeSx3JX6lNsDI348WWfrzavioO0iQjhBCiFJBfu6KWkQpb34V/FgBwQleFsWmvcAMPejUoz4SO1fBxtTNykEIIIUTRkWSkKEVdgtVDIeI0APMzu/FZ5rO0rObNd09Xp1Y5Z+PGJ4QQQhiBJCNF5dSvsOE1SE8kVuPE+LTR7Nc05JN+dejdsIKxoxNCCCGMRpKRwpaeBJveghPLAThCTV5OGYPOoSy/DA6kYcUyRg5QCCGEMC5JRgrTrSBYNRSizqPQ8LW2N7MzelHD24WFQxpR3sXW2BEKIYQQRifJSGFQCo59D3++DZmpxJi5Mib1JQ7oatG5Tlk+e7YedlZy64UQQgiQZKTgpcbDH+Pg7FoA9qj6jE8eRZq1G590q8mzgRVk3hAhhBDiPyQZKUg3jsHqYXDnKpmY82lGPxZou9C0kjuf9q0nQ3aFEEKIHEgyUhCUgkPzYcu7oMvglpkno1PGcNa8OlO61mBYCz/MzKQ2RAghhMiJJCOPKzkGfh8D5zcBsMusKa8kj8DC3pVfhjSS0TJCCCHEI0gy8jhCD8LqERB/HZ2ZFR/pnmdBcnv83R1YNqwxvm72xo5QCCGEKPYkGckPnQ72fQl/zwSlJdHel4Gxozip9SPQtwwLBzfC1d7K2FEKIYQQJkGSkbxKjIS1L8KVHQCElOtCt5DeJCpbOtcpyxf96mNjaW7kIIUQQgjTIclIXlzZCWtegKRIsLDl78pvMfxkNUDDwKYVmdGjNubSUVUIIYTIE0lGckObCbs+gt2fAQrlWZNFXu8y87AC4OU2lXnzqeoyf4gQQgiRD5KMPErcDVgzEkL3A5BZfzBT059nxeEoACY9U4NRrSsbM0IhhBDCpEky8jAX/oJ1oyElBqwcCW05i2FHfLh8OwozDXzYqw7PNalo7CiFEEIIkybJSE4y02H7dDjwDQDKuz7LK0xl+l+pZOqS8HS05rNn6/FkNQ8jByqEEEKYPklG7hUTAquHw81jAMTWG8mo8G4c2pMEQOc6ZZnZsw5lZOiuEEIIUSDM8nPQ3Llz8ff3x8bGhsDAQPbs2fPQ8rt27SIwMBAbGxsqVarE/Pnz8xVsoTv7G3zXGm4eQ9m4sKbapzQ+0p5DoUk4WFvw+bP1+HZAQ0lEhBBCiAKU52Rk5cqVjB8/nsmTJ3P8+HFatWrFM888Q2hoaI7lQ0JC6Ny5M61ateL48eO88847vPrqq6xZs+axgy8wGamwYQKsGgJpccS4NaC37mNeP1WeDK2iTXUP/hzXij6y4q4QQghR4DRKKZWXA5o2bUrDhg2ZN2+eYV9AQAA9e/Zk1qxZ95V/++23Wb9+PcHBwYZ9o0eP5uTJkxw4cCBX14yPj8fZ2Zm4uDicnJzyEu6j3b6gX2n31hkUGv5w6s+EyM5kYkF5F1umdqtJx5pekoQIIYQQeZTb3+889RlJT0/n6NGjTJw4Mdv+Tp06sX///hyPOXDgAJ06dcq276mnnmLx4sVkZGRgaWl53zFpaWmkpaVlezGF4sTPsPF1yEgizdqN8ekv8WdkTawszHj1yUq81KYKtlYym6oQQghRmPKUjERFRaHVavHy8sq238vLi4iIiByPiYiIyLF8ZmYmUVFReHt733fMrFmzmD59el5CyzudDk6thIwkLjkE8r+oEdzGhdrlnZjdvwFVPB0K9/pCCCGEAPLZgfXeJgul1EObMXIqn9P+LJMmTSIuLs7wCAsLy0+YD2dmRnDzz5hvPZROUa8RpXFhVOtKrH2ppSQiQgghRBHKU82Iu7s75ubm99WCREZG3lf7kaVs2bI5lrewsMDNzS3HY6ytrbG2ts5LaHmmlGLCpnCC4zrh5WTNl/3q06KKe6FeUwghhBD3y1PNiJWVFYGBgWzdujXb/q1bt9KiRYscj2nevPl95bds2UKjRo1y7C9SVDQaDZ89W5eudb3ZPO5JSUSEEEIII8lzM82ECRNYtGgRS5YsITg4mNdee43Q0FBGjx4N6JtYBg8ebCg/evRorl27xoQJEwgODmbJkiUsXryYN954o+BeRT7VKufMNzJviBBCCGFUeZ6BtX///kRHRzNjxgzCw8OpXbs2mzZtwtfXF4Dw8PBsc474+/uzadMmXnvtNb799lvKlSvHnDlz6NOnT8G9CiGEEEKYrDzPM2IMhTrPiBBCCCEKRW5/v/M1mkYIIYQQoqBIMiKEEEIIo5JkRAghhBBGJcmIEEIIIYxKkhEhhBBCGJUkI0IIIYQwKklGhBBCCGFUkowIIYQQwqgkGRFCCCGEUUkyIoQQQgijkmRECCGEEEaV54XyjCFr+Zz4+HgjRyKEEEKI3Mr63X7UMngmkYwkJCQA4OPjY+RIhBBCCJFXCQkJODs7P/B5k1i1V6fTcfPmTRwdHdFoNAV23vj4eHx8fAgLC5PVgAuZ3OuiIfe5aMh9Lhpyn4tGYd5npRQJCQmUK1cOM7MH9wwxiZoRMzMzKlSoUGjnd3Jykg96EZF7XTTkPhcNuc9FQ+5z0Sis+/ywGpEs0oFVCCGEEEYlyYgQQgghjKpUJyPW1tZMnToVa2trY4dS4sm9Lhpyn4uG3OeiIfe5aBSH+2wSHViFEEIIUXKV6poRIYQQQhifJCNCCCGEMCpJRoQQQghhVJKMCCGEEMKoSnwyMnfuXPz9/bGxsSEwMJA9e/Y8tPyuXbsIDAzExsaGSpUqMX/+/CKK1LTl5T6vXbuWjh074uHhgZOTE82bN+evv/4qwmhNW14/01n27duHhYUF9evXL9wAS4i83ue0tDQmT56Mr68v1tbWVK5cmSVLlhRRtKYrr/d5xYoV1KtXDzs7O7y9vRk2bBjR0dFFFK1p2r17N926daNcuXJoNBp+++23Rx5T5L+FqgT75ZdflKWlpVq4cKEKCgpS48aNU/b29uratWs5lr9y5Yqys7NT48aNU0FBQWrhwoXK0tJSrV69uogjNy15vc/jxo1TH3/8sfrnn3/UhQsX1KRJk5SlpaU6duxYEUduevJ6r7PExsaqSpUqqU6dOql69eoVTbAmLD/3uXv37qpp06Zq69atKiQkRB06dEjt27evCKM2PXm9z3v27FFmZmbqq6++UleuXFF79uxRtWrVUj179iziyE3Lpk2b1OTJk9WaNWsUoNatW/fQ8sb4LSzRyUiTJk3U6NGjs+2rUaOGmjhxYo7l33rrLVWjRo1s+0aNGqWaNWtWaDGWBHm9zzmpWbOmmj59ekGHVuLk9173799fTZkyRU2dOlWSkVzI633+888/lbOzs4qOji6K8EqMvN7nTz/9VFWqVCnbvjlz5qgKFSoUWowlTW6SEWP8FpbYZpr09HSOHj1Kp06dsu3v1KkT+/fvz/GYAwcO3Ff+qaee4siRI2RkZBRarKYsP/f5XjqdjoSEBFxdXQsjxBIjv/d66dKlXL58malTpxZ2iCVCfu7z+vXradSoEZ988gnly5enWrVqvPHGG6SkpBRFyCYpP/e5RYsWXL9+nU2bNqGU4tatW6xevZouXboURcilhjF+C01iobz8iIqKQqvV4uXllW2/l5cXEREROR4TERGRY/nMzEyioqLw9vYutHhNVX7u870+//xzkpKS6NevX2GEWGLk515fvHiRiRMnsmfPHiwsSuyfe4HKz32+cuUKe/fuxcbGhnXr1hEVFcXLL79MTEyM9Bt5gPzc5xYtWrBixQr69+9PamoqmZmZdO/ena+//rooQi41jPFbWGJrRrJoNJps20qp+/Y9qnxO+0V2eb3PWX7++WemTZvGypUr8fT0LKzwSpTc3mutVsuAAQOYPn061apVK6rwSoy8fKZ1Oh0ajYYVK1bQpEkTOnfuzBdffMGyZcukduQR8nKfg4KCePXVV3nvvfc4evQomzdvJiQkhNGjRxdFqKVKUf8Wlth/Krm7u2Nubn5fhh0ZGXlfxpelbNmyOZa3sLDAzc2t0GI1Zfm5z1lWrlzJiBEjWLVqFR06dCjMMEuEvN7rhIQEjhw5wvHjxxk7diyg/9FUSmFhYcGWLVto165dkcRuSvLzmfb29qZ8+fLZlkoPCAhAKcX169epWrVqocZsivJzn2fNmkXLli158803Aahbty729va0atWKDz74QGqvC4gxfgtLbM2IlZUVgYGBbN26Ndv+rVu30qJFixyPad68+X3lt2zZQqNGjbC0tCy0WE1Zfu4z6GtEhg4dyk8//STtvbmU13vt5OTE6dOnOXHihOExevRoqlevzokTJ2jatGlRhW5S8vOZbtmyJTdv3iQxMdGw78KFC5iZmVGhQoVCjddU5ec+JycnY2aW/WfL3Nwc+Pdf7uLxGeW3sNC6xhYDWcPGFi9erIKCgtT48eOVvb29unr1qlJKqYkTJ6pBgwYZymcNZ3rttddUUFCQWrx4sQztzYW83ueffvpJWVhYqG+//VaFh4cbHrGxscZ6CSYjr/f6XjKaJnfyep8TEhJUhQoVVN++fdXZs2fVrl27VNWqVdXIkSON9RJMQl7v89KlS5WFhYWaO3euunz5stq7d69q1KiRatKkibFegklISEhQx48fV8ePH1eA+uKLL9Tx48cNQ6iLw29hiU5GlFLq22+/Vb6+vsrKyko1bNhQ7dq1y/DckCFDVOvWrbOV37lzp2rQoIGysrJSfn5+at68eUUcsWnKy31u3bq1Au57DBkypOgDN0F5/Uz/lyQjuZfX+xwcHKw6dOigbG1tVYUKFdSECRNUcnJyEUdtevJ6n+fMmaNq1qypbG1tlbe3txo4cKC6fv16EUdtWnbs2PHQ79zi8FuoUUrqtoQQQghhPCW2z4gQQgghTIMkI0IIIYQwKklGhBBCCGFUkowIIYQQwqgkGRFCCCGEUUkyIoQQQgijkmRECCGEEEYlyYgQQgghjEqSESGEEEIYlSQjQgghhDAqSUaEEEIIYVSSjAghhBDCqP4Py/upeFPT1bsAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "#bop = VectorData(np.reshape(b,[-1]))\n", + "op = VectorData(bn)\n", + "cgls = CGLS(operator=Aop, data=bop, max_iteration=4, update_objective_interval=10)\n", + "cgls.run()\n", + "\n", + "plt.figure()\n", + "plt.plot(np.linspace(0,1,100),cgls.solution.as_array(), label='Least squares solution with early stopping')\n", + "plt.plot(np.linspace(0,1,100),x, label='Ground truth solution')\n", + "plt.legend()\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "90dcba3f", + "metadata": {}, + "source": [ + "We can also do Tikhonov regularisation using the CIL framework. For example, in the block framework below: " + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "15ff9d79", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " Iter Max Iter Time/Iter Objective\n", + " [s] \n", + " 0 1000 0.000 2.16038e-01\n", + " 1 1000 0.130 3.73899e-03\n", + " 2 1000 0.108 9.73406e-04\n", + " 3 1000 0.109 8.16896e-04\n", + " 4 1000 0.111 8.07526e-04\n", + " 5 1000 0.106 8.07019e-04\n", + " 6 1000 0.105 8.07002e-04\n", + " 7 1000 0.106 8.07002e-04\n", + " 8 1000 0.110 8.07002e-04\n", + "Tolerance is reached: 1e-06\n", + "-------------------------------------------------------\n", + " 8 1000 0.110 8.07002e-04\n", + "Stop criterion has been reached.\n", + "\n" + ] + } + ], + "source": [ + "ig = Aop.domain_geometry()\n", + "L = IdentityOperator(ig)\n", + "operator_block = BlockOperator(Aop, reg_param*L)\n", + "\n", + "zero_data = L.range.allocate(0)\n", + "data_block = BlockDataContainer(bop, zero_data)\n", + "\n", + "cglsb = CGLS(operator=operator_block, data=data_block, max_iteration=1000, update_objctive_interval=10)\n", + "cglsb.run()" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "id": "74107db6", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAGdCAYAAADAAnMpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABxJElEQVR4nO3dd3QU1fvH8fduNr1CQkIgIdTQa5COSJeOVAWRokhsNBFB/NIEsaCiIL2JgiJVRARCr1JDDz0QSkIIkF53d35/rOzPQIAkJJls8rzOyTnu7OzMs0Pc/eTeO/dqFEVREEIIIYRQiVbtAoQQQghRuEkYEUIIIYSqJIwIIYQQQlUSRoQQQgihKgkjQgghhFCVhBEhhBBCqErCiBBCCCFUJWFECCGEEKrSqV1AZhiNRm7fvo2zszMajUbtcoQQQgiRCYqiEBcXR4kSJdBqn9z+YRFh5Pbt2/j6+qpdhhBCCCGy4caNG/j4+DzxeYsII87OzoDpzbi4uKhcjRBCCCEyIzY2Fl9fX/P3+JNYRBh52DXj4uIiYUQIIYSwMM8aYiEDWIUQQgihKgkjQgghhFCVhBEhhBBCqMoixoxkhqIo6PV6DAaD2qUIIQowa2trrKys1C5DiAKlQISR1NRUwsPDSUxMVLsUIUQBp9Fo8PHxwcnJSe1ShCgwLD6MGI1GQkNDsbKyokSJEtjY2MjEaEKIXKEoCnfv3uXmzZtUqFBBWkiEyCFZDiN79uzh66+/5tixY4SHh7Nu3Tq6du361Nfs3r2bkSNHcvbsWUqUKMHo0aMJDAzMbs3ppKamYjQa8fX1xcHBIUeOKYQQT1KsWDGuXbtGWlqahBEhckiWB7AmJCRQs2ZNZs2alan9Q0NDad++PU2bNiU4OJhPPvmEoUOHsmbNmiwX+zRPm2ZWCCFyirS8CpHzstwy0q5dO9q1a5fp/efOnUupUqWYMWMGAJUrV+bo0aNMnz6d7t27Z/X0QgghhChgcr054eDBg7Rp0ybdtrZt23L06FHS0tIyfE1KSgqxsbHpfgqbiRMnUqtWLfPjAQMGPLU77NH9Rea99NJLDB8+/LmPkxf/BhqNhvXr1+fKsa9du4ZGo+HEiRPPfazcrFMIUfDkehiJiIjAy8sr3TYvLy/0ej1RUVEZvmbatGm4urqafwraInkajeapPwMGDGDUqFFs375d7VJFFhTGf7MnBbDw8PAstaDmpNjYWMaNG0elSpWws7OjePHitGrVirVr16IoCvB4AM2pQCqEyJ48uZvm0T7Whx8IT+p7HTt2LCNHjjQ/frjQTkERHh5u/u+VK1cyfvx4Lly4YN5mb2+Pk5NTob110GAwoNFoLGYckKIoGAyGQv1v9qjixYurct7o6GiaNGlCTEwMU6ZM4YUXXkCn07F7925Gjx5NixYtcHNzU6U2IcST5fqnffHixYmIiEi3LTIyEp1Oh7u7e4avsbW1NS+KVxAXxytevLj5x9XVFY1G89i2ZzX5Hzt2DE9PT6ZOnZpu+88//0zp0qVxdXXl1VdfJS4uzvxcSkoKQ4cOxdPTEzs7O5o0acKRI0fMz+/atQuNRsP27dupW7cuDg4ONGrUKF1QApgzZw7lypXDxsaGihUr8vPPP5ufe+2113j11VfT7Z+WloaHhwdLlizJ8L0sXboUNzc3Nm7cSJUqVbC1teX69eukpqYyevRoSpYsiaOjI/Xr12fXrl3pXrtgwQLznVSvvPIK3377bbovm4y6t4YPH85LL730pEvLL7/8Qt26dXF2dqZ48eL06dOHyMjIx67Tli1bqFu3Lra2tuzdu/exf7Ndu3ZRr149HB0dcXNzo3Hjxly/ft38/J9//klAQAB2dnaULVuWSZMmodfrzc9funSJF198ETs7O6pUqUJQUNATa35o9erVVK9eHXt7e9zd3WnVqhUJCQmA6Tb4yZMn4+Pjg62tLbVq1WLz5s1PPNbDf5f/Wr9+vfmPiKVLlzJp0iROnjxpbtVbunQp8Hg3zenTp2nRooW5rrfffpv4+Hjz8w//naZPn463tzfu7u689957T+zKfZJPPvmEa9eucejQIfr370+VKlXw9/dn8ODBnDhxQsKiEBm5th+WdYXUBNVKyPUw0rBhw8c+RLdu3UrdunWxtrbO8fMpikJiql6Vn4ctPrlt165dtGzZkkmTJjFu3Djz9itXrrB+/Xo2btzIxo0b2b17N1988YX5+dGjR7NmzRp++uknjh8/Tvny5Wnbti33799Pd/xx48bxzTffcPToUXQ6HYMGDTI/t27dOoYNG8aHH37ImTNnGDJkCAMHDmTnzp0A9O3blw0bNqT7otmyZQsJCQlPHbCcmJjItGnTWLhwIWfPnsXT05OBAweyf/9+fvvtN06dOkXPnj15+eWXuXTpEgD79+8nMDCQYcOGceLECVq3bv1YOMuO1NRUPvvsM06ePMn69esJDQ1lwIABj+03evRopk2bRkhICDVq1Ej3nF6vp2vXrjRr1oxTp05x8OBB3n77bfMX+ZYtW3j99dcZOnQo586dY968eSxdutRcv9FopFu3blhZWfHPP/8wd+5cPv7446fWHR4ezmuvvcagQYMICQlh165ddOvWzfx7+f333/PNN98wffp0Tp06Rdu2bencubP5emZV7969+fDDD6latSrh4eGEh4fTu3fvx/ZLTEzk5ZdfpkiRIhw5coRVq1axbds23n///XT77dy5kytXrrBz505++uknli5dag43mWE0Gvntt9/o27cvJUqUeOx5JycndDqLn1pJiJxjNMCuL+GnjnB1J+z9VrVSsvx/Znx8PJcvXzY/Dg0N5cSJExQtWpRSpUoxduxYbt26xbJlywAIDAxk1qxZjBw5ksGDB3Pw4EEWLVrEr7/+mnPv4j+S0gxUGb8lV479LOcmt8XBJnc/7P744w/69evHvHnzeO2119I9ZzQaWbp0Kc7OzgD069eP7du3M3XqVBISEpgzZw5Lly419+UvWLCAoKAgFi1axEcffWQ+ztSpU2nWrBkAY8aMoUOHDiQnJ2NnZ8f06dMZMGAA7777LgAjR47kn3/+Yfr06TRv3py2bdvi6OjIunXr6NevHwArVqygU6dOT23hSktLY/bs2dSsWRMwBatff/2Vmzdvmr9YRo0axebNm1myZAmff/45M2fOpF27dowaNQoAf39/Dhw4wMaNG5/rGv83fJUtW5YffviBevXqER8fn+4v68mTJ9O6desMjxEbG0tMTAwdO3akXLlygOlOsoemTp3KmDFj6N+/v/k8n332GaNHj2bChAls27aNkJAQrl27ho+PDwCff/75U8dhhIeHo9fr6datG35+fgBUr17d/Pz06dP5+OOPzS1XX375JTt37mTGjBn8+OOPWbpG8P/diTqd7qndMsuXLycpKYlly5bh6OgIwKxZs+jUqRNffvmleUxZkSJFmDVrFlZWVlSqVIkOHTqwfft2Bg8enKl6oqKiePDgAZUqVcryexGi0IkNh7WD4dpe0+OafaDJCNXKyXLLyNGjR6lduza1a9cGTF9GtWvXZvz48YDpAzEsLMy8f5kyZdi0aRO7du2iVq1afPbZZ/zwww9yW282HDp0iO7du/PTTz89FkQASpcubQ4iAN7e3ubuhStXrpCWlkbjxo3Nz1tbW1OvXj1CQkLSHee/f+V7e3sDmI8TEhKS7hgAjRs3Nh/D2tqanj17snz5csA0L80ff/xB3759n/rebGxs0p33+PHjKIqCv7+/eSyGk5MTu3fv5sqVKwBcuHCBevXqpTvOo4+zIzg4mC5duuDn54ezs7O5S+e/v9cAdevWfeIxihYtyoABA2jbti2dOnXi+++/TzdW6NixY0yePDndexs8eLB5WYOQkBBKlSplDiJgamV8mpo1a9KyZUuqV69Oz549WbBgAQ8ePABM4ej27dtP/bfLLSEhIdSsWdMcRB6e12g0pusCrFq1arpJxP77+/v555+nu1aP/lvAs8eiCSH+dWkbzG1iCiLWjvDKPHhlDtiq142Z5T/jX3rppad2R2TUrNqsWTOOHz+e1VNli721Fecmt82Tc2V07txUrlw53N3dWbx4MR06dMDGxibd8492e2k0GoxGI/DkD2pFUR7b9t/jPHzu4XEyc4y+ffvSrFkzIiMjCQoKws7O7pl3Vtjb26c7htFoxMrKimPHjj02y+XD1omMan/0d1Or1T627WnjEBISEmjTpg1t2rThl19+oVixYoSFhdG2bVtSU1PT7fvfL9eMLFmyhKFDh7J582ZWrlzJp59+SlBQEA0aNMBoNDJp0iS6dev22Ovs7Owy/H/sWV+yVlZWBAUFceDAAbZu3crMmTMZN24chw4dMo/Pysy//0NZvXZP8rRz/Hf7035/AwMD6dWrl/m5jLphihUrRpEiRXI9XAlhsQxpsOMz2P+96bFXdei5BDwqqFsXeTBmJK9pNBocbHSq/OT2X2QeHh7s2LGDK1eu0Lt37yx9MZQvXx4bGxv27dtn3paWlsbRo0fTdR88S+XKldMdA+DAgQPpjtGoUSN8fX1ZuXIly5cvp2fPno8Fp2epXbs2BoOByMhIypcvn+7nYZdApUqVOHz4cLrXHT16NN3jYsWKpWuRAJ46j8b58+eJioriiy++oGnTplSqVCnd4NWsql27NmPHjuXAgQNUq1aNFStWAFCnTh0uXLjw2HsrX748Wq2WKlWqEBYWxu3bt83HOnjw4DPPp9FoaNy4MZMmTSI4OBgbGxvWrVuHi4sLJUqUeOa/3X8VK1aMuLg48wBYePza2djYPHOl7CpVqnDixIl0x9m/fz9arRZ/f/9nvicwtTT99xplNPZDq9XSu3dvli9fnu66PZSQkJBugLAQhcqD67Ck3f8HkRfegre25YsgAgVgobzCxtPTkx07dtC8eXNee+01fvvtt0wNynN0dOSdd97ho48+Mo/v+eqrr0hMTOTNN9/M9Pk/+ugjevXqRZ06dWjZsiV//vkna9euZdu2beZ9NBoNffr0Ye7cuVy8eNE8uDUr/P396du3L2+88QbffPMNtWvXJioqih07dlC9enXat2/PBx98wIsvvsi3335Lp06d2LFjB3///Xe6UNiiRQu+/vprli1bRsOGDfnll184c+aMuZvxUaVKlcLGxoaZM2cSGBjImTNn+Oyzz7Jcf2hoKPPnz6dz586UKFGCCxcucPHiRd544w0Axo8fT8eOHfH19aVnz55otVpOnTrF6dOnmTJlCq1ataJixYrm9/9w7oynOXToENu3b6dNmzZ4enpy6NAh7t69aw4bH330ERMmTKBcuXLUqlWLJUuWcOLECXOX2qPq16+Pg4MDn3zyCR988AGHDx9+rOWzdOnS5nFjPj4+ODs7Y2trm26fvn37MmHCBPr378/EiRO5e/cuH3zwAf369XtsDqLn9fnnn7Nr1y7q16/P1KlTzQPl9+7dy7Rp0zhy5MgTb+29e/fuY2Hr4R1uQli0cxtgw/uQHAO2rtBlJlTponZV6SkWICYmRgGUmJiYx55LSkpSzp07pyQlJalQ2fNbsmSJ4urq+tj2CRMmKDVr1jQ/7t+/v9KlSxfz49u3byv+/v5Kr169FL1e/9j+iqIo3333neLn52d+nJSUpHzwwQeKh4eHYmtrqzRu3Fg5fPiw+fmdO3cqgPLgwQPztuDgYAVQQkNDzdtmz56tlC1bVrG2tlb8/f2VZcuWPVb/2bNnFUDx8/NTjEZjtq5BamqqMn78eKV06dKKtbW1Urx4ceWVV15RTp06Zd5n/vz5SsmSJRV7e3ula9euypQpU5TixYunO8748eMVLy8vxdXVVRkxYoTy/vvvK82aNTM/36xZM2XYsGHmxytWrFBKly6t2NraKg0bNlQ2bNigAEpwcPATr5OipP83i4iIULp27ap4e3srNjY2ip+fnzJ+/HjFYDCY99+8ebPSqFEjxd7eXnFxcVHq1aunzJ8/3/z8hQsXlCZNmig2NjaKv7+/snnzZgVQ1q1bl+F1PHfunNK2bVulWLFiiq2treLv76/MnDnT/LzBYFAmTZqklCxZUrG2tlZq1qyp/P333+bnQ0ND071PRVGUdevWKeXLl1fs7OyUjh07KvPnz1f++7GRnJysdO/eXXFzc1MAZcmSJYqiKI/VeerUKaV58+aKnZ2dUrRoUWXw4MFKXFyc+flHf78VRVGGDRuW7t8ps6Kjo5UxY8YoFSpUUGxsbBQvLy+lVatWyrp168y/i4/+mzdr1kwBHvuZMGHCY8e39M8cUYikJinKxg8VZYKL6Wd+C0W5fy1PS3ja9/d/aRQlj+5HfQ6xsbG4uroSExPz2B0ZycnJhIaGUqZMGezs7FSqUOQXgwcP5vz58+zdu1ftUkQBJZ85wiJEXYJVA+HOadPjxsOgxf/AKuen1Hiap31//5d00wiLNn36dFq3bo2joyN///03P/30E7Nnz1a7LCGEUM/J32DjSEhLAAd3090yFTKehiC/kDAiLNrhw4f56quviIuLM88J8tZbb6ldlhBC5L2UeNj0EZw0DZSndFPotgBcvNWtKxMkjAiL9vvvv6tdghBCqC/iDKwaAPcugUYLzcbAi6NAm7tTTuQUCSNCCCGEpVIUOLoYNo8FQwo4e0P3hVC6idqVZYmEESGEEMISJUXDn8Pg3HrT4wptoOsccPRQs6pskTAihBBCWJqbx2D1AIgOA60OWk2EBu+B1jLnMpUwIoQQQlgKoxEOzoLtk8CoBzc/6LEEfALUruy5SBgRQgghLEFCFKwLhMtBpsdVukCnH8DeTdWycoKEESGEECK/C90LawdDXDhY2UK7LyBgIBSQVaots3NJqGrixInUqlVL7TJ46aWXGD58eJ6eU6PRsH79+uc+TunSpZkxY8ZzH0cIUcAZDbDrC1jW2RREPPxh8A6oO6jABBGQMKKqiIgIhg0bRvny5bGzs8PLy4smTZowd+5cEhMT1S4v23bt2oVGoyE6OjpfHi8vLV26NMOF2Y4cOcLbb7+d9wUJISxHbDgs6wK7poFihJp94O1dULya2pXlOOmmUcnVq1dp3Lgxbm5ufP7551SvXh29Xs/FixdZvHgxJUqUoHPnzhm+Ni0tDWvrvF1fIDekpqZiY2OjdhmqKFasmNolCCHys0tBsG4IJN4Da0fo+B3U7K12VblGWkZU8u6776LT6Th69Ci9evWicuXKVK9ene7du/PXX3/RqVMn874ajYa5c+fSpUsXHB0dmTJlCgBz5syhXLly2NjYULFiRX7++Wfza65du4ZGo0m3JHp0dDQajYZdu3YB/9/isH37durWrYuDgwONGjXiwoUL6Wr94osv8PLywtnZmTfffJPk5OQnvq9r167RvHlzAIoUKYJGo2HAgAGAqVvl/fffZ+TIkXh4eNC6detn1vm04wEYjUZGjx5N0aJFKV68OBMnTnzqdd+1axf16tXD0dERNzc3GjduzPXr183PP+2aZnSsR1tsTpw4gUaj4dq1a+zatYuBAwcSExODRqNBo9GY63u0myYsLIwuXbrg5OSEi4sLvXr14s6dO+bnH3aN/fzzz5QuXRpXV1deffVV4uLinvp+hRAWxpAGW/8Hy3uYgkjx6jBkT4EOIlAQw4iiQGqCOj+ZXAD53r17bN26lffeew9HR8cM99E80hc4YcIEunTpwunTpxk0aBDr1q1j2LBhfPjhh5w5c4YhQ4YwcOBAdu7cmeVLNm7cOL755huOHj2KTqdj0KBB5ud+//13JkyYwNSpUzl69Cje3t5PXYjO19eXNWvWAHDhwgXCw8P5/vvvzc//9NNP6HQ69u/fz7x5855ZW2aO5+joyKFDh/jqq6+YPHkyQUFBGR5Lr9fTtWtXmjVrxqlTpzh48CBvv/22+Vrn5DUFaNSoETNmzMDFxYXw8HDCw8MZNWrUY/spikLXrl25f/8+u3fvJigoiCtXrtC7d/oPnytXrrB+/Xo2btzIxo0b2b17N1988UW2ahNC5EMPrsHil+HAD6bHLwyGN7eBR3lVy8oLBa+bJi0RPi+hzrk/uQ02GYeL/7p8+TKKolCxYsV02z08PMytDu+99x5ffvml+bk+ffqkCwl9+vRhwIABvPvuuwCMHDmSf/75h+nTp5tbEjJr6tSpNGvWDIAxY8bQoUMHkpOTsbOzY8aMGQwaNMi8+NyUKVPYtm3bE1tHrKysKFq0KACenp6PjZcoX748X331lfnxtWvXnlrbs45Xo0YNJkyYAECFChWYNWsW27dvp3Xrx1eojI2NJSYmho4dO1KuXDkAKleubH5++vTpOXZNAWxsbHB1dUWj0VC8ePEn7rdt2zZOnTpFaGgovr6+APz8889UrVqVI0eO8MILLwCmVqClS5fi7OwMQL9+/di+fTtTp07Ncm1CiHzm3B/wxweQEgN2rtB5FlTJuKu+ICp4LSMW5NHWj8OHD3PixAmqVq1KSkpKuufq1q2b7nFISAiNGzdOt61x48aEhIRkuY4aNWqY/9vb27S6Y2RkpPk8DRs2TLf/o4+z4tH38bz+WzuY6n9Y+6OKFi3KgAEDaNu2LZ06deL7778nPDzc/HxOXtOsCAkJwdfX1xxEAKpUqYKbm1u6c5cuXdocRODp71UIYSHSkmHjSPj9DVMQ8XkBhuwtVEEECmLLiLWDqYVCrXNnQvny5dFoNJw/fz7d9rJlywJgb2//2Gsy6s55NMwoimLepv13SmDlP11HaWlpGZf9n8GwD19vNBqf+T6y49H3kZU6M/LoQF6NRvPU2pcsWcLQoUPZvHkzK1eu5NNPPyUoKIgGDRqYX/9f/72mj3re2p91jke3Z/W9CiHyubsXYfVAuHPG9LjxcGjxKVhZ/g0KWVXwWkY0GlNXiRo/mbzn293dndatWzNr1iwSEhKy9TYrV67Mvn370m07cOCAudvh4d0a//3L/7+DRLNynn/++SfdtkcfP+rhHTIGg+GZx89MnVk5XmbUrl2bsWPHcuDAAapVq8aKFSuAZ1/T7Nb+rLqrVKlCWFgYN27cMG87d+4cMTExTzy3EMLCnfgV5r9kCiIOHvD6Gmg9qVAGESiILSMWYvbs2TRu3Ji6desyceJEatSogVar5ciRI5w/f56AgKevM/DRRx/Rq1cv6tSpQ8uWLfnzzz9Zu3Yt27ZtA0ytKw0aNOCLL76gdOnSREVF8emnn2a5zmHDhtG/f3/q1q1LkyZNWL58OWfPnjW34mTEz88PjUbDxo0bad++Pfb29jg5OWW4b2bqzMrxniY0NJT58+fTuXNnSpQowYULF7h48SJvvPEG8Oxr+qjy5cvj6+vLxIkTmTJlCpcuXeKbb75Jt0/p0qWJj49n+/bt1KxZEwcHBxwc0regtWrViho1atC3b19mzJiBXq/n3XffpVmzZjnerSWEUFlKPGwaBSd/NT0u8yJ0WwDOTx5XVigoFiAmJkYBlJiYmMeeS0pKUs6dO6ckJSWpUNnzuX37tvL+++8rZcqUUaytrRUnJyelXr16ytdff60kJCSY9wOUdevWPfb62bNnK2XLllWsra0Vf39/ZdmyZemeP3funNKgQQPF3t5eqVWrlrJ161YFUHbu3KkoiqLs3LlTAZQHDx6YXxMcHKwASmhoqHnb1KlTFQ8PD8XJyUnp37+/Mnr0aKVmzZpPfW+TJ09Wihcvrmg0GqV///6KoihKs2bNlGHDhj2277PqzMrxunTpYn7+UREREUrXrl0Vb29vxcbGRvHz81PGjx+vGAwG8z7PuqaP/lvs27dPqV69umJnZ6c0bdpUWbVq1WPXLzAwUHF3d1cAZcKECYqiKIqfn5/y3Xffmfe5fv260rlzZ8XR0VFxdnZWevbsqURERJifnzBhwmPX/LvvvlP8/PwyfK8i91jyZ45QWfgpRfkhQFEmuCjKRDdF2fWVohj0aleVq572/f1fGkXJ5P2oKoqNjcXV1ZWYmBhcXFzSPZecnExoaChlypTBzs5OpQqFEIWFfOaILFMUOLoINn8ChhRwLgHdF0Lpxs9+rYV72vf3f0k3jRBCCJFbkqJhwwcQssH02P9l6DIbHN1VLSu/kTAihBBC5IabR013y0SHgdbaNEC1wbsFaoG7nCJhRAghhMhJRiMcnAnbJ4NRD25+0HMJlHz6jQmFmYQRIYQQIqckRMG6QLj877IUVV+BTt+bZlUVTyRhRAghhMgJoXthzVsQHwE6O3j5CwgYIN0ymVBgwogF3BQkhCgA5LNGPMZogN1fwu6vAAU8Kpq6Zbyqql2ZxbD4MPJwiuzExMQMp1EXQoiclJqaCpgWcRSC2NuwZjBc/3f25tqvQ7uvMrVoqvh/Fh9GrKyscHNzMy8Y5uDg8MS1RIQQ4nkYjUbu3r2Lg4MDOp3Ff3yK53VxK6wPhMR7YOMEHWdAjZ5qV2WRCsT/TQ+XZ5cVTIUQuU2r1VKqVCn5o6cw06fC9klwcJbpcfEa0HMpuJdTtSxLViDCiEajwdvbG09Pz2ytmiqEEJllY2NjXrFZFEL3Q2HNm3DrmOlxvbehzRTQ2apbl4UrEGHkISsrK+nHFUIIkTvOroMNQyEl1nSrbpfZULmj2lUVCAUqjAghhBA5Li0JtnwCRxebHvvWN60t41ZK3boKEAkjQgghxJPcvQirBkDkWUADTYZD83FgZa1yYQWLhBEhhBAiIydWwF8fQloiOBaDV+ZB+ZZqV1UgSRgRQggh/isl3hRCTv1melymGXRbAM5e6tZVgEkYEUIIIR4KP2VaaffeZdBoofkn0GQkaOXmiNwkYUQIIUSBkJiqJzgsGp1WQyVvF1ztszCuQ1HgyELYMg4MKeBS0jRI1a9R7hUszCSMCCGEsEgGo8KJG9HsvxzF/stRHA97QJrh/9cOKulmT2VvF6qVdOG1eqXwcrHL+EBJD+CP9+H8RtNj/3bQdTY4FM2DdyEANIoFrPoUGxuLq6srMTExuLi4qF2OEEIIlR24EsXkP89xPiIu3fYSrnZoNBpuRSel225vbcXgpmV4u1k5nGz/83f4jcOw+k2ICQOtNbT5DOoHykq7OSSz39/SMiKEEMJi3LifyOebQvj7TAQAzrY6mvp70KicB03Ke+DnblqfLCYxjZCIWELCY/nz5G2Oh0Xzw47LrDh8gxGtK9A7oCS6f2bB9smgGKBIGeixGErWUfkdFk7SMiKEECLfi0lKY/6eKyzYG0qq3ohWA6838GNEK3+KONo89bWKorD5TARfbj7PtXuJuBPDPKcF1NUfN+1QrbtpkTs7+X7JadIyIoQQwuLFJKWxZH8oi/aFEpesB6BROXfGd6pCpeKZCw8ajYZ21b1pWdmLHX+vos6xT/DUPyAZGx40m4L3S29Lt4zKJIwIIYTIdzIKIRU8nfiwTUXaVvXK+qrJBj02e77k5WNfAwrXtL68nfQ+4btKM9f3Ho3Le+T8mxCZJmFECCFEvpGqN7L80HW+336J6ETTKuwVPJ0Y1qoC7at5o9VmowUj5haseQvCDpge1+5HkZem4vbbOS6G3mfAksN82b0G3er45OA7EVkhYUQIIYTqFEVhy9kIvvjbNK4DoLynE8OfJ4QAXNwC6wIh6T7YOEGn76F6D1yBZYPq8eGqk/x1KpyRv58kLllP/0alc+w9icyTMCKEEEJVIeGxjP/jDEeuPQDAw8mGka0r0quuDzorbfYOqk+F7ZPg4CzTY++a0GMJuJcz72JnbcXMV2vj7WLHwn2hTNhwFjcHa7rUKvm8b0lkkYQRIYQQqkhOM/D99kss2HMVvVHBzlrL4KZlGfLoXCBZdT8UVg+C2//eLVP/HWg9CXS2j+2q1WoY16EyeqPC0gPXGLXqJEUcbHjRv1j2zy+yTMKIEEKIPLfvUhTj1p/m+r9dMi9XLc6EzlXwdrV/vgOfWQt/DoOUWLBzg65zoFL7p75Eo9EwvmMV7ieksuHkbQJ/OcaKwQ2o5ev2fLWITJMwIoQQIs9EJ6Yy5a8QVh+7CUBxFzsmdalK26rFn+/AaUmweQwcW2p67NvAtLaMm2+mXq7VapjesyYPElPZeymKgUsOsyqwEeU9nZ6vLpEp2eyME0IIIbJm85kIWn27h9XHbqLRwBsN/Qga+eLzB5HI87Cgxb9BRGNaZXfAX5kOIg/Z6LTMfT2Amr5uPEhMo//iw8T8e0ePyF0SRoQQQuSqqPgU3lt+nMBfjhEVn0LZYo6sDmzI5C7VcLbLwsq6j1IUOP4zLGgOkefA0RP6rYVWE8Aqew3/jrY6lgx4gdLuDtyKTmLa3yHZr09kWrbCyOzZsylTpgx2dnYEBASwd+/ep+6/fPlyatasiYODA97e3gwcOJB79+5lq2AhhBD5n6KYVtT9fFMIrb/dzV+nw7HSanj3pXJsGtqUAL/nXBE3JQ7Wvg0b3oe0RCjbHAL3QbkWz117UUcbvu5ZE4Dfjtzg4BX5vsptWV6bZuXKlfTr14/Zs2fTuHFj5s2bx8KFCzl37hylSpV6bP99+/bRrFkzvvvuOzp16sStW7cIDAykQoUKrFu3LlPnlLVphBAif0tM1XM7Opnb0UnsuxzFX6fC062cW9nbha971KBaSdfnP1n4SVg1EO5fAY0VtBgHjUeANmcb+8etO83yQ2GU8XDk72FNsbO2ytHjFwaZ/f7OchipX78+derUYc6cOeZtlStXpmvXrkybNu2x/adPn86cOXO4cuWKedvMmTP56quvuHHjRqbOKWFECCHyl8i4ZH47fIOt5yK4+SDJPFvqfznYWNGikicdqnvTqooX1tmdM+QhRYHD82Hrp2BIBRcf6LEISjV4vuM+QWxyGq2/3c2d2BTea16Oj9pWypXzFGS5slBeamoqx44dY8yYMem2t2nThgMHDmT4mkaNGjFu3Dg2bdpEu3btiIyMZPXq1XTo0OGJ50lJSSElJSXdmxFCCKEuRVE4HhbNsoPX2HQ6nDRD+r9lnWx1lHCzo1JxF9pXL85LFT1zrjUh6QH88T6c32h6XLE9dPkRHJ6zu+cpXOysmdS5GoG/HGPe7qt0rFGCyt7yB3FuyFIYiYqKwmAw4OXllW67l5cXERERGb6mUaNGLF++nN69e5OcnIxer6dz587MnDnzieeZNm0akyZNykppQgghctH5iFjGrDnNiRvR5m0BfkXoU68U1Uq64u1mh8vzDEZ9mrBDsOZNiLkBVjbQ+jOoPyRPVtp9uVpx2lb1YsvZO4xZe5q17zTCKrtT04snylab2aOrJSqK8sQVFM+dO8fQoUMZP348x44dY/PmzYSGhhIYGPjE448dO5aYmBjzT2a7c4QQQuQsvcHI7F2X6TRzHyduRGOj09IzwIeNHzRhzTuN6B7gQ8XizrkTRIxG2PstLGlnCiJFysCbW6FBYJ4EkYcmd6mGs62Okzei+fngtTw7b2GSpZYRDw8PrKysHmsFiYyMfKy15KFp06bRuHFjPvroIwBq1KiBo6MjTZs2ZcqUKXh7ez/2GltbW2xtH5+2VwghRN65ejeeD1edJDgsGoBWlb34vFs1PJ3tcv/k8Xdh3dtwZYfpcbUe0PE7sMv7bhIvFzs+bleJT9ef4Ycdl+lR1/f5pqsXj8lSy4iNjQ0BAQEEBQWl2x4UFESjRo0yfE1iYiLaR0Y4W1mZ+hCzOHZWCCFEHvn9yA3a/7CX4LBonG11fNOzJgveCMibIHJ1F8xtbAoiOnvoPNM0m6oKQeShV1/wpYyHI/cTUvnpwDXV6iiostxNM3LkSBYuXMjixYsJCQlhxIgRhIWFmbtdxo4dyxtvvGHev1OnTqxdu5Y5c+Zw9epV9u/fz9ChQ6lXrx4lSpTIuXcihBDiuSmKwjdbLzB6zSmS04w0Ke/BlhEv0j3A54nd8TnGoIcdU2BZV4i/A8Uqw9s7oc4bedotkxGdlZZhLSsAMH/PVWKTZWbWnJTldqbevXtz7949Jk+eTHh4ONWqVWPTpk34+fkBEB4eTlhYmHn/AQMGEBcXx6xZs/jwww9xc3OjRYsWfPnllzn3LoQQQjy3VL2RMWtPsfb4LQCGtijPiNb+uR9CAGJuwZq3IOzfOzPr9IeXvwAbh9w/dyZ1qlmCWTsvczkyniX7rjGsVQW1SyowsjzPiBpknhEhhMhdsclpvPvLcfZdjsJKq+HzV6rR+4XHJ7LMFRf+hvXvmG7ftXGGTjOgeo+8OXcWbTx1m/dXBONsp2Pf6Ba4OuTSHUQFRGa/v2VtGiGEKORuRSfRa+5B9l2OwtHGikX96+ZNENGnwuax8OurpiDiXQuG7M63QQSgfTVvKhV3Ji5Zz8J9V9Uup8CQMCKEEIXYsev36TJrH+cj4ijmbMvKIQ15qaJn7p/4/lVY3Ab+mW163OBd02277uVy/9zPQavVMLyVPwCL94XyICFV5YoKBgkjQghRSK0+dpPX5h8iKj6Vyt4urH+vcc6sHfMsZ9bA3BfhdjDYF4HXfoOXp4HOMqZ0aFvVi6olXEhINTBvj7SO5AQJI0IIUcgYjAqfbwph1KqTpBqMvFy1OGveaUhJN/vcPXFqImwYCqsHQWoc+DYwrbRbsV3unjeHaTQaRrY2tY78dOAaUfEpz3iFeBYJI0IIUYhExiUzYMlh5v/7F/3QFuWZ3bcODja5PIlX5HlY0AKO/wRooOkoGPAXuPrk7nlzSYtKntT0cSUpzWC+liL7JIwIIUQhsfN8JO1m7GXvpShsdVpmvlabkW0qos3NtVYUBY4vg/kvwd0QcPSEfuug5f/AynJnMdVoNAz/t3Vk2UFpHXleEkaEEKKAS04zMHHDWQYuPcK9hFQqFXdm4wdN6FQzlyeeTI6FtYNhwwegT4KyzeGd/VCuee6eN4+85F+Mmr5uJKcZpXXkOUkYEUKIAizsXiJdf9zP0n+nMB/UuAzr32tMBS/n3D3x7RMwvxmcXgUaK2g5Hl5fC055cKdOHtFoNAz/d+IzaR15PhJGhBCigAoJj6X73AOcj4jDw8mGJQNfYHynKthZW+XeSRUF/pkLi1qbbt919YWBf0PTD0Fb8L5ypHUkZxS83wwhhBAcuXafXvMOcjcuhUrFnflraFOa5/b8IYn34be+sPljMKRCxQ4wZA+Uqp+751WRtI7kDAkjQghRwGwPucPrCw8Rl6znhdJFWDmkIV4uubzabtg/MLcpXPgLrGyg3Vfw6nJwKJq7580HpHXk+UkYEUKIAmTt8Zu8/fMxUvRGWlbyZNmg+rja5+L6KUYj7P0GlrSH2JtQtCy8GQT1h6i+0m5ekdaR5ydhRAghCog/T97mw1UnMRgVutUpydx+Adjb5OL4kPhI+KUbbJ8MigGq9zR1y5SolXvnzKf+2zoyb/cVtcuxOBJGhBCiANhx/g4jVp5AUaBP/VJM71ETa6tc/Ii/shPmNIarO8HaAbr8CN0WgG0u36WTT2k0Goa3NLWO/PJPGPdlzZoskTAihBAW7uCVe7zzy3H0RoUutUowpUu13JvIzKA3tYT8/AokRIJnFRi8E2q/Xmi6ZZ7kpYrFqF7SNCvrIlnRN0skjAghhAU7cSOat346QoreSKvKXkzvWTP3gkjMTVjawTRGBAUCBsDgHeBZKXfOZ2E0Gg3vtygPwE8HrhOTmKZyRZZDwogQQlioi3fi6L/4MAmpBhqXd2dWn9q51zVzfhPMbQI3/gFbF+ixBDp9D9a5vLiehWld2YuKXs7Ep+j56eA1tcuxGBJGhBDCAkXFpzBo6RFiktKoXcqN+f3q5s5kZvoU+HsM/PYaJD2AErVhyG6o1i3nz1UAaLUa3vu3dWTx/lDiU/QqV2QZJIwIIYSFSdEbCPz5GDcfJOHn7sDi/i/gaJsLi87du2KaSfXQHNPjBu/BoK2m23fFE3Wo7k0ZD0eiE9P45Z/rapdjESSMCCGEBVEUhbFrTnP0+gOc7XQs6v8CRRxtcv5Ep1fDvGYQfhLsi8JrK+Hlz0GXC+cqYKy0Gt59qRwAC/deJSnVoHJF+Z+EESGEsCCzd11hbfAtrLQaZvetQ3lPp5w9QWoi/PE+rHkTUuOgVCMI3AcVX87Z8xRwXWuXxKeIPVHxqfx2JEztcvI9CSNCCGEhNp8J5+stFwCY2LkqTSsUy9kTRIbAguYQ/DOggRdHQ/8/wbVkzp6nELC20vLOv60j83ZfJUUvrSNPI2FECCEsQGhUAiN/PwnAgEal6dfAL+cOrihw7CeY3xzungcnL3jjD2gxDqxyYSxKIdEjwAcvF1siYpP582S42uXkaxJGhBAin0szGBm+8gSJqQYalC3Kpx0q59zBk2NNXTJ/DgV9EpRrAYH7oWyznDtHIWWrszKHxt+P3lC5mvxNwogQQuRzM3dc5uSNaFzsdHzbqxa6nJpL5NZxmPcinFkDGitoNRH6rgGnHO7+KcS6B/ig1cDh0PuERiWoXU6+JWFECCHysWPXHzBrxyUApr5SnRJuOTDJmKLAwdmwqA08CAVXXxi0GZqMAK18LeQkb1d7XvQ3hbvVx6R15Enkt04IIfKp+BQ9I1aewKjAK7VL0qlmiec/aOJ9+PU12DIWjGlQqSME7gXfes9/bJGhXnV9AVh97CYGo6JyNfmThBEhhMinJm04S9j9REq62TOpS9XnP+D1g6Yp3S/+DVY20H469P4F7Is8/7HFE7Ws7EkRB2vuxKaw59JdtcvJlySMCCFEPrTh5G1WHbuJRgPf9qqJi5119g9mNMCer02L3MXeAvfy8NZ2qDe40K+0mxdsdVZ0rW26PXqVDGTNkIQRIYTIZ/Zeusuof2/jDWxWjvpl3bN/sLg78Es32DEFFAPU6A1v7wLvGjlTrMiUngGmrpqgc3e4F5+icjX5j4QRIYTIR45df8Dby46RajDSvnpxRrWpmP2DXdkBcxvD1V1g7QBdZsMr88DWOcfqFZlTpYQL1Uu6kmZQWH/ittrl5DsSRoQQIp8ICY9l4JLDJKUZeNG/GN/1roWVNhvdKAY9bJsEP3eDhLvgWdXUGlK7r3TLqKhXXR/A1FWjKDKQ9b8kjAghRD4QGpVAv0WHiU3WU9evCHNfr4OtzirrB4q+AUvbw75vAQUCBsLg7VDsOVpYRI7oXKsktjot5yPiOH0rRu1y8hUJI0IIobI7scm8vvAQUfEpVPF2YdGAF3CwycY07Of/Mt0tc+MQ2LpAz6XQaQZY58DcJOK5udpb83K14oDMyPooCSNCCKGiuOQ0Biw5wq3oJMp4OPLToHq42mfxzhl9Cvz9MfzWB5KjoUQdGLIHqr6SKzWL7Hs4kPXPk+HoDUaVq8k/JIwIIYRKUvVG3vnlOCHhsXg42bBsUD2KOdtm7SD3rsDCVnBorulxw/dh0BYoWibnCxbPrWE5d9wcrIlJSuPY9Qdql5NvSBgRQggVKIrCmDWn2Hc5CgcbK5YMqIdvUYesHeTUKtPaMhGnwL4o9Pkd2k4FnU3uFC2em5VWQ/OKngDsOB+pcjX5h4QRIYRQwddbLrA2+BZWWg0/9q1DdR/XzL84NQH+eA/WvgWp8eDXGAL3gX/b3CtY5JiWlU1hZFvIHZUryT+yMUJKCCHE81hxKIzZu64AMK1bdfNfyply5xysGgBRFwANNBsNL44GK/k4txQv+hdDp9Vw5W4C16ISKO3hqHZJqpOWESGEyEPHwx4wYcMZAIa3qmBeRO2ZFAWOLoEFzU1BxMkL3vgDmn8iQcTCuNhZU69MUQC2S1cNIGFECCHyTFR8Cu/+cpw0g0L76sUZ1rJC5l6YHAOrB8LG4aBPhnItIXA/lG2Wq/WK3NOikqk1bLt01QASRoQQIk/oDUaG/hpMRGwyZYs58lWPmmgyMxvqrWOmQapn14FWB60nQ9/V4FQs94sWuaZVZS8ADofeJzY5TeVq1CdhRAgh8sA3QRc5cOUeDjZWzHs9ACfbZ3StKAoc/BEWtYUH18CtFAzcDI2HgVY+ui1daQ9HyhZzRG9U2HPxrtrlqE5+o4UQIpdtORvBnH8HrH7VowYVvJ6xUF3iffj1VdjyCRjToHJnGLIXfF/Ig2pFXnnYOrIjRMaNSBgRQohcdPVuPKN+PwnAoMZl6FijxNNfcP2AaUr3i5vByhbaT4dey8DeLfeLFXnq4biRnRciMRgL98J5EkaEECKXxCWn8fbPx4hL0fNC6SKMbV/pyTsbDbD7a1jaAWJvgXt5eGsb1BssK+0WUHX9iuBip+NBYhrBYYV7NlYJI0IIkQuMRoWRv5/kcmQ8xV3s+LFvHaytnvCRGxcBP78CO6eAYoSar8Hbu8G7Rt4WLfKUzkrLSxUfToBWuLtqJIwIIUQu+GHHJYLO3cFGp2VuvwA8ne0y3vHyNlO3TOhusHaErnPhlblg65S3BQtVPJyNdcf5wn2Lr8yUI4QQOWzr2QhmbLsEwJSu1ajl6/b4ToY02DEF9s8wPfaqBj2WQDH/PKtTqO8lf0+stBou3onnxv3ErK9PVEBIy4gQQuSgy5FxjPx3wOqARqUznmE1OgyWtP//IPLCW/DWdgkihZCrgzV1/YoAhXvhPAkjQgiRQ+KS03h72THiU/TUL1OUcR0qP75TyEZTt8zNw2DrarpTpsM3YP2EbhxR4DWraJrAbv/lKJUrUY900wghRA54OGD1alQC3q4ZDFhNS4ag/8Hh+abHJQOgx2IoUlqVekX+0aicB3CBf67ew2BUsNIWvrunpGVECCFywJzdV0wDVq20zH09AA8n2/9/MuoyLGr1/0Gk0Qem2VQliAigWgkXnG11xCbrOXs7Ru1yVCFhRAghntPui3eZvvUCAJ91rUrN/w5YPfU7zG8GEafBwd20rkybKaCzUadYke/orLTUL+sOwIEr91SuRh0SRoQQ4jncuJ/I0F+DURR4rV4per9QyvREagKsfw/WDobUePBrAoH7oEJrdQsW+VKjcoU7jMiYESGEyKakVANDfj5GTFIaNX3dmNi5iumJO2dh1UCIugAaLbw4GpqNBq2VugWLfKtReVMYORJ6n1S9ERtd4WorKFzvVgghcoiiKHy85hTnwmNxd7RhTt862Fpp4ehiWNDCFEScisMbG6D5WAki4qn8PZ1xd7QhKc3AiRvRapeT57IVRmbPnk2ZMmWws7MjICCAvXv3PnX/lJQUxo0bh5+fH7a2tpQrV47Fixdnq2AhhMgP5u+5yoaTt9FpNfzYtw4l7FJh9UDYOAL0yVC+NbyzH8o0VbtUYQG0Wg0NzF01he8W3yyHkZUrVzJ8+HDGjRtHcHAwTZs2pV27doSFhT3xNb169WL79u0sWrSICxcu8Ouvv1Kp0lMWjBJCiHxs98W7fLn5PADjO1Whge01mPcinF0HWh20/gz6/A6OHuoWKixK43Km35fCOG5EoyhKltYtrl+/PnXq1GHOnDnmbZUrV6Zr165Mmzbtsf03b97Mq6++ytWrVylatGi2ioyNjcXV1ZWYmBhcXFyydQwhhMgJoVEJdJm1j9hkPb0DfPii5B402yaBMQ3cSpmmdPepq3aZwgJdi0rgpem7sLbScGpCW+xtLL9rL7Pf31lqGUlNTeXYsWO0adMm3fY2bdpw4MCBDF+zYcMG6taty1dffUXJkiXx9/dn1KhRJCUlPfE8KSkpxMbGpvsRQgi1xSWnMXjZUWKT9TTz0fB5yhQ0Wz81BZEqXWDIXgkiItv83B0o4WpHmkHhyLX7apeTp7IURqKiojAYDHh5eaXb7uXlRURERIavuXr1Kvv27ePMmTOsW7eOGTNmsHr1at57770nnmfatGm4urqaf3x9M1jbQQgh8pDRqDBi5UkuR8bT1ukyi5NHYnV5K1jZmqZz7/kT2LupXaawYBqNhoaFtKsmWwNYNZr0U9UqivLYtoeMRiMajYbly5dTr1492rdvz7fffsvSpUuf2DoyduxYYmJizD83btzITplCCJFjvtxynh0h4Qy3Xsdcw0Ss4sPBvQIM3m5a6O4Jn4FCZEXjf2/xPVjIBrFmaZ4RDw8PrKysHmsFiYyMfKy15CFvb29KliyJq6ureVvlypVRFIWbN29SoUKFx15ja2uLra3tY9uFEEINvx+5wdrdx/jF+kcaWZ0DBajZB9p/DbZOapcnCpCG/95Rc/pWDDFJabjaW6tcUd7IUsuIjY0NAQEBBAUFpdseFBREo0aNMnxN48aNuX37NvHx8eZtFy9eRKvV4uPjk42ShRAi7xy8co/N63/mb9uxpiBi7QivzINX5kgQETnO29Wesh6OGBU4HFp4xo1kuZtm5MiRLFy4kMWLFxMSEsKIESMICwsjMDAQMHWxvPHGG+b9+/Tpg7u7OwMHDuTcuXPs2bOHjz76iEGDBmFvb59z70QIIXJY6J1ozv88gsXWX+KhiUXxqgZDdkPNV9UuTRRgD1tH9l8uPF01WZ4Ovnfv3ty7d4/JkycTHh5OtWrV2LRpE35+fgCEh4enm3PEycmJoKAgPvjgA+rWrYu7uzu9evViypQpOfcuhBAih8WGXyFxwWsMxLQAnj7gTXQvfw7WdipXJgq6RuU8WH4ojIOFaBBrlucZUYPMMyKEyEv6M3+QsuZdHJV44nDA2GkmrgE91C5LFBL3E1Kp85lpOMTx/7WmqKPlrvCcK/OMCCFEgZaWDH+NQrf6DRyVeE4q5Yl4bZsEEZGnijraULaYIwDBYQ9UriZvSBgRQgiAqMuwsBUcWQDAXH0n7vRYT4WKVVUuTBRGAaWKAHBcwogQQhQSJ38zrS1z5zT3FBf6p36MoeVE2lSXCReFOur4mcLIseuFI4xkeQCrEEIUGCnxsOkjOLkCgMNU5f2Ud2lQsyrvvlRO5eJEYRbwbxg5eSMGvcGIzqpgtx0U7HcnhBBPEnEG5r8EJ1egaLT8ZNuHV5PH4u1Tmq961HjirNJC5IXyxZxwttORlGbgfESc2uXkOgkjQojCRVHgyCJY0ALuXQJnbxaW/Z4JMR3xcLZn/ht1sbO2/NVShWXTajXULlV4umokjAghCo+kaFjVH/4aCYYUqNCW7S+tZepZdzQa+K53LbxcZB4RkT8UpkGsMmZECFE43DwKqwdCdBhoraHVRMKrDOTDH/YDMOTFcjQu76FykUL8vzp+bkDhaBmRMCKEKNiMRjg4C7ZPAqMe3PygxxIMJeowcuEhohPTqOHjysjW/mpXKkQ6tXzd0Gjg5oMkImOT8SzArXbSTSOEKLgSomBFLwj6nymIVOkKgXvBJ4B5e65w8Oo9HGys+P7V2tjo5ONQ5C/OdtZU9HIGCn5XjfzfJ4QomEL3wtwmcDkIdHbQ8TvouRTsXDlxI5pvt14EYFLnqpTxcFS3ViGe4OF8I8fDotUtJJdJGBFCFCxGA+z6ApZ1hrhw8PCHwTug7iDQaIhP0TPst2D0RoWONbzpEeCjdsVCPFFAIbmjRsaMCCEKjthwWDsYru01Pa71OrT/Cmz+v+Vjwh9nuX4vkZJu9kx9pbrMJyLytYctI6dvxpCiN2CrK5i3nUvLiBCiYLgUBHMbm4KItSO8Mh+6/pguiPxx4hZrjt9Eq4EZr9bC1d5axYKFeLbS7g4UdbQh1WDk7O1YtcvJNRJGhBCWTZ8KWz+F5T0g8R4Urw5D9kDN3ul2u3E/kU/XnQHggxYVeKF0UTWqFSJLNBoNdUq5AXC8AHfVSBgRQliuB9dgSTs4MNP0uN7b8OY28Cifbje9wciw34KJS9ET4FeED1qUf/xYQuRT/z+IteCGERkzIoSwTGfXw4ahkBIDdq7Q5Ueo3CnDXX/YcZnjYdE42+qY0btWgV90TBQsdf4ziFVRlAI5zknCiBDCsqQlw5ZP4Ogi02OfetBjEbiVynD3P07cYuaOSwBM7VYd36IOeVWpEDmipo8bVloNd2JTuB2TTEk3e7VLynHy54EQwnLcvQgLW/5/EGkyAgZuemIQ+fPkbUasPIGiQL8GfnSuWSIPixUiZ9jbWFG1hAtQcG/xlTAihLAMJ1bA/GZw5ww4eMDra6DVRLDK+I6Yv0+HM3zlCYwK9AzwYVLnqnlbrxA56GFXTUEdxCrdNEKI/C0lHv76EE79Znpc5kXotgCciz/xJVvPRvDBr8EYjArd6pTki+410GoLXj+7KDxq+roCcOZWjMqV5A4JI0KI/Cv8lGml3XuXQaOFlz6BpiNBm/HET6l6I78fvcGkP8+iNyp0qVWCr3vUxEqCiLBw1UuawsjZ27EYjEqB+52WMCKEyH8UBY4shC3jwJACziVMg1T9GmW4e3KagVXHbjJ31xVuRScB0LGGN9/0lCAiCoYyHk442liRkGrgyt14/P9dQK+gkDAihMhfkqJhwwcQssH02P9l6DoHHP5/kjJFUbgbn8LlO/EE34hm2cFr3IlNAaCYsy1DXizLgEal5RZeUWBYaTVULeHK4Wv3OXUzRsKIEELkmhtHYPUgiAkDrTW0ngwN3gGNhmtRCaw/cYsDl+9xMTKO6MS0dC/1drUjsFk5er/gi511wVy/QxRu1UqawsiZWzEFboFHCSNCCPUZjXBwJmyfDEY9FCkNPZZwz7UqGw9eZ13wLU7ciE73Eo0G/Io6UMHLmZaVPOlWxwcbnbSEiIKrho9p3Mipm9HqFpILJIwIIdSVEAXrhsDlbabHVbsR03o6s/bfYemB7aQZFAC0GmhaoRgdqntTpYQL5T2dpAVEFCrV/h3Eei48Fr3BWKC6ISWMCCHUE7oH1gyG+AjQ2WFo+wW/6pvz7czj3E9IBUx/Db5SuyQda5SgmLOtygULoZ6yHo7mQayX78ZTqbiL2iXlGAkjQoi8ZzTA7i9h91eAguJRkaMvfMOn+xQu3DkLQHlPJz7tUJmXKnqqW6sQ+YRWq6FqSVcOh97n9M0YCSNCCJFtsbdhzVtwfT8AEWV7MCKuDwfXxQLg5mDNyNb+vFavFNYFqBlaiJxQ498wcuZWDD3r+qpdTo6RMCKEyDsXt8C6QEi6j0HnyCzHd/nuXG0gGVudln4N/PigRQVcHTKe4l2Iwq76w0GsBWwmVgkjQojcp0+F7ZPg4CwALmnLMjjhPa7Fe2Oj09K3fineaVYOTxc7lQsVIn97OBPrudsFaxCrhBEhRK5S7oeSsKI/TlEnAViib8s0fR80Olv6v+DLu83L4yUhRIhMKe3uiJOtjvgUPZci46nsXTDGjUgYEULkitjkNI5vWsoLp8bjRCLRiiOj097mpldL/lfPl861SuJqL90xQmSFVquhWkkX/rl6n9O3YiSMCCHEo4xGheAbD/jj6FWqnPqCVzVBABxX/Nla+XPeb/IC1Uu6otHIejFCZFf1kq6mMHIzhl4FZBCrhBEhxHNRFIXgG9H8dSqcTafDcYi9wizrmVTWhmFEw5kygyjfYwp1HB3ULlWIAuHh5GenC9AgVgkjQogsUxSFc+GxbDh5m40nw80r5XbX7uEzmyU4aFJItXPHusdCapRvoXK1QhQsNXzcANNMrGkGY4G4BV7CiBAi0yJjk1lxOIwNJ29z9W6CeXsxmzR+dFtOvditpg1lmmHTbQE4e6lUqRAFl19RB5xtdcSl6Ll0J54qJSx/3IiEESHEM6XqjSzZH8oP2y+RkGoAwEanpWUlT/r4xdA4eDza+5dBYwXNP4EmI0Ar68YIkRtMg1hdOXj1HmduxUgYEUIUfHsu3mXin2fNLSE1fVx5o2Fp2lTxxPn0T7BlHBhSwKUkdF8Efg1VrliIgq+6jymMnLoVTa8XLH8Qq4QRIUSGohNTGbv2NH+fiQDAw8mGj1+uRPc6PmhTouGPgXB+o2ln/3bQdTY4FFWvYCEKkermQayxKleSMySMCCEeczkynrd+OsK1e4lYaTX0b1iaYa0qmOYFuXEYVr8JMWGgtYY2n0H9QJDbdYXIMw/DSEgBGcQqYUQIkc6ei3d5b8Vx4pL1lHSzZ16/ANOthEYj7JsB2yeDYoAiZaDHYihZR+2ShSh0/NwdcLbTEZes5+KdOKqWcFW7pOdi2VFKCJFjFEVhyf5QBiw5TFyynrp+Rfjj/camIBJ/F5b3gG0TTEGkWncYskeCiBAq0Wg0VPs3gJwpAPONSBgRQqAoCpP+PMekP89hVKBngA/LB9fHw8kWru6GuY3hynbQ2UOn700DVe0sfwS/EJbs4Qq+BWHyM+mmEaKQUxSFyRvPsfTANTQa+KRdZd5qWgaN0QA7psKerwEFilWCnkvBs7LaJQsh+O9MrJY/iFXCiBCFmKIofLn5Akv2XwPgy+41TGtdxNyCNW9B2AHTjnXegJe/BBuZ0l2I/KIgDWKVMCJEIfb99kvM3X0FgCldq5mCyMUtsC4Qku6DjTN0mgHVe6hbqBDiMQVpJlbLjVFCiOcye9dlZmy7BMD/Olbh9brepgnMVvQyBRHvmjBktwQRIfIprVZD1ZKmAGLpg1gljAhRyCiKwrdBF/lq8wUAPn65Em9WARa3hYOzTDvVfwfeDAL3cuoVKoR4puoFZAVf6aYRohBJMxgZu/Y0q4/dBODD1v6843ES5g2DlFiwczPNpFqpg7qFCiEy5eEg1jO3JYwIISxAXHIa7y4/zt5LUVhpNUzrVJ5eUT/C6iWmHXwbQPeF4Gb561wIUVj8dxCr3mBEZ6GDWCWMCFEI3IlNZsCSI4SEx2JvbcXSji7UPzYAIs8CGmg6El76BKzkI0EIS1La3REnWx3xKXou342nUnHLHMRqmRFKCJFp4TFJ9Jh7gJDwWDwcrdnaPIz627qbgoijJ/RbBy3HSxARwgJptRrzXTSnb1puV42EESEKsMi4ZPouOMSN+0lUKqphd/lf8d3zEaQlQtnmELgPyjVXu0whxHN42FVjyXfUyJ9CQhRQ9xNSeX3hIa5GJfCSSzgLbX5Ed+EqaKygxThoPAK08veIEJauINxRk61PotmzZ1OmTBns7OwICAhg7969mXrd/v370el01KpVKzunFUJkUkxiGv0WHeLinTjec9zOEv1YdNFXwcUHBm6Cph9KEBGigHh4R825fwexWqIsfxqtXLmS4cOHM27cOIKDg2natCnt2rUjLCzsqa+LiYnhjTfeoGXLltkuVgjxbPEpevovOcyN27dZbPc9HxkWoTGmQsX2ELgXSjVQu0QhRA4q6+GIo40VyWlGrtxNULucbMlyGPn222958803eeutt6hcuTIzZszA19eXOXPmPPV1Q4YMoU+fPjRs2DDbxQohni4xVc+gJUfQ3jzMZrtPaMFhsLIxrSvz6gpwKKp2iUKIHKbVaqhawrK7arIURlJTUzl27Bht2rRJt71NmzYcOHDgia9bsmQJV65cYcKECZk6T0pKCrGxsel+hBBPl5xmYPDSwwTcWMrvNpMpQRQULWuaSbVBIGg0apcohMgl1Sx8EGuWBrBGRUVhMBjw8vJKt93Ly4uIiIgMX3Pp0iXGjBnD3r170ekyd7pp06YxadKkrJQmRKGWojcw+qdtDLnxGS9anzZtrN4TOn4Hts7qFieEyHXVfSx7jZpsjWDTPPIXlqIoj20DMBgM9OnTh0mTJuHv75/p448dO5aYmBjzz40bN7JTphCFQprByKxFi/j0xtu8aHUag5UddJ4F3RZIEBGikHh4R83Z27EYjIrK1WRdllpGPDw8sLKyeqwVJDIy8rHWEoC4uDiOHj1KcHAw77//PgBGoxFFUdDpdGzdupUWLVo89jpbW1tsbW2zUpoQhVJySgo75o5kxP3laDUKCa4VcOz7M3hWVrs0IUQeKuPhhIONFYmpBq7ejaeCl2X9IZKllhEbGxsCAgIICgpKtz0oKIhGjRo9tr+LiwunT5/mxIkT5p/AwEAqVqzIiRMnqF+//vNVL0Qh9iDiGlent6D9g1/QahRul+uN43t7JIgIUQhZaTVU8f53JlYL7KrJ8qRnI0eOpF+/ftStW5eGDRsyf/58wsLCCAwMBExdLLdu3WLZsmVotVqqVauW7vWenp7Y2dk9tl0IkXkRh9div2koVYgjHntuNZlGxVYD1S5LCKGiaiVdOXr9AadvxdCtjo/a5WRJlsNI7969uXfvHpMnTyY8PJxq1aqxadMm/Pz8AAgPD3/mnCNCiGzSpxK+ZjTeIaaVds9rymH32lIq+tdQuTAhhNqq/WfciKXRKIqS70e6xMbG4urqSkxMDC4ulrkioRDP7f5VHvz0OkVizgKwwb4rDd+eSbEi8v+EEALO3o6hww/7cLHTcXJCmwxvLMlrmf3+lrVphLAAyunVpK4fShFDAg8UJ34r8TEDB72HnbWV2qUJIfKJ8p5O6LQaYpP13I5JpqSbvdolZZqEESHys9RE9Js+RndiGbbAYWNFjgZ8TWCnF9Fq1f+rRwiRf9jqrCjv6cT5iDjOh8daVBiRlbKEyK8iz6Of3xzdiWUYFQ2zDK8Q2v433u3STIKIECJDlYqbbukNCbescSMSRoTIbxQFji/DOL8Zuqjz3FVcGaIZR603ptO7QVm1qxNC5GOV/729NyQiTuVKska6aYTIT5Jj4a+RcHoVWmCPoTpfO47k24GtLW4SIyFE3qv0MIxYWMuIhBEh8ovbwbB6ENy/ih4t36T1Yqf7a/z0VgO8XOzUrk4IYQEqe5v+aLkWlUBSqgF7G8sY5C5hRAi1KQocmgdbPwVjGuGKO++nvo/Bpz6/DXwBNwcbtSsUQlgIT2c7PJxsiIpP5eKdOGr6uqldUqbImBEh1JR4H37rC5s/BmMa24x1eTllGnblGrH8rfoSRIQQWVapuOV11UgYEUItYYdgblO48Bd6jTUT0vrzVuoIGlQtx+IBL+BoKw2XQoise9hVc96CBrHKp50Qec1ohP3fwY6poBiI0JXgzYT3OKuUYXDTMnz8ciV0VvJ3ghAiex62jJyzoJYRCSNC5KX4SFj7NlzdCcBW7YuMiO+P0dqJH3rUoHPNEioXKISwdA9v7z0fHouiKPliWvhnkTAiRF65stMURBIi0VvZ8b/UAfya3BQ/d0fmvh5g/gARQojnUc7T0eKmhZcwIkRuM+hh1zTY+w2gcMeuLH1jArms+PBSxWJ837s2rg7WalcphCggLHFaeOmYFiI3xdyEnzrC3umAQpBDO16MHs9lxYehLcqzuP8LEkSEEDmusoVNfiYtI0Lklgt/w/p3IOkBBmtnxhvfZvn9AJxsdfzQqyZtqxZXu0IhRAH1/2vUWMYdNRJGhMhp+hQImgCH5gBwz7UqvaLe5oqhGOWKOTKvX13KezqpXKQQoiD7/zVqpGVEiMLn3hXTlO7hJwDY59GbgTc7kIaONlW8+KZXTZztpFtGCJG7KlnYtPASRoTIKadXw5/DITUOo11Rptl+wIKbFdFoYFRrf959qTxabf6/xU4IYfksbVp4CSNCPK/URNN07seXARBd7AX63B/MuWgnXOx0fP9abZpX9FS5SCFEYVOpuAv7LkcREh4rYUSIAi0yBFYNhLshKGjYXbw/b15riQErKhV3Zl6/APzcHdWuUghRCFX2dmbf5SiLmBZewogQ2aEoppaQvz8GfRJp9sUYo3zAmmvlAejf0I8x7Srn+35aIUTB9XAQqyVMCy9hRIisSo6FjcPhzBoAQl3r0/vuACKNrni52DK9Z02aViimbo1CiELvv6v35vdp4SWMCJEVt4NN3TIPQjFqrJjJq8y40w4FLZ1qluCzLlVxc7BRu0ohhKC8pxM6rYY4C5gWXsKIEJmhKHBoLsrW/6ExphGhKca7ye9xXPGnbDFHPn65kkxiJoTIV2x0WsoVc+LCnTguROTvaeEljAjxLIn3Max7F6tLf6MBthjq8lHa29g5uzOttT89A3zQWcnKCkKI/KeClymMXLoTT4tKXmqX80QSRoR4iviL+1BWD8I59Q4pio6p+r78Yd2BIS3KMahxGRmgKoTI1/y9nIFwLkXGq13KU0kYESIjRgO3N36O5/Fv0WHkqrE4k+0+olmblhyo64ujrfyvI4TI/yr8u/TEpTv5+/Ze+UQV4lFxd4j6eQAlIg8AsE3XjJS201lQpzzW0h0jhLAgFbz+DSOR8fn6jhoJI0L8h3J5B0kr38Qj7T6Jii2/erxP78FjcZL1ZIQQFsjP3RFrKw2JqYZ8fUeN/JknBIBBjzFoIsov3XBIu0+I0ZeFVRbT/91PJYgIISyWtZWWMh6mWaAv5uOuGgkjQkTfQFnSHu3+79CisNzQkn9a/M4HvTrIXTJCCItXwdO0gu/lO/l3EKt80orC7fxfKHOboLl5iFjFng/ShuHe+0cGvlQl3/atCiFEVjwcN5KfW0ZkzIgonPQpEDQeDs1FA5wwlmVo2geMfu1lXq7mrXZ1QgiRYx62jOTn23sljIjC594VWD0Qwk8CMF/fga/1vfmsW2061iihcnFCCJGzHraMXM7Hd9RIGBGFy6lVpkXuUuNJtnbjnYTB7DTWZlz7yrxar5Ta1QkhRI4r7e6ITqshPkVPeEwyJfLhHTUSRkThkJoAf4+G4F8AiHKvS6fb/QlX3PmgRXkGv1hW5QKFECJ32Oi0lPZw5HJkPJci4/NlGJEBrKLgu3MO5jf/N4houFLlPRqFDydccad/Qz9GtvZXu0IhhMhV+X0mVgkjouBSFDi2FBY0h6gL4FSc0y1/pt3JpqQatXSv48OETlXzZf+pEELkpApe/w5izae390oYEQVTciysHgR/DgN9MpRvxcmOf9JrqzWpBiMvVy3Ol92ro9VKEBFCFHzmlpHI/NkyImNGRMFz67gpiDwIBa0OWo7nuM/r9F9ylKQ0Ay/6F+P712rJhGZCiEIjv69RI2FEFByKAv/MhqAJYEwD11IkdpnP12dd+GnjPxgVqFe6KPNeD8BWZ6V2tUIIkWfKeDhipdUQl6znTmwKxV3t1C4pHQkjomBIvA/r34GLm02PK3diu///+HTlTcJj7gPQuWYJpr5SDXsbCSJCiMLFVmeFn7sDV+8mcCkyTsKIEDnu+gFY/SbE3UaxsiU04BOm3mnE9pWXAShV1IEpXavxon8xlQsVQgj1VPB0MoWRO/E0rZC/Pg8ljAjLZTTA3m9h1+egGIm292MUw9m2xwu4i06r4e0XyzK0ZQXsrKU1RAhRuPl7ObPl7J18OYhVwoiwTHERKGsGo7m2B4B1xqaMezCQROxwtLGiS+2SDGxU2nw7mxBCFHblzXON5L/beyWMCIsTfepvbP58F4e0+yQqtvwvbSBrjC9Sy9eN1+r50rFGCRxt5VdbCCH+678L5uW3O2rkE1tYBEVROH7tLvc2TKDNgxUAhBhL8bF2BLXq12PTC6WoUsJF5SqFECL/KlvMEa0GYpLSuBuXgqdL/hnEKmFE5GupeiObToezcc8h3rn3OW20lwDYYt+ehOafsbJWGbk7RgghMsHO2go/d0dCoxK4FBkvYUSIZ0lOM/Db4TDm7blKjbi9fGM9D1dtIklaJ6JafE3bJn3ULlEIISxOeU8nQqMSuHgnjsblPdQux0zCiMhXElP1LP8njPl7rxIbF8dY3QoG2GwFIK14Hex7L8G3SGl1ixRCCAvl7+VE0Lk7XIrMX4NYJYyIfCFVb2T5oevM3HGZ+wmplNGEs9x+Fv5KqGmHRh9g3WI86GzULVQIISyYeRBrPlu9V8KIUJWiKGw5G8EXf5/n2r1EAN5yPczH+vlYGxLBwR26zgX/NipXKoQQlq9cMdPtvVfvJqhcSXoSRoRqTt6I5rON5zh6/QEAPo4KPxVfRblb6007lG4K3eaDSwn1ihRCiAKkTDFHAO4lpBKTmIarg7XKFZlIGBF5Tm8w8sOOy8zacQmjAnbWWsbWMdLv5iS0ty6CRgvNPoYXPwKt3CkjhBA5xclWh5eLLXdiU7gSFU+dUkXULgmQMCLyWNi9RIatDCY4LBqATjW8meJ7BNfd40GfDE7FoftCKNNU3UKFEKKAKuvhxJ3YFK7eTZAwIgoXRVFYe/wW4/84Q0KqAWdbHV909KND6DTYvt60U/nW8MpccMw/t5sJIURBU7aYIwev3uPq3fxzR402Oy+aPXs2ZcqUwc7OjoCAAPbu3fvEfdeuXUvr1q0pVqwYLi4uNGzYkC1btmS7YGF50gxGPll3mg9XnSQh1UC90kXZ9qozHfb3gnPrQauD1p9Bn98liAghRC4rmw8HsWY5jKxcuZLhw4czbtw4goODadq0Ke3atSMsLCzD/ffs2UPr1q3ZtGkTx44do3nz5nTq1Ing4ODnLl7kf3HJaQxaeoRfD99Aq4FRrcvzW/UjeK3qBNHXwa0UDNoCjYeCNlvZWAghRBaU/XcQa2hU/gkjGkVRlKy8oH79+tSpU4c5c+aYt1WuXJmuXbsybdq0TB2jatWq9O7dm/Hjx2dq/9jYWFxdXYmJicHFRdYfsRS3o5MYtPQI5yPisLe2Yl53P148OwEu/dsyVqULdPoB7N1UrVMIIQqTsHuJvPj1Tmx0WkImv4yVNvcWzMvs93eWxoykpqZy7NgxxowZk257mzZtOHDgQKaOYTQaiYuLo2jRok/cJyUlhZSUFPPj2NjYrJQp8oEzt2J486cj3IlNoZizLb+1MVJuezeIuw1WtvDyNKg7CPLRqpFCCFEYlCxij41OS6reyO3oJHyLOqhdUta6aaKiojAYDHh5eaXb7uXlRURERKaO8c0335CQkECvXr2euM+0adNwdXU1//j6+malTKGyvZfu0nveQe7EplDJ057tAf9QblNvUxBxrwCDt8MLb0oQEUIIFVhpNZR2NwWQK/lkEGu2Ouk1j3yJKIry2LaM/Prrr0ycOJGVK1fi6en5xP3Gjh1LTEyM+efGjRvZKVOo4I8Ttxi09AgJqQbal4aNbt/g8s/XoBihZh94excUr652mUIIUaiV9chfg1iz1E3j4eGBlZXVY60gkZGRj7WWPGrlypW8+eabrFq1ilatWj11X1tbW2xtbbNSmsgHFu0L5bON5wD4qNwN3n3wNZrEKLB2hI7fQs1XVa5QCCEE/P8g1qtRFtgyYmNjQ0BAAEFBQem2BwUF0ahRoye+7tdff2XAgAGsWLGCDh06ZK9SkW8pisIXf5/ns43n0KHnF7+/eO/Wx6Yg4lUdhuyWICKEEPlIfru9N8uTno0cOZJ+/fpRt25dGjZsyPz58wkLCyMwMBAwdbHcunWLZcuWAaYg8sYbb/D999/ToEEDc6uKvb09rq6uOfhWhBoMRoVx607z25Eb+GjusrrYQorfOW168oW3oM1UsLZTt0ghhBDpmFtGLDWM9O7dm3v37jF58mTCw8OpVq0amzZtws/PD4Dw8PB0c47MmzcPvV7Pe++9x3vvvWfe3r9/f5YuXfr870CoRm8wMmrVSdafuE07q8N8b78Ym9hYsHWFLrOgSme1SxRCCJGBcv+OGYmITSYhRY+jrboTsmd5nhE1yDwj+U+awciw34LZfjqMT61X0M9qq+mJknWhx2Io4qdugUIIIZ4q4LMg7iWksvGDJlQrmTs9Fbkyz4gQACl6A+8tD+bK+ROst/2ByprrpicaD4MW/wOr/LEktRBCiCcr4+HIvYRUrtyNz7UwklkSRkSW3E9IZdhvwXhcWcdGm8U4alLAwQNemQcVnn6XlBBCiPyjbDFHjl5/kC/GjUgYEZmiKAobTt7myw3HGZE6n542e0xPlG4K3RaAi7e6BQohhMgS8x01+WCNGgkj4pnCY5L4dN0Zbl04yjLrHyivu42i0aJpNgZeHAVaK7VLFEIIkUVlPR7eUaP+XCMSRsQT3bifyJrjN1m49ypd9FuYbfMztpo0FGdvNN0XQukmapcohBAimx62jIRGJWR6JvXcImFEpBObnMamU+GsPX6Lw9fu40ICX1ovoIP1YdMOFdqg6ToHHD3ULVQIIcRzKVXUASuthsRUAxGxyXi72qtWi4QRAcCDhFTm7rnCTweukZxmBKCW9jLz7X/E03AHRatD02oSNHgXtNla0kgIIUQ+YqPTUqqoA6FRCVy9myBhRKgnPkXP4n2hLNhzlbgUPQD+xRyY6LmbhqEz0Rj04OaHpscS8AlQuVohhBA5qayHoymMRCXQuLx6Ld4SRgopg1Fh+aHrzNh2ifsJqQBU9nbhk2YeNDk7Hs2lfycxq9IVOv8AdjJ1vxBCFDRlizmy/bz6g1gljBRCF+/E8fGaUwSHRQOmiW9Gtvang/MVtOtegbhw0NnBy9MgYCCoOKhJCCFE7skvC+ZJGClEUvQGZu+8wuxdl0kzKDjZ6hj9ckVeq1sS6/3fwPovQTGChz/0XApeVdUuWQghRC4y394bJS0jIg8cu/6AMWtOcSnS9AvXqrInn3WthrcmGpa/Atf2mnas1Rfafw02juoVK4QQIk88bBm5+SCJ5DQDdtbqzBslYaSAS0zV8/WWCyw9cA1FAQ8nGyZ2rkqH6t5oLm+DdUMg8R5YO0LH76Bmb7VLFkIIkUc8nGxwttMRl6zn+r1EKhZ3VqUOCSMF2P7LUYxZe4ob95MA6F7Hh/91rIybrQaCxsOBH0w7Fq8OPZaCR3n1ihVCCJHnNBoNZYs5cfJGNFfvxksYETknNjmNz/8K4bcjNwAo4WrH592q81JFT3hwDZa/CbeOmnau9za0/gys7dQrWAghhGrqlymKi50OR1v1IoGEkQJmx/k7fLL2DBGxyQD0a+DHx+0q4WSrg3N/wB8fQEqM6VbdLj9C5U4qVyyEEEJNn7SvrHYJEkYKiujEVCb/eY61wbcAKO3uwBfda9CgrDukJcNfH8ORhaadfV6AHovBrZSKFQshhBAmEkYKgC1nIxi37gxR8SloNfBmkzKMbF0RexsruHsRVg+EO2dMOzceBi3+B1bW6hYthBBC/EvCiAW7n5DKxA1n2XDyNgDlPZ34qkcN6pQqYtrhxAr4axSkJYCDB3SbB+VbqVixEEII8TgJIxZq85lwPl1/hqj4VLQaCGxWjqEtK5juEU+Jh02j4OSvpp3LvAjdFoBzcXWLFkIIITIgYcTCxCSl8b/1Z8ytIf5eTnzdoyY1fd1MO0SchlUD4d4l0GjhpU+g6UjQqjORjRBCCPEsEkYsyNFr9xn22wluRSdhpdUQ2KwsQ1tWwFZnBYpiGqC6ZRwYUsC5BHRfCKUbq122EEII8VQSRiyA3mBk1s7L/LD9EkYF/Nwd+P7V2tR62BqSFA0bPoCQDabH/i9Dl9ng6K5WyUIIIUSmSRjJ525FJzH8t2COXHsAQLc6JZncpZpp3hCAm0dNd8tEh4HWGlpPggbvykq7QgghLIaEkXxs54VIRqw8QXRiGk62Oqa+Uo0utUqanjQa4eBM2D4ZjHooUto0d0jJAFVrFkIIIbJKwkg+pDcY+W7bRX7ceQWAGj6uzHytNn7u/66kmxBlWuDu8jbT46qvQKfvTbOqCiGEEBZGwkg+ExmXzNBfg/nn6n3ANJ37px0rmwapAoTugTWDIT4CdHbw8hcQMEC6ZYQQQlgsCSP5yJ6Ldxn5+0mi4lNwtLFiWvcadK5ZwvSk0QC7v4TdXwEKeFSEnkvAq6qqNQshhBDPS8JIPpCiNzB9ywUW7A0FoKKXM7Nfr0O5Yk6mHWJvm1pDru8zPa79OrT7CmwcVapYCCGEyDkSRlR25W48Q38N5uztWMDULTOuQ2XTTKoAF7fC+kBIvAc2TtBxBtToqV7BQgghRA6TMKKiP07cYsya0ySlGSjiYM1XPWrSuoqX6Ul9KmyfBAdnmR4XrwE9l4J7OdXqFUIIIXKDhBGVbDh5mxErT2BUoHF5d77tVQsvFzvTk/dDYc2bcOuY6XG9IdDmM9DZqlewEEIIkUskjKhg85kIcxB5rZ4vU7tWR6v9926Ys+tgw1BIiQU7N+jyI1TuqGq9QgghRG6SMJLHdp6P5INfj2MwKnSrU/L/g0haEmweC8eWmHb0rQ/dF4Gbr7oFCyGEELlMwkge2n85iiG/HCPNoNChhjdfda9hCiJ3L5hW2o08C2igyQho/glYWatdshBCCJHrJIzkkX2Xohi87CipeiOtq3gxo3ctdFoNBC+HTaMgLREci8Er86B8S7XLFUIIIfKMhJE88OfJ24z8/QRpBoVm/sWY1ac21vpE+GsknFpp2qlMM+i2AJy91C1WCCGEyGMSRnLZ0v2hTNp4DkWBDjW8+bZXTWzvnjWttHvvMmi08NIn0HQkaK3ULlcIIYTIcxJGcomiKHyz9SKzdl4GoH9DPyZ0rIL22CLYMg4MKeBS0jRI1a+hytUKIYQQ6pEwkgsUReF/f5zhl3/CABjVxp/3GnigWdUPzm807eTfDrrOBoeiKlYqhBBCqE/CSC74btslfvknDK0Gpr5Snde878C8bhATBlpraD0ZGrwjK+0KIYQQSBjJccsPXeeH7ZcAmNKlKq+lroXFk0ExQJEy0GMxlKyjcpVCCCFE/iFhJAdtORvB/9afAeDjpu70uTQSrmw3PVmtu2mROzsX9QoUQggh8iEJIznk6LX7DP01GKMC4ypH8lbICIi/Azp7aPcl1HlDumWEEEKIDEgYyQGXI+N486ej6PVpzCy+hY6hy9GgQLFK0GMJeFVRu0QhhBAi35Iw8pzuJ6QyaOlR7JMiWOE8j6rRpm4aaveDdl+BjYO6BQohhBD5nISR55CqNxL4yzHKRe/nO7u5uKXFgY0zdJoB1XuoXZ4QQghhESSMZJOiKIxfc5zWN35gsM0m00bvmqZuGfdy6hYnhBBCWBAJI9n065Y9vHp2OLV0V00b6r8DrSeBzlbdwoQQQggLI2EkG05tWULHg2Nx0SaRonPBtsc8qNRe7bKEEEIIiyRhJCvSkrj92zBqXFkJGrjuWJ1Sg1eAWym1KxNCCCEsloSRzIo8T9wv/SgRexGjouFvt9do8/73aKxt1K5MCCGEsGgSRp5FUeDEcvQbR+FsSOKu4sqvPv8jcOCbWOu0alcnhBBCWDwJI0+TEgcbR8Lp39EBew3V2FZpMv97tTk6KwkiQgghRE6QMPIk4SdRVg1Ec/8KekXLt/oexAS8z2dda6DVyrTuQgghRE6RMPIoRYHD81G2forGkMotxZ1hqe9Rs3E7pnSojEbWlxFCCCFyVLb6GmbPnk2ZMmWws7MjICCAvXv3PnX/3bt3ExAQgJ2dHWXLlmXu3LnZKjbXJd6Hla/D36PRGFIJMgTQIXUaL7d/hU8liAghhBC5IsthZOXKlQwfPpxx48YRHBxM06ZNadeuHWFhYRnuHxoaSvv27WnatCnBwcF88sknDB06lDVr1jx38Tkq7BDMexHObyQNHRPT3uADRvFF3xd5q2lZCSJCCCFELtEoiqJk5QX169enTp06zJkzx7ytcuXKdO3alWnTpj22/8cff8yGDRsICQkxbwsMDOTkyZMcPHgwU+eMjY3F1dWVmJgYXFxcslLusxmNsH8G7JgCioEbGm/eSX6PCMdKLOz/ArV83XL2fEIIIUQhkdnv7yy1jKSmpnLs2DHatGmTbnubNm04cOBAhq85ePDgY/u3bduWo0ePkpaWlpXT57z4SFjeHbZPAsXAFk0T2iV9RqJHdda921iCiBBCCJEHsjSANSoqCoPBgJeXV7rtXl5eREREZPiaiIiIDPfX6/VERUXh7e392GtSUlJISUkxP46Njc1KmZljNMLPr8CdMxh1dkw1DmRRYhMqermwfHB9PJxkjRkhhBAiL2RrAOuj4ycURXnqmIqM9s9o+0PTpk3D1dXV/OPr65udMp9Oq4VWk0gpWonexmksSmxKZW9Xfn27gQQRIYQQIg9lKYx4eHhgZWX1WCtIZGTkY60fDxUvXjzD/XU6He7u7hm+ZuzYscTExJh/bty4kZUyM+2cYz0aPZjIkUQvqpV04dfB9SnqKNO7CyGEEHkpS2HExsaGgIAAgoKC0m0PCgqiUaNGGb6mYcOGj+2/detW6tati7W1dYavsbW1xcXFJd1PTjMaFYavDOZekpGaPq4sf7MBbg4SRIQQQoi8luVumpEjR7Jw4UIWL15MSEgII0aMICwsjMDAQMDUqvHGG2+Y9w8MDOT69euMHDmSkJAQFi9ezKJFixg1alTOvYts0Go1zO5bh9ZVvPj5rfq4OmQcjIQQQgiRu7I8A2vv3r25d+8ekydPJjw8nGrVqrFp0yb8/PwACA8PTzfnSJkyZdi0aRMjRozgxx9/pESJEvzwww907949595FNpX3dGbBG3XVLkMIIYQo1LI8z4gacnWeESGEEELkilyZZ0QIIYQQIqdJGBFCCCGEqiSMCCGEEEJVEkaEEEIIoSoJI0IIIYRQlYQRIYQQQqhKwogQQgghVCVhRAghhBCqkjAihBBCCFVJGBFCCCGEqiSMCCGEEEJVEkaEEEIIoaosr9qrhodr+cXGxqpciRBCCCEy6+H39rPW5LWIMBIXFweAr6+vypUIIYQQIqvi4uJwdXV94vMa5VlxJR8wGo3cvn0bZ2dnNBpNjh03NjYWX19fbty48dSljcXzk2udN+Q65w25znlDrnPeyM3rrCgKcXFxlChRAq32ySNDLKJlRKvV4uPjk2vHd3FxkV/0PCLXOm/Idc4bcp3zhlznvJFb1/lpLSIPyQBWIYQQQqhKwogQQgghVFWow4itrS0TJkzA1tZW7VIKPLnWeUOuc96Q65w35DrnjfxwnS1iAKsQQgghCq5C3TIihBBCCPVJGBFCCCGEqiSMCCGEEEJVEkaEEEIIoaoCH0Zmz55NmTJlsLOzIyAggL179z51/927dxMQEICdnR1ly5Zl7ty5eVSpZcvKdV67di2tW7emWLFiuLi40LBhQ7Zs2ZKH1Vq2rP5OP7R//350Oh21atXK3QILiKxe55SUFMaNG4efnx+2traUK1eOxYsX51G1liur13n58uXUrFkTBwcHvL29GThwIPfu3cujai3Tnj176NSpEyVKlECj0bB+/fpnvibPvwuVAuy3335TrK2tlQULFijnzp1Thg0bpjg6OirXr1/PcP+rV68qDg4OyrBhw5Rz584pCxYsUKytrZXVq1fnceWWJavXediwYcqXX36pHD58WLl48aIyduxYxdraWjl+/HgeV255snqtH4qOjlbKli2rtGnTRqlZs2beFGvBsnOdO3furNSvX18JCgpSQkNDlUOHDin79+/Pw6otT1av8969exWtVqt8//33ytWrV5W9e/cqVatWVbp27ZrHlVuWTZs2KePGjVPWrFmjAMq6deueur8a34UFOozUq1dPCQwMTLetUqVKypgxYzLcf/To0UqlSpXSbRsyZIjSoEGDXKuxIMjqdc5IlSpVlEmTJuV0aQVOdq917969lU8//VSZMGGChJFMyOp1/vvvvxVXV1fl3r17eVFegZHV6/z1118rZcuWTbfthx9+UHx8fHKtxoImM2FEje/CAttNk5qayrFjx2jTpk267W3atOHAgQMZvubgwYOP7d+2bVuOHj1KWlpartVqybJznR9lNBqJi4ujaNGiuVFigZHda71kyRKuXLnChAkTcrvEAiE713nDhg3UrVuXr776ipIlS+Lv78+oUaNISkrKi5ItUnauc6NGjbh58yabNm1CURTu3LnD6tWr6dChQ16UXGio8V1oEQvlZUdUVBQGgwEvL6902728vIiIiMjwNRERERnur9friYqKwtvbO9fqtVTZuc6P+uabb0hISKBXr165UWKBkZ1rfenSJcaMGcPevXvR6Qrs/+45KjvX+erVq+zbtw87OzvWrVtHVFQU7777Lvfv35dxI0+QnevcqFEjli9fTu/evUlOTkav19O5c2dmzpyZFyUXGmp8FxbYlpGHNBpNuseKojy27Vn7Z7RdpJfV6/zQr7/+ysSJE1m5ciWenp65VV6BktlrbTAY6NOnD5MmTcLf3z+vyiswsvI7bTQa0Wg0LF++nHr16tG+fXu+/fZbli5dKq0jz5CV63zu3DmGDh3K+PHjOXbsGJs3byY0NJTAwMC8KLVQyevvwgL7p5KHhwdWVlaPJezIyMjHEt9DxYsXz3B/nU6Hu7t7rtVqybJznR9auXIlb775JqtWraJVq1a5WWaBkNVrHRcXx9GjRwkODub9998HTF+aiqKg0+nYunUrLVq0yJPaLUl2fqe9vb0pWbJkuqXSK1eujKIo3Lx5kwoVKuRqzZYoO9d52rRpNG7cmI8++giAGjVq4OjoSNOmTZkyZYq0XucQNb4LC2zLiI2NDQEBAQQFBaXbHhQURKNGjTJ8TcOGDR/bf+vWrdStWxdra+tcq9WSZec6g6lFZMCAAaxYsUL6ezMpq9faxcWF06dPc+LECfNPYGAgFStW5MSJE9SvXz+vSrco2fmdbty4Mbdv3yY+Pt687eLFi2i1Wnx8fHK1XkuVneucmJiIVpv+a8vKygr4/7/cxfNT5bsw14bG5gMPbxtbtGiRcu7cOWX48OGKo6Ojcu3aNUVRFGXMmDFKv379zPs/vJ1pxIgRyrlz55RFixbJrb2ZkNXrvGLFCkWn0yk//vijEh4ebv6Jjo5W6y1YjKxe60fJ3TSZk9XrHBcXp/j4+Cg9evRQzp49q+zevVupUKGC8tZbb6n1FixCVq/zkiVLFJ1Op8yePVu5cuWKsm/fPqVu3bpKvXr11HoLFiEuLk4JDg5WgoODFUD59ttvleDgYPMt1Pnhu7BAhxFFUZQff/xR8fPzU2xsbJQ6deoou3fvNj/Xv39/pVmzZun237Vrl1K7dm3FxsZGKV26tDJnzpw8rtgyZeU6N2vWTAEe++nfv3/eF26Bsvo7/V8SRjIvq9c5JCREadWqlWJvb6/4+PgoI0eOVBITE/O4asuT1ev8ww8/KFWqVFHs7e0Vb29vpW/fvsrNmzfzuGrLsnPnzqd+5uaH70KNokjblhBCCCHUU2DHjAghhBDCMkgYEUIIIYSqJIwIIYQQQlUSRoQQQgihKgkjQgghhFCVhBEhhBBCqErCiBBCCCFUJWFECCGEEKqSMCKEEEIIVUkYEUIIIYSqJIwIIYQQQlUSRoQQQgihqv8DMpnxhvXEJcEAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure()\n", + "plt.plot(np.linspace(0,1,n), cglsb.solution.as_array(), label='Tikhonov regularised solution- CIL')\n", + "plt.plot(np.linspace(0,1,n),x, label='Ground truth solution')\n", + "plt.legend()\n", + "plt.show()\n" + ] + }, + { + "cell_type": "markdown", + "id": "1fa3e6b0", + "metadata": {}, + "source": [ + "We can compare the results of Tikhonov regularisation implemented by numpy and CIL: " + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "7c6e22c8", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAGdCAYAAADAAnMpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAACFKklEQVR4nO3dd3hU1dbA4d+0VNI7RQhNCSAKoYYi0kUURUSKigVErwKiIIgCUTrIh+gFrCACylUBpUpEQJp0pIROKEJCCIEkpM/M/v6IGTNpJCHJpKz3efLonDnnzJ6TMGfN3muvrVFKKYQQQgghbERr6wYIIYQQonKTYEQIIYQQNiXBiBBCCCFsSoIRIYQQQtiUBCNCCCGEsCkJRoQQQghhUxKMCCGEEMKmJBgRQgghhE3pbd2AgjCbzVy9ehUXFxc0Go2tmyOEEEKIAlBKkZCQQNWqVdFq8+7/KBfByNWrV6lRo4atmyGEEEKIIrh8+TLVq1fP8/lyEYy4uLgAGW/G1dXVxq0RQgghREHEx8dTo0YNy308L+UiGMkcmnF1dZVgRAghhChn7pRiIQmsQgghhLApCUaEEEIIYVMSjAghhBDCpspFzkhBKKUwGo2YTCZbN0UIIe6aTqdDr9dLOQNRKVSIYCQtLY3IyEiSkpJs3RQhhCg2Tk5OBAQEYGdnZ+umCFGiyn0wYjabiYiIQKfTUbVqVezs7OSbhBCiXFNKkZaWxvXr14mIiKBevXr5FowSorwrdDDyxx9/MGvWLA4cOEBkZCSrVq2id+/e+R6zbds2Ro0axfHjx6latSpjxoxh2LBhRW2zlbS0NMxmMzVq1MDJyalYzimEELbm6OiIwWDg4sWLpKWl4eDgYOsmCVFiCh1qJyYm0qRJEz799NMC7R8REcEjjzxCu3btOHToEO+++y7Dhw/np59+KnRj8yPfGoQQFY18ronKotA9Iz169KBHjx4F3n/hwoXcc889zJ07F4AGDRqwf/9+Zs+eTZ8+fQr78kIIIYSoYEo87N69ezddu3a12tatWzf2799Penp6rsekpqYSHx9v9VPZTJo0iQceeMDyePDgwfkOh2XfXxTcQw89xMiRI+/6PKXxO9BoNKxevbpEzn3hwgU0Gg2HDx++63OVZDuFEBVPiQcjUVFR+Pn5WW3z8/PDaDQSExOT6zHTpk3Dzc3N8lMai+SZzIrd527w8+Er7D53A5NZldhraTSafH8GDx7M22+/zebNm0usDaL4VcbfWV4BWGRkZKF6UItTfHw848eP57777sPBwQF/f386d+7MypUrUSrj33X2ALS4AlIhRNGUymya7LNbMj8Q8pr1Mm7cOEaNGmV5nLnQTknZeCyS0DXhRMalWLYFuDkwsVcQ3RsFFPvrRUZGWv5/xYoVTJgwgVOnTlm2OTo6UqVKFapUqVLsr10emEwmNBpNuRkvV0phMpkq9e8sO39/f5u87q1bt2jbti1xcXFMnjyZ5s2bo9fr2bZtG2PGjOHhhx/G3d3dJm0TQuStxD/t/f39iYqKstoWHR2NXq/Hy8sr12Ps7e0ti+KV9OJ4G49F8urSg1aBCEBUXAqvLj3IxmOReRxZdP7+/pYfNzc3NBpNjm136vI/cOAAvr6+TJkyxWr7t99+S61atXBzc+OZZ54hISHB8lxqairDhw/H19cXBwcH2rZty759+yzPb926FY1Gw+bNmwkODsbJyYk2bdpYBUoACxYsoE6dOtjZ2XHvvffy7bffWp7r378/zzzzjNX+6enpeHt7s2jRolzfy+LFi3F3d2ft2rUEBQVhb29vmUEwZswYqlWrhrOzMy1btmTr1q1Wx37xxReWmVRPPPEEc+bMsbrZ5Da8NXLkSB566KG8Li1Lly4lODgYFxcX/P39GTBgANHR0Tmu06+//kpwcDD29vZs3749x+9s69attGjRAmdnZ9zd3QkJCeHixYuW59esWUOzZs1wcHCgdu3ahIaGYjQaLc+fOXOG9u3b4+DgQFBQEGFhYXm2OdOPP/5I48aNcXR0xMvLi86dO5OYmAhkTIP/4IMPqF69Ovb29jzwwANs3Lgxz3Nl/l6yWr16teVLxOLFiwkNDeWvv/6y9OotXrwYyDlMc/ToUR5++GFLu4YOHcrt27ctz2f+nmbPnk1AQABeXl785z//yXMoNy/vvvsuFy5cYM+ePTz//PMEBQVRv359hgwZwuHDhyVYFCIX+6P2M3TTUJLSbVerq8SDkdatW+f4EN20aRPBwcEYDIaSfvl8mcyK0DXh5DYgk7ktdE14iQ7ZFMXWrVvp1KkToaGhjB8/3rL93LlzrF69mrVr17J27Vq2bdvG9OnTLc+PGTOGn376iW+++YaDBw9St25dunXrRmxsrNX5x48fz0cffcT+/fvR6/W8+OKLludWrVrFiBEjeOuttzh27BivvPIKL7zwAlu2bAFg4MCB/PLLL1Y3ml9//ZXExMR8E5aTkpKYNm0aX375JcePH8fX15cXXniBnTt38v3333PkyBH69u1L9+7dOXPmDAA7d+5k2LBhjBgxgsOHD9OlS5ccwVlRpKWl8eGHH/LXX3+xevVqIiIiGDx4cI79xowZw7Rp0zhx4gT333+/1XNGo5HevXvToUMHjhw5wu7duxk6dKjlRv7rr78yaNAghg8fTnh4OJ999hmLFy+2tN9sNvPkk0+i0+n4888/WbhwIe+8806+7Y6MjKR///68+OKLnDhxgq1bt/Lkk09aeiI//vhjPvroI2bPns2RI0fo1q0bjz32mOV6Fla/fv146623aNiwIZGRkURGRtKvX78c+yUlJdG9e3c8PDzYt28fP/zwA7/99huvv/661X5btmzh3LlzbNmyhW+++YbFixdbgpuCMJvNfP/99wwcOJCqVavmeL5KlSro9eW+tJIQxcZkNrHgrwW8tOkldkfu5sujX9quMaqQEhIS1KFDh9ShQ4cUoObMmaMOHTqkLl68qJRSauzYserZZ5+17H/+/Hnl5OSk3nzzTRUeHq6++uorZTAY1I8//ljg14yLi1OAiouLy/FccnKyCg8PV8nJyYV9K2rX2RhV8521d/zZdTam0OcuqEWLFik3N7cc2ydOnKiaNGliefz888+rxx9/XK1evVq5uLio5cuX59jfyclJxcfHW7aNHj1atWzZUiml1O3bt5XBYFDLli2zPJ+WlqaqVq2qZs6cqZRSasuWLQpQv/32m2WfdevWKcByfdu0aaOGDBli9dp9+/ZVjzzyiOWc3t7easmSJZbn+/fvr/r27ZvvNQDU4cOHLdvOnj2rNBqNunLlitW+nTp1UuPGjVNKKdWvXz/Vs2dPq+cHDhxodT0zr1tWI0aMUB06dLA87tChgxoxYkSe7du7d68CVEJCglLq3+u0evVqq/2y/s5u3LihALV169Zcz9muXTs1depUq23ffvutCggIUEop9euvvyqdTqcuX75seX7Dhg0KUKtWrcr1nAcOHFCAunDhQq7PV61aVU2ZMsVqW/PmzdVrr72mlFIqIiJCAerQoUNKqdz/NletWqWyfmxk/zvNlLWdn3/+ufLw8FC3b9+2PL9u3Tql1WpVVFSUUirj91SzZk1lNBot+/Tt21f169cv1/eSm2vXrlk+k+4k++/8Tn8DtnI3n29C5Oda4jX14sYXVaPFjVSjxY3Uu9vfVYlpicX+Ovndv7MqdM/I/v37efDBB3nwwQcBGDVqFA8++CATJkwAMr6dXbp0ybJ/YGAg69evZ+vWrTzwwAN8+OGHzJs3r0xM641OSLnzToXYr6Tt2bOHPn368M0339C/f/8cz9eqVQsXFxfL44CAAMvwwrlz50hPTyckJMTyvMFgoEWLFpw4ccLqPFm/5QcEZOTMZJ7nxIkTVucACAkJsZzDYDDQt29fli1bBmTUpfn5558ZOHBgvu/Nzs7O6nUPHjyIUor69etbcjGqVKnCtm3bOHfuHACnTp2iRYsWVufJ/rgoDh06xOOPP07NmjVxcXGxDOlk/bsGCA4OzvMcnp6eDB48mG7dutGrVy8+/vhjq1yhAwcO8MEHH1i9tyFDhliWNThx4gT33HMP1atXtxzTunXrfNvdpEkTOnXqROPGjenbty9ffPEFN2/eBDLyrq5evZrv766knDhxgiZNmuDs7Gz1umaz2WoIsGHDhuh0OsvjrH+/U6dOtbpW2X8XcOdcNCFEhh1XdtB3TV/2Ru3FUe/I1LZTmdJ2Ck4G2xUOLXSf5UMPPWT5R5+b3LpVO3TowMGDBwv7UiXO16VgFQ0Lul9Jq1OnDl5eXnz99df07Nkzx3oV2Ye9NBoNZrMZyPuDWimVY1vW82Q+l3megpxj4MCBdOjQgejoaMLCwnBwcLjjzApHR0erc5jNZnQ6HQcOHLC6QQGWcf/c2p79b1Or1ebYll8eQmJiIl27dqVr164sXboUHx8fLl26RLdu3UhLS7PaN+vNNTeLFi1i+PDhbNy4kRUrVvDee+8RFhZGq1atMJvNhIaG8uSTT+Y4zsHBIdd/Y3e6yep0OsLCwti1axebNm3ik08+Yfz48ezZs8eSn1WQ33+mwl67vOT3Glm35/f3O2zYMJ5++mnLc7kNw/j4+ODh4VHiwZUQ5VW6OZ1PDn3ComMZ+Xv3etzLrA6zCHQLtHHLSiFnpCxrEehJgJsDeX3Ea8iYVdMi0LM0m5Unb29vfv/9d86dO0e/fv0KdWOoW7cudnZ27Nixw7ItPT2d/fv306BBgwKfp0GDBlbnANi1a5fVOdq0aUONGjVYsWIFy5Yto2/fvoVe6OvBBx/EZDIRHR1N3bp1rX4yZ2rcd9997N271+q4/fv3Wz328fGx6pEA8q2jcfLkSWJiYpg+fTrt2rXjvvvus0peLawHH3yQcePGsWvXLho1asTy5csBaNq0KadOncrx3urWrYtWqyUoKIhLly5x9epVy7l27959x9fTaDSEhIQQGhrKoUOHsLOzY9WqVbi6ulK1atU7/u6y8vHxISEhwZIACzmvnZ2d3R1Xyg4KCuLw4cNW59m5cydarZb69evf8T1BRk9T1muUW+6HVqulX79+LFu2zOq6ZUpMTLRKEBaiMrly+wqDNw62BCL97u3Hsp7LykQgApU8GNFpNUzsFQSQIyDJfDyxVxA6bdnp9vX19eX333/n5MmT9O/fv8Afrs7Ozrz66quMHj2ajRs3Eh4ezpAhQ0hKSuKll14q8OuPHj2axYsXs3DhQs6cOcOcOXNYuXIlb7/9tmUfjUbDgAEDWLhwIWFhYQwaNKjQ77N+/foMHDiQ5557jpUrVxIREcG+ffuYMWMG69evB+CNN95g/fr1zJkzhzNnzvDZZ5+xYcMGq2/bDz/8MPv372fJkiWcOXOGiRMncuzYsTxf95577sHOzo5PPvmE8+fP88svv/Dhhx8Wuv0RERGMGzeO3bt3c/HiRTZt2sTp06ctN/4JEyawZMkSJk2axPHjxzlx4oSl9wSgc+fO3HvvvTz33HP89ddfbN++3SpZOTd79uxh6tSp7N+/n0uXLrFy5UquX79uec3Ro0czY8YMVqxYwalTpxg7diyHDx9mxIgRuZ6vZcuWODk58e6773L27FmWL1+eo+ezVq1aREREcPjwYWJiYkhNTc1xnoEDB+Lg4MDzzz/PsWPH2LJlC2+88QbPPvtsjhpEd2vq1KnUqFGDli1bsmTJEsLDwzlz5gxff/01DzzwgFVidXbXr1/n8OHDVj/ZZwIKUR79dvE3+q7py5HrR3AxuPB/D/0f77V6D3udva2b9q9iz1YpASWVwJppw9GrqtXU36ySVltN/U1tOHr1bppdIIVNYM109epVVb9+ffX0008ro9GYayLh//3f/6maNWtaHicnJ6s33nhDeXt7K3t7exUSEqL27t1reT4zMfPmzZuWbZmJyhEREZZt8+fPV7Vr11YGg0HVr1/fKlk10/HjxxWgatasqcxmc5GuQVpampowYYKqVauWMhgMyt/fXz3xxBPqyJEjln0+//xzVa1aNeXo6Kh69+6tJk+erPz9/a3OM2HCBOXn56fc3NzUm2++qV5//fV8E1iXL1+uatWqpezt7VXr1q3VL7/8YpXYmdt1Usr6dxYVFaV69+6tAgIClJ2dnapZs6aaMGGCMplMlv03btyo2rRpoxwdHZWrq6tq0aKF+vzzzy3Pnzp1SrVt21bZ2dmp+vXrq40bN+abwBoeHq66deumfHx8lL29vapfv7765JNPLM+bTCYVGhqqqlWrpgwGg2rSpInasGGD5fnsCaxKZSSs1q1bVzk4OKhHH31Uff7551YJrCkpKapPnz7K3d1dAWrRokVKKZWjnUeOHFEdO3ZUDg4OytPTUw0ZMsSSEKxUwRKNC+rWrVtq7Nixql69esrOzk75+fmpzp07q1WrVln+FnNLYCVjEp3Vz8SJEwv9+sVJEljF3UgxpqjJuydbklQHrBug/k74u1TbUNAEVo1S+SSAlBHx8fG4ubkRFxeXo+ZISkoKERERBAYG3tWqliazYm9ELNEJKfi6ZAzNlKUeEVEwQ4YM4eTJk2zfvt3WTRHirhXX55uofC7EXeDtbW9z6mZGkvgLjV7gjQffwKAt3ZIa+d2/s5JJ9//QaTW0rpN7ETZRds2ePZsuXbrg7OzMhg0b+Oabb5g/f76tmyWEEDaz5twaPvzzQ5KNyXjYezC13VTaVmtr62blS4IRUa7t3buXmTNnkpCQQO3atZk3bx4vv/yyrZslhBClLik9iSl7pvDLuV8AaOHfgmntpuHr5Gvjlt2ZBCOiXPvf//5n6yYIIYTNnYo9xdvb3uZC/AW0Gi3DmgxjaOOh6LS6Ox9cBkgwIoQQQpRTSil+OP0DM/bOIM2chq+jL9PbT6e5f3NbN61QJBgRQgghyqH4tHgm7ZpE2MWM9d/aVWvH5LaT8XQoG7WxCkOCESGEEKKcOXr9KKP/GM2V21fQa/SMbDaSZ4OeRaspn+XDJBgRQgghygmzMrPk+BI+PvgxRmWkWpVqzGo/i8Y+jW3dtLsiwYgQQghRDsSmxDJ+x3h2XMlY1qFrza5MajMJFzuXOxxZ9kkwIoQQQpRx+6L2MfaPsUQnR2Ovs2dM8zH0rd+3wqxSXT4HlyqBSZMm8cADD1geDx48mN69exd4f1FwDz30ECNHjrzr85TG70Cj0bB69eoSOfeFCxfQaDT5LiRYUCXZTiEqE5PZxILDC3h508tEJ0cT6BbI8p7LefrepytMIAISjNiERqPJ92fw4MG8/fbbbN682dZNFYVQGX9neQVgkZGR9OjRo/QbJEQFEp0UzZCwIcz/az5mZebxOo/zfc/vqe9RsNWuyxMZpskqIQr2L4LgF8DFv8ReJuuS9itWrGDChAmcOnXKss3R0ZEqVapQpUqVEmtDWWYymdBoNGi15SNWVkphMpkq9e8sO3//kvv3I0RlsP3v7YzfMZ6bqTdx1Dvyfqv36VWnl62bVWLKx6d9aUmIgm3TM/5bgvz9/S0/bm5uaDSaHNvu1OV/4MABfH19mTJlitX2b7/9llq1auHm5sYzzzxDQkKC5bnU1FSGDx+Or68vDg4OtG3bln379lme37p1KxqNhs2bNxMcHIyTkxNt2rSxCpQAFixYQJ06dbCzs+Pee+/l22+/tTzXv39/nnnmGav909PT8fb2ZtGiRbm+l8WLF+Pu7s7atWsJCgrC3t6eixcvkpaWxpgxY6hWrRrOzs60bNmSrVu3Wh37xRdfUKNGDZycnHjiiSeYM2cO7u7uludzG94aOXIkDz30UF6XlqVLlxIcHIyLiwv+/v4MGDCA6OjoHNfp119/JTg4GHt7e7Zv357jd7Z161ZatGiBs7Mz7u7uhISEcPHiRcvza9asoVmzZjg4OFC7dm1CQ0MxGo2W58+cOUP79u1xcHAgKCiIsLCwPNuc6ccff6Rx48Y4Ojri5eVF586dSUxMBMBsNvPBBx9QvXp17O3teeCBB9i4cWOe58r8vWS1evVqS9fw4sWLCQ0N5a+//rL06i1evBjIOUxz9OhRHn74YUu7hg4dyu3bty3PZ/6eZs+eTUBAAF5eXvznP/8hPT39ju85q4KcJ7chJHd3d0vbM4er/ve//9GuXTscHR1p3rw5p0+fZt++fQQHB1OlShW6d+/O9evXc7x2aGgovr6+uLq68sorr5CWlgbAkiVL8PLyIjU11eq1+/Tpw3PPPVeo9ykqrnRzOnP2z+G1za9xM/Um93nex/8e/V+FDkRAgpFyaevWrXTq1InQ0FDGjx9v2X7u3DlWr17N2rVrWbt2Ldu2bWP69OmW58eMGcNPP/3EN998w8GDB6lbty7dunUjNjbW6vzjx4/no48+Yv/+/ej1el588UXLc6tWrWLEiBG89dZbHDt2jFdeeYUXXniBLVu2ADBw4EB++eUXqxvNr7/+SmJiIn369MnzPSUlJTFt2jS+/PJLjh8/jq+vLy+88AI7d+7k+++/58iRI/Tt25fu3btz5swZAHbu3MmwYcMYMWIEhw8fpkuXLjmCs6JIS0vjww8/5K+//mL16tVEREQwePDgHPuNGTOGadOmceLECe6//36r54xGI71796ZDhw4cOXKE3bt3M3ToUMuN/Ndff2XQoEEMHz6c8PBwPvvsMxYvXmxpv9ls5sknn0Sn0/Hnn3+ycOFC3nnnnXzbHRkZSf/+/XnxxRc5ceIEW7du5cknnyRzYe6PP/6Yjz76iNmzZ3PkyBG6devGY489ZrmehdWvXz/eeustGjZsSGRkJJGRkfTr1y/HfklJSXTv3h0PDw/27dvHDz/8wG+//cbrr79utd+WLVs4d+4cW7Zs4ZtvvmHx4sWWAKEwius8EydO5L333uPgwYPo9Xr69+/PmDFj+Pjjj9m+fTvnzp1jwoQJVsds3ryZEydOsGXLFr777jtWrVpFaGgoAH379sVkMvHLL79Y9o+JiWHt2rW88MILhW6fqHiu3L7C4A2DWXQ844vbM/c+w9JHllLLrZZtG1YaVDkQFxenABUXF5fjueTkZBUeHq6Sk5OLdvL4SKWuHMr42b9YqYmuGf/N3BYfeRctv7NFixYpNze3HNsnTpyomjRpYnn8/PPPq8cff1ytXr1aubi4qOXLl+fY38nJScXHx1u2jR49WrVs2VIppdTt27eVwWBQy5YtszyflpamqlatqmbOnKmUUmrLli0KUL/99ptln3Xr1inAcn3btGmjhgwZYvXaffv2VY888ojlnN7e3mrJkiWW5/v376/69u2b7zUA1OHDhy3bzp49qzQajbpy5YrVvp06dVLjxo1TSinVr18/1bNnT6vnBw4caHU9M69bViNGjFAdOnSwPO7QoYMaMWJEnu3bu3evAlRCQoJS6t/rtHr1aqv9sv7Obty4oQC1devWXM/Zrl07NXXqVKtt3377rQoICFBKKfXrr78qnU6nLl++bHl+w4YNClCrVq3K9ZwHDhxQgLpw4UKuz1etWlVNmTLFalvz5s3Va6+9ppRSKiIiQgHq0KFDSqnc/zZXrVqlsn5sZP87zZS1nZ9//rny8PBQt2/ftjy/bt06pdVqVVRUlFIq4/dUs2ZNZTQaLfv07dtX9evXL9f3kpeCnCe3a+jm5qYWLVqklPr3Onz55ZeW57/77jsFqM2bN1u2TZs2Td17771Wr+3p6akSExMt2xYsWKCqVKmiTCaTUkqpV199VfXo0cPy/Ny5c1Xt2rWV2WzO9f3c9eebKDc2XdikWi9rrRotbqRaL2+tfrvw250PKgfyu39nJT0j+xfB5x0yftYMz9i2Zvi/2/bnPrRgC3v27KFPnz5888039O/fP8fztWrVwsXl3/nmAQEBluGFc+fOkZ6eTkhIiOV5g8FAixYtOHHihNV5sn7LDwgIALCc58SJE1bnAAgJCbGcw2Aw0LdvX5YtWwZAYmIiP//8MwMHDsz3vdnZ2Vm97sGDB1FKUb9+fUsuRpUqVdi2bRvnzp0D4NSpU7Ro0cLqPNkfF8WhQ4d4/PHHqVmzJi4uLpYhnUuXLlntFxwcnOc5PD09GTx4MN26daNXr158/PHHVrlCBw4c4IMPPrB6b0OGDCEyMpKkpCROnDjBPffcQ/Xq1S3HtG7dOt92N2nShE6dOtG4cWP69u3LF198wc2bNwGIj4/n6tWr+f7uSsqJEydo0qQJzs7OVq9rNputhgAbNmyITvfvol5Z/36nTp1qda2y/y6yyu88hZH179HPzw+Axo0bW23Lft4mTZrg5ORkedy6dWtu377N5cuXARgyZAibNm3iypUrACxatIjBgwdXqFkRonBSTalM/nMyo7aOIiE9gSY+Tfix1490qtnJ1k0rVZLAGvwC3PtP1n/kXxmBSK95ENAkY1sJJrIWVp06dfDy8uLrr7+mZ8+e2NnZWT1vMBisHms0GsxmM4Clqz77h55SKse2rOfJfC7zPAU5x8CBA+nQoQPR0dGEhYXh4OBwx5kVjo6OVucwm83odDoOHDhgdWMBLEmiubU9831m0mq1Obbll4eQmJhI165d6dq1K0uXLsXHx4dLly7RrVs3y9h/pqw319wsWrSI4cOHs3HjRlasWMF7771HWFgYrVq1wmw2ExoaypNPPpnjOAcHhxxthpzXPTudTkdYWBi7du1i06ZNfPLJJ4wfP549e/bg5eWV6zlyu4aZCnvt8pLfa2Tdnt/f77Bhw3j66actz1WtWjXP18vvPJmPC/K+cvt3kH1b1vPmJ/P4Bx98kCZNmrBkyRK6devG0aNHWbNmTYHOISqeiLgIRm8bzambGUH5i41e5PUHX8egNdzhyIpHekZc/KHqAxk/mQFIQJN/t5WhYMTb25vff/+dc+fO0a9fv0LdGOrWrYudnR07duywbEtPT2f//v00aNCgwOdp0KCB1TkAdu3aZXWONm3aUKNGDVasWMGyZcvo27dvjsDpTh588EFMJhPR0dHUrVvX6idzpsZ9993H3r17rY7bv3+/1WMfHx+rHgkg3zoaJ0+eJCYmhunTp9OuXTvuu+++In2rzvo+xo0bx65du2jUqBHLly8HoGnTppw6dSrHe6tbty5arZagoCAuXbrE1atXLefavXv3HV9Po9EQEhJCaGgohw4dws7OjlWrVuHq6krVqlXv+LvLysfHh4SEBEsCLOS8dnZ2dphMpnzbFBQUxOHDh63Os3PnTrRaLfXrF2yKoqenp9U10uuL/j0q+9/EmTNnSEpKKvL5svrrr79ITk62PP7zzz+pUqWKVQ/Xyy+/zKJFi/j666/p3LkzNWrUKJbXFuXLL+d+od/afpy6eQpPB08Wdl7Im83erJSBCEgwUu74+vry+++/c/LkSfr37281+yI/zs7OvPrqq4wePZqNGzcSHh7OkCFDSEpK4qWXXirw648ePZrFixezcOFCzpw5w5w5c1i5ciVvv/22ZR+NRsOAAQNYuHAhYWFhDBo0qNDvs379+gwcOJDnnnuOlStXEhERwb59+5gxYwbr168H4I033mD9+vXMmTOHM2fO8Nlnn7Fhwwarb9sPP/ww+/fvZ8mSJZw5c4aJEydy7NixPF/3nnvuwc7Ojk8++YTz58/zyy+/8OGHHxa6/REREYwbN47du3dz8eJFNm3axOnTpy03/gkTJrBkyRImTZrE8ePHOXHihKX3BKBz587ce++9PPfcc/z1119s377dKlk5N3v27GHq1Kns37+fS5cusXLlSq5fv255zdGjRzNjxgxWrFjBqVOnGDt2LIcPH2bEiBG5nq9ly5Y4OTnx7rvvcvbsWZYvX54jEbRWrVpERERw+PBhYmJicswUgYyeMgcHB55//nmOHTvGli1beOONN3j22Wctwx+l6eGHH+bTTz/l4MGD7N+/n2HDhuXoTSmqtLQ0XnrpJcLDw9mwYQMTJ07k9ddft5qmPnDgQK5cucIXX3xhlRwuKoek9CTG7xjP+B3jSTYm09K/JT/2+pGQaiF3PrgCk2AkKxd/6DC2TPWG5Mbf35/ff/+do0ePMnDgwDt+M800ffp0+vTpw7PPPkvTpk05e/Ysv/76Kx4eHgV+7d69e/Pxxx8za9YsGjZsyGeffcaiRYtyTJUdOHAg4eHhVKtWLUeeQkEtWrSI5557jrfeeot7772Xxx57jD179li+SYaEhLBw4ULmzJlDkyZN2LhxI2+++SYODg6Wc3Tr1o3333+fMWPG0Lx5cxISEvKdRunj48PixYv54YcfCAoKYvr06cyePbvQbXdycuLkyZP06dOH+vXrM3ToUF5//XVeeeUVS7vWrl1LWFgYzZs3p1WrVsyZM4eaNWsCGUMkq1atIjU1lRYtWvDyyy/fcaaQq6srf/zxB4888gj169fnvffe46OPPrIMkQ0fPpy33nqLt956i8aNG7Nx40Z++eUX6tWrl+v5PD09Wbp0KevXr6dx48Z89913TJo0yWqfPn360L17dzp27IiPjw/fffddrtfi119/JTY2lubNm/PUU0/RqVMnPv3008Je1mLx0UcfUaNGDdq3b8+AAQN4++23rfI87kanTp2oV68e7du35+mnn6ZXr145rpmrqyt9+vShSpUq+VZVFhXPqdhT9Fvbj1/O/YJWo+X1B17nsy6f4ePkY+um2ZxG5TY4XcbEx8fj5uZGXFwcrq6uVs+lpKQQERFBYGCg1U1IVE5Dhgzh5MmTbN++3dZNEZXM4MGDuXXrVoHK4Hfp0oUGDRowb968fPeTz7eKQSnFilMrmLVvFmnmNHydfJnRbgbB/nknwVcU+d2/s5IEVlGuzZ49my5duuDs7MyGDRv45ptvmD9/vq2bJUSuYmNj2bRpE7///rvNeoZE6YpPi2fSrkmEXcwoWtihegc+DPkQD4eC90hXBhKMiHJt7969zJw5k4SEBGrXrs28efN4+eWXbd0sIXLVtGlTbt68yYwZM7j33ntt3RxRwo5cP8KYP8Zw5fYV9Fo9bzZ9k2eDnpWp3LmQYESUa//73/9s3QQhAApU5fXChQsl3g5he2Zl5pvj3zDv4DyMyki1KtWY3WE2jbwb2bppZZYEI0IIIUQxiU2JZfyO8ey4kjGNvlutbkxsPREXO5c7HFm5STAihBBCFIN9Uft45493uJ58HXudPe+0eIen6j0lwzIFIMGIEEIIcRdMZhMLjyzks78+Q6Go7VabWR1mUd+jYEX9hAQjQgghRJFdS7zG2O1j2X8to/rzE3WfYGyLsTgZiqd2TWUhwYgQQghRBH/8/Qfv7XiPm6k3cdI7MaH1BHrW7mnrZpVLEowIIYQQhZBuSufjgx/zTfg3ADTwbMCsDrOo6VrTxi0rv6QcvCi0SZMm8cADD9i6GTz00EOMHDmyVF9To9EUqMLmndSqVYu5c+fe9XmEEKXrcsJlnt/4vCUQGXDfAJY+slQCkbskwYgNRUVFMWLECOrWrYuDgwN+fn60bduWhQsXFtsqorawdetWNBoNt27dKpPnK02LFy/G3d09x/Z9+/YxdOjQ0m+QEKLIfr3wK0+veZqjMUdxsXNhbse5jGs5Djtd4VYlFznJMI2NnD9/npCQENzd3Zk6dSqNGzfGaDRy+vRpvv76a6pWrcpjjz2W67Hp6enFtsqoLaWlpWFnVzn/Efv4yMJYQpQXKcYUZu2bxf9OZxRZfMDnAWa0n0HVKlVt3LKKQ3pGbOS1115Dr9ezf/9+nn76aRo0aEDjxo3p06cP69ato1evXpZ9NRoNCxcu5PHHH8fZ2ZnJkycDsGDBAurUqYOdnR333nsv3377reWYCxcuoNFoOHz4sGXbrVu30Gg0bN26Ffi3x2Hz5s0EBwfj5OREmzZtOHXqlFVbp0+fjp+fHy4uLrz00kukpKTk+b4uXLhAx44dAfDw8ECj0TB48GAgY1jl9ddfZ9SoUXh7e9OlS5c7tjO/8wGYzWbGjBmDp6cn/v7+OVZIzW7r1q20aNECZ2dn3N3dCQkJ4eLFi5bn87umuZ0re4/N4cOH0Wg0XLhwga1bt/LCCy8QFxeHRqNBo9FY2pd9mObSpUs8/vjjVKlSBVdXV55++mmuXbtmeT5zaOzbb7+lVq1auLm58cwzz5CQkJDv+xVC3J3zcecZsH4A/zv9PzRoeKnRS3zd/WsJRIpZhQtGlFIkpSfZ5KegCyDfuHGDTZs28Z///AdnZ+dc98leJGfixIk8/vjjHD16lBdffJFVq1YxYsQI3nrrLY4dO8Yrr7zCCy+8wJYtWwp9zcaPH89HH33E/v370ev1vPjii5bn/ve//zFx4kSmTJnC/v37CQgIyHchuho1avDTTz8BcOrUKSIjI/n4448tz3/zzTfo9Xp27tzJZ599dse2FeR8zs7O7Nmzh5kzZ/LBBx8QFhaW67mMRiO9e/emQ4cOHDlyhN27dzN06FDLtS7OawrQpk0b5s6di6urK5GRkURGRvL222/n2E8pRe/evYmNjWXbtm2EhYVx7tw5+vXrZ7XfuXPnWL16NWvXrmXt2rVs27aN6dOnF6ltQlREJrNi97kb/Hz4CrvP3cBkLvqi9EopVp9dzTNrn+HMzTN4OniysPNCRjYbiUFb/numy5oKN0yTbEym5fKWNnntPQP2FGhu+dmzZ1FK5Vgoy9vb29Lr8J///IcZM2ZYnhswYIBVkDBgwAAGDx7Ma6+9BsCoUaP4888/mT17tqUnoaCmTJlChw4dABg7diw9e/YkJSUFBwcH5s6dy4svvmhZfG7y5Mn89ttvefaO6HQ6PD09AfD19c2RL1G3bl1mzpxpeXyntTrudL7777+fiRMnAlCvXj0+/fRTNm/eTJcuXXKcKz4+nri4OB599FHq1KkDQIMGDSzPz549u9iuKYCdnR1ubm5oNBr8/f3z3O+3337jyJEjREREUKNGDQC+/fZbGjZsyL59+2jevDmQ0Qu0ePFiXFwyyko/++yzbN68mSlTphS6bUKUdyazYm9ELNEJKfi6OHAzMY0P14VjjItkoH4zk42d0Ln607/FPdTydsbXxYEWgZ7otHeuhpqYnsjkPyez9vxaAFoGtGR6u+l4O3qX9NuqtCpcz0h5kr33Y+/evRw+fJiGDRuSmppq9VxwcLDV4xMnThASEmK1LSQkhBMnThS6Hffff7/l/wMCAgCIjo62vE7r1q2t9s/+uDCyv4+7lbXtkNH+zLZn5+npyeDBg+nWrRu9evXi448/JjIy0vJ8cV7Twjhx4gQ1atSwBCIAQUFBuLu7W712rVq1LIEI5P9ehajINh6LpO2M3xn+xQYifnyP4V9s4LXlB4mMS8FXc4uR+pX4am4RFZ/K0t/2WvZpO+N3Nh6LzPfcJ2NP0m9tP9aeX4tWo+WNB9/gs86fSSBSwipcz4ij3pE9A/bY7LULom7dumg0Gk6ePGm1vXbt2hnnccx5ntyGc7IHM0opyzatVmvZlik9PT3X9mRNhs083mw23/F9FEX291GYduYmeyKvRqPJt+2LFi1i+PDhbNy4kRUrVvDee+8RFhZGq1atLMdnlfWaZne3bb/Ta2TfXtj3KkRFtPFYJK8uPYgCGv4TeISZmnFdeeS6v2+WfcLjPBi29CBvdq6Xo7dEKcX3p75n1r5ZpJvT8XPyY0b7GTTza1a6b7CSqnA9IxqNBieDk01+CroYkpeXF126dOHTTz8lMTGxSO+zQYMG7Nixw2rbrl27LMMOmbM1sn7zz5okWpjX+fPPP622ZX+cXeYMGZPJdMfzF6SdhTlfQTz44IOMGzeOXbt20ahRI5YvXw7c+ZoWte13andQUBCXLl3i8uXLlm3h4eHExcXl+dpCVDYms2LnmRjG/nSU7JkgHsTTUBNBQ00EjbQXAGikvUBDTQR1NFcs+2Uel723ZOXh04zaOoqpe6aSbk7noeoP8WOvHyUQKUUVrmekvJg/fz4hISEEBwczadIk7r//frRaLfv27ePkyZM0a5b/P4LRo0fz9NNP07RpUzp16sSaNWtYuXIlv/32G5DRu9KqVSumT59OrVq1iImJ4b333it0O0eMGMHzzz9PcHAwbdu2ZdmyZRw/ftzSi5ObmjVrotFoWLt2LY888giOjo5UqVIl130L0s7CnC8/ERERfP755zz22GNUrVqVU6dOcfr0aZ577jngztc0u7p161KjRg0mTZrE5MmTOXPmDB999JHVPrVq1eL27dts3ryZJk2a4OTkhJOTdV5R586duf/++xk4cCBz587FaDTy2muv0aFDh2If1hKiPNp4LJLQNRn5IK/p1/KH5n5u4moJPJ7Xh9FFd9DqmBmGL6weN9JegH86Ej2It/SWnEyL5/19k9Da3UKv1fNWs7cY2GCgrLRbyipcz0h5UadOHQ4dOkTnzp0ZN24cTZo0ITg4mE8++YS3336bDz/8MN/je/fuzccff8ysWbNo2LAhn332GYsWLeKhhx6y7PP111+Tnp5OcHAwI0aMsEwJLox+/foxYcIE3nnnHZo1a8bFixd59dVX8z2mWrVqhIaGMnbsWPz8/Hj99dfz3f9O7Szs+fLi5OTEyZMn6dOnD/Xr12fo0KG8/vrrvPLKK0DBrmlWBoOB7777jpMnT9KkSRNmzJiRo+1t2rRh2LBh9OvXDx8fH6vk3UyZVV09PDxo3749nTt3pnbt2qxYsaJI71OI8i7rrJiPfzvDq0v/zQcZqt/AUvsZrLMfbwk4sgYiYaYHcz3nDMMXrLMfzzr78fTQ7cUMxHsexrHmZ2jtbqExerOk+1IGBQ2SQMQGNKqg81FtKD4+Hjc3N+Li4nB1dbV6LiUlhYiICAIDA3FwcLBRC4UQovhVxs+3rL0gA/WbWWbsxHUy8kEaaiJYZz+e4WmvcU5Vo5H2AjMMX/BO+hCOmWsBGb0eS+1n5NhncvpAopUbAK76aGICtrHTKSM/zym+DqbIXjzToS0hdb0LPOtG3Fl+9++sZJhGCCGETWVO0w0Lj+LrnReAf5NT95vq4cstAMuwjKMmHRQkq4yk7mPmWhxXgf8cFwHAOVUtY9s/QzOBmkjeMyxjj4M943y8uK53xMFsZuyNmzx5+xJfaB1I2r6D4Vs6oXcLYGKvILo3Cii1a1DZSTAihBDCZrL3hPjwb08IQA/dPgbqf7c6Jns+SFbRyp25xieJVu5W29ebmjHfw5V4r4OggTppaVS9+hBfpzTma/7tUcmcdfPq0oMsGNRUApJSIsGIEEIIm8htmu55s79leAUgQgUwPC2jEKGv5hbvGZZbhmU8iKe97ijRyp0ANwfe79kAD2d7ohM6Migmie/2XiI63p0pPMrRe3ainP4GwPnWfXx3K4ynUhrn6FGBjFk3GiB0TThdgvxlyKYUSDAihBCi1GQOyUTFJfPhuhM5punOs7NebuI9wzLL/y8zZlRCzjosc8wQzH8HN6VVba8cQcPrD9flywNr+frUBZQpHmWyIzXqSe5JcMPRfpNlSjBgNSU4c2gnOs6dvRGxtK7jVTxvXuRJghEhhBClIvuQjK8xmABNRjiSGQx8nP4E51QAdTRXGWFYnSM5daA+Y62ozLBjep/GhNTNWR013ZTO3INzWRK+BIAGng14LGAM/70WR7SKZK7xSdrrjjJUv97quKxDQHONT7LzbLAktJaCChOMlINJQUIIUSgV6XMttyEZH27lyAcZYVhl9ThrL4gPNy35IP5uDnkmmV5OuMyYbWM4duMYAAMbDGRUs1HY6ezo3zSjZ2bn2WC+2LKfn00ZS0Bkn5mTOQT0xZb9/HTwiiS0lrByH4xklshOSkrKtYy6EEKUV0lJSUDOpQDKE5NZ8ee5G7lWTt1gas5yUycgZzBQR3PFMmSjISOPY1DnFtTy7si8fBa923hhI6G7QrmdfhtXO1cmh0ym4z3/LnSp02poXceLFoGe/HTwCuFxHhnt+mdoJjP4aaiJYKh+PT+bQiShtRSU+2BEp9Ph7u5uWTDMyangZdmFEKIsUkqRlJREdHQ07u7u6HQ6WzepSO5UObWaNpab5ozaE1fMGatzZwYDWWfF5NcLkinFmMKMfTP48fSPADzo+yAz2s0goErux+i0Gib2CuLVpQe50x1DElpLXrkPRgDL8uyygqkQoiJxd3e3fL6VNZmJqNEJKZYF5wDLtgsxScz97bRlWGaofgND9RuszpE1PyMzOTXTdTxIaPk284L875izce7WOd7e9jZnb51Fg4aXG7/Maw+8hl6b/y2ue6MAFgxqSuiacKLj3Pnc2MOS1CoJraWrQgQjGo2GgIAAfH19i7RqqhBClDUGg6HM9ohkT0SdbOxEupMvAIakaEvlVIX1Srr5VU41KQ3X8bBM0y1IjoZSitVnVzN1z1RSTCl4OXgxtd1U2lRtU+D30r1RAF2C/Pm/sNMkbd/MUvsZVs9nT2iNTuiY/RSiGBQpGJk/fz6zZs0iMjKShg0bMnfuXNq1a5fn/suWLWPmzJmcOXMGNzc3unfvzuzZs/HyKt7oUqfTldl/vEIIUZ7lVyU1zNSM40keVtsKWznV09lAzUd7M88173yQrBLTE/nwzw9Zd34dAK0DWjO13VS8HXPOrLkTnVZDSF1vhm/pRJipmaXN2QOmaOXOPJfKUZa/tBU6GFmxYgUjR460rDr72Wef0aNHD8LDw7nnnnty7L9jxw6ee+45/u///o9evXpx5coVhg0bxssvv8yqVatyeQUhhBBlyZ2qpOamoJVTM0OOqU80LnBy6IkbJxj9x2guxl9Ep9Hx+oOv82KjF9Fqir72a4tAT/RuAXkmtEJGwBQVn8Luczdkum8xK3QwMmfOHF566SVefvllAObOncuvv/7KggULmDZtWo79//zzT2rVqsXw4cMBCAwM5JVXXsl19VIhhBBlS0GqpLbWhlNHXQEyqqRCwSunFiQ5NZNSiuUnl/PR/o9IN6fj7+zPzPYzedA395V6C6MgCa26xGgu/vQdU42yfk1xK1QwkpaWxoEDBxg7dqzV9q5du7Jr165cj2nTpg3jx49n/fr19OjRg+joaH788Ud69uyZ5+ukpqaSmppqeRwfH1+YZgohhLgLd1MlNbdtha2cmpu41Dgm7JzA75czelseqvEQk0Mm42bvVpi3lq/sCa3Z17jxzTIsJdN9i1ehgpGYmBhMJhN+fn5W2/38/IiKisr1mDZt2rBs2TL69etHSkoKRqORxx57jE8++STP15k2bRqhoaGFaZoQQohiUJQqqZPTBxKtMoKC7L0gULjKqbk5HH2YMX+MITIxEoPWwFvBbzHgvgElUsYhM6E1Ixh7CNO6E5CYlmM/me5bvIqUwJr9D0AplecfRXh4OMOHD2fChAl069aNyMhIRo8ezbBhw/jqq69yPWbcuHGMGjXK8jg+Pp4aNWoUpalCCCEKqKhVUnebg3IsOFeUyqnZmZWZr499zaeHPsWkTNRwqcGsDrNo6NWwGN5t3jILo+0+dwNd4jUa/jP0JNN9S06hghFvb290Ol2OXpDo6OgcvSWZpk2bRkhICKNHjwbg/vvvx9nZmXbt2jF58mQCAnL+Qdrb22Nvb1+YpgkhhLgLJrMidE14kauk5qYwlVOzu5F8g/E7xrPz6k4AegT2YEKrCVSxq1LEd1h40QkpDNRvZqR+pdV2me5b/AoVjNjZ2dGsWTPCwsJ44oknLNvDwsJ4/PHHcz0mKSkJvd76ZTKn31akdReEEKK8MpkVi3dGYIyLzNELUNAqqe5OGdN1o5MKVzk1N39G/sm47eOISY7BQefAuJbjeKLuE6VeXdvXxYHJRpnuWxoKPUwzatQonn32WYKDg2ndujWff/45ly5dYtiwYUDGEMuVK1dYsiRjpcRevXoxZMgQFixYYBmmGTlyJC1atKBq1arF+26EEEIUStYckU/sPqGV9qTV84WpkgqZFVgL1wuSyWg2suCvBXxx5AsUirrudZnVfhZ1PerexTssujtN99UA/m7/Vp8VRVfoYKRfv37cuHGDDz74gMjISBo1asT69eupWbMmAJGRkVy6dMmy/+DBg0lISODTTz/lrbfewt3dnYcffpgZM2bk9RJCCCFKQfYckVbak3ddJbWouRNRiVG888c7HIw+CECfen14p8U7OOpttwBqftN9Mx9P7BUkyavFQKPKwVhJfHw8bm5uxMXF4erqauvmCCFEuWcyK9rO+J3IuBQgI/F0nf14eqZOsaxam/UxZBT9ev/RhvgXsEpqQW27vI33dr7HrdRbOBucmdh6Ij0CexTLuYtD9hlGy4yd0Ln607/FPdTydraszSNBSU4FvX9XiLVphBBCFExmDZGdZ6/nmiOSOVOkjuaK5ZiiVEktiHRTOv938P/4NvxbAIK8gpjVfhb3uOas5m1LWaf7Rid0ZFBMEt/tvcTS3/Za1uaRImh3R3pGhBCiksj+Dd+JFIbq1+e5/5/m+3gj7Y0SudFejr/M6D9Gc/zGcQAGNRjEm83exE5nV2yvURKsh7b+7T0K/6f3SIqgWZOeESGEEBa51RAZlPoOP5tCgLxnigzr2YbBIYHFOgSxMWIjk3ZPIjE9ETd7NyaHTOahGg8V2/lLSl7Tn0GKoN0tCUaEEKICM5kVf567wdifjua4id7E1ZIPktdMkeIMRJKNyczYO4OfzvwEQFPfpsxoPwN/Z/9iOX9J2xsRm+/QFkgRtKKSYEQIISqorMMyr+nX8ofmfm7imutN1IN/1wAriZki526d4+1tb3P21lk0aBhy/xBebfIqem35uQ1JEbSSU37+CoQQQhRY9mGZofoNDNVvsNon6030c2OPuy5WlhulFKvOrmLanmmkmFLwcvBievvptApoddfnLm1SBK3kSDAihBAVTF65DfnVEIlW7vTr2Jx5db2LbZrq7bTbfPjnh6yPyEiSbVO1DVPaTsHbsWAL5JU1UgSt5EgwIoQQFcSdpu06atJBQbLKKN2e/Sb6Zpf6xTYsE34jnNHbRnMp4RI6jY7XH3ydFxu9iFajLZbz24IUQSs5EowIIUQFkJkfklnEbOQdchsyFfdNVCnF8pPL+Wj/R6Sb0wlwDmBm+5k84PvAXZ+7LOjeKIAFg5oSuiac6DjrdXje79kAN0c7fj58RQqhFZLUGRFCiHIua36IDzcZqN/MRmMwOk3Gx3v2YRkP4mmvO8oXxp7FWkMkLjWO93e+z5bLWwDoWKMjH4Z8iJu9212fu6zJ7IWKTkjB18WBm4lpfLjOukqrFEKTOiNCCFEpZM8P8f2nhkiYqVme03YBjhmC+e/gprSq7VUs394PRR9izB9jiEqMwqA18FbwWwy4b0Cpr7RbWnRajWX67sZjkfxnuXUNlzBTM8LjPHh16UEphFYAEowIIUQ5tjci1jI0UxCZocH0Po0JqXv3iaRmZebrY1/z6aFPMSkT97jcw6wOswjyCrrrc5cHUgiteEgwIoQQ5ZTJrNh5NgYfbuKbTyEuk9KUyLTdmOQY3t3+LrsjdwPwSOAjTGg9AWeD812fu7yQQmjFQ4IRIYQoh7IWNPvE7hNaaU9aPZ+9EJex3dhinba7++puxm0fx42UGzjqHRnXYhy96/ausMMyeZFCaMVDghEhhChnshc0a6U9mWcNEQ2Aix8/F9O0XaPZyPzD8/ny6JcoFHXd6zK7w2zquNe563OXR1IIrXhIMCKEEOVIXjkK51S1jOTULMmqlpVkH2taLIFIVGIUY/4Yw6HoQwA8Vf8p3mn+Dg76ynujlUJoxUOCESGEKEfulKNQR3PFsm9x5odsubSF93e9T1xqHFUMVZjYZiLda3W/6/OWd1IIrXhIMCKEEOVIQXIU/jTfx6NtHmBoz5C7vgmmmdL4vwP/x9ITSwFo6NWQWR1mUcOlxl2dtyLJrxBaZa8zUlASjAghRDmQWWTrzLUEVhQkRyGowV0HIpfiL/H2trc5EXsCgOeCnmNk05EYdIa7Om9F1L1RAF2C/P8phNaReS4ONKvpwYGLN6UiawFIMCKEEGVc1pkzA/WbgU55FjQrrhyF9efX88GfH5CYnoi7vTuTQybToUaHuzpnRZe9EFqHWVssv7PJUpE1X+V3xSIhhKgEMmfORMalWKqrZtYUya44chSSjclM2jWJd7a/Q2J6Ik19m/JDrx8kECmEvH5nUXEpvLr0IBuPRdq6iWWO9IwIIUQZlV91z0zRqvhyFM7ePMvoP0Zz9tZZNGgYev9QhjUZhl4rt4qCkoqsRSN/YUIIUUYVqLqncr/rgmZKKVaeWcn0vdNJMaXg7ejN9HbTaRnQsnjeSCUiFVmLRoIRIYQoowpa3TPQr2ORb2y3027zwe4P2HBhAwBtqrZhatupeDnKjbIopCJr0UgwIoQQZUyhZ84Usbrn8ZjjjP5jNJcTLqPT6HjjwTd4odELaDWSTlhUUpG1aCQYEUKIMqQ0Zs4opVh6YilzDszBaDYS4BzAzPYzecD3geJ8K5WSVGQtGgl/hRCijCiNmTO3Um4x/PfhzNw3E6PZSKd7OvFDrx8kECkmmRVZAanIWggSjAghRBlQlJkzCwY1LdTMmYPXDvLUmqfY+vdWDFoD77Z8l/976P9ws3e7+zcgLDIrsvq7Odz176yykGEaIYQoA0py5ozJbOKrY18x//B8TMpELddazOowi/s87yv+NyKA3CuySgXWvEkwIoQQNmYyK3aejSmRmTMxyTGM3T6WPZF7AHi09qO81+o9nA3OxdN4kaesFVlF/iQYEUIIG8qasDpEn8yg1He4iWuxzMLYdWUX43aMIzYlFke9I++2fJfH6zyORiPfzm0lc6ZUdEKKrFeThQQjQghhI5kJqwpoqLnFUP0Gfja1zZg9cxezMNLN6fz30H/56thXANTzqMfs9rOp7V675N6MuKPsM6VkvZp/SQKrEELYQEESVjMVZhZG5O1IXtz4oiUQebr+0yx/ZLkEIjYm69XkT3pGhBDCBu6UsOpBPJ8bHynUmjObL23m/Z3vk5CWQBVDFSa1mUS3Wt1K9o2IO5L1au5MghEhhChFmTkDG45FFihhtV/HYN7scm++N6k0Uxof7f+I5SeXA9DIqxEzO8ykhkuNknkTolBkvZo7k2BECCFKSfacgY3G4DuXDa/rk28gcjH+IqO3jeZE7AkAng96nhFNR2DQGUr8/YiCkfVq7kyCESGEKAXZk1VH6lcSZmp2V6Xe151fxwe7PyDJmIS7vTtT2k6hffX2Jf5eROHIejV3JsGIEEKUsMIkq8KdE1aT0pOYvnc6q86uAqCZXzNmtJuBn7Nf8TRYFCtZr+bOJBgRQogSVpCcAZPSWJUNzyth9czNM7y97W3Ox51Hg4ZXmrzCK/e/gl4rH+dlVeZ6Na8uPSjr1eRB/nqFEKKEFTRnILb5W8xrFJBrISylFD+e+ZEZe2eQakrFx9GH6e2m0yKgRam8B3F3MterCV0TTnSce4ECz8pEghEhhChBJrMiJiGVZQXJGWgUkOtsioS0BEJ3h/LrhV8BCKkWwpSQKXg5Vs6ZF+WVrFeTNwlGhBCihGSfPbPM2InreBQqZ+BYzDFGbxvN37f/Rq/RM7zpcJ5v+DxajdSsLI9kvZrcSTAihBAlIK/ZM9eVh9V+eeUMKKX4Nvxb/u/g/2E0G6lWpRoz2s+giU+T0nsTQpQSCUaEEKKY3Wn2TLTKP2fgZspN3t/5Ptv+3gZAl5pdmNRmEq52rqXQeiFKnwQjQghRzAoye2aZsRPDerZhcEigVY/IgWsHGPPHGKKTorHT2jG6+Wj63dtPVtoVFZoEI0IIUcwKOnvG26WjJRAxmU18cfQLFvy1ALMyU8u1FrM6zOI+z/tKte2idGUuDxCdkIJvJU5olWBECCGKSeaN5cy1BFYUouLm9aTrjNs+jj1RewB4rM5jjG85HieDk03ehygd2ROcJxs7oXcLqJRTfSUYEUKIYpD9xgKdClTqfeeVnby7411iU2Jx1DvyXqv3eKzOY7Z6G6KU5JXgHB7nwatLD7JgUNNKFZDI3DAhhLhLmTeWyLgUfP+5sfj+ky+SXWYH/HuP1mfeobkM+20YsSmx1Peoz/ePfi+BSCWQX4Jz5rbQNeGYzAVdQKD8k54RIYS4CwVZdyb77JnhXb347vI4/rr+FwD97u3H6OajsdfZl06jhU0VJME5Os6dvRGxlaYmiQQjQghxFwp0Y1HuGNuNZV5db27rDjFx92skpCXgYnAhNCSULjW72KTtwjYKmuAcndCxtJtmMxKMCCHEXSjojaW6Twi/X1/I96e+B6Cxd2Nmtp9JdZfqpdpeYXu+Lg5MLkSCc2UgwYgQQhRRQdediTKY8Ts/isuJZwF4oeELvNH0DQxag62aLmyoRaAnercAwuM8Mob3CrE8QEUlwYgQQhRBQdedMbgewiFgNZcTU/Gw92BK2ym0q97Oto0XNqXTapjYK4hXlx4ke0WRvJYHqOhkNo0QQhRSQWbPmDXpOAT8gEO1FaBNpbl/c3587EcJRASQsYLvgkFN8XdzyJHgXNmm9YL0jAghRKEUZN2ZCdruXKm1GoN9LBq0vPrAMIY2HopOqyvVtoqyrXujALoE+f9TgbUj86QCqxBCiILIb/aMMituu59gle9p0BrxcfRlRvvpNPdvbrsGizJNp9VUmum7+SnSMM38+fMJDAzEwcGBZs2asX379nz3T01NZfz48dSsWRN7e3vq1KnD119/XaQGCyGELZjMit3nbrDhWEaOyDr78ayzH2+ZNfOe3Zc0qP5/3PTfDloj9V2a8+NjP0ggIkQBFLpnZMWKFYwcOZL58+cTEhLCZ599Ro8ePQgPD+eee+7J9Zinn36aa9eu8dVXX1G3bl2io6MxGo133XghhCgN2ZNVNxqDrWbPPOv8DS/6BJJslwxKiz66PaNCJuDpUHlmQwhxNzRKqULVm23ZsiVNmzZlwYIFlm0NGjSgd+/eTJs2Lcf+Gzdu5JlnnuH8+fN4ehbtH2Z8fDxubm7ExcXh6upapHMIIURRWK8hEsE6+/H0TJ3yz7ozihqev3DbdxdGjQZzmgcpV/rja1+fHe88XCnH/oXIqqD370IN06SlpXHgwAG6du1qtb1r167s2rUr12N++eUXgoODmTlzJtWqVaN+/fq8/fbbJCcn5/k6qampxMfHW/0IIURpyy9ZVaNLxLH6N9zy241Ro8ExvjZJEcMxp9xT6aZlCnG3CjVMExMTg8lkws/Pz2q7n58fUVFRuR5z/vx5duzYgYODA6tWrSImJobXXnuN2NjYPPNGpk2bRmhoaGGaJoQQxS6vZNWqzge54h+OyZAIZh1tYqpx4MZT+Lt5VMrl34W4W0WaTaPRWEf8Sqkc2zKZzWY0Gg3Lli3Dzc0NgDlz5vDUU0/x3//+F0dHxxzHjBs3jlGjRlkex8fHU6NGjaI0VQghiix7qXcTsMDdlb3uezFrNASmpfNAZBA0eZ9PGgVU2mmZoniZzOqf6b4p+FaS6b6FCka8vb3R6XQ5ekGio6Nz9JZkCggIoFq1apZABDJyTJRS/P3339SrVy/HMfb29tjby+qVQgjbyV7q3ahPJLXqem44xQLgfKs+6dfassHsw7xGATI9UxSL7MnSk42d0LsFVPget0LljNjZ2dGsWTPCwsKstoeFhdGmTZtcjwkJCeHq1avcvn3bsu306dNotVqqV5cFooQQZc/GY5G0nfE7C9ftYqB+M5FOsfxdaxU3nGJxNJvxutqRqMgXOWmuj94toFKtISJKTl6VfaPiUnh16UE2Hou0dRNLTKHrjIwaNYovv/ySr7/+mhMnTvDmm29y6dIlhg0bBmQMsTz33HOW/QcMGICXlxcvvPAC4eHh/PHHH4wePZoXX3wx1yEaIYSwpaw3BB/NDcw+v5N+zw9o9YkYUrxYcTUK5/j6lXYNEVEy8kuWztwWuiYck7lQE2DLjULnjPTr148bN27wwQcfEBkZSaNGjVi/fj01a9YEIDIykkuXLln2r1KlCmFhYbzxxhsEBwfj5eXF008/zeTJk4vvXQghRDHIekPQGGK5Vu0XFjlmTEdMi22FfXQIP+u2WdYQqehd56L05FfZN3Pxxeg4d/ZGxFbIIcFC1xmxBakzIoQoDbvP3WD4Fxuo4nKQGwHbULo0XExm6l57kBvxrYCMtWeG9WzD4JBA6RERxebnw1eI+PE9S7J0buYanyTwqck8/kC1UmzZ3Sno/VvWphFCVHqZsxfWHr1IYMDXnHC/DsD9KanMvB5DNePfYL8GyLgheLt0lEBEFCtfFwcm/5MsDRk9IjMMX/BO+hCOmWsBGYHwPBcHG7ay5EgwIoSo1DJnL6QlH6NK9WXEumcUZHS50YSqN3ypZviq0twQhO20CPRE7xZAeJxHRo7IP0Mzx8y1OK4C0QD+bg4VNlm6SAvlCSFERZCZrHpd7SI9cDGx9slojQ4kXXqBq9H9CTfXBv69IYSrQJk9I0qETqthYq8gALL3uVWGZGkJRoQQlZLJrJi09hD2Af/Dsdr/UFojLZJT8L/wFKbEe3PsXxluCMK2ujcKYMGgpvi7ORCt3JlrfNKSLL1gUNMKnSwtwzRCiEpp5bF9JHnOwGAfC0pDvRu1+TxhC++ar6PXRABgUhqrG4LMnhElrXujALoE+f9TgbUj8ypJBVaZTSOEqFSUUvxw+gem7ZmOUaXjazQy/foNmqek5th3rvFJYpu/RQ8p9S5EkchsGiGEyCY+LZ6JOyfx26WMKtLahDoYokKYZHLMe/aClHoXosRJMCKEqBSOXD/C67+N4mbaNVBaWsRU5a+YPpzkn2TUSjZ7QYiyRBJYhRAVmlmZWXxsMc+uf46badcwp3nid/Fxvrq9Cz9NXK7HSLKqEKVLekaEEBVWbEos43eMZ8eVHQCkxzcmJbIP9ioSsi0Mnn32giSrClF6JBgRQlRI+6L2MfaPsUQnR2PQ2qGudKRGXE00ROa+7odyx9huLPPqekuyqhClTIIRIUSFYjKb+PzI5yw8shCzMhPoFkhPvzEkn/qKkfZfWO07w/Dv47nGJwn06yjJqkLYgAQjQogKIzopmrHbx7Ivah8Avev2ZlyLcfx1KZnhlXjdDyHKOglGhBAVwva/tzN+x3hupt7EUe/I+63ep1edXpjMCrM5iXRHX44ne2TsLDNnhChTJBgRQpRr6aZ05h2ax+LjiwG4z/M+ZrWfRS23WpZF8IxxkQzWb2YZnbiOh9XxMnNGCNuTYEQIUW79nfA37/zxDkdijgDQ/77+vBX8FvY6e8sieApoqLnFSP1KwkzNuK48ZOaMKHdMZvVPifgUfCtgiXgJRoQQ5dKmC5uYtGsSCekJuNi58GGbD+lUsxOQ8cEduiacvNa6uI4Hiw39+e/gprSq7VWhPtRFxZO1h2+gfjOTjZ3QuwVUqCBaghEhRLmSakpl1r5ZrDi1AoAmPk2Y2X4mVatUtXx73Hn2Osa4SBpqbgHkPpU32R2tRiOBiCjT8urhC4/z4NWlByvMar4SjAghyo3zcecZvW00p2+eBuClRi/xnwf/g0FryPHtcYg+haH69VbHZ5/KG53QsVTbL0Rh5NfDp8jIdwpdE06XIP9yH1RLMCKEKBd+PvszU/ZMIdmYjKeDJ1PbTiWkWgiQ+7fHQanv8LMp43mZyivKo70RsXfu4YtzZ29EbLmvjyPBiBCiTEtKT2Lyn5NZc34NALWrPMCwoPdpFVAPk1nx57kbjP3paI5vjzdx5bgKzHggU3lFORSdkMJA/WZG6ldaba+IPXwSjAghyqyTsScZvW00F+IvgNKgv96WDmeSmLBvL+OcLgBgSIrmNf1a/tDcz01cc/326EG85ZwylVeUF74uDkyuJMX6JBgRQpQ5Sim+O/k9s/bNwqjSMae7knKlP/elwCj78Ww2BXM8KaNeSEPNLYbqNzBUv8HqHFm/PX5u7CFTeUW50yLQE71bAOFxHhk9fxW4h0+CESFEmRKfFs8rG97h2K2MlXZr3HYj+urzJJqqgiYiz+OGp73GOVUtz2+P/To2l0XwRLmi02qY2CuIV5ceJPtfbEXr4ZNgRAhRZvx1/S/e+O0tbqZdQykdHtEtWJe0ghHqPOc0qZYhmNbacOqoKwD4/pPc56hJBwXJygDk/Pb4Zpf6FeJDW1Qu3RsFsGBQU0LXhBMdV3GL9WmUUnnVBSoz4uPjcXNzIy4uDldXV1s3RwhRzNJNJqbsWMiqC19gxoQ5zZPkKwNokJrOOvvxRTpnz9QphP+TwFpRajGIyqu8VmAt6P1bekaEEDb146FwJu+diMnhJACOcXXwutYOrTnd0hPycfoTnFMB1NFcZYRhNZPTBxKt3ICMnpH3DMstwzIexNNed7RCfnsUlZdOqyn303fzI8GIEKLUZX7LW/bXZrbEzkXrkIDGrOP92GhSb9ZhkOEDq/1HGFZZPd5tDrJM2234Tx5J5rAMwDFDsJR6F6IckWBECFGqNh6LZNKao6QYfsLkvQutAUypvlS72p6+zGGQqQXfmToDOacy1tFcYZ7d/DzPnRl2TO/TmJC63qXwboQQxUGCESFEico61n0hJomPt+7Dvur36J0zejQCbtVAd60L92uugAGqaWO5ac4YW75izpiymNnrkXW1XXenjETV6KSKm9QnRGUhwYgQosRkXy9miUMtHAPXo9UnoTEZmHYjkp6Jl8Bup+WYrPVBlhmtK0tex4OElm8zL8jfUlshI9DpyLxylNQnhLAmwYgQothk7wWZ+9tpFBCkuUG67++ku7miBQwp3rSJvI+eLM+RnJq1PohJabiOB9HKnYA8ej0qclKfEJWFBCNCiCLLHnx8t/cSpviMXpBlxk4oPNAYbnCt2i8sccwYehkYl8Co2EvYcRDImZyaNRHV09lAzUd7M89Vej2EqMgkGBFCFEn2IZhlxk5cx8Oyau5+Uz2quBzghv8fpOnScDWZaBzViKu36/A2OafkZk1OzQw5pj7RWPI/hKgEJBgRQhRIXkMwmcFHmKkZ11XGejEpGg2agHXEuGUsUPdASiozo2MIMF0Bu4zzZeaD5JacKomoQlQuEowIIe4ot14QhYfVPnU0GeXZazkcY0BVP87YxYOCe2LrUu+GLwGG763yQTyIZ6B+i+X47MmpMiQjROUhwYgQIleZPSFh4VF8vfMCgNUQjC+3AP6tkmo3n9VVnJnm5UGy1g5Pk4lp0Tdok3KJZRrrXhAAH25aekLySk4VQlQOEowIIXLI3hPiQ0Y+SKYeun0M1P9ueZyo0fChtyfrqjgD0Co5GeerPZiSfi9g3QuiARQwqHMLannLlFwhiqK8rlWTFwlGhBBWNh6L5NWlB63yQc6b/Tmnqll6QSJUAMPTXgPA4PA3p6ru46LBAEpDYEx9PrsdRq/0e3PtBZF8ECHuTvYvC5ONndC7BZTrf1cSjAghLExmReiacLIv5Z29BPt7hmUo4DuXKsz09MSkNaBLdybhyrOYUhRa+zBAekGEKG65fVkIMzUjPM6DV5ceLLcrVEswIoSwdPnuPHsdY1wkDTW3APJcNXeUaTA7/M6T7JLx/EOJSZy58jy3TLWIll4QIUpEXl8WICPo1wCha8LpEuRf7gJ+CUaEqOSyd/kO0acwVL/eap+shckO29vxu89eTIbbKKXDcO0haifc4k+TP/6u9vRvIb0gQpSEvRGxuX5ZaKS9AOaMfaLj3NkbEVvuKhNLMCJEJZZbl++g1Hf42RQCWK+ae9RcE4PXH1z0PoFJcxtzmhfJV/ozom1Hank7S/AhRAmLTkhhoH4zI/UrrbZnXc9prvFJohM6Zj+0zJNgRIhKKq8u35u4WhJPM79t/aXx5WL1LeirnAE0aOMa4Jz0PB89VT7Hp4Uoj3xdHJhs7ESYqRlg/WUhs35PtHJnnouDDVtZNBKMCFFJFaTL14N49jjYE+nzE3p9EspsoHmVFxgS0p+Wtb2kF0SIUtQi0BO9WwDhcR4ZXyL++XeaWb9HA/i7OVhWtC5PJBgRohIymRU7z8bk2+VrBIa6NuNlTz/QJKFN9+fNJh8wuHlrG7RYCKHTapjYK4hXlx4k+9eAzMcTewWVyy8JEowIUclkTVgdok9mUOo73MTVqsv3sNabG1U3k+oUBUBbv57MengCVeycbNx6ISq37o0CWDCoKaFrwomOqzjrOUkwIkQlkj1hdah+Az+b2mbkiPzT5bvPUcO1gFVo9Ulgtmda+1AerdPTpu0WQvyre6MAugT5/1OBtWLMXJNgRIhKIr8aBQAKE7M83bnuthEtYEquxrvBk3m0TnBpNlMIUQA6rabcTd/NjwQjQlRwdypo1kh7AaMunpiqv7LE0RUAw+0OTGs3mkfvr2mjVgshKhMJRoSowApS0Kyj+zL+8PYkWavF3qSjjddb/N+zg8p1l68QonyRYESICupOBc0a6M7h4reKH11dALBP8ocrT9C/wyMSiAghSpUEI0JUQHcqaKa1u0ZktYOkO7iAgtQbHbl9vTP+bs7lskaBEKJ8k2BEiAoor4JmDbUR3HY5yU2/naRrjXgZTeiuPsb5xHZA+a1RIIQo3yQYEaKCyaugWaJGg7bqKmKrOANQI9GZttfqsiq1UbmvUSCEKN8kGBGiAsmroFkNxyNcrvoHlwwGUBrcrjcn+sZD2HVswby63uW+RoEQonzTFuWg+fPnExgYiIODA82aNWP79u0FOm7nzp3o9XoeeOCBorysECIfmQmrkXEp+P5T0CwWF067X2VnjT1cMhjQpVch6eIrXLnxJAa3qrzZpT6t68gaM0II2yp0MLJixQpGjhzJ+PHjOXToEO3ataNHjx5cunQp3+Pi4uJ47rnn6NSpU5EbK4TIXW4Jq3FaLTHVNuHgvwa0Zh5KTMI/og/m5FqA5IcIIcoOjVIqr4KMuWrZsiVNmzZlwYIFlm0NGjSgd+/eTJs2Lc/jnnnmGerVq4dOp2P16tUcPny4wK8ZHx+Pm5sbcXFxuLq6Fqa5QlRoWQuardiyH99/ElarOR3iQtVdROr1oLRUjX6AJ+NT+dL4KHq3AMkPEUKUioLevwuVM5KWlsaBAwcYO3as1fauXbuya9euPI9btGgR586dY+nSpUyePPmOr5OamkpqaqrlcXx8fGGaKUSlkFtBs5f16/nazZVPPdwwafTck57OzOgYGqZdYC5P0q9jMG92uVd6RIQQZUqhgpGYmBhMJhN+fn5W2/38/IiKisr1mDNnzjB27Fi2b9+OXl+wl5s2bRqhoaGFaZoQlUpuBc36GYfzhW8bUpz/BuCR24mkRz3GGGNdAKKVO/Pq+kggIkQFldlTGp2Qgm85WzyvSLNpNBrrN6eUyrENwGQyMWDAAEJDQ6lfv36Bzz9u3DhGjRpleRwfH0+NGjWK0lQhKpzc8kP+dLDnpM+vmPXJKLMBr2ttmJ7yLY8a63JcBaIB/N0cpKCZEBVU9p7SycZO5WpItlDBiLe3NzqdLkcvSHR0dI7eEoCEhAT279/PoUOHeP311wEwm80opdDr9WzatImHH344x3H29vbY29sXpmlCVHi5LXinMGPw2cxQT1+UJhlDqgdeVzrjl6ZH888/ocyvCZKwKkTFlFtPaZipGeFxHry69CALBjUt8wFJoYIROzs7mjVrRlhYGE888YRle1hYGI8//niO/V1dXTl69KjVtvnz5/P777/z448/EhgYWMRmC1G55JYf8pj9r7zj68VBBwdAQ5/427wTexlHzV98ruvBXOOTRCt3KWgmRAWW19IPAIqMLyOha8LpEuRfpr+MFHqYZtSoUTz77LMEBwfTunVrPv/8cy5dusSwYcOAjCGWK1eusGTJErRaLY0aNbI63tfXFwcHhxzbhRC5y+1bTy/DIP4bUBuzLhW9ScfUG9fYemsgT5lrARn5If06NpeCZkJUcHkt/dBIewHMGftEx7mzNyKW1nW8bNLGgih0MNKvXz9u3LjBBx98QGRkJI0aNWL9+vXUrFkTgMjIyDvWHBFCFEz2bz0KEzM83bng9kfG88nVCLjajh7amXxqrmWVH/Jml/oShAhRwUUnpORY+gFghuELy//PNT5JdELH0m5aoRS6zogtSJ0RURmZzIrFOyNYuG4XvppbpBviSKy2nniHjKnuLrGNcb/eEk+VyFL7GfRMnUK4yhj6LA9jxEKIu7f73A2Gf7HBUmOokfYCMwxf8E76EI5l6SmdN6SHTXpGSqTOiBCidGTNEfnE7hNuulwi1NuTRK0WN5OJD2Ni6Zi0DuzW8blR8kOEqKxaBHqidwsgPM4jowf1n6GZY9l6Ssv6TDoJRoQoY7LmiDTQXmejTzQ/uXoD4JHkzv9ijvN/KS8yW/JDhKj0dFoNE3sF8erSg2T/l1+eZtIVaaE8IUTJyJojorW7xrVaq/jJtQooSI15mCqX+uJvMlm+9YSrQPRuAbLgnRCVWPdGASwY1BR/NweilbtVT2l5GbKVnhEhyoCsNUTS465S030PN/12kq414m00UTuyJVGJ9aijuWI5pjx96xFClKzujQLoEuT/TwXWjsyrDBVYhRDFJ2t+SF+7TdSsfp7TLnEAtElKZsr1G3ibV4J9Rrb8n+b7JD9ECJGDTqsp09N38yPBiBA2lDU/pJ7DGbZV38slgwGUBrfrzXG75Y634cscmfHDerZhcEhgufnWI4QQ+ZFgRAgb+Tc/RGHw2EWU7zrQGtClVyH+yrMkJNfkuCYCyJkZL4GIEKIikWBECBvIrCGSnnAe3+q/kOxyAYCHE5PQRnbktNEMmgg8iLccIzkiQoiKSoIRIUpZZo5IWto+qtReTqxBYVCKt2JvMiD+NhrdN6DL2FdqiAghKgMJRoQoRRk5IvsxeG3DPmATsRqFY5oTble6cyQ9kYG5VE6UGiJCiIpOghEhSonJrJi4bg8ONZagr3IGgEduJ3Lk6gucMN2LXR75IbLGjBCiopNgRIgSlllD5Ifjm0nynoNen4jGrKdR9H1MT17PWK6i1dhJDREhRKUlwYgQJWjjsUgmrTlKit2PmLx2gx7qpqXxUfRVaqefB6xX15QaIkKIykiCESFKyMZjkbz2/e/YV/sevdMFADxv1iEl+iHeUPo8V9eUGiJCiMpGghEhipnJrPjz3A3eWf8dToEr0OiT0JjsmHnjKp/EvsJxFZixYx6ra0ogIoSobCQYEaIYZQzLHCHF4TvMfgfQAHbJPrSJuo/uLGOL9oIlCJEaIkIIkUGCESGKycZjkby2YhMO1b5D55iRjPpsXDxvxl7CwAHAOj9EaogIIUQGCUaEuAuZM2Wi4pIJ3bIMp8Af0OhS0ZrsmXf9Mj/FvUhvVS3P/BCpISKEEBKMCFFkmZVU0+MvUTNgCSbvGDSAfZI/baLupYPmDOs16aAgWRkAqSEihCg9mV+WohNS8HVxKNNfeiQYEaIIMlfb1dhdwz1wMaftb4KCV27FMezWJfSavYD1sEwmyQ8RQpS0zC9LxrhIBuo3M9nYCb1bQJkdDpZgRIhCsMyU+ekIeve92PutIV2bjrfRhOvVzmxIqs8GyDEs40E87XVHJT9ECFHiMr8sKaCh5hYj9SsJMzUjPM6DV5ceZMGgpmXu80eCESEKyDIsk3CBulUXcdolDgDvRC9+jPmLmal2HPtn3ytmT+DfYRmAY4Zg/ju4Ka1qe0mPiBCiRJjMitA14ahcnlNk9MyGrgmnS5B/mfockmBEiDxkHW+9EJPE3N9Oo3H4G7fAJZy2i0enFG/cvMULcZfQYj0ks8zY0fL/mf/cp/dpTEhd79J9E0KISmVvRCzGuEgaam4BGb20lv/+U1YgOs6dvRGxtK7jZZM25kaCESFykX28danxYfQe4dj7bcCoMRFgNBJwpQMrkxtxOpeZMial4ToeMiwjhChV0QkpDNRvZqR+pdX2rF+W5hqfJDqhY/ZDbUqCESGyyT7eOthuNT/4R+LgklE7xC/Blx9iDzA1tQox5JwpA+DpbKDmo72Z51q2M9iFEBWLr4sDk42dCDM1A3Lmr0FGWYF5Lg42bGVOEowIkUX28dYUx0iequZPvP4KBqUYfeMmzyRcQkP+M2WmPtFYekKEEKWuRaAnercAwuM8Mj7H8lh2okWgpw1bmZMEI0Lwb37IzrPXMcZFEqSJJd7rMNe996M0eqqkOXLf1WB2p7pxTnOL9wzLZaaMEKLM0Wk1TOwVlFF6INtzZbmsgAQjotLLnh8ywD6B4wF/cdkxoxvz0duJvBdzGWd1Cuz+TU6VmTJCiLKoe6MAFgxqSuiacKLj3MvFshMSjIhKLXt+SIsq6/mPTw2Megc0Zj2No+9jWvJ6q/FWD+IZqN8CyEwZIUTZ1L1RAF2C/P+ZEdiReVKBVYiyyTo/xMQt7z0M8/JBaVIxpfiTcmUAt9ITwX69VS+IDzfLxTcNIUTlptNqytT03fxIMCIqrcz5+PcaLhNTdTPxTtcADffcqoH5Wle0KhEP4i37a8goGjSocwtqeZf9bxpCCFFeSDAiKiWTWbHzbAwhbj+yz+80aTodVcxmJl2/QbekS2C3E4DPjT2kF0QIIUqYBCOi0tl4LJJJa46Q4vAdpqrnAB12yT4ER91HN5blmI/fr2Nz5tX1ll4QIYQoIRKMiEpl47FIXluxCYfqy9E5XAXA5cb9XI1+mvOay2Cfcz7+m13qSxAihBAlSGvrBghRWkxmxXu/fYtT4Dx0DlfRGh34b1Q0Htdbkz0uL8vz8YUQoqKRnhFR4ZnMiu1nr/Dx4ZmkemxBA9gnBdAmqj7tNadZ988CUh7E87nxEckPEUKIUibBiKjQNh6LZMKGzaS4fYmyvwEKht2K45Vbl9Br9gA5F5Dq1zGYN7vcKz0iQghRSiQYERXWhqNXGb7uM+z9fkGjNeJjNOJ6tSvrk+qxnnwWkKrrI4GIEEKUIglGRIVjMiu2nLrEO9vfwyHgMAAOt2vww43dPJdcz1K8rLwsICWEEBWdBCOiQtl4LJIJGzeS4vY1yvkWKA3u11vQ+pYbXoadNPonPwTIUdAMJGFVCCFsQaOUUnfezbbi4+Nxc3MjLi4OV1dXWzdHlCGZq+1GJ6QQcT2R+Ye+xs53IxqNiarpRmZej6FJalqux35u7EESjiwzdkLvFiAJq0IIUcwKev+WnhFRbmVdbbeP3a9855uAvd85ABzjA/nh5h+8l/Iq51S1PPNDpKCZEELYngQjolzJ7AkJC4/i650XAKjjdIKwavsx6/Vg1uER3ZpW8U64GrbhqEkHBcnKAEhBMyGEKIskGBHlRtaekIH6zXjTkXivw0T7/AYaPZ5pBj67fon70pZDRuxhNW03k+SHCCFE2SLBiCizsuaDXIhJYu5vp1FAQ80tBtqv5qeqEaQ63wDgsYTb6KO6Mt/cDQBfzS3eMyy3DMt4EE973VEpaCaEEGWQBCOiTMreC7LM2AmFBwDJzpd5qmoAt3Q3cDSbGX/jJo/fTgT995bjlxk7Av8OywAcMwTz38FNaVXbS3pEhBCiDJFgRJQZueWDNNTcYqR+JftN9fDhBnE++7nudRjQ4ZnqSN2rLbmQHg+G1VbJqR7EM1C/Bfh3WGZ6n8aE1PUu7bclhBBlRtYeZ18XhzKTvC/BiCgTsveE+NCJ6//0hAC0sd/FroDTXHawB+Dp+ARGx17GgVOW/JCsvSA+3GSu8UkZlhFCiH9k/5ydXIbKGkgwImxu47FIXl160JIPMlK/kvNmf8uU3M1OjnzpfYV0nT16k54W1+ryfuomS09IHc0V5tnNBzJ6QRQwqHMLanl3ZF4ZivyFEMJWcvucDTM1IzzOg1eXHmTBoKY2DUgkGBE2kdlVGBWXzIfrTpC98t48u/mkauAjDw9GuvkARhqnpDLz+hW2pdQE/b89IdHKXXpBhBAiDyazInRNeI7PWcj48qYBQteE0yXI32Zf3CQYEaUue1ehrzGYAE3GP5NG2gsAfEAPNvhf5rZDRsn2wNha3IruzCvorPJBAK7jQULLt5kX5C+9IEIIkc3eiFiMcZE01NwC/v2czbo8RnScO3sjYmldx8smbZRgRJSq3LoKfbjFQP3vln3WODux1vsoyVotHiYTk6/fYMatVwjPJR8kQHpChBAiX9EJKQzUb2akfqXV9qx1mOYanyQ6oWNpN81CghFR4u40JLPB1Jzlpk6YNeko/41ccbsKgH1iVRpEBtFe9zUzkHwQIYQoCl8XByYbOxFmagaQ5/IY81wcbNZGCUZEiSrIkEw1bSzXDOnEVP0No/0ttErhEhPM3zF9OEgcc9UtyQcRQogiahHoid4tgPA4j4wvg/8MzWRfHqNFoKfN2ijBiCgxBRmSUUAzz+/4zdMDo1ZDFaOOedevMikumL/RSj6IEELcJZ1Ww8ReQby69CDZP0HLyvIYEoyIEpFX9nbmkAzAvfozaPzXsKmKMwAOt2tQ5erD7NQcl3wQIYQoRt0bBbBgUFNC14QTHVf2ZiAWKRiZP38+s2bNIjIykoYNGzJ37lzatWuX674rV65kwYIFHD58mNTUVBo2bMikSZPo1q3bXTVclF0ms2Lxzohcs7eraWO5aXYl1SGabVX3kGbnDEpLSnR3EmLbYnK2p+aj/ZnnKvkgQghRnLo3CqBLkP8/FVjLVt6dRimV29TjPK1YsYJnn32W+fPnExISwmeffcaXX35JeHg499xzT479R44cSdWqVenYsSPu7u4sWrSI2bNns2fPHh588MECvWZ8fDxubm7ExcXh6upamOaKUpY1R+QTu09opT1p9bwZ+NbVhbme7hg1GqqlGzFeeYpzya0AbF54RwghRPEp6P270MFIy5Ytadq0KQsWLLBsa9CgAb1792batGkFOkfDhg3p168fEyZMKND+EoyUD9Y5IhGssx/P8LTXLJVUx9p/RR+vB7le5ToADvG1eeq6Kz+mdSszJYmFEEIUn4Levws1TJOWlsaBAwcYO3as1fauXbuya9euAp3DbDaTkJCAp2feWbupqamkpqZaHsfHxxemmcIG8soROaeqcVwFkmJ/laeq+XNdfx1l1pN67VH06W2p/0QjGZIRQohKrlDBSExMDCaTCT8/P6vtfn5+REVFFegcH330EYmJiTz99NN57jNt2jRCQ0ML0zRhI5k1RHaevZ5rjkhDbQRxHgeI9t4PGj36VHfirzyHObUq0wbdLz0hQgghipbAqtFYf4NVSuXYlpvvvvuOSZMm8fPPP+Pr65vnfuPGjWPUqFGWx/Hx8dSoUaMoTRUlKHsNkSH6FIbq11uej9bpuOH/C3GOGYV0WsfrOHj1BXxdazKxrwzJCCGEyFCoYMTb2xudTpejFyQ6OjpHb0l2K1as4KWXXuKHH36gc+fO+e5rb2+Pvb19YZomSlluNUQGpb7Dz6YQAPyq7ONcwD5idTo0Zj2eUe04FNeCV3u2YXBIoAzJCCGEsNAWZmc7OzuaNWtGWFiY1fawsDDatGmT53HfffcdgwcPZvny5fTs2bNoLRVlRl75ITdx5bi6h7M+J9hX/SCxOh2GFC8SIkZwMS4jSVUCESGEENkVephm1KhRPPvsswQHB9O6dWs+//xzLl26xLBhw4CMIZYrV66wZMkSICMQee655/j4449p1aqVpVfF0dERNze3YnwrojTkV0Oktt0JogJWkeYYDUC/+AR2Rb7ETbMPYPsKf0IIIcqmQgcj/fr148aNG3zwwQdERkbSqFEj1q9fT82aNQGIjIzk0qVLlv0/++wzjEYj//nPf/jPf/5j2f7888+zePHiu38HotTkV0PkNydHDnhvJU2nxcVkpu21mlRJ9OO62bvMVPgTQghRNhW6zogtSJ0R28urhshZ/ND4beKS+2UA7JJ98b7amdi0GvTr2JyQut4ybVcIISqpEqkzIiqXzGm7UXHJfLjuRI4ckZMGZ/6uuh6dQyQALjeacDX6aWLR4e/mwJtd6ksQIoQQ4o4kGBG5yj5t19cYTIAmIxxppL3AmipORHv9iE5rwmC0Y17M30y71YpIdIDkhwghhCg4CUaERWZPSFh4FF/vvAD8O23Xh1sM1P9OkkbDFC8P3nXxBky0SE5h2vUrnE+vV6ZWgBRCCFF+SDAigJw9IT504joeluc3mJqzWP8AMQG/YbS/hVYp6tyoS2TMw7yAlmjlzjCpISKEEKIIJBippDJ7QaITUrgQk8Tc305bFTA7b/a3LHCnAKPHX0T5nAKtCX26I5/HXGBS3DDCVSAawN/NQQIRIYQQRSLBSCWUvRdkmbETKksvCMA8u/kAxGs1vOXtzXHncADaJyXzQGQtmmtPAZAZekiOiBBCiKKSYKSSya2M+35TPXy5BfxbwOzj9Cc4ZO/Aqar7uG1IQ6M0uEW3IuJmY84pLYl6b8kREUIIUSwkGKkkTGbFn+duMPanozmm6PbQ7WOg/nfLYzPg5vUbf3m6Y9RoqJZuxHilL2eTWwLg6Wyg5qO9mefqIDVEhBBC3DUJRiqBrMMyr+nX8ofmfm7iaukFiVABDE97DQBX/XVuBGxlh5MjAD7xAfwQu5dnUnwtQzJTn2gsPSFCCCGKjQQjFVz2YZmh+g0M1W+w2uc9wzIA9jnYM9ynKrf1jmjMOpKvPUb8rXp8pa8mQzJCCFEBZZ3M4Otiu95uCUYqoDtVTh2e9pplpswMwxeMSX+ZXR43iPM+CBoTgWnpJF95ijMpwcQACS3fZl6QvwzJCCFEBZJ9MsNkYyf0bgE2+dIpwUgFc6fKqQCOmnRQkKwMROt0/O57jFTnqwDobjWmXYye/6XXIUB6QoQQokLKbTJDmKkZ4XEevLr0IAsGNS3Vz34JRiqQ3P64MiunZjXD8AUA2x0deMrHn1TdVZTJjpSoJ3ijxdPU8nZmng2764QQQpQck1kRuiY8R685gCKjZEPomnC6BPmX2j1AgpFy7k5DMhtMzVlu6gRgGZYZnf4SO72ukeB1BABNii9OcS8z+7GHpBdECCEquL0RsRjjImmouQX822veSHshYzolEB3nzt6IWFrX8SqVNkkwUo4VZEimmjaWm+aMZZuvmD35W6/jd/+/SHOMBkATH8K8bhNoVzdAekGEEKISiE5IYaB+MyP1K622Z/aaA8w1Pkl0QsdSa5MEI+VUYYdkAN53aM7TvgGk6aJRJgdSIp/i08ef46H60hsihBCVha+LA5ONnQgzNQP+7TV/J30Ix8y1AIhW7sxzcSi1NkkwUs7kV7wstyGZd9KHcFRV56bvbm57hANaNElVcUp4mdmPt5VhGSGEqGRaBHqidwsgPM4j4z7yz9DMMXMtjmdZb6xFoGeptUmCkXLkTsXLsg/JABzSu/F31XXoHKIAaOvzNAPqDaVNHV8ZlhFCiEpIp9UwsVcQry49SPa7gK3WG9MopXJLqC1T4uPjcXNzIy4uDldXV1s3xyash2UiWGc/Pt/9lxk7UsV9L+97+aG0RsxGZ4beN54RIb1Kp8FCCCHKtNwWTS3uOiMFvX9Lz0g5kNc0rOzFyzLH+8yadG747SDZ3Qswokutx/vNP+DpBxvZovlCCCHKoO6NAugS5P9PBdaONi3pIMFIGZY5bXfn2eu5TsPKWrwMMsb7TtjZ41BtJTr762jQ8tg9g5nQ7g3s9PKrFkIIYU2n1ZTa9N38yB2qjMrefTZEn8JQ/XqrfbLOlFFAgvtxnHz/RKM14mbwZu7Dswj2Dy7llgshhBCFI8FIGZTbtN1Bqe/wsykEyDkNy1UbQ3JAGDdddqABGri15PPus3F3cLfl2xBCCCEKRIKRMiS/abs3ceW4Csx4kGUa1gl7HY7VfkdrF49Oo+fNZm/yXNCzaDQyU0YIIUT5IMFIGXGnabtZy/R6EI8ZiPc8jJPPPjQaM552Afy3yxwaeUuSqhBCiPJFpvaWAYWdtvux6sJGv0j+do4HoIlHBxZ0n4aLnUsptFYIIYQoGJnaW8bdaYG7vKbtpjhdITpgKxhuY9DaMbbFWPrWf0qGZYQQQpRbEozYQEEWuMs+bfeo+R7Oep3Fzvt3NBpFbbfazOowi/oe9W31NoQQQohiIcFIKSvKAnfXdDqi71mLvVMkAM29uvFptw9wMjiVZtOFEEKIEiHBSCnKq5JqXgvcHTPXQud8ksiAHaTqI8Fsz4A6bzKu/cDSb7wQQghRQiQYKUV7I2JzraSa2wJ3R801OOcTjp3XdgBqONfj085zqO1eq7SbLYQQQpQoCUZKicms2Hk2hoH6zYzUr7R6LuuQzDJjRy7rdVzz/wU7x2gAQnweZ163Cdjp7Eq1zUIIIURpkGCkFGRNWB2iT2ZQ6juWGiJZh2QAblc5z0cBF0jXRYPZiefrjebttk/Z9g0IIYQQJUiCkRKWPWF1qH4DP5vaZlRTzVJJ9TjVsfdbi53HHgDquDTi0y4fUd2lqu0aL4QQQpQCCUZKUF4Jq9ml293EqerP6Byi0KDhpcYv8doDr2HQGkqlnUIIIYQtSTBSAjILmu08ez3XhNXM0u7uxPGmY2sifVeh06ZTRe/ORw/NoE21NjZruxBCCFHaJBgpZtkLmg3RpzBUv95qnxmGL0jUaJji5ckaF2cAWvq3ZHr76Xg7etui2UIIIYTNSDBSjHIraDYo9R1+NoUA/9YQeVXbjz8DwjHaxYHS8HitFwlt/wY6rc62b0AIIYSwAQlGikle+SE3cc1IVgWUWbHcpQo7PPeA1ow53Q3nuOcJfe5ldFpZW0YIIUTlJMFIMcmroFlmfohZm0p8wG9Mc/EEzBgTGpAS+RQf9W8ngYgQQohKTYKRYnCngmaH7e14x8ebOIMerdKgvfYwzuZH+b/+DeneKMBGrRZCCCHKBglG7lJ+Bc2mGb7g6SqdOOV9FjQKTZo7PQLG8ni7VrQI9JQeESGEEAIJRu5KfgXNTJpkXvPz4ZTTGQDS45rgntSfKS89IkGIEEIIkYUEI0WUX0EzndNZIqv9yBW9IxqznuRrj2G81ZxJg5pKICKEEEJkI8FIEeWWsGoE7HzCcPI8j1kDnqn23L4yEGeH+5k4KEjyQ4QQQohcSDBSRNEJKVYJq1E6HS/5+nLW4TwATybcxuXag9C2B292uVd6RIQQQog8SDBSSJml3s9cS2CFsRNhpmYkO1/kVtXNpOvS0Zt0uEU9xP6EukQrd+bV9ZFARAghhMiHBCOFkL3Uu+Ihzvocx85rBwANUtO49fdznE57AA3g7+ZAi0BP2zZaCCGEKOO0tm5AeZE5cyYyLgVfzS36OPyCqvWNJRBxiW3E0qtRGNLdyOwHmdgrSHpFhBBCiDuQnpECyD5zJtHlHE8H+JOmvY4yOZJ8tS8OtwOYr3cgWrnj7+bAxF6SsCqEEEIUhAQjd2AyKxbvjMAYF0kDbQy3fHdxw+MEoMUj2R3HK4+gNzoSDRjbjWVeXW8paCaEEEIUggQj+ciaIzLO+WO+9Y/ntp0dGqV4OS6e125eQq87AjqYa3ySQL+OtK7jZetmCyGEEOWKBCN5+Le6qqKm+59M80siRWuH1uhIcFRDhqev5J30IRwz1wLImDnj4mDbRgshhBDlkAQjubDkiGhTcfBfRazbYUCLQ2J1Yq48T5Q5BuxXcsxci+MqUGbOCCGEEHdBgpEsMmuI7Dx7nbTUQ3gErsJoF49GaRh+8yanY7py3BxDHc0VyzEyc0YIIYS4OxKM/CMzPyQ97ioPen2HsebfmLUKf6ORmdExPJiaBoYvLfv/ab5PZs4IIYQQxaBIdUbmz59PYGAgDg4ONGvWjO3bt+e7/7Zt22jWrBkODg7Url2bhQsXFqmxJcVSQyQhFm31//Gn72XMWoVjQk1051/i+9vPA/BO+hB6pk6hZ+oU3kh7g2E927DjnYclEBFCCCHuQqGDkRUrVjBy5EjGjx/PoUOHaNeuHT169ODSpUu57h8REcEjjzxCu3btOHToEO+++y7Dhw/np59+uuvGF4fM/BCN40Wca88j2eUCBqXwuNaG6L+HcdLUwJKkmpkjEq4C0bsFMDgkUIZmhBBCiLtU6GGaOXPm8NJLL/Hyyy8DMHfuXH799VcWLFjAtGnTcuy/cOFC7rnnHubOnQtAgwYN2L9/P7Nnz6ZPnz531/q7kJkfsuPMNVL0q3AO+AM0Cqc0J76+fo4liS64aC4A4EG85TjJERFCCCGKV6GCkbS0NA4cOMDYsWOttnft2pVdu3bleszu3bvp2rWr1bZu3brx1VdfkZ6ejsFgKGST754lP+T2WbyrLcHomxFs9LidyISYy1RRihmGLyz7f27swVzjk5IjIoQQQpSAQgUjMTExmEwm/Pz8rLb7+fkRFRWV6zFRUVG57m80GomJiSEgIOdNPTU1ldTUVMvj+Pj4HPsU1b/1Q8x4Bi7nikM8GrMOj2ttORZ3Lx9qLzLD8EWOGiL9OjaX6qpCCCFECSjSbBqNxvpmrJTKse1O++e2PdO0adMIDQ0tStPyZb3GjBb36y1x9/uZhL8Hcia1WUabzBltyl5D5M0u9SUIEUIIIUpAoRJYvb290el0OXpBoqOjc/R+ZPL39891f71ej5dX7qXTx40bR1xcnOXn8uXLhWlmnvZGxGKMi6ShJoKGmgiaJ5v54UoUTY3xlm2SHyKEEEKUrkL1jNjZ2dGsWTPCwsJ44oknLNvDwsJ4/PHHcz2mdevWrFmzxmrbpk2bCA4OzjNfxN7eHnt7+8I0rUCiE1IYqN/MSP1Kq+2SHyKEEELYTqGHaUaNGsWzzz5LcHAwrVu35vPPP+fSpUsMGzYMyOjVuHLlCkuWLAFg2LBhfPrpp4waNYohQ4awe/duvvrqK7777rvifScF4OviwGRjJ8JMGUMyjbQXJD9ECCGEsLFCByP9+vXjxo0bfPDBB0RGRtKoUSPWr19PzZo1AYiMjLSqORIYGMj69et58803+e9//0vVqlWZN2+eTab1tgj0RO8WQHicR0beiDlju+SHCCGEELajUZnZpGVYfHw8bm5uxMXF4erqelfnypxNAxCkiWCd/Xh6pk4hXAUCsGBQUxmWEUIIIYpBQe/fRSoHX551bxTAgkFN8XdzIFq5W+WHSCAihBBClL5K1zOSKbMCa3RCCr4uDpIfIoQQQhSzgt6/K+2qvTqthtZ1cp9aLIQQQojSU+mGaYQQQghRtkgwIoQQQgibkmBECCGEEDYlwYgQQgghbEqCESGEEELYlAQjQgghhLApCUaEEEIIYVMSjAghhBDCpiQYEUIIIYRNlYsKrJkV6+Pj423cEiGEEEIUVOZ9+04rz5SLYCQhIQGAGjVq2LglQgghhCishIQE3Nzc8ny+XCyUZzabuXr1Ki4uLmg0xbeYXXx8PDVq1ODy5cvFtgCfyJ1c69Ih17l0yHUuHXKdS0dJXmelFAkJCVStWhWtNu/MkHLRM6LVaqlevXqJnd/V1VX+0EuJXOvSIde5dMh1Lh1ynUtHSV3n/HpEMkkCqxBCCCFsSoIRIYQQQthUpQ5G7O3tmThxIvb29rZuSoUn17p0yHUuHXKdS4dc59JRFq5zuUhgFUIIIUTFVal7RoQQQghhexKMCCGEEMKmJBgRQgghhE1JMCKEEEIIm6rwwcj8+fMJDAzEwcGBZs2asX379nz337ZtG82aNcPBwYHatWuzcOHCUmpp+VaY67xy5Uq6dOmCj48Prq6utG7dml9//bUUW1u+FfZvOtPOnTvR6/U88MADJdvACqKw1zk1NZXx48dTs2ZN7O3tqVOnDl9//XUptbb8Kux1XrZsGU2aNMHJyYmAgABeeOEFbty4UUqtLZ/++OMPevXqRdWqVdFoNKxevfqOx5T6vVBVYN9//70yGAzqiy++UOHh4WrEiBHK2dlZXbx4Mdf9z58/r5ycnNSIESNUeHi4+uKLL5TBYFA//vhjKbe8fCnsdR4xYoSaMWOG2rt3rzp9+rQaN26cMhgM6uDBg6Xc8vKnsNc6061bt1Tt2rVV165dVZMmTUqnseVYUa7zY489plq2bKnCwsJURESE2rNnj9q5c2cptrr8Kex13r59u9Jqterjjz9W58+fV9u3b1cNGzZUvXv3LuWWly/r169X48ePVz/99JMC1KpVq/Ld3xb3wgodjLRo0UINGzbMatt9992nxo4dm+v+Y8aMUffdd5/VtldeeUW1atWqxNpYERT2OucmKChIhYaGFnfTKpyiXut+/fqp9957T02cOFGCkQIo7HXesGGDcnNzUzdu3CiN5lUYhb3Os2bNUrVr17baNm/ePFW9evUSa2NFU5BgxBb3wgo7TJOWlsaBAwfo2rWr1fauXbuya9euXI/ZvXt3jv27devG/v37SU9PL7G2lmdFuc7Zmc1mEhIS8PT0LIkmVhhFvdaLFi3i3LlzTJw4saSbWCEU5Tr/8ssvBAcHM3PmTKpVq0b9+vV5++23SU5OLo0ml0tFuc5t2rTh77//Zv369SiluHbtGj/++CM9e/YsjSZXGra4F5aLhfKKIiYmBpPJhJ+fn9V2Pz8/oqKicj0mKioq1/2NRiMxMTEEBASUWHvLq6Jc5+w++ugjEhMTefrpp0uiiRVGUa71mTNnGDt2LNu3b0evr7D/3ItVUa7z+fPn2bFjBw4ODqxatYqYmBhee+01YmNjJW8kD0W5zm3atGHZsmX069ePlJQUjEYjjz32GJ988klpNLnSsMW9sML2jGTSaDRWj5VSObbdaf/ctgtrhb3Omb777jsmTZrEihUr8PX1LanmVSgFvdYmk4kBAwYQGhpK/fr1S6t5FUZh/qbNZjMajYZly5bRokULHnnkEebMmcPixYuld+QOCnOdw8PDGT58OBMmTODAgQNs3LiRiIgIhg0bVhpNrVRK+15YYb8qeXt7o9PpckTY0dHROSK+TP7+/rnur9fr8fLyKrG2lmdFuc6ZVqxYwUsvvcQPP/xA586dS7KZFUJhr3VCQgL79+/n0KFDvP7660DGTVMphV6vZ9OmTTz88MOl0vbypCh/0wEBAVSrVs1qqfQGDRqglOLvv/+mXr16Jdrm8qgo13natGmEhIQwevRoAO6//36cnZ1p164dkydPlt7rYmKLe2GF7Rmxs7OjWbNmhIWFWW0PCwujTZs2uR7TunXrHPtv2rSJ4OBgDAZDibW1PCvKdYaMHpHBgwezfPlyGe8toMJea1dXV44ePcrhw4ctP8OGDePee+/l8OHDtGzZsrSaXq4U5W86JCSEq1evcvv2bcu206dPo9VqqV69eom2t7wqynVOSkpCq7W+bel0OuDfb+7i7tnkXlhiqbFlQOa0sa+++kqFh4erkSNHKmdnZ3XhwgWllFJjx45Vzz77rGX/zOlMb775pgoPD1dfffWVTO0tgMJe5+XLlyu9Xq/++9//qsjISMvPrVu3bPUWyo3CXuvsZDZNwRT2OickJKjq1aurp556Sh0/flxt27ZN1atXT7388su2egvlQmGv86JFi5Rer1fz589X586dUzt27FDBwcGqRYsWtnoL5UJCQoI6dOiQOnTokALUnDlz1KFDhyxTqMvCvbBCByNKKfXf//5X1axZU9nZ2ammTZuqbdu2WZ57/vnnVYcOHaz237p1q3rwwQeVnZ2dqlWrllqwYEEpt7h8Ksx17tChgwJy/Dz//POl3/ByqLB/01lJMFJwhb3OJ06cUJ07d1aOjo6qevXqatSoUSopKamUW13+FPY6z5s3TwUFBSlHR0cVEBCgBg4cqP7+++9SbnX5smXLlnw/c8vCvVCjlPRtCSGEEMJ2KmzOiBBCCCHKBwlGhBBCCGFTEowIIYQQwqYkGBFCCCGETUkwIoQQQgibkmBECCGEEDYlwYgQQgghbEqCESGEEELYlAQjQgghhLApCUaEEEIIYVMSjAghhBDCpiQYEUIIIYRN/T9ueSninRm8igAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure()\n", + "plt.plot(np.linspace(0,1,n), cglsb.solution.as_array(),'o', label='Tikhonov regularised solution- CIL')\n", + "plt.plot(np.linspace(0,1,n),xtik, '+', label='Tikhonov regularised solution- numpy')\n", + "plt.plot(np.linspace(0,1,n),x, label='Ground truth solution')\n", + "plt.legend()\n", + "plt.show()\n" + ] + }, + { + "cell_type": "markdown", + "id": "acc199d9", + "metadata": {}, + "source": [ + "You can see that the solutions are identical!" + ] + }, + { + "cell_type": "markdown", + "id": "c27a9218", + "metadata": {}, + "source": [ + "We think the reconstruction error near the boundary at 1 is caused by the discretisation of the integral - for future investigation " + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.12" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/v24.2.0/.doctrees/nbsphinx/demos_00_CIL_geometry_11_0.png b/v24.2.0/.doctrees/nbsphinx/demos_00_CIL_geometry_11_0.png new file mode 100644 index 0000000000..59592f01ed Binary files /dev/null and b/v24.2.0/.doctrees/nbsphinx/demos_00_CIL_geometry_11_0.png differ diff --git a/v24.2.0/.doctrees/nbsphinx/demos_00_CIL_geometry_13_0.png b/v24.2.0/.doctrees/nbsphinx/demos_00_CIL_geometry_13_0.png new file mode 100644 index 0000000000..f27cafe6fe Binary files /dev/null and b/v24.2.0/.doctrees/nbsphinx/demos_00_CIL_geometry_13_0.png differ diff --git a/v24.2.0/.doctrees/nbsphinx/demos_00_CIL_geometry_16_0.png b/v24.2.0/.doctrees/nbsphinx/demos_00_CIL_geometry_16_0.png new file mode 100644 index 0000000000..af6d7b694f Binary files /dev/null and b/v24.2.0/.doctrees/nbsphinx/demos_00_CIL_geometry_16_0.png differ diff --git a/v24.2.0/.doctrees/nbsphinx/demos_00_CIL_geometry_18_0.png b/v24.2.0/.doctrees/nbsphinx/demos_00_CIL_geometry_18_0.png new file mode 100644 index 0000000000..c90a8c4c17 Binary files /dev/null and b/v24.2.0/.doctrees/nbsphinx/demos_00_CIL_geometry_18_0.png differ diff --git a/v24.2.0/.doctrees/nbsphinx/demos_00_CIL_geometry_20_0.png b/v24.2.0/.doctrees/nbsphinx/demos_00_CIL_geometry_20_0.png new file mode 100644 index 0000000000..f6161e85a4 Binary files /dev/null and b/v24.2.0/.doctrees/nbsphinx/demos_00_CIL_geometry_20_0.png differ diff --git a/v24.2.0/.doctrees/nbsphinx/demos_00_CIL_geometry_22_0.png b/v24.2.0/.doctrees/nbsphinx/demos_00_CIL_geometry_22_0.png new file mode 100644 index 0000000000..dfd201f31e Binary files /dev/null and b/v24.2.0/.doctrees/nbsphinx/demos_00_CIL_geometry_22_0.png differ diff --git a/v24.2.0/.doctrees/nbsphinx/demos_00_CIL_geometry_28_1.png b/v24.2.0/.doctrees/nbsphinx/demos_00_CIL_geometry_28_1.png new file mode 100644 index 0000000000..a429176a4e Binary files /dev/null and b/v24.2.0/.doctrees/nbsphinx/demos_00_CIL_geometry_28_1.png differ diff --git a/v24.2.0/.doctrees/nbsphinx/demos_00_CIL_geometry_28_3.png b/v24.2.0/.doctrees/nbsphinx/demos_00_CIL_geometry_28_3.png new file mode 100644 index 0000000000..69e14d7773 Binary files /dev/null and b/v24.2.0/.doctrees/nbsphinx/demos_00_CIL_geometry_28_3.png differ diff --git a/v24.2.0/.doctrees/nbsphinx/demos_00_CIL_geometry_28_5.png b/v24.2.0/.doctrees/nbsphinx/demos_00_CIL_geometry_28_5.png new file mode 100644 index 0000000000..662e7aa1c5 Binary files /dev/null and b/v24.2.0/.doctrees/nbsphinx/demos_00_CIL_geometry_28_5.png differ diff --git a/v24.2.0/.doctrees/nbsphinx/demos_00_CIL_geometry_7_0.png b/v24.2.0/.doctrees/nbsphinx/demos_00_CIL_geometry_7_0.png new file mode 100644 index 0000000000..d5f8da2ee1 Binary files /dev/null and b/v24.2.0/.doctrees/nbsphinx/demos_00_CIL_geometry_7_0.png differ diff --git a/v24.2.0/.doctrees/nbsphinx/demos_00_CIL_geometry_9_0.png b/v24.2.0/.doctrees/nbsphinx/demos_00_CIL_geometry_9_0.png new file mode 100644 index 0000000000..ab1e19bbfb Binary files /dev/null and b/v24.2.0/.doctrees/nbsphinx/demos_00_CIL_geometry_9_0.png differ diff --git a/v24.2.0/.doctrees/nbsphinx/demos_callback_demonstration_11_1.png b/v24.2.0/.doctrees/nbsphinx/demos_callback_demonstration_11_1.png new file mode 100644 index 0000000000..3d82172dad Binary files /dev/null and b/v24.2.0/.doctrees/nbsphinx/demos_callback_demonstration_11_1.png differ diff --git a/v24.2.0/.doctrees/nbsphinx/demos_callback_demonstration_12_1.png b/v24.2.0/.doctrees/nbsphinx/demos_callback_demonstration_12_1.png new file mode 100644 index 0000000000..b2846053f4 Binary files /dev/null and b/v24.2.0/.doctrees/nbsphinx/demos_callback_demonstration_12_1.png differ diff --git a/v24.2.0/.doctrees/nbsphinx/demos_callback_demonstration_14_0.png b/v24.2.0/.doctrees/nbsphinx/demos_callback_demonstration_14_0.png new file mode 100644 index 0000000000..a541185fae Binary files /dev/null and b/v24.2.0/.doctrees/nbsphinx/demos_callback_demonstration_14_0.png differ diff --git a/v24.2.0/.doctrees/nbsphinx/demos_callback_demonstration_14_1.png b/v24.2.0/.doctrees/nbsphinx/demos_callback_demonstration_14_1.png new file mode 100644 index 0000000000..f4fc5175f4 Binary files /dev/null and b/v24.2.0/.doctrees/nbsphinx/demos_callback_demonstration_14_1.png differ diff --git a/v24.2.0/.doctrees/nbsphinx/demos_callback_demonstration_14_3.png b/v24.2.0/.doctrees/nbsphinx/demos_callback_demonstration_14_3.png new file mode 100644 index 0000000000..0f0019f428 Binary files /dev/null and b/v24.2.0/.doctrees/nbsphinx/demos_callback_demonstration_14_3.png differ diff --git a/v24.2.0/.doctrees/nbsphinx/demos_callback_demonstration_17_1.png b/v24.2.0/.doctrees/nbsphinx/demos_callback_demonstration_17_1.png new file mode 100644 index 0000000000..42f6905f2b Binary files /dev/null and b/v24.2.0/.doctrees/nbsphinx/demos_callback_demonstration_17_1.png differ diff --git a/v24.2.0/.doctrees/nbsphinx/demos_callback_demonstration_17_2.png b/v24.2.0/.doctrees/nbsphinx/demos_callback_demonstration_17_2.png new file mode 100644 index 0000000000..63dbb2d4e2 Binary files /dev/null and b/v24.2.0/.doctrees/nbsphinx/demos_callback_demonstration_17_2.png differ diff --git a/v24.2.0/.doctrees/nbsphinx/demos_callback_demonstration_17_4.png b/v24.2.0/.doctrees/nbsphinx/demos_callback_demonstration_17_4.png new file mode 100644 index 0000000000..1e71316e03 Binary files /dev/null and b/v24.2.0/.doctrees/nbsphinx/demos_callback_demonstration_17_4.png differ diff --git a/v24.2.0/.doctrees/nbsphinx/demos_callback_demonstration_24_0.png b/v24.2.0/.doctrees/nbsphinx/demos_callback_demonstration_24_0.png new file mode 100644 index 0000000000..fa7965ad69 Binary files /dev/null and b/v24.2.0/.doctrees/nbsphinx/demos_callback_demonstration_24_0.png differ diff --git a/v24.2.0/.doctrees/nbsphinx/demos_callback_demonstration_26_0.png b/v24.2.0/.doctrees/nbsphinx/demos_callback_demonstration_26_0.png new file mode 100644 index 0000000000..f644bbda82 Binary files /dev/null and b/v24.2.0/.doctrees/nbsphinx/demos_callback_demonstration_26_0.png differ diff --git a/v24.2.0/.doctrees/nbsphinx/demos_callback_demonstration_27_1.png b/v24.2.0/.doctrees/nbsphinx/demos_callback_demonstration_27_1.png new file mode 100644 index 0000000000..bbf1814382 Binary files /dev/null and b/v24.2.0/.doctrees/nbsphinx/demos_callback_demonstration_27_1.png differ diff --git a/v24.2.0/.doctrees/nbsphinx/demos_callback_demonstration_28_1.png b/v24.2.0/.doctrees/nbsphinx/demos_callback_demonstration_28_1.png new file mode 100644 index 0000000000..3846cb0c2c Binary files /dev/null and b/v24.2.0/.doctrees/nbsphinx/demos_callback_demonstration_28_1.png differ diff --git a/v24.2.0/.doctrees/nbsphinx/demos_callback_demonstration_4_1.png b/v24.2.0/.doctrees/nbsphinx/demos_callback_demonstration_4_1.png new file mode 100644 index 0000000000..a049998968 Binary files /dev/null and b/v24.2.0/.doctrees/nbsphinx/demos_callback_demonstration_4_1.png differ diff --git a/v24.2.0/.doctrees/nbsphinx/demos_callback_demonstration_6_1.png b/v24.2.0/.doctrees/nbsphinx/demos_callback_demonstration_6_1.png new file mode 100644 index 0000000000..baa0f3562e Binary files /dev/null and b/v24.2.0/.doctrees/nbsphinx/demos_callback_demonstration_6_1.png differ diff --git a/v24.2.0/.doctrees/nbsphinx/demos_callback_demonstration_8_2.png b/v24.2.0/.doctrees/nbsphinx/demos_callback_demonstration_8_2.png new file mode 100644 index 0000000000..29cde26b41 Binary files /dev/null and b/v24.2.0/.doctrees/nbsphinx/demos_callback_demonstration_8_2.png differ diff --git a/v24.2.0/.doctrees/nbsphinx/demos_deriv2_cgls_10_0.png b/v24.2.0/.doctrees/nbsphinx/demos_deriv2_cgls_10_0.png new file mode 100644 index 0000000000..c78d6f5d1f Binary files /dev/null and b/v24.2.0/.doctrees/nbsphinx/demos_deriv2_cgls_10_0.png differ diff --git a/v24.2.0/.doctrees/nbsphinx/demos_deriv2_cgls_14_0.png b/v24.2.0/.doctrees/nbsphinx/demos_deriv2_cgls_14_0.png new file mode 100644 index 0000000000..de25cace85 Binary files /dev/null and b/v24.2.0/.doctrees/nbsphinx/demos_deriv2_cgls_14_0.png differ diff --git a/v24.2.0/.doctrees/nbsphinx/demos_deriv2_cgls_16_0.png b/v24.2.0/.doctrees/nbsphinx/demos_deriv2_cgls_16_0.png new file mode 100644 index 0000000000..312af9b1e8 Binary files /dev/null and b/v24.2.0/.doctrees/nbsphinx/demos_deriv2_cgls_16_0.png differ diff --git a/v24.2.0/.doctrees/nbsphinx/demos_deriv2_cgls_16_1.png b/v24.2.0/.doctrees/nbsphinx/demos_deriv2_cgls_16_1.png new file mode 100644 index 0000000000..c40f2c45d9 Binary files /dev/null and b/v24.2.0/.doctrees/nbsphinx/demos_deriv2_cgls_16_1.png differ diff --git a/v24.2.0/.doctrees/nbsphinx/demos_deriv2_cgls_18_1.png b/v24.2.0/.doctrees/nbsphinx/demos_deriv2_cgls_18_1.png new file mode 100644 index 0000000000..23b951ee66 Binary files /dev/null and b/v24.2.0/.doctrees/nbsphinx/demos_deriv2_cgls_18_1.png differ diff --git a/v24.2.0/.doctrees/nbsphinx/demos_deriv2_cgls_22_1.png b/v24.2.0/.doctrees/nbsphinx/demos_deriv2_cgls_22_1.png new file mode 100644 index 0000000000..cb71037a36 Binary files /dev/null and b/v24.2.0/.doctrees/nbsphinx/demos_deriv2_cgls_22_1.png differ diff --git a/v24.2.0/.doctrees/nbsphinx/demos_deriv2_cgls_27_1.png b/v24.2.0/.doctrees/nbsphinx/demos_deriv2_cgls_27_1.png new file mode 100644 index 0000000000..2aeb63b320 Binary files /dev/null and b/v24.2.0/.doctrees/nbsphinx/demos_deriv2_cgls_27_1.png differ diff --git a/v24.2.0/.doctrees/nbsphinx/demos_deriv2_cgls_30_0.png b/v24.2.0/.doctrees/nbsphinx/demos_deriv2_cgls_30_0.png new file mode 100644 index 0000000000..ce737274e3 Binary files /dev/null and b/v24.2.0/.doctrees/nbsphinx/demos_deriv2_cgls_30_0.png differ diff --git a/v24.2.0/.doctrees/nbsphinx/demos_deriv2_cgls_32_0.png b/v24.2.0/.doctrees/nbsphinx/demos_deriv2_cgls_32_0.png new file mode 100644 index 0000000000..9202492b58 Binary files /dev/null and b/v24.2.0/.doctrees/nbsphinx/demos_deriv2_cgls_32_0.png differ diff --git a/v24.2.0/.doctrees/optimisation.doctree b/v24.2.0/.doctrees/optimisation.doctree new file mode 100644 index 0000000000..fe95f2cdbb Binary files /dev/null and b/v24.2.0/.doctrees/optimisation.doctree differ diff --git a/v24.2.0/.doctrees/plugins.doctree b/v24.2.0/.doctrees/plugins.doctree new file mode 100644 index 0000000000..11dca0e2a6 Binary files /dev/null and b/v24.2.0/.doctrees/plugins.doctree differ diff --git a/v24.2.0/.doctrees/processors.doctree b/v24.2.0/.doctrees/processors.doctree new file mode 100644 index 0000000000..c90e3eb7ec Binary files /dev/null and b/v24.2.0/.doctrees/processors.doctree differ diff --git a/v24.2.0/.doctrees/recon.doctree b/v24.2.0/.doctrees/recon.doctree new file mode 100644 index 0000000000..7e48bb855f Binary files /dev/null and b/v24.2.0/.doctrees/recon.doctree differ diff --git a/v24.2.0/.doctrees/utilities.doctree b/v24.2.0/.doctrees/utilities.doctree new file mode 100644 index 0000000000..305af6d7be Binary files /dev/null and b/v24.2.0/.doctrees/utilities.doctree differ diff --git a/v24.2.0/_images/FBP_filters1.png b/v24.2.0/_images/FBP_filters1.png new file mode 100644 index 0000000000..25c28c6478 Binary files /dev/null and b/v24.2.0/_images/FBP_filters1.png differ diff --git a/v24.2.0/_images/cone.png b/v24.2.0/_images/cone.png new file mode 100644 index 0000000000..bd8896fe7f Binary files /dev/null and b/v24.2.0/_images/cone.png differ diff --git a/v24.2.0/_images/demos_00_CIL_geometry_11_0.png b/v24.2.0/_images/demos_00_CIL_geometry_11_0.png new file mode 100644 index 0000000000..59592f01ed Binary files /dev/null and b/v24.2.0/_images/demos_00_CIL_geometry_11_0.png differ diff --git a/v24.2.0/_images/demos_00_CIL_geometry_13_0.png b/v24.2.0/_images/demos_00_CIL_geometry_13_0.png new file mode 100644 index 0000000000..f27cafe6fe Binary files /dev/null and b/v24.2.0/_images/demos_00_CIL_geometry_13_0.png differ diff --git a/v24.2.0/_images/demos_00_CIL_geometry_16_0.png b/v24.2.0/_images/demos_00_CIL_geometry_16_0.png new file mode 100644 index 0000000000..af6d7b694f Binary files /dev/null and b/v24.2.0/_images/demos_00_CIL_geometry_16_0.png differ diff --git a/v24.2.0/_images/demos_00_CIL_geometry_18_0.png b/v24.2.0/_images/demos_00_CIL_geometry_18_0.png new file mode 100644 index 0000000000..c90a8c4c17 Binary files /dev/null and b/v24.2.0/_images/demos_00_CIL_geometry_18_0.png differ diff --git a/v24.2.0/_images/demos_00_CIL_geometry_20_0.png b/v24.2.0/_images/demos_00_CIL_geometry_20_0.png new file mode 100644 index 0000000000..f6161e85a4 Binary files /dev/null and b/v24.2.0/_images/demos_00_CIL_geometry_20_0.png differ diff --git a/v24.2.0/_images/demos_00_CIL_geometry_22_0.png b/v24.2.0/_images/demos_00_CIL_geometry_22_0.png new file mode 100644 index 0000000000..dfd201f31e Binary files /dev/null and b/v24.2.0/_images/demos_00_CIL_geometry_22_0.png differ diff --git a/v24.2.0/_images/demos_00_CIL_geometry_28_1.png b/v24.2.0/_images/demos_00_CIL_geometry_28_1.png new file mode 100644 index 0000000000..a429176a4e Binary files /dev/null and b/v24.2.0/_images/demos_00_CIL_geometry_28_1.png differ diff --git a/v24.2.0/_images/demos_00_CIL_geometry_28_3.png b/v24.2.0/_images/demos_00_CIL_geometry_28_3.png new file mode 100644 index 0000000000..69e14d7773 Binary files /dev/null and b/v24.2.0/_images/demos_00_CIL_geometry_28_3.png differ diff --git a/v24.2.0/_images/demos_00_CIL_geometry_28_5.png b/v24.2.0/_images/demos_00_CIL_geometry_28_5.png new file mode 100644 index 0000000000..662e7aa1c5 Binary files /dev/null and b/v24.2.0/_images/demos_00_CIL_geometry_28_5.png differ diff --git a/v24.2.0/_images/demos_00_CIL_geometry_7_0.png b/v24.2.0/_images/demos_00_CIL_geometry_7_0.png new file mode 100644 index 0000000000..d5f8da2ee1 Binary files /dev/null and b/v24.2.0/_images/demos_00_CIL_geometry_7_0.png differ diff --git a/v24.2.0/_images/demos_00_CIL_geometry_9_0.png b/v24.2.0/_images/demos_00_CIL_geometry_9_0.png new file mode 100644 index 0000000000..ab1e19bbfb Binary files /dev/null and b/v24.2.0/_images/demos_00_CIL_geometry_9_0.png differ diff --git a/v24.2.0/_images/demos_callback_demonstration_11_1.png b/v24.2.0/_images/demos_callback_demonstration_11_1.png new file mode 100644 index 0000000000..3d82172dad Binary files /dev/null and b/v24.2.0/_images/demos_callback_demonstration_11_1.png differ diff --git a/v24.2.0/_images/demos_callback_demonstration_12_1.png b/v24.2.0/_images/demos_callback_demonstration_12_1.png new file mode 100644 index 0000000000..b2846053f4 Binary files /dev/null and b/v24.2.0/_images/demos_callback_demonstration_12_1.png differ diff --git a/v24.2.0/_images/demos_callback_demonstration_14_0.png b/v24.2.0/_images/demos_callback_demonstration_14_0.png new file mode 100644 index 0000000000..a541185fae Binary files /dev/null and b/v24.2.0/_images/demos_callback_demonstration_14_0.png differ diff --git a/v24.2.0/_images/demos_callback_demonstration_14_1.png b/v24.2.0/_images/demos_callback_demonstration_14_1.png new file mode 100644 index 0000000000..f4fc5175f4 Binary files /dev/null and b/v24.2.0/_images/demos_callback_demonstration_14_1.png differ diff --git a/v24.2.0/_images/demos_callback_demonstration_14_3.png b/v24.2.0/_images/demos_callback_demonstration_14_3.png new file mode 100644 index 0000000000..0f0019f428 Binary files /dev/null and b/v24.2.0/_images/demos_callback_demonstration_14_3.png differ diff --git a/v24.2.0/_images/demos_callback_demonstration_17_1.png b/v24.2.0/_images/demos_callback_demonstration_17_1.png new file mode 100644 index 0000000000..42f6905f2b Binary files /dev/null and b/v24.2.0/_images/demos_callback_demonstration_17_1.png differ diff --git a/v24.2.0/_images/demos_callback_demonstration_17_2.png b/v24.2.0/_images/demos_callback_demonstration_17_2.png new file mode 100644 index 0000000000..63dbb2d4e2 Binary files /dev/null and b/v24.2.0/_images/demos_callback_demonstration_17_2.png differ diff --git a/v24.2.0/_images/demos_callback_demonstration_17_4.png b/v24.2.0/_images/demos_callback_demonstration_17_4.png new file mode 100644 index 0000000000..1e71316e03 Binary files /dev/null and b/v24.2.0/_images/demos_callback_demonstration_17_4.png differ diff --git a/v24.2.0/_images/demos_callback_demonstration_24_0.png b/v24.2.0/_images/demos_callback_demonstration_24_0.png new file mode 100644 index 0000000000..fa7965ad69 Binary files /dev/null and b/v24.2.0/_images/demos_callback_demonstration_24_0.png differ diff --git a/v24.2.0/_images/demos_callback_demonstration_26_0.png b/v24.2.0/_images/demos_callback_demonstration_26_0.png new file mode 100644 index 0000000000..f644bbda82 Binary files /dev/null and b/v24.2.0/_images/demos_callback_demonstration_26_0.png differ diff --git a/v24.2.0/_images/demos_callback_demonstration_27_1.png b/v24.2.0/_images/demos_callback_demonstration_27_1.png new file mode 100644 index 0000000000..bbf1814382 Binary files /dev/null and b/v24.2.0/_images/demos_callback_demonstration_27_1.png differ diff --git a/v24.2.0/_images/demos_callback_demonstration_28_1.png b/v24.2.0/_images/demos_callback_demonstration_28_1.png new file mode 100644 index 0000000000..3846cb0c2c Binary files /dev/null and b/v24.2.0/_images/demos_callback_demonstration_28_1.png differ diff --git a/v24.2.0/_images/demos_callback_demonstration_4_1.png b/v24.2.0/_images/demos_callback_demonstration_4_1.png new file mode 100644 index 0000000000..a049998968 Binary files /dev/null and b/v24.2.0/_images/demos_callback_demonstration_4_1.png differ diff --git a/v24.2.0/_images/demos_callback_demonstration_6_1.png b/v24.2.0/_images/demos_callback_demonstration_6_1.png new file mode 100644 index 0000000000..baa0f3562e Binary files /dev/null and b/v24.2.0/_images/demos_callback_demonstration_6_1.png differ diff --git a/v24.2.0/_images/demos_callback_demonstration_8_2.png b/v24.2.0/_images/demos_callback_demonstration_8_2.png new file mode 100644 index 0000000000..29cde26b41 Binary files /dev/null and b/v24.2.0/_images/demos_callback_demonstration_8_2.png differ diff --git a/v24.2.0/_images/demos_deriv2_cgls_10_0.png b/v24.2.0/_images/demos_deriv2_cgls_10_0.png new file mode 100644 index 0000000000..c78d6f5d1f Binary files /dev/null and b/v24.2.0/_images/demos_deriv2_cgls_10_0.png differ diff --git a/v24.2.0/_images/demos_deriv2_cgls_14_0.png b/v24.2.0/_images/demos_deriv2_cgls_14_0.png new file mode 100644 index 0000000000..de25cace85 Binary files /dev/null and b/v24.2.0/_images/demos_deriv2_cgls_14_0.png differ diff --git a/v24.2.0/_images/demos_deriv2_cgls_16_0.png b/v24.2.0/_images/demos_deriv2_cgls_16_0.png new file mode 100644 index 0000000000..312af9b1e8 Binary files /dev/null and b/v24.2.0/_images/demos_deriv2_cgls_16_0.png differ diff --git a/v24.2.0/_images/demos_deriv2_cgls_16_1.png b/v24.2.0/_images/demos_deriv2_cgls_16_1.png new file mode 100644 index 0000000000..c40f2c45d9 Binary files /dev/null and b/v24.2.0/_images/demos_deriv2_cgls_16_1.png differ diff --git a/v24.2.0/_images/demos_deriv2_cgls_18_1.png b/v24.2.0/_images/demos_deriv2_cgls_18_1.png new file mode 100644 index 0000000000..23b951ee66 Binary files /dev/null and b/v24.2.0/_images/demos_deriv2_cgls_18_1.png differ diff --git a/v24.2.0/_images/demos_deriv2_cgls_22_1.png b/v24.2.0/_images/demos_deriv2_cgls_22_1.png new file mode 100644 index 0000000000..cb71037a36 Binary files /dev/null and b/v24.2.0/_images/demos_deriv2_cgls_22_1.png differ diff --git a/v24.2.0/_images/demos_deriv2_cgls_27_1.png b/v24.2.0/_images/demos_deriv2_cgls_27_1.png new file mode 100644 index 0000000000..2aeb63b320 Binary files /dev/null and b/v24.2.0/_images/demos_deriv2_cgls_27_1.png differ diff --git a/v24.2.0/_images/demos_deriv2_cgls_30_0.png b/v24.2.0/_images/demos_deriv2_cgls_30_0.png new file mode 100644 index 0000000000..ce737274e3 Binary files /dev/null and b/v24.2.0/_images/demos_deriv2_cgls_30_0.png differ diff --git a/v24.2.0/_images/demos_deriv2_cgls_32_0.png b/v24.2.0/_images/demos_deriv2_cgls_32_0.png new file mode 100644 index 0000000000..9202492b58 Binary files /dev/null and b/v24.2.0/_images/demos_deriv2_cgls_32_0.png differ diff --git a/v24.2.0/_images/fan.png b/v24.2.0/_images/fan.png new file mode 100644 index 0000000000..4f20da495c Binary files /dev/null and b/v24.2.0/_images/fan.png differ diff --git a/v24.2.0/_images/parallel.png b/v24.2.0/_images/parallel.png new file mode 100644 index 0000000000..a58f79e681 Binary files /dev/null and b/v24.2.0/_images/parallel.png differ diff --git a/v24.2.0/_images/parallel3d.png b/v24.2.0/_images/parallel3d.png new file mode 100644 index 0000000000..f5dc76fccd Binary files /dev/null and b/v24.2.0/_images/parallel3d.png differ diff --git a/v24.2.0/_modules/cil/framework/acquisition_data/index.html b/v24.2.0/_modules/cil/framework/acquisition_data/index.html new file mode 100644 index 0000000000..f5cee21a49 --- /dev/null +++ b/v24.2.0/_modules/cil/framework/acquisition_data/index.html @@ -0,0 +1,675 @@ + + + + + + + + + + cil.framework.acquisition_data — CIL 24.2.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + +
+ +
+ + + + + +
+
+ + + + + + +
+ + + + + + + + + + + + + +
+ +
+ + +
+
+ +
+
+ +
+ +
+ + +
+ +
+ + +
+
+ + + + + +
+ +

Source code for cil.framework.acquisition_data

+#  Copyright 2018 United Kingdom Research and Innovation
+#  Copyright 2018 The University of Manchester
+#
+#  Licensed under the Apache License, Version 2.0 (the "License");
+#  you may not use this file except in compliance with the License.
+#  You may obtain a copy of the License at
+#
+#      http://www.apache.org/licenses/LICENSE-2.0
+#
+#  Unless required by applicable law or agreed to in writing, software
+#  distributed under the License is distributed on an "AS IS" BASIS,
+#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+#  See the License for the specific language governing permissions and
+#  limitations under the License.
+#
+# Authors:
+# CIL Developers, listed at: https://github.com/TomographicImaging/CIL/blob/master/NOTICE.txt
+import numpy
+
+from .labels import AcquisitionDimension, Backend
+from .data_container import DataContainer
+from .partitioner import Partitioner
+
+
+
+[docs] +class AcquisitionData(DataContainer, Partitioner): + '''DataContainer for holding 2D or 3D sinogram''' + __container_priority__ = 1 + + @property + def geometry(self): + return self._geometry + + @geometry.setter + def geometry(self, val): + self._geometry = val + + @property + def dimension_labels(self): + return self.geometry.dimension_labels + + @dimension_labels.setter + def dimension_labels(self, val): + if val is not None: + raise ValueError("Unable to set the dimension_labels directly. Use geometry.set_labels() instead") + + def __init__(self, + array = None, + deep_copy=True, + geometry = None, + **kwargs): + + dtype = kwargs.get('dtype', numpy.float32) + + if geometry is None: + raise AttributeError("AcquisitionData requires a geometry") + + labels = kwargs.get('dimension_labels', None) + if labels is not None and labels != geometry.dimension_labels: + raise ValueError("Deprecated: 'dimension_labels' cannot be set with 'allocate()'. Use 'geometry.set_labels()' to modify the geometry before using allocate.") + + if array is None: + array = numpy.empty(geometry.shape, dtype=dtype) + elif issubclass(type(array) , DataContainer): + array = array.as_array() + elif issubclass(type(array) , numpy.ndarray): + # remove singleton dimensions + array = numpy.squeeze(array) + else: + raise TypeError('array must be a CIL type DataContainer or numpy.ndarray got {}'.format(type(array))) + + if array.shape != geometry.shape: + raise ValueError('Shape mismatch got {} expected {}'.format(array.shape, geometry.shape)) + + super(AcquisitionData, self).__init__(array, deep_copy, geometry=geometry,**kwargs) + + def __eq__(self, other): + ''' + Check if two AcquisitionData objects are equal. This is done by checking if the geometry, data and dtype are equal. + Also, if the other object is a numpy.ndarray, it will check if the data and dtype are equal. + + Parameters + ---------- + other: AcquisitionData or numpy.ndarray + The object to compare with. + + Returns + ------- + bool + True if the two objects are equal, False otherwise. + ''' + + if isinstance(other, AcquisitionData): + if numpy.array_equal(self.as_array(), other.as_array()) \ + and self.geometry == other.geometry \ + and self.dtype == other.dtype: + return True + elif numpy.array_equal(self.as_array(), other) and self.dtype==other.dtype: + return True + else: + return False + +
+[docs] + def get_slice(self,channel=None, angle=None, vertical=None, horizontal=None, force=False): + '''Returns a new dataset of a single slice in the requested direction.''' + try: + geometry_new = self.geometry.get_slice(channel=channel, angle=angle, vertical=vertical, horizontal=horizontal) + except ValueError: + if force: + geometry_new = None + else: + raise ValueError ("Unable to return slice of requested AcquisitionData. Use 'force=True' to return DataContainer instead.") + + #get new data + #if vertical = 'centre' slice convert to index and subset, this will interpolate 2 rows to get the center slice value + if vertical == 'centre': + dim = self.geometry.dimension_labels.index('vertical') + + centre_slice_pos = (self.geometry.shape[dim]-1) / 2. + ind0 = int(numpy.floor(centre_slice_pos)) + w2 = centre_slice_pos - ind0 + out = DataContainer.get_slice(self, channel=channel, angle=angle, vertical=ind0, horizontal=horizontal) + + if w2 > 0: + out2 = DataContainer.get_slice(self, channel=channel, angle=angle, vertical=ind0 + 1, horizontal=horizontal) + out = out * (1 - w2) + out2 * w2 + else: + out = DataContainer.get_slice(self, channel=channel, angle=angle, vertical=vertical, horizontal=horizontal) + + if len(out.shape) == 1 or geometry_new is None: + return out + else: + return AcquisitionData(out.array, deep_copy=False, geometry=geometry_new, suppress_warning=True)
+ + +
+[docs] + def reorder(self, order): + ''' + Reorders the data in memory as requested. This is an in-place operation. + + Parameters + ---------- + order: list or str + Ordered list of labels from self.dimension_labels, or string 'astra' or 'tigre'. + ''' + if order in Backend: + order = AcquisitionDimension.get_order_for_engine(order, self.geometry) + + super().reorder(order)
+
+ +
+ +
+ + + + + +
+ +
+
+
+ +
+ + + + +
+
+ +
+ +
+
+
+ + + + + +
+ + +
+ + \ No newline at end of file diff --git a/v24.2.0/_modules/cil/framework/acquisition_geometry/index.html b/v24.2.0/_modules/cil/framework/acquisition_geometry/index.html new file mode 100644 index 0000000000..e1cdbb6292 --- /dev/null +++ b/v24.2.0/_modules/cil/framework/acquisition_geometry/index.html @@ -0,0 +1,2768 @@ + + + + + + + + + + cil.framework.acquisition_geometry — CIL 24.2.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + +
+ +
+ + + + + +
+
+ + + + + + +
+ + + + + + + + + + + + + +
+ +
+ + +
+
+ +
+
+ +
+ +
+ + +
+ +
+ + +
+
+ + + + + +
+ +

Source code for cil.framework.acquisition_geometry

+#  Copyright 2018 United Kingdom Research and Innovation
+#  Copyright 2018 The University of Manchester
+#
+#  Licensed under the Apache License, Version 2.0 (the "License");
+#  you may not use this file except in compliance with the License.
+#  You may obtain a copy of the License at
+#
+#      http://www.apache.org/licenses/LICENSE-2.0
+#
+#  Unless required by applicable law or agreed to in writing, software
+#  distributed under the License is distributed on an "AS IS" BASIS,
+#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+#  See the License for the specific language governing permissions and
+#  limitations under the License.
+#
+# Authors:
+# CIL Developers, listed at: https://github.com/TomographicImaging/CIL/blob/master/NOTICE.txt
+import copy
+import math
+import warnings
+from numbers import Number
+
+import numpy
+
+from .labels import AcquisitionDimension, AngleUnit, AcquisitionType, FillType
+from .acquisition_data import AcquisitionData
+from .image_geometry import ImageGeometry
+
+class ComponentDescription(object):
+    r'''This class enables the creation of vectors and unit vectors used to describe the components of a tomography system
+     '''
+    def __init__ (self, dof):
+        self._dof = dof
+
+    @staticmethod
+    def create_vector(val):
+        try:
+            vec = numpy.array(val, dtype=numpy.float64).reshape(len(val))
+        except:
+            raise ValueError("Can't convert to numpy array")
+
+        return vec
+
+    @staticmethod
+    def create_unit_vector(val):
+        vec = ComponentDescription.create_vector(val)
+        dot_product = vec.dot(vec)
+        if abs(dot_product)>1e-8:
+            vec = (vec/numpy.sqrt(dot_product))
+        else:
+            raise ValueError("Can't return a unit vector of a zero magnitude vector")
+        return vec
+
+    def length_check(self, val):
+        try:
+            val_length = len(val)
+        except:
+            raise ValueError("Vectors for {0}D geometries must have length = {0}. Got {1}".format(self._dof,val))
+
+        if val_length != self._dof:
+            raise ValueError("Vectors for {0}D geometries must have length = {0}. Got {1}".format(self._dof,val))
+
+    @staticmethod
+    def test_perpendicular(vector1, vector2):
+        dor_prod = vector1.dot(vector2)
+        if abs(dor_prod) <1e-10:
+            return True
+        return False
+
+    @staticmethod
+    def test_parallel(vector1, vector2):
+        '''For unit vectors only. Returns true if directions are opposite'''
+        dor_prod = vector1.dot(vector2)
+        if 1- abs(dor_prod) <1e-10:
+            return True
+        return False
+
+
+class PositionVector(ComponentDescription):
+    r'''This class creates a component of a tomography system with a position attribute
+     '''
+    @property
+    def position(self):
+        try:
+            return self._position
+        except:
+            raise AttributeError
+
+    @position.setter
+    def position(self, val):
+        self.length_check(val)
+        self._position = ComponentDescription.create_vector(val)
+
+
+class DirectionVector(ComponentDescription):
+    r'''This class creates a component of a tomography system with a direction attribute
+     '''
+    @property
+    def direction(self):
+        try:
+            return self._direction
+        except:
+            raise AttributeError
+
+    @direction.setter
+    def direction(self, val):
+        self.length_check(val)
+        self._direction = ComponentDescription.create_unit_vector(val)
+
+
+class PositionDirectionVector(PositionVector, DirectionVector):
+    r'''This class creates a component of a tomography system with position and direction attributes
+     '''
+    pass
+
+
+class Detector1D(PositionVector):
+    r'''This class creates a component of a tomography system with position and direction_x attributes used for 1D panels
+     '''
+    @property
+    def direction_x(self):
+        try:
+            return self._direction_x
+        except:
+            raise AttributeError
+
+    @direction_x.setter
+    def direction_x(self, val):
+        self.length_check(val)
+        self._direction_x = ComponentDescription.create_unit_vector(val)
+
+    @property
+    def normal(self):
+        try:
+            return ComponentDescription.create_unit_vector([self._direction_x[1], -self._direction_x[0]])
+        except:
+            raise AttributeError
+
+
+class Detector2D(PositionVector):
+    r'''This class creates a component of a tomography system with position, direction_x and direction_y attributes used for 2D panels
+     '''
+    @property
+    def direction_x(self):
+        try:
+            return self._direction_x
+        except:
+            raise AttributeError
+
+    @property
+    def direction_y(self):
+        try:
+            return self._direction_y
+        except:
+            raise AttributeError
+
+    @property
+    def normal(self):
+        try:
+            return numpy.cross(self._direction_x, self._direction_y)
+        except:
+            raise AttributeError
+
+    def set_direction(self, x, y):
+        self.length_check(x)
+        x = ComponentDescription.create_unit_vector(x)
+
+        self.length_check(y)
+        y = ComponentDescription.create_unit_vector(y)
+
+        dot_product = x.dot(y)
+        if not numpy.isclose(dot_product, 0):
+            raise ValueError("vectors detector.direction_x and detector.direction_y must be orthogonal")
+
+        self._direction_y = y
+        self._direction_x = x
+
+
+class SystemConfiguration:
+    '''This is a generic class to hold the description of a tomography system'''
+    SYSTEM_SIMPLE = 'simple'
+    SYSTEM_OFFSET = 'offset'
+    SYSTEM_ADVANCED = 'advanced'
+
+    @property
+    def dimension(self):
+        return self.acquisition_type.dimension
+
+    @property
+    def geometry(self):
+        return self.acquisition_type.geometry
+
+    @property
+    def acquisition_type(self):
+        return self._acquisition_type
+
+    @acquisition_type.setter
+    def acquisition_type(self, val):
+        self._acquisition_type = AcquisitionType(val).validate()
+
+    def __init__(self, dof: int, geometry, units='units'):
+        self.acquisition_type = AcquisitionType(f"{dof}D") | AcquisitionType(geometry)
+        self.units = units
+
+        if AcquisitionType.PARALLEL & self.geometry:
+            self.ray = DirectionVector(dof)
+        else:
+            self.source = PositionVector(dof)
+
+        if AcquisitionType.DIM2 & self.dimension:
+            self.detector = Detector1D(dof)
+            self.rotation_axis = PositionVector(dof)
+        else:
+            self.detector = Detector2D(dof)
+            self.rotation_axis = PositionDirectionVector(dof)
+
+    def __str__(self):
+        """Implements the string representation of the system configuration
+        """
+        raise NotImplementedError
+
+    def __eq__(self, other):
+        """Implements the equality check of the system configuration
+        """
+        raise NotImplementedError
+
+    @staticmethod
+    def rotation_vec_to_y(vec):
+        ''' returns a rotation matrix that will rotate the projection of vec on the x-y plane to the +y direction [0,1, Z]'''
+
+        vec = ComponentDescription.create_unit_vector(vec)
+
+        axis_rotation = numpy.eye(len(vec))
+
+        if numpy.allclose(vec[:2],[0,1]):
+            pass
+        elif numpy.allclose(vec[:2],[0,-1]):
+            axis_rotation[0][0] = -1
+            axis_rotation[1][1] = -1
+        else:
+            theta = math.atan2(vec[0],vec[1])
+            axis_rotation[0][0] = axis_rotation[1][1] = math.cos(theta)
+            axis_rotation[0][1] = -math.sin(theta)
+            axis_rotation[1][0] = math.sin(theta)
+
+        return axis_rotation
+
+    @staticmethod
+    def rotation_vec_to_z(vec):
+        ''' returns a rotation matrix that will align vec with the z-direction [0,0,1]'''
+
+        vec = ComponentDescription.create_unit_vector(vec)
+
+        if len(vec) == 2:
+            return numpy.array([[1, 0],[0, 1]])
+
+        elif len(vec) == 3:
+            axis_rotation = numpy.eye(3)
+
+            if numpy.allclose(vec,[0,0,1]):
+                pass
+            elif numpy.allclose(vec,[0,0,-1]):
+                axis_rotation = numpy.eye(3)
+                axis_rotation[1][1] = -1
+                axis_rotation[2][2] = -1
+            else:
+                vx = numpy.array([[0, 0, -vec[0]], [0, 0, -vec[1]], [vec[0], vec[1], 0]])
+                axis_rotation = numpy.eye(3) + vx + vx.dot(vx) *  1 / (1 + vec[2])
+
+        else:
+            raise ValueError("Vec must have length 3, got {}".format(len(vec)))
+
+        return axis_rotation
+
+    def update_reference_frame(self):
+        r'''Transforms the system origin to the rotation_axis position
+        '''
+        self.set_origin(self.rotation_axis.position)
+
+
+    def set_origin(self, origin):
+        r'''Transforms the system origin to the input origin
+        '''
+        translation = origin.copy()
+        if hasattr(self,'source'):
+            self.source.position -= translation
+
+        self.detector.position -= translation
+        self.rotation_axis.position -= translation
+
+
+    def get_centre_slice(self):
+        """Returns the 2D system configuration corresponding to the centre slice
+        """
+        raise NotImplementedError
+
+    def calculate_magnification(self):
+        r'''Calculates the magnification of the system using the source to rotate axis,
+        and source to detector distance along the direction.
+
+        :return: returns [dist_source_center, dist_center_detector, magnification],  [0] distance from the source to the rotate axis, [1] distance from the rotate axis to the detector, [2] magnification of the system
+        :rtype: list
+        '''
+        raise NotImplementedError
+
+    def system_description(self):
+        r'''Returns `simple` if the the geometry matches the default definitions with no offsets or rotations,
+            \nReturns `offset` if the the geometry matches the default definitions with centre-of-rotation or detector offsets
+            \nReturns `advanced` if the the geometry has rotated or tilted rotation axis or detector, can also have offsets
+        '''
+        raise NotImplementedError
+
+    def copy(self):
+        '''returns a copy of SystemConfiguration'''
+        return copy.deepcopy(self)
+
+
+class Parallel2D(SystemConfiguration):
+    r'''This class creates the SystemConfiguration of a parallel beam 2D tomographic system
+
+    :param ray_direction: A 2D vector describing the x-ray direction (x,y)
+    :type ray_direction: list, tuple, ndarray
+    :param detector_pos: A 2D vector describing the position of the centre of the detector (x,y)
+    :type detector_pos: list, tuple, ndarray
+    :param detector_direction_x: A 2D vector describing the direction of the detector_x (x,y)
+    :type detector_direction_x: list, tuple, ndarray
+    :param rotation_axis_pos: A 2D vector describing the position of the axis of rotation (x,y)
+    :type rotation_axis_pos: list, tuple, ndarray
+    :param units: Label the units of distance used for the configuration
+    :type units: string
+    '''
+
+    def __init__ (self, ray_direction, detector_pos, detector_direction_x, rotation_axis_pos, units='units'):
+        """Constructor method
+        """
+        super(Parallel2D, self).__init__(dof=2, geometry=AcquisitionType.PARALLEL, units=units)
+
+        #source
+        self.ray.direction = ray_direction
+
+        #detector
+        self.detector.position = detector_pos
+        self.detector.direction_x = detector_direction_x
+
+        #rotate axis
+        self.rotation_axis.position = rotation_axis_pos
+
+
+    def align_reference_frame(self, definition='cil'):
+        r'''Transforms and rotates the system to backend definitions
+
+        'cil' sets the origin to the rotation axis and aligns the y axis with the ray-direction
+        'tigre' sets the origin to the rotation axis and aligns the y axis with the ray-direction
+        '''
+        #in this instance definitions are the same
+        if definition not in ['cil','tigre']:
+            raise ValueError("Geometry can be configured for definition = 'cil' or 'tigre'  only. Got {}".format(definition))
+
+        self.set_origin(self.rotation_axis.position)
+
+        rotation_matrix = SystemConfiguration.rotation_vec_to_y(self.ray.direction)
+
+        self.ray.direction = rotation_matrix.dot(self.ray.direction.reshape(2,1))
+        self.detector.position = rotation_matrix.dot(self.detector.position.reshape(2,1))
+        self.detector.direction_x = rotation_matrix.dot(self.detector.direction_x.reshape(2,1))
+
+
+    def system_description(self):
+        r'''Returns `simple` if the the geometry matches the default definitions with no offsets or rotations,
+            \nReturns `offset` if the the geometry matches the default definitions with centre-of-rotation or detector offsets
+            \nReturns `advanced` if the the geometry has rotated or tilted rotation axis or detector, can also have offsets
+        '''
+
+
+        rays_perpendicular_detector = ComponentDescription.test_parallel(self.ray.direction, self.detector.normal)
+
+        #rotation axis position + ray direction hits detector position
+        if numpy.allclose(self.rotation_axis.position, self.detector.position): #points are equal so on ray path
+            rotation_axis_centred = True
+        else:
+            vec_a = ComponentDescription.create_unit_vector(self.detector.position - self.rotation_axis.position)
+            rotation_axis_centred = ComponentDescription.test_parallel(self.ray.direction, vec_a)
+
+        if not rays_perpendicular_detector:
+            config = SystemConfiguration.SYSTEM_ADVANCED
+        elif not rotation_axis_centred:
+            config =  SystemConfiguration.SYSTEM_OFFSET
+        else:
+            config =  SystemConfiguration.SYSTEM_SIMPLE
+
+        return config
+
+
+    def rotation_axis_on_detector(self):
+        """
+        Calculates the position, on the detector, of the projection of the rotation axis in the world coordinate system
+
+        Returns
+        -------
+        cil.framework.system_configuration.PositionVector
+            Position in the 3D system
+        """
+        Pv = self.rotation_axis.position
+        ratio = (self.detector.position - Pv).dot(self.detector.normal) / self.ray.direction.dot(self.detector.normal)
+        out = PositionVector(2)
+        out.position = Pv + self.ray.direction * ratio
+        return out
+
+    def calculate_centre_of_rotation(self):
+        """
+        Calculates the position, on the detector, of the projection of the rotation axis in the detector coordinate system
+
+        Note
+        ----
+         - Origin is in the centre of the detector
+         - Axes directions are specified by detector.direction_x, detector.direction_y
+         - Units are the units of distance used to specify the component's positions
+
+        Returns
+        -------
+        Float
+            Offset position along the detector x_axis at y=0
+        Float
+            Angle between the y_axis and the rotation axis projection, in radians
+        """
+
+        #convert to the detector coordinate system
+        dp1 = self.rotation_axis_on_detector().position - self.detector.position
+        offset = self.detector.direction_x.dot(dp1)
+
+        return (offset, 0.0)
+
+    def set_centre_of_rotation(self, offset):
+        """ Configures the geometry to have the requested centre of rotation offset at the detector
+        """
+        offset_current = self.calculate_centre_of_rotation()[0]
+        offset_new = offset - offset_current
+
+        self.rotation_axis.position = self.rotation_axis.position + offset_new * self.detector.direction_x
+
+    def __str__(self):
+        def csv(val):
+            return numpy.array2string(val, separator=', ')
+
+        repres = "2D Parallel-beam tomography\n"
+        repres += "System configuration:\n"
+        repres += "\tRay direction: {0}\n".format(csv(self.ray.direction))
+        repres += "\tRotation axis position: {0}\n".format(csv(self.rotation_axis.position))
+        repres += "\tDetector position: {0}\n".format(csv(self.detector.position))
+        repres += "\tDetector direction x: {0}\n".format(csv(self.detector.direction_x))
+        return repres
+
+    def __eq__(self, other):
+
+        if not isinstance(other, self.__class__):
+            return False
+
+        if numpy.allclose(self.ray.direction, other.ray.direction) \
+        and numpy.allclose(self.detector.position, other.detector.position)\
+        and numpy.allclose(self.detector.direction_x, other.detector.direction_x)\
+        and numpy.allclose(self.rotation_axis.position, other.rotation_axis.position):
+            return True
+
+        return False
+
+    def get_centre_slice(self):
+        return self
+
+    def calculate_magnification(self):
+        '''Method to calculate magnification and distance from the sample to
+        the detector using the detector positions and the rotation axis.
+        For parallel beam geometry magnification = 1
+
+        Returns
+        -------
+        list
+            A list containing the [0] distance from the source to the rotate
+            axis, [1] distance from the rotate axis to the detector,
+            [2] magnification of the system
+
+        '''
+        ab = (self.rotation_axis.position - self.detector.position)
+        dist_center_detector = float(numpy.sqrt(ab.dot(ab)))
+
+        return [None, dist_center_detector, 1.0]
+
+
+class Parallel3D(SystemConfiguration):
+    r'''This class creates the SystemConfiguration of a parallel beam 3D tomographic system
+
+    :param ray_direction: A 3D vector describing the x-ray direction (x,y,z)
+    :type ray_direction: list, tuple, ndarray
+    :param detector_pos: A 3D vector describing the position of the centre of the detector (x,y,z)
+    :type detector_pos: list, tuple, ndarray
+    :param detector_direction_x: A 3D vector describing the direction of the detector_x (x,y,z)
+    :type detector_direction_x: list, tuple, ndarray
+    :param detector_direction_y: A 3D vector describing the direction of the detector_y (x,y,z)
+    :type detector_direction_y: list, tuple, ndarray
+    :param rotation_axis_pos: A 3D vector describing the position of the axis of rotation (x,y,z)
+    :type rotation_axis_pos: list, tuple, ndarray
+    :param rotation_axis_direction: A 3D vector describing the direction of the axis of rotation (x,y,z)
+    :type rotation_axis_direction: list, tuple, ndarray
+    :param units: Label the units of distance used for the configuration
+    :type units: string
+    '''
+
+    def __init__ (self,  ray_direction, detector_pos, detector_direction_x, detector_direction_y, rotation_axis_pos, rotation_axis_direction, units='units'):
+        """Constructor method
+        """
+        super(Parallel3D, self).__init__(dof=3, geometry=AcquisitionType.PARALLEL, units=units)
+
+        #source
+        self.ray.direction = ray_direction
+
+        #detector
+        self.detector.position = detector_pos
+        self.detector.set_direction(detector_direction_x, detector_direction_y)
+
+        #rotate axis
+        self.rotation_axis.position = rotation_axis_pos
+        self.rotation_axis.direction = rotation_axis_direction
+
+    def align_z(self):
+        r'''Transforms the system origin to the rotate axis with z direction aligned to the rotate axis direction
+        '''
+        self.set_origin(self.rotation_axis.position)
+
+        #calculate rotation matrix to align rotation axis direction with z
+        rotation_matrix = SystemConfiguration.rotation_vec_to_z(self.rotation_axis.direction)
+
+        #apply transform
+        self.rotation_axis.direction = [0,0,1]
+        self.ray.direction = rotation_matrix.dot(self.ray.direction.reshape(3,1))
+        self.detector.position = rotation_matrix.dot(self.detector.position.reshape(3,1))
+        new_x = rotation_matrix.dot(self.detector.direction_x.reshape(3,1))
+        new_y = rotation_matrix.dot(self.detector.direction_y.reshape(3,1))
+        self.detector.set_direction(new_x, new_y)
+
+
+    def align_reference_frame(self, definition='cil'):
+        r'''Transforms and rotates the system to backend definitions
+        '''
+        #in this instance definitions are the same
+        if definition not in ['cil','tigre']:
+            raise ValueError("Geometry can be configured for definition = 'cil' or 'tigre'  only. Got {}".format(definition))
+
+        self.align_z()
+        rotation_matrix = SystemConfiguration.rotation_vec_to_y(self.ray.direction)
+
+        self.ray.direction = rotation_matrix.dot(self.ray.direction.reshape(3,1))
+        self.detector.position = rotation_matrix.dot(self.detector.position.reshape(3,1))
+        new_direction_x = rotation_matrix.dot(self.detector.direction_x.reshape(3,1))
+        new_direction_y = rotation_matrix.dot(self.detector.direction_y.reshape(3,1))
+        self.detector.set_direction(new_direction_x, new_direction_y)
+
+
+    def system_description(self):
+        r'''Returns `simple` if the the geometry matches the default definitions with no offsets or rotations,
+            \nReturns `offset` if the the geometry matches the default definitions with centre-of-rotation or detector offsets
+            \nReturns `advanced` if the the geometry has rotated or tilted rotation axis or detector, can also have offsets
+        '''
+
+
+        '''
+        simple
+         - rays perpendicular to detector
+         - rotation axis parallel to detector y
+         - rotation axis position + ray direction hits detector with no x offset (y offsets allowed)
+        offset
+         - rays perpendicular to detector
+         - rotation axis parallel to detector y
+        rolled
+         - rays perpendicular to detector
+         - rays perpendicular to rotation axis
+        advanced
+         - not rays perpendicular to detector (for parallel just equates to an effective pixel size change?)
+         or
+         - not rays perpendicular to rotation axis  (tilted, i.e. laminography)
+        '''
+
+        rays_perpendicular_detector = ComponentDescription.test_parallel(self.ray.direction, self.detector.normal)
+        rays_perpendicular_rotation = ComponentDescription.test_perpendicular(self.ray.direction, self.rotation_axis.direction)
+        rotation_parallel_detector_y = ComponentDescription.test_parallel(self.rotation_axis.direction, self.detector.direction_y)
+
+        #rotation axis to detector is parallel with ray
+        if numpy.allclose(self.rotation_axis.position, self.detector.position): #points are equal so on ray path
+            rotation_axis_centred = True
+        else:
+            vec_a = ComponentDescription.create_unit_vector(self.detector.position - self.rotation_axis.position)
+            rotation_axis_centred = ComponentDescription.test_parallel(self.ray.direction, vec_a)
+
+        if not rays_perpendicular_detector or\
+            not rays_perpendicular_rotation or\
+            not rotation_parallel_detector_y:
+            config = SystemConfiguration.SYSTEM_ADVANCED
+        elif not rotation_axis_centred:
+            config =  SystemConfiguration.SYSTEM_OFFSET
+        else:
+            config =  SystemConfiguration.SYSTEM_SIMPLE
+
+        return config
+
+
+    def __str__(self):
+        def csv(val):
+            return numpy.array2string(val, separator=', ')
+
+        repres = "3D Parallel-beam tomography\n"
+        repres += "System configuration:\n"
+        repres += "\tRay direction: {0}\n".format(csv(self.ray.direction))
+        repres += "\tRotation axis position: {0}\n".format(csv(self.rotation_axis.position))
+        repres += "\tRotation axis direction: {0}\n".format(csv(self.rotation_axis.direction))
+        repres += "\tDetector position: {0}\n".format(csv(self.detector.position))
+        repres += "\tDetector direction x: {0}\n".format(csv(self.detector.direction_x))
+        repres += "\tDetector direction y: {0}\n".format(csv(self.detector.direction_y))
+        return repres
+
+    def __eq__(self, other):
+
+        if not isinstance(other, self.__class__):
+            return False
+
+        if numpy.allclose(self.ray.direction, other.ray.direction) \
+        and numpy.allclose(self.detector.position, other.detector.position)\
+        and numpy.allclose(self.detector.direction_x, other.detector.direction_x)\
+        and numpy.allclose(self.detector.direction_y, other.detector.direction_y)\
+        and numpy.allclose(self.rotation_axis.position, other.rotation_axis.position)\
+        and numpy.allclose(self.rotation_axis.direction, other.rotation_axis.direction):
+
+            return True
+
+        return False
+
+    def calculate_magnification(self):
+        '''Method to calculate magnification and distance from the sample to
+        the detector using the detector positions and the rotation axis.
+        For parallel beam geometry magnification = 1
+
+        Returns
+        -------
+        list
+            A list containing the [0] distance from the source to the rotate
+            axis, [1] distance from the rotate axis to the detector,
+            [2] magnification of the system
+
+        '''
+        ab = (self.rotation_axis.position - self.detector.position)
+        dist_center_detector = float(numpy.sqrt(ab.dot(ab)))
+
+        return [None, dist_center_detector, 1.0]
+
+    def get_centre_slice(self):
+        """Returns the 2D system configuration corresponding to the centre slice
+        """
+        dp1 = self.rotation_axis.direction.dot(self.ray.direction)
+        dp2 = self.rotation_axis.direction.dot(self.detector.direction_x)
+
+        if numpy.isclose(dp1, 0) and numpy.isclose(dp2, 0):
+            temp = self.copy()
+
+            #convert to rotation axis reference frame
+            temp.align_reference_frame()
+
+            ray_direction = temp.ray.direction[0:2]
+            detector_position = temp.detector.position[0:2]
+            detector_direction_x = temp.detector.direction_x[0:2]
+            rotation_axis_position = temp.rotation_axis.position[0:2]
+
+            return Parallel2D(ray_direction, detector_position, detector_direction_x, rotation_axis_position)
+
+        else:
+            raise ValueError('Cannot convert geometry to 2D. Requires axis of rotation to be perpendicular to ray direction and the detector direction x.')
+
+
+    def rotation_axis_on_detector(self):
+        """
+        Calculates the position, on the detector, of the projection of the rotation axis in the world coordinate system
+
+        Returns
+        -------
+        cil.framework.system_configuration.PositionDirectionVector
+            Position and direction in the 3D system
+        """
+        #calculate the rotation axis line with the detector
+        vec_a = self.ray.direction
+
+        #calculate the intersection with the detector
+        Pv = self.rotation_axis.position
+        ratio = (self.detector.position - Pv).dot(self.detector.normal) / vec_a.dot(self.detector.normal)
+        point1 = Pv + vec_a * ratio
+
+        Pv = self.rotation_axis.position + self.rotation_axis.direction
+        ratio = (self.detector.position - Pv).dot(self.detector.normal) / vec_a.dot(self.detector.normal)
+        point2 = Pv + vec_a * ratio
+
+        out = PositionDirectionVector(3)
+        out.position = point1
+        out.direction = point2 - point1
+        return out
+
+
+    def calculate_centre_of_rotation(self):
+        """
+        Calculates the position, on the detector, of the projection of the rotation axis in the detector coordinate system
+
+        Note
+        ----
+         - Origin is in the centre of the detector
+         - Axes directions are specified by detector.direction_x, detector.direction_y
+         - Units are the units of distance used to specify the component's positions
+
+        Returns
+        -------
+        Float
+            Offset position along the detector x_axis at y=0
+        Float
+            Angle between the y_axis and the rotation axis projection, in radians
+        """
+        rotate_axis_projection = self.rotation_axis_on_detector()
+
+        p1 = rotate_axis_projection.position
+        p2 = p1 + rotate_axis_projection.direction
+
+        #point1 and point2 are on the detector plane. need to return them in the detector coordinate system
+        dp1 = p1 - self.detector.position
+        x1 = self.detector.direction_x.dot(dp1)
+        y1 = self.detector.direction_y.dot(dp1)
+        dp2 = p2 - self.detector.position
+        x2 = self.detector.direction_x.dot(dp2)
+        y2 = self.detector.direction_y.dot(dp2)
+
+        #y = m * x + c
+        #c = y1 - m * x1
+        #when y is 0
+        #x=-c/m
+        #x_y0 = -y1/m + x1
+        offset_x_y0 = x1 -y1 * (x2 - x1)/(y2-y1)
+
+        angle = math.atan2(x2 - x1, y2 - y1)
+        offset = offset_x_y0
+
+        return (offset, angle)
+
+    def set_centre_of_rotation(self, offset, angle):
+        """ Configures the geometry to have the requested centre of rotation offset at the detector
+        """
+
+        #two points on the detector
+        x1 = offset
+        y1 = 0
+        x2 = offset + math.tan(angle)
+        y2 = 1
+
+        #convert to 3d coordinates in system frame
+        p1 = self.detector.position + x1 * self.detector.direction_x + y1 * self.detector.direction_y
+        p2 = self.detector.position + x2 * self.detector.direction_x + y2 * self.detector.direction_y
+
+        # find where vec p1 + t * ray dirn intersects plane defined by rotate axis (pos and dir) and det_x direction
+
+        vector_pos=p1
+        vec_dirn=self.ray.direction
+        plane_pos=self.rotation_axis.position
+        plane_normal = numpy.cross(self.detector.direction_x, self.rotation_axis.direction)
+
+
+        ratio = (plane_pos - vector_pos).dot(plane_normal) / vec_dirn.dot(plane_normal)
+        p1_on_plane = vector_pos + vec_dirn * ratio
+
+        vector_pos=p2
+        ratio = (plane_pos - vector_pos).dot(plane_normal) / vec_dirn.dot(plane_normal)
+        p2_on_plane = vector_pos + vec_dirn * ratio
+
+        self.rotation_axis.position = p1_on_plane
+        self.rotation_axis.direction = p2_on_plane - p1_on_plane
+
+
+class Cone2D(SystemConfiguration):
+    r'''This class creates the SystemConfiguration of a cone beam 2D tomographic system
+
+    :param source_pos: A 2D vector describing the position of the source (x,y)
+    :type source_pos: list, tuple, ndarray
+    :param detector_pos: A 2D vector describing the position of the centre of the detector (x,y)
+    :type detector_pos: list, tuple, ndarray
+    :param detector_direction_x: A 2D vector describing the direction of the detector_x (x,y)
+    :type detector_direction_x: list, tuple, ndarray
+    :param rotation_axis_pos: A 2D vector describing the position of the axis of rotation (x,y)
+    :type rotation_axis_pos: list, tuple, ndarray
+    :param units: Label the units of distance used for the configuration
+    :type units: string
+    '''
+
+    def __init__ (self, source_pos, detector_pos, detector_direction_x, rotation_axis_pos, units='units'):
+        """Constructor method
+        """
+        super(Cone2D, self).__init__(dof=2, geometry=AcquisitionType.CONE, units=units)
+
+        #source
+        self.source.position = source_pos
+
+        #detector
+        self.detector.position = detector_pos
+        self.detector.direction_x = detector_direction_x
+
+        #rotate axis
+        self.rotation_axis.position = rotation_axis_pos
+
+
+    def align_reference_frame(self, definition='cil'):
+        r'''Transforms and rotates the system to backend definitions
+        '''
+        self.set_origin(self.rotation_axis.position)
+
+        if definition=='cil':
+            rotation_matrix = SystemConfiguration.rotation_vec_to_y(self.detector.position - self.source.position)
+        elif definition=='tigre':
+            rotation_matrix = SystemConfiguration.rotation_vec_to_y(self.rotation_axis.position - self.source.position)
+        else:
+            raise ValueError("Geometry can be configured for definition = 'cil' or 'tigre'  only. Got {}".format(definition))
+
+        self.source.position = rotation_matrix.dot(self.source.position.reshape(2,1))
+        self.detector.position = rotation_matrix.dot(self.detector.position.reshape(2,1))
+        self.detector.direction_x = rotation_matrix.dot(self.detector.direction_x.reshape(2,1))
+
+
+    def system_description(self):
+        r'''Returns `simple` if the the geometry matches the default definitions with no offsets or rotations,
+            \nReturns `offset` if the the geometry matches the default definitions with centre-of-rotation or detector offsets
+            \nReturns `advanced` if the the geometry has rotated or tilted rotation axis or detector, can also have offsets
+        '''
+
+        vec_src2det = ComponentDescription.create_unit_vector(self.detector.position - self.source.position)
+
+        principal_ray_centred = ComponentDescription.test_parallel(vec_src2det, self.detector.normal)
+
+        #rotation axis to detector is parallel with centre ray
+        if numpy.allclose(self.rotation_axis.position, self.detector.position): #points are equal
+            rotation_axis_centred = True
+        else:
+            vec_b = ComponentDescription.create_unit_vector(self.detector.position - self.rotation_axis.position)
+            rotation_axis_centred = ComponentDescription.test_parallel(vec_src2det, vec_b)
+
+        if not principal_ray_centred:
+            config = SystemConfiguration.SYSTEM_ADVANCED
+        elif not rotation_axis_centred:
+            config =  SystemConfiguration.SYSTEM_OFFSET
+        else:
+            config =  SystemConfiguration.SYSTEM_SIMPLE
+
+        return config
+
+    def __str__(self):
+        def csv(val):
+            return numpy.array2string(val, separator=', ')
+
+        repres = "2D Cone-beam tomography\n"
+        repres += "System configuration:\n"
+        repres += "\tSource position: {0}\n".format(csv(self.source.position))
+        repres += "\tRotation axis position: {0}\n".format(csv(self.rotation_axis.position))
+        repres += "\tDetector position: {0}\n".format(csv(self.detector.position))
+        repres += "\tDetector direction x: {0}\n".format(csv(self.detector.direction_x))
+        return repres
+
+    def __eq__(self, other):
+
+        if not isinstance(other, self.__class__):
+            return False
+
+        if numpy.allclose(self.source.position, other.source.position) \
+        and numpy.allclose(self.detector.position, other.detector.position)\
+        and numpy.allclose(self.detector.direction_x, other.detector.direction_x)\
+        and numpy.allclose(self.rotation_axis.position, other.rotation_axis.position):
+            return True
+
+        return False
+
+    def get_centre_slice(self):
+        return self
+
+    def calculate_magnification(self):
+
+        ab = (self.rotation_axis.position - self.source.position)
+        dist_source_center = float(numpy.sqrt(ab.dot(ab)))
+
+        ab_unit = ab / numpy.sqrt(ab.dot(ab))
+
+        n = self.detector.normal
+
+        #perpendicular distance between source and detector centre
+        sd = float((self.detector.position - self.source.position).dot(n))
+        ratio = float(ab_unit.dot(n))
+
+        source_to_detector = sd / ratio
+        dist_center_detector = source_to_detector - dist_source_center
+        magnification = (dist_center_detector + dist_source_center) / dist_source_center
+
+        return [dist_source_center, dist_center_detector, magnification]
+
+    def rotation_axis_on_detector(self):
+        """
+        Calculates the position, on the detector, of the projection of the rotation axis in the world coordinate system
+
+        Returns
+        -------
+        PositionVector
+            Position in the 3D system
+        """
+        #calculate the point the rotation axis intersects with the detector
+        vec_a = self.rotation_axis.position - self.source.position
+
+        Pv = self.rotation_axis.position
+        ratio = (self.detector.position - Pv).dot(self.detector.normal) / vec_a.dot(self.detector.normal)
+
+        out = PositionVector(2)
+        out.position = Pv + vec_a * ratio
+
+        return out
+
+
+    def calculate_centre_of_rotation(self):
+        """
+        Calculates the position, on the detector, of the projection of the rotation axis in the detector coordinate system
+
+        Note
+        ----
+         - Origin is in the centre of the detector
+         - Axes directions are specified by detector.direction_x, detector.direction_y
+         - Units are the units of distance used to specify the component's positions
+
+        Returns
+        -------
+        Float
+            Offset position along the detector x_axis at y=0
+        Float
+            Angle between the y_axis and the rotation axis projection, in radians
+        """
+        #convert to the detector coordinate system
+        dp1 = self.rotation_axis_on_detector().position - self.detector.position
+        offset = self.detector.direction_x.dot(dp1)
+
+        return (offset, 0.0)
+
+    def set_centre_of_rotation(self, offset):
+        """ Configures the geometry to have the requested centre of rotation offset at the detector
+        """
+        offset_current = self.calculate_centre_of_rotation()[0]
+        offset_new = offset - offset_current
+
+        cofr_shift = offset_new * self.detector.direction_x /self.calculate_magnification()[2]
+        self.rotation_axis.position =self.rotation_axis.position + cofr_shift
+
+
+class Cone3D(SystemConfiguration):
+    r'''This class creates the SystemConfiguration of a cone beam 3D tomographic system
+
+    :param source_pos: A 3D vector describing the position of the source (x,y,z)
+    :type source_pos: list, tuple, ndarray
+    :param detector_pos: A 3D vector describing the position of the centre of the detector (x,y,z)
+    :type detector_pos: list, tuple, ndarray
+    :param detector_direction_x: A 3D vector describing the direction of the detector_x (x,y,z)
+    :type detector_direction_x: list, tuple, ndarray
+    :param detector_direction_y: A 3D vector describing the direction of the detector_y (x,y,z)
+    :type detector_direction_y: list, tuple, ndarray
+    :param rotation_axis_pos: A 3D vector describing the position of the axis of rotation (x,y,z)
+    :type rotation_axis_pos: list, tuple, ndarray
+    :param rotation_axis_direction: A 3D vector describing the direction of the axis of rotation (x,y,z)
+    :type rotation_axis_direction: list, tuple, ndarray
+    :param units: Label the units of distance used for the configuration
+    :type units: string
+    '''
+
+    def __init__ (self, source_pos, detector_pos, detector_direction_x, detector_direction_y, rotation_axis_pos, rotation_axis_direction, units='units'):
+        """Constructor method
+        """
+        super(Cone3D, self).__init__(dof=3, geometry=AcquisitionType.CONE, units=units)
+
+        #source
+        self.source.position = source_pos
+
+        #detector
+        self.detector.position = detector_pos
+        self.detector.set_direction(detector_direction_x, detector_direction_y)
+
+        #rotate axis
+        self.rotation_axis.position = rotation_axis_pos
+        self.rotation_axis.direction = rotation_axis_direction
+
+    def align_z(self):
+        r'''Transforms the system origin to the rotate axis with z direction aligned to the rotate axis direction
+        '''
+        self.set_origin(self.rotation_axis.position)
+        rotation_matrix = SystemConfiguration.rotation_vec_to_z(self.rotation_axis.direction)
+
+        #apply transform
+        self.rotation_axis.direction = [0,0,1]
+        self.source.position = rotation_matrix.dot(self.source.position.reshape(3,1))
+        self.detector.position = rotation_matrix.dot(self.detector.position.reshape(3,1))
+        new_x = rotation_matrix.dot(self.detector.direction_x.reshape(3,1))
+        new_y = rotation_matrix.dot(self.detector.direction_y.reshape(3,1))
+        self.detector.set_direction(new_x, new_y)
+
+
+    def align_reference_frame(self, definition='cil'):
+        r'''Transforms and rotates the system to backend definitions
+        '''
+
+        self.align_z()
+
+        if definition=='cil':
+            rotation_matrix = SystemConfiguration.rotation_vec_to_y(self.detector.position - self.source.position)
+        elif definition=='tigre':
+            rotation_matrix = SystemConfiguration.rotation_vec_to_y(self.rotation_axis.position - self.source.position)
+        else:
+            raise ValueError("Geometry can be configured for definition = 'cil' or 'tigre'  only. Got {}".format(definition))
+
+        self.source.position = rotation_matrix.dot(self.source.position.reshape(3,1))
+        self.detector.position = rotation_matrix.dot(self.detector.position.reshape(3,1))
+        new_direction_x = rotation_matrix.dot(self.detector.direction_x.reshape(3,1))
+        new_direction_y = rotation_matrix.dot(self.detector.direction_y.reshape(3,1))
+        self.detector.set_direction(new_direction_x, new_direction_y)
+
+
+    def system_description(self):
+        r'''Returns `simple` if the the geometry matches the default definitions with no offsets or rotations,
+            \nReturns `offset` if the the geometry matches the default definitions with centre-of-rotation or detector offsets
+            \nReturns `advanced` if the the geometry has rotated or tilted rotation axis or detector, can also have offsets
+        '''
+
+        vec_src2det = ComponentDescription.create_unit_vector(self.detector.position - self.source.position)
+
+        principal_ray_centred = ComponentDescription.test_parallel(vec_src2det, self.detector.normal)
+        centre_ray_perpendicular_rotation = ComponentDescription.test_perpendicular(vec_src2det, self.rotation_axis.direction)
+        rotation_parallel_detector_y = ComponentDescription.test_parallel(self.rotation_axis.direction, self.detector.direction_y)
+
+        #rotation axis to detector is parallel with centre ray
+        if numpy.allclose(self.rotation_axis.position, self.detector.position): #points are equal
+            rotation_axis_centred = True
+        else:
+            vec_b = ComponentDescription.create_unit_vector(self.detector.position - self.rotation_axis.position)
+            rotation_axis_centred = ComponentDescription.test_parallel(vec_src2det, vec_b)
+
+        if not principal_ray_centred or\
+            not centre_ray_perpendicular_rotation or\
+            not rotation_parallel_detector_y:
+            config = SystemConfiguration.SYSTEM_ADVANCED
+        elif not rotation_axis_centred:
+            config =  SystemConfiguration.SYSTEM_OFFSET
+        else:
+            config =  SystemConfiguration.SYSTEM_SIMPLE
+
+        return config
+
+    def get_centre_slice(self):
+        """Returns the 2D system configuration corresponding to the centre slice
+        """
+        #requires the rotate axis to be perpendicular to the normal of the detector, and perpendicular to detector_direction_x
+        dp1 = self.rotation_axis.direction.dot(self.detector.normal)
+        dp2 = self.rotation_axis.direction.dot(self.detector.direction_x)
+
+        if numpy.isclose(dp1, 0) and numpy.isclose(dp2, 0):
+            temp = self.copy()
+            temp.align_reference_frame()
+            source_position = temp.source.position[0:2]
+            detector_position = temp.detector.position[0:2]
+            detector_direction_x = temp.detector.direction_x[0:2]
+            rotation_axis_position = temp.rotation_axis.position[0:2]
+
+            return Cone2D(source_position, detector_position, detector_direction_x, rotation_axis_position)
+        else:
+            raise ValueError('Cannot convert geometry to 2D. Requires axis of rotation to be perpendicular to the detector.')
+
+    def __str__(self):
+        def csv(val):
+            return numpy.array2string(val, separator=', ')
+
+        repres = "3D Cone-beam tomography\n"
+        repres += "System configuration:\n"
+        repres += "\tSource position: {0}\n".format(csv(self.source.position))
+        repres += "\tRotation axis position: {0}\n".format(csv(self.rotation_axis.position))
+        repres += "\tRotation axis direction: {0}\n".format(csv(self.rotation_axis.direction))
+        repres += "\tDetector position: {0}\n".format(csv(self.detector.position))
+        repres += "\tDetector direction x: {0}\n".format(csv(self.detector.direction_x))
+        repres += "\tDetector direction y: {0}\n".format(csv(self.detector.direction_y))
+        return repres
+
+    def __eq__(self, other):
+
+        if not isinstance(other, self.__class__):
+            return False
+
+        if numpy.allclose(self.source.position, other.source.position) \
+        and numpy.allclose(self.detector.position, other.detector.position)\
+        and numpy.allclose(self.detector.direction_x, other.detector.direction_x)\
+        and numpy.allclose(self.detector.direction_y, other.detector.direction_y)\
+        and numpy.allclose(self.rotation_axis.position, other.rotation_axis.position)\
+        and numpy.allclose(self.rotation_axis.direction, other.rotation_axis.direction):
+
+            return True
+
+        return False
+
+    def calculate_magnification(self):
+
+        ab = (self.rotation_axis.position - self.source.position)
+        dist_source_center = float(numpy.sqrt(ab.dot(ab)))
+
+        ab_unit = ab / numpy.sqrt(ab.dot(ab))
+
+        n = self.detector.normal
+
+        #perpendicular distance between source and detector centre
+        sd = float((self.detector.position - self.source.position).dot(n))
+        ratio = float(ab_unit.dot(n))
+
+        source_to_detector = sd / ratio
+        dist_center_detector = source_to_detector - dist_source_center
+        magnification = (dist_center_detector + dist_source_center) / dist_source_center
+
+        return [dist_source_center, dist_center_detector, magnification]
+
+    def rotation_axis_on_detector(self):
+        """
+        Calculates the position, on the detector, of the projection of the rotation axis in the world coordinate system
+
+        Returns
+        -------
+        PositionDirectionVector
+            Position and direction in the 3D system
+        """
+        #calculate the intersection with the detector, of source to pv
+        Pv = self.rotation_axis.position
+        vec_a = Pv - self.source.position
+        ratio = (self.detector.position - Pv).dot(self.detector.normal) / vec_a.dot(self.detector.normal)
+        point1 = Pv + vec_a * ratio
+
+        #calculate the intersection with the detector, of source to pv
+        Pv = self.rotation_axis.position + self.rotation_axis.direction
+        vec_a = Pv - self.source.position
+        ratio = (self.detector.position - Pv).dot(self.detector.normal) / vec_a.dot(self.detector.normal)
+        point2 = Pv + vec_a * ratio
+
+        out = PositionDirectionVector(3)
+        out.position = point1
+        out.direction = point2 - point1
+        return out
+
+    def calculate_centre_of_rotation(self):
+        """
+        Calculates the position, on the detector, of the projection of the rotation axis in the detector coordinate system
+
+        Note
+        ----
+         - Origin is in the centre of the detector
+         - Axes directions are specified by detector.direction_x, detector.direction_y
+         - Units are the units of distance used to specify the component's positions
+
+        Returns
+        -------
+        Float
+            Offset position along the detector x_axis at y=0
+        Float
+            Angle between the y_axis and the rotation axis projection, in radians
+        """
+        rotate_axis_projection = self.rotation_axis_on_detector()
+
+        p1 = rotate_axis_projection.position
+        p2 = p1 + rotate_axis_projection.direction
+
+        #point1 and point2 are on the detector plane. need to return them in the detector coordinate system
+        dp1 = p1 - self.detector.position
+        x1 = self.detector.direction_x.dot(dp1)
+        y1 = self.detector.direction_y.dot(dp1)
+        dp2 = p2 - self.detector.position
+        x2 = self.detector.direction_x.dot(dp2)
+        y2 = self.detector.direction_y.dot(dp2)
+
+        #y = m * x + c
+        #c = y1 - m * x1
+        #when y is 0
+        #x=-c/m
+        #x_y0 = -y1/m + x1
+        offset_x_y0 = x1 -y1 * (x2 - x1)/(y2-y1)
+
+        angle = math.atan2(x2 - x1, y2 - y1)
+        offset = offset_x_y0
+
+        return (offset, angle)
+
+
+    def set_centre_of_rotation(self, offset, angle):
+        """ Configures the geometry to have the requested centre of rotation offset at the detector
+        """
+        #two points on the detector
+        x1 = offset
+        y1 = 0
+        x2 = offset + math.tan(angle)
+        y2 = 1
+
+        #convert to 3d coordinates in system frame
+        p1 = self.detector.position + x1 * self.detector.direction_x + y1 * self.detector.direction_y
+        p2 = self.detector.position + x2 * self.detector.direction_x + y2 * self.detector.direction_y
+
+        # vectors from source define plane
+        sp1 = p1 - self.source.position
+        sp2 = p2 - self.source.position
+
+        #find vector intersection with a plane defined by rotate axis (pos and dir) and det_x direction
+        plane_normal = numpy.cross(self.rotation_axis.direction, self.detector.direction_x)
+
+        ratio = (self.rotation_axis.position - self.source.position).dot(plane_normal) / sp1.dot(plane_normal)
+        p1_on_plane = self.source.position + sp1 * ratio
+
+        ratio = (self.rotation_axis.position - self.source.position).dot(plane_normal) / sp2.dot(plane_normal)
+        p2_on_plane = self.source.position + sp2 * ratio
+
+        self.rotation_axis.position = p1_on_plane
+        self.rotation_axis.direction = p2_on_plane - p1_on_plane
+
+
+class Panel(object):
+    r'''This is a class describing the panel of the system.
+
+    :param num_pixels: num_pixels_h or (num_pixels_h, num_pixels_v) containing the number of pixels of the panel
+    :type num_pixels: int, list, tuple
+    :param pixel_size: pixel_size_h or (pixel_size_h, pixel_size_v) containing the size of the pixels of the panel
+    :type pixel_size: int, lust, tuple
+    :param origin: the position of pixel 0 (the data origin) of the panel `top-left`, `top-right`, `bottom-left`, `bottom-right`
+    :type origin: string
+     '''
+
+    @property
+    def num_pixels(self):
+        return self._num_pixels
+
+    @num_pixels.setter
+    def num_pixels(self, val):
+
+        if isinstance(val,int):
+            num_pixels_temp = [val, 1]
+        else:
+            try:
+                length_val = len(val)
+            except:
+                raise TypeError('num_pixels expected int x or [int x, int y]. Got {}'.format(type(val)))
+
+
+            if length_val == 2:
+                try:
+                    val0 = int(val[0])
+                    val1 = int(val[1])
+                except:
+                    raise TypeError('num_pixels expected int x or [int x, int y]. Got {0},{1}'.format(type(val[0]), type(val[1])))
+
+                num_pixels_temp = [val0, val1]
+            else:
+                raise ValueError('num_pixels expected int x or [int x, int y]. Got {}'.format(val))
+
+        if num_pixels_temp[1] > 1 and self._dimension == 2:
+            raise ValueError('2D acquisitions expects a 1D panel. Expected num_pixels[1] = 1. Got {}'.format(num_pixels_temp[1]))
+        if num_pixels_temp[0] < 1 or num_pixels_temp[1] < 1:
+            raise ValueError('num_pixels (x,y) must be >= (1,1). Got {}'.format(num_pixels_temp))
+        else:
+            self._num_pixels = numpy.array(num_pixels_temp, dtype=numpy.int16)
+
+    @property
+    def pixel_size(self):
+        return self._pixel_size
+
+    @pixel_size.setter
+    def pixel_size(self, val):
+
+        if val is None:
+            pixel_size_temp = [1.0,1.0]
+        else:
+            try:
+                length_val = len(val)
+            except:
+                try:
+                    temp = float(val)
+                    pixel_size_temp = [temp, temp]
+
+                except:
+                    raise TypeError('pixel_size expected float xy or [float x, float y]. Got {}'.format(val))
+            else:
+                if length_val == 2:
+                    try:
+                        temp0 = float(val[0])
+                        temp1 = float(val[1])
+                        pixel_size_temp = [temp0, temp1]
+                    except:
+                        raise ValueError('pixel_size expected float xy or [float x, float y]. Got {}'.format(val))
+                else:
+                    raise ValueError('pixel_size expected float xy or [float x, float y]. Got {}'.format(val))
+
+            if pixel_size_temp[0] <= 0 or pixel_size_temp[1] <= 0:
+                raise ValueError('pixel_size (x,y) at must be > (0.,0.). Got {}'.format(pixel_size_temp))
+
+        self._pixel_size = numpy.array(pixel_size_temp)
+
+    @property
+    def origin(self):
+        return self._origin
+
+    @origin.setter
+    def origin(self, val):
+        allowed = ['top-left', 'top-right','bottom-left','bottom-right']
+        if val in allowed:
+            self._origin=val
+        else:
+            raise ValueError('origin expected one of {0}. Got {1}'.format(allowed, val))
+
+    def __str__(self):
+        repres = "Panel configuration:\n"
+        repres += "\tNumber of pixels: {0}\n".format(self.num_pixels)
+        repres += "\tPixel size: {0}\n".format(self.pixel_size)
+        repres += "\tPixel origin: {0}\n".format(self.origin)
+        return repres
+
+    def __eq__(self, other):
+
+        if not isinstance(other, self.__class__):
+            return False
+
+        if numpy.array_equal(self.num_pixels, other.num_pixels) \
+            and numpy.allclose(self.pixel_size, other.pixel_size) \
+            and self.origin == other.origin:
+            return True
+
+        return False
+
+    def __init__ (self, num_pixels, pixel_size, origin, dimension):
+        """Constructor method
+        """
+        self._dimension = dimension
+        self.num_pixels = num_pixels
+        self.pixel_size = pixel_size
+        self.origin = origin
+
+
+class Channels(object):
+    r'''This is a class describing the channels of the data.
+    This will be created on initialisation of AcquisitionGeometry.
+
+    :param num_channels: The number of channels of data
+    :type num_channels: int
+    :param channel_labels: A list of channel labels
+    :type channel_labels: list, optional
+     '''
+
+    @property
+    def num_channels(self):
+        return self._num_channels
+
+    @num_channels.setter
+    def num_channels(self, val):
+        try:
+            val = int(val)
+        except TypeError:
+            raise ValueError('num_channels expected a positive integer. Got {}'.format(type(val)))
+
+        if val > 0:
+            self._num_channels = val
+        else:
+            raise ValueError('num_channels expected a positive integer. Got {}'.format(val))
+
+    @property
+    def channel_labels(self):
+        return self._channel_labels
+
+    @channel_labels.setter
+    def channel_labels(self, val):
+        if val is None or len(val) == self._num_channels:
+            self._channel_labels = val
+        else:
+            raise ValueError('labels expected to have length {0}. Got {1}'.format(self._num_channels, len(val)))
+
+    def __str__(self):
+        repres = "Channel configuration:\n"
+        repres += "\tNumber of channels: {0}\n".format(self.num_channels)
+
+        num_print=min(10,self.num_channels)
+        if  hasattr(self, 'channel_labels'):
+            repres += "\tChannel labels 0-{0}: {1}\n".format(num_print, self.channel_labels[0:num_print])
+
+        return repres
+
+    def __eq__(self, other):
+
+        if not isinstance(other, self.__class__):
+            return False
+
+        if self.num_channels != other.num_channels:
+            return False
+
+        if hasattr(self,'channel_labels'):
+            if self.channel_labels != other.channel_labels:
+                return False
+
+        return True
+
+    def __init__ (self, num_channels, channel_labels):
+        """Constructor method
+        """
+        self.num_channels = num_channels
+        if channel_labels is not None:
+            self.channel_labels = channel_labels
+
+
+class Angles(object):
+    r'''This is a class describing the angles of the data.
+
+    :param angles: The angular positions of the acquisition data
+    :type angles: list, ndarray
+    :param initial_angle: The angular offset of the object from the reference frame
+    :type initial_angle: float, optional
+    :param angle_unit: The units of the stored angles 'degree' or 'radian'
+    :type angle_unit: string
+     '''
+
+    @property
+    def angle_data(self):
+        return self._angle_data
+
+    @angle_data.setter
+    def angle_data(self, val):
+        if val is None:
+            raise ValueError('angle_data expected to be a list of floats')
+        else:
+            try:
+                self.num_positions = len(val)
+
+            except TypeError:
+                self.num_positions = 1
+                val = [val]
+
+            finally:
+                try:
+                    self._angle_data = numpy.asarray(val, dtype=numpy.float32)
+                except:
+                    raise ValueError('angle_data expected to be a list of floats')
+
+    @property
+    def initial_angle(self):
+        return self._initial_angle
+
+    @initial_angle.setter
+    def initial_angle(self, val):
+        try:
+            val = float(val)
+        except:
+            raise TypeError('initial_angle expected a float. Got {0}'.format(type(val)))
+
+        self._initial_angle = val
+
+    @property
+    def angle_unit(self):
+        return self._angle_unit.value
+
+    @angle_unit.setter
+    def angle_unit(self,val):
+        self._angle_unit = AngleUnit(val)
+
+    def __str__(self):
+        repres = "Acquisition description:\n"
+        repres += "\tNumber of positions: {0}\n".format(self.num_positions)
+        # max_num_print = 30
+        if self.num_positions < 31:
+            repres += "\tAngles 0-{0} in {1}s: {2}\n".format(self.num_positions-1, self.angle_unit, numpy.array2string(self.angle_data[0:self.num_positions], separator=', '))
+        else:
+            repres += "\tAngles 0-9 in {0}s: {1}\n".format(self.angle_unit, numpy.array2string(self.angle_data[0:10], separator=', '))
+            repres += "\tAngles {0}-{1} in {2}s: {3}\n".format(self.num_positions-10, self.num_positions-1, self.angle_unit, numpy.array2string(self.angle_data[self.num_positions-10:self.num_positions], separator=', '))
+            repres += "\tFull angular array can be accessed with acquisition_data.geometry.angles\n"
+        return repres
+
+    def __eq__(self, other):
+
+        if not isinstance(other, self.__class__):
+            return False
+
+        if self.angle_unit != other.angle_unit:
+            return False
+
+        if self.initial_angle != other.initial_angle:
+            return False
+
+        if not numpy.allclose(self.angle_data, other.angle_data):
+            return False
+
+        return True
+
+    def __init__ (self, angles, initial_angle, angle_unit):
+        """Constructor method
+        """
+        self.angle_data = angles
+        self.initial_angle = initial_angle
+        self.angle_unit = angle_unit
+
+
+class Configuration(object):
+    r'''This class holds the description of the system components.
+     '''
+
+    def __init__(self, units_distance='units distance'):
+        self.system = None #has distances
+        self.angles = None #has angles
+        self.panel = None #has distances
+        self.channels = Channels(1, None)
+        self.units = units_distance
+
+    @property
+    def configured(self):
+        if self.system is None:
+            print("Please configure AcquisitionGeometry using one of the following methods:\
+                    \n\tAcquisitionGeometry.create_Parallel2D()\
+                    \n\tAcquisitionGeometry.create_Cone3D()\
+                    \n\tAcquisitionGeometry.create_Parallel2D()\
+                    \n\tAcquisitionGeometry.create_Cone3D()")
+            return False
+
+        configured = True
+        if self.angles is None:
+            print("Please configure angular data using the set_angles() method")
+            configured = False
+        if self.panel is None:
+            print("Please configure the panel using the set_panel() method")
+            configured = False
+        return configured
+
+    def shift_detector_in_plane(self,
+                                          pixel_offset,
+                                          direction='horizontal'):
+        """
+        Adjusts the position of the detector in a specified direction within the imaging plane.
+
+        Parameters:
+        -----------
+        pixel_offset : float
+            The number of pixels to adjust the detector's position by.
+        direction : {'horizontal', 'vertical'}, optional
+            The direction in which to adjust the detector's position. Defaults to 'horizontal'.
+
+        Notes:
+        ------
+        - If `direction` is 'horizontal':
+            - If the panel's origin is 'left', positive offsets translate the detector to the right.
+            - If the panel's origin is 'right', positive offsets translate the detector to the left.
+
+        - If `direction` is 'vertical':
+            - If the panel's origin is 'bottom', positive offsets translate the detector upward.
+            - If the panel's origin is 'top', positive offsets translate the detector downward.
+
+        Returns:
+        --------
+        None
+        """
+
+        if direction == 'horizontal':
+            pixel_size = self.panel.pixel_size[0]
+            pixel_direction = self.system.detector.direction_x
+
+        elif direction == 'vertical':
+            pixel_size = self.panel.pixel_size[1]
+            pixel_direction = self.system.detector.direction_y
+
+        if 'bottom' in self.panel.origin or 'left' in self.panel.origin:
+            self.system.detector.position -= pixel_offset * pixel_direction * pixel_size
+        else:
+            self.system.detector.position += pixel_offset * pixel_direction * pixel_size
+
+
+    def __str__(self):
+        repres = ""
+        if self.configured:
+            repres += str(self.system)
+            repres += str(self.panel)
+            repres += str(self.channels)
+            repres += str(self.angles)
+
+            repres += "Distances in units: {}".format(self.units)
+
+        return repres
+
+    def __eq__(self, other):
+
+        if not isinstance(other, self.__class__):
+            return False
+
+        if self.system == other.system\
+        and self.panel == other.panel\
+        and self.channels == other.channels\
+        and self.angles == other.angles:
+            return True
+
+        return False
+
+
+
+[docs] +class AcquisitionGeometry(object): + """This class holds the AcquisitionGeometry of the system. + + Please initialise the AcquisitionGeometry using the using the static methods: + + `AcquisitionGeometry.create_Parallel2D()` + + `AcquisitionGeometry.create_Cone2D()` + + `AcquisitionGeometry.create_Parallel3D()` + + `AcquisitionGeometry.create_Cone3D()` + """ + + + #for backwards compatibility + @property + def ANGLE(self): + warnings.warn("use AcquisitionDimension.Angle instead", DeprecationWarning, stacklevel=2) + return AcquisitionDimension.ANGLE + + @property + def CHANNEL(self): + warnings.warn("use AcquisitionDimension.Channel instead", DeprecationWarning, stacklevel=2) + return AcquisitionDimension.CHANNEL + + @property + def DEGREE(self): + warnings.warn("use AngleUnit.DEGREE", DeprecationWarning, stacklevel=2) + return AngleUnit.DEGREE + + @property + def HORIZONTAL(self): + warnings.warn("use AcquisitionDimension.HORIZONTAL instead", DeprecationWarning, stacklevel=2) + return AcquisitionDimension.HORIZONTAL + + @property + def RADIAN(self): + warnings.warn("use AngleUnit.RADIAN instead", DeprecationWarning, stacklevel=2) + return AngleUnit.RADIAN + + @property + def VERTICAL(self): + warnings.warn("use AcquisitionDimension.VERTICAL instead", DeprecationWarning, stacklevel=2) + return AcquisitionDimension.VERTICAL + + @property + def geom_type(self): + return self.config.system.geometry + + @property + def num_projections(self): + return len(self.angles) + + @property + def pixel_num_h(self): + return self.config.panel.num_pixels[0] + + @pixel_num_h.setter + def pixel_num_h(self, val): + self.config.panel.num_pixels[0] = val + + @property + def pixel_num_v(self): + return self.config.panel.num_pixels[1] + + @pixel_num_v.setter + def pixel_num_v(self, val): + self.config.panel.num_pixels[1] = val + + @property + def pixel_size_h(self): + return self.config.panel.pixel_size[0] + + @pixel_size_h.setter + def pixel_size_h(self, val): + self.config.panel.pixel_size[0] = val + + @property + def pixel_size_v(self): + return self.config.panel.pixel_size[1] + + @pixel_size_v.setter + def pixel_size_v(self, val): + self.config.panel.pixel_size[1] = val + + @property + def channels(self): + return self.config.channels.num_channels + + @property + def angles(self): + return self.config.angles.angle_data + + @property + def dist_source_center(self): + out = self.config.system.calculate_magnification() + return out[0] + + @property + def dist_center_detector(self): + out = self.config.system.calculate_magnification() + return out[1] + + @property + def magnification(self): + out = self.config.system.calculate_magnification() + return out[2] + + @property + def dimension(self): + return self.config.system.dimension + + @property + def shape(self): + + shape_dict = {AcquisitionDimension.CHANNEL: self.config.channels.num_channels, + AcquisitionDimension.ANGLE: self.config.angles.num_positions, + AcquisitionDimension.VERTICAL: self.config.panel.num_pixels[1], + AcquisitionDimension.HORIZONTAL: self.config.panel.num_pixels[0]} + return tuple(shape_dict[label] for label in self.dimension_labels) + + @property + def dimension_labels(self): + labels_default = AcquisitionDimension.get_order_for_engine("cil") + + shape_default = [self.config.channels.num_channels, + self.config.angles.num_positions, + self.config.panel.num_pixels[1], + self.config.panel.num_pixels[0] + ] + + try: + labels = self._dimension_labels + except AttributeError: + labels = labels_default + labels = list(labels) + + #remove from list labels where len == 1 + # + for i, x in enumerate(shape_default): + if x == 0 or x==1: + try: + labels.remove(labels_default[i]) + except ValueError: + pass #if not in custom list carry on + + return tuple(labels) + + @dimension_labels.setter + def dimension_labels(self, val): + if val is not None: + self._dimension_labels = tuple(map(AcquisitionDimension, val)) + + @property + def ndim(self): + return len(self.dimension_labels) + + @property + def system_description(self): + return self.config.system.system_description() + + @property + def dtype(self): + return self._dtype + + @dtype.setter + def dtype(self, val): + self._dtype = val + + + def __init__(self): + self._dtype = numpy.float32 + + + def get_centre_of_rotation(self, distance_units='default', angle_units='radian'): + """ + Returns the system centre of rotation offset at the detector + + Note + ---- + - Origin is in the centre of the detector + - Axes directions are specified by detector.direction_x, detector.direction_y + + Parameters + ---------- + distance_units : string, default='default' + Units of distance used to calculate the return values. + 'default' uses the same units the system and panel were specified in. + 'pixels' uses pixels sizes in the horizontal and vertical directions as appropriate. + angle_units : string + Units to return the angle in. Can take 'radian' or 'degree'. + + Returns + ------- + Dictionary + {'offset': (offset, distance_units), 'angle': (angle, angle_units)} + where, + 'offset' gives the position along the detector x_axis at y=0 + 'angle' gives the angle between the y_axis and the projection of the rotation axis on the detector + """ + + if hasattr(self.config.system, 'calculate_centre_of_rotation'): + offset_distance, angle_rad = self.config.system.calculate_centre_of_rotation() + else: + raise NotImplementedError + + if distance_units == 'default': + offset = offset_distance + offset_units = self.config.units + elif distance_units == 'pixels': + + offset = offset_distance/ self.config.panel.pixel_size[0] + offset_units = 'pixels' + + if AcquisitionType.DIM3 & self.dimension and self.config.panel.pixel_size[0] != self.config.panel.pixel_size[1]: + #if aspect ratio of pixels isn't 1:1 need to convert angle by new ratio + y_pix = 1 /self.config.panel.pixel_size[1] + x_pix = math.tan(angle_rad)/self.config.panel.pixel_size[0] + angle_rad = math.atan2(x_pix,y_pix) + else: + raise ValueError("`distance_units` is not recognised. Must be 'default' or 'pixels'. Got {}".format(distance_units)) + + angle_units = AngleUnit(angle_units) + + angle = angle_rad + if angle_units == AngleUnit.DEGREE: + angle = numpy.degrees(angle_rad) + + return {'offset': (offset, offset_units), 'angle': (angle, angle_units.value)} + + + def set_centre_of_rotation(self, offset=0.0, distance_units='default', angle=0.0, angle_units='radian'): + """ + Configures the system geometry to have the requested centre of rotation offset at the detector. + + Note + ---- + - Origin is in the centre of the detector + - Axes directions are specified by detector.direction_x, detector.direction_y + + Parameters + ---------- + offset: float, default 0.0 + The position of the centre of rotation along the detector x_axis at y=0 + + distance_units : string, default='default' + Units the offset is specified in. Can be 'default'or 'pixels'. + 'default' interprets the input as same units the system and panel were specified in. + 'pixels' interprets the input in horizontal pixels. + + angle: float, default=0.0 + The angle between the detector y_axis and the rotation axis direction on the detector + + Notes + ----- + If aspect ratio of pixels is not 1:1 ensure the angle is calculated from the x and y values in the correct units. + + angle_units : string, default='radian' + Units the angle is specified in. Can take 'radian' or 'degree'. + + """ + + if not hasattr(self.config.system, 'set_centre_of_rotation'): + raise NotImplementedError() + + + angle_units = AngleUnit(angle_units) + + angle_rad = angle + if angle_units == AngleUnit.DEGREE: + angle_rad = numpy.radians(angle) + + if distance_units =='default': + offset_distance = offset + elif distance_units =='pixels': + offset_distance = offset * self.config.panel.pixel_size[0] + else: + raise ValueError("`distance_units` is not recognised. Must be 'default' or 'pixels'. Got {}".format(distance_units)) + + if AcquisitionType.DIM2 & self.dimension: + self.config.system.set_centre_of_rotation(offset_distance) + else: + self.config.system.set_centre_of_rotation(offset_distance, angle_rad) + + + def set_centre_of_rotation_by_slice(self, offset1, slice_index1=None, offset2=None, slice_index2=None): + """ + Configures the system geometry to have the requested centre of rotation offset at the detector. + + If two slices are passed the rotation axis will be rotated to pass through both points. + + Note + ---- + - Offset is specified in pixels + - Offset can be sub-pixels + - Offset direction is specified by detector.direction_x + + Parameters + ---------- + offset1: float + The offset from the centre of the detector to the projected rotation position at slice_index_1 + + slice_index1: int, optional + The slice number of offset1 + + offset2: float, optional + The offset from the centre of the detector to the projected rotation position at slice_index_2 + + slice_index2: int, optional + The slice number of offset2 + """ + + + if not hasattr(self.config.system, 'set_centre_of_rotation'): + raise NotImplementedError() + + if AcquisitionType.DIM2 & self.dimension: + if offset2 is not None: + warnings.warn("2D so offset2 is ingored", UserWarning, stacklevel=2) + self.set_centre_of_rotation(offset1) + + if offset2 is None or offset1 == offset2: + offset_x_y0 = offset1 + angle = 0 + else: + if slice_index1 is None or slice_index2 is None or slice_index1 == slice_index2: + raise ValueError("Cannot calculate angle. Please specify `slice_index1` and `slice_index2` to define a rotated axis") + + offset_x_y0 = offset1 -slice_index1 * (offset2 - offset1)/(slice_index2-slice_index1) + angle = math.atan2(offset2 - offset1, slice_index2 - slice_index1) + + self.set_centre_of_rotation(offset_x_y0, 'pixels', angle, 'radian') + + +
+[docs] + def set_angles(self, angles, initial_angle=0, angle_unit='degree'): + r'''This method configures the angular information of an AcquisitionGeometry object. + + :param angles: The angular positions of the acquisition data + :type angles: list, ndarray + :param initial_angle: The angular offset of the object from the reference frame + :type initial_angle: float, optional + :param angle_unit: The units of the stored angles 'degree' or 'radian' + :type angle_unit: string + :return: returns a configured AcquisitionGeometry object + :rtype: AcquisitionGeometry + ''' + self.config.angles = Angles(angles, initial_angle, angle_unit) + return self
+ + +
+[docs] + def set_panel(self, num_pixels, pixel_size=(1,1), origin='bottom-left'): + + r'''This method configures the panel information of an AcquisitionGeometry object. + + :param num_pixels: num_pixels_h or (num_pixels_h, num_pixels_v) containing the number of pixels of the panel + :type num_pixels: int, list, tuple + :param pixel_size: pixel_size_h or (pixel_size_h, pixel_size_v) containing the size of the pixels of the panel + :type pixel_size: int, list, tuple, optional + :param origin: the position of pixel 0 (the data origin) of the panel 'top-left', 'top-right', 'bottom-left', 'bottom-right' + :type origin: string, default 'bottom-left' + :return: returns a configured AcquisitionGeometry object + :rtype: AcquisitionGeometry + ''' + dof = {AcquisitionType.DIM2: 2, AcquisitionType.DIM3: 3}[self.config.system.dimension] + self.config.panel = Panel(num_pixels, pixel_size, origin, dof) + return self
+ + +
+[docs] + def set_channels(self, num_channels=1, channel_labels=None): + r'''This method configures the channel information of an AcquisitionGeometry object. + + :param num_channels: The number of channels of data + :type num_channels: int, optional + :param channel_labels: A list of channel labels + :type channel_labels: list, optional + :return: returns a configured AcquisitionGeometry object + :rtype: AcquisitionGeometry + ''' + self.config.channels = Channels(num_channels, channel_labels) + return self
+ + +
+[docs] + def set_labels(self, labels=None): + r'''This method configures the dimension labels of an AcquisitionGeometry object. + + :param labels: The order of the dimensions describing the data.\ + Expects a list containing at least one of the unique labels: 'channel' 'angle' 'vertical' 'horizontal' + default = ['channel','angle','vertical','horizontal'] + :type labels: list, optional + :return: returns a configured AcquisitionGeometry object + :rtype: AcquisitionGeometry + ''' + self.dimension_labels = labels + return self
+ + +
+[docs] + @staticmethod + def create_Parallel2D(ray_direction=[0, 1], detector_position=[0, 0], detector_direction_x=[1, 0], rotation_axis_position=[0, 0], units='units distance'): + r'''This creates the AcquisitionGeometry for a parallel beam 2D tomographic system + + :param ray_direction: A 2D vector describing the x-ray direction (x,y) + :type ray_direction: list, tuple, ndarray, optional + :param detector_position: A 2D vector describing the position of the centre of the detector (x,y) + :type detector_position: list, tuple, ndarray, optional + :param detector_direction_x: A 2D vector describing the direction of the detector_x (x,y) + :type detector_direction_x: list, tuple, ndarray + :param rotation_axis_position: A 2D vector describing the position of the axis of rotation (x,y) + :type rotation_axis_position: list, tuple, ndarray, optional + :param units: Label the units of distance used for the configuration, these should be consistent for the geometry and panel + :type units: string + :return: returns a configured AcquisitionGeometry object + :rtype: AcquisitionGeometry + ''' + AG = AcquisitionGeometry() + AG.config = Configuration(units) + AG.config.system = Parallel2D(ray_direction, detector_position, detector_direction_x, rotation_axis_position, units) + return AG
+ + +
+[docs] + @staticmethod + def create_Cone2D(source_position, detector_position, detector_direction_x=[1,0], rotation_axis_position=[0,0], units='units distance'): + r'''This creates the AcquisitionGeometry for a cone beam 2D tomographic system + + :param source_position: A 2D vector describing the position of the source (x,y) + :type source_position: list, tuple, ndarray + :param detector_position: A 2D vector describing the position of the centre of the detector (x,y) + :type detector_position: list, tuple, ndarray + :param detector_direction_x: A 2D vector describing the direction of the detector_x (x,y) + :type detector_direction_x: list, tuple, ndarray + :param rotation_axis_position: A 2D vector describing the position of the axis of rotation (x,y) + :type rotation_axis_position: list, tuple, ndarray, optional + :param units: Label the units of distance used for the configuration, these should be consistent for the geometry and panel + :type units: string + :return: returns a configured AcquisitionGeometry object + :rtype: AcquisitionGeometry + ''' + AG = AcquisitionGeometry() + AG.config = Configuration(units) + AG.config.system = Cone2D(source_position, detector_position, detector_direction_x, rotation_axis_position, units) + return AG
+ + +
+[docs] + @staticmethod + def create_Parallel3D(ray_direction=[0,1,0], detector_position=[0,0,0], detector_direction_x=[1,0,0], detector_direction_y=[0,0,1], rotation_axis_position=[0,0,0], rotation_axis_direction=[0,0,1], units='units distance'): + r'''This creates the AcquisitionGeometry for a parallel beam 3D tomographic system + + :param ray_direction: A 3D vector describing the x-ray direction (x,y,z) + :type ray_direction: list, tuple, ndarray, optional + :param detector_position: A 3D vector describing the position of the centre of the detector (x,y,z) + :type detector_position: list, tuple, ndarray, optional + :param detector_direction_x: A 3D vector describing the direction of the detector_x (x,y,z) + :type detector_direction_x: list, tuple, ndarray + :param detector_direction_y: A 3D vector describing the direction of the detector_y (x,y,z) + :type detector_direction_y: list, tuple, ndarray + :param rotation_axis_position: A 3D vector describing the position of the axis of rotation (x,y,z) + :type rotation_axis_position: list, tuple, ndarray, optional + :param rotation_axis_direction: A 3D vector describing the direction of the axis of rotation (x,y,z) + :type rotation_axis_direction: list, tuple, ndarray, optional + :param units: Label the units of distance used for the configuration, these should be consistent for the geometry and panel + :type units: string + :return: returns a configured AcquisitionGeometry object + :rtype: AcquisitionGeometry + ''' + AG = AcquisitionGeometry() + AG.config = Configuration(units) + AG.config.system = Parallel3D(ray_direction, detector_position, detector_direction_x, detector_direction_y, rotation_axis_position, rotation_axis_direction, units) + return AG
+ + +
+[docs] + @staticmethod + def create_Cone3D(source_position, detector_position, detector_direction_x=[1,0,0], detector_direction_y=[0,0,1], rotation_axis_position=[0,0,0], rotation_axis_direction=[0,0,1], units='units distance'): + r'''This creates the AcquisitionGeometry for a cone beam 3D tomographic system + + :param source_position: A 3D vector describing the position of the source (x,y,z) + :type source_position: list, tuple, ndarray, optional + :param detector_position: A 3D vector describing the position of the centre of the detector (x,y,z) + :type detector_position: list, tuple, ndarray, optional + :param detector_direction_x: A 3D vector describing the direction of the detector_x (x,y,z) + :type detector_direction_x: list, tuple, ndarray + :param detector_direction_y: A 3D vector describing the direction of the detector_y (x,y,z) + :type detector_direction_y: list, tuple, ndarray + :param rotation_axis_position: A 3D vector describing the position of the axis of rotation (x,y,z) + :type rotation_axis_position: list, tuple, ndarray, optional + :param rotation_axis_direction: A 3D vector describing the direction of the axis of rotation (x,y,z) + :type rotation_axis_direction: list, tuple, ndarray, optional + :param units: Label the units of distance used for the configuration, these should be consistent for the geometry and panel + :type units: string + :return: returns a configured AcquisitionGeometry object + :rtype: AcquisitionGeometry + ''' + AG = AcquisitionGeometry() + AG.config = Configuration(units) + AG.config.system = Cone3D(source_position, detector_position, detector_direction_x, detector_direction_y, rotation_axis_position, rotation_axis_direction, units) + return AG
+ + + def get_order_by_label(self, dimension_labels, default_dimension_labels): + order = [] + for i, el in enumerate(default_dimension_labels): + for j, ek in enumerate(dimension_labels): + if el == ek: + order.append(j) + break + return order + + def __eq__(self, other): + + if isinstance(other, self.__class__) \ + and self.config == other.config \ + and self.dtype == other.dtype \ + and self.dimension_labels == other.dimension_labels: + return True + return False + + def clone(self): + '''returns a copy of the AcquisitionGeometry''' + return copy.deepcopy(self) + + def copy(self): + '''alias of clone''' + return self.clone() + + def get_centre_slice(self): + '''returns a 2D AcquisitionGeometry that corresponds to the centre slice of the input''' + + if AcquisitionType.DIM2 & self.dimension: + return self + + AG_2D = copy.deepcopy(self) + AG_2D.config.system = self.config.system.get_centre_slice() + AG_2D.config.panel.num_pixels[1] = 1 + AG_2D.config.panel.pixel_size[1] = abs(self.config.system.detector.direction_y[2]) * self.config.panel.pixel_size[1] + return AG_2D + +
+[docs] + def get_ImageGeometry(self, resolution=1.0): + '''returns a default configured ImageGeometry object based on the AcquisitionGeomerty''' + + num_voxel_xy = int(numpy.ceil(self.config.panel.num_pixels[0] * resolution)) + voxel_size_xy = self.config.panel.pixel_size[0] / (resolution * self.magnification) + + if AcquisitionType.DIM3 & self.dimension: + num_voxel_z = int(numpy.ceil(self.config.panel.num_pixels[1] * resolution)) + voxel_size_z = self.config.panel.pixel_size[1] / (resolution * self.magnification) + else: + num_voxel_z = 0 + voxel_size_z = 1 + + return ImageGeometry(num_voxel_xy, num_voxel_xy, num_voxel_z, voxel_size_xy, voxel_size_xy, voxel_size_z, channels=self.channels)
+ + + def __str__ (self): + return str(self.config) + + +
+[docs] + def get_slice(self, channel=None, angle=None, vertical=None, horizontal=None): + ''' + Returns a new AcquisitionGeometry of a single slice of in the requested direction. Will only return reconstructable geometries. + ''' + geometry_new = self.copy() + + if channel is not None: + geometry_new.config.channels.num_channels = 1 + if hasattr(geometry_new.config.channels,'channel_labels'): + geometry_new.config.panel.channel_labels = geometry_new.config.panel.channel_labels[channel] + + if angle is not None: + geometry_new.config.angles.angle_data = geometry_new.config.angles.angle_data[angle] + + if vertical is not None: + if AcquisitionType.PARALLEL & geometry_new.geom_type or vertical == 'centre' or abs(geometry_new.pixel_num_v/2 - vertical) < 1e-6: + geometry_new = geometry_new.get_centre_slice() + else: + raise ValueError("Can only subset centre slice geometry on cone-beam data. Expected vertical = 'centre'. Got vertical = {0}".format(vertical)) + + if horizontal is not None: + raise ValueError("Cannot calculate system geometry for a horizontal slice") + + return geometry_new
+ + +
+[docs] + def allocate(self, value=0, **kwargs): + '''allocates an AcquisitionData according to the size expressed in the instance + + :param value: accepts numbers to allocate an uniform array, or a string as 'random' or 'random_int' to create a random array or None. + :type value: number or string, default None allocates empty memory block + :param dtype: numerical type to allocate + :type dtype: numpy type, default numpy.float32 + ''' + dtype = kwargs.get('dtype', self.dtype) + + if kwargs.get('dimension_labels', None) is not None: + raise ValueError("Deprecated: 'dimension_labels' cannot be set with 'allocate()'. Use 'geometry.set_labels()' to modify the geometry before using allocate.") + + out = AcquisitionData(geometry=self.copy(), + dtype=dtype, + suppress_warning=True) + + if isinstance(value, Number): + # it's created empty, so we make it 0 + out.array.fill(value) + elif value in FillType: + if value == FillType.RANDOM: + seed = kwargs.get('seed', None) + if seed is not None: + numpy.random.seed(seed) + if numpy.iscomplexobj(out.array): + r = numpy.random.random_sample(self.shape) + 1j * numpy.random.random_sample(self.shape) + out.fill(r) + else: + out.fill(numpy.random.random_sample(self.shape)) + elif value == FillType.RANDOM_INT: + seed = kwargs.get('seed', None) + if seed is not None: + numpy.random.seed(seed) + max_value = kwargs.get('max_value', 100) + if numpy.iscomplexobj(out.array): + r = numpy.random.randint(max_value,size=self.shape, dtype=numpy.int32) + 1j*numpy.random.randint(max_value,size=self.shape, dtype=numpy.int32) + else: + r = numpy.random.randint(max_value,size=self.shape, dtype=numpy.int32) + out.fill(numpy.asarray(r, dtype=dtype)) + elif value is None: + pass + else: + raise ValueError(f'Value {value} unknown') + return out
+
+ +
+ +
+ + + + + +
+ +
+
+
+ +
+ + + + +
+
+ +
+ +
+
+
+ + + + + +
+ + +
+ + \ No newline at end of file diff --git a/v24.2.0/_modules/cil/framework/block/index.html b/v24.2.0/_modules/cil/framework/block/index.html new file mode 100644 index 0000000000..cb18f8d9e8 --- /dev/null +++ b/v24.2.0/_modules/cil/framework/block/index.html @@ -0,0 +1,1343 @@ + + + + + + + + + + cil.framework.block — CIL 24.2.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + +
+ +
+ + + + + +
+
+ + + + + + +
+ + + + + + + + + + + + + +
+ +
+ + +
+
+ +
+
+ +
+ +
+ + +
+ +
+ + +
+
+ + + + + +
+ +

Source code for cil.framework.block

+#  Copyright 2019 United Kingdom Research and Innovation
+#  Copyright 2019 The University of Manchester
+#
+#  Licensed under the Apache License, Version 2.0 (the "License");
+#  you may not use this file except in compliance with the License.
+#  You may obtain a copy of the License at
+#
+#      http://www.apache.org/licenses/LICENSE-2.0
+#
+#  Unless required by applicable law or agreed to in writing, software
+#  distributed under the License is distributed on an "AS IS" BASIS,
+#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+#  See the License for the specific language governing permissions and
+#  limitations under the License.
+#
+# Authors:
+# CIL Developers, listed at: https://github.com/TomographicImaging/CIL/blob/master/NOTICE.txt
+import functools
+import warnings
+from numbers import Number
+
+import numpy
+
+from ..utilities.multiprocessing import NUM_THREADS
+from .labels import FillType
+
+
+
+[docs] +class BlockGeometry(object): + @property + def RANDOM(self): + warnings.warn("use FillType.RANDOM instead", DeprecationWarning, stacklevel=2) + return FillType.RANDOM + + @property + def RANDOM_INT(self): + warnings.warn("use FillType.RANDOM_INT instead", DeprecationWarning, stacklevel=2) + return FillType.RANDOM_INT + + @property + def dtype(self): + return tuple(i.dtype for i in self.geometries) + + '''Class to hold Geometry as column vector''' + #__array_priority__ = 1 + def __init__(self, *args, **kwargs): + '''''' + self.geometries = args + self.index = 0 + shape = (len(args),1) + self.shape = shape + + n_elements = functools.reduce(lambda x,y: x*y, shape, 1) + if len(args) != n_elements: + raise ValueError( + 'Dimension and size do not match: expected {} got {}' + .format(n_elements, len(args))) + +
+[docs] + def get_item(self, index): + '''returns the Geometry in the BlockGeometry located at position index''' + return self.geometries[index]
+ + +
+[docs] + def allocate(self, value=0, **kwargs): + + '''Allocates a BlockDataContainer according to geometries contained in the BlockGeometry''' + + symmetry = kwargs.get('symmetry',False) + containers = [geom.allocate(value, **kwargs) for geom in self.geometries] + + if symmetry == True: + + # for 2x2 + # [ ig11, ig12\ + # ig21, ig22] + + # Row-wise Order + + if len(containers)==4: + containers[1]=containers[2] + + # for 3x3 + # [ ig11, ig12, ig13\ + # ig21, ig22, ig23\ + # ig31, ig32, ig33] + + elif len(containers)==9: + containers[1]=containers[3] + containers[2]=containers[6] + containers[5]=containers[7] + + # for 4x4 + # [ ig11, ig12, ig13, ig14\ + # ig21, ig22, ig23, ig24\ c + # ig31, ig32, ig33, ig34 + # ig41, ig42, ig43, ig44] + + elif len(containers) == 16: + containers[1]=containers[4] + containers[2]=containers[8] + containers[3]=containers[12] + containers[6]=containers[9] + containers[7]=containers[10] + containers[11]=containers[15] + + return BlockDataContainer(*containers)
+ + + def __iter__(self): + '''BlockGeometry is an iterable''' + return self + + def __next__(self): + '''BlockGeometry is an iterable''' + if self.index < len(self.geometries): + result = self.geometries[self.index] + self.index += 1 + return result + else: + self.index = 0 + raise StopIteration + + def __eq__(self, value: object) -> bool: + if len(self.geometries) != len(value.geometries): + return False + return functools.reduce(lambda x,y: x and y, \ + [sel == vel for sel,vel in zip(self.geometries, value.geometries)], True)
+ + +
+[docs] +class BlockDataContainer(object): + '''Class to hold DataContainers as column vector + + Provides basic algebra between BlockDataContainer's, DataContainer's and + subclasses and Numbers + + 1) algebra between `BlockDataContainer`s will be element-wise, only if + the shape of the 2 `BlockDataContainer`s is the same, otherwise it + will fail + 2) algebra between `BlockDataContainer`s and `list` or `numpy array` will + work as long as the number of `rows` and element of the arrays match, + independently on the fact that the `BlockDataContainer` could be nested + 3) algebra between `BlockDataContainer` and one `DataContainer` is possible. + It will require all the `DataContainers` in the block to be + compatible with the `DataContainer` we want to operate with. + 4) algebra between `BlockDataContainer` and a `Number` is possible and it + will be done with each element of the `BlockDataContainer` even if nested + + A = [ [B,C] , D] + A * 3 = [ 3 * [B,C] , 3* D] = [ [ 3*B, 3*C] , 3*D ] + + ''' + ADD = 'add' + SUBTRACT = 'subtract' + MULTIPLY = 'multiply' + DIVIDE = 'divide' + POWER = 'power' + SAPYB = 'sapyb' + MAXIMUM = 'maximum' + MINIMUM = 'minimum' + ABS = 'abs' + SIGN = 'sign' + SQRT = 'sqrt' + CONJUGATE = 'conjugate' + __array_priority__ = 1 + __container_priority__ = 2 + + @property + def dtype(self): + return tuple(i.dtype for i in self.containers) + + def __init__(self, *args, **kwargs): + '''''' + self.containers = args + self.index = 0 + #if len(set([i.shape for i in self.containers])): + # self.geometry = self.containers[0].geometry + + shape = kwargs.get('shape', None) + if shape is None: + shape = (len(args),1) +# shape = (len(args),1) + self.shape = shape + + n_elements = functools.reduce(lambda x,y: x*y, shape, 1) + if len(args) != n_elements: + raise ValueError( + 'Dimension and size do not match: expected {} got {}' + .format(n_elements, len(args))) + + +
+[docs] + def __iter__(self): + '''BlockDataContainer is Iterable''' + self.index=0 + return self
+ +
+[docs] + def next(self): + '''python2 backwards compatibility''' + return self.__next__()
+ + def __next__(self): + try: + out = self[self.index] + except IndexError as ie: + raise StopIteration() + self.index+=1 + return out + +
+[docs] + def is_compatible(self, other): + '''basic check if the size of the 2 objects fit''' + + if isinstance(other, Number): + return True + elif isinstance(other, (list, tuple, numpy.ndarray)) : + for ot in other: + if not isinstance(ot, Number): + raise ValueError('List/ numpy array can only contain numbers {}'\ + .format(type(ot))) + return len(self.containers) == len(other) + elif isinstance(other, BlockDataContainer): + return len(self.containers) == len(other.containers) + else: + # this should work for other as DataContainers and children + ret = True + for i, el in enumerate(self.containers): + if isinstance(el, BlockDataContainer): + a = el.is_compatible(other) + else: + a = el.shape == other.shape + ret = ret and a + # probably will raise + return ret
+ + + + def get_item(self, row): + if row > self.shape[0]: + raise ValueError('Requested row {} > max {}'.format(row, self.shape[0])) + return self.containers[row] + + def __getitem__(self, row): + return self.get_item(row) + +
+[docs] + def add(self, other, *args, **kwargs): + '''Algebra: add method of BlockDataContainer with number/DataContainer or BlockDataContainer + + :param: other (number, DataContainer or subclasses or BlockDataContainer + :param: out (optional): provides a placehold for the resul. + ''' + return self.binary_operations(BlockDataContainer.ADD, other, *args, **kwargs)
+ +
+[docs] + def subtract(self, other, *args, **kwargs): + '''Algebra: subtract method of BlockDataContainer with number/DataContainer or BlockDataContainer + + :param: other (number, DataContainer or subclasses or BlockDataContainer + :param: out (optional): provides a placeholder for the result. + ''' + return self.binary_operations(BlockDataContainer.SUBTRACT, other, *args, **kwargs)
+ +
+[docs] + def multiply(self, other, *args, **kwargs): + '''Algebra: multiply method of BlockDataContainer with number/DataContainer or BlockDataContainer + + :param: other (number, DataContainer or subclasses or BlockDataContainer) + :param: out (optional): provides a placeholder for the result. + ''' + return self.binary_operations(BlockDataContainer.MULTIPLY, other, *args, **kwargs)
+ +
+[docs] + def divide(self, other, *args, **kwargs): + '''Algebra: divide method of BlockDataContainer with number/DataContainer or BlockDataContainer + + :param: other (number, DataContainer or subclasses or BlockDataContainer) + :param: out (optional): provides a placeholder for the result. + ''' + return self.binary_operations(BlockDataContainer.DIVIDE, other, *args, **kwargs)
+ +
+[docs] + def power(self, other, *args, **kwargs): + '''Algebra: power method of BlockDataContainer with number/DataContainer or BlockDataContainer + + :param: other (number, DataContainer or subclasses or BlockDataContainer + :param: out (optional): provides a placeholder for the result. + ''' + return self.binary_operations(BlockDataContainer.POWER, other, *args, **kwargs)
+ +
+[docs] + def maximum(self, other, *args, **kwargs): + '''Algebra: power method of BlockDataContainer with number/DataContainer or BlockDataContainer + + :param: other (number, DataContainer or subclasses or BlockDataContainer) + :param: out (optional): provides a placeholder for the result. + ''' + return self.binary_operations(BlockDataContainer.MAXIMUM, other, *args, **kwargs)
+ +
+[docs] + def minimum(self, other, *args, **kwargs): + '''Algebra: power method of BlockDataContainer with number/DataContainer or BlockDataContainer + + :param: other (number, DataContainer or subclasses or BlockDataContainer) + :param: out (optional): provides a placeholder for the result. + ''' + return self.binary_operations(BlockDataContainer.MINIMUM, other, *args, **kwargs)
+ + +
+[docs] + def sapyb(self, a, y, b, out, num_threads = NUM_THREADS): + r'''performs axpby element-wise on the BlockDataContainer containers + + Does the operation .. math:: a*x+b*y and stores the result in out, where x is self + + :param a: scalar + :param b: scalar + :param y: compatible (Block)DataContainer + :param out: (Block)DataContainer to store the result + + + Example: + -------- + + >>> a = 2 + >>> b = 3 + >>> ig = ImageGeometry(10,11) + >>> x = ig.allocate(1) + >>> y = ig.allocate(2) + >>> bdc1 = BlockDataContainer(2*x, y) + >>> bdc2 = BlockDataContainer(x, 2*y) + >>> out = bdc1.sapyb(a,bdc2,b) + ''' + if out is None: + raise ValueError("out container cannot be None") + kwargs = {'a':a, 'b':b, 'out':out, 'num_threads': NUM_THREADS} + self.binary_operations(BlockDataContainer.SAPYB, y, **kwargs)
+ + + +
+[docs] + def axpby(self, a, b, y, out, dtype=numpy.float32, num_threads = NUM_THREADS): + '''Deprecated method. Alias of sapyb''' + return self.sapyb(a,y,b,out,num_threads)
+ + + + +
+[docs] + def binary_operations(self, operation, other, *args, **kwargs): + '''Algebra: generic method of algebric operation with BlockDataContainer with number/DataContainer or BlockDataContainer + + Provides commutativity with DataContainer and subclasses, i.e. this + class's reverse algebraic methods take precedence w.r.t. direct algebraic + methods of DataContainer and subclasses. + + This method is not to be used directly + ''' + if not self.is_compatible(other): + raise ValueError('Incompatible for operation {}'.format(operation)) + out = kwargs.get('out', None) + if isinstance(other, Number): + # try to do algebra with one DataContainer. Will raise error if not compatible + kw = kwargs.copy() + res = [] + for i,el in enumerate(self.containers): + if operation == BlockDataContainer.ADD: + op = el.add + elif operation == BlockDataContainer.SUBTRACT: + op = el.subtract + elif operation == BlockDataContainer.MULTIPLY: + op = el.multiply + elif operation == BlockDataContainer.DIVIDE: + op = el.divide + elif operation == BlockDataContainer.POWER: + op = el.power + elif operation == BlockDataContainer.MAXIMUM: + op = el.maximum + elif operation == BlockDataContainer.MINIMUM: + op = el.minimum + else: + raise ValueError('Unsupported operation', operation) + if out is not None: + kw['out'] = out.get_item(i) + op(other, *args, **kw) + else: + res.append(op(other, *args, **kw)) + if out is not None: + return out + else: + return type(self)(*res, shape=self.shape) + elif isinstance(other, (list, tuple, numpy.ndarray, BlockDataContainer)): + kw = kwargs.copy() + res = [] + if isinstance(other, BlockDataContainer): + the_other = other.containers + else: + the_other = other + + for i,zel in enumerate(zip ( self.containers, the_other) ): + el = zel[0] + ot = zel[1] + if operation == BlockDataContainer.ADD: + op = el.add + elif operation == BlockDataContainer.SUBTRACT: + op = el.subtract + elif operation == BlockDataContainer.MULTIPLY: + op = el.multiply + elif operation == BlockDataContainer.DIVIDE: + op = el.divide + elif operation == BlockDataContainer.POWER: + op = el.power + elif operation == BlockDataContainer.MAXIMUM: + op = el.maximum + elif operation == BlockDataContainer.MINIMUM: + op = el.minimum + elif operation == BlockDataContainer.SAPYB: + if not isinstance(other, BlockDataContainer): + raise ValueError("{} cannot handle {}".format(operation, type(other))) + op = el.sapyb + else: + raise ValueError('Unsupported operation', operation) + + if out is not None: + if operation == BlockDataContainer.SAPYB: + if isinstance(kw['a'], BlockDataContainer): + a = kw['a'].get_item(i) + else: + a = kw['a'] + + if isinstance(kw['b'], BlockDataContainer): + b = kw['b'].get_item(i) + else: + b = kw['b'] + + el.sapyb(a, ot, b, out.get_item(i), num_threads=kw['num_threads']) + else: + kw['out'] = out.get_item(i) + op(ot, *args, **kw) + else: + res.append(op(ot, *args, **kw)) + if out is not None: + return out + else: + return type(self)(*res, shape=self.shape) + else: + # try to do algebra with one DataContainer. Will raise error if not compatible + kw = kwargs.copy() + if operation != BlockDataContainer.SAPYB: + # remove keyworded argument related to SAPYB + for k in ['a','b','y', 'num_threads', 'dtype']: + if k in kw.keys(): + kw.pop(k) + + res = [] + for i,el in enumerate(self.containers): + if operation == BlockDataContainer.ADD: + op = el.add + elif operation == BlockDataContainer.SUBTRACT: + op = el.subtract + elif operation == BlockDataContainer.MULTIPLY: + op = el.multiply + elif operation == BlockDataContainer.DIVIDE: + op = el.divide + elif operation == BlockDataContainer.POWER: + op = el.power + elif operation == BlockDataContainer.MAXIMUM: + op = el.maximum + elif operation == BlockDataContainer.MINIMUM: + op = el.minimum + elif operation == BlockDataContainer.SAPYB: + + if isinstance(kw['a'], BlockDataContainer): + a = kw['a'].get_item(i) + else: + a = kw['a'] + + if isinstance(kw['b'], BlockDataContainer): + b = kw['b'].get_item(i) + else: + b = kw['b'] + + el.sapyb(a, other, b, out.get_item(i), kw['num_threads']) + + # As axpyb cannot return anything we `continue` to skip the rest of the code block + continue + + else: + raise ValueError('Unsupported operation', operation) + if out is not None: + kw['out'] = out.get_item(i) + op(other, *args, **kw) + else: + res.append(op(other, *args, **kw)) + + if out is not None: + return out + else: + return type(self)(*res, shape=self.shape)
+ + + ## unary operations + +
+[docs] + def unary_operations(self, operation, *args, **kwargs ): + '''Unary operation on BlockDataContainer: + + generic method of unary operation with BlockDataContainer: abs, sign, sqrt and conjugate + + This method is not to be used directly + ''' + out = kwargs.get('out', None) + kw = kwargs.copy() + if out is None: + res = [] + for el in self.containers: + if operation == BlockDataContainer.ABS: + op = el.abs + elif operation == BlockDataContainer.SIGN: + op = el.sign + elif operation == BlockDataContainer.SQRT: + op = el.sqrt + elif operation == BlockDataContainer.CONJUGATE: + op = el.conjugate + res.append(op(*args, **kw)) + return BlockDataContainer(*res) + else: + kw.pop('out') + for el,elout in zip(self.containers, out.containers): + if operation == BlockDataContainer.ABS: + op = el.abs + elif operation == BlockDataContainer.SIGN: + op = el.sign + elif operation == BlockDataContainer.SQRT: + op = el.sqrt + elif operation == BlockDataContainer.CONJUGATE: + op = el.conjugate + kw['out'] = elout + op(*args, **kw)
+ + + def abs(self, *args, **kwargs): + return self.unary_operations(BlockDataContainer.ABS, *args, **kwargs) + def sign(self, *args, **kwargs): + return self.unary_operations(BlockDataContainer.SIGN, *args, **kwargs) + def sqrt(self, *args, **kwargs): + return self.unary_operations(BlockDataContainer.SQRT, *args, **kwargs) + def conjugate(self, *args, **kwargs): + return self.unary_operations(BlockDataContainer.CONJUGATE, *args, **kwargs) + # def abs(self, *args, **kwargs): + # return type(self)(*[ el.abs(*args, **kwargs) for el in self.containers], shape=self.shape) + # def sign(self, *args, **kwargs): + # return type(self)(*[ el.sign(*args, **kwargs) for el in self.containers], shape=self.shape) + # def sqrt(self, *args, **kwargs): + # return type(self)(*[ el.sqrt(*args, **kwargs) for el in self.containers], shape=self.shape) + # def conjugate(self, out=None): + # return type(self)(*[el.conjugate() for el in self.containers], shape=self.shape) + + ## reductions + + def sum(self, *args, **kwargs): + return numpy.sum([ el.sum(*args, **kwargs) for el in self.containers]) + + def squared_norm(self): + y = numpy.asarray([el.squared_norm() for el in self.containers]) + return y.sum() + + + def norm(self): + return numpy.sqrt(self.squared_norm()) + + def pnorm(self, p=2): + # See https://github.com/TomographicImaging/CIL/issues/1525#issuecomment-1757413803 + if not functools.reduce(lambda x,y: x and y, [el.shape == self.containers[0].shape for el in self.containers], True): + raise ValueError('pnorm: Incompatible shapes - each container in the BlockDataContainer must have the same shape in order to calculate the pnorm') + if p==1: + return sum(self.abs()) + elif p==2: + tmp = functools.reduce(lambda a,b: a + b.conjugate()*b, self.containers, self.get_item(0) * 0 ).sqrt() + return tmp + else: + return ValueError('Not implemented') + +
+[docs] + def copy(self): + '''alias of clone''' + return self.clone()
+ + def clone(self): + return type(self)(*[el.copy() for el in self.containers], shape=self.shape) + def fill(self, other): + if isinstance (other, BlockDataContainer): + if not self.is_compatible(other): + raise ValueError('Incompatible containers') + for el,ot in zip(self.containers, other.containers): + el.fill(ot) + else: + return ValueError('Cannot fill with object provided {}'.format(type(other))) + + def __add__(self, other): + return self.add( other ) + # __radd__ + + def __sub__(self, other): + return self.subtract( other ) + # __rsub__ + + def __mul__(self, other): + return self.multiply(other) + # __rmul__ + + def __div__(self, other): + return self.divide(other) + # __rdiv__ + def __truediv__(self, other): + return self.divide(other) + + def __pow__(self, other): + return self.power(other) + # reverse operand +
+[docs] + def __radd__(self, other): + '''Reverse addition + + to make sure that this method is called rather than the __mul__ of a numpy array + the class constant __array_priority__ must be set > 0 + https://docs.scipy.org/doc/numpy-1.15.1/reference/arrays.classes.html#numpy.class.__array_priority__ + ''' + return self + other
+ + # __radd__ + +
+[docs] + def __rsub__(self, other): + '''Reverse subtraction + + to make sure that this method is called rather than the __mul__ of a numpy array + the class constant __array_priority__ must be set > 0 + https://docs.scipy.org/doc/numpy-1.15.1/reference/arrays.classes.html#numpy.class.__array_priority__ + ''' + return (-1 * self) + other
+ + # __rsub__ + +
+[docs] + def __rmul__(self, other): + '''Reverse multiplication + + to make sure that this method is called rather than the __mul__ of a numpy array + the class constant __array_priority__ must be set > 0 + https://docs.scipy.org/doc/numpy-1.15.1/reference/arrays.classes.html#numpy.class.__array_priority__ + ''' + return self * other
+ + # __rmul__ + +
+[docs] + def __rdiv__(self, other): + '''Reverse division + + to make sure that this method is called rather than the __mul__ of a numpy array + the class constant __array_priority__ must be set > 0 + https://docs.scipy.org/doc/numpy-1.15.1/reference/arrays.classes.html#numpy.class.__array_priority__ + ''' + return pow(self / other, -1)
+ + # __rdiv__ +
+[docs] + def __rtruediv__(self, other): + '''Reverse truedivision + + to make sure that this method is called rather than the __mul__ of a numpy array + the class constant __array_priority__ must be set > 0 + https://docs.scipy.org/doc/numpy-1.15.1/reference/arrays.classes.html#numpy.class.__array_priority__ + ''' + return self.__rdiv__(other)
+ + +
+[docs] + def __rpow__(self, other): + '''Reverse power + + to make sure that this method is called rather than the __mul__ of a numpy array + the class constant __array_priority__ must be set > 0 + https://docs.scipy.org/doc/numpy-1.15.1/reference/arrays.classes.html#numpy.class.__array_priority__ + ''' + return other.power(self)
+ + +
+[docs] + def __iadd__(self, other): + '''Inline addition''' + if isinstance (other, BlockDataContainer): + for el,ot in zip(self.containers, other.containers): + el += ot + elif isinstance(other, Number): + for el in self.containers: + el += other + elif isinstance(other, list) or isinstance(other, numpy.ndarray): + if not self.is_compatible(other): + raise ValueError('Incompatible for __iadd__') + for el,ot in zip(self.containers, other): + el += ot + return self
+ + # __iadd__ + +
+[docs] + def __isub__(self, other): + '''Inline subtraction''' + if isinstance (other, BlockDataContainer): + for el,ot in zip(self.containers, other.containers): + el -= ot + elif isinstance(other, Number): + for el in self.containers: + el -= other + elif isinstance(other, list) or isinstance(other, numpy.ndarray): + if not self.is_compatible(other): + raise ValueError('Incompatible for __isub__') + for el,ot in zip(self.containers, other): + el -= ot + return self
+ + # __isub__ + +
+[docs] + def __imul__(self, other): + '''Inline multiplication''' + if isinstance (other, BlockDataContainer): + for el,ot in zip(self.containers, other.containers): + el *= ot + elif isinstance(other, Number): + for el in self.containers: + el *= other + elif isinstance(other, list) or isinstance(other, numpy.ndarray): + if not self.is_compatible(other): + raise ValueError('Incompatible for __imul__') + for el,ot in zip(self.containers, other): + el *= ot + return self
+ + # __imul__ + +
+[docs] + def __idiv__(self, other): + '''Inline division''' + if isinstance (other, BlockDataContainer): + for el,ot in zip(self.containers, other.containers): + el /= ot + elif isinstance(other, Number): + for el in self.containers: + el /= other + elif isinstance(other, list) or isinstance(other, numpy.ndarray): + if not self.is_compatible(other): + raise ValueError('Incompatible for __idiv__') + for el,ot in zip(self.containers, other): + el /= ot + return self
+ + # __rdiv__ +
+[docs] + def __itruediv__(self, other): + '''Inline truedivision''' + return self.__idiv__(other)
+ + +
+[docs] + def __neg__(self): + """ Return - self """ + return -1 * self
+ + + def dot(self, other): +# + tmp = [ self.containers[i].dot(other.containers[i]) for i in range(self.shape[0])] + return sum(tmp) + + def __len__(self): + + return self.shape[0] + + @property + def geometry(self): + try: + return BlockGeometry(*[el.geometry.copy() for el in self.containers]) + except AttributeError: + return None
+ +
+ +
+ + + + + +
+ +
+
+
+ +
+ + + + +
+
+ +
+ +
+
+
+ + + + + +
+ + +
+ + \ No newline at end of file diff --git a/v24.2.0/_modules/cil/framework/data_container/index.html b/v24.2.0/_modules/cil/framework/data_container/index.html new file mode 100644 index 0000000000..0315761a9a --- /dev/null +++ b/v24.2.0/_modules/cil/framework/data_container/index.html @@ -0,0 +1,1486 @@ + + + + + + + + + + cil.framework.data_container — CIL 24.2.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + +
+ +
+ + + + + +
+
+ + + + + + +
+ + + + + + + + + + + + + +
+ +
+ + +
+
+ +
+
+ +
+ +
+ + +
+ +
+ + +
+
+ + + + + +
+ +

Source code for cil.framework.data_container

+#  Copyright 2018 United Kingdom Research and Innovation
+#  Copyright 2018 The University of Manchester
+#
+#  Licensed under the Apache License, Version 2.0 (the "License");
+#  you may not use this file except in compliance with the License.
+#  You may obtain a copy of the License at
+#
+#      http://www.apache.org/licenses/LICENSE-2.0
+#
+#  Unless required by applicable law or agreed to in writing, software
+#  distributed under the License is distributed on an "AS IS" BASIS,
+#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+#  See the License for the specific language governing permissions and
+#  limitations under the License.
+#
+# Authors:
+# CIL Developers, listed at: https://github.com/TomographicImaging/CIL/blob/master/NOTICE.txt
+import copy
+import ctypes
+import warnings
+from functools import reduce
+from numbers import Number
+
+import numpy
+
+from .cilacc import cilacc
+from cil.utilities.multiprocessing import NUM_THREADS
+
+
+
+[docs] +class DataContainer(object): + '''Generic class to hold data + + Data is currently held in a numpy arrays''' + + @property + def geometry(self): + return None + + @geometry.setter + def geometry(self, val): + if val is not None: + raise TypeError("DataContainers cannot hold a geometry, use ImageData or AcquisitionData instead") + + @property + def dimension_labels(self): + + if self._dimension_labels is None: + default_labels = [0]*self.number_of_dimensions + for i in range(self.number_of_dimensions): + default_labels[i] = 'dimension_{0:02}'.format(i) + return tuple(default_labels) + else: + return self._dimension_labels + + @dimension_labels.setter + def dimension_labels(self, val): + if val is None: + self._dimension_labels = None + elif len(val_tuple := tuple(val)) == self.number_of_dimensions: + self._dimension_labels = val_tuple + else: + raise ValueError("dimension_labels expected a list containing {0} strings got {1}".format(self.number_of_dimensions, val)) + + @property + def shape(self): + '''Returns the shape of the DataContainer''' + return self.array.shape + + @shape.setter + def shape(self, val): + print("Deprecated - shape will be set automatically") + + @property + def ndim(self): + '''Returns the ndim of the DataContainer''' + return self.array.ndim + + @property + def number_of_dimensions(self): + '''Returns the shape of the of the DataContainer''' + return len(self.array.shape) + + @property + def dtype(self): + '''Returns the dtype of the data array.''' + return self.array.dtype + + @property + def size(self): + '''Returns the number of elements of the DataContainer''' + return self.array.size + + __container_priority__ = 1 + def __init__ (self, array, deep_copy=True, dimension_labels=None, + **kwargs): + if type(array) == numpy.ndarray: + if deep_copy: + self.array = array.copy() + else: + self.array = array + else: + raise TypeError('Array must be NumpyArray, passed {0}'\ + .format(type(array))) + + #Don't set for derived classes + if type(self) is DataContainer: + self.dimension_labels = dimension_labels + + # finally copy the geometry, and force dtype of the geometry of the data = the dype of the data + if 'geometry' in kwargs.keys(): + self.geometry = kwargs['geometry'] + try: + self.geometry.dtype = self.dtype + except: + pass + + def get_dimension_size(self, dimension_label): + + if dimension_label in self.dimension_labels: + i = self.dimension_labels.index(dimension_label) + return self.shape[i] + else: + raise ValueError('Unknown dimension {0}. Should be one of {1}'.format(dimension_label, + self.dimension_labels)) + +
+[docs] + def get_dimension_axis(self, dimension_label): + """ + Returns the axis index of the DataContainer array if the specified dimension_label(s) match + any dimension_labels of the DataContainer or their indices + + Parameters + ---------- + dimension_label: string or int or tuple of strings or ints + Specify dimension_label(s) or index of the DataContainer from which to check and return the axis index + + Returns + ------- + int or tuple of ints + The axis index of the DataContainer matching the specified dimension_label + """ + if isinstance(dimension_label,(tuple,list)): + return tuple(self.get_dimension_axis(x) for x in dimension_label) + + if dimension_label in self.dimension_labels: + return self.dimension_labels.index(dimension_label) + elif isinstance(dimension_label, int) and dimension_label >= 0 and dimension_label < self.ndim: + return dimension_label + else: + raise ValueError('Unknown dimension {0}. Should be one of {1}, or an integer in range {2} - {3}'.format(dimension_label, + self.dimension_labels, 0, self.ndim))
+ + + +
+[docs] + def as_array(self): + '''Returns the pointer to the array. + ''' + return self.array
+ + + +
+[docs] + def get_slice(self, **kw): + ''' + Returns a new DataContainer containing a single slice in the requested direction. \ + Pass keyword arguments <dimension label>=index + ''' + # Force is not relevant for a DataContainer: + kw.pop('force', None) + + new_array = None + + #get ordered list of current dimensions + dimension_labels_list = list(self.dimension_labels) + + #remove axes from array and labels + for key, value in kw.items(): + if value is not None: + axis = dimension_labels_list.index(key) + dimension_labels_list.remove(key) + if new_array is None: + new_array = self.as_array() + new_array = new_array.take(indices=value, axis=axis) + + if new_array.ndim > 1: + return DataContainer(new_array, False, dimension_labels_list, suppress_warning=True) + from .vector_data import VectorData + return VectorData(new_array, dimension_labels=dimension_labels_list)
+ + +
+[docs] + def reorder(self, order): + ''' + reorders the data in memory as requested. + + :param order: ordered list of labels from self.dimension_labels + :type order: list, sting + ''' + try: + if len(order) != len(self.shape): + raise ValueError('The axes list for resorting must have {0} dimensions. Got {1}'.format(len(self.shape), len(order))) + except TypeError as ae: + raise ValueError('The order must be an iterable with __len__ implemented, like a list or a tuple. Got {}'.format(type(order))) + + correct = True + for el in order: + correct = correct and el in self.dimension_labels + if not correct: + raise ValueError('The axes list for resorting must contain the dimension_labels {0} got {1}'.format(self.dimension_labels, order)) + + new_order = [0]*len(self.shape) + dimension_labels_new = [0]*len(self.shape) + + for i, axis in enumerate(order): + new_order[i] = self.dimension_labels.index(axis) + dimension_labels_new[i] = axis + + self.array = numpy.ascontiguousarray(numpy.transpose(self.array, new_order)) + + if self.geometry is None: + self.dimension_labels = dimension_labels_new + else: + self.geometry.set_labels(dimension_labels_new)
+ + +
+[docs] + def fill(self, array, **dimension): + '''fills the internal data array with the DataContainer, numpy array or number provided + + :param array: number, numpy array or DataContainer to copy into the DataContainer + :type array: DataContainer or subclasses, numpy array or number + :param dimension: dictionary, optional + + if the passed numpy array points to the same array that is contained in the DataContainer, + it just returns + + In case a DataContainer or subclass is passed, there will be a check of the geometry, + if present, and the array will be resorted if the data is not in the appropriate order. + + User may pass a named parameter to specify in which axis the fill should happen: + + dc.fill(some_data, vertical=1, horizontal_x=32) + will copy the data in some_data into the data container. + ''' + if id(array) == id(self.array): + return + if dimension == {}: + if isinstance(array, numpy.ndarray): + numpy.copyto(self.array, array) + elif isinstance(array, Number): + self.array.fill(array) + elif issubclass(array.__class__ , DataContainer): + + try: + if self.dimension_labels != array.dimension_labels: + raise ValueError('Input array is not in the same order as destination array. Use "array.reorder()"') + except AttributeError: + pass + + if self.array.shape == array.shape: + numpy.copyto(self.array, array.array) + else: + raise ValueError('Cannot fill with the provided array.' + \ + 'Expecting shape {0} got {1}'.format( + self.shape,array.shape)) + else: + raise TypeError('Can fill only with number, numpy array or DataContainer and subclasses. Got {}'.format(type(array))) + else: + + axis = [':']* self.number_of_dimensions + dimension_labels = tuple(self.dimension_labels) + for k,v in dimension.items(): + i = dimension_labels.index(k) + axis[i] = v + + command = 'self.array[' + i = 0 + for el in axis: + if i > 0: + command += ',' + command += str(el) + i+=1 + + if isinstance(array, numpy.ndarray): + command = command + "] = array[:]" + elif issubclass(array.__class__, DataContainer): + command = command + "] = array.as_array()[:]" + elif isinstance (array, Number): + command = command + "] = array" + else: + raise TypeError('Can fill only with number, numpy array or DataContainer and subclasses. Got {}'.format(type(array))) + exec(command)
+ + + + def check_dimensions(self, other): + return self.shape == other.shape + + ## algebra + + def __add__(self, other): + return self.add(other) + def __mul__(self, other): + return self.multiply(other) + def __sub__(self, other): + return self.subtract(other) + def __div__(self, other): + return self.divide(other) + def __truediv__(self, other): + return self.divide(other) + def __pow__(self, other): + return self.power(other) + + + # reverse operand + def __radd__(self, other): + return self + other + # __radd__ + + def __rsub__(self, other): + return (-1 * self) + other + # __rsub__ + + def __rmul__(self, other): + return self * other + # __rmul__ + + def __rdiv__(self, other): + tmp = self.power(-1) + tmp *= other + return tmp + # __rdiv__ + def __rtruediv__(self, other): + return self.__rdiv__(other) + + def __rpow__(self, other): + if isinstance(other, Number) : + fother = numpy.ones(numpy.shape(self.array)) * other + return type(self)(fother ** self.array , + dimension_labels=self.dimension_labels, + geometry=self.geometry) + # __rpow__ + + # in-place arithmetic operators: + # (+=, -=, *=, /= , //=, + # must return self + + def __iadd__(self, other): + kw = {'out':self} + return self.add(other, **kw) + + def __imul__(self, other): + kw = {'out':self} + return self.multiply(other, **kw) + + def __isub__(self, other): + kw = {'out':self} + return self.subtract(other, **kw) + + def __idiv__(self, other): + kw = {'out':self} + return self.divide(other, **kw) + + def __itruediv__(self, other): + kw = {'out':self} + return self.divide(other, **kw) + + def __neg__(self): + '''negation operator''' + return -1 * self + + def __str__ (self, representation=False): + repres = "" + repres += "Number of dimensions: {0}\n".format(self.number_of_dimensions) + repres += "Shape: {0}\n".format(self.shape) + repres += "Axis labels: {0}\n".format(self.dimension_labels) + if representation: + repres += "Representation: \n{0}\n".format(self.array) + return repres + +
+[docs] + def get_data_axes_order(self,new_order=None): + '''returns the axes label of self as a list + + If new_order is None returns the labels of the axes as a sorted-by-key list. + If new_order is a list of length number_of_dimensions, returns a list + with the indices of the axes in new_order with respect to those in + self.dimension_labels: i.e. + >>> self.dimension_labels = {0:'horizontal',1:'vertical'} + >>> new_order = ['vertical','horizontal'] + returns [1,0] + ''' + if new_order is None: + return self.dimension_labels + else: + if len(new_order) == self.number_of_dimensions: + + axes_order = [0]*len(self.shape) + for i, axis in enumerate(new_order): + axes_order[i] = self.dimension_labels.index(axis) + return axes_order + else: + raise ValueError(f"Expecting {len(self.shape)} axes, got {len(new_order)}")
+ + +
+[docs] + def clone(self): + '''returns a copy of DataContainer''' + return copy.deepcopy(self)
+ + +
+[docs] + def copy(self): + '''alias of clone''' + return self.clone()
+ + + ## binary operations + + def pixel_wise_binary(self, pwop, x2, *args, **kwargs): + out = kwargs.get('out', None) + + if out is None: + if isinstance(x2, Number): + out = pwop(self.as_array() , x2 , *args, **kwargs ) + elif issubclass(x2.__class__ , DataContainer): + out = pwop(self.as_array() , x2.as_array() , *args, **kwargs ) + elif isinstance(x2, numpy.ndarray): + out = pwop(self.as_array() , x2 , *args, **kwargs ) + else: + raise TypeError('Expected x2 type as number or DataContainer, got {}'.format(type(x2))) + geom = self.geometry + if geom is not None: + geom = self.geometry.copy() + return type(self)(out, + deep_copy=False, + dimension_labels=self.dimension_labels, + geometry= None if self.geometry is None else self.geometry.copy(), + suppress_warning=True) + + + elif issubclass(type(out), DataContainer) and issubclass(type(x2), DataContainer): + if self.check_dimensions(out) and self.check_dimensions(x2): + kwargs['out'] = out.as_array() + pwop(self.as_array(), x2.as_array(), *args, **kwargs ) + #return type(self)(out.as_array(), + # deep_copy=False, + # dimension_labels=self.dimension_labels, + # geometry=self.geometry) + return out + raise ValueError(f"Wrong size for data memory: out {out.shape} x2 {x2.shape} expected {self.shape}") + elif issubclass(type(out), DataContainer) and \ + isinstance(x2, (Number, numpy.ndarray)): + if self.check_dimensions(out): + if isinstance(x2, numpy.ndarray) and\ + not (x2.shape == self.shape and x2.dtype == self.dtype): + raise ValueError(f"Wrong size for data memory: out {out.shape} x2 {x2.shape} expected {self.shape}") + kwargs['out']=out.as_array() + pwop(self.as_array(), x2, *args, **kwargs ) + return out + raise ValueError(f"Wrong size for data memory: {out.shape} {self.shape}") + elif issubclass(type(out), numpy.ndarray): + if self.array.shape == out.shape and self.array.dtype == out.dtype: + kwargs['out'] = out + pwop(self.as_array(), x2, *args, **kwargs) + #return type(self)(out, + # deep_copy=False, + # dimension_labels=self.dimension_labels, + # geometry=self.geometry) + else: + raise ValueError(f"incompatible class: {pwop.__name__} {type(out)}") + + def add(self, other, *args, **kwargs): + if hasattr(other, '__container_priority__') and \ + self.__class__.__container_priority__ < other.__class__.__container_priority__: + return other.add(self, *args, **kwargs) + return self.pixel_wise_binary(numpy.add, other, *args, **kwargs) + + def subtract(self, other, *args, **kwargs): + if hasattr(other, '__container_priority__') and \ + self.__class__.__container_priority__ < other.__class__.__container_priority__: + return other.subtract(self, *args, **kwargs) + return self.pixel_wise_binary(numpy.subtract, other, *args, **kwargs) + + def multiply(self, other, *args, **kwargs): + if hasattr(other, '__container_priority__') and \ + self.__class__.__container_priority__ < other.__class__.__container_priority__: + return other.multiply(self, *args, **kwargs) + return self.pixel_wise_binary(numpy.multiply, other, *args, **kwargs) + + def divide(self, other, *args, **kwargs): + if hasattr(other, '__container_priority__') and \ + self.__class__.__container_priority__ < other.__class__.__container_priority__: + return other.divide(self, *args, **kwargs) + return self.pixel_wise_binary(numpy.divide, other, *args, **kwargs) + + def power(self, other, *args, **kwargs): + return self.pixel_wise_binary(numpy.power, other, *args, **kwargs) + + def maximum(self, x2, *args, **kwargs): + return self.pixel_wise_binary(numpy.maximum, x2, *args, **kwargs) + + def minimum(self,x2, out=None, *args, **kwargs): + return self.pixel_wise_binary(numpy.minimum, x2=x2, out=out, *args, **kwargs) + + +
+[docs] + def sapyb(self, a, y, b, out=None, num_threads=NUM_THREADS): + '''performs a*self + b * y. Can be done in-place + + Parameters + ---------- + a : multiplier for self, can be a number or a numpy array or a DataContainer + y : DataContainer + b : multiplier for y, can be a number or a numpy array or a DataContainer + out : return DataContainer, if None a new DataContainer is returned, default None. + out can be self or y. + num_threads : number of threads to use during the calculation, using the CIL C library + It will try to use the CIL C library and default to numpy operations, in case the C library does not handle the types. + + + Example + ------- + + >>> a = 2 + >>> b = 3 + >>> ig = ImageGeometry(10,11) + >>> x = ig.allocate(1) + >>> y = ig.allocate(2) + >>> out = x.sapyb(a,y,b) + ''' + + if out is None: + out = self * 0. + + if out.dtype in [ numpy.float32, numpy.float64 ]: + # handle with C-lib _axpby + try: + self._axpby(a, b, y, out, out.dtype, num_threads) + return out + except RuntimeError as rte: + warnings.warn("sapyb defaulting to Python due to: {}".format(rte)) + except TypeError as te: + warnings.warn("sapyb defaulting to Python due to: {}".format(te)) + finally: + pass + + + # cannot be handled by _axpby + ax = self * a + y.multiply(b, out=out) + out.add(ax, out=out) + return out
+ + + def _axpby(self, a, b, y, out, dtype=numpy.float32, num_threads=NUM_THREADS): + '''performs axpby with cilacc C library, can be done in-place. + + Does the operation .. math:: a*x+b*y and stores the result in out, where x is self + + :param a: scalar + :type a: float + :param b: scalar + :type b: float + :param y: DataContainer + :param out: DataContainer instance to store the result + :param dtype: data type of the DataContainers + :type dtype: numpy type, optional, default numpy.float32 + :param num_threads: number of threads to run on + :type num_threads: int, optional, default 1/2 CPU of the system + ''' + + c_float_p = ctypes.POINTER(ctypes.c_float) + c_double_p = ctypes.POINTER(ctypes.c_double) + + #convert a and b to numpy arrays and get the reference to the data (length = 1 or ndx.size) + try: + nda = a.as_array() + except: + nda = numpy.asarray(a) + + try: + ndb = b.as_array() + except: + ndb = numpy.asarray(b) + + a_vec = 0 + if nda.size > 1: + a_vec = 1 + + b_vec = 0 + if ndb.size > 1: + b_vec = 1 + + # get the reference to the data + ndx = self.as_array() + ndy = y.as_array() + ndout = out.as_array() + + if ndout.dtype != dtype: + raise Warning("out array of type {0} does not match requested dtype {1}. Using {0}".format(ndout.dtype, dtype)) + dtype = ndout.dtype + if ndx.dtype != dtype: + ndx = ndx.astype(dtype, casting='safe') + if ndy.dtype != dtype: + ndy = ndy.astype(dtype, casting='safe') + if nda.dtype != dtype: + nda = nda.astype(dtype, casting='same_kind') + if ndb.dtype != dtype: + ndb = ndb.astype(dtype, casting='same_kind') + + if dtype == numpy.float32: + x_p = ndx.ctypes.data_as(c_float_p) + y_p = ndy.ctypes.data_as(c_float_p) + out_p = ndout.ctypes.data_as(c_float_p) + a_p = nda.ctypes.data_as(c_float_p) + b_p = ndb.ctypes.data_as(c_float_p) + f = cilacc.saxpby + + elif dtype == numpy.float64: + x_p = ndx.ctypes.data_as(c_double_p) + y_p = ndy.ctypes.data_as(c_double_p) + out_p = ndout.ctypes.data_as(c_double_p) + a_p = nda.ctypes.data_as(c_double_p) + b_p = ndb.ctypes.data_as(c_double_p) + f = cilacc.daxpby + + else: + raise TypeError('Unsupported type {}. Expecting numpy.float32 or numpy.float64'.format(dtype)) + + #out = numpy.empty_like(a) + + + # int psaxpby(float * x, float * y, float * out, float a, float b, long size) + cilacc.saxpby.argtypes = [ctypes.POINTER(ctypes.c_float), # pointer to the first array + ctypes.POINTER(ctypes.c_float), # pointer to the second array + ctypes.POINTER(ctypes.c_float), # pointer to the third array + ctypes.POINTER(ctypes.c_float), # pointer to A + ctypes.c_int, # type of type of A selector (int) + ctypes.POINTER(ctypes.c_float), # pointer to B + ctypes.c_int, # type of type of B selector (int) + ctypes.c_longlong, # type of size of first array + ctypes.c_int] # number of threads + cilacc.daxpby.argtypes = [ctypes.POINTER(ctypes.c_double), # pointer to the first array + ctypes.POINTER(ctypes.c_double), # pointer to the second array + ctypes.POINTER(ctypes.c_double), # pointer to the third array + ctypes.POINTER(ctypes.c_double), # type of A (c_double) + ctypes.c_int, # type of type of A selector (int) + ctypes.POINTER(ctypes.c_double), # type of B (c_double) + ctypes.c_int, # type of type of B selector (int) + ctypes.c_longlong, # type of size of first array + ctypes.c_int] # number of threads + + if f(x_p, y_p, out_p, a_p, a_vec, b_p, b_vec, ndx.size, num_threads) != 0: + raise RuntimeError('axpby execution failed') + + + ## unary operations + def pixel_wise_unary(self, pwop, *args, **kwargs): + out = kwargs.get('out', None) + if out is None: + out = pwop(self.as_array() , *args, **kwargs ) + return type(self)(out, + deep_copy=False, + dimension_labels=self.dimension_labels, + geometry=self.geometry, + suppress_warning=True) + elif issubclass(type(out), DataContainer): + if self.check_dimensions(out): + kwargs['out'] = out.as_array() + pwop(self.as_array(), *args, **kwargs ) + else: + raise ValueError(f"Wrong size for data memory: {out.shape} {self.shape}") + elif issubclass(type(out), numpy.ndarray): + if self.array.shape == out.shape and self.array.dtype == out.dtype: + kwargs['out'] = out + pwop(self.as_array(), *args, **kwargs) + else: + raise ValueError("incompatible class: {pwop.__name__} {type(out)}") + + def abs(self, *args, **kwargs): + return self.pixel_wise_unary(numpy.abs, *args, **kwargs) + + def sign(self, *args, **kwargs): + return self.pixel_wise_unary(numpy.sign, *args, **kwargs) + + def sqrt(self, *args, **kwargs): + return self.pixel_wise_unary(numpy.sqrt, *args, **kwargs) + + def conjugate(self, *args, **kwargs): + return self.pixel_wise_unary(numpy.conjugate, *args, **kwargs) + +
+[docs] + def exp(self, *args, **kwargs): + '''Applies exp pixel-wise to the DataContainer''' + return self.pixel_wise_unary(numpy.exp, *args, **kwargs)
+ + +
+[docs] + def log(self, *args, **kwargs): + '''Applies log pixel-wise to the DataContainer''' + return self.pixel_wise_unary(numpy.log, *args, **kwargs)
+ + + ## reductions +
+[docs] + def squared_norm(self, **kwargs): + '''return the squared euclidean norm of the DataContainer viewed as a vector''' + #shape = self.shape + #size = reduce(lambda x,y:x*y, shape, 1) + #y = numpy.reshape(self.as_array(), (size, )) + return self.dot(self)
+ + #return self.dot(self) +
+[docs] + def norm(self, **kwargs): + '''return the euclidean norm of the DataContainer viewed as a vector''' + return numpy.sqrt(self.squared_norm(**kwargs))
+ + +
+[docs] + def dot(self, other, *args, **kwargs): + '''returns the inner product of 2 DataContainers viewed as vectors. Suitable for real and complex data. + For complex data, the dot method returns a.dot(b.conjugate()) + ''' + method = kwargs.get('method', 'numpy') + if method not in ['numpy','reduce']: + raise ValueError('dot: specified method not valid. Expecting numpy or reduce got {} '.format( + method)) + + if self.shape == other.shape: + if method == 'numpy': + return numpy.dot(self.as_array().ravel(), other.as_array().ravel().conjugate()) + elif method == 'reduce': + # see https://github.com/vais-ral/CCPi-Framework/pull/273 + # notice that Python seems to be smart enough to use + # the appropriate type to hold the result of the reduction + sf = reduce(lambda x,y: x + y[0]*y[1], + zip(self.as_array().ravel(), + other.as_array().ravel().conjugate()), + 0) + return sf + else: + raise ValueError('Shapes are not aligned: {} != {}'.format(self.shape, other.shape))
+ + + def _directional_reduction_unary(self, reduction_function, axis=None, out=None, *args, **kwargs): + """ + Returns the result of a unary function, considering the direction from an axis argument to the function + + Parameters + ---------- + reduction_function : function + The unary function to be evaluated + axis : string or tuple of strings or int or tuple of ints, optional + Specify the axis or axes to calculate 'reduction_function' along. Can be specified as + string(s) of dimension_labels or int(s) of indices + Default None calculates the function over the whole array + out: ndarray or DataContainer, optional + Provide an object in which to place the result. The object must have the correct dimensions and + (for DataContainers) the correct dimension_labels, but the type will be cast if necessary. See + `Output type determination <https://numpy.org/doc/stable/user/basics.ufuncs.html#ufuncs-output-type>`_ for more details. + Default is None + + Returns + ------- + scalar or ndarray + The result of the unary function + """ + if axis is not None: + axis = self.get_dimension_axis(axis) + + if out is None: + result = reduction_function(self.as_array(), axis=axis, *args, **kwargs) + if isinstance(result, numpy.ndarray): + new_dimensions = numpy.array(self.dimension_labels) + new_dimensions = numpy.delete(new_dimensions, axis) + return DataContainer(result, dimension_labels=new_dimensions) + else: + return result + else: + if hasattr(out,'array'): + out_arr = out.array + else: + out_arr = out + + reduction_function(self.as_array(), out=out_arr, axis=axis, *args, **kwargs) + +
+[docs] + def sum(self, axis=None, out=None, *args, **kwargs): + """ + Returns the sum of values in the DataContainer + + Parameters + ---------- + axis : string or tuple of strings or int or tuple of ints, optional + Specify the axis or axes to calculate 'sum' along. Can be specified as + string(s) of dimension_labels or int(s) of indices + Default None calculates the function over the whole array + out : ndarray or DataContainer, optional + Provide an object in which to place the result. The object must have the correct dimensions and + (for DataContainers) the correct dimension_labels, but the type will be cast if necessary. See + `Output type determination <https://numpy.org/doc/stable/user/basics.ufuncs.html#ufuncs-output-type>`_ for more details. + Default is None + + Returns + ------- + scalar or DataContainer + The sum as a scalar or inside a DataContainer with reduced dimension_labels + Default is to accumulate and return data as float64 or complex128 + """ + if kwargs.get('dtype') is not None: + warnings.warn("dtype is ignored (auto-using float64 or complex128)", DeprecationWarning, stacklevel=2) + + if numpy.isrealobj(self.array): + kwargs['dtype'] = numpy.float64 + else: + kwargs['dtype'] = numpy.complex128 + + return self._directional_reduction_unary(numpy.sum, axis=axis, out=out, *args, **kwargs)
+ + +
+[docs] + def min(self, axis=None, out=None, *args, **kwargs): + """ + Returns the minimum pixel value in the DataContainer + + Parameters + ---------- + axis : string or tuple of strings or int or tuple of ints, optional + Specify the axis or axes to calculate 'min' along. Can be specified as + string(s) of dimension_labels or int(s) of indices + Default None calculates the function over the whole array + out : ndarray or DataContainer, optional + Provide an object in which to place the result. The object must have the correct dimensions and + (for DataContainers) the correct dimension_labels, but the type will be cast if necessary. See + `Output type determination <https://numpy.org/doc/stable/user/basics.ufuncs.html#ufuncs-output-type>`_ for more details. + Default is None + + Returns + ------- + scalar or DataContainer + The min as a scalar or inside a DataContainer with reduced dimension_labels + """ + return self._directional_reduction_unary(numpy.min, axis=axis, out=out, *args, **kwargs)
+ + +
+[docs] + def max(self, axis=None, out=None, *args, **kwargs): + """ + Returns the maximum pixel value in the DataContainer + + Parameters + ---------- + axis : string or tuple of strings or int or tuple of ints, optional + Specify the axis or axes to calculate 'max' along. Can be specified as + string(s) of dimension_labels or int(s) of indices + Default None calculates the function over the whole array + out : ndarray or DataContainer, optional + Provide an object in which to place the result. The object must have the correct dimensions and + (for DataContainers) the correct dimension_labels, but the type will be cast if necessary. See + `Output type determination <https://numpy.org/doc/stable/user/basics.ufuncs.html#ufuncs-output-type>`_ for more details. + Default is None + + Returns + ------- + scalar or DataContainer + The max as a scalar or inside a DataContainer with reduced dimension_labels + """ + return self._directional_reduction_unary(numpy.max, axis=axis, out=out, *args, **kwargs)
+ + +
+[docs] + def mean(self, axis=None, out=None, *args, **kwargs): + """ + Returns the mean pixel value of the DataContainer + + Parameters + ---------- + axis : string or tuple of strings or int or tuple of ints, optional + Specify the axis or axes to calculate 'mean' along. Can be specified as + string(s) of dimension_labels or int(s) of indices + Default None calculates the function over the whole array + out : ndarray or DataContainer, optional + Provide an object in which to place the result. The object must have the correct dimensions and + (for DataContainers) the correct dimension_labels, but the type will be cast if necessary. See + `Output type determination <https://numpy.org/doc/stable/user/basics.ufuncs.html#ufuncs-output-type>`_ for more details. + Default is None + + Returns + ------- + scalar or DataContainer + The mean as a scalar or inside a DataContainer with reduced dimension_labels + Default is to accumulate and return data as float64 or complex128 + """ + + if kwargs.get('dtype') is not None: + warnings.warn("dtype is ignored (auto-using float64 or complex128)", DeprecationWarning, stacklevel=2) + + if numpy.isrealobj(self.array): + kwargs['dtype'] = numpy.float64 + else: + kwargs['dtype'] = numpy.complex128 + + return self._directional_reduction_unary(numpy.mean, axis=axis, out=out, *args, **kwargs)
+ + + # Logic operators between DataContainers and floats + def __le__(self, other): + '''Returns boolean array of DataContainer less or equal than DataContainer/float''' + if isinstance(other, DataContainer): + return self.as_array()<=other.as_array() + return self.as_array()<=other + + def __lt__(self, other): + '''Returns boolean array of DataContainer less than DataContainer/float''' + if isinstance(other, DataContainer): + return self.as_array()<other.as_array() + return self.as_array()<other + + def __ge__(self, other): + '''Returns boolean array of DataContainer greater or equal than DataContainer/float''' + if isinstance(other, DataContainer): + return self.as_array()>=other.as_array() + return self.as_array()>=other + + def __gt__(self, other): + '''Returns boolean array of DataContainer greater than DataContainer/float''' + if isinstance(other, DataContainer): + return self.as_array()>other.as_array() + return self.as_array()>other + + def __eq__(self, other): + '''Returns boolean array of DataContainer equal to DataContainer/float''' + if isinstance(other, DataContainer): + return self.as_array()==other.as_array() + return self.as_array()==other + + def __ne__(self, other): + '''Returns boolean array of DataContainer negative to DataContainer/float''' + if isinstance(other, DataContainer): + return self.as_array()!=other.as_array() + return self.as_array()!=other
+ +
+ +
+ + + + + +
+ +
+
+
+ +
+ + + + +
+
+ +
+ +
+
+
+ + + + + +
+ + +
+ + \ No newline at end of file diff --git a/v24.2.0/_modules/cil/framework/image_data/index.html b/v24.2.0/_modules/cil/framework/image_data/index.html new file mode 100644 index 0000000000..cc66f8acd5 --- /dev/null +++ b/v24.2.0/_modules/cil/framework/image_data/index.html @@ -0,0 +1,764 @@ + + + + + + + + + + cil.framework.image_data — CIL 24.2.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + +
+ +
+ + + + + +
+
+ + + + + + +
+ + + + + + + + + + + + + +
+ +
+ + +
+
+ +
+
+ +
+ +
+ + +
+ +
+ + +
+
+ + + + + +
+ +

Source code for cil.framework.image_data

+#  Copyright 2018 United Kingdom Research and Innovation
+#  Copyright 2018 The University of Manchester
+#
+#  Licensed under the Apache License, Version 2.0 (the "License");
+#  you may not use this file except in compliance with the License.
+#  You may obtain a copy of the License at
+#
+#      http://www.apache.org/licenses/LICENSE-2.0
+#
+#  Unless required by applicable law or agreed to in writing, software
+#  distributed under the License is distributed on an "AS IS" BASIS,
+#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+#  See the License for the specific language governing permissions and
+#  limitations under the License.
+#
+# Authors:
+# CIL Developers, listed at: https://github.com/TomographicImaging/CIL/blob/master/NOTICE.txt
+import numpy
+
+from .data_container import DataContainer
+from .labels import ImageDimension, Backend
+
+
+[docs] +class ImageData(DataContainer): + '''DataContainer for holding 2D or 3D DataContainer''' + __container_priority__ = 1 + + @property + def geometry(self): + return self._geometry + + @geometry.setter + def geometry(self, val): + self._geometry = val + + @property + def dimension_labels(self): + return self.geometry.dimension_labels + + @dimension_labels.setter + def dimension_labels(self, val): + if val is not None: + raise ValueError("Unable to set the dimension_labels directly. Use geometry.set_labels() instead") + + def __init__(self, + array = None, + deep_copy=False, + geometry=None, + **kwargs): + + dtype = kwargs.get('dtype', numpy.float32) + + + if geometry is None: + raise AttributeError("ImageData requires a geometry") + + + labels = kwargs.get('dimension_labels', None) + if labels is not None and labels != geometry.dimension_labels: + raise ValueError("Deprecated: 'dimension_labels' cannot be set with 'allocate()'. Use 'geometry.set_labels()' to modify the geometry before using allocate.") + + if array is None: + array = numpy.empty(geometry.shape, dtype=dtype) + elif issubclass(type(array) , DataContainer): + array = array.as_array() + elif issubclass(type(array) , numpy.ndarray): + # remove singleton dimensions + array = numpy.squeeze(array) + else: + raise TypeError('array must be a CIL type DataContainer or numpy.ndarray got {}'.format(type(array))) + + if array.shape != geometry.shape: + raise ValueError('Shape mismatch {} {}'.format(array.shape, geometry.shape)) + + if array.ndim not in [2,3,4]: + raise ValueError('Number of dimensions are not 2 or 3 or 4 : {0}'.format(array.ndim)) + + super(ImageData, self).__init__(array, deep_copy, geometry=geometry, **kwargs) + + def __eq__(self, other): + ''' + Check if two ImageData objects are equal. This is done by checking if the geometry, data and dtype are equal. + Also, if the other object is a numpy.ndarray, it will check if the data and dtype are equal. + + Parameters + ---------- + other: ImageData or numpy.ndarray + The object to compare with. + + Returns + ------- + bool + True if the two objects are equal, False otherwise. + ''' + + if isinstance(other, ImageData): + if numpy.array_equal(self.as_array(), other.as_array()) \ + and self.geometry == other.geometry \ + and self.dtype == other.dtype: + return True + elif numpy.array_equal(self.as_array(), other) and self.dtype==other.dtype: + return True + else: + return False + +
+[docs] + def get_slice(self,channel=None, vertical=None, horizontal_x=None, horizontal_y=None, force=False): + ''' + Returns a new ImageData of a single slice of in the requested direction. + ''' + try: + geometry_new = self.geometry.get_slice(channel=channel, vertical=vertical, horizontal_x=horizontal_x, horizontal_y=horizontal_y) + except ValueError: + if force: + geometry_new = None + else: + raise ValueError ("Unable to return slice of requested ImageData. Use 'force=True' to return DataContainer instead.") + + #if vertical = 'centre' slice convert to index and subset, this will interpolate 2 rows to get the center slice value + if vertical == 'centre': + dim = self.geometry.dimension_labels.index('vertical') + centre_slice_pos = (self.geometry.shape[dim]-1) / 2. + ind0 = int(numpy.floor(centre_slice_pos)) + + w2 = centre_slice_pos - ind0 + out = DataContainer.get_slice(self, channel=channel, vertical=ind0, horizontal_x=horizontal_x, horizontal_y=horizontal_y) + + if w2 > 0: + out2 = DataContainer.get_slice(self, channel=channel, vertical=ind0 + 1, horizontal_x=horizontal_x, horizontal_y=horizontal_y) + out = out * (1 - w2) + out2 * w2 + else: + out = DataContainer.get_slice(self, channel=channel, vertical=vertical, horizontal_x=horizontal_x, horizontal_y=horizontal_y) + + if len(out.shape) == 1 or geometry_new is None: + return out + else: + return ImageData(out.array, deep_copy=False, geometry=geometry_new, suppress_warning=True)
+ + + +
+[docs] + def apply_circular_mask(self, radius=0.99, in_place=True): + """ + + Apply a circular mask to the horizontal_x and horizontal_y slices. Values outside this mask will be set to zero. + + This will most commonly be used to mask edge artefacts from standard CT reconstructions with FBP. + + Parameters + ---------- + radius : float, default 0.99 + radius of mask by percentage of size of horizontal_x or horizontal_y, whichever is greater + + in_place : boolean, default True + If `True` masks the current data, if `False` returns a new `ImageData` object. + + + Returns + ------- + ImageData + If `in_place = False` returns a new ImageData object with the masked data + + """ + ig = self.geometry + + # grid + y_range = (ig.voxel_num_y-1)/2 + x_range = (ig.voxel_num_x-1)/2 + + Y, X = numpy.ogrid[-y_range:y_range+1,-x_range:x_range+1] + + # use centre from geometry in units distance to account for aspect ratio of pixels + dist_from_center = numpy.sqrt((X*ig.voxel_size_x+ ig.center_x)**2 + (Y*ig.voxel_size_y+ig.center_y)**2) + + size_x = ig.voxel_num_x * ig.voxel_size_x + size_y = ig.voxel_num_y * ig.voxel_size_y + + if size_x > size_y: + radius_applied =radius * size_x/2 + else: + radius_applied =radius * size_y/2 + + # approximate the voxel as a circle and get the radius + # ie voxel area = 1, circle of area=1 has r = 0.56 + r=((ig.voxel_size_x * ig.voxel_size_y )/numpy.pi)**(1/2) + + # we have the voxel centre distance to mask. voxels with distance greater than |r| are fully inside or outside. + # values on the border region between -r and r are preserved + mask =(radius_applied-dist_from_center).clip(-r,r) + + # rescale to -pi/2->+pi/2 + mask *= (0.5*numpy.pi)/r + + # the sin of the linear distance gives us an approximation of area of the circle to include in the mask + numpy.sin(mask, out = mask) + + # rescale the data 0 - 1 + mask = 0.5 + mask * 0.5 + + # reorder dataset so 'horizontal_y' and 'horizontal_x' are the final dimensions + labels_orig = self.dimension_labels + labels = list(labels_orig) + + labels.remove('horizontal_y') + labels.remove('horizontal_x') + labels.append('horizontal_y') + labels.append('horizontal_x') + + + if in_place == True: + self.reorder(labels) + numpy.multiply(self.array, mask, out=self.array) + self.reorder(labels_orig) + + else: + image_data_out = self.copy() + image_data_out.reorder(labels) + numpy.multiply(image_data_out.array, mask, out=image_data_out.array) + image_data_out.reorder(labels_orig) + + return image_data_out
+ + +
+[docs] + def reorder(self, order): + ''' + Reorders the data in memory as requested. This is an in-place operation. + + Parameters + ---------- + order: list or str + Ordered list of labels from self.dimension_labels, or string 'astra' or 'tigre'. + ''' + if order in Backend: + order = ImageDimension.get_order_for_engine(order, self.geometry) + + super().reorder(order)
+
+ +
+ +
+ + + + + +
+ +
+
+
+ +
+ + + + +
+
+ +
+ +
+
+
+ + + + + +
+ + +
+ + \ No newline at end of file diff --git a/v24.2.0/_modules/cil/framework/image_geometry/index.html b/v24.2.0/_modules/cil/framework/image_geometry/index.html new file mode 100644 index 0000000000..f5ed26a94a --- /dev/null +++ b/v24.2.0/_modules/cil/framework/image_geometry/index.html @@ -0,0 +1,837 @@ + + + + + + + + + + cil.framework.image_geometry — CIL 24.2.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + +
+ +
+ + + + + +
+
+ + + + + + +
+ + + + + + + + + + + + + +
+ +
+ + +
+
+ +
+
+ +
+ +
+ + +
+ +
+ + +
+
+ + + + + +
+ +

Source code for cil.framework.image_geometry

+#  Copyright 2018 United Kingdom Research and Innovation
+#  Copyright 2018 The University of Manchester
+#
+#  Licensed under the Apache License, Version 2.0 (the "License");
+#  you may not use this file except in compliance with the License.
+#  You may obtain a copy of the License at
+#
+#      http://www.apache.org/licenses/LICENSE-2.0
+#
+#  Unless required by applicable law or agreed to in writing, software
+#  distributed under the License is distributed on an "AS IS" BASIS,
+#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+#  See the License for the specific language governing permissions and
+#  limitations under the License.
+#
+# Authors:
+# CIL Developers, listed at: https://github.com/TomographicImaging/CIL/blob/master/NOTICE.txt
+import copy
+import warnings
+from numbers import Number
+
+import numpy
+
+from .image_data import ImageData
+from .labels import ImageDimension, FillType
+
+
+
+[docs] +class ImageGeometry: + @property + def CHANNEL(self): + warnings.warn("use ImageDimension.CHANNEL instead", DeprecationWarning, stacklevel=2) + return ImageDimension.CHANNEL + + @property + def HORIZONTAL_X(self): + warnings.warn("use ImageDimension.HORIZONTAL_X instead", DeprecationWarning, stacklevel=2) + return ImageDimension.HORIZONTAL_X + + @property + def HORIZONTAL_Y(self): + warnings.warn("use ImageDimension.HORIZONTAL_Y instead", DeprecationWarning, stacklevel=2) + return ImageDimension.HORIZONTAL_Y + + @property + def RANDOM(self): + warnings.warn("use FillType.RANDOM instead", DeprecationWarning, stacklevel=2) + return FillType.RANDOM + @property + def RANDOM_INT(self): + warnings.warn("use FillType.RANDOM_INT instead", DeprecationWarning, stacklevel=2) + return FillType.RANDOM_INT + + @property + def VERTICAL(self): + warnings.warn("use ImageDimension.VERTICAL instead", DeprecationWarning, stacklevel=2) + return ImageDimension.VERTICAL + + @property + def shape(self): + shape_dict = {ImageDimension.CHANNEL: self.channels, + ImageDimension.VERTICAL: self.voxel_num_z, + ImageDimension.HORIZONTAL_Y: self.voxel_num_y, + ImageDimension.HORIZONTAL_X: self.voxel_num_x} + return tuple(shape_dict[label] for label in self.dimension_labels) + + @shape.setter + def shape(self, val): + print("Deprecated - shape will be set automatically") + + @property + def spacing(self): + spacing_dict = {ImageDimension.CHANNEL: self.channel_spacing, + ImageDimension.VERTICAL: self.voxel_size_z, + ImageDimension.HORIZONTAL_Y: self.voxel_size_y, + ImageDimension.HORIZONTAL_X: self.voxel_size_x} + return tuple(spacing_dict[label] for label in self.dimension_labels) + + @property + def length(self): + return len(self.dimension_labels) + + @property + def ndim(self): + return len(self.dimension_labels) + + @property + def dimension_labels(self): + + labels_default = ImageDimension.get_order_for_engine("cil") + + shape_default = [ self.channels, + self.voxel_num_z, + self.voxel_num_y, + self.voxel_num_x] + + try: + labels = self._dimension_labels + except AttributeError: + labels = labels_default + labels = list(labels) + + for i, x in enumerate(shape_default): + if x == 0 or x==1: + try: + labels.remove(labels_default[i]) + except ValueError: + pass #if not in custom list carry on + return tuple(labels) + + @dimension_labels.setter + def dimension_labels(self, val): + self.set_labels(val) + + def set_labels(self, labels): + if labels is not None: + self._dimension_labels = tuple(map(ImageDimension, labels)) + + def __eq__(self, other): + if not isinstance(other, self.__class__): + return False + + if self.voxel_num_x == other.voxel_num_x \ + and self.voxel_num_y == other.voxel_num_y \ + and self.voxel_num_z == other.voxel_num_z \ + and self.voxel_size_x == other.voxel_size_x \ + and self.voxel_size_y == other.voxel_size_y \ + and self.voxel_size_z == other.voxel_size_z \ + and self.center_x == other.center_x \ + and self.center_y == other.center_y \ + and self.center_z == other.center_z \ + and self.channels == other.channels \ + and self.channel_spacing == other.channel_spacing \ + and self.dimension_labels == other.dimension_labels: + + return True + + return False + + @property + def dtype(self): + return self._dtype + + @dtype.setter + def dtype(self, val): + self._dtype = val + + def __init__(self, + voxel_num_x=0, + voxel_num_y=0, + voxel_num_z=0, + voxel_size_x=1, + voxel_size_y=1, + voxel_size_z=1, + center_x=0, + center_y=0, + center_z=0, + channels=1, + **kwargs): + + self.voxel_num_x = int(voxel_num_x) + self.voxel_num_y = int(voxel_num_y) + self.voxel_num_z = int(voxel_num_z) + self.voxel_size_x = float(voxel_size_x) + self.voxel_size_y = float(voxel_size_y) + self.voxel_size_z = float(voxel_size_z) + self.center_x = center_x + self.center_y = center_y + self.center_z = center_z + self.channels = channels + self.channel_labels = None + self.channel_spacing = 1.0 + self.dimension_labels = kwargs.get('dimension_labels', None) + self.dtype = kwargs.get('dtype', numpy.float32) + + +
+[docs] + def get_slice(self,channel=None, vertical=None, horizontal_x=None, horizontal_y=None): + ''' + Returns a new ImageGeometry of a single slice of in the requested direction. + ''' + geometry_new = self.copy() + if channel is not None: + geometry_new.channels = 1 + + try: + geometry_new.channel_labels = [self.channel_labels[channel]] + except: + geometry_new.channel_labels = None + + if vertical is not None: + geometry_new.voxel_num_z = 0 + + if horizontal_y is not None: + geometry_new.voxel_num_y = 0 + + if horizontal_x is not None: + geometry_new.voxel_num_x = 0 + + return geometry_new
+ + + def get_order_by_label(self, dimension_labels, default_dimension_labels): + order = [] + for i, el in enumerate(default_dimension_labels): + for j, ek in enumerate(dimension_labels): + if el == ek: + order.append(j) + break + return order + + def get_min_x(self): + return self.center_x - 0.5*self.voxel_num_x*self.voxel_size_x + + def get_max_x(self): + return self.center_x + 0.5*self.voxel_num_x*self.voxel_size_x + + def get_min_y(self): + return self.center_y - 0.5*self.voxel_num_y*self.voxel_size_y + + def get_max_y(self): + return self.center_y + 0.5*self.voxel_num_y*self.voxel_size_y + + def get_min_z(self): + if not self.voxel_num_z == 0: + return self.center_z - 0.5*self.voxel_num_z*self.voxel_size_z + else: + return 0 + + def get_max_z(self): + if not self.voxel_num_z == 0: + return self.center_z + 0.5*self.voxel_num_z*self.voxel_size_z + else: + return 0 + +
+[docs] + def clone(self): + '''returns a copy of the ImageGeometry''' + return copy.deepcopy(self)
+ + +
+[docs] + def copy(self): + '''alias of clone''' + return self.clone()
+ + + def __str__ (self): + repres = "" + repres += "Number of channels: {0}\n".format(self.channels) + repres += "channel_spacing: {0}\n".format(self.channel_spacing) + + if self.voxel_num_z > 0: + repres += "voxel_num : x{0},y{1},z{2}\n".format(self.voxel_num_x, self.voxel_num_y, self.voxel_num_z) + repres += "voxel_size : x{0},y{1},z{2}\n".format(self.voxel_size_x, self.voxel_size_y, self.voxel_size_z) + repres += "center : x{0},y{1},z{2}\n".format(self.center_x, self.center_y, self.center_z) + else: + repres += "voxel_num : x{0},y{1}\n".format(self.voxel_num_x, self.voxel_num_y) + repres += "voxel_size : x{0},y{1}\n".format(self.voxel_size_x, self.voxel_size_y) + repres += "center : x{0},y{1}\n".format(self.center_x, self.center_y) + + return repres +
+[docs] + def allocate(self, value=0, **kwargs): + '''allocates an ImageData according to the size expressed in the instance + + :param value: accepts numbers to allocate an uniform array, or a string as 'random' or 'random_int' to create a random array or None. + :type value: number or string, default None allocates empty memory block, default 0 + :param dtype: numerical type to allocate + :type dtype: numpy type, default numpy.float32 + ''' + + dtype = kwargs.get('dtype', self.dtype) + + if kwargs.get('dimension_labels', None) is not None: + raise ValueError("Deprecated: 'dimension_labels' cannot be set with 'allocate()'. Use 'geometry.set_labels()' to modify the geometry before using allocate.") + + out = ImageData(geometry=self.copy(), + dtype=dtype, + suppress_warning=True) + + if isinstance(value, Number): + # it's created empty, so we make it 0 + out.array.fill(value) + elif value in FillType: + if value == FillType.RANDOM: + seed = kwargs.get('seed', None) + if seed is not None: + numpy.random.seed(seed) + if numpy.iscomplexobj(out.array): + r = numpy.random.random_sample(self.shape) + 1j * numpy.random.random_sample(self.shape) + out.fill(r) + else: + out.fill(numpy.random.random_sample(self.shape)) + + elif value == FillType.RANDOM_INT: + seed = kwargs.get('seed', None) + if seed is not None: + numpy.random.seed(seed) + max_value = kwargs.get('max_value', 100) + if numpy.iscomplexobj(out.array): + out.fill(numpy.random.randint(max_value,size=self.shape, dtype=numpy.int32) + 1.j*numpy.random.randint(max_value,size=self.shape, dtype=numpy.int32)) + else: + out.fill(numpy.random.randint(max_value,size=self.shape, dtype=numpy.int32)) + elif value is None: + pass + else: + raise ValueError(f'Value {value} unknown') + return out
+
+ +
+ +
+ + + + + +
+ +
+
+
+ +
+ + + + +
+
+ +
+ +
+
+
+ + + + + +
+ + +
+ + \ No newline at end of file diff --git a/v24.2.0/_modules/cil/framework/labels/index.html b/v24.2.0/_modules/cil/framework/labels/index.html new file mode 100644 index 0000000000..53a2de5189 --- /dev/null +++ b/v24.2.0/_modules/cil/framework/labels/index.html @@ -0,0 +1,823 @@ + + + + + + + + + + cil.framework.labels — CIL 24.2.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + +
+ +
+ + + + + +
+
+ + + + + + +
+ + + + + + + + + + + + + +
+ +
+ + +
+
+ +
+
+ +
+ +
+ + +
+ +
+ + +
+
+ + + + + +
+ +

Source code for cil.framework.labels

+#  Copyright 2024 United Kingdom Research and Innovation
+#  Copyright 2024 The University of Manchester
+#
+#  Licensed under the Apache License, Version 2.0 (the "License");
+#  you may not use this file except in compliance with the License.
+#  You may obtain a copy of the License at
+#
+#      http://www.apache.org/licenses/LICENSE-2.0
+#
+#  Unless required by applicable law or agreed to in writing, software
+#  distributed under the License is distributed on an "AS IS" BASIS,
+#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+#  See the License for the specific language governing permissions and
+#  limitations under the License.
+#
+# Authors:
+# CIL Developers, listed at: https://github.com/TomographicImaging/CIL/blob/master/NOTICE.txt
+from enum import Enum, Flag as _Flag, auto, unique
+try:
+    from enum import EnumType
+except ImportError: # Python<3.11
+    from enum import EnumMeta as EnumType
+
+
+class _StrEnumMeta(EnumType):
+    """Python<3.12 requires this in a metaclass (rather than directly in StrEnum)"""
+    def __contains__(self, item: str) -> bool:
+        try:
+            key = item.upper()
+        except (AttributeError, TypeError):
+            return False
+        return key in self.__members__ or item in self.__members__.values()
+
+
+@unique
+class StrEnum(str, Enum, metaclass=_StrEnumMeta):
+    """Case-insensitive StrEnum"""
+    @classmethod
+    def _missing_(cls, value: str):
+        return cls.__members__.get(value.upper(), None)
+
+    def __eq__(self, value: str) -> bool:
+        try:
+            value = self.__class__[value.upper()]
+        except (KeyError, ValueError, AttributeError):
+            pass
+        return super().__eq__(value)
+
+    def __hash__(self) -> int:
+        """consistent hashing for dictionary keys"""
+        return hash(self.value)
+
+    # compatibility with Python>=3.11 `enum.StrEnum`
+    __str__ = str.__str__
+    __format__ = str.__format__
+
+    @staticmethod
+    def _generate_next_value_(name: str, start, count, last_values) -> str:
+        return name.lower()
+
+
+class Backend(StrEnum):
+    """
+    Available backends for CIL.
+
+    Examples
+    --------
+    ```
+    FBP(data, backend=Backend.ASTRA)
+    FBP(data, backend="astra")
+    ```
+    """
+    ASTRA = auto()
+    TIGRE = auto()
+    CIL = auto()
+
+
+class _DimensionBase:
+    @classmethod
+    def _default_order(cls, engine: str) -> tuple:
+        raise NotImplementedError
+
+    @classmethod
+    def get_order_for_engine(cls, engine: str, geometry=None) -> tuple:
+        """
+        Returns the order of dimensions for a specific engine and geometry.
+
+        Parameters
+        ----------
+        geometry: ImageGeometry | AcquisitionGeometry
+            If unspecified, the default order is returned.
+        """
+        order = cls._default_order(engine)
+        if geometry is None:
+            return order
+        return tuple(label for label in order if label in geometry.dimension_labels)
+
+    @classmethod
+    def check_order_for_engine(cls, engine: str, geometry) -> bool:
+        """
+        Returns True iff the order of dimensions is correct for a specific engine and geometry.
+
+        Parameters
+        ----------
+        geometry: ImageGeometry | AcquisitionGeometry
+
+        Raises
+        ------
+        ValueError if the order of dimensions is incorrect.
+        """
+        order_requested = cls.get_order_for_engine(engine, geometry)
+        if order_requested == tuple(geometry.dimension_labels):
+            return True
+        raise ValueError(
+            f"Expected dimension_label order {order_requested},"
+            f" got {tuple(geometry.dimension_labels)}."
+            f" Try using `data.reorder('{engine}')` to permute for {engine}")
+
+
+
+[docs] +class ImageDimension(_DimensionBase, StrEnum): + """ + Available dimension labels for image data. + + Examples + -------- + >>> data.reorder([ImageDimension.HORIZONTAL_X, ImageDimension.VERTICAL]) + >>> data.reorder(["horizontal_x", "vertical"]) + + """ + CHANNEL = auto() + VERTICAL = auto() + HORIZONTAL_X = auto() + HORIZONTAL_Y = auto() + + @classmethod + def _default_order(cls, engine: str) -> tuple: + engine = Backend(engine) + orders = { + Backend.ASTRA: (cls.CHANNEL, cls.VERTICAL, cls.HORIZONTAL_Y, cls.HORIZONTAL_X), + Backend.TIGRE: (cls.CHANNEL, cls.VERTICAL, cls.HORIZONTAL_Y, cls.HORIZONTAL_X), + Backend.CIL: (cls.CHANNEL, cls.VERTICAL, cls.HORIZONTAL_Y, cls.HORIZONTAL_X)} + return orders[engine]
+ + + +
+[docs] +class AcquisitionDimension(_DimensionBase, StrEnum): + """ + Available dimension labels for acquisition data. + + Examples + -------- + >>> data.reorder([AcquisitionDimension.CHANNEL, + AcquisitionDimension.ANGLE, + AcquisitionDimension.HORIZONTAL]) + >>> data.reorder(["channel", "angle", "horizontal"]) + """ + CHANNEL = auto() + ANGLE = auto() + VERTICAL = auto() + HORIZONTAL = auto() + + @classmethod + def _default_order(cls, engine: str) -> tuple: + engine = Backend(engine) + orders = { + Backend.ASTRA: (cls.CHANNEL, cls.VERTICAL, cls.ANGLE, cls.HORIZONTAL), + Backend.TIGRE: (cls.CHANNEL, cls.ANGLE, cls.VERTICAL, cls.HORIZONTAL), + Backend.CIL: (cls.CHANNEL, cls.ANGLE, cls.VERTICAL, cls.HORIZONTAL)} + return orders[engine]
+ + + +
+[docs] +class FillType(StrEnum): + """ + Available fill types for image data. + + Attributes + ---------- + RANDOM: + Fill with random values. + RANDOM_INT: + Fill with random integers. + + Examples + -------- + >>> data.fill(FillType.RANDOM) + >>> data.fill("random") + """ + RANDOM = auto() + RANDOM_INT = auto()
+ + + +
+[docs] +class AngleUnit(StrEnum): + """ + Available units for angles. + + Examples + -------- + >>> data.geometry.set_angles(angle_data, angle_units=AngleUnit.DEGREE) + >>> data.geometry.set_angles(angle_data, angle_units="degree") + + """ + DEGREE = auto() + RADIAN = auto()
+ + + +class _FlagMeta(EnumType): + """Python<3.12 requires this in a metaclass (rather than directly in Flag)""" + def __contains__(self, item) -> bool: + return item.upper() in self.__members__ if isinstance(item, str) else super().__contains__(item) + + +@unique +class Flag(_Flag, metaclass=_FlagMeta): + """Case-insensitive Flag""" + @classmethod + def _missing_(cls, value): + return cls.__members__.get(value.upper(), None) if isinstance(value, str) else super()._missing_(value) + + def __eq__(self, value: str) -> bool: + return super().__eq__(self.__class__(value.upper()) if isinstance(value, str) else value) + + +
+[docs] +class AcquisitionType(Flag): + """ + Available acquisition types & dimensions. + + WARNING: It's best to use strings rather than integers to initialise. + >>> AcquisitionType(3) == AcquisitionType(2 | 1) == AcquisitionType.CONE|PARALLEL != AcquisitionType('3D') + + Attributes + ---------- + PARALLEL: + Parallel beam. + CONE: + Cone beam. + DIM2: + 2D acquisition. + DIM3: + 3D acquisition. + """ + PARALLEL = auto() + CONE = auto() + DIM2 = auto() + DIM3 = auto() + +
+[docs] + def validate(self): + """ + Check if the geometry and dimension types are allowed + """ + assert len(self.dimension) < 2, f"{self} must be 2D xor 3D" + assert len(self.geometry) < 2, f"{self} must be parallel xor cone beam" + return self
+ + + @property + def dimension(self): + """ + Returns the label for the dimension type + """ + return self & (self.DIM2 | self.DIM3) + + @property + def geometry(self): + """ + Returns the label for the geometry type + """ + return self & (self.PARALLEL | self.CONE) + + @classmethod + def _missing_(cls, value): + """2D/3D aliases""" + if isinstance(value, str): + value = {'2D': 'DIM2', '3D': 'DIM3'}.get(value.upper(), value) + return super()._missing_(value) + + def __str__(self) -> str: + """2D/3D special handling""" + return '2D' if self == self.DIM2 else '3D' if self == self.DIM3 else (self.name or super().__str__()) + + def __hash__(self) -> int: + """consistent hashing for dictionary keys""" + return hash(self.value) + + # compatibility with Python>=3.11 `enum.Flag` + def __len__(self) -> int: + return bin(self.value).count('1')
+ +
+ +
+ + + + + +
+ +
+
+
+ +
+ + + + +
+
+ +
+ +
+
+
+ + + + + +
+ + +
+ + \ No newline at end of file diff --git a/v24.2.0/_modules/cil/framework/partitioner/index.html b/v24.2.0/_modules/cil/framework/partitioner/index.html new file mode 100644 index 0000000000..66e62e07c3 --- /dev/null +++ b/v24.2.0/_modules/cil/framework/partitioner/index.html @@ -0,0 +1,732 @@ + + + + + + + + + + cil.framework.partitioner — CIL 24.2.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + +
+ +
+ + + + + +
+
+ + + + + + +
+ + + + + + + + + + + + + +
+ +
+ + +
+
+ +
+
+ +
+ +
+ + +
+ +
+ + +
+
+ + + + + +
+ +

Source code for cil.framework.partitioner

+#  Copyright 2018 United Kingdom Research and Innovation
+#  Copyright 2018 The University of Manchester
+#
+#  Licensed under the Apache License, Version 2.0 (the "License");
+#  you may not use this file except in compliance with the License.
+#  You may obtain a copy of the License at
+#
+#      http://www.apache.org/licenses/LICENSE-2.0
+#
+#  Unless required by applicable law or agreed to in writing, software
+#  distributed under the License is distributed on an "AS IS" BASIS,
+#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+#  See the License for the specific language governing permissions and
+#  limitations under the License.
+#
+# Authors:
+# CIL Developers, listed at: https://github.com/TomographicImaging/CIL/blob/master/NOTICE.txt
+import math
+
+import numpy
+
+from .block import BlockGeometry
+
+
+
+[docs] +class Partitioner(object): + '''Interface for AcquisitionData to be able to partition itself in a number of batches. + + This class, by multiple inheritance with AcquisitionData, allows the user to partition the data, + by using the method ``partition``. + The partitioning will generate a ``BlockDataContainer`` with appropriate ``AcquisitionData``. + + ''' + # modes of partitioning + SEQUENTIAL = 'sequential' + STAGGERED = 'staggered' + RANDOM_PERMUTATION = 'random_permutation' + + def _partition_indices(self, num_batches, indices, stagger=False): + """Partition a list of indices into num_batches of indices. + + Parameters + ---------- + num_batches : int + The number of batches to partition the indices into. + indices : list of int, int + The indices to partition. If passed a list, this list will be partitioned in ``num_batches`` + partitions. If passed an int the indices will be generated automatically using ``range(indices)``. + stagger : bool, default False + If True, the indices will be staggered across the batches. + + Returns + -------- + list of list of int + A list of batches of indices. + """ + + # Partition the indices into batches. + if isinstance(indices, int): + indices = list(range(indices)) + + num_indices = len(indices) + # sanity check + if num_indices < num_batches: + raise ValueError( + 'The number of batches must be less than or equal to the number of indices.' + ) + + if stagger: + batches = [indices[i::num_batches] for i in range(num_batches)] + + else: + # we split the indices with floor(N/M)+1 indices in N%M groups + # and floor(N/M) indices in the remaining M - N%M groups. + + # rename num_indices to N for brevity + N = num_indices + # rename num_batches to M for brevity + M = num_batches + batches = [ + indices[j:j + math.floor(N / M) + 1] for j in range(N % M) + ] + offset = N % M * (math.floor(N / M) + 1) + for i in range(M - N % M): + start = offset + i * math.floor(N / M) + end = start + math.floor(N / M) + batches.append(indices[start:end]) + + return batches + + def _construct_BlockGeometry_from_indices(self, indices): + '''Convert a list of boolean masks to a list of BlockGeometry. + + Parameters + ---------- + indices : list of lists of indices + + Returns + ------- + BlockGeometry + ''' + ags = [] + for mask in indices: + ag = self.geometry.copy() + ag.config.angles.angle_data = numpy.take(self.geometry.angles, mask, axis=0) + ags.append(ag) + return BlockGeometry(*ags) + +
+[docs] + def partition(self, num_batches, mode, seed=None): + '''Partition the data into ``num_batches`` batches using the specified ``mode``. + + + The modes are + + 1. ``sequential`` - The data will be partitioned into ``num_batches`` batches of sequential indices. + + 2. ``staggered`` - The data will be partitioned into ``num_batches`` batches of sequential indices, with stride equal to ``num_batches``. + + 3. ``random_permutation`` - The data will be partitioned into ``num_batches`` batches of random indices. + + Parameters + ---------- + num_batches : int + The number of batches to partition the data into. + mode : str + The mode to use for partitioning. Must be one of ``sequential``, ``staggered`` or ``random_permutation``. + seed : int, optional + The seed to use for the random permutation. If not specified, the random number + generator will not be seeded. + + + Returns + ------- + BlockDataContainer + Block of `AcquisitionData` objects containing the data requested in each batch + + Example + ------- + + Partitioning a list of ints [0, 1, 2, 3, 4, 5, 6, 7, 8] into 4 batches will return: + + 1. [[0, 1, 2], [3, 4], [5, 6], [7, 8]] with ``sequential`` + 2. [[0, 4, 8], [1, 5], [2, 6], [3, 7]] with ``staggered`` + 3. [[8, 2, 6], [7, 1], [0, 4], [3, 5]] with ``random_permutation`` and seed 1 + + ''' + if mode == Partitioner.SEQUENTIAL: + return self._partition_deterministic(num_batches, stagger=False) + elif mode == Partitioner.STAGGERED: + return self._partition_deterministic(num_batches, stagger=True) + elif mode == Partitioner.RANDOM_PERMUTATION: + return self._partition_random_permutation(num_batches, seed=seed) + else: + raise ValueError('Unknown partition mode {}'.format(mode))
+ + + def _partition_deterministic(self, num_batches, stagger=False, indices=None): + '''Partition the data into ``num_batches`` batches. + + Parameters + ---------- + num_batches : int + The number of batches to partition the data into. + stagger : bool, optional + If ``True``, the batches will be staggered. Default is ``False``. + indices : list of int, optional + The indices to partition. If not specified, the indices will be generated from the number of projections. + ''' + if indices is None: + indices = self.geometry.num_projections + partition_indices = self._partition_indices(num_batches, indices, stagger) + blk_geo = self._construct_BlockGeometry_from_indices(partition_indices) + + # copy data + out = blk_geo.allocate(None) + axis = self.dimension_labels.index('angle') + + for i in range(num_batches): + out[i].fill( + numpy.squeeze( + numpy.take(self.array, partition_indices[i], axis=axis) + ) + ) + + return out + + def _partition_random_permutation(self, num_batches, seed=None): + '''Partition the data into ``num_batches`` batches using a random permutation. + + Parameters + ---------- + num_batches : int + The number of batches to partition the data into. + seed : int, optional + The seed to use for the random permutation. If not specified, the random number generator + will not be seeded. + + ''' + if seed is not None: + numpy.random.seed(seed) + + indices = numpy.arange(self.geometry.num_projections) + numpy.random.shuffle(indices) + + indices = list(indices) + + return self._partition_deterministic(num_batches, stagger=False, indices=indices)
+ +
+ +
+ + + + + +
+ +
+
+
+ +
+ + + + +
+
+ +
+ +
+
+
+ + + + + +
+ + +
+ + \ No newline at end of file diff --git a/v24.2.0/_modules/cil/framework/processors/index.html b/v24.2.0/_modules/cil/framework/processors/index.html new file mode 100644 index 0000000000..790cecb4fe --- /dev/null +++ b/v24.2.0/_modules/cil/framework/processors/index.html @@ -0,0 +1,843 @@ + + + + + + + + + + cil.framework.processors — CIL 24.2.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + +
+ +
+ + + + + +
+
+ + + + + + +
+ + + + + + + + + + + + + +
+ +
+ + +
+
+ +
+
+ +
+ +
+ + +
+ +
+ + +
+
+ + + + + +
+ +

Source code for cil.framework.processors

+#  Copyright 2018 United Kingdom Research and Innovation
+#  Copyright 2018 The University of Manchester
+#
+#  Licensed under the Apache License, Version 2.0 (the "License");
+#  you may not use this file except in compliance with the License.
+#  You may obtain a copy of the License at
+#
+#      http://www.apache.org/licenses/LICENSE-2.0
+#
+#  Unless required by applicable law or agreed to in writing, software
+#  distributed under the License is distributed on an "AS IS" BASIS,
+#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+#  See the License for the specific language governing permissions and
+#  limitations under the License.
+#
+# Authors:
+# CIL Developers, listed at: https://github.com/TomographicImaging/CIL/blob/master/NOTICE.txt
+import numpy
+import weakref
+
+from .data_container import DataContainer
+
+
+
+[docs] +class Processor(object): + + '''Defines a generic DataContainer processor + + accepts a DataContainer as input + returns a DataContainer + `__setattr__` allows additional attributes to be defined + + `store_output` boolian defining whether a copy of the output is stored. Default is False. + If no attributes are modified get_output will return this stored copy bypassing `process` + ''' + + def __init__(self, **attributes): + if not 'store_output' in attributes.keys(): + attributes['store_output'] = False + + attributes['output'] = None + attributes['shouldRun'] = True + attributes['input'] = None + attributes['_shape_out'] = None + + for key, value in attributes.items(): + self.__dict__[key] = value + + def __setattr__(self, name, value): + if name == 'input': + self.set_input(value) + elif name in self.__dict__.keys(): + + self.__dict__[name] = value + + if name == 'shouldRun': + pass + elif name == 'output': + self.__dict__['shouldRun'] = False + else: + self.__dict__['shouldRun'] = True + else: + raise KeyError('Attribute {0} not found'.format(name)) + + def _set_up(self): + """ + Configure processor attributes that require the data to setup + Must set _shape_out + """ + dataset = self.get_input() + self._shape_out = dataset.shape + +
+[docs] + def set_input(self, dataset): + """ + Set the input data to the processor + + Parameters + ---------- + input : DataContainer + The input DataContainer + """ + if issubclass(type(dataset), DataContainer): + if self.check_input(dataset): + self.__dict__['input'] = weakref.ref(dataset) + self.__dict__['shouldRun'] = True + else: + raise ValueError('Input data not compatible') + else: + raise TypeError("Input type mismatch: got {0} expecting {1}" \ + .format(type(dataset), DataContainer)) + + self._set_up()
+ + +
+[docs] + def check_input(self, dataset): + '''Checks parameters of the input DataContainer + + Should raise an Error if the DataContainer does not match expectation, e.g. + if the expected input DataContainer is 3D and the Processor expects 2D. + ''' + raise NotImplementedError('Implement basic checks for input DataContainer')
+ + +
+[docs] + def get_output(self, out=None): + """ + Runs the configured processor and returns the processed data + + Parameters + ---------- + out : DataContainer, optional + Fills the referenced DataContainer with the processed data + + Returns + ------- + DataContainer + The processed data + """ + if not self.check_output(out): + raise ValueError('Output data not compatible with processor') + + if self.output is None or self.shouldRun: + out = self.process(out=out) + if self.store_output: + self.output = out.copy() + return out + else: + if out is not None: + out.fill(self.output) + return out + return self.output.copy()
+ + + def check_output(self, out): + + if out is not None: + data = self.get_input() + if data.array.dtype != out.array.dtype: + raise TypeError("Input type mismatch: got {0} expecting {1}"\ + .format(out.array.dtype, data.array.dtype)) + + if self._shape_out != out.shape: + raise ValueError("out size mismatch: got {0} expecting {1}"\ + .format(out.shape, self._shape_out)) + + return True + + def set_input_processor(self, processor): + if issubclass(type(processor), DataProcessor): + self.__dict__['input'] = weakref.ref(processor) + else: + raise TypeError("Input type mismatch: got {0} expecting {1}"\ + .format(type(processor), DataProcessor)) + +
+[docs] + def get_input(self): + '''returns the input DataContainer + + It is useful in the case the user has provided a DataProcessor as + input + ''' + if self.input() is None: + raise ValueError("Input has been deallocated externally") + elif issubclass(type(self.input()), DataProcessor): + dsi = self.input().get_output() + else: + dsi = self.input() + return dsi
+ + + def process(self, out=None): + raise NotImplementedError('process must be implemented') + + def __call__(self, x, out=None): + + self.set_input(x) + return self.get_output(out=out)
+ + +
+[docs] +class DataProcessor(Processor): + '''Basically an alias of Processor Class''' + pass
+ + + +class DataProcessor23D(DataProcessor): + '''Regularizers DataProcessor + ''' + + def check_input(self, dataset): + '''Checks number of dimensions input DataContainer + + Expected input is 2D or 3D + ''' + if dataset.number_of_dimensions == 2 or \ + dataset.number_of_dimensions == 3: + return True + else: + raise ValueError("Expected input dimensions is 2 or 3, got {0}"\ + .format(dataset.number_of_dimensions)) + +###### Example of DataProcessors + +class AX(DataProcessor): + '''Example DataProcessor + The AXPY routines perform a vector multiplication operation defined as + + y := a*x + where: + + a is a scalar + + x a DataContainer. + ''' + + def __init__(self): + kwargs = {'scalar':None, + 'input':None, + } + + #DataProcessor.__init__(self, **kwargs) + super(AX, self).__init__(**kwargs) + + def check_input(self, dataset): + return True + + def check_output(self, dataset): + return True + + def process(self, out=None): + + dsi = self.get_input() + a = self.scalar + if out is None: + out = DataContainer(a * dsi.as_array(), True, + dimension_labels=dsi.dimension_labels) + else: + out.fill(a * dsi.as_array()) + + return out + + +###### Example of DataProcessors + +class CastDataContainer(DataProcessor): + '''Example DataProcessor + Cast a DataContainer array to a different type. + + y := a*x + where: + + a is a scalar + + x a DataContainer. + ''' + + def __init__(self, dtype=None): + kwargs = {'dtype':dtype, + 'input':None, + } + + #DataProcessor.__init__(self, **kwargs) + super(CastDataContainer, self).__init__(**kwargs) + + def check_input(self, dataset): + return True + + def check_output(self, dataset): + return True + + def process(self, out=None): + + dsi = self.get_input() + dtype = self.dtype + if out is None: + y = numpy.asarray(dsi.as_array(), dtype=dtype) + + return type(dsi)(numpy.asarray(dsi.as_array(), dtype=dtype), + dimension_labels=dsi.dimension_labels ) + else: + out.fill(numpy.asarray(dsi.as_array(), dtype=dtype)) + +class PixelByPixelDataProcessor(DataProcessor): + '''Example DataProcessor + + This processor applies a python function to each pixel of the DataContainer + + f is a python function + + x a DataSet. + ''' + + def __init__(self): + kwargs = {'pyfunc':None, + 'input':None, + } + #DataProcessor.__init__(self, **kwargs) + super(PixelByPixelDataProcessor, self).__init__(**kwargs) + + def check_input(self, dataset): + return True + + def process(self, out=None): + + pyfunc = self.pyfunc + dsi = self.get_input() + + eval_func = numpy.frompyfunc(pyfunc,1,1) + + + y = DataContainer(eval_func(dsi.as_array()), True, + dimension_labels=dsi.dimension_labels) + return y +
+ +
+ + + + + +
+ +
+
+
+ +
+ + + + +
+
+ +
+ +
+
+
+ + + + + +
+ + +
+ + \ No newline at end of file diff --git a/v24.2.0/_modules/cil/framework/vector_data/index.html b/v24.2.0/_modules/cil/framework/vector_data/index.html new file mode 100644 index 0000000000..7c3f59b981 --- /dev/null +++ b/v24.2.0/_modules/cil/framework/vector_data/index.html @@ -0,0 +1,598 @@ + + + + + + + + + + cil.framework.vector_data — CIL 24.2.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + +
+ +
+ + + + + +
+
+ + + + + + +
+ + + + + + + + + + + + + +
+ +
+ + +
+
+ +
+
+ +
+ +
+ + +
+ +
+ + +
+
+ + + + + +
+ +

Source code for cil.framework.vector_data

+#  Copyright 2018 United Kingdom Research and Innovation
+#  Copyright 2018 The University of Manchester
+#
+#  Licensed under the Apache License, Version 2.0 (the "License");
+#  you may not use this file except in compliance with the License.
+#  You may obtain a copy of the License at
+#
+#      http://www.apache.org/licenses/LICENSE-2.0
+#
+#  Unless required by applicable law or agreed to in writing, software
+#  distributed under the License is distributed on an "AS IS" BASIS,
+#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+#  See the License for the specific language governing permissions and
+#  limitations under the License.
+#
+# Authors:
+# CIL Developers, listed at: https://github.com/TomographicImaging/CIL/blob/master/NOTICE.txt
+import numpy
+
+from .data_container import DataContainer
+
+
+
+[docs] +class VectorData(DataContainer): + '''DataContainer to contain 1D array''' + + @property + def geometry(self): + return self._geometry + + @geometry.setter + def geometry(self, val): + self._geometry = val + + @property + def dimension_labels(self): + if hasattr(self, 'geometry'): + return self.geometry.dimension_labels + return self._dimension_labels + + @dimension_labels.setter + def dimension_labels(self, val): + if hasattr(self,'geometry'): + self.geometry.dimension_labels = val + + self._dimension_labels = val + + def __init__(self, array=None, **kwargs): + self.geometry = kwargs.get('geometry', None) + + dtype = kwargs.get('dtype', numpy.float32) + + if self.geometry is None: + if array is None: + raise ValueError('Please specify either a geometry or an array') + else: + from .vector_geometry import VectorGeometry + if len(array.shape) > 1: + raise ValueError('Incompatible size: expected 1D got {}'.format(array.shape)) + out = array + self.geometry = VectorGeometry(array.shape[0], **kwargs) + self.length = self.geometry.length + else: + self.length = self.geometry.length + + if array is None: + out = numpy.zeros((self.length,), dtype=dtype) + else: + if self.length == array.shape[0]: + out = array + else: + raise ValueError('Incompatible size: expecting {} got {}'.format((self.length,), array.shape)) + deep_copy = True + # need to pass the geometry, othewise None + super(VectorData, self).__init__(out, deep_copy, self.geometry.dimension_labels, geometry = self.geometry)
+ +
+ +
+ + + + + +
+ +
+
+
+ +
+ + + + +
+
+ +
+ +
+
+
+ + + + + +
+ + +
+ + \ No newline at end of file diff --git a/v24.2.0/_modules/cil/io/NEXUSDataReader/index.html b/v24.2.0/_modules/cil/io/NEXUSDataReader/index.html new file mode 100644 index 0000000000..52e4af1373 --- /dev/null +++ b/v24.2.0/_modules/cil/io/NEXUSDataReader/index.html @@ -0,0 +1,903 @@ + + + + + + + + + + cil.io.NEXUSDataReader — CIL 24.2.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + +
+ +
+ + + + + +
+
+ + + + + + +
+ + + + + + + + + + + + + +
+ +
+ + +
+
+ +
+
+ +
+ +
+ + +
+ +
+ + +
+
+ + + + + +
+ +

Source code for cil.io.NEXUSDataReader

+#  Copyright 2019 United Kingdom Research and Innovation
+#  Copyright 2019 The University of Manchester
+#
+#  Licensed under the Apache License, Version 2.0 (the "License");
+#  you may not use this file except in compliance with the License.
+#  You may obtain a copy of the License at
+#
+#      http://www.apache.org/licenses/LICENSE-2.0
+#
+#  Unless required by applicable law or agreed to in writing, software
+#  distributed under the License is distributed on an "AS IS" BASIS,
+#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+#  See the License for the specific language governing permissions and
+#  limitations under the License.
+#
+# Authors:
+# CIL Developers, listed at: https://github.com/TomographicImaging/CIL/blob/master/NOTICE.txt
+# Kyle Pidgeon (UKRI-STFC)
+
+import numpy as np
+import os
+from cil.framework import AcquisitionData, AcquisitionGeometry, ImageData, ImageGeometry
+
+h5pyAvailable = True
+try:
+    import h5py
+except:
+    h5pyAvailable = False
+
+
+
+[docs] +class NEXUSDataReader(object): + + """ + Create a reader for NeXus files. + + Parameters + ---------- + file_name: str + the full path to the NeXus file to read. + """ + + def __init__(self, file_name=None): + + self.file_name = file_name + + if self.file_name is not None: + self.set_up(file_name = self.file_name) + +
+[docs] + def set_up(self, + file_name = None): + """ + Initialise reader. + + Parameters + ---------- + file_name : str + Full path to NeXus file + """ + + self.file_name = os.path.abspath(file_name) + + # check that h5py library is installed + if (h5pyAvailable == False): + raise Exception('h5py is not available, cannot load NEXUS files.') + + if self.file_name == None: + raise Exception('Path to nexus file is required.') + + # check if nexus file exists + if not(os.path.isfile(self.file_name)): + raise Exception('File\n {}\n does not exist.'.format(self.file_name)) + + self._geometry = None
+ + + def read_dimension_labels(self, attrs): + dimension_labels = [None] * 4 + for k,v in attrs.items(): + if k in ['dim0', 'dim1', 'dim2' , 'dim3']: + dimension_labels[int(k[3:])] = v + + # remove Nones + dimension_labels = [i for i in dimension_labels if i] + + if len(dimension_labels) == 0: + dimension_labels = None + + return dimension_labels + +
+[docs] + def get_geometry(self): + """ + Parse NEXUS file and return acquisition or reconstructed volume + parameters, depending on file type. + + Returns + ------- + AcquisitionGeometry or ImageGeometry + Acquisition or reconstructed volume parameters. Exact type + depends on file content. + """ + + with h5py.File(self.file_name,'r') as dfile: + + if np.bytes_(dfile.attrs['creator']) != np.bytes_('NEXUSDataWriter.py'): + raise Exception('We can parse only files created by NEXUSDataWriter.py') + + ds_data = dfile['entry1/tomo_entry/data/data'] + + if ds_data.attrs['data_type'] == 'ImageData': + + self._geometry = ImageGeometry(voxel_num_x = int(ds_data.attrs['voxel_num_x']), + voxel_num_y = int(ds_data.attrs['voxel_num_y']), + voxel_num_z = int(ds_data.attrs['voxel_num_z']), + voxel_size_x = ds_data.attrs['voxel_size_x'], + voxel_size_y = ds_data.attrs['voxel_size_y'], + voxel_size_z = ds_data.attrs['voxel_size_z'], + center_x = ds_data.attrs['center_x'], + center_y = ds_data.attrs['center_y'], + center_z = ds_data.attrs['center_z'], + channels = ds_data.attrs['channels']) + + if ds_data.attrs.__contains__('channel_spacing') == True: + self._geometry.channel_spacing = ds_data.attrs['channel_spacing'] + + # read the dimension_labels from dim{} + dimension_labels = self.read_dimension_labels(ds_data.attrs) + + else: # AcquisitionData + if ds_data.attrs.__contains__('dist_source_center') or dfile['entry1/tomo_entry'].__contains__('config/source/position'): + geom_type = 'cone' + else: + geom_type = 'parallel' + + if ds_data.attrs.__contains__('num_pixels_v'): + num_pixels_v = ds_data.attrs.get('num_pixels_v') + elif ds_data.attrs.__contains__('pixel_num_v'): + num_pixels_v = ds_data.attrs.get('pixel_num_v') + else: + num_pixels_v = 1 + + if num_pixels_v > 1: + dim = 3 + else: + dim = 2 + + + if self.is_old_file_version(): + num_pixels_h = ds_data.attrs.get('pixel_num_h', 1) + num_channels = ds_data.attrs['channels'] + ds_angles = dfile['entry1/tomo_entry/data/rotation_angle'] + + if geom_type == 'cone' and dim == 3: + self._geometry = AcquisitionGeometry.create_Cone3D(source_position=[0, -ds_data.attrs['dist_source_center'], 0], + detector_position=[0, ds_data.attrs['dist_center_detector'],0]) + elif geom_type == 'cone' and dim == 2: + self._geometry = AcquisitionGeometry.create_Cone2D(source_position=[0, -ds_data.attrs['dist_source_center']], + detector_position=[0, ds_data.attrs['dist_center_detector']]) + elif geom_type == 'parallel' and dim == 3: + self._geometry = AcquisitionGeometry.create_Parallel3D() + elif geom_type == 'parallel' and dim == 2: + self._geometry = AcquisitionGeometry.create_Parallel2D() + + + else: + num_pixels_h = ds_data.attrs.get('num_pixels_h', 1) + num_channels = ds_data.attrs['num_channels'] + ds_angles = dfile['entry1/tomo_entry/config/angles'] + + rotation_axis_position = list(dfile['entry1/tomo_entry/config/rotation_axis/position']) + detector_position = list(dfile['entry1/tomo_entry/config/detector/position']) + + ds_detector = dfile['entry1/tomo_entry/config/detector'] + if ds_detector.__contains__('direction_x'): + detector_direction_x = list(dfile['entry1/tomo_entry/config/detector/direction_x']) + else: + detector_direction_x = list(dfile['entry1/tomo_entry/config/detector/direction_row']) + + if ds_detector.__contains__('direction_y'): + detector_direction_y = list(dfile['entry1/tomo_entry/config/detector/direction_y']) + elif ds_detector.__contains__('direction_col'): + detector_direction_y = list(dfile['entry1/tomo_entry/config/detector/direction_col']) + + ds_rotate = dfile['entry1/tomo_entry/config/rotation_axis'] + if ds_rotate.__contains__('direction'): + rotation_axis_direction = list(dfile['entry1/tomo_entry/config/rotation_axis/direction']) + + if geom_type == 'cone': + source_position = list(dfile['entry1/tomo_entry/config/source/position']) + + if dim == 2: + self._geometry = AcquisitionGeometry.create_Cone2D(source_position, detector_position, detector_direction_x, rotation_axis_position) + else: + self._geometry = AcquisitionGeometry.create_Cone3D(source_position,\ + detector_position, detector_direction_x, detector_direction_y,\ + rotation_axis_position, rotation_axis_direction) + else: + ray_direction = list(dfile['entry1/tomo_entry/config/ray/direction']) + + if dim == 2: + self._geometry = AcquisitionGeometry.create_Parallel2D(ray_direction, detector_position, detector_direction_x, rotation_axis_position) + else: + self._geometry = AcquisitionGeometry.create_Parallel3D(ray_direction,\ + detector_position, detector_direction_x, detector_direction_y,\ + rotation_axis_position, rotation_axis_direction) + + # for all Aquisition data + #set angles + angles = list(ds_angles) + angle_unit = ds_angles.attrs.get('angle_unit','degree') + initial_angle = ds_angles.attrs.get('initial_angle',0) + self._geometry.set_angles(angles, initial_angle=initial_angle, angle_unit=angle_unit) + + #set panel + pixel_size_v = ds_data.attrs.get('pixel_size_v', ds_data.attrs['pixel_size_h']) + origin = ds_data.attrs.get('panel_origin','bottom-left') + self._geometry.set_panel((num_pixels_h, num_pixels_v),\ + pixel_size=(ds_data.attrs['pixel_size_h'], pixel_size_v),\ + origin=origin) + + # set channels + self._geometry.set_channels(num_channels) + + dimension_labels = [] + dimension_labels = self.read_dimension_labels(ds_data.attrs) + + #set labels + self._geometry.set_labels(dimension_labels) + + return self._geometry
+ + +
+[docs] + def get_data_scale(self): + """ + Parse NEXUS file and return the scale factor applied to compress + the dataset. + + Returns + ------- + scale : float + The scale factor applied to compress the dataset + """ + + with h5py.File(self.file_name,'r') as dfile: + ds_data = dfile['entry1/tomo_entry/data/data'] + try: + scale = ds_data.attrs['scale'] + except: + scale = 1.0 + + return scale
+ + +
+[docs] + def get_data_offset(self): + """ + Parse NEXUS file and return the offset factor applied to compress + the dataset. + + Returns + ------- + offset : float + The offset factor applied to compress the dataset + """ + + with h5py.File(self.file_name,'r') as dfile: + ds_data = dfile['entry1/tomo_entry/data/data'] + try: + offset = ds_data.attrs['offset'] + except: + offset = 0.0 + + return offset
+ + + def __read_as(self, dtype=np.float32): + """ + Parse NEXUS file and return raw file content. + + Parameters + ---------- + dtype : data-type + The data type used for storing the parsed data. + + Returns + ------- + output : ImageData or AcquisitionData + The parsed raw data. Exact type depends on file content. + """ + + if self._geometry is None: + self.get_geometry() + + #allocate data container as requested type + output = self._geometry.allocate(None, dtype=dtype) + + with h5py.File(self.file_name,'r') as dfile: + + ds_data = dfile['entry1/tomo_entry/data/data'] + ds_data.read_direct(output.array) + + return output + +
+[docs] + def read_as_original(self): + """ + Returns the compressed data from the file. + + Returns + ------- + output : ImageData or AcquisitionData + The raw, compressed data. Exact type depends on file content. + """ + + with h5py.File(self.file_name,'r') as dfile: + ds_data = dfile['entry1/tomo_entry/data/data'] + dtype = ds_data.dtype + + return self.__read_as(dtype)
+ + + +
+[docs] + def read(self): + """ + Returns the uncompressed data as numpy.float32. + + Returns + ------- + output : ImageData or AcquisitionData + The uncompressed data. Exact type depends on file content. + """ + + output = self.__read_as(np.float32) + scale = self.get_data_scale() + offset = self.get_data_offset() + + if offset != 0: + output -= offset + if scale != 1: + output /= scale + + return output
+ + + +
+[docs] + def load_data(self): + """ + Alias of `read`. + + See Also + -------- + read + """ + + return self.read()
+ + + def is_old_file_version(self): + #return ds_data.attrs.__contains__('geom_type') + with h5py.File(self.file_name,'r') as dfile: + + if np.bytes_(dfile.attrs['creator']) != np.bytes_('NEXUSDataWriter.py'): + raise Exception('We can parse only files created by NEXUSDataWriter.py') + + ds_data = dfile['entry1/tomo_entry/data/data'] + + return 'geom_type' in ds_data.attrs.keys()
+ + # return True +
+ +
+ + + + + +
+ +
+
+
+ +
+ + + + +
+
+ +
+ +
+
+
+ + + + + +
+ + +
+ + \ No newline at end of file diff --git a/v24.2.0/_modules/cil/io/NEXUSDataWriter/index.html b/v24.2.0/_modules/cil/io/NEXUSDataWriter/index.html new file mode 100644 index 0000000000..bb19bb5eaa --- /dev/null +++ b/v24.2.0/_modules/cil/io/NEXUSDataWriter/index.html @@ -0,0 +1,759 @@ + + + + + + + + + + cil.io.NEXUSDataWriter — CIL 24.2.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + +
+ +
+ + + + + +
+
+ + + + + + +
+ + + + + + + + + + + + + +
+ +
+ + +
+
+ +
+
+ +
+ +
+ + +
+ +
+ + +
+
+ + + + + +
+ +

Source code for cil.io.NEXUSDataWriter

+#  Copyright 2019 United Kingdom Research and Innovation
+#  Copyright 2019 The University of Manchester
+#
+#  Licensed under the Apache License, Version 2.0 (the "License");
+#  you may not use this file except in compliance with the License.
+#  You may obtain a copy of the License at
+#
+#      http://www.apache.org/licenses/LICENSE-2.0
+#
+#  Unless required by applicable law or agreed to in writing, software
+#  distributed under the License is distributed on an "AS IS" BASIS,
+#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+#  See the License for the specific language governing permissions and
+#  limitations under the License.
+#
+# Authors:
+# CIL Developers, listed at: https://github.com/TomographicImaging/CIL/blob/master/NOTICE.txt
+
+import numpy as np
+import os
+from cil.framework import AcquisitionData, ImageData
+from cil.framework.labels import AcquisitionType
+from cil.version import version
+import datetime
+from cil.io import utilities
+
+h5pyAvailable = True
+try:
+    import h5py
+except:
+    h5pyAvailable = False
+
+
+
+[docs] +class NEXUSDataWriter(object): + ''' Create a writer for NEXUS files. + + Parameters + ---------- + data: AcquisitionData, ImageData, + The dataset to write to file + file_name: os.path or string, default None + The file name to write + compression: str, {'uint8', 'uint16', None}, default None + The lossy compression to apply, default None will not compress data. + uint8 or unit16 will compress to 8 and 16 bit dtypes respectively. + ''' + + def __init__(self, data=None, file_name=None, compression=None): + + self.data = data + self.file_name = file_name + + if ((data is not None) and (file_name is not None)): + self.set_up(data = data, file_name = file_name, compression=compression) + +
+[docs] + def set_up(self, + data = None, + file_name = None, + compression = None): + + ''' + Set up the writer + + data: AcquisitionData, ImageData, + The dataset to write to file + file_name: os.path or string, default None + The file name to write + compression: int, default 0 + The lossy compression to apply, default 0 will not compress data. + 8 or 16 will compress to 8 and 16 bit dtypes respectively. + ''' + self.data = data + self.file_name = file_name + + if self.file_name is None: + raise Exception('Path to write file is required.') + else: + self.file_name = os.path.abspath(file_name) + + if self.data is None: + raise Exception('Data to write is required.') + + if not self.file_name.endswith('nxs') and not self.file_name.endswith('nex'): + self.file_name+='.nxs' + + # Deal with compression + self.compress = utilities.get_compress(compression) + self.dtype = utilities.get_compressed_dtype(data, compression) + self.compression = compression + + if not ((isinstance(self.data, ImageData)) or + (isinstance(self.data, AcquisitionData))): + raise Exception('Writer supports only following data types:\n' + + ' - ImageData\n - AcquisitionData') + + + + # check that h5py library is installed + if (h5pyAvailable == False): + raise Exception('h5py is not available, cannot write NEXUS files.')
+ + +
+[docs] + def write(self): + + ''' + write dataset to disk + ''' + # check filename and data have been set: + if self.file_name is None: + raise TypeError('Path to nexus file to write to is required.') + if self.data is None: + raise TypeError('Data to write out must be set.') + + # if the folder does not exist, create the folder + if not os.path.isdir(os.path.dirname(self.file_name)): + os.mkdir(os.path.dirname(self.file_name)) + + if self.compress is True: + scale, offset = utilities.get_compression_scale_offset(self.data, self.compression) + + # create the file + with h5py.File(self.file_name, 'w') as f: + + # give the file some important attributes + f.attrs['file_name'] = self.file_name + f.attrs['cil_version'] = version + f.attrs['file_time'] = str(datetime.datetime.utcnow()) + f.attrs['creator'] = np.bytes_('NEXUSDataWriter.py') + f.attrs['NeXus_version'] = '4.3.0' + f.attrs['HDF5_Version'] = h5py.version.hdf5_version + f.attrs['h5py_version'] = h5py.version.version + + # create the NXentry group + nxentry = f.create_group('entry1/tomo_entry') + nxentry.attrs['NX_class'] = 'NXentry' + + #create empty data entry + ds_data = f.create_dataset('entry1/tomo_entry/data/data',shape=self.data.shape, dtype=self.dtype) + + if self.compress: + ds_data.attrs['scale'] = scale + ds_data.attrs['offset'] = offset + + for i in range(self.data.shape[0]): + ds_data[i:(i+1)] = self.data.array[i] * scale + offset + else: + ds_data.write_direct(self.data.array) + + # set up dataset attributes + ds_data.attrs['data_type'] = 'ImageData' if isinstance(self.data, ImageData) else 'AcquisitionData' + + for i in range(self.data.number_of_dimensions): + ds_data.attrs[f'dim{i}'] = str(self.data.dimension_labels[i]) + + if isinstance(self.data, AcquisitionData): + # create group to store configuration + f.create_group('entry1/tomo_entry/config') + f.create_group('entry1/tomo_entry/config/source') + f.create_group('entry1/tomo_entry/config/detector') + f.create_group('entry1/tomo_entry/config/rotation_axis') + + ds_data.attrs['geometry'] = str(self.data.geometry.config.system.geometry) + ds_data.attrs['dimension'] = str(self.data.geometry.config.system.dimension) + ds_data.attrs['num_channels'] = self.data.geometry.config.channels.num_channels + + f.create_dataset('entry1/tomo_entry/config/detector/direction_x', + (self.data.geometry.config.system.detector.direction_x.shape), + dtype = 'float32', + data = self.data.geometry.config.system.detector.direction_x) + + f.create_dataset('entry1/tomo_entry/config/detector/position', + (self.data.geometry.config.system.detector.position.shape), + dtype = 'float32', + data = self.data.geometry.config.system.detector.position) + + if self.data.geometry.config.system.geometry == 'cone': + f.create_dataset('entry1/tomo_entry/config/source/position', + (self.data.geometry.config.system.source.position.shape), + dtype = 'float32', + data = self.data.geometry.config.system.source.position) + else: + f.create_dataset('entry1/tomo_entry/config/ray/direction', + (self.data.geometry.config.system.ray.direction.shape), + dtype = 'float32', + data = self.data.geometry.config.system.ray.direction) + + f.create_dataset('entry1/tomo_entry/config/rotation_axis/position', + (self.data.geometry.config.system.rotation_axis.position.shape), + dtype = 'float32', + data = self.data.geometry.config.system.rotation_axis.position) + + + ds_data.attrs['num_pixels_h'] = self.data.geometry.config.panel.num_pixels[0] + ds_data.attrs['pixel_size_h'] = self.data.geometry.config.panel.pixel_size[0] + ds_data.attrs['panel_origin'] = self.data.geometry.config.panel.origin + + if AcquisitionType.DIM3 & self.data.geometry.config.system.dimension: + f.create_dataset('entry1/tomo_entry/config/detector/direction_y', + (self.data.geometry.config.system.detector.direction_y.shape), + dtype = 'float32', + data = self.data.geometry.config.system.detector.direction_y) + + f.create_dataset('entry1/tomo_entry/config/rotation_axis/direction', + (self.data.geometry.config.system.rotation_axis.direction.shape), + dtype = 'float32', + data = self.data.geometry.config.system.rotation_axis.direction) + + ds_data.attrs['num_pixels_v'] = self.data.geometry.config.panel.num_pixels[1] + ds_data.attrs['pixel_size_v'] = self.data.geometry.config.panel.pixel_size[1] + + angles = f.create_dataset('entry1/tomo_entry/config/angles', + (self.data.geometry.config.angles.angle_data.shape), + dtype = 'float32', + data = self.data.geometry.config.angles.angle_data) + angles.attrs['angle_unit'] = self.data.geometry.config.angles.angle_unit + angles.attrs['initial_angle'] = self.data.geometry.config.angles.initial_angle + + else: # ImageData + + ds_data.attrs['voxel_num_x'] = self.data.geometry.voxel_num_x + ds_data.attrs['voxel_num_y'] = self.data.geometry.voxel_num_y + ds_data.attrs['voxel_num_z'] = self.data.geometry.voxel_num_z + ds_data.attrs['voxel_size_x'] = self.data.geometry.voxel_size_x + ds_data.attrs['voxel_size_y'] = self.data.geometry.voxel_size_y + ds_data.attrs['voxel_size_z'] = self.data.geometry.voxel_size_z + ds_data.attrs['center_x'] = self.data.geometry.center_x + ds_data.attrs['center_y'] = self.data.geometry.center_y + ds_data.attrs['center_z'] = self.data.geometry.center_z + ds_data.attrs['channels'] = self.data.geometry.channels + ds_data.attrs['channel_spacing'] = self.data.geometry.channel_spacing
+
+ +
+ +
+ + + + + +
+ +
+
+
+ +
+ + + + +
+
+ +
+ +
+
+
+ + + + + +
+ + +
+ + \ No newline at end of file diff --git a/v24.2.0/_modules/cil/io/NikonDataReader/index.html b/v24.2.0/_modules/cil/io/NikonDataReader/index.html new file mode 100644 index 0000000000..9b4ed8a9d3 --- /dev/null +++ b/v24.2.0/_modules/cil/io/NikonDataReader/index.html @@ -0,0 +1,913 @@ + + + + + + + + + + cil.io.NikonDataReader — CIL 24.2.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + +
+ +
+ + + + + +
+
+ + + + + + +
+ + + + + + + + + + + + + +
+ +
+ + +
+
+ +
+
+ +
+ +
+ + +
+ +
+ + +
+
+ + + + + +
+ +

Source code for cil.io.NikonDataReader

+#  Copyright 2019 United Kingdom Research and Innovation
+#  Copyright 2019 The University of Manchester
+#
+#  Licensed under the Apache License, Version 2.0 (the "License");
+#  you may not use this file except in compliance with the License.
+#  You may obtain a copy of the License at
+#
+#      http://www.apache.org/licenses/LICENSE-2.0
+#
+#  Unless required by applicable law or agreed to in writing, software
+#  distributed under the License is distributed on an "AS IS" BASIS,
+#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+#  See the License for the specific language governing permissions and
+#  limitations under the License.
+#
+# Authors:
+# CIL Developers, listed at: https://github.com/TomographicImaging/CIL/blob/master/NOTICE.txt
+
+from cil.framework import AcquisitionGeometry
+from cil.framework.labels import AcquisitionType
+from cil.io.TIFF import TIFFStackReader
+import numpy as np
+import os
+
+
+
+[docs] +class NikonDataReader(object): + '''Basic reader for xtekct files + + Parameters + ---------- + + file_name: str + full path to .xtekct file + + roi: dict, default=None + dictionary with roi to load: + {'angle': (start, end, step), + 'horizontal': (start, end, step), + 'vertical': (start, end, step)} + + normalise: bool, default=True + normalises loaded projections by detector white level (I_0) + + fliplr: bool, default = False, + flip projections in the left-right direction (about vertical axis) + + mode: str: {'bin', 'slice'}, default='bin' + In bin mode, 'step' number of pixels is binned together, + values of resulting binned pixels are calculated as average. + In 'slice' mode 'step' defines standard numpy slicing. + Note: in general output array size in bin mode != output array size in slice mode + + + Notes + ----- + `roi` behaviour: + Files are stacked along axis_0. axis_1 and axis_2 correspond + to row and column dimensions, respectively. + + Files are stacked in alphabetic order. + + To skip projections or to change number of projections to load, + adjust 'angle'. For instance, 'angle': (100, 300) + will skip first 100 projections and will load 200 projections. + + ``'angle': -1`` is a shortcut to load all elements along axis. + + ``start`` and ``end`` can be specified as ``None`` which is equivalent + to ``start = 0`` and ``end = load everything to the end``, respectively. + Start and end also can be negative. + + ''' + + def __init__(self, file_name = None, roi= None, + normalise=True, mode='bin', fliplr=False): + + self.file_name = file_name + self.roi = roi + self.normalise = normalise + self.mode = mode + self.fliplr = fliplr + + if file_name is not None: + self.set_up(file_name = file_name, + roi = roi, + normalise = normalise, + mode = mode, + fliplr = fliplr) + + def set_up(self, + file_name = None, + roi = None, + normalise = True, + mode = 'bin', + fliplr = False): + + self.file_name = file_name + self.roi = roi + self.normalise = normalise + self.mode = mode + self.fliplr = fliplr + + if self.file_name is None: + raise ValueError('Path to xtekct file is required.') + + # check if xtekct file exists + if not(os.path.isfile(self.file_name)): + raise FileNotFoundError('File\n {}\n does not exist.'.format(self.file_name)) + + if os.path.basename(self.file_name).split('.')[-1].lower() != 'xtekct': + raise TypeError('This reader can only process xtekct files. Got {}'.format(os.path.basename(self.file_name))) + + if self.roi is None: + self.roi= {'angle': -1, 'horizontal': -1, 'vertical': -1} + + # check labels + for key in self.roi.keys(): + if key not in ['angle', 'horizontal', 'vertical']: + raise ValueError("Wrong label. One of the following is expected: angle, horizontal, vertical") + + roi = self.roi.copy() + + if 'angle' not in roi.keys(): + roi['angle'] = -1 + + if 'horizontal' not in roi.keys(): + roi['horizontal'] = -1 + + if 'vertical' not in roi.keys(): + roi['vertical'] = -1 + + # parse xtekct file + with open(self.file_name, 'r', errors='replace') as f: + content = f.readlines() + + content = [x.strip() for x in content] + + #initialise parameters + detector_offset_h = 0 + detector_offset_v = 0 + object_tilt_deg = 0 + object_offset_x = None + object_roll_deg = None + centre_of_rotation_top = 0 + centre_of_rotation_bottom = 0 + + for line in content: + # filename of TIFF files + if line.startswith("Name"): + self._experiment_name = line.split('=')[1] + # number of projections + elif line.startswith("Projections"): + num_projections = int(line.split('=')[1]) + # white level - used for normalization + elif line.startswith("WhiteLevel"): + self._white_level = float(line.split('=')[1]) + # number of pixels along Y axis + elif line.startswith("DetectorPixelsY"): + pixel_num_v_0 = int(line.split('=')[1]) + # number of pixels along X axis + elif line.startswith("DetectorPixelsX"): + pixel_num_h_0 = int(line.split('=')[1]) + # pixel size along X axis + elif line.startswith("DetectorPixelSizeX"): + pixel_size_h_0 = float(line.split('=')[1]) + # pixel size along Y axis + elif line.startswith("DetectorPixelSizeY"): + pixel_size_v_0 = float(line.split('=')[1]) + # source to center of rotation distance + elif line.startswith("SrcToObject"): + source_to_origin = float(line.split('=')[1]) + # source to detector distance + elif line.startswith("SrcToDetector"): + source_to_det = float(line.split('=')[1]) + # initial angular position of a rotation stage + elif line.startswith("InitialAngle"): + initial_angle = float(line.split('=')[1]) + # angular increment (in degrees) + elif line.startswith("AngularStep"): + angular_step = float(line.split('=')[1]) + # detector offset x in units + elif line.startswith("DetectorOffsetX"): + detector_offset_h = float(line.split('=')[1]) + # detector offset y in units + elif line.startswith("DetectorOffsetY"): + detector_offset_v = float(line.split('=')[1]) + #new file format rotation axis offset and angle + # object offset x in units + elif line.startswith("ObjectOffsetX"): + object_offset_x = float(line.split('=')[1]) + # object roll in degrees (around z) + elif line.startswith("ObjectRoll"): + object_roll_deg = float(line.split('=')[1]) + # object tilt in degrees (around x) + elif line.startswith("ObjectTilt"): + object_tilt_deg = float(line.split('=')[1]) + #old file format rotation axis offset and angle, in mm at the detector + elif line.startswith("CentreOfRotationTop"): + centre_of_rotation_top = float(line.split('=')[1]) + elif line.startswith("CentreOfRotationBottom"): + centre_of_rotation_bottom = float(line.split('=')[1]) + + # directory where data is stored + elif line.startswith("InputFolderName"): + input_folder_name = line.split('=')[1] + if input_folder_name == '': + self.tiff_directory_path = os.path.dirname(self.file_name) + else: + self.tiff_directory_path = os.path.join(os.path.dirname(self.file_name), input_folder_name) + + + self._roi_par = [[0, num_projections, 1] ,[0, pixel_num_v_0, 1], [0, pixel_num_h_0, 1]] + + for key in roi.keys(): + if key == 'angle': + idx = 0 + elif key == 'vertical': + idx = 1 + elif key == 'horizontal': + idx = 2 + if roi[key] != -1: + for i in range(2): + if roi[key][i] != None: + if roi[key][i] >= 0: + self._roi_par[idx][i] = roi[key][i] + else: + self._roi_par[idx][i] = self._roi_par[idx][1]+roi[key][i] + if len(roi[key]) > 2: + if roi[key][2] != None: + if roi[key][2] > 0: + self._roi_par[idx][2] = roi[key][2] + else: + raise Exception("Negative step is not allowed") + + if self.mode == 'bin': + # calculate number of pixels and pixel size + pixel_num_v = (self._roi_par[1][1] - self._roi_par[1][0]) // self._roi_par[1][2] + pixel_num_h = (self._roi_par[2][1] - self._roi_par[2][0]) // self._roi_par[2][2] + pixel_size_v = pixel_size_v_0 * self._roi_par[1][2] + pixel_size_h = pixel_size_h_0 * self._roi_par[2][2] + else: # slice + pixel_num_v = int(np.ceil((self._roi_par[1][1] - self._roi_par[1][0]) / self._roi_par[1][2])) + pixel_num_h = int(np.ceil((self._roi_par[2][1] - self._roi_par[2][0]) / self._roi_par[2][2])) + + pixel_size_v = pixel_size_v_0 + pixel_size_h = pixel_size_h_0 + + det_start_0 = -(pixel_num_h_0 / 2) + det_start = det_start_0 + self._roi_par[2][0] + det_end = det_start + pixel_num_h * self._roi_par[2][2] + det_pos_h = (det_start + det_end) * 0.5 * pixel_size_h_0 + detector_offset_h + + det_start_0 = -(pixel_num_v_0 / 2) + det_start = det_start_0 + self._roi_par[1][0] + det_end = det_start + pixel_num_v * self._roi_par[1][2] + det_pos_v = (det_start + det_end) * 0.5 * pixel_size_v_0 + detector_offset_v + + #angles from xtekct ignore *.ang and _ctdata.txt as not correct + angles = np.asarray( [ angular_step * proj for proj in range(num_projections) ] , dtype=np.float32) + + if self.mode == 'bin': + n_elem = (self._roi_par[0][1] - self._roi_par[0][0]) // self._roi_par[0][2] + shape = (n_elem, self._roi_par[0][2]) + angles = angles[self._roi_par[0][0]:(self._roi_par[0][0] + n_elem * self._roi_par[0][2])].reshape(shape).mean(1) + else: + angles = angles[slice(self._roi_par[0][0], self._roi_par[0][1], self._roi_par[0][2])] + + #convert NikonGeometry to CIL geometry + angles = -angles - initial_angle + 180 + + if object_offset_x == None: + object_offset_x = (centre_of_rotation_bottom+centre_of_rotation_top)* 0.5 * source_to_origin /source_to_det + + if object_roll_deg == None: + x = (centre_of_rotation_top-centre_of_rotation_bottom) + y = pixel_num_v_0 * pixel_size_v_0 + object_roll = -np.arctan2(x, y) + else: + object_roll = object_roll_deg * np.pi /180. + + object_tilt = -object_tilt_deg * np.pi /180. + + tilt_matrix = np.eye(3) + tilt_matrix[1][1] = tilt_matrix[2][2] = np.cos(object_tilt) + tilt_matrix[1][2] = -np.sin(object_tilt) + tilt_matrix[2][1] = np.sin(object_tilt) + + roll_matrix = np.eye(3) + roll_matrix[0][0] = roll_matrix[2][2] = np.cos(object_roll) + roll_matrix[0][2] = np.sin(object_roll) + roll_matrix[2][0] = -np.sin(object_roll) + + #order of construction may be reversed, but unlikely to have both in a dataset + rot_matrix = np.matmul(tilt_matrix,roll_matrix) + rotation_axis_direction = rot_matrix.dot([0,0,1]) + + + if self.fliplr: + origin = 'top-left' + else: + origin = 'top-right' + + if pixel_num_v == 1 and (self._roi_par[1][0]+self._roi_par[1][1]) // 2 == pixel_num_v_0 // 2: + self._ag = AcquisitionGeometry.create_Cone2D(source_position=[0, -source_to_origin], + rotation_axis_position=[-object_offset_x, 0], + detector_position=[-det_pos_h, source_to_det-source_to_origin]) + self._ag.set_angles(angles, + angle_unit='degree') + + self._ag.set_panel(pixel_num_h, pixel_size=pixel_size_h, origin=origin) + + self._ag.set_labels(labels=['angle', 'horizontal']) + else: + self._ag = AcquisitionGeometry.create_Cone3D(source_position=[0, -source_to_origin, 0], + rotation_axis_position=[-object_offset_x, 0, 0], + rotation_axis_direction=rotation_axis_direction, + detector_position=[-det_pos_h, source_to_det-source_to_origin, det_pos_v]) + self._ag.set_angles(angles, + angle_unit='degree') + + self._ag.set_panel((pixel_num_h, pixel_num_v), + pixel_size=(pixel_size_h, pixel_size_v), + origin=origin) + + self._ag.set_labels(labels=['angle', 'vertical', 'horizontal']) + +
+[docs] + def get_geometry(self): + + ''' + Return AcquisitionGeometry object + ''' + + return self._ag
+ +
+[docs] + def get_roi(self): + '''returns the roi''' + roi = self._roi_par[:] + if AcquisitionType.DIM2 & self._ag.dimension: + roi.pop(1) + + roidict = {} + for i,el in enumerate(roi): + # print (i, el) + roidict['axis_{}'.format(i)] = tuple(el) + return roidict
+ + +
+[docs] + def read(self): + + ''' + Reads projections and returns AcquisitionData with corresponding geometry, + arranged as ['angle', horizontal'] if a single slice is loaded + and ['vertical, 'angle', horizontal'] if more than 1 slice is loaded. + ''' + + reader = TIFFStackReader() + + roi = self.get_roi() + + reader.set_up(file_name = self.tiff_directory_path, + roi=roi, mode=self.mode) + + ad = reader.read_as_AcquisitionData(self._ag) + + if (self.normalise): + ad.array[ad.array < 1] = 1 + # cast the data read to float32 + ad = ad / np.float32(self._white_level) + + + if self.fliplr: + dim = ad.get_dimension_axis('horizontal') + ad.array = np.flip(ad.array, dim) + + return ad
+ + +
+[docs] + def load_projections(self): + '''alias of read for backward compatibility''' + return self.read()
+
+ +
+ +
+ + + + + +
+ +
+
+
+ +
+ + + + +
+
+ +
+ +
+
+
+ + + + + +
+ + +
+ + \ No newline at end of file diff --git a/v24.2.0/_modules/cil/io/RAWFileWriter/index.html b/v24.2.0/_modules/cil/io/RAWFileWriter/index.html new file mode 100644 index 0000000000..e42cbd4a1d --- /dev/null +++ b/v24.2.0/_modules/cil/io/RAWFileWriter/index.html @@ -0,0 +1,717 @@ + + + + + + + + + + cil.io.RAWFileWriter — CIL 24.2.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + +
+ +
+ + + + + +
+
+ + + + + + +
+ + + + + + + + + + + + + +
+ +
+ + +
+
+ +
+
+ +
+ +
+ + +
+ +
+ + +
+
+ + + + + +
+ +

Source code for cil.io.RAWFileWriter

+#  Copyright 2023 United Kingdom Research and Innovation
+#  Copyright 2023 The University of Manchester
+#
+#  Licensed under the Apache License, Version 2.0 (the "License");
+#  you may not use this file except in compliance with the License.
+#  You may obtain a copy of the License at
+#
+#      http://www.apache.org/licenses/LICENSE-2.0
+#
+#  Unless required by applicable law or agreed to in writing, software
+#  distributed under the License is distributed on an "AS IS" BASIS,
+#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+#  See the License for the specific language governing permissions and
+#  limitations under the License.
+#
+# Authors:
+# CIL Developers, listed at: https://github.com/TomographicImaging/CIL/blob/master/NOTICE.txt
+
+from cil.framework import AcquisitionData, ImageData, DataContainer
+import os
+from cil.io import utilities
+import configparser
+
+import logging
+
+log = logging.getLogger(__name__)
+
+
+def compress_and_save(data, compress, scale, offset, dtype, fname):
+    '''Compress and save numpy array to file
+
+    Parameters
+    ----------
+    data : numpy array
+    compress : bool
+    scale : float
+    offset : float
+    dtype : numpy dtype
+    fname : string
+
+    Note:
+    -----
+    Data is always written in ‘C’ order, independent of the order of d.
+    '''
+    if compress:
+        d = utilities.compress_data(data, scale, offset, dtype)
+    else:
+        d = data
+
+    log.info(
+        "Data is always written in ‘C’ order, independent of the order of d.")
+    d.tofile(fname)
+
+    # return shape, fortran order, dtype
+    return d.shape, False, d.dtype.str
+
+
+
+[docs] +class RAWFileWriter(object): + ''' + Writer to write DataContainer (or subclass AcquisitionData, ImageData) to disk as a binary blob + + Parameters + ---------- + data : DataContainer, AcquisitionData or ImageData + This represents the data to save to TIFF file(s) + file_name : string + This defines the file name prefix, i.e. the file name without the extension. + compression : str, default None. Accepted values None, 'uint8', 'uint16' + The lossy compression to apply. The default None will not compress data. + 'uint8' or 'unit16' will compress to unsigned int 8 and 16 bit respectively. + + + This writer will also write a text file with the minimal information necessary to + read the data back in. This text file will need to reside in the same directory as the raw file. + + The text file will look something like this:: + + [MINIMAL INFO] + file_name = filename.raw + data_type = <u2 + shape = (6, 5, 4) + is_fortran = False + + [COMPRESSION] + scale = 550.7142857142857 + offset = -0.0 + + The ``data_type`` describes the data layout when packing and unpacking data. This can be + read as numpy dtype with ``np.dtype('<u2')``. + + + Example + ------- + + Example of using the writer with compression to ``uint8``: + + >>> from cil.io import RAWFileWriter + >>> writer = RAWFileWriter(data=data, file_name=fname, compression='uint8') + >>> writer.write() + + Example + ------- + + Example of reading the data from the ini file: + + >>> config = configparser.ConfigParser() + >>> inifname = "file_name.ini" + >>> config.read(inifname) + >>> read_dtype = config['MINIMAL INFO']['data_type'] + >>> dtype = np.dtype(read_dtype) + >>> fname = config['MINIMAL INFO']['file_name'] + >>> read_array = np.fromfile(fname, dtype=read_dtype) + >>> read_shape = eval(config['MINIMAL INFO']['shape']) + >>> scale = float(config['COMPRESSION']['scale']) + >>> offset = float(config['COMPRESSION']['offset']) + + Note + ---- + + If compression ``uint8`` or ``unit16`` are used, the scale and offset used to compress the data are saved + in the ``ini`` file in the same directory as the raw file, in the "COMPRESSION" section . + + The original data can be obtained by: ``original_data = (compressed_data - offset) / scale`` + + Note + ---- + + Data is always written in ‘C’ order independent of the order of the original data, + https://numpy.org/doc/stable/reference/generated/numpy.ndarray.tofile.html#numpy.ndarray.tofile, + + + ''' + + def __init__(self, data, file_name, compression=None): + + if not isinstance(data, (DataContainer, ImageData, AcquisitionData)): + raise Exception('Writer supports only following data types:\n' + + 'DataContainer - ImageData\n - AcquisitionData') + + self.data_container = data + file_name = os.path.abspath(file_name) + self.file_name = os.path.splitext(os.path.basename(file_name))[0] + + self.dir_name = os.path.dirname(file_name) + log.info("dir_name %s", self.dir_name) + log.info("file_name %s", self.file_name) + + # Deal with compression + self.compress = utilities.get_compress(compression) + self.dtype = utilities.get_compressed_dtype(data, compression) + self.scale, self.offset = utilities.get_compression_scale_offset( + data, compression) + self.compression = compression + +
+[docs] + def write(self): + '''Write data to disk''' + if not os.path.isdir(self.dir_name): + os.mkdir(self.dir_name) + + fname = os.path.join(self.dir_name, self.file_name + '.raw') + + # write to disk + header = \ + compress_and_save(self.data_container.as_array(), self.compress, self.scale, self.offset, self.dtype, fname) + + shape = header[0] + fortran_order = header[1] + read_dtype = header[2] + + # save information about the file we just saved + config = configparser.ConfigParser() + config['MINIMAL INFO'] = { + 'file_name': os.path.basename(fname), + 'data_type': read_dtype, + 'shape': shape, + # Data is always written in ‘C’ order, independent of the order of d. + 'is_fortran': fortran_order + } + + if self.compress: + config['COMPRESSION'] = { + 'scale': self.scale, + 'offset': self.offset, + } + log.info("Saving to %s", self.file_name) + log.info(str(config)) + # write the configuration to an ini file + with open(os.path.join(self.dir_name, self.file_name + '.ini'), + 'w') as configfile: + config.write(configfile)
+
+ +
+ +
+ + + + + +
+ +
+
+
+ +
+ + + + +
+
+ +
+ +
+
+
+ + + + + +
+ + +
+ + \ No newline at end of file diff --git a/v24.2.0/_modules/cil/io/TIFF/index.html b/v24.2.0/_modules/cil/io/TIFF/index.html new file mode 100644 index 0000000000..6ec68f05c9 --- /dev/null +++ b/v24.2.0/_modules/cil/io/TIFF/index.html @@ -0,0 +1,1151 @@ + + + + + + + + + + cil.io.TIFF — CIL 24.2.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + +
+ +
+ + + + + +
+
+ + + + + + +
+ + + + + + + + + + + + + +
+ +
+ + +
+
+ +
+
+ +
+ +
+ + +
+ +
+ + +
+
+ + + + + +
+ +

Source code for cil.io.TIFF

+#  Copyright 2020 United Kingdom Research and Innovation
+#  Copyright 2020 The University of Manchester
+#
+#  Licensed under the Apache License, Version 2.0 (the "License");
+#  you may not use this file except in compliance with the License.
+#  You may obtain a copy of the License at
+#
+#      http://www.apache.org/licenses/LICENSE-2.0
+#
+#  Unless required by applicable law or agreed to in writing, software
+#  distributed under the License is distributed on an "AS IS" BASIS,
+#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+#  See the License for the specific language governing permissions and
+#  limitations under the License.
+#
+# Authors:
+# CIL Developers, listed at: https://github.com/TomographicImaging/CIL/blob/master/NOTICE.txt
+
+from cil.framework import AcquisitionData, AcquisitionGeometry, ImageGeometry, ImageData
+import os, re
+from cil.framework import AcquisitionData, AcquisitionGeometry, ImageData, ImageGeometry
+
+pilAvailable = True
+try:
+    from PIL import Image
+except:
+    pilAvailable = False
+import functools
+import glob
+import re
+import numpy as np
+from cil.io import utilities
+import json
+
+import logging
+
+log = logging.getLogger(__name__)
+
+def save_scale_offset(fname, scale, offset):
+    '''Save scale and offset to file
+
+    Parameters
+    ----------
+    fname : string
+    scale : float
+    offset : float
+    '''
+    dirname = os.path.dirname(fname)
+    txt = os.path.join(dirname, 'scaleoffset.json')
+    d = {'scale': scale, 'offset': offset}
+    utilities.save_dict_to_file(txt, d)
+
+
+[docs] +class TIFFWriter(object): + '''Write a DataSet to disk as a TIFF file or stack of TIFF files + + + Parameters + ---------- + data : DataContainer, AcquisitionData or ImageData + This represents the data to save to TIFF file(s) + file_name : string + This defines the file name prefix, i.e. the file name without the extension. + counter_offset : int, default 0. + counter_offset indicates at which number the ordinal index should start. + For instance, if you have to save 10 files the index would by default go from 0 to 9. + By counter_offset you can offset the index: from `counter_offset` to `9+counter_offset` + compression : str, default None. Accepted values None, 'uint8', 'uint16' + The lossy compression to apply. The default None will not compress data. + 'uint8' or 'unit16' will compress to unsigned int 8 and 16 bit respectively. + + + Note + ---- + + If compression ``uint8`` or ``unit16`` are used, the scale and offset used to compress the data are saved + in a file called ``scaleoffset.json`` in the same directory as the TIFF file(s). + + The original data can be obtained by: ``original_data = (compressed_data - offset) / scale`` + + Note + ---- + + In the case of 3D or 4D data this writer will save the data as a stack of multiple TIFF files, + not as a single multi-page TIFF file. + ''' + + + def __init__(self, data=None, file_name=None, counter_offset=0, compression=None): + + self.data_container = data + self.file_name = file_name + self.counter_offset = counter_offset + if ((data is not None) and (file_name is not None)): + self.set_up(data = data, file_name = file_name, + counter_offset=counter_offset, + compression=compression) + + def set_up(self, + data = None, + file_name = None, + counter_offset = 0, + compression=0): + + self.data_container = data + file_name = os.path.abspath(file_name) + self.file_name = os.path.splitext( + os.path.basename( + file_name + ) + )[0] + + self.dir_name = os.path.dirname(file_name) + log.info("dir_name %s", self.dir_name) + log.info("file_name %s", self.file_name) + self.counter_offset = counter_offset + + if not ((isinstance(self.data_container, ImageData)) or + (isinstance(self.data_container, AcquisitionData))): + raise Exception('Writer supports only following data types:\n' + + ' - ImageData\n - AcquisitionData') + + # Deal with compression + self.compress = utilities.get_compress(compression) + self.dtype = utilities.get_compressed_dtype(data, compression) + self.scale, self.offset = utilities.get_compression_scale_offset(data, compression) + self.compression = compression + + +
+[docs] + def write(self): + '''Write data to disk''' + if not os.path.isdir(self.dir_name): + os.mkdir(self.dir_name) + + ndim = len(self.data_container.shape) + if ndim == 2: + # save single slice + + if self.counter_offset >= 0: + fname = "{}_idx_{:04d}.tiff".format(os.path.join(self.dir_name, self.file_name), self.counter_offset) + else: + fname = "{}.tiff".format(os.path.join(self.dir_name, self.file_name)) + with open(fname, 'wb') as f: + Image.fromarray( + utilities.compress_data(self.data_container.as_array() , self.scale, self.offset, self.dtype) + ).save(f, 'tiff') + elif ndim == 3: + for sliceno in range(self.data_container.shape[0]): + # save single slice + # pattern = self.file_name.split('.') + dimension = self.data_container.dimension_labels[0] + fname = "{}_idx_{:04d}.tiff".format( + os.path.join(self.dir_name, self.file_name), + sliceno + self.counter_offset) + with open(fname, 'wb') as f: + Image.fromarray( + utilities.compress_data(self.data_container.as_array()[sliceno] , self.scale, self.offset, self.dtype) + ).save(f, 'tiff') + elif ndim == 4: + # find how many decimal places self.data_container.shape[0] and shape[1] have + zero_padding = self._zero_padding(self.data_container.shape[0]) + zero_padding += '_' + self._zero_padding(self.data_container.shape[1]) + format_string = "{}_{}x{}x{}x{}_"+"{}.tiff".format(zero_padding) + + for sliceno1 in range(self.data_container.shape[0]): + # save single slice + # pattern = self.file_name.split('.') + dimension = [ self.data_container.dimension_labels[0] ] + for sliceno2 in range(self.data_container.shape[1]): + fname = format_string.format(os.path.join(self.dir_name, self.file_name), + self.data_container.shape[0], self.data_container.shape[1], self.data_container.shape[2], + self.data_container.shape[3] , sliceno1, sliceno2) + with open(fname, 'wb') as f: + Image.fromarray( + utilities.compress_data(self.data_container.as_array()[sliceno1][sliceno2] , self.scale, self.offset, self.dtype) + ).save(f, 'tiff') + else: + raise ValueError('Cannot handle more than 4 dimensions') + if self.compress: + save_scale_offset(fname, self.scale, self.offset)
+ + + def _zero_padding(self, number): + i = 0 + while 10**i < number: + i+=1 + i+=1 + zero_padding_string = '{:0'+str(i)+'d}' + return zero_padding_string
+ + + +
+[docs] +class TIFFStackReader(object): + + ''' + Basic TIFF reader which loops through all tiff files in a specific + folder and loads them in alphabetic order + + Parameters + ---------- + + file_name : str, abspath to folder, list + Path to folder with tiff files, list of paths of tiffs, or single tiff file + + roi : dictionary, default `None` + dictionary with roi to load: + ``{'axis_0': (start, end, step), + 'axis_1': (start, end, step), + 'axis_2': (start, end, step)}`` + roi is specified for axes before transpose. + + transpose : bool, default False + Whether to transpose loaded images + + mode : str, {'bin', 'slice'}, default 'bin'. + Defines the 'step' in the roi parameter: + + In bin mode, 'step' number of pixels + are binned together, values of resulting binned pixels are calculated as average. + + In 'slice' mode 'step' defines standard numpy slicing. + + Note: in general output array size in bin mode != output array size in slice mode + + dtype : numpy type, string, default np.float32 + Requested type of the read image. If set to None it defaults to the type of the saved file. + + + Notes: + ------ + roi behaviour: + Files are stacked along ``axis_0``, in alphabetical order. + + ``axis_1`` and ``axis_2`` correspond + to row and column dimensions, respectively. + + To skip files or to change number of files to load, + adjust ``axis_0``. For instance, ``'axis_0': (100, 300)`` + will skip first 100 files and will load 200 files. + + ``'axis_0': -1`` is a shortcut to load all elements along axis 0. + + ``start`` and ``end`` can be specified as ``None`` which is equivalent + to ``start = 0`` and ``end = load everything to the end``, respectively. + + Start and end also can be negative. + + roi is specified for axes before transpose. + + + Example: + -------- + You can rescale the read data as `rescaled_data = (read_data - offset)/scale` with the following code: + + >>> reader = TIFFStackReader(file_name = '/path/to/folder') + >>> rescaled_data = reader.read_rescaled(scale, offset) + + + Alternatively, if TIFFWriter has been used to save data with lossy compression, then you can rescale the + read data to approximately the original data with the following code: + + >>> writer = TIFFWriter(file_name = '/path/to/folder', compression='uint8') + >>> writer.write(original_data) + >>> reader = TIFFStackReader(file_name = '/path/to/folder') + >>> about_original_data = reader.read_rescaled() + ''' + + def __init__(self, file_name=None, roi=None, transpose=False, mode='bin', dtype=np.float32): + self.file_name = file_name + + if self.file_name is not None: + self.set_up(file_name = self.file_name, + roi = roi, + transpose = transpose, + mode = mode, dtype=dtype) + + def set_up(self, + file_name = None, + roi = None, + transpose = False, + mode = 'bin', + dtype = np.float32): + ''' + Set up method for the TIFFStackReader class + + Parameters + ---------- + + file_name : str, abspath to folder, list + Path to folder with tiff files, list of paths of tiffs, or single tiff file + + roi : dictionary, default `None` + dictionary with roi to load + ``{'axis_0': (start, end, step), 'axis_1': (start, end, step), 'axis_2': (start, end, step)}`` + Files are stacked along axis_0. axis_1 and axis_2 correspond + to row and column dimensions, respectively. + Files are stacked in alphabetic order. + To skip files or to change number of files to load, + adjust axis_0. For instance, 'axis_0': (100, 300) + will skip first 100 files and will load 200 files. + 'axis_0': -1 is a shortcut to load all elements along axis. + Start and end can be specified as None which is equivalent + to start = 0 and end = load everything to the end, respectively. + Start and end also can be negative. + Notes: roi is specified for axes before transpose. + + transpose : bool, default False + Whether to transpose loaded images + + mode : str, default 'bin'. Accepted values 'bin', 'slice' + Referring to the 'step' defined in the roi parameter, in bin mode, 'step' number of pixels + are binned together, values of resulting binned pixels are calculated as average. + In 'slice' mode 'step' defines standard numpy slicing. + Note: in general output array size in bin mode != output array size in slice mode + + dtype : numpy type, string, default np.float32 + Requested type of the read image. If set to None it defaults to the type of the saved file. + + ''' + self.roi = roi + self.transpose = transpose + self.mode = mode + self.dtype = dtype + + if file_name == None: + raise ValueError('file_name to tiff files is required. Can be a tiff, a list of tiffs or a directory containing tiffs') + + if self.roi is None: + self.roi = {'axis_0': -1, 'axis_1': -1, 'axis_2': -1} + + # check that PIL library is installed + if (pilAvailable == False): + raise Exception("PIL (pillow) is not available, cannot load TIFF files.") + + # check labels + for key in self.roi.keys(): + if key not in ['axis_0', 'axis_1', 'axis_2']: + raise Exception("Wrong label. axis_0, axis_1 and axis_2 are expected") + + if self.mode not in ['bin', 'slice']: + raise ValueError("Wrong mode, bin or slice is expected.") + + self._roi = self.roi.copy() + + if 'axis_0' not in self._roi.keys(): + self._roi['axis_0'] = -1 + + if 'axis_1' not in self._roi.keys(): + self._roi['axis_1'] = -1 + + if 'axis_2' not in self._roi.keys(): + self._roi['axis_2'] = -1 + + + if isinstance(file_name, list): + self._tiff_files = file_name + elif os.path.isfile(file_name): + self._tiff_files = [file_name] + elif os.path.isdir(file_name): + self._tiff_files = glob.glob(os.path.join(glob.escape(file_name),"*.tif")) + + if not self._tiff_files: + self._tiff_files = glob.glob(os.path.join(glob.escape(file_name),"*.tiff")) + + if not self._tiff_files: + raise Exception("No tiff files were found in the directory \n{}".format(file_name)) + + else: + raise Exception("file_name expects a tiff file, a list of tiffs, or a directory containing tiffs.\n{}".format(file_name)) + + + for fn in self._tiff_files: + if '.tif' in fn: + if not(os.path.exists(fn)): + raise Exception('File \n {}\n does not exist.'.format(fn)) + else: + raise Exception("file_name expects a tiff file, a list of tiffs, or a directory containing tiffs.\n{}".format(file_name)) + + + self._tiff_files.sort(key=self.__natural_keys) + + def _get_file_type(self, img): + mode = img.mode + if mode == '1': + dtype = np.bool_ + elif mode == 'L': + dtype = np.uint8 + elif mode == 'F': + dtype = np.float32 + elif mode == 'I': + dtype = np.int32 + elif mode in ['I;16']: + dtype = np.uint16 + else: + raise ValueError("Unsupported type {}. Expected any of 1 L I I;16 F.".format(mode)) + return dtype + +
+[docs] + def read(self): + + ''' + Reads images and return numpy array + ''' + # load first image to find out dimensions and type + filename = os.path.abspath(self._tiff_files[0]) + + with Image.open(filename) as img: + if self.dtype is None: + self.dtype = self._get_file_type(img) + tmp = np.asarray(img, dtype = self.dtype) + + array_shape_0 = (len(self._tiff_files), tmp.shape[0], tmp.shape[1]) + + roi_par = [[0, array_shape_0[0], 1], [0, array_shape_0[1], 1], [0, array_shape_0[2], 1]] + + for key in self._roi.keys(): + if key == 'axis_0': + idx = 0 + elif key == 'axis_1': + idx = 1 + elif key == 'axis_2': + idx = 2 + if self._roi[key] != -1: + for i in range(2): + if self._roi[key][i] != None: + if self._roi[key][i] >= 0: + roi_par[idx][i] = self._roi[key][i] + else: + roi_par[idx][i] = roi_par[idx][1]+self._roi[key][i] + if len(self._roi[key]) > 2: + if self._roi[key][2] != None: + if self._roi[key][2] > 0: + roi_par[idx][2] = self._roi[key][2] + else: + raise Exception("Negative step is not allowed") + + if self.mode == 'bin': + # calculate number of pixels + n_rows = (roi_par[1][1] - roi_par[1][0]) // roi_par[1][2] + n_cols = (roi_par[2][1] - roi_par[2][0]) // roi_par[2][2] + num_to_read = (roi_par[0][1] - roi_par[0][0]) // roi_par[0][2] + + if not self.transpose: + im = np.zeros((num_to_read, n_rows, n_cols), dtype=self.dtype) + else: + im = np.zeros((num_to_read, n_cols, n_rows), dtype=self.dtype) + + for i in range(0,num_to_read): + + raw = np.zeros((array_shape_0[1], array_shape_0[2]), dtype=self.dtype) + for j in range(roi_par[0][2]): + + index = int(roi_par[0][0] + i * roi_par[0][2] + j) + filename = os.path.abspath(self._tiff_files[index]) + + arr = Image.open(filename) + raw += np.asarray(arr, dtype = self.dtype) + + + shape = (n_rows, roi_par[1][2], + n_cols, roi_par[2][2]) + tmp = raw[roi_par[1][0]:(roi_par[1][0] + (((roi_par[1][1] - roi_par[1][0]) // roi_par[1][2]) * roi_par[1][2])), \ + roi_par[2][0]:(roi_par[2][0] + (((roi_par[2][1] - roi_par[2][0]) // roi_par[2][2]) * roi_par[2][2]))].reshape(shape).mean(-1).mean(1) + + if self.transpose: + im[i, :, :] = np.transpose(tmp) + else: + im[i, :, :] = tmp + + else: # slice mode + # calculate number of pixels + n_rows = int(np.ceil((roi_par[1][1] - roi_par[1][0]) / roi_par[1][2])) + n_cols = int(np.ceil((roi_par[2][1] - roi_par[2][0]) / roi_par[2][2])) + num_to_read = int(np.ceil((roi_par[0][1] - roi_par[0][0]) / roi_par[0][2])) + + if not self.transpose: + im = np.zeros((num_to_read, n_rows, n_cols), dtype=self.dtype) + else: + im = np.zeros((num_to_read, n_cols, n_rows), dtype=self.dtype) + + for i in range(roi_par[0][0], roi_par[0][1], roi_par[0][2]): + + filename = os.path.abspath(self._tiff_files[i]) + #try: + raw = np.asarray(Image.open(filename), dtype = self.dtype) + #except: + # print('Error reading\n {}\n file.'.format(filename)) + # raise + + tmp = raw[(slice(roi_par[1][0], roi_par[1][1], roi_par[1][2]), + slice(roi_par[2][0], roi_par[2][1], roi_par[2][2]))] + + if self.transpose: + im[(i - roi_par[0][0]) // roi_par[0][2], :, :] = np.transpose(tmp) + else: + im[(i - roi_par[0][0]) // roi_par[0][2], :, :] = tmp + + return np.squeeze(im)
+ + + def __atoi(self, text): + return int(text) if text.isdigit() else text + + def __natural_keys(self, text): + ''' + https://stackoverflow.com/questions/5967500/how-to-correctly-sort-a-string-with-a-number-inside + alist.sort(key=natural_keys) sorts in human order + http://nedbatchelder.com/blog/200712/human_sorting.html + (See Toothy's implementation in the comments) + ''' + return [self.__atoi(c) for c in re.split(r'(\d+)', text) ] + + def _read_as(self, geometry): + '''reads the TIFF stack as an ImageData with the provided geometry''' + data = self.read() + if len(geometry.shape) == 4: + gsize = functools.reduce(lambda x,y: x*y, geometry.shape, 1) + dsize = functools.reduce(lambda x,y: x*y, data.shape, 1) + if gsize != dsize: + added_dims = len(geometry.shape) - len(data.shape) + if data.shape[0] != functools.reduce(lambda x,y: x*y, geometry.shape[:1+added_dims], 1): + raise ValueError("Cannot reshape read data {} to the requested shape {}.\n"\ + .format(data.shape, geometry.shape) + + "Geometry requests first dimension of data to be {} but it is {}"\ + .format(geometry.shape[0]*geometry.shape[1], data.shape[0] )) + raise ValueError('data {} and requested {} shapes are not compatible: data size does not match! Expected {}, got {}'\ + .format(data.shape, geometry.shape, dsize, gsize)) + if len(data.shape) != 3: + raise ValueError("Data should have 3 dimensions, got {}".format(len(data.shape))) + + + reshaped = np.reshape(data, geometry.shape) + return self._return_appropriate_data(reshaped, geometry) + + if data.shape != geometry.shape: + raise ValueError('Requested {} shape is incompatible with data. Expected {}, got {}'\ + .format(geometry.__class__.__name__, data.shape, geometry.shape)) + + return self._return_appropriate_data(data, geometry) + + def _return_appropriate_data(self, data, geometry): + if isinstance (geometry, ImageGeometry): + return ImageData(data, deep=True, geometry=geometry.copy(), suppress_warning=True) + elif isinstance (geometry, AcquisitionGeometry): + return AcquisitionData(data, deep=True, geometry=geometry.copy(), suppress_warning=True) + else: + raise TypeError("Unsupported Geometry type. Expected ImageGeometry or AcquisitionGeometry, got {}"\ + .format(type(geometry))) + +
+[docs] + def read_as_ImageData(self, image_geometry): + '''reads the TIFF stack as an ImageData with the provided geometry + + Notice that the data will be reshaped to what requested in the geometry but there is + no warranty that the data will be read in the right order! + In facts you can reshape a (2,3,4) array as (3,4,2), however we do not check if the reshape + leads to sensible data. + ''' + return self._read_as(image_geometry)
+ +
+[docs] + def read_as_AcquisitionData(self, acquisition_geometry): + '''reads the TIFF stack as an AcquisitionData with the provided geometry + + Notice that the data will be reshaped to what requested in the geometry but there is + no warranty that the data will be read in the right order! + In facts you can reshape a (2,3,4) array as (3,4,2), however we do not check if the reshape + leads to sensible data. + ''' + return self._read_as(acquisition_geometry)
+ + +
+[docs] + def read_scale_offset(self): + '''Reads the scale and offset from a json file in the same folder as the tiff stack + + This is a courtesy method that will work only if the tiff stack is saved with the TIFFWriter + + Returns: + -------- + + tuple: (scale, offset) + ''' + # load first image to find out dimensions and type + path = os.path.dirname(self._tiff_files[0]) + with open(os.path.join(path, "scaleoffset.json"), 'r') as f: + d = json.load(f) + + return (d['scale'], d['offset'])
+ + +
+[docs] + def read_rescaled(self, scale=None, offset=None): + '''Reads the TIFF stack and rescales it with the provided scale and offset, or with the ones in the json file if not provided + + This is a courtesy method that will work only if the tiff stack is saved with the TIFFWriter + + Parameters: + ----------- + + scale: float, default None + scale to apply to the data. If None, the scale will be read from the json file saved by TIFFWriter. + offset: float, default None + offset to apply to the data. If None, the offset will be read from the json file saved by TIFFWriter. + + Returns: + -------- + + numpy.ndarray in float32 + ''' + data = self.read() + if scale is None or offset is None: + scale, offset = self.read_scale_offset() + if self.dtype != np.float32: + data = data.astype(np.float32) + data -= offset + data /= scale + return data
+
+ +
+ +
+ + + + + +
+ +
+
+
+ +
+ + + + +
+
+ +
+ +
+
+
+ + + + + +
+ + +
+ + \ No newline at end of file diff --git a/v24.2.0/_modules/cil/io/ZEISSDataReader/index.html b/v24.2.0/_modules/cil/io/ZEISSDataReader/index.html new file mode 100644 index 0000000000..d73086395c --- /dev/null +++ b/v24.2.0/_modules/cil/io/ZEISSDataReader/index.html @@ -0,0 +1,830 @@ + + + + + + + + + + cil.io.ZEISSDataReader — CIL 24.2.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + +
+ +
+ + + + + +
+
+ + + + + + +
+ + + + + + + + + + + + + +
+ +
+ + +
+
+ +
+
+ +
+ +
+ + +
+ +
+ + +
+
+ + + + + +
+ +

Source code for cil.io.ZEISSDataReader

+#  Copyright 2022 United Kingdom Research and Innovation
+#  Copyright 2022 The University of Manchester
+#
+#  Licensed under the Apache License, Version 2.0 (the "License");
+#  you may not use this file except in compliance with the License.
+#  You may obtain a copy of the License at
+#
+#      http://www.apache.org/licenses/LICENSE-2.0
+#
+#  Unless required by applicable law or agreed to in writing, software
+#  distributed under the License is distributed on an "AS IS" BASIS,
+#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+#  See the License for the specific language governing permissions and
+#  limitations under the License.
+#
+# Authors:
+# CIL Developers, listed at: https://github.com/TomographicImaging/CIL/blob/master/NOTICE.txt
+# Andrew Shartis (UES, Inc.)
+
+
+from cil.framework import AcquisitionData, AcquisitionGeometry, ImageData, ImageGeometry
+from cil.framework.labels import AngleUnit, AcquisitionDimension, ImageDimension
+import numpy as np
+import os
+import olefile
+import logging
+dxchange_logger = logging.getLogger('dxchange')
+dxchange_logger.setLevel(logging.ERROR)
+
+import dxchange
+import warnings
+
+
+
+[docs] +class ZEISSDataReader(object): + + ''' + Create a reader for ZEISS files + + Parameters + ---------- + file_name: str + file name to read + roi: dict, default None + dictionary with roi to load for each axis: + ``{'axis_labels_1': (start, end, step),'axis_labels_2': (start, end, step)}``. + ``axis_labels`` are defined by ImageGeometry and AcquisitionGeometry dimension labels. + + Notes + ----- + `roi` behaviour: + For ImageData to skip files or to change number of files to load, + adjust ``vertical``. E.g. ``'vertical': (100, 300)`` will skip first 100 files + and will load 200 files. + + ``'axis_label': -1`` is a shortcut to load all elements along axis. + + ``start`` and ``end`` can be specified as ``None`` which is equivalent + to ``start = 0`` and ``end = load everything to the end``, respectively. + ''' + + def __init__(self, file_name=None, roi=None): + + self.file_name = file_name + + # Set logging level for dxchange reader.py + logger_dxchange = logging.getLogger(name='dxchange.reader') + if logger_dxchange is not None: + logger_dxchange.setLevel(logging.ERROR) + + if file_name is not None: + self.set_up(file_name, roi = roi) + + +
+[docs] + def set_up(self, + file_name, + roi = None): + '''Set up the reader + + + Parameters + ---------- + file_name: str + file name to read + roi: dict, default None + dictionary with roi to load for each axis: + ``{'axis_labels_1': (start, end, step),'axis_labels_2': (start, end, step)}``. + ``axis_labels`` are defined by ImageGeometry and AcquisitionGeometry dimension labels. + + Notes + ----- + `roi` behaviour: + ``'axis_label': -1`` is a shortcut to load all elements along axis. + + ``start`` and ``end`` can be specified as ``None`` which is equivalent + to ``start = 0`` and ``end = load everything to the end``, respectively. + + **Acquisition Data** + + The axis labels in the `roi` dict for `AcquisitionData` will be: + ``{'angle':(...),'vertical':(...),'horizontal':(...)}`` + + **Image Data** + + The axis labels in the `roi` dict for `ImageData` will be: + ``{'angle':(...),'vertical':(...),'horizontal':(...)}`` + + To skip files or to change number of files to load, + adjust ``vertical``. E.g. ``'vertical': (100, 300)`` will skip first 100 files + and will load 200 files. + ''' + + # check if file exists + file_name = os.path.abspath(file_name) + if not(os.path.isfile(file_name)): + raise FileNotFoundError('{}'.format(file_name)) + + file_type = os.path.basename(file_name).split('.')[-1].lower() + if file_type not in ['txrm', 'txm']: + raise TypeError('This reader can only process TXRM or TXM files. Got {}'.format(os.path.basename(file_name))) + + self.file_name = file_name + + + metadata = self.read_metadata() + default_roi = [ [0,metadata['number_of_images'],1], + [0,metadata['image_height'],1], + [0,metadata['image_width'],1]] + + if roi is not None: + if metadata['data geometry'] == 'acquisition': + zeiss_data_order = {AcquisitionDimension.ANGLE: 0, + AcquisitionDimension.VERTICAL: 1, + AcquisitionDimension.HORIZONTAL: 2} + else: + zeiss_data_order = {ImageDimension.VERTICAL: 0, + ImageDimension.HORIZONTAL_Y: 1, + ImageDimension.HORIZONTAL_X: 2} + + # check roi labels and create tuple for slicing + for key in roi.keys(): + idx = zeiss_data_order[key] + if roi[key] != -1: + for i, x in enumerate(roi[key]): + if x is None: + continue + + if i != 2: #start and stop + default_roi[idx][i] = x if x >= 0 else default_roi[idx][1] - x + else: #step + default_roi[idx][i] = x if x > 0 else 1 + + self._roi = default_roi + self._metadata = self.slice_metadata(metadata) + else: + self._roi = False + self._metadata = metadata + + #setup geometry using metadata + if metadata['data geometry'] == 'acquisition': + self._setup_acq_geometry() + else: + self._setup_image_geometry()
+ + + def read_metadata(self): + # Read one image to get the metadata + _,metadata = dxchange.read_txrm(self.file_name,((0,1),(None),(None))) + + with olefile.OleFileIO(self.file_name) as ole: + #Configure beam geometry + xray_geometry = dxchange.reader._read_ole_value(ole, 'ImageInfo/XrayGeometry', '<i') + + if xray_geometry == 1: + metadata['beam geometry'] ='cone' + else: + metadata['beam geometry'] = 'parallel' + + #Configure data geometry + file_type = dxchange.reader._read_ole_value(ole, 'ImageInfo/AcquisitionMode', '<i') + + if file_type == 0: + metadata['data geometry'] = 'acquisition' + + # Read source to center and detector to center distances + StoRADistance = dxchange.reader._read_ole_arr(ole, \ + 'ImageInfo/StoRADistance', "<{0}f".format(metadata['number_of_images'])) + DtoRADistance = dxchange.reader._read_ole_arr(ole, \ + 'ImageInfo/DtoRADistance', "<{0}f".format(metadata['number_of_images'])) + + dist_source_center = np.abs(StoRADistance[0]) + dist_center_detector = np.abs(DtoRADistance[0]) + + # Pixelsize loaded in metadata is really the voxel size in um. + # We can compute the effective detector pixel size as the geometric + # magnification times the voxel size. + metadata['dist_source_center'] = dist_source_center + metadata['dist_center_detector'] = dist_center_detector + metadata['detector_pixel_size'] = ((dist_source_center+dist_center_detector)/dist_source_center)*metadata['pixel_size'] + else: + metadata['data geometry'] = 'image' + + return metadata + +
+[docs] + def slice_metadata(self,metadata): + ''' + Slices metadata to configure geometry before reading data + ''' + image_slc = range(*self._roi[0]) + height_slc = range(*self._roi[1]) + width_slc = range(*self._roi[2]) + #These values are 0 or do not exist in TXM files and can be skipped + if metadata['data geometry'] == 'acquisition': + metadata['thetas'] = metadata['thetas'][image_slc] + metadata['x_positions'] = metadata['x_positions'][image_slc] + metadata['y_positions'] = metadata['y_positions'][image_slc] + metadata['z_positions'] = metadata['z_positions'][image_slc] + metadata['x-shifts'] = metadata['x-shifts'][image_slc] + metadata['y-shifts'] = metadata['y-shifts'][image_slc] + metadata['reference'] = metadata['reference'][height_slc.start:height_slc.stop:height_slc.step, + width_slc.start:width_slc.stop:width_slc.step] + metadata['number_of_images'] = len(image_slc) + metadata['image_width'] = len(width_slc) + metadata['image_height'] = len(height_slc) + return metadata
+ + + def _setup_acq_geometry(self): + ''' + Setup AcquisitionData container + ''' + if self._metadata['beam geometry'] == 'cone': + self._geometry = AcquisitionGeometry.create_Cone3D( + [0,-self._metadata['dist_source_center'],0],[0,self._metadata['dist_center_detector'],0] \ + ) \ + .set_panel([self._metadata['image_width'], self._metadata['image_height']],\ + pixel_size=[self._metadata['detector_pixel_size']/1000,self._metadata['detector_pixel_size']/1000])\ + .set_angles(self._metadata['thetas'],angle_unit=AngleUnit.RADIAN) + else: + self._geometry = AcquisitionGeometry.create_Parallel3D()\ + .set_panel([self._metadata['image_width'], self._metadata['image_height']])\ + .set_angles(self._metadata['thetas'],angle_unit=AngleUnit.RADIAN) + self._geometry.dimension_labels = ['angle', 'vertical', 'horizontal'] + + def _setup_image_geometry(self): + ''' + Setup ImageData container + ''' + slices = self._metadata['number_of_images'] + width = self._metadata['image_width'] + height = self._metadata['image_height'] + voxel_size = self._metadata['pixel_size'] + self._geometry = ImageGeometry(voxel_num_x=width, + voxel_size_x=voxel_size, + voxel_num_y=height, + voxel_size_y=voxel_size, + voxel_num_z=slices, + voxel_size_z=voxel_size) + +
+[docs] + def read(self): + ''' + Reads projections and return Acquisition (TXRM) or Image (TXM) Data container + ''' + # Load projections or slices from file + slice_range = None + if self._roi: + slice_range = tuple(self._roi) + data, _ = dxchange.read_txrm(self.file_name,slice_range) + + if isinstance(self._geometry,AcquisitionGeometry): + # Normalise data by flatfield + data = data / self._metadata['reference'] + + for num in range(self._metadata['number_of_images']): + data[num,:,:] = np.roll(data[num,:,:], \ + (int(self._metadata['x-shifts'][num]),int(self._metadata['y-shifts'][num])), \ + axis=(1,0)) + + acq_data = AcquisitionData(array=data, deep_copy=False, geometry=self._geometry.copy(),suppress_warning=True) + return acq_data + else: + ig_data = ImageData(array=data, deep_copy=False, geometry=self._geometry.copy()) + return ig_data
+ + + +
+[docs] + def get_geometry(self): + ''' + Return Acquisition (TXRM) or Image (TXM) Geometry object + ''' + return self._geometry
+ + +
+[docs] + def get_metadata(self): + '''return the metadata of the file''' + return self._metadata
+
+ +
+ +
+ + + + + +
+ +
+
+
+ +
+ + + + +
+
+ +
+ +
+
+
+ + + + + +
+ + +
+ + \ No newline at end of file diff --git a/v24.2.0/_modules/cil/io/utilities/index.html b/v24.2.0/_modules/cil/io/utilities/index.html new file mode 100644 index 0000000000..7ca60e8059 --- /dev/null +++ b/v24.2.0/_modules/cil/io/utilities/index.html @@ -0,0 +1,859 @@ + + + + + + + + + + cil.io.utilities — CIL 24.2.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + +
+ +
+ + + + + +
+
+ + + + + + +
+ + + + + + + + + + + + + +
+ +
+ + +
+
+ +
+
+ +
+ +
+ + +
+ +
+ + +
+
+ + + + + +
+ +

Source code for cil.io.utilities

+#  Copyright 2023 United Kingdom Research and Innovation
+#  Copyright 2023 The University of Manchester
+#
+#  Licensed under the Apache License, Version 2.0 (the "License");
+#  you may not use this file except in compliance with the License.
+#  You may obtain a copy of the License at
+#
+#      http://www.apache.org/licenses/LICENSE-2.0
+#
+#  Unless required by applicable law or agreed to in writing, software
+#  distributed under the License is distributed on an "AS IS" BASIS,
+#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+#  See the License for the specific language governing permissions and
+#  limitations under the License.
+#
+# Authors:
+# CIL Developers, listed at: https://github.com/TomographicImaging/CIL/blob/master/NOTICE.txt
+
+import numpy as np
+import json
+import h5py
+from warnings import warn
+
+
+def get_compress(compression=None):
+    '''Returns whether the data needs to be compressed and to which numpy type
+
+    Parameters:
+    -----------
+    compression : string, int. Default is None, no compression.
+        It specifies the number of bits to use for compression, allowed values are None, 'uint8', 'uint16' and deprecated 0, 8, 16.
+
+    Returns:
+    --------
+    compress : bool, True if compression is required, False otherwise
+
+    Note:
+    -----
+
+    The use of int is deprecated and will be removed in the future. Use string instead.
+
+    '''
+    if isinstance(compression, int):
+        warn("Use string instead of int", DeprecationWarning, stacklevel=2)
+
+    if compression is None or compression == 0:
+        compress = False
+    elif compression in [ 8, 'uint8']:
+        compress = True
+    elif compression in [ 16, 'uint16']:
+        compress = True
+    else:
+        raise ValueError('Compression bits not valid. Got {0} expected value in {1}'.format(compression, [0,8,16, None, 'uint8', 'uint16']))
+
+    return compress
+
+def get_compressed_dtype(data, compression=None):
+    '''Returns whether the data needs to be compressed and to which numpy type
+
+    Given the data and the compression level, returns the numpy type to be used for compression.
+
+    Parameters:
+    -----------
+    data : DataContainer, numpy array
+        the data to be compressed
+    compression : string, int. Default is None, no compression.
+        It specifies the number of bits to use for compression, allowed values are None, 'uint8', 'uint16' and deprecated 0, 8, 16.
+
+    Returns:
+    --------
+    dtype : numpy type, the numpy type to be used for compression
+    '''
+    if isinstance(compression, int):
+        warn("Use string instead of int", DeprecationWarning, stacklevel=2)
+    if compression is None or compression == 0:
+        dtype = data.dtype
+    elif compression in [ 8, 'uint8']:
+        dtype = np.uint8
+    elif compression in [ 16, 'uint16']:
+        dtype = np.uint16
+    else:
+        raise ValueError('Compression bits not valid. Got {0} expected value in {1}'.format(compression, [0,8,16]))
+
+    return dtype
+
+def get_compression_scale_offset(data, compression=0):
+    '''Returns the scale and offset to be applied to the data to compress it
+
+    Parameters:
+    -----------
+    data : DataContainer, numpy array
+        The data to be compressed
+    compression : string, int. Default is None, no compression.
+        It specifies the number of bits to use for compression, allowed values are None, 'uint8', 'uint16' and deprecated 0, 8, 16.
+
+    Returns:
+    --------
+    scale : float, the scale to be applied to the data for compression to the specified number of bits
+    offset : float, the offset to be applied to the data for compression to the specified number of bits
+    '''
+    if isinstance(compression, int):
+        warn("Use string instead of int", DeprecationWarning, stacklevel=2)
+
+    if compression is None or compression == 0:
+        # no compression
+        # return scale 1.0 and offset 0.0
+        return 1.0, 0.0
+
+    dtype = get_compressed_dtype(data, compression)
+    save_range = np.iinfo(dtype).max
+
+    data_min = data.min()
+    data_range = data.max() - data_min
+
+    if data_range > 0:
+        scale = save_range / data_range
+        offset = - data_min * scale
+    else:
+        scale = 1.0
+        offset = 0.0
+    return scale, offset
+
+def save_dict_to_file(fname, dictionary):
+    '''Save scale and offset to file
+
+    Parameters
+    ----------
+    fname : string
+    dictionary : dictionary
+        dictionary to write to file
+    '''
+
+    with open(fname, 'w') as configfile:
+        json.dump(dictionary, configfile)
+
+def compress_data(data, scale, offset, dtype):
+    '''Compress data to dtype using scale and offset
+
+    Parameters
+    ----------
+    data : numpy array
+    scale : float
+    offset : float
+    dtype : numpy dtype
+
+    returns compressed casted data'''
+    if dtype == data.dtype:
+        return data
+    if data.ndim > 2:
+        # compress each slice
+        tmp = np.empty(data.shape, dtype=dtype)
+        for i in range(data.shape[0]):
+            tmp[i] = compress_data(data[i], scale, offset, dtype)
+    else:
+        tmp = data * scale + offset
+        tmp = tmp.astype(dtype)
+    return tmp
+
+
+[docs] +class HDF5_utilities(object): + + """ + Utility methods to read in from a generic HDF5 file and extract the relevant data + """ + def __init__(self): + pass + + + @staticmethod + def _descend_obj(obj, sep='\t', depth=-1): + """ + Parameters + ---------- + obj: str + The initial group to print the metadata for + sep: str, default '\t' + The separator to use for the output + depth: int + depth to print from starting object. Values 1-N, if -1 will print all + """ + if depth != 0: + if type(obj) in [h5py._hl.group.Group, h5py._hl.files.File]: + for key in obj.keys(): + print(sep, '-', key, ':', obj[key]) + HDF5_utilities._descend_obj(obj[key], sep=sep+'\t', depth=depth-1) + elif type(obj) == h5py._hl.dataset.Dataset: + for key in obj.attrs.keys(): + print(sep+'\t', '-', key, ':', obj.attrs[key]) + + +
+[docs] + @staticmethod + def print_metadata(filename, group='/', depth=-1): + """ + Prints the file metadata + + Parameters + ---------- + filename: str + The full path to the HDF5 file + group: (str), default: '/' + a specific group to print the metadata for, this defaults to the root group + depth: int, default -1 + depth of group to output the metadata for, -1 is fully recursive + """ + with h5py.File(filename, 'r') as f: + HDF5_utilities._descend_obj(f[group], depth=depth)
+ + + +
+[docs] + @staticmethod + def get_dataset_metadata(filename, dset_path): + """ + Returns the dataset metadata as a dictionary + + Parameters + ---------- + filename: str + The full path to the HDF5 file + dset_path: str + The internal path to the requested dataset + + Returns + ------- + A dictionary containing keys, values are `None` if attribute can't be read.: + ndim, shape, size, dtype, nbytes, compression, chunks, is_virtual + """ + with h5py.File(filename, 'r') as f: + dset = f.get(dset_path, ) + + attribs = { + 'ndim':None, + 'shape':None, + 'size':None, + 'dtype':None, + 'compression':None, + 'chunks':None, + 'is_virtual':None} + + for x in attribs.keys(): + try: + attribs[x] = getattr(dset, x) + except AttributeError: + pass + + return attribs
+ + + + +
+[docs] + @staticmethod + def read(filename, dset_path, source_sel=None, dtype=np.float32): + """ + Reads a dataset entry and returns a numpy array with the requested data + + Parameters + ---------- + filename: str + The full path to the HDF5 file + dset_path: str + The internal path to the requested dataset + source_sel: tuple of slice objects, optional + The selection of slices in each source dimension to return + dtype: numpy type, default np.float32 + the numpy data type for the returned array + + + Returns + ------- + numpy.ndarray + The requested data + + Note + ---- + source_sel takes a tuple of slice objects to defining crop and slicing behaviour + + This can be constructed using numpy indexing, i.e. the following lines are equivalent. + + >>> source_sel = (slice(2, 4, None), slice(2, 10, 2)) + + >>> source_sel = np.s_[2:4,2:10:2] + """ + + with h5py.File(filename, 'r') as f: + dset = f.get(dset_path) + + if source_sel == None: + source_sel = tuple([slice(None)]*dset.ndim) + + arr = np.asarray(dset[source_sel],dtype=dtype, order='C') + + return arr
+ + + +
+[docs] + @staticmethod + def read_to(filename, dset_path, out, source_sel=None, dest_sel=None): + """ + Reads a dataset entry and directly fills a numpy array with the requested data + + Parameters + ---------- + filename: str + The full path to the HDF5 file + dset_path: str + The internal path to the requested dataset + out: numpy.ndarray + The output array to be filled + source_sel: tuple of slice objects, optional + The selection of slices in each source dimension to return + dest_sel: tuple of slice objects, optional + The selection of slices in each destination dimension to fill + + + Note + ---- + source_sel and dest_sel take a tuple of slice objects to defining crop and slicing behaviour + + This can be constructed using numpy indexing, i.e. the following lines are equivalent. + + >>> source_sel = (slice(2, 4, None), slice(2, 10, 2)) + + >>> source_sel = np.s_[2:4,2:10:2] + """ + + with h5py.File(filename, 'r') as f: + dset = f.get(dset_path) + dset.read_direct(out, source_sel, dest_sel)
+
+ +
+ +
+ + + + + +
+ +
+
+
+ +
+ + + + +
+
+ +
+ +
+
+
+ + + + + +
+ + +
+ + \ No newline at end of file diff --git a/v24.2.0/_modules/cil/optimisation/algorithms/ADMM/index.html b/v24.2.0/_modules/cil/optimisation/algorithms/ADMM/index.html new file mode 100644 index 0000000000..658f43ac5c --- /dev/null +++ b/v24.2.0/_modules/cil/optimisation/algorithms/ADMM/index.html @@ -0,0 +1,658 @@ + + + + + + + + + + cil.optimisation.algorithms.ADMM — CIL 24.2.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + +
+ +
+ + + + + +
+
+ + + + + + +
+ + + + + + + + + + + + + +
+ +
+ + +
+
+ +
+
+ +
+ +
+ + +
+ +
+ + +
+
+ + + + + +
+ +

Source code for cil.optimisation.algorithms.ADMM

+#  Copyright 2020 United Kingdom Research and Innovation
+#  Copyright 2020 The University of Manchester
+#
+#  Licensed under the Apache License, Version 2.0 (the "License");
+#  you may not use this file except in compliance with the License.
+#  You may obtain a copy of the License at
+#
+#      http://www.apache.org/licenses/LICENSE-2.0
+#
+#  Unless required by applicable law or agreed to in writing, software
+#  distributed under the License is distributed on an "AS IS" BASIS,
+#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+#  See the License for the specific language governing permissions and
+#  limitations under the License.
+#
+# Authors:
+# CIL Developers, listed at: https://github.com/TomographicImaging/CIL/blob/master/NOTICE.txt
+
+from cil.optimisation.algorithms import Algorithm
+import logging
+
+log = logging.getLogger(__name__)
+
+
+
+[docs] +class LADMM(Algorithm): + + ''' + LADMM is the Linearized Alternating Direction Method of Multipliers (LADMM) + + General form of ADMM : min_{x} f(x) + g(y), subject to Ax + By = b + + Case: A = Id, B = -K, b = 0 ==> min_x f(Kx) + g(x) + + The quadratic term in the augmented Lagrangian is linearized for the x-update. + + Main algorithmic difference is that in ADMM we compute two proximal subproblems, + where in the PDHG a proximal and proximal conjugate. + + Reference (Section 8) : https://link.springer.com/content/pdf/10.1007/s10107-018-1321-1.pdf + + x^{k} = prox_{\tau f } (x^{k-1} - tau/sigma A^{T}(Ax^{k-1} - z^{k-1} + u^{k-1} ) + + z^{k} = prox_{\sigma g} (Ax^{k} + u^{k-1}) + + u^{k} = u^{k-1} + Ax^{k} - z^{k} + + ''' + + def __init__(self, f=None, g=None, operator=None, \ + tau = None, sigma = 1., + initial = None, **kwargs): + + '''Initialisation of the algorithm + + :param operator: a Linear Operator + :param f: Convex function with "simple" proximal + :param g: Convex function with "simple" proximal + :param sigma: Positive step size parameter + :param tau: Positive step size parameter + :param initial: Initial guess ( Default initial_guess = 0)''' + + super(LADMM, self).__init__(**kwargs) + + self.set_up(f = f, g = g, operator = operator, tau = tau,\ + sigma = sigma, initial=initial) + +
+[docs] + def set_up(self, f, g, operator, tau = None, sigma=1., initial=None): + log.info("%s setting up", self.__class__.__name__) + + if sigma is None and tau is None: + raise ValueError('Need tau <= sigma / ||K||^2') + + self.f = f + self.g = g + self.operator = operator + + self.tau = tau + self.sigma = sigma + + if self.tau is None: + normK = self.operator.norm() + self.tau = self.sigma / normK ** 2 + + if initial is None: + self.x = self.operator.domain_geometry().allocate() + else: + self.x = initial.copy() + + # allocate space for operator direct & adjoint + self.tmp_dir = self.operator.range_geometry().allocate() + self.tmp_adj = self.operator.domain_geometry().allocate() + + self.z = self.operator.range_geometry().allocate() + self.u = self.operator.range_geometry().allocate() + + self.configured = True + + log.info("%s configured", self.__class__.__name__)
+ + +
+[docs] + def update(self): + + self.tmp_dir += self.u + self.tmp_dir -= self.z + self.operator.adjoint(self.tmp_dir, out = self.tmp_adj) + + self.x.sapyb(1, self.tmp_adj, -(self.tau/self.sigma), out=self.x) + + # apply proximal of f + tmp = self.f.proximal(self.x, self.tau) + self.operator.direct(tmp, out=self.tmp_dir) + # store the result in x + self.x.fill(tmp) + del tmp + + self.u += self.tmp_dir + + # apply proximal of g + self.g.proximal(self.u, self.sigma, out = self.z) + + # update + self.u -= self.z
+ + +
+[docs] + def update_objective(self): + + self.loss.append(self.f(self.x) + self.g(self.operator.direct(self.x)) )
+
+ +
+ +
+ + + + + +
+ +
+
+
+ +
+ + + + +
+
+ +
+ +
+
+
+ + + + + +
+ + +
+ + \ No newline at end of file diff --git a/v24.2.0/_modules/cil/optimisation/algorithms/Algorithm/index.html b/v24.2.0/_modules/cil/optimisation/algorithms/Algorithm/index.html new file mode 100644 index 0000000000..60c0ee2514 --- /dev/null +++ b/v24.2.0/_modules/cil/optimisation/algorithms/Algorithm/index.html @@ -0,0 +1,860 @@ + + + + + + + + + + cil.optimisation.algorithms.Algorithm — CIL 24.2.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + +
+ +
+ + + + + +
+
+ + + + + + +
+ + + + + + + + + + + + + +
+ +
+ + +
+
+ +
+
+ +
+ +
+ + +
+ +
+ + +
+
+ + + + + +
+ +

Source code for cil.optimisation.algorithms.Algorithm

+#  Copyright 2019 United Kingdom Research and Innovation
+#  Copyright 2019 The University of Manchester
+#
+#  Licensed under the Apache License, Version 2.0 (the "License");
+#  you may not use this file except in compliance with the License.
+#  You may obtain a copy of the License at
+#
+#      http://www.apache.org/licenses/LICENSE-2.0
+#
+#  Unless required by applicable law or agreed to in writing, software
+#  distributed under the License is distributed on an "AS IS" BASIS,
+#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+#  See the License for the specific language governing permissions and
+#  limitations under the License.
+#
+# Authors:
+# CIL Developers, listed at: https://github.com/TomographicImaging/CIL/blob/master/NOTICE.txt
+from itertools import count
+from numbers import Integral
+from typing import List, Optional
+from warnings import warn
+
+import numpy as np
+
+from cil.optimisation.utilities.callbacks import Callback, LogfileCallback, _OldCallback, ProgressCallback
+
+
+
+[docs] +class Algorithm: + r"""Base class providing minimal infrastructure for iterative algorithms. + + An iterative algorithm is designed to solve an optimization problem by repeatedly refining a solution. In CIL, we use iterative algorithms to minimize an objective function, often referred to as a loss. The process begins with an initial guess, and with each iteration, the algorithm updates the current solution based on the results of previous iterations (previous iterates). Iterative algorithms typically continue until a stopping criterion is met, indicating that an optimal or sufficiently good solution has been found. In CIL, stopping criteria can be implemented using a callback function (`cil.optimisation.utilities.callbacks`). + + The user is required to implement the :code:`set_up`, :code:`__init__`, :code:`update` and :code:`update_objective` methods. + + The method :code:`run` is available to run :code:`n` iterations. The method accepts :code:`callbacks`: a list of callables, each of which receive the current Algorithm object (which in turn contains the iteration number and the actual objective value) and can be used to trigger print to screens and other user interactions. The :code:`run` method will stop when the stopping criterion is met or `StopIteration` is raised. + + Parameters + ---------- + update_objective_interval: int, optional, default 1 + The objective (or loss) is calculated and saved every `update_objective_interval`. 1 means every iteration, 2 every 2 iterations and so forth. This is by default 1 and should be increased when evaluating the objective is computationally expensive. + """ + + def __init__(self, update_objective_interval=1, max_iteration=None, log_file=None): + + self.iteration = -1 + self.__max_iteration = 1 + if max_iteration is not None: + warn("use `Algorithm.run(iterations)` instead of `Algorithm(max_iteration)`", DeprecationWarning, stacklevel=2) + self.__max_iteration = max_iteration + self.__loss = [] + self.memopt = False + self.configured = False + self._iteration = [] + self.update_objective_interval = update_objective_interval + # self.x = None + self.iter_string = 'Iter' + if log_file is not None: + warn("use `run(callbacks=[LogfileCallback(log_file)])` instead of `log_file`", + DeprecationWarning, stacklevel=2) + self.__log_file = log_file + +
+[docs] + def set_up(self, *args, **kwargs): + '''Set up the algorithm''' + raise NotImplementedError
+ +
+[docs] + def update(self): + '''A single iteration of the algorithm''' + raise NotImplementedError
+ + +
+[docs] + def should_stop(self): + '''default stopping criterion: number of iterations + + The user can change this in concrete implementation of iterative algorithms.''' + return self.iteration > self.max_iteration
+ + + def __set_up_logger(self, *_, **__): + """Do not use: this is being deprecated""" + warn("use `run(callbacks=[LogfileCallback(log_file)])` instead", DeprecationWarning, stacklevel=2) + +
+[docs] + def max_iteration_stop_criterion(self): + """Do not use: this is being deprecated""" + warn("use `should_stop()` instead of `max_iteration_stop_criterion()`", DeprecationWarning, stacklevel=2) + return self.iteration > self.max_iteration
+ + + def __iter__(self): + '''Algorithm is an iterable''' + return self + + def __next__(self): + '''Algorithm is an iterable + + This method triggers :code:`update()` and :code:`update_objective()` + ''' + if self.should_stop(): + raise StopIteration + if self.iteration == -1 and self.update_objective_interval > 0: + self._iteration.append(self.iteration) + self.update_objective() + self.iteration += 1 + return self.iteration + if not self.configured: + raise ValueError('Algorithm not configured correctly. Please run set_up.') + self.update() + self.iteration += 1 + + self._update_previous_solution() + + if self.iteration >= 0 and self.update_objective_interval > 0 and\ + self.iteration % self.update_objective_interval == 0: + + self._iteration.append(self.iteration) + self.update_objective() + return self.iteration + + def _update_previous_solution(self): + r""" An optional but common function that can be implemented by child classes to update a stored previous solution with the current one. + Best practice for memory efficiency would be to do this by the swapping of pointers: + + .. highlight:: python + .. code-block:: python + + tmp = self.x_old + self.x_old = self.x + self.x = tmp + + """ + pass + +
+[docs] + def get_output(self): + r""" Returns the current solution. + + Returns + ------- + DataContainer + The current solution + + """ + return self.x
+ + + def _provable_convergence_condition(self): + r""" Checks if the algorithm set-up (e.g. chosen step-sizes or other parameters) meets a mathematical convergence criterion. + + Returns + ------- + bool: Outcome of the convergence check + """ + raise NotImplementedError(" Convergence criterion is not implemented for this algorithm. ") + +
+[docs] + def is_provably_convergent(self): + r""" Check if the algorithm is convergent based on the provable convergence criterion. + + Returns + ------- + Boolean + Outcome of the convergence check + + """ + return self._provable_convergence_condition()
+ + + @property + def solution(self): + " Returns the current solution. " + return self.get_output() + +
+[docs] + def get_last_loss(self, return_all=False): + r'''Returns the last stored value of the loss function. "Loss" is an alias for "objective value". If `update_objective_interval` is 1 it is the value of the objective at the current iteration. If update_objective_interval > 1 it is the last stored value. + + Parameters + ---------- + return_all: Boolean, default is False + If True, returns all the stored loss functions + + Returns + ------- + Float + Last stored value of the loss function + + ''' + try: + objective = self.__loss[-1] + except IndexError: + objective = np.nan + if isinstance(objective, list): + return objective if return_all else objective[0] + return [objective, np.nan, np.nan] if return_all else objective
+ + + get_last_objective = get_last_loss # alias + +
+[docs] + def update_objective(self): + '''calculates the objective with the current solution''' + raise NotImplementedError
+ + + @property + def iterations(self): + '''returns the iterations at which the objective has been evaluated''' + return self._iteration + + @property + def loss(self): + '''returns a list of the values of the objective (alias of loss) during the iteration + + The length of this list may be shorter than the number of iterations run when the `update_objective_interval` > 1 + ''' + return self.__loss + + objective = loss # alias + + @property + def max_iteration(self): + '''gets the maximum number of iterations''' + return self.__max_iteration + + @max_iteration.setter + def max_iteration(self, value): + '''sets the maximum number of iterations''' + assert isinstance(value, Integral) or np.isposinf(value) + self.__max_iteration = value + + @property + def update_objective_interval(self): + '''gets the update_objective_interval''' + return self.__update_objective_interval + + @update_objective_interval.setter + def update_objective_interval(self, value): + '''sets the update_objective_interval''' + if not isinstance(value, Integral) or value < 0: + raise ValueError('interval must be an integer >= 0') + self.__update_objective_interval = value + +
+[docs] + def run(self, iterations=None, callbacks: Optional[List[Callback]]=None, verbose=1, **kwargs): + r"""run upto :code:`iterations` with callbacks/logging. + + For a demonstration of callbacks see https://github.com/TomographicImaging/CIL-Demos/blob/main/misc/callback_demonstration.ipynb + + Parameters + ----------- + iterations: int, default is None + Number of iterations to run. If not set the algorithm will run until :code:`should_stop()` is reached + callbacks: list of callables, default is Defaults to :code:`[ProgressCallback(verbose)]` + List of callables which are passed the current Algorithm object each iteration. Defaults to :code:`[ProgressCallback(verbose)]`. + verbose: 0=quiet, 1=info, 2=debug + Passed to the default callback to determine the verbosity of the printed output. + """ + + if 'print_interval' in kwargs: + warn("use `TextProgressCallback(miniters)` instead of `run(print_interval)`", + DeprecationWarning, stacklevel=2) + if callbacks is None: + callbacks = [ProgressCallback(verbose=verbose)] + # transform old-style callbacks into new + callback = kwargs.get('callback', None) + if callback is not None: + callbacks.append(_OldCallback(callback, verbose=verbose)) + if hasattr(self, '__log_file'): + callbacks.append(LogfileCallback(self.__log_file, verbose=verbose)) + + if self.should_stop(): + print("Stop criterion has been reached.") + if iterations is None: + warn("`run()` missing `iterations`", DeprecationWarning, stacklevel=2) + iterations = self.max_iteration + + if self.iteration == -1 and self.update_objective_interval>0: + iterations+=1 + + # call `__next__` upto `iterations` times or until `StopIteration` is raised + self.max_iteration = self.iteration + iterations + iters = (count(self.iteration) if np.isposinf(self.max_iteration) + else range(self.iteration, self.max_iteration)) + for _ in zip(iters, self): + try: + for callback in callbacks: + callback(self) + except StopIteration: + break
+ + +
+[docs] + def objective_to_dict(self, verbose=False): + """Internal function to save and print objective functions""" + obj = self.get_last_objective(return_all=verbose) + if isinstance(obj, list) and len(obj) == 3: + if not np.isnan(obj[1:]).all(): + return {'primal': obj[0], 'dual': obj[1], 'primal_dual': obj[2]} + obj = obj[0] + return {'objective': obj}
+ + +
+[docs] + def objective_to_string(self, verbose=False): + """Do not use: this is being deprecated""" + warn("consider using `run(callbacks=[LogfileCallback(log_file)])` instead", DeprecationWarning, stacklevel=2) + return str(self.objective_to_dict(verbose=verbose))
+ + +
+[docs] + def verbose_output(self, *_, **__): + """Do not use: this is being deprecated""" + warn("use `run(callbacks=[ProgressCallback()])` instead", DeprecationWarning, stacklevel=2)
+ + +
+[docs] + def verbose_header(self, *_, **__): + """Do not use: this is being deprecated""" + warn("consider using `run(callbacks=[LogfileCallback(log_file)])` instead", DeprecationWarning, stacklevel=2)
+
+ +
+ +
+ + + + + +
+ +
+
+
+ +
+ + + + +
+
+ +
+ +
+
+
+ + + + + +
+ + +
+ + \ No newline at end of file diff --git a/v24.2.0/_modules/cil/optimisation/algorithms/CGLS/index.html b/v24.2.0/_modules/cil/optimisation/algorithms/CGLS/index.html new file mode 100644 index 0000000000..e1b64c3004 --- /dev/null +++ b/v24.2.0/_modules/cil/optimisation/algorithms/CGLS/index.html @@ -0,0 +1,687 @@ + + + + + + + + + + cil.optimisation.algorithms.CGLS — CIL 24.2.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + +
+ +
+ + + + + +
+
+ + + + + + +
+ + + + + + + + + + + + + +
+ +
+ + +
+
+ +
+
+ +
+ +
+ + +
+ +
+ + +
+
+ + + + + +
+ +

Source code for cil.optimisation.algorithms.CGLS

+#  Copyright 2019 United Kingdom Research and Innovation
+#  Copyright 2019 The University of Manchester
+#
+#  Licensed under the Apache License, Version 2.0 (the "License");
+#  you may not use this file except in compliance with the License.
+#  You may obtain a copy of the License at
+#
+#      http://www.apache.org/licenses/LICENSE-2.0
+#
+#  Unless required by applicable law or agreed to in writing, software
+#  distributed under the License is distributed on an "AS IS" BASIS,
+#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+#  See the License for the specific language governing permissions and
+#  limitations under the License.
+#
+# Authors:
+# CIL Developers, listed at: https://github.com/TomographicImaging/CIL/blob/master/NOTICE.txt
+
+from cil.optimisation.algorithms import Algorithm
+import numpy
+import logging
+import warnings 
+
+log = logging.getLogger(__name__)
+
+
+
+[docs] +class CGLS(Algorithm): + + r'''Conjugate Gradient Least Squares (CGLS) algorithm + + The Conjugate Gradient Least Squares (CGLS) algorithm is commonly used for solving large systems of linear equations, due to its fast convergence. + + Problem: + + .. math:: + + \min_x || A x - b ||^2_2 + + + Parameters + ------------ + operator : Operator + Linear operator for the inverse problem + initial : (optional) DataContainer in the domain of the operator, default is a DataContainer filled with zeros. + Initial guess + data : DataContainer in the range of the operator + Acquired data to reconstruct + + Note + ----- + Passing tolerance directly to CGLS is being deprecated. Instead we recommend using the callback functionality: https://tomographicimaging.github.io/CIL/nightly/optimisation/#callbacks and in particular the CGLSEarlyStopping callback replicated the old behaviour. + + Reference + --------- + https://web.stanford.edu/group/SOL/software/cgls/ + ''' + def __init__(self, initial=None, operator=None, data=None, **kwargs): + '''initialisation of the algorithm + ''' + #We are deprecating tolerance + self.tolerance=kwargs.pop("tolerance", None) + if self.tolerance is not None: + warnings.warn( stacklevel=2, category=DeprecationWarning, message="Passing tolerance directly to CGLS is being deprecated. Instead we recommend using the callback functionality: https://tomographicimaging.github.io/CIL/nightly/optimisation/#callbacks and in particular the CGLSEarlyStopping callback replicated the old behaviour") + else: + self.tolerance = 0 + + super(CGLS, self).__init__(**kwargs) + + if initial is None and operator is not None: + initial = operator.domain_geometry().allocate(0) + if initial is not None and operator is not None and data is not None: + self.set_up(initial=initial, operator=operator, data=data) + +
+[docs] + def set_up(self, initial, operator, data): + r'''Initialisation of the algorithm + Parameters + ------------ + operator : Operator + Linear operator for the inverse problem + initial : (optional) DataContainer in the domain of the operator, default is a DataContainer filled with zeros. + Initial guess + data : DataContainer in the range of the operator + Acquired data to reconstruct + + ''' + + log.info("%s setting up", self.__class__.__name__) + self.x = initial.copy() + self.operator = operator + + self.r = data - self.operator.direct(self.x) + self.s = self.operator.adjoint(self.r) + + self.p = self.s.copy() + self.q = self.operator.range_geometry().allocate() + self.norms0 = self.s.norm() + + self.norms = self.s.norm() + + self.gamma = self.norms0**2 + self.normx = self.x.norm() + + self.configured = True + log.info("%s configured", self.__class__.__name__)
+ + + +
+[docs] + def update(self): + '''single iteration''' + + self.operator.direct(self.p, out=self.q) + delta = self.q.squared_norm() + alpha = self.gamma/delta + + self.x.sapyb(1, self.p, alpha, out=self.x) + #self.x += alpha * self.p + self.r.sapyb(1, self.q, -alpha, out=self.r) + #self.r -= alpha * self.q + + self.operator.adjoint(self.r, out=self.s) + + self.norms = self.s.norm() + self.gamma1 = self.gamma + self.gamma = self.norms**2 + self.beta = self.gamma/self.gamma1 + #self.p = self.s + self.beta * self.p + self.p.sapyb(self.beta, self.s, 1, out=self.p) + + self.normx = self.x.norm()# TODO: Deprecated, remove when CGLS tolerance is removed
+ + + +
+[docs] + def update_objective(self): + a = self.r.squared_norm() + if a is numpy.nan: + raise StopIteration() + self.loss.append(a)
+ + +
+[docs] + def should_stop(self): # TODO: Deprecated, remove when CGLS tolerance is removed + return self.flag() or super().should_stop()
+ + +
+[docs] + def flag(self): # TODO: Deprecated, remove when CGLS tolerance is removed + '''returns whether the tolerance has been reached''' + flag = (self.norms <= self.norms0 * self.tolerance) or (self.normx * self.tolerance >= 1) + + if flag: + self.update_objective() + print('Tolerance is reached: {}'.format(self.tolerance)) + + return flag
+
+ +
+ +
+ + + + + +
+ +
+
+
+ +
+ + + + +
+
+ +
+ +
+
+
+ + + + + +
+ + +
+ + \ No newline at end of file diff --git a/v24.2.0/_modules/cil/optimisation/algorithms/FISTA/index.html b/v24.2.0/_modules/cil/optimisation/algorithms/FISTA/index.html new file mode 100644 index 0000000000..bb2fc1fe52 --- /dev/null +++ b/v24.2.0/_modules/cil/optimisation/algorithms/FISTA/index.html @@ -0,0 +1,918 @@ + + + + + + + + + + cil.optimisation.algorithms.FISTA — CIL 24.2.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + +
+ +
+ + + + + +
+
+ + + + + + +
+ + + + + + + + + + + + + +
+ +
+ + +
+
+ +
+
+ +
+ +
+ + +
+ +
+ + +
+
+ + + + + +
+ +

Source code for cil.optimisation.algorithms.FISTA

+#  Copyright 2019 United Kingdom Research and Innovation
+#  Copyright 2019 The University of Manchester
+#
+#  Licensed under the Apache License, Version 2.0 (the "License");
+#  you may not use this file except in compliance with the License.
+#  You may obtain a copy of the License at
+#
+#      http://www.apache.org/licenses/LICENSE-2.0
+#
+#  Unless required by applicable law or agreed to in writing, software
+#  distributed under the License is distributed on an "AS IS" BASIS,
+#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+#  See the License for the specific language governing permissions and
+#  limitations under the License.
+#
+# Authors:
+# CIL Developers, listed at: https://github.com/TomographicImaging/CIL/blob/master/NOTICE.txt
+
+from cil.optimisation.algorithms import Algorithm
+from cil.optimisation.functions import ZeroFunction
+from cil.optimisation.utilities import ConstantStepSize, StepSizeRule
+import numpy
+import logging
+from numbers import Real, Number
+import warnings
+
+log = logging.getLogger(__name__)
+
+
+
+[docs] +class ISTA(Algorithm): + + r"""Iterative Shrinkage-Thresholding Algorithm, see :cite:`BeckTeboulle_b`, :cite:`BeckTeboulle_a`. + + Iterative Shrinkage-Thresholding Algorithm (ISTA) + + .. math:: x^{k+1} = \mathrm{prox}_{\alpha^{k} g}(x^{k} - \alpha^{k}\nabla f(x^{k})) + + is used to solve + + .. math:: \min_{x} f(x) + g(x) + + where :math:`f` is differentiable, :math:`g` has a *simple* proximal operator and :math:`\alpha^{k}` + is the :code:`step_size` per iteration. + + Note + ---- + + For a constant step size, i.e., :math:`a^{k}=a` for :math:`k\geq1`, convergence of ISTA + is guaranteed if + + .. math:: \alpha\in(0, \frac{2}{L}), + + where :math:`L` is the Lipschitz constant of :math:`f`, see :cite:`CombettesValerie`. + + Parameters + ---------- + + initial : DataContainer + Initial guess of ISTA. + f : Function + Differentiable function. If `None` is passed, the algorithm will use the ZeroFunction. + g : Function or `None` + Convex function with *simple* proximal operator. If `None` is passed, the algorithm will use the ZeroFunction. + step_size : positive :obj:`float` or child class of :meth:`cil.optimisation.utilities.StepSizeRule`', default = None + Step size for the gradient step of ISTA. If a float is passed, this is used as a constant step size. If a child class of :meth:`cil.optimisation.utilities.StepSizeRule`' is passed then it's method `get_step_size` is called for each update. + The default :code:`step_size` is a constant :math:`\frac{0.99*2}{L}` or 1 if `f=None`. + preconditioner: class with a `apply` method or a function that takes an initialised CIL function as an argument and modifies a provided `gradient`. + This could be a custom `preconditioner` or one provided in :meth:`~cil.optimisation.utilities.preconditoner`. If None is passed then `self.gradient_update` will remain unmodified. + + + kwargs: Keyword arguments + Arguments from the base class :class:`.Algorithm`. + + Note + ----- + If the function `g` is set to `None` or to the `ZeroFunction` then the ISTA algorithm is equivalent to Gradient Descent. + + If the function `f` is set to `None` or to the `ZeroFunction` then the ISTA algorithm is equivalent to a Proximal Point Algorithm. + + Examples + -------- + + .. math:: \underset{x}{\mathrm{argmin}}\|A x - b\|^{2}_{2} + + >>> f = LeastSquares(A, b=b, c=0.5) + >>> g = ZeroFunction() + >>> ig = Aop.domain + >>> ista = ISTA(initial = ig.allocate(), f = f, g = g, max_iteration=10) + >>> ista.run() + + + See also + -------- + + :class:`.FISTA` + :class:`.GD` + + + """ + + def _provable_convergence_condition(self): + if self.preconditioner is not None: + raise NotImplementedError( + "Can't check convergence criterion if a preconditioner is used ") + + if isinstance(self.step_size_rule, ConstantStepSize): + return self.step_size_rule.step_size <= 0.99*2.0/self.f.L + else: + raise TypeError( + "Can't check convergence criterion for non-constant step size") + + @property + def step_size(self): + if isinstance(self.step_size_rule, ConstantStepSize): + return self.step_size_rule.step_size + else: + warnings.warn( + "Note the step-size is set by a step-size rule and could change wit each iteration") + return self.step_size_rule.get_step_size() + + # Set default step size + + def _calculate_default_step_size(self): + """ Calculates the default step size if a step size rule or a step size is not provided. + """ + + + return 0.99*2.0/self.f.L + + + +
+[docs] + def __init__(self, initial, f, g, step_size=None, preconditioner=None, **kwargs): + + super(ISTA, self).__init__(**kwargs) + self._step_size = step_size + self.set_up(initial=initial, f=f, g=g, step_size=step_size, + preconditioner=preconditioner, **kwargs)
+ + +
+[docs] + def set_up(self, initial, f, g, step_size, preconditioner, **kwargs): + """Set up of the algorithm""" + log.info("%s setting up", self.__class__.__name__) + # set up ISTA + self.initial = initial + self.x_old = initial.copy() + self.x = initial.copy() + self.gradient_update = initial.copy() + + if f is None: + f = ZeroFunction() + + self.f = f + + if g is None: + g = ZeroFunction() + + self.g = g + + if isinstance(f, ZeroFunction) and isinstance(g, ZeroFunction): + raise ValueError( + 'You set both f and g to be the ZeroFunction and thus the iterative method will not update and will remain fixed at the initial value.') + + # set step_size + if step_size is None: + self.step_size_rule = ConstantStepSize( + self._calculate_default_step_size()) + elif isinstance(step_size, Real): + self.step_size_rule = ConstantStepSize(step_size) + elif isinstance(step_size, StepSizeRule): + self.step_size_rule = step_size + + self.preconditioner = preconditioner + + self.configured = True + log.info("%s configured", self.__class__.__name__)
+ + +
+[docs] + def update(self): + r"""Performs a single iteration of ISTA + + .. math:: x_{k+1} = \mathrm{prox}_{\alpha g}(x_{k} - \alpha\nabla f(x_{k})) + + """ + + # gradient step + self.f.gradient(self.x_old, out=self.gradient_update) + if self.preconditioner is not None: + self.preconditioner.apply( + self, self.gradient_update, out=self.gradient_update) + + try: + step_size = self.step_size_rule.get_step_size(self) + except NameError: + raise NameError(msg='`step_size` must be `None`, a real float or a child class of :meth:`cil.optimisation.utilities.StepSizeRule`') + + self.x_old.sapyb(1., self.gradient_update, -step_size, out=self.x_old) + + # proximal step + self.g.proximal(self.x_old, step_size, out=self.x)
+ + + def _update_previous_solution(self): + """ Swaps the references to current and previous solution based on the :func:`~Algorithm.update_previous_solution` of the base class :class:`Algorithm`. + """ + tmp = self.x_old + self.x_old = self.x + self.x = tmp + +
+[docs] + def get_output(self): + " Returns the current solution. " + return self.x_old
+ + +
+[docs] + def update_objective(self): + """ Updates the objective + + .. math:: f(x) + g(x) + + """ + self.loss.append(self.calculate_objective_function_at_point(self.x_old))
+ + +
+[docs] + def calculate_objective_function_at_point(self, x): + """ Calculates the objective at a given point x + + .. math:: f(x) + g(x) + + Parameters + ---------- + x : DataContainer + + """ + return self.f(x) + self.g(x)
+
+ + +
+[docs] +class FISTA(ISTA): + + r"""Fast Iterative Shrinkage-Thresholding Algorithm, see :cite:`BeckTeboulle_b`, :cite:`BeckTeboulle_a`. + + Fast Iterative Shrinkage-Thresholding Algorithm (FISTA) + + .. math:: + + \begin{cases} + y_{k} = x_{k} - \alpha\nabla f(x_{k}) \\ + x_{k+1} = \mathrm{prox}_{\alpha g}(y_{k})\\ + t_{k+1} = \frac{1+\sqrt{1+ 4t_{k}^{2}}}{2}\\ + y_{k+1} = x_{k} + \frac{t_{k}-1}{t_{k-1}}(x_{k} - x_{k-1}) + \end{cases} + + is used to solve + + .. math:: \min_{x} f(x) + g(x) + + where :math:`f` is differentiable, :math:`g` has a *simple* proximal operator and :math:`\alpha^{k}` + is the :code:`step_size` per iteration. + + + Parameters + ---------- + + initial : DataContainer + Starting point of the algorithm + f : Function + Differentiable function. If `None` is passed, the algorithm will use the ZeroFunction. + g : Function or `None` + Convex function with *simple* proximal operator. If `None` is passed, the algorithm will use the ZeroFunction. + step_size : positive :obj:`float` or child class of :meth:`cil.optimisation.utilities.StepSizeRule`', default = None + Step size for the gradient step of ISTA. If a float is passed, this is used as a constant step size. If a child class of :meth:`cil.optimisation.utilities.StepSizeRule`' is passed then it's method `get_step_size` is called for each update. + The default :code:`step_size` is a constant :math:`\frac{1}{L}` or 1 if `f=None`. + preconditioner: class with a `apply` method or a function that takes an initialised CIL function as an argument and modifies a provided `gradient`. + This could be a custom `preconditioner` or one provided in :meth:`~cil.optimisation.utilities.preconditoner`. If None is passed then `self.gradient_update` will remain unmodified. + + kwargs: Keyword arguments + Arguments from the base class :class:`.Algorithm`. + + Note + ----- + If the function `g` is set to `None` or to the `ZeroFunction` then the FISTA algorithm is equivalent to Accelerated Gradient Descent by Nesterov (:cite:`nesterov2003introductory` algorithm 2.2.9). + + If the function `f` is set to `None` or to the `ZeroFunction` then the FISTA algorithm is equivalent to Guler's First Accelerated Proximal Point Method (:cite:`guler1992new` sec 2). + + Examples + -------- + + .. math:: \underset{x}{\mathrm{argmin}}\|A x - b\|^{2}_{2} + + + >>> f = LeastSquares(A, b=b, c=0.5) + >>> g = ZeroFunction() + >>> ig = Aop.domain + >>> fista = FISTA(initial = ig.allocate(), f = f, g = g, max_iteration=10) + >>> fista.run() + + See also + -------- + :class:`.FISTA` + :class:`.GD` + + """ + + def _calculate_default_step_size(self): + """Calculate the default step size if a step size rule or step size is not provided + """ + return 1./self.f.L + + + + def _provable_convergence_condition(self): + if self.preconditioner is not None: + raise NotImplementedError( + "Can't check convergence criterion if a preconditioner is used ") + + if isinstance(self.step_size_rule, ConstantStepSize): + return self.step_size_rule.step_size <= 1./self.f.L + else: + raise TypeError( + "Can't check convergence criterion for non-constant step size") + +
+[docs] + def __init__(self, initial, f, g, step_size=None, preconditioner=None, **kwargs): + + self.y = initial.copy() + self.t = 1 + super(FISTA, self).__init__(initial=initial, f=f, g=g, + step_size=step_size, preconditioner=preconditioner, **kwargs)
+ + +
+[docs] + def update(self): + r"""Performs a single iteration of FISTA + + .. math:: + + \begin{cases} + x_{k+1} = \mathrm{prox}_{\alpha g}(y_{k} - \alpha\nabla f(y_{k}))\\ + t_{k+1} = \frac{1+\sqrt{1+ 4t_{k}^{2}}}{2}\\ + y_{k+1} = x_{k} + \frac{t_{k}-1}{t_{k-1}}(x_{k} - x_{k-1}) + \end{cases} + + """ + + self.t_old = self.t + + self.f.gradient(self.y, out=self.gradient_update) + + if self.preconditioner is not None: + self.preconditioner.apply( + self, self.gradient_update, out=self.gradient_update) + + step_size = self.step_size_rule.get_step_size(self) + + self.y.sapyb(1., self.gradient_update, -step_size, out=self.y) + + self.g.proximal(self.y, step_size, out=self.x) + + self.t = 0.5*(1 + numpy.sqrt(1 + 4*(self.t_old**2))) + + self.x.subtract(self.x_old, out=self.y) + self.y.sapyb(((self.t_old-1)/self.t), self.x, 1.0, out=self.y)
+
+ + + +if __name__ == "__main__": + + from cil.optimisation.functions import L2NormSquared + from cil.optimisation.algorithms import GD + from cil.framework import ImageGeometry + f = L2NormSquared() + g = L2NormSquared() + ig = ImageGeometry(3, 4, 4) + initial = ig.allocate() + fista = FISTA(initial, f, g, step_size=1443432) + print(fista.is_provably_convergent()) + + gd = GD(initial=initial, objective=f, step_size=1023123) + print(gd.is_provably_convergent()) +
+ +
+ + + + + +
+ +
+
+
+ +
+ + + + +
+
+ +
+ +
+
+
+ + + + + +
+ + +
+ + \ No newline at end of file diff --git a/v24.2.0/_modules/cil/optimisation/algorithms/GD/index.html b/v24.2.0/_modules/cil/optimisation/algorithms/GD/index.html new file mode 100644 index 0000000000..e96ca7567c --- /dev/null +++ b/v24.2.0/_modules/cil/optimisation/algorithms/GD/index.html @@ -0,0 +1,690 @@ + + + + + + + + + + cil.optimisation.algorithms.GD — CIL 24.2.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + +
+ +
+ + + + + +
+
+ + + + + + +
+ + + + + + + + + + + + + +
+ +
+ + +
+
+ +
+
+ +
+ +
+ + +
+ +
+ + +
+
+ + + + + +
+ +

Source code for cil.optimisation.algorithms.GD

+#  Copyright 2019 United Kingdom Research and Innovation
+#  Copyright 2019 The University of Manchester
+#
+#  Licensed under the Apache License, Version 2.0 (the "License");
+#  you may not use this file except in compliance with the License.
+#  You may obtain a copy of the License at
+#
+#      http://www.apache.org/licenses/LICENSE-2.0
+#
+#  Unless required by applicable law or agreed to in writing, software
+#  distributed under the License is distributed on an "AS IS" BASIS,
+#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+#  See the License for the specific language governing permissions and
+#  limitations under the License.
+#
+# Authors:
+# CIL Developers, listed at: https://github.com/TomographicImaging/CIL/blob/master/NOTICE.txt
+
+import numpy
+from cil.optimisation.algorithms import Algorithm
+import logging
+from cil.optimisation.utilities import ConstantStepSize, ArmijoStepSizeRule, StepSizeRule
+from warnings import warn
+from numbers import Real
+
+log = logging.getLogger(__name__)
+
+
+
+[docs] +class GD(Algorithm): + """Gradient Descent algorithm + + Parameters + ---------- + initial: DataContainer (e.g. ImageData) + The initial point for the optimisation + objective_function: CIL function (:meth:`~cil.optimisation.functions.Function`. ) with a defined gradient method + The function to be minimised. + step_size: positive real float or subclass of :meth:`~cil.optimisation.utilities.StepSizeRule`, default = None + If you pass a float this will be used as a constant step size. If left as None and do not pass a step_size_rule then the Armijio rule will be used to perform backtracking to choose a step size at each iteration. If a child class of :meth:`cil.optimisation.utilities.StepSizeRule`' is passed then it's method `get_step_size` is called for each update. + preconditioner: class with a `apply` method or a function that takes an initialised CIL function as an argument and modifies a provided `gradient`. + This could be a custom `preconditioner` or one provided in :meth:`~cil.optimisation.utilities.preconditioner`. If None is passed then `self.gradient_update` will remain unmodified. + + rtol: positive float, default 1e-5 + optional parameter defining the relative tolerance comparing the current objective function to 0, default 1e-5, see numpy.isclose + atol: positive float, default 1e-8 + optional parameter defining the absolute tolerance comparing the current objective function to 0, default 1e-8, see numpy.isclose + + """ + + def __init__(self, initial=None, objective_function=None, step_size=None, rtol=1e-5, atol=1e-8, preconditioner=None, **kwargs): + '''GD algorithm creator + ''' + + self.alpha = kwargs.pop('alpha', None) + self.beta = kwargs.pop('beta', None) + + super().__init__(**kwargs) + + if self.alpha is not None or self.beta is not None: + warn('To modify the parameters for the Armijo rule please use `step_size_rule=ArmijoStepSizeRule(alpha, beta, kmax)`. The arguments `alpha` and `beta` will be deprecated. ', DeprecationWarning, stacklevel=2) + + self.rtol = rtol + self.atol = atol + if initial is not None and objective_function is not None: + self.set_up(initial=initial, objective_function=objective_function, + step_size=step_size, preconditioner=preconditioner) + +
+[docs] + def set_up(self, initial, objective_function, step_size, preconditioner): + '''initialisation of the algorithm + + Parameters + ---------- + initial: DataContainer (e.g. ImageData) + The initial point for the optimisation + objective_function: CIL function with a defined gradient + The function to be minimised. + step_size: positive real float or subclass of :meth:`~cil.optimisation.utilities.StepSizeRule`, default = None + If you pass a float this will be used as a constant step size. If left as None and do not pass a step_size_rule then the Armijio rule will be used to perform backtracking to choose a step size at each iteration. If a child class of :meth:`cil.optimisation.utilities.StepSizeRule`' is passed then it's method `get_step_size` is called for each update. + preconditioner: class with a `apply` method or a function that takes an initialised CIL function as an argument and modifies a provided `gradient`. + This could be a custom `preconditioner` or one provided in :meth:`~cil.optimisation.utilities.preconditioner`. If None is passed then `self.gradient_update` will remain unmodified. + + ''' + + log.info("%s setting up", self.__class__.__name__) + + self.x = initial.copy() + self._objective_function = objective_function + + if step_size is None: + self.step_size_rule = ArmijoStepSizeRule( + alpha=self.alpha, beta=self.beta) + elif isinstance(step_size, Real): + self.step_size_rule = ConstantStepSize(step_size) + elif isinstance(step_size, StepSizeRule): + self.step_size_rule = step_size + else: + raise TypeError( + '`step_size` must be `None`, a Real float or a child class of :meth:`cil.optimisation.utilities.StepSizeRule`') + self.gradient_update = initial.copy() + + self.configured = True + + self.preconditioner = preconditioner + + log.info("%s configured", self.__class__.__name__)
+ + +
+[docs] + def update(self): + '''Performs a single iteration of the gradient descent algorithm''' + self._objective_function.gradient(self.x, out=self.gradient_update) + + if self.preconditioner is not None: + self.preconditioner.apply( + self, self.gradient_update, out=self.gradient_update) + + step_size = self.step_size_rule.get_step_size(self) + + self.x.sapyb(1.0, self.gradient_update, -step_size, out=self.x)
+ + +
+[docs] + def update_objective(self): + self.loss.append(self._objective_function(self.solution))
+ + +
+[docs] + def should_stop(self): + '''Stopping criterion for the gradient descent algorithm ''' + return super().should_stop() or \ + numpy.isclose(self.get_last_objective(), 0., rtol=self.rtol, + atol=self.atol, equal_nan=False)
+ + + @property + def step_size(self): + if isinstance(self.step_size_rule, ConstantStepSize): + return self.step_size_rule.step_size + else: + raise TypeError( + "There is not a constant step size, it is set by a step-size rule") + +
+[docs] + def calculate_objective_function_at_point(self, x): + """ Calculates the objective at a given point x + + .. math:: f(x) + g(x) + + Parameters + ---------- + x : DataContainer + + """ + return self._objective_function(x)
+ + + @property + def objective_function(self): + warn('The attribute `objective_function` will be deprecated in the future. Please use `calculate_objective_function_at_point` instead.', DeprecationWarning, stacklevel=2) + return self._objective_function
+ +
+ +
+ + + + + +
+ +
+
+
+ +
+ + + + +
+
+ +
+ +
+
+
+ + + + + +
+ + +
+ + \ No newline at end of file diff --git a/v24.2.0/_modules/cil/optimisation/algorithms/PD3O/index.html b/v24.2.0/_modules/cil/optimisation/algorithms/PD3O/index.html new file mode 100644 index 0000000000..cefb27d92b --- /dev/null +++ b/v24.2.0/_modules/cil/optimisation/algorithms/PD3O/index.html @@ -0,0 +1,692 @@ + + + + + + + + + + cil.optimisation.algorithms.PD3O — CIL 24.2.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + +
+ +
+ + + + + +
+
+ + + + + + +
+ + + + + + + + + + + + + +
+ +
+ + +
+
+ +
+
+ +
+ +
+ + +
+ +
+ + +
+
+ + + + + +
+ +

Source code for cil.optimisation.algorithms.PD3O

+#  Copyright 2024 United Kingdom Research and Innovation
+#  Copyright 2024 The University of Manchester
+#
+#  Licensed under the Apache License, Version 2.0 (the "License");
+#  you may not use this file except in compliance with the License.
+#  You may obtain a copy of the License at
+#
+#      http://www.apache.org/licenses/LICENSE-2.0
+#
+#  Unless required by applicable law or agreed to in writing, software
+#  distributed under the License is distributed on an "AS IS" BASIS,
+#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+#  See the License for the specific language governing permissions and
+#  limitations under the License.
+#
+# Authors:
+# CIL Developers, listed at: https://github.com/TomographicImaging/CIL/blob/master/NOTICE.txt
+
+
+from cil.optimisation.algorithms import Algorithm
+from cil.optimisation.functions import ZeroFunction
+import logging
+import warnings
+
+[docs] +class PD3O(Algorithm): + + + r"""Primal Dual Three Operator Splitting (PD3O) algorithm, see "A New Primal–Dual Algorithm for Minimizing the Sum + of Three Functions with a Linear Operator". This is a primal dual algorithm for minimising :math:`f(x)+g(x)+h(Ax)` where all functions are proper, lower semi-continuous and convex, + :math:`f` should be differentiable with a Lipschitz continuous gradient and :math:`A` is a bounded linear operator. + + Parameters + ---------- + f : Function + A smooth function with Lipschitz continuous gradient. + g : Function + A convex function with a computationally computable proximal. + h : Function + A composite convex function. + operator: Operator + Bounded linear operator + delta: Float, optional, default is `1./(gamma*operator.norm()**2)` + The dual step-size + gamma: Float, optional, default is `2.0/f.L` + The primal step size + initial : DataContainer, optional default is a container of zeros, in the domain of the operator + Initial point for the algorithm. + + + Reference + --------- + Yan, M. A New Primal–Dual Algorithm for Minimizing the Sum of Three Functions with a Linear Operator. J Sci Comput 76, 1698–1717 (2018). https://doi.org/10.1007/s10915-018-0680-3 + """ + + + def __init__(self, f, g, h, operator, delta=None, gamma=None, initial=None, **kwargs): + + super(PD3O, self).__init__(**kwargs) + + + self.set_up(f=f, g=g, h=h, operator=operator, delta=delta, gamma=gamma, initial=initial, **kwargs) + + +
+[docs] + def set_up(self, f, g, h, operator, delta=None, gamma=None, initial=None,**kwargs): + + logging.info("{} setting up".format(self.__class__.__name__, )) + + self.f = f # smooth function + if isinstance(self.f, ZeroFunction): + warnings.warn(" If self.f is the ZeroFunction, then PD3O = PDHG. Please use PDHG instead. Otherwise, select a relatively small parameter gamma ", UserWarning) + if gamma is None: + gamma = 1.0/operator.norm() + + self.g = g # proximable + self.h = h # composite + self.operator = operator + + if gamma is None: + gamma = 0.99*2.0/self.f.L + + if delta is None : + delta = 0.99/(gamma*self.operator.norm()**2) + + self.gamma = gamma + self.delta = delta + + if initial is None: + self.x = self.operator.domain_geometry().allocate(0) + else: + self.x = initial.copy() + + self.x_old = self.x.copy() + + self.s_old = self.operator.range_geometry().allocate(0) + self.s = self.operator.range_geometry().allocate(0) + + self.grad_f = self.operator.domain_geometry().allocate(0) + + self.configured = True + logging.info("{} configured".format(self.__class__.__name__, )) + + # initial proximal conjugate step + self.operator.direct(self.x_old, out=self.s) + self.s_old.sapyb(1, self.s, self.delta, out=self.s_old) + self.h.proximal_conjugate(self.s_old, self.delta, out=self.s)
+ + + +
+[docs] + def update(self): + r""" Performs a single iteration of the PD3O algorithm + """ + + # Following equations 4 in https://link.springer.com/article/10.1007/s10915-018-0680-3 + # in this case order of proximal steps we recover the (primal) PDHG, when f=0 + + + tmp = self.x_old + self.x_old = self.x + self.x = tmp + + + # proximal step + self.f.gradient(self.x_old, out=self.grad_f) + self.x_old.sapyb(1., self.grad_f, -self.gamma, out = self.grad_f) # x_old - gamma * grad_f(x_old) + self.operator.adjoint(self.s, out=self.x_old) + self.x_old.sapyb(-self.gamma, self.grad_f, 1.0, out=self.x_old) + self.g.proximal(self.x_old, self.gamma, out = self.x) + + # update step + self.f.gradient(self.x, out=self.x_old) + self.x_old *= self.gamma + self.grad_f += self.x_old + self.x.sapyb(2, self.grad_f, -1.0, out=self.x_old) # 2*x - x_old + gamma*(grad_f_x_old) - gamma*(grad_f_x) + + tmp = self.s_old + self.s_old = self.s + self.s = tmp + + # proximal conjugate step + self.operator.direct(self.x_old, out=self.s) + self.s_old.sapyb(1, self.s, self.delta, out=self.s_old) + self.h.proximal_conjugate(self.s_old, self.delta, out=self.s)
+ + + + + + +
+[docs] + def update_objective(self): + """ + Evaluates the primal objective + """ + self.operator.direct(self.x, out=self.s_old) + fun_h = self.h(self.s_old) + fun_g = self.g(self.x) + fun_f = self.f(self.x) + p1 = fun_f + fun_g + fun_h + + self.loss.append(p1)
+
+ + + + +
+ +
+ + + + + +
+ +
+
+
+ +
+ + + + +
+
+ +
+ +
+
+
+ + + + + +
+ + +
+ + \ No newline at end of file diff --git a/v24.2.0/_modules/cil/optimisation/algorithms/PDHG/index.html b/v24.2.0/_modules/cil/optimisation/algorithms/PDHG/index.html new file mode 100644 index 0000000000..4cee517ff4 --- /dev/null +++ b/v24.2.0/_modules/cil/optimisation/algorithms/PDHG/index.html @@ -0,0 +1,1038 @@ + + + + + + + + + + cil.optimisation.algorithms.PDHG — CIL 24.2.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + +
+ +
+ + + + + +
+
+ + + + + + +
+ + + + + + + + + + + + + +
+ +
+ + +
+
+ +
+
+ +
+ +
+ + +
+ +
+ + +
+
+ + + + + +
+ +

Source code for cil.optimisation.algorithms.PDHG

+#  Copyright 2019 United Kingdom Research and Innovation
+#  Copyright 2019 The University of Manchester
+#
+#  Licensed under the Apache License, Version 2.0 (the "License");
+#  you may not use this file except in compliance with the License.
+#  You may obtain a copy of the License at
+#
+#      http://www.apache.org/licenses/LICENSE-2.0
+#
+#  Unless required by applicable law or agreed to in writing, software
+#  distributed under the License is distributed on an "AS IS" BASIS,
+#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+#  See the License for the specific language governing permissions and
+#  limitations under the License.
+#
+# Authors:
+# CIL Developers, listed at: https://github.com/TomographicImaging/CIL/blob/master/NOTICE.txt
+
+from cil.framework import DataContainer, BlockDataContainer
+from cil.optimisation.algorithms import Algorithm
+import warnings
+import numpy as np
+from numbers import Number
+import logging
+
+log = logging.getLogger(__name__)
+
+
+
+[docs] +class PDHG(Algorithm): + + r"""Primal Dual Hybrid Gradient (PDHG) algorithm, see :cite:`CP2011`, :cite:`EZXC2010`. + + Parameters + ---------- + f : Function + A convex function with a "simple" proximal method of its conjugate. + g : Function + A convex function with a "simple" proximal. + operator : LinearOperator + A Linear Operator. + sigma : positive :obj:`float`, or `np.ndarray`, `DataContainer`, `BlockDataContainer`, optional, default=None + Step size for the dual problem. + tau : positive :obj:`float`, or `np.ndarray`, `DataContainer`, `BlockDataContainer`, optional, default=None + Step size for the primal problem. + initial : DataContainer, optional, default=None + Initial point for the PDHG algorithm. + gamma_g : positive :obj:`float`, optional, default=None + Strongly convex constant if the function g is strongly convex. Allows primal acceleration of the PDHG algorithm. + gamma_fconj : positive :obj:`float`, optional, default=None + Strongly convex constant if the convex conjugate of f is strongly convex. Allows dual acceleration of the PDHG algorithm. + + **kwargs: + Keyward arguments used from the base class :class:`Algorithm`. + + max_iteration : :obj:`int`, optional, default=0 + Maximum number of iterations of the PDHG. + update_objective_interval : :obj:`int`, optional, default=1 + Evaluates objectives, e.g., primal/dual/primal-dual gap every ``update_objective_interval``. + check_convergence : :obj:`boolean`, default=True + Checks scalar sigma and tau values satisfy convergence criterion + + Example + ------- + + In our `CIL-Demos <https://github.com/TomographicImaging/CIL-Demos/blob/main/binder/TomographyReconstruction.ipynb>`_ repository\ + you can find examples using the PDHG algorithm for different imaging problems, such as Total Variation denoising, Total Generalised Variation inpainting\ + and Total Variation Tomography reconstruction. More examples can also be found in :cite:`Jorgensen_et_al_2021`, :cite:`Papoutsellis_et_al_2021`. + + Note + ---- + + Currently, the strongly convex constants are passed as parameters of PDHG. + In the future, these parameters will be properties of the corresponding functions. + + + Notes + ----- + + A first-order primal-dual algorithm for convex optimization problems with known saddle-point structure with applications in imaging. + + The general problem considered in the PDHG algorithm is the generic saddle-point problem + + .. math:: \min_{x\in X}\max_{y\in Y} \langle Kx, y \rangle + g(x) - f^{*}(x) + + where :math:`f` and :math:`g` are convex functions with "simple" proximal operators. + + :math:`X` and :math:`Y` are two two finite-dimensional vector spaces with an inner product and representing the domain of :math:`g` and :math:`f^{*}`, the convex conjugate of :math:`f`, respectively. + + The operator :math:`K` is a continuous linear operator with operator norm defined as + + .. math:: \|K\| = \max\{ \|Kx\| : x\in X, \|x\|\leq1\} + + + The saddle point problem is decomposed into the primal problem: + + .. math:: \min_{x\in X} f(Kx) + g(x), + + and its corresponding dual problem + + .. math:: \max_{y\in Y} - g^{*}(-K^{*}y) - f^{*}(y). + + The PDHG algorithm consists of three steps: + + * gradient ascent step for the dual problem, + * gradient descent step for the primal problem and + * an over-relaxation of the primal variable. + + .. math:: + + y^{n+1} = \mathrm{prox}_{\sigma f^{*}}(y^{n} + \sigma K \bar{x}^{n}) + + .. math:: + + x^{n+1} = \mathrm{prox}_{\tau g}(x^{n} - \tau K^{*}y^{n+1}) + + .. math:: + + \bar{x}^{n+1} = x^{n+1} + \theta (x^{n+1} - x^{n}) + + Notes + ----- + + - Convergence is guaranteed if :math:`\theta` = 1.0, the operator norm :math:`\|K\|`, \the dual step size :math:`\sigma` and the primal step size :math:`\tau`, satisfy the following inequality: + + .. math:: + + \tau \sigma \|K\|^2 < 1 + + + - By default, the step sizes :math:`\sigma` and :math:`\tau` are positive scalars and defined as below: + + * If ``sigma`` is ``None`` and ``tau`` is ``None``: + + .. math:: + + \sigma = \frac{1}{\|K\|}, \tau = \frac{1}{\|K\|} + + * If ``tau`` is ``None``: + + .. math:: + + \tau = \frac{1}{\sigma\|K\|^{2}} + + * If ``sigma`` is ``None``: + + .. math:: + + \sigma = \frac{1}{\tau\|K\|^{2}} + + + - To monitor the convergence of the algorithm, we compute the primal/dual objectives and the primal-dual gap in :meth:`update_objective`.\ + + The primal objective is + + .. math:: + + f(Kx) + g(x) + + and the dual objective is + + .. math:: + + - g^{*}(-K^{*}y) - f^{*}(y) + + The primal-dual gap (or duality gap) is + + .. math:: + + f(Kx) + g(x) + g^{*}(-K^{*}y) + f^{*}(y) + + and measures how close is the primal-dual pair (x,y) to the primal-dual solution. It is always non-negative and is used to monitor convergence of the PDHG algorithm. \ + For more information, see `Duality Gap <https://en.wikipedia.org/wiki/Duality_gap>`_. + + + Note + ---- + + - The primal objective is printed if `verbose=1`, ``pdhg.run(verbose=1)``. + - All the objectives are printed if `verbose=2`, ``pdhg.run(verbose=2)``. + + Computing these objectives can be costly, so it is better to compute every some iterations. To do this, use ``update_objective_interval = #number``. + + + - PDHG algorithm can be accelerated if the functions :math:`f^{*}` and/or :math:`g` are strongly convex. In these cases, the step-sizes :math:`\sigma` and :math:`\tau` are updated using the :meth:`update_step_sizes` method. A function :math:`f` is strongly convex with constant :math:`\gamma>0` if + + .. math:: + + f(x) - \frac{\gamma}{2}\|x\|^{2} \quad\mbox{ is convex. } + + + * For instance the function :math:`\frac{1}{2}\|x\|^{2}_{2}` is :math:`\gamma` strongly convex for :math:`\gamma\in(-\infty,1]`. We say it is 1-strongly convex because it is the largest constant for which :math:`f - \frac{1}{2}\|\cdot\|^{2}` is convex. + + + * The :math:`\|\cdot\|_{1}` norm is not strongly convex. For more information, see `Strongly Convex <https://en.wikipedia.org/wiki/Convex_function#Strongly_convex_functions>`_. + + + * If :math:`g` is strongly convex with constant :math:`\gamma` then the step-sizes :math:`\sigma`, :math:`\tau` and :math:`\theta` are updated as: + + + .. math:: + :nowrap: + + \begin{aligned} + + \theta_{n} & = \frac{1}{\sqrt{1 + 2\gamma\tau_{n}}}\\ + \tau_{n+1} & = \theta_{n}\tau_{n}\\ + \sigma_{n+1} & = \frac{\sigma_{n}}{\theta_{n}} + + \end{aligned} + + * If :math:`f^{*}` is strongly convex, we swap :math:`\sigma` with :math:`\tau`. + + Note + ---- + + The case where both functions are strongly convex is not available at the moment. + + + .. todo:: Implement acceleration of PDHG when both functions are strongly convex. + + + """ + + def __init__(self, f, g, operator, tau=None, sigma=None, initial=None, gamma_g=None, gamma_fconj=None, **kwargs): + super().__init__(**kwargs) + self._tau = None + self._sigma = None + + # check for gamma_g, gamma_fconj, strongly convex constants + self._gamma_g = None + self._gamma_fconj = None + self.set_gamma_g(gamma_g) + self.set_gamma_fconj(gamma_fconj) + + self.set_up(f=f, g=g, operator=operator, tau=tau, sigma=sigma, initial=initial, **kwargs) + + @property + def tau(self): + return self._tau + + @property + def sigma(self): + return self._sigma + + @property + def gamma_g(self): + return self._gamma_g + + @property + def gamma_fconj(self): + return self._gamma_fconj + +
+[docs] + def set_gamma_g(self, value): + '''Set the value of the strongly convex constant for function `g` + + Parameters + ---------- + value : a positive number or None + ''' + if self.gamma_fconj is not None and value is not None: + raise ValueError("The adaptive update of the PDHG stepsizes in the case where both functions are strongly convex is not implemented at the moment." +\ + "Currently the strongly convex constant of the convex conjugate of the function f has been specified as ", self.gamma_fconj) + + if isinstance (value, Number): + if value <= 0: + raise ValueError("Strongly convex constant is a positive number, {} is passed for the strongly convex function g.".format(value)) + self._gamma_g = value + elif value is None: + pass + else: + raise ValueError("Positive float is expected for the strongly convex constant of function g, {} is passed".format(value))
+ + +
+[docs] + def set_gamma_fconj(self, value): + '''Set the value of the strongly convex constant for the convex conjugate of function `f` + + Parameters + ---------- + value : a positive number or None + ''' + if self.gamma_g is not None and value is not None: + raise ValueError("The adaptive update of the PDHG stepsizes in the case where both functions are strongly convex is not implemented at the moment." +\ + "Currently the strongly convex constant of the function g has been specified as ", self.gamma_g) + + if isinstance (value, Number): + if value <= 0: + raise ValueError("Strongly convex constant is positive, {} is passed for the strongly convex conjugate function of f.".format(value)) + self._gamma_fconj = value + elif value is None: + pass + else: + raise ValueError("Positive float is expected for the strongly convex constant of the convex conjugate of function f, {} is passed".format(value))
+ + +
+[docs] + def set_up(self, f, g, operator, tau=None, sigma=None, initial=None, **kwargs): + """Initialisation of the algorithm + + Parameters + ---------- + f : Function + A convex function with a "simple" proximal method of its conjugate. + g : Function + A convex function with a "simple" proximal. + operator : LinearOperator + A Linear Operator. + sigma : positive :obj:`float`, or `np.ndarray`, `DataContainer`, `BlockDataContainer`, optional, default=None + Step size for the dual problem. + tau : positive :obj:`float`, or `np.ndarray`, `DataContainer`, `BlockDataContainer`, optional, default=None + Step size for the primal problem. + initial : DataContainer, optional, default=None + Initial point for the PDHG algorithm. + theta : Relaxation parameter, Number, default 1.0 + """ + log.info("%s setting up", self.__class__.__name__) + # Triplet (f, g, K) + self.f = f + self.g = g + self.operator = operator + + self.set_step_sizes(sigma=sigma, tau=tau) + + if kwargs.get('check_convergence', True): + self.check_convergence() + + if initial is None: + self.x_old = self.operator.domain_geometry().allocate(0) + else: + self.x_old = initial.copy() + + self.x = self.x_old.copy() + self.x_tmp = self.operator.domain_geometry().allocate(0) + self.y = self.operator.range_geometry().allocate(0) + self.y_tmp = self.operator.range_geometry().allocate(0) + + # relaxation parameter, default value is 1.0 + self.theta = kwargs.get('theta',1.0) + + if self.gamma_g is not None: + warnings.warn("Primal Acceleration of PDHG: The function g is assumed to be strongly convex with positive parameter `gamma_g`. You need to be sure that gamma_g = {} is the correct strongly convex constant for g. ".format(self.gamma_g)) + + if self.gamma_fconj is not None: + warnings.warn("Dual Acceleration of PDHG: The convex conjugate of function f is assumed to be strongly convex with positive parameter `gamma_fconj`. You need to be sure that gamma_fconj = {} is the correct strongly convex constant".format(self.gamma_fconj)) + + self.configured = True + log.info("%s configured", self.__class__.__name__)
+ + + def _update_previous_solution(self): + """ + Swaps the references to current and previous solution based on the + :func:`~Algorithm.update_previous_solution` of the base class :class:`Algorithm`. + """ + tmp = self.x_old + self.x_old = self.x + self.x = tmp + +
+[docs] + def get_output(self): + " Returns the current solution. " + return self.x_old
+ + +
+[docs] + def update(self): + """Performs a single iteration of the PDHG algorithm""" + #calculate x-bar and store in self.x_tmp + self.x_old.sapyb((self.theta + 1.0), self.x, -self.theta, out=self.x_tmp) + + # Gradient ascent for the dual variable + self.operator.direct(self.x_tmp, out=self.y_tmp) + + self.y_tmp.sapyb(self.sigma, self.y, 1.0 , out=self.y_tmp) + + self.f.proximal_conjugate(self.y_tmp, self.sigma, out=self.y) + + # Gradient descent for the primal variable + self.operator.adjoint(self.y, out=self.x_tmp) + + self.x_tmp.sapyb(-self.tau, self.x_old, 1.0 , self.x_tmp) + + self.g.proximal(self.x_tmp, self.tau, out=self.x) + + # update_previous_solution() called after update by base class + #i.e current solution is now in x_old, previous solution is now in x + + # update the step sizes for special cases + self.update_step_sizes()
+ + +
+[docs] + def check_convergence(self): + """Check whether convergence criterion for PDHG is satisfied with scalar values of tau and sigma + + Returns + ------- + Boolean + True if convergence criterion is satisfied. False if not satisfied or convergence is unknown. + """ + if isinstance(self.tau, Number) and isinstance(self.sigma, Number): + if self.sigma * self.tau * self.operator.norm()**2 > 1: + warnings.warn("Convergence criterion of PDHG for scalar step-sizes is not satisfied.") + return False + return True + warnings.warn("Convergence criterion can only be checked for scalar values of tau and sigma.") + return False
+ + +
+[docs] + def set_step_sizes(self, sigma=None, tau=None): + """Sets sigma and tau step-sizes for the PDHG algorithm. The step sizes can be either scalar or array-objects. + + Parameters + ---------- + sigma : positive :obj:`float`, or `np.ndarray`, `DataContainer`, `BlockDataContainer`, optional, default=None + Step size for the dual problem. + tau : positive :obj:`float`, or `np.ndarray`, `DataContainer`, `BlockDataContainer`, optional, default=None + Step size for the primal problem. + + The user can set either, both or none. Values passed by the user will be accepted as long as they are positive numbers, + or correct shape array like objects. + """ + # Check acceptable values of the primal-dual step-sizes + if tau is not None: + if isinstance(tau, Number): + if tau <= 0: + raise ValueError("The step-sizes of PDHG must be positive, passed tau = {}".format(tau)) + elif tau.shape != self.operator.domain_geometry().shape: + raise ValueError(" The shape of tau = {0} is not the same as the shape of the domain_geometry = {1}".format(tau.shape, self.operator.domain_geometry().shape)) + + if sigma is not None: + if isinstance(sigma, Number): + if sigma <= 0: + raise ValueError("The step-sizes of PDHG are positive, passed sigma = {}".format(sigma)) + elif sigma.shape != self.operator.range_geometry().shape: + raise ValueError(" The shape of sigma = {0} is not the same as the shape of the range_geometry = {1}".format(sigma.shape, self.operator.range_geometry().shape)) + + # Default sigma and tau step-sizes + if tau is None and sigma is None: + self._sigma = 1.0/self.operator.norm() + self._tau = 1.0/self.operator.norm() + elif tau is not None and sigma is not None: + self._sigma = sigma + self._tau = tau + elif sigma is None and isinstance(tau, Number): + self._sigma = 1./(tau*self.operator.norm()**2) + self._tau = tau + elif tau is None and isinstance(sigma, Number): + self._sigma = sigma + self._tau = 1./(self.sigma*self.operator.norm()**2) + else: + raise NotImplementedError("If using arrays for sigma or tau both must arrays must be provided.")
+ + +
+[docs] + def update_step_sizes(self): + """ + Updates step sizes in the cases of primal or dual acceleration using the strongly convexity property. + The case where both functions are strongly convex is not available at the moment. + """ + # Update sigma and tau based on the strong convexity of G + if self.gamma_g is not None: + self.theta = 1.0/ np.sqrt(1 + 2 * self.gamma_g * self.tau) + self._tau *= self.theta + self._sigma /= self.theta + + # Update sigma and tau based on the strong convexity of F + # Following operations are reversed due to symmetry, sigma --> tau, tau -->sigma + if self.gamma_fconj is not None: + self.theta = 1.0 / np.sqrt(1 + 2 * self.gamma_fconj * self.sigma) + self._sigma *= self.theta + self._tau /= self.theta
+ + +
+[docs] + def update_objective(self): + """Evaluates the primal objective, the dual objective and the primal-dual gap.""" + self.operator.direct(self.x_old, out=self.y_tmp) + f_eval_p = self.f(self.y_tmp) + g_eval_p = self.g(self.x_old) + p1 = f_eval_p + g_eval_p + + self.operator.adjoint(self.y, out=self.x_tmp) + self.x_tmp.multiply(-1.0, out=self.x_tmp) + + f_eval_d = self.f.convex_conjugate(self.y) + g_eval_d = self.g.convex_conjugate(self.x_tmp) + d1 = f_eval_d + g_eval_d + + self.loss.append([p1, -d1, p1+d1])
+ + + @property + def objective(self): + return [x[0] for x in self.loss] + + @property + def dual_objective(self): + return [x[1] for x in self.loss] + + @property + def primal_dual_gap(self): + return [x[2] for x in self.loss]
+ +
+ +
+ + + + + +
+ +
+
+
+ +
+ + + + +
+
+ +
+ +
+
+
+ + + + + +
+ + +
+ + \ No newline at end of file diff --git a/v24.2.0/_modules/cil/optimisation/algorithms/SIRT/index.html b/v24.2.0/_modules/cil/optimisation/algorithms/SIRT/index.html new file mode 100644 index 0000000000..a3a45cafca --- /dev/null +++ b/v24.2.0/_modules/cil/optimisation/algorithms/SIRT/index.html @@ -0,0 +1,762 @@ + + + + + + + + + + cil.optimisation.algorithms.SIRT — CIL 24.2.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + +
+ +
+ + + + + +
+
+ + + + + + +
+ + + + + + + + + + + + + +
+ +
+ + +
+
+ +
+
+ +
+ +
+ + +
+ +
+ + +
+
+ + + + + +
+ +

Source code for cil.optimisation.algorithms.SIRT

+#  Copyright 2019 United Kingdom Research and Innovation
+#  Copyright 2019 The University of Manchester
+#
+#  Licensed under the Apache License, Version 2.0 (the "License");
+#  you may not use this file except in compliance with the License.
+#  You may obtain a copy of the License at
+#
+#      http://www.apache.org/licenses/LICENSE-2.0
+#
+#  Unless required by applicable law or agreed to in writing, software
+#  distributed under the License is distributed on an "AS IS" BASIS,
+#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+#  See the License for the specific language governing permissions and
+#  limitations under the License.
+#
+# Authors:
+# CIL Developers, listed at: https://github.com/TomographicImaging/CIL/blob/master/NOTICE.txt
+
+from cil.optimisation.algorithms import Algorithm
+from cil.optimisation.functions import IndicatorBox
+from cil.framework import BlockDataContainer
+from cil.utilities.errors import InPlaceError
+import numpy
+import logging
+
+log = logging.getLogger(__name__)
+
+
+
+[docs] +class SIRT(Algorithm): + + r"""Simultaneous Iterative Reconstruction Technique, see :cite:`Kak2001`. + + Simultaneous Iterative Reconstruction Technique (SIRT) solves + the following problem + + .. math:: A x = b + + The SIRT algorithm is + + .. math:: x^{k+1} = \mathrm{proj}_{C}( x^{k} + \omega * D ( A^{T} ( M * (b - Ax^{k}) ) ) ), + + where, + :math:`M = \frac{1}{A*\mathbb{1}}`, + :math:`D = \frac{1}{A^{T}\mathbb{1}}`, + :math:`\mathbb{1}` is a :code:`DataContainer` of ones, + :math:`\mathrm{prox}_{C}` is the projection over a set :math:`C`, + and :math:`\omega` is the relaxation parameter. + + Parameters + ---------- + + initial : DataContainer, default = None + Starting point of the algorithm, default value = DataContainer in the domain of the operator allocated with zeros. + operator : LinearOperator + The operator A. + data : DataContainer + The data b. + lower : :obj:`float`, default = None + Lower bound constraint + upper : :obj:`float`, default = None + Upper bound constraint + constraint : Function, default = None + A function with :code:`proximal` method, e.g., :class:`.IndicatorBox` function and :meth:`.IndicatorBox.proximal`, + or :class:`.TotalVariation` function and :meth:`.TotalVariation.proximal`. + + kwargs: + Keyword arguments used from the base class :class:`.Algorithm`. + + Note + ---- + If :code:`constraint` is not passed, :code:`lower` and :code:`upper` are used to create an :class:`.IndicatorBox` and apply its :code:`proximal`. + + If :code:`constraint` is passed, :code:`proximal` method is required to be implemented. + + Note + ---- + + The preconditioning arrays (weights) :code:`M` and :code:`D` used in SIRT are defined as + + .. math:: M = \frac{1}{A*\mathbb{1}} = \frac{1}{\sum_{j}a_{i,j}} + + .. math:: D = \frac{1}{A*\mathbb{1}} = \frac{1}{\sum_{i}a_{i,j}} + + + Examples + -------- + .. math:: \underset{x}{\mathrm{argmin}} \frac{1}{2}\| x - d\|^{2} + + >>> sirt = SIRT(initial = ig.allocate(0), operator = A, data = d, max_iteration = 5) + + """ + + + def __init__(self, initial=None, operator=None, data=None, lower=None, upper=None, constraint=None, **kwargs): + + super(SIRT, self).__init__(**kwargs) + + self.set_up(initial=initial, operator=operator, data=data, lower=lower, upper=upper, constraint=constraint) + +
+[docs] + def set_up(self, initial, operator, data, lower=None, upper=None, constraint=None): + """Initialisation of the algorithm""" + log.info("%s setting up", self.__class__.__name__) + + warning = 0 + if operator is None: + warning += 1 + msg = "an `operator`" + if data is None: + warning += 10 + if warning > 10: + msg += " and `data`" + else: + msg = "`data`" + if warning > 0: + raise ValueError(f'You must pass {msg} to the SIRT algorithm' ) + + if initial is None: + initial = operator.domain_geometry().allocate(0) + + self.x = initial.copy() + self.tmp_x = self.x * 0.0 + self.operator = operator + self.data = data + + self.r = data.copy() + + self.constraint = constraint + if constraint is None: + if lower is not None or upper is not None: + # IndicatorBox accepts None for lower and/or upper + self.constraint=IndicatorBox(lower=lower,upper=upper) + + self._relaxation_parameter = 1 + + # Set up scaling matrices D and M. + self._set_up_weights() + + self.configured = True + log.info("%s configured", self.__class__.__name__)
+ + + @property + def relaxation_parameter(self): + return self._relaxation_parameter + + @property + def D(self): + return self._Dscaled / self._relaxation_parameter + +
+[docs] + def set_relaxation_parameter(self, value=1.0): + """Set the relaxation parameter :math:`\omega` + + Parameters + ---------- + value : float + The relaxation parameter to be applied to the update. Must be between 0 and 2 to guarantee asymptotic convergence. + + """ + if value <= 0 or value >= 2: + raise ValueError("Expected relaxation parameter to be in range 0-2. Got {}".format(value)) + + self._relaxation_parameter = value + self._set_up_weights() + self._Dscaled *= self._relaxation_parameter
+ + + + def _set_up_weights(self): + self.M = 1./self.operator.direct(self.operator.domain_geometry().allocate(value=1.0)) + self._Dscaled = 1./self.operator.adjoint(self.operator.range_geometry().allocate(value=1.0)) + + for arr in [self.M, self._Dscaled]: + self._remove_nan_or_inf(arr, replace_with=1.0) + + + def _remove_nan_or_inf(self, datacontainer, replace_with=1.0): + """Replace nan and inf in datacontainer with a given value. + + Parameters: + ------------- + + datacontainer: DataContainer, BlockDataContainer + + replace_with: float, default 1.0 + Value to replace elements that evaluate to NaN or inf + + + In case the input datacontainer is a :code:`BlockDataContainer` the substitution is executed for each container in the :code:`BlockDataContainer`. + """ + if isinstance(datacontainer, BlockDataContainer): + for block in datacontainer.containers: + self._remove_nan_or_inf(block, replace_with=replace_with) + return + tmp = datacontainer.as_array() + numpy.nan_to_num(tmp, copy=False, nan=replace_with, posinf=replace_with, neginf=replace_with) + datacontainer.fill(tmp) + + +
+[docs] + def update(self): + + r""" Performs a single iteration of the SIRT algorithm + + .. math:: x^{k+1} = \mathrm{proj}_{C}( x^{k} + \omega * D ( A^{T} ( M * (b - Ax) ) ) ) + + """ + + # self.r = self.data - self.operator.direct(self.x) + self.operator.direct(self.x, out=self.r) + self.r.sapyb(-1, self.data, 1.0, out=self.r) + + # self.D is prescaled by _relaxation_parameter (default 1) + self.r *= self.M + self.operator.adjoint(self.r, out=self.tmp_x) + self.x.sapyb(1.0, self.tmp_x, self._Dscaled, out=self.x) + + if self.constraint is not None: + try: + self.constraint.proximal(self.x, tau=1, out=self.x) + except InPlaceError: + self.x=self.constraint.proximal(self.x, tau=1)
+ + +
+[docs] + def update_objective(self): + r"""Returns the objective + + .. math:: \frac{1}{2}\|A x - b\|^{2} + + """ + self.loss.append(0.5*self.r.squared_norm())
+
+ +
+ +
+ + + + + +
+ +
+
+
+ +
+ + + + +
+
+ +
+ +
+
+
+ + + + + +
+ + +
+ + \ No newline at end of file diff --git a/v24.2.0/_modules/cil/optimisation/algorithms/SPDHG/index.html b/v24.2.0/_modules/cil/optimisation/algorithms/SPDHG/index.html new file mode 100644 index 0000000000..5c1c2fbdc0 --- /dev/null +++ b/v24.2.0/_modules/cil/optimisation/algorithms/SPDHG/index.html @@ -0,0 +1,776 @@ + + + + + + + + + + cil.optimisation.algorithms.SPDHG — CIL 24.2.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + +
+ +
+ + + + + +
+
+ + + + + + +
+ + + + + + + + + + + + + +
+ +
+ + +
+
+ +
+
+ +
+ +
+ + +
+ +
+ + +
+
+ + + + + +
+ +

Source code for cil.optimisation.algorithms.SPDHG

+#  Copyright 2020 United Kingdom Research and Innovation
+#  Copyright 2020 The University of Manchester
+#
+#  Licensed under the Apache License, Version 2.0 (the "License");
+#  you may not use this file except in compliance with the License.
+#  You may obtain a copy of the License at
+#
+#      http://www.apache.org/licenses/LICENSE-2.0
+#
+#  Unless required by applicable law or agreed to in writing, software
+#  distributed under the License is distributed on an "AS IS" BASIS,
+#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+#  See the License for the specific language governing permissions and
+#  limitations under the License.
+#
+# Authors:
+# CIL Developers, listed at: https://github.com/TomographicImaging/CIL/blob/master/NOTICE.txt
+# Claire Delplancke (University of Bath)
+
+from cil.optimisation.algorithms import Algorithm
+import numpy as np
+import logging
+
+log = logging.getLogger(__name__)
+
+
+
+[docs] +class SPDHG(Algorithm): + r'''Stochastic Primal Dual Hybrid Gradient + + Problem: + + .. math:: + + \min_{x} f(Kx) + g(x) = \min_{x} \sum f_i(K_i x) + g(x) + + Parameters + ---------- + f : BlockFunction + Each must be a convex function with a "simple" proximal method of its conjugate + g : Function + A convex function with a "simple" proximal + operator : BlockOperator + BlockOperator must contain Linear Operators + tau : positive float, optional, default=None + Step size parameter for Primal problem + sigma : list of positive float, optional, default=None + List of Step size parameters for Dual problem + initial : DataContainer, optional, default=None + Initial point for the SPDHG algorithm + prob : list of floats, optional, default=None + List of probabilities. If None each subset will have probability = 1/number of subsets + gamma : float + parameter controlling the trade-off between the primal and dual step sizes + + **kwargs: + norms : list of floats + precalculated list of norms of the operators + + Example + ------- + + Example of usage: See https://github.com/vais-ral/CIL-Demos/blob/master/Tomography/Simulated/Single%20Channel/PDHG_vs_SPDHG.py + + + Note + ---- + + Convergence is guaranteed provided that [2, eq. (12)]: + + .. math:: + + \|\sigma[i]^{1/2} * K[i] * tau^{1/2} \|^2 < p_i for all i + + Note + ---- + + Notation for primal and dual step-sizes are reversed with comparison + to PDHG.py + + Note + ---- + + this code implements serial sampling only, as presented in [2] + (to be extended to more general case of [1] as future work) + + References + ---------- + + [1]"Stochastic primal-dual hybrid gradient algorithm with arbitrary + sampling and imaging applications", + Chambolle, Antonin, Matthias J. Ehrhardt, Peter Richtárik, and Carola-Bibiane Schonlieb, + SIAM Journal on Optimization 28, no. 4 (2018): 2783-2808. + + [2]"Faster PET reconstruction with non-smooth priors by randomization and preconditioning", + Matthias J Ehrhardt, Pawel Markiewicz and Carola-Bibiane Schönlieb, + Physics in Medicine & Biology, Volume 64, Number 22, 2019. + ''' + + def __init__(self, f=None, g=None, operator=None, tau=None, sigma=None, + initial=None, prob=None, gamma=1.,**kwargs): + + super(SPDHG, self).__init__(**kwargs) + + + if f is not None and operator is not None and g is not None: + self.set_up(f=f, g=g, operator=operator, tau=tau, sigma=sigma, + initial=initial, prob=prob, gamma=gamma, norms=kwargs.get('norms', None)) + + +
+[docs] + def set_up(self, f, g, operator, tau=None, sigma=None, \ + initial=None, prob=None, gamma=1., norms=None): + + '''set-up of the algorithm + Parameters + ---------- + f : BlockFunction + Each must be a convex function with a "simple" proximal method of its conjugate + g : Function + A convex function with a "simple" proximal + operator : BlockOperator + BlockOperator must contain Linear Operators + tau : positive float, optional, default=None + Step size parameter for Primal problem + sigma : list of positive float, optional, default=None + List of Step size parameters for Dual problem + initial : DataContainer, optional, default=None + Initial point for the SPDHG algorithm + prob : list of floats, optional, default=None + List of probabilities. If None each subset will have probability = 1/number of subsets + gamma : float + parameter controlling the trade-off between the primal and dual step sizes + + **kwargs: + norms : list of floats + precalculated list of norms of the operators + ''' + log.info("%s setting up", self.__class__.__name__) + # algorithmic parameters + self.f = f + self.g = g + self.operator = operator + self.tau = tau + self.sigma = sigma + self.prob = prob + self.ndual_subsets = len(self.operator) + self.gamma = gamma + self.rho = .99 + + if self.prob is None: + self.prob = [1/self.ndual_subsets] * self.ndual_subsets + + + if self.sigma is None: + if norms is None: + # Compute norm of each sub-operator + norms = [operator.get_item(i,0).norm() for i in range(self.ndual_subsets)] + self.norms = norms + self.sigma = [self.gamma * self.rho / ni for ni in norms] + if self.tau is None: + self.tau = min( [ pi / ( si * ni**2 ) for pi, ni, si in zip(self.prob, norms, self.sigma)] ) + self.tau *= (self.rho / self.gamma) + + # initialize primal variable + if initial is None: + self.x = self.operator.domain_geometry().allocate(0) + else: + self.x = initial.copy() + + self.x_tmp = self.operator.domain_geometry().allocate(0) + + # initialize dual variable to 0 + self.y_old = operator.range_geometry().allocate(0) + + # initialize variable z corresponding to back-projected dual variable + self.z = operator.domain_geometry().allocate(0) + self.zbar= operator.domain_geometry().allocate(0) + # relaxation parameter + self.theta = 1 + self.configured = True + log.info("%s configured", self.__class__.__name__)
+ + +
+[docs] + def update(self): + # Gradient descent for the primal variable + # x_tmp = x - tau * zbar + self.x.sapyb(1., self.zbar, -self.tau, out=self.x_tmp) + + self.g.proximal(self.x_tmp, self.tau, out=self.x) + + # Choose subset + i = int(np.random.choice(len(self.sigma), 1, p=self.prob)) + + # Gradient ascent for the dual variable + # y_k = y_old[i] + sigma[i] * K[i] x + y_k = self.operator[i].direct(self.x) + + y_k.sapyb(self.sigma[i], self.y_old[i], 1., out=y_k) + + y_k = self.f[i].proximal_conjugate(y_k, self.sigma[i]) + + # Back-project + # x_tmp = K[i]^*(y_k - y_old[i]) + y_k.subtract(self.y_old[i], out=self.y_old[i]) + + self.operator[i].adjoint(self.y_old[i], out = self.x_tmp) + # Update backprojected dual variable and extrapolate + # zbar = z + (1 + theta/p[i]) x_tmp + + # z = z + x_tmp + self.z.add(self.x_tmp, out =self.z) + # zbar = z + (theta/p[i]) * x_tmp + + self.z.sapyb(1., self.x_tmp, self.theta / self.prob[i], out = self.zbar) + + # save previous iteration + self.save_previous_iteration(i, y_k)
+ + +
+[docs] + def update_objective(self): + # p1 = self.f(self.operator.direct(self.x)) + self.g(self.x) + p1 = 0. + for i,op in enumerate(self.operator.operators): + p1 += self.f[i](op.direct(self.x)) + p1 += self.g(self.x) + + d1 = - self.f.convex_conjugate(self.y_old) + tmp = self.operator.adjoint(self.y_old) + tmp *= -1 + d1 -= self.g.convex_conjugate(tmp) + + self.loss.append([p1, d1, p1-d1])
+ + + @property + def objective(self): + '''alias of loss''' + return [x[0] for x in self.loss] + @property + def dual_objective(self): + return [x[1] for x in self.loss] + + @property + def primal_dual_gap(self): + return [x[2] for x in self.loss] + def save_previous_iteration(self, index, y_current): + self.y_old[index].fill(y_current)
+ +
+ +
+ + + + + +
+ +
+
+
+ +
+ + + + +
+
+ +
+ +
+
+
+ + + + + +
+ + +
+ + \ No newline at end of file diff --git a/v24.2.0/_modules/cil/optimisation/functions/ApproximateGradientSumFunction/index.html b/v24.2.0/_modules/cil/optimisation/functions/ApproximateGradientSumFunction/index.html new file mode 100644 index 0000000000..92cfd216d5 --- /dev/null +++ b/v24.2.0/_modules/cil/optimisation/functions/ApproximateGradientSumFunction/index.html @@ -0,0 +1,775 @@ + + + + + + + + + + cil.optimisation.functions.ApproximateGradientSumFunction — CIL 24.2.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + +
+ +
+ + + + + +
+
+ + + + + + +
+ + + + + + + + + + + + + +
+ +
+ + +
+
+ +
+
+ +
+ +
+ + +
+ +
+ + +
+
+ + + + + +
+ +

Source code for cil.optimisation.functions.ApproximateGradientSumFunction

+#  Copyright 2024 United Kingdom Research and Innovation
+#  Copyright 2024 The University of Manchester
+#
+#  Licensed under the Apache License, Version 2.0 (the "License");
+#  you may not use this file except in compliance with the License.
+#  You may obtain a copy of the License at
+#
+#      http://www.apache.org/licenses/LICENSE-2.0
+#
+#  Unless required by applicable law or agreed to in writing, software
+#  distributed under the License is distributed on an "AS IS" BASIS,
+#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+#  See the License for the specific language governing permissions and
+#  limitations under the License.
+#
+# Authors:
+# - CIL Developers, listed at: https://github.com/TomographicImaging/CIL/blob/master/NOTICE.txt
+# - Daniel Deidda (National Physical Laboratory, UK)
+# - Claire Delplancke (Electricite de France, Research and Development)
+# - Ashley Gillman (Australian e-Health Res. Ctr., CSIRO, Brisbane, Queensland, Australia)
+# - Zeljko Kereta (Department of Computer Science, University College London, UK)
+# - Evgueni Ovtchinnikov (STFC - UKRI)
+# - Georg Schramm (Department of Imaging and Pathology, Division of Nuclear Medicine, KU Leuven, Leuven, Belgium)
+
+
+
+from cil.optimisation.functions import SumFunction
+from cil.optimisation.utilities import Sampler
+import numbers
+from abc import ABC, abstractmethod
+import numpy as np
+
+
+
+[docs] +class ApproximateGradientSumFunction(SumFunction, ABC): + r"""ApproximateGradientSumFunction represents the following sum + + .. math:: \sum_{i=0}^{n-1} f_{i} = (f_{0} + f_{2} + ... + f_{n-1}) + + where there are :math:`n` functions. This function class has two ways of calling gradient + + - `full_gradient` calculates the gradient of the sum :math:`\sum_{i=0}^{n-1} \nabla f_{i}` + - `gradient` calls an `approximate_gradient` function which may be less computationally expensive to calculate than the full gradient + + + + This class is an abstract class. + + Parameters + ----------- + functions : `list` of functions + A list of functions: :math:`[f_{0}, f_{2}, ..., f_{n-1}]`. Each function is assumed to be smooth with an implemented :func:`~Function.gradient` method. All functions must have the same domain. The number of functions (equivalently the length of the list) must be strictly greater than 1. + sampler: An instance of a CIL Sampler class ( :meth:`~optimisation.utilities.sampler`) or of another class which has a :code:`__next__` function implemented to output integers in :math:`{0,...,n-1}`. + This sampler is called each time :code:`gradient` is called and sets the internal :code:`function_num` passed to the :code:`approximate_gradient` function. Default is :code:`Sampler.random_with_replacement(len(functions))`. + + Note + ----- + We ensure that the approximate gradient is of a similar order of magnitude to the full gradient calculation. For example, in the :code:`SGFunction` we approximate the full gradient by :math:`n\nabla f_i` for an index :math:`i` given by the sampler. + The multiplication by :math:`n` is a choice to more easily allow comparisons between stochastic and non-stochastic methods and between stochastic methods with varying numbers of subsets. + + Note + ----- + Each time :code:`gradient` is called the class keeps track of which functions have been used to calculate the gradient. This may be useful for debugging or plotting after using this function in an iterative algorithm. + + - The property :code:`data_passes_indices` is a list of lists holding the indices of the functions that are processed in each call of `gradient`. This list is updated each time `gradient` is called by appending a list of the indices of the functions used to calculate the gradient. + - The property :code:`data_passes` is a list of floats that holds the amount of data that has been processed up until each call of `gradient`. This list is updated each time `gradient` is called by appending the proportion of the data used when calculating the approximate gradient since the class was initialised (a full gradient calculation would be 1 full data pass). Warning: if your functions do not contain an equal `amount` of data, for example your data was not partitioned into equal batches, then you must first use the `set_data_partition_weights" function for this to be accurate. + + + + Note + ---- + The :meth:`~ApproximateGradientSumFunction.gradient` returns the approximate gradient depending on an index provided by the :code:`sampler` method. + + Example + ------- + This class is an abstract base class, so we give an example using the SGFunction child class. + + Consider the objective is to minimise: + + .. math:: \sum_{i=0}^{n-1} f_{i}(x) = \sum_{i=0}^{n-1}\|A_{i} x - b_{i}\|^{2} + + >>> list_of_functions = [LeastSquares(Ai, b=bi)] for Ai,bi in zip(A_subsets, b_subsets)) + >>> f = ApproximateGradientSumFunction(list_of_functions) + + >>> list_of_functions = [LeastSquares(Ai, b=bi)] for Ai,bi in zip(A_subsets, b_subsets)) + >>> sampler = Sampler.sequential(len(list_of_functions)) + >>> f = SGFunction(list_of_functions, sampler=sampler) + >>> f.full_gradient(x) + This will return :math:`\sum_{i=0}^{n-1} \nabla f_{i}(x)` + >>> f.gradient(x) + As per the approximate gradient implementation in the SGFunction this will return :math:`\nabla f_{0}`. The choice of the `0` index is because we chose a `sequential` sampler and this is the first time we called `gradient`. + >>> f.gradient(x) + This will return :math:`\nabla f_{1}` because we chose a `sequential` sampler and this is the second time we called `gradient`. + + + + """ + + def __init__(self, functions, sampler=None): + + if sampler is None: + sampler = Sampler.random_with_replacement(len(functions)) + + if not isinstance(functions, list): + raise TypeError("Input to functions should be a list of functions") + if not hasattr(sampler, "next"): + raise ValueError('The provided sampler must have a `next` method') + + self.sampler = sampler + + self._partition_weights = [1 / len(functions)] * len(functions) + + self._data_passes_indices = [] + + super(ApproximateGradientSumFunction, self).__init__(*functions) + + def __call__(self, x): + r"""Returns the value of the sum of functions at :math:`x`. + + .. math:: (f_{0} + f_{1} + ... + f_{n-1})(x) = f_{0}(x) + f_{1}(x) + ... + f_{n-1}(x) + + Parameters + ---------- + x : DataContainer + + -------- + float + the value of the SumFunction at x + + + """ + return super(ApproximateGradientSumFunction, self).__call__(x) + +
+[docs] + def full_gradient(self, x, out=None): + r"""Returns the value of the full gradient of the sum of functions at :math:`x`. + + .. math:: \nabla_x(f_{0} + f_{1} + ... + f_{n-1})(x) = \nabla_xf_{0}(x) + \nabla_xf_{1}(x) + ... + \nabla_xf_{n-1}(x) + + Parameters + ---------- + x : DataContainer + out: return DataContainer, if `None` a new DataContainer is returned, default `None`. + + Returns + -------- + DataContainer + The value of the gradient of the sum function at x or nothing if `out` + """ + + return super(ApproximateGradientSumFunction, self).gradient(x, out=out)
+ + +
+[docs] + @abstractmethod + def approximate_gradient(self, x, function_num, out=None): + """ Returns the approximate gradient at a given point :code:`x` given a `function_number` in {0,...,len(functions)-1}. + + Parameters + ---------- + x : DataContainer + out: return DataContainer, if `None` a new DataContainer is returned, default `None`. + function_num: `int` + Between 0 and the number of functions in the list + Returns + -------- + DataContainer + the value of the approximate gradient of the sum function at :code:`x` given a `function_number` in {0,...,len(functions)-1} + """ + pass
+ + +
+[docs] + def gradient(self, x, out=None): + """ Selects a random function using the `sampler` and then calls the approximate gradient at :code:`x` + + Parameters + ---------- + x : DataContainer + out: return DataContainer, if `None` a new DataContainer is returned, default `None`. + + Returns + -------- + DataContainer + the value of the approximate gradient of the sum function at :code:`x` + """ + + self.function_num = self.sampler.next() + + self._update_data_passes_indices([self.function_num]) + + + + return self.approximate_gradient(x, self.function_num, out=out)
+ + + + def _update_data_passes_indices(self, indices): + """ Internal function that updates the list of lists containing the function indices used to calculate the approximate gradient. + Parameters + ---------- + indices: list + List of indices used to calculate the approximate gradient in a given iteration + + """ + self._data_passes_indices.append(indices) + +
+[docs] + def set_data_partition_weights(self, weights): + """ Setter for the partition weights used to calculate the data passes + + Parameters + ---------- + weights: list of positive floats that sum to one. + The proportion of the data held in each function. Equivalent to the proportions that you partitioned your data into. + + """ + if len(weights) != len(self.functions): + raise ValueError( + 'The provided weights must be a list the same length as the number of functions') + + if abs(sum(weights) - 1) > 1e-6: + raise ValueError('The provided weights must sum to one') + + if any(np.array(weights) < 0): + raise ValueError( + 'The provided weights must be greater than or equal to zero') + + self._partition_weights = weights
+ + + @property + def data_passes_indices(self): + """ The property :code:`data_passes_indices` is a list of lists holding the indices of the functions that are processed in each call of `gradient`. This list is updated each time `gradient` is called by appending a list of the indices of the functions used to calculate the gradient. """ + return self._data_passes_indices + + @property + def data_passes(self): + """ The property :code:`data_passes` is a list of floats that holds the amount of data that has been processed up until each call of `gradient`. This list is updated each time `gradient` is called by appending the proportion of the data used when calculating the approximate gradient since the class was initialised (a full gradient calculation would be 1 full data pass). Warning: if your functions do not contain an equal `amount` of data, for example your data was not partitioned into equal batches, then you must first use the `set_data_partition_weights" function for this to be accurate. """ + data_passes = [] + for el in self.data_passes_indices: + try: + data_passes.append(data_passes[-1]) + except IndexError: + data_passes.append(0) + for i in el: + data_passes[-1] += self._partition_weights[i] + return data_passes
+ +
+ +
+ + + + + +
+ +
+
+
+ +
+ + + + +
+
+ +
+ +
+
+
+ + + + + +
+ + +
+ + \ No newline at end of file diff --git a/v24.2.0/_modules/cil/optimisation/functions/BlockFunction/index.html b/v24.2.0/_modules/cil/optimisation/functions/BlockFunction/index.html new file mode 100644 index 0000000000..c1339a843c --- /dev/null +++ b/v24.2.0/_modules/cil/optimisation/functions/BlockFunction/index.html @@ -0,0 +1,741 @@ + + + + + + + + + + cil.optimisation.functions.BlockFunction — CIL 24.2.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + +
+ +
+ + + + + +
+
+ + + + + + +
+ + + + + + + + + + + + + +
+ +
+ + +
+
+ +
+
+ +
+ +
+ + +
+ +
+ + +
+
+ + + + + +
+ +

Source code for cil.optimisation.functions.BlockFunction

+#  Copyright 2019 United Kingdom Research and Innovation
+#  Copyright 2019 The University of Manchester
+#
+#  Licensed under the Apache License, Version 2.0 (the "License");
+#  you may not use this file except in compliance with the License.
+#  You may obtain a copy of the License at
+#
+#      http://www.apache.org/licenses/LICENSE-2.0
+#
+#  Unless required by applicable law or agreed to in writing, software
+#  distributed under the License is distributed on an "AS IS" BASIS,
+#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+#  See the License for the specific language governing permissions and
+#  limitations under the License.
+#
+# Authors:
+# CIL Developers, listed at: https://github.com/TomographicImaging/CIL/blob/master/NOTICE.txt
+
+from cil.optimisation.functions import Function
+from cil.framework import BlockDataContainer
+from numbers import Number
+
+
+[docs] +class BlockFunction(Function): + + r""" BlockFunction represents a *separable sum* function :math:`F` defined as + + .. math:: F:X_{1}\times X_{2}\cdots\times X_{m} \rightarrow (-\infty, \infty] + + where :math:`F` is the separable sum of functions :math:`(f_{i})_{i=1}^{m}`, + + .. math:: F(x_{1}, x_{2}, \cdots, x_{m}) = \overset{m}{\underset{i=1}{\sum}}f_{i}(x_{i}), \mbox{ with } f_{i}: X_{i} \rightarrow (-\infty, \infty]. + + A nice property (due to it's separability structure) is that the proximal operator + can be decomposed along the proximal operators of each function :math:`f_{i}`. + + .. math:: \mathrm{prox}_{\tau F}(x) = ( \mathrm{prox}_{\tau f_{i}}(x_{i}) )_{i=1}^{m} + + In addition, if :math:`\tau := (\tau_{1},\dots,\tau_{m})`, then + + .. math:: \mathrm{prox}_{\tau F}(x) = ( \mathrm{prox}_{\tau_{i} f_{i}}(x_{i}) )_{i=1}^{m} + + """ + +
+[docs] + def __init__(self, *functions): + + super(BlockFunction, self).__init__() + self.functions = functions + self.length = len(self.functions)
+ + + @property + def L(self): + # compute Lipschitz constant if possible + tmp_L = 0 + for func in self.functions: + if func.L is not None: + tmp_L += func.L + else: + tmp_L = None + break + return tmp_L + +
+[docs] + def __call__(self, x): + + r""" Returns the value of the BlockFunction :math:`F` + + .. math:: F(x) = \overset{m}{\underset{i=1}{\sum}}f_{i}(x_{i}), \mbox{ where } x = (x_{1}, x_{2}, \cdots, x_{m}), \quad i = 1,2,\dots,m + + Parameter: + + x : BlockDataContainer and must have as many rows as self.length + + returns ..math:: \sum(f_i(x_i)) + + """ + + if self.length != x.shape[0]: + raise ValueError('BlockFunction and BlockDataContainer have incompatible size') + t = 0 + for i in range(x.shape[0]): + t += self.functions[i](x.get_item(i)) + return t
+ + +
+[docs] + def convex_conjugate(self, x): + + r"""Returns the value of the convex conjugate of the BlockFunction at :math:`x^{*}`. + + .. math:: F^{*}(x^{*}) = \overset{m}{\underset{i=1}{\sum}}f_{i}^{*}(x^{*}_{i}) + + Parameter: + + x : BlockDataContainer and must have as many rows as self.length + + """ + + if self.length != x.shape[0]: + raise ValueError('BlockFunction and BlockDataContainer have incompatible size') + t = 0 + for i in range(x.shape[0]): + t += self.functions[i].convex_conjugate(x.get_item(i)) + return t
+ + +
+[docs] + def proximal(self, x, tau, out = None): + + r"""Proximal operator of the BlockFunction at x: + + .. math:: \mathrm{prox}_{\tau F}(x) = (\mathrm{prox}_{\tau f_{i}}(x_{i}))_{i=1}^{m} + + Parameter: + + x : BlockDataContainer and must have as many rows as self.length + """ + if self.length != x.shape[0]: + raise ValueError('BlockFunction and BlockDataContainer have incompatible size') + + if out is None: + out = [None]*self.length + if isinstance(tau, Number): + for i in range(self.length): + out[i] = self.functions[i].proximal(x.get_item(i), tau) + else: + for i in range(self.length): + out[i] = self.functions[i].proximal(x.get_item(i), tau.get_item(i)) + + return BlockDataContainer(*out) + else: + if isinstance(tau, Number): + for i in range(self.length): + self.functions[i].proximal(x.get_item(i), tau, out[i]) + else: + for i in range(self.length): + self.functions[i].proximal(x.get_item(i), tau.get_item(i), out[i]) + return out
+ + +
+[docs] + def gradient(self, x, out=None): + r"""Returns the value of the gradient of the BlockFunction function at x. + + .. math:: F'(x) = [f_{1}'(x_{1}), ... , f_{m}'(x_{m})] + + Parameter: + + x : BlockDataContainer and must have as many rows as self.length + + """ + + if self.length != x.shape[0]: + raise ValueError('BlockFunction and BlockDataContainer have incompatible size') + if out is None: + out = x.geometry.allocate(0) + for i in range(self.length): + self.functions[i].gradient(x.get_item(i), out=out.get_item(i)) + + return out
+ + +
+[docs] + def proximal_conjugate(self, x, tau, out = None): + r"""Proximal operator of the convex conjugate of BlockFunction at x: + + .. math:: \mathrm{prox}_{\tau F^{*}}(x) = (\mathrm{prox}_{\tau f^{*}_{i}}(x^{*}_{i}))_{i=1}^{m} + + Parameter: + + x : BlockDataContainer and must have as many rows as self.length + """ + if self.length != x.shape[0]: + raise ValueError('BlockFunction and BlockDataContainer have incompatible size') + + if out is not None: + if isinstance(tau, Number): + for i in range(self.length): + self.functions[i].proximal_conjugate(x.get_item(i), tau, out=out.get_item(i)) + else: + for i in range(self.length): + self.functions[i].proximal_conjugate(x.get_item(i), tau.get_item(i),out=out.get_item(i)) + return out + else: + out = [None]*self.length + if isinstance(tau, Number): + for i in range(self.length): + out[i] = self.functions[i].proximal_conjugate(x.get_item(i), tau) + else: + for i in range(self.length): + out[i] = self.functions[i].proximal_conjugate(x.get_item(i), tau.get_item(i)) + + return BlockDataContainer(*out)
+ + + def __getitem__(self, row): + return self.functions[row] + +
+[docs] + def __rmul__(self, other): + '''Define multiplication with a scalar + + :param other: number + Returns a new `BlockFunction`_ containing the product of the scalar with all the functions in the block + ''' + if not isinstance(other, Number): + raise NotImplemented + return BlockFunction( * [ other * el for el in self.functions] )
+
+ +
+ +
+ + + + + +
+ +
+
+
+ +
+ + + + +
+
+ +
+ +
+
+
+ + + + + +
+ + +
+ + \ No newline at end of file diff --git a/v24.2.0/_modules/cil/optimisation/functions/Function/index.html b/v24.2.0/_modules/cil/optimisation/functions/Function/index.html new file mode 100644 index 0000000000..4430ae62c1 --- /dev/null +++ b/v24.2.0/_modules/cil/optimisation/functions/Function/index.html @@ -0,0 +1,1472 @@ + + + + + + + + + + cil.optimisation.functions.Function — CIL 24.2.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + +
+ +
+ + + + + +
+
+ + + + + + +
+ + + + + + + + + + + + + +
+ +
+ + +
+
+ +
+
+ +
+ +
+ + +
+ +
+ + +
+
+ + + + + +
+ +

Source code for cil.optimisation.functions.Function

+
+#  Copyright 2019 United Kingdom Research and Innovation
+#  Copyright 2019 The University of Manchester
+#
+#  Licensed under the Apache License, Version 2.0 (the "License");
+#  you may not use this file except in compliance with the License.
+#  You may obtain a copy of the License at
+#
+#      http://www.apache.org/licenses/LICENSE-2.0
+#
+#  Unless required by applicable law or agreed to in writing, software
+#  distributed under the License is distributed on an "AS IS" BASIS,
+#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+#  See the License for the specific language governing permissions and
+#  limitations under the License.
+#
+# Authors:
+# CIL Developers, listed at: https://github.com/TomographicImaging/CIL/blob/master/NOTICE.txt
+
+import warnings
+
+from numbers import Number
+import numpy as np
+from functools import reduce
+from cil.utilities.errors import InPlaceError
+
+
+
+[docs] +class Function(object): + + r""" Abstract class representing a function + + Parameters + ---------- + + L: number, positive, default None + Lipschitz constant of the gradient of the function F(x), when it is differentiable. + + Note + ----- + The Lipschitz of the gradient of the function is a positive real number, such that :math:`\|f'(x) - f'(y)\| \leq L \|x-y\|`, assuming :math:`f: IG \rightarrow \mathbb{R}` + + """ + + def __init__(self, L=None): + # overrides the type check to allow None as initial value + self._L = L + + def __call__(self, x): + + raise NotImplementedError + +
+[docs] + def gradient(self, x, out=None): + r"""Returns the value of the gradient of function :math:`F` evaluated at :math:`x`, if it is differentiable + + .. math:: F'(x) + + Parameters + ---------- + x : DataContainer + + out: return DataContainer, if None a new DataContainer is returned, default None. + + Returns + -------- + DataContainer, the value of the gradient of the function at x. + + """ + raise NotImplementedError
+ + +
+[docs] + def proximal(self, x, tau, out=None): + r"""Returns the proximal operator of function :math:`\tau F` evaluated at x + + .. math:: \text{prox}_{\tau F}(x) = \underset{z}{\text{argmin}} \frac{1}{2}\|z - x\|^{2} + \tau F(z) + + Parameters + ---------- + x : DataContainer + + tau: scalar + + out: return DataContainer, if None a new DataContainer is returned, default None. + + Returns + ------- + DataContainer, the proximal operator of the function at x with scalar :math:`\tau`. + + """ + raise NotImplementedError
+ + +
+[docs] + def convex_conjugate(self, x): + r""" Evaluation of the function F* at x, where F* is the convex conjugate of function F, + + .. math:: F^{*}(x^{*}) = \underset{x}{\sup} \langle x^{*}, x \rangle - F(x) + + Parameters + ---------- + x : DataContainer + + Returns + ------- + The value of the convex conjugate of the function at x. + + """ + raise NotImplementedError
+ + +
+[docs] + def proximal_conjugate(self, x, tau, out=None): + r"""Returns the proximal operator of the convex conjugate of function :math:`\tau F` evaluated at :math:`x^{*}` + + .. math:: \text{prox}_{\tau F^{*}}(x^{*}) = \underset{z^{*}}{\text{argmin}} \frac{1}{2}\|z^{*} - x^{*}\|^{2} + \tau F^{*}(z^{*}) + + Due to Moreau’s identity, we have an analytic formula to compute the proximal operator of the convex conjugate :math:`F^{*}` + + .. math:: \text{prox}_{\tau F^{*}}(x) = x - \tau\text{prox}_{\tau^{-1} F}(\tau^{-1}x) + + Parameters + ---------- + x : DataContainer + + tau: scalar + + out: return DataContainer, if None a new DataContainer is returned, default None. + + Returns + ------- + DataContainer, the value of the proximal operator of the convex conjugate at point :math:`x` for scalar :math:`\tau` or None if `out`. + + """ + if id(x) == id(out): + raise InPlaceError( + message="The proximal_conjugate of a CIL function cannot be used in place") + + try: + tmp = x + x.divide(tau, out=tmp) + except TypeError: + tmp = x.divide(tau, dtype=np.float32) + + val = self.proximal(tmp, 1.0/tau, out=out) + + if id(tmp) == id(x): + x.multiply(tau, out=x) + + val.sapyb(-tau, x, 1.0, out=val) + + return val
+ + + # Algebra for Function Class + + # Add functions + # Subtract functions + # Add/Substract with Scalar + # Multiply with Scalar + + def __add__(self, other): + """ Returns the sum of the functions. + + Cases: a) the sum of two functions :math:`(F_{1}+F_{2})(x) = F_{1}(x) + F_{2}(x)` + b) the sum of a function with a scalar :math:`(F_{1}+scalar)(x) = F_{1}(x) + scalar` + + """ + + if isinstance(other, Number): + return SumScalarFunction(self, other) + return SumFunction(self, other) + + def __radd__(self, other): + """ Making addition commutative. """ + return self + other + + def __sub__(self, other): + """ Returns the subtraction of the functions.""" + return self + (-1) * other + + def __rmul__(self, scalar): + """Returns a function multiplied by a scalar.""" + return ScaledFunction(self, scalar) + + def __mul__(self, scalar): + return self.__rmul__(scalar) + + def __neg__(self): + """ Return the negative of the function """ + return -1 * self + + +
+[docs] + def centered_at(self, center): + """ Returns a translated function, namely if we have a function :math:`F(x)` the center is at the origin. + TranslateFunction is :math:`F(x - b)` and the center is at point b. + + Parameters + ---------- + center: DataContainer + The point to center the function at. + + Returns + ------- + The translated function. + """ + + if center is None: + return self + else: + return TranslateFunction(self, center)
+ + + @property + def L(self): + r'''Lipschitz of the gradient of function f. + + L is positive real number, such that :math:`\|f'(x) - f'(y)\| \leq L\|x-y\|`, assuming :math:`f: IG \rightarrow \mathbb{R}`''' + return self._L + # return self._L + + @L.setter + def L(self, value): + '''Setter for Lipschitz constant''' + if isinstance(value, (Number,)) and value >= 0: + self._L = value + else: + raise TypeError('The Lipschitz constant is a real positive number')
+ + + +
+[docs] +class SumFunction(Function): + + r"""SumFunction represents the sum of :math:`n\geq2` functions + + .. math:: (F_{1} + F_{2} + ... + F_{n})(\cdot) = F_{1}(\cdot) + F_{2}(\cdot) + ... + F_{n}(\cdot) + + Parameters + ---------- + + *functions : Functions + Functions to set up a :class:`.SumFunction` + + Raises + ------ + ValueError + If the number of function is strictly less than 2. + + + Examples + -------- + .. math:: F(x) = \|x\|^{2} + \frac{1}{2}\|x - 1\|^{2} + + >>> from cil.optimisation.functions import L2NormSquared + >>> from cil.framework import ImageGeometry + >>> f1 = L2NormSquared() + >>> f2 = 0.5 * L2NormSquared(b = ig.allocate(1)) + >>> F = SumFunction(f1, f2) + + .. math:: F(x) = \sum_{i=1}^{50} \|x - i\|^{2} + + >>> F = SumFunction(*[L2NormSquared(b=i) for i in range(50)]) + + + """ + + def __init__(self, *functions): + + super(SumFunction, self).__init__() + if not len(functions): + raise IndexError('At least 1 function needed') + self.functions = functions + + @property + def L(self): + """Returns the Lipschitz constant for the SumFunction + + .. math:: L = \sum_{i} L_{i} + + where :math:`L_{i}` is the Lipschitz constant of the smooth function :math:`F_{i}`. + + """ + + L = 0. + for f in self.functions: + if f.L is not None: + L += f.L + else: + L = None + break + self._L = L + + return self._L + + @L.setter + def L(self, value): + # call base class setter + super(SumFunction, self.__class__).L.fset(self, value) + + @property + def Lmax(self): + """Returns the maximum Lipschitz constant for the SumFunction + + .. math:: L = \max_{i}\{L_{i}\} + + where :math:`L_{i}` is the Lipschitz constant of the smooth function :math:`F_{i}`. + + """ + + l = [] + for f in self.functions: + if f.L is not None: + l.append(f.L) + else: + l = None + break + self._Lmax = max(l) + + return self._Lmax + + @Lmax.setter + def Lmax(self, value): + # call base class setter + super(SumFunction, self.__class__).Lmax.fset(self, value) + + def __call__(self, x): + r"""Returns the value of the sum of functions evaluated at :math:`x`. + + .. math:: (F_{1} + F_{2} + ... + F_{n})(x) = F_{1}(x) + F_{2}(x) + ... + F_{n}(x) + + """ + ret = 0. + for f in self.functions: + ret += f(x) + return ret + +
+[docs] + def gradient(self, x, out=None): + r"""Returns the value of the sum of the gradient of functions evaluated at :math:`x`, if all of them are differentiable. + + .. math:: (F'_{1} + F'_{2} + ... + F'_{n})(x) = F'_{1}(x) + F'_{2}(x) + ... + F'_{n}(x) + + Parameters + ---------- + x : DataContainer + Point to evaluate the gradient at. + out: return DataContainer, if None a new DataContainer is returned, default None. + + Returns + ------- + DataContainer, the value of the sum of the gradients evaluated at point :math:`x`. + + """ + if out is not None and id(x) == id(out): + raise InPlaceError + + for i, f in enumerate(self.functions): + if i == 0: + ret = f.gradient(x, out=out) + else: + ret += f.gradient(x) + return ret
+ + + def __add__(self, other): + """ Addition for the SumFunction. + + * :code:`SumFunction` + :code:`SumFunction` is a :code:`SumFunction`. + + * :code:`SumFunction` + :code:`Function` is a :code:`SumFunction`. + + """ + + if isinstance(other, SumFunction): + functions = list(self.functions) + list(other.functions) + return SumFunction(*functions) + elif isinstance(other, Function): + functions = list(self.functions) + functions.append(other) + return SumFunction(*functions) + else: + return super(SumFunction, self).__add__(other) + + @property + def num_functions(self): + return len(self.functions)
+ + + +
+[docs] +class ScaledFunction(Function): + + r""" ScaledFunction represents the scalar multiplication with a Function. + + Let a function F then and a scalar :math:`\alpha`. + + If :math:`G(x) = \alpha F(x)` then: + + 1. :math:`G(x) = \alpha F(x)` ( __call__ method ) + 2. :math:`G'(x) = \alpha F'(x)` ( gradient method ) + 3. :math:`G^{*}(x^{*}) = \alpha F^{*}(\frac{x^{*}}{\alpha})` ( convex_conjugate method ) + 4. :math:`\text{prox}_{\tau G}(x) = \text{prox}_{(\tau\alpha) F}(x)` ( proximal method ) + + """ + + def __init__(self, function, scalar): + + super(ScaledFunction, self).__init__() + + if not isinstance(scalar, Number): + raise TypeError('expected scalar: got {}'.format(type(scalar))) + + self.scalar = scalar + self.function = function + + @property + def L(self): + if self._L is None: + if self.function.L is not None: + self._L = abs(self.scalar) * self.function.L + else: + self._L = None + return self._L + + @L.setter + def L(self, value): + # call base class setter + super(ScaledFunction, self.__class__).L.fset(self, value) + + @property + def scalar(self): + return self._scalar + + @scalar.setter + def scalar(self, value): + if isinstance(value, (Number, )): + self._scalar = value + else: + raise TypeError( + 'Expecting scalar type as a number type. Got {}'.format(type(value))) + + def __call__(self, x): + r"""Returns the value of the scaled function evaluated at :math:`x`. + + .. math:: G(x) = \alpha F(x) + + Parameters + ---------- + x : DataContainer + + Returns + -------- + DataContainer, the value of the scaled function. + """ + return self.scalar * self.function(x) + +
+[docs] + def convex_conjugate(self, x): + r"""Returns the convex conjugate of the scaled function. + + .. math:: G^{*}(x^{*}) = \alpha F^{*}(\frac{x^{*}}{\alpha}) + + Parameters + ---------- + x : DataContainer + + Returns + ------- + The value of the convex conjugate of the scaled function. + + """ + try: + x.divide(self.scalar, out=x) + tmp = x + except TypeError: + tmp = x.divide(self.scalar, dtype=np.float32) + + val = self.function.convex_conjugate(tmp) + + if id(tmp) == id(x): + x.multiply(self.scalar, out=x) + + return self.scalar * val
+ + +
+[docs] + def gradient(self, x, out=None): + r"""Returns the gradient of the scaled function evaluated at :math:`x`. + + .. math:: G'(x) = \alpha F'(x) + + Parameters + ---------- + x : DataContainer + Point to evaluate the gradient at. + out: return DataContainer, if None a new DataContainer is returned, default None. + + Returns + ------- + DataContainer, the value of the gradient of the scaled function evaluated at :math:`x`. + + """ + res = self.function.gradient(x, out=out) + res *= self.scalar + return res
+ + +
+[docs] + def proximal(self, x, tau, out=None): + r"""Returns the proximal operator of the scaled function, evaluated at :math:`x`. + + .. math:: \text{prox}_{\tau G}(x) = \text{prox}_{(\tau\alpha) F}(x) + + Parameters + ---------- + x : DataContainer + + tau: scalar + + out: return DataContainer, if None a new DataContainer is returned, default None. + + Returns + ------- + DataContainer, the proximal operator of the scaled function evaluated at :math:`x` with scalar :math:`\tau`. + + """ + + return self.function.proximal(x, tau*self.scalar, out=out)
+ + +
+[docs] + def proximal_conjugate(self, x, tau, out=None): + r"""This returns the proximal conjugate operator for the function at :math:`x`, :math:`\tau` + + Parameters + ---------- + x : DataContainer + + tau: scalar + + out: return DataContainer, if None a new DataContainer is returned, default None. + + Returns + ------- + DataContainer, the proximal conjugate operator for the function evaluated at :math:`x` and :math:`\tau`. + + """ + if out is not None and id(x) == id(out): + raise InPlaceError + + try: + tmp = x + x.divide(tau, out=tmp) + except TypeError: + tmp = x.divide(tau, dtype=np.float32) + + val = self.function.proximal(tmp, self.scalar/tau, out=out) + + if id(tmp) == id(x): + x.multiply(tau, out=x) + + val.sapyb(-tau, x, 1.0, out=val) + + return val
+
+ + + +
+[docs] +class SumScalarFunction(SumFunction): + + """ SumScalarFunction represents the sum a function with a scalar. + + .. math:: (F + scalar)(x) = F(x) + scalar + + Although SumFunction has no general expressions for + + i) convex_conjugate + ii) proximal + iii) proximal_conjugate + + if the second argument is a ConstantFunction then we can derive the above analytically. + + """ + + def __init__(self, function, constant): + + super(SumScalarFunction, self).__init__( + function, ConstantFunction(constant)) + self.constant = constant + self.function = function + +
+[docs] + def convex_conjugate(self, x): + r""" Returns the convex conjugate of a :math:`(F+scalar)`, evaluated at :math:`x`. + + .. math:: (F+scalar)^{*}(x^{*}) = F^{*}(x^{*}) - scalar + + Parameters + ---------- + x : DataContainer + + Returns + ------- + The value of the convex conjugate evaluated at :math:`x`. + + """ + return self.function.convex_conjugate(x) - self.constant
+ + +
+[docs] + def proximal(self, x, tau, out=None): + """ Returns the proximal operator of :math:`F+scalar` + + .. math:: \text{prox}_{\tau (F+scalar)}(x) = \text{prox}_{\tau F} + + Parameters + ---------- + x : DataContainer + + tau: scalar + + out: return DataContainer, if None a new DataContainer is returned, default None. + + Returns + ------- + DataContainer, the evaluation of the proximal operator evaluated at :math:`x` and :math:`\tau`. + + """ + return self.function.proximal(x, tau, out=out)
+ + + @property + def L(self): + if self._L is None: + if self.function.L is not None: + self._L = self.function.L + else: + self._L = None + return self._L + + @L.setter + def L(self, value): + # call base class setter + super(SumScalarFunction, self.__class__).L.fset(self, value)
+ + + +
+[docs] +class ConstantFunction(Function): + + r""" ConstantFunction: :math:`F(x) = constant, constant\in\mathbb{R}` + + """ + + def __init__(self, constant=0): + self.constant = constant + super(ConstantFunction, self).__init__(L=1) + + def __call__(self, x): + """ Returns the value of the function, :math:`F(x) = constant`""" + return self.constant + +
+[docs] + def gradient(self, x, out=None): + """ Returns the value of the gradient of the function, :math:`F'(x)=0` + Parameters + ---------- + x : DataContainer + Point to evaluate the gradient at. + out: return DataContainer, if None a new DataContainer is returned, default None. + + Returns + ------- + A DataContainer of zeros, the same size as :math:`x`. + + """ + if out is None: + return x * 0. + else: + out.fill(0) + return out
+ + +
+[docs] + def convex_conjugate(self, x): + r""" The convex conjugate of constant function :math:`F(x) = c\in\mathbb{R}` is + + .. math:: + F(x^{*}) + = + \begin{cases} + -c, & if x^{*} = 0\\ + \infty, & \mbox{otherwise} + \end{cases} + + + However, :math:`x^{*} = 0` only in the limit of iterations, so in fact this can be infinity. + We do not want to have inf values in the convex conjugate, so we have to penalise this value accordingly. + The following penalisation is useful in the PDHG algorithm, when we compute primal & dual objectives + for convergence purposes. + + .. math:: F^{*}(x^{*}) = \sum \max\{x^{*}, 0\} + + Parameters + ---------- + x : DataContainer + + Returns + ------- + The maximum of x and 0, summed over the entries of x. + + """ + return x.maximum(0).sum()
+ + +
+[docs] + def proximal(self, x, tau, out=None): + r"""Returns the proximal operator of the constant function, which is the same element, i.e., + + .. math:: \text{prox}_{\tau F}(x) = x + + Parameters + ---------- + x : DataContainer + + tau: scalar + + out: return DataContainer, if None a new DataContainer is returned, default None. + + Returns + ------- + DataContainer, equal to :math:`x`. + + """ + if out is None: + return x.copy() + else: + out.fill(x) + return out
+ + + @property + def constant(self): + return self._constant + + @constant.setter + def constant(self, value): + if not isinstance(value, Number): + raise TypeError('expected scalar: got {}'.format(type(value))) + self._constant = value + + @property + def L(self): + return 1. + + def __rmul__(self, other): + '''defines the right multiplication with a number''' + if not isinstance(other, Number): + raise NotImplemented + constant = self.constant * other + return ConstantFunction(constant)
+ + + +
+[docs] +class ZeroFunction(ConstantFunction): + + """ ZeroFunction represents the zero function, :math:`F(x) = 0` + """ + + def __init__(self): + super(ZeroFunction, self).__init__(constant=0.)
+ + + +
+[docs] +class TranslateFunction(Function): + + r""" TranslateFunction represents the translation of function F with respect to the center b. + + Let a function F and consider :math:`G(x) = F(x - center)`. + + Function F is centered at 0, whereas G is centered at point b. + + If :math:`G(x) = F(x - b)` then: + + 1. :math:`G(x) = F(x - b)` ( __call__ method ) + 2. :math:`G'(x) = F'(x - b)` ( gradient method ) + 3. :math:`G^{*}(x^{*}) = F^{*}(x^{*}) + <x^{*}, b >` ( convex_conjugate method ) + 4. :math:`\text{prox}_{\tau G}(x) = \text{prox}_{\tau F}(x - b) + b` ( proximal method ) + + """ + + def __init__(self, function, center): + try: + L = function.L + except NotImplementedError as nie: + L = None + super(TranslateFunction, self).__init__(L=L) + + self.function = function + self.center = center + + def __call__(self, x): + r"""Returns the value of the translated function. + + .. math:: G(x) = F(x - b) + + Parameters + ---------- + x : DataContainer + + Returns + ------- + The value of the translated function evaluated at :math:`x`. + + + """ + try: + x.subtract(self.center, out=x) + tmp = x + except TypeError: + tmp = x.subtract(self.center, dtype=np.float32) + + val = self.function(tmp) + + if id(tmp) == id(x): + x.add(self.center, out=x) + + return val + +
+[docs] + def gradient(self, x, out=None): + r"""Returns the gradient of the translated function. + + .. math:: G'(x) = F'(x - b) + + Parameters + ---------- + x : DataContainer + Point to evaluate the gradient at. + + out: return DataContainer, if None a new DataContainer is returned, default None. + + Returns + ------- + DataContainer, the gradient of the translated function evaluated at :math:`x`. + """ + + if id(x) == id(out): + raise InPlaceError + + try: + x.subtract(self.center, out=x) + tmp = x + except TypeError: + tmp = x.subtract(self.center, dtype=np.float32) + + val = self.function.gradient(tmp, out=out) + + if id(tmp) == id(x): + x.add(self.center, out=x) + + return val
+ + +
+[docs] + def proximal(self, x, tau, out=None): + r"""Returns the proximal operator of the translated function. + + .. math:: \text{prox}_{\tau G}(x) = \text{prox}_{\tau F}(x-b) + b + + Parameters + ---------- + x : DataContainer + + tau: scalar + + out: return DataContainer, if None a new DataContainer is returned, default None. + + Returns + ------- + DataContainer, the proximal operator of the translated function at :math:`x` and :math:`\tau`. + """ + + if id(x) == id(out): + raise InPlaceError + + try: + x.subtract(self.center, out=x) + tmp = x + except TypeError: + tmp = x.subtract(self.center, dtype=np.float32) + + val = self.function.proximal(tmp, tau, out=out) + val.add(self.center, out=val) + + if id(tmp) == id(x): + x.add(self.center, out=x) + + return val
+ + +
+[docs] + def convex_conjugate(self, x): + r"""Returns the convex conjugate of the translated function. + + .. math:: G^{*}(x^{*}) = F^{*}(x^{*}) + <x^{*}, b > + + Parameters + ---------- + x : DataContainer + + Returns + ------- + The value of the convex conjugate of the translated function at :math:`x`. + + """ + + return self.function.convex_conjugate(x) + self.center.dot(x)
+
+ +
+ +
+ + + + + +
+ +
+
+
+ +
+ + + + +
+
+ +
+ +
+
+
+ + + + + +
+ + +
+ + \ No newline at end of file diff --git a/v24.2.0/_modules/cil/optimisation/functions/IndicatorBox/index.html b/v24.2.0/_modules/cil/optimisation/functions/IndicatorBox/index.html new file mode 100644 index 0000000000..5df4dbebeb --- /dev/null +++ b/v24.2.0/_modules/cil/optimisation/functions/IndicatorBox/index.html @@ -0,0 +1,983 @@ + + + + + + + + + + cil.optimisation.functions.IndicatorBox — CIL 24.2.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + +
+ +
+ + + + + +
+
+ + + + + + +
+ + + + + + + + + + + + + +
+ +
+ + +
+
+ +
+
+ +
+ +
+ + +
+ +
+ + +
+
+ + + + + +
+ +

Source code for cil.optimisation.functions.IndicatorBox

+#  Copyright 2019 United Kingdom Research and Innovation
+#  Copyright 2019 The University of Manchester
+#
+#  Licensed under the Apache License, Version 2.0 (the "License");
+#  you may not use this file except in compliance with the License.
+#  You may obtain a copy of the License at
+#
+#      http://www.apache.org/licenses/LICENSE-2.0
+#
+#  Unless required by applicable law or agreed to in writing, software
+#  distributed under the License is distributed on an "AS IS" BASIS,
+#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+#  See the License for the specific language governing permissions and
+#  limitations under the License.
+#
+# Authors:
+# CIL Developers, listed at: https://github.com/TomographicImaging/CIL/blob/master/NOTICE.txt
+
+from cil.optimisation.functions import Function
+import numpy as np
+import numba
+from cil.utilities import multiprocessing as cil_mp
+import logging
+
+log = logging.getLogger(__name__)
+
+
+
+[docs] +class IndicatorBox(Function): + r'''Indicator function for box constraint + + .. math:: + + f(x) = \mathbb{I}_{[a, b]} = \begin{cases} + 0, \text{ if } x \in [a, b] \\ + \infty, \text{otherwise} + \end{cases} + + Parameters + ---------- + lower : float, DataContainer or numpy array, default None + Lower bound. If set to None, it is equivalent to ``-np.inf``. + upper : float, DataContainer or numpy array, default None + Upper bound. If set to None, it is equivalent to ``np.inf``. + accelerated : bool, default True + Specifies whether to use the accelerated version or not, using numba or + numpy backends respectively. + + + If ``lower`` or ``upper`` are passed a ``DataContainer`` (or derived class + such as ``ImageData`` or ``AcquisitionData``) or a ``numpy array``, the bounds + can be set to different values for each element. + + In order to save computing time it is possible to suppress the evaluation of + the function. This is achieved by setting ``suppress_evaluation`` to ``True``. + ``IndicatorBox`` evaluated on any input will then return 0. + + If ``accelerated`` is set to ``True`` (default), the Numba backend is used. + Otherwise, the Numpy backend is used. An optional parameter to set the number of + threads used by Numba can be set with ``set_num_threads``. Setting the number of + threads when ``accelerate`` is set to ``False`` will not have any effect. + The default number of threads is defined in the ``cil.utilities.multiprocessing`` + module, and it is equivalent to half of the CPU cores available. + + Example: + -------- + + In order to save computing time it is possible to suppress the evaluation of the + function. + + .. code-block:: python + + ib = IndicatorBox(lower=0, upper=1) + ib.set_suppress_evaluation(True) + ib.evaluate(x) # returns 0 + + + Example: + -------- + + Set the number of threads used in accelerated mode. + + .. code-block:: python + + + num_threads = 4 + ib = IndicatorBox(lower=0, upper=1) + ib.set_num_threads(num_threads) + ''' + + def __new__(cls, lower=None, upper=None, accelerated=True): + if accelerated: + log.info("Numba backend is used.") + return super(IndicatorBox, cls).__new__(IndicatorBox_numba) + else: + log.info("Numpy backend is used.") + return super(IndicatorBox, cls).__new__(IndicatorBox_numpy) + + def __init__(self, lower=None, upper=None, accelerated=True): + '''__init__''' + super(IndicatorBox, self).__init__() + + # We set lower and upper to either a float or a numpy array + self.lower = -np.inf if lower is None else _get_as_nparray_or_number( + lower) + self.upper = np.inf if upper is None else _get_as_nparray_or_number( + upper) + + self.orig_lower = lower + self.orig_upper = upper + # default is to evaluate the function + self._suppress_evaluation = False + + # optional parameter to track the number of threads used by numba + self._num_threads = None + + @property + def suppress_evaluation(self): + return self._suppress_evaluation + +
+[docs] + def set_suppress_evaluation(self, value): + '''Suppresses the evaluation of the function + + Parameters + ---------- + value : bool + If True, the function evaluation on any input will return 0, without calculation. + ''' + if not isinstance(value, bool): + raise ValueError('Value must be boolean') + self._suppress_evaluation = value
+ + + def __call__(self, x): + '''Evaluates IndicatorBox at x + + Parameters + ---------- + + x : DataContainer + + Evaluates the IndicatorBox at x. If ``suppress_evaluation`` is ``True``, returns 0. + ''' + if not self.suppress_evaluation: + return self.evaluate(x) + return 0.0 + +
+[docs] + def proximal(self, x, tau, out=None): + r'''Proximal operator of IndicatorBox at x + + .. math:: prox_{\tau * f}(x) + + Parameters + ---------- + x : DataContainer + Input to the proximal operator + tau : float + Step size. Notice it is ignored in IndicatorBox + out : DataContainer, optional + Output of the proximal operator. If not provided, a new DataContainer is created. + + Note + ---- + + ``tau`` is ignored but it is in the signature of the generic Function class + ''' + if out is None: + out = x.copy() + else: + out.fill(x) + outarr = out.as_array() + + # calculate the proximal + self._proximal(outarr) + + out.fill(outarr) + return out
+ + +
+[docs] + def gradient(self, x, out=None): + '''IndicatorBox is not differentiable, so calling gradient will raise a ``ValueError``''' + raise NotImplementedError('The IndicatorBox is not differentiable')
+ + + def _proximal(self, outarr): + raise NotImplementedError('Implement this in the derived class') + + @property + def num_threads(self): + '''Get the optional number of threads parameter to use for the accelerated version. + + Defaults to the value set in the CIL multiprocessing module.''' + return cil_mp.NUM_THREADS if self._num_threads is None else self._num_threads + +
+[docs] + def set_num_threads(self, value): + '''Set the optional number of threads parameter to use for the accelerated version. + + This is discarded if ``accelerated=False``.''' + self._num_threads = value
+
+ + + +class IndicatorBox_numba(IndicatorBox): + + def evaluate(self, x): + '''Evaluates IndicatorBox at x''' + # set the number of threads to the number of threads defined by the user + # or default to what set in the CIL multiprocessing module + num_threads = numba.get_num_threads() + numba.set_num_threads(self.num_threads) + breaking = np.zeros(numba.get_num_threads(), dtype=np.uint8) + + if isinstance(self.lower, np.ndarray): + if isinstance(self.upper, np.ndarray): + + _array_within_limits_aa(x.as_array(), self.lower, self.upper, + breaking) + + else: + + _array_within_limits_af(x.as_array(), self.lower, self.upper, + breaking) + + else: + if isinstance(self.upper, np.ndarray): + + _array_within_limits_fa(x.as_array(), self.lower, self.upper, + breaking) + + else: + + _array_within_limits_ff(x.as_array(), self.lower, self.upper, + breaking) + + # reset the number of threads to the original value + numba.set_num_threads(num_threads) + return np.inf if breaking.sum() > 0 else 0.0 + + def convex_conjugate(self, x): + '''Convex conjugate of IndicatorBox at x''' + # set the number of threads to the number of threads defined by the user + # or default to what set in the CIL multiprocessing module + num_threads = numba.get_num_threads() + numba.set_num_threads(self.num_threads) + + acc = np.zeros((numba.get_num_threads()), dtype=np.uint32) + _convex_conjugate(x.as_array(), acc) + + # reset the number of threads to the original value + numba.set_num_threads(num_threads) + + return np.sum(acc) + + def _proximal(self, outarr): + if self.orig_lower is not None and self.orig_upper is not None: + if isinstance(self.lower, np.ndarray): + if isinstance(self.upper, np.ndarray): + _proximal_aa(outarr, self.lower, self.upper) + else: + _proximal_af(outarr, self.lower, self.upper) + + else: + if isinstance(self.upper, np.ndarray): + _proximal_fa(outarr, self.lower, self.upper) + else: + np.clip(outarr, self.lower, self.upper, out=outarr) + + elif self.orig_lower is None: + if isinstance(self.upper, np.ndarray): + _proximal_na(outarr, self.upper) + else: + np.clip(outarr, None, self.upper, out=outarr) + + elif self.orig_upper is None: + if isinstance(self.lower, np.ndarray): + _proximal_an(outarr, self.lower) + else: + np.clip(outarr, self.lower, None, out=outarr) + + +class IndicatorBox_numpy(IndicatorBox): + + def evaluate(self, x): + '''Evaluates IndicatorBox at x''' + + if (np.all(x.as_array() >= self.lower) + and np.all(x.as_array() <= self.upper)): + val = 0 + else: + val = np.inf + return val + + def convex_conjugate(self, x): + '''Convex conjugate of IndicatorBox at x''' + return x.maximum(0).sum() + + def _proximal(self, outarr): + np.clip(outarr, + None if self.orig_lower is None else self.lower, + None if self.orig_upper is None else self.upper, + out=outarr) + + +## Utilities +def _get_as_nparray_or_number(x): + '''Returns x as a numpy array or a number''' + try: + return x.as_array() + except AttributeError: + # In this case we trust that it will be either a numpy ndarray + # or a number as described in the docstring + log.info('Assuming that x is a numpy array or a number') + return x + + +@numba.jit(nopython=True, parallel=True) +def _array_within_limits_ff(x, lower, upper, breaking): + '''Returns 0 if all elements of x are within [lower, upper]''' + arr = x.ravel() + for i in numba.prange(x.size): + j = numba.np.ufunc.parallel._get_thread_id() + + if breaking[j] == 0 and (arr[i] < lower or arr[i] > upper): + breaking[j] = 1 + + +@numba.jit(nopython=True, parallel=True) +def _array_within_limits_af(x, lower, upper, breaking): + '''Returns 0 if all elements of x are within [lower, upper]''' + if x.size != lower.size: + raise ValueError('x and lower must have the same size') + arr = x.ravel() + loarr = lower.ravel() + for i in numba.prange(x.size): + j = numba.np.ufunc.parallel._get_thread_id() + + if breaking[j] == 0 and (arr[i] < loarr[i] or arr[i] > upper): + breaking[j] = 1 + + +@numba.jit(parallel=True, nopython=True) +def _array_within_limits_aa(x, lower, upper, breaking): + '''Returns 0 if all elements of x are within [lower, upper]''' + if x.size != lower.size or x.size != upper.size: + raise ValueError('x, lower and upper must have the same size') + arr = x.ravel() + uparr = upper.ravel() + loarr = lower.ravel() + for i in numba.prange(x.size): + j = numba.np.ufunc.parallel._get_thread_id() + + if breaking[j] == 0 and (arr[i] < loarr[i] or arr[i] > uparr[i]): + breaking[j] = 1 + + +@numba.jit(nopython=True, parallel=True) +def _array_within_limits_fa(x, lower, upper, breaking): + '''Returns 0 if all elements of x are within [lower, upper]''' + if x.size != upper.size: + raise ValueError('x and upper must have the same size') + arr = x.ravel() + uparr = upper.ravel() + for i in numba.prange(x.size): + j = numba.np.ufunc.parallel._get_thread_id() + + if breaking[j] == 0 and (arr[i] < lower or arr[i] > uparr[i]): + breaking[j] = 1 + + +########################################################################## + + +@numba.jit(nopython=True, parallel=True) +def _proximal_aa(x, lower, upper): + '''Slightly faster than using np.clip''' + if x.size != lower.size or x.size != upper.size: + raise ValueError('x, lower and upper must have the same size') + arr = x.ravel() + loarr = lower.ravel() + uparr = upper.ravel() + for i in numba.prange(x.size): + if arr[i] < loarr[i]: + arr[i] = loarr[i] + if arr[i] > uparr[i]: + arr[i] = uparr[i] + + +@numba.jit(nopython=True, parallel=True) +def _proximal_af(x, lower, upper): + '''Slightly faster than using np.clip''' + if x.size != lower.size: + raise ValueError('x, lower and upper must have the same size') + arr = x.ravel() + loarr = lower.ravel() + for i in numba.prange(x.size): + if arr[i] < loarr[i]: + arr[i] = loarr[i] + if arr[i] > upper: + arr[i] = upper + + +@numba.jit(nopython=True, parallel=True) +def _proximal_fa(x, lower, upper): + '''Slightly faster than using np.clip''' + if x.size != upper.size: + raise ValueError('x, lower and upper must have the same size') + arr = x.ravel() + uparr = upper.ravel() + for i in numba.prange(x.size): + if arr[i] < lower: + arr[i] = lower + if arr[i] > uparr[i]: + arr[i] = uparr[i] + + +@numba.jit(nopython=True, parallel=True) +def _proximal_na(x, upper): + '''Slightly faster than using np.clip''' + if x.size != upper.size: + raise ValueError('x and upper must have the same size') + arr = x.ravel() + uparr = upper.ravel() + for i in numba.prange(x.size): + if arr[i] > uparr[i]: + arr[i] = uparr[i] + + +@numba.jit(nopython=True, parallel=True) +def _proximal_an(x, lower): + '''Slightly faster than using np.clip''' + if x.size != lower.size: + raise ValueError('x and lower must have the same size') + arr = x.ravel() + loarr = lower.ravel() + for i in numba.prange(x.size): + if arr[i] < loarr[i]: + arr[i] = loarr[i] + + +@numba.jit(nopython=True, parallel=True) +def _convex_conjugate(x, acc): + '''Convex conjugate of IndicatorBox + + im.maximum(0).sum() + ''' + arr = x.ravel() + j = 0 + for i in numba.prange(x.size): + j = numba.np.ufunc.parallel._get_thread_id() + + if arr[i] > 0: + acc[j] += arr[i] +
+ +
+ + + + + +
+ +
+
+
+ +
+ + + + +
+
+ +
+ +
+
+
+ + + + + +
+ + +
+ + \ No newline at end of file diff --git a/v24.2.0/_modules/cil/optimisation/functions/KullbackLeibler/index.html b/v24.2.0/_modules/cil/optimisation/functions/KullbackLeibler/index.html new file mode 100644 index 0000000000..48eeaf8636 --- /dev/null +++ b/v24.2.0/_modules/cil/optimisation/functions/KullbackLeibler/index.html @@ -0,0 +1,1040 @@ + + + + + + + + + + cil.optimisation.functions.KullbackLeibler — CIL 24.2.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + +
+ +
+ + + + + +
+
+ + + + + + +
+ + + + + + + + + + + + + +
+ +
+ + +
+
+ +
+
+ +
+ +
+ + +
+ +
+ + +
+
+ + + + + +
+ +

Source code for cil.optimisation.functions.KullbackLeibler

+#  Copyright 2019 United Kingdom Research and Innovation
+#  Copyright 2019 The University of Manchester
+#
+#  Licensed under the Apache License, Version 2.0 (the "License");
+#  you may not use this file except in compliance with the License.
+#  You may obtain a copy of the License at
+#
+#      http://www.apache.org/licenses/LICENSE-2.0
+#
+#  Unless required by applicable law or agreed to in writing, software
+#  distributed under the License is distributed on an "AS IS" BASIS,
+#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+#  See the License for the specific language governing permissions and
+#  limitations under the License.
+#
+# Authors:
+# CIL Developers, listed at: https://github.com/TomographicImaging/CIL/blob/master/NOTICE.txt
+
+import numpy
+from cil.optimisation.functions import Function
+from numbers import Number
+import scipy.special
+import logging
+from cil.utilities.errors import InPlaceError
+try:
+    from numba import njit, prange, get_thread_id, get_num_threads
+    has_numba = True
+except ImportError as ie:
+    has_numba = False
+
+log = logging.getLogger(__name__)
+
+
+
+[docs] +class KullbackLeibler(Function): + r""" Kullback Leibler + + .. math:: F(u, v) + = \begin{cases} + u \log(\frac{u}{v}) - u + v & \mbox{ if } u > 0, v > 0\\ + v & \mbox{ if } u = 0, v \ge 0 \\ + \infty, & \mbox{otherwise} + \end{cases} + + where the :math:`0\log0 := 0` convention is used. + + Parameters + ---------- + + b : DataContainer, non-negative + Translates the function at point `b`. + eta : DataContainer, default = 0 + Background noise + mask : DataContainer, default = None + Mask for the data `b` + backend : {'numba','numpy'}, optional + Backend for the KullbackLeibler methods. Numba is the default backend. + + + + Note + ---- + The Kullback-Leibler function is used in practice as a fidelity term in minimisation problems where the + acquired data follow Poisson distribution. If we denote the acquired data with :code:`b` + then, we write + + .. math:: \underset{i}{\sum} F(b_{i}, (v + \eta)_{i}) + + where, :math:`\eta` is an additional noise. + + In the case of Positron Emission Tomography reconstruction :math:`\eta` represents + scatter and random events contribution during the PET acquisition. Hence, in that case the KullbackLeibler + fidelity measures the distance between :math:`\mathcal{A}v + \eta` and acquisition data :math:`b`, where + :math:`\mathcal{A}` is the projection operator. This is related to `PoissonLogLikelihoodWithLinearModelForMean <http://stir.sourceforge.net/documentation/doxy/html/classstir_1_1PoissonLogLikelihoodWithLinearModelForMean.html>`_ , + definition that is used in PET reconstruction in the `SIRF <https://github.com/SyneRBI/SIRF>`_ software. + + + Note + ---- + The default implementation uses the build-in function `kl_div <https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.kl_div.html>`_ from scipy. + The methods of the :class:`.KullbackLeibler` are accelerated provided that `numba <https://numba.pydata.org/>`_ library is installed. + + Examples + -------- + >>> from cil.optimisation.functions import KullbackLeibler + >>> from cil.framework import ImageGeometry + >>> ig = ImageGeometry(3,4) + >>> data = ig.allocate('random') + >>> F = KullbackLeibler(b = data) + + """ + + def __new__(cls, b, eta = None, mask = None, backend = 'numba'): + + # default backend numba + cls.backend = backend + + if cls.backend == 'numba': + + if not has_numba: + raise ValueError("Numba is not installed.") + else: + log.info("Numba backend is used.") + return super(KullbackLeibler, cls).__new__(KullbackLeibler_numba) + else: + log.info("Numpy backend is used.") + return super(KullbackLeibler, cls).__new__(KullbackLeibler_numpy) + + def __init__(self, b, eta = None, mask = None, backend = 'numba'): + + self.b = b + self.eta = eta + self.mask = mask + + if self.eta is None: + self.eta = self.b * 0.0 + + if numpy.any(self.b.as_array() < 0): + raise ValueError("Input data should be non-negative.") + + if KullbackLeibler.backend == 'numba': + + self.b_np = self.b.as_array() + self.eta_np = self.eta.as_array() + + if mask is not None: + self.mask = mask.as_array() + + super(KullbackLeibler, self).__init__(L = None)
+ + +class KullbackLeibler_numpy(KullbackLeibler): + + def __call__(self, x): + + r"""Returns the value of the KullbackLeibler function at :math:`(b, x + \eta)`. + + Note + ---- + To avoid infinity values, we consider only pixels/voxels for :math:`x+\eta\geq0`. + """ + + tmp_sum = (x + self.eta).as_array() + ind = tmp_sum >= 0 + tmp = scipy.special.kl_div(self.b.as_array()[ind], tmp_sum[ind]) + return numpy.sum(tmp) + + def gradient(self, x, out=None): + + r"""Returns the value of the gradient of the KullbackLeibler function at :math:`(b, x + \eta)`. + + :math:`F'(b, x + \eta) = 1 - \frac{b}{x+\eta}` + + Note + ---- + To avoid inf values, we :math:`x+\eta>0` is required. + """ + ret = x.add(self.eta, out=out) + arr = ret.as_array() + arr[arr>0] = 1 - self.b.as_array()[arr>0]/arr[arr>0] + ret.fill(arr) + return ret + + def convex_conjugate(self, x): + + r"""Returns the value of the convex conjugate of the KullbackLeibler function at :math:`(b, x + \eta)`. + + :math:`F^{*}(b, x + \eta) = - b \log(1-x^{*}) - <x^{*}, \eta>` + + """ + + tmp = 1 - x.as_array() + ind = tmp>0 + xlogy = - scipy.special.xlogy(self.b.as_array()[ind], tmp[ind]) + return numpy.sum(xlogy) - self.eta.dot(x) + + def proximal(self, x, tau, out = None): + + r"""Returns the value of the proximal operator of the KullbackLeibler function at :math:`(b, x + \eta)`. + + :math:`\mathrm{prox}_{\tau F}(x) = \frac{1}{2}\bigg( (x - \eta - \tau) + \sqrt{ (x + \eta - \tau)^2 + 4\tau b} \bigg)` + + """ + if id(x)==id(out): + raise InPlaceError(message="KullbackLeibler.proximal cannot be used in place") + + if out is None: + return 0.5 *( (x - self.eta - tau) + \ + ( (x + self.eta - tau).power(2) + 4*tau*self.b ) .sqrt() \ + ) + else: + x.add(self.eta, out=out) + out -= tau + out *= out + out.add(self.b * (4 * tau), out=out) + out.sqrt(out=out) + out.subtract(tau, out=out) + out.subtract(self.eta, out=out) + out.add(x, out=out) + out *= 0.5 + return out + + + def proximal_conjugate(self, x, tau, out = None): + + r"""Returns the value of the proximal operator of the convex conjugate of KullbackLeibler at :math:`(b, x + \eta)`. + + :math:`\mathrm{prox}_{\tau F^{*}}(x) = 0.5*((z + 1) - \sqrt{(z-1)^2 + 4 * \tau b})`, where :math:`z = x + \tau \eta`. + """ + + if out is None: + z = x + tau * self.eta + return 0.5*((z + 1) - ((z-1).power(2) + 4 * tau * self.b).sqrt()) + else: + tmp = tau * self.eta + tmp += x + tmp -= 1 + + self.b.multiply(4*tau, out=out) + + out.add(tmp.power(2), out=out) + out.sqrt(out=out) + out *= -1 + tmp += 2 + out += tmp + out *= 0.5 + return out + +#################################### +## KullbackLeibler numba routines ## +#################################### + +if has_numba: + + @njit(parallel=True) + def kl_proximal(x,b, tau, out, eta): + for i in prange(x.size): + X = x.flat[i] + E = eta.flat[i] + out.flat[i] = 0.5 * ( + ( X - E - tau ) +\ + numpy.sqrt( (X + E - tau)**2. + \ + (4. * tau * b.flat[i]) + ) + ) + + @njit(parallel=True) + def kl_proximal_arr(x,b, tau, out, eta): + for i in prange(x.size): + t = tau.flat[i] + X = x.flat[i] + E = eta.flat[i] + out.flat[i] = 0.5 * ( + ( X - E - t ) +\ + numpy.sqrt( (X + E - t)**2. + \ + (4. * t * b.flat[i]) + ) + ) + + @njit(parallel=True) + def kl_proximal_mask(x,b, tau, out, eta, mask): + for i in prange(x.size): + if mask.flat[i] > 0: + X = x.flat[i] + E = eta.flat[i] + out.flat[i] = 0.5 * ( + ( X - E - tau ) +\ + numpy.sqrt( (X + E - tau)**2. + \ + (4. * tau * b.flat[i]) + ) + ) + + @njit(parallel=True) + def kl_proximal_arr_mask(x,b, tau, out, eta, mask): + for i in prange(x.size): + if mask.flat[i] > 0: + t = tau.flat[i] + X = x.flat[i] + E = eta.flat[i] + out.flat[i] = 0.5 * ( + ( X - E - t ) +\ + numpy.sqrt( (X + E - t)**2. + \ + (4. * t * b.flat[i]) + ) + ) + + # proximal conjugate + @njit(parallel=True) + def kl_proximal_conjugate_arr(x, b, eta, tau, out): + #z = x + tau * self.bnoise + #return 0.5*((z + 1) - ((z-1)**2 + 4 * tau * self.b).sqrt()) + for i in prange(x.size): + t = tau.flat[i] + z = x.flat[i] + ( t * eta.flat[i] ) + out.flat[i] = 0.5 * ( + (z + 1) - numpy.sqrt((z-1)*(z-1) + 4 * t * b.flat[i]) + ) + + @njit(parallel=True) + def kl_proximal_conjugate(x, b, eta, tau, out): + #z = x + tau * self.bnoise + #return 0.5*((z + 1) - ((z-1)**2 + 4 * tau * self.b).sqrt()) + for i in prange(x.size): + z = x.flat[i] + ( tau * eta.flat[i] ) + out.flat[i] = 0.5 * ( + (z + 1) - numpy.sqrt((z-1)*(z-1) + 4 * tau * b.flat[i]) + ) + + @njit(parallel=True) + def kl_proximal_conjugate_arr_mask(x, b, eta, tau, out, mask): + #z = x + tau * self.bnoise + #return 0.5*((z + 1) - ((z-1)**2 + 4 * tau * self.b).sqrt()) + for i in prange(x.size): + if mask.flat[i] > 0: + t = tau.flat[i] + z = x.flat[i] + ( t * eta.flat[i] ) + out.flat[i] = 0.5 * ( + (z + 1) - numpy.sqrt((z-1)*(z-1) + 4 * t * b.flat[i]) + ) + + @njit(parallel=True) + def kl_proximal_conjugate_mask(x, b, eta, tau, out, mask): + #z = x + tau * self.bnoise + #return 0.5*((z + 1) - ((z-1)**2 + 4 * tau * self.b).sqrt()) + for i in prange(x.size): + if mask.flat[i] > 0: + z = x.flat[i] + ( tau * eta.flat[i] ) + out.flat[i] = 0.5 * ( + (z + 1) - numpy.sqrt((z-1)*(z-1) + 4 * tau * b.flat[i]) + ) + + # gradient + @njit(parallel=True) + def kl_gradient(x, b, out, eta): + for i in prange(x.size): + out.flat[i] = 1 - b.flat[i]/(x.flat[i] + eta.flat[i]) + + @njit(parallel=True) + def kl_gradient_mask(x, b, out, eta, mask): + for i in prange(x.size): + if mask.flat[i] > 0: + out.flat[i] = 1 - b.flat[i]/(x.flat[i] + eta.flat[i]) + + # KL divergence + @njit(parallel=True) + def kl_div(x, y, eta): + accumulator = numpy.zeros(get_num_threads(), dtype=numpy.float64) + for i in prange(x.size): + X = x.flat[i] + Y = y.flat[i] + eta.flat[i] + if X > 0 and Y > 0: + # out.flat[i] = X * numpy.log(X/Y) - X + Y + accumulator[get_thread_id()] += X * numpy.log(X/Y) - X + Y + elif X == 0 and Y >= 0: + # out.flat[i] = Y + accumulator[get_thread_id()] += Y + else: + # out.flat[i] = numpy.inf + return numpy.inf + return sum(accumulator) + + @njit(parallel=True) + def kl_div_mask(x, y, eta, mask): + accumulator = numpy.zeros(get_num_threads(), dtype=numpy.float64) + for i in prange(x.size): + if mask.flat[i] > 0: + X = x.flat[i] + Y = y.flat[i] + eta.flat[i] + if X > 0 and Y > 0: + # out.flat[i] = X * numpy.log(X/Y) - X + Y + accumulator[get_thread_id()] += X * numpy.log(X/Y) - X + Y + elif X == 0 and Y >= 0: + # out.flat[i] = Y + accumulator[get_thread_id()] += Y + else: + # out.flat[i] = numpy.inf + return numpy.inf + return sum(accumulator) + + # convex conjugate + @njit(parallel=True) + def kl_convex_conjugate(x, b, eta): + accumulator = numpy.zeros(get_num_threads(), dtype=numpy.float64) + for i in prange(x.size): + X = b.flat[i] + x_f = x.flat[i] + Y = 1 - x_f + if Y > 0: + if X > 0: + # out.flat[i] = X * numpy.log(X/Y) - X + Y + accumulator[get_thread_id()] += X * numpy.log(Y) + # else xlogy is 0 so it doesn't add to the accumulator + accumulator[get_thread_id()] += eta.flat[i] * x_f + return - sum(accumulator) + + @njit(parallel=True) + def kl_convex_conjugate_mask(x, b, eta, mask): + accumulator = numpy.zeros(get_num_threads(), dtype=numpy.float64) + for i in prange(x.size): + if mask.flat[i] > 0: + X = b.flat[i] + x_f = x.flat[i] + Y = 1 - x_f + if Y > 0: + if X > 0: + # out.flat[i] = X * numpy.log(X/Y) - X + Y + accumulator[get_thread_id()] += X * numpy.log(Y) + # else xlogy is 0 so it doesn't add to the accumulator + accumulator[get_thread_id()] += eta.flat[i] * x_f + return -sum(accumulator) + + +class KullbackLeibler_numba(KullbackLeibler): + + def __call__(self, x): + + r"""Returns the value of the KullbackLeibler function at :math:`(b, x + \eta)`. + Note + ---- + To avoid infinity values, we consider only pixels/voxels for :math:`x+\eta\geq0`. + """ + + if self.mask is not None: + return kl_div_mask(self.b_np, x.as_array(), self.eta_np, self.mask) + return kl_div(self.b_np, x.as_array(), self.eta_np) + + def convex_conjugate(self, x): + + r"""Returns the value of the convex conjugate of the KullbackLeibler function at :math:`(b, x + \eta)`. + + :math:`F^{*}(b, x + \eta) = - b \log(1-x^{*}) - <x^{*}, \eta>` + + """ + + if self.mask is not None: + return kl_convex_conjugate_mask(x.as_array(), self.b_np, self.eta_np, self.mask) + return kl_convex_conjugate(x.as_array(), self.b_np, self.eta_np) + + def gradient(self, x, out = None): + + r"""Returns the value of the gradient of the KullbackLeibler function at :math:`(b, x + \eta)`. + + :math:`F'(b, x + \eta) = 1 - \frac{b}{x+\eta}` + + Note + ---- + To avoid inf values, we :math:`x+\eta>0` is required. + + """ + + if out is None: + out = x * 0 + + out_np = out.as_array() + + if self.mask is not None: + kl_gradient_mask(x.as_array(), self.b.as_array(), out_np, self.eta.as_array(), self.mask) + else: + kl_gradient(x.as_array(), self.b.as_array(), out_np, self.eta.as_array()) + out.fill(out_np) + return out + + def proximal(self, x, tau, out = None): + + r"""Returns the value of the proximal operator of the KullbackLeibler function at :math:`(b, x + \eta)`. + + :math:`\mathrm{prox}_{\tau F}(x) = \frac{1}{2}\bigg( (x - \eta - \tau) + \sqrt{ (x + \eta - \tau)^2 + 4\tau b} \bigg)` + + """ + if out is None: + out = x * 0 + + out_np = out.as_array() + + if isinstance(tau, Number): + if self.mask is not None: + kl_proximal_mask(x.as_array(), self.b_np, tau, out_np, \ + self.eta_np, self.mask) + else: + kl_proximal(x.as_array(), self.b_np, tau, out_np, self.eta_np) + else: + # it should be a DataContainer + if self.mask is not None: + kl_proximal_arr_mask(x.as_array(), self.b_np, tau.as_array(), \ + out_np, self.eta_np) + else: + kl_proximal_arr(x.as_array(), self.b_np, tau.as_array(), \ + out_np, self.eta_np) + out.fill(out_np) + return out + + + def proximal_conjugate(self, x, tau, out = None): + + r"""Returns the value of the proximal operator of the convex conjugate of KullbackLeibler at :math:`(b, x + \eta)`. + + :math:`\mathrm{prox}_{\tau F^{*}}(x) = 0.5*((z + 1) - \sqrt{(z-1)^2 + 4 * \tau b})`, where :math:`z = x + \tau \eta`. + """ + if out is None: + out = x * 0 + out_np = out.as_array() + + if isinstance(tau, Number): + if self.mask is not None: + kl_proximal_conjugate_mask(x.as_array(), self.b_np, self.eta_np, \ + tau, out_np, self.mask) + else: + kl_proximal_conjugate(x.as_array(), self.b_np, self.eta_np, \ + tau, out_np) + else: + if self.mask is not None: + kl_proximal_conjugate_arr_mask(x.as_array(), self.b_np, self.eta_np, \ + tau.as_array(), out_np, self.mask) + else: + kl_proximal_conjugate_arr(x.as_array(), self.b_np, self.eta_np, \ + tau.as_array(), out_np) + out.fill(out_np) + return out +
+ +
+ + + + + +
+ +
+
+
+ +
+ + + + +
+
+ +
+ +
+
+
+ + + + + +
+ + +
+ + \ No newline at end of file diff --git a/v24.2.0/_modules/cil/optimisation/functions/L1Norm/index.html b/v24.2.0/_modules/cil/optimisation/functions/L1Norm/index.html new file mode 100644 index 0000000000..b651e1fea9 --- /dev/null +++ b/v24.2.0/_modules/cil/optimisation/functions/L1Norm/index.html @@ -0,0 +1,869 @@ + + + + + + + + + + cil.optimisation.functions.L1Norm — CIL 24.2.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + +
+ +
+ + + + + +
+
+ + + + + + +
+ + + + + + + + + + + + + +
+ +
+ + +
+
+ +
+
+ +
+ +
+ + +
+ +
+ + +
+
+ + + + + +
+ +

Source code for cil.optimisation.functions.L1Norm

+#  Copyright 2019 United Kingdom Research and Innovation
+#  Copyright 2019 The University of Manchester
+#
+#  Licensed under the Apache License, Version 2.0 (the "License");
+#  you may not use this file except in compliance with the License.
+#  You may obtain a copy of the License at
+#
+#      http://www.apache.org/licenses/LICENSE-2.0
+#
+#  Unless required by applicable law or agreed to in writing, software
+#  distributed under the License is distributed on an "AS IS" BASIS,
+#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+#  See the License for the specific language governing permissions and
+#  limitations under the License.
+#
+# Authors:
+# CIL Developers, listed at: https://github.com/TomographicImaging/CIL/blob/master/NOTICE.txt
+
+from cil.optimisation.functions import Function
+from cil.framework import BlockDataContainer
+import numpy as np
+import warnings
+
+def soft_shrinkage(x, tau, out=None):
+
+    r"""Returns the value of the soft-shrinkage operator at x. This is used for the calculation of the proximal. 
+    
+    .. math:: soft_shrinkage (x) = \begin{cases}
+                x-\tau, \mbox{if } x > \tau \
+                    x+\tau, \mbox{if } x < -\tau \
+                0, \mbox{otherwise}
+                \end{cases}.
+   
+
+
+
+    Parameters
+    -----------
+    x : DataContainer
+        where to evaluate the soft-shrinkage operator.
+    tau : float, non-negative real,  numpy ndarray, DataContainer
+    out : DataContainer, default None
+        where to store the result. If None, a new DataContainer is created.
+
+    Returns
+    --------
+    the value of the soft-shrinkage operator at x: DataContainer.
+    
+    Note
+    ------
+    Note that this function can deal with complex inputs, defining the `sgn` function as: 
+    .. math:: sgn (z) = \begin{cases}
+                0, \mbox{if } z = 0 \
+                \frac{z}{|z|}, \mbox{otherwise}
+                \end{cases}.
+                
+    """
+    if np.min(tau) < 0:
+        warnings.warn(
+                "tau should be non-negative!", UserWarning)
+    if np.linalg.norm(np.imag(tau))>0:
+        raise ValueError("tau should be real!")
+
+    # get the sign of the input
+    dsign = np.exp(1j*np.angle(x.as_array())) if np.iscomplexobj(x) else x.sign()
+
+    if out is None:
+        if x.dtype in [np.csingle, np.cdouble, np.clongdouble]:
+            out = x * 0
+            outarr = out.as_array()
+            outarr.real = x.abs().as_array()
+            out.fill(outarr)
+        else:
+            out = x.abs()
+    else:
+        if x.dtype in [np.csingle, np.cdouble, np.clongdouble]:
+            outarr = out.as_array()
+            outarr.real = x.abs().as_array()
+            outarr.imag = 0
+            out.fill(outarr)
+        else:
+            x.abs(out = out)
+    out -= tau
+    out.maximum(0, out = out)
+    out *= dsign
+    return out
+
+
+
+[docs] +class L1Norm(Function): + r"""L1Norm function + + Consider the following cases: + + a) .. math:: F(x) = ||x||_{1} + b) .. math:: F(x) = ||x - b||_{1} + + In the weighted case, :math:`w` is an array of non-negative weights. + + a) .. math:: F(x) = ||x||_{L^1(w)} + b) .. math:: F(x) = ||x - b||_{L^1(w)} + + with :math:`||x||_{L^1(w)} = || x w||_1 = \sum_{i=1}^{n} |x_i| w_i`. + + Parameters + ----------- + + weight: DataContainer, numpy ndarray, default None + Array of non-negative weights. If :code:`None` returns the L1 Norm. + b: DataContainer, default None + Translation of the function. + + """ + def __init__(self, b=None, weight=None): + super(L1Norm, self).__init__(L=None) + if weight is None: + self.function = _L1Norm(b=b) + else: + self.function = _WeightedL1Norm(b=b, weight=weight) + + def __call__(self, x): + r"""Returns the value of the L1Norm function at x. + + .. math:: f(x) = ||x - b||_{L^1(w)} + """ + return self.function(x) + +
+[docs] + def convex_conjugate(self, x): + r"""Returns the value of the convex conjugate of the L1 Norm function at x. + + + This is the indicator of the unit :math:`L^{\infty}` norm: + + + a) .. math:: F^{*}(x^{*}) = \mathbb{I}_{\{\|\cdot\|_{\infty}\leq1\}}(x^{*}) + b) .. math:: F^{*}(x^{*}) = \mathbb{I}_{\{\|\cdot\|_{\infty}\leq1\}}(x^{*}) + \langle x^{*},b\rangle + + + .. math:: \mathbb{I}_{\{\|\cdot\|_{\infty}\leq1\}}(x^{*}) + = \begin{cases} + 0, \mbox{if } \|x^{*}\|_{\infty}\leq1\\ + \infty, \mbox{otherwise} + \end{cases} + + In the weighted case the convex conjugate is the indicator of the unit + :math:`L^{\infty}(w^{-1})` norm. + + See: + https://math.stackexchange.com/questions/1533217/convex-conjugate-of-l1-norm-function-with-weight + + a) .. math:: F^{*}(x^{*}) = \mathbb{I}_{\{\|\cdot\|_{L^\infty(w^{-1})}\leq 1\}}(x^{*}) + b) .. math:: F^{*}(x^{*}) = \mathbb{I}_{\{\|\cdot\|_{L^\infty(w^{-1})}\leq 1\}}(x^{*}) + \langle x^{*},b\rangle + + with :math:`\|x\|_{L^\infty(w^{-1})} = \max_{i} \frac{|x_i|}{w_i}` and possible cases of 0/0 are defined to be 1.. + + Parameters + ----------- + + x : DataContainer + where to evaluate the convex conjugate of the L1 Norm function. + + Returns + -------- + the value of the convex conjugate of the WeightedL1Norm function at x: DataContainer. + + """ + return self.function.convex_conjugate(x)
+ + +
+[docs] + def proximal(self, x, tau, out=None): + r"""Returns the value of the proximal operator of the L1 Norm function at x with scaling parameter `tau`. + + + Consider the following cases: + + a) .. math:: \mathrm{prox}_{\tau F}(x) = \mathrm{ShinkOperator}_\tau(x) + b) .. math:: \mathrm{prox}_{\tau F}(x) = \mathrm{ShinkOperator}_\tau(x - b) + b + + where, + + .. math :: \mathrm{prox}_{\tau F}(x) = \mathrm{ShinkOperator}(x) = sgn(x) * \max\{ |x| - \tau, 0 \} + + The weighted case follows from Example 6.23 in Chapter 6 of "First-Order Methods in Optimization" + by Amir Beck, SIAM 2017 https://archive.siam.org/books/mo25/mo25_ch6.pdf + + a) .. math:: \mathrm{prox}_{\tau F}(x) = \mathrm{ShinkOperator}_{\tau*w}(x) + b) .. math:: \mathrm{prox}_{\tau F}(x) = \mathrm{ShinkOperator}_{\tau*w}(x - b) + b + + + Parameters + ----------- + x: DataContainer + tau: float, real, ndarray, DataContainer + out: DataContainer, default None + If not None, the result will be stored in this object. + + Returns + -------- + The value of the proximal operator of the L1 norm function at x: DataContainer. + + """ + + return self.function.proximal(x, tau, out=out)
+
+ + + +class _L1Norm(Function): + + r"""L1Norm function + + Consider the following cases: + a) .. math:: F(x) = ||x||_{1} + b) .. math:: F(x) = ||x - b||_{1} + + """ + + def __init__(self, **kwargs): + '''creator + + Cases considered (with/without data): + a) :math:`f(x) = ||x||_{1}` + b) :math:`f(x) = ||x - b||_{1}` + + :param b: translation of the function + :type b: :code:`DataContainer`, optional + ''' + super().__init__() + self.b = kwargs.get('b',None) + + def __call__(self, x): + y = x + if self.b is not None: + y = x - self.b + return y.abs().sum() + + def convex_conjugate(self,x): + if x.abs().max() - 1 <=0: + if self.b is not None: + return self.b.dot(x) + else: + return 0. + return np.inf + + + def proximal(self, x, tau, out=None): + if self.b is not None: + ret = soft_shrinkage(x - self.b, tau, out=out) + ret += self.b + else: + ret = soft_shrinkage(x, tau, out=out) + return ret + + +class _WeightedL1Norm(Function): + + def __init__(self, weight, b=None): + super().__init__() + self.weight = weight + self.b = b + + if np.min(weight) < 0: + raise ValueError("Weights should be non-negative!") + + if np.linalg.norm(np.imag(weight))>0: + raise ValueError("Weights should be real!") + + def __call__(self, x): + y = x*self.weight + + if self.b is not None: + y -= self.b*self.weight + + return y.abs().sum() + + def convex_conjugate(self,x): + if np.any(x.abs() > self.weight): # This handles weight being zero problems + return np.inf + else: + if self.b is not None: + return self.b.dot(x) + else: + return 0. + + + def proximal(self, x, tau, out=None): + ret = _L1Norm.proximal(self, x, tau*self.weight, out=out) + return ret + +
+[docs] +class MixedL11Norm(Function): + + r"""MixedL11Norm function + + .. math:: F(x) = ||x||_{1,1} = \sum |x_{1}| + |x_{2}| + \cdots + |x_{n}| + + Note + ---- + MixedL11Norm is a separable function, therefore it can also be defined using the :class:`BlockFunction`. + + + See Also + -------- + L1Norm, MixedL21Norm + + + """ + + def __init__(self, **kwargs): + super(MixedL11Norm, self).__init__(**kwargs) + + def __call__(self, x): + + r"""Returns the value of the MixedL11Norm function at x. + + :param x: :code:`BlockDataContainer` + """ + if not isinstance(x, BlockDataContainer): + raise ValueError('__call__ expected BlockDataContainer, got {}'.format(type(x))) + + return x.abs().sum() + +
+[docs] + def proximal(self, x, tau, out = None): + + r"""Returns the value of the proximal operator of the MixedL11Norm function at x. + + .. math:: \mathrm{prox}_{\tau F}(x) = \mathrm{ShinkOperator}(x) + + where, + + .. math :: \mathrm{prox}_{\tau F}(x) = \mathrm{ShinkOperator}(x) := sgn(x) * \max\{ |x| - \tau, 0 \} + + """ + + if not isinstance(x, BlockDataContainer): + raise ValueError('__call__ expected BlockDataContainer, got {}'.format(type(x))) + + return soft_shrinkage(x, tau, out = out)
+
+ +
+ +
+ + + + + +
+ +
+
+
+ +
+ + + + +
+
+ +
+ +
+
+
+ + + + + +
+ + +
+ + \ No newline at end of file diff --git a/v24.2.0/_modules/cil/optimisation/functions/L1Sparsity/index.html b/v24.2.0/_modules/cil/optimisation/functions/L1Sparsity/index.html new file mode 100644 index 0000000000..818f7ca34d --- /dev/null +++ b/v24.2.0/_modules/cil/optimisation/functions/L1Sparsity/index.html @@ -0,0 +1,680 @@ + + + + + + + + + + cil.optimisation.functions.L1Sparsity — CIL 24.2.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + +
+ +
+ + + + + +
+
+ + + + + + +
+ + + + + + + + + + + + + +
+ +
+ + +
+
+ +
+
+ +
+ +
+ + +
+ +
+ + +
+
+ + + + + +
+ +

Source code for cil.optimisation.functions.L1Sparsity

+#  Copyright 2023 United Kingdom Research and Innovation
+#  Copyright 2023 The University of Manchester
+#
+#  Licensed under the Apache License, Version 2.0 (the "License");
+#  you may not use this file except in compliance with the License.
+#  You may obtain a copy of the License at
+#
+#      http://www.apache.org/licenses/LICENSE-2.0
+#
+#  Unless required by applicable law or agreed to in writing, software
+#  distributed under the License is distributed on an "AS IS" BASIS,
+#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+#  See the License for the specific language governing permissions and
+#  limitations under the License.
+#
+# Authors:
+# CIL Developers, listed at: https://github.com/TomographicImaging/CIL/blob/master/NOTICE.txt
+from cil.optimisation.functions import Function, L1Norm
+import warnings
+
+
+[docs] +class L1Sparsity(Function): + + r"""L1Sparsity function + + Calculates the following cases, depending on if the optional parameter `weight` or data `b` is passed. For `weight=None`: + + + a) .. math:: F(x) = ||Qx||_{1} + b) .. math:: F(x) = ||Qx - b||_{1} + + In the weighted case, `weight` = :math:`w` is an array of non-negative weights. + + a) .. math:: F(x) = ||Qx||_{L^1(w)} + b) .. math:: F(x) = ||Qx - b||_{L^1(w)} + + with :math:`||x||_{L^1(w)} = || x \cdot w||_1 = \sum_{i=1}^{n} |x_i| w_i`. + + In all cases :math:`Q` is an orthogonal operator. + + Parameters + --------- + Q: orthogonal Operator + Note that for the correct calculation of the proximal the provided operator must be orthogonal + b : Data, DataContainer, default is None + weight: array, optional, default=None + non-negative weight array matching the size of the range of operator :math:`Q`. + """ + + def __init__(self, Q, b=None, weight=None): + '''creator + ''' + + if not Q.is_orthogonal(): + warnings.warn( + f"Invalid operator: `{Q}`. L1Sparsity is properly defined only for orthogonal operators!", UserWarning) + + super(L1Sparsity, self).__init__() + self.Q = Q + + self.l1norm = L1Norm(b=b, weight=weight) + + def __call__(self, x): + r"""Returns the value of the L1Sparsity function at x. + + Consider the following cases: + + a) .. math:: F(x) = ||Qx||_{1} + b) .. math:: F(x) = ||Qx - b||_{1} + + In the weighted case, `weight` = :math:`w` is an array of non-negative weights. + + a) .. math:: F(x) = ||Qx||_{L^1(w)} + b) .. math:: F(x) = ||Qx - b||_{L^1(w)} + + with :math:`|| y ||_{L^1(w)} = || y w ||_1 = \sum_{i=1}^{n} | y_i | w_i`. + + """ + y = self.Q.direct(x) + return self.l1norm(y) + +
+[docs] + def convex_conjugate(self, x): + r"""Returns the value of the convex conjugate of the L1Sparsity function at x. + Here, we need to use the convex conjugate of L1Sparsity, which is the Indicator of the unit + :math:`\ell^{\infty}` norm on the range of the (bijective) operator Q. + + + Consider the non-weighted case: + + + a) .. math:: F^{*}(x^{*}) = \mathbb{I}_{\{\|\cdot\|_{\infty}\leq1\}}(Qx^{*}) + b) .. math:: F^{*}(x^{*}) = \mathbb{I}_{\{\|\cdot\|_{\infty}\leq1\}}(Qx^{*}) + \langle Qx^{*},b\rangle + + + .. math:: \mathbb{I}_{\{\|\cdot\|_{\infty}\leq1\}}(x^{*}) + = \begin{cases} + 0, \mbox{if } \|x^{*}\|_{\infty}\leq1\\ + \infty, \mbox{otherwise} + \end{cases} + + In the weighted case the convex conjugate is the indicator of the unit + :math:`L^{\infty}( w^{-1} )` norm. + + See: + https://math.stackexchange.com/questions/1533217/convex-conjugate-of-l1-norm-function-with-weight + + a) .. math:: F^{*}(x^{*}) = \mathbb{I}_{\{\|\cdot\|_{L^\infty(w^{-1})}\leq 1\}}(Qx^{*}) + b) .. math:: F^{*}(x^{*}) = \mathbb{I}_{\{\|\cdot\|_{L^\infty(w^{-1})}\leq 1\}}(Qx^{*}) + \langle Qx^{*},b\rangle + + with :math:`\|x\|_{L^\infty(w^{-1})} = \max_{i} \frac{|x_i|}{w_i}` and possible cases of 0 / 0 are defined to be 1. + + + """ + y = self.Q.direct(x) + return self.l1norm.convex_conjugate(y)
+ + +
+[docs] + def proximal(self, x, tau, out=None): + + r"""Returns the value of the proximal operator of the L1 Norm function at x with scaling parameter `tau`. + + + Consider the following cases: + + a) .. math:: \mathrm{prox}_{\tau F}(x) = Q^T \mathrm{ShinkOperator}_{\tau}(Qx) + b) .. math:: \mathrm{prox}_{\tau F}(x) = Q^T \left( \mathrm{ShinkOperator}_\tau(Qx- b) + b \right) + + where, + + .. math :: \mathrm{prox}_{\tau | \cdot |}(x) = \mathrm{ShinkOperator}(x) = sgn(x) * \max\{ |x| - \tau, 0 \} + + The weighted case follows from Example 6.23 in Chapter 6 of "First-Order Methods in Optimization" + by Amir Beck, SIAM 2017 https://archive.siam.org/books/mo25/mo25_ch6.pdf + + a) .. math:: \mathrm{prox}_{\tau F}(x) = Q^T \mathrm{ShinkOperator}_{\tau*w}(Qx) + b) .. math:: \mathrm{prox}_{\tau F}(x) = Q^T \left( \mathrm{ShinkOperator}_{\tau*w}(Qx-b) + b \right) + + + Parameters + ----------- + x: DataContainer + tau: float, ndarray, DataContainer + out: DataContainer, default None + If not None, the result will be stored in this object. + + Returns + -------- + The value of the proximal operator of the L1 norm function at x: DataContainer. + """ + y = self.Q.direct(x) + self.l1norm.proximal(y, tau, out=y) + return self.Q.adjoint(y, out)
+
+ +
+ +
+ + + + + +
+ +
+
+
+ +
+ + + + +
+
+ +
+ +
+
+
+ + + + + +
+ + +
+ + \ No newline at end of file diff --git a/v24.2.0/_modules/cil/optimisation/functions/L2NormSquared/index.html b/v24.2.0/_modules/cil/optimisation/functions/L2NormSquared/index.html new file mode 100644 index 0000000000..4105faafdb --- /dev/null +++ b/v24.2.0/_modules/cil/optimisation/functions/L2NormSquared/index.html @@ -0,0 +1,741 @@ + + + + + + + + + + cil.optimisation.functions.L2NormSquared — CIL 24.2.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + +
+ +
+ + + + + +
+
+ + + + + + +
+ + + + + + + + + + + + + +
+ +
+ + +
+
+ +
+
+ +
+ +
+ + +
+ +
+ + +
+
+ + + + + +
+ +

Source code for cil.optimisation.functions.L2NormSquared

+#  Copyright 2019 United Kingdom Research and Innovation
+#  Copyright 2019 The University of Manchester
+#
+#  Licensed under the Apache License, Version 2.0 (the "License");
+#  you may not use this file except in compliance with the License.
+#  You may obtain a copy of the License at
+#
+#      http://www.apache.org/licenses/LICENSE-2.0
+#
+#  Unless required by applicable law or agreed to in writing, software
+#  distributed under the License is distributed on an "AS IS" BASIS,
+#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+#  See the License for the specific language governing permissions and
+#  limitations under the License.
+#
+# Authors:
+# CIL Developers, listed at: https://github.com/TomographicImaging/CIL/blob/master/NOTICE.txt
+
+from cil.optimisation.functions import Function
+from cil.framework import DataContainer
+from cil.optimisation.operators import DiagonalOperator
+
+
+
+[docs] +class L2NormSquared(Function): + + r""" L2NormSquared function: :math:`F(x) = \| x\|^{2}_{2} = \underset{i}{\sum}x_{i}^{2}` + + Following cases are considered: + + a) :math:`F(x) = \|x\|^{2}_{2}` + b) :math:`F(x) = \|x - b\|^{2}_{2}` + + Parameters + ---------- + + b:`DataContainer`, optional + Translation of the function + + + Note + ----- + + For case b) we can use :code:`F = L2NormSquared().centered_at(b)`, see *TranslateFunction*. + + Example + ------- + + >>> F = L2NormSquared() + >>> F = L2NormSquared(b=b) + >>> F = L2NormSquared().centered_at(b) + + """ + + def __init__(self, **kwargs): + super(L2NormSquared, self).__init__(L=2) + self.b = kwargs.get('b', None) + + def __call__(self, x): + y = x + if self.b is not None: + y = x - self.b + try: + return y.squared_norm() + except AttributeError as ae: + # added for compatibility with SIRF + return (y.norm()**2) + +
+[docs] + def gradient(self, x, out=None): + r"""Returns the value of the gradient of the L2NormSquared function at x. + + Following cases are considered: + + a) :math:`F'(x) = 2x` + b) :math:`F'(x) = 2(x-b)` + """ + if self.b is None: + return x.multiply(2, out=out) + else: + return x.sapyb(2, self.b, -2, out=out)
+ + +
+[docs] + def convex_conjugate(self, x): + r"""Returns the value of the convex conjugate of the L2NormSquared function at x. + + Consider the following cases: + + a) .. math:: F^{*}(x^{*}) = \frac{1}{4}\|x^{*}\|^{2}_{2} + b) .. math:: F^{*}(x^{*}) = \frac{1}{4}\|x^{*}\|^{2}_{2} + \langle x^{*}, b\rangle + + """ + tmp = 0 + + if self.b is not None: + tmp = x.dot(self.b) + + return 0.25 * x.squared_norm() + tmp
+ + +
+[docs] + def proximal(self, x, tau, out=None): + r"""Returns the value of the proximal operator of the L2NormSquared function at x. + + + Consider the following cases: + + a) .. math:: \text{prox}_{\tau F}(x) = \frac{x}{1+2\tau} + b) .. math:: \text{prox}_{\tau F}(x) = \frac{x-b}{1+2\tau} + b + + """ + + mult = 1/(1+2*tau) + + if self.b is None: + return x.multiply(mult, out=out) + else: + return x.sapyb(mult, self.b, (1-mult), out=out)
+
+ + + +
+[docs] +class WeightedL2NormSquared(Function): + + r""" WeightedL2NormSquared function: :math:`F(x) = \|x\|_{W,2}^2 = \Sigma_iw_ix_i^2 = \langle x, Wx\rangle = x^TWx` + where :math:`W=\text{diag}(weight)` if `weight` is a `DataContainer` or :math:`W=\text{weight} I` if `weight` is a scalar. + + Parameters + ----------- + **kwargs + + weight: a `scalar` or a `DataContainer` with the same shape as the intended domain of this `WeightedL2NormSquared` function + b: a `DataContainer` with the same shape as the intended domain of this `WeightedL2NormSquared` function + A shift so that the function becomes :math:`F(x) = \| x-b\|_{W,2}^2 = \Sigma_iw_i(x_i-b_i)^2 = \langle x-b, W(x-b) \rangle = (x-b)^TW(x-b)` + + + """ + + def __init__(self, **kwargs): + + # Weight can be either a scalar or a DataContainer + # Lispchitz constant L = 2 *||weight|| + + self.weight = kwargs.get('weight', 1.0) + self.b = kwargs.get('b', None) + tmp_norm = 1.0 + self.tmp_space = self.weight*0. + + if isinstance(self.weight, DataContainer): + self.operator_weight = DiagonalOperator(self.weight) + tmp_norm = self.operator_weight.norm() + self.tmp_space = self.operator_weight.domain_geometry().allocate() + + if (self.weight < 0).any(): + raise ValueError('Weight contains negative values') + + super(WeightedL2NormSquared, self).__init__(L=2 * tmp_norm) + + def __call__(self, x): + self.operator_weight.direct(x, out=self.tmp_space) + y = x.dot(self.tmp_space) + + if self.b is not None: + self.operator_weight.direct(x - self.b, out=self.tmp_space) + y = (x - self.b).dot(self.tmp_space) + return y + +
+[docs] + def gradient(self, x, out=None): + r""" Returns the value of :math:`F'(x) = 2Wx` or, if `b` is defined, :math:`F'(x) = 2W(x-b)` + where :math:`W=\text{diag}(weight)` if `weight` is a `DataContainer` or :math:`\text{weight}I` if `weight` is a scalar. + + """ + + if out is not None: + out.fill(x) + if self.b is not None: + out -= self.b + self.operator_weight.direct(out, out=out) + out *= 2 + return out + else: + y = x + if self.b is not None: + y = x - self.b + return 2*self.weight*y
+ + +
+[docs] + def convex_conjugate(self, x): + r"""Returns the value of the convex conjugate of the WeightedL2NormSquared function at x.""" + tmp = 0 + if self.b is not None: + tmp = x.dot(self.b) + + return (1./4) * (x/self.weight.sqrt()).squared_norm() + tmp
+ + +
+[docs] + def proximal(self, x, tau, out=None): + r"""Returns the value of the proximal operator of the WeightedL2NormSquared function at x.""" + if self.b is not None: + ret = x.subtract(self.b, out=out) + ret /= (1+2*tau*self.weight) + ret += self.b + else: + ret = x.divide((1+2*tau*self.weight), out=out) + return ret
+
+ +
+ +
+ + + + + +
+ +
+
+
+ +
+ + + + +
+
+ +
+ +
+
+
+ + + + + +
+ + +
+ + \ No newline at end of file diff --git a/v24.2.0/_modules/cil/optimisation/functions/LeastSquares/index.html b/v24.2.0/_modules/cil/optimisation/functions/LeastSquares/index.html new file mode 100644 index 0000000000..51987bfe71 --- /dev/null +++ b/v24.2.0/_modules/cil/optimisation/functions/LeastSquares/index.html @@ -0,0 +1,681 @@ + + + + + + + + + + cil.optimisation.functions.LeastSquares — CIL 24.2.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + +
+ +
+ + + + + +
+
+ + + + + + +
+ + + + + + + + + + + + + +
+ +
+ + +
+
+ +
+
+ +
+ +
+ + +
+ +
+ + +
+
+ + + + + +
+ +

Source code for cil.optimisation.functions.LeastSquares

+#  Copyright 2018 United Kingdom Research and Innovation
+#  Copyright 2018 The University of Manchester
+#
+#  Licensed under the Apache License, Version 2.0 (the "License");
+#  you may not use this file except in compliance with the License.
+#  You may obtain a copy of the License at
+#
+#      http://www.apache.org/licenses/LICENSE-2.0
+#
+#  Unless required by applicable law or agreed to in writing, software
+#  distributed under the License is distributed on an "AS IS" BASIS,
+#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+#  See the License for the specific language governing permissions and
+#  limitations under the License.
+#
+# Authors:
+# CIL Developers, listed at: https://github.com/TomographicImaging/CIL/blob/master/NOTICE.txt
+
+from cil.optimisation.operators import LinearOperator, DiagonalOperator
+from cil.optimisation.functions import Function
+from cil.framework import DataContainer
+import warnings
+from numbers import Number
+import numpy as np
+
+
+
+[docs] +class LeastSquares(Function): + r""" (Weighted) Least Squares function + + .. math:: F(x) = c\|Ax-b\|_2^2 + + or if weighted + + .. math:: F(x) = c\|Ax-b\|_{2,W}^{2} + + where :math:`W=\text{diag}(weight)`. + + Parameters + ----------- + A : LinearOperator + b : Data, DataContainer + c : Scaling Constant, float, default 1.0 + weight: DataContainer with all positive elements of size of the range of operator A, default None + + Note + -------- + + L is the Lipshitz Constant of the gradient of :math:`F` which is :math:`2 c ||A||_2^2 = 2 c \sigma_1(A)^2`, or :math:`2 c ||W|| ||A||_2^2 = 2c||W|| \sigma_1(A)^2`, where :math:`\sigma_1(A)` is the largest singular value of :math:`A` and :math:`W=\text{diag}(weight)`. + + """ + + def __init__(self, A, b, c=1.0, weight = None): + super(LeastSquares, self).__init__() + + self.A = A # Should be a LinearOperator + self.b = b + self.c = c # Default 1. + + # weight + self.weight = weight + self._weight_norm = None + + if weight is not None: + if (self.weight<0).any(): + raise ValueError('Weight contains negative values') + + + def __call__(self, x): + + r""" Returns the value of :math:`F(x) = c\|Ax-b\|_2^2` or :math:`c\|Ax-b\|_{2,W}^2`, where :math:`W=\text{diag}(weight)`: + + """ + # c * (A.direct(x)-b).dot((A.direct(x) - b)) + y = self.A.direct(x) + y.subtract(self.b, out = y) + + if self.weight is None: + return self.c * y.dot(y) + else: + wy = self.weight.multiply(y) + return self.c * y.dot(wy) + +
+[docs] + def gradient(self, x, out=None): + + r""" Returns the value of the gradient of :math:`F(x)`: + + .. math:: F'(x) = 2cA^T(Ax-b) + + or + + .. math:: F'(x) = 2cA^T(W(Ax-b)) + + where :math:`W=\text{diag}(weight)`. + + """ + if out is None: + out = x * 0.0 + + tmp = self.A.direct(x) + tmp.subtract(self.b , out=tmp) + if self.weight is not None: + tmp.multiply(self.weight, out=tmp) + self.A.adjoint(tmp, out = out) + out.multiply(self.c * 2.0, out=out) + return out
+ + + @property + def L(self): + if self._L is None: + self.calculate_Lipschitz() + return self._L + @L.setter + def L(self, value): + warnings.warn("You should set the Lipschitz constant with calculate_Lipschitz().") + if isinstance(value, (Number,)) and value >= 0: + self._L = value + else: + raise TypeError('The Lipschitz constant is a real positive number') + + def calculate_Lipschitz(self): + # Compute the Lipschitz parameter from the operator if possible + # Leave it initialised to None otherwise + try: + self._L = 2.0 * np.abs(self.c) * (self.A.norm()**2) + except AttributeError as ae: + if self.A.is_linear(): + Anorm = LinearOperator.PowerMethod(self.A, 10)[0] + self._L = 2.0 * np.abs(self.c) * (Anorm*Anorm) + else: + warnings.warn('{} could not calculate Lipschitz Constant. {}'.format( + self.__class__.__name__, ae)) + except NotImplementedError as noe: + warnings.warn('{} could not calculate Lipschitz Constant. {}'.format( + self.__class__.__name__, noe)) + if self.weight is not None: + self._L *= self.weight_norm + @property + def weight_norm(self): + if self.weight is not None: + if self._weight_norm is None: + D = DiagonalOperator(self.weight) + self._weight_norm = D.norm() + else: + self._weight_norm = 1.0 + return self._weight_norm + + def __rmul__(self, other): + '''defines the right multiplication with a number''' + + if not isinstance (other, Number): + raise NotImplemented + constant = self.c * other + + return LeastSquares(A=self.A, b=self.b, c=constant, weight=self.weight)
+ +
+ +
+ + + + + +
+ +
+
+
+ +
+ + + + +
+
+ +
+ +
+
+
+ + + + + +
+ + +
+ + \ No newline at end of file diff --git a/v24.2.0/_modules/cil/optimisation/functions/MixedL21Norm/index.html b/v24.2.0/_modules/cil/optimisation/functions/MixedL21Norm/index.html new file mode 100644 index 0000000000..7f2b2206b9 --- /dev/null +++ b/v24.2.0/_modules/cil/optimisation/functions/MixedL21Norm/index.html @@ -0,0 +1,746 @@ + + + + + + + + + + cil.optimisation.functions.MixedL21Norm — CIL 24.2.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + +
+ +
+ + + + + +
+
+ + + + + + +
+ + + + + + + + + + + + + +
+ +
+ + +
+
+ +
+
+ +
+ +
+ + +
+ +
+ + +
+
+ + + + + +
+ +

Source code for cil.optimisation.functions.MixedL21Norm

+#  Copyright 2019 United Kingdom Research and Innovation
+#  Copyright 2019 The University of Manchester
+#
+#  Licensed under the Apache License, Version 2.0 (the "License");
+#  you may not use this file except in compliance with the License.
+#  You may obtain a copy of the License at
+#
+#      http://www.apache.org/licenses/LICENSE-2.0
+#
+#  Unless required by applicable law or agreed to in writing, software
+#  distributed under the License is distributed on an "AS IS" BASIS,
+#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+#  See the License for the specific language governing permissions and
+#  limitations under the License.
+#
+# Authors:
+# CIL Developers, listed at: https://github.com/TomographicImaging/CIL/blob/master/NOTICE.txt
+
+from cil.optimisation.functions import Function
+from cil.framework import BlockDataContainer
+import numpy as np
+from numbers import Number
+has_numba = True
+try:
+    import numba
+    @numba.jit(parallel=True, nopython=True)
+    def _proximal_step_numba(arr, abstau):
+        '''Numba implementation of a step in the calculation of the proximal of MixedL21Norm
+
+        Parameters:
+        -----------
+        arr : numpy array, best if contiguous memory.
+        abstau: float >= 0
+
+        Returns:
+        --------
+        Stores the output in the input array.
+
+        Note:
+        -----
+
+        Input arr should be contiguous for best performance'''
+        tmp = arr.ravel()
+        for i in numba.prange(tmp.size):
+            if tmp[i] == 0:
+                continue
+            a = tmp[i] / abstau
+            el = a - 1
+            if el <= 0.0:
+                el = 0.
+
+            tmp[i] = el / a
+        return 0
+except ImportError:
+    has_numba = False
+
+
+
+def _proximal_step_numpy(arr, tau):
+    '''Numpy implementation of a step in the calculation of the proximal of MixedL21Norm
+
+    Parameters:
+    -----------
+    arr : DataContainer, best if contiguous memory.
+    tau: float, numpy array or DataContainer
+
+    Returns:
+    --------
+
+    A DataContainer where we have substituted nan with 0.
+    '''
+    # Note: we divide x by tau so the cases of tau both scalar and
+    # DataContainers run
+    try:
+        tmp = np.abs(tau, dtype=np.float32)
+    except np.core._exceptions._UFuncInputCastingError:
+        tmp = tau.abs()
+
+
+    arr /= tmp
+    res = arr - 1
+    res.maximum(0.0, out=res)
+    res /= arr
+
+    arr *= tmp
+
+    resarray = res.as_array()
+    resarray[np.isnan(resarray)] = 0
+    res.fill(resarray)
+    return res
+
+
+
+[docs] +class MixedL21Norm(Function): + + + """ MixedL21Norm function: :math:`F(x) = ||x||_{2,1} = \sum |x|_{2} = \sum \sqrt{ (x^{1})^{2} + (x^{2})^{2} + \dots}` + + where x is a BlockDataContainer, i.e., :math:`x=(x^{1}, x^{2}, \dots)` + + """ + + def __init__(self, **kwargs): + + super(MixedL21Norm, self).__init__() + + + def __call__(self, x): + + r"""Returns the value of the MixedL21Norm function at x. + + :param x: :code:`BlockDataContainer` + """ + if not isinstance(x, BlockDataContainer): + raise ValueError('__call__ expected BlockDataContainer, got {}'.format(type(x))) + + return x.pnorm(p=2).sum() + + +
+[docs] + def convex_conjugate(self,x): + + r"""Returns the value of the convex conjugate of the MixedL21Norm function at x. + + This is the Indicator function of :math:`\mathbb{I}_{\{\|\cdot\|_{2,\infty}\leq1\}}(x^{*})`, + + i.e., + + .. math:: \mathbb{I}_{\{\|\cdot\|_{2, \infty}\leq1\}}(x^{*}) + = \begin{cases} + 0, \mbox{if } \|x\|_{2, \infty}\leq1\\ + \infty, \mbox{otherwise} + \end{cases} + + where, + + .. math:: \|x\|_{2,\infty} = \max\{ \|x\|_{2} \} = \max\{ \sqrt{ (x^{1})^{2} + (x^{2})^{2} + \dots}\} + + """ + if not isinstance(x, BlockDataContainer): + raise ValueError('__call__ expected BlockDataContainer, got {}'.format(type(x))) + + tmp = (x.pnorm(2).max() - 1) + if tmp<=1e-5: + return 0 + else: + return np.inf
+ + +
+[docs] + def proximal(self, x, tau, out=None): + + r"""Returns the value of the proximal operator of the MixedL21Norm function at x. + + .. math :: \mathrm{prox}_{\tau F}(x) = \frac{x}{\|x\|_{2}}\max\{ \|x\|_{2} - \tau, 0 \} + + where the convention 0 · (0/0) = 0 is used. + + """ + + tmp = x.pnorm(2) + if has_numba and isinstance(tau, Number): + try: + # may involve a copy if the data is not contiguous + tmparr = np.asarray(tmp.as_array(), order='C', dtype=tmp.dtype) + if _proximal_step_numba(tmparr, np.abs(tau)) != 0: + # if numba silently crashes + raise RuntimeError('MixedL21Norm.proximal: numba silently crashed.') + + res = tmp + res.fill(tmparr) + except: + res = _proximal_step_numpy(tmp, tau) + else: + res = _proximal_step_numpy(tmp, tau) + + return x.multiply(res, out=out)
+
+ + + +
+[docs] +class SmoothMixedL21Norm(Function): + """ SmoothMixedL21Norm function: :math:`F(x) = ||x||_{2,1} = \sum |x|_{2} = \sum \sqrt{ (x^{1})^{2} + (x^{2})^{2} + \epsilon^2 + \dots}` + + where x is a BlockDataContainer, i.e., :math:`x=(x^{1}, x^{2}, \dots)` + + Conjugate, proximal and proximal conjugate methods no closed-form solution + """ + + def __init__(self, epsilon): + r''' + :param epsilon: smoothing parameter making MixedL21Norm differentiable + ''' + + super(SmoothMixedL21Norm, self).__init__(L=1) + self.epsilon = epsilon + + if self.epsilon==0: + raise ValueError('We need epsilon>0. Otherwise, call "MixedL21Norm" ') + + def __call__(self, x): + """Returns the value of the SmoothMixedL21Norm function at x.""" + if not isinstance(x, BlockDataContainer): + raise ValueError('__call__ expected BlockDataContainer, got {}'.format(type(x))) + return (x.pnorm(2).power(2) + self.epsilon**2).sqrt().sum() + + +
+[docs] + def gradient(self, x, out=None): + r"""Returns the value of the gradient of the SmoothMixedL21Norm function at x. + + \frac{x}{|x|} + """ + if not isinstance(x, BlockDataContainer): + raise ValueError('__call__ expected BlockDataContainer, got {}'.format(type(x))) + denom = (x.pnorm(2).power(2) + self.epsilon**2).sqrt() + return x.divide(denom, out=out)
+
+ +
+ +
+ + + + + +
+ +
+
+
+ +
+ + + + +
+
+ +
+ +
+
+
+ + + + + +
+ + +
+ + \ No newline at end of file diff --git a/v24.2.0/_modules/cil/optimisation/functions/OperatorCompositionFunction/index.html b/v24.2.0/_modules/cil/optimisation/functions/OperatorCompositionFunction/index.html new file mode 100644 index 0000000000..a7575bb150 --- /dev/null +++ b/v24.2.0/_modules/cil/optimisation/functions/OperatorCompositionFunction/index.html @@ -0,0 +1,606 @@ + + + + + + + + + + cil.optimisation.functions.OperatorCompositionFunction — CIL 24.2.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + +
+ +
+ + + + + +
+
+ + + + + + +
+ + + + + + + + + + + + + +
+ +
+ + +
+
+ +
+
+ +
+ +
+ + +
+ +
+ + +
+
+ + + + + +
+ +

Source code for cil.optimisation.functions.OperatorCompositionFunction

+#  Copyright 2019 United Kingdom Research and Innovation
+#  Copyright 2019 The University of Manchester
+#
+#  Licensed under the Apache License, Version 2.0 (the "License");
+#  you may not use this file except in compliance with the License.
+#  You may obtain a copy of the License at
+#
+#      http://www.apache.org/licenses/LICENSE-2.0
+#
+#  Unless required by applicable law or agreed to in writing, software
+#  distributed under the License is distributed on an "AS IS" BASIS,
+#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+#  See the License for the specific language governing permissions and
+#  limitations under the License.
+#
+# Authors:
+# CIL Developers, listed at: https://github.com/TomographicImaging/CIL/blob/master/NOTICE.txt
+
+from cil.optimisation.functions import Function
+from cil.optimisation.operators import Operator, ScaledOperator
+
+import warnings
+
+
+[docs] +class OperatorCompositionFunction(Function): + + """ Composition of a function with an operator as : :math:`(F \circ A)(x) = F(Ax)` + + :parameter function: :code:`Function` F + :parameter operator: :code:`Operator` A + + + For general operator, we have no explicit formulas for convex_conjugate, + proximal and proximal_conjugate + + """ + + def __init__(self, function, operator): + '''creator + + :param A: operator + :type A: :code:`Operator` + :param f: function + :type f: :code:`Function` + ''' + + super(OperatorCompositionFunction, self).__init__() + + self.function = function + self.operator = operator + + @property + def L(self): + if self._L is None: + try: + self._L = self.function.L * (self.operator.norm() ** 2) + except ValueError as ve: + self._L = None + return self._L + + def __call__(self, x): + + """ Returns :math:`F(Ax)` + """ + + return self.function(self.operator.direct(x)) + +
+[docs] + def gradient(self, x, out=None): + + """ Return the gradient of :math:`F(Ax)`, + + :math:`(F(Ax))' = A^{T}F'(Ax)` + + """ + + tmp = self.operator.range_geometry().allocate() + self.operator.direct(x, out=tmp) + self.function.gradient(tmp, out=tmp) + return self.operator.adjoint(tmp, out=out)
+
+ + +
+ +
+ + + + + +
+ +
+
+
+ +
+ + + + +
+
+ +
+ +
+
+
+ + + + + +
+ + +
+ + \ No newline at end of file diff --git a/v24.2.0/_modules/cil/optimisation/functions/Rosenbrock/index.html b/v24.2.0/_modules/cil/optimisation/functions/Rosenbrock/index.html new file mode 100644 index 0000000000..c6e285c54a --- /dev/null +++ b/v24.2.0/_modules/cil/optimisation/functions/Rosenbrock/index.html @@ -0,0 +1,597 @@ + + + + + + + + + + cil.optimisation.functions.Rosenbrock — CIL 24.2.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + +
+ +
+ + + + + +
+
+ + + + + + +
+ + + + + + + + + + + + + +
+ +
+ + +
+
+ +
+
+ +
+ +
+ + +
+ +
+ + +
+
+ + + + + +
+ +

Source code for cil.optimisation.functions.Rosenbrock

+#  Copyright 2019 United Kingdom Research and Innovation
+#  Copyright 2019 The University of Manchester
+#
+#  Licensed under the Apache License, Version 2.0 (the "License");
+#  you may not use this file except in compliance with the License.
+#  You may obtain a copy of the License at
+#
+#      http://www.apache.org/licenses/LICENSE-2.0
+#
+#  Unless required by applicable law or agreed to in writing, software
+#  distributed under the License is distributed on an "AS IS" BASIS,
+#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+#  See the License for the specific language governing permissions and
+#  limitations under the License.
+#
+# Authors:
+# CIL Developers, listed at: https://github.com/TomographicImaging/CIL/blob/master/NOTICE.txt
+
+import numpy
+from cil.optimisation.functions import Function
+from cil.framework import VectorData, VectorGeometry
+
+
+[docs] +class Rosenbrock(Function): + r'''Rosenbrock function + + .. math:: + + F(x,y) = (\alpha - x)^2 + \beta(y-x^2)^2 + + The function has a global minimum at .. math:: (x,y)=(\alpha, \alpha^2) + + ''' + def __init__(self, alpha, beta): + super(Rosenbrock, self).__init__() + + self.alpha = alpha + self.beta = beta + + def __call__(self, x): + if not isinstance(x, VectorData): + raise TypeError('Rosenbrock function works on VectorData only') + vec = x.as_array() + a = (self.alpha - vec[0]) + b = (vec[1] - (vec[0]*vec[0])) + return a * a + self.beta * b * b + +
+[docs] + def gradient(self, x, out=None): + r'''Gradient of the Rosenbrock function + + .. math:: + + \nabla f(x,y) = \left[ 2*((x-\alpha) - 2\beta x(y-x^2)) ; 2\beta (y - x^2) \right] + + ''' + if not isinstance(x, VectorData): + raise TypeError('Rosenbrock function works on VectorData only') + + vec = x.as_array() + a = (vec[0] - self.alpha) + b = (vec[1] - (vec[0]*vec[0])) + + res = numpy.empty_like(vec) + res[0] = 2 * ( a - 2 * self.beta * vec[0] * b) + res[1] = 2 * self.beta * b + + if out is not None: + out.fill(res) + return out + else: + return VectorData(res)
+
+ +
+ +
+ + + + + +
+ +
+
+
+ +
+ + + + +
+
+ +
+ +
+
+
+ + + + + +
+ + +
+ + \ No newline at end of file diff --git a/v24.2.0/_modules/cil/optimisation/functions/SAGFunction/index.html b/v24.2.0/_modules/cil/optimisation/functions/SAGFunction/index.html new file mode 100644 index 0000000000..3216110069 --- /dev/null +++ b/v24.2.0/_modules/cil/optimisation/functions/SAGFunction/index.html @@ -0,0 +1,753 @@ + + + + + + + + + + cil.optimisation.functions.SAGFunction — CIL 24.2.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + +
+ +
+ + + + + +
+
+ + + + + + +
+ + + + + + + + + + + + + +
+ +
+ + +
+
+ +
+
+ +
+ +
+ + +
+ +
+ + +
+
+ + + + + +
+ +

Source code for cil.optimisation.functions.SAGFunction

+#  Copyright 2024 United Kingdom Research and Innovation
+#  Copyright 2024 The University of Manchester
+# 
+#  Licensed under the Apache License, Version 2.0 (the "License");
+#  you may not use this file except in compliance with the License.
+#  You may obtain a copy of the License at
+# 
+#      http://www.apache.org/licenses/LICENSE-2.0
+# 
+#  Unless required by applicable law or agreed to in writing, software
+#  distributed under the License is distributed on an "AS IS" BASIS,
+#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+#  See the License for the specific language governing permissions and
+#  limitations under the License.
+# 
+# Authors:
+# - CIL Developers, listed at: https://github.com/TomographicImaging/CIL/blob/master/NOTICE.txt
+# - Daniel Deidda (National Physical Laboratory, UK)
+# - Claire Delplancke (Electricite de France, Research and Development)
+# - Ashley Gillman (Australian e-Health Res. Ctr., CSIRO, Brisbane, Queensland, Australia)
+# - Zeljko Kereta (Department of Computer Science, University College London, UK)
+# - Evgueni Ovtchinnikov (STFC - UKRI)
+# - Georg Schramm (Department of Imaging and Pathology, Division of Nuclear Medicine, KU Leuven, Leuven, Belgium)
+
+from .ApproximateGradientSumFunction import ApproximateGradientSumFunction
+import numpy as np
+
+
+
+[docs] +class SAGFunction(ApproximateGradientSumFunction): + + r""" + The stochastic average gradient (SAG) function takes a index :math:`i_k` and calculates the approximate gradient of :math:`\sum_{i=1}^{n-1}f_i` at iteration :math:`x_k` as + + .. math :: + \sum_{i=1}^{n-1} g_i^k \qquad \text{where} \qquad g_i^k= \begin{cases} + \nabla f_i(x_k), \text{ if } i=i_k\\ + g_i^{k-1},\text{ otherwise } + \end{cases} + + + + + The idea is that by incorporating a memory of previous gradient values the SAG method can achieve a faster convergence rate than black-box stochastic gradient methods. + + Note + ----- + Compared with the literature, we do not divide by :math:`n`, the number of functions, so that we return an approximate gradient of the whole sum function and not an average gradient. + + Reference + ---------- + Schmidt, M., Le Roux, N. and Bach, F., 2017. Minimizing finite sums with the stochastic average gradient. Mathematical Programming, 162, pp.83-112. https://doi.org/10.1007/s10107-016-1030-6. + + Parameters: + ----------- + functions : `list` of functions + A list of functions: :math:`[f_{0}, f_{1}, ..., f_{n-1}]`. Each function is assumed to be smooth with an implemented :func:`~Function.gradient` method. All functions must have the same domain. The number of functions (equivalently the length of the list `n`) must be strictly greater than 1. + sampler: An instance of a CIL Sampler class ( :meth:`~optimisation.utilities.sampler`) or of another class which has a `next` function implemented to output integers in :math:`{0,...,n-1}`. + This sampler is called each time `gradient` is called and sets the internal `function_num` passed to the `approximate_gradient` function. Default is `Sampler.random_with_replacement(len(functions))`. + + Note + ------ + + The user has the option of calling the class method `warm_start_approximate_gradients` after initialising this class. This will compute and store the gradient for each function at an initial point, equivalently setting :math:`g_i^0=\nabla f_i(x_0)` for initial point :math:`x_0`. If this method is not called, the gradients are initialised with zeros. + + Note: + ------ + + This function's memory requirements are `n + 3` times the image space, that is with 100 subsets the memory requirement is 103 images, which is huge. + + + """ + + def __init__(self, functions, sampler=None): + self._list_stored_gradients = None + self._full_gradient_at_iterate = None + self._warm_start_just_done = False + self._sampled_grad = None + + super(SAGFunction, self).__init__(functions, sampler) + + + + +
+[docs] + def approximate_gradient(self, x, function_num, out=None): + """ SAG approximate gradient, calculated at the point :math:`x` and updated using the function index given by `function_num`. + + Parameters + ---------- + x : DataContainer (e.g. ImageData object) + Element in the domain of the `functions` + function_num: `int` + Between 0 and the number of functions in the list + + """ + + + if self._list_stored_gradients is None: # Initialise the stored gradients on the first call of gradient unless using warm start. + self._list_stored_gradients = [ + 0*x for fi in self.functions] + self._full_gradient_at_iterate = 0*x + self._sampled_grad = x.copy() + self._stochastic_grad_difference = x.copy() + + if self.function_num >= self.num_functions or self.function_num<0 : # check the sampler and raise an error if needed + raise IndexError(f"The sampler has produced the index {self.function_num} which does not match the expected range of available functions to sample from. Please ensure your sampler only selects from [0,1,...,len(functions)-1] ") + + + # Calculate the gradient of the sampled function at the current iterate + self.functions[function_num].gradient(x, out=self._sampled_grad) + + + # Calculate the difference between the new gradient of the sampled function and the stored one + self._sampled_grad.sapyb( + 1., self._list_stored_gradients[function_num], -1., out=self._stochastic_grad_difference) + + # Calculate the approximate gradient + out = self._update_approx_gradient(out) + + # Update the stored gradients + self._list_stored_gradients[function_num].fill( + self._sampled_grad) + + # Calculate the stored full gradient + self._full_gradient_at_iterate.sapyb( + 1., self._stochastic_grad_difference, 1., out=self._full_gradient_at_iterate) + + return out
+ + + def _update_approx_gradient(self, out): + """Internal function used to differentiate between the SAG and SAGA calculations. This is the SAG approximation: """ + out = self._stochastic_grad_difference.sapyb( + 1., self._full_gradient_at_iterate, 1., out=out) + + return out + +
+[docs] + def warm_start_approximate_gradients(self, initial): + """A function to warm start SAG or SAGA algorithms by initialising all the gradients at an initial point. Equivalently setting :math:`g_i^0=\nabla f_i(x_0)` for initial point :math:`x_0`. + + Parameters + ---------- + initial: DataContainer, + The initial point to warmstart the calculation + + Note + ---- + When using SAG or SAGA with a deterministic algorithm, you should warm start the SAG-SAGA Function with the same initial point that you initialise the algorithm + + """ + self._list_stored_gradients = [ + fi.gradient(initial) for fi in self.functions] + self._full_gradient_at_iterate = np.sum(self._list_stored_gradients) + self._update_data_passes_indices(list(range(self.num_functions))) + self._sampled_grad = initial.copy() + self._stochastic_grad_difference = initial.copy()
+ + + @property + def data_passes_indices(self): + """ The property :code:`data_passes_indices` is a list of lists holding the indices of the functions that are processed in each call of `gradient`. This list is updated each time `gradient` is called by appending a list of the indices of the functions used to calculate the gradient. + This is overwritten from the base class to first check to see if the approximate gradient was warm started and, if it was, ensure that the first element of `data_passes_indices` contains each index used to warm start and the index used in the first call to `gradient`. Thus the length of `data_passes_indices` is always equal to the number of calls to `gradient`. + """ + ret = self._data_passes_indices[:] + if len(ret[0]) == self.num_functions: + a = ret.pop(1) + ret[0] += a + return ret
+ + +
+[docs] +class SAGAFunction(SAGFunction): + + r""" + SAGA (SAG-Ameliore) is an accelerated version of the stochastic average gradient (SAG) function which takes a index :math:`i_k` and calculates the approximate gradient of :math:`\sum_{i=1}^{n-1}f_i` at iteration :math:`x_k` as + + .. math :: + n\left(g_{i_k}^{k}-g_{i_k}^{k-1}\right)+\sum_{i=1}^{n-1} g_i^{k-1} \qquad \text{where} \qquad g_i^k= \begin{cases} + \nabla f_i(x_k), \text{ if } i=i_k\\ + g_i^{k-1},\text{ otherwise} + \end{cases} + + + SAGA improves on the theory behind SAG and SVRG, with better theoretical convergence rates. Compared to SAG it is an unbiased estimator. + + Note + ------ + Compared with the literature, we do not divide by :math:`n`, the number of functions, so that we return an approximate gradient of the whole sum function and not an average gradient. + + Note: + ------ + + This function's memory requirements are `n + 3` times the image space, that is with 100 subsets the memory requirement is 103 images, which is huge. + + Reference + ---------- + Defazio, A., Bach, F. and Lacoste-Julien, S., 2014. SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. Advances in neural information processing systems, 27. https://proceedings.neurips.cc/paper_files/paper/2014/file/ede7e2b6d13a41ddf9f4bdef84fdc737-Paper.pdf + + + Parameters: + ----------- + functions : `list` of functions + A list of functions: :code:`[f_{0}, f_{1}, ..., f_{n-1}]`. Each function is assumed to be smooth function with an implemented :func:`~Function.gradient` method. Each function must have the same domain. The number of functions must be strictly greater than 1. + sampler: An instance of one of the :meth:`~optimisation.utilities.sampler` classes which has a `next` function implemented and a `num_indices` property. + This sampler is called each time gradient is called and sets the internal `function_num` passed to the `approximate_gradient` function. The `num_indices` must match the number of functions provided. Default is `Sampler.random_with_replacement(len(functions))`. + + Note + ---- + The user has the option of calling the class method `warm_start_approximate_gradients` after initialising this class. This will compute and store the gradient for each function at an initial point, equivalently setting :math:`g_i^0=\nabla f_i(x_0)` for initial point :math:`x_0`. If this method is not called, the gradients are initialised with zeros. + + + """ + + def __init__(self, functions, sampler=None): + super(SAGAFunction, self).__init__(functions, sampler) + + + def _update_approx_gradient(self, out): + """Internal function used to differentiate between the SAG and SAGA calculations. This is the SAGA approximation and differs in the constants multiplying the gradients: """ + + # Due to the convention that we follow: without the 1/n factor + out= self._stochastic_grad_difference.sapyb( + self.num_functions, self._full_gradient_at_iterate, 1., out) + + return out
+ +
+ +
+ + + + + +
+ +
+
+
+ +
+ + + + +
+
+ +
+ +
+
+
+ + + + + +
+ + +
+ + \ No newline at end of file diff --git a/v24.2.0/_modules/cil/optimisation/functions/SGFunction/index.html b/v24.2.0/_modules/cil/optimisation/functions/SGFunction/index.html new file mode 100644 index 0000000000..28ee58e3bc --- /dev/null +++ b/v24.2.0/_modules/cil/optimisation/functions/SGFunction/index.html @@ -0,0 +1,609 @@ + + + + + + + + + + cil.optimisation.functions.SGFunction — CIL 24.2.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + +
+ +
+ + + + + +
+
+ + + + + + +
+ + + + + + + + + + + + + +
+ +
+ + +
+
+ +
+
+ +
+ +
+ + +
+ +
+ + +
+
+ + + + + +
+ +

Source code for cil.optimisation.functions.SGFunction

+#  Copyright 2024 United Kingdom Research and Innovation
+#  Copyright 2024 The University of Manchester
+#
+#  Licensed under the Apache License, Version 2.0 (the "License");
+#  you may not use this file except in compliance with the License.
+#  You may obtain a copy of the License at
+#
+#      http://www.apache.org/licenses/LICENSE-2.0
+#
+#  Unless required by applicable law or agreed to in writing, software
+#  distributed under the License is distributed on an "AS IS" BASIS,
+#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+#  See the License for the specific language governing permissions and
+#  limitations under the License.
+#
+# Authors:
+# - CIL Developers, listed at: https://github.com/TomographicImaging/CIL/blob/master/NOTICE.txt
+# - Daniel Deidda (National Physical Laboratory, UK)
+# - Claire Delplancke (Electricite de France, Research and Development)
+# - Ashley Gillman (Australian e-Health Res. Ctr., CSIRO, Brisbane, Queensland, Australia)
+# - Zeljko Kereta (Department of Computer Science, University College London, UK)
+# - Evgueni Ovtchinnikov (STFC - UKRI)
+# - Georg Schramm (Department of Imaging and Pathology, Division of Nuclear Medicine, KU Leuven, Leuven, Belgium)
+
+from .ApproximateGradientSumFunction import ApproximateGradientSumFunction
+from .Function import SumFunction
+
+
+[docs] +class SGFunction(ApproximateGradientSumFunction): + + r""" + Stochastic gradient function, a child class of :code:`ApproximateGradientSumFunction`, which defines from a list of functions, :math:`{f_0,...,f_{n-1}}` a `SumFunction`, :math:`f_0+...+f_{n-1}` where each time the `gradient` is called, the :code:`sampler` provides an index, :math:`i \in {0,...,n-1}` + and the :code:`gradient` method returns the approximate gradient :math:`n \nabla_x f_i(x)`. This can be used with the :code:`cil.optimisation.algorithms` algorithm :code:`GD` to give a stochastic gradient descent algorithm. + + Parameters + ----------- + functions : `list` of functions + A list of functions: :code:`[f_{0}, f_{1}, ..., f_{n-1}]`. Each function is assumed to be smooth with an implemented :func:`~Function.gradient` method. Although CIL does not define a domain of a :code:`Function`, all functions are supposed to have the same domain. The number of functions must be strictly greater than 1. + sampler: An instance of a CIL Sampler class ( :meth:`~optimisation.utilities.sampler`) or of another class which has a :code:`__next__` function implemented to output integers in {0,...,n-1}. + This sampler is called each time gradient is called and sets the internal :code:`function_num` passed to the :code:`approximate_gradient` function. Default is :code:`Sampler.random_with_replacement(len(functions))`. + """ + + def __init__(self, functions, sampler=None): + super(SGFunction, self).__init__(functions, sampler) + + +
+[docs] + def approximate_gradient(self, x, function_num, out=None): + + r""" Returns the gradient of the function at index `function_num` at :code:`x`. + + Parameters + ---------- + x : DataContainer + out: return DataContainer, if `None` a new DataContainer is returned, default `None`. + function_num: `int` + Between 0 and the number of functions in the list + Returns + -------- + DataContainer + the value of the approximate gradient of the sum function at :code:`x` given a `function_number` in {0,...,len(functions)-1} + """ + if self.function_num >= self.num_functions or self.function_num<0 : + raise IndexError( + 'The sampler has outputted an index larger than the number of functions to sample from. Please ensure your sampler samples from {0,1,...,len(functions)-1} only.') + + + + # compute gradient of the function indexed by function_num + if out is None: + out = self.functions[function_num].gradient(x) + else: + self.functions[function_num].gradient(x, out = out) + + # scale wrt number of functions + out*=self.num_functions + + return out
+
+ + + + + + + +
+ +
+ + + + + +
+ +
+
+
+ +
+ + + + +
+
+ +
+ +
+
+
+ + + + + +
+ + +
+ + \ No newline at end of file diff --git a/v24.2.0/_modules/cil/optimisation/functions/SVRGFunction/index.html b/v24.2.0/_modules/cil/optimisation/functions/SVRGFunction/index.html new file mode 100644 index 0000000000..cd55b349ea --- /dev/null +++ b/v24.2.0/_modules/cil/optimisation/functions/SVRGFunction/index.html @@ -0,0 +1,820 @@ + + + + + + + + + + cil.optimisation.functions.SVRGFunction — CIL 24.2.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + +
+ +
+ + + + + +
+
+ + + + + + +
+ + + + + + + + + + + + + +
+ +
+ + +
+
+ +
+
+ +
+ +
+ + +
+ +
+ + +
+
+ + + + + +
+ +

Source code for cil.optimisation.functions.SVRGFunction

+#   Copyright 2024 United Kingdom Research and Innovation
+#   Copyright 2024 The University of Manchester
+#
+#   Licensed under the Apache License, Version 2.0 (the "License");
+#   you may not use this file except in compliance with the License.
+#   You may obtain a copy of the License at
+#
+#       http://www.apache.org/licenses/LICENSE-2.0
+#
+#   Unless required by applicable law or agreed to in writing, software
+#   distributed under the License is distributed on an "AS IS" BASIS,
+#   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+#   See the License for the specific language governing permissions and
+#   limitations under the License.
+#
+#  Authors:
+#  - CIL Developers, listed at: https://github.com/TomographicImaging/CIL/blob/master/NOTICE.txt
+#  - Daniel Deidda (National Physical Laboratory, UK)
+#  - Claire Delplancke (Electricite de France, Research and Development)
+#  - Ashley Gillman (Australian e-Health Res. Ctr., CSIRO, Brisbane, Queensland, Australia)
+#  - Zeljko Kereta (Department of Computer Science, University College London, UK)
+#  - Evgueni Ovtchinnikov (STFC - UKRI)
+#  - Georg Schramm (Department of Imaging and Pathology, Division of Nuclear Medicine, KU Leuven, Leuven, Belgium)
+
+
+from .ApproximateGradientSumFunction import ApproximateGradientSumFunction
+import numpy as np
+import numbers
+
+
+
+[docs] +class SVRGFunction(ApproximateGradientSumFunction): + + r""" + The Stochastic Variance Reduced Gradient (SVRG) function calculates the approximate gradient of :math:`\sum_{i=1}^{n-1}f_i`. For this approximation, every `snapshot_update_interval` number of iterations, a full gradient calculation is made at this "snapshot" point. Intermediate gradient calculations update this snapshot by taking a index :math:`i_k` and calculating the gradient of :math:`f_{i_k}`s at the current iterate and the snapshot, updating the approximate gradient to be: + + .. math :: + n*\nabla f_{i_k}(x_k) - n*\nabla f_{i_k}(\tilde{x}) + \nabla \sum_{i=0}^{n-1}f_i(\tilde{x}), + + where :math:`\tilde{x}` is the latest "snapshot" point and :math:`x_k` is the value at the current iteration. + + Note + ----- + Compared with the literature, we multiply by :math:`n`, the number of functions, so that we return an approximate gradient of the whole sum function and not an average gradient. + + Note + ---- + In the case where `store_gradients=False` the memory requirements are 4 times the image size (1 stored full gradient at the "snapshot", one stored "snapshot" point and two lots of intermediary calculations). Alternatively, if `store_gradients=True` the memory requirement is `n+4` (`n` gradients at the snapshot for each function in the sum, one stored full gradient at the "snapshot", one stored "snapshot" point and two lots of intermediary calculations). + + Reference + --------- + Johnson, R. and Zhang, T., 2013. Accelerating stochastic gradient descent using predictive variance reduction. Advances in neural information processing systems, 26.https://proceedings.neurips.cc/paper_files/paper/2013/file/ac1dd209cbcc5e5d1c6e28598e8cbbe8-Paper.pdf + + + Parameters + ---------- + functions : `list` of functions + A list of functions: :code:`[f_{0}, f_{1}, ..., f_{n-1}]`. Each function is assumed to be smooth with an implemented :func:`~Function.gradient` method. All functions must have the same domain. The number of functions must be strictly greater than 1. + sampler: An instance of a CIL Sampler class ( :meth:`~optimisation.utilities.sampler`) or of another class which has a `next` function implemented to output integers in {0, 1, ..., n-1}. + This sampler is called each time gradient is called and sets the internal `function_num` passed to the `approximate_gradient` function. Default is `Sampler.random_with_replacement(len(functions))`. + snapshot_update_interval : positive int or None, optional + The interval for updating the full gradient (taking a snapshot). The default is 2*len(functions) so a "snapshot" is taken every 2*len(functions) iterations. If the user passes `0` then no full gradient snapshots will be taken. + store_gradients : bool, default: `False` + Flag indicating whether to store an update a list of gradients for each function :math:`f_i` or just to store the snapshot point :math:` \tilde{x}` and its gradient :math:`\nabla \sum_{i=0}^{n-1}f_i(\tilde{x})`. + + + """ + + def __init__(self, functions, sampler=None, snapshot_update_interval=None, store_gradients=False): + super(SVRGFunction, self).__init__(functions, sampler) + + # snapshot_update_interval for SVRG + self.snapshot_update_interval = snapshot_update_interval + + if snapshot_update_interval is None: + self.snapshot_update_interval = 2*self.num_functions + self.store_gradients = store_gradients + + self._svrg_iter_number = 0 + + self._full_gradient_at_snapshot = None + self._list_stored_gradients = None + + self.stoch_grad_at_iterate = None + self._stochastic_grad_difference = None + + self.snapshot = None + +
+[docs] + def gradient(self, x, out=None): + r""" Selects a random function using the `sampler` and then calls the approximate gradient at :code:`x` or calculates a full gradient depending on the update frequency + + Parameters + ---------- + x : DataContainer (e.g. ImageData object) + out: return DataContainer, if `None` a new DataContainer is returned, default `None`. + + Returns + -------- + DataContainer (e.g. ImageData object) + the value of the approximate gradient of the sum function at :code:`x` + """ + + # For SVRG, every `snapshot_update_interval` a full gradient step is calculated, else an approximate gradient is taken. + if ( (self.snapshot_update_interval != 0) and (self._svrg_iter_number % (self.snapshot_update_interval)) == 0): + + return self._update_full_gradient_and_return(x, out=out) + + else: + + self.function_num = self.sampler.next() + if not isinstance(self.function_num, numbers.Number): + raise ValueError("Batch gradient is not yet implemented") + if self.function_num >= self.num_functions or self.function_num < 0: + raise IndexError( + f"The sampler has produced the index {self.function_num} which does not match the expected range of available functions to sample from. Please ensure your sampler only selects from [0,1,...,len(functions)-1] ") + return self.approximate_gradient(x, self.function_num, out=out)
+ + +
+[docs] + def approximate_gradient(self, x, function_num, out=None): + r""" Calculates the stochastic gradient at the point :math:`x` by using the gradient of the selected function, indexed by :math:`i_k`, the `function_number` in {0,...,len(functions)-1}, and the full gradient at the snapshot :math:`\tilde{x}` + + .. math :: + n*\nabla f_{i_k}(x_k) - n*\nabla f_{i_k}(\tilde{x}) + \nabla \sum_{i=0}^{n-1}f_i(\tilde{x}) + + Note + ----- + Compared with the literature, we multiply by :math:`n`, the number of functions, so that we return an approximate gradient of the whole sum function and not an average gradient. + + Parameters + ---------- + x : DataContainer (e.g. ImageData object) + out: return DataContainer, if `None` a new DataContainer is returned, default `None`. + function_num: `int` + Between 0 and n-1, where n is the number of functions in the list + Returns + -------- + DataContainer (e.g. ImageData object) + the value of the approximate gradient of the sum function at :code:`x` given a `function_number` in {0,...,len(functions)-1} + """ + + self._svrg_iter_number += 1 + + self.stoch_grad_at_iterate = self.functions[function_num].gradient(x, out=self.stoch_grad_at_iterate) + + if self.store_gradients is True: + self._stochastic_grad_difference = self.stoch_grad_at_iterate.sapyb( + 1., self._list_stored_gradients[function_num], -1., out=self._stochastic_grad_difference) + else: + self._stochastic_grad_difference = self.stoch_grad_at_iterate.sapyb( + 1., self.functions[function_num].gradient(self.snapshot), -1., out=self._stochastic_grad_difference) + + self._update_data_passes_indices([function_num]) + + out = self._stochastic_grad_difference.sapyb( + self.num_functions, self._full_gradient_at_snapshot, 1., out=out) + + return out
+ + + def _update_full_gradient_and_return(self, x, out=None): + """ + Takes a "snapshot" at the point :math:`x`, saving both the point :math:` \tilde{x}=x` and its gradient :math:`\sum_{i=0}^{n-1}f_i{\tilde{x}}`. The function returns :math:`\sum_{i=0}^{n-1}f_i{\tilde{x}}` as the gradient calculation. If :code:`store_gradients==True`, the gradient of all the :math:`f_i`s is computed and stored at the "snapshot".. + + Parameters + ---------- + Takes a "snapshot" at the point :math:`x`. The function returns :math:`\sum_{i=0}^{n-1}f_i{\tilde{x}}` as the gradient calculation. If :code:`store_gradients==True`, the gradient of all the :math:`f_i`s is stored, otherwise only the sum of the gradients and the snapshot point :math:` \tilde{x}=x` are stored. + out: return DataContainer, if `None` a new DataContainer is returned, default `None`. + + Returns + -------- + DataContainer (e.g. ImageData object) + the value of the approximate gradient of the sum function at :code:`x` given a `function_number` in {0,...,len(functions)-1} + """ + + self._svrg_iter_number += 1 + + if self.store_gradients is True: + if self._list_stored_gradients is None: + # Save the gradient of each individual f_i and the gradient of the full sum at the point x. + self._list_stored_gradients = [ + fi.gradient(x) for fi in self.functions] + self._full_gradient_at_snapshot = sum( + self._list_stored_gradients, start=0*x) + else: + for i, fi in enumerate(self.functions): + fi.gradient(x, out=self._list_stored_gradients[i]) + + self._full_gradient_at_snapshot.fill( + sum(self._list_stored_gradients, start=0*x)) + self._full_gradient_at_snapshot *= 0 + + for i, el in enumerate(self._list_stored_gradients): + self._full_gradient_at_snapshot += el + + else: + # Save the snapshot point and the gradient of the full sum at the point x. + self._full_gradient_at_snapshot = self.full_gradient( + x, out=self._full_gradient_at_snapshot) + + if self.snapshot is None: + self.snapshot = x.copy() + + self.snapshot.fill(x) + + # In this iteration all functions in the sum were used to update the gradient + self._update_data_passes_indices(list(range(self.num_functions))) + + # Return the gradient of the full sum at the snapshot. + if out is None: + out = self._full_gradient_at_snapshot + else: + out.fill(self._full_gradient_at_snapshot) + + return out
+ + + +
+[docs] +class LSVRGFunction(SVRGFunction): + """"" + A class representing a function for Loopless Stochastic Variance Reduced Gradient (SVRG) approximation. This is similar to SVRG, except the full gradient at a "snapshot" is calculated at random intervals rather than at fixed numbers of iterations. + + + Reference + ---------- + + Kovalev, D., Horváth, S. &; Richtárik, P.. (2020). Don’t Jump Through Hoops and Remove Those Loops: SVRG and Katyusha are Better Without the Outer Loop. Proceedings of the 31st International Conference on Algorithmic Learning Theory, in Proceedings of Machine Learning Research 117:451-467 Available from https://proceedings.mlr.press/v117/kovalev20a.html. + + + + Parameters + ---------- + functions : `list` of functions + A list of functions: :code:`[f_{0}, f_{1}, ..., f_{n-1}]`. Each function is assumed to be smooth with an implemented :func:`~Function.gradient` method. All functions must have the same domain. The number of functions `n` must be strictly greater than 1. + sampler: An instance of a CIL Sampler class ( :meth:`~optimisation.utilities.sampler`) or of another class which has a `next` function implemented to output integers in {0,...,n-1}. + This sampler is called each time gradient is called and sets the internal `function_num` passed to the `approximate_gradient` function. Default is `Sampler.random_with_replacement(len(functions))`. + snapshot_update_probability: positive float, default: 1/n + The probability of updating the full gradient (taking a snapshot) at each iteration. The default is :math:`1./n` so, in expectation, a snapshot will be taken every :math:`n` iterations. + store_gradients : bool, default: `False` + Flag indicating whether to store an update a list of gradients for each function :math:`f_i` or just to store the snapshot point :math:` \tilde{x}` and it's gradient :math:`\nabla \sum_{i=0}^{n-1}f_i(\tilde{x})`. + + + Note + ---- + In the case where `store_gradients=False` the memory requirements are 4 times the image size (1 stored full gradient at the "snapshot", one stored "snapshot" point and two lots of intermediary calculations). Alternatively, if `store_gradients=True` the memory requirement is `n+4` (`n` gradients at the snapshot for each function in the sum, one stored full gradient at the "snapshot", one stored "snapshot" point and two lots of intermediary calculations). + + """ + + def __init__(self, functions, sampler=None, snapshot_update_probability=None, store_gradients=False, seed=None): + + super(LSVRGFunction, self).__init__( + functions, sampler=sampler, store_gradients=store_gradients) + + # Update frequency based on probability. + self.snapshot_update_probability = snapshot_update_probability + # Default snapshot_update_probability for Loopless SVRG + if self.snapshot_update_probability is None: + self.snapshot_update_probability = 1./self.num_functions + + # The random generator used to decide if the gradient calculation is a full gradient or an approximate gradient + self.generator = np.random.default_rng(seed=seed) + +
+[docs] + def gradient(self, x, out=None): + """ Selects a random function using the `sampler` and then calls the approximate gradient at :code:`x` or calculates a full gradient depending on the update probability. + + Parameters + ---------- + x : DataContainer (e.g. ImageData objects) + out: return DataContainer, if `None` a new DataContainer is returned, default `None`. + + Returns + -------- + DataContainer (e.g. ImageData object) + the value of the approximate gradient of the sum function at :code:`x` + """ + + if self._svrg_iter_number == 0 or self.generator.uniform() < self.snapshot_update_probability: + + return self._update_full_gradient_and_return(x, out=out) + + else: + + self.function_num = self.sampler.next() + if not isinstance(self.function_num, numbers.Number): + raise ValueError("Batch gradient is not yet implemented") + if self.function_num >= self.num_functions or self.function_num < 0: + raise IndexError( + f"The sampler has produced the index {self.function_num} which does not match the expected range of available functions to sample from. Please ensure your sampler only selects from [0,1,...,len(functions)-1] ") + return self.approximate_gradient(x, self.function_num, out=out)
+
+ +
+ +
+ + + + + +
+ +
+
+
+ +
+ + + + +
+
+ +
+ +
+
+
+ + + + + +
+ + +
+ + \ No newline at end of file diff --git a/v24.2.0/_modules/cil/optimisation/functions/TotalVariation/index.html b/v24.2.0/_modules/cil/optimisation/functions/TotalVariation/index.html new file mode 100644 index 0000000000..c3f0c96e62 --- /dev/null +++ b/v24.2.0/_modules/cil/optimisation/functions/TotalVariation/index.html @@ -0,0 +1,919 @@ + + + + + + + + + + cil.optimisation.functions.TotalVariation — CIL 24.2.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + +
+ +
+ + + + + +
+
+ + + + + + +
+ + + + + + + + + + + + + +
+ +
+ + +
+
+ +
+
+ +
+ +
+ + +
+ +
+ + +
+
+ + + + + +
+ +

Source code for cil.optimisation.functions.TotalVariation

+#  Copyright 2020 United Kingdom Research and Innovation
+#  Copyright 2020 The University of Manchester
+#
+#  Licensed under the Apache License, Version 2.0 (the "License");
+#  you may not use this file except in compliance with the License.
+#  You may obtain a copy of the License at
+#
+#      http://www.apache.org/licenses/LICENSE-2.0
+#
+#  Unless required by applicable law or agreed to in writing, software
+#  distributed under the License is distributed on an "AS IS" BASIS,
+#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+#  See the License for the specific language governing permissions and
+#  limitations under the License.
+#
+# Authors:
+# CIL Developers, listed at: https://github.com/TomographicImaging/CIL/blob/master/NOTICE.txt
+# Claire Delplancke (University of Bath)
+
+
+from cil.optimisation.functions import Function, IndicatorBox, MixedL21Norm, MixedL11Norm
+from cil.optimisation.operators import GradientOperator
+import numpy as np
+from numbers import Number
+import warnings
+import logging
+from cil.utilities.errors import InPlaceError
+
+log = logging.getLogger(__name__)
+
+
+
+[docs] +class TotalVariation(Function): + + r""" Total variation Function + + .. math:: \mathrm{TV}(u) := \|\nabla u\|_{2,1} = \sum \|\nabla u\|_{2},\, (\mbox{isotropic}) + + .. math:: \mathrm{TV}(u) := \|\nabla u\|_{1,1} = \sum \|\nabla u\|_{1}\, (\mbox{anisotropic}) + + Notes + ----- + + The :code:`TotalVariation` (TV) :code:`Function` acts as a composite function, i.e., + the composition of the :class:`.MixedL21Norm` function and the :class:`.GradientOperator` operator, + + .. math:: f(u) = \|u\|_{2,1}, \Rightarrow (f\circ\nabla)(u) = f(\nabla x) = \mathrm{TV}(u) + + In that case, the proximal operator of TV does not have an exact solution and we use an iterative + algorithm to solve: + + .. math:: \mathrm{prox}_{\tau \mathrm{TV}}(b) := \underset{u}{\mathrm{argmin}} \frac{1}{2\tau}\|u - b\|^{2} + \mathrm{TV}(u) + + The algorithm used for the proximal operator of TV is the Fast Gradient Projection algorithm (or FISTA) + applied to the _dual problem_ of the above problem, see :cite:`BeckTeboulle_b`, :cite:`BeckTeboulle_a`, :cite:`Zhu2010`. + + See also "Multicontrast MRI Reconstruction with Structure-Guided Total Variation", Ehrhardt, Betcke, 2016. + + + Parameters + ---------- + + max_iteration : :obj:`int`, default = 5 + Maximum number of iterations for the FGP algorithm to solve to solve the dual problem + of the Total Variation Denoising problem (ROF). If warm_start=False, this should be around 100, + or larger, with a set tolerance. + tolerance : :obj:`float`, default = None + Stopping criterion for the FGP algorithm used to to solve the dual problem + of the Total Variation Denoising problem (ROF). If the difference between iterates in the FGP algorithm is less than the tolerance + the iterations end before the max_iteration number. + + .. math:: \|x^{k+1} - x^{k}\|_{2} < \mathrm{tolerance} + + correlation : :obj:`str`, default = `Space` + Correlation between `Space` and/or `SpaceChannels` for the :class:`.GradientOperator`. + backend : :obj:`str`, default = `c` + Backend to compute the :class:`.GradientOperator` + lower : :obj:`'float`, default = None + A constraint is enforced using the :class:`.IndicatorBox` function, e.g., :code:`IndicatorBox(lower, upper)`. + upper : :obj:`'float`, default = None + A constraint is enforced using the :class:`.IndicatorBox` function, e.g., :code:`IndicatorBox(lower, upper)`. + isotropic : :obj:`boolean`, default = True + Use either isotropic or anisotropic definition of TV. + + .. math:: |x|_{2} = \sqrt{x_{1}^{2} + x_{2}^{2}},\, (\mbox{isotropic}) + + .. math:: |x|_{1} = |x_{1}| + |x_{2}|\, (\mbox{anisotropic}) + + split : :obj:`boolean`, default = False + Splits the Gradient into spatial gradient and spectral or temporal gradient for multichannel data. + + strong_convexity_constant : :obj:`float`, default = 0 + A strongly convex term weighted by the :code:`strong_convexity_constant` (:math:`\gamma`) parameter is added to the Total variation. + Now the :code:`TotalVariation` function is :math:`\gamma` - strongly convex and the proximal operator is + + .. math:: \underset{u}{\mathrm{argmin}} \frac{1}{2\tau}\|u - b\|^{2} + \mathrm{TV}(u) + \frac{\gamma}{2}\|u\|^{2} \Leftrightarrow + + .. math:: \underset{u}{\mathrm{argmin}} \frac{1}{2\frac{\tau}{1+\gamma\tau}}\|u - \frac{b}{1+\gamma\tau}\|^{2} + \mathrm{TV}(u) + + warm_start : :obj:`boolean`, default = True + If set to true, the FGP algorithm used to solve the dual problem of the Total Variation Denoising problem (ROF) is initiated by the final value from the previous iteration and not at zero. + This allows the max_iteration value to be reduced to 5-10 iterations. + + + Note + ---- + + With warm_start set to the default, True, the TV function will keep in memory the range of the gradient of the image to be denoised, i.e. N times the dimensionality of the image. This increases the memory requirements. + However, during the evaluation of `proximal` the memory requirements will be unchanged as the same amount of memory will need to be allocated and deallocated. + + Note + ---- + + In the case where the Total variation becomes a :math:`\gamma` - strongly convex function, i.e., + + .. math:: \mathrm{TV}(u) + \frac{\gamma}{2}\|u\|^{2} + + :math:`\gamma` should be relatively small, so as the second term above will not act as an additional regulariser. + For more information, see :cite:`Rasch2020`, :cite:`CP2011`. + + + + + Examples + -------- + + .. math:: \underset{u}{\mathrm{argmin}} \frac{1}{2}\|u - b\|^{2} + \alpha\|\nabla u\|_{2,1} + + >>> alpha = 2.0 + >>> TV = TotalVariation() + >>> sol = TV.proximal(b, tau = alpha) + + Examples + -------- + + .. math:: \underset{u}{\mathrm{argmin}} \frac{1}{2}\|u - b\|^{2} + \alpha\|\nabla u\|_{1,1} + \mathbb{I}_{C}(u) + + where :math:`C = \{1.0\leq u\leq 2.0\}`. + + >>> alpha = 2.0 + >>> TV = TotalVariation(isotropic=False, lower=1.0, upper=2.0) + >>> sol = TV.proximal(b, tau = alpha) + + + Examples + -------- + + .. math:: \underset{u}{\mathrm{argmin}} \frac{1}{2}\|u - b\|^{2} + (\alpha\|\nabla u\|_{2,1} + \frac{\gamma}{2}\|u\|^{2}) + + >>> alpha = 2.0 + >>> gamma = 1e-3 + >>> TV = alpha * TotalVariation(isotropic=False, strong_convexity_constant=gamma) + >>> sol = TV.proximal(b, tau = 1.0) + + """ + + def __init__(self, + max_iteration=10, + tolerance=None, + correlation="Space", + backend="c", + lower=None, + upper=None, + isotropic=True, + split=False, + strong_convexity_constant=0, + warm_start=True): + + super(TotalVariation, self).__init__(L=None) + + # Regularising parameter = alpha + self.regularisation_parameter = 1. + + self.iterations = max_iteration + + self.tolerance = tolerance + + # Total variation correlation (isotropic=Default) + self.isotropic = isotropic + + # correlation space or spacechannels + self.correlation = correlation + self.backend = backend + + # Define orthogonal projection onto the convex set C + if lower is None: + lower = -np.inf + if upper is None: + upper = np.inf + self.lower = lower + self.upper = upper + self.projection_C = IndicatorBox(lower, upper).proximal + + # Setup GradientOperator as None. This is to avoid domain argument in the __init__ + self._gradient = None + self._domain = None + + # splitting Gradient + self.split = split + + # For the warm_start functionality + self.warm_start = warm_start + self._p2 = None + + # Strong convexity for TV + self.strong_convexity_constant = strong_convexity_constant + + # Define Total variation norm + if self.isotropic: + self.func = MixedL21Norm() + else: + self.func = MixedL11Norm() + + def _get_p2(self): + r"""The initial value for the dual in the proximal calculation - allocated to zero in the case of warm_start=False + or initialised as the last iterate seen in the proximal calculation in the case warm_start=True .""" + + if self._p2 is None: + return self.gradient_operator.range_geometry().allocate(0) + else: + return self._p2 + + @property + def regularisation_parameter(self): + return self._regularisation_parameter + + @regularisation_parameter.setter + def regularisation_parameter(self, value): + if not isinstance(value, Number): + raise TypeError( + "regularisation_parameter: expected a number, got {}".format(type(value))) + self._regularisation_parameter = value + + def __call__(self, x): + r""" Returns the value of the TotalVariation function at :code:`x` .""" + + try: + self._domain = x.geometry + except: + self._domain = x + + # Compute Lipschitz constant provided that domain is not None. + # Lipschitz constant dependes on the GradientOperator, which is configured only if domain is not None + if self._L is None: + self.calculate_Lipschitz() + + if self.strong_convexity_constant > 0: + strongly_convex_term = ( + self.strong_convexity_constant/2)*x.squared_norm() + else: + strongly_convex_term = 0 + + return self.regularisation_parameter * self.func(self.gradient_operator.direct(x)) + strongly_convex_term + +
+[docs] + def proximal(self, x, tau, out=None): + r""" Returns the proximal operator of the TotalVariation function at :code:`x` .""" + + if id(x)==id(out): + raise InPlaceError(message="TotalVariation.proximal cannot be used in place") + + + if self.strong_convexity_constant > 0: + + strongly_convex_factor = (1 + tau * self.strong_convexity_constant) + x /= strongly_convex_factor + tau /= strongly_convex_factor + solution = self._fista_on_dual_rof(x, tau, out=out) + + if self.strong_convexity_constant > 0: + x *= strongly_convex_factor + tau *= strongly_convex_factor + + return solution
+ + + def _fista_on_dual_rof(self, x, tau, out=None): + r""" Runs the Fast Gradient Projection (FGP) algorithm to solve the dual problem + of the Total Variation Denoising problem (ROF). + + .. math: \max_{\|y\|_{\infty}<=1.} \frac{1}{2}\|\nabla^{*} y + x \|^{2} - \frac{1}{2}\|x\|^{2} + + """ + try: + self._domain = x.geometry + except: + self._domain = x + + # Compute Lipschitz constant provided that domain is not None. + # Lipschitz constant depends on the GradientOperator, which is configured only if domain is not None + if self._L is None: + self.calculate_Lipschitz() + + # initialise + t = 1 + + # dual variable - its content is overwritten during iterations + p1 = self.gradient_operator.range_geometry().allocate(None) + p2 = self._get_p2() + tmp_q = p2.copy() + + # multiply tau by -1 * regularisation_parameter here so it's not recomputed every iteration + # when tau is an array this is done inplace so reverted at the end + if isinstance(tau, Number): + tau_reg_neg = -self.regularisation_parameter * tau + else: + tau_reg_neg = tau + tau.multiply(-self.regularisation_parameter, out=tau_reg_neg) + + if out is None: + out = self.gradient_operator.domain_geometry().allocate(0) + + for k in range(self.iterations): + + t0 = t + self.gradient_operator.adjoint(tmp_q, out=out) + out.sapyb(tau_reg_neg, x, 1.0, out=out) + self.projection_C(out, tau=None, out=out) + + self.gradient_operator.direct(out, out=p1) + + multip = (-self.L)/tau_reg_neg + + tmp_q.sapyb(1., p1, multip, out=tmp_q) + + if self.tolerance is not None and k % 5 == 0: + p1 *= multip + error = p1.norm() + error /= tmp_q.norm() + if error < self.tolerance: + break + + self.func.proximal_conjugate(tmp_q, 1.0, out=p1) + + t = (1 + np.sqrt(1 + 4 * t0 ** 2)) / 2 + p1.subtract(p2, out=tmp_q) + tmp_q *= (t0-1)/t + tmp_q += p1 + + # switch p1 and p2 references + tmp = p1 + p1 = p2 + p2 = tmp + if self.warm_start: + self._p2 = p2 + + if self.tolerance is not None: + log.info("Stop at %d iterations with tolerance %r", k, error) + else: + log.info("Stop at %d iterations.", k) + + # return tau to its original state if it was modified + if id(tau_reg_neg) == id(tau): + tau_reg_neg.divide(-self.regularisation_parameter, out=tau) + + return out + +
+[docs] + def convex_conjugate(self, x): + r""" Returns the value of convex conjugate of the TotalVariation function at :code:`x` .""" + return 0.0
+ + +
+[docs] + def calculate_Lipschitz(self): + r""" Default value for the Lipschitz constant.""" + + # Compute the Lipschitz parameter from the operator if possible + # Leave it initialised to None otherwise + self._L = (1./self.gradient_operator.norm())**2
+ + + @property + def gradient_operator(self): + r""" GradientOperator is created if it is not instantiated yet. The domain of the `_gradient`, + is created in the `__call__` and `proximal` methods. + + """ + if self._domain is not None: + self._gradient = GradientOperator( + self._domain, correlation=self.correlation, backend=self.backend) + else: + raise ValueError( + " The domain of the TotalVariation is {}. Please use the __call__ or proximal methods first before calling gradient.".format(self._domain)) + + return self._gradient + + def __rmul__(self, scalar): + if not isinstance(scalar, Number): + raise TypeError( + "scalar: Expected a number, got {}".format(type(scalar))) + self.regularisation_parameter *= scalar + return self
+ +
+ +
+ + + + + +
+ +
+
+
+ +
+ + + + +
+
+ +
+ +
+
+
+ + + + + +
+ + +
+ + \ No newline at end of file diff --git a/v24.2.0/_modules/cil/optimisation/operators/BlockOperator/index.html b/v24.2.0/_modules/cil/optimisation/operators/BlockOperator/index.html new file mode 100644 index 0000000000..085009a361 --- /dev/null +++ b/v24.2.0/_modules/cil/optimisation/operators/BlockOperator/index.html @@ -0,0 +1,1011 @@ + + + + + + + + + + cil.optimisation.operators.BlockOperator — CIL 24.2.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + +
+ +
+ + + + + +
+
+ + + + + + +
+ + + + + + + + + + + + + +
+ +
+ + +
+
+ +
+
+ +
+ +
+ + +
+ +
+ + +
+
+ + + + + +
+ +

Source code for cil.optimisation.operators.BlockOperator

+#  Copyright 2019 United Kingdom Research and Innovation
+#  Copyright 2019 The University of Manchester
+#
+#  Licensed under the Apache License, Version 2.0 (the "License");
+#  you may not use this file except in compliance with the License.
+#  You may obtain a copy of the License at
+#
+#      http://www.apache.org/licenses/LICENSE-2.0
+#
+#  Unless required by applicable law or agreed to in writing, software
+#  distributed under the License is distributed on an "AS IS" BASIS,
+#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+#  See the License for the specific language governing permissions and
+#  limitations under the License.
+#
+# Authors:
+# CIL Developers, listed at: https://github.com/TomographicImaging/CIL/blob/master/NOTICE.txt
+
+import numpy
+import functools
+from numbers import Number
+from cil.framework import ImageData, BlockDataContainer, DataContainer
+from cil.optimisation.operators import Operator, LinearOperator
+from cil.framework import BlockGeometry
+try:
+    from sirf import SIRF
+    from sirf.SIRF import DataContainer as SIRFDataContainer
+    has_sirf = True
+except ImportError as ie:
+    has_sirf = False
+
+
+
+[docs] +class BlockOperator(Operator): + r'''A Block matrix containing Operators + + Parameters + ---------- + *args : Operator + Operators in the block. + **kwargs : dict + shape (:obj:`tuple`, optional): If shape is passed the Operators in vararg are considered input in a row-by-row fashion. + + + Note + ---- + The Block Framework is a generic strategy to treat variational problems in the + following form: + + .. math:: + + \min Regulariser + Fidelity + + + BlockOperators have a generic shape M x N, and when applied on an + Nx1 BlockDataContainer, will yield and Mx1 BlockDataContainer. + + Note + ----- + BlockDatacontainer are only allowed to have the shape of N x 1, with + N rows and 1 column. + + User may specify the shape of the block, by default is a row vector + + Operators in a Block are required to have the same domain column-wise and the + same range row-wise. + + Examples + ------- + + BlockOperator(op0,op1) results in a row block + + BlockOperator(op0,op1,shape=(1,2)) results in a column block + + + ''' + __array_priority__ = 1 + +
+[docs] + def __init__(self, *args, **kwargs): + + self.operators = args + shape = kwargs.get('shape', None) + if shape is None: + shape = (len(args), 1) + self.shape = shape + n_elements = functools.reduce(lambda x, y: x*y, shape, 1) + if len(args) != n_elements: + raise ValueError( + 'Dimension and size do not match: expected {} got {}' + .format(n_elements, len(args)))
+ + # TODO + # until a decent way to check equality of Acquisition/Image geometries + # required to fullfil "Operators in a Block are required to have the same + # domain column-wise and the same range row-wise." + # let us just not check if column/row-wise compatible, which is actually + # the same achieved by the column_wise_compatible and row_wise_compatible methods. + + # # test if operators are compatible + # if not self.column_wise_compatible(): + # raise ValueError('Operators in each column must have the same domain') + # if not self.row_wise_compatible(): + # raise ValueError('Operators in each row must have the same range') + +
+[docs] + def column_wise_compatible(self): + '''Operators in a Block should have the same domain per column''' + rows, cols = self.shape + compatible = True + for col in range(cols): + column_compatible = True + for row in range(1, rows): + dg0 = self.get_item(row-1, col).domain_geometry() + dg1 = self.get_item(row, col).domain_geometry() + if hasattr(dg0, 'handle') and hasattr(dg1, 'handle'): + column_compatible = True and column_compatible + else: + column_compatible = dg0.__dict__ == dg1.__dict__ and column_compatible + compatible = compatible and column_compatible + return compatible
+ + +
+[docs] + def row_wise_compatible(self): + '''Operators in a Block should have the same range per row''' + rows, cols = self.shape + compatible = True + for row in range(rows): + row_compatible = True + for col in range(1, cols): + dg0 = self.get_item(row, col-1).range_geometry() + dg1 = self.get_item(row, col).range_geometry() + if hasattr(dg0, 'handle') and hasattr(dg1, 'handle'): + row_compatible = True and column_compatible + else: + row_compatible = dg0.__dict__ == dg1.__dict__ and row_compatible + + compatible = compatible and row_compatible + + return compatible
+ + +
+[docs] + def get_item(self, row, col): + '''Returns the Operator at specified row and col + Parameters + ---------- + row: `int` + The row index required. + col: `int` + The column index required. + ''' + if row > self.shape[0]: + raise ValueError( + 'Requested row {} > max {}'.format(row, self.shape[0])) + if col > self.shape[1]: + raise ValueError( + 'Requested col {} > max {}'.format(col, self.shape[1])) + + index = row*self.shape[1]+col + return self.operators[index]
+ + +
+[docs] + def norm(self): + '''Returns the Euclidean norm of the norms of the individual operators in the BlockOperators ''' + return numpy.sqrt(numpy.sum(numpy.array(self.get_norms_as_list())**2))
+ + +
+[docs] + def get_norms_as_list(self, ): + '''Returns a list of the individual norms of the Operators in the BlockOperator + ''' + return [op.norm() for op in self.operators]
+ + +
+[docs] + def set_norms(self, norms): + '''Uses the set_norm() function in Operator to set the norms of the operators in the BlockOperator from a list of custom values. + + Parameters + ------------ + norms: list + A list of positive real values the same length as the number of operators in the BlockOperator. + + ''' + if len(norms) != self.size: + raise ValueError( + "The length of the list of norms should be equal to the number of operators in the BlockOperator") + + for j, value in enumerate(norms): + self.operators[j].set_norm(value)
+ + +
+[docs] + def direct(self, x, out=None): + '''Direct operation for the BlockOperator + + Note + ----- + BlockOperators work on BlockDataContainers, but they will also work on DataContainers + and inherited classes by simple wrapping the input in a BlockDataContainer of shape (1,1) + ''' + + if not isinstance(x, BlockDataContainer): + x_b = BlockDataContainer(x) + else: + x_b = x + shape = self.get_output_shape(x_b.shape) + + if out is None: + res = [] + for row in range(self.shape[0]): + for col in range(self.shape[1]): + if col == 0: + prod = self.get_item(row, col).direct( + x_b.get_item(col)) + else: + prod += self.get_item(row, + col).direct(x_b.get_item(col)) + res.append(prod) + if 1 == shape[0] == shape[1]: + # the output is a single DataContainer, so we can take it out + return res[0] + else: + return BlockDataContainer(*res, shape=shape) + + + else: + tmp = self.range_geometry().allocate() + for row in range(self.shape[0]): + for col in range(self.shape[1]): + if col == 0: + self.get_item(row,col).direct( + x_b.get_item(col), + out=out.get_item(row)) + else: + temp_out_row = out.get_item(row) # temp_out_row points to the element in out that we are adding to + self.get_item(row,col).direct( + x_b.get_item(col), + out=tmp.get_item(row)) + temp_out_row += tmp.get_item(row) + return out
+ + +
+[docs] + def adjoint(self, x, out=None): + '''Adjoint operation for the BlockOperator + + Note + ----- + BlockOperator may contain both LinearOperator and Operator + This method exists in BlockOperator as it is not known what type of + Operator it will contain. + + BlockOperators work on BlockDataContainers, but they will also work on DataContainers + and inherited classes by simple wrapping the input in a BlockDataContainer of shape (1,1) + + Raises: ValueError if the contained Operators are not linear + ''' + if not self.is_linear(): + raise ValueError('Not all operators in Block are linear.') + if not isinstance(x, BlockDataContainer): + x_b = BlockDataContainer(x) + else: + x_b = x + shape = self.get_output_shape(x_b.shape, adjoint=True) + if out is None: + res = [] + for col in range(self.shape[1]): + for row in range(self.shape[0]): + if row == 0: + prod = self.get_item(row, col).adjoint( + x_b.get_item(row)) + else: + prod += self.get_item(row, + col).adjoint(x_b.get_item(row)) + res.append(prod) + if self.shape[1] == 1: + # the output is a single DataContainer, so we can take it out + return res[0] + else: + return BlockDataContainer(*res, shape=shape) + else: + for col in range(self.shape[1]): + for row in range(self.shape[0]): + if row == 0: + if issubclass(out.__class__, DataContainer) or \ + (has_sirf and issubclass(out.__class__, SIRFDataContainer)): + self.get_item(row, col).adjoint( + x_b.get_item(row), + out=out) + else: + op = self.get_item(row, col) + self.get_item(row, col).adjoint( + x_b.get_item(row), + out=out.get_item(col)) + else: + if issubclass(out.__class__, DataContainer) or \ + (has_sirf and issubclass(out.__class__, SIRFDataContainer)): + out += self.get_item(row, col).adjoint( + x_b.get_item(row)) + else: + + temp_out_col = out.get_item(col) # out_col_operator points to the column in out that we are updating + temp_out_col += self.get_item(row,col).adjoint( + x_b.get_item(row), + ) + return out
+ + +
+[docs] + def is_linear(self): + '''Returns whether all the elements of the BlockOperator are linear''' + return functools.reduce(lambda x, y: x and y.is_linear(), self.operators, True)
+ + +
+[docs] + def get_output_shape(self, xshape, adjoint=False): + '''Returns the shape of the output BlockDataContainer + Parameters + ---------- + xshape: BlockDataContainer + + adjoint: `bool` + + Examples + -------- + A(N,M) direct u(M,1) -> N,1 + + A(N,M)^T adjoint u(N,1) -> M,1 + ''' + rows, cols = self.shape + xrows, xcols = xshape + if xcols != 1: + raise ValueError( + 'BlockDataContainer cannot have more than 1 column') + if adjoint: + if rows != xrows: + raise ValueError( + 'Incompatible shapes {} {}'.format(self.shape, xshape)) + return (cols, xcols) + if cols != xrows: + raise ValueError( + 'Incompatible shapes {} {}'.format((rows, cols), xshape)) + return (rows, xcols)
+ + +
+[docs] + def __rmul__(self, scalar): + '''Defines the left multiplication with a scalar. Returns a block operator with Scaled Operators inside. + + Parameters + ------------ + + scalar: number or iterable containing numbers + + ''' + if isinstance(scalar, list) or isinstance(scalar, tuple) or \ + isinstance(scalar, numpy.ndarray): + if len(scalar) != len(self.operators): + raise ValueError( + 'dimensions of scalars and operators do not match') + scalars = scalar + else: + scalars = [scalar for _ in self.operators] + # create a list of ScaledOperator-s + ops = [v * op for v, op in zip(scalars, self.operators)] + # return BlockScaledOperator(self, scalars ,shape=self.shape) + return type(self)(*ops, shape=self.shape)
+ + + @property + def T(self): + '''Returns the transposed of self. + + Recall the input list is shaped in a row-by-row fashion''' + newshape = (self.shape[1], self.shape[0]) + oplist = [] + for col in range(newshape[1]): + for row in range(newshape[0]): + oplist.append(self.get_item(col, row)) + return type(self)(*oplist, shape=newshape) + +
+[docs] + def domain_geometry(self): + '''Returns the domain of the BlockOperator + + If the shape of the BlockOperator is (N,1) the domain is a ImageGeometry or AcquisitionGeometry. + Otherwise it is a BlockGeometry. + ''' + if self.shape[1] == 1: + # column BlockOperator + return self.get_item(0, 0).domain_geometry() + else: + # get the geometries column wise + # we need only the geometries from the first row + # since it is compatible from __init__ + tmp = [] + for i in range(self.shape[1]): + tmp.append(self.get_item(0, i).domain_geometry()) + if self.shape[1] == 1: + return tmp[0] + return BlockGeometry(*tmp)
+ + + # shape = (self.shape[0], 1) + # return BlockGeometry(*[el.domain_geometry() for el in self.operators], + # shape=self.shape) + +
+[docs] + def range_geometry(self): + '''Returns the range of the BlockOperator''' + + tmp = [] + for i in range(self.shape[0]): + tmp.append(self.get_item(i, 0).range_geometry()) + if self.shape[0] == 1: + return tmp[0] + return BlockGeometry(*tmp)
+ + + def sum_abs_row(self): + + res = [] + for row in range(self.shape[0]): + for col in range(self.shape[1]): + if col == 0: + prod = self.get_item(row, col).sum_abs_row() + else: + prod += self.get_item(row, col).sum_abs_row() + res.append(prod) + + if self.shape[1] == 1: + tmp = sum(res) + return ImageData(tmp) + else: + + return BlockDataContainer(*res) + + def sum_abs_col(self): + + res = [] + for row in range(self.shape[0]): + for col in range(self.shape[1]): + if col == 0: + prod = self.get_item(row, col).sum_abs_col() + else: + prod += self.get_item(row, col).sum_abs_col() + res.append(prod) + + return BlockDataContainer(*res) + + def __len__(self): + return len(self.operators) + + @property + def size(self): + return len(self.operators) + +
+[docs] + def __getitem__(self, index): + '''Returns the index-th operator in the block irrespectively of it's shape''' + return self.operators[index]
+ + +
+[docs] + def get_as_list(self): + '''Returns the list of operators''' + return self.operators
+
+ +
+ +
+ + + + + +
+ +
+
+
+ +
+ + + + +
+
+ +
+ +
+
+
+ + + + + +
+ + +
+ + \ No newline at end of file diff --git a/v24.2.0/_modules/cil/optimisation/operators/ChannelwiseOperator/index.html b/v24.2.0/_modules/cil/optimisation/operators/ChannelwiseOperator/index.html new file mode 100644 index 0000000000..a97c979733 --- /dev/null +++ b/v24.2.0/_modules/cil/optimisation/operators/ChannelwiseOperator/index.html @@ -0,0 +1,641 @@ + + + + + + + + + + cil.optimisation.operators.ChannelwiseOperator — CIL 24.2.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + +
+ +
+ + + + + +
+
+ + + + + + +
+ + + + + + + + + + + + + +
+ +
+ + +
+
+ +
+
+ +
+ +
+ + +
+ +
+ + +
+
+ + + + + +
+ +

Source code for cil.optimisation.operators.ChannelwiseOperator

+#  Copyright 2020 United Kingdom Research and Innovation
+#  Copyright 2020 The University of Manchester
+#
+#  Licensed under the Apache License, Version 2.0 (the "License");
+#  you may not use this file except in compliance with the License.
+#  You may obtain a copy of the License at
+#
+#      http://www.apache.org/licenses/LICENSE-2.0
+#
+#  Unless required by applicable law or agreed to in writing, software
+#  distributed under the License is distributed on an "AS IS" BASIS,
+#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+#  See the License for the specific language governing permissions and
+#  limitations under the License.
+#
+# Authors:
+# CIL Developers, listed at: https://github.com/TomographicImaging/CIL/blob/master/NOTICE.txt
+
+from cil.framework import ImageGeometry, AcquisitionGeometry, BlockGeometry
+from cil.optimisation.operators import LinearOperator
+
+
+
+[docs] +class ChannelwiseOperator(LinearOperator): + + r'''ChannelwiseOperator: takes in a single-channel operator op and the + number of channels to be used, and creates a new multi-channel + ChannelwiseOperator, which will apply the operator op independently on + each channel for the number of channels specified. + + ChannelwiseOperator supports simple operators as input but not + BlockOperators. Typically if such behaviour is desired, it can be achieved + by creating instead a BlockOperator of ChannelwiseOperators. + + :param op: Single-channel operator + :param channels: Number of channels + :param dimension: 'prepend' (default) or 'append' channel dimension onto existing dimensions + + ''' + + def __init__(self, op, channels, dimension='prepend'): + + dom_op = op.domain_geometry() + ran_op = op.range_geometry() + + geom_mc = [] + + # Create multi-channel domain and range geometries: Clones of the + # input single-channel geometries but with the specified number of + # channels and additional dimension_label 'channel'. + for geom in [dom_op,ran_op]: + if dimension == 'prepend': + new_dimension_labels = ['channel']+list(geom.dimension_labels) + elif dimension == 'append': + new_dimension_labels = list(geom.dimension_labels)+['channel'] + else: + raise Exception("dimension must be either 'prepend' or 'append'") + if isinstance(geom, ImageGeometry): + + geom_channels = geom.copy() + geom_channels.channels = channels + geom_channels.dimension_labels = new_dimension_labels + + geom_mc.append(geom_channels) + elif isinstance(geom, AcquisitionGeometry): + geom_channels = geom.copy() + geom_channels.config.channels.num_channels = channels + geom_channels.dimension_labels = new_dimension_labels + + geom_mc.append(geom_channels) + + elif isinstance(geom,BlockGeometry): + raise Exception("ChannelwiseOperator does not support BlockOperator as input. Consider making a BlockOperator of ChannelwiseOperators instead.") + else: + pass + + super(ChannelwiseOperator, self).__init__(domain_geometry=geom_mc[0], + range_geometry=geom_mc[1]) + + self.op = op + self.channels = channels + +
+[docs] + def direct(self,x,out=None): + '''Returns D(x)''' + # Loop over channels, extract single-channel data, apply single-channel + # operator's direct method and fill into multi-channel output data set. + if out is None: + out = self.range_geometry().allocate() + cury = self.op.range_geometry().allocate() + for k in range(self.channels): + self.op.direct(x.get_slice(channel=k),cury) + out.fill(cury.as_array(),channel=k) + return out
+ + +
+[docs] + def adjoint(self,x, out=None): + '''Returns D^{*}(y)''' + # Loop over channels, extract single-channel data, apply single-channel + # operator's adjoint method and fill into multi-channel output data set. + if out is None: + out = self.domain_geometry().allocate() + cury = self.op.domain_geometry().allocate() + for k in range(self.channels): + self.op.adjoint(x.get_slice(channel=k),cury) + out.fill(cury.as_array(),channel=k) + return out
+ + +
+[docs] + def calculate_norm(self, **kwargs): + '''Evaluates operator norm of DiagonalOperator''' + return self.op.norm()
+
+ +
+ +
+ + + + + +
+ +
+
+
+ +
+ + + + +
+
+ +
+ +
+
+
+ + + + + +
+ + +
+ + \ No newline at end of file diff --git a/v24.2.0/_modules/cil/optimisation/operators/DiagonalOperator/index.html b/v24.2.0/_modules/cil/optimisation/operators/DiagonalOperator/index.html new file mode 100644 index 0000000000..b9978eea56 --- /dev/null +++ b/v24.2.0/_modules/cil/optimisation/operators/DiagonalOperator/index.html @@ -0,0 +1,602 @@ + + + + + + + + + + cil.optimisation.operators.DiagonalOperator — CIL 24.2.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + +
+ +
+ + + + + +
+
+ + + + + + +
+ + + + + + + + + + + + + +
+ +
+ + +
+
+ +
+
+ +
+ +
+ + +
+ +
+ + +
+
+ + + + + +
+ +

Source code for cil.optimisation.operators.DiagonalOperator

+#  Copyright 2020 United Kingdom Research and Innovation
+#  Copyright 2020 The University of Manchester
+#
+#  Licensed under the Apache License, Version 2.0 (the "License");
+#  you may not use this file except in compliance with the License.
+#  You may obtain a copy of the License at
+#
+#      http://www.apache.org/licenses/LICENSE-2.0
+#
+#  Unless required by applicable law or agreed to in writing, software
+#  distributed under the License is distributed on an "AS IS" BASIS,
+#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+#  See the License for the specific language governing permissions and
+#  limitations under the License.
+#
+# Authors:
+# CIL Developers, listed at: https://github.com/TomographicImaging/CIL/blob/master/NOTICE.txt
+
+import numpy as np
+from cil.framework import ImageData
+from cil.optimisation.operators import LinearOperator
+
+
+[docs] +class DiagonalOperator(LinearOperator): + + r"""DiagonalOperator + + Performs an element-wise multiplication, i.e., `Hadamard Product <https://en.wikipedia.org/wiki/Hadamard_product_(matrices)#:~:text=In%20mathematics%2C%20the%20Hadamard%20product,elements%20i%2C%20j%20of%20the>`_ + of a :class:`DataContainer` `x` and :class:`DataContainer` `diagonal`, `d` . + + .. math:: (D\circ x) = \sum_{i,j}^{M,N} D_{i,j} x_{i, j} + + In matrix-vector interpretation, if `D` is a :math:`M\times N` dense matrix and is flattened, we have a :math:`M*N \times M*N` vector. + A sparse diagonal matrix, i.e., :class:`DigaonalOperator` can be created if we add the vector above to the main diagonal. + If the :class:`DataContainer` `x` is also flattened, we have a :math:`M*N` vector. + Now, matrix-vector multiplcation is allowed and results to a :math:`(M*N,1)` vector. After reshaping we recover a :math:`M\times N` :class:`DataContainer`. + + Parameters + ---------- + diagonal : DataContainer + DataContainer with the same dimensions as the data to be operated on. + domain_geometry : ImageGeometry + Specifies the geometry of the operator domain. If 'None' will use the diagonal geometry directly. default=None . + + """ + def __init__(self, diagonal, domain_geometry=None): + if domain_geometry is None: + domain_geometry = diagonal.geometry.copy() + super(DiagonalOperator, self).__init__(domain_geometry=domain_geometry, + range_geometry=domain_geometry) + self.diagonal = diagonal + +
+[docs] + def direct(self,x,out=None): + "Returns :math:`D\circ x` " + if out is None: + return self.diagonal * x + else: + self.diagonal.multiply(x,out=out) + return out
+ + +
+[docs] + def adjoint(self,x, out=None): + "Returns :math:`D^*\circ x` " + return self.diagonal.conjugate().multiply(x,out=out)
+ + +
+[docs] + def calculate_norm(self, **kwargs): + r""" Returns the operator norm of DiagonalOperator which is the :math:`\infty` norm of `diagonal` + + .. math:: \|D\|_{\infty} = \max_{i}\{|D_{i}|\} + """ + return self.diagonal.abs().max()
+
+ +
+ +
+ + + + + +
+ +
+
+
+ +
+ + + + +
+
+ +
+ +
+
+
+ + + + + +
+ + +
+ + \ No newline at end of file diff --git a/v24.2.0/_modules/cil/optimisation/operators/FiniteDifferenceOperator/index.html b/v24.2.0/_modules/cil/optimisation/operators/FiniteDifferenceOperator/index.html new file mode 100644 index 0000000000..24fd9b1183 --- /dev/null +++ b/v24.2.0/_modules/cil/optimisation/operators/FiniteDifferenceOperator/index.html @@ -0,0 +1,908 @@ + + + + + + + + + + cil.optimisation.operators.FiniteDifferenceOperator — CIL 24.2.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + +
+ +
+ + + + + +
+
+ + + + + + +
+ + + + + + + + + + + + + +
+ +
+ + +
+
+ +
+
+ +
+ +
+ + +
+ +
+ + +
+
+ + + + + +
+ +

Source code for cil.optimisation.operators.FiniteDifferenceOperator

+#  Copyright 2019 United Kingdom Research and Innovation
+#  Copyright 2019 The University of Manchester
+#
+#  Licensed under the Apache License, Version 2.0 (the "License");
+#  you may not use this file except in compliance with the License.
+#  You may obtain a copy of the License at
+#
+#      http://www.apache.org/licenses/LICENSE-2.0
+#
+#  Unless required by applicable law or agreed to in writing, software
+#  distributed under the License is distributed on an "AS IS" BASIS,
+#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+#  See the License for the specific language governing permissions and
+#  limitations under the License.
+#
+# Authors:
+# CIL Developers, listed at: https://github.com/TomographicImaging/CIL/blob/master/NOTICE.txt
+
+import numpy as np
+
+from cil.optimisation.operators import LinearOperator
+from cil.utilities.errors import InPlaceError
+
+
+[docs] +class FiniteDifferenceOperator(LinearOperator): + + r''' + Computes forward/backward/centered finite differences of a DataContainer + under Neumann/Periodic boundary conditions + + :param domain_geometry: Domain geometry for the FiniteDifferenceOperator + :param direction: Direction to evaluate finite differences + :type direction: string label from domain geometry or integer number + :param method: Method for finite differences + :type method: 'forward', 'backward', 'centered' + :param bnd_cond: 'Neumann', 'Periodic' + + ''' + + def __init__(self, domain_geometry, + range_geometry=None, + direction = None, + method = 'forward', + bnd_cond = 'Neumann'): + + if isinstance(direction, int): + if direction > len(domain_geometry.shape) or direction<0: + raise ValueError('Requested direction is not possible. Accepted direction {}, \ngot {}'.format(range(len(domain_geometry.shape)), direction)) + else: + self.direction = direction + else: + if direction in domain_geometry.dimension_labels: + self.direction = domain_geometry.dimension_labels.index(direction) + else: + raise ValueError('Requested direction is not possible. Accepted direction is {} or {}, \ngot {}'.format(domain_geometry.dimension_labels, range(len(domain_geometry.shape)), direction)) + + #get voxel spacing, if not use 1s + try: + self.voxel_size = domain_geometry.spacing[self.direction] + except: + self.voxel_size = 1 + + self.boundary_condition = bnd_cond + self.method = method + + # Domain Geometry = Range Geometry if not stated + if range_geometry is None: + range_geometry = domain_geometry + + super(FiniteDifferenceOperator, self).__init__(domain_geometry = domain_geometry, + range_geometry = range_geometry) + + self.size_dom_gm = len(domain_geometry.shape) + + if self.voxel_size <= 0: + raise ValueError(' Need a positive voxel size ') + + # check direction and "length" of geometry + if self.direction + 1 > self.size_dom_gm: + raise ValueError('Finite differences direction {} larger than geometry shape length {}'.format(self.direction + 1, self.size_dom_gm)) + + def get_slice(self, start, stop, end=None): + + tmp = [slice(None)]*self.size_dom_gm + tmp[self.direction] = slice(start, stop, end) + return tmp + +
+[docs] + def direct(self, x, out = None): + + if id(x)==id(out): + raise InPlaceError(message="FiniteDifferenceOperator.direct cannot be used in place") + + x_asarr = x.as_array() + + outnone = False + if out is None: + outnone = True + ret = self.domain_geometry().allocate() + outa = ret.as_array() + else: + outa = out.as_array() + outa[:]=0 + + ####################################################################### + ##################### Forward differences ############################# + ####################################################################### + + if self.method == 'forward': + + # interior nodes + np.subtract( x_asarr[tuple(self.get_slice(2, None))], \ + x_asarr[tuple(self.get_slice(1,-1))], \ + out = outa[tuple(self.get_slice(1, -1))]) + + if self.boundary_condition == 'Neumann': + + # left boundary + np.subtract(x_asarr[tuple(self.get_slice(1,2))],\ + x_asarr[tuple(self.get_slice(0,1))], + out = outa[tuple(self.get_slice(0,1))]) + + + elif self.boundary_condition == 'Periodic': + + # left boundary + np.subtract(x_asarr[tuple(self.get_slice(1,2))],\ + x_asarr[tuple(self.get_slice(0,1))], + out = outa[tuple(self.get_slice(0,1))]) + + # right boundary + np.subtract(x_asarr[tuple(self.get_slice(0,1))],\ + x_asarr[tuple(self.get_slice(-1,None))], + out = outa[tuple(self.get_slice(-1,None))]) + + else: + raise ValueError('Not implemented') + + ####################################################################### + ##################### Backward differences ############################ + ####################################################################### + + elif self.method == 'backward': + + # interior nodes + np.subtract( x_asarr[tuple(self.get_slice(1, -1))], \ + x_asarr[tuple(self.get_slice(0,-2))], \ + out = outa[tuple(self.get_slice(1, -1))]) + + if self.boundary_condition == 'Neumann': + + # right boundary + np.subtract( x_asarr[tuple(self.get_slice(-1, None))], \ + x_asarr[tuple(self.get_slice(-2,-1))], \ + out = outa[tuple(self.get_slice(-1, None))]) + + elif self.boundary_condition == 'Periodic': + + # left boundary + np.subtract(x_asarr[tuple(self.get_slice(0,1))],\ + x_asarr[tuple(self.get_slice(-1,None))], + out = outa[tuple(self.get_slice(0,1))]) + + # right boundary + np.subtract(x_asarr[tuple(self.get_slice(-1,None))],\ + x_asarr[tuple(self.get_slice(-2,-1))], + out = outa[tuple(self.get_slice(-1,None))]) + + else: + raise ValueError('Not implemented') + + ####################################################################### + ##################### Centered differences ############################ + ####################################################################### + + + elif self.method == 'centered': + + # interior nodes + np.subtract( x_asarr[tuple(self.get_slice(2, None))], \ + x_asarr[tuple(self.get_slice(0,-2))], \ + out = outa[tuple(self.get_slice(1, -1))]) + + outa[tuple(self.get_slice(1, -1))] /= 2. + + if self.boundary_condition == 'Neumann': + + # left boundary + np.subtract( x_asarr[tuple(self.get_slice(1, 2))], \ + x_asarr[tuple(self.get_slice(0,1))], \ + out = outa[tuple(self.get_slice(0, 1))]) + outa[tuple(self.get_slice(0, 1))] /=2. + + # left boundary + np.subtract( x_asarr[tuple(self.get_slice(-1, None))], \ + x_asarr[tuple(self.get_slice(-2,-1))], \ + out = outa[tuple(self.get_slice(-1, None))]) + outa[tuple(self.get_slice(-1, None))] /=2. + + elif self.boundary_condition == 'Periodic': + pass + + # left boundary + np.subtract( x_asarr[tuple(self.get_slice(1, 2))], \ + x_asarr[tuple(self.get_slice(-1,None))], \ + out = outa[tuple(self.get_slice(0, 1))]) + outa[tuple(self.get_slice(0, 1))] /= 2. + + + # left boundary + np.subtract( x_asarr[tuple(self.get_slice(0, 1))], \ + x_asarr[tuple(self.get_slice(-2,-1))], \ + out = outa[tuple(self.get_slice(-1, None))]) + outa[tuple(self.get_slice(-1, None))] /= 2. + + else: + raise ValueError('Not implemented') + + else: + raise ValueError('Not implemented') + + if self.voxel_size != 1.0: + outa /= self.voxel_size + + if outnone: + ret.fill(outa) + return ret + else: + out.fill(outa) + return out
+ + +
+[docs] + def adjoint(self, x, out=None): + + if id(x)==id(out): + raise InPlaceError + + # Adjoint operation defined as + + x_asarr = x.as_array() + + outnone = False + if out is None: + outnone = True + ret = self.range_geometry().allocate() + outa = ret.as_array() + else: + outa = out.as_array() + outa[:]=0 + + + ####################################################################### + ##################### Forward differences ############################# + ####################################################################### + + + if self.method == 'forward': + + # interior nodes + np.subtract( x_asarr[tuple(self.get_slice(1, -1))], \ + x_asarr[tuple(self.get_slice(0,-2))], \ + out = outa[tuple(self.get_slice(1, -1))]) + + if self.boundary_condition == 'Neumann': + + # left boundary + outa[tuple(self.get_slice(0,1))] = x_asarr[tuple(self.get_slice(0,1))] + + # right boundary + outa[tuple(self.get_slice(-1,None))] = - x_asarr[tuple(self.get_slice(-2,-1))] + + elif self.boundary_condition == 'Periodic': + + # left boundary + np.subtract(x_asarr[tuple(self.get_slice(0,1))],\ + x_asarr[tuple(self.get_slice(-1,None))], + out = outa[tuple(self.get_slice(0,1))]) + # right boundary + np.subtract(x_asarr[tuple(self.get_slice(-1,None))],\ + x_asarr[tuple(self.get_slice(-2,-1))], + out = outa[tuple(self.get_slice(-1,None))]) + + else: + raise ValueError('Not implemented') + + ####################################################################### + ##################### Backward differences ############################ + ####################################################################### + + elif self.method == 'backward': + + # interior nodes + np.subtract( x_asarr[tuple(self.get_slice(2, None))], \ + x_asarr[tuple(self.get_slice(1,-1))], \ + out = outa[tuple(self.get_slice(1, -1))]) + + if self.boundary_condition == 'Neumann': + + # left boundary + outa[tuple(self.get_slice(0,1))] = x_asarr[tuple(self.get_slice(1,2))] + + # right boundary + outa[tuple(self.get_slice(-1,None))] = - x_asarr[tuple(self.get_slice(-1,None))] + + + elif self.boundary_condition == 'Periodic': + + # left boundary + np.subtract(x_asarr[tuple(self.get_slice(1,2))],\ + x_asarr[tuple(self.get_slice(0,1))], + out = outa[tuple(self.get_slice(0,1))]) + + # right boundary + np.subtract(x_asarr[tuple(self.get_slice(0,1))],\ + x_asarr[tuple(self.get_slice(-1,None))], + out = outa[tuple(self.get_slice(-1,None))]) + + else: + raise ValueError('Not implemented') + + + ####################################################################### + ##################### Centered differences ############################ + ####################################################################### + + elif self.method == 'centered': + + # interior nodes + np.subtract( x_asarr[tuple(self.get_slice(2, None))], \ + x_asarr[tuple(self.get_slice(0,-2))], \ + out = outa[tuple(self.get_slice(1, -1))]) + outa[tuple(self.get_slice(1, -1))] /= 2.0 + + + if self.boundary_condition == 'Neumann': + + # left boundary + np.add(x_asarr[tuple(self.get_slice(0,1))],\ + x_asarr[tuple(self.get_slice(1,2))], + out = outa[tuple(self.get_slice(0,1))]) + outa[tuple(self.get_slice(0,1))] /= 2.0 + + # right boundary + np.add(x_asarr[tuple(self.get_slice(-1,None))],\ + x_asarr[tuple(self.get_slice(-2,-1))], + out = outa[tuple(self.get_slice(-1,None))]) + + outa[tuple(self.get_slice(-1,None))] /= -2.0 + + + elif self.boundary_condition == 'Periodic': + + # left boundary + np.subtract(x_asarr[tuple(self.get_slice(1,2))],\ + x_asarr[tuple(self.get_slice(-1,None))], + out = outa[tuple(self.get_slice(0,1))]) + outa[tuple(self.get_slice(0,1))] /= 2.0 + + # right boundary + np.subtract(x_asarr[tuple(self.get_slice(0,1))],\ + x_asarr[tuple(self.get_slice(-2,-1))], + out = outa[tuple(self.get_slice(-1,None))]) + outa[tuple(self.get_slice(-1,None))] /= 2.0 + + + else: + raise ValueError('Not implemented') + + else: + raise ValueError('Not implemented') + + outa *= -1. + if self.voxel_size != 1.0: + outa /= self.voxel_size + + if outnone: + ret.fill(outa) + return ret + else: + out.fill(outa) + return out
+
+ +
+ +
+ + + + + +
+ +
+
+
+ +
+ + + + +
+
+ +
+ +
+
+
+ + + + + +
+ + +
+ + \ No newline at end of file diff --git a/v24.2.0/_modules/cil/optimisation/operators/GradientOperator/index.html b/v24.2.0/_modules/cil/optimisation/operators/GradientOperator/index.html new file mode 100644 index 0000000000..94de5e60c7 --- /dev/null +++ b/v24.2.0/_modules/cil/optimisation/operators/GradientOperator/index.html @@ -0,0 +1,1002 @@ + + + + + + + + + + cil.optimisation.operators.GradientOperator — CIL 24.2.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + +
+ +
+ + + + + +
+
+ + + + + + +
+ + + + + + + + + + + + + +
+ +
+ + +
+
+ +
+
+ +
+ +
+ + +
+ +
+ + +
+
+ + + + + +
+ +

Source code for cil.optimisation.operators.GradientOperator

+#  Copyright 2019 United Kingdom Research and Innovation
+#  Copyright 2019 The University of Manchester
+#
+#  Licensed under the Apache License, Version 2.0 (the "License");
+#  you may not use this file except in compliance with the License.
+#  You may obtain a copy of the License at
+#
+#      http://www.apache.org/licenses/LICENSE-2.0
+#
+#  Unless required by applicable law or agreed to in writing, software
+#  distributed under the License is distributed on an "AS IS" BASIS,
+#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+#  See the License for the specific language governing permissions and
+#  limitations under the License.
+#
+# Authors:
+# CIL Developers, listed at: https://github.com/TomographicImaging/CIL/blob/master/NOTICE.txt
+
+from cil.optimisation.operators import LinearOperator
+from cil.optimisation.operators import FiniteDifferenceOperator
+from cil.framework import BlockGeometry, ImageGeometry
+import logging
+from cil.utilities.multiprocessing import NUM_THREADS
+import numpy as np
+
+NEUMANN = 'Neumann'
+PERIODIC = 'Periodic'
+C = 'c'
+NUMPY = 'numpy'
+CORRELATION_SPACE = "Space"
+CORRELATION_SPACECHANNEL = "SpaceChannels"
+log = logging.getLogger(__name__)
+
+
+
+[docs] +class GradientOperator(LinearOperator): + + r""" + Gradient Operator: Computes first-order forward/backward differences on + 2D, 3D, 4D ImageData under Neumann/Periodic boundary conditions + + Parameters + ---------- + domain_geometry: ImageGeometry + Set up the domain of the function + method: str, default 'forward' + Accepts: 'forward', 'backward', 'centered', note C++ optimised routine only works with 'forward' + bnd_cond: str, default, 'Neumann' + Set the boundary conditions to use 'Neumann' or 'Periodic' + **kwargs: + correlation: str, default 'Space' + 'Space' will compute the gradient on only the spatial dimensions, 'SpaceChannels' will include the channel dimension direction + backend: str, default 'c' + 'c' or 'numpy', defaults to 'c' if correlation is 'SpaceChannels' or channels = 1 + num_threads: int + If backend is 'c' specify the number of threads to use. Default is number of cpus/2 + split: boolean + If 'True', and backend 'c' will return a BlockDataContainer with grouped spatial domains. i.e. [Channel, [Z, Y, X]], otherwise [Channel, Z, Y, X] + + Returns + ------- + BlockDataContainer + a BlockDataContainer containing images of the derivatives order given by `dimension_labels` + i.e. ['horizontal_y','horizontal_x'] will return [d('horizontal_y'), d('horizontal_x')] + + + Example + ------- + + 2D example + + .. math:: + :nowrap: + + \begin{eqnarray} + \nabla : X \rightarrow Y\\ + u \in X, \nabla(u) &=& [\partial_{y} u, \partial_{x} u]\\ + u^{*} \in Y, \nabla^{*}(u^{*}) &=& \partial_{y} v1 + \partial_{x} v2 + \end{eqnarray} + + + """ + + #kept here for backwards compatbility + CORRELATION_SPACE = CORRELATION_SPACE + CORRELATION_SPACECHANNEL = CORRELATION_SPACECHANNEL + + def __init__(self, domain_geometry, method = 'forward', bnd_cond = 'Neumann', **kwargs): + # Default backend = C + backend = kwargs.get('backend',C) + + # Default correlation for the gradient coupling + self.correlation = kwargs.get('correlation',CORRELATION_SPACE) + + # Add assumed attributes if there is no CIL geometry (i.e. SIRF objects) + if not hasattr(domain_geometry, 'channels'): + domain_geometry.channels = 1 + + if not hasattr(domain_geometry, 'dimension_labels'): + domain_geometry.dimension_labels = [None]*len(domain_geometry.shape) + + if backend == C: + if self.correlation == CORRELATION_SPACE and domain_geometry.channels > 1: + backend = NUMPY + log.warning("C backend cannot use correlation='Space' on multi-channel dataset - defaulting to `numpy` backend") + elif domain_geometry.dtype != np.float32: + backend = NUMPY + log.warning("C backend is only for arrays of datatype float32 - defaulting to `numpy` backend") + elif method != 'forward': + backend = NUMPY + log.warning("C backend is only implemented for forward differences - defaulting to `numpy` backend") + if backend == NUMPY: + self.operator = Gradient_numpy(domain_geometry, bnd_cond=bnd_cond, **kwargs) + else: + self.operator = Gradient_C(domain_geometry, bnd_cond=bnd_cond, **kwargs) + + super(GradientOperator, self).__init__(domain_geometry=domain_geometry, + range_geometry=self.operator.range_geometry()) + + +
+[docs] + def direct(self, x, out=None): + """ + Computes the first-order forward differences + + Parameters + ---------- + x : ImageData + out : BlockDataContainer, optional + pre-allocated output memory to store result + + Returns + ------- + BlockDataContainer + result data if `out` not specified + """ + return self.operator.direct(x, out=out)
+ + + +
+[docs] + def adjoint(self, x, out=None): + """ + Computes the first-order backward differences + + Parameters + ---------- + x : BlockDataContainer + Gradient images for each dimension in ImageGeometry domain + out : ImageData, optional + pre-allocated output memory to store result + + Returns + ------- + ImageData + result data if `out` not specified + """ + + return self.operator.adjoint(x, out=out)
+ + + +
+[docs] + def calculate_norm(self): + + r""" + Returns the analytical norm of the GradientOperator. + + .. math:: + + (\partial_{z}, \partial_{y}, \partial_{x}) &= \sqrt{\|\partial_{z}\|^{2} + \|\partial_{y}\|^{2} + \|\partial_{x}\|^{2} } \\ + &= \sqrt{ \frac{4}{h_{z}^{2}} + \frac{4}{h_{y}^{2}} + \frac{4}{h_{x}^{2}}} + + + Where the voxel sizes in each dimension are equal to 1 this simplifies to: + + - 2D geometries :math:`norm = \sqrt{8}` + - 3D geometries :math:`norm = \sqrt{12}` + + """ + + if self.correlation==CORRELATION_SPACE and self._domain_geometry.channels > 1: + norm = np.array(self.operator.voxel_size_order[1::]) + else: + norm = np.array(self.operator.voxel_size_order) + + norm = 4 / (norm * norm) + + return np.sqrt(norm.sum())
+
+ + + +class Gradient_numpy(LinearOperator): + + def __init__(self, domain_geometry, method = 'forward', bnd_cond = 'Neumann', **kwargs): + '''creator + + :param gm_domain: domain of the operator + :type gm_domain: :code:`AcquisitionGeometry` or :code:`ImageGeometry` + :param bnd_cond: boundary condition, either :code:`Neumann` or :code:`Periodic`. + :type bnd_cond: str, optional, default :code:`Neumann` + :param correlation: optional, :code:`SpaceChannel` or :code:`Space` + :type correlation: str, optional, default :code:`Space` + ''' + + # Consider pseudo 2D geometries with one slice, e.g., (1,voxel_num_y,voxel_num_x) + domain_shape = [] + self.ind = [] + for i, size in enumerate(list(domain_geometry.shape)): + if size > 1: + domain_shape.append(size) + self.ind.append(i) + + # Dimension of domain geometry + self.ndim = len(domain_shape) + + # Default correlation for the gradient coupling + self.correlation = kwargs.get('correlation',CORRELATION_SPACE) + self.bnd_cond = bnd_cond + + # Call FiniteDifference operator + self.method = method + self.FD = FiniteDifferenceOperator(domain_geometry, direction = 0, method = self.method, bnd_cond = self.bnd_cond) + + if self.correlation==CORRELATION_SPACE and 'channel' in domain_geometry.dimension_labels: + self.ndim -= 1 + self.ind.remove(domain_geometry.dimension_labels.index('channel')) + + range_geometry = BlockGeometry(*[domain_geometry for _ in range(self.ndim) ] ) + + #get voxel spacing, if not use 1s + try: + self.voxel_size_order = list(domain_geometry.spacing) + except: + self.voxel_size_order = [1]*len(domain_geometry.shape) + super(Gradient_numpy, self).__init__(domain_geometry = domain_geometry, + range_geometry = range_geometry) + + log.info("Initialised GradientOperator with numpy backend") + + def direct(self, x, out=None): + if out is not None: + for i, axis_index in enumerate(self.ind): + self.FD.direction = axis_index + self.FD.voxel_size = self.voxel_size_order[axis_index] + self.FD.direct(x, out = out[i]) + return out + else: + tmp = self.range_geometry().allocate() + for i, axis_index in enumerate(self.ind): + self.FD.direction = axis_index + self.FD.voxel_size = self.voxel_size_order[axis_index] + tmp.get_item(i).fill(self.FD.direct(x)) + return tmp + + def adjoint(self, x, out=None): + + if out is not None: + tmp = self.domain_geometry().allocate() + for i, axis_index in enumerate(self.ind): + self.FD.direction = axis_index + self.FD.voxel_size = self.voxel_size_order[axis_index] + self.FD.adjoint(x.get_item(i), out = tmp) + if i == 0: + out.fill(tmp) + else: + out += tmp + return out + else: + tmp = self.domain_geometry().allocate() + for i, axis_index in enumerate(self.ind): + self.FD.direction = axis_index + self.FD.voxel_size = self.voxel_size_order[axis_index] + tmp += self.FD.adjoint(x.get_item(i)) + return tmp + +import ctypes, platform +from ctypes import util +# check for the extension +if platform.system() == 'Linux': + dll = 'libcilacc.so' +elif platform.system() == 'Windows': + dll_file = 'cilacc.dll' + dll = util.find_library(dll_file) +elif platform.system() == 'Darwin': + dll = 'libcilacc.dylib' +else: + raise ValueError('Not supported platform, ', platform.system()) + +cilacc = ctypes.cdll.LoadLibrary(dll) + +c_float_p = ctypes.POINTER(ctypes.c_float) + +cilacc.openMPtest.restypes = ctypes.c_int32 +cilacc.openMPtest.argtypes = [ctypes.c_int32] + +cilacc.fdiff4D.restype = ctypes.c_int32 +cilacc.fdiff4D.argtypes = [ctypes.POINTER(ctypes.c_float), + ctypes.POINTER(ctypes.c_float), + ctypes.POINTER(ctypes.c_float), + ctypes.POINTER(ctypes.c_float), + ctypes.POINTER(ctypes.c_float), + ctypes.c_size_t, + ctypes.c_size_t, + ctypes.c_size_t, + ctypes.c_size_t, + ctypes.c_int32, + ctypes.c_int32, + ctypes.c_int32] + +cilacc.fdiff3D.restype = ctypes.c_int32 +cilacc.fdiff3D.argtypes = [ctypes.POINTER(ctypes.c_float), + ctypes.POINTER(ctypes.c_float), + ctypes.POINTER(ctypes.c_float), + ctypes.POINTER(ctypes.c_float), + ctypes.c_size_t, + ctypes.c_size_t, + ctypes.c_size_t, + ctypes.c_int32, + ctypes.c_int32, + ctypes.c_int32] + +cilacc.fdiff2D.restype = ctypes.c_int32 +cilacc.fdiff2D.argtypes = [ctypes.POINTER(ctypes.c_float), + ctypes.POINTER(ctypes.c_float), + ctypes.POINTER(ctypes.c_float), + ctypes.c_size_t, + ctypes.c_size_t, + ctypes.c_int32, + ctypes.c_int32, + ctypes.c_int32] + + +class Gradient_C(LinearOperator): + + '''Finite Difference Operator: + + Computes first-order forward/backward differences + on 2D, 3D, 4D ImageData + under Neumann/Periodic boundary conditions''' + + def __init__(self, domain_geometry, bnd_cond = NEUMANN, **kwargs): + + # Number of threads + self.num_threads = kwargs.get('num_threads',NUM_THREADS) + + # Split gradients, e.g., space and channels + self.split = kwargs.get('split',False) + + # Consider pseudo 2D geometries with one slice, e.g., (1,voxel_num_y,voxel_num_x) + self.domain_shape = [] + self.ind = [] + self.voxel_size_order = [] + for i, size in enumerate(list(domain_geometry.shape) ): + if size!=1: + self.domain_shape.append(size) + self.ind.append(i) + self.voxel_size_order.append(domain_geometry.spacing[i]) + + # Dimension of domain geometry + self.ndim = len(self.domain_shape) + + #default is 'Neumann' + self.bnd_cond = 0 + + if bnd_cond == PERIODIC: + self.bnd_cond = 1 + + # Define range geometry + if self.split is True and 'channel' in domain_geometry.dimension_labels: + range_geometry = BlockGeometry(domain_geometry, BlockGeometry(*[domain_geometry for _ in range(self.ndim-1)])) + else: + range_geometry = BlockGeometry(*[domain_geometry for _ in range(self.ndim)]) + self.split = False + + if self.ndim == 4: + self.fd = cilacc.fdiff4D + elif self.ndim == 3: + self.fd = cilacc.fdiff3D + elif self.ndim == 2: + self.fd = cilacc.fdiff2D + else: + raise ValueError('Number of dimensions not supported, expected 2, 3 or 4, got {}'.format(len(domain_geometry.shape))) + + super(Gradient_C, self).__init__(domain_geometry=domain_geometry, + range_geometry=range_geometry) + log.info("Initialised GradientOperator with C backend running with %d threads", cilacc.openMPtest(self.num_threads)) + + @staticmethod + def datacontainer_as_c_pointer(x): + ndx = x.as_array() + return ndx, ndx.ctypes.data_as(c_float_p) + + @staticmethod + def ndarray_as_c_pointer(ndx): + return ndx.ctypes.data_as(c_float_p) + + def direct(self, x, out=None): + + ndx = np.asarray(x.as_array(), dtype=np.float32, order='C') + x_p = Gradient_C.ndarray_as_c_pointer(ndx) + + if out is None: + out = self.range_geometry().allocate(None) + + if self.split is False: + ndout = [el.as_array() for el in out.containers] + else: + ind = self.domain_geometry().dimension_labels.index('channel') + ndout = [el.as_array() for el in out.get_item(1).containers] + ndout.insert(ind, out.get_item(0).as_array()) #insert channels dc at correct point for channel data + + #pass list of all arguments + arg1 = [Gradient_C.ndarray_as_c_pointer(ndout[i]) for i in range(len(ndout))] + arg2 = [el for el in self.domain_shape] + args = arg1 + arg2 + [self.bnd_cond, 1, self.num_threads] + status = self.fd(x_p, *args) + + if status != 0: + raise RuntimeError('Call to C gradient operator failed') + + for i, el in enumerate(self.voxel_size_order): + if el != 1: + ndout[i]/=el + + #fill back out in corerct (non-trivial) order + if self.split is False: + for i in range(self.ndim): + out.get_item(i).fill(ndout[i]) + else: + ind = self.domain_geometry().dimension_labels.index('channel') + out.get_item(0).fill(ndout[ind]) + + j = 0 + for i in range(self.ndim): + if i != ind: + out.get_item(1).get_item(j).fill(ndout[i]) + j +=1 + + return out + + def adjoint(self, x, out=None): + if out is None: + out = self.domain_geometry().allocate(None) + + ndout = np.asarray(out.as_array(), dtype=np.float32, order='C') + out_p = Gradient_C.ndarray_as_c_pointer(ndout) + + if self.split is False: + ndx = [el.as_array() for el in x.containers] + else: + ind = self.domain_geometry().dimension_labels.index('channel') + ndx = [el.as_array() for el in x.get_item(1).containers] + ndx.insert(ind, x.get_item(0).as_array()) + + for i, el in enumerate(self.voxel_size_order): + if el != 1: + ndx[i]/=el + + arg1 = [Gradient_C.ndarray_as_c_pointer(ndx[i]) for i in range(self.ndim)] + arg2 = [el for el in self.domain_shape] + args = arg1 + arg2 + [self.bnd_cond, 0, self.num_threads] + + status = self.fd(out_p, *args) + if status != 0: + raise RuntimeError('Call to C gradient operator failed') + + out.fill(ndout) + + #reset input data + for i, el in enumerate(self.voxel_size_order): + if el != 1: + ndx[i]*= el + + return out + +
+ +
+ + + + + +
+ +
+
+
+ +
+ + + + +
+
+ +
+ +
+
+
+ + + + + +
+ + +
+ + \ No newline at end of file diff --git a/v24.2.0/_modules/cil/optimisation/operators/IdentityOperator/index.html b/v24.2.0/_modules/cil/optimisation/operators/IdentityOperator/index.html new file mode 100644 index 0000000000..f7787008a0 --- /dev/null +++ b/v24.2.0/_modules/cil/optimisation/operators/IdentityOperator/index.html @@ -0,0 +1,628 @@ + + + + + + + + + + cil.optimisation.operators.IdentityOperator — CIL 24.2.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + +
+ +
+ + + + + +
+
+ + + + + + +
+ + + + + + + + + + + + + +
+ +
+ + +
+
+ +
+
+ +
+ +
+ + +
+ +
+ + +
+
+ + + + + +
+ +

Source code for cil.optimisation.operators.IdentityOperator

+#  Copyright 2019 United Kingdom Research and Innovation
+#  Copyright 2019 The University of Manchester
+#
+#  Licensed under the Apache License, Version 2.0 (the "License");
+#  you may not use this file except in compliance with the License.
+#  You may obtain a copy of the License at
+#
+#      http://www.apache.org/licenses/LICENSE-2.0
+#
+#  Unless required by applicable law or agreed to in writing, software
+#  distributed under the License is distributed on an "AS IS" BASIS,
+#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+#  See the License for the specific language governing permissions and
+#  limitations under the License.
+#
+# Authors:
+# CIL Developers, listed at: https://github.com/TomographicImaging/CIL/blob/master/NOTICE.txt
+
+from cil.optimisation.operators import LinearOperator
+import scipy.sparse as sp
+import numpy as np
+
+
+
+[docs] +class IdentityOperator(LinearOperator): + + '''IdentityOperator: Id: X -> Y, Id(x) = x\in Y + + X : gm_domain + Y : gm_range ( Default: Y = X ) + + ''' + + + def __init__(self, domain_geometry, range_geometry=None): + + + if range_geometry is None: + range_geometry = domain_geometry + + super(IdentityOperator, self).__init__(domain_geometry=domain_geometry, + range_geometry=range_geometry) + +
+[docs] + def direct(self,x,out=None): + + '''Returns Id(x)''' + + if out is None: + return x.copy() + else: + out.fill(x) + return out
+ + +
+[docs] + def adjoint(self,x, out=None): + + '''Returns Id(x)''' + + + if out is None: + return x.copy() + else: + out.fill(x) + return out
+ + +
+[docs] + def calculate_norm(self, **kwargs): + + '''Evaluates operator norm of IdentityOperator''' + + return 1.0
+ + + + ########################################################################### + ############### For preconditioning ###################################### + ########################################################################### + def matrix(self): + + return sp.eye(np.prod(self.gm_domain.shape)) + + def sum_abs_row(self): + + return self.gm_range.allocate(1) + + def sum_abs_col(self): + + return self.gm_domain.allocate(1) + +
+[docs] + def is_orthogonal(self): + '''Returns if the operator is orthogonal + Returns + ------- + `Bool` + ''' + return True
+
+ +
+ +
+ + + + + +
+ +
+
+
+ +
+ + + + +
+
+ +
+ +
+
+
+ + + + + +
+ + +
+ + \ No newline at end of file diff --git a/v24.2.0/_modules/cil/optimisation/operators/MaskOperator/index.html b/v24.2.0/_modules/cil/optimisation/operators/MaskOperator/index.html new file mode 100644 index 0000000000..95df35b9e3 --- /dev/null +++ b/v24.2.0/_modules/cil/optimisation/operators/MaskOperator/index.html @@ -0,0 +1,567 @@ + + + + + + + + + + cil.optimisation.operators.MaskOperator — CIL 24.2.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + +
+ +
+ + + + + +
+
+ + + + + + +
+ + + + + + + + + + + + + +
+ +
+ + +
+
+ +
+
+ +
+ +
+ + +
+ +
+ + +
+
+ + + + + +
+ +

Source code for cil.optimisation.operators.MaskOperator

+#  Copyright 2020 United Kingdom Research and Innovation
+#  Copyright 2020 The University of Manchester
+#
+#  Licensed under the Apache License, Version 2.0 (the "License");
+#  you may not use this file except in compliance with the License.
+#  You may obtain a copy of the License at
+#
+#      http://www.apache.org/licenses/LICENSE-2.0
+#
+#  Unless required by applicable law or agreed to in writing, software
+#  distributed under the License is distributed on an "AS IS" BASIS,
+#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+#  See the License for the specific language governing permissions and
+#  limitations under the License.
+#
+# Authors:
+# CIL Developers, listed at: https://github.com/TomographicImaging/CIL/blob/master/NOTICE.txt
+
+import numpy as np
+
+from cil.optimisation.operators import DiagonalOperator
+
+
+[docs] +class MaskOperator(DiagonalOperator): + + r""" MaskOperator + + Parameters + ---------- + mask : DataContainer + Boolean array with the same dimensions as the data to be operated on. + domain_geometry : ImageGeometry + Specifies the geometry of the operator domain. If 'None' will use the mask geometry size and spacing as float32. default = None . + """ + + def __init__(self, mask, domain_geometry=None): + + #if domain_geometry is not specified assume float32 for domain_geometry data type + if domain_geometry is None: + domain_geometry = mask.geometry.copy() + domain_geometry.dtype = np.float32 + + super(MaskOperator, self).__init__(mask, domain_geometry) + self.mask = self.diagonal
+ +
+ +
+ + + + + +
+ +
+
+
+ +
+ + + + +
+
+ +
+ +
+
+
+ + + + + +
+ + +
+ + \ No newline at end of file diff --git a/v24.2.0/_modules/cil/optimisation/operators/MatrixOperator/index.html b/v24.2.0/_modules/cil/optimisation/operators/MatrixOperator/index.html new file mode 100644 index 0000000000..0a34fb9168 --- /dev/null +++ b/v24.2.0/_modules/cil/optimisation/operators/MatrixOperator/index.html @@ -0,0 +1,597 @@ + + + + + + + + + + cil.optimisation.operators.MatrixOperator — CIL 24.2.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + +
+ +
+ + + + + +
+
+ + + + + + +
+ + + + + + + + + + + + + +
+ +
+ + +
+
+ +
+
+ +
+ +
+ + +
+ +
+ + +
+
+ + + + + +
+ +

Source code for cil.optimisation.operators.MatrixOperator

+#  Copyright 2019 United Kingdom Research and Innovation
+#  Copyright 2019 The University of Manchester
+#
+#  Licensed under the Apache License, Version 2.0 (the "License");
+#  you may not use this file except in compliance with the License.
+#  You may obtain a copy of the License at
+#
+#      http://www.apache.org/licenses/LICENSE-2.0
+#
+#  Unless required by applicable law or agreed to in writing, software
+#  distributed under the License is distributed on an "AS IS" BASIS,
+#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+#  See the License for the specific language governing permissions and
+#  limitations under the License.
+#
+# Authors:
+# CIL Developers, listed at: https://github.com/TomographicImaging/CIL/blob/master/NOTICE.txt
+
+import numpy
+from scipy.sparse.linalg import svds
+from cil.framework import VectorGeometry
+from cil.optimisation.operators import LinearOperator
+
+
+[docs] +class MatrixOperator(LinearOperator): + """ Matrix wrapped into a LinearOperator + + :param: a numpy matrix + + """ + + def __init__(self,A): + '''creator + + :param A: numpy ndarray representing a matrix + ''' + self.A = A + M_A, N_A = self.A.shape + domain_geometry = VectorGeometry(N_A, dtype=A.dtype) + range_geometry = VectorGeometry(M_A, dtype=A.dtype) + self.s1 = None # Largest singular value, initially unknown + super(MatrixOperator, self).__init__(domain_geometry=domain_geometry, + range_geometry=range_geometry) + +
+[docs] + def direct(self,x, out=None): + + if out is None: + tmp = self.range_geometry().allocate() + tmp.fill(numpy.dot(self.A,x.as_array())) + return tmp + else: + # Below use of out is not working, see + # https://docs.scipy.org/doc/numpy/reference/generated/numpy.dot.html + # numpy.dot(self.A, x.as_array(), out = out.as_array()) + out.fill(numpy.dot(self.A, x.as_array())) + return out
+ + +
+[docs] + def adjoint(self,x, out=None): + if out is None: + tmp = self.domain_geometry().allocate() + tmp.fill(numpy.dot(self.A.transpose().conjugate(),x.as_array())) + return tmp + else: + out.fill(numpy.dot(self.A.transpose().conjugate(),x.as_array())) + return out
+ + + def size(self): + return self.A.shape
+ +
+ +
+ + + + + +
+ +
+
+
+ +
+ + + + +
+
+ +
+ +
+
+
+ + + + + +
+ + +
+ + \ No newline at end of file diff --git a/v24.2.0/_modules/cil/optimisation/operators/Operator/index.html b/v24.2.0/_modules/cil/optimisation/operators/Operator/index.html new file mode 100644 index 0000000000..00bb2f4f37 --- /dev/null +++ b/v24.2.0/_modules/cil/optimisation/operators/Operator/index.html @@ -0,0 +1,1362 @@ + + + + + + + + + + cil.optimisation.operators.Operator — CIL 24.2.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + +
+ +
+ + + + + +
+
+ + + + + + +
+ + + + + + + + + + + + + +
+ +
+ + +
+
+ +
+
+ +
+ +
+ + +
+ +
+ + +
+
+ + + + + +
+ +

Source code for cil.optimisation.operators.Operator

+#  Copyright 2019 United Kingdom Research and Innovation
+#  Copyright 2019 The University of Manchester
+#
+#  Licensed under the Apache License, Version 2.0 (the "License");
+#  you may not use this file except in compliance with the License.
+#  You may obtain a copy of the License at
+#
+#      http://www.apache.org/licenses/LICENSE-2.0
+#
+#  Unless required by applicable law or agreed to in writing, software
+#  distributed under the License is distributed on an "AS IS" BASIS,
+#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+#  See the License for the specific language governing permissions and
+#  limitations under the License.
+#
+# Authors:
+# CIL Developers, listed at: https://github.com/TomographicImaging/CIL/blob/master/NOTICE.txt
+
+from numbers import Number
+from textwrap import dedent
+import numpy
+import functools
+import logging
+import warnings
+
+log = logging.getLogger(__name__)
+
+
+
+[docs] +class Operator(object): + """ + Operator that maps from a space X -> Y + + Parameters + ---------- + + domain_geometry : ImageGeometry or AcquisitionGeometry + domain of the operator + + range_geometry : ImageGeometry or AcquisitionGeometry, optional, default None + range of the operator + """ + + def __init__(self, domain_geometry, **kwargs): + + self._norm = None + self._domain_geometry = domain_geometry + self._range_geometry = kwargs.get('range_geometry', None) + +
+[docs] + def is_linear(self): + '''Returns if the operator is linear + Returns + ------- + `Bool` + ''' + return False
+ + +
+[docs] + def is_orthogonal(self): + '''Returns if the operator is orthogonal + Returns + ------- + `Bool` + ''' + return False
+ + + +
+[docs] + def direct(self, x, out=None): + r"""Calls the operator + + Parameters + ---------- + x: DataContainer or BlockDataContainer + Element in the domain of the Operator + out: DataContainer or BlockDataContainer, default None + If out is not None the output of the Operator will be filled in out, otherwise a new object is instantiated and returned. + Returns + ------- + DataContainer or BlockDataContainer containing the result. + + """ + raise NotImplementedError
+ + +
+[docs] + def norm(self, **kwargs): + '''Returns the norm of the Operator. On first call the norm will be calculated using the operator's calculate_norm + method. Subsequent calls will return the cached norm. + + Returns + ------- + norm: positive:`float` + ''' + + if len(kwargs) != 0: + warnings.warn(dedent("""\ + norm: the norm method does not use any parameters. + For LinearOperators you can use PowerMethod to calculate the norm with non-default parameters and use set_norm to set it"""), DeprecationWarning, stacklevel=2) + + if self._norm is None: + self._norm = self.calculate_norm() + + return self._norm
+ + +
+[docs] + def set_norm(self, norm=None): + '''Sets the norm of the operator to a custom value. + + Parameters + --------- + norm: float, optional + Positive real valued number or `None` + + + Note + ---- + The passed values are cached so that when self.norm() is called, the saved value will be returned and not calculated via the power method. + If `None` is passed, the cache is cleared prompting the function to call the power method to calculate the norm the next time self.norm() is called. + ''' + + if norm is not None: + if isinstance(norm, Number): + if norm <= 0: + raise ValueError( + "Norm must be a positive real valued number or None, got {}".format(norm)) + else: + raise TypeError( + "Norm must be a number or None, got {} of type {}".format(norm, type(norm))) + + self._norm = norm
+ + +
+[docs] + def calculate_norm(self): + '''Returns the norm of the Operator. Note that this gives a NotImplementedError if the SumOperator is not linear. + Returns + ------- + Scalar: the norm of the Operator + ''' + + if self.is_linear(): + return LinearOperator.calculate_norm(self) + + return NotImplementedError
+ + +
+[docs] + def range_geometry(self): + '''Returns the range of the Operator: Y space''' + return self._range_geometry
+ + +
+[docs] + def domain_geometry(self): + '''Returns the domain of the Operator: X space''' + return self._domain_geometry
+ + + @property + def domain(self): + return self.domain_geometry() + + @property + def range(self): + return self.range_geometry() + + def __rmul__(self, scalar): + '''Defines the multiplication by a scalar on the left + + returns a ScaledOperator''' + return ScaledOperator(self, scalar) + + def compose(self, *other, **kwargs): + # TODO: check equality of domain and range of operators + # if self.operator2.range_geometry != self.operator1.domain_geometry: + # raise ValueError('Cannot compose operators, check domain geometry of {} and range geometry of {}'.format(self.operator1,self.operator2)) + + return CompositionOperator(self, *other, **kwargs) + + def __add__(self, other): + return SumOperator(self, other) + + def __mul__(self, scalar): + return self.__rmul__(scalar) + + def __neg__(self): + """ Return -self """ + return -1 * self + + def __sub__(self, other): + """ Returns the subtraction of the operators.""" + return self + (-1) * other
+ + + +
+[docs] +class LinearOperator(Operator): + """ + Linear operator that maps from a space X <-> Y + + Parameters + ---------- + + domain_geometry : ImageGeometry or AcquisitionGeometry + domain of the operator + + range_geometry : ImageGeometry or AcquisitionGeometry, optional, default None + range of the operator + """ + + def __init__(self, domain_geometry, **kwargs): + super(LinearOperator, self).__init__(domain_geometry, **kwargs) + +
+[docs] + def is_linear(self): + '''Returns if the operator is linear''' + return True
+ + +
+[docs] + def adjoint(self, x, out=None): + '''Returns the adjoint/inverse operation evaluated at the point :math:`x` + + Parameters + ---------- + x: DataContainer or BlockDataContainer + Element in the domain of the Operator + out: DataContainer or BlockDataContainer, default None + If out is not None the output of the Operator will be filled in out, otherwise a new object is instantiated and returned. + + Returns + ------- + DataContainer or BlockDataContainer containing the result. + + Note + ---- + Only available to linear operators''' + raise NotImplementedError
+ + +
+[docs] + @staticmethod + def PowerMethod(operator, max_iteration=10, initial=None, tolerance=1e-5, return_all=False, method='auto'): + r"""Power method or Power iteration algorithm + + The Power method computes the largest (dominant) eigenvalue of a matrix in magnitude, e.g., + absolute value in the real case and modulus in the complex case. + + Parameters + ---------- + + operator: LinearOperator + max_iteration: positive:`int`, default=10 + Number of iterations for the Power method algorithm. + initial: DataContainer, default = None + Starting point for the Power method. + tolerance: positive:`float`, default = 1e-5 + Stopping criterion for the Power method. Check if two consecutive eigenvalue evaluations are below the tolerance. + return_all: `boolean`, default = False + Toggles the verbosity of the return + method: `string` one of `"auto"`, `"composed_with_adjoint"` and `"direct_only"`, default = `"auto"` + The default `auto` lets the code choose the method, this can be specified with `"direct_only"` or `"composed_with_adjoint"` + + + Returns + ------- + dominant eigenvalue: positive:`float` + number of iterations: positive:`int` + Number of iterations run. Only returned if return_all is True. + eigenvector: DataContainer + Corresponding eigenvector of the dominant eigenvalue. Only returned if return_all is True. + list of eigenvalues: :obj:`list` + List of eigenvalues. Only returned if return_all is True. + convergence: `boolean` + Check on wether the difference between the last two iterations is less than tolerance. Only returned if return_all is True. + + + Note + ----- + The power method contains two different algorithms chosen by the `method` flag. + + In the case `method="direct_only"`, for operator, :math:`A`, the power method computes the iterations + :math:`x_{k+1} = A (x_k/\|x_{k}\|)` initialised with a random vector :math:`x_0` and returning the largest (dominant) eigenvalue in magnitude given by :math:`\|x_k\|`. + + In the case `method="composed_with_adjoint"`, the algorithm computes the largest (dominant) eigenvalue of :math:`A^{T}A` + returning the square root of this value, i.e. the iterations: + :math:`x_{k+1} = A^TA (x_k/\|x_{k}\|)` and returning :math:`\sqrt{\|x_k\|}`. + + The default flag is `method="auto"`, the algorithm checks to see if the `operator.domain_geometry() == operator.range_geometry()` and if so + uses the method "direct_only" and if not the method "composed_with_adjoint". + + Examples + -------- + + >>> M = np.array([[1.,0],[1.,2.]]) + >>> Mop = MatrixOperator(M) + >>> Mop_norm = Mop.PowerMethod(Mop) + >>> Mop_norm + 2.0000654846240296 + + `PowerMethod` is called when we compute the norm of a matrix or a `LinearOperator`. + + >>> Mop_norm = Mop.norm() + 2.0005647295658866 + + """ + + allowed_methods = ["auto", "direct_only", "composed_with_adjoint"] + + if method not in allowed_methods: + raise ValueError("The argument 'method' can be set to one of {0} got {1}".format( + allowed_methods, method)) + + apply_adjoint = True + if method == "direct_only": + apply_adjoint = False + if method == "auto": + try: + geometries_match = operator.domain_geometry() == operator.range_geometry() + + except AssertionError: + # catch AssertionError for SIRF objects https://github.com/SyneRBI/SIRF-SuperBuild/runs/5110228626?check_suite_focus=true#step:8:972 + pass + else: + if geometries_match: + apply_adjoint = False + + if initial is None: + x0 = operator.domain_geometry().allocate('random') + else: + x0 = initial.copy() + + y_tmp = operator.range_geometry().allocate() + + # Normalize first eigenvector + x0_norm = x0.norm() + x0 /= x0_norm + + # initial guess for dominant eigenvalue + eig_old = 1. + if return_all: + eig_list = [] + convergence_check = True + diff = numpy.finfo('d').max + i = 0 + while (i < max_iteration and diff > tolerance): + operator.direct(x0, out=y_tmp) + + if not apply_adjoint: + # swap datacontainer references + tmp = x0 + x0 = y_tmp + y_tmp = tmp + else: + operator.adjoint(y_tmp, out=x0) + + # Get eigenvalue using Rayleigh quotient: denominator=1, due to normalization + x0_norm = x0.norm() + if x0_norm < tolerance: + log.warning( + "The operator has at least one zero eigenvector and is likely to be nilpotent") + eig_new = 0. + break + x0 /= x0_norm + + eig_new = numpy.abs(x0_norm) + if apply_adjoint: + eig_new = numpy.sqrt(eig_new) + diff = numpy.abs(eig_new - eig_old) + if return_all: + eig_list.append(eig_new) + eig_old = eig_new + i += 1 + + if return_all and i == max_iteration: + convergence_check = False + + if return_all: + return eig_new, i, x0, eig_list, convergence_check + else: + return eig_new
+ + +
+[docs] + def calculate_norm(self): + r""" Returns the norm of the LinearOperator calculated by the PowerMethod with default values. + """ + return LinearOperator.PowerMethod(self, method="composed_with_adjoint")
+ + +
+[docs] + @staticmethod + def dot_test(operator, domain_init=None, range_init=None, tolerance=1e-6, **kwargs): + r'''Does a dot linearity test on the operator + Evaluates if the following equivalence holds + .. math:: + Ax\times y = y \times A^Tx + + Parameters + ---------- + + operator: + operator to test the dot_test + range_init: + optional initialisation container in the operator range + domain_init: + optional initialisation container in the operator domain + seed: int, default = 1 + Seed random generator + tolerance:float, default 1e-6 + Check if the following expression is below the tolerance + .. math:: + + |Ax\times y - y \times A^Tx|/(\|A\|\|x\|\|y\| + 1e-12) < tolerance + + + Returns + ------- + boolean, True if the test is passed. + ''' + + seed = kwargs.get('seed', 1) + + if range_init is None: + y = operator.range_geometry().allocate('random', seed=seed + 10) + else: + y = range_init + if domain_init is None: + x = operator.domain_geometry().allocate('random', seed=seed) + else: + x = domain_init + + fx = operator.direct(x) + by = operator.adjoint(y) + + lhs = fx.dot(y) + rhs = x.dot(by) + + # Check relative tolerance but normalised with respect to + # operator, x and y norms and avoid zero division + error = numpy.abs(lhs - rhs) / (operator.norm()*x.norm()*y.norm() + 1e-12) + + if error < tolerance: + return True + else: + print('Left hand side {}, \nRight hand side {}'.format(lhs, rhs)) + return False
+
+ + +class AdjointOperator(LinearOperator): + + """ + The Adjoint operator :math:`A^{*}: Y^{*}\rightarrow X^{*}` of a linear operator :math:`A: X\rightarrow Y` defined as + + .. math:: <x, A^* y> = <Ax, y> + + Parameters + ---------- + + operator : A linear operator + + Examples + -------- + This example demonstrates that :math:` LHS:=<Gx, y> =<x, G^* y>=:RHS`, where :math:`G` is the gradient operator. + >>> ig = ImageGeometry(2,3) + >>> G = GradientOperator(ig) + >>> div = AdjointOperator(G) + >>> x = G.domain.allocate("random_int") + >>> y = G.range.allocate("random_int") + >>> lhs = G.direct(x).dot(y) + >>> rhs = x.dot(div.direct(y)) + >>> lhs == rhs # returns True + """ + + def __init__(self, operator): + super(AdjointOperator, self).__init__(domain_geometry=operator.range_geometry(), + range_geometry=operator.domain_geometry()) + self.operator = operator + + def direct(self, x, out=None): + return self.operator.adjoint(x, out=out) + + def adjoint(self, x, out=None): + return self.operator.direct(x, out=out) + + +
+[docs] +class ScaledOperator(Operator): + + '''ScaledOperator + + A class to represent the scalar multiplication of an Operator with a scalar. + It holds an operator and a scalar. Basically it returns the multiplication + of the result of direct and adjoint of the operator with the scalar. + For the rest it behaves like the operator it holds. + + Parameters + + ----------- + operator: a `Operator` or `LinearOperator` + scalar: Number + a scalar multiplier + + Example + -------- + The scaled operator behaves like the following: + + .. code-block:: python + + sop = ScaledOperator(operator, scalar) + sop.direct(x) = scalar * operator.direct(x) + sop.adjoint(x) = scalar * operator.adjoint(x) + sop.norm() = operator.norm() + sop.range_geometry() = operator.range_geometry() + sop.domain_geometry() = operator.domain_geometry() + ''' + def __init__(self, operator, scalar, **kwargs): + super(ScaledOperator, self).__init__(domain_geometry=operator.domain_geometry(), + range_geometry=operator.range_geometry()) + if not isinstance(scalar, Number): + raise TypeError('expected scalar: got {}'.format(type(scalar))) + self.scalar = scalar + self.operator = operator + +
+[docs] + def direct(self, x, out=None): + '''direct method''' + tmp = self.operator.direct(x, out=out) + tmp *= self.scalar + return tmp
+ + +
+[docs] + def adjoint(self, x, out=None): + '''adjoint method''' + if not self.operator.is_linear(): + raise TypeError('Operator is not linear') + tmp = self.operator.adjoint(x, out=out) + tmp *= self.scalar + return tmp
+ + +
+[docs] + def norm(self, **kwargs): + '''norm of the operator''' + return numpy.abs(self.scalar) * self.operator.norm(**kwargs)
+ + +
+[docs] + def is_linear(self): + '''returns a `boolean` indicating whether the operator is linear ''' + return self.operator.is_linear()
+
+ + + +############################################################################### +################ SumOperator ########################################### +############################################################################### + +
+[docs] +class SumOperator(Operator): + """Sums two operators. + For example, `SumOperator(left, right).direct(x)` is equivalent to `left.direct(x)+right.direct(x)` + + + Parameters + ---------- + operator1: `Operator` + The first `Operator` in the sum + operator2: `Operator` + The second `Operator` in the sum + + Note + ---- + Both operators must have the same domain and range. + + """ + def __init__(self, operator1, operator2): + self.operator1 = operator1 + self.operator2 = operator2 + + # if self.operator1.domain_geometry() != self.operator2.domain_geometry(): + # raise ValueError('Domain geometry of {} is not equal with domain geometry of {}'.format(self.operator1.__class__.__name__,self.operator2.__class__.__name__)) + + # if self.operator1.range_geometry() != self.operator2.range_geometry(): + # raise ValueError('Range geometry of {} is not equal with range geometry of {}'.format(self.operator1.__class__.__name__,self.operator2.__class__.__name__)) + + self.linear_flag = self.operator1.is_linear() and self.operator2.is_linear() + + super(SumOperator, self).__init__(domain_geometry=self.operator1.domain_geometry(), + range_geometry=self.operator1.range_geometry()) + +
+[docs] + def direct(self, x, out=None): + r"""Calls the sum operator + + Parameters + ---------- + x: DataContainer or BlockDataContainer + Element in the domain of the SumOperator + out: DataContainer or BlockDataContainer, default None + If out is not None the output of the SumOperator will be filled in out, otherwise a new object is instantiated and returned. + + Returns + ------- + DataContainer or BlockDataContainer containing the result. + """ + ret = self.operator1.direct(x, out=out) + ret.add(self.operator2.direct(x), out=ret) + return ret
+ + +
+[docs] + def adjoint(self, x, out=None): + r"""Calls the adjoint of the sum operator, evaluated at the point :math:`x`. + + Parameters + ---------- + x: DataContainer or BlockDataContainer + Element in the range of the SumOperator + out: DataContainer or BlockDataContainer, default None + If out is not None the output of the adjoint of the SumOperator will be filled in out, otherwise a new object is instantiated and returned. + Returns + ------- + DataContainer or BlockDataContainer containing the result. + """ + if not self.linear_flag: + raise ValueError('No adjoint operation with non-linear operators') + ret = self.operator1.adjoint(x, out=out) + ret.add(self.operator2.adjoint(x), out=ret) + return ret
+ + +
+[docs] + def is_linear(self): + return self.linear_flag
+
+ + + +############################################################################### +################ Composition ########################################### +############################################################################### + + +
+[docs] +class CompositionOperator(Operator): + """Composes one or more operators. + For example, `CompositionOperator(left, right).direct(x)` is equivalent to `left.direct(right.direct(x))` + + + Parameters + ---------- + args: `Operator` s + Operators to be composed. As in mathematical notation, the operators will be applied right to left + + """ + def __init__(self, *operators, **kwargs): + + # get a reference to the operators + self.operators = operators + + self.linear_flag = functools.reduce(lambda x, y: x and y.is_linear(), + self.operators, True) + # self.preallocate = kwargs.get('preallocate', False) + self.preallocate = False + if self.preallocate: + self.tmp_domain = [op.domain_geometry().allocate() + for op in self.operators[:-1]] + self.tmp_range = [op.range_geometry().allocate() + for op in self.operators[1:]] + # pass + + # TODO address the equality of geometries + # if self.operator2.range_geometry() != self.operator1.domain_geometry(): + # raise ValueError('Domain geometry of {} is not equal with range geometry of {}'.format(self.operator1.__class__.__name__,self.operator2.__class__.__name__)) + + super(CompositionOperator, self).__init__( + domain_geometry=self.operators[-1].domain_geometry(), + range_geometry=self.operators[0].range_geometry()) + +
+[docs] + def direct(self, x, out=None): + + """Calls the composition operator at the point :math:`x`. + + Parameters + ---------- + x: DataContainer or BlockDataContainer + Element in the domain of the CompositionOperator + out: DataContainer or BlockDataContainer, default None + If out is not None the output of the CompositionOperator will be filled in out, otherwise a new object is instantiated and returned. + Returns + ------- + DataContainer or BlockDataContainer containing the result. + + """ + if out is None: + # return self.operator1.direct(self.operator2.direct(x)) + # return functools.reduce(lambda X,operator: operator.direct(X), + # self.operators[::-1][1:], + # self.operators[-1].direct(x)) + if self.preallocate: + pass + else: + for i, operator in enumerate(self.operators[::-1]): + if i == 0: + step = operator.direct(x) + else: + step = operator.direct(step) + return step + + else: + # tmp = self.operator2.range_geometry().allocate() + # self.operator2.direct(x, out = tmp) + # self.operator1.direct(tmp, out = out) + + # out.fill ( + # functools.reduce(lambda X,operator: operator.direct(X), + # self.operators[::-1][1:], + # self.operators[-1].direct(x)) + # ) + + # TODO this is a bit silly but will handle the pre allocation later + if self.preallocate: + + for i, operator in enumerate(self.operators[::-1]): + if i == 0: + operator.direct(x, out=self.tmp_range[i]) + elif i == len(self.operators) - 1: + operator.direct(self.tmp_range[i-1], out=out) + else: + operator.direct( + self.tmp_range[i-1], out=self.tmp_range[i]) + else: + for i, operator in enumerate(self.operators[::-1]): + if i == 0: + step = operator.direct(x) + else: + step = operator.direct(step) + out.fill(step) + return out
+ + +
+[docs] + def adjoint(self, x, out=None): + """Calls the adjoint of the composition operator at the point :math:`x`. + + Parameters + ---------- + x: DataContainer or BlockDataContainer + Element in the range of the CompositionOperator + out: DataContainer or BlockDataContainer, default None + If out is not None the output of the adjoint of the CompositionOperator will be filled in out, otherwise a new object is instantiated and returned. + + Returns + ------- + DataContainer or BlockDataContainer containing the result. + """ + + if self.linear_flag: + + if out is not None: + # return self.operator2.adjoint(self.operator1.adjoint(x)) + # return functools.reduce(lambda X,operator: operator.adjoint(X), + # self.operators[1:], + # self.operators[0].adjoint(x)) + if self.preallocate: + for i, operator in enumerate(self.operators): + if i == 0: + operator.adjoint(x, out=self.tmp_domain[i]) + elif i == len(self.operators) - 1: + step = operator.adjoint( + self.tmp_domain[i-1], out=out) + else: + operator.adjoint( + self.tmp_domain[i-1], out=self.tmp_domain[i]) + return + else: + for i, operator in enumerate(self.operators): + if i == 0: + step = operator.adjoint(x) + else: + step = operator.adjoint(step) + out.fill(step) + return out + else: + if self.preallocate: + pass + else: + for i, operator in enumerate(self.operators): + if i == 0: + step = operator.adjoint(x) + else: + step = operator.adjoint(step) + + return step + else: + raise ValueError('No adjoint operation with non-linear operators')
+ + +
+[docs] + def is_linear(self): + return self.linear_flag
+
+ +
+ +
+ + + + + +
+ +
+
+
+ +
+ + + + +
+
+ +
+ +
+
+
+ + + + + +
+ + +
+ + \ No newline at end of file diff --git a/v24.2.0/_modules/cil/optimisation/operators/ProjectionMap/index.html b/v24.2.0/_modules/cil/optimisation/operators/ProjectionMap/index.html new file mode 100644 index 0000000000..3d64a5f3bd --- /dev/null +++ b/v24.2.0/_modules/cil/optimisation/operators/ProjectionMap/index.html @@ -0,0 +1,640 @@ + + + + + + + + + + cil.optimisation.operators.ProjectionMap — CIL 24.2.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + +
+ +
+ + + + + +
+
+ + + + + + +
+ + + + + + + + + + + + + +
+ +
+ + +
+
+ +
+
+ +
+ +
+ + +
+ +
+ + +
+
+ + + + + +
+ +

Source code for cil.optimisation.operators.ProjectionMap

+#  Copyright 2021 United Kingdom Research and Innovation
+#  Copyright 2021 The University of Manchester
+#
+#  Licensed under the Apache License, Version 2.0 (the "License");
+#  you may not use this file except in compliance with the License.
+#  You may obtain a copy of the License at
+#
+#      http://www.apache.org/licenses/LICENSE-2.0
+#
+#  Unless required by applicable law or agreed to in writing, software
+#  distributed under the License is distributed on an "AS IS" BASIS,
+#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+#  See the License for the specific language governing permissions and
+#  limitations under the License.
+#
+# Authors:
+# CIL Developers, listed at: https://github.com/TomographicImaging/CIL/blob/master/NOTICE.txt
+
+from cil.optimisation.operators import LinearOperator
+from cil.framework import BlockGeometry
+
+
+
+
+[docs] +class ProjectionMap(LinearOperator): + + r""" Projection Map or Canonical Projection (https://en.wikipedia.org/wiki/Projection_(mathematics)) + + Takes an element :math:`x = (x_{0},\dots,x_{i},\dots,x_{n})` from a Cartesian product space :math:`X_{1}\times\cdots\times X_{n}\rightarrow X_{i}` + and projects it to element :math:`x_{i}` specified by the index :math:`i`. + + .. math:: \pi_{i}: X_{1}\times\cdots\times X_{n}\rightarrow X_{i} + + .. math:: \pi_{i}(x_{0},\dots,x_{i},\dots,x_{n}) = x_{i} + + The adjoint operation, is defined as + + .. math:: \pi_{i}^{*}(x_{i}) = (0, \cdots, x_{i}, \cdots, 0) + + Parameters + ---------- + + domain_geometry:`BlockGeometry` + The domain of the `ProjectionMap`. A `BlockGeometry` is expected. + + index: int + Index to project to the corresponding `ImageGeometry` + + + + """ + + + def __init__(self, domain_geometry, index, range_geometry=None): + + self.index = index + + if not isinstance(domain_geometry, BlockGeometry): + raise ValueError("BlockGeometry is expected, {} is passed.".format(domain_geometry.__class__.__name__)) + + if self.index > len(domain_geometry.geometries): + raise ValueError("Index = {} is larger than the total number of geometries = {}".format(index, len(domain_geometry.geometries))) + + if range_geometry is None: + range_geometry = domain_geometry.geometries[self.index] + + super(ProjectionMap, self).__init__(domain_geometry=domain_geometry, + range_geometry=range_geometry) + +
+[docs] + def direct(self,x,out=None): + r""" + Returns the ith (`index`) element of the Block data container, :math:`x` + + Parameters + ---------- + x: `BlockDataContainer` + + out: `DataContainer`, default `None` + If `out` is not `None` the output of the `ProjectionMap` will be filled in `out`, otherwise a new object is instantiated and returned. + + Returns + -------- + `DataContainer` + """ + if out is None: + return x[self.index].copy() + out.fill(x[self.index]) + return out
+ + +
+[docs] + def adjoint(self,x, out=None): + r""" + Returns a `BlockDataContainer` of zeros with the ith (`index`) filled with the `DataContainer`, :math:`x` + + Parameters + ---------- + x: `DataContainer` + + out: `BlockDataContainer`, default `None` + If `out` is not `None` the output of the adjoint of the `ProjectionMap` will be filled in `out`, otherwise a new object is instantiated and returned. + + Returns + -------- + `BlockDataContainer` + """ + if out is None: + out = self.domain_geometry().allocate(0) + else: + out *= 0 + out[self.index].fill(x) + return out
+
+ + +
+ +
+ + + + + +
+ +
+
+
+ +
+ + + + +
+
+ +
+ +
+
+
+ + + + + +
+ + +
+ + \ No newline at end of file diff --git a/v24.2.0/_modules/cil/optimisation/operators/SparseFiniteDifferenceOperator/index.html b/v24.2.0/_modules/cil/optimisation/operators/SparseFiniteDifferenceOperator/index.html new file mode 100644 index 0000000000..5fdc272130 --- /dev/null +++ b/v24.2.0/_modules/cil/optimisation/operators/SparseFiniteDifferenceOperator/index.html @@ -0,0 +1,633 @@ + + + + + + + + + + cil.optimisation.operators.SparseFiniteDifferenceOperator — CIL 24.2.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + +
+ +
+ + + + + +
+
+ + + + + + +
+ + + + + + + + + + + + + +
+ +
+ + +
+
+ +
+
+ +
+ +
+ + +
+ +
+ + +
+
+ + + + + +
+ +

Source code for cil.optimisation.operators.SparseFiniteDifferenceOperator

+#  Copyright 2019 United Kingdom Research and Innovation
+#  Copyright 2019 The University of Manchester
+#
+#  Licensed under the Apache License, Version 2.0 (the "License");
+#  you may not use this file except in compliance with the License.
+#  You may obtain a copy of the License at
+#
+#      http://www.apache.org/licenses/LICENSE-2.0
+#
+#  Unless required by applicable law or agreed to in writing, software
+#  distributed under the License is distributed on an "AS IS" BASIS,
+#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+#  See the License for the specific language governing permissions and
+#  limitations under the License.
+#
+# Authors:
+# CIL Developers, listed at: https://github.com/TomographicImaging/CIL/blob/master/NOTICE.txt
+
+import scipy.sparse as sp
+import numpy as np
+from cil.framework import ImageData, ImageGeometry
+from cil.optimisation.operators import Operator
+
+
+[docs] +class SparseFiniteDifferenceOperator(Operator): + + + '''Create Sparse Matrices for the Finite Difference Operator''' + + + def __init__(self, domain_geometry, range_geometry=None, + direction=0, bnd_cond = 'Neumann'): + + super(SparseFiniteDifferenceOperator, self).__init__(domain_geometry=domain_geometry, + range_geometry=range_geometry) + self.direction = direction + self.bnd_cond = bnd_cond + + if self.range_geometry is None: + self.range_geometry = self.domain_geometry + + self.get_dims = [i for i in domain_geometry.shape] + + if self.direction + 1 > len(self.domain_geometry().shape): + raise ValueError('Gradient directions more than geometry domain') + + def matrix(self): + + i = self.direction + + mat = sp.spdiags(np.vstack([-np.ones((1,self.get_dims[i])),np.ones((1,self.get_dims[i]))]), [0,1], self.get_dims[i], self.get_dims[i], format = 'lil') + + if self.bnd_cond == 'Neumann': + mat[-1,:] = 0 + elif self.bnd_cond == 'Periodic': + mat[-1,0] = 1 + + tmpGrad = mat if i == 0 else sp.eye(self.get_dims[0]) + + for j in range(1, self.domain_geometry().length): + + tmpGrad = sp.kron(mat, tmpGrad ) if j == i else sp.kron(sp.eye(self.get_dims[j]), tmpGrad ) + + return tmpGrad + + def T(self): + return self.matrix().T + +
+[docs] + def direct(self, x): + + x_asarr = x.as_array() + res = np.reshape( self.matrix() * x_asarr.flatten('F'), self.domain_geometry().shape, 'F') + return type(x)(res)
+ + + def adjoint(self, x): + + x_asarr = x.as_array() + res = np.reshape( self.matrix().T * x_asarr.flatten('F'), self.domain_geometry().shape, 'F') + return type(x)(res) + + def sum_abs_row(self): + + res = np.array(np.reshape(abs(self.matrix()).sum(axis=0), self.domain_geometry().shape, 'F')) + #res[res==0]=0 + return ImageData(res) + + def sum_abs_col(self): + + res = np.array(np.reshape(abs(self.matrix()).sum(axis=1), self.domain_geometry().shape, 'F') ) + #res[res==0]=0 + return ImageData(res)
+ + +if __name__ == '__main__': + M, N= 2, 3 + ig = ImageGeometry(M, N) + arr = ig.allocate('random_int') + sFD_neum1 = SparseFiniteDifferenceOperator(ig, direction=0, bnd_cond='Neumann') + sFD_neum2 = SparseFiniteDifferenceOperator(ig, direction=1, bnd_cond='Neumann') + DY = sFD_neum1.matrix().toarray() + DX = sFD_neum2.matrix().toarray() + + + rows = sFD_neum1.sum_abs_row() + cols = sFD_neum1.sum_abs_col() + + print(rows.as_array()) + print(cols.as_array()) +
+ +
+ + + + + +
+ +
+
+
+ +
+ + + + +
+
+ +
+ +
+
+
+ + + + + +
+ + +
+ + \ No newline at end of file diff --git a/v24.2.0/_modules/cil/optimisation/operators/SymmetrisedGradientOperator/index.html b/v24.2.0/_modules/cil/optimisation/operators/SymmetrisedGradientOperator/index.html new file mode 100644 index 0000000000..7681b98d68 --- /dev/null +++ b/v24.2.0/_modules/cil/optimisation/operators/SymmetrisedGradientOperator/index.html @@ -0,0 +1,695 @@ + + + + + + + + + + cil.optimisation.operators.SymmetrisedGradientOperator — CIL 24.2.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + +
+ +
+ + + + + +
+
+ + + + + + +
+ + + + + + + + + + + + + +
+ +
+ + +
+
+ +
+
+ +
+ +
+ + +
+ +
+ + +
+
+ + + + + +
+ +

Source code for cil.optimisation.operators.SymmetrisedGradientOperator

+#  Copyright 2019 United Kingdom Research and Innovation
+#  Copyright 2019 The University of Manchester
+#
+#  Licensed under the Apache License, Version 2.0 (the "License");
+#  you may not use this file except in compliance with the License.
+#  You may obtain a copy of the License at
+#
+#      http://www.apache.org/licenses/LICENSE-2.0
+#
+#  Unless required by applicable law or agreed to in writing, software
+#  distributed under the License is distributed on an "AS IS" BASIS,
+#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+#  See the License for the specific language governing permissions and
+#  limitations under the License.
+#
+# Authors:
+# CIL Developers, listed at: https://github.com/TomographicImaging/CIL/blob/master/NOTICE.txt
+
+from cil.optimisation.operators import LinearOperator
+from cil.framework import BlockGeometry, BlockDataContainer
+from cil.optimisation.operators import FiniteDifferenceOperator
+
+
+
+[docs] +class SymmetrisedGradientOperator(LinearOperator): + + r''' The symmetrised gradient is the operator, :math:`E`, defined by :math:`E: V \rightarrow W` where `V` is `BlockGeometry` and `W` is the range of the Symmetrised Gradient and + + .. math:: + + E(v) = 0.5 ( \nabla v + (\nabla v)^{T} ) \\ + + + In 2 dimensions, let :math:`v(x,y)=(v_1(x,y),v_2(x,y))` which gives + + .. math:: + + \nabla v =\left( \begin{matrix} + \partial_{x} v_1 & \partial_x v_2\\ + \partial_{y}v_1 & \partial_y v_2 + \end{matrix}\right) + + and thus + + .. math:: + + E(v) = 0.5 ( \nabla v + (\nabla v)^{T} ) + =\left( \begin{matrix} + \partial_{x} v_1 & 0.5 (\partial_{y} v_1 + \partial_{x} v_2) \\ + 0.5 (\partial_{x} v_1 + \partial_{y} v_2) & \partial_{y} v_2 + \end{matrix}\right) + + Parameters + ---------- + domain_geometry: `BlockGeometry` with shape (2,1) or (3,1) + Set up the domain of the function. + bnd_cond: str, optional, default :code:`Neumann` + Boundary condition either :code:`Neumann` or :code:`Periodic` + correlation: str, optional, default :code:`Channel` + Correlation either :code:`SpaceChannel` or :code:`Channel` + + ''' + + CORRELATION_SPACE = "Space" + CORRELATION_SPACECHANNEL = "SpaceChannels" + + def __init__(self, domain_geometry, bnd_cond = 'Neumann', **kwargs): + + self.bnd_cond = bnd_cond + self.correlation = kwargs.get('correlation',SymmetrisedGradientOperator.CORRELATION_SPACE) + + tmp_gm = len(domain_geometry.geometries)*domain_geometry.geometries + + + # Define FD operator. We need one geometry from the BlockGeometry of the domain + self.FD = FiniteDifferenceOperator(domain_geometry.get_item(0), direction = 0, + bnd_cond = self.bnd_cond) + + if domain_geometry.shape[0]==2: + self.order_ind = [0,2,1,3] + else: + self.order_ind = [0,3,6,1,4,7,2,5,8] + + super(SymmetrisedGradientOperator, self).__init__( + domain_geometry=domain_geometry, + range_geometry=BlockGeometry(*tmp_gm)) + + +
+[docs] + def direct(self, x, out=None): + + r'''Returns :math:`E(v) = 0.5 * ( \nabla v + (\nabla v)^{T} )` + + Parameters: + ------------- + + x: BlockDataContainer + out: BlockDataContainer, default None + If out is not None the output of direct will be filled in out, otherwise a new object is instantiated and returned. + ''' + + if out is None: + + tmp = [] + for i in range(self.domain_geometry().shape[0]): + for j in range(x.shape[0]): + self.FD.direction = i + tmp.append(self.FD.adjoint(x.get_item(j))) + + tmp1 = [tmp[i] for i in self.order_ind] + + res = [0.5 * sum(x) for x in zip(tmp, tmp1)] + + return BlockDataContainer(*res) + + else: + + ind = 0 + for i in range(self.domain_geometry().shape[0]): + for j in range(x.shape[0]): + self.FD.direction = i + self.FD.adjoint(x.get_item(j), out=out[ind]) + ind+=1 + out1 = BlockDataContainer(*[out[i] for i in self.order_ind]) + out.fill( 0.5 * (out + out1) ) + return out
+ + +
+[docs] + def adjoint(self, x, out=None): + r'''Returns the adjoint of the symmetrised gradient operator + + Parameters: + ------------- + + x: BlockDataContainer + out: BlockDataContainer, default None + If out is not None the output of adjoint will be filled in out, otherwise a new object is instantiated and returned. + ''' + + if out is None: + + tmp = [None]*self.domain_geometry().shape[0] + i = 0 + + for k in range(self.domain_geometry().shape[0]): + tmp1 = 0 + for j in range(self.domain_geometry().shape[0]): + self.FD.direction = j + tmp1 += self.FD.direct(x[i]) + i+=1 + tmp[k] = tmp1 + return BlockDataContainer(*tmp) + + + else: + + tmp = self.domain_geometry().allocate() + i = 0 + for k in range(self.domain_geometry().shape[0]): + tmp1 = 0 + for j in range(self.domain_geometry().shape[0]): + self.FD.direction = j + self.FD.direct(x[i], out=tmp[j]) + i+=1 + tmp1+=tmp[j] + out[k].fill(tmp1) + return out
+
+ + +
+ +
+ + + + + +
+ +
+
+
+ +
+ + + + +
+
+ +
+ +
+
+
+ + + + + +
+ + +
+ + \ No newline at end of file diff --git a/v24.2.0/_modules/cil/optimisation/operators/WaveletOperator/index.html b/v24.2.0/_modules/cil/optimisation/operators/WaveletOperator/index.html new file mode 100644 index 0000000000..cd7d20ba79 --- /dev/null +++ b/v24.2.0/_modules/cil/optimisation/operators/WaveletOperator/index.html @@ -0,0 +1,808 @@ + + + + + + + + + + cil.optimisation.operators.WaveletOperator — CIL 24.2.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + +
+ +
+ + + + + +
+
+ + + + + + +
+ + + + + + + + + + + + + +
+ +
+ + +
+
+ +
+
+ +
+ +
+ + +
+ +
+ + +
+
+ + + + + +
+ +

Source code for cil.optimisation.operators.WaveletOperator

+#  Copyright 2023 United Kingdom Research and Innovation
+#  Copyright 2023 The University of Manchester
+#
+#  Licensed under the Apache License, Version 2.0 (the "License");
+#  you may not use this file except in compliance with the License.
+#  You may obtain a copy of the License at
+#
+#      http://www.apache.org/licenses/LICENSE-2.0
+#
+#  Unless required by applicable law or agreed to in writing, software
+#  distributed under the License is distributed on an "AS IS" BASIS,
+#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+#  See the License for the specific language governing permissions and
+#  limitations under the License.
+#
+# Authors:
+# CIL Developers, listed at: https://github.com/TomographicImaging/CIL/blob/master/NOTICE.txt
+import numpy as np
+import pywt  # PyWavelets module
+import warnings
+
+from cil.optimisation.operators import LinearOperator
+from cil.framework import VectorGeometry
+
+
+
+[docs] +class WaveletOperator(LinearOperator): + + r''' + Computes forward or inverse (adjoint) discrete wavelet transform (DWT) of the input + + Parameters + ---------- + domain_geometry: cil geometry + Domain geometry for the WaveletOperator + range_geometry: cil geometry, optional + Output geometry for the WaveletOperator. Default = domain_geometry with the right coefficient array size deduced from pywavelets + level: int, optional, default= log_2(min(shape(axes))) + integer for decomposition level. Default = log_2(min(shape(axes))), i.e. the maximum number of accurate downsamplings possible + wname: string, optional, default='haar' + label for wavelet used. + axes: list of ints, optional, default=`None` + Defines the dimensions to decompose along. Note that channel is the first dimension: for example, spatial DWT is given by axes=range(1,3) and channelwise DWT is axes=range(1) + Default = `None`, meaning all dimensions are transformed. Same as axes = range(ndim) + + + **kwargs + --------- + correlation: str, default 'All'. Note: Only applied if `axes = None`! + 'All' will compute the wavelet decomposition on every possible dimension. + 'Space' will compute the wavelet decomposition on only the spatial dimensions. If there are multiple channels, each channel is decomposed independently. + 'Channels' will compute the wavelet decomposition on only the channels, independently for every spatial point. + bnd_cond: str, default 'symmetric'. More commonly known as the padding or extension method used in discrete convolutions. All options supported by PyWavelets are valid. + Most common examples are 'symmetric' (padding by mirroring edge values), 'zero' (padding with zeros), 'periodic' (wrapping values around as in circular convolution). + Some padding methods can have unexpected effect on the wavelet coefficients at the edges. + See https://pywavelets.readthedocs.io/en/latest/ref/signal-extension-modes.html for more details and all options. + true_adjoint: bool, default `True`. For biorthogonal wavelets the true mathematical adjoint should no longer produce perfect reconstructions, setting `true_adjoint`as `False` the reconstruction (using the adjoint) should be (almost) the original input. + + Note + ----- + The default decomposition level is the theoretical maximum: log_2(min(input.shape)). However, this is not always recommended and pywavelets should give a warning if the coarsest scales are too small to be meaningful. + + Note + ---- + We currently do not support wavelets that are not orthogonal or bi-orthogonal. + ''' + + def __init__(self, domain_geometry, + range_geometry=None, + level=None, + wname="haar", + axes=None, + **kwargs): + + # Correlation is different way of defining decomposition axes + self.correlation = kwargs.get('correlation', None) + + if axes is None and len(domain_geometry.shape) > 1: + if self.correlation in [None, 'All']: + axes = None + elif self.correlation.lower() in ["space", "spatial"]: + axes = [i for i, l in enumerate( + domain_geometry.dimension_labels) if l != 'channel'] + elif self.correlation.lower() in ["channels", "channel"]: + axes = [i for i, l in enumerate( + domain_geometry.dimension_labels) if l == 'channel'] + else: + raise AttributeError( + f"Unknown correlation type: '{self.correlation}'") + if axes == []: + raise AttributeError( + f"Correlation set to '{self.correlation}' but the data only has '{domain_geometry.dimension_labels}' as possible dimensions") + elif axes is not None and self.correlation is not None: + warnings.warn( + f"Decomposition axes '{axes}' take priority over correlation '{self.correlation}'. Both should not be used.", UserWarning) + elif len(domain_geometry.shape) == 1 and self.correlation is not None: + warnings.warn( + f"Setting correlation '{self.correlation}' is not valid for 1D data.", UserWarning) + + # Convolution boundary condition i.e. padding method + self.bnd_cond = kwargs.get('bnd_cond', 'symmetric') + self._trueAdj = kwargs.get('true_adjoint', True) + + self.wname = wname + self._wavelet = pywt.Wavelet(wname) + # True adjoint for biorthogonal wavelet + if all([not self._wavelet.orthogonal, self._wavelet.biorthogonal, self._trueAdj]): + self._wavelet = self._getBiortFilters(wname) + + if level is None: + level = pywt.dwtn_max_level( + domain_geometry.shape, wavelet=self._wavelet, axes=axes) + self.level = int(level) + + self._shapes = pywt.wavedecn_shapes( + domain_geometry.shape, wavelet=self._wavelet, level=level, axes=axes, mode=self.bnd_cond) + self.axes = axes + self._slices = self._shape2slice() + + # Compute the correct wavelet domain size + range_shape = np.array(domain_geometry.shape) + if axes is None: + axes = range(len(domain_geometry.shape)) + # Name of the diagonal element in unknown dimensional DWT + d = 'd'*len(axes) + for k in axes: + range_shape[k] = self._shapes[0][k] + for l in range(level): + range_shape[k] += self._shapes[l+1][d][k] + + if range_geometry is None: + range_geometry = domain_geometry.copy() + + # Update new size + if hasattr(range_geometry, 'channels'): + if range_geometry.channels > 1: + range_geometry.channels = range_shape[0] + # Remove channels temporarily + range_shape = range_shape[1:] + + if len(range_shape) == 3: + range_geometry.voxel_num_x = range_shape[2] + range_geometry.voxel_num_y = range_shape[1] + range_geometry.voxel_num_z = range_shape[0] + elif len(range_shape) == 2: + range_geometry.voxel_num_x = range_shape[1] + range_geometry.voxel_num_y = range_shape[0] + elif len(range_shape) == 1: # VectorGeometry is bit special + range_geometry = VectorGeometry(range_shape[0]) + else: + raise AttributeError( + f"Spatial dimension of range_geometry can be at most 3. Now it is {len(range_shape)}!") + + elif (range_geometry.shape != range_shape).any(): + raise AttributeError( + f"Size of the range geometry is {range_geometry.shape} but the size of the wavelet coefficient array must be {tuple(range_shape)}.") + + super().__init__(domain_geometry=domain_geometry, range_geometry=range_geometry) + + def _shape2slice(self): + """Helper function for turning shape of coefficients to slices""" + shapes = self._shapes + coeff_tmp = [] + coeff_tmp.append(np.empty(shapes[0])) + + for cd in shapes[1:]: + subbs = dict((k, np.empty(v)) for k, v in cd.items()) + coeff_tmp.append(subbs) + + _, slices = pywt.coeffs_to_array(coeff_tmp, padding=0, axes=self.axes) + return slices + + def _getBiortFilters(self, wname): + """Helper function for creating a custom wavelet object. + Using mirrored decomposition filters for reconstruction gives adjoint. + This is only needed for biorthogonal wavelets.""" + fb = pywt.Wavelet(wname).filter_bank + ifb = pywt.Wavelet(wname).inverse_filter_bank + adj_filter_bank = fb[0:2] + ifb[2:4] + wavelet = pywt.Wavelet(wname, filter_bank=adj_filter_bank) + wavelet.orthogonal = False + wavelet.biorthogonal = True + return wavelet + +
+[docs] + def direct(self, x, out=None): + r"""Returns the value of the WaveletOperator applied to :math:`x` + + + Parameters + ---------- + x : DataContainer + + out: return DataContainer, if None a new DataContainer is returned, default None. + + Returns + -------- + DataContainer, the value of the WaveletOperator applied to :math:`x` or `None` if `out` + + """ + + x_arr = x.as_array() + + coeffs = pywt.wavedecn( + x_arr, wavelet=self._wavelet, level=self.level, axes=self.axes, mode=self.bnd_cond) + + Wx, _ = pywt.coeffs_to_array(coeffs, axes=self.axes) + + if out is None: + ret = self.range_geometry().allocate(dtype=x.dtype) + ret.fill(Wx) + return ret + else: + out.fill(Wx) + return out
+ + +
+[docs] + def adjoint(self, Wx, out=None): + r"""Returns the value of the adjoint of the WaveletOperator applied to :math:`x` + + + Parameters + ---------- + x : DataContainer + + out: return DataContainer, if None a new DataContainer is returned, default None. + + Returns + -------- + DataContainer, the value of the adjoint of the WaveletOperator applied to :math:`x` or `None` if `out` + + """ + + if not (self._wavelet.orthogonal or self._wavelet.biorthogonal): + raise ValueError( + 'CIL currently only supports orthogonal and biorthogonal wavelets') + + Wx_arr = Wx.as_array() + coeffs = pywt.array_to_coeffs(Wx_arr, self._slices) + + x = pywt.waverecn( + coeffs, wavelet=self._wavelet, axes=self.axes, mode=self.bnd_cond) + + # Need to slice the output in case original size is of odd length + org_size = tuple(slice(i) for i in self.domain_geometry().shape) + + if out is None: + ret = self.domain_geometry().allocate(dtype=Wx.dtype) + ret.fill(x[org_size]) + return ret + else: + out.fill(x[org_size]) + return out
+ + +
+[docs] + def calculate_norm(self): + '''Returns the norm of WaveletOperator, which is equal to 1.0 if the wavelet is orthogonal + + Returns + -------- + norm: float + ''' + if self._wavelet.orthogonal: + norm = 1.0 + else: + norm = LinearOperator.calculate_norm(self) + return norm
+ + +
+[docs] + def is_orthogonal(self): + '''Returns if the operator is orthogonal + + Returns + ------- + `Bool` + ''' + return self._wavelet.orthogonal
+
+ +
+ +
+ + + + + +
+ +
+
+
+ +
+ + + + +
+
+ +
+ +
+
+
+ + + + + +
+ + +
+ + \ No newline at end of file diff --git a/v24.2.0/_modules/cil/optimisation/operators/ZeroOperator/index.html b/v24.2.0/_modules/cil/optimisation/operators/ZeroOperator/index.html new file mode 100644 index 0000000000..e616887379 --- /dev/null +++ b/v24.2.0/_modules/cil/optimisation/operators/ZeroOperator/index.html @@ -0,0 +1,592 @@ + + + + + + + + + + cil.optimisation.operators.ZeroOperator — CIL 24.2.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + +
+ +
+ + + + + +
+
+ + + + + + +
+ + + + + + + + + + + + + +
+ +
+ + +
+
+ +
+
+ +
+ +
+ + +
+ +
+ + +
+
+ + + + + +
+ +

Source code for cil.optimisation.operators.ZeroOperator

+#  Copyright 2019 United Kingdom Research and Innovation
+#  Copyright 2019 The University of Manchester
+#
+#  Licensed under the Apache License, Version 2.0 (the "License");
+#  you may not use this file except in compliance with the License.
+#  You may obtain a copy of the License at
+#
+#      http://www.apache.org/licenses/LICENSE-2.0
+#
+#  Unless required by applicable law or agreed to in writing, software
+#  distributed under the License is distributed on an "AS IS" BASIS,
+#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+#  See the License for the specific language governing permissions and
+#  limitations under the License.
+#
+# Authors:
+# CIL Developers, listed at: https://github.com/TomographicImaging/CIL/blob/master/NOTICE.txt
+
+import numpy as np
+from cil.framework import ImageData
+from cil.optimisation.operators import LinearOperator
+
+
+[docs] +class ZeroOperator(LinearOperator): + r'''ZeroOperator: O: X -> Y, maps any element of :math:`x\in X` into the zero element :math:`\in Y, O(x) = O_{Y}` + + :param gm_domain: domain of the operator + :param gm_range: range of the operator, default: same as domain + + Note: + + .. math:: + O^{*}: Y^{*} -> X^{*} \text{(Adjoint)} + < O(x), y > = < x, O^{*}(y) > + ''' + def __init__(self, domain_geometry, range_geometry=None): + if range_geometry is None: + range_geometry = domain_geometry.clone() + super(ZeroOperator, self).__init__(domain_geometry=domain_geometry, + range_geometry=range_geometry) + +
+[docs] + def direct(self,x,out=None): + '''Returns O(x)''' + if out is None: + return self.range_geometry().allocate(value=0) + else: + out.fill(self.range_geometry().allocate(value=0)) + return out
+ + +
+[docs] + def adjoint(self,x, out=None): + '''Returns O^{*}(y)''' + if out is None: + return self.domain_geometry().allocate(value=0) + else: + out.fill(self.domain_geometry().allocate(value=0)) + return out
+ + +
+[docs] + def calculate_norm(self, **kwargs): + '''Evaluates operator norm of ZeroOperator''' + return 0
+
+ +
+ +
+ + + + + +
+ +
+
+
+ +
+ + + + +
+
+ +
+ +
+
+
+ + + + + +
+ + +
+ + \ No newline at end of file diff --git a/v24.2.0/_modules/cil/optimisation/utilities/StepSizeMethods/index.html b/v24.2.0/_modules/cil/optimisation/utilities/StepSizeMethods/index.html new file mode 100644 index 0000000000..31ada11b42 --- /dev/null +++ b/v24.2.0/_modules/cil/optimisation/utilities/StepSizeMethods/index.html @@ -0,0 +1,808 @@ + + + + + + + + + + cil.optimisation.utilities.StepSizeMethods — CIL 24.2.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + +
+ +
+ + + + + +
+
+ + + + + + +
+ + + + + + + + + + + + + +
+ +
+ + +
+
+ +
+
+ +
+ +
+ + +
+ +
+ + +
+
+ + + + + +
+ +

Source code for cil.optimisation.utilities.StepSizeMethods

+#  Copyright 2024 United Kingdom Research and Innovation
+#  Copyright 2024 The University of Manchester
+#
+#  Licensed under the Apache License, Version 2.0 (the "License");
+#  you may not use this file except in compliance with the License.
+#  You may obtain a copy of the License at
+#
+#      http://www.apache.org/licenses/LICENSE-2.0
+#
+#  Unless required by applicable law or agreed to in writing, software
+#  distributed under the License is distributed on an "AS IS" BASIS,
+#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+#  See the License for the specific language governing permissions and
+#  limitations under the License.
+#
+# Authors:
+# - CIL Developers, listed at: https://github.com/TomographicImaging/CIL/blob/master/NOTICE.txt
+
+from abc import ABC, abstractmethod
+import numpy
+from numbers import Number
+import logging
+
+log = logging.getLogger(__name__)
+
+
+[docs] +class StepSizeRule(ABC): + """ + Abstract base class for a step size rule. The abstract method, `get_step_size` takes in an algorithm and thus can access all parts of the algorithm (e.g. current iterate, current gradient, objective functions etc) and from this should return a float as a step size. + """ + + def __init__(self): + '''Initialises the step size rule + ''' + pass + +
+[docs] + @abstractmethod + def get_step_size(self, algorithm): + """ + Returns + -------- + the calculated step size:float + """ + pass
+
+ + + +
+[docs] +class ConstantStepSize(StepSizeRule): + """ + Step-size rule that always returns a constant step-size. + + Parameters + ---------- + step_size: float + The step-size to be returned with each call. + """ + + def __init__(self, step_size): + '''Initialises the constant step size rule + + Parameters: + ------------- + step_size : float, the constant step size + ''' + self.step_size = step_size + +
+[docs] + def get_step_size(self, algorithm): + """ + Returns + -------- + the calculated step size:float + """ + return self.step_size
+
+ + + +
+[docs] +class ArmijoStepSizeRule(StepSizeRule): + + r""" Applies the Armijo rule to calculate the step size (step_size). + + The Armijo rule runs a while loop to find the appropriate step_size by starting from a very large number (`alpha`). The step_size is found by reducing the step size (by a factor `beta`) in an iterative way until a certain criterion is met. To avoid infinite loops, we add a maximum number of times (`max_iterations`) the while loop is run. + + Reference + --------- + - Algorithm 3.1 in Nocedal, J. and Wright, S.J. eds., 1999. Numerical optimization. New York, NY: Springer New York. https://www.math.uci.edu/~qnie/Publications/NumericalOptimization.pdf) + + - https://projecteuclid.org/download/pdf_1/euclid.pjm/1102995080 + + + Parameters + ---------- + alpha: float, optional, default=1e6 + The starting point for the step size iterations + beta: float between 0 and 1, optional, default=0.5 + The amount the step_size is reduced if the criterion is not met + max_iterations: integer, optional, default is numpy.ceil (2 * numpy.log10(alpha) / numpy.log10(2)) + The maximum number of iterations to find a suitable step size + warmstart: Boolean, default is True + If `warmstart = True` the initial step size at each Armijo iteration is the calculated step size from the last iteration. If `warmstart = False` at each Armijo iteration, the initial step size is reset to the original, large `alpha`. + In the case of *well-behaved* convex functions, `warmstart = True` is likely to be computationally less expensive. In the case of non-convex functions, or particularly tricky functions, setting `warmstart = False` may be beneficial. + + """ + + def __init__(self, alpha=1e6, beta=0.5, max_iterations=None, warmstart=True): + '''Initialises the step size rule + ''' + + self.alpha_orig = alpha + if self.alpha_orig is None: # Can be removed when alpha and beta are deprecated in GD + self.alpha_orig = 1e6 + self.alpha = self.alpha_orig + self.beta = beta + if self.beta is None: # Can be removed when alpha and beta are deprecated in GD + self.beta = 0.5 + + self.max_iterations = max_iterations + if self.max_iterations is None: + self.max_iterations = numpy.ceil(2 * numpy.log10(self.alpha_orig) / numpy.log10(2)) + + self.warmstart=warmstart + +
+[docs] + def get_step_size(self, algorithm): + """ + Applies the Armijo rule to calculate the step size (`step_size`) + + Returns + -------- + the calculated step size:float + + """ + k = 0 + if not self.warmstart: + self.alpha = self.alpha_orig + + f_x = algorithm.calculate_objective_function_at_point(algorithm.solution) + + self.x_armijo = algorithm.solution.copy() + + log.debug("Starting Armijo backtracking with initial step size: %f", self.alpha) + + while k < self.max_iterations: + + algorithm.gradient_update.multiply(self.alpha, out=self.x_armijo) + algorithm.solution.subtract(self.x_armijo, out=self.x_armijo) + + f_x_a = algorithm.calculate_objective_function_at_point(self.x_armijo) + sqnorm = algorithm.gradient_update.squared_norm() + if f_x_a - f_x <= - (self.alpha/2.) * sqnorm: + break + k += 1. + self.alpha *= self.beta + + log.info("Armijo rule took %d iterations to find step size", k) + + if k == self.max_iterations: + raise ValueError( + 'Could not find a proper step_size in {} loops. Consider increasing alpha or max_iterations.'.format(self.max_iterations)) + + return self.alpha
+
+ + + +
+[docs] +class BarzilaiBorweinStepSizeRule(StepSizeRule): + + r""" Applies the Barzilai- Borwein rule to calculate the step size (step_size). + + Let :math:`\Delta x=x_k-x_{k-1}` and :math:`\Delta g=g_k-g_{k-1}`. Where :math:`x_k` is the :math:`k` th iterate (current solution after iteration :math:`k` ) and :math:`g_k` is the gradient calculation in the :math:`k` th iterate, found in :code:`algorithm.gradient_update`. A Barzilai-Borwein (BB) iteration is :math:`x_{k+1}=x_k-\alpha_kg_k` where the step size :math:`\alpha _k` is either + + - :math:`\alpha_k^{LONG}=\frac{\Delta x\cdot\Delta x}{\Delta x\cdot\Delta g}`, or + + - :math:`\alpha_k^{SHORT}=\frac{\Delta x \cdot\Delta g}{\Delta g \cdot\Delta g}`. + + Where the operator :math:`\cdot` is the standard inner product between two vectors. + + This is suitable for use with gradient based iterative methods where the calculated gradient is stored as `algorithm.gradient_update`. + + Parameters + ---------- + initial: float, greater than zero + The step-size for the first iteration. We recommend something of the order :math:`1/f.L` where :math:`f` is the (differentiable part of) the objective you wish to minimise. + mode: One of 'long', 'short' or 'alternate', default is 'short'. + This calculates the step-size based on the LONG, SHORT or alternating between the two, starting with short. + stabilisation_param: 'auto', float or 'off', default is 'auto' + In order to add stability the step-size has an upper limit of :math:`\Delta/\|g_k\|` where by 'default', the `stabilisation_param`, :math:`\Delta` is determined automatically to be the minimium of :math:`\Delta x` from the first 3 iterations. The user can also pass a fixed constant or turn "off" the stabilisation, equivalently passing `np.inf`. + + + Reference + --------- + - Barzilai, Jonathan; Borwein, Jonathan M. (1988). "Two-Point Step Size Gradient Methods". IMA Journal of Numerical Analysis. 8: 141–148, https://doi.org/10.1093/imanum/8.1.141 + + - Burdakov, O., Dai, Y. and Huang, N., 2019. STABILIZED BARZILAI-BORWEIN METHOD. Journal of Computational Mathematics, 37(6). https://doi.org/10.4208/jcm.1911-m2019-0171 + + - https://en.wikipedia.org/wiki/Barzilai-Borwein_method + """ + + def __init__(self, initial, mode='short', stabilisation_param="auto"): + '''Initialises the step size rule + ''' + + self.mode=mode + if self.mode == 'short': + self.is_short = True + elif self.mode == 'long' or self.mode == 'alternate': + self.is_short = False + else: + raise ValueError('Mode should be chosen from "long", "short" or "alternate". ') + + self.store_grad=None + self.store_x=None + self.initial=initial + if stabilisation_param == 'auto': + self.adaptive = True + stabilisation_param = numpy.inf + elif stabilisation_param == "off": + self.adaptive = False + stabilisation_param = numpy.inf + elif ( isinstance(stabilisation_param, Number) and stabilisation_param >=0): + self.adaptive = False + else: + raise TypeError(" The stabilisation_param should be 'auto', a positive number or 'off'") + self.stabilisation_param=stabilisation_param + + + +
+[docs] + def get_step_size(self, algorithm): + """ + Applies the B-B rule to calculate the step size (`step_size`) + + Returns + -------- + the calculated step size:float + + """ + #For the first iteration we use an initial step size because the BB step size requires a previous iterate. + if self.store_x is None: + self.store_x=algorithm.x.copy() # We store the last iterate in order to calculate the BB step size + self.store_grad=algorithm.gradient_update.copy()# We store the last gradient in order to calculate the BB step size + return self.initial + + gradient_norm = algorithm.gradient_update.norm() + #If the gradient is zero, gradient based algorithms will not update and te step size calculation will divide by zero so we stop iterations. + if gradient_norm < 1e-8: + raise StopIteration + + algorithm.x.subtract(self.store_x, out=self.store_x) + algorithm.gradient_update.subtract(self.store_grad, out=self.store_grad) + if self.is_short: + ret = (self.store_x.dot(self.store_grad))/ (self.store_grad.dot(self.store_grad)) + else: + ret = (self.store_x.dot(self.store_x))/ (self.store_x.dot(self.store_grad)) + + + #This computes the default stabilisation parameter, using the first three iterations + if (algorithm.iteration <=3 and self.adaptive): + self.stabilisation_param = min(self.stabilisation_param, self.store_x.norm() ) + + # Computes the step size as the minimum of the ret, above, and :math:`\Delta/\|g_k\|` ignoring any NaN values. + ret = numpy.nanmin( numpy.array([ret, self.stabilisation_param/gradient_norm])) + + # We store the last iterate and gradient in order to calculate the BB step size + self.store_x.fill(algorithm.x) + self.store_grad.fill(algorithm.gradient_update) + + if self.mode == "alternate": + self.is_short = not self.is_short + + return ret
+
+ +
+ +
+ + + + + +
+ +
+
+
+ +
+ + + + +
+
+ +
+ +
+
+
+ + + + + +
+ + +
+ + \ No newline at end of file diff --git a/v24.2.0/_modules/cil/optimisation/utilities/callbacks/index.html b/v24.2.0/_modules/cil/optimisation/utilities/callbacks/index.html new file mode 100644 index 0000000000..64c3b79b90 --- /dev/null +++ b/v24.2.0/_modules/cil/optimisation/utilities/callbacks/index.html @@ -0,0 +1,722 @@ + + + + + + + + + + cil.optimisation.utilities.callbacks — CIL 24.2.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + +
+ +
+ + + + + +
+
+ + + + + + +
+ + + + + + + + + + + + + +
+ +
+ + +
+
+ +
+
+ +
+ +
+ + +
+ +
+ + +
+
+ + + + + +
+ +

Source code for cil.optimisation.utilities.callbacks

+from abc import ABC, abstractmethod
+from functools import partialmethod
+
+from tqdm.auto import tqdm as tqdm_auto
+from tqdm.std import tqdm as tqdm_std
+import numpy as np
+
+
+
+[docs] +class Callback(ABC): + '''Base Callback to inherit from for use in :code:`Algorithm.run(callbacks: list[Callback])`. + + Parameters + ---------- + verbose: int, choice of 0,1,2, default 1 + 0=quiet, 1=info, 2=debug. + ''' + def __init__(self, verbose=1): + self.verbose = verbose + + @abstractmethod + def __call__(self, algorithm): + pass
+ + + +class _OldCallback(Callback): + '''Converts an old-style :code:`def callback` to a new-style :code:`class Callback`. + + Parameters + ---------- + callback: :code:`callable(iteration, objective, x)` + ''' + def __init__(self, callback, *args, **kwargs): + super().__init__(*args, **kwargs) + self.func = callback + + def __call__(self, algorithm): + if algorithm.update_objective_interval > 0 and algorithm.iteration % algorithm.update_objective_interval == 0: + self.func(algorithm.iteration, algorithm.get_last_objective(return_all=self.verbose>=2), algorithm.x) + + +
+[docs] +class ProgressCallback(Callback): + ''':code:`tqdm`-based progress bar. + + Parameters + ---------- + tqdm_class: default :code:`tqdm.auto.tqdm` + **tqdm_kwargs: + Passed to :code:`tqdm_class`. + ''' + def __init__(self, verbose=1, tqdm_class=tqdm_auto, **tqdm_kwargs): + super().__init__(verbose=verbose) + self.tqdm_class = tqdm_class + self.tqdm_kwargs = tqdm_kwargs + self._obj_len = 0 # number of objective updates + + def __call__(self, algorithm): + if not hasattr(self, 'pbar'): + tqdm_kwargs = self.tqdm_kwargs + tqdm_kwargs.setdefault('total', algorithm.max_iteration) + tqdm_kwargs.setdefault('disable', not self.verbose) + tqdm_kwargs.setdefault('initial', max(0, algorithm.iteration)) + self.pbar = self.tqdm_class(**tqdm_kwargs) + if (obj_len := len(algorithm.objective)) != self._obj_len: + self.pbar.set_postfix(algorithm.objective_to_dict(self.verbose>=2), refresh=False) + self._obj_len = obj_len + self.pbar.update(algorithm.iteration - self.pbar.n)
+ + + +class _TqdmText(tqdm_std): + ''':code:`tqdm`-based progress but text-only updates on separate lines. + + Parameters + ---------- + num_format: str + Format spec for postfix numbers (i.e. objective values). + bar_format: str + Passed to :code:`tqdm`. + ''' + def __init__(self, *args, num_format='+8.3e', bar_format="{n:>6d}/{total_fmt:<6} {rate_fmt:>9}{postfix}", **kwargs): + self.num_format = num_format + super().__init__(*args, bar_format=bar_format, mininterval=0, maxinterval=0, position=0, **kwargs) + self._instances.remove(self) # don't interfere with external progress bars + + @staticmethod + def status_printer(file): + fp_flush = getattr(file, 'flush', lambda: None) + + def fp_write(s): + file.write(f"{s}\n") + fp_flush() + + return fp_write + + def format_num(self, n): + return f'{n:{self.num_format}}' + + def display(self, *args, **kwargs): + """ + Clears :code:`postfix` if :code:`super().display()` succeeds + (if display updates are more frequent than objective updates, users should not think the objective has stabilised). + """ + if (updated := super().display(*args, **kwargs)): + self.set_postfix_str('', refresh=False) + return updated + + +
+[docs] +class TextProgressCallback(ProgressCallback): + ''':code:`ProgressCallback` but printed on separate lines to screen. + + Parameters + ---------- + miniters: int, default :code:`Algorithm.update_objective_interval` + Number of algorithm iterations between screen prints. + ''' + __init__ = partialmethod(ProgressCallback.__init__, tqdm_class=_TqdmText) + + def __call__(self, algorithm): + if not hasattr(self, 'pbar'): + self.tqdm_kwargs['miniters'] = min(( + self.tqdm_kwargs.get('miniters', algorithm.update_objective_interval), + algorithm.update_objective_interval)) + return super().__call__(algorithm)
+ + + +
+[docs] +class LogfileCallback(TextProgressCallback): + ''':code:`TextProgressCallback` but to a file instead of screen. + + Parameters + ---------- + log_file: FileDescriptorOrPath + Passed to :code:`open()`. + mode: str + Passed to :code:`open()`. + ''' + def __init__(self, log_file, mode='a', **kwargs): + self.fd = open(log_file, mode=mode) + super().__init__(file=self.fd, **kwargs)
+ + +class EarlyStoppingObjectiveValue(Callback): + '''Callback that stops iterations if the change in the objective value is less than a provided threshold value. + + Parameters + ---------- + threshold: float, default 1e-6 + + Note + ----- + This callback only compares the last two calculated objective values. If `update_objective_interval` is greater than 1, the objective value is not calculated at each iteration (which is the default behaviour), only every `update_objective_interval` iterations. + + ''' + def __init__(self, threshold=1e-6): + self.threshold=threshold + + + def __call__(self, algorithm): + if len(algorithm.loss)>=2: + if np.abs(algorithm.loss[-1]-algorithm.loss[-2])<self.threshold: + raise StopIteration + +class CGLSEarlyStopping(Callback): + '''Callback to work with CGLS. It causes the algorithm to terminate if :math:`||A^T(Ax-b)||_2 < \epsilon||A^T(Ax_0-b)||_2` where `epsilon` is set to default as '1e-6', :math:`x` is the current iterate and :math:`x_0` is the initial value. + It will also terminate if the algorithm begins to diverge i.e. if :math:`||x||_2> \omega`, where `omega` is set to default as 1e6. + Parameters + ---------- + epsilon: float, default 1e-6 + Usually a small number: the algorithm to terminate if :math:`||A^T(Ax-b)||_2 < \epsilon||A^T(Ax_0-b)||_2` + omega: float, default 1e6 + Usually a large number: the algorithm will terminate if :math:`||x||_2> \omega` + + Note + ----- + This callback is implemented to replicate the automatic behaviour of CGLS in CIL versions <=24. It also replicates the behaviour of https://web.stanford.edu/group/SOL/software/cgls/. + ''' + def __init__(self, epsilon=1e-6, omega=1e6): + self.epsilon=epsilon + self.omega=omega + + + def __call__(self, algorithm): + + if (algorithm.norms <= algorithm.norms0 * self.epsilon): + print('The norm of the residual is less than {} times the norm of the initial residual and so the algorithm is terminated'.format(self.epsilon)) + raise StopIteration + self.normx = algorithm.x.norm() + if algorithm.normx >= self.omega: + print('The norm of the solution is greater than {} and so the algorithm is terminated'.format(self.omega)) + raise StopIteration + + +
+ +
+ + + + + +
+ +
+
+
+ +
+ + + + +
+
+ +
+ +
+
+
+ + + + + +
+ + +
+ + \ No newline at end of file diff --git a/v24.2.0/_modules/cil/optimisation/utilities/preconditioner/index.html b/v24.2.0/_modules/cil/optimisation/utilities/preconditioner/index.html new file mode 100644 index 0000000000..5d7f2af118 --- /dev/null +++ b/v24.2.0/_modules/cil/optimisation/utilities/preconditioner/index.html @@ -0,0 +1,749 @@ + + + + + + + + + + cil.optimisation.utilities.preconditioner — CIL 24.2.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + +
+ +
+ + + + + +
+
+ + + + + + +
+ + + + + + + + + + + + + +
+ +
+ + +
+
+ +
+
+ +
+ +
+ + +
+ +
+ + +
+
+ + + + + +
+ +

Source code for cil.optimisation.utilities.preconditioner

+#  Copyright 2024 United Kingdom Research and Innovation
+#  Copyright 2024 The University of Manchester
+#
+#  Licensed under the Apache License, Version 2.0 (the "License");
+#  you may not use this file except in compliance with the License.
+#  You may obtain a copy of the License at
+#
+#      http://www.apache.org/licenses/LICENSE-2.0
+#
+#  Unless required by applicable law or agreed to in writing, software
+#  distributed under the License is distributed on an "AS IS" BASIS,
+#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+#  See the License for the specific language governing permissions and
+#  limitations under the License.
+#
+# Authors:
+# - CIL Developers, listed at: https://github.com/TomographicImaging/CIL/blob/master/NOTICE.txt
+
+
+from abc import ABC, abstractmethod
+import numpy as np
+
+
+
+[docs] +class Preconditioner(ABC): + + r""" + Abstract base class for Preconditioner objects. The `apply` method of this class takes an initialised CIL function as an argument and modifies a provided `gradient`. + + + Methods + ------- + apply(x) + Abstract method to call the preconditioner. + """ + + def __init__(self): + '''Initialises the preconditioner + ''' + pass + +
+[docs] + @abstractmethod + def apply(self, algorithm, gradient, out): + r""" + Abstract method to apply the preconditioner. + + Parameters + ---------- + algorithm : Algorithm + The algorithm object. + gradient : DataContainer + The calculated gradient to modify + out : DataContainer, + Container to fill with the modified gradient. + + Note + ----- + + In CIL algorithms, the preconditioners are used in-place. Make sure this method is safe to use in place. + + Returns + ------- + DataContainer + The modified gradient + + """ + pass
+
+ + + +
+[docs] +class Sensitivity(Preconditioner): + + r""" + Sensitivity preconditioner class. + + In each call to the preconditioner the `gradient` is multiplied by :math:`1/(A^T \mathbf{1})` where :math:`A` is an operator, :math:`\mathbf{1}` is an object in the range of the operator filled with ones. + + Parameters + ---------- + operator : CIL Operator + The operator used for sensitivity computation. + + """ + + def __init__(self, operator): + + super(Sensitivity, self).__init__() + self.operator = operator + + self.compute_preconditioner_matrix() + +
+[docs] + def compute_preconditioner_matrix(self): + r""" + Compute the sensitivity. :math:`A^T \mathbf{1}` where :math:`A` is the operator and :math:`\mathbf{1}` is an object in the range of the operator filled with ones. + Then perform safe division by the sensitivity to store the preconditioner array :math:`1/(A^T \mathbf{1})` + """ + self.array = self.operator.adjoint( + self.operator.range_geometry().allocate(value=1.0)) + + try: + self.operator.range_geometry().allocate(value=1.0).divide( + self.array, where=np.abs(self.array.as_array()) > 0, out=self.array) + except: # Due to CIL/SIRF compatibility and SIRF divide not taking kwargs + sensitivity_np = self.array.as_array() + self.pos_ind = np.abs(sensitivity_np) > 0 + array_np = 0*sensitivity_np + array_np[self.pos_ind] = (1./sensitivity_np[self.pos_ind]) + self.array.fill(array_np)
+ + +
+[docs] + def apply(self, algorithm, gradient, out=None): + r""" + Update the preconditioner. + + Parameters + ---------- + algorithm : object + The algorithm object. + gradient : DataContainer + The calculated gradient to modify + out : DataContainer, + Container to fill with the modified gradient + + Returns + ------- + DataContainer + The modified gradient + + """ + if out is None: + out = gradient.copy() + gradient.multiply( + self.array, out=out) + return out
+
+ + + +
+[docs] +class AdaptiveSensitivity(Sensitivity): + + r""" + Adaptive Sensitivity preconditioner class. + + In each call to the preconditioner the `gradient` is multiplied by :math:`(x+\delta) /(A^T \mathbf{1})` where :math:`A` is an operator, :math:`\mathbf{1}` is an object in the range of the operator filled with ones. + The point :math:`x` is the current iteration, or a reference image, and :math:`\delta` is a small positive float. + + + Parameters + ---------- + operator : CIL object + The operator used for sensitivity computation. + delta : float, optional + The delta value for the preconditioner. + reference : DataContainer e.g. ImageData, default is None + Reference data, an object in the domain of the operator. Recommended to be a best guess reconstruction. If reference data is passed the preconditioner is always fixed. + max_iterations : int, default = 100 + The maximum number of iterations before the preconditoner is frozen and no-longer updates. Note that if reference data is passed the preconditioner is always frozen and `iterations` is set to -1. + + Note + ---- + A reference for the freezing of the preconditioner can be found: Twyman R., Arridge S., Kereta Z., Jin B., Brusaferri L., Ahn S., Stearns CW., Hutton B.F., Burger I.A., Kotasidis F., Thielemans K.. An Investigation of Stochastic Variance Reduction Algorithms for Relative Difference Penalized 3D PET Image Reconstruction. IEEE Trans Med Imaging. 2023 Jan;42(1):29-41. doi: 10.1109/TMI.2022.3203237. Epub 2022 Dec 29. PMID: 36044488. + + """ + + def __init__(self, operator, delta=1e-6, max_iterations=100, reference=None): + + self.max_iterations = max_iterations + self.delta = delta + + super(AdaptiveSensitivity, self).__init__( + operator=operator) + + self.freezing_point = operator.domain_geometry().allocate(0) + if reference is not None: + reference += self.delta + self.array.multiply(reference, out=self.freezing_point) + reference -= self.delta + self.max_iterations = -1 + +
+[docs] + def apply(self, algorithm, gradient, out=None): + r""" + Update the preconditioner. + + Parameters + ---------- + algorithm : object + The algorithm object. + gradient : DataContainer + The calculated gradient to modify + out : DataContainer, + Container to fill with the modified gradient + + Returns + ------- + DataContainer + The modified gradient + """ + if out is None: + out = gradient.copy() + + if algorithm.iteration <= self.max_iterations: + self.freezing_point.fill(algorithm.solution) + self.freezing_point.add(self.delta, out=self.freezing_point) + self.array.multiply(self.freezing_point, + out=self.freezing_point) + gradient.multiply( + self.freezing_point, out=out) + else: + gradient.multiply( + self.freezing_point, out=out) + + return out
+
+ +
+ +
+ + + + + +
+ +
+
+
+ +
+ + + + +
+
+ +
+ +
+
+
+ + + + + +
+ + +
+ + \ No newline at end of file diff --git a/v24.2.0/_modules/cil/optimisation/utilities/sampler/index.html b/v24.2.0/_modules/cil/optimisation/utilities/sampler/index.html new file mode 100644 index 0000000000..d5c7ef2949 --- /dev/null +++ b/v24.2.0/_modules/cil/optimisation/utilities/sampler/index.html @@ -0,0 +1,1280 @@ + + + + + + + + + + cil.optimisation.utilities.sampler — CIL 24.2.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + +
+ +
+ + + + + +
+
+ + + + + + +
+ + + + + + + + + + + + + +
+ +
+ + +
+
+ +
+
+ +
+ +
+ + +
+ +
+ + +
+
+ + + + + +
+ +

Source code for cil.optimisation.utilities.sampler

+#   This work is part of the Core Imaging Library (CIL) developed by CCPi
+#   (Collaborative Computational Project in Tomographic Imaging), with
+#   substantial contributions by UKRI-STFC and University of Manchester.
+
+#   Licensed under the Apache License, Version 2.0 (the "License");
+#   you may not use this file except in compliance with the License.
+#   You may obtain a copy of the License at
+
+#   http://www.apache.org/licenses/LICENSE-2.0
+
+#   Unless required by applicable law or agreed to in writing, software
+#   distributed under the License is distributed on an "AS IS" BASIS,
+#   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+#   See the License for the specific language governing permissions and
+#   limitations under the License.
+
+
+import numpy as np
+import math
+from functools import partial
+import time
+import numbers
+
+
+[docs] +class Sampler(): + # TODO: Work out how to make the examples testable + """ + Initialises a sampler that returns and then increments indices from a sequence defined by a function. + + Static methods to easily configure several samplers are provided, such as sequential, staggered, Herman-Mayer, random with and without replacement. + + + + + Custom deterministic samplers can be created by using the `from_function` static method or by subclassing this sampler class. + + + + Parameters + ---------- + + function : Callable[[int], int] + A function that takes an integer iteration number and returns an integer between 0 and num_indices. + + num_indices: int + The sampler will select from a range of indices 0 to num_indices. + + sampling_type:str, optional, default = None + The sampling type used. This is recorded for reference and printed when `print` is called. + + prob_weights: list of floats of length num_indices that sum to 1. Default is [1 / num_indices] * num_indices + Consider that the sampler is incremented a large number of times this argument holds the expected number of times each index would be outputted, normalised to 1. + + Returns + ------- + Sampler + An instance of the Sampler class representing the desired configuration. + + Example + ------- + >>> sampler = Sampler.random_with_replacement(5) + >>> print(sampler.get_samples(20)) + [3 4 0 0 2 3 3 2 2 1 1 4 4 3 0 2 4 4 2 4] + >>> print(next(sampler)) + 3 + >>> print(sampler.next()) + 4 + + + >>> sampler = Sampler.staggered(num_indices=21, stride=4) + >>> print(next(sampler)) + 0 + >>> print(sampler.next()) + 4 + >>> print(sampler.get_samples(5)) + [ 0 4 8 12 16] + + Example + ------- + >>> sampler = Sampler.sequential(10) + >>> print(sampler.get_samples(5)) + >>> print(next(sampler)) + 0 + [0 1 2 3 4] + >>> print(sampler.next()) + 1 + + Example + ------- + >>> sampler = Sampler.herman_meyer(12) + >>> print(sampler.get_samples(16)) + [ 0 6 3 9 1 7 4 10 2 8 5 11 0 6 3 9] + + + + Example + -------- + This example creates a sampler that outputs sequential indices, starting from 1. + + >>> num_indices=10 + >>> + >>> def my_sampling_function(iteration_number): + >>> return (iteration_number+1)%10 + >>> + >>> sampler = Sampler.from_function(num_indices=num_indices, function=my_sampling_function) + >>> print(list(sampler.get_samples(25))) + [1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5] + + + + Note + ----- + The optimal choice of sampler depends on the data and the number of calls to the sampler. Note that a low number of calls to a random sampler won't give an even distribution. + For a small number of samples (e.g. `<5*num_indices`) the user may wish to consider another sampling method e.g. random without replacement, which, when calling `num_indices` samples is guaranteed to draw each index exactly once. + """ + + def __init__(self, num_indices, function, sampling_type=None, prob_weights=None): + + self._type = sampling_type + + if isinstance (num_indices, numbers.Integral): + self._num_indices = num_indices + else: + raise ValueError('`num_indices` should be an integer. ') + + if callable(function): + self._function = function + else: + raise ValueError('`function` should be an callable function. ') + + if prob_weights is None: + prob_weights = [1 / num_indices] * num_indices + else: + if abs(sum(prob_weights) - 1) > 1e-6: + raise ValueError('The provided prob_weights must sum to one') + + if any(np.array(prob_weights) < 0): + raise ValueError( + 'The provided prob_weights must be greater than or equal to zero') + + self._prob_weights = prob_weights + self._iteration_number = 0 + + @property + def prob_weights(self): + return self._prob_weights + + @property + def num_indices(self): + return self._num_indices + + @property + def current_iter_number(self): + return self._iteration_number + +
+[docs] + def next(self): + """ + Returns a sample from the list of indices `{0, 1, …, N-1}, where N is the number of indices and increments the sampler. + """ + + out = self._function(self._iteration_number) + + self._iteration_number += 1 + return out
+ + + def __next__(self): + return self.next() + +
+[docs] + def get_samples(self, num_samples): + """ + Generates a list of the first num_samples output by the sampler. Calling this does not increment the sampler index or affect the behaviour of the sampler . + + Parameters + ---------- + num_samples: int + The number of samples to return. + + Returns + -------- + List + The first `num_samples" output by the sampler. + """ + save_last_index = self._iteration_number + self._iteration_number = 0 + + output = [self.next() for _ in range(num_samples)] + + self._iteration_number = save_last_index + + return np.array(output)
+ + + def __str__(self): + repres = "Sampler that selects from a list of indices {0, 1, …, N-1}, where N is the number of indices. \n" + repres += "Type : {} \n".format(self._type) + repres += "Current iteration number : {} \n".format( + self._iteration_number) + repres += "Number of indices : {} \n".format(self._num_indices) + repres += "Probability weights : {} \n".format(self._prob_weights) + return repres + +
+[docs] + @staticmethod + def sequential(num_indices): + """ + Instantiates a sampler that outputs sequential indices. + + Parameters + ---------- + num_indices: int + The sampler will select from a range of indices 0 to num_indices. + + Returns + ------- + Sampler + An instance of the Sampler class that will generate indices sequentially. + + Example + ------- + >>> sampler = Sampler.sequential(10) + >>> print(sampler.get_samples(5)) + >>> print(next(sampler)) + 0 + [0 1 2 3 4] + >>> print(sampler.next()) + 1 + """ + def function(x): + return x % num_indices + + sampler = Sampler(function=function, num_indices=num_indices, + sampling_type='sequential' + ) + return sampler
+ + + @staticmethod + def _staggered_function(num_indices, stride, iter_number): + """Function that takes in an iteration number and outputs an index number based on the staggered ordering. + + Parameters + ---------- + num_indices: int + The sampler will select from a range of indices 0 to num_indices. + + stride: int + The stride between returned indices. The stride should be less than the num_indices. + + iter_number: int + The current iteration number of the sampler. + + Returns + ------- + int + The index to be outputted by the sampler corresponding to the `iter_number` + + """ + if not isinstance (num_indices, numbers.Integral): + raise ValueError('`num_indices` should be an integer. ') + + iter_number_mod = iter_number % num_indices + floor = num_indices // stride + mod = num_indices % stride + + if iter_number_mod < (floor + 1)*mod: + row_number = iter_number_mod // (floor + 1) + column_number = (iter_number_mod % (floor + 1)) + else: + row_number = mod + (iter_number_mod - (floor+1)*mod) // floor + column_number = (iter_number_mod - (floor+1)*mod) % floor + + return row_number + stride*column_number + +
+[docs] + @staticmethod + def staggered(num_indices, stride): + """ + Instantiates a sampler which outputs in a staggered order. + + Parameters + ---------- + num_indices: int + The sampler will select from a range of indices 0 to num_indices. + + stride: int + The stride between returned indices. The stride should be less than the num_indices. + + Returns + ------- + Sampler + An instance of the Sampler class that will generate indices in a staggered pattern. + + + Example + ------- + >>> sampler = Sampler.staggered(num_indices=21, stride=4) + >>> print(next(sampler)) + 0 + >>> print(sampler.next()) + 4 + >>> print(sampler.get_samples(5)) + [ 0 4 8 12 16] + Example + ------- + >>> sampler = Sampler.staggered(num_indices=17, stride=8) + >>> print(next(sampler)) + 0 + >>> print(sampler.next()) + 8 + >>> print(sampler.get_samples(10)) + [ 0 8 16 1 9 2 10 3 11 4] + + + """ + + if stride >= num_indices: + raise (ValueError('The stride should be less than the number of indices')) + + sampler = Sampler(function=partial(Sampler._staggered_function, num_indices, stride), + num_indices=num_indices, sampling_type='staggered' + ) + + return sampler
+ + +
+[docs] + @staticmethod + def random_with_replacement(num_indices, prob=None, seed=None): + """ + Instantiates a sampler which outputs an index between 0 - num_indices with a given probability. + + Parameters + ---------- + num_indices: int + The sampler will select from a range of indices 0 to num_indices + + prob: list of floats, optional + The probability for each index to be selected by the 'next' operation. If not provided, the indices will be sampled uniformly. The list should have a length equal to num_indices, and the values should sum to 1 + + seed:int, optional + Used to initialise the random number generator where repeatability is required. + + Returns + ------- + `RandomSampler` + An instance of the `RandomSampler` class that will generate indices randomly with replacement + + Example + ------- + >>> sampler = Sampler.random_with_replacement(5) + >>> print(sampler.get_samples(10)) + [3 4 0 0 2 3 3 2 2 1] + >>> print(next(sampler)) + 3 + >>> print(sampler.next()) + 4 + + >>> sampler = Sampler.random_with_replacement(num_indices=4, prob=[0.7,0.1,0.1,0.1]) + >>> print(sampler.get_samples(10)) + [0 1 3 0 0 3 0 0 0 0] + """ + + sampler = SamplerRandom( + num_indices=num_indices, + sampling_type='random_with_replacement', + prob=prob, + replace=True, + seed=seed + ) + return sampler
+ + +
+[docs] + @staticmethod + def random_without_replacement(num_indices, seed=None): + """ + Instantiates a sampler which outputs an index between 0 - num_indices. Once sampled the index will not be sampled again until all indices have been returned. + + Parameters + ---------- + num_indices: int + The sampler will select from a range of indices 0 to num_indices. + + seed: int, optional + Used to initialise the random number generator where repeatability is required. + + Returns + ------- + `RandomSampler` + An instance of the `RandomSampler` class that will generate indices randomly without replacement + + Example + ------- + >>> sampler=Sampler.randomWithoutReplacement(num_indices=7, seed=1) + >>> print(sampler.get_samples(16)) + [6 2 1 0 4 3 5 1 0 4 2 5 6 3 3 2] + + """ + + sampler = SamplerRandom( + num_indices=num_indices, + sampling_type='random_without_replacement', + replace=False, + seed=seed + ) + return sampler
+ + +
+[docs] + @staticmethod + def from_function(num_indices, function, prob_weights=None): + """ + Instantiate a sampler that wraps a function for index selection. + + Parameters + ---------- + num_indices: int + The sampler will select from a range of indices 0 to num_indices. + + function : callable + A deterministic function that takes an integer as an argument, representing the iteration number, and returns an integer between 0 and num_indices. The function signature should be function(iteration_number: int) -> int + + prob_weights: list of floats of length num_indices that sum to 1. Default is [1 / num_indices] * num_indices + Consider that the sampler is incremented a large number of times this argument holds the expected number of times each index would be outputted, normalised to 1. + + Returns + ------- + Sampler + An instance of the Sampler class which samples from a function. + + + Example + -------- + This example creates a sampler that always outputs 2. The probability weights are passed to the sampler as they are not uniform. + + >>> num_indices=3 + >>> + >>> def my_sampling_function(iteration_number): + >>> return 2 + >>> + >>> sampler = Sampler.from_function(num_indices=num_indices, function=my_sampling_function, prob_weights=[0, 0, 1]) + >>> print(list(sampler.get_samples(12))) + [2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2] + + + Example + -------- + This example creates a sampler that outputs sequential indices, starting from 1. The probability weights are not passed to the sampler as they are uniform. + + >>> num_indices=10 + >>> + >>> def my_sampling_function(iteration_number): + >>> return (iteration_number+1)%10 + >>> + >>> sampler = Sampler.from_function(num_indices=num_indices, function=my_sampling_function) + >>> print(list(sampler.get_samples(25))) + [1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5] + + + Example + ------- + This example creates a sampler that samples in order from a custom list. The num_indices is 6, although note that the index 5 is never output by the sampler. The number of indices must be at least one greater than any of the elements in the custom_list. + The probability weights are passed to the sampler as they are not uniform. + + >>> custom_list = [0,0,0,0,0,0,3,2,1,4] + >>> num_indices = 6 + >>> + >>> def my_sampling_function(iteration_number, custom_list=custom_list]): + >>> return(custom_list[iteration_number%len(custom_list)]) + >>> + >>> sampler = Sampler.from_function(num_indices=num_indices, function=my_sampling_function, prob_weights=[0.6, 0.1, 0.1, 0.1, 0.1, 0.0]) + >>> print(list(sampler.get_samples(25))) + [0, 0, 0, 0, 0, 0, 3, 2, 1, 4, 0, 0, 0, 0, 0, 0, 3, 2, 1, 4, 0, 0, 0, 0, 0] + >>> print(sampler) + Sampler that wraps a function that takes an iteration number and selects from a list of indices {0, 1, …, N-1}, where N is the number of indices. + Type : from_function + Current iteration number : 0 + number of indices : 6 + Probability weights : [0.6, 0.1, 0.1, 0.1, 0.1, 0.0] + + """ + + sampler = Sampler( + num_indices=num_indices, + sampling_type='from_function', + function=function, + prob_weights=prob_weights + ) + return sampler
+ + + @staticmethod + def _prime_factorisation(n): + """ + Parameters + ---------- + + n: int + The number to be factorised. + + Returns + ------- + list of ints + The prime factors of n. + + """ + factors = [] + + while n % 2 == 0: + n //= 2 + factors.append(2) + + i = 3 + while i*i <= n: + while n % i == 0: + n //= i + factors.append(i) + i += 2 + + if n > 1: + factors.append(n) + + return factors + + @staticmethod + def _herman_meyer_function(num_indices, addition_arr, repeat_length_arr, iteration_number): + """ + Parameters + ---------- + num_indices: int + The number of indices to be sampled from. + + addition_arr: list of ints + The product of all factors at indices greater than the current factor. + + repeat_length_arr: list of ints + The product of all factors at indices less than the current factor. + + iteration_number: int + The current iteration number. + + Returns + ------- + int + The index to be sampled from. + + """ + + index = 0 + for n in range(len(addition_arr)): + addition = addition_arr[n] + repeat_length = repeat_length_arr[n] + + length = num_indices // (addition*repeat_length) + arr = np.arange(length) * addition + + ind = math.floor(iteration_number/repeat_length) % length + index += arr[ind] + + return index + +
+[docs] + @staticmethod + def herman_meyer(num_indices): + r"""Instantiates a sampler which outputs in a Herman Meyer order. + + Parameters + ---------- + num_indices: int + The sampler will select from a range of indices 0 to num_indices. For Herman-Meyer sampling this number should not be prime. + + Returns + ------- + Sampler + An instance of the Sampler class which outputs in a Herman Meyer order. + + + + + Reference + ---------- + With thanks to Imraj Singh and Zeljko Kereta for their help with the initial implementation of the Herman Meyer sampling. Their implementation was used in: + + Singh I, et al. Deep Image Prior PET Reconstruction using a SIRF-Based Objective - IEEE MIC, NSS & RTSD 2022. https://discovery.ucl.ac.uk/id/eprint/10176077/1/MIC_Conference_Record.pdf + + The sampling method was introduced in: + + Herman GT, Meyer LB. Algebraic reconstruction techniques can be made computationally efficient. IEEE Trans Med Imaging. doi: 10.1109/42.241889. + + Example + ------- + >>> sampler=Sampler.herman_meyer(12) + >>> print(sampler.get_samples(16)) + [ 0 6 3 9 1 7 4 10 2 8 5 11 0 6 3 9] + """ + + if not isinstance (num_indices, numbers.Integral): + raise ValueError('`num_indices` should be an integer. ') + + factors = Sampler._prime_factorisation(num_indices) + + n_factors = len(factors) + if n_factors == 1: + raise ValueError( + 'Herman Meyer sampling defaults to sequential ordering if the number of indices is prime. Please use an alternative sampling method or change the number of indices. ') + + addition_arr = np.empty(n_factors, dtype=np.int64) + repeat_length_arr = np.empty(n_factors, dtype=np.int64) + + repeat_length = 1 + addition = num_indices + for i in range(n_factors): + addition //= factors[i] + addition_arr[i] = addition + + repeat_length_arr[i] = repeat_length + repeat_length *= factors[i] + + hmf_call = partial(Sampler._herman_meyer_function, + num_indices, addition_arr, repeat_length_arr) + + # define the sampler + sampler = Sampler(function=hmf_call, + num_indices=num_indices, + sampling_type='herman_meyer', + prob_weights=[1 / num_indices] * num_indices + ) + + return sampler
+
+ + + +
+[docs] +class SamplerRandom(Sampler): + """ + The user is recommended to not instantiate this class directly but instead use one of the static methods in the parent Sampler class that will return instances of different samplers. + + This class produces Samplers that output random samples with and without replacement from the set {0, 1, …, N-1} where N=num_indices. + + Custom random samplers can be created by subclassing this sampler class. + + Parameters + ---------- + + num_indices: int + The sampler will select from a range of indices 0 to num_indices. + + sampling_type:str, optional, default = 'random_with_replacement" + The sampling type used. This is recorded for reference and printed when `print` is called. + + prob_weights: list of floats of length num_indices that sum to 1. Default is [1 / num_indices] * num_indices + Consider that the sampler is incremented a large number of times this argument holds the expected number of times each index would be outputted, normalised to 1. + + replace: bool, default is True + If True, sample with replace, otherwise sample without replacement + + seed:int, optional + Used to initialise the random number generator where repeatability is required. + + Returns + ------- + Sampler + An instance of the Sampler class representing the desired configuration. + + Example + ------- + >>> sampler = Sampler.random_with_replacement(5) + >>> print(sampler.get_samples(20)) + [3 4 0 0 2 3 3 2 2 1 1 4 4 3 0 2 4 4 2 4] + + Example + ------- + >>> sampler=Sampler.randomWithoutReplacement(num_indices=7, seed=1) + >>> print(sampler.get_samples(16)) + [6 2 1 0 4 3 5 1 0 4 2 5 6 3 3 2] + + """ + + def __init__(self, num_indices, seed=None, replace=True, prob=None, sampling_type='random_with_replacement'): + + if seed is not None: + self._seed = seed + else: + self._seed = int(time.time()) + self._generator = np.random.RandomState(self._seed) + self._sampling_list = None + self._replace = replace + + super(SamplerRandom, self).__init__(num_indices, self._function, + sampling_type=sampling_type, prob_weights=prob) + + @property + def seed(self): + return self._seed + + @property + def replace(self): + return self._replace + + def _function(self, iteration_number): + """ For each iteration number this function samples from a randomly generated list in order. Every num_indices the list is re-created. """ + location = iteration_number % self._num_indices + if location == 0: + self._sampling_list = self._generator.choice( + self._num_indices, self._num_indices, p=self._prob_weights, replace=self._replace) + out = self._sampling_list[location] + return out + +
+[docs] + def get_samples(self, num_samples): + """ + Generates a list of the first num_samples output by the sampler. Calling this does not increment the sampler index or affect the behaviour of the sampler . + + Parameters + ---------- + num_samples: int + The number of samples to return. + Returns + ------- + list + The first `num_samples` produced by the sampler + """ + save_last_index = self._iteration_number + self._iteration_number = 0 + + save_generator = self._generator + self._generator = np.random.RandomState(self._seed) + save_sampling_list = self._sampling_list + + output = [self.next() for _ in range(num_samples)] + + self._iteration_number = save_last_index + + self._generator = save_generator + self._sampling_list = save_sampling_list + + return np.array(output)
+ + + def __str__(self): + repres = super().__str__() + repres += "Seed : {} \n".format(self._seed) + return repres
+ +
+ +
+ + + + + +
+ +
+
+
+ +
+ + + + +
+
+ +
+ +
+
+
+ + + + + +
+ + +
+ + \ No newline at end of file diff --git a/v24.2.0/_modules/cil/plugins/TomoPhantom/index.html b/v24.2.0/_modules/cil/plugins/TomoPhantom/index.html new file mode 100644 index 0000000000..2abd72cb7d --- /dev/null +++ b/v24.2.0/_modules/cil/plugins/TomoPhantom/index.html @@ -0,0 +1,718 @@ + + + + + + + + + + cil.plugins.TomoPhantom — CIL 24.2.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + +
+ +
+ + + + + +
+
+ + + + + + +
+ + + + + + + + + + + + + +
+ +
+ + +
+
+ +
+
+ +
+ +
+ + +
+ +
+ + +
+
+ + + + + +
+ +

Source code for cil.plugins.TomoPhantom

+#  Copyright 2021 United Kingdom Research and Innovation
+#  Copyright 2021 The University of Manchester
+#
+#  Licensed under the Apache License, Version 2.0 (the "License");
+#  you may not use this file except in compliance with the License.
+#  You may obtain a copy of the License at
+#
+#      http://www.apache.org/licenses/LICENSE-2.0
+#
+#  Unless required by applicable law or agreed to in writing, software
+#  distributed under the License is distributed on an "AS IS" BASIS,
+#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+#  See the License for the specific language governing permissions and
+#  limitations under the License.
+#
+# Authors:
+# CIL Developers, listed at: https://github.com/TomographicImaging/CIL/blob/master/NOTICE.txt
+
+from cil.framework import ImageData
+from cil.framework.labels import ImageDimension
+import tomophantom
+from tomophantom import TomoP2D, TomoP3D
+import os
+import numpy as np
+
+import ctypes, platform
+from ctypes import util
+# check for the extension
+if platform.system() == 'Linux':
+    dll = 'libctomophantom.so'
+elif platform.system() == 'Windows':
+    dll_file = 'ctomophantom.dll'
+    dll = util.find_library(dll_file)
+elif platform.system() == 'Darwin':
+    dll = 'libctomophantom.dylib'
+else:
+    raise ValueError('Not supported platform, ', platform.system())
+
+libtomophantom = ctypes.cdll.LoadLibrary(dll)
+
+
+
+path = os.path.dirname(tomophantom.__file__)
+path_library2D = os.path.join(path, "Phantom2DLibrary.dat")
+path_library3D = os.path.join(path, "Phantom3DLibrary.dat")
+
+def is_model_temporal(num_model, num_dims=2):
+    '''Returns whether a model in the TomoPhantom library is temporal
+
+    This will go to check the installed library files from TomoPhantom
+    https://github.com/dkazanc/TomoPhantom/tree/master/PhantomLibrary/models
+
+    :param num_model: model number
+    :type num_model: int
+    :param num_dims: dimensionality of the phantom, 2D or 3D
+    :type num_dims: int, default 2
+    '''
+    return get_model_num_channels(num_model, num_dims) > 1
+
+def get_model_num_channels(num_model, num_dims=2):
+    '''Returns number of temporal steps (channels) the model has
+
+    This will go to check the installed library files from TomoPhantom
+    https://github.com/dkazanc/TomoPhantom/tree/master/PhantomLibrary/models
+
+    https://github.com/dkazanc/TomoPhantom/blob/v1.4.9/Core/utils.c#L27
+    https://github.com/dkazanc/TomoPhantom/blob/v1.4.9/Core/utils.c#L269
+
+    :param num_model: model number
+    :type num_model: int
+    :param num_dims: dimensionality of the phantom, 2D or 3D
+    :type num_dims: int, default 2
+    '''
+
+    return check_model_params(num_model, num_dims=num_dims)[3]
+
+def check_model_params(num_model, num_dims=2):
+    '''Returns params_switch array from the C TomoPhantom library in function checkParams2D or checkParams3D
+
+    This will go to check the installed library files from TomoPhantom
+    https://github.com/dkazanc/TomoPhantom/tree/master/PhantomLibrary/models
+
+    https://github.com/dkazanc/TomoPhantom/blob/v1.4.9/Core/utils.c#L27
+    https://github.com/dkazanc/TomoPhantom/blob/v1.4.9/Core/utils.c#L269
+
+    :param num_model: model number
+    :type num_model: int
+    :param num_dims: dimensionality of the phantom, 2D or 3D
+    :type num_dims: int, default 2
+    '''
+    if num_dims == 2:
+        libtomophantom.checkParams2D.argtypes = [ctypes.POINTER(ctypes.c_int),  # pointer to the params array
+                                  ctypes.c_int,                                   # model number selector (int)
+                                  ctypes.c_char_p]                  # string to the library file
+        params = np.zeros([10], dtype=np.int32)
+        params_p = params.ctypes.data_as(ctypes.POINTER(ctypes.c_int))
+        lib2d_p = str(path_library2D).encode('utf-8')
+        libtomophantom.checkParams2D(params_p, num_model, lib2d_p)
+
+        return params
+
+    elif num_dims == 3:
+        libtomophantom.checkParams3D.argtypes = [ctypes.POINTER(ctypes.c_int),  # pointer to the params array
+                                  ctypes.c_int,                                   # model number selector (int)
+                                  ctypes.c_char_p]                  # string to the library file
+        params = np.zeros([11], dtype=np.int32)
+        params_p = params.ctypes.data_as(ctypes.POINTER(ctypes.c_int))
+        lib2d_p = str(path_library3D).encode('utf-8')
+        libtomophantom.checkParams3D(params_p, num_model, lib2d_p)
+
+        return params
+
+    else:
+        raise ValueError('Unsupported dimensionality. Expected 2 or 3, got {}'.format(dims))
+
+
+[docs] +def get_ImageData(num_model, geometry): + '''Returns an ImageData relative to geometry with the model num_model from tomophantom + + :param num_model: model number + :type num_model: int + :param geometry: geometrical info that describes the phantom + :type geometry: ImageGeometry + Example usage: + + .. code-block:: python + + ndim = 2 + N=128 + angles = np.linspace(0, 360, 50, True, dtype=np.float32) + offset = 0.4 + channels = 3 + + if ndim == 2: + ag = AcquisitionGeometry.create_Cone2D((offset,-100), (offset,100)) + ag.set_panel(N) + + else: + ag = AcquisitionGeometry.create_Cone3D((offset,-100, 0), (offset,100,0)) + ag.set_panel((N,N-2)) + + ag.set_channels(channels) + ag.set_angles(angles, angle_unit=AngleUnit.DEGREE) + + ig = ag.get_ImageGeometry() + num_model = 1 + phantom = TomoPhantom.get_ImageData(num_model=num_model, geometry=ig) + + + ''' + ig = geometry.copy() + ig.set_labels(ImageDimension.get_order_for_engine('cil')) + num_dims = len(ig.dimension_labels) + + if ImageDimension.CHANNEL in ig.dimension_labels: + if not is_model_temporal(num_model): + raise ValueError('Selected model {} is not a temporal model, please change your selection'.format(num_model)) + if num_dims == 4: + # 3D+time for tomophantom + # output dimensions channel and then spatial, + # e.g. [ 'channel', 'vertical', 'horizontal_y', 'horizontal_x' ] + num_model = num_model + shape = tuple(ig.shape[1:]) + phantom_arr = TomoP3D.ModelTemporal(num_model, shape, path_library3D) + elif num_dims == 3: + # 2D+time for tomophantom + # output dimensions channel and then spatial, + # e.g. [ 'channel', 'horizontal_y', 'horizontal_x' ] + N = ig.shape[1] + num_model = num_model + phantom_arr = TomoP2D.ModelTemporal(num_model, ig.shape[1], path_library2D) + else: + raise ValueError('Wrong ImageGeometry') + if ig.channels != phantom_arr.shape[0]: + raise ValueError('The required model {} has {} channels. The ImageGeometry you passed has {}. Please update your ImageGeometry.'\ + .format(num_model, ig.channels, phantom_arr.shape[0])) + else: + if num_dims == 3: + # 3D + num_model = num_model + phantom_arr = TomoP3D.Model(num_model, ig.shape, path_library3D) + elif num_dims == 2: + # 2D + if ig.shape[0] != ig.shape[1]: + raise ValueError('Can only handle square ImageData, got shape'.format(ig.shape)) + N = ig.shape[0] + num_model = num_model + phantom_arr = TomoP2D.Model(num_model, N, path_library2D) + else: + raise ValueError('Wrong ImageGeometry') + + + im_data = ImageData(phantom_arr, geometry=ig, suppress_warning=True) + im_data.reorder(list(geometry.dimension_labels)) + return im_data
+ +
+ +
+ + + + + +
+ +
+
+
+ +
+ + + + +
+
+ +
+ +
+
+
+ + + + + +
+ + +
+ + \ No newline at end of file diff --git a/v24.2.0/_modules/cil/plugins/astra/operators/ProjectionOperator/index.html b/v24.2.0/_modules/cil/plugins/astra/operators/ProjectionOperator/index.html new file mode 100644 index 0000000000..84bad2cfea --- /dev/null +++ b/v24.2.0/_modules/cil/plugins/astra/operators/ProjectionOperator/index.html @@ -0,0 +1,712 @@ + + + + + + + + + + cil.plugins.astra.operators.ProjectionOperator — CIL 24.2.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + +
+ +
+ + + + + +
+
+ + + + + + +
+ + + + + + + + + + + + + +
+ +
+ + +
+
+ +
+
+ +
+ +
+ + +
+ +
+ + +
+
+ + + + + +
+ +

Source code for cil.plugins.astra.operators.ProjectionOperator

+#  Copyright 2020 United Kingdom Research and Innovation
+#  Copyright 2020 The University of Manchester
+#
+#  Licensed under the Apache License, Version 2.0 (the "License");
+#  you may not use this file except in compliance with the License.
+#  You may obtain a copy of the License at
+#
+#      http://www.apache.org/licenses/LICENSE-2.0
+#
+#  Unless required by applicable law or agreed to in writing, software
+#  distributed under the License is distributed on an "AS IS" BASIS,
+#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+#  See the License for the specific language governing permissions and
+#  limitations under the License.
+#
+# Authors:
+# CIL Developers, listed at: https://github.com/TomographicImaging/CIL/blob/master/NOTICE.txt
+import logging
+
+from cil.framework import BlockGeometry
+from cil.framework.labels import AcquisitionDimension, ImageDimension, AcquisitionType
+from cil.optimisation.operators import BlockOperator, LinearOperator, ChannelwiseOperator
+from cil.plugins.astra.operators import AstraProjector2D, AstraProjector3D
+
+log = logging.getLogger(__name__)
+
+
+
+[docs] +class ProjectionOperator(LinearOperator): + """ + ProjectionOperator configures and calls appropriate ASTRA Projectors for your dataset. + + Parameters + ---------- + + image_geometry : ``ImageGeometry``, default used if None + A description of the area/volume to reconstruct + + acquisition_geometry : ``AcquisitionGeometry``, ``BlockGeometry`` + A description of the acquisition data. If passed a BlockGeometry it will return a BlockOperator. + + device : string, default='gpu' + 'gpu' will run on a compatible CUDA capable device using the ASTRA 3D CUDA Projectors, 'cpu' will run on CPU using the ASTRA 2D CPU Projectors + + Example + ------- + >>> from cil.plugins.astra import ProjectionOperator + >>> PO = ProjectionOperator(image.geometry, data.geometry) + >>> forward_projection = PO.direct(image) + >>> backward_projection = PO.adjoint(data) + + Notes + ----- + For multichannel data the ProjectionOperator will broadcast across all channels. + """ + def __new__(cls, image_geometry=None, acquisition_geometry=None, \ + device='gpu', **kwargs): + if isinstance(acquisition_geometry, BlockGeometry): + log.info("BlockOperator is returned.") + + K = [] + for ag in acquisition_geometry: + K.append( + ProjectionOperator_ag(image_geometry=image_geometry, acquisition_geometry=ag, \ + device=device, **kwargs) + ) + return BlockOperator(*K) + else: + log.info("Standard Operator is returned.") + return super(ProjectionOperator, + cls).__new__(ProjectionOperator_ag)
+ + + +class ProjectionOperator_ag(ProjectionOperator): + """ + ProjectionOperator configures and calls appropriate ASTRA Projectors for your dataset. + + Parameters + ---------- + + image_geometry : ImageGeometry, default used if None + A description of the area/volume to reconstruct + + acquisition_geometry : AcquisitionGeometry + A description of the acquisition data + + device : string, default='gpu' + 'gpu' will run on a compatible CUDA capable device using the ASTRA 3D CUDA Projectors, 'cpu' will run on CPU using the ASTRA 2D CPU Projectors + + Example + ------- + >>> from cil.plugins.astra import ProjectionOperator + >>> PO = ProjectionOperator(image.geometry, data.geometry) + >>> forward_projection = PO.direct(image) + >>> backward_projection = PO.adjoint(data) + + Notes + ----- + For multichannel data the ProjectionOperator will broadcast across all channels. + """ + + def __init__(self, + image_geometry=None, + acquisition_geometry=None, + device='gpu'): + + if acquisition_geometry is None: + raise TypeError( + "Please specify an acquisition_geometry to configure this operator" + ) + + if image_geometry is None: + image_geometry = acquisition_geometry.get_ImageGeometry() + + super(ProjectionOperator_ag, + self).__init__(domain_geometry=image_geometry, + range_geometry=acquisition_geometry) + + AcquisitionDimension.check_order_for_engine('astra',acquisition_geometry) + ImageDimension.check_order_for_engine('astra',image_geometry) + + self.volume_geometry = image_geometry + self.sinogram_geometry = acquisition_geometry + + sinogram_geometry_sc = acquisition_geometry.get_slice(channel=0) + volume_geometry_sc = image_geometry.get_slice(channel=0) + + if device == 'gpu': + operator = AstraProjector3D(volume_geometry_sc, + sinogram_geometry_sc) + elif AcquisitionType.DIM2 & self.sinogram_geometry.dimension: + operator = AstraProjector2D(volume_geometry_sc, + sinogram_geometry_sc, + device=device) + else: + raise NotImplementedError("Cannot process 3D data without a GPU") + + if acquisition_geometry.channels > 1: + operator_full = ChannelwiseOperator( + operator, self.sinogram_geometry.channels, dimension='prepend') + self.operator = operator_full + else: + self.operator = operator + + def direct(self, IM, out=None): + '''Applies the direct of the operator i.e. the forward projection. + + Parameters + ---------- + IM : ImageData + The image/volume to be projected. + + out : DataContainer, optional + Fills the referenced DataContainer with the processed data and suppresses the return + + Returns + ------- + DataContainer + The processed data. Suppressed if `out` is passed + ''' + + return self.operator.direct(IM, out=out) + + def adjoint(self, DATA, out=None): + '''Applies the adjoint of the operator, i.e. the backward projection. + + Parameters + ---------- + DATA : AcquisitionData + The projections/sinograms to be projected. + + out : DataContainer, optional + Fills the referenced DataContainer with the processed data and suppresses the return + + Returns + ------- + DataContainer + The processed data. Suppressed if `out` is passed + ''' + return self.operator.adjoint(DATA, out=out) + + def calculate_norm(self): + return self.operator.norm() + + def domain_geometry(self): + return self.volume_geometry + + def range_geometry(self): + return self.sinogram_geometry +
+ +
+ + + + + +
+ +
+
+
+ +
+ + + + +
+
+ +
+ +
+
+
+ + + + + +
+ + +
+ + \ No newline at end of file diff --git a/v24.2.0/_modules/cil/plugins/astra/processors/FBP/index.html b/v24.2.0/_modules/cil/plugins/astra/processors/FBP/index.html new file mode 100644 index 0000000000..53285c2e0f --- /dev/null +++ b/v24.2.0/_modules/cil/plugins/astra/processors/FBP/index.html @@ -0,0 +1,641 @@ + + + + + + + + + + cil.plugins.astra.processors.FBP — CIL 24.2.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + +
+ +
+ + + + + +
+
+ + + + + + +
+ + + + + + + + + + + + + +
+ +
+ + +
+
+ +
+
+ +
+ +
+ + +
+ +
+ + +
+
+ + + + + +
+ +

Source code for cil.plugins.astra.processors.FBP

+#  Copyright 2019 United Kingdom Research and Innovation
+#  Copyright 2019 The University of Manchester
+#
+#  Licensed under the Apache License, Version 2.0 (the "License");
+#  you may not use this file except in compliance with the License.
+#  You may obtain a copy of the License at
+#
+#      http://www.apache.org/licenses/LICENSE-2.0
+#
+#  Unless required by applicable law or agreed to in writing, software
+#  distributed under the License is distributed on an "AS IS" BASIS,
+#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+#  See the License for the specific language governing permissions and
+#  limitations under the License.
+#
+# Authors:
+# CIL Developers, listed at: https://github.com/TomographicImaging/CIL/blob/master/NOTICE.txt
+from cil.framework import DataProcessor
+from cil.framework.labels import ImageDimension, AcquisitionDimension, AcquisitionType
+from cil.plugins.astra.processors.FBP_Flexible import FBP_Flexible
+from cil.plugins.astra.processors.FDK_Flexible import FDK_Flexible
+from cil.plugins.astra.processors.FBP_Flexible import FBP_CPU
+
+
+
+[docs] +class FBP(DataProcessor): + + """ + FBP configures and calls an appropriate ASTRA FBP or FDK algorithm for your dataset. + + The best results will be on data with circular trajectories of a 2PI angular range and equally spaced small angular steps. + + Parameters + ---------- + image_geometry : ImageGeometry, default used if None + A description of the area/volume to reconstruct + + acquisition_geometry : AcquisitionGeometry + A description of the acquisition data + + device : string, default='gpu' + 'gpu' will run on a compatible CUDA capable device using the ASTRA FDK_CUDA algorithm + 'cpu' will run on CPU using the ASTRA FBP algorithm - see Notes for limitations + + + Example + ------- + >>> from cil.plugins.astra import FBP + >>> fbp = FBP(image_geometry, data.geometry) + >>> fbp.set_input(data) + >>> reconstruction = fbp.get_output() + + + Notes + ----- + A CPU version is provided for simple 2D parallel-beam geometries only, any offsets and rotations in the acquisition geometry will be ignored. + + This uses the ram-lak filter only. + + """ + + + def __init__(self, image_geometry=None, acquisition_geometry=None, device='gpu'): + if acquisition_geometry is None: + raise TypeError("Please specify an acquisition_geometry to configure this processor") + if image_geometry is None: + image_geometry = acquisition_geometry.get_ImageGeometry() + + AcquisitionDimension.check_order_for_engine('astra', acquisition_geometry) + ImageDimension.check_order_for_engine('astra', image_geometry) + + if device == 'gpu': + if acquisition_geometry.geom_type == 'parallel': + processor = FBP_Flexible(image_geometry, acquisition_geometry) + else: + processor = FDK_Flexible(image_geometry, acquisition_geometry) + + else: + UserWarning("ASTRA back-projector running on CPU will not make use of enhanced geometry parameters") + + if acquisition_geometry.geom_type == 'cone': + raise NotImplementedError("Cannot process cone-beam data without a GPU") + + if AcquisitionType.DIM2 & acquisition_geometry.dimension: + processor = FBP_CPU(image_geometry, acquisition_geometry) + else: + raise NotImplementedError("Cannot process 3D data without a GPU") + + if acquisition_geometry.channels > 1: + raise NotImplementedError("Cannot process multi-channel data") + #processor_full = ChannelwiseProcessor(processor, self.acquisition_geometry.channels, dimension='prepend') + #self.processor = operator_full + + super(FBP, self).__init__( image_geometry=image_geometry, acquisition_geometry=acquisition_geometry, device=device, processor=processor) + +
+[docs] + def set_input(self, dataset): + return self.processor.set_input(dataset)
+ + + def get_input(self): + return self.processor.get_input() + +
+[docs] + def get_output(self, out=None): + return self.processor.get_output(out=out)
+ + + def check_input(self, dataset): + return self.processor.check_input(dataset) + + def check_output(self, out): + return self.processor.check_output(out=out) + + def process(self, out=None): + return self.processor.process(out=out)
+ +
+ +
+ + + + + +
+ +
+
+
+ +
+ + + + +
+
+ +
+ +
+
+
+ + + + + +
+ + +
+ + \ No newline at end of file diff --git a/v24.2.0/_modules/cil/plugins/ccpi_regularisation/functions/regularisers/index.html b/v24.2.0/_modules/cil/plugins/ccpi_regularisation/functions/regularisers/index.html new file mode 100644 index 0000000000..4a32b39d7f --- /dev/null +++ b/v24.2.0/_modules/cil/plugins/ccpi_regularisation/functions/regularisers/index.html @@ -0,0 +1,1077 @@ + + + + + + + + + + cil.plugins.ccpi_regularisation.functions.regularisers — CIL 24.2.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + +
+ +
+ + + + + +
+
+ + + + + + +
+ + + + + + + + + + + + + +
+ +
+ + +
+
+ +
+
+ +
+ +
+ + +
+ +
+ + +
+
+ + + + + +
+ +

Source code for cil.plugins.ccpi_regularisation.functions.regularisers

+#  Copyright 2020 United Kingdom Research and Innovation
+#  Copyright 2020 The University of Manchester
+#
+#  Licensed under the Apache License, Version 2.0 (the "License");
+#  you may not use this file except in compliance with the License.
+#  You may obtain a copy of the License at
+#
+#      http://www.apache.org/licenses/LICENSE-2.0
+#
+#  Unless required by applicable law or agreed to in writing, software
+#  distributed under the License is distributed on an "AS IS" BASIS,
+#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+#  See the License for the specific language governing permissions and
+#  limitations under the License.
+#
+# Authors:
+# CIL Developers, listed at: https://github.com/TomographicImaging/CIL/blob/master/NOTICE.txt
+
+try:
+    from ccpi.filters import regularisers
+    from ccpi.filters.TV import TV_ENERGY
+except ImportError as exc:
+    raise ImportError('Please `conda install "ccpi::ccpi-regulariser>=24.0.1"`') from exc
+
+
+from cil.framework import DataContainer
+from cil.framework.labels import ImageDimension
+from cil.optimisation.functions import Function
+import numpy as np
+import warnings
+from numbers import Number
+
+class RegulariserFunction(Function):
+    def proximal(self, x, tau, out=None):
+
+        r""" Generic proximal method for a RegulariserFunction
+
+        .. math:: \mathrm{prox}_{\tau f}(x) := \argmin_{z} f(x) + \frac{1}{2}\|z - x \|^{2}
+
+        Parameters
+        ----------
+
+        x : DataContainer
+            Input of the proximal operator
+        tau : Number
+            Positive parameter of the proximal operator
+        out : DataContainer
+            Output :class:`Datacontainer` in which the result is placed.
+
+        Note
+        ----
+
+        If the :class:`ImageData` contains complex data, rather than the default `float32`, the regularisation
+        is run independently on the real and imaginary part.
+
+        """
+
+        self.check_input(x)
+        arr = x.as_array()
+        if np.iscomplexobj(arr):
+            # do real and imag part indep
+            in_arr = np.asarray(arr.real, dtype=np.float32, order='C')
+            res, info = self.proximal_numpy(in_arr, tau)
+            arr.real = res[:]
+            in_arr = np.asarray(arr.imag, dtype=np.float32, order='C')
+            res, info = self.proximal_numpy(in_arr, tau)
+            arr.imag = res[:]
+            self.info = info
+            if out is not None:
+                out.fill(arr)
+            else:
+                out = x.copy()
+                out.fill(arr)
+                return out
+        else:
+            arr = np.asarray(x.as_array(), dtype=np.float32, order='C')
+            res, info = self.proximal_numpy(arr, tau)
+            self.info = info
+            if out is not None:
+                out.fill(res)
+            else:
+                out = x.copy()
+                out.fill(res)
+                return out
+    def proximal_numpy(self, xarr, tau):
+        raise NotImplementedError('Please implement proximal_numpy')
+
+    def check_input(self, input):
+        pass
+
+class TV_Base(RegulariserFunction):
+
+    r""" Total Variation regulariser
+
+    .. math:: TV(u) = \alpha \|\nabla u\|_{2,1}
+
+    Parameters
+    ----------
+
+    strong_convexity_constant : Number
+                              Positive parameter that allows Total variation regulariser to be strongly convex. Default = 0.
+
+    Note
+    ----
+
+    By definition, Total variation is a convex function. However,
+    adding a strongly convex term makes it a strongly convex function.
+    Then, we say that `TV` is a :math:`\gamma>0` strongly convex function i.e.,
+
+    .. math:: TV(u) = \alpha \|\nabla u\|_{2,1} + \frac{\gamma}{2}\|u\|^{2}
+
+    """
+
+    def __init__(self, strong_convexity_constant = 0):
+
+        self.strong_convexity_constant = strong_convexity_constant
+
+    def __call__(self,x):
+        in_arr = np.asarray(x.as_array(), dtype=np.float32, order='C')
+        EnergyValTV = TV_ENERGY(in_arr, in_arr, self.alpha, 2)
+        if self.strong_convexity_constant>0:
+            return 0.5*EnergyValTV[0] + (self.strong_convexity_constant/2)*x.squared_norm()
+        else:
+            return 0.5*EnergyValTV[0]
+
+    def convex_conjugate(self,x):
+        return 0.0
+
+
+
+[docs] +class FGP_TV(TV_Base): + + r""" Fast Gradient Projection Total Variation (FGP_TV) + + The :class:`FGP_TV` computes the proximal operator of the Total variation regulariser + + .. math:: \mathrm{prox}_{\tau (\alpha TV)}(x) = \underset{z}{\mathrm{argmin}} \,\alpha\,\mathrm{TV}(z) + \frac{1}{2}\|z - x\|^{2} . + + The algorithm used for the proximal operator of TV is the Fast Gradient Projection algorithm + applied to the _dual problem_ of the above problem, see :cite:`BeckTeboulle_b`, :cite:`BeckTeboulle_a`. + + Note + ----- + In CIL Version 24.1.0 we change the default value of nonnegativity to False. This means non-negativity is not enforced by default. + + Parameters + ---------- + + alpha : :obj:`Number` (positive), default = 1.0 . + Total variation regularisation parameter. + + max_iteration : :obj:`int`. Default = 100 . + Maximum number of iterations for the Fast Gradient Projection algorithm. + + isotropic : :obj:`boolean`. Default = True . + Isotropic or Anisotropic definition of the Total variation regulariser. + + .. math:: |x|_{2} = \sqrt{x_{1}^{2} + x_{2}^{2}},\, (\mbox{isotropic}) + + .. math:: |x|_{1} = |x_{1}| + |x_{2}|\, (\mbox{anisotropic}) + + nonnegativity : :obj:`boolean`. Default = False . + Non-negativity constraint for the solution of the FGP algorithm. + + tolerance : :obj:`float`, Default = 0 . + Stopping criterion for the FGP algorithm. + + .. math:: \|x^{k+1} - x^{k}\|_{2} < \mathrm{tolerance} + + device : :obj:`str`, Default = 'cpu' . + FGP_TV algorithm runs on `cpu` or `gpu`. + + strong_convexity_constant : :obj:`float`, default = 0 + A strongly convex term weighted by the :code:`strong_convexity_constant` (:math:`\gamma`) parameter is added to the Total variation. + Now the :code:`TotalVariation` function is :math:`\gamma` - strongly convex and the proximal operator is + + .. math:: \underset{u}{\mathrm{argmin}} \frac{1}{2\tau}\|u - b\|^{2} + \mathrm{TV}(u) + \frac{\gamma}{2}\|u\|^{2} \Leftrightarrow + + .. math:: \underset{u}{\mathrm{argmin}} \frac{1}{2\frac{\tau}{1+\gamma\tau}}\|u - \frac{b}{1+\gamma\tau}\|^{2} + \mathrm{TV}(u) + + + Examples + -------- + + .. math:: \underset{u\qeq0}{\mathrm{argmin}} \frac{1}{2}\|u - b\|^{2} + \alpha TV(u) + + + >>> G = alpha * FGP_TV(max_iteration=100, device='gpu') + >>> sol = G.proximal(b) + + Note + ---- + + The :class:`FGP_TV` regularisation does not incorparate information on the :class:`ImageGeometry`, i.e., pixel/voxel size. + Therefore a rescaled parameter should be used to match the same solution computed using :class:`~cil.optimisation.functions.TotalVariation`. + + >>> G1 = (alpha/ig.voxel_size_x) * FGP_TV(max_iteration=100, device='gpu') + >>> G2 = alpha * TotalVariation(max_iteration=100, lower=0.) + + + See Also + -------- + :class:`~cil.optimisation.functions.TotalVariation` + + + """ + + + def __init__(self, alpha=1, max_iteration=100, tolerance=0, isotropic=True, nonnegativity=None, device='cpu', strong_convexity_constant=0): + + if isotropic == True: + self.methodTV = 0 + else: + self.methodTV = 1 + + if nonnegativity is None: # Deprecate this warning in future versions and allow nonnegativity to be default False in the init. + warnings.warn('Note that the default behaviour now sets the nonnegativity constraint to False ', UserWarning, stacklevel=2) + nonnegativity=False + if nonnegativity == True: + self.nonnegativity = 1 + else: + self.nonnegativity = 0 + + self.alpha = alpha + self.max_iteration = max_iteration + self.tolerance = tolerance + self.nonnegativity = nonnegativity + self.device = device + + super(FGP_TV, self).__init__(strong_convexity_constant=strong_convexity_constant) + + def _fista_on_dual_rof(self, in_arr, tau): + + r""" Implements the Fast Gradient Projection algorithm on the dual problem + of the Total Variation Denoising problem (ROF). + + """ + + info = np.zeros((2,), dtype=np.float32) + + res = regularisers.FGP_TV(\ + in_arr,\ + self.alpha * tau,\ + self.max_iteration,\ + self.tolerance,\ + self.methodTV,\ + self.nonnegativity,\ + infovector = info, + device = self.device) + + return res, info + + def proximal_numpy(self, in_arr, tau): + + if self.strong_convexity_constant>0: + + strongly_convex_factor = (1 + tau * self.strong_convexity_constant) + in_arr /= strongly_convex_factor + tau /= strongly_convex_factor + + solution = self._fista_on_dual_rof(in_arr, tau) + + if self.strong_convexity_constant>0: + in_arr *= strongly_convex_factor + tau *= strongly_convex_factor + + return solution + + def __rmul__(self, scalar): + '''Define the multiplication with a scalar + + this changes the regularisation parameter in the plugin''' + if not isinstance (scalar, Number): + raise NotImplemented + else: + self.alpha *= scalar + return self + def check_input(self, input): + if len(input.shape) > 3: + raise ValueError('{} cannot work on more than 3D. Got {}'.format(self.__class__.__name__, input.geometry.length))
+ + +
+[docs] +class TGV(RegulariserFunction): + +
+[docs] + def __init__(self, alpha=1, gamma=1, max_iteration=100, tolerance=0, device='cpu' , **kwargs): + '''Creator of Total Generalised Variation Function + + :param alpha: regularisation parameter + :type alpha: number, default 1 + :param gamma: ratio of TGV terms + :type gamma: number, default 1, can range between 1 and 2 + :param max_iteration: max number of sub iterations. The algorithm will iterate up to this number of iteration or up to when the tolerance has been reached + :type max_iteration: integer, default 100 + :param tolerance: minimum difference between previous iteration of the algorithm that determines the stop of the iteration earlier than max_iteration. If set to 0 only the max_iteration will be used as stop criterion. + :type tolerance: float, default 0 + :param device: determines if the code runs on CPU or GPU + :type device: string, default 'cpu', can be 'gpu' if GPU is installed + + ''' + + self.alpha = alpha + self.gamma = gamma + self.max_iteration = max_iteration + self.tolerance = tolerance + self.device = device + + if kwargs.get('iter_TGV', None) is not None: + # raise ValueError('iter_TGV parameter has been superseded by num_iter. Use that instead.') + self.num_iter = kwargs.get('iter_TGV')
+ + +
+[docs] + def __call__(self,x): + warnings.warn("{}: the __call__ method is not implemented. Returning NaN.".format(self.__class__.__name__)) + return np.nan
+ + @property + def gamma(self): + return self.__gamma + @gamma.setter + def gamma(self, value): + if value <= 2 and value >= 1: + self.__gamma = value + @property + def alpha2(self): + return self.alpha1 * self.gamma + @property + def alpha1(self): + return 1. + + def proximal_numpy(self, in_arr, tau): + + info = np.zeros((2,), dtype=np.float32) + + res = regularisers.TGV(in_arr, + self.alpha * tau, + self.alpha1, + self.alpha2, + self.max_iteration, + self.LipshitzConstant, + self.tolerance, + infovector = info, + device = self.device) + + # info: return number of iteration and reached tolerance + # https://github.com/vais-ral/CCPi-Regularisation-Toolkit/blob/master/src/Core/regularisers_CPU/TGV_core.c#L168 + # Stopping Criteria || u^k - u^(k-1) ||_{2} / || u^{k} ||_{2} + return res, info + +
+[docs] + def convex_conjugate(self, x): + warnings.warn("{}: the convex_conjugate method is not implemented. Returning NaN.".format(self.__class__.__name__)) + return np.nan
+ + +
+[docs] + def __rmul__(self, scalar): + '''Define the multiplication with a scalar + + this changes the regularisation parameter in the plugin''' + if not isinstance (scalar, Number): + raise NotImplemented + else: + self.alpha *= scalar + return self
+ + + # f = TGV() + # f = alpha * f + + def check_input(self, input): + if len(input.shape) == 2: + self.LipshitzConstant = 12 + elif len(input.shape) == 3: + self.LipshitzConstant = 16 # Vaggelis to confirm + else: + raise ValueError('{} cannot work on more than 3D. Got {}'.format(self.__class__.__name__, input.geometry.length))
+ + + +
+[docs] +class FGP_dTV(RegulariserFunction): + '''Creator of FGP_dTV Function + + :param reference: reference image + :type reference: ImageData + :param alpha: regularisation parameter + :type alpha: number, default 1 + :param max_iteration: max number of sub iterations. The algorithm will iterate up to this number of iteration or up to when the tolerance has been reached + :type max_iteration: integer, default 100 + :param tolerance: minimum difference between previous iteration of the algorithm that determines the stop of the iteration earlier than max_iteration. If set to 0 only the max_iteration will be used as stop criterion. + :type tolerance: float, default 0 + :param eta: smoothing constant to calculate gradient of the reference + :type eta: number, default 0.01 + :param isotropic: Whether it uses L2 (isotropic) or L1 (anisotropic) norm + :type isotropic: boolean, default True, can range between 1 and 2 + :param nonnegativity: Whether to add the non-negativity constraint + :type nonnegativity: boolean, default True + :param device: determines if the code runs on CPU or GPU + :type device: string, default 'cpu', can be 'gpu' if GPU is installed + ''' +
+[docs] + def __init__(self, reference, alpha=1, max_iteration=100, + tolerance=0, eta=0.01, isotropic=True, nonnegativity=True, device='cpu'): + + if isotropic == True: + self.methodTV = 0 + else: + self.methodTV = 1 + + if nonnegativity == True: + self.nonnegativity = 1 + else: + self.nonnegativity = 0 + + self.alpha = alpha + self.max_iteration = max_iteration + self.tolerance = tolerance + self.device = device # string for 'cpu' or 'gpu' + self.reference = np.asarray(reference.as_array(), dtype=np.float32) + self.eta = eta
+ + +
+[docs] + def __call__(self,x): + warnings.warn("{}: the __call__ method is not implemented. Returning NaN.".format(self.__class__.__name__)) + return np.nan
+ + + def proximal_numpy(self, in_arr, tau): + + info = np.zeros((2,), dtype=np.float32) + + res = regularisers.FGP_dTV(\ + in_arr,\ + self.reference,\ + self.alpha * tau,\ + self.max_iteration,\ + self.tolerance,\ + self.eta,\ + self.methodTV,\ + self.nonnegativity,\ + infovector = info, + device = self.device) + return res, info + +
+[docs] + def convex_conjugate(self, x): + warnings.warn("{}: the convex_conjugate method is not implemented. Returning NaN.".format(self.__class__.__name__)) + return np.nan
+ + +
+[docs] + def __rmul__(self, scalar): + '''Define the multiplication with a scalar + + this changes the regularisation parameter in the plugin''' + if not isinstance (scalar, Number): + raise NotImplemented + else: + self.alpha *= scalar + return self
+ + + def check_input(self, input): + if len(input.shape) > 3: + raise ValueError('{} cannot work on more than 3D. Got {}'.format(self.__class__.__name__, input.geometry.length))
+ + +
+[docs] +class TNV(RegulariserFunction): + +
+[docs] + def __init__(self,alpha=1, max_iteration=100, tolerance=0): + '''Creator of TNV Function + + :param alpha: regularisation parameter + :type alpha: number, default 1 + :param max_iteration: max number of sub iterations. The algorithm will iterate up to this number of iteration or up to when the tolerance has been reached + :type max_iteration: integer, default 100 + :param tolerance: minimum difference between previous iteration of the algorithm that determines the stop of the iteration earlier than max_iteration. If set to 0 only the max_iteration will be used as stop criterion. + :type tolerance: float, default 0 + ''' + # set parameters + self.alpha = alpha + self.max_iteration = max_iteration + self.tolerance = tolerance
+ + +
+[docs] + def __call__(self,x): + warnings.warn("{}: the __call__ method is not implemented. Returning NaN.".format(self.__class__.__name__)) + return np.nan
+ + + def proximal_numpy(self, in_arr, tau): + # remove any dimension of size 1 + in_arr = np.squeeze(in_arr) + + res = regularisers.TNV(in_arr, + self.alpha * tau, + self.max_iteration, + self.tolerance) + return res, [] + +
+[docs] + def convex_conjugate(self, x): + warnings.warn("{}: the convex_conjugate method is not implemented. Returning NaN.".format(self.__class__.__name__)) + return np.nan
+ + +
+[docs] + def __rmul__(self, scalar): + '''Define the multiplication with a scalar + + this changes the regularisation parameter in the plugin''' + if not isinstance (scalar, Number): + raise NotImplemented + else: + self.alpha *= scalar + return self
+ + +
+[docs] + def check_input(self, input): + '''TNV requires 2D+channel data with the first dimension as the channel dimension''' + if isinstance(input, DataContainer): + ImageDimension.check_order_for_engine('cil', input.geometry) + if ( input.geometry.channels == 1 ) or ( not input.geometry.ndim == 3) : + raise ValueError('TNV requires 2D+channel data. Got {}'.format(input.geometry.dimension_labels)) + else: + # if it is not a CIL DataContainer we assume that the data is passed in the correct order + # discard any dimension of size 1 + if sum(1 for i in input.shape if i!=1) != 3: + raise ValueError('TNV requires 3D data (with channel as first axis). Got {}'.format(input.shape))
+
+ +
+ +
+ + + + + +
+ +
+
+
+ +
+ + + + +
+
+ +
+ +
+
+
+ + + + + +
+ + +
+ + \ No newline at end of file diff --git a/v24.2.0/_modules/cil/plugins/tigre/FBP/index.html b/v24.2.0/_modules/cil/plugins/tigre/FBP/index.html new file mode 100644 index 0000000000..483ae38d64 --- /dev/null +++ b/v24.2.0/_modules/cil/plugins/tigre/FBP/index.html @@ -0,0 +1,641 @@ + + + + + + + + + + cil.plugins.tigre.FBP — CIL 24.2.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + +
+ +
+ + + + + +
+
+ + + + + + +
+ + + + + + + + + + + + + +
+ +
+ + +
+
+ +
+
+ +
+ +
+ + +
+ +
+ + +
+
+ + + + + +
+ +

Source code for cil.plugins.tigre.FBP

+#  Copyright 2021 United Kingdom Research and Innovation
+#  Copyright 2021 The University of Manchester
+#
+#  Licensed under the Apache License, Version 2.0 (the "License");
+#  you may not use this file except in compliance with the License.
+#  You may obtain a copy of the License at
+#
+#      http://www.apache.org/licenses/LICENSE-2.0
+#
+#  Unless required by applicable law or agreed to in writing, software
+#  distributed under the License is distributed on an "AS IS" BASIS,
+#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+#  See the License for the specific language governing permissions and
+#  limitations under the License.
+#
+# Authors:
+# CIL Developers, listed at: https://github.com/TomographicImaging/CIL/blob/master/NOTICE.txt
+import contextlib
+import io
+
+import numpy as np
+
+from cil.framework import DataProcessor, ImageData
+from cil.framework.labels import AcquisitionDimension, ImageDimension
+from cil.plugins.tigre import CIL2TIGREGeometry
+
+try:
+    from tigre.algorithms import fdk, fbp
+except ModuleNotFoundError:
+    raise ModuleNotFoundError("This plugin requires the additional package TIGRE\n" +
+            "Please install it via conda as tigre from the ccpi channel")
+
+
+[docs] +class FBP(DataProcessor): + + '''FBP Filtered Back Projection is a reconstructor for 2D and 3D parallel and cone-beam geometries. + It is able to back-project circular trajectories with 2 PI angular range and equally spaced angular steps. + + This uses the ram-lak filter + This is provided for simple and offset parallel-beam geometries only + + acquisition_geometry : AcquisitionGeometry + A description of the acquisition data + + image_geometry : ImageGeometry, default used if None + A description of the area/volume to reconstruct + + Example + ------- + >>> from cil.plugins.tigre import FBP + >>> fbp = FBP(image_geometry, data.geometry) + >>> fbp.set_input(data) + >>> reconstruction = fbp.get_output() + + ''' + + def __init__(self, image_geometry=None, acquisition_geometry=None, **kwargs): + if acquisition_geometry is None: + raise TypeError("Please specify an acquisition_geometry to configure this processor") + if image_geometry is None: + image_geometry = acquisition_geometry.get_ImageGeometry() + + device = kwargs.get('device', 'gpu') + if device != 'gpu': + raise ValueError("TIGRE FBP is GPU only. Got device = {}".format(device)) + + + AcquisitionDimension.check_order_for_engine('tigre', acquisition_geometry) + ImageDimension.check_order_for_engine('tigre', image_geometry) + + + tigre_geom, tigre_angles = CIL2TIGREGeometry.getTIGREGeometry(image_geometry,acquisition_geometry) + + super(FBP, self).__init__( image_geometry = image_geometry, acquisition_geometry = acquisition_geometry,\ + tigre_geom=tigre_geom, tigre_angles=tigre_angles) + + + def check_input(self, dataset): + + if self.acquisition_geometry.channels != 1: + raise ValueError("Expected input data to be single channel, got {0}"\ + .format(self.acquisition_geometry.channels)) + + AcquisitionDimension.check_order_for_engine('tigre', dataset.geometry) + return True + + def _set_up(self): + """ + Configure processor attributes that require the data to setup + Must set _shape_out + """ + self._shape_out = self.image_geometry.shape + + def process(self, out=None): + + if self.tigre_geom.is2D: + data_temp = np.expand_dims(self.get_input().as_array(), axis=1) + + if self.acquisition_geometry.geom_type == 'cone': + # suppress print statements from TIGRE https://github.com/CERN/TIGRE/issues/532 + with contextlib.redirect_stdout(io.StringIO()): + arr_out = fdk(data_temp, self.tigre_geom, self.tigre_angles) + else: + arr_out = fbp(data_temp, self.tigre_geom, self.tigre_angles) + arr_out = np.squeeze(arr_out, axis=0) + else: + if self.acquisition_geometry.geom_type == 'cone': + # suppress print statements from TIGRE https://github.com/CERN/TIGRE/issues/532 + with contextlib.redirect_stdout(io.StringIO()): + arr_out = fdk(self.get_input().as_array(), self.tigre_geom, self.tigre_angles) + else: + arr_out = fbp(self.get_input().as_array(), self.tigre_geom, self.tigre_angles) + + if out is None: + out = ImageData(arr_out, deep_copy=False, geometry=self.image_geometry.copy(), suppress_warning=True) + return out + else: + out.fill(arr_out)
+ +
+ +
+ + + + + +
+ +
+
+
+ +
+ + + + +
+
+ +
+ +
+
+
+ + + + + +
+ + +
+ + \ No newline at end of file diff --git a/v24.2.0/_modules/cil/plugins/tigre/ProjectionOperator/index.html b/v24.2.0/_modules/cil/plugins/tigre/ProjectionOperator/index.html new file mode 100644 index 0000000000..3373164fec --- /dev/null +++ b/v24.2.0/_modules/cil/plugins/tigre/ProjectionOperator/index.html @@ -0,0 +1,771 @@ + + + + + + + + + + cil.plugins.tigre.ProjectionOperator — CIL 24.2.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + +
+ +
+ + + + + +
+
+ + + + + + +
+ + + + + + + + + + + + + +
+ +
+ + +
+
+ +
+
+ +
+ +
+ + +
+ +
+ + +
+
+ + + + + +
+ +

Source code for cil.plugins.tigre.ProjectionOperator

+#  Copyright 2021 United Kingdom Research and Innovation
+#  Copyright 2021 The University of Manchester
+#
+#  Licensed under the Apache License, Version 2.0 (the "License");
+#  you may not use this file except in compliance with the License.
+#  You may obtain a copy of the License at
+#
+#      http://www.apache.org/licenses/LICENSE-2.0
+#
+#  Unless required by applicable law or agreed to in writing, software
+#  distributed under the License is distributed on an "AS IS" BASIS,
+#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+#  See the License for the specific language governing permissions and
+#  limitations under the License.
+#
+# Authors:
+# CIL Developers, listed at: https://github.com/TomographicImaging/CIL/blob/master/NOTICE.txt
+import logging
+
+import numpy as np
+
+from cil.framework import ImageData, AcquisitionData, BlockGeometry
+from cil.framework.labels import AcquisitionDimension, ImageDimension
+from cil.optimisation.operators import BlockOperator, LinearOperator
+from cil.plugins.tigre import CIL2TIGREGeometry
+
+log = logging.getLogger(__name__)
+
+try:
+    from _Atb import _Atb_ext as Atb
+    from _Ax import _Ax_ext as Ax
+
+except ModuleNotFoundError:
+    raise ModuleNotFoundError(
+        "This plugin requires the additional package TIGRE\n" +
+        "Please install it via conda as tigre from the ccpi channel")
+
+try:
+    from tigre.utilities.gpu import GpuIds
+    has_gpu_sel = True
+except ModuleNotFoundError:
+    has_gpu_sel = False
+
+
+
+[docs] +class ProjectionOperator(LinearOperator): + """ + ProjectionOperator configures and calls TIGRE Projectors for your dataset. + + Please refer to the TIGRE documentation for further descriptions + https://github.com/CERN/TIGRE + https://iopscience.iop.org/article/10.1088/2057-1976/2/5/055010 + + + Parameters + ---------- + + image_geometry : `ImageGeometry`, default used if None + A description of the area/volume to reconstruct + + acquisition_geometry :`AcquisitionGeometry`, `BlockGeometry` + A description of the acquisition data. If passed a BlockGeometry it will return a BlockOperator. + + direct_method : str, default 'interpolated' + The method used by the forward projector, 'Siddon' for ray-voxel intersection, 'interpolated' for interpolated projection + + adjoint_weights : str, default 'matched' + The weighting method used by the cone-beam backward projector, 'matched' for weights to approximately match the 'interpolated' forward projector, 'FDK' for FDK weights + + Example + ------- + >>> from cil.plugins.tigre import ProjectionOperator + >>> PO = ProjectionOperator(image.geometry, data.geometry) + >>> forward_projection = PO.direct(image) + >>> backward_projection = PO.adjoint(data) + + """ + def __new__(cls, image_geometry=None, acquisition_geometry=None, \ + direct_method='interpolated',adjoint_weights='matched', **kwargs): + if isinstance(acquisition_geometry, BlockGeometry): + log.info("BlockOperator is returned.") + + K = [] + for ag in acquisition_geometry: + K.append( + ProjectionOperator_ag(image_geometry=image_geometry, acquisition_geometry=ag, \ + direct_method=direct_method, adjoint_weights=adjoint_weights, **kwargs) + ) + return BlockOperator(*K) + else: + log.info("Standard Operator is returned.") + return super(ProjectionOperator, + cls).__new__(ProjectionOperator_ag)
+ + + +class ProjectionOperator_ag(ProjectionOperator): + '''TIGRE Projection Operator''' + + def __init__(self, + image_geometry=None, + acquisition_geometry=None, + direct_method='interpolated', + adjoint_weights='matched', + **kwargs): + """ + ProjectionOperator configures and calls TIGRE Projectors for your dataset. + + Please refer to the TIGRE documentation for further descriptions + https://github.com/CERN/TIGRE + https://iopscience.iop.org/article/10.1088/2057-1976/2/5/055010 + + + Parameters + ---------- + + image_geometry : ImageGeometry, default used if None + A description of the area/volume to reconstruct + + acquisition_geometry : AcquisitionGeometry + A description of the acquisition data + + direct_method : str, default 'interpolated' + The method used by the forward projector, 'Siddon' for ray-voxel intersection, 'interpolated' for interpolated projection + + adjoint_weights : str, default 'matched' + The weighting method used by the cone-beam backward projector, 'matched' for weights to approximately match the 'interpolated' forward projector, 'FDK' for FDK weights + + Example + ------- + >>> from cil.plugins.tigre import ProjectionOperator + >>> PO = ProjectionOperator(image.geometry, data.geometry) + >>> forward_projection = PO.direct(image) + >>> backward_projection = PO.adjoint(data) + + """ + + if acquisition_geometry is None: + raise TypeError("Please specify an acquisition_geometry to configure this operator") + + if image_geometry == None: + image_geometry = acquisition_geometry.get_ImageGeometry() + + device = kwargs.get('device', 'gpu') + if device != 'gpu': + raise ValueError( + "TIGRE projectors are GPU only. Got device = {}".format( + device)) + + ImageDimension.check_order_for_engine('tigre', image_geometry) + AcquisitionDimension.check_order_for_engine('tigre', acquisition_geometry) + + super(ProjectionOperator,self).__init__(domain_geometry=image_geometry,\ + range_geometry=acquisition_geometry) + + if direct_method not in ['interpolated', 'Siddon']: + raise ValueError( + "direct_method expected 'interpolated' or 'Siddon' got {}". + format(direct_method)) + + if adjoint_weights not in ['matched', 'FDK']: + raise ValueError( + "adjoint_weights expected 'matched' or 'FDK' got {}".format( + adjoint_weights)) + + self.method = {'direct': direct_method, 'adjoint': adjoint_weights} + + #set up TIGRE geometry + tigre_geom, tigre_angles = CIL2TIGREGeometry.getTIGREGeometry( + image_geometry, acquisition_geometry) + + tigre_geom.check_geo(tigre_angles) + tigre_geom.cast_to_single() + self.tigre_geom = tigre_geom + + #set up TIGRE GPU targets (from 2.2) + if has_gpu_sel: + self.gpuids = GpuIds() + + def __call_Ax(self, data): + if has_gpu_sel: + return Ax(data, self.tigre_geom, self.tigre_geom.angles, + self.method['direct'], self.tigre_geom.mode, self.gpuids) + else: + return Ax(data, self.tigre_geom, self.tigre_geom.angles, + self.method['direct'], self.tigre_geom.mode) + + def direct(self, x, out=None): + + data = x.as_array() + + if self.tigre_geom.is2D: + data_temp = np.expand_dims(data, axis=0) + arr_out = self.__call_Ax(data_temp) + arr_out = np.squeeze(arr_out, axis=1) + else: + arr_out = self.__call_Ax(data) + + #if single angle projection remove the dimension for CIL + if arr_out.shape[0] == 1: + arr_out = np.squeeze(arr_out, axis=0) + + if out is None: + out = AcquisitionData(arr_out, + deep_copy=False, + geometry=self._range_geometry.copy(), + suppress_warning=True) + return out + else: + out.fill(arr_out) + + def __call_Atb(self, data): + if has_gpu_sel: + return Atb(data, self.tigre_geom, self.tigre_geom.angles, + self.method['adjoint'], self.tigre_geom.mode, + self.gpuids) + else: + return Atb(data, self.tigre_geom, self.tigre_geom.angles, + self.method['adjoint'], self.tigre_geom.mode) + + def adjoint(self, x, out=None): + + data = x.as_array() + + #if single angle projection add the dimension in for TIGRE + if x.dimension_labels[0] != AcquisitionDimension.ANGLE: + data = np.expand_dims(data, axis=0) + + if self.tigre_geom.is2D: + data = np.expand_dims(data, axis=1) + arr_out = self.__call_Atb(data) + arr_out = np.squeeze(arr_out, axis=0) + else: + arr_out = self.__call_Atb(data) + + if out is None: + out = ImageData(arr_out, + deep_copy=False, + geometry=self._domain_geometry.copy(), + suppress_warning=True) + return out + else: + out.fill(arr_out) + + def domain_geometry(self): + return self._domain_geometry + + def range_geometry(self): + return self._range_geometry +
+ +
+ + + + + +
+ +
+
+
+ +
+ + + + +
+
+ +
+ +
+
+
+ + + + + +
+ + +
+ + \ No newline at end of file diff --git a/v24.2.0/_modules/cil/processors/AbsorptionTransmissionConverter/index.html b/v24.2.0/_modules/cil/processors/AbsorptionTransmissionConverter/index.html new file mode 100644 index 0000000000..17d9f084c3 --- /dev/null +++ b/v24.2.0/_modules/cil/processors/AbsorptionTransmissionConverter/index.html @@ -0,0 +1,587 @@ + + + + + + + + + + cil.processors.AbsorptionTransmissionConverter — CIL 24.2.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + +
+ +
+ + + + + +
+
+ + + + + + +
+ + + + + + + + + + + + + +
+ +
+ + +
+
+ +
+
+ +
+ +
+ + +
+ +
+ + +
+
+ + + + + +
+ +

Source code for cil.processors.AbsorptionTransmissionConverter

+#  Copyright 2021 United Kingdom Research and Innovation
+#  Copyright 2021 The University of Manchester
+#
+#  Licensed under the Apache License, Version 2.0 (the "License");
+#  you may not use this file except in compliance with the License.
+#  You may obtain a copy of the License at
+#
+#      http://www.apache.org/licenses/LICENSE-2.0
+#
+#  Unless required by applicable law or agreed to in writing, software
+#  distributed under the License is distributed on an "AS IS" BASIS,
+#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+#  See the License for the specific language governing permissions and
+#  limitations under the License.
+#
+# Authors:
+# CIL Developers, listed at: https://github.com/TomographicImaging/CIL/blob/master/NOTICE.txt
+
+
+from cil.framework import DataProcessor, AcquisitionData, ImageData, DataContainer, AcquisitionGeometry, ImageGeometry
+import warnings
+import numpy
+
+
+
+[docs] +class AbsorptionTransmissionConverter(DataProcessor): + + '''Processor to convert from absorption measurements to transmission + + :param white_level: A float defining incidence intensity in the Beer-Lambert law. + :type white_level: float, optional + :return: returns AcquisitionData, ImageData or DataContainer depending on input data type + :rtype: AcquisitionData, ImageData or DataContainer + + Processor first multiplies data by -1, then calculates exponent + and scales result by white_level (default=1) + ''' + + def __init__(self, + white_level=1): + + kwargs = {'white_level': white_level} + + super(AbsorptionTransmissionConverter, self).__init__(**kwargs) + + def check_input(self, data): + + if not (issubclass(type(data), DataContainer)): + raise TypeError('Processor supports only following data types:\n' + + ' - ImageData\n - AcquisitionData\n' + + ' - DataContainer') + return True + + def process(self, out=None): + + data = self.get_input() + if out is None: + out = data.multiply(-1.0) + else: + data.multiply(-1.0, out=out) + + out.exp(out=out) + out.multiply(numpy.float32(self.white_level), out=out) + return out
+ +
+ +
+ + + + + +
+ +
+
+
+ +
+ + + + +
+
+ +
+ +
+
+
+ + + + + +
+ + +
+ + \ No newline at end of file diff --git a/v24.2.0/_modules/cil/processors/Binner/index.html b/v24.2.0/_modules/cil/processors/Binner/index.html new file mode 100644 index 0000000000..472ef0cf21 --- /dev/null +++ b/v24.2.0/_modules/cil/processors/Binner/index.html @@ -0,0 +1,709 @@ + + + + + + + + + + cil.processors.Binner — CIL 24.2.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + +
+ +
+ + + + + +
+
+ + + + + + +
+ + + + + + + + + + + + + +
+ +
+ + +
+
+ +
+
+ +
+ +
+ + +
+ +
+ + +
+
+ + + + + +
+ +

Source code for cil.processors.Binner

+#  Copyright 2021 United Kingdom Research and Innovation
+#  Copyright 2021 The University of Manchester
+#
+#  Licensed under the Apache License, Version 2.0 (the "License");
+#  you may not use this file except in compliance with the License.
+#  You may obtain a copy of the License at
+#
+#      http://www.apache.org/licenses/LICENSE-2.0
+#
+#  Unless required by applicable law or agreed to in writing, software
+#  distributed under the License is distributed on an "AS IS" BASIS,
+#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+#  See the License for the specific language governing permissions and
+#  limitations under the License.
+#
+# Authors:
+# CIL Developers, listed at: https://github.com/TomographicImaging/CIL/blob/master/NOTICE.txt
+
+from cil.processors import Slicer
+import numpy as np
+
+try:
+    from cil.processors.cilacc_binner import Binner_IPP
+    has_ipp = True
+except:
+    has_ipp = False
+
+# Note to developers: Binner and Slicer share a lot of common code
+# so Binner has been implemented as a child of Slicer. This makes use
+# of commonality and redefines only the methods that differ. These methods
+# dictate the style of slicer
+
+[docs] +class Binner(Slicer): + + """This creates a Binner processor. + + The processor will crop the data, and then average together n input pixels along a dimension from the starting index. + + The output will be a data container with the data, and geometry updated to reflect the operation. + + Parameters + ---------- + + roi : dict + The region-of-interest to bin {'axis_name1':(start,stop,step), 'axis_name2':(start,stop,step)} + The `key` being the axis name to apply the processor to, the `value` holding a tuple containing the ROI description + + Start: Starting index of input data. Must be an integer, or `None` defaults to index 0. + Stop: Stopping index of input data. Must be an integer, or `None` defaults to index N. + Step: Number of pixels to average together. Must be an integer or `None` defaults to 1. + + accelerated : boolean, default=True + Uses the CIL accelerated backend if `True`, numpy if `False`. + + + Example + ------- + + >>> from cil.processors import Binner + >>> roi = {'horizontal':(10,-10,2),'vertical':(10,-10,2)} + >>> processor = Binner(roi) + >>> processor.set_input(data) + >>> data_binned = processor.get_output() + + + Example + ------- + >>> from cil.processors import Binner + >>> roi = {'horizontal':(None,None,2),'vertical':(None,None,2)} + >>> processor = Binner(roi) + >>> processor.set_input(data.geometry) + >>> geometry_binned = processor.get_output() + + + Note + ---- + The indices provided are start inclusive, stop exclusive. + + All elements along a dimension will be included if the axis does not appear in the roi dictionary, or if passed as {'axis_name',-1} + + If only one number is provided, then it is interpreted as Stop. i.e. {'axis_name1':(stop)} + If two numbers are provided, then they are interpreted as Start and Stop i.e. {'axis_name1':(start, stop)} + + Negative indexing can be used to specify the index. i.e. {'axis_name1':(10, -10)} will crop the dimension symmetrically + + If Stop - Start is not multiple of Step, then + the resulted dimension will have (Stop - Start) // Step + elements, i.e. (Stop - Start) % Step elements will be ignored + + """ + + def __init__(self, + roi = None, accelerated=True): + + if accelerated and not has_ipp: + raise RuntimeError("Cannot run accelerated Binner without the IPP libraries.") + + super(Binner,self).__init__(roi = roi) + self._accelerated = accelerated + + + def _configure(self): + """ + Once the ROI has been parsed this configures the input specifically for use with Binner + """ + + #as binning we only include bins that are inside boundaries + self._shape_out_full = [int((x.stop - x.start)//x.step) for x in self._roi_ordered] + self._pixel_indices = [] + + # fix roi_ordered for binner based on shape out + for i in range(4): + start = self._roi_ordered[i].start + stop = self._roi_ordered[i].start + self._shape_out_full[i] * self._roi_ordered[i].step + + self._roi_ordered[i] = range( + start, + stop, + self._roi_ordered[i].step + ) + + self._pixel_indices.append((start, stop-1)) + + + def _get_slice_position(self, roi): + """ + Return the vertical position to extract a single slice for binned geometry + """ + return roi.start + roi.step/2 + + + def _get_angles(self, roi): + """ + Returns the binned angles according to the roi + """ + n_elements = len(roi) + shape = (n_elements, roi.step) + return self._geometry.angles[roi.start:roi.start+n_elements*roi.step].reshape(shape).mean(1) + + + def _bin_array_numpy(self, array_in, array_binned): + """ + Bins the array using numpy. This method is slower and less memory efficient than self._bin_array_acc + """ + shape_object = [] + slice_object = [] + + for i in range(4): + # reshape the data to add each 'bin' dimensions + shape_object.append(self._shape_out_full[i]) + shape_object.append(self._roi_ordered[i].step) + + shape_object = tuple(shape_object) + slice_object = tuple([slice(x.start, x.stop) for x in self._roi_ordered]) + + data_resized = array_in.reshape(self._shape_in)[slice_object].reshape(shape_object) + + mean_order = (-1, 1, 2, 3) + for i in range(4): + data_resized = data_resized.mean(mean_order[i]) + + np.copyto(array_binned, data_resized) + + + def _bin_array_acc(self, array_in, array_binned): + """ + Bins the array using the accelerated CIL backend + """ + indices_start = [x.start for x in self._roi_ordered] + bins = [x.step for x in self._roi_ordered] + + binner_ipp = Binner_IPP(self._shape_in, self._shape_out_full, indices_start, bins) + + res = binner_ipp.bin(array_in, array_binned) + if res != 0: + raise RuntimeError("Call failed") + + + def _process_data(self, dc_in, dc_out): + """ + Bin the data array + """ + if self._accelerated: + self._bin_array_acc(dc_in.array, dc_out.array) + else: + self._bin_array_numpy(dc_in.array, dc_out.array)
+ +
+ +
+ + + + + +
+ +
+
+
+ +
+ + + + +
+
+ +
+ +
+
+
+ + + + + +
+ + +
+ + \ No newline at end of file diff --git a/v24.2.0/_modules/cil/processors/CentreOfRotationCorrector/index.html b/v24.2.0/_modules/cil/processors/CentreOfRotationCorrector/index.html new file mode 100644 index 0000000000..421002ff4c --- /dev/null +++ b/v24.2.0/_modules/cil/processors/CentreOfRotationCorrector/index.html @@ -0,0 +1,668 @@ + + + + + + + + + + cil.processors.CentreOfRotationCorrector — CIL 24.2.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + +
+ +
+ + + + + +
+
+ + + + + + +
+ + + + + + + + + + + + + +
+ +
+ + +
+
+ +
+
+ +
+ +
+ + +
+ +
+ + +
+
+ + + + + +
+ +

Source code for cil.processors.CentreOfRotationCorrector

+#  Copyright 2020 United Kingdom Research and Innovation
+#  Copyright 2020 The University of Manchester
+#
+#  Licensed under the Apache License, Version 2.0 (the "License");
+#  you may not use this file except in compliance with the License.
+#  You may obtain a copy of the License at
+#
+#      http://www.apache.org/licenses/LICENSE-2.0
+#
+#  Unless required by applicable law or agreed to in writing, software
+#  distributed under the License is distributed on an "AS IS" BASIS,
+#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+#  See the License for the specific language governing permissions and
+#  limitations under the License.
+#
+# Authors:
+# CIL Developers, listed at: https://github.com/TomographicImaging/CIL/blob/master/NOTICE.txt
+
+from cil.framework import DataProcessor
+from cil.processors.CofR_xcorrelation import CofR_xcorrelation
+from cil.processors.CofR_image_sharpness import CofR_image_sharpness
+
+
+
+[docs] +class CentreOfRotationCorrector(DataProcessor): + """ + This class contains methods to create a CentreOfRotationCorrector processor using the desired algorithm. + """ + +
+[docs] + @staticmethod + def xcorrelation(slice_index='centre', projection_index=0, ang_tol=0.1): + r'''This creates a CentreOfRotationCorrector processor using the cross-correlation algorithm. + + For use on parallel-beam geometry it requires two projections 180 degree apart. + + Parameters + ---------- + slice_index: int or str, optional + An integer defining the vertical slice to run the algorithm on or string='centre' specifying the central slice should be used (default is 'centre') + + projection_index: int or list/tuple of ints, optional + An integer defining the index of the first projection the cross correlation algorithm will use, where the second projection is chosen as the projection closest to 180 degrees from this. + Or a list/tuple of ints specifying the two indices to be used for cross correlation (default is 0) + + ang_tol: float, optional + The angular tolerance in degrees between the two input projections 180 degree gap (default is 0.1) + + Example + ------- + >>> from cil.processors import CentreOfRotationCorrector + >>> processor = CentreOfRotationCorrector.xcorrelation('centre') + >>> processor.set_input(data) + >>> data_centred = processor.get_ouput() + + Example + ------- + >>> from cil.processors import CentreOfRotationCorrector + >>> processor = CentreOfRotationCorrector.xcorrelation(slice_index=120) + >>> processor.set_input(data) + >>> processor.get_ouput(out=data) + + + Example + ------- + >>> from cil.processors import CentreOfRotationCorrector + >>> import logging + >>> logging.basicConfig(level=logging.WARNING) + >>> cil_log_level = logging.getLogger('cil.processors') + >>> cil_log_level.setLevel(logging.DEBUG) + + >>> processor = CentreOfRotationCorrector.xcorrelation(slice_index=120) + >>> processor.set_input(data) + >>> data_centred = processor.get_output() + + + Note + ---- + setting logging to 'debug' will give you more information about the algorithm progress + + + + ''' + processor = CofR_xcorrelation(slice_index, projection_index, ang_tol) + return processor
+ + + +
+[docs] + @staticmethod + def image_sharpness(slice_index='centre', backend='tigre', tolerance=0.005, search_range=None, initial_binning=None): + """This creates a CentreOfRotationCorrector processor. + + The processor will find the centre offset by maximising the sharpness of a reconstructed slice. + + Can be used on single slice parallel-beam, and centre slice cone beam geometry. For use only with datasets that can be reconstructed with FBP/FDK. + + Parameters + ---------- + + slice_index : int, str, default='centre' + An integer defining the vertical slice to run the algorithm on. The special case slice 'centre' is the default. + + backend : {'tigre', 'astra'} + The backend to use for the reconstruction + + tolerance : float, default=0.005 + The tolerance of the fit in pixels, the default is 1/200 of a pixel. This is a stopping criteria, not a statement of accuracy of the algorithm. + + search_range : int + The range in pixels to search either side of the panel centre. If `None` a quarter of the width of the panel is used. + + initial_binning : int + The size of the bins for the initial search. If `None` will bin the image to a step corresponding to <128 pixels. The fine search will be on unbinned data. + + + Example + ------- + from cil.processors import CentreOfRotationCorrector + + processor = CentreOfRotationCorrector.image_sharpness('centre', 'tigre') + processor.set_input(data) + data_centred = processor.get_output() + + + Example + ------- + from cil.processors import CentreOfRotationCorrector + + processor = CentreOfRotationCorrector.image_sharpness(slice_index=120, 'astra') + processor.set_input(data) + processor.get_output(out=data) + + + Note + ---- + For best results data should be 360deg which leads to blurring with incorrect geometry. + This method is unreliable on half-scan data with 'tuning-fork' style artifacts. + + """ + processor = CofR_image_sharpness(slice_index=slice_index, backend=backend, tolerance=tolerance, search_range=search_range, initial_binning=initial_binning) + return processor
+
+ +
+ +
+ + + + + +
+ +
+
+
+ +
+ + + + +
+
+ +
+ +
+
+
+ + + + + +
+ + +
+ + \ No newline at end of file diff --git a/v24.2.0/_modules/cil/processors/MaskGenerator/index.html b/v24.2.0/_modules/cil/processors/MaskGenerator/index.html new file mode 100644 index 0000000000..c16584f524 --- /dev/null +++ b/v24.2.0/_modules/cil/processors/MaskGenerator/index.html @@ -0,0 +1,948 @@ + + + + + + + + + + cil.processors.MaskGenerator — CIL 24.2.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + +
+ +
+ + + + + +
+
+ + + + + + +
+ + + + + + + + + + + + + +
+ +
+ + +
+
+ +
+
+ +
+ +
+ + +
+ +
+ + +
+
+ + + + + +
+ +

Source code for cil.processors.MaskGenerator

+#  Copyright 2021 United Kingdom Research and Innovation
+#  Copyright 2021 The University of Manchester
+#
+#  Licensed under the Apache License, Version 2.0 (the "License");
+#  you may not use this file except in compliance with the License.
+#  You may obtain a copy of the License at
+#
+#      http://www.apache.org/licenses/LICENSE-2.0
+#
+#  Unless required by applicable law or agreed to in writing, software
+#  distributed under the License is distributed on an "AS IS" BASIS,
+#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+#  See the License for the specific language governing permissions and
+#  limitations under the License.
+#
+# Authors:
+# CIL Developers, listed at: https://github.com/TomographicImaging/CIL/blob/master/NOTICE.txt
+
+from cil.framework import DataProcessor, AcquisitionData, ImageData, DataContainer, ImageGeometry
+import warnings
+import numpy
+from scipy import special, ndimage
+
+
+[docs] +class MaskGenerator(DataProcessor): + r''' + Processor to detect outliers and return a mask with 0 where outliers were detected, and 1 for other pixels. Please use the desiried method to configure a processor for your needs. + ''' + +
+[docs] + @staticmethod + def special_values(nan=True, inf=True): + r'''This creates a MaskGenerator processor which generates a mask for inf and/or nan values. + + :param nan: mask NaN values + :type nan: bool, default=True + :param inf: mask INF values + :type inf: bool, default=True + + ''' + if nan is True: + if inf is True: + processor = MaskGenerator(mode='special_values') + else: + processor = MaskGenerator(mode='nan') + else: + if inf is True: + processor = MaskGenerator(mode='inf') + else: + raise ValueError("Please specify at least one type of value to threshold on") + + return processor
+ + +
+[docs] + @staticmethod + def threshold(min_val=None, max_val=None): + r'''This creates a MaskGenerator processor which generates a mask for values outside boundaries + + :param min_val: lower boundary + :type min_val: float, default=None + :param max_val: upper boundary + :type max_val: float, default=None + ''' + processor = MaskGenerator(mode='threshold', threshold_value=(min_val,max_val)) + return processor
+ + +
+[docs] + @staticmethod + def quantile(min_quantile=None, max_quantile=None): + r'''This creates a MaskGenerator processor which generates a mask for values outside boundaries + + :param min_quantile: lower quantile, 0-1 + :type min_quantile: float, default=None + :param max_quantile: upper quantile, 0-1 + :type max_quantile: float, default=None + ''' + processor = MaskGenerator(mode='quantile', quantiles=(min_quantile,max_quantile)) + return processor
+ + +
+[docs] + @staticmethod + def mean(axis=None, threshold_factor=3, window=None): + r'''This creates a MaskGenerator processor which generates a mask for values outside a multiple of standard-devaiations from the mean. + + abs(A - mean(A)) < threshold_factor * std(A). + + :param threshold_factor: scale factor of standard-deviations to use as threshold + :type threshold_factor: float, default=3 + :param axis: specify axis as int or from 'dimension_labels' to calculate mean. If no axis is specified then operates over flattened array. + :type axis: int, string + :param window: specify number of pixels to use in calculation of a rolling mean + :type window: int, default=None + ''' + if window == None: + processor = MaskGenerator(mode='mean', threshold_factor=threshold_factor, axis=axis) + else: + processor = MaskGenerator(mode='movmean', threshold_factor=threshold_factor, axis=axis, window=window) + + return processor
+ + +
+[docs] + @staticmethod + def median(axis=None, threshold_factor=3, window=None): + r'''This creates a MaskGenerator processor which generates a mask for values outside a multiple of median absolute deviation (MAD) from the mean. + + abs(A - median(A)) < threshold_factor * MAD(A), + MAD = c*median(abs(A-median(A))) where c=-1/(sqrt(2)*erfcinv(3/2)) + + :param threshold_factor: scale factor of MAD to use as threshold + :type threshold_factor: float, default=3 + :param axis: specify axis as int or from 'dimension_labels' to calculate mean. If no axis is specified then operates over flattened array. + :type axis: int, string + :param window: specify number of pixels to use in calculation of a rolling median + :type window: int, default=None + ''' + + if window == None: + processor = MaskGenerator(mode='median', threshold_factor=threshold_factor, axis=axis) + else: + processor = MaskGenerator(mode='movmedian', threshold_factor=threshold_factor, axis=axis, window=window) + + return processor
+ + + def __init__(self, + mode='special_values', + threshold_value=(None, None), + quantiles=(None, None), + threshold_factor=3, + window=5, + axis=None): + r'''Processor to detect outliers and return mask with 0 where outliers were detected and 1 for other pixels. + + :param mode: a method for detecting outliers (special_values, nan, inf, threshold, quantile, mean, median, movmean, movmedian) + :type mode: string, default='special_values' + :param threshold_value: specify lower and upper boundaries if 'threshold' mode is selected + :type threshold_value: tuple + :param quantiles: specify lower and upper quantiles if 'quantile' mode is selected + :type quantiles: tuple + :param threshold_factor: scales detection threshold (standard deviation in case of 'mean', 'movmean' and median absolute deviation in case of 'median', movmedian') + :type threshold_factor: float, default=3 + :param window: specify running window if 'movmean' or 'movmedian' mode is selected + :type window: int, default=5 + :param axis: specify axis to alculate statistics for 'mean', 'median', 'movmean', 'movmean' modes + :type axis: int, string + :return: returns a DataContainer with boolean mask with 0 where outliers were detected + :rtype: DataContainer + + - special_values test element-wise for both inf and nan + - nan test element-wise for nan + - inf test element-wise for inf + - threshold test element-wise if array values are within boundaries + given by threshold_values = (float,float). + You can secify only lower threshold value by setting another to None + such as threshold_values = (float,None), then + upper boundary will be amax(data). Similarly, to specify only upper + boundary, use threshold_values = (None,float). If both threshold_values + are set to None, then original array will be returned. + - quantile test element-wise if array values are within boundaries + given by quantiles = (q1,q2), 0<=q1,q2<=1. + You can secify only lower quantile value by setting another to None + such as quantiles = (float,q2), then + upper boundary will be amax(data). Similarly, to specify only upper + boundary, use quantiles = (None,q1). If both quantiles + are set to None, then original array will be returned. + - mean test element-wise if + abs(A - mean(A)) < threshold_factor * std(A). + Default value of threshold_factor is 3. If no axis is specified, + then operates over flattened array. Alternatively operates along axis specified + as dimension_label. + - median test element-wise if + abs(A - median(A)) < threshold_factor * scaled MAD(A), + scaled median absolute deviation (MAD) is defined as + c*median(abs(A-median(A))) where c=-1/(sqrt(2)*erfcinv(3/2)) + Default value of threshold_factor is 3. If no axis is specified, + then operates over flattened array. Alternatively operates along axis specified + as dimension_label. + - movmean the same as mean but uses rolling mean with a specified window, + default window value is 5 + - movmedian the same as mean but uses rolling median with a specified window, + default window value is 5 + + ''' + + kwargs = {'mode': mode, + 'threshold_value': threshold_value, + 'threshold_factor': threshold_factor, + 'quantiles': quantiles, + 'window': window, + 'axis': axis} + + super(MaskGenerator, self).__init__(**kwargs) + + def check_input(self, data): + + if self.mode not in ['special_values', 'nan', 'inf', 'threshold', 'quantile', + 'mean', 'median', 'movmean', 'movmedian']: + raise Exception("Wrong mode. One of the following is expected:\n" + + "special_values, nan, inf, threshold, \n quantile, mean, median, movmean, movmedian") + + if self.axis is not None and type(self.axis) is not int: + if self.axis not in data.dimension_labels: + raise Exception("Wrong label is specified for axis. " + + "Expected {}, got {}.".format(data.dimension_labels, self.axis)) + + return True + + def check_output(self, out): + if out is not None: + if out.array.dtype != bool: + raise TypeError("Input type mismatch: got {0} expecting {1}"\ + .format(out.array.dtype, bool)) + + return True + + + def process(self, out=None): + + # get input DataContainer + data = self.get_input() + + try: + arr = data.as_array() + except: + arr = data + + ndim = arr.ndim + + try: + axis_index = data.dimension_labels.index(self.axis) + except: + if type(self.axis) == int: + axis_index = self.axis + else: + axis_index = None + + # intialise mask with all ones + mask = numpy.ones(arr.shape, dtype=bool) + + # if NaN or +/-Inf + if self.mode == 'special_values': + + mask[numpy.logical_or(numpy.isnan(arr), numpy.isinf(arr))] = 0 + + elif self.mode == 'nan': + + mask[numpy.isnan(arr)] = 0 + + elif self.mode == 'inf': + + mask[numpy.isinf(arr)] = 0 + + elif self.mode == 'threshold': + + if not(isinstance(self.threshold_value, tuple)): + raise Exception("Threshold value must be given as a tuple containing two values,\n" +\ + "use None if no threshold value is given") + + threshold = self._parse_threshold_value(arr, quantile=False) + + mask[numpy.logical_or(arr < threshold[0], arr > threshold[1])] = 0 + + elif self.mode == 'quantile': + + if not(isinstance(self.quantiles, tuple)): + raise Exception("Quantiles must be given as a tuple containing two values,\n " + \ + "use None if no quantile value is given") + + quantile = self._parse_threshold_value(arr, quantile=True) + + mask[numpy.logical_or(arr < quantile[0], arr > quantile[1])] = 0 + + elif self.mode == 'mean': + + # if mean along specific axis + if axis_index is not None: + tile_par = [] + slice_obj = [] + for i in range(ndim): + if i == axis_index: + tile_par.append(axis_index) + slice_obj.append(numpy.newaxis) + else: + tile_par.append(1) + slice_obj.append(slice(None, None, 1)) + tile_par = tuple(tile_par) + slice_obj = tuple(slice_obj) + + tmp_mean = numpy.tile((numpy.mean(arr, axis=axis_index))[slice_obj], tile_par) + tmp_std = numpy.tile((numpy.std(arr, axis=axis_index))[slice_obj], tile_par) + mask[numpy.abs(arr - tmp_mean) > self.threshold_factor * tmp_std] = 0 + + # if global mean + else: + + mask[numpy.abs(arr - numpy.mean(arr)) > self.threshold_factor * numpy.std(arr)] = 0 + + elif self.mode == 'median': + + c = -1 / (numpy.sqrt(2) * special.erfcinv(3 / 2)) + + # if median along specific axis + if axis_index is not None: + tile_par = [] + slice_obj = [] + for i in range(ndim): + if i == axis_index: + tile_par.append(axis_index) + slice_obj.append(numpy.newaxis) + else: + tile_par.append(1) + slice_obj.append(slice(None, None, 1)) + tile_par = tuple(tile_par) + slice_obj = tuple(slice_obj) + + tmp = numpy.abs(arr - numpy.tile((numpy.median(arr, axis=axis_index))[slice_obj], tile_par)) + median_absolute_dev = numpy.tile((numpy.median(tmp, axis=axis_index))[slice_obj], tile_par) + mask[tmp > self.threshold_factor * c * median_absolute_dev] = 0 + + # if global median + else: + + tmp = numpy.abs(arr - numpy.median(arr)) + mask[tmp > self.threshold_factor * c * numpy.median(tmp)] = 0 + + elif self.mode == 'movmean': + + # if movmean along specific axis + if axis_index is not None: + kernel = [1] * ndim + kernel[axis_index] = self.window + kernel = tuple(kernel) + + mean_array = ndimage.generic_filter(arr, numpy.mean, size=kernel, mode='reflect') + std_array = ndimage.generic_filter(arr, numpy.std, size=kernel, mode='reflect') + + mask[numpy.abs(arr - mean_array) > self.threshold_factor * std_array] = 0 + + # if global movmean + else: + mean_array = ndimage.generic_filter(arr, numpy.mean, size=(self.window,)*ndim, mode='reflect') + std_array = ndimage.generic_filter(arr, numpy.std, size=(self.window,)*ndim, mode='reflect') + + mask[numpy.abs(arr - mean_array) > self.threshold_factor * std_array] = 0 + + elif self.mode == 'movmedian': + + c = -1 / (numpy.sqrt(2) * special.erfcinv(3 / 2)) + + # if movmedian along specific axis + if axis_index is not None: + + # construct filter kernel + kernel_shape = [] + for i in range(ndim): + if i == axis_index: + kernel_shape.append(self.window) + else: + kernel_shape.append(1) + + kernel_shape = tuple(kernel_shape) + + median_array = ndimage.median_filter(arr, footprint=kernel_shape, mode='reflect') + + tmp = abs(arr - median_array) + mask[tmp > self.threshold_factor * c * ndimage.median_filter(tmp, footprint=kernel_shape, mode='reflect')] = 0 + + # if global movmedian + else: + # construct filter kernel + kernel_shape = tuple([self.window]*ndim) + median_array = ndimage.median_filter(arr, size=kernel_shape, mode='reflect') + + tmp = abs(arr - median_array) + mask[tmp > self.threshold_factor * c * ndimage.median_filter(tmp, size=kernel_shape, mode='reflect')] = 0 + + else: + raise ValueError('Mode not recognised. One of the following is expected: ' + \ + 'special_values, nan, inf, threshold, quantile, mean, median, movmean, movmedian') + + + if out is None: + mask = numpy.asarray(mask, dtype=bool) + out = type(data)(mask, deep_copy=False, dtype=mask.dtype, geometry=data.geometry.copy(), suppress_warning=True, dimension_labels=data.dimension_labels) + else: + out.fill(mask) + + return out + + def _parse_threshold_value(self, arr, quantile=False): + + lower_val = None + upper_val = None + + if quantile == True: + if self.quantiles[0] is not None: + lower_val = numpy.quantile(arr, self.quantiles[0]) + if self.quantiles[1] is not None: + upper_val = numpy.quantile(arr, self.quantiles[1]) + else: + if self.threshold_value[0] is not None: + lower_val = self.threshold_value[0] + if self.threshold_value[1] is not None: + upper_val = self.threshold_value[1] + + if lower_val is None: + lower_val = numpy.amin(arr) + + if upper_val is None: + upper_val = numpy.amax(arr) + + if upper_val <= lower_val: + raise Exception("Upper threshold value must be larger than " + \ + "lower treshold value or min of data") + + return (lower_val, upper_val)
+ +
+ +
+ + + + + +
+ +
+
+
+ +
+ + + + +
+
+ +
+ +
+
+
+ + + + + +
+ + +
+ + \ No newline at end of file diff --git a/v24.2.0/_modules/cil/processors/Masker/index.html b/v24.2.0/_modules/cil/processors/Masker/index.html new file mode 100644 index 0000000000..4eb0a93727 --- /dev/null +++ b/v24.2.0/_modules/cil/processors/Masker/index.html @@ -0,0 +1,821 @@ + + + + + + + + + + cil.processors.Masker — CIL 24.2.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + +
+ +
+ + + + + +
+
+ + + + + + +
+ + + + + + + + + + + + + +
+ +
+ + +
+
+ +
+
+ +
+ +
+ + +
+ +
+ + +
+
+ + + + + +
+ +

Source code for cil.processors.Masker

+#  Copyright 2021 United Kingdom Research and Innovation
+#  Copyright 2021 The University of Manchester
+#
+#  Licensed under the Apache License, Version 2.0 (the "License");
+#  you may not use this file except in compliance with the License.
+#  You may obtain a copy of the License at
+#
+#      http://www.apache.org/licenses/LICENSE-2.0
+#
+#  Unless required by applicable law or agreed to in writing, software
+#  distributed under the License is distributed on an "AS IS" BASIS,
+#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+#  See the License for the specific language governing permissions and
+#  limitations under the License.
+#
+# Authors:
+# CIL Developers, listed at: https://github.com/TomographicImaging/CIL/blob/master/NOTICE.txt
+
+from cil.framework import DataProcessor, AcquisitionData, ImageData, ImageGeometry, DataContainer
+import numpy
+from scipy import interpolate
+
+
+[docs] +class Masker(DataProcessor): + r''' + Processor to fill missing values provided by mask. + Please use the desired method to configure a processor for your needs. + + Parameters + ---------- + mask : DataContainer, ImageData, AcquisitionData, numpy.ndarray + A boolean array with the same dimensions as input, where 'False' represents masked values. + Alternatively an integer array where 0 represents masked values, and any other value represents unmasked values. + Mask can be generated using 'MaskGenerator' processor to identify outliers. + mode : {'value', 'mean', 'median', 'interpolate'}, default='value' + The method to fill in missing values + value : float, default=0 + Substitute all outliers with a specific value if method='value', otherwise discarded. + axis : str or int + Specify axis as int or from 'dimension_labels' to calculate mean, median or interpolation + (depending on mode) along that axis + method : {'linear', 'nearest', 'zeros', 'linear', 'quadratic', 'cubic', 'previous', 'next'}, default='linear' + Interpolation method to use. + + ''' + +
+[docs] + @staticmethod + def value(mask=None, value=0): + r'''Returns a Masker that sets the masked values of the input data to the requested value. + + Parameters + ---------- + mask : DataContainer, ImageData, AcquisitionData, numpy.ndarray + A boolean array with the same dimensions as input, where 'False' represents masked values. + Alternatively an integer array where 0 represents masked values, and any other value represents unmasked values. + Mask can be generated using 'MaskGenerator' processor to identify outliers. + value : float, default=0 + Values to be assigned to missing elements + + Returns + ------- + Masker processor + ''' + + processor = Masker(mode='value', mask=mask, value=value) + + return processor
+ + +
+[docs] + @staticmethod + def mean(mask=None, axis=None): + r'''Returns a Masker that sets the masked values of the input data to the mean of the unmasked values across the array or axis. + + Parameters + ---------- + mask : DataContainer, ImageData, AcquisitionData, numpy.ndarray + A boolean array with the same dimensions as input, where 'False' represents masked values. + Alternatively an integer array where 0 represents masked values, and any other value represents unmasked values. + Mask can be generated using 'MaskGenerator' processor to identify outliers. + axis : str, int + Specify axis as int or from 'dimension_labels' to calculate mean. + + Returns + ------- + Masker processor + ''' + + processor = Masker(mode='mean', mask=mask, axis=axis) + + return processor
+ + +
+[docs] + @staticmethod + def median(mask=None, axis=None): + r'''Returns a Masker that sets the masked values of the input data to the median of the unmasked values across the array or axis. + + Parameters + ---------- + mask : DataContainer, ImageData, AcquisitionData, numpy.ndarray + A boolean array with the same dimensions as input, where 'False' represents masked values. + Alternatively an integer array where 0 represents masked values, and any other value represents unmasked values. + Mask can be generated using 'MaskGenerator' processor to identify outliers. + axis : str, int + Specify axis as int or from 'dimension_labels' to calculate median. + + Returns + ------- + Masker processor + ''' + + processor = Masker(mode='median', mask=mask, axis=axis) + + return processor
+ + +
+[docs] + @staticmethod + def interpolate(mask=None, axis=None, method='linear'): + r'''Returns a Masker that operates over the specified axis and uses 1D interpolation over remaining flattened array to fill in missing values. + + Parameters + ---------- + mask : DataContainer, ImageData, AcquisitionData, numpy.ndarray + A boolean array with the same dimensions as input, where 'False' represents masked values. + Alternatively an integer array where 0 represents masked values, and any other value represents unmasked values. + Mask can be generated using 'MaskGenerator' processor to identify outliers. + axis : str, int + Specify axis as int or from 'dimension_labels' to loop over and perform 1D interpolation. + method : {'linear', 'nearest', 'zeros', 'linear', 'quadratic', 'cubic', 'previous', 'next'}, default='linear' + Interpolation method to use. + + Returns + ------- + Masker processor + ''' + + processor = Masker(mode='interpolate', mask=mask, axis=axis, method=method) + + return processor
+ + + def __init__(self, + mask = None, + mode = 'value', + value = 0, + axis = None, + method = 'linear'): + + kwargs = {'mask': mask, + 'mode': mode, + 'value': value, + 'axis': axis, + 'method': method} + + super(Masker, self).__init__(**kwargs) + + def check_input(self, data): + + if self.mask is None: + raise ValueError('Please, provide a mask.') + + if not (data.shape == self.mask.shape): + raise Exception("Mask and Data must have the same shape." + + "{} != {}".format(self.mask.mask, data.shape)) + + if hasattr(self.mask, 'dimension_labels') and data.dimension_labels != self.mask.dimension_labels: + raise Exception("Mask and Data must have the same dimension labels." + + "{} != {}".format(self.mask.dimension_labels, data.dimension_labels)) + + if self.mode not in ['value', 'mean', 'median', 'interpolate']: + raise Exception("Wrong mode. One of the following is expected:\n" + + "value, mean, median, interpolate") + + return True + + def process(self, out=None): + + data = self.get_input() + + if out is None: + out = data.copy() + arr = out.as_array() + else: + out.fill(data.as_array()) + arr = out.as_array() + + #assumes mask has 'as_array' method, i.e. is a DataContainer or is a numpy array + try: + mask_arr = self.mask.as_array() + except: + mask_arr = self.mask + + mask_arr = numpy.array(mask_arr, dtype=bool) + + mask_invert = ~mask_arr + + try: + axis_index = data.dimension_labels.index(self.axis) + except: + if type(self.axis) == int: + axis_index = self.axis + else: + axis_index = None + + if self.mode == 'value': + + arr[mask_invert] = self.value + + elif self.mode == 'mean' or self.mode == 'median': + + if axis_index is not None: + + ndim = data.number_of_dimensions + + slice_obj = [slice(None, None, 1)] * ndim + + for i in range(arr.shape[axis_index]): + current_slice_obj = slice_obj[:] + current_slice_obj[axis_index] = i + current_slice_obj = tuple(current_slice_obj) + slice_data = arr[current_slice_obj] + if self.mode == 'mean': + slice_data[mask_invert[current_slice_obj]] = numpy.mean(slice_data[mask_arr[current_slice_obj]]) + else: + slice_data[mask_invert[current_slice_obj]] = numpy.median(slice_data[mask_arr[current_slice_obj]]) + arr[current_slice_obj] = slice_data + + else: + + if self.mode == 'mean': + arr[mask_invert] = numpy.mean(arr[mask_arr]) + else: + arr[mask_invert] = numpy.median(arr[mask_arr]) + + elif self.mode == 'interpolate': + if self.method not in ['linear', 'nearest', 'zeros', 'linear', \ + 'quadratic', 'cubic', 'previous', 'next']: + raise TypeError("Wrong interpolation method, one of the following is expected:\n" + + "linear, nearest, zeros, linear, quadratic, cubic, previous, next") + + ndim = data.number_of_dimensions + shape = arr.shape + + if axis_index is None: + raise NotImplementedError ('Currently Only 1D interpolation is available. Please specify an axis to interpolate over.') + + res_dim = 1 + for i in range(ndim): + if i != axis_index: + res_dim *= shape[i] + + # get axis for 1D interpolation + interp_axis = numpy.arange(shape[axis_index]) + + # loop over slice + for i in range(res_dim): + + rest_shape = [] + for j in range(ndim): + if j != axis_index: + rest_shape.append(shape[j]) + rest_shape = tuple(rest_shape) + + rest_idx = numpy.unravel_index(i, rest_shape) + + k = 0 + idx = [] + for j in range(ndim): + if j == axis_index: + idx.append(slice(None,None,1)) + else: + idx.append(rest_idx[k]) + k += 1 + idx = tuple(idx) + + if numpy.any(mask_invert[idx]): + tmp = arr[idx] + f = interpolate.interp1d(interp_axis[mask_arr[idx]], tmp[mask_arr[idx]], + fill_value='extrapolate', + assume_sorted=True, + kind=self.method) + tmp[mask_invert[idx]] = f(numpy.where(mask_arr[idx] == False)[0]) + arr[idx] = tmp + + else: + raise ValueError('Mode is not recognised. One of the following is expected: ' + + 'value, mean, median, interpolate') + + out.fill(arr) + + return out
+ +
+ +
+ + + + + +
+ +
+
+
+ +
+ + + + +
+
+ +
+ +
+
+
+ + + + + +
+ + +
+ + \ No newline at end of file diff --git a/v24.2.0/_modules/cil/processors/Normaliser/index.html b/v24.2.0/_modules/cil/processors/Normaliser/index.html new file mode 100644 index 0000000000..bac1b665fe --- /dev/null +++ b/v24.2.0/_modules/cil/processors/Normaliser/index.html @@ -0,0 +1,654 @@ + + + + + + + + + + cil.processors.Normaliser — CIL 24.2.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + +
+ +
+ + + + + +
+
+ + + + + + +
+ + + + + + + + + + + + + +
+ +
+ + +
+
+ +
+
+ +
+ +
+ + +
+ +
+ + +
+
+ + + + + +
+ +

Source code for cil.processors.Normaliser

+#  Copyright 2019 United Kingdom Research and Innovation
+#  Copyright 2019 The University of Manchester
+#
+#  Licensed under the Apache License, Version 2.0 (the "License");
+#  you may not use this file except in compliance with the License.
+#  You may obtain a copy of the License at
+#
+#      http://www.apache.org/licenses/LICENSE-2.0
+#
+#  Unless required by applicable law or agreed to in writing, software
+#  distributed under the License is distributed on an "AS IS" BASIS,
+#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+#  See the License for the specific language governing permissions and
+#  limitations under the License.
+#
+# Authors:
+# CIL Developers, listed at: https://github.com/TomographicImaging/CIL/blob/master/NOTICE.txt
+
+from cil.framework import Processor, DataContainer, AcquisitionData,\
+ AcquisitionGeometry, ImageGeometry, ImageData
+import numpy
+
+
+[docs] +class Normaliser(Processor): + '''Normalisation based on flat and dark + + This processor read in a AcquisitionData and normalises it based on + the instrument reading with and without incident photons or neutrons. + + Input: AcquisitionData + Parameter: 2D projection with flat field (or stack) + 2D projection with dark field (or stack) + Output: AcquisitionDataSet + ''' + + def __init__(self, flat_field = None, dark_field = None, tolerance = 1e-5): + kwargs = { + 'flat_field' : flat_field, + 'dark_field' : dark_field, + # very small number. Used when there is a division by zero + 'tolerance' : tolerance + } + + #DataProcessor.__init__(self, **kwargs) + super(Normaliser, self).__init__(**kwargs) + if not flat_field is None: + self.set_flat_field(flat_field) + if not dark_field is None: + self.set_dark_field(dark_field) + + def check_input(self, dataset): + if dataset.number_of_dimensions == 3 or\ + dataset.number_of_dimensions == 2: + return True + else: + raise ValueError("Expected input dimensions is 2 or 3, got {0}"\ + .format(dataset.number_of_dimensions)) + + def set_dark_field(self, df): + if type(df) is numpy.ndarray: + if len(numpy.shape(df)) == 3: + raise ValueError('Dark Field should be 2D') + elif len(numpy.shape(df)) == 2: + self.dark_field = df + elif issubclass(type(df), DataContainer): + self.dark_field = self.set_dark_field(df.as_array()) + + def set_flat_field(self, df): + if type(df) is numpy.ndarray: + if len(numpy.shape(df)) == 3: + raise ValueError('Flat Field should be 2D') + elif len(numpy.shape(df)) == 2: + self.flat_field = df + elif issubclass(type(df), DataContainer): + self.flat_field = self.set_flat_field(df.as_array()) + + @staticmethod + def Normalise_projection(projection, flat, dark, tolerance): + a = (projection - dark) + b = (flat-dark) + with numpy.errstate(divide='ignore', invalid='ignore'): + c = numpy.true_divide( a, b ) + c[ ~ numpy.isfinite( c )] = tolerance # set to not zero if 0/0 + return c + +
+[docs] + @staticmethod + def estimate_normalised_error(projection, flat, dark, delta_flat, delta_dark): + '''returns the estimated relative error of the normalised projection + + n = (projection - dark) / (flat - dark) + Dn/n = (flat-dark + projection-dark)/((flat-dark)*(projection-dark))*(Df/f + Dd/d) + ''' + a = (projection - dark) + b = (flat-dark) + df = delta_flat / flat + dd = delta_dark / dark + rel_norm_error = (b + a) / (b * a) * (df + dd) + return rel_norm_error
+ + + def process(self, out=None): + + projections = self.get_input() + dark = self.dark_field + flat = self.flat_field + + if projections.number_of_dimensions == 3: + if not (projections.shape[1:] == dark.shape and \ + projections.shape[1:] == flat.shape): + raise ValueError('Flats/Dark and projections size do not match.') + + + a = numpy.asarray( + [ Normaliser.Normalise_projection( + projection, flat, dark, self.tolerance) \ + for projection in projections.as_array() ] + ) + elif projections.number_of_dimensions == 2: + a = Normaliser.Normalise_projection(projections.as_array(), + flat, dark, self.tolerance) + + if out is None: + out = type(projections)( a , True, + dimension_labels=projections.dimension_labels, + geometry=projections.geometry) + else: + out.fill(a) + + return out
+ +
+ +
+ + + + + +
+ +
+
+
+ +
+ + + + +
+
+ +
+ +
+
+
+ + + + + +
+ + +
+ + \ No newline at end of file diff --git a/v24.2.0/_modules/cil/processors/Padder/index.html b/v24.2.0/_modules/cil/processors/Padder/index.html new file mode 100644 index 0000000000..65a26b5780 --- /dev/null +++ b/v24.2.0/_modules/cil/processors/Padder/index.html @@ -0,0 +1,1215 @@ + + + + + + + + + + cil.processors.Padder — CIL 24.2.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + +
+ +
+ + + + + +
+
+ + + + + + +
+ + + + + + + + + + + + + +
+ +
+ + +
+
+ +
+
+ +
+ +
+ + +
+ +
+ + +
+
+ + + + + +
+ +

Source code for cil.processors.Padder

+#  Copyright 2021 United Kingdom Research and Innovation
+#  Copyright 2021 The University of Manchester
+#
+#  Licensed under the Apache License, Version 2.0 (the "License");
+#  you may not use this file except in compliance with the License.
+#  You may obtain a copy of the License at
+#
+#      http://www.apache.org/licenses/LICENSE-2.0
+#
+#  Unless required by applicable law or agreed to in writing, software
+#  distributed under the License is distributed on an "AS IS" BASIS,
+#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+#  See the License for the specific language governing permissions and
+#  limitations under the License.
+#
+# Authors:
+# CIL Developers, listed at: https://github.com/TomographicImaging/CIL/blob/master/NOTICE.txt
+
+
+from cil.framework import DataProcessor, AcquisitionData, ImageData, ImageGeometry, DataContainer, AcquisitionGeometry
+import numpy as np
+import weakref
+
+
+[docs] +class Padder(DataProcessor): + """ + Processor to pad an array with a border, wrapping numpy.pad. See https://numpy.org/doc/stable/reference/generated/numpy.pad.html + + + It is recommended to use the static methods to configure your Padder object rather than initialising this class directly. See examples for details. + + + Parameters + ---------- + mode: str + The method used to populate the border data. Accepts: 'constant', 'edge', 'linear_ramp', 'reflect', 'symmetric', 'wrap' + pad_width: int, tuple, dict + The size of the border along each axis, see usage notes + pad_values: float, tuple, dict, default=0.0 + The additional values needed by some of the modes + + Notes + ----- + `pad_width` behaviour (number of pixels): + - int: Each axis will be padded with a border of this size + - tuple(int, int): Each axis will be padded with an asymmetric border i.e. (before, after) + - dict: Specified axes will be padded: e.g. {'horizontal':(8, 23), 'vertical': 10} + + `pad_values` behaviour: + - float: Each border will use this value + - tuple(float, float): Each value will be used asymmetrically for each axis i.e. (before, after) + - dict: Specified axes and values: e.g. {'horizontal':(8, 23), 'channel':5} + + If padding angles the angular values assigned to the padded axis will be extrapolated from the first two, + and the last two angles in geometry.angles. The user should ensure the output is as expected. + + + Example + ------- + >>> processor = Padder.edge(pad_width=1) + >>> processor.set_input(data) + >>> data_padded = processor.get_output() + >>> print(data.array) + [[0. 1. 2.] + [3. 4. 5.] + [6. 7. 8.]] + >>> print(data_padded.array) + [[0. 0. 1. 2. 2.] + [0. 0. 1. 2. 2.] + [3. 3. 4. 5. 5.] + [6. 6. 7. 8. 8.] + [6. 6. 7. 8. 8.]] + + Example + ------- + >>> processor = Padder.constant(pad_width={'horizontal_y':(1,1),'horizontal_x':(1,2)}, constant_values=(-1.0, 1.0)) + >>> processor.set_input(data) + >>> data_padded = processor.get_output() + >>> print(data.array) + [[0. 1. 2.] + [3. 4. 5.] + [6. 7. 8.]] + >>> print(data_padded.array) + [[-1. -1. -1. -1. 1. 1.] + [-1. 0. 1. 2. 1. 1.] + [-1. 3. 4. 5. 1. 1.] + [-1. 6. 7. 8. 1. 1.] + [-1. 1. 1. 1. 1. 1.] + + """ + + +
+[docs] + @staticmethod + def constant(pad_width=None, constant_values=0.0): + """ + Padder processor wrapping numpy.pad with mode `constant`. + + Pads the data with a constant value border. Pads in all *spatial* + dimensions unless a dictionary is passed to either `pad_width` or `constant_values` + + Parameters + ---------- + pad_width: int, tuple, dict + The size of the border along each axis, see usage notes + constant_values: float, tuple, dict, default=0.0 + The value of the border, see usage notes + + Notes + ----- + `pad_width` behaviour (number of pixels): + - int: Each axis will be padded with a border of this size + - tuple(int, int): Each axis will be padded with an asymmetric border i.e. (before, after) + - dict: Specified axes will be padded: e.g. {'horizontal':(8, 23), 'vertical': 10} + + `constant_values` behaviour (value of pixels): + - float: Each border will be set to this value + - tuple(float, float): Each border value will be used asymmetrically for each axis i.e. (before, after) + - dict: Specified axes and values: e.g. {'horizontal':(8, 23), 'channel':5} + + If padding angles the angular values assigned to the padded axis will be extrapolated from the first two, + and the last two angles in geometry.angles. The user should ensure the output is as expected. + + Example + ------- + >>> processor = Padder.constant(pad_width=1, constant_values=0.0) + >>> processor.set_input(data) + >>> data_padded = processor.get_output() + >>> print(data.array) + [[0. 1. 2.] + [3. 4. 5.] + [6. 7. 8.]] + >>> print(data_padded.array) + [[0. 0. 0. 0. 0.] + [0. 0. 1. 2. 0.] + [0. 3. 4. 5. 0.] + [0. 6. 7. 8. 0.] + [0. 0. 0. 0. 0.]] + + """ + + processor = Padder(pad_width=pad_width, mode='constant', pad_values=constant_values) + return processor
+ + + +
+[docs] + @staticmethod + def edge(pad_width=None): + """ + Padder processor wrapping numpy.pad with mode `edge`. + + Pads the data by extending the edge values in to the border. Pads in all *spatial* + dimensions unless a dictionary is passed to `pad_width`. + + pad_width: int, tuple, dict + The size of the border along each axis, see usage notes + + Notes + ----- + `pad_width` behaviour (number of pixels): + - int: Each axis will be padded with a border of this size + - tuple(int, int): Each axis will be padded with an asymmetric border i.e. (before, after) + - dict: Specified axes will be padded: e.g. {'horizontal':(8, 23), 'vertical': 10} + + If padding angles the angular values assigned to the padded axis will be extrapolated from the first two, + and the last two angles in geometry.angles. The user should ensure the output is as expected. + + Example + ------- + >>> processor = Padder.edge(pad_width=1) + >>> processor.set_input(data) + >>> data_padded = processor.get_output() + >>> print(data.array) + [[0. 1. 2.] + [3. 4. 5.] + [6. 7. 8.]] + >>> print(data_padded.array) + [[0. 0. 1. 2. 2.] + [0. 0. 1. 2. 2.] + [3. 3. 4. 5. 5.] + [6. 6. 7. 8. 8.] + [6. 6. 7. 8. 8.]] + + """ + + processor = Padder(pad_width=pad_width, mode='edge') + return processor
+ + +
+[docs] + @staticmethod + def linear_ramp(pad_width=None, end_values=0.0): + """Padder processor wrapping numpy.pad with mode `linear_ramp` + + Pads the data with values calculated from a linear ramp between the array edge + value and the set end_value. Pads in all *spatial* dimensions unless a dictionary + is passed to either `pad_width` or `constant_values` + + pad_width: int, tuple, dict + The size of the border along each axis, see usage notes + end_values: float, tuple, dict, default=0.0 + The target value of the linear_ramp, see usage notes + + Notes + ----- + `pad_width` behaviour (number of pixels): + - int: Each axis will be padded with a border of this size + - tuple(int, int): Each axis will be padded with an asymmetric border i.e. (before, after) + - dict: Specified axes will be padded: e.g. {'horizontal':(8, 23), 'vertical': 10} + + `end_values` behaviour: + - float: Each border will use this end value + - tuple(float, float): Each border end value will be used asymmetrically for each axis i.e. (before, after) + - dict: Specified axes and end values: e.g. {'horizontal':(8, 23), 'channel':5} + + If padding angles the angular values assigned to the padded axis will be extrapolated from the first two, + and the last two angles in geometry.angles. The user should ensure the output is as expected. + + Example + ------- + >>> processor = Padder.linear_ramp(pad_width=2, end_values=0.0) + >>> processor.set_input(data) + >>> data_padded = processor.get_output() + >>> print(data.array) + [[0. 1. 2.] + [3. 4. 5.] + [6. 7. 8.]] + >>> print(data_padded.array) + [[0. 0. 0. 0. 0. 0. 0. ] + [0. 0. 0. 0.5 1. 0.5 0. ] + [0. 0. 0. 1. 2. 1. 0. ] + [0. 1.5 3. 4. 5. 2.5 0. ] + [0. 3. 6. 7. 8. 4. 0. ] + [0. 1.5 3. 3.5 4. 2. 0. ] + [0. 0. 0. 0. 0. 0. 0. ]] + + """ + processor = Padder(pad_width=pad_width, mode='linear_ramp', pad_values=end_values) + return processor
+ + + +
+[docs] + @staticmethod + def reflect(pad_width=None): + """ + Padder processor wrapping numpy.pad with mode `reflect`. + + Pads with the reflection of the data mirrored along first and last values each axis. + Pads in all *spatial* dimensions unless a dictionary is passed to `pad_width`. + + pad_width: int, tuple, dict + The size of the border along each axis, see usage notes + + Notes + ----- + `pad_width` behaviour (number of pixels): + - int: Each axis will be padded with a border of this size + - tuple(int, int): Each axis will be padded with an asymmetric border i.e. (before, after) + - dict: Specified axes will be padded: e.g. {'horizontal':(8, 23), 'vertical': 10} + + If padding angles the angular values assigned to the padded axis will be extrapolated from the first two, + and the last two angles in geometry.angles. The user should ensure the output is as expected. + + Example + ------- + >>> processor = Padder.reflect(pad_width=1) + >>> processor.set_input(data) + >>> data_padded = processor.get_output() + >>> print(data.array) + [[0. 1. 2.] + [3. 4. 5.] + [6. 7. 8.]] + >>> print(data_padded.array) + [[4. 3. 4. 5. 4.] + [1. 0. 1. 2. 1.] + [4. 3. 4. 5. 4.] + [7. 6. 7. 8. 7.] + [4. 3. 4. 5. 4.]] + + """ + processor = Padder(pad_width=pad_width, mode='reflect') + return processor
+ + + +
+[docs] + @staticmethod + def symmetric(pad_width=None): + """ + Padder processor wrapping numpy.pad with mode `symmetric`. + + Pads with the reflection of the data mirrored along the edge of the array. + Pads in all *spatial* dimensions unless a dictionary is passed to `pad_width`. + + Parameters + ---------- + pad_width: int, tuple, dict + The size of the border along each axis + + Notes + ----- + `pad_width` behaviour (number of pixels): + - int: Each axis will be padded with a border of this size + - tuple(int, int): Each axis will be padded with an asymmetric border i.e. (before, after) + - dict: Specified axes will be padded: e.g. {'horizontal':(8, 23), 'vertical': 10} + + If padding angles the angular values assigned to the padded axis will be extrapolated from the first two, + and the last two angles in geometry.angles. The user should ensure the output is as expected. + + Example + ------- + >>> processor = Padder.symmetric(pad_width=1) + >>> processor.set_input(data) + >>> data_padded = processor.get_output() + >>> print(data.array) + [[0. 1. 2.] + [3. 4. 5.] + [6. 7. 8.]] + >>> print(data_padded.array) + [[0. 0. 1. 2. 2.] + [0. 0. 1. 2. 2.] + [3. 3. 4. 5. 5.] + [6. 6. 7. 8. 8.] + [6. 6. 7. 8. 8.]] + + """ + processor = Padder(pad_width=pad_width, mode='symmetric') + return processor
+ + + +
+[docs] + @staticmethod + def wrap(pad_width=None): + """ + Padder processor wrapping numpy.pad with mode `wrap`. + + Pads with the wrap of the vector along the axis. The first values are used to pad the + end and the end values are used to pad the beginning. Pads in all *spatial* dimensions + unless a dictionary is passed to `pad_width`. + + Parameters + ---------- + pad_width: int, tuple, dict + The size of the border along each axis + + Notes + ----- + `pad_width` behaviour (number of pixels): + - int: Each axis will be padded with a border of this size + - tuple(int, int): Each axis will be padded with an asymmetric border i.e. (before, after) + - dict: Specified axes will be padded: e.g. {'horizontal':(8, 23), 'vertical': 10} + + If padding angles the angular values assigned to the padded axis will be extrapolated from the first two, + and the last two angles in geometry.angles. The user should ensure the output is as expected. + + Example + ------- + >>> processor = Padder.wrap(pad_width=1) + >>> processor.set_input(data) + >>> data_padded = processor.get_output() + >>> print(data.array) + [[0. 1. 2.] + [3. 4. 5.] + [6. 7. 8.]] + >>> print(data_padded.array) + [[8. 6. 7. 8. 6.] + [2. 0. 1. 2. 0.] + [5. 3. 4. 5. 3.] + [8. 6. 7. 8. 6.] + [2. 0. 1. 2. 0.]] + + """ + processor = Padder(pad_width=pad_width, mode='wrap') + return processor
+ + + + def __init__(self, + mode='constant', + pad_width=None, + pad_values=0): + + kwargs = {'mode': mode, + 'pad_width': pad_width, + 'pad_values': pad_values, + '_data_array': False, + '_geometry': None, + '_shape_in':None, + '_shape_out':None, + '_shape_out_full':None, + '_labels_in':None, + '_processed_dims':None, + '_pad_width_param':None, + '_pad_values_param':None, + } + + super(Padder, self).__init__(**kwargs) + + +
+[docs] + def set_input(self, dataset): + """ + Set the input data to the processor + + Parameters + ---------- + dataset : DataContainer, Geometry + The input DataContainer + """ + + if issubclass(type(dataset), DataContainer) or isinstance(dataset,(AcquisitionGeometry,ImageGeometry)): + if self.check_input(dataset): + self.__dict__['input'] = weakref.ref(dataset) + self.__dict__['shouldRun'] = True + else: + raise ValueError('Input data not compatible') + else: + raise TypeError("Input type mismatch: got {0} expecting {1}"\ + .format(type(dataset), DataContainer)) + + self._set_up()
+ + + def check_input(self, data): + + if isinstance(data, (ImageData,AcquisitionData)): + self._data_array = True + self._geometry = data.geometry + + elif isinstance(data, DataContainer): + self._data_array = True + self._geometry = None + + elif isinstance(data, (ImageGeometry, AcquisitionGeometry)): + self._data_array = False + self._geometry = data + + else: + raise TypeError('Processor supports following data types:\n' + + ' - ImageData\n - AcquisitionData\n - DataContainer\n - ImageGeometry\n - AcquisitionGeometry') + + if self._data_array: + if data.dtype != np.float32: + raise TypeError("Expected float32") + + + if self.mode not in ['constant', 'edge', 'linear_ramp', 'reflect', 'symmetric', 'wrap']: + raise Exception("Wrong mode. One of the following is expected:\n" + + "constant, edge, linear_ramp, reflect, symmetric, wrap") + + if self.pad_width is None: + raise ValueError('Please, specify pad_width') + + return True + + def _create_tuple(self, value, dtype): + try: + out = (dtype(value),dtype(value)) + except TypeError: + try: + out = (dtype(value[0]),dtype(value[1])) + except: + raise TypeError() + + return out + + def _get_dimensions_from_dict(self, dict): + + dimensions = [] + for k in dict.keys(): + if k not in self._labels_in: + raise ValueError('Dimension label not found in data. Expected labels from {0}. Got {1}'.format(self._geometry.dimension_labels, k)) + + dimensions.append(k) + return dimensions + + + def _set_up(self): + + data = self.get_input() + offset = 4-data.ndim + + #set defaults + self._labels_in = [None]*4 + self._labels_in[offset::] = data.dimension_labels + + self._shape_in = [1]*4 + self._shape_in[offset::] = data.shape + + self._shape_out_full = self._shape_in.copy() + + self._processed_dims = [0,0,0,0] + + self._pad_width_param = [(0,0)]*4 + self._pad_values_param = [(0,0)]*4 + + + # if pad_width or set_values is passed a dictionary these keys specify the axes to run over + if isinstance(self.pad_width, dict) and isinstance(self.pad_values, dict): + + if self.pad_width.keys() != self.pad_values.keys(): + raise ValueError('Dictionaries must contain the same axes') + + dimensions = self._get_dimensions_from_dict(self.pad_width) + + elif isinstance(self.pad_width, dict): + dimensions = self._get_dimensions_from_dict(self.pad_width) + + elif isinstance(self.pad_values, dict): + dimensions = self._get_dimensions_from_dict(self.pad_values) + + else: + spatial_dimensions =[ + 'vertical', + 'horizontal', + 'horizontal_y', + 'horizontal_x' + ] + + dimensions = list(set(spatial_dimensions) & set(self._labels_in)) + + + # get pad_widths for these dimensions + for dim in dimensions: + try: + values = self.pad_width[dim] + except TypeError: + values = self.pad_width + + try: + i = self._labels_in.index(dim) + self._pad_width_param[i] = self._create_tuple(values, int) + except TypeError: + raise TypeError("`pad_width` should be a integer or a tuple of integers. Got {0} for axis {1}".format(values, dim)) + + # get pad_values for these dimensions + for dim in dimensions: + try: + values = self.pad_values[dim] + except TypeError: + values = self.pad_values + + try: + i = self._labels_in.index(dim) + self._pad_values_param[i] = self._create_tuple(values, float) + except TypeError: + raise TypeError("`pad_values` should be a float or a tuple of floats. Got {0} for axis {1}".format(values, dim)) + + #create list of processed axes and new_shape + for i in range(4): + if self._pad_width_param[i] != (0,0): + self._processed_dims[i] = 1 + self._shape_out_full[i] += self._pad_width_param[i][0] + self._pad_width_param[i][1] + + self._shape_out = tuple([i for i in self._shape_out_full if i > 1]) + + + def _process_acquisition_geometry(self): + """ + Creates the new acquisition geometry + """ + + geometry = self._geometry.copy() + for i, dim in enumerate(self._labels_in): + + if not self._processed_dims[i]: + continue + + offset = (self._pad_width_param[i][0] -self._pad_width_param[i][1])*0.5 + + if dim == 'channel': + geometry.set_channels(num_channels= geometry.config.channels.num_channels + \ + self._pad_width_param[i][0] + self._pad_width_param[i][1]) + elif dim == 'angle': + # extrapolate pre-values from a[1]-a[0] + # extrapolate post-values from a[-1]-a[-2] + a = self._geometry.angles + end_values = ( + a[0]-(a[1]-a[0] )* self._pad_width_param[i][0], + a[-1]+(a[-1]-a[-2] )* self._pad_width_param[i][1] + ) + geometry.config.angles.angle_data = np.pad(a, (self._pad_width_param[i][0],self._pad_width_param[i][1]), mode='linear_ramp',end_values=end_values) + + elif dim == 'vertical': + geometry.config.panel.num_pixels[1] += self._pad_width_param[i][0] + geometry.config.panel.num_pixels[1] += self._pad_width_param[i][1] + geometry.config.shift_detector_in_plane(offset, dim) + + elif dim == 'horizontal': + geometry.config.panel.num_pixels[0] += self._pad_width_param[i][0] + geometry.config.panel.num_pixels[0] += self._pad_width_param[i][1] + geometry.config.shift_detector_in_plane(offset, dim) + + return geometry + + def _process_image_geometry(self): + """ + Creates the new image geometry + """ + geometry = self._geometry.copy() + for i, dim in enumerate(self._labels_in): + + if not self._processed_dims[i]: + continue + + offset = (self._pad_width_param[i][0] -self._pad_width_param[i][1])*0.5 + + if dim == 'channel': + geometry.channels += self._pad_width_param[i][0] + geometry.channels += self._pad_width_param[i][1] + elif dim == 'vertical': + geometry.voxel_num_z += self._pad_width_param[i][0] + geometry.voxel_num_z += self._pad_width_param[i][1] + geometry.center_z -= offset * geometry.voxel_size_z + elif dim == 'horizontal_x': + geometry.voxel_num_x += self._pad_width_param[i][0] + geometry.voxel_num_x += self._pad_width_param[i][1] + geometry.center_x -= offset * geometry.voxel_size_x + elif dim == 'horizontal_y': + geometry.voxel_num_y += self._pad_width_param[i][0] + geometry.voxel_num_y += self._pad_width_param[i][1] + geometry.center_y -= offset * geometry.voxel_size_y + + return geometry + + + def _process_data(self, dc_in): + arr_in = dc_in.array.reshape(self._shape_in) + + if self.mode in ['reflect', 'symmetric', 'wrap', 'edge']: + arr_out = np.pad(arr_in, self._pad_width_param, mode=self.mode,).squeeze() + elif self.mode == 'constant': + arr_out = np.pad(arr_in, self._pad_width_param, mode=self.mode, \ + constant_values=self._pad_values_param).squeeze() + elif self.mode == 'linear_ramp': + arr_out = np.pad(arr_in, self._pad_width_param, mode=self.mode, \ + end_values=self._pad_values_param).squeeze() + + return arr_out + + + + def process(self, out=None): + + data = self.get_input() + + # pad geometry + if isinstance(self._geometry, ImageGeometry): + new_geometry = self._process_image_geometry() + elif isinstance(self._geometry, AcquisitionGeometry): + new_geometry = self._process_acquisition_geometry() + else: + new_geometry = None + + # return if just acting on geometry + if not self._data_array: + return new_geometry + + # pad data + if out is None: + arr_out = self._process_data(data) + + if isinstance(new_geometry, ImageGeometry): + return ImageData(arr_out,deep_copy=False, geometry=new_geometry) + elif isinstance(new_geometry, AcquisitionGeometry): + return AcquisitionData(arr_out,deep_copy=False, geometry=new_geometry) + else: + return DataContainer(arr_out,deep_copy=False, dimension_labels=data.dimension_labels) + + else: + # check size and shape if passed out + try: + out.array = out.array.reshape(self._shape_out_full) + except: + raise ValueError("Array of `out` not compatible. Expected shape: {0}, data type: {1} Got shape: {2}, data type: {3}".format(self._shape_out_full, np.float32, out.array.shape, out.array.dtype)) + + if new_geometry is not None: + if out.geometry != new_geometry: + raise ValueError("Geometry of `out` not as expected. Got {0}, expected {1}".format(out.geometry, new_geometry)) + + out.array = self._process_data(data) + return out
+ +
+ +
+ + + + + +
+ +
+
+
+ +
+ + + + +
+
+ +
+ +
+
+
+ + + + + +
+ + +
+ + \ No newline at end of file diff --git a/v24.2.0/_modules/cil/processors/PaganinProcessor/index.html b/v24.2.0/_modules/cil/processors/PaganinProcessor/index.html new file mode 100644 index 0000000000..f9b8ea6f12 --- /dev/null +++ b/v24.2.0/_modules/cil/processors/PaganinProcessor/index.html @@ -0,0 +1,1118 @@ + + + + + + + + + + cil.processors.PaganinProcessor — CIL 24.2.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + +
+ +
+ + + + + +
+
+ + + + + + +
+ + + + + + + + + + + + + +
+ +
+ + +
+
+ +
+
+ +
+ +
+ + +
+ +
+ + +
+
+ + + + + +
+ +

Source code for cil.processors.PaganinProcessor

+#  Copyright 2024 United Kingdom Research and Innovation
+#  Copyright 2024 The University of Manchester
+#
+#  Licensed under the Apache License, Version 2.0 (the "License");
+#  you may not use this file except in compliance with the License.
+#  You may obtain a copy of the License at
+#
+#      http://www.apache.org/licenses/LICENSE-2.0
+#
+#  Unless required by applicable law or agreed to in writing, software
+#  distributed under the License is distributed on an "AS IS" BASIS,
+#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+#  See the License for the specific language governing permissions and
+#  limitations under the License.
+#
+# Authors:
+# CIL Developers, listed at:
+# https://github.com/TomographicImaging/CIL/blob/master/NOTICE.txt
+
+from cil.framework import Processor, AcquisitionData
+from cil.framework.labels import AcquisitionDimension
+
+import numpy as np
+from scipy.fft import fft2
+from scipy.fft import ifft2
+from scipy.fft import ifftshift
+from scipy import constants
+from tqdm import tqdm
+import logging
+
+log = logging.getLogger(__name__)
+
+
+[docs] +class PaganinProcessor(Processor): + + r""" + Processor to retrieve quantitative information from phase contrast images + using the Paganin phase retrieval algorithm described in [1] + + Parameters + ---------- + delta: float (optional) + Real part of the deviation of the material refractive index from 1, + where refractive index :math:`n = (1 - \delta) + i \beta` energy- + dependent refractive index information for x-ray wavelengths can be + found at [2], default is 1 + + beta: float (optional) + Complex part of the material refractive index, where refractive index + :math:`n = (1 - \delta) + i \beta` energy-dependent refractive index + information for x-ray wavelengths can be found at [2], default is 1e-2 + + energy: float (optional) + Energy of the incident photon, default is 40000 + + energy_units: string (optional) + Energy units, default is 'eV' + + full_retrieval : bool, optional + If True, perform the full phase retrieval and return the thickness. If + False, return a filtered image, default is True + + filter_type: string (optional) + The form of the Paganin filter to use, either 'paganin_method' + (default) or 'generalised_paganin_method' as described in [3] + + pad: int (optional) + Number of pixels to pad the image in Fourier space to reduce aliasing, + default is 0 + + return_units: string (optional) + The distance units to return the sample thickness in, must be one of + 'm', 'cm', 'mm' or 'um'. Only applies if full_retrieval=True (default + is'cm') + + Returns + ------- + AcquisitionData + AcquisitionData corrected for phase effects, retrieved sample thickness + or (if :code:`full_retrieval=False`) filtered data + + Example + ------- + >>> processor = PaganinProcessor(delta=5, beta=0.05, energy=18000) + >>> processor.set_input(data) + >>> thickness = processor.get_output() + + Example + ------- + >>> processor = PaganinProcessor(delta=1,beta=10e2, full_retrieval=False) + >>> processor.set_input(data) + >>> filtered_image = processor.get_output() + + Example + ------- + >>> processor = PaganinProcessor() + >>> processor.set_input(data) + >>> thickness = processor.get_output(override_filter={'alpha':10}) + >>> phase_retrieved_image = thickness*processor.mu + + Notes + ----- + This processor will work most efficiently using the cil data order with + `data.reorder('cil')` + + Notes + ----- + This processor uses the phase retrieval algorithm described by Paganin et + al. [1] to retrieve the sample thickness + + .. math:: T(x,y) = - \frac{1}{\mu}\ln\left (\mathcal{F}^{-1}\left + (\frac{\mathcal{F}\left ( M^2I_{norm}(x, y,z = \Delta) \right )}{1 + + \alpha\left ( k_x^2 + k_y^2 \right )} \right )\right ), + + where + + - :math:`T`, is the sample thickness, + - :math:`\mu = \frac{4\pi\beta}{\lambda}` is the material linear + attenuation coefficient where :math:`\beta` is the complex part of the + material refractive index and :math:`\lambda=\frac{hc}{E}` is the probe + wavelength, + - :math:`M` is the magnification at the detector, + - :math:`I_{norm}` is the input image which is expected to be the + normalised transmission data, + - :math:`\Delta` is the propagation distance, + - :math:`\alpha = \frac{\Delta\delta}{\mu}` is a parameter determining + the strength of the filter to be applied in Fourier space where + :math:`\delta` is the real part of the deviation of the material + refractive index from 1 + - :math:`k_x, k_y = \left ( \frac{2\pi p}{N_xW}, \frac{2\pi q}{N_yW} + \right )` where :math:`p` and :math:`q` are co-ordinates in a Fourier + mesh in the range :math:`-N_x/2` to :math:`N_x/2` for an image with + size :math:`N_x, N_y` and pixel size :math:`W`. + + A generalised form of the Paganin phase retrieval method can be called + using :code:`filter_type='generalised_paganin_method'`, which uses the + form of the algorithm described in [2] + + .. math:: T(x,y) = -\frac{1}{\mu}\ln\left (\mathcal{F}^{-1}\left (\frac{ + \mathcal{F}\left ( M^2I_{norm}(x, y,z = \Delta) \right )}{1 - \frac{2 + \alpha}{W^2}\left ( \cos(Wk_x) + \cos(Wk_y) -2 \right )} \right ) + \right ) + + The phase retrieval is valid under the following assumptions + + - used with paraxial propagation-induced phase contrast images which + can be assumed to be single-material locally + - using intensity data which has been flat field corrected + - and under the assumption that the Fresnel number + :math:`F_N = W^2/(\lambda\Delta) >> 1` + + To apply a filter to images using the Paganin method, call + :code:`full_retrieval=False`. In this case the pre-scaling and conversion + to absorption is not applied so the requirement to supply flat field + corrected intensity data is relaxed, + + .. math:: I_{filt} = \mathcal{F}^{-1}\left (\frac{\mathcal{F}\left ( + I(x, y,z = \Delta) \right )} + {1 - \alpha\left ( k_x^2 + k_y^2 \right )} \right ) + + References + --------- + - [1] https://doi.org/10.1046/j.1365-2818.2002.01010.x + - [2] https://henke.lbl.gov/optical_constants/getdb2.html + - [3] https://iopscience.iop.org/article/10.1088/2040-8986/abbab9 + With thanks to colleagues at DTU for help with the initial implementation + of the phase retrieval algorithm + + """ + + def __init__(self, delta=1, beta=1e-2, energy=40000, + energy_units='eV', full_retrieval=True, + filter_type='paganin_method', pad=0, + return_units='cm'): + + kwargs = { + 'energy' : energy, + 'wavelength' : self._energy_to_wavelength(energy, energy_units, + return_units), + 'delta': delta, + 'beta': beta, + '_delta_user' : delta, + '_beta_user' : beta, + 'filter_Nx' : None, + 'filter_Ny' : None, + 'filter_type' : filter_type, + 'mu' : None, + 'alpha' : None, + 'pixel_size' : None, + 'propagation_distance' : None, + 'magnification' : None, + 'filter' : None, + 'full_retrieval' : full_retrieval, + 'pad' : pad, + 'override_geometry' : None, + 'override_filter' : None, + 'return_units' : return_units + } + + super(PaganinProcessor, self).__init__(**kwargs) + + def check_input(self, data): + if not isinstance(data, (AcquisitionData)): + raise TypeError('Processor only supports AcquisitionData') + + if data.dtype!=np.float32: + raise TypeError('Processor only support dtype=float32') + + return True + + def process(self, out=None): + + data = self.get_input() + cil_order = tuple(AcquisitionDimension.get_order_for_engine('cil',data.geometry)) + if data.dimension_labels != cil_order: + log.warning(msg="This processor will work most efficiently using\ + \nCIL data order, consider using `data.reorder('cil')`") + + # set the geometry parameters to use from data.geometry unless the + # geometry is overridden with an override_geometry + self._set_geometry(data.geometry, self.override_geometry) + + if out is None: + out = data.geometry.allocate(None) + + # make slice indices to get the projection + slice_proj = [slice(None)]*len(data.shape) + angle_axis = data.get_dimension_axis('angle') + slice_proj[angle_axis] = 0 + + if data.geometry.channels>1: + channel_axis = data.get_dimension_axis('channel') + slice_proj[channel_axis] = 0 + else: + channel_axis = None + + data_proj = data.as_array()[tuple(slice_proj)] + + # create an empty axis if the data is 2D + if len(data.shape) == 2: + data.array = np.expand_dims(data.array, len(data.shape)) + slice_proj.append(slice(None)) + data_proj = data.as_array()[tuple(slice_proj)] + + elif len(data_proj.shape) == 2: + pass + else: + raise(ValueError('Data must be 2D or 3D per channel')) + + if len(out.shape) == 2: + out.array = np.expand_dims(out.array, len(out.shape)) + + # create a filter based on the shape of the data + filter_shape = np.shape(data_proj) + self.filter_Nx = filter_shape[0]+self.pad*2 + self.filter_Ny = filter_shape[1]+self.pad*2 + self._create_filter(self.override_filter) + + # pre-calculate the scaling factor + scaling_factor = -(1/self.mu) + + # allocate padded buffer + padded_buffer = np.zeros(tuple(x+self.pad*2 for x in data_proj.shape), dtype=data.dtype) + + # make slice indices to unpad the data + if self.pad>0: + slice_pad = tuple([slice(self.pad,-self.pad)] + *len(padded_buffer.shape)) + else: + slice_pad = tuple([slice(None)]*len(padded_buffer.shape)) + # loop over the channels + mag2 = self.magnification**2 + for j in range(data.geometry.channels): + if channel_axis is not None: + slice_proj[channel_axis] = j + # loop over the projections + for i in tqdm(range(len(data.geometry.angles))): + + slice_proj[angle_axis] = i + padded_buffer.fill(0) + padded_buffer[slice_pad] = data.array[(tuple(slice_proj))] + + if self.full_retrieval==True: + # apply the filter in fourier space, apply log and scale + # by magnification + padded_buffer*=mag2 + fI = fft2(padded_buffer) + iffI = ifft2(fI*self.filter).real + np.log(iffI, out=padded_buffer) + # apply scaling factor + np.multiply(scaling_factor, padded_buffer, out=padded_buffer) + else: + # apply the filter in fourier space + fI = fft2(padded_buffer) + padded_buffer[:] = ifft2(fI*self.filter).real + + if data.geometry.channels>1: + out.fill(padded_buffer[slice_pad], angle = i, + channel=j) + else: + out.fill(padded_buffer[slice_pad], angle = i) + + data.array = np.squeeze(data.array) + out.array = np.squeeze(out.array) + return out + +
+[docs] + def set_input(self, dataset): + """ + Set the input data to the processor + + Parameters + ---------- + dataset : AcquisitionData + The input AcquisitionData + """ + return super().set_input(dataset)
+ + +
+[docs] + def get_output(self, out=None, override_geometry=None, + override_filter=None): + r''' + Function to get output from the PaganinProcessor + + Parameters + ---------- + out : DataContainer, optional + Fills the referenced DataContainer with the processed data + + override_geometry: dict, optional + Geometry parameters to use in the phase retrieval if you want to + over-ride values found in `data.geometry`. Specify parameters as a + dictionary :code:`{'parameter':value}` where parameter is + :code:`'magnification', 'propagation_distance'` or + :code:`'pixel_size'` and value is the new value to use. Specify + distance parameters in the same units as :code:`return_units` + (default is cm). + + override_filter: dict, optional + Over-ride the filter parameters to use in the phase retrieval. + Specify parameters as :code:`{'parameter':value}` where parameter + is :code:`'delta', 'beta'` or :code:`'alpha'` and value is the new + value to use. + + Returns + ------- + AcquisitionData + AcquisitionData corrected for phase effects, retrieved sample + thickness or (if :code:`full_retrieval=False`) filtered data + + Example + ------- + >>> processor = PaganinProcessor(delta=5, beta=0.05, energy=18000) + >>> processor.set_input(data) + >>> thickness = processor.get_output() + + Example + ------- + >>> processor = PaganinProcessor(delta=1,beta=10e2, + full_retrieval=False) + >>> processor.set_input(data) + >>> filtered_image = processor.get_output() + + Example + ------- + >>> processor = PaganinProcessor() + >>> processor.set_input(data) + >>> thickness = processor.get_output(override_filter={'alpha':10}) + >>> phase_retrieved_image = thickness*processor.mu + + Notes + ----- + If :code:`'alpha'` is specified in override_filter the new value will + be used and delta will be ignored but beta will still be used to + calculate :math:`\mu = \frac{4\pi\beta}{\lambda}` which is used for + scaling the thickness, therefore it is only recommended to specify + alpha when also using :code:`get_output(full_retrieval=False)`, or + re-scaling the result by :math:`\mu` e.g. + :code:`thickness*processor.mu` If :code:`alpha` is not specified, + it will be calculated :math:`\frac{\Delta\delta\lambda}{4\pi\beta}` + + ''' + self.override_geometry = override_geometry + self.override_filter = override_filter + + return super().get_output(out)
+ + + def __call__(self, x, out=None, override_geometry=None, + override_filter=None): + self.set_input(x) + + if out is None: + out = self.get_output(override_geometry=override_geometry, + override_filter=override_filter) + else: + self.get_output(out=out, override_geometry=override_geometry, + override_filter=override_filter) + + return out + + def _set_geometry(self, geometry, override_geometry=None): + ''' + Function to set the geometry parameters for the processor. Values are + from the data geometry unless the geometry is overridden with an + override_geometry dictionary. + ''' + + parameters = ['magnification', 'propagation_distance', 'pixel_size'] + # specify parameter names as defined in geometry + geometry_parameters = ['magnification', 'dist_center_detector', + ('pixel_size_h', 'pixel_size_v')] + # specify if parameter requires unit conversion + convert_units = [False, True, True] + + if override_geometry is None: + override_geometry = {} + + # get and check parameters from over-ride geometry dictionary + for parameter in override_geometry.keys(): + if parameter not in parameters: + raise ValueError('Parameter {} not recognised, expected one of\ + {}.'.format(parameter, parameters)) + elif (override_geometry[parameter] is None) \ + | (override_geometry[parameter] == 0): + raise ValueError("Parameter {} cannot be {}, please update \ + data.geometry.{} or over-ride with \ + processor.get_output(override_geometry= \ + {{ '{}' : value }} )"\ + .format(parameter, str(getattr(self, parameter)), + geometry_parameters[i], parameter)) + else: + self.__setattr__(parameter, override_geometry[parameter]) + + + # get and check parameters from geometry if they are not in the + # over-ride geometry dictionary + for i, parameter in enumerate(parameters): + if parameter not in override_geometry: + if type(geometry_parameters[i])==tuple: + param1 = getattr(geometry, geometry_parameters[i][0]) + param2 = getattr(geometry, geometry_parameters[i][1]) + if (param1 - param2) / (param1 + param2) >= 1e-5: + raise ValueError("Parameter {} is not homogeneous up \ + to 1e-5: got {} and {}, please update\ + geometry using data.geometry.{} and \ + data.geometry.{} or over-ride with \ + processor.get_output(\ + override_geometry={{ '{}' : value }})" + .format(parameter, str(param1), + str(param2), + geometry_parameters[i][0], + geometry_parameters[i][1], + parameter)) + else: + param1 = getattr(geometry, geometry_parameters[i]) + + if (param1 is None) | (param1 == 0): + raise ValueError("Parameter {} cannot be {}, please update\ + data.geometry.{} or over-ride with \ + processor.get_output(override_geometry\ + ={{ '{}' : value }} )" + .format(parameter, str(param1), + str(geometry_parameters[i]), + parameter)) + else: + if convert_units[i]: + param1 = self._convert_units(param1, 'distance', + geometry.config.units, + self.return_units) + self.__setattr__(parameter, param1) + + + def _create_filter(self, override_filter=None): + ''' + Function to create the Paganin filter, either using the paganin [1] or + generalised paganin [2] method + The filter is created on a mesh in Fourier space kx, ky + [1] https://doi.org/10.1046/j.1365-2818.2002.01010.x + [2] https://iopscience.iop.org/article/10.1088/2040-8986/abbab9 + ''' + if override_filter is None: + override_filter = {} + + # update any parameter which has been over-ridden with override_filter + if ('alpha' in override_filter) & ('delta' in override_filter): + log.warning(msg="Because you specified alpha, it will not be \ + calculated and therefore delta will be ignored") + + if ('delta' in override_filter): + self.delta = override_filter['delta'] + else: + self.delta = self._delta_user + + if ('beta' in override_filter): + self.beta = override_filter['beta'] + else: + self.beta = self._beta_user + + self._calculate_mu() + + if ('alpha' in override_filter): + self.alpha = override_filter['alpha'] + else: + self._calculate_alpha() + + # create the Fourier mesh + kx,ky = np.meshgrid( + np.arange(-self.filter_Nx/2, self.filter_Nx/2, 1, dtype=np.float64) + * (2*np.pi)/(self.filter_Nx*self.pixel_size), + np.arange(-self.filter_Ny/2, self.filter_Ny/2, 1, dtype=np.float64) + * (2*np.pi)/(self.filter_Ny*self.pixel_size), + sparse=False, + indexing='ij' + ) + + # create the filter using either paganin or generalised paganin method + if self.filter_type == 'paganin_method': + self.filter = ifftshift(1/(1. + self.alpha*(kx**2 + ky**2))) + elif self.filter_type == 'generalised_paganin_method': + self.filter = ifftshift(1/(1. - (2*self.alpha/self.pixel_size**2) + *(np.cos(self.pixel_size*kx) + + np.cos(self.pixel_size*ky) -2))) + else: + raise ValueError("filter_type not recognised: got {0} expected one\ + of 'paganin_method' or \ + 'generalised_paganin_method'" + .format(self.filter_type)) + + def _calculate_mu(self): + ''' + Function to calculate the linear attenutation coefficient mu + ''' + self.mu = 4.0*np.pi*self.beta/self.wavelength + + def _calculate_alpha(self): + ''' + Function to calculate alpha, a constant defining the Paganin filter + strength + ''' + self.alpha = self.propagation_distance*self.delta/self.mu + + def _energy_to_wavelength(self, energy, energy_units, return_units): + ''' + Function to convert photon energy in eV to wavelength in return_units + + Parameters + ---------- + energy: float + Photon energy + + energy_units + Energy units + + return_units + Distance units in which to return the wavelength + + Returns + ------- + float + Photon wavelength in return_units + ''' + top = self._convert_units(constants.h*constants.speed_of_light, + 'distance', 'm', return_units) + bottom = self._convert_units(energy, 'energy', energy_units, 'J') + + return top/bottom + + def _convert_units(self, value, unit_type, input_unit, output_unit): + unit_types = ['distance','energy','angle'] + + if unit_type == unit_types[0]: + unit_list = ['m','cm','mm','um'] + unit_multipliers = [1.0, 1e-2, 1e-3, 1e-6] + elif unit_type == unit_types[1]: + unit_list = ['meV', 'eV', 'keV', 'MeV', 'J'] + unit_multipliers = [1e-3, 1, 1e3, 1e6, 1/constants.eV] + elif unit_type == unit_types[2]: + unit_list = ['deg', 'rad'] + unit_multipliers = [1, np.rad2deg(1)] + else: + raise ValueError("Unit type '{}' not recognised, must be one of {}" + .format(unit_type, unit_types)) + + for x in [input_unit, output_unit]: + if x not in unit_list: + raise ValueError("Unit '{}' not recognised, must be one of {}.\ + \nGeometry units can be updated using geometry.config.units" + .format(x, unit_list)) + + return value*unit_multipliers[unit_list.index(input_unit)]\ + /unit_multipliers[unit_list.index(output_unit)]
+ +
+ +
+ + + + + +
+ +
+
+
+ +
+ + + + +
+
+ +
+ +
+
+
+ + + + + +
+ + +
+ + \ No newline at end of file diff --git a/v24.2.0/_modules/cil/processors/RingRemover/index.html b/v24.2.0/_modules/cil/processors/RingRemover/index.html new file mode 100644 index 0000000000..66cbcb7c04 --- /dev/null +++ b/v24.2.0/_modules/cil/processors/RingRemover/index.html @@ -0,0 +1,724 @@ + + + + + + + + + + cil.processors.RingRemover — CIL 24.2.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + +
+ +
+ + + + + +
+
+ + + + + + +
+ + + + + + + + + + + + + +
+ +
+ + +
+
+ +
+
+ +
+ +
+ + +
+ +
+ + +
+
+ + + + + +
+ +

Source code for cil.processors.RingRemover

+#  Copyright 2020 United Kingdom Research and Innovation
+#  Copyright 2020 The University of Manchester
+#
+#  Licensed under the Apache License, Version 2.0 (the "License");
+#  you may not use this file except in compliance with the License.
+#  You may obtain a copy of the License at
+#
+#      http://www.apache.org/licenses/LICENSE-2.0
+#
+#  Unless required by applicable law or agreed to in writing, software
+#  distributed under the License is distributed on an "AS IS" BASIS,
+#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+#  See the License for the specific language governing permissions and
+#  limitations under the License.
+#
+# Authors:
+# CIL Developers, listed at: https://github.com/TomographicImaging/CIL/blob/master/NOTICE.txt
+
+from scipy.fftpack import fftshift, ifftshift, fft, ifft
+import numpy as np
+import pywt
+from cil.framework import Processor, ImageData, AcquisitionData
+
+
+[docs] +class RingRemover(Processor): + + ''' + RingRemover Processor: Removes vertical stripes from a DataContainer(ImageData/AcquisitionData) + using the algorithm in https://doi.org/10.1364/OE.17.008567 + + Parameters + ---------- + decNum : int + Number of wavelet decompositions - increasing the number of decompositions, increases the strength of the ring removal + but can alter the profile of the data + + wname : str + Name of wavelet filter from pywt e.g. 'db1' -- 'db35', 'haar' - increasing the wavelet filter increases the strength of + the ring removal, but also increases the computational effort + + sigma : float + Damping parameter in Fourier space - increasing sigma, increases the size of artefacts which can be removed + + info : boolean + Flag to enable print of ring remover end message + + Returns + ------- + DataContainer + Corrected ImageData/AcquisitionData 2D, 3D, multi-spectral 2D, multi-spectral 3D + ''' + + def __init__(self, decNum=4, wname='db10', sigma=1.5, info = True): + + kwargs = {'decNum': decNum, + 'wname': wname, + 'sigma': sigma, + 'info': info} + + super(RingRemover, self).__init__(**kwargs) + + + def check_input(self, dataset): + if not ((isinstance(dataset, ImageData)) or + (isinstance(dataset, AcquisitionData))): + raise Exception('Processor supports only following data types:\n' + + ' - ImageData\n - AcquisitionData') + elif (dataset.geometry == None): + raise Exception('Geometry is not defined.') + else: + return True + + def process(self, out = None): + + data = self.get_input() + decNum = self.decNum + wname = self.wname + sigma = self.sigma + info = self.info + + # acquisition geometry from sinogram + geom = data.geometry + + # get channels, vertical info + channels = geom.channels + vertical = geom.pixel_num_v + + # allocate datacontainer space + if out is None: + out = 0.*data + + # for non multichannel data + if 'channel' not in geom.dimension_labels: + + # for 3D data + if 'vertical' in geom.dimension_labels: + + for i in range(vertical): + tmp_corrected = self._xRemoveStripesVertical(data.get_slice(vertical=i, force=True).as_array(), decNum, wname, sigma) + out.fill(tmp_corrected, vertical = i) + + # for 2D data + else: + tmp_corrected = self._xRemoveStripesVertical(data.as_array(), decNum, wname, sigma) + out.fill(tmp_corrected) + + # for multichannel data + else: + + # for 3D data + if 'vertical' in geom.dimension_labels: + + for i in range(channels): + + out_ch_i = out.get_slice(channel=i) + data_ch_i = data.get_slice(channel=i) + + for j in range(vertical): + tmp_corrected = self._xRemoveStripesVertical(data_ch_i.get_slice(vertical=j, force=True).as_array(), decNum, wname, sigma) + out_ch_i.fill(tmp_corrected, vertical = j) + + out.fill(out_ch_i.as_array(), channel=i) + + if info: + print("Finish channel {}".format(i)) + + # for 2D data + else: + for i in range(channels): + tmp_corrected = self._xRemoveStripesVertical(data.get_slice(channel=i).as_array(), decNum, wname, sigma) + out.fill(tmp_corrected, channel = i) + if info: + print("Finish channel {}".format(i)) + if info: + print("Finish Ring Remover") + + return out + + + def _xRemoveStripesVertical(self, ima, decNum, wname, sigma): + + ''' Ring removal algorithm via combined wavelet and fourier filtering + code from https://doi.org/10.1364/OE.17.008567 + translated in Python + Parameters + ---------- + ima : ndarray + 2D image data + + decNum : int + Number of wavelet decompositions - increasing the number of decompositions, increases the strength of the ring removal + but can alter the profile of the data + + wname : str + Name of wavelet filter from pywt e.g. 'db1' -- 'db35', 'haar' - increasing the wavelet filter increases the strength of + the ring removal, but also increases the computational effort + + sigma : float + Damping parameter in Fourier space - increasing sigma, increase the size of artefacts which can be removed + + Returns + ------- + Corrected 2D sinogram data (Numpy Array) + + ''' + + original_extent = [slice(None, ima.shape[0], None), slice(None, ima.shape[1], None)] + + # allocate cH, cV, cD + Ch = [None]*decNum + Cv = [None]*decNum + Cd = [None]*decNum + + # wavelets decomposition + for i in range(decNum): + ima, (Ch[i], Cv[i], Cd[i]) = pywt.dwt2(ima,wname) + + # FFT transform of horizontal frequency bands + for i in range(decNum): + + # use to axis=0, which correspond to the angles direction + fCv = fftshift(fft(Cv[i], axis=0)) + my, mx = fCv.shape + + # damping of vertical stripe information + damp = 1 - np.exp(-np.array([range(-int(np.floor(my/2)),-int(np.floor(my/2))+my)])**2/(2*sigma**2)) + fCv *= damp.T + + # inverse FFT + Cv[i] = np.real(ifft(ifftshift(fCv), axis=0)) + + # wavelet reconstruction + nima = ima + for i in range(decNum-1,-1,-1): + nima = nima[0:Ch[i].shape[0],0:Ch[i].shape[1]] + nima = pywt.idwt2((nima,(Ch[i],Cv[i],Cd[i])),wname) + + # if the original input is odd, the signal reconstructed with idwt2 will have one extra sample, which can be discarded + nima = nima[original_extent[0], original_extent[1]] + + return nima
+ +
+ +
+ + + + + +
+ +
+
+
+ +
+ + + + +
+
+ +
+ +
+
+
+ + + + + +
+ + +
+ + \ No newline at end of file diff --git a/v24.2.0/_modules/cil/processors/Slicer/index.html b/v24.2.0/_modules/cil/processors/Slicer/index.html new file mode 100644 index 0000000000..d99e018b48 --- /dev/null +++ b/v24.2.0/_modules/cil/processors/Slicer/index.html @@ -0,0 +1,964 @@ + + + + + + + + + + cil.processors.Slicer — CIL 24.2.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + +
+ +
+ + + + + +
+
+ + + + + + +
+ + + + + + + + + + + + + +
+ +
+ + +
+
+ +
+
+ +
+ +
+ + +
+ +
+ + +
+
+ + + + + +
+ +

Source code for cil.processors.Slicer

+#  Copyright 2021 United Kingdom Research and Innovation
+#  Copyright 2021 The University of Manchester
+#
+#  Licensed under the Apache License, Version 2.0 (the "License");
+#  you may not use this file except in compliance with the License.
+#  You may obtain a copy of the License at
+#
+#      http://www.apache.org/licenses/LICENSE-2.0
+#
+#  Unless required by applicable law or agreed to in writing, software
+#  distributed under the License is distributed on an "AS IS" BASIS,
+#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+#  See the License for the specific language governing permissions and
+#  limitations under the License.
+#
+# Authors:
+# CIL Developers, listed at: https://github.com/TomographicImaging/CIL/blob/master/NOTICE.txt
+
+from cil.framework import (DataProcessor, AcquisitionData, ImageData, DataContainer, ImageGeometry, VectorGeometry,
+                           AcquisitionGeometry)
+import numpy as np
+import weakref
+import logging
+
+log = logging.getLogger(__name__)
+
+
+# Note to developers: Binner and Slicer share a lot of common code
+# so Binner has been implemented as a child of Slicer.  This makes use
+# of commonality and redefines only the methods that differ. These methods
+# dictate the style of slicer
+
+[docs] +class Slicer(DataProcessor): + + """This creates a Slicer processor. + + The processor will crop the data, and then return every n input pixels along a dimension from the starting index. + + The output will be a data container with the data, and geometry updated to reflect the operation. + + Parameters + ---------- + + roi : dict + The region-of-interest to slice {'axis_name1':(start,stop,step), 'axis_name2':(start,stop,step)} + The `key` being the axis name to apply the processor to, the `value` holding a tuple containing the ROI description + + Start: Starting index of input data. Must be an integer, or `None` defaults to index 0. + Stop: Stopping index of input data. Must be an integer, or `None` defaults to index N. + Step: Number of pixels to average together. Must be an integer or `None` defaults to 1. + + + Example + ------- + + >>> from cil.processors import Slicer + >>> roi = {'horizontal':(10,-10,2),'vertical':(10,-10,2)} + >>> processor = Slicer(roi) + >>> processor.set_input(data) + >>> data_sliced= processor.get_output() + + + Example + ------- + >>> from cil.processors import Slicer + >>> roi = {'horizontal':(None,None,2),'vertical':(None,None,2)} + >>> processor = Slicer(roi) + >>> processor.set_input(data.geometry) + >>> geometry_sliced = processor.get_output() + + + Note + ---- + The indices provided are start inclusive, stop exclusive. + + All elements along a dimension will be included if the axis does not appear in the roi dictionary, or if passed as {'axis_name',-1} + + If only one number is provided, then it is interpreted as Stop. i.e. {'axis_name1':(stop)} + If two numbers are provided, then they are interpreted as Start and Stop i.e. {'axis_name1':(start, stop)} + + Negative indexing can be used to specify the index. i.e. {'axis_name1':(10, -10)} will crop the dimension symmetrically + + If Stop - Start is not multiple of Step, then + the resulted dimension will have (Stop - Start) // Step + elements, i.e. (Stop - Start) % Step elements will be ignored + + """ + + def __init__(self, + roi = None): + + kwargs = { + '_roi_input': roi, + '_roi_ordered':None, + '_data_array': False, + '_geometry': None, + '_processed_dims':None, + '_shape_in':None, + '_shape_out_full':None, + '_shape_out':None, + '_labels_out':None, + '_labels_in':None, + '_pixel_indices':None, + '_accelerated': True + } + + super(Slicer, self).__init__(**kwargs) + + +
+[docs] + def set_input(self, dataset): + """ + Set the input data or geometry to the processor + + Parameters + ---------- + dataset : DataContainer, Geometry + The input DataContainer or Geometry + """ + + if issubclass(type(dataset), DataContainer) or isinstance(dataset,(AcquisitionGeometry,ImageGeometry)): + if self.check_input(dataset): + self.__dict__['input'] = weakref.ref(dataset) + self.__dict__['shouldRun'] = True + else: + raise ValueError('Input data not compatible') + else: + raise TypeError("Input type mismatch: got {0} expecting {1}"\ + .format(type(dataset), DataContainer)) + + self._set_up()
+ + + def check_input(self, data): + + if isinstance(data, (ImageData,AcquisitionData)): + self._data_array = True + self._geometry = data.geometry + + elif isinstance(data, DataContainer): + self._data_array = True + self._geometry = None + + elif isinstance(data, (ImageGeometry, AcquisitionGeometry)): + self._data_array = False + self._geometry = data + + else: + raise TypeError('Processor supports following data types:\n' + + ' - ImageData\n - AcquisitionData\n - DataContainer\n - ImageGeometry\n - AcquisitionGeometry') + + if self._data_array: + if data.dtype != np.float32: + raise TypeError("Expected float32") + + if (self._roi_input == None): + raise ValueError('Please, specify roi') + + for key in self._roi_input.keys(): + if key not in data.dimension_labels: + raise ValueError('Wrong label is specified for roi, expected one of {}.'.format(data.dimension_labels)) + + return True + + + def _set_up(self): + """ + This parses the input roi generically and then configures the processor according to its class. + """ + #read input + data = self.get_input() + self._parse_roi(data.ndim, data.shape, data.dimension_labels) + #processor specific configurations + self._configure() + # set boolean of dimensions to process + self._processed_dims = [0 if self._shape_out_full[i] == self._shape_in[i] else 1 for i in range(4)] + self._shape_out = tuple([i for i in self._shape_out_full if i > 1]) + self._labels_out = [self._labels_in[i] for i,x in enumerate(self._shape_out_full) if x > 1] + + def _parse_roi(self, ndim, shape, dimension_labels): + ''' + Process the input roi + ''' + offset = 4-ndim + labels_in = [None]*4 + labels_in[offset::] = dimension_labels + shape_in = [1]*4 + shape_in[offset::] = shape + + # defaults + range_list = [range(0,x, 1) for x in shape_in] + + for i in range(ndim): + + roi = self._roi_input.get(dimension_labels[i],None) + + if roi == None or roi == -1: + continue + + start = range_list[offset + i].start + stop = range_list[offset + i].stop + step = range_list[offset + i].step + + # accepts a tuple, range or slice + try: + roi = [roi.start, roi.stop, roi.step] + except AttributeError: + roi = list(roi) + + length = len(roi) + + if length == 1: + if roi[0] is not None: + stop = roi[0] + elif length > 1: + if roi[0] is not None: + start = roi[0] + if roi[1] is not None: + stop = roi[1] + + if length > 2: + if roi[2] is not None: + step = roi[2] + + # deal with negative indexing + if start < 0: + start += shape_in[offset + i] + + if stop <= 0: + stop += shape_in[offset + i] + + if stop > shape_in[offset+i]: + log.warning(f"ROI for axis {dimension_labels[i]} has 'stop' out of bounds. Using axis length as stop value." + f" Got stop index: {stop}, using {shape_in[offset+i]}") + stop = shape_in[offset+i] + + if start > shape_in[offset+i]: + raise ValueError(f"ROI for axis {dimension_labels[i]} has 'start' out of bounds." + f" Got start index: {start} for axis length {shape_in[offset+i]}") + + if start >= stop: + raise ValueError(f"ROI for axis {dimension_labels[i]} has 'start' out of bounds." + f" Got start index: {start}, stop index {stop}") + + # set values + range_list[offset+ i] = range(int(start), int(stop), int(step)) + + # set values + self._shape_in = shape_in + self._labels_in = labels_in + self._roi_ordered = range_list + + + def _configure(self): + """ + Once the ROI has been parsed this configure the input specifically for use with Slicer + """ + self._shape_out_full = [len(x) for x in self._roi_ordered] + self._pixel_indices = [(x[0],x[-1]) for x in self._roi_ordered] + + + def _get_slice_position(self, roi): + """ + Return the vertical position to extract a single slice for sliced geometry + """ + return roi.start + + + def _get_angles(self, roi): + """ + Returns the sliced angles according to the roi + """ + return self._geometry.angles[roi.start:roi.stop:roi.step] + + def _process_acquisition_geometry(self): + """ + Creates the new acquisition geometry + """ + geometry_new = self._geometry.copy() + + processed_dims = self._processed_dims.copy() + + # deal with vertical first as it may change the geometry type + if 'vertical' in self._geometry.dimension_labels: + vert_ind = self._labels_in.index('vertical') + if processed_dims[vert_ind]: + roi = self._roi_ordered[vert_ind] + n_elements = len(roi) + + if n_elements > 1: + # difference in end indices, minus differences in start indices, divided by 2 + pixel_offset = ((self._shape_in[vert_ind] -1 - self._pixel_indices[vert_ind][1]) - self._pixel_indices[vert_ind][0])*0.5 + geometry_new.config.shift_detector_in_plane(pixel_offset, 'vertical') + geometry_new.config.panel.num_pixels[1] = n_elements + else: + try: + position = self._get_slice_position(roi) + geometry_new = geometry_new.get_slice(vertical = position) + except ValueError: + log.warning("Unable to calculate the requested 2D geometry. Returning geometry=`None`") + return None + + geometry_new.config.panel.pixel_size[1] *= roi.step + processed_dims[vert_ind] = False + + + for i, axis in enumerate(self._labels_in): + + if not processed_dims[i]: + continue + + roi = self._roi_ordered[i] + n_elements = len(roi) + + if axis == 'channel': + geometry_new.set_channels(num_channels=n_elements) + + elif axis == 'angle': + + geometry_new.config.angles.angle_data = self._get_angles(roi) + + elif axis == 'horizontal': + pixel_offset = ((self._shape_in[i] -1 - self._pixel_indices[i][1]) - self._pixel_indices[i][0])*0.5 + + geometry_new.config.shift_detector_in_plane(pixel_offset, axis) + geometry_new.config.panel.num_pixels[0] = n_elements + geometry_new.config.panel.pixel_size[0] *= roi.step + + return geometry_new + + + def _process_image_geometry(self): + """ + Creates the new image geometry + """ + + if len(self._shape_out) == 0: + return None + elif len(self._shape_out) ==1: + return VectorGeometry(self._shape_out[0], dimension_labels=self._labels_out[0]) + + geometry_new = self._geometry.copy() + for i, axis in enumerate(self._labels_in): + + if not self._processed_dims[i]: + continue + + roi = self._roi_ordered[i] + n_elements = len(roi) + + voxel_offset = (self._shape_in[i] -1 - self._pixel_indices[i][1] - self._pixel_indices[i][0])*0.5 + + if axis == 'channel': + geometry_new.channels = n_elements + geometry_new.channel_spacing *= roi.step + + elif axis == 'vertical': + geometry_new.center_z -= voxel_offset * geometry_new.voxel_size_z + + geometry_new.voxel_num_z = n_elements + geometry_new.voxel_size_z *= roi.step + + elif axis == 'horizontal_x': + geometry_new.center_x -= voxel_offset * geometry_new.voxel_size_x + + geometry_new.voxel_num_x = n_elements + geometry_new.voxel_size_x *= roi.step + + elif axis == 'horizontal_y': + geometry_new.center_y -= voxel_offset * geometry_new.voxel_size_y + + geometry_new.voxel_num_y = n_elements + geometry_new.voxel_size_y *= roi.step + + return geometry_new + + + def _process_data(self, dc_in, dc_out): + """ + Slice the data array + """ + slice_obj = tuple([slice(x.start, x.stop, x.step) for x in self._roi_ordered]) + arr_in = dc_in.array.reshape(self._shape_in) + dc_out.fill(np.squeeze(arr_in[slice_obj])) + +
+[docs] + def process(self, out=None): + """ + Processes the input data + + Parameters + ---------- + out : ImageData, AcquisitionData, DataContainer, optional + Fills the referenced DataContainer with the processed output and suppresses the return + + Returns + ------- + DataContainer + The downsampled output is returned. Depending on the input type this may be: + ImageData, AcquisitionData, DataContainer, ImageGeometry, AcquisitionGeometry + """ + data = self.get_input() + + if isinstance(self._geometry, ImageGeometry): + new_geometry = self._process_image_geometry() + elif isinstance(self._geometry, AcquisitionGeometry): + new_geometry = self._process_acquisition_geometry() + else: + new_geometry = None + + # return if just acting on geometry + if not self._data_array: + return new_geometry + + # create output array or check size and shape of passed out + if out is None: + if new_geometry is not None: + data_out = new_geometry.allocate(None) + else: + processed_array = np.empty(self._shape_out,dtype=np.float32) + data_out = DataContainer(processed_array,False, self._labels_out) + else: + try: + out.array = np.asarray(out.array, dtype=np.float32, order='C').reshape(self._shape_out) + except: + raise ValueError("Array of `out` not compatible. Expected shape: {0}, data type: {1} Got shape: {2}, data type: {3}".format(self._shape_out, np.float32, out.array.shape, out.array.dtype)) + + if new_geometry is not None: + if out.geometry != new_geometry: + raise ValueError("Geometry of `out` not as expected. Got {0}, expected {1}".format(out.geometry, new_geometry)) + + data_out = out + + + self._process_data(data, data_out) + + + return data_out
+
+ +
+ +
+ + + + + +
+ +
+
+
+ +
+ + + + +
+
+ +
+ +
+
+
+ + + + + +
+ + +
+ + \ No newline at end of file diff --git a/v24.2.0/_modules/cil/processors/TransmissionAbsorptionConverter/index.html b/v24.2.0/_modules/cil/processors/TransmissionAbsorptionConverter/index.html new file mode 100644 index 0000000000..cfb96f5428 --- /dev/null +++ b/v24.2.0/_modules/cil/processors/TransmissionAbsorptionConverter/index.html @@ -0,0 +1,612 @@ + + + + + + + + + + cil.processors.TransmissionAbsorptionConverter — CIL 24.2.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + +
+ +
+ + + + + +
+
+ + + + + + +
+ + + + + + + + + + + + + +
+ +
+ + +
+
+ +
+
+ +
+ +
+ + +
+ +
+ + +
+
+ + + + + +
+ +

Source code for cil.processors.TransmissionAbsorptionConverter

+#  Copyright 2021 United Kingdom Research and Innovation
+#  Copyright 2021 The University of Manchester
+#
+#  Licensed under the Apache License, Version 2.0 (the "License");
+#  you may not use this file except in compliance with the License.
+#  You may obtain a copy of the License at
+#
+#      http://www.apache.org/licenses/LICENSE-2.0
+#
+#  Unless required by applicable law or agreed to in writing, software
+#  distributed under the License is distributed on an "AS IS" BASIS,
+#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+#  See the License for the specific language governing permissions and
+#  limitations under the License.
+#
+# Authors:
+# CIL Developers, listed at: https://github.com/TomographicImaging/CIL/blob/master/NOTICE.txt
+
+from cil.framework import DataProcessor, AcquisitionData, ImageData, DataContainer
+import warnings
+import numpy
+
+
+
+[docs] +class TransmissionAbsorptionConverter(DataProcessor): + + r'''Processor to convert from transmission measurements to absorption + based on the Beer-Lambert law + + :param white_level: A float defining incidence intensity in the Beer-Lambert law. + :type white_level: float, optional + :param min_intensity: A float defining some threshold to avoid 0 in log, is applied after normalisation by white_level + :type min_intensity: float, optional + :return: returns AcquisitionData, ImageData or DataContainer depending on input data type, return is suppressed if 'out' is passed + :rtype: AcquisitionData, ImageData or DataContainer + + Processor first divides by white_level (default=1) and then take negative logarithm. + Elements below threshold (after division by white_level) are set to threshold. + ''' + + def __init__(self, + min_intensity = 0.0, + white_level = 1.0 + ): + + kwargs = {'min_intensity': min_intensity, + 'white_level': white_level} + + super(TransmissionAbsorptionConverter, self).__init__(**kwargs) + + def check_input(self, data): + + if not (issubclass(type(data), DataContainer)): + raise TypeError('Processor supports only following data types:\n' + + ' - ImageData\n - AcquisitionData\n' + + ' - DataContainer') + + if data.min() <= 0 and self.min_intensity <= 0: + raise ValueError('Zero or negative values found in the dataset. Please use `min_intensity` to provide a clipping value.') + + return True + + def process(self, out=None): + + data = self.get_input() + + if out is None: + out = data.geometry.allocate(None) + + arr_in = data.as_array() + arr_out = out.as_array() + + #whitelevel + if self.white_level != 1: + numpy.divide(arr_in, self.white_level, out=arr_out) + arr_in = arr_out + + #threshold + if self.min_intensity > 0: + numpy.clip(arr_in, self.min_intensity, None, out=arr_out) + arr_in = arr_out + + #beer-lambert + numpy.log(arr_in,out=arr_out) + numpy.negative(arr_out,out=arr_out) + + out.fill(arr_out) + + return out
+ +
+ +
+ + + + + +
+ +
+
+
+ +
+ + + + +
+
+ +
+ +
+
+
+ + + + + +
+ + +
+ + \ No newline at end of file diff --git a/v24.2.0/_modules/cil/recon/FBP/index.html b/v24.2.0/_modules/cil/recon/FBP/index.html new file mode 100644 index 0000000000..3090213507 --- /dev/null +++ b/v24.2.0/_modules/cil/recon/FBP/index.html @@ -0,0 +1,1217 @@ + + + + + + + + + + cil.recon.FBP — CIL 24.2.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + +
+ +
+ + + + + +
+
+ + + + + + +
+ + + + + + + + + + + + + +
+ +
+ + +
+
+ +
+
+ +
+ +
+ + +
+ +
+ + +
+
+ + + + + +
+ +

Source code for cil.recon.FBP

+#  Copyright 2021 United Kingdom Research and Innovation
+#  Copyright 2021 The University of Manchester
+#
+#  Licensed under the Apache License, Version 2.0 (the "License");
+#  you may not use this file except in compliance with the License.
+#  You may obtain a copy of the License at
+#
+#      http://www.apache.org/licenses/LICENSE-2.0
+#
+#  Unless required by applicable law or agreed to in writing, software
+#  distributed under the License is distributed on an "AS IS" BASIS,
+#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+#  See the License for the specific language governing permissions and
+#  limitations under the License.
+#
+# Authors:
+# CIL Developers, listed at: https://github.com/TomographicImaging/CIL/blob/master/NOTICE.txt
+
+from cil.framework import cilacc
+from cil.framework.labels import AcquisitionType
+from cil.recon import Reconstructor
+from scipy.fft import fftfreq
+
+import numpy as np
+import ctypes
+from tqdm import tqdm
+import matplotlib.pyplot as plt
+
+c_float_p = ctypes.POINTER(ctypes.c_float)
+c_double_p = ctypes.POINTER(ctypes.c_double)
+
+try:
+    cilacc.filter_projections_avh
+    has_ipp = True
+except AttributeError:
+    has_ipp = False
+
+if has_ipp:
+    cilacc.filter_projections_avh.argtypes = [ctypes.POINTER(ctypes.c_float),  # pointer to the data array
+                                    ctypes.POINTER(ctypes.c_float),  # pointer to the filter array
+                                    ctypes.POINTER(ctypes.c_float),  # pointer to the weights array
+                                    ctypes.c_int16, #order of the fft
+                                    ctypes.c_long, #num_proj
+                                    ctypes.c_long, #pix_v
+                                    ctypes.c_long] #pix_x
+
+    cilacc.filter_projections_vah.argtypes = [ctypes.POINTER(ctypes.c_float),  # pointer to the data array
+                                    ctypes.POINTER(ctypes.c_float),  # pointer to the filter array
+                                    ctypes.POINTER(ctypes.c_float),  # pointer to the weights array
+                                    ctypes.c_int16, #order of the fft
+                                    ctypes.c_long, #pix_v
+                                    ctypes.c_long, #num_proj
+                                    ctypes.c_long] #pix_x
+
+class GenericFilteredBackProjection(Reconstructor):
+    """
+    Abstract Base Class GenericFilteredBackProjection holding common and virtual methods for FBP and FDK
+    """
+
+    @property
+    def filter(self):
+        return self._filter
+
+    @property
+    def filter_inplace(self):
+        return self._filter_inplace
+
+    @property
+    def fft_order(self):
+        return self._fft_order
+
+    def __init__ (self, input, image_geometry=None, filter='ram-lak', backend='tigre'):
+
+        #call parent initialiser
+        super().__init__(input, image_geometry, backend)
+
+        if not has_ipp:
+            raise ImportError("IPP libraries not found. Cannot use CIL FBP")
+
+        #additional check
+        if 'channel' in input.dimension_labels:
+            raise ValueError("Input data cannot be multi-channel")
+
+
+        #define defaults
+        self._fft_order = self._default_fft_order()
+        self.set_filter(filter)
+        self.set_filter_inplace(False)
+        self._weights = None
+
+
+    def set_filter_inplace(self, inplace=False):
+        """
+        False (default) will allocate temporary memory for filtered projections.
+        True will filter projections in-place.
+
+        Parameters
+        ----------
+        inplace: boolean
+            Sets the inplace filtering of projections
+        """
+        if type(inplace) is bool:
+            self._filter_inplace= inplace
+        else:
+            raise TypeError("set_filter_inplace expected a boolean. Got {}".format(type(inplace)))
+
+
+    def _default_fft_order(self):
+        min_order = 0
+
+        while 2**min_order < self.acquisition_geometry.pixel_num_h * 2:
+            min_order+=1
+
+        min_order = max(8, min_order)
+        return min_order
+
+
+    def set_fft_order(self, order=None):
+        """
+        The width of the fourier transform N=2^order.
+
+        Parameters
+        ----------
+        order: int, optional
+            The width of the fft N=2^order
+
+        Notes
+        -----
+        If `None` the default used is the power-of-2 greater than 2 * detector width, or 8, whichever is greater
+        Higher orders will yield more accurate results but increase computation time.
+        """
+        min_order = self._default_fft_order()
+
+        if order is None:
+            fft_order = min_order
+        else:
+            try:
+                fft_order = int(order)
+            except TypeError:
+                raise TypeError("fft order expected type `int`. Got{}".format(type(order)))
+
+        if fft_order < min_order:
+            raise ValueError("Minimum fft width 2^order is order = {0}. Got{1}".format(min_order,order))
+
+        if fft_order != self.fft_order:
+            self._fft_order = fft_order
+
+            if self.filter=='custom':
+                print("Filter length changed - please update your custom filter")
+            else:
+                #create default filter type of new length
+                self.set_filter(self._filter)
+
+    @property
+    def preset_filters(self):
+        return ['ram-lak', 'shepp-logan', 'cosine', 'hamming', 'hann']
+
+
+    def set_filter(self, filter='ram-lak', cutoff=1.0):
+        """
+        Set the filter used by the reconstruction.
+
+        Pre-set filters are constructed in the frequency domain.
+        Pre-set filters are: 'ram-lak', 'shepp-logan', 'cosine', 'hamming', 'hann'
+
+        Parameters
+        ----------
+        filter : string, numpy.ndarray, default='ram-lak'
+            Pass a string selecting from the list of pre-set filters, or pass a numpy.ndarray with a custom filter.
+        cutoff : float, default = 1
+            The cut-off frequency of the filter between 0 - 1 pi rads/pixel. The filter will be 0 outside the range rect(-frequency_cutoff, frequency_cutoff)
+
+        Notes
+        -----
+        If passed a numpy array the filter must have length N = 2^self.fft_order
+
+        The indices of the array are interpreted as:
+
+        - [0] The DC frequency component
+        - [1:N/2] positive frequencies
+        - [N/2:N-1] negative frequencies
+        """
+
+
+        if type(filter)==str and filter in self.preset_filters:
+            self._filter = filter
+            self._filter_cutoff = cutoff
+            self._filter_array = None
+
+        elif type(filter)==np.ndarray:
+            try:
+                filter_array = np.asarray(filter,dtype=np.float32).reshape(2**self.fft_order)
+                self._filter_array = filter_array.copy()
+                self._filter = 'custom'
+            except ValueError:
+                raise ValueError("Custom filter not compatible with input.")
+        else:
+            raise ValueError("Filter not recognised")
+
+
+    def get_filter_array(self):
+        """
+        Returns the filter array in the frequency domain.
+
+        Returns
+        -------
+        numpy.ndarray
+            An array containing the filter values
+
+        Notes
+        -----
+        The filter length N is 2^self.fft_order.
+
+        The indices of the array are interpreted as:
+
+        - [0] The DC frequency component
+        - [1:N/2] positive frequencies
+        - [N/2:N-1] negative frequencies
+
+        The array can be modified and passed back using set_filter()
+
+
+        Notes
+        -----
+
+        Filter reference in frequency domain:
+        Eq. 1.12 - 1.15 T. M. Buzug. Computed Tomography: From Photon Statistics to Modern Cone-Beam CT. Berlin: Springer, 2008.
+
+        Plantagie, L. Algebraic filters for filtered backprojection, 2017
+        https://hdl.handle.net/1887/48289
+        """
+
+        if self._filter == 'custom':
+            return self._filter_array
+
+        filter_length = 2**self.fft_order
+
+        # frequency bins in cycles/pixel
+        freq = fftfreq(filter_length)
+        # in pi rad/pixel
+        freq*=2
+
+        ramp = abs(freq)
+        ramp[ramp>self._filter_cutoff]=0
+
+        if self._filter == 'ram-lak':
+            filter_array = ramp
+        if self._filter == 'shepp-logan':
+            filter_array = ramp * np.sinc(freq/2)
+        elif self._filter == 'cosine':
+            filter_array = ramp * np.cos(freq*np.pi/2)
+        elif self._filter == 'hamming':
+            filter_array = ramp * (0.54 + 0.46 * np.cos(freq*np.pi))
+        elif self._filter == 'hann':
+            filter_array = ramp * (0.5 + 0.5 * np.cos(freq*np.pi))
+
+        return np.asarray(filter_array,dtype=np.float32).reshape(2**self.fft_order)
+
+
+    def plot_filter(self):
+        """
+        Returns a plot of the filter array.
+
+        Returns
+        -------
+        matplotlib.pyplot
+            A plot of the filter
+        """
+        filter_array = self.get_filter_array()
+        filter_length = 2**self.fft_order
+        freq = fftfreq(filter_length)
+        freq *= 2
+        ind_sorted = np.argsort(freq)
+        plt.plot(freq[ind_sorted], filter_array[ind_sorted], label=self._filter, color='magenta')
+        plt.xlabel('Frequency (rads/pixel)')
+        plt.ylabel('Magnitude')
+        theta = np.linspace(-1, 1, 9, True)
+        plt.xticks(theta, ['-π', '-3π/4', '-π/2', '-π/4', '0', 'π/4', 'π/2', '3π/4', 'π'])
+        plt.legend()
+        return plt
+
+
+    def _calculate_weights(self):
+        return NotImplementedError
+
+
+    def _pre_filtering(self,acquistion_data):
+        """
+        Filters and weights the projections inplace
+
+        Parameters
+        ----------
+        acquistion_data : AcquisitionData
+            The projections to be filtered
+
+        Notes
+        -----
+        self.input is not used to allow processing in smaller chunks
+
+        """
+        if self._weights is None or self._weights.shape[0] != acquistion_data.geometry.pixel_num_v:
+            self._calculate_weights(acquistion_data.geometry)
+
+        if self._weights.shape[1] != acquistion_data.shape[-1]: #horizontal
+            raise ValueError("Weights not compatible")
+
+        filter_array = self.get_filter_array()
+        if filter_array.size != 2**self.fft_order:
+            raise ValueError("Custom filter has length {0} and is not compatible with requested fft_order {1}. Expected filter length 2^{1}"\
+                            .format(filter_array.size,self.fft_order))
+
+        #call ext function
+        data_ptr = acquistion_data.array.ctypes.data_as(c_float_p)
+        filter_ptr = filter_array.ctypes.data_as(c_float_p)
+        weights_ptr = self._weights.ctypes.data_as(c_float_p)
+
+        ag = acquistion_data.geometry
+        if ag.dimension_labels == ('angle','vertical','horizontal'):
+            cilacc.filter_projections_avh(data_ptr, filter_ptr, weights_ptr, self.fft_order, *acquistion_data.shape)
+        elif ag.dimension_labels == ('vertical','angle','horizontal'):
+            cilacc.filter_projections_vah(data_ptr, filter_ptr, weights_ptr, self.fft_order, *acquistion_data.shape)
+        elif ag.dimension_labels == ('angle','horizontal'):
+            cilacc.filter_projections_vah(data_ptr, filter_ptr, weights_ptr, self.fft_order, 1, *acquistion_data.shape)
+        elif ag.dimension_labels == ('vertical','horizontal'):
+            cilacc.filter_projections_avh(data_ptr, filter_ptr, weights_ptr, self.fft_order, 1, *acquistion_data.shape)
+        else:
+            raise ValueError ("Could not determine correct function call from dimension labels")
+
+
+    def reset(self):
+        """
+        Resets all optional configuration parameters to their default values
+        """
+        self.set_filter()
+        self.set_fft_order()
+        self.set_filter_inplace()
+        self.set_image_geometry()
+        self._weights = None
+
+
+    def run(self, out=None):
+        NotImplementedError
+
+
+
+[docs] +class FDK(GenericFilteredBackProjection): + + """ + Creates an FDK reconstructor based on your cone-beam acquisition data using TIGRE as a backend. + + Parameters + ---------- + input : AcquisitionData + The input data to reconstruct. The reconstructor is set-up based on the geometry of the data. + + image_geometry : ImageGeometry, default used if None + A description of the area/volume to reconstruct + + filter : string, numpy.ndarray, default='ram-lak' + The filter to be applied. Can be a string from: {'`ram-lak`', '`shepp-logan`', '`cosine`', '`hamming`', '`hann`'}, or a numpy array. + + Example + ------- + >>> from cil.utilities.dataexample import SIMULATED_CONE_BEAM_DATA + >>> from cil.recon import FDK + >>> data = SIMULATED_CONE_BEAM_DATA.get() + >>> fdk = FDK(data) + >>> out = fdk.run() + + Notes + ----- + The reconstructor can be futher customised using additional 'set' methods provided. + """ + supported_backends = ['tigre'] + + def __init__ (self, input, image_geometry=None, filter='ram-lak'): + #call parent initialiser + super().__init__(input, image_geometry, filter, backend='tigre') + + if not AcquisitionType.CONE & input.geometry.geom_type: + raise TypeError("This reconstructor is for cone-beam data only.") + + + def _calculate_weights(self, acquisition_geometry): + ag = acquisition_geometry + xv = np.arange(-(ag.pixel_num_h -1)/2,(ag.pixel_num_h -1)/2 + 1,dtype=np.float32) * ag.pixel_size_h + yv = np.arange(-(ag.pixel_num_v -1)/2,(ag.pixel_num_v -1)/2 + 1,dtype=np.float32) * ag.pixel_size_v + (yy, xx) = np.meshgrid(xv, yv) + + principal_ray_length = ag.dist_source_center + ag.dist_center_detector + scaling = 0.25 * ag.magnification * (2 * np.pi/ ag.num_projections) / ag.pixel_size_h + self._weights = scaling * principal_ray_length / np.sqrt((principal_ray_length ** 2 + xx ** 2 + yy ** 2)) + + +
+[docs] + def run(self, out=None, verbose=1): + """ + Runs the configured FDK recon and returns the reconstruction. + + Parameters + ---------- + out : ImageData, optional + Fills the referenced ImageData with the reconstructed volume and suppresses the return + verbose : int, default=1 + Controls the verbosity of the reconstructor. 0: No output is logged, 1: Full configuration is logged + + Returns + ------- + ImageData + The reconstructed volume. Suppressed if `out` is passed + """ + + if verbose: + print(self) + + if self.filter_inplace is False: + proj_filtered = self.input.copy() + else: + proj_filtered = self.input + + self._pre_filtering(proj_filtered) + operator = self._PO_class(self.image_geometry,self.acquisition_geometry,adjoint_weights='FDK') + + if out is None: + return operator.adjoint(proj_filtered) + else: + operator.adjoint(proj_filtered, out = out)
+ + + + def __str__(self): + + repres = "FDK recon\n" + + repres += self._str_data_size() + + repres += "\nReconstruction Options:\n" + repres += "\tBackend: {}\n".format(self._backend) + repres += "\tFilter: {}\n".format(self._filter) + if self._filter != 'custom': + repres += "\tFilter cut-off frequency: {}\n".format(self._filter_cutoff) + repres += "\tFFT order: {}\n".format(self._fft_order) + repres += "\tFilter_inplace: {}\n".format(self._filter_inplace) + + return repres
+ + +
+[docs] +class FBP(GenericFilteredBackProjection): + + """ + Creates an FBP reconstructor based on your parallel-beam acquisition data. + + Parameters + ---------- + input : AcquisitionData + The input data to reconstruct. The reconstructor is set-up based on the geometry of the data. + + image_geometry : ImageGeometry, default used if None + A description of the area/volume to reconstruct + + filter : string, numpy.ndarray, default='ram-lak' + The filter to be applied. Can be a string from: {'`ram-lak`', '`shepp-logan`', '`cosine`', '`hamming`', '`hann`'}, or a numpy array. + + backend : string + The backend to use, can be 'astra' or 'tigre'. Data must be in the correct order for requested backend. + + Example + ------- + >>> from cil.utilities.dataexample import SIMULATED_PARALLEL_BEAM_DATA + >>> from cil.recon import FBP + >>> data = SIMULATED_PARALLEL_BEAM_DATA.get() + >>> fbp = FBP(data) + >>> out = fbp.run() + + Notes + ----- + The reconstructor can be further customised using additional 'set' methods provided. + """ + + supported_backends = ['tigre', 'astra'] + + @property + def slices_per_chunk(self): + return self._slices_per_chunk + + + def __init__ (self, input, image_geometry=None, filter='ram-lak', backend='tigre'): + + super().__init__(input, image_geometry, filter, backend) + self.set_split_processing(False) + + if not AcquisitionType.PARALLEL & input.geometry.geom_type: + raise TypeError("This reconstructor is for parallel-beam data only.") + + +
+[docs] + def set_split_processing(self, slices_per_chunk=0): + """ + Splits the processing in to chunks. Default, 0 will process the data in a single call. + + Parameters + ---------- + out : slices_per_chunk, optional + Process the data in chunks of n slices. It is recommended to use value of power-of-two. + + Notes + ----- + This will reduce memory use but may increase computation time. + It is recommended to tune it too your hardware requirements using 8, 16 or 32 slices. + + This can only be used on simple and offset data-geometries. + """ + + try: + num_slices = int(slices_per_chunk) + except: + num_slices = 0 + + if num_slices >= self.acquisition_geometry.pixel_num_v: + num_slices = self.acquisition_geometry.pixel_num_v + + self._slices_per_chunk = num_slices
+ + + + def _calculate_weights(self, acquisition_geometry): + + ag = acquisition_geometry + scaling = 0.25 * (2 * np.pi/ ag.num_projections) / ag.pixel_size_h + + if self.backend=='astra': + scaling /= ag.pixel_size_v + self._weights = np.full((ag.pixel_num_v,ag.pixel_num_h),scaling,dtype=np.float32) + + + def _setup_PO_for_chunks(self, num_slices): + + if num_slices > 1: + ag_slice = self.acquisition_geometry.copy() + ag_slice.pixel_num_v = num_slices + else: + ag_slice = self.acquisition_geometry.get_slice(vertical=0) + + ig_slice = ag_slice.get_ImageGeometry() + self.data_slice = ag_slice.allocate() + self.operator = self._PO_class(ig_slice,ag_slice) + + def _process_chunk(self, i, step): + self.data_slice.fill(np.squeeze(self.input.array[:,i:i+step,:])) + if not self.filter_inplace: + self._pre_filtering(self.data_slice) + + return self.operator.adjoint(self.data_slice).array + + +
+[docs] + def run(self, out=None, verbose=1): + """ + Runs the configured FBP recon and returns the reconstruction + + Parameters + ---------- + out : ImageData, optional + Fills the referenced ImageData with the reconstructed volume and suppresses the return + + verbose : int, default=1 + Controls the verbosity of the reconstructor. 0: No output is logged, 1: Full configuration is logged + + Returns + ------- + ImageData + The reconstructed volume. Suppressed if `out` is passed + """ + if verbose: + print(self) + + if self.slices_per_chunk: + if AcquisitionType.DIM2 & self.acquisition_geometry.dimension: + raise ValueError("Only 3D datasets can be processed in chunks with `set_split_processing`") + elif self.acquisition_geometry.system_description == 'advanced': + raise ValueError("Only simple and offset geometries can be processed in chunks with `set_split_processing`") + elif self.acquisition_geometry.get_ImageGeometry() != self.image_geometry: + raise ValueError("Only default image geometries can be processed in chunks `set_split_processing`") + + if out is None: + ret = self.image_geometry.allocate() + else: + ret = out + + if self.filter_inplace: + self._pre_filtering(self.input) + + tot_slices = self.acquisition_geometry.pixel_num_v + remainder = tot_slices % self.slices_per_chunk + num_chunks = int(np.ceil(self.image_geometry.shape[0] / self._slices_per_chunk)) + + if verbose: + pbar = tqdm(total=num_chunks) + + #process dataset by requested chunk size + self._setup_PO_for_chunks(self.slices_per_chunk) + for i in range(0, tot_slices-remainder, self.slices_per_chunk): + + if 'bottom' in self.acquisition_geometry.config.panel.origin: + start = i + end = i + self.slices_per_chunk + else: + start = tot_slices -i - self.slices_per_chunk + end = tot_slices - i + + ret.array[start:end,:,:] = self._process_chunk(i, self.slices_per_chunk) + + if verbose: + pbar.update(1) + + #process excess rows + if remainder: + self._setup_PO_for_chunks(remainder) + + if 'bottom' in self.acquisition_geometry.config.panel.origin: + start = tot_slices-remainder + end = tot_slices + else: + start = 0 + end = remainder + + ret.array[start:end,:,:] = self._process_chunk(i, remainder) + + if verbose: + pbar.update(1) + + if verbose: + pbar.close() + + if out is None: + return ret + + else: + + if self.filter_inplace is False: + proj_filtered = self.input.copy() + else: + proj_filtered = self.input + + self._pre_filtering(proj_filtered) + + operator = self._PO_class(self.image_geometry,self.acquisition_geometry) + + if out is None: + return operator.adjoint(proj_filtered) + else: + operator.adjoint(proj_filtered, out = out)
+ + + +
+[docs] + def reset(self): + """ + Resets all optional configuration parameters to their default values + """ + super().reset() + self.set_split_processing(0)
+ + + + def __str__(self): + + repres = "FBP recon\n" + + repres += self._str_data_size() + + repres += "\nReconstruction Options:\n" + repres += "\tBackend: {}\n".format(self._backend) + repres += "\tFilter: {}\n".format(self._filter) + if self._filter != 'custom': + repres += "\tFilter cut-off frequency: {}\n".format(self._filter_cutoff) + repres += "\tFFT order: {}\n".format(self._fft_order) + repres += "\tFilter_inplace: {}\n".format(self._filter_inplace) + repres += "\tSplit processing: {}\n".format(self._slices_per_chunk) + + if self._slices_per_chunk: + num_chunks = int(np.ceil(self.image_geometry.shape[0] / self._slices_per_chunk)) + else: + num_chunks = 1 + + repres +="\nReconstructing in {} chunk(s):\n".format(num_chunks) + + return repres
+ +
+ +
+ + + + + +
+ +
+
+
+ +
+ + + + +
+
+ +
+ +
+
+
+ + + + + +
+ + +
+ + \ No newline at end of file diff --git a/v24.2.0/_modules/cil/utilities/dataexample/index.html b/v24.2.0/_modules/cil/utilities/dataexample/index.html new file mode 100644 index 0000000000..eddfa6a846 --- /dev/null +++ b/v24.2.0/_modules/cil/utilities/dataexample/index.html @@ -0,0 +1,1270 @@ + + + + + + + + + + cil.utilities.dataexample — CIL 24.2.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + +
+ +
+ + + + + +
+
+ + + + + + +
+ + + + + + + + + + + + + +
+ +
+ + +
+
+ +
+
+ +
+ +
+ + +
+ +
+ + +
+
+ + + + + +
+ +

Source code for cil.utilities.dataexample

+#  Copyright 2019 United Kingdom Research and Innovation
+#  Copyright 2019 The University of Manchester
+#
+#  Licensed under the Apache License, Version 2.0 (the "License");
+#  you may not use this file except in compliance with the License.
+#  You may obtain a copy of the License at
+#
+#      http://www.apache.org/licenses/LICENSE-2.0
+#
+#  Unless required by applicable law or agreed to in writing, software
+#  distributed under the License is distributed on an "AS IS" BASIS,
+#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+#  See the License for the specific language governing permissions and
+#  limitations under the License.
+#
+# Authors:
+# CIL Developers, listed at: https://github.com/TomographicImaging/CIL/blob/master/NOTICE.txt
+
+from cil.framework import ImageGeometry
+from cil.framework.labels import ImageDimension
+import numpy
+import numpy as np
+from PIL import Image
+import os
+import os.path
+import sys
+from zipfile import ZipFile
+from scipy.io import loadmat
+from cil.io import NEXUSDataReader, NikonDataReader, ZEISSDataReader
+from zenodo_get import zenodo_get
+
+class DATA(object):
+    @classmethod
+    def dfile(cls):
+        return None
+
+class CILDATA(DATA):
+    data_dir = os.path.abspath(os.path.join(sys.prefix, 'share','cil'))
+    @classmethod
+    def get(cls, size=None, scale=(0,1), **kwargs):
+        ddir = kwargs.get('data_dir', CILDATA.data_dir)
+        loader = TestData(data_dir=ddir)
+        return loader.load(cls.dfile(), size, scale, **kwargs)
+
+class REMOTEDATA(DATA):
+
+    FOLDER = ''
+    ZENODO_RECORD = ''
+    ZIP_FILE = ''
+
+    @classmethod
+    def get(cls, data_dir):
+        return None
+
+    @classmethod
+    def download_data(cls, data_dir, prompt=True):
+        '''
+        Download a dataset from a remote repository
+
+        Parameters
+        ----------
+        data_dir: str, optional
+           The path to the data directory where the downloaded data should be stored
+
+        '''
+        if os.path.isdir(os.path.join(data_dir, cls.FOLDER)):
+            print("Dataset folder already exists in " + data_dir)
+        else:
+            user_input = input("Are you sure you want to download {cls.ZIP_FILE} dataset from Zenodo record {cls.ZENODO_RECORD}? [Y/n]: ") if prompt else 'y'
+            if user_input.lower() not in ('y', 'yes'):
+                print('Download cancelled')
+                return False
+
+            zenodo_get([cls.ZENODO_RECORD, '-g', cls.ZIP_FILE, '-o', data_dir])
+            with ZipFile(os.path.join(data_dir, cls.ZIP_FILE), 'r') as zip_ref:
+                zip_ref.extractall(os.path.join(data_dir, cls.FOLDER))
+            os.remove(os.path.join(data_dir, cls.ZIP_FILE))
+            return True
+
+class BOAT(CILDATA):
+    @classmethod
+    def dfile(cls):
+        return TestData.BOAT
+class CAMERA(CILDATA):
+    @classmethod
+    def dfile(cls):
+        return TestData.CAMERA
+class PEPPERS(CILDATA):
+    @classmethod
+    def dfile(cls):
+        return TestData.PEPPERS
+class RESOLUTION_CHART(CILDATA):
+    @classmethod
+    def dfile(cls):
+        return TestData.RESOLUTION_CHART
+class SIMPLE_PHANTOM_2D(CILDATA):
+    @classmethod
+    def dfile(cls):
+        return TestData.SIMPLE_PHANTOM_2D
+class SHAPES(CILDATA):
+    @classmethod
+    def dfile(cls):
+        return TestData.SHAPES
+class RAINBOW(CILDATA):
+    @classmethod
+    def dfile(cls):
+        return TestData.RAINBOW
+
+[docs] +class SYNCHROTRON_PARALLEL_BEAM_DATA(CILDATA): +
+[docs] + @classmethod + def get(cls, **kwargs): + ''' + A DLS dataset + + Parameters + ---------- + data_dir: str, optional + The path to the data directory + + Returns + ------- + AcquisitionData + The DLS dataset + ''' + + ddir = kwargs.get('data_dir', CILDATA.data_dir) + loader = NEXUSDataReader() + loader.set_up(file_name=os.path.join(os.path.abspath(ddir), '24737_fd_normalised.nxs')) + return loader.read()
+
+ +
+[docs] +class SIMULATED_PARALLEL_BEAM_DATA(CILDATA): +
+[docs] + @classmethod + def get(cls, **kwargs): + ''' + A simulated parallel-beam dataset generated from SIMULATED_SPHERE_VOLUME + + Parameters + ---------- + data_dir: str, optional + The path to the data directory + + Returns + ------- + AcquisitionData + The simulated spheres dataset + ''' + + ddir = kwargs.get('data_dir', CILDATA.data_dir) + loader = NEXUSDataReader() + loader.set_up(file_name=os.path.join(os.path.abspath(ddir), 'sim_parallel_beam.nxs')) + return loader.read()
+
+ +
+[docs] +class SIMULATED_CONE_BEAM_DATA(CILDATA): +
+[docs] + @classmethod + def get(cls, **kwargs): + ''' + A cone-beam dataset generated from SIMULATED_SPHERE_VOLUME + + Parameters + ---------- + data_dir: str, optional + The path to the data directory + + Returns + ------- + AcquisitionData + The simulated spheres dataset + ''' + + ddir = kwargs.get('data_dir', CILDATA.data_dir) + loader = NEXUSDataReader() + loader.set_up(file_name=os.path.join(os.path.abspath(ddir), 'sim_cone_beam.nxs')) + return loader.read()
+
+ +class SIMULATED_SPHERE_VOLUME(CILDATA): + @classmethod + def get(cls, **kwargs): + ''' + A simulated volume of spheres + + Parameters + ---------- + data_dir: str, optional + The path to the data directory + + Returns + ------- + ImageData + The simulated spheres volume + ''' + ddir = kwargs.get('data_dir', CILDATA.data_dir) + loader = NEXUSDataReader() + loader.set_up(file_name=os.path.join(os.path.abspath(ddir), 'sim_volume.nxs')) + return loader.read() + +
+[docs] +class WALNUT(REMOTEDATA): + ''' + A microcomputed tomography dataset of a walnut from https://zenodo.org/records/4822516 + + Example + -------- + >>> data_dir = 'my_PC/data_folder' + >>> dataexample.WALNUT.download_data(data_dir) # download the data + >>> dataexample.WALNUT.get(data_dir) # load the data + ''' + FOLDER = 'walnut' + ZENODO_RECORD = '4822516' + ZIP_FILE = 'walnut.zip' + +
+[docs] + @classmethod + def get(cls, data_dir): + ''' + Get the microcomputed tomography dataset of a walnut from https://zenodo.org/records/4822516 + This function returns the raw projection data from the .txrm file + + Parameters + ---------- + data_dir: str + The path to the directory where the dataset is stored. Data can be downloaded with dataexample.WALNUT.download_data(data_dir) + + Returns + ------- + ImageData + The walnut dataset + ''' + filepath = os.path.join(data_dir, cls.FOLDER, 'valnut','valnut_2014-03-21_643_28','tomo-A','valnut_tomo-A.txrm') + try: + loader = ZEISSDataReader(file_name=filepath) + return loader.read() + except(FileNotFoundError): + raise(FileNotFoundError("Dataset .txrm file not found in specifed data_dir: {} \n \ + Specify a different data_dir or download data with dataexample.{}.download_data(data_dir)".format(filepath, cls.__name__)))
+
+ + +
+[docs] +class USB(REMOTEDATA): + ''' + A microcomputed tomography dataset of a usb memory stick from https://zenodo.org/records/4822516 + + Example + -------- + >>> data_dir = 'my_PC/data_folder' + >>> dataexample.USB.download_data(data_dir) # download the data + >>> dataexample.USB.get(data_dir) # load the data + ''' + FOLDER = 'USB' + ZENODO_RECORD = '4822516' + ZIP_FILE = 'usb.zip' + +
+[docs] + @classmethod + def get(cls, data_dir): + ''' + Get the microcomputed tomography dataset of a usb memory stick from https://zenodo.org/records/4822516 + This function returns the raw projection data from the .txrm file + + Parameters + ---------- + data_dir: str + The path to the directory where the dataset is stored. Data can be downloaded with dataexample.WALNUT.download_data(data_dir) + + Returns + ------- + ImageData + The usb dataset + ''' + filepath = os.path.join(data_dir, cls.FOLDER, 'gruppe 4','gruppe 4_2014-03-20_1404_12','tomo-A','gruppe 4_tomo-A.txrm') + try: + loader = ZEISSDataReader(file_name=filepath) + return loader.read() + except(FileNotFoundError): + raise(FileNotFoundError("Dataset .txrm file not found in: {} \n \ + Specify a different data_dir or download data with dataexample.{}.download_data(data_dir)".format(filepath, cls.__name__)))
+
+ + +
+[docs] +class KORN(REMOTEDATA): + ''' + A microcomputed tomography dataset of a sunflower seeds in a box from https://zenodo.org/records/6874123 + + Example + -------- + >>> data_dir = 'my_PC/data_folder' + >>> dataexample.KORN.download_data(data_dir) # download the data + >>> dataexample.KORN.get(data_dir) # load the data + ''' + FOLDER = 'korn' + ZENODO_RECORD = '6874123' + ZIP_FILE = 'korn.zip' + +
+[docs] + @classmethod + def get(cls, data_dir): + ''' + Get the microcomputed tomography dataset of a sunflower seeds in a box from https://zenodo.org/records/6874123 + This function returns the raw projection data from the .xtekct file + + Parameters + ---------- + data_dir: str + The path to the directory where the dataset is stored. Data can be downloaded with dataexample.KORN.download_data(data_dir) + + Returns + ------- + ImageData + The korn dataset + + ''' + filepath = os.path.join(data_dir, cls.FOLDER, 'Korn i kasse','47209 testscan korn01_recon.xtekct') + try: + loader = NikonDataReader(file_name=filepath) + return loader.read() + except(FileNotFoundError): + raise(FileNotFoundError("Dataset .xtekct file not found in: {} \n \ + Specify a different data_dir or download data with dataexample.{}.download_data(data_dir)".format(filepath, cls.__name__)))
+
+ + + +
+[docs] +class SANDSTONE(REMOTEDATA): + ''' + A synchrotron x-ray tomography dataset of sandstone from https://zenodo.org/records/4912435 + A small subset of the data containing selected projections and 4 slices of the reconstruction + + Example + -------- + >>> data_dir = 'my_PC/data_folder' + >>> dataexample.SANDSTONE.download_data(data_dir) # download the data + >>> dataexample.SANDSTONE.get(data_dir) # load the data + ''' + FOLDER = 'sandstone' + ZENODO_RECORD = '4912435' + ZIP_FILE = 'small.zip' + +
+[docs] + @classmethod + def get(cls, data_dir, filename): + ''' + Get the synchrotron x-ray tomography dataset of sandstone from https://zenodo.org/records/4912435 + A small subset of the data containing selected projections and 4 slices of the reconstruction + Parameters + ---------- + data_dir: str + The path to the directory where the dataset is stored. Data can be downloaded with dataexample.SANDSTONE.download_data(data_dir) + + file: str + The slices or projections to return, specify the path to the file within the data_dir + + Returns + ------- + ImageData + The selected sandstone dataset + ''' + extension = os.path.splitext(filename)[1] + if extension == '.mat': + return loadmat(os.path.join(data_dir,filename)) + raise KeyError(f"Unknown extension: {extension}")
+
+ + + +
+[docs] +class TestData(object): + '''Class to return test data + + provides 6 dataset: + BOAT = 'boat.tiff' + CAMERA = 'camera.png' + PEPPERS = 'peppers.tiff' + RESOLUTION_CHART = 'resolution_chart.tiff' + SIMPLE_PHANTOM_2D = 'hotdog' + SHAPES = 'shapes.png' + RAINBOW = 'rainbow.png' + ''' + BOAT = 'boat.tiff' + CAMERA = 'camera.png' + PEPPERS = 'peppers.tiff' + RESOLUTION_CHART = 'resolution_chart.tiff' + SIMPLE_PHANTOM_2D = 'hotdog' + SHAPES = 'shapes.png' + RAINBOW = 'rainbow.png' + + def __init__(self, data_dir): + self.data_dir = data_dir + +
+[docs] + def load(self, which, size=None, scale=(0,1), **kwargs): + ''' + Return a test data of the requested image + + Parameters + ---------- + which: str + Image selector: BOAT, CAMERA, PEPPERS, RESOLUTION_CHART, SIMPLE_PHANTOM_2D, SHAPES, RAINBOW + size: tuple, optional + The size of the returned ImageData. If None default will be used for each image type + scale: tuple, optional + The scale of the data values + + Returns + ------- + ImageData + The simulated spheres volume + ''' + if which not in [TestData.BOAT, TestData.CAMERA, + TestData.PEPPERS, TestData.RESOLUTION_CHART, + TestData.SIMPLE_PHANTOM_2D, TestData.SHAPES, + TestData.RAINBOW]: + raise ValueError('Unknown TestData {}.'.format(which)) + if which == TestData.SIMPLE_PHANTOM_2D: + if size is None: + N = 512 + M = 512 + else: + N = size[0] + M = size[1] + + sdata = numpy.zeros((N, M)) + sdata[int(round(N/4)):int(round(3*N/4)), int(round(M/4)):int(round(3*M/4))] = 0.5 + sdata[int(round(N/8)):int(round(7*N/8)), int(round(3*M/8)):int(round(5*M/8))] = 1 + ig = ImageGeometry(voxel_num_x = M, voxel_num_y = N, dimension_labels=[ImageDimension.HORIZONTAL_Y, ImageDimension.HORIZONTAL_X]) + data = ig.allocate() + data.fill(sdata) + + elif which == TestData.SHAPES: + + with Image.open(os.path.join(self.data_dir, which)) as f: + + if size is None: + N = 200 + M = 300 + else: + N = size[0] + M = size[1] + + ig = ImageGeometry(voxel_num_x = M, voxel_num_y = N, dimension_labels=[ImageDimension.HORIZONTAL_Y, ImageDimension.HORIZONTAL_X]) + data = ig.allocate() + tmp = numpy.array(f.convert('L').resize((M,N))) + data.fill(tmp/numpy.max(tmp)) + + else: + with Image.open(os.path.join(self.data_dir, which)) as tmp: + + if size is None: + N = tmp.size[1] + M = tmp.size[0] + else: + N = size[0] + M = size[1] + + bands = tmp.getbands() + if len(bands) > 1: + if len(bands) == 4: + tmp = tmp.convert('RGB') + bands = tmp.getbands() + + ig = ImageGeometry(voxel_num_x=M, voxel_num_y=N, channels=len(bands), + dimension_labels=[ImageDimension.HORIZONTAL_Y, ImageDimension.HORIZONTAL_X,ImageDimension.CHANNEL]) + data = ig.allocate() + data.fill(numpy.array(tmp.resize((M,N)))) + data.reorder([ImageDimension.CHANNEL,ImageDimension.HORIZONTAL_Y, ImageDimension.HORIZONTAL_X]) + data.geometry.channel_labels = bands + else: + ig = ImageGeometry(voxel_num_x = M, voxel_num_y = N, dimension_labels=[ImageDimension.HORIZONTAL_Y, ImageDimension.HORIZONTAL_X]) + data = ig.allocate() + data.fill(numpy.array(tmp.resize((M,N)))) + + + if scale is not None: + dmax = data.as_array().max() + dmin = data.as_array().min() + # scale 0,1 + data = (data -dmin) / (dmax - dmin) + if scale != (0,1): + #data = (data-dmin)/(dmax-dmin) * (scale[1]-scale[0]) +scale[0]) + data *= (scale[1]-scale[0]) + data += scale[0] + # print ("data.geometry", data.geometry) + return data
+ + +
+[docs] + @staticmethod + def random_noise(image, mode='gaussian', seed=None, clip=True, **kwargs): + '''Function to add noise to input image + + :param image: input dataset, DataContainer of numpy.ndarray + :param mode: type of noise + :param seed: seed for random number generator + :param clip: should clip the data. + See https://github.com/scikit-image/scikit-image/blob/master/skimage/util/noise.py + + ''' + if hasattr(image, 'as_array'): + arr = TestData.scikit_random_noise(image.as_array(), mode=mode, seed=seed, clip=clip, + **kwargs) + out = image.copy() + out.fill(arr) + return out + elif issubclass(type(image), numpy.ndarray): + return TestData.scikit_random_noise(image, mode=mode, seed=seed, clip=clip, + **kwargs)
+ + +
+[docs] + @staticmethod + def scikit_random_noise(image, mode='gaussian', seed=None, clip=True, **kwargs): + """ + Function to add random noise of various types to a floating-point image. + Parameters + ---------- + image : ndarray + Input image data. Will be converted to float. + mode : str, optional + One of the following strings, selecting the type of noise to add: + - 'gaussian' Gaussian-distributed additive noise. + - 'localvar' Gaussian-distributed additive noise, with specified + local variance at each point of `image`. + - 'poisson' Poisson-distributed noise generated from the data. + - 'salt' Replaces random pixels with 1. + - 'pepper' Replaces random pixels with 0 (for unsigned images) or + -1 (for signed images). + - 's&p' Replaces random pixels with either 1 or `low_val`, where + `low_val` is 0 for unsigned images or -1 for signed + images. + - 'speckle' Multiplicative noise using out = image + n*image, where + n is uniform noise with specified mean & variance. + seed : int, optional + If provided, this will set the random seed before generating noise, + for valid pseudo-random comparisons. + clip : bool, optional + If True (default), the output will be clipped after noise applied + for modes `'speckle'`, `'poisson'`, and `'gaussian'`. This is + needed to maintain the proper image data range. If False, clipping + is not applied, and the output may extend beyond the range [-1, 1]. + mean : float, optional + Mean of random distribution. Used in 'gaussian' and 'speckle'. + Default : 0. + var : float, optional + Variance of random distribution. Used in 'gaussian' and 'speckle'. + Note: variance = (standard deviation) ** 2. Default : 0.01 + local_vars : ndarray, optional + Array of positive floats, same shape as `image`, defining the local + variance at every image point. Used in 'localvar'. + amount : float, optional + Proportion of image pixels to replace with noise on range [0, 1]. + Used in 'salt', 'pepper', and 'salt & pepper'. Default : 0.05 + salt_vs_pepper : float, optional + Proportion of salt vs. pepper noise for 's&p' on range [0, 1]. + Higher values represent more salt. Default : 0.5 (equal amounts) + Returns + ------- + out : ndarray + Output floating-point image data on range [0, 1] or [-1, 1] if the + input `image` was unsigned or signed, respectively. + Notes + ----- + Speckle, Poisson, Localvar, and Gaussian noise may generate noise outside + the valid image range. The default is to clip (not alias) these values, + but they may be preserved by setting `clip=False`. Note that in this case + the output may contain values outside the ranges [0, 1] or [-1, 1]. + Use this option with care. + Because of the prevalence of exclusively positive floating-point images in + intermediate calculations, it is not possible to intuit if an input is + signed based on dtype alone. Instead, negative values are explicitly + searched for. Only if found does this function assume signed input. + Unexpected results only occur in rare, poorly exposes cases (e.g. if all + values are above 50 percent gray in a signed `image`). In this event, + manually scaling the input to the positive domain will solve the problem. + The Poisson distribution is only defined for positive integers. To apply + this noise type, the number of unique values in the image is found and + the next round power of two is used to scale up the floating-point result, + after which it is scaled back down to the floating-point image range. + To generate Poisson noise against a signed image, the signed image is + temporarily converted to an unsigned image in the floating point domain, + Poisson noise is generated, then it is returned to the original range. + + This function is adapted from scikit-image. + https://github.com/scikit-image/scikit-image/blob/master/skimage/util/noise.py + + Copyright (C) 2019, the scikit-image team + All rights reserved. + + Redistribution and use in source and binary forms, with or without + modification, are permitted provided that the following conditions are + met: + + 1. Redistributions of source code must retain the above copyright + notice, this list of conditions and the following disclaimer. + 2. Redistributions in binary form must reproduce the above copyright + notice, this list of conditions and the following disclaimer in + the documentation and/or other materials provided with the + distribution. + 3. Neither the name of skimage nor the names of its contributors may be + used to endorse or promote products derived from this software without + specific prior written permission. + + THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR + IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED + WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE + DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, + INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES + (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) + HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, + STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING + IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE + POSSIBILITY OF SUCH DAMAGE. + + """ + mode = mode.lower() + + # Detect if a signed image was input + if image.min() < 0: + low_clip = -1. + else: + low_clip = 0. + + image = numpy.asarray(image, dtype=(np.float64)) + if seed is not None: + np.random.seed(seed=seed) + + allowedtypes = { + 'gaussian': 'gaussian_values', + 'localvar': 'localvar_values', + 'poisson': 'poisson_values', + 'salt': 'sp_values', + 'pepper': 'sp_values', + 's&p': 's&p_values', + 'speckle': 'gaussian_values'} + + kwdefaults = { + 'mean': 0., + 'var': 0.01, + 'amount': 0.05, + 'salt_vs_pepper': 0.5, + 'local_vars': np.zeros_like(image) + 0.01} + + allowedkwargs = { + 'gaussian_values': ['mean', 'var'], + 'localvar_values': ['local_vars'], + 'sp_values': ['amount'], + 's&p_values': ['amount', 'salt_vs_pepper'], + 'poisson_values': []} + + for key in kwargs: + if key not in allowedkwargs[allowedtypes[mode]]: + raise ValueError('%s keyword not in allowed keywords %s' % + (key, allowedkwargs[allowedtypes[mode]])) + + # Set kwarg defaults + for kw in allowedkwargs[allowedtypes[mode]]: + kwargs.setdefault(kw, kwdefaults[kw]) + + if mode == 'gaussian': + noise = np.random.normal(kwargs['mean'], kwargs['var'] ** 0.5, + image.shape) + out = image + noise + + elif mode == 'localvar': + # Ensure local variance input is correct + if (kwargs['local_vars'] <= 0).any(): + raise ValueError('All values of `local_vars` must be > 0.') + + # Safe shortcut usage broadcasts kwargs['local_vars'] as a ufunc + out = image + np.random.normal(0, kwargs['local_vars'] ** 0.5) + + elif mode == 'poisson': + # Determine unique values in image & calculate the next power of two + vals = len(np.unique(image)) + vals = 2 ** np.ceil(np.log2(vals)) + + # Ensure image is exclusively positive + if low_clip == -1.: + old_max = image.max() + image = (image + 1.) / (old_max + 1.) + + # Generating noise for each unique value in image. + out = np.random.poisson(image * vals) / float(vals) + + # Return image to original range if input was signed + if low_clip == -1.: + out = out * (old_max + 1.) - 1. + + elif mode == 'salt': + # Re-call function with mode='s&p' and p=1 (all salt noise) + out = TestData.random_noise(image, mode='s&p', seed=seed, + amount=kwargs['amount'], salt_vs_pepper=1.) + + elif mode == 'pepper': + # Re-call function with mode='s&p' and p=1 (all pepper noise) + out = TestData.random_noise(image, mode='s&p', seed=seed, + amount=kwargs['amount'], salt_vs_pepper=0.) + + elif mode == 's&p': + out = image.copy() + p = kwargs['amount'] + q = kwargs['salt_vs_pepper'] + flipped = np.random.choice([True, False], size=image.shape, + p=[p, 1 - p]) + salted = np.random.choice([True, False], size=image.shape, + p=[q, 1 - q]) + peppered = ~salted + out[flipped & salted] = 1 + out[flipped & peppered] = low_clip + + elif mode == 'speckle': + noise = np.random.normal(kwargs['mean'], kwargs['var'] ** 0.5, + image.shape) + out = image + image * noise + + # Clip back to original range, if necessary + if clip: + out = np.clip(out, low_clip, 1.0) + + return out
+
+ +
+ +
+ + + + + +
+ +
+
+
+ +
+ + + + +
+
+ +
+ +
+
+
+ + + + + +
+ + +
+ + \ No newline at end of file diff --git a/v24.2.0/_modules/cil/utilities/display/index.html b/v24.2.0/_modules/cil/utilities/display/index.html new file mode 100644 index 0000000000..acc0ba4e4d --- /dev/null +++ b/v24.2.0/_modules/cil/utilities/display/index.html @@ -0,0 +1,1585 @@ + + + + + + + + + + cil.utilities.display — CIL 24.2.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + +
+ +
+ + + + + +
+
+ + + + + + +
+ + + + + + + + + + + + + +
+ +
+ + +
+
+ +
+
+ +
+ +
+ + +
+ +
+ + +
+
+ + + + + +
+ +

Source code for cil.utilities.display

+#  Copyright 2019 United Kingdom Research and Innovation
+#  Copyright 2019 The University of Manchester
+#
+#  Licensed under the Apache License, Version 2.0 (the "License");
+#  you may not use this file except in compliance with the License.
+#  You may obtain a copy of the License at
+#
+#      http://www.apache.org/licenses/LICENSE-2.0
+#
+#  Unless required by applicable law or agreed to in writing, software
+#  distributed under the License is distributed on an "AS IS" BASIS,
+#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+#  See the License for the specific language governing permissions and
+#  limitations under the License.
+#
+# Authors:
+# CIL Developers, listed at: https://github.com/TomographicImaging/CIL/blob/master/NOTICE.txt
+# Kyle Pidgeon (UKRI-STFC)
+
+
+#%%
+from cil.framework import AcquisitionGeometry, AcquisitionData, ImageData, DataContainer, BlockDataContainer
+from cil.framework.labels import AcquisitionType
+import numpy as np
+import warnings
+
+import os
+import matplotlib.lines as mlines
+import matplotlib.pyplot as plt
+from matplotlib.patches import FancyArrowPatch
+from mpl_toolkits.mplot3d import proj3d
+from mpl_toolkits.axes_grid1 import make_axes_locatable
+from itertools import cycle
+
+CB_PALETTE = ['#377eb8', '#ff7f00', '#4daf4a',
+              '#f781bf', '#a65628', '#984ea3',
+              '#999999', '#e41a1c', '#dede00']
+
+class _PlotData(object):
+    def __init__(self, data, title, axis_labels, origin):
+        self.data = data
+        self.title = title
+        self.axis_labels = axis_labels
+        self.origin = origin
+        self.range = None
+
+def set_origin(data, origin):
+    shape_v = [0, data.shape[0]]
+    shape_h = [0, data.shape[1]]
+
+    if type(data) != np.ndarray:
+        data = data.as_array()
+
+    data_origin='lower'
+
+    if 'upper' in origin:
+        shape_v.reverse()
+        data_origin='upper'
+
+    if 'right' in origin:
+        shape_h.reverse()
+        data = np.flip(data,1)
+
+    extent = (*shape_h,*shape_v)
+    return data, data_origin, extent
+
+class show_base(object):
+    def save(self,filename, **kwargs):
+        '''
+        Saves the image as a `.png` using matplotlib.figure.savefig()
+
+        matplotlib kwargs can be passed, refer to documentation
+        https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.savefig.html
+        '''
+        file,extension = os.path.splitext(os.path.abspath(filename))
+        extension = extension.strip('.')
+
+        extensions = plt.gcf().canvas.get_supported_filetypes()
+        extensions = [i for i in extensions.keys()]
+
+        format = kwargs.get('format',None)
+
+        if format is None:
+            if extension == '':
+                extension = 'png'
+        else:
+            extension = format
+
+        if extension not in extensions:
+            raise ValueError("Extension not valid. Got {0}, backend supports {1}".format(extension,extensions))
+
+        try:
+            path_full = file+'.'+extension
+            self.figure.set_tight_layout(True)
+            self.figure.set_facecolor('w')
+            self.figure.savefig(path_full, bbox_inches='tight',**kwargs)
+            print("Saved image as {}".format(path_full))
+        except PermissionError:
+            print("Unable to save image. Permissions denied: {}".format(path_full))
+        except:
+            print("Unable to save image")
+
+
+
+[docs] +class show1D(show_base): + """ + This creates and displays 1D plots of pixel values by slicing + multi-dimensional data. + + The behaviour is as follows: if provided multiple datasets and a single + slice set (see first example below), one line plot will be generated + per dataset; if provided a single dataset and multiple sets of slices + (see second example below), one line plot will be generated per slice + set; if provided multiple datasets and multiple slice sets, the + :math:`i`-th set of slices will apply to the :math:`i`-th dataset, with + a line plot generated in each case. + + Parameters + ---------- + data : DataContainer, list of DataContainer, tuple of DataContainer + Multi-dimensional data to be reduced to 1D. + slice_list : tuple, list of tuple or list of list of tuple, default=None + A tuple of (dimension, coordinate) pair, or a list, or nested list, of + such pairs for slicing `data` (default is None, which is only valid when 1D + data is passed) + label : 'default', str, list of str, None, default='default' + Label(s) to use in the plot's legend. Use `None` to suppress legend. + title : str, default None + A title for the plot + line_colours : str, list of str, default=None + Colour(s) for each line plot + line_styles : {"-","--","-.",":"}, list of {"-","--","-.",":"}, default=None + Linestyle(s) for each line plot + axis_labels : tuple of str, list of str, default=('Index','Value') + Axis labels in the form (x_axis_label,y_axis_label) + size : tuple, default=(8,6) + The size of the figure + + Attributes + ---------- + figure : matplotlib.figure.Figure + + Examples + -------- + + This example creates two 2D datasets (images), and uses the provided + slicing information to generate two plots on the same axis, + corresponding to the two datasets. + + >>> from cil.utilities.display import show1D + >>> from cil.utilities.dataexample import PEPPERS + >>> data = PEPPERS.get() + >>> data_channel0 = data.get_slice(channel=0) + >>> data_channel1 = data.get_slice(channel=1) + >>> show1D([data_channel0, data_channel1], slice_list=[('horizontal_x', 256)], + ... label=['Channel 0', 'Channel 1'], line_styles=["--", "-"]) + + The following example uses two sets of slicing information applied to a + single dataset, resulting in two separate plots. + + >>> from cil.utilities.display import show1D + >>> from cil.utilities.dataexample import PEPPERS + >>> data = PEPPERS.get() + >>> slices = [[('channel', 0), ('horizontal_x', 256)], [('channel', 1), ('horizontal_y', 256)]] + >>> show1D(data, slice_list=slices, title=['Channel 0', 'Channel 1']) + """ + + def __init__(self, data, slice_list=None, label='default', title=None, + line_colours=None, line_styles=None, axis_labels=('Index', 'Value'), + size=(8,6)): + + self.figure = self._show1d(data, slice_list, labels=label, title=title, + line_colours=line_colours, line_styles=line_styles, + axis_labels=axis_labels, plot_size=size) + + def _extract_vector(self, data, coords): + """ + Extracts a 1D vector by slicing multi-dimensional data using the + coordinates provided. + + Parameters + ---------- + data : DataContainer or numpy.ndarray + Multi-dimensional data to be reduced to 1D. + coords : dict + The dimensions and coordinates used for slicing. If `data` is a + DataContainer, this should comprise dimensions from + `data.dimension_labels`. If `data` is a numpy.ndarray, integers + representing the axes should be used instead. + + Returns + ------- + numpy.ndarray + The 1-dimensional pixel flux data extracted from `data`. + """ + vector = None + possible_dimensions = None + + if isinstance(data, np.ndarray): + possible_dimensions = [i for i in range(len(data.shape))] + if len(possible_dimensions) == 1: + return data + elif isinstance(data, DataContainer): + possible_dimensions = data.dimension_labels + if len(possible_dimensions) == 1: + return data.as_array() + + if coords is None: + raise TypeError(f'Must provide slicing coordinates for multi-dimensional data') + + remaining_dimensions = set(possible_dimensions) - set(coords.keys()) + if len(remaining_dimensions) > 1: + raise ValueError(f'One remaining dimension required, ' \ + f'found {len(remaining_dimensions)}: {remaining_dimensions}') + + if isinstance(data, np.ndarray): + s = data + for d, i in coords.items(): + if d not in possible_dimensions: + raise ValueError(f'Unexpected key "{d}", not in ' \ + f'{possible_dimensions}') + else: + s = s.take(indices=i, axis=d) + + vector = s + + elif isinstance(data, DataContainer): + sliceme = {} + for k,v in coords.items(): + if k not in possible_dimensions: + raise ValueError(f'Unexpected key "{k}", not in ' \ + f'{possible_dimensions}') + else: + sliceme[k] = v + + if isinstance(data, AcquisitionData) or isinstance(data, ImageData): + sliceme['force'] = True + + vector = data.get_slice(**sliceme).as_array() + + return vector + + def _plot_slice(self, ax, data, slice_list=None, + label=None, line_colour=None, line_style=None): + """ + Creates 1D plots of pixel flux from multi-dimensional data and slicing information. + + Parameters + ---------- + ax : matplotlib.axes.Axes + The axis to draw on + data : DataContainer + The data to be sliced and plotted + slice_list : tuple or list of tuples, optional + (dimension, coordinate) pairs for slicing `data` (default is + None, which is only valid when 1D data is passed) + label : str, default=None + Label to use in the plot's legend + line_colour : str, default=None + Colour of the line plot + line_style : {"-","--","-.",":"}, default=None + Linestyle to pass to `matplotlib.axes.Axes.plot` + """ + + is_1d = False + if len(data.shape) == 1: + is_1d = True + + if isinstance(slice_list, tuple): + slice_list = [slice_list] + + dims = {} + if not is_1d: + try: + for el in slice_list: + dims[el[0]] = el[1] + except TypeError: + raise TypeError(f'Expected tuple or list of tuples for slicing, ' \ + f'received {type(slice_list)}') + + arr = self._extract_vector(data, dims) + ax.plot(arr, color=line_colour, ls=line_style, label=label) + + + def _show1d(self, data, slice_list=None, labels='default', title=None, line_colours=None, + line_styles=None, axis_labels=('Pixel', 'Pixel value'), plot_size=(8,6)): + """ + Displays 1D plots of pixel flux from multi-dimensional data and + slicing information. + + Parameters + ---------- + data : DataContainer, list of DataContainer or tuple of + DataContainer + The data to be sliced and plotted + slice_list : tuple, list of tuple, or list of list of tuple, optional + A (dimension, coordinate) pair or a list, or nested list, of such + pairs for slicing `data` (default is None, which is only valid when 1D + data is passed) + labels : 'default', str, list of str, None, default='default' + Label(s) to use in the plot's legend. Use `None` to suppress legend. + titles : str, default=None + A title for the plot + line_colours : str, list of str, default=None + Colour(s) for each line plot + line_styles : {"-","--","-.",":"}, list of {"-","--","-.",":"}, default=None + Linestyle(s) for each line plot + axis_labels : tuple of str, list of str, default=('Index','Value') + Axis labels in the form (x_axis_label,y_axis_label) + num_cols : int, default=3 + The number of columns in the grid of subplots produced in the + case of multiple plots + plot_size : tuple, default=(8,6) + The size of the figure + + Returns + ------- + matplotlib.figure.Figure + The figure created to plot the 1D data + """ + + fig = plt.figure(figsize=plot_size) + ax = fig.add_subplot(1, 1, 1) + + num_data = 1 if isinstance(data, DataContainer) else len(data) + colour_cyc = cycle(CB_PALETTE) + ls_cyc = cycle(["-","--","-.",":"]) + _lbls = labels + + if slice_list is None or isinstance(slice_list, tuple) or isinstance(slice_list[0], tuple): + + for i in range(num_data): + _data = data if isinstance(data, DataContainer) else data[i] + _cl = next(colour_cyc) if line_colours is None else line_colours[i] + _ls = next(ls_cyc) if line_styles is None else line_styles[i] + if labels is None: + _lbl = None + elif labels == 'default': + _lbl = f'Dataset {i}' + else: + _lbl = labels[i] + self._plot_slice(ax, _data, slice_list, label=_lbl, + line_colour=_cl, line_style=_ls) + + elif isinstance(slice_list[0], list): + + if labels == 'default' or labels is None: + _lbls = [None]*(len(slice_list)*num_data) + + if num_data == 1: + for i, sl in enumerate(slice_list): + _cl = next(colour_cyc) if line_colours is None else line_colours[i] + _ls = next(ls_cyc) if line_styles is None else line_styles[i] + if labels == 'default': + _lbls[i] = ', '.join(f'{c[0]}={c[1]}' for c in sl) + self._plot_slice(ax, data, sl, label=_lbls[i], line_colour=_cl, + line_style=_ls) + else: + for i, sl in enumerate(slice_list): + _cl = next(colour_cyc) if line_colours is None else line_colours[i] + _ls = next(ls_cyc) if line_styles is None else line_styles[i] + if labels == 'default': + _lbls[i] = f'Dataset {i}, ' + \ + ', '.join(f'{c[0]}={c[1]}' for c in sl) + self._plot_slice(ax, data[i], sl, label=_lbls[i], line_colour=_cl, + line_style=_ls) + + else: + raise TypeError(f'Unexpected type for slice_list: {type(slice_list)}, expected: (tuple, list of tuples, list of list of tuples)') + + ax.set_title(title) + ax.set_xlabel(axis_labels[0]) + ax.set_ylabel(axis_labels[1]) + if labels is not None: + fig.legend(loc='upper left', bbox_to_anchor=(1., 0., 1., 1.)) + plt.tight_layout() + fig2 = plt.gcf() + return fig2
+ + + +
+[docs] +class show2D(show_base): + '''This plots 2D slices from cil DataContainer types. + + Plots 1 or more 2D plots in an (n x num_cols) matrix. + Can plot multiple slices from one 3D dataset, or compare multiple datasets + Inputs can be single arguments or list of arguments that will be sequentially applied to subplots + If no slice_list is passed a 3D dataset will display the centre slice of the outer dimension, a 4D dataset will show the centre slices of the two outer dimension. + + + Parameters + ---------- + datacontainers: ImageData, AcquisitionData, list of ImageData / AcquisitionData, BlockDataContainer + The DataContainers to be displayed + title: string, list of strings, optional + The title for each figure + slice_list: tuple, int, list of tuples, list of ints, optional + The slices to show. A list of integers will show slices for the outer dimension. For 3D datacontainers single slice: (direction, index). For 4D datacontainers two slices: [(direction0, index),(direction1, index)]. + fix_range: boolean, tuple, list of tuples + Sets the display range of the data. `True` sets all plots to the global (min, max). + axis_labels: tuple, list of tuples, optional + The axis labels for each figure e.g. ('x','y') + origin: string, list of strings + Sets the display origin. 'lower/upper-left/right' + cmap: str, list or tuple of strings + Sets the colour map of the plot (see matplotlib.pyplot). If passed a list or tuple of the + length of datacontainers, allows to set a different color map for each datacontainer. + num_cols: int + Sets the number of columns of subplots to display + size: tuple + Figure size in inches + + Returns + ------- + matplotlib.figure.Figure + returns a matplotlib.pyplot figure object + ''' + + def __init__(self,datacontainers, title=None, slice_list=None, fix_range=False, axis_labels=None, origin='lower-left', cmap='gray', num_cols=2, size=(15,15)): + + self.figure = self.__show2D(datacontainers, title=title, slice_list=slice_list, fix_range=fix_range, axis_labels=axis_labels, origin=origin, cmap=cmap, num_cols=num_cols, size=size) + + def __show2D(self,datacontainers, title=None, slice_list=None, fix_range=False, axis_labels=None, origin='lower-left', cmap='gray', num_cols=2, size=(15,15)): + + #get number of subplots, number of input datasets, or number of slices requested + if isinstance(datacontainers, (list, BlockDataContainer)): + num_plots = len(datacontainers) + else: + dim = len(datacontainers.shape) + + if slice_list is None or dim == 2: + num_plots = 1 + elif type(slice_list) is tuple: + num_plots = 1 + elif dim == 4 and type(slice_list[0]) is tuple: + num_plots = 1 + else: + num_plots = len(slice_list) + + subplots = [] + + #range needs subsetted data + range_min = float("inf") + range_max = -range_min + + #set up, all inputs can be 1 or num_plots + for i in range(num_plots): + + #get data per subplot, subset where required + if isinstance(datacontainers, (list, BlockDataContainer)): + data = datacontainers[i] + else: + data = datacontainers + + if len(data.shape) ==4: + + if slice_list is None or type(slice_list) is tuple or type(slice_list[0]) is tuple: #none, (direction, ind) or [(direction0, ind), (direction1, ind)] apply to all datasets + slice_requested = slice_list + elif type(slice_list[i]) == int or len(slice_list[i]) > 1: # [ind0, ind1, ind2] of direction0, or [[(direction0, ind), (direction1, ind)],[(direction0, ind), (direction1, ind)]] + slice_requested = slice_list[i] + else: + slice_requested = slice_list[i][0] # [[(direction0, ind)],[(direction0, ind)]] + + cut_axis = [0,1] + cut_slices = [data.shape[0]//2, data.shape[1]//2] + + if type(slice_requested) is int: + #use axis 0, slice val + cut_slices[0] = slice_requested + elif type(slice_requested) is tuple: + #get axis ind, + # if 0 default 1 + # if 1 default 0 + axis = slice_requested[0] + if slice_requested[0] is str: + axis = data.dimension_labels.index(axis) + + if axis == 0: + cut_axis[0] = slice_requested[0] + cut_slices[0] = slice_requested[1] + else: + cut_axis[1] = slice_requested[0] + cut_slices[1] = slice_requested[1] + + elif type(slice_requested) is list: + #use full input + cut_axis[0] = slice_requested[0][0] + cut_axis[1] = slice_requested[1][0] + cut_slices[0] = slice_requested[0][1] + cut_slices[1] = slice_requested[1][1] + + if cut_axis[0] > cut_axis[1]: + cut_axis.reverse() + cut_slices.reverse() + + try: + if hasattr(data, 'get_slice'): + if type(cut_axis[0]) is int: + cut_axis[0] = data.dimension_labels[cut_axis[0]] + if type(cut_axis[1]) is int: + cut_axis[1] = data.dimension_labels[cut_axis[1]] + + temp_dict = {cut_axis[0]:cut_slices[0], cut_axis[1]:cut_slices[1]} + plot_data = data.get_slice(**temp_dict, force=True) + elif hasattr(data,'as_array'): + plot_data = data.as_array().take(indices=cut_slices[1], axis=cut_axis[1]) + plot_data = plot_data.take(indices=cut_slices[0], axis=cut_axis[0]) + else: + plot_data = data.take(indices=cut_slices[1], axis=cut_axis[1]) + plot_data = plot_data.take(indices=cut_slices[0], axis=cut_axis[0]) + + except: + raise TypeError("Unable to slice input data. Could not obtain 2D slice {0} from {1} with shape {2}.\n\ + Pass either correct slice information or a 2D array".format(slice_requested, type(data), data.shape)) + + subtitle = "direction: ({0},{1}), slice: ({2},{3})".format(*cut_axis, * cut_slices) + + + elif len(data.shape) == 3: + #get slice list per subplot + if type(slice_list) is list: #[(direction, ind), (direction, ind)], [ind0, ind1, ind2] of direction0 + slice_requested = slice_list[i] + else: #(direction, ind) single tuple apply to all datasets + slice_requested = slice_list + + #default axis 0, centre slice + cut_slice = data.shape[0]//2 + cut_axis = 0 + + if type(slice_requested) is int: + #use axis 0, slice val + cut_slice = slice_requested + if type(slice_requested) is tuple: + cut_slice = slice_requested[1] + cut_axis = slice_requested[0] + + try: + if hasattr(data, 'get_slice'): + if type(cut_axis) is int: + cut_axis = data.dimension_labels[cut_axis] + temp_dict = {cut_axis:cut_slice} + plot_data = data.get_slice(**temp_dict, force=True) + elif hasattr(data,'as_array'): + plot_data = data.as_array().take(indices=cut_slice, axis=cut_axis) + else: + plot_data = data.take(indices=cut_slice, axis=cut_axis) + except: + raise TypeError("Unable to slice input data. Could not obtain 2D slice {0} from {1} with shape {2}.\n\ + Pass either correct slice information or a 2D array".format(slice_requested, type(data), data.shape)) + + subtitle = "direction: {0}, slice: {1}".format(cut_axis,cut_slice) + else: + plot_data = data + subtitle = None + + + #check dataset is now 2D + if len(plot_data.shape) != 2: + raise TypeError("Unable to slice input data. Could not obtain 2D slice {0} from {1} with shape {2}.\n\ + Pass either correct slice information or a 2D array".format(slice_requested, type(data), data.shape)) + + #get axis labels per subplot + if type(axis_labels) is list: + plot_axis_labels = axis_labels[i] + else: + plot_axis_labels = axis_labels + + if plot_axis_labels is None and hasattr(plot_data,'dimension_labels'): + plot_axis_labels = (plot_data.dimension_labels[1],plot_data.dimension_labels[0]) + + #get min/max of subsetted data + range_min = min(range_min, plot_data.min()) + range_max = max(range_max, plot_data.max()) + + #get title per subplot + if isinstance(title, list): + if title[i] is None: + plot_title = '' + else: + plot_title = title[i] + else: + if title is None: + plot_title = '' + else: + plot_title = title + + if subtitle is not None: + plot_title += '\n' + subtitle + + #get origin per subplot + if isinstance(origin, list): + plot_origin = origin[i] + else: + plot_origin = origin + + subplots.append(_PlotData(plot_data,plot_title,plot_axis_labels, plot_origin)) + + #set range per subplot + for i, subplot in enumerate(subplots): + if fix_range is False: + pass + elif fix_range is True: + subplot.range = (range_min,range_max) + elif type(fix_range) is list: + subplot.range = fix_range[i] + else: + subplot.range = (fix_range[0], fix_range[1]) + + #create plots + if num_plots < num_cols: + num_cols = num_plots + + num_rows = int(round((num_plots+0.5)/num_cols)) + fig, (ax) = plt.subplots(num_rows, num_cols, figsize=size) + axes = ax.flatten() + + #set up plots + for i in range(num_rows*num_cols): + axes[i].set_visible(False) + + for i, subplot in enumerate(subplots): + + axes[i].set_visible(True) + axes[i].set_title(subplot.title) + + if subplot.axis_labels is not None: + axes[i].set_ylabel(subplot.axis_labels[1]) + axes[i].set_xlabel(subplot.axis_labels[0]) + + #set origin + data, data_origin, extent = set_origin(subplot.data, subplot.origin) + if isinstance(cmap, (list, tuple)): + dcmap = cmap[i] + else: + dcmap = cmap + sp = axes[i].imshow(data, cmap=dcmap, origin=data_origin, extent=extent) + + im_ratio = subplot.data.shape[0]/subplot.data.shape[1] + + y_axes2 = False + if isinstance(subplot.data,(AcquisitionData)): + if axes[i].get_ylabel() == 'angle': + locs = axes[i].get_yticks() + location_new = locs[0:-1].astype(int) + + ang = subplot.data.geometry.config.angles + + labels_new = ["{:.2f}".format(i) for i in np.take(ang.angle_data, location_new)] + axes[i].set_yticks(location_new, labels=labels_new) + + axes[i].set_ylabel('angle / ' + str(ang.angle_unit)) + + y_axes2 = axes[i].axes.secondary_yaxis('right') + y_axes2.set_ylabel('angle / index') + + if subplot.data.shape[0] < subplot.data.shape[1]//2: + axes[i].set_aspect(1/im_ratio) + im_ratio = 1 + + if y_axes2: + scale = 0.041*im_ratio + pad = 0.12 + else: + scale = 0.0467*im_ratio + pad = 0.02 + + plt.colorbar(sp, orientation='vertical', ax=axes[i],fraction=scale, pad=pad) + + if subplot.range is not None: + sp.set_clim(subplot.range[0],subplot.range[1]) + + fig.set_tight_layout(True) + fig.set_facecolor('w') + + #plt.show() creates a new figure so we save a copy to return + fig2 = plt.gcf() + plt.show() + return fig2
+ + +def plotter2D(datacontainers, title=None, slice_list=None, fix_range=False, axis_labels=None, origin='lower-left', cmap='gray', num_cols=2, size=(15,15)): + '''Alias of show2D''' + return show2D(datacontainers, title=title, slice_list=slice_list, fix_range=fix_range, axis_labels=axis_labels, origin=origin, cmap=cmap, num_cols=num_cols, size=size) + +class _Arrow3D(FancyArrowPatch): + + def __init__(self, xs, ys, zs, *args, **kwargs): + FancyArrowPatch.__init__(self, (0, 0), (0, 0), *args, **kwargs) + self._verts3d = xs, ys, zs + + def draw(self, renderer): + xs3d, ys3d, zs3d = self._verts3d + xs, ys, zs = proj3d.proj_transform(xs3d, ys3d, zs3d, self.axes.M) + self.set_positions((xs[0], ys[0]), (xs[1], ys[1])) + FancyArrowPatch.draw(self, renderer) + + def do_3d_projection(self, renderer=None): + xs3d, ys3d, zs3d = self._verts3d + xs, ys, zs = proj3d.proj_transform(xs3d, ys3d, zs3d, self.axes.M) + self.set_positions((xs[0],ys[0]),(xs[1],ys[1])) + return np.min(zs) + +class _ShowGeometry(object): + def __init__(self, acquisition_geometry, image_geometry=None): + if AcquisitionType.DIM2 & acquisition_geometry.dimension: + self.ndim = 2 + sys = acquisition_geometry.config.system + if acquisition_geometry.geom_type == 'cone': + ag_temp = AcquisitionGeometry.create_Cone3D([*sys.source.position,0], [*sys.detector.position,0], [*sys.detector.direction_x,0],[0,0,1],[*sys.rotation_axis.position,0],[0,0,1]) + else: + ag_temp = AcquisitionGeometry.create_Parallel3D([*sys.ray.direction,0], [*sys.detector.position,0], [*sys.detector.direction_x,0],[0,0,1],[*sys.rotation_axis.position,0],[0,0,1]) + + + ag_temp.config.panel = acquisition_geometry.config.panel + ag_temp.set_angles(acquisition_geometry.angles) + ag_temp.set_labels(['vertical', *acquisition_geometry.dimension_labels]) + + self.acquisition_geometry = ag_temp + + elif acquisition_geometry.channels > 1: + self.ndim = 3 + self.acquisition_geometry = acquisition_geometry.get_slice(channel=0) + else: + self.acquisition_geometry = acquisition_geometry + self.ndim = 3 + + if image_geometry is None: + self.image_geometry=self.acquisition_geometry.get_ImageGeometry() + else: + self.image_geometry = image_geometry + + + len1 = self.acquisition_geometry.config.panel.num_pixels[0] * self.acquisition_geometry.config.panel.pixel_size[0] + len2 = self.acquisition_geometry.config.panel.num_pixels[1] * self.acquisition_geometry.config.panel.pixel_size[1] + self.scale = max(len1,len2)/5 + + + self.handles = [] + self.labels = [] + + def draw(self, elev=35, azim=35, view_distance=10, grid=False, figsize=(10,10), fontsize=10): + + self.fig = plt.figure(figsize=figsize) + self.ax = self.fig.add_subplot(111, projection='3d') + + self.text_options = { 'horizontalalignment': 'center', + 'verticalalignment': 'center', + 'fontsize': fontsize } + + + self.display_world() + + if self.acquisition_geometry.geom_type == 'cone': + self.display_source() + else: + self.display_ray() + + self.display_object() + + self.display_detector() + + + if grid is False: + self.ax.set_axis_off() + + self.ax.view_init(elev=elev, azim=azim) + self.ax.dist = view_distance + + #to force aspect ratio 1:1:1 + world_limits = self.ax.get_w_lims() + self.ax.set_box_aspect((world_limits[1]-world_limits[0],world_limits[3]-world_limits[2],world_limits[5]-world_limits[4])) + + l = self.ax.plot(np.NaN, np.NaN, '-', color='none', label='')[0] + + for i in range(3): + self.handles.insert(2,l) + self.labels.insert(2,'') + + with warnings.catch_warnings(): + warnings.simplefilter("ignore") + self.ax.legend(self.handles, self.labels, loc='upper left', bbox_to_anchor= (0, 1), ncol=3, + borderaxespad=0, frameon=False,fontsize=self.text_options.get('fontsize')) + + + self.fig.set_tight_layout(True) + self.fig.set_facecolor('w') + + #plt.show() creates a new figure so we save a copy to return + fig2 = plt.gcf() + plt.show() + return fig2 + + def display_world(self): + + self.ax.set_xlabel('X axis') + self.ax.set_ylabel('Y axis') + + if self.ndim == 3: + self.ax.set_zlabel('Z axis') + else: + self.ax.set_zticks([]) + + #origin and coordinate frame + Oo = np.zeros(3) + self.ax.scatter3D(*Oo, marker='o', alpha=1,color='k',lw=1) + h = mlines.Line2D([], [], color='k',linestyle='solid', markersize=12, label='world coordinate system') + + labels = ['$x$','$y$','$z$'] + for i in range(self.ndim): + axis = np.zeros(3) + axis[i] = 1 * self.scale + + a = _Arrow3D(*zip(Oo,axis*2), mutation_scale=20,lw=1, arrowstyle="->", color="k") + self.ax.add_artist(a) + + self.ax.text(*(axis*2.2),labels[i], **self.text_options) + + self.handles.append(h) + self.labels.append(h.get_label()) + + def detector_vertex(self): + # detector corners + det_size = (np.array(self.acquisition_geometry.config.panel.num_pixels) * np.array(self.acquisition_geometry.config.panel.pixel_size))/2 + det_rows_dir = self.acquisition_geometry.config.system.detector.direction_x + + if self.ndim == 3: + det_v = self.acquisition_geometry.config.system.detector.direction_y * det_size[1] + det_h = det_rows_dir * det_size[0] + + rt = det_h + det_v + self.acquisition_geometry.config.system.detector.position + lt = -det_h + det_v + self.acquisition_geometry.config.system.detector.position + lb = -det_h - det_v + self.acquisition_geometry.config.system.detector.position + rb = det_h - det_v + self.acquisition_geometry.config.system.detector.position + + return [rb, lb, lt, rt] + + else: + det_h = det_rows_dir * det_size[0] + r = det_h + self.acquisition_geometry.config.system.detector.position + l = -det_h + self.acquisition_geometry.config.system.detector.position + return [r, l] + + + def display_detector(self): + + do = self.acquisition_geometry.config.system.detector.position + det = self.detector_vertex() + + #mark data origin + if 'right' in self.acquisition_geometry.config.panel.origin: + if self.ndim==2 or 'bottom' in self.acquisition_geometry.config.panel.origin: + pix0 = det[0] + else: + pix0 = det[3] + else: + if self.ndim==2 or 'bottom' in self.acquisition_geometry.config.panel.origin: + pix0 = det[1] + else: + pix0 = det[2] + + det_rows_dir = self.acquisition_geometry.config.system.detector.direction_x + + x = _Arrow3D(*zip(do, self.scale * det_rows_dir + do), mutation_scale=20,lw=1, arrowstyle="-|>", color="b") + self.ax.add_artist(x) + self.ax.text(*(1.2 * self.scale * det_rows_dir + do),r'$D_x$', **self.text_options) + + if self.ndim == 3: + det_col_dir = self.acquisition_geometry.config.system.detector.direction_y + y = _Arrow3D(*zip(do, self.scale * det_col_dir + do), mutation_scale=20,lw=1, arrowstyle="-|>", color="b") + self.ax.add_artist(y) + self.ax.text(*(1.2 * self.scale * det_col_dir + do),r'$D_y$', **self.text_options) + + handles=[ + self.ax.scatter3D(*do, marker='o', alpha=1,color='b',lw=1, label='detector position'), + mlines.Line2D([], [], color='b',linestyle='solid', markersize=12, label='detector direction'), + self.ax.plot3D(*zip(*det, det[0]), color='b',ls='dotted',alpha=1, label='detector')[0], + self.ax.scatter3D(*pix0, marker='x', alpha=1,color='b',lw=1,s=50, label='data origin (pixel 0)'), + ] + + for x in handles: + self.handles.append(x) + self.labels.append(x.get_label()) + + def display_object(self): + + ro = self.acquisition_geometry.config.system.rotation_axis.position + h0 = self.ax.scatter3D(*ro, marker='o', alpha=1,color='r',lw=1,label='rotation axis position') + self.handles.append(h0) + self.labels.append(h0.get_label()) + + if self.ndim == 3: + # rotate axis arrow + r1 = ro + self.acquisition_geometry.config.system.rotation_axis.direction * self.scale * 2 + arrow3 = _Arrow3D(*zip(ro,r1), mutation_scale=20,lw=1, arrowstyle="-|>", color="r") + self.ax.add_artist(arrow3) + + a = self.acquisition_geometry.config.system.rotation_axis.direction + + + # draw reco + x = np.array([self.image_geometry.get_min_x(), self.image_geometry.get_max_x()]) + y = np.array([self.image_geometry.get_min_y(), self.image_geometry.get_max_y()]) + z = np.array([self.image_geometry.get_min_z(), self.image_geometry.get_max_z()]) + + combos = [ + ((x[0],y[0],z[0]),(x[0],y[1],z[0])), + ((x[0],y[1],z[0]),(x[1],y[1],z[0])), + ((x[1],y[1],z[0]),(x[1],y[0],z[0])), + ((x[1],y[0],z[0]),(x[0],y[0],z[0])), + ((x[0],y[0],z[1]),(x[0],y[1],z[1])), + ((x[0],y[1],z[1]),(x[1],y[1],z[1])), + ((x[1],y[1],z[1]),(x[1],y[0],z[1])), + ((x[1],y[0],z[1]),(x[0],y[0],z[1])), + ((x[0],y[0],z[0]),(x[0],y[0],z[1])), + ((x[0],y[1],z[0]),(x[0],y[1],z[1])), + ((x[1],y[1],z[0]),(x[1],y[1],z[1])), + ((x[1],y[0],z[0]),(x[1],y[0],z[1])), + ] + + if np.allclose(a,[0,0,1]): + axis_rotation = np.eye(3) + elif np.allclose(a,[0,0,-1]): + axis_rotation = np.eye(3) + axis_rotation[1][1] = -1 + axis_rotation[2][2] = -1 + else: + vx = np.array([[0, 0, -a[0]], [0, 0, -a[1]], [a[0], a[1], 0]]) + axis_rotation = np.eye(3) + vx + vx.dot(vx) * 1 / (1 + a[2]) + + rotation_matrix = np.matrix.transpose(axis_rotation) + + count = 0 + for x in combos: + s = rotation_matrix.dot(np.asarray(x[0]).reshape(3,1)) + e = rotation_matrix.dot(np.asarray(x[1]).reshape(3,1)) + + x_data = float(s[0]) + ro[0], float(e[0]) + ro[0] + y_data = float(s[1]) + ro[1], float(e[1]) + ro[1] + z_data = float(s[2]) + ro[2], float(e[2]) + ro[2] + + self.ax.plot3D(x_data,y_data,z_data, color="r",ls='dotted',alpha=1) + + if count == 0: + vox0=(x_data[0],y_data[0],z_data[0]) + count+=1 + else: + # draw square + x = [self.image_geometry.get_min_x(), self.image_geometry.get_max_x()] + y = [self.image_geometry.get_min_y(), self.image_geometry.get_max_y()] + vertex = np.array([(x[0],y[0],0),(x[0],y[1],0),(x[1],y[1],0),(x[1],y[0],0)]) + ro + self.ax.plot3D(*zip(*vertex, vertex[0]), color='r',ls='dotted',alpha=1) + vox0=vertex[0] + rotation_matrix = np.eye(3) + + #rotation direction + points = 36 + x = [None]*points + y = [None]*points + z = [None]*points + + for i in range(points): + theta = i * (np.pi * 1.8) /36 + point_i = np.array([np.sin(theta),-np.cos(theta),0]).reshape(3,1) + point_rot = -self.scale*0.5*rotation_matrix.dot(point_i) + + x[i] = float(point_rot[0] + ro[0]) + y[i] = float(point_rot[1] + ro[1]) + z[i] = float(point_rot[2] + ro[2]) + + self.ax.plot3D(x,y,z, color='r',ls="dashed",alpha=1) + arrow4 = _Arrow3D(x[-2:],y[-2:],z[-2:],mutation_scale=20,lw=1, arrowstyle="-|>", color="r") + self.ax.add_artist(arrow4) + + handles = [ + mlines.Line2D([], [], color='r',linestyle='solid', markersize=12, label='rotation axis direction'), + mlines.Line2D([], [], color='r',linestyle='dotted', markersize=15, label='image geometry'), + self.ax.scatter3D(*vox0, marker='x', alpha=1,color='r',lw=1,s=50, label='data origin (voxel 0)'), + mlines.Line2D([], [], color='r',linestyle='dashed', markersize=12, label=r'rotation direction $\theta$') + ] + + for x in handles: + self.handles.append(x) + self.labels.append(x.get_label()) + + def display_source(self): + + so = self.acquisition_geometry.config.system.source.position + det = self.detector_vertex() + + for i in range(len(det)): + self.ax.plot3D(*zip(so,det[i]), color='#D4BD72',ls="dashed",alpha=0.4) + + self.ax.plot3D(*zip(so,self.acquisition_geometry.config.system.detector.position), color='#D4BD72',ls="solid",alpha=1)[0], + + h0 = self.ax.scatter3D(*so, marker='*', alpha=1,color='#D4BD72',lw=1, label='source position', s=100) + + self.handles.append(h0) + self.labels.append(h0.get_label()) + + def display_ray(self): + + det = self.detector_vertex() + det.append(self.acquisition_geometry.config.system.detector.position) + + dist = np.sqrt(np.sum(self.acquisition_geometry.config.system.detector.position**2))*2 + + if dist < 0.01: + dist = self.acquisition_geometry.config.panel.num_pixels[0] * self.acquisition_geometry.config.panel.pixel_size[0] + + rays = det - self.acquisition_geometry.config.system.ray.direction*dist + + for i in range(len(rays)): + h0 = self.ax.plot3D(*zip(rays[i],det[i]), color='#D4BD72',ls="dashed",alpha=0.4, label='ray direction')[0] + arrow = _Arrow3D(*zip(rays[i],rays[i]+self.acquisition_geometry.config.system.ray.direction*self.scale ),mutation_scale=20,lw=1, arrowstyle="-|>", color="#D4BD72") + self.ax.add_artist(arrow) + + self.handles.append(h0) + self.labels.append(h0.get_label()) + +
+[docs] +class show_geometry(show_base): + ''' + Displays a schematic of the acquisition geometry + for 2D geometries elevation and azimuthal cannot be changed + + + Parameters + ---------- + acquisition_geometry: AcquisitionGeometry + CIL acquisition geometry + image_geometry: ImageGeometry, optional + CIL image geometry + elevation: float + Camera elevation in degrees, 3D geometries only, default=20 + azimuthal: float + Camera azimuthal in degrees, 3D geometries only, default=-35 + view_distance: float + Camera view distance, default=10 + grid: boolean + Show figure axis, default=False + figsize: tuple (x, y) + Set figure size (inches), default (10,10) + fontsize: int + Set fontsize, default 10 + + Returns + ------- + matplotlib.figure.Figure + returns a matplotlib.pyplot figure object + ''' + + + def __init__(self,acquisition_geometry, image_geometry=None, elevation=20, azimuthal=-35, view_distance=10, grid=False, figsize=(10,10), fontsize=10): + if AcquisitionType.DIM2 & acquisition_geometry.dimension: + elevation = 90 + azimuthal = 0 + + self.display = _ShowGeometry(acquisition_geometry, image_geometry) + self.figure = self.display.draw(elev=elevation, azim=azimuthal, view_distance=view_distance, grid=grid, figsize=figsize, fontsize=fontsize)
+ +
+ +
+ + + + + +
+ +
+
+
+ +
+ + + + +
+
+ +
+ +
+
+
+ + + + + +
+ + +
+ + \ No newline at end of file diff --git a/v24.2.0/_modules/cil/utilities/jupyter/index.html b/v24.2.0/_modules/cil/utilities/jupyter/index.html new file mode 100644 index 0000000000..c25737cbb3 --- /dev/null +++ b/v24.2.0/_modules/cil/utilities/jupyter/index.html @@ -0,0 +1,877 @@ + + + + + + + + + + cil.utilities.jupyter — CIL 24.2.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + +
+ +
+ + + + + +
+
+ + + + + + +
+ + + + + + + + + + + + + +
+ +
+ + +
+
+ +
+
+ +
+ +
+ + +
+ +
+ + +
+
+ + + + + +
+ +

Source code for cil.utilities.jupyter

+#  Copyright 2019 United Kingdom Research and Innovation
+#  Copyright 2019 The University of Manchester
+#
+#  Licensed under the Apache License, Version 2.0 (the "License");
+#  you may not use this file except in compliance with the License.
+#  You may obtain a copy of the License at
+#
+#      http://www.apache.org/licenses/LICENSE-2.0
+#
+#  Unless required by applicable law or agreed to in writing, software
+#  distributed under the License is distributed on an "AS IS" BASIS,
+#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+#  See the License for the specific language governing permissions and
+#  limitations under the License.
+#
+# Authors:
+# CIL Developers, listed at: https://github.com/TomographicImaging/CIL/blob/master/NOTICE.txt
+# Kyle Pidgeon (UKRI-STFC)
+
+try:
+    from ipywidgets import interactive_output
+    import ipywidgets as widgets
+except ImportError as ie:
+    raise ImportError("please conda/pip install ipywidgets") from ie
+import matplotlib.pyplot as plt
+from matplotlib import gridspec
+import numpy
+
+from IPython.display import HTML, display
+import random
+from cil.utilities.display import set_origin
+
+
+def display_slice(container, clim, direction, title, cmap, size, axis_labels, origin):
+
+
+    def get_slice_3D(x, minmax, roi_hdir, roi_vdir, equal_aspect):
+
+        if direction == 0:
+            img = container[x]
+            x_label = axis_labels[2]
+            y_label = axis_labels[1]
+
+        elif direction == 1:
+            img = container[:,x,:]
+            x_label = axis_labels[2]
+            y_label = axis_labels[0]
+
+        elif direction == 2:
+            img = container[:,:,x]
+            x_label = axis_labels[1]
+            y_label = axis_labels[0]
+
+        if size is None:
+            fig = plt.figure()
+        else:
+            fig = plt.figure(figsize=size)
+
+        dtitle = ''
+        if isinstance(title, (list, tuple)):
+            dtitle = title[x]
+        else:
+            dtitle = title
+
+        gs = gridspec.GridSpec(1, 2, figure=fig, width_ratios=(1,.05), height_ratios=(1,))
+        # image
+        ax = fig.add_subplot(gs[0, 0])
+        img, data_origin, _ = set_origin(img, origin)
+
+        aspect = 'equal'
+        if not equal_aspect:
+            aspect = (roi_hdir[1] - roi_hdir[0]) / (roi_vdir[1] - roi_vdir[0])
+
+        if 'right' in origin:
+            roi_hdir = roi_hdir[1], roi_hdir[0]
+        if 'upper' in origin:
+            roi_vdir = roi_vdir[1], roi_vdir[0]
+
+        aximg = ax.imshow(img, cmap=cmap, origin=data_origin, aspect=aspect)
+        cmin = clim[0] + (minmax[0] / 100)*(clim[1]-clim[0])
+        cmax = clim[0] + (minmax[1] / 100)*(clim[1]-clim[0])
+        aximg.set_clim((cmin, cmax))
+        ax.set_xlim(*roi_hdir)
+        ax.set_ylim(*roi_vdir)
+        ax.set_xlabel(x_label)
+        ax.set_ylabel(y_label)
+        ax.set_title(f'{dtitle} {x}')
+        # colorbar
+        ax = fig.add_subplot(gs[0, 1])
+        plt.colorbar(aximg, cax=ax)
+        plt.tight_layout()
+        plt.show(fig)
+
+    return get_slice_3D
+
+
+
+[docs] +def islicer(data, direction=0, title=None, slice_number=None, cmap='gray', + minmax=None, size=None, axis_labels=None, origin='lower-left', + play_interval=500): + """ + Creates an interactive slider that slices a 3D volume along an axis. + + Parameters + ---------- + data : DataContainer or numpy.ndarray + A 3-dimensional dataset from which 2-dimensional slices will be + shown + direction : int + Axis to slice on. Can be 0,1,2 or the axis label, default 0 + title : str, list of str or tuple of str, default='' + Title for the display + slice_number : int, optional + Start slice number (default is None, which results in the center + slice being shown initially) + cmap : str or matplotlib.colors.Colormap, default='gray' + Set the colour map + minmax : tuple + Colorbar (min, max) values, default None (uses the min, max of + values in `data`) + size : int or tuple, optional + Specify the figure size in inches. If `int` this specifies the + width, and scales the height in order to keep the standard + `matplotlib` aspect ratio, default None (use the default matplotlib + figure size) + axis_labels : list of str, optional + The axis labels to use for each of the 3 dimensions in the data + (default is None, resulting in labels extracted from the data, or + ['X','Y','Z'] if no labels are present) + origin : {'lower-left', 'upper-left', 'lower-right', 'upper-right'} + Sets the display origin + play_interval : int, default=500 + The interval of time (in ms) a slice is selected for when iterating + through a set of them + + Returns + ------- + box : ipywidgets.Box + The top-level widget container. + """ + + if axis_labels is None: + if hasattr(data, "dimension_labels"): + axis_labels = [*data.dimension_labels] + else: + axis_labels = ['X', 'Y', 'Z'] + + if isinstance (data, numpy.ndarray): + container = data + elif hasattr(data, "__getitem__"): + container = data + elif hasattr(data, "as_array"): + container = data.as_array() + + if not isinstance (direction, int): + if direction in data.dimension_labels: + direction = data.get_dimension_axis(direction) + + if slice_number is None: + slice_number = int(data.shape[direction]/2) + + if title is None: + title = "Direction {}: Slice".format(axis_labels[direction]) + + style = {'slider_width': '80%'} + layout = widgets.Layout(width='200px') + + slice_slider = widgets.IntSlider( + min=0, + max=data.shape[direction]-1, + step=1, + value=slice_number, + continuous_update=True, + layout=layout, + style=style, + ) + slice_selector_full = widgets.VBox([widgets.Label('Slice index (direction {})'.format(axis_labels[direction])), slice_slider]) + + + play_slices = widgets.Play( + min=0, + max=data.shape[direction]-1, + step=1, + interval=play_interval, + value=slice_number, + disabled=False, + ) + widgets.jslink((play_slices, 'value'), (slice_slider, 'value')) + + amax = container.max() + amin = container.min() + if minmax is None: + minmax = (amin, amax) + + if isinstance (size, (int, float)): + default_ratio = 6./8. + size = ( size , size * default_ratio ) + + min_max = widgets.IntRangeSlider( + value=[0, 100], + min=0, + max=100, + step=5, + disabled=False, + continuous_update=True, + orientation='horizontal', + readout=True, + layout=layout, + style=style, + ) + min_max_full = widgets.VBox([widgets.Label('Display window percent'), min_max]) + + dirs_remaining = [i for i in range(3) if i != direction] + h_dir, v_dir = dirs_remaining[1], dirs_remaining[0] + h_dir_size = container.shape[h_dir] + v_dir_size = container.shape[v_dir] + + roi_select_hdir = widgets.IntRangeSlider( + value=[0, h_dir_size-1], + min=0, + max=h_dir_size-1, + step=1, + disabled=False, + continuous_update=False, + orientation='horizontal', + readout=True, + readout_format='d', + layout=layout, + style=style, + ) + roi_select_hdir_full = widgets.VBox([widgets.Label(f'Range: {axis_labels[h_dir]}'), roi_select_hdir]) + + + roi_select_vdir = widgets.IntRangeSlider( + value=[0, v_dir_size-1], + min=0, + max=v_dir_size-1, + step=1, + disabled=False, + continuous_update=False, + orientation='horizontal', + readout=True, + readout_format='d', + layout=layout, + style=style, + ) + roi_select_vdir_full = widgets.VBox([widgets.Label(f'Range: {axis_labels[v_dir]}'), roi_select_vdir]) + + equal_aspect = widgets.Checkbox( + value=True, + description='Pixel aspect ratio = 1', + disabled=False, + indent=False, + layout=widgets.Layout(width='auto'), + ) + + box_layout = widgets.Layout( + display='flex', + flex_flow='column', + align_items='flex-start', + justify_content='center', + ) + selectors = widgets.Box([ + play_slices, + slice_selector_full, + min_max_full, + roi_select_hdir_full, + roi_select_vdir_full, + equal_aspect], + layout=box_layout) + + out = interactive_output( + display_slice( + container, + minmax, + direction, + title=title, + cmap=cmap, + size=size, + axis_labels=axis_labels, + origin=origin), + {'x': slice_slider, + 'minmax': min_max, + 'roi_hdir': roi_select_hdir, + 'roi_vdir': roi_select_vdir, + 'equal_aspect': equal_aspect}) + + box = widgets.HBox(children=[out, selectors], + layout=widgets.Layout( + display='flex', + justify_content='center')) + + return box
+ + + + + + +# https://stackoverflow.com/questions/31517194/how-to-hide-one-specific-cell-input-or-output-in-ipython-notebook/52664156 + +def hide_toggle(for_next=False): + this_cell = """$('div.cell.code_cell.rendered.selected')""" + next_cell = this_cell + '.next()' + + toggle_text = 'Toggle show/hide' # text shown on toggle link + target_cell = this_cell # target cell to control with toggle + js_hide_current = '' # bit of JS to permanently hide code in current cell (only when toggling next cell) + + if for_next: + target_cell = next_cell + toggle_text += ' next cell' + js_hide_current = this_cell + '.find("div.input").hide();' + + js_f_name = 'code_toggle_{}'.format(str(random.randint(1,2**64))) + + html = """ + <script> + function {f_name}() {{ + {cell_selector}.find('div.input').toggle(); + }} + + {js_hide_current} + </script> + + <a href="javascript:{f_name}()">{toggle_text}</a> + """.format( + f_name=js_f_name, + cell_selector=target_cell, + js_hide_current=js_hide_current, + toggle_text=toggle_text + ) + + return HTML(html) +
+ +
+ + + + + +
+ +
+
+
+ +
+ + + + +
+
+ +
+ +
+
+
+ + + + + +
+ + +
+ + \ No newline at end of file diff --git a/v24.2.0/_modules/cil/utilities/quality_measures/index.html b/v24.2.0/_modules/cil/utilities/quality_measures/index.html new file mode 100644 index 0000000000..c8ea8c691e --- /dev/null +++ b/v24.2.0/_modules/cil/utilities/quality_measures/index.html @@ -0,0 +1,649 @@ + + + + + + + + + + cil.utilities.quality_measures — CIL 24.2.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + +
+ +
+ + + + + +
+
+ + + + + + +
+ + + + + + + + + + + + + +
+ +
+ + +
+
+ +
+
+ +
+ +
+ + +
+ +
+ + +
+
+ + + + + +
+ +

Source code for cil.utilities.quality_measures

+#  Copyright 2020 United Kingdom Research and Innovation
+#  Copyright 2020 The University of Manchester
+#
+#  Licensed under the Apache License, Version 2.0 (the "License");
+#  you may not use this file except in compliance with the License.
+#  You may obtain a copy of the License at
+#
+#      http://www.apache.org/licenses/LICENSE-2.0
+#
+#  Unless required by applicable law or agreed to in writing, software
+#  distributed under the License is distributed on an "AS IS" BASIS,
+#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+#  See the License for the specific language governing permissions and
+#  limitations under the License.
+#
+# Authors:
+# CIL Developers, listed at: https://github.com/TomographicImaging/CIL/blob/master/NOTICE.txt
+
+from cil.optimisation.functions import L2NormSquared, L1Norm
+from cil.framework import DataContainer
+import numpy as np
+
+
+
+[docs] +def mse(dc1, dc2, mask=None): + ''' Calculates the mean squared error of two images + + Parameters + ---------- + dc1: `DataContainer` + One image to be compared + dc2: `DataContainer` + Second image to be compared + mask: array or `DataContainer` with the same dimensions as the `dc1` and `dc2` + The pixelwise operation only considers values where the mask is True or NonZero. + + Returns + ------- + A number, the mean squared error of the two images + ''' + dc1 = dc1.as_array() + dc2 = dc2.as_array() + + if mask is not None: + + if isinstance(mask, DataContainer): + mask = mask.as_array() + + mask = mask.astype('bool') + dc1 = np.extract(mask, dc1) + dc2 = np.extract(mask, dc2) + return np.mean(((dc1 - dc2)**2))
+ + + +
+[docs] +def mae(dc1, dc2, mask=None): + ''' Calculates the Mean Absolute error of two images. + + Parameters + ---------- + dc1: `DataContainer` + One image to be compared + dc2: `DataContainer` + Second image to be compared + mask: array or `DataContainer` with the same dimensions as the `dc1` and `dc2` + The pixelwise operation only considers values where the mask is True or NonZero. + + + Returns + ------- + A number with the mean absolute error between the two images. + ''' + dc1 = dc1.as_array() + dc2 = dc2.as_array() + + if mask is not None: + + if isinstance(mask, DataContainer): + mask = mask.as_array() + + mask = mask.astype('bool') + dc1 = np.extract(mask, dc1) + dc2 = np.extract(mask, dc2) + + return np.mean(np.abs((dc1-dc2)))
+ + + +
+[docs] +def psnr(ground_truth, corrupted, data_range=None, mask=None): + ''' Calculates the Peak signal to noise ratio (PSNR) between the two images. + + Parameters + ---------- + ground_truth: `DataContainer` + The reference image + corrupted: `DataContainer` + The image to be evaluated + data_range: scalar value, default=None + PSNR scaling factor, the dynamic range of the images (i.e., the difference between the maximum the and minimum allowed values). We take the maximum value in the ground truth array. + mask: array or `DataContainer` with the same dimensions as the `dc1` and `dc2` + The pixelwise operation only considers values where the mask is True or NonZero.. + + Returns + ------- + A number, the peak signal to noise ration between the two images. + ''' + if data_range is None: + + if mask is None: + data_range = ground_truth.as_array().max() + + + else: + + if isinstance(mask, DataContainer): + mask = mask.as_array() + data_range = np.max(ground_truth.as_array(), + where=mask.astype('bool'), initial=-1e-8) + + tmp_mse = mse(ground_truth, corrupted, mask=mask) + + return 10 * np.log10((data_range ** 2) / tmp_mse)
+ +
+ +
+ + + + + +
+ +
+
+
+ +
+ + + + +
+
+ +
+ +
+
+
+ + + + + +
+ + +
+ + \ No newline at end of file diff --git a/v24.2.0/_modules/index.html b/v24.2.0/_modules/index.html new file mode 100644 index 0000000000..7af1469597 --- /dev/null +++ b/v24.2.0/_modules/index.html @@ -0,0 +1,600 @@ + + + + + + + + + + Overview: module code — CIL 24.2.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + + +
+ +
+ + + + + +
+
+ + + + + + +
+ + + + + + + + + + + + + +
+ +
+ + +
+
+ +
+
+ +
+ +
+ + +
+ +
+ + +
+
+ + + + + +
+ +

All modules for which code is available

+ + +
+ + + + + +
+ +
+
+
+ +
+ + + + +
+
+ +
+ +
+
+
+ + + + + +
+ + +
+ + \ No newline at end of file diff --git a/v24.2.0/_sources/demos.rst.txt b/v24.2.0/_sources/demos.rst.txt new file mode 100644 index 0000000000..7e9975bae5 --- /dev/null +++ b/v24.2.0/_sources/demos.rst.txt @@ -0,0 +1,7 @@ +Tutorials +********* + +.. nbgallery:: + demos/00_CIL_geometry + demos/deriv2_cgls + demos/callback_demonstration diff --git a/v24.2.0/_sources/demos/00_CIL_geometry.ipynb.txt b/v24.2.0/_sources/demos/00_CIL_geometry.ipynb.txt new file mode 100644 index 0000000000..a09178a666 --- /dev/null +++ b/v24.2.0/_sources/demos/00_CIL_geometry.ipynb.txt @@ -0,0 +1,502 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# -*- coding: utf-8 -*-\n", + "# Copyright 2021 - 2022 United Kingdom Research and Innovation\n", + "# Copyright 2021 - 2022 The University of Manchester\n", + "#\n", + "# Licensed under the Apache License, Version 2.0 (the \"License\");\n", + "# you may not use this file except in compliance with the License.\n", + "# You may obtain a copy of the License at\n", + "#\n", + "# http://www.apache.org/licenses/LICENSE-2.0\n", + "#\n", + "# Unless required by applicable law or agreed to in writing, software\n", + "# distributed under the License is distributed on an \"AS IS\" BASIS,\n", + "# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n", + "# See the License for the specific language governing permissions and\n", + "# limitations under the License.\n", + "#\n", + "# Authored by: Gemma Fardell (UKRI-STFC)\n", + "# Edoardo Pasca (UKRI-STFC)\n", + "# Laura Murgatroyd (UKRI-STFC)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# A detailed look at CIL geometry\n", + "CIL holds your CT data in specialised data-containers, `AcquisitionData` and `ImageData`.\n", + "\n", + "Each of these has an associated `geometry` which contains the meta-data describing your set-up.\n", + "\n", + " - `AcquisitionGeometry` describes the acquisition data and parameters\n", + "\n", + " - `ImageGeometry` describes the image data (i.e., the reconstruction volume)\n", + "\n", + "The data-readers provided by CIL (Nikon, Zeiss and diamond nexus readers) will read in your data and return you a fully configured acquisition data with the acquisition geometry already configured, however if you read in a stack of tiffs or want to tweak the parameters this is simple to create by hand." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## The structure of an AcquisitionGeometry\n", + "\n", + "An instance of an `AcquisitionGeometry`, `ag`, holds the configuration of the system, in `config` which is subdivided in to:\n", + " - `ag.config.system` - The position and orientations of the `source`/`ray`, `rotation_axis` and `detector`\n", + " - `ag.config.panel` - The number of pixels, the size of pixels, and the position of pixel 0\n", + " - `ag.config.angles` - The number of angles, the unit of the angles (default is degrees)\n", + " - `ag.config.channels` - The number of channels" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Create a simple AcquisitionGeometry\n", + "\n", + "You can use the `AcquisitionGeometry` methods to describe circular trajectory parallel-beam or cone-beam 2D or 3D data.\n", + "\n", + " - `ag = AcquisitionGeometry.create_Parallel2D()`\n", + " - `ag = AcquisitionGeometry.create_Parallel3D()`\n", + " - `ag = AcquisitionGeometry.create_Cone2D(source_position, detector_position)`\n", + " - `ag = AcquisitionGeometry.create_Cone3D(source_position, detector_position)`\n", + "\n", + "This notebook will step though each in turn and show you how to describe both simple and complex geometries with offsets and rotations.\n", + "\n", + "No matter which type of geometry you create you will also need to describe the panel and projection angles.\n", + " - `ag.set_panel(num_pixels, pixel_size)`\n", + " - `ag.set_angles(angles, angle_unit)`\n", + "\n", + "For multi-channel data you need to add the number of channels.\n", + " - `ag.set_channels(num_channels)`\n", + "\n", + "And you will also need to describe the order your data is stored in using the relavent labels from the CIL default labels: `channel`, `angle`, `vertical` and `horizontal`\n", + " - `ag.set_labels(['angle','vertical','horizontal'])`" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### A Note on CIL AcquisitionGeometry:\n", + " - The geometry is described by a right-handed cooridinate system\n", + " - Positive angles describe the object rotating anti-clockwise when viewed from above\n", + "\n", + "\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Parallel geometry\n", + "\n", + "Parallel beams of X-rays are emitted onto 1D (single pixel row) or 2D detector array. This geometry is common for synchrotron sources.\n", + "\n", + "We describe the system, and then set the panel and angle data. Note that for 3D geometry we need to describe a 2D panel where `num_pixels=[X,Y]`\n", + "\n", + "```python\n", + "parallel_2D_geometry = AcquisitionGeometry.create_Parallel2D()\\\n", + " \n", + " .set_panel(num_pixels=10)\\\n", + " \n", + " .set_angles(angles=range(0,180))\n", + "\n", + "\n", + "parallel_3D_geometry = AcquisitionGeometry.create_Parallel3D()\\\n", + " \n", + " .set_panel(num_pixels=[10,10])\\\n", + " \n", + " .set_angles(angles=range(0,180))\n", + "```\n", + "Both 2D and 3D parallel-beam geometries are displayed below. Note that the detector position has been set, this is not necessary to describe and reconstruct the data, but it makes the displayed images clearer.\n", + "\n", + "`show_geometry()` can be used to display the configured geometry and will be used here extensively. You can also print the geometry to obtain a detailed description. If `show_geometry` is not passed an `ImageGeometry` it will show the default geometry associated with the `AcquisitionGeometry` \n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "An example creating a 2D parallel-beam geometry:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from cil.framework import AcquisitionGeometry\n", + "from cil.utilities.display import show_geometry\n", + "\n", + "ag = AcquisitionGeometry.create_Parallel2D(detector_position=[0,10])\\\n", + " .set_panel(num_pixels=10)\\\n", + " .set_angles(angles=range(0,180))\n", + "\n", + "show_geometry(ag)\n", + "\n", + "print(ag)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "An example creating a 3D parallel-beam geometry:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "ag = AcquisitionGeometry.create_Parallel3D(detector_position=[0,10,0])\\\n", + " .set_panel(num_pixels=[10,10])\\\n", + " .set_angles(angles=range(0,180))\n", + " \n", + "show_geometry(ag)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Fan-beam geometry\n", + "\n", + "A single point-like X-ray source emits a cone-beam onto a single row of detector pixels. The beam is typically collimated to imaging field of view. Collimation greatly reduce amount of scatter radiation reaching the detector. Fan-beam geometry is used when scattering has significant influence on image quality or single-slice reconstruction is sufficient.\n", + "\n", + "We describe the system, and then set the panel and angle data.\n", + "\n", + "For fan-beam data the source and detector positions are required. As default we place them along the Y-axis where the rotation-axis is on the origin. They are specified as `[x,y]` coordinates.\n", + "\n", + "```python\n", + "cone_2D_geometry = AcquisitionGeometry.create_Cone2D(source_position=[0,-10],detector_position=[0,10])\\\n", + " \n", + " .set_panel(num_pixels=10)\\\n", + " \n", + " .set_angles(angles=range(0,180))\n", + "```" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "ag = AcquisitionGeometry.create_Cone2D(source_position=[0,-10],detector_position=[0,10])\\\n", + " .set_panel(num_pixels=10)\\\n", + " .set_angles(angles=range(0,180))\n", + " \n", + "show_geometry(ag)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Cone-beam geometry\n", + "\n", + "A single point-like X-ray source emits a cone-beam onto 2D detector array. Cone-beam geometry is mainly used in lab-based CT instruments.\n", + "\n", + "We describe the system, and then set the panel and angle data.\n", + "\n", + "For cone-beam data the source and detector positions are required. As default we place them along the Y-axis where the rotation-axis is on the origin and aligned in the Z-direction. They are specified as `[X,Y,Z]` coordinates.\n", + "\n", + "```python\n", + "cone_3D_geometry = AcquisitionGeometry.create_Cone3D(source_position=[0,-10,0], detector_position=[0,10,0])\\\n", + " \n", + " .set_panel(num_pixels=[10,10])\\\n", + " \n", + " .set_angles(angles=range(0,180))\n", + "```" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "ag = AcquisitionGeometry.create_Cone3D(source_position=[0,-10,0],detector_position=[0,10,0])\\\n", + " .set_panel(num_pixels=[10,10])\\\n", + " .set_angles(angles=range(0,180))\n", + " \n", + "show_geometry(ag)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Create an offset AcquisitionGeometry\n", + "\n", + "It is unusual to have a perfectly aligned CT system. One of the most common offsets is the rotation-axis. If this offset is described by the `AcquisitionGeometry` then it will be accounted for in the reconstruction. This saves having to pad your data to account for this.\n", + "\n", + "To specify the offset, you could either add an x-component to the `source_position` and `detector_position` or you can offset the rotation axis from the origin using `rotation_axis_position`.\n", + "\n", + "As with the `source_position` and `detector_position` this is the `rotation_axis_position` is specified in 2D with a 2D vector `[X,Y]` or 3D with a 3D vector `[X,Y,Z]`" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Below we offset the rotation axis by -0.5 in X by setting `rotation_axis_position=[-0.5,0]`. You can see the rotation axis position is no longer a point on the source-to-detector vector." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "ag = AcquisitionGeometry.create_Cone2D(source_position=[0,-10],detector_position=[0,10],\n", + " rotation_axis_position=[-0.5,0])\\\n", + " .set_panel(num_pixels=10)\\\n", + " .set_angles(angles=range(0,180))\n", + " \n", + "show_geometry(ag)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Create a more complex AcquisitionGeometry\n", + "\n", + "We can also set up rotations in the system. These are configured with vectors describing the direction.\n", + "\n", + "For example a detector yaw can be described by using `detector_direction_x=[X,Y]`.\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "ag = AcquisitionGeometry.create_Cone2D(source_position=[0,-10],detector_position=[0,10],\n", + " detector_direction_x=[0.9,0.1]\n", + " )\\\n", + " .set_panel(num_pixels=10)\\\n", + " .set_angles(angles=range(0,180))\n", + " \n", + "show_geometry(ag)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "You can set `rotation_axis_direction`, `detector_direction_x` and `detector_direction_y` by specifying a 3D directional vector `[X,Y,Z]`.\n", + "\n", + "For 3D datasets detector roll is commonly corrected with a dual-slice centre of rotation algorithm. You can specify `detector_direction_x` and `detector_direction_y` - ensuring they are ortogonal vectors." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "ag = AcquisitionGeometry.create_Cone3D(source_position=[0,-500,0],detector_position=[0,500,0],\n", + " detector_direction_x=[0.9,0.0,-0.1],detector_direction_y=[0.1,0,0.9]\n", + " )\\\n", + " .set_panel(num_pixels=[2048,2048], pixel_size = 0.2)\\\n", + " .set_angles(angles=range(0,180))\n", + " \n", + "show_geometry(ag)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In 3D datasets we can tilt the rotation axis to describe laminograpy geometry by changing `rotation_axis_direction`" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "ag = AcquisitionGeometry.create_Cone3D(source_position=[0,-500,0],detector_position=[0,500,0],rotation_axis_direction=[0,-1,1])\\\n", + " .set_panel(num_pixels=[2048,2048], pixel_size = 0.2)\\\n", + " .set_angles(angles=range(0,180))\n", + " \n", + "show_geometry(ag)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## The structure of an ImageGeometry\n", + "\n", + "ImageGeometry holds the description of the reconstruction volume. It holds:\n", + "\n", + " - The number of voxels in X, Y, Z: `voxel_num_x`, `voxel_num_y`, `voxel_num_z`\n", + " - The size of voxels in X, Y, Z: `voxel_size_x`, `voxel_size_y`, `voxel_size_z`\n", + " - The offset of the volume from the rotation axis in voxels: `center_x`, `center_y`, `center_z`\n", + " - The number of channels for multi-channel data\n", + "\n", + "You will also need to describe the order your data is stored in using the relevent labels from the CIL. The default labels are: `channel`, `vertical`, `horizontal_y` and `horizontal_x`\n", + " - `ig.set_labels(['vertical','horizontal_y','horizontal_x'])`" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Create a simple ImageGeometry\n", + "\n", + "To create a default ImageGeometry you can use:\n", + " `ig = ag.get_ImageGeometry()`\n", + "\n", + "This creates an ImageGeometry with:\n", + " - `voxel_num_x`, `voxel_num_y` equal to the number of horizontal pixels of the panel\n", + " - `voxel_num_z` equal to the number of vertical pixels of the panel\n", + " - `voxel_size_x`, `voxel_size_y` is given by the horizontal pixel size divided by magnification\n", + " - `voxel_size_z` is given by the vertical pixel size divided by magnification\n", + "\n", + "\n", + " You can pass a resolution argument:\n", + " `ig = ag.get_ImageGeometry(resolution)` \n", + "\n", + " - `resolution=0.5` double the size of your voxels, and half the number of voxels in each dimension\n", + " - `resolution=2` half the size of your voxels, and double the number of voxels in each dimension" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### A Note on CIL ImageGeometry:\n", + "At 0 degrees `horizontal_y` is aligned with the Y axis, and `horizontal_x` with the X axis." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "ag = AcquisitionGeometry.create_Cone3D(source_position=[0,-500,0],detector_position=[0,500,0])\\\n", + " .set_panel(num_pixels=[2048,2048], pixel_size = 0.2)\\\n", + " .set_angles(angles=range(0,180))\n", + "\n", + "print(\"ImageGeometry - default\")\n", + "ig = ag.get_ImageGeometry()\n", + "print(ig)\n", + "\n", + "print(\"ImageGeometry - 0.5x resolution\")\n", + "ig = ag.get_ImageGeometry(resolution=0.5)\n", + "print(ig)\n", + "\n", + "print(\"ImageGeometry - 2x resolution\")\n", + "ig = ag.get_ImageGeometry(resolution=2)\n", + "print(ig)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Create a custom ImageGeometry\n", + "You can create your own ImageGeometry with:\n", + "`ig = ImageGeometry(...)`\n", + "\n", + "Giving you full control over the parameters.\n", + "\n", + "You can also change the members directly to reduce the reconstructed volume to exclude empty space.\n", + "\n", + "Using the previous example, we now can specify a smaller region of interest to reconstruct. We can offset the region of interest from the origin by specifiying the physical distance." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "ag = AcquisitionGeometry.create_Cone3D(source_position=[0,-500,0],detector_position=[0,500,0])\\\n", + " .set_panel(num_pixels=[2048,2048], pixel_size = 0.2)\\\n", + " .set_angles(angles=range(0,180))\n", + "\n", + "print(\"ImageGeometry - default\")\n", + "ig = ag.get_ImageGeometry()\n", + "show_geometry(ag, ig)\n", + "\n", + "print(\"ImageGeometry - RoI\")\n", + "ig = ag.get_ImageGeometry()\n", + "ig.voxel_num_z = 100\n", + "show_geometry(ag, ig)\n", + "\n", + "print(\"ImageGeometry - Offset RoI\")\n", + "ig = ag.get_ImageGeometry()\n", + "ig.voxel_num_z = 200\n", + "ig.center_z = -1024 * ig.voxel_size_z\n", + "show_geometry(ag, ig)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can also create an `ImageGeometry` directly.\n", + "\n", + "Here we create our ig independently of an `AcquisitionGeometry`, by first importing `ImageGeometry` from `cil.framework`\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from cil.framework import ImageGeometry\n", + "\n", + "ig = ImageGeometry(voxel_num_x=1000, voxel_num_y=1000, voxel_num_z=500, voxel_size_x=0.1, voxel_size_y=0.1, voxel_size_z=0.2 )" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3.8.11", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.11" + }, + "vscode": { + "interpreter": { + "hash": "cf07678abc5cc77bc6e1a7d19b1e87ab0c29b83e7ee41c2bc72506d16d80ed44" + } + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/v24.2.0/_sources/demos/callback_demonstration.ipynb.txt b/v24.2.0/_sources/demos/callback_demonstration.ipynb.txt new file mode 100644 index 0000000000..0fd142943d --- /dev/null +++ b/v24.2.0/_sources/demos/callback_demonstration.ipynb.txt @@ -0,0 +1,1255 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [], + "source": [ + "# -*- coding: utf-8 -*-\n", + "# Copyright 2024 - United Kingdom Research and Innovation\n", + "# Copyright 2024 - The University of Manchester\n", + "#\n", + "# Licensed under the Apache License, Version 2.0 (the \"License\");\n", + "# you may not use this file except in compliance with the License.\n", + "# You may obtain a copy of the License at\n", + "#\n", + "# http://www.apache.org/licenses/LICENSE-2.0\n", + "#\n", + "# Unless required by applicable law or agreed to in writing, software\n", + "# distributed under the License is distributed on an \"AS IS\" BASIS,\n", + "# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n", + "# See the License for the specific language governing permissions and\n", + "# limitations under the License.\n", + "#\n", + "# Authored by: CIL contributors " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# CIL Callback demonstration\n", + "\n", + "This notebook runs on CIL Master (built on 14/03/2024) and demonstrates the new callback functionality " + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [], + "source": [ + "from cil.utilities import dataexample\n", + "from cil.utilities.display import show2D\n", + "from cil.recon import FDK\n", + "from cil.processors import TransmissionAbsorptionConverter, Slicer\n", + "from cil.utilities.quality_measures import psnr\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt \n", + "from cil.plugins.tigre import ProjectionOperator\n", + "from cil.optimisation.algorithms import FISTA, Algorithm\n", + "from cil.optimisation.functions import LeastSquares, IndicatorBox, ZeroFunction, TotalVariation\n", + "from cil.optimisation.operators import GradientOperator\n", + "from cil.optimisation.utilities import callbacks\n", + "from cil.framework import DataContainer\n", + "\n", + "from cil.utilities.quality_measures import mse, mae, psnr\n", + "\n", + "# set up default colour map for visualisation\n", + "cmap = \"gray\"\n", + "\n", + "# set the backend for FBP and the ProjectionOperator\n", + "device = 'gpu'\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Load Data " + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "FDK recon\n", + "\n", + "Input Data:\n", + "\tangle: 60\n", + "\thorizontal: 128\n", + "\n", + "Reconstruction Volume:\n", + "\thorizontal_y: 128\n", + "\thorizontal_x: 128\n", + "\n", + "Reconstruction Options:\n", + "\tBackend: tigre\n", + "\tFilter: ram-lak\n", + "\tFilter cut-off frequency: 1.0\n", + "\tFFT order: 8\n", + "\tFilter_inplace: False\n", + "\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABdIAAAKOCAYAAACiHeulAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeXwV1f0//heiLMoiewgECAiyuQIiIJsWFNS6QPVbFWtVWgoqQq0tohasBbWWphZFaRGkimCLFGsRwaq4EBVQQUFBkU0gLGFxF6H5/eGP+8m8ziu5QwjJDbyej4ePh+dy7ixnzpw5M5n7fpfLy8vLg5mZmZmZmZmZmZmZSUeV9gaYmZmZmZmZmZmZmaUyP0g3MzMzMzMzMzMzMyuEH6SbmZmZmZmZmZmZmRXCD9LNzMzMzMzMzMzMzArhB+lmZmZmZmZmZmZmZoXwg3QzMzMzMzMzMzMzs0L4QbqZmZmZmZmZmZmZWSH8IN3MzMzMzMzMzMzMrBB+kG5mZmZmZmZmZmZmVgg/SDezMmPZsmW47rrr0KxZM1SuXBmVK1dG8+bN8fOf/xyLFy8u7c07KOXKlcOoUaMK/PcePXqgXLlySf8rbBlxfPXVVxg1ahRefvnl4N9GjRqFcuXKYfv27Qe1DjMzMzMrHlOmTClwXnjLLbck6jVp0iTx+VFHHYXq1aujVatWuPrqqzFv3jy57HLlyuGGG24IPv/tb3+LcuXK4Re/+AX+97//Fbht+ddZrlw5HHfccTj99NMxfvx45OXlHfzOp5AVK1Zg1KhRWLt2baltw6ZNmzBq1Ci8++67wb/tn8ebmdnBObq0N8DMLI5HHnkEN9xwA0488UQMHToUbdq0Qbly5fDBBx/gySefRIcOHfDxxx+jWbNmpb2ph8RDDz2Ezz77LFH+z3/+g7vvvhuTJ09Gy5YtE583bNjwoNbz1VdfYfTo0QC+f3hvZmZmZqmP54QAkJ6eHil36dIF999/PwDgiy++wMqVKzF9+nSce+656NevH5588kkcc8wxBa4jLy8PQ4cOxV/+8hf85je/wdixY5NuV/51btq0CePGjcONN96Izz77DLfddtuB7mbKWrFiBUaPHo0ePXqgSZMmpbINmzZtwujRo9GkSROceuqpkX+7/vrrcd5555XKdpmZHU78IN3MUt7rr7+OwYMH4/zzz8c///lPVKhQIfFvZ599NoYMGYJ//OMfqFy5cqHL+eqrr3Dsscce6s09JFq3bh0pf/jhhwCAtm3bon379gV+ryzvs5mZmZnFk2xOCADHH388zjzzzET5Bz/4AYYMGYJRo0Zh9OjRuP3223HvvffK7+7duxfXXnst/v73v+MPf/hD5G33A11no0aN8MgjjxxWD9IPVEnP0Rs2bHjQL9yYmZlDu5hZGTBmzBiUL18ejzzySOQhen4/+tGPIm/dXHPNNahSpQree+899O7dG1WrVsU555wDANixYwcGDx6MBg0aoEKFCmjatClGjhyJb7/9NvH9tWvXoly5cpgyZUqwLg6hsv+nksuXL8ePf/xjVK9eHfXq1cO1116L3bt3R7772WefYeDAgahVqxaqVKmC8847D6tWrTqI1vk/+7fj7bffRv/+/VGjRo3EG/o9evSQb5hfc801ibdm1q5dizp16gAARo8enfgZ7jXXXBP5zpYtW5Lup5mZmZmVDaNGjUKbNm0wfvx4fPPNN8G/f/PNN+jXrx+mTZuGv/3tb7EfoivVqlVDixYtsGXLlsjne/bswd13342WLVuiYsWKqFOnDn76059i27ZtwTKmTZuGTp06oUqVKqhSpQpOPfVUTJo0KVLn0UcfxSmnnIJKlSqhZs2auOSSS/DBBx9E6uy/X/j444/Rt29fVKlSBRkZGfjlL38ZuS8AgAkTJuCUU05BlSpVULVqVbRs2TLxh4ApU6bgRz/6EQCgZ8+eiTn0/vuIHj16oG3btnjllVfQuXNnHHvssbj22msBFBzesUmTJsEcfOPGjfjZz36GjIwMVKhQAenp6ejfvz+2bNmCl19+GR06dAAA/PSnPw3CPqrQLv/73/9w3333Jdq8bt26uPrqq/Hpp59G6u3f/kWLFqFr16449thj0bRpU9xzzz2FhvYxMzsc+UG6maW0ffv24aWXXkL79u1Rv379A/runj178MMf/hBnn302Zs+ejdGjR+Obb75Bz549MXXqVAwfPhz/+c9/cNVVV+G+++7DpZdeelDb2q9fP7Ro0QIzZ87Eb37zG0ybNg3Dhg1L/HteXh4uvvhi/P3vf8cvf/lLzJo1C2eeeSb69OlzUOtll156KU444QT84x//wMMPPxz7e/Xr18fcuXMBANdddx2ys7ORnZ2NO+64I1Iv2X6amZmZWcnat28f9u7dG/nvQFx44YX46quvgrxDn3/+Ofr06YO5c+dixowZuO666w5qO/fu3YsNGzagRYsWic/+97//4aKLLsI999yDK664Av/5z39wzz33YP78+ejRowe+/vrrRN0777wTV155JdLT0zFlyhTMmjULP/nJT7Bu3bpEnbFjx+K6665DmzZt8PTTT+PPf/4zli1bhk6dOuGjjz6KbM93332HH/7whzjnnHMwe/ZsXHvttfjTn/4UeTN/+vTpGDx4MLp3745Zs2bhX//6F4YNG4Yvv/wSAHD++edjzJgxAIAHH3wwMYc+//zzE8vYvHkzrrrqKlxxxRWYM2cOBg8efEDttnHjRnTo0AGzZs3C8OHD8dxzzyErKwvVq1fHzp07cfrpp2Py5MkAgNtvvz2xDddff32By/zFL36BX//61+jVqxeeeeYZ/O53v8PcuXPRuXPnICdSTk4OrrzySlx11VV45pln0KdPH4wYMQKPP/74Ae2HmVlZ59AuZpbStm/fjq+//hqNGzcO/m3fvn2RREXly5ePvGnx3Xff4c4778RPf/rTxGePPPIIli1bhqeeeirx5kivXr1QpUoV/PrXv8b8+fPRq1evIm3rddddh1/96lcAvv/Z6scff4xHH30UkyZNQrly5fD888/jpZdewp///GfcdNNNiXVXqFABI0eOLNI6lZ/85CeJOOcHomLFimjXrh2A73/+mf9nuPkl208zMzMzK1lq3vbdd9/h6KPj3fLvn2tv2rQp8vnUqVMBABMnTkS/fv0OeLvy8vISD/U3bdqEu+++G7m5ufjb3/6WqPPUU09h7ty5mDlzZuTFllNOOQUdOnTAlClT8Itf/AJr1qzBmDFjcOWVV0Ye4Oafu+/atQu/+93v0LdvX0ybNi3xeY8ePdC8eXOMGjUKTzzxROLzPXv2YPTo0Yn7gnPOOQeLFy/GtGnTcOeddwL4Pszk8ccfjwceeCDxvf2/dAWAOnXqoHnz5gC+D8eojsWOHTvwj3/8A2efffYBtuD37rzzTmzfvh1Lly5Fq1atEp9fdtllif9v27YtAKBZs2YFzuP3+/DDDzFx4kQMHjwYf/nLXxKfn3baaejYsSP+9Kc/4fe//33i89zcXMyZMwdnnHEGgO/vAV5++WVMmzYNV199dZH2ycysLPIb6WZWZrVr1w7HHHNM4r8//vGPQR2e8L/44os47rjj0L9//8jn+386+d///rfI2/PDH/4wUj755JPxzTffYOvWrQCAl156CQBw5ZVXRupdccUVRV6nUpSbnAORbD/NzMzMrGRNnToVixYtivwX9yE6gMjLKfl17doVxx9/PEaPHo2PP/74gLdrzpw5ibl648aN8de//hV/+ctfIm9rP/vsszj++ONx4YUXRt6oP/XUU5GWloaXX34ZADB//nzs27cPQ4YMKXB92dnZ+Prrr4OwKBkZGTj77LODuX65cuVw4YUXRj47+eSTI2+4n3HGGdi1axd+/OMfY/bs2cHb2nHUqFGjyA/RAeC5555Dz549Iw/RD8b++xJupzPOOAOtWrUK2iktLS3xEH0/biczsyOBH6SbWUqrXbs2KleuLCdp06ZNw6JFi/DMM8/I7x577LGoVq1a5LPc3FykpaUFb07XrVsXRx99NHJzc4u8rbVq1YqUK1asCACJn6Pm5ubi6KOPDuqlpaUVeZ3KgYbAOVDJ9tPMzMzMSlarVq3Qvn37yH8HYv9cO3/OIeD7h6UvvPACvvrqK3Tv3v2Ac/ucddZZWLRoEd544w38/e9/R5MmTXDDDTfgtddeS9TZsmULdu3ahQoVKkRekjnmmGOQk5OTeHC9P156YUkz98/l1Xw4PT09mOsfe+yxqFSpUuSzihUrRmLFDxgwAI8++ijWrVuHfv36oW7duujYsSPmz58fux0Odn6+bdu2Yk0WeqDtxPN/4Pt28vzfzI40fpBuZimtfPnyOPvss7F48WJs3rw58m+tW7dG+/btcdJJJ8nvqjAjtWrVwpYtW4K3brZu3Yq9e/eidu3aAJCYUHOioYN90L53795gGTk5OUVepqL2u1KlSsG+ACjSGzVmZmZmdvjIy8vDv//9bxx33HHyAXy7du3wwgsvJHINrVy5Mvayq1evjvbt26Njx4646qqrMG/ePBxzzDEYPHhwIlFl7dq1UatWreCN+v3/PfTQQwC+D6ECIEiGmd/+B7583wB8H1pm/1z/QP30pz/FwoULsXv3bvznP/9BXl4eLrjggthvZBcU/rBixYpyjs73C3Xq1Cl0vw/UoWonM7PDnR+km1nKGzFiBPbt24dBgwbhu+++O6hlnXPOOfjiiy/wr3/9K/L5/viP++Md1qtXD5UqVcKyZcsi9WbPnl3kdffs2RMAInEZAUTiNx4qTZo0wapVqyIT9dzcXCxcuDBSz2+Xm5mZmR1ZRo8ejRUrVmDo0KHB29n7nX766fjvf/+Lb7/9Fj179sSHH35YpHU1b94ct956K9577z3MmDEDAHDBBRcgNzcX+/btC96qb9++PU488UQAQO/evVG+fHlMmDChwOV36tQJlStXDpJgfvrpp3jxxRcjsc2L4rjjjkOfPn0wcuRI7NmzB8uXLwdQ9Dl0kyZNgvuNF198EV988UXksz59+uCll14q9I8YB7IN+8PMcDstWrQIH3zwwUG3k5nZ4crJRs0s5XXp0gUPPvggbrzxRpx++un42c9+hjZt2uCoo47C5s2bMXPmTAAIwrgoV199NR588EH85Cc/wdq1a3HSSSfhtddew5gxY9C3b1/84Ac/APD9WyNXXXUVHn30UTRr1gynnHIK3nrrrYN66N27d29069YNt956K7788ku0b98er7/+Ov7+978XeZlxDRgwAI888giuuuoqDBw4ELm5ubjvvvuCNqtatSoaN26M2bNn45xzzkHNmjVRu3ZtNGnS5JBvo5mZmZkdOrt27cIbb7wBAPjyyy+xcuVKTJ8+Ha+++iouu+yypMnqTz31VPz3v//FOeecg549e+LFF18sUszuW265BQ8//DBGjx6Nyy67DP/v//0/PPHEE+jbty+GDh2KM844A8cccww+/fRTvPTSS7joootwySWXoEmTJrjtttvwu9/9Dl9//TV+/OMfo3r16lixYgW2b9+O0aNH4/jjj8cdd9yB2267DVdffTV+/OMfIzc3F6NHj0alSpXw29/+9oC3d+DAgahcuTK6dOmC+vXrIycnB2PHjkX16tXRoUMHAP+X6HPixImoWrUqKlWqhMzMTBkSJb8BAwbgjjvuwJ133onu3btjxYoVGD9+PKpXrx6pd9ddd+G5555Dt27dcNttt+Gkk07Crl27MHfuXAwfPhwtW7ZEs2bNULlyZTzxxBNo1aoVqlSpgvT09CBcDwCceOKJ+NnPfoa//OUvOOqoo9CnTx+sXbsWd9xxBzIyMjBs2LADbiczsyOB30g3szJh0KBBWLx4MTp06IA//elP6Nu3L/r06YM777wTxx13HP773//iZz/7WdLlVKpUCS+99BKuvPJK/OEPf0CfPn0wZcoU3HLLLXj66acjdf/4xz/iqquuwn333YeLLroI2dnZePbZZ4u8D0cddRSeeeYZXHnllbjvvvtw8cUXY+HChZgzZ06RlxlXly5d8Nhjj2H58uW46KKLcPfdd2PEiBHo0aNHUHfSpEk49thj8cMf/hAdOnTAqFGjDvn2mZmZmdmh9frrr6NTp07o3LkzLr74YjzwwANo0qQJnn/+ecyYMSNWctJTTjkFL774Ivbu3YuePXtixYoVB7wdVapUwZ133omVK1fiiSeeQPny5fHMM8/gtttuw9NPP41LLrkEF198Me655x5UqlQpEsbxrrvuwtSpU7Fu3TpceeWVuPjiizF58mRkZmYm6owYMQJ/+9vfsHTpUlx88cW44YYb0KZNGyxcuBDNmzc/4O3t2rUr3n//fQwdOhS9evXCsGHD0KJFC7z66quJcDOZmZnIysrC0qVL0aNHD3To0AH//ve/ky77V7/6FX71q19hypQpuPDCCzFz5kw89dRTOP744yP1GjRogLfeegsXXHAB7rnnHpx33nm48cYbsXv3btSsWRPA9/HeH330UeTm5qJ3797o0KEDJk6cWOC6J0yYgHvuuQdz5szBBRdcgJEjR6J3795YuHBh0j8AmJkdqcrlFZSe28zMzMzMzMzMzMzM/Ea6mZmZmZmZmZmZmVlh/CDdzMzMzMzMzMzMzKwQfpBuZmZmZmZmZmZmZlaIw+ZB+kMPPYTMzExUqlQJ7dq1w6uvvlram2RmZmZmdkTxnNzMzMzMDleHxYP0GTNm4Oabb8bIkSPxzjvvoGvXrujTpw/Wr19f2ptmZmZmZnZE8JzczMzMzA5n5fLy8vJKeyMOVseOHXH66adjwoQJic9atWqFiy++GGPHji3FLTMzMzMzOzJ4Tm5mZmZmh7OjS3sDDtaePXuwZMkS/OY3v4l83rt3byxcuFB+59tvv8W3336bKP/vf//Djh07UKtWLZQrV+6Qbq+ZmZlZScvLy8Pnn3+O9PR0HHVUvB8kfvPNN9izZ88h3rKoChUqoFKlSiW6TisenpObmZmZFc5z8rKvzD9I3759O/bt24d69epFPq9Xrx5ycnLkd8aOHYvRo0eXxOaZmZmZpYwNGzagYcOGSet98803yMzMLHAudaikpaVhzZo1nriXQZ6Tm5mZmcXjOXnZVeYfpO/Hb63k5eUV+CbLiBEjMHz48ER59+7daNSo0SHdPjMzM7PSVrVq1Vj19uzZg5ycHGzYsAHVqlU7xFv1vc8++wwZGRnYs2ePJ+1lWHHMyXv37o1jjjkm8Rn7+uuvI+Vjjz02qMPRK7/55pugzr59+yLl//3vf0EdPmfUOVS+fPlI+fPPPw/qbN26tdDlVKlSJfgOv32m3kbj5ezatSuow/ul2ovbomLFikmXo1SuXDlS5nNZtU3+XyUA4fEFgC1btkTK1atXD+qkp6dHyk2aNAnqHH109Pb3q6++Srqu3NzcoM62bduCz/KrU6dO8Nn+Pr2fOlb8UKVChQpBnR07dkTKe/fuDepwn1RjKh+rL774otAyEPYdPnZq3Z999llQ57jjjouU1RjBy+bvAOF5rpbD/fa7776LlFWf5HVxWymqLfjYcP8DELyRqsYY7qfqLVbuX9u3b0/6HdW/GM8B+PgCYbvztgDhGKfanfNpqG3mdcXZvho1akTKO3fuDOrwGM3jCQAcf/zxkfKXX34Z1OHzU5173G/j9C8eh1TbpKWlJV0unw/q4Sz3W3U8+ZoaZ4xR1DiTn2pjvj7xcQHCvq3GoTjjB/cnflkACNuHryFAdD/37t2LxYsXH3Zz8oceegh/+MMfsHnzZrRp0wZZWVno2rVrgfUXLFiA4cOHY/ny5UhPT8ett96KQYMGRerMnDkTd9xxB1avXo1mzZrh97//PS655BK5vLFjx+K2227D0KFDkZWVFXtfi6LMP0ivXbs2ypcvHwwAW7dulZ0c+P7EU5NDMzMzs8PZgYbLqFq1auyJ/sE6DNL2HNGKc05+zDHHJG5M1YMnvrFVdbg/qTpMnR/8PfVAIc72JKujvsMPPNSDbP5enIdcal1x6sR5kM7tw2W1XH6Ir/aBHxqpOrxs9ZCQ66iH0HG2OdnP8eNsX5w6qr/F6ctx+mSy/YyzfXzs1PfUcvgz1Z5xHkIX5UE6l+NsX5w2V32Jt6+o6+LPVHslO37qO2p7DnS5QLwH6cnGBrXsOA/S42xfnHO6KOdMnPOzuK5PcdomzvZx/4+z7uJqr7jLLmw96jtx+ltRxw9ev7quFKVfFLS+wqTynHx/svmHHnoIXbp0wSOPPII+ffpgxYoV8qXlNWvWoG/fvhg4cCAef/xxvP766xg8eDDq1KmDfv36AQCys7Nx+eWX43e/+x0uueQSzJo1C5dddhlee+01dOzYMbK8RYsWYeLEiTj55JOLvtMHIF5AnhRWoUIFtGvXDvPnz498Pn/+fHTu3LmUtsrMzMzM7MjhObmZmZnZkWfcuHG47rrrcP3116NVq1bIyspCRkZGJPl8fg8//DAaNWqErKwstGrVCtdffz2uvfZa3H///Yk6WVlZ6NWrF0aMGIGWLVtixIgROOecc4K3zb/44gtceeWV+Otf/xr8+uRQKfNvpAPA8OHDMWDAALRv3x6dOnXCxIkTsX79+uBnAWZmZmYWX15eXom9Ke430su+4pqT538jvXbt2sG/80+91c/0+e2vOD8xVyFF+O09/tm+WrZaF4fE4Lfa1Jv5/LaaCu3C5416S5G/p34qz9un6vB+qe3hkBhx9pPXpULP8PdUOAD+NYR6K5DDNai3+zhER5zwJRymRbUNHxvVTzgch3oowG2hwhZxW6g4vLx+7v9xwkKokET8ZrY6r/iY16xZM6jD4XvUcWAq/AsfGw6Rob7D/UKFNuBjrI4Dt5fqF1xHvaUa581ZDlnDx0GNDRwSQ4U64u1T51Wc7eN2V+cwt6EKY8H7wWW1fdzu6pcUfK1RbxDz+K+OOZ+zanu4T6q+zdsc53xQv4pItlx1rHi/VL/lsT3Om9rcR4HwXON1q37L56NqY24f9YuqOL+G4vFBtQWPZ6p/5T82cY6TUhpzcg6Jo35JWJRk89nZ2ejdu3fks3PPPReTJk3Cd999h2OOOQbZ2dkYNmxYUIcfpA8ZMgTnn38+fvCDH+Duu++OvY8H47B4kH755ZcjNzcXd911FzZv3oy2bdtizpw5aNy4cWlvmpmZmZnZEcFzcjMzM7PDQ0ZGRqT829/+FqNGjYp8VpRk8zk5ObL+3r17sX37dtSvX7/AOvmXOX36dLz99ttYtGjRge7aQTksHqQDwODBgzF48ODS3gwzMzOzw4bfSLcD5Tm5mZmZWfEqjTk5JzgtLNfkgSSbL6g+f17YMjds2IChQ4di3rx5sROiFpfD5kG6mZmZmZmZmZmZmR2catWqyRBL+RUl2XxaWpqsf/TRR6NWrVqF1tm/zCVLlmDr1q1o165d4t/37duHV155BePHj8e3334bK6FyUZT5ZKNmZmZmdmjsf/ulpP4zMzMzM7OoVJ2TFyXZfKdOnYL68+bNQ/v27RMx7wuqs3+Z55xzDt577z28++67if/at2+PK6+8Eu++++4he4gO+I10MzMzMzNLIV988UXiRkolM+Ska+qnxrt3746UVcJDTqbIifeAMCmYSiLGN5yqDidi44RqKrEjJ1BTydz4Z88qOSUnY1UJ3zjJoEq0x3XUT7a3bt0aKfOxUfvJ61LJ3OIkreN258SdCvcltT0qISnjbVYJUzn5XZzEq2o/uQ1VwkNO0Pf5558Hdfh73NdVAj9uG5XwkOuotuA6qm/z9qnzKk4yT/5enKSS3O6qr3P7qOXwPqhjxfuukiLyfqljww+N1HjGOOGnWndRkjaqY85JC1Wf5HZXbcr9P87DMt4HNQ5xG/M1RG2POg58zVLHnMfSOGEp+PxU+83HQV33uI3VOczbXLdu3aAOt6FK2svbo5LZsjh9Pc41g/dLJfjkcVKd57xfcRIaq+XkH3fUuF7WJUs2P2LECGzcuBFTp04FAAwaNAjjx4/H8OHDMXDgQGRnZ2PSpEl48sknE8scOnQounXrhnvvvRcXXXQRZs+ejRdeeAGvvfYagO+vzW3bto1sx3HHHYdatWoFnxc3P0g3MzMzMzMzMzMzswOSLNn85s2bsX79+kT9zMxMzJkzB8OGDcODDz6I9PR0PPDAA+jXr1+iTufOnTF9+nTcfvvtuOOOO9CsWTPMmDEDHTt2LPH9Y36QbmZmZmaSk42amZmZmZWuVJ+TF5ZsfsqUKcFn3bt3x9tvv13oMvv374/+/fvH3oaXX345dt2D4RjpZmZmZmZmZmZmZmaF8BvpZmZmZial+tsvDz30EP7whz9g8+bNaNOmDbKystC1a9cC6y9YsADDhw/H8uXLkZ6ejltvvTURv3G/mTNn4o477sDq1avRrFkz/P73v8cll1yS+PcJEyZgwoQJWLt2LQCgTZs2uPPOO9GnT5/IvowePRoTJ07Ezp070bFjRzz44INo06bNAe/jkeiLL75IxECNEyNaxZpWsa9ZnDilHL9YxWtVcWgZx81VcYZZnJi4fN6oWNN16tSJlDlmOhDGmFXnI8d9VbF/OX5snFjAHMtZxTbn5XJsZ7U9ah+4DVXfYSq2LvcDjrWr2kbFe2a8HNVevD1qudwP4oyv3DZx8gpw3GtVR8UU5nWpfst9h9smbh1eNrepOr58fqrzNU58dt5PFSNaxRNnfIzVNnMsfz4O6pzh5ag6PE6qc4bbWO0nnxNqHOK2UONtsuOpYn7zsVEx0jmet+q3vOxq1aolXVecPAJqvOD+Feeaxt9Rx4rXra6DfBxUzG+uo8YLzvmg8DGOczx5m9X4xjH41RjD61ZtzPupzj3u78nypKj2jCPV5+RHEr+RbmZmZmZlzowZM3DzzTdj5MiReOedd9C1a1f06dMnEoMxvzVr1qBv377o2rUr3nnnHdx222246aabMHPmzESd7OxsXH755RgwYACWLl2KAQMG4LLLLsObb76ZqNOwYUPcc889WLx4MRYvXoyzzz4bF110EZYvX56oc99992HcuHEYP348Fi1ahLS0NPTq1UsmVzMzMzMzs7LBD9LNzMzMTNr/9ktJ/Xcgxo0bh+uuuw7XX389WrVqhaysLGRkZGDChAmy/sMPP4xGjRohKysLrVq1wvXXX49rr70W999/f6JOVlYWevXqhREjRqBly5YYMWIEzjnnHGRlZSXqXHjhhejbty9atGiBFi1a4Pe//z2qVKmCN954I9FmWVlZGDlyJC699FK0bdsWjz32GL766itMmzbtwA+CmZmZmR3RUnlOfqTxg3QzMzMzSxmfffZZ5L+Cfqa9ZMkS9O7dO/J57969sXDhQrnc7OzsoP65556LxYsXJ34mXFCdgpa5b98+TJ8+HV9++SU6deoE4Ps333NyciLLqVixIrp3717gcszMzMzMLPX5QbqZmZmZSaXx9ktGRgaqV6+e+G/s2LHBdm3fvh379u1DvXr1Ip/Xq1cPOTk5cl9ycnJk/b179yZiMhdUh5f53nvvoUqVKqhYsSIGDRqEWbNmoXXr1oll7P9e3G0zMzMzMyuI30hPHU42amZmZmYpY8OGDZEEXoUlA+SETXl5eYUmcVL1+fM4yzzxxBPx7rvvYteuXZg5cyZ+8pOfYMGCBYmH6UXZNvs/+W/iVBI2TuQVJ7GjShy3Y8eOSFklFORkaZzQDwiTmKnkbfwZJ0VUCQe5v6jt4+WoX3BwQjyVwJIT/6kkksmSwgFhe6lkfIwTMqpjxdS6eaxQDwI4kalKQBcnASkfG04wqBLDcj+NkzBSJfDjxLWcrBUIk0ZyX1ff4z6ozituU3Uc+PxUCUC5veIkW1TJPDMyMiJllZyS/4C5efPmSFklGIyT6JHXtW3btqBObm5upKzOcz5H4iRVVX00WQJj1cbcT9QyuO+kp6cHdeIkz+S+os69OHX4szjXVR7f1LnHx1i1BZ+PKjkrj8GqT8ZJlsljAZ+vamzgcSdOYkwlTtJXzvmijgN/psZ27u98DVHby9ujkntyW6hrNy9HJaHl9auxlPu7Os/zjw/quFjZ4gfpZmZmZpYyqlWrlvThW+3atVG+fPngAcnWrVuDN8H3S0tLk/WPPvpo1KpVq9A6vMwKFSrghBNOAAC0b98eixYtwp///Gc88sgjSEtLA/D9w5v69evH2jYzMzMzM0t9Du1iZmZmZlKq/oy0QoUKaNeuHebPnx/5fP78+ejcubP8TqdOnYL68+bNQ/v27RNvJRVUp6Bl5m+n/W+hZWZmIi0tLbKcPXv2YMGCBUmXY2ZmZmbGUnVOfiTyG+lmZmZmVuYMHz4cAwYMQPv27dGpUydMnDgR69evx6BBgwAAI0aMwMaNGzF16lQAwKBBgzB+/HgMHz4cAwcORHZ2NiZNmoQnn3wyscyhQ4eiW7duuPfee3HRRRdh9uzZeOGFF/Daa68l6tx2223o06cPMjIy8Pnnn2P69Ol4+eWXMXfuXADf/5T55ptvxpgxY9C8eXM0b94cY8aMwbHHHosrrriiBFvIzMzMzMyKkx+km5mZmZlUkm+lHOh6Lr/8cuTm5uKuu+7C5s2b0bZtW8yZMweNGzcG8H0c3PXr1yfqZ2ZmYs6cORg2bBgefPBBpKen44EHHkC/fv0SdTp37ozp06fj9ttvxx133IFmzZphxowZ6NixY6LOli1bMGDAAGzevBnVq1fHySefjLlz56JXr16JOrfeeiu+/vprDB48GDt37kTHjh0xb948GaPTQkcffXQi5q6KN65iwzKOJ6tivHKcYY75qtav4hfzsjleMBDGa+WYvSoeL8fCVvHPOa6vOo94v1Sc2jp16kTKKvb1rl27ImUVB5zbh4+VinnM+6lwTNnatWsHdXg/Vdxc/ky1KbdhUeJRq3UzFfOb90H1pd27dyetw8evZs2aQR2O68vxnuvWrRt8h/uOivXLy+V+A4Sxk1Vf4mOj+iT3N3V+8vZwe6ljyfupziveL7Vu3q84x0q1BcdpVv2L+wXvl4rnzVRsZ95mFQub68TJM6DO+zg5FXjs5HZX+8ltrK7F3F4qT0Sc+Oe8HNV3eHvUOMTtzMc8zpxJtQUvRx0HPq9VW/D31DHnz9T1nM8jPl9VTHK+7ql185inzk9uY7WffDxV/H/uB+ocyf+9ONcHJZXn5EcaP0g3MzMzszJp8ODBGDx4sPy3KVOmBJ91794db7/9dqHL7N+/P/r371/gv0+aNCnpdpUrVw6jRo3CqFGjktY1MzMzM7OywQ/SzczMzEzy2y9mZmZmZqXLc/LU4WSjZmZmZmZmZmZmZmaF8BvpZmZmZib57RczMzMzs9LlOXnq8IN0MzMzMzNLGV999VUi4Z5KfsfJvzgRHwDk5OREypx8FAAqV64cKatkZJwILTc3N6jDic5UAjpOosd1VPIxTkapkpzxZ6q9mFpXrVq1ImWV8JATMKqkr5xMlLdPJWHj76iEg5ykTiWe5OWoJHW879xPgDDJpkqQym1Ro0aNSHnz5s3Bd7jfquVyH1TtxQkEed2ATuqXrA6vWz1IiZMAlJer9oHrqKSlvGyVFJH7FyeiBJInwlQJQPn4qnOGt1klduQ2VMeF168ST/L5qJaTLIFhUROA8vZ9+eWXQR1O0sjJINX2qXbn8Wv79u1BnWTJgFWfZOqawful+qTar2TLUUmFeSxQYx7vV5wk27xudQ7zcVBjPS9H9Qu+fqprD18/1TnCfZm/o5Jjc9uo48L7FSdJqOo7fKxUolpelzrm+fezqMlGLXU4tIuZmZmZmZmZmZmZWSH8RrqZmZmZSf4ZqZmZmZlZ6fKcPHX4jXQzMzMzMzMzMzMzs0L4jXQzMzMzk/z2i5WGihUrJuLnqnjBHK9VxWblmL0c5xQIY0KruKUcM1XFe+ZYuip+8e7duwtdt4rHy5/FidOsto/3XcU45m1WMeXjxKbnuN+8n3xcgDCebIMGDYI6HE9Z7SfH7FX7wDF6t23bFtThuMwqhjDHlOc4vmrdHLM9Tox01cYqtjTjvqL6F8cZ5vZTYzL3E/4OELaFilXP54OKwcwxodX21KlTJ1JWcZDT0tIiZR5T1PnAy1ExmD///PNIecuWLUGdmjVrRsoqBjMfY9Wmcaj9yE+dM7xuVYf7vxqHuE+qOrwc1f/jxO/mGNrct1Ubcyxs1U+4LdT2xVkOHwe1HI6JruJu87K5/6txgMdSdTy5fdSx4vMxTpxyNVbxWKr6KC+bzzW1D/wdFWOer1dqH/jYqDwCPF6ouP3c7ioWfP59V/ORODwnTx1+I93MzMzMzMzMzMzMrBB+I93MzMzMJL/9YmZmZmZWujwnTx1+I93MzMzMzMzMzMzMrBB+I93MzMzMJL/9YmZmZmZWujwnTx1+kG5mdgTiZFYqMQ9fQFVCHV9kzcysuB111FGJ65S6PnHyL1WnRo0akbJK7sWJ4/g7QJhQUOEEZep6ydddTnwWJ/mYSrzKCedUUklOxsqJ0YAwsaPanmSJRAG978mWy4kn1fHkhHh87IAw2Z1KVMjLVnV4bqOSy3ECS/6OOg68bpUkl9tHJa3j/sbHDgiPjdpPXlecfeCkiOpY8fbx8VWfqXVxf1fHnPuFatOcnJxIOc45w8liVV/nc1jNiflcU0lLedlxktCqpL1ch5OWqu/wvqvzN05yZz42cc5PNQ6pzxjvFyfAjZPoNM51RSWN5sSXqg5/ptqrbt26kbJKcsn9i88ZtW6mjgO3sWoLpuqo85pxe9WuXTuow2MK90G1n5zEV+0nn+eqjZnq/xs2bIiU1XjLx0r14/znkeqjVrb4QbqZmZmZSX77xczMzMysdHlOnjocI93MzMzMzMzMzMzMrBB+kG5mZmZmZmZmZmZmVgiHdjGzEsUx6jjGJMdJA4Bdu3ZFylu2bAnq+OdHBeMYcUDY7hzbDQjbVMVW3Lp1a6QcJ8armZUd/hmplTYVH5WvNSpmKX9PxR3mOKXqeqnmJUVZTrL4uxz3V1HnSJzYrGp7klExXDmestpmPhYcF1nF2uXlqrj0fPzUfnK/UHHBuS1U/GJetoq/y3NTPr6qv3H8XbUPHEOb2w8Avvzyy0hZzeF4e9S6uG/zulXOAO63cXLsVKtWLahTv379SJnnk0DY7up4cqxkFeOYjxW3KccAB4oWn71evXpBHY4RreI0czx2hfddtUWy9lJ9ko+nihfP5wzvE6DPI8Yx3NWx4nNY9R3G+6XGO7XvjPu7Goe4fdT1iY+DGie5H6g+yOc534ep48BUHPM6depEyqpv8/ap6wEfKzUW8Nik+j8vh9tdLTfOWM/7pe5RuY23bdsW1ImTw4PHCx5zgOi+F3W+6zl56vAb6WZmZmZmZmZmZmZmhfAb6WZmZmZWIL+VYmZmZmZWujwnTw1+I93MzMzMzMzMzMzMrBB+I93MzMzMJMdjNDMzMzMrXZ6Tpw4/SDezQ6Zu3brBZ9dee22k3L59+0hZJWT54osvIuXXXnstqDN16tRIWSVXKQqV5KZnz56RcpMmTYI6nLzkjTfeiJTff//9g9+4mFSiNN6vOEnOVFIbTgjD+21mZnagqlevnkgUxkm8AJ10nHHCObUcTkCnkq5xEjOVXE4lpUuGk7epZJC8bpVUlROoqcSTnNRPJQbkBGqqvXg5au6QLHmhSp7Jx0q1Ba9bzc+4TVVyOf5MJSbkpIhqXTw35TmSStrIx0a1H2+P6pNMJW3k5bRo0SKow4nnOeEhJ/IEdLJAtnr16kiZ2woI+4Hqb5z8kROUAkBGRkakrOa8/D1OKBhnPFF9ifuJSkLI/ULtJ38vNzc36briJOHk8ULN47l/qfGNj59KjBlnjGHqQR3fR8Tpg7w96njy8VP9OE5ySh7rVd/mfVd9Mk4CaL6X5bZR5z33JZUwmNetxmTuB6rfcp9UYx5vs+pfvBym+hsn6FXtyf1LnVe8fTt27Ajq8DarfsvHQu1T/mTOqq2sbPGDdDMzMzOT/PaLmZmZmVnp8pw8dThGupmZmZmZmZmZmZlZIfwg3czMzMzMzMzMzMysEA7tYmbFhmM93nzzzUGdM888M1JW8foYx5q7+OKLk9b54x//GNSJE4+sZcuWkfLIkSODOhyXLY4f/vCHkfLzzz8f1JkwYUKkrGLzFYWK08afxTkOqk6yuHZmVrb5Z6RW2tQ1l2Obb968OajDcV/VNZXjmtapUyeow3GtVcxqjuGq4sDyNZTrqDjrHPc1TgxaFV+cr9UqJi63s9rP/DFeAR3jm2MP87rUfsaZk/C+q9jEvH2qvXh74sRIV30n2byJ+ygQHhu1bm53FQub62zatCmow7GlOScRADRr1ixS5vOBY/QDYb9Vsaa5bVRsfz5n1TnD8c979eoV1OH406q9GjVqFClzLP2PP/44+M67774bKau429xP4sQ/V/2G+wHHrgeAXbt2JV0X9y8+19Q5zduj4rzztVnF5ubxQ+VM4uWotuAxRZ3nPN5yLHF13vM5rOYb/Jk6h7mOigUfJ/fG9u3bI+U4eTY4tj/3YyA8p3lMBML2UuMbn1fq/OTvqTrcJ9WYwv2/Vq1akbLaBz4O6prG8c5VG3Odzz77LOn2xYnZruQfL4p6/+w5eerwExAzMzMzMzMzMzMzs0L4jXQzMzMzk/z2i5mZmZlZ6fKcPHX4jXQzMzMzMzMzMzMzs0L4jXQzMzMzk/z2i5mZmZlZ6fKcPHX4QbqZFZvTTjstUj799NODOnGSWiajEnR06dIlUp49e3ZQ58MPP4yUOYEYAIwYMSJSLkpiUYX3+7zzzgvqrFu3LlJ+9tlni2XdKgGLSvyUjPqOSjhUHDhRT4sWLYI6mZmZkbLqW+vXr4+UV65cGdQpSluYmdmhs2PHjkSCL5U8kJN91a9fP6jD1z6V/I6To3EyNyBM6qeS8XHCRZVQjZPoqYRljK9Pah/42hcnUblKUpebm5t0OZz0TSXL5Ot3jRo1ImU1h+PvqPbjBHlqOZxMLk5CN5Usk4+xmutwEkRu09q1awff4QR+av7B/ZaThqrvqaSIDRo0iJSbNm0a1GF8zNW5x4kcVT/h+ZlKBszLbtKkSVDnlFNOSbo9/LBH9Ulud6YSsXJf4mSfijoOcRIG87pUEl/eT7Ucbh9OpKjGLl6Oaj9OwnziiScGdbiNVZJQTrCp7sPiJInmbYwzBsZJNsrjhUokyuc5j5tA2M6qX3BSS5UkmsdBTlrKYysQtqlKAMrjhzqveD+3bt0a1GFqOXysVJvyvTafD+o+lo+n6m98zVDLiXN952u1andur2QJs/2Quuzzg3QzMzMzk/z2i5mZmZlZ6fKcPHU4RrqZmZmZmZmZmZmZWSH8IN3MzMzMzMzMzMzMrBAO7WJmxaZx48aRsoo7eahwTLhGjRoFdThGeqdOnYI6KhZlSbngggsi5eKKka5icHK8ShWrlX/SxfH8AB17LxmO8XfVVVcFdW644YZI+YQTTki6HIVjP3IcegD461//Gin/7W9/C+qouHpmRwL/jNRKw759+xIxRtW1h2PZqri+fI1Q1zmOY6r6IH8WJ9Z6nFjJvH0qnjfHa1V1+Dqnrvm8HLWfvA8qZi8fC9XuHLuWtydZ7FhAxySPE1Oe20f1HabWxduoYlZzTNydO3dGyiouOM9VVTxebj+Oc622T8XsrVWrVqHfAcLjx+tWfYCpPsmfqTrc31QMd467rdqC9z3OeMF9snnz5sF3WrduHSkvXbo0qMNUe/FYwDGZgTCWM5eBsL3i5GrgMYZjTwNh/POTTjopqNOhQ4dIWR0rXveWLVuCOkzlpPjoo48i5ffffz+ok6y91DnN7aXGE+5vKtY690E11vNnceLZqxjfPF7wmKPGX953de7x99S9HO+naos4seB53FFx8Rlvs8qZwedanPtRdRziXIf5WKntOdB8WypPSRyek6cOv5FuZmZmZmZmZmZmZlYIv5FuZmZmZpLffjEzMzMzK12ek6cOv5FuZmZmZmZmZmZmZlYIv5FuZsWG40irv2SqGI3FgWONxYlp3bBhw0OyLUXFcQpVjHkVW7EouH0OVQxwjjcIAA8//HCk/MMf/jCoo+LPFQXHAWzWrFlQZ+zYsZHyueeeG9S55pprImUV19HscOS3X6w0VKtWLTF+q5jkubm5kbKKYZ0sLjIQxn1V1x6OpavWxfFt1bo4fiyvK866VZxa3k9Vh+PJqjiwPOdQ8Z7jxJNNdh6ruQ1/puJcq7jHyeqomLg8L1Dbu3379kiZY+QCYQzyOPHZeXt27doV1OFcPWrex/ug5iS8fnUecbziZDG2gXj5AHhOqbaP213Nz9LT0yPlOPcQqg6fsxzbWR0rrqPms7xfKmY1t486Drz+OPvJ9wxAeC/EY8qxxx4bfKdnz56Rcps2bYI6xx9/fKRct27doA5vszpfuS9zbi0AqF27dqSs2n3RokWRck5OTqSsxq569epFyuqc5nF769atQR0+h1Wb8vUgTn4C1Xe4vbiOGt94HFLXKz6HVbxu7v9qP3msUm3K61K5yJJtj9pP7tvqmPNnajl8vVSx84uyHHUdzn8eqWXE4Tl56vAb6WZmZmZmZmZmZmZmhfAb6WZmZmYm+e0XMzMzM7PS5Tl56vAb6WZmZmZmZmZmZmZmhfAb6WZmZmYm+e0XMzMzM7PS5Tl56vCDdDMrNkuXLo2UOVkToJPjFIfNmzdHyitXrkz6nd27dx+SbSkqTs7EyVfKAk7+kpWVFdS5+OKLI+VDlYA2Ll4/J14CgL/97W+R8mWXXRYpF1cSWDMz+z5B2v5Ehyo5JSdzU2MwJ/OKc61RCfL4M5WMLNm6Fb5JVfvASc5UAjOmEsdxMkOVJJSTIqq24IRzKsEbzwO4LeIkTFVJ67i91PHkZIHqOPBnKsnfli1bImWVjLJBgwaRMref2j6e13E/VlT/5ySgKikoJ2BUSS45sSNT81BuL7Wfn3/+eaFlIGwvlXiV20clueRlq/OIl837rfZz586dkbI6DtzXOUEjEO6n2j5ev0rsyP2WEy4rvD2nn356UKdTp06RsupLvBx1zLm91H4mGxuAMDlmx44dgzo1atSIlHnMW7VqVfAdbmO1bq7D92VA2BZxxhjVt5kat5MlJOVkwUB4bNS5x9Q4zuO0GpM5Ca06RzhZrEqqzfvO47habpxrI18z1FjP55pKnly9evVC1w2E84JkY4FahpUtDu1iZmZmZmZmZmZmZlYIv5FuZmZmZpJ/RmpmZmZmVro8J08dfiPdzMzMzMzMzMzMzKwQfiPdzIrN2rVrI+UnnngiqHPNNddEyhxfLY5t27YFnz366KNJ67A33ngj+GzAgAGRsooVeKi8/vrrkXKcWKgqPh7H7YwT/zNOrMU4evfuHSn/6Ec/CuqUdkz0ojj77LMj5SuuuCJSnjx5cklujlmJ8dsvVhq+/fbbRNxUjpkLhHMHFc+bY5CqmL0cm1vFJubvqZi4Ku5rsjq8X2oZ/JnaBz5vVAx3rrNjx46gDscBV3OQOPHF+Xsc31bFAmbqOPB8R8W15li26lhxvGKVz4fbS8Wz5ZjQaWlpkXLNmjWD7/A2q1j1vH1qnszxzlUdjvW7YsWKoA4fK449rcZknhd//PHHQZ0PP/wwUlaxprn9Nm3aFNTJyMiIlNVx4DmlinGcDMdkBsLjoOJcc/9XcZGbNGkSKav5Nh9Pde/Bx0q1BR+vzMzMSLlLly7Bd3iMUf2W+6k69/i8Vm3BY57qX3w81bjYtm3bSHn9+vWRsmpj7tuq/Xg/1XnF/UBtH+97rVq1gjp8zeJY4kDYvzhnQJy+rq6NPC7yuQiE15E4baGOOX+mxgLeL47rro5VnOsy90l1beQ+GaeOihfPx0JdP/Mfzzj3+Irn5KnDb6SbmZmZmZmZmZmZmRXCb6SbmZmZmeS3X8zMzMzMSpfn5KnDb6SbmZmZmZmZmZmZmRXCb6SbmZmZmeS3X8zMzMzMSpfn5KnDD9LNDhInP+rQoUNQhxN0cFJOAFi2bFmkXNQkFMVBJT9q0aJFpNymTZugDiff4MRVQJiAND09PVKuXbt28J1PP/00Un755ZeDOqtWrQo+S2bz5s3BZ1OnTo2Ur7322qBOcSTL5MQ4gE7OyjjxEif3BMKEOmp7OdkLJzoFgHfffTfp9rCf//znkbJKRFYWcTKhn/3sZ5Hy3//+9+A7KvGNmZkll5ubmxh3VQIzTsymEr7x3IsTmgFhErOiJhjnOZtKkMpzK15XnMSdfH0HwrmWuvbwuuvWrRvU2b17d6SskoJyMk/VXvw9LqukjXzDrhLkcT/gJKZAmFyxcePGQR1O7Lhhw4agzvvvv5+0Ds9NuS3U9vFn6ljxMVd1TjrppEhZJQLkhK2qTTnBJ88N1YMUbguVuJaXq+ahvH0qkS4njVSJALlPqvOIk4lyYsBt27YF31m9enWkrNqvTp06kbI6r/g+h+fxQNheKrkit0Wc/ezYsWOkrBJa8lil7j+5TpxEnepeko+x2gc+nioRLB+LevXqRcqNGjUKvsPtp/o2jw0qMSafj/wcAAjvZVX/53FRLYfbmdfN2wvES0rL/V+N4/yZ6hfcPuq6x9cVtT3cD/j4qjGQP4uT9FXV4T6pxhj+npqT8PFU7ZV/DqIS9lrZ4tAuZmZmZmZmZmZmZmaFODxeFTQzMzOzYuefkZqZmZmZlS7PyVOH30g3MzMzMzMzMzMzMyuE30g3OwBXXXVV8NmwYcMiZRVbKw6Oxfeb3/wmqMNx1ItCxWnr27dvpHzjjTcGdZo3b550OXFwzLAPPvggUv7zn/8cfOeFF14o0rqK4l//+lekzHELAaBfv36RsorByTHhsrOzI+V//vOfwXc4fivHsAOAnj17Rsoqpnwc3E/POuusoA7v+9atW4M6HJfz9NNPL9L2lDV8PjRo0CCos27dupLaHLNDxm+/WCri2KwqHi/H4lZxYDlOaZy8Hiq2KcdrVXF9+ZquYmgn+47Cy1FtEQfHeFUxobl91D5wW/D2qDi1/B0VE5e355RTTgnqdOvWLVJu2rRpUIft3Lkz+Oy9996LlGfNmhXU4fkrL0fFs+e5l4rlnJaWFimrmNoci1vNBXl+psZXntdxvP0lS5YE3/noo48iZRULmNetYpBzrGSeNwPhMee49EB4jDkmORD2J77nWrx4cfAdjqmt9pOPA8f3BsL9VOcV30eoHFO8D59//nlQh9fP92pxYjurc4/PWdUWfJ6r+0TubxwnX22PytXAmjRpEil/8sknQR3ug2o/+ZqhYpDXqlUrUlbnHi9bnXtx4oBzm/L1QMUbZ6qNed2qT/K64vTJOH1H5RHgdub9Vv0tTpx3bnd17eHvqVj1fN6o9uL2Uccm/zlR1DxanpOnDr+RbmZmZmZmZmZmZmZWCL+RbmZmZmYF8lspZmZmZmaly3Py1OA30s3MzMzMzMzMzMzMCuE30s3MzMxMcjxGMzMzM7PS5Tl56kj5B+ljx47F008/jQ8//BCVK1dG586dce+99+LEE09M1MnLy8Po0aMxceJE7Ny5Ex07dsSDDz6INm3alOKW2+Hg6quvjpRHjhx5yNbVrFmzSHnKlClBncsuuyxS/vjjj5Mul5No/O53vwvq/OhHP4qUi5pINA5OIMLn6cMPPxx8Z+rUqZHy73//+6BOnGQ0cdSsWTNSVolm/vGPf0TK6kLDSZM4cScnSlM4oU1BnxUHlYyGEzbFSTZa1GS7ZQ0nWKtTp05Qx8lGzexwUpJz8vLlyycSW6rEXpxUTyUJ5fmPSljG4iR8U9dLTkCqEpJyojNOlqbmEpzkTCUS5eWqdVetWjVSjtOmKjEbJ1Dbvn17UIfbh9tdzTE5wZtKsspJvk899dSgDn9PJWTkeVT9+vWDOt9++22k3KdPn6AO7xcnjFfzUq5z9tlnB3XOOOOMSJnnWUA4H1P9lveB+wAAZGZmFroclTCVt2fZsmVBHdW/GLef6tt8DvM+AWHi0JycnKTbw3N7tVym2oLbVCXfrVy5cqSs5sl8rqmkpbxfKkkuJ17lexreFiAcd1RCUu5vnJRTLVv1Wx4b1BjD909qbOcxhJP2qr7EySBV8kz+TG0f9xV1XeHzSB0rbgu1nzze8rpUEl9OTqzGBk6GrY4V77vavmTJUNVy1HWOE/vu2LEjUq5Xr17wHZVclHFfVv2fz1l1DvO4vXnz5qAO39er7cv/WVGTjVrqSPnQLgsWLMCQIUPwxhtvYP78+di7dy969+4duQDed999GDduHMaPH49FixYhLS0NvXr1kpMnMzMzMzM7MJ6Tm5mZmdmRLuXfSJ87d26kPHnyZNStWxdLlixBt27dkJeXh6ysLIwcORKXXnopAOCxxx5DvXr1MG3aNPz85z8vjc02MzMzK/P8M1Lbz3NyMzMzs9LhOXnqSPk30tn+n/vs/6nSmjVrkJOTg969eyfqVKxYEd27d8fChQvlMr799lt89tlnkf/MzMzMzCwez8nNzMzM7EiT8m+k55eXl4fhw4fjrLPOQtu2bQH8X7wwjp1Ur169AuPTjh07FqNHjz60G2tljopHN2zYsFLYku9xvEgA+NWvfhUpx3m764477oiUOc56qlFx7a655ppImWO7AcAf/vCHA15XWlpa8FmTJk0iZRXvLQ4+fty/Pvzww+A7HLNR/SW4JP86HGddHAM0Tgzaw5Fj3dnhym+/mHKo5+TffPNNIraqijXK8wAV/5m/p2JW89it1sWxYVXuFL72cWxbVYe3R81/+JxQdXieouL6cnupeLccG1a1l1o2433n2LFquQ0aNIiUeS4GAKeddlqkzHGRgTDGMcfaBcI25TjSQBgzuHXr1kEdjpP73HPPRcpq/njeeedFyt26dQvqcIx71d/4OKjjwstRccC5LbgPqHwAZ555ZqSsYt6/8847kXKc+OcqNjH3UxXjmPdTzUM5VjLvl7qv4Fjd6vrE26OOOY9N6nhyG6rzk88j3j4gjAVfu3btSDlOHiPVFnxeqbbgfVBx8nm/qlWrlrSOWhe3KddRfZ334dNPPw3qcP4EFRefqb4dp3/xtUfV4b7C/VjlZ2LqWsRtrPpFnBwefK7Fyauxdu3aoA7vJy9HXTP4vFdjFZ+fqo15HFLx7Pk6ovo2r1/dF+b/rKj3jZ6Tp44y9Ub6DTfcgGXLluHJJ58M/o0H77y8vAITJo4YMQK7d+9O/Ldhw4ZDsr1mZmZmZocbz8nNzMzM7EhUZt5Iv/HGG/HMM8/glVdeQcOGDROf73+jNCcnJ5J1fevWrTLDL/D9X7zVX73NzMzM7P/47RdjnpObmZmZlSzPyVNHyr+RnpeXhxtuuAFPP/00XnzxRWRmZkb+PTMzE2lpaZg/f37isz179mDBggXo3LlzSW+umZmZmdlhx3NyMzMzMzvSpfwb6UOGDMG0adMwe/ZsVK1aNRF/sXr16qhcuTLKlSuHm2++GWPGjEHz5s3RvHlzjBkzBsceeyyuuOKKUt56MzMzs7LLb7/Yfp6Tm5mZmZUOz8lTR8o/SJ8wYQIAoEePHpHPJ0+enEhAeOutt+Lrr7/G4MGDsXPnTnTs2BHz5s2TiYfMCtKpU6fgM5W4ojTxG138c+j27dsH3zkcb14HDhwYfJb/DTgAePfdd4M63F75f5K+X1GTiybDyUczMjKCOitXroyUc3NzgzpbtmyJlFWyraL4/PPPg8/ixKrdtm1bpLx9+/ZIubi2L9XESVpkZnY4Kck5ef6bRZXYiz/jRHxAmEBNhZDhpGZxkpHFSaqtkgVy0rUvvvgiUlY3rbxfcZL8qXVz0jWVjI/3ixNuAvGSs3IbcjI+vn4C4dyhXbt2QR1OrLdr166gDid2V8nvOGGfai/ed7UcTkDKCTY50SMAtGrVKlJWuQO4n6rklOqcYPw91W95G7lPKnwc1K9NePvefvvtoA5vDx87IEz+qPot90m1n5xQls+jOOeVaptNmzZFynXr1k26HJUwlfugmlNu3bo1+IzxGMNzezVO8mcqOSX3SXXOxBnj+dxTiTqZ6hf82erVqyNlTkSp1sUJjoHwWKl187MBtS7up6q94pyf3P/VWMB4e1RSyzh9O84Yw9dYlQCX+5NaLu9nnH7Bx4GXAYTntWpjblM1JvP4r/oFt7Nq9/z7rhKoWtmS8g/S4/wlpFy5chg1ahRGjRp16DfIzMzMzOwI4zm5mZmZmR3pUv5BupmZmZmVDv+M1MzMzMysdHlOnjpSPtmomZmZmZmZmZmZmVlp8hvpZv+/GjVqlPYmJMXxuzke3c9//vPgO3HijJU1KtYcx00fMmRIUIfbi2P1lSQVX42Pr4oF+d///jdS7t27d1CH41eqPsBxE1955ZWgzo4dO4LPGMe6mzdvXqR8/fXXJ11GWbRw4cJImeO7AmFMPRU7k2M0qn7B/UDFyeR4mioOpllR+O0XKw0VKlSQcan3439TcU05NquKj8rxijnma5x1A+GYq+KAJ9s+dc3n7VExyTlWrJoj8XLU/Iev5ypePFNx5/kzjr+rjlWcONeca0a1BcedVXFoud1Ve/E9gYobzfHFmzdvHim3bNky+A73N3WtjhODmbdZtQW3oRpf+TNuYzV/5JjC/B0gzEH04YcfJt2+atWqBXV42aotmMr5w8eKjy/PmwFg1apVkbLqJ2vXro2UVQxrzhUUJ363iv/PfZDjvgPhec2xw1XuL163qsP7rs4rHhdVe3F/27lzZ1CH912de9wv+H5l48aNwXdYvXr1kn6mxkmep6v44pw/Sl0PeJxUYx63KY/javyIM5bysVFtHCfmNy9HxT/n76lY5jwu8rVHnZ98T6+uRRyzXY2TfO+t9pOp/s/7rsbb/P02znoUz8lTx+H3hM3MzMzMzMzMzMzMrBj5jXQzMzMzk/z2i5mZmZlZ6fKcPHX4jXQzMzMzMzMzMzMzs0L4jXQzMzMzk/z2i5mZmZlZ6fKcPHX4QbrZ/2/Dhg2lvQlJqYQm+XXo0KGEtiT1nHXWWZGyShCjEt+UFpVsK05iWE40+dRTTwV1OFmOSozGyTFVksuePXtGyioBESfUeeyxxyLl/v37B985/vjjg89SHSe++eMf/xgpqwR1nTp1ipTbt28f1GnSpEmkzMlzgDAx1ZYtW4I6y5cvj5QXLFgQ1OGkWGZmqSo9PT2RGEwlpFNJzRhf81ViNk7wqRInMpW8ja/fcZKW8vbESfim5jG8PWr+w+viBGtAeI2Pk5xSzS94Obw9nAAOCK9z6pjzvEnNSXJzcyNllcCV21T1JU4mp9qC94PrcDJxILzGq77E26fmBUzNH3l7VCJMnttwG6vt489U4j3ed9VPeJtVIkBuY04qCYR9WSUt5WPM/UudM5wgnue7QNi/cnJygjp87ql1xekXnMxWJRvlMYTn+ioRa5wEm3GS+PI9qjo/uS1UwsU4yZP5nv21116LlNV+ctLXE044IajTtGnTSFklueRjzvdlQJg8Ux1Pbgt1DvO4yOe0GsfVZyxOIm6+V1PjEB8/1e68X+pZBu9nnOTY/FmcBLjq+s7rVtcMrhPnfl3d5+fv20VNNmqpI3WeKpmZmZlZSvHbL2ZmZmZmpctz8tThGOlmZmZmZmZmZmZmZoXwg3QzMzMzK5MeeughZGZmolKlSmjXrh1effXVQusvWLAA7dq1Q6VKldC0aVM8/PDDQZ2ZM2eidevWqFixIlq3bo1Zs2ZF/n3s2LHo0KEDqlatirp16+Liiy/GypUrI3WuueYalCtXLvLfmWeeefA7bGZmZmZmpcahXcz+f2+++WbwGce6S0tLK6nNkZ599tlImWMQVqxYsSQ3J6VwPLX09PSgDsdWLM2fLHG8tYI+S0bFVOXYgSpW6zXXXBMpq/jdKqZlMhz77uWXXw7qnH/++ZGyiotZmlScvfvuuy9SXrp0aaR87rnnBt/p3bt3pHzqqacGdbifxolNqWKEcqxHFTvzmWeeiZTXrVsX1HHMPmOp/DPSGTNm4Oabb8ZDDz2ELl264JFHHkGfPn2wYsWKIB4qAKxZswZ9+/bFwIED8fjjj+P111/H4MGDUadOHfTr1w8AkJ2djcsvvxy/+93vcMkll2DWrFm47LLL8Nprr6Fjx44Avn8YP2TIEHTo0AF79+7FyJEj0bt3b6xYsSISg/O8887D5MmTE+U4sUvte3v37k3EGFXxSPm6oeKfMzVH4hjMyeKaAvFih6vrOa+fx3sVm5Wp5caJ562ua4zjx6oYxxxrWh0bvo5wHfWd2rVrR8qffvppUOeTTz6JlDnHCBBvPsFzG9V3ONa6ujbyNvJ1V+WDiRObmI+Vai/up6rf8mdqP7lPxunrHINcxbD+7LPPImUVX5nPPTXn5G1W5zC3l4qDzPNgPg5q3bxfarm7du2KlOPkZ1LLOfHEEyNldQ/DbaqODfdT3k+VY4ePjbpOxYlnz/1N9ds496lcRx0b/oM5/yFb9bcWLVpEytzmQDgOcRkIz5FNmzYlXY66D+Nt5nj2QNh3uA+o5SYbfxV1zPk4xLlvVWMBX9dUnWSx31UeCz4Oqg7HbFd9Sd1HM84jpr7DY7nKPZZ/rFJjdhypPCc/0vhBupmZmZmlDL5ZrFixorwBHzduHK677jpcf/31AICsrCw8//zzmDBhAsaOHRvUf/jhh9GoUSNkZWUBAFq1aoXFixfj/vvvTzxIz8rKQq9evTBixAgAwIgRI7BgwQJkZWXhySefBADMnTs3stzJkyejbt26WLJkCbp16xbZ7tL+A7yZmZmZmRUfh3YxMzMzM2n/2y8l9R8AZGRkoHr16on/1EPxPXv2YMmSJcEvP3r37o2FCxfKfcnOzg7qn3vuuVi8eHHizaqC6hS0TOD/3qzkN1Jffvll1K1bFy1atMDAgQOxdevWApdhZmZmZlaQ0piTm+Y30s3MzMwsZWzYsCESPkC9jb59+3bs27cP9erVi3xer169ICzbfjk5ObL+3r17sX37dtSvX7/AOgUtMy8vD8OHD8dZZ52Ftm3bJj7v06cPfvSjH6Fx48ZYs2YN7rjjDpx99tlYsmTJER2GzczMzMysLPMb6WZmZmYmlcbbL9WqVYv8V9iDZ44zmZeXV2jsSVWfPz+QZd5www1YtmxZIuzLfpdffjnOP/98tG3bFhdeeCGee+45rFq1Cv/5z38K3DYzMzMzMyXV30h/6KGHkJmZiUqVKqFdu3ZBPgO2YMECtGvXDpUqVULTpk3x8MMPB3VmzpyJ1q1bo2LFimjdujVmzZoV+fcJEybg5JNPTtwzdOrUCc8999wBb/uB8hvpdljit8muuuqqoM7JJ58cKXPCGAB44YUXIuXLLrssqHOokoetWbMm+GzcuHGRcsuWLQ/JussifsihEv5w3F1OdAToJI3FgZOQqJ/4F1eiR37odMsttwR1mjVrVizrYpz4RiU4e/755yPlM888M6ijEvwcKtwvVBiJ8ePHR8qnnXZapJw/LvJ+nTp1ipQbN24c1ClKQleVqIqT2qjl8mf/+te/gjrbtm2LlNU5YpYKateujfLlywdvim/dujWYA+yXlpYm6x999NGoVatWoXXUMm+88UY888wzeOWVV9CwYcNCt7d+/fpo3LgxPvroo6T7Zt8nSNufJE1dz5mqw9dUlcyTE59xcjJFJUtLtm4gecJPtX38nThju8JzVZUskJOFqz8ecXI5dY3gJHB8PVfJuTkxp0q8x+vmazcQJsKsXLlyUIePjTqe3BbqvF2+fHmkzPMf9QdAnmOqfvL1119HyipBJLeFSmzK+6XGMF4Xl1WiQu6nqt9y/1L9jZetkgVyG6rl8DnL+wCE4wOvm+c+QNgH1Pbx9qjjyX3w9NNPD+o0bdq00O0FwuOptufLL7+MlHn84H0CgLVr10bKKoElJ+/m8wwIj5W6P+b2Un2bx5T3338/qLNs2bJImefAar6dkZGRtA7vl+pvfD+n7ld4e9Ry+Hi+9957QR0eB7nfquPJ/SLOtVHdV3Ad1d+SJbcFgDp16kTKcdoiWWJuANixY0ekvHPnzqTbp/okX+fUdZrbnc8zINwHNXbmv1YXNdloKpsxYwZuvvlmPPTQQ+jSpQseeeQR9OnTBytWrAjGEOD7Z119+/bFwIED8fjjj+P111/H4MGDUadOnUTeouzsbFx++eX43e9+h0suuQSzZs3CZZddhtdeew0dO3YEADRs2BD33HMPTjjhBADAY489hosuugjvvPMO2rRpc8j212+km5mZmZmUqm+/VKhQAe3atcP8+fMjn8+fPx+dO3eW3+nUqVNQf968eWjfvn3i5q6gOvmXmZeXhxtuuAFPP/00XnzxRWRmZibd3tzcXGzYsAH169ePtX9mZmZmZvuVxpz8s88+i/yn/ngKfP/C53XXXYfrr78erVq1QlZWFjIyMjBhwgRZ/+GHH0ajRo2QlZWFVq1a4frrr8e1116L+++/P1EnKysLvXr1wogRI9CyZUuMGDEC55xzDrKyshJ1LrzwQvTt2xctWrRAixYt8Pvf/x5VqlTBG2+8UXwNL/hBupmZmZmVOcOHD8ff/vY3PProo/jggw8wbNgwrF+/HoMGDQIAjBgxAldffXWi/qBBg7Bu3ToMHz4cH3zwAR599FFMmjQp8qudoUOHYt68ebj33nvx4Ycf4t5778ULL7yAm2++OVFnyJAhePzxxzFt2jRUrVoVOTk5yMnJSbwJ+cUXX+CWW25BdnY21q5di5dffhkXXnghateujUsuuaRkGsfMzMzM7CBkZGSgevXqif/UL7f37NmDJUuWoHfv3pHPe/fujYULF8rlZmdnB/XPPfdcLF68OPGrq4LqFLTMffv2Yfr06fjyyy+DX4YXN4d2MTMzM7My5/LLL0dubi7uuusubN68GW3btsWcOXMSP9nevHkz1q9fn6ifmZmJOXPmYNiwYXjwwQeRnp6OBx54IPETUgDo3Lkzpk+fjttvvx133HEHmjVrhhkzZiR+Qgog8XZNjx49ItszefJkXHPNNShfvjzee+89TJ06Fbt27UL9+vXRs2dPzJgxA1WrVj2ELWJmZmZmVjw2bNgQCXukwpZt374d+/btC0KI1atXLwiXuF9OTo6sv3fvXmzfvh3169cvsA4v87333kOnTp3wzTffoEqVKpg1axZat259QPt5oPwg3Q4LHH+Lf0Ki4jLFwbG1VOICjovKsZOBeHEAn3322Uj5D3/4Q1CH48bl5uZGyupn8YdjDC6FY5px7DQgjGv3ySefBHX4WKk4gCruGeO+wzHRN23alHQZRXXeeedFyocqHnpRcUw/lXuA94HLAIIQCaqvc7u/+OKLQZ1JkyZFyitXrgzq8KShbdu2kXKrVq2C7/DYUJR46IraT+6nvH1AGDeU47sC4bHh2KN8Dtnhr6gJh4q6rgM1ePBgDB48WP7blClTgs+6d++Ot99+u9Bl9u/fH/379y/w35NtZ+XKlYNcEHZg8sdIV3984DFPXZd5XqBin3KsaRUjneO+qjirvH4VZ1jN/fJT/UrNZRjvl1pPnLi5HGdbjfd8/VHxgffnG9gv/x+hgPDaCIT7ruJ5x4n3nP8PZ0AYrx0Ir+cqru+nn34aKav4xevWrYuUOc612j6Ol63mmBxrV/Vbvh+IMy9V/YvXxcdXxTPm5fA5BITnkYqlz3OSzZs3B3X4/k61Kbeh6rcc05iXo2Ie85xNhTPg/WzRokVQh2P0FpTDIz/VXjwWqDklHz+uo84HXteHH34Y1Pn4448j5Q4dOgR1eCxQ7cXz60WLFgV1Nm7cGCl/9dVXQR3uc3yfo3IG8DydY6YDeixg3L/U9vFxUPm3atSoESmrOOV8D8PjuBrr69atG3zG+BxWsf15bFC5JPhaqK57TOUw4HGR89apvs5jnqrD+6Wup8niswNhX1Z1eBxS7ZW/fxV1Xl0ac/L9STzj4L6fl5dX6LMoVZ8/j7PME088Ee+++y527dqFmTNn4ic/+QkWLFhwSB+m+0G6mZmZmZmZmZmZmcVWu3ZtlC9fPnhTfOvWrQX+8TAtLU3WP/rooxN/kC+oDi+zQoUKiWSj7du3x6JFi/DnP/8ZjzzyyEHtV2EcI93MzMzMpFRNNmpmZmZmdqRI1Tl5hQoV0K5dO8yfPz/y+fz589G5c2f5nU6dOgX1582bh/bt2yd+DVVQnYKWmb+dCkqKWlz8RrqZmZmZmZmZmZmZHZDhw4djwIABaN++PTp16oSJEydi/fr1GDRoEABgxIgR2LhxI6ZOnQoAGDRoEMaPH4/hw4dj4MCByM7OxqRJk/Dkk08mljl06FB069YN9957Ly666CLMnj0bL7zwAl577bVEndtuuw19+vRBRkYGPv/8c0yfPh0vv/wy5s6de0j31w/S7bDAMZaLGhOdcXyr008/PaiTP0kZoGNeVa9ePVLesmVLUCdOXDbG8Rm3b98e1OH4goerDRs2RMqqjZmKa7dixYpIWcXZ4xhwKn7lZ599Vmi5uN68VHHHunbtWizLPlQ45ibHOgeAUaNGRcpPP/10UOfMM8+MlFWM0MWLFxdajouPeVpaWqSszjMVR/dQ4X6g4hTyOMRlIIy36Jjoluox0u3wlD8Gbpz4qOo6zJ+pawTHClfXVJ6fqfjiHItVrStZngz1HX6jSsWyTbYtQBiXVsWE5jocwxcIYyyr+NgtW7aMlDlutIodyzFnOQcQEF7X1Lrz31wDem7N7aPmgnFikPOx4W1WMb+5f6ljxXMHFZs2zrWZt1ntJx9zHoPjxDxWsZ05xrw6DtwWap84Xraat6iYy2zbtm2RMo8NcXLYqHjx3G9VW3DOgDhzQzUO8fGMk8OAzzV1jeX+peJIr1q1qtDlAmHsd3UOv/7665GyyknEsdbVfRivn8dkNXbx8YsTb1/1LR53VL9gavzguODqusL7yedjnHj7Kp43xyBXsdZ5v9Q5wueR6v9xcnhwrgHebxXbn+uoMYbXpZbDx0YdBz7X1Lq4X6jzM/+5H+darqTynPzyyy9Hbm4u7rrrLmzevBlt27bFnDlz0LhxYwDfXxPz5zHJzMzEnDlzMGzYMDz44INIT0/HAw88EHm21rlzZ0yfPh2333477rjjDjRr1gwzZsyI5F7ZsmULBgwYgM2bN6N69eo4+eSTMXfuXPTq1esgW6BwfpBuZmZmZmZmZmZmZgds8ODBGDx4sPy3KVOmBJ91794db7/9dqHL7N+/P/r371/gv0+aNOmAtrG4+EG6mZmZmRXIb4qbmZmZmZUuz8lTg5ONmpmZmZmZmZmZmZkVwg/SzczMzMzMzMzMzMwK4dAudlho3bp1iaxHJfxp2LBhpLx8+fKgDieaLC6c2OJf//pXUGfgwIGHZN2phpNRFvVnT5z8QyVwVZ+VFpXYpWbNmqWwJUWXkZERfNa2bdtIuWfPnkVadpcuXSJl1S+WLFmSdDmcZIeT8MRJNlSSVJIbTp62c+fOpHXMUjmxkR2+cnNzE8nEVOK9OInaOMmZqsOJ/1QyMl6OSiLJVF/mZXMSOJXMjZPLqSR/PBdUSTh5XSrRHu9nnOSUca59nJhNJb/j46CWy8k9uQ8AYV/hpJdA2M6qLfgzlSCSt5Hb5uOPPw6+U7du3eAzxv1UHQc+VskS2wG6X/A+8Bx4y5YtwXd43qkSKW7YsCFS3rp1a1CHEx7GSZzISQmBcB9UskzeLz6vVJ/kc02de9zuajmcPFPhc0QdT25ndY5wckU+Z1Rf4v6mxsmqVatGympM5uPJCUqBcB9atWoV1OG24OUC4f04H0+VJJfHX94nIEzCrJJK8j6o/q/apyjL4XOYy5zIFgj3QZ0P3E9Ue8VJdM19UJ2fPJbGGYfiJGXma6zq2zxWqec4fM6q/s/LVtf3ONfG4pjjek6eOvxGupmZmZmZmZmZmZlZIfxGupmZmZlJfvvFzMzMzKx0eU6eOvxGupmZmZmZmZmZmZlZIfxGuh0yHN9KxZziOhyzC9Bx4lhJxaxWcb1SKabwX//61+Cziy++OFKuU6dOCW3NoaNiXj722GOlsCWlT50fcc6ZVMKxPoEwRnpxOemkk4LP4sRI57GJ4wCqGKv8l/w4MROLixpLOc6kGjf99oExv/1ipWH37t2JWNZq7sXxblUcYo4nq+K38rJVrFiOxa3qcM6JosRQVfGVmVoux31V81KOm6visfPcIc5cQs3tky1HXfP5mqViE8eJo85xhtV1l9ev4u+yOGMTr3vNmjVBHc7pVKNGjaTrUtvH7a6OFbepisHMcb+5TdVx4PNI5YHifVfxxbkP8vkBhHHTVd9W32O8/jgxyeP0C76nUt/hz1Sb8rmv5nDc7ireM/enOOdVnDwHKkcA49wR6tw7/vjjI2U1DnFcftVvec7N45sal9RnTG0P47m0Ghu4ndU5wu21bdu2oA4fcz5WOTk5hW4rELYNEG6z2gduL5WTi88rjqsOhH1QjQXJYsGr81PtF4tzPLmfqnkCr18tl2Puqzr5rz1qXhOH5+Spw2+km5mZmZmZmZmZmZkVwm+km5mZmZnkt1/MzMzMzEqX5+Spw2+km5mZmZmZmZmZmZkVwm+km5mZmZnkt1/MzMzMzEqX5+Spww/SrVioRCANGjSIlOvWrRvU4QQPnKwJANavXx8pq+QMs2bNipR/8IMfRMpxEjjF8frrrwefbdy4sViWXRxU8sBhw4ZFyo888khQRyUQSSWcpOWmm24K6qjkIEeCr776KviME9g0adKkhLamaFavXh18phJwFYeiJvzkxEaffPJJpLxu3brgO40aNYqUVWKo4sLJ0zZt2hTUWbt2baScSmOXmVl+DRs2TCQlU9d3TjTGCeCAcG6jEvjxvFMlpOPrkarDSfTiJKLnhGoqiSkvJ06ywOrVqwd1eB6skrdxcjSVOI4TO6pEjytXroyUMzMzI2W1Dzy3V8kNd+zYESmr6y5/po45H091bebEf6q9eP7FfZC3FwiPjUpIx/dUqg63ISffBcJ+qs4jflDC7aUepPB+vvLKK0nrqASDnMRX1eF+ofaTt1klduTv8bpVAlw+r9R5z9scZ6zidas6GzZsCOrwfTQnN4xDJRblc02tm/u/6hdcR517PCar7eFjoe5zkiVCVs8leLlqH/g4qGcOnDxWPWPgfqHm5HGSAXNf4fZS/Y3vV9R+xkkSyvsVJ/muGvP4e2p7eF28ferci5MAtyjXNHV9ipPcmdel7jfzH+M47WmpzaFdzMzMzMzMzMzMzMwK4TfSzczMzEzyz0jNzMzMzEqX5+Spw2+km5mZmZmZmZmZmZkVwm+kW7FQ8QU5Rnrt2rWDOhwPTMW+43hlOTk5QZ133303Ur7rrrsi5SFDhgTfqVOnTqSs4qC9+uqrkfJ9990X1En1v9YtXLgwUv7pT38a1PnDH/4QKTdu3PiQblNhPvroo+CzX/7yl5Hy+++/X1KbUya98MILkfL1119fSluicfy+7OzsoA7HVFU5Forigw8+KNL3OB7eO++8Eym3aNEi+E7NmjUj5datWwd1eOyME8Ndxe/jmJY8JgLAokWLIuWtW7cmXZeZ336x0lCxYkUZP3c/ji/Kc0UgjNOs5nk8tqv8HFxHzXk5Xqua8/L6OUZunPitcWIcq9jJHJtbxZfla7Oab3McWJXbiK+zfF1r3rx58J309PRIWeX84e156623gjq8PWpM4TZVMY75HkHFgufjx22qYuC+9957kbKK5923b99IOS0tLajDMXvVvIDjUatjzn2S+6CKQ8/3RhxPXq1bxXnnz9Q+cJ9UfZvbQm0P90H+Dq8HCOM0qxwGvFx1fvL5kJGREdSpX79+pKzGj2TxsoHweHK/VfHZOa8S5zhQVO4l7ssq5jcfv9zc3KAOj7cqPjaf1xwrXPVbXi7ntQDC46nOYc5bocaPLVu2RMpqP/kzNf9PFhNdbR9/pq4rfJ+v+j/HlFdjfbJ1A+HxU2NyYdd6QMfbj5NLgqlcCNw+Km8cP59S6+J9UHXyz1PibK/iOXnq8BvpZmZmZmZmZmZmZmaF8BvpZmZmZib57RczMzMzs9LlOXnq8BvpZmZmZmZmZmZmZmaF8BvpZmZmZib57RczMzMzs9LlOXnq8IN0KxYqgQ0n31DJODhRhKqjkowk8/zzz0fKCxYsCOpw8h6VqEolrClruE3VPg0bNixS7t69e1CnU6dOkbJKrsjHSiVnWrFiRaT873//O1KePXt28B2VKCWVqH7LSUS4LQ7lxYkTQakkl507dz5k689PJXebNGlSpMyJe4AwWaZKynLSSSdFyipRDyd5evPNNwvc1gPx6aefRspz585N+p0dO3YEn3HSKZVIi9tQJQnl/XzllVeCOm+88UakzImXzMxSxc6dOxPJ/lQSQr5uqPGMkwWqRGh8bfnqq6+COjw/VInZOAGpSurHy+bEZ7y9QLjNaj95Dl6vXr2gDl9b1LyFr6HqmsVzFzX/5+PFCTY5CSwQJldUx4q/p/oFz0PVcnjfVZvystWxSXZ/opIt8vWcEz0C4T3LCSecENSJk6icEwqqtuCkiKtXr46U16xZE3xn1apVkbLq69xP1FxQtSnjY6XOT06ky4li1fo5MaDaFk48rNqPqb7EbaoSJ/J+qoTGXCdOskI+Nirp5bJlyyJlTl4PhO2j1s3JWNX5wQlJ1T0pJ9RUCSI5ISQnwuT5LhDul0riW6tWrUiZk0wC4fVAHc+NGzdGyqrd169fn3Q5ye5/Vb/l+wo1DnGbqv3kOuq+lbdZLYePlTqe3J/iPB9i6rrM56NKasrXHpWENk5icD4WKpG0OhZWdvlompmZmZmZmZmZmZkVwm+km5mZmZnkn5GamZmZmZUuz8lTh99INzMzMzMzMzMzMzMrhN9It2IRJ6akiqHHMf04LhqgY14dKBV3bO3atQe93FSjYm9lZmZGyo0aNQrqcMywxYsXB3WmTp0aKatjxbEyVQwxFRstlXBbdOnSJajTrl27SLlmzZpBHe7bfD5wrHgAeOmllyJlFUc0Do4JN3HixKAOx+8799xzgzoqRmOydXHMvyeeeCL4zocffph0uWzJkiWxPisp/Ff65cuXB3X4+K1cuTKow+enavM4MVXff//9SFn1Lx4HVazAs846K1Lu1q1bpNy0adPgOxwTkWNVqu2ZP39+UEe1oZU+v/1ipSH/XEHFgeWxUsXL5jkRx/AFgO3btyfdFo7fqualfI1X28NzJJ4Xc6xWIBy3VZxmXpfKo8F5WlR8YI5lq7aHY2qr8Z7jsfNxUNcwjseu5oo831DxeLkt1HHg/qT6F69LxejlPsj9QvU3PubqOszbrOKU832X6sd8HPj4AuE28/FU81C1X8mo+xM+r1TcbY5XzHMmIDw26hzhnAr8HXUc+JxWcxTeLxUjnessXbo0qMNjg8pDxeeEOp5837Vu3bpI+ZNPPgm+w+ejaj8+Rz7++OOkdRQeU1Qc9Th5GLhNuR/zvQgQ7nuDBg2COk2aNImU1bMLPkfUvS5vj3oOESd+d8uWLSNlHnPq1q0bfIf7hTouPH7EuYdR+8D3JyoXAp9HaizgduaxXS2Xc1WpfsvrUtc0dR4xPvdUTgp13WXqmnWgPCdPHX4j3czMzMzMzMzMzMysEH4j3czMzMwkv/1iZmZmZla6PCdPHX4j3czMzMzMzMzMzMysEH4j3czMzMwkv/1iZmZmZla6PCdPHX6QbsVCJV7iZJ4qISkna+BkQwV9diiohCKMkzWlGpWQhRP1cPIhIExEopLlcIITlWBKJfpIZdWrVw8+u+aaayJllZCrKDg50xlnnBHUOfnkkyPlJ598MqizatWqpOvi5CoqORMnXpo8eXJQh89rlbAmNzc3Us7JyYmUj5SLsNpPToSzadOmoA73C5XQjJPccOIeIEx2pJL5XHnllZHyr3/966BO48aNg88Ohd/+9rfBZ9nZ2ZHynXfeGdRRiZDN7PBTvXr1xDUnTjIwNS5ygjI1h+Nkd6oOJ4FT432cMZjHcp4zqblXnISMq1evjpRVAr/09PRIWSVL4+uPmrfzNUslb+N25/1W9ww8f1X7wOtWx4HbUB0HTpqnrru8D2r+w8eCt1klyOM5pToO3C9UclY+Np9//nlQh5PfqcSEyfqkSo7H92VqLs3tpc4rXjb3USBM/sj3NEC8c5iPOa87IyMj+E6ce5oNGzZEyipJLvdTlVSez4klS5YEdfh7qt15OdwHNm7cGHyHxUmYqs6HopxXcRI3q3OE+wEn242TMHXbtm1BHd53da/L+6nGZB6rVILes846K1JWCWb5nOU+oK6N3P/V8eQ+qeb+fF159913gzo8Nqn+H2cs5WPOx09d33m/1HL5mYe6ZvAxVnXiJP3mcyRZIumy9szEQg7tYmZmZmZmZmZmZmZWCL+RbmZmZmaSf0ZqZmZmZla6PCdPHX4j3czMzMzMzMzMzMysEH4j3Q4ZjlemYp1z3DMVW+tQ4dhVNWrUSPodFc9KxUAsLWr7OK4Xl4GwLVQd9VlZw3Hsrr766qBOccVELwqO88gxrQHgwQcfjJQ5/iEAnHTSSZHyueeeG9SpU6dOpKzia7766quR8ssvvxzUOVR/reaxQcXFrFevXtI6fMxVnD2O867alOPfFoWKU/jZZ58d9HKBME7ixIkTgzrnn39+pKziTpYUFbe2S5cukfLcuXODOnfddVek/MADDxTvhlnAb79Yadi3b19ijFIxaHneouKjcqxYFbOXY3Or8T9/XNOC1sXbo/LuJLseqXUzFVOY56EqXw7n6GjatGlQh+PvqnmfyrPDeD7B26fahuevKqYwL0ddz+OMITz/UTG1+frIfQDQ/TI/FQubqXlLnFjTn3zySaSs5ig851B1eNk8B1b3OByfnedQgD5+rFatWpEyz10BoH79+pGy6ttxcmlxW3CMdNVv+DN1f8D9Qp3D3BYqbxHP4VT7cTzqLVu2BHU47jcfG9V+fL6q2M58zqrta9CgQaSsxgo+Z9avXx/U4WOjng1wX+bvqBwL3AdUDog4+Ry4fdS6OLZ/t27dgjqNGjWKlNW4mOy5iPp3nl+r8YP3XeUI4PjszZs3D+q89dZbkfLrr78e1OFjXhz3U0A4vqr7CqauaXwdUcvh9lLnEX+m6uS/zhX1mZfn5KnDb6SbmZmZmZmZmZmZmRXCb6SbmZmZmeS3X8zMzMzMSpfn5KnDb6SbmZmZmZmZmZmZmRXCb6SbmZmZmeS3X8zMzMzMSpfn5KnDD9KtxKhEe6WJkzzESX5RkslQi0IlG12zZk3SOpyIRCUO4uSxcahEGz169IiUTz311EiZE+UAwAsvvBApb9iw4YC3BQA6dOgQKaenpxdpOSVFtd95550XKT/++ONBnRNPPDFSVklkOMFV9erVky6Hk8oAOtlXMpzIRSU9437Stm3boA4nCFbtFSehMSeRUf1r4cKFkfKbb74ZKatkrYeKShz05JNPRsrdu3cvqc05ZFTCK042qur88Y9/PGTbZGYl47vvvkvcxO3atSv4d05kp8YCTuCn5j/8PZWEmZNRquXESd7M1x/+jrpp5YTUKtFpnMSO3IaffvppUIevoWruwEn9VMJNTpq3c+fOSFklsOQ5iUq8x4n/1PVcJQdkPJ9Vx47nKSpxIh8vTjqoto/7kuq3vFw1z+J7KjUv4PWr+zBOisgJEFWf5GO+atWqoA73W5Wok5MZKnxvphIB8vao48n9KU5SSZ4Xc98HwsS169atC+pwEk61340bNw4+Y7zNKlEn1+H9VmMXt3HLli2DOjxPV0lyuS1Ue3GyRzV28bnG4wcAfPTRR5EyJ2KNkzxW3TNwHb6GAGEbqnuYs88+O1Ju3bp1UIePlerbnMyWj5U6ntzuu3fvDurwWKDGW77WqOsBn9fqXvKll16KlFVyYD7/uN3VceCxNE7CcfWsh7+n2pT7ikowy9uornP5x/s4cwZLbX6QbmZmZmYF8lspZmZmZmaly3Py1OAY6WZmZmZmZmZmZmZmhfCDdDMzMzMzMzMzMzOzQji0i6UUFR+MP1Oxq4qC44OpGGy87rL4UxqOjaZiOR+qNr7kkkuCz37xi19EyhyfUcWCPP300yPlUaNGBXVUXHfG8djLoubNm0fKKk4bx4BTcdri5Ajgz4qSI0DFSOzbt2+k3KtXr6AOxz8vrlhyKp4rx75TsR85ZmSXLl0i5RkzZgTf+fDDD4uwhcndfvvtwWeHQ0z0OLgfjBw5MqizePHiSHnBggWHdJsOd05sZKXhmGOOScQu5TixQJhPRcVQ5biv6jrCfU7FeK1du3akrGJNcyxWlVeG51YcH1j1f74exbnmqzkcfy9OW6hYtny9VPMLbh+OA855SYAwdnIcHJMZCOPdxomZrtYdJ85wsuWoYxUn/jnjvgWEMdFVm/I+cN4bADjzzDMjZY7lrPIW8T6ouSHnZ1J5DvhYqXOPY60nizsM6LGA24LbVMXA536s2piPg5o/xonzzucsz4GBsL24bdRy+DxX+8kxvk8++eSgDsd1V8eK+786r/h8VLG5+fipOOo8JvNY9e677wbf4TjqKj8BU/cwfIw7d+4c1OHY4Tk5OUEd3k91bJLFAVdtzNdLNcbwvqtrLLe7iinP91QnnXRSUIfvhVS/5fbidalnNLwc1RbcXjVr1gzq8Pmo2oL3U9Xhz9T9Zn5FfdbiOXnq8BvpZmZmZmZmZmZmZmaF8BvpZmZmZib57RczMzMzs9LlOXnq8BvpZmZmZmZmZmZmZmaF8BvpZmZmZib57RczMzMzs9LlOXnq8IN0SykqoQgnxFBJM4qSpIiTS3AiFSBMMqISzXAinqIkZATC/axWrVpQhxNX8PbESaqkkmSpz4qCE6f07NkzqMNJGzlRj0pg06FDh0i5bdu2QZ04CQXr1auXtE6q48QpnHAHCJMtqjrc31Xyl7feeitSjnOe8Tk8YMCAoE7Xrl0j5TgJf0obb2ObNm0i5SFDhgTfmTJlSqS8ZMmSIq37hBNOiJQHDRpUpOUcjlQyn7Fjx0bK3N+Aoo/TZlYyKleunBh349zMqYSMPCdSyb04GR/PSYAwwaG6ZvFyVLJAXn+cRJOcdE0lpOMk8iqpPM9/VIJxTgipEmzy+tUYzHMF3m+VqI3rqOPA80N1PHmOpO4ruK+opKA8L1YJInmezvut7hm4jVVySm5TdayYSorIbcGJRIEwgT0n41Pbx/1i3bp1QZ0NGzZEyuqc4XZX7cXHSt3ncN9WfYfHEO6D6pzh/sbtCYT7pcYqTnIZpy+ptli7dm2krLaZjw0n81T3Qa1atYqUGzRoENThsUr1Sb4HVPeW3IYq2Sj3i9zc3KTr4sTD3bt3D77z8ccfR8offfRRUIfbXR1zbsNGjRoFdfh8jHMNU32bx3/uO+q8T9YH1Pao5NN8jqh+y9dGde7xPbwaL5Lt16ZNm4LvcJ9U+8nHT51X3E/VNYPrqP3kbVbXlfxU4mQrW/wg3czMzMwkv/1iZmZmZla6PCdPHY6RbmZmZmZmZmZmZmZWCD9INzMzMzMzMzMzMzMrRJkK7TJ27FjcdtttGDp0KLKysgB8/5OD0aNHY+LEidi5cyc6duyIBx98MIhfa4eWin3HMWjjxOFWMbrUZ8WB46upOIBx4l1xjC4Vs45jf3FMQgA4/fTTI2UVx47jJnI8tZUrVwbf4XjZceKoF5V/AlTy1PmxcePGSPmpp54K6nD8VtUvduzYkXT9HH/u0ksvjZS7deuW9DtlEbd7WlpaUOcnP/lJpMyxUQFg9erVSdc1cODASJljJloUx4Ht0aNHUOe///1vCW1N2eefkZpyqOfk27ZtS8x5VOxTnlepuNs8D1UxXjkeqrqm8jVLxQ6PE7uWY3rHyQ/Cc2cVC55jrTZt2jSow3NTFeOYt0ddq3leoNqU59e8XJULh899tX18bOK0n4qjznHe1fbUqlUrUlb7yevnOfrOnTuD73C8ZzX34naPk58mzrxKtQXnx+HlqFj/fL+kzhmep6h7QK4TZ26jYhxzu6u4/cnOPRWvmNsmTm4ENTbwutXceunSpZGyyuPCc3u1Lv7eiSeeGCm3a9cu+A4fT9WX+JyJE1Nb9Teuo8Z2Hqv4XATC8aJhw4aRshonuX+p4xAnHwHHkFf9jc/9op4j3C95OepYxXm+wctR6+b+lZOTE9Th9atxknNyZWZmBnXefvvtSHnr1q2Rssonwn1SjR9cR7UXxztXOcOY6pNMncP5xy91fsThOXnqKDNvpC9atAgTJ07EySefHPn8vvvuw7hx4zB+/HgsWrQIaWlp6NWrl3yYaWZmZmZmRec5uZmZmZkdqcrEg/QvvvgCV155Jf76179G/jKel5eHrKwsjBw5Epdeeinatm2Lxx57DF999RWmTZtWiltsZmZmVvbtf/ulpP6z1OY5uZmZmVnJ85w8dZSJB+lDhgzB+eefjx/84AeRz9esWYOcnBz07t078VnFihXRvXt3LFy4sMDlffvtt/jss88i/5mZmZmZWcE8JzczMzOzI1nKB6qdPn063n77bSxatCj4t/2xmjiWdL169bBu3boClzl27FiMHj26eDf0MFazZs3gs1tuuSVS7t69e1CHY4898sgjQZ1nn302UlY//+XYYyqOXVHEidnOddR34vy1jn/+fM455wR1OIaZijPG+NioOM21a9eOlJ977rmgjoo9VhQcu1DFIeZ4fU2aNImUVbzIN998M1J+//33i7R9HHOtUaNGRVpOaeI+uH379qTfUedVcf3U/pRTTomUzz777Ej5cIiHXlR8Pvbr1y+o88ADD0TKKj5j3759i3fDDnMc+1G1n2Okx+d4jLZfSc7Jv/rqq8T8Tz1cj3Nt4dinKh4vx59WcUvjzAU5frKKj8rf4/7O26uWU61ataAOzynr168f1Nm8eXOkrI4J5+xQ8ah5vqjai2P0JouZDoRzPxXvNk58YI55r3D78DwUCGODq+PJ9zl8v6KOFVNtwe2u9pPncBwLGAhjaq9atSqow7GleR/Ufm/atClSVvN2ziml7ml4P1VeAT5H1PHlOhyHHgiPFS9H9Tfed1VHrYvxfauKzc37oNbF7aWulxkZGZHySSedFCmr48njoso3wWOTyhnG43SyGNGAfsbAy44TX5zHIfUd7l8qXxmPb+o48HimjgOf16q94uRC4M+4/dQ1Lc7zjTjPGPh+RI0x6pqVbHvUs4pk26zivPM5HCfevuoXvG41xvB+qjGZ+06ynHSOkV72pfQb6Rs2bMDQoUPx+OOPywFoPz4p8vLyCk1QOWLECOzevTvx34YNG4ptm83MzMzMDieek5uZmZmZpfgb6UuWLMHWrVsjGab37duHV155BePHj8fKlSsBfP8WTP63C7Zu3Rq8EZNfxYoVY/0FzczMzOxI5rdfDPCc3MzMzKw0eU6eOlL6jfRzzjkH7733Ht59993Ef+3bt8eVV16Jd999F02bNkVaWhrmz5+f+M6ePXuwYMECdO7cuRS33MzMzMzs8OA5uZmZmZlZir+RXrVqVbRt2zby2XHHHYdatWolPr/55psxZswYNG/eHM2bN8eYMWNw7LHH4oorriiNTTYzMzMzO6x4Tm5mZmZmluIP0uO49dZb8fXXX2Pw4MHYuXMnOnbsiHnz5smECBYPx7K8++67gzr9+/ePlOMkrWjVqlXwGSdKfOONN4I6nARC/QSYk6twogiV2IUTL23bti2ow4lJ4iReqlWrVlCnU6dOkbJKrlIcVFKU1q1bR8qffvppUEe1e3GYPXt28Bkfi1NPPTVSVol78r/hVlCdOJYtWxYpl8Vkox9//HGkXFyJYuNQ517v3r0jZU7CcyTjsZSTPgEIHkytXbs2qNOgQYNi3a4jDSfEtQPjn5FaXMU5Jy9fvnwi8aFK2sXXI5UgjJPd7dq1K6izc+fOSFkl2qtevXqkrBKfcUJBlfiMt5HnwKr/83J69uwZ1DnzzDOTLueEE06IlFWCTU4WuGLFiqAOz8nVseVrloqbzzg5n0q8x8nZVL/geXrdunWDOpmZmZFynTp1gjp8PFViOE5Iyu2n7o3S09MjZdUW3G95PUDYl1SyPt6v999/P6jD/Z37iUpMvz+xcGF1vv7660hZHU8+97gMhPc1aj/jJO3jczhOUlVeLn8HCJMOquPJ31Pzdh7PVOL5OIk6+bzmdccZi9U8nvdLHU/ePnXvzffI6r6CxwK1PXxseHvUOM5tUbt27aAOH0+VlJnbUCUM5nNWHfPdu3dHyiqXCI8hnMBYfYfbVNXh85PHOyDcL3VN43ZWy+FxSF17eEzmsSDONUONAxxWTrUFb7PqO9y/4iR0VfOE/OOMk42WfWXuQfrLL78cKZcrVw6jRo3CqFGjSmV7zMzMzMyONJ6Tm5mZmdmRpsw9SDczMzOzkuG3X8zMzMzMSpfn5KkjpZONmpmZmZmZmZmZmZmVNr+RbgGOJ9ijR4+gTpyY6EzFiurbt2+krGJ1c3y8zp07B3VatGgRKXN8MBW/b+nSpZHyO++8E9Th+G5x/jLH8doBHaOxpHBbnHjiiUEd3ncVm68oVJyx//73v4WWD6W33norUj7jjDOCOqV5rJiKNTd37txIWcXm43h0Kpahil2YjOrbzZs3P+DlHKkqVaoUfMaxbVXMVxWX0+JTcTAtPr/9YqWhYsWKibGP45wqqu9wDFIV1zRObG6+FqtrM4/TKv4pf49j7arlchzkxo0bJ12uWjfvp2rTli1bRsrr168P6nD7qPjiPG/n2LrqWsjxlVXeIo4zrPIWMRU7n9tdxWnmbVSxpbnP8X6rmPwc41gdK56Dqzk5H3NVh/edY7gDwJIlSyLl5cuXR8qcKwoI4yurtuGY4yo28ZYtWyJl1Sd53slxpYHwHk/li+I+yGOBiv/M9wPqeG7YsCH4jPG+q+3juZ+6z+Zt5rjSQBh/mttPjTG8XNUn+XjG6bfq3OMY5CouPp+Patzm5fB+qbk0f0fh+aK6rvCYrO7DeP18zqjvqf3k6wqX1XnFn6ljxW1Rv379oA73QXVPz+tS+Rx4zFPXMD7XeF0qxjy3qXrOxNerOOeVuvZwHXWsuL8nu66oczEOz8lTh99INzMzMzMzMzMzMzMrhN9INzMzMzPJb7+YmZmZmZUuz8lTh99INzMzMzMzMzMzMzMrhN9INzMzMzPJb7+YmZmZmZUuz8lThx+kW4ATKHCCkaKKkwhKSUtLi5SbNWsW1KlevXqhy1CJjTjp5urVq4M6KqlNMirZRZwEJyVFJX/hxDfFlWxUJUHhRClxEtfGSYQTByf2mDp1alDnpz/9aaRcq1atIq2rKHj7nnrqqaDO5s2bI2WVCIo/i5OMJs7F8oQTTgg+O+6445J+zwrWtGnTSFmNVXxs1PG0ghV1vDCz0lO1atXE3EnNQznRpEqExt9T10tOjqbWxYnj1JjCydDU/JETGqpkZIwTOebm5gZ1eN6p5nlxkqWp9mGcXFQlIec5JR8b1X7JvgOE7RUnaWmy+wMgXkJv1V68H7w9KqkkX7/VPnCyO7Uc7rc5OTlBHe63nPQP0PuVnzoO3I9Vgl4+Vir546ZNmyJlTuIIhHMkldh069atwWeMjxWfr5ykEwiTGarku5xsNM58Wx3POPh+RN2fcMJWPr4qwSH3QbUPfF+olsNJX+OMb2rM4fsKta5k478aAznZrkpWzG3Rtm3boE6c5Mnc3+MkElX3U3yM1bnGeF3qOMQ5h/laqPaT21ndS3JbqMShfPy4v6mErtx+ah94ueqY8/apsYrXpZ71MJW0NH+bFtfzNSs9Du1iZmZmZmZmZmZmZlaI1HlN1szMzMxSin9GamZmZmZWujwnTx1+I93MzMzMzMzMzMzMrBB+I90CHNPp2WefDepce+21kXKc+IIqVtTs2bOTfo9jyak4WUXBMcOKa7kcUw8I45XFiQt+qKh4h8UVQ5jjp6kYdVwnTt/h7VNx0DimWZw47yrW6Pjx4yPlHj16BHVOO+20SFnFbGTc7itXrgzqvPDCC5GyOmeY6m8cR13FFyzKX5nr168ffFaafflwwH1HHU/uyypOoRVs3bp1pb0JZZrffrHSsH379sT8QM1RuK+oaz7np1FzEo7LnCxmNADs3Lkz+Izjvqpt5s94OXHiwH7yySdBHY7vrPaB5wEq3vNHH30UKauYvbVr146UVaxY3s848zFuPxWnNs58g9fN8yEAqFu3bqS8a9euoA7HEI4Tz5avzWpuyNu3ffv2pHU4tjMQxjtXcZA5/rSKqc39n/ub6sd8bDg2NhCea2rezsdctTEfP5VzivuXmkfxZxwH/IMPPgi+w+fnjh07gjo8DsWJEa22j2Peq3OP20cdT/4e9x01NvC4E+dYKXxs4uRhUMec66j24m3kZwXqnOExUMWq53WrOnyM1XWFzyM1b+d2V/fDvD3cxmqcjPM8g88ZNUbz8VPbx+eR6ie87I8//jiow9cjHlPiXNPiXGfi5ImLUyfOfqrl5P+sqM9ePCdPHX4CYmZmZmZmZmZmZmZWCD9INzMzMzNp/9svJfXfgXrooYeQmZmJSpUqoV27dnj11VcLrb9gwQK0a9cOlSpVQtOmTfHwww8HdWbOnInWrVujYsWKaN26NWbNmhX597Fjx6JDhw6oWrUq6tati4svvjj4lVFeXh5GjRqF9PR0VK5cGT169MDy5csPeP/MzMzMzFJ9Tn4k8YN0MzMzMytzZsyYgZtvvhkjR47EO++8g65du6JPnz4ybAUArFmzBn379kXXrl3xzjvv4LbbbsNNN92EmTNnJupkZ2fj8ssvx4ABA7B06VIMGDAAl112Gd58881EnQULFmDIkCF44403MH/+fOzduxe9e/eO/Nz3vvvuw7hx4zB+/HgsWrQIaWlp6NWrlwyDYGZmZmZmZYNjpJuZmZmZlMrxGMeNG4frrrsO119/PQAgKysLzz//PCZMmICxY8cG9R9++GE0atQIWVlZAIBWrVph8eLFuP/++9GvX7/EMnr16oURI0YAAEaMGIEFCxYgKysLTz75JABg7ty5keVOnjwZdevWxZIlS9CtWzfk5eUhKysLI0eOxKWXXgoAeOyxx1CvXj1MmzYNP//5zw9oP83MzMzsyJbKc/IjjR+kH0Y44YNSlBPi7rvvDj7j5C/nnHNOUIcT6Pz1r38N6ixdujTp+jnZi0oKxMlVOCGRSrbI21dcb4lt3Lgx+IyTnnByn0OJE7moN/VUYhnG/UslUeKkU5wkBQgTrqjEQSxOslFel+oncY4xL5sfmADA888/HymrtuCkLNwH4iSuikOd03GSAhWFk1wWP+7/aqxatmxZpHzGGWcc0m063GRnZ5f2JtgB4vGyYsWKQTK9PXv2YMmSJfjNb34T+bx3795YuHChXG52djZ69+4d+ezcc8/FpEmT8N133+GYY45BdnY2hg0bFtTZ//Bd2b17N4D/u7avWbMGOTk5kXVVrFgR3bt3x8KFC/0gPYajjz46cR1V4yInH1PJFnkuqJJ7bdmyJVgv4+ssJ6JUn6nt4fkFJy9UcyY+F957772gDm9zgwYNki5HJVfctGlTpKzmKZz4L86cvHr16km/w22Rk5MT1GEq+R3Px1TSQV4/J+4EwsRxKtkd9y+eY6o+wNujkt7HSULIx0bdV/D31PH86quvImVOYKnahvdLtQ2fa+qcycjISLqctWvXBp+xDRs2RMoq6eCePXsiZW5jlRiQ7xPVfJvbRyV/jDPG1K9fP1JW9zl8PNVyuA7fu6k25n6h9oGXo+rwMefzHkiePBOId3+ukrHmpxKU8jFW50y9evUiZTVO8ljFxw4I+5fq/9yfuI+qdXF7qXOal6uuK7yu/XOY/PheUl2H+TioRKe8LpW0l48x9yW1fXw81TgZZyzlNuXEv0DY/+vUqRPUYUVNJmplh0O7mJmZmVnKyMjIQPXq1RP/qbfLt2/fjn379gU3vvXq1SvwIVxOTo6sv3fv3sTNe0F1ClpmXl4ehg8fjrPOOgtt27ZNLGP/9+Iux8zMzMzMUp/fSDczMzMzqTR+Rrphw4bIm37qzc79+E2hvLy8Qn+hp+rz5weyzBtuuAHLli3Da6+9dtDbZmZmZmamOLRL6vCDdDMzMzNLGdWqVZMhBfKrXbs2ypcvH7zhvXXr1uBN8P3S0tJk/aOPPjoR0qCgOmqZN954I5555hm88soraNiwYWQ9wPdvpuf/2Xdh22ZmZmZmZqnPD9LLMI77xLHmgDCe1aeffhopx/lLk4q3/MADDxRaLk4cP/Ctt94K6uz/OfV+HA+M46wDwNtvvx0pq5h6RcHx44EwFnznzp2DOoW9cReXin3Hx/ydd94J6sTpBxwHTcWW43h4KiYcx5SM83ZehQoVImUVq5vr8HqAsH2KGkuc20vF4Dwcqfh9dnA4vqGKQThjxoxI2THSC8dt+PTTT5fSlhw+UvGtlAoVKqBdu3aYP38+LrnkksTn8+fPx0UXXSS/06lTJ/z73/+OfDZv3jy0b98+Mafq1KkT5s+fH4mTPm/evMh1Oy8vDzfeeCNmzZqFl19+GZmZmZFlZmZmIi0tDfPnz8dpp50G4Pvxc8GCBbj33nsPbsePEBUrVkzELlXzI74eqfkPxz5V8zyep6i4pjy/iBP7V20zx4blGK9q3Rzr95NPPgnqbN26NVJW8YO5fdQ5zfMxtT28LlWH/1jEfxTjuNxAGANXbR8fcxXvtnbt2pGyOuYcd7tFixZBnTgx77lNeftUHGmeL6rjyXNTtW7u26r/cz9Q821uL+7rKhYw93W+zwDCfVfHM859D58zceJlq/sT7re8PXXr1g2+E+e+gudwKv4/9ws1fvB9jerbvH7Vpty/OD67imHN58j+PwTnx/2N2wYI913FnY+TtyJOv+UxhNuCY/0D4b6rP9bzuafO4VWrVkXKJ5xwQlCHqftEbncV1523Rx0/xsdKPZfgNlXL5b6t4rHz+aju+3n969atC+owHs9UHHreT3V+cq4BdRy4D6r+xmNKnOcQKs9BcT1rSsU5+ZHID9LNzMzMrMwZPnw4BgwYgPbt26NTp06YOHEi1q9fj0GDBgEARowYgY0bN2Lq1KkAgEGDBmH8+PEYPnw4Bg4ciOzsbEyaNAlPPvlkYplDhw5Ft27dcO+99+Kiiy7C7Nmz8cILL0RCtwwZMgTTpk3D7NmzUbVq1cQb7NWrV0flypVRrlw53HzzzRgzZgyaN2+O5s2bY8yYMTj22GNxxRVXlGALmZmZmZlZcfKDdDMzMzOTUjke4+WXX47c3Fzcdddd2Lx5M9q2bYs5c+agcePGAL5/E2r9+vWJ+pmZmZgzZw6GDRuGBx98EOnp6XjggQfQr1+/RJ3OnTtj+vTpuP3223HHHXegWbNmmDFjBjp27JioM2HCBABAjx49ItszefJkXHPNNQCAW2+9FV9//TUGDx6MnTt3omPHjpg3bx6qVq16QPtoZmZmZpbKc/IjjR+km5mZmVmZNHjwYAwePFj+25QpU4LPunfvHoR2Y/3790f//v0L/Pc4NxflypXDqFGjMGrUqKR1zczMzMysbPCDdDMzMzOT/PaLmZmZmVnp8pw8dfhBehnGSRZUgodkiRhU4ohUt3r16uAzTnTDCR9UAg+V4KQ4qDbNH1u1oDqnnHJKpKySoPDx46QV+X/Cvt8rr7wSKXPCHYX7jdoelUSG+6BKllMUnPhDLZeTH6nES5zwRyUCKYvnREnZtGlT8Bm3s0r2YgXjRD0qkda0adMi5aFDhwZ1GjVqVLwbVob985//jJRVMjczS21Vq1ZNJEBT1+o4OPmdSpjN8yiVRC8OnjuohJ+cxI8TI6vEdrzvcRK+bdu2LajDydHUPC/O9TtO0nZOHMrHQX2Hl1ujRo2gjkrkyLgNVeI4Tjinkt/x+tX2cHtxAkSV2I6Pldo+Tkap+iT3HTV3iBNGitdVlKSX6v6TqXOY783U+cnfU/vJ54Q6VvwZ93+V6D1OHW6/7du3B3U4+a5KVMjLVseOE0KqpL187nN7qbbhdcdJeqn2gcc3NcZwf1L9n89hdT/Hy+FxXB0rTkCqxpOPPvqo0DIQju37E4rnl5GRESmrfhFnm3nf49xX87rUw1AeU1QSTO4r6trDz1JUm/KzCfUcgveTnzmoBL2ciDhOIk/VJ7l91PMhNZYzPtdUAtf8Y6U63la2+ImHmZmZmZmZmZmZmVkh/Ea6mZmZmUn+GamZmZmZWenynDx1+I10MzMzMzMzMzMzM7NC+I30MoxjmK1duzaow/GsDtf4zxwXK06crENFxXtjb731VvDZBx98ECnXrl07qMOxvTgWWU5OTvAdbgsVs4v7hYp9xzHIuQwUX0z0ouB1q33gOI4VK1YM6qiYg/a9NWvWBJ/xOKTiwlrBODarisPHsQOHDx8e1Jk+fXqkrOIAHo42btwYfHbHHXeUwpYcvvz2i5WGo48+OjGOqetKspwxAHD88ccnrcNxSlU8XqbiNHPcVxV3Oz09PVLmuVec+aOaw/F8R8XUjhPjldtUzfOYutZwrGtet9oHjoEbZz9VjFn+TO0Dt7OKTc9zwQ0bNgR1uK8UJfdS/fr1ky43Nzc3qMP7pc4Rjmut6vA287FSc2LePo6NrajYydxPVBzpOMec90Eth+twH1DHN06/bdy4caSsYjnz/ZzaPj7G6lrIbaHyFvH3mjZtGimr85W3Z+fOnUGdmjVrRspFzYfEfUf1r2S5B4Dk960qDwPH1FZ1eE6p4vbzvfb8+fODOl27do2U48zJ1X0rH08uxxnfVF/i80jlPSvKfbV6FrV8+fJIWbU7tzOfr3zsCtqeZHVU/H/ub+o6HCdPS5xnDPn3q6jP5DwnTx1+I93MzMzMzMzMzMzMrBBHxitrZmZmZnbA/PaLmZmZmVnp8pw8dfiNdDMzMzMzMzMzMzOzQviNdDMzMzOT/PaLmZmZmVnp8pw8dfhB+mFEJW9IdZx8o0aNGkEdTgyhkgKVFJVo5pRTTomU27VrF9ThRDMqkcXu3bsj5WXLlgV1Fi1aFClzAhaV2KJNmzaRMiffUstRiY04eVVRE82UFJXYhfdBJeQ6HJKNcj9o2LBhUIcTuaikjVxHJU/jBKRt27aNvZ1HGpWs5o033oiU4yS6U4mNfvOb30TK9957b1CnNJMBFxdOivXjH/84qLNt27aS2hwzO0TyJxtVeA6iEo9xAjM191JJ1hgnKVVjKa9LzZE4YRrPbzlZGRDOZeIkrVNzmzh4H1Tb8H6p5G3cXnxsVJI1vodR+8BzcHXMOaGmmv9Uq1YtUlYJInl7Pv3006AO7zvP41VS2lq1ahW6LUC8uSo/4FCJTnl7VBJJXg5vj/oOt7u6r+A66oEM94OqVasGdZL1JSCct6v+xf2Cv6PmZ1xH3WfHOZ516tSJlNW9JPcVda/L88MtW7Yk3R5eNydFBsJ7BpUAl7dZJY/lNlRtwQlc1X0rj69q3OZ+wM8PeL+BcN/VcnmMVveEPE4+99xzQR1ui7POOiuow+OrGtv5msDnueqTvJw447g6r+IkhuXkogsXLgzqfPLJJ0mXw/vBx0ZdZ3hcVMec91ON9dzf1HHgz+KMF5s3by50OUVNNmqpI7WfhJmZmZlZqdn/9ktJ/WdmZmZmZlGpPid/6KGHkJmZiUqVKqFdu3Z49dVXC62/YMECtGvXDpUqVULTpk3x8MMPB3VmzpyJ1q1bo2LFimjdujVmzZoV+fexY8eiQ4cOqFq1KurWrYuLL74YK1euPOBtP1B+kG5mZmZmZmZmZmZmB2TGjBm4+eabMXLkSLzzzjvo2rUr+vTpg/Xr18v6a9asQd++fdG1a1e88847uO2223DTTTdh5syZiTrZ2dm4/PLLMWDAACxduhQDBgzAZZddhjfffDNRZ8GCBRgyZAjeeOMNzJ8/H3v37kXv3r0PebQOh3YxMzMzMzMzMzMzswMybtw4XHfddbj++usBAFlZWXj++ecxYcIEjB07Nqj/8MMPo1GjRsjKygIAtGrVCosXL8b999+Pfv36JZbRq1cvjBgxAgAwYsQILFiwAFlZWXjyyScBAHPnzo0sd/Lkyahbty6WLFmCbt26Hard9YN0Kzkctw0Arr766ki5VatWQR2Oz/ePf/wjqLN48eKD3DqN44r96Ec/Cuq0bNkyUi5q7HCO25WRkRHUOfXUUyPl6dOnR8oqTmGzZs0iZRUrjWMQckx3ANi0aVOknOox0hXe5kO5Dyr2Xn7FFcKA4z4C4XnVvn37oA7H2XvllVeCOk899VSkrGLUcbxu7m8q5uuRgo+x+pnZe++9Vyzr+utf/xop5+TkBHX+9Kc/RcoqnmAqefvtt4PPBg4cGCl//PHHJbU5RywnNrLS8M033ySuU999913w7xxfNE58cXW95PmPmhdwLFYVIz09PT3p9nD+GY47rOKucgxhjs8LxMutwfM6lZOobt26hZbVNqprGMcT5/i76jjw8VTxlfl76hrGc2c15+X5rIpZzd87/fTTky7ngw8+iJTVnJz3i/sfELa7iiPN3+PY00DYPqqfqNjI+am45ZyrRI3bvFwVd5vjgKvtW758eaSsYrZzW/A8FAAaNWoUKfO5qNrh2GOPjZTjnHtqrOLtUceTxxgVk//DDz8MPmO8Xxs2bIiU1X7y/bkaG/gYq2POfUXNQ/k+Qt1vcl9W/YLPWX7zVO0DXw9UvHjuk9wH1LrU9nFOM1Xn3HPPjZTVeMv9gvMeqP7GbaOuafyZilvO94kfffRRUIfzPKl5uzpvGI+VfI1V4yTvZ5zcICpGOvdlFbuccxioazXnDVDtnr8/FTVGemnMyVVuAzU3WbJkSZCzq3fv3jJ2PvD92+a9e/eOfHbuuedi0qRJ+O6773DMMccgOzsbw4YNC+rsf/iu7D9PatasWfDOFYOy9yTMzMzMzMzMzMzMzA6JjIwMVK9ePfGfert8+/bt2LdvH+rVqxf5vF69evKPasD3f2xT9ffu3Zv4g21BdQpaZl5eHoYPH46zzjoLbdu2jb2PReE30s3MzMxM8hvpZmZmZmalqzTm5Bs2bIj8mkr9qmY//kV+Xl5eob/SV/X58wNZ5g033IBly5bhtddeK3CdxcUP0s3MzMzMzMzMzMwMwPchyVS4tfxq166N8uXLB2+Kb926NXijfL+0tDRZ/+ijj06EnCqojlrmjTfeiGeeeQavvPIKGjZsmHS/DpYfpFuA41LFiTup4jxxHLTzzjsvqMOfqVhGHP9LxabkuF0cQywOtdxLL700Um7duvUBL7eo1F/aeFD48Y9/HCmrWPEcDy9ODDF1zLl9VLw31YaphLdZ7QPHNEtLSwvqtGjRIlLOzMwM6qicAPlxHEMAWLt2baS8atWqoM7mzZsj5VNOOSWo06NHj0i5efPmQR0+Z1WMUO5PKsY31+G/AJ999tnBd1K9nxQXjiP6z3/+M6hzqDKK//vf/w4+e/311yPlX/ziF0Gd//f//l+kzPFmk8X+LwjHWly6dGlQh+O8q3wYvBw79PxGupWGL774Iphr5sfXERXvluc/qn/xOlQsVqbGQY7frcb2ZDHbizq+cnxZNYfj+c4JJ5wQ1GnatGmkrOYxPLdXYzLPUzierJp78U26OvZ8PVI30jzHVbFsuV+o+MBxYplzHZ4Lqnkex2BW+8kPDdS6eb/UfRjvp3qLkJfDx1PF1Ob7si1btgR1OLa02k+OV7x69eqgDm+ziq/Pc9yTTjopqNO4ceNImWOtf/LJJ8F3OLaz6kv8mYqLzLGvVWx/7kuq3blfrFmzJun28Dmj4vbzOaPGUqaOJ69bjbc8Nqk25e+p8Yz7BY9LfJ4B4Zi8bt26oA6fa2ps4HFaxTbn9lF9++mnn46UO3bsGNThPGzcNiqGO/clNTZw/+cxGwi3WcU/5/ZR95LcFmr85zoc416dV3Fyg3BsczUm83keZ8yLE1NebV/+YxFn+5VUnZNXqFAB7dq1w/z583HJJZckPp8/fz4uuugi+Z1OnToF96vz5s1D+/btE32pU6dOmD9/fiRO+rx589C5c+fIdt54442YNWsWXn75Zflc5lDwg3QzMzMzMzMzMzMzOyDDhw/HgAED0L59e3Tq1AkTJ07E+vXrMWjQIADAiBEjsHHjRkydOhUAMGjQIIwfPx7Dhw/HwIEDkZ2djUmTJuHJJ59MLHPo0KHo1q0b7r33Xlx00UWYPXs2XnjhhciLe0OGDMG0adMwe/ZsVK1aNfFHx+rVq8s/xBUXP0g3MzMzMylV334xMzMzMztSpPKc/PLLL0dubi7uuusubN68GW3btsWcOXMSvwjavHkz1q9fn6ifmZmJOXPmYNiwYXjwwQeRnp6OBx54AP369UvU6dy5M6ZPn47bb78dd9xxB5o1a4YZM2ZEfsExYcIEAOEv8idPnoxrrrnmAPc6Pj9INzMzMzMzMzMzM7MDNnjwYAwePFj+25QpU4LPunfvLsMG5de/f3/079+/wH8vrZdwwoBDZmZmZmZmZmZmZmaW4DfSj3BVq1YNPktPT4+UOeEDECYm4UQNQJjgoU2bNknXrxItceKK2rVrB3WqVKkSKRcl2eiJJ54YfFaSyUWLgo+VSioZJ2kMJ2lR3+EkLSppUSolkVQJsDhZCLcfAFx55ZWRcq9evYI6bdu2jZRVQi7VPvmp5FGcBGXFihVBnXnz5kXKcRJpqaRAnLhFJVdRnzE+95966qlIWSWG4oQ6qdRvimrHjh3BZ9OmTYuUVbJWbmOVOOizzz6LlIuacJO38fe//31QZ+zYsZEyJ2zhZHRAmAhKtQUnzo0zLllqSOWfkdrha+vWrYnrlBoXeexU80eeC8a5pqmkZtwv1TWV66hrH88LeE6iErXxPDnOcnlOB4T73qhRo6AOJyDluTUA7Nq1K1JWSb142ZwUUc3R+fipRO81a9aMlFV78b7z/QoQtqmqw3Mrdc3i48f3S2p+ppLdMb7mq8S1fN1V5wi3jzpHeF2cRE8lUuT+pvZzw4YNkbLqk7x96n7ztNNOi5RVv+Cks5xYFAiTbHKbqntA/o6at3OS0rVr1wZ1eJ6sjgMnHuTjAgAfffRR0jp8LDjJvLoX5zm4Gt/4mKtEibxf6hkDb59K2sjr4ucJal2cuFadZx9//HGkvHHjxqAO75dKDMvJO1UyT9531f+5LfLHfN5v6dKlkTLfb6qEy3yNUMeK5+R8vgLA9u3bI2U1P+PP1DnMY5U65nx94rIao7lfqDZmvE9qe9QzLe4H6pjHSR6ef36hlhGH5+Spw2+km5mZmZmZmZmZmZkVwm+km5mZmZnkt1/MzMzMzEqX5+Spw2+km5mZmZmZmZmZmZkVwm+kH2E43mGzZs2COvXr14+UOUYcEMaqUjF7OXabiqGn4s0xjnnFMc6AeDEHkzn55JODz1I9djPH31LH6pVXXomUOY4cEB6rzZs3B3X4eyrWKPevkmw/jjXGsSsB4IwzzoiU+/XrF9Tp3r17pKxi8hcHjhkHhMdPnZ+dO3eOlFXcbT4/N23aFNThc++9994L6nBc0zg4fuqkSZOCOhxDm9scCPuSijVXkrh/cdvMmDEj+A7HNmzRokVQh+Ptq/i8fKyys7ODOtu2bQs+KwqOpbh69epCy3b489svVhq+/PLLxHio5o/VqlWLlNXYyddCFfuXx3YVH5WXHWduo/oyx2LlGNFqDsefqbkXxxRWsc15e1Scch7/VbvzNV7FpeX24W1WbcPLUdd8Pn4qRjQvW821uA7vExC2IcdnB4AtW7ZEyl988UWkrI4VX8/VPsSJ886fqbk911HrSja3V+3H/VbF+k0Wex0ATjrppEi5Q4cOQZ2MjIxIWeU24v1UYwHPO7kP8L0vEO6nWm6TJk0i5XfeeSeow99Tsf35nkXFBefzXMWj5uXwcVi3bl3wHT5+DRo0COpwP1FjIJ+faozh/q/6NreXGhd5nF6+fHmkvGjRouA7fG+r8kRwLGx1rJjaT47Br9qLP1PPRPgzjvGtjqfKqZCsTpxY9er6ycdP5QfjfVDjBfd3Pr7qOMTJJcHXMLUPDRs2jJRVHpI4xzNZ3H4gOp5+9913Qb+Nw3Py1OE30s3MzMzMzMzMzMzMCuE30s3MzMxM8tsvZmZmZmaly3Py1OE30s3MzMzMzMzMzMzMCuEH6WZmZmZmZmZmZmZmhXBol8McJz6oV69epJyWlhZ8hz9TyRI46YNKNsoJalasWBHU4SQQKqlNTk5OpPzss88mXU4c3DacYKQsUgmmONFkUZMFcnupBDGcfEMdT04iEyeJJP+0iBNiAWEf6NSpU1Dn+uuvj5RPOeWUoI5KRJJKatWqFSl37NgxqLNx48ZIWSU/euaZZyLlN998M6ijElMdKLWMJ554IlJW23f22WdHyieeeGJQh5PNqWPH/StO3+ExBwDeeOONSPnVV1+NlFXCYz4fObGW2j6Fk/e0b98+qPPcc88lXU5R8DmtzqvTTjstUlbXA078tGTJkqCOf0KYmvwzUisNNWvWTIw/akzhxI5qvsHjvUqkzstW14iqVatGynztAeIlpeNEjnw9V0n1OMmlmnvxNqs6nMxtw4YNQZ2dO3dGyscee2xQh5Ou8XxDLYevYaqNmbr34OUqfKxUEj1ev1ouX5vV/Jrvl7Zu3VroeoDw2MRZtzqePFaq5XAdNd/g/eJkniqROfd1lWCQE/Zx0lAA6Nu3b6Ss5kg8H+NkmgDQuHHjSFnNO7nfcv9S1x5OeKiSx3Kbqv3ksWrlypVBHU5cy8lRgTAhKvc3IEzkyOObmt/yPqi+xPulxgYeg1VCRh7z1PnJySlVnU8++SRSfuuttyJllaw1TtLjOGMTt6nqF3ytUW3B57VK3Mz3zNzu6nzg5JlqP7l/qfaKkwCavxfnHprPByA85nGuy7w9at18bNSx4vFMJfHldlfbw5+ppKr5j6dKXhyH5+Spw2+km5mZmZmZmZmZmZkVIrVfvTQzMzOzUuO3X8zMzMzMSpfn5KnDb6SbmZmZmZmZmZmZmRXCb6Qf5jjuE8cO5LL6TMUFjBMjnf+KxfHpAGDBggWRsoqjruJ2FYc4cbfLmjh/OYwTH0wdK/5MxfbiNuSYZ2r9ceKpcf9SMfFbtmwZKf/kJz8J6nAs56LGJ0slKu4ex8dr2rRpUIdjK6o4mIcKH89ly5YFdZYvXx4pqxwGHMuTY8kCYf9Ssfm4LVR8SO4rHBNUxbblsTNOPPQ4OPYoEO6nGpPj4LHg17/+daTctWvX4Dtx9uuiiy6KlOfMmRPUGT9+fKR8OIzJhwu/lWIl7aijjkqMuyoOLMeXVeMQx9ZVcdQ5DqyKR83zFjVHijPm8nWM1x0nprZaDy9H1eFlq3WtX78+UlYx5fn6qGLDc/xpnqeo6yVTcxtel5rPxrln4Ou5isfO7c7xsoFwLspzkDjxn1UcXd5PtZxPP/00UlZjNJ8TKpY5z515v2vXrh18Z926dZGyuk9s3rx5pNyhQ4egDud7UfeknOdp165dQZ3t27dHyqpNuc9x26j7Cp5rqfkjL0fdV3C7q+PJ+6nivHO/ULl5eN85JrnK78DjKx9fANi9e3fwGUuWlw0A6tatGymr+XacuR+fR3zuqTGQz3MV553HHTXWc39XYyCfR6rv8PFT1zmO1835olq1ahV8h8dF1Z7cPjz2A8Dbb78dKatzj5et+i2PnerZAF+bebnqWQHXUceT+6Qax/n4xcnFoY4VjxdqP1etWpX4fzVOxeU5eWoo0lOkNWvWFPd2mJmZmZnZAfK83MzMzMysZBTpQfoJJ5yAnj174vHHH5d/wTUzMzOzsm9/PMaS+s8OnOflZmZmZoc3z8lTR5EepC9duhSnnXYafvnLXyItLQ0///nP8dZbbxX3tpmZmZmZWSE8LzczMzMzKxlFepDetm1bjBs3Dhs3bsTkyZORk5ODs846C23atMG4ceNKNNaumZmZmR0afvsl9XlebmZmZnZ485w8dRxUstGjjz4al1xyCfr27YuHHnoII0aMwC233IIRI0bg8ssvx7333ov69esX17ZaEXDSE07WoJI3cKINVSdOgsiirKs0caIXAGjSpEnJb8hBUIlnOBmHOic5MYm66eZlx0koohIQ8bri9AFOiqISJp133nmR8qmnnhrUORySi8bB+3nWWWcFdQYMGBAp50+Asp9KLHOw26I+U0mBOAlLTk5OUEd9VhScoIaTtQJhgiYez1Q4BU56FicZWBwq6RO3l0ooxe2sEl7xedStW7cD3j6Fj/n5558f1OHERq+99lqxrNvsSHG4zsvVPIHHFJV4khPtxUlIqhLHcdIwlWiMx+A4YzsnklPf4euISqjGiRRVEjOen6lrFreFujbzNqq5PS+b21Qlv+NjrBK18dxPJRblZav95H6hcHupfsHbw8kMVdtw31GJV3m/1HHgZXPCWSDsB2ruwMtRyXYZt6nqk6ecckqknJGRkXT7VGJHnsuopIicFFeNcXyucXJD1ZfWrl0bKavjyQkG09PTgzqcaJKTDgPhPZVqC95PdR/GSTd53sn/DoT7pZbL7a7OzziJVzmR45YtW4I63AfV+cpt2Lhx46Tf4eOg5sl83xoncfOOHTuS1lHbw+2j7hEyMzMjZb6fU9cMXo5aLq9bjckfffRRpKzuueKMkzy2q23mcZHPT5UonJcTZ5xU/Zb3XSWGjfMcgsdXlcQ6//YU5f7PUstBPVVavHgxBg8ejPr162PcuHG45ZZbsHr1arz44ovYuHEjLrroouLaTjMzMzMzK4Dn5WZmZmZmh1aR3kgfN24cJk+ejJUrV6Jv376YOnUq+vbtm/jrVmZmJh555BG0bNmyWDfWzMzMzEpOSf680z8jLRrPy83MzMwOb56Tp44iPUifMGECrr32Wvz0pz9FWlqarNOoUSNMmjTpoDbOzMzMzMwK5nm5mZmZmVnJKNKDdI6ZpFSoUAFvvvkmzj//fNSuXbsoq7FiwPHnOJYVl9VnKp4U/4VKxaWKs5w4cSdLytKlS4PPOnToECmr2F+liY8DxxgGwthfhzJOOMdNVMecY6XF2R7eh+7duwd1+DMVL/VIpWK5nXvuuZHyv//976DOvHnzDnhdJ598cqR8ySWXBHU4blx2dnZQ55lnnomUVV8qLhw7k8sAULVq1UiZ+7FqYx4X33///aAOvyGqxhiO3bls2bKgDsccb9WqVVCH23DhwoVBHRVP/1BQsQG7dOkSKTtGemrw2y+p73Ccl1eoUCExzqoYzBz7VI2dPL9Q15F69eol3Raem6r5RZy40Xxt4f6u4lNzzF51feLtUTFe48yveTkqzw3H9Faxa3n+z/G748SpVXGHOYa7ii/ObarixXO/UDGh48To5c/4mv/pp58G32HqPoz7QZz7MBWDnOcOaj+3b98eKa9evTpSVrG6+TN1HDgWt7rmcz+NE8Nd9Umuo445jw/c1+PEwub43gCCP1yqsZXbR/2xk88R1Xc4b5GKu83r4u1p3rx58B2OFc5x34Fw3rl169agTpy489zuau7MddR4y5/xOaLGSV6XOq+4f6nY4TwObdy4MajDcfpVv+D+r/IccK42XreK28/nGt+/qDpqfON1q/wEcfKe8bmnjg2ff9zu6pzmY6XWrb7H+Nqtrp+8PWquym2oxts4OQaT8Zw8dRzSzHuPP/647ERmZmZmZlZyPC83MzMzMzs4B/9nkUL4rxhmZmZmZZfffjl8uH3NzMzMyibPyVPHIX0j3czMzMzMzMzMzMysrDukb6SbmZmZWdnlt1/MzMzMzEqX5+Spww/SD3OcXIiT96hkPpw4QiXa4IQdKkkLx+HkJClAmLDm4osvDuqceeaZkfInn3wS1HniiSci5dzc3KBOMmvWrAk+W7RoUaTcqVOnoI5KoFNSVq1aFSm/8847QR3uA5s3bw7qcCIQlVyoKNQArPpKMpyco2vXrkEdTopihWvUqFGkrNr0pZdeipRVsrL09PRI+Ve/+lWk3K1bt+A7PMbwOQ6E/WTWrFlBnaJQ5yv3f5W0jvsgJ7VRCWT4M5Woh5MEqsRLnICoXbt2QR1O1MnJo4BwLFfJhRo2bBh8VlJUoj0zOzLVqFEjMYbGuZlTSRs52Z1KusbjTpw5ikquyNcElfiME8XxOK3Gf078p641PGfj9ShqPzlB6hlnnBHU4USJ6j6C56K8Peo48Lo5ARwQHk+VtJGPjUooyNf4OnXqBHVU4kvGfW7lypWR8ttvvx18h7dHHXNuL06Oqtat7rE4waGa23BiPT6enIwUCOcOKukl93+VSJE/U+c57xcnqwfC/dqyZUtQh8817oPqXpfntyoBKO+DSkjKx0H1Wz4f1fHMycmJlNWcnJO8nnLKKZEyJ7gHwjm5SsDMSRvjJBlWbcpjVd26dYM63A9UXg+uw9uj+jpvjzrHefvUPvAxV8ezRYsWkbJKesljlXp2wf2W90udM9wvVNJX/p4aA5s2bRopq+ckPJ7FSWqtxn/G7a7OaT4O6prL13e1fXytUclteZxU108et9W68vd3P6Qu+xzaxczMzMzMzMzMzMysEIf0jfSrrrpKvhVnZmZmZqnPPyM9fHhebmZmZlY2eU6eOmI/SF+2bFnshZ588skAgAkTJhz4FpmZmZmZWYE8LzczMzMzK3mxH6SfeuqpKFeuXIF/mdj/b+XKlZNxoA7Gxo0b8etf/xrPPfccvv76a7Ro0QKTJk1KxInNy8vD6NGjMXHiROzcuRMdO3bEgw8+iDZt2hTrdhwOtm7dGilzTEJFxVrkGF0qDhTH5Nq0aVNQp0ePHpHybbfdFtSpUaNGpKziHZ544omR8k033RQpx+mTqm//5z//Sfq9Dh06RMoqLltRqG3+8MMPI+WZM2dGyipGKIsTpzDVcBy5tm3bBnVUTDMrGMflPOmkk4I6fO7x+AEAzZs3j5RbtWoVKXO8RiUzMzP4jM+rf/3rX0GdovylXH2HxxQVm5XPa45Tq8YlPh/V+cnneZzYtioeqYpXyTjOqnozlXNQqLiJh8qBPBi0kuO3X1JTac3LS2pOXqNGjcS4q/aRYxGrMZivc1WqVAnq8LJVPGoe/1V8VF5OnOsI11E5bHh+praP50hx2kvlwuG4viofB19/VJxhvh699tprkXKcOLoq3i3HyeX48UDy2MlAGH9XzYE5n4qKM7xx48ZImWOkq/jKcfIqcRxw1Zd4Oeoc5/mEiq+fLKa8ipHO8+0GDRoEdeL0E24fdf/E8ac53jgQbrM6P7n/83JUrHqe/6h+W79+/UhZHV8+19R+ctxozmMEhH1b3cPz8TzttNMiZRXPm+emarmcP0f1Cz7Gqr04ZvW2bduCOkzF1OZ18TFX5wPHuY5z76vGW+4rGRkZQR11/JItW7U7n/vcv9R3+DMVtz9Oniceb1UeIx5fuY2B8Nio+xy+3+TvqGs3ryvOPZZaDo9nqu/w91S7cyx/NW7nHwuKOi/znDx1xH6QrhIMlISdO3eiS5cu6NmzJ5577jnUrVsXq1evjlwo7rvvPowbNw5TpkxBixYtcPfdd6NXr15YuXJlrIQGZmZmZmZlRWnMyz0nNzMzM7MjXewH6Y0bNz6U21Gge++9FxkZGZg8eXLisyZNmiT+Py8vD1lZWRg5ciQuvfRSAMBjjz2GevXqYdq0afj5z39e0ptsZmZmdljw2y+pqTTm5Z6Tm5mZmZUOz8lTx0ElG12xYgXWr18f/JTihz/84UFtVH7PPPMMzj33XPzoRz/CggUL0KBBAwwePBgDBw4E8P0bOTk5Oejdu3fiOxUrVkT37t2xcOFCOWn/9ttvIz8D459imJmZmZmVJYd6Xu45uZmZmZkd6Yr0IP2TTz7BJZdcgvfeey8Sn3F/3KbijMX4ySefYMKECRg+fDhuu+02vPXWW7jppptQsWJFXH311cjJyQEA1KtXL/K9evXqYd26dXKZY8eOxejRo4ttG83MzMwOR377JfWV1Lzcc3IzMzOz0uE5eeoo0oP0oUOHIjMzEy+88AKaNm2Kt956C7m5ufjlL3+J+++/v1g38H//+x/at2+PMWPGAPg+acby5csxYcIEXH311Yl6nHxhf4IlZcSIERg+fHii/Nlnn8lEEWWN2l8+AfgtJRVjk5M3cAIIIF7iJU4EohKK3H777UnXxVRCmC5dukTKfBOnEp3Gwe2lEh5ygrxTTz01qJOenh4pq2PF7fPee+8FdTjZqGr3Q4WToqgELIdqezjxEif3sYOnEhBx0iKVbJTPc36bUD3A4b6jkp7x+XAoL+Y7duyIlOMkJ+N9UElleB9UnaJQD6R27doVKauEpLwP+x965ffMM89EytwviiucxAcffBB8Nm/evGJZdlFwoiXV34o7kbpZcSmpeXlJzsm/+uqrxFxTnXtxkkryXFUll+PlqHXxXFDNdZJdI9RnPG4rXEclKuREmGo/eW6v9rN9+/aRMs+9gDCxo0pSxwnEFy1aFClzEjsg3C+VbJT3U/16IU7CbO4rKvkdt1dubm5QZ+3atZEyt4U6DryfnOgOCJP6qcR2cfA2q2SBnHSczweVnI/nAZxkHgBOOOGEQrcFADZs2BApq3OG5yDqHpD7imp3TuTL66pbt27wHT73VPJMnkepfeDtU4lXuZ+qeTHfI3P/A8Ikqrwuvj8GwjmwSiTKY6A6nvw9daziJKfkdanjyf2S59cq8SQfB95vIBwX1T7w+bh69eqgDo+d6jxX5xbj48fbrM497oMqNwmP42of+JmD6v9xjhUfYzWecbvzOKmuM3Hw9qjrHh8btS5ObK3OTz6eaizI309VMmorW8IjHEN2djbuuusu1KlTB0cddRSOOuoonHXWWRg7dixuuummYt3A+vXro3Xr1pHPWrVqhfXr1wP4vwssX8i2bt0qLxbA94NitWrVIv+ZmZmZmZU1JTUv95zczMzMzI50RXqQvm/fvsRfXWrXrp1427dx48ZYuXJl8W0dvn/TmJe5atWqxF/DMzMzkZaWhvnz5yf+fc+ePViwYAE6d+5crNtiZmZmdiTZ/zPSkvrPDlxJzcs9JzczMzMrHZ6Tp44i/U6ibdu2WLZsGZo2bYqOHTvivvvuQ4UKFTBx4kQ0bdq0WDdw2LBh6Ny5M8aMGYPLLrsMb731FiZOnIiJEycC+P7nozfffDPGjBmD5s2bo3nz5hgzZgyOPfZYXHHFFcW6LWZmZmZmqaSk5uWek5uZmZnZka5ID9Jvv/32RGygu+++GxdccAG6du2KWrVqYfr06cW6gR06dMCsWbMwYsQI3HXXXcjMzERWVhauvPLKRJ1bb70VX3/9NQYPHoydO3eiY8eOmDdvnowJVVZxbCYgjIOm4iZyzDCO2csxsoB48cQ59p2KccYxEFW8Ml6XihelYkyxnTt3RsoqdlVxUH+Z47hiKs5YQbFBky27pHAbn3nmmUGd008/PVJW/Y1jEOZ/K20/FVcvGV6XillnB0e1qYqnyVasWBEpz5o1K1JW8eh4POM8A0AYq/tQ4nGQ43YCYVzCOLFQVdzV4rBq1args3//+9+Rctu2bYM6fD3Izs4O6uwP0bDfr3/960j58ssvD77Trl27SFkd8zfeeCNS/sc//hHUUW1YHFRsSn64WLNmzUhZxUDmtuHxDjg8E/M4sVHqK6l5eUnOyXfs2JEYZ+PkAFLnLMdiVWMTj9M8n1TfU7HD+bqm5rMc45uXq/o/z69V6BuO/auWw/ul2pTbIk6cdxU3l+81Pv3000hZjZ08z1Mx7zlesMoFwtc51e94P1WsYo73zDljgHDfuQ+qeyxejuon3G/5ngsIcy+pHDY8b1F5Wvgzjjuvziu+pqr8VtxPVJ8syrFSeJvV/QnnQoszh+P7VhWTn/dBHXNed5x+q+6Z+ViouQ3325deeilSXrp0afAdnv+oe3o+p9UYyPug+ja3sxpjeIyLc88Xp5/EWTf3HXU94H7A4zoQHqtmzZoFdfgeS62Lz+s4ORaaNGkSKavznu9zXnnllaTrVmMBX3tUnThx1Hmb41xP+RyOkz9E4bFJxUjnMVntJ1/PVT63/NewouaV85w8dRTpQfq5556b+P+mTZtixYoV2LFjB2rUqBHrgeGBuuCCC3DBBRcU+O/lypXDqFGj/j/27jxOq/K+//+HgIAaRdlmGBlWiYK4FSKBBMGoGGzURK0ktsTW5RdKW0WSmhC1QfNVqyaWKi61NcXEqvRbY7OUJIJRDBEXNhdEFBwclhlGkMUtonL//vDL3Tnv8565D7ez3DO8no+Hj+Q6XPdZrnOd61znnnN/PjFz5swm3zYAAABQqlpyXs6cHAAAAPuyomKkX3jhham/8HTv3j3efffduPDCC5tkxwAAANC6iMdY+piXAwAAtG/MyUtHUV+k33vvvfZnGe+991785Cc/+cQ7BQAAAKAw5uUAAABAy9ir0C47d+7M/3XirbfeSsRl+uijj2LevHnRu3fvJt9JAAAAtDziMZYu5uUAAAD7BubkpWOvvkg/5JBDokOHDtGhQ4f4zGc+k/r3Dh06xDXXXNNkO7cv06QG/fv3L1gnC01KsW7dulSdI488MlE+/fTTU3WyJAA9/vjjE+X/+I//SNW56667EmWXUOeoo45KlDXhSUTEj370o0RZExK1tlIfiMaMGZMojx8/PlUnS5zVIUOGJMouoc6Pf/zjRDlLgkFNyOGS8OCTcW3qkogV+pxe048++mjqMzp2ueSemszHJdTR/XOJ5Irhjnv79u1Nsu6m4JLuLF26NFFetmxZqk4x45AmK7vzzjv3eh0tTccqN18ZOnRooqyJs1wf0CRx7prRRF9Ac2rP8/J33nknn8jMJUvTpH4uYaQmnnfzDQ2J465rTcbnEk9qosQsiR01iZ6b32pSyX79+qXqaFIzNw7pPMrN/3/9618nyi6Bn27fJUzTRPObNm1KlDVBXUS2ZG6aBM4lf9R167ZdHdcvNBGgm89q38kyZ9JjcEnd9Y9f7nmvtrY2UXb3d503uX6rfUX3x829siTY1DZ99dVXU3W0Ldyzm14jbi6mSRpd0lK9hgsdd0S285Al6bE+M7ukiDpWuSSJei70mNzndC7oEsP27NkzUXbtp8flkh5rHTcOaV9xiR2VOze6TNvPrVfnhm4c0vPprhldt0vOqok63RiT5bsU9dprryXKK1euTNXRRJ1uOzq2u/6m++zujTp3dtvSNiwrK0vV0X6pyaaz9BOXcFmPQdsmIv1M5cZx7RfufqD3I3fOsxwH2o69OpuPPfZY5HK5+OIXvxgPPfRQYgDv3Llz9O/fPzXhAwAAQNvE2y+li3k5AADAvoE5eenYqy/Sx40bFxERVVVVUVlZWdRf0gAAAAB8MszLAQAAgJZV1O8L+vfvH9u3b49nnnkm6urqUj+J+MY3vtEkOwcAAACgYczLAQAAgJZR1Bfpv/zlL+PP//zP45133omDDjooEXOqQ4cOTNibgMaTKiYeuqMxJDW2VUTEF7/4xUS52DecevXqlSgfd9xxqTpPPfVUovwXf/EXqToaj3Hr1q2pOps3by5iD9sejaunD8tZYkS7+FwjRoxIlLPEQ8/Cxe874ogjEuUVK1YUXI/GTdxXzndLcm1aTFxw7V+uL+nYoLH1I9J93f28TGMturFh7dq1ifKGDRtSdVxMy1KicRxdW+hYsC//HE/jiLpkizo2abxP1yc0bqLGFY1onzHS+Rlp6WuP8/J333230fmnxih19xq9Ht09Tfuciwmt9yw3J9d7losnq2OGjikurrreH3UOFZGe+7nxS8c4NxfU9vrd736XqlNeXp5apqqrqxNlncdr/NuIbPNXFxNdaVxajbHttuXi6+t918Vp1vuIrtedT+1fri/puXJ9Uu/5Lr64xo12bax9RWMIuzj5Ol98+eWXU3X0HLs40i5WuNLr050H3WcXs13zCGi7u+tVt+XiZesyl3tA21jPS0S6TTUGfkR6/ur6rfYL7aMu/vmAAQMSZdd+2j5ubNYxxY1DWZJf6zWsuXoi0v1Lj9td93o9uutKj93F1NZ7jXvW1bHKPZ/oPrtxUa9rve+5NtZ+kmW8dcepfcXdY/Vcuf3JkudDj0v3z51Pjevu+qSeczcO6bG7e6OOQ1niqLu2qN+Gxc53mZOXjqK+If3Wt74VF154Ybz11luxffv22LZtW/4/N9gBAAAAaHrMywEAAICWUdQb6Rs3boxLL720yd6SBgAAQOnh7ZfSx7wcAACgfWNOXjqKeiP9tNNOiyVLljT1vgAAAADYC8zLAQAAgJZR1Bvpf/qnfxp///d/Hy+99FIcffTRqRhnZ555ZpPs3L7MxWdqChrzz8XEcrG0msKhhx5asI6LXfXSSy81x+6UHI095uKB6dtmGqNL44U5Liah21ZzcX2uEI1r+uKLL6bqTJw4MVFuyWNqizTeobvOtm3blii7+HOf+cxnEuXjjz8+US7mfGel51jjikakYz+6OIVPP/10olxTU/PJdy4jPYZzzz03VWf8+PGJsovl+fOf/zxRnj9/fqrOvvJmgR6niwtbKKa8/rtbj6vTXu0rfaetao/z8g8++CB/z3HzFr0eNVZrRPoadTGF9b7h5qoa19fNLzSesovlrJ/TYxg0aFDqM3qPdfdhnTtrTHfHxbvV9tI5QES6nd04qPFu9dlDyxE+brTS43LnXM+fO1fan1wccJ27uHjK+jm9N7vPaL9wsXb13LhY67p/7tcoGqvetbvuo8b1dc+j2gffeOONguvNEofexSDX43T9TdvU3a90W3pcro31uNzzscuVUmjbWWLVu5Bc2hauvbT/l5WVJcqVlZWN7mtERF1dXWqZjgWubxe67iPS17nrt7p9d53rudC2cNvO8lyo9wM3lg4cODBRdjHlNW/AypUrU3X0c65va3tpP3HnQcePLNeD65N6Pt1YpefPxQV350LpPmb5HkzHIbdtPefuOtc49G5/s+T/KhS3X+sUm4Mwgjl5qSjq29pLLrkkIiKuvfba1L916NAhU8IYAAAAAJ8M83IAAACgZRT1Rfq+9BYWAADAvop4jKWPeTkAAED7xpy8dBT/mwIAAAAAAAAAAPYBRX+RvnDhwjjjjDPi8MMPjyFDhsSZZ54Zv//975ty3wAAAAAUwLwcAAAAaH5FhXa577774q/+6q/i7LPPjksvvTRyuVw8+eSTcfLJJ8ecOXPi/PPPb+r93Odo4qDu3bun6hSTkFQTW7jEe7osSyKVLNavX98k6yl17rwcdNBBibJLuqPJctx6dJkm4XRJNDQ5iEvaogl1+vbtm6pTDPdz840bN+71evQY/vCHP6TqfO1rX0uUDz/88L3ezr5Ez4P7wkXj6o4ZMyZV54gjjkiUXQKW1qT748azCRMmJMpPPfVUqs7q1aubdsf+n7PPPjtR3hPruD6XtE4NHjw4Ud65c2eqjjuu9kjHwU2bNqXqaGIqTRLnkhbV1tYmyps3by5yD9uWUv8Z6R133BE333xz1NTUxFFHHRWzZs2KsWPHNlh/4cKFMX369Fi5cmVUVFTEFVdcEVOmTEnUeeihh+Lqq6+OtWvXxuDBg+O6666Lr371q/l/f+KJJ+Lmm2+OpUuXRk1NTTz88MPxla98JbGOv/zLv4x77703sWzUqFHNch3ui/NyHeNc4i6dO7vEdjq+duvWrWAdl5BU5ykuCVyhhGpuDqfL3DWix+7uGVrHJa3WhPUuuaIm2NT5bUS6nbds2ZIouyTkbsxV2l7unGd5ZtHjdOfTHZcqlCzQzYc0kaJrC00w6PZF150lIaMmnoxI3x91PS7xpD7DuHOXJSmtJgLUJI4R6evoxRdfTNXRPun6hT4vZUlWrOfBXXtr1qxJlF1CRm0fl5xS20evmYj0WOD6lx6Xfka/X4hI9xNNvhiRTtDrrjNNTun6tm7fJQCtqKhIlF1baLvrNe3GQG0bdz/o06dPonzCCSek6mhCUnfO9d7j5uSrVq1KlF1Sbd2W9h13PvX6dGO9jqVu29r/3T1Nj919v+G+a1KFkhy7BKD63UVNTU2qjra7a4ssiWr1mnBtofvsvsep3weLzV1T6nPyfUlRb6Rfd911cdNNN8XcuXPj0ksvjcsuuyzmzp0b//iP/xg/+MEPmnofAQAAgIS5c+fGtGnT4sorr4zly5fH2LFjY+LEiVFdXW3rV1VVxemnnx5jx46N5cuXx/e+97249NJL46GHHsrXWbx4cUyaNCkmT54czz33XEyePDnOO++8ePrpp/N13nnnnTj22GNj9uzZje7fl770paipqcn/N2/evKY5cMG8HAAAAGgZRX2R/tprr8UZZ5yRWn7mmWdGVVXVJ94pAAAAtL49b7+01H9745ZbbomLLrooLr744hg6dGjMmjUrKisr484777T177rrrujXr1/MmjUrhg4dGhdffHFceOGF8cMf/jBfZ9asWXHqqafGjBkz4sgjj4wZM2bEySefHLNmzcrXmThxYvyf//N/Ur8oUV26dIny8vL8f+7XhU2BeTkAAED7Vspz8n1NUV+kV1ZWxqOPPppa/uijj0ZlZeUn3ikAAADsm3bu3Jn4z/0UfteuXbF06dJUaKYJEybEk08+ade7ePHiVP3TTjstlixZkv+JckN1GlpnYx5//PHo3bt3fOYzn4lLLrnEhkloCszLAQAAgJZRVIz0b33rW3HppZfGihUrYsyYMdGhQ4dYtGhRzJkzJ/75n/+5qfdxn6Sx3FycQo3p52IxaewqfYjT+FcREb/61a8S5fpxQffQGJLuL1bPP/98orxy5cpUnfZA45f17t07VUfjxrm4bC5OnNIYYllir2scXxf77pFHHkmUzzvvvFQdt26l/WDZsmWpOq+//nrB9RTyzDPPpJYtWLAgUe7Xr1+qTpZY0+2Ri9+nX7rUD1uwx2c/+9lEWeOhR5ReTPRiaGzA0aNHp+roF3nr1q3b6+24uJ3jxo1LlIvtozoWuGPYV2KkK72fRkSUl5cnyppTwcVh1WVuLG2PWiMeo375+/3vfz9mzpyZWLZly5b46KOPUnF/y8rKUvHs96itrbX1P/zww9iyZUv06dOnwToNrbMhEydOjD/7sz+L/v37R1VVVVx99dXxxS9+MZYuXZrpfr832uO8/JBDDrGxShuic7GIdBxTNwZrbGI3L9b4ydu2bSu4/SxxwPW+4tarMXD79++fqqPPA+6er+OgxpeNSM9N3R+wssR1d3FoC/27nutC8WUboufKPT/pPF3n6I47Tr3v6jjp7hFax/1xTfuOOwat464VjTXt2l3bS/ubi0+tv6xx8yGd63/mM59J1dG2cMegx+7mSBs2bGh0vRHpOOo6d3VtrFysZ20f93yneafcedBr340f2m9dnOZCORW0HSLScaRdzHvtFy6mtp4bF9tf99nFztdlLh677rPmYXP3WB0D3TEMGjQoUXZjg95H3Fg1ZMiQRNnl6tFrX+O8R6TPV5Y478pdD9pP3D1Dz5/bPz1Xrt21Lxe6P0Skv3NwseB13HH3T20f98yqn3P9Qscmdx3tLWKkt31FfZH+13/911FeXh4/+tGP4j//8z8jImLo0KExd+7cOOuss5p0BwEAALDvWL9+feKLyca+eNYHo1wu1+gf+Fx9Xb6363QmTZqU///Dhw+PkSNHRv/+/eN//ud/CoaE2VvMywEAAICWUdQX6REfv6Xs3lQGAABA+9Aab78cfPDB9g3j+nr27BkdO3ZMvSleV1eXeqN8j/Lyclu/U6dO+TfPGqrT0Dqz6tOnT/Tv3z9effXVT7SehjAvBwAAaL94I710FBUj/cILL4x77703tXznzp1x4YUXfuKdAgAAABrSuXPnGDFiRMyfPz+xfP78+TFmzBj7mdGjR6fqP/LIIzFy5Mj8z3kbqtPQOrPaunVrrF+/Pvr06fOJ1uMwLwcAAABaRlFfpM+ZMyemTp0al156aSI20nvvvWcn8gAAAEBTmj59evzbv/1b/PjHP45Vq1bF5ZdfHtXV1TFlypSIiJgxY0Z84xvfyNefMmVKvP766zF9+vRYtWpV/PjHP4577rknvv3tb+frXHbZZfHII4/EjTfeGC+//HLceOONsWDBgpg2bVq+zttvvx0rVqyIFStWREREVVVVrFixIqqrq/P//u1vfzsWL14c69ati8cffzzOOOOM6NmzZ7O8Nc68HAAAAGgZRYd2+Z//+Z+45JJLYtWqVfGf//mfqUQ3+GQ0eYNLUvHmm28myi45gi7TskuioQmI7r777lSdXr16JcqarCaifSZic/1ck6K5n38fcsghibJLDuKSlShNTKHJLtxP4TWBjiZkiYjYuHFjovzjH/84VWfo0KGNrtete+3atak6TfEzIe37ERE//elPE+Vhw4al6owdOzZRbg+JMh1tY5dIVL9ccYmN9Jy31/ZS7lrU5J06TroEdcr1fTd2NoXmWm9boAmvJk6cmKqj44MmwNJEURHpBMYuWV97VMo/I500aVJs3bo1rr322qipqYnhw4fHvHnz8gkZa2pq8l9uR0QMHDgw5s2bF5dffnncfvvtUVFREbfeemucc845+TpjxoyJBx98MK666qq4+uqrY/DgwTF37twYNWpUvs6SJUvipJNOypenT58eEREXXHBBzJkzJzp27BgvvPBC/OQnP4nt27dHnz594qSTToq5c+faBGxNob3Ny7t165Yfi929R+dDWRKYuWSGOt92fVDX7RKNaTI0l6Bd77Oa1M/de3Qsd/MqnVO6+5Eep0vCrMflEgHqPro6elxaxyV91XPj5pia2NEla8uStFTPjTvnegxun3UfdVtu/7Qvu/3Te4tbj873XXtpW7h5gc7/tV+45wqt8/zzz6fq6Djn+ttxxx2XKNcfq/fQ43IJD7VNu3Xrlqqj7awJU934oc+x7jy4Z2+ln3v55ZdTdRYuXJgou+SPmnSzpqYmVUfHfW0/dwx63btxUvfHjTH6XYW2sePGUj0X7vmk0DjkkuRq33HX9ObNmxNldwz6OZfDRccUN05m6Tv6/YEmvHVJkF2SaKXzZHdd6XqyJLd145n2wcMPPzxVRxPyaj91Y7QmU87yHJZlTHbHqX3SnTvXhqr+tUWy0bav6C/Shw0bFk899VScc8458dnPfjZ++ctfZhowAQAAgKYwderUmDp1qv23OXPmpJaNGzculi1b1ug6zz333Dj33HMb/Pfx48c3+oCx//77x29/+9tGt9HUmJcDAAAAza+o0C57/nLTo0ePWLBgQYwfPz4+97nPxS9+8Ysm3TkAAAC0nj1vv7TUf9h7zMsBAADaN+bkpaOoN9LrN2qnTp3i3/7t32LYsGENvhEEAAAAoOkxLwcAAABaRlFfpD/22GOpn4tOnz49jjnmmPjDH/7QJDuGJPcXIY2tdMIJJ6Tq1I/pGZGOneZisGn8xQULFqTqaEy99krjTmo8LrdM48dHpOODFRtrWmOPaYwzF9dLY925OG0aB83Ft3/qqacy72dr0Djgt956a6qOts/IkSNTdVzMvFLmzufy5csT5dtuuy1V59lnn02Uv/SlL6XquDiJ+yqN0Th8+PBE2cWhV24c/+///u9E+YgjjkjVcfE+VV1dXaLsrlddjxv/Nd6h61+lTu9ze+Jl1+fiF9fn8odoXMelS5cWsXdtD/EYS197nJd37dq10RiyGrPUxanVOm7MU27M09inbr907uDGEI0Dq3VcbFvdtstzo7GJXSxsbQu3LX2ucPFud+7cmSj37t07VUc/p5/R+OMR6fmZO1caT/mwww5L1dE5uM6TI9L3c3ec2j4ulrPO7bXs+qS2sZtv6zKXF0hjQLt5Qpa4+IXyWWlcbsedB+23hcJpRUQMGjQotUzv1e58HnPMMYmyixev9xaNPf36668X/MyAAQNSdZTLnaLH/sQTT6TqvPrqq4ny4MGDU3W077hzrvus15XL0aFzffccpNtyY6BeI1nGGM0t4T7nxgKd5+k1rHPiiPRxuWdxjTvvxnHNjebGM70+Xcx2vWe7vCY6buv14GKka5u686n9wOVC0PVkiVXvnht13Zp/y+2P9mPXl3SZ3mccd650DCw2N0ifPn0SZXet1d/Whx9+aHOeFMKcvHQU9UX6uHHj7PJTTjklTjnllE+0QwAAAACyYV4OAAAAtIzMX6RPnz49fvCDH8SBBx4Y06dPb7TuLbfc8ol3DAAAAK2Lt19KE/NyAACAfQdz8tKR+Yv05cuX539as2zZsgZDUxQbsgIAAABAYczLAQAAgJaX+Yv0xx57LP//H3/88ebYFwAAAJQQ3n4pTczLAQAA9h3MyUvHXsdI//DDD6Nr166xYsWKVLI1NB/3RtFJJ52UKE+cODFVR5NlZnkzqaysLFF2yTPvvffeRNklV2lrXNtoIhCXdEeTg2ibNyfdZ5dgRxOluMQkmmjjnXfeSdUp9cFUE9j84he/SNXRY58yZUqqzoknnpgouwQsrUkTOP3+979P1fmXf/mXRPnXv/51qo72C+3raJwmxdIErxHpJEHOwoULE2U9vxERp512WqLskh5rwpqjjz46Vef4449PlF1Cus2bNyfKr732WqLsEk275D2FuHGyUIK6rPS4XDIrHS80GZNLbLRt27ai9gdoTu11Xr579+78dermHzr/cfMWvc6dLMngNWmYS+yuicZc4kSdQ2piNpfAT8dFlzBSx39XR7fl2ka35eaLmuzRJbLTMbdQwryI9H3Erbe8vLzRckR6zubuT3qOt27dmqqjx+7uI9oWOo9yiTG1jV2iU+3v7l7tEv8V4vqXrkf7hWs/fS50SfU08eTixYtTdWpraxPlCRMmpOrodeUSm+q17/qFzm30uSdLglI3P9O+tGjRolQdTf6+evXqVB1N2qvJUCPS/cmNeZqYVtvYzW30Odb1N02c69pLEzC6a0b32SUS1W25ubSOD9qP3f7ptrVPuM+5hMG6zy7pq84X3fnUvp3lmUG/b3FjtCZazTJHd8egfSXLdwOuf+n4umbNmlQdfT7Rscol99TjcnX0WcPdV3RZlrmEO06XFFrV76fFPDuhtKR7UwGdOnWK/v37Z5qcAgAAAGgezMsBAACAlrPXX6RHRFx11VUxY8aMTH95AQAAQNu052ekLfUf9h7zcgAAgPaNOXnp2OvQLhERt956a6xZsyYqKiqif//+qZ/TLFu2rEl2DgAAAEDDmJcDAAAALaOoL9K/8pWvNPFuoBCNnRYR8fnPfz5RLiZenqOxogYPHpyqM2rUqET5V7/6VZNsuzW52IEaM8zFy26qdm8uGu/NxUHTZS4mnIvDVspc3L158+YlyhpXNCI9vp1yyimpOkcccUSi7GLfuTYstH/6NuH69etTdTQW93/913+l6jz55JMFt6VxtjV+KhqncfdcjHmNTZmFxjaMiHj55ZcLfk7jhg4YMCBVR2N5ulAQGhtzw4YNifLzzz+f+ox+SediB5599tmJ8qRJk1J1NO6wS6Co8f9dDE6Nrf7oo4+m6mgsRY3xWlVVlfrMM888k1q2LyCxUelrj/Py3bt3569TF7NXudinGnPWxTbXZVliYbt8OcOGDUuU+/Xrl6pTTN4HHavcnFPHLxcjXdvQxRB2baiyxGzXdtf7pYsLrsepeVzcMo0xHJFuCzf/cfN9pfvs5v86L9bPuP6m7e7q6LlyMch1rHRjp97j3bY0Xr3G7XXXg54/Fztc4wy7c66xk59++ulUncMPPzy1rJDf/e53qWWFYny7+Moa593lT6iurk6UXSx4nUe5bemY4s657rNrU91n7ReuH+v1kCX2untmqKysTC1Tej26ZyXdR9e/dEweMmRIo/8eEVFTU5MouxjVGoPcHafus5vz6ufcnFzPp1uP7qPO9V2OOt229omIdB4Bl1dJ+4Wb/69atSpR1jaOSB+De7bVcUj7tstjsW7dukTZ9RM9dpefqZhcKm681eN0vxCsf10XGyOdOXnpKOqL9O9///tNvR8AAAAA9hLzcgAAAKBlFPVF+h5Lly6NVatWRYcOHWLYsGGpjLsAAABou3j7pe1gXg4AANA+MScvHUV9kV5XVxdf+9rX4vHHH49DDjkkcrlc7NixI0466aR48MEHo1evXk29nwAAAAAE83IAAACgZRQOhmf83d/9XezcuTNWrlwZb775Zmzbti1efPHF2LlzZ1x66aVNvY8AAABoBXvefmmp/7D3mJcDAAC0b8zJS0dRb6T/5je/iQULFsTQoUPzy4YNGxa33357TJgwocl2Dv9Lk0JE+ASHzcElM9GkGa5OsUkUWotLTKLJJVxyplJP0qjJo7IkPyo22ahuK0vbaNKdLEk/iqU3BJfE8Uc/+lGi/H//7/9N1dGkYi4hryaf1CRFLgmJJiRyiY00CZW79jQ5kztOl3QW2em5ce2ZJdmoJksbO3Zsqs4xxxyTKLtkOa6vFOL6jia40sS67jj1OnfX8Le//e1EWRMmOZo8KiJ93fz7v/97wfWsWLEitUwTDeu46BLouaR1QCloj/Py7du358eWLNeeS5SpY6VL1KkJyrIkfCsrKyu4Py5xtB6HbsuNnTpv0USeEennAZeAziU4VG4erLRNsyRd0/W6Oabej9w51ySI7r6n7ePq6D67c54lSWPfvn0TZW1jl9RU59tunqyJJ12/0OR7LimozhezJFnV8+D2T9frrj2X4FDp/ugcOCJ9zl0yQ01U6J5XdH+K6W8u8anO9d31oNen25b2QbcePefueU7Hpm3btiXKLuGxXiNujNFlro31uFzC4Cz9X9fjvu/Qa033L0syZXdN63rdtrXd3bnSNnVzyh07diTK2o8j0mNpludsPXbtoxERn/vc5xJld0/Ta2b48OGpOjoWaH+LiNiyZUuivHr16lQdbR9tP9ffdJm7rnTszHK/ypJ02z2H6X3Xjcn1x5Qs92SUtqLeSN+9e7e9Ge+33350CgAAAKCFMC8HAAAAWkZRX6R/8YtfjMsuuyw2bdqUX7Zx48a4/PLL4+STT26ynQMAAEDr4WekpY95OQAAQPvGnLx0FPVF+uzZs+Ott96KAQMGxODBg+Pwww+PAQMGxFtvvRW33nprU+8jAAAAAIN5OQAAANAyioqRXllZGcuWLYsFCxbEqlWrIpfLxbBhw+KUU05p6v3D/8NfhD4Z95NnjSvmYs1pDL0scbNKnYunpstcHY1pqbGUI9LxR7PEY9TYZC4OmsYwdbEXm+oa0RhrGku5oWWqUHx493N7jWN3/PHHp+pozEHXb7PECnQxSlG8LH3dtflxxx2XKLsYhC6ub0vRMc/l69B+qnHfIyJ69+6919t2x/3Zz342Uc4SI93RMUXL+F8t+VYKc53itMd5+VtvvZW/j7oY1hpD1Y2vGptbY9Lu2U59Loaw3s815mtEOia6yyeh8yY9BhfPWz+T5TizxJN115rOJ9w8Ru8JGrc5Ij2X0XiyLgazxrJ1x6nLND5vRPpe7I5Tz7mro/csdw8rFLvf/bseu8bhdp9zx5klBvmgQYMSZRe/WOfg2gfcfVj7kutvGh/Y5c3SOu6a0c+5/EKaj+b1119P1dFzrteai3mscaPdtpV7TtTryLWFxsd250q5di8Uv9vFbdZ9duvV52GN4++25fq2xhx3116W/FpaR+8RGzduTH1Grz3X3zQH3KGHHpqq456plF6f7hnBjYOq0D3C5U/Q8dfFqtf7isuZlCXWumsfpcfutqX3Eb1G3DWjMe7dWKX9Ikubu/6fJd+ctoU7N/WPo5jcVhHMyUtJUV+kR0Q8+uij8bvf/S7q6upi9+7dsWLFirj//vsjIuLHP/5xk+0gAAAAgIYxLwcAAACaX1FfpF9zzTVx7bXXxsiRI6NPnz5F/0UFAAAApYu3X0of83IAAID2jTl56Sjqi/S77ror5syZE5MnT27q/QEAAACQEfNyAAAAoGUU9UX6rl27YsyYMU29LwAAACgxvJVS2piXAwAAtH/MyUtDUV+kX3zxxXH//ffH1Vdf3dT7gwZoIpWIdNKTww47rFm27RI8aLJFV6cl6c+YNQmKS5ChyS9cYiNNitIeuOQXmvjSJRLVJBqujibfcAlFCm3bJQLR5DguuZVeD+44lUsYc+yxxybK/fr1S9V54403EuXly5en6mzfvr3g9pVeR64tsiRK0eQqri0KJcnC3skyBrpEnUOGDEmUNeFUqXGJtCoqKhJlNza45LqFuDZdv379Xq8HaO/a47y8U6dO+YRyLhGgPki6cDY6hrjkd5pYzK1Hxz03nul8x807dT06D3Xja5bEdnpcbu6qbeGSDuoxuKR/Ordx50aX6XG5OUmW5I+aTM499+j8x811NMmgu+/q/VoTukb4xLSF/l0Th7o5XU1NTaKsc86I9Plzc1VtL5cwVdtdk1y6JInavzTRrvucu5/rNeySP+o5dudKk/+6belzg7afJhaNSCczdAletU1dEk7tBy4RpvZT99yv15Gba+mzrJ4r15e0bVwdnedVVlam6mhfcslZsyQ91n1246K2qfZ1N37o+XTnSo/LfTeg63b9Qq9r9zys46Abq3T7+hl3v9KxyiXh1HuYu2b0ON3+6flz46RLdqr0OLKM47otV0fvYS5JqF5HWeYJbtzWc9y3b99Unfrt/OGHH0Z1dXWqDtqOzF+kT58+Pf//d+/eHXfffXcsWLAgjjnmmNTN8pZbbmm6PQQAAACQx7wcAAAAaHmZv0jXNy6PO+64iIh48cUXE8tJcAQAANA+kNioNDEvBwAA2HcwJy8dmb9If+yxx5pzPwAAAABkwLwcAAAApeKOO+6Im2++OWpqauKoo46KWbNmxdixYxusv3Dhwpg+fXqsXLkyKioq4oorrogpU6Yk6jz00ENx9dVXx9q1a2Pw4MFx3XXXxVe/+tX8vz/xxBNx8803x9KlS6OmpiYefvjh+MpXvtJch5hXVIx0tDwXr2zRokWJ8umnn56qo7HksryZpPG3XnnllVSdZ555puB6WpLGU9NYbi5epP702bWNxgV3sQI1zpiL5daadP807lhEOgabHndEOq6Yi4NWDG0vF0dO989tW9fjrhk9x6eddlqqji5zca01RujgwYNTde6///5E2cXQUxrz7/XXX0/VyRL/XOMvakzOiIgdO3YU3B80TP9Kn6U9XV/S2IFt8e1RHRteffXVVB29rv/kT/4kVUfH1+effz5V54EHHihmF/EJ8PYLWkOvXr3y44abe2lMV9d3NN6zxjmNSI+5LiauxtZ1dF7g4j1r3HTdZxeTXPdP40G7ZS7+ubaXm6vqvMnNx3SfXVxajR+rcd5dbGdtG9d+Wc6DtqGb8+r+uX6h59PFxS9Ux8XR1W25fDq6zM0Lhg0blii7OMT6ORcfWOem2n7uPGjsZHcMWcZyXY97VhsxYkSi7Pqk5k5xbbF69epEWefOLn68HoOuw9Vxx63XmnvG0ud1N7fX/uSehTS+s67XbVvPn1tvllxV+jnXb7W/uWtPxyrXb7WdNda0e+bKEi9b+6TLUaHn08VjLxTzOyJbjG8dUzTeuRvHtZ9ozoWIdPv0798/VUfvhe7eo8+t7l6t3Fiqx6F9wLWNPtu6OjpeuPbSZW7M0+Ny12eW/lV/WbG5ykp5Tj537tyYNm1a3HHHHfH5z38+/uVf/iUmTpwYL730ks3jUVVVFaeffnpccsklcd9998Uf/vCHmDp1avTq1SvOOeeciIhYvHhxTJo0KX7wgx/EV7/61Xj44YfjvPPOi0WLFsWoUaMi4uNx79hjj42/+qu/yn+uJfBFOgAAAAAAAABgr9xyyy1x0UUXxcUXXxwREbNmzYrf/va3ceedd8YNN9yQqn/XXXdFv379YtasWRERMXTo0FiyZEn88Ic/zH8hPmvWrDj11FNjxowZERExY8aMWLhwYcyaNSv/ctXEiRNj4sSJLXCESaX16iwAAABKxp63X1rqPwAAAABJrTEn37lzZ+K/hn7ptXTp0pgwYUJi+YQJE+LJJ5+0x7J48eJU/dNOOy2WLFmSf2O/oToNrbMl8UU6AAAAAAAAACAiIiorK6Nbt275/9zb5Vu2bImPPvooysrKEsvLysqitrbWrre2ttbW//DDD/OhhBqq09A6WxKhXQAAAGCVcjxGAAAAYF/QGnPy9evXJ3KUuFwye2h+gFwu12j+L1dfl+/tOlsKX6S3Ee6CWbhwYaLsEgqecMIJibIm83HJEjRR3KOPPpqq45KMtBR34WhiCE1kpMlWItIJKFxbZNm2JkpxSUdak+6fS36kCU80mUmET4LVUnTbLuGUnj+XwEaP0yU8HDp0aKLcq1evVJ233norUXaJvTQZ8Msvv5yqo/Q6d8lGNWmMGxuyJDDZtGlTonzsscem6pTCTapUaaKeN998M1VHE9i4BGuNTUbaioYmQfXddNNNibIbk7Ut3DVDklxg33DAAQfkE3xp4rGIdPIvNzboPM/dz/X+7eY/mjTMzRf17Sg3B+nbt2+irGOeS4Sm63nttdcKbjsL98yQpS30XucSx+mzhq7HrVeXufmHPnu4eakmxHMJ33SfXbu7e7rS9tL5tSbii0i3u9s/TQjpknDqMpcgT/upOyZtU+2T7plBj8Fde5pc3T0b6XF+5jOfSdXReZObb+s+u2Sjeu2vW7cuUdYknRHpvuQSqW/evDlRdnMbve7dOdf+75I2ajJg17/02HVbbtt6rWVJErpx48ZUHQ334Oa82p9c8lh9znGJYPU4tE+6cVK35e4rusyN43pduXm8HrsbJ/VZLcv3ENon3dig9Jk1IuKFF15IlJ966qlUHb0+XQJXvR7dOdftZ3m21DZ114Muc/un17W7ZvQY3DWcJcGs9n83ptTvg67/laqDDz64YLLvnj17RseOHVPzkbq6utQb5XuUl5fb+p06dcqPZQ3VaWidLYnQLgAAALCIkQ4AAAC0rlKdk3fu3DlGjBgR8+fPTyyfP39+jBkzxn5m9OjRqfqPPPJIjBw5Mv+HkobqNLTOlsQb6QAAAAAAAACAvTJ9+vSYPHlyjBw5MkaPHh133313VFdXx5QpUyIiYsaMGbFx48b4yU9+EhERU6ZMidmzZ8f06dPjkksuicWLF8c999wTDzzwQH6dl112WZx44olx4403xllnnRU///nPY8GCBYlf/r/99tuxZs2afLmqqipWrFgR3bt3j379+jXb8fJFOgAAAAAAAABgr0yaNCm2bt0a1157bdTU1MTw4cNj3rx50b9//4j4OGxTdXV1vv7AgQNj3rx5cfnll8ftt98eFRUVceutt8Y555yTrzNmzJh48MEH46qrroqrr746Bg8eHHPnzo1Ro0bl6yxZsiROOumkfHn69OkREXHBBRfEnDlzmu14+SK9DdPYWn/4wx9SdZYtW5Yoa3wjF19QY+i5+GCtycXW0thVWs7yGRebbNu2bYmyi9Glcc/ctjSWW3PFntb4XBHpY3DxDrUvtWY89CxcPEuNy+bixmk8MhebT4/dtYUuc+txy5qCnr/KyspUnWOOOSZRdnHjVqxYkSi72JkuziQ+Vn8iEOGvvSyxw/cVeh+p/+YAShvJRtEa3n///fy8zMXz1jmb6zv7779/wTo6L3DxUXU9bn/q6uoSZTd31vmY3iM0j0tE+p5fKO5qhI8jrcvcenRu4+bFui03H9PYutqmLp63rsfF3dZl2p6Om7dnyaOk7e7mgtqfdB7g2ibLc5i2X6HYtA1tS/fHHaf2OY35rbHEI9LPNC73gMY4drG5dZ7es2fPVB29RrLkS3D0eszybFRVVdXoOiLSY4M7hsGDByfKLo9Rlr6T5blVr2ttd9eXKioqEmX3/LR9+/ZE2eVK02PI0l5urNL16Hw7Ih033T3nqELXa0R6fHN9S+Nju2tY44K7OOpZciTpcen5dMeg17SLz679/ZVXXknV0WvPXSNZvt/Ich8uNF64Ns5yPej5c8eg63H9Vpe5cUjHV9d36l83xcZIL/U5+dSpU2Pq1Kn239yX2uPGjUt9X6nOPffcOPfccxv89/Hjx7fK8wMx0gEAAAAAAAAAaARvpAMAAMAq9bdfAAAAgPaOOXnp4I10AAAAAAAAAAAawRvp7ZzGcdSyi8foYkyVEhfrS2OIaTnLcbqYdRoTzsVy0zheLuaVxpvT+GoR2eKS6z7r+XQxJV0cO6VxvEo9Rrqjce00JlvEx0ku6lu1alWqTt++fRNlF0d0586difLq1atTdTZs2NDwzn4CGjvz/PPPT9U56qijEmUX762srCxRdvHJPv/5zyfKbbFfNBVtwxdffLHgZ/Qv+e761PW6saHU6ZissSEjssWvRGni7Re0htra2vw9x40fOu642L9ZYva6mMZK7/luXnDggQcmyi4mtM4P33jjjURZ7+8R6fmZi7uq++Pu1XpvcXPVLG2qNN54RET37t0TZT0ud53rfcPFRdY5uZu3a/u4NtV4vC52uLaFi62ry3R/XPvpudK2ikifqyyx/V2eG/2ci7ut15Yet2tjzZ/jYqTredi4cWOqjraFy52i8fTd9ar9ff369ak6ukw/42I7l5eXJ8qur/fp0ydR/sxnPpOqc/TRRyfK7nzqsbu20H6h8/iIdF/WNnbnQds4y3Oso2Nglhxr7vlc+5yLJa4x7vWZy/VbHcf1eS8ifc9w460+b7qcWHqu3HHq59w4VCivhutL+l2F69vaPu4Y9HMuN4jWcedct+X2p1Bsf3dP037h+q0uy5J7wG1Lz597ntP7QaFxu9jv25iTlw7eSAcAAAAAAAAAoBG8kQ4AAACLt18AAACA1sWcvHTwRjoAAAAAAAAAAI3gi3QAAAAAAAAAABpBaJd9nEue0xZpkp0sCUA1cYRrC11vbW1tqk6W5CqaREk/4/bH0YQdmpxDk5K4ZS75kUsU1NZoshDXnvoTpV/96lepOppApLKyMlVHE7guWrQoVUeTYjUVTfJ02GGHper07t07UdbkORERAwYMSJRdW7z22muJ8pAhQ7LuZpvmEsA8++yzibJLNFOIGz82b96cKLvEaC4xTynRMW/Tpk2pOi4BKdoGfkaK1vDBBx/kx2KX3FO5e77OBV0yN51XufFf55Au+Z0mOHcJyzThue6fmxvqtl3Se71uXNJqneO6ebHuj0varttybaF0Lu3m23qPcPNZTYjn7o1ax7WF7rPbH12P6xeFksVpcsOIdDJPR/ukm8Ppfdf1C00kmuWZT9vUPR9oglSXMFX7V5ZnIzdP0O27OtrO69atS9XRZJRDhw5NlN15yZIwUpONuqSceh5cm+rnNBFxRPo5p1+/fqk6Oobo84p7NtG+46577Tsu8WSWZw/l+oWO967Oq6++mijrcblkz3oMri10rHLXuK7Hjdt6Hbm20DHGrUfraF9yY6D2nbVr16bq6Hpcv9VxKMv90yVnzZIk2p2v+tz1qW3qEqa6cVHp/cC1qV57blt6b3Rt0RRzXObkpYM30gEAAAAAAAAAaARvpAMAAMDi7RcAAACgdTEnLx28kQ4AAAAAAAAAQCN4Ix3tgsYr01h4LtZilhjpGlsrS6w0F8tzy5YtibKLM5YlRnqhbbl4jOqggw4qWKc9cDHOdJnrF7/4xS8SZRfjTGM/tuRfbDXe4caNG1N1NNadi833+uuvJ8oaLy8i4sknn0yUXUw4jbVe6vG8Hb2uly1blqrzyiuvfOLtaDz0iHScx/Ly8lQdFze9tbgxUPvS6tWrU3VcTES0Dbz9gtbmxkCN4+vi+mqccjcO6ec0FmpEeu7l5ms6L3D3DI25rMfltq3zFBcvWO+7WeJRu3w5WeJ363G6ufP69esb/UyWOPQujrSODy7Ou87Z3LZ0TpRl/u+2pfujbey2XVZWlii7vqTH4PKr6LZcLOAszzna/3X+6OZ0elxu/qh90D0b6bK6urpUHb1mXezwLNvSuVWW3AgaB9zFBddrxq0ny7OkzqPctajXlcuRpHHT9TjdevUcZzkGt20dv9x4pvvj+r/GCncxvrXf6nN2Fvo8FZG+1tw46cZXpfce16Y6frhnLP2cjg2uT+r+uZxO2l5u2xq33N2H9Vy552qNQe7isRfKqeD2T++n7nld28edOz1Xbh6q/TTLs67bVv3jKHa+y5y8dJT8G+kffvhhXHXVVTFw4MDYf//9Y9CgQXHttdcmbgS5XC5mzpwZFRUVsf/++8f48eNj5cqVrbjXAAAAQPvBnBwAAAD7upL/Iv3GG2+Mu+66K2bPnh2rVq2Km266KW6++ea47bbb8nVuuummuOWWW2L27Nnx7LPPRnl5eZx66qk2szcAAACy2fP2S0v9h9LFnBwAAKB1MCcvHSX/RfrixYvjrLPOij/90z+NAQMGxLnnnhsTJkyIJUuWRMTHnWnWrFlx5ZVXxtlnnx3Dhw+Pe++9N9599924//77W3nvAQAAgLaPOTkAAAD2dSX/RfoXvvCFePTRR/OxBp977rlYtGhRnH766RERUVVVFbW1tTFhwoT8Z7p06RLjxo1Lxffd4/3334+dO3cm/gMAAADgMScHAADAvq7kk41+5zvfiR07dsSRRx4ZHTt2jI8++iiuu+66+PrXvx4R/5sUQpO3lJWVpRJ37HHDDTfENddc07w7jqK45A3F/KxEk1a4RBvNxSXz0aQeLsGJS8qiNElMlrbRBB1ZEp60RVkS/rhkUYUUmyRRE7BoUhT3M/csCWw0kYt7y+/YY49NlF3ipT1vEO7hEhDpsscffzxV5+ijj260rElmWpv7kuaZZ55JlNetW9cs23Z9afny5YmyS8Kj59MlP2quJK96zWiyq4h0ctaG7r1om0hshD1ack5+8MEH55OAuQTt3bt3T5Rd0rXt27cnyi6xnUtSqnQe5e6Xek93Y7nOC5Tub0R6/uruI3qPd/OfLEkHtX002VxE+p7gkpnrcehxu/uVnmN3rjSppaujcw53DG+++Wai7PpOlm1pm+o8XpPYRaTHOJdIVM+f7m9Eer7o+kW3bt0S5R49eqTqaLtrX9J1RKTb2CUYzJIMVZ+F3LnKkjBY67hrWvut2x+l58olM9S+7u5hWidLUlVHz4Vbj16P2jbuGLQvuX6bpb/psWd5rnDnIUvyWO0rOi92/VavT3ddvfjii6llShOtuvuTXiPu+U7HdpdQU+n5c98n6LXnvpfQbblnIx0D3TN0z549E2WXkFS35Y5T+0WW53X9jPse5aCDDkqU3Viv9Hndfc7d9/Rzbjyrf+8j2WjbV/JvpM+dOzfuu+++uP/++2PZsmVx7733xg9/+MO49957E/V0UpbL5Rr8YmHGjBmxY8eO/H/uiwEAAAAAH2NODgAAgH1dyb+R/vd///fx3e9+N772ta9FxMdvO77++utxww03xAUXXBDl5eUR8fFf9Pv06ZP/XF1dXeqNmD26dOlScm9JAgAAlBrefsEezMkBAABaB3Py0lHyb6S/++679qdye37OMXDgwCgvL4/58+fn/33Xrl2xcOHCGDNmTIvuKwAAANAeMScHAADAvq7k30g/44wz4rrrrot+/frFUUcdFcuXL49bbrklLrzwwoj4+Oej06ZNi+uvvz6GDBkSQ4YMieuvvz4OOOCAOP/881t571GI/tS3qWKklzp3TC6mZVPQ9br4YBrrzsXHK3Xapu44XZy4puDiqQ0dOjRR1rhxLqbkSy+9lCi7Y9DjdD+Db66fxrs+unbt2kRZ4x26mJwVFRWJssawi0j3QXfNaL918WV1/6qqqlJ1NBafeztSt99UfUnjGy5cuDBVR+NDHnnkkak6vXv3TpTdMej46s6nnj+Na/z888+nPvPCCy8UXG8WGlNY+0lEOuagO+cbN25MlF0sQ2TH2y/YoyXn5D169MjHUnXxxvW6djFVNYaqxnyNSMdrzTJ2uvjAOja5OLC6fR3b3XimcXxdHFjdP3d/0jlIlhju7nrUOlm2lSXGvN433LnS+MAu3rOqrq5OLdN4wO449Xy6GOmF8tq4Pqnt5eI/a8xlN4/S8+dyQWmcaHfOC8Uidn1dz6d7ZtA+6eJ5ax23f3qO3f5onSy/cNHPZInJ7+bkOmfavHlzqo7uj2tzPfYBAwak6mzatClRdn1H43frudJ1OHt+WVSfjjuvvfZaqo5eR+44tb2y5Jtwz1i6rFevXomyG5f0enDfOej5W716daqOjlXuPGgburFK28vNVQs987nzqcfu7kUa29xdw3r+XPxzHZuy3IfdudH20fHX5RXTbbk475ovwY0xep279tLnVHecej9w/bb+/hSTty2COXkpKfkv0m+77ba4+uqrY+rUqVFXVxcVFRXxzW9+M/7hH/4hX+eKK66I9957L6ZOnRrbtm2LUaNGxSOPPGK/nAEAAACwd5iTAwAAYF9X8l+kH3TQQTFr1qyYNWtWg3U6dOgQM2fOjJkzZ7bYfgEAALR3vP2CPZiTAwAAtA7m5KWj5GOkAwAAAAAAAADQmvgiHQAAAAAAAACARpR8aBe0b/qTEX5C0vS0TV3CDk3+4pLuuARXpUSTvbjjdEmKmoIm34pIJwrq27dvouz2TxOyvPHGG6k6mozMrae5fOELX0gtmzRpUqKsyVVefPHF1Gd+/OMfJ8ou8Yz2QTc2aGKeLEklXUKdgw8+uNFtR6TPjfY3lxitGO6cP/bYY4myJlCNiKisrEyUXVIgPXaXOEsTLa1bt67g/rlkUUqT97i+9MUvfjFR1gSqEeljcMnetH1++ctfFqyDxnFvRkvr2rVrPgGZu0fovU/nMRHpsUnH+oh033ZJGzUpmEtGpvcNN1bqtjQBo0uWpgnyXKx5vff16dMnVUeTELr7nMrSpo7OF7WcJTmlG9t12y5pu7axSyioc0FN7unW45JIqiwJcPc2IV1DtA+6e772HZeEs9DcxZ1vvR5dX9K+rMkDHXddaRJCdz71GNx4USjJvRsb9LhcMuCVK1cmyhs2bEjV0QSHri20nV1b6PlzCUmHDRuWKA8cODBRfuqpp1Kf0WN47rnnUnW0T7q+rcvc+KHXvjufWcYqXU+WZ1R3raksSXJ1/OjevXuqjn7OJbnUfXb9VufpOsa4Z0Bdjxvf9HxqP4lI91O9hiLS/dQ9h+l1U1VVlapTaHzVBK8R6eveXcNK+1ZExNatWxNldx6yjLf6OXed1+/Ln+R7FebkpaG0vxkDAAAAAAAAAKCV8UY6AAAALBIbAQAAAK2LOXnp4I10AAAAAAAAAAAawRvp2Ce4+GXDhw9PlF38rRdeeCFRdvEr2xoXs+7NN99MlF08Oo2x1pox011MR43B5mIZNhWN2ahxKCPSsfg0Hp2L164xoV08P91WTU1Nqo7GeyuWxoD7+te/nqrjYrHWN2bMmNSyNWvWJMouhrWL390UXN/WuJNZYqRrLEi3v031l3yNqfrKK6+k6mibah+NSF+zLsZlc+URGD9+fKJ89tlnp+q4XAOFuHN1/PHHJ8o9evRI1fnXf/3XRLm6unqvt72v4O0XtIaPPvooP2a5OM06nrlYuxrX1NXRdWeJze3mUXoPcPusY67GVHVxV3WZm29obFgXj1fraJ6PiHR8+Cz3CBcTV49dz1WvXr1Sn9HjcnPMjRs3JspbtmxJ1dF1u7l9ljjq2j7FxDt3sc41bq6LX6xt6sZF/ZzrF3oMLja9HkOWvAL6LLRp06ZUHe0n7nzqut2cV9vLzVHccSltQ30udOvVuYM7hkGDBiXKtbW1Bbft4p/rMbhY67qP5eXlqTra/3UsGDt2bOozOl984oknUnV0zHPjpLtGCtVx16duy61Xry3tt24OrO3nxknltq3jjrsfZMkRoOOOGwv0WVbvGa4vaZu670COPPLIRNnFP89yPnX7rk/qdeTm+nqNaPu5a0/bIksdF4tdz42Lka7rdv1L+6R7Pqm/rWKft5iTlw7eSAcAAAAAAAAAoBG8kQ4AAACLt18AAACA1sWcvHTwRjoAAAAAAAAAAI3gjXQAAABYvP0CAAAAtC7m5KWDL9L3cS5BiyaB0ER8EelEFi7RhkvW0FI0acaMGTNSdU444YRE2SU80YQrN954Y6rOtm3bitnFVuMGRU2c4hJ2aNIRlxRFk44Uk5DUnQdN4qXJUSPSCUSaqv+5JFSazMclM9QEMboedx6yJGTR69GtR5MAuaRiWeg5due8EDfG9OzZs6j9aQouAZwuK7ZOa9L9cQngWkpZWVlq2SmnnJIoF5NYtFiVlZWpZaeeemqi/O///u+JcqmdX2Bf86lPfSo/h3AJxrOMcVnmJLoel0RP7+cu0ZjOkdzcWZfpPd+NnZqQ0SWVzEITm7mk5Jps1M3H9BhcQjqdl2jC1GHDhqU+c9hhhyXK7jhff/31RHnZsmWpOjo/fOutt1J19LiyJH1z9wSdE+ncxvU33bZLFqj9zSX81PW4c6Xnpq6urmAdPU7tE27/XNLXQglnI7Il59PPuevzoIMOanTbEel21j7q5iS6fy4Zqj7/un7rzo3KksxQ2931W53va9klvdRr2rWFtqnbtibv1Ge3iPT5c/uTJdmorkfPp1uvnj+3Xv2cSwCt3HcgWcZb5fqO9oMs15Xe09z1oAlIXUJSPS53H9Zz7Pqt7qNLSKrP7CtWrEiU3dig16cbG3R/3LnSz7kk0foMnyVxuXv2rt8WxSYbRekgtAsAAAAAAAAAAI3gjXQAAABY/IwUAAAAaF3MyUsHb6QDAAAAAAAAANAI3kjfx2i84t69e6fqaIwuF5dK4725OFBZYlbr/rg4Xi6GWSEnnXRSojx+/PhUHY1z7eixL1y4MFXn17/+9d7tXAnSNtZzF5GOg+ZiuWlcPRcrrdC2XYwzjXHp4tI3V0x+F+dUY+ZlaYss8eL1enCxM/Uace2lcQqLjZGu/WDNmjWpOscdd1yirHHjXHzS5557rqj9aQqun2jcPzfmaLvrZ/ir/f8aOHBgallrxsV3sQyHDBmSKOs14/Iw7Kt4+wWtYfv27fl7oIvTrPFF3XxDYye7e6HGHXZxfXUe4GIeaxzrLLGIddzp06dP6jMar9Udp95n3T1s48aNiXJNTU2qjs5T3DHovc/FzdXjGjBgQKKs8dAjIgYPHpwou+cTnXu5uWqWnD8aJ9cdp8YMdn1Q91FjMLvP6DzP3Z+037p5lM79suRrcrHWta9oe7nzq8flrhltYzef1W27mMF6fbo5nLahO5/apnoNu7jIui0XO1y35XIJ6X3NHYNu37W7nvMNGzak6mhOGN2Wi9VdXV2dKLsxRq9p12/1mnH9Vs+no/3C5cPQNtXP7Ny5M/UZ7f9unNQxxvUlve6zxHl3157uo+uDepyFyo7bP/2c+/5Fc3i4bWk/cH07y/1Tr08dh9wYo/3UXXtZcqnoPmfJE+eevd010Zhivt+KYE5eSngjHQAAAAAAAACARvBGOgAAACzefgEAAABaF3Py0sEb6QAAAGiT7rjjjhg4cGB07do1RowYEb///e8brb9w4cIYMWJEdO3aNQYNGhR33XVXqs5DDz0Uw4YNiy5dusSwYcPi4YcfTvz7E088EWeccUZUVFREhw4d4r//+79T68jlcjFz5syoqKiI/fffP8aPHx8rV678RMcKAAAAoHXxRToAAACsPW+/tNR/e2Pu3Lkxbdq0uPLKK2P58uUxduzYmDhxYirm6x5VVVVx+umnx9ixY2P58uXxve99Ly699NJ46KGH8nUWL14ckyZNismTJ8dzzz0XkydPjvPOOy+efvrpfJ133nknjj322Jg9e3aD+3bTTTfFLbfcErNnz45nn302ysvL49RTT7VxYwEAAIDGlPKcfF9DaJd9jCZiyJIkMUvyBE2e47hEEZp8xiVe0GQcbj1Kk1a4hJFZjks/5xLNZKHHqQmJItKJTV3iD01uoW3RVAOeSwSiiYzclwHaXlmSjeq2XGKQ5kokmoVLtquJW1wiF/e5veUSnmTZtiascdenO8dK2/2OO+5I1ZkwYUKirAmJnn322dRnVqxYkSi7JDy6z66/FZOoxV0jmhTItXsxCX72VTr+RmS7R7SkLNcRSt8tt9wSF110UVx88cURETFr1qz47W9/G3feeWfccMMNqfp33XVX9OvXL2bNmhUREUOHDo0lS5bED3/4wzjnnHPy6zj11FNjxowZERExY8aMWLhwYcyaNSseeOCBiIiYOHFiTJw4scH9yuVyMWvWrLjyyivj7LPPjoiIe++9N8rKyuL++++Pb37zm03WBu3Vu+++mx83XBLCLPdYnSPpWO/WrQnWItLzMTee6ZzS3Uc0yb0eg5ur6rY1mWZEep7s7qk6H3PzUD0GN5brvCBLAm/dtmtjTVTo9k/HaZc8VvfHzRO0fVyS10L75/ZH26/YZKN6Pl1iO32ucM8nWZLT65xbz7lrP03G7erocbk5p/YLtx6d+7nrShNo6nXW0PYL0W278UP7gLuGlds/7cvuXKnXXnsttUzPufZtl4RT1+P6kl6Pro6Ope44lWtTPQY3P9Okpdov3POnrteNMXrPcPcevYZdktAszyeatNRtS/uTG/OUfrfjjlPb3a1X292dc20Ll0xWxyqXFFT7pZ7PLONHlnOuz6gR6THQnTu9V7tkwMqdz/rrLmZMQmnhjXQAAACUjJ07dyb+a+gPrEuXLk39MW/ChAnx5JNP2vUuXrw4Vf+0006LJUuW5B96GqrT0DqdqqqqqK2tTaynS5cuMW7cuL1aDwAAAIDSwhfpAAAAsFrjZ6SVlZXRrVu3/H/u7fItW7bERx99FGVlZYnlZWVlUVtba4+ltrbW1v/www/zb/o2VKehdTa0nT2f+yTrAQAAACII7VJKCO0CAACAkrF+/fpE+IXGfi6vIQRyuVyjodtcfV2+t+tsqn0DAAAAUNr4In0fo/GuXIzJYh7yXFwqjYHoYgVmiYGl8a3cT7y1jsZlXr16deozRx11VKPriIhYtWpVoqyxnSPSbdq/f/9UnQEDBiTKLtaiflHg9kdjmOmbbWvXrk19ZvPmzYlyU/110cUQKyZmdalz14Mua80vRppq2249GivT9Z3/+q//SpRdTDil8UkrKytTdTTuXl1dXapOc73Z6a69Uqfj0JFHHpmqo3EKX3nllVQdFz9zb7mxXsd2F+e0JWkczCy5N/ZVLflWyp7tHHzwwTbOc309e/aMjh07psaBurq61Jvge5SXl9v6nTp1ys9ZGqrT0Dob2k7Ex2NU/Ri1e7uefdmHH36Y7w+HHnpo6t/1XuPG7TfeeCO1TqVzVTc26TIXc1bvWW4+q/us912NPe22rflq3P64+Mq6LRenVuehLjaxHoPblrbzpk2bEmV3n9Hzp3PXiPQcXGNju/W4OM0aJ9ddk1lihesyvY+4ttH7o8v/osfl+qSeP1cnS4x0XabH7a4rjYPsngH3jIGNrUfbz7WxxiLu2bNnqo72bZf/S+to33bXqy5z+QD03ujiZass+R3c+dRjd7kannvuuUR5zZo1iXKWfDCuLfQ43bb1/Lk6ej269tIxzj1X6HxWy1m4fqvXnssToefGPT/pfcUdp+5zTU1Nqk6h+N3umtFz5epoX964cWOqjo5n7j6cJZa/bt+dT91n7YPu/Op6XLz9LM+xej1myb3h5gA6VrltNUWM9NaYk8MjtAsAAADalM6dO8eIESNi/vz5ieXz58+PMWPG2M+MHj06Vf+RRx6JkSNH5h+qG6rT0DqdgQMHRnl5eWI9u3btioULF+7VegAAAACUFt5IBwAAgFXKb79Mnz49Jk+eHCNHjozRo0fH3XffHdXV1TFlypSIiJgxY0Zs3LgxfvKTn0REojp4tQAAcQ9JREFUxJQpU2L27Nkxffr0uOSSS2Lx4sVxzz33xAMPPJBf52WXXRYnnnhi3HjjjXHWWWfFz3/+81iwYEEsWrQoX+ftt99OvOlXVVUVK1asiO7du0e/fv2iQ4cOMW3atLj++utjyJAhMWTIkLj++uvjgAMOiPPPP/+TNBEAAAD2QaU8J9/X8EU6AAAA2pxJkybF1q1b49prr42ampoYPnx4zJs3Lx9iraamJqqrq/P1Bw4cGPPmzYvLL788br/99qioqIhbb701zjnnnHydMWPGxIMPPhhXXXVVXH311TF48OCYO3dujBo1Kl9nyZIlcdJJJ+XL06dPj4iICy64IObMmRMREVdccUW89957MXXq1Ni2bVuMGjUqHnnkEftTcQAAAABtA1+kAwAAwCr1t1+mTp0aU6dOtf+250vt+saNGxfLli1rdJ3nnntunHvuuQ3++/jx4wvua4cOHWLmzJkxc+bMRusBAAAAhZT6nHxfwhfp+xhNbNCSSfWyJHBy+5MlqYfSh+TrrrsuVefkk09OlF0yjt/+9reJsksENXbs2ER54MCBqTpZks9koYk+KioqCm77+eefT5RfeumlVJ32mCS0qbjkQppcxdXRNs2SXEi5G5gmV3Hb1mXuutJEKSeccEKqjibgcteeJlfRZGD13wbdQ69pl5AoSx38r+OOOy5Rrv+27B6aWMklWPv1r3+dKBdzj3jttddSyzRxXN++ffd6vcVy19HLL7+cKLsEqQBaz4EHHphPMObGf70fuSScmljPJavPcj93yQtVlkTbmmRT5wUuAahydXRsd+O2tteBBx6YqqMJ3dzYqfd8l2xO57yabHThwoWpz2jbuISkL774YqLskssNHz48UXZJi/VZyCUk1cSretwR6fbRZJDuXGnyR3fv0b7kkvx17949Uc4yP3MJ+/RcaZ/UcxeR3mfXxpps0T1naD91Sb/1c66/HXbYYYmyS6hZKMmm6+s6XrjxQ/fZJbDU5IXueVh/qaTt5z7n+qQm0tXkme6ayZKoU8fF9evXF9w/9+srnXe6ttBznuU5TI8hS+Ja91ymz0au32R5ZtZ7Ru/evQtuy50HHS903Haf0T6oSbcjIiorKxNld//SNnZJOPWacOOQ9jl3Dev3K1nup4WSd0ekx2BXR8chN25rH3R9QD9X6Bm+2GSjKB0kGwUAAAAAAAAAoBG8kQ4AAACLn5ECAAAArYs5eengjXQAAAAAAAAAABrBG+n7GI1T5eKraSxKF5tS40m5eFe6bhezUeOTuZhTGn8rS8xe/QvaU089larjlimNcabx0CPSccldvLfmottyMfU09rXbP42j3pKx84vh4tppvHgX/1m5uHEbNmxIlF1MxLfeeitRdrE8C8U+dXHttN8Wu+0s8Z5HjRqVKGv7ZaUxEHW9Lh6j7l9tbW2qjraPy09QDBe/UmNKunifhWLQuvOwffv2RNmNk01Fj8HF9NU4oq4PagxajYOZZWzYsmVLapnGXp80aVKqjmv3Yuh15GK2z58/P1Eu9TGvNfH2C1pDp06d8mOUi82qfcWN7RoP1cXs1XHQjdO6fXdf0+3rmByRjrudJReIzgOy5E5xc2n9nIvPqsuKva/pfEeP090jFi9enCi75xM9zgEDBqTq9O/fv+C2NC646zvaXlnizutxujbWmMvuXq3nz9XRbevc0G3fzf91rqrzMzcP1fM7ePDgVB2Nwez6pLZ7VVVVqo5y/SJL3H5tdy1nmZ+5OnqNuDjvWsfFfx4yZEiiXF5enqqj8c7devSa0HlVTU1N6jPad1xf0n7gzqf2L82NE5GONe1ye2lbuHbv06dPo/vnjlPHehd7Xcdo18Y6FrixQe81Ov+OSJ9jF49dx1t9RnX3A922u4b1mcrdG3V/3P1J29S1l/YnPaaIiFWrViXK+lzo+pvGmHdtoblT3HOPjpMuf4jm0XDnfG9zPhSbn445eengjXQAAAAAAAAAABrBG+kAAACwePsFAAAAaF3MyUsHb6QDAAAAAAAAANAI3kjfx2icsSzxy1w86ixxFHWZi/2VJUa6xr5rrr+OudhfRx99dKLs4jG2ZEz0Ymisr2OOOSZVR2NIagy21qYx644//vhUnaFDhybKLj6pcnHaXnnllUR5yZIlqTp1dXWN7p+j1567rrLkHtB91n2JSMejc7Gne/fu3eC+fhJ6XP369UvVWbFiRaLsjqEYPXv2TC079thjE+VBgwal6mi8TzcWFOLGJR273HX13HPPJcoak7yhdatXX301Uf7617+eqnPiiScmyhpjMiI9/i9atChR/v3vf5/6jIsDq5588slE2cVRPOWUUxJlFyNUY6q6GIQvv/xyovw///M/qTqbNm1qeGeRwNsvaA07d+7Mj8VZ4ppmiYvs4sDqfdfFzdV5lMandut28wLdRz0ul7dF7yN6v3LbcuOizgtc3FxdT5ax3c21unfvnijreO/OlS5zzwzaxu586hzJ3Wv0/LlnDz3nLk6/tqnGsHbPRjpPcedT29Stx8WxVno+XVxfHXO17M6D5mNyz0Y6x3Rje5Z+q7GuXd/ROMgaOzki4tBDD02UNc+Bi6mt58Zd93oeXEx+nbdkeWbQY4rIFptb91GP231Gr3O3bW13tx7NPeDGBn0ecf1L56au3QuNKZorISJ9zl3uJW0LF5Nf7xHufOr+uTwHGh8+S+4sHavWrVuX+oyeB9fG+tzlrj3dHzcn1+9A3P1Tx06Xt0i3r8fp8pLotafHHZF+JnV1dJm7N+oy1yf12N2YV79/Zbm/OszJS0dpfwMIAAAAAAAAAEAr4410AAAAWLz9AgAAALQu5uSlgzfSAQAAAAAAAABoBF+kAwAAAAAAAADQCEK77ONc8hxN+OAS72mSkSwJE1wiC03e4BL+tBSXqFATExaThLDUuOQvQ4YMSZRd0p1ik2I0BU1kdNRRR6XqHHbYYYlylnPlknDq5zR5VEQ6maFLEKn9XbelyYci0j+hcteMJsfJkpDIJbBpqSS5LqlqU61n9OjRibImFm3K7RfiEs9osrIjjjgiVefwww9PlF0SnscffzxR3rFjR6qOnmPXL6qrqxNll3RH21STKLm+vnbt2tQypX3y6aefTtV58cUXE+VevXql6mjSJJeETZMoteZ9pT3gZ6RoDZ07d87fj11icE3s5RKq6XwnSzI3l4RZ75duvNe5g9tn3b7OwbMktnPXiEtwqDRZm7s36nG59tI2de2uifayJEnU5wE3R9Ikl25equfBJfnT7WdJZuiS6On9R9vCJXV37VWojkssqvvnEq9qskw3p9T7o5ZdIkVNOti3b99UHZ3/uHu1zmU0SW1Eer6/Zs2aVB09N65f1NbWJsqanNIlMdU+6K5p7bdu23rNuHOlfdAlVyy0f249mnjVPffrevTcRaTbxyV01WfJwYMHp+roGOfGgixju/ZL7TsuYaTOi13f1nHRJSt+9dVXE2WXJFqTvLp5qF4Tbk5+9NFHJ8p6ft3+FdN33P5pf9+0aVOqjp4r93ySZf/0XqNjp9s/3ZbrSzp2ur6k9wxXR/uOnl+3Hndfccv2FnPy0sEb6QAAAAAAAAAANII30gEAANAg3koBAAAAWhdz8tLAG+kAAAAAAAAAADSCN9KRkiWWoXJxFD/3uc8lyi4+sMaTcrG5n3jiiUQ5S/ytYmjMvwgfx66tc/G59NjdcbvYgM3Bxe7W/XNxFIuJX++2pet28VI1Pp6LO7lhw4ZEWePuudiGeq252HduWSEuvqbus4uJWAw9Bo1XnZXG9vzyl7+cquPicrY12m81xmRERFlZWaL8q1/9KlWnoqIiUXbx/zXun6uj/VKvPXc9ZImRnoXG7nSxPNHyiMeI1tCpU6f83NLlsHExq5Xed919Tu+Fbs6ry1x8cY1367alcXs17rCLI63zFJf/Qud1bp6n8cWHDRuWqqNxjzUni9tHd83qPEWP08Um1hi4rv30Hubq6Llx+6fn083HNI6vez7RPB46d3br1T7gzpUeg5urahu7WPD6Ode/NHa4cs9Geh5cPGo9566OngcXd1vPsWtT7U9uW/rsqNe9i0+tOWFcLgJ9ZnCxnPV8uvVoX3Jzfd1n1146r9N5lLumdVvumunfv3+i7J4TdU7untX0XLlnyyzx2PX61O8h3HWlddx1pdeRi3k/dOjQRDlL3G0nSz4CXXe/fv0SZXfdb968OVHOkqPOxfzWOllyNbgxRq8tfb6LSJ8vzSvgnleqqqoSZXft6TLXt7WOm1tkiSmvddw1XL9fZPl+zWFOXjp4Ix0AAAAAAAAAgEbwRjoAAAAs3n4BAAAAWhdz8tLBG+kAAAAAAAAAADSCL9IBAAAAAAAAAGgEoV3QJMaPH59a5pLmFeKSB5555pmJ8ty5c1N1siSdUprYwiXacElU2yNN5uMSOLVUslGXIEYTwrgEMU1F1+0Sxrh9VPpzKE3a4pIhNRd3faxYsSJRPuGEE1J1XFInpclSNDmTlh2XqOeMM85IlA877LCC62mvNMnOWWedlaqj7eySC2kCJ5cwT+voejTBE9o/fkaK1rDffvvl52AuaZfeN1wCMx07dXyLSI9xWeYXLmGfzhfdtjZu3Jgoa2I2N7fQ43T3S038V1lZmaqj82tNPhqRbmeX5FWTwGli9Yh0knG9b7hj0ER7LvGezsdcHZ3vuPmP3vtcgjw9xy6pn/Y5Tarn+oAmqXP3ap1XuaR0moDRJb/T/uQSeGv76DG5NtZlbp6s14Ob82rycjcn0SShLvmpHpdLEOmS9Nbnxg93bpSOF+75Sa8rN7d+9913E2XXd7QN3T5ru+v5dX1dk0hq4tOIiAEDBiTKro2zJH3Vfuv6ju7Ppk2bUnUKbdvdM/T6dPNZ7ScuCW3v3r0b3XZE+ny6/dHr2p1zXbe2e5ZExG7bWeby2pfcuJ0lYWaW5LFK98/1dU286q5XPQ/ufqDt4+7DWcY8Vahvu2soC+bkpYM30gEAAAAAAAAAaMS+8botAAAA9hpvvwAAAACtizl56eCNdAAAAAAAAAAAGsEb6SiKxoA7/PDDm21bGhdr0KBBqTovv/zyXq9XY2DtK/HQHY2x1pptkSW2oYvxlyXmWhYam8/FQnWxKNuadevWJcouXp7Gn3NxHd94441E+fXXX0+U3fnUa8/lWNiXY6IX4mJwDh48OFFevXp1qo7GH3UxXzUXwnPPPZcov/baa1l3E+0Eb7+gNdTvdy5mqcbqzpLnxsVH1Ri4GlM1Ij3ncHMAnUe59Wjs8CxxwTX+uZvraExjjT0dkW6vLLGv3TFovFsXN1fbQtvLxdXV+5OLl51lnqdxmd22NKa2i4Os7e7i3eq9WPvb1q1bU5/RPujiIutcy93zdX9crGSdO7uY1ToP0Dmbi6+s++yuK507u/bTNnbjv/YDNyfX7bu20H3Wc5Vl21lyLGS5h7l+rMelc2u3LTdv133Ua9hdD7rPZWVlqTraJ934oX3HnXPtg65v6/64/qXnOEu767azxLl269X7gY6tEek21GfLiIjq6upE2d1XdB91226c1PuBy3GmfcmN9fr9S5bY4e5c6bayxCnXvuS2rfvn5gDa7q6NtV9k2b8s3wM013yWOXnp4I10AAAAAAAAAAAase++ggsAAIBG8fYLAAAA0LqYk5cO3kgHAAAAAAAAAKARfJEOAAAAAAAAAEAjCO2ComhiHpcEorm4xCSFuGQcmnDFJZHRn7S05HG2JE3q4RJttCZNcFheXp6qo4mDDj744ILrdclfdFtr167Nsott3pYtWzItawqaxHTo0KHNsp19iSaCeuWVV1J1NClzjx49UnU0wdXy5csTZZfoF+0bPyNFa/joo4/ycy6XzE3ngi7BoCZQc/M8XebGOE3a6BKy6/zQJXbUfS4mkahL8qfbdkn0dM7rEoG7ubLSpGuu3XWZnj+3HT0uV0fb1CXz1PbSxKIR6QSpWRIeujbVfqD7l+V+6dpPt6X9JKK45Heuji7LkqBX584uAajOL1xCV72u3Pi/adOmgtvSz2VJSqt9wF2vWRLravu560qvT3ce9HOu/+vziUsEq+dLz4MbP3r37p0ou/6mbeyOQY/T9R1tQ9f/9flN+0lE+jj0XLnEk1nmFzt27EiU3XO/rsf1HU2EqeuNSPdtTcoZUXgMcedBrzXXb2tqahJld670/ukSkmo/ddvSc+OS5OozjNuW0vZyY0yW/cuSuFnruH6hn3Pbqj++ZhmzHebkpYM30gEAAAAAAAAAaARvpAMAAMDi7RcAAACgdTEnLx28kQ4AAAAAAAAAQCN4Ix1F2b59e6Ls4k662FBNYfPmzQW3dcwxxyTKFRUVqc9oTDP3VzeNP5clfmRbpPEOXezw1qQx4p566qlUHe2TGoc7Ih0jdMOGDak6q1evTpRdXDtk5+LIffazn02UXexRfDJuzLv33nsTZRfXUa8RgLdf0Bo+9alP5WOOuvitGlPYzUM1hqqLzaoxtF3cYY296uIM63pcnhaXl6K+ww47rNF/j/BzEhfTWGn8Vnet6THovCoiPQ929xFtn4EDBybK7p6vcwV3Hurq6hJlF8tW485qrOKI9Pl0MbW1f7l91n3UtnBto21cWVmZqqP93cXS1WN3seD1c67v6HF17949UXb9WLe9bt26VB29HsvKylJ19HnOPXusX78+UXb9Nsu8RfutxoLv1q1b6jN6DK6/ZclPoMtcLGytozGjI7LdH3Wf9ThdHOk+ffoU3LbbZ6Xnz52Xnj17JspZYk27Z2+99nRb7ji1jd0Yo3XctZflGVnruPuT9n+Xl0rjw2tbuOtTxy7XbzQvhIvFrrktXNxy3ZY7n3o/cHkE9Pxpu7v9y3LfU64vZbmutF+477h03HbjRf17DTHS2z7eSAcAAAAAAAAAoBG8kQ4AAACLt18AAACA1sWcvHTwRjoAAAAAAAAAAI3gjXQAAABYvP0CAAAAtC7m5KWDL9JRFE2QsHjx4lSd8ePHJ8ouAUUWa9asSZQ3btyYqjNixIhE+U/+5E8SZZd0RAeHLIlU2gOX5KO6ujpRdkmLmov2iyznyiUM0yQoLomM9tva2tpUHU3sgk9Gk9VEZEuohk/GJVjr379/ovzyyy8XXI9eny5ZnibvcQmTXLJAAGjIQQcdlE9655Jy6T3fJSPTZI9unqfrdgki9T7mEo1p8jaXaEznMlkS2+k+ZzkGt3+aTNHV0eR3br6ocyQ3X+zdu3eirO3nEr7p+dQkiRHpuZ9LtKf3Ppf8MUvyOz1/rl9on9N7n+uTmsjRnYcszyNZEgpqwkNXR+/xvXr1SpRdMlRdr0tCqO3u5tZ6Pl0SR53Lu76j58oldiyUbDfLGOPmMdpPXb/V5xp3frVP6rUYkT4G9yzkronGthORTgDq2kKXuWtGz7lrL91n3XZE+hpxz4V6bWnbuD6pbePGBr0eXcJl7V/ueVPHC3c/0PZx35NoEk7dZ3c+s9zTtI1dsl1dtzsGbR93DIceemii7K7PQok33bZ1Pa4tiklEnOV5xZ1zbVO3bXccaLs4mwAAAAAAAAAANII30gEAAGDxM1IAAACgdTEnLx28kQ4AAAAAAAAAQCN4Ix1NwsXa3bFjR6L8mc98JlVH40mtX78+VeeVV15JlF18qfLy8kRZ46lliUnl6tTV1SXKLpabi29YylzcvVdffTVRdn+BPOCAAxJlPXcR6ViZLuaZnptRo0Ylyq6fKO1bbn9cvDeN6edinOk5d3H2kF1FRUVqmes7aH79+vVLlLPESO/evXuifPTRR6fqaFzCqqqqVJ3Vq1dn2UWUIN5+QWuoP3/IEuPV0VjEbj3KzR00hqqLfapxVbPEAdf5Y5Y4ui6ur861XDzq1157LVF2sZS1fVy+C41L69bjYtXW9+abb6aWaVu4c6VzzL59+6bqaDx2F3dbz4M7nxrr2u2PxnvWssbNj0j3LxcvWPfHxYh28bGVfs7Ftdb9Of744xPlwYMHpz6jzxFuTq7bdudcrxF3nNru7rrPElNerxud27i5vl577vrUc+XiK+tx9enTJ1VH29A9P2V5htH90bZx14z2AZf3QGOSu+PU+7eLF6/HlSV/mluP9gNtC3d96PWYJdeF27b2SXcNa3876KCDUnW0D7p21/3R8XbAgAGpz2g/deO4ztPdedCxM0vMb9cvdFmWdtdrxl0P2l7uGLRPuv3Tc+OuK3ffVVn6cv2+UygufEOYk5cO3kgHAAAAAAAAAOy1O+64IwYOHBhdu3aNESNGxO9///tG6y9cuDBGjBgRXbt2jUGDBsVdd92VqvPQQw/FsGHDokuXLjFs2LB4+OGHP/F2mwJfpAMAAMDa8/ZLS/0HAAAAIKmU5+Rz586NadOmxZVXXhnLly+PsWPHxsSJE6O6utrWr6qqitNPPz3Gjh0by5cvj+9973tx6aWXxkMPPZSvs3jx4pg0aVJMnjw5nnvuuZg8eXKcd9558fTTTxe93abCF+kAAAAAAAAAgL1yyy23xEUXXRQXX3xxDB06NGbNmhWVlZVx55132vp33XVX9OvXL2bNmhVDhw6Niy++OC688ML44Q9/mK8za9asOPXUU2PGjBlx5JFHxowZM+Lkk0+OWbNmFb3dpsIX6QAAALBK+e0XAAAAYF/QGnPynTt3Jv5zOUN27doVS5cujQkTJiSWT5gwIZ588kl7LIsXL07VP+2002LJkiX5WPUN1dmzzmK221RaNdnoE088ETfffHMsXbo0ampq4uGHH46vfOUr+X/P5XJxzTXXxN133x3btm2LUaNGxe233x5HHXVUvs77778f3/72t+OBBx6I9957L04++eS44447bDINtKyamppGy8VyyS404YTWyZJs1CULWb58eaLsEicOHz48US6UZKmlaZKRpUuXpups3bo1UXbXzxFHHJEou0RamqjzxRdfTNX57Gc/myh/6UtfSpT79++f+ox+ueK+bNm+fXuivGbNmlQdTdTjjsEllimGJkrp0aNHovzpT3869Rntt3pMEemETcUmK2kpLkEvWof2wSw0oZO7ZnSZGwM1CQ9fmAKlpdTm5H/84x/z92OXJFGThrk6ek91Sc40iZhLKqbrcfNQ5e7fheambv6hdbIkPDz00ENTdTZt2pQov/HGG6k6mmQtyzjtEuQVSgSbJaG9SxKq9xGXZDJLgjztK24epefC1dEvE/QzekwR6X7rzoPeU918saysLFF2/Vb7+7p161J1NPFl/es5Ip2kPCI9r3PnSueqLoGfJrB014weg0tIqnMOtx69JrL0bX3mc18eZelL+jnXL7TvZEm8miXpsdbJMj9zSXKztLEmLXXXp+6PS1Sr63HnSvuTbsuNk9rf3P1A90+TF0ekr0/XFq6/q969exdcj+6zcv1Nk2fqdiIiamtrE2X9HiAi3T7umHT81wSqEek2dUk59Tj0HuL6uo55rp9oHZdUWK89dx/Wc+Pq6LbcuF3/uLIkJy0VlZWVifL3v//9mDlzZmLZli1b4qOPPkrdm8rKylL9bY/a2lpb/8MPP4wtW7ZEnz59GqyzZ53FbLeptOob6e+8804ce+yxMXv2bPvvN910U9xyyy0xe/bsePbZZ6O8vDxOPfXUxA172rRp8fDDD8eDDz4YixYtirfffju+/OUv2wk1AAAAgCTm5AAAAKhv/fr1sWPHjvx/M2bMaLCue3GqsT8aNPSiVf3lWda5t9ttCq36RvrEiRNj4sSJ9t9yuVzMmjUrrrzyyjj77LMjIuLee++NsrKyuP/+++Ob3/xm7NixI+6555746U9/GqecckpERNx3331RWVkZCxYsiNNOO63FjgUAAKC9acmQK/xSofUwJwcAAChdrTEnP/jgg+Pggw9utG7Pnj2jY8eOqbfA6+rqUm+L71FeXm7rd+rUKf8r6obq7FlnMdttKiUbI72qqipqa2sT8W66dOkS48aNy8e7Wbp0aXzwwQeJOhUVFTF8+PBGY+K8//77qVg/AAAAAJKYkwMAAMDp3LlzjBgxIubPn59YPn/+/BgzZoz9zOjRo1P1H3nkkRg5cmQ+DE5Ddfass5jtNpVWfSO9MXv+quDi3bz++uv5Op07d07FPSsUE+eGG26Ia665pon3GC3F/RXupZdeSpQ1ppmL06xx5FavXp2qs6ev7aExJiPScdmGDh2aqqP742IZFkPjurv9e+655xLl9evXp+poLLJBgwal6miMUxcrWeOpudh3gwcPTpQ17paLparnXGMvRqTjFLqHcY2N5sYJF++zEPcXz2HDhiXK5eXlibKLkagx4Fzcyerq6kRZ+35ExNtvv93wzrYwF+cRrUOvT/eTN73WNG7i2rVrC67XjTG8adx28UY6WmNOvmPHjvxcycVmLSb3jYsPrPMxd//UOZKLAa5zIo3zG5Gep+jY6eKuauxYFxNXY+Bmyf+iOW3cul2sdeXi+ur51jjcAwcOTH1G4z+7uZjO61xcX72vuTi1ys3JdX/0mSEiPf/XOZuLx6vH5fr2gAEDEmUXs1rPsbuf6zOBm6tqXiJ9XnExonWu6q4Hbb9t27al6uh81l17+jzizqe2qXtzUq9HnYO7bev9KEu8/c2bN6fqZKHrcfHFNfa122e9hvU8uHFTl7nj1P7mcu5kyUOl+6N5vCLSfTlLPGrdtrv2tJ+6sVTvEe7a0/Pg2nTjxo2Jsouvr9e+u460L2u/ePXVV1Of0fXo/rr1ujFQ29DNz7SOawsdQ9yYVyivhutv+h2DOwbtSy4fnt7Dsoy3WfqOu4fVH7+y5FpxSnlOPn369Jg8eXKMHDkyRo8eHXfffXdUV1fHlClTIiJixowZsXHjxvjJT34SERFTpkyJ2bNnx/Tp0+OSSy6JxYsXxz333BMPPPBAfp2XXXZZnHjiiXHjjTfGWWedFT//+c9jwYIFsWjRoszbbS4l+0X6HsXEuylUZ8aMGTF9+vR8eefOnakv8wAAAAB8jDk5AAAA1KRJk2Lr1q1x7bXXRk1NTQwfPjzmzZuX/4NtTU1N4g+oAwcOjHnz5sXll18et99+e1RUVMStt94a55xzTr7OmDFj4sEHH4yrrroqrr766hg8eHDMnTs3Ro0alXm7zaVkv0jf8/ZmbW1t4k2G+vFuysvLY9euXbFt27bEWxN1dXWNvsrfpUsX+1YKAAAAknhTfN/GnBwAAKD1lfKcfOrUqTF16lT7b3PmzEktGzduXCxbtqzRdZ577rlx7rnnFr3d5lKyMdIHDhwY5eXliXg3u3btioULF+Yn5CNGjIj99tsvUaempiZefPHFZo+JAwAAALR3zMkBAACAj7XqG+lvv/12rFmzJl+uqqqKFStWRPfu3aNfv34xbdq0uP7662PIkCExZMiQuP766+OAAw6I888/PyI+jnd20UUXxbe+9a3o0aNHdO/ePb797W/H0UcfHaecckprHRYAAEC7UMrxGNF0mJMDAACULubkpaNVv0hfsmRJnHTSSfnynhiJF1xwQcyZMyeuuOKKeO+992Lq1Kmxbdu2GDVqVDzyyCOJpAn/9E//FJ06dYrzzjsv3nvvvTj55JNjzpw5TZbMEW2DJnfRzL0uYZImDnIJT5RLkLF8+fJEWZPnRKQTavbq1StVR5MyuiQUmmhJEwlt2LAh9RmXcEVpIheXLERjnLqYp1mSf+lxaVkTxjguielTTz2VKP/hD39I1dEkIzU1Nak6WbbfvXv3RPn4449P1dFkUcX8dN0lTMqS5Eb7pEty01K4CbdtOubV/6JtDxc3GUDbUspzck3KGZFOTubusXrvc3U0YZ9LkKcJDl3ytixJzZRuy80/tO1cW+o47eZ9mgDUzaM0aak7Bm0vNy/WtnjjjTcSZTe/1QRvbr0693J1qqqqEmWXJFQTT7qk6HpuNHlgRHpOrsnlXGJM3ZZL5pllLq3759o0S7Jd7cv6PODaT/fPPQ9oe+m8NCL93OUSDmpyRZcIUMcHl5hQ21mTjWofjUgnj3XHqfN0N35kSc6q17VLsKnL3PnUNtVrOsv16p4ZdJ9dMmVN2ujmgvo87vqXtvue0GL16XHpttxYqsfuxlLtb64v6bZcUkm9rlyb6rly47Z+TvuA+4wucwlwDzvssETZfU+SJTmrnisdE93n9NqLSF/Dum133es4lCUpeZYEuO44C+1fRPq43P7Uv3+67aBtadUv0sePH9/oA3eHDh1i5syZMXPmzAbrdO3aNW677ba47bbbmmEPAQAAgPaNOTkAAABQWMkmGwUAAEDr4mekAAAAQOtiTl46SjbZKAAAAAAAAAAApYA30tEuaQxHLTsuTqGLUa00PpiLta6x91xcNo175v4KqPG0NO6eW++gQYMS5SOOOCJVR2Pdaew5t+7169en6mhMRBdTcuXKlYmyxhJ3ce20LV577bVUncWLFyfKL7/8cqpOMVxMRN3nvn37puoUExM9C+2TAwcOTNXR2O+vv/56s+xLFlmuPbQMjePYVG8a8MZC+8bbL2gNhxxySH5e5OKRasxSjW3rPqfztYh0jN6ePXum6uh91821NC6ti12rcWiz5J7ReZ6LnaxxaTUeekR6XuDmvLpuF8NV29nNdTRWbJZYthqn1sXF1/i2bv80TrOL2avx4V3/0nVv27YtVUfnq9p+Lu7wsGHDEmUX/1nbx82LtV/ocUek5+BufNV+qvNrN4fTZwb3PKCx6tetW5eqo23s8kdpX3LXnp4/dw1rf9I2dTHmdbxw51P7pIv/XCg3lNs/9/ypMe/dmKfPoDq+Zbmm3fWp17kb37LkvNIcAS4/gV6fLo665h/Q9WSJ7e9yQOg+u3uGjp1urNJrzY3tuo91dXWpOtqfdJx0Mb/1HLuxYevWrYmyy8ugbez6W58+fRLlLO3uxqE333wzUdbjdm2s41CW+aOro/3W3TO0jluPXjeub9dfT5ZcGA5z8tLBG+kAAAAAAAAAADSCN9IBAABg8fYLAAAA0LqYk5cO3kgHAAAAAAAAAKARvJGOfZbGrurevXuqjot1pzQ2n8Yvi0jHknNx49yyQjRW4OjRo1N1xo0blyhXVFSk6ugxuPh9elwaXy0i4qWXXkqUXTy1FStWJMoay83FcNe/iLr45xp7vam4+J8af9HFQWspLo6i7l91dXWqjrapi9WmdYr5y/TmzZv3+jNoHi7+IlAIb7+gNXTs2DE/x3HxZXVe5WJYa8xqF9dX46y6+7n2SxdbV+dIBx10UMFtafxdF4/axURXOo9y80ndtos1rdt316PGsXbzRY3bq/Ft3WeyxMTVeYrrFzpnczGE9Vxp/hC3P+7caLtrzho3nz3uuOMS5R49eqTq6LzJxezVc+xiX+s14WKH61z+lVdeSZRdfGVt01dffTVVR+OzZ4kR7eah+jnXJzVmtTvnheL0u/OrMdHdNa3ccWYZP/Sa0Os1In0u3HEWyh3hjlOvB/ccq8eVJc67o23hxiGlMdMj0udTrwfXb7WfuHjeuj+bNm0quH+uT+p63LOkHoO7PxXKW+G27XI+KO0Hrm/r/rlz5b5TUDoOue9WCsXyd/d3Hc/c/mmfdGOMXo+uH+t44b7f0HPhrs/617XLRZAFc/LSwRvpAAAAAAAAAAA0gjfSAQAAYPH2CwAAANC6mJOXDt5IBwAAAAAAAACgEXyRDgAAAAAAAABAIwjtgn2WJvBwyTmyJHnSz2VJ8tFUDj/88ET5pJNOStUZMGBAouwS4WShSTOOPPLIVB1d9swzz6TqaAIRTT76wgsvFNyXYhKzFsslL9FzXGybNgWXOEX3z9XRvu2OU3/S5drdJeupr6amJrUsS2IXfDLu53jr1q1r+R1Bm8fPSNEadu7cmb8vuaRcmhDv05/+dKqO3ptdkjOd27ht6bzFJY7T+1iW5G3KJfDTbbuEdJpYzyXP1H12baH7fOCBB6bqZElyqYkSNTGb23aWubO2jztOXeb2T+ctbq6vddz+aWLawYMHJ8pDhw5NfUaP3R2DtleWJJyHHXZYqk7fvn0bXW9E+tg1saNLdKreeOON1LLa2tpE2c0V9Zpxc2mXsE/pnNL1Lz1Xep1nSTDoknDqNeKOU68Zdw3r9ZklqapLHKp9RdtGz0tERGVlZaPriPDXUaFtZ0ns6JI76/jhxmRtZ+0nBx98cOozmljXPdNo8l/XJ6urqxPl3r17p+pkGSf1GNw+63Fpv3Dtp9e0JrWOSJ8H17d13VkSBmsfdfvj2kL7v+5PlvueG8d1/HJJfHVsd2NBludq3Wd3P6+/zP17FszJSwdvpAMAAAAAAAAA0AjeSAcAAIDF2y8AAABA62JOXjp4Ix0AAAAAAAAAgEbwRjr2WRrXy8UHyxIjPUucsaaiMbmGDRuWKFdUVKQ+01zxu3v16pVadtRRRyXKzz33XKpOofZpyfjnWbjYfBqrzcU5czHHm4OLNadxMLPEec+yv25beuxax8X/XLt2baKs/QafnMaCjIjYsGFDK+wJ2jrefkFrqK2tzc95XFxTjSfrYsVmieur9zB3Pz/00EMTZRcvW++7Llay7o/GOHb7q/M+NyfRGLiFcpdEpONnR6SP08Wn1vmP25buc6E4vxHpY3BzEl2m8bwjfPso3R/X7jp3dnNTbcN+/folyt27d099Rvc5S/xzR4/TXSN6Pt0zjW5L+79rT41N7PqArsflDNDz2bNnz1Qd7W+u7+gxuOcTPcda1tjYEelz5Y5T28ddMxqX3J1fPTeu3fXYXf/S9tJn1M2bN6c+o8fp1qtjnhsndT3uutJlri20r7iY93V1dYmyxth2x6DPn9qPI7LlwNJ+4M6V9m23LeVic2t7ZXlWy3Jdvfnmm4lylnj7bvzQcdH1Cz037l6t29c2dteetqkbA7X93HcQ+jl3HvQ4s+T5cPeM+suIkd728UY6AAAAAAAAAACN4I10AAAAWLz9AgAAALQu5uSlgzfSAQAAAAAAAABoBF+kAwAAAAAAAADQCEK7YJ+lCSfeeOONgnUcTZCkiV2akib6OOSQQxJllwCrubiEJ7o/hx9+eKqOJhnRZCHr1q1LfSZLwrDm4hKcaLIeTTAVkW6LpqI/s9KEMRHp/XPJrHSZq1PoM1k/p5599tlE2fUTTU6Dxmm/0DaOaN3rCG0XPyNFa+jevXt+nuHupwceeGCinGV8c4njdC7jkgXq/cjNC3Tu5+ronFITrGVJtu7mmFkS0vXu3bvRckS2JJe6btfummRcP5MlsZ1LSKfJDDWxYkT6/LnEcbp9l0RP1+OSUWq//PSnP50ou/OpSWndmKftpYl1IyI2btyYKLuEhwMGDEiU3XxRE5Jqosfq6urUZzRJnjtOreOuK13mjkGvoyz3CH0ui0ifY+23LhmqbkuThkak+2CWtnDHoP3CXSNax7Wp9ndNyun2T+u49Wpfd+sp9HwXkR5L3XimiRy1j0akxxgdG9xnNAGpS/aoY6BLYKljlTuf2i+2bNmSqqPH4BJYahtqv3CJRLVN3biu59h935ElqXCWNlVun/X607Egy3rdMej14I5Bv/9xfUfXnSUZtruv1D8Oko22fbyRDgAAAAAAAABAI/giHQAAANaet19a6r+9dccdd8TAgQOja9euMWLEiPj973/faP2FCxfGiBEjomvXrjFo0KC46667UnUeeuihGDZsWHTp0iWGDRsWDz/88F5v9y//8i+jQ4cOif8+97nP7fXxAQAAAKU+J9+X8EU6AAAA2py5c+fGtGnT4sorr4zly5fH2LFjY+LEiTYcQUREVVVVnH766TF27NhYvnx5fO9734tLL700HnrooXydxYsXx6RJk2Ly5Mnx3HPPxeTJk+O8886Lp59+eq+3+6UvfSlqamry/82bN695GgIAAABAiyBGOvD/aKyyhpa1Jo2npXHQXLytYmJYZ+H+Sqkxzo477rhUHY2hp/He3HrXrl1bxB4WR+OpuThor7/+eqKsMeIiIoYMGZIoa9tkiUXqYhBu3bo1UV69enWqjsZ7c3HatJ2z/NXZ1Snmr9UaK/CZZ55J1fnCF76QKGdpr33ZmjVrEuVVq1a10p6gvSnleIy33HJLXHTRRXHxxRdHRMSsWbPit7/9bdx5551xww03pOrfdddd0a9fv5g1a1ZERAwdOjSWLFkSP/zhD+Occ87Jr+PUU0+NGTNmRETEjBkzYuHChTFr1qx44IEH9mq7Xbp0ifLy8r1rBERERK9evfL3LhenVuc7bv6jy1w8b70/uvjAGh/VxWDWmK5u7qXr0TmmixGdJR61xn3t06dPqk7fvn0TZZdTR7fljnPnzp0F90fnOxrbWctuf1z8c13mYuLq+XTnQed5Lo66cv1C1639y8V/1vZzdMxw+6fnKkteHhf7V+O663G6ONcaK3zbtm2pOroeN4fTvuPqaExtd43oc4S7zt01UZ+7HrR/uf6m9yyNXR+RLS64xsF383Y9rixjlcbddutdv359ouz6m+akyJIzycX81u27c67jg3sO0+cu7Utu7NL1uP3LErdfj8HF3dZrpKE/7teX5R6m9wzXb/X8uWNwx660TV3/12dS7SduPa7/63cDelzumtb+5sZWPZ+u/+v5c+vRfurWo+3szk1T5LIr5Tn5voY30gEAAFAydu7cmfjPPcDt2rUrli5dGhMmTEgsnzBhQjz55JN2vYsXL07VP+2002LJkiX5h6CG6uxZ595s9/HHH4/evXvHZz7zmbjkkktSSd0AAAAAtC18kQ4AAACrNeIxVlZWRrdu3fL/ubfLt2zZEh999FGUlZUllpeVlaXeBtujtrbW1v/www/zv5RpqM6edWbd7sSJE+M//uM/4ne/+1386Ec/imeffTa++MUv2j8KAAAAAI0hRnrpILQLAAAASsb69esTP3XXn8bXpz+5zeVyjYaCcvV1eZZ1FqozadKk/P8fPnx4jBw5Mvr37x//8z//E2effXaD+wcAAACgdPFFOgAAAErGwQcfnIoZq3r27BkdO3ZMvX1eV1eXelt8j/Lyclu/U6dO0aNHj0br7FlnMduN+DhGb//+/ePVV19t9LgAAAAAlC6+SAfaEE22UVVVlSj/yZ/8Seoze74caGouEavGf3XJaDTBif5sSJNUNSXdn+HDh6fqVFRUJMruzUZNROK+GNHkR4cddlii7BKyaFu4JE+a6FT7QIRP/qW0LbIkEnXrdQlg9taSJUtSyzSR0FFHHfWJt9NeuLAV8+fPT5Rd0iKgGKWa2Khz584xYsSImD9/fnz1q1/NL58/f36cddZZ9jOjR4+OX/7yl4lljzzySIwcOTKfBGr06NExf/78uPzyyxN1xowZU/R2Iz5OyrV+/fqCSe/wsd69e+fPiUs2p4m93P1S5ykuQZje4909TbfvkvHp3MWN07puXa+7x2pyMjev0nmL+yNUocSYDa1baWgit8+Fkt25+WOhdbj9y5KE3CV30312/Us/5xLkaZ9bu3Ztwf3Re7M7V/oLnB07dhSs4xJ+aru7ZKNK28KNydoWLpmhzuFc8kc9x5oQN+LjcaA+d861fVwy2w0bNiTKWdpiT7ivPVwC3DfffDNR1uSLEZH6A6u79rRPun6riWGzzPOyrFefadatW5eqo2Nnv379UnU0aaM7Tm1DlzBV99kl89R+oAmp9VkpIlsSTj1O18bav9z1WVNTU7COPgdmufdkSVap+5dlXNfrNSJ9btwvA924qHSf9fk4It3ueq5cP8mScDzLHEC3leVZ152rLEmr6/flYp+fS3VOvi/ii3QAAAC0OdOnT4/JkyfHyJEjY/To0XH33XdHdXV1TJkyJSIiZsyYERs3boyf/OQnERExZcqUmD17dkyfPj0uueSSWLx4cdxzzz3xwAMP5Nd52WWXxYknnhg33nhjnHXWWfHzn/88FixYEIsWLcq83bfffjtmzpwZ55xzTvTp0yfWrVsX3/ve96Jnz56JL98BAAAAtC18kQ4AAACrlN9+mTRpUmzdujWuvfbaqKmpieHDh8e8efOif//+EfHxW2HV1dX5+gMHDox58+bF5ZdfHrfffntUVFTErbfeGuecc06+zpgxY+LBBx+Mq666Kq6++uoYPHhwzJ07N0aNGpV5ux07dowXXnghfvKTn8T27dujT58+cdJJJ8XcuXOb9VdXAAAAaJ9KeU6+r+GLdAAAALRJU6dOjalTp9p/mzNnTmrZuHHjYtmyZY2u89xzz41zzz236O3uv//+8dvf/rbRzwMAAABoe/giHWjDXnzxxUR54MCBqTonnHBCouziMWaJM6lxxl544YVUHY3TPGTIkFQdjQmmsdI2b95ccF+KpTH9Kisri1rPIYcckii7dtcvajR+5f7775/6jMbbdDH1XOzHQly8N41zmiWGnltPU/y12q1X+5KLkXjMMcckyi7OaXugsR5//etfp+q42J1AU+DtF7SG3bt352Oeujiseg9zMaL1ftmrV69UHY2Z6u4jGnvVxTZdv359wf0pFFva/VpB4yKXl5en6ujn3P1S1+Pu+Tofc/MNnZdobOKI9D1d54+u/XT/3HnQc+VyzejcysUU1vOQZQ7saL+o/+uXCN/GOg91sX91HHTtpcegOYoi0nH6Nd54RKRyNuhcQmOAu227fqvnyp0HvR579uyZqqNt6NpLl7lYyXoc2r9c3H6de2ksccftn16PWcYYdw3ruXHr0WtP+5KL46zn051zjRfvYk3rNezomOLGds2l5dpd62j/cvui7edipCvXt/U6d/NvXZYlfnaW2Pkap9w9S2aJW65jvTufmkfAtZd+p+DmcHpceu4i0teN9m13nFrH3Q+0LbLkSXHnSnM8ZMkx4sa8+p8jRnrbV/ibEwAAAAAAAAAA9mG8kQ4AAIAG8VYKAAAA0LqYk5cG3kgHAAAAAAAAAKARvJEOAAAAi3iMAAAAQOtiTl46+CIdaMM0Wci8efNSdbZu3ZooH3HEEak6mpTFJSpZu3ZtovzUU0+l6miyI01OE5FO1KkJflyCrqbiEhk1BT2miIgBAwYkyt27d0+UXRIqTeTSnIlXNbHL8OHDU3U0CZX2t4iIlStXJsou4dXe7ktEOtnL4sWLU3U2bNiQKI8ZMyZVR9u92KRizUX7/9KlS1N1NHFtsQlqAKCt+OMf/5hPtOaS6ukDnnvg03uzSyKm990sCeg0MXhEOvmpS3io9x+9P7kkbJqQMUtyT5dQTeccLpmh3uM1wZrblh53RLqdtZzl4dwll9O5gpurapI/d7/UZa4ttM+5OVuhBIxuvZrI8aijjiq4XreeNWvWJMqvvPJKqo4eg+uTev60D2jC0oj0eXCJOrVvO9rfXRu7Y1cuyaDSfdZz5batyQLdvmhfdvNZ5a6ZsrKyRNkdk7aX69u6PzpWuWsvS9Jj/Zyb62siUdcW2u5uvNVr+I033kjV0fbSbblj0ESdLqmqHldNTU2qzmuvvZYou3FI+78bt7MkwnTL6nPnU8fbLMmK3fOdtqG2X0PrVjqWu+cwTVqqfd0lvtZ+4vZPl7lzlSUZqn5/4NpL99Htc/22KLXnUew9QrsAAAAAAAAAANAI3kgHAACAxc9IAQAAgNbFnLx08EY6AAAAAAAAAACN4I10oB3ZsWNHatn8+fMTZRfbXOOpuTiAGitT42Q6LoaYW9ZSssRabCoad17jv7nYaBq7zcUXdLEVC3HbGj16dKLcv3//guvp0aNHalnv3r0T5d/+9reJsosle+ihhybKAwcOTNXRGHUujqLGSL///vtTdXTdRx55ZKqOxlp0cXQ1fqb+ld6dF42/qDFNIyJWr16dKLfm9QE4vP2C1ubmGzrfcfcavQ+7eK56n9XPRKTHcjfe6z66mMsaZ1W3XV5envqMy8Gi9LiyxJp288Usbapxt939UuP6attkievr4uLrHMnF/C4UC9tt382RdFmWXC47d+5stByRbmN3nDr/cTGiN27cmCi7OOW6f+460n10MYRVltjEOmdzfVLPn4vJr+3jtuXacG/ruD6gc16Xw0nbyz1naLxz18Y6D80SY96dcx1DXn/99UTZ9UmNha3zerd/ri9pTi43b9fr0Z0X7Rdu3Na42y4GudLzt27dulQdbR93DFnyamh/yvJc4dpUj1O35Z4ZtC3ctadjjBtL9Tp343aWsUDvqS52uNJ+4XKc6bjo2iLLHEDbPUsuBM2fEJHeZzem1F9PsfNd5uSlgzfSAQAAAAAAAABoBG+kAwAAwOLtFwAAAKB1MScvHbyRDgAAAAAAAABAI3gjHQAAABZvvwAAAACtizl56eCLdGAfc9xxx6WWDR06NFF+7rnnUnVcktK2pqqqKlF2CXVcohSlSVleeeWVVB1N7qKJXVzyF00c5BLYFEMTnUZEVFRUNMm6NRFOv379EmWXPKqysjJR1iRGEdmSjWoiF5c87eWXX260HJFOGuOSAmkdTU7jkkcVkxgWAPDxPXLPfVKTfUZE1NXVJcouWZo+BGrSv4j0eO+25ZJuFrMt3UdNhOYSWmZ5kM1SR5PouWPSOu4epsnC3XHq/VGTsLlzpbIck0sM21QP/i7xn9L20cR7bp6nCSwHDBiQqqMJI7MkRXSJJzWxY5Zku7rPLmGeXjMuIa7OpTURZUR6n938W9vLJafMss96PnXbWeZ9Oi+NSM9NXaJC3b8+ffqk6mhfduvR68b1L90fPS53HvRZyCVS1DbVBKUR6eeBNWvWpOpov3X7k6Xf6vOc9hM3Nuj1WVNTk6qj7efGkyzJk/V5xPVJ3Zbr24WSO7sxOsuzh67H3Xu03fX8ujruOUzvEe5aK5TA1fXJXr16pZYV2rajz28uGape+9qXItL76Pa5/rE31TM+Wg+hXQAAAAAAAAAAaARvpAMAAMDiZ6QAAABA62JOXjp4Ix0AAAAAAAAAgEbwRjrQzn3zm99MlC+77LJUHY1H52Lz/eAHP0iUH3zwwSbYu5al8boXL16cqqPxu7VtItKxWbUckY716GKuKY0VmCWOaBYuNl9z0W25GHEaZ8/Fy9O4gO4YdD0uvubbb7/d8M7+P4Vi8wH7Mt5+QWt4++238/dfl2tD5ykuFqrm33AxjjWm65YtW1J19HNujqT3I3f/dvOJ+rLEf3axsDVeq7uONG6uy+uh++diX2ss4iyxf3Xbrh10mYvZq3XctvW4CrV5Q/T8uZjp2i91LuPy04wYMSJRPvXUU1N1DjvssER57dq1BffPzXV0+y7WtC7T/uViAWt8bBcvW8+D629vvPFGopwlNrej/d3FaS4Uz95tR69Hje/tPufm+tu2bUuUXVx87V9uHqrt7GKkazvrcbo+4Npdafu5eNk6Brv+r22YZfxw4+2GDRsSZT1ul3tJxxTXb/Vcuete+4Xr23p9uvOp/dZtS5fpMbjxTbfl6rg2LcTdV3R/ssSLd/c5pfvs+qiux10P2v+zxEzP8tzozpVe+65vd+vWLf//3bWYBXPy0sEb6QAAAAAAAAAANII30gEAAGDx9gsAAADQupiTlw7eSAcAAAAAAAAAoBG8kQ4AAACLt18AAACA1sWcvHTwRTrQjrjkTOeff36inCXxklvP5MmTE+W2mGxUuaRdL7/8cpOsWxPzbNy4sUnWWwyXIEkTpGpyq6w0yc769esTZZdgR9vdJepRLimLJpHJsh4AQOn74IMP8g9xLjFa9+7dE+U+ffqk6mhizDfffDNVR5OLuqTVOm9y8yhNLOaSkennysvLE2WX/E4TqLn7nCZDdXVcIrZCddxndH6oyfnc9jUJp1uv1nEJ6XS9bl6Q5TizJPnbvn17ouyOUxMu6vl1yRYPP/zwRFn7aEQ6aZ2ro3M21yd17lc/0d0eOh/TBKBu29perr9lSZ6p15pL0KvtnuWcu/3RfpslAa5uy/VJXZYl8apbj56rT3/606k6mijR9fVNmzY1ul63bZ1Lu21rW7g21r7k9s9daypL4mEdtzVBpN4f3HqynE9H28slwiyUxNfJ8nyu7efuV7otd83ottxzotbJck/LkrQ3y7Oa9h29P7j1uvFDxx23Hr1m3XHqOOT6ti5z57N+38lyLaC0EdoFAAAAAAAAAIBG8EY6AAAALH5GCgAAALQu5uSlgzfSAQAAAAAAAABoBG+kA+2Iiw/mYqMVw8U3RNvg+sUf/vCHRPn4449P1endu3eirHEBIyJeeOGFRNnFoFXV1dWJsotJqDEaNZ5lRMSGDRsS5SwxCAHsHd5+QWvo2LFj/t7Qq1ev1L9rfGqNHxyRjnOtcXUj0nMkF0M1S1xa5eZMGjNV730u1q6uJ0veEY2xHZG+trLErHYxXLPkJtH7t67X7Z+eBzdv0TjIjsb0dnFq9di1n0SkY+JqHHq3LW2LLHF0XfxnbeMs59OtR9vdxS/eunVroqzn/JBDDkl9RuMpu76keQ3cdeX2R2XJT6DbcjkVdA6px+XO1VtvvdXoOiLS/cI9c+l50Dj0Eem+48Y8jbnv5rw1NTWJsp4bHTcj0n3dXfd67bnxNsu50rZwuQd0HMwS+1rHUncMem5cP9HPueterz13HvR6zDK3ce3lruv63NigfTvL9wAuRnqW+1wx3zG4Yyp0n3PXZ5b9KyZXg8sloevJ8rzp9rl+fyr2+xnm5KWDN9IBAAAAAAAAAGgEb6QDAADA4u0XAAAAoHUxJy8dvJEOAAAAAAAAAEAjeCMdaEdcvK1/+Zd/SZSvvPLKVB2Nmedif911112fcO9QSjQGp8ZMj0jHd3NxCouhsfhWrlyZqqMx61zfdvEqATQt3n5BazjkkEPysXJdfg6Nr+xivOoyV0fj5LoYqoceemii7GLZuljh6qCDDiq4nkLrra2tTdXR+6O7X+r9PEv8c7cejV+scZvdMt22xp523HxD2ytLXHCXg0XjMru5hB6ni5Wsy3RbLqb7a6+9ligPGjQoVUePfdOmTak6GzduTJRdW2jfccep51z7qIttrufT9RPdtutv2n5Zrocs/TZL7OtC64hIH5frAy4OcqFtu/3TPunqrFu3LlF215H2OY217vqJ7p/rbzreag6liHTfcTHwtU11bI1Ij9NuLNB+qc+x7rxkGSc19ruLBa9c38oy3up44fZH8zDoelyMdF1vz549U3X0WnNtrNeEG0t1f9wcTvuyOzc63maJH67H4O7Bui03Buo9w+2f9gM3Xij3XUr9dRMjve3jjXQAAAAAAAAAABrBG+kAAACwePsFAAAAaF3MyUsHb6QDAAAAAAAAANAIvkgHAAAAAAAAAKARhHYB2rm5c+cmyi+88EKqzuGHH54ov/TSS6k6a9asadodQ8lrquSihbiEK8UmYQHQtPgZKVrDzp0788nEXBIxTWDmkq5pMr4s95WKiorUMk2iV2wSTk1qput191w99ixJTbPcU921pskBP/3pT6fqaJJBPSZHz4NLeKiJ7FzCN00wmCWpqmsvTTjnjjNLok5NTKvJ71yyuRUrViTKLiGpJvBzSSV1mVvP1q1bE2V3rjRJY5aketpe27dvT9XR/uXWk+V8btmypdFtR6T7jutfej3q9erOlZ5Pl2xR1+POg+5PliSXTpY5eaF7qEsAqudBE59GpPfZJaHVNnbJWfV8Zjkml3hV6XrcenVscOvV43Lr0esoy/jhko26e5Yq1O5ZEvRmuR5cku3Nmzc3ui9u+25/suyjrlv32bWfLnP9Tccm1/+Vu86177j+r+fcJTev386FEiA3hDl56eCNdAAAAAAAAAAAGsEb6QAAALB4+wUAAABoXczJSwdvpAMAAAAAAAAA0AjeSAf2MS7+uVsGAABvv6A17NixIx+r1MW51ljELpatxiB1MV4rKysT5UMPPTRVR+OjuvjdGivZxTzWOnpcLmauxivWGMMRPl6r6tatW6LsrjWNGdyrV69UHT0utx6NJ67H5fZX29StV8+fay9d5uLzFjoPjquj+6zrdcepbezm3xqv2MX11Ti+Lo667rOLka7nU4/BxQvW/ckSb9+dB113ljjS7trTa9+1u+Yj0D7qjkGXuTo7duxIlF2sdRe7WWl7uXOuy9y50bbQPqDnNyIdJ1/Higgf71lp33axw7UfuNjcWsed80LbdnH7s/Rt7Ttu/5Tr29qGrl9o33Z5GPQ4dL3uGJQbu/S6LysrK7ge16Z6zbpcCNo+7j6s/bZQzPSI9PXg6mgfdHHxddvufLq+rLLkOag/byl2vsucvHTwRjoAAAAAAAAAAI3gjXQAAAA0iLdSAAAAgNbFnLw08EY6AAAAAAAAAACN4It0AAAAAAAAAAAa0aqhXZ544om4+eabY+nSpVFTUxMPP/xwfOUrX4mIj5M7XHXVVTFv3rx47bXXolu3bnHKKafEP/7jP0ZFRUV+He+//358+9vfjgceeCDee++9OPnkk+OOO+6Ivn37ttJRAQAAtA8t+RNSfq7aekptTr5z585Gk41qX3HJ+TSJniYcjIg45JBDEuUsiTtdgjdNdOYSYWrCOU3M5j6zYcOGRDlL4rgsbeGOQRPHadu4OlkSdWryNpfwUJP6ZUn+6M6VJot1yVm1nd3+FNq2o23j2ljbS89LRDopqEt4qMkfXQI/PS6XRE+3f/DBBze6vxHp5HxZEoC649R+6vp/lsSTui2XLFPbR4/L9SVN/ugSFWq/cAkHNdmoS8io++eSJ+syV0fbS5Myu36in8mSJNddD9qm7jiz9G29jlyy1kIJZvW4I7Ilj1Wu3+o+uyShPXr0KLgtl7xT6TWhx+XWq22cJVm3S7KtCTZdMmBd5sZSbR+XFFSPQ/tplrZy284yBuq2spxz1yd1Pe4+XH/77lrMgjl56WjVN9LfeeedOPbYY2P27Nmpf3v33Xdj2bJlcfXVV8eyZcviZz/7Wbzyyitx5plnJupNmzYtHn744XjwwQdj0aJF8fbbb8eXv/xle7EDAAAASGJODgAAABTWqm+kT5w4MSZOnGj/rVu3bjF//vzEsttuuy1OOOGEqK6ujn79+sWOHTvinnvuiZ/+9KdxyimnRETEfffdF5WVlbFgwYI47bTTmv0YAAAA2iveftk3MCcHAAAoXczJS0ebipG+Y8eO6NChQ/6nhkuXLo0PPvggJkyYkK9TUVERw4cPjyeffLLB9bz//vuxc+fOxH8AAAAACmNODgAAgH1Rq76Rvjf++Mc/xne/+904//zz8/Hbamtro3Pnzqm4TmVlZVFbW9vgum644Ya45pprmnV/AQAA2jrefoFqiTn5Rx99lO8Prl9o/GkXO7l79+6Jsot9qutx8YE1xqzGoI2IeOuttxJlF5tb161xfl2MaKXHFJGO/e72r5gY6S4mtLaza3eNDZslfrzGi81yDC4etZ4rFytZj9NtS489S2xdrZPlM+486DL3xyU9ThePN0vf1jbUOtu2bUt9xsU4VhpD2O3fm2++mSi7mN8a49jV0fOnuQgiCvcdN8Zo33F9Sfu/2z89Dy5Xg+6fay8Xc1wV6l9u/7LEi9dlLr6z7rOLf67bd9eenj/XFhq/W4/TXXtZ4mzrtt31mWUM1PW449RjcO2l8cX1XLl+m2Uc1/OQJSdFljwMbmzQ43L9uFAeDbdtvR5djHQ9N1nuey6mvOYLceHq9Fy5HCP1+7I731kwJy8dbeKN9A8++CC+9rWvxe7du+OOO+4oWD+Xy9lBd48ZM2bEjh078v+tX7++KXcXAAAAaHeYkwMAAGBfVvJvpH/wwQdx3nnnRVVVVfzud79LZBMvLy+PXbt2xbZt2xJvwNTV1cWYMWMaXGeXLl3sXwYBAADwv3j7BXswJwcAAGgdzMlLR0m/kb5nwv7qq6/GggULokePHol/HzFiROy3336JBEg1NTXx4osvNjppBwAAAJANc3IAAACgld9If/vtt2PNmjX5clVVVaxYsSK6d+8eFRUVce6558ayZcviV7/6VXz00Uf5GIvdu3ePzp07R7du3eKiiy6Kb33rW9GjR4/o3r17fPvb346jjz46TjnllNY6LAAAAKDNYE4OAAAAFNaqX6QvWbIkTjrppHx5+vTpERFxwQUXxMyZM+MXv/hFREQcd9xxic899thjMX78+IiI+Kd/+qfo1KlTnHfeefHee+/FySefHHPmzLHJBAAAAJAdPyPdN5TanLxjx475z7nkX5pYrKKiIlVHY7O7EDL1w9NE+D6o23LJ2zQpo9tnTdinCdZcMlRNSOe2rVxMet2WawtNfuaOQZPJZUnOqslFXeI4TQrnktbpMbj90yR/rr26deuWKLtzrp9zCQU12Z0mgnXJ7zRJnUv+mCVBXqHPOC4BY6Gkg66faJ0sfdIlANXkfFmSXLo6WWjf1kSALvGf9q+tW7em6mhf0uvVrdudK+3vbn+0DV2y3ULJYl1/U+761D6YJYlvlvu56zvaFm5/9Dj0PGjfikifGzd+aB13rvS6dtennj93PjUxd5Zk01rHrTdL0mM9f66NsySYzZLkVdejibkjCo+3Wbbtxpgs9z3tSzU1Nak6WRLMZrl/1k/CTLLRtq9Vv0gfP358oycoy8nr2rVr3HbbbXHbbbc15a4BAAAA+wTm5AAAAEBhJZ9sFAAAAK2Dt18AAACA1sWcvHSUdLJRAAAAAAAAAABaG2+kAwAAwOLtF7SGt99+Ox+H1MX8PuywwxJlFztZ4666GORZYrEqF8tWYxEfdNBBqToar1VjvGqM4YhscVc1rq+LA+tiNyuNMeviKWsbuvjAGn9X99m1se6fi5Gun9u+fXuqjrZX/Zi0e2hfcfGedSxy7af7o/3U9TddrzufGvs6S1xrF2s6S0x5jff87rvvJspuTNbjzhLzPkss+Cw5Aty1p+dc8x5EpM+NXmuu/bL0Ae1f7jh1mbs+33zzzYLr0XbOMl7oOOTOVZYxT9vC9Qvdthu3VZb4+llyNWhfypInwsWY13Pj+qTGX3d1tE3d+XT3iEJ0vW7s0mN3Y3ShsSsiPRa49tLz4PqkXjdu3NZ+oNe5i3mvXBu7mO1K+46LXa75ETTHQkS6TXfu3JmqU78Ns1x3DnPy0sEb6QAAAAAAAAAANII30gEAAGDx9gsAAADQupiTlw7eSAcAAAAAAAAANJtt27bF5MmTo1u3btGtW7eYPHmyDftTXy6Xi5kzZ0ZFRUXsv//+MX78+Fi5cmWizvvvvx9/93d/Fz179owDDzwwzjzzzNiwYUOiznXXXRdjxoyJAw44wIbpyYov0gEAAGDlcrkW/Q8AAABAUnuZk59//vmxYsWK+M1vfhO/+c1vYsWKFTF58uRGP3PTTTfFLbfcErNnz45nn302ysvL49RTT4233norX2fatGnx8MMPx4MPPhiLFi2Kt99+O7785S8n4vfv2rUr/uzP/iz++q//+hMdA6FdAAAAAJSMDz/8MJ8ErG/fvql/1ySJLhmZJlnLknjM1dGkYZp4LCKdZE33zy3TJGea7NOt1yVS1CRwLvGqrse1ly5zx6D77N4g0wR4mkjOJdnThH0uEZvuX/2H5z20fdy2XDI5pW+pufYq1O4uYaom8MuSxNQlW9yxY0fB/cuSwFX7u54rl6gwC+0D7rrSRJ2u32ZJtqt9O0sy2ywJU5U7Bl3mkj/qut051+NySVX13Lh91rbQ/SsmsWhE+rp3/UL7oEv+qH0wSyJdl8CyUAJj3d+s29LPubbQY3eJOnVscOvRY3BJaLVN9ZpxyVq1jd250rHd1dEEuK5Ojx49EuUsyYnLyspSdXQ8c/1f6X3ZXZ/aFq69dKzPkkDbnXP9nLvW6u9zsclG24NVq1bFb37zm3jqqadi1KhRERHxr//6rzF69OhYvXp1HHHEEanP5HK5mDVrVlx55ZVx9tlnR0TEvffeG2VlZXH//ffHN7/5zdixY0fcc8898dOf/jROOeWUiIi47777orKyMhYsWBCnnXZaRERcc801ERExZ86cT3QcvJEOAAAAAAAAAIiIj/8AUP8/94fbvbF48eLo1q1b/kv0iIjPfe5z0a1bt3jyySftZ6qqqqK2tjYmTJiQX9alS5cYN25c/jNLly6NDz74IFGnoqIihg8f3uB6Pwm+SAcAAIDVXn5GCgAAALRVrTEnr6yszMcy79atW9xwww2f6Bhqa2ujd+/eqeW9e/eO2traBj8Tkf5FQ1lZWf7famtro3PnznHooYc2WKcpEdoFAAAAAAAAABAREevXr0+ETXNhiCIiZs6cmQ+b0pBnn302Inx4nFwuZ5fXp/+e5TNZ6hSDL9IBAABgteRb4ryRjj0OPPDAfLxajTcbkX6Ycg9JGh/bxc3VZS4Gs8a1drFNNca3i0etn9OYvS5+a5bYxModg27bxaDVbbkY6bqPLq67bkvbxq1Xr313rjRetouJq3G2XR237kI0hm9Eul927949UXYx3Au1TUTEtm3bEmXtfxE+FrfSdbvY3No++hl3DNoHXMx5fSPQxdLPEqdc150lFry7RvRa0+uz2PjKeq25eN66bXft6fjl9keP013nGu9Z+4lrY71mXB29Ztw1lKW9tH26deuWqqNjihsvtE2z5HfQ/XHzDe3/Lq66rsedc/2i0V3n2g/cPUz7gX4my1jmtp2ljXXZG2+8kaqj91gX/1yvYfclrG5Lx0BH15sl5rhrL72OXHtliZ2vx+COs37ceddvsmiNOfnBBx9s87Oov/3bv42vfe1rjdYZMGBAPP/887F58+bUv73xxhu2D0VElJeXR8THb5336dMnv7yuri7/mfLy8ti1a1ds27YtcQ+qq6uLMWPGFNz/vUVoFwAAAAAAAADAXunZs2cceeSRjf7XtWvXGD16dOzYsSOeeeaZ/Geffvrp2LFjR4NfeA8cODDKy8tj/vz5+WW7du2KhQsX5j8zYsSI2G+//RJ1ampq4sUXX2yWL9J5Ix0AAAAWb6QDAAAAras9zMmHDh0aX/rSl+KSSy6Jf/mXf4mIiP/v//v/4stf/nIcccQR+XpHHnlk3HDDDfHVr341OnToENOmTYvrr78+hgwZEkOGDInrr78+DjjggDj//PMj4uNfuFx00UXxrW99K3r06BHdu3ePb3/723H00UfHKaeckl9vdXV1vPnmm1FdXR0fffRRrFixIiIiDj/8cPvLrYbwRToAAAAAAAAAoNn8x3/8R1x66aUxYcKEiIg488wzY/bs2Yk6q1evToRVu+KKK+K9996LqVOnxrZt22LUqFHxyCOPJEIM/dM//VN06tQpzjvvvHjvvffi5JNPjjlz5iRCfv3DP/xD3Hvvvfny8ccfHxERjz32WIwfPz7zMfBFOgAAAKz28PYLAAAA0Ja1lzl59+7d47777tur7Xfo0CFmzpwZM2fObPAzXbt2jdtuuy1uu+22BuvMmTMn5syZsze7a/FFOgAAAICS0bNnz3yiNZdsVBPkucRdWZJcapI6l8BPk8u5BHSaFM7V0eRjum2XQFLX445BE6G55I+agFHbLyKdrM0lv8vSXtoWuh6XDNLtj8qSnE3bwiV9dYkc1datWxNll/Bz8ODBje6f+4y2lybry0r7hTtX+hN118Z6bWkSQtfmmji0R48eqTp67a1fvz5VR8+NS2zqEv8pva7cT/O1z2nSRneutI7rN7rMjVWapG/Lli2pOnpu3BdYui2XOFHrZEnAqG3jtq39za1Xxya3f8UkA3bjovZLPYYsSTjdOKnjm6uj23btpX3SjZPaXq5N9RrR9WZJaKwJaCPS7e76v54rty3ty5pkOCJbolr9nF5HLjGlcv1E29jdl/XYDzjggFSdQonCXR2XbLT+2JTl2kRpI9koAAAAAAAAAACN4I10AAAAWO3lZ6QAAABAW8WcvHTwRjoAAAAAAAAAAI3gjXQAAABYvP2C1tCjR498fFMXs1Rj2bq421likGocZBcHVuu4eNQay9bFUC0Ul9nF0S0rK0uUXbzbLLFZNS6txn2PSMeTdfGBdZ9djGO9jjXWbpaYvTt27Ci4bdcv9Ny4GOl6XK6faBzwLHFzs8QX79atW6Ls4gXret3+af/SONwR6fji7hi0r2i/cLGTdX/cuK2fc8epy9x1pet229Jz7PII6DnX9nP9WMcUjZsfkY7trOfX7Z+7PvUacfGe9di1v0Wkz7kel2s/bRvXl/Scu/Op++POg27ftbuODy4+tvZTPQYXJ19j+bv2y3KcWa5P7f8udr62hd4fItJ9Ra9hl0NA7yNuvdruri2037ocC3ofdvH/9Rpx46KuW/uguzdmkSWvhq7bjXl6XWfJYZAll0oxmJOXDt5IBwAAAAAAAACgEbyRDgAAAIu3XwAAAIDWxZy8dPBGOgAAAAAAAAAAjeCNdAAAAFi8/QIAAAC0LubkpYMv0gEAANAm3XHHHXHzzTdHTU1NHHXUUTFr1qwYO3Zsg/UXLlwY06dPj5UrV0ZFRUVcccUVMWXKlESdhx56KK6++upYu3ZtDB48OK677rr46le/ulfbzeVycc0118Tdd98d27Zti1GjRsXtt98eRx11VNM2QDvVtWvXfLI6lxhTE7y5RIWa2MslXdMkay5BmCYsc9vSfXTrKZSksXfv3qnPdO/ePVF2Cfx0/1zyO02a59aTJemaS5SotH0OOuigvd62S7aobewSiWrSOnfOdf/ctnQ9blu6P9rGLuGhJgt88803U3U04a37MkPXo20ckU5w6JIF6jnWpI0uWZ9rC6Xn07WF0sSFbj3uOHV/3D7rcbo+qHSfa2trU3V0/HBtrAkhNfliRHqscmOM9pUsX3Lp/rikjbotl7hZl7nj1HEnS/JMl3xR98edKz2fum2XKFkTWLrj1PPp+mSW/q/jv+uTOl649WrSY+077rrStnDHoG3s+pImfHZ9Mku763rcOdf1aP9yyVp1/HX9TY89S7917VVorI/Ilki0/npce6JtIbQLAAAA2py5c+fGtGnT4sorr4zly5fH2LFjY+LEiVFdXW3rV1VVxemnnx5jx46N5cuXx/e+97249NJL46GHHsrXWbx4cUyaNCkmT54czz33XEyePDnOO++8ePrpp/dquzfddFPccsstMXv27Hj22WejvLw8Tj311NSXZAAAAADaDr5IBwAAQINyuVyL/Le3brnllrjooovi4osvjqFDh8asWbOisrIy7rzzTlv/rrvuin79+sWsWbNi6NChcfHFF8eFF14YP/zhD/N1Zs2aFaeeemrMmDEjjjzyyJgxY0acfPLJMWvWrMzbzeVyMWvWrLjyyivj7LPPjuHDh8e9994b7777btx///17fZwAAABAqc7J9zWEdgni/wAAgH1DW5jz7Ny5M1Hu0qVL6ifhu3btiqVLl8Z3v/vdxPIJEybEk08+ade7ePHimDBhQmLZaaedFvfcc0988MEHsd9++8XixYvj8ssvT9XZ80V6lu1WVVVFbW1tYltdunSJcePGxZNPPhnf/OY3C7TAvmtP/6z/E3EXqkR/Qp4ltIv72bmu220rS2gX5eroevRadD//d/usshyD/hTdjQP6Obc/bt1Kj12PwR2TLnPbyRIuIUvIH+XWo8uybEuPwbVxluPUbbkwQbosSygh1+6FzlWWtslyDG49yh1DofW67WcJQaF1shynO5/F9EnXXrruYtu00LbcZ7Qtslzjbj3aFm49xfTJYraV5Z6RZf+y9Ntiz3mhz2RZT7H3qyzHmWU9WfptlnuPLtNQKi68WzFjaZY6We6NTdG/9vz/tjAnh8cX6RGxdevW1t4FAACAZvfWW29Ft27dCtbr3LlzlJeX27iwzenTn/50VFZWJpZ9//vfj5kzZyaWbdmyJT766KMoKytLLC8rK2twn2tra239Dz/8MLZs2RJ9+vRpsM6edWbZ7p7/dXVef/31hg4d8b9z8nnz5rXyngBtx7Zt21LLXnvttVbYk32LhuravHlzK+3Jx1avXt2q228tDYVzQ8t6+eWXW3sX2pxSn5OXl5dnyguwL+KL9PjfRD7V1dWZOjL23s6dO6OysjLWr1+fSvaBpkEbtwzaufnRxs2PNm5+pdbGuVwu3nrrraioqMhUv2vXrlFVVWXfBGpOuVwu9eZTYwkOXdKsxt5CbSjJVv3lWdbZVHWQxJy8+ZXa2NRe0c7NjzZufrRx86ONm1+ptXFbmZN37tzZJmkFX6RHxP/+5KRbt24lcWG1ZwcffDBt3Mxo45ZBOzc/2rj50cbNr5TaeG+/mOzatWvJTqB79uwZHTt2TL2dU1dXl3oTfA/3Nk9dXV106tQpevTo0WidPevMst3y8vKI+PjN9D59+mTaN3yMOXnLKaWxqT2jnZsfbdz8aOPmRxs3v1Jq4/Y0J98XkWwUAAAAbUrnzp1jxIgRMX/+/MTy+fPnx5gxY+xnRo8enar/yCOPxMiRI2O//fZrtM6edWbZ7sCBA6O8vDxRZ9euXbFw4cIG9w0AAABA6eONdAAAALQ506dPj8mTJ8fIkSNj9OjRcffdd0d1dXVMmTIlIiJmzJgRGzdujJ/85CcRETFlypSYPXt2TJ8+PS655JJYvHhx3HPPPfHAAw/k13nZZZfFiSeeGDfeeGOcddZZ8fOf/zwWLFgQixYtyrzdDh06xLRp0+L666+PIUOGxJAhQ+L666+PAw44IM4///wWbCEAAAAATYkv0uPj2Jvf//73G43BiU+GNm5+tHHLoJ2bH23c/Gjj5kcbN79JkybF1q1b49prr42ampoYPnx4zJs3L/r37x8RETU1NYkkZAMHDox58+bF5ZdfHrfffntUVFTErbfeGuecc06+zpgxY+LBBx+Mq666Kq6++uoYPHhwzJ07N0aNGpV5uxERV1xxRbz33nsxderU2LZtW4waNSoeeeSROOigg1qgZdourpvmRxu3DNq5+dHGzY82bn60cfOjjdHUOuT2ZFkCAAAAAAAAAAApxEgHAAAAAAAAAKARfJEOAAAAAAAAAEAj+CIdAAAAAAAAAIBG8EU6AAAAAAAAAACN2Oe/SL/jjjti4MCB0bVr1xgxYkT8/ve/b+1darNuuOGG+OxnPxsHHXRQ9O7dO77yla/E6tWrE3VyuVzMnDkzKioqYv/994/x48fHypUrW2mP274bbrghOnToENOmTcsvo42bxsaNG+Mv/uIvokePHnHAAQfEcccdF0uXLs3/O+38yXz44Ydx1VVXxcCBA2P//fePQYMGxbXXXhu7d+/O16GN984TTzwRZ5xxRlRUVESHDh3iv//7vxP/nqU933///fi7v/u76NmzZxx44IFx5plnxoYNG1rwKEpbY238wQcfxHe+8504+uij48ADD4yKior4xje+EZs2bUqsgzYGGsa8vGkwJ295zMmbD3Py5sWcvOkxJ28ZzMvRWvbpL9Lnzp0b06ZNiyuvvDKWL18eY8eOjYkTJ0Z1dXVr71qbtHDhwvibv/mbeOqpp2L+/Pnx4YcfxoQJE+Kdd97J17npppvilltuidmzZ8ezzz4b5eXlceqpp8Zbb73VinveNj377LNx9913xzHHHJNYTht/ctu2bYvPf/7zsd9++8Wvf/3reOmll+JHP/pRHHLIIfk6tPMnc+ONN8Zdd90Vs2fPjlWrVsVNN90UN998c9x22235OrTx3nnnnXfi2GOPjdmzZ9t/z9Ke06ZNi4cffjgefPDBWLRoUbz99tvx5S9/OT766KOWOoyS1lgbv/vuu7Fs2bK4+uqrY9myZfGzn/0sXnnllTjzzDMT9WhjwGNe3nSYk7cs5uTNhzl582NO3vSYk7cM5uVoNbl92AknnJCbMmVKYtmRRx6Z++53v9tKe9S+1NXV5SIit3Dhwlwul8vt3r07V15envvHf/zHfJ0//vGPuW7duuXuuuuu1trNNumtt97KDRkyJDd//vzcuHHjcpdddlkul6ONm8p3vvOd3Be+8IUG/512/uT+9E//NHfhhRcmlp199tm5v/iLv8jlcrTxJxURuYcffjhfztKe27dvz+233365Bx98MF9n48aNuU996lO53/zmNy22722FtrHzzDPP5CIi9/rrr+dyOdoYaAzz8ubDnLz5MCdvXszJmx9z8ubFnLxlMC9HS9pn30jftWtXLF26NCZMmJBYPmHChHjyySdbaa/alx07dkRERPfu3SMioqqqKmpraxNt3qVLlxg3bhxtvpf+5m/+Jv70T/80TjnllMRy2rhp/OIXv4iRI0fGn/3Zn0Xv3r3j+OOPj3/913/N/zvt/Ml94QtfiEcffTReeeWViIh47rnnYtGiRXH66adHBG3c1LK059KlS+ODDz5I1KmoqIjhw4fT5kXasWNHdOjQIf/mHG0MeMzLmxdz8ubDnLx5MSdvfszJWxZz8tbDvBxNpVNr70Br2bJlS3z00UdRVlaWWF5WVha1tbWttFftRy6Xi+nTp8cXvvCFGD58eEREvl1dm7/++ustvo9t1YMPPhjLli2LZ599NvVvtHHTeO211+LOO++M6dOnx/e+97145pln4tJLL40uXbrEN77xDdq5CXznO9+JHTt2xJFHHhkdO3aMjz76KK677rr4+te/HhH05aaWpT1ra2ujc+fOceihh6bqcF/ce3/84x/ju9/9bpx//vlx8MEHRwRtDDSEeXnzYU7efJiTNz/m5M2POXnLYk7eOpiXoynts1+k79GhQ4dEOZfLpZZh7/3t3/5tPP/887Fo0aLUv9HmxVu/fn1cdtll8cgjj0TXrl0brEcbfzK7d++OkSNHxvXXXx8REccff3ysXLky7rzzzvjGN76Rr0c7F2/u3Llx3333xf333x9HHXVUrFixIqZNmxYVFRVxwQUX5OvRxk2rmPakzffeBx98EF/72tdi9+7dcccddxSsTxsDH2PMb3rMyZsHc/KWwZy8+TEnbx3MyVsO83I0tX02tEvPnj2jY8eOqb801dXVpf46iL3zd3/3d/GLX/wiHnvssejbt29+eXl5eUQEbf4JLF26NOrq6mLEiBHRqVOn6NSpUyxcuDBuvfXW6NSpU74daeNPpk+fPjFs2LDEsqFDh+YTntGXP7m///u/j+9+97vxta99LY4++uiYPHlyXH755XHDDTdEBG3c1LK0Z3l5eezatSu2bdvWYB0U9sEHH8R5550XVVVVMX/+/PxbLxG0MdAQ5uXNgzl582FO3jKYkzc/5uQtizl5y2Jejuawz36R3rlz5xgxYkTMnz8/sXz+/PkxZsyYVtqrti2Xy8Xf/u3fxs9+9rP43e9+FwMHDkz8+8CBA6O8vDzR5rt27YqFCxfS5hmdfPLJ8cILL8SKFSvy/40cOTL+/M//PFasWBGDBg2ijZvA5z//+Vi9enVi2SuvvBL9+/ePCPpyU3j33XfjU59K3oI6duwYu3fvjgjauKllac8RI0bEfvvtl6hTU1MTL774Im2e0Z7J+quvvhoLFiyIHj16JP6dNgY85uVNizl582NO3jKYkzc/5uQtizl5y2FejmbTsrlNS8uDDz6Y22+//XL33HNP7qWXXspNmzYtd+CBB+bWrVvX2rvWJv31X/91rlu3brnHH388V1NTk//v3Xffzdf5x3/8x1y3bt1yP/vZz3IvvPBC7utf/3quT58+uZ07d7binrdt48aNy1122WX5Mm38yT3zzDO5Tp065a677rrcq6++mvuP//iP3AEHHJC777778nVo50/mggsuyB122GG5X/3qV7mqqqrcz372s1zPnj1zV1xxRb4Obbx33nrrrdzy5ctzy5cvz0VE7pZbbsktX748n5k+S3tOmTIl17dv39yCBQtyy5Yty33xi1/MHXvssbkPP/ywtQ6rpDTWxh988EHuzDPPzPXt2ze3YsWKxH3w/fffz6+DNgY85uVNhzl562BO3vSYkzc/5uRNjzl5y2BejtayT3+Rnsvlcrfffnuuf//+uc6dO+f+5E/+JLdw4cLW3qU2KyLsf//+7/+er7N79+7c97///Vx5eXmuS5cuuRNPPDH3wgsvtN5OtwM6aaeNm8Yvf/nL3PDhw3NdunTJHXnkkbm777478e+08yezc+fO3GWXXZbr169frmvXrrlBgwblrrzyysTEhjbeO4899pgdgy+44IJcLpetPd97773c3/7t3+a6d++e23///XNf/vKXc9XV1a1wNKWpsTauqqpq8D742GOP5ddBGwMNY17eNJiTtw7m5M2DOXnzYk7e9JiTtwzm5WgtHXK5XK7p33MHAAAAAAAAAKB92GdjpAMAAAAAAAAAkAVfpAMAAAAAAAAA0Ai+SAcAAAAAAAAAoBF8kQ4AAAAAAAAAQCP4Ih0AAAAAAAAAgEbwRToAAAAAAAAAAI3gi3QAAAAAAAAAABrBF+kAAAAAAAAAADSCL9IBtDvjx4+PadOmtZn1NrV169ZFhw4dYsWKFa29KwAAANhHMSdnTg4A7U2n1t4BAGgrfvazn8V+++3XYtt7/PHH46STTopt27bFIYcc0mLbBQAAAEoVc3IAQGvhi3QAKOCDDz6I/fbbL7p3797auwIAAADsk5iTAwBaG6FdALRLu3fvjiuuuCK6d+8e5eXlMXPmzPy/VVdXx1lnnRWf/vSn4+CDD47zzjsvNm/enP/3mTNnxnHHHRc//vGPY9CgQdGlS5fI5XKJn5E+/vjj0aFDh9R/f/mXf5lfz5133hmDBw+Ozp07xxFHHBE//elPE/vYoUOH+Ld/+7f46le/GgcccEAMGTIkfvGLX0TExz8FPemkkyIi4tBDD02s+ze/+U184QtfiEMOOSR69OgRX/7yl2Pt2rVFtdO1114bFRUVsXXr1vyyM888M0488cTYvXt3UesEAAAAIpiTZ8WcHADaBr5IB9Au3XvvvXHggQfG008/HTfddFNce+21MX/+/MjlcvGVr3wl3nzzzVi4cGHMnz8/1q5dG5MmTUp8fs2aNfGf//mf8dBDD9m4hmPGjImampr8f7/73e+ia9euceKJJ0ZExMMPPxyXXXZZfOtb34oXX3wxvvnNb8Zf/dVfxWOPPZZYzzXXXBPnnXdePP/883H66afHn//5n8ebb74ZlZWV8dBDD0VExOrVq6Ompib++Z//OSIi3nnnnZg+fXo8++yz8eijj8anPvWp+OpXv1rUJPvKK6+MAQMGxMUXXxwREXfddVc88cQT8dOf/jQ+9SluEQAAACgec/JsmJMDQBuRA4B2Zty4cbkvfOELiWWf/exnc9/5zndyjzzySK5jx4656urq/L+tXLkyFxG5Z555JpfL5XLf//73c/vtt1+urq4utd7LLrsstb0tW7bkBg8enJs6dWp+2ZgxY3KXXHJJot6f/dmf5U4//fR8OSJyV111Vb789ttv5zp06JD79a9/ncvlcrnHHnssFxG5bdu2NXq8dXV1uYjIvfDCC7lcLperqqrKRURu+fLljX5uj7Vr1+YOOuig3He+853cAQcckLvvvvsyfQ4AAABoCHNy5uQA0N7wp00A7dIxxxyTKPfp0yfq6upi1apVUVlZGZWVlfl/GzZsWBxyyCGxatWq/LL+/ftHr169Cm7ngw8+iHPOOSf69euXfzslImLVqlXx+c9/PlH385//fGIbup8HHnhgHHTQQVFXV9foNteuXRvnn39+DBo0KA4++OAYOHBgRHz889hiDBo0KH74wx/GjTfeGGeccUb8+Z//eVHrAQAAAOpjTp4dc3IAKH0kGwXQLu23336JcocOHWL37t2Ry+WiQ4cOqfq6/MADD8y0nb/+67+O6urqePbZZ6NTp+SQqttx225oPxtzxhlnRGVlZfzrv/5rVFRUxO7du2P48OGxa9euTPvsPPHEE9GxY8dYt25dfPjhh6ljAfD/t3PHIFWuYRzA/6dBEMI4KIk4BG5Hw0FEGqICT0O6OLno0HiSA9JgOLSIUwiRQ4MuOXYWCW10aBA3V92PDiKEJI3KacpL93YPnS7cSn8/+Jb3hed9+KY/z/fyAQCtkslbI5MD/N7cSAeulP7+/tTr9RwcHFys7e3t5dOnTymVSi3VevnyZWq1WjY2NtLZ2fnNXqlUyvb29jdrOzs7LZ3R1taWJDk/P79Y+/jxY/b39/P8+fOMjo6mVCrl5OSkpb7/rlarZX19PR8+fMjBwUEWFxf/Uz0AAGhGJv8nmRzg9+fzJnCllMvlDA4OZmpqKq9evcrZ2VlmZmZy//79DA8P/3Cdra2tPHv2LK9fv05XV1eOjo6SJO3t7blx40bm5uYyOTmZoaGhjI6OZnNzM+vr69na2vrhM27dupVCoZD3799nbGws7e3tKRaL6ezszOrqanp6elKv1zM/P9/ye/jq8PAwT548yYsXL3L37t2sra1lfHw8jx49yp07d366LgAA/BuZ/FsyOcCfwY104EopFAp59+5disVi7t27l3K5nL6+vtRqtZbqbG9v5/z8PJVKJT09PRfP7OxskmRiYiLLy8tZWlrKwMBAVlZW8ubNmzx48OCHz+jt7c3CwkLm5+fT3d2darWaa9eu5e3bt9nd3c3t27fz9OnTLC0ttdT7V41GI48fP87IyEiq1WqS5OHDh6lWq5mens7nz59/qi4AADQjk/9FJgf4cxQajUbjVzcBAAAAAAC/KzfSAQAAAACgCYN0gEusUqnk+vXr330qlcqvbg8AAC49mRzgcvBrF4BL7Pj4OKenp9/d6+joyM2bN//njgAA4GqRyQEuB4N0AAAAAABowq9dAAAAAACgCYN0AAAAAABowiAdAAAAAACaMEgHAAAAAIAmDNIBAAAAAKAJg3QAAAAAAGjCIB0AAAAAAJr4Ahk2c5nrhOC8AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 17, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "\n", + "#%% Load data\n", + "ground_truth = dataexample.SIMULATED_SPHERE_VOLUME.get()\n", + "\n", + "data = dataexample.SIMULATED_CONE_BEAM_DATA.get()\n", + "twoD = True\n", + "if twoD:\n", + " data = data.get_slice(vertical='centre')\n", + " ground_truth = ground_truth.get_slice(vertical='centre')\n", + "\n", + "absorption = TransmissionAbsorptionConverter()(data)\n", + "absorption = Slicer(roi={'angle':(0, -1, 5)})(absorption)\n", + "\n", + "ig = ground_truth.geometry\n", + "\n", + "#%%\n", + "recon = FDK(absorption, image_geometry=ig).run()\n", + "#%%\n", + "show2D([ground_truth, recon], title = ['Ground Truth', 'FDK Reconstruction'], origin = 'upper', num_cols = 2)\n", + "\n", + "# %%\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Default behaviour " + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "6355b4a0be0c4297a02f41b49e6f7e3d", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + " 0%| | 0/500 [00:00" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "\n", + "\n", + "alpha=0.1\n", + "A = ProjectionOperator(image_geometry=ig, \n", + " acquisition_geometry=absorption.geometry)\n", + "\n", + "F = LeastSquares(A = A, b = absorption)\n", + "G = alpha*TotalVariation(lower=0)\n", + "\n", + "algo=FISTA(initial=ig.allocate(0), f=F, g=G)\n", + "algo.run(500)\n", + "show2D([ground_truth, recon, algo.solution], title = ['Ground Truth', 'FDK Reconstruction', 'TV solution'], origin = 'upper', num_cols = 3)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Other provided CIL callbacks " + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "43acfefb45534d8093aa0174846f19eb", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + " 0%| | 0/500 [00:00" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "algo=FISTA(initial=ig.allocate(0), f=F, g=G, update_objective_interval=10)\n", + "algo.run(500, callbacks=[callbacks.ProgressCallback(), callbacks.TextProgressCallback()])\n", + "show2D([ground_truth, recon, algo.solution], title = ['Ground Truth', 'FDK Reconstruction', 'TV solution'], origin = 'upper', num_cols = 3)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "6d4cfa5b60cf48b7acfd008e3c40655f", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + " 84%|########3 | 501/600 [00:00" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 21, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "class EarlyStopping(callbacks.Callback):\n", + " def __call__(self, algorithm):\n", + " if algorithm.objective[-1] <= 2e-1: # arbitrary stopping criterion\n", + " raise StopIteration\n", + "\n", + "algo=FISTA(initial=ig.allocate(0), f=F, g=G, update_objective_interval=10) \n", + "algo.run(500, callbacks=[callbacks.TextProgressCallback(), EarlyStopping()])\n", + "show2D([ground_truth, recon, algo.solution], title = ['Ground Truth', 'FDK Reconstruction', 'TV solution'], origin = 'upper', num_cols = 3)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 0/500 ?it/s\n", + " 10/500 23.79it/s, objective=+8.586e+01\n", + " 20/500 26.96it/s, objective=+9.047e+00\n", + " 23/500 26.89it/s\n", + "\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABdEAAAGnCAYAAABYYR7FAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9eZydVZktjq9TVWeeakxVZSrCIEMAUYIYbA2ooGDbNILihKhISwe8CPblKyCSOCHo5cZWQbAZHJrhepGmnZA4EEWiN4AIzdQODIGMVZWaTtU5p4b390d+a2edp95TqUoqSSXZ6/OpT1Wd8w5773e/+9nPetZ+diQIggAeHh4eHh4eHh4eHh4eHh4eHh4eHh4eHuNQs6cL4OHh4eHh4eHh4eHh4eHh4eHh4eHh4TFT4Ul0Dw8PDw8PDw8PDw8PDw8PDw8PDw8PjyrwJLqHh4eHh4eHh4eHh4eHh4eHh4eHh4dHFXgS3cPDw8PDw8PDw8PDw8PDw8PDw8PDw6MKPInu4eHh4eHh4eHh4eHh4eHh4eHh4eHhUQWeRPfw8PDw8PDw8PDw8PDw8PDw8PDw8PCoAk+ie3h4eHh4eHh4eHh4eHh4eHh4eHh4eFSBJ9E9PDw8PDw8PDw8PDw8PDw8PDw8PDw8qsCT6B4eHh4eHh4eHh4eHh4eHh4eHh4eHh5V4El0j30aTzzxBM477zwcdNBBSCaTSCaTOOSQQ/Dxj38cjzzyyJ4u3k4hEolg2bJlVb8/8cQTEYlEtvsz0TUmg8HBQSxbtgwPPvjguO+WLVuGSCSCzs7OnbqHh4eHh8eew+23317VhvzLv/yLO+6AAw5wn9fU1CCfz+Pwww/Hhz70ITzwwAOh145EIrjooovGfX711VcjEongn//5nzE2Nla1bHrPSCSCdDqN1772tfjGN76BIAh2vvIzCE8//TSWLVuGF154YY+VYd26dVi2bBkef/zxcd/R5nt4eHh4eCgm45NGIhF87WtfQyQSwf3331/1Wt/+9rcRiUTwwx/+cLeU/cMf/jAOOOCAHTr34YcfxrJly9DT0zPuuxNPPBEnnnjiTpXNw8Nj96NuTxfAw2NX4aabbsJFF12EQw89FBdffDEWLlyISCSCZ555BnfeeSeOO+44/OUvf8FBBx20p4u6S3DDDTegr6/P/f+Tn/wEX/jCF3DbbbfhsMMOc5/PnTt3p+4zODiI5cuXA4CfCHh4eHjsw7D2AwBmz55d8f8b3vAGfPWrXwUADAwM4LnnnsNdd92Ft73tbTjzzDNx5513IhqNVr1HEAS4+OKL8fWvfx2f/vSncc0112y3XHrPdevW4frrr8cnPvEJ9PX14YorrphqNWcsnn76aSxfvhwnnnjiDjv0O4t169Zh+fLlOOCAA3DMMcdUfPexj30Mb3/72/dIuTw8PDw8Zi5Wr15d8f/nP/95/PrXv8avfvWris/b29vx//1//x9uvfXWqvbktttuQ0tLC975znfusvJOFx5++GEsX74cH/7wh1FfX1/x3Q033LBnCuXh4bFT8CS6xz6J3/3ud1i6dCne8Y534P/+3/+LWCzmvnvzm9+MCy+8ED/4wQ+QTCYnvM7g4CBSqdSuLu4uwRFHHFHx/7PPPgsAOPLII7Fo0aKq5+3Ndfbw8PDw2HXYnv0AgPr6erz+9a93/7/1rW/FhRdeiGXLlmH58uX4zGc+g2uvvTb03JGREXz0ox/F9773PXzlK1+pULlP9Z7z58/HTTfdtE+R6FPF7rbnc+fO3enAvIeHh4fHvge10QDQ0tKCmpqacZ8DwOmnn47/+I//QFdXF5qamiq+e/bZZ7F69Wp86lOfmjAgvzfA+uoeHh57B3w6F499El/60pdQW1uLm266qYJAV7z73e+uUNB9+MMfRiaTwZNPPolTTjkF2WwWb3nLWwAA3d3dWLp0KebMmYNYLIYDDzwQV155JUqlkjv/hRdeQCQSwe233z7uXjZtCpc8P/XUU3jf+96HfD6P1tZWfPSjH0Vvb2/FuX19fTj//PPR1NSETCaDt7/97fjv//7vnWidbWA5HnvsMZx11lloaGhwyvxqS8x0SdsLL7yAlpYWAMDy5cvdUrwPf/jDFeds3Lhxu/X08PDw8Nh3sWzZMixcuBDf+MY3UCwWx31fLBZx5pln4o477sC//du/TZpAD0Mul8OrXvUqbNy4seLzcrmML3zhCzjssMMQj8fR0tKCj3zkI9i8efO4a9xxxx1YvHgxMpkMMpkMjjnmGNxyyy0Vx9x666149atfjUQigcbGRpxxxhl45plnKo7h3OIvf/kLTjvtNGQyGcybNw+f+tSnKuYQAHDjjTfi1a9+NTKZDLLZLA477DAXBLj99tvx7ne/GwBw0kknOXvLOceJJ56II488Er/5zW9wwgknIJVK4aMf/SiA6unfDjjggHH2+pVXXsE//dM/Yd68eYjFYpg9ezbOOussbNy4EQ8++CCOO+44AMBHPvKRcWnhwtK5jI2N4brrrnNtPmvWLHzoQx/Cyy+/XHEcy79mzRq88Y1vRCqVwoEHHogvf/nLE6bz8fDw8PDYt3DeeeehXC7jjjvuGPfdbbfdBgDOvlXD3/72N7z3ve/F7NmzEY/H0draire85S0Vqcgma58sJuvzL1u2DP/zf/5PAMCCBQuczWQK1DBfezKcA+9z0UUX4Xvf+x4OP/xwpFIpvPrVr8aPf/zjCcvu4eGx8/BKdI99DqOjo/j1r3+NRYsWob29fUrnlstl/MM//AM+/vGP49Of/jRGRkZQLBZx0kkn4a9//SuWL1+Oo48+Gr/97W9xzTXX4PHHH8dPfvKTHS7rmWeeibPPPhvnnXcennzySVx++eUAtjrmwNZl7f/4j/+Ihx9+GJ/97Gdx3HHH4Xe/+x1OPfXUHb5nGN71rnfhve99Ly644AIUCoVJn9fe3o77778fb3/723HeeefhYx/7GAA4Yp3YXj09PDw8PGY+RkdHMTIyUvFZXd3kp5LvfOc78eUvfxmPPPII/u7v/s593t/fj1NPPRUPP/ww7r77bpx55pk7Vc6RkRGsXbsWr3rVq9xnY2NjOP300/Hb3/4Wl112GU444QS8+OKLuPrqq3HiiSfikUcecavTPvvZz+Lzn/883vWud+FTn/oU8vk8/uu//gsvvviiu94111yDK664Au973/twzTXXoKurC8uWLcPixYuxZs0aHHLIIe7Y4eFh/MM//APOO+88fOpTn8JvfvMbfP7zn0c+n8dnP/tZAMBdd92FpUuX4hOf+AS++tWvoqamBn/5y1/w9NNPAwDe8Y534Etf+hKuuOIKfPOb38RrX/taAKhISbd+/Xp88IMfxGWXXYYvfelLqKmZmlbmlVdewXHHHYfh4WFcccUVOProo9HV1YWf//zn2LJlC1772tfitttuw0c+8hF85jOfwTve8Q4AE6eF++d//mfcfPPNuOiii/D3f//3eOGFF3DVVVfhwQcfxGOPPYbm5mZ37IYNG/CBD3wAn/rUp3D11Vfj3nvvxeWXX47Zs2fjQx/60JTq4uHh4eGxd+Ktb30rOjo6cOutt+ITn/iE+3x0dBTf+9738PrXv367Ku7TTjsNo6OjuO666zB//nx0dnbi4YcfrshNPhX7tCP42Mc+hu7ubnz961/HD3/4Q8dLVCv7VDmHn/zkJ1izZg0+97nPIZPJ4LrrrsMZZ5yB5557DgceeOBOld3Dw2MCBB4e+xg2bNgQAAje+973jvtuZGQkGB4edj9jY2Puu3PPPTcAENx6660V53zrW98KAAT/5//8n4rPr7322gBA8MADDwRBEATPP/98ACC47bbbxt0XQHD11Ve7/6+++uoAQHDddddVHLd06dIgkUi4cv3sZz8LAARf+9rXKo774he/OO6a28Ntt90WAAjWrFkzrhyf/exnxx2/ZMmSYMmSJeM+P/fcc4OOjg73/+bNm6uWZbL19PDw8PCYuaD9CPsZHh52x3V0dATveMc7ql7nxhtvDAAEd999t/tMr3XzzTdPuWwdHR3Baaed5uz6iy++GJx//vlBNBoNfvzjH7vj7rzzzgBAcM8991Scv2bNmgBAcMMNNwRBEAR/+9vfgtra2uADH/hA1Xtu2bIlSCaTwWmnnVbx+UsvvRTE4/Hg/e9/v/uMcws7hzjttNOCQw891P1/0UUXBfX19RPW9Qc/+EEAIPj1r3897rslS5YEAIJf/vKX476rZqM7OjqCc8891/3/0Y9+NIhGo8HTTz9dtQxsr7C5Dm0+8cwzzwQAgqVLl1Yc94c//CEAEFxxxRXjyv+HP/yh4tgjjjgieNvb3la1PB4eHh4eex/OPffcIJ1OV/2e9uSxxx5zn/3oRz8KAATf/va3J7x2Z2dnACBYsWJF1WOmYp+s7zsVn/8rX/lKACB4/vnnxx1rfe3Jcg68T2tra9DX1+c+27BhQ1BTUxNcc801Vevt4eGx8/DpXDz2Kxx77LGIRqPu53/9r/817hirgPvVr36FdDqNs846q+JzLoH+5S9/ucPl+Yd/+IeK/48++mgUi0Vs2rQJAPDrX/8aAPCBD3yg4rj3v//9O3zPMOys6m972F49PTw8PDxmPr773e9izZo1FT9TUaIHQRD6+Rvf+EbU19dj+fLl+Mtf/jLlcv30pz91dr2jowPf/va38fWvf90ppQHgxz/+Merr6/HOd74TIyMj7ueYY45BW1ubW169cuVKjI6O4sILL6x6v9WrV2NoaGhcKpR58+bhzW9+87h5QSQSGbcB2tFHH12hbH/d616Hnp4evO9978N9992Hzs7OKbdDQ0MD3vzmN0/5POJnP/sZTjrpJBx++OE7fA0F5zC2nV73utfh8MMPH9dObW1teN3rXlfxmW0nDw8PD499Hx/5yEdQU1NTsWr5tttuQzqdxtlnnz3huY2NjTjooIPwla98Bddffz3++Mc/jksLNlX7tDswVc7hpJNOQjabdf+3trZi1qxZ3mZ6eOxieBLdY59Dc3MzkslkqAG54447sGbNGvznf/5n6LmpVAq5XK7is66uLrS1tY3L8zlr1izU1dWhq6trh8tqN0uJx+MAgKGhIXfvurq6cce1tbXt8D3DMNW0N1PF9urp4eHh4THzcfjhh2PRokUVP1MB7bLuRwJsJUp/8YtfYHBwEEuWLJnyvh9/93d/hzVr1uD3v/89vve97+GAAw7ARRddhIceesgds3HjRvT09CAWi1UE06PRKDZs2OBIa+ZHnyhFCe1+mO2cPXv2uHlBKpVCIpGo+Cwej1fkhj/nnHNw66234sUXX8SZZ56JWbNm4fjjj8fKlSsn3Q47a8s3b948rRuDTrWd7FwB2NpOfq7g4eHhsX+ho6MDb3nLW3DHHXegVCqhs7MTP/7xj/Hud7+7gjgOQyQSwS9/+Uu87W1vw3XXXYfXvva1aGlpwf/4H/8D/f39AKZun3YHpso5eJvp4bFn4El0j30OtbW1ePOb34xHHnkE69evr/juiCOOwKJFi3DUUUeFnmuNFrDVQG3cuHGcgm7Tpk0YGRlx+dLoINuNP3aWZB8ZGRl3jQ0bNuzwNcMQVu9EIjGuLgB2SB3n4eHh4bF/IwgC/OhHP0I6nQ4l34899lj84he/cDlBn3vuuUlfO5/PY9GiRTj++OPxwQ9+EA888ACi0SiWLl3q1GfNzc1oamoap6Tnzw033ABg254eE20sRsfVzjEAYN26dTucR/UjH/kIHn74YfT29uInP/kJgiDA3//9309aVRZmy4GtTnWYPbdzi5aWlu1uqDYV7Kp28vDw8PDY93Heeeehu7sb9913H77//e+jXC7jvPPOm9S5HR0duOWWW7BhwwY899xzuOSSS3DDDTe4jT53xj7tCp+fZZoM5+Dh4bFn4Ul0j30Sl19+OUZHR3HBBRdgeHh4p671lre8BQMDA/iP//iPis+/+93vuu+BrUuoEokEnnjiiYrj7rvvvh2+90knnQQA+Pd///eKz8N2K59uHHDAAfjv//7viglCV1cXHn744YrjvKrcw8PDw2N7WL58OZ5++mlcfPHF41TZxGtf+1r88pe/RKlUwkknnYRnn312h+51yCGH4LLLLsOTTz6Ju+++GwDw93//9+jq6sLo6Og4Nf2iRYtw6KGHAgBOOeUU1NbW4sYbb6x6/cWLFyOZTOL73/9+xecvv/wyfvWrX7l5wY4inU7j1FNPxZVXXolyuYynnnoKwI7b2wMOOGDc3ORXv/oVBgYGKj479dRT8etf/3rCAMZUysDUMrad1qxZg2eeeWan28nDw8PDY9/FP/7jP6KpqQm33norbrvtNrzqVa+q2JR8snjVq16Fz3zmMzjqqKPw2GOPAdg5+zQVn38qNnOynIOHh8eexeQTWXp47EV4wxvegG9+85v4xCc+gde+9rX4p3/6JyxcuBA1NTVYv3497rnnHgAYl7olDB/60IfwzW9+E+eeey5eeOEFHHXUUXjooYfwpS99Caeddhre+ta3AtiqAPvgBz+IW2+9FQcddBBe/epX4//9v/+3U4T3Kaecgje96U247LLLUCgUsGjRIvzud7/D9773vR2+5mRxzjnn4KabbsIHP/hBnH/++ejq6sJ11103rs2y2Sw6Ojpw33334S1veQsaGxvR3NyMAw44YJeX0cPDw8NjZqGnpwe///3vAQCFQgHPPfcc7rrrLvz2t7/Fe97zHixfvnzC84855hj88pe/xFve8hacdNJJ+NWvfrVDObr/5V/+Bd/61rewfPlyvOc978F73/te/Pu//ztOO+00XHzxxXjd616HaDSKl19+Gb/+9a9x+umn44wzzsABBxyAK664Ap///OcxNDSE973vfcjn83j66afR2dmJ5cuXo76+HldddRWuuOIKfOhDH8L73vc+dHV1Yfny5UgkErj66qunXN7zzz8fyWQSb3jDG9De3o4NGzbgmmuuQT6fx3HHHQcAOPLIIwEAN998M7LZLBKJBBYsWBC6pFtxzjnn4KqrrsJnP/tZLFmyBE8//TS+8Y1vIJ/PVxz3uc99Dj/72c/wpje9CVdccQWOOuoo9PT04P7778ell16Kww47DAcddBCSyST+/d//HYcffjgymQxmz549LkUPABx66KH4p3/6J3z9619HTU0NTj31VLzwwgu46qqrMG/ePFxyySVTbicPDw8Pj/0D8XgcH/jAB/D1r38dQRDgy1/+8qTOe+KJJ3DRRRfh3e9+Nw455BDEYjH86le/whNPPIFPf/rTAHbOPk3F5+fq96997Ws499xzEY1Gceihh4ampJks5+Dh4bGHsSd3NfXw2NV4/PHHg4985CPBggULgng8HiQSieDggw8OPvShDwW//OUvK46daJfwrq6u4IILLgja29uDurq6oKOjI7j88suDYrFYcVxvb2/wsY99LGhtbQ3S6XTwzne+M3jhhRfG7dTNHcc3b95ccf5tt902bgfvnp6e4KMf/WhQX18fpFKp4OSTTw6effbZcdfcHnjtNWvWbLccxHe+853g8MMPDxKJRHDEEUcEd99997gdyoMgCH7xi18Er3nNa4J4PB4ACM4999wp19PDw8PDY2YizH6EoaOjIwAQAAgikUiQyWSCQw89NDjnnHOCn//856HnAAguvPDCcZ//6U9/Cpqbm4PW1tbgqaeemvCe73jHO0K/++Y3vxkACL7zne8EQRAEw8PDwVe/+tXg1a9+dZBIJIJMJhMcdthhwcc//vHgz3/+c8W53/3ud4PjjjvOHfea17wmuO222yqO+bd/+7fg6KOPDmKxWJDP54PTTz99XFmrzS1oH4nvfOc7wUknnRS0trYGsVgsmD17dvCe97wneOKJJyrOW7FiRbBgwYKgtrY2AODKtGTJkmDhwoWh7VAqlYLLLrssmDdvXpBMJoMlS5YEjz/+eNDR0eHsNbF27drgox/9aNDW1hZEo1FXjo0bN7pj7rzzzuCwww4LotFoxVzE1ikIgmB0dDS49tprg1e96lVBNBoNmpubgw9+8IPB2rVrK46rVv6wOYeHh4eHx96NifxuxZ/+9KcAQFBbWxusW7duUtfeuHFj8OEPfzg47LDDgnQ6HWQymeDoo48O/vf//t/ByMiIO26y9inMDk3W5w+CILj88suD2bNnBzU1NQGA4Ne//nUQBFvt3pIlSyqOnSznUG3uFGbXPTw8pheRIDBJlzw8PDw8PDw8PDw8PDw8PDw8PDw8PDw8APic6B4eHh4eHh4eHh4eHh4eHh4eHh4eHh5V4Ul0Dw8PDw8PDw8PDw8PDw8PDw8PDw8PjyrwJLqHh4eHh4eHh4eHh4eHh4eHh4eHh4dHFewzJPoNN9yABQsWIJFI4Nhjj8Vvf/vbPV0kDw8PDw8Pj+3A228PDw8PD4+9D95+e3h4eHjsb9gnSPS7774bn/zkJ3HllVfij3/8I974xjfi1FNPxUsvvbSni+bh4eHh4eFRBd5+e3h4eHh47H3w9tvDw8PDY39EJAiCYE8XYmdx/PHH47WvfS1uvPFG99nhhx+Of/zHf8Q111yzB0vm4eHh4eHhUQ3efnt4eHh4eOx98Pbbw8PDw2N/RN2eLsDOolwu49FHH8WnP/3pis9POeUUPPzww6HnlEollEol9//Y2Bi6u7vR1NSESCSyS8vr4eHhsa8iCAL09/dj9uzZqKkJX+hULBZRLpd36j6xWAyJRGKnruGx5+Htt4eHh8fMwEy13zfccAO+8pWvYP369Vi4cCFWrFiBN77xjVWPX7VqFS699FI89dRTmD17Ni677DJccMEFFcfcc889uOqqq/DXv/4VBx10EL74xS/ijDPOCL3eNddcgyuuuAIXX3wxVqxYMely7+vw9tvDw8NjZmCm2u99GXs9id7Z2YnR0VG0trZWfN7a2ooNGzaEnnPNNddg+fLlu6N4Hh4eHvsd1q5di7lz5477vFgsYsGCBVXH5smira0Nzz//vDfkezm8/fbw8PCYWZhJ9pvpQm644Qa84Q1vwE033YRTTz0VTz/9NObPnz/u+Oeffx6nnXYazj//fHz/+9/H7373OyxduhQtLS0488wzAQCrV6/G2Wefjc9//vM444wzcO+99+I973kPHnroIRx//PEV11uzZg1uvvlmHH300TtV530R3n57eHh4zCzMJPu9r2OvJ9EJG8EOgqBqVPvyyy/HpZde6v7v7e0NnYx5eHh4eEwd2Ww29PNyuYwNGzbgpZdeQi6X26Fr9/X1Yf78+SiXy96I7yOYDvt9yimnYGxsDKVSCWNjYxgeHsbo6CgikQhisRhqa2uh2ev4fRAEGBsbc/cNggA1NTWIxWKIRqOora1FPB5HbW0tIpEIIpEIgiBAqVTCyMgISqUSCoUCRkZGEI/HUVdXh7q6OkSjUUSjUYyNjWF0dLTid01NjTu2XC5jaGjIlY3f895avrq6OtTW1ro68HMiGo2irq4OkUgE0WgUNTU1GB4edm0yOjrqyjA8PIyxsTEMDQ1hYGAAQRAgkUggFoshFoshl8shHo8jm82ivr4eNTU1rg3GxsZQLpcrzh8ZGcHQ0BCKxSJGRkbQ39+PkZERV7ba2lqk02nE43FEIhHU1W2dfpZKJRSLRdTW1iKfzyOZTLq6RiIRlEolDA4OuvqyzmwHtjfLV1dX554L+8PIyEhFPxgbG6soW01NDUZHR92xfH5U8/CZj4yMYGxsDHV1dYjFYu7zsH7MvsT2HhsbQ7FYxOjoqHtOLC/bghgZGcHo6GhFnWtqalx5tFzxeBzRaBSjo6PumbKfajsODw+7fspr8DnYd43X5D35vf5mm/PdYJsPDw+jr68P/f3948qqZWb78Scej7vxvFgsumsVCgUMDw8jmUwil8uhtrYWiUQC8Xi84n0vlUoYGhpy92Sb8vnwmerz4bvHtmZd8/k8EokEamtrEY1GXdn5DvX396NYLFb0R7YV+xbHsFgsVvE+K1hu3l/LxX5YW1vr2jkej1e8h+VyGaVSyfU1he0D6XQaqVTKnc92HhgYcH1/aGgIjzzyyIyy39dffz3OO+88fOxjHwMArFixAj//+c9x4403hqYL+da3voX58+c7xfjhhx+ORx55BF/96lcdib5ixQqcfPLJuPzyywFstSmrVq3CihUrcOedd7prDQwM4AMf+AC+/e1v4wtf+MIO1Xd/gPe/px8clznm7CgSiQTS6TRqa2vdWKJzEdrXsbGxcWPIVMHrq93gWDYZ0OaMjo5O+hyP7UPtbCQSqXhGbPORkRE3p2PfmApocznXmOh82jWdU+0K0H6zz7OP0z7vTdDnZuf2FjPJfu/r2OtJ9ObmZtTW1o6LrGzatGlcdJzgZNTDw8PDY/qxvWW5uVxuh424x76D6bTfSlaR5FUikuQ4QZKb3/P3yMhIBenFc0hk0hHh95FIBCMjI6itrXUEtJLkSl7TOaTDwe/r6uoc4aqkJbCNsARQUX4lVZVk5wSbhLEeUy6XxxEco6Oj7v7qtA8PDzsnuFwuVxDVLD/blGVneekAkwxmnVk3/ZvtxjLZNmAQg+RiJBIZRxjzOZKc1nLRYeO9eP8w4pqEpBLNdAxJQmjbK4nOY+iQ0lFj/YMgcPePxWKOEOUzIxHKsnPJLf9XUtRCz2P51GHmeUqgav20/7HN+by1nxH8jvXX/s2gD8ujfVDvSXJan4c+JyWR2F58t/g578PnnEqlKsrH91nfXb4LY2NjjpDX95/twefNcrKv8V58dy0JoH1Lz2dQjs9LgyM6Tmk7su9HIhEX4NI+wHZiO/B67I/armEkPo/htfj9TLHfO5IuZPXq1TjllFMqPnvb296GW265BcPDw4hGo1i9ejUuueSSccfYVC0XXngh3vGOd+Ctb32rJ9FDMN3+t44Tu4pYmyxsQHR3gmMug5M7Q3AzQMYxQOcSatc4Du1Mu2vgmOWdSrlVzOAxPQjrx2ovaKc12L8j7a9ij8key/5ixQjTCZ03hQWb9yaw3fRZhWGm2O/9AXs9iR6LxXDsscdi5cqVFfnsVq5cidNPP30PlszDw8PDIww7M5nZmydBHpWYTvut5Bf/J4lLdbQSgpbcA7aq0y2o1gLGk6okP+mYqnJUSSmea/su/yfhx89I5FKNyuuTYCNJbpVqdEj0/nV1dRXKLlXmAtuIZxKCqoLm5yTys9ksksmkCzLo/ZU4VhLT5mBkwMESqGx/1lnbjOVgGwwPD2NoaKhClU4iWNtPCXl1LJRM5vF0StgHSNhT9QzAqa55rCoE+dx5H5IfxWLRKe1JZFLJblcc8BlZ50jrxf9JArNN9Fh+Z1dZKEnCZ6dErPYjliOMeOVvrshg2anO5nNUMp7nKLGvgQ2Wh/dlWWKxmOunLAtVc6pki0ajSCQSFUEa7cvavtoOVvHJe5CQ1uCSElp2dYIGMGyQSD/T56jKMr4/9hp6vvYTS0Ro2+k1dEzk8ao4tNeZDKbDfvf19VV8Hkau7ki6kA0bNoQePzIygs7OTrS3t1c9Rq9511134bHHHsOaNWumVsH9CNNpv+1KL2DPEulalt0559RxkbZmZ8CxuKamBslk0tkdDZJy/N/Ze+3sNTi/8Zg+VAtm0I7rnHdn+rna1+1hdz9ntZE78z4rGb+7oQEHPrOdscHe/54e7PUkOgBceumlOOecc7Bo0SIsXrwYN998M1566aVxG8l4eHh4eOx5eCPuQUyX/Wa/INFEB1QVsduDTflir23/tgrfMAWIkufV1MRKwIURqNX+tpN6EmNhaUYmqr+WUQlbOh5WWR7WDkpeKqnIYIa2l4UqhPk/yXt7niW9+YzpmCkhqu0edj/+besymTGmGtEdRgKpAl/7gC2XPv+wvmAdz2pBmWqwfdEGkey1WJeJnEdte1VS6zVsfcOeh7UJ+m7Z+tlnr+cogU1oX+L/YWWz7WHfBf1Mj+H1daWDEui2v00WLJ8lF23ZJoL2PQs9f6KVDhOdN1XwvHnz5lV8fvXVV2PZsmWh59hyaZ+c7PH284muuXbtWlx88cV44IEH/JL17WBX+N82ULe/QvvtzhKcNk2Hrqzx2P+wPzz3iez2VDEVu72rMF1l8P739GGfINHPPvtsdHV14XOf+xzWr1+PI488Ej/96U/R0dGxp4vm4eHh4WHgjbgHMV32u1wuV5DZVK5STatKayX+lGCnwnsy4DUsQUUFrqpprbpMiTGWk2UhVHlNKNmsqh++E8wjbVM3aAoWVbGoIlbrpAQd80aTjKNSXFXZqsxnSgxeT/+nCk7LrasD+GxUWauKfn1ubA8uVyd5rmk8SIzZNCfavtq2LL8eq3nmw5S7YaS3qopjsZhT/ekqBu0/WoaJ+oLNMW9TmmibaX/hvWOxWGjAgPsDaJ+bSFVG9TRXBQwPD7u0P2EpTmzfZzvo82B76LOwbR2W/1NXM2ieep5HJSYDaxaWTOLffDbDw8Pu2dq0THb1BVdnMKUSUxVp8EQJLQUDVCyPVaGr0s+OYWHPR99J/qbivVrf350k+tq1ayuWlIel+NiRdCFtbW2hx9fV1aGpqWnCY3jNRx99FJs2bcKxxx7rvh8dHcVvfvMbfOMb33DpMTymz35zFYgGX4HxK2h2F3aWdNuZ+3IM5bjD8WBn3zuO8zpPsjbEw2NPQIO409UX2efZz3fkumEB7D0BXdGn4oEdKZf3v6cP1WUoexmWLl2KF154AaVSCY8++ije9KY37ekieXh4eHjMANxwww1YsGABEokEjj32WPz2t7+d8PhVq1bh2GOPRSKRwIEHHohvfetb44655557cMQRRyAej+OII47AvffeW/H9jTfeiKOPPtrln1u8eDF+9rOfVRwTBAGWLVuG2bNnI5lM4sQTT8RTTz218xXeyzAd9psOIrAtjzhTBCQSCZdT2JK2uqmgnqOpWZSEBcZPQtX5V1Wufh+26RavyVQUJGztfTRPMkEiT/MjDg8Pu00ZNfWE5nhWQprfq2LWqryZK5wbDw4NDWFwcNClKeGmnXTMSdbZ1CXMCU1SWRHWfqrstkRiWDswnYjWn20Tpra1bUrSkeVlHTT/N89TVZ+SHiSStYx8tny+JCuV+LZpVjT9CaH3CUvFYdXZ2r9Yb62XpvFhfnlNU6MKf/2c9+X1WW9bfy0Hy6CbwIapvnU1gb4zSvaTFLfX5/urG6Wyv9j3xN43TKkMYFy9bRvpD7BtTwL2c21vGzDQa9l2VxU7y6X9xT4jfR/s2MI20dzoNnDDZ6Mbr+5q0C7yp9o+F0wXoli5ciVOOOGE0OsuXrx43PEPPPAAFi1a5OpX7Rhe8y1veQuefPJJPP744+5n0aJF+MAHPoDHH3/cE+gG0+1/61isQefdicmu9NhV96ZdU7uws+AYzc28i8WiG/s9OeaxpzHd77l9j3aEQA9LB7gnoKn/wlbbeewZ7DMkuoeHh4fH3gF1UHbkZyq4++678clPfhJXXnkl/vjHP+KNb3wjTj31VLz00kuhxz///PM47bTT8MY3vhF//OMfccUVV+B//I//gXvuuccds3r1apx99tk455xz8Kc//QnnnHMO3vOe9+APf/iDO2bu3Ln48pe/jEceeQSPPPII3vzmN+P000+vIMmvu+46XH/99fjGN76BNWvWoK2tDSeffDL6+/un2KIeJJaUNFNy0uYIVjVWGKlFqIocCE/xoNdVx5+YiKhT8HwlvbaXtsCWxZLEWh9V7VqSNYwY4nW1PS0hqd9pWZTc1OtZUjsM1nGxba3L/fl9teuwLbRsLL8tu5KXGnQII31tnWzf0TKGEUFKfoddU3+rAiksRQxh+xyPCyNT7XmWjFeldTUSWX9bZbZtAy1vWDBJn7OS9GHvokKfka2D9gu9tgYhbLtp2+k9tcx6jPYTfafsqgftb2Hkt71PWLuEEfj2WfMa1RxuG2yZ7Nhk22d32e9LL70U//Zv/4Zbb70VzzzzDC655JKKdCGXX345PvShD7njL7jgArz44ou49NJL8cwzz+DWW2/FLbfcgn/5l39xxzBVy7XXXotnn30W1157LX7xi1/gk5/8JAAgm83iyCOPrPhJp9NoamrCkUceOaXye0wetp+Hvcf7E3YViR/2Tu7P7ewxM7Ar+vvOEuB7KpBGaPntqsMdLdfutN/7OvaJdC4eHh4eHnsPdsYYT/W866+/Hueddx4+9rGPAQBWrFiBn//857jxxhtxzTXXjDv+W9/6FubPn48VK1YAAA4//HA88sgj+OpXv4ozzzzTXePkk0/G5ZdfDmCrI79q1SqsWLECd955JwDgne98Z8V1v/jFL+LGG2/E73//eyxcuBBBEGDFihW48sor8a53vQsA8J3vfAetra2444478PGPf3xK9dzfwQ0OmdLBqthILFHRXFNTg+Hh4QqnnSkyqpF8NpUIyT4qHHktS24qERiWzkQ30mSaDKumnghM86CbCDLVhl6/rq4OqVSqQpnDlBNjY1s3UGX5VfHMpfYkW6litmlOVDmnhJ6myLApTCw5bYMdbD8lp/l8WX62JaFBAUvG1NRs3XCSz17bx+a0VkW0JXRI2pIc1fJrn1P1v32O7Gv8zWszWKHkpgYzqvVP3pfPhPdmahT+UM2t9QDgVImjo6Mol8uhKyj43tTW1lYQ51wFwfta0l77Cz/TNuV92U9tO0UiEadW5jthyWJtI20rtj9TGbG+QRC4Mun7rM9Gr62ktZZVAyWsK9uc74amldF+wLJpQI+rO/ReHJ/4bGwqKT4bvs9cURGPxyvqpCl4qgVxtofdab+3ly5k/fr1FQHxBQsW4Kc//SkuueQSfPOb38Ts2bPxr//6r852A8AJJ5yAu+66C5/5zGdw1VVX4aCDDsLdd9+N448/fofq5DE9sMSQBon3N0ynAn2y198f23lvwvZEA3szrHBgurAz/XtPjz12/qxB9J21wbvLfu/r8CS6h4eHh8duxe4y4uVyGY8++ig+/elPV3x+yimn4OGHHw49Z/Xq1TjllFMqPnvb296GW265xeWbXr16NS655JJxx5B4txgdHcUPfvADFAoFLF68GMBWxfuGDRsq7hWPx7FkyRI8/PDDnkSfIlQRa1MaaI5oJcpJntk84fo9rwFUkqDaD5XItSppe+z21NdKirG8VlFbTeWu11dCn+fwmvxcyV5bNz2f3zHfO48Py93NczWfa7V2qKbu5vc2jYVVFW1Ppa/3pAOihCjbRclqqyjWNgqDLRvJTj1Xr1eNtNR+x//tWGeJfBuMCLu2loHn6UavYep4Pld7f1V723Q2umxaVzXYdrD9XOtZrR+zP2kb6/XtKhHbRjxHyXNe07ZVWPux3vousu+oelzLpEEWbaOwOtr+oc9S66EpfPTd07QvGqTQfmjLou/qVIm63e2EL126FEuXLg397vbbbx/32ZIlS/DYY49NeM2zzjoLZ5111qTL8OCDD076WI8dh7V1+zt25P2c6vU9PPYkdnWwTOc+exvC5vo721aeRJ8+eBLdw8PDw2OvQ19fX8X/zGWt6OzsxOjo6LhNyFpbW8dtLEZs2LAh9PiRkRF0dnaivb296jH2mk8++SQWL16MYrGITCaDe++9F0cccYS7D8+z13nxxRcnqrpHFSi5B1Qqfa0jqqpvnqskq5LxlgTU+4VNSFXFrLDqYlWYkNTTVBuxWMwpTxkgUOLLkmgsd7WcvWwDqmX5GcukOattyg+qaUngheV6VvJSScCwzQ+rQVOw8H+qxan4r6urc20SBIFTTetzsrnftR4anCA5GUaS2xQm+vxYvmg06tS+fCaaIobltOlAlDC36YW4qoKqYV6Pbc0862wLBfu6BgMsMcV+wmeq5dX3IawP66aovJdNP6TKc+1LqvQHKh1E9nMtI+9nN9jUuujqB/3NMoblQteNdmOxWIUqXvtcmALMbsypq0h4jirebcoVfTY6vugqF5uqhd9r2/B+3OdB08ros2DAhOrzsbExlMtlt0qFz0JXJ3h4eOwYwgjvnSGebKBzOq7psWuwLyvFdyV2ZXvt7c/CrhjZ0+p4j0p4Et3Dw8PDY7diOiLh8+bNq/j86quvxrJly0LPsU7I9tQ9YcfbzydzzUMPPRSPP/44enp6cM899+Dcc8/FqlWrHJG+I2XzCIeSXfxfVaJWBaufk7RUlTYJMCWclawOU7YqgatpQmwZgfEEIs8jUczf5XK5Qn1Lgk4JMKY2Ccu3rE64/k0CnMSakqGW8GUZleQjwa/pSrb3XGxqFw0gRCIRt6Er7xEEQUW6jng87tKIAHApaJhSRJ8x02xY0pMgcUpYFXg1ZT6P5TNLpVJIpVIViuhisYhCoeDS8pRKJdTV1SGRSIxTMzOYo32TZeP55XLZ9Se2k6bpYKBIiVENgljiWQMCuhEqny8J1draWiQSiYpy2efHclkS3eaUr7axrvYvvocaVIrH4+OCOXwGANxz1/5p1ddWmc7yMgBSV1fn+hCP0WvwPkwRw2ux7lo/lqXaigP7vNU51rRIrJf2FSX5WQ+2jz531k+DDNxwl/1kdHS0YhNjpuOZDLySzWN/w2TUrGHj2nSQXnbe6Ym0mQcb7NgVz8c/86ljb35XdlXZvf2ePngS3cPDw8Njt2I6jPjatWuRy+Xc51aFDgDNzc2ora0dpxDftGnTOAU40dbWFnp8XV0dmpqaJjzGXjMWi+Hggw8GACxatAhr1qzB1772Ndx0001oa2sDsFWR3t7ePqmyeVSHdV5tWgQiLJ2LKlzt8STSwtJbhN1fyeywFCRh51jnS89R8lIJZHuuqsF5Hf1NsB42qMB0FVYlq+Qd39tq9atWH4UlqAE4Ml6DEZqKRq9jVwRoO7H+VIOHpdiw51py3JY1TFmvx4Upi3m8rlTQHz3X9g8lfLUM9pnZ+1lof7QBAVVqh/XpiZ5n2LF2RUTYCg6tH8/TAIumGrHto2lk9Mem6NFrh9XBtv1k66hlCwtOaduGtY8G16q9I1bxbtO12BQ2tp23d029dlg5NYiyPXgn3MNjPKoJICZDwE/mul5c4eHhsbPw9nv64El0Dw8PD4/diukw4rlcroJED0MsFsOxxx6LlStX4owzznCfr1y5EqeffnroOYsXL8aPfvSjis8eeOABLFq0yKmDFy9ejJUrV1bkRX/ggQdwwgknbLfspVIJwNYN0Nra2rBy5Uq85jWvAbBVdbxq1Spce+21E17HozrYP8I2sbSKX5KtuvGjqpzHxsYqNh5U0pKkGP9WBSlBIkxV0VQLM42EvgdMtaBK6rq6OqTTaYyNbd3Qk5uAUkEOVJJs/FuVrCTvqBa2pCNVvzzWpi7RtiWRqO3E45Qk1OOrkdQ8hgQeN0xUhSzbUcE2HRsbG6dUZhuyHbkJKlX+qvLWfhIE21KbKGxwhAjLe65EB9uQwQltFw2MhJHJ2ofsddnv2D+0DOwTrB/7gm13qpJZL143Fou5uqnCmmXmvfm5vmvcxHJ0dBTxeLxiBYG2s7YBn5VVtcdiMZemhAEVprbhc6JS3gZZbLBCN8S1JLuqOsP6JsvHv1lObt6pz1pXJ7DtNMCgKzb4rmm6GdZpdHQUxWIRw8PDTi1vV51QPW+fD+vPvq9twRQurL/dUFXfie3BO+Ee+xsm02/5Hun4Yu1YtRUqk7mmrlKywVaPPQsb+PbwmKnw9nv64El0Dw8PD499FpdeeinOOeccLFq0CIsXL8bNN9+Ml156CRdccAEA4PLLL8crr7yC7373uwCACy64AN/4xjdw6aWX4vzzz8fq1atxyy234M4773TXvPjii/GmN70J1157LU4//XTcd999+MUvfoGHHnrIHXPFFVfg1FNPxbx589Df34+77roLDz74IO6//34AW4mMT37yk/jSl76EQw45BIcccgi+9KUvIZVK4f3vf/9ubKF9A9VyYCuY4kAdXJJbE6k2SViRQAMQ6ihbEl1JeP6v5bPqdlXWaooIJcpqamoc2aakIL/jZyT0rPKcP6ooJ+EejUYrCEebHkavzZzxti1UUV4N1uFU8o73YFmUfFXi2QY0SK5q2XkOSXT+JmFLcoJ1Yr14Tba5JbqVwNRUNkp22+djoXVhvTXnvN7b1lnbWlOIWGhfZluHBXt4L5tuxdYvLOWMqqLZ1zVwYYMKbHt+xnQyGhjQtEZaF5Lo7P+sk119YculZbDq/bDzLTnOv9l+GsRR8l433rUEeljf0CACn8nIyIgLAvG91ZUoDMDZFFNKiGuAi9A203bW9vU50T08dg4cI6yt4ndTJdHtNe0qKo+ZA/88PDz2L4zfScnDw8PDw2MXwi7Ln+rPVHD22WdjxYoV+NznPodjjjkGv/nNb/DTn/4UHR0dAID169fjpZdecscvWLAAP/3pT/Hggw/imGOOwec//3n867/+K84880x3zAknnIC77roLt912G44++mjcfvvtuPvuu3H88ce7YzZu3IhzzjkHhx56KN7ylrfgD3/4A+6//36cfPLJ7pjLLrsMn/zkJ7F06VIsWrQIr7zyCh544AFks9kdbdr9FiS8lWxSkFwiQcWN9jQfueZ3VtKL51FJroSXEs1h0O9UnazX5I+S7GGbGCrCSFUlyllnKngt8ci62g0JY7GY2zSUZKhV1Nk20bKrAlivSdJP01Vo0MAGJ/i3tpkulw8bCyxpXC29hSUnt5cOQzfR1MCGDdwMDw87UpTX0naw5Leer32F97OpN7QvhaXbmai+tr1sjnLN7021MwMZ2pf4LML6vPY/1tf2PyXTWe6wFQwa1NB3Tt9XPY/Ha15x3kvJYw0ShPUZ7aNhQTXb1tqXbZBB29Qqvm15tZ/bPqKrDyxBr89CgwB2HLSbjto2nwq5tzvtt4fH3oiwsXdn+74NwIfNczw8PKYPOj/cV7C77fcNN9yABQsWIJFI4Nhjj8Vvf/vbCY9ftWoVjj32WCQSCRx44IH41re+Ne6Ye+65B0cccQTi8TiOOOII3HvvvRXf33jjjTj66KPdivXFixfjZz/7WcUxH/7wh8f5T69//eunVDevRPfw8PDw2K3YGYdiR85bunQpli5dGvrd7bffPu6zJUuW4LHHHpvwmmeddRbOOuusqt/fcsst2y1XJBLBsmXLsKzKhqgekwdTFZCsJdGkKRmYKqGmpgaJRMKRhHYDRCWUgiBAsVgcpwTjfbhhpJKmBAk//lbCfHh4uEJ1q2QlyWOW3yrQmE5CSUKbNsQSa6puV9U5j2UaFRKYLEO5XHb1VyJ1cHAQkUgEiUQCyWTSEfOaOobX4HkDAwMVgQHWVYlNVYCzbGwrJZ5JjFqVdTVCWUlQS9rb/1lehRLDJJlZXtZJU3NoH9H2r6mpcRta6jPXdhoZGUGpVKogWbX92c9UqW9XN2jAREl6wm4GW1NT48qkpK8lfC1sGhC2UzQade8OSXPtixpsITRoxb4TtrqAAR4lkIIgcO+5ppthuzIVEp+fpnCy74ol1cMcSFV9B0FQEWxSspopchi0U/W5EufcgJbXZgBLr8MUOTZ4wDJaAp9ltil5NMimbTRZJfrutt8eHnsb7OoW+/eOXpM2R4OUHPc8PDymB3YViZ0T7M3Ynfb77rvvxic/+UnccMMNeMMb3oCbbroJp556Kp5++mnMnz9/3PHPP/88TjvtNJx//vn4/ve/j9/97ndYunQpWlpanJBt9erVOPvss/H5z38eZ5xxBu6991685z3vwUMPPeSEbHPnzsWXv/xltyfZd77zHZx++un44x//iIULF7r7vf3tb8dtt93m/ud8bbLwJLqHh4eHx26Fd8I9phs6wdWJr1Uuk0RlOhK77FqJOTqpJJdIFPN8uxkmz1FUU3Io+WUJTT3Xpkexk/uamhp3LQ0cKAlvVbVKplnluqZT0Q0OrQPBe1pS3JL2JFX5mabH0DJXU/yQyA1rIy2vfhb2HHhPliGsTGHXsdeyyhVeV9XPuimk9ouw1C+WZFGy3I6T2s+qlVf7e7U2smmEgG2kvP62OXzts7PtpHXT8/X94fdso2pKSl2NoWrtailSlAy219F62yBBWBtbUt22oyXv2T/tOGL7Na8RthrDrnawKyU0iKMIa3+9ryXStfxKDEzFJnv77eExOezMuxIGjoH84Zjh3ysPj+mBne/ta9id9vv666/Heeedh4997GMAgBUrVuDnP/85brzxRlxzzTXjjv/Wt76F+fPnY8WKFQCAww8/HI888gi++tWvOhJ9xYoVOPnkk3H55ZcD2JqSddWqVVixYoVLu/rOd76z4rpf/OIXceONN+L3v/99BYkej8fR1tY2pTopPInu4eHh4eHhsVdDU2OQ1NIc6KryBbYpSS0hSALNbvoZRmBSsV0qlSrIa2C8QprEYZgqmJuN6mdUpcbjcQDj82NreZXs5rFabiq5h4aGnOKcajZVsFqSEthGpqtyeHR0FKVSyV2b6n4toyqS6ehTgW1T1YTlr2aQQwlKrVOYclhTWChhattcVedKVNbW1jrSlqphzYdPdbSWlcpyJYxra2udqtuqfbXvhC3J1zZVwkTblH2G9eBvfZ68VrXN7PSd0D6qgQZNvcJztJyEBkv0fdO+xWfOz20qGRuUYB8IS2lkAz/6buv12Sb8bVd82HrY99s605bwZ5/mahKq41UtzvGmVCq594/pafT6dtUC309usMrNVjUIoP3Bpn3R8S0IAreyQdtX+zlTM3l4eEwvwlTpOwK1YxqA2xUEuh0nZyJmQvDApury2Ddg5yK7qp+FiTL03pPd7Hsmolwu49FHH8WnP/3pis9POeUUPPzww6HnrF69GqecckrFZ29729twyy23YHh4GNFoFKtXr8Yll1wy7hgS7xajo6P4wQ9+gEKhgMWLF1d89+CDD2LWrFmor6/HkiVL8MUvfhGzZs2adB09ie7h4eHhsVvhlWwe0w2SnTbdhW5SyDQbwHgHTM/l96r8VDJUVdSax1iva1WnvIaS7HSArYKcaSxGR0eRSCQcqR+LxSpSx/B6JH7ZBiwHy0dyjGlCmCqC5eD1lHDWa/FevN7w8LAj5crlsiOb2eaa0kLV7wwIKIlo01PwnkoyWgKT7abtxWeuhK5VOpNstalxlFTn9RkkCIKgYpNLSxCT6NRnGovFkEqlXOCEfYBtxf+DIHApO5QgKZfLKBQKCIIAyWSyIr+2prPh+dp+lkRXQlnbgVD1vFVSaz9m+5Jo19QCfG4aeFJyh22mqVk07Y/+re0YlgedfYnBHCXQufEon7El0PmcNDWNltEGqCYi0XU1A1CZYoZ1UrKrVCq5Z1oqlVw9lBhn+XhflplBGbvUWAMQYX1f1e5sH302TDGjaaYmA2+/PTwmh+lUoqvd0ZRXuwLVAqYzBTpWE3uinLRFYauXPPZO6CquXUli24C4FcroXkDTiemw3319fRWfx+NxN78nOjs7MTo6itbW1orPW1tbsWHDhtDrb9iwIfT4kZERdHZ2or29veox9ppPPvkkFi9ejGKxiEwmg3vvvRdHHHGE+/7UU0/Fu9/9bnR0dOD555/HVVddhTe/+c149NFHx9WlGjyJ7uHhMSMmIx77D7wT7rErUG3ppSX67OeWrFU1ri6b5jWIMKLN3m+yy0GVmNfrk8RUtZOdWKuqNqycei0qpTXPdVhKB/uO2om+vbdNURGm8FUHQZei2/ayxK2tx2QQVs4w1Q+Ps6pv264kxG06kWoII5PDYMtkFdb6HLRsumrAtulE96pWRlX9a2CFsIGOsGvZvjPROG/fnR2Fvae2C8tNgpntpMdoIEuvR1Qro125wWP1+Wgb6Dumfcim/bH30PfObkRrVymE9XndxDXsuUykxK8Gb789PPYc9neyVu2kDRjv7nLY+cSOXMNif362MwW74xnY/hM2998VmA77PW/evIrPr776aiyrsrdX2Fxxovel2jw1zNea6JqHHnooHn/8cfT09OCee+7Bueeei1WrVjki/eyzz3bHHnnkkVi0aBE6Ojrwk5/8BO9617uqlk/hSXQPj/0UHLTDyIAwIsTDY7rgnXCP6YamQCCUIONYl0wmK85Tkk1Tc9hUEnZZp6Y44fVVKRxGaFNRSyLNXlvzHuv4q+UIU8Zw/K6mmuG5VKJSXU3lLu+lhDJVwywXCUOqy5WU5DWotOa9eF41kp/XoxpXSV2rMNfUIjoGKBkaBqqJIpGIS41BZbJNKZJIJNy1rLpby071uFUraf8ZGBgYVxbdhFIV+PxhuhH2Yd6TqwxisZj7rSst9DpUGNvNRllu9hNLrmpwRjfnZXnCVM+8liqueS32H21/9h19XvxeyXu9vqqjeZw+f12Joe8kn0UqlXIqca4oUMU7+6y2hUL7l1Xka//g6g5VkGnf0XKxn2nf19UJPJYrGsICASSSbB/SPkP1OzdU5jvJ6+lz48qRycDbbw+PPYvtBSmn4/ozDWFprDRoqfOPXQk7BnPVls5hJnsdXfGnc8u9OY3HrkC1QMWueN4qWpluWPW57cdhge/pxnTY77Vr1yKXy7nPw5Tbzc3NqK2tHacQ37Rp0zglOdHW1hZ6fF1dHZqamiY8xl4zFou5jUUXLVqENWvW4Gtf+xpuuumm0Hu3t7ejo6MDf/7zn0O/D4Mn0T089kOEOWLAeFWXfubh4eExk6GqZSXnOIYpOccxzhJRACpITCBc1WxTvygpDGwjYhWqcOc5loSlY8Wc4DwPgCNHWeawcoWN15awBLbmK7QTdV6TJCgdQ1XOspxhamSSmZojXBWwlohkW2ub8bemDFFbpO2ubanpPbSt9Rkp6WzTibBMLI+mttFyBUHlZq/qxOlmmsxpr2S8rb8+Q+072ke1LTRHNq+pThnBXNdaPps2R6+rxCvbiGBbaMBdV2fYa0zk1Op5SrrbfqTzEr4LNohkFd9hxAMDJ/F4vIIkZn3YX7U9rDJb1euq0A9bscJ+EbYMW/sjgyXcI4BlUeeZz5s5121f0WCDTTPDH6YF4vvMMSWRSIzb2NQGID08PGYudrVftiOk8K6Gjntqi4BtwdTdQaIDE6uIp3I+7b71uT2JPh465wF27TuwK6+t8xv2Yw2ghM1FZhpyuVwFiR6GWCyGY489FitXrsQZZ5zhPl+5ciVOP/300HMWL16MH/3oRxWfPfDAA1i0aJETQSxevBgrV66syIv+wAMP4IQTTpiwPEEQuHl5GLq6urB27Vq0t7dPeB2FnzF5eITAGmklO9ThnMmDXBiUJKJqik4asM1wMH/m7p6YeOwf8Eo2j10BS3qqCnYiJ8cSZ8B4VXhYvnQl1ax62qZTASpJaIWOy9yIUwm/ailUlPwmEcfPdcxW1TDLynZRbI8EVXuoP/q9quJJ+qsNIdHMclp1Oh0KdZT4PR1oJf+ts6nkq6q1aes0aKKkMp8pVd/cAFXbRI9VlXY0Gq14FuVy2ZU9zBkOU39rsKGmZmt+bAYkWB8N1PB/rQPbRsup+d6tem57z9r+b4Mo+p0l0Uka671sChT9XgmRsPLbPqvvugah+FvbSB1Wgm2tqnybJ92S/HotVYWHrebTABwDL1o/u6GsBha290y0rXgu78nc+/qb19Wxis+C7+ZU5njefnvMVOwOgm1/we5uQx1nrf9dbQUOy0lxAcfbyZbdjsPA1Dd0nAqJbm1GNWGHVacr9se+rXOBXbkCY1dhoqCLFUvsjlUmu8t+X3rppTjnnHOwaNEiLF68GDfffDNeeuklXHDBBQCAyy+/HK+88gq++93vAgAuuOACfOMb38Cll16K888/H6tXr8Ytt9yCO++8013z4osvxpve9CZce+21OP3003HffffhF7/4BR566CF3zBVXXIFTTz0V8+bNQ39/P+666y48+OCDuP/++wEAAwMDWLZsGc4880y0t7fjhRdewBVXXIHm5uYKwn978CS6h4eAg1ssFkM6nXab0jFSXCqV3OZsg4ODMz5aaMHJSDwed8uE7SZzACo2jhscHKwgBTw8dhbeCffYFdDx2BLJAJyjpU4MSXIluEi4UgVLx4bXBbYpUXlf/VudPQslX21KBZJ+vFaYMtSSkUroA6jYcEyPUdCWqePJ9uH3YSpaVdxSTaspKFTNys0TlaS0ynarfmYKjkgkglKpVEH0aR2U/FMHmoRzNBpFIpFwm7HqUlMlqfWatPv62cjICIrFIorFYsWz077ClCF8fuoMadCd9+S5VAXbfhQEW9OppFIpVw6eS2KYdVJVsj4z5r3n/+q483p8jvrOaM73MNUzgxDaZrW1te5Z6OaUJI7DlPPaxrr5pyWja2pqXD2Hh4fdPIT9Th1OHs9r8YfvsaZzoUBA05zo+drP+JNIJNymvkp86BhjV1zocQy0WBKI53BeaUl5Xs8+O/te6+agAwMDFfNUS+KTWC+XyxgcHAyt+0Tw9ttjJsLaFt/X9i5w3IvFYkgmk87u6cbdhK6E4ooizhP49/ZAX9jOD8rlMoaGhibsPxzLd4RA102oOS7rvNWO/buaVN0bwLkEsG1j+r2pPaxYgH2Bz1XrtDtWmewu+3322Wejq6sLn/vc57B+/XoceeSR+OlPf4qOjg4AwPr16/HSSy+54xcsWICf/vSnuOSSS/DNb34Ts2fPxr/+67/izDPPdMeccMIJuOuuu/CZz3wGV111FQ466CDcfffdOP74490xGzduxDnnnIP169cjn8/j6KOPxv3334+TTz4ZwNb+9OSTT+K73/0uenp60N7ejpNOOgl33303stnspOvnSXQPj/8/rCOfSCScwxqLxRw5QuNMlc9UVTxh97XOvA5UVnW4M/fhb3WI6Zzb+7C+6qR7eEwXfH/y2FVQ54OEMn8DlcrvMOeFx6gSSq8LhG+CaSenEzlXNr2GVXarY6VQW2PLomS3krdh7WPrYsuvynELqwqrprbWzUsJ1issyGAVziyTBhWs4lmJan1eJGWVROexYeozq3KzqVX0b9pQq3hnve3/NqCjTnGYgxyWn9o6YZZwVsdb5xT2t62vnX/oO1LtHHtPrSvLELbSgcdaAtgq0BXV1O96H207qzzXfmbfKSXJdXzQ6ysZp3NEfW95rH2OdizQPqZtyXpoUCus7a0iU6EBK64CUZW5tgPfR1Xgc9XNZOHtt8dMw1QITY+ZBZ3/6L4fSnLbeQbJR1VwT5XUVnKW1+E4bG22PXei/6vdT+9bzRbYoLOt8/7oj+/t77YVXxATiX52JXZn/1m6dCmWLl0a+t3tt98+7rMlS5bgsccem/CaZ511Fs4666yq399yyy0Tnp9MJvHzn/98wmMmA0+ie+z3YFQ4Ho9j9uzZyOfzyGQyaGpqQjwer1CiF4tFjIyMoK+vD5s2bUKxWMTmzZvR1dVVobjbHtTJ5/3q6uocca8ERH9/PwYHBzE8POwURjsCRsA5aWC9NCetRW1trVMsqrLOw8PDYyYhHo9XqJM4bhFhJLWqv61TA2yb7KrCCcA4Ik5B4trmbuZ3On6TuFJVCr+3pCnvq6plgopiVTarwjUsEKtktJLpljTXQIR+Zo+lgow2xuab1t9KZGtqMX6mubBtWbR9ACCdTrtrpFIp54AnEgnU1NQ4BbFdacD/h4aG3AozTTWjyl5dXUDHPplMIhaLIZPJIJvNVjzndDqNZDKJkZERlMtlp6BWQrMaeB/OOZSs1WXmtNlMmWOvQdU1/6+mZmNb6PMlCctysEy6CeVETr5VAto0M3xeuqKAbc7jwwJA9jh9RlTws09xfqNKeq1fqVRyRLPNYa5BFps7n++CdXrtxqr2++HhYdemYStE9LnwXpyXajofJRO0/Xj9crmMYrGIcrns3kF9bzSApqtsdG8AD4+9FXw3qu1b4TGzkEgkEI/HUVdXh3Q67YLetOvxeNyR3ISOXQMDA261NAO3HPuq+ao6rtbX1zvlKcfYYrGIwcFBt1qH4yjnlDYAbAPS1e6r4gHdmFyDtErsW1uie2bsT9AAQzXhwUyEzjuqpQ1SMYjH3gdPonvs9+By7Hw+j4ULF2LOnDloaGjA3LlznXFnnloa0c7OTrz44osYGBjAf/3Xf6FQKDhnZjKDIY1kLBZDW1sb5syZg1gshvr6eiQSCZeTvFQqYd26dejs7EShUHDO/o6ACntOTLjcPSwnOlAZpeckwg/0HtMBvxzcY7rBtA8cg5lOxJLNqlamU2JzWgOVCmRulGlJaQu7ikfvC2AcuciNT5nyQtNhcKUQCVGSmFoOnm8Jg2rqWA0SaNvQuWMb2iCBOodhDp+Wk+RtmK3Q85WcVPJTgx1K6rG86ojW1NQgmUwim82irq4OmUzGBaIZVEkmk45EtwrusbEx9PT0oLe3d1yQRQlaEuwkM0meR6NRZLNZ5HK5iuc4NDSETCaDkZERDA4OupQhAwMDGB4erkoOs115H0uiqwPPtiEZrM8EgCMe+D+JcVWaW3W3OnTlcrniGbHP6XOvFgzQfqzlInHA1W/avrYsJNItsatpY8bGxhx5oqsCqF60RDr7MOdWbDsSJSyH5qFnP+J1WD9dAWHrrM+M/V2DKWGpazTopnXgPM2uiOE5nJOSRGcKonK5PG4+qml3rMJ+IjGFhbffHjMRYUSmTfnkMXMQiUSQSCSQz+cRjUbR3Nzs7DWFZbqSjM+WwenR0VF0dXWhp6enIi1XEGxNVzcRiU773dTU5O7PsVZJ9IGBARdo7+/vH7dht9osqyivBiXRNUjPa3AsVhLdriraX/qzvs8aUNgbAgn6nDVorvVgf9qd8PZ7+uBJdI/9Fhyck8kk8vm8+6mvr0cul0MqlXIkOkkKKtUymQzy+TxqamqQz+eRy+UcwV2NaFbHM51OI5/PIx6Po7m5GQ0NDYhGo6ivr0c8HnckOlVFQRAgkUigWCwiGo2iXC5POEnYXp2tioxGSp06G13fm5dSecwseCPuMd2walOSdCSngUqSmwSdEtskKqnMterlsHGQRFm1NCSqYFfiyqabqfaZVXvztyrqtZxh6SA0FzzLZtU9+re+Y5aQ1zLaMoWpkvUYhbU19hp8BhrUUGKWhDidXxLbVJgxCEElm1VVs3wMkgNwG4tasB50irinCBXvvCd/s81JOtfW1jrFeBgpbNXNE41xtk3D0pyEHV9Nha7XYXkmc65+Hwarsq6muta+b4M11eYlYfdSR1V/+K5r6hLdbFPJCbY9yWRe025opj8TERralva9CXs3WH67QkXbTQkc9in2Nc4bVZ2v5LxtO223MKVcNXj77TETsbeS5ZMhXvcl6LjDVV3xeByZTMap0bknmeZEZztxXjc6OursL7BthVO1AC8/V/udSqWc6j2ZTFYEYznf4BxBlemav3pn+p0l4W07WexMH6lmg2c6dM6s/+8tCLPhe1JN7+339MGT6B77JdQBX7BgAY444ghks1kceuihaGlpccZVCQk6V1QuptNplEolxONx1NfXo6enB0888QQ2b94c6gjX1dU54nzBggU46qijkE6n0dDQgGw2W6EKV4fukEMOQbFYRF9fH/7617+ir68Pa9euxV//+leUy+UpDWrqmFmHSSdyYdF1q/Dw8NhReCPusStAZ4djGFf1UFVE4kxBcpYkKNVIuvEnidAwstmmLOHnJOeUvNbVPJq6IiwHJ1VVdkNCJc95vpLAqkhl+WhPNM+3EoC8L9WrVOPayb8q4XlvYntEOf9XNY5+ZhXttryjo6NuxRdTn8ViMbS0tKC1tRXxeBwNDQ1IpVIV44uq2zUwwTagPacquaamBsPDwxX58pkzOpPJIJVKoaWlBfPnz3fLzul8k0TnxmRUGlEx3N3djWKxiEKhgN7eXqcatsoqXY6uuaqtLa6trXUEhCrNlYznD4PympKFfYD93L4XSu7zOJ7HeoWtzNA2137OwIYqyVVdZze2VRJdy6wguaHkiQofisWiuzb7Lt+PcrmMQqFQsdFobW2t61sMmLB9KFxgmfmeEDbdkx6rAgt9h5VMYhvrfjy8ji7l53OkyGJsbMypJbkZvG7Gq4GSSCRSscGttuNk4e23x66A+iXbCyaGQe1x2LVnUt8LC4KGzU/2RTD1WjQaRWtrK2bPno1EIoH29nbnCzPwrfuDqL3QFUixWAxDQ0MYGRlx41ihUKiY29B+c84wd+5cJBIJl85FSXRuyjw2NoZisYhSqeRStxaLRfT29mLLli0YHh523+tYXw3a/9jXdTN5Xd3E/q/B3p3pH7oKT8fvmZ6ilWXTtG972zti52N7enWMt9/TB0+ie+yXUOPc0tKCgw8+GNls1qVy2Z7qmlFzGltg627Af/nLX6qSzTU1NUilUkilUpgzZw6OPvpo55TbnG8WQRCgp6cHtbW16O7uRqlUwgsvvDCliWE1ZXkYmW4JG69C9/DwmOkgAcu/6+rqXBoFTVWhzlUYKR2WY1qV7kpU6jHqAOlGgUqiK/muG/pZBbaO65pKQnMsskwkvFWNSyW+OmRKJpNkVMePzprmKNe2sOlorA2ZjJJVyWx9BraNba562loNeDCY3dDQgEQi4ZaD6zJZtonWVdOlqNqMQRemAeF3JHkZXM/lcmhpaUEikajIr8qc8MPDw0gmkxUOU7FYdPlWI5EIBgYGXHszzYcSSEo+h9lfPkvOHTRVS1g/C0vnYlXQCqv+IgGuJHjY3EOJMD5rTVFk+5v+P9FcxCrVCX0PNBDDZ85+wNV7Cn6mwQcNELEfMDCi6QL4PvFeNhCmz17ryoAAf2tb6Z41+s7r+aOjoy51gSV7isXiuNy9LKOmx7H5z8PedQ+P3Q0dO3aE6Kl2jgaTZgoJpLZT5xX7AzRdVS6XQ1NTE1KpFFpbW5HL5catpuNcRffmYhCXY3dtbS1SqZQLTNsUXjU1NS7gXF9fj9bWVpcKjkr0VCpVsTqRgdPh4WEMDg4iEok4+63/2znlZKEBX7XZNgir+23saP/lGK8kupZ5prwX1TBRgGxvgM7DdyRA6DEz4Ul0j/0Smj81l8shl8shnU6PU99NBE74UqkUGhoaMDw87AyypmHR4+bOnYvGxka0tbU5tdNkiAc68PX19airq0NnZydmzZqFQqHgcrZtDzRCqsqi8baTS7vkWQ3AZNsGgHPydaMsq27kJIhkwp6O0nrsevhIuMd0g+phoJLUpaKTCmMlqUl8EVQ4qbNhV+FYUk/TuSgpRjLWqo+oEKXjZ8d/dcQ44eaGhOoYKhGmuYzplKuSld9r3mO9FslBva8uV7blsm2s1+P5YQ6P5ofUcy2xqoS/BevHNC2JRMIFovV4lp3kKlCZ1oY/mm81Ho+jXC478pRLyRn8zmazzsYrwaplU4WZ9ocgCJDNZt09+vv7K/JyW/C6YcSSEgpKsocpndiOVkFtVz7YZ8nrUhXNPLIk0ZWc1qCMEh3quNt3U+9pc3GHken6TrKuwPj860o2c17B33Y/GQ0oaN/kc9V21z6q7yKvQ0LbkikqRNBAEa9PBbp9dzTwxt8aDGF97FxNVw2wXiToeS87XkwV3n577ArYfqXvxHRdf6ZAx7GZVK5dDV1tk0gkkE6nkclk3EbdNoe0jsOck2j6PW7gHYlsTc1aLpddihfauLGxMSQSCWSzWaRSKXc/Hsf7ck8XCgk4f+C8sb6+3u030dfX5xTquv/OZJ4l7QXtM1Bpu/VaOt+cTNsC2+Z5GpjVebCSuQxGqPBAV0x6f3zHoXMBbcc93Zbefk8fPInusV8ikUigtbUVmUwGs2fPxty5cxGLxZBMJid9DRr4xsZGNyFoa2vDwMAABgYG3HIzGrSGhgYce+yxWLBgAbLZLPL5/JTyUCaTSXR0dDiD19/fj76+Pvztb3+bFIlOIzk2NubUcmFRaBp4OmpMDzCVKLsqJNk+VPDp8vTR0VH09fW5jVy6u7vdfffmqLPHxPBG3GO6wTGQTgMdIjpjVBdxLCP5p44Pxx4S7jxfFa5hZKCmxiCUfCZJqkpW/lZi0J6vy5b1vJqamgpyU+0Iy0InUsuppK+q8yy5SkdVnVV7f/1hm2gKGTpnhBKzXDHAe9v2UcLPqrIZmE2n00gkEmhsbERjY2NFgMAqihlMUCKUoBM/ODiIvr4+1+bcjBTYtvKsra0N9fX1yOfzToWu7ajtYYPxJOPHxramqaEDzoC7QtWJlmBVwladZOvAk4hlu6gzp0Fu+0yBrfMjkhpMkRONRhGLxSpU2Uwdwo06Y7FYBclr66R90QaztH/Z89i2GrAgga/BdxIHVJxTtW3JFyW/eV0GRTRVkAYfdBWGkj0sS6lUwsDAQEUdlCTnffnO8jf7mSrd9T2yYxOVlvq/DRLYoJnWifVm+YipiCS8/fbYFeA7qmPpdChQZ2Kf0/nBdAcLZio4llMNnkql0NzcjNbWVhektUFFu1m5Cq5o4+LxOAqFAvr7+918qlAoVGyunE6n0dbW5pTvjY2NzufneM7NTJXspC86PDyMVCqFcrmMWCzm1OmlUsnZocmkRuE1y+VyaCBW7wls86W3d10NnKbTaScsqK+vd2O/DSyMjo66NDi0X2NjlanBwubJHpODzm2BmfN+e/s9ffAkusd+CSrZbDR6qqocKsQBuKVi8XjcLfkCtjnEsVgM+Xwezc3N45ywyYBRdyra8vk8giDYbioYhUa6NT+nJW9U4aQGdKIBVJVWnPhwszfmjW1sbKwgpKiwpHEfGhqqcNL90qd9E96Ie0w3OGZxc0hVNFm1Lr+nw67Oj6p0+DkdM82TbWHVqYQu9VUFsFWuTwSbK5pqYJJy6ogTvJemLrFLpFlfVTsTqrq1xLPeS8nRmpqacWVl3bnqSdPthAUdeLxVYCnZS9KT6VNI7lroOarq0vpRFazKctooDRDQCSV5PlEAXFco6DyA/YhBd7ZLtWvoM9N7WaWYXaJtiVx9Rtvrv6paZs53kgskOLi5Ofs23zUS61bpbtvB3tf+HaZGVRKd5Anrreo9fmaV6Drn4XjA460CXecyfEfZrkqIa7srCWK/D6u7HZvCFIn67mldVHWuddN7a/9ln9bAjA36TQXefnvsStigsgaa9zXYcWVfhwqsuNKL9qZamiklkdkXOG4yRRhFD2rHuV8GA+8MDuueFzo26hgJbLOttPWcN/IaY2NjjjcIm/tVgwaG1HaFqZV1njTR9XW+x+AAAxNcOceALe0F52NsO/r+KqqgXdG5ncfkMRPHLW+/pw+eRPfYL1FXV4dsNotcLodUKjXhjt7bgzqd6XQa2WzWqcRqamqQz+dRX1+PtrY2ZLNZpyDc0UlTJBJBLpdDR0cH6uvr8fLLL0/qPBpIKrVYPk4mgG3EAvMI283KqtUfAHK5nEtTM3fuXLS3t7s8tdxxnTnnWA/dBGtgYABdXV0olUp45ZVXsHHjRhQKBbzyyivo7++fFkWKh4fHvokgCJzqw6pew8hM/g1UbgpK2GXEStiFOTWWrNTP6QQqkWpTmNhy6/csl45/utESy6rHaboHQsvOtqKCl/UJI9OtglsVvZaIZB35uaqrqAomsV/NBmpeU3UuSV4nk0n3Y+22Xfqs5CnbXY9VwtTWm4r+VCrlAsF0mqk+UyW4rtjSZ0eyPJ1Oo7a2FrlcDo2NjYjH4+jq6hq3kkGfmwZcdNl1uVx2xDW/50bjSsyoc81yar5+KqLj8Tiy2Syi0Sjq6+udUq+lpcWVm8p7VaqROOeGqbTlhUIBo6Oj6O/vr1AEWtKAZda+p+Vl+1rSXNXuSoBY1X4sFqtYzQCggjyx9+Y92E+VyLbKbSWzmddej1OiXAM6JJDCAgq2P2o6Fztu6P9hqxd0Cb+SQ5Zw57W8g+wxU6A+x57ol2E2YVe9I2Hzj30NHI9I8jKQrGS2rj7QZ2/bxQYfbeBbhQPcKD6dTruAsArP1Ebq2GrnjzU1NW7T8kKhgKamJiQSCXR2drrrcZzfXj9R+6VBWutnK4GvcxW1JWw/pqaNxWJOaU//m0FwkuhcXR4EQcWeGn19fRgdHUVPTw96e3vdZui094ODg5MS1Hl47C/wJLrHfglGaHO5HJLJ5LgI+FRAY84l5rlcDoVCwRnnXC6HOXPmuE1TppIyphry+TwWLFiAnp4e/OlPf5qUUoMktDplXG5sl8HrZnzbS+XCetbX1+Owww5DQ0MDjjnmGBxzzDFIJpNobm5GKpUapwgl6NAVCgX09PRgaGgIjz/+OJ5++ml0dnZiaGjIbd7iVen7Bnwk3GO6oUpQS4rRAeEYzz5UbczXPsYxkOonOjW6osbeCwjPNWzV8KpgpTOlYzGACuKRam4AFaSgkui8drXgpz2/GqHN8qvi2LY1ALepJp1kDcgyUMrzVQlMcpT312uHqX6BbTnVraJM28EqhCcTfLX30efDvK0k7WOxGCKRiAtEq+rcLsMG4EhmKtiZm7Wpqckp26sRNhb67JiyRIMu7CsqCrAKayrKGBiiwj6bzbogeGtrK9ra2hCPxyvsN59ToVDA4OBgBdFRKpVQKBQwPDyMLVu2oKenx63I4+dMW6P9k+2j/VDVhFxlYBXfJPHZ1vzR3OwAKjZeZXtp39O0N6p0VzIl7NmwX+uydxuE03bntXl/pp6xSnz9UTupKwMJq8C3Yw9JFh2v+H6FvRMTzfNs/b399tiV2FNEXViwndgV/sf+QkhqUI+rwGlPLVGssMIFO8ZZAl2J9CAI3H4m9M3T6bTbB4Xl4hjNcVHvoXOWZDLpgsiFQgGJRAKZTMapuBmk3l4/4VgeiURcMJx1tXXi/7r6isdGIhG3Aj6fz6OtrQ3JZBLt7e3u71mzZjklOleS6SbbLGuxWHQB782bN6OrqwuDg4Ooq6tDf38/BgYGKlKt7g99dl+Ft9/TB0+ie3hMM+wgw4kD8+tOB+gcheXmnGwZaTxJhqhDrMRHNXBSxPywbW1taG9vR319PZqbm5HL5Vwu9GQyGTpJstF3LpdrampCa2sr6urq0NbW5kj2LVu2jNvwzmPvgzfiHtMNqwInqagEKce0HVG4WYVrWEoEJcCs4nmiayrCykRHbyIyOEwBpWXQYAIdRf3e1kXJbHtfvYeqmlXpbZ1c/U6vY5+TXR1gn6kSgWE/Wt+JoLZIiUVbTiq1aWtJfmpA2Npfu9pB21aDPOosT0WNyLJq8NzaUlWuaZ1ZXvYpKu1JNNBmM80df5SY4LJ5bSuWqa6uzuXspnqPz41zDRLn2uYsl5LOYWmY9EfPYd30/bTvZrX3cKJ5mb43Ex2nz1yV7jZApap5vV61FRGsk9YNwLjftu/b8mr/sEGqybSDLY+33x77E7zPsXPQIOhk7LcibEy0hLJeX6+j/rdN96JzxrB5HDDeflvbHTaWT6VNwv4OK4cG64loNIpkMuk2S6VIL5vNIpPJOFueTqcr0rGpUp/txWsz2D08PIza2lpks1k3R6OAIGwut7/B8hh7E7z9nj54Et1jvwQVUOrMhTkVk4FVSOkyY6rm8vm8W1I1HYhGo0ilUhgeHnZK8qkotdVxZYoXS75MtGyLZEI+n8cJJ5yAAw88EO3t7Tj66KORzWZRX1+PhoYGpyQLS3NAkEDgZjPZbBaxWAwHHngg+vr6cNBBB6GzsxPPPvssHnroIbcrui6f9ti74I24x3SDRB/HtlKp5PZc0A0gddwL2/wQ2BYgtEE/VWBT2WoVQzZFiCqt1dZw3CPhXs0x0TJo31dirxr5pnVh+fg/lUhsCx7Lemog1X5P8LvBwUEX2GVb0+Fi+eigaWoc3kP3xtAyUH2vqm4qralypi2w+Z5J+GqeU90HRFN1UFE8NDSEgYEBlEolNx9Ip9NoaWlxdjyVSo17vtYRZxsrkVlbW1uxYSTJeSrEmBKFdpzXYv/RFQv6bO3zALblb9e2V/Ke/SGRSGD27NloamqqUKJnMhlnhzOZDFKplGs3VT8rCc76BMFW9X5DQwOGhoYQj8cxMDCA3t5ebN68GaVSyb2bWicuN+ecgQpy3qNcLmNoaKgiVRHroup6YNvGmpYA4f92nwKCiniCKyb0PJaJbc3nrO8vU/YxbYEGfmpra12AQp+ZhQ0E6Dupm4nacmmf1PtaBbv+5hg5WXj77bGvgv0zzBb7vrvjCIJtG0EXi0UUi0XU1dW5Vc9A5QogIDylDsczfkfbQPvA1CM8JplMoqGhwZHLTFnG1VWqhFfwf65aIjh/UdudSCTc/XZkbLTH6xiutks3v+aqtvnz56OxsRH5fB5z5sxxe481NDQgFou5lWS0q8C2dK1qC7m6a2xsDPl8Hn19fRgcHEQikXC2GwBKpRJ6enrQ398/pTruS7CBcQ0O7Q3w9nv64El0j/0SSnpPx8Cng6iS2SQTuORqupTo6mjSiZxKdFgdrx3JM06Dnk6ncfDBB+OYY45BW1sbFi5ciHQ6HbosLwxKFNBhBYBMJgNg67LxZDKJLVu2YHR0FI8//jhKpdI48svDw2P/Bgk8m66kWnoVHftt6gYl0cOCi5aQImFlCTs6VRMR4Ta/MTDeeZwoXYyWudoE16rCSRby+DClOUlOmydUFb+svx2P6XhqahpVrNvz2YZW6cTzWFamGKMTGI1GHaFqCXM+D+uI2tQXvMfIyIi7LtP3AHBp2pjDlelXqkGVanofOvxK3tLmqao7jEhQ+65zF34fhrAVaqpQpjKNm53ncjk0NzdXqM9JEvC5aN/ghm58hpyTBEHgFHLJZBLlctl93tfXV9HnlPgGtpHWnNtQ7MDfdPJVBMCgjfZTq0q0KkOWOUw4EdZW+iztKhSOFZpDXedmFBGw3FT/s000rZJVaGo5dI6pY4Ul9vX56vhiVel6DU2D4OHh4cmiXQEd8/mj8wwNINtVU0D4M9HgPO23zu3of1OxzbRqNs1V2MqlsOAroem6uNF2tTJOFay/XanEuQ2D5Ol0Gk1NTZg1a5bbdy2ZTCKXy7kguKas5ZyAwgPWie2fTqcxNjbmggxM28Ygf3d3NwqFAgqFwk7XcXdiornxjlzLzoN3hpT22LvhSXSP/RIjIyPo7+9HJBLB4OCgi1zT8ZgKqGjnxlqqZAPgIuXTmUfMOtyTVaBPB2pqajBr1izMmTMHLS0tmD9/Ptrb29HQ0DBtSnuitrYW+XwetbW1mD9/Po466ih0dXXh+eefx9q1a3drvT2mDz4S7jHdsES1El02wGhJJEJJpbC9IGzf4zWUxKP9sEHKSCQSGrQN2zBQ66NKclXPq9LUKmptWZXsVEJdVdth7WBzmVunjmWyhLqSclRNUU1tEfaZEpaa55zXYFtS0Ux1mDqaSpCGKb30O+b5VKeex5DAZfDBboxajbxluhUlYdnevA/JepsuRM/RdC9K4jIgEUaij42NVeRs53Pic6cTnkql0NDQgMbGRpdj3i5513ZgvWxe1DCynuQClX/AVhVbsVh0gYqRkRGnLrdEsVW7875h76B9x1k2tqOdI9k203eN5/DaNgUUP7fXZKBHVYo2bYAlbFhGVZlbqJPOe4UF4ux7wndPlfKEBlh4ju4tsD14++2xKzCdZJfHzIMNxNJ+My942Bhng/TW96Ud1Wvp3jhqr/ijG6nrvTStHElxmy9dbaAGsjnGT0T4TxY6j9K5CoPZVNSn02k0NzejpaXFfcZ88wzU0hbZubEKROwKs3g87o5rbGx0K937+/sxODjo+A7d22QmY7oCG8B40cqeJtHVjgOT29fE2+/pgyfRPfZLFItFbN68GYVCwUVXR0dH3RKvySIItqYN4HLlzs5ObNq0yTmGXMJdLBadimo6QONlN/rY1QMcHbNDDz0US5YsQVNTE173uteho6OjInXLzoIGKhaLYfbs2S4fWzKZRHd3N376059i48aNFSpEj70H3oh7TDeUqKVzpekOLHFeTdXE78vlsnOM6LwoYVqNvCZ4bzogYWomXkeX1NrvVdHN8Y5EGe1LGKGpAVYFy6vpMsLO1ba0RLE6FKomVnKXq5X42ypi1TGmw2rV90omsy14fzpzg4ODzglXApFlZX3o/NiluFSwMc0IA96aAoYbYpZKJackJiFKdXxYWwFAKpVybc3PS6WSC96PjY1V9BFNS6PP2bYZ+yptsvat4eFhDA0NVdRTSeWmpiY0Nzcjk8lgwYIFaG1tRU1NjVstx3tqWzLlDX9bAkGV39rWdMjz+TzS6TSKxaK7ZrFYxJYtW1AsFh3Zrf2WZALfjbANeK2K0QZyALj20Xfekshh+e4pgLDknr6zfKaqTOSGeez7vAd/dH8cfa+Y1ohBiGpBBe3bGqzSdE0MYjBFko5XvL8Gg9gHJwNvvz2mG7pyC/A5yPdF6Iq9wcFBjI2NObXz2NgYMpmMCxITOrdRe855Dzf5pIBtYGDA2XAAzrbX1taiVCo5clltm50jqW3TeSUJYwaDi8WiG1N1vrIjq7sVtGU6j6H/G41G0dbWhra2NmQyGRxyyCFobW1FLBZDPp93adGYUoyBcdZT7QaAioAxv2fKMW5IWiwWUV9f71Kzkfcol8vo7e3dp1Orqt1WAt2S6Hu6bLT9mqaxGrz9nj54Et1jvwQdwZqaGmcMampqkEgkpnQdOj7FYtHlYqPKit9r3tfpItGtU8nPwhCmVJvo+GrgQF1XV4dcLofW1lY0NTWhvr4e6XR6wnvtCHg/OpPcfTwejyOXy7mJwXQq/D12D7wR95huKGlG0khVS0ClE7E9KClJpSfvs71xXMkvloXXsbAK+TByXsltS8jrBlEsX5haV++nyucwkl2dSyUllSDW9tCy2/sp8a35vTWdTDW7YRXaqhCnakwVZhM9W32GLCPbUJeX25QrrH/Yqi+rOrPqaX32/J6/WWZ+ZgMI+pzCFNL2eWl5w4In6gTGYjG34RgV6DZtic0Tq2W2ZLSSX2HkdCQSwfDwMDKZDGpqatyyejrs1RT1+qxsvdmn9Ld93jaYMhHsigG9ThiJrv2d9dW62DpZRzysPvzRdyNs7NC/7eoFDTCoCl4DUVapbo/ZHrz99thVmA4lr8fMhI6tYYFnux+ItZ9KomuaLxWUqbCK51u7rrbKjsH8rXMWFWBYO2j7qSVZbSB7MtCxX++hudAzmQwymQzS6TRSqZRLwaYr/3RsDwsgA5UbufM43c8lmUyipqbG7ZMSiUTc/Rgw3x9g5wXETCHSvf3eM/Akusd+CaZzKZVKWLt2LZ5++mlks1ksWLDAbYhpFWv2fBrutWvX4qWXXkJnZyc6OzsxODjojHgQbM0Dum7dOgRB4CLX1QbkyWJgYAAbN25ET08PCoXCOHJIHSrmNtV7ctkbJyGTiZynUim0tLQgk8ng4IMPxmGHHeZ2Ad8dSKfTmDt3LnK5HA4++GCsXbsW/f39eOmll/brTU48PDwwTn0KbCOUqQ5i8BFABdEY5ghwTFUCW69LqCpbCc1IZGvKEbtBaRgpZtNg6bhMtbOWmc4hSVVLeKraSB1FDTIwQMm/tUxBEFTk6eYPHVX+zfZUJ5PPgooY5oUOgsApnfWa+szonFJFq8coSalk7+DgILq6upzilsphm6JGnVqqz0dHR9Hb24u+vj63KZnmVgWAwcFBRKNRjI6OIp/Pj0tNo32E5dP82GGqOqrjhoaGUC6XUSwWK9RvqqjPZDJIJBJuRZtuKqmqY0sOWBKdzjc3G5s7dy4SiYRbfaf5uy2JrnVlfS1RWy2wpH0wEomgWCy6ecvAwAAGBwcrlHa8t60PVe1KZGj706HnyhF9H1lOfU5KsLCPVXtmWvexsTH3HPQefA4sOze+pepbAwoaACIZxDQ3fGdYJ11doO+aXbnAfQhUPck2s0EOLdNEATUPj90F2jO1p0BlcNZjPPQd3l5QekcERztCAle7Dscl/ubcpq+vD6VSye1xwlXNSkjz/lRBDwwMYHh4GJs3b0ZXVxeGhoacXeH8IxKJYGBgwO2vMTg46MZo2prJBHA5L+FKLIrmVDhHe2DnKByHGaxXYUK1+2kQgVxEIpFALpdDIpHArFmzMHfuXKRSKdTX1ztSO5VKVWxYbufDBFcj8W/bvmoXGQDnvKVQKKCrqwv9/f0YGBhAoVBwc719kWC1AQ3+zfdtd4xN+g7Yv+3c2GP3wpPoHvsl6JDU1dVh7dq1SCQSaGhoQC6XQyqVqnBIwsBlZMViES+99BL+67/+C319feju7sbg4KA7bmxsDL29vU4xqMu/doZELxQKWL9+PXp7e93yKgWNZF1dHbLZbMWEAdhKDDCFjTqkEyGVSmHu3LloaGjAwQcfjEMPPRSJRGLCdpouMPrNncdf9apXYcOGDdi8eTM6Ozs9ib6XwUfCPaYbmgcZ2DYG0jnnOGfTRig4ESU5HKasDlPxhDlMhJLovKcqnkj6EXTaSNRZhbcqhnh/rqTSoIBVlNuys67Mm0lyOUwdy/ZiKg6uvrKpxDRPqeYU1dQbVHbZ50XneGxsrCKXNJ03XkdTjZCU7e7udilWuOklbR6vTUeD5/T19aFcLqOzsxNbtmzB8PCwc8CZYxXYaitramqcE82l4NZm0qGhkssGddQZJ4lOAr1YLLp21wBBXV0d0uk0MpmMqxfLp+1rCdCw/Nq1tbXIZDKIx+Nobm7G7NmznSKdbUN7zvqEqQbtOxaWPsc6eXwPYrEYhoeH0dPT4zYs6+npwcjICOLxuFPE2/eE7xaDMQx2sGw28MCcsCQDGEhThR3vw2to2hzt/3Z1Afsj+2Q8HndtwfdYiXkl6G37sC+MjY25nL4sD4MxVq2pxLoS85r/nM+RhIoly1WduD3iLQzefnvsCvA9VVg1rkcldOWJwgYD1UbvCWggVDf1HB4eRn9/P4rFImKxGEZGRsbZb4I2rr+/H1u2bEGpVMKGDRvQ1dWFUqnkguGWRKcggCR6NBpFqVSqGDNVYEBw/NfAu648J4muQVXdTJ22iPXicQyc2j7NeYol0RkAz+fzSKVSbk8yfsbVZOl0usIe2ACLJWLVHth2Zl/Ruc7Y2BiGhoawefNm9ww2bNjgOIh99R2dCUpz7aN8pvozlf38vP2ePngS3WOXgQO2Gir+qEOiOVV3BaziTp0JRrzpbA0ODqK3t9c5e6r00zIPDQ2ht7fXRb/7+vqcA25BR6lYLKK/vx+9vb0uajzVyCGdS96/p6enIp8s65ZMJp1BzWQyzlG2z0TVb+pwhiEajaK+vh6NjY0u4r07o59KWGUyGTQ1NaFcLruIusfeA2/EPaYbmurEOpBW3aYqkjBVuRKi+rlC05RY54REPe+p99+e4lMnxbQ5lrhXtbD9zl47LLUH2wvYpuAHKpXGSjrTPlA5psoqXitMtQ5szb2ujrt16CysSp1OZE3NtlVVuv+GbppFZS+AUKeCtnJoaMjlUieJrfuL2NQZ6lTaNCy2Lqp25v9KDDMgwZVsGoSw5DSJY9afZK8+L6sktivdlJxnrlQu+w5L96FlZlnseK1zDW2DMPJcP+NvPtNoNIpYLIZYLDaOPNOyax9mP9N78pp2nmfLqymI7Bih99Nnb3Of69/b68N63TACS0lyva79zCretG21rasRJXpcWL3D6j4RvP322FXw/WNqUJsNbBvrNJUHxwe1Nzqu7co9tTToTcV0Mpl0YjXdn4FliUS2qp/V9lDYMDo66lYxlcvlCltORbimhaFfy8CzbkKqZdS5oLYDx13Od3gdvR+P1zkZ251zFpLrFHJwHqQ/1UQdfJ5cOcZrci6k8zSdt1UT61WzWzpP1TppkJlzLwZD+KOiE4/pgbXf9jOLyb6/3n5PHzyJ7rFLEIlsWzKaz+fR1NTkHMK6ujoMDw+75Vh9fX3YsmVLaGR2Z8sQiURcLq+6ujq39InGjeqhuro6lMtl/PWvf8W6detczjGWmUR7oVDA8PAwuru78fLLL2NwcBBr167Fhg0b3GZeiiAInIMei8Xw9NNPY8uWLZgzZw4OPvhgt9R2MhgZGXEThxdffBF//OMfMTAwgK6uLgDbyOVoNIpZs2Y5pVk6nXb34b1IHpTLZaxfvx49PT0YGhpCV1dX1U1CGhoa8OpXvxqzZ89GR0fHlCKf04m6ujp0dHQgCAI8//zz+NOf/uTS5fgBfu+AN+Ie0w2urOFEnw4GMJ5sVHUzsM1RUoUmMJ4A1H6rRJYG+JRct9fRNCUkbS3xTQKdhCedPnW0qOgi0cqx2AYF6EBS7ap15LJplkmdrmg0imw26xRhqVQKACqcUCq5GczVTT5ZbyqHrUOnQQK2tzry+pNKpSrKwvraFGU1NTVuw8toNFrhhANbnVeWr1QqOVvOdC48hvMQVffReR4aGnJ9hvMGXbWmZL46tCTRSZzTbnODUT4LqumpytY5i5IdXElmCYZisegCSewHrFMymUR7ezuy2Syamprc9dUZZx+3qwe0b7JNWVcllPmj17NkDVcAMg1cPp9HJBKp2CyOzywIgopct7qJK8ugaesSiYTrW7o6hM8zbDNdDfrY91H7pQ1WKcGhbadl5v0ikW2rPDTYRPD5cWNRXS4etuJB3ye70sGCx/Fd13tqO/D+k4G33x67Avpeaz9Rm8vxZ7r9xb0VtPEcdznO5XK5CsKaY+zY2Jgjn+lT9vf3V4y/ih1tY447+Xwe9fX1iEajyOfzLojLTSsZJGbKPa52ox/KMo2MjLhNLAcHB7FlyxaMjIygu7sbPT09Tqxmg9LFYtHZAB5HhXUsFkMikXCqdw1Ws+605ZzzlEolbNmyBZs3b0axWHQ8BgC3KonKcaaNicfjFUH0YrHoNlOlKp3qeY79bEO2Vy6XQ3t7O3K5nNsUnCnQdDUhz7PCRSsM0f5j52gq9mD9OVcYHR1FJpNBQ0MDAKCxsRFjY2NOgOiJ9OkD7TZQKcYBMG6c5BgwGXj7PX3wJLrHLoFO2pmCg4YlHo+7/GckmHt7e6edBKXhIJHMXGIk1OlwcVn16Ogouru7AQCJRALZbNYZqWQy6Yx4sVjEpk2b8Le//c3lY+3p6aladjqAzGM+OjqKZDI55WV1NL7FYrFiGRWXndP5jsfjqK+vR3t7u5tEMb+clonL0uiYRiIRbNmyper9k8kk2traMH/+fNTX1++WNC4KJaIaGhpcSh0uAfeT6r0H3oh7TDdImlIlbUkvq1CtlqqFP2H9zBLjOsHV30re8R5K5NM5sQpwhaZ4UfUYSTtNbaLlCFOi29Q0lgBUR4nf0clk3k0lqblUmjlCNYUZ1em1tbUVS7M1sG5VNbad9CcajSKXy6Gurg7JZNI53FyBxPqxD1BtZwlG2m/mISd5zbzcLI/tMzyfJHi5XHbKK6AyXY+9p+1TJANInnP+o+3PuUk6nXbzJ93wXAMPqmwn8aCEk6rbGBghKa/9R0l3rb/WnXVRQlmvr+8Dn7US3rwOA13xeBwjIyNIJpNuLqKbr/PadtNXJSO0D2tOdyUT+E7Yd1/7nAaYVA3OfsM2t6luVMVvlYVad21HEidKXACVKXhUqcjPtF4697IBPkuU2LawY40GEya7ItTbb49dhYn6lrXPvi9thSVeGaSkGCyfz7tAbhAEFUHwIAic+Gu6Ur1YEjifzyMWi6G+vt75o7RBansYgGTQEagM3G/ZsgWDg4MYHBx05e/r60NfX19FYEUD2qoeLxaLbu7A1CqarkRtgbUDLANTuVDQRu5AV8WlUimkUilnv23wlmllSPyzjNbW8pq0bdlsFvl8Hul02on7bCBfz7UK5moBKtoNwq7aUvtHJXoymUSpVKrgR3YnH7C/wAZCgMoNcPV5TjaA4e339MGT6B7ThpqaGtTX1yOdTiOdTqO9vd054M3NzVWV6N3d3S6qS1X0yMgIhoaGphTVrK2tRTabdQ5oc3Ozy3Xe0NCAeDzu8oep+k5389a6cMDiRhqlUgkbN25EoVBAb28vent73bKwyQwsw8PD6OzsdClImGaFRlHVk1Z1RuXc2rVrMTg4iJdffrkiZy4V9Q0NDUin024DkjDjyvrxfrlczhErW7ZscYZcyRBOhurr610b7knE43G3O3kqlXIbr1Gx6eHhsX9DVTScbJLAIzlmUyVUW1ljSV69h5KHeg0eawljPc6mnAAq04DY6/GeQKXamfepZi/DnBurdiWxSaeoubnZqcBJopPILJfLyOVy7ncymXSKL7avEqB0jAE4u0ulM0l2YOvm0QAqnGzab1WiU8FGYoCEJctHEheACzxzMzLNmUqHlTlTVcWmbUmCkzafjjNzllN1xrQkaj/5u1gsoqury+Vw5/yH8wddsq3qPCWM2F9rarbmWmU/5jPRZdVKzOvyfvYHSypb0r0aUWXVUJr/m/2I8yf9XskBPt+xsTEX+GdQXO/J87UfsXya7oZ/6/vB87VvWPKf74ANrGldOR/T9tE+Z5f7K1luA0JA5aZu1dqVZeTx/K3Pj5/ZuZ0G2CxJxf6tey1o0KLaKkQPj5kAHZ/8PH8rOAfgSmT6RG1tbUin0xX2m+NQuVxGf38/hoeH0dXVhUwm40hqrujT1WvV7gtUpjDR1XG01c3NzWhubnYkOoV0/F6DexzfNfCv+4fQfusm4GGBP7UfXEE2NjbmlOy0jbSXTFHH1Vlqa2mji8UiNm/ejKGhoVD7bVcCcFWZrsriNbkynMp7XWXF+tDO62asJLE5xldLC6P9QtsjrJ1oqxhAVpGHrh7ToC/tN0n0RCLhNtL2mD7YZ1hN+OOx5+BJdI9pQ11dHebPn4+Ojg60trbi9a9/PVpaWpzBBLYRBGqkent70d3djd7eXqxatQpPPfUUCoUCNm3a5FTWk0EsFsPcuXPR0tKCuXPnYtGiRaivr3dOOI2PjdBapw3YuplYd3c3isUinnzySbz44ovo6+vD3/72N2zZssWp0uyy3IlQLBbxwgsvoLa2Fps2bUJnZyfS6TQOPvhgzJ8/3+Ucj8ViLvo+PDyMdevWoaurC11dXS4dzMDAAAYGBpzx4wRq3rx5aGhoQDabdcS8XQbE50DHetasWWhoaEAqlXKpYWjYOdHgBqVtbW2YM2eOIzv2BGpqatxStq6uLkfs21QCHjMXPhLusSth1ddhClQdE1WBZYl0SzZZhZIquKl4VdDBtQR62EoeJf31fCWlVY2uhKKmRbFkG50fW3bdMKqmpgapVArNzc3I5XI44IADkM1mkc1m0djYOE7VzT1Aurq6sHHjRgwODiKRSGD9+vVuhRaXjTN1GkHCk2k46CBSYUX1GoPNmUymYtynk26V4gMDAxWkMlXydJ67u7tRKBTG9QMqqeiYK5nOOQj3EKEKq6enx6VbYboZ/lYVMjcfKxQKePnll1EoFDA0NIT+/n7npPK5c/Ns3WQT2LakneWiE8vyMSigZDPrp+lnaPfphOsztasjLFmuASGFbrLJlQYaRNC+xmtQyMB5haqwtV+SXKBajyQvAw3Ms8sgiLUrLIembLHKPBukstBctpqahvVje4YRQJqbl6AgQYMtGnzQsijBb9PnWfUp53maa17THrFvkJhSkoT380p0j5kMnypiPDj/iEajaG5uxqxZs5DL5XDggQcil8shl8s5/5d+L1OvkUTfsGEDhoaG8Je//AUbN25EsVhET0/Pdkl0+ockz+vr6x2J39zc7FZF19fXu4C4KtG1TDbdGklqEueDg4Po6elBf3+/s6cca8PGftqRoaEhFItFl4qEm1n39fUhFouhsbHRzTVov3XOx/sXCgU3txkcHHT2W4OdTJ2qKWI0xR/tGlXlY2PbUsSShKYdoS3W+QBtuI7vNsgeJr6YiESnbaUN0R8NbHCOwnlafX09xsbGkM1mXVCDNs2P8TsPqz4PS7VkMdl29/Z7+jDjSfRrrrkGP/zhD/Hss88imUzihBNOwLXXXotDDz3UHRMEAZYvX46bb74ZW7ZswfHHH49vfvObWLhw4R4s+f4DDqyxWAyZTAaNjY1oampCW1sb2traXGQ2zAELgsAZiVQqhcbGRuRyOQBwecq399LSGePSNSrf29vb0dDQ4Ix4mHMYVh46qdxYVB00LgmbytJXgulYIpEICoUCtmzZ4qLrhUIBiUTCKak1+t7X1+fyznZ3d6O7u9vl3AS2OVAkFlKplDOw1ZSVOkBzAsSNQqLRKMrlsvteVeu6hKzatXcHWB792d3pZTx2Dt4Y79uYCbbbqrdVzaFqWR5jCfCJrmeJxTACHBivQCfCxk86QWFEugXvp2p6LV+1tA5KzGlZ6BAzFzsV6Vzpow4vc3hrWjAuISchrYELVb2zHVXFT7UV75VIJJDL5Zz6nKSrqrRZJl5T872qCtyWw6bZYL1sqgt1WPgZSVxViBWLRcTjcedwav3GxsZQKpUq1HNM46LkLp+LKswmsmeq5Of56ghXC5rbpcHV+qZC20v7PM/T56tBGg3Q6G+WPQiCipQyVjXH65JoDtu4jHMTBojse24DYHqevhua6oBl5OdW6a1jiKLa5wo7p7JjhQ362XdVy8Cy6XPl868mFrHtqcSO3n8y8PZ738ZMsN8e24cGRelHczU4A9DZbLZiTGCaNRJzxWLR+e9MTUr7Hvaeq+3QlWG8H/1w5vImOc35AVdwqb2yqaxoa+0+DmrDafMngtodvSZtMP3l0dFRFwDXsZIEOm037Te5CZ0Xqf224zCfFe9PEQT3jeF5ajfVVtDn1vRrYbZe51hKsIdByXe2EdtWVxSqYETrSb+bZfeYHlTjyqbT5nr7PT2Y8ST6qlWrcOGFF+K4447DyMgIrrzySpxyyil4+umnnRr2uuuuw/XXX4/bb78dr3rVq/CFL3wBJ598Mp577jlks9k9XIN9H42NjW7Di+OOOw4LFy506jUqkyYC06zE43Ecf/zxmDdvHtauXYvf/OY3Ls0Ll/kqaEQ6OjqwYMECZLNZHHnkkZgzZw7y+bxLJ8Nl38Dklr6QWG5oaEAmk8GrX/1qtLa2ore3F+3t7diwYQM2b96Mv/71rygWi5MejOh40xByI7BXXnnFkRAktEnWj4yMYNOmTejp6UGhUHB54NTokdhmtJpEw2QJZV2Kl0qlnJNVKBScsolL8HivPW0wldgn0UPi32Pmw0fC933sbtutql11MoBtY5xVhQKV+SOB6ikdNM2Wknb2HnZsVMeHoEOipB8dKSV9dQMspkHTzf80kKvl0O8secljqWJi8Dkej2PWrFmYNWsWUqmUW46saiTNR87yk0hPJpOYO3cuYrGYU7EVCgVHmKqKl+UZGxtzq8Xi8bhTwevGYwpVXinhyPalqpmqYyp8U6mUU8T39/djcHDQqdZJoIapfGwQQklNti83CCOhXldXV6Ewp8PNtDKqcqf9pjpZA9nqiNNRZZ21P+lmaHTCed9IJOLaUecHnGfYNERsX9p/BgFsP7O583lvJUQ0fYu2Jfsc09HwnryX5rXXXOnaZkqi8H1UQoDnK/TZ6TvOclG0wPLZvqfCCb5HGuzQ62vbhK0GZB/mHJCrIHh/BmjCxjD9W/u+3lOfLeeL7H+qRFfwPZgMvP3e9+F9723QQJoSk3uyL3MMYJ7sRCKBefPmYfbs2Uin02hpaUE6na4Igmu6UI6//IwrphKJRIX9LpVK49JkMqVHbW0tmpqaXOq3OXPmuD03mpqaKnxT2jjOZTi/4LjFsoyOjro0IVw5FI1GnZ1NJpNuFTbzlE8m+GeDiLTVPT09bo82zlfUtnDfsWKx6PxvtS8Ucal/zDpzPmg5EPajsbGxilV6rKOmnGFb63U10K5zBP7PNgS2pfBiWWzgVeesSsDrfM3O2xgwKZVKFSvc9BoeOw6rQAemdxWOt9/ThxlPot9///0V/992222YNWsWHn30UbzpTW9CEARYsWIFrrzySrzrXe8CAHznO99Ba2sr7rjjDnz84x/fE8Xer9DQ0IDDDjsMDQ0NeO1rX4tjjjlmnOGYSFFF48Cl40cddRSeeuop/OUvf3GbjlqymoaAKWROOOEENDQ04Oijj8bcuXPHESOTJVd5HMsUBAGampqwcOFC9PT0IJvNYt26dXj22WfxyiuvOEM1mYGFdaUB5OC4ceNGt6EpQaM9NrY1j9vg4KAzjOroKMnNpeBcRjbZ+tL4Ms94EGzNw86B3JLomuNtT4KTQtadZfbw8Njz2N222zq3uuGjOg2anxKoVEXr56r00e/o8KnKWQl0q3AnAapqJFXnqpKX59JB5HVisdg44k/zG7NcJPd4jLVLSv6xTNy3hHnQZ82a5ZxCJeSVRAdQsbEnCdBisYhUKoXOzk709/e7nKMk/tUhY/txw+9UKoV58+ahsbHRrSyjYqxQKADY5hDq33QiGQhWkp1KLy45jkQi6OvrQ09Pj9uIVjetVCcyTHWt8xrWoVAooFgsoqampmLDMLYZiWHNw642PMwJV/JV21znM0o8cD7BdiCJzneA9luXhZN8137K80lks8xclafErirSbDtpHe08jM+JG4tquhRuAEfiRtPUWBJcU8/oe6xtrn3Cnq+kOwNFfH7a91UZyDkbc+dq/Ww/0TbVcUifI58TgwXsR3w29p0mwsgTfT46xyThMzg4iEKhgCAIHPGk746qID08vO+9DWq79d3dU4SSzjXS6TRaW1sdiT137lwkk0k0NjZWrCqrqdmWOg3Y5rMyYDc0NOSC4bTfrK+mVVViNxqNorGxER0dHUin01iwYAGam5uRTCZdihS1o7pShuSx7meRTCbd3CeRSLgxPhaLOTKb5aXIi2m+JvMsaB843jKgwFQkfX19Lm0bVfgMLtA+2D1Hamtrnc1WsptCAzv+6/yEbUPiWzc51euHzRFs8FQDrmH7c6hinG2u8wj2Cc4pNb2arliiTWW76cp0T7DuPKwf4G3yzMaMJ9Etent7AWxVPwPA888/jw0bNuCUU05xx8TjcSxZsgQPP/xwqCHnBJ3o6+vbxaXeN8GXnfnPqNym8ZjKdYBKpTYj2cy72tPTU3FOLBZzm2c2NzejsbHREQE0yDtDqFqnjxOQ+vp6t0FoU1OTM+aDg4NVr6XOkBpYuzEIUBltpFGi0eNnSv7sKuxNZLQ33HsffCR8/8N02G6guv22fcoqxYHKcW2iMc6SXTo+633oHNLZ42+9tpLkqj63xF61fq3HKGFnlSl6vjo96sSq8pf2h3uWKNGqqlc6ZErU2gAD1VvJZBKlUgmpVAqpVMpt6kUnl84jlWjRaBSpVMot86ZzGLYMWgMdrL8GTuxzZZvpJovJZNLlS9dgs80FHmb/bUBFn7FdFs1+wnLoj9pv2wftfVRtbPtcWF21HCR9tSxWsVbt3dBzbZ+3ddZ2UkWb9nmtixU46HXoNJLAtxuaWSVdWPm1DTmHUuKC97HzKPZjbX9tc/uMbH/Qd8Y+F1tXvpsarKimNLP93t7flg9ABRGjOW313lZoMRW76u33/oddbb9nMnQMmQmgr8xgs9pQ2nENila7BgDnl9J+03ZTCV4ul53d4pjDnOYMUOdyOXee3RgbqExTZ+2OgjaEwW+mnWGaOa44JtlvSfRqgQ1rh6yts4FS2rzJpIvR9gyzd7RbWg7+bcunIoMw26u2L8yuEmrrqtntMJGALY+1e/b+HtOPnbGtu+MeM2UMnCnYq0j0IAhw6aWX4u/+7u9w5JFHAgA2bNgAAGhtba04trW1FS+++GLoda655hosX7581xZ2Hwejw1SCL168GI2NjWhpadmp69Kxb2lpwXHHHYcDDzwQa9aswcaNGysick1NTVi0aBGamppw9NFH4zWveQ0SiQSy2ey0D+68XiqVwqGHHoqOjg7k83mMjIxgy5YtePrpp/GXv/wl1NgyasuJBfPEceICYJwBZDswz2o8HnfLwbds2VKxgRgwPu/vdMBGptUJ2x2D/GShqkYlCzxmNrwR378wXbYbqG6/y+WyS2NFp48K2jC1qCXW6FDY9Ayq6lESKmxPDJLJlvRSItB+B1SmotGUHbwnr7u9sZ4qIjsm8v7cfyQajSKXy7mNtebMmYN4PI6WlhbU19ePG/OVsKZ6WB11/s20LNFoFH19fchms9iwYYMLgrOeqVQK7e3tyGQymD9/PhYsWOCUVrwPlcS6rNmC5DeVymwbJRrphNfU1KCtrQ3lchmZTAaRSATFYhFdXV3uGStZQMeXf+sSairDlMS3jqmq/mnDNVd7GImrS+5Vic5crWF9Tvu1VXLX1tY6kjYSiVSsWEskEuPIXSWxuYQ/LFe49i8luPn+caNRBetmCWBNv8PVDAMDAxgcHKwgi/Q5qjBBiWqqLNleLKuSImx/TfsEwOXp1euwv/Nvjg18JtpPwt5FHXvYtmNjY+jv73cbpg4ODla0P8cLJfq1vuwnHB94TfZdPU/TAmo/sGmjtJ0mA2+/9y/sDvs9k6Hjun62p8BNPJPJJGbPnu2U4LNnz0Zra2uFfea4wLFCxw/ahGw26/bkotCLK7ZqamowMDDglNI1NTXI5/OYO3cuMpkMFixYgIMOOgiJRMKlcqEt51hmg60697JkLsdX2v5cLocgCJxKvampye2bNjQ0hI0bN7pxmmOdguOvteEqYNPc7/YZ6/hOgl/rVC3AyvvSVqj94bE6V2R7MEjANFz8n+ID3QNMBQJaFrtRty2nzu1s2RU26MpVZ3qctVUeO49d3Zbefk8f9ioS/aKLLsITTzyBhx56aNx3loQMU/kQl19+OS699FL3f19fH+bNmze9hd3HoUYpn8+7ZdhTVaHba/LcdDqNuXPnIpvN4m9/+9u4wZ1Lv9va2jB//ny0tbWNy2E5naAxbG5uRhAEKBaLWLBgAXK5HF5++eUJzyVhroo/GvFqsBF8OmzM41pNhbgzg+P2Itdh3+1pzCRC32Py8EZ8/8J02W6guv3mhN9uuFjtXmGKIP5vFTdKprGMeo9qk146kXRQtG6a4kWVq6pU52dKFCoBGWYHlAxVElyvQWKX+dDpRFNJNjY25tKJkaQjOcr70CZp4CGVSqGmpgbDw8PO0e3u7q4gY0l85/N55HI5NDY2orGx0aWTsG1qSWYAFQFdVformWhJ8Egkgkwm4+rU19eHaDSKgYGBcYFsnYtY9bY+E95Ty2rVXZrz1Srsq/U7/eE8S5+nnqNg3ezGkZq/VXOq6vl6ff6tgRt9DkpM67PRnPXaJwE4AoBtoeD9WHaSv3oO51E6FwxTx2k7az/S1QZKonPOatvdtivryXvpig6ts9q2sGfNFC5MDUAVZdixSorYeld7X1g/BqKYuoVL9BnMCKufJ9E9wrA77PfegJnSd2tqtqbo4gai+XweqVQK2WzWbdip47sdwzWor4R7Op12xC3J6y1btoxbvZZIJNDQ0IBcLudyoqs6Xe2lBuGtglkDz6yXlktFaJwzMA1YT08PotGoSxsXiVSmnSF0zA5bQaRjrAbrrdghrPxhz8WKMDTgqW3Ba+v1NNjBgKcq5Xk9/V3NbmxvLNfvrd1T8QfLxOdvif99AdXs7p7Crr6/t9/Th72GRP/EJz6B//zP/8RvfvMbzJ07133e1tYGYGtUvL293X2+adOmcRFygkuWPXYcJM9puBkZ3VEC3SIajaK+vt7t6E0HjUa6tbXVbaJSX19fdXnYrgCd8fnz5yOXy+H555/H888/j3K5jKGhIUe20CiRPK/mvG4PmoOW6jHeh+QOVU1UoE12809VMnFzq8HBQbeRF4AKhVixWHQTlbBcnbsLqpijQzrZvHgeHh67D9Npu4Hq9luJbXUi6urqUCqVxpFf9jx+RnKNjsNEK1wsIRimFqYDZW0Uy6GOlKqcNCUD76HKMqqiWA49XzeT0vIzxzTtqebJZpty7LdOlTrR6ryRkFeyNplMuo3luMx8ZGTE3SedTrs9UHQTbF5Tn586kdrOWkd1WK3CWUlu2qxMJoPGxsYKm6YbdquynaQjSVxdpq4kgD67mpoaVy/rpFvQYab6bGhoqEJ1zbKEEQ1KjrIeXKmmhInaSyqSdQk7j9ENPK1zrhtWalCI91DyIKyfs07sY7pBmzp1kcjWdAHJZHKc2k7zzPI3+6g+B7aTVTrqKg9dYm/7lgZlbMCA9+J7ru1I2ABLJBKpWCGiQgi2CculbWhJe6o7w8goHXt0LLTBnLCAnbafh4did9lvj8mDfiUD3/zRVKZhubiV3OZvDU7STtM+B0GAXC6HdDqN0dFRR7bX19ejqanJpXLR/bI0JZbaR7XVNhBsf4DxabYAuDqWSiU0NTW5DcNp+2hjrc2nHVEVN2FX/lHxbcdiBuht+eh/M6/82NhYhVBON4IPG29pB+ljc8WaDYirf6+2k/VVm6H2mz9sA+0TfCZhgS8lz+2KAk25tiN7A2g/mAk2ZyaUwWPvxIwn0YMgwCc+8Qnce++9ePDBB7FgwYKK7xcsWIC2tjasXLkSr3nNawBsXcK4atUqXHvttXuiyPsFYrEY2trakM/n0dLSUrFhyXSAy9TK5bLb5TsIAsyaNQv19fU4+OCDcfTRR2POnDnj1Em7A42NjTjmmGNQKBTwyiuv4IUXXsDAwAA2btzoSBga4nQ6jfr6+oqI/2ShyjcAyOVyKJfLjkinEebGUQMDA4jFYkin0xXkxESgkR4aGkJvby96e3sxNDQEYOv7x8nJ4OCg25yKJMFU6jKd4KRiaGgI/f39rszeGO4d8JHwfR97wnaHLSslcUhnjI6EKoS0zHRelCi1JC6dEqv4odPDsgCVGzbyeEuEhZGCSmjyWlTlWsLWKmx5Dzo7dHTssuBUKuXUbCTzuOEWHWJ1xDjm6waTVPOyLPybG4z19PQgl8thdHQUqVTK7S3S0tKCfD7vUrBZh1XVtDYwwXqxbRhU0DQcmicV2EY88LhYLFaRq52BWEuKMngdjUaRTCZd/fgMlLCmU8tctUoY0NG14xefTbFYRH9/P0ZGRpBMJl2/4HPlnMISI4VCAUNDQxgYGHBpUBgQUEec7wGdcK4qYPtq8AXYFnBg39J0O1Y9x3fCrrbQeQJz0gOoCMpr/+Q5bG8lzJkXV1PqhAUxWG91/FVlSEKfS9P5TlhSmu1mAzF8HvZ9V9g5qV6Pz5ppkXQepeMBf/Md5CpGPY7X5vtiV7HoGGTfL/v8qtUlDN5+7/vwvvfMRW1tLVKpFHK5HHK5HPL5vNtTBEDFGGfHPY6f+h1XOnHPEwDOr+/v73cpzyhimzVrFubNm4dcLofm5mZks1mXzktTi+h4bGH3bOGcjJ/pOK6bbY+Ojrp6FItFd36hUKhI70axl27WrYEGQoUHHCc5V1ACH4DzfXUcpa0NggB9fX1uJZ/OL5lWkPM32jv6sfSrGRAgkR6JRNyqLIrFYrEYMpmMW6nFALYVNug8l5/x/uwjNvivtk7nTRowpw3TgP1Ee3qEQa+p9/fYPfD2e/ow40n0Cy+8EHfccQfuu+8+l18TgDMakUgEn/zkJ/GlL30JhxxyCA455BB86UtfQiqVwvvf//49XPp9FzRsdHbClhRNx/Vp+GkMmL+Ny9aYw3I67z0ZqPI+k8kglUpVLCG36rgdUaATavS4nMou1bNqNu6erWVRqGNvFWqaS5dRbl1mzSj4ngKNPMtcbWMujczrbwtV03kDsXvgjfi+j91tu8OIPQDOaVHyWUk2HmPHjzB1zkSwhLcSqyyfJVt5b/5WVe1E9aQzqTaG9dbrWXKQ52i9rX1SpzZMIRZWHlXH83qxWAzDw8NOoUabrqo1depUqaZtGtYeVuFWbTyxije2MQPakUjE7VeiBAKP1/ZWJZ9VT7Pt9Z623cKU2tpfaL91lQDPq+agatCHtltzZIcRufqjCmkti1VDa9vZfhAmYLDvggaI9B3QVXBhy8u13TQARlJEVyTwmjxfVzLoM1IlZrV8+zawFlY/TZVky8721+80xY62i+YnJ2zba0ohWyfb5mFKT36uY8LO2FFvv/d9eN97ZkNtrQa1w8brMPut4wHHH1VrM9Csq6/o8+uP3cPDqpYJnU/Z8bWaDdeyq3qe5QDgysFUfrSXLIcKJuwcS+cX9HU1SM02UaLaqqhpg9RH5nwCgBNw8Jnxfhq8VFW3VXZrIJg2hMfq3ITtRYT1BSveUDtg28O2jYJ11lVa1fzvsL81wKB21Pvguwfefk8fZjyJfuONNwIATjzxxIrPb7vtNnz4wx8GAFx22WUYGhrC0qVLsWXLFhx//PF44IEH3HJij+mHKoN2Jg/6RFAHn8b84IMPxkEHHYR58+YhlUrtdvJcQYJ/zpw5eM1rXoPNmzdjy5Yt6Ovrq3D0dJKzM9BI8uDg4DiDPDg4iFdeeQU9PT1oaWlxDhrTyLDMAJwRHh4exubNm9HX14fu7m709/dXpKShkRsb27oZ1tq1awEABxxwAOrr63eqPjuDnp4ebN68GevXr0dfXx8GBwcrHGhdWqjqNaovNOJOpT0j/lpnj10Db8T3fexu28133BKI1mlQVTkJJUva6XlKOilpp0tZlbCzTgFtpY7/qhiyv7nqis6bqoL0b32HWGYSxFZRqs6SXoPfqW0JczTV+WVQgk6QqqN12XQikUAQBMhms2hoaEAQBKivr0c6nUZDQ4NTdUciWzfEZNm1rdmuGhiwTqwSs0pgq81T5Rh/+H0ymUQul6uwG/qslPSnTWe/oK0gqKqmIt6ueEilUgC2KbHZtuy3fX19TolGQj2TyTgFvQY3+ByoUqN6jc8mkUi4uRMJ576+PndPPje2B6+pjreFHmPB+QTVeUyhxP4ZBIFrF6rvuHpuYGDA5eCPRCIVqe9ovxmA4d/RaLRCLc57kpTne8j3KKwONi2PEhv2cx1PLHlg+yqP1fFA0x1RIKIpcjT4wWfHumrfDIJt6nl9J8JS2yh0TNKVB/zOrsqZCN5+7/vwvvfMhQbXaG85ZnLcAMaT1SRgrUpZCWPajGQyidHRUWe/AVTY71wu52yTXR2lpLglwlkWDe7p3ETtE22Gjl0ky6kq574qsVgMPT09zpfjdTWnOtsobNUNy8v2ATBuTCVxrwFg2iyO3dFo1NlilpN2q1wuV9jc0dFRDA0NOXuv8zmb/nVkZAR9fX2IRCIVaXSDIHA2XvcP0We7vSA425Yr86gyZ1/jcZw/UxXPH3IGKsjQgIcGrvlsOefROQPnAGGrD/d22HnonoS339OHGU+iT+aBRSIRLFu2DMuWLdv1BfIAMF6JPt1Qo6vR8Y6ODhx11FFoaGhwy6X3BFi+uro6tLe344gjjsArr7yCJ554AgCcMeWPXRq9o/dk1J+/afTHxrZuBLdhwwa3pC+bzTo1G9tSFVt05Ddv3ozNmzc7Z9ZuzsIBv1AoYN26dQC2TqZUeb87MTY2ht7eXqxfvx6bNm1Cf38/isUigG31ZB76WCzmcvZpTnlOgMrlMgYGBpxTb0kwDw+PHcPutt2WALaqG1supsiw56gjyDKqYwhsSzfClBhEGMmuJLMSprqaib9pL4DKXMs2rYRVvurf1VSmSk5b0jBMzRY2/mmZWE51NFk3Bi+BrfnH8/k8AGDWrFnI5XIVjiWvqyowGzzQ6ytBqUp767jrMmzWh/fRNk8mk8hkMs7h1noBGGfHaV9t2hw+c9oX6xCPjY25wEJvb69zFFkW9hWq2FRZx2OURGcbaJ5UlonPknMnkugDAwPu2SWTyYpraZBZCWZdSWHJEts3NH8r0wLpCgX2KaaV0TQ0JMDZ5pxb5nI5VwfWi4ENznv4m89Ay639UvsSyQP2k7CgmJ0HWJKa76b2R0uiq9KfK2JU3anzZz5fkmKaG5/1ZxuzPFof9hFVuiu0zFZpqM/cw8P73jMXSkTqGK97VgDjV3Kp7Vc7p6SxkvLMj57P5xGJRNDS0uJSyGSzWbfXV5jqXedLdk5my2XLau0Px061b8lkEnV1dchms8jn86it3Zo6tVwuu3GQNp1Erqa4sfMo3kvnUxroBOD8ad10nXaGc4va2tqKtHk8huO6zlfohzMtCsujPr7aksHBQQBbfXumdlGFvar1VVih47vaBJ0vaRvTfttnp4H7oaEhl36mWCy6OmrgnkEE/V+P4bVGRkZcqhzdO2RfgnIw1eboHnsfZjyJ7jEzoQOuzRc7XddXh59IJBJuo7KdVXZPF+LxOHK5nNstXCcSuwKqqrTRTaZZKRQK6O3tdXlfGYnnsTSSdjNUqgP1PqoO6O3tRTwer8g/V02ZNt1QYqW/vx+bN29Gd3e3IyI48autrXWb4cRiMdTX11eQ6MC2CY8uvevv73dGvFAoOKfeLq/z2Hn4SLjHdIMqHKuengiqIlLS3Dp3YUG1aqRTGPmsBLGFHcfDHDlOwJVItfciKagKNcKOYUpU839eQwlHa3/1bzqKdA71eFXoKkmnq8o0PYVta5bF3lOdRduelkQP6wN6fSWPbf53/d4q7HTpts5RrM3X+mv76/MJIznoQFKZxo1g6cCq8ph2jOfTyVdiRYM1vK46/1axpopB23Z83qrMrtZXbBCL9hYAhoaGXA5Yu8kmgw2pVMrl7acqT9MC6YoLVdKxP9rct+rAVps7ap9gnbUv6TvGa+p9NIDDwIW2mSoCtdw6BqiSUNV71cpb7VnZgBlRTRwwlfm0t98eHrsfdny2Nt2KAPQ9tbZPA2lKKqufpfODMGHYRCus7ZilNkbH0DAbbus2UTvQ7yuVSuP2atGgps55tK6KanOKsHG6WoAS2BYk5qo0ltWmD7PXpf/KcV8V6fqMdA5i20TLZQUG1YQRnKNMZC+U82EAnHVkO3MVpa7eo2Keq+LVvlGtz3bh3EfLoqul9kaE9fM9DW+/pw+eRPfYIZDIrKurw+Dg4LS/WKr0o6Goq6tDU1MT5s2b5wboPY2amhq3lCwIggqDsSsIZnXGrMEcHd26+SeNdU9PD+rq6pDJZJwCm8aby7HUeEajUcydO3fcEmNGimOxGJ577jm8/PLLmDVrFhYuXOjU3tZh3RXg5KFYLOLPf/4zVq1ahS1btqBQKLjN6mbNmoVEIoFZs2ahqakJ8XgcDQ0NbiJCEp2TkXK5jP7+fgwPD6OnpwednZ0olUpYv349uru7USqV3Pce04fdbcRvuOEGfOUrX8H69euxcOFCrFixAm984xurHr9q1SpceumleOqppzB79mxcdtlluOCCCyqOueeee3DVVVfhr3/9Kw466CB88YtfxBlnnOG+v+aaa/DDH/4Qzz77LJLJJE444QRce+21OPTQQ90xH/7wh/Gd73yn4rrHH388fv/730+5jvs7crkcADgFDZ1ES6YqqaeEJcmvMLtSTSVlSWCShGFOiRKPFprGhEFBJSG5bFfLwuupWllTdJBw5x4ZSubG43G3+oZlVrUrFVJheS/pGNIB0o0ZeSydSG4cSeI/lUohn8+7lUIasLXEvlXoWqKRbaCBfM4VVIWlz0CfgyrVcrkcgiBwql/aPl6D7Uv1OJ1IJbWpkFbCms+K6mHNK0vVHH94DOvGtCx8fiT72R+sUo8BY5LQtPlKDJdKJQRB4BxgKvp4PfafsL7Gd4TtwSAASXDN56qqO20Pbpy6bt06vPTSS+jv73cpbGpqapDL5VwQnCvIGhsbEY/HXZ/R8g0PD6NQKLjAdzQadbaaJDb7n52HKaHA62kqp7BAVRipwrmPKhZ5r+HhYZd2xhInPF8V8kxdw2tpvmEtZ1hAQMvG91aDJduDTXszEbwT7jHd0DHZIxyaq1zHXiXQ1S7oHETHHYqFaFM4P9BNp5keS1e9MPUZ9wGjX6V+Lp8fxxO1QZZE13JxvAIq07EReg0NXqbTadTX1yMS2ZrmpFAoAIBLTaK+OO0T66djuyq6WQ9VmXNepv6xLT/TyHD+VFtb6/xT2n6er/WjYpv+qV0ZCMCtDKBynfNc5QNoK6yCnWD5+EP7yFRsnMvp89FVdqVSCcPDw9i0aRPWrVvnVoEHwdaVDY2NjYhEIm7fhEQi4bIGqP3W8nAO2t/fjy1btqBUKmHLli3O72aq1rCVAzMdOv+ZSWPb/uB/33jjjbjxxhvxwgsvAAAWLlyIz372szj11FMr6rJ8+XLcfPPNLh3ZN7/5TSxcuHDSdfMkuscOgQaDRndXDA46CQAqjbhOFvYkIpGty8Fra2uRzWYrlldZknu6lfNhkXBOeEZGRlze9MHBwQqHOhKJuKVYANyy6UQigXw+X7Gb+djYmFNlB0GA7u5u9PX1ueXomn5gV4MTlZGREXR3d2Pt2rUYGBhwuWOTyaTLtdva2oqWlpYKI87JJyc5nEDQWNPAF4tFDAwMuPbhpMxj+rA7jfjdd9+NT37yk7jhhhvwhje8ATfddBNOPfVUPP3005g/f/64459//nmcdtppOP/88/H9738fv/vd77B06VK0tLTgzDPPBACsXr0aZ599Nj7/+c/jjDPOwL333ov3vOc9eOihh3D88ccD2DoRuPDCC3HcccdhZGQEV155JU455RQ8/fTTSKfT7n5vf/vbcdttt7n/mS7CY2pgygybZgOo3ByJxCqPDQtM2rE6TIUeNp7TcbTEVZi6SgldVblawljLrE6VKly03Gp/tN6sbxAETm0etqGjOodW8aSEujriJFhZP03twXPoGJIQVUdU20fV9BZKttM5oZNH+2dVZ0qg633U2VcyIKxtldgGtm0CyuuELZ1mP7B/kwDge24DtLYP834kPFQRqH2QJCywdUVZMpl0Zea1+Jw0lYwSMGFkiLaVpsNRpZgNGKnzyB/2ieHhYQwMDKCnp8fNLRiY4bwjk8m44H8ul3MOOTeSZ/uw7UgEcCl/IpGoyBuu77fWQ+vJd4x9QttW66rPV4NYOhdSsgqo3FSWZJWq73R1gb7D+nc15SShqx3Y9+05+o7qZ0rCTAaeRPeYbthxx6MSfD+t3bT2W4MRVnXNvxmcVbsFbPO59UfV6LSVNj2Hjm18fjquqJ3ROY2tgw1y8zOtnwYNOO4mEgkUi8UKgptzHB3XOIZzbmNJftuGWiaO51pfG/hRe6Nzy+HhYbdyisF2qrKV+Na0fpwf6L11TqZBa52v6ByR0HkV60jbQxGCztWs7SfJztXrhUIBAwMDGBwcdHNKbftsNotsNotEIoGmpiYkEgkkk0mkUqkKW6b+N+eTsVjMiS9qamrcinDLd+wN0D5v56J7EvuD/z137lx8+ctfxsEHHwwA+M53voPTTz8df/zjHx1Jft111+H666/H7bffjle96lX4whe+gJNPPhnPPffcpPf18CS6xw5hZGQEvb29brML5ueyEdYdRalUwqZNm9zGFapcCzMSexLq1LKcNooLbFMO7gzshKjagKbf23xlkUgEmUwGra2tqKurQz6fd3nL8vl8hfppbGzMnU+DSye1s7MTyWQSLS0trl7TrbzXtuvp6cG6devQ29uLl19+GVu2bMHIyIgz2G1tbZg7dy5SqRRmz56NlpYWxGKxCiW6kug04tlsFuVy2anqWd94PI7+/n6MjW3NRTc8POwCRnvaCHpMHtdffz3OO+88fOxjHwMArFixAj//+c9x44034pprrhl3/Le+9S3Mnz8fK1asAAAcfvjheOSRR/DVr37VGfEVK1bg5JNPxuWXXw4AuPzyy7Fq1SqsWLECd955JwDg/vvvr7jubbfdhlmzZuHRRx/Fm970Jvd5PB5HW1vbtNd7f4M6e7QR6tSEOWXVcggrqRimftHx1TpgqlK339MmaCoOABUktJJ66ixqmVUpxHJPNO7yOzpmdXV1ToFOh0jJaNuWllxTp4Cqc3WOhoaG3IZTHEvpGDLQbG2YrUvYGKsKKtumY2Nj41S/9lxVx9EBZgoQVf+Glck6QKoGJjHBuQCvZYMt6uzyGqocU/LcKtH03Hg8jkwmg5qaGqeeZxAhCIIKJ1xztWrKI+Z11dz0Yeo/rYMlRVgH7RP2HNaB+c+LxSJ6enqcio2kAUnyaDSKfD7vnHBuXkdHXJWC6mizzUmsM7hTKBQcyW7fZZ2j2fpMpHpT0tkGrXhu2LiiajobsNB3zZLgqtK0aRTttfWdsvmRw97tsACKh8fuhp9XVyKMhOY4yLRdmsOaNp3fVWtL9U2tHeUml4ODgygUCm6VjyV7dYzUcS9szNPfai/1vhqYnSjQpyuF6MfpKira3mrBQB1XbfkAVNTPqtL1XL3e9nxwVbHzHvF4HNls1q0Eo1/K+2kdONZzBRttNOctVJBzThlWLy0Tf9t5qZZZ5zrsJ7Tb5XIZvb29KBQKbgUZN/0mR9PY2IhcLodEIuFWkiWTSaTT6Qo7Q797eHjYzQ31mlTbq/p+bxsntC33trJPB/aU//3Od76z4rpf/OIXceONN+L3v/89Fi5ciCAIsGLFClx55ZV417veBWAr0d7a2oo77rgDH//4xydVP0+ie+wQyuUyNm3ahLq6OmzcuBF9fX2oq6tDOp2eMIfjZDEwMIDnn38eW7ZsQU9PDzKZjNso0y6Z3ZOgY05imeVk1JZGlI7xzhLp1SLRFnSoI5EICoWCm4Aw0DFnzhwcfvjhjnBuaGhwdVGnWAd+Vd+lUim89NJLSKfTTvW2qwIbnLRs3LgRv//979HV1YWnnnoKr7zyCpLJJBYsWIB8Po/Zs2fj4IMPRiqVQltbG5qbm11ggESB5pZjnRhN7+npQUtLC4aGhpBKpdDU1ORyrvf29rpN2djme9vSspmE6YiE9/X1VXxOdYeiXC7j0Ucfxac//emKz0855RQ8/PDDoddfvXo1TjnllIrP3va2t+GWW25xqy9Wr16NSy65ZNwxNPxh6O3tBQA0NjZWfP7ggw9i1qxZqK+vx5IlS/DFL34Rs2bNqnodj3CoQkmJSFVgKzgman5rJUjtChtLrNKhsg4XxxhNj6BEF5W0JHt5b+uMElQu8Zqqdic5alW2ek9Vw9LJpMM8NDSELVu2oLu7G8lkclxg1ipo1QFWspKOEcs0MDCAvr4+l/M6kUggFos5WxEWZNb20XLr8+JvfVZUIJOMVYLckpRKbLOfUJFH+xiPx0MJV61fEAShARg68vxh/7LPU/tHNBp119DUOiTHtR3YD1KpFJqbm13O0UQi4ZZbWxJD7ZX23YGBAUfKcE6laji2c9i8RdtY87XbcV2VWL29vdi4cSMGBwexadMmbN682ZWVcyemxmtubkZ9fT2i0SgymYwj2VOpVIUac3h4GIlEwu3xkslknJotlUq51WTFYtGl4FHCWnPEa4pA1kPfq7BnqClw2K78remAOFboChXbv0lUqUJQ217nfkz/o8RL2JJ3TQXDc1U9SeEHn/VkN3ObDvs9FczU5eAe0wc/n94Gji0aWKutrUUqlXJpVKhwLpVKbsNJEuw67vJ6/M13l/abKuMgCBwx2tfXV7FSiPdncFaV8JYcrOaXa5ksactxMWy+oedz3B8b27ZpJ5XxtN1chWTLYW2gFUjo/EqD4GHj6vYIUbUfuiKKdaP9psiLK1PDAri0TwSPIaFcLBbdvIfPUe9ly2XLr6sA7HNRpfrAwAA2b96MwcFBdHd3o6enB6Ojoy4VTTabRUNDA6LRKGbNmoWGhoYKERttPOdptN+9vb0ol8tudVqpVEI6nUYul8PAwAAika0r5/v6+iraYrJ2JMx+7y7Y9p0pY9zust8zxf8eHR3FD37wAxQKBSxevBjAVsX7hg0bKu4Vj8exZMkSPPzww55E99h5WLWUGkGrmmFqFy4ntgZwMtAXm8t8ent7ncpNI+AzgUBXaHtw2ZY1VGFGbSrQCcdkI5uWGKIamwYtk8m4/KPqkIWBzhsdZ6q/yuWyi4TTGd9ZVZM6++VyGaOjW3Pwd3V1obOzE0NDQ65N4/E40um0q08qlUImk3Ebi3KDMiXGNDAAbFuePzQ0hLq6Orf7eblcRiqVcnXkZFUj/vtbZHk6MB1GfN68eRWfX3311Vi2bFnFZ52dnRgdHUVra2vF562trdiwYUPo9Tds2BB6/MjICDo7O9He3l71mGrXDIIAl156Kf7u7/4ORx55pPv81FNPxbvf/W50dHTg+eefx1VXXYU3v/nNePTRR8cFBDymhmrjj9omq8axk179Tn9blWg1wrfa/QmOYSS3wibZ+n2YXQ0jLvVvHfdIFHJc1WAifzTtCK+h7cVy6P15Dh1GzauqpL6q661jr9ezajVbjrCAiLZFNfsYVhd+puT69myXbQfrjAOVJGk1p5VQolX/1+NYNk2LQ3KZJDrLov1Vr81jWA597npPq4C37aRtWE35pkEOAG4Tc6odNQgTiUQcCaK/wzayU0IH2La6gnMjJdZ1dQLrrgEtLWeYOpLls+1arb5aZ/u8FUqOV2tPvaaS8Ko412Mt0WPLae+hwYSw920i7E4SfSYvB/fw2FXgGMyxjkFeBj1J8vJd1vkI33W7l4LCjnu021T96l4dYTbUjlV23LJ/h41DU4XaVhvoDCuXnbfZcStszjVR+Sbrd+vxel36yGrjmKpM7a0lijVoocFx/aEdZ72s3a5WF/07TKRn94FhShfaOBUgaO7zZDJZsXKCvzUIzrRCDIhQ0MAA+OjoKBKJhFtxwOdu0yXOZPCZzSSeYDrs92REbHva/37yySexePFiJ7C49957ccQRR7j78Dx7nRdffLFq/S08ie4RCqrfuJnnnDlzEIvFkMvlkEqlAGzbuG3u3LlYt24d+vr60NHRMc4gTBZBEGBwcBClUgmvvPIKHnvsMWzYsMGpszhpmGlQh0SVXIwKc0LCNt0R0LjRgGmKle0NhpyMNTY24rDDDkM+n8ecOXMwf/58R0BPRkVOMkYd83K5jPXr16O/v9+pt9Xx3ZHnRVKH0e/nnnsOXV1deOaZZ/Dwww+jt7cXg4ODaGxsRH19PebPn4/m5ma0t7dj3rx5SCaTaGpqQn19vVshoEEg3gPYtoELI+qxWMyp+ZLJJPL5PIaHh9HX14cNGzYgEom4iaZuyDKTDOTegOkw4mvXrnWbSQKY8N0KIzwm6pvVCKFqTsP2rnnRRRfhiSeewEMPPVTx+dlnn+3+PvLII7Fo0SJ0dHTgJz/5iVti5jE50FnQ1BgEVb+W1NK0CDqmWUVQtRQPqiYnOMnnDz/TMvKaSl6FOT28r16f9ob2V3Nqa05lEo8MKFqlNZ2U+vp6VxeuoKKiWlXTrH/YUmiOhUzX0d/fj82bNzslsLYNHShNQ8I2oGPGJeq6tJgKJk05QvJV5xtKGCvRrWQ/78XPNUivP+pU2mekfUiDETyXSmGWn/abwVpu2sY0Yfq8ta+x3qlUCrNmzXJ7f1D1xf0+NMe2Btu176h6nu3b39+PcrnsrkWbSUGEptDT/mDnAqqQ1jyrvH5XVxdefvllt6k578UgdyaTceq1+vp65PN5p3KjnSZhznoAcPNUBhb4rOLxuAt6U13J9tD0Lkq46MZqbH/2Nz5DGxxRpbgG1zRQwevoKkptT9u3Nd8996Nhf6EClc87jCjTAAHrx2diVZE61kx2NeHuJNFn6nJwD49dhZqaGpcaI5PJoL6+3m2AnU6n3VhXW1uLxsbGiv1BmOJK5zxhJDJ/qx3q7u524jWmU2V5lKDn/IJl0DGI46RVDdNusKz8ralLdCzm+GYJeb0+x9qw4KO1yWFtTPBYFRBwXsXPR0ZGXACYPuL2/G+O60y/Rvvd3Nzs0o1yE04tv66O1NR/NgUgAKfQ5mbxtJlctaW513XVEvuL1o0pegcHBx3X0NPT41K5kI/h6vZYLOZSsOVyObS0tCAej6OlpQX19fWIxWJurziS7DqX4LMhWZ5MJt2qwmQyib6+PoyNbd2XjanaOH/inGl72JO+ebXgzZ7GdNjvyYjYiD3lfx966KF4/PHH0dPTg3vuuQfnnnsuVq1a5Yj0HSmbhSfRPUJBwpf5eo866iiXR7uxsdE5hHR2Ozs70dfXh8bGRrS0tADYFgWfLMbGxlwO9E2bNuGZZ57BSy+9hPr6ejQ2Nu60unlXwirZAIxT5akTOBWoUoDLkpVg2B5oQPP5PA4//HC0trYin89PuU2VTCFKpRI6OzvR3d3tlm1xQrAzG45yktTb24unnnoKL774Ip599lk89thjGBoaQmtrK5qamtDY2Ii2tjbMmjUL7e3taGtrQyKRQH19PbLZbAVxzjoogiBwz0SXAnJ5dzqdRrlcRl9fHyKRCPr6+lzOtkhkW1qGvSkyvq+AKygmQnNzM2pra8dFqDdt2jQuAk20tbWFHs+A4kTHhF3zE5/4BP7zP/8Tv/nNbzB37twJy9ve3o6Ojg78+c9/nvA4j/GwhFKY86VjqSpaLAnGz/S3Qp20armWdZkyj9XxVpc2awBAc6rzey2nqnHUoQRQka6FDm4mk8Hs2bOdExOLxTAyMuLynWqKKxKgdN5smZRE52ckgRls7O/vx8DAALq7u93KHk3DRgecG3KrM8qxVxVQE7Ud7QwJXdpcOoY2KBH2nHht+2OdWg3Q8BztU0qaMuBsyX2q/BiE1c1XbWCC5CyVW8wvmslkkM/nkc/nK/Kca1/T6+q7oP2f7VRTU+PmJ1z1RwKb9WXKEg3SkMhmO3CewxQDDPZv2LABhUIBW7Zswfr1690ma3SsSRCl02m3sXkul6tI46L3tc8tHo87O86+QwV6IpFw8yYAzvnWVXWcI5Bw0fbTfQ3s2GDnEqoE1D7NzzT3bVg/VgEG/2Y5de6n41RtbW0FSWQDRPqZphWw5Z9orNtV2JvSsYUtB/fw2FXguMYxf+7cuY5EZ0oM2m2SpRpcr6ZADpsXcd8IBjp7enrQ19fnVvxyRZCunmEQ3OYg15UyGrSzxBSvwXqoLbXEo57LY2yguFo9tSy2PVgfS74raU7wGqrSn4z/rSR6Op1GQ0MDstksmpqanOCMe35oGRjUYPns5p/ANhHjwMAAyuUyYrFYxQamwLYNsmkb2QY6P+W1S6WSC3j39/e71D4bN25EoVBwwgjOGTn3yGazSKVSyOVyaG5uRjwedyK2WCzm7DgD7wpdGakkOu15KpVCsVhEKpVyG5Jz7jRZEn1PYyaR59OJyYjY9rT/HYvF3EqyRYsWYc2aNfja176Gm266ye1DtmHDBrS3t0+qbGHwJLpHBehAJpNJtLW1IZPJYM6cOWhpaUEqlUI+n0cmk6lYJksVEyf9fX19buCmA8bBU40hBxc6W+VyGevWrUN3dzfWrVvnNnO0DuFMgxp9a9xpEHXncCXcJ4J1eOmgkmiYLIHO5WLZbNYts1KV4c6CE6X+/n6sXbvWRaW5cQqXnav6gLATnVKphNHRUfT29qK/vx+dnZ14+eWXsX79ehclD4LAkTCpVMrVicvFSB7ppKlaPbU/qnojHo87w51OpzE2NoZUKuXUeSQbdqfTuS9hdynZYrEYjj32WKxcubIi3+nKlStx+umnh56zePFi/OhHP6r47IEHHsCiRYvcOLZ48WKsXLmywhF/4IEHcMIJJ1SU8xOf+ATuvfdePPjgg1iwYMF2y9vV1YW1a9dWGHWPyUHJKPYRdfzUQQLgnAFLiNMB0VzfSngD2whOHT9YBmCbQp02sRrUmdFjq41bVplFqEPKvKXpdNptYEW1L8diktdsAzpbJAsjkYizM5qmS51aa7+pECoUCm5T0VKpBAButQ9/eH8l73hdEog2l7N1gsP+turasGNt+1mnXH/UodWyaoDEEvz2uoQlFaodp0o/ks20b3Q61b6pil9/LIFu24P92tZbyWo+d7Wpdp5DZ7+/v99tPEbCt1Qqoaenx20qSgJb3ytd4s65CR1q9gO7SasSLOyvaov5HpBU0ICAiju0LnwWhLZxWCA+TB2lx7BteT+rYOf9NECl778G6KrNfdmWbIMwQqha2TQ4MtV54O5Sss3k5eAe04/JqAJnog84XeA4RcI8kUg4X4qEJFeC892lXbBpp8JEBDrX4Q83ESV52tfXh4GBAbc5OO20CoasfdGgIH/rOGuDxNVsdxjssZZDsPZbA/GqZrcit7Axn2Oujvs2qD/ZFeA8n+IF/ugczPrDYSsX9Vr2N89RVb7aSNpvBoTph6vPzbSlfX196Orqcv2AhDXtN0l19ZUpFlCbrelcOBe1eea1X7Bv6H4/XDGpwjbOh3STVo8dw3TY78mI2Pak/12t7PRJFixYgLa2NqxcuRKvec1rAGz1ZVatWoVrr712wusoPInuUQEOXm1tbTjppJPQ0dHh1L46IALbll5rNLO/vx/PPPOMi1BGo1Hk83k0NTVVqHronAZBgI0bN+Lll19GX18fHn30Ufz1r3916TOGhobcQErlHDD1JRe7GkqWMyUNje3AwIDb7IoOj6rSw4hYnaDQyJVKJZcjPmyjvDDU1dVh9uzZaGlpcUrtxsbGaU2NQxXkunXr8Le//Q2lUglz587FnDlzkEqlMH/+fBeVVtUEANdmIyMj6O7uxiuvvILBwUE899xzeOGFF9Df34/nn3/ebThC0iefz6O9vR2NjY1obW3FrFmz3GZkVLhZddZEIHFBxWRjYyMSiQTS6bSLgA8NDaGzs9P1Q9abzxTYtyf404ndRaIDwKWXXopzzjkHixYtwuLFi3HzzTfjpZdechuNXX755XjllVfw3e9+FwBwwQUX4Bvf+AYuvfRSnH/++Vi9ejVuueUWt8wbAC6++GK86U1vwrXXXovTTz8d9913H37xi19UpGu58MILcccdd+C+++5DNpt1DjqXbw4MDGDZsmU488wz0d7ejhdeeAFXXHEFmpubKyYcHpOH7slgVcdAZa5jjrEa9NTNk/mddXYsiaZKdP5W1TXHOOtw8lh1aqg64jVIIGrQU/t/JLItnUkkEqlw1ubOnYt0Ou02fFIicmxsDNlstqIMWmeme2EddMNOqwobHBx0DtemTZtcui06ZKqcI7HKQCiD8fa5KYlIhfNEwWd1OlVJrkStHqf2lcFbEr/8rcpikrHJZNIFBNhPwoIQujpAhQC0dVYZx/5HdVUmk3EOd1NTExoaGtz+Jfyc9WE5uGdHmNpe20LLzDZmGbnxpuY0bWtrc3M5biCuKwe2bNmCoaEh9PT0YN26dSiVSigUCs5OUgzBVEG2b9Ppzmazbol7fX296zf6bG3fY91I9LDvMNgNwK2MI9lk3zlVn+v5dNgs6UKQ8FCS3K7UU2gfJDGj/Z7PIBKJuP4eVlcd22weXJZVAwAMAPE7zj1tsCpsvKyG6bDfe0M6tsksB/eYHliRjdpL+5n+7Avge53NZpFOp5FOp7FgwQLkcjk0NDSgtbXVjb9czWID5+pTUVlMP9GSs0o2DwwMOL9yw4YNbjyn/eY7WlNT4/a0qKmpQalUGmdvbVCc3ADHNbuxtwa9Sc7qM7dBQevT0QYVi8VxP6w/STMS2ppfHIAjtNkuahcAuBRlVOzTlk3U9zjniEajaGhoQGNjo+NBuAmnphlVLuX/x96bx1h6Vmfiz7236u731q2lq6t6dbux2QwKMQyxIUBmBmdgNGIcmFjKCIkRQUEGFPBETBzCL86GRSZCrSisI2KCIsB/JIigILAzEmYAJwF7hgDGxpjeu2u9+153+f1Ret56vlPvraW7qruqfY9Uqqq7fN+7fe855znPOa9d31rqhq+pLciDZUm0AxA4gHZ6etqxwam/NXuQh4UWCgWcP3/elT6rVCouY5FrhfPI7LGRkRF3HhnXaTwex+TkJMbGxhAKhVw5mUEBbCVU0P5tNptujZdKJUQiEVSrVSwvLwPAhnr2+SaWWLAVeT7437/3e7+HN73pTTh69CgqlQq+9KUv4Zvf/Ca+/vWvA1h9nt7//vfjIx/5CG655Rbccsst+MhHPoJkMonf+I3f2HL/hitxKE6o5MhiO378OG699VakUilXX9on3AxZP6tQKDgHmYdnWCaZOuu1Wg1LS0soFAr4+c9/jp/85CeO1caNm4rMlxp2vUUVntYD5WtUuBwjGhLWAfRdl8qcIDoBha06POFwGKlUyqVXKZt6p4RzUiqV8LOf/QyVSsXVbM9kMo6RrgfiAHAKk4zFYrGIy5cvo1wu49lnn8WPfvQjNJtNV5uPUW8ajTQ2aTDQ6aehtN01ooYgT7gn2BQKhZBKpZBIJJzz6zMCh7I1uZZK/J577sHy8jL+6I/+CJcvX8Ztt92Gr33tazh+/DgA4PLlyzh37pz7/IkTJ/C1r30NH/jAB/Dxj38chw4dwl/8xV+4eqoAcOedd+JLX/oSfv/3fx8f/vCHcfLkSTz88MPuUDIA+OQnPwkAeMMb3hBoz0MPPYR3vOMdiEQi+OEPf4jPf/7zKBaLmJ2dxa/8yq/g4YcfRiaT2e6wPO+Fzzv3V91nrN4BgiA6f7S++MrKSgB8tGwrXptsJd3H6Rwos4li9Ze2iaJAmdbq9gn3Re5bzKLJZDKuhiprovN+2n8dA2VbUc+MjIwE2ELsFx10DRxXq1W3/zcaDaysrLg0Y8uUVpaYHdPR0dHAYZcWdN4KgKa/7ed1v1Ymtq3nrf0k4E8nVA/GtPOjwIWtE26zyHQO9F7Uc4lEwuk5zbTStWbbroCGD4SmQ8v+EXSpVqtu7pvNJhKJBLLZrCuXQ/2t3ymXy6jVasjn81hcXESz2US1WkW1WnU2jwaqLDNQ65mTcU8Qn+2zYm0nHU/NfrQHktp58gHpfNato673GVRGQD/rW3sETPh9HxuS37e2xSC9p5kzugdpRg5f13IxV8pCB64dk20vp4MPZWfFBkk1wKvPwY1GWNF+8+wL1kEfHx/H2NgYcrlcgMSmIDr/BhDQXQzYKnOcwr2bxLdSqYRms4lCoeBqYBM8jcViTrdYPaa6zM6T+rmafTRov7E+lE9n+8B17tuDfhSM1oxE2jRamozt5HUBBDLAtcTcZnPK/TYej7sMAhIcOI/WZrBZAnotYE0HacCe/Wy326jX6+h2u4FzRxic5G8GQIgpFAoFB1DzHJtSqYRyuexsAc2mJDGE1yJmFI/HXR/pj3MMbJCF48v+qA3OIDYDIKz1ruWDBtnCzzextu5eBNGvl/89Pz+Pt7/97bh8+TLGxsbw8pe/HF//+tfxxje+0X3mgx/8IBqNBu69914UCgW8+tWvxiOPPLIt/3sIog/FSTi8evjk9PQ0Dh8+jFwu51LCNzO0qYzS6TQmJiZQq9Xw9NNPo16vO4NAmS/cIJliefnyZdRqNczPzwdY3AAcw4ps4FarFXACrqeQPUYFxjR2jVTTgWy324H6ZVoSxPZD2f0EKKjAt7OJsRb6wYMHnSG200JFyJQu1sjnYaOlUgmTk5NIp9OYmpoKtKHT6WB5eRmNRgOLi4s4ffo0qtUqzp8/j3K57AAI3ofOMR1t/U1GwdWsCTUA2Sf+UImz/Tal8UYx6m9Euffee3Hvvfd63/vc5z637rXXv/71ePLJJze85tve9ja87W1vG/j+ZushkUjgG9/4xoafGcrWxedcKwBFp8P3rHIP1meZ4DhBXZ9Tx+8CQdBKnTQAAUBY72nbru/rawTl9WAuCzjQ+RgbG3Ol17LZrANeLYuc4Cavo/djfXPqKBtMUOCR6eD8DkuzUX/R+STLm6wpPZxSx5PjT/1O/ckxVoeS7aUDrGOljqx1VtV547xpSrgym3UOCEzYNUUwgeuINgGD6Bwrn/NtQZR+v++cbOodDQ7rPNrr2YDRoHvpWuZYMcsLgGs/Mwm63a5zZpXJ1mw2cenSJVfKhQePKUOac6Wgt9qCtswQn1kNUrA/+oxz3nl9Bbi1v3ovZhEooG7tyFAoFAjE8z0FowbNJUUDYDag77ueHSdbjo7XZJ+VUKJsdn5H9wm790UikcDBpLpefAGL6yl7OR18KDsrg+xo1am+9wcFm/aLPc7ndWRkBJlMBhMTE65uNs92SqfTgcAgEAyO+gKiBMO5T+v7BFqVid7pdFAsFp0upx/O74+MjLgSL+Fw2GUV6R6qe536tWyr7qnWHgHWdLkNgLN//L4ymNkvAskEvRXkV91h2ewayLcly2gnaXDC7tk+Yc14ZtFruVEF0HUMdA3bcfGRB3zBcfaZB4MyK7vVajlyJOeOPxcuXEClUkE+n8eFCxcclsF9juNgM52oY9Q+sSVbOHc2WGt1tNoEei+1EXhPDYizfc9X2S973fXwvz/72c9u2q5QKIQHHngADww4EHUrMgTRh+IkEolgdnYWL3nJS3DgwAHMzMwgl8utiyBaUcM9l8shHo/j5z//Of7pn/4Jp0+fDigLOksskaGKjwpbS7YAcI5rPB5HtVpFrVZzpUH2AohO5lWpVHJpzOrgWZYb08oYqdV0dg0ccExoCFnHcTPhnExNTeGmm24KpDPvpHAOWLOv2+3izJkzrj764cOHnXF49OjRQPmBZrOJixcvunpsFy5cWBcwUOOHoEIikUA6nQ6kP7KG6tWuCY4b1ytrsvFvpsxtpz7eUIJyLSPhQ3l+CEEm+/z7WL8qNohJQI77j4Louh9R7xGItvchMBkOhwN7hTX6CQADa3sKAFfSgUHXcDjsmEx0XPl99juVSuHAgQMuYJnNZtcxUBnEZh/JJOJ1qKd4WLiPIaV1OOmMcQ54XTqy7XYbtVoNoVDI1dpkiQmymhXMZ1s12KqgtY4978mxZZt0jiw4y9cJkpMxrYx03x6jwLCW2OF8KduK+lvBed7XJzbLTx1TZXhZB5IyiKVnP6Ngs65tjiODx2pnhcNh1Go1xGIxpNNpRCIRV2KuXq/jzJkz7jC6hYUFZ6sxcMO0da4tLVGk9WKVYc/1xTUSiUQCulYDKzaYovamj5VOAEbBH/bdl2HG8VFGHvuiYoECBYBsgE5ZkgpG8cfWvec9tewP588HonPe9J4abLLZMfy+ghsbybXU33s1HXwoOys28LwRIM61r75nKBRaZ49boHEvkl3UrxkfH8fs7Cyy2SwOHTqEXC7nSl0RTGSWt54vwWedwDcPhCyVSu48CpZo09JdLLdFHajBOeqsRqPh9kDWTO/3+0in04EsGAKq3Ld8vqbVU9x71a5QhrgGBDnn3AM1mECgv9FouFIu1ocMhUKBwKzaBMx0o51H/W3HZJBtYIWZ1ywJmk6nkU6nB2ZLcxx0nep4WTCd/bZBZC2b1mq1MDo6ina77ciQxExI9qvVajh37hyKxSJKpRLm5ubcGGlgn3aZnm1ndTjJGloeh2OtZw9p+7XtWlqMupiEObUpmAlOXW5tw0Gy1577nZIr6dfQ/945GYLoQwkIT5HmQWSDSrj4hBsrDfhms4lKpRLYPMkYVhCdRv0gofIie50R0kQicXWd3SFh6Rky6wf1RZ19BTSA9WwLq8RtTbvNxBqYerjnbgmdUipMGmy1Wg0jIyOOsaip+Uwb5GF0dM59YJMaXsouU4NoIxBhO+K7jo8V9nyOgl+tDJXxUHZSLEhtQS1lO6no57ReJoE7y2JW2ciAtywcH/Ocn7PX1L8JxtNpsKx1Bct0D7YlLFTn8LNsl4LTypT1pUWzDdynmRZMIF8dXbZTWXArKyuBsR0U/PAB5r73fWOm8zLIYVAHVfdz/bHza9tqGeta29QGgYE1sFydZxvA0TlRJv1mLPTNxI7DIJabAgsW0NbACPU1gyjK2BtkA/n6p32z7LxBfRikO3w624I29n9+jk67ba/vur77E5y3bdX/LcBnnxP7Wb2/BbfYPu0TECwv5LOhAKzb1zbq1yC5Vvp7L6eDD2XnZaN1NWgf178VhPd9Zq+J7kcEopn1qiUsbCYa9b4NEHCPUEC1Xq8HzqfQci8Engf5M/RbGRjXMz7U5lKw19dH+3szspNPV/n0vPrVtl02EGPBaQ0c2tcInvuutZU5VT9VbTFflpFvrGx/dT/f7BnhWIRCqyQM6jXeWwMONvBAXc/5pE6zdopli/v65+vnVm0Q3zXUbtL37HWGvuXmMhyjnZEhiD4UJ8pku9LSH2TFsA5YNptFvV5HpVJxGzuVAZ3wzR5mKoVWq4VLly7h6aefxuTkZODwp+slvV4PCwsL+PnPf46LFy+iWq1u2B/rKKkjydf4OXXIt7vhEUxhlJgHou0mc39kZATpdBoAMD4+junpaUSjURw9ehSTk5OOya0R+Hg8junpaVc6iMzGUqmESqXi7ZeOmf3ZKVEDjZkSanDwZwikX5kMI+FD2WlherKyrnWvUMBUXycL1bKjgKDusQCWijoaug+pY2z3fgXVqDcVsLZpw9SfZKhrMJIsIc3iUjBTx8KC6by2BeG5RzMQqm0hkKoguvZXdRuvMTIygkqlgkKhgHQ67eq0qwNkWUv6W51hZVQr4K3zrnOngWvVIZrOXi6XUa1WXSCXh2ySFc57af8ZMGA/lZGvB0/rfdXB1vct6MOxoC2lc6JjoTaUz/HU8VNGna4dgrRch7Qb7IGpnOdyuexK9/DsgFgshvHxcbfeOCZc0zr+DOxzbPm3lk7T7DwFcqzu8DngKoMcc7Lj2U7aJ5xfX7CIZfr4/Nj9QJ83zg9L4HAceC2Oia/tuv/wNc2EUMYeyy3q+GqWhO4Jug6uRq61/t6r6eBD2VnRfXyr68QCjRZQ1s/sRdtR20o9roFw349mwviCwATJa7VaIEOItbCpnyxJyyf8XjgcdvXTgVUfT0tDsS0U3cM2CmjofqQ2Ct/zkcharRYajQba7bazKQqFgtNLZOkP2qdUj6suVBKAfn+7+51mF9hMMhsktiQG/rb3tvs351/xAQW1lQyh55IACJxdw+yFcDjsDq5Vv1YzrvSwbdonGvRRBrlmeVm94xtXtXk1eOHzsdV+0iCIkhv28jO/FdnOHrhdGfrfOydDEH0oTkKhEJLJJHK5HLLZ7LZPQCabJxKJuNShVCoVqFHGUhjbET7wKysrWFhYwJkzZ7CysuKYKNdTer0e8vk8Tp8+jfn5eTQajQ0/zw3I1gzdaaGjynqjtibubsjIyAiSySQAIJfLudI+MzMzOHDggPfekUgEk5OTzoBkzT1mKljjayMAfaPo/pUKjU0CRfzha8BQqQxlKHtByKziXqB1OvWQKwKq1G/KDlY2J50rBvYG7dcEyXkNfZ3XoOPLvUqDo0xPJTjM71HvabvZP2DNueH1eS1gTWfSOdJ9kyVUVB9oaQxlu/E+CqITnCM4Tf3OPut+rI4cwfhiseiCAHbvpANoHSjrcHEO+bc64fp6KBQKsKs0jZrOMtPda7Wa0z8EIdjfWCwWaKvPcdU5VSeOgKYNmtu/LaOK16UjboPtPodUv6tAhAYk9G+db/6v5VZ0HXCu+/2+m0eyE0OhkHOmOT68V6PRcAC9PpMWMLfgUSwWC4DYSizwsdN8r6lYAN0GvLT9GsxS5iWBb1tixoLefJb1PdYZ5vX5WS3HQtH5oSjjUwNn0Wg0sN8piM7n3D47BKaU6b4T4PpQhnK1sl2Ax+cjaPDJfmYvCvusfpuyz21NaJIFAKzTlQSASf5hkJg+DAOBW33WeS2W8SqXy65MSDQadXuJDwDWvvE9FRsUpu7S9lk7gTqdvhgDBSwVp+XZNhpv2jxbLWG1HVEyAoOzvjNN7He0zdZe1bZrYEHtI2WCW9tLAwM8w4TjSL0Wj8edz6tBll6vF7CT1U7w/WiW/SA7RV/j377X7HfUdrLrQu2jqwGKr7fYZ2koe1eGIPoNLD6HYqONhRv2RnVBNxMbLd1Jpm6320WpVML8/DySyWQANNlNhrVPOE6tVgvlchmLi4soFotXFCTYTbleG/Do6Kirw7aVMjKh0Go9Opbo8WUY+BgXul4VuLha0XtpKqOyyfi5oWxfhpHwoey0WGeITgUdasv2tcxqfl4NV5u2qnrRgqoWrOL3fSxkgopsm7LKN1vfBNcGOaa2fxaEViDVJz42s72uAnJ2LPi6DcITkKRzr3upz+nxMaxtYGFQ2+1rdkzYHi0RR7DWZ0twfpXlbuef17SOMO/LgIy2w9pGmkWh7dQ1p0Cqz9aybGhlkvN/vYY6pcpwptOvzrAy2dk/rmP+73s+9PvU1ZppYcu52GwOO6fKWNWxJECkqfjU21xzBBQYhLLsQwDu+1qeZpDOsvOlwRGdQ83C5G/f3qB/65zzx5YEsm3R8fG12wZZBj0fG8lQfw9lr4jdE20wcj+sN33eKaoTB/34/CH1Wbh3KdB+JUEKXpMZudSX3FuVcODTbb5AJ6+t7+vnFWBXe6Pf7wfaoSXFrhS32C3x6S2fWLtM17KuC9Xt1lbSYD6zEq0eUb1IIRgOrPrdlp2vbfStJ/bT/igrXK+ha1df00C1/ug685URste2f+9n2a0+DPX3zskQRL8BRZkqdiPcrL4XDwHj4SXbFW5sdE5ZF3snHrx2u41nn30Wi4uLqFareNnLXoZkMumY1psBtTspZErXajX87Gc/w/e//30Xpd8LMsjouhb37PV6SKVSmJmZcZH4rUgikcD09DSazSaWl5fXGcBcV4ye03CiQWdTva90PdBYIODDMi48iIVM+aEyuXIZKvGh7LTYLCBlxqRSqQCgTaO93++vY+Fq/Ug6AtFo1DmRZJNaINnWjrQMd7vmlUnGlFoFlX2MYorqZmWT8j1tm5ad0ANFbZkNXsN3xoTPGVQ7wrKmBoHvtVrNtW16etqxZsm0tk4Qr6eHqPJa6jDzfj5AUj9HxjzncmVlBYVCAcvLy46BruxwtoEHYiYSCXemiwK2FAv6a991rFRfcW6oK3UNqr3GPlv2uoImTGNn4JrjyzWgLEQfgK1rhjaVlhriOiVZgOx+ZVP3ej0HaPC67EOr1cLIyIjT2byH1o7VsjXWGecYarq+jjHHi6n+PDSP2QbVajVQCkDtZAZ5dP3pmCrwwMCBgue2XjFFgwYW2NDAjI+9p0xA+8xvFGzgPA8K6ugBcTq+W7WZhvp7KHtF+JxaXbVf1hn3ALU3NgLNuRcpu1jPG1G/hf6Rnte1Xb++1+u5/b5YLLp2VioVR35KJpNOvxDI1fG3NhGvS9F5415sQXTaSZ1OB9VqFcvLy2g2m1hcXMT8/Dyq1arTO3tNfIEACsdB7T+1wfTQXOp7a8dyzKmL1aZTO0hL+QBr5DVelxmTalcoI53Zh1xbiUQC/X4/oI9UL6l+UeCbfryOB+v3d7td1Go1p6/t37quLXDuKyu0H+VaYTVX+t2hrMkQRL+BxW5mQDBqbx8GBQ+VbbtdUafhSpT2RtctlUpoNpuYnZ11jhAdvmspTPduNBooFotYXFx0juFekeux2fGeNKzUMdxMwuGwA1MG1bpXAECj4lT0O9VnvY+NitMQGcqVy1CJD2WnRWuEWqEDoiUMBjF/LBCsDF0fO4q6VMuy+L6vzBsFzQjmWeaq3m+r4mPi+Bxx/bGs9s3uOcgZ3Oh77BvrQzOtnI79Ru3l9xWsHzQPCqArEG7LrDAQy9/c1+3aUXadpjDTEfWx7ig+wMACPPZ+mg6tojabrk87VnTElanGNus4a/q9Zlpo+RZf4ETnjJ+xbGpgLVihosC0At46X/Y6di54HeplHT+1N1VnE1jSH2VP8v4+W1VtDN7b2s5sF4Mfek2dd7XFbdBHA3z8jD6rvnU5SOx6p9j7+4CtrWZ0DvX3UPaSaIDSrmGfr7vXZFA29UZgus8XUva57oNXm12ugCrPhaLO5LW536mdA6y3KWzZEn7GflbnTfd8BgV4YCqJTXsVQNfg76B909pmuhZ0bej5JbSJqOup5zudjtP3vDbbYQMpLDvD99lWtQO0bQxW+bAdG8Ty2RFqf/hsMtXZSpizbHQb1NZrD2VzGervnZMhiH4DSSgUcgc8EJBURlm/33ebkbKFdHPP5/M4d+4cGo0GbrrpJuRyOa9h4pNer+cO51paWkK5XEatVvM6p1cibH+/38fi4iL+3//7f5ifn8eJEydw8uRJ1+/tAg/buT8Vx8LCAn784x+jUCjgwoULgVpze0HU6KGxwfHZKqi9XSFDoF6ve9lPVyt04sPhsDusdnR0FNVq1R3corV5t9tPNTaYJqhRcDLaNqqPPJShDOX6SDqddiAdEATdaIBriRF1AugcrKysuAAe90t1apihZUE8dRiUWUpwju8psEVdRQYy26PMXZ8jSqdJwTX2u16vu1qXExMTgQNNFbizDFfqVTrHxWLR1Rjlftfvr9VsDYVCAfYZ2fkUdZQ59nT6ms0mIpEIFhYWUK/XXfBBy35pmxU41tIkfE8PaOS99RoKOND2qVarKBQK7hBrHpDJ77Of/X4/cBiYzp/W2ecc0J7aCKhkv+x7ergt1+zIyIgbP3VuFYzmnHF+WGvc2kNWD/NevKZlXVugQ7MkFCzRedFSMRx7LZ2ibDfbFo6hDaj4Usj5Y58Lrg2Oj03/5vzqOQk6pvb6CvZrO/m6fl/HhEEzHVPdL9RO1MCBXSe+dce1qffl3uUrlWOfGTtnCrYM7Zqh7GexgaOr8cd8z56K7qc+H0f3XmWY8zd/uGd2u100m03H8K7X6+6MBj1LgjYF9xVmx3U6HRSLRZRKJSwvL6NQKKBYLKLRaAQymrYr/E6323X1xsPhMBYWFtBsNh3uwCwq9kl1ggVXbbkyO76qS8msp3/ZarWQz+dx6dIlNBoNFAoF9/peAdHV/6YOULvOVzoMCGYCanaXT3errlX7RkugWD2qukEBewXfVU/YPlE/WLBb/45EIutqtut3NLhjCQBskwXPFURXvTYEzodyvWUIot8gwk01Ho8jlUphZGQE6XR6XT1qpsJwg2V6Djf1+fl5hEIhVCoVvOxlL3Ob4iB2kEq328Xy8jLm5uZw8eJFLC8vo1wu79hGRxC93W7jwoUL+Na3voVsNotf+ZVfweHDhwHApS7vhigYc+7cOfzv//2/sbi46IIOe2lDpyJaWVlxKc3xeNwZOrsh7XYbpVIJ1WrVpehvF0DfKAjCPgGrp4vn83kAqymGPBSs2Wyi3++7eq7bFSrxRqOBcrmMYrGIYrGIQqGAUqmEUqnkShQN5cplGAkfyk5LJpNxOsIa6gR5o9GoWz9q6FPoUITDYSQSCefEWqYYwWCCwxTqSa0pTeDWx0y1QW46M7yHArJsMx0OBcH5eqVSweLiotv3Y7GYA9d4TQWkeU06oKVSyR3Ulc/nUalUAgBzPB4PHGYIwDnSFrTWtvL+9XrdAcPRaBSZTAa9Xs854Rb0VVCU80CAkk4mmfzsH9tgGe4MjnY6HRQKBae39TBRDRTowbMKRBI8JZDJ+VInlQA822nLdOia4hxrSj8DG2Ttt9ttN+7aPwILjUbDHewdiUTceA6y2zQ4pO1Q29ACvra0DIMXegAp50ZBZTr1uqY1sKQ/lrGnwIA68QoA6JrRcwuUdc5nUJ9PBsu0XA0/R9BG17OCP/oa76vPFpmZZG5aRjvHwoJMui8QLNOa8zZAo+ucovuBBgt8ATmuBd1ftiJD/T2UvSo7sb64R/AZ9K13u3fZ97RMlg3wKZjJZ7Pb7bogeK/XcyQh6hvrG/FajUYDlUoFrVYL8/PzDkBfWFhAqVRyOu9qxoX6vFQqoVKpYGVlBel02tlcWpKNOk9LtNlSH2p/6J6oNgT3Yj2zpFQqoV6vY25uDqdPnw4Q9rjX7wVhcCMSiTjMhXqB86kYTLfbdeXiNBAOBO1AitUBvDb1t5abU13Ktay6yM4N26JiQW6C2nrGDecoFAohFosF7D+1WWmjK4iuGJSWAtYf2vXabksmGcrWZKi/d06GIPoNIKpgmVJKJ0HZSFSEdMS0rhawBlLXarXATzQadQpRDQZ1TqnsarWaU7Q+kOJqhfekQu12uw7gXFlZcYzkQcbNlYiCAox4E1gtFosOuN1rm4s6oc1m05tGt5P36na7Ls2OzDa+t1XZKO1QDQKNVKuRRaa6jahvtA7sOqYzzeuxT1T8V5oWOZQ1GSrxoey0EGwiuOerVa3lXJQhy89oHUkNIGspBAJ1BM4s22wjsUCW77ub6Sy2S/dyOji+eqj2gE+KMpDpgBJQVmdsIyaegn76urKQ9Pscb+qkkZER5yT1eqtnaXAPt2w1C/zp3/qe2jO8N50vOnwsxcZ9XVnEel0fK0vnUD+n/bWOr4KYGhCwOkrXhAWhOa4KNms/eQ0LVtj9Uu+v31fmnL2mr2+9Xi/wvPju4XNw9RrqmCvAQGfesuZ0XNgGG9zSa3H8VGcPeu7UIbf3s9+zov3h2FvA7Er0lgIl/J/tVjvcx771gX6D7rFdGervoTzfxYLo9ocgvOoyDcLqfqSBSfoyCr4yIM/9QPcqBTBVf9N/2Ul/hXsq2zcyMoJ6ve5IZM1m0xEVBpUlG0SU4h5m93DaNARWme3M++5Vv8zqbx72Sd900B5qfdZBvjB/qx615ctUbNUBazPYQKyvfYNAb64z2m56f8VPtISLxQd4LftjM9H20hzvVxnq752TIYh+A0g4HHZKNpVKIZPJBJjo6kyNjo4GDmMk04mbW7lcdsr3n//5n3Hu3DkcOnQIJ0+eDLDQgLXNsVwuY3l5GbVaDU8++SSeeeYZlEqlXT1ks9ls4vLly4hGo/iXf/kXNBoNjI2N4Rd+4Rdw9OjRQE3uq5F+v++UdbFYxJNPPonLly/j7NmzOHPmjFPoe3Vj6XQ6mJubQyKRwNTUFDKZzI7Wj6dy7PVWS/lcunQJxWLRsRTi8bhjwG8mPFC02WwGDqCz9yNjcm5uDq1WCzMzM279MoiSy+WQyWQCzFJgvcOoxihLuLTbbSwsLGB5eRmLi4u4ePEiCoUClpaWUK1WAyy1oVyZDJX4UHZatCyDOlT6f6fTcUFPZePws9RvCrSTGcTXlJWubCG+pywqAp/2HAUFn/UgRWU9K8hJB4IOMgFaOiPcw2q1mvtcLBZDPp9HIpFANpt1Z4fQyeUP99uVlRXMz88jn8+7tHKWfFMQXNvOoEIymQzoAjpAykSj9HqrJUjy+Tyq1aoD7xOJBNrtNiYnJzE6OupYWcpSVjBRmeLKBOY92BaC9K1WC5cvX0atVkOlUsHS0lLA0eQaURDajj9tJjLV2T89+NSmHCsrXbMCKHoty6oGgFqthqWlJcRiMbRaLZd1RTtMU/6ZIWDZ7+q4KoObfep2u6hUKsjn84Hye5xb1ljVzEW2lSUEdZ0r85FjwPFhAKjVamF0dBSVSsUFrTiWsVgMo6OjbjwV2Ob64VrUswVoy5bLZWe3abBEgQOtba97hDr6+kPbgmNqQR89D4djo9kwumYp9lBXXlt/83pst/62n9d1x73FZqPqOtPAgD7nm8lQfw/lRhbuOzZgSbEZI9y/uRcyG4h7ML9Pv5v7n+419KXpc0ajUedL5XI5x+7mvkgbo1KpODLXhQsXsLCw4MpQcr/eyXGhzbCwsIByuexAYurviYkJxONxZLNZZ09paTzqJto9ar9wr2QJUpao4X5+9uxZFItF5PN5XLhwwR0e3Ww2vYHw6yXUkSsrK6hUKi5LemRkBIlEAslkEqlUKpCxwDHherJl+1R/K7BcrVbdfZaWlgLnzQBAIpFwuk51nNoBJIZY4Jr3tiSAVqvl9PbS0pIb+0gkgng8jkajgXQ6PdCO1XIzSsJklnehUEC5XEalUkGlUnEHilodt1fme7/JUH/vnAxB9BtA6OTT+WA5l1QqFTjoiA4iN2vWrqZT0uv1HPt8ZWUFTz31FObm5tBoNHDgwAF0u12k02nnFCrwfunSJZRKJTz99NP4wQ9+4NJYd0va7TaWl5edA1AsFjE1NYXJyUmMj48jkUi4mvBXI1QY5XIZCwsLePLJJ/GTn/wE5XIZly9f3vNlPbrdLorFIi5dugTAf+DXTtyD9XiXlpaQz+ddCmEqlcKBAwe2dJ2VlRVXR9/W2KVw3dVqNadEl5aW3DOQy+WQTCYDNfqsk2qvpyC6ZhosLy8jn89jaWkJy8vLrr7gXqp9P5ShDGVVNLNKmeQ2nVTLbyizBoAL9mlZDa2d7EtHVmassoWVjU2HVw8PVAeGrxPkVgdd6yor4GUBW2C1XAozZ2KxGCqVCjKZDDqdDkZHR5HNZp0twDbxfIl2u42lpSUsLCy41HJlC7FPylpiOxlMUJBYmdaWrc1MMpavaTabSKVSzmZhaRfaKhYQ1jrlCtbzM/xNgJ565dKlSygUCm6v73a7AbCD7bUMcjqcWr6Hfda1wnXGObJALB1U1Um+wzz1/Xq9jlAo5DLsotGos/HYDq5PWzuXc2cZa9pHgs/VahXlchnNZtOtJ2Yz0gn31RcnUKvPmDppFkhi8IcMw1qtFqilS7BISwbZ50zZ+VxDjUYDtVrN2SJ8Dkga4VrWzE2uH90jdO54L36PAQsCYT6AgMLnxRf44Xf0MFcfkM4x1nar6P05PxaU4f6lfdYyUnx22u32wKyVoQzl+SabAXTco7V0GwHScHi1tKr6ysrC1n1YdTh1bqvVQjweR61WQzabdWe1pNNpJBIJ57MzYMjA9/z8PObm5lw5t90i+/DcFNULqVTKBRm1rBj3VtWxuucpuMu9mKx63ocEpnPnzrm/WbZOyRB7RXQ/Zgm7TqeDZDLpbAjiE1wTlkDhy0rjulHmOXUcy48ywExdACBw5g6vR1Fbg/rbx/xWIJ3zMzIygmKx6NqcSCQQi8Vc25SAor62lo3ja7RDGRCoVqvu0FiS2wZllA1lKNdLhhbTDSI+41iNbv1fN+pBAGOn00G5XEYoFMLly5fx7LPPuuhpIpEIOPBLS0u4ePEiarWaO9TsWqRWsU+MYtZqNVy+fBmZTAapVMpF8/mjEV7dgNXJ5EatRsjCwgIWFxexvLyMpaWlABtwN/pk/77aqGGj0UCpVEI6nXZRcYLMVyNcA8ViEbVazYETmqrf76/W6aUzZ1P8OOa93uphb5VKBfV6fVOwn4ZmvV5HuVx2zMVSqYR2u+1AGDLk1JHUeys7sFqtuhqCrIVOFgRZmVT4QxD96mQYCR/KTot1MPj3VlJ9dd+l06tlPsLhtVqRBJp0f97IiVNHQX+AIAjN/Yp/K1CswLRNvbV9YHsYxCY4T9CXICf1Nw9QJqipQQVlQylL2o6XtsfaGhTf35wj1g/lHsx63gRw7f5NNn0oFAqUndE6quxTuVx2TLZareYCocoC5JgqOcD209pUCkbzdYIK1hnm9RUk9x0cZsF79onANutrE2hWcoS950bzwfkn+EzmHxnb2oZWq+XsLAWEeR99zuyPrnvtuwLhtVrNXYfj0ul03BpQ1jxFSwVyHgiakzGvALqWN7CMPhXeh6AYAzb9fj/A6OZz61sjXDv6zAJrGQf6zFhbXD8/6FlT0flQQJ72j9pbvjWh7dyOXh3q76E838Xu+xq04mtaugPYuHwUsJbpRf3FvY12gWbSkclOti73cC3JtVuiNo+WC61UKq4eNlno8XjclfkgS390dNS9poAt+0Sftd1uo1AouMND6R9qhtzV9NPqS72WtQGs7eb7joplWIfDYUdc1Ex5jom9t72fsrapXzn2tGuYcacgOgPcvnaqHag1zvnaoEAS1+HIyIg7CJdZa8QVaC/bc9i4djUDjHYowXIt10MdrgETa2/65tXXV9/fe1XUlthpGervnZMhiH4DiLKQNIVTDWhl1dEJU4VvN51ms4nz58/j8uXLOH/+PH74wx+6EjHJZNIBzf1+3zm+dFhZH203U200cqusuccffxxPPfUUcrkcjh8/jlQqhampKRw4cADRaBS5XM6liWtNWCqRfD7vGNWnT59GrVbD6dOncfbsWTSbTSwuLqJer+9K9Fv7xP8B/wF4WxUGAYrFItrtNmZmZlCtVjE1NYXp6emBDO3NhMZLrVbDT3/6U1y4cAGLi4uBgzfL5bIb62KxiFQq5VL12TeOeaPRwNLSEi5cuLAu9dqKRrJXVlbw85//HIuLi6hUKuj1VtOuq9UqJicnEY1GMTY2hmg0GkhtVmOEhidPtW80Gjhz5gzm5uZQKBTw85//3Blve63u3n6VoRIfyk5LvV53bGHuEa1WK6CLyIhSwNSyXRnAW1lZcXsyy3hoGQ0t5eKrHW5ZZwCc7gXW9nsyi/k3GbgE05mVQzaafl/Zuxo4YGmsSCTiDnuORqOBkhTcyxiMZCBRy2pwnNh+PZCR40VmGdukLFiKD5Tm99m/VquFCxcuoFwuI5lMOl2hY8IfpouzNAj1Mffyer2OQqHgmGy0S+bm5lCtVgNzpGxjZd5rAIG2gtpUXCfULQBcFpQCx9YO49goCK4gswqZhrVaDbFYzAWIuY7UCVcwxwYweB8CMdSdrVbL6U4lQWhbOd6WNc3r0z6hM09gnqUE+KP2JoESjjdty7GxMZdFSSZnIpFw9+aa9KWDM6CugYFms+mC++w359uyz32gmAqfVwXAuVb4vBAEsyVc1C7X7+g9NUCjdiA/z/bbZ0ozEngvjpkCdcp+1SwOe5DsVmSov4fyfBa7V3Cvon4lK5d7gmYxKXDMfUhLVmlZqtHRUeTzecf6VqYvQUWeQ8YyGNVqdUMAdCeEepv7WygUcszkSqWCZDKJcrnsQHSOiZa9SafTTn9ThzPwXa1Wsby8jFar5UprsoQrM8hsxtN2RPdALR2m2Yka+KDPSGKFZYn7gptsH20PBovj8bgD0kdHR5FKpVzAmDpB2flKDuEPr9dqtTA3N+cCKQsLC27tEMRmCThmTADB7DfqFJbwI0Cuh4Gr9Pt9B3aTqJFMJrG8vIxyuYxYLIbx8XFks1mMjIy4sj6cf9rLWvqPc88DYovFoiuVS3yA+tzqMdtGxVF0HjWT7WqDL7stXHO7haMN9ffOyRBEvwHEsqEsK4mfsSmc+jkrvd5qaRcATqGFw2FkMhmXTkaFQudpN5W2r8/KyqMzRsCYCpx1x1SZay1TOhJUHEwjIqBbLpfx3HPP4bnnnnOKe6f7adlNmsrli0Zv19khmERFSwPGGgPbESp3MtEXFxcdUK8Bhl6v52qnhUIhZLNZ1+dQKOSiztVq1f0Q+NpINC2eB8ymUikHArCOK+ebzAgttUBDlHXONR1OmehkQAya+80i4YMYAM9nGSrxoey0qLPK/UlZlgpaUQbpPn6H/6suVUfYpiPT6FX9ooYwHSQLoBFgJBBG1hY/T0DMZlGpWGYU2cvUf9TXdJo4NtyDqUd9LB8fY1b3Qo6F9onfs23kmGjpDLaNjibLrMRiMedw2WAHa61qQJTOH3WK6j0y9RqNhgOf+V2ray0LWJ1un3PD+VamsYKzeg3OJ8EHH+Ch+6MCndFoFL3e6gGsCkDb9tn1YW1EBaI5LiyBwrEmQLKysuLADp+9yHZwnjQd3DdOarMp01IDQhw/CxDrmCj5AUCAiU6bRw8dt8C5HXO1lclE1/7qXmKdXM6jMua5jvTsAC1tY8fT7i8WRFfR/YTf0bISBE0s2KT7jj6Hg4I4g2Sov4fyfBef/lagmK/xGfMFxhTQ457IvaRWq7nv83os80L/u9/vuzM+qP+uRYlRJSAwGMu2qP4eHR11h3mrfxuLxZw9w/53Oh3ni1UqFRf8LBQK7qwOMq6vVlRfKlvb53MrGULtOmvj6bV1jOgTh8Nh1Go1dLurZXE5ZpxP6+f7shc1mEp9x8NWOTbqg6udo2Xf2C9gTZdQR6pu1T6pjlBdylKA4XA4UIaNNhoAx0bXsn+qv5WJThKEMuv1kFy1n9kPa7PpOTnWprPzuxflSnGZrcpQf++cDEH0G0CsQmMEUZ0hboKasqMb00ZCkKDX6zn2kDoi16NGNJlLjP5ns1mnnMnGIQBaKpVw+vRpx9DxHWzCH9YEZc1zHoCmqclXI5yLRCLhDoBNJpOOOaSnsFP05Gut+VmpVLYE7LPN1Wo1wNputVqIxWKujrgyz3zXYJp0t9t19cIrlQrOnz8fYOircEwJVrO0i77PtrBvWx1jNbzo6IfDYSSTSceqi8fjGB8fd2A6I/66dlmHrVAoYH5+3h3Qwz5xzdPpDYfDyGazSCQSGB0dxdjYmKvjy7JByl7gvRhJJ+udBg9T9IcylKFcufD5tGUYLChOXagsKN8eqvug1hb1BR+VkU0HSw/T4v0VsOK+0G630Ww2Xf32lZUVp5u4V/I3g8FkgfHe1BGDQE4CxwQYtc109BT4VUdDgeZB+kHHn84Z66Fqn/X7TPvVNG+OC3Udx8UCr7FYDJlMJhBUIEOL57EwHZzBWfZND1u3YsFzYK2kDRl0dAa51xOwVIdQWcO0SdRm0nVK9p1PVBeyzJiy+UZHR5HJZALrUgEcnWeCEJ1OJ3DwXLlcdn+rnlMwp9VquX7r2lfWNu1NGzhRp10BafaNfaeu1YxH9k8zyTgWDLyobUobhHpWSzJp22gH8hlTMEXtSLab48j1XK1WXVkFzrkG0zTIr+OhmQ4UG6BSe51l6/i37kPc4whUKIBng/i6tylLkvajztNQhjKUjYXPFJ8f7p3c1zUTSwN2Ct6q3aH7Aa+tQUYAgT1fdSEzyfidayFsC/dKBjmpuxuNhtNVNnjY769mRDG7Se0Y6kLNJGM5Nrv/bVc0OMqsPAK/tEUUvLY+me716ncT6LU2E9cD93LqWpZBob8IrOoFDVhrwIW2HXEJ+o/0m/P5PMrlciBYrIF52kSRSATNZjOwBjWwQWBb7TUF9a1wjAh808YYGRlBuVxGNpt1+AL1qZ4pwudCx5FZFNSvHFfaiBTNitMsQbWXbSYk54z4Cdugh6GrXtwLYPFeaMNQNpYhiH4DiALZeiqzbjoUAud08rjpbvSwUmEDa8A8X9fPXAuhgxGNRt0mnclknEOtJV6WlpbQ7XYdo5gKns6NGjnq/FiHaCdLtygIe/ToUcTjcczMzGByctIB6nTqgDXFTcbYwsIC6vU65ufnce7cOQfAMHAySPr91bSyH//4xxgZGcHi4iKq1SrS6TROnjyJgwcPDiztQ8OABk2r1cKzzz6LZ555BvV6HZcuXUK5XPYy6jqdjjsAVh1EFU2x2i7Ln+B3KBRyaY3RaBRLS0uYmppCPB53p8VrCr2C6JoKSRB9YWEBhUIhEDjg3EWjUUxPT2NqagpjY2M4duyYW4O5XC5QWonskE6ng0KhgOXlZdTrdTz33HPugBwq8+eTDCPhQ9lpsUxLLRvlc764H9FpG8RM5b6kepCvKyvJMtIURGfb9DlXp5CHK7JcB/cPtp//U3/ReVAGdrfbDdQ+Z/sJmoZCIdTrdefQKhOcomUsVP+pQ2jBco6Fgv4cf2YBkankGx91hKi7CVBqkJuOFh01spvoFBNQoH2jgCoDB9y/2UYVC6BbMJj3JMhr93oFyTknOqaqA9knAg4Eki34qa/1eqtZXVxLbA/nQtni6rDSflFCQKlUckEGppsrMEAbpNvtunvq/LJ9kUjEHXLKuWBftf0KELMvykDjPQmWZzIZVxpnYmLCgUdk1REkZ9/owNPp1vc0I4DjlMvlXDkB3jMejwcOxNOyONwn+LOwsOCC7zwrRVnfPia+PWPBrke1Sfk9ZlKwj3aPisfjbp+zz5ReR/dGBpvsnjhkog9lKFsX7ivcA6g3ycDVTDKK6gDdL6zw2Q+FQo5oYxm2vr3mWj1brHWtYDD1D8Fc1klnP+l/E0OwzP1+f61MJw+6pu1gz2q50jYnEglEo1FkMhmMj4+7EjlaLg5YO/ycovYb20lbBIDTmzbTiXqQ7xHMBtbsCfrW1EG+0mUEq8nILxaLLsiQz+ddcJwl1Ci8r48cwLXIgLLVFfyMXVP6P0lwAFAsFjE/P+/0K/EZ+t8kHlCXcv3yN9eM4lgcT+o2PlPZbDbg00ciEVdpQEvc6ZwS71pZWXFEQpLoSDTRM1Wup0++28/xUH/vnAxB9BtANPqpzBJ1fLkZajROHZDt3ut6izrkZCipQ25ZdqyZTiWtrOtBqcc7KWwXN/lUKuXqfvJvKnQFItQh5PcikQhqtRpSqZRzKrfSfp/CikQijsFFkMYC6bx+q9VyB2+SHcBo8UYMAbZpt5QSjQRldbMGMBl0jP6zHjDXB5UowQRGwDUwQeUdi8Uca4F19sfGxjA9PY1UKoVsNouxsbGBIDqdctZuJQuCxo8ai3slEr5bMlTiQ9kN4T67HdEyDoOAJGUZUZRVzM8QNNfrWDAWQEBX85q8FvdS1UvaPwX2tO32PryeBe/1foOeJcve189Tz6hdoeOgbeWPL4CqIKV9n3pPHS5lGCvTl4x36jWC0/YQSQ0AqChbzLZffys4raUz1OHV+VJWFG0NTalWe0UBmEFinXTqFDqHyphXUZCZn2WZk41sQY4J76drU4XtUGddbRE+E5p2zXtp0IH3VEYbAAcmEYQA4PSzsqo12KJ90fEneKM2F+v1JpNJx06kXalrl+uu3W4jlUoF2mP/ts+JPnP8rUE6jo3OtTIi9X9dkxRLaFFighIU7N/2WlvVrUP9PZTnu+izpAFpZbVquRLfc7zZs8B7EHjWZ1p9vt3yWweJ6i0bIGWfuKdb/U09ocQD7oX0lbQu/Fay5TdrK9vL81XIhOf+b0F06jvd59QGpD4iuMtMNN3z9d4UzhNtlFBo9RBZLTVKbEJBdAZq6G8T8FUi5CCfcaO92qe3rS6x1xp0bT4H4XDY+dudTgfxeBzdbtcdJgusseupt3VMbBBCS+1Qf6fTaYeV8Hc8HncZ/UoGsSA6/W22k2vM2jk+G/hGkaH+3jkZgug3gNDpCIfD7tAsblgKLjOCSgeEKbxXAtipI0jRzW+3RBWMgppMLdPUYTqUsVjMMbYYqVUnb7cDA1Sy6XQaN998M3K5HDKZDKamptwp3WRIWwBbxzkcDmNmZgYrKyvI5XKYnZ1Fs9l0h2CylpzP0aUyymQyLiJM1tazzz6L8+fPu7Hg5/k/nW2C6Dz4o1AoOIPneguNjXK5jEhk9TCVpaUl5zBzDsjSpOGpILdNB+92V2vXHTlyBOl0GjfddBNuvfVWJBIJHDx40B1YqmPKdQisGSh8vljDjkxAgunnz59HrVbDz372M/z0pz91h6HV6/XrOaS7KkMlPpSdFh66pbWmuc8TUAWCrCI6Z3TkrEOqALn9UVFHQoOGDHJS/yq7nIcVaxkJlvYi2EpHi8JAG4OqZGAPcqTte9a5UBazBeItEMo++QA8zdSx4DPBXUq32w2A0Qq2c2y5L/Nvzp8yaHn9RCIROCxVQdRer+fGV5nWBN8V5FdwQseITrYeUp1MJpFOpx0IoOxAzjf3feqdSCTiStBx7dGpjMfjjpVOUNjOp3XqOSZLS0solUrramLb1GkGv2n7lcvlAEjhcxoVgFCHV+dVgzR0RqnnuAb1ukwdpy1GMFz7SHa3HrLLeVVGo6+tbBvnmOVgEomEswWy2azL+mNGg9qRvmdJ95JMJuPKzyijv1QqOVvCBp0U8FKiB0WDJATh7FpQxrlmBtCWIWNVnzWboq7tUUa8DbZtJEP9PZTdkisJ6lxr0WeZzx7BN5Zj6/V6rnwkpV6vB7JoeK2t3Mt+dhAQ7wsI76ToHkQ9o9nTGkSg30OcgSCmb69W/MACm1fTVtoHsVgMk5OTiMfjyGQy7hBrMtFVtM67+sRsK4FszjX1tx7MrmNlM+44Lt3uamlUnhvG9UKbotcLMvtZzoUkNup1X1mgrYjaszZIv9VAj71er7dWlod1/G0ZONV9antqiTWurXQ67YIeDHzzbD6+TpIbcR69F3+rTp2ZmUG9XketVsPy8jLa7bYrUUumP20xEtuupQzyM3b6+lf63aGsyRBEvwGERncoFHI1r7SGKrC2kWgEk2D6lTxQPhCdbdltEJ1OPxnCjCwrGMDILB0wLW2z26C5FTq1qVQKN910E2ZmZpxDN4g1qSC2Tf8CgImJCczOzrp6bASAybi31+KaYIo06691u13n+KlDq+BRrVZzzACC9Nd6DLcitjwC1woVK4MvCrDRsNPUb416x2IxHDlyBFNTU3jFK16B17zmNUilUi4dfBBzdTPh+BUKBZw9exaVSgWJRAKFQsEdEnMjg+hDGcpOC41u67jyGbdsTAb/CHTaWpLcJ1Ts+/y+BdGVZUqxgC2BQgvEUn/REdcyD8o6UmdDgTLLdlMgjdfjXqj/b7SX6XvKsFNWsQIL1omx4DwABy5bphadOQYylaHEci2DgAXbDraFOpTgLpnGlq2kY8R2EzSPxWIujZigrM6dBmsIxHNtEaSl/uV92De2jfPq61+n03FgMv/n2uZ4EhBm7XwNghM873Q67nwS3/q2wvWqWY7sm44z+w+ssQ/1GgqG0/5kP3hvri0CGAzOjIyMuEwzfp/gil6bup5tHB0dxeTkJJLJJMbGxjA5OYnR0VGXBagletRO1Pbr8802xeNxNJtN1Go1xGIx1956vY5QKOTaqWPK71qQS8eJ99Iyixp84G+uKX2u7HWAIEN+UIBQ6xVfa0brUIZiRffi3QaEr0b0+dY9jEFigur0Q4BgSYntPGv6PG8kqnN3Y9w0K4uBYfZVbR4GwRn4Zoawr3Sl2gd2r90Joe/N+typVMqdo6ZMdL2/ZnbxdWYOUz8lEgmX8Qas6e9WqxVov4K6SjKgvak6lfpHbQqC9SxxQ7Ce9cOvdpx8IPrVXFcDJxwrDbgDa3aarqNYLOZY5fyJx+OYnJxEIpFANpt1JXgymYwDzxkMp/0/aO1rxloul3MgeiqVcsx5BvDpL5DIcj1A9KHsDxmC6DeY0Gi2rC2KpkldyUapSlTTsIAgI223QFYbOVVHju0j+KE/18tBiEQiLurNAzwJYlvWuU9876tyjkQiyGazmJ6eduVIFIggEEzHkfXJ0uk00uk0AARYAgTJ9eAuBl24rrYzt2o42EwBLUXAfuncKtDtA0w2EwUqlGWqjEdlLeqYTk1NuXG99dZbMTk5idnZWaRSqQBT9EpAdAXpyZSLRCI4evQoXvayl6FcLmNkZAQLCwuOfbBRuZz9KMNI+FB2WpT9AwTLqJD9Gw6HAwA0P6s1kHktmxGk19R9TfcB60jyWjbbi8Y8AVsFs/v9vgsKE1RUcM+e60GnXa9PcBsIHhiobCgbCFcdqQ6Vjq0CzwrqUQYFGSiWkcXXeE0y7zkGHA8FztkvC+IrgKAlUvh5DUzwfzsn2nb2lQwogukM1DBYYxlPVuyYWyHo3e/3XZBcdRK/q+uA7VAbQjMOlUHFwANtPwabLePT7qu6bjSQA6wFQBRYYCk4rn27Hn3rkNfu9XrOcaYoI5FBL1t7Vp8/zW7gwaTJZBLj4+PuIHd1uH1ANMdC51PZc/yf80XAhYEstjMcDrsD1/TgcHst3U/UJtFxUltJ1wOvxb3AOvvcdxTg4z7DMbfrcau6dai/h7Ibos+z6p6dBlZ3S3Tv07OUuNdxL7b7wZX060oJPFcq1pfT13VvJzhKHADApniD7rkKOOt7Pjtqo7bSBiBhjX5vIpFwGX/UvdQ71Iu6RwJrB1lSX2i5FQbHw+GwIzGqnaKZ5NSZZL/zddtXtfMURCcJwOpXX//tjzK9dR4ZeKfNYDMJ1KbbLoZiyQAWRFchaD46OoqxsTE3Z9Tf6XQamUwmQAZk4FxJlfa54P+0/UiY4XxqVhzxDmaRUnfr4eE3ggz1987JEES/gUQZLGTDWMdN2bZXWsaFmzEZPHp/IMgG2+kHTh1prX1KoJSOlabu8HNa52q3heM+OjqK48eP45ZbbkE8HsfBgweRTCavGIClUDEnk0mcOHECMzMz7tDRUCjk2OnhcNixpicmJnDy5EnnTKZSqYBzWi6XcfHiRRehXVhYCKwXy3DcyhhQSdPp1oO79EAtgiGcI9Z+63a7jl2v5Rc2EyqJUCjkmHp2zHW9ckxHR0eRTqfxmte8Bi9/+csxNTWFl770pRgfHw+k8G/G3NxsXHjvZDKJI0eOoNPp4MCBA3jVq16FQqGAb33rWzh9+jQuXLiAH/zgB+7wlhtFhkp8KDstui7UcVGgmntIr7dWUoGlnsh+1oDbRkxdBf3oBOkepqUVuN71fe6rup9UKhW3PzLoSiAXCGbbaN1m3oPlXoCNnWwyrLWvBF/VPrDfYfqsBdktU50BAJ0b6kPLQNcMK50TspapyBdKygABAABJREFUDywbWnW9nnNC+8SW6OHY6DUBOGeM16SjRVbU5OSkYzDncjnntGnNblu3VZ1H6hU7Vxw3zi1ru2upNZ1nsrU4d/ybwQYekMsx0gPJCKDzfQ3EU/+rQ88267wymKDAgzrmzWYTpVLJ9UGzHK1tyLXA/lkgW8FosvoZCNAAF58bzlcul0M8HseRI0ccg21iYsKVatko3dsC2BYw4rNHuyuRSKDT6SCTyaDT6WB6ehqHDx9Gs9nEpUuXUCwWUS6XcenSJRe443pUwondI9TGov2k86Dt9z2n+jm2mfudPnMWnN8uQWGov4ey06L7CWUQYWovimaJ8SwH7ZNmuHDf0oD7duVqQPgrEeohO0cE0TU4SMAYWGNd+9qpvprqFO576vP7Mq0HtZNkp8nJSRw4cMD53yzvQuBb26B2IvdZDbbq+Rq8D8vC0J4gC5uMdOpKEtn4N1nT1LftdjtwQCj1cq1Wc8FvArybPQeaIaC2Aw/TJvisY95qtdz96X/3ej3nh2uJna0K9bhdp74AezKZxMTEBBKJBA4dOoSpqSkkEglMTk46ljrnjDaP2rE6pnptxRc4bul02hEHp6enAyVq6/U6zpw5g+XlZSwvL7tAhs7pfpeh/t45GYLoN5jo5mqj3Xz/ah4CjWyqI8lrXy04vJmoU2bZ5myfBUEGASKDxOdc6f23KlSOqVTKOeGMtF6NaPtCoZBjXbVaLZeapoYa09lYhiSbzbrovDLVGFW36WlXsl7UAaXRQMOFoJBG4oE1hUvQSwESy0rZDcaUgkQHDx7EzTffjMnJSRw/fhxjY2MAdo79oUYYGQ2pVArT09MoFAo4c+aMK9FDY/RqFN9ek6ESH8pui2U0+Vjmyt4lG8c6hBZwU4fPgujKurHgVr/fd0FfDWLzWsAaE7vdbjtwlfqCoBhBRbu/KuuN/VG2LtugTDFtt2Wu8vMqCvirLWH3RctG1+/zR8fUN+b837LcfL/V9uD1qV9sppGypXUNWOeLYDEdOJZI4XW5b1NHbWb7+BjPvA/nj6CK1sKnnUWmFv+mXtBzADTYQGCfADp/U7+y/WpPKTNa11gotJrRRhBAU6f1GdOa7hQbhOe1tR3K+rP2HV/TAJKuXf7N8WHNW4LnrGPvK+dm58OnW9Tm5f9au1UZbqOjo2g2m6hWq24OtGQQx8rWi+c69QVZFLQZtL50zHg9G3Ti6wpMXSkgOdTfQ9kt8e2jm63/vSL6XGi5KT7bBCN1D7lS0UCaEnPYjo2+d6XPoOpX+7rvs5StErAUV7BBfgYwtyI+vzORSDggVsv+KT6gOsXaJ1Yncl/nPfr9vjujhvqK7zMoQGBfdRGvqTXyCaSzPIyWZNvKnq2EAr0/M7FYI15tMa5T1Rea5edbZ1uRzdqrdiwPB81msy4gPjY25oLgPARc50HPB+GY+uZOCYG0fWgXqO1cr9cdGaDdbiMWiwWy924E/TXU3zsnQxD9BhZf1G8nrqmsOlVqVB7bBTq3e386mawPxvtoqtXKygpqtRp6vR6q1apLg/KxdrjpMo2IjjJZx/weD9ako6hsMSvxeNyB1WQUUnnuhoTDqylis7OziMfjWFhYQKPRcBHe8fFxd6BpOp12hgUAl97U7XYxNjaGSCSC5eVlB95sFUjXE88zmYw7cJPKkGA+lR3Zh+o4ap1Xgvs8DK1Wq6FYLLqarvV6fR0j8krHLhQK4dixY3jxi1+M8fFxvPzlL8dNN93kaulpO3dD1MGOx+O49dZbMTY2homJCXf4ydzcHObn54dKbChD8YiyZQg0K8MYWHOuCCTzNxAMQDOg59NjdLbUkVKxhjb3KAtaKbimbaATw/2NbGHqKF95D9XHBPV8DpeC2ARhbc10vZ4FQ9kO3/u8vvZL76nODXU4dQ8DtzpOlrGvoLMFfXk/gt0EfPWznM9arRYAm9kWBd5Z81xTvXkdLQuj60rHQufBzi3XHNvG9djr9VxpFJ07zdyifiUgoCC0jiXtHc6VBmt0jjU7g0w11d/K+iI4beuH81p0ZrWWN8eWa0eZhBrM8j1DlqXNPqqwdEs0GsXU1BQOHTqEeDyO6elpTE5OOsdcbUOKJZvY+3PsNOilKfrqqDOYQcZft9t1hIV+f7VWerFYdOfP8L6a9aEAjg0caeBL7exBLFadY17X7hu8ngba9jpIOZQbW+gD+AJXQDAQ7vu9F4XPtwbv2Dc+59v1m/ldux/oXj/oOtsdK9/Y675D5jL7B8D5y5zPje7JfZ4HPmsglMHWfr/v6pCTFUz7yNdeZj1r4NuyyPXz1o7QuVF7RvuhtbwpzF6rVqsuI5DlVAkQ23Jwej0GXdXOUjtlI1Fdx1Jm/Jvv0ScniK7C4K9m7nc6HVdOhhnqypRn+zYL2gDr2ed2zqempjA7O4tkMokDBw44BjoPFmUfdG+wc6f2mLUfBs0tAXa2hwEL4iXEmhYXF7G0tORsmb2cETOUaydDEP0Glt0EsbmxqxJQx3q3jBpeu91uu9rR1jGlI6eHaCngaoXfi8fjmJ2dxcTEBMbGxjAzM+PqYvEQqWeffdal/NgUbpVkMulKt0xMTDiHdDecFCqEVCrl0pj7/T7m5+cRiazWTJ+cnHRAOmuNJRIJF41lP8jeWlxcDBy2slEZFSomHtzCwzgPHz6MRCKBgwcPOkeX6VisR2bXj84vWZulUgnNZhOLi4u4cOECGo0GLl++7JxQRuyvRKhQI5EIbrnlFvyn//SfMDk5iRe84AU4dOhQYE3ttnAc0+k0Xvayl+ElL3kJDh8+jJWVFSwsLOCJJ57A4uLiFfd1L8kwEj6UnRatXUhQCwga1HzWda/h51WHsCQFdYs+cz42lDJAgaDjwD1KM2zUCVbRMhx0phQo5VkWBET1QG06WppSruVZgLXSJbwm2fd6kCP74yt/RnBWRfuk7HwNbtuMNX7PAnj8jpZis2VjLGud/4fDYVdyi8FrrRVP4DwajaJarbogLfvPwC6dXK27yfkk2GlrilvAR4M17BedU64tjomC0clk0hEAOBd0Hqk/R0dHkclkkM1mA+uH61XPMrFjThBdHV+2LZVKOYeWZ7iwpiyZgQQ26NTyu71ez7Wt11srx8NUaNphy8vLLmDi0wHqBOv64m8y/dgnAv60t2666SbE43HMzMwgl8sFrm1BYgs8aVlAPiNMZ9e9Qh13/ZvPaL/fRyaTQa/Xw9LSkgNVzp8/HziIjiALU8S1xAr/1gAXxyAUCrl9Tp9RCybYsdRAAoNFFnjbqp0z1N9D2Q3RbBVftokG3ix4vFdlkP/kC5ZtBjhTqGs142QrgOaVigUkNSAMrGWCUdQvYxByULu438ViMUxMTDgbZ3x8HKOjo+67rVYL8/PzKJfLqFQqzqay40IwVP1c6nXafzYIyr9pR1Hf2UAvbTgNYNAmINnB6l9tA/1gZoZzj+92uw7A1dIwvKeC6IMCJASkWQpwbGzM2QoEzVnORQ9T5TOnILrOY6VSwcrKCiqVCpaXl9Fut12pMn0G2batCMeLmEE6ncbMzAyOHTuGeDyOQ4cOuUNEGZy2dqQVZcvz87Z9yrpXO7/f77vDx9vtNpLJJBqNBqamphAKhRzWpIeOUn/vRxnq752TIYg+lCsSdSrsa9fCqFFAnAdDqGFBEFZr0A4yMDTVKZfLYWJiwgHPCqJzw6eSIdPdd00qKqZv+VLgdkJUaWntXN5To7W+v/m/NVy3ogzVYGHEW51w/p1Op93BbJqOZe+ja0dZdTQwePApQRBGyOkAX0l6MtvNtO+JiQlX/9x3SMluihp1NHDS6TQmJyfR6/WcMUSQbb9HwofKeCg7LaqX7J6vwJd1RHysaRUa5IPup9fhfqr38u2/Pha7j0GjThQdcmVY+9pg9/fNAm9sM6+rfQGwTs/rvSwj3NoFCn5YppyyzlUUILTt4TV0PrXOKPUuGVjaHu6f7XbbvWfHRufOt2aoK22as7bPAkB2DfCaKnoNHzNO3+OPggF0HHmfQbaYrlFldytDjb+1hIwGYNRJ1T4TpOdccN0yO1APIeWcE1QGgllv1l7SfvJ+Oufadh0Xu151THwgPteksjw11Z5rxM6fnbd+v+9S+DXLQNcz9wGuIdtnvTeDYry/j4Gue48dNxVduzYYtVUZ6u+h7JbY4I5vrV1L23y3ZKefIdUvu/F86r7JPYQBe9VreobVRsA+9z8GrukvptNpZLPZQMbX6OgoKpWKA+YJsKvfp22wgLky6XVt2faoftU++3xnfU31ogZINvos7Qiru63+tuNng8z0GQmOM9OcjHx9XTPbgGD2nz3njq/T52w0GhgZGXFMdOqmrZAnLVbBYDznXfW3Zg1Ym8cnPhxqo/917LiOtRRMIpEAAEfK6PV6LhACrJat2+8y1N87I0MQ/Xko1onbDuitn+UhbDYCfS0eTjKECBDwEDe2hxu/phP7JBwOY3p6GocOHUIul8Mv/uIv4tChQ8hkMg5EZ2mRWq2G6elp5PN5nD17Fv/3//5fl7aljiCAAAM7lUpdE4OPpVNWVlZcRBoI1hOlcaMAE40d/uhhVIPmkkowFovh0KFDDoA+duyYC0bwwBUNJFAxWtaTGso0btRxZ6mZAwcOoN1u49ixY1heXkalUsHp06ddmR1Gx7cqY2Nj+IVf+AVMTU3hla98pTt4NZ1OX8VM7JwcOHAAv/RLv4RKpeLY+PV6HfPz86jVate7eVcsw0j4UHZafLUlLbNzs2AmA5GDjHAtwcC0T+uU6b4LwDkvvL5lUvNvMmtZa5qOhAqDxWRLcS+3dad1D1X9R4dXwXF1QulcKeNay1ioY6kMWL7Ow7C0f8pOtyno1N/2wCbVQWyLOpc6l5lMBmNjY0gkEjhy5Aiy2Syy2SympqYcu6vdbjsmeiqVcsAm2Vc8kJtjxZrk1HH2YFc6gKq3COpyjslw4g9f0wwE2ie8L9cqAW0dD1smh9clK5yf4fhyLhhgVjBA9XA2m0UoFMLY2JgrB0cggyA6+6o6m/OjQV3OCdcR20cHnePOkjqtVguFQiFQ93UQqMv1rOOczWZx9OhRZDIZHDhwwLHver3VMn4KWPC7Ou56bX0O1G6kHal2i5IOFPywqf+pVAoHDhxAOp1GpVJBoVAIsNm4Jtg3Dexw/prNZmAP0n2D37FBG5spQaEtqOVjLGizFRnq76HstvA5sP6qruuN1uGg9b8XRINjqr+38/zZ72hQTvexnWir7n98DVg7mNoXROcet1G5rHA4jLGxMYyPjyORSOAFL3iBy9yenp52JU5YViQej6NcLmN5eRnAKgZRqVRQrVYD11egmAC9lrnTwLfu37RTqIPVP97MdgyF1g7LZrkWjr8NJqhdo2W2KOqHW73N9tE+ZImYdDqN6elpRwhjadZMJuPY3HqYKYPfqg80uM6/k8kker2eI8a1221MTk66bIClpSVXYqfRaAxcc2qz0QbL5XIOPzh48CDGx8dd1oC1wdVusYETPeuEQRw+G3xObJBa17T6CZz3WCyGfn+1FBttxEql4g5qJ4FvP5LZhvp752QIoj/PxEaMlY2ynYeDToYFRLmh7PaDxs0fWGUyMTJonfzN2kHn8ejRo5icnMSLXvQiHD9+3NURJwjBFOvR0VGnwJ999lnnoFoQnfXVyR6+FkJWdb/fdynYPiVugRNuqJb9NygKDgRT8A4cOICZmRkcOHAAt956q0ujszXfgI3ZIzZSzbYx+tvv9zE1NYVut4vx8XEUCgUUCgVUKhX3vWq1ui2llkwmcfLkSRw9ehQveMELHIhwvVkuvH82m0U6nUaz2cRPf/pTzM7OolAooFgs7msQfShD2WmxrGnqB61N7Tt8SPc5ZRD5mJmaHaMHHXL/9JWo0uCuAmW619LRZL3tQUJd0+/316Xj2v1aWTZsC0EJfoYprRSCk+pYDXIWFPjn+PocZnXCCSZzXAbZC5oGTufJXptzxQwolk6jE37w4EGMjo6iXq+j0Wi4g5o5vtTneni1zquCpARmOffqwCkozr81HdwC76rb+Jv2A+/J71v97RtXAsR6UDfvO2jueI9IJOJSzBl4YLq5HgLOQDadUw1waLafBkv4N9cp69QzkMG6tgQ19Hnw6V+OXzgcdsw6kh0YtGe5OBIrNJihoDHbrs+mBbYYrGKAR7NE+F0NivlAdAIarEdLhpseKse/OSdKeND9RgEpvRftLN3/+LwoyUX7Z8f1ets7QxmKFd0fKRYI20ws6LuXxOeLbUd8GSeWSKa6/mrbqvuyAru+NtkyVD5R/T0+Po50Oo2DBw+6YKiWU6X/vbKy4va7SqUSqNdtAwrcW1VvWL1tx4z90Qwt1icHEABrbTlbYM1mZDkzBc19fnWv1wsQzCzIa4PffJ8ZWHqOWzabxYEDBxCLxRyRgGVtFDzX+bNECNt/MrD5Ox6Po9PpIJlMIpPJoF6vOzIjsDFDW+2pRCKBdDqNTCbjysyyrIvayL451Xb79gPFfvRvq/85X8p41xIwtHmmpqaQTCYxPz/vSgQuLS15s76G8vyTIYj+PBPLWLGO7FYjVNxkNYoHBJlt2yk5oZu3ZTxZxWPbp5usGg6b9YN9IHOamzhBYD3EjY5ZOp3GysoKMpkMUqmUYwtZ5UHFTebZtRKNJFMJtlotVCoVRCIRx85S5UwGWK1WQ7VadQex+ow7Zf8R4KXhw3roFqQCrjz10q4DrjPWd+v1eg74jsViLmuA9W4HCdl7mUwGMzMzOHLkCHK53LrMir0gNB4mJiZw8803Y2lpCfPz88jn89e7aVcsw0j4UHZarBNi910a1IPO8gCC+kcBaLuXqZNG59KuS2Wr8scy0QnIDWqzbR8DnfyeMtD5vi84yh/2g+0gqM1+WXaqvk5wlsKxssELO446fuyLtkftEe0zP6t1zdXZ4T1YK5x1Runsse64Hgwdj8ed000nifrKzq3qgkE2je2fLzjjIxmwHz6GlI4FwWXqPtaB1XNMCEI3m033Q7tEf7SNyorneOlBbFwbuoa0XRwPnWddO/os2oNEySTv9XqBw0o1KGSz5VQYjNID2nh4mzLVrC631/MBJ9pvdbTtPNr9wwbDlLDAPhPoGBkZQbFYdNeza04deT0TwD6//JtguY6T2koKfvn6zM9tFLyzMtTfQ7leMsj/20ion68WVPb5pvqb72/l+dB940qFz/lG+nY7YnW+3sfuV6rL9HPb8b2Z6URAlT/U49zTyXZPpVLOV43H467Up5bJAoJMbe6N1k7y7ZtWZ+g+aj+rY6YBVV1n1DnUgTxThv1n1lA4HHZlY63+tiXOwuG1g88JkicSCRf4JpOb/ecYKOtd7S8fRqPf4edoSzHQy9cnJiacvaXBe/rfVucqNsIyLlpyRtut7bDrUNf8Zj6775nVOeL/NtgRCoVcWxOJBMbGxpwdSQLG1T7D10OG+nvnZAiiP49EnSfdhMj6UmbRRtfghqpKjgY4N/1Op4N6vR5IqxkkagRwE9XNUVO7B5Vm2e6mQEeOTOqTJ09iYmIChw4dwvT0tHN61CCKxWJotVrIZDIoFouYnZ11h3lVKpXA/UdHR11KtB4ctttCZUE2WavVQqlUQq1WQ71eRyaTQa1Wc6ADsKrYV1ZWkM/ncf78eVSrVeTzeZemrQqQ83P06FHccsstSKfTOHnypEudTyQSAaW3k4C0romxsTGkUimMj48jlUqh0WjgzJkzLlCwuLiIQqHgvQ6DAOl0GkePHsUrXvEKvPjFL3Y15PaaUJG/8IUvRDwex4ULF3D27FlcvHjxqpTh9ZShEh/KTouyjlQIbnEvs0AXEAziElTWPUzZqnyPIKR1lugwKTuZzoAylKh7qeMAuD2U7eM12XYt/UFwWO9F3Wu/r1lbZLvTibOlSfijjimdKQ1C2PIi2pZwOOwYYzrmWmqHfWLKNYFPtp1AqpYysbUyR0ZGkM1mcfDgQVc6I5fLIR6PI5VKOSY1mcmNRsOB5/l8HuFwGJVKxfVPy4Uw0Eq7Q3+zjQShuT5ou+g46nqjY0m7yQYtlMnN8eI9WcpH2diRSMRlBFarVRQKBVfWjAd6kq2njjud71gshqmpKaTTaUcm4Fywn1w7uk44hxrU4NyzHxxnrkm1E9mPRCKBRCLhbCiWdmGKfq8XTL/nvQi+ZzIZ5HI5jI+PO8dWwXsFRZRVrmtN206ghCCGrnMVddy19BHHRdcvx3t8fDzQT5YQUhCb5Qs435pNoCCI2licfxXa+GyPBdtsbXtecyPbX2Wov4ey06K6dJBsZ93p5xTcvto2cg/TQJkG4dmPjZjYGhS72jbRFtkqeO8TG1TjnsX90BeYZ/90D1ObaiPAmfhBNBrF5OSkK6F66NAhTE1NIZVKYWJiIrAfsmQIy6Tooc32EFCytJXEZgkF2l/ajHo4NL/T7a6dQaP7I20G1eNKLOQY0eYiMY0lYqmfOG71et0d3Kn629psIyMjSKfTjrTGcmGpVMplklGXqC0TiUScTWZLtg6y4dQGIzjf6/UciY2lY9vtNgqFAhYWFtBqtZDP51EqlQL6m/YH9T5LzkxOTmJiYsL59Govaxk2nRefbc7/dZ71s5xP33PCMVE7l21mRt7BgwfRbDZRLBaxsLDgsui2ehjwbst29pKh/t452fmTDndRHnzwQYRCIbz//e93r/X7fTzwwAM4dOgQEokE3vCGN+DHP/7x9WvkHhdVkrpZbSWaR1FFyE1Rf9TR3co16ajo4WD6w2tqZPlqwVl1RFhPLJlMusMj7InQGjnl58jg8jF4NNJuWWa7JRqh1TmmI00gXdPbNc290Wg4JjoZbzZKT0c6nU5jYmIikErNgAH7vJMAuu0fa8YyhX9qasqlBJJRN+j+6sBrP9Lp9I63+WpFAwfZbBaHDh3CwYMHXdr6tVpbOy0KMl3Jz1D2n+y2/lY2kP5Yw9qeAaE/usYsK8Ua3dzjVU8oc0ZBq0F6l6KAHp0gftY6AVraQR15ba9tOxB0+vV1bZ/V2fqegonKvlLhNdhHgq62Dwru2xJitq38zqD2ks1GvU27gWNHBpX9jNYvV4DWspy0PRYg9R1+quOjOovXsfVR9fOWdQWsAekrKyuuFicd606n4w5KZY1xy0Ln2rYseNprZINxfBSIts+DDZDrWrFrXYEry0ajTcUD3RnUTqVSzo4YZD/qs0dGujLY7Nir+AAUO/7Wyfb1SedZ17TvjAJ+nxkTekaMbZ9db/Y5ULDLPk/aN2Wt2+vbffJK7NSh/n7+ydD/Xn/wpNUV9r2NZKeehUH703b9ebVNqLt9vrfukRY03+wZ1/2L9yHLl/40f1NPq35SPUVdZRnX1h7TcdB26X7JNlk9YPW5XsOn+3y2TqfTcZnRzJKmzqbepu7mZ1Rn+5jcOi4cO2Vzq21jbTJrn1q9rTaR/bxmgNH/ZlY6M9NZPsZiNTo+ihuxvUrItLiUHX/fmtd22nnyzZ+uWZ/9zM+xTcyYIPlAM9/2imy1LUP9vXOyb5jo3/ve9/CZz3wGL3/5ywOv/9mf/Rk+9rGP4XOf+xxuvfVW/Mmf/Ane+MY34plnnkEmk7lOrb32YjeOrS506zBvJqpgqeSU/UfHLRxePXAECLLjKCyjwt+shUUAVDdHKpZer4dyuewUUaVSCRyUeb1kL28q/X7fMc37/T5Onz4dULoAnPImg7vZbLoac8CaEkqlUpidnUUqlcKxY8dw+PBhd53dAM03EypOpphNT0/j1ltvdYfMEHBoNBrrSibMzs7ixIkTuPnmm130ey8pQyuh0OqJ4ePj46hWq5idncWRI0dQq9VQKBTWPV9DGcpekmuhv5vN5roD84D15SGAYE1IdRp8wKCCYvpdC7L6nCiKGupkrvCaWspC9Z6yvsmIVnBMy1XZ/ZftILuaTi+FJSN4fV+7rfPZ7/cDjhava+vMK2jINvD7Wk+eOp0MIwUKNVhAFvOg/VkdIALMbJd1pmm32PZyPLTvNhjDudI1wbFX543v27kIhUKBuffNnzp6BM1p40QiETdmZM/rmNTrdRSLRbTbbdTrdXcgJb8fi8WQyWQQjUYxMTGBAwcOIBqNulriNvDgWxc+RiL7AyBQe5b2n8160LFlP5WVyZJs1N9qP7JNdGjJEuPzQqa52oQK+qhofXErDA7Rth0EMKvjzfmyoBLfJ/uy0+m4jEAeWE/GIUkPTPvn88vfmkngA3t87VQ2PL9nAQ4NAgxlKFauhf7eDR/OPvNX66tZnQGsgWx2n9SDkul/WQBvs/ZuVXwBWe4Pel8FRZWpTIayZQBrQJH9oO6ivcUfG3zcTHwkIO5BmoGj/VLdpP1mP/m66m0fUGzHyOqAQYChBkY3+ozu4SzPovYe/VK1FRqNBgqFgtPfmoFFFvnY2JjT3zxEdGJiwgHoJPWpTWKz3mwfLUjPeeBnbMYcsIbf0K5QFreWo+EcttvtwJwwkyydTgfarXNqgX0F49n2Qfa277uD1iWvpVUTfEF/trnT6WBsbAzlchmRyGrm+17Qm3sZh7qRZV+A6NVqFf/1v/5X/K//9b/wJ3/yJ+71fr+PU6dO4UMf+hB+7dd+DQDw13/91zh48CC+8IUv4Ld+67euV5Ovqagi2CydatD3N9pkVOhUMBJKBpCWc+GGSieOr/NeAJzzxnRilkZJJpMO3GWf6FR1Oh0sLS2hUqmgXC67FC86L9datmIwXE9gloZFs9l0LPRareaUGA885di2223UarV1TDmur2w2i5MnTyKXy+Hmm2/G8ePH1zmZ17q/4XAYiUQC/X4fMzMzSCQS7iTtcrnsAgiq5EZGRnDs2DG84hWvwOzsLDKZzHVr/1YlFAo5Flur1cKRI0cwNzeHxcVFF0zaT3I1Ee2hsbC/5Frp71qt5j2TwWcgA0FwTY1uigXn1EmjYa16l4C8T/8qiKxGO1NjuQdpLUkV3Z/YDrKR1ZEgM4ufZT1xZYwTVAMQ2Dcsy0yF/yvri+VEqEvU0bEsJ44RHSzWJadDroArsBZ417bqnFD4Nx152goE/LWdBNFpt/jaalnKNmuAc6wHr2o/tU06rgrSa4CA1+X8aH+ouzT4w3qkfF/np9VqoVgsOoCD9hd138jICHK5HJLJJKanp93Bq0yrV4fTArTaLo6DzezQceD8MZhisxjo9BOY6fV6zpYkiFCv1xGJrNbDteuADm0qlXLPu2aT+ERfp31jA2a8h4LVXD++62maPsed19Lr8prJZBK9Xg/ZbBbNZhOlUgnLy8uBA2A5l3oYLYEUPtPMlPSBeVoCQO9Pm11fswGurdrRQ/39/JFrpb93c13s1LXVTuAewb1Ig6vdbtcdhMn9y7KKd6JdviC+/eF9uFeQBUwSG7N/FDi3tgD1CHUSD4VmljP3wK1iCapjVHdqhhr1gtpZyoqn8Bo++8yy6H1kCR9ZwALkauMpkUHBXPabfeBYNRoNV9OdZdV4qLmuASUGqh2o9tb4+DgSiQRmZmYwMzPjDgQnMzoej7t+csx8WU++QK+dBwZGtIQbhQFZrgmWexkdHQ2w6vm3klW45shcZ/a/gugWBLf2kc+2tjaYfpfft+tSSS0+21tt52QyibGxMQDAxMSEOwdvaWlpw/PXdlJ8wZ4rkaH+3jnZFyD6e97zHvzH//gf8e///b8PKPHTp09jbm4Od911l3stFovh9a9/Pb773e8OVOJkMlPK5fLuNX6HRZUPNx4a1eHwWg0r1n/UWp5A8OHh5qmG9Hbbsdn7NnrIDY1pvCypwXrUykRXZlckslr7k05Ip9NxtWMBbKn2uooqD40W08H3MXUINGs6ltZIVVEHcxCLaafFKhZlYPJ/KnP9PKPkBJsVcFbDhXXQMplMoB6+L5J/rUTvy2hxr9dz2Q3hcBilUinAEAuFVlndVOJ7nYVOoaGopWiq1eo1W187KUMl/vyRa6W/lREFrD8E0e7TdBxU/+na4t6t+6cCwoPAcorPaVFgMhaLod/vu7TYSCSCZrOJSCTiwEA9RJRt0X7wupZhr/f36WodI59jwu8wKKAMLy2joaVSrBNjfxTQ5bXYdusUW1H2lzq0ANY53QrA87OaiWBtHtpTyor3zRsdNV53kN7wlfQYtN/ZNelbh/oZBWm4NpSooH3n6xxbzR7UdG+bicH5U/vLtlnbafvnW2s28GFBFN7HlhKgzehjE1oARufLB5AoIOQbZ/28PvM+GRRkUrGBeXXstWYtv2/HUfcKW67AZ1/z87SV9f583fdsWZ9gKzLU388fGfrfq8JnTMFzZpdkMhkXXNUSZXxWfWeODXoOBgVjKaqzBul13V/VbtEyGlouhdnEFrDUPZP7E+9LTEFZ+NwvBwHpbLv6p9RZqsdZC5335p7mK1Gm9/SBjINsEmC9btN+2t/2c3YONdig39XgLvdlu3/yPe2XzrOWP7MHcPI9DTb4SAw6Jz49OMiO1XVFUV2i7WPNdNoY3W53XbkdDUJpmzeyHX1tUNuXdp6di4302iC7n6LPjupt2r5KWLkecjV6dKi/d072PIj+pS99CU8++SS+973vrXtvbm4OAHDw4MHA6wcPHsTZs2cHXvPBBx/EH/7hH+5sQ6+RUAGm02m85CUvwfT0tDtYi4qHjOKf/vSnWFxcRLFYxKVLl9wmzQOqlEVHEHqrKXWbPYS+zSkSibja2ZlMBidOnHCHb2az2UCkUjfMeDzu2pdIJNBut1GpVNyBknNzc7h8+XLAgdxK+2kELC4u4uc//zmKxSImJycD6UbqhNdqNVy6dAnFYhEXL17E/Pw88vk8arXaurHgwarhcNiVqrlWwqBJrVZzh5Pw9Xa7jVAo5AIHAALOvh27SCTiao0fPXoUJ06ccIeADHLKrocwYp5OpxGNRnHTTTchFAqhUCigVqsF2CAjIyOYmZnBC1/4QmSz2UAwZq9LKLR6+O6RI0dcOuDPfvaz692sbctQiT8/5Frqb3vAjw8gtuAd3/fVqaZQP6pTzH2POsQHumkaKV/XOpDj4+OOkUsnnGdTrKysuNJljUbDMZT0kFEb8ATgmOdk0apTRVCegQYLTCrY1u12MTo6GmBdMfjIeqTZbNaxnxKJRMBJY1BWnVj2n8x+jl+r1QoEDth+dcxZooWHqar+Ylow7QjeQ0uGMABeqVRQq9VcKQ0GVwnY6txxvKlbtG9cX/zNOeb12C/bF107Cm6w/6yHaplNurZJlrBgCvvIOeb9WEOWKeCpVMrpPAIUvlRqZTrTDrKMaT4bTNdWh1OfNZ9TbJ83gucAkM1m0e123bPAdqizTuabz/nW4D7/1uCJAjB6cKodB2Xx6z3sOudccn3abBh+F1g79J1n0bBt+jkG2OiwK/DAsWOJHw0G8h56eLEy2Pl5rieucQV8tiJD/f38kKH/HWSfEzCPxWKYmZlxhKJcLueyZvhTLBbdOVPMNuHhmGpTqAxiTVO4b9l91QbsqP91nw6Hw6698XgcU1NTiMVijpCjewX3SPUL6X9T94bDqyVbCYTqfu3zJYG1Z5/lQ0dGRlAoFLC0tIRms4lcLodQKOT0oJYmaTabLvM2n8+7w6e17IvqILWP7Nksqh8s2QKA02m23RxjHRN+h6xszZwnHtNsNgP6iXpMdRfvqbo9Eok4fT0+Po7p6WnHiOZB2rS/OOc26Mq1pGC+luGxB5dutKYsSE9dxfXMzLCJiQl0u11Uq1XXdz2/hARKBgRsXXQb5Ld2vLVBtH36Oa6DQbpYdSFtIX6PzwHHLplMumc2l8u58+R8WWo7Kb5g2tXq0KH+3jnZ0yD6+fPn8du//dt45JFHXBqiTzaKPvrk/vvvx3333ef+L5fLOHr06NU3+BpIJBJxB2HefPPNOHnyJKampnDzzTcjFou5KH8+n0ev13MM9fn5ebdBq/NmFcJmouD4VgF3Sii0msaby+UwPj6OmZkZZLNZt6lSBgGzvV4PiUTCMY37/b5L+11aWgKAbTkB/GylUsHc3Bw6nQ6KxSLGxsbQ6XRcGjIVIWuO5vN55PN5FItFB3T42tpqtRCNRq9pqQ117qjMlaXIPm+1TeFwGKlUCrlczjnhPDX9ejLQfaJBmKmpKfT7fXdojWU9jo2NYXZ21jHq95OMjIxgcnIStVoNS0tLu67EhzKUK5Frrb9p4Npa1SoKJOn+xT1S2SmWAUxR0NQCYPyuOiI+oJBObC6XC6SD12o15xiOjIyg0Wi4GppkMfkyhpSprfdSR8qOrwarrZOhzoRen04320xAnXYGx4KAAUt62PvQKbb31Dqg1tHRNjNI3e/33ZgBa+d78DO8FgHuZrPpgAwteWEdR3XC6ZQqsMBr6hyznXSG6/W6s8EIBtg6s3TS+Jo60nZNKTCujiznWGvIazvpZKfTaYyNjSGVSgXGne1S9ryCNGy7zWZUVr+1K60Dzr8V+FFHTsHvfr8feCZisVggO9Ay23RNK0iiZU44X/ysMgQJwtBZ1nWsNd7tM8K1yR9dn76DOknyIJjAMjr2mjq3zPRgIIdtJMCja5HrkOPIvmuJBh177b8CQUMZCjD0v1X4PPK5TSaTOHjwoKtHPT4+7jLJCKRGo1HU63WMjo4GyoxZRrq9j5aSss+sBsF9+xGwNh+qV6gnqAdSqRTGx8edbkilUu7+oVAokJmsgGU0GnXgNm0U1Xv6HWuPULQfkUgEtVoNlUrF6XKW51QAlfYCS7mSIKZnR1jdQ52k/dLfvhIhyhgn8cqSxdQuUT3OflnGPF9TYdktbZMlAfI9ZgqQfMgSKAS9CT5r4EVL3nA9sX1WZ/Nv1R8+wNmOn64zPhvUVel02pE14/G4WysKpNsDwW22lQZQrM2kNgjtPJ+da/tk7VDFvnz902eHWRvtdhvJZBKpVMplYO6W+OZhP4LYn/jEJ/A//+f/xOXLl/HSl74Up06dwi//8i8P/Pxjjz2G++67Dz/+8Y9x6NAhfPCDH8S73/3uwGf+9m//Fh/+8Ifx3HPP4eTJk/jTP/1T3H333e79Bx98EH/3d3+Hp59+GolEAnfeeSc++tGP4oUvfKH7zDve8Q789V//deC6r371q/FP//RPW+7bngbRn3jiCSwsLOD22293r3W7XXzrW9/CX/7lX+KZZ54BsBoRn52ddZ9ZWFhYFx1XodO33yQcDmNiYgKzs7OYmJjA8ePHcfjwYYyNjbkDo3QjO3HiBFKpFEZHR7GwsIBKpRJgXwHrD3FQNg43EgUmuLEoA0kBeCoQ/tZI8OjoqANkM5mMi6Ruh6XNdrL0SyQSQTabRSaTcYDxdhwBKu7FxUV0u12cPXsW3W4X6XQalUrF1ehkDbgzZ85geXkZ8/Pzgai7FWYDhEKha8Z0pnPFQ9tsWvd2hco4m81iamrKsfz2EgPdJwR71OhIp9OuRptNi9vLffEJDROySvZb+4FhJPz5INdaf1sWijojGmjS9/WgR76nILwa3hY853sKRtuSMrw/P59MJpHNZpFMJjE5OYlcLuccc7aTDhYA93zXajUAcE6q3depu7m38W91QgAEdK3dNzQAq2xdYA2UJIjOOaATNAikJwBpn1m2T8dNmcHKRrJ9tKxcMp76/T7y+bwDYRV4JWsun8+jWq2iXC4HghHqBHOctTbpoHJx6tDpGLL/FgzwfUe/p/Ni2W/sK+dRx1VBUQYuFITVuudq62m7uP4040LBZ3W8FSSgA61OL6+n68D3HClwoY6sBQcYJKC91e/3A6xNuyZ0PXLMfGQRjoOdJwWhdT7sPOv1LLign6UzThCK4BUDUrY0Aa9jM1/4nq+Uns6lrisNHhCsUeCAa2k7MtTfN74M/e9V4b7CWs4TExNIpVKYmprC5OSkKw0ZiUScf03APB6Po9/vo1wuIxQKBc6x0Osrq5cBaV8gjhlSFGvrKLjI55z7GoP3qVQqwAT2nSOje4rVkQCcXgHgcAfuJZr5PMj/VFCTGWK9Xg9LS0tu3JrNptOh/f7qORGLi4uoVquO5a+HWCqIrmVZlYCgGUUK9Ov46bwM2tMtgK7jrXv5oP4P2pf5WWvP8dwZ6lnqRtUDCqIrGUAD3tpGBex1DQ6yXe37FtD2tbvVagUY7rw/dZgF0PV/DVbYoLudJw3c2d/6+UFzYdelTxRIt/pbAye7JTupN6+l/n744Yfx/ve/H5/4xCfwmte8Bp/+9Kfxpje9CU899RSOHTu27vOnT5/Gm9/8ZrzrXe/C3/zN3+A73/kO7r33Xhw4cABvfetbAQCPP/447rnnHvzxH/8x7r77bnz5y1/Gr//6r+Pb3/42Xv3qVwNYBeLf85734FWvehU6nQ4+9KEP4a677sJTTz3lgoYA8B/+w3/AQw895P6PRqPb6t+eBtH/3b/7d/jhD38YeO2//bf/hhe96EX4H//jf+Dmm2/GzMwMHn30UbziFa8AsApePvbYY/joRz96PZq8a0IFdeutt+KXfumXMDU1hVe84hU4fPhwIOWTm/bKygqmp6fRaDTw5JNPolgsYnFxEQsLC1hcXPQ6EuHwaroX66Nx8yODi+laPLCKIDI3FyDofBLIpfKOx+OYnZ3FsWPHnOFBwJ/t2EiUEUQmH1PLmAZPAHmr0uv1XIAhlUqhXq/jwIEDyGaz7uAO9pklcpaWllAqlVAoFAaC6M1mE/Pz86hWq46psBE7Yyek0+mgVCqh2Ww6hvyVHriqzIXDhw/j5MmTrqyLjz21F0SVJ9PdAGB2dha9Xg/1eh2lUgmpVAqZTAZjY2PrDqnZD0ImOgCMj49f17psVypDJ/zGl2utvwn4aXkGIHhwJMWmtpLRxP/p0HJ/4FkLvEav1wvUoeSeSCYaRYGqkZERHDhwAEeOHEEqlcLx48dd+jKvq4yuYrGIZrOJubk5dzA0GdTqcFH/Un+n0+lA/1UIkipIrg6dvkfdRidudHQU2WwWY2NjLhvOHo7Fa3H8+v2+c2g5R3SgMpkMer2eK4fmc+r6/b43m4v3p3M9Pz+PWCzmAuAEO+jU65iSJV6r1QLnnHD8e72eYxH2equHl/NAbmUF6phZ1p3uybStdM9TwNRmOVjmleparlF1NAm2MgtRD/li2R2W0aMzax1wvbcVOt0EI/i8kGlma61rX5VR6eu/gujK7I9Go+49tpnEBNZd1SCOgkQcJ65vTfe3DrNlJOp46riEQqEAw1/Z5/ycElAUROH86jkCfO6bzSYmJiYQj8fRarXWgWwKQLD9JGYouKPPHoAA6GWfHQV+lKnOsdqKDPX3jS9D/3tV6AdFo1HMzMzg5ptvRjqdxote9CIcOHDAlWcieEudMj4+jlqthnQ67fQNDyMEgjXWVX8zc1b1hmYQ60GIuo9anc73k8mkO2ssl8s54H98fDwQcAeCwCj3MrKyqXc064X7EDO9eE97Jon1kRWUJQudGUdzc3OIx+PI5XIOf+C1l5eXXYkc+t8sq0EdQZ3Dg0/JGKYdp0C/ZR2r3rKEAwuKK3iuP9xztTa+FSUosB02SMEARy6XQy6Xc6VHNXuAtp/WR9cgNu/FtcP5YfCBn9OANF/T9an/s+8cQ+0LiRGJRCKw/ogL8fngM6WBAQb7LSFDSZE6Tmor+sSSEdhenw3Az9t765ywMkEoFML4+LgL/kxMTCASiaBarbqMyO2IL/Dt+3sn5Vrq74997GN45zvfid/8zd8EAJw6dQrf+MY38MlPfhIPPvjgus9/6lOfwrFjx3Dq1CkAwItf/GJ8//vfx5//+Z87EP3UqVN44xvfiPvvvx/AanbTY489hlOnTuGLX/wiAODrX/964LoPPfQQpqen8cQTT+B1r3ude52lua5U9jT6kslkcNtttwVeS6VSmJycdK+///3vx0c+8hHccsstuOWWW/CRj3wEyWQSv/Ebv3E9mryrEgqFkMlkMDs7i/HxcUxNTQXAWX0Y6Xx0Oh2cO3cO2WwWjUYDhULBe11uoHrCMxUsnQytE8ZN1Dp69nAMKlJ1clgH9koATN3kCHIwvY5Kfruiqd1LS0suWEBnjkq6Wq26OugMIAxives17Oa9kwC0bmi9Xs85YsrYstHjrQjnLBKJIJlMuuCKjx2x10TZoVTUrGdG4EtBhL0YENhIuC4HpYPvBxk64Te+XE/9raAcxQd+0uHj/k+nyLI/uY8qC53XtAwgOlwqyjQjyMsMGV4fWAP3CVhSv0WjUXeehS31ofe1dS0V3LXPjW2jgoPK0lfQVtNwuZf6GFd6f7Ke+Dp/W/YRsMZ802CFbTPn1bLUer0eqtWq+4yWY9OzYhhctuxfm5mg9UKVke9zeqzDxf5x7nX9bbZ/+RhUSpDQ9ilLW98H1gBYnS8NKFkms86brhl1WvVH729Bfb2eBkSUfacMcTt2vmtyftTp1fcVELGljuxeoH31Mdgso16vxX741rs++/a5o33NwJBmcxCgV+DGt056vV6gNJC2T8fTd/9BbHMNImynHOJQf9/YMvS/V4X7DIFNnr2RyWRcBjgzyWKxmCNy0f8rlUqIxWIO4KX4dCEDktRvFILXFLt/6uu6V2ug3eoC/q2BRPsdvmbvr5lkvLay3rnf+nwTu992Oh00Gg10u13HSCfOMDo66vQ1z4nRkmxaQobXo56grlCGsOIVvoC27k2+ufKJ1f9WRwza7zYCS3XNEWD2lT7RLC/Vf757abuUbMJ5HNRHawtTFw+ye6wtyjarbtH31RahPvfZH9vxc30BZmD9s2KDBhvhJLwm8QMlDtDW3K4Mej52W0fuhP62B0L7Moza7TaeeOIJ/O7v/m7g9bvuugvf/e53vdd//PHHA4dVA8Cv/uqv4rOf/aw7dPjxxx/HBz7wgXWfIfDuk1KpBACYmJgIvP7Nb34T09PTyOVyeP3rX48//dM/xfT09MDrWNnTIPpW5IMf/CAajQbuvfdeFAoFvPrVr8YjjzyCTCZzvZu2Y8I06ng8jsnJSRw5csRFJX0AOv+n05TL5XD06FHE43GUy2Vcvnw5sIGwPtro6ChyuZw7NJLf1/qmy8vL7pAzrS1KJpdNZQLgDnxkHalkMumufTXC7+vBLow4q8O2mfBzrVbLsdITiQTm5uZc7TcaRktLS6jX6wMZ6JRGo+FSzw4ePIh6ve7GdKeZw9zUGo0GLl++jFKphHw+D2CNpahjopHyQRKLxVzpgbGxMVe7d7+wtrk2YrGYq4/O2oSsJ7cfwWdg7XDR/QyiD2UowM7qb2VvUWyaq4plAvnYsnTEtJyZsj1pWCsrlQd6URg8ZjmzbDbrAtWWpaUsKKZ1ZzIZ5HI5x66qVCoBFv3o6GjgYCn21TKI+HmtiwkEWbsWjKXzok63AujKlgPWDjblWFkQmO1mkL7f77uDw9k2LRnCcbaMO8433+dnC4UCqtUqSqUSyuVygI3U7XYdO01BCDseBBPr9boLhrM2PbP0eE9eZ5AzZF9ne9QOYL8IFPC3z8nRa2rGRSi0xpQGVvXe2NiY+53NZl0GFu0By6znOFnH2NZOZX8tKE/wQx1SDT6oKKNbbSkbaCAwpQehako1iR6ayQGskTk0yGTH0Y6nfU3bouuYz5Yy0O13fONE4HxkZMRlUTBTkWOhTEadZwVVNKCg7dc5IsDEMdM9RudM269g2lCGshW5Ef1vuw+wdGg8Hkc2m3XlSJPJpHue9dwB7kdkp2cyGWSzWYRCIUceA9bsD54JxvuQiW59FAaLtVQq9wAFRjVLDVjDD7QsCNuhoCzvoffTfZh7NZnE7HsymXQBgkaj4Uq8DvJLLIhNXccsmFKpFAhMqN6p1WpOP+oBrbwu91wGzNvtNtLp9LrSsdTh1Ju2nI1lJfM1tlkJBLQTlMTG/Zc2wnaFmXaJRMKV6+WP1X0aDCfJQ/d7tRV1fSj4DgQPcNeAMPWP6lENGLCPaqPZoBAzIRiIsix06iCuG18wwwatbZDb6rmN7CcNPijZQa+la18DB51OxxE3ORdcbz4CzUbis5WvVDYKAOyG2HMs/uAP/gAPPPBA4DWSUn2HT/Ngaitzc3Pez5PkOjs7O/Azg67Z7/dx33334bWvfW0gMPymN70J/+W//BccP34cp0+fxoc//GH823/7b/HEE09sueTYvgPRv/nNbwb+D4VCeOCBB9ZN3o0kyrY+cOAAjh075lKUBikqOtSjo6MYHx/HTTfdhHQ6jfPnzwMIRgzT6bQ7ZHFiYgK5XM458gTRqbji8TiWl5fdgZ6angb4a08xDZzsOzqiVwOic7NiWhAPdiHQu1kU2LaZSnpubm5dVFL7s9XrEmiPxWI4cuSIS0PeDSeFm3atVsOFCxewuLiIer0OYC0tjOUI6LDy9PNB/YhGowEAnUGWvc5CB4JrO5lMYnp62oHNpVLJHSZqjYj9IgSgut1uoBzSfpIhk+35Kbupv6nzNhKCjD6WKN/XvZ7OloLolqGurFwGuKhT6FDQYSCLjQ6QgolsBx1xBsnS6TQmJiYQi8Ucq00daDqcWi6CY6GsIACBkhx0dtlvgqDKzNZx1TNX1AG3YkFZZaoxS0pBfnWmyRCnQ61toQNDB5B7OseQ7D+ydZWxy/uz79SLvLZlFpMk0OmsHmDKOvCabqxnjhAYUEaVgss6t6FQKHCYG7PayKpjaSGOpa47DYZzjOjkapZgNBp1Jc0IoieTSYyNjTk2tLbLMrUUPFYnXGuacvw1kMJyJOoYK7jBsVPAVzP6LJgTDoddzXB+VwEGXe8EYvhbD26zATLV/YOAdIquDc4BATT9rILgfF3Zgspcy2azCIfDqFarLhvFghxakoW2rh0/y57j9zQbUcdTA1g2sKj7xGYy1N/PT7nR/W/dD7hHMEidSqUwNjaGyclJRwbT+uX6LDJQNjIyEgDRmc0LrO21sVgMqVTK7WvJZNLpdetv6WGarLuu56QoOUoDfhZAJwjLoLvNmlK9pnqMe5EeuEy9PTIygmq16kgEG/klun/w+wBQrVYDuk73Y/VffTiD/t9qtVxbqtVqIIhAu0sBc9ZMV/2t42HXh44JbSr61fV63e2/g8q5bCQMHJMoST+c64gBEK4PBYTt3FEf6NpQEF1FiQR2/LvdrrM9FFC2VQesLcRzBGi7cc0Rv9KSiT4Q3QL3Gmz3rS9fn+zYMgBEX4Fjp9fXta82CXU8CaHcB9rtdoDRv10dtxM6kffeSjbZTujv8+fPI5vNutc3Ap3tXHGNbOfz9vXtXPO9730v/vVf/xXf/va3A6/fc8897u/bbrsNr3zlK3H8+HH8wz/8A37t135tYPtU9h2I/nwV3bzVQdvsO7qhWeYRr8VooRr5NB7UQKdiJ3NMN59BSg1Y25BtyvvVigLpTLHxAeDbke0qvEGikd9Go4FKpRI4yPJqAVwdb9aMo4HFKLhV+ECQNTVIuF4YhFFAYr8AtmogcX1rDWP7uf0m+xH8Vxk64UPZabEsdF0nCp5blonux8qktnu0BRqVAaXpzvo5Opwqtg1sh/1N4E/TYpV9o46K/cwgkJC6eBBjRx0G3kuZq749Z9BrOo6WNaR9UMCCjop9xqnr6STwf72uOvoWSLB2iu23bZuC1HSG7djrurCApm3PIPBWHV2Wy9uoTNxGe76OszIMaRsp0LPZHso28W/2UcFb+3m7nn3Pjn02BoEg9hnls8lAjmZB2LHUn0Egue4Vti+6h9C+VAfNAgzq5POZtezurdpOvjWp97br165ZghpaetGKfc4UUNrqwWhD/T2UG1m2s775bFu/QgPidp+yn7GlL/S72ibu5776zrym7nXWB7S6WN/na+yTBSz1s6p7rW1gdd5GOse+xu9qYFf3vo2IX/Y69IEJ0pMQoUAtgVteX19X/e27Pn/7DiEfpN82E59dp6VHdW1spk9UbyuYbudnIzvUdz1rv1qd5LOvdR0rcG6zuDYaFyB4iKhdU742WZKHxUMsFqUkBbVLdZ3sZdnqetsJ/Z3NZgMguk+mpqYQiUTWMcQ3Onx6ZmbG+/mRkbWz4AZ9xnfN973vffj7v/97fOtb38KRI0c2bO/s7CyOHz+OZ599dsPPqQxB9H0gujFth2Gt39dDL6ikmGIzNjbmDjdi9BMIGgdkcvGwrlgshuXl5YACGdQmTSdTBvBOCUuWqIOlKd5bFZ8BYkXHfqNNlWPebrdx/vx51Ot15HI5vOhFL8L4+HjgRPPtiq6FlZUVnDt3DgsLCygUClhcXESlUnF9UDBcjQamXQ+aM7L7x8fHkUqldmXeroVEIhFks1mMjIygVCoFQCZg84joXhTOvT2cZj/J0Akfyk4L2ZVAsL61T38Ca4c/ku0KrD9wVEWdEQDuYEWCe9Yh1WeTGSM8BLvX6wWcCctkU0NeHSk1+FkSJpVKuUO46GypEHjm39SPwBpoxuCBjh/HgYFzzaRSB4NjaPciO9ZkiFvAmfYF9WWtVnNjEAqtlcNgaRU6qWS0c/7IBLPzYFlnnHe1D9guddTJvmLmUjKZdIdI0QZi6Qw66QpQarCF7PdsNuscNbLXarUaqtUq6vU6yuWyY7LpOCtDTOdVRdcxmZOs4Uumo7ZPx8WykrWsD8dDMwWsI8//SWTgWuQ88od2ooIZHE8tNaQZE7xuNBp15Wh4qK0G+rUUkHWmeR+2k7aodfopCsKrHewjIajDztd1b9E5I+FBD8tju5XVx/baNmmGhg1s6GF2ms3AdnCctK886I0yBNGH8nwWfe65P9pyGGSdqv2t2TgKxtrnRJ9x7hGJRALpdNqVvWCGue6vfNapp/icKugMIFAChr+1frMl4PkATJ9e0ZrnbIuWE+P+S4a8ljHhXmbxC8t6VtvKZ39tR1ZWVlCtVh32EAqFXCa89QG5f9qAh2YMKFnPgvrlchnlchnVahX5fB71eh3VatVbWmcj4T2ZuUiWM8uwMdtwEClBRe1Y6lSuXR1jGzTQUoCW6Kg2jepYBZk1kMvPUnfz+tTfXJP87euXfQ40yGCDNoOwMdXfg8iEvt9Wx9Mm0Rr9anNcaeBkp2Q7WMC10t/RaBS33347Hn30Udx9993u9UcffRRvectbvN+544478NWvfjXw2iOPPIJXvvKVzqa844478Oijjwbqoj/yyCO48847A+183/vehy9/+cv45je/iRMnTmza3uXlZZw/fx6zs7Nb7uMQRN8nYqNs230AfIqLzjGVuKZ4qaiySSaTbkMmCKDGvU9owGu91p0ELjWSz43SpgVtJr7ova+NNoq90fWpZJeXl52jfOTIEaTTaTf+VyrcrFdWVpDP53H+/HlUq1VUKhU0m03nxFJx0QjSCOtGwnREOt/7tYa4GlFaB3A/9kVlkPO/X2TohA9lp0Uzp+jQ6mGhQHDtKDNLS4twn7QAkzrSAJzOi0QiATDagl8ECFm6QllRCsCpE8728bdlsyooxoOTtXTERjqZ+7+9lwXR2WfLkLPX0fG06bDUk9YpstfgtQlK65xovwgu2wAF7RCtC66iAQm2RdnqOh7qdEYiEVcTXRnJbJO9hwYIeD2f4wqsAdUMrDQajUAquG/eNtJbHINQKOTsOAIorLNL0SDNIFtASw3xGSJQwr5bhhZtDq4ZBUM0MMPngUF+BVmsI65kANqoTMvX9Htf4ExtObaLNgEDL1quSceH4BTXDG0qXWf6DCnwYoMS+h1Nq/eNsc61PpNq/3NsuKdwv2q32+j3V8vqaAkdfc5sP/mdzex43/hciQz191D2uuizpsCYllzS1/lsbQU05fe07Br3NQKKdu8gyMv72D0BCAKO+rpmJClIqSxbvmbFBqRtph5/633t3mj1oQ1w8hoWCL2afYIB9XB4tU47y+6ofaB6mJlmHGclHnCutVysBj0JmtdqNdRqNdTr9U3LpfqEek6D9FqGh3pyIwDdrlvqRNXfqq/VnuT/ahNb3Eh/W7a2vq5tUR3PPtFms2fr2H5Z/c2/1WbgPFj7U8cUQIBgYvW29p1tVn+An9Wx1D1gv/ni11J/33fffXj729+OV77ylbjjjjvwmc98BufOncO73/1uAMD999+Pixcv4vOf/zwA4N3vfjf+8i//Evfddx/e9a534fHHH8dnP/tZfPGLX3TX/O3f/m287nWvw0c/+lG85S1vwVe+8hX84z/+Y6Bcy3ve8x584QtfwFe+8hVkMhnHXB8bG0MikUC1WsUDDzyAt771rZidncWZM2fwe7/3e5iamgoA/pvJEETfB0JmTrvdRqlUwsLCAtLptGMzA/76QHzgq9UqFhcXsbi4GKhhrsrPboaDxDq9W/mOGv27sdGowtjOhuYzAuyY+IwZAAGHx5cipd+ho8ODP1utFtLptGMPUkH62Ee8BgDH1CMjr1qtotlsOvZ5s9kMKBG2kaCNVaiDhM6g1szbz6AzAwgA1o2BMiv3i/T7a/V/6QAPZWP5xCc+gf/5P/8nLl++jJe+9KU4deoUfvmXf3ng5x977DHcd999+PGPf4xDhw7hgx/8oFP6lL/927/Fhz/8YTz33HM4efIk/vRP/zSgfB988EH83d/9HZ5++mkkEgnceeed+OhHP4oXvvCF7jP9fh9/+Id/iM985jPuYK6Pf/zjeOlLX7rzg3CDC/c5BUNtzUYr6jDwu7qv87eCXRZYJ9jG/y2bMxKJoNlsOnCrXq+7+1inUp0WMrropPEAK7aZwU0tVaWsIMsO1+tbEM86FLa/LA2hh0gRvLOMOfujtoVlwlJ888RsKQKTnBe7ZxOE4PskAeiebh001X/KbFKmujpQGlihg2wP1OL46HjzNQKaPCtFnc5isYharebAc8vkssxD9sdXUkQZdbb0iQU5lBCgc6WOqZ1LvZfOrbIJNdCgNpN1jrXN9nnQ6ypwpLaZOumW6ch1ps+2XsfaNdpv21adT7se9HnVYIQPhFMAvdlsOsCFARQ9DFSvo2PI13xBQY457RqfXc/vtdvtAKBg1/5QhjKUVeG+zyBuvV5HKBRybNRwOOx0IffNdruNer3uyFP8YZDKAqZ2b7P35z6ge4j90b1C9zX1AS2gau+lezKAdXs+26jEARv4tACjXkftDLUJGJzkPu4Tq4u2ClJrBgEJZsoqV2Bd/W8fU502iZZvKRQKgQwyPdR6O6LYimYfaikXnV8Fsa0dae2pQRiFxTx0jrT/XEeqd9WG4W/fta3OtSQKnQvFYSwGo6+pvU79xUAI/9c2WLHjxeurDaQguq5xnltDvd1sNtdlfg1lTe655x4sLy/jj/7oj3D58mXcdttt+NrXvobjx48DAC5fvoxz5865z584cQJf+9rX8IEPfAAf//jHcejQIfzFX/wF3vrWt7rP3HnnnfjSl76E3//938eHP/xhnDx5Eg8//DBe/epXu8988pOfBAC84Q1vCLTnoYcewjve8Q5EIhH88Ic/xOc//3kUi0XMzs7iV37lV/Dwww9v62DsocW0D4TRzk6ng4sXL+InP/kJJiYmkMlkkE6nvZHkXq/nDqyan5/HM888g/n5eSwtLa0zmm0dtkGiG54ygDYDIOkEWuWyU8ClVeCDAG0VZRhprWyt/e0bC91QabhQmWqwQIWMxna7jR/84AcYHR3F9PQ0jh49ikQigampKZcmDqyv48X7NZtN5PN5NJtNzM/P4/z582i1WigUCqhWq+ucba2tygPjbIrXIInH4+4gE81M2E9gM7CWcaGGH41ezt9+Y6Z3u6un1BcKBdRqtatKe7xeci0j4Q8//DDe//734xOf+ARe85rX4NOf/jTe9KY34amnnsKxY8fWff706dN485vfjHe96134m7/5G3znO9/BvffeiwMHDjhF/vjjj+Oee+7BH//xH+Puu+/Gl7/8Zfz6r/86vv3tbztF/thjj+E973kPXvWqV6HT6eBDH/oQ7rrrLjz11FPuUME/+7M/w8c+9jF87nOfw6233oo/+ZM/wRvf+EY888wz21LkQ1k9WFlBQR8IboEl7vl6YKR+l3u3ski511PPkAVLUXBPnZ3R0VEUCgV3yPbExIQ7dInf4TWZjtxsNlEoFFyaMFPJR0ZGXDm2VCrlUn1tsMA+K5pyzR9gPcCpY9ZqtVCpVBCNRpFMJpFMJgM6nDaEtl9FdSnTdi0gaQ+94rj3+31XNkXHVVnFiUQC8Xh8nV6zgADBEHVCe72ec1iZXUdGvNad5bVZakaBXLZdx53OlgoBeDp8DIgTQNcAr7ZZDy7jmDBwoPaYArmcK7LYotFogLWszriPdWXXOduiTi3nQ+efr9Nptuta1wRBAQaC7XPKPpEooqw1tXmZLq4OutqzGiDhbwYXdMw1KKJBF+0vP6PAiwJO2i4CDxxHfqfRaKBYLLrnWoMofB4pNoBnn28de51LflfZ52yLBnU0g9OXRTNIrqX+HspQrqcwkN3pdFAsFrG8vOx0IrNZuN9w32w0GlheXkalUsHi4iIWFhYcUxkIZmfb85qsDaPPPgE8/rC8mWaTqH8fCoUCB25rlhODwdw/uV8BfjYw20z9pfslAwpaE9z6+vrccw8Oh8OOmQwEM8wsgY12kYLi1oe1/3Pfpd4tlUpYWVkJlOBje7V9NnCpbWB/Ofblchm1Ws3ZBz4MYCvCPZi6PZlMOtuGpQptuyz7Wu1HnQdrW6hOs8QBYK1EjwWVaRPp9zW7jPfnNVV/a3BAg7ycC9XVqotscFqBfyUChEKhAEGB3/XhOb75pahtp+NG+63RaKBcLiOfz6NQKKBYLKJSqbiDfveDXGv9fe+99+Lee+/1vve5z31u3Wuvf/3r8eSTT254zbe97W1429veNvD9zdqZSCTwjW98Y8PPbEWGIPo+EI1A12o1V9u52Ww6Rok6QgACjjJrbfJBp1wpcGij5ZtdxzpIOw2iq5GhhsRm7deougXRfQEFVVI2RdmyGO33qGDK5bIzIHK5HLrdLtLptJtHa2wAayw9Gmc8qLRQKKDVaqFWq61zvtR5VdaSGmUbCQ0mW6t3P4oqZxtV3o/9opHUarU2PItgL8u1VOIf+9jH8M53vhO/+Zu/CQA4deoUvvGNb+CTn/wkHnzwwXWf/9SnPoVjx47h1KlTAIAXv/jF+P73v48///M/dyD6qVOn8MY3vhH3338/gNWUtMceewynTp1yaWdf//rXA9d96KGHMD09jSeeeAKve93r0O/3cerUKXzoQx9yJ4H/9V//NQ4ePIgvfOEL+K3f+q1t9fP5Lpad6dsDAawDvS2TluCTTw9YHaOOFcFXHxOMrC8a4gRt1cnhZ+n48bOtVsvpenXYFSi0zB3LatN22oCzFTon+nlNd+Z31OFW55/vW7BVP2uff5/+1n2a92f7lL2k6e0atOCPBSJsyRd+Th07q/PUoSL7kOPhY20ryKBrgWNDXU5QlUx/Xbs6/hpoABBwenXOFTi160PHQcffjrneV/uv46UyaE430q2+dalABq9p17rOi64z3p/rQMF2Hytbr+Obb1/7feNl17vNCFB7Q9ez1lbVw2R9QTALUijIb/cxtlGDCQqi6z6lAMxm82VlCKIP5fki3M/JRG42m4hGo87+JiknEokEwGQFuhkg89kddi8a1AbFAQaxvnWP0n2SJbi4/zBjRYOV2gartxSw3Eg36l5u26+iQKiWRtMggB0L9lHbZ9sxaOw0Q4Dl9fhdvsd78LfPl2ffyERmgIW6fDNy2iCxukjHRXWf9tNiHVZ/+/72jdFG62+Q7+/T3z47T+fYZ5MC/koAimn55tgX5LbttPdT0bFQ/T3IJrKsfn3OleSwX2Sov3dOhiD6PpJer4eLFy/in//5nzE+Po5ut4tjx445VhsP91hZWUG9Xsfp06dRKBTw9NNP4+LFiygWi2g0Gu4BYmoSlb0y04H1GyWVEIFcjTxvJCsrK6jVak75tFotF328mrFg28gKYJBAU9tUGOFkPxn9jEajLsKuB2j6Nl9VSAQwR0ZGAqnt3HBtSpc6QqVSCWfPnkU0GsXi4qKracuIs0ZD9fDWarWKdrvt+quMOSsaUFHjQH8PEqvI9qtYo48GcblcxtLSEuLxOMbHxx0TYj9Ip9NBPp/HpUuXkM/nn7dM9HK5HHhdGS2UdruNJ554Ar/7u78beP2uu+7Cd7/7Xe/1H3/8cdx1112B1371V38Vn/3sZ7GysoLR0VE8/vjjgUNN+BkC7z4plUoAgImJCQCrjPe5ubnAvWKxGF7/+tfju9/97hBE36bwOdd9l/ucLQGipSc6nQ4ajca6fU6fK2WJKetWjXkAruwanVN+h7qC+06j0UAqlXIOeSqVckw2AuhLS0suaF4ulx3oRgeQwDwBOXVGgDXmrrJh6dwz+Moa49ofCzhS7wNwoD7Hz4J5OmZ8j7XFAT8YQKCBTB79ng1kU2dTV1vgktfUDDuC7dTPZKLxO5qBwH4pMzAWi7k288Aw9q/X67lSO2obqF7W8WSbaXNper4Ge5Xdzs+yjRwHW6KFwrmwgRYrCkiwzZZ9znlQBxII1tklo5LCsSawoBmIvj2fIIYC3rx2p9NxLHoGlZQgwmdGy7cAQRBdbSmuT80S0H3A2kd83tXBphOtDHYLjtl0cwVy+LxyXvlc6zjrNS073FfGh/die3W/0+wEBcfss25B9Y1k6IQP5fki1FFkoi8sLKBeryOVSqHRaLisXYLo9JEvXbrk9H2hUHBnXlAfcg/i5/UgZvVZdA9tNpvOBySIP2hvJejN/QaAa4PqSBuY03tb+4b6VUk8jUYjUI5sEGCre5P63/ZMDO7jesYNQX/aM7RHFNzUvVb3NO7txAlY2oY2gAVBdb/Wvut7DKb0er0AmWmn9kTrt6pdx8/7fHrVIdbW0td8rG+rKzWDytdO/azqqn6/HziTRfWlYhkkk/A1Yi+KPaio/WFLCWmwmUKbgj98HlTXa9tpg6ntrmPKZ456m+XYqMP3UzmXof7eORmC6NdRBkXIBkm328W5c+cwPz+PXC6HTqeDCxcu4MCBAzh58iRisZiLehcKBXzve9/DxYsXsbCwgPPnz7u6rMDawRv9fj8AomtqlwKPVFZkttPp3coBGgR/lXVF8Nnn3G1HFESvVqsDNzP2h4bD6OioS+EniA4Ena9BiovjoXXceFo7gIADbMeFnyEwYiPPFkQH4JS0AvM2Cr3R+GikfSvC9vgOk9uPoiACx69cLmNhYcGVRNpvIPry8jIuXryIQqGwr5T3TsrRo0cD///BH/wBHnjggcBrS0tL6Ha7OHjwYOD1gwcPuoNGrMzNzXk/3+l0sLS0hNnZ2YGfGXTNfr+P++67D6997Wtx2223ufvwe/Y6Z8+e9V5nKINlo3qaFkSnUa0sT76uoCyvR2dTAXTqLzW0aaCrrgHWnM9KpYKRkRHUajWMjo6iWq0iHo9jbGwMkUjEAWqtVsulgNfrdRSLxXUlJHgfGvaq2xRkJmuGjhFTUvmjwJmCmHoYlx5Y2Gw2A6XHlNWlTqwNRKtz0ul0nBNKEJ06zs4VrwvA2Sc6p8qyVrY2dSn1mOpq2gnWEWX/WQ6FbeYc0mnSdpVKJVQqlYCdxPnxjWkkEnFghjrukcjqwWUcHwIknCe1SbgW+bedQ46LBUo5rpZpxTHkPNugM4kJZDDTVlQQXe9BYIjzS/aj79A8Ovlqe7FUkTrHpVLJXYvX16CI9pfzrGuHfVWn3o6pfpZzwuvps0ewjH+rM89nzwYwuCYI6ND5ZuCN1+h2u259cv+wAJfaqD4wXO1IfZasLad95hgMZShDWRPuYZFIBIVCwZV/Gx0dRblcRiKRcPqbz3Sz2cTFixdRqVRcCRgtAaLgJAFZteM1EEe/u9vtujMUaCMQTPaJBgepa+v1OpLJpPNf9fBIq7NtZrQCjppJQ12mfqrPDqNe5X21hIeSGjTgrBlVHCuC6Rr4pS5ne3X8gLWzXCqViqtpT4Cdc6b+vfZV91AlS1wtcD5ovnQ/Vv3ks4dU99usBL5Pu1E/Sx2iwXDOuV5LbRoNPGhbqLMU+GableihGfOa0aHEB10P2hY7Rpq5pe/ZtcfnR7O0FBPh+Nj1zzWna0FBdD6HCqIPweXnpwxB9Osk+qACa5vioBRrCjcl1lVMJBLo9XqubhbB7VKp5OotMvKsDzk3Bhr1BNF5GJU6RFTENO418rYVJWKdB6a1xWKxAGtqq6KRQ25uDB7YlH6OtQLVdNY0VVijsoOY6Pyfjj77rsCKRtRVUdsx8r2mwIRGebU+7LVycm4kZ8qOM1lyLK2zX5jcahixRJMCMftJdiISfv78eWSzWff6RoEQ+ywrULTVz9vXt3PN9773vfjXf/3XwOnhV9q2ofjFOjsEwXyfUX1DI1v3d/28rc2obFcCnvwegWzLhOL60fqctVrNgYD8PAFvAt0s42Kzm/h3KLTGFFcH1I6DAoiaDq4gLgDnDPn2TH5X2co+ve1z9vi3jjH7wGtqvWbrSPrmzzr9Vs/7WE0EJjlnqlN1jAY5Z/ZARnXCtM36vwLP2n47dnxN7S5tj87roAyxQQ63jreuIc4F1wLnXtlbliVo2zooYOKbN9+eb6/FudNDaNkmtf14PoCPhWjnlf+T/Ul7VEEKnTNrP1rygo6hZf3RcVcAitfQta7sc7sWFeRQIN3qIR0TtTtt+wEE/A3bt+3KTujvoQzleojdl3zPvIra3czkCoVCqFQqCIVCDkBjEJw/tVrN6XAlVvEZ1Ywy7ku6PyvxR31ovdZWxOp+2htkxPP6gwKtVhda8Jp78UYAOq+p+61Pd/D+Pp+cc6DgrG2XnTOrB+jvqW+u52NZW0nbrT+74Yv79Lm2Rd/XsbP2qs2AsgEKtRPt2Ovfvv7rNew99XNq+1rbmmPOQLSC/OyzXXvWFrKZfr7PUwaB7VZ38z0dE/vscJ1r27W9+0WG+nvnZAiiX2NRJy+VSrlUYT7MZB0NWuTKpP3Rj36E5557DtFoFOl02ilEKjYeQuljZ/f7fQecFwoFVwphcnLSRd2ZXkPDgYeU5vN5105uIhsJy4+0220sLi4iFoshlUohGo06Nvggh9yKRsJrtZq75sWLF12E0AdO6yFkZE7pwVzKpPIB6Dpu/K0pxBoJV+aeghZb6RtLAQBrSnWjVOjdEN7LKrf9KlYR9no9nD9/HslkEocOHcLhw4cxNjZ2vZu5qXBeGo0Gzpw5gx/96EdYWlpad4DdfpGrXc/ZbDYAovtkamoKkUhkHUN8YWFhHQOcMjMz4/38yMgIJicnN/yM75rve9/78Pd///f41re+hSNHjgTuA6wy0mdnZ7fUtqEMFjpe0Wh0IBiqjiL3A1/tRSDoqMTj8QCwpc4dg9DdbhfRaBTxeBxAcP+m/qVDPTIy4lLBeUio6hGy3zR9mm0mUEd2sjJ5eBCVBmSpjwi2U5crOED9pCCqMo/4frVaRb/fD9yDn1MHSp9tnQdeW0HEarWKfD6PTqfjGOm8rs6DDUj4MsY49tTpZOXy4FGmD9PesuVGFARguRCKrhEFPhRYVva/1fnhcBiJRMIRFZjdYPvK8bY/XHO0WTjmqqMVkGZ/OOftdtsdgKYOL9OYR0ZGHBOe40oQnUCDZhEyU0FBfzsW2sZBTq4erMdnigei0i7UMizdbhfFYtGtocnJSVfeRq+twBTnWokXHAfLuNS5VsBcRZ8dXUv8m+1WEJyAWrVaRbFYRLFYdAfCq4RCIaRSqXXPoHXstU/8m23imPPgQt2v7B6o47MdnTx0poey30SDdTaTzIKnKnyvUqm4kn5kdY+MjLhybAoss7wo913VNXx+dW9jcJf7MbNJWDpiZWUFlUoF5XJ5W9nFGmSvVqvOD1bsQfcaBV2B4B7H/ZNtarfbKJfL7sBO3kdFMQ8lrmn2EPc4zQjXcqsk3HGMaAMRRLaBbLbVAu4MgKitp/rT7rF27VCf7Zao3mE/qb+1fZq1RV2j9ofOHe0tq7+V+a02FLBmSytobn84TpqJxh+9Jq9F+67X66FQKLi+zczMBA6ZVQa61XW03dgfC3hbHe57jTIo0AKslYvhGHa7XZTLZRQKBUdQ5cHBW8HA9qLsxzbvRRmC6NdYVKHE43HHJFeQT8uuWOFm0u12cfny5StuBzdpAC5dPBaLuXQrghFkx7GWW6lUQqFQCKSgbibdbtf1qVqtolQqodfrYXJy0hn4W1FMei8qckb8WTPWByiqccB0cD0lmn/zs5RBkWHeX8ECGkPKRGL9tq0aO+oIXW/ZyKDcb2Kj1J3Oam3DixcvYmRkZMOUyL0iqvBXVlawvLyMS5cuOVBkv8m1ioRHo1HcfvvtePTRR3H33Xe71x999FG85S1v8X7njjvuwFe/+tXAa4888ghe+cpXun3ijjvuwKOPPhqoi/7II4/gzjvvDLTzfe97H7785S/jm9/8Jk6cOBG45okTJzAzM4NHH30Ur3jFKwCsBhwfe+wxfPSjH91yH4eyKtzLuT5077WsGspGABk/qw6H1srmbzom3Pstc1fBODoydLjZZi1z4QMabUBVGWsUgsaRSMTpH35H2TsKvNl9Xp00XkvbRBa9jq9lSFmwW8eV99Ngvx7SRXBTgxUK+tn50SwwBUSVDUXAV8F3EhV0TvT6BI41k0F1iNaZpT2hIDfBZ64Jjg1BTR0PdZz1NQVmuZaUEKCBBWWQqUOsfSRDkiCNgsc6VgpucK40eMDPK7PZOqwcC65DgrqWcRYKhZwTrgEAtsOCGewL7UmCKpZJSQeb7Vcm5yAQXYWv0dG3dpCCKRZUYL/sc6XnCWlZBttHu89YtqD2hX0F1sAuAhZcL/o8cD3rnOja3ipAdK3091CGspOizzv3UV8A1Sf9ft+B4nzGuPczyK4BLZZgYcBV9yJej89lo9EInOOhz6nWP9dM7q0+R2yP7kEEVjkWLE2qe6jaUYpPUF9qeQsS6ny+iCWn6V5kg3tWbxNEJzGCukeD9j4QdFDAdjNhO3wg+m6Kjg11h+pu4hpW56he0BJi/IzagQAC19EAuCUwWjKEMsCtnWLLhimITp3C96lLWVInGo2uO1hb7WB9LvU50rP4dM5sHzRgZduogWQdL/6trxHDqtfrqNVq7odlkq616Dq4Ehnq752TIYh+jcUqEnV4dLPxbQq7JZ3Oaq1PRtjpxDK6SCa6Rte3m04GrCrjarWKpaUldDodZLNZtNttxONxx8TTjV2/zx8aELVaDYuLi67+ux5qQtEN3TK41Fn0OQ6bOROqICy7AcA6FtZ2WT7XW6g0YrHYuvT6/SRqiKhBsrS0BGCVuVipVNBoNAJrfq9Jv7+afVIulzE3N4dSqeRqzO2ndXU95L777sPb3/52vPKVr8Qdd9yBz3zmMzh37hze/e53AwDuv/9+XLx4EZ///OcBAO9+97vxl3/5l7jvvvvwrne9C48//jg++9nP4otf/KK75m//9m/jda97HT760Y/iLW95C77yla/gH//xHwPlWt7znvfgC1/4Ar7yla8gk8k45vrY2BgSiQRCoRDe//734yMf+QhuueUW3HLLLfjIRz6CZDKJ3/iN37iGI3RjCIE46gBfdpOCxgpOAn5Hgs4y9bE6buoE0slTIF/Ba7ZLwXZ1FphivR1RB8c6XBwDrdOqTFxgrc67NciVDa1tYl+03Eyv13Pngagjp220JUTojGsNVY631uZUAFCBe36W17cgvpbB4DV1/vh9BYJ5X8uat1lg/J8ggoo69hbs1r7ZgIX2g2OvgRqWLFGQRdcOx9vaIhz3lZUVhMPBOuuaIm+fCRt84hohsQIIHmzqs6F07Lg+fUEVBd/tXBGUURYmD3bl+tGMDj10Vp9tZl1o8Ij2gA3QUDTzg9/RdagOvAYcbDCBzzaAwFkEBOM4H7r+lcCi86PzYUF3C4CzDeyz2tUE+/Rz3M9uBNLEUPanXC0wtBWxwSLua3wG9DnRfcu3d+nBi9xLdL+zwLnvGrwPn8d2ux1gyIfDYXcOiQYBtwOCcR8A1g4+HxkZCRyGzX7TjuHYAAjsm7Qj9DBwAqM+H1H1wyD7in8roK7Z4VbPKEhrA646rlciG13D6rSdEh0f1aU2YGGDqTZwa0Fgu044v/1+PwC4+zIxrR7zjYW+b+0A2hAkYDIDi2fjaRCnUqk4BjpJpWyvtcVUf/tsVyAIiuucaWBAr8172YAyv8uswnq97mwQgui+zItrIb57Xov9cyjrZQiiX2NR58063/ytDt+1eCAIQIfDYZTLZQdGKAhMRakHamxHkXDjW1xcdGkx/X4f6XQa4+PjmJqacoqTjpo6itxAy+Uyms0misUizp49i1qthkKhgEqlso75w02d7C+Ot/7ti8RuBGboRqUOLxkN3W43kI5kmX/7wUmhsVSpVBwjT9/biyDzIOGatbUKz549i/Pnz6PVamF+fh6Tk5MuNXMv9q/f72N+fh7PPfccLl68iIsXLyKfz7tnY7/JtYyE33PPPVheXsYf/dEf4fLly7jtttvwta99DcePHwcAXL58GefOnXOfP3HiBL72ta/hAx/4AD7+8Y/j0KFD+Iu/+Au89a1vdZ+588478aUvfQm///u/jw9/+MM4efIkHn74Ybz61a92n/nkJz8JAHjDG94QaM9DDz2Ed7zjHQCAD37wg2g0Grj33ntRKBTw6le/Go888ggymcy2+jgUBA7C5BpRsAtYcyIV5FZQSZ0KILjfUUdTTyuQqAApjXY6nAQy1enR1G46pbzHIAa2FeoSst4saAvAOStk3qrRz6wzssns3q4AHx08ZcGVSiXHwmMZEIKZKtp/jgkD82QFs62WjafABOeTc8XSLQpwUrdrQFTBbZ1LLaeipfCUzcz2qxPHseGcKWOKZAAeXG7tBP08HTr9nzYJ5xOAO2ST/WM/CH5omryyyDnmDARRD2r5ALaHdh6BHx1nZSuSRa/30TXHfZ3ft842bTIFg3gPXp8OLUGa5eVlNBoNLCwsYHFxEZ1Ox5WA6XZXS7uwJBLnmuAO26KOt7ZJx0+fT1vvVJ8BfobjQHuZwJnOsYIblUoFhUIBtVrNOeMaBFdiB/u3srISyJqwAD37wPnT9hGsYNlGBry0/QrKcA62ItdSfw/l+SHcj3fTntVnBljbj3z6W9mxlgTV662eqwSsJ7/ZPcKCmxTdKzUzRnUSsKZrlN2+HdE+2L2g0WggkUg44hxtAu2XnlVCrICgqLZNWcc6DpYcpyCpAufc9zSQSMCctpcNkhMQ5hhrabYr2aM2A441+LhTorpbdREz3ZiloPpWdb7qGF27uubUtlIMSsdfxZIJfGOhoLMGN4C1g1d5dh9JjwsLC66EXzweR7vdxvz8vGs/yxvaewHBzFIFxn12sm8dsM/8Pr+npWgUeCfuxSD+8vIy5ufnUS6Xsby8jGKxeN2Y6D7hfG6lvOtQf++cDEH0PSj6QF8LUeWgrDhu0uoQXQ2jmtemAq/VagiFVlN6MpnMOmaQjYQzjZfpsIwI6iGnKqrQraKyUd3tAqcWTKeCZ3qxKqoruf71FnWkbTrUfhNl16lyZEYDDwBSNsNeEXWYG42Gq8mmtYP3o1xrJX7vvffi3nvv9b73uc99bt1rr3/96/Hkk09ueM23ve1teNvb3jbw/a20MxQK4YEHHsADDzyw6WeHsrGoQa0Olz5DwHrmjrJSCEYpO426mAa8gqvqEKoQvPQ50ha4tw6fBe1VfKC69s86P8r8VtBSx0aDwCrqFPNvy3oH4BhFBGuVMcZxsiU16JSr822/p6xiX1/5v4/5pqyuQYEI/YwC9soq5D3UIbNlSahfrP6woL1eX+fJgqEKHNh1of1hO30sNl0PnBNtM6+n48r1wmdAAyjaLt/9fPaqruvN9kLbR11jLBvA38qS5+vtdtsRUth+tVk5Fur4D7q/AhK+z9i+abt1PPg5nQc9kMw+kxTfXOra84ne137PrjOda03/344MnfCh7LTYtbtb4lu7uu8QmLTPtBXfs2gzPnz309f52+oSvT4BSZuBciV91n2Qfqpe37eP6PvMnmFQVgPt/J7tv46jHctBn9U90Df+9nN6Hdpzu7HP7NbeZcdIAx+cKwuaa5vsvm7baq+vY2t11lb6a21jK6rzSOLQcnK0bev1eiA7a1BpUvbL9pVtph1vP2/7YPW8jo+vfyQWaOkini+jgfa9IlvdP4f6e+dkCKJfY+HG0u/3XWqqKjdGda9mkV9t+7g5qTM5yPnYjugD3mq1sLS05EpUkE3Eg7d0o1cmXblcdrWoCoWCSwm3ykUBbD20StPFNnKwt9MnGl7AGnsgGo06I0XrpO6Wct9paTabKJVKCIVCLpWQfdlP0u12AzXMNP2w1+theXkZ3/ve9zA/P48Xv/jF+MVf/EVX33AvBA20lu2zzz6L73znO8jn88jn89e7aVclQyU+lJ0W3fP7/b5LgaX+4r7PQ6p8bBvr4AJBVo6C5lrHlAxa1ZWaxu0LRFJXqOPe7wcD2myTBWNVLJCpgLV1PHyZNloGx+pQ3lPTp9lmtV2oH+r1eqCcC8dBAU2t5cy+p1KpwLjTgaRjT3actoPvaw1ZdX443nTa2GY6XLQ1dC34HDk9JFTBcFu2hnu1Or/sHwOe9Xrd9d3W2o7FYshkMu4sFdot6hDqmPMAeI6XMtHr9bqr18vPh8NhZDIZN54cU/aPwWX206bTb+Rk6zpge3T+9TngWtW2EaDhwW8EahqNhiu3xvJB1Om89/nz51GtVjExMeECYGTh6z11Tdvnne/xR7MUfUI7SEkZGjRTAKper7s2k1XP8omajaLriESWQba3LQ3EZ1sDX3b8dZ0o6GQzb7YiQ/09lJ0W7mWWsbwb0u/3AwE5C3irHtW1vpVgoK/dui/YfUX3V83aov5QzEB9MAsoDhLVC/qsa1mNer2OcDjsmOpAsA42s3qo31gClvflwd2+vV7tB+ok+sOKMfA3v0u/XgMcbFMoFHIHTzMbjkx52hgaeNjNtXS1ojqRc6+H0TabTddH2gfRaBSJRAJAUAdzPIGgfUlRW9EHpOtaUv3DsVcSpbV3tR0sIWhLoLB2Pg9t73Q6OH36tMN1QqGQqxbgsz82AvzZJj4jPoCf31OCxSAAnbqYeFM+n8fc3Byq1SrK5TIajcZVkUp3Wrazzof6e+dkfyFiN4Dopq41jfWhvZ4b/m7d225U7XYbS0tLgU0zEokglUq5lGUqAUYAmQZEZ4qKXQ0Tjq1N+9JDRKnEd4ohboGRUCjklDuwlqarjvVel1arhVKp5AwrZRvuBXB5q0LnlUqaEWQaesvLy/j+97+P5557DuFwGLfddptLWd8L/ex2u+4wE4Lo9XodpVLpejdtKEPZU0JnUQ1E6lMFl/hc63sWJFdRJ9Z3eFYsFkM2m3Ug2kY6VJmfupfSqRzEOFNd5QtkKmubekZBAk3dJWjOsWi1Wu7+OiYKvCuITeeEYxEOh13qMUXHwResUBkdHXUgOu+rZSwUBGAJHY4VsL6uLe/F930gIUF0fY0lRDgGGozQcVbnUb+rAWc7hwT9ae8xMEownqBAKBRy+oe/ec+VlRV3kDTvofOhGRhMt9dU7UQigXQ6HTjE02Zo8eDYeDweSHPeCltNx4yf5TipIw6sL4GnWYihUMiRJqj7WFeVAIky186fP++ysxgc8IH+egaOL2hmSQI2GKQsUXsQqgZWGKRgoE1B9Hw+7w4o0zIJdm/hWubaV1EwTP0FzrOCdHYfYT+1LJCCLXsZbBrKjS3qwymouhtCoNKea7HV72703maAtt1XVLerDtbgLUX3KAWrNyrxwtIoSh7TewHrWfXUwfyML6tHg+Asrca9TIF39bltuQ7NplIQnfexIDqvz2v1+30XCGcAVcvWqZ2wV0VtBYLozLhnsDwWiwV+eNgqv8PvczyVWKBzqzrCgui6/+sa1uCFPpu0N1Tvc/4ajUagDnqlUnFgNIPHBNOz2Szy+Tza7TZisZgLFqRSqcDaJX6jtojqeLaJa1Lfs0EwxX8G2TQaLKrX68jn85ifn3eBAZZz2isy1N3XR66OhjuUKxZVfvp7tx8EBZc32kR24j7RaBTxeBypVApjY2PI5XIYHx93P7lcDmNjY8hkMkgmk0gkEgFmFQ9iYlRTD2Lq9/uufnosFkMikXC1WVmX1YLlNgq5G322zqYv2ns9hAqGgIiy8y0zgsaKpkpT6e2HAIBlk9Bp9Z1qz+yGUqmE5eVlLC4uYmlpydUIvh791b2hVqthbm4Oly5dcgfosh/7WSyLZrs/QxmKFWtcc89ThjqdUNWBym62B04PMrAt+KhlSuyPOheq5wcBy4OA/I3Wvu8evs9aoJkOkYL5Og7UFVbH8u9UKoV4PO6YQ1q7c9C9lSWu9gidJBvsHmSvqKOjjpktW6Lzo6xfvZfqQ22L/tiMNm2X7edW5odtYdv1IDoFeX3j4mMV6rriuFi7ktdQJrI+K3ovCxBzvO0ask70RmKfSY4pgW912PU+Onc6fmSKlctl56xXq9VAtpm2ye4Lg1hovs/qc+FbA3pNLUVDIF3tWF9fLCjm20Os2OdDMy19bVXQnHOnYzsond7Ktdbfn/jEJ3DixAnE43Hcfvvt+D//5/9s+PnHHnsMt99+O+LxOG6++WZ86lOfWveZv/3bv8VLXvISxGIxvOQlL8GXv/zlwPsPPvggXvWqVyGTyWB6ehr/+T//ZzzzzDPbbvtQtiaDwLEbRXz6zuoPtS10D9zsGRq0j1N3q29M/U3/nHXIN7J9rN5Su8FnL1hdyf1HRftiMRD2z2Ik2nefnvaN7W7iHFsR35zbtqmo/taAvl5L14yyqn36yAZVdXwHrSmLY2ykQ9UW0fnkfaztpT8kBlQqFZRKJZRKJcfypq5UO2Yj/aH2iW2zrgGrq+332S7V3RrIv5JzCfaaDP3vnZMrYqKfPn0aJ06c2Om2PK+Em4svFWanRRk+BJ55f900dkJ4n3g8jsnJSUSjUeRyOUxMTLjoMVkwFHUouYEy8sdyLYwsc3xYR539YZ80es6oLtlrg5zenRQ6KZ1Ox9VH16jw9VDk7PPo6Kg7fEuVHTMigDUAh+VcACCfz2N5edkdcGaNob0oVOKNRgNzc3NYWFjA8vLyukyPZrOJCxcuYH5+Hslk0q3b22+/HbfccsuGDLzdkn6/7xiNzz33HL7xjW9gfn4eTz31FEqlkpcNu9/kapTxUIlfndyo+ltZXnTyyFrWPY/PjjpWZP2qKPCo4K81oMmMVSY4gEDJMGvAs41sx2aioCX7anWodbYsy1T7ro4P2UtkiOmBnGRsp9NpB3oyq0sPctWgnx5CrmVC+v1+oIQJdQnZVZaJzOytQQ49nRm+z/Yzq4390P1S50TvSVY259sy8ZPJZMA5XFlZce3jazqv1LdcH8pq19rYlvFORr4Cy7SZ1KbQoDZZi+yDzYZLJBJurhj8YI1Ptpsp4slk0tkrPLBNAWmOEUkKHIteL1hGRNltlkTAOSeTjs+BpuDzGv1+P0CmYL+55qrVKs6cOYNIJIJyuYxWq4VEIoGDBw9ifHzczYO2Qe1Atbs5jiqW/cZ2kWmuomABn4NSqYSLFy+iXq/j0qVLWFxcdNllWi9Wx09tc31ObXYA76+2pZI37GsaTFGgnow6PstbkWupvx9++GG8//3vxyc+8Qm85jWvwac//Wm86U1vwlNPPYVjx46t+/zp06fx5je/Ge9617vwN3/zN/jOd76De++9FwcOHHCHgz/++OO455578Md//Me4++678eUvfxm//uu/jm9/+9vucPDHHnsM73nPe/CqV70KnU4HH/rQh3DXXXfhqaeecs/p9ZAbWX/fiLad6hjuez59BiDgnwwCOq3doHpegeR4PI5IJIJkMun0txLM+D6FrGdbvox+NT/T7XYdSY561wZmyTLm/q/2CG0O+ucs28LvK2uebGdfn+0hyNx7tRQW91Be51oTwUKhkAtYAOuztnSvp84GECjnwvmgLUL7i6IBVM6J6hLqtEEAs5YK0qA5f6voPOp8cR7ZVuo26m4FobXUWr1ex9mzZzE6OuqC36lUCsePH8f09DSi0Siy2azDeHzBAdVp2l7aYT79raA/v8exXllZQT6fd+XXTp8+jWq1ivPnz2Nubs71az/L0P/eObkiEP0FL3gBXve61+Gd73wn3va2t7lUnqFsT64lm5SbqoLobMOgDfNK70PHJZ1OI5lM4sCBAzh06JBz0rheuLExtZmONg15TXulEqfzMjIyglQq5aLpTO2ik9Vut1Gv150jqQpit8WyrVSJXw8QXdkCVOhqtDFQYRVro9FALBZzQQ2CC/tBqBRXVlZQLpdRKBTcelDpdDooFosIhUI4d+4cfvrTn2JqagonT550z8X1aDvX8NLSEn70ox/hwoULWFxcdAz5/S5DJX795EbV3xbE42865zSY6ayo7vMFBhUgVdBKnTN+jo6bsjm73a4Ddmm0+1jaPmDdij4v6qxqW/mbuoa6UvuuQDCvofucOkkEuVOplKvFqYxzOuHKpKZoAIK16bWtypbjjzpnbLeysm0fbOkbW5ue16TzrCCugqMEHjqdjgOONWjB6yngDcCB2rQ51KnTgI4SJSwTi8Atg+3tdnsdQEvnWEFyXS96f77OudB7AnD2Hx1ndZ55H94/EokE2q6Ov9bl5Zq3DqsFz9kXjjkBYbaZAI4+A5w7PYxTQXSmW3O90+bMZDLIZDJunim6vjU4pgEwG/iyWRC6ZvTZtEGWer2OarWKYrHo2HYsF6SAu4IYOqf6nNCmtsCR7l3KSFSgndfVe3GclUCzHVvnWurvj33sY3jnO9+J3/zN3wQAnDp1Ct/4xjfwyU9+Eg8++OC6z3/qU5/CsWPHcOrUKQDAi1/8Ynz/+9/Hn//5nzsQ/dSpU3jjG9+I+++/HwBw//3347HHHsOpU6fwxS9+EQDw9a9/PXDdhx56CNPT03jiiSfwute9blt92Em50fX3RiDefhTV+9xj+ToQPOdCdZUNkvO32iPW5lFGeCKRcKXSSDhT5jmDzZblTfBRy8ro3sQ54b5EnaFtYh90/uz+orqb11M9omPi25d9Ze2ULGF1LdtwrUF0jjsQzMZTHWwDJtyXOSa0ezSoCgRLdzHwbZnntAf1+tamUluV7eZvG7hRjIfX4G8GTjhvXD+2kgBlZWUFxWIRwFpZv3Q6jbGxMaRSKXS7XVfmTvEHBfstluXrg/1RTEafLYL/LNlSLpeRz+edHq9UKoH1tF9l6H/vnFwRiP6DH/wAf/VXf4X//t//O9773vfinnvuwTvf+U78m3/zb3a6fUO5QlHjP51OY2JiAiMjI0in00in027D63RW64wvLy+7OqTbjbJxU4pEIhgfH0c6nUYikcDhw4eRTCaRzWbXOeH8HoWb8uTkpKuJFYlE0Gg0UCqVkM/n0e/3XRQ9mUw6QJ5MNnUoCQCoE66ym2x027eNXtvN+9MYmZycRCaTQSKRwNTUlBt/Ko3FxUWUy2V3WKvWk2u32ygWi1hYWEC328Xk5KS3Vupekn5/7WCTSqXilCFrzA36TrVaxdmzZ1Eul/HDH/4QAJBOp906puO9G33m88haeM899xyWlpbw9NNPY2Fhwc3PUIZytXKj6m86WsD6siUq1qm17/n+V9YNZZAO0dcJjlpj337egqY2TZbtZNkz7ePKygqazWbACSCgbzOglDVtnVI6fAQeWV6NTDZto36H/QuFQq7mNstosS10BKn/6VgqyMn7E6BU517ZQgSveUAsx0EZcQoeqlPO8eLrtgwGwWoFzNkWPeBcGdHKGqZ9wuA+ABdoYBu4Jgjckl3O8VBHmuzFdDqNXq+HRCIRyNxjtpUSEOhsc40wwEFWGIAAcMrx1rNpdF3oAV+6BhjE4FhoyRB1ojlHfI/vEyRQIJ3vazkTLeHH9UxwgdcCVkH4YrGIVquFTCaDcHi1Vu/ExESACcr55rzyGgpkW/vGBwDpM0ibg3OxvLyMarWKQqGA5eVllxJuS7PYPUjJFvyta9S3X/lAfr5nnx3NDNE6x9x3rqWDXC6XA//Tjldpt9t44okn8Lu/+7uB1++66y5897vf9V738ccfx1133RV47Vd/9Vfx2c9+FisrKxgdHcXjjz+OD3zgA+s+Q+DdJ8zMnJiY2LBfuy03sv7eStmG/SChUMjpEuoC6tRkMgkgmPVbrVYD/ec1gMElN7Q8k2aNESTPZrMu+5j7oZbqUh+ZWUWpVAqjo6MOzNZgJfdQm4mm+5IGpFUPUBQE5T3ZV99epu/x+9QDNnCse6naPxyzzcpVqV2o11I9ZkvKDBIlCTCIwfFR8Lbb7TqdQZ2o+ptgOg/WrtfrgSA07ROrJ3S8NTtR9Zwy4flb7QbVHTpGFF+WIL9LW4kEPQue+6TZbGJ5eRm1Wg3ZbBahUMjVRafNyzWrILqPHKJriHaUtl8DWFzjxAqazSYWFxdRLBaxvLyMpaUlx6S34zGUoVwRiH7bbbfhYx/7GP7sz/4MX/3qV/G5z30Or33ta3HLLbfgne98J97+9rfjwIEDO93WoWxDQqG19M9Dhw7hZS97mQPTx8fHnfO1srKCixcv4plnnkGtVsP8/Py2QXR1wG666SYcO3YMyWQS09PTzhHfCHglAN7v95HL5ZwDfvjwYbRaLfz85z93BgbT0VKpFKamppxTbg/Z6HQ67iAqKiBVkrstvujntQScOeaJRAIveMELcOzYMWQyGRw6dAjJZNIpnFarhbNnz2JpaQmLi4v4yU9+4pQrlfeFCxfc3zMzMwGgY68J1xEd2Lm5OVy+fBmXL1/etJb4/Pw8isUiEokEyuUyfvzjH+Omm27CG9/4RszOzrqMh90C0SuViqvJ/g//8A/40Y9+hGKxiHPnzrm1fKMo8GEk/PrJjaq/6YBYo9qWZFBw0DJs+T6AdQ4mAU+WAVGHkc8nAOeoKYBIUUfCrmPq7GQy6QBA3o9BvFQq5UqLkMnKfaPdbrvsLSCY2q01p5VJxs/QMWa5D5tGS3CLzoQGzjme0WjUpY23Wi2Uy2XHNCJDiUCxpptz7NnneDzugGYLGDebzQDoqv1REFvnm32kLaAOnXXCCXDQ8dNATLPZdGxiAtLKKKNejMViznEOh8Oo1+sOtCRgTsa59k+Z88oMSyaTmJycdI6yruFer+cCxI1Gw5Eh9H0eFhqJRFAqldxBsgoWEBRJJBLrWOZc0/ps8X50/DmHfKa4Nq0jTudWMwlsFgK/X6/X3VhTd2upIZ3HXm+1tMuFCxcQj8fd/7lcDslk0s0NnXLeS8sC6fPJ9mjg3AIIlkFaLpdRLBbRbDZx/vx5FAoFlEolXLhwwTHQ7ZrimtexYf8ZmLHglbaDGSHWptVsCQ2waAkXzc4YFCwYJDuhv48ePRp4/Q/+4A/wwAMPBF5bWlpCt9vFwYMHA68fPHgQc3Nz3uvPzc15P9/pdLC0tITZ2dmBnxl0zX6/j/vuuw+vfe1rcdttt23ax92UG1l/W128H4X7UyqVcrpgYmICo6OjyGQyjsRG4JRMXIKO7L+C6IPuwX2bNsPY2JjT4ePj4w7ATyQSCIVCbs9UEFzBR+o/EpBYasWWQVGbQgFL2izM6lL9pnsQ93zLcNZArO0rSV1WP2rwnBnpWp6Udg4DyYPA3FAo5ILIOmYEgmnn6b4/SLgvR6NRTE1NuflX/Qqs6hEeit1oNNwBm9SD/X4/YM+VSiWsrKw4EqHN5mP7LWFDbViuPRt49wXBVX/bYAb1k9pafJ21zqnDaXdt9FyXSiXU63WXKVcoFDA+Pg4AyOVy6PV6gawHtZU0SMz+cgw10A4E6/ur7c6ytY1GA2fOnEE+n0c+n8eZM2dcKZrdKgfkC0Tspgz9752TKwLR3ZdHRnD33XfjzW9+Mz7xiU/g/vvvx+/8zu/g/vvvxz333IOPfvSjmJ2d3am2DmUboqljqVQKuVwO2WwWU1NTDkRnXcZ6vY5UKhVwUrbzoNDAZ7mWbDbr6qgSdNyqcU4njE4va2TRseYm6vvRtBzdYK/kBPYrFU2dogxiNPki7b7XVHTzs3/rb84/U6RyuRwymQwmJyeRSCSccmy1Wk4xNxoNlw6miolMCa4XTTNWY+96ixoOPBSEjHRmXWy0rgmctNttLC4uOkCrVCohk8kEnFrrWG/H+eRvZRzS6S+VSigUCpifn8elS5dQq9WcAXIjyVCJX3+5EfW3Mm+UgekLnm7l2VVmqAYN1eHTPVDTRFUGOcUKpvG6unfrwWBklaVSqYATrvXDlTWmzo/uO9zHeD91iBU0pxPIdhDo9rF66EgT6Ov3+y6wrSA2nRtbR9XWqfcB5Wy3zof2SwFHK8pKso69jpOW6LCsLb6u19C5VFBaU7gVsGdwgH3mfPnK2fA7WgdVAWCOKRlhdIS1rby/LYWiY6Ljpgx+3p+fsQ6pZZrbH22HtWt8NowKx5fghQXi9Vr8W0uT1Ot11Ot1xGIxVyfdx6obZJdZ4oO+r8A520lbShmDBBGYym77oPYExQIg9nnTfUbbNQhw02dH172uG73eVmUn9Pf58+eRzWbd675zKSg+kGGjfXsQKOGzv7dyzfe+973413/9V3z7298eeM9rLTea/r5RGOjcL+kT049gkJlZRZqxFY1G3fNufbnN7kP9QBBVDwBndoc9h0z1jG+fY0AUWAOpqXf5fQVP9ZoaYAfWbJxBeyyAde0YJApea3so3FfZZupb6kr7ee037SDiJmQ/833qb733oDny2W/ERxQEVnY8cQ9rg1BnE/hmpoBtgx1fBb7VntLx8+ltBdF94tPf9jX2S3XNRkEHAIHPspzKyMgIGo2Gmw8C8Vxran+oTtOx0eeKP5pFxyAJa7fzd7Vadf/vJoB+PWTof++cXBWI/v3vfx9/9Vd/hS996UtIpVL4nd/5Hbzzne/EpUuX8P/9f/8f3vKWt+Bf/uVfdqqtz2uxDg8QNHytsRyLxXDo0CFks1mcOHECJ0+eRCaTQTabDUTCGZVeWVlBtVp1zDE6JFtR5OPj4zhy5AgSiQSOHj3qSoaosthuXxnJj8fjOHz4MAAE2sh6b1SWqnx4P3VebRR1t9joVBQ+sFSVHQ0spsszBS+VSgXq2qkwws7fZMIxSkpWVa/XQzKZdIGTI0eO4NixY0in05iZmXEOJQGYTqfjGFrnzp0DAOcEdrtdFItFp7wvXLiAarWKiYkJTE5OBpzr6y0MmLRaLVy4cAFnzpxBsVh0jMjNlLheZ2FhAc1mE/l8Hs1mE7lcDocPH8ZNN92ERCKB2dlZjI+PO8aBXXs+UXCB5VlKpRLOnz+PWq2Gs2fP4syZMyiVSvjJT37iSuvs9/prPhkq8esvN5r+brVa3pIEZDADCDgTvgCkAlg+oW7i5y2rGVgLBCtAbnW1gvB04Pgaf8bGxhwjKpfLOf3AICiBObKsWD6l0Wi4fcbuR6or2S469yz3RjYZWd3qVLGNGmjVFGLel4BuKLSakqssQ46LHgCm86QlJywTnY4ZsHagogK/2lYFLNWJUiYZnX0LXgNrB2bVajU3thxDsqJ6vZ4bu0QigenpaVf+ZmxsDKFQyLGp2+22O/ySTjH7ZIEGtolMRtoFtBNoH1hWIUtksDQYx7fVaiEcDqNWq7m260FdoVDIBZ7t86GMNF8AQcETfZ9i1zY/pyAB1zNB81qt5phpfI2OOa/P54bsSQ3MsAwdS8akUilMTk6iWq06RihZi1qbVp8JtpU/Wsec64EHwJHlzIyQfD7v7DKuMwtk2KAP7+nbf3SetM1siw2aUXR96TjasgTWbt1MdkJ/Z7PZAIjuk6mpKUQikXUM8YWFhXVMcsrMzIz38yMjq6UNN/qM75rve9/78Pd///f41re+hSNHjmzcuWsoN5r+3m8MdO4P+mxSn0SjUUxOTiKZTGJsbAzT09OuTCmD4GRFj4yMuP2aWV6bjQP3UwKzuVwOo6OjrpzqyMiIq4OuJdPoU24EeHMfJKvZnkFhg7QKvGsmuP6t+5XqDQ3A20AgwWXdMxV09tVd179tyS72yQYlCXBHo1HkcjkXiEin0wDgiFgsfUubz2Yi6Z7I4AlL1E5OTiIWiyGbzQbWDUF+frZSqQBY099cW2TW53I557PT9iPew/aoXWQZ2L5AlQZuqL8VRPcB8fZatB+oF1V/c+y2+nwTc1hZWXHjkU6nceDAAZRKJUSjUYyNjSGZTAbapM+i6jW1N9kOltChD07iHM8dm5+fR6VSQbVade3fKn5wJXKt972h/71zckUg+sc+9jE89NBDeOaZZ/DmN78Zn//85/HmN7/ZLeYTJ07g05/+NF70ohftaGOfr6KbmEaAdcPghkaFFYvFcPDgQczMzOCmm27CTTfd5GqVkyHFjYEnOpfLZVy+fBlnz551imIjAI9tGBsbw4kTJ5BOp3Hw4EFMTExcEXiuYsuFpFIptFotXLp0Cfl8PpAW7oveAmtOtk0PA3YXSGc7fOAMx4UMcSpZ1iyfmJgIRK213QTMO52OSx1m/c1KpRJgWyeTSUxNTSGXy2F2dhZHjhwJlMDRiGy/33eHeExMTLh1QRC9VCqhUqlgdHQUFy9eRL1ex8jICMbHx696nndKuPZpiM7NzeHZZ59Fo9Fwhs9WpdvturIq58+fx3PPPYdoNIqXvOQluP3225HL5QLGD4MhW2kjjcpSqYRisYgLFy7ge9/7HvL5PJ5++mk888wzjhFvmXNDGcpOyI2qv23QV4E9ApbqUAJrgDZ1mY+Bo/sbgTo6wfp5y+LdaF/k3qHlVJQ5E4/Hkc1mHSCr6cAMgnKPIGjI80NsEFkBQs2gof3Amts8mDGRSLjPckyUhcNr0D7Q/U8BVjrwWj6sVqt563dz7fFwSQvYKtCp4Ley8eikW6aapiir3iOwTOa9toNtp2i5Hq4hAhLU3alUCjMzMy5bIJfLIRwOB0qSjI6OOvDEprgr4Ml+kYHFA8EJprPNbBPbks/nHbDKwBGBmkgkglqt5saGfWEwAEAARFegl/NtSyZx3fO3Zblx/DVYoYEOrmNemz+NRsPVJ1XQgmtH16KWFWBblF3WarUQi8VQLpfRbrcRj8cxNTW1DsBVEJ5jrM8PSQqdTse1rV6vY2lpCe12GwsLC5ifn0en0wkAB2ynOvY6ZvocWsaoTzjGCmzxdQ10cZx1naldYYFzH7Pzeks0GsXtt9+ORx99FHfffbd7/dFHH8Vb3vIW73fuuOMOfPWrXw289sgjj+CVr3yle07uuOMOPProo4G66I888gjuvPNO93+/38f73vc+fPnLX8Y3v/lNnDhxYie7dsVyo+rv3QSpdlq4r/GHzxv1QiwWw8TEBDKZDHK5HA4dOuRKpJGJTnZrKBRypKWlpaVtgei0CbLZLOLxuCNOhcNr5eD4ecDv9yqIrgca23PFmLVOX4p7i/rf6ruonlf7gXaYEghU5wwKINpMKu5XCqTqd6jXWM6Mr2nwgPgFyQn/P3tvHmRpWp13Pjf3mzdv7ktVdVdVd7OZZWQzoGgDlpA8EgyyLNwGiwl7ZEtIHdPTsllaY41bhhAGSwyCIWoUEi0xg0EEI2hHMAxWGI8Aj9QaRGsUNNJIogE13Q1dS1Zl5XJv3i33O39k/N587snvZmVmZWVVZ+eJyMjMu3zf+73bOec5zznvxMREqls/MDCgXC6XbBIPzHppLuwV14mQ5Hp6ejQ6OqrR0VH19vZqeHg44S08E4SDZrOZMu5dfzebzRQQx+enj/zweMaa54r4h9tPWZgE+oJ7uh3CdV0/xOth4xBYpvSdg/67kY2NjYQ5lMtlLS0tqa+vT1NTU6rX6+rr69PExISGhoaS/vfMDw8Q+VqiT/G/wQbm5ua0vLysK1eu6PLly1pdXU0kN57pKBLZjuVgZF8g+kMPPaS3vvWt+pmf+RmdOHEi8zNnzpzRxz72setq3HNdXEG4cR+dBt/IYN6QQsThm7C2/TvOEGLD99TrnQxqNi2vH8Z9Dgqc5v4wsKStw4ecsYMi539+PKUIhXCjwXMXj+rTrzhmAwMDSaGOjY1peHg4GUGk4cVal17LEmMMpxBl09vbq5WVlQTAxLH3uqMOrMQ0cVdAKL+VlZUE0gwPD6ter7coLh+zwxKf+0SV6/W6qtVqUoIOlLkxsZOh6qxFFG+pVNKVK1dUr9c1ODio9fV19fb2amRkpCXdXmplT3A9DK+VlRVduXJFi4uLunz5smZmZlQqlVLUm/l6lAH040j4zZOjqr+duRQdAgQwzCV+Pkvivobz53uo75V+Xf+uv4a+dYdHagVpvbwKzrmDns4qBtDmb2mL3cee4iVoeA70k9sH7nTHwETc611HOZPJD/Hy1GoPVqCXY8A5i+nlbYiOsLc3MuX4jjOr3AFkX/bnWV9fTyXifF75waHYJOhaDnADRMcJx9Hr7u7WyspKYrg7oE+7PTDjgQifdz6n/FkIFvmhpz4+MK/oG8adcXGQg2sznvSJz3Ef9/hdF/98nHduYwCSoyO9lAvf8UwTZ1FGVnecEwDbBHG8fIITGwA4pK39hP6lTIs72dgay8vLiXXnwRAAo6izvE9oswNLWbZKu771NQ4Axu8sJiJ9F/esrHa2k8PU3w888IB+6qd+Sq985Sv1qle9Sh/96Ef1zDPP6L777pMkPfjgg7p48aI++clPSpLuu+8+/cZv/IYeeOAB3XvvvXr00Uf1sY99TJ/+9KfTNd/+9rfrB3/wB/WBD3xAb3zjG/X5z39eX/7yl1vKtfz8z/+8fvd3f1ef//znVSwWE3OdutM3S46q/r7VxPfZyF52kNl9Ji8Hgg/npVX47boPnU1Zthj0bSfsHdwPHcM1fG9jL4G5HK8TwVH/zT0ktdQ5j4Arf7v+lrbKdHibvV1+b3/ma/lnHkx0WyM+E+1nz3MyRWdnpwYHB1Nm0sjISMIy0N/41AQPPCOJvd7/BltB7zNPPMuQdnngku/79biftAkC12q1NI7UDvfa9j4n8Hv9XtHuiuMd+9zBdMdO/DseDAdEBzj34In3/7XG2G0CWPj1ej1l8pGF5xmTYEPcAzuL63ltdnACvyaYgdsfe82OycI/bkV/9dj/PjjZF4j+xBNPXPMzPT09+n//3/9Xf+/v/T2Nj4/v5zbPaUEhA7xGBpIzrKStjZYNbGhoSCdOnNDk5GRiNzv47A4orOe1tbV0urekHQ8YhYnc19enyclJTU1NpbIkBy1Ej/v6+hJTik2baDfCxk1KEWwkDuvAUbhRYK8bESgXjKS+vj6dOHFChUJBExMTOnPmTIqqcggMKXgeLEGcteUM65mZGZXLZZXL5XQIBsqaiDoGlvcBisrTwx1w9/tubGwegPPtb3871Sbj+hMTE+n0celwgXSYBuvr65qentZf//Vfq1qt6qmnntKVK1dS2yPIjYPezjn168MCePLJJzU7O6uuri599atfTQzB0dHRtEYHBgZaAhMYARsbmwePcVhPqVRKZQKoSU9a+PUouGeLHCvxmydHVX9Xq9WWMgweMGSNAzRK2rbPOTDp4o5IZKX79SPDxxlBfiAi7fL64XyX92CiF4vFdJYFuh8AkOAe4CtMdPRCpVJpqTOJRHAZNps7fAT9AFt5dvSD2x+uSzxwyTPlcrl02CNOiTPWvF3OPnemPfd3oD8647DfYhYdIAZtATim7+r1egsQ6QAzfcR+PjQ01MI27Ojo0MDAQApYc+YIBIZcLtcCDE9MTCSiA6xYL18D0w1mIuPjoESWTcC5JQsLC1pcXEylRCSlmus8f3d3t4aHh1N2A23wMY2BHcbH5zYZbbE0i68Vxpq28h62rOvvWq2WyqfNz8+rXC63lBLwOvNZjEVnjzOPIIRI0sLCQkqRn5mZSfYwjjfj5qCUg9iLi4tJV5dKpcRyr1QqSc97EATbCvvVGZfMbScvsB84KBfZ//G56TfWa7RpvGyP7wGejeN7wW7Zgoepv9/ylrdobm5O733vezU9Pa2Xvexl+sIXvqCzZ89Kkqanp1MZQmmTif2FL3xB73znO/Wbv/mbOnXqlH79139db3rTm9JnXv3qV+szn/mM3vWud+nd7363nve85+nhhx/W3XffnT7z0EMPSZJ+6Id+qKU9H//4x/XTP/3Te3zqg5Ojqr9vJWGf9L0qBpuj/SApBbvRBYODgxoZGdHExEQqzZXP51OQlsAmrNqBgQEVCoVEmGrHgMVvp/TI4OBgy/VdL7qujLpfai3B5nrfAWHwAb4fz6pwtroHRH3Pj22KDHLfw6StPR6bLisg2Gw2E2Ab+8cBZQhpkMoAybu6ujQ8PKyBgYFEiMJXR9f4WVlgCi7oGsccsEW6urpSkJ3rOgGQfRkdjo/o5eM8MNpsNlOWQ61WS2VcCoVCyloDMyIgHIlziGfv7RSo5b0sm2BjY6MFmL569aqWl5e1sLCQfF2e0+1dB6izgkXckxJ4nZ2dWllZSXXS/cBwxhGsw8vj+LWq1WrKRltYWEg2Eux+6qAzdj6/kbiGXHxeu016K5apOva/D06uqyb6teRTn/qU/of/4X84VuL7EDY/r3uGMgBER4m7cU1NaOpokmrsBnpkMXnEFCc5KqUoKCTuQy3VG8HyxnBBmaPQ2OhcGXvtTN6PKaw3chPwe6CQaDvp3qT3veAFL1A+n9fU1FRiMxMscVYS4sD80tJSCg5MTEyoVCppYWFBHR2bdVG9rI/XPo1AEH87myuyA+ivRqOhq1evqqenJ9UnW1tb0/Dw8A0NTOwkGF6ARjC85+fnVa1WW4xhjAvGZjcpWlxf2nTCFxYWJG0xUgDRqXc3MjKS1lNnZ2cK4qytbZ42Pjc3l9LBdwpSHXU5VuK3vjzb9DfgOOBUljgYGXVV3Puiw5kFrrsj4rpY2qqZ6k44elbaSsV1oAxdh8NFoA4nDB3NfdDDMCMBbwFV4zPDOvZgujOls4Bx7yt3fiPQ586zg344jg4aRuaag7CxdIen7DooEBnx8RrMBwes/Vlog9sH7vTxfBALcNRwsIvForq6turU44T7IbBcH9Chp6dHq6uriZXI+FCCpaenJx2k5e1tB2468ICuwTlcWVlpYbnlcpvp4Nh42JKcd4LT5yxlnwve1z6OPk+c6RwDTKwFXzsAM4wXbG5Sr52Rhy53lqbf29cWfUL7IR6Q2k8Wndtc1MFlvrC2+SmVSpqfn0/BDljpBL8ZDx8b5q9nl9CvZFB6UCqrNE1kffp4sFb8J5I4mMs48+7s+5jGv3eSw9bf999/v+6///7M9z7xiU9se+21r32tvv71r+94zTe/+c1685vf3Pb9Z7ud8WzT37eaAMASMMV/iAFx1puzyl1v4yP7oZ/oTJjOgKGA8Ny/nY/CGnZbAV8vK0AWdaX7zJ61hvj+6np3aWmpRX9HYDtLf/u+3y4I7vflJwZkuQf60EF/B4l9z3VAmVraBBuoIz80NKRisdjyPmMubQUM1tbWEkju9gd7LYAvgRECtuAvfoYb+tCDnuhASpHFPva+JIi9srKSgvWMXyRKOoM8zh/a4X3HfXjdMROfPx4k55ldf3t52SxSy7WAe/oWnU0fd3Z2phIvjBlgOu9ngeiUUF1dXdXc3Fyyk8BLCIJ7AClL2gHpWUGiW1WHHPvfByc3FEQ/7uy9izuIOGZs+n7Sc9yUMJCXlpYSswwl7Owu3/z4gdVcrVbTJnitQ0W7ujYPISPKmgUyHLTwzKS+weTFeJCUDmIERHAmU0fH1kEevtlx7f0K/eRsRAybjo6OVKeuWCzq+c9/voaHhzU+Pq7bbrtNvb29GhoaSs4bxhrP6uLGA22HYdff359q4dEvjUZDXV1dGh0dVT6fV1dXV+ofj+JXq1WVy2UtLi6m06izxt+Vy+zsrJ5++unEvGYcABaio3YQQnucfcAhILVaTefPn9fMzEw6WM9BDmeVSErsQD+s1sGm3baHOoG0h4wHd1xhZJAu5k7xsRzLrSrPNv3toNlOGR3uvPke225NtgPkkaygHOsfpwnWMk6v62/X4x7M9MwjdzjQ6V7+IoKNHoSPz+YsbTf8cVTY+x10889yPd+P0aM8HyABn3WnhAwdB/v435+Fz/t+iv73sXOQlkCF6x0viYKzCbvbMxS4v+vvrq6upJ/dyc7n80m/AGD4OScOgPi4AHLgVNMfjL2kVDqMuRyzBDwI4IAD9h0sRcQzJjw1nPNVKC/A2GUBLlFi2Z4sxha/ndHPHCa1enl5WaVSScvLy1pcXNTVq1eT4+xMQvrJzw7woIkD0/RNnNs+Fl53n++Sih5tF+5VqVQS67xSqbTYUvG5fT04ecVtROZ/lmBDAVCwLp3p6QE77sG4eyDPSTcOkNAmt4efbXv+sbSX47Hcu/jaADAHFMffQv+wRqWt9eblXHy9+17JOvbSF/gi7TLGssTXr5Ou2PsQX988o7eZa9F+1/3uD7lN4TaJ+03sifxADPD2Oojuz+r6y9uP7icIjy/vweW4B4NPwFouFoupJnlvb6/6+/sTcY0SbFF/owexVwDrIUy4Hqav8vl8yiIgQ8gPd2Wfjnacj387oh8gMgHhcrmcAvpra2sJC2AM6Tv0f9SFPsYR0I44Efd34gF6emFhQY1GI5HXYNXTdx4Y4nrMIfeP3YaOwWgna/D8HmihtA0+ADiKj48z0cnWo61OBNlp3V3rvRiIuNGkTZdIDjmWw5EbCqIfy97FWWHUvYb1RBqSl3Nx9luz2UyKGQDXGSoeocZh3NjYUL1e1/z8vBYXF1s2l52YuhyIyeGVWaltBy04ofl8XrVaLdWRJsosKYGZOGVra2stLDtPxZOu/4BRVzAooY2NDQ0MDKTU7uc///k6e/ZsC4hOCp6n80Ylt5OQBSBJo6OjSRndddddSUnMz8+r2WymqCzBBTdyOJV6bm5OMzMzmp2dTUoxbv58P5fL6ZlnntHc3JwKhYIajYZOnDihkZERnT179sBr48f+3tjYSKlX5XJZf/VXf5Xaf/HiRa2vr6tYLGp8fDwdSMJ6cDCBVOjz58+nwMNuU6/4DKy0yB6LDrjUGmR5riu640j4sRy0ONiEAevMTqk1zTdm+rgj4evYS11E4fNenoE93JnjOOFeDoXf0VmVNvUrQUIOEnXQjfdgLuGIO5iMo+LPht6P6dHoH/ZFvuPvsXdKW8A44Kufj0IGTtQzgO1dXV0tQUt3htzu8IACDqjrFvoaIAJ2Fs+Gc+hOHO31lHXPVuN/QPLe3l6dPHlSExMTqQwKbP9isbjNOaZNDn4ydh0dHYmdzneYY/yGNTo7O5sYi3zOSwkwv529xjx1tl+c19hHZGmRmcWBXQQGsKfi2qGtznpmDB0A8b99ntMfBOvr9bouXbqkarWqWq2mxcXFZD+xZgD247V8HdAXDqjH4I876QAiPBf9CwDh6wDxci1eQsDH0YEX5q0HMTxF3wM4zE3GjfYxt7mnz1P2A9rvZxp5P8VgmI8lICFt3a1dcqy/j+UoigdrIbH19PQkQNYze7NAdNYVILqT2NxOgNXMOQ2RuXutNeKANvuW+7QxgJhl69Amf2ZJLfoR0JpnwKZw/Q3pDl0EkEk73ZZysJ/f7LXsUQT7vD0Omjtw7oEK1zmFQiH5fydOnND4+Lh6e3s1NjaWfOfBwcGEJ+AfYlv4Hot9QL/xLHHeuG9XqVRUKpVa+tnF7Q6Y224zZY0/4LHrCLISyXbY2NhI2W7YDh58Z85GXzS2z3W963zmQaVSUb1eV6PR0PT0tGq1mmq1msrlcponzKtCodAS8PDnX19fT8F89FzWs0c7g77o6upK5WsJKLgN4raPEwdYc74mr0en0Ua3GQ47KM3aIoCxkxzr74OTYxD9FhMUAZufM9lcWboy8o3QI30eJaYOpzvTztqGGZTFrmnXTgxwNyZutPjmjqOKOFsHYAGF7lF67yte2w8j3QEFb5+0WRuPWqkjIyMaHx9XsVjU6OiohoaGUome/QLNbpxgPGHc8cyMI33GfCDqjQKn/ioM9FirNj5zs7mZ8cDf5XI5seUajUYLGyuLAZH1LN6fWfeUWoEbDlkhukyNcZxcnG8UKylvbhBwPTIb9sJC97Y5qzMLcPB+82d+LiujYyV+LDdCHATH+fM9tp1DGRlgAJLSFkjmujPe08WBendQI2PMHUP0tV8vspXQ385o81IhkcUU9+Eo/rrbDrEdWc9JHxE4iP1LvzsbyD/j7XF97DrLJQsUzXqmOL6u/3hmBxmcFe9ACAwqdAc1R722KQEDJxBwLwdOstoWg+a8RtCH67tu8b7nuow7jreD5zvVPPVMAVKgsR0kpTGMfez9uhfH0+1UGGw44TjgjUYjOYD+3E40yApkxbT6rPbGfuN/v5c/U1a9ftZadOgjQB3npoP4XCsrkO7Bq7iH+e+4Tn0uO6jG3OaasV1xb/I96FpyrL+P5SiK78W+nnxdeRCX4Fhci7zuwT1/Dd8VANrPaNrt2vKgra/tLKA3S1fGdnNNaaskHnucX8f1KddgP0QXuS/kz5RlU2S9F/V9BGG9zVkBA4gL+Xw+AcyU60KnExghWOJjyr7ZDtSN947PRECBsUcHu13Ae7EUl49h1pihu8E+lpaW0vykHAmBcPQItoHrItd3UbIIFh5cXllZSZiR4wcA4T5P3ObJEuxav098Zm8X9hVCv2URY/z7fli5Z3Xtlji3VzlsPdfOJs6SY/19cHIMot9CQgTbHTYYOdRtpLwLm1NkovvBkJSPQCEAxBNNhnHuBzJevnw5ORA7AemwwmjrYYDoPDO1yhqNhiqVSkvU0dPDfUOnzZGB7k6n1HoKe5bEDZ3fACFjY2Pq7e3Vbbfdphe96EUaGBjQ2bNnU+mWkZGRNA4H3Wcw8XDEYZnBcKBcT71e1+zsbCp9AqucQ8lgte0kOMLNZlNPP/205ubmNDw8rNnZWfX392tsbExjY2MpRQ4jhbZlGX3+txsatKdarabU78uXL2t2dlb1el0XLlxI6dXcY2hoSJOTky0HrEQHUlLLwajUSdsrmM61i8Viqs9WLBZVKBRangfA308Hf67KsRI/loMWAmXuiLCWnQ2aBZplpZHiLLOv5nJbdVCzhL0H5o+X4YBV66yqCOxKW6CopFSzEaMfYIysIvR3vV5PBx6Wy+UWnQ+rLIL0Xku1o6Nj20FP7pB4P/J9gu9uJ7g+dX1MgJJr0w7XvVklQTxDy8EHv5/UWp4GvepOW7RlvHwKY+rv5XI5TU1N6a677lJ/f79Onjyp8fHxFv3hhATG1+0Pr2sa50wEUKPjl8vlUmk0ZzIy1swHnEIfc0r9OYM5BkZon89n0po5DK2/vz8F+X3O0ldcBzvDASKfI4yPpMS6XF1d1dWrV7WwsJDSweNcijZBBHMceHH2v2djMAcAdbzsAP0c5wzfJUDi96PuK+sj2gkOGjkgFsE23nc2ebwGgi0b+5T2egDHwT5szPX19Zb0/ii+hvZikx7r72M5iuLZToCwEKIA0TnLImtduw7D75K2dK6ziMvlspaXl1Uul3XlypW0F9br9Wv63+zFlK1gb/N9z3WgB0SjLgWAlLYIWTxXT09P8vOy2sC+GgFj96P99Vwul/okSz+30zUxmBxLoHE9DgidnJzUHXfcob6+Pp06dUrj4+Mt+yIl2Sj7QoYY1/fMLvqCtnjQNAYVED7vGYMAz15ClZrcMKOzgp1Zwlkcy8vLqUwrNkBPT4+KxWKqX09ZOi+H5uMXbSz3WV0gW1JTHP09Ozub7g2wz1qhj9zG8vGKmQ5Z54TFwIID895fHgTxswGcMMmYMPd3Yv4fZTnW3wcnxyD6LSJsBChvFHehUEiR092A6LBKNjY2WtJkcKT94FDqQ128eFHf+ta3UjptPH06q60AC/l8vqX+5o0WT1WFjXytKK4rXk/rZtPNKj3im26WuLPnjObR0VENDg7qzjvv1Pd93/dpcHBQU1NTmpiYaEmnuhHCmEhqccIXFxcTy4vAw8WLF/XEE0+kciZzc3NaXl5ONT+vJSgfnO+Ojg4Vi0XNzs4qn8/rzJkzWl5eVl9fnyYmJrSx0VpawQGUyGqQWg+IrVarWl5e1tzcnM6fP696va5nnnlG09PTLTXNAYZIvxwbG9sWJPG+4vWRkRFtbGymS1+5cmXP/c4zFYtFnTx5Uvl8XidPntTw8HB6ro2NDV25ckXT09Pp3IFGo5HeP5ZjOZbrE/Sis0k9tdgZMWSzUGbEDWmcSs8Ek5Sc3wh6OtCIk+3OeE9PT3J2PW06gpsOQnoJFM4soU1emgs9T+kyAucOVDvgi/heCegaQWIcLwfRHQT0YCvP5SUlnDGUxbKj33DAos6NwQb26Hb6k+vxA6AM45nPSK2lNxjfzs7OVBt1ampKZ8+eVaFQ0NTUlMbGxrS2tlULGxuLMS8UCi0BX2nrwFLsNPqP35GxR7skpWviWGLjuB7H9kE/bmxspLnnfe8kA34ImjBW2Ifo8sHBwZQO7sxLP+DVWX/MSeasO+T8rlaryfG+dOmSrly5kuYx6yqCJ3HeuoPPe67LWfPeRmwuLx/k7zP2ADzMHWwp7kkpO77vpRki4ODBsFjqkO9EJpyzA/2+EfRwEMHtYWfrQ6bwwEE7YG63wM2xHMtRF3xs9Dg/HhD34HrWvor/zF5K8NP3qfX1dVUqFS0tLalSqWh2djaV4XT93U7Y1whgoktcn/h6jlk1vm/5nub7Jd/Dz+MacZ8AY3BA0vcUQPVcLpdA0iyd5/dmHLBNYqDRmfLsrz09PamE6okTJ1r0N2XSuI7bZIVCQQMDAy26iqApOtKDxJGl7fo92i+ui9CPAOfz8/PJ5+ZcLb63GxAdn5fyeNizZFbzPsECz1ByXQEm5HMikk2azWayM1dWVnT58mVdvXpVq6urySaK44M4GSLOSeYutp33odsR/prPd/73Z+KZ/XwQt0Xoo2sRBZ+NcqzDD19uKIj+3/63/60GBwdv5C2OjLgC9HItKF53wP01vseG4k46AtDorwOir66uqlQqpQjpXli4N2PBZrGR4ntu2HiEFUXmysG/lwW2tpPIIEIpDw0NaWRkRCMjI4mNjGO7G+V4UBLnkx94A5hNOiE/1zpMNkvc8MBY3NjYUKlUSgboxsZGOrAFRqZnBUSGBMochxglXSqVkuHpLDsH5uM6uVZ/0z/R8d5tPxCs6Onp0dTUlE6cOKG+vj6Nj49rcHBwW7BF2sygADSAlXAUFfpOchwJv/Xl2aq/fW5l7e3Otsla674POFvKrx8B5yyHOuom3+diO7K+w+s4X9KmLvcggJdjc8DMnw+ALYv9HB0bdwajjovtchZTll7OYg7x3P53O4nOvrfPJeo61+sONLozxbWijhwcHFRvb286j6a/vz8FQ+IYOpPJ07S5f5Z9FsfF7RNJCbj2Z3PAxkENT0920BaHP5YBifd1hrzPs46OjpQijo7ykh/0qetZAiuul/2ZpK10ai8946xxb1N8bu9zt/N4Xn/dgSqADGmrDqu0FThxYMGBFcr2+FykPTj/gBdx3Lk3fcoZDf4etraDNnE/iGCN/477RtzHfNzj9aNN5ADgTusx6zv7kWP9fTjybNXfN1t8P3K/wv/mc1nfdRAR/RXX6+rqavK/CXx7SZed2iYpsx2uj7mXpEwdHvfdqL/9b9eTXiIqspazCAH43EhWuQ3X015OzNtBn/q1PJBA4BOfe2hoKB0Y2t/fr97e3qSjPGDg7Y1tctumXR+3kzhvYiCdTADX4R6A2I1k+c348NQLJ0vBQXQC//H9rOwot+WySg+5fsmaT+3mmNtx3Nuxqzhn45z0+ejZngMDAykwQiZ+1M2Oc+VyuURGebZLtBmu9dlj/X0wsmsQ/S/+4i92fdHv+77vkyQ99NBDe2/Rc1BcWZNijUEPEEkaEu9LW2mocaPI5XIJhGw2m6rVapqbm0us5Gq1mlhNMMpqtVoLwLyTXMvxv5Hi90ZQptKWY+zGC9FH3ltbW0uMdI/ExuDETvf3OnfFYlEDAwMaHR3VS1/6Ut122206ceKEzpw5k8Zup2veCMEo6ejoSED++vq6RkdHkzNcr9dVqVRUrVZVrVZ3BE12EowlMh86Ozs1Pz+vp556KgET9AOHsXFATwSqnH0JQ40UcOYqzjrzn2dzpoinaF+rnzAmfA64UZglfG5sbEwvf/nLNTo6qlOnTun2229Pa9RPJJeUDpBpNBp64okndOXKFV25ckV/9Vd/pUql8pxTTs+1572Z8lzS3w4mRiM+AqkczCS1AmW5XC6VZZHU4jhG6erqSqWbYP+wl3If9hd3PBxE89/umEhqCU4uLS0lox/9HYMCEYSNTFhJKcXXnRH/Tfuy1ih7KiAj+6eDtzG1m8NRPcPI/3dGO9eH0RfPPkEcWMQx7OjYPLwTRwtGG2BqtVpNtgBtJvMPBtvAwIAmJiZ09uzZlBGYz+cTg4xxjoeZOnAtbQZYYcq5ndZsNluCyACtPDtzwBl3PCd2XaPRSNkHADA8M44xc4Zx9L7wLATagEMvbbIoOXw0rqOOjo5kl1L6pbe3N7Hh4hpDCNpjN+Xz+RbgljYBiMCydJ3s7O5IFgEoiDVmHdDm3tzHg+BDQ0MaHh5uyaiQtta8z11S8Wu1mq5evdoyJ/jOxsZGS8aZM/xoX8yOiXPb78/zOZDvYLmDIk6KcFCL7xEU8iBVrVbLXGft5Fh/H548l/T3rSARQPfzv7ICuVkAlgcxYTVTTtPJQfg1rMWdBKAxi1FMYI99y4FCL+fCbw+MZgUr0cu53GZ5MQ/+oYv4Pwbs/LsRm9ipnznsE1vM/XonWDl4DmCez+d1xx13pFKeZ8+eTQeEkylGCTxsFQ908uwI7eB1/9v9Vg8Y8JpnbXEdz3rkTBAOu6Scy26BdB97Sck2JFMP+8BJmW4LcpgqGZOQLDyTzMdIUjpDDd2VFVzwjEz0t1dHQJzwQLtWV1fV29vbMq/imMR79fX1aXR0VPl8XsPDwwnfwP92/Y/tvLKyoqtXr6bDX7FZDhvLOmhxksBu5Nn8rLeS7BpE/1t/629tYzu48F6MPB7LtSUr6u3AHhuTv46z5P3uikbaAhFgnVO/an5+Pm3ke1l0UW529M6Bg9iHMbXMgQvEN3FJLUpbanXoY1TfnSA27YGBAY2Pj+vkyZMaGxtLrLbDBM+j5HK5BCpT4w9mmR+yca0SPtcS+pb+pfwAABPA8tDQUFJ+1OP1eYqxWavVVK/Xtb6+nuqwudKOLEIUMT+7AdDpH1gPzhzczfdyuZz6+/t12223aWpqSqdOndKZM2faluxhLpL1wcEvXqfuuaLYjiPhhyvPBf3Nvu8SmUPOGnVn2IEp3wccGI7AuAsOozvOPsdpQwS1/LrSdmeNz1AmhKAn4Glk1rKnck9+R8c/sqSdDQYQB2s4q5+j4x6fz5+N62ZlALQLVnqfUEuU1/k+v91Jc+CfNjnY6k44thS6m7M8hoaG0gHgBHu7u7tbGMU8X0dHR8uBk87KAliPuiA+gz+rzwPXdXzHmejMCQf03bF3p50xdzvS9SSf89T5rLWEDAwMJAYb855xaueQemAlEh+YQ67DHWB2sN/7xSULCIKdF9eZZ8H5+UOA6F7iz1mlDnQRgIvBj8j+dkY+9/dSPw7MxX3J7+//s1/R9zGgEAkxMVjHmon9xDq7lhzr78OV54L+vhXE97joF7qv4pIF8vE6+zMB73K5nEpmAqJnAfDtxPVulv7Osll8bkQ/Oe6v0va9wnVo9I+y9rwIPHuG3E7PBJDa1dWV2h7xDNe70femhCdg6vDwcDpjrq+vryVTyseOa8b1xf7oe3nEWyS19LP3EX3mmc4+L6iTnnUw/LX2SB9DHzMP4hIscKyI73DQqvc5WIDvHz7PnPDgQZEIpLerluD2uc9hB9JjAOhaz8/4u/72AIvPT0ipBPPpL9pyLeLcrS57afux/j442TWI/vTTT9/IdjznJW7AzsBhE8xSnG5MZ11HagUcXa5nMbjTtNPBRQctRO3daSVNyZUFkVJ33AB63dHF+XYWT1RQ8f4Izgy1sCcnJzU+Pq6RkZGUVnSrCM7iyMiIenp6dNttt+nOO+9Mh4lWKpUW4GOv10b8ux51d+VLdD4ecuKf8Ug0n3fl7AaJHybmSjwLwIjCnHAAxgH1aBDi+A4PD2tgYEAnTpzQ5OSkJicnNTAwkGlkx37q6urS6OioOjo6tLKyoomJCXV2dqbAwbGSOpaDlueK/m4HrLkejQ4PoGoE0fmOA5v+O0u8dFbcoyK7J4JnEXhzYM4dkHh/B8uzHHKukwXOeWkNB7rdofC/fQ+OzrTbJXzWU4kd3HYHFeYSzxb72ccr6/lwUDc2NtJhzevr69scKXcC6YtcLpdYTKQDeykPd9q9ra53YBu74wib2XUJeo32LC0tpXu4g+4gp6Tk2HLGyPr6emKSAdLw/Fw/1pmPmXDOZnTbkJq1zkr3sXDbyNvY1dWV2HVZjLNox1Kv3gH7GJjxWuwOoNB+5hA2g89TwH139r0vIBQMDg5qfHxchUIhgS2+B9A27snvfD6f+qm7uzvNwSzyhku0131O+32zCBxZwTHe9+ACr8X7+xhm7Qd+zWO5teS5or9vtrD3xHXo+jn61v6es7/xFbzkE/t1LOW0G3Gfn/0sZotxjwhq+96XhQNkYQj87WCn4xDuV2M7ZO191woQOJBNsMEJVvSz+/Lu76O/C4WCisViYqVzVofjJoD1Dpx7FpjfMytg4GMOYO1+oetD75NcbrN8KhlbnG0H9hDH71pzwkujYud4RoOfB5SFGTkJkNJtXr3Anx1GuQtZXJ2dW+epRNzKMx3Q1T6e6H+fd3yO7L6o16VN/UsQYHh4WGNjYxoYGNDg4KAKhUILScAD58wHDxavra2lzEWCGsdyLHuRXYPoZ8+evZHteM5LdE6k7QBAVgSZz0lqUZTtAAHkeoE6UqMWFxdb0p5upOCwkgaFsiHajAGEYkTxukPpNURxfEg9yuVy25RuZCNFh6ejY7Okxwtf+EKNj4/r9OnTOnXqVEtJkZsttKG/v18nT55MLAhSkWdmZjQ7O5vYjXs16tzZywKd3ZFtZ6AgPodRhqRbw2D38XEww8d0t/3uIL+nlntUHCWO4dvV1aUTJ06k8i133XVXAsKvFTghmHHq1ClNTU2pq6tL3/ve9zQwMKDp6Wk1Go3nBIh+HAk/XHku6e+4x7hecAYun3Xw0Z0oByE9eNpu/qFL8vl82rtwPgFCAS+lrXIofl1nbfEdHLS4t/p9PejndUUdPOT5ePYISuJcRdZuZN/GTB93mLMC/wRMeZ9SctIWeNrX16dms5mcwAgwAMi7PvHfjGFHR0fK9EGv00bPumLcJalYLKazLEZHR9Xf3698Pt/Sn/QVziPj1Gw2057d3d2dAqlxztF+dI0HTL0vGWsOtmMeMC6FQiHNTZy+5eXllnIBa2tryUaSlNK1XTeRIRYDIgQhuKYHlz044muFQ/P8oHd/dg5r7e7uVn9/f5ob/f39Wl9fV39/f3o+2P5eBg8n3uc24iUGGCfWFvYf7fCgzdDQkAqFgsbGxnT69GkVi8UW29vXJHNX2gLHsDsBfDY2tsor+dyItne05yOA5Yx8t5d8vvs68/XgayGLfe++AIceRqBptyD6sf4+XHku6e+bJexLHCzqdgL7v68h1qoD1Q4O+h7APuolrXy/upZkYQFRH0qt2UPRXvD9m2eKgXdf/56p4v3j9hFMeievXStrL4oHQhcXF5XL5RKwGbPc8NHY3/EPp6am0n4+NDSkgYGBVG7Mx4y9zol42ByMvT+/970TGyjNGfU3fUEQmPdh1w8MDEhSAoElpWA247cbFnZfX58GBwdbMrfARADTYVvTLtdBhUIh6W36Mo4nOobzzLB98GHRP3yXOc77tMvLIvqY0yaC9b6mGAdsJp+DlPAZHBzU6Oiobr/99kR+ILDgdjzCmmMOYeNdvXpVnZ2dqlQq+zoX7tkox/r74OS6DhZ9/PHH9cwzz2yL3vzET/zEdTXqWG59QaH5QVKHIR7Jd2aNR8idVRiNFN+8aTdKIBoq8fsYFM52YsMvFArpEDKUxq0AoLvQViK5g4ODWl5ebjnJ+lptdoAki7HJuDhA087I20kIajA+biy4gmQsuC5KPMt5jMJcYE5JWww20vjdGMTgpDSOs9fc+LqWYGRISqloAA3PFTlW4jdfjqL+Zj+KAJb/eCkHfrvO4PvSFsvZg6n+PenaKdZS63zndd+XPEibxdrx7yF+X3f4diMe4IzryduZtdbiXhqddP+cP6t/Jmv9Z13X25e170utKeU4gs7EQjxl2nUSQK07fg5w+n3ajSsASxxj15Xci/dphzvp3ibmqdsb/oOT7iADOjgLcI0BDp6TOYQzDyvN+zSOnQesuWZMB/c14+xBb6+kBGxkleLh854x6AF6H39fM/58Pp4EQvz8FMbe52Cc03HcPcjvIHSWxP2C53MAhueMz+335BniPkB7vT+ygmF+X77DuO8WzPP7HevvmytHUX/fbInrHPH9IK5RzyKK9kOWuI6I+tq/55/Luob7Wb4e97q+/Nmyvut+sOu7qJ+zrrmfdkit9Z3dpnP9zRj4Xg7YmxXo51rxNa7L87fb9/3H7acs/Y3Owl/0drn+9jKlu8ELHOPAl0dvO6s964BvFy8Bh80ZQXT0G33jQDg+OQFzxizLVs16rjjX+DtmBLgdgrj+5oca6JERn3VfaRNfWF1dbZk3t1LlgBstx/r74GRfIPpTTz2le+65R3/5l3/ZshiYoMc12fYuKAWcIDY10kO9PElMgXFlxvvtfmK6135ldXVV8/PziYlz6tSpFiDhoAXHbX5+XrOzs5qbm8us4x03znbKyaOm/jebeJaBw/eazWZKGxsYGNDJkyd19uzZxG66VRjoUfz5RkdHdeedd6pYLOrMmTOan59XuVxuqYkapbe3V0NDQ+ru7tbExIQmJydblHi9Xtfc3Fw6uGN2drYtUHOtdsLEQ0HCKtiJie6p8qSVww508N3XydLSkubm5hIz684771RHR4cGBwc1MDDQsl7K5bLm5ubU3d2t06dP6/Tp0xofH9/GKN3tM0pb2QE9PT0ql8uZgZ+jKMdK/ObJUdXfOC5+aDTP5OsfYxm96YCl6wtYKV7Ow5lCfIcgKmAsgg5xNk53d3c63JE2xVJX7jTwHs/EtZrNZstzZpVD8X3XnWAAT5hKpBjTHljh/l1PicVhA/R01lKWDeBlNzhYjfMuEO7nOpd+dpZcf39/6jNn/fJZ9BcMK5xA2gtTGqYafcrhog784uB66r1nKwFie0CZ7zog6szimO3g/egAMhkNbvPBZHM7cXl5WZVKJR2YBdNR2qqPT2o7h9V3d3dreHhYIyMjLU59vV5PZVlKpVIaA2eIO/vSD2jl2fgbBiBrKx74zdpzIIpABH2QVb7IQRxY6LVaLT0zWSA41eh4t307O7fKsRUKhZYshmi3+di5zU3QDUZgZ2enVlZWVKlUtgEOWYB4BAb8fv6ZOLeyPod4MClmdNDnvj4BKbB99mJ3HOvvmydHVX/fLHFdjK6KwTzWIfsZe7TvXTEIHzN22Af7+/sTEzYGnz3Qi66hPQ72coizpHToNe3BFsjyQb2EJu3O0lM8uwdMV1dXValUUhYzjHoAWQds3T9zaRcQiMK94j7HZyFZYa9QExvyk9t4Wez4rGCH2zl+zywMAb0dSXYOBjuxKjLRBwcHNTw8rO7ubhWLxZRB1g5w5pnxZcfHxzUxMZHA9K6uLjUaDfX392tlZUULCwvpebN8es+8pL/8+bmv6xDvK58v3J+5wPvYNVn7kdtkVAro6OhI/cM10d9+/66urnTm3NDQ0LYDTKXWzA23Twii9/f3S9rMQhwdHVVX12ZteA6OP+pyrL8PTvYFor/97W/XnXfeqS9/+cu666679Kd/+qeam5vTL/zCL+hDH/rQQbfxyItHlVnoHnF1dq8rPmlL0fnnI3DuzuZ+QM0sWVtbS6DryMiI1tbWkoI+aACZtq6vbx6sdvXqVS0uLm6rBxdlp3bEzd0Nhxh19u/wgwM2NDSkiYkJ3XbbbYmJfitHNDEehoaGdPvttyufz+vUqVO6dOmSOjs7NTs72/a7PT09Gh4eVn9/v57//OfrBS94QUsUeG5uTufPn1e1Wk2gcwQIdisoZxx/lKrXcXX2B3PaTyev1+stmQHOIgUYWFpaUqlUUr1e19jYmG677Tb19fVpYmJCQ0NDLQby5cuXU9Saci7FYvG6GOS9vb2amJhQd3e3zp8/f0sGX47laMlR1d/OCpVaWS1ZTG0/c8EBVAQQDn2LLvYyYLncZtaKl3BB3LAHqORwIxwQZwBFEB0HjWsAnHtpFBx8XnM7INZi9XYBtLFn4vyw50qtTK3oHLudAdvKrx+D0Hyekh9eNsyfledpx6pjP8dx9ywiHGbPKurs7EwlXDyLjfIqtB0d5s431yE12ucUQCpgiesj13dZjhyv8TmfU/SfB4zRbWtrayoUCqltHIrlmW9ZIDrP1t3dnVKzi8ViOoSL99HbzEWAZcAa2kbbKYuDDuY3Y+ilSegD/gaU533mrgMbWSA6gj27srKier2eMuogMWCLkQ7uwZbOzs4UJO/t7U1968ENB8y9hAEBDED03t7eBGwsLi62ZBognoWQxTz154zMwXj/uKbc1nRgh2fN6ju+x328/NOx3PpyVPX3zRIP+vn6cj3mQHjcz1hz7jtGPxKdhr/Eff1e6GzP5vH1LKlF77LPu37irAkP4vpzup7iOm5f+P7lnyVg22g0EoiOLvWDtfnubvzynT7jgfGs9lPWjMAE5VEInKNHIgDs93Rdw2exCaJOd4lYjAcqPeDv2U3YkgRtBwYGUgkxdBXBzKz+yuU2s5eLxaL6+vo0NjaWQHSymGu1mjo7OxMoDTAP/uPiZe3QZzybB7YdL4p6yW08WPVxDP13fA8bg2BMX19fIqMwll5+hXZ0dXVpeHg41UD3M4hisDoGu5jLBLDAcDo7O7W4uLitncdyLNeSfYHojz76qP7v//v/1sTERJq4f+fv/B29//3v19ve9jb92Z/92UG388iLG9CkyGD4o6iJ7nmE251BV4xcx/+WNp3k4eFhSa21vtjUGo1Gcq53YjSwAeZyOS0tLaVamji5BynOumo0GqpWqy010XmfjRLH2Z//WuJsnfh61v/UFKUWF+CDgwm3shApJ4o/ODioRqORjAd/bozLQqGgiYmJVINucnIygdwYlysrKxoYGFCpVNLc3JyWl5dVrVb3dGBHVNBuPEXjNH6H9eCGaKVSaWHNOXBEuwATYChi2LghQQkcPhsPR92PeLufS3IcCb95clT1t5c2iUFRxBnZ/r7vN+2cBQfnJW1zvCPQzN+0KTq27oxFxk8E1LgG9bhxzNzRbzabqZY1ezjXdBDOn6VdYN732Ahy+/0cPMhix0pbAcvV1VXV6/VUD9zrkvq4OGPMf2P3eHCB9gFocz9py1FbXV1NIAPX4/sROInOYpwPDnjGPgVgdTAi7nP870EY+t/HzB161xGeygwAjB5fWVlJjifCfciAwDnN5/Pq7+9PrG1A4WKxmIBpCAHoSGcq+hz2PomAsTvjnlEZAw1RfJx9jniAyMErwBTa7LYY68TXr/9kARdZASRvG/ekXwHIYv/Tbz5P/DXaw3U9sMJ9fQ9oZ8t6f/pa9f/5DPMUWynud7uRY/198+So6u/rkXbzdqc9pp2NkPV9JK4l1il7tQOOTlZjjQNys5/HfZSzQmKb3Z5wENxZ4gCiiO83/pqv/+hHEeT1Z8Hv5jyyWq2mRqPR1seOgeR2Eglq1xL/DIEPz3iK4xjtCm+bE6ri80eg3YO7/n4Mhvs94z2w39AX6O+1tbX0t2dr+fd5RkBmfg8MDKSMNWwJDi+t1WrJ74VskDUmHjzIsuH8fXAiD7RkBSe8j7EJvC8iTuX6GzKLl9dzjAs8zMvjOFkm2t5x7tA2xsLLwnDNg6jUcKvLYevvj3zkI/rgBz+o6elpvfSlL9W5c+f0Az/wA20//8gjj+iBBx7QN77xDZ06dUq/+Iu/qPvuu6/lM5/97Gf17ne/W08++aSe97zn6Vd+5Vd0zz33pPff//736//4P/4Pfetb31I+n9erX/1qfeADH9CLXvSilmf5N//m3+ijH/2oFhYWdPfdd+s3f/M39dKXvnTXz7YvxM/TUsbHx3Xp0iW96EUv0tmzZ/Xtb397P5d8TotvOCsrK2o0GtrY2EgHPzSbmww0Tyt2x96Nb6LSsL74gV00MTGRNuLJyUkVCoUUXV5eXtaTTz6pCxcuaG1t8/CvdkD6+vp6Yt7MzMzowoUL6u/v14kTJzQyMiJp9wb5tfqm0WioXC6rWq1qenpaly5dSo7xxsZGywEfbKiA7h5A2M29uE6WOLDQ39+vM2fOaHx8XCdOnNDo6OizCkSHDSFJp0+f1uLiojo6OvTEE0+oVqslI5BIeW9vr26//Xa96lWv0vj4uM6ePauzZ8+2sMOr1aruuOMO1et1FQoF5XI5VSoVPfXUU5qfn99Vu6LR4UCVpzZjHKIQ3SiUNtkZtVpNkhK73tO9MAC7u7tTGZ4TJ07ojjvuaAHRpS3DilTMzs5OnTx5UsPDw6ku3X7FwZHnEpB+7ITfPDmq+jufz2/bfx14wggn4OqMMn7Y89wp9H0Dcf3rDo/rZq/R6eVcuJY7wehn2uksbwBzgnfj4+Pq7OxMLBx03fr6uubm5lQqlVqeNbKCHbQjkEjgHFYTgD19gR3gNkdkvfK+P4O0GcQsl8taXl7W9PS0SqVSSuOlv5GsGpgOnhI8h9WPkwnTy4OnPNPS0lIC0d1GAEgmHRhwwQMDjFN0JhlL7s88wHbDWeZzPT09LXYabHAY2a7HGI96vZ6uwxyinAtt6+vrU6PRSGO7uLiYAHHmDs84MDCgyclJ9fb2amxsTGNjY6l9lHGhTX4AW3d3d3ouB4UYI/odkD4CNxFs8aCSrxkHH3D+IUQg9B/AQC63echaPp9Pqdnx2sydlZWVxPbL5/MpEI4z7pIVbHP7kHJzHR0daf1Vq1VVKpVtGZ9ZwJaDJQ5+015YhKwJ+pxxd+agfy6WWHKfgT3KGXn+TFn7Zzs51t83T46q/nbdsZc54sE9vi+1AqJZ4FoE3SIQGAFz/mY9+2/KmUTiGkFDSntQ+gm2LfobvTYzM6OFhYV0cCX6IZapkJQYx9VqNRGV2AslbdvXHGjkOdzWkLSt/evr6yqXy5qfn9fS0pIuXryo+fn5VEbLs+R3Iz4ebofsRNiL3282m2kPdwa6kwpovwf9ec33dO8b8JNms9mSceB2kBMO0OmMPf3X0dGR9BftwV4ZGBhQZ2dnwmnIesammJ+fV0dHR0vNcjKmhoeHdfr0aeXzeU1NTenEiRPq7Nw8oLura/Ng0eHhYa2srKRx5/By5mk8ONPtxCxGN7rW54UHLhg/ru9BbgI7y8vLLX3tdhD92NHRoWKxmErMYfO4HvXsOyoBsIZihjpjSrtc7+HLQxBgTRaLRRUKhZShvlvc6Nkoh6m/H374Yb3jHe/QRz7yEb3mNa/Rb//2b+sNb3iDHn/8cZ05c2bb559++mn92I/9mO6991596lOf0h//8R/r/vvv18TEhN70pjdJ2gwkv+Utb9H73vc+3XPPPfrc5z6nn/zJn9RXvvIV3X333ZI2gfif//mf1/d///drbW1N//pf/2u97nWv0+OPP54yWX7t135NH/7wh/WJT3xCL3zhC/Vv/+2/1Y/+6I/q29/+torF4q6eb1+I38te9jL9xV/8he666y7dfffd+rVf+zX19PToox/9qO666679XHJHuXjxov7H//F/1H/6T/9JjUZDL3zhC/Wxj31Mr3jFKyQdTDThZotvdM46X11dTSnfUivDB1atbzRew5K/PbKWz+c1Pj6ugYGBVMe7Wq1qfn4+1bSemZmR1FqXMgrKI5fLqVaraXFxsUWhHASAjqyurqbyHLVaLaUde3QyMgZdYexWwSPtNgmcE2mT0V8sFlvSglEGzwYhsr2ystLyHFn1PwEBisWiTp48mUqZnDx5sgUAJjJer9d18eJFjY+PJ+d/LxJZnDHK7EYwjqF/zh1bDFyMFAfRSa8bHh5OKYGDg4PpoFAv0+JAjhvA18tE5zkiI+Soy7ETfvPkMPX3YerunQ4HciYOutBZ674G3dHjt7NvImPbnQd0n/9EFnoE9xwwd4kgAAxb9p1isaienp7EHPY6ovQtDoQHIt05cYawO+oO+HsgmuvgaLrjGfW+A56UcAFo5J7cjzZlAfKeds7z8EzYQA7E8h0cZkBpdBni5X9oNyBvtHu4B21xINhtDk+ddvvMQRjew15YXl5uYdX7nJDUUvMTUB3QGhC5v79fy8vLiQkdAzB8LzLZAHT5ja25uLiYUqsJdjjw2o5F6Mxu7zMHLhxE9nXWLqOS/nY7zsvy+HkplFVyIM3FA2hZDEZ/Fg+oOaDmzwB7LpfLpb/pQ98PXLyvs+YYz8U6cN8gK/Dg33Ww3JmS/hm/Fs/m19qNHOvvmydHVX/HQNVegfS4hv377EluZ7suaydx724XjGJfjPsWa4q9DnJOV1eXBgYGWvT32tpa8m/Rc4jbIg6CS0r6DR2Ej4LO8GvE/SNrj3YglMA17HMPFHrgfy/iNtJ+BWB6JyY6bXN94OMXfXX6IRIoYhZcBOGz7uu4g48FwX5KlG5sbNbG96AuZ96gB8gcy+fzCTweHBxsyYpGF0mb82F+fl6FQkEdHR1aWFho6YMorkN8jiCOs3gQIo5fDDSBy8S57H1EMBqcgEAuNosD357lhv3Qbuyz7BO3xfgO/c2ZQNi0R90XP0z9/eEPf1g/+7M/q5/7uZ+TJJ07d06///u/r4ceekjvf//7t33+t37rt3TmzBmdO3dOkvTiF79YX/va1/ShD30ogejnzp3Tj/7oj+rBBx+UJD344IN65JFHdO7cOX3605+WJP1f/9f/1XLdj3/845qcnNRjjz2mH/zBH1Sz2dS5c+f0r//1v9Y//If/UJL0O7/zO5qamtLv/u7v6r/77/67XT3fvkD0d73rXYnl+W//7b/Vj//4j+sHfuAHNDY2ps985jP7uWRbWVhY0Gte8xr98A//sP7Tf/pPmpyc1JNPPplKkkgHE024VcQZWvV6PSk6jG6UtDvG7pB7jSmi07lcLgGaL3jBC3TnnXcqn8/rxIkTiYlerVZTOY/+/n6Vy2U98cQT6YCKLOH1Wq2m6enpxHjCccsCZa8lHtElEn/58mVdunQppShFZRajzpHVdFCC4gZEHRoa0vDwcAJU40Z+KwvKkrI0o6Ojmp2dbak5i6MFy2toaEhDQ0MtgQMHoqi52tm5eXDX+Ph4ci53K+4MukHq5XrckPS53+7HrxfvQ/swRPx5ouD85nKbB/vA2N8LgyvK6uqqyuWySqWSGo3GsYN5LDdcDkt/H7bu9kwg3z8ktewFOD8Y6tGZcvDJAUEEnRLZqg7EehAP3eSMd3eKHUR38JdMKq+P7XUgs5xw2uQs73aBXW8v2VxLS0stdUWz9rXoeLuO9eeALby4uJgy3QDcs9ohbTmcUW9nOUUOuvqY0u5YWkXaAuxJg+YHXdbOuWBOxBIq3rdum0lKrKkYGHAw3zPmyHTCIfbx8bnszyBtAjNkDvq8pc2Au/39/elMEw7W9MAO83J1dVX9/f3pENdKpaKenp6WYFG7ebRT2TaAGV9TkEW4r9dKxXbN0sWuv7FZCoVCYuX5PEF4nTXhNkIWecCDXTEI4O/DGvX15mcURLDb/3egC9uGQJevpRgU8D7xUkYxgOFBDdY01+F+Pj5HmX13VOSo6m8Oama9RUAzS7IC3/zv/oK/F+e8v859c7lcy14GwOYlID3rmbb6HoYPhX/htZzJDOrt7U1ZR+iJjY0N1Wo11Wq1tO87g9j3PvbKarWa6koDvEpbAVj2N9/7HBwFMPfnoGTL/Py85ufnUzv9wNPrkf2Aley96MoIQLPHZV3XdVxkUmfNH2deR4KEB9F5jzmSRaxy8NZLjzWbzXQoaq1WS9dwwpbr76GhIQ0MDCQ/3DPBIY9hG5KtQraapBbWfBRsNicG0Nesp5jZxLNJagmsUP2APvUx8H6mHwGzHVBHX7uudGG9OMnCbZmoC11oP89Mv/Dcfu+dsiS4l183zqmjKrGGPIEhl5WVFT322GP6V//qX7W8/rrXvU5f/epXM6/76KOP6nWve13La69//ev1sY99LGVJPvroo3rnO9+57TMA71lSLpclSaOjo5I2Ge+XL19uuVdvb69e+9rX6qtf/eqNBdFf//rXp7/vuusuPf7445qfn9fIyMiBg4gf+MAHdPr0aX384x9Pr91xxx3p74OKJtwK0mw2Ww51glVEKrIr8QiioxCpibqysqJKpaKlpaV0YGKxWNTdd9+tl7/85YmVhHNEeZTJyUmdPn1aFy9e1NzcnMrl8o5gdLPZTAAg5S9WV1dVKBR02223pbIeeylVwXPMzc1paWlJ3/3ud/XXf/3XKSIeDf0sh4DrHKTgkMICnJiY0OTkpIrF4o7K+1YUlAWHhU5NTWlubk4DAwMpHRCHd2BgQGNjYxofH9fk5KQmJyc1NDSUUrddMXZ0bJZ/mZyc1KlTp9TV1aV8Pp/J9GonDiahuP2MgOjEOvMjKlZ3lCVtU4gdHR0t5VtII4sK25kEklKJgPX19RanYq+yvLys2dlZzc3NqVqtHnnFixxmJPxYWuWw9Pdh626CmdIWMJzF7HVD2Q9/cqcOBzWyid0J99ec4cW+iU4iZdsBbcqlOOAHiO0HZpItMzg4qN7eXk1OTmp8fFzd3d0JcCX9dHV1NbF5cKo9yM5z0Qe0b319PTnM7nzTdhw7Byvc4fb1iEO+urqqxcXFFifcAeOsNezOG4BeFmjIe6S6+/dpv7ePgzHdee7r60uBYc41kbaCD4wJ1+W7OKyAtvQfbfIsQEqH4Owz7vyGaeXOMgdV+1zxgAR6iJRn0pA7OjpUr9dbru/PSubc1NSUisVii5PtYC32IEy37u7uxDzk+Xhm5j7Oa7PZTGfjxDFhTLFd3Tmlv5k3fC7qal97zu5j/CA1xMAP36E8Dvd2QJ+2xrJHXmrBgQU+t7GxkbIkASAAUTxAEIEHbBUP5Pm68CALfe4608s88FlsJOYu98MuZx37fPKgD3vXbuRYf988Oar6mwClE8J2AtGjH4DEfYK2+nvxO66/0TsA6exJrG3WKyUh3P+mfKq/Bumqr69PJ06c0IkTJ9TT05N0OmeKsX90dXWpXC6rXC5rfX29pRwr10Wv53KbmeC+dwGmr6+vJ3IQ2TIO/PKcnkHF8y4tLalcLidW89WrV7W6upqIeQcBoPvv3Yjvu66/KcPhZT2yiAPYMw7eSsrUa07M86wp5orPKydjkcHsQHpkU3tWWGfn5iHXZOtxwCjthdSYz+c1ODioiYmJ9Ht8fLzFNiEbYXV1VcPDwxoeHk5zD4LWTvsDc41n9Of0DD63af35vMQuOFS0nf372CfOQmccwVlcANbZE3heGPusWdYpui5Lp9Em9Huj0Ujj7WvbgwZZwmdjwD2WzbnV5CD09+nTp1te/+Vf/mW95z3vaXltdnZW6+vrmpqaanl9ampKly9fzrz+5cuXMz+/tram2dlZnTx5su1n2l2z2WzqgQce0N/5O39HL3vZy9J9+F68zve+973M62TJvmpPvPWtb1WlUml5bXR0VPV6XW9961v3c8m28h/+w3/QK1/5Sv2jf/SPNDk5qZe//OX6X//X/zW9f61oQpYsLy9rcXGx5edWEXf4ccaI8AGg42zwNwd0xdf5vqS0QaF4YBP39/en1N5isajh4WGNjIxoaGiopVboTrK+vp4OH/GDw7wee6yL6T8OfsJWw7DgWlxvJ6YMG8P1bBDXEndiiZ56BPTZJig0lFZkSvKZGMWP0eoYnffDP/bTL25M+zxxReUAuoMmzjrd7VzY62dhZaB89xp5dkceJb5bB/YoSFyre/05lv3LYenvG6G7pfb6OzJJs8TBSf9MuznmYJS/F/ec+DnWdtTXUTej+6Ku529Y6R7Eo3QYToUfjgRD2oOBDsDFoKK0BUpzb//xtjqQ6v9nPQcZceh/ByPaiTPlGCOe28GPnRhG/n3XTf5DP/qBUjE9eCcmW9bBVn4/2oYdR99k6YgYhIlzUlLLddwhdaDcGXDt2u62S7usCP87q9RJ1trw9sa54W2OAa04d+JzZs0zZ2vG+8d+dCDAfzw44c/k34/9E8kCPI8DT1lAXgz+0E9xP4nzImu+cw3vz3hPH7OsZ8/6TLz+buRYf988Oar6W2plqu5V2s2tuEdl/fb3WWPsNehuDxBn6cWox11/RwYyP66v/bWov+MzRlvDsQD3u6P+bffj3+en0Wio0WgkwpAfULkbydK9cU/b6zi7DkNvR/0d+yzet91P7OcsvzJL57XTuVl7tZMYou72AID3j7cxS3+7fRT3ddd3u+nrLBs3qy92Iq5FAlt8Pev9KO3mDH9HOyHOy/hdns2fMcsO2atE2ynLjrsV5SD09/nz51Owr1wup9IqWRL7w9fCbj8fX9/LNf/5P//n+ou/+ItU6uV62hZlX0z03/md39H/9D/9T9vStRqNhj75yU/q3/27f7efy2bKU089pYceekgPPPCAfumXfkl/+qd/qre97W3q7e3VP/2n/3Rf0YT3v//9+jf/5t8cWBsPUljcklStVrW8vJxqYJLWzQnfHlXmOyjNtbW1dDrz1NSUTp06lQ6TIuWVKKOnr4yOjurMmTOJYVsoFNJhp+2UpyvyS5cuqVKpKJ/Pa25uLtXxGhoaaqnf5YLTvb6+eYgJ4PnMzIyWlpYS03036X3tJBpn+zHmAZxhLsPm8tTrZ5sQ1feDOkgxlLYOHgEU8XJBzhLM5TbZVhhlBEEAmbnWbqTZbKZ0QthxGxsbKd3TlVWz2UwRb+7pQNS1xnl9fV3ValWSUkmjZrPZwhJFKJuwtLSky5cvq1QqpZJIo6OjLWtzJ1lfX09ZItPT03rqqac0MzOjUqm07/ktaZvybuco3ApyPc70rfg8zyY5LP19I3S31F5/sw+4kQwATTAvpnnGoKx/35k27QxsBzSlbJCeQxtjIJIDoDxAiAMrbR2y6WwyLyMSnTNYS8PDw8rlcmkPw7F2MN73CpxnWD2kFRcKhcR4dpujq6urJQXc/8b+WF5e1sLCQnLgYSixL9NX/js6jDGdF8HmoZ8c6OR/vsczE3DgzIuRkRGNj49raGhIo6OjGh0dVbPZbNEfHMpFP9G/AO/o/Y6OjhY2N+ymWq2W+oxsKtLtY5/xd61Wa5lLPmfQiTCm8vl8Yo81m81UE5wx4FqkuvNcS0tLifWJ/nS9TWkYnEyCvN4nPr/pYweNPOuDec7cwQmOLE6fz9gaPva+tjY2tkqwlMvlxKBjzvucILjgIDZzXlJibZINEMEHatc6iELd4oWFBc3NzSVbhxR2+gi7mP3E5z5rmL6Mzj7suixxQgGZDK77I+iP0H76yFnueyECHOvvmydHVX/7GVb83kl8DsJClbJLfyFZAUOf985ABsTu7u5OexhAOH4TupB1CIDtgo/oRDavBe16eHBwMO2xMSvWn8X1PnsL67laraYMIu5DfWz2YGeio4vISENHzM/PJ53DwdI7kdikVp3lJbKiTcS1fP+LIF0cO/Rvb2+vBgcHNTIyotHRUY2MjKQMJM/q8T6iDa6z4z0j6Eu2j7P+2WejrmP+kZ3sr/HjQQgY4rnc5sHf9Xo9Mc7JfOL6Pr+cNBkJHF5ux1ngDlzvJO0CAdzP5z794/rbXwOUjuArfe7lYsmapAwNLHc/OB77xzPVuAe2saT0221qno3+W1/fLDHYaDQ0Nzen2dlZVSoVVavV9L4H63cSnzuRAOLZ87eaHIT+JltxJxkfH1dnZ+c2hvjMzMw2vYGcOHEi8/NdXV0aGxvb8TNZ1/wX/+Jf6D/8h/+gP/qjP9Ltt9/ech9pk5F+8uTJXbUtS/YEoi8uLqbOr1QqKU1Q2jTqvvCFL2hycnIvl7ymbGxs6JWvfKV+9Vd/VZL08pe/XN/4xjf00EMP6Z/+03+aPreXaMKDDz6oBx54IP2/uLi4LTXhMKQd4OWGREdHR0ttVBxiV/LOLnMQvVarpc10fHxcU1NTGh4ezgT6MBaGhoYkbQKKxWKxJc15JxCdNl+9ejXV1i6Xy+rt7dX4+HhKYfNr0gZPZ7t8+bLm5+fVaDQSiL4TiLGXfnaF5o7eXq7jDDaU3l5K1dxqksu11pdzhiPiILozMKJidBCBz++Uvr+TcP2NjY0WxRijvShk5j7O/25ZE+vr6ykFvV6vJzAJg1namt9+wO358+d14cIFNRoNPf/5z0+Ouu+J7QSwZHFxUVevXtWlS5c0MzNz3SlgbqzGcTmWYzls/X0jdLfUXn/HsgduQEfWERINXC+H4E5SdNilVvB3J0OZMmyRUbS+vp4cWvS0O0C0hcPF2ZspWRIDBZLSmOJcAFRSi9wdwcia6ejoSGc9dHV1qVqtJmeP+tg4qjhMzrjf2NhIeyhOuB+aybPwXK5jvA0RPM4SHH3sImd24eQh3m7qZg8ODqaU5+HhYQ0NDSVwcXV1Ndkja2trLeB8b29vKmMW2++gBMQDnpMgMP97+90Z5lwarunjBDiPTvSDyfw1guBLS0vpeZw17aVSHFAGeCcjEMfbGY1e+9vnESA684C1g/PqJWiiHeZrB3uWNrkt7MCMr0PIJl4OJ2YVsA74DsBRR0dHeiZSyWOQyUvAMMYwNDnPpF6vt4xjZOr5M2Fre+3bLDak91MUrs/cJEgTszboA9ZMXHtuC+/HTjuWw5Ojrr9jAG43AFbW37sVX3O0GRvC9130HfsPP6w5B6QdRGctQgRCd0Biw8/yYDsg+/Ly8o6lSdweWV9fT0F69Hd3d7cajUYC0TmfzPcd35fYtynXsrS0lILge9kXPADOOSOuKyS1BITjGDsonBUAoQxKPKOrWCy26Ad0mF/D/TrHW9hHfS+MAU9sLEB6/GBvp5O3HMDn2g5mY0tIStkJrr/Rw3GcPdOBucr90PlegYDv7bS/R50T5xkZ0u5/u63tvnrUf1zDr+dt6ujoSM/a39+vWq3WUlfbsRUPbvCcBJsA3bkmY+p7EW3lDIFKpaJSqaSFhYUUBI/s9Gv5zz5/mCv0oz/rc1Wv9vT06BWveIW+9KUv6Z577kmvf+lLX9Ib3/jGzO+86lWv0u/93u+1vPbFL35Rr3zlK5MN/apXvUpf+tKXWuqif/GLX9SrX/3q9H+z2dS/+Bf/Qp/73Of0h3/4h7rzzjtbrnnnnXfqxIkT+tKXvqSXv/zlkjZtpEceeUQf+MAHdv2MewLRYTjlcjm98IUv3PZ+Lpc7cIb3yZMn9ZKXvKTltRe/+MX67Gc/K2l/0YSsAvg3WnyRufMaWSBsRP46jow7L85WkloPNPCN1g15jw62M3J8A/RNcbcSFTsGH1F1WFDuHPjmT4TQy2Tsh52LkiL6HCPQbMYon+iwZUl0TrJAmWejZIFMPCcAT6PRUK1WU6lUSszEgYGBFkd1aWlJi4uLKXtgfn4+1cXdq/jchxGAcR3BFYAZL4Ow23nL8xERL5VKLUwAPkOWxMLCQjqId2lpSZVKRZcuXdLKyorGxsZaGG0xuIKxury8rEuXLqlUKml2djYBFnuZ5zy/G46eXeJBDWcM7Gct3Qg5iEj4sexNDlt/3wjdLbXX3+wzroMig1RqZdBKrWUWXOe0C7TG/T4LYM/6TlyjMN68fc5A8teiLo4BeA9ke9o54Cj7Ig50ZIhhW7DXARLAmsY5cUASWwKnG7A+BjH5ro+JA9PRiUOnZLGCuSYgINd2wIPvoN/jfuGMPAceo7PnNpnvq26f0XfO9OIZMPgdHHW7KjLfcNR9DvFM3D+y7n3sfQ64rcOcWFpaSudu+LiTWcY4evkC5mhMM/c1kOUsEyTy9Pp2c5ZroOPbASg8R7wW+poMRphpHgiHjBJLKwHo5HK5tFY8Zd5tcvqI2sD8+DkG0Y5n/vsYO0vOwWz62fuSuedAmwNAHmyKwTH/zZjE/QlgiHHarW491t+HL0ddf8d95EbMk3aAIfPZAXV+s0ewR7GOstY6a9t9Rd/joy0SwVz0Pz48vs1u+wJ7X1LKKvKgvzPbnekcM8n2WrqF/nTdTdaVnz1DW9yn873R7a+4V/n1PZgRdUwc1530jo8f93N/2PfRaDe6vuW72ACMo++96F10Y3y2dsL4kN0mKWU9+57tOAp6ivvEAO1+xJ/X10jWOtit4H+DH5AJ6P4tz0CAan1965yAZrOZSATgRh7ccF3L+ysrK1pcXFS5XE4Z4U4+zfIZ2onbp25veD9EXIn/b6Ycpv5+4IEH9FM/9VN65StfqVe96lX66Ec/qmeeeUb33XefpM2g6sWLF/XJT35SknTffffpN37jN/TAAw/o3nvv1aOPPqqPfexjLaVY3v72t+sHf/AH9YEPfEBvfOMb9fnPf15f/vKX9ZWvfCV95ud//uf1u7/7u/r85z+vYrGYmOuc55fL5fSOd7xDv/qrv6oXvOAFesELXqBf/dVfVX9/v/7xP/7Hu36+PYHof/AHf6Bms6m/+3f/rj772c+mU06lzYjD2bNnderUqb1c8prymte8Rt/+9rdbXvvrv/5rnT17VtLBRRNupHgEEwPCjV4M9GazmeqPReeZDZnPefQSp1XaVE6VSiVtTihGSqzADM5iuOAQE5VrNBrJwdorkL66uqpSqaSOjg6VSiVNT09vCwAgbHQeAHCQey/CMxUKBU1OTqqvr09jY2MaHR1tYaqhkFZXVzU9Pa0rV660pDO3E98s+Xk2g+jMw/hM7vTDtMrn83r88cc1MzOTUp+8llulUtHVq1dVq9X0zW9+U9/4xje0uLi4rX7jbsTnfqVS2cZkc+YA8wTQiPm0G1ldXdXCwkILkNLX15cOcPG5OTMzo0uXLmlpaUkzMzPp4J1Go6F8Pq877rhDL3jBC5TP5zU+Pq7BwcEWo43UsWq1qm9+85uanp5WtVrVwsLCnlnozOO+vj4NDQ2ltH1OfMdwADhZW1tLpWhuBSf22Ak/fDls/X3Yujvu3e7c8Hcs0YTjho6LZSRwFjy1NO73HrhzfeWAN9/zOua0y/cIapH6HAf8o11ZziLrfXl5ObFsyuWyFhcXU9aLg5ruUDtDlnJe3jbYbDCQAK7RE2QASWo53Mz7EXCYfvKa4t7PXjd2eHhY3d3dyufzyufzyRHCQazX6y32EdeJP7TZS4qQXs9htLE/uSaMft5zwAHxmrPoUwAESS1ngzhYQF/4dz2wQrCBMmvs9z7mTo5wkIa+lJT6SpK+973vtTDyHUTF/tnY2MyUqlQqia1N9mLWPI/2EvMrpmPHQET8HmPFs/m1uA8sT+YrthzsfmwSzvzxecraWl9fT+A3mYTOmuTgeJxzxrter6fvnT9/PmVMlkqlVBom2qtZARPGRFI6cND3Br8ONitjyjoiWJUFjDgZgvke+xfxey4tLe06q/JYfx++HHX9zR54I+dHO1C0HbmMPc8Zruzj7CuuZ9B70paNjk3hJSicLYuv62Uw6/W6KpVKIiHtpk/whWBh1+v1ln1AamXKIg40OoC4V58EOwnG/cjISDoAnexzD7KzFwP88rfbDjGg7OXl2DsJtnv5GJ6LPvYgPO8hziD3wKQHrmOg3fuJMXVbBz3kutNJFJ4J5r9jf+LD8fnz58+rr69PpVJJc3NzKVMQsgMgdKlUSroKnebg9F4kzhXae62f3cja2mbZ4Vqtlvq0t7dXw8PDSX+zXsFsCJivrKykknaw0SkLA1DqNhJramlpSc8884zm5+dVrVZ15cqVNC+dOLebZ8DW8ywP7x/PiHAbDZxiL/1/kPviYervt7zlLZqbm9N73/teTU9P62Uve5m+8IUvJD0yPT2tZ555Jn3+zjvv1Be+8AW9853v1G/+5m/q1KlT+vVf/3W96U1vSp959atfrc985jN617vepXe/+9163vOep4cfflh33313+sxDDz0kSfqhH/qhlvZ8/OMf10//9E9Lkn7xF39RjUZD999/vxYWFnT33Xfri1/84rZSaTvJnkD01772tZI2DxQ5ffr0oYCH73znO/XqV79av/qrv6qf/Mmf1J/+6Z/qox/9qD760Y9K0oFFE26kOJMHloynOLmhHsFjj6ihpNyR9QinO5QOQnrkLpbhcHFDgDZkRYR3IziH7foj3vcgBfYWNcvHx8c1OTnZwjojsLC8vKxaraaFhQVJatvm2HZn8l1vhPdmi4MyEaBhHNfW1lStVjU/Py9pkxUzNjaWytuQ/o/ynp+fT7VCr9Wn7YT5CFPcDd0sEJ15uxcFQZApl8upUqloYWEhGWYe4FpfX0/seuaMK16CCSMjI+rv72+p/Y9CLpfLunr1qhYXF3XhwgVduHChJctkt+JzD5CJ34AsrFvAEYx5vn+zHdljJ/zw5bD192Hr7pjxEpkz/hpr241dfkcHzhlPSGQMu16NQLrrB5yC1dXVdNYDbUNnuzMntQaZ2+lu7oX9wF7oAHwE0dkfvA67G+wwfbq7u1Pfcm0HST2Fnb0zspK87fztjqoHHGBxQxLg4HPsHNoDWO/sO6+1GfuG63swPytd3tsZnSn6mPnDuGUx0Z1NxX3jdd0J53kAacgEyOfz6f6erp7Vp95WZ6KjQxcXF9XZ2Zkc0q6urlTnnexBnDxPaae+JxkKzkLz/o3z3O3c6IzH7zgL3ee4j4/bAA7Me3DEfzwwwTzHsQWIdyY6gAUAOu1kjjHXCVI5MB8BataYj5F/xu165qGDXXHPcrY48yZKtI/iNWNZG8B7xmQnAkm8z7H+Plw56vpbuvFzgzXB39xzJ/CP11grrFnWdtRzrC32SPYOB9HivsDegN72wOxeGOGuk64l7kPtx8eP4rqbIHVvb2/ywwGEsX1oL74JerBd++M+6TXQYxkrafseFe0zD374GMbrRB/frxkxEnQ2QtaCz6GdgPMovs+jd9yfpl5/X19f0k/ocS/r4mz965GseR5tgL3oBuzMXC6XMrxXV1dTJpn7upA18Nnd5tzY2Eglk9D92FPMKzLVGo2GFhcXEzmQOvL70WkERvjB54/jzZ7Bd/YyDu3mXnx/L20/bP19//336/7778987xOf+MS211772tfq61//+o7XfPOb36w3v/nNbd/fTTtzuZze85736D3vec81P9tO9nWw6NmzZ1UqlfSnf/qnmpmZ2bYBe72065Xv//7v1+c+9zk9+OCDeu9736s777xT586d0z/5J/8kfeYgogk3QpzZQh00P6SLTQ3nhIXG4od1BUDW1dWliYkJjY+PJ7YMETgUQaFQ0MjISGLL1mo1VatVPf300yqVShoZGdHY2Fiqg029N8CD7373u3rqqad04cKFxLTdKxP9WnKjDKXOzs6Wg8Nuu+22VP8Uto9HpSUldn5HR4cajYYuXLigUqnU1rCIhs9uI5a3ssTniUYbz7i4uKjvfOc7GhwcVKVS0dzcXEttP5jo9XpdzzzzTKqvhwPoG/deN3x38NzIcSMoC0jYyz04aISyQ7Ozsy39sri4qMXFxWTo0jeAbjMzM/rWt76l3t5eXbx4UYVCoeV5KQdDuZt25QauJZ2dnSoUCslAhfHhIDprloAdhpdnfByE4Xwszz45LP192LrbnTCp1dB3sNbZSOwrgMw4sHwHx80Z5DCTnX3k4CKGMw4w7GyAZ2wB1rAHztHFBNfW1zcPQbp06ZL6+/uTU4ajyv84C1evXk2HFOMk8DwOHkfDmzZ7W9hL3RnjM+4o8h5ssJ6engR4ZwUw+GwMRHs2TW9vb2JI4zT5Xu/3w3H313Fm6X9nDUYwg/8JFJOBByDJfonDJ22lzQMMeO1Yd+rpnxgk4G8AeYBcB7593vB5/9v1InPNgYy4FmD5MQ9hy1ML3OeD230eDO7t7U2sN9eBvodEcM8B78gI9M8QKOf/KNjScf5wPZjq6+ubB3fTH85k94PJWGMcxAdI0dXVpVKplA4cJWCBw022pmdN8ps5k1Xv39ce85ZD6pmjgEt8LwL5zNcIlLcT70dvE2PHHGw3dsdy68lR1d83UlgrDnQhMUCN+J7tmWQwTzkwFP3g+4DrlXq9nvwiCC/47z09PS1nTszMzOjy5cvJT3B9d9CyH18sSxzUpuZ7oVBQoVBoCWbG4HJfX1+LzRRBdA8Y0s4YkHTdLW0Bul7Ghj006k5+YrZ9DD4iWXut23nYI25nOZM6itt7BE2ygjA8CweFwyonS255eTmdj8JnPSiB3mTuYiu6Tef382fLItbxXhZ4HmUvYDrB7Y2NjYQ9ed95ligBJuwtfPZqtaquri7Nzc1ty8qu1WqJ/DY/P58CEh68343kcrlkB7n+xmZ1WVvbqtXuQfp2WR6xL73ffXwiUedYbp7sC0T/vd/7Pf2Tf/JPVKvVVCwWWxZXLpc7UBBdkn78x39cP/7jP972/YOIJhy0REN5cHAwOeIoFT7nioFomkeu8/m8JiYm1NfXpzvuuENnz55tcbB8QdVqNdXrdZXL5cREK5VK+ou/+AsNDAxoaGgosWUnJyfV39+fUr8ajYb+6q/+Sn/2Z3+m+fl5Xb169ZYp/7Ab6ezs1NjYWCrfcuedd6ZTyaMig+kmSf39/ZqamlK5XE4brTvOLlnK+9kMRjqo4OBCBNElaX5+XvV6PfXz6OhoywEyjUYjlSahH7mOH87FNffDrtiJKXW9kVWi1LlcLpUf8ve9b9xAg9V2/vx5Xbp0aZux6M+BwnYm4V6Ea5OuXiwWNTk5mQwkZ3gQGOjr62sxPmL64c2Qw46EH8uWHKb+PkzdTcAuBgQBwZ11CiDqTofvgblcLh20zPf5wVD2vT+rTAxsIHfeC4WCBgcHW4LgpDZ7YAvHenl5Oe2prON6va6enp4UHGatr66u6sKFCzp//nzKBlpcXEztcYDV+4lxAFAjMycClNGp4tlwLkldLhQKLWxtBwGxW/zgR69zihMOowgGNLoksrrczkK3kBrvta39QDEHnXk2SAvUyfQ+4dlxWt0BZ4+FTcV8cUCUw1Zx5HGye3t70zyMWRTMXYAbJwAANtO32HkEDpyQwfs4i5RrIVjR2dmZMqeYG359AuCuC9fX19OZNcwP2uoZkQ50E8Sg/9y2ygJuPdjgn8Nm8yxO1j0Ho7LOK5XKNmZi/M0z+lzFSY5rmnnFfHS2KHsBY8AY0x88D+PjAFMsqxODMLQVG53+ZGwceGdOOqCPYKsxVm6LILsF0Y/1982To6q/b5S4fsK/Zr0z/7Nse/9+9OVdfzsDmLnNuQmrq6sql8s6f/58KpMG03Z4eFj5fL4FRL1w4YK++93vqlqtpgMXb5RkreFrsV6zxDOAYJ339/enIAH7GUFYB7QBFAGGHQz3rBkHDz1I4cx9aatcjOsP10e+9zFe2Gm+Z2Ovof/5vu/PXB8bxQPF6DrXfbHvHUD3kjYR1PbAb6PRUEdHRyJHMg+dmCkp2STYXMw9t3UiWa7deHvA1j8b10m81k7zx0lwvmYIFEAedfExY0xhpPvYQBKI/e411Tm7LYs0eC1xm6mvr0/FYjH1setiSS0Bi2q1muzmrOzzrIBRJFH4e9ejR4/198HJvkD0X/iFX9Bb3/rWlLp1LNniEc0YnYyfc2cUh9A3dBYsdTwjE0dqZdmxCeG0AAxzmGGhUFBXV1cCAAHfFxYWVCqV9lSL7VYRZ/o5my0rCixtAR8w55aXl5PyjE6t1Lp5RTbbs1mc5bQToxsnvLOzU7VaLYEcq6urKRLsUX3mHvdw5y4LUN/Nxn4j52Mcy+h8X6tNONk3SnyPcFasg3socfrZUycBknDqb6YcK/GbJ0dVf3tgKwa64mdwnh388r0vgsNuoLtz5iCjM5ec3ekgrq9Zaii6w+jMai/fAMuWuszsvZEx7meZOEDuJUVwaHFiYpZQlvB+tDf4P/YR1+X+OHOeXhztnmgrueNGf7bTE34dv160k9wJdwfHy8LAjnMQ1+dGdOoj0837g2eN/eNtov95jjh/shxw16Fui0QnPLKXPHDgfertj/ZMnJs8H30EcOzzLLL4mCs+brHP4nPGz2f1G7/dlsBR9e/Fe/h1vTQQYw+w49/3eRKD0L4Osp6F1xh/yjr6mTK87p+LfRVtfu/beK8o7ZjrPj92K8f6++bJUdXfN0qiXojBOV8Tbhv7+x4YZc1G/Q1gil/p+ptyadRlxj9nLwFEJ1C2l5rJBy17AdLZj1y3efk7twHYp103R/vDMRK3D2IANOox9F4M6EqtdqGz27N+/Ln4ftTrPp/8e/5c8Rm8PyOGkPUT9aTre7ddAfnJMIv95O1iDudyucTyjuPbLqgS+8f/34sv6WOatc54Ts8MiLZWHLN4TfokBqIBr51EsVcim5MC4j7gZ9/4Z6Xt9vFu+yzL7j4IOdbfByf7AtEvXryot73tbccKfAchEslBGxjMOzE9WJzSFiC8vr6u4eFhnT59OpVu2GkROpNocnJS0mZ0lgMe/+RP/kQXL15MB27m8/lUa2p5eVnf+9730uGJHEZ1M8SVWARisz5Lf4+MjOjUqVMpxWY3mw+fKxQKGh0dTc8+Pz/fwgRoNptJ+VBT9EazBW60NJvNlmdhHmSBwRGckLbmKcGL4eHhFgDLx8uBej9ox1ld1Dy73kjrtSRLiV/LoLjZgiKmdMvAwEA6dM5rCEuttWM3NjZS+mm1WlVnZ2divt4sOVbiN0+Oqv6OjoE7tH5gHywQ9jl3TnD2YApTLxrnmfci0O6McBwkPzxwZGREvb29GhkZ0cjISHJoHNQGaO7v70/MKg4ZxWGcm5vT0tJSOjwJNrO0ueanp6dVKpW0traW0s7dmc0C0Eijja8DTMYAAa9FwA9WbATTPV0WpxdAwp1u7CUyatxeQqc4g9zPbXEnGiAk1g/HeYSJNDs7mwLAAKcwuGAQc+9ms7U8jY+9s4/cAab9zA/6LYKkXv6G7zQaDdXr9ZZ7EShhXqA3q9VqOkyW32730GZvB4xMDuGMe4EHuRGcUgesmd9Z4sEd+pS+wklGNwFi03fcy+dPVhDCMwrdsY4liKRW+xrgAYIKAE901OM8iuCEs/ezmHPeT6xt73NKPUbAhT7xbMdYIogf5kQ7go7bAbTH5/Z+wLpj/X3z5Kjq7xsl7DsenEbYf/g7ApXr6+sp66unp0ejo6OpfCIlHbgm4C3ZZZJSJjf70fT0tCqVinp7ezU0NJRKRrHOL1y4oLm5ueQbHbbErCPvlwgysx95ll488NNLufA9AN8s8NNBeWeCIwQaarWaSqWSJKlUKqWMjKg//DVvgwPsWUFs3/fJ+vH3vX8gi3nGo/eXB/CZU/jc1AHnBzIjQZQsXYQ95/YHfp/bKnyG87lcz2Jv+T7u+tPXgRMFsogp8RnjPHGd5pkJWQQHvu/l8bLayN8e0PB2+PgjTqDAjtyLeCCNjIu+vj4NDQ211EWXtuxsbMq1tbWWoJv3YQxOxNecDBP7YL9yrL8PTvYFor/+9a/X1772Nd11110H3Z4jJc428QW2k7iC7+np0dramgYGBjQ1NZXSyLLYKNIWcE+Ee2hoSBsbG5qdndXMzExKd33yySfV09OjkZER9fX1JRCdlBOct5spMQqdtdHEz3d1dWloaEjj4+O77m9pC2xZXV1VsVjU8PCwJCUl7ffFaaHP6LcbES08DEFhNRqNlFIG0JAlMYCDEYWipvZ8ljHmDC5AgtXV1VQmhnqjNxpAp91Z43Wz5/1OgsFA6hhZKfS9p5O5AQKAAUAlHdc+fS7LUdXfDmD6OpFaU2MjiO77jZf/IPsLZ5D3AIedlYLeZn8DVFtfX08pn/l8XsPDwxoZGdmm16itygGP7sAvLy+rWq2q2dw8V6FcLqu7uzs549IWGLawsJDSRr1+Kw5hFvOGUiSuwwg24Bx6H0tKQQYPptLnzhD2tgFYxNRnZ/E4S9/72h0OBx1iloEzhN0Jxnnh/JNaraZyuaxms5mCkOglmMntGNnMJ/5nvnjbpC0QnffcMXUn0vsOQJf2xmw3vo/O5jfAAvabl/lwEJ0xwS6lnMjAwEALCw6WG88agQdPvc/S9V4j2EvNIG4z0S5P5WceuVMPYBAdZubKyspKqmXvTHufD1yPDEz6yEsHME/oA+7pY88949++z0TggTXT09OjQqGQyhbl8/mW+/vcASAHoHNHmj50MIc5T79GwMHXvz8vcivbP8eyKUdVf98IYR2wRh1E9/XsATvWCX8T/EKPDw8Pt4CUrvvZdynz1NHRkYBffPFSqaSurq4EzEtbumtubk7lcjntnb7vHFZfxYB5Fis46i1wBz/YEZvJWduA1s745zf3jpl9vi/Sp2TkdXV1JQA6fi/6qu7z+B5JexC3IeM1om8ar4P+BifwPdb1EvWxwRD44bWs87Kc4BGZ/9iP6FDX17zH99y3j+A09/QSZZTIiX3oNnAWThPtB8hfTpzwYIwf0o2dvt8g740Q9g9spv7+/kRm8wNupa1+ou88kOe20rWwjqw+PdbRt5bsC0T/e3/v7+lf/st/qccff1z/xX/xX2xjYPzET/zEgTTu2Swx6rkXgDWmBcUUp93eP0bH2JDYaOv1egsojOK+mYs0KiVXvv47fic6pPsFtCPT2sX7z1PnHfh9NgHpKHWMPC/H4tFPN0Bh+A8MDKSgDgxon6uuxBGPEqOUKYFCNJ1IuR/WtteaZVG4L4eAdHZ2ppPjHZwhAwGmgJ+CfitJFnNgt9+5VeQ4En7z5Kjq7yz2hgfw/LfUqjcckAOMwiHkf9/fms1mZpAWkBg91dPTo2KxqEKhkAD5CDg64M41CHrxGQKbzup2tjCv4aB4wC0ydeL64XPejw6YZulCZ2q5reKAta9xPofzHO2ZrDXtjjafddY4dgzti/o/2gr+HK7HPc2btkeHyB0/tw/cXnGd6T9+f5+HPF/W9aId4ePm+z5zALstttWf1+cDAdWurq4URACIjkwpbxvjBlDkYxOdaWdPuz3ggYUYTPF7ss4cDHAmm48FwAr2gx8Y5s/j/e+kiJ3A5HZrgM94poePTwTR241tlCywJ97T51zc2/w9B9IdzOJz/owx/X0nOdbfN0+Oqv4+aHGQ24k9HvxEIuDHvrOxsZGIKuyX0T90IND3aD8Akut7UJSazKyl6H9n7RUH4QdFnev7cwxeej/43t4O1/A2R92Lfs3lcingkHWPeI2o79DdsZY494ltcb0Tx8nv2U543uhv+f4fdV3cW73tXnqNMfd66NEmQAhSEGz3Q2qZy+2eg+vxWQ7ddEzFf7gOfZ2lM+J88ueOc6qjo0P5fF6FQqElmEzbcrmcarWapK0DwG9lyVqHWXaf/x8zCw7qvvu9zs1uw1GRfYHo9957ryTpve9977b32CCPJTuSeS3xxZdVg203Rjjfh+XiZU1Q6pTPQHn5Rn8zxDdd3/C9faThZKUSxYDDXhwCxKO6WaVgms2tk7wXFxc1MzMjSTpz5kxKC9/PfW+GuDGysLCgK1euaHZ2NtXk87qwQ0ND6bT1ycnJVL6Fw0wcqHHF70AM/+PYEx3f2NjQyMhIMio5jOfq1auam5tL5V72q1TdiJ6cnNRdd92lQqGgU6dOaWxsTNKWYTs9Pa3vfve7qtVqunjxomZnZ29ZheFrVtoOqEcGxPUozRslt1p7nityVPU3zqrrSGcA+W9pi3UOKAi4iKMCe9wBOwfMPIWbfT+CcbncZpmwqampFkDe1ydBPRf2X1jo7NXLy8sJvISx42uea7nt4Q5ZZG/TD15mI7LE4rVwKHH6HFz2Wu20zYF+ByFcV9KP7rByfa4rbaVOE/SHmcZ30THOapa2Z96sr6+3gK7OKnZbJJfLtTDjAVJin7vjSTuy5iK/ncnNPIyHZmY5rogD6BwMv7y8nILdzGP/rgfBOfiNuQ2AnsvlWg66c/3Z0dGRSkig9xknB+mlzXIz9LOfyQGr2+cU18fGRTwgQP9gzxKYct22uLio+fl5raysaHZ2dttBw/Rbs9ncZv/6OPhYRXGQDcY8tqLfK+vwXsajHTjmYFwEK6IdTN+4foeQ4HPXbTK/rtu3DvLvNnuTNh/L4ctR1d8HKXHf9gOfmeOsN/6WtgJtvhYHBwc1Pj6u3t5eFQqFtEc5iMoaQ/d1d3drZWUlXR9yDmVaOjo6ks/ouoRMGqk16OWg717Xne85Wdldvoc5iO6B2Qgiu58e2+h6kD2SPqN/YGvHfdN9dwecPVicy+XSIeAbGxspg9ntOcT1iu+Lfi0H9F0cUPZAR9zX/b7YNZHc4GA5dhw/ZJFR+odxiJhIb29vOsRycHBQw8PDLTaJl0iTtgdVfc+HTb2xsdESOEdgxUd70Od9nGMxaELfc4j2wMCAhoeHUynCQqHQMk/K5XIqVwiR7lbVMe386ZjFkWUD+rjczOe7Vfv22Sb7AtFvlfSKZ4vsB1SNjlw743un72cxknzx3yrGlj+XK6LIVsPBa/f9/fRTFGcsRPGoLWnUnnqFEfBskeiEE9V3oMVZayhByofsdGirS1afROaWpBZjgFpxEZjfjzCn8vm8xsfHNTAwoNtvv10nT55sMXByuZwWFxfV09Oj2dnZFmPwVpEs5R1Zt/6av369UfCDlMOOhH/kIx/RBz/4QU1PT+ulL32pzp07px/4gR9o+/lHHnlEDzzwgL7xjW/o1KlT+sVf/EXdd999LZ/57Gc/q3e/+9168skn9bznPU+/8iu/onvuuSe9/0d/9Ef64Ac/qMcee0zT09P63Oc+p3/wD/5ByzV++qd/Wr/zO7/T8trdd9+tP/mTP9nzM+5Wjqr+Zn+O6dru/ERDH2AXJ9sZurEOOk6oA23RQaEN7ggNDAwon8+31Af1NRsBZdqG4+mHHLr+c+DZn8sPRHQ7ot26ieAZTr4HC3gf3ejOF7rAAU+c08j0yrJp6Ie4f7kOikFab2O0H7hPuz3Gr5FVVsTHlb6JtTwjaOBAJ9eLuis+n6de89pOY+TvOaARGYy00x1xSYlU0d3drWKxqMHBwZY558/t/3tf0N9kSTAPeI+55+cT+LzwPs0Cenk22uUp8jDZKNtXLBbT83uZOF873q++73m2CMDztaTdZ3xN+FqLYEsWoWYnPZj1uj8DczU+m98rrjfe8znv39mtbj1s/X0sW3JU9fdBiu/nWSCntGUXeJDZs07IroWF7mWbkKx15MHlWIPdA7/Rn3Xg2tfIfn3Z2B8OyEY7KJIEPGDne5oH3KL+juL6kf7hOt7vMUAfbQK34xxQp2QOLO74XL7fYb/QDgfH/bNZQHp83/d2qTVjLuuzkaSYFRhwNr33l+tKP5SeOYnOdV2btT9wzRgA4jf2lNtGXrrPfcedwN8sHIfScejvnp4eDQ0NaXBwsGWera+vJza6B7puJdlJ7/mYIXE+Rx/8ZgHpx/r74GRfIPqxXFvcufFN6Fqbgn+PdCV+YHllsaSjwOytVCq3RESPzcQdqZjq66+5E+gpt1m1Ll0Z0Wd7ZYWzwXHgR7s+Q2E2Gg1dvXpV6+vrmp+fV7VaTUyjmF55KwrlaCqVimZnZzU9PZ0OtCQCcuwAAQAASURBVJGUanb29PRoYmJCxWJxR2PyegRFgsG6vr6usbExdXV1pUP0YBtw0N5upbe3V1NTUyoUCnr+85+vv/E3/oYKhYImJiY0NDQkqRWw6erqUqVSScGElZUVLS4u3hKHxzL3iNJT+7ZQKGxjptNeLznkBwjfKgG0w5CHH35Y73jHO/SRj3xEr3nNa/Tbv/3besMb3qDHH39cZ86c2fb5p59+Wj/2Yz+me++9V5/61Kf0x3/8x7r//vs1MTGhN73pTZKkRx99VG95y1v0vve9T/fcc48+97nP6Sd/8if1la98RXfffbckqVar6W/+zb+pn/mZn0nfy5L/+r/+r/Xxj388/e8HFR7L3oV9KbKB2GO8TIe0VesQsBQmugPogKjoq2azmdimrr+yBN3i5Ufaga3O7OIZcLxhduNUSZv7uOtUdxIdIPaSbln7p4PctINndufKnUfPKiJAQFsisBsdB97nf/QJzxmZYxFo9uci2OH7I4EKnO2lpaU01nzGHVtnrsdxIYDMPOns7NTy8rJqtVpi3GexwACSvd84MIzn9DlC1oHXBvXnxTb0vd6fj309Bi88iArLkvs7iME8o2+cAcf6gC2PHbq+vp5KETmI3tnZqf7+fq2trSmfz6eAC/aFr4UI2vA671EGqVgsanR0NAUB+vv7W0B01gV9wTMSLHGAzINGPre8XdH55XUXHxO/Ht+JoB1jVK1Wtba2ls40iOuM34ztxsZGOogO/Q/wQp96sM/b7u/7GuWZ2wV6juVYnm3iQLH/eDk21kZkpUut7GPXq67HvDxL1N9RB/jhv16yw/VG/D7i19rrunTw1ff4rB+AWde3WQBxBFDZdz1g4YdIsydHIJwfHxva7HuT6zK+Cw5AuU1+YPBn1aYGdPZnRj8gsZ+xn3ycGXv/zT06OjoSw9z1qOM5zkT3H56B9nh/RkzE+ycryECf+XWwWTwTDPsWEoQf9iop+d4ciEkb0UV+Hxe3nbhnPp9Xf3+/RkZGNDU1pd7eXg0PD2tgYKBFf4L3QKBDx2EL3WzxuQ7GlMvlkh0ibc/CwOd2LI994DgYejRk3yD6I488og996EP65je/qVwupxe/+MX6l//yX+7I7nuuCRskTjOOxk7gI4uLDdkPmyCat5uUS4zuSqWiRqNxUxesKwI/oM3ZXc56841cUlKSKCdnFXp0b3V1NR1QieKMTk+WuINaq9W0uLjYts94rVKp6MKFC6rVapqZmVG5XE51tp8NIPry8rIqlYrK5bKmp6f1ve99T1evXk0p0MViUSdOnFBfX18C0SNQc5DCHCHFrK+vT2NjY2o0Gurs7NTi4qIqlcqeT63P5/O68847NT4+rhe96EX6L//L/1L9/f0JFHAZHR3VmTNn0vh7EOpWAdExPonYS0rzjgCTg0MYJCsrK+kAHg9E3Sw5zEj4hz/8Yf3sz/6sfu7nfk6SdO7cOf3+7/++HnroIb3//e/f9vnf+q3f0pkzZ3Tu3DlJ0otf/GJ97Wtf04c+9KEEhp87d04/+qM/qgcffFCS9OCDD+qRRx7RuXPn9OlPf1qS9IY3vEFveMMbrtm+3t5enThxYk/PdL3yXNDfXjIDAXDFkWAPcJ3E2QzOrob140CfS2Tg4IR57eUs1ok7TO7ourOGYwroiX5xQxyD3kFiHHdPGfd0UsRBeZ7B04QjIAfri6Cxlw7hs36wFt+NAAHOkZeT8ZIUDog4MAkgShCDsy54rqWlpeTEc95LtVpNDjXOPmPp88QDkfRDoVDQyMhIC2OvVCq19HFkleP8eWo3wAn39DM3nLFGqrsDLs5ii+A6gD5ZcV5bFfFnZXywTZn7zu4DXGXuU8O0v78/gRA41OhkJz4Ui8UE1hMAr9VqWlhYaNFTPnd9jrBGsQnIIjt16lRaoz09PS39MzAwoEKh0OK4kiofwWKe2fvEM9LcPoiMvAg6M195/gioOzufPs/lclpaWmoJSjj4w9iRJbi6uppsoPX19ZZUewfiYjCuXfDN2bEOqO/WTzhmst1ceS7o7/2I61InZnnJMddT7a7hAqjM/kvg2n3VGJRiP4sgqe97gKa+b7rsBWjz+/M/ZIAYyON9/G/PJON5fU/0vdmxDC+t6uA0pVXcR3f7w/0YxsrbGW0IBF3n+qe3tzeBkxsbG8l28yys3t5eDQwMpHZyLQhZWe30ILiPgYPt6FjXrWRCeVCYcXdbgb/5cVDf+4X5gb3aLmBD22KZOEgAHgRnbjB+YCs+/1y39PX1Jf8xBgCyBJ2HPT04OJiIa6dPn1ZfX58GBwdbguAbGxsaGBhQX19fIvcxrticN1uwdZrNpur1uiSlueikBT7bbDYThrC6uqparZbKOjnB5GbIsf4+ONkXGvapT31KP/IjP6L+/n697W1v0z//5/9c+Xxe/9V/9V/pd3/3dw+6jc9KcYCXzYgN41rfY1PBYQJQ98MWsxaBO92+Od8sANAjkm7IeFqS/wBAOxvQf/wazrhxJY/TlnW6dTuJ9crcEd3pO41GIzmvMHxvBbD1WoJxF08HX15eTkaVp4xllTXYyQjdr8T5wrygHcyJvbDgSQPHweaQIIwKn0+ku8PC7+/vT0bZrSJxX8H4cSfaDWYUP3ObPeVmK8Is43UvP5K0uLjY8rO8vLztPisrK3rsscf0ute9ruX1173udfrqV7+a2bZHH3102+df//rX62tf+1oydNt9pt01d5I//MM/1OTkpF74whfq3nvvTWct3Cg5qvqbvUPa7ghHhy1Lp7RjPbtDFOdg1D/+4wFx1ysOVjnTSWpN+fR77gXc8r/jz16D6VmMO2eQERTPAi8iS8/37Kx2Oes+i4Ud+90D8A4gIhEkj9f0e3lgMc4Dv48zGuN9/MdtN//tDHJvh9sggNJxnnh/+v/txqvd3Ig6hPbGeR6/4/eI68j7xfsJ24HghY9Tlg6KY+2sObcZo/7mB1sBu8Xvu5Psxan0/olztB1z1Ne3tMWyjJkFWfrd54Sz6uP94n4RA+p8Nut+/jy7kYPQ38eyPzmq+vtGSJxvcX22ywDhs3GPdD/er521dn2dul7P+vxBr5Goq6OuZI/O2kfj57KC/E4IiLrE96ioVyJ2EfWUf2enMfXMc/dvsnz+LNslBkKzxiWOTdbeHu21LF0fP5NlJ0Z70sfLdXqWHttpP3eJcyELU+E3+hYbzzGAvfjD4Al+jhoBcNfp/r77+7stGXvY4uMdbSPej3r8qPnfx7Ip+2Ki/8qv/Ip+7dd+Te985zvTa29/+9v14Q9/WO973/v0j//xPz6wBj5bpdncYm01m0319PRobW2tJVU/Ro+JCvrBCisrK1pYWNCTTz6pfD6vU6dO6fbbb29JLXYFUKlUVK1WValUdOXKlcQuPuxInjP5AEI9NddT6GPKGcJzoShJHcah8KgeDujly5e1srKisbGxxFBDOURhQ6hUKonlMzs7m1hmOynyer2uy5cvq1qt6umnn9btt9+ukZGRFE3NcupvBWFTX1hY0NNPP63Z2Vl997vf1fnz57WxsXnIJ2lXExMTSQFKh1ufjL7r6+vT1NSUhoaGND8/nwJKHIC6k8BCOHXqlM6cOaOJiYmWEgXxs0To19fXNTExoTNnzqi3t1cXLly4Yc+5H2Gf6OjoSGnt+Xxeg4ODKhaLWltbU6lUSmntc3NzqtfrKpfLiX2xVzDtoOV6lDHfO336dMvrv/zLv6z3vOc9La/Nzs5qfX1dU1NTLa9PTU3p8uXLmde/fPly5ufX1tY0OzurkydPtv1Mu2u2kze84Q36R//oH+ns2bN6+umn9e53v1t/9+/+XT322GNp3R20HFX9HQ/RRtBFAHKeusz7/h2YpQBYpG9GwNaZnZGhtLGxkfR4b2+vVlZW1N3dnQ5HdFa0f9+BVJgrMLtgOLnDxfdho/KD4c61fb1ngcRxLcYAHf2KswND2J3seK9Y9stZWZGRt7y8rK6uLvX29qZ79/T0JKZ61oGT2FK0Hwee/vMU5Eajka5PGZJyuazV1VWVSqV04BVZSlkZAj7mzt7GFnFxRj3zIqu/m81mam/WnCQIzEHcgDhkGNA3sLIpwUagmLbEOe5MO+4NI837kT7gdQ8gcE8Y2szJOI9oi6+Jer2e5ix97CAI14TVPjg4mNhrbjdubGyk/uTsgZWVFZXLZa2tbR4AX6vVWtYEwIX/7fOqnd3mNjTj6SVs/FoOsjkg4oe9RiCOoEOzuZXFwrP4AXS01bNOpNZDgZlLjAt/e4mhrEDjbv2Eg9Dfx7I/Oar6+yDEfWl0uO9dzrpmT4rfZ277fgS7loOVWTvoRc+Cwu6uVqvprKkY7HLhXu2eZTey05py+8eJBByazv9+X3Q/PjdsW4hi7LvoP77DXttsNhMYmlX6gz7t6OhI+g/sg5IXOz3/ysqKSqWSVldXtbCwoPn5+UR8orwYz+C6yVndnukeQWhvo9tbUY/yPuSancaR6zio6hls2CdOJHOJZAW3BZ0k5dcnqy3qA66/sbGRsqci6M/3mQPob/rLswR8XHkenomz1IaHhzU4OKje3t5EUIt9lsvlVK/XNTExoXq9rsXFRS0sLGQSpA5bPPjgWQJOHEB/e2m9Wq2WSYK9mXKsvw9O9gWiP/XUU/r7f//vb3v9J37iJ/RLv/RL192ooyJsarncZupmNNYRj0ZSwsWZ0bVaTdPT02nzmZyczCxH0WxupigtLCyoUqloYWFBCwsL6b3DFDZQnEAOhMIhJM2Iz2UB6PQJCg/DCKfbN3L6emFhIRktt9122zUjmRsbmyUvqGtOEOJa/bW8vKz5+Xk1Gg3NzMxoenpaq6uruuOOO1ocl1tJPHpaqVR0+fJlXb16Nf2QMt3T06ORkRENDw9vG5fDEjf4hoeH03gABJMuv9P3MXxHR0cTEM+czBLu19vbq6GhIU1MTCRw51YSjG5Sy3p7e1UoFFQsFjU8PJzS2EkRLJfLLYDcUZHz589rcHAw/b8T6BznsINau/18fH2v18ySt7zlLenvl73sZXrlK1+ps2fP6j/+x/+of/gP/+GerrVbOar620FpF5wTjF1Ar8gil1od2sj0zeVyLeVestjjzir2up3U+R4aGtp22Ji05WjhTHoNxfX1rTJwEURH3EmNKch+fX+udkFrv6YD9eyn9GF/f/+2vdFT1HFm3SmPGWKQDdbW1tTV1aVGo5Hal1Vr0sFlB1KzWP8OqHOmDNdYX19XvV7XxsaGqtWqarVaqn3OoZl81oMO7jShLwA7fR7RjhisoARNBGsYP77vDhkBA4AgnNrIkAewhqzhgY2Yrh0ZlgABWSA6zwbQDhDFsziIHoNJzJnu7m6trq6m9rlTTL86+56fjo7NA8GLxaIKhUJLiSG+R18yVisrKxoeHk518PP5fLIZI8jgwIkD09E+53cERHh+5oEDJT5vuX5cXzG4xTgyH1ZXV1M5NvYTzwJgrbH3UO7Ag1fMA+7nAGCUWyFt/lh2lqOqvw9CWKMEl+Jegs/pgXAX/zzELa7HOvIa03Hfw3/PAoTbMTk9+HY9z91OfF/zDG9IB84ujkzw9fX19J4HJFwnug6hhFkul1OhUGhpVyTKeTDRS9Z5ffB2wr64sbGhSqWiSqWSdJiPYezzyMb28WsHovN3u/ZHfe4BAu6ZxVCO+z+60u0zJAaw47V8fHjNX3ddKW2dB4D+ygoso9PQuZR2yeVyyU6LfZQ19zwT3IP82DdebhBbZ3h4WIuLi+m5bwVplx3gBAv6kr5DJ/s5LcdytGRf6NDp06f1n//zf9bzn//8ltf/83/+z9vYgc91YUPLiqyyGH0zjFFTNlUc+3K5rMuXL7coQf/+3NycFhYWUk1I2nBY4sYJCps0HdJtcfC8Jno7EJ1NFGeZ/+kTdxCInMMCuHr1qmq1WmLqOlPP02tmZ2c1Pz+fQMbd9BeOJkyhK1euaGNjQ6VSKTnihULhlgLSYYARvb9y5Yrm5+dTDVlq7juL7WYA6FkCgDUwMJDAllqtlsnsiBKNnJ0+x2//zq0kBJ0AFYaGhtL8Zr1tbGykmndeL/1WiOYjBxEJh524k4yPj6uzs3MbQ3xmZmYbkxw5ceJE5ue7uro0Nja242faXXO3cvLkSZ09e1ZPPPHEdV1nJzmq+rtdgMwdRPRINPyj8+RgU9b+AvvVnfCowyVt0++AYbTTSy8RRHcmtYPCDnpmPR/3ciA07mP+bHzPmVRup3AfHGW/T5Ze8PXsTqADg4DADkJ40Bm9HMkEMLQiiO5sQwKrgBheq9xtCPQ2NT4rlYpKpVLaK539jp2xsrKSxqqrqyuNTUzFpn1edsydb67B/Il7YHTQvW/X17dqYdNmZzdxX77vDC8HDzx45HMiBiwcYKB/s2p5xs/53OH67iT7/HGyhLMaCZBwX//BcY/2IrZhnFNZoIQD1vQT7d9p3SORPeeBpixww8EGzyL1w9qdTOKsN4LDO7HIvS38zgoEeL/zDBGs2Y0chP4+lv3JUdXfByVZQS90GPqU9e/rMq4p9tK4PpaXl1v0t+t99I8f9uy6+2bNfQ8Ax/Itvn/xWYLargvI4KLP2Cs9SAHWsbKyks4VizZHBJ9dZ7vu3qmv1tfXE4mKTHIAddpB0BxiggOcsfSL20L873u665CoH7ydce7RTxAImBucVxcxh2hP0hb/ycq29EBwtG/5cXa6M9ld/8fgutuAbndxjZ0CQ349rhV/svrPgxCOD12PzjkIcb3M+TBklnrJG+wQ/INYgvhW0H/H+vvgZF8g+i/8wi/obW97m/78z/9cr371q5XL5fSVr3xFn/jEJ/S//C//y0G38VkrTLbV1VVVKpUWVo6zRfxH2jL8Yxpss9nUU089pYsXL6qrq0uFQiGxvXBuOFgTh+swJzxAJ+nFQ0NDKeoI+OlMdC+t4Q46fecbMCwpDrkgxR2mPg4Xaa/8Jqo5MjLSwl5bWlrS4uKi1tbWUjoY7MHdCEp8dXVVTz/9tJrNpk6ePKkTJ05oY2OzLMqtVNOr2dw85IISNN/61rf09a9/XeVyWZVKRT09PYmJTkrcrRAAcGdwYGBAt99+ezKyqtVqmhvR+XNjxmvi7lZgF97sA0BcWCf5fF5nzpzR5OSkxsbGdOrUqZZac52dnRoZGVE+n9fS0pJGRkbU1dWVgku3wvMclhLv6enRK17xCn3pS1/SPffck17/0pe+pDe+8Y2Z33nVq16l3/u932t57Ytf/KJe+cpXpuDSq171Kn3pS19qSan+4he/qFe/+tV7eZRtMjc3p/Pnz+vkyZPXdZ2d5Kjqb+Y/EsFj9gIH4Zy17Z+VlBw516+Ut0J/xRqi0Vlm73KnDTAMIA3HM4KJOFiR6Ux7nRGTBRw40Oef5X/2E/ZH17k4allAQjtmlb8vKYEUOH7e9x70pg30udeP95qcXCfaDOztZN0QYCVgLCmVWEPH8xt7DJZVvV7XwMCABgcHNT4+rlxuM72Y50Av1mq1bYdeMSe8xA3sx3gIpn+PMY8gN+IBlrm5uaTHL1y4kLKOcJzz+XzS9dgyzFMCA9yDtnitTgfYmY+A9JHRyaGYCGPg84g5hH2WBUIAhmTZXxyaylqhBIHbzHFuR12P3ecBFeZ1rN3rwHJcW7Sdz9EXTgYBePFggINXzInBwUHl83nl8/lUSgjxcaFMG9mVniXDZyMYEbM0PKDAd7LsGubEbuTYCb95clT190EK+5ekBGB6gMszuyB3ObAota4jrolOdoCPoC97NExqzulxhu9h++MR+MQf55kdKOaZsXPINEI3AsD29PSkw1W9LAn97D6Zn1MhqWVfoj8ozbm8vJwIgFlkAZelpSXNzc2pu7tbhUJBnZ2dKhaL6ujo0NDQkEZHR5Oewsbq7OxMRCM/dwQd5brEdbGTMxg/H9OYaeCfk7b281qtptnZWdXrdU1PT+v8+fNaXl5WpVJJ+zqYAZlT2Dzobp7HgXS+6+Cz60MPDnNN1wsOsvvB53HOeilEB4yzAh5uA3hAiXVCG7yfXQ/T714zHbvwZgn2X29vr4aHhzUwMKChoaGE9TBOPi9g4Xd2dqper6dgwG717I2SY/19cLIvEP2//+//e504cUL/8//8P+vf//t/L0l68YtfrIcffrgtMPFcFncoPELpDGw2RY+ASptKjcjuxsZm6nG1WlVnZ6cajUaqG+onLd9Mximbvm9+fiikH/aEQ+eOFeLGDAra+5EgAxsrThFGDP3sjrw7uY1GQ6VSKdVWK5fLe9pY3EirVquam5tTT09PAqXz+XwCAaSby+h2AIkIeKlU0uzsrKrVajKIfLyiIr6ZQjtgynt5Bim7Dh3COGUZsu2eL0bkbxVhfyCANjw8nGqiO6DXbDYTmEggrl2pi5slh6nEH3jgAf3UT/2UXvnKV+pVr3qVPvrRj+qZZ57RfffdJ0l68MEHdfHiRX3yk5+UJN133336jd/4DT3wwAO699579eijj+pjH/uYPv3pT6drvv3tb9cP/uAP6gMf+IDe+MY36vOf/7y+/OUv6ytf+Ur6TLVa1Xe+8530/9NPP60///M/1+joqM6cOaNqtar3vOc9etOb3qSTJ0/qu9/9rn7pl35J4+PjLYD/QctR1d+Rie76NoLpbsjH16XWtG50TGTI8D1nYcXrRDAOx80Z2V6ayRlBAK1eO9OZOs4EQ1wvOQvPgV7+d4Z4ZK3H60fDPwvkjesSh4HPY+fwLBGgcGcO5rez1d2hdKCZ/onsPwdTHTTxMh6rq6tJJ66vr6ea0ziI2FaMOX0SA6wOWDiIzjN7TXOeJUsiocLnGMQIggSQADw44aAI/exkhchQZp44YOH39znNPPHAi7fT5xH6Nsu2i8/n68xZ4XH9tWOiO/AvbWVTZOluPpfVLvqa+2d91z/nrHtfa7zmmRfMPeYGzjgAkwPcPo7Y0s1ms2W9ZEkEUOLeENvn6zUGDK4lx074zZOjqr8PWrIAzbjHIL4/Zq0L11Mxw4fgHzob3eO+6M2a804WcEDY9VT8vNTad45LOGEJXeCfdx99aWmpJVPeA6q+v8NEBzjeTclJsA50Nnq7Wq0m4N7P/ICJ7jYAui2L5e3zgSyhaN/FPT+rjdKWLoCdz9kW+N4EHqQtckOcY25TxKCx9/9OPjt6Ht2VFRhoF1D2+ePgd9a8jrZ2OzZ6DOBEW93HxckFN3MtMQZeVYHf0eZD36PDYxmYm6kHj/X3wcm+i/3ec889N9TRP4rimwolGSifQb1mjwCz+SwtLaVo5eLiohYXF5MD6Gw5N+wPUzwgwGGelDMB+KS0CWxB/460PZUubjLuELhSQ6k7Wx0ljhPNIVPOrFtbW1Oj0Whh7O9nc9jY2EhZBhsbG/rWt76ler2uM2fOpL4oFAoqFAo3BZReX19XtVrV0tKSZmZm9Pjjj2thYUFPPPGELl++nOqUjo+Pq1gsZhpWt4pg0EibrPTR0dHEXsia983mJjPk0qVLkjbHanx8vK1DirNer9c1Pz+vK1euqFQqSdo6RM2NxcM2jmFS9PX1pRroZA04w9BLJQG2d3Z2an5+/tDaei05TCX+lre8RXNzc3rve9+r6elpvexlL9MXvvAFnT17VpI0PT2tZ555Jn3+zjvv1Be+8AW9853v1G/+5m/q1KlT+vVf/3W96U1vSp959atfrc985jN617vepXe/+9163vOep4cfflh33313+szXvvY1/fAP/3D6/4EHHpAk/bN/9s/0iU98Qp2dnfrLv/xLffKTn1SpVNLJkyf1wz/8w3r44YdVLBb31Te7laOov71OsKQE6GHsR0fDX4vgGc6ys5Xi/o0uI7UzOqboZv9x0BNWDg6WO5bNZjM55oCTiOtGng+dirPq9oOLM61gJXkQ3lnLBCzZXwh883d0bNqB7c7ExfZxRxbgwZ04+g9wnP3ag6cIJIP19c2zPrgefeTZYMwPLzEHOMB5MmTycYgqtTyddez1ztHv3j4Hw71MDAdq0tcbGxupzmgErz1IT93Xixcvql6va2ZmRvPz8+k60SGmLfydNRZe05fgK9dwXZtVwx/7yu0yZ6J7urZfn7bS757x5QEcBPuXQHC9Xk8AtM957GHa0Gg0Uj1iHF4PZtAnPAP2swNEUXx/IRgU+9b3n8g+5/69vb3p/BLmF2xJngVyDGBUd3d3ChD5GPg68r2KPc9BLl8Dfj4AYxv3mZ3k2Am/uXIU9be0PVB10OIMcg9ikSnt+tv1EX+TBc3f6HN8Sf/szWCfs7/jd/teGUlsPK/rbX57sJW9i/fJ3OK3n1Hm+/jS0pJyuVzKCuc63JO9hprRUWdcS5grS0tL6ZDwy5cvp4Mc2ffJyoK1HkuVeoZWLKmFHqTN2BnoMw8OeIDe5wn+9+Lioi5cuKBaraaZmRnNzc212IixTV7CzgF0grAOQkfihD+LH5TuQVY+678ZPw+WeCAF+8fP5MvCNTwAjs7u7+9XpVLZ9lzMN68djg2HfdPf399CJnU7+bAwL9fhxWIx/eCDewAEjGFpaUl9fX1Jp6PXYzmhw5Zj/X1wsi8Q/a1vfate+9rX6p/9s3/W8vri4qLe8Y536N/9u393II07isLk7ejYPDBxdHRUQ0NDuv3225OzReoTSqXRaGhubk7Ly8t65plndP78+ZZ0sXj9wxZXjv39/RoYGFBfX5+KxWIqEwLIkLX57gQuN5vNFoWF84IT4Cx1TwP3FHiAVr9XBFCuZ0PxgxsHBwc1PT2tcrmcTqQ+ceJEqsl+mAA1fVIqlbSwsKDz58/rz//8z3XlyhV95zvf0fnz59XZ2am77rpLJ06cSKDBrcJAj+IlCIaGhlIqO0ZTljQaDX3ve9/T4uKiurq6dMcdd6Tn89IP0lbN+EqloqtXr+rChQvpAJW+vr4Wxe0sx8Nac6TzsbaGhoZUKBRSCiDi7S0Wi6mcy/T09E2PgN8suf/++3X//fdnvveJT3xi22uvfe1r9fWvf33Ha775zW/Wm9/85rbv/9AP/dCOfZ3P5/X7v//7O97jRshR1d8RRJe2H/Dnjm0745t1jpPMtaXWgy3RbQTBfX1KagG3cL7IJIO9FsuXZO0x3lavq8j7ZHrh6OGYxAC7pKRD3WF1VrHXaI7OgYPozhBy0JznyOVy24Ll6PL4TF7Xm1Irq6urKYjgjiHAgAOe1BnFVnImGw4fbUEok4Fj6oAI/wO0cFgz/+O80h+QBjy7zoUSdl7Cxeck77ssLS0lwL1UKqlarapUKum73/2uqtWqFhYWNDc3p1wup9HR0XSIG+PM/KQP3NnHEaQfOzo6UrkD2tTX15fGkfFzkNzXiQeIPB2cvqQNtAkgxkEQ7k/b6R+YirzuWVcxi8FrznJYLAEYytw42MAPbXLndnl5eRvTHvtIUssc9tIFvk/ARMPuo9/7+vo0OjqqsbGxBJY4q4++5Pt+2HCWve9kG9LdfS7ENeqlHFgbPueO5daWo6q/Y6DuoEEm9jdnkg4MDLSUVKLGMfsJv9mLFxcXk67ykl4EXqVsBvxhCIAva5q9kj2HwCp/+yGWZA15ppSzntmf8L+dfAa7mr0aXYr+djY/AL4Dzk4G3Eufuf6Ym5tTrVbTxsaG8vl8Oi+rr68vlYrp7u7W4OBg8pfYA7Hh6D8nBzh7nz0/Ygj04/r6egomAKKvrKxodnZW5XJZCwsLevrpp7W4uKhSqaS5ubkURPdydZ6JFFnoDqCjt+gL198O8Lv95fZHzG5EZ3swiDYwB/ycu53OTUMvUXZV2rQpyuVyS3a0YyJLS0tJZwOmM4bSpm1JhiD62W2QGylu8xMEHx0dTSRJt4lZP9j9+Xxe0hbpJtrjkehyLM8u2ReI/olPfEIPP/ywHnvsMZ07dy4tgkajod/5nd951irxwxBfiADOMJ1wYDHUiWbDGuvq6tLAwIAGBgaSwXuz08Wk7Wku/MTUZmev8b3dXNv/ZjPzUincFyc9sqpudN9gEFBzure3V+VyObGYGeNYk/RGCM/qKe6VSkULCwtaWFhQqVRSqVRKRg+KO6Yb3arihg2HZ+4UmABY6erqUrVaTVkJAwMDLQzTGAln3XV2diaj00GuyJxknu1FIca+3u08dSMvXidr/KKBdSvIcST85slzRX+3Y7XFAGpcF+708dsdCU/RbPfD9xzURnc5e5t9OpbBkFoB//gc8fX4DFnOhTtYWX3letp1uDtwcR9x9ho/7J38dlaXO030AaA+febtjBk/XNPvzee8rIaPH/fycfXn9GtRk7uvr0+1Wi3VgwUkd3DUn4M54iW1on7x54/94W3lu4AR9Xo9gcL8uI6Kz8c1Ijud+RVBVR+f2Hc+L+inLCcwzoH4LHE8pE27zdnc8TusBV8jgO1elgHBDnOwg2AOz8zajFkP/nfU4w7ue7/wTHzebc/ILIzr1temj7+TbHy/8P/92jyns0WjDcL1eM4ocV3sRo71982To6y/bxTJw9ePBxL9DC9+E1QC7GW/8f0dAC+yz2+m8HzYIO6L03b+bueDsq59v/LP+h7hmWWA666H6B//3/fLWD5kv4KO4MDO9fV15fP5lL0/MDCg/v7+lF2GoAsccN7JT4rzMgZLnJwBHgAL3/U3NeCzytZ4P2f9ndWOLP/Xn8OJF3w/6uiok9qJB+R3M488oE4QOJfLJfKI67asMjK5XK4lo47AOs/l+juOQ3yW6DNn+d97wY0iQceDTVm28rH/fTRl3+Vc/uN//I+699579c1vflP//t//e42MjBxku46kwD6fnJxUoVDQC17wAk1MTKivr0/Dw8MtwLO0NdH7+/uTEujv79fIyIiq1aq+/e1v6+rVqynqe7MmN2ysrq6uFBjo6elRoVBIxolH6vazmbjDzSaOwnLmYDzg5TBAdJTF0tKSvve972lmZiYxF4aGhvSSl7xEz3/+85XP5zU5OZn6iqjzQYmnYVHzvFar6a/+6q/0ve99T1euXNH/9//9f1pYWNDS0lIK5nimwLNF+vv7JW2VOGnnQC4vL2t6elpzc3Mp7bK/v1+33XabxsfHW8oWUCt+aWlJHR0dmpqa0tramqamppKxh/HMoXUETvi70WjsCkz3tEHmQBYw4ALrDYYD7AoMCNaErwvYeY1Go6WG782WYyV+c+Wo6u/oHDhY7UCffxa95PufM4GcIcRe2d3drZGRkcRCLhaLLU4rhjRgJsY/+4SkxObCwaA9DhhHkN+dBWdJuYMRyzvAXvJruOPlrCzSU2FoeWDVHR4AZ3caI4OXPQ49kxWc8O/7uHmg0q/ln0GcuQXTjWswfvSjs8/iuRocTErmWrVaTay2kydPtqSDU4YDgAUGMLZOrN/twQVnYfvcdFlYWNClS5e0tLSk6elpzc/Pq1qt6uLFiyk7ij4kdd/HByfVwXgYlR0dHek8GWdY0RbvU64Ps4p57XXHI6DEs7BmGGMfO67bbDaTDnNAhXWxtraWguWsS9hcKysrLSA5afsAXl6qgTZEJxn9yBzkGTic3vcJZ2Y6OzFmpUUA3QM0vO8EC9rvTrgHYXzf4toO6HNfxow2+T7ia4b+lZRYfh5w2I0c6++bK0dRf/vclw5unjgDmsMAe3t7NTo6qmKxmPxvZ3FLarGhAYkBR1nb7LM3c057UBhCXrRJ/DB0bAH2Nd+3Y0DAdXUut1XaJDLX2XP9YOgIjudyuVSn3Pez/QLozBV8/lwup3K5rI6OjqQv0d/1ej2VdqG8LHgCfeHBBg+qRvvNA7uuV/AvV1dXNTc3p+npaTUaDZ0/f16zs7OqVCo6f/58Cs6vra2l+6NjYya4A8LcI/YrgZN2wHH0610PuN6O12Q9+nfQE+AGnZ2d6Zld6BP8Y57VMzVZV6xNMjsgxpF12N3dnXxfxtozB8kC8Uw4z8qiP53ECGbgfcb1sJm8xBt6mDbUarVkP8byPq6vfa44VuW63v32w9pHjvX3wcm+QfSXvOQl+pM/+RO96U1v0vd///fr937v9zQ6OnqQbTtSwuYzMDCgqakpFYtF3XbbbTpx4kTaSHYCVGHOAlSXy2VNT0+rUqm0nHp82OJOmB8m6r/ZvK4XMI6RPZyp3t7eFNXF4cJRO6x6WSiMmZmZdF9ACRROsVjUwMBAMmJi6YGDaANKZHFxUZcvX1a5XNa3v/1tPfHEE5qbm9PTTz+tSqWS0hZ9nG4kQ/4gBWMQI84BlmiQra2taX5+PoEdKysr6u/vTzVTe3t703kEi4uLmp+fT2y34eHhFuYkipyyDBzy1tHRkRxu0vl2YtSwZiLLLDr6UdzIjYrZjRyUuBsWfnjNrSDHSvzmylHU3850iq/HUinxfQ9outEtbWU6AcwBpJJh5DXRs4xj3z/cKXCWjutvB1hhuDogxx4XA3ERRHcgmWfxABvfxckm6yafzyeQMzoatMP3QnfCANHZm2l7ZLS7AHSzb/qYra2ttaQNZ7Gu/D0Hbl0XeD94xkBnZ2fLQXBzc3OqVqtqNBra2NhIqd6MOUAjARX6gmd1kJcxcGfbGcc+Ru7wNZtNVSoVzc7Oql6v68KFC5qbm0u10JeXlxMQwDyIJXb48QAF4+M63pmZzlJ3woMTOwhqOFDrQRSeyZ3wrOA27cZO8mAGdgx/k6bvIJCX1OF+BJaZR16/1QMZLsvLy6nUjgMKzJUYAGC+kpLuY+d61udpFmOtVqul5/b3ncmGxLniQT/Wva9RDxKyt/lzeD/wnFxvtzbpsf6+uXIU9fdObNvrEddl+XxeAwMDCWQeHBxM5REBIz3rhvUjbZV7pFQie/vNZqA7Q97ru2OTeJkp+sH1k//tIB96PIt9zP4EiMj+GTNqYt+4XXS9/RaD7Q5+or8plQJRoKurK+3X7OHsfxsbGy3AaCwLJ7WW8fIgCzoQQLlcLuvq1auq1Wq6dOmSZmZmUi30paWlbXut2yYxkz4e5iq1z36LWVj+OcbY9YmPf9TT6CY+5+uTtqKror/LdQlSb2xs1oanHJKXv4PEBjmMeUfJGAL8TkChz7kW5DKvre9ZEASAuC92O20Fv3HwXNpOyuG6ZK1T9s6Bce9LJxq4XR4D5j4mhyHH+vvgZF8oHhNzbGxMX/7yl3Xffffpb//tv60PfehDB9q4oyK+0fX392twcDCBq1kpolHcgWXTWV1d1eDgoCqVSoq0HrYy903aWXgxbayd43u993ZFHlPL6FdXHochbIaNRkPz8/NaWVnR+fPn1dfXp8HBQXV0dCQGI+CtBxki8y/r+lJruj5KltItq6urunjxop555hktLi7qypUrmpubU6lUSp/FISUKfCPG6EaKO5LO/tsJvKaPurq6Uh0/gjAcOOblduLBbM64Q+nDvFhZWUljSGYIRhgKNovFKm2BdRwghxEGc82dYgwHAP+NjY3EPKE/YNKtrKyoXC6rXC6nYNuxHMtR1d8RbPLXpe2lFdBfscyY7x8ONOOkUmvUM3gczEYiuMX1AM9cbwFMuuxGd3oWC0ChG+oOUHpQ2QFnZwPhtDiw7tfzsl+RZcaz+v3Q0zuVhaHNBCMJjOIYOqBLUMHHyfsJu8MdkyzQnj5zEDiypVdXV9XZ2al6va7FxcXUR7DFcPI8iLu4uJiylNi/PTvBgyfx4FleX1/fPCC1XC6n1G+vG0+feBkCZ9HFeZw1j3weZs1ddA3jyljwHM604lred8wlD2A5MI2+Bfzu6OhoqefNnGLMcbBxksmk8+xNxg8AHV3u70dWNu3u6+trYbf5eQI+n7kW5/44yMBYAeI4uOPj66ntBOK5D/YqznytVks1fZ39T7+4HexzKc511qr/7yAUfXbsIN/6cpT19/WAO+2EvRIgFXsZ1rYH5rJ8Iddh+Gr+W9I2Ju5hCPOAwC163MFH3wPdjnF9Dcteai3fEkFYqbXMF3uQ17eOmXFRHBy+HvF54oxhXiPgsbGxoXK53FIyl70d/9f3eX57oNEDlbzmrGeux1kcKysr6RyyRqOharWqer2e7AJAYp9X8UfafvAnEgPl7ZjrTiqJ4+bBcn892m48s9sU2IFeZ5/+iusAO6qjo6PlYGwHrLGBPUAAwO36FUIF11xfX0/zDp+7s7Mz2VARR8Fe7+rq0uDgYCIhMGcYIzLcsEXd7sJWpJxyb29vyizw7DSy09HfZMi5PRD3u2Pd++yUfYHoPthdXV363/63/00veclL2h7c9lwXwPOenh5NTEzojjvuSCAqm8C1GMB8huv09vbqtttuU2dnp65evZpqPR+WOODrDHQiv85Cd2D4IO/vDhkgIpFBWH9svofFwkXhlUolNRoNdXd3a35+Xt/61rc0PDysl770pRobG9Pk5KTOnDmjvr4+jYyMJCaEB1ay0rBwoojK4nADCl++fFn1el1PPfWU/vqv/1rValVPPPGErly50nIATnd3t4rFYmKjH/T43EjBCHCGAens7VIrUbyU2VlYWEjfldRSziACYfx2w8oPzymVSlpZWdH8/HxiCs7MzGhxcbHlO5OTk7rzzjtVLBb1ohe9SCdOnEjAgiRdunQpHUr7l3/5l7p48WIyTHwe53K5dMr7+Ph4aj/rbW1tLZWlIZjCgam3iqI+joTfPDmq+tvZLzsJe7QHe71khX+f9zC+h4eHNTExoZ6enhQIczbqTm3jegCIHFQYGdPevqg73XF2MJtgnus6Z4H7Z3G+cIIAFjo7O9NhxQQMokMJSMv/0SmAhc17vObOfAR8cWbZU7ke+5k/N33pwWTGyD8XHV53cnAs/VBXZznh1OH0zszMaGVlRX19fclxGh4elrSVDce4LSwsJHCT9kR2I23yQzolpeAogffvfve7Wlpa0vz8fDpwi/6BVUl6NPrPg/HOsvc+i06wByycOQW4ynzp6enRwMBAC8jiaeDMFQexYXgxTvQD2Rgc2AqgXK1WW4DuXC7Xck4J3+U6zmZHOjq2UsF9bWMXOuDSbDY1PDysZrOZAG2CJzDgCYZ7AG1iYiLZCoz1/Py85ufnt42Zs9xpJ/V6AQYIzABu4MzXajXNzc1pdXW1JRDO2BCs8LHw/SQGUNxHYJwj83Q3cqy/b54cVf0dA1zXK6xLWNns25OTk+rr69PExEQiNqGLfD1nBcDYA6RNUC6fz7cAgoclHvyHSY99UiwWWw4W9WeKAXD2C/elI8BHAMIDdtL2YOfKykoqG8l+H0lNBxUkcf1OG/zajUZDV69eTfZDvV5Xf3+/6vW6BgYGNDIykpjElLCLPnAElOkvB1M9ML68vKz5+flUQvR73/teKscGgQ3/00l+nh0HjpHVx/zP2HsGEfotBmt5DvASnpO+AsT2TDpJLTYBZXF9/Ai+oN+6u7tTgNv1DwFvdGqpVEp2LzYF96PtuVxOhUIhgdx+rVhOh34HuAbQ7u3t3XZI9vDwsIaGhtTX16epqSkNDQ2lvmw2m1pYWEjjd/nyZS0uLmppaUnlcrnlWTY2Nsvl0gaCWPTf2tpaCqaUy2XNzc2lsjbo77gmDluO9ffByb5A9D/4gz/Yljr2wAMP6Pu+7/v0x3/8xwfSsKMkbGDUhILF4s7Atb4vKW1cRP+oP16pVG4KCOoOFptuZILfCADd7+/RXJhNDhrsJkBxI2RlZSVFYFE2tVpNw8PDySkbHBxMzl508KPxIW0ZDig2IqW1Wi0pEJy3ubk5Xb16NR2mWalUtkXXvVb9s008C4F5t9Na8qg6oBcOPAo+yzCJ33ewaG1tLRmdMMXq9XoLs1PaYqL39/drdHRUg4ODuu2223T69OkWEB1lztoGGHIQBDC9Vqul/aRer6dng5FPBJwsFQChW0WOlfjNk6OsvyO7Y6e939lVkRkdP+csNJwAfmKdyp2YJa4z22Vqsf9fq93u1Ebg2plFWTqQ+7ruiWVOIlNeaq3FnKWruKf3hetjz1BzQJ69ztmAzpDLksiEp020x+2mOKbuhDu4Gt8HxIXV1tfXl/Z79DggPBlogJE8H44W15VaQXTGh0PIsBXq9XpioDuAznN61p+DKj4G9L+z87MYhnF+uK3ANf0+/MBy4/oeuPHsQC8NwL25Xm9vb4tD77rWQWEPcNHn/M1zeUZCLOeCg8vzZWVuelAGoJ+2UJYPAgIAHPck+6CzszM5zM7wZK4BOGF74JhzLTLJSIXnOg6SO7AT51b829crIL0D9mSxOBPxWnKsv2+eHFX9fSPmhfuH7AkEHr0+s+vIqD8ia9h9XC8Pctjia5Zn47cz0fmsP4t/3+2PCIBKatErvt8xXtyfrCTf510HH7TsBERScgNfCXJdtVqVpLSHx9Jb7LFus7hN4eCz+2UQGSqVSmKkU+MbHU5A220071efY94e16+If8fFg8NRv3Fdx0WyfH/uhw2BHkdvgEOht5lz7dYBz4v+7ujoaDlYNNp47n/HsYHp7SA6eoxnXllZSf65P69jb0NDQxoZGUl2DXOITPW+vr6Ww9u9ZAtgPuVgySSj3WRBQFqk3PKtUPoJOdbfByf7AtFf+9rXZr7+Iz/yI/qRH/mR62rQURRYXfx4GY29im+0lIYpl8vb0pgPQ3yzjYaFK94bAWK7cvYN39uDImzHEPB2ZbVxJzBkN8JYAHJyYOX58+c1NjamZ555Rn19fZqcnNTw8LB6eno0ODjYYgzF63nNN04ih6lFTdeVlRUtLCwkp7ZQKCTQuFKpJGfVa6E/2wRlTjQbJZ4FFtGfIyMjmpqaUl9fn06cOKGxsbFUG9FPtG9noHBfaatsgLMamXsoVZQzCvYFL3iB/tbf+lsqFou68847NT4+3hIJ7+jo0MDAQIqId3V1qVwu68KFCy2lWNbX1xNjEfDezx6Atba0tKTFxcXEiDtMpsy15FiJ3zw5qvobNnYWG9PXsjtHOJk4ABjoLrBkEPYe1iQGvYN+/rf/OGDLHux7RTtDm/cjU52927/jhzDiJLitgV7ge17mwgHzCGK6OOPJxUF7BzQjAOsMYXfOcXa9X3G4aJ+XyYiAYtae7fse4+vBfT9fwoMBtN/TtHO5XHKMcLhgJDorKvaJl3Phnuirvr6+lJEAGO8ZVTh1Xs6DvvD5klWuBP0H+9A/j87CkfU+9XnsYAE6LgZNshx8b38kU8TrMZezdC/XwV5xXd2OpOE15t0ucIc7K9DG3HX7ETtseHhY4+Pj6unp0djYWDqwlJ+hoaEEpiwtLaW+aTQaLWO+traWWOXMZV8LXIM6/bVaLQUNvE6vz22+58Er1gbCmiMDgPnC2vIU+GvJsf6+eXJU9fdBzwv33yLgHAkufM6/4/ugtL18KRlAfo3DkhiMRxx8jGB5lsR920lV0ddpB7oTWEaXsZ8QUPSA52EKY8hh2ktLS+rq6kpnnnAeRn9/v/r7+9vaOxFEl1p1rWcx4pNzZpaf0RH1ogvve5Ac3QipAVvNA/E+zm53evsiYz8SDB1c57cHXqPtiR0DwO7YT1aAhvZ7cKed7o6YWFYgwOdntIWwaWCx0/6Ojg5NTU3pxIkTyf+Hie5YAvME/Z3L5VStVtMz05ew1L0kjWd5kHFABvjNWgPt5Fh/H5zsGkR/4IEH9L73vU+FQkEPPPDAjp/98Ic/fN0NO0oCiM5BZJTQ2Ct46RHyrq4uDQwMaG1tLaVfu4NwoyUrMu914rIiiTeiDVKrk+oOlkfHd/q+KxTEN5nr6dONjY3EKuvo6NDVq1fV2blZU3N4eFi9vb2amJjQyMiI+vr6NDY2lpxqDnhD2JRR1pQLob04RzjjDsxKSrW56Cfus59gzq0g0aDNqvnd0dGR0hrHxsZ0+vTppERHR0e3scZ3MoazjAyYqc1mMx32Rh/zOsyGF7/4xbr77rtVKBRaaqKzrkdGRnT69GktLCyktLcLFy6kEjEI5VpyuZzm5+d15cqVFmYiQRYcdD+Y5liem/Jc0N8cmhhBTAfQWCfOvIa9EtNg0QG+N7DunenE3gvg6IC0O+UE2/gOe7CD6OwX0ZHBQKdtrnv9e3w3Auhxf3M2mesL3ycc9HVxNpY/I044fev6y1lr7hw6GAAgTZ8zHjB13Ymk/7lmfK6oz93RxJnxsfRDUhHaCdgJINDVtXkIdalUamH+OUjtZYU82Eqf8X5HR0cq54Ye6+joSPNRUgubkPnJPI9BG/rH5wzEjbW1tXTIFwF5nPB42C194c/E3MWepQSJ2w+ROeYgvs8d2uosRp+jzmRHIKFEO5Pr+nj7OnRg3A8ZdXDD5wl9h43OfaampnTy5MlU1gYAzfVrV1fXNie8XC6nvgQEpx/dNvSAmNdk97+dGb+xsZEAfmz/rGdCvDQSqfcA86y5Ywf51pTngv6+EeJ6x7PJ2FMdtOR/B+b8N5/Dzs7n82k/PkwikgOUWcCln1uS9b0YJHeA3EHbrCzlnfwjCFv0V39/f0u21n6ek3buR9gza7WalpeXU6C6r69PpVJJpVKpheDodpzrbwe/3Z5DZ1EqiM82m5sHg+Or+57sPx7o5lkdJGcM2eOxedz+Qtej09y+8PIubnt0dHS0EOiy7CcfA9eZsYQN9o9n23mfua7OKvPr9mvW/JRa12gMGGFjeMCru7s72Uis066uLp06dUpnz55NpZyKxWJL/1COmMxtnqNUKrUEnJ0AQb17D0yg5/kcuvZYtx5N2TWI/md/9mdpU/n617/edjM97Ijss0Wic7dTdHgnaRe5O8x+z1II8fXDbIvfu137/D1+u/HQDkRHSUWDai8bojs9KAsUDPXEms2tenQoGmrSIjjBGAYw3D2A4iwrdwBhasdnfjay0KO4Ast6D6AbYwmjJx66s99564xL6h3DUkG6urpSAI2U8Bi8wLCnjQMDA9tq5CHRsIcJAfjkAN+tCKAfR8IPV54L+htnNgv49UwlFwenIhM3vu/OCcayXyf+HVletAPHwR0MdybcoXBGkgPBvrdnsZdwiH2/5zO72Q+yAsc8Mw6l67MsJ9zbnOUwRolAqLclMmzpP9en7SQLWI9BcsY3tsc/w9zK5XKJWcT3ADpxcr1cSxZbjHnU2dnZUjcb1lQWGy7LwcUZp488MyAriODP744wDmm0b7JsBbdn+ExMFc+aw4AJPq/oz2h7OfDNe36gn8/tOGb0c1b/RVss67s8RySJeImErAN2+Qx62LPVvO/iGGCXuTC36KM4JvE5PZASmaJZ6yqyTbn+bnXrsf4+XHku6O8bKe7PeXC4nc6JOjxLHzt5LO4vByVZbfO2xL+9ze2eKf7t3/egu/uVLjuR0nzfvJZPFcHkrOeO77f7eyfxADzBcDK3PVsYve2sZm9n1j3jvs7/7nu1a2e0CfzH7xX1uL/vgdMImsf7uMR52o58wHvcl/ngeq3dHHVyRNTd7fS392XsB1+rPtdie2KwDJ1N+UUy18Fd6Dc+C1HCffTYTtbE2tpaCxkBe8Brt9+KAPqx/j442TWI/gd/8Afp7z/8wz+8EW05lltUXDm4sxwVbhZAfVjtk7aYY/66t1VSiwMWmXB+rRjBdWfZHda9bihsvl5Hq1KppHb19va2RGm9D53JxPN2dHRodHQ0ZSM4MEzbicrCXMJx9jS9Z6v4GPuz0DdEnQcGBnTy5EmdOHFCvb29KhQKLYfuXE8f8F0A797e3sR8gKnQ3d2t22+/XYODg2mMo7CG+vv7NTExkWrsZX0W8Tnhxk4WKHQrybESP1x5Luhvym04kOgsHQeyvaQBZRNwstjjXSeQppvP59N+zTrGUYhApTserGH2aPZ+SoJgjHtpGG8vugphz+N5SRuG5QMDGD2QFfx1Vjg6p9lspnrNcU91Zy+WG+G+BCh9X23n+NImr/lN3zMu7oz4d8jE6+jYqq/J9enzGEyIwnccEHcnGic7Bjl4v9FoqKOjQ41GI/WJp+4CjEemH2AF45PP51vGGGDdbRPAZmwR7BdY3GQ/uXMXwW93rr2eKI6oZy35/Pe5G9nSHsxx2ckWjPrJgQjawXxiTkEq4IBf2PX+fX++rHnrgHIExyS1tAndzb1gWRJ89/Rt5htMR3Q4NVMdaI/2KZkWPrfdsWeuuI3qgT4Povlvv1ace5Aqurq60r6RxbrdSY719+HKc0F/3yjBRu7o6EgHGDebzVRuhPXQDqx0gLyvry/tjYVCQc3mZnYZ/he1r3eSaCdkraWd9Ja0ZRPQdvakLDJV7AvfC9m/YSVD8In7tbczBvDcR45gcFbgj/bjL8X9is/z7G7Dobf8Ga8lrlecRcx+yPXJ8OYzZOhk6TIA187OThWLxZR1R99RgsvLpHmfOLgsqcWecpKCt9P35kgUof9jRmF8Tp/LkE484HGtYKu3Df2T5Ts7eY3DPAcGBjQ0NNRy6G0kiGCTuW7lWR3QjvOk2Wy24B/FYjHZCAMDA+ru7tbIyEgippFJ52PidmR/f39aC1L7agScP5YFsl8riHIz5Vh/H5zsuSb62trmCdV//ud/rpe97GU3ok3HcouJb7AokRit9k36ekHJ/YgznbwdsW2eSsQmjqPi4pu3H2IhqQWY5rO7FT7rNbIqlUrLZ3YCdt3JQxF51BVgh02S58SQ9PplWey2Z6NEthev8eyDg4MaGhrS8PBwArExgK53nvr3vUwEh45Rc723t1cjIyNtWej+HLR5bGxMxWIx87MIxtCzTY6V+M2Ro6y/vbZvBKH531NA+ayDtdS6xtFBNwAY4oQ7q9ZrfqOHIsvHgTDawHc3NjZSymksJ0P7uX5WQJtyI9yL3+wzALBxzUXHCkctMl/9O+7Euo6hzEZ/f/+21GjEnS+pFfTLqiuflSHgfQqgurS0lOpOu3NHnwEwxPZ7kNwZQ/7+2tpaS7DZHXKvo09QZmFhIdWzBqyJwRDajnPnTHTa7U6wj7mPHfbXxsZGZikzhHngDiPPRhCC53AAiHbH0oOMKf3lrC4fnyyH3J3laEcxfsw/5jD600vcZelQL8eDfeMBnwjox9/tUulZm1kAuoMAnolG6rrblW4bezsIgsc5KW2dJ8D32V88SBKB77jO4hp3ezcSQ45B9FtbjrL+vlHiezx+F4FJD856uaMsPSkpgaeS0hoHrGPd7QSi+57j6zdrTVwLRPcfD2RGAN2v7UC3t8lJXAQDs8DtLNvA95uo79utdXwz7JNo8zj460Cpt2Eve5XbFOydjUYjBaYBUcvlcgqEkFXm/YQtQKYxvjbZR/QjBA1vo+tfruWBXim7nAq/Y396Vhz96DaM97XjNogTEnzu8zvqb+aqB9+z/GfGC1yCmvPFYjEFm9CN8T70jZdp8ef2eeDAPraTzxnWZ7FYVE9PjwqFQgLP3Wbhh8+vra21lJ2hXVlyLdvrVpVj/X1wsmcQvaurS2fPns1MmT6WbGk2t079ZYPG+N4JIMu6Dr8BRTk0sF3keb/ikXBPTY2ANMqQTclZRYctMfLtLAM2V5x9d2izFIJHEQE3HEQnmo1i3ini6EwgGE7cn+txHRiRURHG55S21++LzpM/Q1Y0fC9O060sce5joBBUoFa5s/xvVPCAsebekSVyrTXqhjgH0xwrrWM5KDnK+juCU0jWHu97X7uDJbP0gdR6YGfUIe7I8rezjHHe2ev5joOQzvYBzI+sLKnVoY3vO3AfnR/2P8BR36NwoiNDiPvwXdc7fMfthCxQDkc1OvfYRLC/CWR4dgBOtjP/0aPc2/ssBjfRtd42rzvuAXHXjT6u9I87yx0dHYlFLynVRuXaros9cO/BbMbSmVaMC9eFKed9Sf/7wZk+hxx88CASr0Xw2FnRDsx4DWHE66vSjgiiRxabg8P+mQgISVtglZdicwIE8zXaNFyf9Rsdbtoc53UUX09OFvE5Evs6K3vDr+HBkawAvgNRHqDzvvT15MGZCCjw/Rig8OcCOAQA9Dl4LLemHGX9faMkBkajXvL9yXWb75Pxb973NejrvJ3/5t+Jewht8eB93EscVHZd5OUy0DEx2E47aRt7BPtsZCTHvRUdEX1Kz6Dzv2Pw27EDZ3LH/bRdnzmI7u24lk+FrgUkxS8jSwgCBToaQLrdXMoC5QlEup6JOsCDmC583/dxt1d8Drht6G2KTHTv62h/Zkmcq1n6ye0rSduu5//7XKSMqgPTDtyjc/y53H4hWBDtiXhft225RiQN+n18jOM8j8SKYx/8WNrJnkF0SXrXu96lBx98UJ/61Kc0Ojp60G06csKBkF7LGgM2OifXEgfZFhcXtbCwkFKID8qwwiEg0spGGBU7AAJ1nj0l/DDFN3c3EFAcbng4iO7swSzQJBpfsEBgnVGShVOa2xlOKGZKi1Abm3T0er2u1dVVNRoNXblyRY1GI4EIO0VAvV0O5kdwPb7uP0dBObhBh1CyZWhoSGNjYxodHU1pZVkR8IMU1gSGbV9fX/o7shHic7C2q9WqyuVy2jeOohyFufdslKOqv33Pd2dYamWB8roDne30ZwwKoxsBVDkIMoLXfFbaXo4FMJn7+/kX7Nd8BgcCR8NBcWcOO7AYgwYeYEUcCMbZoURKsViUtD0w6zrf9W2hUEi6jPe9LArXkpTOaqDPpa0gBuVQIAagF2Fqs6/ikBEUpRyK76fOJItkhVwul95bX19vsVuy9KKXDxkcHEx9BSORA7t7enpSKZLV1dVUtodng6nP9fxQb5xoxo2yARsbG1paWkpOOgF9+pSyMhxkiXjdbgd3+/r60mdgaNMX9PnGxkZij3V2bpYx6e/vb5m/nrHhDHCfX+78EwTwYAilaLx2KfZVf39/spOGhoZaSt4wzwCl6Rtfw+50u03KGDNfIgjjfcg6p30ekPAgC/YErzu73vcL1o+L34/x8D51sMEDMhEokNRywK0fYOwBDwe0PAglbc9EuJYcpv7+yEc+og9+8IOanp7WS1/6Up07d04/8AM/0PbzjzzyiB544AF94xvf0KlTp/SLv/iLuu+++1o+89nPflbvfve79eSTT+p5z3uefuVXfkX33HNPev+P/uiP9MEPflCPPfaYpqen9bnPfU7/4B/8gxv1iLuWo6q/b5QA/nZ0dCQmumenRckCGj2oxZ7gwKZnobCGHVj1z3KtrAwZ9rXoa7sPC1iIzQBRqKurK+3V7QDbLHAUVrUzeaUt39GZ386w5vk88L20tJT0N3uQkwHwhSjpEYPJ3Nt1hQvXw/d29nWW5HK5dK/e3l4NDw+nNqAL8d87OztTRptn78W5RL/wHXw0z3bzsiS+f3swxgMTjUYj6XZsNnSOj38EnNnfmW9kSRJ8zuVyLYeAM7cBiGlXJBNkkVF8zvIMPicdxO7r61OhUEg+OH8PDAwkm41yKtzbfXifu+3WqOsz1ibj5TqR8XYbz2uZZ4Hr7BPM8cMC0iMZ4kbKsf99MLIvEP3Xf/3X9Z3vfCeddlsoFFre//rXv34gjTsqkqXEnUWD7ATquRPgYBvKKwu83Y/4xugGQ5aDzv/+nm9+NwNMd3FDydPenA0mZR/a5ZsmihoFhiKJtdWk7amAXB8HsFAoqFgsqr+/X0NDQ4lRQH2+UqnUouCu9bzudDnLzt+PoLm//myPssYIso+3O+ekYt9oFjrCnHAwoR1Igzi7AYMUoOKoyfXMu6PYH4cpR1V/O0NcamWSRXEHJMsRy/pOfN/3fge1+JwD664j2AdcX0YdFMGv2Cbfv90Jd1DPQfys++GkOTPI01yzADV3lJxV6/d0JzzqIvraS6Q5oyv+eADYGXoOOLPPR+YX13UQnb50fenjGceZ97L6CBDdGUu8JinZB4yV21P+DFFH+zMwx3wexMAODntkMwJSO4gR2YnuhMea9Fzfs+b8O15+x8c42kBZ5AQHreMa8DF2+9PnmQM+Wexzv663J/7Oes3b62uLOQ3I4QCZP0OcR75XZOmuCKRzfbdVrmVTu32bRaLIkrjv7IWFfpj6++GHH9Y73vEOfeQjH9FrXvMa/fZv/7be8IY36PHHH9eZM2e2ff7pp5/Wj/3Yj+nee+/Vpz71Kf3xH/+x7r//fk1MTOhNb3qTJOnRRx/VW97yFr3vfe/TPffco8997nP6yZ/8SX3lK1/R3XffLUmq1Wr6m3/zb+pnfuZn0vduBTmq+vtGigNk7WzwrPXvEvWbf4f30Y8RPPfvR/Av7h9ZvoMzfN3O8R++6yWkdmq/r/ssYpHvHa6fvHwZdgL9mkXo8ntH5rzrVO97svazcA3umcXKzhK/J+Ayv6XWTPCYTZTlz9MGxtiDjwTLsyQC4t7P6F/aG311t/O8P6OP78FXt0OjnRptM38u9E+WuL3gEgFv5lS0mTxo4viM28Tt7r3TuvTn9Gs6XkX7vZ/cP8ia43EMbqTsNN8OWo7974OTfYHot0I0/tkksJXX1tY0Nzen6enpFPn1qHM7h9+N/EajoUajocXFRV25ckXT09MqlUoHxlb1jY8DEb0WZVTyuVwupet0dHSkA1qyGHwHLVzbNz360llN3m5PW4vRb5csAyj2EQqUz2JY+Fh0dnZqdHQ01eO+8847NTg4qP7+fg0ODiqX26zNtry8rFqtpv7+flUqFc3OzurSpUst9SpdPHWrVqu1ZDV4ra/19XVVKhXV63XV6/WWA9woJ3BQAZibIRgfMBylLfYBrAzYixFouZHCHNvY2Eg1752FMTQ0pP7+fklbwFutVlO1WlWpVNKTTz6p73znO5qenm45TPaoyLESv3lyVPV3Pp9PKcLS9hTVCP7539L28gjO1HYGD8xdWNKdndsPJuN68TWvy4ouJ1jWLkXZa4a6oQ3Q7MA9z5XlkPszwWADbIXV5iBwdPa9Tx2IIGvKgwCUBnHWNH3mTHRnzXoJK2fpkbXV1dWlwcHBlE3kB1N5Cr33He8zPoAN0iaD3NlhERCJaeD5fF7j4+Mth3g3m011d3er0WhobW1N3d3dWl1dVb1eT88NyN7V1ZXqcwL+N5ubrO5qtdpiQ7l+x8nP5XLJ8fcUfJ/fMYCDU+nnoUhb7HoHAgARmF8EARqNxjYn3EsJOejO3OPZfe75nFleXlaj0UhryIkDHgRwID3ayw4sZYHifi1vExIDS3ze5+v6+rrq9XpLlkhnZ2c6oKyzszMB39Tmr9frLWvaxyHL1mKdRXYd7aBfYrkpvuvPx71gxfp4xO/5HuFzfjdymPr7wx/+sH72Z39WP/dzPydJOnfunH7/939fDz30kN7//vdv+/xv/dZv6cyZMzp37pwk6cUvfrG+9rWv6UMf+lACw8+dO6cf/dEf1YMPPihJevDBB/XII4/o3Llz+vSnPy1JesMb3qA3vOEN+3rGGylHVX/fKGEPlpSY0hwGyj4sbWdpR7Ac/5v1TVY5es7BZAfRfd3zuq8fB5qj7pbUshd6uRbX2fztmS4eeHMglvuzr8DK9X0QO8cBZtffXlIFvR3L4tFu6mJ3dnYmTAG96hl0tJW204+RHe86xHWkC/sg94S4NjExkc6ZQpfWarXkg0ub2XJe4opnimA0bcSO6+7ubgHRYz9LarEpvRSg61Z/Bu8H5gJz1ecT40T7/N6Mi4+v20kRUPf5mRVUwZ5wolfMuojlXLy0qZMufZ5GENnvnxUEj30Sn5vP+plBkBlWV1cTO5++LJfLWlxcVLVa1eLiYsqK9HI/hyHRZ7jWfT1A1dHRsasa7cf+98HJvkD0X/7lXz7odhxpWV9fT47I/Py8Lly4oIGBgQSmOqtmJyCdDXthYUGlUklXrlzRpUuXkrK7XmHzY8PjIAY2wrjhs3hJB/OF7JvfjQQu6RffxHG2ANE9eu8KebeM5Mi6A8CITDY3onits7NT4+PjOnv2rAYHB/U3/sbf0OjoqPr6+lQsFpPztbKyokqlov7+fi0uLurpp5/W/Py8JKVnc3GntVqtSlICQNwgWV9fV6lUSkYCAIWnyD8by4W4AcqzALzA7iclnNR0gJTDANJZA5Rdwoj3kkA4zsyp+fl5Xb16VVevXtW3v/1tffOb30ypkcdyLAclR1V/s8Yxit3wdYOafSIr48f1hGevIATENzY205ijQ8S92GeizsHhpBxYvV5P2WSeKot0dHQkZ8XZyP5MHkDmgCsA82az2QI8ehkRd8IB1KNDg86nL3G+0LnN5ma5FGpp0y5AdNeH3ufOWnPAERDdv5fP51UsFlO6uh8ILmlb3zOmgOP+fMyPjY0NVavVZDO4OIjrZXsKhYLGx8dTBhnX6e7uVq1Wa9nbITbQR4DtxWKxBehAP5TL5URUQI9nAaY8OzZaDHR4sMUD/T6faHtn59YBt9gu7pyjd8iScxAh3tPL9zA/sJGySqFQooYxx8aJ7EhfX7zWjtEXA0zuZDvY72vUg2SMe1xXBEQIFsX0fP5fWlpKoBpr2kEx2tJubOkv/nfwXNrKgOR7kdnu+4y3MQIn3p7IbD1MQsXi4mLL/5RocllZWdFjjz2mf/Wv/lXL66973ev01a9+NfO6jz76qF73ute1vPb6179eH/vYx1KZpUcffVTvfOc7t30G4P1WlqOqv2+UsL81m00tLS2pUqmor6+vhdzixChpe2YSQGOj0VClUtHy8rIqlYqq1WoiJ8XyJVzH9WY7cf0dQXZskc7OzkQIwu92EN0Zt0i8VgT0437AZ/ARY6ae62/27KWlpW0gugO62BzYH85EbhcE93b7HuvSaDTSvhnF9XehUNDw8LAKhYJOnDihwcHBBPI2m00tLi4m/xhbhtIqnu3PNV1HuP3S3d2dgtUe8HV9he738z2yMBPGDgGcp1/58f3a9TdtQ49A9vB7uF7x4ATf5X3X+a6/swggDqJ77Xl+mLMOovvvCIJH/MjnsttptI+xcbsHUHl9fT3p75WVlbSO+E65XFapVFK9XlepVNLi4mIqKei69zDE7YSd7uvziyDFs/Gg02ezXFddg8cee0yf+tSn9L//7/+7/uzP/uyg2nQkhc1nZWVF1WpVtVotMU/ZwD3K6xFEHG+i30TL3BE5qAXuDpanwvjG7WVddgIlIyvsIMWj6xEo8Y0lpsQ5MLAXiQEE7xdXmvEzGEAR0IUh7f/7Z7yOdrv+dcfQI8PxB+ajzxOcXHc2n20S06/8OVDkMTXvMMWdVwJp8/Pzmpub0+zsbALM+ZmZmdHMzIzm5uZUqVSeE+Vc9vtzLNcvR01/R50U132cN1HHuc6I10BYy16rm73VHUhnpHnQkj3a64i68+1Oa7QDnP3FZ730iZfiiHuhP6sH7aPz7Nd2Fpbvte5wuQ7Kar/3QXwOfiLI4IFwL53iTCa3RSLYsRNo4e11J82vF517LykSS7HwOX77AW/8nwX4ep8xB5aXl1v0tge9nd0YbQwHQts5nD4X+B3tI3/eGJTAhvA5v9O8YIz9c7Et0cb1611rn8/SBdE2y3pe/36c8xG8cAAMGwv2KbY7tjyv1ev1dKaNAwuRLZcF/sf/I9kj7ku+/ujzuPZj/7SbI3vVqQehv0+fPq2hoaH0k8Uqn52d1fr6uqamplpen5qa0uXLlzPbdvny5czPr62taXZ2dsfPtLvmrShHTX/fKIl6ynVx1o9ni8V9jz0Zv4rX4164H5s1rmfE17wHvNxm4ftSa1nIWDbN9WMWGznL/siyCRynyNIxnkHkZ66g072sh++3/hxIO1899ovbe35/gFwHdL20iNsVsa3u08exytJ50baJQZWIHUQ7M45nnDtZ+EK0AyIo74S7mC3Qbs5Gm67dZ/y6UYdm/ewk7fT3TjZ8OzvA70X7yPZHd1cqFVUqlcQ6JyiGHndiy2HJ9dxrLxjHYfvfH/nIR3TnnXeqr69Pr3jFK/T//D//z46ff+SRR/SKV7xCfX19uuuuu/Rbv/Vb2z7z2c9+Vi95yUvU29url7zkJfrc5z7X8v4f/dEf6e///b+vU6dOKZfL6f/8P//Pbdf46Z/+6W1z9G//7b+9p2fbFxN9ZmZG/81/89/oD//wDzU8PKxmczOK88M//MP6zGc+o4mJif1c9shLs9lMNa/7+vq0trammZkZFYtFTU5Ops3dmUjN5mb0fHFxUSsrK7pw4YKmp6fVaDQ0MzOjWq2WNrjrlRhBJIIcT/xmg3OmT5bQLthIBwliNptbh1y4o48ClZRSWvcDml9LYPJ5xBbjy53Snp4ejY2N6bbbbtPg4KCmpqY0MjKSmG0dHR3JIOvv79fS0pIKhYIWFxc1MjKS0sqy6tOiyGq1WoqiV6vVbVFMAjQOHqysrCSGdFZJg1tdMFhIna/X69tYeJ5CFg22Gyk43y7NZlPPPPOM5ufnlcvlVCwWU/YGLIu5uTldvXpVjUZD58+f18LCQnrOoybXA4Yfg+jXJ0dVf+P8uMBUckfAnQzYSOyB7jhxPQ+GUXoDFlCtVlNvb29iN2WB+O6sYLCvrq6qVColhnkMZnqb/MAo2se+zp4HGOwOIpk3Du4CRnuwwNm2tDmWY3H96c/k//veGtPB+XFwMWbYwKZxJziXy6UDJmGyOZObfuLH28w1/f4w/UjBhuE1MDCg9fX1lJJN4Lunp0cjIyOamJhIQe7e3t4WXeqgBn3hDGuIErlcLtV5dTB6fn5epVJJXV1dqTSbMyP9ntgyjKMDKcwTdMby8nKaE35Nd7yxmWDRMfYO2lN2xfdsrsP8jDpqaWlJzWYzfcZT15kftLdcLqvRaCSHPLYh2rdRvzqwwGFlzA3/23+znjc2NlLZGi+J5/OLMSuXyy19yrqC0eYg3OLiYhp/zwhwOy7aItitzCkvM0GfsSc4yMW4YXtibzvQTj95lqIDY1lA0U5yEPr7/PnzGhwcTK9HFrpLFoi1U3uzPh9f3+s1bxU5qvp7p5JH1yO+R9VqtRbmM9m/S0tLLcFZaWt+sG7JMEJvz8/PJ7CNgy4dSMzac64lXAN/2bOqY9YY+zh2iaSW19z/jkQBBP0Y20rwwP0sSS0BA/S3f9/tL7ex/BBU2og4SO+lM9ApPIN/lrWKzcBex3d7e3s1MDCg7u5ujY6OanJyUv39/YmR/v+z9+9Bsp/1fSf+7rl399zOnLuIBEJAjCHxelGVSmRtQRxw5GyicAnsuopiE0OhUlWC0O6yVkBrQQIU2KWcsgUmVJEI4gX0h4u4XKFiib3IS1BtRVyyGzubNS5ZEtI5Ope59HWu3b8/5vd65v39zNMzPefMmTPnqD9VXT3T/e3n+9y+n8v7c3mibkbf4aedzla2FJ+xPg6W++/5TQTFOUQTvgx2gNzwTDoHqtFVoqPe8YVut5uizeH/DpBLW5Hm/hl7ITpt2BsEb3mf3UlDYAiBneBQnunl7UXHretO/rxF/Z21937yt+vljMnbQvcH//CMzqirS1Kr1VKj0dDKyoouXLiQAlVzmQ5Xg/wZ7OU0yP2GudiLTD5I+/uwn2nyN//m39S//Jf/Mv3vJS37ocsC0f/hP/yHqtVq+pM/+RO98Y1vlCT96Z/+qT74wQ/qH/2jf5Rqyg2oSN1uN6V7ktqyurqq2dnZdII0wKy0xVCbzaYuXbqk5eVlnT17Vs8//3wq/7FfpR7cg+te2l6HivqDHhXP+EDvN4AtbfcEw8BhnjBfBzT2g1zYoYhhuCFwuDdALulk09PTmpmZ0dTUVALRJaU6qkNDQylVfHp6WtVqVRsbG9sES5wHjLdSqZSEON/5PDkhXIaHhw9MSOwXMSYMcQS6gzo5wOAgDaR4r06no0uXLuknP/lJcqLxTLG+RKmvr68ngOdGpQGIfu3oRpXfPOvsLf5GHrijFZkAaApP4XmMDmNpy3igvIWkBIQ6v+F5dlkBkF+r1ZIjnWyTHLnhD39zebqxsXXOCuN1eRxBb+9fBAnon/92fX09OSaZJ++bR274b32ucNz6/LpDF93F58xL0WB4xxI0OD4cGGd+MZYiYOgGuTuW19fX072QHxsbG4XDqCm9Rmk75DXjikYzOgE1N1kv3gE8SRVuNpuq1+upVqeD5DESjve4T30/Msa1tbX0eYxccxDc5SZ6DXtO2gJUWFNJyUHtzh7fd6wJOiS6pRvEXNNut9VsNgvgQC5q0sfvz2ucEw+siAY3e4B+RuArZv6xd9bX11OtVBxxPFeUZHTgyfeHAzY7kc+fj8mfV3cK0X/aBXRh/iKg5eChO99ywMRutB/ye3p6ugCi5+jYsWMaHh7eFiF+/vz5bZHk0KlTp7LXj4yM6OjRozte06vNw0Q3qvx23rCfxDOM/Gk2m8mmxYaIdm8vh/Di4qIWFhYKzlG3P65UN42BaQ6ke6ZQdNJ7zefh4eHEg+AD2KUOGjrvjDiC/94jqldWVpIuFYOvXOZ64JyXxUOOO3m5UtrNUQRSua+XWKGtsbGxBF5PTU1peno6ZX6Xy+XCfHMGydDQUCp70m63ValUUvkPB9zhnzGwzfkqxDz4Ie5eosxB9Ij70CfG6Wvu8tvX0mUrssF5PX+zl+Kzxtrs5Fz19fcMOignQ6LcRo5F3cmdIchpB4nj8+GfeW195os9sba2pnq9rqWlpYKTxnV8AivA1ni24547CNrLvS7HWXeQ9vdhP9NkfHxcp06d2tOYnC4LRP+3//bf6rvf/W4S4JL0sz/7s/riF7+4rRbdgIrE5sUrPjQ0lAwngPWJiYl0Ld7N+fl5ra6uanFxsWCI7jftBjq7EHbGRjRPzhspbU+1v1xyYQuwkEtP8v5eTWI8GCeurLjh6qBDTpHJfXc54D/3RlAjxL3mHPeNwtD7etjJawvHVDLoajwfV0LsVQxyBw0kXZNDTAb0yqMbVX5HI8T/57McP/XoHjdSPeqb9pA7XI+sIzqd37lxgEGKEz2e3+Ayyw2oXCo2Ts8o4+DZMeIYAzoC6JKSQeWRZh4FRVQzRrnLIwf3okLugKFHL8U+M7de3xOHNA7oWGIlt94OKHsELnPJfEfyOtsYlBiPXj7GM5rcqIzGvJPvF+QrYwU4BkQHgHEnD2MCDHDDn7476Bnn3+dofX2rTr7/hnlifh2IYY+7QRvB5ahL+Jq4gwMACucHe851xUjxvlF/dHDa18TX2cfnfY5z5kEhvkdz4DfjYs2Gh4fTXPk6e1kVB7n9M0ACB8n5259TjzjkGYhAlPfXnWP+HveoAxRcd9j0jrGxMb3lLW/Rk08+qXe9613p8yeffFL33HNP9jd33nmn/vAP/7Dw2RNPPKHbb789OQPvvPNOPfnkk4W66E888YTe+ta3XoVR7C/dyPL7au4/5JpHGktbtaRddkrFSHQiWB04j6Wq9qPvPL8eeQyPc9vMAVHXD9xx71HtyG93vO5E3qa/+M7nx//29nsB/y4vnAfze++/tOWQjeTgs/NTnNjxIMuoR7hTwW11B69djrvDcbe19jmYmJhQpVIplLJxx3K0+yG/F31C5jDnvqa+X12eu6x1eZazjz3YwPUnnyvwHs/w9PmI8xQxDpfl/h73lstl2kJnzO0d779f49kUZG8SgOLzRqkmsvgcV7oeKGa6HQa6Hs40+T/+j/9DJ06c0OzsrO666y595jOf0YkTJ/r+/WWB6DDmSCj2A+pNrmC//PLLunjxokZHR/Xcc8+ldC1AdB5wUsh5+EmV3e+5jkLRDebICJ1cyMVoQEmFiCwE2eWQg+Qxddm9rs5cXbHYT3Km70KMFC0XIP7Kgevx89x3/c4PgpJ0NsrJzMzMFGqXEVFBnb92u11IGzzM1OlsHvCztLSUDvmJStZhFHyACpyLQGo45KVbbnQ+epCe8AEV6UaV30RiOhjIu8uEKA8cDPcyGYCsPLe0TWkOFLp2u11wikWDkt8DvmG8YyBIW8++A+cO/tLnCAjHaFPKkAD+UootHujkQCDGRafTSXXafd5cLkUweWhoK7ra++lzzj1cJkrbazy7QUjUeTS2+I23Tb8wMHF0tFqtBIDg5HfZSjkt9BJkOeVcyuWyRkdH0zklnnbN+rnT2vUTj4DiEK5Saevg13q9njIScJ46MDI0NJQOUSWLDfnOukfHBPvJgxtYn5WVleTk5x1djTIaXMf88TcZCRidroOxZgA1MbDBn0v25tDQUOEw3QikOwDkzhsHnKM+Rf+ZR3823NEBCMB94zMb7+egFf3hMFjW1EFoxpJz+uQCFGL6ecxiyenbrCtr73vG++JOIcYAwBLL67Bfe2XGRDpI+f3AAw/oAx/4gG6//Xbdeeed+spXvqLnn39e9957r6TNKLQXX3xRX//61yVJ9957rx599FE98MAD+vCHP6ynn35aX/3qVwsR2h/96Ef1i7/4i/r85z+ve+65R3/wB3+g7373u/re976Xrmk0GvrJT36S/n/22Wf14x//WHNzc9k09IOiG1V+93Ko7SfBc3B6Ic/q9XrBcS5pG1/B7mi1WklWwqf2a95xKEfw1/m1tGVLOE9y+04qAtuA2Mi06HCOjkK3pWPpkl4OW3i8B3G5QyACqV7Sg3Fx8LefE+Oyx0F4Dzakb/BCgGsy/IlKZ05dN/QMHeeNPs+uE3HPnchLz83OzqaD0b0Uj+s/cS6dxyOTojM7AvBRz/TsAWSwr5/Pveup0Qns2A76cDwbJQYUOCbjay5tBWBEXMQBeXcou+6ObsPYIj4S1wc9hZJL4AVLS0tqNpvpd76HJBXGdD3Ymzg7+q1MsR/yu5+Dwa/GmSanT5/etzNN7r77bv29v/f39OpXv1rPPvusHnroIf31v/7X9YMf/GDH8nJOlwWi//W//tf10Y9+VN/85jd10003SZJefPFFfexjH9Mv/dIvXU6Trzhi00tbHjCMQQedS6VSwSDcKd3pWlH0UntKkKTEeKWdo7d2Imdybhw4s44eSunqlJJxcsPOo/1yBq73L9ff6M2Nn+2FSJ0bGxvT5OSkZmZmkvADWIjCdy/rca2JCDfGs9OeutK5vFKK6+3A1SuVBiD6taMbVX5jbDiQmdsrziNcYY9GRc5p7KBUNEyiMRRBdICqnMHtvIFrHehzwzj3ewcZc69eoCAGKvdyED22DcgXI5p8Hv09ji0a37noJJehzF/8jbfra+bz7ynMHqFDvUOPSvP5wUj1fuTmLu6tKHdyugrADWvrQEEcI3PhB6PlQIzYn9365HqUOz742+ufYqQCOjho7XPfa13oixvhnkrthrqkwj34P0fxGXWwy5+THPjMs+vfOWC9k2zxucMwd2ItS6VSmsf4+1iaL2Z4+B6O/c+BETEy0e/lYBigleuqccwOQu1GBym/3//+9+vSpUv69Kc/rbNnz+rNb36zvvOd7+jVr361JKUSl9Ctt96q73znO/rYxz6mL37xi7rpppv027/924W6qG9961v1rW99S5/85Cf10EMP6bbbbtPjjz+e6qlK0jPPPKO3v/3t6f8HHnhAkvTBD35Qjz322OUMfV/oRpXfB0HwHmSxy9MYvORAKs65eL5Ujh9fCbksy4GljMGBTmSJRwg7n+D6oaGtrHf/nDE6ub2ey/KmPQ9Sc8DcZWfkWTuNG/6Z01MA/nPgqQOgUlG+R77Z6/7xmohZ7IXnITeR4V7TPq7vbsQe66XTenusC9dER3Hunjn5He/lf7uDO2Iv3gZ9j33lnnEe6L/rFXxOm75HvP/xvi6rc7quB6PeKPbkXsaxH/L75ptvLnz+G7/xG3r44Yezv8npojvt/9z18fO9tpmj97///envN7/5zbr99tv16le/Wv/m3/wbvfvd7+6rjcsC0R999FHdc889es1rXqObb75ZpVJJzz33nP7qX/2r+lf/6l9dTpOvaHKByN8uyD1t5mpGGnBv99QjEPnbmbRHf6NkREDBAQC8vPFgs5wnNjJt2vbT03EsxKg36GoD6FAEAbyfklSv1zU/P6/19fVUk5EohlKplICLRqOhhYUF1Wq1FGVNlFo/5CDEiRMn9JrXvEblclmnTp3S7OxsUrI6nY5mZ2dVLpfT/F24cCFFvkUF5bCQ77d6va6LFy+mKEOIfUP0gO8XB3muJrlwcoObyMQInLwSaQCiXzu6UeU3h2M6UM3z7jW3I8AaAWi+Q+56hC1t0KZHu2KYU2OV1F1X7B2E9HTsKEPoG4Qs83tCDvqWy+UUAeWRVx7BwxwhW6hp6SCBGziefuz3AijMGfgOMjh46X33z2L0vwMaPn8Al64zOblDwA0oDG/uQXS+g7HR+YJO02g00sGfXiPV55/f+2GinFkTswkkpQj39fX1VAudz0ZGRjQ7O6sjR45ofHxcR48e1ZEjRwqGPNljfk/nqW6wE92HLsbvmRO+d/2gVCql6H7AV/rqc+T7NjeX0Xhn/ZrNZipnwz1dd/TIR3dcRVDEgQ/2JG3EtHe+Jzovlm2IFPdXBJL82fQgEl/nCEjEaFvXrb0mvs8b4/Co/d1sAeczjJM57aUH5bICetFBy+/77rtP9913X/a7HKB911136Yc//OGObb73ve/Ve9/73p7fv+1tbzuUusaNKr8PkiLI5s8F5LW2ed7Q43vxgislB1/5WyqWXsMhRia2B+QQGez80TOMPSrdx+r2s4OO8N8Y4R5tfdeJXJ9yvYD+cZ9c6Q3XubwvUNQ/+B3XUabDHR/NZlOLi4spch25z9wyPjAFghZbrVaK4u6H39G3UqmUAtfGx8d1/Phxzc7OJt0D+Ybc4x6+F30P+NkoMWDRHba+JtLW/vVIdpdVDla749p1RZcVzG+ns1nWqNlsFkoT+l7y/RPXNDqK3akTP4vOJMZJ7Xqu8XsjZ31deacEbC/w/5VC+yG/+zkY/Ho70+T06dN69atfrT/7sz/r+zeXBaLffPPN+uEPf6jvfve7+k//6T+p2+3qZ3/2Z/U3/sbfuJzmXvHkxi0Rtu7VzXkGr0YfXGD2AtF5OYjupx5jFCGkYOLdbjelaMMsMfKkrbqPTghZT6eDCTqITv/d6IDpHxSQHkF0r5lXr9fTgZELCwuSlADsUqmUxtRoNDQ/P69arZbA9Ha7vScQHeDk5MmT+pmf+RlVq1WdPHkygegItKmpKY2NjandbuvcuXMJ5D9y5Mi22q+HidgLgOjsNyeep5gyftDANc+Ig+iAPK9U4T2ga083qvxuNpsJ/HRDwQFtZIIbbCMjIwm89Igej5ql9InXTfWa6S4LKfNACnGMcHJDBrkPr3WZ6YAWxocbjxAlaIaHh9Ph5EQ/xYhYxszhSfBIQHQ3ljEyOQTZQVNPMWeeJRWMpfju/XfHOEa+G4xuWLth6AdIOw9lzTyt3UFnZC2APaVFPNLc65MzV51OR81mMwEQ7XY76TGVSqUQLECpn+Xl5XQIpTtVuA7Dt1KpqNPZPNiM0gKTk5MaHx9PIPrExISOHj2ajAfGvLS0lEAdygl5Cr2X8PG9z/iQj0NDQ2l9WT9pK5ONuScDwcvORMDVozeZbwdWHLznMFUvRRB1T3eI056vdwTToxPBQXbmxPdijP72Zw1DO4LocS97Xxzc8LY8RT7qVYyX5831Yd7hS96fmCrva+B9YJyAL16SJ4L9hzHLdUDb6UaV3wdNDuQ6XwM8jLJIUrLr+P1+EjzFdQsHGN1u8DJgvc7VwA4G3EJmewYddrfLb+cVHsHL9Q64djqd7CGZOce662ZRrjtwuxMf8rlBZ/DgQ3e+MiccJEupKspOIL/9MGhKrzWbzQQSe4mwnciDAKrVqo4ePaqxsbEEorO20mbAR6PRKGSGMw8+TtqMgRXMJbpiDKwAt0G/YJ58vXP718H4KBfp5/r6etI5cvYs+8LxpLW1tXQQua+5v9DVu92tEoIuv33f4IhgLnyfsYfd3sbRRJCIZ68P6PKon4PBr7czTS5duqQXXnhBp0+f7vs3lwWiS9L/+r/+r/rf/rf/TefPn1en09GPf/xjfeMb35Ak/Yt/8S8ut9lXPOU8ei6EDuL+XibFI4EiE3bveKy/5Yo6xjEGcwTm3SvugpexexqOR/TGAy8kbRMmB0kxMkraHAdG9dDQkOr1eqq7ihEEUI7hXavVCnVI+1XWXAkjEnFiYiIpDazfxsZG+s7BH+bWD1w7TOTlBhwcj8+FK1QxMpHvr7aDIAI4uQjJVzLthyd8QJdPN6L8dmDWn78oU3oR17pSnuMvMQKGduNz3Sttt5dD3KNH+dudyzHCK34eHca58bpR4YdDeYRrjj/mQMudyOcw16de4+91bTTMeq1lLpLNo9d6lbqJ0Vh+f5wMyEPeAQ64n8smd5pKW6Cuv2JdcwB+jGbeHexlP3h7rn+xPjGb0UvMuY7n0XM+p+hvHrHFtb3WbX19PUV6ewk/N4JzMjkC1b7OroO6Ie1lF3aTB3HvMtc5Z4wT9+VZ8f7G59qfV4+0Y/5zADtz4/ejXXdQOMjg/YrtOJAfn69cH6LOvRcayO9rSzei/L4W5HpCBHZzMn03nrEf/eGd5xwHbXS+R/ntMtJ5Xo4n9AJSc7zX+Y1HM8d2c/Lbx+Igf+T7XOdyO8ojl2UeUR/5pTsaut1uyrTrdDopewugVlLi71y3vLycwFYAdJczvdY+2t8eaBCz6xwrQMa4TAEs9HVkfXwdaTNSzJCkrRj1HcfDnLvcct2gl00dyfdQLpiC9d9JfvfSMyLOEvd17K/rYvTnlS6DDlJ+H9YzTRqNhh5++GG95z3v0enTp/UXf/EX+sf/+B/r2LFjBcB/N7oslOxTn/qUPv3pT+v222/X6dOnD2XE6vVOCBRXnvn8at6TtHXAVDyI6+vrBWHgAg/hs76+rlarpeXl5QScDw0NqVwup98vLy9rfHy8kG6cA59dgXGPop+M3mw2kyfca6DFg2GuNkXBFCOyXn75ZTUaDU1OTmplZSWVUpmZmdHQ0FAheu3ZZ59VrVbTpUuX1Gg0etbQ7dUPoh+npqY0MzOjarWq6elpTU5OFgTbzMxM8o6vr6+rVqupVCppfn5ey8vLqlarqlarWQF90IRAbDabevnll7W8vKyFhYWkEOWUseXl5eSwaDQaqYRQuVwu1D++WuTACmV5ms1moabiK5kGRvi1oxtVfsPfOETRPwfUc/ngUZ4uzzwax5V9ZFo8MGt9fT3JP0mFCCLKS0jFzBSpGE3qEegOnmNAYXwRHRdB9AgKI5e9/AnyHflJJFF8Fl2G0TeMQQd24WEO8kUjORo4yHI3kONa+ffdbrdgsHlkmN8rgiDePpFhZBzESPT4W9bIswMbjYZGRkZULpc1Njamcrms1dVVDQ0NpT6trKxofn5eKysrWlhY0OLioiRpcnJSlUolrRV9IjKLMh4TExMpQ2xycjIdAidtGvpe9sYj4Tc2NtIhWTEFnN8AfrshTEo0bfs+o3QLe4ZoNw5jzUWieyQg5er8OeJAL7II2+12mhPfP5KSTkmQAc8TgAb94fNojMfnNjqliJpkf/lvNzY2UmBDu93W4uKiVlZWUvkZgkHIJGAPEyjilANrojPfgxUiUMNYfZ48et8JHTjeH8pF3ke9O7bZiwby+9rRjSq/D5Kc1+RklV/TS65cjT65/IMHuc7iYLYfbBrHAlAJT48Bb/CeCN56CRfP6opRv/63Z8dFhyhz6HKBPnqb7riI5OVfy+VyIUgM/Yu2aDcC/61WS6Ojo2o2mylLq1qtamhoKJVDW15e1sWLF9Vut7W0tKSlpaW0/siK6FSB0M1cfk9OTiZ9Udoq1QPPJ7uLLHTaYaxkksGjvQSMO1hWV1cL8huZgazzjMt4GGuce+bOZTL69MrKSjoMvdFoJMdETuYh44eHh9VqtVL/PHuR++QOuHVHkAc5cN34+HhaG39G2ffI7kajoaWlpRT5TwmkfuXcjUoHKb8P65kmw8PD+n/+n/9HX//617W4uKjTp0/r7W9/ux5//HFNTU31Pb7LAtG//OUv67HHHtMHPvCBy/n5nmh9fV0PP/yw/pf/5X/RuXPndPr0af13/91/p09+8pMF8PJTn/qUvvKVr2hhYUF33HGHvvjFL+pNb3rTVe/f1aQr2eiXS+6l84MPvSame6IxjohA5/RyvOeenoMiAPNECOQi6bx9DD7SiYj0giEehILTLwHWuDe0Xq+nGmLValWtVkvVajWl/QOi1+t1vfTSS6rVaglw3ct4EEhEnk9MTCRQnYPJEKjlclmVSiUpSsvLyxobG0slEajPehiIOVhdXU1R+hi0vQhgi6iC5eXlVEroapMDBx7hAIC+l+yCG5UGRvi1o4OS3wctu3nuYqQJwJODvQ6qScVaxtEghWIkuLfHc42cc1A7yqW492kzOn2j7PQILNrh9x6VxXduODMWZKen5uai2Jk3nyevd+oRbjEyPWeg8bnPrX8ef+eRS56R5Q51N5ZzRhH9B0SmFjrODU9z9qgo2iOggNInZHEBlrIPcFbgMF1eXlaz2Uwp2pRoiWONewHjHpAfhwVrGCPxCHJABwMUoZ9x7dz5gP7EHvMyMFEP43cxsi4Horv+w+/8AD/0N97RWXzfAtITyLG6upqACH9Out2tiPRcdghtQXGf+xjcIeR7lfq46Lhc7882/MbbdudUBKj8Nz5fOR7BnnQHhwNTkdhLcdzxmXCKkfP90EB+Xzu6UeX3QZM/h5GXucx2WXoQfXL+6ZHoUtEuJhM7yhJ+L21loPh3jAuA3uU38gQQ3eWv31/aysiLzlK3fZm7XGkYt4Ncl4C8BJrXQUcOITcYmwPMyGwIWYKzk8C+UqlUANEXFxdTQBtBWrkSc5EAxpHhZID7eSQxmt4d1t7XUqmUnO78z/rA91kf5IfPD7KEfro+3Ku2enz33/o+QG5jy/Yi5Ldn5rkOEgNOIsU9hix0Z7nLTJ4TrkNvcYc9+u4gEv3g5fdhPNOkXC7rj/7oj3a8Rz90WSD66urqFdee6Zc+//nP68tf/rK+9rWv6U1vepOeeeYZ/f2///c1MzOjj370o5KkL3zhC3rkkUf02GOP6Q1veIP+6T/9p3rHO96h//yf//OePAoD2nq4YOxuzMZIdAwF6nI6w+V7jwaC4SO8EQIOZnjaEsyO6DmYOMoFHlKiug4LuVEibQmxdrudPN0TExMpUg2hBJDebrcLB9n1Sz63tDc8PJwMQAfRcXYQ2c98Li0tpQiw8fHxQmraQZILcQDzpaUl1Wq1FPm302/ZvwAaOBIQ4p7Gv999Zs/yXDSbzVT/rlckw4AGdFB0UPL7WsjuGLEK+ET2U8xU4vnPfQY5mCypoLi7nOt0trKiMA5i5KhHYntb3MdrTLoxLOXTbvkd1/pBln4tffW0VgckdxtzBLj5ztNjc4Ys8wPfdeDfnQf+igY9xli3W4xwdsPeDSsHj1l/L7NBPxxAcQM/piHTB9bWDVAH0d3I7Ha7CTj3kjw+jwA37gxw4MbnG4MfMD/Kb/Yjf7darST30NdcN8sBAr7WHimIbhXr3cZ6uj73XOtGv697BFriPscxMDKydZirR6tF51YvcuPbQXQPvvAItwg2MQ8OCPhvYj9iJHgEi7wcT5wz359Ovo/jPf36uK60vZvD3gHEQVTz4acbWX4fJO0EivJ55DVXm1wOuA7jukeu3714ADyMZxzHJXwk8l2X5zEDzNunPy4zvC13vnoEtdejdlkXyWV2lN/eV5cx/vJSLMg+ZNLY2Fj63uU30cuewcdYot0W+5wDJRkj/XOdAbuQQC/kCtcQKc8YpaIT1u1jP2CVNUWXZI3cCUsfIujM57w7fhHLme1mw/IbbGB0J/rE3NM/KMpAxu/6QlwTd4Qz16wnMpsgT3+2BjSg/aDLQsY+9KEP6Rvf+IYeeuih/e7PNnr66ad1zz336G/9rb8lSXrNa16jb37zm3rmmWckbT5sZ86c0Sc+8Qm9+93vliR97Wtf08mTJ/WNb3xDH/nIR656H28kcuOBOt4jIyPJGHNvoBufDrgTBeWCm5RcP+zMgY0oJCOIjhAGRHdB4vU+DyPBzAF0UQr8wChXVvoVVJE6nU5yZlBfnahzBCWCuFaraXFxMR1eSnQiRjqe47GxMU1PT29bn4MgDOkLFy6o2Wxqfn5eFy5cKKTa5wiwhShLDnUdGhrS9PR0AtT7jbraC/FcNBoNtVqt1Od6va56vT6IQv//00F7wge0RQclv6+F7PZIbaJzcAhGQ4JnNYLeHq2OEzj+jqwrIoj8npVKpRAd3u12UxSMR3VJW5FitOPGXayJHSkCmJK2pdi6keHAMenCXhva23SA26NfHah1486NQGSXR7zxPS8ynTy63vULdArAaeQiEVAOxrrOQTtRZ4lR+hh53Mvvxz38EE6ivYhMGx4eVr1eTxGD7pxm3Mhdj3hmvdxZwhhpPwK5OIzpR6lU0tLSkhYWFlKGE9dxWCflXoiar1QqSSbGNYpzw71Y46mpqaSzMZc4qnxP+R7CSPdDa7vd7rZa5Dmdgjnhu0ajUZjTqDNJxYNM4z5mHA6iMwcOYkcHiuttfuAc7fFbL6PiaevsDe7F2PlNzqnDvMNvCGJwMAme5c+k8wAn2vD/41xHJ0g/NJDf145uZPl9kLSbHn4tbEqXZWQX5Qgw2EFs3vkb3QVQmXadP8NLc5HmHgznmTXIb9cfuJfzMnQR5Buy1LOkuA9jkrbK7CFzXG/LOWDh07z7Yem+fiMjIynj2kvQ+JkXzWazALbSv5y9GfeGy24H+ZFlRL1L0uLiYpLfBM65HuU6jGMt7pigfV8zx16Qd5SFc5nlEfxRfniAA3IQGdhPJDdrgqyr1+tpz3mJOpfPHkzh+zi3Xxln7APz51gLAWweid7PM90reOVGoYH83j/qG0Snnoy0ySy+8pWv6Lvf/a7+6l/9q+mhgB555JF96+B/9V/9V/ryl7+s/+//+//0hje8Qf/hP/wHfe9739OZM2ckbRaLP3funN75znem34yPj+uuu+7S97///awgJzIXqtVq+9bfG4U8+kkqejNjJHqMnpOKDynfOQCP0eHGQiR+57Ukc5F2hx2UjFFNUjEiK4Iel0tuiKFMEMnlgAAKDgY48wyIPjQ0lL6TVFAo9jt6OzcGqXgwCfVIPWJgN6K/UbCS/eCCXLqyCKxc5IeDMnGeBzQQ4gdN10J+Xw3ZLe0uv12mOKiaM8IcZHMDg2ugaHhIWymrHl0alX2pyP+d18P7HTRFlhLN65RzrLrxSp/cIPbfuXzuFQHrsjQXpe7go/NYlyERUPXoH95j5lmk6KTPRWv7b2MEVXQCsC+8ffrjwGksueFRbow1Gq4xSssBffrkcs3Hx99xnTy631OVGZ8DBy5/vL9E07n+tBsw5G2xB3wv5uY8RxG0djnrn+eIvcVYGCtz7FGUZFTkwOG4T/3Z9e/jvnAng//va+zgDvPuz2t03MTITdej2S9xXWLUoPOm3PzH567XNREgcD7YLw3k98HSK0l+v5Ip8t/dyGVL7rdR7sPHpC1eBJ+N9rvLd2wulwsuo2k78k+X4f5/BGwZS8x0ygHoubG5UzW+O7CNTMS5IG3Jb3c2RF4c+elu6xP75lgK98Qedeetl0Dz/vmZJt52XH/v114zjLzdqFPEKPR+xu9z6gER7gSXtmdj8hmYkct8yPvowLrrbLn/+wXQByD6zr8d0Bb1DaL/6Ec/Kvz/X/wX/4Uk6T/+x/9Y+Hy/Abb/6X/6n7S0tKSf+ZmfSZ6xz3zmM/pv/9v/VpJ07tw5SdLJkycLvzt58qSee+65bJuf+9zn9KlPfWpf+3kjUgTBpeIhUNHI6PVg+jW05572nFHlQjwKSI86in251hQN4BzwwXU54w7y6Ed3Priyk/OEI6hefvll/b//7/+rcrms+fl5zc7OJk92p9PRSy+9pBdeeEGtVit5ir3PtVpNzz//vCYmJtRutzU1NZUOLPWD+faTXOjVarXkQT5//nxKfevXYcK8c9gbJWomJyc1MTGh2dnZNM87RWrtRr52lI9ZXV3VxYsXtbCwoIWFBS0tLaUa94dhjx4GGgjxg6VrIb+vhuyWesvvsbGxVL/Ss56koiyLQLHXMI+UA8Rpg2wq7gXYyPUYRH5myE5RX25wIQ9jhLbLSowQB3lxGEraBi46sIuDgSwuN6xzRqxnTRFZDI/1CCru48+3G0x878bo2trmIeH++crKiprNZjIs3bgEsIyOkVKplKLMPNLNsxM8eg9+TPuA0l4KzPtN330v5MDhqMu4YyE6ywE1+Y0f9IYOQFk11rrb7arZbKrVahWcyqVS8eCuVquV9hJrRl98XBGkj3uzF6gQwRMHAfyAegxoAO9ut1uoSc8z6/VPO51O6vP8/LzGx8cL5WV4tv0sAObL5zwCJzlQn/H7c4ocZ7/RHvfxkkgOiGPwU7N3aGgoRRMODQ2l9fVnc7d6u96u/8YzQfx3sf3IY6Ju6df2C6YP5PfB0itBfu8H3ejgl5TPGHH7LcpX5/seHBXlc5wvl1lRDsLDh4eHtby8nHgrfAkZ6k5d74cfku182bMH4Xf+mdf0RsZ4SRQHayMmga4iFWWB4wtRh/F58Pn3d78eWePBG8vLy4nH069ms6larab19fUUIOb9pZY3Y/fyJ5HQSd0Z4bY8GXe99oyP38vmoRdxIKcfCtuvE4EyrMhy5P76+roqlcq28oexjZzuyJrF9aHE3erqajqHzvu+U/Z6JO9PxKFuBBrI7/2jvkH0//1//9+vZj960uOPP67f+73f0ze+8Q296U1v0o9//GPdf//9uummm/TBD34wXbdbxIXTgw8+WPDs12o13XzzzVdnAIeM9qJkOCPeCwPKtQPz8dShGD3W6/65Bz6Cy26gsfaXE2FzueReeP7fSdjsxsQckPFarK6Y5EB0HBPnz5/X6uqqxsbGtLi4qCNHjiQjd2NjQ+fOndPZs2dTHbgokBYXF1Wv15PAa7fb6YC0GL21X+ROgEuXLun8+fMJBKeP/TJwruX3jUZDw8PDmpycTCe8O+B2JePxe3Gw3MWLF3XhwgXVarV0Oni/DoABDWi/6VrI76shu6Xe8pvDlAG2y+WyJiYmEl8hcgdjIILEDuJJW9FWLgdpi+/hIdzTQXsvQeKHYGMAACy63PBoWzca/X1sbKxg4LrxhcFQKpUSsO9y1kE/XtGpEME1r0nq5ca8zilArpepyEUL5aJ8HAh24JPSZB5FhDFOn/ywMV8PZB19GhsbS7J0aKhYZsQNRk8LZ80w8pgnjz72eQMc8HWR1FN3clmGnuJlb9ijfiiXp5ujAziIPj4+XgBM3OlA37mfG4lEu7H2bjByP++zv/MCLPGoOpwu9JH7O4hOWQAHNQBFaI96qqzl1NRU4fA19itgRXTyRGdF/J206VRpt9spSpB94XMBQOGlmTyjkL7inAJEj3Oee/b61bM5A8idG1EvYlwOkLFnfA9IW4BBqVS6Ij1/QFePXgny+0opZmr0A/Zdb9QLQM+N1e3gmE0DP/DvpGKQnLeTuz/yP/I0+BoO1Rg4ALlO4wenR+efH5iJ7uIOzuXl5XRulmdd5xy/7gyN+ySHMeScE3F/xwhz/x7HPvILncIdtn4GGn3gQGuXTa7HxEymuE6ur7qMyu0Z9oGXsAOM9oO1PRtsN6IvgOjuPAdDkFQorertuk6cy+D2MTMOQHMH0VutVpLl/fIC9G50OddJbxQQfUD7Rwd7WuBl0P/4P/6P+vVf/3X9N//NfyNJ+it/5a/oueee0+c+9zl98IMf1KlTpyQpnR4OnT9/fpuHHOLBHdC1IxdMvZSuXp7gXDvSdmG431kRvSjH/HdyAOxEHmkUI7XcEYFylGsfIw/BQW179zRjLPYqMcI4NjY2CqVhqPmKkPGIAan/SCbvu4NK9CsKbl/Tvcwnc1EqlVKdNJQEotkcrHJv/k5t+p4DzPDDYjj0zQ/C69XvqITG+0fHDH24nmngCb/x6WrIbqm3/HZjrFdkuRN70MFyaTuPif/DSyMYJRV5s0dhecq0GwA5OZGLPOeV64tUrCu6U2RpzgCP3+cMLq/L7fVN3TB3WR5BZu8v0b/83vvozgTvj68DkcOMFeM7GvE5WbHT/27wu8yJUXa9ZBDGbdxHOYM77jfmgfn06DHAeWR6rE9L35i/CELEufexApx6eT13zHh/fL4iUI2cdceKOz8iEBHXzPdddPSw1wC3O52OxsfHk+z2yMo49vhs+fywz7jWDyBzZ0BcX/6OjqHY91wmiMt6f/fnN9d39oHrALTtfXJngQea9Mok8PnvFcySo4H8vvHpoOW3tD1Lyd93o1fivorPYZwz+IGXzoivnfijt+XkDm3nZfA/5zc5Gc5n6GwuW/0MkX7GHu3tXs4TH2evveJ9jTogY+w1P1HvQy7BZ8nYQ556IBw6aHSqRj0u5yiKz4tjA1LxEE9vGx3HZR0gup8NQz+j3OmHfEzI7253M3CBA8vBKVzfcv0jOkR8jV0P5dySWD6mF04SyfVHMsmYq157zef9eqKB/N4/OvQgeqvV2mYIOpO+9dZbderUKT355JP6+Z//eUmbyvBTTz2lz3/+8wfe38NMrvRLh+NhuFxGBEPDCHQjH+MwV2f9alIETqIxvhs5mDs5OanZ2VmNjIyk6Eo82evr66rX61pYWMimoklK0ZZDQ0NqNBqFg8AQYp6WH8kFVK1W0+rqqhqNRhJ+pFQPDw+nA8wQPjlFw9sElEFA035MccNgBkSgDea6H484wpUSKxsbm4euLS8vq1araWJiQkePHtX4+Hgak3v6c+254sG8rK2taX5+XhcvXtTy8rJeeuklLSwsJGWkl2JHVBkH/XFwmkeS8XsOR3EF6HqlgRC/8emgZXelUlGlUknPsFQ0tKLh6MYBRow7sqSiYcS+y9WH9mhXfuMlIShNEvvlQGW3203K+/DwcDqEyc9w8DrbGCHwaZ9jlyWRTyI3ATwlbQPdfHycSYFx5b9z4NLTsJlfN+x83ESREfVMtJSDkF6ug98CcpJ1QBYAEVq+ZoyV+eVevRwMnU4nHUTlcnF0dDRlL3m5FPaRG97MQQSNeTG/7lTxSG9kebvdVr1eT/f3Q76Qh4DIHNCKLGIv4Pgm2pv+SUop8MwX+yk6Nbrdrur1ulqtVmFOfO96vXX2cS59mj3pUdpO6DpcG+Uf14+Ojqa5GB0d1erqajrojsNcacOfsyg36DMylYPIuKdnSNBv5ogUe3+2uD+HC/vzGSk6UZgb+uQHAfpeJiAAAIqsFI82dzCK/Rb1bPabA/A7HWK8U//3SgP5fX3QQcvv6Pz2LIp+dH3pyvblYabosJOUtfty4N5OTlD/LH6eI2SaR6G7w5DSYx4E5jIcvoOtxXWxrj/3cHuPz+N+gO/5a6c55DcRFI59dceo89SoE7ojFrt/ZWUl1fqPmUquF0hKstx1AklpzQikw0YE8/BzWmjTdT4+W11dTc8tbXuJHeSrBxAQhe59dhkcHfI77RdkVqPRkLQlv8ESyJifmJhQtVotOIGjXuG6O3okZevq9XrCD2q1WiGbbad9zVqUy2WVy2UNDw+rWq0WZKu0pTMxPx5Ecr3xnYH83j869CD63/7bf1uf+cxndMstt+hNb3qTfvSjH+mRRx7RP/gH/0DS5gNw//3367Of/axe//rX6/Wvf70++9nPqlKp6Fd/9Vevce8PD+3Fe3g9UQ4kccP+WvTDlZte4GmOHDwdGxvT5ORkEi6A6KOjo0kAYmRHBUMq1u9qtVqXPSaEnafkYSRivHpasBtl0RiPIDqGaq1WSzVeL126VAC3IrDj4ES/Y6DfzWZTkhIAgwNgYmIirZlHRDAO3n1NMXKp3buysqKlpaUEoi8uLmppaWlXwBuwCNAMQMTLDhCFCIglXf+pqgMhfuPTQctunHtEuWGE9Xq5zHDALwIH/hsMFI/ejM5S2iaSxw2SGO0ZjULnB14v0kFi72cuciryTAfSHQT1e8ZIJyc/2BEnrt/P+b4bw26AxM+Yd8DI1dXVZCxiVGI4ukOR9pgbnA6sOX2LBjPjjZHiPo/ICnisG9Ge5ZCbIwfJ43fRCCcqLRrrDoYyJz6/Lj9JgWYOKN3DweBuJDN/EVB1kIJ58vrr7gzya9hHyDY/BI25Rrb7fva587JHnsnA5w4mMBZqyzJeStwAHnS73cJ+8bHS5zgOP+ANB4rrH75/AVicX/hzRN98//r4HCSPYErOcR/5CX8DVrF36Zf3KTpunGdFAC0+B/3QQH7f+HTQ8pvnNpZRgDe8kvdNtEekfBTyTk7D/SJfF+8f/JaALZyIninlwLEHXsWoX2878i76kHMg7MUu8utygDnvMes6OsH9MFJkqsvf3D2RER6N79HoDiD7c+EyiPZiRkC8l8sFL9HmEdz0n3fkt8sRX2fXWXYj+kpkPvoa8tsd0lF+s5703bM5YxCbg+h+XsxuAWfuxEavqFQqhdJ4/ntvL+fIuh5oIL/3jw49iP47v/M7euihh3Tffffp/Pnzuummm/SRj3xE//P//D+naz7+8Y+r3W7rvvvu08LCgu644w498cQTmpqauoY9P1zkhuON8hBgADjA63UqMVr6ja65HIpAjL8c1O+XEJZjY2MpmqlarSaglxrl1FLD6+3C2wGiy6VyuZwO/jh27FgC9AF5XWEhag7hxzhykX4upDG+6/V6qkFLm55m7AaxC1Rvt5859nS1xcVFSUo1kycmJlSpVFL0DWCOtP0wExQP+kzE+cLCghYXF5ODwBUACCWkWq1qfHxc5XJZc3NzaW4nJycL0R2s78bG5mGr9XpdKysrWlxcTOvvh/oNaECHhQ5adrshJ23xG4C+6NDyCCp4lQNkUYGHUO6dv3tqLKA6gHPuntKWIgvgRjRMpVJJ0cPxzAbnJ/S7n9TnGF3uhpjPXzSMpWLUkht5ETRm/C4PvXSNVOShLq98PA64el/cuehR4W6AxnWDHEB3AJMILQeCXW75/nDjOgKyDopLKhjGMboesJgDJ3GybGxsqNVqJTkFeO31OX08PjcOAgCGk8kwNTWl6enpFLVfKpW0uLiooaGhBCKjQ9Xr9W1OmHhPN2jZH9FJE/sWHT45R4TvJZe9ExMTaX59niSl2uAeXOAOD997rif4HkWOItP53Pc6+84zDjx4oVQqqVKpJPk9MTGRotaZJ69R7387D/E9xf09ujwGJ7iDhX2Uc6rxuwhQ5nSsAQ1IOnj5HWWJy4nrfV/2E7UbyZ3g/vzvBpwftrlyvglPhJ8iw31MvubY764/cB3kEei7jT0H/uaclQ5y4xj1mu2u//mB5K7v7dSXXk4I+DDBIKOjo5qentb09LRGR0dVqVQ0PDycyoUiv4iMRn75/V02u6zhf88kc70M2Rd1MZ/HuBY7kctVl9+dTkdjY2Mpe80dC74P+L0HsTmITiCeYyKuq3oQhMtz/p6amtLU1FQKrsMZxFxNTEyk9oeHhwu4i8/ntaIbCdu7nujQg+hTU1M6c+aMzpw50/OaUqmkhx9+WA8//PCB9et6pRvtIYOBATQSuesA+kEA6ZQn4cCQWI+rH3Kv/OTkpI4cOaKxsTHNzMyoXC4n8BkwXVISHtwPg5j+XM56l0olzc7O6vTp05qamtIb3/hGnT59OhmHpVIpAcb1el3/9//9f+vcuXMFxSACP8xTTGF34e3XkuKH8PMIKrz/rG2/41xfX1ez2UwR3pcuXdL4+LguXryoiYkJTU5OampqKkW6cX/2jqe7Ufu83W5rYWEhlTxoNBqF6+K8Dg1tHjR26tQpzc3N6ciRI3rNa16jarWaylG40uwKw+LiohYXF9VsNvVnf/ZnunDhglqtlhYXF7elzl8PdKPxogEV6aBlN5FNbtxg2MRDPN2Aox8R1HWjDIPB66y7oi4pORQ5NwIQPQf+0j4GJYA5PMiVewi+FyPB/XupCAJHuedGpDucuS4HfEtbhhgyLde/HN+LBgb/x/r18HgHxx384z4Az4DEbuSy5hjU0aBxUJS1BKQEQHWgkfmLfYk1X6ODodvtqlwup0h6ZNnw8LDGx8cL0W6S0r1brVYy0ig3xlgBv732uRvKbnhKW6WNxsbGdPLkSU1NTalcLmt2dlbDw8M6d+6cxsfHtbKyovPnzyd5trCwoE6nU2grOj4AbHvJHM+qipF2DgzF6Mo4916GgGcY4xsZPDIyomq1qpGRkZSOjbOA58wdZIzBDwzlGfbSazFFHjABZxeZAP5sV6vVFGTgkXQe8QfgghMcvSFGLdJXdFp37Dug4VkY7Xa7ADxE8J2yR65z0SZ93otMHsjvG5sOWn6jb0Ps/+uVnL/xd7QHewFf7thyp7JHZHs5iWtdUiIC+K5nOQ9lDPAtxjY6OlrgldEmZB+4LcY9kA25yO9ILoNyQDNzC4jt5VTpp8t/dD4OpUb36wdEZ0wRqO52u5qcnNT09LQmJiZ08uRJzc7Oanx8XDMzMxoeHtbS0pIWFxdTmVLs/VqtVgDFc4ENvka5d/rk+o47cLrdbpqDONadgHXPOFtfX9fS0pLGxsZSuVnPxHb5TXvr6+vJ1uewUJwIGxsbarfbqeyg63/MLzojOgP3wOaemppK84vu5ror+tna2pouXryYHBnovbG820HTXoJqpIH83i869CD6gA4P5aKHpGtfh86jdWBoBwWe+/1zCs1e58WVJq8XNz4+XgAhvGwBwEKpVEpGp0dA7bUPpVIplZOZmprSkSNHNDc3tw0AQnBLKhyYgpCNc+/ghqfm+31jxJWDKD6nGxsbPfdjL3Kgw/tDdD+RWaSXAVy44obx3Wg0Uo00nBgoU70cJw6iEbU2PT2t2dlZVSqVBKT72NnPrhCgBFC/1RXr64WuhGdcT+Mc0MGRG6qQK/lxz/mzHSOb+K07BXnGHODyqHV+C5AMSO0GSHQu8jxHg82jkpyfINt2MoB6zY2DlQ4m+1y53PA57XUvnxPGHyNyHID1uXU+HvvpTlPvRwRhcyUwdopI8/aiwd/LCREjAHvpQDGaK655fAF40l8MdNbX9Qj4PO1GY83774Cvlzgi24pIK87fcGeIR0e748T7gUFLuZkIiK+vryd9pV/9y9vg/263WwDzXQ561N3IyEhBH4jnp+RAdD/wO0a3uY7iafzuDMAAdxC9lxM8gtOASO4Qi+P2efNnNbf3XEeK/CJeF/ex85nL0aUuhwbye0A5cgDuWtuUV0r92Ca7fe/PNEBm1AngMYdJ/+/VDweLo33nv3V9gs+ibhf3R5Thve4feaB/5/dCjiCnY+Q8FKOj++WjrnvkwGtsf2Q3ADA1u1dWVtL5Ie5Y9Wh45JuD6v0GW7nNvRPtRWb4eD3AkBrpfl/mk898bJ1OpxB97wGU4A/+fPgzRJDixMREyhbDCT81NbXN8e/YDnOxurqasuPIfHNd9lo9h3sB0Qfye/9oAKIPaFdyD+zk5KTK5bKkrQex3W4XInAP2hvn0cgrKyuJkXk0OobVfoHqbjCTek1qNB7SfplNFJwYaLwQ4kQ1ElVEyhEgzPr6ehJIy8vLBWHUj/D0qL5Tp07pZ37mZ1StVnXixAlNT08XvPhzc3MaHx/X5ORkikKv1+t6+eWXE6CeA2lySpLPgwu8XH1TXp6azzj3Qu6VX1pa0vDwsBqNhpaWlgpRX8yLVHQCsMaeDo+y0suAnZmZ0dzcnKrVqt7whjfo5MmTqlarOnbsWHKW+KGFrmx2u13NzMxofHxc09PT6nQ6OnXqlF5++eXkJWfvXQ80EOID2m/yyDX2VzScckBSBFMdGM9FM3Od11vkvh7x7rwb4wfDKEZXR3Az3ssBwPjuKcSx7AzvXkPbo5k92hV+BvCPEzGOnXmLjj4pH5Xtcx3rpHrtdzeWcveRVEjDjdFGbvD4uhGFJKkAkALCuuOTveFlYqIcdmeoAxnMgzsB6LMfGE2fJiYmtgG909PTyanbaDS27b8YHSYpZTxgUNI+533gnC2Xy8lZMzc3p+HhYbXbbUmb5ds44HtlZSUZ327w+h70qLJoPJZKpXRYGP33NGrWwZ9R32Nc79FuXkLOI8MA0IeHh5P8Q4/y6EfmmH56Fok/79GBxlzjuJ6amkoZI+wp7uFlmWIwgLRZOg5Df2hoSO12W81mM821Z4YA4NMX5xfMn88Z6xAd6j63vmcw/L3OLvpyPzSQ3wO6GhSdh9cD+fMO35K2y2+uzf0+Aqkuq8fGxlLWFfzb+bJnwOYOdD4ociCxVNo6GNSzi+AzQ0NDiddJKugysRxqzDBE98LuypXNc4o2Za48CX3zyHleHBjtv3UnODoCPH10dLTA23Pkcgm57fcfHx/X1NSUJiYmND09rZmZmfQ39vD4+HgaO2NcWlpKc4Ecd7t7L2vJnvVDruN6xTZdn2Ff52SK28lkh5PZHfXU2L5nDroTw4F57wfY1dTUlI4eParR0dFkh5PBhj7G2TKuj0KVSiXpGKXS5oHu9Xo9YUBEpvuzeZDkAYC70UB+7x8NQPQB7UowmNHRUR09elRHjhyRtMVoKSfhXsCDJGecGJGAGAjh/SaYOcY4woxyLrt5xZ1cyLv32Q13DB3AWg4c5TsUDwfb3djtF0Tn/idOnNAb3vAGVSqVVE7GidSyyclJvepVr9LGxoZefvllvfzyy5etxO0EoscoFY/uiqBFP+SeeYRiBDm81AP3jiCCA3C7jW1qakqvetWrND09rdtuu0033XRTyjLo5dzxz8fGxjQ9Pa21tTVNTEyo3W6rUqno4sWLaT6uFxB9QAPab8oBzLkITucz/M/z67wyB2LDZ7k2AsYYHNIW4OupwUQVDQ1t1TwnMgawlwMJ44FVDgBLxajvmHXkkVvwdAxC5CHXuLGHAeAAdy/HhEfxR8eDg7BeBsN5OjINByJtxTI6/O3gqI+Z9pDHHoXF917GgijmZrNZ0FsicE9Kr0cdMyeSCnLOo65j5DDr62PDCPbrSqVSAmcpzZGLbooRfNRO971BSRUAAAB0xjI0tFl+hFIiABWLi4uFLDPfe3HMOWLs/D5meHnUZJTf/nuM6LiezCGHeXMfgAc/aNSd4HyG4wNj2NckggTMI0Z1tVpNJfZItfdn358pvyfrzGGx6GfLy8saHR1NgAB6CHpHfLZjpHm3u1UH3SMno/7tgL5HgvLd5YDoAxrQ1SAPbrlewBqeHZdlbiN4hm4OvI0AuoPoOGBx3sHTaXdjYyMBefDpa1na0UuUMGbs8JwT352mrl/FoAHmhDGurKyo2WwWApp2AtEBRT3rJkZa7wSiV6vVdI07TPmM9uHp3e5m3e+d9jBtMV50DXQDAhap1U3JUfSgarWaSpi43kYgx5WclcXvfD2jbNqJfH57ge2sLaCv64Ruf+faJBLd+9qrH6zj5OSk5ubmNDExoRMnThTm0vemj9MdJ+VyOekc6E/Uco86WL8lVfaT2N8DOlgagOjXAcXIuUjOpPZT8YB5wHzGx8d14sQJHTt2TNKWkk/qLocrNhqNAwXTfewoEcPDw0mZ4O8IVO4lKj2OJabtexT+XhVAZ+AuSJwhe5qWgwpSsZZgrC3rwEVuHE4e5eZKRG6e4rUxze16Ixf2DppL20F0KR+lmiOfJxQigJJ4qE4/bUlFUKhcLmtycjJ55/fqTLhWNPCED+hqEc/lbnIxRsC6UefAeXSWxb2LfHblG4Ma0BXA3EF0/z7WjKYPzv/53w2QOF7e3VHg9wdMdYMRw8RBvtiX6CzgvjvxG9p1A9ZlUQ7Uc6Mtt0a91tsNbwf9fS09kwjw3EFa5+eM3+eJz2OfHHzN9d2vBwR1Yx7wstPpJMDBjchcVHMvYk18LPE58D6jc8S/e+mcXnO71719LXMZA7k9s5N+yz7yPUnggBP6H/pelN9u2PpzFOW+t8e46EfUjRyEj/OSa5sxeLo+DiYABa5x5wPj8HWNkX5Rb+lXv805Nnajgfwe0NWiXsDbtSSX8ZFPuFzLyYf46vd+MRIdR165XE7PPc8+4B66AnzpoMn7leOH8XPP/OHdX5Bn2rkt7KVLetljcd1yfDLKd3iny0LXBdDb0G8IXiPoYDfe63vE28+B+n6998OdArn77dfz43J0Jz14P+7jGew5HQG52G+Qos+V698eWBIDPHJ7ge/R1cgWpD2AffS7fm36/aSB/L42NADRDzE5w9wJEHVPd7/g3m40PDysarWq0dFR3Xrrrfov/8v/UlNTUzp9+rSOHz8uaetBfPnll/XCCy+kQyb//M//PEX4HiSQ7qldpFVjbBHpRxSWGyT9GKbcw4U39+LACU+L75fwOnt9Lg4xIV3Nvfq+vihTrjwxXgRHTMXe6RBOj5r0914gurSVpVCtVlMq1OVSTuF0I3Sn7/eLvM3c3t0JlMsRafWjo6M6deqUXve616lcLqeItpxS3k+bzPfKyope+9rXJscVkYSHXdANhPiA9pvgEV7rOCrcOaPIjT4HrD01mmfUQVo3mgG6OHgZpxmRaR5p7iC2Z77QJ+7RbrdTpC2yIEbNOpAWQWDuPT09rePHj6cDq6nbDJjfbDbTIVUvv/xyOlwSWSepUFfT9Q6p+Dz6XAOekzUVjb04dtpizvmNr2vOucFaIQujoY6sdv2AsywccIj7hP77uxu7/Abw2fvHb3xc7jSgRAztwss5RJLocdclfJ5idDHz4KnNzAGR90NDQyk6zR3tDgp7STH2PVGEPhe+F3mP68g9cQoQ3AA5SOxGagSHXefl3nzO+Hw/OMji5KWUIkDjzzPz5hFlgCWVSqVQnxbdm2c2ljXy/ru+STt8vrKyovn5+YITC/ISOL4uOf3O9bKoW8T9mAPg+6WB/B7QftNOAOy1JOxv3uFRUm+HaYyqjuWX/NoccOq8Zm5uTqdPn04ZMJOTk4Vne3FxUefPn9fy8rJ++tOfJr7AmUkHQe6oRF7k5E90BEpKkcjOy339kaedTqcgvylh44eKxrZdz3J9zdv3aGN3bPuhy/wW+YF97BgDWUXDw8NqtVrb5EyuXznw1uXEToByLE0TAfcrJfQEiHVhDd0299/4tbm+9yJv38F0yP/vd1/7Wlar1VQWZ3Z2VtPT05KKNeWj08f3jGNwGxsbSX4TiY7OXiqVrklG+F4cZwP5vX80ANEPMbmhH6O5pO1MrV/vXD+EwjA+Pq5jx47p1ltv1ezsrF71qlfpxIkTkrYexJmZGY2NjWlpaUkvvPBCUvpJtzkocsOW+2PAETUEU40RA73IAfQYyeZpU9xrLwCmG8Gkh2HEIkgYR2TyMHUMJ4/6wmD1NCWPZurVPxfMMSptp/7HGqT7QVEA50Dzq6lo71fb/hyR0UFK5uVG7pdKpVTyYXJyUkePHk3RKrmIhsNIAyE+oP2mKAcdkPVrchFJEaT1khZu8ESwineyghyQJOMEkHRoaCg5S3vxSe8LMoYIcR+byzGpmGHkxqGnI2OEV6vVBPJ7CvHKykoBuPcyLxG43ukZxPjwOfHSJdG4dGcGMjam1UZHqvfDAXD/nN8A3noEOq8Y2Q8AQD9zaeD0h/66fPXo8eg0iFFRHgEOEdHmae/cq5fD1T/PORh8XtETPPNhpxcAAWsRHb8R2HWj3nUx11NdPkWngH/mDg0HUnLgMUR/crWB/Z7MfW4f93LYO4jmelrOqeT7IwIpzCvlaiqVikZGRtRoNNJe83n1PcRauBPFHYD005+d3J5xHYr+5WrQ9qKB/B7QflN07BwWcrvIzz2Iunbsf3QKROrFe3i+cb5XKpVUzmN2dlZTU1MFXgsfabfbWlxcVL1e18rKSsHheFCUk88O7jm/jrZ1/N7nB34PYI7N7ZHpO5GDodGx7XPpIHoE3l0mIgOkLaAWmxsbfDdbzPdQ7toITjvP9b4eJOXscPoTx3k5fH6/bXpfNz9QFBvc5z63N32e3eGPzry2tpaCUsgsd/vgIGkvczeQ3/tHAxD9EBIPNQ8lRqjXE5VUUJ5RvDG4c0xO2u5p60UjIyM6cuSIJicndeLECZ04cUIzMzOanZ1N9cH4/ezsrI4fP67x8XEdP35cc3Nzqc7jtRDiklLdNBeupVIppbW7F3c3hufRahjeq6urarfb2zzhewHQnbl7apEfZLZTH3OGp9fhBUSnfYCDXsScSSocVsMedELgrK6uqtFoaHFx8YojH1wBRTlyQMOFN5Fmhy1qJVKsTQuI5obx5RLKW7VaVbfbTW1Ti/awGSMDGtDVJJy21CfsxZPhZfCPyNd5duDRTr0iUzzCGCPLD3L0Ei7xcEVpS2nn2V1bW1O73S4cYByBR4+8hR+7YU20LIdKEo1DLUhSxBnjysqKarVaOugJQN3nLxfxjozhOkBgdBbG7ICfUwwW4LMYvcfvkQXuUIjgtv/O5YUD6C5DWItoxDsIzdgA46PD3PeLl2dzsNbBeI+0djDZHdn0w9fdr/M5ZZzdbjcddNXpbGWfOcDBs7KyspIy6fiMCG9fS8ZECSKvPd6rjw4u5VLc3THibTE+3xdcR9/YT4DKUe/wttzxFZ0b7sCJ/eb7XsEE7MUYnRodRL4n2Qvckz3Ps+ttx4j0OEeR4vMS55z7+hjpG46Ja2H8D2hAkrLZI9eKetnfPOtO/nx7ibDLCWxzOeiA3+TkpCYmJjQ1NaWZmZnEd7iejOiLFy+qXq9rZGQkZUfvh32Uww96Xcf9yNDhtwCMO8mMqF9wHTw+OsB3KuPiv48ZfNFujLIBGRzLm8XP+C17Y3R0NJ1Z5jKqV4R8nFcPAHQ9lheyHCcCsrvZbKrdbhdknWeo7XUdfe56Aft+Te6znRwIB0XITJ7lXoEC0laWqffd5aXrDFEnYl9HR81B0n4G0Q6ofxqA6IeMnFm7EU7kKgzemSOe2U6nkw6ZiILDmacz7F4P3fj4uF71qlfp+PHjuu222/Ta175W09PTmpqaSieFc38OP6nVanruued06dIlLS4uqlarHXhaSzSAS6WtA50w/mCogBke3e/tuCGJgueecISWe8L3AqJzX6KISXv3ul2e4szvIDfMnclHcGhiYiIZVCsrKz0V1Y2NDbVaLa2trWlxcVGXLl1K0ZQTExOF+yPQUdzOnj2r+fn5KwbRPR2QfRsNVBS0a3WQ7V5odHQ0HcA6MzOTIkL3EvW1E42Pj+vIkSOamJhIqWo8m4d5Xg7aE/6lL31Jv/mbv6mzZ8/qTW96k86cOaNf+IVf6Hn9U089pQceeEB/8id/optuukkf//jHde+99xau+f3f/3099NBD+vM//3Pddttt+sxnPqN3vetd6fs//uM/1m/+5m/qBz/4gc6ePatvf/vb+rt/9+9uG8unPvUpfeUrX9HCwoLuuOMOffGLX9Sb3vSmPY/xlU7Ly8vqdDqJx/kz4OAyvN7LvgA4xnJcHgnN/yjLfqYBPAq+TRkVB5I9ojlGj8LHOChqbW1N9Xo9GVLIcWSGA7wOirrRz4FUMzMzqS+zs7OamZlJkfIjIyOamppStVpNh3UtLy+r1WqpVqsV5hfANgKo3M+N1NHRUVWr1W0lQqjdCkVj1EEKeLw7KZgPJ86XkPIgv5cdoWSK15BFP/D1Rn5iBAN+OpjuaegeqeTZRxhqgKQuz4mQ94h0r4PrkU2Qg7EY6X7oLAZ7q9XS0tKSVldXNTs7W4hGL5VKaZ8Tvbi4uKhWq5XmgP74eMfHx1PU1crKSvqesUC+n1nXGPXtIIZHQgPkso7ovv7M0UfG5HoY68g8+jp5JL33lT56333/sB7RkR/XwZ07gD6uJ8foRJ4h+sRe8bWMxj77MwZDRJ2e3+ykH0XnwV7ooOX3gG58uhYlEHrR0NBmySV4D/a3l5aK2TDIxlivey/kgCw2w9zcnI4cOaJyuazjx4/ryJEjKYNseHg42RTNZjPZ3I1GQ7VaLVtOZq/kzuF+gDr4N2c0wYOR7w5GSlu8WsrzFa7DPvXsvN34EPzPA66cj7vzGh4LT/dANq5x57hHMUtKMr/T6SRbvpeN6uCtj5s+LS8vq16vJ/lWqVTS58PDw2o2m2q1Wmq325qfn9elS5fUaDRS4CJz7ToBe4t17Jf3x7mK69Rr/g8DnydwhQAz1hU9zANcPPisVwYZMhN9AEeXpPTZfgTIXQ7tRZYP5Pf+0bVZ7QHtSG6Q+cPuirQbXP5yQR+jeWJ60k7eslKplMDdGEXrIDRRzn7NxMREQVj2O+YolK6E3Gh0L66nc8cDSuIhJf65t5FTlPbKlHysbnzHF9f2M2fuIff0tFg7rRcBEmCMeoSazxfzsLy8nOqBcVr2fjDYCBB5NKD/vx8RFleb3BPuKYL75amm/Rj5eNgjylxpvJzXXujxxx/X/fffr0984hP60Y9+pF/4hV/Q3Xffreeffz57/bPPPqtf+ZVf0S/8wi/oRz/6kf7xP/7H+kf/6B/p93//99M1Tz/9tN7//vfrAx/4gP7Df/gP+sAHPqD3ve99+r/+r/8rXdNsNvVzP/dzevTRR3v27Qtf+IIeeeQRPfroo/r3//7f69SpU3rHO96her2+pzEOSNv4d+QTUel3Pp8zNF1u5nh1LzmNfPSyWG5854wR53kut3K8jr6gNLvj2PvuukIsQ4Ec5x3wP/KQnZ61GLkV333sOfnTSz9wh6k7g6OM9lcvuRDnNBcl6MDATgZhlEu5NfS94uCDj62XMcr3UYbnIuJy7UCMl2i1qK8gv1dWVpJTwbMGXZ/opVvG9xgxHcn3qjuQcjLe6+JGZ1OcJwc+vB++L30ud9Mz4z16zXUE0nP6tUexORARX7HvzFMEX7zNyEviWHzuesnPyDcuB1g5CPk9oAEdJLlcj/a18xuu9Xdpd4CqHxs39sHlNi+CrbC5CcDC9t7NDsjxop34U782BXqDy9toP8eMsJxsjzLBr9mL/ZfTsXZyBjiwHv/eSXZEHTHiMLF9n6v4inPljgNe2N8EBMTMS9cleq33Xul64+FxD+e+z8ntXns+ZwdEnfmw297SQH7vJw0i0Q8ZecoYAhIhGhlBZAoICbxlnk7lCj0CxOus5gCEGBHlhrAb2L2E/U6CJgK98dpo5PbjAY/EA483uFQqRn/l6p7FuUSgIbj9EClPk94r5YzUXgZrPwqXVEzxJuJe0jYl0D3xcb7wXL/44ov60Y9+pGq1qvn5eR07diztzVKplKLXGo2Gnn32Wb388sspatCj1pm/fpUeB7h8zRijK0Neg/SwUoxq2G+AO6fsXw9p2VcijPf6u0ceeUS/9mu/pg996EOSpDNnzuiP/uiP9Lu/+7v63Oc+t+36L3/5y7rlllt05swZSdIb3/hGPfPMM/qt3/otvec970ltvOMd79CDDz4oSXrwwQf11FNP6cyZM/rmN78pSbr77rt199137ziOM2fO6BOf+ITe/e53S5K+9rWv6eTJk/rGN76hj3zkI3sa5yudMCI8KjaC4P59DpD1Mho58qwlf/bIAIlOZqKOna8tLy+r2+0m44d2pO3goEfzSkqylSjdHFgMz6S/1IL0AxGR7Q6wE+GeS5nmeaWfY2NjqZazOwjGx8e1sbGRysU4mIn8ZMxukLjh7SVTfA0jgOFj94PF0IG8X8w9Uf7uoPD5dRDRf98L+JWUnMfO65GxvfSWTqeTzjoh4thrj+ey43yuqJ3OejFv0PLyspaWlrS8vKyxsTG1Wi2Nj49renpaIyMjyQhfW1vTxYsXtbS0lMbnc87fDgCzzz1SnTmIJYpcJ+HZcxlO+7nnjDWJ2RquC3Q6xTIosQSKy1v6G41d+uTt8NzyPMMTvAwOzwvXsv7MlfMVPvOIQPR0nvMIzPGbuP7xuomJicKz4+PmXsxjDjjnPnuRqwcpvwc0oKtNOcchMjPqBJ51DP/zjDTnB5G38dw7r4yOLeQT/YKv4Oj2Q8qHhoYSmE7pLeSkn9vgz5zz8ByG4Nf5351OZ1smWY5oA77i0dE5oNEj0V0eu17AfHH/veABLmti+9JWVhk6Ua/M9Pi/7wNkG/IOPS3+1m11t1/jPiBDDPndbrdTdt/Q0FAKcFteXtb58+e1uLiYdCtkDHPKfov9937vNJc5+XCQPNx1937v68+zl9aJjh2fG8865dpoT9Auei96ULTtB/b3K4cGIPohoxjh7Q9pZOxOKOT8DUiO0eDGoBuA0bPr7dGPHIgubYGkbvh5JF4vEN0FjRvZUhFE9dQaF8z9EtfiwUag+z1jFFA00BDenhJ+OYD+TvMQIxkjwN8PQ46OCdrCyOs3wpC9cf78eTWbTZXLZa2srGhxcVEjI5snxkvSuXPn9PLLL6vVaumnP/2pFhYWCoAM4/N9tpd589Tz6Nzw98NOKLQoZ3uN6tiNXPH3/XTYhfh+UCw3gTHhtLq6qh/84Af69V//9cLn73znO/X9738/2+7TTz+td77znYXPfvmXf1lf/epXk3Pq6aef1sc+9rFt1wC890PPPvuszp07V7jX+Pi47rrrLn3/+98fgOh7JAfo4HvRSHTDhXrjbtBiPEfqFU2EnAREz0WhQwCeKysrBYMUAzlGDOUyytAJIqALMM08uPOcMXm0mvMkd9p61HeM2gKwxME/OTmZHLU+T7xHwwJ+Hq+NDg5KjUQQXVLquxvG7tBmHYeGhtLBUT5XAMcRxMhRDD7AAcLcMhbmC53NAdJefNgN17iveul7nsLvY87VZ19dXVWtVkvGY7PZ1Pj4uBqNhkZGRlIE+traWkoFdweAA0eAAT5nADDc241O10NZ/5GRkUIJNh+vA+EO1nuKv+91D8Tw+/D8Ropp8zh5WKMYge171/Vv1pr1o0SBG+F+L/YOwAb382fO9fMIujmw7uC7A/6slY8rgns5ED3OB3/3G4k+oAHdSAQ/8fOpcrav26M8T/7sOg/g+Xb+zvcx08Tt3mjzwvfdGQ6AB48aGxsrgOhui9Nu5K0E6DlFDIDP6GuudGnOPvP/HXCO9pzbwX4veDBzTjs4jPdCbsvTP9pnbsAHHLzvRa5T8HsPYPCMRL5n7p2fu7x0J4q0CaIPDQ2lkjjNZjOt//DwcKqBvrq6qosXL6rRaGyTvcypOyi4V8SDdpvTa2Vv+3rsBT/wtXTHFmNlzZGd0paO7/uafctzznfMaQxQjPt7QDc+DUD0Q0bONGI0kF/jFL+LirQ/3P7yCLFIGPntdjsdcOa1pJzZrK+vp7Si5eXldKioCw4MS4/IjcBivD/Gh9c/c4Nxr2C2KwPMVfQAx2sjcH4lHrxIETTp9f1+3acfiqDH+vq66vV6Wrdms6lSqZRq3scoA3egRKVzr95k6eCFtyuZUZlyZ8pe057j/tmvtY17er/36NWi/fCE33zzzYXPf+M3fkMPP/xw4bOLFy9qY2NDJ0+eLHx+8uRJnTt3Ltv+uXPnstevr6/r4sWLOn36dM9rerXZ6z78Lrbz3HPP9d3OgDbJjUQ3WCI5cB5LWER5C+jlgB2U49tRbkTjJDqt3Wnr7w4++v8uy+O1Th717enRfh94mct5L/3h7fNy2Y1h3wsY93lzZ3s03J2nYqRHYHMn4yQatBiJLnO4zuUR//s8x3HQhvNvDKqoq/G7nPMjt0beL/rpBm0E4qMe59/znYOr/I7oaQDb4eHhQnk7NxR9/+bkVNyn3NMPjnXHuf/Ox+m6T+45Zf4cQPE57qUv5UDsqM9A3tcoRx30jmNgjQDUqT3rcxNfce7iZznK7cGYKcGa0i8HBSIw421G8O5y9LIrld8DGtBhpF4yXVKBP/u1vqfddo/Z2x7IFKOj/X7IQs8KGxsbKzjCAH6xjwkKcN3CA9akLd4JIAu/zI0j9mdjYyPxOgdk90q9gPbcXPv3l8tzcr/J4SG8YgZ4lFHenvct8tToXPH7ugyEfzu4zXfocehmyHtKqLqO12uscS7iNYzvamAbe23P58R1mlKplOT3XmzcuHfYt+g9BAJw7xwm1OuZ8L+vN5k2kN/7RwMQ/ZCRe84iA5bygKgLbZihp3VHYJT3breY2u5CcXV1VS+//LJWV1d15MgRnT9/XisrKwVGL20+UPV6XRcuXNDS0pLOnj2rl156Sc1mU51OJx066oeYkQbu9dsYoysWlJtZXl5Ws9nU+vq6arWa2u221tc3D8WKEVi7EULIPce95nWvRs9+kfflSsHWfttiD1GGB+VqZWVFzz33nH7605+m67rdblLamBuigKenpwtlejqdTjrwBMB9r3N4UEybfTg8PKzZ2VlVq9UCQNFoNLS0tKSNjY1CDdmdyJ1RXj5pvzzWPMNeK2+39LzDQPshxF944QVNT0+nz2MUulPOMNrtecjdc6fnabc296tvA8pTp9NJUVn8Hwknr7Ql84hazkWPw8vgi7l1cUe0R2ktLy8XQDvuD6jpzmM3gpwXe2YR7x5Blcv04UU0U6VSUbvdTvoAPIPfLCwspKwiDpj0w1lz5WpGR0c1NTVVqLVO/6OsjCm0GEReGo13zuDwtdstVdb5sGedObCLToSj3/k6afJOPsc+DtonYtGNPU+5d+PP9Tn64euUA3Ppg4/Vs/f43KPeI+hKMMXS0lKKUmSfu8EYgXR/h4aGtg5oRX5xn3K5nNrxLAs/BNbXyOcMis+W6w/INHRGj7bz/RAj6aNDgQNz2Q/xzAGPRmQvUQIGw5txEAk4Pj6eSgHwHNBWdKI50ILuGUF618Ejb/B183GyZ+BD3e5WiR+/p0fBMnbuy5r3K5MHRviAbnTiOXF713mAOzNdP+Q5JWI8Olnd+ekZ1/5cbGxspHNxqtWqarWaNjY2kv3svPLSpUs6f/68Wq2WGo1Gkqtkm5G5Bt+AD2CTO690nsA4vR758PBw0ms40LmfSGYoB6D7vXzuc3yp3+Cl3e7rYLlnDoJJeLAf37POUafz8nPuxHcdIuosLn9z5LrL4uKipGJ0udeHp0Sd771eNkS0P9kT7ijZC0gdKTfOfttxDIvz9wjMK5U2qwiw53AY9SLHedwpRQk98Knx8XF1u90ku7EhY+BJ7hWv26tzaS9zs980kN/7RwMQ/ZBR9GLH6KOdfidt1XVyIDRGz/EQoIDHNBSEWqvV0vDwsOr1ekonmpycLBj83e5mJFuz2VSz2VS9Xle9Xi8A7hxQOjY2ppmZmZQGXqlUCuVMIO6PMc29Pc0coyiOqR86SEB8r7RfoPleQFr3/sbMgE6ns+2Ud5+3UqmUDpL1g+rYx6wjbR1mcJA+Dw9v1nWfmpqSVARUWq1WAqP6URwjYOVCeb9A9MsV4teS9kOIT09PF0D0HFHLP0aInz9/flsEOHTq1Kns9SMjIzp69OiO1/Rqs9d9pM2I9NOnT192OwPaJAcPMVDd6HLA2cHMXlFjUIwsdt7oz3E09LiP82LAYwfC/DfRGOf+bvABjkrF0hOxHUrH4PBzPkFfOp2O2u226vX6tmh01xMwvuH11GaF77vxwf097Z0xx9IYGDjIeqLqGJuvXa8IZO4Hr3XgMH7vQL4HKrgDLvJmny9eucPbfH38M3/F/uwEoscI7bgHHUCVlEATnyvkb6vV0sjIiJaXlwul4+IcRTBeUnYuXIZ5NCNzHEuLxLb70WcdSO8nEtHLLnhGnM9FBKZjFCHzHL+Pz7aXciGajcjOHCAR59jf499x7ZlnwJhcVCP/M1+Afw5w5cpbxXv0C1INjPAB3UiU25POF/y91/PENc6f/X+343me/XdOyESc/isrKxoZGUkORfrX7W46y3Hq4cSEL0XdxUvV+JkmHnjgNoU7jomMh1e4Xbffcy8VdYmrwTPievBiTnzdooPaMYRod7mTlzWINlkEY6PeyX273W5hzX3vIF9wmOac004uZ3rhBFEPvZK5vZx2GAM6pZctcrt7t7r83Dv34vc8n2RXeDR+Tnb7eFxu838/Okqcn2sFpA/k9/7RAEQ/ZJTzdu3Hpu3FWHsB9HjCV1dX9eKLL+o//af/pOnpaS0sLOjYsWMFL9/58+f1/PPPq16v6+LFiwlAn52dlSRNTU1pdnY2Ra+Vy+UCc8wZmBhhnU4nXQvjm5yc1PLyskZHR1NENIe1XU8PuAtgxuvezxhx1Q+5wdoLXEXBkjYNz2q1mmrNYgjmhDjOEk8z7KWISHkl5TDT+Pi4pqamND4+rpMnT2pubq4ArhHFt7Kyovn5+b4ivonYkDaj19inRHZeKa2urqrRaKjZbKYozlh39pVMY2Njestb3qInn3xS73rXu9LnTz75pO65557sb+6880794R/+YeGzJ554QrfffnuKuL3zzjv15JNPFuqiP/HEE3rrW9/ad99uvfVWnTp1Sk8++aR+/ud/XtLmej711FP6/Oc/33c7A9okN36i4eNpoF7yIBrHbmT0OlsgKs7SFqiGMg5Q6aBhNGx5d3I+GUH0OCY3cvmb3xOtI22eHXDhwoVUIxxZQMTapUuXdOHCBS0vL6dINmkzAq5arRYi0T3itlwup4gtjHCPvsV4BHR38AHQPJZn89Jf6AV+f4+8zhmhgJh+Lc4EAHo3oBiPR6LnQHTazAHfABN+KJnvn7jGsQ0fN//7oVdugDsQ7FkSDphGg5E+RvKyMXGf+972DCqMea8VzN/MFSC0G/4OvBAlmXP8ePQj+4c9EAGhuE4Y3zhFuAdODfb+xsZGymKMzjPa9owUwCKeHwfkHVQDaILf+B7xfeTPN2UQPUAkOv98v8R6xL0I3Tk6B9iPXpc5BtkMaECvRIL/xKwcvnMewXvkP07RYQjPis9zDoQmYKfT2cwUO3fuXLKbY5ms+fl5Xbx4MZX44HsC1xzMhReOjY0l2e4l1txOdCe4y3Xsbvjc8vJy35Hoe6V+QMZc+ZUIckdMhe/gf17bOupnLmuiE1Ta0nnc2ZDj335vl2PuzHfZgPwbGRnZFvjRa0x+P+9nTs/gflEPdSeKdHlOksuxP8F5hoeHValUUpBlPG8olnTJZbe708pL16EjA6TjAOf+yPyIw0TAnO955sgw9Qyw3ebnWgHoA9pfGoDoh5Ai8OlR2nshZ8yuAMBA+TsnfNbW1nTx4sVkyC0vL6tareo1r3mNbrrppkI/X3rpJf3kJz9Ru91OaWXlclknTpxQtVrV1NSUjhw5kpgkQFQEXKEo6FyYz83NaWVlRY1GQxMTE1peXtbi4uK2WrOHnRz0cK8/whhAXeovqjwa5syHp325gY3iNDY2ppMnT2p2djYdFheNTiIZG42Gzp07l8CW6B2PAFAOTD/MVK1WderUKZXLZd166606efJkUnIk6cKFC5qcnExgdaPRkLSzwrC2tqalpSUtLy9raWlJjUYjOUxyh6DthbrdzSwQDobjPtEIP4x0kJ7wBx54QB/4wAd0++23684779RXvvIVPf/887r33nslSQ8++KBefPFFff3rX5ck3XvvvXr00Uf1wAMP6MMf/rCefvppffWrX9U3v/nN1OZHP/pR/eIv/qI+//nP65577tEf/MEf6Lvf/a6+973vpWsajYZ+8pOfpP+fffZZ/fjHP9bc3JxuueUWlUol3X///frsZz+r17/+9Xr961+vz372s6pUKvrVX/3Vy5qbVzL5AUJu6Dov7Ha7CWiNYBifAeBFgE1S1lh0w9uN1fHx8W0AVS5KWdr+PHAtsjJmasGX4fUAfW4ItFqtdBDm+vq6xsbGEu/GANjY2EhG+traWnL0jY+Pa3Z2NqWDc/ApfSQrzY3PCIpLWzXlmWMyygAxARCjM8Db5UBU12dygDt7QNoCtllPeDbReqwPv6lWq9vWlzVx48tBBeT0yMhIcih4GjgZWb0cMVHuu2MDvYzfsicB19kbGJkRJHdjfmJiIpXnabVa6na7hYh/LzXjY6dPjUZDKysrBVDII8XiQfIxEGR4eDj73MR7uk7EeHle6WcsGxSBCdaAwAD6R5+HhoaSPsOYPJLeS8AwJsoXsEcgeAd8ZXh4eNthr/F6xocBv7KyolarlZ7hXMSif+aOh5wc5Hlgnnj+HAQARON7B0v6ifDz+b8cuh708wG9ssidlPDgiYmJxIfj8xf/9s+iQ1cqnsvgNlqUlxBBbPBrSQV7V9riAbVaTRcvXtTa2loqnTk8PKypqamki0Sbm+ApB9GRCzEamff19XWVy+UEHMK/JKXAuWtBOOljkAEvz6xzG5i1BZdAZ/A5i45efpOT3zgU3NkZfw95+5VKpXDIuztb0POQD8jxiHVEPcNBdi+jGvcj93R91+WX63H90JXsAXS90dFRTU9Pa2pqKulmIyOb57GVy+WCnMyVQnLHgDvuKQGDDgCRvefzEh3Q0THOnFJ5gVJxfi7B1ZyrK6WB/N4/GoDoh4x28phCbqz4NZF44Hul+Oz0MMA0JKVaqaurq5qenk4KOEx+fn4+AXikSg8Nbda1KpfLKpfLPWvO5ij2FWPLI5M2NjY0MTEhSUkA5ebqICgXfe0UjUr/PDpMcl7Pfryafq23k/tfUsEQZ53Gx8dTJLqD6AAgHG6Dd9zHmhtbr37uZV79fbfxX849nDC4mYdyuVwwsqvVaqr/yp7zue3VNxfcKysrKpVKqlaryeC9HHIlwiNQduvPYaGDFOLvf//7denSJX3605/W2bNn9eY3v1nf+c539OpXv1qSdPbsWT3//PPp+ltvvVXf+c539LGPfUxf/OIXddNNN+m3f/u39Z73vCdd89a3vlXf+ta39MlPflIPPfSQbrvtNj3++OO644470jXPPPOM3v72t6f/H3jgAUnSBz/4QT322GOSpI9//ONqt9u67777tLCwoDvuuENPPPFEKiU0oP7JgbyoxObkp0cL7xSJC+2kGLsSnvstbfp9dnv2Y+RbjGRzoJM+5ObAjbtWq6VWq5WicfkM2e36Aoall+iCt3gZtghuO/AQr6H+Zi5aO+opfo9eWQG9eGh0yveSgbTtpe96ydPYZlzn6LzxdfPfxb9jxFguEtnH4fPDnMbSAr4HABhWV1c1OjqajPBemVB+HwcIPCADYNz3JH3a2NhIc4pDxHUJN3Jdv4jUb3SjAwMRBPGMR/QXnzvfq+7sj89RBC120tN78Qk3zLkOgAegpNd9+L1nJ/Tak8wFL9+HuXX3Pd9rT+TmfGCED+hGo373da/nJAfo9brHTrwC3R4QlKh0gse8nUajoeXl5QIA7k547BonZIbLZ79vrzFzDxzIHnBwLewO+JsHT+T0JOY65yTfqe2cXigVI/ZdbqOTRdke94Rn2fn5KsjxiAe4M10qOmvcyeN99H720odjvyK25PIkXh+vy81Vr/nLEXLX5wR8AszHD/MG8O+l/7n8jvsg6lquQ/tv4hhj1gHBCMjvgf39yqMBiH7ICEaB8IzpqDHtRto6AIW/3dON4u1C0j2o7nHsBYQ2m0299NJLGh0d1eLiov7sz/6s0Od2u52icqvVqubm5lSpVHTy5MlCyncufb0fcq+pe4ulzVRbNxKXlpbUbrev+oPuAptDNYeHh9M7xDoSbQfYiUEjbUYrU+YDDylKkIO4fB4FmgsEPKQAtn5yOyl4pVJJk5OTOnr0qMbGxnTkyBFNT08XouegoaGhdDANwN7q6mohJR/PbKm0eWCHgyYeBbhbmRE3/Ijwc8UiF7np+9yfnZzisNt6EtXnL6/dz/0bjYYuXryoer2utbW1BErlxsaar62t6fz58/rzP/9zTU5ObgNw9gKmb2xsqNlspsN//+Iv/kJLS0taWFi4LgS4dPBC/L777tN9992X/Q5A2+muu+7SD3/4wx3bfO9736v3vve9Pb9/29vetmtfS6WSHn74YT388MM7Xjeg3SkXRYK88yhTyA1LeCzXw2eQwSjvzvddDnkEK985r/Y0Wigq5/Sdz3IGikevAXyjxDOOCEoDoq+vr+vixYsJPEdWkI7a7XZTNtLY2FiKRHfDEHDRy3nEseT2fIyuYv673W4C6jGUmD8i+Z0/xpIXAInoOawFkcasIb8j4q5cLmtmZkajo6OanZ3V9PR0kskOqHa73VQqi/VlnZDpKysraS/5PqHfrvc4OM18IcNoi7XxzwCxmZ+JiQlVKpUUdU3UpMtk5oQIanQl1hw9yeeSMm2+Lz3yy3UP9ICNjY10IFu5XE4ZbtVqtSCf19bWtjmP0X1i5F7c9y734z7zZ4p9U6lUUqYE8psSL5RQwQgmKwJycIP2GW+73S44dthvXkoK53oEcZjLbreb9JRms6mFhQWtrq5qfn5e9Xq9MGc+dvaj63lRH3QHBjoGWSS9smh8vQcg+oBeyZRzeHpGMJ/nnObR7sjZ0162KRdF69fCl1utlhYWFpK8xNaG3H70zKRqtVrI3JGK+olnEHk5rqgnoU8gX2iPCGGAd9dJrpR20yfcLpyamtLU1FTBPvR2Wq1WsrvJoHbQmzVhLmnfHQSsrdeBZ+34vetZXqIL/SyC58in6enp5BiBvH8cfulOcNYtznmc+6hz5uaZ33jZPPraa2/zmcui2G4OgI8vJzL6xsfHNT09rSNHjmh8fFwzMzMaGRlJFQ7QjUqlUtKXYgafZ5IhJ8n68gwDdywDkPv6+lgpG4wzC7zp7NmzKdOcTIG9YA87kdsbOco5afqhgfzePxqA6IeMYAgwt5gm7saiP+ReizHWjIrCBQbtaUE7gW9Er5VKJZ09e3bb90Tvjo2N6dixYzpx4oQmJiY0NzeXFPjLAc+dYCJEEpG268KDQ1g4cPRqPuwuEMvlchKIABAQShA1s9xh4UIc4U2kMoC2CzSfR1cyXClDcLuH1D2l/K5SqejEiRNJYFUqlZ5jdXBifHw8zfXi4mKh3qy0VZfYIxMBkXsBzfFeREHikCCLwR0KrmQiuDBQLxdI9kh07s/8+EFylUpFs7OzqTY/gtzXBaJ/a2trmp+f1wsvvKDp6WkdPXpU09PTBeO7H2LcPJOXLl3Siy++qFqtplqttm/Ce0ADut7IU1Hj84gR6AaiO+oAo7wWs4PbtOVpr/5b7uGRrDFCK/ImZLmDnrkoVDdCcIa6wRad6N4PeLD/DqAOnow+MDQ0pMnJSU1OThbOhyBVlTHG6HKfn5zxxN/R+Qs/B/gksk3aStH2KPSo3/i8xjWQtgziCEgS3cT4MMKlLWcH40RHwkiLEXsYX+4Y57f0y/+PkcasGSAEa+IgOn975LaklAY+OTmpcrmc9MYYXYWMWVtbS3NMGxj5zCNzxpjiM+C/Y3wY+F5Dn8AJ2nT9xJ9Rj57kGWbPAhbksityzigc/mNjY6pUKqpWqxobG0tp4Tg1lpeXVavVtLy8rFKptA1E933uIARgFfvVgzv8efB192faHRI8u5xXQIlCADJ+5zzKx4ueF6MvuRfXOzCSczywX3cDWwY0oFcKRVnlDqhof0Euf13W+7XwPXjAbmAb3wGQw7vr9XqhLxCAMoFrgOjuKIv6i5eygm8AREKux1ACrdvtJrsMvu5g8n7QTjac6w7ValUzMzOFwDPG5IAzTtBY2gVZJxXLpvGd14uPZVHc8YzNzRq7LU75LtoaHh5O8rtarapSqRTapx+MVVJBR2J/ea1v//1u8+dzzG+wfV1+ezs+T9xrfX1dzWZzWxmwnA3uz0bOoeul+6rVqqanp1UulzU3N6exsTE1m02NjY0VSqCNjIykYADHN1wu0lcO6t3Y2DoY3jPnfHz+DKMDesY3+sP8/HzhPCECN/aLsCViVoSPM9ooAzpYGoDoh4z8wYUBYzgh0D36C2UbBuKArLcJubHuIHq8rlff4jUewTs2NpaYIFFk8eHfL/J5wGgiKpzTlp2p7ud9pS2GPzw8nIAH+hFrqQHOEv2EQQtgjjAExOHgM94dEHEg3Q0h3y8IDAS6C1nWhD71U17HCcHjdegcvMY4diPSgQM3eN1ZEFOwAbCJumMeXKFxDzFRAg6o8+zw7p7mHKFsEjWAUkF9VdqSpNnZWR09ejSlWQJS9aoNSD8bjYZKpZIWFxdVqVRSlIFHjvlec2CKtSRqzeugM+7rhQae8AHtN/Xa/zmD1o0wJ3iWpG2y1n/nkS5uzDqfhie7Y9wJ3u/glxtCbmBHQC6246BZ7FuMtuF/b4vf+HsO9I1AOfItyvgIcrp8QC67/Ib3eu1zN4LghZF20y+iUUU0H/LFy9VIW44YjxjjewfIvV/uhHBQ0ufC5bzv0zi3Li89UjGOI4KqMYqKz6PewH73EjC5CKx4X3dUsF8AeT3a3u9D6Te/ltr53BPj1Wv2+r6LOk+vfRDX3KPJ0QnZX9KmAwIQHRkuFWsWR37izip3Jnj0Yi9QzJ9x189cR3MHgYMptO02QATKc/fyfjvI7tddiQweyO8B3ajk4KrLGOdJUj4S3YFW3+t+3V6eH5edbjfmSqH1kg+85/oUI12js9vlif8Wnk35y+Hh4WSLRUB3v4gxYn878Mrn7lDHLiSC3APvIr91hzgYAp8xfq+lzWdRZnipj6iz5dYo6o/ed//f7UNkKXoUbXhf+5lHt7/9TBdkplPUTd3Wj7qK6xS+j3xPxAwP1/voB/J7fHw86YgEspHRjQ0dx+8vB9I7nU4hMM+z/13njOP07H6C2PxA0avlhO6FJ/g4L6fNgfzeHxqA6IeM/OFttVpaW1srMHRPI+VagDVXzqNh44YfL37D/3sl2q5Wqyn6/NixY5qbm0tMOXrL94uc0c7MzGh4eDilKDMPHOK43/fF43/8+HGNj4/ryJEjmp2dTanDLnyIOoLZXrx4Uc1mU/V6XRcuXCgwdiLF/CAUStgAsjtg4eAqwhtPabPZTKlrpOtjWA4Pbx4qA/AfjbCdxi5tCptyuazZ2dmU4kS0uQNQUPTeSyocWHf06FFVKhWVy+UU9Q1w4aBObJc5cIMTkKLRaKSDPvzk+mazmQWiut2u2u22Ll68mITq1NSUpqendcstt6hSqWhpaUkzMzOpfMvc3JxqtZpeeOEFtVotXbx4US+//HI2wqTb7aZ0r3K5rE6no7Nnz2p2dla33HJLOjugXC5viyIFgFtaWkqHDf3kJz/RxYsXtbi4mPo8ANEH9EqmlZWVbaW0XBF2JzQGl0dWRZAsB9A6X/K6jB7BDK9CFvsz7FGrvHukM05w+oPcd8dp5Kc4j3E4Ur4jAmn8NkZt0w8itAGy4SkR+HWDxaNxHdiTVPgd42m320k/8ayycrmcMmz8wFTmlggfly85ueWGZ3R8SEr8dWZmJmXKzczMaHJycttv4tqOjIyoXq8X+oX8Zhzoat43N6qJ2nIHTgTZiZgi+p/xeqSd64CeQuxguPNJD3ZwIIi9hiHsmQ1uMLuxTj/4nxIuOCVIy47ZbTHiz41TDwRwp3Tcb9GId8Pbxw24QtYYQR6Uoet2N8sRkJXBgbqNRqNgWHuEOevnpWHQyyj7xly708GdIhjhi4uLSS8juMIdTDw7DtZ59ou/Ytk75xHYDzkwL6f37wXYG8jvAd2o1O1203PJ/5Hvufz2ZzxmgsNrI+DaLyH/kBHLy8sFHuQBTR6IlLufv/tz6CAs13tEOXwF/gzfB8gGnB4eHk64RbPZ3OaEvxJy+VetVnXs2DGNjo5qbm5Os7OzSYdxW7HT6aT5wQYfGhpKmIm0lcW+sbGRHL/wdKLSWWcvreYyB9mNfoP8jsAxcp+Xlwyjz7y7buX6qMtnB+tdd9yNfJ+AWUxMTKTSKZVKpVDaxbEj3yfoh67jOA7l+pPruQDPbuuydugPU1NTqlarOnr0aNJrq9Vq0gWr1apqtVrCO+r1egpic70T2dlutwvOB3TdTmczwwKdxXV+ZHan00mZYisrK7pw4YIajYaazaaWlpa26cj7RTw7Pk+Mi/cBiH5taQCiHzJy4QtDdOPbgQGux/Byr6sLHI9gceUZgXilHjRSx2BCHk12NYn28UQODQ2lKHg3YvaL3IPsY56ZmUkgOgalk5eZoY6olw1g3SQlT+vw8HC61sfLuKKH1QWqCzQXbJKSIelA9V7mCWUKoYtCJW0/0XqnecQ5QLmUqakpTU5Oam5urtA37tlPtKFH3S8tLaVatu12O32/UzsoUwBSY2NjqVQP6f7r6+saGxvT0aNHtbGxebhts9nU6OhoMsA98svJo9XPnz+flIojR44UlHQH+nxMrVZLtVpN9Xpd58+f1/nz5wuOo+uJBkJ8QPtNXt5AKkZ+wZu8Zrin/jqQ6CAYYCV8A97pDm0Hu2J/ovFAhhZ8MwJaboR7tK6XNKG/EOCaG9GxXdcZIK+J6jXO3eHuRpDPqUcdScXDCbnODS3+RiYBAvg8Olgbo7iibIm6RS+548apO96JnvPDU31e2R+sGdHygCjOb5G9Xv4lOjBw8gKi5pzNtOXynL54lHeM/HegZyf565FvfpgZDnaPqnRAPuqcEdB3UID+ObDjUZwRpGF+0WMxWH18DsLEZ43nyA19dEGeBYxlQAbK7tGPiYmJQpmFaPg7wOS6FPdGTydqLhq7/iwzbpz68UAyfpOL5ItnOOQcCJH3+V70PuWe4d32j9NAfg/oRqCcni4V5Rf/93p3oNQdfRFEl/JlLnYj2sXpiR6DbuJlPyIv5N3J+0D/YuSz39t/A99AZ/DvVldXC05a6kf3muPLIeQLthnnX5TL5UJgg4/Vy40SkOZ2tDtkHTB3vgnvpwyXz7/LJneGOn7jekUMDPM2uJ//7TrtyMhIAvvjIdl7wVtcbtMW2Ik7oN0WdX3a97if84EzAp3CnyMPDvH59TlhLPQLPY3gB+Ts5ORkaoMADOx85tP3njuxPfNNkiYmJrbZ36yBB6g6jkOQYrvdvupZ4Mxz3C9XKoMH8nt/aACiH2KKSnRM6XGG5nUnYR4eteMCtZdhuhcaGhpKNUsBGqnFthvoud9EXzqdTqpTPTQ0lCLR91OAY3hPTk6mCCc8pgADMRpS2gJfAMbX1ta0tLRUOPQTTzagKfccHx8vgOtOCK8YiQ547EqdVPRwX8kauUHfz7VES1I7nui/8fFxzc3NFcoAebbFXvaSAwwcJkaaH6VU5ufntbGxoVqtplarVVAIXFlBeGLsYiwDEMzMzKjb3TwUr91ua3JyUisrK1pcXEzR+b3KKq2vb9UlxquOp31ycrIQHYrhv7GxocXFRdVqNbXbbc3Pz6eoxoFQG9CAthx8MYLWwSEAZ1fYpa1oYM/MyUWje61IaQso9/vwN99hVEUiEge5DS/PpYZ6P+gzBqNnGAFGS9sNfcbZ6XQKBiBGKW24vsGc5aLXPcIu6hRuUPoYHKwHcHSjiv4ApLuBSl8ieAgP9z5H0Jf++gGY1CRl7G7wudHH77rdzcO1SVsn0syjDN1gQw9x8BQnAnvV9xBRblFmR6AaANWd6cgaX2ePXvKoNt4B/T2yMhrMvleo30r0WrlclrQF6HqJGO+D7xUPBkFnY34wYD2rw8n1XFKp/flCT3JnBr/xTInh4c0SfPSl2WwmfcEPXwdA973tUYhuiLIniBh1WQ+YxPd+Xo0D34AiudIu/gw4QMa4fG5df/AMHAd+IpDm7wMa0I1GEZiU8kASz1sOfIb8eXNeKW1F6EJRh3DH+V4pyjS33wE/o3z0QADvj0dre7uuy7gTgGsdpI5zCv+E4MP7aX/j0MZWIoI4loHztQUglpTOoaKOdgRa0VtWV1fVarUKchoe7s50aSvT2kF2P//M++UBD+5Y8f0Q593n2Hm7r8tONj2f4VAmkr9cLicbGXyCz9CJ3Kb2OaVNAsk6nU7hoHHPtPPsM2xZl98u13wc0fYH5xka2qwEwPW1Wi2Ve6FWuj+HnsXvmQUexc/Y2+124Z5gMrRNpiQAOvrCQdBAXh9OGoDoh5QwDhDoCCdnLO4l7qUURyMqRrxcLgEoj46OampqKqVG4xE+SHLjbXZ2NvVvfn4+Mcn9YDhDQ5sHr5FKdvz4cU1MTKRIalesnKinTYYAwCkpxJcuXUqpb4AIGFsO3LsAddDGvd+A6IC/cW8gnHIA0V7nwo22nYg+T01N6S/9pb+kcrms48eP69ixYwmUdkPbFbx+yAECB5iYo+PHj6vT6aher+vSpUtaXV3Vc889p/Pnz6e5chC9VCqluRwZGdHS0lIyRlGAjh8/rqmpKc3Ozmp4eDilklE6BhAmEsrWxYsXNT8/r9HRUb3wwgsJmKDOG/OL95yUNUrJ+EGx16MwHXjCB7TfhALvKZ2AVG4QUA/RAT83NFzGuixz3olBhYHgkSvOl2NUsUc8RwOTqB7kROTV3McdmBhpHpmak3c8bw7QYuTgCMcwxLDsBZjzG9cpPBIPWYQh6WNwYxeZRv8AUjFSMIgcSPRzPPh9jA52/ccBD09TplQXBrYDum5QswcqlUraX5OTk2o0GoU9BhiNAel1Nj312oMcMMJxuHpqNG16VBaRzm6Is+dykVA5AId7eqScG/nUfvcoeE+hn5ub08jIiGZnZzU7O1vQU/2ektKcRAc1gC6OCy/r4sA+pZa87A37F+cEzzsZYisrK8n5TNushUdw4gjHad1qtdK6eTafz6G/4CteAoZ95PsQYMX1MKLa0A+YGxw6zIfPjT+//kwzFu9b5HeAQa5H7gS29EMD+T2g64Gi3HQ5luOZbh/nngfnjRHw899HsNOdu/DDy7FLPUMFPgivjA5W5/tRz4k8IBcEwP8e0ORyn3fkE7wKfl2r1bY5FZwijrEbDQ8Pb8v+5mDwarVaAMMdIEfnAGitVCqq1WoFx7Y7XKWiM8XtLB8j4/QgNiKxkSOSEvCL3Pbfcq+crRjnKTpNo27m/D8C3kNDm+V3jhw5kkrYTU9PF3QC1ysINnBbNK45fWF+/OBOypS5Lub6Ta1WS0GO4BRRT3F7Hn0VuV8qlTQ5OalKpaK1tTU1Gg11Optl2VZWVtJ7qbR18CZ9wK5mHVx+42zxQApAdDCZ9fX1VNblSgJR90r7aesP5Pf+0QBEP+QUPcLuoXQG5akxHo0SQXSP+PKUnL2SG6YxQuqgKTJf96JG4/9K7xPrmWHcMte58TsYQc1UfoehJuXrexORRzueXuyeVgSUKwRxfXPAyuWSK1k7EYY54BURbLz6BeL7JQfUvQ/SJnBApgJgSjSYXWHwMToYJG2B9KQw4pFHmdztOWB9PNqPv/0ZdjCq3W6n6Pn9cgxdS7re+z+g64scfO7lRHRwM0bG5N5z5NHYLm8dXJe2InSc/JmI5TLidVzLNbk+OSDguoT/Nhr8ubFHfpYzwiNPyxlyMVLW25O2IqQZr+s6ERRwgCIHNDpI4vd3A815uo8lgikOMjsY20t/iuvs8+Iv+hmjp6JcjVFZ9JPfR2fMTvvTnR+57/wZ4d6u95Bi7WXzes1FLx7vxr6vI88epXR8b/O/OxZyB73FccW1dJ2QlHF0Mu7r0eDIfgdmKN/T6xlhLR1E79VHBz8gHDbMj4MMtOE8JY4r7mnGFLNsroQG8ntANzL14us5XcCfpchDczLGHbY73a+fvrl8inpNToeRtpdDi7pB5JcOpMffYrs40LmTjpWbs37G7g5C1xP4W9oqaZWT3djsHkme46vO46Xth03HvnrJzWh37+S0gGIfuD5HUcZGfS63N5GfRKITOBDP32Ku4mc5XS3uA3cscM+o37o+AXbiTozc/o3zEe1vAgvW1tZSZQSXy76evn70jX0b78f3ZCQgyz1gMeeEu55oIL/3hwYg+nVCzpRzHlwY0MzMjGZmZlKEeIw8iYdcErmMN7FfwrNJGQpOUHbw8iAJxk59q+Xl5VTrcj9OTkYwULoGLyjR+DuBpu69pQ4sUcfDw8NaWlra5uRgXRyEdiEjbe0Jj1xzED1mHHS73W0He0jFWpv9EidU43mOhIIzPj6um266KUXrcxhrrnb81SLWZmJiQkeOHEkR/kePHlWz2dRPf/pTNZtNTU1NpdrslUolpQ76qeVEz7Eu3W43RbPx+6GhIS0tLfXVN4Qz64X3nHVmXd2w30+P9LWigSd8QPtNpVIpRf1EoBJeE+s2O2jmEWJS8QwK58+efuoZLw6Sx0h19iwZJP4ZbUlbfHN0dFTT09Mpat6jrv0gKY8a9zYdTHZDyB113Meju71cTTyki3a73a1DJjFEo6PP55gX/XAnZaQIcPtYXKZEIw4eSfS6t4/B5oZ3qVQqRIczjuj4YOy+fwAL+I2DzMhjMoiQuTFlmTlD1ke+7/uJuUSvGRrajFquVCrJse5ygr3LPDJ2SUnmU3IMnSE62tHnkHMjIyOqVquanZ1N5ewqlUqaC+bS656ivzgI7lGcPF+Qr6mDQvTfjeBOZ7OWOinkOLPjvohAcy7YgYyExcXFVP4tHkInbYElQ0ND2w4kZp29LBCfMc8e2MFecmKeuZbfupMIcuPfwXM+Y08zl+44yf3G56sfGsjvAV1rcrncy77L7e2c/dwvuVyFHPhD1g0Pb5aMIjMFvkDpTmQlMtwzudxui33mc5ffHtTFyx3WOXL+6jwsHpzpgXKRb3imX7zWwW2fr52cwb0oguB+uHvOgRH/9iw9gOOVlZVCJhztRL6NPI9r7vdxfcEzESO5zkYAF/OfA5y9jIr/vtvtprOwPHDOHdqu04FRVCqVdBjrzMxMOufL9WTulcNxXI66nHWnkQP29IfrXDdmLYjqXl9fTwF29DeWh/P5QCcjM5D2+CzqAJLS3KMzuQ5bKm1mo8U6/5zTEoNDeunw/jwdZjpo+f2lL31Jv/mbv6mzZ8/qTW96k86cOaNf+IVf6Hn9U089pQceeEB/8id/optuukkf//jHde+99xau+f3f/3099NBD+vM//3Pddttt+sxnPqN3vetd6fs//uM/1m/+5m/qBz/4gc6ePatvf/vb+rt/9+9uG8unPvUpfeUrX9HCwoLuuOMOffGLX9Sb3vSmvsc2ANGvM8ptfvcYTk1N6fTp0xobG9OJEyeSoQXzIU2adBRPWdoLAVhPTk4m7+ZuYPLVJvokqcCIET6XS+6lxWkAsyeNbreoHn6PQUhUtqQEMLiCRgSyAw9uZEvFFP2YXZAjF+JuEEZP807kwmWnQzUQ5OVyWadPn9aJEydSGl4/87WfxL0ABogaP3HihBYWFtRoNCQpnf7ttXK9VjBeb1c0NjY2VC6X1e12ValUVKlUkoDuh1gzTyUc0IAGtHdyIy6C6FIxotadk64cO/Fbj0znOUWJhwfElFHPDIogfASm/W9kCocXV6vVZDxKW05wTx2GUN4ZSxw7Y4nArwPXPj8O3vqcuBzCIEGeLC8vJ2OE8y/go9EwdPDWI41y8ghZR3tuzPu8c8aIz6s7Thgva+nr50B0BF6ZBwdFIlDhMtz5uddBp+9ucDebzQQGk53ljgPmGeBdUjJAAXnpL3PqAC1jcEOQskE+bl9nXzN0HBz/9NMj0dEjI6Dg6ecOorszJUbCxf3qz7Qb5xMTEwn0oRRMLorNAWfu6bV9GVOlUkmRit5Xd+Z0Op1ClKU74HjWJRXaAIxxMArnmO999BPGubGxkQAGgBx3Cvjed6DFn0ufC3eg+X6NTsMBDeh6IGRUP4DV5TiKerWT+70De9ienJnlgCOBR/BunOruEI9lGqN8gcdFUNkBdXecu13pwLPjAg7ir66upnZpD7nHbz3ozuWN61Uxu43fR4e/y/EcIWddFuwW6e7zhgNDUnJ+ItOcl/K38253gvucuZ7V735y+5t190ANnxP0NPqY0y3YR57FxtwSbT4yMpIwGpzgBFhWq1VJW2dweBS9z6vrWq4T+/o5kM7+iIETMfO6XC4nx/Pa2lphL0f9yvVR7jk8vFmWhXEw3vX19ayjhvH1cjL7c+p4CsEOu5GD6FcCUt9o9Pjjj+v+++/Xl770Jf21v/bX9M//+T/X3XffrT/90z/VLbfcsu36Z599Vr/yK7+iD3/4w/q93/s9/bt/9+9033336fjx43rPe94jSXr66af1/ve/X//kn/wTvetd79K3v/1tve9979P3vvc93XHHHZI2yyX/3M/9nP7+3//76XeRvvCFL+iRRx7RY489pje84Q36p//0n+od73iH/vN//s/JybQbDUD0G4DcACBCKJYZgakABK6vr6c63hhxOwGwkZw55rzL14pc4MbUnv2gnYT2XiinXPRSztygzwncvQhz2iJNydOodgPSHXzHCI9R/sxPuVxOghpg6FocOpsjwCJpU5manp5OfY6pgVFZco99BKx6gXED2k4H7Qkf0I1Pzlecl7mS7yAqtBOPlbbXIfWoYj7DmQiIi6GDQh8NMEkFAwGjgTRbyky4QcpvuNYdqDHl2KN+6CvjjCC4/83cuYzJGRC0Fet9ex9dP+g15zzLzGnuXrn5i8BmBMJ9DA4oeFs5Z0YEz92xwNx4VJzPk+sG3i9fBzeI+Z9x5xw+uX75b3h3I7Hb7W5z4sZ+ed88+pFxoye649/X0tfQDWjAbu+f1yf3dY7O9/jcuUEbnUX0AYd47lny/eXPeM5BE+/pn8fnHZDbgQWAASjuY+5PlHkE9bytbnerHItncXiJlwioeztxj++k30WQvd8U9YH8HtC1oshnr3Vf4JcERxERiwyXVOBXUjGrBZAOJ2SvMfnz7XI7gp1xfnZqz+0Wd6Y5v/D7RJ4a7R+fF3+P98297zbPrqNEOzzuB5cdELzfZVWUm57plAPKXW/Zq83t8+e6W7TpfQxxfl3XiqVFfF84iO6BGZ4pQftR5kU5DODseoLLCtfF+F3cmy5DXYeQthwagOjoG1E25TASl4H98oIoN+Pn3G+v7dIG44yfHSY6SPn9yCOP6Nd+7df0oQ99SJJ05swZ/dEf/ZF+93d/V5/73Oe2Xf/lL39Zt9xyi86cOSNJeuMb36hnnnlGv/Vbv5XA8DNnzugd73iHHnzwQUnSgw8+qKeeekpnzpzRN7/5TUnS3XffrbvvvnvHcZw5c0af+MQn9O53v1uS9LWvfU0nT57UN77xDX3kIx/pa3wDEP0GoMnJSd18880ql8s6duyYjh49mgR7BC0pUwG4ubq6qhdffFHtdrtwANJOhOJAWQ5Pr76WAKkrNM6Qiei+EmYWFZReUU97bStGsjm5ERejinLX7TY+F9y1Wk1nz57VxMSETp06lRSKnSKoOcBjZWVFi4uLWlxcTFEUkgrKyenTp3XLLbdoYmJCR48eTaVrrmWmAoRBirH9ute9LjkEiMKQlCJJGaN7mvkuvjh8pB/P9SuZBkb4gPabouLtTlQMB+pCStuBzmgUQA5Mx8+lzdIYRIwCorux5NHVvDugjzymTEa1Wi2UY6Ov0lYJmU6no3K5rE6nk+4vbRo8HNREtJPPgzu/Heh2ABLwNoLzzE2UpZQGwdApl8sJhPVUc6l4FkR0TPj9IrBJVDRz4fIQvh0Ba36TS3d3UNiNOvpA+rM74z3Fmyy86ECAfB3YBw7Eu1HsY42ANGOOe5OoNqKqYvRcjLLiRX/jIWDUy6YkH6XJ/Hlypw7zHvtKBB1ys9vtFmqCe6R0jPryZ8JLDHqpG08X99RvL4vgkW8xSy/ePxrhLuMdWGG8PD+dTifxEecX0fHha+s8xNcWYgz+fHY6Hc3Ozm6LFvQ95/Vd43NKO3yW09PZj5Qg6ocG8ntA14LcuejOo2vVl1KplA5qJIhtenpaIyMjBflNP+FVGxsbqZZzq9VSqVQs1RadbFJRNiDH4oGiEaB0Hcf7jVMT+eHl7DwC3fUEabusph10jVxAVQRDI+22fh4Y505S16cchMZRyXUetNBut5P8rlQqWl1dLYDUzAMBEb1A870Atj739GV1dVXtdrvgqPC5GR8fTwEDLm85kLrdbqvZbKYADiK50Vmmp6c1OzubssbQez2z0QMF6BsR5i5TWF+XkY5ZuO7DWkTHBNfyfaVSSddVKpUE5vvejnLKdSUHudl36Bz9BIO6rIxOKNZtL44SfuP6BevXr2P6IGk/5HetVit8Tiad0+rqqn7wgx/o13/91wufv/Od79T3v//9bPtPP/203vnOdxY+++Vf/mV99atfTfv86aef1sc+9rFt1wC890PPPvuszp07V7jX+Pi47rrrLn3/+98fgOivJPL0HE/TyRHCCCa6sbGher2+TeDsRtGoudYAOhQj0fuJsL5cyikJ/f4u996L9iq4d2ur2+1uOzADIZaL1GJPILAxwL1WGMS8VyoVzc3NaWxsLNXMP0yEYjI2NqaZmRl1Oh01Gg3VarUCcBGBpBgZ4IZtjGYYUG8aGOED2m9CDsXoHoyGoaGt+s7SVhqrP+Movk5uUGF48Htpy7iJIDr398hd+ukKPNFCY2NjKpfLydABtPSoUzeQnd/4uN2ocF7EvXLRbHzvICJ9joZgBHa9FnY0eP3v2CZ/u/GauyZGL0WAwYECByBiNG6M0vX3aIQDTjhAjGx0Z70D+z4nLhegXk6YHD9jrfzaqGv0ckLENiNgnQNj3dkyPDycItl8jh288H7xOf319WA/RkPbjVj/LhecwJii08NLo3BIu5d1cXnt/fJnZTc55Ne4HjQ2NlYo68S4fO57AS+9dGzWWFKhhBygENkt0Rnjv49t06c4r72e+b0ABgP5PaCDJufh/kxeq7448MeBy0Siw5ek7RHG8F8chjjmdgr2cidflGe9gMB4b2/L9R130ubkpsvv2Lbz2egQ7hUYdjlzHdvy/5m3nK4TQWIH312m9RrTlfbf59plCZkIufYpS+KlCV1e47QANEZGxL3oeqRXJ/D75iLRcUJLxZrv7EHu5zLH2/X1cic5FDEa5LLL9tgn15v9PfKBfmRTLydV3Ed7oZzOdVhl3X7I75tvvrnw+W/8xm/o4YcfLnx28eJFbWxs6OTJk4XPT548qXPnzmXbP3fuXPb69fV1Xbx4UadPn+55Ta82e92H38V2nnvuub7bGYDo1zGhGE9MTCTwvF+w0oUMUVVDQ0OpZttOv+PdI9gOE+WUiyslGDVRb7xQMpzp79QGAs+B6AggHAQRVb66uqoLFy5oeXk5eavd4Op2t2rCtdttLS4upsjHCKATdT4+Pq65ublUlmCn6PbDQCgDHEo7NLRZZ7ZWqyVP+erqagIWut1uOnisXq+nuuqLi4taWlpKB74MqDcNjPABXU2CJ6OoE2HrIDoGgEd9uuHkUUkeqRWNRq9THkFrB1zpE/3CyCmXy6kcG2C6R+VGx4Ab2h656iCctD2axkH9CHJH48qdgT4nfBYjWalV7VH2frgVBoVHDjGnngUQjeA4nw6QejtuqDm47c7O6PAkmh1ezb0YQzzQ2w2/TqdTMGTjQVMOUqMjRL7lKdJe35x++zz7XmIuqY/O3kM/Ye9i6EpbWVVcm4t4dECa2u0O1OaAVo/aZkxx3nPPRE4v870Wx+7vfj/fz4AH9Js5bbVayclDu+12W6Ojo0mX8br1nrHC2kbewLhygQeuE9Mev2XPRYc84wLAiI4FeNTY2Fh65t1x77plfI4iSML+vBIgciC/B3RQ5HwvOlOv1V4qlbay2wAseQes5D060QAhiQQn8pZnfyeHlsuh6OTFnodyTlrn5T6WmLkUQU7IgVx33Dov8jb9Fce0F4dddPpih5dKpWSHx3Yd/I881jOy/HBOH9d+7a2oh0kqZP1EkFrazO7zcixk1Lv8dvub9eda5LjrYegC7jj1/rFmOUcs37sOivzzceb2XJTf8Z7oxu7ckLYOQW80Gin7EmI/NJtNLS0tJR38Wssl1w+gnKPkWsvA/ZinF154QdPT0+nznbDHnDNtJ2yul/MtOs720uZ+9S3SAES/TslBgkqloiNHjiQgvF9CeFcqFc3OzqZDjXYC0bl3NOoOC8Vos/2IkHfBu7Kykk7GRnj74R+7teNlPyihkzNorzYB4A8PDyeBPT4+nlLAPPoOI7PdbmthYaGQNgWVSiVVq1W96lWv0tTUlE6cOKGZmZlD6WRx8v2LQixtpiFdvHgxGducMwCIzvrXajWdO3dOjUZD58+f1/z8fIrWH9CABnRwFPmnH47FeQcOaqGIw8MBM+FtzudcKcaYIMV1eXk5lXPx9OIIKDuIPzIykkq4VCoVTU1NFUpUOIjrRjiGdwQyGRP3dAAT0M4N21y6thvhEQD18XsEFbKWtPUYqe1lPtyBHCOVcym/yFUHTgDRu91uckCzTpJSP2JkEuvM9f4bwGfGSf/ZO5ADOaw7xizzzBx4dL7/PoIMcU4djM85K1gjxo8hSckU7lkul5NjfGNj8/Br5h4DPkZpc7YOtXy5lwdL+F6IGQmsuVN0QPkcRco5RPyda4aGhtK8Dw0NFQ7p9LIDzA/glK8ve2x9fb2QRcJe47Bwvmcc7nBZW1vbpv+6oyo6ctxp5M+xAw9cy3dDQ0NJJ2EtiISP2QfuxIvgurfvffX1v9aG/YAGlCN3grsjrVe08EHQ0NBQKhfKgctejg1AMwZXwV94VuFl8cDq3LjgWx4cEGV4BEYjIOqfOc+M8tz1A/+dA7i7ldGIekZ0kvZLHoWNI5hSOPSZuXWHtdv+LnuwwwmEWllZKZxpk8vouRJi3O4cwebvdDqpHIvPz8TERJJryGTvX7vdLpTPYT8SSIkeybPjNr3PlYP7rh96EJg70iPG4fMUo8OhXiA6c0I54NhHL43qugcBDKzhwsJCwlOulB/sF5BOP3MYlMvn65mmp6cLIHqOjh07puHh4W0R4ufPn98WAQ6dOnUqe/3IyIiOHj264zW92ux1H2kzIv306dOX3c7hRbcGtCu5oZ7zGvdLOSE8oO2EAeQnqjvI0ouBO1ONKdSxjtxBjoX+AOpT2xaPd3wBDqNEQR6553VK3QA/zOSOF54DBDXCudFoqNVqFV7NZlONRkPNZjNlcLAnrsWaXk8UozP2+hrQgHqRR7S4EptTZnP7if89uipG1sa/vZ0ol6Ph67I69s9fkDuFc7zU+VfOiez38Hb8b287F00U5ybXN3+5MyFGx+VeuXWIjnDvo1/v7fjvcn33V1zLXLRLjvfkItr9/jnD0vvTy9j0eXBwMzcnse/uAPLoOs+c8zrl3h7vcW/mjN9cn/wzX6dcO7lI0rjnfd/spDtEGet6LN+j33j2oAdCRL0G8j7k5sT3QgT04l7OjcF/16uduC8jn6Bvrrv7GkZ+0GvN6ONe9LSB/B7QQVAOBOXva72XcrIvyqmcDJO0TV7mZHQEtnP3is9tBM93e6Z7BZ314h1RF+olu/fKy3ciHxP3y8neyH9z+kE8PyS247x4PynKdB9DxAPcYZCT325fxj0R5cFe5j/uhV6/cUfNbtRLh/DfR32ZZ9uDLqghj8x2O9wzQS/HSXM1qJf+dljooOT32NiY3vKWt+jJJ58sfP7kk0/qrW99a/Y3d95557brn3jiCd1+++0pSKPXNb3azNGtt96qU6dOFdpZXV3VU089tad2BpHo1ym5Ar0Tw+u3La8bm/t+p8ghTz291hQB6/30+G1sbKSIw5GREU1PTxcOzQJIjnPlxi2pR/Pz81pYWCikIV0LwhNOdNrKykphP3W73UK0nQsqaXPMRFQeOXJEx44d0+TkpCqVynXnkHGPOwK7Xq9rcXExlV8gQq3VamllZUW1Wk0vvPCCWq1WilyPkasD2k5XougcVsVkQNeWut1uQSYSvYZR4fzMZZdHwAKoEWlMRonL1qjkd7tb9aLJ7iqVSqksC9Fq0cDxmp0O0kVQLRfpKmkbeOtGkEdScy/6l0vVpi0ilD0yKFez2kvARDAuOvW73a1oc68ZH8F6N96o5en941rmPhqlfp3PFXJLKh4Ouby8nCK1ck5fZCFtr6ysqF6vp0O9KNvFWtFv5IjLSF5EGbsslbYOQWVsjIv9kHNw+BwS3chhY+g/RPMvLy8X9pyk9F25XJakQhR6zIBwGhraqulLW9Fp4qVw2u12us73ONHYfmis34/7+EHd0ZHEOB2MZw7ZZxy662CJP7v87ee80C+egW63myLdIC//UiqVkuPdnxP2IZkufJbTmWmP62iDa91BQJtxvmLUv+8dn7+4brTpz89ONJDfA7qaFJ1x7rzy5/ZqAJ47US8ncfwsNx6Xzf5cwpc7nU7ivz4+B+DHx8dTmRiP2oVnAbYin6Pc8H7mbNUciI+c8TNf+L/XOsCf0MkITHJ9pV/iHqVSKR0yPTw8rHq9nkA1+u3lvDiwFf6O/KYECBnWBD9FvWK/CZkXZV0u6Mr5uJ/zwW99X7APJicnUxAbZVTjGroDnzn1Z8zlgu8FqSh7XTf1fchvpa2zf6KsQEYzPpffXOcH1dIGDoVOp5Ps79XV1YTJ1Gq1QlnFa03uxMlRdDAcJPh/kPL7gQce0Ac+8AHdfvvtuvPOO/WVr3xFzz//vO69915J0oMPPqgXX3xRX//61yVJ9957rx599FE98MAD+vCHP6ynn35aX/3qV/XNb34ztfnRj35Uv/iLv6jPf/7zuueee/QHf/AH+u53v6vvfe976ZpGo6Gf/OQn6f9nn31WP/7xjzU3N6dbbrlFpVJJ999/vz772c/q9a9/vV7/+tfrs5/9rCqVin71V3+17/ENQPTrlGB8MQ37csgN5n5AdGcOMHs3JK8luXEZQYYrJZg36Xe1Wi0B6ig1btzwG5g/9TdbrZbq9bpqtVrysl5LwuMtSc1mc0+/HRoaSiedT01NaXZ2VpOTk5J2j4I4bMQzhUOhXq8X9jjj7Ha7KYW+Xq/rxRdfVKvVUrvdTob7gHamgRE+oP0mlHpAOTc0MQhyQJo/4xiKgOiArjlHtRs/bpjG0i3j4+MJRPcoUal3qisAGC8v/cE1bvR535DV1E92wz9GKLlRJikZ4V7P3IFd1ztyB2vmoul8vplfJ++7/w45Stp7LhLGgd4o56McZp3p58rKyrZSNm54UnOVeywvL6vdbidej8HG/R148L64oclc4sCJQLuvbXSg+Dj9XdoqFYNhyffMAWd6cOgdv5GUgAhKusWSLBFM9yAFH5uvPXuEsfkY3Qnl8x/Hx37odb4I80QZJeaLvgH2rK6uJjDenUW06+Pj+7jP+Y65dSMdZ4CTz4nzIAi90AEM5pVr6Qft+3ry7OWCZ2jH28iB6bzH56QfGsjvAV0tclmQywCJkdAH3bdcpsdugWwum308/AYQnRJ0zsvcUedyOWaO+3y4TepzlONLOfLx+Vxjy0Y51GueOp3Otn7u9fl3XQeZPDIykkqaoG+5LEGHk7bKXK2srKSsYWQ44zmIQMDocMgFBEDoppJS7fQYWMA6IrMB0L0UW3xu/Pnh/r53c85u39PunHUgPO4j11ddDkX9CPnm+5R9Rhk1L7fWarXU6WyWmOVzriMI8KAdaztRLzkZ9V1JBwr8H6T8fv/7369Lly7p05/+tM6ePas3v/nN+s53vqNXv/rVkqSzZ8/q+eefT9ffeuut+s53vqOPfexj+uIXv6ibbrpJv/3bv633vOc96Zq3vvWt+ta3vqVPfvKTeuihh3Tbbbfp8ccf1x133JGueeaZZ/T2t789/f/AAw9Ikj74wQ/qsccekyR9/OMfV7vd1n333aeFhQXdcccdeuKJJzQ1NdX3+AYg+nVKMF+iT64ExPaoPGeqXquKmm08fBhjVwrg7yc5eM6ceG3I/Wofhk7Ul9e5RWlw8pIo9Xo9CfFoSF+PNDQ0pHK5nLzg0XC+HgkFcGxsTCsrK2q1WimdrNVqpai0a13XfkADGtB28mhfB0EBdL3muQO8blzECLAcP/PoIGSg1wDFuIml0qJB0Ut+5gDimHrskWYOPDow7Ia7R6J7217r2Y3mCI678e6R5hHI9xqocX59LJK2RcT5uCM/zRnvHmnuIALkkeBuVAKuxu8Zk0d9A7wix73eeS+ez3x5HzxCLxruuX0Qo8EcFPV9GnW/6GhgzrwPtMX+5DBRf2a8nWj4+h7wfRDXKxrz8T0a4YBH0bDPjQd9y59j/96fc49kYw1z8x7X3sfFvSLAlRt/dILEZ77XeqFjxr3p8+Jt+3pFik66HM/JgesDGtC1InciO49n3++nTXc5FHmw85sc/+M30tZZCr1sBecnyLAciB7tbnem+32lYlS/O9R5j/2IMiDqA9EhnRuvz9V+kPNLd5LiOObsD5eFnn1GYJSfZ7bfmeq7EXPna7SXe/v1rCV6JhkMngGWuw9zxDtt7XQvqVjCpdd+iZ/l3qNclZSyHZGt6Ea8cHgTxEDGHVUAopP8WvKGK6Gd5Pj1Tvfdd5/uu+++7HcA2k533XWXfvjDH+7Y5nvf+169973v7fn92972tl3ns1Qq6eGHH9bDDz+843U70QBEv07JjUA8qX6w2V5ofX09efaIDhofH9fRo0dVrVY1MTGharWagAkUeNJ+PVrNo+yuBVHf2w8M2S8vM3NeKpW0uLiojY3NA54ajUZKLZuZmUnpeLwAzpeXl3XhwoVCTe3rvfTHyMiIjh07ppMnT6bD8WLU1fVI5XI5KWLnzp3T4uKipGJUBMrc1TiM5kang/SED+iVQR6FyjPqYJ+kpHRLKji//LBLTy8lPdhLKyBPPF3aU1ilTb44OTmpiYmJAphKrUsHtHPjgNwx3O12U8kJ7oXi7UAyBvjk5GQh8ozv3CBi7DEql7nC6ANgdRDeS5DA+zyCiZfX+fQSOtxzaGgzm4n7u6HuzgLaimuMgRUBW49MK5fLhbGjG0jS5OSkVldXC9GADvy7MTc/P5/WYCenqe85L6nDYV8Y/3FNctFgcZ0jYM7+8nX1/cPce7Q9xD6hdIkfzOplZfiMNWNeHMyJGRb0mbFHcJrfeOmB6CCgrRitBTDC5yMjI4V9wJ4m2MGN8E6nUzgYnn4Tvcl9XJ4zDvY//IIybwSzRF0zAhExMjTOL38zDvrk5RC8NFU/EZ5c47p6dKpI2paBsBMN5PeAria5DHBA1J1vB7mPHAR0Bx3An0fTuqMr2gU4YiMg6s5fgtfgKzHy3R3a8AHsUi+d4jwWHuAgKzy3F/ifc0RiW7szwEvY+Zij/LjcNYtORKKT4V/oVMgAMofoB3oeh1AiB/zg6YMg5jL3+V7bIWNhdHRUs7OzqlQqhYxHd5rwG3Qnd0a5kz9eH2Vw7D+6n8vQCJbnHMXeF5fffh0Ba2trayljv9FopNItgOjeR3dkHXYZs5/9i9ko/d5/IL/3hwYg+nVKUcjxupxIEpQAoqtQ9qvVaqpvPTU1lQRWFARuSF9LAJU++IEh+x0dDJOiXurKykryAHsqHv3Z2NhQq9VKTgrKufiJ3NcrIXRxsqD0Xe8AOvsfAI3yOzwn14OQPuw0EOIDulrksshBcXcCO0jqmUvR6PWIHzd2+Q7l340A/h8dHdX4+Hj6zJX93XhkBMdcznuN5BidxW8BueFhuWghL8XmIHicSweEvSSNRyB7v93g8jG7PI5Rw/SvH6M2RhvFNXag2NfPDUVAgFKpVADQcQygD+FkAJQFQN8tg4z7xGt83nK/2el/5pFxxkiyXnsqGsP0g/1LmRcHaNzgzd0fANtLGvla+r1zxrX/xu/r4LCDRhHQduDK95NHsqEL+gFtrB3nHXjEp6fKu94Y93dcI2/DwQf/XQTAfE1yaxVLRfHO2GON9X7In9d47/jc7EYD+T2gq029eNC1oujgi895BPFyAF/MeIuErIIve+mWnAyXVODHtBF5D7/PAfIxOhqKsjpGorsT3B1w0Vl6pfZS1F+YR2qFe5326AQG+Iffk0mGI+CgA5/2ay+7c2VsbEwTExPb6uTnHKw5x7QD6dHhsVN/cejSnus8O+kivqf4LOrkHmhBwINHooOhRLqRo7lzlNMZ+xn/QH7vHw1A9OuYeBDa7XY61HBmZkZTU1O7Ktd4aFdXV9NhG8vLy6m2VrlcTodEjo2NqVqtJuMzKhAY6teSEKwA1UQa+aFUl0s5o5foCKIAYjpS9IRT9sON8OuZUPTwfler1YIRer0TysH4+Liq1WoS4jutG2mWkgrG+GE6Nfyw0ECID2i/yQ/SlIpAGOngOFgBRx1sQ4bwGwc8vcakR0bFzKsY8R1lJRG0bhgODw+r3W4nI4j7e7o1csz7hxGwaI4ZAADKeUlEQVTrcs6jr0nzdXAs8iF3HLhhhlOYzCKPfotRz240OWhAn3AYO3jJ/T2KOuoXOYPO19MzgCJPIIsAfYZMughuxN/B3702PiC67x36Htc+RuFFvcidO27oRyeGg92sJ2268UpfPQiCa9jTnjEBMe/sEzIBIJ6FaJR5O/SH/ewH+Ppz4tGR0UnlffXa6G6Qe2RlnDccLx4FGUHvmLbv/CFG/UcwvxfYz8FtXr6J69AJvQ/SVmZE7hnMUXRGDQ8Pp3laW1srgB7uSHHeQ59y4+0FnvVDA/k9oFcaRZmEfBgZGUnlOf1gUHQGtwH8DCyiu2kH5+HExETKWsKpS1uxDy43nAfDlyII77JcUpZH0C7yhD57JLr3IfKbXs7BvTz3zmup8+16F9e4PPI++98OnKOH5CLCrxblorGvtD0cFwDogOieHej38vVyucK7t+0vZESUJy43mG+3/dEvPLDT5bPrSNyD58TbpX+egdgr0ML3Ru4ZOazUSxfth6L838vvBvJ7f2gAol/HxMPXbDb10ksvqVwuS9pMT97todrY2FCtVlO73dbCwoKWlpa0vr6uEydO6NixY6pUKjp16pSmpqYKUbluAGAkX+voY2e2rVZLtVpNjUbjiqO93ZCNkYYwfI/ix6DzCDsH9r0mG/2+Xgklj3ro09PTPSPsrjdysGhiYkJTU1NJ4DebzW3rxj4ZHR0tpGAODQ1pbW0tKdiuOAxoQAPaXwLYcnkQDQUHogFGo0GBUu+HbfPuEVcOoHNPj+5xY8WjmjEUnBd4JlOlUkmgGeApBrfLFngKTlkisXAmYFh5DXSvG0n/POrV04TdKHMgMAegO+jIHJMuvby8rFarpY2NjZRG7Qaxz2sOKODdjTBkrmcHSUUwoVwua3x8XNPT05qZmVG32y2kcANeeFQWRrbXz0aPcGOOuYAcQM+B+m4UMj9eQshBjJhi7WVGfG4wUj1Cnjl0JwZR5j6f7Gn2CQdmu37ne83H6PuaOfN94I4R5sn1xTgvfjCnO6tYF9+7HqHmDg/PLvA14R7R8M7J8JxTDMcbf8NfmGM/84A2eE69L6wjbbuzyJ0Ruf3E/Hg5FvrgbdJ/nAqRuJfvK5+Lax0IM6BXNl2uQ+cgKMfPAZdLpZLq9XoC0MvlcgLX4R9+yLE7Pf2d3/CqVquFQ8o9cCvyZ9dZYma08zW31XNjciclfSaACFmOE8DBVJehUX7HVz/k/G5yclKTk5OF9nK2FHIBOc2cUkrV62sfZBkX14+u9J6OSaDrESRA9gI4RAzggFx/dJnl5QVdjkcHscsL339SMfrdnTbSFmYiFQ9OjSB+1EPi87ITiB6dTYc9eC3OZ84B0k8bub8HdDB0/SNeA0oCz6OdqQPmpV4c8PX0GISlG+5uSGM4e/SSH0wiFT3YB00OBDC2eHhL9LDuZjBETy/R+f4aHx9PJ2HDwHNe/1wq3vXO7DztMBrNNwL5PuF56JXq7AY4ig0vPwjoRpqfK6Wccr2X14AG1A/FvYLx5YBnLA8SZUQvedEPP3dlPheByzUOCsdo29zL64vHKNv46tXn2BcHlF2e5dKDfWzx5XMbx+HzFKPi4jz2I6dz8+48GxnNy/mx15vO1RTPgQFOveY4UoxujnPF/EfHQZwHB0Fiqnbkjf0YkB4l7uVucvO+k27XD192oNfvz+/j3oj6k69PDpRwUMWfhTiW+FmcU/a875NeJXi8HZ+bXns2jo9316V7PRMRPIqvverefv9efdyJDlp+f+lLX9Ktt96qiYkJveUtb9H/+X/+nzte/9RTT+ktb3mLJiYm9NrXvlZf/vKXt13z+7//+/rZn/1ZjY+P62d/9mf17W9/+4rvO6BXDjmY7UAfL5fRLqvjGSExE8n5gL/gFTk7NgfGOR/p5VTbTXbvJL8jb3V5433pdf+daGhoKNlQZDtT99ttK3diRgdobqz8nev/1aK94A67UVzjXHm9nXSSHO/dTW7vtoa9ZI/rLDv1K+6buHe8vV79jfLbszFyMvWw0uXatnv93cD+3j8aRKLfALSysqJLly6lqLVarabR0VFNT08nzyQMxEuKnD9/PkVGE6EyPj6uqampJLA8nRtyYxtlAO/0+Ph4AuMPinFR64yo+osXLybPuVQ83ZwXXtHIGOh3tVrV0aNH0zxSzgZhQSSZtHkIJVF/U1NTGhsbKxg8eHw5LMNLCFyPVCqV0j6ZnJxMWQrXi6DaC7H+Q0NDarVahT0gbe4XDtidmZnR7OxsQXivrKxocXFRa2tr6VCUgRAapJMNaP8JuZQr3SBtr/fp0TDO/91ZHKM1o8EAP+C5Rn7EiN1e0TP8dnl5WSMjI6rVatrY2EgRwiMjIymCCmc5Tm+P7HWjyiNjJaWo2G63mIaLkYzRj2zESEWm+b1ykcQO6rpsI+qOiD2y1uCXnqqei5rCaUmksfffHbjLy8tpvvm8Wq3q5MmTqlQqOnLkiGZmZtTpdBIPXl1dVbvdVrfbTeniDmzQjkeWDw0NFWQ2/cutrctDDH7WO6Yl07ZHYcW5dbA/l13h/WQu0HMcICE6mjFTygW9zTMmHCCOIL8bpu6YYuxODob7OGnLMxr9YHIi2Im+JoPBs7pclyuVSmkf+3PIYa4cMErbvg9HRkY0NTWVZD1ElD9ZFI1Go8AP2Etx7Rg36+ROquhQ8P9HR0cL2Q7sSa5jnvifPcpzFIF2b78XKAHlojt70UHK78cff1z333+/vvSlL+mv/bW/pn/+z/+57r77bv3pn/6pbrnllm3XP/vss/qVX/kVffjDH9bv/d7v6d/9u3+n++67T8ePH9d73vMeSdLTTz+t97///fon/+Sf6F3vepe+/e1v633ve5++973v6Y477ris+w7oyuh61es46HBlZSU9o5R4cfkpKUVEw2OdN/tzHYE/f5aRAdL2qGJpy4YFZIZyzsoozx3Y9+h55DftR2DY5b5f1+12C+WuXE7sRJVKRSdOnNDExITm5uY0MzMjSYVIc+bUx4mc8uA+1+M8strnZKc+xWhqftfvfu0VbHg5Wcmu57js9gxol685Z3OUOznw2mUD+zHKL36L7utOHg+8QA76oeTcz3UM9hH39HJz0ubaeyYY7aMH4mjxPq6vryd8i9r5h5WulP/t5fcD+3v/6JqGRv7xH/+x/vbf/tu66aabVCqV9K//9b8ufN/tdvXwww/rpptuUrlc1tve9jb9yZ/8SeGalZUV/cN/+A917NgxVatV/Z2/83f005/+9ABHce1pbW1N9Xpdi4uLevnll/X888/rpz/9qS5cuKDFxUUtLS2pVqtpcXFRFy5c0NmzZ/XSSy/p3LlzOnv2rBYXFxNzJZ3cU8FzRpEr5qR5Ef1+uQLicggmDoheq9VSjXcUBhgtkWdeOzcKCzfCjx8/rtOnT+uWW27R6173Ot1222163etep9e97nV67Wtfq9e85jW65ZZbdOrUKc3NzWl2djYdxFoul1Ot8KmpqfRdr3tfb0St2Z32yY1Aw8PDKV0u1o2VtgxfaqfPzc3pyJEjOnLkSNoT0dkwoIEn/Eagwya/HbB2Q86jT1HoY4SVg1yeQeIGlAPP/orppjHizEHGCLQ74EzZk2azqUajoXq9rnq9ng6lJtus1WqlV7PZTM7cGLUGYQgDxPvnXnrCDyx1WRmjtD0aPkbHx4w3P5QTR70fugrA6evgIHqMBHa9w402d5pQygUePDc3p6NHj6a/cXbyQmZXKpVt94vRXrz6yTCij17f1ufdgfBIvjaMk3JhlUqlUOfcnQ/+yoHrDq7Gsj0xqs/7EoF0Hx99cCM8XpOLquR3noXhTgDWn0xAB/4dbPdx8fyVSqVCJqGfD+B7i33I3FI6AEB9amoqyX6AmDgP8dmPjnL2tUeqQswHffFnzvmEj41nCp6Qq9nvr35pp/2Yu/ag5PcjjzyiX/u1X9OHPvQhvfGNb9SZM2d0880363d/93ez13/5y1/WLbfcojNnzuiNb3yjPvShD+kf/IN/oN/6rd9K15w5c0bveMc79OCDD+pnfuZn9OCDD+qXfumXdObMmcu+7/VGh01+X6+E/Ys8XlxcTHY3tner1VKj0Ujv/A347g4455EO3sbvc3oM33s0LtfSV+eVMeI8RtTn6og7zwLAjBkxzsP91S+Nj4/r2LFjOn78uE6cOKGTJ0/q5MmTOn78ePocmT4zM6NqtZrO5cLGZuy9ssP7jVDOXd+vHZeLGL/crGTnn+4kiRnPMXPK10Ta7jjZjS9H+e2UCwqI46Zvfs5OdKhHmYXexO920gO5Bzb45ORkwl2q1WrCY3Jnw7xSaWB/7x9dUxC92Wzq537u5/Too49mv//CF76gRx55RI8++qj+/b//9zp16pTe8Y53qF6vp2vuv/9+ffvb39a3vvUtfe9731Oj0dB//V//1wcG4h4mwiBBwa7X61paWtLCwkIS6vV6vVAjzB8KF8rRUMgRDG9lZSUpBs1mM7VP9NvVeOjc+PI66Aj9brebGGulUklG0czMjKanpzU9PZ0MJg4tGR4eTtdOTU0lI/zIkSPJ4ObvI0eO6OjRozp69KhmZ2dTtDrGXc5bH1+7kSsrXm/PXxiIsezO1aaoRN3I5ApZbqxxXaOydT2lkw1oQP3SYZPfEUh0WRajZaVihGwugtvbzYGIboi6QSr1jlx35T9G65BJhvyOB1JTjzSWcYnj8zHnDsOMIKaPKbbnbfn1Psfx97nyEs4fHfgmSs9B/ggGuAHmpVjiQbLSVlQaYDNGlL8wuHkB5HvbcTzMYzTEe6UOY9j1KgPmhl+urra/fJ59/fxvN0h7Aei+J33fRdnl5UV8n/hv4l6JQIw/i/F5cEeMR+P7POd+62Czg+MOksS9KalgiO+ms8TnxKPholMtB1g738k9o35N/D/2wamX3iFpG3geeac7ytzp53q+z/FBUa1WK7xyUYKrq6v6wQ9+oHe+852Fz9/5znfq+9//frbdp59+etv1v/zLv6xnnnkmOTB6XUObl3Pf640Om/y+nskjsskWwxmOTYwsx/HlpV9y5V+iIz4nq5138uzHtnK8NhcM4PzIr4n39eh4d+xxNksObM+VuIzZ6jg+sXMnJyc1MzOT7PGcDT81NZXs4Ng2FPEM10NiKRQfY9QJ4qvXOPrZJ1dKvexM1ytz94nym/e4j3J6nesROVkWwfp4X59zn8cYpOH3i+uQ01lyuIrrMFfiuBjQgHaja1rO5e6779bdd9+d/a7b7erMmTP6xCc+oXe/+92SpK997Ws6efKkvvGNb+gjH/mIlpaW9NWvflX/6l/9K/2Nv/E3JEm/93u/p5tvvlnf/e539cu//MsHNpbDQtQDHxoaUr1e38bco4EN04IJIoQ9lTnHfPzaRqOhs2fPqtPpFCJ3jh49Kml7CtV+EGm26+vrmp+f17lz57S8vKyFhYWURjc5OamRkRHNzMxoZmYmCfShoSGtrq6m1G6cDGNjYzpx4oSmpqZ04sQJ/eW//JdVrVbT7yPw4BFGgBsYAwiATqdTAAH6FbjeVz+lPZ6+3e12k/JCRH4OxNhvYn7L5fK+r+1hIqIamfu4bjnFgDV2RYEoTAT9K92beyXOtVf63B0WOmzy29M9pe2ptxFkIppHKh7YFCPWacPfva3Ia5GXRHYTOeREtA2GY6VS0dDQ5kHES0tLBTDT++yAeASp3UByoyUCsETkIKd8/Mh0Sen7aHxHIN35WQRJ0THol4OYrkNwTzcI6SdRSfDQ1dVVbWxsHoSF/sGYK5WKJicndeTIEZ08eVKTk5PJyd3pdFSpVJLznTIwDuCj73Q6ncL3lPKiX/B79gxjabfb6nQ62w5l9WhAaatMWC8HDXPt84RMYV0d5B0bGyukuvteQDdgDpFRMZIeGceY/Vna2NgolNBhT9I/1mx5eTmVSOG63DPDuqM7IEMp2eKGNTQ8vHnQd6fTSX+j/0Qw2vckB/Wypr6HuL/rVOhsbrQTbUq5FfYQe5M14zn1PerABtcxNzkQJK6/rwO/dT7i0ffOD4aHhxOo53PIde6U8M/6of2Q3zfffHPh89/4jd/Qww8/XPjs4sWL2tjY0MmTJwufnzx5UufOncu2f+7cuez16+vrunjxok6fPt3zGtq8nPteb3TY5Pf1Sv7sctaY22/+XDqP4j2CfPAf+LE7CXmupS0Q27PIVlZWksyHVzm4GO8d+UmuXnuMMOZ33JNzyGiXtuGdRAEjgygNE516Q0NDKZr8+PHj+kt/6S9pamoqBbJJW3yVe25sbBQOPm21WimIrtVqpT4hI7xf7jhkzmIAHvzd18Z1H58z/72T60k7Adx7IfZXdASwT5D1UW64s91lhuvEyCXkTtTtPFCD8SBrXG77nHEN9x4aGkol5KKTKILx6FHLy8tJr4jPg+MqPjesM9jIgDZpYH/vHx3amujPPvuszp07V4gEGB8f11133aXvf//7+shHPqIf/OAHWltbK1xz00036c1vfrO+//3v9xTieIqhWq129QZywOTMhzTvfilGCOW80H4t31NfFAPNGTOMNgrryyVn6G4MkxYHmI2XOJ5eDfMdHR1Vt7tZp6vZbCahQUqvR6vj+Y79YA7YTxjbzLt72HN/70RuSCLQMU7da+vCr1QqJSF+NQF07ocBdiN7eN0T3q+zIBrN+xV9cCPRQIjf2HQt5Lfz5F7/R7DbFXxp+7Pr7URycNu/B/zi7xxx7xj9i5GIIesgaryP94/7uNHrIL6TjzGOzQ0YDFxvIwLo0ckejSBvO0YLca2fqRIjwxykROZEx4bLVs/aIhp9YmIiga8AxBjGzGs0sH39fCxuqEXQk/5zXZQZLgMYJ+OP68s9WX8Hh3NgaQ4o8cjs3D6I7fnfuXlwUCiC49HZEyMafX/49+iMbpxzf653oN4N41KpVHhWXPf1+zIW5jz3fOZ+50Z6nOc4r/Ql6tBx/egPAL7rx+yLeF3cO/49fY+OjZjtgeOB9vjbQZN+gjt8Ha9Ufr/wwgsFvZratzmK/drNnshdHz/vp8293vdGoYH9vTeCL7hDC2CY7yNFvjw0NJR+LymBknznFCN/4QHOD7l/zv6Iz2/kFTGzpRcw7Ha4P2MO9kOMDx7pfeZ3XuaNTDHKc0ibgKoH+jmPRY+Ar/lcuWxwGdftdrM813WyHIge58DHvhtf3A970PXGOCbeo67l+pf32WVQ1B1yQRMR5I770PsRyeU6cx11ntxv3FnAmvu4c/PjzmmXbwP7cWB/7ycdWhAdb38uEuC5555L14yNjSUvpV+zU7TA5z73OX3qU5/a5x5f3wQjbLfbmp+fTxFdHlXlBr1HXVMmBmHaaDRSZB2pVpOTk9sMy70o7AhzvO4cIrqysqKLFy+qVqsV6q4SKc29p6amCgIRJQ4P5fLyssbHxwvpYkTVI8RdIEXDzY0nPO1832w21Ww21W63UxpfBBikrUgw5o1IeiL78d66IHIQn7lfW1tTu91Ws9ncJtz2g6K390Y3KtzDH8cKKEMUBNkfzA1llYh2vBLhdSPRQIjf2HQt5DdRWLlUcvZbr8gq/sYpLCnL2yIfAAiFvwLiOpDlfeC9VColXu51x2nbo7jdmMk58wBhMVLb7XYqTeZ1n/kdsjTWPy2VNiPpPGI5Vxfe36NxGY3vWAeadiNQz/3J+vEIMDfKAR/jQaVEuyGrvT4q79zLDfwYNODnq7gsZW95uTaPlKdffA8QwJ7AYBwZGUkgCeTZBexdStz43OeIeaYN+hANWwdd2P+9QFM3PNnP7HU30iNQQdSzA0c5B058Hrw/njnhTiZ/972BjkWEox9s52CBA8w+Lgeq2+12GifPkD/rGxsb6TmK4IuD1LQZo0NjdL1Hwsd1oG/uSIlz4PcGROKZYH74Pwem8H+MKuyH9kN+E6iyEx07dkzDw8Pb5MH58+e3yRbo1KlT2etHRkZSdmyva2jzcu57I9HA/t6dckBeBFUjcOvXQc6bsOdwLC4vLydnsMtgeC0R2RxuDP9EB/GsqZ3sNHiFl4LxqG8/xwF555lP6Ex+PpZnTbnzm6ypHICOvY3tTTm2arWqbreb7um/9zM1CKpz+Y3t7Q6wCPK7zOt0OoU5p2wccx9tae5NVDzzyJztZ5nVHGjv2ZM+PoBx1oHP+D7KAP9dBM99nvx3UZ/wLLjYH2lLX2Q/uP7o80jb6EHRmeNj4fPl5eVtuovjMJ6V8Uq3IQf29/7RoQXRocuJBNjtmgcffFAPPPBA+r9Wq21LLXwlUqfTUb1eV6fTSQczIJABkTHIlpeXNT8/n0D3xcVFra+vJxCRFNpyuazZ2VlJSrVK3Uu4G8FMAQoajUYSkGfPnk3AZa1WSwbH8PDmydUzMzPp/tPT0wXvMgAGgm91dVXj4+OFOugcWAKg7szXo+8RqiggXl5lfX29cJgMik8vjytgwPT0tE6cOJGAARfoCEderkwtLCxodXVVi4uLBQVnP0F0+hrTwW9EQhmMyogDAKRvOoDuIPri4mKhfMCABvRKoYOU3ysrK9sMs0gOskXnGJHggNfIE3gABL9zUBrymtoeDRqjUkdGtg6bjKVBkEscGOhGDlHVkSJgOjIyorW1tcJB4bk0cJy6bgTHd15xPj2yx6NwPSUcYxKnNQYOctfBXjLBcIIjWwAnmWeAagDb8fFxTU5OanR0tHCINw78GIlO6jH98Og9z2xbWlpK+2FtbS0Z+fB25ghCP6KGNoArwAIBCR7BxXt0lgDo+n7rteb0j/bZ5+6sd7DdnwH6HaOa/dmgHniMpkYueg10fk+7uZdHvZVKpQQ2RyDDI8C5n5dHcSA7Rsb5eTxedsAdIB41z/xgiHt6vIPtXoef+QXAAhR3AIA19rrA3BOKzjbuPTY2lp7LCIbz7s+8O//Yh4Ab3M/Xh77yu8N48PnY2Jje8pa36Mknn9S73vWu9PmTTz6pe+65J/ubO++8U3/4h39Y+OyJJ57Q7bffnp6PO++8U08++aQ+9rGPFa5561vfetn3vRFpYH/3JudnEViUemeh9WpL2nTkASivr6+nwxIdiPbSnchW5CvPM85aP3wyOvZdP3E7O5YGdfkNP8PO9eA27H70pejwRz7BZ2mH+cNm5+Bvr4U+OTkpScmWRfbn9Jh2u50wgdXV1VSTPgYsuO7noLGklL0+PDycbPIcIV+Qq9h4BLG58zMGUeyVonyNDtUod1lj9A/WIF4TAXP2X5T3Ebdx+e19iiC6v/vf3p8ow1yPdMeO98cz+WgD50oOX2KP+pgHNKArpUMLop86dUrSprf79OnT6XOPBDh16pRWV1e1sLBQ8IafP38+KUM5wsAZ0HaCaSGM3GOI0MLr54eduZELM8Mg4UCVmIbj0Uw5ZY32XLC32+304t54MDGqnIl6anh8YWTEelqR4Uva1k9XmiJYAIhOv6jZhlDo5d1F4BHFRgQdfyM4EIhudNM/r9+N4hQj3/aD9uIIudHJ96nX+RsZGSk4VAYAepEGSsyNS9dCfueiKyIAieLNd67QeztQlAW5692p1kumeVRpr2ggB5QdkM6N08llCkCptGU0IJu9ZAifxbFGg9rvF8HQaAwiC71Oa6zZCsDnoKu3H989mjb2wfsdDXeX6bm+x7Vk3tB9eHltWN87vq7ejjtcAVv9XAyPwvd19/0jKQEg3vcYzZaTvX5dLyO5X74b58gdVL3uCfjNHotghZcnyD13uX66LhhBA9d94rhzzomd5oBrGEd8Zr0PrCslF9gf6Lj+jPBceNkaqJeDhLFwj/hscA3j517eto/Rx+LtR9qLTD4o+f3AAw/oAx/4gG6//Xbdeeed+spXvqLnn39e9957r6RNUPbFF1/U17/+dUnSvffeq0cffVQPPPCAPvzhD+vpp5/WV7/6VX3zm99MbX70ox/VL/7iL+rzn/+87rnnHv3BH/yBvvvd7+p73/te3/e9kWlgf/dPEdy83Db8b2Q/zjoccp7NlLMnc45V52suF+mz80SXeR7djd0PecZZdMjyHnUlbNEoE1zH8rIdOeA28jzG4VngBJX5ga3RiRh1g9hPHLZuk8d1ijKJvrF28Huu2Yvs3Yl2a8N1CdeddvpdDn+J+p3PU5S18Xc8E+48oI2oP8ZXbC+nL0b9QCqWV4x6At8PbM4tGszF/tChBdFvvfVWnTp1Sk8++aR+/ud/XtKmF/Kpp57S5z//eUnSW97yFo2OjurJJ5/U+973PknS2bNn9R//43/UF77whWvW9+uVut1uOqwDjyAgLh5mhOfq6mqK1ML76srE8vKyLly4oOHhYS0uLmp+fl4jIyOanp5WuVxOkXjuFYZoCyUA0Hx9fV1LS0spvbper28T8FEoR2aaM9TjHERmTZ/cOMObvrq6qkuXLmlhYUG1Wk3PP/+8FhYWCuluS0tLajabCWSPzJxogXK5rBMnTqhSqWh6elpHjx4tRDBFxQQhTqo6kYe8j4yMpIyBWq2W+r1fe2W/lILrmXyvtFqtZPCy9zzFbwCib9GV7J1X+p67Huhaye9Y2zwCkA5MA7i6IeoGHkaUR6O6DImGJfeP5VYgN9QcaERWdDqbmWDwEd6JbI739XJiUV7xOzcgiWYD0EXWS0rR7S7jieqBSqVSmgdPEXcQr9lspgi5Vqu1LR3c071p04FvIvKjXHYgF57rJW8YF+VbvOyKpEI6emyLklv1el3nzp3T4uKiWq2WlpaWtjkxOHDTo6l9XzCPRL9jhLMWBCIwLxDgM3PKeHxPuk4To7T9b65HZyGbodvtqlKpFMq9RFDAnwVvD31MUkGHYE+4bkRbzJUf8kWEWwRxHbyOxjX/e3aCAxg8Oz7XvofRET3gwoM+fPzxWWItSqVSAv/oC/V5eY7cOcWc0wfGyB7w8grxsFg+c0eD66XsYZ49L4HjawOw78AH7zwfrLM/T/3QQcrv97///bp06ZI+/elP6+zZs3rzm9+s73znO3r1q18taVNmPP/88+n6W2+9Vd/5znf0sY99TF/84hd100036bd/+7f1nve8J13z1re+Vd/61rf0yU9+Ug899JBuu+02Pf7447rjjjv6vu+NTAP7e3eKIDSf7QdtbGyWh0SWwjfGxsZSNLcHj7lu4DZ41IHgj/A158Nuw3hUtUcBx5JUfEZb8EXeXReCP7nck7aiipF5UUdwh74HBMDbG42G5ufn1Wg09OKLL2pxcVHtdlu1Wq3gbGBe4JFkNTmvpQ+UgR0ZGVG5XNb4+HjqfwR23aFQLpe1sbGRsgzj/fk9utVeeWF0lvjeixmY0cHvfYdcl4j3wQmOrHBZ4/fxthwDQp77PsmVNPNyMPTFwX8cOzhHYmAGxPz2cmb5nHn/X4n25MD+3j+6piB6o9HQT37yk/T/s88+qx//+Meam5vTLbfcovvvv1+f/exn9frXv16vf/3r9dnPflaVSkW/+qu/KkmamZnRr/3ar+m//+//ex09elRzc3P6H/6H/0F/5a/8lXRa+ID2Rl4PbW1tLZVGKZfLSQChbAMMO7myDxDfarXUbDYTqFutVlNqdKzZxu+JCKOEC/XNANEB+qNAiOBJzsPZC0CPY8iB6ZCnf9frdZ0/f17NZlMXLlzQ/Px8wZCq1+sptSue3o0Q5wDUmZmZlMI2PT1dABh2I6IUEEooQs1mc1sE4ID2RjsJHb7ztMpXsoDuhwZC/Pqnwyi/I//3+pzSFnAegUh4tTtgMagAsaPB6QaZ3ztmCjkQKBUNUfgxhtby8rJarZY6nU7KYpGUANkI1AEiR2MaWetlaAAZAVHdmeBlubw/HuUFSAyQ7kA1zgicAIzFo7sBAWI5FNqKQHE0BiEH0Zl/N8QBCmK6uvMNN+QA/JvNpmq1mhYWFpLcBJx18NsNP9cvPHV6dHQ0lWCjTxh+jMX3Dv2n3B3z4PpHnBuPNHOD2V/SVs183wtRt3HAIhdhB7nhSp8ckPXUam/HnVu+v+LedZCANv2Zc4eCP3e+jxwscX3WM8JiWSfu7fotY/HvGSvr7KWfPAqUcgzc2/cg65Y734D7+f6lnw78R0eQzz1zxbuvO7/hHh6ZGVPmd6KDlt/33Xef7rvvvux3jz322LbP7rrrLv3whz/csc33vve9eu9733vZ973e6TDK7+uNonNrP9vFloCvYItHJ2gMrIoOPefx7mB2HgNParVaye72ci3If5fT0WnreoRHlCNHclHC/O8Aa+TvLkt8vr2ESqPR0NLSUgrYW1lZUbvd3oYPeCQ8c+IOfAL8/EwyQHR3vroOkIuUhq/TP+aS8URHxJXsE1/f+L/PswcC+uceFBDbhOivlyvz63JyO+dYyul39Cenx7gj2isS5Jzg8V4+R5Fcpr8S7cmB/b1/dE1B9GeeeUZvf/vb0//USfvgBz+oxx57TB//+MfVbrd13333aWFhQXfccYeeeOIJTU1Npd/8s3/2zzQyMqL3ve99arfb+qVf+iU99thjfYGOA+pN0bhxzyKvGP0Uf++ALdFCzWYzRclRuw2BHu+NMAdYcO+7pJRihZGKkT48PJwOLSIiDIPdI/+ohe7gZ6vV0tjYmFqtllqtVoq0wmvNeNrtdooUIIoNsB8QBEOt10Gi0taBKghqSrd49FYvsD/XFkoLGQTME15x1vRKKUYC3sjkNV/7HeuNPicDGtBhk98eOe6KuLQVoQ6Y6M9nlGnwXgd8c4aGR77konmk7WUUolGDYxUZQYm0nGEefxt5ko85GqLRMUzfeHfAGXLA2GtNYigxdgd8W61WyhpDVruByf0wTgEGqIWem3PvD3IV+R0PnvK0bsrJucFGHzyyiTmn72S64fB2kMLnNoL8DqJ77dWcwezRdTF1PToTmDu/Z1xrL7vnZUVcj4tyzAEAj6ZjD7jBzB7KEX3OPVO9jPpoJPu44lpB6C8+596Wr00OWIiAtvc1jgWwxQEc9p0/L94Xd5IRLVoqbUXK77QPfN7jegOa0R8o52TxEkx8xrji+vnz6HtnQK8MOmzye0B5cmA8p2c473Ee4plq8fOoI8AD/Mwu5B/392sJLPAgA5zs8TPvJ+PxkjFuS7psb7Va6X7RIY68puY5djf972XnRjkDj/UoeN5dn3QnRZxr1w/4jnakrUM0XRfKrdluFEFrl+E5wHqn9r3vUUfKgeixzxETivPpv3c57Ne6vkPfXY/x9l0P3QuG0es679uABnQldE1B9Le97W07buJSqaSHH35YDz/8cM9rJiYm9Du/8zv6nd/5navQw1cuYdxjBHAQCEQ0DsLCU3qlrXRehCMCEWAaQRzBDu6NsMcI9DTjbrer8fFxTU1NpUM4Z2ZmNDQ0VCgVMzs7W4gMI1KOGuUcPLK4uKilpaUEZmN8HzlyJNUyJ4KM/dpsNjU/P6/l5WW99NJL+ou/+Au1Wi2dPXtWtVqtMI7oSYcYe7Va1dzcnKrVajoUzYH7fkF0QIhut5tOM/eyN4zlSqMmGBOnyO93FMZhIgS4R30OBO+V08ATfv3TYZPflFtAlviBjsgQvnPw2uUL5UAAdz2yStoClqUtUM2duNHQwPCNBhf3h4/iXG40Gmo2mz2jvpzXOqjnMjXKVZel3je/jr9dzvphXTiZ44GfTjjJ/dAwKDo0yuWyjh07lrLcOLjcKRpxUjFqHFmOjjA0NJT6TBkzDh2NB3Mj/zmMm5Jn8/PzKZOM/jNX9N0PWnXAe2RkJJVL4boYHcYLmSKpALh7iSHuGecBcJT557DKoaGhQg1Y31/s09XV1VSGxB0SDmawTxxEjw4b/5v9732kpjz7IpYW4TcY1dFI5zc+fs4YQd/0jAPWyY16MikZp2cXeFkYXh6h6KWQcNI44CKpUNpFUsGpVK1WUzCGl2PwPc5zyWGCnvkSSwzEOY8AiUc5uu7t5PprdGjFdnejgfy+/umwye+rSfCG61F/Jyo8Oh3dPnT9BN7pgHguCjxnW0bHp7T1rJMphZ185MiR5ACn3Ks7hGN0PPIUmQMI7vdrtVpJNly4cEETExPJye16UKPR0KVLl7SysqKzZ8/qpZdeUqvVUq1WU6vV6rnO0fns0f1gCuiAjMnLy8DjY5m8qAu5E4NrWAv+9/Xsd086n3fHN/hEdO7m1jJSL13O5S/yGZmJ455rkY8xg8Dvmcv+Qk9yvdwdy8hzgh4IUOyFOVwOuL5XZ8Z+07W4/0B+7x8d2proA7r25A9aTFv3aCuEngvlWIPMa4HRhnu2cwa0exx596gjhF+1Wk2lTwDR/VTzCNAj0AEHPEJpeXlZo6Oj6eBShGys+4lg5xTuRqNRiGLrlzCevI4c0Xh7AdAhB5AA1DH6+03V7YdceN/IILpUjFQd0P7QQIgPaL/Js5qQUTj5YiSoK/ju7IztRLnmPCA6SGM0kkfgRKDQwVQvNwH46OBZL3CZe7vx1CsrLI7VI4fc8IpAG9G/sVSE39NlNeeE8HuMb+bHgUEA9EqlkgxWB2xzkcxuZHmtdZ8Pn9NSqaSVlZVCRBkAKXNNJhp9RxfwaG4oBxI4kOGp4R5hFXmW7zdvI65LvC4af/G+HoUOeYR+nCcA4AjyR91jN54b91yMasPwzv1mJ4PYn1P67EB5nDvXKV2vjMa59yUXvefPUdxXPi6/N84NSenZxWkTHWxOsaxP3C+5CPbcXEWewue5OY6AfC/esdv9LocG8ntAB017taMOE7ksdIdk5D/xN873o0PtcvvhTneypiuVSnKC5/gHDm7nRbFklvMtZDvOeM9OQzdDXmODe/34ncYa54u/vX0PDnSAmfHlnJNR96Mtsu5ddvm9L3cdXKdz/TY6Q/u5R67/OXkBuf7jeyLqkLGPjgn5vb0PritCce/vlx2+V8fx1aK96Fn7RQP5vX80ANEHtCeKRjDCJp62jhHhqcQxZdhB9pwSEA3G4eFhzczMJKF9+vTpdAjn7OxsIUoMkN8FC3XS/MBPopOI1FtcXEzp9HjYZ2dnNTs7WzCo6/W6Ll26pOXlZZ09ezbVYYs14nuRG7+UXimXy4Xowyth7kTddTqdVNImAklXQkRQxejIG42IYGPfDATI/tBAiA9ovykacUTjen1PJz+cCDDRo8+h6ExGjsFjR0dHUzkSj+b1Ule7GbnIRZdbHq3kpSzoD8alpARoE8UqbT+cUNqKPPVILP8+GjUYgET0MgfSVqQ5ssqjmx0A92ivqakpTU5Oanp6WseOHSuA6JJ6ppOznryzpkQmM2aMb2qkctA2gDpZBh7Jtri4qEajkWq4M8ceJc04fY48Iou18Dqz0ThiTDgZ0JmYm14lgeKe8TlhzemPR7N7VDXfeU1RBy08gtGjriOIH/UHjN7oIHLwmkju+LlHTXNPnkPXEyGiFx0Aj2AwffTnx+/pIDpgfJRF7hTze3n5uvX19cLz48A+EZvs/Tjn/gzSL+7ne7vT6RQyXOIY43q4Qw8Ah89xrng2TtzfPKf90EB+D+h6Igf0chSd24eN3HZzEDPKmuiMvZxArEjwObK+JycnNTk5qePHjycb2Z3g7qx1cBx9ybPqHJB2m1LaKkPabrfVaDQK/Nbt7wsXLmhhYWGbU303Yl4iluFy3Ofc9TWXVfFsC/i+A8JRN+X/yIP7JfQsly0R6M5Fosd+5GSLj0PaCoj09l1n5W90IZftsc8ENEhK+EScE5zRrg/tVxnaSNcKQM8563O67tWigfzePxqA6APaE7lApf6Zlx6BPBUHQ2poaCgZkFL/DzLMdXR0NB1gc+TIEb32ta9VtVrV5OSkpqamCsaT3wPBt7KyUjCW3XhGACPsqes6MTGhubk5zc7OFoRPrVbThQsXkhC/ePFiEmz9EP1EgFcqlZQqF+fycggwRlICKjD8cvObo53Whlp0pVJpXyPcDxt1u1v19ygdMKABDejwUYz2RPaQCur1lN0IgQfDM+G/OSPEozwxokgFhhe6k5g02+gUjeCdA1mcZeFAH6XVuBaD1AExd3BHoA7yMiMO0HGdO7T9OzfKHOCkLxhPHsmNIUDE2tjYmGZmZtLrxIkTqlQqKpfLKpfL6nQ6ajQaKTsMINHvyXzw/crKikqlUpJ1q6urqTzG/Py8RkZGEv92xwFGOOVc6vV6OrCcOY6R6DlAgnlk/0QQPUZjEWUHoM+7ZzzkHC8xEsuNWi/F404VZD39Yn9S8oZSQBFI97Gzt3z/+F7u5YTxfe4lZjyaj/GQhQHAEsEY5gWHWHyW/Dni2caB4GsBYO9z5nPrzyFgeKyNjh6L7usOB36HrsqzxrqT6cCeAdj2+eVvP0fH18/7FvkdvIm94OOJTgL67X/v5sQZ0ICuV9pJb3f5HMHCw0AewS0Vo3Zz2SMOnu9HkBM6CfL7yJEjmp6e1qlTp5L8xgkOL6d+dbfbLciaWBolZrj7eWLSJp+u1+sJpGeszWYzye/z58/r0qVLfa1d/B49Cv2Edy+L5+QOAS/phv7DeJxn57KQrtTB4boEc+3ZCb0C5vwa/u/HcR+BdtfJ6IPrk66vuXxCX8uR79moc3LP/aS4HlfjHjvdOzrCXCZfDsh90GMY0CYNQPQB7ZlcMLiREpm2R2556s9eCSOdWmyTk5OqVqvJA46Aj4yXF/3DyIw1J91whYGtra0lozpGiXW73XSIKIeg5Ly1/cxjFBz7ZcS48IrOhRwQEIl56zUeB6F83DeaEcY4iZYb0P7QwBM+oP0mjwLnf4/idgMDijIqUi5C1X/rMhDQzX/rfYkgtEeh5yJqo1yIn8cyLKVSaRuI6xTlTe6aHLAfv4uA426EwUmJMWrXe03rGOUdjcwYfeeyPgeougNjdXW1sEZDQ5s10TlY3B3oMTIqp9v0Y/xGozP3fa92/Ltea+CfMy4vX+TrG/eKRwdyva95TvbH+8U5ye2Z+Dx5lFWuPfrl4G6cIz4DOPDve/XXaSdQKbce8VmKz3EEJXJz5JkhADDOO3L99bI1/7/23j3Msqo8E39PXU6duvYV+oJNCw4TwdbENJGABjAqCiqIKBgN6oxhRIbIJRkBlbE1owSTxxBFvA0jKon0zAMkaojSJIghdLyAGBRj1DQ2YjdFd9e9zq2q9u+P/r2r3/3V2qdOVdflnK7vfZ56quqcvddet72+td7vXd/iGKZ5UQeDVRZaZ2GszLZtZjt/c/vtOFJwuITmYqHePNay4XOBrr/pMFYbTjtOh5+df3Esp32yB4erTeO8yIZY1TYi2U4bPlMIF0WWXc6ad9RaK1s7yL/V2ZG1to49azbg/KatrW3aDsVYvmutXbWvxIhlvS6rP8XsY5YYgNdZcj6WtvaNI9lu2PnQYjzP7ff8wEl0x6xgPYU0AjGPJo2LGsu5DBCdnZ3o7e1FV1cXNm3ahGOOOQZdXV046qijUovxrMUnjXtLS0s4DGVqaiocXMIDQpUg4AFULS0t2L9//7RtrpVKJSjaVeU4G2jd2fo83IHUps32sc+IPc8aLrvoTZKDisORkREACEr+I03NRGfK8PAwBgcHg0rCcfhwI+6YbxSLxdQheSTPLWFMu6QLPxvDmr91oWSJVF0MZsUvB6YvHDimctwkmasxMzl2c9GpIV4ssafko4Z4sWEpuBiOkey8VrcIU1VGcll/tB55v6rhdXHU09ODVatWhcNEV69enXJ+AwhOSktmqz1va2tDd3d3WDT39fWFA8e0XbiQZ/4ZBkTrtlgsYmhoCNVqFSMjI0EBz7R1zqCLZBsCRwlp7TNK+tN+sh3sgaFcENsQdBp6w4bF07phGgzHQYUzVdO8n9unqYoeHR3FxMQEenp6QvgRpptFxMQIWd3OzfzoYWG8nvlivvWAToYLYhxc7U+FQiH17iZJEs6saWk5eJg874/NXWw4AQDhvVK1t+ZJd+xpe+nheLpTwc5tdT6o4XqYlkLHHe0TJJHsjhDtXyoIseNGbMcI3w3rOCHqnd+4/XY0O7Ic1I2G2Hpb17i0OWqL9Odw1yydnZ1YvXo1CoUCjjrqKKxduxbd3d3hEE7OOfh8joXMk84/ent7w/jT29sbDovmOWK6O2l4eDiEXrPzq2KxiOHh4RACph7E1rocI2kfdCy3jmeOu/zc1r/OD+jkBQ7tCmMoMLaHjtGzFeBVq9Vgv1euXJkSCqiTt1Y92OvUIRDb4WChNlPFh5omba5NizsWuVtLHedsDxtybr53iWg/1brhdwsJfWets2Ex7KPb7/mDk+iOWcESsbqoj12nxmeuxpyHh/b09GDNmjU4+uijA7HORVEtjzFwaMDv6elBW1sbxsbG0NvbCwAYHR2dNqBxkNeyKGoZqXqQRWLP9yRO28vuGlCDaQdwXWjFBlyqwPL5/LRTyI8E6ARpfHwcY2NjqVBEjsODG3HHfENDRJDwUnLRTpZ1/FPCVCe4Ol4qkcexzx4Abcdvq8zhAoEkryWqNR/2sCv9m+UF0gs8KsO4oGFZNA561o4nzV9sIa6qMlteXeCo8zyXy6FQKISdY319fVixYkXYNk1Sj4slLpxiDne2Y1dXF8rlMrq7u9HS0pIillk2VaJrKByCIV6444yhNjTsSKyuLEHOsqtyWMuvdaSLcLWtugjnczWMiHWWkHAncWHbX9ub93KepiQFyQfWuXXMZI3Rdi7HMk9OTqYW8rpIjy0a2cf5ndY/64fkSWwRzp2FLLPOyTQNfb49L0D7rs5lNeQASRF9P6ySTqHq71wuF95HwpLYSmzzRw9hozPEOnQAhAPv1enDNHXezbGF+dPf7D+zsatuvx3NDuvwbWRYIp3Qd1fHDrvL7XDA9XdnZ2ew3zzDS537HPc4fhJqVzo7O0MoNjpuKUTTMuj5U7H2oROY5Z0NYkQ6x3d9pnIYwPQDNe2YrjY8SxRn7bXNTz1txbkt7QKFB2pfs+ouNs6z3nXnUowTiJVVr6VgIXaPLaOd72rd6Npb+/RC243Z2sDDhZY35uCZa5qzefZCPmO5wEl0x6xgyVUuJOzWcjXgc/G0EiQreJgJDbcqneodeLiI4kGePT09mJqaSqm/svIYMySHAx1AY2R1jESYbfrAdEMUI+9jJJAlSmIkO73t5XIZY2NjQVHW7EQ6y0Y1mG4bdAPicDQmSqVSalKuC8/YLhklxQklvZVE1TGNCuHYmG0XsExT02caShwr0adkKndZKYmuqiw+0y5a+VuJN9oa7hqyizhLoFt7mOVM1mfyM807F9x65gdJV62TrDmC1rOquZVABabH97SLXLW19vBTVU6pY4TEtCr8lVBVx4Stf+0X/FzTsKF/tI2YF9aLOhe0zWJ1z8+oPOd8TNMjkdHa2hrC2cR2OSh0HmdjebPN+RxLIMTUcfr+KQmvfSFWXtafPlvVdPoeWjJGd6rYvMQIB/ZjOmO48LeEj9YbCQW9jlBhSVY57JxNlf627uhsATBN8WdJATtfVoeQtrHDcaQgNo7pWBsjQ5caMfJS19vqZLbELsfy+SAdOS5zvcyzTWjDNV86xqodsPnk+pth3Th+8qwIHY9ou6ydZjk5RtYLTUPjsXN8jYXis+XT8FuxeZ22nc6XYmFPa4nYZgId4bTfetYGx/0s4Z/aGULnUOoM4XfaDnaeRjvH/mnnPZqGrZ9YfXNupLsS58MZFEMjvO/A/OSjUcqy3OAkumNWoAHiQpvGwKpyrGJHyYJ6wbS7u7tx1FFHhW3hK1euzFTA10JLS0uYBPT19WHt2rXo7OzE4OAgnn766bD4iRHm8z1A0VhQSVetVlPbu2baSlVv+lxIakxvSyplLSDtIkzrgW1ZKpUwNDQUYtWTSG9mTE1NBdJ8bGwMIyMjGBoaivYNx9zgnnDHfGNsbCws0EiGUnGqZKu1QZbg4wRfnbW0RXahpWRzkiQhNIvaPyDtnKTt1DAuJPv4wwVRV1dXOMSbNo+LVI7Ban9Z3iRJUvGxmV8usK0SivdwazXzZBcvqjC2iyVdYNFut7e3h8PICoUC+vr60N3dHfLCxR8Xaeq8jamK29ra0NXVhVKpFA4b011Rdgu25ov2imVThwevZd9RB0RnZ2coCxf9hKq/+Cwlq/X5udxBVT7nQ1Tfaf50HkU7yvArrAPr/LFzryRJwg49OoI13Azrgcqz8fHx4OAoFArTyFbNoxI0WUpmbQsl06l+V2cI60RJYXXosJw6V+F7p/1EHVD8nuGSmD8l0a2zwo4JbP+2trZw6G25XE7VuT2sWJ0HfPe0HwBIOcCYjr5nuuWfdaDjkbaxdYYwZA+JLKuiZJ9SR8BcCUS3345GhxKB+t6qE82+90vdNy2hqnnV8YE235Lo3FFlSd655IOO+66uLqxYsSLsJOvt7Q22SUNa8T4AYS3N7zjm8ND0arUawrlwrQpM3yEEIMUdWPsz2/bSORPHzXK5nAopwrrXv3VO1t7engrXom3EsvM36yEWhk0FGjrHqadMbOPJyckw71W7H+MPOOfSMvFvtpN1zus8SOPUq62nQ0XncMr1WKe6fb46Szhn5lyBNny2DpPZYKnf+VpOh4XKm9vv+cPhMXWOZQk72Ov/ukDRxcDhvLRUszGGqsZ1nQ1osFSNzsWjXQRlqbHmE7EFtBru+UrfLnq1fLP90bSZbxIvR9Lhm5yw6c9c4t474rDjxWx/ZotbbrkFxx13HAqFArZu3Yp/+qd/qnn9Aw88gK1bt6JQKOD444/Hpz/96WnX3HnnnTjppJPQ0dGBk046CXffffesn/v2t7992jv227/927MunwMp0hpIh2nh2A9MH/8sLGnMe2NjoI6xNnZ4zP7Zv3XHlu3fegi2PYxLw3XEtqTrQkjLpM9VBbwSyloW5keV65pu1njPPNIRoWpu5tc+N0Zk2rpmPlSJTpuuttuSEVpOXZTZ8YT3algddV6wzLE6zKoLtb1UNtt467YPMC9cSKlyLlY/tp6USFVnEp9lw/XYuYd9P5T0zerXdku8vjsaR9bWO/PI/GaFB9S82D5v21HLpc+J3cfvYnWrfcFuPbfvS2wMsOOB5t/mx/YB/q99TL9je7A9a4Vw0LmfPnuuYo3Ftt8Ox1xhSUGiUftl1rrT2rGZfg43D7rrSw8QtTuvYuQf77ef2V1kTNOe7aBp61gbG9frhR1b7Zhaz3iVNXbG5ndaN2wzW09Z/8+Eemy4IpbXLM7Gzj+snZppvmTbMDbXtp/ZOlObqnlbblgoDsrt9/zBleiOWYGDWbVaRalUwsTEBNrb28O2Ul1sUWVXLpdTi4t6oIN3W1tbOA2chnauk3/mj/FVJycn0dPTg5UrV6aMnHpFSRLP5wCiC89SqYSxsTEkycE4uVxkq3pytmlToVQul1EsFjE2NhbKwHqoRSbFjF4MExMTGBwcDH+vXr06ejhXs4DtMjQ0hIGBAQwMDATngBuP+cPhvEuzvW/79u248sorccstt+DFL34xPvOZz+Dss8/G448/jmOPPXba9bt27cI555yDSy65BLfffjv++Z//GZdddhmOOuooXHDBBQCAnTt34qKLLsKf/Mmf4Pzzz8fdd9+NCy+8EA8++CBOOeWUWT33Va96FT7/+c+H/1Vx6KgfdIpSTUt7YQk4VZMD08k1Lgg4DgPpxRDv18/4U6lUwjgbW+gp0aakI/PIbc5UBfPQxNjB2XYRAiCVN35mw4CwzExTyXw6Q2OLKZZVP7exlzs6OtDS0hK2fjP2ucaPV9tnVdSq1qLCSRX7rOfW1tagDs/n80FV1tnZGXZD6f1a11kLadaL9okY4W/nHtoPGCpHnTZWlQUgOBj0+ewbmsdY2BT+8Fouorn9Wbf7c77U1tY2zcnEMlH1NTU1lYrDz/xT5cg61bmRrTe2p7aT7p6gio911dp66DBV9nntr0r+M1+EEjWWbGGZ2Hd4ngnfbSrUtU/ZQ3lt+ZS81zbQ8vNv3ZFnHXs6tvBvvj+ap1h4In1feA/TZz/P5XJhDNTxKkYi8nP72UxYTPvtcMwFsfGh0fse7RL/5m+O5xwbOMZaJycdxHr/XED7S/tKsjsmpGK+dFzSNXps3dnW1hbOJ9Ny6lyCn42Pj0+bs80Vlqhl3pWkp1rbCuqsEIPjN3d66fjKMKdMz84/dP6nu+FmM/7qjjaeb0L7yZ2L+g6Q7LZzUzu/Y98iWE7aJH2+tjXnBmxHAMHOsc11d53yLUyPdUnOQs+rmYvjpFmx0OV0+z1/cBLdMSvo4FosFsPCiotnQre7Usk725ePgz4XV4VCIaVCnwvBrEa8UChgaurgKeGrVq3C1NRUIK65HXhiYgLDw8OpU6fnYxCh0QAQYooDB+P60mlAEmC26QIIhogGloeo0UjOhkTnIprGUcs/OTmJwcFBFItFtLS0YNOmTU0f0mVqagqDg4PYs2cPRkdHUS6XjxiF/XLExz72MbzjHe/AH/zBHwAAbrrpJnzjG9/Apz71Kdxwww3Trv/0pz+NY489FjfddBMA4MQTT8T3vvc9/Pmf/3kg0W+66Sa84hWvwHXXXQcAuO666/DAAw/gpptuwpe//OVZPbejowPr169fsPIvF/DQSY4/JMUs8Rg79EqJOlWeMiwDF3Gq9lQCjt8rYccxQ8cOdSaralRJdMYP52GcWeOz/tZnWcJWiXtdGPJ/OsRJbHJBqIcwsh65+NF0WGdMj/aLO8dsHFWrCAemq59tLGpVJk1OHoyd3dvbi8nJybDQ4nZxOk86OjpC+fkMS6Dr/6wzq67SeuWzdQGq9tCGIOG9SZKkdhDwXm6RZh7tDoAslb4S2WwzJdHVwUFwHkawPXnIKuc/JHWVsNYytbS0pIh6JT60HErgc4HN8D0Ml8Z0+Z5xTsY2sTsu1MGo9chn2jLRqcV2037MOqbTSA8x1T6j75yWU/sRyRjWCevS9i2tR1XvaVgDLY+2N7+z/YjP5fkt+t7q2KTP13dNiUaH40iBOpwbhUSfyWFVK486ltAu2nnBfJWPYy1/SKLrWKF5UQGCrrHV0ag2M5/Po7e3N4R3sXZUbSDH87ms92PQcVvJa9pSFSmoQ9zOCZiWJaUBhLHYzlvUttldBbNpO1s3HPM7OzvDfI2hvYC0eDDWdjEbwDmL2ic9rF0dzOpgoT1Uu03eRkO/qACEaXP+PDY2htHRUZRKpXAmma/BHY0ID+fimBPUm6rbrOz2otgCsBGgi3V7+FlXV1dK1UgSYC4hZGo9W1VuVEwxTqzGyZyNd1oJCk3Len5ng1rPp/Hjs2jwmjF+uCoRyuVy8IA3Yv9tdtiFzWx/6kWlUsHDDz+Ms846K/X5WWedhYceeih6z86dO6dd/8pXvhLf+973AvGTdQ3TnM1zv/nNb+Loo4/Gf/7P/xmXXHIJ+vv76y6f4xCsitaqR5VYnMlxaCf4lniNjQn2+xjZZhdQuhDRUGO2DIS9P5YnVVvFnq15ioWkyFJFsS61Pm3d6kIzq57VGW3LEXtWrI2UiNSwMbrg1zA4vNeOI7SJsa3nti/YfGi71wqrkbVotYtX2290HqD9KzYv4N/ap2rlW+vVEvCxOVut9yVrTqT50Pa0RIS2vaZpt/fXel9VPKDzH40xHqsv7QfaJ20/USI8tmXdpmO3o8feQ23DGKkdg31P7HfMS6yvaD+KlVPrZSYslv12OOaChSKX54pa4+RcUOu9smWdj7Jb+2LHUh2T7PxAYe2AhnVR0l7tuDobD7cOY3MYHR91PqTjZ9acKGa3dWcYldWx8Xi+2iW2E80+U8tv5238vFadWRteaw6t96itz5pXsX61DPozWx7EMTPcfs8fXInumBPUa0sPIkFi2E7WZws1bHZA5XPmkibv5WEcK1euDIstkuW6HYse3Wq1iuHhYZTL5Vk/l8+0JE5LS0vwsk5MTKCnpweVSgU9PT0pJX4tAp8DG9thYmICQ0ND2L9/P0qlEoaHhzE6Opo5GM6kjqj1+dTUVCCbBwYG8Ktf/QrDw8NYu3YtVq9e3VSK9FKphNHRURSLRTzzzDPo7+8P/c4xvzgcY8z7hoeHU58zfIRi3759mJycxLp161Kfr1u3Dnv37o2mv3fv3uj1ExMT2LdvHzZs2JB5DdOs97lnn3023vjGN2Lz5s3YtWsXrr/+evzu7/4uHn744WllcdRGd3c3uru7w0GFGnqBCwlLqiVJMm2BoKoaLqg4RtMWAekDmVQVTPugjkRdbPE3Fzzt7e0hbEtvby96e3vDotKqnpSco4JZw3RoCDA+n6RikhxSFjGvvE4PQ2WatFf6ntoFsCVl+T/zzl1MWnckOPVgRuatq6srHErJ9JlGLpcLC2vNO8OytbS0pM44UfWzHhTNMZ3qe92WnAUldqnwZb2wfjUMB53ymqaS/9rvdPHO60qlUgixYhf5VDmrqovhUnhdjKROkiQVW5+2uVgshjLQIUElop1zsO9QmaYLZbsNn32I9/FQWHXmq4hA66itrS2ox7Uv6L3atzgPKRaLqFarGBoawvDwcKpP6446rRe2XblcnuZsswS0Hgxq1eoss+ZP88602Dd1vCFs3H19p9jnNca89k3elySHDhDWd5d51naypEi9mA/77XDEYB1jc7k/5gRfqn6n6725roWzMNv12mzT5vxB5x1c9+v8ijbNhgGjLWJ+NBwICVPg4Nxd20nHZaqTSUrPFRx31abQTjIfo6OjYTegznWYbx2fOe+ieIzjf5IcDEHDuQYPx9R5ls2X2rLZYGpqKoS7qVarqZ1kascJtW/8X9tR+43OI9ROTU1Npey6ltvOGa3TPDYfplCgVCphaGgI1WoVAwMDOHDgQGqnntuN+YPb7/mDk+iOOYMDPg3rfEONqlV38fu5eqY52Le1taG7uzvkn0aWscZ0a3C5XMbo6OhhlSmmZCKpkMvlQvqtrQdPReeiXBfeFmqQONkoFothOxTzrgbT3p+Vpg62WQMvJyDj4+MYHBxEtVpFd3d3uGc+FRgLiYmJiUCij46OYmRkZE4TG8fMmA8jvmnTptTnH/jAB7Bt27boPbE+P5P6IvZM/byeNGe65qKLLgp/b9myBSeffDI2b96Mv/u7v8PrX//6zPw5poPhQ7h4sAoc4FDMZn6v7WqVNnYBaZVElrzSa/msmKpViT8uSLj44U4ou8jjdXYxax3LGuecP6qIJVg24JASmYshkpeWjAUOLaass0G/B5BaOPF5mid1jBO6+FZSm23B8hGMqc1ruGBk/mgz2SdsnTCMB59py0LCUfuQ5qsWYZzL5UJoEkVMBca6oSAhl8uFuQYJc3V8KBGr6Wpd28WwJde1vAxbR4c+cCisTJZ6TBfiMbU4+5e2D4l3ihRYVr4nrBv2Be1nsfbRfsFyckcfQ9gpYqIO+44zpj3zwO9Z5yyDpqHpsr0rlUp4h2LjDd8BhZZR09L+pvNhrX+WRdPW0DAsD8cG7Sv6fb3wRbhjoVCPqKfWvZaEX0oCXfPULOsghY6P+sOxN2YXYkpljjkcY6hA17FW7SmdmpOTk2FeB0w/AHo2UCc45wc6zwOQsq96RobWR2weQyKY86fx8fFgv+kM0Hmk2rrD6RtJkoR6amlpCQ5xche15nH6d8wuqNM3ay4Xc1DZuTTTV2cKocIA2u1KpRKcEPzebcb8wu33/MFJdEdDQgdnksK6+JpJOZaVJgd+jb+lCjBdfKt3nQdzzfaZuVwuLOJbW1ujh93RIPGA1vHx8aBA53M7OjqiJDjLQiM0OjqKSqUS1Ock1XVCaes3VqYY8TMTqtUqRkZGUK1W0dfXh76+vhAv305GGgXqnBkZGcGBAwdCjN2lnnw7auPJJ59EX19f+D+m3F67di1aW1unqc77+/unqcSJ9evXR69va2vDmjVral7DNOfyXADYsGEDNm/ejJ/+9KeZ1zjiYPxtq2C2k37dmhub1MdIcrsQYDq6CFBC1hL4Vhmn8ZkZP5x2xpKrWbBl4nP1h8+z6nkLS0jyM0IdC1omazsssUxic3x8PDgKSBZr2VQdzTStSl0XVPa72E4tu8C39ab3x8hRppnP54PCnQelxtpG1WQax1XLxDjZVMfrFmZVNzMsmq37LJvMa2o527X8dlFM0QDjuOpOCM5dbJvYPq6f2bmN5pf5tIeU6tzLhkGxi3x977SfUfWnKkd9b2NOjSxhglWa27ZmP6gF+36oIpX5s8o+PWMgli8lcLSueX+MhGTfUidKVtoOx1LAiou0P9bbL7W/Nwo4HjfTWoLkL4BAbiZJglKpFN0pBkyf5+jOKP3Mho7jvdxNpXMLO9+YC3T3FWOG65xBQ8bw+RprXMPCMV8UMVBBzZ2KVJrrZzpn4dhtHZ+c38yln9CW6Nk2dCLrAdasR97D56hTROs75nS2dkodtloOnaOwvPoOa7gWzoPGx8fDrva5hLN1OJYCjclsORw4NHEaHx/HgQMHAkm7YsWK1Las2UC3co+NjYUBm8ZRD1CZmpoKxHehUMgknLPAicGKFSuwcuVKtLe3o7e3N6Ws4oKaRnBkZARDQ0MYHx9HsVhEW1sbent7w3Z/3a4PHPJE04AODg6iVCphZGQEAwMDqS1ktcgT6yVWA6YL4VooFovYs2dPqEMqK9euXduwJHqSJOHQ1aeffho/+9nPQt/wBeXCYT484XTU1EI+n8fWrVuxY8cOnH/++eHzHTt24Lzzzovec+qpp+KrX/1q6rN7770XJ598clB/nnrqqdixYweuuuqq1DWnnXbanJ8LAPv378eTTz6JDRs21CyXYzp6enpShxqr0ppEoaqulWSNqaZ0rGcID1VzchutLjaYXtYCUBchXIxynGxtbU2F0LCLGoWWR8dp5lN/9GBvzYcq3W096PNUVWTzY4l0VRZz99Pw8HAoG9tFbQrJdS7MWQbaLVXdsixcuNHJTVWbzZfaPS5kdQHH53d0dIRn6m6FlpaDIWZ6e3vDYWj2wG91VCsxyr+ppFPVHUOPTExMBPWVEg/j4+MYHx9P5cO2q1W06VbuLCihwd8k661zh2n29fUF+23nAywz+xafrUIHdVQTnMeQoCmXy6kt47E0lWDQPkDif3R0NAgHuCCnE4T9Tt8p5k/V8iyj7izgtdrHKWqwDhI9INTuZFCFpo4beoYA64XhbAi1leqgUjEJ284qCm0IHPuOs55j6vgszIf9djgUlvDTMX42/a1RifRmAu0316QHDhwI54NxnFLHvz0HhWFYOP/gOEThml2XaggQjpsk6a3obDbgWN3Z2Yn29nZ0d3cHW8y5nIbd03kHbRjjs7e2tqJcLgcxH+0OD7/U0COqpNY5oz4rtius3vGX0DkHy6trbc4rLYnOe3U+EKtf60hmO2jdKYeiafPH7hikM4bheUZHR1GtVjE4OIiBgYEgmnQF+sLB7ff8oTGZLYfj/4caXxp1GrfZvsw0GroFKxZvi8bAqrpmY8R18atKts7OzqCYpUGhUQYOKQDUC86FMT2/XKixPPTelsvlsCClJ1y9xLzHep31O/v/bCawuo2MTgDg0GFfsS3ZSwWdsDE+b7FYxNjYWCiDY+GwmEb86quvxsUXX4yTTz4Zp556Kj772c9i9+7duPTSSwEA1113HZ566il88YtfBABceumluPnmm3H11Vfjkksuwc6dO3Hrrbfiy1/+ckjziiuuwOmnn44bb7wR5513Hv72b/8W9913Hx588MG6nzs6Oopt27bhggsuwIYNG/DEE0/gve99L9auXZsi3h31QRdzQDpMhr7vJAGzzpmIKcc4nitBblWhtfq0kudciOghoqqWyhojY2mrUk9VQJZstYszje2peYw5FlQhmKV61ZAT+lsXWsAhElzrWZ9jnRlW2Zyl/rf1bOtNF8kxNXJW+UhM2gNLLTGvJLESl+pU4N/AoRA6GpJHVdW0mVYRZtXYVgVYj33N6ke0hVz4cmFslWWqTtN8xVSk1sGkeVXFdUxxqu8h09d2tKpGVfXzOw2pYssec2xp/fE+Sw7o+6u/GVOe7a3KRS231o+OUbxGxxnb/23eNI/6Hllnid6X5WSZLVHpi3DHfELDPwCH+vhc+otd6ywVYs7vZoA6dLk+4hhHu6BjGJB2QupaW22FOrH5nbb5fNcP7Yw9vNTuZNedeio+0PFbnY1cb/Nvlol8ggoXAKTmjFlzlrmuje1aNkmSlKPChvayqnC2j9oQa781r0lySEyYVa6YI1d3g2k/IAmvc6J6RHuOucPt9/zBSXRHQyNJDqqy9u3bh1KphGeeeSZ4lOllnol80G2/g4ODKBaLGBgYwO7du1Eul4NxJbGg24yocGKIj3o9xSTM29vb0dPTg97e3qiSnF59GqW+vj50dHRgYuLg4aCcuHAbGicAzKOS6Dw4TQ9FnYksp9G0xEJs4Vxve01NTWFwcBC7d+9GZ2cnkuTg4a0dHR2hHvjspQA94fSC/+pXv8LY2Bj27dsX6s1V6AuLxTTiF110Efbv348PfehD2LNnD7Zs2YJ77rkHmzdvBgDs2bMHu3fvDtcfd9xxuOeee3DVVVfhk5/8JDZu3IiPf/zjuOCCC8I1p512Gu644w68//3vx/XXX4/nPOc52L59O0455ZS6n9va2orHHnsMX/ziFzE4OIgNGzbgpS99KbZv347e3t451c1yhhJrdhFIpZAeTqWEqBJXlmRSUlQn/DxrgosXtTNAOgQMSXINk0HHKnAodAjHeFX76LZops9yVCqVaXnm+2EV10mSBPW5LoLomOX/rBfmUw8LywIXV5aEbGk5GGd7ZGQkkNCTk5Noa2sLtptljZGwlijlIV5UK01NTaGzszMcBFYoFEKZWG4qxdgH+DnLzPJxoanEeVtbW0hf5xm6uKZqmaQ728ueQ6LbxcfHxzEyMoLJycng+GadxZw8ul3a9nnWly7mbX+w8xb2NX7H+iqVSmHXQD6fx8TEBNrb22uGNtFFutYhy8s+agll9kNN3zoMWC4NH8A25U4QEgVU9jMt29e1X6ljiX1c1Y8aCsa2i+4M0Njt3M2gP7bNeL8+T+d/StArgc7+GiPV7TyK97Nv6lyOdcDn6W4UJ9EdS4ksEnaufc2SvIsF64g+nHdlqaB1VyqVMDw8jFKphK6uLgAIdpY2UudaSZIEW0KlNsfqkZGRsPYaHx8PY6i1qzqnon2MHcqZBZ23dHV1obu7G21tbUE9rzuQFLTlqkQHDs0RKpUKcrlcarcyd5Kpip1EMHBoBxQQ3+03X31DCX2e61UoFMI8Q3c6at9UAQDtNO13S0tLyplgFe28ln0l5oywDvbJyUmMjIwErmJkZCSE/BsfHw/zPcfCwe33/MFJdEfDg4vlYrGIp59+Gm1tbejr6wuHV+pW6Zjnn8alUqlgcHAQQ0NDeOaZZ/CLX/wCpVIJfX19IdxKLpcLi0cSqjRIGj99JjB0Sz6fx4oVK0LYiZgKiAadyvfOzk7s378fAwMDmJo6uK1Ow7lwWxnjn3FSonHasgZJVXJZwx6rN72nHtAoDwwMYGRkJJD/5XIZK1asQGdnZ2oxvRSYmpoKBntgYABPPPEEBgcHU6esO44sXHbZZbjsssui3912223TPjvjjDPwyCOP1EzzDW94A97whjfM+bmdnZ34xje+UfN+x+ygC28SSOpU5CKD0NBaVjlqnYi0QaOjo2GRaLcs8/m6wOTfLS0t6OnpCWMi47croUfFs11sUfWkah3aNCXeWQe8VlVfQJpg4yLSOjW5WOLCkb8tSW4R+04XdkxnYmIitZhlnpQ01sUdf1er1RCmo1QqhYO7WA+st0KhEOwgF+FciNMBogtKEqcs68TEBPL5PLq6utDe3o6urq5A0isZrAc7sh1ZR7TPSqJr3xobG8Pw8HBw8NiD2XURq7Y4plojia3qrtgWcZ0T6M42fqchVDo6OgIp3dbWhmq1moppzzyogl3Lp+fIkHhQEQF/+Bmfb98jna+wXvgeDg8Pp4gLtq+GA1DE5jS6wCehrf3P9mX2Hba3htCJKfe0zpVQ0LCBsZ0edHDEFOjqILJ9Ut9hkiS81ioONYSC9iWHYymg9ovv3+H0x6Ugr+2OECVkmw0cKxkPnTuqp6am0NPTg0KhAABhnOeOajvnYnzuarWK4eHhIEij/ea4S9vNOQLnPOoAr5dEZxjW1tZWFAoF9PT0pM4Zo/2L9RGdU/B/FRkACAeHcn5hw7HF6pJjLnB4Md6zQBuYy+VQLBYDj0H73dHRgSRJUsIFu4uO+dLz2OhYsCJAzk00NjqQnrsxTYIOaoatJYnOtTcdK26Hjizccsst+LM/+zPs2bMHz3ve83DTTTfhd37ndzKvf+CBB3D11VfjRz/6ETZu3Ij3vOc9YQc3ceedd+L666/Hz3/+czznOc/Bhz/84Wk7uGd67tvf/nZ84QtfSN1zyimn4F/+5V/qLpuT6I6Ghy7UisUiRkZG0NLSEowwDZcuRNQ40otNRdzIyEhqMZ7P58OCUVXeVBlyMjCbGF2q6NPFdq3raZD4W++LKe3t1iirgKoHNJiWQNIFYSzu70xpMg1VIrS1tWFsbAwdHR3BSLN8C6lKt+ozqkiHh4dD+BYuvp1AXzx4XTvmE5bw1s+sMtSSm7zW/raKGjsWarpKUKpyJ4uU1udnKUu1TLFQJvWM91l2R59TywmthKK+s1wYZimqtF54DcluAMFhyQO1afcApEhwLrBIyNrDpxhGAzgUJoX38v6Y/SahyfJr/6DNjamvrKrXkiaxNrWwacSU4rF207rU70nWKHFs8619JrbbwhL92vaq2ub8Kuas1za3NhdAKn9WsalOA0ueW5UiSQ4l0a3iT5WGWe9YrXdD+4StK61LLb+9R+ei2te0r+jcS50QuqOFdaH1r1v0Y/nX9PkZHQwsh22/2Ygb3H47HNmw84lmhY7hdPq2t7cH+93W1hZ2C1FZriQ619lcv6uy3IbXAw6NfRriIyt8WxbU0a3O+piSWgllvZfjrK0L/rY/dn2s8wX7tzrh+RzrMLfPtmN1rbpQ+0s+g84JfZa2Lz/jXELnUKwPtR/qlI3ZSq0rzRc5FZ3TaXifZntf7LxiKZx3c8Fi5XH79u248sorccstt+DFL34xPvOZz+Dss8/G448/jmOPPXba9bt27cI555yDSy65BLfffjv++Z//GZdddhmOOuqosBt8586duOiii/Anf/InOP/883H33XfjwgsvxIMPPhh2g9f73Fe96lX4/Oc/H/7nGTr1wkl0R8ODg+7k5CSefPJJDAwMoK+vD8ViEV1dXejr68OKFSuCwkc9o1NTUxgZGcHo6ChKpVK4n+E7qG4bGhoKW7/owaWRHx4eDoR9vYoCbh3jlv16FidUgFHFzklKV1dX2D6nkwCS/twqN5vBW5V3q1evDtvdqHhXFePAwEBQElD9npWmqjqp8Nu3bx+GhobQ3d2NoaEhdHR0YM2aNVi9enVQDCzUwaM6SRseHsaBAwdQLpfx9NNPY2BgAJVKBUNDQ0FJ4FgcHM5Ew9vJEYOOzSTbbF9R9SeV4oSGpLDpatgWnfArVFGt6VPVrKFB1NnL/PK3JT317A49mEsJfZZdiUOWVRVcSh6qIkkXeSw/01RyVhdVWn5LQnPxrApikp3j4+PI5/NhMb5y5cqw3VhDq7Ceh4aGwpbfffv2hW3UTJt54n35fD61HXx4eDhsaWZZtM7YTlNTUygUCkGJroeX2xjyStayrbXe1HmuJKlVCtuFs9ahhV7X0dGROiCtpeVg2BzmI+bwZj9SwoL1oOpte7gfSQ86O6xYQfuVPottxG3bGqbIEsZ8XykiKJfLoS/aOcfU1BQOHDiA4eHhlIBA1ec6D1QSW9+z2HZ+kgJaB5oG65XPzOVyqa37vM86AqyTRdXvHR0dqboncWRVrOxHqv5jnrW91QmkSn+OXSq+INTZVw/cfjvmG9a51yxklMIKkYDm7+8cg6vVKg4cOJDamZ3P57Fy5cogktIQdAznMjw8jOHhYZTL5bCW5LhNEp5rZLuDaXJyEmNjY0ENPxsleuwcE+sI1/kP7ZAVjyl0TNefmHI6yzYCCHNBnYepQ1iJeR3f9ZBW68S2Nkbtp9Ynn2kPSFcnwuTkZKo9ueOKPASfobaN7cd8co5K+60Okf379wf7rU7wWmHjGhHsN1oH2o6NisW03x/72Mfwjne8A3/wB38AALjpppvwjW98A5/61Kdwww03TLv+05/+NI499ljcdNNNAIATTzwR3/ve9/Dnf/7ngUS/6aab8IpXvALXXXcdgIPnmj3wwAO46aabwtll9T63o6MD69evn10lCJxEdzQ81GgMDg5ibGwMpVIJhUIB3d3dgQDVOKscyJIkweDgYIiFvnfv3kCkcjsWPeStra0oFoshRicHQi4iZzN4tLS0pBa69d7DBT5PFAcQiH1Nhwt1IqYKqwUO+jTmfX19KBQK6O3tDdu/qCbQMDaM3VorTU5MuEgdGxtDkiRhUsXJTU9PTzDO6q2fb9A4j4+Ph0lgf38/9u3bl5qsOBYPvgh3zDe4QIipbNln1LmnIbRqxV5VNQ8XVrHrmSbHav1NRyHP3tDFGu/V38y3qok0XAfHNOa9vb192limhCHtijphdeHIz0mSqj1R54SScEraWcJA64ykuqrMaWNZH1xQMj8k/ZIkCaE7KpVKcGirrdEFHJ3LqnBi7HrNL+vSOi+Yf901oG1iHQdKzqq6y6ZtQ+awL1ry3CqwY32R0Dj7JAr4bG0f7fv83kL7jHWqMKa5qs7se6ax4Hkd5wxsR7YNwWdw4a0LcxuihnM5fjc6OhqcKSwv3zHmS50xdndA1k4BfR9tu6vKjPNRvotZakKtdyuC4GfMs4aGoTOEede6V6jKn/m07cN3X+9R5SR/NCTUTHD77Zhv6NjRrFACsxmdADEoUUzBVrVaDeMUgBThquFYSKIPDg6iXC6H9bvWjYZY4fhnw7nYcGe1oGtb/ljnDMdJtd9KhvOz2JjLfCu5Pdt2tvNE2ioN78d0dZ7H9rD5sGXXcmqIV9p3DRemzn2dK/B+nadwnqnOYn1uTOFODoGE+sTERBA2NPv6O8Z56JykUTEf9nt4eDj1eUdHBzo6OlKfVSoVPPzww7j22mtTn5911ll46KGHounv3LkTZ511VuqzV77ylbj11lvD2mHnzp246qqrpl1D4n02z/3mN7+Jo48+GitXrsQZZ5yBD3/4wzj66KNr1EAaTqI7mgo0JMViEQcOHAhhWcbHx1Nx0Gg8uODigSajo6MhfIcd7KmA0sXbXAd56y2eLUhw0PDZmGy6aLaL3nrS7uzsRE9PT1ASMH67HtTKZ6xcuRL5fD4oytRbzuczj4xpp/lj3XKCUKlUcODAgfAZn62H7qmSr9bWa6tQY9upJ5z5HhwcxP79+1OK+iNloutwOA6BY4FuC7aK7NiYqepgjlt2q6m9PrYDh4sj/nBc1XGNz7bEuZLXVv2uf/P5quxVW2AXVPoZ79PnWuhWZyWErWKQ0GdZtTHrU0OjUcVbKBQwOjqaUn2rE5tKdDp1uYBXBZd1OGh7x2wE82jrXcvBz3VxHWt/259i/9vrNQ4sy2IX5DFiXR0BVNCrzdZt26xjfqdiAyVP1V5rmh0dHdOI5xghHatDrW+2p90yr2QTr2W+S6VSCLFXLBanxUpXpXtsjqVqOebNto8NHwAgVWex9rMkON9TdcDo3M/WH6FkDR0uSkJwLqsOLTvnUiWgbYfY51pu6/xpZuLSceRA7V+jzstrrbWsA+1IA8fJXO7g4dhUo6sNamlpSR3mPjQ0hKGhoZT9B6YrtZXUtuvvemGV5myPmMNcr9e/ZxoLlaRnerPJH9f2XCvT+as2UucpBMtgQ3LpDjs9tF53OLHMKsKwO5xs+XjP1NRUIM/5mYod+HzdMTk6OhrsN88QYkhdtd+N/J7XC1Xj23n2kVC+LGzatCn1/wc+8AFs27Yt9dm+ffswOTmJdevWpT5ft24d9u7dG01379690esnJiawb98+bNiwIfMaplnvc88++2y88Y1vxObNm7Fr1y5cf/31+N3f/V08/PDD0xwCWXAS3dE0oCoql8uhUqlgbGwsKL65zYiebC5ukiQJMdlI4Nrtzrrg5MEcOvjNZRBU4z2X++mpBhDCwgDp+KY0iLGty1mgEV+xYgWOOeYY5PP5EM7FqstoILu6ujAxMYH9+/cHhwUNIuufinYe0EqDrgtdnsherVbxy1/+Ek888QTa29uxevVqdHZ2oru7G6tXrw6HuRUKBeRyudCmbCPNn5JdGjt3cHAwOE727duHcrmMcrkcDqlVIsqx+HAlm2OhwHFQSVc9JFHVvxxTVM2sClZO9lX9reOGEuf2N8cwboPVbZ9KzDIdgs/gzh0d1zj+EqqWsukrCU4lly6A+J0u1pRIjhGASiLqYtSqtrioAw7FKefnAMKuL11oaP0xzNrExMFDqLj1l+3Jcmj+1b5rOBdL0ioRTCI1azs25xGlUinkW+tB68KOS7bu9DcX0QyXonFfOf/goll3nHHh29bWFnZydXZ2hvA4wKGwLby/q6sLHR0dKJVKgbRlWCDtK9zZx11iPLhd50lUB2q92r6ghDLTZ73pWSh6HduAqkOGAND3QBV6nM+xTbUN1XGg5LmS7XxXGE+f+eSchs4vXSDHQs7pjhDbZzi22Dj1HJt0DqoET5IkYRejHijMNrBKc6uItGOU1nFsR4S+0/USVm6/HQuB2A6aRkDMWRpz3h3JBDrXWNylXK1WU6E/df7End5qv7MUunYelsvl5kyi2/zymXbOYMc/ncdkzcv0f3Ve0+7OBBVcFAoF9PX1BfvNUGmcp9o6bWlpCTvx6KCgzeLcIZ/Po6enJ6zFu7u7U/nnPEZtlebJ7pSiHS2Xy6G8dNKTcwAOieTK5XKYsw0NDYX2HxsbC22g9uxIWH+rKEed4DoPbsRyzof9fvLJJ9HX1xc+r0U6xxz9tZxVsevt5/WkOdM1F110Ufh7y5YtOPnkk7F582b83d/9HV7/+tdn5k/hJLqjqaALBhpeNThcpKkRJoFaSyUw3x5D9dDy90wea1Uc6ctuyW1+xglMljIsC5xMdHZ2BgdE1gCosWDHx8dTh5BqXqisY0x3qspjajG2SbFYDPdxkdjZ2Rk87UpyxJRl/M12VrKJp6dz9wGJCt2B4Fg6+CLcsVBQ1SYJJf6tSmpeU2tcVlLKOlZ1DLSHV6kt0pifRNZYzfyog9AS+DEFV4zcZRkVdsGo5VToWGuVqtbWzKTmsg5rfqaqNY0rzetIBOshkqwLEpM6HyApa3eAadlUfZ2lNrbpqj22adaa1FuSWGGVbNpv1MmTlT8ldvVHVd/sS7TFrDcu8nQBHUsnpvS38y/m36quWUfq1FE7ryS3lpftS7JGnSF2LqH3ztR/tX9oW+nCl6hF2mgsedtOOr9h/bAd7LyFf9t0tB45/+H7HXuXa/WRmI1lPmNjUb3zx6y0Z3Ovw2Fhx9ZG7Cd8Lxsxb4sBOy/h+qtSqaRsMklTOnR155CFjnm0GeqonW1d61irtkrH7nrTzLpO7fVs8qRjO9fJtM8AwjxR02a4lyRJgv2O7Q60O8jpKFa7pKIzdXTzt/7N33Rq5HK5cICs5oXpcp5Gkl9FIOwP3A13JL0/1oEOpNu5EceL+bDffX19KRI9hrVr16K1tXWa6ry/v3+aSpxYv3599Pq2tjasWbOm5jVMcy7PBYANGzZg8+bN+OlPf1qzXAon0R1Nj+7ubqxatQr5fB69vb0oFAoolUoYGhoKYTxmG9P8cFGpVMJhaPl8Ht3d3alFpQUNPQ9soWMAQMrrq+nbQ+5m8thzQc0YtAznYtNWkHCfmpoKnm7mn0qErq6uoLqkOo7EkRptVXiSSE+SBCMjIxgfH8fIyAgGBweD15sTCm5756KeRik2maOnm3FwSajr9jHH0sMX4Y6FgG4VZagv3brKST+JKT3Qios3jiFWIWzHWEvEkii0Ialms91XlUV6IBSVtxzzc7lc6jm6+LLqGEvgaX7t2K+EfIxU4xhunZqavjqOVf2t7zx3KtE2rlixIjh229raUKlU0N7eHpye1iYSWjYulLPUKFo22hjWIxeGfA7zzeuVzLTtblXY2pZJkgQVnNow7YNc+Nr+ZRdl3N2Qy+WCA1xDpllntaajOwBYTl5H1TPrwS4A6SBiHfDdKhaLKfurfzPP2gcLhQJGRkbC/IP1z+/ZzycnDx4mx5jnnCfogj2mANf3g7C7DhWqGrMLXc4n2I6EdVbxN/ueJeVZ16wPHubGa0lQqMNG88c253jAdPju61yI/Yr5sUp4to3tt7ad6oHbb8d8Q511QGP1k5kUjssNVFNz1xJ3INMmlUqlcLYWgLBDjHMbRWy+oo7S2YDXV6tVjI2NBXvGcVnXszpf4W/aMA0Hp85itrsS0TP1BX7f2toadiTynDONB29D/fFenXtwLGdIO36fJEmw4bp+Zr75fO5E444v65hW+2MduTynjfNmFY4ASMU+HxkZwejoaGo+q/atkd7tw4V1nhN2p1gjOQ8Wy37n83ls3boVO3bswPnnnx8+37FjB84777zoPaeeeiq++tWvpj679957cfLJJ4c+feqpp2LHjh2puOj33nsvTjvttDk/FwD279+PJ598Ehs2bKi7jE6iO5oauVwOXV1dOProo9HR0YGjjz4avb29GBkZwZ49ewKZOjg4uKgDWLVaxcjISJhkkHiIEdYceLmNWbeHUW1Oo0moUk+Vd7XKyEUct5Jz63YtEp154ASgp6cnxFflJKWrqws9PT3o6upCd3d3IHVUxa6EDT3VJGRGRkamxUrVBak9tIZpsrw6GVCyppEVLQ6HY/7BHSmTk5OB6Mt6/2MkOnctUUFDAsyOJVlKJI6xSrbqZJqIpQcgPFdJdI01yQWJLqD08CxLFsYUsAr7fKYVu56LrBhRbZ+rRCfLoApYLsI7OjrQ29sbtjbTCT4+Ph62MFcqFYyOjob7COsgsERojPhQEp3hwmhfdPFMApU2Ww+t1AV5zJmgxKbaJXsdyVY6XmLOBkswMM5poVBIOcBjcwDrYNDyqIqZ6agCXctFwlZ3l6miTN+X8fHx4CDQLc1TU1OpRXhnZ2eICasHq7F/j42NYXx8fJoDTPuhtfMM96NODnXiK3msbaWHuREkoLU/6ZyE9ajEg6bFnZHapvl8PuTDKtqZT7YJ86+xZ3mt9lng0GFvuVwu5dCgWlD7HPsh86nvcq2dGQ7HQiNG5DUSGllZutjgepDCqlWrVqXI4WKxGEKBkNDWHXUKjlc6Ph8uyUcVvN1lpTuu6fjkmKy7/TSUX8zRqA5cYOZ5Fsd0De/HOQXHcgrN7H1qs3X3ms5l+B1tKtf5Ov/kdSybnj/CMqtz3eaD+W5pORTujLaEdaLn0DHsYCORxwsFOxexcw21ycsNV199NS6++GKcfPLJOPXUU/HZz34Wu3fvxqWXXgoAuO666/DUU0/hi1/8IgDg0ksvxc0334yrr74al1xyCXbu3Ilbb70VX/7yl0OaV1xxBU4//XTceOONOO+88/C3f/u3uO+++/Dggw/W/dzR0VFs27YNF1xwATZs2IAnnngC733ve7F27doU8T4TnER3NCVosNvb23HUUUdhw4YNyOfzWLt2LXp6etDZ2QkAIcYYD5ckMbHQ0IlBpVIJk4oYac0FHD25jMvOha5ulSN0sV/vtjdVy8UW//XAqpeYlhIM6v1nXVjiQdOJEd5WIWZj5ukiWheOrjZvDriSzbEQ4BigYwKQjvsbIwuBdAzNrJ09liy10Ofo+GrHOlUAKfkdU+zEiHtVMOszeY+WJ0Yw23tihHPWOzqTzeB9umC2i1Au+AqFQnC+ckHOWKO014zp3dLSEuKoW1tj1T7a9vqZOmn1t82/Eq9ckLN92F5KevK7mF22SjZ9noYbsv1N+0DW7gJtb+ZFCXIljGPpaZ3YNK3KLkbuqopP+5uWhfXARbpVBZI0iTkBrJPKEhf6Pmm/t4vamRAj2OdqZ5hvfe/0nde6Zv/QPmXfzVi59TN1Vmib6HP1eiXj9f2czdzJ7bdjvtGo/SJmHxo1rwsNjl0kpCms4g5k2moe1pzP5zE6OorOzs7gEM86J2wu4/ZMoN2hE59ORELtKklgteFqi6wTheO1XbtmlSuWjoXOkzS9WvWh80KdG1jBge5+Uxti185ZbcP60XV5S0tLyn7p3Hm5vSdqV63tb7R6WEz7fdFFF2H//v340Ic+hD179mDLli245557sHnzZgDAnj17sHv37nD9cccdh3vuuQdXXXUVPvnJT2Ljxo34+Mc/jgsuuCBcc9ppp+GOO+7A+9//flx//fV4znOeg+3bt+OUU06p+7mtra147LHH8MUvfhGDg4PYsGEDXvrSl2L79u3o7e2tu3xOojuaEitXrsRzn/tcrFy5Es973vPwghe8AB0dHWFrMlVRlUoFjz76KB555BGMjIxg165d2L9//4Lnj6R4tVrFM888g/Hx8XAYGD24NGSMH8YDMbnQJMnDsgCHDGOxWAxKLYYfqAfzpTRSEiMWT9WqNKempoJCHTikeMzKk91uZ8keHchjhJOjseGLcMd8g4cmMYyThi/geFQoFNDb2xscmlTWcvLPgztV8amkKlU4dtumKqwt8ajkqYazYpxvXsdFniqhVA1FNTDH2K6urtS4S5AY0wMXdXFmiVDNby0Fbxb0XVblteaf6ZIgX7lyJTZs2IDu7m4861nPwubNm5HP59HX14fOzk6Mj4+Hg6ypGKcjnLG9qYoiAcjn64I4SZLUIdiqSCMxrwsdVf6rMxtAsF0MQ2Lrhduk2fe4i0Gd4JZIn5o6GDaIfdfmP5fLhe/y+XzqgFrrjEmSJOogYjvqgaN6joz2BW3TWOxU1lc+nw/1x51zdtHPfqjhStgOrGcqoq0ziAp1VQfGYAkRdUYpuazXW7JZ33EbCobl1vRVEWjLzB/eo2Vn/1CSg3mwY0iMDNGFue5ssPOoXC4Xdq4obF7UgcJxrd75odtvx3yjURXoQNoJfiSGpKgHudyhncx9fX045phj0N3djWOOOQabN29GR0cHenp6wk6y/fv3o1wuhzXv+Pg4fvnLX04jWhVZ4oW5IkmSEJaP4UV155V9rrXf1nbwtzoos9Tbmgd1uGtf4rN5nZ5rQlurznmS/OqQjYnYaFs0NJ/aFV2jq+q+VjnINdC+2GdrebMcJUcyZqq/RqqPxbbfl112GS677LLod7fddtu0z8444ww88sgjNdN8wxvegDe84Q1zfm5nZye+8Y1v1Ly/HjiJ7mhKFAoFbNy4EUcddRROOOEEbNmyJSzqdKHBrWT9/f0YGBiYdtDAQoHGj1uTK5VKODykUCgAQFhAjo2NBUNPosAuhJVIBpAiew5XWT9XYt0SM3a7s046dGJgf7Kez8E6awHtaF74Itwx36AySJXAJFyBQzGGSeRyV5DGvtTFExdbSnTHCLCY8of/W9WRLqhsCAldMKnS2ZJdXGwxpmaWUs4uVGO7gdReWuWvqmRt2SzsglDrUxduegB1b28vent7sXr1aqxduxYdHR0pEj2XOxheZ3R0FIODg2hpaUltgVYngJaXbaP1qQS1jfEdi61NwhNA2LZOIjpmr/gs7nzTtlWSP9aHSGzH0gMOheCwuxxi7UxCWL8DkCKjtf+pjbbKZ91iz2u47Zz1r4t9LZPNG/PB/sCyqGOdcwimkxWbX4nnrN1nMQWYqgHVOaTvls2/ku76fxbRo8+w74y+C7F3jTH4Wc+WbFESXR0ANmweof2P97NsWbHrZ3rPbf3OBW6/Hc0Gq9xdrqANpxihr68Pa9euDeFUe3t70dnZibGxMbS3t6NUKmFsbCx11pU6JXV8AxZmbKAzf2JiAh0dHcHJqeM9gFQIPXXCx6Bj8kzrU70WmL7bSUl03ZXFvzVkq9pvOy+0YdgInfNxHa72Rx3mM5XDltWKMWyIs+WEZhob3H7PH5xEdzQVaBy6urqwYcMGbNiwAStXroySsTSSK1euxLHHHovOzk7827/926LnWYluHnKpCyQ9kMNuuU6SQwdTKajIm81gSIMMICjt6Jm34WJs/oFDSjt7KIkSVlwoAtMXb3YBn6VGcDgcjtlCiWeqcEiYayxmu5BjPGeOX6rUUbWNJeF0iyx/qHBWklvV37qA0UWMpj0TdOGkimYdiy2pqSG29G9LytnQEjHY8Vrtlt0KbdVPJF8ZxoWh11hXzAOAoBzjtYxhqs9V9RXzRuc5dyQAmEZKapnVFrH/sO60vVUdrvWgNjt2+KmWycZgtXWpz1SbbPsIn2UXy5YEnZo6dLCXPTBNHfQaQ1vnHvyOhDXLoSo45i+m2lNVnNa31pM6P+z9lsRnOTXPSoRoP7bv0kzOei2TnZfY/Ok8h2nHlIoKJTiUkOB9Ov6oU0vzF3NW6bV0qvFdYroW+gx9jgsWHI0O9tWFXjdYpzOwvAkk2iQ9EJw/jIXOuY+ef9Hd3Y2enh4kSRKU7LoWXCzoWprzEf2ODm11Ntdqb0uO15sH2j/dpcfdZfzhPEHnFOQI7Npf+QXd/aXlo03Tdbs6mg+HUGVatQRxDseRCifRHU0FJcaf+9zn4tnPfjZWrlwZDr8iVM2zceNGtLa2Ys+ePTNuEVkIqGeb26EUMeWYKsWocIvdw7/rgarexsfHMTo6GgilLBJdF9KlUgnDw8MYGxsLh5FwO1ilUglebiqq9Lk6GeC2cp0MOJYX3BPumG9wUUYCt729PSzaent7kc/n0dnZGc7LYIzOarUaFMRZalC1LUraKYHV0tKCzs7OcPiyht7gmG/JN6s4t8pe+0wNxcLFF8dTJSd5DZ/NdO2CTQlOXVgBh8g9JRDV5ihxzrFczxzRLdPMNw+n6u7uxurVq7Fy5UqsWLEihKYBEBRgPISrp6cHfX19yOVyoU55HYDgqOBnudzBECijo6NhRwF3f2mdK2Gpi0ElvK0jmCHa+JkSkbpI5f18niVhCdanVV1zFwSfwe3o7GfcWk3ilGS1dZDQ8U1HPe22kszWcaR1pI536yxgfrOIEC0T20SJAW6Dn5iYCLvyWJ+8P0mS8FvzbPOgda1OCmD6OQW2/rUvc+eJllXfRaal8xYlwfmeKVkeU/vbeY++a3rWgY49VmChSk593zVEDuecGt5Gn6nj3GzmYm6/HUsBdZguJAlLW2XXRbWcy0c61H739PRg9erVWLVqVbDjDI/HuUkud/A8kaGhIQwNDYVwpiMjI6lD2xcLXEfbMG2E2u96xqi5jGNq/3i+C+ej3B3J69Q+U7ym4WYsgQ4cCk2mDiDlEThP5O/5cEbpfIlYjkr0ZoLb7/mDk+iOpgMNIJVsjFGadS1jtelCfbFhF2uzvW++8qBKLcY1ozItVoc0+DYum3rCucDVLWdWZRlTSi6GmsTRmHAj7lhIKJGoqnANGaFqW12MKNkVU8cCSG2L5XWqirbnQijxHstnPQu3WkofLYdVnqvqOItIVLtQ63kk7RR2BwAdBUoEkqzTerFnaViFIf8nqagkL/Mdq4dYuBxLRPLaGImuZdX6YnpWSaxpK2HO9NUxrunZMdAqHi2Bb5+h6nGbhrad2udYKBe2u9aF7RNZ32n5FVnEtU0jlmaMXGaasXlK7J2gEk/r3/bnWFli5IqFtgGQPkeA6c1WuWrnUrb9Ytfa/+22/aw5nS2rXlPv/NTtt+NIho6jQDpM03KGznHUkR8L52lDf3H+lTUPWQyok9WOdRx7F2p80jGea2kewKoOc2tLOKeizdf1M6+1NknnKgDCOt/evxDlczQ+3H7PH5xEdzQd+BKrem6m63XL+XIGDe7w8DB+9atfhUNYe3t7A9mk26UnJycxNDSEYrGI4eFhjI6OBjUbrxkbGwtefHrTVcVBrzmV7FTC0xvu7bL84EbcMd/g4q2rqyv8rwdJkjxnGKtSqRTCWnFhYZXnHJtq7dTRBbeSxrqQjKlIOS7aOOiWCAZqx6zWAzxbWlrCGE5i2qqVlFzjM6n+VmJQlc0aLiW2s4iHW1MBqwd/WhIz9sNn2fj0eogW60HVVqqgpsJKY+JzEc/zSGIh07SuWW+WvNW/Nc/WGazpEXrwa5bSWx3Ptu9pmVXNTaJ4YmIiEBT8zT7Bc1bGx8dTW8i1TGx7PoNpsl55AKjCKrHZ9609t04PO2ezux0sCaCLftYD09L3gP2Bn8UIGiWNrTNN0wKQOjzY5pWEhN1VoteoCjBmr+iEi5VFz2GwZLolz234IZaJ/YBtxRAKWXZXia964PbbsZiIOXoWoh/p2K7OKDvOL1fM5PS0Dlu77o457hYz7+rItkKvhW5fKuFV7c4D4rmrjHMmjeM+PDwcwsAWi8UUOa4Oce5AamlpCYeZq4CB7ZEkSSpszXyVOatPOBoPbr/nD06iO5oOMTVTLaji0AeAg/U3OjoaDjvlVq/29nb09vaGRTS3XPf392NoaChskVdCZnJyMhh4Lua5rY8xbWmsS6USRkZGwmSg1sEtDofDMRsooaphLlpbWwOxzB04HI9IoPNHtyKr2gdIE4K6WLAhNCyhTihpqyRxkiRhdw+vs8RuTD3Oe5Vs7ujoCFuCSaJbUldJNwCBRLfOzFg4Go7XJGQnJiZQLpdDuDE6T9VxoaFTYkQ6yQpd1JL4J8HMz3Xxyzwp8aeEPu8joa8LByVslai3JLqqEfm/JRp1Mcq/Nb96+CPLrMoxljVWB8w/79fFL8lttjsJZn7HMD883M2q19vb28O1mm/bfzXEkRL9dCKos0VJdLv7wi7a1VlgiZmYsk6dEUxD1fV8fq3dCvxOSXT+ZpgetpndcUDoe6f9RZ1VSmDHnj81NZUKU8PPOBfT973W7hEl3LVeeRAu02WasXj9xFLt0nQ4ZsJikeh8ls4l9JnLHXbdbZ2mViQQE68tpZqfYyxtF7CwYYHss0ulUpiTqROcYXBoU2iXJyYmMDo6irGxsVQ4FtovnQdyrqXzqZiD24oHnER3OOYOnzU5mgocnBlrbWBgAK2trejp6ckkLYrFIgYGBjA0NBQWSssdqvYrFouB+FZjTKKkWCyG2MHWOKpB1vibnBgAh0gKKj99V4DDPeGO+QYXFpakBdLjlG5rVRIOSBPMVpWmW2ctYmE0+LkqTS2Jrv/rO2EdxcxL7BqbXxvTfaaxVt8nJUktaQocGsuVMLaOBiVVNQSHVWGrWpqLRy70bPgwdTLYRbgSqMyPdT5w0cyFpyXHY4tJS5bHwnxYUmEmRZter8/U+OtZJIPeq+eOaN0xn3ruCH8T1oHBtJluzCGkSm9b97H+k1UGLWNsvhbr/0xXHRgax53lr0flqI4YS8grCa75teQylX461sSeo3UU+9vWSVYa+u5nXVfrGfru1rqf71E9cPvtWEzwvdXxYSFg5w12/rCcYZ3b5XI5nBHCtSHJWz1vRq9pFCHbQqvOs57JPqTCBYZVVfutB4nqmjm2K4Kf0QFrxRdqw+38Y777dCO0rWNmuP2ePziJ7mgqcKJ/4MAB/OAHP8DevXvxvOc9D319feEwLt3aPTk5iSeeeALf+973cODAARw4cGCpi9AQYP1MTEzg6aefxoEDB4J60yrlyuXytG31RJIkqS30XFzqoXIkNqxK0Afj5Qs34o75BrfCkixS4puLPHX0aUgpJZhIjlEdlLX1l2hpaQlKYB7+qAQs1UJ06I6MjExTm1uCS0lqq5piHvVz7iiiEt2SpKVSKaRL6FiuYS5IHOqBlazHcrmcOtyKCzhew/va29tDnajql2UaHx/HgQMHMDk5ia6uLqxcuTJ1qGOlUgm7loaHh8OWZiqSbbgb5oXtq6FNVJ3PhaaWn0SskuHqlNDY7to+TEPPCdEwMjGlsDptdLHLdqLNtGQmlcTq8GHf4A4KBclzhlsrl8upEDu640LbpVwuhzTYHzo7O8OuAvYz/miZc7mDB7+yTmy4Ei2f7lhQ5b+WTXcS8Le2oyro1dFk20iJMNYVDxm2jg8SG7pDQg+t1zAslpy2jiJbdioPtX5Zx7w2ZtvY97Rf8XOWid+rE4Np5/P5lONO6yjmBKsHbr8d8w3uXK3l7FnovqMKdDtuLATp2ExIkiSE8hwcHER/fz8qlQoKhQK6urqC3efYzN3OXHePjo6GuddSkul2DrdY+WDf5vq6Wq2ipaUl2Ga1qxQW8DprS1VNz/okMc/v9Tqd3wHpnV7N3qf1PXXUB7ff8wcn0R1NBxrzvXv3olwuY+PGjZnboavVKgYHB/HUU09hcHAQ4+PjS5z7xoBVtRExxeNMsOpBIL0FXRd/JCscyxtuxB3zDS7gYuQZxyhVPtuY2yQ0SSqRMFQ1tm6H1X5oF96WUNPxUc+CUAW8kmOavi5yuGjSe1Slq0SjJcRmem/sgsuG9dCy69+8V4lHPWhM48JrO5RKJeTz+RBWhzG51dnBcCTcxaQEpyWnrXNW86MkqKrjY3VC8lvrQPuTXsffSrJo/1DCwCrlY04MbQttN+3LuVwupb5Wcl0d1qwvOsHts2w/0/BCfJ4e+sp60bzqDgqS83Zeof3ahlOxam4lNvi3hl0hoa71p8S0feeySGEKBrSt7M4DJaF1dwd32dFRoCrumZTclgC395Bo136p18REDNoP7X12x4UNsaMkPEMD1QO33475hjqoLBarz+hultj8YTn3XZLAFE5xB/Po6CjGx8eDc7K1tTWEEKtWqxgfH0exWAzO96VQgWeVZymeyR86PWlX1fbRMW9hd9bV0zd1Hqehx2Lz2GZEzHHuqA233/MHJ9EdTYlisYg9e/ZgdHQUvb29aGlpCR5xLszHxsZQqVTw+OOP46mnnsLY2FhQ5DmyMdcBlkZZVVNAOuapD8AOh2MhUK1Wg4oHwLRFCYBAyjK+pKqpgYMTcj2kkaQdCTYllTl5p1KVJB//18m9EulKpOpCiHm1saMVJLsYc5zKd/4w73a8jYVVsWnqeK3EsS7UVAlNYjGmbuXzssLBUGk+OTmJQqEQ6ox5rlQqQck2MDCAYrEYtoXrridLCDLPbAs93FrLpKFjtNxMG8C0A0ZJ/jMt3Qmg6Wo/4cJV69y2iSrCtU41XXsIpu2DFkqsxqCLcfZdJf41r2zfjo6OVDltmbQ/23xoH9c60H5qHfi2n+l9WtfaTlnPt3Vj3w2tC1unusuCbckY+2wn9nnmX8l8O3Zo/WuZbFktuWKdFNbpp1BnHn/bXSXqeNFyOhxLgcWKTV0LHAtju1qOBMLxcMFxo1QqYWBgIDjCOTbqwdZjY2OYmJjAvn37MDg4GJzhepD7coed+8WEE/b6LOV1lihA1+X8zeuPlPE+q+z8DkjbN+9/jvmCk+iOpsTIyAh+8pOfoK2tDXv27MHjjz+Ojo4OrFq1Ct3d3RgbG8MzzzyDcrmMvXv3or+/P7XdyRHH4RoW3Y7tHmJHFtwT7phvlEqlQEByscffSt5qCBfbl9rb21EoFNDa2opCoZBSqwIIBBlJNRLXXDyS3NZJPfOgBLBV3Cmha5+n46iGwNAwG0rU0YnJcjLPliTkIkpjQ9t8WZVzjGSmOlfTsESwEq5TUwfD2vT39yOfz6NYLGJ4eDjcT3KSzg4uvqlep0qd4V2UnGxpaQmHWrNugEMkOtuJoU4s+avl404EdQxriBEq/kl2kkgl2UnHgO7K4vWsW3XSKFlu1dX2fiV7LJmt/c5+ZttW82Bj9VOdzXdAD0dVVTjrKAtZ6sMsYorvDttMn6tkO5XTU1OHQvxon4u9S5pffs4dLLpLwTpc2J48N4ZhYSqVSqi7mCLdqsBju0M0RJO2pyXLtcycx+rzWF59F9hu7Ju8n4p37e+zIQndfjvmG42wNuPOEyC+k22hkEWMNho4Vo2NjeGpp54KSvT9+/ennIwMDTY1NYXR0VGMjIygUqlgeHgYxWJxzuNHs9TTTLA22u7sq1U+XjfX0Ftq6/h/s0J3jtQzz+Fcxu7OW25w+z1/cBLd0ZSYmpoKpAkPF83n86hWq4FE7+/vR6lUwtDQUDDcjsWD17cjC27EHfMNVd8qSa7EoB4qqn2QE20bisSqja26WuNl8367KFGy0IYc0e9tOZgvQolwkpj2/ImsOrHpxYi+2ALVLvJsWvoTK0sM6lRIkgTFYhGjo6OpbcZchOsBpOqAUFW/Kr1tnmIK5Zmcu7U+UwLctjXbRon9rHAlmg9LgmctamOfL+QCWEno2G6ymJItVj5+bvu4Kqmt071WH7LPtyFKYnkiuWzLpHWv6Vno+80+x/5nw68oauUrhixiRB1hWWXUv+0By+yLSthrDHXm1Ul0h6P2++VAyj6Pj49jZGQkzENIaPJ8CbuLbD6cEbWUx80C2vqZnN217p/t8+wzj3ToHMX+vZzh9nv+4CS6o6nBRfi+ffvQ2tqK4eFhtLe3h+1kVLL5i+9wNA7ciDvmG8ViES0tLSnCPKZKt3GpqermwYudnZ3I5XIhVApwaNGmhC0PziRBRTJNQzxQ/U4FNeODqmJUoUo4G/4ilzsYp71QKATFO6+1saBVVc18sxyqXNXnaMgWqyTnvXyWhoGwoWgsYaphJBiOguFDJiYmgp1mWtbZoE4R7iTQUDxaj3yWHpwZI9UtlGxUpZYlGWOxxVW9r2F1CoVCdMFq/4+Ry3QcqFI8ludYGdi3LNGvfVMJfyq98/l8UO8zJqvWmfYPPXBXCVotL5+vuyFsWScmJsJBsNVqNRXzXNO24Wy0HllWDXfC/Oi5B9pOjMGvDjH9XuvMEs8AUgcJAwj1RccQ82r7h54To7Cqeet8USKcY1OsL6tS344vuqWfinR70Fy9amC3344jCTp22p0ZC3WOk90Vps72RsfU1FQgxoGDuwB1fOI1SXIwNBtV6fOh/l0sEngxVO8xwUK996lju5460XuOFBJ5JvU+v7fzEu5I5Byh0d65mYQehwu33/OH+vaDLBC+9a1v4bWvfS02btyIXC6Hv/mbvwnfVatVXHPNNXj+85+P7u5ubNy4EW9961vxq1/9KpVGuVzGH/7hH2Lt2rXo7u7Gueeei1/+8peLXBLHUqJYLOLAgQPYt28fnnzySfzHf/wHnnzySRw4cCDEYnM4HA7H/KHR7DfDfJTLZZRKJRSLxdShVlz0kTDS8As8T6OrqwsdHR2pMCmWLGxvbw8hQ/ijhBwn5jwYk/nhD/NDIlh/SJpq+AglLPP5PDo7O0MoF16rJIANvULSTIllC60PvVeJaksuk2CwxKaGPVGCUwlRzev4+DgGBgZw4MAB7N+/H/v378fAwABGRkbCoWVKnlcqlaBqU1W/ht3QUDMaxqaW2hhIbw/m/6wf5tceTKv1pIe7sl9oKJbYopkLGvYZ7atKysbymuUcsOWwoYJsG2metT/b/qJxi+3zlfiN1bl+znywzPYd4XsJIEWiW2W8LS8dAbbutcwkvLWO9UBVu4DlffrMfD6Prq4udHZ2Bscbn0vnm43VrnVmdx8wjzPt+NCdJ+znWX2D7afhjTimdHR0oFAohB+OJY7lg0az30sJtZ96ADjDPsw3cWRtog211uhQccDQ0BD6+/uxd+9e7N27F08//TSefvppPPPMM9i3b1/KljdLCI16HO/zBbvDqx7Qns1W1R/bCdnsyLKbhHU4AAj2M8sZvdTQ+dti9EHH3LGkJPrY2Bh+/dd/HTfffPO078bHx/HII4/g+uuvxyOPPIK77roL//7v/45zzz03dd2VV16Ju+++G3fccQcefPBBjI6O4jWveU3mKd+OIxdqjA7H0+ZwOBYesfe1nh9HY6DR7LcSZbrIsCEVlGAi2aYksxK/djJrY4srqackHQleVajqdubYpF9VsbHQLSTmYgdVxhYKqhzX33pPrXdKyT5LwrJObTgMph1rG3udLuiyVET80bZUEtf+joW7sXVUa/GpZdaya7lmUrPbA0m1HLHFuZbfEsNWIZ9VP7Yts/oW+yj7piWIlTi3z9S2t7sWasVnte+Spqv5oiMhK2xPDLa8Wc+J1Z06jNShFdutYv9mW8ZIMN0JYXdE2DaxnzN929/tu631ap0M/C62ENf86q4NHV/qhdvv5kaj2e+lhh3fFqrP6jvPOUQzvxs699Dx2tqW+SrjYtRTzNm9WM9bjHuX45hsy7uYjpLZwK4zFsrB5vZ7frCk0oOzzz4bZ599dvS7FStWYMeOHanPPvGJT+BFL3oRdu/ejWOPPRZDQ0O49dZb8aUvfQkvf/nLAQC33347Nm3ahPvuuw+vfOUrF7wMDofD4ZgdFnvS6Jh/NJr9LhaLAA4dZBhbyCuppIrvrq4utLa2BjWpXeQqyajkqpLAqvhOknRM0KGhIVSrVRSLRVSr1RDyQ8PFME9ZB5sBCApSXq+hTnitTnaVKOP3NgyLJVEZKqarqyuERrOqeeZPJ/dM1062Y8Qw2wlAimhk3WmZY4pv5tUSieoQ6ejoCKpnzZuG7rDEP8lIq+7XMBe6sOH/VE5riB/mv1qthjpWFT7zoKGGtGzcckwFMduZeWVMaxK6sbbVdlIVPUOysMy8n+VinqwKnemzD7PcGqbEOlpiJC/bSEkr7cOEHrjKduY1SjgnSRIcYlpu7qLQ3RTMZ6VSQUtLS+pwUO0HLL+Wmfnh4cO53KGt4drf1fmjYWCU7Ncyan/XMxw4FthDR/Ue2wf4PfsMfxh6Ru/n38xnvQt1t9/Nj0az30sJdZTad3U++6slxNTWNStJpfnWHUSx7+fjWYuF2aq8FxuHQ/TrXKIZ+9xcwDLHdkfqXHqpwXkwbbTOJebLIeX2e/7QVPv3hoaGkMvlsHLlSgDAww8/jGq1irPOOitcs3HjRmzZsgUPPfRQphHn9lFieHh4QfPtcDgcjkNwI778sND2myRcjIxTUpyknA3JogeKxlSjSZKE74F0CBRVlltlusZEJ7EeyxeAVPpW7Q4gRRTGFLKxPNtFu1VWK1g3/N3e3j7NUaDkqOa9lhpZn0VSU0kK2z6aTy5+lEDXa2OLIlXXkjTmPZq2zZ8Stkq4qvLeKpf0b6vmtQ4Bph+LiW3bQUOq8Lm2b2u+bJlifaKWQlQdA4yLbvOnRK8NpROrU20jJVj0WeqYscRAkiSpfGh4lphCyiqu7aGzsbQ13zbPbHuS6SSbtc74P5+nRJyWl+S47Tu18qUOn1gIGyXD7bvJcnMMSJIk5M+2K5+jZasFt9/LD8th/b3QpKI6wtT+NQJ5Nx9YTqRsM0MdN8sJdi7G342mRtczlnS+Pl+OPbff84emIdFLpRKuvfZavPnNb0ZfXx8AYO/evcjn81i1alXq2nXr1mHv3r2Zad1www344Ac/uKD5dTgcDkccbsSXFxbDflvlrCU3SUxSkcmYwiTarDJFiTDddk1ijfFSgbSSTVW5NoY0yfuWlpZA4jN/qj7WxTbJNCJGgtsFgBKXvMeS4HoPJ+zMB4lgloFq6lqxo/XZSlZbp4QNEWPTUvJSQ24oUaptrUp0G0qDxDPDjijYnrxH6wpAUCiT5I2pCK3zgwQo65/X6E4A/a0OAn22vYZtSRJUY+FrG2aFqrHvhn42MTGROhiUdRxTV/M7/UwXerwnFrJFlc4aaod/x9qZ7U8o+a7Ka+aH7aTXan9mvnQXiaZv23Rqaioo1rVeVPkfCzWk76v2d6Zt+xqv4zX8m/2DBLd1XNn2BA69szrm6TU6fuiYo7sBZoLb7+WFZll/W7sJNFZ/i5F4jjjsLrEjDTF7vFiYDzVzs0Ftc+xspEaqC7ZNbO6YldfZ5N/t9/yhKUj0arWKN73pTZiamsItt9wy4/WxBYPiuuuuw9VXXx3+Hx4exqZNm+Ylrw6Hw+FwOA5isey3VWrogpq/29vbQygGPXxQw4lo2AMSbCSvGNpkamoKY2NjqFarUaIqSZIU8Uyo4r1QKIRn8X49FNMS4QAC6RlTzuhnvI7ksIa4Yd2o4pz3sE5IEuoBaxqjWslSJehV1aOEgW0HYPp2aSWplTzXgx+t4phtY0OfaDuqsyMWX5JEoip+eYBprW32JCr1Rw8Y1TrVvsF7bRl5vfYhJW/peNEya31bZbg6I7Qfq0PIEvXqwGlvb085jSxhbcMeaJ/SPm/byTo/6BhgO1lyXNXiGmZF+wHzwzAzmjadVna3CPsUf2t/1PeQxLy2rb5LWUpwLSf7tCXfdWeDOl60D5XL5RSBrv3XkobMC+ufh4gS1kmjDgYn9RwxNNP6OzZu6Xi31FDHca2dW8sdWePakYJY+y/mjoTlqERXu2sd541WDxy37HoEmL6bUh3zjVaO5YCGJ9Gr1SouvPBC7Nq1C//4j/8YvOAAsH79elQqFQwMDKS84f39/TjttNMy0+zo6EhNLB0Oh8OxeHBP+PLAUthv2z+4YNEwD0qcK4HF6/W3LnZUeUtyUmMuz9Q3LWkGHFIxMw9WuWtJRVWm27zGoCS3qsO1fmx9WeW9qm1j4W6sopafqfp2pnxaWJVzLI+xz+qpk6w+olBSNHadJTP1PpuWqtKtosiS3Fn5tcS/bYdYebU+skibWsrImdSAtRag9nm2z7Mu+P7wPbB9xuY1Vu+aT1v/WlexWPhWnU3CWwlxthXJaRL2TD/WV2wd2npjeaxjwF7HfGu8ea1fdRzyh8R/rG1sm/K62ZB6br+XB5pt/W2dazreWju6lFClaaPkqRERm/8cSVjKsh2pdVoP1LnWaFA7rmMXf8+Hs9vt9/yhoV2hNOA//elPcd9992HNmjWp77du3Yr29vbUASh79uzBD3/4w5pG3OFwOBxLBztRmO2Po/Gx2PabRJmdfLa1taGrqws9PT3o7OwMB3pShUm1KtWnusC1oRt4OGixWAyHbaqqRQl5jc1NRagefGmJbKvQ1R/ml/ngc0nqqVIVOEQmUj2rKmU+T5/DuPBst0qlgmKxiLGxsaDIZjgRrauYwlxV7FTj6zNZ7zEyXt9x61SwsM4RvR+YrvrTtFgnsbAx9hBVuxOAakf+cDeDdbYwbe1nmgdV+ReLxaDEZn3xHptf7ZtW2c80gUPx8zs7O0Pf1zazxK8llLVOta6yHBvqXOL9tk6UsG9vb0+FVOL/fE/0/eFOA+sM07q1h44yPA0P4yV5x8ODtS70Hra5hpYBDhHnPOOAP2w3tp1935hfLQfbf2pqKpyVwB0XTCemdNdr9ZBYbZ+JiQmUSiWMjo5ibGwMpVIJlUolOPy07TVcjO50mAluv498NNP6W+1nVh9rlH5nHfHA9LHS0Thq6ZitnY80VVCx1GVcjmjUOufcuVKpBDvPObheY8eR2ZTH7ff8YUmV6KOjo/jZz34W/t+1axceffRRrF69Ghs3bsQb3vAGPPLII/ja176GycnJEGdt9erVyOfzWLFiBd7xjnfgj/7oj7BmzRqsXr0af/zHf4znP//54bRwh8PhcDQW3BPe/Gg0+x3bts0FUKFQSBG3JNdJ1Cm5pfcqcc3JbblcDuRTLIYwF1sMpTI5ORmIew3rEFMxazgNEoUkA3XCbNXFlkBUQpD51/wpEcm8KvFr46Dzfq0nVbIqGaCqXSptLZFNpazdtq1tEKsfXm/rIItIJ+GsByrytz1kk2XVH96vRCj7jd1ma8G2YB9kWho2Rol0LtTVcaIHaTIfluTm96xzhvHJ5/OhfwMIDqBYfHimoWnzGtYL+7Mu2vRdixFDvN/2Xdaf9iHgUFijXO5QrHbWt6pLYztHNB58jKwn6WxBp4MN98K2UkeaHm7LPsywL1o+VYHrThU7xtgQPPZzVdXbMxrsbgRdVGsbM5yNgu+6VedrWKpacPvd/Gg0+304sCS6fg5MDx3WCLDOYqCx1PJLCXVALjVUwDBfJKK2uQ2L5nDEhDmKw+2Hbr/nD0tKon/ve9/DS1/60vA/46S97W1vw7Zt2/CVr3wFAPAbv/Ebqfvuv/9+nHnmmQCAv/iLv0BbWxsuvPBCFItFvOxlL8Ntt91W9ynzDofD4XA4ZodGs99WjWFVrEoQWUJOJ6mWbFVySslVYOawGjF1nBJjunhW4tyqrDUmeFY4Fksm8npLFtv7lPAjAae/7bU2dIZNs5aqzjoHYqE7am1ZjT1T1dF6bywebtbvWvVjSUvd8aDpW3I3K//2uTbtmEJfwfYiIazEaVZ5YkStOmbsd7VQq87sO5gVQojPj5VNCWfdDWJDMOk9zFdW6B+mp32BxLeGk4m9K9rf1YnB8mkfjjnHkiRJ5ZHp8BpL3Ot7y7a24xRDzKhTztY7cMgBon1L60DHMqbpWB5oNPs931gq5WSM8HLMDUeq8lVt1ZFaRsfhQ53dvmuhMbGkJPqZZ55Zs0PU01kKhQI+8YlP4BOf+MR8Zs3hcDgcCwT3hDc/Gs1+VyqVMMmk+rynpwetra1BlauLF36uBFNMYauqbIZySJIkFZ7DknzAdIJMlc76bA31wXAWNg2rAFbFq5LWzKMq5pXY5MGOvIdqYF5XLpdDWfkZ86rqfYaWYNlYp1TlWih5rmE0SPzqIZ21yDyGrbCLiomJiVA2OkusCp/lVMW9JXeVeNEdCww7oiF/VFHOerKHfarK3ir9tc7YP7ljIRaah3VH4pT9UEnXWMgVbZ98Pj9t8c7rZyJ/6ETKgn5v3x+N+a51y8+0/dVho0pvvieq+mb9qeNE3zmt0yxnTWxXiTq5bDsq6Q4cOsRTdxDwPdH24edU9dtQUDbEilVj5vP5FJGvhL7WmaajOxvy+Tza29tTIVzYjwCE7+pBo9rvgYEBvPvd7w4E8LnnnotPfOITWLlyZc38fPCDH8RnP/tZDAwM4JRTTsEnP/lJPO95zwvXlMtl/PEf/zG+/OUvB7L4lltuwbOe9axwzYc//GH83d/9HR599FHk83kMDg4uVDHnBY1mv+cKdTgDSI17i01Qqi1Wh6k7p2aPRpnn6xg+X3myzuZGKaujscB5ts7Z56MfNqr9bkZ4EC6Hw+FwLCrsxHS2Pw6HhcavVvKTxKcS3ABSBHRMia5QckvJLyXOrELWbjG3hCfzYPOiMdBnUn3HVPRKHih5q/G0VeGrICFtiV4bZiRLtaxEuw27ElN0Mw9K5M4UfzQ2BthFqbaZksp6rw39kTW+aH6VyLXPsOE2svJt01cHjJLGvEev0881hjb7pJaT12ndKsGrbWHza/uazXOtMdi2hRL7ttyxerL1kaVGB9JtE+szqkLXvqvkeCxkjM1fjKTX+rVqfh0PtN9bNT2v036k/UljtMdi+Nv31BKIPJeAjjHtfxwXNMb6bEj0RrTfb37zm/Hoo4/i61//Or7+9a/j0UcfxcUXX1zzno9+9KP42Mc+hptvvhnf/e53sX79erziFa/AyMhIuObKK6/E3XffjTvuuAMPPvggRkdH8ZrXvCblBKlUKnjjG9+Id73rXQtWPkc2rB1cqrmifbdr7Sqa6XtHY2Ah+pGvZxwzgfMLu7t0PtJtRPvdjFhSJbrD4XA4lh/cE+6Yb1DtSVWvxgK2E1Al0SzxTbUHJ6482EcPmowRZEpKWtKLz1aSWRXoejCokrwkwpQoYz75W4m3SqWCSqWSyr+qs/WZSrCqk4DKFyXb7UGgSiaqapp/x4hDdRDoO0xFPO/T/GieVMlvCQolhals1vZmOTRWtO5MUIU72491ZpXFmi/WhYbUoEpZyV5bphg5rvWjxCxj6jPPLS0tKXW9Enk2/ri+G9pvLMluEXsvWFYNLcTvbEgVq8bUOtb+o++jjQ3L90XzZD/X32wnW7fqJLFnByhBr+pyJewt6c12YDpKPluHC8tq0dHREb6rVCopZbr2J7tTwzqhNG4/323b1nqeg9azVe7WCgdk0Yj2+8c//jG+/vWv41/+5V9wyimnAAA+97nP4dRTT8VPfvIT/Nqv/Vo0LzfddBPe97734fWvfz0A4Atf+ALWrVuHv/7rv8Y73/lODA0N4dZbb8WXvvSlEOv79ttvx6ZNm3Dffffhla98JQDggx/8IADgtttuW5DyObLRSES0JZpq9XefyzY+1B7NBzhPcDQPGqHNYkKQw0lrKe49EuEkusPhcDgcjqYGic/u7u5UCBd+Z8k3VaRa9SlJPx78WCwWwwGQShLqQZNW1auhVTT0BK/r6OhIxWvXUCYkvVRNyvzbwzc13IyGY+H99jBMPRDTqlrpMGhtbUVHR0cguBlixpKzAFKHbGoYCQ0ZoyE5NKQHgBThyDSUMC+XyyiVSoHAZTtbta8ql4E0QUzins+25dfwGWwnEpncyaDOFeZP02CbxxTTSuoriW53HyiJroSqHrLZ1taWUigzfa07dZxomyjZFGtLhSVseY+WJ0Ys63VsB/5oiJ1Y/PHYAjFLZZ7lSLGkh5LSzKPuBNEDU9mmNlST1p3Wi77jmh6debF6aGlpQVdXVzjsVMPD2DZNkiQ4xaz6nk4hOr0KhUJKCc9nqlNM82PbVMuxGBgeHk7939HREZwLc8HOnTuxYsWKQKADwG//9m9jxYoVeOihh6Ik+q5du7B3716cddZZqXycccYZeOihh/DOd74TDz/8MKrVauqajRs3YsuWLXjooYcCie5YWjQCkT4XoquZ1J1W7b8cMJ/to3ZsudRfM8PuFFnKNptpvuZYGng4F4fD4XAsKnw7mWMhkBUOxV4TC9VgoWpuq9JU8jALSprG8mjV7HqP/liFbiz0hg3zkFXmWJ6tIl1V87GwFJoe82NJY16j99vD5rQ8mrZVx9u/NX+2fHbRk/W3RUzxHEvPEiSzHYtmS6zUuj6Wv1gaMcxmQVar3mz6sXrMytdc8mevjz3f7g6JfZeF2Pcz9S2r6rfhXayaXd8X64Cz74wdF1g3+pm++7F60z6r39tyzoX4Oxz7vWnTJqxYsSL83HDDDXU9Owt79+7F0UcfPe3zo48+Gnv37s28BwDWrVuX+nzdunXhu7179yKfz2PVqlWZ1ziWDrF+vJRY6ucvNBrBWeFwLCaOtD7v6+/5gyvRHQ6Hw7GoOBxD7EbcEQMVw1R3KxnK31Y5bkk/q/6l4pfKWSpMNS0qSYFDBw/yb0u+x8h9KnRV4UoFaYyQIwnHa6hGtYpqktaqqrVQkk7DPMRiRWt9Ml9UmKt6ulqthnagEp0qWQ3rwb9VgU/1eaVSCXGaNUQNCUElIW3ce1W2sy5UAa3EI+uJamRV4+q1VH/zHuYzSQ4p/fX5+mytH1UKM4SH9p+sONfMhx7cSUeC9gfWuYbtYFtYJ4n2Eyq4LQGrhHSWKl3vYzuoIp75UyW0KtHt+6J54CGcWn98X9SREiPPWSf2Wn2mjdduHWt8z7njQ51LSo4ztMrY2FjqoNi2trawo0N3mbA8VIlPTR081LdSqYR3S1XzVNLrb82z7t7QnQFaDms32QdjfX8mzIf9fvLJJ9HX1xc+z1Khb9u2LYRKycJ3v/tdAHGyw7Z9DDEidqZ76rnGsXCoxwm92DgS56Y65juJdnjg+O11WBu0qbE5yWLnQ228HVua9X3w9ff8wUl0h8PhcCwq3Ig75huWzLSkGYkpxkonOZal7CYhrMS0EmiWELdqbkuiW6LPkpEApoVzsapyndQzXeZR1doss43rDBwif7Ts9hBR/bFKWt6vIVgIkr1azra2NhQKBQAIYVlizgXWhY1BTzLdvvca3kRJe1W9q3NAlbvaTu3t7SH0ho2lTmg7WELb9rkYsabkrtapbX8Ny6Kksead6dn02SbsQxrCpL29PeUMiu2ssOnFPmfeNa9aXyTrSQbr9SwXCWmNT6/tr+S87bOaZ6ZFaIgfJYct4az9X9sztljX9uI7qZ/rd+wTbW1toc/yGnUssLx0Btk+MDExgXw+nwpdpKGD9PlaN5OTkyE9dZjZEAL6ftj2qVQq0+oghvmw3319fSkSPQuXX3453vSmN9W85tnPfjb+9V//FU8//fS075555plpSnNi/fr1AA6qzTds2BA+7+/vD/esX78elUoFAwMDKTV6f38/TjvttBnz71gY6Jiq77O+747Dh9p6HSe9jucGr7eZoWKSpSaqdb7NHx1jmrE9ff09f3AS3eFwOBwOR1NDyUyNMw4gRejZWMeEhkOxE2VFVpgYhQ2voAuBWiElrLrWEu1Wwc40bRgHqxxXstKqd+uBEhWqYLakryXjYweJxkK0ZNVFlgrJOiNiMcWtClfVupqO3qMke1Y+YoSzkvc2XI+mofnQXQ/aLqpW10NZrRo6lj/9PEupqe1g+0OsDWJ1H2sLBUkX7rCIpTnTe6DkNvuQ7W+aB1se+87ptaoot4Q0gEBIZzkatP/acpBsr1QqKSJAVYja1iTY6YCgE4TlVIeQzbdFrJ9q/Wke7TijOzgaCWvXrsXatWtnvO7UU0/F0NAQvvOd7+BFL3oRAODb3/42hoaGMsnu4447DuvXr8eOHTvwwhe+EMBBR8IDDzyAG2+8EQCwdetWtLe3Y8eOHbjwwgsBAHv27MEPf/hDfPSjH52PIjpmAb5vNkQS4ATPQiA251ioerbPWkp4n1o6NAJ5rnmJzav0b0uoN0K+HYuDxpsxORwOh+OIhnvCHfONnp4edHd3h9AheoglySWqji15qiSwVaFTwasKb4IkF0ktEmgk0TQ8A5AdPzxG+Ok1+kyrHrdK9KyY3qpKt99nEcVKUit5p4paLSdV5AxpUSgU0NbWFsrH71m/SZKE77OgBLQuXngwK0OIUI1OVTlDwGhdlUqloBZmP+E9wEHSt1QqpUhKquGpyLOKaCUgGcZD1b4abkfD7/BvbV+tZ+6YKBQKyOfzSJIkKPnZt7V+tO1Yp9rPta9b6E4NbX8AIcyOjd+tZVenBstRrVbR2to6Td3MPhoLO0Lo+0bFuirXtRx0inR0dIRyx8IaaT3p+6RhdaxS3C6eeZ++bxpuhnkplUrh+d3d3dPS4W+2T5IkQX3OQ2T5Hmkb6AGmdmxj/+JuG0IJf6veZ/knJyfR3t4ePU8hhka03yeeeCJe9apX4ZJLLsFnPvMZAMB/+2//Da95zWtSh4o+97nPxQ033IDzzz8fuVwOV155JT7ykY/ghBNOwAknnICPfOQj6Orqwpvf/GYAwIoVK/COd7wDf/RHf4Q1a9Zg9erV+OM//mM8//nPx8tf/vKQ7u7du3HgwAHs3r0bk5OTePTRRwEA/+k//Sf09PQsSJmPZKht0ndZQ4hpyAcnsGZGrE7rvU+dgQsFOydbKiLVChi8Ty0ubJ1nOeIXC3b3mubH9hPa6kbuM41ov5sVTqI7HA6HY1HhRtwx37BxqW1c9CRJphGAdlGpZBOQ7mtWQWphFSlKellltJKOdsGgE3ZLlKliVvMYI0ftRN8SnTPBkvEa4sXWgVVXA4cIDxtP1ar0Z1qUZ6mhSRbHQs8wf5o2n0WSUuuFvzU/JHc1pnaM8FXHiHU4qKJKw6jo39qnrMOD5DyJXo0lbutI02F/qyfcwUx90RL0er32C+ZbnxFTzcf6ZQxKjim5bd9NJds1fcbbr9XfbfgfW+YsZbYl7rQc7GMtLS2hzXQsYj1yPNLPmN9SqRQU6hqWJuZ4qLVbResnC1bVWw8a1X7/1V/9Fd797nfjrLPOAgCce+65uPnmm1PX/OQnP8HQ0FD4/z3veQ+KxSIuu+wyDAwM4JRTTsG9996L3t7ecM1f/MVfoK2tDRdeeCGKxSJe9rKX4bbbbkv1m//5P/8nvvCFL4T/qWy///77ceaZZy5EcY94WDWwjjuWcHXMjEZW7dv5ibVDS5EX/t1odbUcENuxttTtkDX3499qg5c6r7XQqPa7GeEkusPhcDgWFW7EHfONQqEQ1MmWELIkIie8VLiS/KXqmGphDf9hyWQgHQPchjShWpWqYuDgwYsdHR3T8meVvcxnDPY5fH4WIUeFtJLMzLeGONGDKC2pZsushDhV90o8ktwgkcm6UIVxe3t7+G0JXkveKlmpxDLV5zaUDwlKpkeHhlW38W8tv1UbWTJe88PrVKFt68nmX3cv2H5iD3JlXbJMXLCps8DG3bfOCd0JoHlQxwE/t6QxHQ50JKhDQZWg+pn2Aa1H1gOfyTZmXXBHAMupoVvYF1V1bcl07V+xMwDsYabqsNA+pf2PZWY6ViXJ8qlSlv/zvdLdA/bAW6veZ170kM0sx4k6SwibZ9sn7f2al5kcDopGtd+rV6/G7bffPqvn53I5bNu2Ddu2bcu8p1Ao4BOf+AQ+8YlPZF5z22234bbbbptNdh0RxNSedgwBkBoLNATbkYaY43u2ZY2NxbPBQivCVTRgY1AvphLcCgeWE7LKvJTvlDrt7ZxrMfqEzu/t3E7zod/buUkjrlcb1X43I+qbMTkcDofD0aS45ZZbcNxxx6FQKGDr1q34p3/6p5rXP/DAA9i6dSsKhQKOP/54fPrTn552zZ133omTTjoJHR0dOOmkk3D33XfP+rlJkmDbtm3YuHEjOjs7ceaZZ+JHP/rR4RV2maJQKKCzsxP5fD6EbFGCT4laq5zWAyzL5TIqlUr4XxcRWUQp7y+XyyiVShgfHw+hS4CD5HlXV1cg+hl6QheONv615pXfKUHKZ2apjkkMdnR0oFAopJwMJAuZTrlcDgchMjyKXdhycRtzFpRKJZTL5dT9zD/r0YacoUPBEp6q0rYqQzoE+KMhXEhS6i4E1hlJdJLlSqazHu2hkYQl0+0iQp0TMRJAr2ff0WdUq1UUi0WUy+Vpzgy7u0I/05Au2h4sU6lUita7JVQs4c6+yR9V1WtdWSJHy9Xe3o6Ojo7QLuoY0jyS8OZzOzs70dnZmXpPAARCWvu/9l++azZMjl3M6vda5vb29tCPrFNH+w3Lp/WgjgUNIUXnEscDhjHSH+1PDMOi7yvHNI5rtk5jBylrO5G8V+eS9kPbbvWS6A7HQoD9UPuz2jYgfd4I3yPt70ca+J5zjKL9rpfkVfs0F2JY7dhCEGh2vsLy2bnQQkPzMNe6ambQftn5RT31sJB1pXNaxWL0DRVg6Bk2sfeB9psh/dyeHsKRvP72FnY4HA7HosJOzGf7Mxts374dV155Jd73vvfh+9//Pn7nd34HZ599Nnbv3h29fteuXTjnnHPwO7/zO/j+97+P9773vXj3u9+NO++8M1yzc+dOXHTRRbj44ovxgx/8ABdffDEuvPBCfPvb357Vcz/60Y/iYx/7GG6++WZ897vfxfr16/GKV7wCIyMjs6xRhxK/RKy/xPqTknL6eybFl51QW9JXw4YouVtLKT8TNI8WuiDVbaZK3tq6sIpevSdWb/q3qqBJJNp77L2avoa5sO93TDGqTgwtk26rjaHWmMFyqCK7FqmodaZ1Gut7NuQHr7OoV71knST2x+YvVoeaFwsNlcD/tYw27Vi72jzGyhrLl5LQSvrMZiFaS7Won9u8W6Iuqx9nPcu+i3b8iDnuYotxrTtdiGt92DqJjSf23cwqw1yVl4tpvx3LC7F+WI8NP5Jhx9WlUkovRB7s/MSKARYTy1GBTth5xWzbYKHqrRHaox57Zuc9jZDvLPj6+yDmY/2dS45061MHhoeHsWLFiqXOhsPhcBwRGBoaQl9f37TPdayd6ySDJivrGRannHIKfvM3fxOf+tSnwmcnnngiXve61+GGG26Ydv0111yDr3zlK/jxj38cPrv00kvxgx/8ADt37gQAXHTRRRgeHsbf//3fh2te9apXYdWqVfjyl79c13OTJMHGjRtx5ZVX4pprrgEAlMtlrFu3DjfeeCPe+c53zqZali3Yp17zmteEECFAmphkX7NKYQBBiW3V3TyE0kIXGEpmkRSzKth8Po/u7u6gvm5vb0eSJNHwIkzXkl82LMlMoCqmtbUV7e3tKBQKIS2mQ7V8qVTC6OgokiRJhUbhoaB6GCvzMjk5ifHx8aB4LhaLSJIkKGTz+Tx6e3vR3t4+7WBLku1MU8PJDA8PBwX12NgYJicnUalUgsqdh2x2dXVh7dq14fDSzs5O5HK58DxVCQ8ODmJoaCh1wCfTUIV0kiRBDa6wBzryN8va29sb0mpvb0dLS0vq4FRtR/aNYrGIYrEY8jc2NobW1lYUCoXwu7OzE21tbejs7Ez1a+3HSZKgUqmklPbsx1RO9/X1oaOjI/U5d00o+Z7P59HZ2Znq09VqFePj4yiXy6nFIfsE24Rqcn7G961cLqO/vx9jY2Ph3QKQqrOurq5pcex5bZIkoc2UlOYzlJCmCoztoDs9crlcSjXO+/h+tLS0hDqZmpqatjPDOiqoZtc2jS0wC4UC+vr6UgpLS1LwfyrNOfZQNV8sFjE5OYlSqRQOLNX476w75pnjCNPkAbo2XIxuPeeOkWKxiH/+539uKPvtOLKhfSrmuFWoc5jfxxxGCwUlFRda9c7n6I4guwOnnjLrPCXLqV0L+nxC7613TpIFtSV0oqr95A6jhQbtmg3JYedoh4OYo3ax+m4WaB9po3T+OTk5iXK5XPPA6ZjTPEutPVuo/Y458BcTWk4VRthwdLSlukNmsfPaSPb7SF9/uxLd4XA4HIuOxfCCVyoVPPzww+GgMeKss87CQw89FL1n586d065/5Stfie9973thMp91DdOs57m7du3C3r17U9d0dHTgjDPOyMybIxtcXMcUoDaOMRfeSj7aUB+8zsLGYNV0dEFEAouhKQqFQlikWaWKDZFCgsyGwVCilGXWHxsr3BJ3LDcXqTZWuK1Pjbutz7VEp1VGc6GhCm8lLRmWQol05kfDhQDpbcYMZUEHgY2FzgWMVfraOrXOD9a9DZliCRuNT83n28UVr9NyWOW9DZdiQ/TYfsm6YN3p1n5tZ9uHFFyQKiFir7PtaMPj6PulMfVj92pfyHo3NQ9ciDKcjIYt0VBCfBb7RVZ7xtqe5WCoFV3gkkTRUALa1y0xoGOIhoixPxr2SNtX29nmg++J7Ys2zIF9B7QfxsYlbWtto7lsP18M++1YPtDdLvreZvWdmF1fjDzGdn4s5POsIni275Gtw7nUl9oDkoUUBNTaAVYPONYxLWsrF1PRG6tr/e5w07Y7i5Zasax1TVui84l6wrkogR6zRfOd36WCzvdj4aT4ftk6bVT4+nt+1t9+sCg8UL7D4XDMJxZjTB0eHk79rzF0iX379mFychLr1q1Lfb5u3Trs3bs3mu7evXuj109MTGDfvn3YsGFD5jVMs57n8nfsml/84heZ5Xakwb5WrVbR1tYWSD0lcGMLUBJLSiTrhJgT5KyJO4k/XZzycyWzNH2qaPm5VbMCabWzKrXtPVlEKaHEHz/n/ZZgswcyUrnLfNjn2HuVSGW9KPnL31NThw515fXWiWFDXljCVduJqnO72FPVtY1nqferOt4+i/mOkdJaZps+y24PpGS+2I6W8NY+pEpyppWl9qpVf/yeqnW7+NN+o/3MltMq0ZRQV8LZOohIFGuemC7rh7+13ukIib2PfK4q+divNK69VchZFScXZPbdivVp7Q+2XlQVrlAiW1Wk2v+1viqVSnjXGD9dY7jbcapWn+Tn+h6qk4fPURLS9lmHYzFgbUStvqf2W8fLxcJiO4Tss6xzYTbp6O+55IF/qxJ3PurBlk3HysV0vC208y8rnaUca2Nl1HlsPfmL9YX5qresNBvFPmWNR0udV19/L97620l0APv371/qLDgcDscRg5GRkWiIrHw+j/Xr12ca0HrR09ODTZs2pT77wAc+gG3btkWvjxEctVQNsevt5/WkOV/XOLJB+33PPfcscU4cDoej+bHQ9nv9+vXI5/OHlYbjyICuv2cif6yTc7FhHd4L/SwAwZE2H2nNBZOTkygWi4f1/Fool8sol8sLlv5swIPgFwqL1XdmAzpOK5UKxsfHZ32/CgAOJ6xPFhqxzhTM3+jo6BLn5BB8/T2/19SCk+gAVq9eDQDYvXv3ERMbfXh4GJs2bcKTTz55xMQd9DI1B7xMzYGFKFOSJBgZGcHGjRuj3xcKBezateuwJ6sxQ2e94ACwdu1atLa2Tps09Pf3T/NAE7FJRn9/P9ra2rBmzZqa1zDNep67fv16AAc94hs2bKgrb47pcPvdHPAyNQe8TM2BZrbfDHXlcLj9bg54mZoDXqbmQDPbb19/H4KT6Di0NXXFihVHzAtK9PX1eZmaAF6m5oCXaWbMtBBinOjFQD6fx9atW7Fjxw6cf/754fMdO3bgvPPOi95z6qmn4qtf/Wrqs3vvvRcnn3xyOODv1FNPxY4dO3DVVVelrjnttNPqfu5xxx2H9evXY8eOHXjhC18I4KAa5IEHHsCNN944D6VfHnD73VzwMjUHvEzNgSPZfjuOfLj9bi54mZoDXqbmwJFsv5fD+ttJdIfD4XAcsbj66qtx8cUX4+STT8app56Kz372s9i9ezcuvfRSAMB1112Hp556Cl/84hcBHDwJ/Oabb8bVV1+NSy65BDt37sStt94aTv0GgCuuuAKnn346brzxRpx33nn427/9W9x333148MEH635uLpfDlVdeiY985CM44YQTcMIJJ+AjH/kIurq68OY3v3kRa8jhcDgcDofD4XA4HI7Dx5G+/nYS3eFwOBxHLC666CLs378fH/rQh7Bnzx5s2bIF99xzDzZv3gwA2LNnD3bv3h2uP+6443DPPffgqquuwic/+Uls3LgRH//4x3HBBReEa0477TTccccdeP/734/rr78ez3nOc7B9+3accsopdT8XAN7znvegWCzisssuw8DAAE455RTce++96O3tXYSacTgcDofD4XA4HA6HY/5wxK+/E0dSKpWSD3zgA0mpVFrqrMwbvEzNAS9Tc8DL5HA0Jo7Efuxlag54mZoDXiaHozFxJPZjL1NzwMvUHPAyORoVuSQ5jGObHQ6Hw+FwOBwOh8PhcDgcDofD4TiC0bLUGXA4HA6Hw+FwOBwOh8PhcDgcDoejUeEkusPhcDgcDofD4XA4HA6Hw+FwOBwZcBLd4XA4HA6Hw+FwOBwOh8PhcDgcjgwsexL9lltuwXHHHYdCoYCtW7fin/7pn5Y6S3XjhhtuwG/91m+ht7cXRx99NF73utfhJz/5SeqaJEmwbds2bNy4EZ2dnTjzzDPxox/9aIlyPHvccMMNyOVyuPLKK8NnzVimp556Cr//+7+PNWvWoKurC7/xG7+Bhx9+OHzfbGWamJjA+9//fhx33HHo7OzE8ccfjw996EOYmpoK1zR6mb71rW/hta99LTZu3IhcLoe/+Zu/SX1fT/7L5TL+8A//EGvXrkV3dzfOPfdc/PKXv1zEUqRRq0zVahXXXHMNnv/856O7uxsbN27EW9/6VvzqV79KpdFoZXI4suD2u7Hh9rsx4fb7IBrN1rn9diwnuP1ubLj9bky4/T6IRrN1br+XIRb9KNMGwh133JG0t7cnn/vc55LHH388ueKKK5Lu7u7kF7/4xVJnrS688pWvTD7/+c8nP/zhD5NHH300efWrX50ce+yxyejoaLjmT//0T5Pe3t7kzjvvTB577LHkoosuSjZs2JAMDw8vYc7rw3e+853k2c9+dvKCF7wgueKKK8LnzVamAwcOJJs3b07e/va3J9/+9reTXbt2Jffdd1/ys5/9LFzTbGX6X//rfyVr1qxJvva1ryW7du1K/t//+39JT09PctNNN4VrGr1M99xzT/K+970vufPOOxMAyd133536vp78X3rppckxxxyT7NixI3nkkUeSl770pcmv//qvJxMTE4tcmoOoVabBwcHk5S9/ebJ9+/bk3/7t35KdO3cmp5xySrJ169ZUGo1WJocjBrffjQ23341bJrffB9Fots7tt2O5wO13Y8Ptd+OWye33QTSarXP7vfywrEn0F73oRcmll16a+uy5z31ucu211y5Rjg4P/f39CYDkgQceSJIkSaamppL169cnf/qnfxquKZVKyYoVK5JPf/rTS5XNujAyMpKccMIJyY4dO5IzzjgjGPFmLNM111yTvOQlL8n8vhnL9OpXvzr5r//1v6Y+e/3rX5/8/u//fpIkzVcma/Dqyf/g4GDS3t6e3HHHHeGap556KmlpaUm+/vWvL1resxCbmFh85zvfSQCEhUujl8nhINx+Ny7cfjd2mdx+N76tc/vtOJLh9rtx4fa7scvk9rvxbZ3b7+WBZRvOpVKp4OGHH8ZZZ52V+vyss87CQw89tES5OjwMDQ0BAFavXg0A2LVrF/bu3ZsqY0dHB84444yGL+N//+//Ha9+9avx8pe/PPV5M5bpK1/5Ck4++WS88Y1vxNFHH40XvvCF+NznPhe+b8YyveQlL8E//MM/4N///d8BAD/4wQ/w4IMP4pxzzgHQnGVS1JP/hx9+GNVqNXXNxo0bsWXLlqYoI3BwzMjlcli5ciWAI6NMjiMfbr8bu4xuvxu7TG6/jwxb5/bb0Yxw+93YZXT73dhlcvt9ZNg6t9/Nj7alzsBSYd++fZicnMS6detSn69btw579+5dolzNHUmS4Oqrr8ZLXvISbNmyBQBCOWJl/MUvfrHoeawXd9xxBx555BF897vfnfZdM5bpP/7jP/CpT30KV199Nd773vfiO9/5Dt797nejo6MDb33rW5uyTNdccw2Ghobw3Oc+F62trZicnMSHP/xh/N7v/R6A5mwnRT3537t3L/L5PFatWjXtmmYYQ0qlEq699lq8+c1vRl9fH4DmL5NjecDtd+OOoW6/Ef5v1DK5/W5+W+f229GscPvduGOo22+E/xu1TG6/m9/Wuf0+MrBsSXQil8ul/k+SZNpnzYDLL78c//qv/4oHH3xw2nfNVMYnn3wSV1xxBe69914UCoXM65qpTFNTUzj55JPxkY98BADwwhe+ED/60Y/wqU99Cm9961vDdc1Upu3bt+P222/HX//1X+N5z3seHn30UVx55ZXYuHEj3va2t4XrmqlMMcwl/81Qxmq1ije96U2YmprCLbfcMuP1zVAmx/JDs48vhNvvxi2T2+9DaOQyxeD2+yCaoUyO5YdmH18It9+NWya334fQyGWKwe33QTRDmZYrlm04l7Vr16K1tXWad6e/v3+a96vR8Yd/+If4yle+gvvvvx/Petazwufr168HgKYq48MPP4z+/n5s3boVbW1taGtrwwMPPICPf/zjaGtrC/lupjJt2LABJ510UuqzE088Ebt37wbQnO30P/7H/8C1116LN73pTXj+85+Piy++GFdddRVuuOEGAM1ZJkU9+V+/fj0qlQoGBgYyr2lEVKtVXHjhhdi1axd27NgRvOBA85bJsbzg9rsxy+j2+xAauUxuv5vX1rn9djQ73H43Zhndfh9CI5fJ7Xfz2jq330cWli2Jns/nsXXrVuzYsSP1+Y4dO3DaaactUa5mhyRJcPnll+Ouu+7CP/7jP+K4445LfX/cccdh/fr1qTJWKhU88MADDVvGl73sZXjsscfw6KOPhp+TTz4Zb3nLW/Doo4/i+OOPb7oyvfjFL8ZPfvKT1Gf//u//js2bNwNoznYaHx9HS0t6+GhtbcXU1BSA5iyTop78b926Fe3t7alr9uzZgx/+8IcNW0Ya8J/+9Ke47777sGbNmtT3zVgmx/KD2+/GLKPb74No9DK5/W5OW+f223EkwO13Y5bR7fdBNHqZ3H43p61z+30EYjFOL21U3HHHHUl7e3ty6623Jo8//nhy5ZVXJt3d3ckTTzyx1FmrC+9617uSFStWJN/85jeTPXv2hJ/x8fFwzZ/+6Z8mK1asSO66667kscceS37v934v2bBhQzI8PLyEOZ8d9HTwJGm+Mn3nO99J2trakg9/+MPJT3/60+Sv/uqvkq6uruT2228P1zRbmd72trclxxxzTPK1r30t2bVrV3LXXXcla9euTd7znveEaxq9TCMjI8n3v//95Pvf/34CIPnYxz6WfP/73w8nZdeT/0svvTR51rOeldx3333JI488kvzu7/5u8uu//uvJxMREw5WpWq0m5557bvKsZz0refTRR1NjRrlcbtgyORwxuP1uDrj9bjy4/T6IRrN1br8dywVuv5sDbr8bD26/D6LRbJ3b7+WHZU2iJ0mSfPKTn0w2b96c5PP55Dd/8zeTBx54YKmzVDcARH8+//nPh2umpqaSD3zgA8n69euTjo6O5PTTT08ee+yxpcv0HGCNeDOW6atf/WqyZcuWpKOjI3nuc5+bfPazn01932xlGh4eTq644ork2GOPTQqFQnL88ccn73vf+1LGoNHLdP/990ffn7e97W1JktSX/2KxmFx++eXJ6tWrk87OzuQ1r3lNsnv37iUozUHUKtOuXbsyx4z777+/YcvkcGTB7Xfjw+1348Ht90E0mq1z++1YTnD73fhw+914cPt9EI1m69x+Lz/kkiRJ5q5jdzgcDofD4XA4HA6Hw+FwOBwOh+PIxbKNie5wOBwOh8PhcDgcDofD4XA4HA7HTHAS3eFwOBwOh8PhcDgcDofD4XA4HI4MOInucDgcDofD4XA4HA6Hw+FwOBwORwacRHc4HA6Hw+FwOBwOh8PhcDgcDocjA06iOxwOh8PhcDgcDofD4XA4HA6Hw5EBJ9EdDofD4XA4HA6Hw+FwOBwOh8PhyICT6A6Hw+FwOBwOh8PhcDgcDofD4XBkwEl0h8PhcDgcDofD4XA4HA6Hw+FwODLgJLrD8f/jzDPPxJVXXtk06c43nnjiCeRyOTz66KNLnRWHw+FwOOqG22+33w6Hw+FoLrjtdtvtcDQj2pY6Aw7HkY677roL7e3ti/a8b37zm3jpS1+KgYEBrFy5ctGe63A4HA7HkQS33w6Hw+FwNBfcdjscjoWEk+gOxwKhWq2ivb0dq1evXuqsOBwOh8PhqBNuvx0Oh8PhaC647XY4HIsBD+ficAimpqbwnve8B6tXr8b69euxbdu28N3u3btx3nnnoaenB319fbjwwgvx9NNPh++3bduG3/iN38D/+T//B8cffzw6OjqQJElqS9k3v/lN5HK5aT9vf/vbQzqf+tSn8JznPAf5fB6/9mu/hi996UupPOZyOfzv//2/cf7556OrqwsnnHACvvKVrwA4uC3spS99KQBg1apVqbS//vWv4yUveQlWrlyJNWvW4DWveQ1+/vOfz6mePvShD2Hjxo3Yv39/+Ozcc8/F6aefjqmpqTml6XA4HA7HXOH2uz64/XY4HA5Ho8Btd31w2+1wNA6cRHc4BF/4whfQ3d2Nb3/72/joRz+KD33oQ9ixYweSJMHrXvc6HDhwAA888AB27NiBn//857joootS9//sZz/D//2//xd33nlnNL7Zaaedhj179oSff/zHf0ShUMDpp58OALj77rtxxRVX4I/+6I/wwx/+EO985zvxX/7Lf8H999+fSueDH/wgLrzwQvzrv/4rzjnnHLzlLW/BgQMHsGnTJtx5550AgJ/85CfYs2cP/vIv/xIAMDY2hquvvhrf/e538Q//8A9oaWnB+eefPyfD+773vQ/Pfvaz8Qd/8AcAgE9/+tP41re+hS996UtoafFhxeFwOByLC7ff9cHtt8PhcDgaBW6764PbboejgZA4HI4kSZLkjDPOSF7ykpekPvut3/qt5JprrknuvffepLW1Ndm9e3f47kc/+lECIPnOd76TJEmSfOADH0ja29uT/v7+aeleccUV0563b9++5DnPeU5y2WWXhc9OO+205JJLLkld98Y3vjE555xzwv8Akve///3h/9HR0SSXyyV///d/nyRJktx///0JgGRgYKBmefv7+xMAyWOPPZYkSZLs2rUrAZB8//vfr3kf8fOf/zzp7e1NrrnmmqSrqyu5/fbb67rP4XA4HI75hNtvt98Oh8PhaC647Xbb7XA0I9xt5XAIXvCCF6T+37BhA/r7+/HjH/8YmzZtwqZNm8J3J510ElauXIkf//jH4bPNmzfjqKOOmvE51WoVF1xwAY499tjgrQaAH//4x3jxi1+cuvbFL35x6hk2n93d3ejt7UV/f3/NZ/785z/Hm9/8Zhx//PHo6+vDcccdB+DgVrm54Pjjj8ef//mf48Ybb8RrX/tavOUtb5lTOg6Hw+FwHC7cftcPt98Oh8PhaAS47a4fbrsdjsaAHyzqcAjsSd65XA5TU1NIkgS5XG7a9fbz7u7uup7zrne9C7t378Z3v/tdtLWlX0P7nNizs/JZC6997WuxadMmfO5zn8PGjRsxNTWFLVu2oFKp1JXnGL71rW+htbUVTzzxBCYmJqaVxeFwOByOxYDb79nB7bfD4XA4lhpuu2cHt90Ox9LDlegORx046aSTsHv3bjz55JPhs8cffxxDQ0M48cQTZ5XWxz72MWzfvh1f+cpXsGbNmtR3J554Ih588MHUZw899NCsnpHP5wEAk5OT4bP9+/fjxz/+Md7//vfjZS97GU488UQMDAzMKt8W27dvx1133YVvfvObePLJJ/Enf/Inh5Wew+FwOBzzDbff0+H22+FwOByNDLfd0+G22+FoDLjryuGoAy9/+cvxghe8AG95y1tw0003YWJiApdddhnOOOMMnHzyyXWnc9999+E973kPPvnJT2Lt2rXYu3cvAKCzsxMrVqzA//gf/wMXXnghfvM3fxMve9nL8NWvfhV33XUX7rvvvrqfsXnzZuRyOXzta1/DOeecg87OTqxatQpr1qzBZz/7WWzYsAG7d+/GtddeO+t6IH75y1/iXe96F2688Ua85CUvwW233YZXv/rVOPvss/Hbv/3bc07X4XA4HI75hNvvNNx+OxwOh6PR4bY7DbfdDkfjwJXoDkcdyOVy+Ju/+RusWrUKp59+Ol7+8pfj+OOPx/bt22eVzoMPPojJyUlceuml2LBhQ/i54oorAACve93r8Jd/+Zf4sz/7Mzzvec/DZz7zGXz+85/HmWeeWfczjjnmGHzwgx/Etddei3Xr1uHyyy9HS0sL7rjjDjz88MPYsmULrrrqKvzZn/3ZrPJOJEmCt7/97XjRi16Eyy+/HADwile8Apdffjl+//d/H6Ojo3NK1+FwOByO+Ybb70Nw++1wOByOZoDb7kNw2+1wNBZySZIkS50Jh8PhcDgcDofD4XA4HA6Hw+FwOBoRrkR3OBwOh8PhcDgcDofD4XA4HA6HIwNOojscjmm49NJL0dPTE/259NJLlzp7DofD4XA4InD77XA4HA5Hc8Ftt8PRPPBwLg6HYxr6+/sxPDwc/a6vrw9HH330IufI4XA4HA7HTHD77XA4HA5Hc8Ftt8PRPHAS3eFwOBwOh8PhcDgcDofD4XA4HI4MeDgXh8PhcDgcDofD4XA4HA6Hw+FwODLgJLrD4XA4HA6Hw+FwOBwOh8PhcDgcGXAS3eFwOBwOh8PhcDgcDofD4XA4HI4MOInucDgcDofD4XA4HA6Hw+FwOBwORwacRHc4HA6Hw+FwOBwOh8PhcDgcDocjA06iOxwOh8PhcDgcDofD4XA4HA6Hw5EBJ9EdDofD4XA4HA6Hw+FwOBwOh8PhyICT6A6Hw+FwOBwOh8PhcDgcDofD4XBk4P8DKuChCw1jdoYAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 22, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "class EarlyStopping(callbacks.Callback):\n", + " def __call__(self, algorithm):\n", + " if np.mean((algorithm.x.array-ground_truth.array)**2) <= 3e-8: # arbitrary stopping criterion\n", + " raise StopIteration\n", + "\n", + "algo=FISTA(initial=ig.allocate(0), f=F, g=G, update_objective_interval=10) \n", + "algo.run(500, callbacks=[callbacks.TextProgressCallback(), EarlyStopping()])\n", + "show2D([ground_truth, recon, algo.solution], title = ['Ground Truth', 'FDK Reconstruction', 'TV solution'], origin = 'upper', num_cols = 3)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Calculating data discrepancy at each iteration (A custom callback example) " + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABdIAAAGlCAYAAAD+ngTNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9eZxlVXkujj/nVJ25To09M7TIBRWBmNAJg19FQUCccCCSqyGYIB8RowLigMaIOCCa68U4gN6giF6B5CIOERFQAQloGJyi0ZikmaQHurqmU3XGOvv3R/+e1c9+a+1TVd3VXVXd6/l86lNV5+y99pr2etd63me9KxVFUYSAgICAgICAgICAgICAgICAgICAgICAAC/Si52BgICAgICAgICAgICAgICAgICAgICAgKWMQKQHBAQEBAQEBAQEBAQEBAQEBAQEBAQEdEAg0gMCAgICAgICAgICAgICAgICAgICAgI6IBDpAQEBAQEBAQEBAQEBAQEBAQEBAQEBAR0QiPSAgICAgICAgICAgICAgICAgICAgICADghEekBAQEBAQEBAQEBAQEBAQEBAQEBAQEAHBCI9ICAgICAgICAgICAgICAgICAgICAgoAMCkR4QEBAQEBAQEBAQEBAQEBAQEBAQEBDQAYFIDwgICAgICAgICAgICAgICAgICAgICOiAQKQHBCwjXHfddUilUnjkkUfmfM99992Hyy67DKOjo3skT53Sf9rTnoaXvexle+S5AQEBAQF7DrQ3vp9LLrkEgH+MHx4exqWXXoojjjgCpVIJfX19eOYzn4mzzz4bv/jFLwAgMV37c9ddd7l0//7v/x6pVApHHnnkLpfpDW94A572tKft8v1LFS94wQt2q14WG6lUCpdddtliZyMgICBgUbAv2tvFQLDxSxPBxgfsi+he7AwEBATsWdx333344Ac/iDe84Q3o7+9fdukHBAQEBCwevvSlL+GZz3xm7LN169Z5r61UKjjuuONQqVTwzne+E3/wB3+AarWK//iP/8DXv/51/OxnP8PRRx+N+++/P3bfhz70Ifzwhz/ED37wg9jnRxxxhPv7i1/8IgDgV7/6FX7yk5/g2GOPXYjiBQQEBAQELAkEexsQEBCwPBCI9IAAgyiKUKvVUCgUFjsri4Jqtbrflj0gICAgII4jjzwSGzZsmNO1//RP/4T//M//xA9+8AO88IUvjH138cUXo91uAwCOO+642HcrV65EOp2e8Tnx4IMP4uc//zle+tKX4jvf+Q6uvfbafX5hv7/PRQICAgL2NwR7u/8g2PiAgOWNENolYJ/GN7/5TRx99NHI5XJ4+tOfjk996lO47LLLkEql3DWpVAp//dd/jWuuuQbPetazkMvl8OUvfxkAcO+99+Lkk09GuVxGsVjECSecgO985zuxZ9j0CF8YFm7Lu+222/BHf/RHKBQKeOYzn+k8/4of//jHeO5zn4t8Po9169bh0ksvRbPZnFf5L7vsMrzzne8EABxyyCEztu8xP1//+tfxh3/4h8jn8/jgBz+IRx55BKlUCtddd92MNHV71mzpE3Mpb0BAQEDA8sbw8DAAYO3atd7v0+ldm3Zee+21AICPfexjOOGEE3DjjTdiampq1zJpUKvVcOmll+KQQw5BNpvFAQccgLe85S2xcGXvfOc70dfXh+npaffZW9/6VqRSKXziE59wnw0PDyOdTuPTn/60+2x8fByXXHJJLP0LL7wQk5OTsXx0movMFT/60Y9w3HHHoVAo4IADDsD73//+WJ4BYPv27bjgggtwwAEHIJvN4ulPfzre9773oV6vu2vmOgcAds6BfvWrX+F//s//ib6+PqxevRp/9Vd/hbGxsdi94+PjOO+88zA0NISenh68+MUvxn/8x3/Mq4wBAQEBAUvf3jIcyQMPPIDnPe95KBaLePrTn46PfexjjuQnHnvsMfz5n/85Vq1ahVwuh2c961n4X//rf824blcQbHyw8QEBewKBSA/YZ3Hbbbfh1a9+NYaGhnDTTTfh4x//OG644Qav0frGN76Bq6++Gn/7t3+L733ve3je856Hu+++GyeddBLGxsZw7bXX4oYbbkC5XMbLX/5y3HTTTbucr5///Od4xzvegYsuusgR/eeeey7uueced82vf/1rnHzyyRgdHcV1112Ha665Bj/96U/x4Q9/eF7PeuMb34i3vvWtAICvf/3ruP/++3H//ffjj/7oj9w1Dz/8MN75znfibW97G2677Ta85jWvWdD051LegICAgIClienpabRardhPEo4//ngAwF/8xV/gG9/4hlvo7w6q1SpuuOEG/PEf/zGOPPJI/NVf/RUmJibwT//0T7uddhRFeOUrX4m/+7u/w9lnn43vfOc7uPjii/HlL38ZJ510klt4vuhFL8L4+Dj+9V//1d175513olAo4I477nCfff/730cURXjRi14EAJiamsKJJ56IL3/5y3jb296G7373u3j3u9+N6667Dq94xSsQRVEsP765yFyxefNm/Nmf/Rle//rX45vf/CbOPPNMfPjDH8bb3/52d02tVsMLX/hCXH/99bj44ovxne98B3/+53+Oj3/843j1q1+9S3VIvOY1r8Hhhx+Om2++Ge95z3vwta99DRdddJH7nnX9la98Be94xztwyy234LjjjsPpp5++W88NCAgI2Fewr9nbzZs34/Wvfz3+/M//HN/61rdw+umn49JLL8VXv/pVd81TTz2FE044Abfffjs+9KEP4Vvf+hZe9KIX4ZJLLsFf//Vf71Z5go0PNj4gYI8hCgjYR/HHf/zH0UEHHRTV63X32cTERDQ0NBRp1wcQ9fX1Rdu3b4/df9xxx0WrVq2KJiYm3GetVis68sgjowMPPDBqt9tRFEXRBz7wgcj3Kn3pS1+KAEQbN250n61fvz7K5/PRo48+6j6rVqvR4OBg9KY3vcl9dtZZZ0WFQiHavHlz7NnPfOYzZ6Q5Gz7xiU8k3rN+/fqoq6sr+u1vfxv7fOPGjRGA6Etf+tKMewBEH/jAB+ac/lzKGxAQEBCwtEAb5vtpNptRFO0Y41/60pfG7rv88sujbDbrrj3kkEOi888/P/r5z3+e+KxzzjknKpVK3u+uv/76CEB0zTXXRFG0w4739PREz3ve8+ZdpnPOOSdav369+/+2226LAEQf//jHY9fddNNNEYDoC1/4QhRFUTQ5ORlls9no8ssvj6Ioip544okIQPTud787KhQKUa1Wi6Iois4777xo3bp1Lp0rrrgiSqfT0QMPPBBL///9v/8XAYhuvfVW91nSXGQuOPHEEyMA0Te/+c3Y5+edd16UTqedDb7mmmsiANE//uM/xq678sorIwDR7bffHkXR/OYAnAPZOrzggguifD7v5krf/e53IwDRpz71qdh1H/nIR2akGRAQELA/YV+0t7RLP/nJT2KfH3HEEdFpp53m/n/Pe97jve7Nb35zlEqlZqxROyHY+GDjAwL2FoIiPWCfxOTkJB588EG88pWvRDabdZ/39PTg5S9/+YzrTzrpJAwMDMTu/8lPfoIzzzwTPT097vOuri6cffbZeOKJJ/Db3/52l/L2nOc8BwcffLD7P5/P4/DDD8ejjz7qPvvhD3+Ik08+GatXr449+6yzztqlZ3bC0UcfjcMPP3zB0yXmUt6AgICAgKWJ66+/Hg888EDsp7s7+Yid97///XjsscfwxS9+EW9605vQ09ODa665BscccwxuuOGGeT//2muvRaFQwJ/92Z8B2GHH//RP/xQ/+tGP8Lvf/W6XywXAHbb2hje8Ifb5n/7pn6JUKuH73/8+AKBYLOL444/HnXfeCQC444470N/fj3e+851oNBq49957AexQsFGpBgD//M//jCOPPBLPec5zYgrD0047zRsGzc5F5oNyuYxXvOIVsc9e97rXod1uux1gP/jBD1AqlXDmmWfGrmP5Wd5dgX320UcfjVqthq1btwLYMa8BgNe//vUz8hgQEBAQsO/Z2zVr1uBP/uRPYp8dffTRsTXgD37wAxxxxBEzrnvDG96AKIpmHIo6HwQbj1j5g40PCFg4BCI9YJ/EyMgIoiiKEdGE7zMbX473++LO8fT0Xd1CNzQ0NOOzXC6HarXq/h8eHsaaNWtmXOf7bHeRFFtvoTCX8gYEBAQELE0861nPwoYNG2I/s2H16tX4y7/8S1xzzTX4xS9+gbvvvhvZbDa2BXku+M///E/cc889eOlLX4ooijA6OorR0VG3SNzd8zaGh4fR3d2NlStXxj5PpVJYs2ZNzM6/6EUvwo9//GNMTk7izjvvxEknnYShoSEcc8wxuPPOO7Fx40Zs3LgxtsjesmULfvGLXyCTycR+yuUyoijCtm3bYs/dHXvsm9twzsBycG5hz3VZtWoVuru7dys0gLX1uVwOAJytZ13b6/bEvCYgICBgOWJfs7dzXfPuifU27w02Ptj4gIA9gUCkB+yTGBgYQCqVwpYtW2Z8t3nz5hmfWYMzMDCAdDqNTZs2zbj2ySefBACsWLECwA6FNYDYIR4AZhjP+WBoaMibT99nuwvfQalJZVqI+HsBAQEBAfsXnv/85+PUU0/FU0895dRLc8EXv/hFRFGE//f//h8GBgbcz0tf+lIAwJe//OUZB23NB0NDQ2i1Wnjqqadin0dRhM2bNzs7DwAnn3wyGo0G7rnnHnz/+9/HKaec4j6/4447XBzVk08+2d2zYsUKHHXUUTMUhvx5//vfH3uuzx7PFZ3mO1zYDg0NYcuWLTPitm7duhWtVmvWec3uLsJbrdaMNPbEvCYgICBgf8VStbdJGBoamtN6e1fTDjY+2PiAgD2BQKQH7JMolUrYsGEDvvGNb6DRaLjPK5UK/vmf/3lO9x977LH4+te/HvOat9ttfPWrX8WBBx7owqE87WlPAwD84he/iKXx7W9/e5fz/8IXvhDf//73Y0Zzenp6lw45tR7juWD16tXI5/MzyvTNb35zQdIPCAgICNj3sGXLFrTb7RmfT09P43e/+x2KxSL6+/vnlNb09DS+/OUv49BDD8UPf/jDGT/veMc7sGnTJnz3u9/d5fxyQawHnwHAzTffjMnJydiC+U/+5E/Q29uLq666Cps3b3aL7Be96EX46U9/in/8x3/EEUcc4VR0APCyl70M//Vf/4WhoaEZKsMNGza4+cNCYGJiAt/61rdin33ta19DOp3G85//fFfeSqWCb3zjG7Hrrr/+evc9ML85wFzxwhe+EADwf//v/52Rx4CAgICA+WG52dsknHzyyfj1r3+Nhx9+OPb59ddfj1Qq5WzHrqYNBBsfbHxAwMIjOehWQMAyx+WXX46XvvSlOO200/D2t78d09PT+MQnPoGenh5s37591vuvuOIKnHLKKXjhC1+ISy65BNlsFp/73Ofwb//2b7jhhhucV/klL3kJBgcHce655+Lyyy9Hd3c3rrvuOjz++OO7nPe/+Zu/wbe+9S2cdNJJ+Nu//VsUi0V89rOfxeTk5LzTOuqoowAAn/rUp3DOOecgk8ngGc94BsrlcuI9qVQKf/7nf44vfvGLOPTQQ/EHf/AH+Nd//VevMdyV9AMCAgIC9j185Stfwec//3m87nWvwx//8R+jr68PTzzxBP7hH/4Bv/rVr/C3f/u3sXNLOuG73/0unnzySVx55ZV4wQteMOP7I488Ep/5zGdw7bXX4mUve9ku5feUU07Baaedhne/+90YHx/Hc5/7XPziF7/ABz7wAfzhH/4hzj77bHdtV1cXTjzxRHz729/GIYccgkMPPRQA8NznPhe5XA7f//738ba3vS2W/oUXXoibb74Zz3/+83HRRRfh6KOPRrvdxmOPPYbbb78d73jHO3DsscfuUt4thoaG8OY3vxmPPfYYDj/8cNx66634P//n/+DNb36zO6fkL/7iL/DZz34W55xzDh555BEcddRRuPfee/HRj34UL3nJS9yW9fnMAeaKU089Fc9//vPxrne9C5OTk9iwYQP+5V/+BV/5ylcWpPwBAQEB+xOWm71NwkUXXYTrr78eL33pS3H55Zdj/fr1+M53voPPfe5zePOb37xb53gFGx9sfEDAHsOiHHEaELCXcMstt0RHHXVUlM1mo4MPPjj62Mc+Fr3tbW+LBgYG3DUAore85S3e+3/0ox9FJ510UlQqlaJCoRAdd9xx0be//e0Z1/3rv/5rdMIJJ0SlUik64IADog984APRP/zDP0QAoo0bN7rrfCeuR9GO07hPPPHE2Gf/8i//Eh133HFRLpeL1qxZE73zne+MvvCFL8xIcy649NJLo3Xr1kXpdDoCEP3whz/smJ8oiqKxsbHojW98Y7R69eqoVCpFL3/5y6NHHnnEe/L2fNP3lTcgICAgYOngS1/6UgQgeuCBBxKvsWP8r3/96+gd73hHtGHDhmjlypVRd3d3NDAwEJ144onRV77ylcR0zjnnnKhUKsU+e+UrXxlls9lo69atiff92Z/9WdTd3R1t3rx5TmU655xzovXr18c+q1ar0bvf/e5o/fr1USaTidauXRu9+c1vjkZGRmbc/6lPfSoCEJ133nmxz0855ZQIQPStb31rxj2VSiX6m7/5m+gZz3hGlM1mo76+vuioo46KLrrooli+O81FZsOJJ54YPfvZz47uuuuuaMOGDVEul4vWrl0bvfe9742azWbs2uHh4ej888+P1q5dG3V3d0fr16+PLr300qhWq8Wum+sc4AMf+EAEIHrqqadi97P/6HxldHQ0+qu/+quov78/KhaL0SmnnBL95je/8c4rAgICAvYX7Iv2lnbJ93xrhx999NHoda97XTQ0NBRlMpnoGc94RvSJT3wimp6entOzOqUdbHyw8QEBewKpKDJBlAIC9mE0m0085znPwQEHHIDbb799sbMTEBAQEBAQEBAQEBAQEBAQEBAQsAwQQrsE7NM499xzccopp2Dt2rXYvHkzrrnmGvz7v/87PvWpTy121gICAgICAgICAgICAgICAgICAgKWCQKRHrBPY2JiApdccgmeeuopZDIZ/NEf/RFuvfVWFyNsOaPdbnsPmVF0d4dXPCAgICBg38b09DQ6bbBMpVLo6uraizlaGOyr5QoICAgIWJ5YDLu0r9rCfbVcAQH7A9KLnYGAgD2Jf/zHf8QTTzyBer2OSqWCe+65By9+8YsXO1sLgssvvxyZTKbjzyOPPLLY2QwICAgICNijOPnkkzvaQh4attywr5YrICAgIGB5YjHs0r5qC/fVcgUE7A8IMdIDApYpnnzySTz55JMdrzn66KPnfGJ7QEBAQEDAcsRvf/tbTExMJH6fy+Vw1FFH7cUcLQz21XIFBAQEBCxPLIZd2ldt4b5aroCA/QGBSA8ICAgICAgICAgICAgICAgICAgICAjogBDaJSAgICAgICAgICAgICAgICAgICAgIKADwkmE2HFo45NPPolyuYxUKrXY2QkICAhYdoiiCBMTE1i3bh3S6Zk+2lqthkajsVvPyGazyOfzu5VGwPJFsNUBAQEBu4dgqwP2NIKtDggICNg9BFu99BGIdOyINX3QQQctdjYCAgIClj0ef/xxHHjggbHParUaDjnkEGzevHm30l6zZg02btwYjP5+imCrAwICAhYGwVYH7CkEWx0QEBCwMAi2eukiEOkAyuXyYmchICAgYJ+AbzxtNBrYvHkzHnvsMfT29u5SuuPj4zj44IPRaDSCwd9PsdxtdSqVcqqS6enpRc5NAACnlgzHBS0/hLbbPQRbHbCnwL512GGHeZWU6XQa6XQaqVQKqVQKXV1diKII7XYbURRhenoazWYTURTF3u+urq6Oz+Wz2u22+8ymkUql0N3djUwm4/KRTqcxPT2Ner0eu5dpMn8+sAxMM5VKOftuy8Q0MpmMKwt/c37QbrdRr9fRbDbdPUyHaWm5mN+uri43JnZ1dbn6Zdr8XO/RMvFvlsXe02q1XB6Yj3a7jVarhe7ubpRKJWSzWfcZ607H6Xa7HesPjUbD3Z/NZt13URTF5ktEu91GrVZDvV53eWO5tfw+MN+K7u7uGfe1Wi1Xt6z/TCaDTCYTu7fVaqFaraLdbqNYLCKfzyOKIlQqFTQaDeRyOfT09AAARkdHMTExgWKxiAMPPBA9PT3Yvn07tmzZgna7jb6+PhSLRdRqNWzfvh31eh09PT3o6+ub8Uy+F0QqlUImk0F3d7frq+12G9VqFVNTU+ju7kZfXx8KhQIqlQpGRkYwPT3tyqTvAH+AHURts9mM9R9C3910Ou36i6/Npqen0Wq1Eue8Wpbu7m50d3djenoajUYj1v9TqRSy2azrY7Zd2V7sY2xX3p/JZNDX14dcLoepqSlUKhWXN97Pts9kMsjlct7+Nxc0m020Wi2XZ9YP3/VGo+HSYl599Tw9PY1f//rXwVYvYQQiHTM7bkBAQEDArqHTeNrb27vLBj8gYD62mpN6u4hebCylvAQE7M/Y34n4YKsD9hTYt0hUKklLkOhKIltTqVSMILPknY+g94HkGNMH4kR+V1dXjDi2hKvmr1NZSV6z3Jx78CedTrvnk/DjvdYBwOv1MyUpLZFq/+7u3knv8FrNH9PUsvJvrV8S1fxcyeUoitBoNGL1qPMu5od50fIyX2xvTbNT+bq6upDJZGbUCcvF5/vai3m0bcu8JTkYeJ/WH8vI/1lXLAfTIbnN94B9gMSwOlPoiMlms46A5T1Ml2X1OXu0n9p3RduG+c9kMsjn87F3kO1lHT9aV1ovtp6T6p5l1LL7yHnWF8to+xIdUPZz/d/2R/v+kdDXtmT78xptB+2X6sjzkeqaJstB5wC/b7fbyGQymJ6enlH3Cn1usNVLF4FIDwgICAjYK9gdUnN/JTsCZoddnPEzVX8vhf6z1Ej9gDCuLGfsTtvZhWvoB3EEWx2wEFDyUWFJPd/fJKJarVYsDSW1LKHmgyUFrbJb80r41MtJUHLbKrFJEqsaN4oipzbv6upyhKkq0m0elTjW3yRgma5Vp1MdrsphLbeWk8pcJeFJXirBrYQ686vkLlW+URTFHClKUvP/RqOBRqMRI5xte1pHhpK9Wg7uBEgiJ339g+3SarW8KnreR5LVOnKUgGe5G40G6vW6U7Bbsr/VaqFWq8Wex3oB4HY1sE60vumA0bYjga/1xXbX/qc/URQ5p4SWWevW7hqxUBvBsvjed+3H+h5o+TTv3d3drs926gfap7SeddeD9iXu9GBbW2cM+z7rxj7fpsfxQsukjix1qtl3QPtRJ+fDXBBs9eIiEOkBAQEBAXsFweAHBAQEBAQsbQRbHbAQ2JW+YIlKVXInXU/4SDwlyiz5OldV+1xBotlH5vFvJV55rc37bCS+VWDb7/QzVUfrNcyjkuBK4uszADjClr99+dXyzRU+JXqSIl2hThQL3dXQ6fqk+3WHRKc0bf4tlCjVNPXHd48S0qxPe62KRWzZNS1Nx6Zh29gH9ulO8F1jnUDWGWMxn10muwr7ztnnc7zYHWLbprmnEWz14iIQ6QEBAQEBewXB4AfsCfj6hm7hDH0nIGDPYrmpuy25tVTgI3AWA8FWBywEqCxVtbePzPT1e5KQJNgsSUv77gsRQ5CQJDnM2No2jncnaDgKCyXNNW8aRsLGSLdKXpJ3DO1h059LHpUY17pQpbXGcPcpq5kX3kNFOfOhOwD4u16vxwhT1oGSp1bZ63t+Ut3qb9smvvAmwM4diKlUCrlcLlYfqoy2YxyvYbxx7hxgeVqtluvHbE/G/mbcbqtYJinOumf9axm4k6HRaMxQvttY+8DOECmab6t6VkW5bV+WwZLsBPsL+0ESwe3bDaLhe+wuBL3P5wiic6nTbhDtX1oe7SvWaabjj96n+bF90+6A8fU33xkHSdCdDwodL5KcLbMh2OrFxZ53lQQEBAQEBCwCPve5z+GQQw5BPp/HMcccgx/96Ecdr7/77rtxzDHHIJ/P4+lPfzquueaaGdfcfPPNOOKII5DL5XDEEUfglltuiX1/9dVX4+ijj3Zx644//nh897vfjV0TRREuu+wyrFu3DoVCAS94wQvwq1/9avcLHOAwn4loQEDA7iEpPMNShF2sLhVY5WJAwHKHJa2AZGLUZ7M1JInGT+Y9hE99rKSYHvgHwEscz0beWSJc82rJP71eoaE1mHaz2USj0XAHFPryoeWxY4SSfjZkBNtA48Qn1S3zreVVok8JWxsPXcnGpHbU/CY5P+x9Nja5tocPSrKyzDYki+8e5iuV2hGbPJfLuYM49bnWMcIfPbDStoOS6b7wQTYMC8sMYEY4Fm03TdvGQOe1SiDbtrQH9/raUcs7H/hIdFvPvrawz7e7HqyzppMN94VU8hHpiqQ+qdfru8t71OFl8+xzNPnGj6U0FwmYOwKRHhAQEBCwV+BbhMznZz646aabcOGFF+J973sffvrTn+J5z3seTj/9dDz22GPe6zdu3IiXvOQleN7znoef/vSneO9734u3ve1tuPnmm901999/P8466yycffbZ+PnPf46zzz4br33ta/GTn/zEXXPggQfiYx/7GB588EE8+OCDOOmkk3DGGWfEiPKPf/zj+OQnP4nPfOYzeOCBB7BmzRqccsopmJiYmGeNBgQEBCw+dIxeagS1xVLN21Jy/u1NWx2w74KEF4lASz5S0avxnzspUgHMIAyV+OX3naBkV6ewIb5rbD53pa8rge0jOm2oF5+SWz/XvPiU1gr9ztaDTx1O4rHRaCS2jU9Rbh0Zvnzoc20MaV9+Ne2k2Ps+0jzJkaPPtuSnkuP6mQ19w0Mp2ZbMm21XfQ+0ryohrmVO6lu2PmwdKMmsZdQ69z3PF0ddD07V/mHr0tfWSe/VfEKdME22T9K96gziDhH7rNkc1Fa9b50KrKfZ3nnf+2HHi6Q0rBPLOgKSEGz14iIVhVrE+Pg4+vr6FjsbAQEBAcseY2NjM04Q5xj71FNP7fLp4uPj41i5cqU3fR+OPfZY/NEf/RGuvvpq99mznvUsvPKVr8QVV1wx4/p3v/vd+Na3voV///d/d5+df/75+PnPf477778fAHDWWWdhfHw8pjB/8YtfjIGBAdxwww2JeRkcHMQnPvEJnHvuuYiiCOvWrcOFF16Id7/73QCAer2O1atX48orr8Sb3vSm2StjP0Ww1fODbr0NCAgIUCwVWx2w74H9aO3atSgUCigUCgDi6k6SS0ooK9mlMb3VSWeVrqoG1dAZBAkye8hjFO0M/6EhTBQkGaluVpWzT1Xt2+1iywvsDEfTbDZRqVQwPT2NXC6HfD6PVCrlDdVBUtESzhrShIrmfD6Prq4u1Go1TE1NIYoi5HI5ZLNZV7eWPK5UKmg2m7EwLkmKaj5/amoKU1NTMdW/lrNUKqFQKKDd3nGwqB4c2263nQrfksOqgNfDVK2iV8luTZf1pfer6t6SnTYEDgnVZrPp0mK9sB40HYZumZ6eRqVSQaPRQKFQQLlcRjqdxtjYGCqVCjKZDHp6epDNZlGv1zE5OQkAyOfzLjwMD6Jl3tVBov1eHR8km1utlsszYb9nOam6Zz0y7j3njbVazR0Ey/5kVdgaNkk/Z53ad8Gqt327K/h8bWcbxonvJOsun8+j3W5jampqxvutjg3t74SOM76+4SPUtV/5CHqf6t3uCugUEoZ9oN1u47//+7+DrV7CCIr0gICAgIC9goXwnI+Pj8d+GPNS0Wg08NBDD+HUU0+NfX7qqafivvvu8+bt/vvvn3H9aaedhgcffBDNZrPjNUlpTk9P48Ybb8Tk5CSOP/54ADuU75s3b46lk8vlcOKJJyamExAwX4TwEAEBAbuKoHILWAhY5baSUap41b87qdGBuNLUpxy18BHrvs873euLeW6J3aTya1pKfs4W1qSTWt4+w6pZrZPBhvzwQWNN81oNPZIUv1rLYQnx2erYpx63hLHmR+9LCudjYdOzoVGs0lkV5LZf2b5GAt3mRVXg2l+sKtmnDtf8JimXfX3d52xKqj/Nn1Wfa0gfCx/p7XMkLRTsbgyF1puvLWdToPt++2BJdOsYSILdjeAb33yOO+0rs42F9p5gq/c+ApEeEBAQELBscNBBB6Gvr8/9+NTl27Ztw/T0NFavXh37fPXq1di8ebM33c2bN3uvb7Va2LZtW8drbJq//OUv0dPTg1wuh/PPPx+33HILjjjiCJcG75tr3gL2Hcy2xXShECbJAQEBAQGLCR7cSHVxLpdzSlgNhwHMDMHhI1TVfpLwa7VaqNfrjuztZPd8pK9V/PI6JdlsjHCqeKmmni3kg7XHvCedTqNQKKBUKiGbzc4gsvW3quA1Vrk9UFVDQwCIxZe3z7dEH6H3+0K0WGeEkrB6CKc6UFhfVq2r9UyVrr1f82vVvFovqoZm2ySRnlpXPtgQPDZGvyXPtVzsU/V6HY1GA8DOd4GKa0vo+/Jl88960Hq0xDnzzLRI2GsIG9tHfNBdBiyT7etJIXy03bXtNGSOjyS2YZu0b/qe7QuNpPnX3RRsL9+1cyGsNY9Ml2kzfe4ISCqbvq++dYDdXaNq+aWEpXr+2Bve8IYZ4YaOO+643S9wByzNFgoICAgI2OewO+Qe73v88cdjW9ByuVziPT5vfycS03e9/XwuaT7jGc/Az372M4yOjuLmm2/GOeecg7vvvtuR6buSt4DlD7tICNiBpPcuYPlgrv3aRxQFLD0shK0OCODBjSSJNTQDsDP8A6EhImw/SiJCVUVL4knDRujcymeD2+22I9hsnHAbfoHvBcOUKLFtYVWsCn6WSqVQLBaRSqViYTd8KnslXjVcjNYX86QEKcO52LJr+fW31o2tO0sia5tY0pNkMtFsNtFsNp2K25aLYD1oaBdfX2AYGSWlmY9Wq+WusenbNrJOBC2vtr+2sVU++3YFpFIpNBoNl14mk3Hp8Xm+8EB6v4/wJQHOXRLst8wX88k+qqFttH0I+7f2fbtLQfsK64d50e+ZVlJ4E5LJ+jzbRr5wNlon2q46jvjU5iw7dxdrfnScmAuhru+hth/rW8cF373Mk/YF+57rODYb9rat5vljn/vc5/Dc5z4Xn//853H66afj17/+NQ4++OAZ1/P8sfPOOw9f/epX8S//8i+44IILsHLlSrzmNa8BsPP8sQ996EN41atehVtuuQWvfe1rce+99+LYY48FsPP8sf/xP/4HAODLX/4yzjjjDPz0pz/Fs5/9bPe8F7/4xfjSl77k/uf4t6cQiPSAgICAgL2ChTD49EZ3wooVK9DV1TVD4b1169YZSnBizZo13uu7u7sxNDTU8RqbZjabdcZ+w4YNeOCBB/CpT30Kn//857FmzRoAO5Tpa9eunVPeAgICAgIC9hYCkR6wEPApLy2Z1InA6iQwIIHlCwdCss53D59tiW4lMjVWs+9+zZ/mP2nHmS8tJRTtvXMVVWg5lJC176/PCaH3Mi1bL/qdJW01r/ZZPseB/T9JoGLrUJXIqs6frW3s83ZFrOIjeX2hWFhnncKi2BAoszmfO+XV914lvUdJ9aQOD9/zkp6fVI9JO0psmr7wK0mE8a7YkrnkbT7P8O02Uadg0jU++Mruu28uYZGIvW2rP/nJT+Lcc8/FG9/4RgDAVVddhe9973u4+uqrvTvEr7nmGhx88MG46qqrAOw4q+zBBx/E3/3d3zki/aqrrsIpp5yCSy+9FABw6aWX4u6778ZVV13lzh97+ctfHkv3Ix/5CK6++mr8+Mc/jhHpuVzOrbP3BkJol4CAgICAvQKduO3Kz1yRzWZxzDHH4I477oh9fscdd+CEE07w3nP88cfPuP7222/Hhg0bnHom6ZqkNLXcjOV+yCGHYM2aNbF0Go0G7r777lnTCVje0K2qATuxOwuBgKWBubbhroznCwmrOA3wY2/Z6oB9G4wf7YsNnc1mkc/nZ6i5faSafV+7urqQyWRi8ampRKYy1JKaDMOQy+VihDPvUUUpVb9KkFHZqiEXqHJlCA8Na6J596m3+Z0qr/UQQ19sblWta30xDYbi0HwkkXy+UBi8X9tKwf81r3oAp4bQsCSjEv2+kCokJ7WOVbVbr9fdYbE2xIf+1rAbrDO2Ua1Wm9E29mBVW17Nu4aQabd3HKDKtmf/sQ4IdZaw7rRcdszU2OM2LI/2e63/KIqfOZB02KWWW9vT9gPfD6/nc1h36XR6Rj/TfPB917alOt/nWNA+M9t82b4jGoqHn7H9eYCnrXM+i/1Cv/c5lZhfDanEQ3PZRlq/Gu7F1652JwfbwO7cSMJC2Oq5nD0GLO3zx4i77roLq1atwuGHH47zzjsPW7duTai5hUFQpAcEBAQE7BXsTc/5xRdfjLPPPhsbNmzA8ccfjy984Qt47LHHcP755wPY4fH+/e9/j+uvvx4AcP755+Mzn/kMLr74Ypx33nm4//77ce211zpvOAC8/e1vx/Of/3xceeWVOOOMM/DNb34Td955J+699153zXvf+16cfvrpOOiggzAxMYEbb7wRd911F2677TYAOyZgF154IT760Y/isMMOw2GHHYaPfvSjKBaLeN3rXrdLdRMQsC9BFW0hFE7AQkEJrbkqyPZX7G2VW8C+CRuXWcM5kDDuFKc5Cbw/iqJYuAYSZUoGq8JcCUnex+d3dXXFQqMowa/Eoe3fNha4JQW1/J2IS0uu+ojQTqp1zS9JdA2BYpXkFqwzH4nOMdMqsy1JbEN8aDmUiCb4PPud/T09Pe2IUA1fYp9rCXGWQZ0q+r1vrtFpB4T9joS1VXnrc3zpWvW/PkO/t6FgNNyMJWw7Eb+2rjREi3Ug+Mqv6dkyalgUn1qf746GjLFl9dXfXO2IzY9PGZ90dgLz5qs3fQ9sPenfdBiwbyaFs2EdqHNCxw2tB237+ZR/vuB9Bx10UOzzD3zgA7jssstmXL8nzh9bu3btvM4fO/7441Gr1dDT0xM7fwwATj/9dPzpn/4p1q9fj40bN+L9738/TjrpJDz00EMdw8DuDgKRHhAQEBCwz+Gss87C8PAwLr/8cmzatAlHHnkkbr31Vqxfvx4AsGnTJjz22GPu+kMOOQS33norLrroInz2s5/FunXr8Pd///du6xkAnHDCCbjxxhvxN3/zN3j/+9+PQw89FDfddJOL4QYAW7Zswdlnn41Nmzahr68PRx99NG677Taccsop7pp3vetdqFaruOCCCzAyMoJjjz0Wt99+O8rl8l6omYCApQkuauxiJiBgIRBU0wEBexedwk/MJf6vj5RW4k5VzoQv7rWmZ4m9JILZEnpKevE+JVHtd6rItlAVNK9Rot7GStf82/wpbKiXpHz76l7J2mw268g9q+61pCvzbOtPyWyfg8GWx35myXEbFiQJJNp9anqSpr4+qGpy9hN1snQC82adNpZYpio7m83GDkOdzR5p+kzLfs/yaJ+0oX58z7G7Nnyktl5n1daqRteQQUocK4k+Wx9QZb32q9kcHHoP82TJ/dmgZdM61zjz6gTpNNaoE0F3SficYbqLg2nPdhjsQmI+Z48BS/f8sbPOOstde+SRR2LDhg1Yv349vvOd7+DVr351xzLtKgKRHhAQEBCwV7C3VW4XXHABLrjgAu9311133YzPTjzxRDz88MMd0zzzzDNx5plnJn5/7bXXzpqvVCqFyy67zOvxDwjYnxEIzoA9iaUSVkkX/0uxzwdFesCeAIkhVWNSkawqWUtcWhWrEk4kJxUk01KplAv/wrSV5LSkoyU+eY9N2+aB7zIJcCXGfCEsfGS2XpcUwsUHG7KDpB2JRSXjlJy2RLuqevP5fKxObPiKXC7n6j6TycRIZ6sY5+dKuvvCjOhv3q/Eo/YJ68BQkp2hPRjexqq1lfjnYaSWCObfLC+vS2oL1gMAp5y3YXp4AGqhUEA+n3ehgHzhS2ydaP/v1C987xC/V4Ja77XP5n2+8DC8h/mw6fn6gdaDL99ar1of/JmrMpvlJgGtNmw+aWiebL/K5XLuXW80Gt6+rEQ4P2P/1bAzhG+HAbCzH82GhbDVczl7DFja54/5sHbtWqxfvx6/+93vZi3brmJRY6Tfc889ePnLX45169YhlUrhG9/4hvuu2Wzi3e9+N4466iiUSiWsW7cOf/EXf4Enn3wylka9Xsdb3/pWrFixAqVSCa94xSvwxBNP7OWSBAQEBATMBqsInO9PwOIg2OqAgICAhUcnFddiItjq5YulaK996lZL4HaCT0GunyeFlFD4yMrZQlr4ymHT8H2vMY81L5ag8xGys+VFnQJJjkGrXLf5SkJS+BMA3rjxvFbrcjZl6lzHvKS2sWFb7HXMjw070ylPnRTv81GM82+qj5PKpaE9OoX88f0mLIHrU3rb3Rr2+6TPfd/5FP5JcfTpqNA6mKsy3JfmXPqMOkQ0f/NB0m4NbVs6VfTd9jmGfPmbrf/bfjGX/O9NW72Uzx/zYXh4GI8//jjWrl3bMZ3dwaIS6ZOTk/iDP/gDfOYzn5nx3dTUFB5++GG8//3vx8MPP4yvf/3r+I//+A+84hWviF134YUX4pZbbsGNN96Ie++9F5VKBS972cv22naIgICAgIC5ISzOlyeCrQ4I2DOYD7EQsO9gqdu1YKuXL5aSvdaDEoGZB/mpatPGtrZqamAmqUhiK5vNIpvNzgipEkU7D+ikKtgeJqrwjcc+UtkesGlDYti07Huhz9DwED71OGEP87TQZ+hvlplK80wm43UA8DpVPGsIGtZfs9lMPNCVZWNe9TlKbCtRqKpxW3Zf6AerWNaQIz4ymflnP0mlUt5+xTzbA2XZLo1GA81mM0ac2ufzORrChTHqa7Wa+5mamnKK9KQxU5+RRFrzHeF70NXVFbvO11eS4tprGdRZ4+u7vvdV3ymtEz1Y0+4q8LV/J8Jdr/MpvFk2daZonn0/fKaWWUOx6LvdaDRQrVZjuwk0z6wHrS8eqqwHrKozhWD9zTeky9621RdffDH+4R/+AV/84hfx7//+77joootmnD/2F3/xF+76888/H48++iguvvhi/Pu//zu++MUv4tprr8Ull1zirnn729+O22+/HVdeeSV+85vf4Morr8Sdd96JCy+80F3z3ve+Fz/60Y/wyCOP4Je//CXe97734a677sLrX/96AEClUsEll1yC+++/H4888gjuuusuvPzlL8eKFSvwqle9at7lnCsWNbTL6aefjtNPP937XV9f3wzvxKc//Wn8yZ/8CR577DEcfPDBGBsbw7XXXouvfOUreNGLXgQA+OpXv4qDDjoId955J0477bQ9XoaAgICAgIB9GcFWBwQsPHzb6wP2H4Q2D9gTWEr22hcqxQcdB5WUsip0nzKZJJ0lVgG4EBuW3NL/fWStfZ6SuPyfcbg1BIaPwNSQIhaaVxtfmmmos4Hkrh6wmpQe88OQIul02sU+t0paErLNZtOFarEkOsnkdDrtJb8VPsU97Z0lhpUYnc2pbNXovrbz3WOJUv7WGNqsWx8hb0P26GG2WgZVppPo5TVss1qthijaERokSXGsjhDWmSWoNf+5XM71c73PFxJJifBOTiOtqyR1PdPS/E5PT7u2tMS2EsQaukXzrenaPGrMet+OA61/S3JrGe09Nn37OfPGcC5at/oO+MYB60iw9aXvoa9fLzUs1fPHurq68Mtf/hLXX389RkdHsXbtWrzwhS/ETTfdtEfPH1tWMdLHxsaQSqXQ398PAHjooYfQbDZx6qmnumvWrVuHI488Evfdd1+isa/X67GtAOPj43s03wEBAQEBIe7q/oJgqwMC5o4wtgUsNQRbvf9gIex1kq2ei7JSFbQ2fvNcoQS4ErKWeNVnWPU2sDMWtubDF25FY0uT7FNCTGGdCUnp+N45H8nGvPjiW+v3NryLlj0J1nGQ9LmPALRpW6La5sWmrXHPfSpz3Y0wV6Ix6Tob19uWUUO9+GJgd9oVYElvX/l1FwLzk7RjwQe9j3ns5NRIqgPGi/elrZ/7dlnYtIi57pjw9WtbB9ahoI6mhSSbtY9pP9R8q9NkPv1PnQIEy24PRZ1P2jZ/u4JdvW8pnj9WKBTwve99r+M1ewLLhkiv1Wp4z3veg9e97nUuIP7mzZuRzWYxMDAQu3b16tUzgtYrrrjiCnzwgx/co/kNCAgICIgjLM73fSy2rQ4K34DlAt+CdbHge2/Cu7T/Itjq/QMLZa+TbHW1Wo2FNLCwxJolX224hSRoOJFOilNL/OrhhFQkU22s9+pn/JzP4WGmrVYL9Xp9Bvmnql1V1BJK1trQLs1mE5OTk5ienkY6nUahUIh9b1W+tt40TIvvAFPNk4YHsfXH+mU7qqLfF+ZEiU9ex+f4VL/ML9PlNQzXA8AdgKrPsep6n0Ldtj/robu7O1Yf2tYMkcKyU1Ws4V/YJprnKNoRs5npMs9af8yDrS/+zb5mwwVZ4tmGRkkKw9IJ1gHC94HlYR1Yp5Fvh4gqta0ynO2pB9aq0yTp3fapya2625bD50Cy6Vkinu8gy6e7Dmq1GprNZqxsvrTtc/Tdt89jH+SOEc3/fBxFzEew1YuHRY2RPlc0m0382Z/9GdrtNj73uc/Nev1sHp1LL70UY2Nj7ufxxx9fyOwGBAQEBHhAg7+rPwFLG4tpqxdaoRIQsDew1Me18F7tnwi2et/HQtrrJFutxBkwezgrq+btpLQllBwjwTabml2JdMb91jjqSTHUFXyextRWNbOS8aqMV1WrJZJtvTCcCmOS87vZnAq8xiry50L+JaVt205V1Urkkji1IW98qnWFEu4ay56fs57ZvnNRm2tYF+1TPqcCr7exsfkcG99av2PZNe/aXlq/VoVu68SmrfXju1dJfPu8pDq2ThD9Xsl0+xybTx865V0dV5pn+94npc+617axhLivvjrB5xzQXSh8B2cbD3z1kNQGJNDZR2zoKS3rbAi2enGx5BXpzWYTr33ta7Fx40b84Ac/cB5zAFizZg0ajQZGRkZinvOtW7d2POk1l8shl8vt0XwHBAQEBATsL1hsWx0mhAEBC4u5kC8BAQHLDwttr5NsNQlJS8KrStsHVRgr6ecLj+AjhJQMU0KK6fEgSCXwfOSfku36LBu2g+XL5XKx+zSvJMw6heJIItNIvFWr1RiRq9dbYl7/T3Je2FjxbCuWlzG+mV9Vp1OFb+td885nWMyFJGS5dbeAzxHjI6PZTiwfyVemq3H1WQZ7UKdNj7Hmeb3WCevb9ne2t6bDw0H5TP7WMCtaRt5j61Gfp8/QMlsHjm/XgD7P1j/rXZ/Jsuo7w7pkfviZwr4DTEPzr+S4fX+SHD3aXiTq1QEw224WHznOOO92B0lSOjoe6N/qmAHgnEt03LFdfOnaMSRgaWJJK9Jp6H/3u9/hzjvvxNDQUOz7Y445BplMJnZwyqZNm/Bv//ZvHRfnAQEBAQF7H8Fzvm8i2OrZEVS9yx/7sjo7aYzdW+Puvly3yxHBVu+72Jv2WmOO+whVVfQCcUWs/lhiTAlu/dHwDhruRUNzpNNpZDIZFItFFAqFWOgZTVtJTFVIJymvu7q6UCgUUCwWkc/nkc1mkclkXFlVEc3fPqLMqoqZ91arhfHxcUxMTKBer3sVsqrIt2ElkhTBStLyukajgVqtFvthGVWBT6LVEvqW3NXvSSzSmcG60us1LIi2q01P61BtiO0XURTN6At0BFDtr31ICXXWEclP1oceFqphP/gc1qVVGyt5n8lkXD/RPkrilW1jy8L0WA4lpnWHBWH7MPuO9gPbj7q7u5HL5ZDNZl3erJ3mfdpPtX6tw8SGjWFZdHeHvqcK285qb5iW7z21sE6KJLuldejboeBT0bMu9JBV9ocoima8U81mMxZCyNbrXBBs9eJiURXplUoF//mf/+n+37hxI372s59hcHAQ69atw5lnnomHH34Y//zP/4zp6WkXm21wcBDZbBZ9fX0499xz8Y53vANDQ0MYHBzEJZdcgqOOOsqdNB6w78MXg6qTUiEgIGDxEN7H5Ydgq3cPgSCMw2erA/ZfzKZODVgchPZYnlhK9tqnHrXhTJJUnj7FMcks/Uz/1pjcqrbVQwT1byWxrJ2mklXzzOfxmSQ8+Uz+z3v1t5bfvltWra+/LRGpeUi6Z3fAurChLvhMGwN7Nmg7JuXXKtltfek8QUl0m2/fs1U5bqHk7FzaxhK39hq7E8D3XFVI+2J2+3ZGaFpWSe57x+YSQsf3LPtZUp3Od/5m20/V6PbZ+g7PB7ORxDYc0GztrHmeq6Pf1z6annXUWbX8roSm8ZUlYO9hUYn0Bx98EC984Qvd/xdffDEA4JxzzsFll12Gb33rWwCA5zznObH7fvjDH+IFL3gBAOB//+//je7ubrz2ta9FtVrFySefjOuuu27GyxmwbyKbzaJcLqO7u9spAaanp1GpVNwp8pOTk2GxHhCwBLA7jq0wUVg8BFu9e1iqfXexyMtisYhSqYR2u43JyUk0Go1ZF39LAUu1HZc7Qr0uPQRbvXyxlOy1jywjlExkCBEfiUhVKK/XEBh8hhKvQJyQ07Ae+p0qrEloacgPXpukHFfVNK9l2AotE0OCqI1TBXg2m51BmvPa7u5uZyuVEGZ4CCX4qBjWukun0y7kjq8d+Bymw/KXSiWkUimnSI6i+CGaWgdJxC//tjsRkuKb+2KIsw3b7TYajQa6urq8saVV2cyyan/SdvBBw6Go0t6GNrF51z5sn5kU61zvsaplLZe2D8usymgbK96S+0yX5eI1BN8D3b2h+dUQRBoiRRXkPmdP0i4Ln11gCBUbfz7pfWPdqGJdD/ltNpve/mbbkeVn3nz51fvnMzdVdT3zx10P3MWg6VGBr+ODhjKaDcFWLy4WlUh/wQte0LER59LA+Xwen/70p/HpT396IbMWsEyQyWTQ19eHfD6P/v5+DAwMoNVqYcuWLahUKqhUKqhWq0t+gR4QEBCwVBFs9b6HxVLJp1IpFAoFDA4OzthmHOz0/gGfAycs6AICFgZL0V7bWM16YKBP4QsgRjrbWMpaFp8TVgm/TCbjVR6TIGPYBRLJmrb9bYku5tN+roSgkn9KkDabzVg6rA+tL4bVAHaGK+H9JIaTVMmsZw0vY6F5z2QySKfTyGazKJVKTqBGIn9qasoRgtVqNUbQ2jrT/y1hqSpcu0PBF/4G2BmahOXm39aBwnoEdrR1q9WaEavdEv3Mg4YDsbGxffXGZzDvti46qcz5mY2jzX5h+54NB2ND9/jeIb3GtztC86jkvN1loSFgtJx0uihYd0kxv1VVb9te68KWI6kO0+m0OwzUhlrRkDdJ+WG6vl0T+n+nPPjA9256ehq1Ws2FDGo0GjOuoxPFhmraH0RG+wKW/GGjAQEWXIjncjn09fVh/fr1KBaL6O3tRV9fH1qtForFIiqVCkZGRtxAVq/XZwxiAQsL33Ym/R2wfyN4zgMC9i9wMVMsFrFixQpks1n09PSgp6cHrVYL+XweU1NTqFarGB0djcUoBcJ7vyfgU2J1UmctNEKbLn0EWx2wUPCRUEpsKdGlMbetstSGQvD1USX/NMzKbI47JfU0X0mwa5ukUBdJ74KqfDvlQaEkoy/evNaHT1Grim/fc/P5vIsbzzA/hUIBhUIB7XYblUoFjUYD1WoVqVTKqX/VEeFzbCTVVZIy3RK/eo+qz5kGv09ad6qSmp9reB+bJy3DXB1SSQ4dH2xoF7uLgKS13S1BklvjbyfZcj0cU4ll+3u2Pp6kLvftoODvTup0Jf+TYA9WteFPkvKp+VXC39c3OsG2vQ3X0gl6TVLseSXwbRtou801nEyw1YuLQKQHLDtks1k87WlPw+rVq3HQQQfh+OOPx+DgoDs1Xj3n//Vf/4Uf/ehHGBkZwe9//3ts3rw5DBwJ2J2FtBoEGjCd8PgOxQnY/xAMfsBiYbHCmMwHqi7a03ndG3WhTu/DDz8cZ5xxBlavXo2JiQmMj4/H1DqPPfYYHnzwQYyPjzvHt25nD1gYcMux2mVVpM3FVu9N0j1gcRBsdcBCQMOWADMJLg2loWMRSSiqYTU0hQ0vomOWjzSkc9anGraEtg3NQXBsVCSNk74wGvZ/Gy/ZFz7Czlk0XAyV4Uqass4sAadqX6ZJURnrN5fLYeXKlVizZg2GhoZw6KGHolQquXX19PQ0RkdHMTU1he3bt2Pjxo2YmprC+Pg4xsfHnZ2mYpyhNnyEelKoDauUVtLYV28aisfuELCKdfYBDYmSVOdsZz1I1pLW1tGvinkLzb/Pec3f7MdU3Hd3dyOfz8fKm8lkUCgUXIgb5tWGCuFv7fNsa5s3nz3n/IDlV6cE085ms8hms7GdEgqfI0zbyjpD7HuoCvak91bzGUU74/drmCINeaRtZ8OpJPXXJEW7HR/0N98x7Yu640WvZxtoH2a4F1+9WgRbvbgIRHrAskM6nUZvby9Wr16NAw44AM94xjOwcuVKNxmLosidaA4Av/3tbwEA27dvX8xsL2nYidd8B1f1MnOSooZurp76gH0bweAHLAZ00roc+tFyyeds4OIgm81iaGgIRx55JA4++GBs2bIFTz75ZCysy/T0NH7zm9+g0Wi4rbrzjU0ZMDu4cFObrIu5UN8BQLDVAQsDVRcD8TjnhJJ5lmQjSIIq0a3XWWJTyWn9zrfWsWpW5ltVqFYZ6lOoqnAo6Xn2uTZvncZfq0JWWEW8hpjpVAb9XSqV0N/fjxUrVuDAAw9EuVx2ZOn09DSKxSKmpqaQTqexdetWRFGEWq3mQlhoWnb3t64DGWpGQ90klUdV+D6nupLp/F+f6SOBlRhVpbq9z4ac0x0Oep0tn5ahk5Jay2mfrWFcSMqS49CY2r76Yz65Ftdya56S+qX2Cy2PpkVSXOuE76Zv/LcOId7jg74bnZTgvnec5dK4652Q9P1sNsxXh9pn6eTw9Vf92z7f7hYIivSlj0CkBywrpFI7DmZZu3YtnvGMZ2DNmjXOO+vbHtPf349DDz0U/f39GBkZwaOPPppouPcXqPezWCwik8mgu7sbmUzGTeRoyKemppy32U6MVMWWy+WQz+fdpEaNPB0bVBj6DgMJCAgI2FPgZHy5TBqXSz5nQ3d3N1auXIlVq1ZhaGgIExMT2Lp1K4aHhzE+Pg4Abuv4wMAADj74YJTLZfz+979HpVIJpK6AtrZUKmFgYADpdBrj4+OoVCoxW+vb3qwLblVoUS3a1dXl/p6cnHRpJmFf6Z8BAQF7Fs1mM0aaU2nLkCA27IYqrJW0s4cSEkrA6zjI++di97lescSnLwQJx1hLiPF6pqEq+SRCzxLZOk/RcZxrMhLGfH4nQtQS9MynJY7T6TTy+byzwatXr8bg4CB6enpQKpViZeYar7e3F0NDQ8hms6jVahgdHZ3xfBKcJMup9NZyWRW3zacSokqsJrWnkpBKJut6U9X5vvqy+UiqX36u+WS67IuFQgH9/f1Ip3cc+NrT0xOzxa1Wyx0Yq+VjGnRiMH9cpxeLRaTTaXf+m+1HWr88yN0XH56wTnXfvEvrgu3pqxvtu/zbvq+dyGVb/z6Hmt1dou88217fRd19oG2W5FCz9WR3d/CzpPdOiX11JCYp2OdClgcsXQQiPWDZgMYqn8/jsMMOw4YNG1ysVT1MJZVKOXJ45cqVeM5znoOxsTE88cQT+NnPfrZ4BVgi4PawXC6H1atXo6enB/l8Hj09PUilUo44r1ar2Lx5M6rVKqrVqtvipelks1l0dXWhXC6jt7fXGX89rT6KInfwa6vVQqVSCUT6forgOQ/YU5htwbwc+s/uvB9LEZlMBk972tNw2GGHoa+vDyMjIy4W+ujoKDKZDEqlEkqlElatWoVnPetZGB8fR71exxNPPBHCuvz/Qcd3V1cXVq5ciWc961no7u7Gxo0b8cQTT2B6etrtwtNFpYZM4EKxq6sLmUzGzaVos4vFIgBg69atmJycDPW+nyPY6oCFQLVadSIdEoStVitGXivJpDGClRxnGBMfCUb1sCUMSfgpsebrmxr6wXfAnxLszIdeq2Q+leAaNsv3TFU7WxUwv/ep1hW+vKpC1xLUJKQV2WzWkeNr1qzBwQcfjL6+PgwODiKfz6NWq6FWqwEAisUiisUi2u0d8dLL5bJziGv+tJ30kFXmi+1J5S77Aw/RZDk07A9JZ5/C3NdWbG8+R/uMz/Fh01KHhQ3t4tthQTtKIpd1umrVKnR3d7t6bDabGBsbQ71eR61Wc0S3ErBsV8aop/2fnp52cybWD++36nEAiSFXmGd9/9ShoYpxW3dJoUbU0WQdJkByX9V7bb1aBT3TZ9qaJyXX+T7re6/p290vym0k2S7Nf9JYkRQKyOe48ZVfMVt+FMFWLy4CkR6wbKCDEk8Vz+Vy3lhrvJ4xxprNppvM7e/ghCWbzbrDZagoVyIdAPL5PKIocpMRHbBpqOglz+VyTtnGCTAnUJlMxjk7rLojYP9BMPgBAfsPuFupVCq57eGM7WrJFNp1Omf3NafCrkAVVSS/GbOWNpyLRi4uGRqH91vygDabSj+7XZzpLacdHAELj2CrAxYKStipAl3Vqr4QEhyHlPzyKTh9ZJntv3Ppk0nEliX1rLrUl4ZCr/eRtr7r9Tf/1jLNlo4l5zme23FdnbRqU1QVbuuBaz4S3za0hlW8a/k1X1omnyo9Sa1rbZott4J9bba1v83nXJTCtl+QY6AN1fpUgjibzTpbre1B4l7bhP+zrrPZrPtbHeU8R8D2eVuvPgW5/d+nztcyJ/V9wH+wry/92dT+s93PvGg+9Uf7bqf5jK0vOw75xhr7nTqukuouqc5s+nZnwFx2ZQZbvbgIRHrAsoJvu85s16sx2p/BehsYGMCKFSuQy+WwYsUKFItFN4kCdhoTqtUajQaeeuoppwhoNptotVrIZDIuhl5vby/K5bKbYKlx19PHG42GUxXQexuw/yAY/IA9hdA/lh7S6TSKxSL6+vqco5WfU71Vr9cxMTHhdi1VKhXU6/U5P0MXSftSH0ilUujp6XF2tVgsIpvNolwuu/ibrN90Oo2enh50d3dj27Zt+P3vf++UUXSC87pyuYy+vj4AOxVr3d3d7v6xsTEUi0X3nd3urE7wfam+dwW7IghYLiKCYKsDFgKq5AbgwjtSdKMOPWDmwaEk3TTEhQXXeapW5RojiZBKWg92InJJXtq0LHFMpbWG07Lkbzqddmuh2cDy6bM0XAXHaVWcqyKb9WLzQ4KWgip9hirANQ+WYG80Gi4UmFUlA3DtTDukoUOBuPKe6SohrApnrY/ZDtLUXVk+noB9g+3JfGrdse9wDWvFZOl02q2T+/r6UC6XY4RtuVxGqVSKKZfZ36enp7F9+3bUajVHoPM6EvE8qF3rvLu7G7lcLiZ6a7VamJycdOp0X0x5bQ9tJ7tzwfZ3n1Kf9cR6t23k69P6He+xbW0dRzoWJDm3AMREknRe6D2+8EAA3Luh4kH+tuFhfLsZCPIaeq0ekjubLdW+zvLq+zEbgq1eXAQiPWBZwg5uC3Xtvg4uuFevXo1sNou+vj7k83nvtSTTadCGh4djk1Iu7jkJ43YzEiQAZhjCWq2GbDbriBLfYRwBAQEBAYuLhSD8UqkU8vk8ent7ZyxGuFBpNpsufFi1WkWtVottM57LM5YLOTlfMG5tJpNBb2+vc0ao3eTOMp4X0263sXnz5hhBwTAuTGdwcBDtdhsTExOOwCgUCm4Hnzo9lIjROVQqldqvQ7Ttqmp/X+2rAQE+sL9b0YzG+/apf5VUIjFFZbpv3LEiKxuuwd6rJKzvXewUjsGnwtZyJd0/m/BLr9Myat3wmWo/VdntW+dq2BtVTzOdfD7vnBrATvJa65D3qTCNZG6tVouF1tB8a5sobNv4SHRV0VulsI/Q9MVC99W7OqK1/ylhbfsty65OAj1nrFwuo7+/3+Wj3W679bE6Vui4AHYQsHQyqGOAxC93nulOb1W+1+t1FItFNBoNVKtVb3/Rurbf6/pc6yjJNrGutI9bBbpPBa95UAeXOqWsI0bv037gK4fGw7c7AHgd25XzGdv/2K76XrOcdt6jaU5PT6PZbKJWq8WcHHS6AUicz9ryangfrauApY1ApAcsK3CwGx8fx1NPPYVyuew86TrYcWCq1+vYvn07RkdHMTU1tdcXL+rZVs+4NWTWo6sGwjcB8W1dnC0fqvzgtrxOzgUaAwDOQAA7VWxqLJhPtoPdJqff+7YMBuwfCJ7zgID9B+32jliqw8PDyOVyTl3NxXtXV5cL0TYxMYFGo+GI9PlgIdXRulDSH6sass+ztp6kTbPZ3OV8ZDIZR3BzEUg7DviJGVVN6nxCFW8+ckQd5AyHZ2OshjF4J/Z1OxZsdcBCQMM8WgKLBJMeCOkLNWFJZaZpCTfAr6LV53KNogSdhmXguoXkJtGJBOe9mUwmprTtdI8lgK0zoRPxZr9PUg6zvLxenavMJwnzRqOByclJjI+PI4oi9PX1uefpbgGex1GtVjE1NYVGo+HqTdeUWg9se0vA2nJYm2thSUVdf/rQyfGi69BOO9y17+hn+gw+h+3vGztZ/2qHdT2clDdffVhVvHVe6O+kd8FXvzbkiiXI9Tq+Q75n83rfM1gWLftc+QDbV3Q3gr6rSbs8rPqc/dKmDexUvCunYUUbGp9enTHaH1nf6sTyvcc2NMx8bGiw1YuLQKQHLBtwoKlWq9i4cSOKxSLWrFmD3t5eFzNMjUe73cbw8DB+/vOfY3h4GJs2bdrrg4Ye7MUwKGoAqtUq6vU6Wq0Wpqam3PY3Dt5UhylINtAozGVroHq3S6USyuVyLJyLDzphLRQK6O3tdfFXm81m7GBRjZenigUaGH7PyRYX+rui6ApYvggGPyBgeWAh3rdms4nHHnsM7XYbg4ODOPzww93h1uVyGZlMBgMDAyiVSqhUKhgbG8NTTz01L6f3XOzfXKB2WbdR02arw7tWq81YnJPgzmQyLkwKiQkf8e57Pu0h7WZPTw9WrlwJAJicnES1WnVEN/PLhSHTp0quq6vLbTkGEHOeMzarKuqYRjabxeDgIOr1OprNZmyxmLTo3F+xK/WwXOou2OqAhQDXEMCOftFsNmOHIts1gIqM+DnDjKRSKTdeaWhIe7+GOOGYTSILiB+2yGdZO6KkONPzjX+6DlOlM8N+qNIVgNshxHQBuDWgHlaaRIwTPoW2qrv5o+nxwEslHVutFiqVCtrtNjZt2gQAGBoacuvEQqHgdjpNTEygXq9jZGQEW7ZswdjYGMbGxtBoNNyzcrlcjKzU9WyxWHTtxl3JlhRWp4r2B5aBpCmFaQx/4qsbkv4+klbV1ZZIZ57YphSO2RAtrD+WnQexKlmteWGfph2mo7zZbMbsvp5bokQ65yVaP0pIaz1qOe3f6rTyzZ+s6tqnjNZwTMoVaEgjfqd5p+NMnSBat/qe2jZV55AKFrQcnQj5drvtdj3yXDdtI4L1ybmfj0iv1WqYmpqKqdf1rBnWL/s7+4mGxbEk+q7OsYKtXlwEIj1gWYED09jYGLZt2+a2NdFA6dYrDpojIyMYHh7G5OTkXh80ODHgBIPbvHTSY7dWqcfWF+9LJ6NzVXVbRboasNnu4725XM7VsRoU/d/nPVdywioAAvYvBIMfELD/oN1uY3JyEsPDw8hkMs5u8VBRLmYYB3RXFekLAbVdurjjotfa6qTFojqtSVjPNx+6oGZ4tcnJSbfgUpWUD7T1uiBWu+wjYbjw52LPqs0Cib5/IdjqgIWAJZWUOOf/SUQ3wXtt3GIbagPwH6rItZbdkcNxT8d2VWrTBvgIf4Vvl7AlPbVsvrFVVelK6Or/SbZEFd6qNtZnJJGrJItVkZ7P59FoNNBoNJxt5nX1eh31eh1TU1OoVqsz4qj7FMaaH62TJBLXqpxVecy8s20o5LLtoddZxb62QZIaXZXE2l99ymTd7ZCUllWC67U2XJtVo7Mcvmf6VM62r/rU8bsD9lebju2fGrLH9km7g30u8yR9h5MU+53SIdFPpxyJcluGKIpi6du/mZdGowEAMWeMjUHPa+07n1S+XXXOB1u9eAhEesCyQ7PZxJNPPolms4nt27cjnU6jr68PhULBebzpOX/sscfwm9/8BqOjoxgdHd0rgwYNfDqdRm9vL/r6+tDd3e085zpw53I5N2Hp7u523nPeXyqVHPlOkATnASNzGXwXQk1mjQJ/6LSwk1md4KoqRO9Jqj9rtOwkgr99ntyAgICAgMVHu93GyMiIW6hTrV0sFlEsFgHsDBW2adMmPPLII5iYmNirTm/alnK5jN7e3hmEOndaNRoNtwgDdhJEvJZ2mQ7zTCaDarXqtV1JSFr8RlHknAw8EJRkfi6Xiy0IdUHH80p40LfGdk0i4xmznop0XTAn5d+mo3OFgICA/Rc6NlDZbdWtJLgsiay/+TfHJVW02rRIWGo4GV8YCRJm/J0U8kJJOqtWVsK1Xq+7tRt367Lcmi+WUwk4dXLacVNJUx/xxzrg7qHp6enYrl/mm8SzEsvMV61Ww8jIiLM1unu5t7cXrVbLCdK2b9+OLVu2ODKdZaCdt2tSJYhJhjJ/VDDzN4l2dV7wHiq+GdO9u7sbpVLJic3serHVajmFPHdSa/upo1zDqNI5wH7qO5iU5VIHENtZ29aqjgHEdnGr7dbnAYjtONf7bdtZx4F9H1g3luxV0ledSyyHihR970O73XbzoSTniJLpNg1Lous7b9f3Pj5AnSS+uQnT5c46nQOxjVQkYR1PdjzScUvToSjEOu9Yd6xT61SwebVjn5YhYOkiEOkByw6NRgP//d//jUcffRSDg4PYsmULSqUSBgcHMTg46BblExMTGB4exsaNG1GtVvfawZY6iRocHMTatWuRTqddiBcFDUC9Xkd3dzempqZcGun0joNBS6USgJ0Daj6fx+TkpIthStXb3li0qoHj5If5UOWFEu2cJNufpPagsdFJn51oAnDPZ/qBSF/6CJ7zgIC9AzupXwxw8T0yMoLt27ejUqkgm82iVCqhWCyiXq/j0Ucfxfbt291C10ck7Cmogm5gYADr1q2LLWY0Hnm1WkWj0UC9Xo9tz6dtIqnD8mWzWUxNTXVc6Ck6fc9FrW4lJnFB0l7bWxduVJczHFw6nXaHnekWfz6n2WyiUqnMWHh2gi5K1bEdHNzLF8FWBywElPBWFaeChJySlbzXXletVhFFO8JN8pwNHfuUDNf1iubHQok5n3rXqpo15AfXHxwnJycnnc1Q0pppME8MhaE2RMPV+Eg9EuQKdSbQ2ct6VIKX5bSxpPnT1dWFbdu2oVKpYPv27U6ZTjFYq9XC1q1bMTExgVqthtHRUed0Zf5I/Capp2lrSTIqkd7V1eWIbrWXrCN1anMXG4l0hnZRp3Z3d7cTm1FJX61WY32B9lp3OqizhvMRht1hXrRv6O45EtC6I8yS3gBiO/HoBNDxVmPZ67M1LdYh68/OmXS9rDvRleTXA2b1LBcq5PWgcR/Y3pqvpPlC0i4FH1FseQZLone6Xwluflev192BuGwvfUesM8Q6Vux7b9PJZrPOycM6Yxuyz+h7bp12Gqtdn5dUP0n1tSsItnr3EYj0gGUJTmKq1SrGx8dd/Kl0Oo1ms4mxsTFMTEygUqmgXq97J297CmrIGQ+chjVpaw+v1fhZVnHBAZWf6TazuQyG6r32GZuke4Cd8d30cFRVmfOH+bRkusYJ4/2sJy7ulZAgEUCCQCdgdhKhkzGdhFkDH7D4CAY/IGDvYrHfG9qMer3uFrW0CbVaDePj45iYmFi0/PkWaVpn9mAw2nLdmp1Kpdwin7+BnTYcQMz2zRVKNvgWV0rY6PVWpaYLO2sTVYUHwJHnNq+qKtUFZhRFM+KN6ud8ln2uVZwtdj8NiCPY6oCFghKQHEP5uSUALVkJ+MO0cDzzxVq3JBuJK7v+smunTjuHNE1V96pa3CppfQ5hXqdrL9+6UOshSdXrg60r62C15KBeS6V/V1cXpqamYvHeSUpPTU05ollV5EzDl1dfm6pam/lR22HT0fUwf2t51I5bMRbJbWvn7bpc21PzZW0Uy6NrTM23Oma0DuaqNFa771vLss9bEl37JgB3xgudD+pcT6VSjsifnp52Z5jp+l0dREqQ+96P2exFkhLbpmnLOxt4X9IuDp0/aT35iHhtN9aBvi/aP/Ud9vV3iyTuR5+9qwi2enERiPSAZY16vY6tW7cim81i+/bt2LRpE9rttlNU0QOtJOyeRjabRV9fH7LZLAqFgiOGfeDnmUwG/f39KJVKTglGTycXo5yAcUsYsHNRmzRpI0hkTE9PY2pqChMTE86Lag9qIWioqWYbGxtDrVZzirxGo+FC6NA7q84DTnbb7R3xXSuVCprNprs/k8mgr68PXV1dTnnPEDicKJFIt2oOALFJBOPq1mo1VCoVN+mrVCoxwj1gcREMfsBSwVJQbO9JLJUy8Z2v1+sYHh6OndVBezRfqHpsd8rZ1dXl7E2r1cK2bdsA7Fw05vN5Z6OUsFElJBeupVIJhULBpQsAxWIRg4ODaDabTsk3m60moihy2+25eOOBZgMDA+ju7nZkBkmQRqOBSqWC8fHxmMJMn0nVIgAXbq5Wq2Hbtm1u7sFruLBmrPbu7m709fWhp6fH2fVms4menh4MDg6iq6vLkSxdXV0uLB3D0ig5oI4VHoK3VPpsQLDVAQuDer3uyDwA7m+rTrckJxAPYWFVnK1WCxMTE45gtUptG35DHYH8XJXiPkdfq9WKxUjXnT7MqxL6BMdjXqMhPfW5tCEkNhmyU4lS1k273Z6hilZ1t5ab31PBrtfbtagSkXrANLBjXToxMeF2jFUqFbfWsqIopqUOWl/+eJ1V6dLeqXCMinGeOUJbTZDstLHLWb9c+3OuwQNkrXDLJ0azTmm12fpZo9FAV1cXJicnXWhWJVk1vyo4Yzq6jqWqn7wFlfoqyGs2m86WVqtVdy3trR6QXi6XnROBdadO72KxiHw+78ISKUncarUwOjrqdsHRbnN+oO2tuwm1Hll2PTiV92j/V+cA+QRVfWu/VtKa75LuDlHnk3U4aJ64Q8ZC32/ea3fQa7/itSoWVIea5tO3y0Sv4/uS5OxKQrDVi4tApAcsazSbTYyPj8+YTOlAvLcJVBotbj30TV589xSLRTeZqFQqAOLb9tSLzomBqiI6KdPVQOoWN27x9kGVHzxcplarue1309PT7rAZGnFOBDnhUyKdi2a2SXd3N3p6epDNZl1Ynkwmg3K57LacKZFu1SJKkDOm69TUFJ566iln6Dmxmcv29ICAgP0LnRRoAQuLVqvl7NpCYCHajuosEunj4+MA4uoy2mVVM+lijAvCnp4eRzBT1c0wL3pI23xAYhyAW1QzTR5mSjKdjmqS0kqkK1TBRhs7OTnpFs1KRrBuSaTT4b9q1So0m02MjIygVqu5EHYMT1er1ZDNZtHb2+tC3ExMTLgFN8lzlpEkDhDexYCAfQkko1UlSyeg3SncaZ1EEo3rnna77UJnFYtFR9TZUCq8V9W2+ryk9aGPnJotbVUu6zqHP5om88L1nCW/Ge+cn9kxOYm8tuFDbd1qHVsSXEOrMF+sYwCxg8BZb5YYts+wql7+tnWopKU6A7i2p/CLtpohbLhG5bVKTloHiIZeoQ1X0tQ6U3wkutY/7VgqlYrF7uf3PtLXHj5rP6O4gOtozj9arRYymYzbycfftJvcDZfNZmO8A+uPc4ZMJuPW6jyrhmt5PcNM5xu023wm82kdDZYU1uezTe3Oda1Xrul944LWp+377A96vcbrV2gYH+2TKopgP9FY9exvvh0etvy2H/lg1e9J402YDy19BCI9YNlAB7pCoeDU2lQy+4h0xhW1qif1Xqpn3G5Zns8WI5vPXd2qo0oEGjCdmGiccR3A55p2tVrF6Oio817TYKpRYB5IflPhr44JrUeS/+o9VyKdkyMexgbsUMP19/e7BXepVIrFrPNtxdO/aaDb7bbzwHNy02w20d3djVwu52K+chKonveAvYvgOQ9Yagj9as+BajwN0QUgZiO4QFPQVndKV7fm7mobqlJLQftNW+WzsyR1GFZOw5hQvaSk9mzxRi3o9KZQgHZXCahqterS5+4wGwfWotlsYmpqyhE1tVrN2XkFd4fRFvOMFy7C0+kdZ7jk83l3aLruTKOKX+P2KtGTy+XQ39+PVquFbDbrFux0zvuUjAF7D3vbVn/uc5/DJz7xCWzatAnPfvazcdVVV+F5z3te4vV33303Lr74YvzqV7/CunXr8K53vQvnn39+7Jqbb74Z73//+/Ff//VfOPTQQ/GRj3wEr3rVq7zpXXHFFXjve9+Lt7/97bjqqqvmnf8AP5RctvN4kqK6dvORj7ON8ZzzM129l3/rb/t3EtRmWVh1KbBz3WgJQs2LHZvVjpFYV1WqvYfENElkhSr2lQz2Pd9H+PL5uVwO5XJ5hhOAtlpFahRJAZhhQ5iejQGtebVCM1Vyq2JZ25BrP9s+vnr3QeuD9/nKxvzoj698XHfSEa2ENL+n0xsAJiYmnJPcOr051+Aan+tVzocYu53OFe7w4JyKTger7CeJTjuuu9l9XEgURcjlcm4uQ8W5b8c5bTbbX99b7We+vsn60nByvnfEV/++eY7t1/Y7jRNvz1ewThX77trr9G+tD3tfp50gvnFqvgjr6sVFINIDlg1IjGYyGaxduxb9/f0oFosYGhpyqjIufGlopqamMDIygkajgS1btmDbtm1uIUmCWmOIcesXPZlUeM1nsOEkwHei/FxA8jyKIje51MGeB2eoQQVmHxA5YI+MjKBarSKfz6NWq7nFcLFYRDqdjnmet27diqmpKTdZ0u1NVKpzEkLlAsutBiKfzzuF/po1a1Aul5HP5x15rhMjrbNOChUlF9hu7XYbAwMDjoRgPW3evBmjo6OoVCrYunVrINMXCcHgBywV7E5f3BewN9T4XV1dGBwcRG9vb4yMLZfL6O3tRbvdxujoaMzGTk9PY8uWLdiyZcuMvKkajIu93dlxlsvlMDg4iEKhEFMdFYtFp/6yW3WpaAN22OKxsTFnb6ge5wKtUqlgbGzMEcrzIYajKMLY2Jg7vI55yufz7uDTkZERjI2NuXxQFdepThjjVheVWjZ1Iqxfvx4DAwNoNBqYnJxEu91GuVxGsVhEKpVCb28vUqkUqtUqJiYmEEURSqWSU+arnVVFKh0YK1asQDqddnOMWq2GLVu2YGxszIkf9vaOwoAd2Ju2+qabbsKFF16Iz33uc3juc5+Lz3/+8zj99NPx61//GgcffPCM6zdu3IiXvOQlOO+88/DVr34V//Iv/4ILLrgAK1euxGte8xoAwP3334+zzjoLH/rQh/CqV70Kt9xyC1772tfi3nvvxbHHHhtL74EHHsAXvvAFHH300btU3oBkKKmoik8A7sBIPZxRVeV0UmqsaAuu03itho6xxG4SrJKd45WGAAEQG8cUSizyOksSWoIdwIz1IcdkXquhKXzEuI+gZv7tYYdsC/7PsV9/GOozn8+jv7/fKZz17C4Azh60Wi1s3rw5tjuYz1BCnE5mWw7Wu+8AVbajKvHpRNC1dSeFs5Ka+qOhVNieFN1pfXNHAcVa5BcY6oNzGmCHU3vr1q3u+3a77XajpdNpTExMOKJ9amoKXV1dGB0dxcjIiHMmc/1N0n1qaiq2g0PV4VEUoVgsolwue3dys4753tEBbnd66w41zgW4Du/t7UVPT4+rTwrxJicnY/XI3WzqALdEvta1JY7Zf7Qfse/4dm3QceETJ1jCnu8Jn8+yq/NOd4toNAMdP5huUqheXxQE9lfriLE7HJRX2RWbG9bVi4tApAcsG9gtXlQxDwwMOBI8l8vFBsFcLhdb5HLrtm4VIpGr9wOIGVtg1wacuarSrcHXCZSdZHBitiuDr3qW6Ulm+jwkjQqyWq0WW+DqJEjzzXR1gsYJHj/jhDmbzaJcLqO/vx+5XM4p3nYVvns52eGEsNlsxsLKUAUDYF7ERsDuIxj8gIB9H7R73GHELdl0ePf19aG/v9/ZMS5kgB1j8ujoqIthaW2c2m0uVHZV0ZNKpWJnjvAzHsJFW6h54N9K1pA0VmJAF8W7srMN2Ln7TBeSdKDzmSTVGd5sNgexxmnVeRDT14VrqVRCX19fbNu3EjBcuOsBpUyXi1iN86uKL25b1wV3d3c3RkdHHXGjirmAvYu9aas/+clP4txzz8Ub3/hGAMBVV12F733ve7j66qtxxRVXzLj+mmuuwcEHH+yU48961rPw4IMP4u/+7u8ckX7VVVfhlFNOwaWXXgoAuPTSS3H33Xfjqquuwg033ODSqlQqeP3rX4//83/+Dz784Q/vSnEDOqBTP1KSTcce3XVqQy/45uwa/3g2W6B2JAlzXbclKW71WSS2aavmkiZ/c1ePpquK9CTngiUSNUY8QRuqQiYVPDEUCAlkLV+j0UA6nUa9Xnc7m4GdBLM6RPTAT65tdfezr058CnDbnjbWvd5riUqF2nLtd6qKtmp11pG2jT6PZD/DrNA+d3d3O6e1Krb5u1arufkBOQjNgzrydU2tzgPuzGdIFw1bQxJf20HrVXd68G8to0/Ip3XOvFJE53sHtC9YKNeiZw1o26gzq5N63ELv17Lo7nvf7hc7f7L9h/fZa9gHfHO9pPHEcj5zGR86pbOr9wbsHgKRHrCkoUZscHAQq1atQqFQwEEHHYQVK1Ygl8uhr69vxhY0Dmb1eh3FYtF5fAuFAmq1GjZv3oxKpYJ8Po+enh63qLMHb4yPjzuPsR6q2QlUcwNwZPFcQCX45OQkJiYmYoZUB37dKg4gFs9rLoMinQONRgOjo6OOTKdHnJMhbhe3ZIIPfD4NRrvddge1MQb6wMAAstks+vv73eRrVw3HXKDqlKGhIRSLRfT19TklPtUA1ikRsOcQDH5AwL4JXfTQWcrxvlQqub91+/H09LQbk4Gdi+Ao2rGtuF6vO8U65wJdXV0YGBhAT0+Pc5IzDNno6GhMiTcbGo0GhoeHnfOVCy4SuRqSxadQ4jZ4LpwajYZT4HHhyvBpu0Kk6wJMFe1cdE1OTjqSm9/PZ5xkPWlItv7+fgwMDDj1O59py0lSiwvwUqnkiPPR0VEXGqZUKjkVGwDnuLACAe4GWLduHdasWYOpqSl3AGqlUlnQ+PoBs2MhbDWFK0Qul5txuH2j0cBDDz2E97znPbHPTz31VNx3333e9O+//36ceuqpsc9OO+00XHvttWg2m8hkMrj//vtx0UUXzbjGhm15y1vegpe+9KV40YteFIj0PQSOE1aVqaRTs9mMKUW17+kOV5KeQJxM4w/HJh+hp33aKmR1l5Pe02nnkzqMlQjTsmqavjO79NDD2Qg4Sy5bp4Fer8p2Xst6oYObKnSGR+3r60OxWHTncHCXN+0zbTNFarSNFGDxzAyK0rq6ulAqlVAsFmNO50aj4XZPcY2ZBN6XyWRiJKc6W3RuoPepI5cqb60TJWi1jXX3FBXMarPYj7SfcWcEBWoMN8R+zTBsTLerq8vtuOJan2Ss9k0Nl8K8MQZ6b2+vOwxdHRq2H1lVtCWQbZ3aXe6sXwDuWQBi8xyK7niwuNajkv/6ztsdBPbd67SzX3dv2HNfdB5Jh4ZvB4bWcScluq8Okwh3+46qWME6xLQebJgZW65OCOvqxUUg0gOWNGjAurq6MDQ0hKc//ekolUo48MADsWLFCudFt4MQ0Wq1MDQ0hFar5bZBUZ3Mwy55yGWpVEKhUHAEfLPZRD6fj8Upmw+RHkU7tl7NBVSKc3sZt4Mrkc7FPScENLy6UJ/LoKgD9Pbt22d4elUdP1elnxpKTlR6enqwatUqlEolrFq1CqtWrZphwOaq/NgVcGKlxMjU1BT6+vpQr9excePGGdvRAgICAgLmD92NNDg4iEMOOcTZZ6qbV61a5QhyLiJVdUe7wK3lk5OT+O///m+3GOLOswMPPBBr1qyJxdTevHmzI2vnSig3Gg1s377dEclUzPPMDd0+TFJdtxzTOU/Hc71ed3bfbqNWJfh8wDqh2q1arWL79u0Adj++pt7DLfyrVq3C+vXrnfqdZSYBStJewflTFEUuhFqxWMTAwIATMnBxrbFclcii8n7NmjXo7e3F2NgYCoUCJicnsWXLFredPGD54KCDDor9/4EPfACXXXZZ7LNt27Zhenoaq1evjn2+evVqbN682Zvu5s2bvde3Wi1s27YNa9euTbxG07zxxhvx8MMP44EHHphv0QLmCV2f2DAISiRaR4uOESSw7LpBlaSq4FVFLZ9tSTwlCRWWXEwitLh+YvgNzTfT1THa7gbijiw7jlvFtu4csust/q3rYCV9dVeQrokymQx6e3sxODiIbDbrHNS0W+n0jvPIeOCl7jwql8vOLhcKBVSrVXR1dWFiYiJGpPf39zunN9u7Wq2iUqm4eUAS1NliHeRKcJLU9hGjGlpIiX/tS9o/WI9KplMtns1mY31N7wd2iuF4ptjU1JRzAJNUJxHe1dUVE+cp0ax9Ut+TKIrcDj8KE/r7+2cQsPquWQW2EunqgNI65XM5Z2FedBcDQ/TxEHI6y1UIqCI8FQHYd4nPItTZozvlmAdC3289n4WCQJZV53SEpqMHk7KPWxW7Omvo8GB9K9SB1WlcsU4h3ZnDPC1lLMaZJldffTWuvvpqPPLIIwCAZz/72fjbv/1bnH766e6aKIrwwQ9+EF/4whcwMjKCY489Fp/97Gfx7Gc/e2ErQBCI9IAlDRowqqOKxaLbekZDb7ddKXRLNLerRVGEnp4eNJtNFxOOA202m3VGi88mUT1X0pcTBnrpraJcoVub9DBPDTdDcsJ6ZnVCpip6a5Rmy6v+Zp6sgZ0rSC5wcsVTwbkF3OeZ3dNQg8YJXiqVckoM3XofFup7HqGOAwL2bXD8p422qi9dOOjB33o/1dCFQgH1et2pwzSuN6Fkhm9rbRIs8WLTJHQrtf7vUxDqLjrOW2wsT99iai555W8+Z3dtFucUnPvQdtt5iuZdF+H6fN6jZI69htdxTqZb3e01FFFQxVwsFt08aVfU/QHzx+7a6scffxy9vb3uf0uSKuyc0I4Jc7neft4pzccffxxvf/vbcfvttzuFZcDCY7Y25FiuxDZhlZ1WrQvMDHVid8Za0Y7+n5Q3HZ+5vkoSa821rBY233OFvdZ3b9JOXx3HrdDIdxClrq31R9tMd5fRqaznoejB4iy3EpNJdaN5pq2j6p82XuvO2lclu22MeqtiJ/HKXVcaj1tDgSbZHWvPtc4U8+kfWtfaVrTXnFv52tq+SzYvlnjXv9V54etbmi+mwzzRWUEHvJLmSjz7xmq2qy/fc6k3ay+S3gHrGKOjQkP76BxOn285EdaXfZatn6T32/ZHX7vMd364N7BYZ5oceOCB+NjHPob/8T/+BwDgy1/+Ms444wz89Kc/dUT5xz/+cXzyk5/Eddddh8MPPxwf/vCHccopp+C3v/0tyuXyHqmPQKQHLGlks1msWLECxWIRa9euxQEHHOBChnB7UydiVslobivv6+tDFEUYHx+P3a+hXeiV5GGc3d3dqFarmJqamjXPzWYT4+PjsdhzVOTZQ1todBhmhUqvFStWIJVKoa+vD4VCIRZ6RT3rjLHWaDQwPj7uDiihest6PTnA63YjCyXS57NNnnW9du1aDAwMoLe3FwcccAAKhYJTJzAfi4VMJoO+vj5Xrp6eHlQqFTzyyCMuzMtS9wQvZ4QtaAELhfkuQPcHJC2QfNgTdUeb0tPTg5UrVyKTybjtvs1mE2NjY25rMA/impycjB1UzcU51cztdhsrVqyY4ewdHh52SnHaLDrIK5UKqtVqx3yy/1BFxsUgsHNLN+0zF/D8jCp4VYQrqZDP5x35OzAwgHa77Q4OVZVcrVbrmE+f4lwPE9OwZPNtz+7ubgwNDaGnpweZTMbNcwqFAhqNhlNL0tlAtSXFDAxDx2s432Fs3XQ67Xb2UXXIOi6VSqjVau4geFWk1mo1VCoVR8ywLYaGhlCtVvHEE0/MCBkSsPBYCFvd29sbI9J9WLFiBbq6umaoz7du3TpDUU6sWbPGez37dKdrmOZDDz2ErVu34phjjnHfT09P45577sFnPvMZ1Ov13Tq/J2AHdO4PzAyRAOwkszqRq4QlnHSNZc9AIiGo4WLoMLXOPoUlZK16WcvhU6RqOkqq0c4owcv0WRfWeUBiljZORVL22eqgJnQnlIq8aKfK5bIL5aXObzpUfWSgqqS5szuXy7kxn2MHBWw8qyyTybiyc9e2treGK2V9M++1Wi1mY1gv/ExJW4rSlBwFEAvTQnKaPILuPmNdMo8qtmJabBPeo+HhuFZXIR933gGIreXVycDf/Izx6bu7u1Eulx2H0NfX55zMts/QUcHPrXNfCWJVunMeRXW27buqbNf49HznuJuhUCi4OcT27dtdmBvOAbQOVVFudxQkkej6PqoDQ50sPiEA+z2dEc1mMxYWjyGh2O+5AxLYudNARYoay342J5vvOx0ndBxkfudjf/f2unqxzjR5+ctfHkv3Ix/5CK6++mr8+Mc/xrOf/WxEUYSrrroK73vf+/DqV78awA6yffXq1fja176GN73pTfMu61wQiPSAJY2uri53sGhfX58j0KlInw00AFEUuYMtGSO7UCg4owHAHTDGwYweao3fOheQgE+nd8Qzr9VqbtJit5LReDOuWLVaRaFQQG9vrzuJu1QqxWLaAYhNRnjQWBTtiBfL7e5Jajk1hEkTJVUO0qB2GnDVe9/b24uVK1e6OLlLSe3DyRMNTy6Xw/j4OLZu3eoW5yFe+p5DINIDFgKL6Yxb6lhMBwNtDA+V5vZlOqa5/ZshWoCdu7G4eO7q6nKLsUwmg0aj4YhbLvx0y7Sqp2gjO5HTChITVsVuF+icC1DxTnutTmm1rdwGzt+6mGd6XORzsT5bPrWOuXDzEe1zBQmJgYEBR6BrTHfWLdNVVR937vEaYOcWcobyabfbztlAEp73ZrNZd1Dq1NSUW7xyIc95DAmPXC6HcrmMiYkJPPXUU/MqZ8CuYW/Z6mw2i2OOOQZ33HFHbBv3HXfcgTPOOMN7z/HHH49vf/vbsc9uv/12bNiwwY0rxx9/PO64445YnPTbb78dJ5xwAgDg5JNPxi9/+ctYGn/5l3+JZz7zmXj3u98dSPQFglXN2vESiCt9kwQ+vNeO03Rg6vjMNJX01GclrXn0t49c96naO5VVSTYlU1VhrXm2RKBPpZqkjk3Kk0LrhmtKnuNFRbpPiW7V3qpc5visu4x0Xa3rVr5TStKzvdWOqYNB24POLVXPax3pjmwNyUbCXneKMR3aK+tw4HNtSFVb33Z3Gvsj+4ISpiyrCgZsn/ZdS9Kc3EehUHD1anc1KKlrdxFYB5b2K1+McCW6fekoT8AdY0S9XnchbjS8izoq2J+Vp2Hd2jzq+2t3LFjVu96jOxO0btmfVEGvOylY78DOQ3Ttu21jyWv6s0G5F+v48o1LnbAQtnou55kAi3+mCTE9PY1/+qd/wuTkJI4//ngAO5Tvmzdvjj0rl8vhxBNPxH333ReI9ID9DxxcGdIln88nbj2eS1o0XNPT07GFIL2vHBh1wU6jMtthmxZKdI+PjzuVhE+Rbj37pVLJEen08KqnlOlzcsA6IZEO7FysUzmnhtD3wzoirApjtrJTfVcoFNDX14fe3l4XB26pgpNvVQ1OTk66w2UDAgKWJnRBGRDHYpHo3HXFCTgXXepIVfXT1NQU2u22+96Swro9WEncdDrt1G96vR7uNZfQZraeaC9brZZTUlEdTVKYinRVofX29s6ITUtiQWOt8ppcLoeenh4AO2wuVVGaJ13E07lPclkX4ruiRucikbaPDg9d3LMsar/1b1vHrH+q+Kz9VOVfo9FwB8xlMpnYOTK6gFU1ohIr3MlAAUHSdvuA5YOLL74YZ599NjZs2IDjjz8eX/jCF/DYY4+5GKqXXnopfv/73+P6668HAJx//vn4zGc+g4svvhjnnXce7r//flx77bVOuQYAb3/72/H85z8fV155Jc444wx885vfxJ133ol7770XAFAul3HkkUfG8lEqlTA0NDTj84DdB8dvkq9W4QzMjQT2feZTl2v6tCPWCWnzp45DJfz0t90B7SPRfGnr55aYttdZVa0qg5OeZYlnS7Jr/dFWc73JtZoSsxY+tTs/o4PAOletbVJVvR682mlntNpQXl+v12NrepbbZwd5L50GtDEk1GmXbP6mp6edjaQ90u+VnPe1K//XOrGELutQnSC075xf8PkMRcod9lYUx/RtX7HrepaD/ysxzfuZpu0Ttt/bdwbYGdYvnU672PoA3HzP9h86kjRUrZ3fW8GfnXvwh2WzZzDY81g4t+T3qVQq5lzh3E0dMyyrz8nlU84nOQrnCluvexpzOc8EWNwzTQDgl7/8JY4//ngXLeKWW27BEUcc4Z7D+2w6jz76aELJdx+BSA9YkuDAyQNQBgcH3cEWjLc9X+hgWiwW3d9TU1MzDB4XijwMhYq6uYID+8TEhNu2buOE63W5XA4rV65EoVBAuVzG0NCQixNL8t03geMA32g00NPT4w5VpeLrqaeechNIu0XLGlyreqPRUPVEEsrlMlavXo1SqYS1a9di5cqVM7zxSwk0nPw5+OCDMTQ05A41oxELKuiFRVCkBywUQn+YicWsE4Zh6+npQX9/v1uAlctl9PT0oF6vY2JiAq1WC1NTU2g0Gm5BPzg4iFqtFjtkm2Q6f1S51N3dPeMg71qt5tJV5ZgPPqKjVqu5BfrY2Jhb0NHucYGlKJfLOOSQQ2KOAz2vREPEaIi3VatWufkAy6wLbdrsYrGIvr6+GLmvjgRux55vO/Fg9ZUrV2LNmjVOZW9Vl5wz8Tn84UGxqrKnE39qasrtPKDaj4o61vPk5CTS6R0H2ZVKJRfejgR/Pp93czAbXmfFihXo6+vDyMgINm3aFIj0PYS9aavPOussDA8P4/LLL8emTZtw5JFH4tZbb8X69esBAJs2bcJjjz3mrj/kkENw66234qKLLsJnP/tZrFu3Dn//93/vtokDwAknnIAbb7wRf/M3f4P3v//9OPTQQ3HTTTe5eKsBewd0sAE7+gXHSAufkMe3NiF0bOaajZ9bxSqdkBxffGsfjmd6RpYla5UwU/JXScUkWLLVhhzRa5Sgs8/V0DC2XvQzS0RqfvP5PAYHB91hleVy2bWL7prWvKuTNZVKuTUxd16x3vg5nc0kJVX1zF1qqlpXYpPpWHW8Ct14sLgtP7Az/BjX3SR1+/v7Z+wQ4E51fhZFEarVqjuXhc+1O+hUwWz7NdvAKtzpROLcgO1kyWX+FAoF9Pf3I5fLubmVQp+vNtK37rZ5AmYeysp2JueghPpsRDrvpWqe7UtV8/DwcMyZBSAWkknz5asT1tv09PSM+Z0KCthvtA8qoc15Tr1ed/M0hh9iP9HdcfzNg2Jt/9H8WQ7FB8vj2OtmG0d8WAhbPZ/zTIC9f6YJ8YxnPAM/+9nPMDo6iptvvhnnnHMO7r77bkem70redhdLk+UKWFZI6qC7u6hX76xu5UrymM8FPjKZkxodbDmwWyMzX9DwW2La/nCiRjUft75zksL68JWH+eKhZiTfaaz1OUTSZ/zNgcenrvDlgR5zxkOnId6Tg9fugkZQVXGqzNjbHuH9AYFIDwhYXHQiJ3Y3XZKgNv5jKrXzYElgZkxcLsR1MWqdmaq8U5Uav1Ml2a6UTRcvSTuSuCizcTS5CEun07G5g3VY0wnAhRvnNZoHS4BovFjWs08Bxe9mK7uGntED1klq+KDOf+bTLoS0fTjn0XJwNyAXuyTXaWvtVn+rqNOFend3NyYnJ5f0/GK5Y2/b6gsuuAAXXHCB97vrrrtuxmcnnngiHn744Y5pnnnmmTjzzDPnnIe77rprztcGzB1WYW2xu7ZoNuJJiXINp+ITZKlaN2mtOduO6KRxOCmfVu3KNPR5zG8n4slXz0n553keJLq5Rk0i9jSkh3UoKOFtQ3BofWsYNQ2l4rNp2mbWxvgUyarIzmazMfvE/JG4JVh2FbixrCRGaR/Vkc5y+shAC+1PvnbwgXlRO832Uoe2tZE27U79jb+tIl3b2PIVWqZOux/IaeRyOXcuQFdXl5sTaR1aJ89sNl0daHZOwvt154B+x7/1R1X8nNdZZ5Xv/dS8qkp9trGsE8lr22uuHMRC2Oq5nGcCLN6ZJkQ2m3WHjW7YsAEPPPAAPvWpT+Hzn/881qxZA2CHMn3t2rVzyttCIBDpAbsE9cwxrppCvYHqeZ8rdEHFQdjnFZ1vmhw0uHCsVCrYunUrGo2G81xTNdVqtTA6OorR0VGnmNpV0Btvt3AVi0VHQA8MDKBcLrswNlrmTmWi0WIcWSry6vU6pqamvB7npMmYTgxmmyTQ28+DRtauXevity2nBW5XVxd6enqQzWZRrVYxNDTkYvDO5XDZgLkjEOkBAYsDkpCZTMapeuzW3t0BF35U/NldXFQF0tlLG0eFEO2rXahz6/XY2JhTNXGBqaqhkZER94w9oVKmzc7n81i9erWz01Sv2QUhlWLMHxVyjEebSu04THzNmjVoNBoYHh52h4QDcMo4XeySdKdynoQ/nfA8RIt16isDlehsAwDusPNms+lsuJIKNrydhqnh80lKkRxn+1G5x0Uq46ayjKw3fs+48Xwey99sNtHV1YUVK1a4PvHkk0/u1rwsIBnBVgcsJJTossSoqjCV1FVS1kKJT17jWx9akozP4/oK2KkIV5vIe4GdoWFIZtr8K9nIsvgEU8wvnaoA3JinKl1ey/WoEv+aJ13b2XpWoZjWhaahpLYlM/Ua7gjjvWp3CI4XVPtu377dhTMlAc28TUxMoFKpxOJxk0ug41jz7dvBoKS6jlVK4nLnms5LtB59jghgZ4gx7Yc9PT3Ovo6NjbndYSo8U/iIZ81fd3e3i9+uZWWeGeq1WCw6Z706JOyOCv1RWKeDhoLRH+aFYgiWS9OzpK8vD/xf19Xt9o6wqdzhr6F5bH2xbVhHVl2v75eGfuM8Q98te+adLTffez5HxxOtN54DwDwr0a750j6kn2k5fU4AJe2tgGQu2Ju2erHONOmUf+6GPOSQQ7BmzRrccccd+MM//EMAO+a2d999N6688sp5lXM+CER6wC6BqiYuLO1gx209u7NI10HLniC+q6BxIJE+OTmJ4eFh1Go1N5i2220Xz2t8fDy23Xx3YOuCdcgDRRlbnLHcZlM9sDzATs+6emGnpqYwOjrqiHUuyvVen/HXiUHSJAGAa/tMJoO+vj6sXr3aGfvlhK6uLufQqNVqGBwcRC6XcyEIAgICApY7SOIWCgU0m01MTk7OiFW6O+Dih0SDLpKjaGeYFi7mSOKS1NcFhqqiaAu3bduGzZs3o16vu51PSrpyzrEnSTzmZ926dc7hOj4+HlvYMnwL48bq9nX+cE7T09ODtWvXOsftxMRELP+M006SgbZVz0JhnXEnWrVa7UguFwoFDA0NxRbMzWYTIyMjqNVq6O/vd3M7zgEs4cH2IfGhhBjnBFzgcP5ARbpu22d6TIOLY265VpKMqsAVK1ZgYGAAk5OTy26uERCwv8GuY5KU2kqMcuyZjZTi2KE2TENmcFzhuk5JPx3HdH2phyPyWl370b5pOUjcKclniTabJz5fn6HqcCUElWQkuc4xdDZHos2nJT6tItmu9XSHl+7WBRDLv6ZXq9Xc2lN3f/P5lUrFnT3Ctmc7AHBzBU1b60H7CttK1cGchzCMmR5MynQsn8A0NC+0R7qTjI5qErc+5XcST2HFgXye9q9MJoNCoYB8Pu9i2FM4oAfTan5VKKfQ+tU8aD1aQp1zCdp9q+ruJLBjW/G9KpVKKBaLaLfbqFQqrl9wN6KPg9B3ku+DPtfHKen7T5GCPXhY56JMi/1Nn+MTl6hIwu621Lqxda/XJTlttO7UKZTkGFkKWIwzTQDgve99L04//XQcdNBBmJiYwI033oi77roLt912G4AdffLCCy/ERz/6URx22GE47LDD8NGPfhTFYhGve93r9lh9hFlowLxgjZVumVJYT7cdhOcCNcwaQ3R3YCcPzWYTtVrNEelc/DIGKBUKCz2Y0YDQWOgBF7vjMFDHA7eN20mkwk6cksrp+5xeWm5Tt9vtlxPUSBYKBeetthPmgN1DULkFBOxdqBpOt2GrWkft8+68nyS0VdnFMB+0TTbsR1JatNFczPFvDUNCG70Qju7ZoIs7XeQlKfn0M6u81MW/bn/mXInX684/XXj7VEtciCWpN5k+SQX+z781HJwlXHS7M9uZ8wydU2ldcVHOxaHG39Xn8xp+R8Wg3kPFfXd3dyzWfqlUAgB3jk3AwiHY6oCFAMc2q2TtBN81nQi8JFjSXclrH9Q+KjGpY5uPKLdrNh3zNUyGHdttmZRcpI3Rd0nzZu16J2e4HZuBnWFHOylg7fpHyT3lAvi3nmnRaDRQr9djNlLJaR/Jq4r9JKWz5kvth5ZNoTZO20KvtU4WbQvWtxKtWmZfvTNt2jHraFFexDqL6DRnWNckTkDrxTd/S+oPeo1t86R3K+l6VW9TJGHnD+zLPCNFd1z45g6+vM7GH7G+dY6r76kS3uqU0vs7OQb4dydh4UJA+3KSo8GHvW2rF+tMky1btuDss8/Gpk2b0NfXh6OPPhq33XYbTjnlFHfNu971LlSrVVxwwQUYGRnBsccei9tvvx3lcnlXqmdOCER6wJyhi7l8Po9isegWYJZIp0dYF4zqFZwNuuCs1WpOZcXwKLOFPElKk4szHkw2MTHhDvHSCQX/tqq6hYAuJPP5PHp7e2PxxXelbEwX2Bnzm9vRGOKFh6rqj2+yqluMOjkRcrkc1qxZg3K5jMHBQRcaZzmS6ay7UqmEAw44ANVqFVNTUxgeHt6tXRUBcYTFeUDA3gEXCiQ8uQOKv0lCcps17a2O//MBVc2NRsOpkmnn9N3lolTT58JKt+pyUc4DRKempty2YB78ZO3VnhojSHhTYcX45rlczimulPTV+uNCnARDs9l085h8Po+BgQHkcjkUCoVYHHFgx6FpbCc6FHi/kjhRtCMcXTqdjqkpie7ubpTLZdfudLIzvEtPTw8GBwdRr9ddGaMocuF5OM+LosjZRl3gt1otp5JnuzNvAJxKkaSCnqWSyWTQaDRc/nm/7prgHKPVauHJJ59EtVpFKpXCoYceilarhccffxxPPvlksBELiGCrAxYCutuX44V1pnJdprBEJ6HqUd5r79HdLkqA8TP+tqEpuGuLO4m4o0Ydfeo81PQsdEcPQ1HpQdhKhCtpy3G1p6fHOVlJUuo9DLei5KHvvdN1t67RKCKjyprto3Vny8e1kHIBbA+u1ScmJjA6Oopt27ahVqvF1OAavssqqLVs1nGh5LWPANd6UCcs7Q3rX523lgjXtDlnYp+0oTzUrtEWU7SmTmvt57TfqVTK2XANcaZpl8tllMvlGCegfd6qyLW8ej6Llo2Iosj1J+uQsfWqAgXrUNHreID49PQ0SqVS7Gw2AG6ew0NmKVQkx6J9VIlw3amosEpwfR7HGtaDpmnBfqX8lXJAfLblrfSd9dUL61yv812jsM40/j0Xgchi2OrFONPk2muvnTVfqVQKl112GS677LJZr10oBCI9YF7g4MCFFb2nSVts1ajM54XVgZoGZ3cJbSWQuahVknlvqNqA+ISBi3HWIQ3C7qavivRcLhc75Vo92Ul16VMhWHALOw0++8VyBkPtUBHAftuprgLmjrA4DwjY81A1CxdherAWFUKpVMotbFTNvCuOQ5KlwM642JlMJqZU0gWxqoP0ty5iNGSLKs+5AFzoMSEpTdaj2gXd+aXzBlVa8V4lD5RwJ5EdRZELp6LP5zZvEuWsWyU0VA2oiz9FOp12IeMYWoY/LFOhUHC7zDKZTGw3AOcUAJxjQ+O16hZ7XfTrYlNFFVbRr2QVEUWRC/HCeKvVahWVSgXDw8Po7+/HunXrkEqlsG3btt1t+gCDYKsDFgJ6NpR1/vHzJAKY0DVL0vUWVtHpC9XA71UBr8Qw79Md1pb0J+nnW/uo/aVDVYl0zYMSxRSice3mI3HpjLYqda0z/tY2IKnNMdvGGGfe9Le2AduN6ShJyTU1idV6ve7WtiyXJcqV4PSR5Ultq9fb+mS7cd7BdTXjMWu/43U2HRUiaP5sPHklszVfvE9DjAA7w7HRLmq906Zns9nYTm/lBazgz/ZTS/pbsD/Y+uR9OgfR/PneORUn0lYzZJ+2E50Z5I18YVQsOa/f2V0Xdp6mPFPSDg0dC/i9VbL7RBmaL213dWzpdTrv83E5c523sh/O5dpgqxcXgUgPmDPUwFhvtB0waDQ5MM+XkOQ1rVYLExMTSKfT7vBHhhPJZrNzzjsH+0ajgWq1iomJCYyNjTkCvZOazZZtIQYencjRUPq8l7uTti72dbCnobATTUINm2/bH9Nm/LlyuewOHVvuILHQbrdd3HQqN/aGkyUgICBgIeBbGOt3ul1WF4LzdXprmiRVqUxT4plE+/T0tDuoE4gTw7qQzmazmJqawuTkJEZHR10scl/5Fgqd0uQikGo+EsoM/wbElUpKVnBBbwkC1hXV2nYrP20PSWXWlRLQvgWjhR5cls1mHaFDJwqJD8bdZZiXarWKarXqdhik0ztCrJTL5Rg5RgLdLsDVgc/PqUrTRTYd/lon09PTjvhgXTC2KuPV9vX1IZVKxRbvAQEBSwf20MAkR+VcoYcKEiSD2+12TFntIyutEledhPyeYyxJYCrT+b0+W9W7SYSWktx6rz6fa2YbVsvCEql27Wrv0fKR8MxkMqhWqwB2qNR5uCUPtbT51LwqgZhK7Tw/g+G19JBxJX81PVW9cw2cRKCTLFZOgfeSX9A+RvulCnEL5SJov3XdbB0crDuCu7mUzFaHgtpm/VGHhs8hAsDxG7S5rAPdGa39TAl/5VuUa5mtf9g20ed0ghULWD6Bf9NeawSDVCrl5gfatr53S+tHxQL2+TaeuhWTJMHndGCausuwUx0kORrsd9YhZvNh5+27ywcF7HksvxgMAYsG611XRZGNHcrvrIGbD6Jox9bi7du3Y8uWLRgeHsb4+DgmJia8p13PBm4Pn5iYwPDwMLZs2eIOREk6cM2qBebiLZ8NOuhrfPSFItKT0lfDrso4VcrZH99EjWqJfD6P/v5+DA4OulAyyx3cdl4qlVAqldDb24uenp5wqNkCQVUtu/IzX3zuc5/DIYccgnw+j2OOOQY/+tGPOl5/991345hjjkE+n8fTn/50XHPNNTOuufnmm3HEEUcgl8vhiCOOwC233BL7/oorrsAf//Efo1wuY9WqVXjlK1+J3/72t7Fr3vCGN8QWI6lUCscdd9y8yxcQMBdYu8JFncYfV6WZKrvmCt09RtUwQ71wsTg+Po7R0VE0m013GBgVUiRjGZqsr68PuVwO27ZtwyOPPIJt27YtqjOTdq+7uxvVahWjo6OoVCou1Azzr/VHUrher8fIbNrkZrOJiYkJTE5OztgezvkPDyGdnJzE1NQUWq1W7EByHRuT2iyTyWBwcBCrVq1yzuF6vY5qtYrJyUkX4m5kZMQRLNPT0xgfH8fw8DAqlYorX6lUwtDQEHp7e5FOp90Br5xrcOHLOQSdDdwFODk5ibGxMVSrVbcrj6EC9SBchgjiwWesZy7Ky+UyVq9ejTVr1qBUKu3xBef+tqDd27Y6YN+EHpRoD9NMCrlAKCkIxEN+qgOW5LgSq7outYSohtnSUFnqVOaOW4bcUjLO9nWmqT8avkTTBeLEI9dprCPuJAZmEmuWnCU6EZ9K0LdaLberZ2xsDOPj4xgbG8PIyAjGxsYcCd5pR5oVYHG85s5uPexalcVKrmu76k4pJcBtW5Gkpx1gXnVnl9oRKro79S86FnioN22Vigp0TsT6ZZg3Opztzjmq8nleDPuIHlTK+tD1NMVbDO1CsaBdtyuJzv5iVezWIWD7oG1TFUjqe2XnF74xPpVKxXgMX/8rlUro6elBoVCIkem8huXQ/GpYI8LuEGE9Mk11KPh4Kd94Yn807zqfs/O7pPt1LNHxSscs/Yx9R8cNfddmQ7DVi4vlz3wFLAp83vVduWY2tNvt2MElVDPpxKfTYGAnO2romJZv0qBENI27NfS7Gst8T8PnESbsAGrrcLaB1pL0dnK83KGTJz2sdV8o21LA3jT4N910Ey688EK8733vw09/+lM873nPw+mnnx47BEWxceNGvOQlL8Hznvc8/PSnP8V73/tevO1tb8PNN9/srrn//vtx1lln4eyzz8bPf/5znH322Xjta1+Ln/zkJ+6au+++G295y1vw4x//GHfccQdarRZOPfVUTE5Oxp734he/GJs2bXI/t95667zKFxAwF9ixy5LRSTuTdgVc3FBJze2+unBRwkMVaxZqs5Ws9pWP47Y6jrngWSiosk/tpi5urXOMTgKqmjRerJZRtyxrW+j31qk9l/ZSRZYeXsa0lfThZ75Fq50DJAkKfHmyDhxgpiLRpsfnsU2BnaFrtJ3tDoCAhUNYnAcsBHxKX36e9P7PBl2/+HbNEp3S9o1tSfcq+Z9kq3x5snlNglUpd7KLTHO+UHKSRJ4S1CSmZ3t/1Tb5CGJVeNsxWXecJZGclrjU8vJ3Utupsl3jZtv7bZq6o0Htq7UrPjto85U0Htq61efYNbWS2rYf2TLbOUcnOzjXfqPPmavAz7adXq+RDPRvC1/fSnq/fTvxkvKY9J1vrpP0/XzFJba9kgj3JP5pV58VbPXeR5BZBswZOiGwhsc3yFnl8668sK1WC+Pj46hWq+7gLSqqVJ1kt4b5Bq/x8XFs374dY2NjeOqpp7Bt2zanBAN2DrbZbBa9vb3Ow9vT0xPbttxoNJwqfnJy0h3UNp/yzTbx2p1FYaeBm8ZJJ7MWNi+KVGrnQbP0yO9rRDP7UaFQQH9/v1PQBew+dsdwz/e+T37ykzj33HPxxje+EQBw1VVX4Xvf+x6uvvpqXHHFFTOuv+aaa3DwwQfjqquuAgA861nPwoMPPoi/+7u/c6eLX3XVVTjllFNw6aWXAgAuvfRS3H333bjqqqtwww03AABuu+22WLpf+tKXsGrVKjz00EN4/vOf7z7nYb0Bywd28bRUJ6FchOp2WACo1+uONM3n8+ju7nZEqh7suStlm56edodQkrQtFAro6+tziycqrGhPaY+oSGc+R0ZGUKvVMDY2hsnJSe8BmgBcqJGuri53IGUqlXKquHq9jrGxMS8Jn+RkTqpPbn3XAzvpLNDrtI/odu5CoYCBgQEXrqbRaDjnvJLDJCFUuaRtSOcC/2belXBnXhgCjwq33t5eF86FYP7K5TKmp6fdlvVUKoXe3l50d3ejUCg4UYNVWuqcK4qiGCGi7dxut92cCtgx/nGnHNsa2BkXXuuy0Wg4RyTDyWWzWTz11FNot9vuULt02n/Y6kJgKbzrSaTOnsDetNUB+z6UmM5kMjPGBY55eh4W+7tVg1vyiWsWhhhheI+k2NLsnxoyhNA1EZ3AOlYB8MbJttBxfK5rYF1b0+bY8to0NP86/uuuKC0L/65Wq+76RqMRO6vLJyDykY7tdtsp27lLa3JyEs1m080vWB7aEY7vPFeLcxUN6aXpsz9YclHtDvuLkucUwSksEc460Z316vTR9bnuYrCKc6tw9sWr13akXdSwrqx/5TOS1tVMS8lo1rNPQBBFO0PYaN3xfdR3Q88yYXtpDHSdk6hYslAoAIgfaGuvYbvw/Wf76vU2OgD7sO4IUFGD1qfv3dDna1sAcce+zrksr6U7E7TO+Gyt06R3XO9Jgr7Ltv46IdjqxUUg0gPmBQ4ESsjyb3ud3d4y2yDiQ6vVQqVScQtRbn2iseFvGhBCDReJgkqlgtHRUfczMjISMy46yevv73fby1esWBEj0qemprBlyxbUajW3aGeZ5zIoad4skb67JLrvGdaraydE1qtu/1bQ0cDtc50Oml3OIAnR29sLAF7vecDiYHx8PPa/xnUkGo0GHnroIbznPe+JfX7qqafivvvu86Z7//3349RTT419dtppp+Haa69Fs9lEJpPB/fffj4suumjGNSTffSBBNDg4GPv8rrvuwqpVq9Df348TTzwRH/nIR7Bq1arEdAIWH+qsXepnJuiCiraARKiqwHK5nFvQkLTeFZDQBHYe2FYqlVCv12PEqlVFK6HOxeDIyIgLKTI5OZlY17oAHRoawvr165FOpzEyMoKpqSl3rorvcC3792z2mwtAbp9mrHEls+1in3XOeu7t7XWLVdZLPp+PKfQYB1ydIHbxl0Tc2DJyC3pPT48TIaTT6RgRzuf19PQgiiIXViCVSrmY6lzEMt/NZnMGWa7zKCts0Hoiuc/7o2hnCBsAGBoaio3nJAHGx8eRzWaxcuVKlEolNJtNF5qv0Wi4beG69X1vQtWDexK2XwQELGVY56IeOKlENg9lpGPVkn28X0k1tQvqaPQp4IG4yAiY+S75VMZc8/B5dGImkdt2/FciUNfPvjFcHaIkem0oCruGU8JdP1dykrZJSfVarebIYZ6DMTAwgJ6enpjQyo4zdm05OTmJ7du3u3NRNPxYd3e3I8JJoPOMjYGBgVj+SKhq2FZdu/pIdLY3P+N9ep6JPkP7hkKdPKqaV8Gg9k2S6XoGiNa/b76i7UruRBXaGpolqd/6oByM1pO18/pe8Tpd11qOgHO1UqkUC3nDdICdOwB4Lfuind/Z959zJzsGMB9M3+5cY5raVqwrn5OAv217W/GiXq9zFbaX5k93FPKZev6Db/5h3ydbN5pPLdNcdgIELD72PQYsYI/Bt+gF4l40wsZf7TTpn23LDQ1ZvV5HpVLB9PQ0RkZGHJE+PT09I9wKfzSvJBEAOO94KpVyZLqqzXp7e1Eul9HX14f+/v6YYeBJ6pyI0APPw8DmU5caW4/1NN9tPRYa41zjcCV5Le1nsy3OND7+vjzI06myK/H9A/xYCM/5QQcdFPv8Ax/4AC677LLYZ4ynvHr16tjnq1evxubNm73pb9682Xt9q9XCtm3bsHbt2sRrktKMoggXX3wx/r//7//DkUce6T4//fTT8ad/+qdYv349Nm7ciPe///046aST8NBDD+0zB/fui9id/rtUQEK0Vqu5g9TsoZm7CxKuXV1dGB0dxebNmx1RPz097Q7UiqLILUhps1WVR6K8UCi4BSywc2GVyWTQ09Pjdo6RlC6Xyy40F5XpVIIn2btO7cqFfrVaRRRFTpHOBSd/+8hvks08oFQV7LxWF+qWON8d6ELMxu8FdjpbdMFtCSrOo6xKjItmVV0C8YP1lEgnYe/bpahOCN/i2qo/bTicbDaLnp4eN8cj2bUvYi79daGes7u2OiCgE3wqTa4vZoNVhibtrtXPlTAldMxTAkvfM46POi7yWjs2WnJOiWf9nnm3hCnzzHFUr9GxU9eM+jxbF7oepopZSUklLXmGGA+DtgIiWyeaD47hdIjw3mw2i66urtghmhTEMZ/p9M6zNvhs2nueJTIXqHOYh6oqEW/7CElse7+2OdtEv7N8hpLvFmxnn0pb28hHGuv3Selr3q0S3ldWdUxpLHVLequzyvZdvc46IHwOALUl6qCy6n9bF0rUc541F87B904BO+cO7PO+/Nm87wpsHn1p2brSd2G+vEqw1YuLQKQHzBk0UKlUyqmpaPCpYgLih45xS5A9HFQHYZ8KQA0VJxJjY2POOI6NjaGvrw/FYtEpmHSbNA/04rPa7XZs23p/fz+y2SzGx8fdRGBwcBDlchn9/f047LDD0N/fj97eXgwMDMQU6dVqFStXrkStVnMHbk1NTWF4eBgTExNzrkcAqNVqbnHP7cm6BX5XwC1ytVrNkQfcluXLy3xAlRsPTduXCeZ8Pu+Ub0GRvjBYCIP/+OOPu50CADoSz74JTadJStIESD+fT5p//dd/jV/84he49957Y5+fddZZ7u8jjzwSGzZswPr16/Gd73wHr371qxPzF7C48C2IlyqYV6tMB3bYMBK66sid64J1NtTrdYyOjjqFGrdxc7s3DyXjgpk2nsQD88FDMsvlsjsQUxX1vb29WL9+fczxnU6nMTAwAGDHQWhPf/rT0Wq18F//9V/4zW9+48hWJWK1bpLqkurnnp6eWCgCbicnUcCQb5zz0GE/Pj7u1HpRFDmyiI4M2mw6NBbCqcE6bbVamJiYcG1NRTkdxbpbwRLcQFwFr84Bqg651Z3XqcOD7UBnSavVcuFdaFfpXCGR0mq13A7Erq4u5/RJp9POCaRbq1esWIFSqYRKpeIU6nsbe2M82JuOvLA4D1goKEEMxMkitU10ijGcBENn2HsBzCAn1SFpQzQQlozkGMIxWclGTYNjEpW3lgAkwU4npT5TyUAd0zWshyqVeQ13imk5uK7m39PT07F42vo8Ip1Ou/Ukx3q1uxyra7Uafv/732NiYgL5fB79/f2xcyhoL9Rx2m63Y7vYGGZNQ9KwngqFgjvsure3F4ODgzFRFg/ebjabGB4eRnd3t7OJPvg4A/4wZCt3P6ljxlc3zCvLpLsOrILYOkZYp0rKW0e0Ooes48Oq0lW0p0Q1ldx0NPB+zpnUrhNKjrOcyreo/beEP//XnQvqyGF7s0/wtyWntf40bAvzxPrSOQPfC6rc2ce1jW07+oh8bT9yVQwfxLbT9lKBqNav3dlgnWcKrUd1tNnrNb9JTpa52uBgqxcXgUgPmBfU4JNg9CmTfYp0QgcPnzpAn8XPuMCih7qrqwuNRgPFYhHAzu3CXKhTYa6eVT1YlAs5quaUIOa2MyXWlUhnvNB6vY7x8XEUi0VH9M8Favg5WaTnnAPwXD2vvrRpsDjp4qn0CzFg0sgxZuC+rEjXWL/7cjn3JhbC4Pf29saIdB8Yjskqxbdu3TpDUU6sWbPGe313dzeGhoY6XuNL861vfSu+9a1v4Z577sGBBx7YMb9r167F+vXr8bvf/a7jdQGLj+Uy8VQbYifnNi65bmVdCOg2Zg1hwsU5F4U+hZjmJ5XaEWKLynIlX5gGbTTVbvyOdpTzkG3btrmYrbpYmutCRQ9OVdJZF0RdXV3ueZwfKWFer9fdGMg5he4g0/A2uwJVUupnAFx+bPl1gUhixqds0wWwlleV5D4nky7yuXimIEOVYmx7tj9JBY25znu0f5CkoXBiXww1txgIi/OAhYAdC3xQO5AkWrHKcyXQeY8d/yxByPHbKuGt8lbHIgrDSBZbIl2fr8plzUMn4s0SwrTbvId5Uyej2jVbZ2ojLbHoG9O17EpAk8i0cbxJaKoinWXmmlDV/bT3erYWw4xx1xhDwNC2VqtVZLPZWN3OFawbhl613AN/q+PBkqNqh2272WuTlMR2Da+ch4+sTRIVKk9iFfRapiTClrD5U4Kfdp/Xad9WAlz7t/I4ygNZ55XmTR0R5BI0z9Zhpor5+Si19f0l7E59VbirM4z53Z01v+/d0++AmST97ogSg61eXIQZZ4AXOnBpaAt96ZQotwognXiQ+NbFMw0oB3M1BjpJoKKdBpuLMXoVGU6FadP7zDiaNOBMn/HHGo2GI+NLpRLa7bZTn/f396Ovrw+9vb2OWFcinVvNarUaBgcHsXr1akxNTaFWq8WMrC4grUHm/7VaDZVKBVEUYXJyMjZZ6TQYW+hkqFqtYnJyEtVqFdVq1W0nX6gBc38K7cJy7svK+30R2WwWxxxzDO644w686lWvcp/fcccdOOOMM7z3HH/88fj2t78d++z222/Hhg0bHElz/PHH44477ojFSb/99ttxwgknuP+jKMJb3/pW3HLLLbjrrrtwyCGHzJrf4eFhPP7441i7du28yhkQoAswX6xZqwoC4jEiaYOZFpV5tPu0q3YhSOW0qpQsucxn0mE8MTHh4oDXajUXno0Lds4JSHjQaUsFHd9DLsRpp/v6+lwIGF6rYdZSqR0xwNeuXYtarYbR0VF3MCqJ19mUzDoHaTabjtQgKayLGS4CGVfd2knWEw8s08PLdodIt+pLjemuyjclfqamphBFkZuTJaXlU9Tp3EYPbFNVHQAnUmBauohkfSlYXyT0OS9SBZ7mU0UDC+UMCggIWBhw7FT1LGFJbXWa+VTfNl2bjj2osd1uO4W0hpgC4vZQx0e9X8c+PQ+CNo6OR+bBN0ZxvNdy0VbrGpg21DoZrRBK78lms87uad5V7W6VuVSiM23GJ6f6mEpwu65m+DSFEu6qSNYdWfl8HoVCAf39/ejp6Ykp0pV4LRQK7jm06dy5pmtcnduwjmj3Va3c1dXlzjDjWUq0NdoWnPMoJ8F0lePg7jHaGorUrDNFD+xU4pR1z/5k5w12va99jemqTUwi4a0I0cKS777rtL/4iHHNp6rELf+hnAhDtukOCZLaNn/qONC0VHBIp5YeEqtzW5s/S+bzGutIsHmx9Wrr1jfnsPXWiUOwiveA5YVApAd4wcGOah96h7nIo6FN8typ6kpP6u7t7XWLO2731oUm72M4GMZFbzQaLn4bF380KFu3bnUTh0wm44zvwMAACoWCC81CVRxjm1JVxtAqQ0NDWLVqFXp7ezE0NOSMfl9f3wxFOgBnWLmVm+Q8jTw9/PTyAzMHYhr5RqOBcrmM6elplMvlmBprLmQ1DT1jtpMoGB8fd3W2EAtMTjKo1N5XCWYacJILuk0rYNexNz3nF198Mc4++2xs2LABxx9/PL7whS/gsccew/nnnw8AuPTSS/H73/8e119/PQDg/PPPx2c+8xlcfPHFOO+883D//ffj2muvxQ033ODSfPvb347nP//5uPLKK3HGGWfgm9/8Ju68885Y6Ja3vOUt+NrXvoZvfvObKJfLTsHe19eHQqGASqWCyy67DK95zWuwdu1aPPLII3jve9+LFStWxEj/gIC5gGNyV1cXisUicrkc6vW62yZNdRgQD5nG31SE0Za32223OO/u7kZfXx96enpicwI6gJUMbrVaqFar7nlcSNDZTcd3KpXC6OioG18HBwfdoZalUilGTPD53NJMope7xgYGBjA0NITBwUFn+6Mowvj4+IxY5H19fTjkkENQrVbx6KOPot1uu3lJOp3G+Pi4W/z7QIcBw7CwrFwI6rZlJdHphCDBrOe1VCoVF7JucnLSzakWql/kcjl3OLuGjSMZwnAzPJSUW+xtPXCeBuwUSSixoUQCnwXs7G9s2yiKUKlUHDnC+Y09W0aJA51HKnQxzDbRXYcLjf3N/geVW8BCgO+xhYZJUaeuhuoj4aj3+95vdcxZUk/to+68sn1Uw6T4dgXrgZ6qqmVZmK6S7Zo2oWIyPXQZQMwRqHGc1bmqhB/V4z09PY70pp3hGpLraI6j6XTa2WpVbk9PT7vPNP+MZ57P52MCNXWu0+76FP2cPxSLRaxevdqdQTY4OIh0Ou1CjzJvugOAIjqGTOO6Xw8QV8U/HQKKSqUSc3irSI19R/PMz1jvtNXq7OZv/nAuwfbi86zgzKqrlXjuBHIvTF+dOFbVrOS8jwD3pWsd0zpHnI07UJKZ80cl0u27q07xTCYz4xqmqU55Oizo9GHd8nsVu/nyyz6l9aj5AeD6hwpHNR3rnLBjiI4H6ggDks9v0O913Jiv/Qy2enGxqCzYPffcg5e//OVYt24dUqkUvvGNb8S+j6IIl112GdatW4dCoYAXvOAF+NWvfhW7pl6v461vfauLkfiKV7wCTzzxxF4sxb4FHcD0cJBCoeB+qHBS5ZH19nGQ13SoGGN6xWLRpUlDrc+xnzMN3RKuaiT1GOvBWjowqcFRY6YKMh2cdZDW/3W7mq0bm1deawlxVUiookrDsWj+fT+qCNR0SPDbLVkL1Uf2ZSW6wpbTV26dqLP/0BjvT3U1FyT147n+zAdnnXUWrrrqKlx++eV4znOeg3vuuQe33nor1q9fDwDYtGkTHnvsMXf9IYccgltvvRV33XUXnvOc5+BDH/oQ/v7v/x6vec1r3DUnnHACbrzxRnzpS1/C0Ucfjeuuuw433XQTjj32WHfN1VdfjbGxMbzgBS/A2rVr3c9NN90EYMdC6Je//CXOOOMMHH744TjnnHNw+OGH4/7770e5XN6d6t1jCLZ66UJtE8lkxq5U+6MqYfsuqeOQCjT7w/BpfIbab84T9Nl2N4/aK1V2a1xuXqOLQ82jb/Fkt/9apRY/owNff5hXksxJCi8F1Xx6uHiSTeZcSBfuvJ/2mbZ6IW20BfOhcx0AM/LGazU0T9K2YzsvAeLblpkWF6tKUPnqRkkYVQr6FvZJqv251J+vb8zlHv29P2Bv2uqAhcVSttf6DtvfHBt2Z1cOEA9X1Smd2ebnOk7qby0L07d2wze26Bohm83G1oi0QdZm2meok5Y2Wc8I49+atv7md3Z+oPGi1WHM9TTtlbXXWpdqf+2a2dpsu0ZS+83yca7BOYZdT+vztE0smav2VnfQ+WyYrXe937emVtuURLB26ndJinDtbz5b2CnNpDJZaJ6T5h/62Wy20j7PV7+2rTUsDJ+hz9G21XmEvptJ8zSbF85FeE/SrvpOY8JcxiVb93NxRMwlndmuC7Z6cbCoivTJyUn8wR/8Af7yL/8yRlYQH//4x/HJT34S1113HQ4//HB8+MMfximnnILf/va3jnC48MIL8e1vfxs33ngjhoaG8I53vAMve9nL8NBDD807ttb+Dm6z7urqQn9/P1auXOkUW/l8PrbAGhsbw/j4OBqNBrZv347JycnYooghUbLZLAYGBpxSjqonDe0CxOPd8Te9iENDQ045PjY2hlarhe3bt6NSqTgvtXql7UKLv3WLFK9V+Ay6fsZ06O1PpVJO7c7DxQqFQozEn5iYwOjoqDtAhduomRaVX9PT09i6dSsqlQp6e3vdNnYq9exClOUiEcFt881mE9u3b8e2bducin+h4qPbutpfkFRWdTpREaJKTIbUoaohGKy97zm/4IILcMEFF3i/u+6662Z8duKJJ+Lhhx/umOaZZ56JM888M/H72fJZKBTwve99r+M1Sw3BVi9NUMHX09MTO5iz2WxiaGgo5oylbZicnIylwQV5d3c3yuVy7MCwdDqNUqk0Qw2cz+fdgZ669VkPtKRze3h4eEbIFEu+cmHsWxyPjY0hinaojgcHB536i7vi6DynwglA7LBu2nyGY+vu7saBBx7o5hUMp8I867xAQ7MRjUYDmzdvxsjICEqlkju4nKR4tVrF8PCwC/3GAzO5CJ+amsJTTz3lDgOvVCouHwuJKNqx44070gYGBlz9UK1PZ0K73Xa2Srf6M/a8kt8sh6oxdY6lyi9VWPKws4mJCYyMjKCnp8cd3KqHoZMw0bka61XndlRiplIp1/7WMWDHYvYRJXNYT7MdtBsU6fO7N2DxsBTtNfuETxXO9RjV0p3e49n6ls7XVWGsil57HbDTTnBnsYaqUqW5EqzcfaUhWqjO1uezLIVCAeVy2e20UrvKsZHrOK4fdB1KoVZ3d7dbG3L3mOZZ6886dfmscrnsdk1PTEy4MZ/jKdfVOp7THgI7Y8X7oCHTuB5SpbnWna6ZmLdsNou+vj60Wi1ks1m3A2xkZCS2M432yEdUMt+jo6Po7u52IVzJc6gq2jpKmF6tVsPY2JirDx6sSuW+VTf7yGjtA1o3qVRqhoPCRzhzh4Z1FvA3f7Qfahgl3qv/W3vN/hxFUSzkkFVhsxzaZvY8FU2bzgdVXKfTO0O78Gy46elpJ5DQMEG6+4JREXgQsRLuvnbQ/HBOAyAmdCOPo/dbUl/LZNtUr2M61qFClbuFFR1YqNNnNgRbvbhYVCL99NNPx+mnn+79LooiXHXVVXjf+96HV7/61QCAL3/5y1i9ejW+9rWv4U1vehPGxsZw7bXX4itf+Qpe9KIXAQC++tWv4qCDDsKdd96J0047ba+VZV8AB5ZsNov+/n6sXbsWmUwGPT09bnLARTOJccbjJpHOwb9UKmFwcBD5fB6rVq1CqVRyqjbdjtQJHBxoKCcnJ1EqldyiK4oit5D2Dfi+Aa0TfGo0nzKN6rZUKuWcBT09PY6g4MKPEwLGaZuYmHChXHRSyTodHx93sd+p5Gf+7TZIfQ4JgrGxMdRqNYyMjGBkZCS2NW4hsT+R6J2gSkf2bxppjQ2nW+EDApYjgq1eeqBdUmc3z/jQ80NoHxiOxRLpdAzncjkMDg6iVCrFyGwq21Q9mM/n3XXAjrGw0WhgbGzMHRbGkGzj4+Pe/NsFoyrCudjkApYhYRhnm7u2WEZu9dWFiyqWSMQz7AgXY7SbJGpJ9mre7NjdarUwMjKCVCqFFStWoK+vL0Yc8xDyqakpR6KTIKrVapiYmMBTTz2Fqakpt3tsT4BlnpqacvMVkkJU0pO0Jqmvu+Joz/L5vOtPXCgy1mk6nZ6x0GParN92e0eoIM512DdoKzkn1HA+nPtw/sM+ZQmsTrsRfPaW9lp3X+iCPyBgX8BStNeWDOe7rJ+RjFIb4FOB+2DVpnotxyu7FrJrULte5Pig9zJtjYtuxx9bJl0X9/b2ujV2uVyOkZgAnFOQpK06tSlGy2azbn2tIWJ8ZVey1bcW5L0aqoRjrDridacVY5t3EhlpHHDmw6rBtR30f66paDsYPpUOX13b0kazD+iz2u02KpWKs1PkONRxo+E9OGegnWPINYaYZTg7n3PCPl/rnvnkHEfnBCSaLZGu+dH+pH9bglvzr3WvpK3eY+uL5dHn+q5Xstl+x8+S6kmdU5yHcb7Gz5R4jqIo5iDSz5k2+5Pt38w7+7I60DkHYHln40l85bRiS2CnA4fPZX0pZuNQNM9zIdIDFhdLNkb6xo0bsXnzZpx66qnus1wuhxNPPBH33Xcf3vSmN+Ghhx5Cs9mMXbNu3ToceeSRuO+++xKNfb1ejy1ekhZ6+xvS6bRbkGtcTS546E3kQrpYLDovORdDJI7L5bJTt3EhPt9wFxz0OdCp553edMZO5UCo6rhareYmCByMObDrIV9UofFwTi4sqV5j/DYf+a1/k9RQxTu3olljYQdtLuYAuIUmF6F8PheAwE5DxcNhGBOXhIB6uBcavvzvq9CJNf8nqADRsAdKpGv77QmHxnJFcCjsWwi2eu+DC8Kuri6niqZ9tbG6bexXLmS4gC6VSiiVSrEQbCSFmYYe1kYilgo2XWhzAU2VO9PXOKO6ANe0VAHF72zMWNpqXaCqLaYSS+vA7nYDdo7rdBRw7sMdZRrXPWm8opN/YmLC2X06LZg2DzYlMaKENdP25W+hwK3xelCoPkcV+SSZ9V5VEepch2B720WjLixJVGjbs875bpMw4pyPZJouUpkfzrOoJtO+5FMEMp/MK3df0HnEvkMSj/PFgGCr90XsKXudZKt13QPExyArgPLtKrHo5CSz4LhmbYsiidDlWVq++T/XpEoQ6neaVxVBUVGuZy8BO3f1cEwiiU/yj7vEaKN0reEjGOcCriV1Xa2q7VqthmazGbMdSkj6wpExH6po17qlDdF0ktbTans5Z2Hd6DxF5x/anlRMs+35w7mGlkNV/EwjinbsVFIHc5KNUZKcz7Z9QR0ZOgfyXaMkOfPFe3QepvG8bRvo5z5BoK8MvndO86n8gy89+27yvde64XxSd4hover96kizYZY0Zj77AeGbUyWJI5McTD7oeGXryjpRmA99nj5L20fLrs6B+eQt2OrFw5Il0nlA2+rVq2Ofr169Go8++qi7hqFD7DW834crrrgCH/zgBxc4x8sbNNyDg4PusM2BgQG3KNZtbcBOw0aVWxRFyOVybtvaypUrsWLFCreNSrduz0fRrIs7TkRarRZyuRxWrFiB8fFxpFIpRz5zW9z4+LhbuCvB39W141CwSqWCer2O0dFRjI6OIooiDA8Pu8MvRkZGAOxUV+mgp4ZMyXhOdNrttlug0chzAcfJkV2gT0/vOECFi+9KpYKuri7n0NAy6OBKh0Cz2XSHquhhYQu9OGfZNVbcvgpVZFgDz/eFDiUebKuTBIb8mZycdAfT7e/GztbjfO8NWHoItnrvg1vDc7kcVq1ahYMOOgjp9I6Du6ampmJqXY2pyoV6sVjEihUrXPgwbhen2q1SqWBkZCRGjtPeqVotinZsR5+amkI+n3cqOR0H2+02yuWyC2lCMpwLIIY7YzgzKtF1QUG7ODw8jOnpaUcmFAqFmJqYcwuO26p014WwKsEGBgZihHatVsOWLVucAjpp3EmlUm4eQYdBoVBw93R1dWFiYsLNj6hsU7JWFXJJW9R3Fel0GsViEYODg24rtVWqcQec3easJAcXq7oFnOQ4hQKqnFKSm6BKn4vq3t5edHV1OWU/lWh8frPZjIXQo2NGy0YyCdh52LqSOz6nNw+f1zj5URShWCw60mTbtm1BnY5gq/dV7Cl7nWSraQ+A+NrJOkQVVulpCbHZYFW0GgbCpyDW/9Vxax3IzJtCCTlNW89L4gGdfX19GBwcjB1CqU5t2kWOZSThaZ97e3vR19fnxkYtlxKvSXWh9auhKLmuZkiVSqXiwqdpGuo8tyE9WOZUKoXx8XFs27bNCdR6enrQbDYxODjoDkOfnJyMOeLVUa4hZJhuLpdDf3+/G+N5vcZt9/Up5pEiM86TVKSnIgOWlyKo0dFRFxbERz7TBjEd7T8k85Uk5bO0z9gQIhrSg3aRv3noqc6DrOKb1yrp7yO9laDnO2odAipo1DrT720/43UUUipBrHWmZeX8gqLD7u7umNNJ3xFgR/gqzr/Iw3Bdzvmq1inbhz98dhKU/FZiWwUDHFt8pLw6V7Qefe8j68bu1pgrhxNs9eJiyRLphM8ozGVbRKdrLr30Ulx88cXu//HxcRx00EG7l9ElCF8ddHppaFCpTFMVuZ08kEQEELuHcdt40rca7N0thxosKpharRby+bxTZwPxw8AymYxTSSiRzsGX25g5SaASnSFjeL9OBPkMYGcMVU4qrAeSRoDqg05KC+uhpRFmWWcj0rng3dOKcfUg76tQo5lkpNi39VAcfkZSiLsb5uM82pcRDP6+i2Cr9x5IJNIOl0olRzb7lMG6YNTFuRKKtDG6CLOLVB0X6aylyppQp/v09DSKxSIAOIeybmPXtHQ3l8a0JBibVBX2qpTmohyAs8lKnvhUb7ro1N1jQOdFluap2WzGVNFsG6rd6BRgiBrbjj5l2kKB5ePcSd831j0X/NxBYNVaGiOXZSR86lHaQCUI1LlPJwvJb36mC3jWI59h+zEX43ahm+Ss5v0UdvCHwgeq5elcCQi2el/HQtvrJFutxJVVa2o8dB9JqdcCM2MTJ+XRrtNsCI+k+zUPlvRS0mwuY7V1YqsjW9fUHKN1PdFu7wxporuKSEzqGNupHjqB5dADvBmzvd1uo1AouB3dHLvpoAZ2zi9YR6oA584sit64c9y3e0xtsrXRfA5/U1TH+tQ2tSS4hdoHCsFUcOAj0knQ0i50sg1qo7hmt/2J+eD/luS2pK0vfVuWTvkAENvdpdd0Egjwt96nv33kvJaRYB9RUYRV/yc519g3dde3Qvke7U+WRGeeLDej+e30HiXVlZ1L2TSSnHesB82Hzq9tu87FlgZbvbhYskT6mjVrAOzwjK9du9Z9vnXrVudJX7NmDRqNBkZGRmKe861bt+KEE05ITJvGaF+DeuO4UNa4oySb6fHm4U26UFHCdrbtdfSk9/X1AYBTpDO+marBFhK61W16ehorVqxwsce5rZoLaVWEMz/T09PucCn+jqLIbUWs1Wool8uYmJhAb2+v85wTTJ8GgD+67dxODkge+AykBQmMVCrl8qcGX0kIlpPPm0v6uwM6HKamppzqfl8Fw7MkhWXRdrZEw2wL+/0VweDvewi2etegTmo9rIxjvFVlAzvfHy6qS6VS7PAlTYPXk3BvNpvo7e1Fu73zjBNd5FOBDOxUM0dR5FRPauN4HwB3TggXMPV63R3ATJKc+V+9erU7lHRsbAwAYod9shw6nvK9p0OSBHq1WkV3dzeefPJJFwdcSXvmk/Og8fFxjI6OujkPy8lFkCrhlBhIGnesAkvvozqK9l+VTArrPF9ItNttTExMIIp2HCzHHQwkEXSByfpV6PxNw/voTjslQ0jW02mgC0kSCwBcX+EC3ypGNVyBOm5I4NDBwp0UrD+NTWrbTOde/I79cnp62u2qUEeUvV9/7w8ItnrfxJ6y10m22r5P2jdUGGTJLR2Xk+Ajwmw6wM5QGkqs+0hzBQVXdIzSXnJ3jxLtvrGHY5p1aCeVgw5FhpShQIyHifOAUYY32VXYtYmu//WQbsZLp/KXdpmf014oOcl0GN+dinRidHTUrb9pz3V3s66hmTbJVCVcAcQcNECcjGQ5mQbbk2t5PkMds2qj2VZJO6/ZrkkEK3/7+iX7nhW9aTx6Fd212+0Yj8M69vUnX79I+oxltmp4Ww57X5Jt5ZzCtovtYwwBRW6D5WbZKUywDhLCF/qHokUAsfkvoe2nefOR3/o3+4pvLW+d/qwH9gv2Eb1W287Wq90Vwfqcy7sebPXiYskS6YcccgjWrFmDO+64A3/4h38IYMfAfvfdd+PKK68EABxzzDHIZDK444478NrXvhYAsGnTJvzbv/0bPv7xjy9a3hcL6fSOOJ80vENDQ7ETkJvNpjuQkgeB2UFOQ7lYz6F9FhdODGvBLeP0cKtRXkjQYUDVVxRFLqYpTx9nfDedBOjAyC1humAfGRlBpVLB+Pi4237c19eHsbGxWB1MT0/HtkTzhxMtDqjqKbWKvk7gxAzYGVqG5fZd6/t7T4GEAU9R35eJdDqbuB3fQkl07UdKoKhzIxisgH0RwVbPH1ShUS1MlRnVWww/RpLZbv0kacxQLPyO6RIk0ovFotu1BOzcUUY7TVutqtxyuQxg544zqqlJSuihjbR5XBj19fU50p6EZT6fd2eb/P73v3dneXDxPDU1hbGxsUSVExcbQDxe+hNPPIFt27Yhn8+7w0hpr3O5HHp7e9Hd3Y3t27fjqaeeAgBXb/osOk41NryO6748KbjLLQm+e3QhvdBot9sYGRnB2NgYVq1ahac97Wmx3Xt0yGQyGScq4E4qtinrnAILYCfBBOxU/nPOx+9Vpa9qUCrfSehzrqPEgBIErB8lNFTZrtd2CjfHz7Qt9aDasbGxGPnjw56w3z7Sz/dZQMBCYW/ba0tiK5QcVELd57jqREL7CEVNQ5+tilVNw35Gxy6dsdyl3dPT49T0tM0kBdXhp7HR1TmY9K6TfKNTXc8g6+vrc+FB6azgWGUVtkmEqC2f7spi/lhG7tLiXEDXyja0G8luYKfdVRW71s22bdtQr9eRy+UwMTEBYKfd1LFd479zXa32n+3Iutb1tbWpJKHpANDPlLjkLnamTdGdOp21zazKO6kf8RoVFWqb8MfubrfXqy3WEDK2vWdTVyddo/nWOZd1SNg+xnebbci5LO+184BGo+HOgCMPw/kcBSTsU/bdJv+gdQXEne9KpNt3zjpO1LFm21PnNOw3Oj5pfenanz/sQ8w371XnoeXfbLtQqBCwtLGoRHqlUsF//ud/uv83btyIn/3sZxgcHMTBBx+MCy+8EB/96Edx2GGH4bDDDsNHP/pRFItFvO51rwMA9PX14dxzz8U73vEODA0NYXBwEJdccgmOOuood9L4/gAaA6rQ+UNSW1VvjLvGkCg6GeAAaZXNNLY+qDJdSXg1eHsCapy46NMFoB74pdsHOZhrnHKWkwaMXnjeo4fCADsXkpxk6SGgQFz9pDHLO4UJScLeJsrnAlUZsjz74mDPfmInUoQqO3goj5Lntt0Dgud8uSLY6oUFF8jcWUUbQ1K7q6srtojV8daqdDW0iS42Vc2u15C8V3uoCwGr1gPiC6tOyjpCFUq6YMhmszH1MtPWcSGJSNdFr5bLhkvRBSiV0F1dXahWq7GDxkio+MiCfWWMssSCklYE21TV53bxqgtOhe6U07bxtaXtu3q/JYM0/7xOFetKjLM9NRyAD+rsoa2mfV8Mh/dSnzMFW718sa/Y6ySbQLul44ZvjapKd72G93cCx0Kub0kyMwQWSUBVw6rt9DkE1NapklXfNRJtfLaOr3NVIHd6/+yYrPnSeqKN1vWt7rBWBTKdoaxTnavoGM3dasovkEgnSdput70hcLRcNuTcfMG5kG0rJaeTyGRLuKoTZFfX9vxf52Kd1tVJcyTf3/Yd6iRU8BHX1i7PpYxaT0xX+71vF739Pilsn4oTtTxWwe4jx2396ThiYfOkfcPnLLHvj8LXr/Q5+nymlcS5+RBs9eJiUYn0Bx98EC984Qvd/4yvds455+C6667Du971LlSrVVxwwQUYGRnBsccei9tvv90ppQDgf//v/43u7m689rWvRbVaxcknn4zrrrtujxO5SwmlUgk9PT0oFAo48MADY95rHUza7TYGBwcxPT2N8fFxDA4Ool6vY8uWLdi+fXts61Mul0Oj0Yh55azHkgNAPp93i3MSAntrkdDV1eW2uw0MDLjtufQ+0zgD8UWkb9HEBfTk5CSefPJJF5uOsd51MKTB7+3tRW9vLzKZDPr7+10cLw68w8PD2L59u4sjyzwt18ErinYoDNjuum1/X3rnoijC1NQURkdH3SGu9ntVi5IE09AMExMTTuXXaYG/PyEY/OWJYKsXFrlcDgcffDBWrlzpHHG0p1TiDAwMOKV2pVJBs9nE6Oio2w20detWF3tU46/29PSgXq9jbGzMKdsrlQoAOKW5Ht44PT2NsbExdHV1oVwuI5/Po1arYXJyMmbzqTayC2vGQiWhkEql3IGd7XYbk5OTaDQayGaz6O3tdYt0deATvkW+/s9xmOMId9mRkLVxYzkup1I7dwkpcaux2EdGRjAxMREjCfaVMSdpoU2iolAooFwuOxWihq6jo0HjnpNA4Zk4dJxwUaqkN+ee6vBgH2KYAnW8UCmuz+zq6kKpVAKwk/hvt9vuUPmRkRGMj487csuC+WK/1F2T+uy92d5JRMlS6XPBVi9fLEV7bQ/40/7lW1vq5xxz1NFnVd6664Xp6NkQJKd4P5WtfI51NjJ0Wi6Xw7p169w6j3aT4UloQ+jU5W4fDRPGNagloFlO3cHDsZEOZy2DKt51DT4bcc6y+whAdUCyHqJoR2iZ6elpdxAzd3rznBJ1ZlqOQL+n85KHjY+NjcV2rCthShtSLBZRLpfdmRa8lmWZnJzE5OSks1WdCHW1F4SGUKGzQglVVQmrMlqdzCR3uaZXBbLmlW1jd1qxzzLNer2OKIpcGD62iVU1M21+brkM2mxtW67XkwjeJFgy2fYzTY9rXw37p+mwndmHGN6FZ8fwOUqSj4+Po1arufkty8f1t77Pqvi2gg/2R0tY61zFOrR0zsKxQq/ns5m+9gvtR0nzC617n2OQwpO5cAfBVi8uFpVIf8ELXjCrAbjssstw2WWXJV6Tz+fx6U9/Gp/+9Kf3QA6XPviy9fb2olQqYfXq1RgaGpqVyOYp4NVqFePj426g1AM2OXDoNiJgppdTCfQ9ERO9E7gYa7fbKJVKKJfLse3tPu9hEjhRYSxYpk9ygFCvMcObUJGvz2SsUIab4WRrOYOTQg150mnHwnIFDTW3oPnaTVUROiHj+zI5Oeniq++KamJfRDD4yxPBVi8suru7sWLFChx44IGo1+vOWafqK/5wCzTHIy5Mx8fH3XbsoaEhpNNp9PT0uINHx8bG3OK00Wi4w8SogidJSSdvJpNBX1+fOyBZt7ZzYWaJai4SqtWqW+x0dXW5RZIujvV7qtJ8izPA/677xg7a2LmAz89kMujp6XGLIy6WOF7rbrW9AZ8Se0/AV3+c32UyGTd3mpqacgeX644qu+jk3LNYLHoJbA29omQSF41UdzK0DLDTpnKRzOsZ/ojOmq6uLufoZgg2huVJsrXqeEmlUigUCo6c35Xdgvs6gq1evlhq9tqn4gX84SR83/lCMNCOADsVxgBiu52skprzczpRORbpOlHT4TkMAwMD6O/vj5GEHN+mp6fdwZccm1qtFqamptwamvlTglmfpeMk02XoUnVe+tazPke0tSlWgesjdfWH46yGflOOQNtEbblV7rLu+T9JdCWdNWwdCUfWl3WEMK+Tk5OufpPCcamjUm0X80ihoLVpti61jXSdy+81xI2P+1CHgs2DpsO61UNZ9XrLu+h3eg3JW+aN/R6Ik/Jar7ZMeg3/1nkAofNVdbDrO8i8cT7BA9j5o2e28DlsHwrROAdV2Fjq2gb2+bb+bf59anObF+5uVEFB0nul+WJadn5k59EE867Cz9kQbPXiYsnGSA+YHXxZC4UC+vv7HTk+FyJbFeuM/9bV1eUOEMnn8xgfH3ceeDWk6jXkYmoxVYU6eNKLzgkNB8P5Qg2NehsJ3QZttzZbbzY9qXrS+HIm1JWc4cEhe3snwp4C+zjLx8NGOxkbLtBVEaPvSFigBwQEAPHdYwCc6pv2yypXOB5RFZXP590hoFyM1Wo1d/YJJ/R6/gmhizBdaJNI5YKYE35dFKhaCNhJIvB6XWQwxjufx8M+uRhqtVrI5XJYtWoVGo0GxsfHZ4Rn2RPg/EBj0+v2cKoQGVZnb43be+MZ7BN0kBBcIE5PTzvihm1E8onhABkWhwtgVa9zQaxzG86b2Ne4QNRdWyS/1XlBpbvNv27t5rPZdwHEFuSzgfM6CibUKT4bFtrxEeYGAfsy+L7OJrZRAt2S6hxHlCzk5wSJcR3fNB0lpbk2I9Ftlb60BQy/pmSdjwjn+ldDfVKRzr85xlarVTduqR3V0CC6brXk3lzHC991Wj4dm7XOrCpW43Kz3nziIBs2xzqjeY+qwX3QNrIhbZg265n586ntNV86j9H2961ZKQj0pWnbgYS/79kUVM1HRGXJZLWhrLf57J6y8z/bf+08M8khYEl1bQ/lPTQt7WMsC22uzhdsXi1JrXWixDLTZB3TYcA8+fqnLZs6IXwOIN394asH69jQ9K2zZC7ciI3vrvUSsHQRiPRlCr64XV1d6O/vx/r1690BZHMBDxprNBoYHh7GxMSE2+I9MjLiFuJUKuXzebeQVs91d3c3+vr6HDGwGC+9OhR4sBjJf43BtSvwLa643YwHcFHpRk87jXW73UahUEBPT49bxLIOq9XqslxAkTSm4mJ8fBzd3d3uVPn/H3tfGmTrVV237jzf29PrN+pJQggwCCcOIpQwFiRVyAGXIwsUK3GFWDGmrBIQQCEYGbDlASvCLvJigwRUhDBFGCohKkyFgMQPZGPkxMjYYIQBg6Q39uvxzlPfIT+61un17T63+/bweni6u6qru+/9hvOdc76z91577X0OepkGAgdkiRaLxUBaF7BWmWpQCQim9I1A9KCMIucjebZKOBzG4cOH8ZznPMex0+bn5xGPx5FKpZyzxCwW/iY7jbqWoGapVEK73XZrFJnkY2NjgXsCq7XC6XgCQUZZKpVyxxJcpM7XNU7T0hkUbjQaDhxIJpNIpVLOSaJ9ks/n0Ww2HYM4m83ihS98Ier1On7wgx+4TUAv5TueSCQwNjaGWCzmUvbb7bZjtkWjUeTzecemv5yyiDqdlY3YbRCFDHwG+6PRaIAVx++BVfJAtVp1fcagTqvVQq1Wc8dZ1icJFwwYEcQqFosBRihL5GUyGbdXjTLjmY1BUCqVSrl9cThmw46bsuht8IriY3by2YYF3teT/azTRrp6JDshunmzivpJCuTZsiA8l++eMj/5m8CcZREruUWZ5toW2u4EvUkMy2azzvdVUpbObZaG4rOoXgTg1kAya/lOUVeyTAzbrOCjDWKzrQQylYylQD/FF2zQ6xK001rveg4DlCxxyue1m3xqkIREPt/Gzxqw1nYxgKugOfuSP/SrCaZqWRgGhy3rV0Fhjp+SFrTPFaDnfLPEAr0ubTMF/fWenGMkGVjRcbQBBbZTmfoMcAOr2RVWX2lAxs5/gtmDgGHqVc7jQYRMG5ji+8KAOr/jfGKwgvYsSx/V6/U1+4cxkGSDJ2y3BdJtBgP/Jral9ipFSY76vS8DUYF0fq/jpmMzaBz1HbUb8lrgnu3TcnY2MDhIRrp6b2UEpB9g4cubSCScQzEskKmKktFdBUlZI5U7ZgNrQUOr5Pcycsa+4KJORbYTi4S9Bhc5OoS6cZum4PE4GiG6GSqBlIMoHH+ytgfVJT2oQkNFDRZNvfSxQy4n0OVSykjhj+TZLPF4HLlcDv1+35X8simgPkYS1x8GbdWhYaktOuxk0Gl9amvU2xRl1V0KXlhgQ51RDRRq2q/dnJslPJTlzJIg6tReKqGtQjuHYICW4eLzKmttp5nHeylkpHOzN9p+dBaVha/kA4IfyjS3nyszjH1n7w2sAmla/k+dVR5LMMpmAuo89tU8VbvLim8M7TsxrDxbGGIjXT2SnRCbleljAOt7aG1s/rbvur2Wvv8+faWiACvb4ANwqSusjuY5+gzaRupfZSWToc4ya1quQgE+XkNLitr3yfbLIEa0FQXSfQxdbb/+TVCP/TJond2IRetjCRPstUC22iX2OC0fwjYNWssHtUXvYdui/TKIca5EBB6n4PiwLGR7TQXS2U7LIrfg67DrrS9YrN+tlyngE18/6Xuoz682repvDZD5Al/sFyuDsjTsfQetO2q/Kig+TF/ZdvjeNZ894suu0PHTecM+GAbTG+nqvZURkH5AhaAxwVm+cJtduEOhUGBDTdZq5eZkBIITiUQgIpfNZpHP5wGspofvtYNBw4cbmxG03oyiWU9oGKVSKUxNTSGZTGJsbAxTU1Ou7ipBcy5sykiPRqNu4zcNWhxEQL3f77tsBjIYuZHcXs+D7Qg3xWm320in0zh+/DiAVWOJxnC320WlUkG9XncgxUghbSwjhT+SSy0+I3q/CDN5lI0VCq3UKadDkc1mA86G/qZ+AVYdN2UOz8/Po1qtBoxxgpWsgc7yZ7p/gzowBEN5L9VR/Eyd20aj4cAG6jUFXS2Iomye7WSLDSPRaBSZTAaxWAwTExOYnJwMlKtjSRmtn0s2Npn1XOM5JgdRWq0WZmZmUCwWceTIERw6dAih0EqdcN1QixuLJpPJQMA8mUw6/c6/mYlGBme73Uavt1r7nOARmeYEhjj3lWmoWV/Ly8suQ1KDMwRzuClqrVbDhQsXXPbD9PT0GueYc5sbmm1WfHPTMuMuVxnp6pHshNjylz4SFv1XBddUFOwCVnWSAsm2JIKCkRQybzV4x3bZmuRaAkwBYi3jwmtSz5IVT1BYNzNeXl5GrVZzWTrFYtEB7mS98xwlalnWrga4tfSHD7jkOcru5XFav131sw1sx2IxlzHHzcZ9ov1PX1zXYR1HzTjgTzwedxlj+XzeZd8NIghSb0SjUdTrddRqNczPz69hwuu84b30M3ttG/ixQR1LSND+tf3MY9YjWun1u92VzThZFSCdTqNQKKy5Fm0tDYrrc6uO5W9bcojX8wHPOk8ssEvRZ9Vr8V3n35rBRRJFoVAI9LOWelH2uRLY2O96X22rZsHp/ND26fOpja3zUfuBY853TgkqGoTxMc+1rdo/PrHvLZnowxIuR7p6b2UEpB9QoeJnxNyywIaVUGh1wyi+jEwDpkOudZtouBw5ciRQO24/AKhU3lT2NGJ2ol00MOLxOLLZLA4fPoxsNouxsTFMTEy4zbCskUEWGIH0er2OhYUF1Ot1V+rloDrnBNJrtRrS6XQAkNnrubBV6XQ6bjf4TCaDEydOuJqtsVjMZWosLy/j/Pnz7n05qAGRkYzkchN11IH9ZSjSmaaTzDRwAuncLBRYdRRarZYrywEgUD5MHWoA7joqdGzT6bQD47lRNJ0vrtt0AmhbECAlwEpnTB2PZDLpWHZahkP7fxCQ7kup3UnR4AGBdNoJDBbQOSVwQiczlUq5EmxkEh7UNb7ZbOLChQuIRCIOpKA+46Ze8/Pz6Ha7ruwN5xh1YS6Xc+VvaAdq6jbBb5YsYJCFjC1mINCJ1frmzWYTzWbTBaU5j2l/6kaxmUwG8Xgcp0+fxszMDJrNprPJLNimgaidqMO/HYd1JCN5NorW1ub/lmlNPTDo3dJ3mUAZ9SDXCN8Ghxa4VaEO5t8aTGY7lagGBGsha/CYgFcksrLPWLfbdVk11IcsbcHNsZnJm0wm3SbfXDsTiQQymcwacFADDgQdtc0+38uyjK1dpFnmBD71ewajtRyNjpP+7esbBSu1RKYF06PRKMbHx90+MrlcLgBy87rUC2T0R6NRZ1NVKpVAAJX3t5ubKyN6UKaeii8gwDZZIFqxEg2A+K6tRD/ObQLpjUYDU1NTrh8sYM8+0PGw9pSyu7X0LIlfSp7wPSf7XwNIOh70f3ktnQOa2cF+5v44fKfUxuR7U6vVnC3A51H/WvvBB2AzWKblXjSgoH2upV80uGfXC8XBLEtc55vNTNFxsMEWu9ZZBr4G6Paj3H///fiDP/gDXLhwAS960Ytw6tQp/MzP/MzA4x977DHcdddd+O53v4tjx47hXe96F+64447AMZ///Ofxvve9Dz/60Y9wzTXX4P3vfz9uueUW9/29996L//W//hf+/u//HqlUCi9/+ctx33334fnPf7475vbbb8ef/MmfBK77spe9DH/5l3+5Q0++VkZA+gGWnTbqrXLUBcE6w5Y5sF+AUxtB3cl2aWo4AXs6dzTk7AJLY6zf7zvnkufRyNpL0Yi0Kk0gmGI5iN3BTcdoJPb7/U2VGNovonObbaeTH4lEHKux2WwiFou5+q2sp07DZORory+jyPlIdlP2w5wZpI90feX3NO5V1FHXTZ594IBl0QAIGP90RHXd1/8tUwdY6/DSLlDdr8wh/aHzrHVY6VjxWurM7dR4adAhlUohlUoFGHJ6HzrZyu5KJBKOubVfbBuKz3kHggCJrx/prHOD10QiERgPBaHVuQb89ULpHCvQY51RdbC1rq7alzr2GiBSxpfaH9S1usFtMpl0AShlH3IuNxoNx07j7/2wNuxnGenqkeykKICln1F8YCRFfRMLaHIdsv6LXl/9VZ6jTFQVBf15Dd7T51NafahtsPoQWFtvWdcprn8+m2Gj9X09UTB9GH1m7+HTOT7ff1CZCz4Lg+06vloilTpYS6ZaMJrXISjKGu5KKtR72CDCMH2nto4PXLWANu9j/ybYDSCwwTmDz9S5tg9JXCCJod/vr+mT9Z7D4jf6uWVd+2w6/V7fmUEgsL0vsLaGuYLR/E2sgAErxRiot+16Ye1SfU6+1zYAY20Jbatdl3zjrBvT+t4jzRTwvRe+vh203unzDFqjrOy2rv7c5z6Ht7/97bj//vvx0z/90/joRz+K17zmNXjyySdx8uTJNcc/9dRTeO1rX4s3velN+NSnPoW/+Iu/wJ133olDhw7h9a9/PQDg8ccfx2233Ybf/d3fxS233IKHH34Yv/iLv4ivf/3reNnLXgZgBYx/85vfjJe+9KXodDp4z3veg5tuuglPPvmks/8A4F/8i3+Bhx56yP3PPRUulYyA9AMqGt3djlOgzpVNieL3fJlVSahjvhUm/KUQG33VaOhOXDuTyaBQKCCfz2NqasqxBzOZjOsPXyRS2fGMHlerVdRqNfT7fcdM320Jh8NuYw7LgKDBw9q7ZGKrccHMBbLsZ2dnkUwmHavgoIgaE9Fo1G3WVygU3CaqqVTKbcTWaDTQbrcxOTmJ+fl5FItF/PCHP0S5XA6kzY1krYyc85FcaqGu2uv5ogFKMm+SyaRj45Blw03CQ6GQq3euTgcN9F6vh6WlJczNzWF5eRnNZnPgvaPRKNLpdIAVRECZG5zphlLsL7KTycxWh7Df7zvHhhs9AsF6sAQE9KdcLrvyX2ovcC2Ix+PIZDJOzwwaN+vIrTe+dDpzuRyOHTuGQqHg+ow2k4LmoVDIse1006p+v4+5ubmAs8n775UQOLZjw3aTPe+Tfr+P8+fPo91uI5lM4rnPfS6mp6ed095qtZDNZgNsSjLFCAA0m03H7ragD2utW5YfNxhTMIi2kQZwQqGV8gEkHRBcajQaqFQqgWdpNpsu7X16ehqTk5NrAgOc0+Pj41hcXEStVsPs7Kxjyu8122s/rFODZKSrR7ITQl/VllhQ4TvL95drrZZR4Rqs5RoUaGJgTd9/Kxos5DnaJpYx0c0i6RfwOAXiLUhOXU/d3mq1Au3VgKT2j65FCiZTR9myFOuBa4P8XQaLrZ+q12P/+IB0BRB9xCsfw1vHU1nvlHA4jHQ6jUQigWw2i0Kh4GwUC37RzlAgnRuwp1IplxXFUnMsoecDNtkeZXprsGTQJqE8FwgSFdRe0/bS1mP2G59J9Vq9XnfEBd67XC47G4bnMYuMtuAgcJYEN7aR7dTNbi0gbd83BZXZLgtO+46z16ad0Gq1HFg+NjaGsbGxNe3n3FtYWECpVEK9Xg/oapaOUyKGZjOo2LI9Oja6HumY8zu2RfEtW6aJ46vvhM244XrE7+26p4C/Xau0H/djaZcPfvCDeOMb34hf/dVfBQCcOnUKX/nKV/DAAw/g3nvvXXP8Rz7yEZw8eRKnTp0CAPzET/wEvvnNb+IP//APHZB+6tQpvPrVr8bdd98NALj77rvx2GOP4dSpU/jMZz4DAPjyl78cuO5DDz2E6elpPPHEE7jxxhvd54lEAkeOHNn0c21VRkD6ARZdSAZFIIe9znqlKazzo4rEt5jvpQyKEO/EdVkCR3+o8AcFEzQqTue30Wg4EMI6h7spXPwJirDuKZUmFQGZ5gRRVHk2m02Ew2HUajVUq1V0u13kcrk9e6atCp+L4xSJRFwpAALp7AumwzNlMBKJ4OzZs4EyACPxy8g5H8luyH6YKwowKsuKxrPWLieg2Gq1UKvVAmmvaoTX63UsLi5ueG/eU7OlCOLHYjG3ttNmiEajznkkAwpYrWNNkJwlYQA4QN4GkS0wQCCWbSDQwHVSAYONgMVhgGwFdbmPydjYGIrFokur134lkK6borImLNulmQN7PbeUyUVnToMtGwWSGPzOZrM4fvz4mvmodh7Zcbpu12o114+cl9wLhkAKSR60J7rdrjtHn4MlgSgcF2bs0bnmRrpajigcDjvQq1AoYHx8PFALlm0mkMXvisXivtrTZD/MKZ+MdPVIdlI0UwQIbkxJ4MpmaFkmKdcDLaNA4d88R/0UeyyPZ2kUZZwq81fJahbA9oHZqnv4zLbMmY/xqvpSiWpKDANW97FQ9vpGov3iA/TUT1bd4WP82nMU4LfrmGXk0obg51zrGThlSRsCx77sbmU0M7hCMlgmk3E2iS+YPAjfsBiGjrMGin3n2UAyx8kGVqirGJxXzIZlTNS2IbGx0Wg4IDmTyQyFZ+j1beBivZrgfCZtv37vK8mkv21QSQFrZoyEw2FHRNTrc55rJmQ4HMbCwoK7vq8MoPajTzSIovaRDUhZlj77jnON5Wgsw57zX8tMse2c7/p8eg+2Rz+zfT+sDt4JXV0ulwOf81200m638cQTT+Dd73534PObbroJ3/jGN7z3ePzxx3HTTTcFPvvZn/1ZPPjgg1heXkYsFsPjjz+Od7zjHWuOIfjuk1KpBACYmJgIfP61r30N09PTGBsbwytf+Uq8//3vx/T09MDrbFdGQPoBFX2ZyRbmJlrDlNVQJ4lRUTq8G52ninY7L/ClEG3Ldpj6KgqGsKwLgZFhGe800Pr91VQ0ghm7zXIjmMLNXdLptKv9rqn/ZEty81mC69Vq1bEhOf6ssZpOp10NUzqu+ynQoqIpltysL5lMIpfLuc1jWRdWmftkaxYKBbTbbbTbbWSz2UD0fT+9EyMZyUh2X9QgJpuGtaDpVHCd1PWCTnwikXDOIq8z7FrKe7JmtdaiLpVKATaW3ptrPHU8WchWzxGE0DYrK4iOLR0GOpvqDHEdJTg6jO0xzLoaCoXc2p1Op9FoNNx31uBmmxjEUJuGDhQztRqNhmPM75RtsZEoqJJKpRxjknVTFexgH9brdTfGquMsY6zb7TrbsdPpuH1AWLOUTK9UKhUACTg/GGhQRh/nC3+0pj6dZCVgWKYlhbapguDpdDpQJohjE4/HMT4+jsnJSXctfc5QKIR0Ou3O4zu3Hqtzt2RkJ4zk2SKDdJd9BxTU5W8NGPr8Wwv2cn2xTGpdFyy4xXsxcNhut90eJnpPux8Z1z2t58xAMUtz6Pdsh5KsKMwCov+lazXv5esv37X0eB/Q7etz3/mDggiWLWvboIETZf0S3NXyHizLogA99Y0y5BUg1nbRFmEmFf101YsW5Nf2aDCan+l84ve+/lMyAgly1HEkCTCoT6Bf+5I+JP1QnWvtdhvVahXtdjsQKLD3t2NJm9LiC/oO6FzSoLeOteIBqud99+QP578NYtO+yGazLujuA9Lr9XogW1Pr4vtE7z1IFIhXW4hin32Qra3z0xJHOH/4XPre+WwNbYMvcKHrym7IFVdcEfj/t37rt3DPPfesOY576Rw+fDjw+eHDhzEzM+O99szMjPf4TqeD+fl5HD16dOAxg67Z7/dx11134RWveAWuu+469/lrXvMa/Kt/9a9w5ZVX4qmnnsL73vc+/PN//s/xxBNPeAMDOyEjIP2AChV+t9tFtVrFwsICEokEJicn3WK+0fnc4KFSqWBhYcGbdjZIlBmwX5wBy1jYCaBfjTEy0lOplIvWaXr8ekLDIBRaSSFPpVLo9/suWr1b/RgKhRz7PJlM4sSJE84pJ+itipftqtVqjsl17ty5NTXBi8Uims2m6x8aMgTn96Mo2FQul9FqtXDo0CEXXJiensbU1JQD0gkwNJtNLC8vo9PpuGDKoUOH3HWr1eq+eSf2m+xE5HwkIzkIYkHLUCiEer2OarXqypno+g+sOjQszcKAq24ONYxw02TqrnQ6DWCFwdFut5FIJNy6zzXQst90UzcVOlOsH07dqPU7GaS12W68JvUDnRsFsdeTYcDPSCSCqakpHDlyBN1uF8ViEcViEcePH3fOQqVSQbPZRKfTcfdutVoBgJgldyYnJ9FsNlEsFgMpwbuxHjFjLJFI4OjRo66c3NjYmCujohvG9no9LCwsuHFVIIcBXh7XbrdRKpWwsLCAcDjsSppR35MZriV8OLbLy8vOOY7H46jValhaWkKv13NzQQPQCpjze7XR6HwzsEHQm2w9ZgB2Oh3U63UXvJ6amkIikcCJEydw9OhRdLtdVCoVB0zQER0bG3PBJLuJ7Eiv+GWkq0eyEzJIZylwaY8nm5OsYq4Zyma2oBfnnAZu1X+zBDALfBEEbDabgTVL9WEikVhTwgOAW2NV35GgxjVYfWsLJgNw6xHXJl7HAu1WB2pAwAY1db3XPrJ/azDfkuS4jtpyGFyjlcHPNZYBAQvC096hXiPATLY2+4OkJQY02BYLKqoPB8BlffN+JH7ZQC2fW0Fi26c+cHYQKxpYYfDm83lHguD4KiPdAnkE/rnPFvufwrIvtNfYR7Z8kZ6j42D9eQVndWzY33zv+G7QTtPz7Qaddg5RRysjPZ/PY3x8HIlEAocOHQr4y7RrmQHS6/VcsCqZTLpSPXo/PY/PrFkgNmiigShbwpjzTd/zQYE2y/BXzEltaG0jwXSdu9o+n03La/rKLftkJ3T1mTNnkM/n3ecbgc723bDBzGGOt59v5ppvectb8O1vfxtf//rXA5/fdttt7u/rrrsO119/Pa688kr87//9v/G6171unSfauuxPhGskQwlfHq2X6lvkfOdp/TYqRJ+SWO++/Hs/iUb2dsrZtcaYRmc3w7amI2rT4tTg223nnEaMKiIrVIjKTKOxwjbTAA2Hw451yXM3mo+7LWwPFRXZI7qpCw0IZdarogawZsPZzWQoPFtl5JyP5HKSYddsddSZTq5GohrLVq+oob6Zd0AZfXodlpPhvcgE4t/qTPE8dVg2aoM6G5adYx0YBTd2KpjM+zMwTFCVDhoQLEtn26bBBHWylIW0G6LMPLL2qG8ssKRBbc1AWI8cQTJGs9l01w6Hww4AUcY52wMEa+Iz4KBgkLWVLKilQIAGkHxOlAI3dm5o32h5JGubKXBDfe4by+3aX7tlv+2WjHT1SHZKFFyyzGbLggUGl5hQ4I6/1RfR75TFrt8puKVi1xtdO7UEjGWr8lg9hz/8zAJ7/K1+oAWuVf9qe/WZtB3r6ScbtLDtseepTaDHaxvXWx9Unypb1/adz4+2Y22fQ9th/X19Hu2PQf2vx1hAT/vbXkPBeg3K2A1TqSMJblMvU3gc55dtoxIWtKQP2+7rf/sdj98I6NTn0nHhtXi+7xo6Hjr3NfhiN5K1wRzeU/W5+tPa54PGy9cfNkDks0EBBEqx2Hd0PSxNf/S91LYMCr5sdM1hZSd0dT6fDwDpg2RqagqRSGQNU3x2dnYNo5xy5MgR7/HRaNRlEg46xnfNt771rfjTP/1T/Nmf/RlOnDixbnuPHj2KK6+8Ej/84Q83fLatyghIP+DS7/dRKpVw+vRpJJNJdLtd5PP5NZtHMiJG8LxSqWBubg7NZhNLS0uBjSg2uh+AAHDKxXKzwPJOiy7iBEc1sLCd61rjYSuLnTU+rHFir2UNLZ8hpAbEeouzgiS5XA7T09MOSN+oFBAj07lcDolEAoVCwUXQa7VagInRbDZx7tw51Go1FAoF9Hq9AIN/r0FmNXTn5+cxOzsLYDVdk9F5/dE6wf3+Smke/lbDydb1G8laGTnnI7ncZFgArd/vu80OY7EY2u020ul0ALhNJpOOeTs7O4vl5WVXN73T6aBYLG66fQTQyZQiE10ZawQ4ub+FMoyz2axrE3U92cYA3AZfBHdZsoXBVK6NZBjSIaNTs5UgwUbPW6/XsbS0hFBoNb262+1icXHROaU8Vn9TFMzgmmVZecMIHWnaJsOk6WqwnkwultwplUoO6A6Hw64kn9bxDIfDmJiYwPLyMmZmZgay/TnHarUastksjh07hmQy6foMWK3xq/1BO0RL4rDWubLYOA58dgIC1JnKJuT84xzVjbs6nQ7m5ubw1FNPuX6hns3n8wiFQi5jrtdb2XCO91IAgXqc81H3MrFA21bkctNPI109kp0QC54O+l7BRF99bP6tdrr6o9RxGsjlOqQ+kgXa7f24RrPUKfdGisViyGQyAcYvj+feIVoqq1arBdZqMpMtSOkDctlW3p/H85n7/b5jMPuYs7we/X5m+7A/7P3Ud+dvLQenfrT1W5VcpcFR+ku2bdSlqlP4N/uR67Oux6qP6W9StzAo3Gg00Gq1XDYAbRbqGD4T+5G6xALNPkKUltlQm43/M4ONf+u46DhoH4bDYbe5d61WczaTBppJBKA9xvtQX2rGmI6LbbO2iW1n3zO4zb7h3xxD9i/7SPeOYRuZPVYul10WAJ+D77aS0XwgtQbaqa+VyMB76vG+3xsFDdg2Bt8VROd1GHxX4gDtGLVXLa6j7HfbTr2/fu/DbnQd20h2U1fH43G85CUvwaOPPopbbrnFff7oo4/i5ptv9p5zww034Itf/GLgs0ceeQTXX3+9m0s33HADHn300UCd9EceeQQvf/nLA21961vfiocffhhf+9rXcPXVV2/Y3oWFBZw5cwZHjx7d1HNuRkZA+gGXfr+PcrmMWq3mNl5aXl52aePAatSNKTetVgtzc3N4+umnndLZbB0mGg3qkAN7yzpmOpn+7HR9qa0A6IPOX+86VDDKnrLGJRDczGY9J1CBdKZEs1a7zwizQpCEQAwdeBqbNI6azSYuXryIxcVFHDp0CLlczinNS1WfajPCCP/y8rJzzqPRKA4dOoR0Ou2MCgui82/7vUbZlbU+kpGM5PKWrei6er2ORqPhjEc6izTYGdys1+uYn593JbOq1eqWGdt0OgkgZjIZpze03nU4HHZ1LAl6c+3mJpzcMJK6gA5wrVZDr9dDLpcLOIA8l+fzeOoqTS/eCeF16/W6SxsfGxtzjnmxWAw4RoDf4SHgovqV/bWZMWBqN685LJBORzKXy+HQoUPodDpuk1AtE1CtVt3+OJOTky4wPjY2huXlZczPz6/ZdI3S7XYxNzeH+fl5TE5OOjYS2emcNwQiGARRRhkdZOpFYHUPFgsmAXBznP2p9c5tWj8BqH6/j/n5eZw9exbhcBjj4+OOda+bnXOOEcjSvuf8Vga7TY/fDog+kpGMxC/KcB0kBMG5vnANHPRu2uvpusrvFOjUTZSVGa2ZUxSuTfQneS3qA/oJPLbX6znQtlqtBkqAKRtXwTu9p11zLNmKvp2C/r4SLzzeErD4/Own66vbY3Wt1HO1rUosY5AACLLJNWChomC4/pA0QNtB92rR59AAgwXSm80mWq2W8001gE0f1sp6QLoveKB9pM9Le4NzzGZysf/1N20u1lcnOYHjrnuCcF4lEgl0u10HqOu4WaGOpe/Pd4PjxXlOoFqDNnbM2M/MwAbgxkt1fblcRqlUcrZfNBp177cC6RpUUvGB6bac0jD2oo6nT6/bgJjFY7T8kLZRCSXDis4nzn1fu/idJQzsN7nrrrvwhje8Addffz1uuOEGfOxjH8Pp06dxxx13AADuvvtunDt3Dp/85CcBAHfccQc+9KEP4a677sKb3vQmPP7443jwwQfxmc98xl3zbW97G2688Ubcd999uPnmm/GFL3wBX/3qVwOlW9785jfj05/+NL7whS8gl8s5BnuhUEAqlUK1WsU999yD17/+9Th69Ciefvpp/MZv/AampqYCoP9OywhIv0xEGcF0um1KMhX98vKyW/Q2uyBQbAqbsgH2AkzXKDXboxHs7VyXv7UECP+mMt/omdk+9htL6tiUNAABhablQiyQrpF9jdAPAiZ4Xa3Nt5mxUkBfnWkrylSrVCrOaOA9FXDejbmixhbbxE1cyIAg44RzR41gTc9UAMpmPmw2cKMReR8zRSPd253H+0VGLLeRXC4yzLrvO0cZPs1m0+nmaDSKWq2GSCTiHELV0Vud/wQE6NBY9rc661z36GxRjxBUt+naVnfZtYqBS57De1OP0hHbKeF6qkx3rq/rOW0K7LOt+iyWdWTP1z7gcwNwwG2/3w/UGl2PgW91grLD1CGm4w4EN3jTvqeDvl69TY4HgyEEpC2gwkCy3ViWwnmjwJk+B0EXFe07BQ8AoNFooFarOca7ghB8Th1XPjdtMvY9AAes82/LKhtW9HnUzvKxAQ+6jHT1SHZCbIkNHxOTawvBdGsLb+Sr6DqgrHPLdrXzUv1W333YJh5Hna3gcre7Ug+90+msWav0mdWX0NIbuiZbhraueVx7faLX8BGjdH3SQLbtE984qU+pvrUe72Pc8nNtjw8j0HVUvxtkX9k2WntD9atlGfuY5jrmvlrcHGsfuKyAp26Kqc85qG/4W8+nzcUfCx5TL3O+kZjhA+31uQcByr4+0THzER1ouwJw9mm73XZzn3ZrOBwOlDEc1D61PfUdsX64r30a+NAMFR0ba5tS9/vwFI6His6hQfN/kNh3zILogwB+fdZhfIzd1tW33XYbFhYW8Du/8zu4cOECrrvuOnzpS1/ClVdeCQC4cOECTp8+7Y6/+uqr8aUvfQnveMc78OEPfxjHjh3DH/3RH+H1r3+9O+blL385PvvZz+K9730v3ve+9+Gaa67B5z73ObzsZS9zxzzwwAMAgFe96lWB9jz00EO4/fbbEYlE8J3vfAef/OQnUSwWcfToUfyzf/bP8LnPfc5l214KGQHpB0RUYdlFkS9Rq9XChQsXMDc3F0hL4Tn9ft+Bt+12G41GY0tsMF6HgH2j0UCz2XSpQ3sFpLdaLZTLZadcht3AbJhrk21dLpcdA4rPqbU5fefy/Far5dL0yS7jBmDA6s7RsVjMMcsY/bUKTwMHXNjJDqcy08VVU795za1EO0OhFWZ5NpsF4N/lnW1aXFzE8vIy4vE4pqenceTIEcTjcUxNTSGTyawBkHda1AAsl8tuw7gzZ864sSyVSojH40gmk+j1eqhWq2g2m0gkEm6zNjJAGBygwVCpVFAul1GpVFAqldw9hplvGiSJxWJIpVIBgITvKMeTaXMHHVAfOecjuZxkO+B2qVRCtVoNOFyLi4tIpVKujMdO6DANFh46dMilp1Of0BnSdOJIJILDhw+7ey8sLDi9zzWp0WgAWNEtmUzG1frk83Ed02Aqgc1Go+F0NIMJ2+lPIGgbdTodt0mV6lGrQxWMpv6kE97v9wMbS/vsJE3n5g91IMFzpl6z9B51x6Da5exT6mzqJqZ9p9Npt9noxMQEwuGw2zi00WgE2Fu5XM4xt+fn59Fqtbz9XK/X8fTTTyMSWdlAlFkEJ06cQCaTcY4xgXaWCOB84PwKhUJOl5G9xvPoVOoc46brykoko7xSqeDs2bMBdiH7lo48SyEpizWZTKLf7yORSLjrh0Ir5V/6/T4qlQoWFxe9ASXfnNLvotGos10Y7AqFQm5uEVS4HHTVSFePZCeE2SV8L7TEFecJ/RJgFTRWVq+yMy0AzYAaA5YaDPb5FjxPAVKWk1JAXYOq/M1Slhp4JUGHxBotz8E2q+7Q8h4+MJ3ncO+KSCTi1l/d04p9YgOLFoBW5i3XbH7O3zaQEAqtbo6oxC/qfdoLakdQ7LvPYKz6sLb/tP06zhqoZHBUAxOKgSjBiUF6Oz98ulqDFPTB2Q/Ly8uBEjHUa+wb6mfdY4TjbgPRNpiivjkAZLNZ9x1Z6LRBdNyAlXJ64XDYgdaxWAz5fN7ZMr6+1+CJnWs6jgpKc15roIP2pM77Wq2Gubk511/1ej0Q9FHg2QYYdJyVDMqsd96DwnNtH1tiH/1qndO0K3RzYAXwgdUNcQG4PueaxfbRvvW93xrY5+c6B2z2jJ6/XkBkPdkLXX3nnXfizjvv9H73iU98Ys1nr3zlK/HXf/3X617z1ltvxa233jrw+43amkql8JWvfGXdYy6FjID0AyJW0VkHgC9orVZzn+tLqS/2Thi5dJxYSoZR9r0QPg+Zd1x4t8I4Wu8edJK4C/vy8rJLU/YpKd/5apCosqRCoMJnqjMVNIFXFRqn+luzA9TQpOKxjPTNjhmvYzc7s+0CVsASsvap1NLptKudvlvzhSBEvV5HpVLB/Py8C2Iw4MC5zLHV+aPzSOcAf3TT3s0w0jkOFkhn/VhG9GlE2ej2QZWD3v6RjGS7wjUbCL4PGuCmwb5dUWa2Zs2oLcF1hs4CAdV+v++Ci6pP6FgCcEAimXt8PuoGguWaHcdAvJaP2Yl1QYFatlEDtgoeaNsBuBIkCvbob1/7qAu5blPv8remQWsdzvUcJWW10all+jUzF3hd1iNvNBool8sBQALAmnrjg/p5eXkZpVIJwAqAk8lknAOtziLBjHg8HigLxD4DgvaGOuiW/ak2De0pOucMNrC0kYqSP7TsGseVz07biW1WMglBFopPt1ogjoEXjjdtAQ2KX2667XJ7npHsvvC9oH7R9ZTzS9cCZZYrWKbrBtc4BaCoc6xPNYgVTH/Ygs+qIyyYTt9A78M1hSCoBf1ULLNX28HPtKyM+iHhcHhNjXNeX/16Po/qOAWntWSKfWZ937VNykjns1pAVPvWBgbUv9WxVBBT2+8LCKxHIrQgtY6D6n6u09RNfA4C6QSiNWObgX7Vy9peG6S3+lvLmWi7bbCIfj/1rt5b9SuwGoxhsFgBfe2nQeNjAW37oyxyi6MQ+yHgzyyNRqPhSF+6wbsla9pxZP9zPmhpXs0Qp+g7rYEPO798+wTyevTZ1bawOIwGPIjV8B1geyyr3QYHLDakc1XXFxVfUGsYGenqvZMRkL5PRY0ATRtSJWONE42u2ugvz1HFpY7xZoWLaCQScQxrLuRkUO+G6MJWr9cdI50bY+wkkM6a8OFw2DmtVIYERG0qkZZyKZfLaDQaKJVKqFQqgchmOBx2Ne6pAMhAUOVvF2o6tGQuMJWKfUMFwP9tJH+rfTFsQIZzrFKpYHZ21tWqzWaza55Tmf3DRmbZBraH85JAFMH8hYUF1Ot1VKtV95kv/TIUCjkHPJVKIZPJOKC92+2iXq9jcXERzWYTMzMzmJ2dxeLiIkqlkktDH9QvodAKWy+VSiEej2N8fNyx/7gBIOeCsgHq9brbZK5YLKJarQaecyQjGcneCQ16goUEhhls9K2XdIyoq1XX+xz5ndBj/X7fAa7xeNxtWBUKhVxtz35/tRQL70nGuTKQbJuoA3VDNdaXpV4jIywUWmEHMxC5kwFv9jPXxng87uq6837hcDhQk9syscg6ov4gg0kZYRwvMs51E0sGCfj8PF4DCWR5KyNKgRnNgNK69HQM6Qi2Wi1EIhHXj7wP2ZlkdW2mPBB1SygUwvnz51EulwP2RzKZdPclUM/x5LywLDYdH/3hOFUqFVSr1UCpNLI/ragNzJJsk5OTmJiYQK/Xc/qdtlan08GFCxewsLCA+fl5l0lhxfaNbiDOMU6n05iYmEAkEnEb2tH2i0QiqFarLhOPgAKvPXJ0R/JsFX1HuEZprWGuBQpqWqKNDYJaEFqP088UIAMQKFmmNr+CckAwYGfvwaAa/+Yxyra39yaQZq+lQLcCzO12G/V6PQDSKrhH/9MG/9h+2iRaWs32qQX8tA0cG+pC+kC+frZgtu0zLd1jn59BTQLHPJ7+tOpNZYRT59Hfp/7gfRRU5v/qTzPwT5IA97risTyG7eP40kZSvW0DKz7RMbMAswbvNSOO9gn7xPZfo9HA0tKS2+CdfjTtOetP6yajHEP2PeeABrqow2gTaRkXzQDgHOEzWFBegwpsn/rV3Kuv3W7j4sWLmJ2dRbFYxOLiostoVOxK5wNtEmYEsA+YOW/3SiBJgM/B7M9qtRp49zleFjfTIInadxoYsUG+9QBx3kffK/UFdgtLG8nWZQSk71MJhVZZXolEIpA2ZIF0Oojq6KoC8hkHjHhrhHQzQkXCFPVoNIp8Po9sNrurC4Ay98rlMhYWFtyivpMgI4F6KpVsNuvqzANwykE3rwAQKAUyNzeHer2OpaUlLC4uujGjAie4nEwmHcCcSCScQWBLsVChU6Exms15o0Yqj1fHXZXSZvtiGMa/BnkINkciEczOziKRSCCfz2N6ehrJZBKFQgH5fN6BMYC/1p+9Ptuj6eXlchntdhuLi4uYnZ11AHS9XncRbzV4tF+oiFOpFHK5HAqFggMsyNo7e/Ys6vU6nnnmGVy8eBGlUgnz8/MBRqAVvg+FQgHT09PIZDJ4znOeg6mpKQek6/vKdnJez8/Po9ls4kc/+hHOnj2LdrvtnvMgyXYAhREQMZL9KArMkpETDoeRyWSQTqedrrXrLpnn4XDYBRHtnhibCVpuJFxLer2eS3Gmc8nyIQQhuaYCKxv5EPhdWlpa4xArCM1+UNuCOpHgfSi0UsKGjtMgtrcKHb31RNcW2kKhUAilUgntdjvAXmYatHW2CfBUq1UXlF9aWloDDPM6XLv5bKlUKhCoVfAnnU47BjkA9+w8lo6oOurMoiKIToeZ9czVxtG5ROYig/e6KbgSK3x9yrI4LH9G4H9iYsI5qNy09uTJkygUCohGo27TetqkvDb7V9ln1NUscTM7O4uZmZkAiKBzUOcB7eBer+f2FEin0zh69Cja7TZmZ2fR6/WwtLSEc+fOoV6v4x/+4R9w7tw513fDCG2URCKB6elp5HI5ZLNZHD58GLFYzNndwCrIMTs7i6effhrNZhMLCwsolUoBR/kg6bCRrh7JTgl1pNraBIq53rVaLUco4lpBm5j2vfq1QHCeKajF9c1mX9msXmWvKmAJrG4qyL/tnFafjIFLWwpDiVLUmRZ8Vv2jRCmWFCHxhhlN9DnZJgX5bLCC6y7PoVj/R/uD7eQaXq/XXaBUs9AUV2A/a0Ya13LNNFDbgYArCUgEghWA5NpuwUUF9+nbEYxVIF3JSdls1gGrtLGUZUzdzHtSzzFozOdi220wWIkRvvFUO9Cnu3XfNI4p9TnnpfWJSQwLhUKYn593baeupo3DILCCw773Rj+zjPNisejA50ajEbgWj7Eguupr2ojENwjAsyzd7OwsGo0Gnn76aczMzKBareLChQuuTIxmC3CMeU2S3mKxGMbGxpDJZJBIJBxBzb4nAALs+dOnT7t+t9mZGuTQ9UHBcX0ffCC7rhe0/7i+qL0HrAY7lAi7kYx09d7KCEjfp+JbgPQltZFfLu5cZJRBpOA7r81FeqtOujo6NIKoaHUhuNSibaAi0kVpp+9Fx5dgCRX6oPR0prVz0daaXwx4qELQHypR9qeWUtFACj/j97oZmC7oqqCp8Dc7RmoI+5gV+lsXd2sIs3wAFbKmx5GRouyKQW3hD8EIMvi0VhvZaWQ7+AxiG3DS63PcOYbVahW1Ws398B42BY2ixj+j5NlsFrlczjnqVPgWSFelH4vFHDgXDgfr9B8UZThS+CO53ITrqL6/qrsJHloH0vdjr6sB8O2KOnPU1QQReH8F+y1LTddJBUZ5bd+6qr/5HAqm7lSQwPeswOqm6FxLaZ8wmw5YrYlp7Qhb5kufn864Zcupk67gjbLfqZ8t68nqHnXs1BlTZqPqYR0bte1s0FvBG9tfem/2H9umG8NSR9OO4Q/7kPamtkEz48LhcKCfaSdtZp7r8+jfaqNRV1erVbenz0blktg3BCIYWM9kMshkMkilUgHACoAjL1A/Ayv1OpVxtxNlmnZTRrp6JDsllqEJBBm2XNN07aHYADTXj0HzcyPgyYJclmHKHy2Rqe3XZ9J7WWDNJ741y9du9TssK3bQdZT56gNzLVDq8x3Ur6d+pg7U4PgwokFt6nx7D7ZLS6ipHuF6rm1Xn19LbWrpE2B1zzH9rSQ/4ij8rTab2nIamFDfVfWZ/ijWYsdK+8D2kSW56Vjpb9vHzHzTIDkzo9VWYz9q3+s8sJkUJCMQ3yHGw31jNDjM+UIMSt8pH6lS50Cn03F+O7O8+DfHlWOk19ExjcVijkBAnU0CKjEFfX857rTPeLwlkWgwzo6HD5vgvOIxiq/47Gde315T16Vh3rmRrt5bGQHp+0x00eYmSspI12g7FyOm8vZ6q6U+rDJVh5yLr0aerRLaSFTRF4tFt8iyVAUdjmEjapsVLecyNzfnNtMql8sBp20nhYZFo9FwZUqq1WqAMcZoI4WKgWw+ploz8syxJcOLCzpTuLVUjo1w9/t9xGIxZ1TQ+KMQFFCwmSyuWq0W2IxjI1GHuFaroVQqOceXgD/bqYaorZXW7wc3cGO0n8qPf9NoWe/ZNcJPNh/ZdIx2k4W+3gZgkUgEuVwOY2NjSCaTrvzBxYsXXR8yJfypp57C3/3d36FarWJubs5F6dkXvnskk0kcOnQIyWQSV111FZ7znOe4z7hJn2+jXpaFYAo9N5U5dOgQSqUS/v7v/z5w/4OgEEcKfySXm5D9xKAngWnNJCLLjhts9vv9wEaSynCi/qb+5AbVGggHNv8+cO3lPQA45jLXGl5fQcLl5WVUKhUAcM+ojDNtd7fbdY4rnQjaF2Qg6no6KPjoa/tWhGm7LI8CrIwX06GTySQmJycRjUaxsLCAYrHo0sSVLU+QlHtZsKRJOBx2Kebsm26363RZJpNBPp9HKBTyso7UiVUAWnU2x4zziYFnjg11vzqwBEDooCpLkv1JsFiZjmpX6lrdbrextLQUCAjE43FUKhWkUilXfqzf7yOXy7kNVjnP2BYLiNE+IDN1mHmgwSjaTtVq1bHPn376aZRKJVy8eNGxwzmug/SPBdTC4TCmp6dx9dVXO3tMswloc7C0C9/liYkJN9bcMK1cLuMf/uEfXA36gyIjXT2SnRKuPda+ZYkHArUEttbzGXk8/7aBQV1b1bfpdruBUlzqVyiQpWuBlk9Uv4NiA91cC3SN4/c8V9tOfUl9QcBQj9MSL/SLNEBK/4s2h7LuNXihQCQxBg1qKyDK9Yu6v1QqBYBSvZYtcaPAPv9mO2nbMIja7/dduTWywukfc3+tSqUS0DvASqlQllwrl8sB3QKsZBPRp6KOsxgK5xo3+WSQ2wZElBFO/a4YgwYc+Eyqq9VO8s1lDQzwfD1WiXQM+FufWkvCsO/pS3NOUFfpHOZ+J2oTKjOeQLqWdtHzFRRWW442iO7/RfIhM9Pb7TYWFhYcnnL69GnU63XMzMxgYWHBZXvpvNf5G4/HMTEx4QLdzDYoFAquOoASHexv2uydTgfHjh1DKpVCrVZzLHj2KUUJM4qtqVi8S/sJgAtmWKxGcTrFAYYlFox09d7KCEjfZ8IFUNNymE5rX16+ZGRZURlYJ8iykqkEbfR5K455t9t19b4BYHx83LWHqTg7DaSrocEaYaxl6kt53sn7EozggkigXEuzKNBRq9UccMyNs9g+BVlo4NEho2HlA9LVYKGDbFPPGMVluRcCGQS3CWIkEomhn5/XJdOLjikNEt1NXoEDTfcjOECAgKnjygagEuQ7wOsry44GGBU+o9c0aDajWAh4jI2NuVQ+toeGBBX+2bNn8cMf/hD1eh3FYtEBXOvNt0QigcnJSeRyOZw8eRLXXnutMzBsKaBB5+dyOTdeExMTmJubw8WLF52xsV5t9pGMZCSXTuhsca1WZ0ZZTQBcNhKB8mg06jJm1OnSDSX7/b4DGpWRvFnp91drUtIh4n2y2WzAeVSdTd1BXaXrIp0nZSSFw6vlsfhM3Dzy/Pnzrvb4bqxZDPxSdyjgEQ6vpHuzHy5evIiZmZmAjlGwIJVKYWxsDOFw2JEcCKZ2Oh0kk0nnjBJoz+VyGB8fBwBXZkVZcsAqY88Gi7XvqetVr6tNp8EPtY+0nqkPSOf401lWEF9FN9nj95FIBEtLS47hz1qy4+PjyGazAFZBBt1El9faqqhNQWe5Xq9jdnYWlUoFp0+fxtLSEi5evIinnnpqqPJn2n+85tTUFK666qrAnj8cJwIf9XrdjUUsFkM+n0c6nQ6AELOzszh37tyBA9JHMpKdEPonlpXe6/UckK77SWgpEK5Ddu3ib/VngdWNTS2LV4PEDL4pwUzXewWGLYjOoKquj/o31wE+k22/j13Pdus+K1xjQqGQW1t5rgZbFUinXmFwnGuvDRRwDdMSoGwbg8etVssFkwlaazDEByL6RO0IJQnwmfg81Cu6AbnaO7wf/dVKpeJIcwzOq15VANeWeLHPYAM3SlYEVkvTkfDEIAMxDw0SKDvczlHLRtf5o2C67TdlTnNu+pjKdr+ZaDTq9hAhS53EO+pPYg7MmiK+QSCZ9qrOWQ3Ys332GSnErhiUCodXMqnZtmKxiEajgbm5OczMzKBerztCgz6/ZvqxbxKJBAqFgiNv0iZjWRcNgmggSbEE9gcAZDIZFItFLC0tBTYhVfuK2JydL3qsjivnBo/j++2z4QfZ35cCyxrJzsoISN9nYkFFjZhbMJWLgRoEjFbrgspFQBd3VRb6AvtebjqFCpbyOkAw/ZcbRFGhc+Gxkf+tiEZh6YjXajU0Gg1Xw207kbnNtgVYZVppNJdC4ELZ0mr4qfOmJXxsepmOPwDvIm7TzpTNTEXH8aWRRDa8RkP1mqr4+RwEwAmS6/05zgoIUOmsNyZqFAJra/8pIKUGrU3Z11IBm5kDGtFXtgHBIwYOuFmpbryz3r2o+Knw8/m8q+PGvhpW1PjlhqX5fN4x0avV6tDX2ksZRc5HcrmJruXWYWLAlQ6QMtZ1bWYgXIF3rqPUoRutN7y+MobVcQRWgU3rQNtgJ+8bCoXWsP+AYLkqdf7YZmXZs6Ym9YbWi98N8aXG83na7bars62sNrWVqL+oEzhW6ogDQcKCBcZVrGOkeoL9zbbQmSUDut/vOyCI7dPrURdqiRoLwKiNSUdamWfrzTH9zjIZ+bmyzzV4rky67Yg68WwP78d6u8PW3rfPRkYbWehabo7vjc4jbYftOwX30uk0stlsgHW432Wkq0eyE+IDw+13VgatnT6xxw26pgWqNrq+D2j3vRNcF/Q5da3gtXgdDUAMeAABAABJREFUDRgw6Dw2NuYAeF/7uWZwnfbZGcpoHwTS2X5SEFdZ1VxDyQzXUiAbiYL27A/VO2oPaVsZcKeusqV2aLOEQiHHWtcSNOq/qh/q+1+vO+iZbHsJilq9z3t3u8GNSxWAtcI+0bJoGqy2PjlBYSVkWDyA802fh6At+0xrtLMdnE+04zj22j7tV30GPvegfuP8ok0AwBEPid+wjAsxHQWa9fkVuGd/8EczCSxWRnuU17HHAKuZmcwg5L2bzeZA7MU+M9vms8m0DYNEbU19f4exl0a6em9lBKTvI2G0jI4SWW4ajdNjgVVmlVX4dMCAYPqNAo1csJTJpC8V2zM1NYWxsTHk83lcccUVjmlGJ/ns2bNYXFxEr9fDzMwMALgNt7j5A2tV2ecYRtgu3fSRZVy4IYWWS7nUCwOfvdfruU1OAP9mINbZpPLhmLKmF5noBLcZxdUoNBBkWHCBVydZ0+7JXONCTiXPzddSqRR6vR7y+bzbLE2ZEHTKe70eisUi5ubmAiVqCOzy3FwuFwBgyART1sCgsVFlo8rfMggsEKIGwaCI/0ZCRc/sgkaj4drNzVzOnz/v5hozC2y6vAqBkXg8jqmpKVxzzTWYmJjA5OSkY0ps9j0Ih8Ou/E8kEsE111yD8fFxPPPMM24TwP2uFEcKfySXm1BPKrOJ2VJkAfF7ZpnpWmWD2vxRdhU3LaX+8wnXh1QqhWQyienpaRfMJuA9MzODSqXirsXSH8rAAeCyokKhkCuVpUBCOLy6KRwdLxvo594hpVIJ5XLZBSS3AySq/htGuLZb3aHjRGdJAQMrfJ5+v+9K1ynJAECglI+C7QpYWAdL9zNhmR+Wq6NOIjGh0+m4oCxLv5FFqNflRqkE5PlM6oCy3ePj48hkMi6Tj/PLN8dsnzMQQb3N75mFp+dY23Orov1Lp5VZByxxppvPbWae0JG+9tprUSgUnK4GVu1ZvpcUfbesPqfdF4/HceTIEaTTaSwuLuLixYsD59l+kpGuHslOCNcSvjcWBFbgGQgGJG1Qk2KBKwr9LD1GgVTLplXwm3pNA9paeoZt9QGjFK7F6utZX4b3oY4tFAo4efIk0ul0YP8SliSjTgAQKKHJ67FtFoTlWqngqgVZ6eNRT1QqFWcPlMvlAHGKY2j7zgaPLQue9wqHVzdl1/VP/ftyuYxIZGXvrGq1uoaAxzmkxDTVq1oSlMCzMtItq9mKAuWcX+zvSCTi+lqzz/ibujoSiaBer7ss81wuFyidx7Fi4IDYBffzYFY2n4f2I0uecq819fcV3FfMgGMLwJXno1iwWftWN1BlhQHNgqMoGUMD9Hx/tKQfs9e4yXir1cLc3Bzq9Trm5+exsLDgMB47jznvwuGww8S4ZwlxCxt8U0CfNop9N9hPCqT3eivlb8+cOePsVYux6T1ox+m8tgEGO985twatQzxHSS7ryUhX762MgPR9JspO1gVpowi6Ve6hUGhNahfPV0PBArL2GuHwShpzoVDA+Pg4jh49imw265wEllRhOhCVCTdUZLqSr9b1MKLOu9YRIzuYTGFNfdsN4X22Wo+dfU6nUJmEylIf1F9qvLB/NO1LmY52wda65c1m0ylIa4Cyz6nw2c8EkbXNlpHO8zVNc9g+3Qsnk0x0/mbknunbBCcIjm0EBnFsWZ6GNdiZfrZZEJ1Co4qBi263G9jVfr8rxZHCH8nlJj6GC9dfMsUoCsJpqQ5grYGuDCtlfw96DwiSJpNJZLNZt+cDdQodGDph1OFc79gOriPqdNp76npjmVN8FmUi8Wc9sPpSiW/NUcdlUGDCHkugguCNZUspIUEZinp/qwdVv+sY8zPqXurqXq/nAhhsv63BSpa9zYBTp1RLp6VSKafPN2vP+ALJtrboTou1ZckEJJhOIGoz9iCPi0ajGBsbw9jYmNu/hNexzFNgdfwsAUCvSRuagNhWdf9uy0hXj2QnZL0Aml0/1C/aaA2h/rH6yQYOfYC2nqM+pq6ryqgmQOwjNenfugZYu0CBPYLK3MR4bGwM2WzW+VcshUW/lqQkssUZYGd7bEaZPvOgMWEfKGCnbHRmWtMvUjByvTFRvagBVP3eh2cocKv9boF6fU4dL2Dwhqv6M6xoUIW6UXU9wXENlLMOOEH3cHi1fJwGj2zmszLT9dmVTMcsfw2Y2H5huym8D7C6r5yv7+mrst08VoMVGiixQRTL+Nb3hNdpNpuBALgy0hm8YaBCbV+KBsboB9OOGSS+d1GvZYNtAJDP5xGNRrG4uDhw3nDdsfeyADqP1b9tXw06hu/kCEjf/zIC0veZ+F76rYrPedTF3GdAUKjg0+k0nve85+Gqq65CoVDAlVde6Vg6VBypVApzc3OYm5vDk08+6dJ0ZmZmEIvFHPs5Fos5JpWteeUzhqhw6PjXajUXIVxYWEClUtmS07TXYh1v9oMC55sJOKjBQABEGRg2GKOKbWFhwUXPbWSXhlW320WtVnMsNwIPvjmkinq9+bWfpNPpuGfr9/uBjQPD4ZX0rnPnzqFaraJYLA5VYiEUCrkNULLZrGOKbgdE12tHIhGXAcDa/BzXg8B2G8lIDrrQ8dANn2ncE9Qmm5iijDmu1WRraeBSnVZ16n2GNyUajeL48eM4duwY0uk0xsfHA7Xb6ZQnk0mUSiW3rwQ3iSTICsAFwSORiEs5pu2gwV9g1VlTJh7LuXQ6HQfe62abW5Xd1iNWF3PtZ7CC427Td5Wo0Gg0EAqFXNowM+mazaZjJfZ6PVSrVddvOkd4T/ahBtzJ/lZQiNlf6vyy7cBqzVdeE4Abq/1uR9Hm7Ha7KBaLmJmZQTwed6AT664y8D/Ms4RCq5v0pVIppNNpB3yXy2X0+/3A3OW7wuMsqYHjxbII/X4f4+PjyOVyDmgZyUiezaLANAk3NoCnAWYfeKd/q15UVjR1FDNwtNSknqtgsYLzVt+qD+3LKiXwqdfU75hdFo/HcfToUUxNTaFQKOA5z3kO0um0W/9brRYSiYTbh4ls3UajgYWFBfds6ufxnsyWUlYwfRvqZ2AVjGZpVDLStRSpgq98fmXd+sBE+9sHnHOtVRBfx8sCtFZsOwAE5g+Z2MzK1rauZ0v5AFcL4LL9Wm7PBgE4d7j+c05wblLHE0jXcSG5gfckKYNENfqoyvi29qINrGzkr/Keyu7nXGb7idlo3XQFmfW9Y59xXxSC/3zPWR51cXHRkTC1LdaOAuBsaQagdC81JSAyE5wsfr4XGoDwrSFsu9rMut8AxQZttP9U/68HqPN/n6/OsdJytSPZ3zIC0veR+ED07Rrd6oQPisD7Fth0Oo0jR46gUCjgp37qp/DiF78Y2WwWR48edelujCoePXoUS0tL+OEPf4iLFy9ifn4etVoNs7OziEajqFQqzkEZHx93SlRrxVJB8IfOO3cNZ9rX0tKS+0w37tzPzp9P+MxUUPZnoxQ0K+ow2xrpykpXIJ1sQbYjmUwGgHym/xPc8W3iqUYugRcCQ8qO2M/j0+l0sLi4iFKp5GqsapZAq9XC7Oysi5qvxwqlkIU2MTGBsbEx5HI5x3DbCWHJJKaGskzPIOW8X2QUOR/J5SAE3+ik0Qnh/gV0drgGK3OMjGMNoAJwes9uOMU1fKOsk1gshquvvhr/6B/9o8AeJXQ8uNFlPp/HuXPncP78eReUXlpack4Eg3RkKeu96bQRSNZnYgmvTqeDYrGIhYWFQNBxvwdUfaLjRL0JwGXpkVVlGXJ0uLvdLqrVqluvx8fHEQ6Hcfr0adRqNTeH1L5RR5K/lVnGEjk+sAZAINitG2up0895xNr1Wgt3P4+RsrrZTmXS0za04MR6wvnMfUcY+K5UKqhWqwFyAtsQiURcajmDIOw//iazMxaLYWpqCvF43JUuOAgy0tUjuRSivq2PIatAp9ahtmuiT6yvQd3Lcplcywl00l9hZpL9zsc6pijQzvZSh5KAo+0GVghqLKf1ghe8ACdPnkQ+n8fJkyeRTCYdkN5oNJBKpVzJC+qYWq3mNmLks2j5D81y8/nVmk3L4GClUkGxWAywo1UswU39SPUXlWmrAKgF4pkpncvl3HquZbOsnaNBZasblUSm+8wQ7E0kEm6cLKivbdJjfML5wLVb97liO1imBYADhpmlzzkYj8cdOVBBd0ug0P09eG8G0YGVMnDUMepns6/Ihrf2ge8Z1T7Q8dP3j3YK28FyMdyrhdch8M/xoc/MOackDCXy6fPy+TVDkp/TrqbuJaBO4FszNVhah/OBbdbx9o0zcSluYgpgYElFS1KweBT7m59bdrtth56vgayNZKSr91ZGQPo+k+1Mal2INCVEX0S+qPrC+pxcAqvpdBqZTAa5XA7pdNoB4DyeqUuMhCcSCedEUlFr/VUueGyjsqZ9QDpT3PibCojfb6fPhgWpd3qhsVH7jY7b6vUHXUMDKozSckG346GGEo1Krf/H69hIto2o7vfFWllkjUYjEHxg9JzO+TBCI0Svs5ksg2Gub4MkB4HpNlL4I7kcZZjgtB5r/7cGuL0G12jfdbkOEAzMZrOBADWdvn6/70pCZTKZgC5Wtg5BhWaz6VKJfQFAfkb9rGU1CMwedDaNJTf4yAgqg1Kn7fEcM8uGWi9QosCCstB4rgIrVn9ru1VX0+EeJstqvwjbSdYh7QxNl98sk0vtno0IDFaXK8BjHWj+KHv0oMhIV49kJ4X+HuDfkNIHMPkAzvXWyEGyHkCqbVrvvR8E5K+3bttzNABP/5o+dSKRALD67jArvF6vBwJ5ti619hX1LoFIC9LZMiL8zG7cuZ4wkGhFwXT7uW2LjrWWQbHrqg1QK2ubv1UP6rHW99Tx9Y31Rn65HV8F520NbCU1kXilgRkFqdkHutko2x+NRgMA+6DMDJ+sN47a/7ZPfUD7VoXXJkGEfUMMx24Krux23/hokEaxCeITmq1ngyZ2fq4XPLH30mcZ1C/WNhzG198pPGCkq/dWRkD6PhJdZDRKqIoFCL581oin80onwzpTepxujGJfxGw2i2PHjmFiYgKHDx/G1NSUU/50voEVBcAU8mKxiKNHjyISiTimG9lpTIFfWlpy0UKCgKpktQ/4Q1Y067bZiO2wYhdVX3SaogbQTjOr1wNc9P9hF2Pf9fU+wxzP6DZToyKRCFKpFA4dOuTqejMNc2lpyW0Wwo1La7VaAIwPhUKBzdK2usGcneuXQvj8LGHD90+BJT7HsHOAhhKj5evVu9+K8Pq9Xi+wc/l+d9RHCn8kl4PQaaWzk0qlEAqFAqU+fOni6uwRWCDDWN/lXq8X2CiS9/SxYsbHx1322MmTJzE9PY1Op+PStYFVB/7KK6/E0aNHkclksLCwgMXFRSwtLWFxcRHAah1wrudc83kNW46N53BtVOd8uyC6z+7RNflSrgfKrmI5AAUZuBEaEHQWmZXFNV+fhTqz2WxifHwc2WzWjTOJCGRqlcvlgUFbBdJ57VgshvHxcVfCgA57sVgMsNeBlTq75XIZ4XDYbWDGtlsGpU907PcyUNJqtVwmhdrBmw3gsP/Yd7SNyTonaE8AiWPLuuw63zlfALhjGdRg/24UMNkvMtLVI9kJoV6gaJkLDTQpGKxkLx+Qvl5gWUX9SZ7Dd1LXSa6Duo7QN7WBR/qganNTV3BttmQvSjKZxOTkJHK5HCYmJlw2KZ9PN5U8duwYCoUCYrEYzp0759Yh6zuq70a9b3Wl+rNqf/T7fVenejP+5kbHKrDJ7DiOne84iuoVLTVi11Y7p/gZdalmfKsuUPvF6m87n9hXPJ7jqSxh3/Fqr3A+9Ho91weJRAITExOO+cxMgvn5eSwtLaHT6QRKvwBwZAbiQmoHct7pe6IkN/uZLZfC4wYBxex/tUdsCR4ren/axHazU5Is6W/rvm4aWOEz8n2Lx+NIJpOBEi7MugyHwwHbS98Zva+PHU7RvtCghq/0lPYRz7Mlh2yf8Lo6B+1x6h8MIyNdvbcyAtL3mfBF1MVLHdhB5/BHa4YzAsgFQ8FgVQjWKQ2FVlJdJyYmMDk5ibGxMeTzeVczSh3EbrfrHEBu0tRut3HhwoWAc83r8jm4KPIzZaQDCDh2tj7lVkWNN00hs32r/WRB+0tRNkOBb/1sO6Crr5/WW2zVaKWxEovFcOTIEYyPj7s0qW63i7Nnz2Jubg7VahWlUimwOZoacExhG8Y594kaBtofl2LhZ/u4I/pOiG6GstNsNPaNstJVse9XGSn8kVwuorXDNUtLayRqmSvruNGx54bG3W4XuVzOpZMqKL+e3slkMjh27BjGxsZczVWuY9b5mZqaQiwWQ6fTweHDhxEOh9FutwN7PwBwDg7XcT6HgsrDlLjaqgxiCSl7cDeAdB+brt9fqS2uzjqAQJ/E43F3DoMR3FQrFAq5rIFqtYpKpYJut+vqpYfDYVSr1YFjTvvNsrMymQyy2SySySQymYwbN62hDqxucquBXbU5N+pX3pc6ea/WZa1Jux2hHtVUfabRs349bUG+A+Fw2NUWVsebDj37SEEiDcSMgPSRPFtEfVoFzgmaAVizjvrYtzYryr5DChZbsUAj76llKOy7r2u/ApokqOl1WC9bgVMFvSmxWAzZbBa5XM6VkFKfmnZ8NBp1wdZ6vY5MJuN0jgU9aWvwOa3/ovaDj5nLTG8ALsigYv1S7S8rCtZyvGx5Hr031157H8UmFLjWUnrWN+TYaUk6nmuD8eorKXCpz6nzS4M8m8120gwCYGUOTExMOIIa20mwlrabtolzkMdpMEVxDe1XK5ZEqG3S59Z3QQFxG5BY7z72erRZAATar7pVAwX6PNbXJQ6l2dhaypDYEvvT2jSKdQDBTAobpNK+su/yRhgNgz+D+sn3ub7fzNQYRka6em9lBKTvM6HSUyeBqUM2sqiGg9ax5mKrQLpGermorcew5fX0GN+iy9/KuFnP6beANBWgBUl5b10gtvLCK/NcwUbLJGBbeB8+s/aBKrHtpkLzHoN+VElu5Xra7s04yJFIBGNjY5icnEQ+n3dMRzK2ODeTyaRjuzGSrGOqDL5h7q2iTBVVYvqc2+n73RI7Z7YbHFFRg5Z9fxD6ZCQjuRxFdaAav1bHaGCZ64EC2D4m1kbvNGuTx+Nxt4cDGUvqJOr9arWaqwFtgQG2jXpZ114NDFyKtUbTda2Dbcuh0HawDDH7s9ngt3UEFYRRAgDby3aqc6/kAf7mtagvLXmAwIvOh43ayQ0vU6kUpqamkMvlnK4msSIej7tMq0ajEegn2olbKcGmIIgCJJthjO4XUQIAsPa91TlhS6kpGYNjakXtFv4/kpE8G8QClfQ/fSUJFRgEgsQl9RN5rA/QVP3EgKF+R93YbrcD16JocJH3VZa5buSs9yPwZX04HsNrq45gG6hX9XsNQAxaU3iu/m19DNWRvqxVXzBC2+EDaHXvFF0nKUog8vnVdh20uk/7i/NnGLCY+lVrcet9lECn5EI75jxG9aT94fho9p3qdv5PwJf7yqTTaeTzeQekMwjDDMJ6ve4y13TsOf8UILZkM+tjqo5WNr6Ol74vvgCJxUHse+gLqNj3Uv/31X+3bdYgB4WEPWaMKcnUzg0bhFE8ySd6vC0P53sn+P9GPv1WfH4NjKxHoB3J/pERkL6PhIqfi1qj0XBp3lTUfLnUiNA0Mm6WqA67Lky6YK4HvtF44CYLuhGLjcopgK91Un3Pp5Fzn6LWY7fjdCjzgVHseDzuIu5kjOkGIoOAdI4J08a03Mxmo9O2Hzh2/Jvt0UXfV49Or8X2sp0a3ebY+VICbX9xQ5Srr74a1113HbLZLK644grkcjn3fa/Xw8mTJ9FsNl3WwezsbGBzOV5vvfv5RMEKKkcFU/icNGQtu2E/Cd9lvj+cJ1bhb0c4F2lUHISaxKPI+UguJ1FHa5DDyXWMAXGCmdTnLHvV7/edntV1fCNpNBqYn5/H8vIySqUSKpWKc3aYrk6HvdFooN/vY2FhAefPn8fc3BwajYY3SK7Ahz7rpRLVy9xrRfuUAHE4HHbfdzqdwEaPlijA/t7sukhd1OutpB+HQiG3uRWZT7SrCKyrzubazDRkAAHQhNfWID2DIL7Ahq99kUgE09PTOHr0KHK5nNPVlF6vh2PHjqHT6WBmZgaNRiOQ4dDvBzefG3Z8FXQmWKIbkGlJhK2U4NsL0eCNblzG91afjWw4ZhcAq0xOghI2gOIjSux3GenqkeyE6PqgQCrXemWlA6v+jrXx7XujPrACTlwbNahNn4LA+vLysmMCKxjH8wG4NlOHEMCr1+tubWN5DmWuK3hHv12zRvksLOmWSqWQTqfdc9C/p22vdr2uH6qf1U7gM/NeqlPUt6IvorqRvqiWpSIAzzHi81IP6nOxD6mrbeCDos/AfVioA7XUBwMMem8L3GufKOiZTqcDm36zHIiWq9O+Uxa9YgH0rbQcrvpezCZkn+izcn5Ho1EUCgUcOXIEmUwGJ06cQDabdexqtm98fBylUgndbheVSsVlC9A2JC7DOWg3fWc71P4kmGvH0L4XOne0b3W8tG/stQb5tWojq23G8rFkj9s+Y/vZLvZ3rVZDLBZz2Xt8BrXZeI5mxA+yAYkp8F3j5qiafcB3WMW+O+s9/6A+8gHt/J9zfBgfYKSr91ZGQPo+EwW5qUSUBU3lwmOt02gVOSO5uiDy96CFRYFZG5njokLRttrUo42e81K+wFxUqXSZ8sNFVxdf30Zq+qw+Bh7Z/oNYEeuJRsHZf0x1tIv+eiC6vaZ12DhnfAwJX3+xr3K5HKamppDJZDA2NuYUNZ3CeDzuFE4mk0E6nXa1QrcL5LIdlumg0XZlV+5nsZHwnZzz1jjZaHz3i4wU/kguN/GtvcoqsYw71d9Wt6gDPuxaSochkUi4wJ11eqw+aDabaDQaaDQaA9NHfe/bpdbZuu77gHQ679ygTdn3NgA9DGNoI1FdDQQdR95Hx9myw9gOvZ4NMtug/bCMdGCl5m6hUEA2m0U+n0c2m10DrAArART2nQU0tipWV/O5LFv7IK7bOp6D2HIUHyvTPrOuDwdFRrp6JDshSuKyALO+D/q3+qzA2vKX671HuuYosYe/lWCma5iK2tfq26p/zRIiPJ7+3KBgmdUNBGjJSCbRhscoOcr6mYOC28ps1+wxzW5nOwex020gUMdC+0xJAgwmK4Crm17bvuAz6feqT3kvy5y2bVBbi9e1ekn7i5/pPLLBT72f6mo7fy1Ww8Cy9iMDKFrbO5VKueAJiX7d7kqJXJIQk8mkA3Z1bIHVTAYGIYYJumuQSp9T9z7zMctVeH8NnGwk1q7VPrNzzOJVlpXO/qfNZ99t3k/Hy2JXSgJQ0XG0WQcUX1klFZ+dqc+xEdA+CFAfRka6em9lBKTvM1ElS4YSnSuNnPNlZqSSkVKypi24Zp2/jV6eWq2Gc+fOoV6v4+zZsxgbG0M6nXabjvL8druNmZkZlMtlnD171rHcqtXqrr+gukgy8sza3mRbM2JMBaJKxjLSgaACoDJkxJxpXYz2D+sA6/U5dgAc60mj2OsZecBqPUG2pdvturQwKlydE4OE4EQqlUI+n0ehUHAby2rfsG2M+E9MTKDX6wXYWVsRNXz02TlG7C81OH31z/aLsE/IRKjX6wFGxHal0+mgUqmgVquhWq26KPp+d9RHCn8kl5tQ75IdYwHUUCiEer0OAI7Zxs/p8Oq1NEg7jHDzyH6/j8XFRczPzyMWizm9Z9nVzWYT9Xo9UON9P0g0GnX7rZAVDKw6UGQCh8NhFwigvqNOYEBa2WwbMa7V2bbgtv6QGUbwJB6PY2JiAtls1tkDtAUsKERR2446grq60Wg4Hb7R2NPhLBQKOHbsmGN3ch6qYxYKrex5MzU1hUgkgmKxiKWlpS2Pu56nc5d2Ae0s9oeCUftRer0eqtUqOp0OYrGYC0pZEACAy4DgHGQWIbDqaKsNTxCrWq2i3W67TYUPgox09Uh2Quhz2ZJlXKt9tcSBtXW4NQhpfbZBzGd7Pv1lH3CrvpQCdgr6EhRl29QPU+CP3ynoC8DtR9JqtZDNZhGNRtFqtQKZLvQx5+fnUa1WMTc3h2KxiHK57JjIg4gzg0pBaNBC286/tWynDRbyfrRv6J8pKU2Z2P1+P9AOvY8GpPmZto16g/6d3p/34vMoMMv7+MBaZZRz7DUDwbce83wtpaJYjAZVVOw8UInH48hkMk63cMNw6pZEIoFsNotut4uxsTHXL8RSdFwt4Kt9r2Ouc1zL2mjAg8epr+97n3yAtc/O8YHCOj7st36/7+yD9YTjz/WDlRrS6bTzsfks2l4NeimQrhsb894aJGm1WgFCCs/jeAxaa7Qf7Hz39YcP19H+02zHjWSkq/dWRkD6PhNdBPjSMs2Ei4CN4mr6l88x3sqLUqlUcObMGRSLRVx11VXI5XLI5XIIh8NIpVIB5/LcuXOYn5/HM888g3PnzmFhYcHtAr6boqzqZDLpSrkw8sv/gcEGh0/UkefizHQopo0rq2wjUSer3W47p5obvjCyTYVvFYSNjlM5ETAnWGL/Xs+Bi0ajSKVSjtk2MTHhGPy2n2hIMbASDoexsLCwLSBdx47Gmo+RrgZgv792R+79IgRJ+v0+yuUyarVaYFfx7bLpl5eXUS6X3U+z2XSA0khGMpLdEwLpmi1D4VqvDvl665U6Rio2EK7Cd7/dbmN+fh5zc3NIpVKBet48v16vuw0uB5Vg2yuJxWJu8zX+UEcya4uf1et11Go1AEFGONPRqe/C4bBLvR7EEtR0e/a9bwzYz9T9sVjM2UWRSMSt97oG02ZTR5hBUAbRuSksgfRh9VkoFEKhUMAVV1yBfn9lM9N2u+1ADu2bVCqFY8eOuU1OS6XSlnWFAhZaFo/lUFKpFJLJpAMylEG3X3V1uVxGpVJBIpFAo9FAMpl0th7fH457pVIBsLohLxAEz3QOkciwuLiIRqNxoID0kYxkJ0Q3iNTsTL4vmkENDC7TYrNbNBPGt177gCoFRxXo1uAr26MkJ15P2c7K+gZWAVklylg7v9lsYnFx0flaJDCxn6j3lpeXcfHiRZRKJVy8eBELCwuoVCprMpao4xTEHJQxw7ZY8JNrN4OIJIrZc6jLGKAnkK4ENVv/WoV97GOEs8+oQ5SQoEA8n01BbA1cKqisDGYADifh3BsEZOq1NMte7Tg7h2zgwQeiJhIJZDIZV653eXk5UA6G7wkATE5Ouj1v9Jpsn82OsIF/XzYVmeQ+IJ19r/Nb+1btJOpz22/KELdkMbUZNPOO7bJ+Md9Jfbc4L5vNJsLhcABI5/kA1pR+ZX/xXVVMQdukQLqSGoDgJroaWLIBDoqv//W7YcS+gyPZvzLciI5k10UjfhYwtVFRdRJ3ylGhE9BsNlEsFjE/P4+FhQX3e2FhAXNzc+6z+fl5lEolx6LfC2dBwViCvfqji6FGxtf74TFas9t3/c0A88DalCcbqVXnTdtDY9LOC1VOg5TsZto1bH/vlPhSrvQz+3OpZSfuR8Or3W6j0Wg4oGM77ykNik6n40AxW3tyP4sae1v52azcf//9uPrqq5FMJvGSl7wEf/7nf77u8Y899hhe8pKXIJlM4jnPeQ4+8pGPrDnm85//PF74whcikUjghS98IR5++OHA9/feey9e+tKXIpfLYXp6Gr/wC7+A73//+2v64Z577sGxY8eQSqXwqle9Ct/97nc3/Xwj2T+iDp0y2/TvS/V+8r61Wg1LS0soFosolUoolUqOgby4uOi+I7i8H4QAOQPGtB3UiVfwwOpi6kb+rc4gHdVEIjGQ3aMO9Ebis8s0zViDwDxebTTV03aObHWN87HO+LneQ/t0J8WnK21AYb8L27u8vOx0NYM3CjaocJ7ZPvWBULSlNVV/v8tu6+qRXL7is+spup4quGVBcz130Dq23rzTNduWLFWfieu5fs/ztS1bEeoLZg1zrWFmaaVSceSYSqXisk4JAm8n8D3M2m9BeXu+T9/6zhk0Tvq97xo+X1s/s231tR8IguE6t6yetTpSs4j0R6+lv+18U/vAx5gfdLyvn32ld2z/AoPLHPHeNrixEUvajqklBljxseP1eMUy+Fv3DVDmtW9tsL/1ndU9+dYb50HXtuOlmQsavNkoWGWfWY8bZr3Yrr4c6eq9lREjfR8Lo8BU7LoY6MLiWzi2K0wXbzab+Na3voUzZ84gm83i+PHjSCaT7n6tVgvnzp1zjvvi4uJQ6To7KVy4WIOMbGn92y6GwOYMIkbt6VhpxJSsKwqV+EbC/uv3V9INWe+MJUCY6pVOpwPMvHq97tLaaVyRHd/pdJxRpuniG80NXj8WiznlBMBbioTXUjB3JxxEn0PuM8R8x2x33lvlZ69tle5GwgyD5eVlLCws4Omnn8bS0hKuuOIKNy99htJ60u/3XV3jxcVFPP3005ibm8P8/Py+KtGwnmxnjdrseZ/73Ofw9re/Hffffz9++qd/Gh/96Efxmte8Bk8++SROnjy55vinnnoKr33ta/GmN70Jn/rUp/AXf/EXuPPOO3Ho0CG8/vWvBwA8/vjjuO222/C7v/u7uOWWW/Dwww/jF3/xF/H1r38dL3vZywCsgPFvfvOb8dKXvhSdTgfvec97cNNNN+HJJ59EJpMBAHzgAx/ABz/4QXziE5/A8573PPze7/0eXv3qV+P73/9+YMPAkRwsUafF6ujtyDDnt9tt/OAHP8CFCxeQSqVw6NAhV0ec2UosA1Wv1125ma2KgqZblVgshsnJSWSzWQditNtt51xpm6kLI5GIqweuelF1gjrhiUQCvV4PpVIJS0tLAQeYunqzOoRjWq/XMTc359Lbp6en0el0UC6XnR2kDGY6fVpnVzOJyF4f1n5oNBooFouIx+PIZrOIx+NotVquBADtg0ql4uyGncriIkOR7EFeUzcwvRQkD0so2Emp1Wr48Y9/jFQqhWuuuQbPfe5z0ev1UKlUHBOO9hCzHoFVfZ9IJBzDVIMoCwsLKBaLbi+ZgyC7qauBlaD3H/zBH+DChQt40YtehFOnTuFnfuZnBh7/2GOP4a677sJ3v/tdHDt2DO9617twxx13BI75/Oc/j/e973340Y9+hGuuuQbvf//7ccstt7jvH3jgATzwwAN4+umnAQAvetGL8Ju/+Zt4zWtes+n2j8QvupkhsLY0JYA1flm/H2T66jvj80fsbwW9FRglM56fk6VK3aFMZwXR1VZXUJDHsTyG9c2ttNttLC0tBTYsjsVimJubc2s/jyMLvVKpYH5+Hq1WyzHWeR/tH+vjsp+Vretjo6tfwzVdA9K6UaqSx8hI1xKpykq2hDV+zjHUbCY9hu1g25SFr3pRAWqeo4z1RqPh2t7r9RCLxQL7qbA2PVn42g/U0yRB0dfVrDOdZ2wrr6/zhngBs8MBIJPJBNj5fDYy5rmZphIMNEtb55vONf7PTCraUyyVx3ngC3zQ3mL72ff84bzTftf3hb+5CaidA7p5JudrMpl0mSA2mMZjdb6ybcy2X1paclgFM759wL+SLGywv9frOZup0Wi4EkqtVstlSCjDndUhfO83j2V/6maplEHrlI6nfY6NZLd19UiCMgLS97lsBrzbSWF0sd1u48yZM5idnUUmk8Hi4uIaIJ0paLoz+24LjRsqnmQy6QBLLU+yWTbBelFvjV5HIhFXV2vY56fCIJjO8gC9Xs+1O5FIuDRpXfDYz8pUYIq4lnMZlsWgTA0tX+NbZBVIZ/R2J0usbMRmsH/vlChLwgLpajgNC7qwb1jnsN1uo1AoOCNns7XS+/2+27G9Wq1iYWEBs7OzqFar+4ZdupHspsL/4Ac/iDe+8Y341V/9VQDAqVOn8JWvfAUPPPAA7r333jXHf+QjH8HJkydx6tQpAMBP/MRP4Jvf/Cb+8A//0AHpp06dwqtf/WrcfffdAIC7774bjz32GE6dOoXPfOYzAIAvf/nLges+9NBDmJ6exhNPPIEbb7wR/X4fp06dwnve8x687nWvAwD8yZ/8CQ4fPoxPf/rT+LVf+7VNPedI9o9wXdwL6Xa7mJ2dxezsLFKpFEqlEuLxeIBhu5OsWB9zaLMSDoeRzWYxNjaGer2OhYUFp4fYlwT+E4kEgFUnWAEaTfNm28LhcGBT8Xa7HShpst1AB9djlgThxp9kGlrWI3WytlWflf2xGfuB+gCAA3F5P24Izt+0FXZSV6hTr06wvcdOOmvbyRLbSFqtFubm5pBMJnHFFVe4oCbL+vDeNkVcSzfR3iTwzoBLuVzeVOmevZZnQ9D7xIkT+M//+T/juc99LoAVPXzzzTfjW9/6Fl70ohdt6dlHsrEQSNP/rRAAtSC7gqy+eea7ls3+0Wxje5wlpeiarGDXes/GY61o2ZhSqeSyXmq1mtNnBFQXFhZQq9XQbDadjW99BuuL0K9QMFKfUY/X51BAWJm0Ck5b1rgC7np9vY7tP+1TBmAZ2GDb+JxcO7WNPt3lC7IQHNXrUy/ZQAP9WPXxqDeJaWgmgU/ot1sgWNvF+xBYt+3Q8zWAYe9j/WMdT8tSV1Kc9r2PqMZxZftVl9t3QPW9Hsf+JGDPNhFQBhAoO0cgXff500CXFQXTl5eXUavV0O/3kcvlvJiFfc5BQLqW2aO9rPNSgXQ+60Y4AMeQwvN95ykp065Nw+jSEZC+tzIC0keyoRBQD4fDWFxcdJtlcNHjBmq+VKdLLTQcuGgpa3wrJVc2e1+C96yZqqlgwy6AukDbVDL90Sixguf8m847GWHKqBimHTQUFhcXcf78ecfkT6fTboHv9/vOKV9aWnKlfRqNxhoQ2l6f/eFrE7/X/mA/axRcFdp2wBsgmIYfj8cDrAtrIGrQROvkKbNwUHuWl5dRLBaxvLyMfD6PfD6PRCKBQqHgouhadsCy4MmM6HQ6mJ2ddSUayuXypuvqPluk3W7jiSeewLvf/e7A5zfddBO+8Y1veM95/PHHcdNNNwU++9mf/Vk8+OCDWF5eRiwWw+OPP453vOMda44h+O6TUqkEAJiYmACwAgLMzMwE7pVIJPDKV74S3/jGN0ZA+kjWyEbsb/t9t9t1eln3UNnJIPd6zLtBok6gAt1aJ7Pb7bq1udvtBj6jg8WgNTA4tZltU2YeS7yoPqXTO+xzcE22DjOD4lr/k88MIBDsJoteN77brJ1Clv3Zs2eRy+UcK519w+w0sqnZtmHmwDDZBrQZ2LfKMFQm6E7MO00D13nAfmZddjIHGazmc+h8WU8UgJmbm8NTTz2FcDjsxo3BikgkEgApaA8yG6HX62Fubg5LS0suG2CvbOSDIHsV9P75n//5wHXf//7344EHHsBf/uVfjoD0HRLOd/oGBJNUrL29URkPDTwCwfXKd227BvmAXb3uIBm0RitAu946rt+R7awBYc0ytnWa+b36Qmwz/Sbbj/b5bN8PIkppe7W8CpnNlomux7MNykC2+oS6gaIMawUf9XjV1wri+gBs9UMJfhMYB+CY4bYEqvXz1PfSAPh6+lGfQftJN5uu1+sIhULO7+z3+24PjVarhVqt5vx4DWBQp3EvmEQi4YBp1e2+4IaPlEndbXEGizkoYdAGyi37OplMujnC5/NhA6rLda849jftLM4fmwVCG7ff77usPCVZqF1pfXn2F3UyyyoRSFciovYt+8EGSvTd1xKFtA9U76/3fvrG56CQ5J7NMgLSR7Ku9Pt9t6A3m01UKpVApNin2HZT1BlPJpNuY1GmRW2Vib6R+HaI1k1NfIutT7hoEgBnf3MjEip/Glh01llOhfXz6EDSSee1hnVgqSi63S5Onz4NABgbG0M4HMbExEQgFY718GdmZvDUU0+5tENbs1b7RyPW+twUjYLTYNExUyNA27rZOUfQmkxIbv6Sz+edAcDUNGB1d3jek33PdPlarYbl5WXnvOszU2q1Gs6cOYNoNOrOz2azuOqqqzAxMeE2xNWNYNgPNLqKxSKazSb+4R/+AWfOnEG9XseFCxdcqvhBcc53InJeLpcDn7MMksr8/Dy63S4OHz4c+Pzw4cOYmZnxXn9mZsZ7fKfTwfz8PI4ePTrwmEHX7Pf7uOuuu/CKV7wC1113nbsPz7PXeeaZZ7zXGcnBkWFAyM1eT5lWdu1UZ5ZrAYN3BC4UUN4p2ey16GTwN1ONddMyMqpZ3iwUCrmArm7GxZrvsVgMhULBMaB4H/3NdTkajSKfzwecNerTzQRnqQdCoZADknnNcDgcYLepHqT9pIA6v/MxxDaSbreLs2fPYmlpCWNjY+h2u5iYmAg898WLFzE3N+cCv5YB7xPV3+sBv2TucWzoyFIYmGcfbVVCoRASiYSz7Xgv2kShUAhHjx7F9PQ0ms0mTp8+jWq16myWTqeDxcXFoYB0lhIKh8P4wQ9+gPn5eSSTSUxPT7t0fNoMi4uLqNfrCIfDbnNflvpptVr40Y9+hHPnzgXG+6DoaWD3WG77Jejd7XbxP/7H/0CtVsMNN9wwdPtHsr7o+jsMSKSA4SBwmmurHktAknazspx5XepGyzhX/cnrD1qTtfyWZa3ye98z6bX6/b5jm+tz0s/WvuF6zWexDGPbjwTL1W6gaBaNL6Ch7y37hXuM0MdWwHIQI14BTGt7WIBU+8wCpVwz+b9vI0kLvPI5WaqEgYpoNIpMJuPwCpLNtCY+v2u1Wk530cfTjAb2j89mICahQYVwOIxqteoy+1lyL5vNus1Hi8UiFhYW3L50zHbjNbWvkskkACCdTiOTybisMy2bYuevJanxWhYgJpahvno4HHbBBN97yzZxXtC+Y7m5WCzmSGPaJgoBbGZNMguAAQefsJ+i0SiazSbK5TIikQgKhYKrSJDP5wN+NcebY0wi4uLiIkqlElqtForF4hr8ROuwsy9tVgHtWtqtzWbTMeZ1bigupaLvCvtdyQLryW7p6pH4ZQSkj2RDsSDmfhNNN7N/8/udvh8Q3HG83+8H7r9ZdhmV0zA/VGg2Yq6O8lacNo5vrVZDqVRCJBJBtVp1JXJ4baY+MXJLIIIgiU3LU6OXCofKwRrW/G2j5/q//t7sM3K8GC1PpVKIRqPIZrMOSKfCV0OQfavRfwY5QqFQQPHaNingwM2EGAUncERwX/uJCr/RaKBWq7n6bdzUlwzDgyQ7ofCvuOKKwOe/9Vu/hXvuucd7js9RGJYxpPf0MTyGueZb3vIWfPvb38bXv/71bbdtJNuTjVIxD7LYZ1Oncr+IgiOWMcTv9W91yjVjh8/GNVdBBn5vnUdgNYhqg7DKkh92fqg+4vVV9ypzEEDAWdWsJj6zffeHaQvBeabCV6tVB3hEo9HApna+4Iv+qNjaresFGHx62DIet/POUR/qhrS0R3q9nmtrNpt1TnM6nXYAitbztcF9X7vUDiNInkwmHXhOO4D20PLysnOOGUSp1+uuHEOpVNoTgslOyLMl6P2d73wHN9xwg9uH4eGHH8YLX/jC4R92JOuKsmQtkGsB7PVEQVb9TAFLIAjE2/v6ahVrO4YVXeP0fK7b69lx+swKegMI1NHmsfZ69p20BCUF9IexX+1z2bVc/RIbvLBjYtnp9re1Uegb8hgF/n1kKwXR9Rpct6mPCJqSba1Maks8UIDcx8xWf3q9rAZ9bmUmUxi0J6GK+5FZYFfLymgwXucxqwIQpGbfK3Nbn1OzMnQMqEO1/waBt9bOolDPUgdqoIU1/Vn6zrLSfZkGGiDR9vveUQL7DEjxfuwv9qElqFF3k3nOftfNS+2882Uucg5oSRm16ThvNkvoVJxjmLVxBKTvrYyA9GeZ7DRbbq+F0V+tKX6pyrn47k0nT6ORBNU3ckJV6GSHQiEHmBIo5cZhjNiynIqWdtE08e0wnxgZ73a7WFxcRKPRcBF0bqJF5d9sNjE1NYVsNhvoc1//aySb6YqtVss9ExkAPJapkmp4azBnWAUDwCnYaDSKVCqFsbExJBIJjI2NYWxsDPF43JVbITPSGlv8YTrm8vIyxsfHUavVUK/Xsbi46Gr5Mn3PFxCgYx2Px1Gr1ZDL5ZBIJBwIQGBAWZO1Ws0xFObm5rC4uBhINTxost2158yZM8jn8+5/65gDwNTUFCKRyBqneXZ2do1zTTly5Ij3+Gg0isnJyXWP8V3zrW99K/70T/8Uf/Znf4YTJ04E7gOsgAFHjx4dqm0j2b7sts7bKV1rA4qb/X6vRVlZ1JXU1dFo1NX51mAw10BgtQQXWT5cPycnJ10QNBaLOfASgGNsAUHdw/7hNTVtezN9p44d9TD/Xl5eRqVSCZTV6Xa7LnVYbQKO3VbtFba7UqngqaeecpvW0Q4plUpus7FsNuvAFbKzs9ksUqlUwNGj3mWdXo6NlhCzQW8y9xRcscGEzQoZZWw77Qzd/I7OeTKZRL+/Up/80KFDKBQKAZAkEom4DW01c09BKytMxeeYzc3NIZ1OY2ZmxrEdNSMBgEvPZ0bIQQXRKdtt+0EIej//+c/H3/zN36BYLOLzn/88fvmXfxmPPfbYCEzfIWG2qgW6NZipoDLgr2kMBMFvFdZTHyQaiFVQjEQYgq4W2B00/weBXPT7BoGuvBevoSAf+0bt2VAo5PxCfm9FdSUZtwroa9mNQWKZwhaQVWDWgukEm3meDVjqde3/bJ8Cj3wOHWtbTkSvw7FVRq8G6nWD1maz6YLMnDNKQCMpjDaBZkfTbtGxU99Qn12P4d9ktlNPplIpZDIZLC0tod/vY3Fx0ZUFow3EMmIAAhlf7AuOLQO6WmK13++7oC77kfYT5wbtIH3e9dZ8/U6zu9PptMsMjMVi7od+Ne09zn8Fz/k7m806ghmBbb6X6vfbdgBwpL5QKIRqtYp4PI5kMomJiYlAqRfaKsRTmCFYrVYdzqIBA18AxdcXnIvsYwABEJ9BBi2HpH2tgShdH21GyXpykO2Mgy77HkjvdDq455578N//+393wMPtt9+O9773vYEF+7d/+7fxsY99DEtLS3jZy16GD3/4w6MadyLWQAEO/otHZc9Fmwu2ZbpdSiGQTwOIiy+V9LCOFCOl/f5KrbRSqYREIoFWq4VEIoFut4tarYZOp4NisejAVK27uRPjSee7VCohGo3i/PnzDoCmI8s0ZoIZGsgYxMjXaDOB6FqthsXFRbTbbVdDnIYNDVpfeuBmnzcUCjkmVKFQwIkTJ5BKpTA5OekULYMFCvbwXFWkBEc6nQ5KpRKq1SpqtRoSiYR7Hq2Tq4ZUt9tFqVRCuVxGOBzG7OysU/j5fN4ZRTQqdbd4bky00xu7HkRhnfn1JB6P4yUveQkeffRR3HLLLe7zRx99FDfffLP3nBtuuAFf/OIXA5898sgjuP76650BfcMNN+DRRx8NpIw/8sgjePnLX+7+7/f7eOtb34qHH34YX/va13D11VcHrnn11VfjyJEjePTRR/FTP/VTAFZAm8ceewz33XffED2wP2Wkq1dEAZ2dAtM3AiS3A1healHnW+tc07klEK3AJB0jAuV09hRIJzOZpV/ofKkjrWW5dD3WNV6Z7cOk0dLu0HR8nk9GU6VScQGCSqXiZYNReO5WMtmUQUdwgOwvnX/xeBy5XM5tXN5qtRAOh3HkyBEUCoWA3iM40Wg0EAqFnE6zrCzVwVp/dqckHo9jamoKqVQKuVwO+Xw+wIjLZDKYnJxEOBx2Ae1IJIJDhw4hFAq5QH2n03GB81arhfn5ebTbbVeHdtC7qRu1k1nNjDUy31OplKuLzqCJzodns54GDkbQOx6Pu81Gr7/+evzVX/0V/ut//a/46Ec/OuRTHjzZTV3dbDZdOSauL1ovfVAgcdB6qKCxssFtNpN+Bqxm2mgJRoLO2iYFKxXosm0ZROZZbw0nQKrn6719zFsGD6mfFJT39Y2vzbbuuA2IKlBugXPbn9bHo471sbB5bR+xTBnUyhhXXamscN96ynvajANel34p7Xeu0XwG6k3qRG7crXOL/cDr8Zk5Hnx22zYLwNZqNdRqNcTjcfR6PaenM5kMgBUwmEEn6uJ0Oo1sNusyo+hj6xxV3U8wme3R/URYykaBdLV71iNnMRht+55s82w2i6mpqQBoTiDd7gOmPqyC43yeWCzmst75PCyhBMDrA9NeBFbK/hHcr9VqgRKCirOwZCrHXktQcZ3gZ3yX9J42C4NzWPen04AF56D2n30PeX/tj90ghY5ke3LpkcZtyn333YePfOQj+NCHPoTvfe97+MAHPoA/+IM/wB//8R+7Yz7wgQ/ggx/8ID70oQ/hr/7qr3DkyBG8+tWvdvWlRnL5iQKdVrFbFsNutslnjAwrVLxkfxEY0DIqWj9MU9l8keJYLOYUMeuBp9NpFx0d1DZ1AtXI1Egzo/z6GQF1ZQNoar6mWRMIYZuy2SxyuRyy2axTwgSUVSltxkHVdvNe+sMNyuwGOjS49Tf/5jOw/alUytWpy2azSKfTrj6bL5qsz6Op9/V6HfV63QECjJDTmKDxsJ1sg/0gdgw3+7MZueuuu/Df/tt/w8c//nF873vfwzve8Q6cPn0ad9xxB4CVzcf+3b/7d+74O+64A8888wzuuusufO9738PHP/5xPPjgg3jnO9/pjnnb296GRx55BPfddx/+/u//Hvfddx+++tWv4u1vf7s75s1vfjM+9alP4dOf/jRyuRxmZmYwMzODRqMBYGVevv3tb8fv//7v4+GHH8bf/d3f4fbbb0c6ncYv/dIvbaN391ZGuvrZIz69u9HxepxmknGd1+N0nQQQcJR9TGddp+0Pr6VOuwY4tgN60nFiRhWBdE0RXg9E1/azDjh1x2aBdXVWeT/V27we9ReztDQoYB076msFs1V3bsR03KyEQiEkk0nkcjlkMhnXRrZXNwXnvLE2go4z259MJp1+Zh8zuK5lX1TstdU245jTHmMgQefnQdbTwM7oaga9dZN1Kxr0Vnn00UcDAWoVBrRVBgW97TGDrqnPzezIy1V2U1crKKoBQ679vgzWzax9tgyC3ssHdFtwmOJ7XwcRz3yArg8EV59OdcFG7fMB1oMY4eqr8Djrfw5ai3xMcV0/LYvWPpcyi+2aN0ivqo9sxbees08oltFv+0YD3fr8Og70vbiOc+22zGcbjKAOoo/HrDrOZe1z39haXWuDI9bn1HKx9sfqOILaBOipo9lO1fnaJ4PGyd5Px4/35r1Ul9p70saw+IzOXf3h+alUKvDDa9l3Usvw2NK3Vk8zkKL6Wuvu2/ln55u2376H2ibtq63KZuzS3fSrKffffz+uvvpqJJNJvOQlL8Gf//mfr3v8Y489hpe85CVIJpN4znOeg4985CNrjvn85z+PF77whUgkEnjhC1+Ihx9+OPD9vffei5e+9KXI5XKYnp7GL/zCL+D73//+mr645557cOzYMaRSKbzqVa/Cd7/73S0947Cy7xnpjz/+OG6++Wb83M/9HADgqquuwmc+8xl885vfBLDSaadOncJ73vMevO51rwMA/Mmf/AkOHz6MT3/60/i1X/u1PWv7fhI6GPy9X0QXVxVfpM6ex8VMQVoqtN2UQe1QI2Mj6ff7LrJdrVadE0zloVFTOu2DGO/cdDUWi2FychLpdDpgICwuLmJpaSkQPbXPw2hzoVBAKpVCoVBw7HMFQHwGxKD+18htv9936WBkGjJYMDc35zbiYZkU9pH+3kgYGU8kEjh27BjGx8cxNjaG48ePuz5Kp9POqLfGp85J/q3sEEbcG40Gksmkq7HJzU/m5+cdk832MRkCNOhYj1WBJMt68F3noMl2FPdmz7vtttuwsLCA3/md38GFCxdw3XXX4Utf+hKuvPJKAMCFCxfcxrrAClP8S1/6Et7xjnfgwx/+MI4dO4Y/+qM/wutf/3p3zMtf/nJ89rOfxXvf+168733vwzXXXIPPfe5zeNnLXuaOeeCBBwAAr3rVqwLteeihh3D77bcDAN71rneh0WjgzjvvdGyvRx55BLlcblPPuJ9kpKuDsp25vhUZBhjYKWH5EADOER3UJmVy0UlhOS2eT8YRWUPUccwSisVizhEiaykejwecHm5uRd3CjC6mCNMB7vf7a0qiWWbURsKxbTabjgFFh5GpwrpB2UZjEY1GcejQIYyNjaFarWJhYcEBtsMwvaPRKMbGxpBOpwN7dzA4TYe82+06pjcA14fK+qNzq0zueDyOTCaDUCgUCPDOzs66lOit6CbVd/3+SqbByZMn3QbntC9yuRzGxsbc3KCtRBYa2X60vcgCo9CxJ0OtVqu5ObK8vIxSqeQCnSp23Hq91Y1mWfqFtttW+2C/ym7q6rvuugtveMMbcP311+OGG27Axz72sTVB73PnzuGTn/wkgJWg94c+9CHcddddeNOb3oTHH38cDz74ID7zmc+4a77tbW/DjTfeiPvuuw8333wzvvCFL+CrX/1qYL+S3/iN38BrXvMaXHHFFahUKvjsZz+Lr33ta/jyl7+8pec+KLKbupqkEQDOp0kmk47luh7rUsscAGs31qYoAEZhENEXdNVgLUVB1438Ul5HgwI+gI+/SX7is9vjCDRqGRZlrCtD2v7Qt9N+sML+8wHYyozVNiSTSacLdINEHQtglSFMHWj7SftZsweU7U1RBrrqZF6X84jfKWgeDoedPlMfVcv4aHsUhOWPPptmKEQiK5tM5/P5gJ/WarVcyRb6r9QHnEdshwaCSdzSsSChi8fq2NoAis4X9ls4HHbMdNYJp5+r2evMnNbAgYLQatv5sAvt64mJCeTzeaTTaZfdrfXQiReonWYDPTpXGKxg9lg6nUa73Ua5XHblTfVZmFmnLHXOGS1/o7XTeT8SE/nsipHxfHtNDSpoUITjoGuLziPfe2kBd74L2n4+50aym7oaAD73uc/h7W9/O+6//3789E//ND760Y/iNa95DZ588kmcPHlyzfFPPfUUXvva1+JNb3oTPvWpT+Ev/uIvcOedd+LQoUPOv3788cdx22234Xd/93dxyy234OGHH8Yv/uIv4utf/7rzrx977DG8+c1vxktf+lJ0Oh285z3vwU033YQnn3zSZXYwAPyJT3wCz3ve8/B7v/d7ePWrX43vf//7l8y/3vdA+ite8Qp85CMfwQ9+8AM873nPw9/+7d/i61//utt5/amnnsLMzExgB/dEIoFXvvKV+MY3vnHZOefbEbtQ7LXYCKWVjdprI5qbYcjtlHDhUzDdZyAMI1xAuSu7svbUGNuoPjaNoGQy6eqA29rkZJX4+kpZCYwM05FV5vZmRI/n31TWdI6ZCs+66VovbyuibPR8Po/JyUn3HATYbT3CQaLfUTEyWELjjeBPpVJBNBp1JVwGtV8VJMf8cpfdVvh33nkn7rzzTu93n/jEJ9Z89spXvhJ//dd/ve41b731Vtx6660Dvx+mnaFQCPfccw/uGVAv9iDKSFfvnVjH/1LreK6toVBoQ6CXulDffXX2uPZZp4NOIT8HVp0bAjDKZqe+BFaZ1FqKRAF9LecyDGN8kHDzbQUgdBOrYSUcXtkwc3x8HOFw2JWDGfYaZIex3jmBZmalqdNq2emaIUUgnQADbYlMJuNKcJRKJcTjcdTrdSwtLQ2036z45qY9LxKJYGxsDEeOHHG2CoBAEERLG7DNDDpof+rfuVzOkQvK5bLrCwbxa7XaUP2sxIj9tEfJpXjvnw1B74sXL+INb3gDLly4gEKhgJ/8yZ/El7/8Zbz61a/e0nMfFNlNXU2gmIC5ZaErqG0BVyXn6HvPdQpYW2JF/7cAt+oYtb99TPJhRcFc2xauMQQAueayDfqMFOtbqX+pfcbr2FKXPn9DAfn1/FJlO2t2sQKISmhSMNr2m689PiBdj9d5wOeijmf7bdCE/WVBTs4xC5gDWFO2Q9uvc0QBzng87srIabCW85slYzSAwrZxvDSjyupNHqsZ3LopubZFfXTOO/qkBLOB1RI0JG4pKUufXYMLFr+wASedH8QGlLynpeU0mOELWunffCbOOz4DyX4MdOvaoXNF9TLnnr4jNmBHm0HfHf7N4J0FsW0wS9uitqjO9Y108yD7SasObCS77Vd/8IMfxBvf+Eb86q/+KgDg1KlT+MpXvoIHHngA995775rjP/KRj+DkyZNOv/zET/wEvvnNb+IP//APnc4+deoUXv3qV+Puu+8GsBI8f+yxx3Dq1CkXILcB7oceegjT09N44okncOONN+4ZWWvfA+m//uu/jlKphBe84AXuhXj/+9+Pf/Nv/g0AuBp4vt3Zn3nmGe81dWNDYO3O8pezbAZM1wVCFSCvowptvRdZlYCmiakCtAuJXlOVgY2s2x9t926Jgun835fyo2INCBU60OrsKevJ18+qtCYmJlxay9GjR5HL5QKKlGOg7G9tO1OgU6kUJiYmXCmUS8n2V9B7fHwcyWTSbcxJYGLYdFv2O6+VSqUcG50sNAYEtiucx4zA5/N5jI+PIx6Pu83l6KxfTmy1kYzEykhX7w9RhwsIbq62mWtwfVTdrnqcoLVN++U5FNXZXHd9ekTBdbJxGES2uk/bp5uF0bFqNpsOvLDOobVXtPzLsE6LOp1qUw3r/LA9mUwGuVwOqVQKx44dw+TkJDKZDMLhlZrvlUrFbYjFTT99dgVryY+NjbmaxPxcGW3KsNO+G8TOZL/ymQhmEGQni75er6NcLq/LorJ2C8dDbSVN5WZaNu2hdrvtwAutdwqs1EvX+rF0eGnrdLtdp4vZN5zDBNIPcnmp/UKO2Y7sRdD7wQcf3FQbLxfZTV2taz2DXj4/UtdnBTZ1bluQmqJ6h+uZAoYKXvt8LwvgW1FQTH0lBpPpG9HPUv1Lhq+WvrTX0b+1bRbo9PnKGkDWZ7JMWv7WQIJl+ltfXX8G+bN8fn4/KINYgXw77vq3BtMJfirIqmxyC/oyUO5rq/5PMNzOLR+oy7GjXlI7huVLqFdKpRKWl5dRr9fXzHNei/u6UF9p3XUKbSS2UZ/R1/++ecPvqCup8zudDrLZrMta42d2/HTesU30q1mCtVAoIJfLrSlvo31q3+H1nkPnXa/Xc/uxsdRtLBZDtVpFo9EIBFtsJgrngrWD2T/EFTRzQNvm06c612xgS6+v75q1xfmcvjG11/PNi0sp1reyRENKu93GE088gXe/+92Bz2+66SZ84xvf8F778ccfDwRlAeBnf/Zn8eCDD2J5eRmxWAyPP/54YO8xHkPw3SelUgkAMDExAWDvyFr7Hkj/3Oc+5+rNvuhFL8Lf/M3f4O1vfzuOHTuGX/7lX3bH2UXTKkyVe++9F7/92799Sdu9n2VYEJ0vNqOo6vToIkaA1i5ovA4XYKZjM7rLhVeBeopGkHl93chJr6/32G0QXUWde99CS7HRfWt4aCokjTJ+P2jsCObGYjEcP34cL37xi5HJZHD48GHk83nnjHY6HZeOVS6XXUkVNRwOHTqEw4cPI5lMYnJyMpDix2fbSVFDlMyzbreLpaUlJBIJB/jbsR90Lc7VfD6PI0eOIJPJ4OjRo5iamnKsAsuI2UqbKbFYzAUr+B3T38lYJLPg2S67HTkfye7JSFfvraj+03Rs6s/NiJ6vbB61CWhkc4MuAGv0mjosdDoJKPA4/o7FYm7jSwCOed7vr5bz4DUVyOf9lWXIdGseZ4PAeiwd2s2s0Zp+q3NXQYFBos7ikSNHcNVVVyGdTuPEiRMYGxtDo9HAoUOH0G63cfHiRczMzKDZbGJmZgbVajUAXPBeiUQCk5OTmJycDADQDECTqcb7kknH/Tg0w0B1I0vJESzgszMTizUy5+bm8PTTT6PVajlHdyPhc5DdxvIx+XwehUIB1WoVlUrFZdPV63VXTo0lWRigpk7XEnjh8Erd+VAo5Eqo9ft9RxLgPKjVapifn8fc3NxQY/9skZGuvnxlN3W1BbmZRWJ9JHscgDVAlxUNhhKgtaxbAG5vKNsmS8xS9i8/t8+iBLBerxco1aGBSR5DXToIrLd+oq7rPjDd7ksRDocdA1j9yUFMa4KUzWZzjU/nA9J1M0/td2X92u80eK/XJhBOlrJ+T72uQQu2lQQw7UfqXsuYt30z6H/LIKato/8T9E4kEk4vsR3aJ71eD/Pz80gmk2i1WlhYWEC9Xl9jZ3AeUofp2LKMG59J9xDwPYvtI9/7ozpQx5FEA85XBu71edjHtvRQoVDA9PQ0kskkpqen3SbgChrbMbb978MS9HwGERKJRCDY0mg0UC6XUavVHEFNn1WvQ3DfEkLIcOfzkxChc5Ni26l4lQZBdDNcLfOidq4Pt/LtMaNBIRJJNpKd0NVXXHFF4PPf+q3fwj2ejOn5+Xl0u11vkNVu7k2ZmZnxHt/pdDA/P4+jR48OPGbQNfv9Pu666y684hWvwHXXXefuw/PsdQYFgHdC9j2Q/p/+03/Cu9/9bvzrf/2vAQAvfvGL8cwzz+Dee+/FL//yL+PIkSMA4HYep6y34/vdd9+Nu+66y/1fLpfXTKJnu+iCZhd1KhwaHsro4oLHa9jr0GnVDbDUcaNwYbLpXTaNbS+B80FijUMFN9gftg4en229FLn1hNelkiernJuMKpDOjTEJNLDNHB+miCvwcan7mQYBARXdtARYBTt8wZpBfaHX0M1RBxldW2kzhcYc+6/b7Tomg0b+n+0ycs4vXxnp6r0R6/irvlWnTMHtja7HoCZBSP1cnWw6Duo8AGvZP8o4Y1stA1xtBftcPF4/8wEOvCevrdfitX1sR7s+K5uI4gt6r/f3ev2rOorALnVuv993GWDcMEwZZb4gvTqNZKARgPb1sz4/bTkFrNYjAmi/2Y3FaA+qHbhRX7D91NHa9wQJgBWn3scyU5AoFAoFWLE+cMHapcx88IGGz2YZ6erLV3ZTV9v3SoOywCogbeeMru2AP4t3EMjOaxIktD6DZTIPEt899XP16RRMpM+qOmvQvZSgZoMKti2+a2j5FeuPK6iuehtYzVZiG/S33m8j38W3bqqu1GtwvGypEAuoEoT1fa7nKHPbtt+KT3frdbW9eh/VrRpYUF3EYDb1N4/l/FMchUFtgqQawNE2rTcXNlpffbqc7aYfzD7hvbXvfDaSBbgtKULbrteg2Lk16LfFTNTG5DNo4Ev7w9pstk/4vL5MD5/otTZ6F+w6NeiaG40d26OklI1kJ3T1mTNn3L5FALxsdBXfe79e/wyyr+y8H/aab3nLW/Dtb387sOfJVtu2XdkSkP7UU0/h6quv3um2eIWb8KmocX311VfjyJEjePTRR/FTP/VTAFZYvI899hjuu+8+7zUHpSyMZHWx0A0jyHRWZ0UZ42Tckn1LZc6fVCrlHCVe0zLSNbqrCx4ZRr1ez6UOavqwjQzvB1GjUGupTU1NuYh0Op0GALcxGKPYjBQ3Go1NLYxkJSSTSeRyOVcTNJvNIpvNBlK0c7mc2+STY5vJZNymYocOHcL4+HjAWNgtUYWeSqVw+PDhAKOSG3wNqsvL+UZ2IzdbzWQyjll/KZ6H1yRzIRaLYWJiAu12G8Vi0aW9DwNkXc4ycs53X3ZLX4909d4ImS3hcNiVCdGMMYKynU4HS0tLAQa5vQ71aT6fx+HDhxGJRFAul1GtVgEEA4ZkwSUSCUxMTLhMKtXdvV7PpTnT8VGGMbCaVtzpdFx5jUajgVarFah5btPi7X3UGctms2uAeerHTqezZuMqy3QfHx8PbEQNAJVKBbVazZUJsUH9YYVBCk0X5xgx8EqbiGyvSqWChYUF1Go1xONxpFIp11bqb/ahZWMqUKN9y3Zns1kAwbWZ45xOpx2gD6w6x7wW09cjkQgmJiZcv9BmW0/f9ft996xTU1M4ceKE229kfn4e0WgUhw8fdvYmx4mB6UqlgtnZWfR6PUxMTKBQKAScd9qM2m7es9fruUA3syvI3ON8YQbks1VGunr35XLU1VxLdL8Ku4GiipaDUBBawVi7DhHgI4ANwPlVek+W4+B9GfzTzSs1uOdjW/vAfbvWKRBrQVdl5a4H+nEtHLSes0yIbgTtu45lh1NPxOPxANvVgu8UJXjtBAGJ96Lommt9eQWiiSvo2NHmoT6lTaK2ATODm82ms2OsaGCF/jr7VkF03l/BXIK92WzWMf25Abden365xT+oz7QNSlTg+Cs4T7Y77YZBorqf7aFvyk22WTrOvosMPpORrgQ3Auk6Xhv51QSIbZBAg+42CKMBfj4/923Tsn/2XP4mLqXCd90G9NgH7GsfOcTOf7239pvOQZ6rz6/H8nsdMwV+NyIO6rNvRXhePp8PAOmDhHvlWKb4ekHWI0eOeI+PRqOYnJxc9xjfNd/61rfiT//0T/Fnf/ZnOHHiROA+wOYCwDshWwLSn/vc5+LGG2/EG9/4Rtx6662BXah3Wn7+538e73//+3Hy5Em86EUvwre+9S188IMfxK/8yq8AWHnR3v72t+P3f//3ce211+Laa6/F7//+7yOdTuOXfumXLlm7LkdRRU/lHIlEHPhro2RcxKLRqEsnJsDNRTcajToQ0+cAWhCdolFDBdK5EWWj0UC73XYA/26CveuJXcy4IKfTaRw9etQ56EwR407fVPClUgm1Ws3t/j2s0LBKpVIOOE6n047tRmOx2+26uqztdts5k5lMxqVrTU5OugV1L/qV90yn0w74YLCm0Wi4v31CRZtIJJDNZlEoFFyf6M7zl6K9ANw9mALHuUujaTsKbyQj2Yrslr4e6eq9EepQlr0oFAoOqGY9zGw26wK06wHp1MuFQgHHjh1DLBbD7OysO0adSupe1sjsdDqoVqsBR4U6R5lXBNItoMDzAbg1XoEU3lcdDOv801Hhmq92BPUCsFqr11dqIB6PY3JyEhMTE87p7ff7mJ2dRSgUCtRe32xglPdgPycSCafn7EZkkUgEmUwmABKw3+lIZjIZpFKpNdkDvBd/69+tVgvFYhHAivOUyWRcCRc6ewSleG3NoFOnl+cRKEgmk65UjGUeWlFALZPJ4Pjx4wiHw6hWqygWixgbG8Px48eRSCSwuLiIYrHo7JhwOOxKsnQ6Hcfs53UJvtsawErC0Hr9HAsNnADPnk3AR7I/5HLU1VxLfExlCyZvxNpWsFuvpcCX1gvXzGYLumu7SGBS0Wvq9WwtayC4mad+x/WEa7eCseoTMChL4M9mU/F7ZepSh2gg1ucLq47j2k0dzGdhu+1eThqAHMSQHsb/1iAIf6ve9AGMPl+JfaL1xcfGxtxmlwSqOU7tdhuLi4uOmFatVtcETHRe6Zgp41qZ0AoGKyZCnVyr1RwpTlnc3GuM+oagOOcx768BJgWZ+b4wQMRgyEZiAVnad9TdtVptTfkYzQLT8wigM/is4zaMb60ZazzHNzdU7POTiNhqtQLvrI9pThtS1wq1Fy2Qr+8dx81+btcxn+jc1Xb5Aod6jH5nx3+/SDwex0te8hI8+uijuOWWW9znjz76KG6++WbvOTfccAO++MUvBj575JFHcP3117v1+oYbbsCjjz4aqJP+yCOP4OUvf7n7v9/v461vfSsefvhhfO1rX1sTdN5KAHgnZEtA+t/+7d/i4x//OP7jf/yPeMtb3oLbbrsNb3zjG/FP/+k/3en24Y//+I/xvve9D3feeSdmZ2dx7Ngx/Nqv/Rp+8zd/0x3zrne9C41GA3feeSeWlpbwspe9DI888ghyudyOt2c3xRe5utT3UyWvysrWM9donjqVLGuhQLqW1uDiq06jb3FRxrv+r7+BIFNtr5npdnENhUKOBccNLycmJpBKpRyQnkwm0Ww2EY/HUSqV3MJOEGRYR10DG2TZ8TeNKH6nn1OpM1sgmUwGNmzZD8IgQSaTAQC3+YjP0FIwiPOP83g3nkdBH2uM0WgeJsJ8ucqI5bb7slv6+tmsq/dSNF1XHSLqbhvoY2DVpu+qcw4gUH/Sgoy2nIt1dtQRVIYNr6+6Wmtc0g7QTb56vZ5zmBQkUUBGnRz+ppOq2Uy8lk0bB+D0NPUg9SIZ28pgJyDNTbA2s6YrsNNqtdBsNgMgjOpy6mkSFrTkmtpmytZX9rZlSvlYk751VYEMC2qo08fr6dwgUWCj7DFgbU1e2iPAKgBnWZN8DmafseSLPhf7wYJCBCwsy4yBd+27y1VPD+ucj3T17suzTVf7mN38XIFOioKeKuqPWlaprls+kG7Qu661oVWv6Pqna5/1YfmdZV+rfmT7mA2g4JkCglomRNm5vI5lSmvf8r56Ta6PPgZyv98PkNwsQ9gHBFowVPWBD2i1vr1lNvtAdrYFwBp8gcFo7pVBID0ajbr9OljCaxCDGVhlJSvbmZ9pBpoyyH02B20y9Qftc2lf8fl8QLP2uwba1Z/UH/aZnYe+MWMAmqS+Qes222dL0wxqq8qg++v3PjKEPgfHhPZrq9VCKBRCtVoNjKm21/Yz1w6fqN2sWY+81nrnDiM6XwY9v/6/Waxit3X1XXfdhTe84Q24/vrrccMNN+BjH/sYTp8+jTvuuAPASpmvc+fO4ZOf/CQA4I477sCHPvQh3HXXXXjTm96Exx9/HA8++CA+85nPuGu+7W1vw4033oj77rsPN998M77whS/gq1/9aqB0y5vf/GZ8+tOfxhe+8AXkcjnHYCdhcq/IWqH+NiyeTqeDL37xi/jEJz6B//N//g+uvfZavPGNb8Qb3vAGHDp0aCfbeUmlXC6jUCjsdTMCotFRG027VMKoaTQaRTabdUwz3WHaOilMc6bDR6dSHbxsNuscU2WkW4dbhcpNHZtms+muz83EVLFzgWf/DWI37LSwrbVazTnWpVIJvV4Px48fx4kTJ5DNZnHttddiamrKlV+JRCJuM7BarYYf//jHKJfLeOaZZ/C9730vsCHIRsINLxOJBF784hfjn/yTf+I2G+VGmDQKTp8+jdOnT6NareJHP/oRFhYWcOjQIVx55ZWBWuL7QTj3yUQvlUr4wQ9+4HZHtyySbDaLY8eOIZ1O4+qrr8bznvc8xONx1zfApQ0Q0CBYXl7GuXPnsLS0hNnZWXz3u99FpVJxwMnlLKVSaU2KGNfYP/qjP3JlAjYrjUYD/+E//Afv9UeysVwO+vpS6Go1mLdjkO6VsISV1pnmek+njhspkemtuprM3Wg06tKkNR1dM9IU+CQIQD2lDHS2pd1u4+zZs1hYWHBrczKZDGwcTv1O8JzX5vXJvqKjHAqtlPWo1+vOvohGoy5jqdfrORa1OsmaMUebhdlOAHDy5ElcddVVrh1ku5GZv7S0hFKphEajgQsXLqBer2NxcREXLlxYw/hbTxRMueKKK3Dy5Enkcjk8//nPx/T0NMrlMs6fP49ms4lareZK45TLZedA0onV4DfHqVwuY2lpyYHvdL4TiYRzmPnMZJwTtAfg2O/se44N2bGVSgXlctnNF93EFICzWcrlMn74wx+iXC4HHFMFZXjeC17wArz4xS8O2B28J9nntVoNAJwtyfmmQSBlejIDw4IMFGYodDodXLhwAcViEaVSCWfOnHGZj8Ns9HWQxI7DSFfvT7mcdPW11167BoylKGBGsIoBT+oQBZ2BIACqABqP4zl6HMtZcaNH6ki11202j8+HVH+UwnWYQKgNDtCv1tIYXK/YVvr6LF/KfuC6zFIeqju4DiaTSXd93avCZg8BcDpP107ev9froVqtotlsuqAtA7wsv2YD88qaZ/9ov6hNxfb0+33nJ4fDYbeZp16Hvmqv13N6W8eFZSiY+UvbgAQ13q/VamF+fh6NRgPz8/M4e/as0wssE6t9xeCCkv9oE01NTeHw4cMBX1vJfcz2YzlP+nm0m/icBNnZTv5wXvH+kUgE7XbblcXLZDJIJBJoNpsoFotYXl4O7KHSaDSczqcdxT607xifl/ZQrVbD2bNnUavVAjYh50smk8HRo0eRSqVw5MgRHD9+PGAn+eYE54MGiNSG1PFWX96W0OFzsC1LS0uo1WoolUp4+umnnU3LcnUWmFYCqCVSaAaCLzvGx0L33UPFR+jU421QTo+xfcQA2t/93d/tO119//334wMf+AAuXLiA6667Dv/lv/wX3HjjjQCA22+/HU8//TS+9rWvueMfe+wxvOMd78B3v/tdHDt2DL/+67/ugHfK//yf/xPvfe978eMf/xjXXHMN3v/+9+N1r3ud+34QdvPQQw/h9ttvB7DSj7/927+Nj370oy4A/OEPf9htSHopZFubjUajUdxyyy147Wtfi/vvvx9333033vnOd+Luu+/Gbbfdhvvuuy9Qp2Ykw4k6q9bJH5ZNstX7KiuNiz7/14VHI+Q0ZtheOtL8obNG1jNZR8po8zEMgNWUOX1mLvTWyFGGwG6JXRxt2lAymcT4+Djy+TympqZw6NAhJBIJ5HI5hMNhZzilUilUq1UkEgmUSqU1zu1G0u+vpkmzzE40GkWr1XIKn8YJwVwy0lnbkLXFdysAMYxQsVBhM52NjAEf44MGKgMCu81I57uh7fAp6mejjFhueycjfb1WBrFoDpIQcCSASP1Dg57OMIDABsgAAk41A9GsndpoNJwOY+1RBT7ofGu9cN6XIAiPpcPOvVfoTCsgojYObQUC3SxDRgeUDp8+v+p+ZbEDq6VcarWaW4NsWnI6ncbk5GTAwWUmGe+bSCRQq9Vc/XaCAZuxy6irQ6GQA8vJomPbNdjBeqtqM3EsNPWcDi3HRB1oZTdagMjXbnUY7YZ91pnUcadtp+QGirVl2TZ1HBUI5704R+34KrhPx5+guo4tn4HPrtfnNZmlQRCLgZHLTdjPwzzbSFfvnVxOutrHIKeo32TfV8tEH8RG13N4Lb7/9BOAYJkKnqMAqr2eb/7rOqO+n2Y4WX9ERVnjyurVNdMydLnWaWCU66RlolOHs03KYtd2KdingXaCjNQltuSH6g5dz3l9jpGWxbEseNUrXN9pKyjIqH2sc0HLe5BRzWwy7unB65ORTjuGz6lt0TFlf9Emol7m8cqe12ANzyVwTfvHh+HYuaXEBM5dnT/W5lJgmPelTcH261hbvanX1tJR8XjckRY4hroZLeeWZgOoT2t9bPusg95b/lYdb6/JAFkkEnFkCgbGtNSe2hV8Xvap2jB6H/arLeNkRd/vYQmtFpjX+9u1iKLr17CyF7r6zjvvxJ133un97hOf+MSaz175ylfir//6r9e95q233opbb7114PfDElXuuece3HPPPRseu1OyLSD9m9/8Jj7+8Y/js5/9LDKZDN75znfijW98I86fP4/f/M3fxM0334z/9//+30619bIVjUKpE2CjcT6Fv5Nt4GKuLCY6HYPY46FQyIGcGulUthGZPzYCb6OTKqroWaNUlYEqnEvJ0h9GFAzQjUFCoZVNz8bGxlwEnZFsboamfcJoYC6Xc2VMOp3OUHU6lckxPz+Pp556CqlUCrVaDYVCIZCmdvbsWZw7d84p/PHxcVe7bbcA582IGm9klAArzDiCMRQaqHaTmN1+Jr5Lvhp7lzIYNpKRDJKRvl4rW30PbbBbdbVNMx32eptpj7KWIpEI6vW6A3qpL9VRU+eP6z7Zv2Q9UVfTCaSOSqfTzjkjAK9p1gQCeH0A7hrRaBRTU1MOGKdz2e12HYOIepAbNdOBY9YZgWsyoOnk8foE2+kE0qmkY6QlT+gkqtNJ/cvr6Vqt+7sQcK1Wq44dzXJsW5V6ve7qqZ45cwbNZhOVSgUXLlxAs9kM1LRnu3zlyggCcw4OGm/aafxO7S/aVQrqcJwtSUHTy6nPWPee1+GYJZPJNQxJYDWLjnONgW/eQ+u283i20wLxtJPUdiZgYtPq7XgpaMN5QKb6Vt7l/SwKXIxk/8rlpKu5vvp8V30nlVjFd9GuMwp2cY3j2kLAk38r0EfGNtcjBpP1vfeBUQr0838F+ZToZTNfrG/LvxV0t78JWPZ6PQccWhCZn1FfUbeqr+MDIjWQan9T2D9qM9j2+3771lTtMwueW5/d978PDOZcSqfTLrMgn887Mhi/t5kKtFE0w0nBb4LknEMKetMeqVQqAayD2U60KWhHUV/SDuO817+1Dr6PuKbjRgzG6jCdTzxHAWI7TvxOgW3tm3Q6jX6/7/Zs43NY31WBfPXN1xMdf99cod2mc4H31+dV/UUbkIQLH8Bt9fcgG8DXLt8zsJ81iGFFg4C+Z1K7eT0sQIM8I9nfsiUg/YMf/CAeeughfP/738drX/tafPKTn8RrX/taN3muvvpqfPSjH8ULXvCCHW3s5Sq6WBJw1gWKzoTPGdkJsUpcI4+Wka6LJ5WiOi12UY1EIs6I4bUGGRhWdCHlwsmUXrZVI5nKONgtR0GVsaaj8XlzuRwOHTqEfD7vNjCj4xgOh12dVTLd4vE45ufnUSgUEA6HHWNtI6Hj2m63cf78eTQaDSSTSczNzTkgnfPo4sWLuHjxIhKJBK688kqMjY257IP9BqJTNJ1xcnLSpTGxhI46+HSE94IJrswMpr7R+LK1gZ+NsheR82e7jPT1xrKZuaVgsTq14XDYlYTYzPWsPhzm3Gg06hzI5eVlVCoVF4y1OljZynz/WGYtHA6jXq8Hyk3xeVh+zDK3lL1OcIPOhQbeaRfE43GXtkynlQA5QQ7qRG7wOTc359KXWRKLpdC05Iyyr215EjqqPJ7p4wTeyS4jCKE6g2w3bsZJhz0cDqNcLqNWqyEcDqNYLG5Zv/T7fVQqFaere70e5ubmUK1WMTs760qksL8VMLAMRvZpv98PlH/h92SfMdONtpM6qAzEU1/R5lKwSHWbZcbp2HY6Hbf3Cze6tbXkY7FYYPN1jgPtuHa77UrU5HK5NSXqdJy5ua4yIoEgIYPBFLWh1W7UfuK8uhyB9GHXppGu3n25HHU1GaT6Lmnwqt/vB3SUHmPLj+jaw/VKy1cwK9cez1IX6oMCWFMyRO9tQTn7PijYbFnvei6BadXLugYp8Kl+rYLfzLhScht1AOtG6/UV6GQ7ub4p45j9x+907Vc7RttndR0/12e2zGd+RjtAr21Bdx5rwUcNztOfpp1C3WFZ8MBqoD+ZTCKbzbrSKKqvqEO4Xwmfn0x5zfZiJhrHxGIyOkdtPXaraxRbsf2ltpXtYxscUV1uAW9fQENBYfrM+XwesVgMxWLRbfpu7Tp9t6zdY+eFHVO+Iwrsa4aCjr0GMTiGNsMyHA47HEAD7nr/QfrbBor6/X6gVLAGx/QYjolWZPAROTcC9H2BQdsn+nsjGenqvZUtAekPPPAAfuVXfgX//t//exw5csR7zMmTJ/Hggw9uq3GXsyhThmwsAoXK7tIFU6OZ23lxBrVHAXXf5/q/LtpUysog4GJoU898ini9Nunfg9LRuOCxn4DdXRxUAdhFT5WOry983+n/W2kHa8V2u11UKhVnPNFgYB03NcgOAsCrhjDZJb65NGyg5lKJZWqw3RxfGqoUnyF5ucpI4e++jPT19kUDdVx3fEC6OvabBdQ32x6uJ+qs+UTXFtVPmlZuDX0tiQUEHQF1jJUB7GNXKThAtpfPAVPG06Bn5T3VmeRz+VhuFDpAQHAzKb2+tWnsZzzX6ujt6hbOE5ZxIdtda7gro03H3bKetK98DrTtI+1X+7f+1vuoM6mfW3Ca92HAxecMalu1n9kn6lDruAwz33k9naM+wEftSmXqW/tLAw7PFj000tW7L5ejrtZ1xMfW1vcVWA1+DcvE9AHImrlj/SkCl1rCRMuTDpq7Pp/Crr18HivW3vd9r+uhrqXaJtU7g3zqQeu4Xp//8zMFOQkSbtaHGgSk+p7bp2d9QK/qlkF6bj3bwfa11TXrPRvvzb5g1hODzvYe7Dtrn/iu78MrLHahepvH+tZkC+LbuTnof22zloez+pDH2X7z9ZdP7Dlqj+kzDWtL2XdDwX69jhJPrS5XbG2YZ/HZIRQfmL6e/uM917u3DWBtJCNdvbeyJSD9hz/84YbHxONx/N//+3/xcz/3c5iamtrKbS5L4YsYj8cxOTmJZDLpoqtkQmm9sH6/j2q1ilKphGazidnZWRdNtQyf7YiNCOpnuojYxT4UCgWi/ZquwgWMUeTNAsNW9HwGHrhxmCp+tl8do50WZUAwpZyboVoj0WYTUDnS0dPvlNGwmbG1jma1WkUkEnG1XO39aWSy/u1WgPu9ELL8E4kEKpWKqweofQpgXSW5F0JjJZ/PI5vNus+AlWh6pVIJsPkuVxkp/N2Xkb7enoTDYZexUygUMDU1FQjiKbher9ddKZKFhQVUKpUNr7+Rk72RKOhN1rEyzfiburLdbrtSYzxXS7aEQqFAWrky1piurDqKTG5enwF0OpXVahXtdtulDzNLrV6vO/uBQfFSqeScRjKQU6mUY/+ofiXLjn2mNgZ1IQPHtr99QW+eByCQKcYUbjK9WXJmJ7IDyQYLh8NYXFxEuVwObASrz5rL5dyYkeXIAHk0urrpaq1WC2TIaRkbMqCUJWmdSi3TR1G2fyqVQi6Xc3X0m82mC8jwHhpo6na7WFhYQLVaDQSXeD4ANy/Zv+xrsllTqZRzlC1LNRQKuech65GlimxmAse92+26vWqWl5fdhnSs18u+Zf+T4KJ29+Wuj0a6evflctTVy8vLAfBXgSGuM7SFrc2uusayebUchAaFs9msyyaamJhYUxqDP9x/QjcwpA3OtthAHHWbDfIRhNRn0mfQEp1ch1iCi2sZ1y8faKm1rCma/WX7VPtS1yrbbl+wmN+xbQDc2jyMWIxAy1Mo6EncgBlWLOemNeiZGbS8vOxssH5/ZWNN6mGu1ySF8Z7W99Y5BASDqFo2jf9zvDlWZKzr5ugU6gjddFZtER1jAIExY3t8G3NyrxTaXiQk+LABHR9fgMeOH/uLPjTn2DAZ8Pa+Gjz3BTxUfLpB56AGeCi8Nv1jzf7v9/vOrgTgyhNyTxy1f4EgEXUQxmIDaoov2ICfrw8U27Gi80JtGq1swOdIJBIjRvoBkG3VSN9IPvWpT+Gd73zngVD2uyV8EePxOCYmJlzpjyuuuMKlaCUSiUAktlgsYnFxEfV63TkJ3KRyJ8RGCPW3ZRrZl45GBBUYfyvQvlOMZ43CAwgoGn0WAGs2p9pJ0cVRFz+OjUbJlTGvxgHban/08804awqks03AaukTPS6Xyzmnm9kQ/G6/SzgcdpvX0rmmobYeA2AvRY1HNSBpvFUqlUA92BGQPvjckVw6uVz0tdVl2xUGg+PxOMbHx3HFFVc4Pcfvqd9qtRqq1apz9IYB0rfbVqY8c41RB0R1Cet81uv1QP1wTZtVMNQCCNTlAAJ6lw4ZnRWCmFybq9Uqms0mMpkMCoWC28OCabkE7Qm683rZbBb9ft8B6SwH0+/319gZluXDdmtJM7VTrJNjz2PZgGaz6ewsHk/AVXX0VsdPwd5KpbJmc3Hd1CudTrtNyqmz6SiyRA37iploHA86gZFIBKlUKlAKgH1DQEKzKdQOZD+wzArL7jSbzTXl/3httpPBDO2nXq/nABqWsWH/1ut1B3RrSr8NLvBenP8MQjBwwz5W9p+WJEylUg6cabVa6Ha7gZJFnBPcJLfVagU2Ir2cddJIV+9fOUi6mgFJC6YPWrspCkwpOGx9PGAVmOT+U4lEAhMTEzhy5EigdAYDbdQLqVQKrVYrsM4rQE8dqMCnDSRTX2oZLPs81F8KvlJfWkDV+jHUEfacQcEHitVvPn/SZglQVO9bdvp677b6trwf+1v9YiXdUS/zHK1dTx1B3UAdxTHr9/suu5rXo96zPrf1s/nsagtptrAFuDWLmzpXAxHUy1Y32GNs8IJAqdokek+W3WNb1aazAReK1um280PbQZ+UhAgAa2xIPc/3t227zg+1Bey88QHug+7BeUjbxFZloH4mSSMej6PZbLrSh7QLgNX69FrWxz6nvsODnksDgBoo0jVL3y1LXFCigcWR+H4nk8kRkH4A5JIC6aMBCgqZNclkErlcDpOTk8jn826zRzqYZKRrtI1MmYmJCXS7XVeeQ+unb1e4WGl0jBFQG/XmQq4AuU2fGbTI75T4lJJlMFiFsF2Wsl0kufAp80tZE9w8LBxe2eAklUo54yscDrsxrNVqDoRhzVoaIIOEizENEzqTaghwF3YFaDUSvZ9Y28MKn1HBGjWUNFoN7E2ZHwqZCkeOHEGz2UQqlXIbu9KYrFQqyOfzaDabmJ+fx/z8vBuvnXivRzKSYeRy0dc79RwEMQmgJxIJjI2NuSCkBmvprNMRDIVCmJycRCQSQbvddsGynWob13YAbk8InyjgSJYOgcfl5WUHHvp0KP8mG4trGR0v6n51coBgaQySBmhDqFPL4+06Z9lbAFwJG60fy8/VIaWOI8tNbSTqU/2bfUR2dLFYDGxWrUwj6vlGo+F+lLW8UQDH51ArI4x2Add+dZgtcGNBAraPjhnvp6Aw7QP2Fe0jy56yAQIFrjlefHaOgQUyLACmz+5jy6nNFIkE69XTxrHzko4wgXBen/pfn5nzWOcox1znAjcvA+Bqt4dCK5vGJ5NJV35neXkZxWIRpVLJO9YjGcmllIOoq32+oAWegLU1lW3wTQF5XoPrKDcwZj1sBsr0fGWa81y+58wOteWjbNuVrW2fUYNwGmTXNUz1ynrMVQu+sRzNILFrNq9jv7f3UV3ua4ueZ/tC9Z6eb+/P5+CPAulW31OXU6/RbiGg3mq1UK/XnR1EzET1mQKTvAZBedUDti/0WQiO0/YhkO/rbwVmB4HXWyEU+gDcQXsKsC3DiuI9GmjhHON3dl7YZ7RgubZjPXvIvov8XH9bnc93n/XxiY1R19NG5X46y8vLKJfLa7L0bJ/yb1//sW80u8IG+nw2rN7DZyfasdVgnK4RI9nfckmB9JEEJRKJYGpqCocPH0ahUMALXvACjI2NBcA1fZH5kmUyGUxOTmJ5eRnZbBalUgkXL150CwSjs9sRZZNxoWZaiS4sunj7Fhx1htQQ2Emh8uVCZBd9LZGhinqnQHQqZzpiZIUxzVmNqYWFBZw/fx7VahWZTMalFGezWUQiEceeqtVqOH/+PEqlEmZmZlwGwqCsA/ZrJpNxCp4bmFLIQGSaOtl8DOQweHMpgx07LWqU6SY7HHP+ptHEzYd22/HQ+01MTODEiROIRqOYnJzEoUOHAmATx7xWq+GJJ57At771LbRaLfduX04yipyP5CBIOBx2pTQymQxOnDiBbDaLXC6H8fFxhMNhx06l8a5GfK/Xw9TUFPr9Pi5evIjvfOc7jp2+E/O40+m4MigE97W2pTo6qVQK6XQaAFxJDgCoVquoVqsOdGbbut1uoNZno9FAuVxGPB53pedo5NPQ1zJzBCe4aSPXYM0eUmYvAw/AqgNHwIDXIiBvhWy9aDTqgtDhcBiFQgH5fN5lBahOUPCCerTb7WJ2dhadTgepVApXX3010ul0YOO1arWKSqXiNgMtl8tuTAkK2CCBCsFmDXprEEQ3uSyVSq6v2Ed0AHUNpc3TbrdRrVYDmYpkXNuMM27MCayWBSLxgNdWBiGB8lQqhX5/Ja2em5ERrGYacigUcnpYA/q0CTWQYh1LMjbT6bTre5ZsUTahOrMULQ+wvLyMer3u5ms4HHaZGMpeb7fbmJ+fd4Eilsc5cuSIex6C+Szt0mg0HAv/m9/8Jr797W9fto7uSFePZCdEgVPAz7jWtc3uLcJ1VdcL6glmO+fzeQegHzp0COl02pWg0sCjXp9rXrfbRS6Xc6Sn8+fPBzZ61sAmsDZrWwOjDAISSFOwmOsYr2mBY9s3XHupO+11CH7a6zC4yEwvbet646PCdlq2NHW2BjJIatIANXWGHXdl41Kv26w4Xof7fJE0qKz0paUlAHDZVbwf+6PRaDi/lxlx1N/83Aa1dV6xf+PxODKZjLs+g958TtVFLFPGIIvWHQcQON/OcZ3rKpyj+j0D/RaQ1XJz6wVn7DmaTc+5k8lksLy87PpOj7PZiGwXn1vfNdX1PvxFs8os8GzJHPrekIE+MTHh7L2xsbEAPlCv17G4uIhWq4VnnnkGrVYL/X7fsfxpC7Dt2ve6ZrANbI+WX9WgnwYP+Dx8XzVoQNF1SNvNttAuHTHS97+MgPRdEr5MrInOF398fDywMNqFtN/vu/Iby8vLbrFg2orWN92uaMRPy2Uoe4lO8SCGke+ZL4XogmWjfGog6eJOg2wrgLqPLeGrQ2qj8c1mE7VazS3s9XrdtYtgDKPrZKQTXKfTv14fMOCRSCSQSqUCNcN1g1FlQdDYO4iMdFVINFIYMAFW57CtkbeXyiKZTGJqagqpVArT09M4cuRIwEgulUpIJBKoVqt4+umnHSPuoI3NMDJS+CM5KEIwOJVKuZri6XTageZcm7meEuwl4EsQjqUv1tOVmxU6QcDqRqCWwUMh2EyHgc42U6MJhgJBFqCCtWSE6TXYBz5gWgOFWqfax3qmqH1B8IIOrDq6lh2nm2TxugQSCCpTH9KZoqh90mw2US6XnW63NkW73XbBcjLSOQYWFLaijDSOB/tG2Yu0XXxMM3XqLCikbHytaU+HU89hgBlYrderOlOPtenrPK7RaLixUaKCdRh1PgzqH2VecT4quKL3tc/O6xO40mP5fNSjZKlzDttaqxwPkgwYSOP7zXe5XC6jXq+jUCiscY4vJxnp6pHstNj3X4NkupYpS5VrmQXkFIBLJBJON5OJToIRASnLQlawD4DTgbS/VZ+yXbbtvufhj9r4KlYH6pqr9x20dq635qivq/1rj9Hr+NZm6j/tK6vnKcoCVyDXttn2j+oLxRIUONUfrtkMgjYaDYRCIafPuPYDfv9cQWBrA6gdwflC0Jprv5YI0/nE37Sr2H7LdNb5vB2flAAtr2WBczs37LxS0f5SAoaWLrR+tA+o1/mmup/HD9L7/K1zTeeMDe7rGsA9d6LRKMbHxzE1NRXoc+4VxExwLberNpZtm76vlmXOc+0xbB/H2LLsbdkhe321m/Taw86Rka7eWxkB6bsgdOqYIn706FFks1mk02kXUV/PAePiEY1GXXS02Wxienoa8XjcbZS03RdCo5rcQEo3RgFWGWMaaWc02udUXWowXSOhoVAokA7WarXWRPVt+4fpEy6gdFDJPqdDyc3IfKyFUqmEM2fOuHFbWFhwjPBoNOoi57VaDc888wzK5TIuXryIZrM5sLSHOuN0+MhI53gBq8oxGl3ZgIxt1jTISzU2l1LUwCRIo7XKGG1miZx+v+82yeP5l0rUSOL7XSgUcPz4caRSKRQKBZd9wvmbz+fR6/WQz+dx5ZVXYm5uDsVi0c2ty0lGCn8k+12oK8bHx3Hy5Ekkk0mXvdPpdFAulx2wquU06OjpWkQHj6BbvV53bN6dEjKHFDBQJ4ObYQNY4wzRGeN3PFaZZ9Fo1G1yqY4IQWkLanNda7fbDuDk+mtZSsDqe60pt2QDa21LMrosOEGGEBlkANwmcizr4mPd8d5sE3XF8vIynnnmGRSLReTzeRSLRcd4Z/37CxcuOAY8y6dZwFuFrKlsNhuwiRjQ7vf7jvnFvgyFVkqKsOavbjjHe2h/2Mw79jHvpWx8X4o59Sr7kkxs1unUuc4+VZuKpYZYbziRSGByctIFidUZtkGBTmd1E08t2caNz5ShxfapDafXTiQS6PV6DgBhAIMMTWaNcM+hbrfr7HESXJh5YftHNzOcmprC0aNHHbg+bPaYnff7VUa6eiQ7IdSJPoDIBn8tAKy+jPp4XCOYsUIAnZkkXBe5Rli/zN6LaxizawaB3NR9Vo8RONaAJtckW3OaaxzXPfrPCrZyrWOglc/J83muAtu8vwW6+fegcjR2TCgK/unz8/m43mkw2NoDg3SuXoeYg5ZdoQ/PID6PpQ2m9aUXFhZcNhP7SRnWXJu5ibUC6to+xS9IbCSZQu0ato39SluJ/rQNgOg8VrBYQWEGuHldBcUVuFVMxQYqVC9rP1N8mIwGpHVzS9pr9p3luNFO0f3vFDT2sah1Tur7boF0vZ+1qUKhkCMNJhIJ5PN5RKNRl5Wp9yDmxuxuls8lXqPlcfQ8+x7o+6VrivarkkjssfosNoBi31P7jtqAxSAZ6eq9lRGQvgvCtNhUKoXDhw/j5MmTgU1RKOsBfHzJGG3vdDo4evQoMpkM2u02FhYWhkoBWU+ozLQdBAfoxKmzpnUx6bxTQfgWqJ0UVSBsC5+BDrQ64AACNc5UiW3kYFOJa7kQMssJdqojR6GSr1arSCaTjsWUSqUwNjaGUGilhjp3jz9z5oxLG+Zi7xMyMAiej42NOQdPGXtUkGRLsvafbmq7lZpt+0XIxleFz1TAXq+HWq3m/mZpAyBYv20nRedLKBRyO4lPTU3h5MmTzgHXaD+wAqYwlW5hYQHNZhMXL17E2bNnsbCwsOPtHMlIRuIXZbtMT0/jmmuucUBcKBRCvV5HpVIJMJ6YFUN96ANGx8fHkUqlMD8/70ps7ZS0222Uy2UAcI4iQYVwOOzVJ1oLGlhduxh8JJhAAJIltBTMJIDMtZeOLGuxq/6lg0awVBnq1FcsP9br9ZDJZNxxDCpns1lXVofgB8F/PhvbzRRuynqBc55LXUyAnEFQEhbo6DYaDVeujXp2I4lEIhgfH8fhw4edndXr9RCPxxGLxRyLWjP+wuGVsj2HDx92favOOQCn24Ggk27HRUvDWKfPF2AmUJ1Op93+HbR5FBSgI63ADvXu2NgYJicnMTY2hrm5uUBfc87xhwGTXq/nnlPnA0vgEFjQjAE+A+0vZZbSXk0kEu4dZYCJmX8AnF2Wy+UwNTXlgAQFy0KhkHsXlpeXceTIEZw8eRKVSsXV4t9IFDDYDitxJCM5KEJwUIFIG9y074ECkLSp6c+QIEUfJhwOO5+KwCftbFvaRPUORdcxBg77/b4LFFsGqd2gkOsf10YF0vkclqnKoCQ/5zqkPjWD9/T1FPzkfTqdjtMf7FvLmF3PDx/U/2yrLRfHNV73HlG/2gZzdRw1aK8BVS3JqXqQvrYG9lmei9fnXKhUKojFYkilUoE5try8jFKphFar5bK9iQ8wy079QYKruk8KN7FU5jFxEdof/X7fgfg+YJbrPvtTwWfOH7WnqKNtMEd1HtvL4xXct8z3QQC8jk06nXaBKtqoOj8UV+AzUyfbrAadi/yfOAzfH7VBfGuBzh39jEHudDrtdDXLwWkber0exsbGHPGx3W6jVCqhVCqtIYbqWGlWpgLZfDe1vDHbZd83nUtqG9mggD3HynYA8pHsnlxSIP3f/tt/i3w+fylvcSCEi4gu0GR3DQPo6UurTiSdC7sYbEd0sdSadVykuShrGrX+7MVLrwoaWFX6NC7YdkagNQJqo7YqahzRePCVclnvuTU4QSNA0+bovDNlnPdYrx+tQlTWvSphzheNolpld9BlUIRdDTBGyH0KbKdEGS+aFqjvqxrJKgwE0TChg3A5jI+VUeR8/8pIX69NzbYptKo79Md3HepIOsMEphW83AlR5516iesfwV+taWkNfW0PQW+umbatus6pI2T7Ttdj6lh1qpSh6NOh1nGz5bpUd+tmkVq6xj7zRn2uTj6B7kaj4Vjn7Fuy9jdLXFCnUOeNgtMUnYMsT2CdNx0H9iOv57unOtmWiGDPo3BuWd1pgQK1AVXUjqQtog6lTcHX4Mqga6rNxmfRecB+GwQg6fnq0BM4YTuVBcv5qwAIHXjNQrmcZKSr968cRF2tugAIslJ1vqgPw//1GsDqWsX1y1dmSn09ZZVadjiwGmhlIJzvtG/90PXUp/t1DWNbFRjlM1On6ZrC/tEyJj6msb2/6mX+tgCk728rm/E5dBy1fXxODW6yPTb4qQEB61OrntBrsH+5JjP73NpXBOn12nZNs3OC/6u/pvNoUL/5AkE+cNnqT7VNtA0+Brreh/3A4LDPfvK1cb3xHTSfrQ2nNqYtcaN9v5n7W1DZPgvH285jvvc6ThS1NywOQrG2hbVNBr1Dw4j2m15X15z1xAafhrnXVmSkq7cvQyOw3/72t4e+6E/+5E8CAB544IHNt+gyFKZZZ7NZZDIZV8vat2htJHyxEokExsbGHMNGge3tCF8qTe1utVrO4VZgUMuD8N4ald0tUWXI+zJizmggsJouTuBSNwGxwn5UFhdBCWXWqSLxLUiaBnjx4kUsLi4655jf84fp6Gr0UXwABp+DSkKNRwo/1+8VIDrIYK0GEfgc7Md2u41isYi5uTmXts3Ubo0o74To2LRaLVQqFWfscW8DtnfQc3BcWP6lWq16N9e7HGSkuC+9jPT11kTXFP7f7/cdsBqJRHD48GH0+33HcgmFVrN+6BiGwyulPBKJBMrlMpaXl1Gr1dwmWTsp1EdqtDebTczNzQXsgnA47FhuZPPEYrFASvGRI0cCmyoquEnnnn2STqcDTq6CstRNLM9Bh09T8RXs103OuT5YFg/7kPozFouh1Wo5xpmOlwLdXHc3ClBT1AEncK66VUumaYDAJ6rHWRKI2Ygsu6MlZXiOppiTdakOGf9W4IC2htoc2i+8lvYD57pu7kYGdygUQrFYdGWDNH2fx2kqOvshGo26jc/PnTuHubk5lEolZLNZxONxt4l6p9NBtVp14BWzJKir1Zbl/TknOp2OK3cTCq1k27EMDFO6NdVeg00cT5agoS3Ljds1eKN9znFhUCyfz+Oqq67C/Pw8zpw5s+G8Yt+tZy9uVyzgs917jHT1pZdng66mDvWxwa2vo/6YAllkbVNoL3MzbfrB6vMw+5PrNtvia1uns7LR9Pj4ONLptPMh2A4fO1h/qPuYzaIZRiw3addRvQ6fnX4KdQVLbWi5GmXRs33aTupVDWBSLJhtn4F6XnWoBfs12Mj7RSIRF4Tv91fY46qLuX5qIJ12FNnttANIKlNAU3WfstRrtRqWl5cDe7Hw+ZjpxEw96kYNUOv+NsQFmJnAtrJvLXhswVH1r6l/iPUo5qDAuAZsNTOC/UO9FQqFAvrPYh4K/Nr2KQBv3zHOS56vmARxFOpYZrQrlsJgkA3423eNNoMNZPjOUR1s28E5xEwBLVULrNp5DLLYkrt8N2ywy64LWqaJouQTfYd0TbPBLLbJii9gouUN+f2whI2Rrt47GRpI/8f/+B9vGMnkYrDdEiOXm2jKGBeg9VKNB4m+vATQ+/1+YAHbbNRskHABozLSFBwu+PxhYGAvWDnWCFMFpY66NWx0DAYB6RqBpVOqaWg2CuwTVQilUmmo5wHWbjRJZ1ANnkE/qjip2G2EfFD0+SCJjdYDCDAGuYErgECd4J3M4LDCWq+8jyrC9QJMHA+mjtOQutxkFDnfHRnp662LBhyBYJYLNwun3mg2m4G1lQZ6OBx2ZTFCoRAWFxfR7XZ3dF8KXscH5rI2qDrH3GOFYCD31iiXy2g0Gu6zfD6PpaUlVKvVAADJ+yhIocCyL4irADg3bqXdQAdWnUXLarPODsEYSrvddnXLd1LYn0wLBuDADPbFRmwh1U8EDLrdLjKZjKvnST2l/ecjLHBusa8sW5vjRBuBc1drmRLk0BqmZHPpc3D+93orjHzOe7ZZnXJ12PWaTPkulUro9VZKBtHx1bIAfH9qtRqy2axrs48Npu3ivQhSdDodVCoVB0TZ7C9tH21A2ofsL83utP3Lcxm8AIBUKoWpqSn0er1NBb0vtR7TZ96OjHT17sizQVcTbNMgH9fPQf6MMlC73a4Lsqo9zaCZ+tXq7/h8UtVRlj3OcplcLzU4bMFc9Yl53UGBTR+AqQAfnykejwfKxLGNGmTl57acqYK61J+sHe7zkbUPqHe0VJdeV7EHnw/JdZTtY41y6mx+r8EABqKZja22htVxtu91HrRaLedj67rPflPGu/aPgtvUtdo2LacDrJYksaCrXSfZB/qjZDa9pj4Tz9O9YBggsIC0L8NQRXW0BdH13bLnaJBeAxbU28DK/jO0ZeinKtFS35n12qPzj8f42sQ+J2mFc1ptUf5Y28Q3XorpKOiu/aP3tm3VYA3H2/YfxQY0fHiVfWbNttF5vp6MdPXeytCI0lNPPXUp2zGSLcpOOeWDxCpnNXwYNdfF0UZAL7XYaKuvHfxcnXVlcyn7kOfa6DeNEjVYNvuMvL6CEFrmh4agKiaKTWvnMcq01mgyz2HaGyPp/PEpiYMmg8aBz8VNwHq9nqtTrxkJPiB+s/fn/ThHWEOZ842GfqPRcLUbrdOt86xer6NcLqNarXqj2Co2MMK2XErG20gOhoz09dZEQWdrIBMUrtfrDgTV9VgdaGBl/SG7e9iyXZsR6mLf9XRdtM6RgttkgwOrZciU4WXBCLLANHivDpAGcAE4gLLf7weAEG2Lj/mj9oYCxGQTK+tOj71UQkebLDUt+aO2gi0tooQErv8MIChAo/q43+8Hrq2bovHa/X4/YL+wf3k9vRbHjPOaNgGAAPvb2nrAajAYWN1cLhwOB5jb/M32cPM5bYMCSHacOMbca6ZWqwVq7vK52UbqT91MVEsnkrQCIMCKtOQB3rPRaGBmZgb1eh3j4+PI5XJuHyLOSyVdcD7zvIWFhUB99EFA9nqAx07KSO8fLHk26Or1wCkgWGLBB1L51r+NiCa6dlowzdrLWqpCN6NUEHYQcYrrJdcYrllsp13b7fPrNS2Y3G63A0Cq9cX5mYKjPjCSOsgCwPrbnufzhwms8reu+wACGzhT71AHatDCgpkW8PWBqoo7DPrOAqvhcDiwWXcqlXLjTduNARP6avSrU6nUmn5gP6o+saxwxRnszzA6wPq1FvjW7zWgofPKN9f5t50j+m7a4xhQUAJIt9tdA6TrMdYnt8+tbdaxtHpT5w4z93hep9Nx2ZT0qW37afvo+8sxJxCv/ajf2f5kezSb34LkCnj7AgkafLNjTVE7DNi4/MtI9ocMDaRfeeWVl7Idz0rZLgh+qUF0ChcMuxhyUVDFNMjYuJSixom2Q40kdXK17da50msqAAGsBeo3K7wnWY2xWAzj4+OuBMDY2JgDey0jmSlqTOMn05oOpD6rLRfDGuyM3FOxaBr9QRRVtD7lWyqVEAqFHMO70+m4lHpN4/MZbcPcm787nY4DnxYWFnDu3LnAXGu1Wnj+85/v0sctK5UGf7PZxOLiIs6cOYO5uTnHbPeJL/DS7/dd1oRV7PtFthNkO8hzdbdlpK+3JgR+NUVZwV+ycZTBBAQdfDJnuAkhNziq1WpDbUi4GVnvnbBgOoFdBuxmZ2cDIGSv10O5XEatVkMoFEIul3PnEmTnZtgEKpVppXqY141EIg6YVMBCmUDtdnsNo9znbHQ6HZfeq9lXDIqrrr4UwrJb8Xjc6WwtA0Qdq6nZtVoN5XIZ/X7fsczo+LH9yvqjA8hrEuxl6jTLmxCsIWhNAJv6ho4uASGObyQSQb1eR7VaRSgUwtTUlAMGdC4RICHI0Gq1XFkibiDa7Xad3lNbRZndHB8tPeSTRqOBxcVFxyztdDrIZDKu/BDnHwBXxiGdTrt+5jubTCYxPj6ObDaLcrmMhYUFp4utE9toNDA/P49Op4Pz58+j3+/jBS94Aa699lpMTEw45nw4HA6UYyTTcXFxEd/61rdQrVZRqVQArL4P7EN9HxQUVDBkOzrRyn651khXDy+Xu64eBCAqs1MBYh8rnfqE51lWqG++UbcAwWxu2xauLbTBWXqKJUEIGtuApwq/V0a07j/CDJyN7HJLyiEb2PqzKgT3LFintgvP8YHQFsBWUVYsdRH7RMvd8ZrU47re6vXVl1bCF9thwU3LVtbyKPY46lb6dwy45vN5d2/2rQLpWmaX1+Jm7Uq0ow7VsjIM3PIZaZ+ofUj7SJnaGsjRvreBFxtMpliwnmPL/tRgxHqEMQvOW/stmUy6LEaOJTcdZ3be8vJyQBdr230BBMVe1Ha0QR6+l+12G/V6HcViEf3+SqCdY3H8+HFHTtBggwLpvAbnK6so6HvNe0ajUaRSKRfIVxvN4kocB7Vr1R4cFESztquuCWobsw3DYBMjXb23sq0aB08++SROnz69pnbZv/yX/3JbjXq2yFYmsF1sdvMlsJEzGz27FI7BMGIZuBbw9rXJKhifccXzt+ucW6WRSCQcE6xQKGBiYgKJRAJTU1NuEecO1BSC4qwrSudSv6dSUKNBGQR2zC418HCpxRofFP7NMiuhUMixQnUjISozy9QA1gapfPNZ+5EKm0ELBYq4W3yr1XLsP3UCeD7bW61WnbHiE3UsaKypk6Fju9+U5Ejh752M9PVwos6JXf/5XikoZpkmCvxqvVGtObobYoO++u71ej0H+urzsp0M0un5XCet8W/XUQta0Fm1OooyrB7y6W/ef6fF2gYMXDLQnc1mkUqlnPNOp7rdbrvavXTubdq5Olt8LmUTah8Cq04zn5/9zb/JkCIgQPaf1fPsYzLSOTf1OHtvBYb1GlrrVue0JSf0+/2A4zho/afTHAqFXGBFnVl97/TebBt1IFnp1IfMAvHVEyYYRL3dbrddBhufRUEx3VeGQZ1isYhms+lS7XmenUsKKCizT8Gu/SYjXb13cjnpah8By8fOtHaxFQusU6ztr3rYBtHs+mZ1ooJiSkiyOsq202dr+9bHjcTqRXtvBY/tvQb5soP6x3eMBf/0M/aF2jJqAwCruspm9ekzkVGsWWgK/A/S87yP6iTVN6pbtWY213D2J20zzg0NarN/GJjl+QCcDtF5asdY9ZRd7/Vvn79q+8kGXtcbV72HFfv++SQUWls2SvtV9bmW+qP+1Ky2Qc/ku7ZPdB7ofNNgFveXYQBMsxZ5DY637nejBDdrqwBwwQMNmgPBvfJIhvHZrNZWts/kG0OLW2lgaVgZ6eq9lS0B6T/+8Y9xyy234Dvf+U5gwqiBOJJVYSQ3HA4HAL3N1mrWl2V5eRnVahXlctnVF9tNAFsXKgsULC8vB1JthomobeX+QHBzFdsOjcwOusYgw0LvsVUJhUIunSyRSODw4cPIZrMYGxvD8ePHkUwmMTU1hYmJCcTjceTzecdyYzScQnYF06qq1apLeeJGYaVSCe12GwsLC5ibm3MgLlmEakQQYD6Ii6gFg8i0t8LyBZ1OBxcvXkSr1UKhUAAAt0ERN0Wj4hwUAbbzjfcmi4UM8tnZWczMzAQMxUQigb/5m7/BoUOHcPToURw/fjwAYFWrVczNzaFer+PJJ5/ED37wA1QqFdTr9UAbQqGQ2zg1mUzi0KFDTukTzKlUKmg0GqjVaq5NvtIJeyUjhb/7MtLXwwuzSxiw5GaIWi+Tfcg1mU6E1uYEVt77VCrlSlbsto6mqGNC4FXXOZar4PPz2ZgRow7z2NiYYyMrG8c6RVp7lM+t6eBk+5Kpt93n20mJxWKYnp5GJpNBOp3G5OSkyybKZDKIRCIus8myzAi6cl1eWlrC7OzsGoCENkqj0QgEUq0zRTCA12S/kimujDhNlQdWHHBts5abUcCf2QW8r5aw4byNxWIYGxtz161Wq+7vZDIZyCqwDisAl0VHYNuKOo/z8/MumMznU3tZAWjq7Egkgnw+j0gk4jYB5nusQYf/z96XBkl2VWd+mZWV+1579abu1oIWsDU0ISQMMmCExXgsC2E0YYeNMSiskYetHWYQRoEAA8MyijYBAhQjIxgCkCMYBSaMjYRtxAi1h5Awga0FtHSrl1pz37OqMnN+1Hy3vnfrZW1dXVXqzhNRUVW5vHfffffdc853vnNOs9nE7Ows5ubmjM4lKL6wsICpqSk88sgjSKVSGBoawsjICDweD7LZrAEOyMp87rnnTCNhm1XJvwEgGAxibGwM4XDYjKPdbpsAO+v8E4zfKXqup6u3Xs5FXa31i7vZ1yyVoYCn6lKtF05xy8TVoJcC0Db4CjifVb7ebi9mz2hwTPd4HYMdaNZj2kECZTW7jYP7rDLatRSYXr9dDkNf0zIwNlkHcO7N9hgVYKZfo+Qg+pmaXWSvT73P3fYA+kYMEmn5MAU3ybJnhhP9HLKGmSWUSqUQCoUQiUSQTqcN41j1mn2f9F7S99NAsmZ/Mbur0WiYkiC65jQjmnOqjHtdJ/yuzWTm+3YQ2g5w23uCruuVcA7qyLUEqtwCJhyH+sjaC6XdbhsSIH9oa/DctGUo9hzaJLBms4lKpWJ+V6vVZUGM5557DrFYDIODgxgeHnZcX6VSQSaTQb1ex+nTpzE5OWnsEOpsPqu838RkSITgPkLAnhmmboQQLTNnB0w4h3ZQT7/PedX9Ya16tKert1c2BKS/5z3vwf79+/GDH/wABw4cwE9+8hNks1n82Z/9GT772c9u9hhf9MJUagAORcSNfj3CB4bsGQLpmka6FaIGgw1ikxXlFjHd7DG4gfl2Xbtu33X7e7OEm2I4HEYqlUI8Hsdll12GkZERDA8P48ILL0QkEsHAwABSqZSjaaudBgYsKZ1Op2NStxcWFlAsFk1d7tOnTxtlo0B6Pp83c+TxLHUyZ3T9xSicD03ZsoXKj+nZ5XIZ5XLZcV8AGMPMjkIDTqYEsMT8b7VaBuyuVquYmJhAtVpFJpPB5OSkwwhhSZlUKoWLL74YnU7HGIR9fX3IZDJ4/vnnUS6X8e///u946qmnjNGq4vV6EYvFkE6nkUgkcOGFFyIejzsMGjYJzOVyJnKujVZ7cv5JT1+vXZT9QiBdm2QSFGi32yiXy44gnjqBZDXRuQDcWWtbIepIujHFmCVFfaqAd6ezVGcyEAhgeHgY4XAYxWLR6Bg3hh8bwKlovw4C6QpCrldsZ2Wz5tbv92PXrl0YHh7G0NAQLrzwQgNiK/NNnSGmg4fDYVNj1efzIZPJYGJiwhF4aDQaKBaLJgBLnUKwQoXObV9fn3HkI5GIAVfIkmdwXO8bA6+0MxV0ajabxnEMBoMOh5YAO7CkO/r7+xGLxeDxeIy9QX3k9/uNLtYgAZ1tj8djMq2YEm8Lx0bbhOfx+/2IRCKIx+MmRV9BCK5pv99vAjzlctmsMRvUbjQaOHXqlAk4M/OLY56amsIPf/hDBAIB/Oqv/ioOHToEj2exWTBL4mSzWTQaDbzwwgummaquQXs9B4NB7Nu3z5TRARbtiOnpaRQKBVNKQgMEPTk/5VzU1drQWAE9BQoBZ+YN9yGb0cvj8bftAxKwCwQCBviy9R6PMz8/78qYJnismT020OsmGrBW0FGBbpYd0evh9dIvoB9Cm0ObnuqxbNDZZhXbIJ7+ze90E/qY7AnDgCPxCzsQ3431rHuZsuqVaGT7XICzNjTtLc02CoVCiMViCAaDGBkZMTpiaGjIZIyFw2Fjv/B+aF8RLYmmWU96DSz/RTCXmXUAHCCzgtu8D7ZtpMCxZi2TSW3bZqqvOU+cP83OcCslZgs/p+UKbT2jID5LwtnZbHofuZapj0kYtLPpARigmq9z/JwDLWlCG4GEQTtLm9fJZzsUCmF8fNyUsKOdVigUcOrUKdRqNUxMTGBiYsKsZwZxNIBF0sHQ0BBisZgj25DfIbDP+89jKPhtPw/c97ifcI65Z7llLqj07IGdLxsC0o8ePYp/+qd/wtDQkFkYv/Zrv4ZPfvKTePe7341//dd/3exxvqiFipKOJJlerHXZ7QHS7+tx6LSwnpvtfG2F2EaDWyqcGkNn8/w8H3/0ve3YhKhg+vr6kEwmMTw8jFgshqGhIQwPD2NwcBCpVArhcBixWMwwxtRZd2MLqIOsyppzzCZdqVQKyWQSfX19iEQijgYwer+UrfViEY3QuzEC3D5vB3TsunUaOednbPYpjQdtQlStVh0/NDIVRGdknQ737OwsEomEMQi9Xi9yuRxmZ2dN9gBZe3a0mmskGo0atiTr11Hh00BoNBoIhUIG3Gg2mzviXvci51svPX29frFBZU2xV6a1re8AZ31QHosBv+1kFNJhYU1rdaTtseueZwcIbKdRQWUN2PF17kF0ANWJOhMdtFn7gQa9maWUTqeNHlXg2gZGqIfoQCngwddYj5PrhKng/f39SCQSiMfjhlzBHwa9lbHmlk2gc8E1yLklyYH3Ue+nglv8jg1m6DFJjrBBAtsO5D3RDA2bebmR+6Pj1zTuubk5s560yZ0C6TbDjWXW1CZSoIkgGmusAzCAd61WQ7FYdGRTuF0TWY39/f0G1AmFQg6bNRwOO7LWNEiwE6Snq7dezkVdbesL27YG3MFUtzVks8GBpdKIWhqK+xT3Cd3HbIKSApbUj/ocuvkFbuL2ngKHek67XIfbd20/1g7YdRsL53UtgBzHpSC3nltBVP1fgwTdxqH7mO6vfM/WS4CTvc3jUpdpbyvW7g4Gg46eGSQusNcGAOMb2Wxq+oBa/9vez9vttsnOYlk3zRygnnYTG4NQ/aUMbP5Qj9nPgc1MVrur27nWiinp8W0bwg1EV9uG88ffahvZ4D4xKw1Iqe1hA+TMEmP2F3EzxUGazSZqtRra7cXsrmKx6PDtlWhKkoGtX7XcLkkFzPhmYIP3ifebwQObcMf5WWm+uR+p0FbSOebv1fYcPX5PV2+fbAhIb7VaiEajAIDBwUFMTEzgkksuwb59+/CLX/xiUwd4LghLTMzPz2NychKRSASxWMxEQrXGcTfhBkImzczMDE6ePIlCoYBCobDlxrc6kEwTJmuKkXUqHa1PuVnn5obIgAIZWUxHo5O0lSxAbnyxWAy7du1CNBrFxRdfjEsuuQSxWAwXX3wxBgcHDRtam6IoINHNUeYGSwZyp9NBJBIxDLPh4WHMzc1haGgIo6OjKBaLiEajZp2cPHnSADrlctkR/QW2rnntmYg6m1SkqzGumX4ejUaRSCQwODiISCRiQIx2u23AcDrgGrDgPAFw1EAn+7vRaCCbzToaFKmRVCqV8Itf/AJ+vx8vvPACHn/8cYcBV6/XUSgUTNqYgioAHCyb0dFRHDx4EJFIBOPj46Y0DddGKBRCs9lEOBxGuVxGoVDA9PT0ijXXt1J6Cn/rpaev1y801KvVqglYe71eJJNJDA0NAYBpgqRMuFar5WCQAYt7RiaTMVkiKzm0ZzP42263jWMRDAaRSCTg8/kMG9rj8RiHgnqV+jscDqOvr8+wlOhQdDod47TOz8+jVCphYWEBoVAIqVQK7XYb09PTpvEzdV61WjXlyTaSLaNzdCbzxX24v78fv/qrv4qXv/zlpmElGVYMViqIQGDdTs1uNBoGwCb4HIlEHI58p9PB8PAw2u22yVqo1Wo4duyYYTsXi0UD6gAwDh5LyqhuUnIFAWKt48nAibKmIpEIgMU1XCgUzHiZRUAdyONxrQNLWRu0Qzwej2MOOKd8JtZi31IIQDMAEQwGHc1LyehnRh2brjOIzWwA1qunri4UCoYRTz3PeeNxARi2YLPZxNNPP43p6WkAMDqd9kG73TYlm+zx83r37t2L0dFRo6sjkYi5N51Ox5R6yeVyAIByuYxSqWSaqtnrlPO7VXqwp6u3Xs5FXU1gW5smEjSkKBtWhWtQv6/kLPqg5XIZ09PT6O/vR7PZRCAQWNbUWdnI/K6SYmq1GkqlksnyJfOa+5ntJ9nAJcdJwJ7sWPtZcGNiK4DNvZhZKl6v17Dn3ZjO+n2dTxsQtudaa34ryUp9LBtYV7EDyzoOZRsrU5r7rQY5eN6+vqXm1nqP6d/TZgkEAhgbG8P4+DgCgYDR1eFwGMlk0rD6lb3OnmI8vw3+csw6D51OxwDzOv9kJ3c6HWM/KQCugLSuF63VbpcD02CxAqjUp2o/8FhcQyR5qM/J8+qPgtC8Hzomgs3MstasAV1HBJzZ4412CUvT8l60Wi2TIc9nS/1q4jc6D+122+hq2qC0TyuVipkHPh9koReLRUxNTTn2EDLZFxYWUC6XTTk6YKn0IHX14OCgwWbGxsaMzcZxcb0Wi0VUq1WHjcd7pkECXeN2QEJ/23uGnb1CG3I16enq7ZUNAelXXHEFfv7zn+PAgQO46qqr8OlPfxp+vx/33HMPDhw4sNljfNELNwxGznK5nAEC+ZBQ4a4EZqpzT5BMgbetFFth2qVd+Pd6nKj1nl8ZyXRwFETfauCQSpl1thKJBPbv34/LLrsM8XgcBw4cMDXcaDCs59gUrTfGFGwa4NyQ+/r6DIhKp3pqasrMDev0d2Oj7WSx2SPaedtNPB6PmXMC6mQwBINBcwyC4KxbqwY/DSfWH5+fn0c2mzWpXqxPb0fwAZi6rAAwMzOD/v5+B5uDQaBu16BsjHg8bhQ+jRg1lGjYtVotpFIpeDwelEqlzZv8M5Sewt966enr9Qv1C0EAllliGQsauHQ0uD/wWVWnamFhwfQzcRObtXu2hDYHwdlYLAZgqemigp8ahNYa6soc0lqudvCADiw/S31D4JVzeyYM3M2YKwVKdu3ahSuvvNKAMLZDqzYNwV3+r6xIdXwBmEA5gQuek/aclumjU8y1Qt1DUIAAuM6B2kLUiQT0mf3o9XodzTs1g8lOHefYeDwbVLFLBehaURanAuprzUwk0MW50lIHOh8s10ZdVygUUC6XTX37cDjscMQzmQwymcyq5+d9BhZ19czMjOsY+Vm393jdqVTK9MIhAKR6ng3nfT4fZmZmzHroxkDsds6zJT1dvfVyLupq3Tu6+Rk2oKnftdnP/FszpxqNBsrlsnmeWGLCZu3agLcdhCRRhgE4ZZraekr3M7f3AZhgK/c1tRncSqIo+5vXpwxmDeYqEM3vrCSKL3A8nB+bda6/u+1z9j3R89igPK/ZjVXfarXMXCjASfCbY/P7/cZnY6a39hZjuRfVOeztwfJnWurHDfikbcTz0lcjKFwqlUxmMO0k2gHK7LZ1Ie8tf9v4hL2/q0+uYLg93wrY2/fKJuW5jU0z62i/0C7r5ldrDxiC6rQB+UPWNsfIQDxtZ9sG5DhbrRZyuRzy+byDnU4yC7DU9JXvkcBJoFyDNvTJeV20w3SNMWuM/nQ8HjfZY90yFGgv20x0e3/TZ4n3X++7Bj1oU/O467Gberp6e2VDCOeHPvQhwwT5y7/8S/zWb/0WXv3qV2NgYADf+ta3NnWA54pwoVcqFczMzGBubg7JZBKNRsOU+LAjsfyebnCTk5MoFAqmUdJ21j/mNakjTkeQgLamrawnVaXb+ag4CH5yXng+/qhyOdvCTS+ZTJqI5sUXX4xUKoULLrgAo6OjBrhVZ3qzx0CHMxaLYXh4GKFQCAcPHkQgEEAsFjNRWZ0zzptb7dydKDSaafiulHXAyHg4HMaBAwcwOjrqaPRKxhuZE7VaDblcztTE0xpxyoJn8xnWSHcDG1YaPw0HKt2VStMATqOX98ktxV8NJ/3cSumXPTn3paev1y/U1ZlMxgCYPp8PzWbTOFMej8e8zlJepVLJZPvw2ZuZmTHBzG7n2ipjVtkwdlqtx7NUhoU2hYLIChao461lSDT7jKwmYMn5UZaaXVZjK0T3R6/Xi0Qigd27dyMajWJ8fNzcR45R50CBBXWGlClJ59+u/c5jahAVWGSaDwwMIBgMolgsor+/H7lczoDhGihmQ3GCBjbQQrFBc0qr1TL3AHCuAU3RVrBfG4TxHHxNHT3qGD4r0WgU8/PzJsDM0mbdhOcNBAK44IILzJwkk0nzfLHucbvdht/vdzQwZdkVn8+HXC5nmGh0trU009kWnQ8+C6w3bJebAJaXcLCFr/d0+Lkv56KuXimYpmQVYDmIbgN+9nG5p5GQQgZ6IBBwANjaxJPPpGbwkGnKrBU3AM0WmzRjs7dtPeH2fT7XCprqvsDxaiabDaryWBpc0DEx0Mvv2veEoL19LW7ArI1R6Fg4DtoCqi/tubFFAy3UO9Qz1KnRaBTDw8OGqBaPx00TcC3novebPjHnUnW1BmL0/Bq8oR0HLPqTyWQSgUAAlUoFPp8PlUrFQbTSYI3iI6qHuW4473xPy40q+GqDrd38OfUH3d63dQjPxUAAs6WICWgAR20mv99vsvXYu4TELt4HPn9KEiNeowEs6kQF+5mBoH63HYBpt9vL1jBtbH3uaOsoyVNtIG3mzmvSc9jPL58nt4yGtQQJ7eCN2/vKRN/ucpA9WZtsCEh/4xvfaP4+cOAAnnzySeRyOcOA7Im7tFotZDIZlEolRKNRLCwsmI7D4+PjhrHFlGk+yNVqFYVCAfV6Hc8995wB0XO5nNnAt0tsZn2lUnGw07T+mLLT17tO1Pkmo5oMAk3Z1ZSkrQLRPZ7FlPjdu3djdHQU+/fvx2te8xpzX3fv3u1olMLvbaZQwXU6HYyMjCCVSqHZbCIajSKXy+G5554DAGSzWRw/fhwnT56E1+tFtVpFOBx2pNTtZFlYWGywylQvG0SgeDweA5onk0n82q/9Gg4ePIhgMGgaiWhkPB6Pm3X885//HMVi0QQebNCJhraCQWsB0YHuDWFWA9K5fmioKJjOz/AZA2Ca0JH1tlOkFznfeunp6/VLu91GNptFoVBAJBLBnj17EI1GUS6XMT8/j/7+fqTTadNAkM9foVDAv//7vzvY1kyXXe18W3VddFCYrsx9X4Fj6m9el+51gPNZpOPl9S423PR4PIYFTKG9wyAkCQB00pRZd7ZEr4sp2xdccAFe//rXO/qW0CnT3jM20EEHkCw5dZ6ZtaQlurxer6npqnPLHiksx1UoFDAxMYFOp4NyuYx8Pm9Kr+RyOVSrVSSTSQOk0xaivaMscGApBZwOuDIwKQT4GRRSUAFYqjGrr9ugip43nU5jZGQEs7OzePrppzE7O7uqQ0iWWyqVwitf+UpcdtllJmhFsIwsN87X5OQkJiYmTPPTSqUCj2exMSjBCAUzNnMd6dzZ76nty/lkWruCPCpumWwq26H7erp66+Vc1NXsFUDfx7aB7etS1qy9BpWVzT2Dfgxt5EajgUAgYIJ5ZKhrDwsAJrOb5a2q1aohymipKlvn6djcgDaybnnNNrBt70lugC8BRfoZyvLlfqhgsPqVWsILcJaQ0UAyg62cV3uO7WAy/RANUCjAys/pNajPrteuOpDn5P5IP4d1qunDJJNJ7N6925RwYZCVvcWIn3CP1dK5nGctm0Gbh36fzo2uTerOVCqFQCCAZrMJv9+PUqmEfD4Pn89ndH6lUnEEFWjf6P+8J9QVvA92QELXHP/W8bg9PzZZ0W2N6r1jwILZWySH0T4joM5nh4AzWdvj4+MYGBhAKBRy9P7SIJeWZ6GurlarZmxqAwJwgPi0s+xeL/ws77WuMQXn+VwwmG4D2lyLHD8/z5K3bgE1PjucE13P9n6l57ODHHqvdF3S3iqXy6Zfy2rS09XbKxsC0v/4j/8Yf/VXf2VSgwEgnU6jWq3iXe96F/76r/960wZ4Lgkfcj6MTEUJBoOo1WoOAJ2bTKfTMRs0wcNyuWw2/zN5gDZLFFRkqo2dzmWnoQFrA5Nt44U/PJemH2uasZ7Djv65GUYbFW6CTA+igh8YGMDAwICJ1qoxc7aE16rKLJlMwuPxoFAoIJVKodVqmeYpnFMqyp0uHC8j56uVBSA4EIvFzD1hOprN1AuFQg5GISPpBNL1mSRosdFnb73fsdew23G6HbPbd7dLegp/66WnrzcmZAOTscO9h06wpn5rCRM6ItyjduK6VX2qjhL1N+BsRKaOh309tk4ng077b9AmUL3tBkKuNuYzEXVW6ajHYjEMDAxgcHDQ6IBu7EOge3M2dYIJniijyWaY0SnWbIZYLIZOZzETgr1PWI+TjEv+tsdlg9w2GG6DFvodN5vMvi7bOXRjvtkAOwBTinC1QLOCH7wnbJLOZ5DgB4M2ai+71XPdbuHYgCVmnD2/9t+rHW8r95Kert56OVd19Wr2azexyyAo+AYsNaLUz5K97ff7HSQv3dOApX5HWtbRDjC66To7k8TtmnSfdwsI6OdZHoR61sYA1Nawdafb8W1/1/6tPoH6QbaOcgNzbeDPZuXSz3djTbv53raojqY/xtIh9OWYZUwwU/1dzapy87n1+lfzjew5I4AKwNQAn5ubM70uqKfsc9prwhZlpK9GKNAghT12BWbd9Ix+3x6bBj26jVMzoknoIlmLLHTticIMEQa9eA6C9jbIr8/xatiWfW+AJR3L79uZLrq+3Y6na1afXXue3Na1LfY53J452zbjeuW414Mx9HT19sqG0LOvfvWr+O///b87lD2wmL74ta997UWr7M+26CbHWlCVSsXUTWdKmm46CqTPz88bVhKwCMDbym+1etGbLWrY0GliLSoARvFwk1W2ukbOV2Il8NqYitdutw3jSxnp2gSEmzmZCapgW62WYR1o5+eNCMHzeDyOl770pbjwwgsxPj6OPXv2IJFIIBKJdE3FOlvCc7FOZygUQrvdNhF0j8djGmWxNEkikTAsNz3GThHNRMjn84Yx3k0JeL1epNNpXHTRRUgmk0in08sAdIrH4zGshmQyidHRURPcshuHdjMwz6bwugGYWsuhUMisawU7yE6sVCqmETGj/ztBegp/66WnrzcudF4LhYJhiDEQns/nDdOaLJhKpWJKeKmjsFPWLnVtu902+5umU6fTaYTDYQNOErAElspS0Ulxc8LJBOL+Ayw1dlJdzTRcZbQpw1ltAu6/WuN0I8JrDIVCuPDCC03DMjLRCWjzs3p9vDbWsNb0W64HHoPNWRmYUHuI64fXEYlETC3fwcFBkzrOvht00t2IA8rqo+1o3wcyzux0cqZDa0kybdjJ97XxNteBMr7IGlRbbXZ21mRR0rZa7Z6Fw2EMDQ0hmUwa5iXnVcfMeeKay+fzKJfLxibciudsJTCIwTZgMfuPQMPIyAjC4bBJb2fQjXbzauPejv2jp6u3Xs5FXa1lwej7UmxAGHBnqOtv1Rk8NvfAhYUFwyynXtb3bX+SjE9mkHHNKwjnZvsDzvrUFNVhmvljk8r0evg+r8uNEc1SIkpWI5BMnMAuYaPjtOdWM3l1HrScGH1D7lcAHEApy+hoGRZe09zcnAl0snkzj8/x8t7p/eXeyQaWfr8fIyMjiMfjJsCqJTu9Xq/x3RQM5fGBpYa0em+oW+zAgc2c5z3Ue93X12fqslPnNhoNs9+320u11dWO4BrjfbDBU2U128Fr6hWC9VxrHLt9ffo9HkdLqFBIdmBpNPqZoVDIsWYZ0GDN+ZGREYRCIQwNDSGdTjuyQ9Sei0ajCIVCaDQaplwbme9KSlP2uD6rGmDS69bqBjyOssj1+vUztEX57PAz9XodhULBgVfpPSf+QIII7T5dO3zmVW9y7Hy29RnUtcF5IGtebcQekL7zZV1AOtMTO53FtINgMGjea7Va+N73vofh4eFNH+S5JKrwC4UCPJ7FVFQ7TUqBdKab6cNCtq2yv90Y2VshygTQlDOv12ucSEYnqSQINKhCUdENihsXFT6BQgLpBO9ZO5sOHlniIyMjZuNkM0YCI2wWuZGNyONZrJE7PDyMoaEhvOQlL8FLX/pSpNNp7N692wDT2wFKUzElk0l0Oh2jkIrFIorFIiYnJ03NVa7DwcFBR5reThE+C2SOFAoFU0e2W3TZ4/EglUrhwIEDiMViJi2P76sQhOjv70c8Hsfo6CgCgQBOnjzpMCK3S7j2PR6PaXhDpU7DmcE3zhE/t13NiHuy/dLT12cmGvQuFoumv0Sj0YDH48Hs7CxCoRDm5+dRqVTQarVM5gsbC9br9VVZRlspynjh2Gg7MDinQDq/Q/3hljZLUee8UCggn88DgCmjwkA7wUTqf+5fdHDUwVQ7iE7+mQDpTE3ev38/XvKSlyCRSJhmZOrY6Pn5P+0w2i+cO5b6IQmi3W6b49l7Lx0krhcC8FqHPxgMmqAMA+CsM06AiMCL1qRnI1e9R6z7qeV06IhSr7HsCkEMsvWVmEGghM9Do9FY5szyXmUyGVPGh427VxKPx4NwOGwCCf39/QZI5z1TNlwsFjNNf3O5HEqlEnK53IbWxEZkpfVHAKfTWSzzxID+/v37MTg4aO6lPku0P3ea3dWTrZNzWVezhJi9DwLLWeKUbmA64GRRa3CQoDL1GnU1sASEabkIBZjV/1ZWsQLluo+pv2hfl5Z80J4gbj6mDfpyLOo3UhdoVpc2fNS9MhgMupZydAtG8Jz0F2wgXUvL8Np5bayTTdY49QCPv7CwYPQYr0drZCtYrXsf9Tt963A4jOHhYaTTaUQiEQwMDDjqcDOgoOXHON8rAenU08QYbCCda4PrxQ5ER6NRAxKzd47aBNzjFQBWm8oNSNd1YwdoGHDVEm66DjUIw2NroNxec3yf4LlmZwAwAQGCzwTS2dx1aGgI4XAYAwMDSKVSAJzl73gdvC+NRgPpdBp+vx+ZTMaMm+OzbUmdG45f17VNdCApks8PgyWcO2Wpc6617HCj0UCxWDS907g++MNyM9qLT0kyur+5lWLR51ltTDL33So47BSfoSery7qAdJaJ8Hg8uPjii5e97/F48JGPfGTTBneuiG7gjN5q9FSBZG6ifHj5PzdKAn5+v9+wnbUxA0FllqbYyodRFQBZZ1QAFAVqqWjcwGZuJKrImC5PYFE3NW0ewYhxMBhENBo1TUnokFEZ0RDgMezUvpWE46YySSaTSCQSJvXMNoa2S3h+MvHa7TYSiQRSqRT8fr9x6GnkECTYKaVeaNTMzc0Zx1wN4ZWEz52CAG5CJaisN5sZsp2iRh4VPpkeNHJ4DbqO+dtNsW+X9CLnWyc9fX1mok61/QMsBbg0iE1jG4AJ5NpMKT7PDAoDW1u2Qdky/K3OI3/UsFfHZ25uzjixBG71OmzAgXaMzpUC1Gz6rLVibVCRThn3QQXt1zpvbF4Zj8eRSCQQjUZNmTMyingsMqF1XmxdokxHAKYOKMfGedDPqV7heTl3dBT7+voQiUTg8SzWUE8kEqhWqybjDsAyO4UOvLLDOSa9dwqkqFNpzyHnVp1jvRfqwLs5tXqf1xJI8vv9pl68zXC30821fKAGZXaS0HalnUrbhQCLst0IZGit+50gPV29dXKu62oFrVV0X7H3fGUM6x5if4fZMto40A6K8hiAswwWP8MgqOogBbTU51Bw0tZ36vfxfPZvZTavNF/8jD1u1dEEBxkgVd1KUbCYf+tc04/mtfFaNWhNf5D+NbOu1FfSe8RAL49DHUeA0taP/CE+wkyecDiMUChkgvFKHOJ9UmZ+N3vKDsSo7WAD6qp73AIf+puYDIPBkUjEUdfbBnTt8ej6VvayLVxPuq70dXvNrRbste053iPOH589297lNeg5dT7c5tu2HXgsew7UVugWOLPPwfuo94rHsV93w5jsYBIJJjp2xaHoXzPgpPuavXbsgJ8+//ybc673xN5b1qJLt0NX33333fjMZz6DyclJXH755Thy5Ahe/epXd/38ww8/jMOHD+OJJ57A+Pg43v/+9+PWW291fObb3/427rjjDjz33HM4ePAgPv7xj+PGG2807//oRz/CZz7zGTz++OOYnJzEAw88gN/5nd9xHOOP/uiP8NWvftXx2lVXXYV/+Zd/2dB1rkXWhZb98z//MzqdDl73utfh29/+NtLptHnP7/dj3759GB8f3/RBvliFDwsbUvX19SEYDBpmLBWpPjAEv8joabVaBjQPBALYv38/hoaGDLOKkT8C70yrzeVyOHXq1JrSRjdLCPQpqEcGOJulKPhHg8dORwKcxgIDAupskJHOFDTOE5tgXHjhhYaJzrnXSCyVXaFQwNTUFOr1Ok6fPo3p6elV50sDGnv27MGVV16JwcFBXHzxxdi3bx/8fr+jkct2C5X8rl270Gw2kcvl0Gw2kclkkMvlkMlkUK1WMTs7i0AgYMCG7R6/AsjZbNY02SUzdCUgnYEnDaCsRdSY2+7rp6hTPjk5iVqthnQ6jf7+fqRSKUQiESQSCbTbbRQKBZRKJdMokU2Kd4pj23POt056+nrjwj2TjSTpNNCRpBFeqVQcxi91UX9/PwYGBgxYG4/HTVkxGuMvvPACCoWCI8X1bDNR1IhXp8v+aTabpmQGsOhAz8/Po1QqodFoIJlMmgZ4tVoNpVIJAIzeU8eeTaGVHKDH3b17t2naqiwhjpElV4rFIqampkxzOLI41zJnXq8X4+PjuPzyyxGPx3HxxRdj165djtRadRxDoZCD1ejxeEzwQOdOgfFCoYBsNuvY42jz8fvURbRdFhYWUCqVDCgAwDQuV5C4WCya4ChL/Pl8PpNBoIC2riey2pl1pWwsnot1TJWNR2YamfZcJ/o5zoMN9jCgQCaqAmJu4vEsZo8dPHgQ4XAYwWDQXCvLC9jp3M1mE4VCAdPT06ZB2k4SBro5L6dOnTI9kbS8IDPspqenTdmjnaLnerp66+R80NUEk5SZqWCT/q2BRwWNqSOUQU5draUlqEOUSU2dTXuafhozd9VHV2Cy3W6bfg3M4p2fn0e1WnXoqk5neRNNvTY7gKZBWN0bdcw8Lj+v4KFey/z8vGNOVFQfuAWgtWQq9QuvtdVqIRaLIRaLmf4VZIQTf7ADCcASkY5BT2Z0sdQO/+b9JL7Bkimjo6PYu3cvwuEwRkdHEY/HTalWMu9Z2pJ6VTO93OwCrg0F3HUe3MgDem1uwDHL+DFLIBwOo1ar4fjx40bHU4drkFTPzzWjWSiKDXE8NtFAf3jfeT9strSKBoO04S6z85kZyM/yGaDPrWXldIxu4Lmuby3B4sbC5npwC67x3ul91fuo65rH0/vLeeAzpNmWCwsLmJqaQj6fRyQSwdzcHGKxmFnjAEy1A7U5iEfpOPU+61pRDMIOdtjguVvAbDXZal19//33473vfS/uvvtuvOpVr8KXv/xlXH/99XjyySexd+/eZZ8/duwY3vSmN+GWW27B17/+dfz4xz/GbbfdhqGhIdx0000AgKNHj+Lmm2/Gxz72Mdx444144IEH8Na3vhWPPPIIrrrqKgCLDaJ/5Vd+BW9/+9vN99zkN3/zN/GVr3zF/O+WpbOZsi4g/dprrwWwOCl79uzpGinqyZIok5zgN2uL2Sx0u84TNwdG2wOBAAYGBjA+Pu7oUM0HgfU7S6WSUWBbKdxEPB6PYaETNCdjD1hqPKZdte21pKnCZNUqkK5/c4OnU8h0sLGxMaN83SKmnU7HpMZVq1Vks9k1RXS5MWopkIGBAaTTaSQSCVdG3XYLjaBgMIiBgQGMjY0BgHGi6bS2Wi1EIhEA7kp4K0WNGYI1VGgrsaxVgW3kXthMw50gfBZoKAJAuVw2wF44HDbBplqtZpx0GrM7RXrO+dZJT19vXLjHq3NDoVNAh1OFDgr1EetvDw4Owu/3GwezVqshk8mgUqkYR8Vm3p0tcXN8+D9/tOSEMu6pd9vttgG9GezWkm56Dk2xt8/Z19eHaDRq6l7bKcsEtWkrcF+r1WquAQE3oQMVjUYxNjZmMrJisZixL5RpBcABNmvfFV4bz6XXy9I1diaDliWhLaQAkTqonFemVqfTaQwMDJiAgj3fBIN0XMpyImDB8djN0DhGXXskcui4uSbUydO51XtAW1ad1dXWdCAQQCKRMPVu1fGm487XyDxlOjpB+52mH5huXq/XUS6XAcA457w31NXVatX0Ptop0tPVWyfnsq5WdijgZFnbfrD6G1peYaVSTwQhGfzkPq37IM/FfbzT6Zh9ltkwBGuZHaWBSZJ3+vv7TV8R6n/6KCv5G3zPthdswJHzoN+xQUGey2ZVa6aW2hF8nWClW/kSLTfFH9WL1DMsZ8LSLpwf+95yjlqtluln1m63jf7TEi4EiLWxaDQaNRlK/NF7S11KHci10o0cYM+52/6koKUNpLuxwHnftOwd15c2HHdjydvgveI49vns9aDguf2/fs9meevcqA2rAXrNHLDHouzvlRjo/F/P6waA20Cy2/5g3zfaP/Y94/rmc2EHImwgXZ8NjofBskQiYY5NW0PZ6OxZqOA99yY3okE30aAY758Nqu9UIP2uu+7CO97xDrzzne8EABw5cgTf//738cUvfhGf/OQnl33+S1/6Evbu3YsjR44AAC699FI89thj+OxnP2sA8SNHjuANb3gDbr/9dgDA7bffjocffhhHjhzBN7/5TQDA9ddfj+uvv37V8TEYt1WyofoN+/btQ6FQwE9+8hPMzMwsu9F/+Id/uCmDezEL2WtMPSKQrmUzNFrHB5+RE0ZtPR4P4vE4RkZGEIlETAMOt6g3nVKvd7E2OetNauRsK8QGwKlYuFGr4uymCHSjs8Fzvqb11tRRZm01ZXm5icfjMenejIZHIhFz/G4bGBtuKGDP/7sxEnaC0BAh+N/pdDA8PIxcLodOZ7Gmp90FnUblVl4PFQjTrdh4jcbsaqVKqFSq1Sqmp6fNs2ArLf08jcFarYZsNot8Po9arbajHELePzI0CVApK5Kgj9e7WMcPgDHgqeTXoph7cu5IT1+vLtQ9LIHF4DfgdPYZqG232/D7/UY3kb3FlORgMIhIJGJ0tZZ0oBM/NjaGeDyOcrlsmNZb3SxcpdVqmSA8QT5gsdEdG2DS6SqVSpiZmYHX6zV7EAEHgrEsw+ZWgoVp0EzbBpzzzDnQvZp2A9lfCkZ326eVvBCJRIzzrc3UqOtZd1WdGqbx0o7plrrPPZf3W3/bx1RQXB1MllbjtXLu1H5kCjt7ZnDf53XqXHU6HQNMcJw6Xwpw8bVOp2POx3umYBHnmeAFbYV2u22YbdVq1TwPdHBX06PlchmnTp1COBzG+Pi4IYnQVuZ12CxOG+DfSaK2bKPRME653ZiPdd+p0zfas6cnL345F3W1zUR3Y466AYEqBCyBpSCnMpSZQWoDbQTPFUCjX8ieICSlcQwKFPI3j89+GEpes8epe7gCrh6Px5XUouCZioKZWnJDGa/c/wnkUWepX009wr2cezJf0z3abqzJeSdJjX67lnPRIC6Pw3vi9S5mQrHnBvUn93beF+0zQpuANeC5ZroRnDgfWru6GwDptr7ciAWqR/U1N6CegQu3oDn9VQXk7UA855r6UudWr0OfEZ0L1ScKkGvQxfZ3lZxYrVaX1VLXc2qmA31JZivW63WDe2iJUSUJ0Bcvl8sGgKZ9wzXeDWPQebMDShwfABO40Lmxg3J6n+z7wPtlr219zoiHJBIJ+Hw+Q+jQ4IsbSUH/VvCcx9Ux6bXZpYF2iszNzeHxxx/HBz7wAcfr1113HR599FHX7xw9ehTXXXed47U3vvGNuPfee82zf/ToUbzvfe9b9hmC7+uRH/7whxgeHkYymcS1116Lj3/842e1x8iGgPTvfve7+P3f/31Uq1XEYrFl0boXo7LfbKGzxFpibCTlxr7WzYDOFxtYeL1eDA0N4ZJLLjEp4jbDWllUqVQKyWQSXq8X+XwelUoFmUxmS0u8AHBExpnOpYYP50ZZW6ok1VniZkXmjrL1KV7vYlOngwcPIhQKIZlMmqBEt+gmsOjQsxFaJpNBoVAwLN5u9dIDgQCGh4eRSqWwb98+HDx40NRd3Sm1xW3RTZsMt1AohH379qFWq2FmZgbHjx93RM+DwSDS6bRhO28FmK5KuFKp4PTp02g0GpidnUU+n19ThJbHKBQKOHHiBMrlsmlY4xZYIZtgYWEBxWIRp06dQi6XMyyynSLcU8jaY/dzOt/A0nPn8/kwODiIaDRq9hIFjbZLeiy3rZeevl5dqIei0agpnUbHjLqLhjQzdorFIur1umGyMJtnZGTEBGYJbjKQTf3v9/tx8cUXw+/34+TJk6ZkFR3b7RCWhqPBrwxAvs/0X5amUFb0/Pw88vm8SRNXZo3tpCYSCQOYsteL7SSqE+jxODME1lquiyV2GDBngJ3BWaY0t9ttw4LjcXmNzALSEnG0Y7QWqgY5tREb7TU61GRQ0tHmfDEVnHNGvRQKhdBoNAx7slarGUeWoDqBdtuG4nl472z2mwIgtKfIAGy1WmaNA86SA3Q6WeJuYWEBuVwO9Xrd0WtmLft9p9PB7OwsnnjiCVNWbmBgwKSY9/X1maaw7Xbb9AHiPdrJoDPXMeew0+mY9cD1rSXaGMhaLUC0FdLT1Vsv56KuXsneVIDYLn2g104giwFulmCh7rDPoUAg4GT18rmKxWJIp9PmWAoE2qQbAsHUAzynNpVU8E79eAW1VWfp3ksh6K3+Gq9HgTqbDct5LJfLRmfTT1DQV/uUaMPEbmPiddBPZmla2kN63dRhBL3ZEDoUCjl6mBE40wyrZrNpcJJ4PG5K4jGgy6wqW+cri56sagXS3YIzNmDptlepLaLZCZx/m5jE+8XrIr5BHIFzoutRWdK8h7S1ODcapFdbiMeiHuaYuH44PjegluuWQW/anTwP1yHvv56Lwd5sNotGo2H0llZI4L1utVqmrwvL3tF+pD3nBqSr/uNcKWFS12w3PM3GlTSzTT+vNg3tK8XpuDZ4nEgkguHhYTQaDZRKJbMPaNamZrzYQXPNBtF7ymfJDgLaOFc32QxdzfKMFBJLbMlkMmi1WhgZGXG8PjIygqmpKddzTE1NuX5+YWEBmUwGY2NjXT/T7Zjd5Prrr8fv/u7vYt++fTh27BjuuOMOvO51r8Pjjz/uej2bIRtC/f7sz/4Mf/zHf4xPfOITCIfDmz2mc0LsDY8P4kpgpH6e32F6SSgUMgqsG8uaDyQAx4a+1SVeKBqxVcWsEUFep73JaURW02/cnAzb0VancjWhguA8k/HWbY45NjIPyapjXb2dLnTcGPUPhUIIh8OmezS7tbMuLOdc2Q9nA1DnvaRhxNICHAsNwPUcjyBJf3+/cfC1zpyd9UCWIhu77aSSKLqfqEFJpcznRyPoZM7QYNmqYMhK0nPOt156+nplsR0UPi92Sq6yrQA4nBR1NqiDtJ667jX8LlnE/OxKun2rRBnkwFK5NpvtRdY6ARBNsdXmSd1EWW7K/AGcLCSOQRnTwNL86efchA49Gc08p7LoVNS55jXZtoaywdTZ68aq1Huq+zNJBhQ3MEjXo/b74DnoNGu5PHWgaRfZbCllXdqAAq+tG9DAY/F+8zq08ft6grVkE9ZqNfh8PlO+R9P/dW2wXAqzQdZ7vq0SBWGA5TVPlVVHEE91+3ZfU09Xb72ci7p6pf3Z3m+B5bXS+Vv3NGU2c99drdyjMla5RyoDdSXda5/XDZDj/zaL1AYyef712OLKelVfiefi67wu/tbPAkv63Saj6R5FUT2nc6Svq/2j86zXbf/N/91wCT3XasFyWz+pjeCm0/S3PdZue53ec/7d6XQc/hd1pU0GUFazvZcrNmIHO1a6Xnu83ewVBZ65Hii899oUlXNvz63Om9occ3NzhqBFEpcy63lcvk8fXjPKbTt6LdLtHunfapfzPrmtI5vcwTVnP9v2Z/x+PzqdjrHHaAPZNqE+82vVh25BwbXIZujqPXv2OF7/8Ic/jDvvvLPr9+x7thq+4PZ5+/X1HtNNbr75ZvP3FVdcgUOHDmHfvn34u7/7O7z5zW9e17HWKhsC0k+fPo13v/vd54yiPxtCwFKZ12vZMOg4KfOUgCcB4rUIa2J7vV4UCoVNuKKNCxU+o6Qej8ekMauC1TnS1G1+T+u76UOoaTfhcNjRFGyt4vUupvqRkeY2ZxwvG3cODw9jZGQEyWTSpI/vdPF4Ftl0sVgMjUYD4+PjBmR+7rnnMDc3Z5h6wWAQjUYDoVDINLSkkbNZwRneR5Y1YDPUer2OUqmETCZjwP31HjebzeLpp582jUPYTGR4eNjUhieLgsz148eP48SJE6hUKiiXyzvCIbTXOJmuWq+Qae/K/KDBU61WTRMVzvN2Sc8533rp6euVhbqawVc2CdQgbqlUQrvdRjgcNkHGer1uAnzUzYlEAqOjow7Qk44LnR0ekw2L5ufnEY/HDQi605oDM6hIwFOvo9PpmHlwY7gBS6whfo/7mTa6pDNGHcv3eHyWjSmXy1hYWEAwGMTQ0BCazSZmZ2e7giiBQACDg4NIJBLYs2cPDh48aFhCwKJtEovFADjroisYoix0shFtx1IBUjYQJeuRwD2PSwCH52eWkM1so21EMsT4+Di8Xi+KxSICgYBpCMeSZ319i01Mw+GwsWPUydeeOvZ8q7NvkxVsp5SlfdrtNiYmJsxadksRX6uwDFuxWITP58OJEycQi8VMdoeWW3v22WeRy+VQLBYxOTmJubk5w/jeblHAjexKLS/EfQNYYhB6PB5T3oi2DstF9XT1+SXnoq5mVhZtUw1kaq1kFQLBBLXoE3Mf070acJZOsP1DwFlORvdY+thaokoD5jaQSL3V6XQcOoo+qo5T9187e1p9XWUp6xgV6HUDxfW7fF9tDWaO6fvdnktb11HodyhLV8FzziMBRTLSeT20E2xmLQFJj8fjmC+eg/Nol9vg3yRK6RyxjAjF/tsNFLYDHirEIZhdpmuL/2uZEo6H3yPuo2A1x8sfO6jPMZAYpT3gaCuqPibGxPngufgdrR9fr9exsLCASqWCQqFgGubaJA+uY/5tB0MqlQq8Xq95dgqFAiKRiMki4/fm5uYwNTVlMt5nZmaMrajH5vPhFlRzwxl4Dvu5su+b3lO9t0qQ4zqmP01Wuj67+tx4vV5DPKT9paWSdE1pzXkeww6k67hsEF3nZzXZDF198uRJxONx83o39vbg4CD6+vqWMcVnZmaWMcopo6Ojrp/3+XwYGBhY8TPdjrlWGRsbw759+/DMM8+c0XFWkg0B6W984xvx2GOP4cCBA5s9nnNK7AjXWiIr/BwZW9zINfVsreemMbbd5Ub0Ibc3Pt3o1PigctZNlsZKt0gimdbrZeGrwxqNRo0R1e1zdM7HxsYwMDBgNuDtnue1Cuen0WhgaGgI1WrVbGrAYnpgsVg0Dc/C4TDS6TRCodBZYU3S+GPNsenpaZRKJZPCvpbUJjcpFAqoVCqmt0CtVkM6nTbBEBp3lUoFv/zlLzEzM4OpqSlMTk5uewkUFRtIj0QiprkS17umi1MBMx2Sn+vGAunJuS09fb2yUN8yEEqgnLppfn4epVLJUS+bwADZKHRoEokEBgYGjHOl7BxgqQ4mj00mMXuf7LRyUgAcrCPaJwo4qANh75ncc5SZz/lmFpc6IfyOpkYzK0kzhbgPVqtVFAqFroHW/v5+JBIJDA0NYXR0FLt27TK6T51SYCld3nZ4eM20L+xr1b+5Lggq+3w+45woKML9mkETdbRsMIaAw9DQENrtthnD3NwcJicnTWkhn89nCAokUeh56VSTHQYslchR51UBEAqz8ACYMkQsh6fXsFFh01Cy3FgrPRqNoq+vD7VaDbVaDcViET//+c8xMTFhyBU7DbTlfWPTPLvMAkv58Nnp6+sz95T9FdgEbjuB9J5svZyLupplUfR/v99v9nY3II2iQLqWBbWJaRoQ1BrECqQrGAbAQXQjQEv97Aak87skqbD2t2ZhaXYJxdaJ9LNs8F/FDdRVdqsd/OT7GuDmsfVYq+2V1Ic2s1rnW4F0Xm8gEHCU8+L+Rp1q60jqeJ0HBecJEishQYF2Hlvnt1uvDFuPu4GXbvOvgRO15/QzHBv9SP0e14H2CrHHxGNoQIDvE/NgwJVEKI4bgHmO+Fkt7aL3fH5+HsVi0dhRhULBUY5EhXqKoiXpSGwgwQJYLAkSi8UMoYTSaDQwMTGBUqmEXC6HXC7nqN+voveT86JBGzuorwEJO4tCMxm63WvqXb3HJGHaGd/6m/gPew/SjlOiiNpRbtiFHeTTcemzo7bpVkg8HncA6d3E7/fj5S9/OR566CHceOON5vWHHnoIN9xwg+t3rr76anz3u991vPbggw/i0KFDhlRy9dVX46GHHnLUSX/wwQdxzTXXbORyjGSzWZw8eRJjY2NndJyVZEPI33/8j/8Rf/7nf44nn3wSL33pSx0MHwD47d/+7U0Z3PkoduRKf2yluNpx1IGnaARbU0j1nFvpmKhRYF+77dR2G5f9Xf5e7ybk5kCqaKScJVFo1K01ULITRA0kbY6nTjXXDwEKsjf4m9etdVltpQUsNyK7GVlsUMYf1vQ+k7XIc83Pz6NQKBhjj/eQ66pWq5ka7NVqtatBtl3SbV2pUWgbiPq/Znxs9xrdjMh5T9YnPX29NqEuUocRWNr7tFwSsAQSq8GsNU61VjQ/z8+SqQTApNl2a6SsAbDt3pvcWEOUbjpa93zdg2wWnLKy7AC7ZuMw8LqW5qwEwLnmuf8T/LBLbxCYVduDOk5L9ZBtpEwzPZZmIdpzwePympU1zs+TkaagkK4/Mpd1nAwM1Ot1lMtlAz4pu53XqQFX+95yfqn/yZDmPFM327VMN0N4HY1GA5VKBTMzM6hUKmg0Gmg2myaLg3bDTtUJan+r3Uj70l4XW+kwr1V6unrr5XzQ1XaQkvuQGzCqoK2CcMoeVztXfUEbcOa+Rr+CAcVOp+Pwh/U4tj7WAJeWMFOA2S5Jwj2tG4nM/tttrnge6gS16XXO1P/l+Bis51yrf63fU0aszoUbqG+PUYPQbtfgRn5zmw9lv68kbvYHj7GRvYffswMzNtjZzcfi//ytgQeda13b+j2C0Bo8twFWXWscC0FzBmjt83B96Ov6s5qordtuL5UL4rPKZ9Lj8aBQKDhsDbsEmw0gu80z17iC6G6BIPs+dXtNnxP7u7redN3ZgSN7zHaQyS79w3F2C2KtdP16jm7vdbtPW6mrDx8+jD/4gz/AoUOHcPXVV+Oee+7BiRMncOuttwIAbr/9dpw+fRpf+9rXAAC33norPv/5z+Pw4cO45ZZbcPToUdx777345je/aY75nve8B695zWvwqU99CjfccAO+853v4Ac/+AEeeeQR85lKpYJnn33W/H/s2DH87Gc/Qzqdxt69e1GpVHDnnXfipptuwtjYGI4fP44PfvCDGBwcdID+my0bAtJvueUWAMBHP/rRZe/x4e7JctbSeoxlOkusM0Wm0VqbbNEJYuoJsORUaiqLOvwLCwvbUhtaHTg1ftRIUGfc/i4Vlf6sl3nL+eY8uDHrWHOeDelGRkaQSCQMw3u7Qcq1CjfoQCCAdDqNubk5DA4OIhKJGOXHSHg+n4fXu1geaHZ21jDsyLRKJBIGqCBzzk5R0nvUbreNAcuGHWR8cu1putSZOOlcL/V6Hc8//zxOnTplgiDKkGy1WqaBGa97pzmCbkwQNxDdTQErOLgTZKfN7bku55u+dlvnK60520nR4Cj3snA47AD5gKU6381m0zCQa7WaaXqVy+VQqVQQDAZNI+p2u22aLVEf1+t10+SaDD0VZpUQJO3WBHsrxA5a6+v6W4UMfLLX6HiwSaadIg8sOfIej8cEedlovdVq4dixY5iYmHCkkrsJ2b7hcBitVgv5fN6x92vDcwK1Cl74/X7TKJ79UMjqqlarDgdMU9y5bsjittlKmpZOoJ52BPURx6dAPhu45XI51Go1UyaEjDiv12sazPf19SEWi5mygNFo1DRaVWYb1yWFZWLYJKxcLhunk+8TTN/svUOD6rVazVyHBt/ZNHWnS6PRQKFQQDQaxfDwsGHtcY3retlpPVkoPV29tXIu6moN9gFw9D7g3qsBUX0OFLDjHgk4We7cw4AlUFf1kZJ25ufnzR6vPbU0UMq9m/6g+p7lctnoapYco6/KYFkkEnH4nyw91Ww2l5WkAZYDa7wOJZNpzWs3li1FwTrOHe0UgqEaVHAj6XF8BHZ53G6kKNo7qg9sQJu+HzNrqSNVvF6vKUvG8ep5FFTm8WzWrrKVdT5WEhss1XXJDGy+Zh9Px8j/VVfTzuEcaWk8Bjm47liWjY3RyTbX0iE2YEqcp9VqmTVmN3LlWqDOtu+jvYZUbMxFCSOc92q1inw+bxrVa48hzeTk/dfz8vN6Dg1q2UC0Ath6j3UPsDNVeB08P599Nrpn9QYtk6rNXu354P5Cgo3X60W1WnWQVPlZN1H/XIk4XBf299fqt2+lrr755puRzWbx0Y9+FJOTk7jiiivwve99D/v27QMATE5O4sSJE+bz+/fvx/e+9z28733vwxe+8AWMj4/jc5/7HG666SbzmWuuuQbf+ta38KEPfQh33HEHDh48iPvvvx9XXXWV+cxjjz2G1772teb/w4cPAwDe9ra34b777kNfXx/+7d/+DV/72tdQKBQwNjaG1772tbj//vtNCcezIRsC0jeTgXIuizqd6xEFjm3lsVaAmMaDbpx8cLmJhMNhB/vOVkpbLXYUTwF2/d3te6pgNyor1fjkZs0NVBnpOwWkXKtwLQQCAVM6iAqQ10IjCYABvtVgpRGq0W9l1wHObtX8YakApmoTSGdN8s1kmvE5YEdqe43ba2yny0rskBfDGtzqyPndd9+Nz3zmM5icnMTll1+OI0eO4NWvfnXXzz/88MM4fPgwnnjiCYyPj+P973+/ibJTvv3tb+OOO+7Ac889h4MHD+LjH/+4I9r9ox/9CJ/5zGfw+OOPY3JyEg888AB+53d+x3GMP/qjP8JXv/pVx2tXXXUV/uVf/mXd17iavFjW9naK6h51oAA49sRqtWrAbhr0ZIkpq1wD2TwOHTwy7dSh5Z7oxtIiQwnAMibcdokbW49iO6b23NrOOfWQ6l7do2nzkJHearVMGZOVGOm0aajXyNqynTm1HVhblD9ujCUCP81m0wGE07ZikFrtNb1XymzjOtLvK8ihDqI6XnROtQYn/7bTv/ke+2jw+ADM+XQ9aXNZXcMcp4ImZ2MN6nVUKhXHveT87VThODnnJGbo2uCzwGwB2lY7TbZaV/dkZ6/tjYodeFWmOZ8J3cfcvqPzwr1HAUDulfb39H/qaO5fzLbR8wJw7HMKZLfbbVNeg3pewXzqGgKj9n7l9jypv2szaRWYVl2r9oQdpOD7+pqy2N1Yybw+fd9mBOu4bXCT3++mD3Qs/K4Cocoa1vmzz6X3SW0KG/Bcrx/UjQ3sxghey7GVqUx9q2tP516zBdRWIMCr98htDjTgwqwtAvT6fNiMdPs+rQSmq0+uwTyv1+uwQVjqRQP+LDvXLUhsk8J0/vVageX12vmbdpEbWcwG1O3v0ra2Swe5BXncnoOVSG1uOAPPCTh7B/H69PMr3RNbtkNX33bbbbjttttc37vvvvuWvXbttdfipz/96YrHfMtb3oK3vOUtXd//9V//9RXHGwqF8P3vf3/Fc5wNeXEUdX4RCg1pOm7cSFZjhlJ5amNANlUKBoMYHBxENBoF4J5ixY26UqkY1lKn00EikUA4HMaFF16IVCqFWCyGgYEBeL1e1Go1ww5+5plnUC6XTeR9Owy7bsbQSp8liyubzSIUCiGdTpt5WkkUyGATDkZuVWgkkZXOutN26uWLTRRI10YbbmIHhgi0t9uLjUzUqLUZATS0+B3OOZlYPI5+52wI15WtFHeyKPhGJgywVMuZ16PgHJ1zgiE0srab0bSVCv/+++/He9/7Xtx999141atehS9/+cu4/vrr8eSTT2Lv3r3LPn/s2DG86U1vwi233IKvf/3r+PGPf4zbbrsNQ0NDJnJ+9OhR3HzzzfjYxz6GG2+8EQ888ADe+ta34pFHHjGR82q1il/5lV/B29/+dkfE3Zbf/M3fxFe+8hXz/4uhWfGLQdyCsat9nvu93YjSZgF6vV7DMnZjrNTrdUxPTxsgPpFIOOou+v1+07tEy7UwBZZs1WAwiNHRUUSjUUQiEaRSKUcZrWw2iyeeeAL5fH6j03TWROcfcNoptE+4P3U6HcOABmCYQPysAvZzc3PI5/OmVBezAOw0aepqli5jjwzWwKQDSEfWBtJV9B6TnahlxzhGghVsRKegN4+pgQLVoVwr2t+FIA77X7DeOp22bg6xfR80g4JONuuN0060xWaUsfkuHUPbKV9NNkPXun1fx7SR4LuyDDcrMMW1x32jXq+jv78ftVrNsb9zHRFcIdhA9upK4MNWSQ9I78lmiBtQpn/zmWHWlwaKu7Gl+RpBVw1885lWUhXPQYB6YWFhma5ngFZ1EEF+7pd6bvaM6u/vRzKZND0R2COFUiqV8OyzzzrYuarX7OCyzg/BtG7Ass6h/T6PSeIXsKSDeK06v16v1/TRsMdkM8iJNej5eGx733AbswKLzGiORCJIJBJIJpPmR0vAaO+QbnuTDbTr/Nh6yPZR9XXVJ3bw3W2eta77/Pz8MoC1GxlQMxoUFCeBTV+jTuD/fFZoKzCrmj1MODYem/YLMwQ1mKH2hA3oUrS3D4/N123hObtllvN/BqSUIKLH1PJEquv5uvYmoO3sVvfdZqZzPlgCT/eRVqvlyFTU+81702otNVinLcuqETYIr3uZvq/19dU21N+816tJT1dvr2wYSH/44Yfx2c9+Fk899RQ8Hg8uvfRS/Pmf//mKbL/zSfigkpWk5SK6NaXUjZHpQHNzc8hms+jr60MkEjHpKMpsodBpm5ubQ7FYxPT0NGq1GiKRCNLpNIaHh/H6178eBw4cQDKZxPDwMPr6+gzLbnJyEj/84Q8xMTGBEydOmBS47ZD1nJefLZVKmJiYQCwWQzgcNvO0kpCZUK/Xkc/nkcvlHOm3FBpiZKJHIhFzP14MTGA3IdBAkIEMczcgXaPfquwI/lQqFdMY1K2+udY01RS1tQRLNltWO5f9TG236LPAsgLtdhuRSATAkjFmA+m1Ws38rlarrnUaz2W566678I53vAPvfOc7AQBHjhzB97//fXzxi1/EJz/5yWWf/9KXvoS9e/fiyJEjAIBLL70Ujz32GD772c8aQPzIkSN4wxvegNtvvx3AYi24hx9+GEeOHDH13q6//npcf/31q44vEAhgdHR0My51VTnf9PV6nlsa5AQuVwoIer1e89zxOwral0olnDx5EoFAALt27TIAOA1z1lrXfZD7J5s4eTyLzZAvvfRSjI+PI5VKYXR0FIFAAMlkEolEAr/4xS9MX4edKGqbqBNrswHb7bZhSrPMi9frXdbgFIApZdJsNpHP51EqlRz3iM6hx+Mx/Tyi0ahpohSNRk1TR3V8GDBRva9ZCAQZ2AxbmWUsRcbvE3AgIN5utw1womw03nsGsLV0DNn2ZJGHQiHj3GnwZaXsOYqWJgiFQgYUKpfLDv1tC++XPb+8t3qfVxI3VtZGxf4+bTJg6Vlcj2ha+Zn2Y6Fo9gjXMG1sAkYE8JiST5up3W4bEGSzxtOTF5+ca7raZnlyD6ReoF5U8I360X4OuAexprQGqRWg4vfpd7N2sz7vfE4VXKPuIDDq8/lM9hGzlTgOlreMx+O45JJLMDAwgHg8jsHBQUe5ipmZGfT19WF6ehqZTAYTExOOvUrHDixncHcjNqmfouxzCv8mWYp6lXoPWGK6cwwE0qlHqcO0XJnOmYrbaxrc4LXZQp+ajdqHhoYwNDSEwcFBo3fn5+cdtcPddJ8GRHUO7R4hboFTe42pX1qv1x2MZT2WBk5JsuNYuwGqtt9LIgGviXpZgW3aD7Qh+L7WINcm4jy+3XhTs9/se6c61M2u0DWpz6HaCsBSHwHA+ey7lRdys710jVEvEveygwgK4vOZV/yB95XlA3UN0xZSQJtBbz77NlbHPYUkBNpRxNBsZrzeP9rEGhTkPkHf3A5MdbsXPdlZsiEg/etf/zre/va3481vfjPe/e53o9Pp4NFHH8XrX/963Hffffi93/u9zR7ni1KU0caHRDczwJnuDSw5SMr6mZ+fN84amzG6Rb6YSkNgmE6rz+dDNBpFIpFAOp3G4OAg4vE4UqmUUZ6MlKdSKdRqNWSzWdd0lp0qNI64mamj7JYFoCw3zqld580WvX/djvtiEr2WbqlsFAYRuJbi8bjDsFEFprXY1BhQhbIR9lg32SwHmPPBvzVar4EAG1jwer2OCLabAUXgRJX/esE+NRQYnGPtSK2rRuOMhpeWm9juZ3kzIucs00OhQ6UyNzeHxx9/HB/4wAccr1933XV49NFHXY9/9OhRXHfddY7X3vjGN+Lee+/F/Pw8+vv7cfToUUdXcX6G4Pt65Ic//CGGh4eRTCZx7bXX4uMf/ziGh4fXfZzVpKevVxebmaPsKptBp4a+/VyR1cw9kc8s91VNxaa+oRHdbrdN3WSys9LptAkMs/4qGdaxWAyxWMxRZoRj3O7n3BY7IKHsbzYABZbqsiqbUB00AvDdmrfZ+kt1tZ06b+/V6iDbjjPf1+Nq7W57HHzf1n0266sbc87tWAzIKDO9G0OR10agPhAImOACQSSCFGvVCxtZUxyj2zydiVDnEcRQdvlK16PBFqagU1/azLq1ssFU1GFW4gAdcBU++7oH7BQ9DfRYbtsh56Kutvc7e++jnww4GbQUNyYxn00Fm7TspK2b3YKA+hnayR6PxwBl+jxq/yzqJrLoCQInk0nEYjHjG/Fc9XodsVjMEFpUL9hjcps7zoH+5lzRptDX3cqJrSa2HuGccf/i3Nh10PlZvZdq46j+06xkta24J/PeE9jUDDxlyeteb4/XniebUazX5TY/bq+rDdctc8AmDeg49bf+8DwaxGC5LwY0yGLm/Nn9QhRQVpvVDXzld7WcL4XnsQMF9tzZoufh34p38Xi0XezPKjiv49BmwiQckBipIL4y9NWvto+v9r19LTp/nCfbLtNro652Y9t3C850EzuwAsBhg67V/ujp6u2VDQHpH//4x/HpT3/aASi85z3vwV133YWPfexjL0plv9nCjU43YDKAGZlTRcgIGpuV0bhm5IvOT7vdxuTkJAKBAGKxmEnB5eez2SwqlQqq1aqpWbV7925cfvnlGB4exiWXXIK9e/eaGukezyL7jcc/dOgQ9u/fj76+Phw/fvxFw2TtdDooFototVqmMVupVEI4HEYqlTJAJzfFarWKVmuxadfExARqtRqmp6cdNVJt0RQumwXxYhXbSFEmHrAEMI+OjuLAgQOIRCLYv38/RkZGHKl2bDZSrVbx5JNP4vTp0yZ1ShnowNo3bjU6NLKuzBYFqzayRulQp1IpU+JGUwoZFc9kMoYNyXJJZJfFYjHs3bsXkUgE8XgcyWTSYXzU63XMzs5ibm4OU1NTmJycdBgBaxEq20qlYgJmAEw5AD7LnA+yNrUMghob2yWbofD37NnjeP3DH/4w7rzzTsdrmUwGrVYLIyMjjtdHRkYwNTXlevypqSnXzy8sLCCTyWBsbKzrZ7ods5tcf/31+N3f/V3s27cPx44dwx133IHXve51ePzxx5cFBc5Uevp6daEzX6/XkclkHPs6n3Gm7ZINRBBMncv5+XmT7pnJZJalP3Mfo65mY0WymMbHx7Fr1y4MDg7iP/yH/4Ddu3ebsmP1eh3FYtEwtV/5ylfioosuwjPPPIOf//znjtRSDc6vR7o51Px7te+t5Ejo/k8mDxlALLtSKpWMPuJ80yZidg1fcxsDdbyWyFO9xuuJxWKIRqOO+QoEAojH4/B4PIbpyD1egXeysJj9x9IpDHLQKfZ6vcYO473g/qc6jKxJBkVJAqDtSLtvaGgI/f39yOfzCIVCJmvRvs+hUMiUFKKuZnp/X18fisUiCoUCGo0GnnvuOczMzDjGsVnCe6jpywqwbETUFgiHw4jH44bVxTnMZrNda44HAgEMDAwgGAwiFoshkUgY27FarQJYcqRzuRyy2ey6xtpqtcy5FeSrVqvG9rT1PjNSuK53imPbc863Xs5FXU1yk7Kmaau6MWfVprfLvABLjZqZvUG2q808tktGEpDUH/YvaDabprQl9YKCyDMzM44ylAAwOjqKPXv2IJlM4uDBg2Z/ZoaVAswXX3wxhoeHEQwGUSqVDNmNez6vT4O97XbbsJXtEqLd9lbqTu6FZJLzR/1bZR/z3OofqL/caDRMyRuSSshyVzuIgVnd5+wSGFp7nnutHdjWYHA4HHaA9Db4qoQ/Ho8+uu13uvlbCrJqEACAY3waJOV61UCBzpuWf2W/FA0eaC8VZqENDg4iFos5GtZyzlhKhOuG2Ys2CMx50cCEZhfw3DbTWlnZ9jpTIN/e1xVMVqIZbS7aIQw2qd2zsLBgeqSRVe/1LpZDZNlcBv+TySQGBgbM/kBAm7ZzNpvF7OysmQctAaXX5yYej8c0muf3lCCozwjXuK3DiYXweAr421kZGkjh+uFa1QamLP3WK+2y82VDQPrzzz+P//Sf/tOy13/7t38bH/zgB894ULacPn0a/+2//Tf8/d//Per1Oi6++GLce++9ePnLXw5gcSF85CMfwT333IN8Po+rrroKX/jCF3D55Zdv+ljWI6r4AWekSzc2On3KKOdD2+l0DAuLDjg7DA8ODsLv9zsaoExOTpqSLEx/GxgYwEUXXYTh4WHs3r0bY2NjrmwmMtNHRkZw8uRJ46xtFKTsJm7O+mYIU7/Jwpqbm0MikUAwGDSRWG6OdM5nZ2fxwgsvoF6vG0NppXFrxHklVtiLQfQ6GCDg6/zNdZpKpXDhhRcikUjg0ksvxd69ex2M9Ewmg+npaRQKBeRyOVNyYKOADoVzTFBDDWU7KmwzV9Zy/Tw2nep4PI7R0VED4mjQhfPDGuVs2huPx7F//35TPmlsbMzhOBQKBZw4ccKA4Nls1hioawXSgcX9hIZDs9mEz+dDo9FAMBh0pMXR8C0UCpibm3M0SNxupbkZCv/kyZOIx+Pm9ZWA55WAwbV+3n59vcd0k5tvvtn8fcUVV+DQoUPYt28f/u7v/g5vfvOb13Ws1WQr9fWLVVdzbNSjwNL+qOXUmMZJQ17BQWAJSFtYWDDNk/V9Zk8wqFYsFs35fT4fBgYGcODAAQwNDeHgwYPYvXs3ZmZmDNBWqVSMI3/JJZcYB+fJJ590ZGCpY7Nesdlb+rrb8WyGldu82kKbhjUpa7UaAoGA2dfI9GMgsF6vm+wxZuW4jUPBGNpAamvxmui8aqquz+cz4AAdOQXn/X6/YXS3Wi3jnPHesgwLHWmC4kqosJ0rjhWAqa2qtVABp57p6+tDPB43wJFbWZZAIIBEIoFoNIqDBw/i4MGDZl0Aixk9uVwO5XLZlAeiM76Z+kGddgWLzkQH6DFDoRCSyaSjPnKtVjNAlZswaM5axsPDw+h0OpienkapVDL3myBWLpdb11j5PbfXuOar1aoD9Go2m0ZXAzvHse0551sv56Ku1h4YAMy6V/1kM8pXAtLpo3m9XgOkE7BUYpD24aCoLuBzyWeQpTkqlYoDaGR5VWZCEsQOhUIYGRkxpdfsbEId865du5BIJFAul3Hs2DFjS9iBdhUFjRnM5fzwOrUfA/cukut4fgbpeU43cJm/bSCd881eDwwUM+jAYzKgq0C51u6mb2033LQDy27Mbt5PJTGorlcg3QbiFXzX63abc8VcOD4Foe01pIESPS7XB+0FYjT9/f3G/mCgPhwOI5lMwu/3Y2hoyOizcDiMvr4+17KcGpTXgAXHoAEJzV7Ta3ErL6zPZKvVcgQ3FFDW+dI549rR+xYKhUz2pJY8Iq7VbrcN0YDjC4VCSKVSCAaDJug9MDCA0dFRQ3ZZWFgwRD3qzVKpZAIeNsHRDafRoJWucfYT0LESA2M5GNqVSkK0z6n4kJ5Lz8l55XcDgQCi0ajjOz0gfefLhoD0PXv24B//8R9x4YUXOl7/x3/8x2VswTOVfD6PV73qVXjta1+Lv//7v8fw8DCee+45JJNJ85lPf/rTuOuuu3Dffffh4osvxl/+5V/iDW94A37xi18gFott6ng2InwQ6agDToWugKBbSrkCnZraq5/ndxgZ4+bGTZ2O10rlSBSwpJO40fIlVPIEIvi3XXtUFR03R2X7rech52fpmDPCynlTIL1SqWBubs40F6VyX+34atSdCbNqJ4h9HaqgARgDlUDz4OAgkskkUqmUcerVyCEQMDAwgMHBQcN8c3P2VxKuD2W8c/1yXDTguP7JlOgWOXcTsg3D4TDS6bRpwptIJAzI0mot1k0bGBgw6XYEcUZGRpBOp5FOpzE6OmrqFxNM0fU4ODiISCRiAmWNRgNTU1MolUrrUoLqYLDBqzISeD+V/WEbzy92Yc3jlWRwcBB9fX3LmOIzMzPLGOWU0dFR188T4FzpM92OuVYZGxvDvn378Mwzz5zRcdxkq/T1uaCrbeEeSaNfgdHVQEE6fm5B826lSaivvV6vAQW12ZU6imQqu9Vk3IhuooOs5TJ4TD22G8jBMa33nNT1tGcAOJhYCwsLJnjA9Hpl06moDlMnj8xtTZlWUGKl+eL4+Dfvu56Hf3PMPL6m99vBCf6vOlQdNps5qY6cMgCVnUe9mEgksHv3bqOz4/G441isHQ8AyWTSAM/ryZCi8JzKfON5tBwca7V3Oh1HerqCRaudh4H7gYEB09PFtkOCwSAqlQoCgYABrT0eD9LpNOLxOMLhMEZGRgwIT0Z6u902TDDeC9WlxWLRBNBXE/u5abVaRlczCA7AMPDU9jxXdHRPNibnoq62dYS91/JZs4FCJZq47RH6zHCPVrawW+kFFQVHeX4FtzhOkskoBK2VDUwd43bd6vPb79tjs8tKKnGIv+nLMtjLvYufoY9LQN0GTtUf4/HpP1Cnq82iY+N+qgxinQdmjKkeIzPezkiydRzn1gbZ7Xutv1cjxSjzV7+nwKb9HZ0XmzCn98MNSNfvaDk5xVLo1zLTMZ1Ow+/3Y3Bw0FFuV9ey1h3nvLtdqw3s6vjt89s2nuorrnfbbtV7wevlc8TfxH6CwaDBCjR7jOcj2VH7hni9XqOXw+GwAdLj8bgZM593nm9ubg4DAwMmw6NQKJiMRR2rHVDTa1CMzQ5QcE74mu4F6ne7ib3G3MB8HQPnmsd22yN6svNkQ0D6n/3Zn+Hd7343fvazn+Gaa66Bx+PBI488gvvuuw9/9Vd/takD/NSnPoU9e/bgK1/5inntggsuMH93Oh0cOXIEf/EXf2GYfF/96lcxMjKCb3zjG/iTP/mTTR3PRoQPIcE+txQPfWCpyPhgsb4lI5VsZGWD7wCMM8A0aKYYxeNxk57eTfnQEWF5FDqebuyvbsJrYh3XYDCIoaEhRKNRw+xTJUYng2k+2WzWbIZk9K1nI6HhwsYuPp8Pzz33nMPho0PD3yuVc1FRY8uuSfZiFft6NHhB9lY4HMaBAwdw+eWXI5lMYs+ePRgaGnJs/rFYDKlUCqVSCdlsFv39/Th16hSmpqbW7IACzrQ0NkKl4teSSBy7ssZp3Gkq/UrnYR3ieDxuMjbUOeeaaDabiEajqNVqplGQx+PBK17xClx22WUIh8MYHR01z6gGugAgkUhgeHgYCwsL2L17Ny688ELk83n8n//zfxxg+FrWkQI53EvUSNNAj8382AmyVZFzv9+Pl7/85XjooYdw4403mtcfeugh3HDDDa7fufrqq/Hd737X8dqDDz6IQ4cOGUPv6quvxkMPPeRIvX7wwQdxzTXXrOdSlkk2m8XJkycxNjZ2Rsdxk63S1+eCrlZRRziXyzkCv/q+Lfwc9ySWYfN4PCaQRufbFupIn89nSlR4PIsN0BRoZZk4vqf6dKPPu8/nQzqdRjQaddQo1T2EjkStVjOl1M7knJwn9oBRPa3gsjrf3WwCG5Slw1UqlRCJRAzY4ff7kUwmEQ6Hl12b7bAzo4cAtNZtVVYjj8EUeLLMqCt4TJIb+EPbjnPBsi5q29FGYdYcWWq1Ws0BpDPYfMEFF+A1r3kN4vE4BgYGkEwm0Ww2kcvl0Gw2kUwmEY/HUa/XUS6XEQqFTFm29QS9PR6Po4kuszaY1eH3+02qOsfcbi+VL+DcrkUncJ7i8The9rKXYWRkxOjATqdjgPVGo4F4PI5qtYrJyUk8//zz8Hq9eOlLX4qXvvSlhlTh9XqNjerxeDA2Nmaunc70nj17sH//fpRKJfzsZz/D6dOnlwEybnOiBBnqYfYcUjtT18Vag/9bKT2W29bLuair+czzuLr++QyoDay2u9tnlTlL0EmBP7eSm3zu+F1lK6s/Qd3KYK6yq4GlespkX5PFWiqVjI1oB9Joh9sALH0vCnWCNipVdi/3Lu7zzLZWNqyCoJwjkpxarRZKpZJh0/I7GsjTIKgNtrbbbczMzJi9jCQnBeMZ9Nb5V53K67VJabYfyutwu+c2kEu8ROeeJDrFV3TvpS5X4TySnNDpdByEQrvON+8hdZCSG5jdQKxGiZD9/f2Ix+MIBoOmZGooFML4+DjS6bS5Z7QHmI3n9/tRLBbh9XqXkXkURNfsbV4XfzMYTRyG39X7bDcLZeYzbR2uMz2n2otsmk7cIJVKmfKjGmBoNpsIh8Oo1+uoVCooFArweBbLyKbTaUQiEYyNjZlSvbzXxKjUdksmkxgdHUWtVsMzzzyD2dlZo1N1bdnC9aulet2C+zZBxfYBupEQ7H3Ifk/XDT9LvGS1nn32+Hq6evtkQ0D6f/kv/wWjo6P4H//jf+Bv/uZvAACXXnop7r///q4gxUblb//2b/HGN74Rv/u7v4uHH34Yu3btwm233YZbbrkFAHDs2DFMTU05msQFAgFce+21ePTRR10VfrPZdIDDdvO6syGqNCi2wrVFmT7ckN2AOhUqYSoDBdq6RWH1fOokrpeNrt9n6lswGEQikUAsFjNpPsp4Y6o87wcZXWSU25HptUin03HcX1UUqljXu4G4RdNfzJuQrkk1dtSI8/v9xknWhjqsya3GISWRSCCRSCCfz3etS7aS8D5x3TO6bRt2NAip4JVNsRbhcbkutZ6bMsr7+/vRaDSMwRwKhdDX14fBwUGMj4+buuorlRgJhUJmbjmvZPuvVE7ITWymixrS6ujvxEj2Vir8w4cP4w/+4A9w6NAhXH311bjnnntw4sQJ3HrrrQCA22+/HadPn8bXvvY1AMCtt96Kz3/+8zh8+DBuueUWHD16FPfeey+++c1vmmO+5z3vwWte8xp86lOfwg033IDvfOc7+MEPfoBHHnnEfKZSqeDZZ581/x87dgw/+9nPkE6nsXfvXlQqFdx555246aabMDY2huPHj+ODH/wgBgcHHaD/ZslW6etzRVfbog7EaqJ6hga5ssl5LA2Y636reyrrp7KOpuqulfTzep8T3W+DwSDC4bDDGVOAQx3SWq3mOD/Htd7zb2bpOPvcdHIIJiggwnugNoYCHsASI10dKAURdD40uKnAqBszTh1+LUfjxkjX4KmCDPY5eKxIJIKhoSFDngiFQgBgdI3agdFoFNFoFNVqdUWnz010vWr2GK9TQR/WFtUgAtfLanYwsNTLhWVrBgcHTe8AAulct8woI+jg8/mQTCZNkJLnobNPfaxgnK4Lnnct47RBCX5+rfvHTpKec771cj7oatqlug+5gVMq+jwpaKoENN1j+Qza5WK4p/K7buxiHktJanaAlvuxBstYu91+9u1j6Ln0OvW8vD6bVax9O7SUGP171XEU1pJeWFhwZGPZ86nz4/ZZ1dMKonKPpS/PcjU2k95NbF9a9Z0NtrvtKba+tsW2T+xAuX7GBu1tPISf6WZz6feVxa7BBgAOQJ2+J/trJRIJE6TR8iosk8JAvds10x7U9aDCZ4EYkpZyVXtSfV+3SgL2/GqQgLZRKBRCJBIxGd60LRWP8vl8jn4EXDcMcPP7oVBoGdnMths6ncVMN/rvDGgQI9Agjh1A4N98nfde14naf7pPuQX9KG73yMYn9Bln8EftPXvv6SY9Xb29siEgHQBuvPHGs+L02/L888/ji1/8Ig4fPowPfvCD+MlPfoJ3v/vdCAQC+MM//EMTmXNrAPfCCy+4HvOTn/wkPvKRj5z1sa8mbguYDzdLTpCFTpYYmeKaUqPKiAqTgHRf32IjlcnJSczPz+OCCy5ALBYzYLd+n00RyQwnU2w1J5eKQlNxWN6D7CyydbmZUtrttokwxmIxJJNJk6rDFJ2ZmRmjWDbicCu4uBZnqNsxyCJsNBqGGcaU5RejtFot0zyzXq87mpwBS01TCGJreSBbSWgknOwxZSysdY7o1HKtcN3w3GqgaFYAFaYa8yspIZ6HQAJrLGotQgU7yPocGRkxRuTo6Cji8bgru6HbOUOhENLpNIDFJsCVSgWVSgXT09PrLoFDsUHznbwet1Lh33zzzchms/joRz+KyclJXHHFFfje976Hffv2AQAmJydx4sQJ8/n9+/fje9/7Ht73vvfhC1/4AsbHx/G5z30ON910k/nMNddcg29961v40Ic+hDvuuAMHDx7E/fffj6uuusp85rHHHsNrX/ta8//hw4cBAG9729tw3333oa+vD//2b/+Gr33taygUChgbG8NrX/ta3H///WetvMlW6Out1tW2w7pdQieHzgSbDlFf0eHl/hiJRNBut01dUbKNmWXGJsEDAwOmYVUikTDgPBnhU1NTqNVqprHueoTjoDPDfYxMKW2aRmYesKTrtXRULpdDqVTC3NwcSqWSYWjthEAe2dLhcNjh1Pl8PqM3tCEdgQwtXUMHk2U5+L+yy4ClhlZcA+oAU9cy1V6ZaryvWiKg2Wyi0+k4mtKxyZgy4CnqKBLUIeObbETqMb7Pe6pM+/UIHUkNQCgzTQM9ZN8raNINUOp2LgValKlP0N7n8znYleFwGLt374bP50MkEjG2AnscsAa/Br30fO12G9FoFPPz844gwUrPmq77nayH1yI953x75FzT1bZdbZekAmBKkVBsG9zNxlagW7+nAJn6yHyf+7QGi3VPZ6NHZUdHIhETKCXjmk0kNaCpQTcNeGoWEY/J86moTuC42B+DuppktGg06ijDyrnVWtUAjE5ZWFgwQVMFve2mpQTRV/JpFHRUwDwYDJp5UeBS9QDvN/8niKq+KP1rXht9SLfMHZvVz3HZukZ9VrXTNPjC/+3KAFo+zAbXae9QH7F0J/W46lr6tnYQmqRBuyyOAtVc7xrMoFD/036xAwH6o+Cw3jsF6BXE5bq3S7vofdDgC/3qSCTiIIC6BWw0A4JkEcUOyITX+0Smto6h3W6be8o5Zmk3LUHoFpDROQKcPRx0PdjZFDYBQ9cg8QmbLKBj5nkVpyB2p+uxB6TvfNkQkP7Hf/zHuPbaa/G2t73N8XqpVMJ73/te/PVf//WmDA5YXESHDh3CJz7xCQDAlVdeiSeeeAJf/OIX8Yd/+Ifmc7YTYEd+VG6//XYDbnDcm13bfaOiDHSmxVJ50rnV+lkAHM4MnVvWBAUWU0VOnDhhaj0y1cZOZanX65iensbs7CxmZ2dRqVTWVCaDm1A8HsfBgwcRjUYxOjqK0dHRZQpIRQFWbgRUFJlMBoVCwZR6USWzEdHzbPT7rHlbr9dRrVZNGtuLdSPqdDomrYplCBiwAJZSt9kgj2C6GnoUBma4RsPhsGn+sx6hgcqotgZguJ6VwaflS7jGNOV9JSXEbIl4PG7OpQqVQiXPoNbo6Ch8Ph/27t1rAK61ghB6TXv37sXCwgKmpqaQy+XOCEh/sa7Bsy233XYbbrvtNtf37rvvvmWvXXvttfjpT3+64jHf8pa34C1veUvX93/91399xfsRCoXw/e9/f8VzbKZslb7eSl1tMz+3MzvI5/OZBpAEzTudjnGaNZWWzjuB9Ha7jUqlglwuZ9jqmUzG7Gcsy5ZKpdDf32909czMDCYnJzE1NYXp6el168VAIIB0Oo1QKIRdu3ZhfHzcwcphKq7H4zFBVo5HGUXz8/N4/vnnMTExYRqi0vHYCUB6X1+fA0RPp9MOJ4cNXBcWFozeUTCdxwBgyobxHmrmnQIfys5ilpI6xwqkq66h3cYfsv77+/tNsIXBbnut03bqdJYa5hI8UZuSzGt+hjp+I5ljtvPOayeQotdHHc6AAtfJenSX2ogaLNBz00bsdDqIxWKmP080GjWBCZa4iUajDudYHWMAhiXYarXM/VrtOVsNaO9JT1aSc1FX02dltrRmj9pZIPZ+RJ1Ef0D3WC3LybG5jdsGFAnScT9U0EwDzArEMuhNHxCACZBqdhP3GpJ6uG+Xy2WUSiWjaxigJZhrM2MJSnM8g4ODCAQCSCaTSCaTy3QIsQCdD1439Qr1l/Zooj5hTyjeG5vxu9qeRntFy3vVajVXpjawVP+Z+APHRN+a/rUSt9Q+sdckr1f9Pr1/fJ/HIuiqoK4CzSSUKYNax0FgWIHU+fl51Go1NJtNB5hOIJ12geIh+hptQjtgQLY/MQgbSNf7w+8wA0rZ55phoPeF80pdyftDUJf61mb02/YdwXTWfme5NZsAp/eHwmC31+s13/N6vYZEwDXOZ9GuH04An4Eh9khhLzy9dgXWdewAlt0Prh8F7+1rsIF425bS9c91AiwFGHm/eP/tUoI7wY7uycqyPpTr/8t9992H2267De9+97sdN7ler+OrX/3qpg0OWGzCdtlllzleu/TSSw2TcHR0FADW1QCOEV792Smi0U9tjsWHTjtBE7jke/zhe9xEGREvl8sGnC4UCiiVSkbB5/N55PN5ZLNZZLNZVCoV1+iv23jpdDOdh3/rOKiE9MdOa1Fnj2BsJBIxqT7dgFkFVdYDaq5XlBGljuqLEcjU6C4dW7cURGV/KUPDjihTiaqTu9a63yq20asGDP+337f/dlsHbuuiW4S623wBMFkhmhmynvWmDAeWbCB4cz6IGxNxPT89Wb9slb7eLl29nevCjfWjzj91IB0BZdqpE6y6mhlPpVIJhUIBxWLR6Gk2cM7n8ygUCiZra61zwL2HGW/cf5Q1ZO9FqhNsNhaBD+6JZKRthOF8NoTALTPrVD/onm6PV+dTnVBlvGmwQJ38bnuW7Uy6EQvcbCQdkw32qigQoDpb75/ef4JRZ5JZp2NR3eYWbNfr26idRgDA/r7aCbRbGERhUF/L6Nj3Re+Xskx5PUoO2Anreiukp6u3Xs5VXe0WXLWBUTtTxRbdy7T8B4+vvoiywd1KQug+SF9b/VR7n7b3ZYJi9APpX5N8ZgPC1N8EWgmIumXo8H8NvKstoeCovZ/ar+n4NWNYcQLd/2zwuZvo53Te9d7qvbfvr36Gx1DfUZnZGoTutte4+aNuutLGCdwY5qoHdD25rSEVey3a2Qr2Nat/7Vayzf6xgzYqOhab4Gb70N2CTLpeaPOo3WP/aP142z+350SvuZttRKKeEve0tIwSOIh12VmASmYhGN/t2bCvRZ8pnUe3+XLbE2y7R++1fbxux+ZvxQHXku3e09XbKxsu7fJ3f/d3uOWWW/DUU0/hb/7mb5BKpTZzXEZe9apX4Re/+IXjtV/+8pcmPX///v0YHR3FQw89hCuvvBLAYnTn4Ycfxqc+9amzMqazJYxCcyNIJBKGkR6LxQyIx82FD60qDr/fb1hwHs8i86pcLqNcLmNmZgatVgtDQ0NIJBIYHR2F1+s1jORsNovHHnsMs7OzJlq9klL1eBbLY+zevRvpdBoDAwO44IILTESxm2PeTfi5vr4+wxIOh8NotVqoVqs4deoUnn/+eUfNUo0OcwOiI7mS07le6XSWGoCUy2XMzs4iEAhgZGTEMLt2CniwmnCtkJ01NTWFbDZrDEBGXtkAdn5+HplMBjMzM5ibmzOKjsoJAKrVqgF6JicncerUKczOzq7LQec9VMNWFaibkrIBAlVANEYBmPdosPHZqNfr8Pv9xnizAROegwYea8VTaW9UfD4fUqmUMcLXoizPBTmT57Gn8DcuW6Gvt1JXq9Oiv7dSlN3EPUeNdc1w4X6ljDbuMWSxcU+enJw0we5wOGwaKXm9XpTLZbPXPvvss4blthYWLNk+fr8fQ0NDOHDgACKRCACgVqs5xsRaqx7PEiOd6cWsec293e/3Y9euXahWq+jr60O1WkUul9sQU34josC4vQ5qtRqeffZZ5PN5vOQlL8HIyIijBIjPt1hTG1ieFs8ggbIGyZwkgEIdoA6b1+s1tdK1/BjXitbt5fF4b8ikojNORhe/301oG3KshUIB8/Pzhhmm65Jp18ViEblcDk899ZSjT816pdPpGLCZ7DmbvcWx02ml3bpWe0nBMwahWSbH611kQqbTaZTLZZw+fRqlUgmpVMo0AR8ZGUEqlUKlUkGxWESn0zHgOABDitD1yvXU39+P3bt3AwDy+TyOHz++4bl6MUlPV5WVLnoAAQAASURBVG+PnGu6mlnSgLPMB7C0pzLoRxtdCTMej8c8b3bwjJ9x8/UIPHo8Hgcr3i6doq8Bzr1GwWIemz5muVzG3NwcCoUCqtWq6ZU0PDxs9GC9XkepVMIvf/lLFAoF5HI50wgRgMOHpdCPTyaTxvdn/yZmhKnfT1+Gx+NYFXwm+Kps/1gsBp/PZ9jj3Ld1TFrypZtwPFrSy41spX6VBjtpZ9RqNZOZFw6HMTg4aABT7vNKOuL9WI2wpffNBlJ5rTZ4zmwnzR4A4LhP9vXo+Ri8t9n9nAvaB7xm1rq3j0ud1Gw2US6XUSwWTeaflmYj5sE55Xwpu9vOXuD12A1RVY9zfTD4Y2dN2/qb80QWuQL/nGt+TwNGwWDQVGAYGhpCMplcdv/sfYPzwueFtlOtVkMymcTExATy+TwqlYoDkNZyUIoPdAsA6DpVQozNqKfYxEK+zx/aaBqQ4/cVU2F9+IWFBZw8eRIrSU9Xb69sGL257LLL8C//8i+46aab8IpXvALf/e53Te3fzZT3ve99uOaaa/CJT3wCb33rW/GTn/wE99xzD+655x4Aiwvvve99Lz7xiU/goosuwkUXXYRPfOITCIfD+L3f+71NH8/ZFCojRuPI7rJLXCi4qAqVypn11xjhLZVKxuH2er2YnJzE0NCQaeiZz+dRKpWQyWTw1FNPYXZ21qT0rPaQ9fX1IZVKYWxsDMlk0tR13SigTKWjrF8CntVq1bD2dGNWg4rOvs1W2AzhBqxKjUw3BfZ3umh0m9dRrVYNmKzpcfV63QQPSqUS+vr6TJ1WNUQICFerVWMwlsvldQMpajzb7HM1wnluNXC0QY5+D1gCvXgOAI4Udyp8G6xQQ5SGvmZbbFRo5CQSCUcH9XNdegp/e2Qr9PVW6+q1rAc6SWdD7OCdDaZSf6szzv0GWDKu+dl2u20YbQCQy+Xg9XqRTqfN39ls1jDbpqenUa/X1zxeBr5DoRBisRiGhoYQjUaNfcBropNCPcs0ZS1Lw/qTHo/HNKD2+/1oNpsIBoNoNBpbpgvd2D+UZrOJmZkZNJtN7Nq1y3wegHFgGBTWsmZ6bILl2o9Dm6ppLxCb4aXzSPtOGYDqJCpoz1ICdmq7jt8epwZ32QiWjUbtz5FwUalUMDk56XD6NiJ0MLXurD1OBcmA5c7rSqJzZQetOp2OaTLGlPxarYaBgQEkk0lT2od10hk4J0hDW5l2M8+n404mk2ZtnDp1qgekr+G7PdmYnGu62o345JaxYoO/uo9qkItri+xq9YH5PoFFtya/6htyLFq6ieCcXX+d80KbgvWw+/r6UC6X0dfXh3Q6bXRluVxGrVZDsVjE8ePHjZ9VLpeN76I+itfrNfqC/g+JdQwEaK15HZsCurQ11JfTz/E6A4GAmWf6QDr3Coi7zaHON++jBknt7ADVkXrPOdfs6aE+Ju8T9Yb6cXqfu90n+9q7MacVTNfxKLFKA+o22UqFY1qpHAjXupbyiEQiBvRWsJbHoo/NoC+F94n3TDPotESffl5Ji5qppc8nwV1ep/q7umZ17nhc6le3LBT+1teZzaLlizhfdiBLs+mIT9D28fv9GB4eht/vR6PRMD1htA69igaBSL6znxsFyWkP6nzqutJ9g+uAx9A55jqx74fiHCzpvBa7rKert1c2BKTzpg8MDOAHP/gBbr31Vrzyla/EZz/72U0dHAC84hWvwAMPPIDbb78dH/3oR7F//34cOXIEv//7v28+8/73vx/1eh233XYb8vk8rrrqKjz44INnrXHb2RBu/HygNf2KDoo6Kwo0Uknpg0wnDIBjk2D0vFaroVKpGCOAkXPWlFoNAKUTws7KjJ5vNiBIZ9Dr9SIWiyEej5uoY7PZdERUOQcaqVbQfa3nc/tb/5+fn0exWEQwGESxWDTAB53UnS5UymQ2EvRWBQDAAD+dTge5XA7Hjx9HPp+H1+vF3NycMUA9Hg9yuRwymYxhpM/MzKBQKKzbObcZFWrc8G+uc31Nx81nRZUS1wfrHJKdQeOkVCoZpr12Eie7IJfLoV6vw+PxIB6PG0bbmQjH7Wao9qQnmyVbpa93oq4+W0aiBm7VAQawrIyEBr01uMvv83Pa5EsN+kKhYL7P7DECresZq9/vNyn3zHCjKDuef+vx9Tq5/9JmodPOawfg6Glhp0XzeOqgqANrf3ale6h2kO6jqhe0vjhBEq01zjHz8zbQrfNAG40NY9UJUmdSX1PAQV/T6yKQzjRl1hkHYHQ1+9e4NZelnmq328hmszh+/LixTxKJBILBINLptKmRvrCwYEoEKYi8nsCTBga4ltzuAYX1PllKhmCOpm/zuDpfej4+D4FAwJSl8Xg8KJVK8Hq9xh7je8ViEXNzcyaopQ3wdLxu18znRksibDTrUOe257j2pJuci7qaa1+BJA04Akt7g4qClW7PndtrqjsUBCUYzeeYRLVgMGgyXAj8EWAmgKlCHa1ANUF16gOC3VojndejwVKK2gfUAX6/H4lEAolEwhB36OfadoT+b/tJClza4DKzvqlfGBggSYq+nZsfpoxctzrc9nkVsNT7q79p82jvCzvTQPdRtSUoHJMGYfQ314xiBXotbmVkdPw6D9SjtCu0zjvxFdb4pm4mLsPMPmI9XIcMsHCc2mR8dnYW+Xze0Z9NA+C6BmifqY5UjKnVapnMPJ6X91rnkutBA1LUh3pM9WNZi7/dbiOXy5lnhs3r9V4TxyHw3eks9m2jTab3gWPk3OlYleTIRrXsB0BbmWtPj0V7lnOomAeF91sDFWoj6mcU+Nf9TTM9bFHMTLM3GMw5E4JDT7ZGNgSk28bx//yf/xOXXXZZ16ZuZyq/9Vu/hd/6rd/q+r7H48Gdd96JO++886yc/2wLH1BuqpFIxJQ1IdOGkUrtaEwFog8xo/f83dfXh0ajgUAggGaziRdeeGEZW4yKgxHStdT9ZqPGaDSK8fFx7NmzxwHyb5Ywxa3dbqNYLGJ8fNw0RWUTKHYxp6KkQUMFsJZa76oU3KLZwNK6bzQamJiYQK1Ww549e5DNZh3A8k6WTmeRYcha+SdPnsTzzz+P6enpZeAMS+p4PB48//zzaLVaiEajmJmZwd69ew1jwuv1YmpqChMTEyiXy/j3f/93nDx5cpkCXsvY1Ejhb1tRU/Rz/NvrXUxdB2ACL8qA4RpvtVqm/nCz2cSpU6dQqVQQjUYxNDRkotecgxMnTqBcLqPRaBh2m832W+99ULbG+eJc9yLnWy9bqa/PdV1NoUNC55ZGfCwWMyA1n2+mrXK/ZDNS/tBw7+vrMw7B3NwcSqWSCXDPzs4CwLL9bi1CxyccDmN8fBwjIyMOx01BTIINBABoU1CvqaNJPbmwsGCaZMXjcbTbbZRKJYTDYeNEkr1Np5a1q4GlPaHZbJoyNeqE2KAz51+dYzu4qs3sGCRmTxifz2fAXI5D06M1YKDOD++R1+tFIpEwac8sgadsPo7RTovnOG1HzudbbGjNIAznmsHubDaLJ598EseOHTMlBVTILvd4PKYMXn9/P0ZGRkzGwN69exEOh5HL5TAzM4NarYYTJ06YADHt0LUGd5mdRXCKc6SgBO8Dm5DTOSwWi6akEZ8LMufU9uJYGEBaWFjAiRMnkMlkjL1MGzeTyaBeryOXy5lShazfT7Cn2Ww6AB0CZbbjrAAKQYBoNLqhbEuej/d7K8odbYb0dPXWy7moq7m/2QxXfdYJFANLJbZsBrNdSlHfIzmGrwMwe45mkQYCAVPSJBqNIh6Po6+vz5Q8U6CWJS30nszPzxsGMUFS7meNRgPlchmZTMYBvnIPZI8vLZdC0Iw+CvuBhUIh7N69G4ODg2b/UfCuW8BT7QI7U5vzwvlPJBJot9tmD5+bm8Ps7KzJPOZ3FcykraJ7GIOUwFLwnddPAJNjpt0BONc69/larWaCEHapH3tN6TogOKwlhLQcjJ0FpZlhCpITL7DZ+TbYyeAz7TNmqbP03uzsLHK5HHK5nHmfYDvXHrMWGBiuVqsYHh52AP58v16v4/jx46ZaAEuu6nxooIX3gqC76jy7RBB/WI5Fr7NarTrsG2JQJDeqDci69hwfiWrEslKplFkTtCFZUojjYtaFAtQ24YDlfvU9nd9sNmt6/rFvAY/NuVL7UXEz2t42eK2EAf6tpA/NllF/Xm1YDeLb9hZFgyHaeHY16enq7ZUNAen//M//vCzV7PDhw3jZy16GH//4x5sysPNJ7Ai9Rr30b00FV7atPoiqQFRBc3NlJ2NVOhsRgsaaeqaR6M0SRvHb7bZxtjqdjlE06uzwerV25loY8m4MCbfvKdDL2tp0yLVb+k4WggVUOmyIQ2VpCzfxWq2GbDaLZrOJTCZjjC/edzLSK5UKCoUCKpXKhtnWOs/2/1zvNjtAjR4yIVnCQNfCwsKCKRfEMbJ0ENdQrVYzn+G9pkFCNijX5JmIAg3ni/QU/tZLT1+fHbH1q+pczYwClhjYZKSpI6Asby1Zwf2B+/VGhU4UwVoNPOseZpen0euk2OwgvmanFjNjTdnqOkfKSOfx1Hmx7QgbOLAZb8pq0/e5v3MOCQRo7XK3a1PdQmKCOkd0+GwdoA4gz2+Pyd7HVE8qe46v00lkeTUGOGyhrqY+433gNSQSCSwsLBggnew5ZVt1IxG4id5PnpfXo/Oh2ZF8Llh3VNnetCX4Oc4dnXPeAzrfdIxJnmBQg4EbZYNq+TYen2NdbW3pfJyJDlrP3O4E6enqrZdzWVfb4Ke+rgC2G4i+Vl9ORctWcJ+hHtRGhfoav6d7tb2Wqb/ZGwuA0S8MFKq/bgOyyqTntSrAy71Q90QNPtg6SsXWzbZvq//znLQJyARWjEHvCwFt7t2qD1X/EnC1gUq7jAjg1BXUd9ynbWa4vXZ0bfCaOVb7Om3Q2MYq9H6vdE7V6wyMsnY4f1gilb9pa2gZUTuwND8/j0qlYvqZKJDOErKsuU87Ruuv2zYGhTaOzgsxEvrSSoqw74fWRdf51KCTrktd1/SdeUwGtDVQwevgfHk8HkdJHPs+0C7WgA2w5Etzju2SrXyfwLXqf/v5USIpP2uvKY5lNYzDJnjoHKv962Yb6rOwmvR09fbKhoD0a6+91vX13/iN38Bv/MZvnNGAzlfRDV4BdAXR1SiwHR/+8OHkZxlxVQddU3k28hAxKjg0NGQaIrg54JspPOfw8DAqlQqy2ax5fSPHckv3soEE+9jcDMloa7fbmJ2dxcmTJ5FMJk3kdSNG39kWKoVWq2VSv9kUdHJyEsViccUNu16vm/q8bH7BIIfX6zUKn9HotWQ1uImmVnm9XhPB53vAUiqfrZCZoUDGCaPuajRxzH19fY4mc5lMBrOzswiFQpicnDQGY7u91JS10WjA7/cjnU4jHo8jkUhgYGBgQ2twfn4e2WwWp0+fRiaTOW/St3oKf+ulp683X7xerylppqxXMlbtdW4D0NTB7Xbb1LHkfkNHfLMkFAqZ0muDg4MYHBw0zDoC+hwPy5SRpadgOw17N+eD9UTJEE6lUti7dy9qtRomJiYwNzdn0tU1CE7HRRk7PCaF+70CDpxL3c9tVhDHTAetUCjg5MmThpFlpyczw0CPwUZsnU7HZAaqc875Ud3J+eh0Og5HVEEKvX7eA2a1VSoV5HI5zM3NGWZVLpczZfmUfbmStNuLvU3m5+cdzKxKpWJY+gSa7cC1m9iglsezVFuXQBLZ5Sx7ZrP92u3FtGyuA86J1v611xOwaH9wrkulEjqdxSa3LE+oQQ/OEZ+naDSKXbt2OcZtzxMdedseBBbZbsePH8eJEydQKBTWlWXH61FQ6MUiPV299XIu6mrNEgKcQKgCrfpcuoFT3cAvYAm402dMASsbkFZxC5hyLNxbtNazMsMJ3rGcB8+reknnQIFajs1mT7MnGvdE7ofdjqN7lvq2bqCw6k0t48ZeLpxLJevpMRSw5d+qt9VW4FzxHLw2Xpfq/4WFBQSDQTPXDByz9AgBUAU39T6ouAHktl/vBojqulRinjLobT9NgWAlprEcC0u6ADAZdyR0Ub+xYkB/f79paMlzkpHO+vG0M7i2OB+0Pe11ztIsvC6+rvfeLRhjB/dZ/ohZE5FIxAQSaL8wwMQAPtcBbQyekwEG/a7H4zHEvFQqZewwt6CG7iOKDfB45XIZ+XzeZNppOR9dCyr23qFrl8+yTZCxQXSbmKJljNwAd7dx6DE00LGa9HT19sqagfTDhw/jYx/7GCKRCA4fPrziZ++6664zHtj5JDaArsrVZqfrZ+2NwQ2Ip9K0j3WmgDeB9Gg06kjXOhvCsfKcoVAIx48fX2Z46Sa30uagoDmdZ5173XRVuKl5vV5UKhU0Gg0DpNdqNYyOjjoUw9kKKmxEFBjI5XJ44YUXTDmWycnJVRn1rDHr8XgwMzOzzDBRpXgmm7qC4l6v1zjavAZgyaCmAWYbY/F43DVNnN/lOonFYujv70etVsOzzz6LXC63rIGRzhuZdclkEpVKBXv37t3QNXK8uVwOp0+fNnVqe9KTzZKevj674vF4TMNOLS+mwKjbD78LLM8eowO5mUFpj8djnBMC6cPDwygUCshkMsaJoxNUr9cxPz+PWCyGVCplGEQaVLRLr7AxmLKVkskk+vr6TGmSfD4Pv9+PVCplnEcC1AyIKstIgw6cHy0dxzFpMJfzpU4x9QkA5PN5nDp1CpFIBKOjo44ydDp2BQiYpt1utzE8PGwcVTqL1CUcC8dGfUqWtNoXPB8/SxCITjSzv+r1OjKZDLLZrClDxgD+WvRrp9MxALrH48HExIR53c1OWkn/2wEHZYHze8ViEV6vF8PDw0aH8r5xbdPh5vvKCqVwTgg06D1mUIBZYTwOnXO9NjLbyFJ3A9L4ed4nBrUUQGk2mzh27Bj+7d/+zRFwWI+cafZaT85dOdd1NUEuBajdAE4bKNeAqH08+3lSIEzLehGgs8F6ZYDqZzWABiwH0ulP83sMwLEms9astjPIlenudu0MKBIQpS+q5CK3EhLqs2qQXvcqfpZ6k7pOgXR+huA1500DxW7zrtes4KziDwwSRCIRRw8rYBHsnZ+fXwa+MtjLkmfKntZ7aP+2/1bSnBuQbvv7XDO8Bn6POlrXDbOfqGe0Pne9XncwqwmkezweE3QmeMygfqPRMOsOgLGfyHxXIF3vp8/nQzgcRiQScfi4wBLwzPWnOJIGRCh2UIrzEY/Hzfpk+VS7SS31u9/vx/z8vClro+AwsQRbWH6QhDhdt3aAjPNnB41IEKGtpBknbsJj2iX4KBpQsQl9drDBXn/2d3RfU4zIxkv0GTsTLKUnWydrBtL/9V//1WwiP/3pT7s6eTsJPHwxyVoZRt0+3+2BO1sGvKZvbwX7mgpAU/KA5caWKhdlEfAYVCDK7rejz92UjALpvOa5uTlUKhVT5oVd3G2jabuF6dGM9OfzeRQKBWPErKVOtwJCanjyPXut2caLbcjwM3psVfQ0XuymP8pIp/OsynwtQJQar2rAa1qpMiCULUpjqFKpGGWtRulKQsOrUqmYUjFssnI+SC9yvjXS09dnX2h8E+CzgQLuU2roA87yFvzNPdhm7W2GKBitKei613JcatwrIAE4G3npvq2iTrftoCpYzDHo3trt+Va9o460na2n+lqviXZKp9MxLCU7Y4p6g8EQvQ+8j5qWzvutNVnVZtDzK9ChP6oT9TrplGuDVALWG9k/N7rncu4UmAGcbDjA6ewyOMCa+BRd2zbZQ20xXXcKnFDH8p5oAEYDKyp8n83V6fSr7cp1YTeAI/hP9j4DSOeTbLWuvvvuu/GZz3wGk5OTuPzyy3HkyBG8+tWv7vr5hx9+GIcPH8YTTzyB8fFxvP/978ett97q+My3v/1t3HHHHXjuuedw8OBBfPzjH8eNN95o3v/kJz+J//2//zeefvpphEIhXHPNNfjUpz6FSy65ZN3j36ic67p6NbtYATL7dbd15KZX1IanflVfTr+rwWu77IeOR8dl/9hgmJ5DdZWt8zkG/la9AGCZT6rgvoLi/J4Gm/V4tq7kuNxAOjtgbc/DSqxbe97t+6SAov7wWnmfNBBN34vBTwbZ1Z7SH9t3VF1uX5OKXr/bvVQ9bt9POzDBMRJUt3V1tznlfdUyfrx+AA7fXMemNhAJXorHcI6ZEcc5AeCoTmDfX14bv6O4QLe1bouuJc4ZMzc8Ho9r7zQ2VQVgytjY9qg+l5wPzhf7GWhzVDu4Q7H3C16zXfZN7XY3kN1+vpVAo+O0AwE6Z90AdD1+r7TLzpc1A+n//M//bP7+4Q9/eDbGct6KDVAqgKc/qiC5SdmAnz58uplvZmqpx+NBIBAwzF9Gks+2MOo6Pz9vnFM6O+qgdjqLDTXthiGaQsyIv7Lc1CF3M9bsTdHjWUwX/+Uvf4l0Om2YWNFo1NTC3W7jl/ebDciq1SqeeOIJPP7448jn85idnUW9Xl/XRqwKwQ1QUQOK5VXYoMTj8Zi5B5aUlhoj2tyEtYG13AEVrALsvG927bSVhOMiA4OKk+fU61TW3TPPPINoNIrh4WHDAhgdHV2xERmPkc1mMTExgVwuh+eeew7Hjx83bLrzQXoKf2ukp6/PrrTbiw0QqUNKpRJ8Ph/i8ThSqZTRz3Rg6BB5vV7D/tIGSUzbPRuZKdRl3H/oxLAEh9oUbGYOALlcDoCzpAodMHWyyFgCsKyGp9oczWYTMzMz6Ovrc7DYAGdtUhUCq9zb+bc25mRZHQKmWnOzv78f6XTaNIaemppCOBw2DTh1jCz5wvRgsp5TqRQAGHtnYWHBzKMCMgRhaWsR/GV2lN/vd2Qb8t7Yjl2tVsPU1JRpXkZWudZEPZuiDMLR0VHEYjE0m03TZE+BZm3OpsGFYrFoAifKxKJd4PV6EYlEEIvFDCOPWREMHgBLoH0wGMTIyIijViwD25w3Cuen1WqZrId8Po/p6WlzP8gEZONfv99vSBDU45OTkzh9+rRpUnu+yVbq6vvvvx/vfe97cffdd+NVr3oVvvzlL+P666/Hk08+6Zr5d+zYMbzpTW/CLbfcgq9//ev48Y9/jNtuuw1DQ0O46aabAABHjx7FzTffjI997GO48cYb8cADD+Ctb30rHnnkEVx11VUAFsH4P/3TP8UrXvEKLCws4C/+4i9w3XXX4cknn0QkEtnQta9XznVdrU1C1WegcG9fKShLsckvPKba6PyfPbyUeAXA+HzsuWUHQe2MMu4zCpaqD6jgN/c/6i0CwLbvwuu2QV42Q2WpD+pW6lc785fH1KCBlvywfTQ7YEBdpYB9IBBY9n17zDYgr/eD79PH4x6v/qCKsqp5r7QXF1nsOka7/rw9n2RF24EEXo/Oi15nOBx24CcK4ura4D3WYDd7mLBvGr+vAWAGQfi/Buq1pwdF65PrHPAZ4Nh9Pp8pL6u9ywKBgLmfnAPNvOf1Eyymz81xaK8bvfe03RTo1+dFdTDtQR6Tdq8KgXA+k41GA8Fg0JRO1GdY7xeZ7YVCAfl8HtVq1ZTBYwac2xrQgBgAR0Ykn6VuADq/o0EhEmr0O/qs6j6mGfZugRaOTW3o1aTnV2+vrLtGOssn/OxnP8MVV1xxNsZ03opGK+1oqdsPv+P2f7f3VKgk1ivcUJkSfjbLutjnVYCamx2dKQXStWEFhQqEDq4C6fyuRsvtDViZedpMI5vNotVqmfRrjU5y3Nspnc5i6nKpVEKpVML09LRxEKvV6hmBN27rRw06znM4HDblDyKRiDESafRpY5ZKpWKiytoMzQ5wKJDOEjDrWc9ct8r+sJWeLYx4szt4LpdDq9XC4ODgqvPU6XSWdXTP5/NnpARfbNJT+FsrPX19doR7Vq1Wg9frNaCqlv5QFhn3Fa0fSSCSIKWysjZT1FnjeeiwE9TmPso9lHtvp9NxODK8Njswzz2Zx3FLBWepFM4Hv6tBTLf9wXbSlFnF8h86p6ojCIxGIhEDkCsArNdAEIGseTqd6pTSqWQtVB6btoOCHwzQuvVgob2h95zXx/Il1M92rdWzLRwf07lTqZRxgrVRGueH4BLvFe0iOtGavca5UduANh3njiAU1ybXIOvTqyO6kq7mXPb19aFer5tmbolEwpRPUOBEbRZgKfBDRvr5Jlupq++66y684x3vwDvf+U4AwJEjR/D9738fX/ziF/HJT35y2ee/9KUvYe/evThy5AgA4NJLL8Vjjz2Gz372swZIP3LkCN7whjfg9ttvBwDcfvvtePjhh3HkyBF885vfBAD8wz/8g+O4X/nKVzA8PIzHH38cr3nNa9Z1DWcq56qu1gxS1W22rlNGqL6u9j/fdwNjbeapMqDV19VMJrs3g+oZBU8Z+NVMZ+5/GkzlfsVx6zW4MZ11X+TY1K/mXsxrsDN9dC55zSsB6TbBTp9T6ihlSfP7NoPXBtP5ff7WwAFLuvBvm6CmJWeVJMXALbN41e/X4IGOiedn+TA7MKL32WY6azkbDe7YuAz9f9oR2mjUzh7T9arn43Xwfigr3V7Xeo8Vv9B7oiWBAoGAqWHuBnTbwRReDz/LbDjOpRIlFXzX7/O3LbqOeC1ujHR+v9lsIpvNmjXDci+8Rv2sfrdWq6FcLqNarZrKABqE0DHr2Dh2Pte6x9jPr+4NALoSJfm+3ktlx3Nd6POl5+Rnuef0gPSdL+sG0n0+H/bt23fepTmebbE3U27Qyt6i4lYQmb81qqhKH4Bh4CwsLCASiRggkKxtlpiwGUQriZ1itBViR70p3TZ1blKcMzpsmtqr4Lo6afY5gKXAg+34srzH5OQkgsEgqtWqachB1t9WMMlUuLEyqlmr1Yzz3+l0HJ3hyZDcCKDOa6Lh4vP5TAPaYDCIRCJhlCE7kqvTrKA412ytVjNGSa1WQ6vVMmDC/Py8oxahKks64GsFHFSBqqJcy7zOz89jcnLS1ExvNBqGSaLMdH6WDdBOnDiB48ePG5ZhT4n15GxKT1+fHeHeWq1WEQgEEA6H4ff7sbCwgEKhYPSKZpEBMHuNOi7K9iFo7fF4kEwmHbWmCeCuF9Sjk0UWHo/J4yjzT8FysnVpj1DvaSkPG9RQJ8EtC85tv3Nz6Aly8H/AWVNeM8rUCefnyWKLRqOGvU6mmMfjQS6XMyxkMpOj0agj+KEgh62/lfnHuVHwQ+ue6jXZNgVtER5HQYNgMOjIztpsXUFWOAME1M902AOBgGGkNxoNw9bnmJkNSHYZx6mObDemqf6mjUsAwufzmXvBz9ls0JVEQRJ+d3p62qybmZkZ05Q8mUzC41mqsa7g/+nTpzE9Pe1o2NaT9UmpVHL8T3tTZW5uDo8//jg+8IEPOF6/7rrr8Oijj7oe9+jRo7juuuscr73xjW/Evffea+otHz16FO973/uWfYbgu5sUi0UAQDqdXvG6zoacq7raJiRRqD9sIEn9OX6/G6nJrcyE6ib6zc1m0xyHfSa0rIvt09mgus1I57l8vsVGpgMDA4hGoya4TlCQe6OC2xw3fRUFyHkeZrFxPybIp/Ojc8v33Qhk9tzy+twAO/rLCjBqEMDWgfa9tBsycm41KKGiPjqPQ3+Pe/H09DTm5+dNjW4GQCm8Lwqy6/l1jEoYcMtqsO0Qe6yquxRjoO3m9/vRbrcRCoXMfHLtMRuKxyYmoTYf55XvKzZBv1mZ/UoA1EwGzf6ORCLLAgq8DgYAbPazBkLsAITOEe+bG5DOZ8wGpWkr8TMKJrfbi5memUzGZOHRvmb2iNrSJEQUi0Xk83mjqzUAZY/Lftb1fur7GuTQtavPvhvxxe1ZUYKm2stuwUPuFcRTtopA0ZONy7qBdAD40Ic+hNtvvx1f//rXt8XgONfE3hjo4PI3nUqNwKoDyw2ByluddAAmjVmBy0ajYZyg559/HqdOncLc3BzK5fKaH9ytBof1vBRV9ioaDdb0YDZGVUdca6lRbIcXWM4wAGCAk0ajgaeffhq5XA67du0yaUkDAwOG9XA22IZuwvXQarVQrVbRbDZN6hMbl1C5RqNR48TSAFyPcE1Fo1EMDAwgFAph3759GBoaQjgcxuDgoHGeGFDQVEdVoGq0ttuLje3K5TLm5uYwNTWF2dlZVKtVnDhxwihMRs4ZCKABo8q5m2ja2VpLH3G98X4fO3YMsVgMF1xwAWKxGNLpNIaGhowy7HQWG75NTEyYlP2JiQnT5f18BNLPx2veTunp680XsmDq9Tri8bjZ77ShVDQaNU2yuL+Ew2GzR2kJFACG9RwKhUwgksxcMn9PnTq1biCdZdi4B/v9fjSbTZRKJVMuBFg04NlokXqy0+mgUCiY8mkEUhkoaLfbhllsM5M0OKvONOeP4uboENhWkIPZYyoEdbXkDACkUikTNKADziZgjUYDJ0+eRKlUwuDgoHFCyXriOFVHuTnonI96vY6+vj5T0g2Ao1kW54DjVMIC7zntCKaK0xFmxth6gr1rFZ/Ph6GhIaTTacRiMYyPjy8LULBsjtoHvP9zc3OmKSrXTLvdxvT0tGlkS+BCHVVNfea5WIuczw3L7pCJT7BnrbXKdZ4ajQaOHTuGU6dOOYgVw8PDGB8fd1xvoVDAyZMnTeBez38+ypmutT179jj+//CHP4w777zT8Vomk0Gr1cLIyIjj9ZGREUxNTbked2pqyvXzCwsLyGQyGBsb6/qZbsfsdDo4fPgwfu3Xfm3bGOHnoq6m7qIoE5P7pO61SgLjayqaxaOgu/rBqoO4f9N2536mjaDVv1bmOI/BJty6nzPYSF+PQDY/WygUUCqVTE8kN7a6Dehp424G79TPtgPGNqua41a9qfOkhD0GDJXAR5Cz0+m47rWaqa3lORUYVlxCSQB63fZYCSTz3rNRZ39/PxqNBiKRCAYHB42vmU6nja4lGMy5cWPLk9BEn8sOdOvnOCa3AA6vQct2aCZTJBKBz+dDs9k018R631wnNgtZ7Skl/fE7DHAr4zwWixngXrO+Gcznc0WWNgNAHDfve7FYRL1eN0Q73m/eWyWE8XvMRqMu1SARbRoeX8vA8X0F0fksaXmbTCaDQqGA/v5+TExMwOfzGb9acZlGo4FisWiIaiTdacNWPRdtF3uNakBPn0UNMPHadR1oaRe3oJ+uJfuc9vq3QXQAJutgrYHVnl+9fbIhIP1zn/scnn32WYyPj2Pfvn3Lasn99Kc/3ZTBnU+ihgAfXv6oYUFHVh9cZYhRIWoUmVFJbiJerxeNRsMoqWg0akBOpl6vZ8zbIWrw2E4uRRW5pt+5/ahi4zFt6QauM3DBbtGxWAzlctmUMdEU77MNptvrgGNTZ5yBBKaSsn6sXZ9tNaEBqsBHKBRCIpFAMplEOBxGKpUyyl7ZlcrU47iV7d1ut00NXDI/aQQFAgFHwzxlO6ihaAdH7HmyjYr1rGVl3rVaLWSz2WV1XTmuUqmEbDaLWq1mjOuzwTB8MciZ7Bnn43xthvT09dkRddYBZ1YMnUKmCqv+VuOcx6BBTiZyp7NY95JAOg1qAuH8/lqfCRrrqu/UeXbbJ7mH2c6kDSYr0EwWlq3juu33/Nv+jJZEUXaR1gbluZRFyO8TdOe82mABwe9gMGiCBNTV9pj0GvWH43BjamnatV6bzqMNbjCgTRtPA/1qq+hx1yMcE9cTmV7RaBTRaBTxeNxRU9jj8RgdrHOuWQBcq36/3zDW6fADMHXPlcnpBnrRVlGHUq9RMy3Xe+2dTse1LiuZewTEfD6facTOoMH5zAbbDF198uRJxONx87rNRldxe0ZWspXdPm+/vp5j/tf/+l/x85//HI888kjXc55tOV91ta0/KG5Zwbof6+v8vAZBeb/tvYaMcAKw/IzqPN2n3HwElmHhXspjMvubAK+O2c1HVV3mpk9snbvSGlYSkT0/etxuz7btn3UTZSyrXlGmt/08dgsEq07l+5qFzz4X4XAY1WrV+IQakOU8asDEnj++bo9Fx6f3xc32UYayPdckPHIdaV1vtWlsO4Hzzd+q67XOP4FygusE0kl6YH10ngeAA0tiUFhtUAZTlLChtonOhT0HbmvMtons+bI/awdZmIlhV2Egm1/Z3CzXxoAYy8BqwKrbnqK2pq5l/axto+nY3X67rWtdQ25BGVvscbrhWm7S86u3VzYEpP/O7/zOJg+jJ3xomQbU6XQQCoXMpkAQmA4JN1zbSGC5Fr/fbxo1jI2NYWRkxDijfX19JnLOBg+pVAr5fB5PPPEE8vn8ik5Ep7NUH9bj8SAWi23JHPHaaayQscbNVYFRpkjTSaLRw7+ZIqWb6kogOl+3Nx3d2HO5nAFXvV4vYrEY9u7di3379iEYDGJoaMgou81uRKpzw4ZcZL5xThhM2b9/PxKJBCqVCgYHB1EoFDA1NYVnnnnGrJ+VoqB07iORCMbGxhCJRDAyMmIYbQMDAyZiTuWnIMBqQAtZgVyvrVYLfr8fw8PDqNVqGBoaQqVSwezsLE6ePOkA2mu1mmmgGolEzBqxI+udTgfFYhG5XM6UOVqv8JltNBqYnp5GPp9HJpPByZMnHdfH7A+WpTlfQXSgp/C3Q3r6+uwJAWmyeZTxQv1C3UNdzeCblvFIJBLw+XwYGRnBwMCAI7hLR2Fubg6xWAxjY2OoVCo4fvy4Yb+7OYMU9vFgPW+CM8ViER6PxzhmdkCav8lSV6aUvq96ke9pmrNmghFwYBkTGwSn86DnAZw1cFVXtNttB5OKLDWWrGu325idnTW2VaPRMPcsn8+jWCxibm4O4XAYe/fuRa1WcwD2DDQTmKduIlBMfUInjM6cW5BDnUuCyhwTy6TMzc0Z0IABbgIIAEx2APuyrFW4xvx+v9HVtKGYDk6HnSAQ55kMOwIavJd03hmQiEaj5nzBYBBzc3NIJpOGJTwzM2PAJdopp0+fNmuC5yJzUMkg9Xod+XzepKFvhlQqFUxOTppnlAQTAg7nu77ZDF0dj8cdQLqbDA4Ooq+vbxlTfGZmZhmjnDI6Our6eZ/Ph4GBgRU/43bMd73rXfjbv/1b/OhHP8Lu3btXvrizKOeirmbpK2B500Q3gFmzjlYKigDdbUIb6FQ/zwb4CNwSRKSus9nt9EcYoB0aGjK6mn4lfZD5+XnDrKWuZnaR2/5FAI/+DgCzp7oBw8Dy3iIco33NbvPGICmw5DdzH280Gg5QWGta8zzaW0z9O84D93mOk6JkLjuwq9epwDezqrk2IpGIYawTZNVAO0kMlUrFzC11LscEwOg4/ui9tvf/TqdjmNt2MJjnZOYbs8o6nY4ppaqZEQre8n8bLCazPR6PI5lMOuxKlqyze9doQIjzpUQMzrGSNZmFyEbb9Xod5XIZhULB3CvOU7VaxdzcHPx+f9da/QAMqM3eP8QUlH3OdWvjWwqwMzBFm4D2Kudufn7eZFVqpoh+hveT94AYmpbw5XOjpAx+VzPR7CCBnaVmg956LN1zeM2cX31G1eZVUuBq0vOrt1c2BKR/+MMf3uxx9ARLzBk+rHQQNUrZ6XQMw1nZSW5AOpsqjY+PY/fu3Q7nnsDr3Nwc+vv7EYvFMDExYeo3r8T84SZCVtdWpb0qMKxpVGwGxrraCwsLKJfLAJYceiogVUYaiVwrqK2MKRtIKJVKyOfzpjlVOBw2cxmLxRz14zRavVlzw2svFovIZrMmmkvggHVyw+EwRkdHTVmCYrGIQCCAiYkJs/a6bd409lhjdP/+/Uin04ZBo7XSVwpIdHudYwaW6g8CQCKRQKezmG5IQP355583mQAsS1Sv102pHQCmrpptRBO4mJ2dPSPnnM/s7Oysa+SZn3H7uyc92Qrp6euzIwpes28DgWo6dvxNIJ3lYFi2guWokskkQqEQ9u7di927dy9jyWazWQNMVioVzMzMYGZmxjiL6kC7OYC5XM4EvFnOi/tiMBhEPB43e5k6sx6PB6FQyADtdMrolPJcBD2pH9rttilrwwA2U5J9Pp/p10Gdzu/rMaif3Uq3cf7paDO7iuPk3DabTRSLReNQ0oEiyE6gg8AvwQDaTmRa026g3icIoY6OHSThNTFVnnW4FTBgSROW9aNtw0awtOMIJtBuoaO7Vunv70cqlUI4HMYll1yCX/3VXzUOKp1Qnp9AtgZWGMzpdDomWMFAAwPmsVjMsaba7TaGhoaMM8z607QXGYDu6+tDPB43Op5zxGcHWATSM5nMpjLE+Syq9PTz1ovf78fLX/5yPPTQQ7jxxhvN6w899BBuuOEG1+9cffXV+O53v+t47cEHH8ShQ4fM+rz66qvx0EMPOeqkP/jgg7jmmmvM/51OB+9617vwwAMP4Ic//CH279+/mZe2bjkXdTX3XmApi1XBLgr3S7t+tR1AVZBc90Al6jBYS+BUfQAFEnk8BXip57R8B49BHeb3+7Fr1y7s27fP+EME0svlMubn55FMJk1JzXK5DK/X6+gnYYNmeg0ATNNI1ZHcq92CA/be1S0bl+dWIp6WdWGTTmYbKTGLPwqkMxBL3cnAq1t2uwYl7ECAzrcClrVazawjBgDoQ1M/EgOgMFirx1KWs5YHciPQ2bqVthGBcWXia+YYSQOs122X/tA1qveIc8eMQ9Y7Z3lYXRfEa/Q12mW0ibSXiB1QUfsjEAggGo2i2Wyiv78fzWYTmUzGBE9YagiAKVlkZ4/p/Wy3F2ucs6SRZpLbpXB4T9T247Uou93r9RrAXM9FYppmhHINK7bDdcdjKQhu3w/Ojw2C62f4Hp8dnsfNNlG8geuKpWs5LpsUax9vM22enpwd2RCQTnn88cfx1FNPwePx4LLLLsOVV165WeM6L0UfOk07YxkWTWvmZqLf0xqS3Og0GqnKi9/jZkoFwGi7W8RNhefi5kmn+2zPj12eRIF0Orq60fM1nQNbAWxUFLTQYzIavrCwgFwuh4mJCdOAc25uzgAnBNPVsNSotX3t/K3GgTbIKhQKmJubQ6FQQKFQgNfrNU3XaPxwPniPw+Ew5ufnDWjAhnlu18r5jMVipmZdKpVCIpEwaWfK8t/IeujGOuHxtE5uIpHA4OAgQqGQqffPtEqywMl202g954zMkY2kiwNLzUZo/NvX7BaFXinT43yQXuR8+6SnrzdXuC8pa0cbiLJGNIFlj8djmOXcEzR9lc47WcnKzOPaJ3NYnYXVhPsh90aeU4FSTUHX7wHOWpBaCksBZHWGyCRiDXg6vxrI1vIhmk7Lv9WeUMeKY9CUZXVkbf1BncX5JDjAbABeJ9lNU1NTBlQPh8Mm0EGgRAEWN3aZ22/NktN7r06nbT9xjqgrFhYWTP38tWazEdAm85x6m0AE2YYErvU+6HhU9+pn1FaxdZvaGe1225xbG8iqvuQaJSOT95x2Cp+JMxV1tHUNc91qCZrzXbZSVx8+fBh/8Ad/gEOHDuHqq6/GPffcgxMnTuDWW28FANx+++04ffo0vva1rwEAbr31Vnz+85/H4cOHccstt+Do0aO499578c1vftMc8z3veQ9e85rX4FOf+hRuuOEGfOc738EPfvADR+mWP/3TP8U3vvENfOc730EsFjMMdgbStkvOZV2telNf0+CtBmYVXAKcLFP9joJ7yh7ld6jPCDIycKqAKvcA7vP8Dvc2BS9tsJ97nvbJoM7jZ+0ggL3fMqDJzCDbX7Cvmfpb/VA338sGqKk3bQBQAU0Km/fqHOqc2cCiAqY2GKn3QzO5+JqO0V4zrH9NvZnP540uo17UBq16HTY4qudQfaZrjJ/nemHwH1gq30n7wl4Teiy9Fl2fqleJY7AxOnUl9beyndXv1OMqQK0Max0bgXYdB4PjzDSLRCKIx+PGduM5OS98zmwcRZ8vZVtrloUGq/SZ0wCaYjYck5Ip+HntX6LPRLfgyFrxCDe7Ro+n12+TMe3nW+0ofeYVx9NrUlkPkN7zq7dXNgSkz8zM4D//5/+MH/7wh6Z5QrFYxGtf+1p861vfwtDQ0GaP87wRVZ7chMLhsFGuZEfxPVVeZCXPz8+bmududTYVYPb5fEgkEoaFFIvFEA6HTSSy20PGtNh4PI6RkRHTGOdsgenKimKKO+CsU6d1NJmupMABO2TrBr4ZY+amSIU6NzdnUoZnZ2fx9NNPIxKJ4ODBgxgcHMTAwAD27dtnAHWy9BgY0CCJXj8VFdPiFxYWkM/nUalUUCwWcfz4cdRqNZMu7vf7ceDAAQwMDBgGvxo+XFfhcBj5fN40Xmu328uYWhoxv/jii7F3714kEgkcOHDA1NhnQGOjIHo30WP19/cjmUyi3V5sWpJOp1GtVhGNRnH8+HE0Gg0TUS+VSpiZmTFKmkEWKmBNwVsPu4/rJxqNmgBCPB53gC001AkQMMjRbDbXXYv+XJKewt966enrsyfcl7UZJ/c/OhTK3qKuppPearVMmq7f70e9Xsfk5CSCwSCGh4cRiURMfWdmmvn9flQqFYeOWOnZqFarhr1TKpWMbqfTTxY6bYFgMGj6ObTbbZP5RfuCDgL3TO5z1GF9fX2oVqvI5/NmzKlUytgvOm8MIhDArNfrJrhPO0UBcn6nWq2iXq8jEAhgeHjY9PwgUE2Hsr+/37D64vE4BgYG0Gq1MDs7i3K5jL6+PgNw//KXv8Szzz6LQCCAsbExxONxDA4O4sCBAwiFQsZmYNk82h2ce9V9ZOPTrqKu5r0gIFAsFlEoFODxeJBOpxEOhwHAsPwYTPH7/RgYGIDX60WtVltTEMXn82F8fBwjIyMIhUIYHBxEMBhELBYzzLpCoYBqtWqasnLeFGDm+g2Hw2i3244mbZoVWa1WjaOubEECAby/mUzGND2nLmZJFV3LqvdZBuhMJRgMYnR01KxxAiMEYmq1mrEfznfZSl198803I5vN4qMf/SgmJydxxRVX4Hvf+x727dsHAJicnMSJEyfM5/fv34/vfe97eN/73ocvfOELGB8fx+c+9zncdNNN5jPXXHMNvvWtb+FDH/oQ7rjjDhw8eBD3338/rrrqKvOZL37xiwCAX//1X3eM5ytf+Qr+6I/+aJ1XfeZyLupqGyB3yzByK/2ge78SwHhMN6AbWF4egb+5f5MAVq1WHSQs7t88lxvBhkFB9n7QEhcej8fRdyESiZjMbQ0C0y7gddBP93q9JqO22Wyahtl63fY1K0gHwNEXhK/Rb6Y+oq5WIJC2CPEGXg9BWYKhJAcoIY32gOpzBXP13qqfRV2p4LvNpOZ10PbI5XIGRM1kMsYHZF+ORCLhYMYrPmAH25UE0el0TDkbXU/quzF7jAQ1kgNY3swOSNhZ55oRx7nR4Pjw8LDR0fQnGfynXlUcQ0mMtEu07Eq3IIY+Q1wDBNIBIBaLIZlMmjkulUqmfKqW+VGCmgbStWwfMxG5bm3CgE0QIZCvBADFrvR7xKBYmpW+PO+fbSNpeUCuUw0o2OvSFtrvNhHFPgff13Wv+xlJsXo+rRShgQEN/qwk2+FX33333fjMZz6DyclJXH755Thy5Ahe/epXd/38ww8/jMOHD+OJJ57A+Pg43v/+95tAOeXb3/427rjjDjz33HM4ePAgPv7xjzuy1H70ox/hM5/5DB5//HFMTk7igQceWFYOrdPp4CMf+Qjuuece5PN5XHXVVfjCF76Ayy+/fEPXuRbZEJD+rne9C6VSCU888QQuvfRSAMCTTz6Jt73tbXj3u9/tYAX0ZH2iTgwZOn19faZ2J7CkjFRhcpOl0+a22elvYMlR4WbNzau/v99EI90eMio8jkmbO5wNIF0VAY0brb/tBqQz4s5a7hoJdUvn2ajYkV0aDvV63ZQPyWQypj55qVRCrVYz9Wo12MFjuJV8sYMlBEPIPs/lcjhx4oRhwjOYMDQ0hGg06tjE1bClc0zlRWVmizrUqVQKo6OjBpjgdWw2gO42z5pe7/UuphXWajVMTU2ZueD8ax1/gtwEtqn018sO18g/m7Wxx4DW3+90Oo4xaG1em0VyPkkPSN966enrsyt0HugYkenMoC/3Ct0f1WlUJ18bMtK51b2f+tmuIb6S0HkmaKzptNTxdHxYToQOc6vVctQD18A0f7TMCx1RgsUMLFCvUM+RGKBsNiURqD2hQVDaOkw75txGo1GTekxRxhcARCIRxGIxtFotUwYMWAICqJsJghNsZuNszhcba5Pd7qbzbJCCwW0C6SzvQyCdTiPn2g4gsDQbMwvWome93sU+LXTOk8mkI+tsYWEB1WoVlUoFnU7H2Am81zbDi8EUtQ8UDFFdSlCJdgVrvbLBPdcM143abW715TdLfD6fCYDTcQVg9DgAV/vnfJSt1tW33XYbbrvtNtf37rvvvmWvXXvttas233zLW96Ct7zlLV3f32k2xbmoq3Ud2T6lAnAKEANL/q0dtFPWp60r9fM2i5SvURcqY9TOpOXewPPwmASZ7bFTuE9y/yNoZrNSbeBfM4/YY4sBaiVW2cAa51PHaAOVyqrmPNkYgNoh9rzzPc0Es9nePKaCjLa9o3pdGcs6HzoOe61oJhgAU6+bujEcDqPVahlQlv4YX+sWaGHwne/rmJrNJsrlMprNpgNI12PQtlOcQnEXvS82A5k+dTAYNPYJ7Rn6rHo/OM86Brfyv2RN65jc1omSCvUZ4Prj3DDobK95BqBUb9PGBGAIJKvZKyTpMQDF62evNZYc0rUTCARQrVbN86UED/t8ivvY0g1E12eEc6KBOTe8g+8rWUbvHW1hG4dzyw7h8XYikH7//ffjve99L+6++2686lWvwpe//GVcf/31ePLJJ7F3795lnz927Bje9KY34ZZbbsHXv/51/PjHP8Ztt92GoaEhE/w+evQobr75ZnzsYx/DjTfeiAceeABvfetb8cgjj5jgd7Vaxa/8yq/g7W9/uyNorvLpT38ad911F+677z5cfPHF+Mu//Eu84Q1vwC9+8Yuz1s9xQ0D6P/zDP+AHP/iBUfQAcNlll+ELX/gCrrvuuk0b3PksChorwMqa5ho5VwVE5RuLxVAoFADA1KkElkd5qWTJeqNzs5oz02w2TUpyoVAwjazszspnKrwm1kIlk4mggjrnwJKy0gZWtkHiFkncDLGDFVQuPP8LL7yATCaD2dlZ5PN5wxJLp9OGDchIuqb16zxQqZXLZczNzWF2dhbFYhHFYhGnTp0yLD0y9Mgg1DWikU5u+Nz0NSjCa/J4PEgkEhgZGUE0GsXY2JijcerZBNBXEoIonU4Ho6OjABYZPeVy2dR/JcDFhkc6F6spEGU0kB0ai8UMwz+ZTBqFz8g51xgBJt4D1owjcDI/P29qHNdqNeRyuV5KeU/OivT09dkVNWLpeHHPWVhYcJRlYxkRDX6XSiXkcjnDQuNewvqPzWbT6FTuaQSpdQz6222M1B20C+joAzCBZ61ryb1Smd58TR1uOufqPHPcZL9pEJspu/wcdU6z2UQoFDJOEueMTGUKv089z6A+ARJ1FG1bRAPxrBVPVjSPTbaTMoq0sZff78f09LSjCamWq+EcEjDn36VSyUF0UJ2rdV/1Rx1UAgTaMNZuoAYsMcoCgQBGRkaQSqUcoD71EwM/ZI4pKKOigIoSPTQYZDv2yjrlutIm5LFYzAD47Geia2ijepBrwufzIZlMYnh42LH+IpEIdu3aZcr32EH1+fl5HDx40KwL2sbT09MOFn1PT/fkbMi5qqvdfAQbFFawGFgijBEIt4FJ3Yv4ORU7IKs+IvcaZe/y2Oxpoc84j0Wgu6+vzzRVVKBWwWru/STS0BdTMJW/6TeQ9Q3AlKZkqQ9+xi6PRR3BcdpzxUwxBdTpn2rzZzsQwd/8Pvd1t7nmdWhZFZt0RH3Be63EQDvYovrEDejUMnjFYtFk2xWLRfT19ZkSKQycEowNhUIO/bKwsGBsB2WkU381Gg3kcjmjs4m/MBNZwVIeU20JOwuP64xECGa9sS8Ls/+0/Ileuw1Kqy/L9cWxKqBvB59oA6go5sP7wwbiPp/P6GvqRft63bJDOA86T7SlmAXHprqJRMLMF4MgnA8GG3ieVmuxNCuz6lkijzgRiQvshWPjZLp32PuK/Vza693+ngbyOL+KA+h947rlb13TdkBiJ9sYd911F97xjnfgne98JwDgyJEj+P73v48vfvGL+OQnP7ns81/60pewd+9eHDlyBABw6aWX4rHHHsNnP/tZA4gfOXIEb3jDG3D77bcDWCzn9vDDD+PIkSMmgHz99dfj+uuv7zquTqeDI0eO4C/+4i/w5je/GQDw1a9+FSMjI/jGN76BP/mTP9m0OVDZEJBOR8QWjfr15MyESg6AcRS5AWu6G7AcFG+32wgGg6aR4sjIiHEWNfJFpdtsNk3jJaY5c9PrJmTbNhoNzM7OmpRhboCbJWRNsQZ4LpdDp9MxTCc6ttz0qBD5XUZWlSlwNkWNCWYSsNP3zMwM2u02QqGQCTyk02nDZk6n0yaSToXP8XIeyKZjulkmk0GxWESj0TBN1YaHhzE6Omruq7K9VJnydW0goumMCnwMDAzg8ssvRywWw8GDB7Fr165lc7qVYDoNRBqW+/fvx8jICE6fPo18Po/+/n4Ui0XU63WjSClrUVB81gKBAAYGBnDo0CGMjo5i7969uPzyy809jEajywwcNfTtgMXs7Ky5Zz/96U9x8uRJTE5OGtBsLQD/i1m2OnLek56+3grhPFKH8rVOp2NqmlMfkNnD9dzf34/JyUmEw2EHSFqpVFAoFIyD5/V6DauZDSqBtT9TrVYLpVIJs7OzCIfDSKfTjlJn7XbbOP9aQ5xAPu0FspLpnCvLjfugZmVpIzCv12tsmEgk4ggAEKRQFr5mF9GZ8nq9xsHzeDyGBKBps3QE6cjw/jBTLxwOIxAIGBY7gRXOQzabBQBkMhlMTk4uK5HH+xmNRk3ZGpZjqdfrmJ6eNnNZLBaXBap57xicjUajBpAha9zv9ztK6RDMUKeT60DvfyqVwiWXXIJwOGyAdKZmEwTivWBaOe+PG7PcjeHItW2X9eEcE2ymvZZMJjE+Pg4ASKfTpoQKG8kpyKLg2HrF5/MZ5/ziiy/GoUOHHP1b/H6/AS7UZpyamjJN1+PxOHw+nwFmCoUC/u///b84fvy4Y72c69LT1Vsv56quVuKXzUhX8I77ijI7+Tkexy6Zwdd1D+NvzU7W47sF6zQ4bLOyuccyEwpY1M8MkjKAp/Y+S24S6KU+tBnF6suzTNz8/Dyy2Sw6nY7JVOKY7GtX4E0BU/r6mr2mWW7co7V3hzKWKWQDaxDdDqjqPVDAX++XkuI0YKoBa3u98F7YJDX1XdUWojDDiGU3SS5jJpISD4vFoqO2OueJeAqzx3gdxDpCoZAr+Yz+Jj9LIJ/veb1eUzt/cHAQF1xwgdE7bJbu5k/ar/Nea9kcArQcE8kSnGeuc86tlmZTkgfXDokdhUIBxWLRPAPEk5TNzx99PjXIwHtEQkAsFsNFF12EVCqFdDqNkZERs1Y5f/yfmAjP32otlQIkJlIsFh1B73w+jxMnTiwbo1tGupIxKZoVqGx+JbDyPdrL+r6SNnXO9ZnlfVU7VZ8FPmuryWbo6lKp5HidQTxb5ubm8Pjjj+MDH/iA4/XrrrsOjz76qOs5jh49uiwQ/MY3vhH33nuv6cFw9OhRR2Nwfobg+1rk2LFjmJqacpwrEAjg2muvxaOPPrqzgPTXve51eM973oNvfvObxjg+ffo03ve+9+H1r3/9pg7wfBY74qfKR6PqanxQAVDhM5WWSlM3dG6cjKyTLbWW1FqNQvL7/f39RiGdKetbwV6tgUVHWMdnKxp7vraaMW2zJmhY6fwCMIZGu9020W0F0lUIcszPzxsDbW5uznSEp6PMz/GeU+nZ5Xo4JjIctemmm9FKg4BGnTLRt4ONzvHx3NzwCUbV63UTfALW7thpIIQARyqVwuDgIIaGhsxPOBw2DdR0PG6i4AM/4/f7MTQ0ZNLcCcbos/pidpy6Sc8533rp6eutE90/lVmnutrWr9TBXq/XUSNUdQXZLdTrdA7WKtx3+H06o5rSq3YEWTV0/Ci6L6mzoMfnNdnOgtvndZ64P6oOV4DAZvdQeB51hO1j829N+9VjKXtOA596nVpjlQ4ej8egK4H0QqFggh6lUskc0waKCMATkFZdzHI2XAc2WKDzqL9Zp1dBcptEoE4h4MxUtI9t33u1Q932c9W5alPQZqBzrwGDjdQkt51WMh+TySRCoRDS6bSpO68BEGbS8WdhYcHYUAyQMwjDeU8kEqZBvLI4bRDlXJKert56ORd1teopXVN2wA5YDhypLmUAl8+lAtH6nW5BQVsv634GLNVQtkFH3bMJUnIPIPOXGVbqtzLAy73dza/mXmoD1PTNms2mKcXlpjvtedX51b/tshEaAOde1s3noG6kTaB2gU1S0mvS+6HlVG397XY+XQ82iK7XQLBbiWK8D2SsU4+qPuf1k5FOsp3efx6btpbqf9XJBJ+V9KbBZttPVjIBgxRa051j5GfXopv5vl1ShM+Lvfb1HG5/K5gNwKEvdQ3wPujaUVtNj0k7MxwOm+bn1KvxeNwEsNWW4f8K6vJ+ap14npfkQd6HaDRqfGwlfHC96160UbzKfmZ0/Lbda98DnS/7WDZTfiXZDF29Z88ex+sf/vCHceeddy77fCaTQavVwsjIiOP1kZER06zblqmpKdfPLywsIJPJYGxsrOtnuh2z23n4Pfs4L7zwwpqPs17ZEJD++c9/HjfccAMuuOAC7NmzBx6PBy+88AJe9rKX4X/9r/+12WM878XepFj/ynaM1Akul8s4duwYwuGwcSTIrg0Gg0ZBNJtNPPPMMzhx4gSy2axpdLIamM5zNZtNnDx5EoVCAUNDQ/B6vYZVp7Wz1yOMGjYaDZTLZTz77LMol8tmzGQ/KfOcyo0KjArOLU3mTAD+tYoN4usmSjCcDMNcLmecQGXT2WABN38aWATneZ18v1KpYGZmBs1mEydOnDApZPPz86b+a6ez2LDtxIkTKBQKOHnyJHK5HMrlskktZMQ8GAxiz5492Lt3r1GA2wmg2+LxLNVAHxgYwEUXXYTh4WE888wzJuCgqeYrSSwWw9jYGCKRCF72spfhJS95CaLRKPbu3WuU/cDAwLLyO6vNBZUpG8sODg4iGo2iVCohm83iyiuvRKlUws9//nM89dRTpiafnbb/Ypeec7710tPXWyv2OmW6KXUU4HT+6/U6pqamTHovS7vQ2WLmF8uDTUxMmJJQaxFNM52ZmUGxWEQsFkOtVjO1sxOJhPk8AUcG3dnIa2FhwaTP8hr42+PxoFqtYmpqyoyLzgltD+o2ZZRpYKFarSKbzWJhYcFxfjKSqO9JFGBgWJ1P7slkX6u46SwGsekkE1jVDCGeR3/o5JTLZdMATZlKzARTsMUtyEJ2VKPRwPPPP49CoYDBwUF0Oh3DeCMgkMvlDEjPkgHUD5xnpkOTlc1zADDN0chao4Pq8/lMyRICBsz2o8PMjLh2u21sSo6L86HMQdqY/A7vJe0XsjoHBwcRiUQMI3ytwLTHs1imJZ1Ow+/3Y3R0FENDQ4jH49i/fz+SySQikQiSySS8Xq9hjLVaLUxPT6PTWcxqTCQSDqBfg1nsRdPX14dXvvKVeOUrX4lcLofjx4+jUqnghRdewMmTJ43tda4Fvnu6euvlXNTV9FO6sci7BQQJDOpnAWeA2i04SD1hg672ublX6/e5p/E7GnDk70KhYIKmnU4Hfr/fNGxW3/P06dOYnp5GuVxGpVJZFvxWcE1fY98x+i7cQ9mTieVTCSRSz3C8HLOCyrwegsb1eh3ZbNYE8Dm/1IU69wDMawqw8n5y/9P7o+PQsjO6p3Bsbn4ydQ+vg9+zs/B4vzSwCSzaVFwL5XLZURaNdpiSDm1WP3WFAuK0SYLBIPL5PACYrDG9lyS4MRuNxAdgqYk4G9bGYjGTMcX3dI1rSRMGb+x6/vacs4JBp9NxsOH5OQak9FkguO8WuKINwtKuDCaTpc95tHW3PjfRaNRgCfv27cOuXbsQDocxPj5uxsgsfJtwoEEmDcTzmeh0Oqb8UavVQjqdNuVU9+zZg0ajgenpaWSzWdTrdUxOTi6zHWn/aZBHyw/ZBEPdWzSTRe0gt6w1XcMaCNR9wc6K4e+VZDN09cmTJxGPx83rbmx0FTeixWoBMrfzdgvorOWYmzW2M5UNAel79uzBT3/6U/zgBz/AU089hU6ng8suuwy/8Ru/sdnj68n/FzUe1iLVahWTk5MIBoOmNmUoFEKr1UIkEnGwvE+cOIHnnnsOlUrFKPy1jmlubg4zMzPI5XKYm5sz9dj7+vpMmtJ6r7PT6RiWO9NzcrmcUSpkvjNibDe8UBB9rQDqZogd9QecgLqyFajwq9XqsuPYRiWweg1cFaY7zc/PY3p6Gn6/H7VazbDmqKAIfORyOUxPT5sURK4x1m1PJBKmXMx210V3E1Wu8Xgcu3btQiqVQj6fh9/vX8ZMWUlYQzWdTuOaa67Bq1/9aqOk7br1a71+nSsawgAwNjaGTqeDYrGIgwcPolwuo91uY3Jy0gBBPSDd+d2erF96+np7pdVqGeDQbc8gSOrz+ZDNZk3piXg8boA9stsmJiZw/PhxEwRfi9C473Q6yOfzaLVaiMfjBqwlS0g/r7VOWbOStSjdmFEejweNRsME1ePxuKnNrXXElfVFHU6AoVwum3J08XgcsVjMAVDTeafzXK1WjfOvafu0H9gYjKxspt7qdRJIp7PGGucEn2ljAGe2d3UTBgSazSYmJydNE1SmefO8rLFeq9VQqVRMCSEFmqgDmcJOXU+2nYLoZGbx89pYjAC7zhUZlm6leuhY8of2AW0wOv+0gci8B4BEIoFwOIxisegALVYSjisYDJqA9Ete8hIcOHAAqVQKl112GQYHB02N1FarhWKxiGq1agIR7EfAsXY6HYcDzDXGuv0veclLMDIygsnJSaTTaVMOYGZmxgAx55r0dPXWy7moq+mj2SULNPgHOEuW2Exwm/yk7HFgCShXYMxmYAPOALauUWWoElTVfZJ+Z71eNz4y9Yrf7zckJWV4T01NYXp62pR10WCb7p/2nsfAJvcr3b/T6bQB0e091T62vScxYEsdMjU1hXq9bvxqEn20jJvui26BZD22grpK/LMz5932Bn7XraSJ3hPaPNTVmlXNv3XsfX19qNfrJjjM0i4E31U0w0jLd3EcZEWzlIgG3nWO5ubmUC6XHeVytWQKs6KCwaCxrZiZRTuNc0SA2SYC2lmCNpDeaDTQ6XQMCG+vd513O4jB+6vrKRwOI5VKmZrk+XzeEcTnXBNv0UxKEvl27dqFaDSKyy+/HBdddBECgYApa6uECs3gUJuEonsGr5lBpk6nY4gI1WoVw8PDaDQapscAiQ9KQmHAhUA651bPY2dX2nOqmX1aeplr3g7UAEtEEzv4oAA6sx5Xk83Q1SQKriaDg4Po6+tbxhSfmZlZxgSnjI6Oun7e5/NhYGBgxc90O2a38wCLzPSxsbENH2e9siEgHQD+8R//Ef/0T/9k6j7/7Gc/wze+8Q0AwF//9V9v2gB7sjGhMuGmNzExgWAwiEajgXA4bDbbZrOJTCaDUqlkANj1Cr9Tr9cxOzvrqHOqbDTAGV2jEaAscjprLFmSz+dRq9VMuQsqZBoAWjdO06A1nYfn2E7jfj3nXg9o3u37NCpYL1xZaZwP1nItFAool8vGGNMINdOvyIJYKb1wO4VriY1mgEUmJRWoKndbaEAGAgHs3r3b1G0bGhpyMCk345rtYxAAIWi0Z88eXHrppaZeWTabNQZFzzntyUalp683R3Tv20iAdiVmRKezlE0UCARQrVaNo0ZnkU78Wsqv6XGVyQUsNdmiU6hMLWCpjiUA4zDpeVmbFIABdjUIq7qc7CiyiOjcsn+FMprUPtDa28oMAmBeU6edLGJeJ51tZcLb4Io63cqO07kDzn7/D469r68P5XIZU1NTplwAQWmy21RXc3wEe/x+v8kGpL1H3UHbSK+FdoKCEepQqqOn6f2cE7W/eFwFovRYOs+0L+hs8lpXE+pLOucjIyOIx+NIJpMGDGKQhU3ZGQRQRhvHwPrGtn3IrAyyBcnIX1hYMKX3BgcHsXv3btTrdczMzCzrfdCTnmxEzjVdrX4D4CxZoExOfZ9ig4bA0t7ejcmuIDX9HYqyZO1a69yzFHS39zXdS5hVTB0dCASMD8pa52y47QY+axDSZsbzfNQL9KkrlYoB0oGl7Cx+1i51oQEBzfRWBjsDzMpKtpmz9LsZcFVGuto0uv9pbzL1w+ljalDDBuj5t45D9by9FjiHOsecd/WHtfScBh+U4KbBELvWu5bDrVarpiQrx8r5LBQKpsSqW08NljYjOE8sg9ehQSSb0a+vacka296x74v9DNli2z723ySSUW+rTck1pn/7fIvNSlkJYXh4GJFIxLDadf3oNdvPq9oi+r99HUpW5P0kUSQWi5nyqclk0jzLmiXCsXNdEFzX9+z9yLYd3GwYfcbd9izeW80AoL20ViB9K8Xv9+PlL385HnroIdx4443m9Yceegg33HCD63euvvpqfPe733W89uCDD+LQoUNmL7v66qvx0EMPOeqkP/jgg7jmmmvWPLb9+/djdHQUDz30EK688koAi/vQww8/jE996lNrPs56ZUNA+kc+8hF89KMfxaFDhzA2NrbjQLWewDiwjUYDv/zlL3Hq1Cn09/ebNBoqhFZrsQEZG1mut1YlFQdrHTUaDfT392N4eBhDQ0MIBoMYHh425yWbScEIOtylUgmZTAZzc3OYnJxENps1zUBY0oXMam40moasadRsAqPK2Y4Ebra4GUN2FHIrRKPCTz/9NI4fP45QKISBgQFHd/n5+XlkMhmj8JlmTmUcjUaxb98+jI+PY3h42IDKO/V5p7IfGBjA/Pw8xsfHMT7+/9h78xjbrupM/Lv31p3ne2uueoP9/IyxmRKcOEAzJQ206ZYIgQ5SWigdBdSW+w/Af9Bxd6w4AyB+ROgpAkJooSYoCqBWGkWtRmJQEiODk8Y2BGK3sZ/9xno13Xme7++P0rfrO7vOrenVe1X1fJdUqqo7nLPPPvvstda3vrXWPGq1mjGA3YSMs9nZWdxzzz34tV/7NaRSKaRSKVPGxk5LPUgJhUKYnZ1Ft9tFKBTCa17zGly7dg3/63/9Lzz33HOoVqumLtlxlzHL7ebLWF8fnGgapzoxe5FR67jf72NpaQn5fN7BxOYzQ0eYJTjU4d8O3FdwgOdmk3A3BvZgMEAqlTLNn7RZE/8mO7rX6xn9QdYd2ekEKcneCofDhgVcrVZRrVYdQDgAw8Imi58sMta6rNVqAIBsNotYLIZ2u4319XXTP0QbVpL9RceNgATngc4W2Vt0am3A42bob85prVYzxAety87AN6+Ruprj8/l8SKfTiMfjmJ+fx6lTp+Dz+bC2tmayELhuyEDkfSLYTvZ2IpEwgRVeO4FlTQv3eDwmaE0dORwOTfkAZiXS1mJABdgEEhhAXl1dNU7kdnPt8/mMc37q1Cm88Y1vRDKZdJStyeVyKBaLZi6Hw40yLupU06nVdc/roJOfSCQMG5Drtd/faPbKzLxTp04hn8/j8ccfx9LSkrGrbwUZ6+qbL7eirmbJCreg23ZrjDrQJkLxfwVz+b4CbWwwyfeVta4sVH1f9YEGdRWI5nnK5bLZKyKRCPx+v4MVrVk+gHuJBgXYFEAHNhs1KrBXq9VQKBQQDAYxNTWFWCxmxs3jKZDMMXNvZ8127dfFElwej8cQ1NT+aLVaZu/n3j4xMWHIVXr/dP/mPLEkynaMdILIdtBlOBwaXWeX0OKc8V7qeqH+53xqEITj5D3VEi/UkWSRh0IhJJNJAyJzHIVCwRyLY+X9Jpahddft4EA4HEYikUAymTQArwYwNJtLx8z7rOQGBuAZ9OXrXDNuILoN6tKu1YCA4iUkm5HkSPtBm29rNkC320U8Hsfi4iJmZmYwPz+Pu+66y9hyxIHsAIsGs3hf+SxyfHYJFlt4HC3V5vF4kEgkUKlU4PF4TFbZ2tqaozQu7VmWF2RmHsfJ9axBi1GiuIGSD+y9T9e1fV+4fneSm62rH3roIXzwgx/Evffeize84Q340pe+hMuXL+OBBx4AADz88MNYWlrCV7/6VQDAAw88gM997nN46KGH8OEPfxhPPPEEvvzlL+NrX/uaOeZHPvIRvOUtb8GnP/1pvOc978Hf/u3f4nvf+x4ef/xx85larYbz58+b/y9cuICf/OQnyGQyOHnyJDweDz760Y/ik5/8JM6ePYuzZ8/ik5/8JCKRCH7rt35rX/OzG9kXkP7FL34RX/nKV/DBD37woMczlgMSjQzSQeNmy9Qxgs5uaU57PRcVHtP4yABj80dGMPm6fpdR+1qthkqlYuqGEzzUjuLcdOkUK9OdTqYy0ukA3gjgfDdzchgMJZ2ncrmMWq1m0rfplDMAwk7XNjBDhRWLxYxDSQV2lIUGNJnprOW6ncLz+/1Ip9NG4Z8+fRqpVMrBbrmRQiOBLMt0Om1KMsViMQNIjYH0sXO+Hxnr64MT3RNuBMhBpvZ+RR1yFfs1Otgez0ZtczpGdNSYwkxnh44EfxN4peNBB52OAB1Oj8djjjMYbNTX5rnJSKdwD9Tv04liaRl+PhgMmjR0rU1uAyp0dlgOTnUjr4cOIHXEYYBX1McATH8MAA4QYrsSImSkU+fRziObDtgED2yWldqAdGKVhcj5tLPR3NLweVxlYZKpqXYc2Y/av4fHHrWGeR6WqGPJOdY559wQ7CL4DWxmWPD7nA8tN6HnsBnzzATh67QZGKThb31GjruMdfXNl1tRV9sAqQKl3CeAzTWjNrcCS7r3KTipQWT9rgKs9IWBzTIMCsTzmNybqGf0bxuwJunM693owUDfSslo+gy5+RLbMdJ172WNeQWU4/G4YZBznri/K0DMXg/0pbU+OO8Bx0wbgLpDgVUNDui9UdHPauCC125n/tjzoD4m9Q+Py2O6zZUen98jqG5fK3/boDUDDAqkA0AsFjNzrsEFZSMTx+D81ut1tNttR3Be7z+D/AwoE5Oh/tV5tBnpet38jj1/Guy27w/nx8Zh9PN6j/hM8Ljau4fj4rjtexSNRpFOp5FOp5HNZg2OoCQRft7NttEAhB2Q0PHaADWPSSyAASev14tUKmWeAT4rnEeuAy1bw+eK86DEFHv/GCX6npaL0WtwI8Fs97rKzdbVH/jAB5DP5/FHf/RHWF5exqte9Sp861vfwqlTpwAAy8vLuHz5svn8bbfdhm9961v42Mc+hs9//vOYn5/Hn/3Zn+F973uf+cwb3/hGfP3rX8fv//7v45FHHsGZM2fwjW98A/fdd5/5zJNPPom3v/3t5v+HHnoIAPDbv/3b+MpXvgIA+PjHP45ms4kHH3wQxWIR9913H77zne8gHo/v+Tp3K/sC0judzp7o9mPZKsqUBrYqz4MUZX3ZCpnK5KDPo45gs9k0GyidGWWJ69g0GsgUHI1Ic8xsxEignAaAbsqDwcAYAwog30hH2VYMqlgOw7ng3LJuG40LNSJ0bB6Px9QbY80sAunHgR2jAEosFjPlWVZWVhwOusfjQTweRyKRwPT0NF73utfhzjvvxMLCgiOl/mYLn5FMJoN7770XMzMz+PnPf456vW7W/HEG1MfO+c2Xsb6+MXJU1qPt9Oz1u61WC6VSyfxP55PggJbk0CAsM8nodKqDbqff0kGpVCqYmJgwtV91PyBozgB8IpEwoKdmTQ2HQ1QqFXi9XsOmVgaTsoppF9ip7woQcJxa7uao7LGaPk3bRe8xrzMajSKbzZqGXpVKxej6aDTqqNPK46neV+AYgClfoPpGCRIKwmvgQllbdgMv6lMy6jW9PZvN4sSJE2g0GigUClt6x/DciUQCr33tazE/P4/FxUWkUimEw2HU63VH41PaMewFAGysIQXvaf9wnm3whTIcDh3ZAWTTxWIxDIcbdWjvvfdeLCwsYGVlBS+88IJhfO7GCT6qMtbVN19uRV2t/obuEbqH7NXWtgN3CnYTKFSASn0xPvO6V/BvBcn4XRvo0/Op7lC9yfdsYH87vaKAIQBXPcRGoawrzYwZziEzczhOfoc+NMlmBM9VN/Kz2kSS+z2Dudqbg3syA4vcJ6lfeQ/sjHC3e20DofZ90TmhnaF7t95nxVJGifrkus/xnNQDqr/UnuFcqq7Q/V7LwXD82sOEADsJhnZwWufCLuPCY1H0+AxK06/XYIjbHOi90bWgtoGup8FgowxbPB532HEahEqlUojFYkilUrjjjjuMnmafAc12sEum8hzK5NaAmRvQ77aWuDY5/4lEAsFgELFYDL1eD1NTU7h69arpGcB+BAyGMyBlZ7Rwnu11aZ9/u/+5XtQGs68X2FzXR5GRDgAPPvggHnzwQdf3CGqrvPWtb8XTTz+97THf//734/3vf//I99/2trftOF6Px4NHH30Ujz766LafO0jZF5D+oQ99CH/913+NRx555KDH87IRMmPsVJr9potvJ27RTb5+0MINp1wumzSaK1eumE3HdqyUQawdqkOhEEKhkEnxZqkadjCvVCrGeLAZaZxbKnVN36MBoJv1QQk3YNv40gDAzRYdh13axG3z9Xg8Ju2M5U20KddxEK4vNjiJRCK4cOGCQwl7PB6TDrSwsIB/9a/+FV7zmtcYttthAOlctxMTE5iZmcGv/uqvol6v4+///u/x3HPPYTAYOOoQj2Usu5Gxvj44uR6D9UbK9YyJ9aRVCoUClpaWRrKDqXcBJ7NXHVLqXWU6K0tdAXoARlczbTybzWI43GBLNxoN0ySN+7fWo1Ww0+fzGadNwXEdkzLd6DQTpLCB1MMUZZwB2KLDtETKwsICZmdn4fP5UCwWzft0ellnl9enzqnXu9HMjveDn2XqNhtu09ZSEgYdTK4H3kO9HwpCtdttkwVB53ZmZgZ33HEHqtWqqXGuQoAgm83iDW94A1796lebgD8A05yb9iQ/T8CJ6ycSiSAcDiMcDjtSqpWFpqxTAA4HmiCCrrGZmRnE43HU63U8/fTTWFtbc4BYYxnLbuVW1NX0PXXfAJwgtbLD7b2Ox6CMep1/q32spV+UcaogKvc+kq14LAW6FNSmL6vAqoK7LBdll7Oh2LpFj0UfmfqI+5PdKNvj8aBUKm3pOcamlYov6Pwwq4n+oJbW0MAG91H1r6kXCMTzGlnWRsFU+/p0jPa9HAWQupXD4LkJfNpBFLvEjQ142j6dMsD1XHYdfbueN+tX897o/HE9EYDWe8OsMTYbZUBXwV/V9zyXYkNcV5px5/P5TAklvS4FZnUd6PF53ziP1IsAjC5VXR+JRJBKpRAMBk0FAWYuAsDMzAxOnz6NbDaLe+65B4uLiw5Q217vtk2jQQVtBu6WieB2TQqis0cCe6V1u10kk0nT0L1SqZiSwtyLtJxMMBgE4AySbJfdPmp8vB4lL+rrtJn0XhGnOi64y8tZdg2kk0IPbDx8X/rSl/C9733PgE8qn/3sZw9uhLegKGtWGcKj0lsOUnbrcI8yVnYrdjRYI/5UUPbGqim+Co7zN49LlroqGAXSdaO22QW8np0i5LsVN0POZqGr0XZYspfzq1KmknZTyEdRVCnzOjS1jvfD6/UaFl82m0U8Hjd1YQ+Ljc7x8/lgDULW0iMThIb6cZQxy+3myFhfH6xoWYtbbR2OeiY1Zdh2jlVXu2XJ0L6xGV8KpFMfK3BiO7Xcr93KmrjpVXWg6YjQZrBLk7mBJkdBV7uJOooqen9oUxEw0WCHOpmjWFQEBpSBZ6dU63gUYFJGle2UA5uOKF+3U7uV/GCPz+PxIBQKGT2o9c71vtn3U9egNqElUECnVkECFc4Fx8Dx6jXx+Gw6x+AAG5QeZxnr6psjt7qu3q7kgYqCerZ/poxgFQXd7L1F93v9rvqG9t7vJrr3cRxugU3+5vG4N+j3FZDlb7d9XZ8ft3ERuLSPz/3fDpIqK1mDAso8twMb+nmt4W2PUwls29lIo3xuN72ix7HPq7rHnnO1KWxQ3E14nZwfBlNoi9jlzDQgxMCr2/2x58HGfGyWvX7HTUbpfns92u+NEhtMV9H7CTjr+PN/+xr4OgCjq9lLhGC0HdTR+RkVKNPPq/3ndr387cbA1/lndgV7KHQ6HUfQyb5e2zayx+U2Vvt/ft/Nzhgle8Egxrr6cGXXQPqPf/xjx/+ve93rAAD/8i//4nj9OIBthymaDsV0E3X2qtWqacp0sxe4bsr2Rq+g8H7EdnbT6TSSyaSpBR0OhxEIBIyDxM/RiR4MBqaGervdxtraGsrlMrrdrmGs2wGJ4XBoUtkIrNK4UgN1lDGzW+Gc0DkjM0EbuipAcJTF4/GYumZ2OtZxEjrfrJ8ajUZNdJpR/Ve+8pV417vehUwmg5mZmUMF0G0h0B8KhXDmzBm87W1vw/r6On70ox+ZbIzjKGOFf3NkrK8PTqirA4EAWq2WyYrajy60nbLrEU3Lvd5juR2bzlIsFnMEGam/p6enDdPZLhvCWqqdTsc0ftR0cgU72bhRQXM2SGPvFALDLDGm7EFNE6bdQjtLGXdk2QGbNg0blCtLkddw1MRt72Qmn5ZSqdfrqFQqAIBUKoVoNIper2d0uQ1i2CC7NuELh8Nbsuv4edqrylgn+7vdbpt7S5Ydxx6NRhGPxxEMBlGr1Ux69ag593q9OHv2LF73utchmUwilUqZoDLvG7MOuPb6/T6i0SiSyaQZK22y1dVVeDwesx49Ho8hDmjWJL+n895sNk3ddQWoGCjw+XyYnZ1FJBLB8vLydfU7OGwZ6+qbI7e6riYbVOtwA1trobvpVA1kufWwcGM/U5/wswrGajNBzaRSsIz/q57R0k5kfNs+px2Q0wAu92e9Xg0uahBXdZYtdq15BQe9Xq8BMJkxQ1+X86FjY2k11vZm1jd1tPYkoY9sl+wC4GhWGgqFtgWubaKS4g26n+veyvFpwF7vlwKe/Ftrj7MJJ69plL+v18xzsVY8dRjLmLBvFe8t50IzD3geXgvxDeoa2ie1Wg1er9dk4SvDXdc97wXPZe+xXFPEHfh9BgsUILdBbf62Axlc97oW7UwzPtdkr8/OzuKOO+5APB43/b7soLX9DNsMbb5vN1UFsIUQoWPX518rAfA5V7JqKBTC5OQkAoEAarUayuXylvnUPgi8XmWnuwWGthMNCCjxYRSBdrc6eKyrD1d2DaT//d///Y0cx8tGVPFFIhGzyfBhZwMw4HAWuO2I3gjHkiDh5OQkwuEwFhYWEI1GTb1MZUBRqQ2HG82jKpWKSTdmGp3dtMw2bLiJ8m9VDgcFECuAT0D9sMu67EfIDIvH48YA2c4wOsri9/tNfVgaLzQkAoEAFhcX8Yu/+IvG4T5KwQKCPsPhEDMzM7jnnnuQy+VMiZrjsp5sGSv8myNjfb1/sfWv1+s1DRyHw43+HNcTGFXH73qOQT150CA6j08bgPUuld01Pz+P22+/HX6/3wCn6vzX63VUq1WTOcbasazVqudRZhDTtQmm09FstVoIh8OIx+PGPqHYjGmbqcVx0Snl+8xk03qrx03ozCvTjXMGbDiLTDFnhpk6kzpPWg/XJhqwuSxT1wl8sG49sAG6Axu9btiPpd1uO0AtOrqxWAwAzJrQusJu1zg3N4fXvva1DrCBJWLo2PI+a53+aDQKYKNnDxvSk4ChQDprrWvpQdv2JTGjUqk4nGmCJJy/VCqFiYkJFIvFg7rNhyJjXX1z5FbX1QzG0Q9yYyPvBE5xz9e9XYWva9Bb9zmKlm/iHsJzKnMU2AzQKluZvrs9bg02qvBauKcqsKkNugnM8vOjgDUFZhW8JeBLHUkAma+7NXOmX81AZq/XQ7lcNnXQ3Xo8KBlN54BZSQSIR4HV+prOL+0YHkvnXcvRuM2Fgul6bM45g7btdttcu1umlQLpDCZoYFXLyBFgZXkWm4RlEwc5Hga9qSsGg42681qOxM7W43za86rnUBtHy8sqiK6EAn5H93j7XiuLm/dH547j5zwx+zuVSmF2dtZkjilJwu1ejQoYKQDOhrkAHL1c9Bo4R7qe7GdTbdRAIIBEImECQG7j4meVXGD39uFcua13Ww/q+bmulIipshc8YqyrD1f2VSN9LPsXfegVZD1MwJUOlipfTbFVdjXZ326KbSdhLU82EiXjmc6eNgjTiDWdv0AgYMpdpNNp9Pt942RTgWi6F+CMQCoDwS0VHdhdZFHvkW7UPD7BdHXwrmeju5lCsIHpyW5pY8dFqOy1nhzXG+u8kSFw0PXyD1JCoRCmpqaMkx4Oh83zeCNAtLGMZSxOoR6hw6AM173K9QSnlSnEfYt7HB0P6kEbtN6LEBxU51wBbL/fb1jBPCftGOo66pFQKGQY7fV63aF76dAT0OZ76gzyutVR1+vi59SGUDCegIU2O1ddfRz0spuQxcayZHTKqOeAzXqeGugnWK5EA9WRrFHOtc7PKugBwJyHdmMkEjF2GHUvARx19AF3p1FrqxMUYy3ZVCqFZDJpShEw4MI1qmtHHVOCJwQQCGLQXuP7zIikHcix2g4yCTAKDDDY5Pf70el0UCgUEAqFsLKyYkq+HJeMxLGM5aCFdip/K4A5CiyywT3uK/zb9teoH5TMpMAnn8F+f7Pnls26pihzXDNT9Pz2a/bzrfsZwVPqJ/ai4PucF7vPiJ6fQrCVf3MuCNLSv+H/yh5Wn3ow2KwFrUEHgqIej8fRh8z2l+0SMpwX7vUaiFQ9ztd0jt3sIbUlFARVsYkIap8oEcDtOwoqEwhXkNoNVLXHp9dmr0f9rGY9aO8QnQO75It9fgW1FSxmRp3eh1G6RokQqueUMGKfz/4M9XIkEsFgMDDYDfuVsOcJ/+ZaU/vBDVx2m3MV3if+bQfj7GvQoJ19b2gfsqG91+s1ZWho09vsf/3tVuZI77tbQMKeVw1Q2MQQt7kZy9GWMZB+k0UVg6aJ2Ozlm/UAcROJxWIIBoOYnp42zBw6UI1GA91uF41GAysrK4aFRGdmJ+EmH4vFcOLECYTDYZw4cQKzs7OmgZMNoKtw4/P7/abrciAQwNTUFPL5vGFLNZtNE7WkI0RnSZUUFZsyDKgMt9vUbQAdgAMwZ4o4mfIEW46TE8XoLJ1z3eCPG6BORz8YDBrAPJPJ4PTp00gmk7jttttMI9WjCqR7PB6k02ncfffdKJfLePLJJzE5OYlms4lSqXTsmpmNI+djOeriZujT6fb5fKZcVLlc3jOQfr26nQ6Y3+9HMplEIBAwjHEApjRco9HA6urqlgbTuxWydYLBIGZmZjA7O+sw/gE4GkLqHJGdFolE0O/3MTk5iVAohFKpZNjAlMFgoywHbQk6P3QQ1aGZmJgwtgl1rQ0QE7BvNpumAWW5XDb7pKbla7bbcRPei1QqhcXFRaOre70e/H4/0um0cXpp8/DeEJweDocma0CbaBaLRVy7dg1+vx9zc3NIJBIGMFbx+XzIZDIGiCa7K5FIGIBaWVyNRsPcTzr/CqqxASjtMjZQjcfjOH36NE6cOIFer4fLly+jXC6bEnQE/2lrsdQQ2ePAZj1zMuYCgYAjQ0LBGh5He/hwjAT1aVt2Oh2EQiHMzMyY8fj9fpRKJeTzeaysrBjgf6/Ek8OWsa4ey0EIM7i0TAJ/KzimIJgNZPF5BpylYfi+ln3RXkLMVm6320YXUmdrIJU/DN4RXOXxqYuoMyhubFKOhX4HdTTBxkQigeFwaLKr6/W62XMUdHYLMii7nMIMHxLUstmsAyC29zAbcOW4BoMBwuGwKcdWKBSMjtVr1evUgIjNyFbwXMFrgvfaXNH+vO7H1FsaVFFwVDPnqaO0x5fbPPLYalOQ0cz7qUCyzpdeB8t96HzwszpfPF44HHY0vKYwGKIBChUNDPCzHo8HjUYDlUrFYBcsYaN7tx2w0ufGLgHjtl5sUJpZXqFQCOl02jTxzmQyCIfDmJ2dRSaTMXqca1sDLW4EDzuQoTpE51bXjBsrnDrczmJxW6uDwQD1eh2FQsFkY9jj1XOSHGAHkfTZVZ9cwXue235u9P6rEFvaDe4y1tWHK2Mg/RBEN2Oth6Yb9U5iK0X7YbMV03bHIHMsEomYaCKddWCTfQbAMGz2kgrN87DURjQaNeC9MoZ3cxwqEzrMrVbLsJLonGmEm5FtYCuDQMFzj2eTtbTdnPG7enx1xOygyHEC0SnKYjjOjHRg02igUqUjnUqlDIvMVmBHTZieyCh6KBRyrNXjJGOFP5bjJrrHU1/u5/kbpat5jt2sbztNmM56IpEwx6Euo/G+n+eG7F2m67LeKo+pafGqI+zUbOr9cDiMZrM50qlV4fjtOeH53Zx222lUVqJdZo0gqLLejqNwbskK471WR1vBb3Xuyd7UOeDc9Xo9NBoNw/QexZDks+DxeIwNpsw+fZ+gAx1z3gd1UG1GOpnuynDj2uh0Oqb+Op9HXguPyfqt/A7ng6xNTVnn52xWqL1e6Ujzb/4fiURM7fdkMonhcGiYoW7AyHGQsa4ey0GI7eNqMJZ6lK/b68YNcLOfSRtYU1/MLivGzwGb/qCucyVccW8h4Ko6w010D9X9jAApQfBwOGwAYo7RZs26iQKcdmaQnou6wAYReQzVExTuoXbmjg18Kii+nbhljCkA7TZ3+tv+vNs6sOfL/luv2+07ajOM+qx9LTa+oOOz8QOdM71X+kOxwevtrtUGcLvdrgH0t8N6dI1tNy/6Wb0Ofk/tT65t1n9nXy+uH51nPud7FQX69XjU3fY16RpyCyZxXXPM1NXBYNBkR7qNQedJ76e+x+dq1HVqEMN+hkedb7dzNNbVhydjIP0mCzfebrdr6jbqZsxo1qjFTUUfj8cxPz9vGirSkabhUKlUsLS0hHa7jWq1ampm6nEIImYyGUxNTZnGn3SaaUQEg0H0ej3zu9lsIpfLOdg8o8br9XqNQ5FIJJDNZk3zMi0fsxfhMVmDk4w3Rmh1LDRU1IBTh07TeBTQH7WZ2gwETQ9UJpQyDHYj6nTqud3K1dxo4ViOKkt7t6JGJ3/i8Thuu+02TE5OIpvNHgsHVyPZMzMzuOOOO0wDPzoHx0nGinssx0nImlZGnc08GSUKJE9MTCAejxvmLp8DMmK08aWb+Hw+JBIJJJNJBINB81sDgYlEAvF43ADX9XrdlDjZzpG1JRKJYH5+3rCXm82mw8EiWAFsNvYC4HBclH3m9W40myMbmAxiHZP+dDodVKtVBwjb6/VQrVYN2GunTGu2mTbcYvBRgeFWq+VgMe9F6IQRsD+MrCDOG+uRUwj42JkSmgGpKfONRgPlchn9fh/xeBzAZk8A1mu1e9CEQiGTBl2tVtFut00WBACTYcBmXsFgEM1mE5VKxQGg2yXXuHa0lN/09DTS6TS8Xi9yuZzJ9gNgegqR9cZ7SyBoMBgYu1evn8CYOrJupAclXZCpFggEHGV0uJY43m63i0QiAZ/Ph2w2i2QyacoL7acM1EGJHXjarYx19ViuVxSgs30wBXgp2605+3M265d7m+oCfkfLfvB/gp/MSo3FYpiennaUqABgamZzH2ODTepVBdxZ0iKdTiMejxsCGe0AZSIzqEcGfaPR2NKLwvZned0EK8PhsNGrkUjEUcPdBl+pm93mmHsvAMMwDoVCDmY/9SXHSxBVfWoVYh2qqxmwZNYSf7R0Du+VjlV/a+BYGfyaocBj2CW/bFCZjUWZad/v981+TZyEx9ceIxq014AQ39fAC9clj0dygs699jDRMkXMsqdtxLXGuVGby42soUC/bevwmPocKubghtEoxsG5DoVCyGQy5pkZBdQT8Fc70gaiNaDtZq/qdXIOdL7dwGnFdvh9PkODwcA0RvV6vVhbW9syT7SpRq0xHT/PodetgQ97X7Lnyl7vu5Wxrj48GQPpN1nUUdS0DX14tosqMvqcyWTw6le/GplMBidOnMDJkycBwKSJXbp0CU8++STK5TKWlpZQr9cdx9WyF9lsFvPz8yY1jOnAukkx7QuAaQJWLBa3pBHZwnQmpsROT08b9o4qy92Ibr48Zq/XM2m1rVYLuVzOMR4qf93IaCyo4qISVKPL3uA0aKC10BVIZxraXkq6UAnSmFNjh03crifiuBfhGuPPcQCatxObwZFIJHDmzBnMzc2ZFMijLrwHfr8fMzMzuPPOO7GysoKLFy8e+4ZmYxnLUZd+v496vT7S4B0lNKCpV0OhEObn57GwsOBg/Kyvr+OFF15Ao9FAtVp1BWa5LyeTSaOrk8kk/H6/YYd7vV4kEgnjrNdqNQSDQeOY76VsXDQaxcLCAiKRCOr1url+O9BLB5DXo3/TGSGzvd/vI5VKIRgMmmMqe1DB+Xa7bZhWBFlJELCZU6wVTweMzjv1fiwWcwTO2VtFHdS9CM/JTL3DKA9jA+m0FxhwsB1hm6FPu65er6NUKgGAWUMM+ACbQSQNRpO80Ww2sbq6ilKpZLK9hsMhyuUyarWaaVg+MTGBVquFUqlkSrdo7WCfz2fKHxDMIYFjZmbGBLxXV1dNAIs2GBu1aRo07Sg2I9V7w/nyeDyGQc61YQeauCa73S7y+Tzq9TpCoRASicSWLMpSqYThcIhUKoWZmRmEw2Fks1lks1lUq1Uzx4chbgzEsdM9lpslBAW5BjWINcq/sMEkBbD0M/qsApuAl/aG4BhsIIwyMTGBWCxmfNTbbrvNAMmZTAbAJpBeKpVw9epVNJtNrK+vI5/PO/zCUChkMl0nJydN6SkSv7jvARu6st/vm7IqnU4HuVzO9KdQUWBPy18RPGdQnfutBuop6ge56XECi17vRvkOkt5KpZLRG1rPnb8VbNXsJo5B63hrqTH2NlNg1L7fCpQTvObxCYLyexoI4JzRJtAgK4XnILBJwgGvk+vIZjUrI5prTq+DuknniOuD5EVm+uk94HPBe8vvaiN3DSKQDW3XVldGtB6f99DOTFNWNT9PkJzzqjYd7U1+hsGcbDaLRCJhgHRdg/q/G2Pbtkv5Wfs1DcLr+8RhOEbOpxu2w3tPG4O4QDqddqwZHVuj0UCr1TL3hwQA3gu30jNuOlfnfhT2sB/W/lgOV8ZA+iGKvVHsZNx6vV4T8ZucnMTU1BQymQyy2aypkcr0lHq9junpaYRCIdRqNRSLxS1RO26iWitcAVR7M2TqmCpyNZDchJuMNjRVZ3u/QKZGHbWRiz1mnVduZJpazGMpqD9qTHQ+bSDdLuWiDDu3cXPOVWnSEbWZGsqaUyOGzvtOwMj1MJFuBWdLr4HKj3XqaNAeB+GaIFOGWSPHTa5nXd0K63Esx1f2sv48Ho9JcU0kEpibm0M0GjU6m+AdGc1TU1OG9WWDf+rE2anBysZVnah6cRQDzU0UMOX5bOag7SDp/NggJNnBHA8BdU2zdxsbX7cBdl4Lf8hw4nxybJrmrO/bvWj2cj8V+GWGgY5HbQ8FdvZSBm8/oo6ZOtUcl1vpHK4pLQugP2ThaXkDAlEECbS+qn6HKd/MACDwTfuMdo42h+VcKVuL7E5mEyibleOiLamsQPsztFFt4EgdbGXh8X1gE0hgSUM6zhQenwQKgmlk6QWDQeOAH5YoS+9m2YBjXT0Wir0WdH/U8ko2i1N/23vadmCTsj5HjUGPSaBbSzPFYjEkEgnEYjEAMM93r9dDPB7HxMQEyuWyg/WsOkr3Vd2T3cA8kqh0DvT63eZP9a/u+zsFJ3QvcJsfPRYzknTv4NzznlGvMujNzynQu91Y9DoULNZzarCd/rbNLla/Wo9lg/Ru64Zj6Ha75vv9ft8xp7wWXvOogMR2a9Oed1vH2MGjUffJLUBi6zY30bWlz9V2Y+Nn7ECOBq7VZtip39h2Y9U1vxt9ZYPzvEcabNnueRhlV486z3a2sW2v69wBcMXJdgLMlWyzk4x19eHKGEg/RNnrAg6FQnj1q1+N2267DYuLi/jlX/5lpNNpw/AGNlNUFxYWcPr0aVSrVfz93/89ut0ums0mCoWCSckiq5vf1+ZKKnyN3ZrpSDKaZzsh9nfD4TCSyaRJOacjtV/hxk4HhwyhaDRq0mu1ZAuwmWJGJUxFSYaAgtq6cVIUHCeordF225ly2ySppJPJJGZmZkyzjmQyuQVIp3DMnU4HpVIJ7XYbuVwOa2trJs15lKNOJWdH9t1SvHSeeL7j2oiNokENruFIJILp6WnMzs6aOvvHRbxeLzKZDE6dOoXBYOBIDTwuMlb4Y3k5SCAQwKlTpzA7O4uTJ0/izW9+MzKZjGFK9/t9lMtltFotnD59Gr/wC7+AdruNv/u7v0Mul3PoU4LR2jxLjX/qBq93o3QVdXU4HDblLTTQO0p8Pp/RoSxfoY4+x0H9q2PkNWkJDTqmqVTKNC5tNpsIh8OO7C23PUFT2FlWhoCqx+MxDCGCvGTmK6OKY7T1MvX2boR2wMTEBE6fPo3FxUUAm8y7drvtaGTK8nf1eh29Xg+FQgGrq6sj7aPrFQWxNV1cgQcC2QQGNCCQTCaNTcJUftWJBIVrtZpZR8AmsOTxbDYanZycNPdGg0K1Ws1kUymbn+vK4/GgUChgbW0N1WoV/X7fHHNqagrT09NIJBJIJBKGJdhqtQxr0uv1Yn193ZyHdeNZjxhwAi78W0kV9XodzWbTlGFQZiOzP7xer7G5BoMBgsGgKVPE0jZszOvxeDA7O2vY9Hq8w5D9sNzGunosByHspaHsUcBZ49hm1Kp+s0FWN79EdZsNfPGc6gPxfe6FCwsLZq+55557EI/HzfPNfb7X65neSo1GA71eD7VazZS2arfbJjiozGMFp23fiyAtfWl+X4E3BQe5p+v1Myip+pFig7N6bgXqNLBBAJ26xOv1mutXYhfnhhnq6sPaZVJtQFsDvHpvqFcIzurcs/QN9QPZ97RZuO8ra5jXpPu9HfDn+ev1OsLhsMl0ol63We4AzNzodbj5ktRxvC+8//ZYeH/tNUqyogYG9EfBYgWNbYBaSw7p2uD9VLyD65Vzx/PwGWu326a80cTEhCk3mEqlzHOja85NbJa4AtMU2m6KvWhQQ+eAY3ULMvH49v3RwAv3Ad4rW1+TeGcTTSnEm2wcScXWwfyO237FvYmZmDvJWFcfroyB9GMkfr8fc3NzeMUrXoHFxUW84hWvQCqV2gL6AkAmk8H09DRqtRpeeuklPPvss/D5fKhUKgA2GT/25jEqIgds1lUnu8iOWLuJx+MxDg2dslGA/V5ElaSmyilDzRZlyfEYqgSpwHncUd/XdC0F0rcLKGjUPBwOY2pqCuFwGPPz85iamjKKzj4vlRfTqJmOzhR3rVU26nyaObCbDVcV13HfZPUauH5Zp/iwndu9isfjMSmn+Xz+2I0fGCv8sbw8xOfzYXJyEouLizh79ix+5Vd+BdPT08jn88jlcmi326bsSiQSQTqdRqfTwTPPPLNFdynDTUt/8YfNIanP+HnWLndz4N2EDkU4HHY45OqYqo5VoZ7SjC3qpUAggHg8jsFg4CjfsZ2+BLDFsST46vF4jGNNsMKeM+4VrDFqgw97EerRdDptSuixZj6dPe7N4XAYnU4HlUrFgOxra2t7OpeOf7ef5z1SFqTaB+poK9ARDofR7/cRjUZNSaB2u23sDDLvtc43bRTaFCRYpNNpTExMoNlsGtBjeXkZjUYDmUzG1Asm4MPx8x5Xq1VUq1UTGGG5F/5Eo1FHCnckEjElaIrFolnjNpDF+VGADtgo88LyQgTDwuEwYrGYAwRiMCgcDqNeryOfz6PX6xnwCth0+hmc8Hq9pl8B67gfNxnr6rEchFAnKXipoJgt1FkKdKnv1W63HexvN2CS7+1kIzOwx6DdzMwMFhcXTR8TnpslP5iR0mw2sbS0ZIAuzRi29bXt69rPBsfJvUvnRNnAysy2S6ioX+0GwOs51RfU/Zd2hWb70Jemz6vNxPk9vsd7xTnfroSPBkb0uqhj6NNzXulnM5jLwDrXSzgcNmVuNBtPQXzNyFf7gP67kgLdMBWdQ65RO0DjFqgAttYaV/9agXM9hgKsBI4VeHUDzt3mmmMJBoPm3ui60GxG/a06U58tJfAx84q2A21HFZ7LbUwULaHD+aH9Ys+/Hov3Vu1Vt3PpvNhAu9pMep90fLqeaFtxD+L94rpREF3vmT7LHId+x763SvLcSca6+nDl+CExL0PhA04G8+zsLFKplKOUiS2MaOl3QqEQ8vm8acCkilDZu6OED74qwJ0eQjvaNmq81yPc/NwihW6iyksdYSpatwg64GTJUYFqzdFRyoKKfXJyEtFoFKlUyjR3ZROa7TZLbqqxWMww7skEWFtbM7VHyZRSg4iBEjVWCACMmhuCFO1223GPD/q+3WjhtfCeqqJ0i1AfdaHBwKDU9QSixjKWsdw4YfYL9fTKyopp/lmr1RzNi/r9vqmNHolEcPr0aTQaDZM9Rn2jNoAy3JhdRoeXIC+BxN0G3Ohs0SlVFpQNpAPujaL4Om0PAg2VSsWw+PbDjgVgmGIE0nkuOsLA1tqaezmfAq0EkIPBoGG8EShWHUtSgY4RgAGLp6amzBgLhcKWpu8qtrMNOJmWo8ZMsJh1uJlqz/fD4bBxgBX44Ofa7bb5GQ6HqFQqKBQKZn0RsIhEIoYNGAqFttiOzIrQsncKZrCuKsv66LolqM3gCOurU0cTRFHbi81Oue653ngf1EalvqdNQFuWf0ejUfN9LXHINUGbi7Yig0lk9HGtdDodLC0twePZYOYr+34sY3k5Cp8pPstuvoeCzbqH28Aej8fv8H3qUsBZ6sq28+lLeb1eAwAyIMf+IjyGsnE1I4ufYWZxuVxGoVAw+6k2Q7avUTO5bBDZBlQ5DvVX+RqD3iwfp3Nng+SqD9WXU0CdfysTXoOO/F+JZgoOcl9m0FCvnRniNuNW/Wseg5lteh+pw3lPgE1gk/eDWUQahFF9rgFkPSZtGgDGt+r1eiiXy8ZeaTabjsCNYhpaPkzFZvkDm3rZbnBur097zdB/57gV4N4pSMNjqt7Tz9ol7rhWdD3pb64rrgV+V4P4owIQvAZ7PdvjtoFym2VuBxHc1rc9D26+vq47BgT4PLGUm71XKQmU80qbxwbYt5tnPZ7iTTpOPkO7YaSP5XBlDKQfA+EGn0wmcfr0adx9992G/TQKDJyYmDCpT4uLi7jnnnuwsrKCK1eumAYpdCS4Yexk7CuIvNtaozRc6JwcNICpAOluQVKNwpLhZG9m9qamBok6aDsxt5nunUgk8OpXvxpzc3OmYZWyFngttuh7k5OTGA6HyGQyuO2229BsNvHss8+aZrLr6+uGFUWlFo1GEQwGHfcNwMiyLQToy+UyAoGAo6a+GrbHQdioRRvdaK3+GxHUuZHi8XgM8491Go+bjCPnY3k5iM/nQzabxcmTJ+H1evHss88ax4sGN/f+druNcrmMXq+HbDaLX/qlX0KpVMLTTz9tmHB0+hKJBE6ePGnAaYJ4yWTSgItsQEynwC7XMUq83o0mYwQU1HnVYL7qLPuZpLOYSqVM3xY2UeVevN8yJ/pd/a2NUFVsxtdOQjA0GAxidnYWsVgMqVQKc3NzxkGn06SsIQ0stNttcz+8Xq/R1fV6HT/96U/RaDRc90Aey9ZLWjrGFo/H4yhfsrKygvX1dVPiheOIxWImHVvB836/b8qw+Hw+lMtl+P1+rKys4PLly5iYmMD8/LxhZ6bTaXNOBloIfLRaLVy9ehXD4WZDNY/HY0oEsW8Pz8nSLDMzM/D7/ahUKobpTYc2mUwaZ71er6NarTquv9lsmrIRXq/X0SCV16fgAYFwPjdaf31qagqJRMIAYf1+31wng1M8v64DXhPXR7VaxT//8z+bwEI0GjUsyeMmY109loMQ+iAELDWQpTpGQXGb2atsTQaHFURUsBXAFl9FgV+WaIhEIibThWx0rYnOYCqwmbHMYweDQSwuLmIwGCCXy2FpacnsHeVyGZ1Ox/hrGshTdi+D6W7XSzDaBpX1uSIpKxqNOnxrgo8a6OY4lMnOc1FsNq2y5Cma7aR6z9ZRzGLSwCrPoQCwArXMYmPZVT2+3kcSxBjQTafTjgwCfo7noC7ia8Ph0ASOCaDa648EtXq9jpWVFcMcdgvscH41qKw2G4WBBvaJ4b3R++Z2bJYsoa5T3MDGVNzwCPrueo/4PkF9BlHcAHTOmR5P7RQSJ7RknC0aQNLzu4Hh+r7bsRSs10wAO9ikMso+5PeCwSBSqRQ6nY6xP7hGOA59LnhP+Izpc0pshZgLX7eDASw/5zZXtK302dlOxrr6cOX4ITEvQ9FoKmuak5E6ykFWgJnM53A4bDYg3UQIiDO9xN68NKJos9ev5wE+CLkeINSOdKoicQsq2BHVna6b94DOeTweRyqVcrD1div8LB3Vfr/vYG7x/tmBAEaOlbGx05xpjdtRhulxEDXWAfdo9nETu8TDcZOxwh/Ly0EYuNOa2cPh0NEAlA6zsmO5pzMgSlHWGL/L7ylzjA6aMrH2Om79nu3sqShr0G1PZRk4ZZq5AQK7FXVY9Ptu7K79HJ97K/UzS4okEgmTCWYHoNXpVZuAgI0C7gSA7Ow/ZXnZzKTd3j86yjwGgW61A+x51LrxXH8ATBo9sJW5p+tDj83zK+ClpQ3I3iaYwPr2LKenoJoyCnn9yrLXbAyOWcF9G9DQeVYWuc4T7w+wUfJF7yO/x+/w+tUO5LwQ9Femm6asHycZ6+qxHISoL0rhPqFBST4/+hn9rcdT/Qk4gTl7f3b7jo6Jez5rElPc9nl+h6Wn2POL+6v6Tqrv6Fer3+zmR7sFfdX/Vtmvjrd9Xgrn39br/CznwAaIVacrc1sz7jTTm9dpE8hsf019TgUxuV+rL8QgjepS1VHUGfw+S9GQ5EdwlplG2sdFM8V47XYGAOdS9bqy+4HNhrSaZbAT6U9tPTc7y+01e++18Ru399xkO2zJ7Xy7JTG6/T9K19j2lW0f6fcpuyVOqHBtuLHq9XnQcfHHLgXkFtRTO4Hf199u16DPyk4y1tWHK2Mg/ZiIKrKdmONu37W/pw2xKpUKSqWSo3mo7cSQSVQsFtFsNk0N0J1qj1JpMa3XLVJ7PcJouEbvdmLJjxonj6f/259x27jdhEqZzeZisRgmJycRDoddU7j3IlwLwWAQCwsLiEajyOVyaLVahnWm6Xacd03tHiXD4RDNZhPFYhHBYNBhTBw3BjTZIZVKxTTEGZVSd1xEjcLjOP6brfC/8IUv4DOf+QyWl5dxzz334Ny5c3jzm9888vOPPfYYHnroITzzzDOYn5/Hxz/+cTzwwAOOz/zN3/wNHnnkEbz44os4c+YMPvGJT+C9732vef/73/8+PvOZz+Cpp57C8vIyvvnNb+LXf/3Xt1zLH/7hH+JLX/oSisUi7rvvPnz+85/HPffcs+drHMvREwXf6FANh0M0Gg1UKhWToUWwndk/+XwelUrFlH9R6fV6uHLlCobDoWFlqWNLwJosNzK4S6XSroxxfpZ6nXXNVdhjRdNeyXxnMHc43MhqWl5eNmBlIpFAvV5HuVw2jbz2+jxrzVxNAbfnfT/i8WywpycnJxEKhTAzM2P6aNTrdZPmzetm3fVIJGLYcKwNzvGR6RQKhTAcDjEzM4N+v492u41qtepoiMrrG8XQchOCtrlcDtFo1DTQJnGCoEC5XDY2AR1+lgxi1looFDLjSCQSOH36NLzezbIwer+Zvq/1ZYHNBmyafeg2z3RW2dSW5BCyv6mv0+k0vF6vKZlCgNsOiJMswu+zJJ2C73YTQAX8fT6faWLXarVMmYZ4PO7I9HAjT2h2Sa/Xc2QI0NY6amXYbLBxlIyd87EclOg+YftQuufZviEDehro4/e0ZIweS/1dBeH4/GoWC59dYHOP4Hjot+o5Nfioe3cwGDQZ4AwWlstlEzwlu12Bah6XGULKPtXPKRBH3T4xMYFGo2EYwApUK6ivY+c18zevX8fDe8SgMfdPzhH/1wAAx8TPqR5TEpP+tudUr1mPz2PSjiBGkUwmkUwmje1EcQuc6LUTvGc/MhsUJ3jJ3iFer9cEfpvNJhqNhhkfsRJ7Huh3qw8+MTFhdFiz2US1WoXX6zW6zwb+OR8KqNrrgZ/TbAsVG0BXkoV9zaMIGlwfHo/HUfKMx6dtFI/HzbHd9Iv+b7+nYDT/13XJ120SqD5DdiDOzd7V+eLxeG6yw90qJ9j3RMkFFA0SkkCi37FJBnpunRe9j3q9O8lYVx+uHC9k7GUqo6KQe/m+bViw9hfrgUUiEUQiEQSDQbMhckPodDrodDqo1+solUpoNBqo1+uOpi+jjHM692xOwU2dDt31Ohh08DhGjfjuVa5nM1JR9sLU1BTuuusuU87FLZVnr8cmkOLz+TA3N2dSEq9du2acQSp8BXNUuY+6TgLppVIJkUjEGHgAjhWQznVLUIpAup3aeNxkv8G0l6N84xvfwEc/+lF84QtfwJve9Cb8xV/8Be6//348++yzpmmgyoULF/Dud78bH/7wh/FXf/VX+MEPfoAHH3wQU1NTeN/73gcAeOKJJ/CBD3wAf/zHf4z3vve9+OY3v4nf/M3fxOOPP4777rsPAFCv1/Ha174Wv/M7v2O+Z8v/9//9f/jsZz+Lr3zlK7jzzjvxJ3/yJ3jHO96Bn//856ZEwViOtyiQB8CAreVy2egD9sig4+bxeFCtVk1TLft4S0tLKBQKiEQimJ+fN4Ap92Y6a61WC6VSyejt3eg12gL1eh0+nw/T09MAnJlo3Ed5PW7OCRtO1mo1+P1+LC4uIplMGhC50Wi4NsjeSZTlrSDGQYgC6ZFIBJOTk4jH42i326Y2tzLKqBej0Sji8bhx4pTVzbI7zEqbnp5GIBBArVbDysqKsYkIFtnsrJ3skcFgYO7VcDg05VBYM3Y4HKJUKqFWqzlY3rwOOses/0vdGI1GkclkMBhsNDmn/aApy5wP2lzhcNj0A9A55fUooKIsUJYoZIkV6uxisYj5+XkzdywNpAAOA1E8JzP1FEjXmvUMPDHwQZuR10lQIJfLmfunDi/tBgXz+b4GE1jSiH1mlLF62OLG5hvLWG6kKAgMOAOG9ueAzT2C+wvBZu6T+sy5PVda9oXBNQ1achzcE+mTcS9RIF1rUtusY/2be5meq1KpmD2KjZYpSohx81913vib+zaD5PTzgsGg2as0mG3rENXV1NOqS+1zkaDGvZb3kO8rUMzzMkhqiwK3bvfdBv2Vwatsce6lDHIymGKLjXnY+zV1n55T7wvL5vp8PmNPARvlxOxAEMfO+8I5UdBbyYStVgu1Ws3MBXuB6N6s12/77KpPud45dntPtwMeDJ4rWKsALtcQv6vv2/XxaX+Uy2VMTU057rMNgutrOnc6ZjZFH0USs0kGOg9u5V7cRJ87rleWk2OWib7PfYiieJeudd3TaAvz+Go3q+/OZ15FszR2w/Afy9GQ44OMvYyFGzEj3azLGIlERoKC3GQIrNZqNcO6sd/vdDpoNBoYDAbGoddNgAq1Xq8b1pVdKoQbom0EAJsGCZ0T7X683/nQ6+SGREWxH0Dc4/EYRgKNDE2t4XloWGznxCtDik4inbiD2BRVoahjGo1GjRPJ+8n7xHu9EyMd2ASAOK9kZfC+HWVRJct1TeBGgXTbuDwuoobrcXSEb2bk/LOf/Sx+93d/Fx/60IcAAOfOncO3v/1t/Pmf/zk+9alPbfn8F7/4RZw8eRLnzp0DALzyla/Ek08+iT/90z81gPi5c+fwjne8Aw8//DAA4OGHH8Zjjz2Gc+fO4Wtf+xoA4P7778f999+/7XWcO3cO/+2//Tf8xm/8BgDgL//yLzEzM4O//uu/xn/6T/9pT9c5lqMp3Gu1qSJ/tLyX1lzs9XqmhrSbjqGzNjExgXa7vYVZRoCX+paOHXWZiu208W9lSGudUjoP/J5dTkyv2efzmdrQTGknCKB6ei9iM7GAzYaVdIgIvNjZR6NEg94MaJD1xvFp2Rx1cPm6ZuXZ6fvK2ia7utfrmfXAe2bbNLsB0jkm1vKkjtOSbOo4ahBCz+fm7LrpSa5RLQHIOdF6rW7OPLDpZGtzN+oztTeU/c5jEXhXUIFZGbwPCpbpPbIBfV1DNiOPz6KSPUaBAbq2dR6Po152kzHLbSwHIdwfFHi0SzQAzkCirR/s/Uq/R/9GA13cb/k9+5jc47TZMmt663HdWKkcjwLgbnue9ltgto5eg92ni3spdZmWAXPbj7RclhtI6fYMqg3iRtBT8J7zw6Cr/vB+KsvbJuvpPHIfVh+S59FsYTf/lPpcS7kEAgFHzysbTFe2udtacxObbMY5oZ6ybSHbbrLPb685xUDsLHqdP9s3Vf3kpmPs58oev65hW+x1M2rN8H0NCvCZsfEXe+w6Z/zb1sFuz+6oMbuJzjXXrh00tvcEtfH0Pqr9th3wb2eM6jXotVJs/Eefo1HXs9sA/FhXH66MgfRjIASxy+UylpaWcP78eWSzWRPldgPTqWSbzSaWl5fx3HPPoVgsol6vA9g0JIbDIXK5HOr1OoLBoCMdjfUj2dSp1WqhWCwaw4FNzAg6qyJStg9LyMRiMXP+623AxI2m2WyiUCgYFh8d9d1uDtzMfD4fZmZmkMlkEAqFkM1mEQqFDJDc7XZx7do15PN5w/IbBaaHw2HMzMyYJjaxWMykDB20cCNOJBK4/fbbMT09jZdeegnFYhH9ft8EPwD3DvC2EISn8ZfL5UwjjqOWouwmXNcsU3D58mU0Gg0UCgUDUKnRfZyEwQHe04NkZN4suVkKv9Pp4KmnnsLv/d7vOV5/5zvfiR/+8Ieu33niiSfwzne+0/Hau971Lnz5y19Gt9uF3+/HE088gY997GNbPkPwfTdy4cIFrKysOM4VDAbx1re+FT/84Q/HQPotIMPhZsp2LBbDHXfcgWg0aliquv/QwQSAcrmMS5cumYC1fUw6LHS0A4GAYacBMCUyWq0WqtWqqZvN4+s5yabRMdGx83g8iMViCIfDhoXF13w+nwEJPB6PYfMAm85iMpk0zSmpp9nYstFojGyguZ2QFEBnhcy0u+++G+l0GoVCASsrK2i326ZR2E5C9pnf70cmk8H09LQJFjQaDRMQGA6HpokcABMY5z2jo8sSKdQzZDnTIc9kMsb2abfbWFpaQj6f37KXj3LQ7c/oXObzeQAwDHkCw2xMzaZqvA/2Xsxz0d4EnKUSyAYkeNHtdpHP500DNbuci64nYJM5x1R2r9eLZrOJZrOJfD6P1dVVsz4YdOH4otGoKR/EY7KuucfjQbvdRqFQcFyPz+dDPB6Hx+NxrB07jZ5MR5ZZItBBhrs+M7SrOSYNBtCuoIOtZfWOirO6F/07ds7HclDiBrLZvqMNour6U8BWey+oT6XBNxvIU79QfUcGnldXV5FMJpHJZJBOp03JGLfyChxnrVZDPp9HuVx2ZFgR0GT5U/pNoVDIAdRphpNm+7AUGPcNDWrS76R+4ueZ/cR90W0OgU2AWfc/LR3CMdF+IBubc8rAv5bZIeCvBDS9T8lk0jScTSaTxmahX03/nXqHx+Z1c7+dmJgw/eGSyaTJgCIBTku/6fW7Ad5uexv3fQ24Aps2Fcva2WtN1xX1GgMHaicx22o4HJrG1Uo4IO7CIHG/3ze6VtcBj633S69HyRDU+XYwhM8N7UklY2jgm9fCgD2zFtfW1tBsNrG6uopqtYpsNmueJ2V12xldqiNtYoaKbfdsl4VNW5tzoA1reXzeG64jDb5pQIzf5X5hEzLsMjoMvumPZgjwWuwAHY+la9S+djsosp2MdfXhytFGxSz51Kc+BY/Hg49+9KPmteFwiEcffRTz8/MIh8N429vehmeeeebwBnkDhA96u91GuVw2imc7wJibVafTQbVaxfr6OorFokPhcxNpNBoolUooFosoFArI5/PI5/MoFArm/0KhgGKxaEplUHHT+WCNKUaKdbPXdHMF2K9HNDpKZ4xR/b1sDKpYIpEIstkspqamcOLECZw+fRonT57EwsICZmdnkUwmHezyUTIxMYFEIoFkMmmUMNOnD1LUEAoEAkilUshms6auKQ00m7G209wz84HzSmf9uGy4NC5YRkHr8l5P1sJRED7TewkWHSXRSP9+foCNOs36w4wJlVwuh36/j5mZGcfrMzMzWFlZcR3bysqK6+d7vR5yudy2nxl1zFHn4feu5zhHWV6uupqi+6/X6zUg7dzcnNEnsVjMNDmjvqSOp2Npi7Lo6vU6arUaSqUS1tfXkc/nUavVjI5VXatsLq0VrYxewOmEUbfTGSHozLrWNitMM5/8fj/S6TRSqRS8Xq+DLT2qvvlu5pRODhlNLJly4sQJTE9PIx6PG4BzN0JgmNljbMrOuR4Oh+Z9dQjpwANwgA12jViCAwTTQ6EQwuEw4vG4AbjVaeOPOsjbiZuupp3Ftcf7GA6HHYz7USw9HpNsSjqhnAfWYCeooXVFSUrgHGipArL++f1QKGTYbSwXyOwxmwkWCAQQi8UQj8fNNYTDYTMGEj6U3Ujwn/eJa4drkJ8hwzEUCpkfBg3cwD1lvdvp1/r+cbYzgIPR1WM5HnIj9bUN8Nl7G58xPjO6B7qxa3Wv4Wu65hSwU4Bejwk4985arYZqtWoCjDy+zWrW4zPj1S17jLq/Xq+bMqj0g0lKo/6u1+vmdTLSuddyX9JmqByH+gKqt+15V6G/6Ma2V3CWALB9bdzbOQ4eS7O57c9FIhGkUimk02nMzMyYcqTpdBqZTAaxWMzoEdtHJo5BcF3xBmZ7MwiqezjtFh7TXiduP5xP279SG8fe2zQYokEfzTS0Mwi4FjSYYD8T9jq3AyD2WuP9d7Mf7GfF1v36jNjYgH6Ox2cZNBK6GJinjWcHFPQ5sp9PPY/e81F6ZJTdwudbewSpr2/vL7oPjfqx50WDGbpPcb3Y62AnEFzxG7dAgR3Q2U7Guvpw5dgw0n/0ox/hS1/6El7zmtc4Xn+51JolIH358mUEAgHk83mjoKLRKKLRKIDN9ONyuYxr166hVqvh/PnzyOVyZrMDnKwA3Rio9NnMBIAjUgfA4ZxpXTQtI8LjAZtsBEbwGaGlklNHfjuwmRsKmV4EHYrFImq1mmFe70UikQgymQzC4TDuvPNOnD59GpFIBDMzM4hEIobVz0hrMplEsVjESy+9ZOrY2gaM3+9HIpFAIpEwTvmNFoIcyrBzU1i7Ec5zu91GLpczhsHk5KRj4z9qwmeEYJKC6I1GwxiwVPwKkBwHIVhQKpVMIO3lKCdOnHD8/wd/8Ad49NFHXT9r39vhcPtMBLfP26/v9Zh7OddxWYvbyctRV9uOWq/Xw9LSEjweD3K5HHq9HhKJBCKRCKLRKAaDgWGMaxPvy5cv7yrYyXMAcOgfN8ZtMBg080v7QJ0RZSNR6vU6rly5YnSJAqM8P3WAOk0MMg+HQ1QqFQwGA+TzeVSrVUfT5/0Y78o+m56eNnXMp6enEYvFMDs7i2AwiHa7jcnJScNKX11d3cLu12PG43FTZodBObKvyEzUuVQHlPfb49lM1VfnR9mT/IyWMbleQgGFzD6OeX5+3jAFFWjxer0G/GGQgDYcmZPULcyUYO1yBhPT6TR8Pt9IR1VZbrx+wOkY8vOsE08gSeek2+2iUqkY0J2AOY87HA5NJoXN+hoOh4YcwfvJwAJBcgIb6vDz2dCxK1DEEgPD4XBLEMrWFWz+vl324ljGcthyM/W1DZjZpSdV7FIIts/Bz2uA0w3oBOAalNYxrK6uwuv1olarIRaLmX5WzEZiPzCSzlqtFlZXV41/wf0ScNY55jnItFbdwLHZ1z4qc5kMXpaJ4byRLEd7wAb/bQBWx8Xza3BASW8a+LbBRZ5Py1vxOoLBINLpNILBIObm5jA1NWUym4PBoNl7Weo1EomYXiRs7K04AYPQ7OVGfWBfp+pZez0o0KlzQduGelC/o2x9N5vF3v95bOoNBkb4vpIgPB4PwuGweQaU5a86TQF2+57ymqkXuZ7tprC8VrVdbJvPtgf1s91u15DRqKu73a7BG9hMtdlsGvtWz6l6m3Oi59Bx6N+8Jn1u7H1B76E9/xrw0WdDgwNk2zMQTztEnye938pyV3tYMTIN+vF9Elr0fbt8kx6T62JsOxx9ORZAeq1Ww3/4D/8B//2//3f8yZ/8iXl9OHx51ZptNpv46U9/ihdffBGnT59Gr9fD1NSUYbkBMI7J5cuX8eSTT6JUKuHZZ5/FpUuXzKbhtlEyotbpdFwVrm6ETKllozM6Y4xka7oaf7PUxpUrV0xzDTqvTD/ajTAqWi6XUalUkMvlsLKy4mhGtRdJpVJ4xStegWQyiV/8xV/E3Xff7SjtQqe33W5jYWEBS0tLuHr1KqrVKgaDgdmAVYLBIKamppBOpxGLxW4K6EwGYK/XQzweN2V59sP+46Zer9dx6dIllMtl+Hw+LCwsOAIgR0mofLvdLnK5HBqNBlZWVkyqP7MVyDypVCqGEXpchAGy5eVl0xDtuMn1RMD5vStXriCRSJjX3Rr4Tk5OwufzbWF4r62tbWGCU2ZnZ10/PzExgWw2u+1nRh1z1HmADWb63Nzcvo9zFOXlqKvVkKfT02q18Oyzz+KFF15AMpnEM888g0gkgjNnzuDMmTMANkqCtFotLC0t4Wc/+5lhp1FvbvecUPeQgcNx2KnFHo/HNM8EYBxkOlx01myHplgs4plnnkEgEMCJEyfM3q/6nTqbTovf70csFjO2xPr6uqMkmqZua6oxZae9gVlXkUgEv/Irv4JXv/rVZi4GgwGmp6dNaZXV1VWUSiVcu3YNP/zhDw1Abh8/FAphamrKZI4R9CTgz72Fc8QmnnapAM6/giMEqnkM3jN12vZT4sZNOp0OlpeXkc/nDVucpfrIsuSYqA+9Xi9isZix59LptKPcj8/nM4BFo9EwQZ5Tp04ZAEDLD/BaeE7aQbSj2u22mSOfz2dS3dvttgGcNfOt3W5jbW0NHo8H2WzWUW6BYAnLG/CYCkJwvQAw9qHf70ckEoHf70e1WkWpVDI2LEsj6P8E0wmsEVAgGKAgiTr6/f5GWT1mgh7Ufb6ZchC6eixHW26Gvh5FEHDL9gC2BoMBGDtdg5caTLbPB8ABJlL0uLofvvTSS7h69Srm5uYwHA6RSqWQyWRM02XuU9VqFWtra2i1Wrh27RpWV1cdwKWbH9vv91GpVBw6liAa/Wa9Dm2CqQAq34vFYg5GbL1eRz6fRzAYNDpHe4dwPwPg2LN1r+QeTnY+M4QUVFS9qPPM6yaRifPHrLvbb78di4uLjr2XY+p2u8hkMlhZWTFlU0ni43mIE8TjcdOgnZlnanNpwJrzbq8VBpA12EBAnuVV+FkNEI/KDmOwWQmJNtFMAxXUV6VSyZT9IeZCm0rXv2ZncR0o013LqSnjm7ad1ua3MR/7Hrqxo/mMUkez5A/tOLL1/X6/WTvxeNxxfA0w6VjtAIX+5vf4o5kkmpVhZ1YMh85SQ25BFhv36na7aDQaJsOZmXE8lwrXLYMkLO3GTDreR83MsIXj57F5r7jmFEhXu2I7Gevqw5WjhYaNkP/8n/8z/u2//bf41//6Xzte36nW7CjhpqA/x0H4wJKFnc/nkcvlTNkVlmbR93K5nDECuCnrBmVHBTU9iNFoOyWOG5O96bul8ihDi8wjMqLoVGqk2E6nsSPgTKVRZrHNmN+tcDOjYmbdtVQqhUQiYRR3Mpk072UyGeNUKVNPhcqOLKabIRpR13sw6rNu998WGk5k+3Oe1Zg9CuJmLNkp7lxjjD5fDzPyMIWO/KhmhEdd9F7t5weAyfbgjxuQHggE8PrXvx7f/e53Ha9/97vfxRvf+EbXsb3hDW/Y8vnvfOc7uPfee40jMuozo47pJrfddhtmZ2cdx+l0Onjsscf2dJyjKC93Xa26tNlsGrAul8uZ8ivU1aVSyaHL8/k8Go2G6946Kr1cAXc351jHxWMoS2fU3k+Qkg6CBsmVqUOnRe0DZcqR3abBzP1kSQGbjUWpr9PptEMXh0Ihh85OpVIGKHa7TmUe8/l2S493s33UeVPWlRuz0nbeboTO0flm8J/6TYGFUdkOtj1gM994Dk2LdltjFJ0ziq5NAu8sreBWlk9tPQJVvB+8FnvdjUp/t8enY9HnyL43ymaz54pzYrPvaHvRQSd4ctzkIHT1WI62HKS+3klXb0e+2W7d8HsasLa/N0q2e+40E6vdbqNWq6FWq5lMVoJqLMFCAk6lUjFlYOhf7MWv1rITCvbuxq/SueCx6VvTx9cSnm5gpb0PK1jMPVdZ6DYgPWqfVGEQluW3WFaM5VgikQhisRhisZjJqI9EIlv8V/3R7He7XIi957vdd3vMbtdg6z/dz22CIe+HjX/YwLauM71fWkbG9qvdAGY9ltu4FZNxuya3ebLvn/2em75Wf5rfoe/tFqixbYRR5xolo9beKDtM597tGvU4Wu5FMzDcsAH7fPazSFG7yH5+9oqd7PazY119uHLkGelf//rX8fTTT+NHP/rRlve2qzV76dKlkcf81Kc+hT/8wz882IHeBBkOh8bhWF5exg9+8ANEo1EDKAEwqbFkrrZaLZRKJaPoGU1TJaQNkUZFXin2RqxKhN8btUG2Wi2sr68bdkGj0UAoFMLk5KRJIdfUaTrkNAoajQZqtRra7TauXbtmmqeSybRbZ0WVYyqVwqlTp5DJZDA/P4+pqSn4/X4zHioRMte8Xi86nQ5mZmbQ7/cd4AfF5/MZw4AsqpshvDccPyO5zEIgoEDGAuCMhtrR716vZ+Y4mUyaGrRzc3OmkRzPe5hCQ5jp5+fPn0exWMTy8vKWuui1Wg0XL15Ev9/HbbfdhmQyeahj34v0+32sra3hhRde2LZcwVGW61Hce/3eQw89hA9+8IO499578YY3vAFf+tKXcPnyZTzwwAMAgIcffhhLS0v46le/CgB44IEH8LnPfQ4PPfQQPvzhD+OJJ57Al7/8ZXzta18zx/zIRz6Ct7zlLfj0pz+N97znPfjbv/1bfO9738Pjjz9uPsNyWpQLFy7gJz/5CTKZDE6ePAmPZ6MW6Sc/+UmcPXsWZ8+exSc/+UlEIhH81m/91r7m5ijIy1VX00Dm3/o6sKn3JiYm0Gw2cfXqVfM62W4s88Lv6XMSCoUQi8Xg8XhMUFMBRTXSWdZKGdP1et1kVtCRVXaWOnkUArODwcA0sWTplomJCaTTaczOzsLr9RrWrWaXsY4mS20x/Z3X7GZn7PR8p1Ip3HXXXUgkEkYXA5sMH7J/vF6vacRerVYN0E6ggDpQS9FoINrr9ZqGmHQMmWZLHcvyIMCmI8kSYl6v19Fwy3aIJyYmkEwmEYvFUCqVHOwsHs9mhO1mDdKOu3r1Kp566ilEIhGcPHkS09PTaLfbpkcO2ep6r9nw0+v1Gja6x+NxzNf8/DwGgwEikYgjkEvQhLpU2fiaws/Pk/lYLBbx3HPPoVaroVAobLnOdruNlZUVdDodY3/1ehv9Kur1uim9YDdqo43caDRw8eJFY0dms1lHwGE4HJrmuZrSb4ME/X4fxWLR8ZzpveH9CgQCiEajSKfT6HQ6KBQK+NnPfmbA9OMmN1NXj+Xmy0Hr6+10NcFRFe6r9nMFOFnbyvDka9yb7T1D/Rx9jm1WOn8zgEofptFo4Oc//zlCoZBhpAMwZVFZ2qXb7RrmNo9lg5zMutLzKpDW6XQMk5vj03JTbmxb+mp6TZ1OB6VSyfj2vV4PgUAA3W7XsK01c4bHoX7XOs+FQsH42NTfo7KvdL7p0/M3a6KTOc4a6GSX00ft9XpIpVLmXiaTSWPX1Go1M1bus2Q/a8kM/qZNwbmiqM5myVO9Dn5ebQiK3+9HNBpFv9939M3Qex4KhQxh0K08ka5pznu5XEaj0TBzouVk7e/r2qcvz/ng86DXwjEPh0NH6VJd9/o3n03aLBpw570ol8u4evUqKpUKSqWSaQhOIWEE2CA6tdvtLbXdlTGv12CL3g83oFzxC95LG+Dm2Gkr29/R391uF6VSCSsrKygUCsYO7/edjXs5Xq41PT/r8itYrqKZisqW53qzs9u4P+ymzKN+Zz8y1tXXL0caSL9y5Qo+8pGP4Dvf+Y4jRcUWtyjaduDeww8/jIceesj8X6lUttTdParCiBmdc27+fCCVXWMbJpoWpA8xxU0RjBI7AqivjXpf61TSeWNjTALPLBcDwGzqdL7J7Gu1Wrh69aqpCbqfki50nmKxGObm5jA5OYnp6WlT/1MbpwAboHI2m8XExATq9brpUt1sNresNa/Xa5ph3UxGOjdEKufhcOgw9GhoMV2bSp3Osh2F7fV6xtFPJpO4du2aYeozZfqwQXRgE0hn/fBLly4hl8sZg1fXRqPRwLVr1zAcDpHJZI6NEuHzXCgUcOnSJVOn8bjJzVT4H/jAB5DP5/FHf/RHWF5exqte9Sp861vfwqlTpwAAy8vLuHz5svn8bbfdhm9961v42Mc+hs9//vOYn5/Hn/3Zn+F973uf+cwb3/hGfP3rX8fv//7v45FHHsGZM2fwjW98A/fdd5/5zJNPPom3v/3t5n/qmt/+7d/GV77yFQDAxz/+cTSbTTz44IMoFou477778J3vfOfY1gp/uevqUfqHBjGNc9aZdvvcKGFvDo/HYzJSAHf2tBtoR+ZcIBBAMBh0lCsZxRKkHcGSbKwNTZ1GVrjH48HFixextLRkguIsBcJyGuwxQod9v+zceDxugp9sYgrAkeYMbKwxsuByuZwDZKXQ+dcyZZwPv99v6qY3Gg1jZ2gTTX5XSQS0B+jsKxjO+zMYDEzAgQ6Y1ubmOHgte3GkCLCsr6+j0+kgHo9jZmYGmUzGkBB6vR4ikQiSyaQJLGsDPD0/HXc65DMzM+Y8BKLpFLIZqMfj2WLn2c3U6Kjn83lcuHABhULBdf23223k83n0ej3MzMyYY+XzeRQKBSSTSUdTuUgk4kiL5hr0eDyYmZlBKpVCq9VCLpdDu9025QkVUFMwnWNisKvVajlAKdrifr/fjCUcDiORSJhG5+fPn9+RnHJUZeyc37pyI/T1drpaAT89tlv5Av5NkNkm7DD4CTj3R92/FRC0wS3dZ23912w2TaCAzbI5zsFgYABmZZZrKSgel/uijo3nVXCfAVq9Hu69Chjr/NsZNGTQ0q8n8YtBCGUs8/oJ2GuGLgFFlpdjeRUFDlVP8Xq5/1IHezwbJdCSyaTx66kvCdZqk9BEImH8+Gg0ahqxuomW1rBJCzahge+7AciaUaVgrK45rlmC71oGVIP4XI+8l3qP7PtOHVar1cw9ZvNtLa2m5fpGscR1TlRImCCAzDEp0YCv6Xtcw1olgPhArVbDysqKKUlDzIU/zNjw+XxoNBqmRA/FfoYV8HaTUVgS9S/via1bbfyi2WyaIIgNdPN+d7tdVKtVU72BNqqbbcxz2s82+wUqWURFbXWuE16DBgftwBuf0Z1krKsPV440kP7UU09hbW0Nr3/9681r/X4f3//+9/G5z30OP//5zwHsvdasOpPHWfThUaPffu2gz0cHe1TqsKb+2huKRtsYLSyVSuZ/OivcVKjoWWeuXC6bmuXKNL4e0Y16FMva/sxRAJBtcQtqUOmEQiEkEgkHK5EANBUODUabgTAcDk1mA6PTyWTSHMturnMzRB3eXq9n1kaxWHR0EbfXBpliDIi4GdhHTXg/WIOuUqmYRrdj2V4efPBBPPjgg67vEdRWeetb34qnn35622O+//3vx/vf//6R77/tbW/bcU/yeDx49NFH8eiIJqnHTca6eneyH11FHUh9uJ9zUhdryTatfTpqXAROyTACNhy3crmM1dVVeDwew67q9/sIBAKmrBYBB00Fvh5dzXlgUIIZY7RHlPGkziYBcJ07ZcVrnxd1tjlWvW46c9yTA4GAYX0pu42OMMEDHk9Z7XTk7AxBbfwJbE1JZoPaUWnCnCe/349yuWzq0zMAoMwnre+rtg8BE9vB4/Wrzuc9aDQaxobQzxLQob5m42+uj1Frgg48wXneKwYbY7GYCewwkMFr0nvPMfJcZBYS3BlVBs++p4PBwLDfOQcEkMh+q9VqKJVKxpY9CPt0LGM5aLkR+vp6dLXdtBFw2uMKCKtvqQCxft/Nrnfz6XSP5d7F573dbm8JSrvpyn6/b0A0BW3tz7kBfm66ajuxwWIF/HTfHw6HBhRUf5X7uQLpzNBh8JF/695sBwf0OkddI99XAp82a9RrUKxgJx9bMQjASR4cNQ5b3MBp7umqv+1rUXBYv2MD/BwPA848nn1ckiI9Ho/Jrrevn2Oyy5jtFqvQ8bvNj/rSHCPtQtXVdnaCno+ER4Loao/tBlsZJaOCCHYQxO2zvF/6W+dBcSzaq0omUJa4jWXZWTL6md1icBrAsa9Zn7ux/XD05UgD6b/2a7+Gn/3sZ47Xfud3fgd33XUX/st/+S+4/fbbTa3ZX/iFXwCwWWv205/+9GEM+VDkRoLnKox+ezwetFotszlpoyZG81if2t6AuGEz3XtiYsKkhQcCAZMmRQWsjjjZbWQGaN3MvYqyEvT/vcgoNt9RECp5ptVlMhmcOnXKMPWY+kUApFAo4MqVK2i1WigWi6a+IddWPp/HM888Yxq8dLtdxGIxLCwsIBwOX9c87lcYfGk2m3j++edx+fJlFItFXLt2zbDv7LVRKpXwk5/8BKlUCouLi7j33nu3pFEeNWm1WigUCiiVSrh8+TLOnz9vjN/jJuPI+a0pY11944QsWmCzgdpehHs4mVDU09Vq1TgS2wkZ7dTLBM+vXLkCj8djUty9Xi9WV1eNs83zar3u63mGmYXX7XYxNzeHVCplnD27Jqz2dmEauabmstxIIpFAOBxGLBZz9D2hjTEcDk3Qmc5Vp9NBsVhEq9VCMpk0jVy1RAjLvaVSKcNYo+2iDGgC7Qo2RKNRZDIZBINBJBIJxGIxAJssupWVFbz44ouGRWjfP2UasnRKLBbD4uKiySLg8VjHX8F7ziVBYzYu18ACM9r42U6ng6WlJUewgNeic9JqtUxjOZYQGCWNRgNXr15FKBTCmTNnMBgMEAwGcfbsWUdW5WAwwPr6OtbX1wHAUa6HJe56vZ65zkwms4Udy7UCbDLyeU+U1RoIBDA5Oeko+9dqtbC6uop6vY5SqYS1tTW02+2R2SduosDSQYkGAfZz3LGuvnXlMPS17aNyrwC21n4mwKSvKdBHsde4DTjyPZv9agc0mdnCPZ96pVarbWGc8/scJwFT7k/hcNic2y7dQiDSvg4FzkZlCGhAUM+t18XSbl6vF7lczuHn8jq5d9E/Z2Cde5mtqxWI5H6voLLOhRsjPBAImPrnZO4q4Ew/jgFyDSrbwRSOlT+cR+p+G2jmPbD9fRuTYJCWrGWSsLh2hsOhKZmivcKoCwOBgKPELsdTLpexvr5uGtXWajXHOZvNJtbX1826YYZTNBp1NGfldXa7XUdVAbeAgwYE3OZBa7JznASTAZhAfbfbNU3btS+ABjEY+On3+8jlcmg2m5iZmTF6nSV9VPT5t/Uef7sx1fmelolzu35eEzMD7bmhjVev11EsFlGr1bC+vo6lpSWz9pnRQRIE77k9breSSfyfhFKel2Pl3zY2ZhMmlLCwkxyGrv7CF76Az3zmM1heXsY999yDc+fO4c1vfvPIzz/22GN46KGH8Mwzz2B+fh4f//jHTZlVyt/8zd/gkUcewYsvvogzZ87gE5/4BN773vfu6bz/8T/+R/zlX/6l4zv33Xcf/vEf/3Ff17kbOdJAejwex6te9SrHa9FoFNls1rx+K9aa3Y/s9mHYLkq+m+/SGe33N5qPKeOHGzI3Wq3fagsVIUF5j8djaqRzo2HkXJucsSv4QYlufDtd+6jv7vV7N0psZURGGVPxs9mso7ELDUAaDcVi0QAj9nGpQAm0l8tlADB1+Khc3CKsN+IagU0GBse0traGcrnsiCzbQgeXzYV6vd6WMj5HTchGr9frpuHRblP+j5qMnfNbU8a6+saJGuT7FRr21Nna6Hs337M/12q1HMFWW48q2++gWLncB+nsBgIBc00AzN9qf9BesVnHOl5t0k22HK+b7wObzHbaIY1Gw4AmCh5zHLSX6BC5scMUEKauZpmUcDiMbDaLdDptrp8AP2vgugVB1EEulUqYmJjA5OQkFhcXjWOpDHGbkMD5s5ltClIoMEW7oF6vo9/vm1R+zofW7u31eqjX66hUKsam2O5+U0ezJrvP50MymTRlXDTbgcEcgjy0f3htBJjInNV5spmm6vBSuBZYlkDXPYMS2gycDPnjKmNdfevKYetr+7m3ATE3H8L2bxRwdQNGbSbsqKwT3X+1rjkzsTyejVIlFN3Lucfzx618jdt1KOiv16R7LF8fdQw33a2lLN32Vu7Nw+HQBA2Ugcy/beCPwKw9j/wcx6nBatV/doNQzfLRTHadM9UxOl92tjuPoa8p0D/KN9X7wPe0tIuyjjkuBoWpN5jxTdCbJfg0qM+sqmaz6QiscO5JZqvVaqZ/Cc9DW0evcxRLWRnfbixnW2/rHAAw2RjEZshEZwa0W0NwZWOz5CDtSgWR9Ty2HWTfH7fAl46XY1Abk8fVsakdwLXBTDSWoKEtR/uF65e2GLM7ODc6ZzrPmh1hj9Uep309o2wgt6yCUXKzdfU3vvENfPSjH8UXvvAFvOlNb8Jf/MVf4P7778ezzz6LkydPbvn8hQsX8O53vxsf/vCH8Vd/9Vf4wQ9+gAcffBBTU1OmdOoTTzyBD3zgA/jjP/5jvPe978U3v/lN/OZv/iYef/xxUzp1t+f9N//m3+B//I//Yf7Xskw3Qo40kL4budVqzd5I0U2IIDXgbDa6m2PwOyzDwqYpylDSiO5Ox+PmZdcF4waotTVHHc8tBWg7YeSx0WiYhlZTU1NIp9OGwcaUZF5PsVhEPp9HLpczDGE3Z4mOZbPZNJHNGy06Bq0bn0gkEAqFkM1mkUqlEIvFEIlEEIlEMBgMTOM5MrbC4TAajQbK5fIWY4WBj+XlZfT7fWQyGXg8HlM3nUaE1oc9CFBdDWiCKayxury8jHq9jqtXr5r6+dsxLFkPrd/faMr23HPPIZFIYH5+3rAJjoLoNedyOfzkJz9BLpfDysrKsa25Coyd85ezjHX1/kTZROr47SeQRsdBde1+nis9/yig3AY+rlfYVG043GB6kV1P9pTOC0vAMGOJqcn2WKgPBoOBqfGt8007ZzgcIhwOm9IFZNcps46gMVnmw+HQsLxpv9gNpLS/C7/H5mNsvK6BAgCGFR2NRpHP501Q25bBYIBqtYrhcINhx/rd1NWDwcA066TN4/P5jO0CbNQ5rlQqjjRnigICOn9k6AEbAZdWq4W1tTVcvXoVzWbT1CJVZtmo8dPmWFtbw/nz500WHPcMBWMIQMTjcQQCAZPBSPCBaz2fz28pJUHHn+On88t7w3mamJgwfWPY+8Dn8+HUqVM4e/YsXnzxRTz11FMolUpYXV3daUk7xnAjCAjXq2/HuvrlKwelr9Uv5P/AVhDJjWGrQLmyzG1xA950DbqBf+qjqJ/J97SJI/dQG/BTkEyBffu8+hn6ypqZRGEAUufKZqbymG5sVf0uP6vzpffBfr7t82iwl8fW5q8kINEv0++weXWn00E2m0UikTA6hox4MqMJ1NbrdVOW09aT1AUE3YkZbCf6GQ146hzq/VNwX8FrnS/aBqxBHolEkEqlTPZYJBLZMt+xWMw0mmdJNjfAtdlsolKpGBuDa4H6iPfCDkYQ5HUL7ug88If4jwLMw+FmVkWhUDBks/X19S3ldHWt8Z7T5iIRr1QqIRwOuwKY2tPPJlsozmNjPvbzbJdqse+rBsP1f85PqVTC888/b3rv2WtYg1VutrYG3Siazab7gdpOdilcO2C03/KNN1NXf/azn8Xv/u7v4kMf+hAA4Ny5c/j2t7+NP//zP8enPvWpLZ//4he/iJMnT+LcuXMAgFe+8pV48skn8ad/+qcGSD937hze8Y534OGHHwaw0XPjsccew7lz5/C1r31tT+cNBoOYnZ3d83XtV44dkP4P//APjv89nlur1uyNFHVMdON1Y5SNEj6w2qTSbVPey4OtSm5U6vp2x7KZU7YydDsWI+Asl1GpVDA5OYlUKoVQKGSUI5V9u93G2toalpeXsbS0hNXVVaytrZkUbhVGmelE0yG+0cLrZqMYr9eLRCKBbDaLqakpzM7OIhKJGEd9MNhsJkKmnaYna0BEP3vx4kUsLy8jk8mg3W4jlUphYWHB0XjloBnevJ+scd5sNnHx4kU8++yzqNfrWF1dRbFY3FEREYxpNBp44YUX8OSTT2JychKRSORIAenA5v28du0aHnvsMaytreHSpUsHxvAcy1hupBxXXa0OyVEQn8/ncLBtPbtbod5TAGO/17rTPns9hv0oYYmbVquFfD6PYrFomFBk0ZHxxTIizOAhoGwL9QmdSDp5ZC21220TVAZgGEr2bwaQ2TyUTCitoU1g3+PZrPnN83o8G/XLWXaNQDoA8x3+hMNhzM/Pm/J2lUrF9doGg4HJHisWi6a5+6lTp3DmzBkEAgHTOJz9TjyejbI9tMXYcyQYDCIWixlmuZ1arc3SWHuc2V/NZhNXr17F//t//8+A9Lz+7YJBdM77/T4uX75s+rw0m01MTk46gJ/BYGACHZlMBuFwGIVCwWRv0U5l9hodcc1+5Nxms1kDxDOzjcGHRqOBXC5nyiTV63VMT0/jl37pl3D77bejUqngRz/6Ea5du+bao2U7Oejn5ajsX2M5HnKj9LVdKoTPvRvIBcCwl/U1Df4SwCUYy7G6ge62aJaJzVrmvsbjsP+F7Sdxv9asHTdQj8e131eAXpnCtt+kpDebBa/z4DbX+jmei/OogLAGBBSsVdH3tJwL/7bvDctmXLt2DbFYDKlUCvF43JFJxvrz1L+lUskEx1n2laVeOD4GLgnEb+djqm5RO0Uzznhter1uGIYNTLMEDIO209PTpnE1S59q6RUC6PStbayE64j10ZltRtuBZXE0a41rRbPS7Abho/SrBsW53okZdDodrKys4Pz582i1WuZe2IEsOwBBO4yYyvr6uhm3srJ5fYoTkNTJcWuGgZYSUnxHAwKaheC2bu2AEOd8bW0NTz/9NAqFAlZWVrbsL25AOY/L9aPgO8+njcu1Z4R9LH0+1a7XY94MEuZepdPp4KmnnsLv/d7vOV5/5zvfiR/+8Ieu33niiSfwzne+0/Hau971Lnz5y182a/2JJ57Axz72sS2fIfi+l/P+wz/8A6anp5FKpfDWt74Vn/jEJzA9Pb2fy92VHL27NJYbKtxg7QjmQbBWdOO+GdExmz2m18SNeDtnjSyDWq2GiYkJVKtVE31lbUxNc2JDy0qlYkqiuIEJPO5uOy4fhCirStlVTGVijT+mK2mHd2Cz8zo/w3lUpQHAGJWDwUYqdbVahdfrRTweR61WM0w8Kj/bWN7ttfA3f2gwsG5ho9EwAAkbouxU61evgWnjuVwOPp/PGG620XpYwqwGNlItlUooFosGgDiuMma5jWUshyd7DXLfKFHQwHZaRwnBaKYcExwnq1vZfnQAtX66m1CfsSSLOmvq2NkBDHUC9zKnap/YAX/qawL5dm1y6lKy4YGdm9NxzNqgtFqtmkafZI2NyiCjfWWzrGynWoW6Wh1xBjYI/u/FLqIurFQqBpjgPbPnTYF1zpnah8p00+slOOZmG7sdn8em082SLgRMyOg/zjLW1WO50eLG6NTXFfQ+aOH+S/BR2ar2GHXf2M432Gmc9t7J3xrQs8dHP83tu6Oua7v37Pf1WG7j18CG6ir9nrK/GZTQjDBtRs4AKfuoMXOIukEboFPX2n69rTeVbTxqfvR+27iFG6FASXn80XIlWtaFPzZjnH9rYMgtc4I+KX3YRqMBv99vdCZ7vWiwSX1+GzS2fWgVDRbxPrG8CQMctq7mMUg20LHzfjNgzWMw+NHtdrdkX7gFefS324+bjaL3jqKfs489HA4d+AWD4Qx66z23sY/tnj83O2gnDEHtDZVRgYHt5CB0NUs1UkY1j87lcuj3+1uaTs/MzGBlZcX1HCsrK66f7/V6yOVymJubG/kZHnO3573//vvx7//9v8epU6dw4cIFPPLII/jVX/1VPPXUU/tuhr2TjIH0l5now+YWud5J+NAzDVlfY81qt03oIIVRPzqcjHxquhOBVTqQo8phlEol/PznP0c0GkWv18Pa2hrC4TBmZ2cRDoeNgmm1Wjh//jyWlpZQLBaRy+VGHpdN0VqtFnw+HxKJxA0xBFW63S7K5bJh4THzgAqfTqAq+uFwa/1XjXaPun+85nK5jPPnzyMYDGJ1dRVLS0tm7sjsTyaTDpDeBtcpCkaQVUEDi5stmeRLS0smfWxtbc2Ue9mLDAYDXLhwAa1WC/Pz8yZaGY/HMTU1tSXl8mYJ57xer+Nf/uVfsL6+jqeffhrnz583jVGOs4yd87EcdTlq64wAMnD9TG+bHXejsltsUABwBtpjsRiSySQAmIAhHe9RoDebfHJvLBaLpjapso263S6uXbuGQqFgGG6jhMdsNBpIp9OmPAkD5XQCPR6PCeTSuWemGZ1s6itgkx2mY6MRT/YXS7AxgAts3JNIJIKpqSmEw2Fje3i9XsN2Z6P3Vqu1a8eA7HJ+b21tDcFgEDMzM0gmk4hGo5ienobf7zfB6YmJCdOgXNcdbSsFpHkfB4MBLl++jNXVVWN7dTodk7a/n3r/w+EQhUIB3W4X2WwWJ06cQDabNfYfWfCsmV8sFtHr9RAIBIzTpfV/a7UaBoOB6cmjgXqC4nS4ef+ZocAyeWSbBYNBNJtNfPvb30apVMKzzz577HU0Zayrx3IQovWxVXSftwOCXD/0NRRk3I1/6QZY8rt8nYCajtEeA/UjiVFugUsNMCqxS8+vvqmW3FDQj2NWZr2WSuWY3QJ9Oma71IfOvRsQqGNW4FeBYdWvmh2s16LXwX4ZoVAIoVDIlDnNZrOOcqJkQOfzeVSrVRQKBQNwslQIfUcCswTdlfikZVjtwLaW5+Ax+b7OE/d4DZ4yiNvtdo0OI3EsEAgYHcDrZC19bQhLO4J2g86/lq2l387/vV6veY26iriLNvEmuB2JRLYEYvS54Rqk/TEYDJDP51GpVNBut1EqlcxvBtr5rLkFtDiffJ12ybVr1+Dz+cwcDYdDkwmvQRmdBw3UMHBEHc3XeG+09429jvmba9rGGxqNBi5duoRSqYQXX3zR9FVj5hnnzO3Z4jHt8+n4OS9uwZLtjqeBDbcMiZ3kIHT1iRMnHK//wR/8AR7dJhvJDgC4BQV2+rz9+m6OudNnPvCBD5i/X/WqV+Hee+/FqVOn8H/+z//Bb/zGb4wc3/XIGEh/mcp+HzpuSHRedAGrwrjRhjTBWQVruUmzbqoqXZv9RanX62i32wY4rVariEQiKBQKiEajJhW51WrhhRdewLVr19BqtVAul0eWoel2uyiVSuj1eshmszd0Hih0EMkA4IZsM8qU/QDAYbypMeUWYaVoChLTzllnLBwOo9lsYnp6GvF43AAOWiuW59UNULMH2DCHtdpbrRauXr2KlZUVVKtVXL582TQ/2S9DezAYYGVlBblcDsViEa9//euRyWQwGAyQyWQODUinNJtNvPTSS3jppZfw85//3AQPbgUZO9ljuV5xYxDdqqLG/fWKMreU7XPQ86jHpijTJxwOI5PJYDgcGqeZztgoUWD7woULyOVyiEQimJ6eRjgcNuVI2u02Lly4gJWVlR2vi71BCA6z9intB2UC9vt9A2ozKEx7A4DRRyps9E1Gls3a4w+dJ7LNE4kEYrEYKpUK+v2+OQ6zyxgE362e6vf7qNfrAIByuYyrV68iGAyi0WhgcnIS6XQaoVDIgPftdhs+nw/T09OYmpoyQQQ6z9TR/E0WWrPZxIULF/Dcc885GsPpWtiNY6gyHA5NrXYCGpxzbfRG22N9fR3VahVTU1OYmZkxJXoIhhHcCAaDjvsNwAANCq6rs6tp6ZOTk8hkMrh06RL+5//8n/jxj398y7DRKS+H/XUsN1YUSFewS4FPO/Bqg6B2M0nAvaY6X3cT+5gEcoFNENXj8TjKqBG4417gNlae0208BDlH+VOawW2XK1HAmj61Mr/dhPMEOME9N7EBLOoo6hUGgd2yx6gvdfwaPCDbnGXBut2uA1Dn53q9HtbX11EoFExjSwaPNYitZWQY7CTAzDHb5VI0e4z6e1QQ19bl9Jt5HiXUcSzUxfxNUJ3rTIPNWjZEbTm+r2tSG5ACMD1HmD3GQAQZ6pyfUCjkOC5tDOIUtFkYIO52u8jn81hfX0e73UY+nzcBCvaF4TriMYGt9cyV4e71ek0PkmQyiZmZGdNvTu0mt/nfLqNAgfTtss8Vv7CfSQL0q6urWF5exrVr1wyJQkmluie5VTug6POlwTNdc3ovbKa5HpfjtJ/v3QLpen/2K1euXHGUtx1F0picnITP59vCPl9bW9vCFqfMzs66fn5iYsJgZKM+w2Pu57wAMDc3h1OnTuGFF14Y+ZnrlTGQPpZ9iQ3I8rUb5Zjb5yWIzh9lXXPz4WZGZ1Nre1K4wdHRZEQc2FBgbDbW6XSMkndrWqbCWuPqkA8Gg5FKZL+im3+n00G5XDZp27wuOriRSMQ4x1QwTPlmJgEDBhzvbiOhAExqc7/fRz6fR7/fN/PFe8QarHREVTmpoUxFyfItnU4Hq6urpja6GnHXs844R81m09RgrdVqiEajiMViCIfDjkYvN0rUQGHpoLW1NVy+fBlXrlxBoVC4aSWCxjKWsdw42QlQVIfievc31cfUm3T6FBi4EaLBdNU5BJVjsRiCwaDRi2QD72avJchJZ49Nv+mwEkzfzbWp/tfeImQfa48QZR4qS4+f4XfowGpgmE4cx16pVAzwzLnS8iDMZtN09+FwiImJCdTrdVPz/HpAWwarWUectV9pB9CB15rpZOgx81AZk7Qd2ARW1+9BrTMyGAOBAJLJJHq9ngnS074gyWM4HKLZbBrghWtDASA65+p8q52mjEstlzccDrc45Cw5MwafxzKWTdkOTFY9ofrQfoYUiNqNEASzwT8VZrQATvCdz7mOTfd8LYVl/+ZY1QfWcjBudryWDHFjvNJXs31rnUsFd1W206l6TN4fsr8JDLuVxaLO1vnlddOHox9OUhtZz8ysovR6PeO3MjNN92YF8Akyqz7kNbiNU+fJ9rtHrUUNXthlZ7TWP3UfQXav12tIZdTlDLwTnKb+VNKY3nsyzHV8xBK0PjwDE8ruZt14Bik4Vp5X7xMzHPv9PsrlsmnWbj9fbiQIW2yQGICxBfx+P/L5vAHvyeBnMJpjd2tiPmq96ns6Prd1rpkctLVKpRKWlpawvLxs/Gq3Y6qNrgC/vtfv90cGGexr0fnR7A0tFaTvKcnwZkkikdhVn7hAIIDXv/71+O53v4v3vve95vXvfve7eM973uP6nTe84Q343//7fzte+853voN7773X4HNveMMb8N3vftdRJ/073/kO3vjGN+77vACQz+dx5coVzM3N7Xht+5UxkH4Lixtou1c2kIqC5wStbWWuSv9GsNzo6MTjcSQSCQQCAaTTaUd0djgcGic4EAgYJeTmeGr0milmBOoV0FAmFr8zSlqtFpaXl83Y5ubmTDOSg67RREVQrVbx0ksvoVgsolQqGVChVCqZdZBOp9HpdBAOhx1Msl6vh0KhgPX1ddTrdcP23g2YTkXKOuVer9ek3AcCAdOxPBKJGIYDAx9q4GhHdgYfWGO13+8bY4ZGwPWCTMCm0isUCvje976Hf/qnf8KrX/1q9Pt9TE5O4uTJk5ifnwewc72z6xEFXJ577jn87Gc/w+rqKh577DFcvnzZGGO3gqiBu5/vjmUswPZrwXYAjpIwDZnOlr2/ct8kYLnfABodFP6m0xWJROD3+40u1Pqa/B7lekBQ6kiy28j+zWazJggeDoeNM0rnjw74dvvEcDhEvV437HDqbHWgd7tfKqu6XC5jfX0dwWAQyWQSiUTClErT+6TNxqijgM1yNey7wuOSCU5dV61WcfHiRRMk5rEJNvj9fqytrTky4hS0LpfLWFlZQbvdNo0z9yO9Xg+rq6uGQXb+/HljvxEMeeaZZxAMBo3dBcD0KLFBMOoxlq1xA8OuV2q1Gv7pn/4J//zP/4zFxUXcc889SCaTuOuuu5BOp+Hz+QygPhgMsL6+7ji3BgTI8BsOh2YtaUkDsiI9Ho8BS/gs9ft9PPXUU/jxj39sStwVi0UHI/S4y1hXj+UghBk12r9AA5ijRMExBVjVr3Wzy1WfUdfqPqs+LI9FYJH7LD9HvaLlubT5I/WVZi8pW5f7B33iUT21mIlF39O+Fupyfp/H59hYZswuc0IgcDs2vG0fhEIh+P1+RKPRLfpY9wQFfm0wVYls+Xwe5XLZ+IHMzCIDnOQ1+n+8RoKtwOa+zeyxeDzuKF/KLC3+2IEQvqbrwo2wQB+zVquh1WqZ5tLtdtuUBFOCms/nMzW2mUHNe9Pv900TVdaE5+sMCigbXZuAEltpNBpYXV018wVgS1NzBj6SyaTJzKP+1ZrzGqjgs0cdZwPiHIdiALqeFPhVFv9gMDD2UL1ex2AwwJUrVzA1NYVarWYyEVlFgPiAPtNupV9sdre9nvXe8l5qxt+LL76ICxcuoFgs4ic/+QlWV1dNaT0G0vX8FF0fdgDLZpDbTHI9htvfBPlte8GuGLBbQsjN1NUPPfQQPvjBD+Lee+/FG97wBnzpS1/C5cuX8cADDwAAHn74YSwtLeGrX/0qAOCBBx7A5z73OTz00EP48Ic/jCeeeAJf/vKX8bWvfc0c8yMf+Qje8pa34NOf/jTe85734G//9m/xve99D48//viuz1ur1fDoo4/ife97H+bm5nDx4kX81//6XzE5OekA3w9axkD6LSpuzrEdKb+eY9vncHv/RoiC6UxzIstOmdbc4PgeFYCbcBNi6tb1iiotgqAej8ekEeu17EfsjZngcq1WMyxwXhOjw9rYhQYgAQcqFDrtGnnfyzVToRLE8Pv9ppErgXSv1+swptSQ1RqmnDsqY7dsgoMQzsHq6ipyuRyy2awBFqampoxxPApsup7zUpTdwIj52toaVldXsba2dt3nOkoyds7HcjPkRmZFXY8oo9XNGVCm8/XsM8pCp75Ux8t2FuzMsoOyFeikkMnHYDLBSnX+dZ/d6bz7qbW93Ri5BzPQTtuh1+s50rE5LoIwZMoBm6U/FCTg++p0sTyJlurS4zAl3uv1Ohp+afNpOucsTbDf62632yODDh6Px+hvlpzxeDyoVquHVmaMQX9gw76Yn583thvnm+uddg2DAoDTMeY12mtfU8L5HCgjnWsll8vhxRdfdGTO3Uoy1tVjOQjRfXqUTnNbLzYwu50P5yajSr/o+wQM6V8oAK0An+pTMtK5Lyooal+T2zNkA3JK1touSw3YzKCxmatqOygxh+Km31X0+3bzTO59ej2qr93KWPCYBJ3pdzLzTIMQbNBsj8Vm+RMgJlObulnvD8+vYKSNV9hzpcdXkJtsc45f55Nzws/wPvFvzhd1tPrUer/5t5styPO0Wi3HWpmYmHAEdu0a8hp05xiZca/kDdocCuTrenMbl5vYeARLJg0GA6MX/X6/KYfLDHWO0864GPXc2mD/TuPQ+1MqlUxW+/r6OnK53JbsMw0OuB3LFq7fUfa825hU9D64ZaTsRW62rv7ABz6AfD6PP/qjP8Ly8jJe9apX4Vvf+hZOnToFAFheXsbly5fN52+77TZ861vfwsc+9jF8/vOfx/z8PP7sz/4M73vf+8xn3vjGN+LrX/86fv/3fx+PPPIIzpw5g2984xu47777dn1en8+Hn/3sZ/jqV7+KUqmEubk5vP3tb8c3vvENxOPxfc3PbmQMpN9C4vFsNuHUFDTdlJX5u9d65uqEcLPUzYPHPgi28KjrUyWotffsxhLc5DgXO9WLO0hRtsX6+jqef/55RKNRnDp1Cul02ii//YxHlQkZZaxPXqlU0Gw2Haz5arVqlCrr3kWjUUSjUcOkYJ1YRvv9fj8ymYyDvcX7vdvoKLCZQkZlTcZ6rVbbAhZxvpTdYafw7VY0mqvGnh2xVvYY/15aWsJjjz2GVCqFq1ev4vbbb0csFsPJkycRj8cNu3IvBr3b3BAQabVayOfzuHDhAmq1Gn72s5/h2WefNffjVpOxcz6WmyHXs85upKiDqww56i9Nmb4efWUzaWjwkx1IgFE/7/b39QqBBwa87cApnd5gMGhqlNNRtFOSb6QMhxslYi5duoRoNGpYgRyDOuMsFaK1T/lZOpBsgkkdxFqwlUoFpVLJFXSlni6VSrhw4YKjdB11OTO1SBwgwE39agP+1ysckzrco3rD3GypVCo4f/48otEo2u02lpeXTX15BmtisZhhLJJJzrUfCAQc5WoYtGfAPxwOG/CnUqkgl8uhVquZRvPPP/88isWiWau3mox19VgOQmxGNIGz7Zjl/IwNRu8GTHdbt26AmZYNoT/i8/kcTSy5f5MBzFrVGpC2y0zybw32uoFmbsLyXhpg1rFSbypYqkEGPb76N6OAWs6VXbZEAV4dr56P10sdzzEpOK2/mW2swX0NNLsBm3aGHPVrqVRylF9jyTgCyqqzldVrg7FK5uLcDYcbJcHoTzPbWm0Wln/l3GjwQedee28wED0cDh3zRb9aAwG6lmwyF/1qFa93o7QMM6yURc7fbCA6SuygMV/js8hr06xJv9/vWIccC/8nqS+fz5s5qFarKJfLCIfDmJ2dNfYW/WqeU9epjSlpJqXH4zG2D0sJdTodVKtVrK2todVq4eLFi7h8+bIhCmp5IX3WuB7d9hn7WXILENo29056UJ+h65HD0NUPPvggHnzwQdf3vvKVr2x57a1vfSuefvrpbY/5/ve/H+9///v3fd5wOIxvf/vb237/RsgYSL+FhA4pa1AxNUsfcqbdksGzV9BbWVW20HDYC+i5F7EZdprWZEe5uSlqKu71blZ7EW7IKysrqFQqSCQSJpWYtef2Ox5Ny7p06RIuX75s6rtrbVjWQGPd9FarhWAwiFgshlgsZkAdRuCp9ILBoKPBGFnte61LzvXg8XiMcQjsjpViG2F7ER5f14adygdsNq9TEP/ixYu4du0aAoEAXnjhBZw9exazs7N461vfioWFBcRisS11CPcqXBtsdPr888/je9/7HvL5vGmqaoM0YxnLWHYnRxnEcWNSU2/rPrVfZgpllMOudTxHpZkflNDJIfigAUhmPwEbjhmztRgIBnDgoPB2MhxulPgqlUpGP9LWsBvlAZsAuwIH1KEEXtT5bbVayOVyuHjxooPFpufndRcKBVSrVUxMTGBubg5zc3OmTBsz5lgijveQrCs7Dfl654Rj4jXw9aMgpVIJ1WoVPp8PV69eRTqdRiaTwS/8wi9genoa6XTaBL8jkQgCgYBxtGnzEATXDAEyHSORCDKZDOr1Oq5evYpr167hypUrePLJJ01QY69klLGM5eUmbna/Ama2v6g+q83wVXDUDXwHnOChnfWk31Vflb6C+jiaKcXgHJs6qg9K1rIymoHN0hJ67XyN12JnjjFAq2VQKPRd6KfRd1HwX5ncqpsUnNb55jzQV94J8FemM79PFjuvnRgBwUg9JseuoLcCsJxbHSuvg0FQrolGo2GCodznGfwkBqLMZg0A2NlLHAffazQaRt9yr9cgAsviNRoNU+KFPbV07vU84XDY2DmxWAzD4dDUYCc4TlBdgxmcH7UJOR5+h2vYzqBgsId4gTK/+R0t42IHTngflIyo18HSMFqij8fSLLpGo4H19XX4/X4Ui0VMT08jkUiYhq4s+2pnGNjkNyUpcu1xHKwlT8LC2toannvuOdRqNeTzeZPJFgqFEIlEHM8nn397zjW44YZr8TnWjDfec95Dm8jnhn/shI2M5WjLGEi/BUSVMTcEKhJl5dqpUfrw78URGLWx3CyHQqO2ek7dvEZ9xo5W3+jxatkUll6hslfGmpthqNerRgCNCSpxguTcwFX4HYLhjCKHw2EAm4pU0+QAGPYi09ubzaZRyOpA7ia9/npA8d2KMs/J9mfQQl8DNueERoiy4AeDgTGKS6USCoWC6RTt9XoRj8fR6XQcNRKBTePfZlDwR9P8OZ8rKysoFAqmTm2xWES9Xt91o7zjKIcROR/LWI6icM/SmpfApjFNJ9pmgO1V9Ht0lg7jWaIec2P6cF+83mu9HuG5We+UYLbu9fbY1YkCYOwq1m8FYAIELK/mVj9cRVmMmtHl1l+FzbDpxGqJNOq4gyiBcyPuh53GrTqcIIqWFKAoMMO5aTab5l6VSiXz7JBY0u/3EYlETP16DVJz3tjglfXtJyYmTD149p4pl8uo1+umofutrJPGunosByG0q91Kn7iBU24lHdxet2U7Apf6fKO+Y4P7Gkjlj60L7PcAJ4Btn5fH5Hn4nlvGtK0Hdb70+PY8KgNbxQ0kdZsn+7edjWUHAexMcb1Ofo9jVNtDyW129rAKfVEdF/1qYCMozyAAf3MsOqcKkOo8cvwMcFMXsCyr6lM9P8fJ4IcGPbTWudv9pl7TGvA6RiWhcZwcq95vvSbaHhpssu0tBeXd1pu9DtSvJV5BfIn3lkEU+s06Vpvtz/vFzIRSqWTsFM4bCYf2WlAsgzgWr6HRaKBWq6HdbqNSqaBWq5kfMtQV49D1yetQseu0cyz2HOla1ntls9dtbEDvjy36ObfvuclYVx+ujIH0W0CoxP1+v2E+h0KhLYx0OmPdbtcRQd5PrU030PZGOxaa5sRI7nC40ViUmyQ3J7tGOdN57bQx3eBvBJNeI9PPPvssLl26hEQigbm5OYRCIaRSKaRSKRNF1/vF7xG8Zkp4Pp83KUtra2sol8sja4jznnQ6HUfDFzZ/m52dNew7NxYkjQTWASULfnV1Fe1229Q9O0zxer2GcRYOh5FOp836j8fjZm7tJjyNRsOAG8Vi0XT2rlQqGAwGJpsgHA6bFPJsNouFhQWEQiFMTU0hmUwiEAgYRgTnURV+q9VCuVw20XLeu6WlJZTLZVQqFdM8jmv6VpWxwh/LWDZ0NlNa4/E4pqenMTExgUqlgkajgcFggGg0iuFwaJpY7TWDzO1zNxP847m63a5xegl4AjAlS0qlktHR9Xrd2CWHBVS2221cvHgRq6urhs08MTGBdDqNRCJhmHMEbsnOUnaZMrHIaMvn84aRtxPoQ13OJmehUAinT59GLBYzDKvBYIBsNotUKmXOzyAty7Rdvnz5yPXZoBPLgD7nkA50PB5HOBxGo9FAoVBwNBdX244N5Jm2zj4xnK9YLIZsNotAIID5+Xlks1m0Wi2sr6+j0+ng5MmTOHv2LPr9PvL5vAmWX7lyBcBGZkA+n0en00GhUECz2US9Xt/SaPVWlbGuHstBCJ9RZU2r2GCzMpopGmR2AwF1rerxbaBZAVayaFXfkHGubF4yrnW/1+vgnhUKhUz5DLvsA0lturdrrxK+pmCrlpgYRXrbDUN/O5IW55aAL/0VJSFxrMPhZkkS3h/OGwOTmq2rpTI4JyRjKVjMueV90dIgSo7j2gBgMAvWDy+Xy4hGo8hkMggEAgYQ53rRY3LebGJVvV43Pu6VK1ewvr5urpFzr3POe9PpdByNWicmJpBMJk3JNZLOuI50vuhXs3Rbs9lEu9022eU2fqOZAJxj3g8Fvfk31ywJAvysihuOY2dqcN3TXiWbnKWEO52Osd0YhOA5lQgIbGSSNRoNTExMYGlpyeBWbEQfi8UcdoHW7ec88HhcW8ViEfl8Hu12G/l83gDr1WrV4BOxWMxcE9cZ17OKnbmir+meoevR3q/4fSVLjhLuCW7ZArutWjDW1YcrYyD9FhBloofDYVN+gukybhs/gURGYvcqu2UjH7RQAdORYjocx8TSLtzw+FuViCpXO4J60JuKstyuXr0Kr9eLyclJADCBDnZJd6uPqylSpVIJzWYT165dw4ULF4wjuZsgCJ16ZZ+Hw2HMzc1hcnJyZO1vzk2tVjMKkOx2pkMfJpDO+8n1HovFMDs7i0gkgkQigXQ6DZ/PZ2qmKhhVrVYNmO7z+VCpVODz+Uyt1GKxiFwuB4/HgxdffBEejwczMzM4ffo0IpEITp8+jdnZWYTDYWSzWcMqpbHEe1Or1bC6uopms4lLly7hwoULaDQaWFtbQ6VSObS5OwwZK/yxvNyFRjyDmclk0gDpdGYBOJzLWq1mnp3j9BzQiaJDSdYSM+YAOAKyBJoPU1h2C9hgNMfjcQOEUI8Am2wzNjNnMIBBawZo19fXDZCwlyAI54wl2aampjAzM4NcLmeY5jMzM5idnXWkILOed6PRMNdxlITAEIP6gUAAiUTCgA/ZbBaJRALlchler9c45QQS6LgDMOVmOPcMMgAb9TJZkqFQKGBubg6NRgPXrl0zOv/06dMYDDaaouXzeYdTe/HiRbz44ouHYuceBRnr6rEchDCISlauzZq1s4T5WZXtAGPAWa/YjYHLtcz3WNtcfclut4tgMGgC3DaYbgPqOkaWiiAgagt9dGAz00x7hthZStyHmP3KY4ximu/mNT22fsbOAup2u8YPpU9ts8sJqpPUxjHaTUiBjfuvmVvcv9Vv1BI8Ok7dg3TcWtaGc9nv9xEOhx2lNQiWcu4U7NQs/V6vh1qthmKxiGaziXw+j3w+7yj9oveSNhr/5nwxEJNOpxGJREwAifOlAREGgEluJOGrXq+jWq06giuanaXs8O1+FEjXOvSj1gPgLIuk95HXxdKwyWQSfr8f0WjUBC4IWrOULAl42jsPAOr1OsrlsjnPYDBAKpXC9PS0CUrFYjFMTEwgkUgYXCsSiRjAmsEIBtXX1tawsrJibC6WCKS9SdtNxc6G4Dy4AemaacFsBLXnNENBgXB9HtxEnyc3GfXMu93Dsa4+PBkD6beAUAHZaWb6EDMCb6en7Sbqpaktdj0xdTxutKhCJYhMBaUGjsfjQSgUQjgcRjQaRSqVcjASNA1N67qz3heVARu/UClc74ajjCqC4lSmVFRaXgWACQa0220Ui0XzXRoiu533cDiMTCaDUCiExcVFzM3NIRKJGLadG8uDQoUcDofh8XgwOzuL4XBomPBMqaJTS+E10QBluhaF6WCcExrcuxWC/36/H5OTk0gkEojH4+baEokEUqmUachGY4fKOx6Pm7I4Ho8HiUQCxWLRGLC1Ws10k+e9b7VaKBQKpi5etVo1Dc600S8Zgkw7J+uS4DlTzcYylrG8fERBRE375V7B9GQKnSnuX3aT0KMu1NW0P3h93JOHw6EBUwF3AEBtGAUeqDdyudwW3XNQQkeYYCt1YaVScdSzJ6ONjh3Lh4wqubad0JkkCz6TySAWi5k1wKAx04m1OR7Hx4aZCwsL8Pl8pqm1W8Nw2o/MqNL55vtqJ9Em2YuojZpKpYwDTtJHPB43znksFjOsUK4bpmj3+31Eo1H0+33UajUDQjAgboMCfF4IkrfbbZRKJfR6PSwtLeFf/uVfMBwOceXKFaytrTmABJZvGctYxrJ/YW1x+mZujFibtWkDnvbn+bqywil8TcvJ2GCs/bruT3xdmdqjSo8oU1rLZhBUtRnlFJtlq8ejvmB2k/rZOh8K3GmAwJ43La9h/+b+ys9pWUllInMetLxHOBzGYLDRnJmZv2QSq5ChTDJXr9czmT2cM2Wrkww3au+1Aw7K7i4Wi8YvJIDOoIidtcDzUUfT1yfAr+VFdE1pWR/qK7/fj1QqZYLBBJ21fI1baTgKgViS6hiM0TrenCdmWzGYY2c4aMBA1+V2ovYVf3w+HxKJBKLRqPFxGfSmX83s9na7jXA4jF6vh2g0aoDsWq3mKJXD+dYgCcFpljXVUm21Ws2sK9o0mtHQbrfR7XZRKpUMLkJWvwYfNAjhZmPaJXD4mooGJ2z2+G7mlwERJW7qsd3Oudv7N5bDlTGQfguIApWqRDTizY2RGwZZTqOilPbxGdmNRqMmwkkglzWoboZQcVarVZOC1m63zfVSiS0uLiKVSpm0eSoCpmbTICDrq9/vo1AooFKpoFKp4IUXXkCpVMLS0pJhf19vwIDf5dg1YkyFbzuxdFqHw83mMpx7O8LuJjxWNpvF6173OiSTSSwuLmJhYcEBMI9SCnwtFAqZNKh4PI677roLq6urmJiYQC6XQz6fx+rqqmM8oVAIs7OzpoRNNpt1nKder5t0rLW1NeRyuV1HVj0ejym1Eg6Hcfvtt2N2dhbxeByLi4uGjZZMJg34QOYglSqNuXa7jdXVVdRqNayvryORSKDRaODq1auGZcI1UiqVUK/X4fV68dJLLxnnQOfQThnkOQlCaKO6l5uMI+djeTnLxMSEKTOl5aYI0g6HG6XKCAIy+B2Px9Hv91GpVA69lNZehPZBs9k0Ngh1XSAQQCgUwokTJwy4yvRedTaUyUfggcDp+vo6Hn/8caysrNyQ8dPB83g8aDQaWF5eNjaTAs3AZsox93w6cHsF0hOJBO644w6Ew2Fjw2iwNhqNYnJy0jjp1WrVvM56+9R1mUwG3W4XKysr+L//9/8il8sZ50wdZ+pogid2ozY25Oz1eqhUKqhWq3u6Jtoa4XAYZ8+exeLionHEfT4fYrEYEomEYx5DoRDi8Ti8Xi+uXr2Kq1evAtgE5kqlElZWVtBsNnH16lUsLy8D2NQTDFZ7PB7U63VcvnzZUY6gWCzimWeeAQDjkOv390JUGCWcv4PSXbZ9sd/v70YPj3X1WA5CCLJSFPxTAMsGkwiy2SCXAocazKR/y+8yO0hBK2WUKtBOEFIbL1JPKRNd/TO17RXw5HcobgC8x+Mx4CD9E/qjJPKsr6876k7r3GhWtbLd7YCE23zbGTYKpmtpl263C6/XawhYJKjRz2ZJUC3Rkk6nDcDO+WHmL8tukAy2traGbrdrytkxeMEx6/XqtfB1Ze1z3MVi0WAVnFMt7cLv8zp4/na77WDle71eRKPRLeuS73G9xONxnDx5EuFwGNPT0ya7m2VQdPw8vzLK4/E4stksBoMBarUams2mYVT7/X5TqoznHgwGCAQCpjSsBnhoT7LEXK/XM6VDt9uPuZ45JpIQA4EAFhYWkMlkEAwGkU6nTWkXPtMkQTBzjuA2SYksiVatVpHL5UwgWwFiEiJIuFAcgushEomY+0GfnPeetrJbIJ06zL53Nnvcba1xvfFZo80UCoXM2uNzo9djNxjmdTBwo36/Bnb0WVJ8YDcZcWNdfbgyBtJvAVEAT+uMuTl8/J/KZbuoGt+nEUFHiEA6u5yTHaYO5I0UbjJ2RJ3GBDc7piCx/EYmk0E6nXYYXgqSxmIxE9kslUrwer2m3iaZX7aztR+xo8wcs22oAZs1yvd7Ph4vGAwilUohnU4jlUqZgMJejqOR9Vgshk6ng3g8jmaziVqtZowQVczskE3GmZ0uxbRAGj27WT96fBqjjJLH43GkUilT5iWRSDhAK41OE8whG35iYgLdbtfUf9MMATU0X44A+EHJWOGP5eUsCl5SD1OfaaYURQ15fn+7YytgwHNowFXZaDeL6aJMOrKo9dpDoZDJJpqcnEQgEHCwlZQNx/RcbbBNZ073loPIIAOcIMTN2vcnJiZMf49oNGoAcgWNGHRXMIfXq8AByRIERyYmJhyf1XuhBAwyPGlPcq6Zgr5X4f0jg4/sc+pYXi8A44QzkMAMADrSClKQsabNxHWNb3fvWFLo5Sa7BffHunosByHKlNVnkkKAi3uWLQp62axq27clUK5r3GZ/8pw2650/Ctzr69uRzvRZUV3tViaC+y1Jb0poon+hYK2OWZ8rW9frXOnfvB77mt3mUvdLNlymT0fAnwHwWCzmYEAHAgFks1lT0kSB31AoZFjpgUDAwUCu1Wquc2qD0G4BAt4vBda5BrQhJX19PZ5mHqsfSrGZ9Sqcc2aHRaNR05vOLgdEIUiqvr5eC6+x2Ww6suyp53mPCHZHo1GHnce1pHXYSQJwsxvt+dSgDAMN1Mu00fga7z0Bd5aLpc3BTDHaC9TVxJN4LfqckozpxsLWQLf2NdAa/XyfNpIbM98tcKf3gOPi/2qH6hyqTW4/P9vhKqPsd5uUwePulvE+1tWHK2Mg/RYQKgX90YYIypjSn+3qdiYSCROJPnXqFKampkxTCCplbl6rq6uoVCooFou4ePGiiYbeyNqSVJzctEOhEM6cOYOzZ88iEolgfn4eyWTS4YwxDckOOFDJ0ghgKjXrWL/yla9ErVbD888/j6tXrxrle5CONY0ABaKvNzAxMTGBTCaDSCRiWOjJZBLxeHzXG7SbULHHYjHccccdmJmZgd/vRz6fR6/XM8o1lUphYWHBGBqarq3HImvE6/WaiPWoMi8KcE9PT+PUqVOIxWI4ffo05ubmEIvFMD8/bwwNpoOpQcKfaDRqWCvBYBCNRgORSATD4dDUfmea2fr6+i3fCPRmyFjhj+XlLNTVmiaqZbXUgWDZKrKSWMtVhY4JnahkMml02Cte8QrEYjEUCgWsr6+bVFvuscvLy3sup3U94vV6zThvu+023H777QiFQkbvKgBMh10Dn9zHmY3E9Ol3v/vdqNfrpllYs9nECy+8gGvXrt20a9uPKDAEbNaX1cACAWMNKrDsCFmAdrCXa0wZhMzUikQipm67rjU6xZxTzVbkcdjUnQCEMsJ2us5oNIqpqSlHDx8CSBoQJ7Ou3+8bUKPX6xm93u12US6XDcORrDxmn2n5gKMge9VZtl1mf38/x3M7xm6OM9bVYzkI0XKggLMUiYobUxrYBJT4w6CZgltKrtIa2Sr6eTfmtspwODSZozbzXQFzkm94fdynya5Wdir3UQZ+5+bmDMuX/bJI1up0OojFYoatXSgUzOv2HNlAvx1Qt4PoumdzbvV7BIiTySQCgQBmZmYwPz/vaKrKJtxahmViYsL0E1E/KxgMIplMotPpIJFIGPsjnU6j2WwiFAphbW3N+L8K3Nts+u2E94PXoOC6EhJIiiOGQSIgf1MIutp78sTEhGmIydJr9HEZ4B4VbNb1quPj+NkzZ3Z2FrFYzGRpaz1/lpCJRqOO+WImxHA4NGVWYrEYBoPNOu0secLrVHIcdXIikcDU1BRCoRCmp6eRzWbNPWTwW0u28npJVGNQntn01PFkntvsdZIhlT1u/w24k9l4P/nc6Ws2KK33Vde+Cp9dm4CiILyC3rS9+BxwP+C4ybKnPcZzuAU37LXmFlAYJWNdfbgyBtJvAVFWEjcZVeLAZrRMo3la99KWRCKBU6dOIZlM4r777sOdd95palpyUyTIePHiReTzebz00ksmbQfYXUrKfsUGHGKxGM6ePYu3ve1tpnt3JBIx1z4qKqsKLxwOA9iYz9tuuw3D4UYd8Hw+j1KphG9/+9tot9uOWqg36poOQgikT05OYmFhwQQXRs3FboXfj8fjOHv2rEn7fv7559Hr9ZBOp809oPPudk6uJ80uqNfrpsaZmzCdjM3XTp8+jXg8boD0aDRqyskwBXHU9Wp6WDgcRqvVQjQahcfjMYATm6iwHA8wVjxjGctY9id0nLSPiRtbjs7sxMSEqd2p9UuBzX1YG2KePHkS2WwWZ8+exb/7d/8OMzMzOH/+PJ577jk0Gg0T9L5y5QoKhcKhAOnBYBB33HEH3vKWt5hyYXT2mMZMcGEwGJh6m3SEGUxl6v3rXvc6BAIBrK+v4+rVq6b81lEG0m02Fh1hBvwJpGuqLwMJg8FmOT0F22nTabAmHA4b++jEiRNG/6+vrzvYmgSzCabbOpvrlin0rCW7U7k7HiMSiWBmZsZkpxFEZ1Cc/WyUFcnzAkAsFkMkEkG9XkehUEC5XDbAFNPNU6mUSRE/KkC6ihuore/pb1v0e7u1P+z7p98f2zBjuVlis6qBrVkRNlNdAWAFeKkX7XIbdukSPZ5+l8feyf8hkM6yoVoui/qZQKJ9bQrG2aAZM6PD4TAWFxcdZUdZloN7WDweR7VaNeVQ2CNC9zYbAFeGsn3+wWDgKFelYCSFNgkBXYKpCwsLhhyl5CQV6mO3Ou3c19kXrFQqIZvNol6vmzltt9umf5R+l/fDvmc2IUsJU9SHw+HQ+OokHCiQTl1h6wseT+8j54pAeiKRMEA69axmldtjtkFSAsg8N/3V4XCI2dlZNJtNeDyeLcTEZDJpgHTNkuea5L3mHHg8HgejmziQjosBbOrS6elpU64mk8mY2uhkvCtzn0ImPG00rjU+OxxHo9FAtVp1BC4IOtsgupa15bxxLrhO7SwMDaToPdS51ywYvTejbBktB8Xv8Fmh6J5jl3vi+HUN6nj1OdH1e7OyRsdyfTIG0m8B4QNsA+luKXT6GZuRrgy5WCyGqakpJJNJ03CC0UhG3xhlSyQS6Pf7RqkAMI0fbpTBToUdj8cxMzNjGPSMFBOE2IvoZktjgMzmfr+PqakpzM/Po1gsmhqhtmFzlIQObDweN01F91LOZSeh4QTAlP0hI51A9nYNVqhAmFJHxtt2YyQYwzpubJiqIICdFufmpGoEm8oNgDnuYDAwLINut2vWmxrtY9m7jCPnY3k5Cx0EOrWsQ8p9ymbTaS8SfXbUaSXwGgqFjA4OhUKo1+tGD2tN8m63a7J1yBq6GXXXA4GAcToZ5B4Oh4bVxOsCnMFvBhv4W+0dj8fjYATSmU6n01hYWEC73TaNw48agKhjUb1GxiIdU64JNj9n+rTNfKPTrA6dXbuX+o0BbK49BjgIBtjj03GqA9tsNkden65RnpeMd+pplgpkyZlRYAnZbkwtJ5ONzwxtAJ73uIo6/TdirboBUtt9dqyrx3IQosC41+vdki3NICngrBus39ltsEmJZfY6VLCZAe1Ra9Vmo2o2t45Dg5c2E34wGDjKfDDbiP4Ks860fBlBynA4bMBnlrUii3cn4XOu8+f2N4UAHst6sD+FZhMzS0xrs2twUIF7Pa6Chn6/H/1+3/iLwAYwnMlkHL3WtBSHzrUtyjLnHOt16x6mgWP72NQZbuC3DXaSca2lXJQQYTO+9dgUBrq307G02Vj2h+tL/Vo9Pu+LlhfhcdzY9cq8pi1BG5H6lGuB957Xaj+rBNA5PsVPeL20FWgLtNtt0wNgO9HnTO8jnzW9Nwp0u82rij6r+p7bWrMB992I3hsll3K/cAP59fr2AqKPdfXhyhhIvwWEUbvBYGBSwEOhkDEU+KCSTcQUbzaP0i7Vk5OTCIfDeM1rXoO3ve1tpm4pa2Jp6hT/Z2SdNbBLpRL++Z//GT/96U9vCMg8MTGBqakpJBIJnDlzBu94xzswPT1tmn3YTIHrkVAohEwmg3g8jre+9a141atehYsXL+I73/kOrl27ZkraHMXNKBAIYH5+HmfOnEEqlXKNIl+PkEXn8/mQTqdx6tQp07Wbyng39VQ9Hg9isZhhV165csX1M3x/enoaiUQCi4uLWFxcRDwex/z8PGZmZkzNOkbARxnftoEUj8cNOMD0cHYcj0ajWF9fR6fTMY1cjuL9Pg4yVvhjeTmLAuIsUcFgrTpLZA1pqQpd/36/36Tfzs7O4vTp04hEIjhx4gQmJydRr9fxd3/3dyadmk2XWfplOBzizJkzqFarWF1dxdra2g1/vqampvCWt7wFU1NT8Hq9WFtbQzAYNI3Bud+SCEBng2PXjDrNWmKTSaa+DwYD3Hfffbjvvvtw9epVfP/733fs30dBFHygXltYWMDk5CQmJyeRTqdNMITB+rW1NQAbNsnCwgK8Xq9p5KpsP9plZK4TTI9GowgGgyYFWQkVsVgMk5OTCIVCjnmyxzkcDpFKpRAMBk1m3qg5ZVmAcDiM2dlZw3KbnZ01TelY2qBaraJWqxmwnKCIpo5rTdZOp4NOp2POTyClVCqhWCyi0WjchLu4N9nu+doP43w353M71m6PP9bVYzkIod9B0It/KzilhBvN2nJj8RIoVKCJ600Zq9w3CWjRV1FAkEAewU+tb67gGgFeDX5rzwkexy6vyvNHIhGEQiEsLi7i7rvvNgAl2alaFoYAO/2SaDSKiYkJNBoNUzp1VC1mBeA4ZgW89R7w89zbaVOkUilks1nceeediMfjxn4gwGuzd22QUcF1t0CGx+MxxLxut2vKx+ZyOTz77LOmnA11H8dol/TgmmGGggKXNmuf47IBdq/Xa5q7axkRgrbKcqcEg0FkMhnMzs6aYAOD3iQP0l5jYELPyftg61ZdAyS+pdNp03Se5dTY5JXPEH1dLWnC8fM4bMTKcZCcwWvzer1IpVKIxWKYnZ3FiRMnEIlEDJmS12H37+GYNQDEZ4ts9H6/j2q1asZBe6Ferxs9zvWkc6I15rXxJl/jHNjZH25BIiUH8HlX/aZr2Y1wqFiCipue06AgA0fKrt8uOGSD+3ovt5Oxrj5cGQPpt4DoBkSnAths8qKKj0A6y1Zoaq7P5zPNJWZnZ3HHHXcYJW4DohqdTSaT5rVarYZSqYQrV67sKXq3F6GiyWQymJ+fx913342FhYWRqfLXI36/3yjJUChkOnT/+Mc/NopADYejJGTsT05OGqDmIEUN4EgkglQqhW63axh1jKTv5jhkhHc6nW2/w9R3prclk0nEYjHE43FTdoiO+G7Oyx/txM3U82QyiVQqZVj2wWDQsOaO4v0+DjJW+GN5OYs6U81m0zheWuKE7DYCy5qOTaGuZubY4uIiotEoFhcXkc1mcenSJZw/fx75fB5nzpwxeyPZRclkEtlsFoFAAJVK5absabFYDLfffjvm5+extraGlZUVB9DARmSAMz2eY6ZDyTRwOtoEMZRVdfLkSUxPTyMej+MnP/kJSqXSkd27qUeTyaQBMggYs5wYgfJut4tsNmv6vrD0DeeEtcXpCNLG83g8hlWWSqWMY0cWYCwWM7XLeUzbqaNjp6na22X9sWYugZhYLGaa1BGASKfTBhjP5/PmXErWIFigmWvARlPSSqVimoZWq1WT8j2W65exrh7LQYhmG6mvCTgbZmqvB/qtBLXcsqttUVBMwXGbMU3/gPY+QVr9DP9WYJW6R1nN3IP5ng2mswkj961UKoW5uTlTwoM/HK8yiBn49Ho3+kg1m03kcrkd/VsFa20msoKOKgQt6cdls1nMzc2ZmuijwGCKG2FpFNt6OByaxtaDwUYZt3Q6jWAwiGvXrplACPWarhE9rrLouXaUYa3n1+t1A2x5H20wXfUQhaVd2ION+lZLq2mZkkAg4AhkKNBuH5vnpn5l9hizovnbzuRQX1xZ2pwbMsaVIW3rd5LfWCYtHA6bEnMa1NZ54vXqePR+sF4+ADQaDfh8PiQSCVO2xtbVGtjR+6b3gvPG6+D65VrX67czHDWjfDvGtxvxTmVUBoN+nuQPLbOsGS32ddtzoPdzJxnr6sOVscV5C4gaEKyjqnWnNbLFemFs9qCKIxAIYGpqCplMBul0egsQv5PQSfP7/Yb5RsD+IGo9UWlGo1HcfvvtOHPmDE6dOmVA4lFRw4MSnj+ZTOKuu+5CKpXCc889h2KxaJhyR2FTUgODKWiqfG+EsKYtu3QDB7tB0+DgeVjShT9MkbTT1/YiVF40GlmCgAx7lp65kfM4lrGM5dYVdTioE9vtNmq1mqNxF52xUQ3BNb2YAUs6GUydnp+fRywWQyqVMq9TmNkTjUZRKBQMQ/mgazIGg0HDkj9x4gQSiQT8fj9isRimp6eNA1upVFCr1Uw9UAIeg8EA5XIZgLMOKq+XTDrOCVmCbFhJxrvP58Pa2hqWlpaOhI6m6Fiorz0ej7HTms0mWq2WydryejfKsJRKJXi9XvOeOqVssO7xeBx2idaFpUNJUoXf7zfsdYLvABz12W3GqJ0lYYs653Z6OJ3MarVqHE0Gs/lssPyR1+s1TdIAGCBMs8YIztAOUGBkLGMZy+EJSzooI1MBKAXngNFN9myWs/0dvqc+rb1vcf9T4FNBVVv4mvrT9AFI+uE+pcxTjofB63Q6bcg+WnZDyTz2tXLfjUajyGazaLVaSKfTSCQSxjaw50LnQVnVCigSWFWwk+U2stkspqamTEaUZgfxmPaer2C9W0mV7fxyHU80GsX09DQCgQDW1tbQbDbNfbKv0Z43riEtr6OEQv6v+oXzsxvSlepAzofWY9dxMGjNDAcN4NuAJ311DRor6E87j8EkEga0LJEC8pwTDdBQz7sxtTUQwSCOG+uc+JFegwLpKlrulp9jaT1dD3YWAc9lg9+cT841ny+9/zZWpdnm+r+dnbFbG4HrRoMsuu4VtNc1wbXtBp7rfbYDUDwm95exHG0ZA+m3iBA8r9fraDQamJiYQK1Wc2wm3NDsmm6UcDiM2267DYuLi1hYWDAO+m6BQ6aWN5tNU+ql2Wwa1tD1it/vN81afvmXfxlvetObEI1GTXrwjRQ67BMTE5ibm8Pb3/521Ot1BINBvPTSS4adfhTqpVPJs54oI8puqYAHJXTetXzQXsQ2km1RVgfZlJlMBqlUygDr2zUW3U708+xMHwwGkUqlkMlk0O/3kUqlTEplqVTa0/HHsinjyPlYXo6i+5I65wBM7Wv93CinlcJsIzZ21h4O3W4X4XAYd911l0mHpiPF48diMZw5cwbdbheFQgEvvviiAV4PwnDneaLRKP7Vv/pXeP3rX2+aohJcmJ6eNmDqysoKWq0WqtWqYal5vV50u13kcjk0Gg2kUinMzs466nSSHcY+F2xCyvmNRCJ41atehRMnTuCnP/0pVldXTSrxURHe42AwaBpuVioVABvpz9Vq1ZTwSafTKBaLWFlZMexz3ns69qlUCidOnIDH40E+n0e5XEa32zXsc+pn6upGo4HhcGjsG2ATtKDTqo4619NOBAky0gn+UEdrSYRcLmfuN+sAM/NAdUWtVjPp4ewHUK1WkcvljE3L2ukMLjEoMNYb+5Oxrh7LQUixWHQwhBXcUmYp9xIFiOlHcH/jZ+nvuvmVPJbuiQQf+T0CgypuTG1g029WMHC7fU9ZvtR5CwsLyGQypvQog77ccwmWstkoxz8cDh3ZvsViEWtra47eH9zblRGvorXDWXdbS6Jor6lTp06Zsh70g5TVPAp45GtuZTNs39P2z6gPMpkM7rjjDjSbTZMpx1IgnBMFyhVU5/qyg7s2s9dmhCu4Omp8PJ/WLdd68Qo26zxzjem5FIzlubU0i509QL2oPe3UPuR8cK3bzW+pp7WEkQK8XIN2j5RRQLNNBNH+PTbTn9cAwNw/vkf7TcsF673lPOjaYQkeLQfD91g5gOfUQBp/699qx9jXOWoPsOdEsTF9RnQdcH1okEnPw3PpsXRdaiBpOxnr6sOVMZB+i4kd/bSBdE1Pc2O5hcNhR0rZXkBJKmeyg/x+vyl9chBCB5ygLVPTbzTbmqLRUUbsE4kEgsGgcUyPimiU+6CbjI46H0vgAHAYLTuJHd22v6MRXxoLNED5W6Px+1kLatyTwcDz6PkOujzOy03GCn8sL0exQXSKGuj2+9utdxrp6iQDMOyj4XDoaFZGx8Pe55TFTdvhoK6XwU+WLFE7hA4S7REGod1qm5I1rU6yzQxTfUAniewtgtORSMTBSDoqovpNWWZ2MIVOPO+VNsHW5mW8tzYwpMFqHlsddFv3qsOuelW/t9MaVbabvVbVHuX7tFltIYii91bHzHPpuhgzua5Pxrp6LAchNhg3ipyla0Z1IrCpt/Q13cfs0h0Um5lq7wn2fmeL+tI229oGDu0yDMqCJQksAYAtAADMFElEQVRIS1nYPhozc3TfVn3H47D0i5aM4LVxX7T3az2mgnTcmwmi0r/WLLe9+FS6f9v6xp5je+5YtlN7YWgGsJ11YK8rt/PZ51QQ09Y1O61JfkbBdxv8tH9GYS07iT03OgfKDNf5sOeAn6e+tEXHqexwex4IvtsscH3fbQxuxwCc696NhW+PEYDDv+da4bn4On1zravvJjbjXefZFr0WGwi3+zjYa07nUnEDt3O6nd9m7G8nY119uDIG0m9B4abmVoZiu42dEXSWAtmr6IbMKCdTc69XPB4PpqamcOeddyKbzZomVgddE303QoXv9/uxuLiIV7/61SgWi3jppZdMQ7DDlFGgzY0WGieVSgXlctnRKGc7GQ6HqFarKJVKqFQqrmx2BU1Yf53sNjIrDuJ6qZCVAU/jUuvhjWV/Mlb4Y3k5iu3g2H9v99qo4yn7jHqwWCyiUChscaQVJKdTRDDU5/OZjJtyubyr5kY7SSqVMo2q/H6/aWxOZhL31MFgs7b3cDg018Fa2iwDA2zol3q9bsD/bDZrbB0y12q1mvks52Bubg6DwQBLS0tIp9NoNBpoNBp7zpq6EcIgrZYno5AxxtrxBJ4BGF0Ui8UQDocN86zf76NSqWB5eRkej8eUa/F4PEgmkxgOh8jn86hWq+h0OqhUKiiVSshkMlhYWEA0GnU465xDsuUHg4E5PpmCo2Q4HJpxsQY868W2Wi1HkENZggSMeJ/JmmQGA68zHA5jYWEB/X4fhUIBpVLJlJKJxWJoNBqm1OFY9i43W1d/4QtfwGc+8xksLy/jnnvuwblz5/DmN7955Ocfe+wxPPTQQ3jmmWcwPz+Pj3/843jggQccn/mbv/kbPPLII3jxxRdx5swZfOITn8B73/te8/73v/99fOYzn8FTTz2F5eVlfPOb38Sv//qv73nsYxktWgLDBoe4v+jz7wa62+UmRgGNPB9/KyOdY+B37cCxG2iqY9TAIuCs+a7MUhUt88Lv29nges0KRvK7/DwDyvy/3W47Go+61ZvWcfAzGgDt9XpIJBJIp9Nm32RJF2XwMjA5Cgjn2O3yGradovNgC7ONer0epqamsLCwgFqthnq9jlKptOWec3xqP3AuGVjV+2XPr9t91mAuj8WsB4K+uiYVCNYAuN5bXRt2eRLqM2ZMaOYE7w9tG+o43iO9PwDMsUjq4/+tVstkoY3KKFC/V8lj2wVF9Fr1GVXbU6/d5/OZ7EsSOxKJhBkPsyooxJHsMm28B3rvSMrQ50aPo9dJ8oFmtOh12f79djY7v6e2NNeHPi87rUcdr+4XHs+42ehxkDGQfouK/cDuRmwgfT/ApEa6FeQ8CJmcnMTdd9+NbDaL6elpRCIRADcfMGZTlsFggLm5Odx1113I5XLI5XJHAkgHthqB+tqNOh+Nj1qthlwuh+FwiJmZGdNIdJQMhxuN9/L5vCmRY4uyJzS9zmakX6+o0ajlAuig87kYZQyOZSxjGYstN2KvUAec+1+xWEStVjPZW7bzp9+lo0UHdmJiAvV6/brH5fF4EI/HcfLkSQOGNxoNtFotlEol9Ho9R+12bXrO8YZCIROEjUajxlljw6pUKoVEImFK05DRTt1BUDoajWJmZgZ+v9+Um6NDdxSAdN4nrUcLbII0bHDNbC+C4kxzZsPZZrNp5rbRaGBtbc1xvxmQ4D2mE1mtVlEoFEyDcAXSFQBhYGM4HKLdbmN1dXXHmvoEDNg3hfXxCQgFg0EzplarZcobMZji9/vNGmb5gXa7jWvXrplyN/F43KzlRqNhvhOJRPaVYbEdsDaWGyff+MY38NGPfhRf+MIX8KY3vQl/8Rd/gfvvvx/PPvssTp48ueXzFy5cwLvf/W58+MMfxl/91V/hBz/4AR588EFMTU3hfe97HwDgiSeewAc+8AH88R//Md773vfim9/8Jn7zN38Tjz/+OO677z4AG6WTXvva1+J3fud3zPfGcrDCMl0KVNnAOIFiFWV0E5iiuLHV+Td1HX1QZbLapRlsH3m7/czNj7KBc3u/sQEuZdArIKllLfgdZv6wt5kNpBMk5bXaYK4eS4/JzzGwwSCnlshUgpoNkmoAwQak3RjLdjDBbV4JQHI/n5qaMoSsK1eujAQKh8OhCcpqMIFrxgYtbeKBXhM/Y49dAy/Kpta/7fvtBswSqNZyLzo+Bdr1nAyYlEolrK+vo9frYXJy0tw/noM2FAFzPlOtVsvYR9uVarFrpduZ7PY6HhX00r/1WaTdFYvFzDqOxWLGRmAPMo6Rzy+/ZwetdK3R1qA9aa83jpWBEgaUbBtG58O+PjdxA8LtYIzOh65BXSN6HDvT5SCILWO5sTIG0sdihJuwnUa912PoJk4GlRpF+rndnoMgfyqVQjKZNPWwD0u4ibMTe7fbRSAQ2PV33ZQBxVbGe70PVAC8D4yUcnO/EcK1w/VDx5jAjKbdU7hGut2uqe2vtdTsa3JT5DdC1Biwf7TR3V7W71g2ZBw5H8tYrl/oMDDjKxqNwuv1GhausqX4t35XnW8A5lgHVQ6DLGvNSCLDiL+BTQeOThfZWWQz2w3BbAaj2hfqSPPa6Wj3ej34/X5MTk4iGAwaVvoocQNUlfmo4M71lHRTHc3an3odCk7wM7SrFBRyA0220/V6HQwcN5tNw5oCNuvd8jqpm7VW8HaiAAkAR4BcX9NapfweWWh6jyYmJsya4Nhs5pn9w/PsVlffSBvpuMnN1NWf/exn8bu/+7v40Ic+BAA4d+4cvv3tb+PP//zP8alPfWrL57/4xS/i5MmTOHfuHADgla98JZ588kn86Z/+qQHEz507h3e84x14+OGHAQAPP/wwHnvsMZw7dw5f+9rXAAD3338/7r///n1d41h2L24sVQWR7PXi5hPZ7FhlENvnsety8zy7EQKUbmt41H4/quQjx6xBSbsWNq/J3sP1+/bnPR6PaahtM/YVsHObG71GfpcZvrae1fHbxxgl9n3a7jNaTkR1O/uhdTodRzkbe+waaLGPpbaPMrztMiMUDQ4oyO3GQqbvagPZ+hn7Huo57HnQ61d8gN/RDEINsACbQQG9fn6WIDxtBrWXKPo8boc72ODwdqJBInvd6lgVB9HPKE6koLYNpruJPrvbrUXdJ26GLz8KmB+1L+3FDhn71YcrYyB9LEbI7gqHw4Z9tBdh9JRNw8rlMtrttknNZaouAJOutBtAncpwamoKr3zlKw2Yftji8WyUm7nnnnuwurqKp59+etuNm0qOkVYCCjReVNkzqkoFuJd7we+RsdBsNk2E+UY5ie12G+VyGdVqFWtra1heXjZOcCQSQTabxeTkpEMB1mo1rK+vo91uY2lpybDc3NLFNQKuzXLVoT4oJ5iKnIx0bcbDEi8ej8eAGmPZvYwV/ljGcv3S6/VQq9XMPnX69OktfRzIgiEwS7CUzUgzmYzZM/P5vGEuHYQkEgmcOHHCMKYBOMqxkPkEbJQpATabrhIkL5fLxmm2G0lz7+WeoMdTBn6/38e1a9dMKZA3velNKJVKaLVaKBQKrmNXB0sdatYnJ/AwMTGBRqOBSqWy7wCEBgtyuZyjobqy04fDIer1urGvWMKG97zdbhtbgXretkXUkWNQmLZev9/HhQsXHNleWsKO89Xr9VCtVrcwE92EmXtkGRaLRQQCAdMgvNPpIJfLOVKiOaZgMIhKpYKlpSV0u11jP/D8ZGJqKRy7zBvHr4zO3chYz2zIQehqNs2lELBT6XQ6eOqpp/B7v/d7jtff+c534oc//KHr8Z944gm8853vdLz2rne9C1/+8pdN74AnnngCH/vYx7Z8huD7WG6O8LlWwEqBMTdw0QYf3YAz+/m3S13wu/Zr/H9UM2+WQbHZ4TY4p40euV8qkKuAZKfTQbPZNI2StbEz54IAKPWaBnB5nVq2Jp1Om6wuzmO73Ta+IzO9bGCSOp9jjUajmJycRCQSQSgU2nIf6E9SqF/cAgp67+xAgc1+1uxeBWiHwyHi8ThmZmYQCoUMO11L2eh9tLPglfik463VauZeqo7UIIY2pLWBe/U/tUl3OBx2ZDvo8dwC8jr/aqtobw+C/yxBov68kgC0nx0DIZ1Ox5DScrkc1tfXHQEgzhXPyTHyPHawmnPA79r3lqIBCjvwpXOj2eU2o99eQxoA4Pip49U2cwuoj3pdf/hcaQNTHfN+hPdPhevKLkGk57PnQOvC7yRjv/pwZQykj8UIHW06bHt9wLhRcNOjs6uKk4qaEV01ONxEI5jhcBjZbNYw0o+CRCIR4+DR2d/NtWjndDWogI1NnXOpTIDd3g81CqgYRzEsDkoY/aair9fr8Hq9KJfL6HQ6pvEdr8Xj8aDb7aJaraLZbKJaraJarW67Fmzje1Tk/CBEwXRNedOfo9Rc9jjJWHGPZSzXJ3SUmdbMWuQM9ukzRgeN+y+BglAoZPZi1q08KEZ6IBBAPB43QKw6uwpq0DbgfquNJBlQ1c+og6VsPLfUbl5rtVo1wYOFhQUzR9uJMrU5lz6fz+gDgiG0YfYr1GV0fhkcoTOmjibZ2xrwUEeT8+bGAtPz8TXtBTIcbvQ28Xg8jn4gBD673S5qtZqxJ3bLTKTdNxxulG/j+Tl3zWbTlHmhbcixsd47iQChUMiAUupccxy6DngMgjXbMdjGMlquV1efOHHC8f8f/MEf4NFHH3W8lsvl0O/3MTMz43h9ZmYGKysrrsddWVlx/Xyv10Mul8Pc3NzIz4w65lhujNgMVGXT7oaNzs+5geFuzFoFgBXYtD9H4X5p75PK6iawaoN0bvrSDUjW5sz0H2yQVQE2m0mu+xqvgWWv6HMrkKmgJbDJmKe+0OMweMvj2WKzq3fri+o51Pfja3Z5Fb1PLDPW6/XM2AjeK2Zgry3aF0oco/2hDHINJNjXaYPIKsoOJ1vevtf2nOn1ub1u/yixjutYcRX90UCJ6jv6/sRzdC2oDWaD3TYxze36t9OlbsEC+/lzW8+jRPcJXd9qz9rzyfnT0m60qfR8+izTJt5OdkPUs69fX+d4R5Vq0cAZr2UvMvarD0/GQPpYjLTbbdNEKpVKoVqtot/vO8BeN1EAmGyvbDaLX/qlX8JgsFHHUwFJAKYBRqfTMWy4UqmEtbU14yRz06ZTx/ptmoJ22ELWFaP5oVDI1K9TZcI6n9osk+w2G0hXRjodTbL9R7EobFFW3+rqKhKJhOmIfpBCJUnGRb/fx+LiIiYnJ5FMJnHq1CnDeJiamnIYMJVKBXNzc2i1WlhaWsK1a9dMFJ3N4AimqCFBlj3XEI1zNa72C27QSCJgwEg1f7gm7WjxWIntTsaR87GM5fql3+8bgHh1dRWXLl1CMBg0rCvbIbeBhVqthsuXL5vPLS4uYjgcGr3EIK8K9Xun00GtVkOpVBoJJExMTJhGmMCGbUGg3+v1otPpoN1um3H5fD7DOKPNEAwGDcuOjo46mXSMlBltgwTKOtpJ99kOLQCjq+2gN4/Fhp/U+aqH9iKDwQC1Ws2cLx6PIxwOo1AooFqtwufzIRqNGsad2gFkHpIZqcxsHQvZ/mzsrQz2SCSCqakpU3ectct5PrIpWTaIjjrBdTdhPfNGo4Hp6WkTfCBIwmC0lnXRJmAejwfZbBbdbheZTMY0JuP6ITgyHA4NE5P15EOhkNHZO9VyH4u7HISuvnLlChKJhHl9OwKMGxi1nR3n9nn79b0ecyw3TnQtMUPKza9UgE3ta/2+Gwg3CvhUfWCPZ7v1TVBuMBiYYKAeR9nnvA4F13l89n9ipkQ6nUYwGDR9KRRY03KoqscJ7kajUczPz5sx2fNAv4UBZOrZZrNpdCPnnb3QGFimf81SKtz7FQDWJpk2u92+b/o8uoHWNrCpgQubdOW2Dvg6r0PtA63xTSJBKBRCIpFw1KO377cCsTZjWL/HeeX9sxnp9jj1OLqG7DXMYAHvIbP2PR6PGfvk5CTm5+cRi8VM+TziC8yiJhGB95flUxmA5zjUbuI1ab+S4XDoCEbbdqSWKdqJBa5rmb68st/1fzcgWn17+xlzE80q0TnnOh4VFBuV2bIbvaHrVrMidLwqek1ux98tAXLsVx+ujIH0sRhpNBp48cUXsbS0hHg8jrvvvhvdbhfJZHJHIH04HKLRaGB1dRWtVgsLCws4deoUgsEg5ubmEIvFHMpUlf3Pf/5zFItFPPfcc/jHf/xHw4hnIzQ6lYlEwjjnR4Fh5PF4jHPYaDTM+Oj407mlQ8rO6FR2o6KyGhWu1Wom4FAsFkduyG7S7XaxtrYGv9+P2dlZTE1N7bqO+25Eo/cs5+PxePCKV7wCk5OTmJycxJ133ol4PG6cc71efqfdbuPixYu4evUqCoUCfvzjH2NlZcUYgjwHGZj1et0w2JnirmmM+w0WqJHEWu80LHgP9J4STB8rorGMZSw3UzqdDgqFArxeLy5cuICf/exnRrcQpLBBXXWAi8Wice4HgwFe+cpXIhAIYGZmBtFo1DT7VDC2Wq3i+eefR6lUwpUrV1Cr1UaWggmHw0ilUgiFQiiXy6jX64jH4yYQXiqVjLNGh50lS4bDoXHue72eYcsrk4rXp0FNXh+dEupXgsp2wNoW6g51GplxpmVz+v0+arWayULz+/0msEH2124D3pRer4disYh2u41EIoF0Oo1kMmlsIRIJkskkqtWqg+HI2uVa6zYUCjmc1263i3K5jG63i3w+b0qqMNCQzWbxmte8BslkEtls1pTgaTQaxsHm3xMTE0YXs6SMmzQaDZw/fx6BQAB33nmnqU/PzEJmCbBMUbVaBbCZbeDz+bCwsACv12sAg8FgYEDyZrOJSqVi1ghr4TO4wX4BB1n7fyx7k0Qi4QDS3WRychI+n28LU3xtbW0Lo5wyOzvr+vmJiQlks9ltPzPqmGO5MaIAFv+3s0QUSFK7WslFu2m6p+CzCtnJNoCo57dF9YjbNbFBNAN5ylbmmPnatWvXkM/nAcAAoJOTk0gkEg59oVlFyqbn9ROEV6Y1GeUKcrbbbUNIKhQKWFpaMrqaeisWixlwOZlMOppe85g2451+uYLdbqU5FCBUgFuFulrvGfdqO9vXBtL5PwP2kUjEof95DTy3Zilpqa/hcGjOqe9zfHo+rU9OW4V9O8i6twFee9xuwQWbUU2ig5LTvF6vycafmpoyfrUSCxkIKZfLiMfjaLVamJqaQqFQQL1ex8WLF1GpVAxBTUFmZsR5PB6ji3ktxCoIqJNgNhwOjY1hByCU5MDrstn82h/FJq0x601B7e2AcHuNuK0dCteWHQBzE11nPLYy4d3uHY9PnGAUAK/fd/vc9YDjY7m5MgbSx2JkMNhsKFWv1019Q9bxdtv8dePQDSoSiRhFnc1mEY/HjWLlZkSnh7Wz6Tz6fD7j9GnKEh3powCiUzR1jo621h2jA8/3eR3aeNO+Hp2jQCBgFJDWUNuNUcn7WavVTG1cKriDZOXQcKHhlclkMD09jUwmg2w2i1gshmg0+v+39+5hdlbl2fi998w+z57zJDOThJBArEDE0mApaEGr4rHiqdBqPfxaDxRRIPZDKXoZqEKxvfyoVbBY6qFW4fsutEo/awmtRilUFEEgYhJgkkkmc97n8+n9/ZHeK89e8+49e5JJ5pDnvq65Zmbv97DWete7nrXu536ehUgkUndfqh+pcKTajYtsj8djys2JFidb9g8nOa2GjNmQkznbuHNhL/PZKo4N6jlXKBYHXLhls1nE43GUSiVDgsuFGxeXckHOsbRWq9Wl8KAzOBAIGCIdgFk0dXV1oVarmTG9ra2tTkUHHF0kynztvIY9B2A9APfFjE2MuKnT5Jgif8vFrFQPShthL4Tkwl+q2WzlFe0wzwOObqgtCZCFkumS+LXrJMto18mtDnzmsv3kwo3zqra2NkOmdHZ2IhqNIhKJmGPl3KZUKqG7uxt9fX3IZrPI5/N1Tgw+V95Xzg1l3+OxfBYyJ718nrLt3Z61VLfZJNSxPgfFEZwsW+33+7Ft2zbs3LkTb3nLW8znO3fuxGWXXeZ6zoUXXoj777+/7rMHHngA559/volAufDCC7Fz5866POkPPPAALrroooVURbFIkIrPY+lX9jjo9p183xutAVgOW3HcSBEq7ymJUI6z8npyjJLq20KhYByTdBZzfSzPlWOjvA7vS4UxiXRGIUnHKYn9YrFo9s/gfWRkuFQLSyey249sJ7uejdbjbiIjtz7gZrNlG7vZN3uOQfGAfG7SXvM3yXUey+fTCG79TCrS3fKJ2+fxbzn3sdtU/i2fO4UAjECo1WpGlMZIfz5TRu6Xy2VEo1Hzt+McUZV3dXXBcY463m0byb9ZH1mvRu+SXTf7b7vdpPpczgVk28n+zntL3oLt4jYnbPYceU3pAGo0Dsm6EPKezWA/T/s680GmoWl1nNR19dJCiXSFQbVaNeqvvXv3wuPxIBqN4owzzsDQ0BACgYBRp3PxQrKWXu7h4WETFkailPnNJGgEOzo6sGnTJgwNDaGnpweDg4NIJBJ49NFH8cwzzyAYDJrUKX6/33WAW2pwIUgymZ8xLU1nZyd8Pp8hKOTA32wSwrbjAr1cLsPv95vQq/kGwHK5jPHxcaRSKZNypVqtmjC+44X06J599tnYsmUL2tvbsWbNGqNw6OnpMcZebgzk8RxR8zN3ejgcxvr165HL5XDmmWcinU5j//79+OUvf4l0Oo3R0VFMTEygWCwaZX40GsX09DQKhQI6OjqMCoGb27XqMJBKiHQ6bVINjY+PY2JiArFYDNPT0ybMXpLraoQWBjX4CsXiwXEcTExM4JFHHkEwGMTg4KBRgvf29sLv9xtVs4y2iUQieOELXzhHCSM3EstkMnXqrmAwiE2bNmHdunUYHBzEunXrkM1m8cwzz+DAgQPGHtgpRqQTnA5JhptzgUU7Ih3uTC3HaCCmHWEqL7kgZFvIBRhQH2LLOQmvxQWqzF3LOQtTywBHN0aXJDyjyqjMbmtrQ3d3N7q7u1Eul5FKpUxbt7KBa612dCPY2dlZHDhwAIlEAqlUypSJ6e8433IcB5FIBNFo1KQdY6ozOjASiQSy2awhzQOBALZs2YLTTz/dzL/YroODg3Vh4dJGS+f0pk2bTKj4c889h3g8blSPhUIBU1NTiMVi8Pl86O3tNTnXGYE2Pj5eFz3G/mY7gFgfAKYvOI5jbC8Ve4xsTKVSSKfTmJiYMPV2HMc4PVSVvjCcTFu9fft2vOtd78L555+PCy+8EHfddRdGR0dx5ZVXAgBuuOEGjI2N4etf/zoA4Morr8QXvvAFbN++He9///vxyCOP4O6778a3vvUtc81rrrkGF198MW677TZcdtll+O53v4sHH3wQDz30kDkmk8ng2WefNf+PjIzgiSeeQG9vL0477bRjqruiHrYTr5W9hex1EQk44Kg61D6O95GpnNyIYOnwk0SXnW6DpB3vYxNkcg0g1cocm+lg5thMIjSfzyMUCuH000/HmjVrjPqb9lEqWu2oKvlDu+BGfHM9zv2pgCOpveSG2WxHSTbzngDMmkiSnySQbcJbOszd1lxufUCqlqVTWG7mXa1Wzd8y7zntEm01I62bkfBsRxLLXPcxRR7rR+cA16vS9jG96uzsrOFKJD9BgZx8LnLTcJKj7CO2XWJbk/CPRqNYv3593bOJRqNYt24dAoGA6W/SlpNzqFarxtmdz+exceNGk9aNa+np6WmzCTjvT4e+1+vF7OwsarWaEVmw3WxHv03+2u86bX+pVEIymUQymTQ2m+p7ckLBYLAuvZHsU7aQknMrmTbYrf9J4QbfW0ZCSqcM7yH7spyncD4hHQ4SkhNxE33YDgf+dqvnQkSPuq5eWiiRrjBwHMcMTKOjo4jFYgiHw8hms8hms+jo6MDQ0BCCwaBJecEw51KphOHhYZxxxhmIRqN1BhmY66GVyi4a+oGBAWzYsMEM9M8//7zxtpNQbnVgOVmQAx/JhkqlYhZvXKTSQLSSWkW2m8x3SgUgvcrzDYDVahUzMzOIx+MIBoOIx+N1BP/xtqNUkpFYYQg6y9wqent7jXFmSqHdu3fD4/FgdnYWmUwGhw8fRrlcRiKRQKVSQW9vLxKJBKrVI5uSMU+9TP3TqhHihCSXyyEej5u8hpxoxONxJBKJOhWCKt0WDjX4CsXiYmZmBrOzs/D7/Uin0xgYGDBpxLxer8lnLtVk0WgUGzduREdHR11uSkYGkagEYNRvzN3d1taGNWvWYHBwEKlUCjMzMxgdHTULDrcNmmknGDVEAprXJ9FAFTw3ypKRQB6Px9SJocdSJSTHFpIA0hnNlCfBYNCkZOG4D6DOAUBHMCO6eH/giE2ms8Lj8RiihCHmuVzO1JNlmW/s4tyLC83x8XGzYTdtKQl0GQHA0Px8Po9kMjlHKUnyPRgMmhzonZ2dxsnCiDFJHDD1C1OqMH0d91jp7+9Hb28v0uk0fvWrX2FmZgYHDhww/S+fzyMej6O9vR1dXV1mgc/+xLQyfN5Mfce5EetHJ0etVjMbmMtnLFMOUOmZSqUwOzuLWCw2h0xbiMJLcXJt9RVXXIHZ2VncfPPNGB8fx9atW/H9738fGzduBACMj49jdHTUHL9p0yZ8//vfx3XXXYcvfvGLGB4exuc//3m87W1vM8dcdNFFuOeee/CJT3wCn/zkJ3HGGWfg3nvvxQUXXGCO+fnPf45XvOIV5v/t27cDAN7znvfgq1/96rFUXWFBOsYA1JFkjfoJx3aOoTbhKNN52ee5EekkwuWYweN5PVvRzPMbwb4O7y3ToDCqmmvCYrGIVCpVt3km06BJe0QHtiSVpQ1jzm87jZuMWg6HwyYFRrFYNDmyWT5b4W+Tz24KZUbqSmJQOjbchG7y2ct7kigk+cz5A4lZv9+PUqlklPdyk1a2GY+z96ySUdv8zK2cVO7bDhYSq9JxARzd8DuRSJhUKP39/ahWq+jo6DAEOMspI9kkqSr7s/wty0oVeW9vr7GR5Bg6OzvR3t5uuBmmdmFkAu9JB0+xWMTg4CCy2SwmJycRjUbNvIbns2x8zl6vF8lk0ojvOD9yi/i2SXSbSGfqmGKxiEwmY35yuZwREMjUfZy/2M6rRu3oxjXYfZDl5DvG90Rudm+DdWUflNGddn92I93lnJvllPMz2V/dIgxbha6rlxZKpCtcwYW01+tFLBYzyvBcLodAIGBUZe3t7SYsOBwOm8Gw1QHBVsPxPv39/RgaGjJGaSWQlnLCIMPCZSjdsULmWqdarJXy0DDm83lMTk4akkQqB5vlv7evxboBR/PTcUFMQy832VhoHVk2j+fI5iobNmxAOBzG2NiYyQnsOI7ZjTyZTMJxjuTvjUQiqFarxmFhe6mlAQaOTn6r1arJ/8rFOAn12dlZpFIpoz5oNBFVKBSKpQLH+Vwuh3Q6DcdxDGnMRYskRuX4TCWWDOOVP3LhJBcQXDREo1EMDAzUKbpkqLFU8HDBD8AQtzJiySY+7P+plKrVanVqIrl4ZDnl4s5OaQMcJU8kQc5NNmX7yLLYbeY4jiGA5eJPEioLBcl02kK2TXd3t8lXCqBuQSaJHM7NSKwwAq2zsxOhUAjRaNTM1Ujgy8WhLDefGR0G7e3txonBjWGpCly7di3C4TAmJibq0rbJ/VOCwaDZ56ZWqxmFoLTPdJxwfsEyZbNZ89zolOEiPJVKIZlMms1P7fQIaquXP6666ipcddVVrt+5kdqXXHIJfvGLXzS95tvf/na8/e1vb/j9y1/+cu0bJxg2kWqrLd3aX6bHlLDHefs7niuvIVOAAPUpXSTx22x9JstqRz3Z5WY9gaMRXlLtyrE6nU5jZmbGiK+k2retrc1Ef7P8bilZbNtktycdpEwHE4lEkMvljBrbLjOJT3ldOYbSUe5WR/tY+cPv3AR19jxDEqSNxnCb4Lb7UCuOa96X/ALbhLZQkp4sL0FbWyqVTMQ350NsD+6dIlOJ8Npy7Wl/L8UIHR0dxtEtIxTc+p9MbWb3UY/Hg0AgAMdxjCM9EAiY9a3H4zGEey6XQzKZrFtHezweI96TEW/yObK9pLOK8y4S/pwLpFIpEykphQZyridFEm73sgl0yb3IfiL/lvNCW+zp1ndk+8l2lfPOhdgP2Z/se7uNaW6qd8XygxLpCldwMZLL5fDkk09i7969xihzEPV4POju7sZll12GF7zgBSY/67Fu9hgIBNDT04NgMIhzzz0X7e3tSKVSOHDggAnjXo7gACvD+thOJDPskKRWISeHVHqXSqW6SWGzgZyD8OTkJP77v/8bwWAQL3zhC/GCF7wAoVDIbC43n+NDTrxImIfDYZx++ukmZQ3reSweVVlfEgenn346enp6kMlkEI1G0d/fj3g8jt27d2NmZsaUgRMNpngpl8tGmU6Fo1ueVbm5SSwWQy6XM+q6bDaLffv2Yf/+/cjlcpiamkI2m60jg5Zrf1zOUM+5YqXDdsgtF1SrVUxPTyORSKCtrQ3PPvss2trazGImHA5j69atZtNH2izuh8KFsr14pGOUYybVdlzwn3766QiHw0gkEti3bx+y2SxCoZAJW4/FYsYxT0KVqniv12sUzxJSySU3uZqdnTUKP6n+YpQVbZkM1ebmnADMuVSyycV9d3e3UcBms1lzjiQvWPZcLodcLmfCqGl/+MPvj8Xhmslk8Pzzzxv7xqi2/v5+9PT0GKKcZWP6GDqXufjyer0m131nZ6ex1bSvtVrNOI7ZjsDR8HXHcUzUIfOjA0fUwSTfmcZvaGgIfX19pt6JRMKQRalUyvQh5uqlulL+zdQuXFj39PTgtNNOQyAQwLPPPmsi6pgbNp/PY2JiArlcDhMTE5iamjKh+ifDRtsKyNUGtdWKxYBNeNkEqBvBSshxWxJQNrkpyTU6CElI2gSodBq6ldWt30u1tJ2aRjqV6Sy06yGPBY6srw8cOIDR0VGEQiH09PTUpW8JBoNmTW07pWmP5JrGJvQkURwOh7F27do6xy9Tt9VqNRMRbqeVkepjtjfXsxL28+R1bILUbY3JetiqYKZ+k3m6Zf1kO/C5yfa17+P2LNgXyFvQXstNYuW5NtlfqVSQTCYxOjoKv9+PgYEBDAwMIBAImA2PpUNAEq/8kbaczu1QKGTmaF1dXejp6QEAk+JO5oOX+cVlCjlJOPP/7u5uOM6R3PxdXV3I5/Mm4iGbzWJiYgKpVAqFQsFETXB9zEhArv0pHmCfl+n7CoUCstksarWaiYJIpVKYnJxEoVDA4cOHMTU1hVKpZFLVyXJLR5s9TvCedgRJrVYz9ZfiQDlmUKhnz/t4fUlYSzW5rKfcV6bRubIf2vWy3wPbEWA7kxa6yfKxQG318UOJdIUrpCFxy/HJhReNQFdXl9k9+liJVKlk7u3tNfnWx8bGzICy3F56lsf2ANtquVZU383Aa0hPaiuLN5arUChgenrabO46ODiIavXILvBM89KM6JfKNBohv9+PaDSKrq6upkqRhYD1A2A2KM3n81i/fj0mJyfrFOn0nNdqNaRSKaNeYwg4Db9tjGmkuHt5qVQyHnOZty2RSCAWixkvPVV+qkY/dqjBVyhODEh8yoWJBElwW53HnJjA0Q2gOX7ai1+p6uYx0Wi0bpFDEoMEOcdsjrmSIOcYzXva4dhShUUCn2Vys7FUbHPhJBXisuzyPIJpydiOJB7kvQimjmFKEiq2ZehwK7mA3UAyWJLkLKdUA7Jskrig84BEg3QocyNR1pt1YF51kk6ShHYLZWYucuZAJ+Hf1dWFXC5n0uIwj7pMBRAKhZDL5UwflTlpWUepwiLJIVPicTFLhwZtdiqVMu3gRogd79zEDY0UtasBaqsViwG3vkA7ISOCCKlstdc5bgS6PEcSXIzmscvRTIXq9Xrr0njZZZLqartutiJZ2gy+S3KjRUa5BoNBY0tom5mWRV5TksdyrWWX1W5vkrOMHMrn80YJzBQXPE/aSKn65j3knipu9+UzpR2UznkbNrEo17jSZvDadiSB/Rzl+m6+tai8NtuWdtZWu8v72Qr4crmMTCZjbGAkEjHzHLkHC0UHdpnlupptwmtRJMaNv2kXpfPWXtNK0lWKIACYeQp/6MDp6uoy1+M8kKIJrnu9Xq+JQJMOBjmX4t9MDVOpVExfy2azyGQyJlUe89IzwtuNHJewHW28pxxH3MYSOVeUKQbZdmwv+c6wDHKdL9vVjpzku9KqM10+a+kAs/vsQpzzS2Gr77jjDvz1X/81xsfHcc455+D222/H7/7u7zY8fteuXdi+fTt2796N4eFhXH/99WYPFOK+++7DJz/5STz33HM444wz8JnPfKZuA/JW7us4Dm666SbcddddiMfjuOCCC/DFL34R55xzzjHVsxUoka44JnBhNjAwgM7Ozrq0LscLj8eD3t5esxCt1Wom9YZUW52IhdFCQePFnK4kcT0eT93ADTTeWLRVSKMgyQU37ycHeZlqhaGBiUQCe/bsQTAYxPT0NMLhMAKBgMmDJieNjEzg5M/v92Pr1q0YHh42SvTFeOZukAqT9evXo1ar4cCBA9i3b5/pG5OTk0gmk/D7/SgWi4hGoyiXy2YSQrWgTDHANuMmLMViEZOTk8hkMpiZmcHIyIjJJZdKpUxewEZqFUXr0MW5YqVjpfVDju1MwcY0bMDclF1UK8tFBm2APJ4EOhXtuVzOLAqq1Sri8bhRVcfjcRSLRaNk4oKJ4ykJaFsBJEkR2gE6pLlAlWQ6navA0cVxsVisc8LbTlRGWXk8R0KX6Zilkor3YTvabVOpVJBKpQDAzFFqtRp6e3vR3d1t1OlyQW3DLcKB5aR9KhQKePLJJ+s2daXiPBAIIJfLYWxsDJlMBh0dHeju7japariAzufz5jlzEcxFvM/nM/nvqSZjOajgl4tJtgWvRQK/Uqlgy5Yt6OzsxNTUFB599FFMT0+bujG/7MTEhMmpzrQ1vb29hqhnu1UqFfj9fhw+fLjOae71ejE2NobR0VHjUKeS3g5vZxvzZzHV46tRiU6orVYsBmwFJ3BUMU3I9VyjftdsnSFV727X4dgl02rYx/J7QpLitnrVbS3Av+WxMnpbEo90HPNvjsWBQADhcBjRaBQdHR2IRqN1ayyOxVyfeb3eOvW3VL5KhzLvx+uTNKXjnVFHUhnuFp0m6ygJddZNit04H5DHukWr0x6ThAWObIzKsnHTbrfUHW7Xsu/ZqD/ZfYCfyR9J7tvkunQEMHqfm2yXy2UEAoG6+YN0CNPJINf0vb29Jv0aj+Wa1X62UpHO/igJeUKeS8g9SKLRKIaGhhAIBDA5OWnKynlRMpk0ooharWYi3BgFTvh8PpN6LZ1OmxRrcoPR8fFxFItFJJNJs6aWz9PNYWY/r0aCPfv5SHW3LQiRv9m+8h7y3WKZpANLtrt9f8m9yHLIZ8N32HYOuT23VnGybfW9996La6+9FnfccQde+tKX4u///u/xute9Dr/61a9cN+keGRnB61//erz//e/HN77xDfzXf/0XrrrqKgwMDJh9TR555BFcccUV+Mu//Eu85S1vwXe+8x1cfvnleOihh8y+Jq3c97Of/Sw+97nP4atf/Spe8IIX4NOf/jRe/epXY8+ePYhGo8fURvNBiXTFguHxeMzO0WvXrkVvb69RAy8Gud3e3o61a9eip6fHkLjpdNosrOiVXQ5EOkl0qpapJKOyr1EermNBs5ywEpwEtbW1IRKJIBAI1A3us7OzGB8fN8oH5mIbGBgwKg6GQVFRxolFV1cXtm7dio0bN5qNYO0J7GJBOgPOPPNMbNiwAQMDA3jyySeNcT5w4IBRE8TjcUSjUWSzWTMZ7e7uNuFrMhceyRKq4yYnJ5FOpzE9PY2RkRGTI52LdyXQFQrFSkQ4HEZfX5/JjdnT02Nsgr0g4GZWMs+l3NySdicUCqGjo8MQm0zfweOnpqawe/dus6cHo9qkUlwSszJ3OgCzkRrB76SSnvMALnYTiQRmZmbgOA66u7sRiUQMwSvJE8dxjL2WC02m9gJQlzOe3wcCAaMykyrwWCxmHAJMK7ZmzRoEg0HEYjFMT08bR7u9cGL5pfJOLrCoCPN4PBgfH4fX6zW2ze/3G5W5JNL7+vpQq9VMSD9tNJ0Dcu7EBV4gEDDku8fjMUpxlkM6AThvIPHC9srn8/B6vTj33HMxMDCAZ555Bs8++ywmJibqnvPMzAzK5bJR3vl8Pqxbt84QD5OTk0gkEvD7/ca+c95HwqJcLuPw4cN47rnnTLu6qUQbtfNi4ETNB9zmUW5iCf5uVm+FYqkho5ykshaoT70ghUGNSDU3JTJB0orjtbQxct4vScxm4Abb9vn2esAe0+1IJEnoSWKUTmuWuVKpmA2auXbh+kUSc9LBDRzdz4zqb5lGy1b+h8NhQ2IyhQdTqMgyyfZ2cyTYSnJJKEvCm4SkTWrKZyz7A9uGm0tzfcZoYFkm2TfozJXKZDfHqZuzg//bz5gqcqYtcYP8nByF1+vFzMwM2tvb61TkXV1dRl1Opy/3L6Ed5CbmTOMq3xtZb1uNzs/YJ+z5BPslbTvfAdr8UCiEgwcPmn7B1Hazs7MoFApm43Wm37VV2FIVTsU50wcxhcvhw4fr5lXNHCM26S2fuxwr5HeN5otSfOimoLcdevL95flSxOFmb+2yyesRdt9qxGHJOeBy5R0+97nP4U//9E/xvve9DwBw++2349///d9x55134tZbb51z/Je+9CWcdtppuP322wEAZ511Fn7+85/jb/7mbwyRfvvtt+PVr341brjhBgDADTfcgF27duH222/Ht771rZbu6zgObr/9dtx4441461vfCgD42te+hrVr1+Kb3/wmPvjBD56Q9lAiXXFMYA41ek0XU5UsB0UadU4guFhtNqE6WeCkkDt/S8LZxskoKwdmTgC54OUO8Ry0OXGSRrWtrQ2pVGoOkZ7JZMwEjxMzXl9uLHsi60QynSRCZ2cnOjs76xwr+Xwe6XQaAIzHW3qTGxHp3PAkkUiY8DNO3mj0l6MhW6lQlZtCcXJBopkLQmmvpdKJi25bVeamcrKJDi44bCUYgLqFjK0OsuG2AJSLFBLpMiqNC3P7h5Dke6lUMip1O5qLdZfqOSqx5aLcTYnEhaVNesg6ucFW2VM1GAqFDBFBtaEkgNrb241d9nq9dTZLOiVsdaEst2wre1Eq62STD5KscXuOdLBTWcfN9FguhoyTtGcKGG5imslkzCaibHsuviuViiHSGQGw0BQ6knxe6TiR9VBbrVgsuPWH+fqIm/NovrWGTaZLklGOc/aY1khpLcvSSD1qk3o2SS9JR5s05vckObl+k3bazf7a/9t2TNZFEnwyxYVdt0Yks9u97fvJdpRtJdvSJtLdrsNzKVBz2zjajQRvRkraxxLyubH+bpuES2ePXQ+uTe37s8xMm0ebzXtyfSqjuuQ8yX4ubs/Y7f1x64t2W9tRF4xqC4fDCIVCxk6Tb2FfyeVyqFardfMTWT5boMbULnSy06ZLNFNks5/Y9tpuF/sa8n2T6WjluY3uS8znoG7kROO9FwutjHksz/HaakZWEuwXNkqlEh577DF8/OMfr/v80ksvxcMPP+x6j0ceeQSXXnpp3Wevec1rcPfddxtRxSOPPILrrrtuzjEk31u578jICCYmJuruFQgEcMkll+Dhhx9WIl2xvMCNMKLR6JyNwhYDcudrTozS6TQOHz6MbDZrNjJbaqRSKYyPj5uNOmgobPXCYgywtlG1yQKq+AYGBrBmzRoT2s3BkO1I4r9YLGJ2dtaE0Y2OjhoFAQ0JF/FnnnkmzjnnHPT29mJoaKhOiX4ywIlgT08PXvziF2NgYACPPfYYRkdHUSgUMDExgUQigVAoZHLBM3+7bBsZakcinZuNZrNZ5PN5JBIJo2TUBeHiQhfnCsXJAxdwJDQ5OaajlDY2Go2iVqsZNVIgEDDhuyRtOXZyoSvTmHV0dKCjowOhUMjk3ly/fj0CgYBRvZFglWQ4y8fyyIUtx1/OBXg+/5aLmFrtSI7Z7u5uo7xj+hEq4LPZLGZnZ5FIJMxGa8DRRRtV5sz9zXuwHCRvpaqxo6OjbjMwqvdnZ2fNQpLnyPzvtLG9vb3o7++vI7YZHdbW1obJyUkTcp3P5037ZzIZAEdsmM/nMwQzF46RSATRaBSRSMSo2zhXoy2tVqvG/ns8HqRSKfh8PpMTlc/edgxIgoeLPDqrPZ4jKXJmZ2dRKpWwYcMGAMD09LTZ6yaRSJiULlS2JxIJ7N+/3zwHXpPPO5lMIplM1kVKsD1afQ9OpMO/lfsDrdmwxTrmeKG2WrEYyOfzZtwB5m7oaZPbtrMScCczG8EmR4GjxCYJWumIlfdqb283GytyLOJ50sFsO4xJ3Ml1nqwj14VMpyId1pLoHhgYQHd3t0npYpPEbnWnPXQcp85hTSetPJ5OzWKxiI6ODpPShXtWyI0keR6vxzLLda0sH22lnadbks/SHksiVBLoAEx0GNN8ye95L/nMeA87Wp2OW8dxjABMOhSY45zOXZLFsvxSiMD5C3POy6hsmQKUwrpisYjp6WlUKhXE43FzPtXmVJ9zLxDOjTiXkE4Xzi1k/Xgt9gE7fSnbSs7d5HtEoV2tVsPpp5+O7u5uHDhwADMzM8apQFvN3zMzM5iamjL9mX2e/ZWkOdP+McVLLBYzqdpsdbcUFLilwJPvkpvowxZUMFown8/DcRzjJJCwxQB8h+V+PTL1nxtsMp+KdrdxSvIlbg4h2eekQ+VkbTbKuRrxqU99Cjt27Jhz/MzMDKrVKtauXVv3+dq1a+uiDyUmJiZcj2eE4tDQUMNjeM1W7svfbsccOHDAtWyLASXSFccETjiYV3sxwYHEzpNaKBQQi8VQq9XMBhlLCcc5EoI2PT1tFqScmLhNBhfrnvxtGxeGnvf19ZnUK8yRymOAI8aPG2xSnZfP543Bt+HxeHDmmWfitNNOMxM9Gu+TAfYH4Ehu/k2bNqGzsxOHDh0yjgFGKfj9fiSTSfh8PpNjkIt8n89nJmO1Ws2ED5bLZbN7uAyTVCw+dHGuUJxcyOgxGbrN8FIuDGkTcrmcIbhJpEqi221RRoKe9+no6EBvb29dWjEZyi4XG3JBIze6lKo2WXabkGGYNDdT83rrNzClPWbql2QyaRbnEvKeTJ9SrVaNXWAebrlQ9fl86OnpQXt7u0nDkk6nMTExYRTWblFNJCc6OjqwZs0a4+QFgM7OTqxfv944GEh8eL1eQ8Qwjznzktqg40Q6T0KhUN2eKUy3w2vncjn4fL66lDlsdxtctMowZZnmhZuJ9ff3AzhCJI2NjZkIPi5Yi8Ui2traMDs7a+ZO0WjUOL6DwSCAI3uhTExMHJcNWGol+kLI9OUAtdWKxQDHTLeNPyXpbStcCUl0zUeiy3NpT/g5xyp702lZHto8Oo+lOreRitUeV6TD0XYOMHWGLIckmgGYVB9u+dndIAk6EnAc4/k3y0TiNxAIIBgMmrGfm4BLAlbWT6afsclq/ua8QNoPu5xsW2lrZTvws1KpZDa1pr1wE5JJFb9sC/lc6QSR7UG7xjoxUo3PRqr2eQ7bzOfzmVzmfr/fzDmY071cLiOZTJprJ5NJlEolZDIZQ8h3d3ebVGZ8JnJuwxRsfKbAUYJZrocl6cpnLlXc/OG6llFsfr+/LsKvs7MTa9euRTgcNqnquBko2yOfz5uNa6leZn25UTudMnSoMKKdaW/5HCnuk31IOvn57CRJLfuI/Ew+d/m8C4UCEomEcb7T4SUdQ3Y/lX/L6BHOJe3+bqv/bXEG50Qywk+OO/b7wetLgUkrYoHFsNUHDx5EZ2en+dxNjS5h16GZc6DR8fbnrVxzsY5ZTCxtbgzFigXDk+zcposFOfGhgU6n00b9LfObLgV4b7tM/E4qp+SGIMcDTuzszbRINDAHLtUMMu2ODL1neha/34+urq46BYS9YSwNTSgUMvl1ubhdCjCfO3PgckLEiQMnDMyBSyVbLBbD7Ows4vE4YrEYEokEUqmUIY7o/T9RDhDF0uCOO+7Apk2bEAwGsW3bNvzkJz9pevyuXbuwbds2BINBbN68GV/60pfmHHPffffh7LPPRiAQwNlnn43vfOc7C77ve9/73jq1jsfjwe/8zu8cX2UVCgtcEHGcc5yjCu9SqVSXDgQ4QsB2dnbC5/Mhl8vVpbqSKVHkopbKYi4MZY70X//610bpDBwhVRjuKxcM9oZ0chFVLBaRzWYNoc2FWSqVMgs1uYAiSU8ynbYhm81iamoKMzMzKBaLc9pKLuIqlYrZ8DKTyZjNs6RCjfVNJpOIx+OmjCSOeKytfOJCnLZa5oOnjeeivK2tzaj9Ozo66vY8aYRgMIienh709vbWCR0YYk1HOskFO00b5wcy532pVDI/Ml8554B23lO7nlxk2wpLKsfkpuZsdy6+SaYcD6TzY6nnjArFqQSbDLYdpUSj9ZG0BdIpaZOqbufJa8sxQJZLKsKBo2OwHJvkmNfonvIabtG6HFtJJtuRPdJB3Cz6uBHciG22mfwhccxc1nQwMyrXbV1vt5kcy+WzcSu7vAbvL8vD9pLkr3Tqy/Wz5AMkQdps3cbnIklYabv4A9Q7Uqhgp2ODm2xyriPFfnyudPbTeU07apPD/Glvbzf7nJCYt1Omynq79V8bNjcg+xzL6Pf7jWOAqnRyBtzoVBL7LAfts7TLfEc4n6T9LhQKdalybJLcfkayrm59Xr4nbvWW37HOFBPQeePWR9wcbJKgt0l6t/Q/bs/AfnZu9XYrB/uz5HtOBpgylz+NiPT+/n60tbXNUZ9PTU3NUYITg4ODrse3t7ejr6+v6TG8Ziv3HRwcBIAFlW0xoIp0xTGBKmYubhcT0jBSwVQoFHDw4EH89Kc/RX9/P4aGhrBhw4aTpop2K1+1WsXhw4fx05/+1JC1wNHNX6QXGKjfmGShkI4LuZil8ejo6DBKbXuTGruNpLqvra0Na9euxcGDB80O3SRXpFe0v78fZ555Jvr7+5c0GiAQCGB4eBi9vb0YHBxENBqty8Um86qm0+k6VYFUjtiT+WaKE8Xi4WSq3JbzzuIA8NrXvhZf+cpXzP+MHFEoFhMkkDnGhUIhsx9EqVQyKvL29naT0oQbLzOUWOYEBVA3rjJ9GDdmzuVy+OUvf4nR0VF0d3fjFa94Bc455xwUi0Ukk0kT3svFKP9mujG50CyXy4jH4ygUCiYSyus9splXPB5HIBBAX18fAoGAUSF5vV50d3ejo6PD2MparYapqSk8+eSThoS3IUPPmaebG7JVq1XTTl6v1yzOCoUC9u/fD8dxjF2lqk3aXqnmi0Qi2Lhxo1G9S+V7sVhEJpNBLBYztndoaAjlchmhUMhs6EmllQ2Px4Pu7m6ceeaZ6OrqqnNwpFIp1Go1s3hmmZn+TDrduVEancxy7JXOdrmg5EKXiqtgMGg2CI/FYvD5fCbnKtuFBLm8vnSySML9eEjo5UCirzScTFutWL2w595u82x7Xt7sWkC92ns+SFWuLINMJyHLSWKQ5GCj+rgp5al6BeqJTtpLn8+HSCRixnuZOoJ1ohDIjbSfr85SZSyJc66LZDTyxMQEpqenzf4UkUikbj8ppi+R96eNlHXjulQS3CwHlb9sc3ks7YS9qWatdiR12eTkpEm/aTtqWRcZtS5TpxFcw7K8koBnhBedy47jIBQKGXGAx+NBNBrFwMCAIWQjkUjdfMiOkmMkA3BkPs80eSwb24bPJhwOY3h42DicmW6HSnDOG6RQQPYt+bzdnMUyAoD9kPWgIIC/qUYmh+D3+5HJZMz1aKu5kajH4zFp41hmACa1i1QB12q1Orsv50fyt3y+NuSxNqfBOsi+JvuvvK585+XnFBawv/CahMx7z7alQIScg7ymBMtliyBl3aQYkMfK9D7NcDJttd/vx7Zt27Bz50685S1vMZ/v3LkTl112mes5F154Ie6///66zx544AGcf/75pg0vvPBC7Ny5sy5P+gMPPICLLrqo5ftu2rQJg4OD2LlzJ8477zwAR+aTu3btwm233bagei4Ey16Rfuutt+IlL3kJotEo1qxZgze/+c3Ys2dP3TGO42DHjh0YHh5GKBTCy1/+cuzevXuJSnxqQHrMTsQiRZLV/MnlcojFYojFYiaNylIoiFk2Kv2ocpaqKenlnM9j3gp4Lan+oqGiQQ+HwyZPLTeskYbHNr48JxKJIBKJ1J1D8HiG63d0dCxpbnqSGPSi23kApddYbnJC4ogTM7k5m9xUVBeAJxa2ImOhPwuB3OH7rLPOwu23344NGzbgzjvvdD1e7ix+1lln4X3vex/+5E/+BH/zN39jjpE7i7/whS/EDTfcgFe+8pVmQ5SF3DcQCGBwcND89Pb2Lqh+yw1qq5cnpMIZQF0aFVtpJ/OAMsenJBbkIkHaE5K+tFOJRAIHDx7EoUOHTPoRzhnkdaQaUI7hclHNc+QCnOonhn3LRYitJmKZCoUCkslk3V4mbuBiifXnj1TP0e44jmPyoMsNx+32kfVjWjyq0Wl32UZcQJFQlkqxUChk8rw2AvOhM62bJL1tBbmsi1zQyvBnW0HIc+3/7TlOW1ubmZNIFb1cCNvnSwU8BRRUth0v1LYvDCfTVitOLk6mrW5V7NRKn5lP2Wl/7va//IzjnBQd2eOaXOOyDPI6MlVDo7rK9Zfc8NPNPixkPW3fT95HioVsNbecE2SzWaRSKbOXiRt5x7LYZKabzW5Wdrfy2N/T/kmhnltdbLvR6J5sc5bTVrXLcshnI/Oi22nSeIydk16eJyO97PS3kuimXadDwU2RbnMIbkSs23OQ/cuum1Socw4if9OZwOtyXU3ng4xm5DPjj4x6k6l7bIW7LHuzd1u+I83eNencYrSdzMkur8d7yvdNOtt4PdkGdt+zr2djvndCXkM+W+k4WQiRfrJs9fbt2/EP//AP+Md//Ec888wzuO666zA6Ooorr7wSAHDDDTfg3e9+tzn+yiuvxIEDB7B9+3Y888wz+Md//Efcfffd+PM//3NzzDXXXIMHHngAt912G37961/jtttuw4MPPohrr7225ft6PB5ce+21uOWWW/Cd73wHTz/9NN773vciHA7jHe94x4Lr2SqWvSJ9165d+NCHPoSXvOQlqFQquPHGG3HppZfiV7/6FSKRCADgs5/9LD73uc/hq1/9Kl7wghfg05/+NF796ldjz549iEajS1yD1QfHcZDJZDAxMYFarWbCwRopoBeKWu1IuHQ6ncbMzIwxpkyjUiwW8dxzz6GnpwcdHR0YHBw8qelGstksDh06hHQ6jeeff96kdZHqKg7IDINiShI50LcCDqQMxaOR4uBHw0dyORwO1xnAZpAhetLbzkmW13s07zo3kZNh6EsBOg0AIBQKGdUhyQ7F8sZieM5b2V18Oe8sTvzoRz/CmjVr0N3djUsuuQSf+cxnsGbNmiYtsLyhtnp5QkZGOY5jFn3c54JjOwAkk0kkEgnUajV0d3cDcF/YkAh2HAdTU1M4cOAADh06NMcGUrFN+zIwMAC/319HqFP1TLJULkqZs5spZ7gRXG9vr1kokah1HMekX8nn84jH48hkMjh48KBR4EmFugRtdSKRgN/vR29vr0kdJhVX3DiPOWyZ8oxqJhIx0hEgVU9y/KO6LxgMmvkTcJSA5saf8XgcAExZ8vk8Ojo60N7eXhfxxvkXlfFUldNpEAqFzGKW57Dd5UawnGuw7FRKyjmHbBOOjTZp7ziOIRO4ISo/V7J1+WMxbLVieeJk2uqFksKN1kZ0/PFYN5LcbVy3x2GSckxtIddKUvxkb9RJSBJO3keS10C9SlWqcWWua46ZtHeO49RFdhWLRbO/BZ3b0qloq68lWSnJb/5P4pwbYDvOEaVxIpFAuVzGzMwMQqEQOjs7jWiqEbFIsJ1YXz4n1lmSzdKJz/uTuM9kMjh8+DCy2SwOHjyIqakpE6El7QajBpj6jNezyX27D9ApLJ8h5yB2v5FiM6ZUs50fbk4QthHTo1B8xhzjXFfTXnJtLdPA0HnOdqRDWzqvS6WSEQmwL9kiOJZFpuFhv8zlcnX9rlQqmTmhTAlLsSDna3L+yPvbfZKqe9lObHtJFtskvTyfkA4IOT7wmvxe7qdiz++k80heU74r8nj2Jfkuy/rIaBjpTLP7j/y+EeR4ZtdzITzaybbVV1xxBWZnZ3HzzTdjfHwcW7duxfe//31s3LgRADA+Po7R0VFz/KZNm/D9738f1113Hb74xS9ieHgYn//8502kNwBcdNFFuOeee/CJT3wCn/zkJ3HGGWfg3nvvNZHerdwXAK6//nrk83lcddVViMfjuOCCC/DAAw+c0PXlsifSf/CDH9T9/5WvfAVr1qzBY489hosvvhiO4+D222/HjTfeiLe+9a0AgK997WtYu3YtvvnNb+KDH/zgUhR71SOTyZhBnX87jtMyidsM1WoVs7OzmJycxOTkpFEkkVxPp9PYu3cvgsEgBgcHT3re7kwmg1//+teYmprCvn37MDk5aZRxwFHDUKvVkM/n6zZ7azQ5c4NUoTNPLBUDNLJciJNEl5vUzAeS0o7jGKKira3N5Hqn+lten+FSx/uMjxWss9frrSPS0+n0kpRHcfLRyu7iy3lncQB43etehz/4gz/Axo0bMTIygk9+8pP4vd/7PTz22GPzbvKyXKG2enlCLr6Ao6orEqeMSiqVSmaTzO7ubgwNDRkylosgLqa6u7uxdu1alMtl7N27F7t378bs7OycfUIKhQJGRkaQy+Vw+umnY/Pmzejt7UUsFsPMzIw5Tua25EIyGAwagrpcLpscpVzIRaNRQxxzUceQ6Fwuh3w+j9nZWezduxeJRMI44Rupm3lOJBLB4OAgurq6UC6X0dHRgUqlgqmpKSSTSQSDQbOIYzQXSQouSAHULXztxYoMDSdJQkU/F+/MU880LwMDAwiHwygUCiaPPUkR2/nAuQZV3XQ4+P1+o+Zne5HEZ79Ip9OIxWLweDwmUk0udllmtrVchEuCgvMH4GjIe7NIgNUON/JvIecCSlArFgcn01bbamE38sqNSJLgeCvJL/k+uSk75bjLvxuJh0iaMZJVkpPymnYKBrmZqX1PXtMm6m07LG2x4zgmbReJdKqbKSDiPW3SWBK7sk1kmZmqjORotVo1aTELhQImJyeNzV+3bp1JCyKjsdxU8PI4qT6W5LZMncZ61Go143xPJBIYGRlBIpHA/v37MT4+7mqrOQ9hmjM6PegMdgP7oG2L7RzUdnty77FoNGrqJ4lkHiefOdemXq/XpEmhY5qbu8ry0lFCAtveNJTOCXIMNvHMe9rqaUn8yuch7TCfB+cA7GdcY9ORUS6XTb56pqOTDhEbbBv2x0YRDtLJJd8luz7SQWCTz7VazbQhcNQ5Io+Rwg0557QhnS12n5C/2Z6N6u5m6xtxJgsVVy4XXHXVVbjqqqtcv/vqV78657NLLrkEv/jFL5pe8+1vfzve/va3H/N9gSPtuWPHjjmcwInEsifSbSSTSQAwYfAjIyOYmJioUxIGAgFccsklePjhh10Nvq1edcuXqWgOeiLL5TIymQwSiQSCwaBZ3B4LpHqAC0jmVOX3VFglk0lMT0+bfK5u4UiLCbnolJtX0lvuNqDKyRm96MwRCjT3OLItZLiUDEUj3LzjC4U0DI0mZ428/UsFlmWxoiAUJweL4TlfyO7ibuqUZn3F7Xj781auOd8xV1xxhfl769atOP/887Fx40b8v//3/8zCdaVDbfXyAp3e8XjcLCSoSpepU4D691SGv8rFC9NicVPIfD7vGqrNqCwu4IPBICqVSp2aiHaLCy4u7GTYrVSOyUWmVJzZ6d64EMxkMigUCvOOPbwGCWg7bFwuklhWHsP5gVyw2eOdtLVS0cWFrcz3Khdqto12eyYsPxfPMvSc5ZQbf7E+Ui1p15P3lOOgVBHaaQrYl8rlslHkcW7WaIGpaA0nm0xXRfqpgxNpqxdjfm7PvziONBpPbMWoJN/sTT7ta7ilCZlvfifJMKlEdwPHdekU4DVoD4rFInK5HLLZrIkg4jjsRuzJa8jxmvWhIpfXpW1jG5Ek5v4h3EdF7psh286NzJVlsH9sSIUy5x5yY2+Sxm7rataJ7Ww/a7f7sQ3tazbLxW2vpeV8qBWlsVSryxQvbir2Rn1OHiPV6bI89jlucwI5lttzO55DJ7y98bjtDLHnIbyv/M3yurWfXT83x488h/eR6nSpxgfqo/1sJbl9b9ZLfi7L4HZ/OV+TTo5WIccH+71zcyxKNPpcQm310mJFEemO42D79u142ctehq1btwI4ujurmwLwwIEDrte59dZbcdNNN53Ywq5y0Cglk0k8/fTTqNVqGB4exotf/OJjDqGgwc9ms3jmmWfws5/9DLOzs3PUxsViEU8//TQOHjyIzZs3o729HWvWrMHQ0BDWr1+/qMQqB5lyuWwmlwcPHsRPfvITTE5OGlKiEZgnjPlU6fGNRCJ1kxQJuTkMVejcUNPe+ItoRvS1Ardz3AznciKspYFbTuVSNMZiGHzuKt4My3lncTcMDQ1h48aN2LdvX9N6rRSorV5+yOfzeOKJJzA7O4vBwUG86EUvQigUQiKRwNTUlFkc0Dal02kT3kvim8q5dDqNRCKBfD6P/fv34+DBg0aRLVGtVjEzM4N0Oo1isYhoNIru7m4MDAxg7dq1xhb6/X6TV52pQqjAkwskufDi/3S0ZzIZpNNpY48dx8HMzAwOHDiAmZkZswHWfCiVShgbG8PMzIwJveYCiG1De8z8snbucLnvBsEFKuvGjUlJalSrVRPSHYvF4PV6USqVTBQYFWtMc0f1Pxd2Uu3N3OS8X7VaNZuNhkIhhMNhAEeJH5k2wOv1GsUZN4SVIc2pVAozMzNmg7Kenh7T3tVqFbFYDIlEAn19fTj99NPR09OD/v5+BINBE13YSt7P1YbjWbAuxfxGF+enBk60rea45Zb+oBWSiMc2IpClY9GOCuZ4xn2j6Fwkuclj5SaUMvWKJMDcHFm2OtYmFyWZSHvF+0qylQQp13q5XA779u3DzMwM1qxZY6Kf5HpROkB5P5l2S+ZCZ/7zsbExHDhwANls1jg9WN5isWiU4GvWrIHjOCYybXh42Ozt4ff7DSEvHdeSwGzkaOBzYZq0YrGIWCyGVCqFeDyO0dFRk6+ddZX2wiY+HedINLXbGlA6LHgsow34I6PtGonhZASXvJ6dwkYSz7SZtNuVSgXBYNBEnMmUNPl8vi6tCu9riwXotLYjBPjDNGr8XrY1uRXOEaRwgfVmZF0kEjERgaFQCJFIxMz/qP6W/ZoODc5vZB+VOehZJqnol3unsBzy+bDsPE4+Z37vpnaXUY4AzLsg5zTyXacYQPYxqZK309bJZ9So37iNH1J8IcUfvI4cn6SDaz6orV5arCgi/eqrr8aTTz6Jhx56aM53ragEiRtuuAHbt283/6dSqTnpAhTNwYEun8/j8OHDZtF71llnHfM15cA/MTGBPXv2mLxiEuVyGYcPH8bExAQqlQrOOOMME/pN47ZQj+F85apUKpidncWBAwdw4MABPPvss5icnJzXO83BmhO6UqlUt0mmnW+cC2LmhZe7ltubvRGLuciyvchyMthMYXCyoST6ysTJMvjLeWdxN8zOzuLgwYMYGhpquY7LGWqrlx/K5bLZ26NWq+G8885DNBrF7OwsEomECUXmooV7cdB+cbHX3t5u8olns1lMT0+bHKv2pL9WqxmVmcfjwf79+9HV1YVgMIiNGzciEAigs7PTkKzMySnV1PYCjYs2O1clVeSSwGZk28zMDIB6NWMjVKtHNksFjhDS3d3dJtKNi2AqB3n9VjbDdFOKk1BgeVgnSZKzzXkOw7wLhYJRkMmFKnBkHCIp7/F4zKbbTMPC+khHBJ+dTTax3H6/H47jGKI8FAphYGAAXV1ddfXI5/Pm+3A4bPaykXnbFcsfujg/NXCibTVTQbr1Jzc1pltUrU1KSUgCzv7Nv+kEtpXCrBPHT0ms2sSd3Q52G0nFKu/ZbD0lSVeCZGe5XMbU1BSy2Swcx8G6desAwDiyZR0kiW8TgrRThUIBuVwOiUQC09PTdXtryLaiLSuXyxgYGEA2m0U4HMbw8LCxAUxtxjzrtgODv5u1G6O+uAfI7Ows4vE4YrEY0um02WhbPiPWx3GcOYSyvTa1HS88l8SpTc43UrPL+Y+dHoiQEeZyXSp/uNanLZf9ns/bTgvkpuCWBLV0KvA7fi/fAengt5+LtPkkyEnIc55AEpn8jB1BSEe8LCOFg2x3PjepFJfp5Ox+JPsk555yPwP5PEny2/1evntyDsv3xB4fuMaT5xBsD1k+uedQM15GRjfIdpJtIsviFk0wH9RWLy1WDJH+4Q9/GN/73vfw4x//GOvXrzefDw4OAjjiQZckRDMFoNvmdIpjA/OZU/n07LPPYnZ2Ft3d3eju7p439Yb0Ks7OzmJ8fBzJZBKHDx82OeIaefxqtSMbnTKvGhVVwWAQfX19Jl84w9dbIVx5XXqgU6kUYrGYUcmPjIyYvO0LGYBokB3Hqdtgpru7G9FotC5Emh7wSqVi0tsUi0XMzs4ackOGNDHEXoaIt0Iwy4kJJ1skImSZaeQ5mXBT0Z9MSLVJsVhs6GBQnNrYvn073vWud+H888/HhRdeiLvuumvOzuJjY2P4+te/DuDIzuJf+MIXsH37drz//e/HI488grvvvhvf+ta3zDWvueYaXHzxxbjttttw2WWX4bvf/S4efPDBukXofPfNZDLYsWMH3va2t2FoaAj79+/HX/zFX6C/v7+OfF+pUFu9PEG75vV6MTk5id27d6Orqwsejwe9vb1mQ2y5kaRU5pFALpVKSCQSRtmWSCQabuIpUSqVMDs7i0KhYPKCc5He1dWFTCZjCA/m4WSZuSEmSX5umsZ5h9frNRugMw96pVLB9PR0XbqBY1k00JYynylVTR6PB+FwGL29vWYfBW4U5+ZgZ1vSKc6NUUlMyOPkxlyNIsIkASTvJ50RXFD6/X5Eo1GzOIzH40apGQgETJns3KFUcdm53rmZGhV1UnnGlC4+nw/JZBJerxfJZNLMz3ThtnA0IqbmcwopFM1wMmy1TEsCzJ+qwCbBgMYbAwL16xiZ4gFAnRPW7XhJyDUio3hduxw2YWcr0RuV2a6b2x4adECXy2WEQiFjx7q7u83aUebS5vU5vnNcLpVKSKVSmJ6eRi6XQzKZrMuPboNtVSqVMD09bWw1Fcp0ijL9jFRls+78LdXAUokLALFYzKyjJycnEYvFkMlkzJyDhK4kgWVf4PrP4/GYNHCSuKR9kmAaOjrduWbmfWX5OJfhMbbdshXyHIclWe31eusiHeSz55qVzgTp9Lb7gnSy85qy70mFtlwXS4eD7POynvJzOi+oMJd1Ytmkk11CqvHtKAmWnU509lkZxSfbhnWy1etuec3lu83+YH9P2JEIsp3dnClu/brRtXl9+368NsvJY/hbfk4nnFSvLxfhoqI5lj2R7jgOPvzhD+M73/kOfvSjH2HTpk1132/atAmDg4PYuXMnzjvvPABHBsxdu3bhtttuW4oin1IoFot47rnnMDo6isnJSVSrVfT09ODcc8/Fi170orqQZDdUKhWkUikUCgU89dRT+PGPf2w2HZmenq6bxEhwkJqcnMSuXbvg9/uxadMmbNmyBT09Pdi2bRs2bNhgFFH0kDYblDiYlkolxONx5PN57N27F7/4xS/MBqdjY2NGibYQ8paEABfh9LCuX7++TpkXCARQKpWMgT18+DCmp6cRj8fxzDPPGIeBDH1ibrtsNgufz4dwODzHu9qovpww5PN5pNPpOSF/NMgMw2OO98VU/C8EcrJQKBSQyWSQzWZP6U3MVhJOpud8ue4s3tbWhqeeegpf//rXkUgkMDQ0hFe84hW49957T+jO4icaaquXN6i0TqVSSKfTmJiYQCQSwUUXXYSLLrrIbCzt9/tNLnW5NwcdrrVaDaOjo/jv//5vZDIZpFIps0BtZhOz2Syef/55tLW1YXx8HHv37kVnZyfOPfdcDA8PA4DZPPv000/Hxo0bUSgUcODAAbMHS0dHB2q1GuLxOKampuD3+9HT0wO/34+pqSk89dRTyGazJvUJNyU7VnBBTKd3T09PXS7Rrq4u9Pf3o1wu45FHHsHTTz9tFrL2vIWLRqq3OQew33mSH9VqdU46ArnIBOpJCtrkQqGAmZkZE6XHCDimc5mYmMCBAwfQ1taGM844A729vSYtj61ak8SUJJ/ogKEjGziqyGT6G7/fj7GxMUxMTODw4cOG2FHid+FopFDk7xPRpqpyW704mbaakTNuSvNGcCOebVJaOiw5DnJtQIeejP6VylEpxpHjnZsyWRJwUrnK90OO89wY1B6rpeLUJuLljyRGabeKxSKCwSA6Oztx2mmnmXtwHSmdmFyj0dldKBQwPj6O5557DrlcDmNjY5idnQWAOuJTqum9Xi8KhYKx1RS4hUIhDA8Po7u7u26D1EgkgnA4PIdEZ92LxaJJS8rUNePj4xgZGUGhUDCbeNOZS7EZiXRuACvLyXV6rVYzKWY8Ho/Zk4ObfLKccrNrpjnj3i779+839prPlH0oEAiYDV9lmwFHHUR0iMvy8VlzHc91NB1KnC+l02kjIGCKNKqVZV/3eDxGECjJWNlv5PyC/ISdIo/gs+H8jg4J4Mh7ToKXbcG6y+crHQbst3aEvVTRS/KfZSHXIN9R2X+kw8RNnCDfa16LQkV5b5aXAgtg7mbEjSIKGmE+gSjHBjoRZJs6ztFUPbYDhmAav1agtnppseyJ9A996EP45je/ie9+97uIRqMmd1tXVxdCoRA8Hg+uvfZa3HLLLdiyZQu2bNmCW265BeFwGO94xzuWuPSrHyRZGc47PT2NarWKZDKJXC4Hn89nBg1bTQUcGUiz2SxyuRzi8TgmJibMYr8VcpSThra2NnR0dCAajRoivLu7G7VazZADdhicXRb+5kKX5DJV4SwXB8mFLmDkQM2JQjgcNgR6T08PAoGA8fbTINL4h0IhM7miMZDKdDlRcJsQ2s9NTiblj5zEyu/lJHUpIb3KLJsag5WDk/msluPO4qFQCP/+7//e9PyVCLXVyx8yvyNVb7lcri5cnJAEqlyk0XGbTCbNxmCtTPir1aqxX1xQ0FZHIhG0t7cbEoJELBc4hFxEc7FYLBYNqctUaNzY9HgWGCwnw5upymM529vbEY1G0dvbi3K5jGg0imAwaJwNXPxJ8kYqIEulklFwSlKDC0c3FaWbktCuH4l8EjC8LudAwBFyi2o1mQ5AXo/llfdmWWUeT/mMONfjfbm4lUSFYuVAn9fqxMm01bZyeyGwSXR5Tf621bZyzJcpseS5bmNaM2GQJCwb1ZFoFEHkdo6bkl4StcARQj2TyQCAidIGYPYSkesyKQZjWtRsNmsERxREuaWVsR0NjPhKJpMmX3YoFILjOEZBTaLWXl9L+8D1LMVPFKJls1kUCgVTTtsRz/I0Uhm72XaSk3SiSGEZbS6fJW0tneKyzWWOcRmJLfuYJLxtcpm/pepalpVrVukAsuvi5jilQ0C2gX0852skcWUZbUgbLzkBt3dJ8hdu17PfMVlufi85E3ltt+PldaUDwYZU5NtqeJvnkXMyu55S8W7zRI3e+2YckJujzS6brVKX97L73HxQW710WPZE+p133gkAePnLX173+Ve+8hW8973vBQBcf/31yOfzuOqqqxCPx3HBBRfggQceWNHqvpWIdDqNffv2IRQKIR6P49e//jUCgQB6e3sRDofNohQ4spBjns/JyUlks1mMj4/j0KFDJsXIQlCrHcnvBhxRmqZSKfT29qKjowP9/f2GtGY5ZLiQzIVle6QLhQIGBwfR3d2NQCCANWvWoFAoIBaLGU97K5uY+f1+rF27FpFIBENDQzjnnHNM2RhWz0U6JwOhUAgA0Nvbi3Q6jWg0inQ6jQMHDmDv3r1mUsBc6mNjY0gmkxgYGIDH4zGTHDsaQJIis7OzyOVymJqaQjqdNhMdtilJgXQ6jampKWOsgsHggp7PYkFGMCQSCZN/VxXpKwPqOV+9UFu9clCtVk0ar1/+8pfIZrN1qiAujoEjaUCYM5wLi/HxcRMSfSw5r4vFIlKpFIrFIp566imjkKZt/vWvf42hoSFDCsgc7bVaDdPT04jFYvD5fEgkEggEAshkMlizZg2KxSLC4bCJrmIUV6ug7Wxra8OaNWuwdetWhMNh45Cn4o05w9PpNCqVCtavX49wOIxKpWJs0vj4OA4cOFA3x6AKLxgMIpvNmhR4XPh7PB50dXWZunOeEYvFUK1WMTU11TAnO9Vuk5OTRknHNDocP+WmsTJXOs9nODsV98FgsE4tKFWcbCfO2UiykHDhgl72nZOJRukgVgNOtD1UW716cTJttSR4gXqVqiReSfrZzkcJm5yyVa4ylSfXfDapLfODuxFkds5jpniQKlVJ3rWqYLXrIUlWtpEk9DlmU1UeCARMtBGFVxxnpQiMjtRYLIZCoYDZ2VkcOnTIpPyS7S7rQUgVfaVSQTweN1EFiUQC4XAYkUgE/f398Pv9iEQixvkibQzX+hS7yecHHFnXlkol+Hw+dHZ2mkgs2hkqze1c1fzNZz0wMICOjg50dnZicHDQRHczZSptFB0PdAB0dnaiq6sLPp8PuVwO09PTGB8fN23IFKt0yJNwb2trMxuQM484AMMFsA29Xq9RnFPlzU0uOW8iKU71MecpdoQEn5GMDrS/k04n29FhO+Z5benIYbQAy8z2tx0XtgNGOiVs8lpG0kn1Nc/hdzKlCbkX2SclCW7X3S4P/3d7V4H69EfSccLjbFU9hY8sv/1c7DHKba5hp+qT7W/fS9ajVbGm2uqlxbIn0lt5yB6PBzt27MCOHTtOfIEUDcHUIB6PB/v27TMLqvXr16Orq6suvDiZTCKdTpudxDOZTJ2XcKEvt+M4SCQSSCaT8Hg82Lt3L7xeryGrg8GgIa25kGxvb6/L9cYBzufzoaOjA4FAwBDgjnMknDmbzSKZTOLZZ581G6i1ki/d5/NhaGgIg4OD2LhxI17ykpego6OjbvIl709Eo1E4zpHwuKGhIRQKBTz66KM4dOhQHcmQy+XMZMvj8SAajRrj4JaTj+dMTk4imUyaHHWcxLBNOQEgke44Djo7Oxf0bBYT1WrVGHr2IW7GqlAolg5qqxcfNvm4WJNeKrlJZO/evbvunv39/di0aRPa29tx4MABjI2Nwev1GlK2WCwuOL2ZBO/t8XgQi8XmKIl6enrMJqQDAwNm3sCyc+7AOQUX1n19fXAcB6FQCJlMxtiHhRLpfr8fPp8PAwMD2Lp1Kzo7O02Z/X6/mVPEYjGMjY2hVqth/fr1OOuss1Aul42z98knn8TY2FgdGVAsFjE9PW02bWUKl87OTpOPtrOzE16v12y+ViwWMTk5iUwmU+fsdoNM7cJ0NFIlx43FpLJctj+fbTAYxODgIHp6egw5Q3FBoVAwhAJVctxXJhQKIRKJmMW5m6rwZMCOQNQFo0JxBCfTVku1q1Rry7UPx1uudewNkO3ruKl1qdiVUUOMjJHkHAk0m7SyIUk4EnVuhDkdz25rLbfrS6WzFC3xOLke9Hg8KJVKJmKAm9L7fD709fUZQpfnyE2lSYAzTRtTldBB3siJABxNGcZ0cNwHbXx8HH6/H52dnVi/fr1pYwqrSHRKh4a8NucPAEzEeCgUQqFQMA5pqu65rrY3f6X98vv9ZsNr7sm2bt06Ux6uhaXCn6nFotGoiZjq6upCsVjEs88+a9qJ+7KUSiWk02lUq1UTlcbUOrSfbM90Om02cqddzWQyJgqA0Wfcf0Yq3em8YZoYtwh+2+nSqJ/JjcFJ/str2imR+E7ICIZcLmeIdHszc5u4Juz0JHZ0gp3iBajfw0CmkuF74aZet8tB5b+dFsZNPW+PATIygLDr5jYHt50YzcZTx3FMpgAAdeWU97DHI7eoA8XyxLIn0hUrCxwgJSGbSqUAwCwcAZgcplyUSY/1sUIOcFy8cbdyKtoA1C0kCRp5GspoNGoMJicJVDm0t7cjnU4jEokAgJn4uanzaCC4OO7t7TVqNhq4ZrAniB6Px3jf29razCZeNMIADNnv9/tRLpeNAedislwum9A/Gkyq293an6qIeDxunqH0gJ+MRTLLValUTJodEuhqaFYO1HOuULQOW8VyIiBVwwQX4G1tbUapxIULVVWL8T66hb7SbpOgZbozG1RwRyKRulziJNJpN0nyMnd6IzvHxQsd6czJ7raolaQyxzSpouLi2u/3mxQ1cmMtHs+8sdwwrVwuG7W41+s19pkkvlyQNQKVfR6PxyzMAcxZLFIBKjcpl8/YViYyPQsV61S88TipiCN5lUgkkMvljFBCsXKgtlqxGLDJLTdbJok6aY/kek7mhZaf8x62alwSdjLdhX2uLKe8PglRfmeXF8AcssuOvmGZGwnE5HH2b7d2kutMKSCiWpaR3uVy2ayr7Y1U5T3dyPRGqUCketneZJrl4G8SubSnjLLmD6/PY7ge55xDplqRCmZJKLMOVJ2TNG6Wu1qSvFRJM888iXkAhqeQxCufM+ckXq+3LtUpbTWfB78n3JxAjBLw+Xzo6uqak76kkfLZno/YpKzb85Pns1/K1C+c88n90HisfLaNwHfGbv9mc1iew3evWR3s60hlN+C+SbENWTabv3BzDshru6nReZ35nBuN6u72+bHM9dVWLy2USFecEEhPZ6VSwdTUVJ1XkgtChpgv9svMgYXqLK/Xi9nZWeMl5ySit7cX69atQ0dHB9avX48NGzaYcGh7cU6jXigUcOaZZ6JQKGDv3r3YvXu3UYQnk8m6cpCI7+/vx1lnnYUXvOAFiEQixlveKhhOXq1Wcdppp+G8885DKpXCr371K+MoSKVSxniT9GbeVuBoqCAdGOVy2Wyq2mgXd7bl5OQkfv7zn2NgYAADAwPYuHFjS4ZrsZFOp7F7924cOnQIzz33XFMHgGL5QQ2+QrFwnOy+n8lksH///rqIKxLIXPScqDLRRnHvk2QyWbfI8fl82LJlC0477TSEQiGjDs9kMkgkEnAcx0SeMUWax+PBL37xCzz88MPG8W0TKcyrGolEsGXLFvT396O7u9so17gxFzdyszf5ZL74trY2RKNRhMNh9Pb2or+/3+Rtl6HfbGdG8XG+EQ6H0dfXZxTpTOnCORMXniSL7OcwOzuLp556Ct3d3WYjc+a155yLKQ8Y+i8VXnTYM2KPqv7Z2dk6gYQMl3ccB5FIxIgNgCMCip/+9KdmU+eTnX5NEmlqOxYOtdWKxYDMo03YqRs4ttqKdDnWSLW03TdJiJK0stNgSBKdGz8C7mQj7z2f0InjJaO75PqJ60uqeblO4Wesk319pg6Ryn27fJlMBl6v10RkyXZgGeg85vpbpkRhW3JTRtsRLAlRll+SjW1tbSiVSpienjYkOIlz/kQiEZMONRgMoqenx0SPceNZlon/p9NpdHZ2IpvNIpFIIB6PG2U9o6XpkJV2ig5vqt25znWLyLbV/jLlSHd3NzZs2IBsNmvaDzgiTCOpXKvVjJiMpDvrzL3UGAnv9/tNWhipOJf9JJlMYt++fejq6jJiOzdHNu8jSWQZaSEjrtgvebx8vnyGsh/4fD7k83lMTk5ienoahw4dwsTEhLHXfr+/Tr0t+4lUybOMfD58l9iPG6VucptP8hxG50tnDeeC8lr2HgHy+fN6Mh2tjITh/7LM8j3g+2SndmpEjkvYjptmzg15rCTwWxEgqK1eWiiRrjghkJOXpcxfLfNg2eBgODg4CADo7OzE0NAQfD6fCQ90A0OmueHZxMQEfD6f2Q1dggY/HA5jYGAA69atM4P2QuDxeMyg393djaGhIYRCIYyMjACAmawBMIvm9vZ25PP5ug3HAJiNXqhqaOX5ZLNZHD582ExmGnlTTwSkUWF+2UOHDiEej6sifYVBDb5Csfwh85pKnKwUWtJuM68rQXvW09ODSCSCtWvXIhwOY2ZmxkRLMW8r9yTx+XzGTkuVtgRDoknODw0NGVJYLtrK5TKSySQKhYKx7VR/U1HO1AKhUAjhcBi1Ws2o1SRI0NOeejweQ0i3tbUhHo+bvV+4EHNbrMnPSJgzvzrzr1KdWKvVjKCAykISClxMcvHP8/L5vMlfy7KRvCK5QEKEc5tCoYBDhw5h//79SCaTS5J+TW3GsUNttWIxwLHFLVWBTRJJ8ZUNSQq6Rf5KpTNQH2klx283coplcyPs7OM4VktFt53LGzhKQEpyjqStJHLl2sxOt2VvAi3zu9vtxrqznegw4FjO60v1PsdvSRhKQtYt3YTH4zFrRzrauTaV5ZD7kcmNP2k3aC8YCR4KhZDL5Yzjm1FQTFUj03FI5T+jvmw1unQAuP2Wz4Dr9Gg0amy3dNwAMPZdqtgliZtMJpFMJuv2X5ORXiRm2b7Skc2UNiR/3ZToNtFsfy8h+5RcP/Nc6VDg3xQiJJNJI2RgihwZ2SF/S7LZLZJBOmXcCGH5mRwfZP9nBKR9fVvFzvuwz7MdeS2+e27tyLmPzAlvp5WS7WdHnDSKApD3aIUvcSPTW4Ha6qWFEumKUw70xre3t6O3txennXYaurq60NPTUxce1ux8TgKYS5Z55FKpVF0oGFVpPT09xjgfLwEtFWskFezJKSdEJMqlYWX4X6veTgDGYVCpVDA2NobR0VGEQiH09fXNyYW32KjVambzk4mJCYyOjuLAgQNGqadYOVCDr1AoWgUXQF6vF11dXRgYGEAwGMSaNWvqotsKhYIhoR3Hgd/vN6QwFXzBYBCbNm1CJpPBxMREXfQY70NVejQarcstzkUziQGmfpGh6iQp2tvbjaqyvb3dbDKey+WQTqcNsUJCQo6JjuMYFTg38ZQLYbk4dltg83/OAWKxGA4dOmTEAcFg0CySAdSRD5J0kkpQEgsdHR0mBJ4pXTgPYp0cxzFlnp6eNvuYSBWoYvFhkyaLAbXVihOBRiShVJS6nSPV5RyLqaq2Nz+Uv20Ccz5wPHdbA3J8t9NBUG0r11ksV7VarUsRYyuEeawbeSbzKrMOzYh05vEmiWtHXsnNN+WYbW/e2gy2iMo+HziiMudmqJ2dnYhEIsZRLZ2wst5tbW0mlRrvQQcu250bX3d0dKCnpwcdHR11G4HLTStl+dxU2ZJEdxzHpHKtVCp15LzdzjKKng4UitcYmVCpVODz+UwEmx2NwL7AjckBYHp6GtFoFB0dHRgcHITP56tz0JBUlkQ4HSG8nqwzP5P9Uc4lHMdBKpVCNpvF5OQkpqamMD09jVQqZcrMa0g1tt0W8l68j1v/sNP/yHK69Ws+F5unsOcr/ExGeNh9mP3H7VnS0SSV/G7tyHP4I9PisAyNnAV0rNikeitOjlbGLbXVSwsl0hWnHBh6HQwGsWHDBpx77rno7u5GV1eXUZc1I4YZfu04Dk477TREIhHEYjFMTEwgFovV7Y7e2dmJDRs2oK+vD+FweMFKdDdEo1Fs2LABHR0d6OjomDMoyxxyDMWXkBOLVgfRZDKJfD6PmZkZPP300+ju7kZ/fz9CoZAJ6ztRZHqtVsP09DQmJiawb98+PPXUU9i7d++ccEqFQqFQrB5Qseb3+7F582a85CUvMbaXNo45xqlSB47auGq1ipmZGQBAR0cHtm3bhlQqhUcffXROGjamdOvo6MCaNWswPDyMXC6HRCJhFnl0onOjcLkxFvdXkWlUAoEAzjjjDJMaZWpqqi56zG3RRgUe0Dw3ZyOw3sViEYcOHcLu3bvR39+Pc845B93d3ZiamkI8HgdwNM+8DN2Wi0c6F/i/4xwJ26fKng4D5lelWj+dTmN8fBxTU1MmdYwu2E4cGpEo9mcKxcmGVHsDRzcLtNWkMl0EIYkmO50Eo31IYEkC3SZO5f/8Xr4fNsHKv+16kIi2SXaphud3Mg2EdILaZZKQSmlbHMW2swlHEoIejwehUAihUMg4l22iz+/3m42g5QashFw7upVLKozdlP/8PBgMYmhoCB0dHeju7jb2Uiri6ZDg86OwrVKpGEd2Op3G1NQUZmZmTKpSABgYGMDw8DDC4TB6enoQjUYN8S3JUNnGtoOY95YpZkKhEBzHQTgcRkdHh6mTdORUKhWk02lkMpm6diSR7vf7USqVTEQCc9rLvcpYZyrSs9ksnn/+eRSLRaxZswa9vb3o6OgwUWUA6lTyMtWRmyNd2gBJSEuuoFKpYHJyEmNjY5iensbzzz+Pqakps1E6AMNZ8JnLd1nOsYC5G4fKfst5Ep+z3Hi0Wb+z8+Hzt4wMkZ/JNmDf5pyNaWIIzltshwrb13ZC8X5yo2I7CkYea9+L17UjPSQ5L0WczVTuiuUFJdIVpxyopGI4WSQSQSQSMeqGVsDjAoEAIpEIisWiWZTSYDmOY9Rcbt7tY4XctbxReaWBWgzQC+/z+ZBKpRCLxeDz+UxoujTsizXwc+JCx0Q8HkcikTDqdE3rsvKgnnOFQrEQcBHv9/uNszufz9dtCFatVk00GXB0cc8FIxVEkUjELFhscFHNhR4X+iSZZdi9nYtVlhM4SmZ7PB6zWSqvN98Y2Eh12CrkApeOAJaBbWIvQOUGsjYJwf/lQpb2nuWkQowh6iQa1Nl94nGs4eDzQW21YrHgRpzzc/7fiFh2g0zLIZWgbiR6M7itn9xyINvHyXFekt+Nyt2oHiT6Gt1HjtW2AEoS8620G9tLKl1topDXcyuLG+R9ZTtwjRoIBOryvsuxyraXLBfz6TOtmCwzr0PFOJ3XMuc3r287oO3nI/sQ7b20h271tNfVtkNCOiZkP5Q21Ca0uX7O5XJIpVIIh8N1e8i5OV5kOzYi1O3jpCOEG4Zz7xbug8K90+x0Jc3U5m4iOjdb1Gr0u7y2jOZwq0+zc3mcfV/2ITvljE1cS4eHDfu9tdHIFjdy4Mlxi8csROyotnppoUS64pRDe3s7enp60N3djd7eXpNP9ViIbr/fj2g0ikqlgp6eHvT39yOdThuiVxLprZL084ELfnpZ6TE+kQtWDraFQgFPP/00ksmk2Zh1eHgYfX19Jtz+eNXpvBdVfJlMBv/1X/+Fxx9/HDMzM5iennbdLE6x/KEGX6FQtAqqtsrlMkqlkrGnVGkB9eHqJAiKxSJKpVLdYpbnOo5jnN4krami6+3tRTQaNcrqZDKJmZkZlMtlE6JOcl3aXJYzn88bJbfP5zNOX24y6vf761KvnQiwToVCASMjI4jFYhgcHEStVkNfXx86Ozuxdu1aE2rPTUW5cGUu2Gq1ikQiYeYXVN5ns1njSO/u7kYkEkE+n0c2m0Umk8GePXvw/PPPI5PJmLB1RWuQBEGr8xu58LY/Px6orVYsBuSmf0DzftWIvJLkttxUUhJObqkj3MA1iq1i5X1sslAS0JKs5XfyXJnW007jwRzN0vEqNwGV5XFzBshz7TITFDzJ1Dey3G4EukxxIT+X5Kn9PCQ5zHN9Ph+6uroQCoXQ3d1tcp9LFa9s30ZpTkniktAmIS/XfIFAAN3d3QiHw4hGo8Yuu11POoClCp7OX9aBm5YStjOb6nKbbOf1qXi2nfmE3+9HOByus/3SVo+NjZn0sIODg2YuwWdnb57K+vD5MJUPzwGOpmaTNiIej2N8fBy5XA579uzByMgIMpkMYrEYstmsSfvKvsJzg8HgHOcA69joveFvPkf+bzsU3MD6MkWevWGudL7YdrMReS7LKf9nG1NwIYUQbG+S+lIQwUhIu080Gt/cxhu7LenIWIhDUG310kKJdMUpB6Z26e/vNwo3GTa1EDDMr1wumzzrjuPU5cY7UUS67YV3UyYsJhznyGY3e/fuxf79+7FlyxZs3LjR5D/t6+ubE7Z0LPcgmBM9Fovh8ccfxw9/+EMUi0WkUilVua1QqMFXKBStgqQ4AJN3VOblBuoV0pLM4EKUC6f29naEQiETds00LLQlgUDAkOUM304mk4jFYiZvKnOw24tkAIbwJ8Hs8/lMuDfrwHDvExlNxTG2VCrh0KFDOHToEKanp+Hz+UyKlzPPPNOkZAOObnrKxTiVcMwFK39IvEQiEUOYeL1e5PN5JJNJjIyM4Iknnjjh85HVChm23mr72YrJxYDaasViQKb9ANw3GJRwW0NIErajo6OOlOZ41OqaQKqmbeUxP5fqXUmSuSnRWT5brSy/531knmRZN3ujTNlOrKf9Psq/ea7Myc12lGtFW93LqCJ7k1FbneumlJcRX1zrhsNhdHd3IxqNGjW6JKzlPVhmWS9bdU3ikiS1THPC/Oj8aeSgZh0YhS7HVUlKM0JdErjyGLYTVfPyO3lNEr521AVzvMs9XVjmWq2GyclJo3A/88wz4TgOOjo6TDobW/Eu24epU2xy2S3lSSaTwf79+5FKpbBnzx4899xzKJfLJjWbnJvwedApAxx1ELgpue13l/OxRk4rNxsjxwc67wEYDkVu5iptpZ33X7Y9n6mcJ8qyyjFBHsv7S3Egz+Oz4txSOtua2T+3MY/taTu13JwCblBbvbRQIl1xysEeUPnZ8VxPGi1bIcAwqsVSUHOwlQvyhQyGtuFzU4s0WphJ1Vomk8HY2JgxMnRIMP+8JDjkfeW1CBrnSqWCbDaLUqmEw4cP4/nnn0c8Hsfs7KxRGaoSXaFQKFY/uIBrb29HJBKpc0rLxTAJgVwuZz5nvlNpI7koDAaDiEQiKJVKZuFVqVRQLBbNBl6cJ/D+DCenEokLOUm6UD3FRbtUygMLc3bbRKokcZodJ8HPS6WSyYs+OTmJw4cPG2cCFed2nXltEiE2SdHW1oaZmRkkEgmMj4/j8OHDSKVSyGQySqIfB7TdFKsZklyTaxBJhNtrBZkehOCYvdB7y3vY97H/d1NPy9QntnORazJgbo51opEjQbaJ2xggyT77OvJ6NtFKspUgaSdTkkingSQN7TZxixjgPZiShc5u2kG7Dedrd3s9y+vQdrPstuNX2ih5H+mUlMSqJCnl85XP1HYoyE1j3Z6NFLdJB4ydwoP3IVgWqtMTiQT8fr9JjSbnP1T/y/5ik66S/GffpKM/FoshFoshlUohl8uZMslnK69rR5TIOku1eyMOxV7/2/V2O086Xuz3rhWVNu/B4+Q4IfOfu6UxcovAaAQ3x5f9t9s5dp3dUgnpPGDlQIl0xSkHj8dTt9BtZgRauZb0/HPRTcNdKBSQTCaN13gxwNxmJJzt3KbzQe7+LXdwB47mbJOh3vZ1OXEZGxvDv/3bvyEcDmPLli3YunUrurq6sHXrVmzYsMGE39nhdBI04tlsFrlcDslkErt378bMzAyef/55PP7448hkMpiYmEAqlWrJiCqWL9RzrlgpsMNFFScfPp8Pg4OD6OzsxPr169HX14dQKIRUKmWeCRfasVgMo6Oj8Hg82Lx5M9atW4disYhYLGbSvNCh3dvbi9NOOw3JZBKlUgmlUgm5XA7j4+Po7u42acs6Ojqwdu1aOI6Dnp4edHV1oVgsYnJyEtls1qjYqJzP5XLw+XyIRqPo6upCuVxGPB43m4fKsN1GsFVd0mEgF7fyM6B5SgOmXPH5fJiamsKhQ4cQDAbR39+PaDSKaDSKwcFBBINBtLW1mVR3XV1dCAaDyOfzJhIsGAwiGAxiZmYGu3btwoEDB5BMJjExMYFisYhkMjnHAaBjd2vgnOtYzjsRZVFbrVgM2AIjN9ERSTlC2l+u1QiS6G7CGjflu60et0lpua6wVdiSEOVxjuOYMZ3kJ8k5qWS21adUNQOoI1ibnUPCkm0k62/bAbm+Yt2kEpubVzLayFZN2wQ5YW+mKolopnDhRt3cjDoSiZh0IDyXxLp0hNvzLF6bJGokEkFvb69JO0ISPZFIoFgsmggFCrxYZ67tZX/gM2OUGG28z+cz7SEjHLhOtlXGMue7TbLTEc10NMFg0LSrXK/bKJfLKBaLiMfj2L17N0ZHR9HZ2Yne3l4EAgEMDQ2ZCDBG53ENz9Qussy8X6lUQj6fx/j4ONLpNEZHR/HUU08hl8shm82a9uYz9nq9JoUN+4lUXbOOjuOYqAMJO6pAto/tMJFOJ74PhULBPCf5LnCfGr63fN9sst2NI5DRBNJhJN8f6STh9W1HioRUn8u2lxEthBxLZDvTgSgjSFgPtnsr8wG11UsLJdIVpyQaecaP9VpA44kTldSLlY6ERpOD90JJHqnIJ5EO1Hvim12Xn2cyGeTzeWMAmWN2cHAQvb29ZrInQ+7drsUJDjcpGxsbw9jYGJ599ln8+te/RjabNcoDxcqGGnzFSoFUNCmWBtwgtLOzEx0dHQgGgwgEAmYBI9VQXFzTBjNvKv+XY08wGDS50Gn/yuUy8vm8UX3RPoZCIXMOU7PIfKnM/cmFPBeYoVDIONalirCVMVD2PakWsxeM/Fyq7txAQh84uoALBoMolUro6elBtVrFwMCAaXMqDJl/1ufzGRtMsiSZTOLw4cPYs2cP0uk0YrHYnDnOYsyvFEsDtdWKEwGbyJaKWjelphQ+ce0j1ykcq3lteR9CKk8lGSjv55ZywVZTy8gmEnEkz932zXCDFC2x7vY9G0GSdDIiqhHRx3NkuhFbPW/Xr5EqX95ftif3HmG0GElsqtJtG+YmqGJ57fYFYARq5XLZtE21WkWxWDTpN7gWJkntll5DXpd7rtj9kP1KKrHd0qQ0UuyzPbiuZlod9glJ/trKdPblQqGAWCyGfD5vFOmhUAiRSMRExAUCAbPBOq/Fa8vnQxKd+40lEglMTU1henoa+Xx+DulMwZ98zjKFilSry/4g+xb/djtOtp/9HrjxJ/LZsY2kA0rey+14QhLmjBp0S5uy0PmKFDHIjdfd6mE7ueRx0mlFroT9ptl4QKitXlooka445VCr1YxxyefzdcZioQMpz+UinCpxDmy5XA7T09MAYDzqdqjdQpFOp3Ho0CEkEomWN/OSEwJOekgC2EQ6JwNSacHvJaQRTiQSePbZZ9HR0YFyuYw9e/YgEomgv7/f3I+EA8Fws2q1ilgshnQ6jXQ6jX379iEej2NycrJO6aFY+VCDr1gpsBc6ipOPSqVilGfDw8MoFApGMUXFUC6XM4u/tWvXGlJ9fHwcAMwCXxLg3HCLTloqyjOZDNra2pBIJBCNRk1edV4zFouhXC6jvb3dKNlI8FCB5vF4kEwmUalUMDExgUOHDi0o5QntqiQW2tvbjRqtVCoZuykVjq3A4/Egn89jZmbGtMns7CwOHz6MiYkJ+P1+dHZ2oqurC8DRBSjbhvUMBAKYnZ3F6Ogo0um0yaXuVhfFyoTaasViwFaf28RvK31FrkFImroJk+ZbJ0jSTZJUjdKkkOTjsTKFhlQuS7KYJBlTgdnXl2pdqbC1yUQ35bK9FpMOBElO2uQ4I6FkGhQ+Bzttjhs5z7rJTR/5HLhGY2o1uXm1G6Tzm//TMSD/lrm4bcI3n8+bSLM1a9aY+nBzVRkF7ZZShqpxr9dr2iaZTGJ6ehrpdNrMC/jsGjkZ7HYDjuZC53qXIjq2nXTC81nxPNaR9pTKZJ/PZyLhwuEw+vr66lLpAHBtq0wmY3iO6elp5HI5zM7O1qmt7U1T5TOR7wc31pTKdPkesq2ls0C+b7J+vAfb3o60sJ1q8lnaEQIUBdqRG1LYIK8jYQsT7HvJY2whg4RUmkunoDxeni/fAdlfWR/Z/qpIX/5QIl1xyqFarSKTyaC9vb1ug41jUahTTV0qlZDJZJBMJk24lOM4SKVSRpGeSCSQy+WMAW/F02jDcRwkEgns27cPiUQCqVSqpfOkAaR32+s9kn/WDm/0+/0mr7vc+MJtwKXRmJiYwMzMDLxeLx5//HGzQ/maNWtM3vRoNFo38eDmZOVy2eRa5WSM9242IVMoFIoTheOZnCoWB6VSCZOTk/B6vRgeHkYmk4HH4zGbY1arVSSTSaOA27hxIxzHQTKZxOzsLKLRKNavX49QKGQ2Di0UChgfH8fIyEidqjGfzxuCenJyEj6fD729vWbROj09jdnZWaOSj0QidU5xqfCbmZlBLBbDyMgI9uzZY2xdqw5h+7j29nasWbMGvb29yOVySKVSZs5BglvCTYXP+Q0X116vF+Pj40bVxsXehg0bsHHjRpRKJYyMjCAWixk7LxeAFCTIBfxiwFbjKxSKlQu3NC722kemGLHXYI7jGOchgDlEm034SiLRvo8dvSOdkJL0I3nuprYlGKEjlekk1Li2kmk9qJSW6SVYJq4JJUhOy/pJpbTc4NBuC9netVoNxWLR1FfmESe5K8l0brgo68zjfT4fgsEgABgRGm1AoVBAV1cXvF5vXdoY+1kSUs1rp3SRZZXkP8Fo6M7OTqxbtw7d3d2mvSXJStJVti3rwc9IWs/OzuLgwYPIZDJIJBLmc9lHbNKcwjRJkHJT8nA4bBzwdL5L4rRWq9UpkRkFxrZlrnSqsA8ePIhgMGiIdEbIkbBn23FewLkR0+AxLY6E3V/4YxPpvC4hyXtG9UkVu52qSDo0pOqfggjpoJHzKPZHSaCzr/J9opNLvnecI8r0RxLsm/a7JfsL/2b7u3FDsp34XrOdZJuwXeQ7KdXorIt8lxkRuViZDBQnDkqkK045yNAuEsacsCyU3KYh4XVoGOT3zEvHnGRUdS2EuJde+nw+j0wmYwjnVsB7SQNBI8VQKX5PAy+9qPOVUyrj6G1njq9AIIBCoYBisVjnhZVEeiwWQyKRMJ5vVaCvTqjnXKFQLATSrvDHtg9yoW8vACW5QnvNPKs8Rh7LdGyZTAaRSKTuHlzUSNvJhZBUSnExVSgUzM9ClePyt7wXF3pcOMrcnq2o3aV6ku3LdvF4POjs7EQ8Hjd2eXZ2tq6dFKcG1FYrFgNSiWmndpAkkRyHJTEJ1KfEkk4/t7VJs7WD7NO2ylme24zol9exSXuuoeQ4LUl5ux0IN+eB7QSV7bAQyHI2OtdWI9ufN1oby+fItZtcU0tCdT7Hh5uttjcR5XEkp7khJ9eaTMPmVhe73JL0ZaoY/tj3s69lP3N5Xfn8SdiT/HVLOeMGkrfSmeDxeExZ/X4/CoVCnfKdZS0Wi8hms6hUKkgmk0in03WOEZLRrXAP0unU7KfZe2SnXnGLznD7LccAtxQsjXgJ+3PbieJWv0b3sc+fL2WLDds5J9Xqbu+3fM/Yb1p9Tmqrlw5KpCtOOVQqFcRiMeRyOfT19eHw4cPIZrPo6+tDV1fXggauZDKJyclJxGIxTExMYHZ2ti4fulSmP/nkk5iensa6devwohe9COFw2OSRmw/5fB4TExPI5XLYu3cv9u7di2w2uyBFOvO2Ub0nDbydc4z/03PeyLPrBhrtXC5nPK2xWMyEOcoFPNuKCkNVoa1uqMFXKBQS9sK6EXK5HA4fPoxoNIp8Pm/yj4dCIbOxGMnx3t5e9Pf3o1qtIh6PY2ZmBul0GqlUCul0GpVKBX6/vy40nyiVSjh06BCSySQKhQIGBgYQDodN+hjaTNpP5i0lsV2tVs094vE4ksmksW+tgDlnpX1ub283G6eSOKBDnvnLE4mEIfDnUwPyf6o7JZHB9DWM3DvZ464bcbFcYZMoq2n+orZasRiQOaOBo32DqSNtdXYjMZPsU9J52Aw2AQ7U50u2STdJDLoRv/J8WV4pTCL5xbGZZbCje/k31bgkHUlMk9ClMtWNzLZTTdgqb1lO2W6SNJTrP0m2ymcm12xMpcb6Skf3zMwMMpkMQqEQhoeH0dHRge7ubkSjUVN+GXFEpTTXgfydzWaRTCaRz+eRSCSMQjyTyRhiuVwuI5vNYu/evYjFYujv78emTZuM7WTd7DaTz6BQKCAej6NYLGJ6ehrxeBy5XM70Sz4HO32P7RCx5wPckJtkf6VSMf2hra0N6XTaXJ955OkwYDvZjiaS+5VKBdls1jgO6DyQKY8o6KOyHUCdCt/tvWEfpiPErf+QDJYiBNk32Ifc3mGp+KZTQPYJ+U7wh859vifkE2Qkof1c2XZer9fkkpdllcS57ciTz1WmZ5Hjkts7xP+Boxvzsow2+K6T+5FtICHbZT6orV5aKJGuOOVQqVSQSqWQzWYRi8UwMzODarWKcDiMzs5OAPNP0DiIZrNZTE1NIRaLmUWzHKBpELLZLJ5//nlMT0+jWCzi9NNPrzO+892rVCphamoKiUQChw4dwsGDBxvmJXWDDIuS3nEZxsR7kTzn33JX6YUM6lQPKhSEGnyFQmGjFdtSKBQwOztbt88Ic5RzsVoqldDW1oaOjg50dXWZvKfZbBa5XM6EhJMUBzBnsVOpVMyiOhgMIpPJ1EVqSaUh7TcXeF6v1yzwGWLNv1uF1+s1Iep0FgBHFflSocfw7kKhgHQ6vcBWd09ZwL1KlhIraax3I+NWA9RWKxYDcs0BoG5tRMLPFvU0IquAuZuENgP7oRuhxbHcPl6msJJ1sK8pr0OClHaJRJl9fZ5PElBuQsl1l1RhMyWITAsibU+jNrLLB9SntWmkMOfzCAQCCAaDpt60z7Q7tHf8DjjyPNPptMnDPTs7i3K5jHA4XJe2wlY4l8tlQ1xTsEV7ls/nzTVlZFexWDQk8djYmCHY16xZY+psp9GQ4xmfMVXbuVwOiUTC7PchFek2qSzHe9kvSKLLHymU4zxFthlQ/z4wTYlMK2RHI3B+UavVTIo5KtGl4I2fcU4UiURMP+I7Z/dL9kXp9GHfkXnMZZml84af2XUkSIhL1b79PknHvtw8VhL1bhGJ8tny/nJMkcQ4z2klStB2lhG2E4v353shU9zIMrHt5Tjj5rSSZP58UFu9tFAiXXFKggNbJpPBxMQE8vm82USrra3NLGTlwCsH93w+j3K5jOnpaRw+fBipVMrsgu02MNHz7vV6EYvFcODAAcRiMXR2dqKjo6MuVFtOMgqFglGbjY2NIZlMmrxpCxk8G5WplfNWk8pKoVAoFMsLrdiXfD6PyclJpNNpRKPRujBue7FTLpdN+jMS0HScM82Y24KMZeGiMJPJYGxsDIlEwthBEh5cJPv9ftRqNUxPTyORSNQR6blcruU0ZXIBxXkHF7WSmJEkiL2wa9XZrVg82Ko4hUJxFFJlDRxVzkpFqsyR7EbwzpeeYb6/SUoBR4kuN7WyvIetjreJLTcyWtoUkqFSPWuraO2UF41SWNj14fGtpiJtFqFkp8GQ6ljbocA6SMLfrR60v16v1+xhIp3QPEc6U6T6m2lQC4VC3feyXXgtrsczmQxmZ2fNWp77f9lOCpLRvA+j02mr6ciRUWGNnoH8TKqpy+WyiUKTUV88ju0sHfFuzlipspbtK9XbtpOI5DTPsxXf0gki21P2a/4tyV37Rz5DWW6bgJfksa3klwQy3y0p5GO5+R7RueT2LrnBjfiWkH1R/pZ1cYtAcbuO/Qyl84F9QEI+I34v27PVd1ux9FAiXXHKgWS4x+PB4cOH8cgjjyASiSCRSCCTySAcDmPt2rXGk86BXoY7Hzp0yISVPfXUUygUCkbZ7gaGmFMJPzk5iUAggOHhYQwODiIQCKCrq8so62gwJicnEY/H6+5Jcn2hizZp6KVxohGQx/BvSaLrIlFxvFDPuWI1w174Hk+fbbZ4W01otX5TU1N49NFHEQgEsHnzZmzYsAGRSATd3d11juharWaU6NyHI5/PY2xsDM8//7xRwDVKJcaFdqVSwcGDB5FIJODz+dDf34+enh6zyJakdqVSwejoKCYnJ+vsJjdiawXSGcBFJ1V37e3t6OnpqUsrA6BO3cXz51MoKhYPy3lu5EYcLKScaqsViwFbwZpKpVAoFOoiZKneBVCnqAXcU7BwnG/kDHWDJC7lWMt78Vq8P8sFHE1b0YyMk4pe1lUqT+U9eC3aDx4jryMdC25pNniPRpBqfKkmlt+TNHZzDri9w8yBThvJOpIM5g8FaolEArlcDjMzM/D7/SadqdxYk+tqku8UqI2Pj6NYLBr7LclIqdBnqhmWye/3o6enB11dXWhrazP3LJVKxh5zHc11O1XoTFnCdHGSOJU532Ubsn+zHSqVCjKZjLk+93Shw51EOiPq+HmxWDTPVK7BZX/kXEP2J1kmW/zHa3g8nrr9XexjeH2S8Hy2sm9IstkmnlkOlpcReNJhwP/5/Nvb283GtYwyqFardal55ByY15TRhLZqX/Zb6SjipqGyzKyznXKGx9CBI58v08XI+9oRH7wvozocx6mLSpQOEKm053OS9+E7Mh/UVi8tlEhXnJLgwJPL5TA9PY1MJoPh4WEMDAygUqmgq6vLGBZuYMaBNZfLmd2wZ2ZmMDMzYzYpaXY/bpDC3IDMe8ecqNVqFcFg0ISol8tlTExMYHp6GrlcDpOTk8jn88dVZ0J6ud0Wgxzsl/NCUbHyoAZfsdqx2AS4qoyPgDbW5/NhYGDA2FBpp4Aj7V4oFOrCwakOTyaTZnHUDHJ+kMvlzOLG7/fD6/UaIgiAUcDPzMxgamoKQH14b6vPzi1XJhelctx0Wzzyf+0risWC2mrFYoH9gYRbqVSqy51OIstWZRI2mUcci8NQ5jO3yXmSnJJcY/mpMHeLBpLrJBJiMn0Gy9movG7qcnn/Y4VU9dqfu5XFtikkU5luRDovpCKYxDavyXUy073wGBLK0knB65VKJWPj8/k8stmsWTPbOd/l8+O52WzWXFc6aXhv5linMyefz6NYLCKRSJhocT4DKaCbLxWIfHZUVdNJz7LbIjagfnNaW+ksye/5RG481iZ32ZfdVNY2JJEsHTxu/d2NhJdgOdnv+LcsO69LDgSASUHD98YtMo99Szpwmr2Pdh3t42Rkg9sYI50PzdKsyGgV3pvXbTZGyfdFXks6WlqB2uqlhRLpilMazMdWrVYxMjKCfD6PUCiE0dFRhMPhusGM+cZyuRzGx8eRy+UwNTVlvOWtKs8Y+lWr1TAzM2NCz3g/TjYrlQoSiYTxZraSz6vZPWmASqVSHQFhT/IYCi93XleFm2IxoAZfsZphL3aO91pKjM4F7abjHMkRPjU1ZZRNbC+mdGGalUqlgtnZ2QUR2xKO4xhCwFYvATAqNKkClIvHVutF5HI5s4DkYs/n8xlHO20zVVwkHI61forVB9vxciznq61WHC9IUtI2yrVOMBicQ/bJMcwmuuUx88EtrQMJX0mmAzBpSjwejyF43fI3SzRa7zUjvyU57kZa83y3VBHyuEYkp9v8Q6qaCUm2upXRJl/dnolsU7nBInDUHtKJnUwm4ff7kUql4PP5jBIbOJqXXdpq5iqX6WN4L7t+0hbTSZ5Op037kazN5XJIpVLmmvwh6S2JUtsxD7g/bwrhpJLbcRzDGdiKao/HYzYLLxQKJuqd7c762HUiscpjGQEg+Qm3vjCf40mO8ZxrsAyyn9ltYkdd0nHB7+xNPGXOd6Z1kn2Y4wIdN3YEiHS08RnL/Oe2AMEmxd0iV+gc4vGSuOd3drSITEnVCPxOOhDc8svzf/Yh3pNOI74TrfBKy9VWx+NxfOQjH8H3vvc9AMCb3vQm/N3f/R26u7ubluemm27CXXfdhXg8jgsuuABf/OIXcc4555hjisUi/vzP/xzf+ta3kM/n8cpXvhJ33HEH1q9fv6B7uz3HO++8E1deeeWC6qlEuuKUBglwj8eDvXv34vnnn4fP5zNpVmT4ET3Y5XIZqVSqLtffQgYjhnF5PB6Mj49jYmLC1cvLwXE+NUOr9yyVSvB6vSgWi3VGSA7yjnN0gxKG8R1LGhmFQqE4FbGYY6WOu3NRrVYxPj4+R/0tw8Wles5W0h0LHMdBIpFAKpUyn9kKqOON4GL5qNgE6jcJDwaDiEQideHi3MzUVgguJtSZs7Khz06xlOBah4RQMBg0G1nKdFxybJapFGwcyxjONY7cDJQ/dtoUEq/2+stWnUpSzE4/Y6/l3OohI4K5hpSEoCS77Tpz3Wan2LBJN1l2XrORstgmym0lsUxJI9tOkqgy8iCRSMDj8SCZTJpj6EDhZpzAEacxHcJynzFb6CVV4vZzYZnptKnVashmswBg1q+ZTAaxWAy1Wg3BYHBO6haZ/kPCjjaQbcTzmNJFbgIuj+H6m2tqEukyjYlUYfPZymuQNGf/q1arZp8W6RiS6ne3fmc7Cex3z03JDtSrs0nkU2THZyvLJkV40pHG+Q3rJ50DbCcJloPfM2pBbuZqR4+wnLIvy5RR7NvyXZBKcIoY5PPjsy6Xy3XnNnv3OScjl2RvBksinakCZWYDRiK2KtBcjnjHO96BQ4cO4Qc/+AEA4AMf+ADe9a534f777294zmc/+1l87nOfw1e/+lW84AUvwKc//Wm8+tWvxp49exCNRgEA1157Le6//37cc8896Ovrw0c/+lG88Y1vxGOPPWb6Qav3/spXvoLXvva15v+urq4F11OJdMUpDw5oVHkxpxyV2zTEkmCWO3sfz31P5iBJAyLJf3siReMod+7WhZhiMaH9SaFQHA/k4o95TeUih4vwxbSxJ9Ne24t32mWZHo42Wu204kRB+5RiMUG1tSSzJdlF2CTisUKSgXYucHnPZgpkm1B3I7ZbQSOSXV7TLf1Eo3q5KdLt6xGSCHRDI2W627NpdIwshyQWSabKTbMl6cx1NdelNskpy+fmoLCPtR3oFLzxPlLNbJfVTsVjtxHb1a0v0UbzfM4X5N8A6j5rNL66Pf/5nDRuz8JuG7f3ijxAowiIRu1g/+32LBrdR35mv/eNYPct+5lLJ06jusr7zDeXk+r0ZvWxHRaNnh2Fi3TYNDtOtlWrNni52epnnnkGP/jBD/Df//3fuOCCCwAAX/7yl3HhhRdiz549+I3f+I055ziOg9tvvx033ngj3vrWtwIAvva1r2Ht2rX45je/iQ9+8INIJpO4++678U//9E941ateBQD4xje+gQ0bNuDBBx/Ea17zmgXdu7u7G4ODg8dVVyXSFYr/AQciueO49MzaKrflNnA1g/TCMmSOkxqpjABQFyZ+vM4ChULieB1PCsVKgdtCUHHiYKc1WQ1tzjoVCgVMTU0hHo/XEQ4nI53LamhHxcKhtlqxGKhUKggGgwiFQnPyGgNziTmgMaFmK2fdYKdoIDnFz0ii0jFpE502GSpJ1kYpIhqRmbYi3K0ubtcjuE6zldiSTJTkm9wQ062sfr8fwWCwLtWnVOsCR9W5drSAXRe5Gapdb5/PZxTKjOKm3WI97E00ZZtTfS6jtGRbyfzo0pnAlCGSNOczZhSX7Rhxe4424cs24h5lVBDLZ0KlOSPjarWa2auFG2SyjHb6Dt5Dpo1j/SVhy59GfV++P+wntuJdbpLe6H2yn4f8julwgKNpefhOyTQ3PF9GMtiOGarP/X4/AoGAUW/LcsmyMjJP5laXfUo+D0Y+NHqmPFYq5eV+DR6Px+yPZ/cX+zq2Wl/Czj3v1q5ybIpEIvM6Wmwshq2W0ZbAkT4eCASO+bqPPPIIurq6DJENAL/zO7+Drq4uPPzww65E+sjICCYmJnDppZfWleOSSy7Bww8/jA9+8IN47LHHUC6X644ZHh7G1q1b8fDDD+M1r3nNgu599dVX433vex82bdqEP/3TP8UHPvCBpg4dNyiRrlAIcPBqtnHoSoWtvPd6vSiXy3OIdDkZ0wWRYjGhi3PFaoebckj77onHSlJlSxXbfCBBYi90FIoTCbXVisWA4xxJFREIBOpIbXu8diPR3VTVPLaZilqmarB/ZBoSuf+TjPyx7yFzgEtyUyrDGynNbUWwnbJE/t3oOvacwu3e9nzDJo1JEvp8vjpVtGx76TRgW0ni125ru835f3t7uyHh5IabvA734fJ4PAiFQiZ9KsGysmxSzU3YhKUknG2CVD5r+Vzt/sW6sLysE8lhlplEv7yWTFnCdTXzocuIAxntLZ0Esi3tfsBj3Zwj8rnZsFPX8NqN8vQ3g+wrLL+MNpCbdrJd5A/PdSPZ7TRFNichHQIk2mX/le+xbB97E1x73iXblWB6QDoGZP9r1CZuER92OiW2O1PU2A4seU8AC9oXbzFs9YYNG+o+/9SnPoUdO3Yc83UnJiawZs2aOZ+vWbMGExMTDc8BgLVr19Z9vnbtWhw4cMAc4/f70dPTM+cYnt/qvf/yL/8Sr3zlKxEKhfAf//Ef+OhHP4qZmRl84hOfWEBNlUhXKE5ZyMkW/wfcwx0VCoVCMT/kuOmmglEsLlaiw2KllFOhUCiOB8xjLMkwN2Wo/N0sdUojAh2Ym/dbXksSl16v16QTse9rl0VeQxKfkvxrltLCDbaa1u07meJBEpSsr1uKDkkM2iSkrdBn+XkPu76sqx2V7OYEttObkIAHjuaJlmXnfd3Kbh9jPyN5DstqK0jl2pZ18Xq9CIfDAI6qbe01sNwk3O6DkmiXqV3cyHhJepMwtdXKsmzSCUFCulHaGrvdSqWSeZ52KhK360qy136GMsWL3d6yHG7EMuvu9Xrh9/vrHDCyreQ7KMcDqcyXZbPV4KwPHR6twFbf29eV5WF/l/3WLkOj6/HHfjfls5REulski7yfvdnuicTBgwfR2dlp/m+kRt+xYwduuummptf62c9+BqBxGqv5xkq3sW2+c+xjWrm3JMx/8zd/EwBw8803K5GuUCiao5FHXn6vUJwIqMpNcapgJSmkTwQWoro+nnvIMO+VvDGTQrGcoLZasRiIRqPw+XxzNgMk3JTZEm4kq02S2ISjfYxUI8u0nG791I20k+fKPTnsdBlupJtdTl5PRv5KoluSrXad7PpKIpLlY7oMqTqWZaXKlqlDgKMpNmS7kKB124PDzjFN0p9pQ2V5GQEtiWSSlZLIrlar5nypUHebR8k9vqQzwE5JItOg+f1+hMPhurQ1lUqlbr8zPltJKtsqeNnXeA5TtvAzzkXK5bLZSFVuiimPYTvzR85p+NxsYp7PjWlzvF4vgsEg/H5/HVnINie57ZYjn8e7pXuRKWJspbnsi2wHxzmSf76jo6NuHxdJzMt0MEyRIzfhlI4b+VumAmIfls9hPtW4/N9uS9ZJqvfle9zMnjXqI4wCkf3SdqRIZxcAQ5zL8aGZU7FRHRcCntvZ2VlHpDfC1VdfjT/8wz9seszpp5+OJ598EpOTk3O+m56enqM4J5irfGJiAkNDQ+bzqakpc87g4CBKpRLi8XidKn1qagoXXXSROWah9waOpH9JpVKYnJxsepwNJdIVilMYuuBRnEzo4lyhUCwm7PyTCoXi+KG2WrEYsHOiS0ildzNRTyMyye26zdTJJFYbqUYbpS/hddwIZaA+5cp8fd9WGNvllf/b37mljZN1lISeJAalMln+P9/mo25qcLe0PPyMZZBKa5kKx61ObAdbBTwfiWkr0hvZf6n+JQkr1dDyb+mskfeQhKdMG+R2DP+WdWrmIJIq5mZpghq9A/IZNWoL+7qttrEN+Zwb1ZnkPZ019vO2+8V85bHT8dh1aoVong+y7K1cbz6Hn9t8tFE7NCqLfJdaKf+xYqHn9vf3o7+/f97jLrzwQiSTSTz66KP47d/+bQDAT3/6UySTSUN429i0aRMGBwexc+dOnHfeeQCOOF527dqF2267DQCwbds2+Hw+7Ny5E5dffjkAYHx8HE8//TQ++9nPHvO9AeDxxx9HMBhEd3d3a43xP1AiXaFQKBQnBbo4VyhODZyM95ULVU2ho1AsLtRWKxYDjQgjqQaV6mw38q0REQ+gIQEpCT2pGpUpU+yUExIyfYcsB8lnquzt1GJuKR9sgtu+nszL7IZGBL8kn6X6WtZNpv0AjqaTsX/LdrPBz6SiXBKckqxmHWiX+WylKpcKaVkXj8dj8l/buaZtRa+d4oTH8ZrynrxWrVYzm4FyU0yWWW5eSbhdv5ETwE6dY6dYsduS6T3cyG1bpSzTydipR+RxvIbsy/JYPg+3lCWSkLZJa74vMq+7dIDx/eX1ZeQB8/HzWJbXdkhIRbh9vKxbI2eJLLN81+wUMvZztKNNZLSC3T5yjinLZjvG5B50Ml2MW1561kkq1zmucHPc5Uakt4qzzjoLr33ta/H+978ff//3fw8A+MAHPoA3vvGNdZt9vvCFL8Stt96Kt7zlLfB4PLj22mtxyy23YMuWLdiyZQtuueUWhMNhvOMd7wAAdHV14U//9E/x0Y9+FH19fejt7cWf//mf40UvehFe9apXtXzv+++/HxMTE7jwwgsRCoXwwx/+EDfeeCM+8IEPLHiTVSXSFQqFQqFQKBQrDouhSFIoFArFiYOt3GXqCzvNSTAYrCNXJeltq6AJN5LT3iyQ5JYk9u0NIyUkISjB+zD3u1Qf2wrdRt8RJHT5W6ZbIdzsmyQL2Y622p7EnE2kk5yzz2lGVMr2IMkoVbOS1JVEOnB0E05JBJM05zPguXQo2Gnh+BwkkS/T4vA3N7QtFAqm3WwinYQ7ryWdITLtjl13myiXz0aSxG4EOushUwGx/8h83zJCQaqj2TYyJQ3T7sh72MpuPh8S1LxmI1Kcv22Cl9eXz5zP2Cbq29vbjWOChCQdL3Z6JvZ5t70KJKSjRh5nt7Gd+obvvB2FANTnAJfpnuRnLKtdDhuSkOeYxncaqHcO2teTfUA6FuiEWsnz23/+53/GRz7yEVx66aUAgDe96U34whe+UHfMnj17kEwmzf/XX3898vk8rrrqKsTjcVxwwQV44IEHEI1GzTH/+3//b7S3t+Pyyy9HPp/HK1/5Snz1q1+tc8DNd2+fz4c77rgD27dvR61Ww+bNm3HzzTfjQx/60ILrqUS6QqFQKE4KlqPnXKFQKBQKxVGorVYsFmwSvREZJckkW3XcKM0G/17ofRup3pulICFsotftvnaqCjttiLyWraa3z7frY5eD122UCkbCLY0Kj3VTy9pOgEap1Fp55yUZ6qbelm0kyWe3FDhu9bQJa/4try3JVnkfuy3ttrfrbNfFra6SCJfXsElym5hvVFeWleQzf/N685GubnW168TjqBCXZZckr91O0rEhIyPoOOD1JFh23rNR+XkNt/ddloHlc0ujIvtRs6gL2Yfs8sl2cCsr3xdJ+PPZ2M+Y39tqdekwdHvP3LBcbXVvby++8Y1vLOj+Ho8HO3bswI4dOxqeEwwG8Xd/93f4u7/7u2O+92tf+1q89rWvbVq2VqFEukKhUChOCparwVcoFAqF4kRjPhJuuUBttWIxUC6XXZXdkqiTRBLzWFcqFaOadgOPkypEN1UpSWM3lautUJcqdDvthg1bDWwTinbaE6YskUppSSKTVLMJX7sc/Ezmnue9mDJEQjooeC43uXRLD8JrcuNN+TmVxraier5NvmUdZPml6lmqed2Ic9lP3EjMSqWCXC4H4EjfCAaDcBzHpBfhxqI831aAs0y8l+1Ykf2EBKl8DrwHy8LjZP3dIitknWQKHKrUZcojPn+Zmka+W7KMdtvL9CW8FlCfY50qaN5TXp/RAlLRLqMRuIkoNxLl9f1+v7merTy306DY5XZzKMi+JFXwNoktz+W7BTTfs4Ht7vY3gDrHBZ+PXdZGts9+R/iu0/HAcvEdZhTCSk3tcipBiXSFQqFQnBSowVcoFArFqQipMFvu9kxttWIxQPKuEdFkp8zw+/0NyVz7fJJPbmRTo9Qqbgpcwla+Nrqv/MxWmLrdW6rAbbLWLo9MKyKJc37Pz6Ta1ybdbVLercwkad2cB7LMNniMJPwalZdwcwQw3QXb2y2lin3PZupcEvHSGcN7k6yWkQ7slzIVjiwv20Gea9/PLh9QvzkmiV06Udra2uryy8t7sf4yDYhMsyKdHvJHErRuivZG6mupirdJZzuSgu8vSV95L16ffUn2T9ZFKq8lmS73LZB9RDp/mj136RCQ74QNPotGERpuYPllfXhP1lc6VFjPZsp6WRY+b9lvZAomu12aQW310kKJdIVCoVAoFAqFQqE4QdBFq+JUh00U2USmnXKDsAkyt837gLlKcfu+bht6yg0OSbDKMjVKZVIqlVzvZddXkqmyLpLQdKuz3Sb2eVJpzHMlKc7fNmEvz3cjiN2cD5LEl9fn37ZiW5LiJFSppJYkLssslc7zkYe280ESz279hIpx+7nK42UaD5axFRKT9ZVkrd1vpGLdjsRw61du9ZDkv+wHduoa+2+C5wJH+4i9qSufi03Ok7C3nSvy/m7kPR08zdKi2Olj3PqpfX23Orq1g/xf9is7AqPR++32TtvXkBEkjWDfQ5L/spyyrfi+zBftoVh6KJGuUCgUipMC9ZwrFAqF4lTFSrFjaqsViwmbIJWkpU3O2oSdJBz5NxW+kpyTqVRsSDJLknI8ljmnZaoJqb6WJBhJ9FKpVEc62ylX3O7ttsmlW53t9pApPWwSlgQtN/C0CU7+LQliN4eCJHBt0pykvSybPFameJGpdLzeI5t7trW1IRQKmTYuFouGpGVKEDuti+0AkG1il1u2oSSrbcWvTVjKclLRTqU825JtZ5PAkqRlmhM737V0eBSLxbp+0ugZyPrw/lK9bTsxbFW2vBbvTecGIz7s9pEKflk33ruZcl8+F/v+/C3V427jgLxOo/fH/kw6P2SfYX3lpqoynQzvx+syTZENO9rEHjtkdAevaV/HHhPsftWI+Jdj0HxQW720UCJdoVAoFCcFavAVCsVSwSYDFAqFO9RWKxYbNpkuya9milpJYDVTifPcZv3PJuVsYoyqXDfizibWZJoQ+1o2GqWdmK+cjVTqRCOl+HyKfre2WwhpJ9vDLqdbeSRBLdN7yPNaeXatlM9WdUuy1S1KgfcGjjp2bFW4fV6j52nXSTp55HXclNzN6tRMHd+Kgt9NBe5GQvN4t3fSjSyX17P/lv3ArYzys2OxGex3dlnd3hs75Ypsdz7zhUQh2KATpdmzstuJ/9vvgyT5W4Ha6qWFEukKhUKhOClQg69QtIbjXWQsJywXAns5lGG1QyrwtL1XLtRWKxYD5XIZjuMYpaat2Ja2QRLYMs8yj7OJPxJjtqJZ5qSWx9l/25AElq38ZU5jqr+5MSZVqCTGpCLVLqedZsVNoSvbolHaFXkc29RuWyqwbTLYVs/bKUlkXmheZ76cz/amrl6vF8FgcA5xSPWufFayvvyRJLUkJueLNCCq1SpyudwcR4fdXjxf3p/RBlSnU8XPCASv14tAIFC32Sr7cLlcNo4CtqNURcu2ZB1J7kvFMnO8l8tlFIvFumfLe9nt6hZl4UbSy8/Yn9nXWV/m7p6P5HdLTWOrqN36n9vmo9wI1u/3z9mIVj53eU+bQJff27noWS6Z4132cZbTLVLAdvbQIeT3+02kAY+TfU06bniOvA+fZalUMs+UfadRdIsb1FYvLZRIVygUCsVJgRp8haI12IvtlQq33JCK1QsZzq75PVcu1FYrFgPMIy5J1WZKS3vMsNWZ8m+ZlkXmKydsItuGJJblvey0CpLsLZfLdeSo1+uFz+erO8eNGLeVyPZ9W4Uk0nk+STkSsLJekhC180WTiJTpPeT5wBGytVQqGXLRfrdJntPRQKcJiXRJjtvEMs+XRLO8t5sqvFGqFxLQAFAsFlEsFlGpVIzDw+fzmTLJlEAydQqdPqVSyRDMfLaSdJb1I1kqc6CzLkz3wrLbqmn5t3w3mH6F17PrKnOl284mO62OVJHb7SdJbZ/PN8eZ4tYvbZW5TTrb95R1lESzfNbsY/L6btEEbm3m9XrNc+Nn7AesmyTkZYSArQSnA6hR3WUZ6KiTDjZJzrNf2GOV/a7Kd4eoVqsIBALw+/0NN+C1n8mxQm318UOJdIVCoVAoFIplhPnCeVcSdLJ+6oD9Vp+5QqEgqBInbJVnMzQi9Gxyzu2e9vH2dSXB5na+VL3aqUdacQ5IJbJbHmaWzS5vozrIv+1UFY2igNyu0UjV63Z+M1Vss5Q38rfXW59DvRlsgta2KfaGso0c9W7pMZrZJXms27l2tBXrJUn5Rn0VwJy0Nq2gmfNgPpDUtp9HK2jUbnYfldez1eON3o1WUjfJssrruinl7X7v5qSy/5d9TG7WK4lwN4eYWwSAJO/tCI9WQOcOzz+eFDOKkw8l0hUKhUJxUqCec4WiNTRaFK80rIY6KFrHQhfsKxVSjbga66u2WrEYkApZqZS2P5M5qklWuqVusMltAEZ57PF4EAgE6lImECSo+L19zUYEoa2YJqQidj7ClqkbgPq0IiynVDITchNWNxJTKt3ZJm75qSXh56b2lz9uxwD1ubNt0lMq2mU7lcvlOelGuDmrrcCWpD7bKBAI1LWdnQaGSl2Z7kSqd0lMyrQ7su3cHChUYlMpbKuJmXKjWq2iWCwaVTHLYadfkQp8j8djVN+VSqWOvGU72Buasi1l2iA30lheQ4KK+lqthlwuh0qlYhTRvB/rYBPDvLabfeP39jOQzg6Sy7a63b6OrSKXdZCbiRL2PXmcjHqQKVXsMsloBB5XLBbNJqTNxgL2Kb6bvEYwGJwTlWG/z83ANEFsZzelfzOorV5aKJGuUCgUipMCNfgKxVGoclexGnEq9OnVrhpTW61YDDTLsW0TdW7pJxopxeXfJCwl0SUJLR5HElESf5IwJWy7bBObBEm5ZuOAJFRJhErSkSlAGilo7b/t7+2yub17dl0kIe5Wf7fz3MhSWR5ZVzsXONuZKTBIsLql6gBQl/ZCEsvy2nY/cVM5S2dEK8SkJJhtyNQ9Nrnslg7Ibg+qjqUDxH5Wbg4J1m2+yAe7nDynvb3dkM/2PZvV1Y1MtqNK5Od2u0hyvFF9CdkX3JxsbAO3etrnuB0rIcl0vo/slzy3UVlkmWxlO6MNmo13EpKIl5/Z700rcwy11UsLJdIVCoVCcVKgBl+hOIpTrU/bodEKxUrFfOkQVjrUVisWA27kop2j2Iat6HQj06XaF6jfjLFRGdzUycDc3OiETaLJFAyShLQV1TaxR+KYRH6jOjcihu1c7Y2iYGzVtl0Hu03dyGc7dQmPtUlvebzcoJR5xGV7kUjnZp18dnY6FLe2oaMBOKqWp6LbJkTd2sOt/8koCakoJ+RGkG4RCW5OC/m9VFJTZS5V/LJdZLkqlYrZbFMS4DyPzgWpcm/WXryuvIZ9T7ZjI4eSvC7PcesLsm1Y/0KhYNpXEvCN0qDYaVNkf7ffWdmG8+URbyZYkcp8WTbWRarMZc57lkG2gYwKkY49u835mVu0jby+fb9GUFu9tGgt0dIKwB133IFNmzYhGAxi27Zt+MlPfrLURVIoFArFEmKhdmHXrl3Ytm0bgsEgNm/ejC996Utzjrnvvvtw9tlnIxAI4Oyzz8Z3vvOdBd/XcRzs2LEDw8PDCIVCePnLX47du3cfX2VXCNRWn5qQyp3VrORVnHgsh/7jtrBWHDuWq60+1XG87WOTsCSnSAbaCs9mBDHfN27sWCwWTfoWv98Pn88HYC55yFQhJCjtVBYk5WyluhthShvG+/l8PnOuDdaLG13ax9oKbluFzs9sklKqu9kekkCX58nj+Dc3d+Rv/i2fiSSbJWFuP0+SkNwcs1gsGvU9v2PbyzzQtiPEHtPtOpfLZZRKJRQKBbOxI8lK+UzlD58T7y3TzhQKBZTL5ToSVjpc/H6/cRCw7WSf4P+y7PJZyk08eS03wlVGJfCa7C+S1JXt3Ei5Tshn3Uz5Lt9Fm8S1iX+7b/EY+5nK97JQKCCTyaBQKJj0KR6Px2ykyf4k6ybfUTcHi3R68Tj7/WtU50YiDvbRYDCIYDCIcDiMYDAIv9+PQCBgCH4+V25gK9uKZWhvbzepWqSDQOZjt9NdyfeS1y8UCsjlcsjlclAsb6wKIv3ee+/FtddeixtvvBGPP/44fvd3fxeve93rMDo6utRFUygUCsX/QC6cjuVnIVioXRgZGcHrX/96/O7v/i4ef/xx/MVf/AU+8pGP4L777jPHPPLII7jiiivwrne9C7/85S/xrne9C5dffjl++tOfLui+n/3sZ/G5z30OX/jCF/Czn/0Mg4ODePWrX410Or3AFl1ZUFutUCgUyx9qqxUnun3ciLJGGym6qTfldeSmj43uJUlIW1XdSBVt30f+tFrWRkS7WxkJN0W4Tf7bDgo3Ip5/2yp5t3JKyOPte8vr2QplNwW0/XwWIyqtWfvLYwD3jUMlZDmkM6WZQts+Xl6nUcqUZnArg/2527HzXWu+zxv1G7doBFmmZhELvK506Nj9TxLM0vFhO5ka9RO7X8logGbt4/YM5bVkXWTqJrdoEHvckJEH0qHTLArFbjOZHmYhivSTZasVc+FxVkErXnDBBfit3/ot3Hnnneazs846C29+85tx6623znt+KpVCV1fXiSyiQqFQnBJIJpPo7Oys+0yOsceqJqSpcru+GxZqFz72sY/he9/7Hp555hnz2ZVXXolf/vKXeOSRRwAAV1xxBVKpFP7t3/7NHPPa174WPT09+Na3vtXSfR3HwfDwMK699lp87GMfAwAUi0WsXbsWt912Gz74wQ8upFlWFE41W90spPRUhL1IWmw0W3wqFIp6qK0+Pnu02nE87cN+dPrpp9dtyijV4M1SekgbIQk4Kn25kaKdHkQqR6Va3U6vQqWxPAc4aqOo6pXlc0sLI8vqpqaXZJ8kf6WS3C1VB8vEejaK5GI9a7VaXdu6kZxyU0ZJ/NkbMJbLZWSzWdRqNYRCIUQikbp7F4tFFAoFo572+XyoVCrIZDIol8uIRCLo6emp20CSSlu2a6FQAAAEAgGzISafF1XBtVoNhULBfG6n0/J4PHXKbT4HOQ+gytsm+O3c61SOy2dDhbBUx8sUQcFgEN3d3Whra8Ps7Czi8Tja2trQ2dmJYDCITCaDWCyGarWKrq4udHR0oFqtIp/Po1qtIhQKoaOjA47jIB6PI51OIxAIoLu7G4FAAOl0GslkEh6PB52dnQiFQqhWq6btWRbC6/UaJbjjOIhEIgiHw6hUKkilUigWi+aeXq8XuVzOpF8JBAJmbwGm4GEUhVTLM4KBkRZ8r+g4KBaLKBaLpl3td0CeI/cs4PNgmRznyCagfDZ2Ch6WT9bDfsZS5c7zWA+v1zvnebulAXIcB7lcDsVi0VyL/S4cDte9P+xvfKft8cUeB+wUNnyvbNJ+//79y8ZWK+ZixSvSS6USHnvsMVx66aV1n1966aV4+OGHl6hUCoVCoXDDyfCaH4tdeOSRR+Yc/5rXvAY///nPzY7ujY7hNVu578jICCYmJuqOCQQCuOSSS1a1zTrVbHUzkuBUhVsIu0JxKsFN6bhccarb6lMZi9U+jchnmS5E/kgVp/2usH9VKhV4PB6Ew2GEw2GEQiGTLsItdYuErfzlbzs9iK2mlqkbmJbCDZIgd3vP3WxgI0Uvj5HpLphugmko/H6/OddO1SIdBG5kP9tfXp9EIYlv3t9Oc8K0E8VisS7fOAlpmd4COOr4CAaDdelA7EgB2T/sVC1+v9/8BAIBk3bDPkc+O9kG/Mzv9yMYDCIQCJg6yWPk/3w+vD+dNzKNh030BoNBdHR0oL293aSkkeloZGoju1/wODvVjp2fXX4n+5AdtSBJat5bqs7lvew0Om59DzhKlss2s9vCTl0jU5ewzD6fz7y7fH8BoFwum3swBY90qrlFUsiURWxv2W6NxoRGYwy/k21p/89xge8Q+zh/OB5Jst0NMoLBTvMyX/53u9yqRj/5WPGbjc7MzKBarWLt2rV1n69duxYTExOu50iPGXDEE6NQKBSK48eJNs6pVKruf07CJI7FLkxMTLgeX6lUMDMzg6GhoYbH8Jqt3Je/3Y45cOBAw3qvdJxqtlonqScf2uaK5Y7l1EfVVi/svqcSFto+jWy1TRqSXJMpE9xSg0jCl8pOSXqS0JXkmE1Uyk0qG6VBaZTeRJ4vy9vW1laXq53fk7SzP7PPl2VgOSThZ5dR3kdGuEmVuU38ymuQAOex8p68jlTGuqWXIJkn21YSsW7/8xz+lhEAshyyLeX3bspetqPdBo3GMdlfpFOE/cG+t10+O2+43W/pbJDKd6lkd0vTIZ+XXU8ey1zisuw8Vl5DOgxYNrttG5VDXrO9vb3uM/uedv+W38vzZH+UZD1hn0OHmMxBbreRXWb7WnbUge0Qkfe0nQn293IscktjI9vbbhtZB15btpmtlreJbNkH5HfSEaZYnljxRDphe3oaeYMB4NZbb8VNN910MoqlUCgUpxTS6fSc9Bt+vx+Dg4PHvUDt6OjAhg0b6j771Kc+hR07drgevxC70Oh4+/NWrrlYx6xGqK1WKBSKpYfa6lPXDreKVtunka3ev3//iSqaQrEssW/fvjmfzc7OLkFJFKsFJ9JWDw4OmmgAxcKx4on0/v5+tLW1zelIU1NTczzpxA033IDt27eb/xOJBDZu3IjR0dEVlX+1GVKpFDZs2ICDBw+umrxHq61Oq60+gNZpJeBE1cdxHKTTaQwPD8/5LhgMYmRkxIQLHs897EWcrXADjs0uuE1Ipqam0N7ejr6+vqbH8Jqt3HdwcBDAEVXd0NBQS2VbDVBb7Y7VNr4Aq69Oq60+gNZppeBE1Elt9bHd91TCQttHbfXKxGqr02qrD6B1WilYqbaaqY4Ux4YVT6T7/X5s27YNO3fuxFve8hbz+c6dO3HZZZe5nuMWXggAXV1dq+aFJjo7O7VOyxyrrT6A1mkl4ETUp9mCiTkdTwaOxS5ceOGFuP/+++s+e+CBB3D++efD5/OZY3bu3Inrrruu7piLLrqo5ftu2rQJg4OD2LlzJ8477zwAR/KR7tq1C7fddtsi1H55Qm11c6y28QVYfXVabfUBtE4rBYtdJ7XVC7/vqYSFto/a6pWN1Van1VYfQOu0UrBabbXCHSueSAeA7du3413vehfOP/98XHjhhbjrrrswOjqKK6+8cqmLplAoFIolwHx24YYbbsDY2Bi+/vWvAwCuvPJKfOELX8D27dvx/ve/H4888gjuvvtufOtb3zLXvOaaa3DxxRfjtttuw2WXXYbvfve7ePDBB/HQQw+1fF+Px4Nrr70Wt9xyC7Zs2YItW7bglltuQTgcxjve8Y6T2EInH2qrFQqFQiGxXG31qQ5tH4VCoVAoGmNVEOlXXHEFZmdncfPNN2N8fBxbt27F97//fWzcuHGpi6ZQKBSKJcB8dmF8fByjo6Pm+E2bNuH73/8+rrvuOnzxi1/E8PAwPv/5z+Ntb3ubOeaiiy7CPffcg0984hP45Cc/iTPOOAP33nsvLrjggpbvCwDXX3898vk8rrrqKsTjcVxwwQV44IEHEI1GT0LLLB3UVisUCoVCYjnb6lMZ2j4KhUKhUDSBo3AKhYLzqU99yikUCktdlEWD1mn5Y7XVx3G0TisBq60+ilMHq7Hvap2WP1ZbfRxH67RSsBrrpFj9WI39Vuu0/LHa6uM4WqeVgtVYJ8X88DjO/2x1rlAoFAqFQqFQKBQKhUKhUCgUCoViDrxLXQCFQqFQKBQKhUKhUCgUCoVCoVAoljOUSFcoFAqFQqFQKBQKhUKhUCgUCoWiCZRIVygUCoVCoVAoFAqFQqFQKBQKhaIJlEhXKBQKhUKhUCgUCoVCoVAoFAqFoglOeSL9jjvuwKZNmxAMBrFt2zb85Cc/WeoitYxbb70VL3nJSxCNRrFmzRq8+c1vxp49e+qOcRwHO3bswPDwMEKhEF7+8pdj9+7dS1TiheHWW2+Fx+PBtddeaz5bifUZGxvDH//xH6Ovrw/hcBi/+Zu/iccee8x8v9LqVKlU8IlPfAKbNm1CKBTC5s2bcfPNN6NWq5ljlnudfvzjH+P3f//3MTw8DI/Hg3/5l3+p+76V8heLRXz4wx9Gf38/IpEI3vSmN+HQoUMnsRb1aFancrmMj33sY3jRi16ESCSC4eFhvPvd78bhw4frrrHc6qRQSKxUe622emXUR2318quT2mq11YqVB7XVyxdqr5cf1FYfwXKza2qrFfPCOYVxzz33OD6fz/nyl7/s/OpXv3KuueYaJxKJOAcOHFjqorWE17zmNc5XvvIV5+mnn3aeeOIJ5w1veINz2mmnOZlMxhzzV3/1V040GnXuu+8+56mnnnKuuOIKZ2hoyEmlUktY8vnx6KOPOqeffrpz7rnnOtdcc435fKXVJxaLORs3bnTe+973Oj/96U+dkZER58EHH3SeffZZc8xKq9OnP/1pp6+vz/nXf/1XZ2RkxPm///f/Oh0dHc7tt99ujlnudfr+97/v3Hjjjc59993nAHC+853v1H3fSvmvvPJKZ926dc7OnTudX/ziF84rXvEK58UvfrFTqVROcm2OoFmdEomE86pXvcq59957nV//+tfOI4884lxwwQXOtm3b6q6x3OqkUBAr2V6rrV7+9VFbvTzrpLZabbViZUFt9fKF2uvlWSe11Uew3Oya2mrFfDilifTf/u3fdq688sq6z174whc6H//4x5eoRMeHqakpB4Cza9cux3Ecp1arOYODg85f/dVfmWMKhYLT1dXlfOlLX1qqYs6LdDrtbNmyxdm5c6dzySWXGGO/EuvzsY99zHnZy17W8PuVWKc3vOENzp/8yZ/UffbWt77V+eM//mPHcVZenWzj2Er5E4mE4/P5nHvuucccMzY25ni9XucHP/jBSSt7I7hNYmw8+uijDgCzuFnudVKc2lhN9lpt9fKD2uojWM51Uluttlqx/KG2enlC7fXyrZPa6uVv19RWK9xwyqZ2KZVKeOyxx3DppZfWfX7ppZfi4YcfXqJSHR+SySQAoLe3FwAwMjKCiYmJujoGAgFccskly7qOH/rQh/CGN7wBr3rVq+o+X4n1+d73vofzzz8ff/AHf4A1a9bgvPPOw5e//GXz/Uqs08te9jL8x3/8B/bu3QsA+OUvf4mHHnoIr3/96wGszDpJtFL+xx57DOVyue6Y4eFhbN26dUXUETgyXng8HnR3dwNYHXVSrE6sNnuttnr5QW31ESz3OkmorV65dVKsTqitXr5Qe71866S2enXYNbXVpx7al7oAS4WZmRlUq1WsXbu27vO1a9diYmJiiUp17HAcB9u3b8fLXvYybN26FQBMPdzqeODAgZNexlZwzz334Be/+AV+9rOfzfluJdbn+eefx5133ont27fjL/7iL/Doo4/iIx/5CAKBAN797nevyDp97GMfQzKZxAtf+EK0tbWhWq3iM5/5DP7oj/4IwMp8ThKtlH9iYgJ+vx89PT1zjlkJ40ehUMDHP/5xvOMd70BnZyeAlV8nxerFarLXaquXZ33UVh/Fcq6ThNrqlVknxeqF2urlCbXXMP8vxzqprV75dk1t9amJU5ZIJzweT93/juPM+Wwl4Oqrr8aTTz6Jhx56aM53K6WOBw8exDXXXIMHHngAwWCw4XErpT4AUKvVcP755+OWW24BAJx33nnYvXs37rzzTrz73e82x62kOt177734xje+gW9+85s455xz8MQTT+Daa6/F8PAw3vOe95jjVlKd3HAs5V8JdSyXy/jDP/xD1Go13HHHHfMevxLqpDg1sNLHFEBt9XKsD6C2WmI518kNaquPYCXUSXFqYKWPKcDqsNWA2muJ5VontdWNsRLqqLb61MUpm9qlv78fbW1tczxCU1NTczxmyx0f/vCH8b3vfQ8//OEPsX79evP54OAgAKyYOj722GOYmprCtm3b0N7ejvb2duzatQuf//zn0d7ebsq8UuoDAENDQzj77LPrPjvrrLMwOjoKYOU9IwD4X//rf+HjH/84/vAP/xAvetGL8K53vQvXXXcdbr31VgArs04SrZR/cHAQpVIJ8Xi84THLEeVyGZdffjlGRkawc+dO4zUHVm6dFKsfq8Veq61envUB1FZLLOc6SaitXll1Uqx+qK1eflB7fRTLtU5qq1euXVNbfWrjlCXS/X4/tm3bhp07d9Z9vnPnTlx00UVLVKqFwXEcXH311fj2t7+N//zP/8SmTZvqvt+0aRMGBwfr6lgqlbBr165lWcdXvvKVeOqpp/DEE0+Yn/PPPx/vfOc78cQTT2Dz5s0rqj4A8NKXvhR79uyp+2zv3r3YuHEjgJX3jAAgl8vB660fOtra2lCr1QCszDpJtFL+bdu2wefz1R0zPj6Op59+etnWkcZ+3759ePDBB9HX11f3/Uqsk+LUwEq312qrl3d9ALXVxHKvk4Ta6pVTJ8WpAbXVyw9qr49gOddJbfXKtGtqqxU4GTuaLlfcc889js/nc+6++27nV7/6lXPttdc6kUjE2b9//1IXrSX82Z/9mdPV1eX86Ec/csbHx81PLpczx/zVX/2V09XV5Xz72992nnrqKeeP/uiPnKGhISeVSi1hyVuH3FnccVZefR599FGnvb3d+cxnPuPs27fP+ed//mcnHA473/jGN8wxK61O73nPe5x169Y5//qv/+qMjIw43/72t53+/n7n+uuvN8cs9zql02nn8ccfdx5//HEHgPO5z33Oefzxx81O262U/8orr3TWr1/vPPjgg84vfvEL5/d+7/ecF7/4xU6lUll2dSqXy86b3vQmZ/369c4TTzxRN14Ui8VlWyeFgljJ9lpt9fKvj9rq5VkntdVqqxUrC2qrlz/UXi8vqK0+guVm19RWK+bDKU2kO47jfPGLX3Q2btzo+P1+57d+67ecXbt2LXWRWgYA15+vfOUr5phareZ86lOfcgYHB51AIOBcfPHFzlNPPbV0hV4gbGO/Eutz//33O1u3bnUCgYDzwhe+0Lnrrrvqvl9pdUqlUs4111zjnHbaaU4wGHQ2b97s3HjjjXWGY7nX6Yc//KHru/Oe97zHcZzWyp/P552rr77a6e3tdUKhkPPGN77RGR0dXYLaHEGzOo2MjDQcL374wx8u2zopFBIr1V6rrV4Z9VFbvfzqpLZabbVi5UFt9fKG2uvlBbXVR7Dc7JraasV88DiO4xy7nl2hUCgUCoVCoVAoFAqFQqFQKBSK1Y1TNke6QqFQKBQKhUKhUCgUCoVCoVAoFK1AiXSFQqFQKBQKhUKhUCgUCoVCoVAomkCJdIVCoVAoFAqFQqFQKBQKhUKhUCiaQIl0hUKhUCgUCoVCoVAoFAqFQqFQKJpAiXSFQqFQKBQKhUKhUCgUCoVCoVAomkCJdIVCoVAoFAqFQqFQKBQKhUKhUCiaQIl0hUKhUCgUCoVCoVAoFAqFQqFQKJpAiXSFAsDLX/5yXHvttSvmuouN/fv3w+Px4IknnljqoigUCoVC4Qq11WqrFQqFQrG8obZabbVCsdrRvtQFUChWM7797W/D5/OdtPv96Ec/wite8QrE43F0d3eftPsqFAqFQrFSobZaoVAoFIrlDbXVCoViuUCJdIXiBKBcLsPn86G3t3epi6JQKBQKhcIFaqsVCoVCoVjeUFutUCiWGzS1i0LxP6jVarj++uvR29uLwcFB7Nixw3w3OjqKyy67DB0dHejs7MTll1+OyclJ8/2OHTvwm7/5m/jHf/xHbN68GYFAAI7j1IWg/ehHP4LH45nz8973vtdc584778QZZ5wBv9+P3/iN38A//dM/1ZXR4/HgH/7hH/CWt7wF4XAYW7Zswfe+9z0AR8LIXvGKVwAAenp66q79gx/8AC972cvQ3d2Nvr4+vPGNb8Rzzz13TO108803Y3h4GLOzs+azN73pTbj44otRq9WO6ZoKhUKhULQCtdWtQW21QqFQKJYKaqtbg9pqhWJlQol0heJ/8LWvfQ2RSAQ//elP8dnPfhY333wzdu7cCcdx8OY3vxmxWAy7du3Czp078dxzz+GKK66oO//ZZ5/F//k//wf33Xefa060iy66COPj4+bnP//zPxEMBnHxxRcDAL7zne/gmmuuwUc/+lE8/fTT+OAHP4j/7//7//DDH/6w7jo33XQTLr/8cjz55JN4/etfj3e+852IxWLYsGED7rvvPgDAnj17MD4+jr/9278FAGSzWWzfvh0/+9nP8B//8R/wer14y1veckwG+sYbb8Tpp5+O973vfQCAL33pS/jxj3+Mf/qnf4LXq0OKQqFQKE4c1Fa3BrXVCoVCoVgqqK1uDWqrFYoVCkehUDiXXHKJ87KXvazus5e85CXOxz72MeeBBx5w2tranNHRUfPd7t27HQDOo48+6jiO43zqU59yfD6fMzU1Nee611xzzZz7zczMOGeccYZz1VVXmc8uuugi5/3vf3/dcX/wB3/gvP71rzf/A3A+8YlPmP8zmYzj8Xicf/u3f3Mcx3F++MMfOgCceDzetL5TU1MOAOepp55yHMdxRkZGHADO448/3vQ84rnnnnOi0ajzsY99zAmHw843vvGNls5TKBQKheJYobZabbVCoVAoljfUVqutVihWO9TNpVD8D84999y6/4eGhjA1NYVnnnkGGzZswIYNG8x3Z599Nrq7u/HMM8+YzzZu3IiBgYF571Mul/G2t70Np512mvFsA8AzzzyDl770pXXHvvSlL627h13OSCSCaDSKqamppvd87rnn8I53vAObN29GZ2cnNm3aBOBIaN2xYPPmzfibv/kb3Hbbbfj93/99vPOd7zym6ygUCoVCsRCorW4daqsVCoVCsRRQW9061FYrFCsPutmoQvE/sHcB93g8qNVqcBwHHo9nzvH255FIpKX7/Nmf/RlGR0fxs5/9DO3t9a+gfR+3ezcqZzP8/u//PjZs2IAvf/nLGB4eRq1Ww9atW1EqlVoqsxt+/OMfo62tDfv370elUplTF4VCoVAoFhtqqxcGtdUKhUKhONlQW70wqK1WKFYWVJGuUMyDs88+G6Ojozh48KD57Fe/+hWSySTOOuusBV3rc5/7HO69915873vfQ19fX913Z511Fh566KG6zx5++OEF3cPv9wMAqtWq+Wx2dhbPPPMMPvGJT+CVr3wlzjrrLMTj8QWV28a9996Lb3/72/jRj36EgwcP4i//8i+P63oKhUKhUBwP1FbPhdpqhUKhUCwnqK2eC7XVCsXKg7q6FIp58KpXvQrnnnsu3vnOd+L2229HpVLBVVddhUsuuQTnn39+y9d58MEHcf311+OLX/wi+vv7MTExAQAIhULo6urC//pf/wuXX345fuu3fguvfOUrcf/99+Pb3/42HnzwwZbvsXHjRng8Hvzrv/4rXv/61yMUCqGnpwd9fX246667MDQ0hNHRUXz84x9fcDsQhw4dwp/92Z/htttuw8te9jJ89atfxRve8Aa87nWvw+/8zu8c83UVCoVCoThWqK2uh9pqhUKhUCw3qK2uh9pqhWJlQhXpCsU88Hg8+Jd/+Rf09PTg4osvxqte9Sps3rwZ995774Ku89BDD6FareLKK6/E0NCQ+bnmmmsAAG9+85vxt3/7t/jrv/5rnHPOOfj7v/97fOUrX8HLX/7ylu+xbt063HTTTfj4xz+OtWvX4uqrr4bX68U999yDxx57DFu3bsV1112Hv/7rv15Q2QnHcfDe974Xv/3bv42rr74aAPDqV78aV199Nf74j/8YmUzmmK6rUCgUCsXxQG31UaitVigUCsVyhNrqo1BbrVCsXHgcx3GWuhAKhUKhUCgUCoVCoVAoFAqFQqFQLFeoIl2hUCgUCoVCoVAoFAqFQqFQKBSKJlAiXaFQ1OHKK69ER0eH68+VV1651MVTKBQKheKUh9pqhUKhUCiWN9RWKxSrE5raRaFQ1GFqagqpVMr1u87OTqxZs+Ykl0ihUCgUCoWE2mqFQqFQKJY31FYrFKsTSqQrFAqFQqFQKBQKhUKhUCgUCoVC0QSa2kWhUCgUCoVCoVAoFAqFQqFQKBSKJlAiXaFQKBQKhUKhUCgUCoVCoVAoFIomUCJdoVAoFAqFQqFQKBQKhUKhUCgUiiZQIl2hUCgUCoVCoVAoFAqFQqFQKBSKJlAiXaFQKBQKhUKhUCgUCoVCoVAoFIomUCJdoVAoFAqFQqFQKBQKhUKhUCgUiiZQIl2hUCgUCoVCoVAoFAqFQqFQKBSKJlAiXaFQKBQKhUKhUCgUCoVCoVAoFIom+P8Be0R8LD5nDVAAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABdEAAAFxCAYAAACcBuH3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9e5gcVZ0+/k5NdXVNT02nM+kkkzAJEwgQSEDQIAEvgFwURN0VL6ur4q6yILuPArKKrnJbhEVYRVdAcVmQr/freuPnAgqIAgqyuIabBglkSIZkEiYzPTM93TVdvz9OvVWfOn16MgnBZMh5n6efnqk+de5V55z3fM77aYuiKIKFhYWFhYWFhYWFhYWFhYWFhYWFhYWFRROcXZ0BCwsLCwsLCwsLCwsLCwsLCwsLCwsLi90VlkS3sLCwsLCwsLCwsLCwsLCwsLCwsLCwaAFLoltYWFhYWFhYWFhYWFhYWFhYWFhYWFi0gCXRLSwsLCwsLCwsLCwsLCwsLCwsLCwsLFrAkugWFhYWFhYWFhYWFhYWFhYWFhYWFhYWLWBJdAsLCwsLCwsLCwsLCwsLCwsLCwsLC4sWsCS6hYWFhYWFhYWFhYWFhYWFhYWFhYWFRQtYEt3CwsLCwsLCwsLCwsLCwsLCwsLCwsKiBSyJbmFhYWFhYWFhYWFhYWFhYWFhYWFhYdEClkS3sNiNcdNNN6GtrQ1r166d9j333HMPLrroIgwNDb0geZoq/r6+PpxyyikvSLoWFhYWMxF8j/Pj+z56enpw7LHH4vLLL8fGjRt3OO5HHnkEF1100XaNES9mXHTRRZm6lp8vfOELSbi2tjb80z/9U+bedevW4ayzzsL++++Pjo4OdHd34+CDD8bpp5+OdevWYe3atS3j1j+yPc4991y0tbU9r7HxmGOOwTHHHLPD9++umMlzBvaHm266aVdnxcLCogXs+PuXw4t1/N0VsGP+7gc75ltIuLs6AxYWFjsX99xzDy6++GK8973vRalUmnHxW1hYWLwYceONN2LZsmWo1+vYuHEjfvWrX+GKK67AVVddhW9961s4/vjjtzvORx55BBdffDGOOeYY9PX17fxMz1D87Gc/w6xZszLXlixZ0jJ8f38/XvrSl6JUKuHDH/4wDjjgAGzduhWPPPIIvv3tb+PPf/4zVq1ahXvvvTdz31lnnYWtW7fia1/7Wub6ggULAAD1eh1f/epXkzw988wz2GuvvXZGES0sLCwspgk7/v7lYMdfCwuLFzssiW6xxyOKIlSrVXR0dOzqrOwSjI+P77Flt7CwsPhLYcWKFVi5cmXy/6mnnopzzjkHr3zlK/HmN78Zf/rTnzB//vxdmMOdg6nG1PHxcfi+j7a2th2Of2xsDIVCYcowL3vZy1Aul6cd55e//GUMDg7it7/9bWax/1d/9Vf4+Mc/jkajAcdxsGrVqsx9xWIRtVqt6Trxwx/+EJs2bcLrX/96/PSnP8VXvvIVfPzjH592vmYiJicnEYYh8vn8rs6KhYWFBQA7/gJ2/N0Txt9dATvmW+yJsHIuFi8q/PCHP8QhhxyCfD6PffbZB5/73OeS42UEj5F98YtfxIEHHoh8Po+vfOUrAIBf/epXOO6449DV1YVCoYCjjjoKP/3pTzNp6PERJukVHlv62c9+hpe+9KXo6OjAsmXL8F//9V9N99933314xSteAd/3sXDhQnzsYx9DvV7frvJfdNFF+Od//mcAatefR9vuvPPOTH6+//3v47DDDoPv+7j44ounPKLU1taGiy66aFrxE9Mpr4WFhcWejsWLF+Pf//3fMTIygi996UvJ9QceeAB/8zd/g76+PnR0dKCvrw/veMc78NRTTyVhbrrpJrz1rW8FABx77LHJ+5jv8dtuuw1vetOb0NvbC9/3sXTpUpxxxhkYHBycVt6Gh4dx3nnnYcmSJfA8D3vttRfOPvtsjI6OZsK1GlM5Jt566634+7//e8ydOxeFQgETExNoNBr49Kc/jWXLliGfz2PevHl4z3veg/7+/kzcxxxzDFasWIFf/vKXOOqoo1AoFPD3f//3O1LVU2Lz5s1wHAfz5s0z/u44OzZdvuGGG+B5Hm688UYsWrQIN954I6Ioej5ZTbBlyxacddZZ2GuvveB5HvbZZx/8y7/8CyYmJpIwb33rW7F8+fLMfW94wxvQ1taG73znO8m1Bx98EG1tbfjxj3+cXBsYGMAZZ5yB3t5eeJ6HJUuW4OKLL0YYhkkYzh0+/elP49JLL8WSJUuQz+dxxx13bFdZfvCDH+CQQw6B7/vYZ5998PnPf74pzNNPP413vetdmDdvHvL5PA488ED8+7//OxqNRhLmzjvvNM5JTHOc9773vQiCAGvWrMHJJ5+MIAiwaNEifPjDH87UIQCsX78eb3vb29DV1YVZs2bh7W9/OwYGBrarjBYWFrsX7Phrx9/pYHvW8qtXr8ab3vQmzJ49G77v49BDD004hucLO+bbMd9i94G1RLd40eBnP/sZ3vzmN+PVr341vvWtbyEMQ1x11VV49tlnm8L+93//N+6++25ccMEF6Onpwbx583DXXXfhhBNOwCGHHIIbbrgB+Xwe1157Ld7whjfgG9/4Bt7+9rfvUL5+//vf48Mf/jDOP/98zJ8/H//5n/+J973vfVi6dCle/epXA1BHAo877jj09fXhpptuQqFQwLXXXouvf/3r25XW+9//fmzZsgX/8R//ge9///vJkbaDDjooCfPggw/i0UcfxSc+8QksWbIEnZ2dOzX+6ZTXwsLCwkLh5JNPRnt7O375y18m19auXYsDDjgAf/M3f4Pu7m5s2LAB1113HQ4//HA88sgjKJfLeP3rX4/LLrsMH//4x3HNNdfgpS99KQBg3333BQA88cQTOPLII/H+978fs2bNwtq1a/GZz3wGr3zlK/GHP/wBuVyuZZ7GxsZw9NFHo7+/Hx//+MdxyCGH4OGHH8YFF1yAP/zhD7j99tszm8mmMfX+++8HAPz93/89Xv/61+P//b//h9HRUeRyOXzgAx/A9ddfj3/6p3/CKaecgrVr1+KTn/wk7rzzTjz44IMZK7YNGzbgXe96Fz7ykY/gsssum9aCmpZRRFtbG9rb21uGP/LII3HNNdfgzW9+M84991wceeSRKBaL20xnKvT39+PWW2/Fqaeeirlz5+K0007DpZdeil/+8pc4+uijn1fc1WoVxx57LJ544glcfPHFOOSQQ3D33Xfj8ssvx0MPPZRs/h9//PH47ne/iw0bNmDBggUIwxB33XUXOjo6cNtttyUk0O233w7XdRMN1oGBAbz85S+H4zi44IILsO++++Lee+/FpZdeirVr1+LGG2/M5Ofzn/889t9/f1x11VUoFovYb7/9pl2Whx56CGeffTYuuugi9PT04Gtf+xo+9KEPoVar4bzzzgMAbNq0CUcddRRqtRr+9V//FX19ffjJT36C8847D0888QSuvfbaHarHer2ON77xjXjf+96HD3/4w/jlL3+Jf/3Xf8WsWbNwwQUXAFDWm8cffzzWr1+Pyy+/HPvvvz9++tOf7vCc0MLCYveBHX/t+DsdTGdt+/jjj+Ooo47CvHnz8PnPfx5z5szBV7/6Vbz3ve/Fs88+i4985CM7XB475tsx32I3Q2Rh8SLB4YcfHi1atCiamJhIro2MjERz5syJZFcHEM2aNSvasmVL5v5Vq1ZF8+bNi0ZGRpJrYRhGK1asiHp7e6NGoxFFURRdeOGFkenRufHGGyMA0ZNPPplc23vvvSPf96OnnnoquTY+Ph51d3dHZ5xxRnLt7W9/e9TR0RENDAxk0l62bFlTnNvClVde2fKevffeO2pvb48ef/zxzPUnn3wyAhDdeOONTfcAiC688MJpxz+d8lpYWFjsKeDYcP/997cMM3/+/OjAAw9s+XsYhlGlUok6Ozujz33uc8n173znOxGA6I477pgyD41GI6rX69FTTz0VAYh++MMfThn+8ssvjxzHacrzd7/73QhAdMsttyTXWo2pLPd73vOezPVHH300AhCdddZZmeu/+c1vIgDRxz/+8eTa0UcfHQGIfv7zn0+ZX4Ljs/7Za6+9MuEARP/4j/+Y/N9oNKIzzjgjchwnAhC1tbVFBx54YHTOOedMOf4effTR0fLly42/XXLJJRGA6Gc/+1kURVH05z//OWpra4ve/e53T6ssejpHH3108v8Xv/jFCED07W9/OxPuiiuuiABEt956axRFUbRmzZoIQHTzzTdHURRFv/rVryIA0Uc+8pFoyZIlyX0nnHBCdNRRRyX/n3HGGVEQBJmxPIqi6KqrrooARA8//HAURencYd99941qtdp2l2vvvfeO2traooceeihz/YQTToiKxWI0OjoaRVEUnX/++RGA6De/+U0m3Ac+8IGora0tmdPccccdxufBNMc57bTTjHV48sknRwcccEDy/3XXXWd8Zk4//fSW8yYLC4vdA3b8teNvFD2/8Xe6a9u/+Zu/ifL5fPT0009n7j/ppJOiQqEQDQ0NTTtNO+bbMd9i94aVc7F4UWB0dBQPPPAA/uqv/gqe5yXXgyDAG97whqbwr3nNazB79uzM/b/5zW/wlre8BUEQJNfb29vx7ne/G/39/Xj88cd3KG+HHnooFi9enPzv+z7233//zLHAO+64A8cdd1xGj6+9vf0F2fU85JBDsP/+++/0eInplNfCwsLCIkWkHTGuVCr46Ec/iqVLl8J1XbiuiyAIMDo6ikcffXRacW7cuBFnnnkmFi1aBNd1kcvlsPfeewPANuP4yU9+ghUrVuDQQw9FGIbJ57Wvfa3x6Kw+pkqceuqpmf957Pe9731v5vrLX/5yHHjggfj5z3+euT579my85jWv2VZxM7j99ttx//33J59bbrllyvBtbW344he/iD//+c+49tpr8Xd/93eo1+v47Gc/i+XLl+Ouu+7arvSjKEqOkJ9wwgkAlATaMcccg+9973sYHh7ervh0/OIXv0BnZyfe8pa3ZK6zTlmH++67L/r6+nD77bcDUBIDBx98MN71rnfhySefxBNPPIGJiQn86le/yjjW+8lPfoJjjz0WCxcuzLT/SSedBABN9fHGN75xSsvKqbB8+XK85CUvyVx75zvfieHhYTz44INJeQ866CC8/OUvbypvFEX4xS9+sUNpt7W1Nc0RDznkkKb5WVdXF974xjc25dHCwmLmw46/dvzdFqaztv3FL36B4447DosWLcrc+973vhdjY2NNjlG3B3bMT8trx3yL3QFWzsXiRYHnnnsOURQZncKYrlGGRL9fvw4ACxcuBKA023YEc+bMabqWz+cxPj6e/L9582b09PQ0hTNde74wlXFnYjrltbCwsLBQGB0dxebNm3HwwQcn1975znfi5z//OT75yU/i8MMPR7FYRFtbG04++eRpvUsbjQZOPPFErF+/Hp/85Cdx8MEHo7OzE41GA6tWrdpmHM8++yzWrFnTcpGk67pONa7ov3EsbTXe6huuOzJmveQlL9kux2bE3nvvjQ984APJ/9/+9rfxjne8A//8z/+M3/72t9OO5xe/+AWefPJJnHvuuZkF+9ve9jbccccd+MY3voEzzjhju/NHcM6g+2eZN28eXNfNzFeOO+44/OxnPwOgyI0TTjgBBx98MObPn4/bb78d++23X3J8mXj22Wfx4x//eKe0/7Yw1dyH5di8eTP6+vqawj3f+VmhUIDv+5lr+Xwe1Wo1+X/z5s3GeeQLMT+zsLD4y8KOvyns+Nsa013LvxA8Au+1Y74d8y12H1gS3eJFgdmzZ6Otrc2of25yBKEPQrNnz4bjONiwYUNT2PXr1wNAMiHgy3diYiLjiXq6zmJMmDNnjjGfL4QTC5NTVFkmiecz4FtYWFhYbBs//elPMTk5mWhTbt26FT/5yU9w4YUX4vzzz0/CTUxMYMuWLdOKc/Xq1fj973+Pm266Caeddlpyfc2aNdO6v1wuo6Ojo6VTaH2BbBpXWv3GxeiGDRvQ29ub+W39+vXbFfcLjbe97W24/PLLsXr16u2674YbbgAAfOYzn8FnPvMZ4+/Ph0SfM2cOfvOb3yCKokz9bNy4EWEYZurwuOOOww033IDf/va3+M1vfoNPfOITAJT14m233YannnoKQRBg1apVyT3lchmHHHIIPvWpTxnT50KWeD5tNNXch31lzpw52z0/k3i+8zMTgWOdjFlYzHzY8TeFHX+fH6Y7Tu1o3HbMt2O+xe4DK+di8aJAZ2cnVq5cif/+7/9GrVZLrlcqFfzkJz+Z1v1HHHEEvv/972d2lRuNBr761a+it7c3kUDhzuj//d//ZeKQHq63F8ceeyx+/vOfZzYBJicn8a1vfWu74yKxvz2W3/Pnz4fv+01l+uEPf7hT4rewsLCwaMbTTz+N8847D7NmzUoWdW1tbYiiKLNJCwD/+Z//icnJycy1Vu9jLnD0OL70pS9NK1+nnHIKnnjiCcyZMwcrV65s+pgshKYLHg3/6le/mrl+//3349FHH8Vxxx23w3HvKEyLNUDNIdatW9e0gJwKzz33HH7wgx/gFa94Be64446mz9/+7d/i/vvv325iQOK4445DpVLBf//3f2eu33zzzcnvMmxbWxs++clPwnGcxAna8ccfjzvuuAO33XYbXv3qV2cs0E455RSsXr0a++67r7H9t6c+toWHH34Yv//97zPXvv71r6Orqytx1nfcccfhkUceSY56y/K2tbXh2GOPBdB6fvajH/1oh/N37LHHYmRkpCmO7XX8bmFhsXvBjr8p7Pj7/HHcccfhF7/4RUL0EjfffDMKhUKGtN6RuO2Yb8d8i90H1hLd4kWDSy65BK9//evx2te+Fh/60IcwOTmJK6+8EkEQTMt64PLLL8cJJ5yAY489Fueddx48z8O1116L1atX4xvf+EYyKTr55JPR3d2N973vfbjkkkvgui5uuukmrFu3bofz/olPfAI/+tGP8JrXvAYXXHABCoUCrrnmGoyOjm53XDyS+LnPfQ6nnXYacrkcDjjgAHR1dbW8p62tDe9617vwX//1X9h3333xkpe8BL/97W+NA8aOxG9hYWGxp2P16tWJzuTGjRtx991348Ybb0R7ezt+8IMfYO7cuQCAYrGIV7/61bjyyitRLpfR19eHu+66CzfccANKpVImzhUrVgAArr/+enR1dcH3fSxZsgTLli3Dvvvui/PPPx9RFKG7uxs//vGPcdttt00rr2effTa+973v4dWvfjXOOeccHHLIIWg0Gnj66adx66234sMf/jCOOOKIHaqHAw44AP/wD/+A//iP/4DjODjppJOwdu1afPKTn8SiRYtwzjnn7FC8zwef+tSn8Otf/xpvf/vbceihh6KjowNPPvkkvvCFL2Dz5s248sorpx3X1772NVSrVXzwgx9MrBsl5syZg6997Wu44YYb8NnPfnaH8vue97wH11xzDU477TSsXbsWBx98MH71q1/hsssuw8knn5w5pj1v3jysWLECt956K4499lgUCgUAakG9ZcsWbNmypcla75JLLsFtt92Go446Ch/84AdxwAEHoFqtYu3atbjlllvwxS9+scmKcUexcOFCvPGNb8RFF12EBQsW4Ktf/Spuu+02XHHFFUlezznnHNx88814/etfj0suuQR77703fvrTn+Laa6/FBz7wgcTIoaenB8cffzwuv/xyzJ49G3vvvTd+/vOf4/vf//4O5+8973kPPvvZz+I973kPPvWpT2G//fbDLbfcgv/5n//ZKeW3sLB44WHHXwU7/j7/8bcVLrzwwkRb/IILLkB3dze+9rWv4ac//Sk+/elPY9asWTsctx3z7ZhvsZthV3gztbB4ofCDH/wgOvjggyPP86LFixdH//Zv/xZ98IMfjGbPnp2EgeYVXOLuu++OXvOa10SdnZ1RR0dHtGrVqujHP/5xU7jf/va30VFHHRV1dnZGe+21V3ThhRdG//mf/xkByHgS33vvvaPXv/71TffrXrejKIp+/etfR6tWrYry+XzU09MT/fM//3N0/fXXN8U5HXzsYx+LFi5cmHg6p9fqVvmJoijaunVr9P73vz+aP39+1NnZGb3hDW+I1q5dGwGILrzwwucVv6m8FhYWFnsCbrzxxghA8vE8L5o3b1509NFHR5dddlm0cePGpnv6+/ujU089NZo9e3bU1dUVve51r4tWr14d7b333tFpp52WCXv11VdHS5Ysidrb2yMA0Y033hhFURQ98sgj0QknnBB1dXVFs2fPjt761rdGTz/9tPGdbkKlUok+8YlPRAcccEDkeV40a9as6OCDD47OOeecaGBgIAnXakxlue+///6m3yYnJ6Mrrrgi2n///aNcLheVy+XoXe96V7Ru3bpMuKOPPjpavnz5NvNKXHjhhRGAaNOmTVOG0/N83333Rf/4j/8YveQlL4m6u7uj9vb2aO7cudHrXve66JZbbmkZjyl/hx56aDRv3rxoYmKi5X2rVq2KyuXylGH0dPQxdPPmzdGZZ54ZLViwIHJdN9p7772jj33sY1G1Wm26/5xzzokARJ/61Kcy1/fbb78IQPR///d/Tfds2rQp+uAHPxgtWbIkyuVyUXd3d/Syl70s+pd/+ZeoUqlEURRFTz75ZAQguvLKK6dVDh2cM3z3u9+Nli9fHnmeF/X19UWf+cxnmsI+9dRT0Tvf+c5ozpw5US6Xiw444IDoyiuvjCYnJzPhNmzYEL3lLW+Juru7o1mzZkXvete7ogceeCDzbERRFJ122mlRZ2dnUzrsQxJ8HoMgiLq6uqJTTz01uueee5ritLCw2L1gx187/urY3vF3e9a2f/jDH6I3vOEN0axZsyLP86KXvOQlOzRG2DHfjvkWuzfaokhzSW1h8SJCvV7HoYceir322gu33nrrrs6OhYWFhYWFhYWFhYWFhYWFhYWFxQyDlXOxeFHhfe97H0444QQsWLAAAwMD+OIXv4hHH30Un/vc53Z11iwsLCwsLCwsLCwsLCwsLCwsLCxmICyJbvGiwsjICM477zxs2rQJuVwOL33pS3HLLbdktMJmKhqNBhqNxpRhXNc+0hYWFhYWFjMBk5OTmOpAaFtbG9rb2/+COdo5eLGWy8LCwsLixYFdMU69WMfGF2u5LCxawdnVGbCw2Jn49re/jf7+fkxMTKBSqeCXv/wlXve61+3qbO0UXHLJJcjlclN+1q5du6uzaWFhYWFhYTEN7LvvvlOO6ccdd9yuzuIO4cVaLgsLCwuLFwd2xTj1Yh0bX6zlsrBoBauJbmExQ7B+/XqsX79+yjCHHHIIPM/7C+XI4sWCZ555Bh/96Efx//1//x/Gx8ex//7744YbbsDLXvYyAEAURbj44otx/fXX47nnnsMRRxyBa665BsuXL9/FObewsLCYufjDH/6AiYmJlr93dXXhgAMO+AvmaOfgxVqu3Q127LawsLDYMeyKcerFOja+WMv1QsGO3TMflkS3sLCw2IPx3HPP4bDDDsOxxx6LD3zgA5g3bx6eeOIJ9PX1Yd999wUAXHHFFfjUpz6Fm266Cfvvvz8uvfRS/PKXv8Tjjz+Orq6uXVwCCwsLCwuLPQt27LawsLCwsJhZsGP3iwOWRLewsLDYg3H++efj17/+Ne6++27j71EUYeHChTj77LPx0Y9+FAAwMTGB+fPn44orrsAZZ5zxl8yuhYWFhYXFHg87dltYWFhYWMws2LH7xQFLor+AaDQaWL9+Pbq6utDW1rars2NhYbEHoNFo4KmnnsLixYszTlzy+Tzy+XxT+IMOOgivfe1r0d/fj7vuugt77bUXzjrrLJx++ukAgD//+c/Yd9998eCDD+Kwww5L7nvTm96EUqmEr3zlKy98oXYQ1113Ha677rrEV8Dy5ctxwQUX4KSTTmp5z1133YVzzz0XDz/8MBYuXIiPfOQjOPPMM/9CObbYHWDHbgsLi7807NidxbXXXosrr7wSGzZswPLly3H11VfjVa96Vcvw2xq7v/zlL+Pmm2/G6tWrAQAve9nLcNlll+HlL3/580rXYveBHbstLCz+0rBjdxZ7zNgdWbxgWLduXQTAfuzHfuxnl38uvPBC43sqn89H+Xw++tjHPhY9+OCD0Re/+MXI9/3oK1/5ShRFUfTrX/86AhA988wzmftOP/306MQTT3yhX6PPCz/60Y+in/70p9Hjjz8ePf7449HHP/7xKJfLRatXrzaG//Of/xwVCoXoQx/6UPTII49EX/7yl6NcLhd997vf/Qvn3GJXwo7d9mM/9rO7fPbEsfub3/xmlMvloi9/+cvRI488En3oQx+KOjs7o6eeesoYfjpj9zvf+c7ommuuif73f/83evTRR6O/+7u/i2bNmhX19/fvcLoWuxfs2G0/9mM/u8vHjt0v7rHbWqK/gNi6dStKpdJOjdNxHLS1tSU77I7joL29He3t7fA8D+3t7ejo6IDruujo6EiuyW8AiKIIURRhfHwcYRiiWq1ifHwcURSh0WjAcZxMPK7ror29HY7jJHlg2lEUoVarYXJyEhMTEwjDEOxWbW1tyb2dnZ1wXReFQgH5fB6u68J1XURRhMnJSTQajcQpRWdnJzzPg+/7yOfzaG9vh+u6SbqA2vmLoggTExOo1WpNaba1tSU7gryfu4Lt7e3I5XJJXUZRhHq9jjAMUalUMDo6iuHhYQwODmJ8fBybN29GGIZJnXd3d6NYLGLWrFmYM2cOcrkcgiBAW1sb8vl8Uz0xzwTrq1qtJvXVaDSSD8vBsrCuWWe+72fKV6/XMTk5idHRUdRqNYyNjWFkZASTk5OYnJxM6oDt6nkeOjo6UCgU4HkegiBIysD2am9vR71eR71eR7VaRaVSQRRFTX2Q7SDzX6vVkvacnJzM3MP7eM/ExATq9TomJiaSz/j4ODzPw6xZs5DP5zFnzhx4npfUrSltpslrLIPjOHBdN0lLhq3VagjDEGEYJnlle/DDftFoNJLfa7Ua6vU6hoeHMTExga1bt2Ycqshng/lkW7NO+fcL9Qp++OGH0dvbm/zfakfc8zysXLkS99xzT3Ltgx/8IO6//37ce++9uOeee/CKV7wC69evx4IFC5Iwp59+OtatW4ef/exnL0j+Xyh0d3fjyiuvxPve976m3z760Y/iRz/6ER599NHk2plnnonf//73uPfee/+S2bTYheDYve6++1D0fXUxCIDOTmB0FNi6VV3r7FTfrqu+aYGyZQvwzDNAGAITE0A+D+y9two/axbAOMMQ2LwZ+POf1ff996vw//AP2FhcinkbVwN33gkcdhgem/MKPPss8Mc/quTvvFMlccUVwImzfqP++cMfgGXL8MC+b8f69cCcOSrJQ/fapOLeZx/U9lmGP/4R+OEPVRZe+1pg/vy0CNWqKuJBBwHOd74F5HLAq14FzJmD4YqDMAS6JzcBjzyiMvL006ocvg84DlAuq78PPhhjcxZh82Zg/XpVNUGg0omHUrhuWmWTk0CxCMxr26QCuC6Qz2MYRWzerH4PQ1We+fMBz20kEdXgIQyBSkVV36xZQBHDmfp/bGM3nnkmjWflSmDek79R9f5//6d+mDsX6OoCVq1Cba8l+OMfVZWyTubMAd5xak21V5xY48hX4I470vL4PjBvnsrnvHIDqFSwZmMRDz6ofvP9tMyuCyxenHYJ143LVa1mO2TcOMNVD9UqsHEj8Oyz6jK74MREWm2A6nKum3bbfD5Ng9Gzevg3u3QYqi4sw7Fs1aqqMkDVh+8DCxcCRb+GsdBLHg2mV3BraQSui1rooFpV8TCNp58G6nWgp0fVxUEHAc5TT6YFmzULw50LVN+b2ACMjmJ43lL88Y9pvioV1c/++EfgX//1OQCD+PnP98PKB6/Hb17yD3jzm4E3vQm49t+G8dj6Io444n4Aw9j60ktx1YMP4ryDDsJvrr4XR+y3Bfi3fwNe/3ocdvbReOYZYOPv1gH/8R8Y/sSncfnlwKmnAis3/4/qM/m8Kt/69SqvBx4I7LVX2nbVavq+mDWLLxh1nY3T2QnMmYNnNm3CQS99qR27ARxxxBF46Utfiuuuuy65duCBB+Kv/uqvcPnllzeF35Gxe3JyErNnz8YXvvAFvOc979mhdC12L3Ds/r//W4e9FwXqxRCGybPaCIoIQ/X48f0n35udnUAxiMcWBuKgISFvkgOZvCbeeYwOSNOUUU5OplHwf0Bd45gp7zNli9kIAqC7W70Xi35NJbx+vXrvVCpqMAtD9Q0AMS+AUkndNH++ernn86j5xeQVZkqT73mivT0dZ2QZ+f/oaDK0Z8IEQTxWyPplPhkJM8BKkfUcR9jwC0mzsc4YDcHxkGWZmFDVAqhim5LK51Ue2Y6Tk2m8s2apOKvVdDzl61pvx4kJFY7ZBtJ+IecGLJqsW1lcvf/IfBGjo9m09HaT7cC5CQA4YS2NVE9EJiAhMy4z77poIO3/bFbWOetDdklTH2ffls3OeRPLwOm1LFepZCiP7IRA+mB1dqaTHDYkE2WnlnURZ6QWOli//hm85CUH2bEbe9bY7W47iMWO4oU4SqYTkfJ/krX8kEQk8cq/gZRE5/8MSwK31f2mNEhitrW1JYQt4yeBSdLadV3kcjl4nmck0Zm+53kJaSoJdxOJznpoRaLzmyS67/tGEr29vT0hScMwRD6fRy6XQxiGST2xblgGEv25XA6+78NxnGmR6Eyrra0tIVK3RaKzDiSJznyRlOcGCAliE4nOOvV9PyHUC4UCcrlcstGhk+iMc1skOvPAvsQ+IetC3scw8vgT+wPbX+aTGyCMY3JyMkmbaU5ForMc8ptkNuOTfTqKoiTfLJ/sa67rJvfINuazwbbkNX0zQW4o7GwUi0UUi8VthluwYAEOOuigzLUDDzwQ3/ve9wAAPT09AICBgYHMYL5x40bMnz9/h/NXrVZRq9W2HVAD20Si1URFYnJyEt/5zncwOjqKI4880hjm3nvvxYknnpi59trXvhY33HAD6vU6crncdufXYuaB/asYBCh2dKiLQZASxVxIBIH6ljN7AKjVUjaSq8ogUJ9iMUuiM+z4uJrURxEQBBjvKqI4FqfZ2YkgUIvZjg41v+eiolgEip2dQKGg7i8U0NlZRKGgog0CoNhVVb8HAWrFIoIgXT90diremFnP5YC2NhWvUyioC11d8QW1GCqGVXVjva7yRxK9vV2l4/tAVxfcYjEpXisSnemGYZxMWzXL2kLFIRfbxaKZRG9rU3xAsQgUGWm1Cvg+grFi0iRJWqx3lqGjQ326upJ66uhQ8U5Oqr+LxVqm3RvFYmYvJS66ImOKDcBxEIwVk2qRazHXTas2Q6KT1CB4g+chlwPGxtQCVJLorFdJoudyabeTaTN6SeywTYJANWutlsZVr6u4dBKe8RaLiqxxQw8c8pieiUT3PBUf0ygUVBpJfy0CDh1nsf/F5FexWkk6aGdnmq8oSrseMAmgis7OIoodHejsLGb6RjBcBNAJYBLF9nb4AIrt7Sp8MVQBOzvR3q7uK3Z1JTfn83HbjhdUp/B9lXl2FBZCtp2sXFZ2e3saNi708Pg4ADt212o1/O53v8P555+fuX7iiSdmSAeJHRm7x8bGUK/X0d3dvcPpWuxeYP/q6iqiWAzUeM2Xvu8nJLrnZXlyvuuCQJDoDKSTiUAzia7PAQwkOt+7kuQ1Rcf/ZTRhqN51vK9en5pE7+qKxyu/phIejjeVo0h9whDJy5rPX6GgbmIEvo+aX4TnqaCmqpDkK6DS7+hoTaI7TpaTZFm6ugwkumw7XhNjSaaCSNj6hUyzVavqtSzzzPkP60++GjgXkv2CfGtXVxp+cjKNt6tLxZnLpW1sItFzORVvLpctAtPXSXSObRJTkejMF9HWlumGTe3GcjGdaZHo+nMgM6b/r5HobBfHSeugUlFlll1S9jO9yWWz63MqdltZrmLRUB7ZCYG0sTmh8bx0kqP1r0xdxL/XQgcjI8MA7Ni9p43dlkSfgZBksfxfh4nEl6Se/JuELK+RZCYRqVuhEyRNSdaSeJTEOv8nAcnwjuMkv5Go5MNCwl2mTfJULzfvlf/LcLK8k5OTidW2LD8tjicnJxMrY5LPkqzWiWhZRyZSWVrsm/IpCVsStaEYpExtrG+aAEi+c7kcGo1GQjizvDLvMs96m7KOmCYJZmmhrdcr21CWXV7Ty8J7ZNipyqZvMEgynnVmIqZN34yT5DfblX2T/ZXtIE9Z8CMt0bnhIvuxTFPmz0Si7w54xStegccffzxz7Y9//CP23ntvAMCSJUvQ09OD2267LdFmq9VquOuuu3DFFVfsUJrVahVLlizBwMDAdt8bBAEqNBuJceGFF+Kiiy4yhv/DH/6AI488EtVqFUEQ4Ac/+EHT5IUYGBhomqDMnz8fYRhicHAwM5mx2ANgWrFMtfKV95GY5f/yHrnCA1JybdmyZLHf1QXgmXT1oM/he3pS6ygS7dhrLyDuo5lFh8gzs1wuq/+5ACS4nqhUgOKCBUlZGnAwPq6MeLp7SyoDrgsMDaVl5IaBllkuIHWeQS6kgXgx6fqZVZOLbFVm5uxx/XluCM914c72UKnEa6Mwu8jWmwSAMlMCgH33Vd8LFqjKKJdRqSh+vWnNKBdfrtvEpUhrKd4s12AyrOla9o/0/wbU2DU5mW1bri+4eGYe5MKYmxe+DzhoAL6Ki69R2b3Z/npxZT75f6apwxCu6zW1tSwcF9Myv1qQJD+e3JyJf5D1WgwaWLDAQamkSK/hipPUxZFHzsbg4GwsWgTg8S709ADHHKNOH6C/H729BwE4AMAwUCqhFwB6ehSBQUtM38eKFaqbc8ei6NewdKmn4l0zpBKTG2lkQEzPvSys6SPvmyZ21dg9t6MDlW0HbcJ0x+7BwUFMTk4ax+JWc4YdGbvPP/987LXXXjj++ON3OF2L3ROZR0+8YHQekI+sbkjbHIm4pr/0+S3Dm+5tEZUejf6dGVOQWhfHe24ZTE6mlr1qrPDg+h68cjn70mYkMrGOjuwGP+JNXd9pshyXZdCJXxOfaioP40vu0SvExP5mNtjTcA1XbaRXK9l60Yl/5sN0uMA0TZPXpwqvX5e8nxzr9LaU8XDslNdbhW2Vr/b27FzANMwAKWHPDY9kbmCa58rGazW2mcauuBIdAJ7rwgvUPUHgJPMMnkqT8045NZbzEb27lkrNZZAb664bE+jyZJ+M0PStl7tpcpatE87Lthd27E4xk8fubb/lLXYbkOCTxKokrElGSlJXkpE6QSvD08KX6fCaybJaEqZShoXxk5CUeZTSHnJXSVq0A8oCva2tLbGMlkQ1rcslGo0GpHW9rCv5zfqpVqsJqcx7aM1MyQ7Kw3C3jhI5URQleZk1axZKpRIKhQI6OjoyJDrjl9b+0pqcBCrldWiNzzyQaCfJL9uZbSrjk2Vpa2tDLpdLNiHCMExkeuQGgOu6Sdoy76wD9hPWQ61Wy7SxzB/7V6tTApKkl31HpiXjkicfGFZuBBD8W99IYDr6aYAoiuB5XvIbNy64kSHLRYkjKVFE8px9JAxDjI6OZoh0neBnvdBanXUsn5FdjXPOOQdHHXUULrvsMrztbW/Db3/7W1x//fW4/vrrAaj8n3322bjsssuw3377Yb/99sNll12GQqGAd77znTuUZq1Ww8DAAJ5++ulp7doTw8PDWLx4MdatW5e5byor9AMOOAAPPfQQhoaG8L3vfQ+nnXYa7rrrrpZEummTyHTdYg+AvqriDH+qhQagZvClUnqPTpRVKmoyPzSkwvb2qt9XrUqI6UJlowoTa2ZIA9f2dhWUtyIsqR+XLAF6ejD5WNb4PVmlIDHMxooVKqm+PqCAsYQoZ9YGBoDiMcdkyvjss+p6GHro7TsIhZ4tWVJBfoIgWafTqFj+bLJYc12gEajn2oEaE9xQVaVpQZlkNm4Xr1xGd2zB0/ALKg6XCzdFiGbWSUuXqn8OPRRwXWypKBK+OpDKlugWaQ04cNi+rovBwbRsJKvzeVU2tjeDy67CMPI4NcssCecwBMJ4DSjJAS6CW1mqcUHZ0RFbVlarwKBaBHnxCtMXR9/lN7up66p8S2s1yb3MmqXiL/gNoBLC8xvo6nKSfABALXQAeIB4ZPTNCR6TJ78ThoCnWXP7bPuhuFLWrMFi3wceWgusWYPi/Pl46eGH46XLArzudQWEIVAc+CPQ24t9go34whfmYXFpGPjmr1BcMYQzzzwKmzfPBnqW4TW33QasWoXZs+N+c+SRQLmM978/zufAgKqIxx7D3/zNIege/COwdq3q2EuWqMLyOWclmhbgsnHYiLo13HZgV43dFQAfBjD12a8sJgD8e6WyXWO3aSyeahzenrH705/+NL7xjW/gzjvvhK89RNubrsXuh2Ss4B/xO4/vUvmTbujYgAO4nqLHdBI3EzmaBiWdVNNJXHmbHFcI04azzALfn5OT6fDH/3ViEkjHpDlz5qGrd56y9q5U0o986evEdfwe81wXs2d7xqlPK6JXH9cJuQHL/zN1IwNrJ/1YtyyftMaXpCtv4Xg1MqKucUye6jXLsW5oSN1H63PZBjpJzWUp+5G0IJft3Aq8n/mTzZDMCTR48VxEtkMup+qERLrc/JZ55FwlQ5pXDGy1qEjWfatNCVeS1rITcr4LJP97ADxZUCDNbK/Y8XdT+TemLaFv7jtoiLRC88NnehhNYWT5Rf/bziG6JezYve3wpuvA7jV2WxJ9BkKSxTqRCWSteSWJLCU5dCt0Eq/S6rsVeS2JT2pKV6vVjJSGtGyX1+v1ekIay3RImpKwpw67bpEu88AyyPxJklZClxxhXkxa2tKynvEH8WDu+z5c10000X3fR6FQSNIm4Ss3GEhYO46TSL5ImRm5MSEJeBKzzK8kpXVSnkQw69z3ffi+nxyFodwJ24V1y/plHur1eub0ADXK6/U6xsfHEx13abFOsprlbGUNLq28adFtsjCXfU/WKduC8UnyX7eolyS6JLNJorMPUrJGyt+QFB8fH0/04NnPGUZq2ksrfZkXuaHAdmG+KeezO+Dwww/HD37wA3zsYx/DJZdcgiVLluDqq6/G3/7t3yZhPvKRj2B8fBxnnXUWnnvuORxxxBG49dZb0UV2bAfR1dW1XXGwjqd7ZA5QG3NLly4FAKxcuRL3338/Pve5z+FLX/pSU9ienp6mXeuNGzfCdV3MoViixZ6DfD498hwaJuVyJSFXxJJEJ/gbFxZDQ8DgIFAuo9a7DwYGgDt/otYAZ57ZDee+e1TYuXMTy3RKmOZyyrK2ry8mSIdKaJS6MTAAVGJSlwR6qQRgIF5xum5Coh96aCy3MbReJVoqwfF9uG4xWV/39zvo7PRw8MGA7youcc0a4LnngP5+oLe3G/uvWJFdJcblawRF1DeleZHVkJyapSSLnx553xTf09HhwHUVQeuFVbXIizPfKHWndTg0pDI2NKQqpFpVluRuN1zXgR+T6aVSStYym3/u91CpeFi7VpV3ICbPe3uVpf7goFpIc1Hc3q5+LwQBxtwiRkayhvgsV0KCxImxHer1VCJ/9mwVhsZ/Dhpp+eBkFv+mY/vyCLPsgvJ6ogc6MJjWFzPkuvB7FyfdeGQkmw7lcUulWBIg7veFwIfrqjPrCTlfCZOFc0GwPw04GBpK5WBcVxE+UttXJ1QSsiIImkiCZIEehsBjj6kGeugh4O67gUWLlF+AahWF735XdaR/+ifghBOAX/0Kix94QDXy4CCwdi0+97mjMDAA4PZD0fuOdwDHHINZs+ITGMccA1QqODl8RF14rF9VxB/+gO5164AnngAef1x1FGnuT1QqzZ1eNhwLxftYpu08Zr0rx+4OAP42Q6XgCmU6Y3e5XEZ7e7txLG51lH17xu6rrroKl112GW6//XYccsghzytdi90TGRI9JuPCanYTEMhuQupkKd9zjoFES74FadsKrYg3E7nJTzI2hiFQVcQjbwrmqk1CuYnKjcnnnlP/SxkRQI036n3uoVTqRhB0o9Qbv1OHhsxzG2HB6/m+yoNgh0mskujV/3ddJ0Nwum66wUqC2HWdJpI5IWyRWpdz7GS2OJRJaRxZz6WS+oyPpy4pSHKbbB+YJ7mxPzqatku1mpLTvJ+Eu75fyte8g0Yyr5HQ92VkuwOy7YGmDicSclw3qT9CEulsLmO/Gqo0t7cckEWGSGTrY7fMTjoMevDYlkND8eb9oLqZVglyF0RmHEhNyWMLAC+fhydNzfWNHh1TPWytdnYI3WJC3CeNGkzVZTzJMgXs2J1iJo/dlkSfYTBJt5jkM0yyEbpls7TilhIfkqCVVu3S0SLjIeHID0ECVJLvYRiira0tuZ/kLslMan1Tu1zqsUtrdWm1zXt1y3dZV7K89Xo9IURpGU8iVJeDIdra2pL80EI+CAIUi8XEWl4SvbQ0pgyKrGNJ/LNMupa2lMaRbSbzJtuK9S3bk3rtUopEEu563co2Yl+hxTWt91lvY2NjSZwkq0mgswxyY0OvT8YtnXVKAlpKCMm2lv1Ut8znJpEuJaRvKOk+AZiutHxnejyRQO0tOj+V/Z0EvP7sSUKf+WU967JEuwNOOeUUnHLKKS1/b2trw0UXXdRSMmVHYZL92Vb4nZGmdAIrceSRR+LHP/5x5tqtt96KlStXWj30PRGuq0h0aQqjT8JNk3LXVSs401lUrgJJ6JVK5PXwk5+odce73gUU+2PiLiY8C34Dvp++q1esAJwHfpswvgMDwAMPpEnTEtn3kfE4Va2q693YoiyTBwczZmvt7cUkezTA3W8/Fc/goCLPR0bS9VC5XMwUvVgOgGo14+RK6oNSszWxGorrTllHe8lGAS2pCohXzGT2SyWAJHqlkjL6g4PpiiYIMJ5x0OUoa+k4rQYcDAyo2zZsAH79axXVhg1qkbhqlTJSp+OruGqS5oPvY3AgW3UkNGhZ7rpIrKHcmCtlnZCUp1O2xCIs7iv8s9WClX9L1RypfkLy26nG4ukkScg8xAGdsIYwVEQFLRlZHlr/BwGAwaG03wYBitQC4iJZbqDIRb7vo153kjokEaIbXevyMGEIjFXVonV8XFjTy+dv3TpFZN99N4YfegjFhx9WmR4cxOq778YWAK/+/e+Bd7wDWL0auOoqFfleewGDg/C++l9Y3NurNl7OPBNYtgwdvkqvv9/BsmVFOD/4gTp+0den4n7iiXTzq78/NfPk7glhYnXk4l8WVtadPHY+TeyqsdtBuriebvjpwvM8vOxlL8Ntt92Gv/7rv06u33bbbXjTm95kvGe6Y/eVV16JSy+9FP/zP/+DlStXPu90LXZPyHclScAwTHk7/XGUj2ozD9dshct4dM3r6YBkrLxHJ18zp960QcAJlHxZV1chU1aOGRy/JTZvVuHKZfWJVcuQz3uYP7ecJTdNou18t4tTNo6sZGDq/8MQjusmcxjqVDuum5KuyG5UVGLynA4yOR6MjiLZnOV8QU7DmGw+n9YHkNgRGMdT2QYMw6rga5ptzXRMBDq/WT7X9YzcrcyHLtWX2cAwkegisKrjdHMiDLN9SsavNkwq6dxJjjcmVjz+m/1J7yJA2oe5F+y6ULItcp7LiVV/fzofkRHKBpCb0vybR+rkUT/ArBGoHwswlMc4XzdBI9D15pB7ADsCO3YrzOSx25LoLwLsCLFkcngordDlt0mHXMbTiriW+ZPW1iatbGmFrDsvNWlIm+LQ09HrSMreSGtzkrkMI0lOaeks5XG2pW9t2tgwEYamdEgGm8h8eY9+XZczkbrnehlM1uIyf9JCXFrps+70Uwd6mFZ9Uv4+VThZFrmZsK161I8A6fWkt1Or9mM6JqepuvRLqzLoz4yuh2/xwpPoH//4x3HSSSdh0aJFGBkZwTe/+U3ceeediWfzj33sY3jmmWdw8803A1Aewb/whS/g3HPPxemnn457770XN9xwA77xjW9sV7oWewCmsmjRTYv0+/hdrwNhmKw3RkbE4leu9uPw7e1eEm1CkMZ5oKVQy4W8MJXJ5WBeMIchcn6aPZPBEBfqdJLFRSbDBIEDx1XH5vXqyVjryHoQgeS6vV6HMpkxkZJ6neof3TJI3M+Fp046cLHeisvU61ZfROnrOdkHWnUHU8GnMrBqtWZkNRrrWP7dog715sgEk3Xf6m/9pikLm0WroCT3m7JMRiPupDUAjXodTtyQFQDDQNo5q1VU63V4DEPruHxeybGUy4DvJ9GOjKiova1bVbi+vjSTOvlgetZb1YOJQZEMywzCC7kQB4Bzzz0X7373u7Fy5UoceeSRuP766/H000/jzDPPBLBjY/enP/1pfPKTn8TXv/519PX1JVZrQRAkp023la7FzMTzfbxMQ5B+mNRkWDtdNL0DTQS6Ycw0aZDL/Mg8Ut5E8uFALFHWaldBf081DQ6mzIsymMKbwhgu63/L8UB3rGqajumk93QwVVGm3mgx3+S4qcW+5HBboaUueQu00uTmhgHTTGRhTP1K5Nf4tyGI6VbjLXoDyYml3CwAWpPcQOoMhhMc/fepGln2XdO904xHn7rTIGKmwY7dOw+WRJ/hkCSgbnUudZel3rmUwsjlcomzSSnfsi0norS21sloyo9Qd1umxW86vZTf1OfWnYnqkjSS0JQOL3WNaZKuvEdKouhW3ZK05nWpS97W1pbRTac1fa1WSyyMmYaUJWE9snzymmw/nZhnvj3Py8jDeJ6HXC6XxKXLl+hOY03ks6mOWIfyGsPrMiWUWmH6lIlhXnRSmfWtOwmVlvYmIlrWi34aQd/AYLzyXuZXDyOdpkoNf2n9L/u2vmkgLfClHIuepgm6xJDez3aGlbVFFs8++yze/e53Y8OGDZg1axYOOeQQ/OxnP8MJJ5wAANiwYQOefvrpJPySJUtwyy234JxzzsE111yDhQsX4vOf/zxOPfXUXVUEi90B+qRaah63MmcDzISjgXRzXWVks99+KS+eOLkUGhddXR76+uLfwzCx1FG606mmJtclW7eqiX6hp0eRgb4P30TmhiHw5JPA5CS6V7pYsWJhIqsSBGm8lAgxSTmzmMrK2svod+sGQ051LGuG5fuowUvLLqoYc/1mMW7eR3Pp0VFFiNLEznWb9EWpyc0Ml0rdiOXT0deXGrmHobJC7+3NrvGYXBAAqFSRz3vo6kolV3K51CorKUNYANwChgazhoVyDdnRAYSUnUms19L6lsfYdQ7W99O2kWRJvZ7KziRsiWy0+PpY6Bk3DZhHGo11U0w+boOG62W1WqVpudbH5/f0oOEmYgQZY3h94S2zKPOg8uHAdQso9+6vrDVdVzVSEKDs++p5WbUKGBzEyrvvVs6zjjkGW6oFdC9dCr+nR4niH3yw6ic9PalYf5wJpjkxoQ44zKfz3JUrk7Tg++kpkmXLgKVLUYMHj8cSTO8EXbheNrIkqbZj4+HFjre//e3YvHkzLrnkEmzYsAErVqzALbfckjhe25Gx+9prr0WtVsNb3vKWTFrSQdq20rWYmTDxZ9vi3ab6H0ilM4CsnvVU97TilbPjnqN8QvCFpL8o42uFkgu/pN6tHKelDjhJZvlK5pDQ3p4dj1zXg+djagMAeX067ysSyPF4kZXnSq9tKxkge1JKnljSq4f3Us5FVptUBZGvZMbVah+41R6GtGw3VkWL+tH7iOtq2udTkb2x3FvSdmJP10Rip042HbPGvz4/5fgm8lAs+3BdByMj6XSi1fMxPq7SKvC0GieMscxecpTA1K/j8iUOc3S9HNlorfqnrFTGx3v1PjvVroahf+tVJx3kWqTYk8butsgyNy8YhoeHMWvWrJ0WXyvrYxKb1BEvFAoZp5VS11zKf0gnkySzpUQIoMhGaoZTzoOyFtSLbjQaGBsbS36bnJxEoVBAoVCA53no6OjIyHR0dXUhn8+js7MTnZ2d8DwPhUIBlHORUjKSrNVJTspsMF9Sa1zeI4lzSZhSzoXlk6BmtZSoaWtrS+p49uzZKBaL8Dwv49hAEvZso3w+n5Qrl8tlrObZRiTHGYeMh5byckOER1x4TZLDvJd1U6lUmjTRpd64lKIxWadLolvWlyTY9f5JSMkXnTCWDkUlmI7Uy6eMDr9ZZ/J0A/MjSf9WhDbzxX48NjaG4eFhjI2NYcuWLajVahgeHk7kXChrU61WM20j5YhYt3ITSrYJ640a63yOZF3uzNfxunXr0Nvbu9Pi25ngu3FwcHC7HYuWy2Vs3bp1u+6zsNgesH9uXbcORc/LLjQoyOm6alFgItH5f7VKT5zpJJ6LijVrgEcfBZYswfCKozA4CNx/vyLwTjkF6K6uz2YqXggMo4gwjH8fHASWLsWzIwVs3ZomRWt2cn6HHgoUBp8GymWMoaBIyIH1qWbL0JDSglm7FjjiCKUj3duLR9aq4+LLlqlF3j33OVizJs1SqRQ7NkVKJnR1NS9QyXV74ViawTBMWOnhioPBwfQnqaG9dClQCIdT/fNSCbUepeXtIdbI7u9Xv7HAQYBGeR4ATUebCVSrKu1yGVuGHKxenRK29Tpw4IGpr1c2K638u8ONiXD6liElC0PZG2mwHIbAn/6kNjJMxA3XirHkfUYRJFlUx4GHK06yKSFlAHxfacbTIay0kMqEcYXWtpseT+7vT/uMrB72HXZXUa2Z7l2obGw+ns0FuDznzU7g+0C5jOGql0mLjw2DMC9UTaHhuHy8li5VPPg+fQ2lix7HjTAE/vd/gYkJjL3uzbjvPuA1vX9Uci577w0ce2y6qGdkcSd/dryIzZvVY9DXBxzUfytQqWD9qjdj9Wrg+ONjCSW+A5YuxT1DykH1Ub1PqxvlxpcsDCuVBRabYPy9f/16LDrssBkxdl+C7dNVrQK4ALBjt8ULimTsfu65pJ/xfSffzfLxb0UItiK69Wt81I3WvoaIG34hQ2ADWXmY9nY1jrpurGHdSmZFJwpLpWSs2LpVBeMmLyW15KtZ+s9oStPEHMs0dcQVKUlxvQrk/3Ksk1FkLLHFDxlH22HqTFXGKdtYupuQm/NAdpwBUl6XdQGkUwryuDKv/GY8pv5T8DW/bC3seTN9xlC30pkqkG6OyK5gkheXmwX5fDovc4a2pIOrvgtBdlwnnlnQIEDD9YybNKa9YPa1JoMGmLtRq0emqV9opyczO0W8SXRu+piZqp5cV5srEvGP7H/6iU/Owfr7+7Fo773t2L2Hwe6fzHDolsy0mqa1dBiGCTkrCXRaE/u+nxDwUodckpwkrelYkR9JajOtarWKMAwT4lMSi4y/s7MzIdG7urqS9EkySx12fqSGNslv3fEjNw5o/U3ikvUhdd11R5YmeRPdWpq/ua6L0dHRZBOChLgk8BmOddzR0ZFJo16vZzS9uZEgCXJC1r8kW3XLekl4M+xUFs4k2uv1OkZHRzNksLQu57c8ISAt72Wa8nSCbDMpK9NK1keS3rIOSZhLHXepgy9lZXivjFPqyusbE9JhKPuw3r/1fq5b/cvTHbLvSsiTEfK5lc53dev2PQEvtJyLhcXzhpztS1JMkueSbdVXjXLCHxPvNb+oLM3iMCQsjzlGXarXgS3+QgRBTDwLk9xitT8l4IIADb+A0QF1X7msFjebNqlFM7n+IAD6+hbDd4ECF+V6Hu+7D7jzTsWqjo4CS5fioNe9LkM4lsuFzHredVO5bUY5OmomhT3UkGHKAaBUwljVSXyDMjtAuugfGQEKc4OMlS/Tq1Y9hKGHUs/+CJbGi6A4I05lOBshv2lFHCfaHQR49Sv7Mov0QnWLCkOCOAhQ7OkBJpCuyH0f3aUSqiUvI8fuuimf/Pjjaq+kpweYMydrkS+boKNDRcnFbkKcxBEXe3pAB2Js+kTjfagSa80WRb1kedpSyUv0Y2V1sBp0I696XVliT05m+xClSUmsFxgRdcKHhlLPsHKVSS3y2bOBMESxtzc5PUFrPkDF6bkNjFUVEcQ9nsFBJWtOCfyJCdXXlbWhg56elyIIVD2HIfDYYwuVxeJjKully/bHwje9CTjwQDw4tA9cFzhk2ZY0z3FjjI4icRY7OAjleADA//t/Sjd/cBB43etenhRp7Vr1yPg+cNSZZZVZHteYDukk+yXZjhmCF/pIuIXFzoKDBjyEoKNGz3VRjZ1WctjOkHUx6AgTaObodCvq5HSVJCRNsk8AnFIp8QECNDvNdN3UAXVHhzqllOhMS1ZYN0EOAhSDAEXfx/yeEuC6qLmFJk1rOQbIqQnTzOUcAF48LnhNm7qZNEX5pKU5kE1L15CXG+Va9TRvFoQhVI4ALw5UbAOMx+r0HWvfRXdJWW9v2qTST/yFBOoUH2+R5LTrpq9j/aSWOBzYpLpHNOBk+lLG0px5M+3KGDYMZJNXKukGgkkRReavszM9bMU5hieNPWRfpddQ10WyY88GqlSSSZ3j+yj4PgpzS5nNew6jMir+xvzKbsvN/lbSeVIaXc0lHZRKXjKfSaTSg2a58ySNcWBzf/MeFJ+xIEidvKu0PASBB9eP+4dsK6FtL5pKpRuG6YR1BsCO3TsPlkSf4ZhKzgVIHVWSlKQltLRgp9yItAKXMiZAs/yFlMHQJV1IQJLwIoFKq2vKuPi+j3w+n+SBltmSuJXQZVxoaS1JdKZHS2tKocj4TDrZrX6XBDGARMKFVsSSLJfxSBkS1i/B+2X6DJfL5eD7fhIHkBLutIZm2XV5EmkZrVuQk8jW65PtNT4+npDo8iQATzCQJGaepYwNCXvHcRJra9Y7+4IuY8O+Kb91q3Z5EkHKDEmC3yQDI+PU9d710wzMu+y/cjNA/+jW97refCt9db18soyyTk1lejHDkugWuzV0Ikw3W5MEuuke3Uwnvl6tpotBhCGcsIaC76JQHQIAPFvvxsCAIl7nzi3A4cy/UlEmUmGoTHHL5QyhTb5bLmAAxe3RULfb1xb3XAmuXYuBeh0999+vAtbrygRd6LfQGRm5ZaB5PQ80G/l6bgOoiJW8qA8uDBmfvk8xMaEcw3miDZjlwUEkZKvrAj09HoqBm9aVqS0rFcWU0kSvowOoVpWDM6iFeoZAp5m5zrjE8fv+PGPXqFZVU9Fyn4tCqR/P65T7ZHaSCiWDXSrB9wtJ1fk+sitD1403ZVIHeFzM6qS57IqUSjFZ05Fwl4cGpFW66yJdQbCuNm0Cnnmm2dyMN5DBqFbh+X6GpALE5gEKyQKbhPZjj6m/+/tTZ6NyoV0uK9WVkRHgW98CnnuujmOPzWHFCtUGCw87DM+2L8Rt31GL5mXv7YYnV/9I18JMt9GzEGEI/OY3iixfulRZqNO6bu1aFXcQKOtSR5r/mUgSE7Gub8jNENiFuMWMgc5I+j7iN32GF86EBxKSG8iGIaGckceQDN1UJLrrJtfdII1fkn96NoDYWSPBNLjTSVaSEhhdXcm47cWEvV8uJu97/QSQKU39dRQETqY+HJ1RRHas4bfUZZevRA4HtIpndGqzI2yuS1NCjEhCZlyMP47vo6NDbTQ7YS2pBM/3ATjJni83MwBVnfoY6rpmh5KmV72SUGk0d7IW80LTzzohTaMFOe/So5FDiqxbVb+GjIdhs1m/rEs+M/yOd9wd10UQFDPyLtLxKxXOOO8YGMhKtOmPiEyW5DnnHaWS2iT3/fQ7dmWS7D/Lfsa4OZVjvuTcctYs1caTk+kJBICb+dnNIqlt36SFbtoM2Y1hx+6dh5kzY7PYYUhiUScytwcmDetWhLQkFXXiUyesZRzSSlmmYXJgqmtv6986icw6kGhFwsqw20OMyvCSCNc3OGghbdoA0f+ntAzrkQQ279fJV13HW1pBb0/7m+rYtNGwrfu3pfeta7Xr8eu/7QjpapKlkZtArbTZZfq6vvp06mCq/E5V5j0FlkS3mDHQyXPT3xKtJtaucrrZxLiKRSnXxcaDKdoq12gZg0x0rfOl5d0Bms3DBKgB2d5u5glNvCFAqywzWu1TGLOp5Udf3E65ljGVybRw5P/1euL4tWWYMITrt6yuJs1MRsukZVTsAuPjyiLKkcKtcQSyvJ6sLIMVoF5HrSDzaKpzI8k0FfTKkDdrG/k66OCOTml1UkaPln+zTiUXAEwCyKX3uy4mw6y2rid1UrVniffpG0JA627j7SgRPoPIc8IuxC0sdgBi7HDQgOs6RlJWR+L8E0hf1rmceZJgGLMkh99qrJxqj2/KcWAH3l+8ZdqOGU1E9HQTEmN15t74e0dfv1PVSVqXToaABZC2ox7JdmSExaK2/Q5hqvSmM8c1oNVhan1jRb8uk+I1Tr8YzrRJI0lx03Vek/mSVd7qOfBkkWfg+DwV7Ni98/Di6hl7CFqRrUCWZKJFNqVUpM64rnlNK1xpFUyC0QR5vb29Hfl8Prl/cnISQRCgs7MzkTKh3jklV2iVLtPSiWBZFt2RqC6LwbLyXunkVBLpUpvbJJ2hE8W0ymdepNyM7uhSt5qWlve6ZAzzQOtzafEt60BuSvA+OjeVFt+8h5bUtVoNo6OjCMMQY2NjSVpMl3ritDr3fT/5n+lIa2/WqS6PYtqokBIoOokt+zD/l2WXGweynmX7yM0HU9yyf+qEOS35x8fHkz5FGaJqtZo5IcANC9d1MTk5iVwul8j36E5FpyLAJXGvE/Vys6XVs/ZihiXRLXZrmEgxWpvq7Girb3316rpqESHFwvv7Mxoog2vTSz09SH9z3dQqWpCsOnleKqUWxmGYWg8rC+Y4b4yPN/b1Yd6f/pQ4S8R++2UcdTbgIFdN4+rqSq2KpK4r/w6C7BFaj+UVsiyNoIj6ptSqiHmXVVcui6PQ8X20sGIaUoqkAUcR0HJ1xXuBtP4o7Ak0OdJK2i+Xaza/ZgHj72K5hr4+dbzYCWtx/hz4vqpCWkzrJCwt70V1JF1CSZUU0Lt0fwAqLC36uAjt6Cioe8rKuq4ylK1/Zl/vF7JK8vlsV5aLUX3Rmh6rTjdSkhup9cJECVmw3t5Ug8VXx+jlsXSio8PLqKww+p4elQTLMGtWqvPKsvX2qntWrgSGhvxEN911oU5trE27/Zo1QLlcxOJY/H4MhcRqjXHS0HPZMrW5sXRp2oWZNz4ilUrsgHUqosfEGMh3yAyyaGvD9i2u9zwTAYtdiYS0bLlL2zw065IbTRIcMt7MxqWXOgLl2DOVhjnzFYaJXAqQJfqYJ77zq1XhKJr3Sy01OdeQ8wWRJt/bJk5Q3xAkqtXmvU8VrQPXbbJrzhRTl9kAUgJV6ozLT+IAXOZdCphPB3ph4kGtwLqpiHapVOD4ftIOdBbLcXB8PDtGA8oyXGrMm17rnJOobyfzW3u7g1zOU2ka6kjGx3pidulsnGlUq6nmuF6fcnxPwIyxvzLyVn1Vznflcbr4f/029i8ZTG5G07pcv0+vP+mHRbpVkXXLetBPUujF4D3t7ep5Yr7oA0DmNZMJ8c3nXp/+Z/rsDIEdu3ceDK9Si90ZU1ks6xrZJKylY0vKpUjd77a2toR4JQkOZC3PdcKS16if7vt+4gyyra0NQRBg1qxZ8DwPXV1daG9vTzS/Ozo6kMvlEmkZ6dhS16wmZNkorSIJdCmpQhkRAImciHTOKe+bCiSYSWZTboYa3dyU0GVHKFHDbxmOGwesT2rT85v1Li3NZRhKwbiuizAMEzKY7SIdZQ4NDaFer6MSH1vjZgbrkUQx68Nk6U8SnW3B/sK/W51MkMQ120zW91QnEvT6khs7JOjZPiYCnXmR0i3UPOfGAp2GSikXbtLItgeQkeJhu5i00U0nPUySMLI/6ZskVs5l2+EtLHYpOMM3LIibmEeuenif66IGTy3AekrAokWKfXvsMbXiOfxwIAjQ3698jqakpwenXE5Z6zAEymU0giLCoeyEnoQ0CWZAaFj7DWCwAgRBqsvu+2qltmKFimDVKuCVr1SOM9GN6mB2DSWPvVKzWh4pHh1NiW250IPvwSuXAQC1WI92ZFO6qNlrL7WoKVQ2xmQEV5Y+UIkTFELrcqHF6iaJ7PsxkS7arBYqwqPAs8A8a0wBcECtRuWquLMzu5IDsmeQq1Vg7VosjMuFSpwxFOH7qiop67J2rQpCuRDdrxcJ5XJZEb9Kxz5dDJss9jSOxPibXAvquuxSXUe3uG7F97JNczlk62bu3PTMNZAyL1yp9vYmHbEWKi1VHq9mHrixQD+l4+NpOy9dmnJUjI7VLsvIR258XMm28FF9dpNKk4/RAw+ouE45ZR66e9I2kov0Z59V36tWKSJ9xQpVPKklv3Sp+h4cBFCeh+6gltVS0gkd+b/swDMMbdi+xbVdiFv8JRGGMG+kxn/rlzKEeStWM35WpbPHkRE66VRiYCRFE/8cMVFrjK9Sgef78FwX/lwveb/pp5USktD34Poe3N6iyi9J9FbMofjQ6p3yFfotmXpDc1SUyyZ0h5FTfZvi13/LOI7UG8dknGAqgM5o64VjO5A1FZryhVIpaVc2Wb2uFMqEJDiA7HjFeYck1ZmE/JbXOZ5zbCLBazoEyO/OzlT2TS++vjHB++QcjIRzw/fgBKJeSaabxiu9HTQGuQEH1UpWF56HI0h6y30l+v3mtEvPs15Pet3IunRdlQ6dfDLblHPX46RxBoso4xaKhUn69Nmi91N9TjUTYcfunYcZ2gX2XJgIdGnBLCU0pENPkugkMiVRToeJukWsyTJWkuiSaGS8dFTa2dmJzs7OxGEmtb5JMksHjCRZSWQ2Go3EYphpkrDXISVOZB5JoNLSeGJiArSkZr5JTpv011nHuVwus4lAUlwn0OW31JhnGgzLTQySwzqBKklrXieZzDTq9Tra29uTMnHjQJZ5fHwcw8PDmJiYSEh0OpllXLIs0sJaan9LK3NdEkeS9/JkANPi75LUlpAbH7rkkF5mQuahFQEr9c/Zt6mbX6lUUKvVsHnz5qSP6f2c+aKFvCwbNy/4nHBDp1U+pL8AWU+yj5lkf/YUstiS6Ba7NeSMWS7wdCuvViS6ZOTiGTo52BpiUrlSUWaxvg8cfjjGqg76+4EnnlCWzGmUHvwgJtPjxQ8XeswKZVYYZGQk1XtUVuhx4kGAwUFFNnfz5mXLFEN46KHAypUYc4v40x9U1ul4qbc3drgUx9NdKqE+p4DR0XR9Sr1LcqtSm9v3FVFA4l1aEXcHtVT8misjQDHJ0gTJdZOJKxe1cuHEdXHBF5aCYWpVjFIBhZ54VTcwoC7SIp0irYQU3pZsvVxlcyeBwty+DzcoAgAWuhuBcAhu3/6JlD0XkSSKWRe0gi6XVZGDQBG7tMLWjeEl6S3XtnJhLqdMrqt4biesJRkp9qSENklhOlPTF+TyEUiuMSGuUPWExU5HzVeavBhK20nXdZXO03g4gP2D0bIuli4FFvak42ktdDAwoO4n4c56am9XhHilouIaHATuv18199KlwMqV89C/WtV3qaSuAaptXFc9EtRfdcIalEPbtHsCafsFKzyltW4iJloJwPI3k1nebor2+LM94S0s/lJIHiWOw25W8oqPnec2sjfJl6aJvHVTLfUwVBuBQDo8cPjo6FCWxkn8+hxBDgauCycm00ulQuadKN+N8hXhug6CoDsh7TPEvSyggBwrpLX1VJLj0gqb4SWJKclfJplsSBjmQ4lJEtMw1bfOROvkuWSSOfHQ52I65Ji9aFEzG+37iXWuB3USjPUi/KBnotm6NavxLbMh61r/nw665eFCTjHkhrkeF6tEbrLoeyeyuCSJ5TXVng7gFgAXcINidgNJrzsRaQOOqpN4TiX7pwzOdGUVm6KX/UomxTyzHvRNJRlXGKb9kKfa9Dg5rzEdknNd1R5yA0PmU99MMh6KmGFsuh27dx5mVstbADDLuLQKp1v0trI4JtmnS020Iq10y2MS4nQW6vt+QiJTSoayJrrDSp30npycTAhiQlox64SjToKbyEuSqZK0plSLtHTWtbj1epbkv56+JL31epcWxyTTZV5M+uN0BipJZW4kkORub2/PWK4DSOqxWq1iYmIC4+PjiRU9kFqJy7wxXikPIyV2pNW16eSDLlMiw7fSGZdl1utRWvfrbav3XxMkuS8dhk5MTCR1Iq345bMiyygdrUpIq3KTNbzMmy5pI8ts+uxJsCS6xYyBvoLUoS8Y+bdGoks+zeMqanAwYYSrVUX4kpSTFjZhCBTjWbyUw5DZkXrlzAqP9aKS5quJzyuXEwZ3GEUMDqhFIpBanDloZL1CuS66ugpJHuSinIsr6ViMfz/3nLLckovHhMndsCFr1iUkZdLzwdlmoMUy03BdJIQJP7QAV694BwVJ9nI1SnMnzjeYpm65xgpkxKzoOJ9JewwMAOvWoXzs/k1dhdU4NJT6LyWxDqQbBLq1veumTrKYRUme5/PNi9IwVEVKNkBExXhBgCDwkqJ1dWXvdV3V7np9JiS6XF1Ki30SV4GSm6HhP/Oo+9/jpg+dqHGThfw8nYDRoH1hMAysXptk1CuVUC4vTJqB1U9ZGD5LbHaS6qxz/i0PmQwNic2j/qeTm32/O6mDWbNUWG4kVatoJtHZCPKb4EMzw2B1VS1mIoxDuPb8KR8eZmLRQSM51SQf8Zbcte9knRTqzKIk7l1XObh2XYTC6bKehj62A6k1fCFws4EEaI1umr6YsgWkrkE6OrK/cTjU40r+NzGsrd59LSOB+ffpvi/1+Rh10ebObdrE0P3SOK4LV2yYAKn+OC3P5bhRqWQJa5KyOolOw285xcnns/3StIE9VfXoVt2cA3GDg9dkVfBvlaZ8O6fyQmFMlsv/ZT/XnwE5B2S60uEn65CgjYIsk2nuop+W053VynLxI09Msm5MhgWumx5AlJhiL8HMmc8gIt2O3TsPM6fVLbYJSdRKkroVSL5K0lnXrZaklYybVsIkF0l26hbEuqWxTJvXpyJbpRUzyWuT/rVO6Er9aSmfIfNqqht9c0DWq74pIa3RZbl1iZdWRL9ONFOTXNYNyWx5P63rW8mpSEv7RqOBXDyaMc9TkdOSeGb80uJc7xOsW+Zb16efjs63TFtu8si209tH5lWvQykho39kn9gWTDrlet3JPmWSPdLT2ZOszKcDS6JbzAhMh+jKrDxa/AbNQmkoXhWUy8ocJghQHVKTeinFnSG8k43UbBLyeDWDkTgkR+xJIlrPEFc3Qi5F/zQhzoQk7nXZTEJf9Mi/wxBppXR1NQumajdwcUtyt6Oj+RivXj/8n9ZKBf18NsveSuZNrhRZaJo/8bomN0PvsAW/gVIpJV5cV1lUs306O9Pi9/Sk1tbcP5B9gfWqL7RJ/srFYlObyVWuIUCrojemWkYx4yQhNNZA4+wzi2TZR7jw5lFwIMvJy+PdJI4yCMNMkRw00N7uNHVvxiW5fn7Lemb63ETIlDdsbgfjczLVe2Oq98UMgF2IW8wITIfcmupZNBDshCQmGY18xyW3ypeM/hKcbh5hfp3QCrdeV++kZANgG3MW183KcJjKwGvbcv45OZmV1PBcZF+G25gTTYlthePEw8S+tqpvQuaLv4m5gOt7CdEbBGp+lculUxQ5jLYig2kBzf/pPkTKuZDElePU9nCy+gE6HSbHta32NkzdplUVyjFP9h/ZJDKuVpbg8n+guSy6UQjjlYQ+Ld85DeEGguzj2/PY6d2oFUx+E3Z32LF758GS6C8SUO+8vb0dvu9DOhMloQ5kCUsSjUBKUuu6ztJCltbT9Xod+Xw+sWCW8iTUO8/n85n0qbUuiWPdMl637pXXSJ7rZDiARNtakqq6Y1FqipOIl1bYOllrIkgpy0Jpms7OTnR0dCCfzyda75RH6ezsBC3vc2LUkG1A+RydFJQbIJSpoc65vFc6xJT15rouOjo6UK/XMXv2bNTrdRQKBQCpJnqhUEj6il7PlDipVquZOpX9QmrZy3xLp6SdnZ2ZfElpHl0iRlrVy3bQSXnTqQn5N/MrdfApEUSnofzWHYPq5LhsF5k2IeWS9PzIcuqbHHo/0K/tabAkusVuj+1ZhAPNKxLJ/gEI4n+9oY1KusR1gVNOAUol/LG/gIEBRZ6uXKmkIrxwDG5QwNCQWiwVe5QpUxgvIKT0dAFjQBii2KXSGxhwEiN3RcAWUOjrQy100gUbzX1pFh6b/rpuqjlNctEkOcHFo3SwODSU3pPLpdbVsnrkmnVoCHDLRRR6/WbzJkq5MDCUlRjDOK6LYmxNTR3tMMymSa106RCyPqeI+cuWqQu6sLtMXzcxlIy1DNvTg7FSbAntxlbfrIw1a/DKV+6fBK9WgQMOUNZog4Mqf5s3p/U2Z45qTzZJuZxdjNMSvdXCUxK7tFTr6BD9Uaz4G3AQVtNFp774NS2GmabqRx4c0XeGK2qzoFrJVp/u+46bBDQQDENVRmnY39mpjAYlwTB7dizBMFBJMxZH7FWH48C+coSbyz5+su+x6Ummx/5FUS4rfX5AncRwXWQ3WYIAbiWVcWFd0GK+4DfMlWWC3lENzu53V9iFuMXujobrqbECyEi5SGJMkuIMm+hzy93r+CXE1028P9pERuq8rTpxprGKcnzR4ud13/eS0zgyfgn9/3Soiq3NXa+J5JNjRi7X7LhS/m0iHjMb38a0gTBO3/P95oh1GJjN1Hlr1nFpk0wMG8LEAusfIPXKqb93XXViyqmOpXOB3l445TJ6e9X6mY6r46E+M5/IyuyobylJohPFHJNaaX1L6FXH8RzIGiaEYXb4kFViGlZMxHor6CS5/i1/k3rnTFu/lzDpwE9VfhpKSF8BOsnN8PK5YdzS5oHp69A3DEyEexNxLnc/ZgDs2L3zYEn0GYKpSDZaMJO0JolLORUSxwwrrXV1rWspS8JrJF9JGJM0lGGl41KmKa2eAWTIRuZZd+6p60ZL55Qk0PR7pGU2HT5yc0BakEt9cpM+vC6zASApA8tXLBbhui6KxSIKhQJ830ehUEhIc0q1SMt006ZAK0t5E5Fcq9US8pxEMYlnSUADSPoAyzc5OZk4WZXX9c0LEst0vDk6OoqJeDVLcp51wHoldMeqtH7XCW62Jf9muWT7Sut79qMoipLNCH2zhXXRaDQSeZaxsTFIy3M6FqWkj5RwkeVppY1v6qfUkGc+KIOjp6v3ZxOBrv+2J8GS6BYzAvosvdUCWJ5vlrN5YXLrVIZRqFYVgf7QQ8DKlfjNyEF4dk26fluxQukwL1sGYO0AnJ4eVKtqMbdlSBGXuoVPwa0Bj63JLBjr9f0TEj0tQmqdm8shZf/6+jCGQlK89nZFKLa3Cy3toUrTisgJayj4Lhb3IiHnKYPBBRbXqzyGSyNuHhUHKN/hISjvL/cc4IVCgkQ3axZEu+P7CMrzMD5uPkVOSQ8uegcHgc3lIoKgiN4V81T52ABS5FQn0aWZMi2wwxDo68MD9yki+IjDY6dvg4MqzvvvR3HRQJoZ38fCUgmY7QI9SFllxqc7pBvM9rci+1QIoFLNmnVJAXGkOqauS2dZXhOhDWRPMbTq4vzW9jQAFAC3gKF+Vezx8VQKSGaN/3Ovxln7Z8B1UYwFx0slJ6OVXwwaqv5kYqMiU77fLBYcm/OH8DJ9UCII1CZVGKo+TlJ9xYp48yP2cDq/t6RuoMdT38dwxYHvA/v0qnlVQ5yKyISVlca/dQ0luavj+5ZEt7DYiVCPm5N5/+jIvhtU2CYSPX7nk4jXydP4lW6MNwyBsaoas13fMxPBBubQcV34furckOSp/hqRUeh+MtTHaSL95KkxCY7P2+K9TWWURUgV7Bz4vpeS+aaBRWYYzTJsWaSq5ao+kWp6M7DuaEO2oxy4OEmJB4mhIaC75Cv/NHQQ4rro9qvoXuqraw8NwHNdLOSEKoD6tKoUUwWGSB2l64OqzrK7LhA7YWf76+0jkzD1cVM4oPVQU69P7cScabDO1akDJJkq+C7gi5u0jLWUSuJ3NVtfyTaK66I4Oxuf3Bgz5TfJJ8z9qhVhDzQ/G0aLc9OzOwNgx+6dh5nX+nswTHrdBEn0XC6XkN60jJaEp27NK0lqWv7q6TAeap3rIMlMolqS9pIMJqlIIlNayUtZGWm5y/uYT6CZRCdxWa/XUavVkrIByOixM29S09zk7FEnVuWGRGdnJ/L5PLq6utDZ2Qnf9xEEQXICgIQrCXGZhiSOaS2tW3pLGR7mY2JiApOTkxgfH0c1ngzohD+J+1wulzgP9TzPaAmt68STqA/DEOPj46jX66hUKpm0GL8uTyMlbriBACD5lm3OTQDZJwjmkf1A6tYzD1IuhfFKvfORkRFMTk5iZGQkyTvDcHNF1/7XJX6YvuwLUjdfXiNIyEu5GLnRQegEeivS3Eq+WFjsRtAnySZWTl8MyZm67ydEGwA4lYoiV9euVUT6oYfie/+dOjEMAuCYY4CDeoeBtYOJ00qS6HS4qDtfQqUCrFunTHljdnDSVyQ6rcJpwdzZqSxp1XCuGM0t1ULiyJKOr7iWc4a2mC2+gHSBWqnAc1309c1L1rHS+ZZcywZBahUUhqn1sUQ+r/KwdGkBBVdjLqQXU+YhCOAEAYBCJi0g5aNJnpPfZnmVI1QPi6XGCtOi+RPblgtomt7H4Z59zsPq1cqK/IjDwqzgeaWiPMVq/SLJOxdjJrNDuaiW5ujUNJmYSPOVzyunaUJs3nFdFHw/IdPDMLX8lvs7utGg1B0FsnJBbHpq8rOqWNyREWVZD6istLcry3ppDe5UxxRh4bqJJ9ruchkoxYTFUAVYM6g08qU5GzcbWP+sQ9dNfQv09GSaTF9Ql0pOYvXOKLyhjSo/kpWS3lzj57hSicn9x9ao+uUmlHRgICtJJ9Jl+7Kf6dpHFhYWzxu0iu3qmppEl1xYJpz2PEsyU3K0DMqhX04R5DikXu8pEez7ntq8ZcJy4ApDOFAbyzKPMk19jGPepYWverWkxCW/aa0uyXSdrJdV0Ir/NnHFMi/p0ObEZLp2o0awSv5bH4NMr1fWqe8rLW+vVMrqnOvMKBOgM/F4EFROpx04/f1qHNlrr3R856DJDV3p0ZzzLclwmypIdjAOppzk6B5GqWMWS8rI6PV+J+t4KjK9Faa6R5LpTCOzGSL7q+GUYlO5kZ72MGbCxHBPMaY6buyo1jTvlnGHIZwggOf78Hw/NibIJmHaEMpszkzxAmm43tSSdxYvWthZ24sIOqEpSU8JnbwkqahrbwOplAWAJpIXSK3gSdy2Iu1JDEry3uRMUScnpSTLpLZ1KglVxknZEzoRlem3kquR6clv/i6trFnGXC6X+ZC01glmWZ96vesW6fK6rHcSxfV6PbEO1x1fynJK4llKjPBbEvgMx3RJdJP05u+0atcdgjIvuiSKzL8ubaK3gTwJoUui6GnJOGW/kO2vS7bIfqG3sSSsW1mi644/Zd4J/QSBzL8el57ungxriW6xW2M6BHqrsOJ6Zh5OEnhkJLFa7e9Xn1JJLGrJ9ooZvr5GyOhnVqqKIedixvcRutn1Dp1rZrIar7TJ+bquItGBWDZDEsqtIBZTThAgCApTOqACUv1rWS6dY2Z+C75rDigXcFrb6ItMeYtu2M5q7unxlG68ZF71ihfWYrXQSY6sjw6pJvV9UR/y6LipEoCMk9Ym1pfpSQ+s+hlwWfZ8Xumd6AKtobJsDIVDvETWpp5dm/J3nQ+gUzWT9Zbc3xgZUd1waCjVKfX91DFdEifrBcgKn/M6GXnqGMnM1OtZmR8jk5U6SMsshuO6mD3by+aHm1v6orlaTU5ryC6X8VSq/z/d94beJ1q9W3ZDWGs2i90drXhNE+Srw3PRkjXmu5F/67riOpmph9Hj8vSLWoYU6Z19emQarTjHbemY05+ITnZL0GG4zmOaXlemV5xOxrsuWlaUtBSW6ZvGcRlFtZqOM2EIuIGjiFo5jprqWOMTGLc3Pq7GHJLj1aryhM5BDcgYDmR2kqd6l8s8cRwvlZo9hPNvueNsyKeeRKuxebqEugwrdfZl9o0ZkROKbc2N9bmNHp+MV59/6fHIuE1hCf0UAgDXVwYpqXV58+i0Ta1zLZ8z6BCZHbt3IiyJPkMhCT1JmrdymKlD15E2SU7oTkR18lNCl4bRSUepn07i3aRBLa14+ZFkqSQhdSeOknyV5ZC63LQMl2XJxxZdUsKFmwGSNG9VB4ybmxBSnkWS5SbLf709ZT7031iHJutmlknmRW6OSLJS/sb+Q51z3/cTzXu56cEym4htXcveBJ1kp8681LnXNxykBXm1Ws2ccJCOT+VJBKmFL/PbKk8yb3qf0onu6RC+er/X62k62JOIYkuiW8wo7CDJ5bqxHEo1TC1cFyxQGhI9PZg1K9Vn7uwkEZuNQBpd01iJ66zx8VjiI7kZQLkMF1lOj2szGjQnF5Fmy3XT32qhY3ZGyhvkYk8s+hw04PtOQtKWSiqPjEJqgsr1klxXZ5JkOvKYs1xNi8BSlkSCBuWdnVnOOp9Po/Zcg9YlvX6xcloQ7CSKXReouQV4PT2qjScm0iMAor4TSBJd/51lpDk3zQtZedNZuYlVN60a6chUGrbLtmEbyEW01C5ltLreKasLaHbcqWepKTL9+L2JhGhvT6332GgUV2eYIEDDLyCMq9QoIxCGcH11OiQhxRkX02f88mHT89Nqs2Uq8sZ0/3SZjt0IdiFusTvDdQG5VNMJXwkj2SjHNvGM8jWkv+/0x1gOUXxNj4+brHs1TXbt3UELVxNJraenQ772aI0uLWZ1MlaPn0PMdF5PrXhSfUMhcToqKz3e2GRd8KepZKZNecrMF1qR6GxXWnuLd3sYAt6CBSocTzoxHumlko2uy69xx6TVuKyP4bRGl3MsrQI5l9LJ81YbGVPVz7Yg24pFYBukQ5ujelArIrtVJ201zul9Qb9HJ9BNcbf6HWh+hl0380xsT1REA06TRf0MkkS3Y/dOxMybuVkASKVGPM+D53mJo0+T3IYkdHWHjJTxkCStlAahlEk+n884owSQIYt1XWtaaANIiF/KYNBKWHcwSVmRRqOBsbEx1Go11Gq1jBQH45PlYnwkUlk/koyWVtS0KKejVH5zs4C/yzRIousSOUy3vb09cRZKSNJaWnrrUh+SYDZZQzNvJPulFrduxc/yUwdcpinrguS11Ienc9kwDOG6LiYmJhKrbkroyLSZV9l/pOY68y43LWTd+r6fKQPrQ2qXs07Hx8ebyqqfVKAUzcTERJN1v26BzvzpJw1kH9ZPRZj+lpCnA6JI6bibCH2TFbqs1z0JlkS3eNGg1eKhWlWT0LVr1WKrXFYeqnp6gJUrsSVYjP32U3wroNZUQQBgIGb3YgFpniQG1O99fUpmZczvxugo0OjrhrNoUUr4lkrAaiUvImW8NcnsZJERQGVJWnUp6RgHftCdWc9kihoCruvBKyFDgjphCA/A/Nk+urq8RO5D3k8iVlaXztfX68BY6MEvdcdyLXFgarNo9c51cbNDNSeRwpFEe6kklEF4SoCLLi6iY53t5sKn95TK3Zg/X11avRooleZhn1e+UjUUTxVQDFwW8Lnnsmw0SVzGzUqR+jdJ3YfZRSYZGt0yP47Hc9Xx58LcIOtQD400TPwplFSnYTiZrC5Nz+JQUWZ0NOUcZPs2bYzk8yrA4KAqH+uH7UDWiZb39Cwat8eYW4Tf162kYVwXDVf1s5FNKtqeHmTN5MVC2glr8FwX1arqF91Le1ItfHaUnp4MiV4ZUpcbcFRfZKGA9D6271REuuzs8v8ZRKa3xZ/tCW9h8ZeC6wKelz6KfE/xkSOhTN5TPrK10IHrF+D46fu34XrJxrZ03Gw49GMkO2UYE+eorsUnm2LoBLp8bejW7fLVoRN6kgDVhw/5TcjNU8bFeYF+73TB/DdpYovIHKgxyg2czB45g9TrqYoZraUB88aEIx1i6JXE+UM8IRoL1ebyyAhQWLVKvceXLkWj1K2MHzgZ4gSG8ZrE8fXjD6aKYgeQWmr6ACnmAcp5ejoem6I2JSOv6Y5E9VOAre6T2U3/9+D5bnae0WrnxPQtIwZay9i1KhivT0XQi/k3wjAZw+lIXUfLqOJ/Wsq1uOq0yDYt13cj2LF752HmzNgsMiCx6nkeOjo6Mg4lpyJkAWSsd6vVKmq1WkIgSy31QqGQaKyTRHddN+OYUSeKpUPPfD6f0ckGFAlGgpQkubQ45//U5CahKq3jdaemUsojDMOMLrmUfKHlPeuJRH+pVEIul4Pv+5CW9zpR29bWltSz1GWXWtiSfJXkufywHkjoSxJX6qkT3ITgJoeu8a2TyWwHksnVatUoi8I2lRbuHR0diKIIvu9jYmICo6OjqFQqmbTkhgSQteimlIxOUuubLyyrzI90PErt+FAbQGU966S6dFSqS/9IQp11Kgl/5lPWp5Su0UlunfiXpxj0UxWyL+n5kuFMVv57Ava08lrMMJjM1FpN8E0rEi6yHntMLcKOPx5b0I21/cCf/qQWgCtWqKDPPaf+L5UA9Kfp1uChv1+FSUiAoS3AmjUorFyJoSEHAwPAwqVLAd/H0/0OqjHpvmBBauykG+0CqbPJYtBA0Q8TIjIMs2tGWTyu76SxbqlUgB8ox6mJdXVMRhZcpcvd3deDBhwMDWV1T7kIJocq+eLJSemr0Uui9f0CensXw/djfe04QqcynAp0i/Zb2NeHsZJyNkn5FiCtk4LfAAaGssd/maEgwLMjBeRyQHdQE4tHJGR+oVzGokUF5X/sIRXF0KHz0NMzDwsPbSi9nnIZz46oo8QkAagVnizWmXc2gOx/suKkVjuQ3f0wfWR/dV1lScXGYz+V3xzL41UlTyQ0XC/h/XU5d3IA3CsaHweeeUa1MU9AJMQIdzMoowIogtx1mwkL11URCkJ7GEWsXcO0C8meCpBuFAFo6ovJxkgYAr6ParUQS6k7WNjXp9KlWH5PD2pQOuj1kSzx4MXxNIJifMqkmm6UtDLD1xk1+ZlhcABsj/GdtWaz+EvCQQMFv5H4guB45UFokKN5I5evYNcFCrGMUy1MiTf9kdW5Q5640jcaJUz8bqrS5TS9DnSCj/dxo3Iq6RZ985PYlsE0kI13qlcZCVpTfDp5mxDpcqySmYvHJg9QRC3MTiFb8bTpb2pe4/qeItQhiNCgCCDe9xxM49q6FZgIDgICIBwCwkEgDNW2su8XUCrPy5SFY14ydm/rY0IrornFfYkOOLJON5NvrXPqdSej09urFe8vs8T+FgSplJ0k/JOAzcx762syEVOi28Pyc84c6557JZVHzmv1cnLu4qABWqYnp9c0Aj07fAtrdPkSmQGwY/fOw8ybuVlkiElJ/uo66CZpF2mFLolsneB0XRcdHR1J/CTWSXzqZKBuRUvrY2l5zHtJBAOKgJZW8tTiphNNSaKToJXx0RJaOpl09ZexyJ+UJaF1d1dXF/L5PDo7OzMONKVT04mJieQeSdBLuRSC/3OzwGRlzHywTnRrdAlJSNNSXFrmSzkVXdqEGuEmuZ5cLpdxnAogIdHb2tpQq9WSUwa08Ga6LDt/Z7lNEjWyvzK/7LtsiyiKkvRYd41GI9kI4KYB0zCR37p1vqnvy9/1jQvGpRP304Hc1JF9lX1SWuzLvMnnbk8kk60lusWMwLbeCa2sjfhbtaqIucFBwHUxMAA88ABw++1K0eVd71IT+Q0b1C1OdSwzw5c8I7nEhOw79FBUq17M3xVQGVR8fRgqK3TJ53V2AkW/BriuIgbE2sdzFQmoHCUWUK83+0rUFTfIMdNIOAyBIgPSoSZviBdcju8jKM1LiAapZOL7qnzkUcMw5UAZTaWi/HtJ6/pyuQAvEOSr1LcW9Vgol1EuFzJNk88DBbemNOWlVRkjjy3Vnn025mCXevCk9SEzNTSEUkmRuWvWpPnv6QGWLnXQ17cY/f3KSp3EglqMkndVjuaCoIByT7da2NGhKzPLipEL1kola3poWrzrIvCsgFIpFeKXFSz7MD9xhTuBi8nJlJiSwai0wsX26GjqYJSkD9FAbC0oCXNGKssoNzPErs3gIDKnM6rV1DlvX18iY56WSe28ZI93A6hWC0l38X1POTcdGgKCAMNVL7mVXZjcjxf/k2j2y1MMOsMjHyIZETv9VCTLbgp7JNxit0b8TMVUWrKRpz+bdFsBKPIsDJ3kAAxJNf09J/+mY1DpPJz7m61eqfyWXKPrNmuQmzhGeY88XCPT06uB5QSmtkCWhL5+TVez0vcDZbmZhrQWl/clS3RJpOvMpojccdUmrpR7mYrobU4re58cDrm3SmUWjs/c3JYbMJxLMb3UgFyN3a4rFFv8NEyTM05TRlt968yvqfL1RhLfju8ndSejq9fTOVurJPW65e/p3nss9yfbTG8/GcEUxLpOVKebVl4ivaZSFHWpxWXaMFCbUh6qleY+oyNx8isKy+fa9FwlDntn2Phtx+6dB0uizzBIYlASf62szqeCLnehy4u0khnR87AtqQsZD5AlhSWZqFv96rInUvdbT0vmX5c50fMmy0liWlrik1iV5DiJWhMJKollWZ8mC3Rdc5txm9pV/q+3i2mTRLdkltbPsq7kBoCp/0xOTiZ65dvSwje1nd42Olr1U/26ricv+4PMm7TE1+vPJJ0CIFMeWZfbImmlFXyrePXTEuw7U8W5p8KS6BYveuhkJtKF9eBgyu1JAlKfkMuFfjJfF/GG8XFk6ceyXlcketOechK313w9/rjagpkLcFkM3TFlcoLZbY4vWV3HNxn2uU1GVE0LovHxrI9TeZqYVmtJ2nK1KK75pULmOHwup+WViYuMVSvNeraJVZtoGGmJLZVBRkay/LC+3pJZdV0VHgAKkrXl6lVnTkxmg60gy9mKwNiBxSCzY9JXb2VolsC0kjdFLsl8123KNvtGy/4+Rdlkv5Z6p9OtjgYcOHz4plt/Opkww2AX4ha7NcSz6AqC20jyTRHFNm+LAzmCCJSvYjn8SIJ8qjSn4iMldMLdlO8dweRkljRvNV7LtFulqRvoTln1pgKLa7qm+1QwDec6UVytZi3lJbEuldEkqayPZ/qGg+sqNyjS74zrKiI3Y32/rc4wFbGuh2PCprBJJXiZYFLivRV0x6It+6apM+iEeStMEUYvqutSDki7zxDHdj8Dz/ehsST6HomZN3Pbw6HrTkuymyChK0lFeT+J4yiK4Hleot8sraxlXHQsKUlWPU8mgl1a4EptbJO0iNRIp8U4SW3ebyJZeT/rgHIslOuQluXS8lhK1OjlleU0OUvV86xLceiOPOVmh7Si10l7eQ3IEr2sE+mIk21MC3RabNMCnR/pRFTmRcqVsG1YVl0uiPUpyX/ZVjxNIPXX9XqVluLSOp/EeLVaTaz+pUW9tETnyQBasU9OToISKuyX+jMh202eAJDPj35CQ0rJ8LrpWWI9yHT050GmrRP++gbEnkYSWxLdYsbANEk2LWj0lTetaufPTwS4K2vVvJ963L29ygpmYkIdOW0ERTi9vclCZKuwvM6Q6LHFd2+vIoZJYtI/oq4VCiCJM6xm+e3i7JTx9NwGurocjI6myYRhuiCWEp708ZhopursJkS6MegsSxoGc6FKo2RpiT4+npL0UgaGFn6U4wiCbiWzoVeWIF9l2uSlUY3zKc324wbaMqTkZ1j2ahXK6j2O3hNC836oopg/P5WJKZWAuXNTqe/e3jRdtpW0auNmSlLRel2SSKf+dldXmndGKLVV9AU1/zcxzrIhdOsx/ua6KJUKCMNUGigINDka10Uh8FELvOTkhHRQRmKiQOa9s1P9WC6nRy2kiaDrKpN+jcGQJH0QqKpg0EQXX7JBUr4mros5c9Sf8+crNZlEDghAd7mG7lJaRyRwnKEtyseB76PQ0wNUNLaGposmFmAqzCDvZHYhbrFbQyPxUsfI2WdQSonxNkCNLyQRJybSd7buG7IQ38iTXePjaXh9+HPd1PWDvsGoHyZiHkzFMhWz1WZlKyKZG7amMMxLq9eVPpRQGkaeGGuVR2qad3Q48eu9sG1rXre1LElmMxzNMjVsL/mbvJ/uNtj+9I9SKqm8si05tJrKJNuyVV2psKnEDGBweq0XrhVM8yrT2C7Yf24MF1wX8NPOYqrXVu0ok0/U5IK4/TjpFHOAzA2ywvTERP48sRkli8fvpM70ygUFfFQcBQ77cWE8ndSX/1damN6L8FMO3dPdMNhNYMfunYeZ0+oWiUyErl0uHTkCWceRADJEIYBEp5zW1vy7ra0tIZVJikqdcxKtJrJQt1SW5Cjvy+VyTZbT/KZkCAlMqaXOuHU9cZ1UlwQ69dg7OzsTMpi/5XK5jHwLiW2SpZJQlnUpCWhJoJN4pWwKy+15HnK5XOL41XEcdHR0oL29PckfHZa2svbWLcuZT6nfTQ1xfpM8r9VqCSkNAL7vZ/TiSerq5WRdtrW1JfVH6R/pnJYEt6yLarWa9FO9n+jW4ST+x8bGkvgp5TM+Pp7UaRRFiZSMlO5hvZn0z5kGw+j50WWPpHQP5Y1Y72xPnSyXZZGyPHKTSvZVKYMjTwnIOt3TYEl0i90arVYSklTUw+vfsYQLDj8cCAL8uV9Jr7iukp1YtgxwVv8fEIZYfOih2DLkoL8fCMN5SfIDA+kCLkmWkilr1mCfFeqs8Viojq3PmpVak3EtFYZqQSgXTuPjSgcUAGbP9lKNy8FBFHwffX3FRGtaEtrpQjjlbHn8GQPVrCQK0MzmV6vwXBdBoMb4oaFU7luS6SY+nou3iYnUXyfrUzkV9dDZOQ9zV8xLHWaKhRaqVRSYFz9rGdboWYgwVNr0ExWgMpDmg7yo0rwVurV0JOn7CKqKwD3ssHTfpKsrdgK79s9YWC7DP7QI3wcKGMsuJhlhvKJvwMFY1QFPGQAe/KAABPNSHVaS6eyTOmS8/F+yPCyUvF+S9ZKAFhtCBYZlo3GjSJahVIIXBFi6dDGGhlRbycdlZAQocOE9d666d+lSbAmLgA+gnErChCGAfnXfrFmq37luk0w6SqWsk1RUwjQAdYL47MYZmh9swfy++CHpr2T19NnxBweBkRE4CxaoeAYGlGYSPfy6rnrgWB59A0Ci1YKbx1FmCOxC3GK3hnzO5GtQ28wNYieWnqvIOdf1kMtlX2vc0OUGZ8b/g696NglaKT+mWzBzqJDvMB20juYrenS0mfuTqh2um+bdM8xVEht8382M/YCZs90WGS/HYTmMSCU0ffiXcXZ2psQ1x+z2dgcdHUoSxZS2JHUlYS/LIPMphz1ZX3qZ+Rtl5LhRIjdMgOxcysTDmuqTmzCyD8iNklQuKJWCSTaiWWgmYiLaTdAbyXXT+YFpbgokUjmerCzfBwI1bkqfAuyXgOqXo6McKvl29+C6HtrbC4DY3NBVZhyd8Gd+4gp1XBee78Pzs4R6QqDrHc20uyLDyN0o3QGPzJi0DqH8IOtFr2O9I9ixe4+EJdFnGCQRTBJdErAkGk3kopSW8Dwv4/RQxi/johWwJC2lnrVuBS8txmu1WqIxTatpaUUvHXAyDZKKkvQkudnKEp7lYr0wf7lcDkEQwHVddHZ2JoQ2iXOdVCaRKi2MTVri0gKcmuO1Wg1bt24FLagBoKurCx0dHQiCICHNqTNPcpr5Zbz6poUkXCXhy3qm5na1Wk10yyWJzvikDE5bW1uyoSFJdNmWsp8VCoUkHuqUk+AmSU/r8VqtlukXrFvGxbZiPw3DEKOjoxknsxMTE6AePslz9g/mQZ420J3IyjRJaDOs7FdsY9kHZZoMo9c/45R9RG70kBzns8W2Yh5kX9Y3IfY0ktiS6BYzAqYVoZzE6xY2BIWaOzsxvOIorF2bkUZPSHTc94C6r1RCd28vHnvMw5o12aRJoie8aRgmJDpNnAvLlgFwMHdulh8FUqkXaTHHRX+9rhaR3UGAhPF0XThBBQXfR7ncjZGR7PqBaw1JLDhhLWURdAZBLjpiDZtioLQ6pe40F6Bbt6aL2VagTjyRrP8SztRBEBSSRbLnNlLNdD1vrtKqHxpC8s26ZpwkNaQlYrXqIAyL8EOgGChSho5RaRzurP2zaqeBAXT39KhI16zJasR0dqqKLJeBvj44QYChISdDTrBuFAGjFqy+X4TrAu1RqrHuurGuvq4dE4app9ZU+DdrCpktXBqhrvldqShrbDaeFI7N5xPz++KhPoo9JVQqXmZjZHQU2Z0h18Wz40U88UR2U0X6AyVnTTKKVoNFv6Y6w+2rVQXRQWlfH1AuY6yqThOkzvs8tRFQrSoyXPYHgs9upaKEcgcHlQfgZctUuVevVokPDqq2W7RI/U/mhKyZ7MStrNVEH5wpsAtxi90ZDTgZAi7dz8o+Yx5q8Fyo00hhCCdItbcpt0ZHynJ84TtIH/pHRlKiUY6X7e3ZV6NTHUsDxZHQ+SHHZRPBzXdhPi/KpA8S8ka5sQkkGtlwXVVuP0ust4JOEI+OqiRHRtKNTtaTHHYM+8NJHcqNBW6E6pb+Ms2JiWZuVFqW62lKPlSS3eRUu7rScaXg1gCEKJZFgfndFkI5ETcT2PSP4fk+an6hiew38d6y71D6JQhiR6iywls1AiPR55t6eF7Xd2dMOx3t7WpywUbp6YHj+yiUSiiUAgxXnKRMbGMprSfrnVHqba0MCERZdJJfc/ztxM9FxmqfiUnLC5aPHZOTDU50ZQbZKfbaKy2v3I2XDaTvysjNjfhTCx3UJ2fOCGfH7p2HmTNjswCQdYYoPxI6Mcr7AGQIQJKKuqQHw0ldb8arWyrrOueSJJWW2pJ81C3IAWRkNKRECEEyXZLa8m+mS1KaRHk+n0+szinfQqtw3TpZJ82l1rmUCJFkPkn0arWKrVu3JkQs89zW1oZ8Pp+UiSR+oVAALeSl1TLrSsrCyFMEjFdKqJDgluS5dARKQpdxSBkTad2uS5DI+pEkOk8wAEjKyzC0epf9i2npZDfjJAkvSXRa0VPGRcq6SNJZEtWMn5s1sj8zH/ppCKm5zz7Ia3IzSdYL/5blNPUTxqHnRd+k2lMJdMCS6Ba7Oaay+tF/N4XjRN91sXYt8NBD6Vze95Wlck8PFCkXhtQlwdDQPKxZk11XUAYkSZILEFrLui6wdGlMrDYbFrdabMo1CEpudmETE6OFpSWEoZM51s4FLyU0EisqubKSiw+9zmKi0fcLSVJy7cNvcstAs5WczGYYpoR+EGTJb66NukvIlo+RxQs3Eujc6JDxLlqUrqnILQOpNf+sWUABVThhiPmz/WxZ6QWTMiWVStoZuBgjIwwkJtaVipdZsEqDb0lMSBKC68Hukt98rJoE7/h4zGKLOuBKng2bEenXOgs3Ih57LP27Wk0dlQZByqb09ABhCN9fmFn/Jv1NLF6ffRZYtw545pmUwFIOc1X/l+QVkykGDaA/brSHHlJlXLRIBejpQQMORkbSjStWcbKQ7+9P24b10NGRbhIMDSkvwOvWpRW+Zo0qe2dn2nYLFqRSO/IjiY6pSHJLoltY7DRI7qvlYyXHKnHNdb0MR7d5c3bcY7yS8OUjnpycicH0czn1aunqMmxwxsSe4wO0HZf8nxas+YCLHFN11lZOBAQ5KX8jsd5Kb1yWR5LDJNB5Qo0b3/opMlkPOqEqs8i/6ZBU6pLrxTORuNJ5KvngbW0OJAeu9GMHkjTV53h63abeweGVfci3nbQn0OV55GkEOpX1faTSI7Ji5ORNtqUJMp/sSHLXY2KieYNdJ9FpWS2sGHy/mNzGkwj6/8wyo3Jd5ZtHnj5I5GRM/ZV5YflMDy8bXraZnJuMjKiHVj8ewfGYcw6WjxPNtKDZetTT5jMUPzO6zcjuDjt27zzMnBmbhVGPeUfjkJazuuyLDpN8iol41/OlE146Ka/LWOjOF3UJFeZR11MneSo3FaTFu4zDpJMtyyPzLUl1qUnOvEorcUmCStJbpr0teRO9rvR602GKTy+X3iamNORmgele3fp6qrQkdK142Wd0AlluuMhwMn9TEaim3/S+M1X5TXmcqny6Jbsedjp/W1gS3WIGotXEvhXiBYFpnZDqtJqTmSoLSSQkRuMEXN/L6E9vT1YTp02GTJji2aYvS8l670RrW7m+2tYiGUgXr01OqaRlkmijMMw6hJv2SV19E0FeM4WTDWQoyHT6Bv+mxi3/b2rLVpFKlkcyQzxe8HzbTZRfro1NeQirqZ4t20DyAUbfnSaGx1TnraAzOPzW9cnlw8o+wwdAkiozSNf8+aAt/mxPeAuLvzT0MVC9FxtTBxKQ44D81m/Xw045Xk733bSNoK6L5rKYIpjuRt408iFJ/enkcTrxSoPf6WRRJ6Nl+roj023VX/LdqlAyY6YwBiMBSgLpeXne0IllfewyGSzI31uJ3TMcnXxz0qNNNBiFqX3kuC2j5abIdPyebzckYy8xVWIzaKP6hYIdu3cebG+aIdBJ2G2FMf1P62LATBzSgldak/O6TEMn0KUjSUm2S4tqAE3EJK2mKTsCIMkf85jL5RJyNZfLNRHK0tpZtzKnrIuuea47N9XrVUpsUB+bden7fpPlOC2cgyDI1NXs2bMRBAGCIEgcmUodbz09maYkoHUCWbZjoVBAvV5PLPUp61KtVhNd8Xo842BctPJub29HrVZL6ol1yA0IKWOiy47ofYKSKfJkA8tG6RaGdRwH9XodY2NjkJbntESndbsss27tLa3p5f+6hIzJX4DMFy3dmQf95IXsH9KiXsYpSXcJ0+aIhYXFDIOJ/ZZ/myblieYKlAREqYSyr5QgKBXCW8fHgWJfX2rdEoYolZTlLZN33axBjesitfqV4p1hCCesoavLy5DB0nmlXhR5u7FMYWh0PsW4k/UcjyFL7ROZCC12RdwNv5A5Zcsj73KdqEtz8xrLxToCUks/WmRLy7ckDt0EznUxXPVQGUytn4HUX6csEovBhST/7+qKj4OvHUhvkOSzlDlhpvfaKyu2GgTKGkro9pTLHjo7U1UQGn2beHrdYjEhV2RGZ89OOxILKK3PWlWcbAR2wHxeWZlLqy1WUmen0ixgeVwXPXHTVyrKUGzOHAATYiPBdRNLc1p2kadmlMyyJNMbrgeH9btgQZqPmHDg80AruYQE8ON67ulJrfBlmwVB1tRuaEg9wL29KvP77ptK47A+XFfVJdtVNpC+eyDKbWFhsXOhP1p8H2asrVs8f/K1zWGZ101jkbxvKuK0Xo/Dy3Q1Yla+o3QuUDrBbCIzp5qjMKPyfS4KWgsdoMW+I6/RF4kc/xmFlJTm61ePSyYtx2meNJMW9lNJuLEexKHnzKuVUmqmqtAt3zlcZU7RSb8Wraz69chb9CE6kWW9tdq/lm3uujDLxshM6zfLDishN/WlpXa9jsRbul4+fewXmXbQQEeHen6q1dTSvNVGiGEqqX7XHzB5o95PXTf+yYHrijkm64Jhu7rSI4JhqDoWj0zIzXVmjsc79TmPfsyj1Xw//nbQQMZHjsUeBdvsMwAk8KRl9VTQSUVJqtNZJ5A69CRpmNNGbBM5KAlVSZrrzjFJPEoda0pySAeV0hKd0ie6bAqAxOGjzAeJX93BqvwwDOPgt07CMk4glSipVqsYHh5O6qKtrQ1BECRSMdLy3ff9JO9MMwgCFAqFRBdd6oLrDktJHks5EZ3MJUnNNBif1AwnGTw+Po7h4eGErJZkNoljaWHOMlFmhhsNDMN7pQNO9ikS6HRSK52rMpwkrFnHIyMjoCY6yXSGkWS2JLFd183ojMvnghsA0k8A20kvg9SLZ53zb5NMkJRR4t/Mm9w0oNSNzLv+TElsy5r/xQ5riW6x20PXGpWLUJ3FJSoVxZb39mLL0pejWgUW9zSwuCfEg6s9/OlP6cJxdBTAqlWZ1Xpvb5Yk3bRJKUuQswOgyL++vqzWY3xTwUdG67SjI10EUwqbR51J0La3q9sLkgQXsidci5n8WHLq4LoePH2RF8fXcJUmtnTyNr4pXduQjCZRKtcqkm+Q/8vj9GwOLsqDQDiiAlCDF1eVh/FxL9FXpfR1tZpKuEhZFK7TyJOSzOXi26tU4FF3ZCAm0SUhzf5CwpkssTxOzG+5gKtWUXRDFDtcoCsm+8teohdOPXhpJJeRepELRjYyA8qdCuappwcN10N/f9yNRDurKLpR7PVT2RaK946MCK+ySMuikfKFykYsdkNgaRnDVU/pmK+pZMo+q131fWarUkkd0TE6ElWSGyhQBH/ZsuyCPG7UQqmEnp4CJGooAKUCvBV+VueUdRSGqYbSypVpx4jbcqy0EIXKRuCmm9QinQK7jEcn0VtBT3OGoD3+bE94C4u/FJywBgeN1PI8eR96mrPCZkgOj3yc3Gzm3/Kwjny9yu/Mxh2vB77ZujkMQeea5PPkPEDf08w4zpaB9G9JiPo+Gm66yR5W0w3xVhsA8tVksimQe8aSvyRSXxTpeKrv0bI+ZdaneiXK4kmCul5vnhcwD3K/mlJ0BbeWSqy5brrRv2ZNVphejs0mAltk2gGSdqRMi6kchqbJEvqtdir09oyNEaTsuUyjfRbQEU8/vHAs3RTOaPmhmQGXZY4H3GLgw/cd5HKpIQOniqaDYOz/RL2u/PJ47AAEbxAdpBY6Sf9MsxXPMeUDKuOY6iPDcE5mIsn1TsV657f2GzeGZgrs2L3zYEn0GQBpbauTbiYJFJN+N4AMqUwySnfaKeMNxctJ6mlLEl3KuURRBGlJzmvSgWS9Xk8cSZJAM2mESyK0vb09IVkBJERmR0dHQiRLR6d6+tLZo4mYlZrytEqemJjA6OgoNm/enNznOA5mzZqFfD6PQqGAfD4P3/cTJ6GdnZ0JeU5CmhrotJBn/qRsSRRFqNVqmJiYyNS7bi3POKS2t17ftEQfGRmB67pJnYVhiPHx8UQ3XVqncxNAWqOTrGfaUhOd3yTZpba+lGTRSWr2K5L97A/j4+PJpoW0WNdPUZhOWEiyXG6qyA0n6QSUGzlMUxLnJoe1/DZJBTFfso+1IsWl5bou/bMnw5LoFrs9uEIgaydZ1VbaidUqsGED0NuL225Tl95+ZD/w2GPoW3liRoK5UgGG+w5SpO/AeiAMjXP7hx9OJS0BoBZ0w+vrUwz75s3ZvMaLImqder6LYuAmDhaBNP1SSS1scrm4GFzpCodPXGRzvSUtrIB0wey6SBdH8SJnrOpgcCDLyUviIQwVsS/XKFJrXa5p9DWeTCrjNHRrNUuMui68pUtRrToYGEgtzvnp7882IfW3y+VE0jshqDNOVMMwFVGvVFSb53Kpwyou9GRGS6U0ES6CJalTHUsXuBSXjctQ7OlBsbcEOmNlvtjldP6kadNHt/yKF6NbKh7Wrk791ErOgFLtqi4KcN0Cgt5uVX5Albu3t9mEXD4bYZg4VkVPD4q9vcBgNcv6uy66grQNSKKT8JD6sbI9qlWgUPITHfnMrgjJgjBM+2Vc5+sH6EyvCNctxhGnfQ8Aqn5MSsREQbmsNNh/c7+DH34BWLVqHt7Y06M6FNtZdlBmVmdRdMJA1tMMQRu2Tyt1R2Y61157La688kps2LABy5cvx9VXX41XvepVLcPfddddOPfcc/Hwww9j4cKF+MhHPoIzzzwz+f3hhx/GBRdcgN/97nd46qmn8NnPfhZnn312Jo6LLroIF198ceba/PnzMcANMouZAa4lSKDzvZT9WelPa6QYrUv1VxjhuilJy/Eqn88eQNElR4CUYGzAUadnpG+OOA+Mkz6KZfZSB5Rxdk160jKT8hO/k6WGs24fsK3Xj4n315NqlQ2+w/mK5Oaozk0DSDY/OLZtSyFLT5f1pueJw1KpBBT8eAOiUs04xh5DAWEVKAJZK2bAvPGtJxJXjut7mf4jozH58HbdeE7RSidc7gDE32NV5e9ja3+zNLjuDiWd7xXiOijCL6u6aEpXlCOpYD5DYQjPddEdqEyPdTmZaacIljwDut+AahVwAw9OoNWbIO7HqunpR/ksqQ31gnqu4wqWm0KMSs4V5Xcyd3NdDFdUGqVS1uAiM7GKb6ZBimfo5E7sxnimwI7dOw+WRJ8hMGlqmwh0fpss1nUpilZa2zoYTpKR0oqacic6ISYtwEmc1ut1VCqVhNzl/X78MqS0CAlLWl/TeSWAhGDv7OxELpdLSF/mDcjKiNAKXpZX1qFeB5SZGR8fx8jISJJ/kta0ZOf//O7o6EAul0NXVxc8z0uIaRK8pnzxQ+Jekrm6hAutziX5L4l1hqGV9cTEBNra2ppOH5BEJ9lNS22S3o7jIAzDjCNQKeOiW4nr1v+yL0qrcm5khGGIWq2WEP7SAp/pE/omgbSQl5ss8ltuwMjnQJL80hGrPA0h+4bs53oZmQ8pM7MtuaVW2JOJdEuiW+z24IxcXyEA6cpEWoPznRU7bnziiXjRdOAQsHYtuo9vwPedZFEchoqDDQJgcaAW1l44hnI5tZwlJ1itKiujXA547jlgPsluKYIuv4FMnly/iDDMWsbpxkZNzHWMyclURsOki5osdIJ4YRNbR9FyWpLoQm2jKZsmx2OMXy5CaZ3shLV0BScTkyR6cr7cS5xV8jMyouq3Xs9aFtIhKTcZGFViAch+UamojYzRURUhMyb7DiOkVX5MEIRhao2flqkAB0NZEl1WEoAg6E7kS4mmYNX0QsNVcwBH1CfCEDW3kByaoDPVNWtSY3Ny7jztLI2/fN9DIWbYa6V5sU9cD0G5mFSL6wLFIH4+Nm1KnXNmOlza+GxvOrDVSQBZVrnAroXqqDdKMbkvPdvpFRM3cLXqJRsRcrHv+2n/HhpSGzzPPqvKs2wZsNdeDh5/HLj9dhXdGw8NUu+n0jLOQKw0/T+DSHMdL7Rzsm9961s4++yzce211+IVr3gFvvSlL+Gkk07CI488gsWLFzeFf/LJJ3HyySfj9NNPx1e/+lX8+te/xllnnYW5c+fi1FNPBQCMjY1hn332wVvf+lacc845LdNevnw5br/99uT/9m2xeBa7H+S7Vz5vrtcc1kCMSfLXZBHOb/lekqQokH2v6FnzZEDxg0kegvmQ8WfGINN7TpLnQBOBrrlS2a49PElqykdD5lknijmu6uR5UhZWTAzHdWF6a8jmNJH2TNME2Z7GnQRxOSHRtXxlGrhFGwKqTJ4LhHFbtprvAKIPVafZnrFxAh278gQdlVro4FUvO/dtfF/Ne+g/Owi8eDwPsnNcfZzSNr3huigII4D29tQKfqq+lO5pxZtJvOi6yVwlDNPTk/oJCZUNB3TCW61kDw3IuabePGoK5mXCqOtqDqH6o1ZxkK8TJ+6byNbRThfAf+Fgx+6dB0uizyBIsk2SSVKHXA+rO1WcLmFH4nAqB4syDyRVpVSKri9t0iHX/yZ0a2NpdS0Jdmkd3Kpe5EfPB+OT90rrZJlfksrSwtkkIdPKGp71w/rS8yHLy7zLMugSNHrZTKcJWsXPb/0Ugu7kk79JC3QpRWNKR6Ynv2U/kPe0ul8S8uxP8n+9PK36KOPmZojcCDClrW9G6fWnx2/6W4d0SKunsyfDkugWMw766lb/W1s9NOmNh+mRbc675UJcB0k+GaZUSo8+w3VTM90WedgW9AWeyYxLP5ItF8EZS+F4FaoWR86UVmRN6YrrpvvIiUgnVibLIOONoXL4pZ+Glgt63bCMfzdZtukLXDIFJtO6FsQq11+mDQlT/ctrYYjEcZkehPF6KdudxJ/UlcZQy/W5/NarUH7r2W3Vzg3Ei86ODpVp7uDITSdRLknyaBx7E6nu+ypaDzWA+WrFHhjSArKEENs52eAYz7aP3MhJ8sPdFpn2dPqkju1hsXYDvNAL8c985jN43/veh/e///0AgKuvvhr/8z//g+uuuw6XX355U/gvfvGLWLx4Ma6++moAwIEHHogHHngAV111VbIQP/zww3H44YcDAM4///yWabuui56enu3MscVui1YDzXZGAWz7EZev/mlHbHrBbSMfRphe0mIjwXHdDEHPJMmNTucVxLGHoHwKYLa03lZcmfJso53ksCGldWSbsAwcH/T5yZR50gdT38/uoOsffeKmtSPJZVO96nl2XTTHPdUAKJDRU4c52HS6VzJWT6dzizJuq9/o0fH2JutvqM0T1hslY4hWc5DxcfNmkH4aRPYPuccmffsApOb1G9N/E4monfBe2RWwY/fOgyXRXwSg1AgJXcpaSJKXFsnSKleXoZBkpE6+AlmyWbfeliQxHV1ShoUfpkWrbOaREi46mU3Lan5I3NLSmBIwLKMkyCUJrltC0/qYkjKSDAaQOLmkvIjjOMjn86BkS0dHB7q6upK/KdtCq3OTBjs1wmX+aMmsy7LoBDvD5PP5JrkbaS3OumN6JIxZl7Tyl0S+tKqXuuWUtZEEtG7VLy3YdTkUtiUt9Wl9L+tf9glZVlqT834A0C3UpRY764T9Xm7isP2lA1Fa6ct2kX1cf47kyQh9k0Q+RyZCXvZF0+9yo0r2/T0FlkS32K3BWTYXS7pmhiQC9YVr/D17dvwvNTGGhrBs2bzE+tf3hRNLsYAKq8paaOtWZd1DeeZSSUVVdMdSs6Le3mbtEcNqQa6PMvrZInk9H/B9eG4DXV0O+vpS+eeCb7CEq4bKLCr+v1AuIwydxJKPupH6gk/y0OQjOZxI/WsTd+37jtLEzhQA2cVvGCba2L29SrpjZESlxVP+siml/jb5X0Cl5wxtSWV9uKNQLmedgrKRenpQ84uK5I3bqhY6ydFr0+Iz0fiWKz5mpKcHDb+A+qZst5TBqO3u+w58v5jRFPV9J64SZXFFffogUL4yaammW12S0NbVjJINk8ow5s8NYhOwKrwgQL3uiCaIrdbHx5XDUUk6BwEa5XmoVIDBfiQnBbJWYs3ypfSr6wxtAdYMZNualcs2KpdRi09hhKGy/tfLSTB9GQ2JosnJ1MK+ry8uxtKlaTo6K9SKmZJhZuAiHNjxhTj9DBH5fB55TVC2Vqvhd7/7XdNi+cQTT8Q999xjjP/ee+/FiSeemLn22te+FjfccAPq9XqTz6ep8Kc//QkLFy5EPp/HEUccgcsuuwz77LPPtO+32A3QirkT/yoSr/l3EoN895PM41hEH8J8N8quJflP/VUgNxoTSRctf0xbYkordHlCDmhm+TnQxwOaF38Q+AiCLAHKdx3QbFirE5iSrObfrAdZJ3J65LrNTj/VdbG209qN47yMj692Pe8yr1JRjHlIHImSAJXznHjMTtqJ3t1ZvzyWJuoyUzhtctIwvB1l3ba3N59U8H0PfuDBkYXT2rPhF5ous4+y7Pp0VC8qHbvKRyKN04Hrq1OQJokSfWOgOpTqsOtTT5m+Kl86ZXKqY2q+KAd6AAgCOK6LICgkXVpat8u5DtOQaeob3yZwXKelu++rNPL5eK7ne8oIwbCZkNa7INKBbWsO7UawY/fOgyXRZwhMFrC6RS+JPkmik4iWxCuAjJNHmYbUe9YlUmS6ofaGklrWksA3yYAwPzJfJMN1yZVcLodCodBUHsdx4Pt+RptaEudS/1wSmLVaDfV6HdVqFUNDQ5nfdIKbJC/11z3PQ7FYRGdnZ/ItNdF9389Yi3PzQNabtL4GkJDzJINN1v3ScSY3QqRVvLTSlg5b6SCV9SMJbTrAlCR7FEUYHx+H4zgYGxtrIsipJ860SF5LYlnmWUr9SEejExMTkNb+/EirfimTI63yZVnYh1jvut4/8yw3RKRzW9m3Wafs99zcMWmsm55B08kC/say61ryukxMK4v8FzMsiW6xW2NyEvC8lPQDtm3SI8fGahXlcrxYIsk9OIhuvwL07IPHHtOijFekJFqffVYR7YDi6jo7gf32i9VCVq9RbF9fH9Dbi5pbwEA/kM97mD3bUxrhPOcb59cJa4kVvFyEZYokNw64kKhUUHBdFKpDKr7N1ebFO78lO+y6CErdTQZbLdYncN2UaJ+cTEnLalUteLhQY1jG1dPTetGT3BCLoRd7e7Fs2bzk+HO1Csyfn3WIJZ2TysWn5zaAxwZUppYuRQ0evHK5eSUf3zCMIgbWqvwVY+eqlSGzUguzPzICuLMLcEuFlGSJM7FlyEFlUF2SvkGBdPH43HPqIw8n6BsWkmDgd1+fql9ueGzapP4n8cGm5r2eK7SGqTmZ6UhFTEyo4+auCyzu68seYxD1tHZtqk3PI+ok7Ht6VJ/o61MW54k0zdAWYO2QSnvNmqy5ITMZE+jDKGLtYylJNDmZdl+5EQGkJLr0tybl1p97Tv29bJl6DofL+6DY16fywU0tWT6y8SboZPoecCR80aJFmesXXnghLrroosy1wcFBTE5OYv78+ZnrU+mbDgwMGMOHYYjBwUEsWLBgWvk84ogjcPPNN2P//ffHs88+i0svvRRHHXUUHn74YcyZM2dacVjsZhAENZH4dIh/p66yfhuQDv+6alurMUx/pxCS6ATik0Hxi5950zf2JHmcDHG6tFwrHW0J/YSU68LzfWV1m3kfNxdOWhvzIzcVJH8vCU69fvTsSUvhNMmspbwk6uU0TMLUDlL7OpMBdUe2EV03IcjdUA0jjWAeHM3PRyNIpcrq42m0HR1KDoUbHHIjxFRfgHkDl1lpb3eQy3kAvLQuWIRKtijcHGCZGbdpc0c2q7TSZ3zN6jXki9R/8gSgXg5+m2T3mjYxKsNZpzQyk3FdOyXAjzcMmGZFK7tMS+4pyejktxxe9bD0NTAxwf2SrCNyeR/hzVAG1Y7dOw8ztAvsWTDJnrQi0UnI6jrZJAR1C13GI9OQBK0MJwlPXapFWi0DioiUu0eSnGb+aL0tyUSdRCe5zI8kN/mt621Lq2d+SGACagNhbGwMQ0NDkFbyzKescxK6+XweHR0dCIIAQRCgWCwiCAJ4noeOjo6k7mUbSYeVUudc1rl0WEkSmGCeWF+0dJd5k5InrF+p+c1rTEs6y5QEL8PROl8S3NKCnO3T1tbW5NhVll1at8u+xBMAzJskoHm/7MPcWGHdyTDs13LzghI10gKdTkxJ4Mtnh31d6mbJ+ua3PKkh+6j+PEhSWCfZdWt0kxyNfgrkxQ5Lolvs9pDWRvy/VTh9ARuGKJfjyT8ZwbVrgcFBlP5qn8SqNROH7yfrtsFBFbynR5HoPT1Asf8R4LEhxebFM/5nRwoYHVXEJ62mu7ocFICsQ7VQSZpwUVevx1ZBklCQZZbsAZDkvWnRLlczXMGVSkC5DMf34bqFDJGuExBczHHBBaTkuf7N5Do6UouqahXwAj/bVswPPaZu2pSsYp1KBQXfRyFeOJfLqUamTmx7rtBrHaoosnR8HFi6VKVL/XPZN+I67+9XxLDrAsU+NyPDOjKSWqTJ9CYmVNOqulALufE4LMldKohIgiHJ4lBWDp68taxzZpkL6WLQQNEP0XA95POp5VelkpLzUmIlIXL0jyDJJyeLSbupNIso9mU7QQNOQp5XKqp7jYyo9KtVZQgIqDb2hjYClUq6sTA4qAq7di2werXKFHc/+vqSwjeCIgbWqGDsO+wWklBgV2aUXGQLfiVDoi1dqu5bvRoolRwc1OOrmyWLNhWM5M7MwY4uxNetW4disZhc1y3ZJEzGQ1PJ4LWS29se6byTTjop+fvggw/GkUceiX333Rdf+cpXcO655047HovdBGHYRJC7LrKm1Mg+7/qmI18r8vSKfHx1nwq8xjCSUJbXFGHc7BRRfss8k6TNsNlyLDYR6fpuuR6hqcDyHea6cCThHvhZnx7j6ZArZWH0OmpVLloD63ryMptN5ZcRVatAaEjA4LhaDoAN10ut3n0fNbeQaSc1jnpKL7wUj2UDKZmrk9ip73Ankw1+y036bbW1LLduTU9w3tDervonoL4lqczwnFsBzeS6hLTi1jcB9LzqmwJ6eXw/zSO7k+8jPZXH42asTDl3iycmDtI5kKm7612dhhZyPinrkPFMZS3PrLQ6qZkl6QVfs92iJ7sOduzeebAk+gyGbtUsiThdP1t30GiSZGEc8j5ek6S5TFMShdJBoy7PIQlGKcVBot1kFS/zLmU7pIWwtHKW5dLJYklQMq90dMr7ZfmYb+ZP5pcfEvvS8p95l3khAa23m8m6WhLRzA/jp4W03taMU0raSOt/hqf1ubTqJ7FN0HKdJLe0QCfBrhPjMj69DnRdcUkk6ycA9HukFrpOzkt5FabNPi77JuuBzlblhgk3HkjUS5Jej1t3smqC6ZnSLdV1a3PTBtmeBEuiW+zWkJN7fRU81T1idk7nobXQUdbSsRmyE9ZQrTZbv6mFhPqTZOucOcCsWYrspEW1DL91SK1FRkfVwkYaRyd50qATuJnyMh9c1PDz3HMqbbnakt6fZNmFRbpcTMkqJWhEDGRJYSDrAE0/qksnq2Eo9DxNkOeNaS0sVsHFchmN2AJOLrKS6GQdjI+rig5DhIjbVZeTiQsoZVt0az5ZDmkNxnRl+8TJZbhqve1kU42MZK0e8/l08cxwGZ39uF4c38fs2crZaGdns2Ua89xE5OjskmhATn3Gx5FY6xE8YcB+TvkiuWBOIBfc/F96iJWbJ6IiGc/QULYsJB7kNVkcNnVHR7Yv8G9uRCQnCnq11bYeud5YOpj3GYK2+LM94QGgWCxmFuImlMtltLe3N1mubdy4sclijejp6TGGd133eVmhdXZ24uCDD8af/vSnHY7DYjeEzqCF5kcVSA+4SIfcvK0V+P6l3wp5b6t0Wl1vmY6J6ZRjsMksWI/YRKLrejTyOwxjctPLlFP8PHWeDeWUY1lm3NWyanSm2orx5Ytf3xiIIw/DWPtajNWyCuQGMJCOU6YNcCmdbiKVdW1uPbv67wTnNnqTyPmB3AzW4zdNWVsNPTL/+skC/m6yRDf1Wf4u5fuS76qYyHACwEriLpRM2M3mQc7Pxsez6cqhXyfO5bMnreaBdE4lN4FaPYt6fDMRduzeeZjB3WDPgW7ZCmRJN+lUU5KokkiWhLgkBSUBzTgk6SzT1/MjIUlVmaYke6ciCklaSmehJqkQWhozjyRZW31M5Lwk8fX6kgSxJFFl3ZCYpU631OuWRLJe53obstxSxoThW91PTGqLLSlBI4li2WZ6P5IW+vyWVv0mglPPi4yH/Um2mR4Py8sTCbqci2kDiMQ1CXu9PrkxwA0AefpAbiQQktQn8S4t2Vv1U73+dEtzfSNHpivj2xPJ8lawJLrFbg191TudmbO2MOW6wHMb6Ww9ZuDK5dSCCQDGqsoyjY6SgFTWZGJCELZhmJocDw2hp2de8q9cg+gWZVPm2bQykAvsMFQmwdTnoGmyXkdc2YjVSFeX+pOLTt0PquvG1vBhCFRDeAD8nmKyqCFHy6LzunRwmnFSBTR7QuVvFNPmjb6fIbjlQk0Rv6pNHGa0qyuJtx63k+e7iXUeABTiwjGPcuEn1/O0qJfre9lkRKZNRVNSp5vXaO2VaOxvo9mbEIZw43zI9SzjIRGUcUAmTd2pGxsEqAyoMktte4LWhL7vZNp19myVLuuK0vJJfeiECNuyXFbXeDSB+vS+n9mYkOWgJmwQqP9pwTY+rqJk+vm8il4eONDbolSC2TxOI59a1XkmYzME7fFne8JPF57n4WUvexluu+02/PVf/3Vy/bbbbsOb3vQm4z1HHnkkfvzjH2eu3XrrrVi5cuV2aarqmJiYwKOPPopXvepVOxyHxS6EIE0z78ImtizrTtD0uNKZswmm6/o1EydN+Q+ZpanykImAzJ9kWCUDKgcOfefalCE9YdN7LB58Pd+H57oolFzUwuwGsSRcZZSmV5zp0dTLnWZDjcWu76UW6fpObysCnfUV/x9W1bhtLL+oHukkVZLZejg5jsvyMhuS8NXHVQmTnry+xwGY90R0MA9T9alWGviybPyWmwL5fJZU19OU5ZL5SCSMdGfcTETXm0e23qVxgD5PCsPUgIDRcHwHmjccmLSYCm73IbKZCDt27zzM8K6w50ASciQTpewFoMhD3VKWxCC1tKV+trQcZ7xSI1taAMsw8pvQrYd1ORcAGUJaQlqZU5qDUiG0Omea9Xo9seqWZWd5pKSJTnZKq2nP89DZ2ZnIfegyG5JMpbY7LZqr1Woi8UGL7fb2duTz+YQkZt6k9bskDEna+74Pz/OSzQPT5oVuBc3y0ZpeEtFjY2OYmJjIWI1LslcS7RMTE6hWqxlZF6Yr72GdtBsWeLRQlw5JGV5aobMvUTueddZoNJLNDNlPaJVPwp31qG+qhGGIarWa2cQhec6TBiTZ2WdknUordqnNb9I/57fcRGFa8ls6kWU768+SyRp9T4Ql0S1mDFoR0qaVbqzFjCAAZTUTC/KenkRuYuXKbHTUP+f/0mCHxrYLly5V/zzwgPp+7DEUKxWly9zbnawhKxWgu7eUJQtcFxBEMdPg4jRj6cUViKsWyQDg9VbU9eeeU2S6zKwk08Mw9do5NIRCSf1U5JRgcCglHWVBmXEATqmEgu9jcbkMlAPlgDLWyKSFGBecxaCRFRl3XcXIuq6q75hwbbheIlGS4zoNAKrZbDBMGKYOp7q6PPilbjh9fUAYYswtiipQsiQ8IFAue0n19fSoawMDWeKfltBy8Z05qu6mTubY7bhw5QJa+k6VGunkEHQLNxOPkmlzqM2MIPAQBOkeCde8XV2StykozVha9gMJob1lyMHAQLYrZdKLiQ8HQHfJR1+fItPnzEn10Eli9/SoRwkVn5WbZooMPK2VuEru6VH9JShiZJP6iacdWP/sFjr30tmZRkMtdIZlHdIo3nVV+K4uAAOVZhJd9sdtrbxnGIm+o0fCp4tzzz0X7373u7Fy5UoceeSRuP766/H000/jzDPPBAB87GMfwzPPPIObb74ZAHDmmWfiC1/4As4991ycfvrpuPfee3HDDTfgG9/4RhJnrVbDI488kvz9zDPP4KGHHkIQBFi6dCkA4LzzzsMb3vAGLF68GBs3bsSll16K4eFhnHbaadtZAotdCvHMyccxeQybWD4vM1TKd6d8jKXVMTe4M1y8FrXkBZN3vKYn4SAmF2NyWm7IyvTVNQc+HT/KDLd692xr804Pq8dhYoz5zTwjq+9u3C3QKyX+mPTDpc62KQtIag2g3IdOLgc9sXSISDMh+yvsC05S3zp42qujI7tHwTFCYvZskVZVZZZbMl7gx/GlGw0k1CmbJqdOJtk7fnTLc9PUi+Df8qAgr5s2KUzDk5TRbwVTlxkfb3YEW63SV4uHYk9Pahkhd6dlovFA7cZTyXo9K1ejl5cbFvqJAtYn606Xg5H3m3Ti+ZuMU15juBl0iMyO3TsRu5REv+6663Dddddh7dq1AIDly5fjggsuSHRtoijCxRdfjOuvvx7PPfccjjjiCFxzzTVYvnx5EsfExATOO+88fOMb38D4+DiOO+44XHvtteilmGILXHvttbjyyiuxYcMGLF++HFdffXVmt2I6af+lIMltaektCT/HcRIik2QgSULKjpBAliR6q78BGPXKmQedLNWdMvIj46PlsU4auq6LQqEA13UTfXE6DSW5TgKZRDbrQEpv8Hcg3XQwWSHn83lEUYSuri7U6/VE5sQkrUGS10TYTk5OwvO8xHtwFEWJI1TqqOsbCbqFsnTO2Uob22SFToJ4eHg4Y1FOeRqp/a1bTIdhiFqthvHxcYyMjCTEM4AmK3oJSaJLS3Nd8oVh29rako0Fxsn6kOS5TvhLEluS8LJtSI5T+53gRovJEl1uJknHpexD7Lu6rI5Mn/UodeKlE1fWh+43QPa/VjJKuwoXXXQRLr744sw16QTkhX4XWmJ85mGPGbslqSVn0KZVnZxxk9jz/XSNsKZf6XK/6lVYXymiB8Bidz0QBBhGMdFiphY0Fw4k0MkRh+VulHu6UcADirUdHAQeegh42cvQe9LrMTSkLoUhsGXIge8XUfBrCeunL7SyBluOWgzHgcZCD2E1JYf36etTGeOGgCDam7ypSSFzZp4rmE2bFFsqvTzyw8QoRN3Tk1iOO52d8Do60E1L8t5eFWawkl1B0aQoCDBWXoyREeDx+7I8exCkJwHKZXWN5Cit+kdH06jI3ZbKiwGoKqBESC6nsr1mTbpoJFFeLqvNEWrb9/TEpxKoGVJpYcHsunBKJUVQxO1VmO0n+r6VStYyUtc9l+XQrbMyC0G9Q8SyLrNmpVqkUocdUPGFIVDULPq3DDnoX506CZX5SpKRGjfx6n1hEAAlF319hSS9SiVNU51SUA1R89UJBfgFuAHg9y6Gs6KWrb8gQANOppuRQO/tVdJI8zti52Y95YxmcrkMLFigwnZX18crbheoIEmjWC6jVu5OnfcOij5uYilM5m2SuZBMyXZgV47dbdi+xfX2znDe/va3Y/PmzbjkkkuwYcMGrFixArfccgv23ntvAMCGDRvw9NNPJ+GXLFmCW265Beeccw6uueYaLFy4EJ///Odx6qmnJmHWr1+Pww47LPn/qquuwlVXXYWjjz4ad955JwCgv78f73jHOzA4OIi5c+di1apVuO+++5J0Zzr2mLE7fpZIkPJxayLR4+fVFY+o3N8FUtJcvj/5OzdSdf+I8pOclqqOZcdFPWOuC5RKcFw3caoog5EQ5fvcdQvqNgPZmWzI8mb5txyjmYjcndZ9XUg5NLm7oFuJknnWmV4OorKc8cDglEpqzhEEQEyoMzty2tBqj0CH3PQtlbxMm+unwQAVRt/sTbIT/+2gkTqR1HdkXDfV9zYhLrcXfxD4CIJsObWumCmLTp7rQ0WmnUVfB5qdaMv+xN8JqefP+OWGsildk8NZXaKf9c5nZnQUGB930NFRhBsU4ZbmJXUMZJ9XyhpyDpH47tEfUCZe8s0W7vKewAfKfrKBw59knct5MaNh3egnEVoN+duCHbtfHGP3LiXRe3t78W//9m/JLsJXvvIVvOlNb8L//u//Yvny5fj0pz+Nz3zmM7jpppuw//7749JLL8UJJ5yAxx9/HF3xedWzzz4bP/7xj/HNb34Tc+bMwYc//GGccsop+N3vfme0nAWAb33rWzj77LNx7bXX4hWveAW+9KUv4aSTTsIjjzyCxYvVAmk6af8loespm+RGdFkOILWqzuVyCUEoydT29vaEQJVEK8lL6YxShtEhLX0lGSnDyvaQsikkzUlA61bd0tJ+cnIysZ4m0cqySRJd5kvXY6eFe0dHB3K5XFIXUv6GeSTJTqK5VqtldN6lI1OpO88y+L7fRMpL0lC3eNbrydQHSJZPTEygUqmgVqsl+ZBta7LEl/IrExMTGB8fT+Jj3fB7OlI8JMFJ6ldpYSbqiPUt+wblW6SMDutGngQw1Ymse35Yt3IjgfkDUpKaz4u+eaFbv/Me3XpcWqHzb5NVugwvNwOmIst3JZG+fPly3H777cn/sr53t3ehxa7HHjN2y5WpXD2bTHkkfF+ZJ/k+giAmTTdtAjZvRs0v4qFfAccfD3j/+7/AggXwV7wUQErMUsaCDhblupvk6CFA6lxxcBBob4dz5JEolboxMJAuAnwf8HuUE60GnCaHUNVqVpPcI7Hq+xiJfZfSJ6fvOyiX5ylSl0wxiVTJloZh6i1SegQdGlJMwDPPZK+zYJUKsGGDykippFZwJNHJqObzwNy5qQUTLd7lqo2r4FIJ/f2qeh54ILUGJzdPQyiuu2QdVyrCqi3IrpeBVBeVhtiVSho/q6OnByhgDEABmzaptDzUlINSOmiVhLLsZ9IMTPzm+D68IIAriN/2diEZFBeiu1SC63oYGlJ5lVE3QWcnwhBdXYpEn5jI7EkkXMvkJBAEHpzAxXDFwfgm1axsdu6xsIkyaentFW+cOG5s1RgEKAaBsuqrhBkihocgsotXD67rpcRHJZsMdYk7O2PnvEEDeOCx5OHiZgUAdLsuustxQ//qV6ow3G2hKH9PD7ylS9X93Plq9X5o2rVA6xX3dpLowIt77D7rrLNw1llnGX+76aabmq4dffTRePDBB1vG19fXt81N+29+85vblceZhj1l7G7AyRBykqzk747rJi8JReI5ycZ1K/AADJDVVOarQUqWSSLWcxvqvc9NZRPrLohmx3XhCut4OW7LoUJ+S7S3S5os1S9nnL4P5aSZ47JkDeUgSE/PFe2lSsjKlUwjM6YfAeKH8waGd13AzW7cyvFYOrhmnTOs/JbRy0NL8h4pA9eqrTMOxWWm9HkGkD2apL/j5TGEOEEnlsJxAy+pOraxbEudPGd0Gek60Rm8eI4nNw3k/gj3QuRthE6gAymxnjlBUUnb3wESWR/46saxqpN0GX2vhpCH15hePp/2V93pdyKFKCQM9flKMh+V+oiyjVgZQkqGknSFzD0uEOv96+8MEv3SoajMwvbCjt0pZurYvUvdyb7hDW/AySefjP333x/7778/PvWpTyEIAtx3332IoghXX301/uVf/gVvfvObsWLFCnzlK1/B2NgYvv71rwMAtm7dihtuuAH//u//juOPPx6HHXYYvvrVr+IPf/hDpmPq+MxnPoP3ve99eP/7348DDzwQV199NRYtWoTrrrsOAKaV9l8aps7TipjTZTikVa9J+1nXM5f361IgrfIj49HlUGQeTUShDK9rhJtkNaQuubT81SVcgGZLdJlP3ZJffqQ+tyyvTF/mQ9fF1nXVc7lcQlBLS32ZBtvURF7rdaBbRNMiW1pDm6RcJJEu61CXwGnlPFPWkawP2Ra6ZbYu2aH3RVkPOoHeql0k5OYRNzRk2+inJvT0dR12vZ/qfZ3pyDqV7b+tOtwd4bouenp6ks/cuXMBvPDvwlYbPVN9LHY97Ng9DcQTdJekdLwCpmUwgFS7IkYYpjIi0ppIrhO4oMws4LhqqVYzlknTtZKRi3P9aHMYZsn8ajUtmyQ3G66HWuig4Xpo+IXsypAsw/h4uiCXH5ra0zuqdBipO5DcujVrZt3qbG6cN7kJwehYZab6kdcmJ5vrn/HJjQh5ndlJFsRxoIkJYfml3yDrRze7kwnLBbyhu2XiDcOWpPl0VENcN7uA1++R/UX2EX1vpCX0CpXEjb75IhqI9S6rTXYVvUvItk0W5ww0MtLcDvwMDandI+5CVCrZB0EyPfpD26pC5Xer37cTu2rsdnbgY7HrsaeN3VM9kiYZD9N9HAcI+agyHN9LlHiZMm3T+30ag7WJN5RDg3wvTkxkP0aLZJOJMZAd9PQXbqt3davP6Gh20DW9a7Uym6pE5r/VsKkbHPBTr6fTENN0YZsVvq1K38GPg4ax+iV0PthIoOt/G4qhb8JMp9tJq3N9bmFsw2o1M2/QwXbQpzOyv8p2nrLu9YaWnUDOH1rl15T/+LOtoThr/b/jsGP3zMeOzdpeAExOTuI73/kORkdHceSRR+LJJ5/EwMAATjzxxCRMPp/H0UcfjXvuuQdnnHEGfve736Fer2fCLFy4ECtWrMA999yD1772tU3p1Go1/O53v8P555+fuX7iiSfinnvuAYBppW3CxMQEJrjNB2B4eHjHKkNDK/Jal5iQFuTbikcS1tz9Mul2S8tgXpfyHCQ1+RstjnVyWMJEDkvSk/+3+l0vqyRL5eYBLc9lusy31DrXLSd0AlVazFPrPZfLJTI51DX3fR/5fD6jcS5JekrtTEUGSuLVtJFBS2t+dPJaktjUS5dW6nodSamcVnVgyp++mUDozkFb6YubrPGl1bbUktfTBdRzXKvVmjYMdNkXaVEv80OpolYbNkyf7Q+kJyEkaW9yXCr7XitZIRN2NkE8MjKSeQfl83nk6S5dw5/+9CcsXLgQ+XweRxxxBC677DLss88+O/wunC62lxjfnrCXX345vv/97+Oxxx5DR0cHjjrqKFxxxRU44IADWt5z55134thjj226/uijj2LZsmXTTntPwh47duszbX0VEv+eTLh9H8jnUQwa6OuLrYVi0WWvOoxyuZg4NKQlb7WaamaHYWpg3dGBrOA2rWviBUSppCQvOjtTC3MEgZHU5DUTsUpLJBp9J5bV1DQXdaAvxgrSBAxQqyMp5E3TMi5wyILqJkrSuyS/83lVuFaLI+FItFxeiDBUVc28uW5aL4zCdbMa4AzHJKkuI8so12ft7Vllm44O9Zvnpg5GczlkNh4ylSf6TNKm+jUR3nWbHeG5rqesC+P73DgaOtGUOq9J1FVRIHYypL9TA5jasLLZeRsXxqwD9iXZfOUy4FW2pIy3bGNWrF4gvfxhiPZ2L3OJXchk5M22am9P81Fw45MAQOvVPpA2+sREKgbPvFIsPQyb+2ur8ujl0upahp8JY/cLratq8cJjTxq7dYvSBpwmMsxkwGraQJwOdN7PdYUzZn1s1DakuSktSeD/n73/D5Isq+4D8U+/evXqZdar7Oya7O6cpmZUM/QMDQx48AwLIyOJWEZgab22JXmttS1CRCDCBD9sNEKyZdkrVqGFtQNLeEMrsXgJEMHKcqwR8o/FCBT28EOAvzAwAQMaRCNKMzUzNdM109ndWVVZma+yv3/c97nv807eV1Xd9Mx0TeeJyMrKzPfuPffc+95993PO/Rx12tbpaX8LiToDhnlUzhm8Z1GvRqNM0MwI3jwv523bSFXAKsE5W+lfONlyAu33kbRjIE18HhlWxyLUFnxusXiyUmpzLvLPQKIO50Kea/OHjBEBsSQwtbxkaqu6e/1eCLkRNc8lcWyLThGANK3uUtMpiTa0dSjjjk51aYpJlF37XB+G4hhJOkaWubu95mmxp4Uen21x/jkiSxClmORUsQVqI4DJhzk+vISOkc+h7tR7hXW+aVumc/e1Jc86iP6Nb3wDd911FwaDAbIsw8c//nG86EUv8hPr8ePHK8cfP34cf/EXfwEAWFtbQ5IkOHLkyMQx5BWysr6+jp2dnWC5PIfvu9Udkve85z0THEdXUiyYWneMUmSEzgdK4JK0Kdvb2zh06FAFxCa/NalOFHRnZDU5pgF40FLBbdKGqBC4VACefO7D4dD/riCm0pAQuFSA0zoACJwqB7tSdQBlIta5uTko/YmNKgbgwfM0TdFsNtFsNtFoNNBoNLCwsIA4jtFqtTA7O4v5+XlP5UKwVvW0+mqUO+2toDfBcoK2o9EIW1tbHkgmYE6qG/Kdb2xsVPjACSiTboQc4UqBE4qEV91CelFfja7nOFCnSl2kdmj7p0a4cyzSgXDx4sVK8tQQ7ziASvS/7gKwkee77cbQqH1G16vTRvuKwvJsv9bJ0xVl/aIXvajy+Vd/9Vfxrne9a+K4V7ziFfjIRz6CW2+9FY8//jh+/dd/HT/4gz+Ib37zm5d9L9yvPJ0g+mc+8xm89a1vxctf/nLkeY5f+ZVfwWtf+1p861vfwrzNDGTk29/+Nlqtlv/MCIGplHLNzN2hBVAdgK4RLQqU5nm5t3t1Fa94Wddti73tNnfO6dNotttYXr4ZcewwxtVVF7hFEJfSbhegdrrsvihoYtDt+m2uJ5aLRUGxBXuIRTy6VuXL5P8hlZvFj6TIIICcrP45PFfM1lZlkcjtwpxOmu2200dXUnUAo0abkx6D2911AV6SnbrvqPz6ujPWk086/Todl7y118OJO9tot5uO/rpbBijpDt6zZ6sLWGWKYVVHj1Z5QFdXSyz47Fn3XuSLrexUH6fNCu66OYjc9mHLJc/vQlvDeZwsHNOsutCkudrtlgdrCKLT1+K5RX1kmRkAIkk8BtJy+cTz4oLPVWkPuKFidrZ0VrDLl5YcFtNcf8gZ7ezZkrPo+uur14mGoNnVdwHkNBoliMIAcAVU1NGhucuOHi3ssLpaLqaVp0eV5ji76aYSQIrjktQ+dknqKsn0FHmgwfgeul8o6qPf42DM3dOF+MGVa2XutqCzv/dB+JWLHwmMKTf0bn6wvXxkmvSZ96emArHq0db7RzHZhihMbHuoJ2k/9Lc6ffR/TjNp6p51E/Xiq4eY3+lnG9qsyKzew5n9m4rNzJTnbm2V5RbHJ2mKxSzDuJ144PzIkbIa9b1r+9SUgDwnifARzHJ953kZBa1978rWO5eby5ttcTiw7+w8Ghp8VvK8oO2ZfDYLJbesOGO0Hv7PpOxxwcGexmhlbq7iGLL2YxF0Kqhdmum42uf06mi91lHAPmyX3O86RJTySMe2FqlTP2lh0jRxz5Q8Qe2tF4RNDlPkR4kGm2EvFM+D8LEPymGr07MeQ7HX4nTuvrbkWQfRX/CCF+D+++9Hr9fDxz72Mfzsz/4sPvOZz/jfQ1Qle3EH7+eY/ZR7qXX/8i//Mu655x7/+fz587jhhht21WO/ooBcKBrdHmuPsYAeI6LTNPVgMgFWnq/gIQCf9DOKIh993Wg0KhHNBCYJrg70DlmIgvEEPJmYktHe5BenQ8BGWbMtCpQr6G4TU/J7rZPJVkejEeI4BnmtbZQ1dUqSxAPoCwsLaDabmJ+fx+HDh5EkCbIsQxzHyLLMR6uzHRZUtfXwewvQjsdjDAYDWM5tcpBvb297O49GI/T7fWxubqLf7+Ps2bM4dKjkjLegPnnbWQ9FbWfHnerFuvk7E8ESPNfIb6VYsWOWADdfNlkpE6my3eSA5zgI8Z1TByZ3VX20LyjqLFB6G7aTCW05ni3YruVoBDrbbq8/rU8B+ysJpH/rW9/C8573PP+5zhvOhFIA8JKXvAR33XUXnv/85+N3f/d38cpXvrKiL2U/99j9yNMJon/yk5+sfP7Qhz6EY8eO4b777sMP//AP73rusWPH0LZP4FOpyDUzd9sH7rpVqi4yNCKGvxOJXlkBHnwQuO02PIoTONHZBD73OaDRwMm7HYj+n/8z8N3vOkCS4OtoVEb0OhD9pEMolctifb1cAHP1nufIb/vv8PDDVZ5Wis1xlmVAM3Vt9HyUa2vuwAcecCAk21dwM47jpLLuBoBut4WIbS4WmkwKySh7roGyNtA56doVPfitkmBcw6a4upubc6tqKj8aAQ8/7Gzw3e+WGTyJmrfbaHY6uPPOEz4PK3OXsv4nnywx1ZkZT2ePTqeIvB8MgJUegIIHNI7R6dyIwcBh9+fOuWSVBNF1AczhwH50NDKR4/yWCKjNuIX1daDTaaGZPlVd5dKGwp8e5UMwGn1np0xwBwBZ1kQMBxg1U6AZF2XZBbAduwrm5HmZZFae46I0RZomFXU47Oks4NiZmwOOHymS2n7lG65vSNezvOxAdAWzSdGj15UB0tN2y/9kt6dTOGw4JrtdV120/oTTwRlpYvFfAbbjGCDveaHTZudGfONrbti7a7HpgDEF2i2YHhIO/ppjDsLcPV2IH1y5FubuELjqLzd7w5DrkJfwaOTu47tFBId+02KZi4HTVHwkcVG1QBhET1NsDiLkg1o2q0pbCHqG+KxVH3UuEsi0QKqTCECCublFzLLMdqlehUrEAqshwJ30bQqyU7T9s7Ol47ywQ1SA6eikGHeTyn3e+iBCQp90CJgN2YnzF5vHnCdqQ97ml5aaiNOymWnaQtppOceM2oKVaWcE/uc8rodacwWnC2uUGo+CA9Rdh7YWStDbJt310dYelB9MGt06Cew8TUMWdSYeZAfQTn0QAg9lEfyf1wqFO/rSFMizBGmaIOnE1XEnc+9YEvLmOTBYY/ua5fVi/Bq5GUuDQblxsmIX0xfKkc5nvuncfW3Jsw6iJ0niE5zceeed+PKXv4x/9a/+Ff7RP/pHAJx3+vrrr/fHP/HEE9470+12MRwOcfbs2YpX/IknnsAP/uAPBuvrdDqYmZmZ8JjbcveqOyS7bdu4ElIXsaoX1m6AnKVnoRC41IhiyzcOwIORBF9nZ2fRaDQq4CT1GI1GHpTX5J6sT18KzM7OzvrPCoyHotB3k9jMNiFucUZgz87OVgDjELc6o5lnZ2d9lHmj0UCz2USWZUiSBPPz84jjGGmaQulc1P7aZzaa3kbCK1hN6hLagBHojI7m/1tbW+j3+zh//jzOnj3rHR60x8WLF71ujBinvdSmIfoVGx3OujXym4D93NxchR4lxBvPeqgL+4H9rjsQWNfm5malvRYY584COmK0v1iH6qOifWI575k0VZ1CIaog/m/H/LMhCwsLlWjq/cr8/Dxe8pKX4Dvf+Q7+5t/8mwAu/V64X7lcEN1u2d3PvffcuXMAgMXFxT3rednLXobBYIAXvehF+Kf/9J8GKV6udbmm5m5dXYU+24WGAoM8juj1yooDok+exMoa0H1lE9EjjwBpila8iU6niY0Nd5hbsLl3LujabRch9PiZCNvbTbTbTWTdE4hWHyqzOlIHhiff5oBijZCmano4UCxgUhQRRcVihRlPqft118HvuY7jibU04P5vyvb0IRKsrLj6vvOdMnqZwD0dBrff/iJHuXH6dBmVzVULV/Osm1kmez3XwNVVd97WFjw3TgHGN+MYN3bbfsHKNXueuwWzJtFiBHoTmyWYz7DzwnjZ0o2I4zKa6vDhMpGZxaZJcwKUYHfrSOoXgMM8wtqqqwoAbuxmZecAk9QuxViL05LSRQO0ONwS5NVyVDFd/E6iKdXoNvM769V+H42qjDtpWkSyrRZj55FHyoSyvZ4LB6Qo8Ex9rE7F50Dgm98Uwc8aJMnfot5TpQcljsuLIQCk+638DKsvdnisrpbOraUl5yRocoeAlqPPn3VAfchJUHx3EObuQ8XrUo6fytUh19TcXYgHvWqARvMvgBJIv1TRS1zv/Zxnq4kMXcVDJMgH1YTVFhu14K9GDde1z9GJRZU8phYHV301cNzWG8eRnz/n5xM3Z7YlYlkzgep7CEznO0PAqYA6JAuDMRGnB2TTGGjHE1HB3CkGFDsN+gPX/rRZfsd6ctewsSSRVFsw/QVFMX7GBrB5ZJZL0wRJiskxxgp2ca7aaYLC/lAd4ziqtjzkWbDPq9aDEMd+x1qVGM6UWQfU18zPlTqoj9CwRAT04xhII0/XwyI0+Wmo+DwH2u1mSY1EEL14jur3yjI4JLe2SlpEPpoD1R0cKgrihwB0K1GRxhiYzt3Xmlx1DgZSNdx0003odrv49Kc/7X8bDof4zGc+4yfqO+64A7Ozs5VjHnvsMTzwwAO1k3mSJLjjjjsq5wDApz/9aX/Ofup+tuVywbkQaKUJSkNUHkp3YekvlBrDcl9b0Fr/D/FkAwgCjwri6m8hG9iI37pzVafd2qVc2ratlve7LqmqtXNdf4SikhW0trznocSWCvwqcL1fbu79jqvQGNLxEqJLqTt3tzpDEd82sWdIbL8pWK+/WSA8RF9TN3YOUuLQS5Ht7W386Z/+Ka6//vqn/V5or8/9vADghhtuwOHDh/3rPe95z5713HPPPXjVq16F2267rfa466+/Hh/4wAfwsY99DH/wB3+AF7zgBXjNa16Dz372s993W5/rMp279yFx7J7QCx6KCaxQPtgFrF3MK6XFYIDJBZp52reLcX2v1TVUQJ6XYToB0eRRWpECrpqf0a63L1wAhkgq/LAVpEDBdK72a3TxCon+5AjdCxyJY+y5kLSLXkbuh9bKc3Nhe2s0mC/aLni1sl0khD1PLHqDB+2zYIL3RhVVkXb1XKq6/T9Ut+3XUMG7CLtfi5idrfZvpS9DelgAoBAHplc7WU/1w243AP0ZlGdy7p65jNdUrk55rs/dtZfhLvfBvS5dGym8H6ncdvZ5b1fcOSSXe4sJ3QLpfOQtUnOC6/zNOZy/M6G4n5f13d6gd5urL0V5lOClBzHzvPI/Xwpy2vlQQdK6achUW3mkAKo7oiqF7VboJXTcJY81O9db8Dv0vf2tTi5nwIUA9+K7EA3RvqowB/E5KpRA1VR56XLZJ+5fpnP3wZRn9gnPyD/5J/8EP/ZjP4YbbrgBFy5cwO///u/j3nvvxSc/+UkcOnQI73jHO/Dud78bt9xyC2655Ra8+93vRrPZxN/9u38XAHD48GG88Y1vxC/8wi/guuuuw+LiIt75znfiJS95Ce6++25fz2te8xr8xE/8BN72trcBAO655x68/vWvx5133om77roLH/jAB/DQQw/hzW9+MwDsq+5nUkLANiOVGfHK7xU4BEqQSiOGAUAjk0Pc1IzMVqCy0Wh4r78CkKFkmAryslxGl6serGNmZmYCMA0BzPq/trsOmLX1UUctj7QrGgWv1Cmzs7NYWFjA3NyctwGTijLyWkF1W5fVSyPvWQ8jqzURKDnHyX1uqUyU5oTlMIqeUeYKGFNI36MR3uQat2PNAsgKSHMMabJOcqCTK1/HK8F9/ayiuxeoEyPuNXKcbSJFi+U9175h1L3tF20fryGlcWHf66sOSA/lH6hzBtU5Pi41IvtKyjvf+U78j//j/4gbb7wRTzzxBH79138d58+fx8/+7M8+7ffCy41Ef/jhhyve/r0ikd72trfh61//Oj7/+c/vetwLXvCCSuLRu+66Cw8//DDe+9737kkBcy3JNTV3W/Q5BALq/0qqyc88ZzBwocjnzgGDAfLcBcaeKLZvIk2R5p7OG8vLZXQzo3xdcE80UTWyzIXH6g/F4m19vaqO4oKdziRH+LiI3CprQlWJ664Dnvc8oNvFMG7i7FkXFM7oH8Dp31pqu/KKLbw0haWUoS40z+wssEieUU0mxT3a3W7ZoJIMvAwz6naBU6ecnjfc4H7rdrE5iLCxUQW99V1tkOcoI99UycKAEcZI08ir1WgUkW557iO7kiwtI+MwxjCPSv71otwIY8Rx5OlP4tjZSxOEDuG2szfJCZOWiedCdvSU6lmCKDNIv45fJfyUbdj+OEVO5LsojtFMU3Q6iQ/S52nb26590WCzGuq4sOAGGwnal5fd/1mGTTSBvODR5yBh3+tgiUuu4DguNxvwtKWl6iVKdqNuF0BPkG8eRO+NOmZQ6E6b8CIdDLB06kacPCn0MP3z1Z0Seq2zDnvPuILA+rM5d0+3hB9MuZbm7l3Bc16bxYEhkI0An/HDBm+lMzMTRVbKUPH5FIoDyVmd5+Ucqr5H1UHrZW7Osr1uB42KpczYrQ1sB3W27yp6XiXCXguO4+oWtZCRQ6A7/zeUW0oFgsBjWBRy/KsRLFVYoWOWuaTuMzNAK3MAfJYl3ilMthnrB2B1St82jBPEaVIC+dbTHmhLXpiHUdmWJohjS4upPJvs5owJAcCheSkkttz9gMm7oeHmWSpJY2RZ5CnlSVloH7nJ184E6Z7fXLY+RgCSNMWRI5H/CSinZH3Wsxv71Cz8XrvONuFKYOrTufu5Ic8qiP7444/j9a9/PR577DEcPnwYL33pS/HJT34SP/qjPwoA+KVf+iVsbW3hLW95C86ePYtXvOIV+NSnPoWFgocTAH7zN38TcRzjb//tv42trS285jWvwYc//OEKaPjd734X6yTBBPDTP/3TePLJJ/Frv/ZreOyxx3DbbbfhE5/4BH7gB37AH7Ofup9Jsfzeyg3O79M0nQBzCQYSoFSua+WGJogdxzHm5uZw8eJFn3yPQKhSlBCYJZBNkDFEk8HklcoxruD3oUMlr7lGGytoWhelzTL03dpN26kgM9vRbDYroDPLIrA6MzODRqPhwfRGo4H5+XkPqJM6JOQgsBHYSoVCEFyBco08JzC+sbGB7e1tbGxseDoTJtVUUN46Liw/ubaLZRCE3ypmbwu4h0Q55RWkJkc+7RUCrgnW2ySh2hZLW6P2YjlJknhdqAOphprNpueAZ9ttNLxto9qPjgX2jXKz10ldbgJL4aPfax8/m7Qvq6ur+Dt/5+9gfX0dR48exStf+Up86Utf8vfDp/NeeLkgeqvV2veWube//e34D//hP+Czn/0slggyXoK88pWvxEc/+tFLPu+5LNfU3F3HbRl6AlcQvVh1DXPHM5rwyb7X8xQheV5QNJ/8YfdwXzzs3367xxcrOTXjuApY6tpmM26hefvtlbrPDxJsbQGr33Vfc2u5qk7/E29vOztOPeKXJaeloJa33OJA6m7XM8g8+WSVwnx+Hh4c1kUL+cGzzGGTbA+j0MmesriUVXm6i0xhm2jiwfsBIEG3ezPSNrC4tOQKO3XKvbfbDuVMU4y7JxyDyGoZ7U6KFaY9sIsqv2jNZGFvV3WDAbKsiXbbtbndRjWsHgCyzC3si++STgdHjx4rjV+UGwGYm0v8ItFVFSFHE/mg5JBvtyOkaQujs9WFtuITxIT5fZpGSLNWdat/7LbCK5d52i6Sy8XFnKXG0v/puIhjNNttNNMU2VLLM+/0+wXuTZ5+LnQV6e52gU4H59HC1pbzKQHA4cNNNBpNpJnTY5iXNAQcV6TDmZ+vOpiiwWaZNLSQVrsNdFNgXUIo9frkNRnHXid/jWq7V1eBrS000xQ/+MpT7vO9p8s+JOBDo5v+rQwuPUfHVp7vTsAckGdz7p4uxA+mXCtzdxwjDGQaBGwcJ7WgmAXMeLtQdhKVubmSB52m0MtcVcjz6g4k+uJ4v2MCSJXZ2WoTmJtT83aqEITXBI4hWmstX9uu7/Z/nXO2t4s5PHXPOmm6iDgGEtJhaaVWigcb9oO+Br1JTJ560L7VXUiRm79sQQqmB/SIBgN0u8ecE3xlFchzLJ48ifP9yIHq/T7QSdFuV8fKzEx1x1Oel0nKXbLQxPfB7Kxbs6ozRFls1KbW/pwauIuu0NrRooQ60zoP7AC0x6voscDkw5E4AfYqTk+xuwMAuGciAAmAZgxH03OkPGmMqHqeztnWaMU8TtqfZurasZiJEf2LdqrqmxTBCSw2jk0D49gHPei9hXshLkWmc/dzQw5dfDbRm+e4nD9/HocPH/6+y1G+aEaBEzgk33Oapj6xZZqmlUSSjUYDqUQchTirCWYpQK4R1hQLYPM7AqIEO3m+Rl0PBoOJJIxACdySv3tmZgbz8/MeAFXOdoKaLFd1sjoqiK0A7c7OjrcTgfHZ2dkJLnONdqeOyn+epinm5uYwPz9fsakCtypqC4LhmiB0e3u7EplMW54/fx6DwQDnzp3D+fPnPQCuwD/bt7W15SPWNzc3J5J88iH30KFDnuObXOpAmWyVnPfaT7Y9mjyTIHaz2UQcxxMg+sbGBgaDAba3tzEYDDAcDrGxsREEym1UuNbF7+m4YAQ8gXu+Kye6vZYA+HMpTBpKvWgTRqErRc5uEqKfsTsLdIfB1tZWxaFwJeXhhx++LND4mRDeG//kT/4EWSgstUb6/T7+yl/5Kzh37tyeIPrFixfx9re/HR//+Mdx77334pZbbrksXf/W3/pbeOqpp/Bf/st/uazzp3LwhOPz3Pe+h1aSlKEsumgBys+WWJwP9e02nkpPII6B1tqfOYT4k58E7r8feOc78YnBf49ez4GkWQb81b9aJmYEShxvZsZFOm9tAY8/XmKS8/PlwncwKOmeeUmdPu3wQC7cbrnFAfQqjLodxk2PH/Z6ZUB3Mx27RKj9fsm5/spX4qnOrd4fwJ90fbS0BBw/7pJ0MvhYgQJSrTNKnvgmE6f+8KvG5Y95DnS7eKqfYHUV+NKXXHmHD7vopOVlF3TOxKnMscq6RiNUItDj2Nnu6NESn6cNdZF79GiRjJJ88ECZIXRpCeOs5fuv2wVa639edoQCx/QWMEJeFmuMqtqMW1hbc3oxmRbtRcdCiN1Gh6BGsrXbpcOE44GPgYr1Sy437ydJUyDpP4UKMs6BwQKVbmdpCWi38fiZCI884jYpHH/862HQ4s478a3TDlygvuRAtcUqb732y+ysy/nZwvlqQt3vfc8VxoIXFsoOJkBuM5dRXvhCDJduRjI4X47zM2fcwOHn5z/f7Wx4+GHg2992Cp86VV4sGomp3iMK7w8K6POcfh+rjz2GG+6880DM3V8DcCnL+QsAXgbsa+6eylQuV/zcffYsWs3mZHipcXIN42YQf1RR3mZGJVs+8dCuIN6feW+1HMxKPWFBdFteHFcd6kB5f2e5LE/bUsd7rmIjzS2OGhLrK7TvWoa2m3VTT9WPbVa7aF065+mcxinJO1TzYTWfCkV3DamBmJQlz908n+fAbbe57/iQwkQpaYpNhMeMbtrS30JjKuQcsO1k+/Q7TSbL77gDzu4Yq8y/oUpsZfxsHjIYNa+7Izhn2+B+LUb9y3z3yVf32qFggxdCngZ7rIrOvSGkP9Ruk+zdn7PbxVDYZ3V1FT/wAzdM5+5rTPa4TU7lapAQiGn5oUlLYWlfNOqVn/V8PYeANYF6vjNyXClDNKLYRtYS3CZISeBWk0Za0FtpMXbjQubx2o46qhdtr41y1t+YfLLZbFZoQPQ8AvIE3vkiGBuKdlZKGaub2pG0JRqRrVHKBNi3trawsbHhQXT2lQL2Gr1PgF353NUe3KFg+0wdCNpvLFedH3oO7UE6F61PnRM8n31Bihq+hyKzQ4k76VgiiK5UMtYZou3WsR4qP0Tnov1ZJ3ZcWv1DiWVDyVavJbncSPT9yFvf+lb83u/9Hv79v//3WFhY8EmtDh8+jEajAQD45V/+ZTzyyCP4yEc+AgB43/veh+XlZbz4xS/GcDjERz/6UXzsYx/Dxz72sUto1VSeUxJ6yNcHaxuuZhbrfsHK72Rxl+cOl7z/frc+e/Wri0XR+hM+cjlutyoLkpUVt4Ah8EshkB3Hbu03GrljCYhz0VmJSKYCee6ixgoaF0Yz+2axrQxb73SwtuYixzVoVxfoBGcZPQdU+bJ1raZrPtY9seUdiQesCdgfPlwCzr1eWf72dglGsJmM7OM6iXqkKVwiUwBIq9FieS6R+PxSFndRPkSaJiVeygYwO1wcV3cfpKlXLC/qSorGxwZzJd+sBkar3ebmymRZ1JVtpy114W3HymBQ5mXV9SMx3YSF6oJXw9xVIb+9oVWCCNaxVAAQj64n+MY3qmCQBRQ4XhUHUWyapkWvANAfftg15JFHqoORWzmWl8uGqf7muh4Miv5Wx8HGRukEYeUPP+w8VJ2O3/FQkb3uFxS7WA+hLVepTKPZpnLVC6+pPRBhiyvuJruldqjD6LRcBbB5r+ZtVssOgdQEni2+SLHc3BZHZf0KtNu5wQLglBBoHMImbXvtY5IF81XnENuKLdcyZun3E1JnDOvMBEqvbfE85LdUcR7gcVkGZCXdnc6/IXtrOykzM2W7Q2OOQHmoj5U6hpKEBho/2wJ2G7gBbwh3rPEZSvPZAOVzlR2vDPzQR8c0LXTVQc652kaXBzvUtKHuQgDCg8nOw6Eoe5Z3KUD6AZPp3H3l5LkzKq5xISinoKECzBaEtqJc17slzNTobHt+SKc6XfW30Ll7lacgpC0vFO2u4L1GZe8nKSjPVfvouSGQPCR1yUFDSULr2mc5y+vspMB/HbBbJ1pmHdBsj6mLUrf67AWa7gWSsp66RK9qk9BOgJBO1LcOzLZ5B/aSOmqXUL3XujydIPrv/M7vAABe/epXV77/0Ic+hDe84Q0AXEKshx56yP82HA7xzne+E4888ggajQZe/OIX4//7//4//PiP//i+653Kc1D2A27t50Gb5ZhQMC4w+JzvAcw49qckGCKOHeVHKJ9m3UKZvKl+K/A+2qIL6zEiR0lCRJwhSIXYRXKIPzW0tuN7aFE8cXBxANc4PKfRqEb5WWGXqK14fuFH29/aiApqIcXCL06TEnSoi+rSfdjFu28Wy2lX13R2a706HRiRqLawQIsKt4JrU2zZlNGo0IOFE1wIGdicTGB8YgzIMQoQWAeALbKubybGsvZLdc/7ZMGhkNG6Y9XI5Ny3C/jdJASk1w32A7ZIny7Ep/JcFIuhcU7bb3JHi8fxs9KPqD+WdaifNqQHy6ijbrkcmUi+HBDVQ29ddY8RdT7C0Hmzs9X5ytZVd7tV2+55G97rnmsjj0PHme9CfWN1pISeiexn7QfmbN9tHrRc+JXKQ22tA4d366xdxFalzxb7Kmavg3YbjCFF9jp2Ny/PfnV6Dsl07r5ycu2MmgMsCsDpuwULLeUEP49GIx8NrpHAmoyRACRpTRhZrMfzHAKVGqlsqT0UvKXOGgnOyHMLXltQ1EZZM0J7PB5jOBxWwGgtgwA3o7EJgBOcnp2dRbPZ9HQ3TIppgXHal983Gg0kSeIpdJQihRHL5KoPgfvk17Z0LoxGV3uR9oPtY/+ovdg+9rlGujORK8F0tYW2jXYCAI3gZj/qToWQ6HhQznl1XLCd7LsQ0Kz16E4CHa9KHWM536m72seOP+u8IXDOaH/2D+1lx64di9q3+q712nelJpoC6k+f7MeuH/7whyuff+mXfgm/9Eu/9DRpNJUDK6GVka7y9GW+m+UaTbevyirquuuAu+5ywCijyW/uugiocdrE6oPumOZsH0me40XLGRDH2MwTH72m0Vx2vbCwULJZVJiT7AqteM8yR2MClEFCi6QwEXoVYow2cRPXNUrNwe/It705KJNqkRudQgx0MACSMpMqkniMLIvQ7bqd1kBZNttGE9uIPeoTx5M0J3GMkgfT4KtJPC6NQNSdDfM850Cn03LblFkggVprdEkM6ssvaFIiAIuyvSBtNyvB3nnudFcAXXFhjeQjEB5aY+pnOmT02J0dF0gfH2khzlqIZBu7J78loMzvizaSin6xPa6CE6LIwoKjewFKQIljR3PDaq5obQdN7LlvtSPj2IXG9XqlriS/Z+E02He+U4YJAsBg4PTIUbYLcMdwezZ53hcWHJ+MTTBglVVOWpYVkl29SFOZylQuWfIcSJLJ7809KTeXKFANgtXbOcXvhDHV1QG9NbTSnibGOk/VCW65v23Z/M46T61jUv2NNjFmXUAu67eRxix/LyBd31mOZdnQl9LmhOpUOhvrUOZnTxeiJ6unWaOe7bY0oExarg825Ngrzk3iMeKs4MVGyQ+uKTeUtkaDoUP2s9PDbgC6nl9K5NqucxYPCBlcxT4kBCrmvzpuaMoQLXvduAJMUIbqpM/N9qQ6Y4QqsGKTAdRdpNRpL8MHJCpY0ady7cn0ie2AyH4AdAKUBIsVQAXgQUGNpCZQThCSvNb8TYFGJhKN49iDgKxbE4MSBLUgI8HDwWCAnZ0dT/+h4LmlBVHRMvI890A0dSFXfBzHvg1M/Ml3BdnJoU0wnCA6bcQ2Kb/8wsIC5ubmPJjOPtFElMqhbW1AkHZra8vzYpMzW6lY1ElA8JmAcZIkE0lXAVQSkiooTzA9SZIJoJq7C8gdTiBak6XSHruB6BQ6EJj4lGNE6WtoHx3LLFvr0+hvguPkrZ+bm/P9pbQudDTUgejUhzZXnn3S6VAPjkNtg1IWkeLI7j7Qa1UpW3T80kFyrYPoT2ck+lSm8rQIF2G6urarQfnOP7OT5oMSuyjz6693POV57mhd1taApaUmEjhK5tOn3fnH8zUH4n3vewCA5o/+KPL0mGev2NoqMUGl/swyB1recEMVzx0jAuLELbxkYcV15YULjn89jgF0W8g6LSTpit9zbsGBCxeqfNak5Miygld9MADWHFreLMDH1nKGYR55GlJd321tAWmaIElLmy9mMdrtxHOsWyDhzBmX4FSBWQaCX3+9W3AfPQpE/fOelzzPS+oXxVT9F6QlsaThp097Qvhkaan8TRuxtITNPEGTRikQfJ+Eikkr14q+JdCbpojabbTbx5Dnbl0fx8LPLmMIWYYkTZG3W55Ch32/245o9nW7XeXU5Xbtc+cI3LeQZS20ltNy3EuS0GEeIYHjZI16T2Gx3wd6ebVyWSA38/N44Qtb3tY7O6X9Sc/jtn2PAUTewUIdPe5Bj0kcl6T7tCmJ+inXX+8dGk/1E7SXgGhtzTWWKMdg4NrB8ui1iGNsZsdw4ULB8/6Vrziv1vOf78oOhQ3y3mBBdLVHCDkJRftfpTKNZpvKVS11gGHxPswjIJ/42t1nBRAbFwClAtF09GrkrQKH+p2mRgjdBiyGGLotBNSfALnrTBCqU8vgy0a523drzom5UiQE0tt2aTl8qbPC1mcBeeZXpG2jvAhC02AFnmAnQtJztdvlvZ6Tp5KtE2inh560Lr2eA4ILiQqFm3HsEmTGMZBWlSavuNrATg+kRtH5WEX7WSnnWIZLZgrEcYI4lWc780xaKwEAmYk0gWrKD/u+206Nid0ToQvCPkuHBrtF5+tAb1XOku7roNcHJfMwyWc0fy8IDUat7xKTgj+bMp27r5xMQfQDJCGeaAUKCbSSr9wCk/xOI4UVsCY4OT8/70FXoARECaITsNZEkAQ8CTjyf40AVsCSYKuNkLaR0JZyQ0F0JoKkHmwDk6wSRJ+dncX8/HwlKSsdBpY7XHnZWb+C6FmW+Sj02dlZr8/Fixc9IK4JKTURpSaVZBJRfrZUMixPo5bJga79qcAubWRBdAXA6UAgiM12sy8IQF9KJDp1YR9rokxLkaK8+nYc1wHp/I6ODgLoyoGues7IQpRJadVWtBEj0NlX5JlnuzU6n+ezH/hZAXTr6LJ5CyyQfq3zoQNTEH0qB0jsalIf9BXQM8f45/LBoMxuKQ/hnQ7QevD/B2QZ+v0X+RyGi3GMJ590WO3x4wC21x3J+b33ujJe8hLEJ4/5tcH2dgmCEmdl1PXRo8CJ7riy4uK/FT7N3NHGJPkAWGjhu98t1x7tNnAzOaEHg8raA3CLWuKOytc9N4eSp3ptrQJOIo6RxDGWl2/E2bMll3kcl2BunCXuIb4oIxoM0NKEYYJUHOmcwLlzrm6yzhDE6HbhkkaeXnOL6E4H0fIy4jjxi1fA4JjUW+tptx1w3Os5AJy/tdsYdk4AMZB03NePn03w5JPA0tKiA6HTFJsDN88106I/Hn64JK+fny+3DgwGaJ5qu6d0Js5cWXGeAq5KmRCt3Ua25BI+EZi2W8RDa7y5OZf4lU0geM7cqMy55vJnLqLZ6ZQgepbhodUI/T6wvJygidydtLJSJtq0i+Q8B3o9tNLCKdF2DgUdr5p4bGHhmG8Hx1MFRM/z0jmRphjGTQeCkXuex3Q6GLcXceYM8N3vOpPdaiPhJNnnJppADMQdx/H+x590Q/ctP3fKgehHj7qEonSCqOiin4NZgXXr+TmgIPqh4nUpx09lKs+YKJAWADMtgFkB0AUwi+CcuYqhWRoSi/lxF41GTZfllQB9HEcTuObc3N54nL1NhID0XfwH/kU9eW9N06p+qlwSx0BaBRgtkErxwDbLGgyAvjO43xtQKJTw/zTGuF3dObCbD9In0+wHUF090YKkQPmAlGV4dD1BliVopcUaOnPzaNQ/7x98hkiQxOfLLXNMsB16JuRgMOBuVDzrQN6bWdVDkmVRxZYW/6ZoX4f47Uu/bgQgcaC6Hdu7gemqQKF7HLvI+6QGNbRjQv+3zqE4joC0WTo+gCqfoQWsDcjN4IfBAH4nSRXET4qNgwmydtO1W5/Rq8q4gAqBiqvVR94GQa8UT9iPPa8Smc7dV06mIPpzRJSrXAE7ApEK/hE8VcoUBZc1GhkogVkLoipQD0wmpVSAzNJZ8KV628SoIU5rBSRt8ke2S6OC2Q6Cr3Ec++j7UFJQPV/txONJ+8L34XDoj7eJMgmQUxRYJ4iuUfRKRaKR7BbwtpQnQNVRorbi/xqFzfMtz3rIFrZf9hqDrFej8XWchDjsVUL846oX7WT7UW3Ac6xuVkcbFW5pgWhru6tCd3eEymc76+yj1+e1LlMQfSoHUjR0jJ/1N/N/HMM95TNzmEiaAnhgBeh0sLX1okoOKwY/7ewUHy5cgA/b7vcncDgKt0UT85yfR3XhF1cXbxNt6/c9gKgYn7ZZT1MwXQH0OC6i0rji0RB5iYBPul00Gkllm3yeMxpdOOKZ8LFIEuwPLkDdpFtGTfFnvhIMyyRhZ89KyHZSSfJlAWhvgAINIQiTFIAwAW/kue+3pIhmO7fmuqzfB7JusxIM5cve3nbOFQ09m5kpKWPiuKQROXOm3B6Qps5ARfKzJB4jTV3blXO1LkIsjl0/kWLHOXwSvx60ST17PbiIei4648RvrhgMgCaB7TNnqsbXClmw7HuP0hRpkWQ1yoeVRGNpp3q6+EsceKKL4LSJs4V/YZFOGtaVZej3nZmZH7QiJlsgaZIAd87qqrvsNvMETY4F9jvHolWU/attD4mCLqEF+lUqM8XrUo6fylSebbFTdvCSMyCeRuOqhHA1P+dJ2RNUDwactHroVMCy9D5uObV3iwIOAdA6N+tnD7KqkXT+KxobFQUlcRmpz8ODYK3uyqlTLk0RpajYvlnMt5Xy6IwMAa5A+D4r4CuAMoo8TdFbc9Nta8F95yns0hIEH/Ql2CAEltdFO2sb1dA6mYlEaYqYOhZjTp/BZmerZiS8EGryaFSOkzLwO6pE0FdstsfcE4zIls8sl3biuAjpxu8StZNTsLSfjjtjN010apPpshg+x9GZkKjNzfw8zKMJoF/LqhM/Ng+YTOfuKycH54ntGhcF4CylS+jYEL0Ez7FUMHWAdQiwsscRrIzj2FPJWD0saD8zM+OjrxWAPnTokI9gJsisEc6sj6Apo7JnZmaQ53kFLJ+dna1Q1WibrLMhZI86+1tqDuWht5HGfFFCFC+h+jQ6uQ40DPWp5ZHXyG7b7xrxHirHUqHUiR2Xyvmt0drq4NAxoXoyQt4C/CHufuVbV1spvZHaU8dSqM27tV0dN3q+HltnL7VJqP5rXaYg+lSuatnZAXbZgVORmrAhv6jc3nYvEkdnGdKBrKPyHEePukhgAEC7jdFj8nuaOtRT99TCgdZZ5hZNpO3Wrc7+/Dqgrvhuc+AWbIvtcpGhO5pd9C98FlRdzCkmbrlMBwMAnbQMadbVChdLBYCr4LWWlaQBvUPZ2VBtoq53x6SuIeVKEb2suk4kvRzkE1uHfTcLPQsNVAHH4xhpWkYjRoNNxGnTHzPMIyQsg9zp8/OuE+mFkLI86s3O4J52AfeVEx2YXGRrURS/EIxjIK9SwebSfN/mQiI4jnqg2AE/KCqhTjre1HEiAAalstg2K2+O6Ykd13YcQbeNG7BCxkWpQvEFCdhp16LfdDyzi+MY1X4JgU3W2NrI3VbkIUDoKpbplvCpHFSxfu6JyzKEjpuf7aEUzmET96oaBQikG1a1iXJDCbv30i0kWqYF32tBVi1Yfh/vdlVrA/a694VAZ1t+yOh7NRaYjELn+cUN3X/NeYL/WpBbP9tnKTq8+b++2+NDL7Y3TsRkk7sU9pvcFpikUPHPoYFn1KBHyfSDN7eA/P64QF9EGFccLIFiw7LPvo3j+msijstnuf1WfrnD6yDKdO6+cvIcHSLPPdkNRFcwz4LEFjC0QGsIYFWuc5Zp6yPNCQFtRqAnSQJG92q0tXJyz87OVkBVHkual0OHDuHChQsVihXWNTMzgyzLcPHiRTQaDU+RQvCVkfQLCwsgtQvPA0pubgVsmZjSgqIK/hIIHY1GPlpaE4IyMeX29jY2Nzf9d8r/HQJaFbi1YLPdNaC0OewDm2CU9lfKEtZDIJrvqg/7XBPJWiBfdQyB1OokYJ/ojogQwM1+YVuSQCIgpWlRHn3qMTJPFmpP1lcH6isHvjodSAMDoOIMYb/wWDpq+L3uPGDbaQuWUwfoX4syBdGnclXLYFCuRnRFo0/XitQyEonHxHGZnHJlxb1uv90lKjx5EifbBc1KUdedr3Y/DQbAQ3kLGxtlLkqkHRf2SxqJNEWCIY4fjXH0qKPEaDRcdA4pOnhuowG/mLTbbvv9CKORC3Du9YCTJyOcaGeI45Jq2ufHfACOyqLdRu/BEkfmMXleBnvTBM4cCbJsEa2TJ6tRWxLqTBCBXNxkMHF4d4SWgpc2qk1sHxeUHuwy2bmNLFtE++QiouVlDJFgfa3apUePKp1IUSbD+YtFtI8MW1523y0tORoXmAfqwQDtttNlMRsCK6uI2m2k7WOeLiVNm1i8807X6ao0UF2EE8FdWir5yMnfWnw+c6aksLFmIhg+NzeJBbjFYlREvrni5udLXIAR6f0+MOwecxH9RWT8jZ0M6MYlV2yauoSb1C0EnhRj0G+xznMkaVxsE48rTqIoHyLLEq9XHAsNjthpiATIlfM/9X2gMjfnTHj4MIDH49KWcQycPInzeRMZgObgKV921m1ieVl42m2Uu/S3N7YFkCwHbB2oNuVVncpUroxsb0842ggG2ktUL1Wf+HAX0Ut6NCojXoHqLiyguGcM8uo1b54jSPWRpPEEMB3CPEOfgertYy9/HWV7u6R14VzgKEAAxAnitP7curI5n1SUUC9BCKwNUGqUib4jc0qCKIvrldHv09RFGmvAQrfraVo4Z2zmbu3ZTJksNAEy912WAchRzb2huttnwABAHnr+yvOiXKo9qJooz8PAuTUj3yfpXNzLjcHCmDpP2bYYBwAjtHVnVimR1OPmX9ZHgJ3vngImz8v2Wi9RCMWuGfTN4jqxh4XsUgaplMV4vvOiP+Iac7BM62iZkAOGtk/n7isnB6vnr1FR0NJGTod4qi0Xs4qNVLaULhRGhrN+io0eTos7FI8lSLi9vQ0mIN3e3q7wiytIr6CjRvsS7CRommUZFhcXkSQJDh8+XIkwV3CZuijfuYKqymtNQJzHWQ5wBVvpCGDySfJnk75lOBxia2sLw+EQFy5cwPb2tv9M/cjRrkkwd4uqthHb1N+CvQCQJAl2dnYqSUeVdxuAtwWBX6B0fliHiY4j7R/bR1qPOjQ0St+OPQv806mi9g5FhiuFDZ0IOsaVP90C/iHwn+23PPH6IgiuDgnWodcLQXaOFbUL6WI4FmxC0WsZGJ6C6FO5qmVjYzIqGKhfPOlWVB5DTpbTp93r534OX8dLcXwE3LrswFUe13rgC2h1Oviz/FZ8+ctuMdTtFgsBckz3em7lS97nXg9Rv4/FTgfZqRMYDEo6F13Qj4Wqg5Lnjo3iwgXHFU1miu6rmgAc4JjEYwf+rw48kHs+b2JtzeVXXFpy52SZq3d9vWT0oA79vluoLy8vopEBrXizylk9GKDdbnnTEmQGSqaNbLmJSO08GpUh99IHGhTG9lFKXLq0RZqWToKo91RJnTIYOJsvLVXAl37PlXA+O4H09hNYWwNWv+Kw1VOnioVjwf/aSodoZTHwYNH3y8uIO8cAOL1GI+Do0Rsx/wM3+r5qYtP9qOOIodCMos8yjNNmZdg9+WQ1/ymBbwqDrZ1TwunJRbKzuwM+FjP3xfGjLvne6dOlY2RlBeh2E8dJr3wvrLTbxbh7onIJ6dZr4lp5Dhw+HOH4kbh0pgAYpo5CqCWc5p1OUtolz13SUgUr0tTnhGvGjmN1HCfI0wRJWgLdceycS0eOFNQ+54qOX1rCOGthbc2Z/dQpoPngg075TgdRluHFLz7h8JN+fxJEpwFlLCswNAGosF9D/KxTEH0qU7kyEgDoAj5uD1QypweBdMRJhaqB9Bpy29GivfCS91G/g7x6I7aTsEFCI0PxkRQFEojUqGALHupOLqWYDplFv+etaGOjtIsCsqF2hnDDKvAoXNKqlDnBz62DsG5KS6L1EOy3bXPVJf5z3nPtK6k9gKf6Cfr9pDInrq0553Ezd3PaIF1Er+emiCTfBNIU51E+o1QVgnc26GOftqW/PgmQV3Wux5TrhOdajnyOwSQuxmB/UE+Bw/81oSrcODt7tkz8bU+lfjxtfr5M/J0QlQ4h3Dz5UgaUnl+8e8dTDM/VT71VKhHzpsxhXlIpWUy/VsQApcOoRv+rVKZz95WTg9Pr17goqFdH00GxXNgaSayAZCginecr1UqIfkT5qRUQJXhKgFGjxAnMEzTd3t72SUsJ9g4GA+zs7GAwGCDPczCBJwC0221EUYQsy5AkCdI09SAw9awDSxXUJQDOqGwFptU2NqqfILHagSA6o+kJnm9tbWFzcxPb29seuJ+dnfW2sYk7Q5QjoV0HChQDZSQ3AfK5uTmvNwF1pcJRTnGNvlZgPASoq2ND3/VFh0nIGUJAnPUzgakm8rT213FF0WS2O2bBWRfxb51QtFtoF4Dyuevn4XA4QZtDu2tdNkJfk8mGkolOQeGpDaZyFQsXHhY0t0KUkAiwLhLIB7q66pJInjqF338X8Df+BnD83EqJFg8GLmlhmmLwylvx7W+7YOeTJ4uFfXvRLUhvuaWsg2hzkY00KRYWrYYuPgCkGTYH1Sg8LhrW193r9GlXzPOeR47rMZJ+r4yi39oCbroJ6HSwvu5AVWHA8FHDQJk/lXXxWFJjnDrVRJJWHQ1pp0odsr5e4rOzs+5/z42uUVUmIZXFJXu9qi5Kyc1I+na7WIj2em41zYM6HTx+xt3rlRqF5ZISe3XV9dOLTo2rq2euPtfWXN+nKaJTp5DniY+0f+QRdzj1eN7zmjjO8H5KllWA/F6vGu2v7eR3/b6zoS52+Tu5x+P2YiWYOolRMVgCIMturDQlTeFAdI67CxeA6693FSwtYWWltKuC571e+f9g4Jwvx4/Glf7M4xa2toDWkbIDs3ah79p69dqTgdzvFe0cOLBqkLp2LVpAKh5XBxaAp/IW1h4sbXryJMpkoYXD4vipNo4caQK9QdkwRRY4Fm0InHDIVzpLB6QOqhBv8FUqh3Bpi+tpcrKpPKNi5+5CLCjLRMwWmN4LEwtgcgAEuLTONQUB7fWvBYVQb6XRimOQN9ueWid7Ael1jgD9je822rlOB3VIRAY0tdHYfFkaMgp3WBEwruvDULt5W01T50CNMMb6eoTVVfd8dfRodT7FoQHQ72PQXvQpT5LBAOO06R3y5Y6nSWGSV9vdDG5Qu+021kL2t0Bv6LwKHR0r5oufQ8+wnKeK3/K8nKv5OGRz5MRx2SZAfMZZASzXzWvqWN4NTL+UgUsnVN2gLOqa2AkQqNI+Q5Zg+bh6kJZ9wJKCT+fuKyNTEP0AyW7Am41ID0WhA1X6EP0uJKHEhxoNbCOGWS6BYgXqCaRb2hSth4DjaDTyIDrbZYHgOI59olAFfZVWRIFoAq4hyo39RsNq2dRfAeQ6TnQeQ9tYzm+K9q/VR+lJbMS29oXdZUAngP3NHqNOA5u0VOtUEFgTw9pksXa3AZ0ddL6o/jZxKfvY7o6gvXXXgdWNn210f2gsq93UvqFIdnVe6VjW3Ro6LlSvOsfIVKaR6FO5yiUUsQOEw8D2KqfIbLiZJ1hddUAzZvtV0LXX8w/jxDK5MMnzIirNkzOjXKAwKtgCeRSz6uMagFHeXCD1+2W0MIDqD8L5OTB4Jqk5ohTI86SyVlM1GBGW5yZRFybXUqoX9UzsAXyX/+O0uqZR/wYDnPv90iSM2p+otGhAKHFVnjvseHu7TBzq14khAGVry3W4TyybTKxtKe02gG41jJAAer/vimBCT8BF+qu9SdmioISaS3WMMEYu0VgVnYuxFGdV0+S5tJGehK0tXzGDLlkf7acA+kSeOVFuZweVwRDlwyrSYqU41usFafssJlfIOjALeh7twzxH1UlTeCSSdlxF2kL6WCQuoGct4rWf+8hVJNNotqkcNOElNhrtD3hOAseE5qnK9xYw3887/w/dOwL3GdJQ7CW7Rdfa+cH+VleeJt7W+d3O9Sqk77J0LXy3APpuOtfJbnirNaHOuw4YjcqpWQ725xT/2F0Mti61t41E5/y3s+OeQ9T2oWh7K7v1Zejc2iSxdfNoiRZPfKV5t+1my13jS+rqqxsoITS77hl8r/lyHx6xiWfYy5il6u4TV7NM5+4rJwes66digUEFlRgVq++kKdFoX+UpZyJPCqPJQwCmBQ5tRLwVBUgVFOVLgX+NIlaAfG5uDmma+s+Ws1vB0ZCDQNtGAJZUKvo9qVpGo5Gvg3YmbYsC+Gwz+d/5Iu2H5XFnJDr7xEaWE3jXPrbAr905wGOtQ8RGm7Nc0rioDnwR9A6Bzxp1fvGiS/KqjgqNDLdj4+LFi5WIexVL4cL69Z1l2X625ajUjceQhAB3W07oWrBR79Z5ECon1PZrXaYg+lQOjOgTt4YF8X9LhmrPK0KNm/EQy8uJo0FZ7bnfu90SjIQDeJeX3VbiWj0YBq7AOlc4/CwgLH8K7KiusE5wi3Mlgo51SQJNsoskg/MOgSwoSJaWXurBXqXviGO35Zfb5pGllcrVTHFcRoYxEn0wAJo0CEPCeHAgeVij4Ras5Gon/fX8fHXb+sKC+21hAcB2Wp5QhK/pwjnPXdV57g67/nr3/7lz7vdhHiFhyHeel5FdCwvlfuc8r0T66XBiHeO0WUkCxqBnjbjjYpznsapGo2ynDk/2q+d3LQaC1cVL4WXIspIKdjRy5WJdOmswcO0q0A8dkjpcaSs6MTodlFHhhZI8dnMQoclK2Rf8X21btMFfmv7ZlwlJS+M4JpakXBCSLmb5GPLcqX/2bAFusA9pnCzDEIlz4tBLQKPZjIAhsUCCBRcOGIAOTBfiU7nKRecFwHMoW8BR6Ur0PuhzNoj4KFc5kLQllXqBKiAZira1CDTf9wGi26rqvtvZqQd8tVide4DJOUGTNO5Wp8Usde5MzHe664xO7Sxz9+Bez/3OKYCbw5aWgMX2GOf7EdbW3PHMKfPQaoR+31HMMTcM86tU9Mxz0IlNBRjZ755LMu8M3toqgXXqCVTntt3wYe3i0LhTuzExvLVvKC+qDXoODbmJHQC78fvoqzBMkqZot5PKpsetrUkaI91sRQf+BIC/mweAv+92jYTKsQ9QIYOYsm0+oLrTQkUrtRPF+BwOjEzn7isnB7D7r21hFC5BV02UScCWYCmpUAiaElwnlQojpZmAc25urpK4EqgmI7UUJCyLelEUeLx48SLm5uYm6FTIFc1IcoKQrIuc5s1mE41GA61WC41GwyeeVKqVUHQ720qAlPUQvFfQl3Qsg8BWWm17FEXY2try9iVFDe24tbXlAeZDhw554J8yMzODZrNZoQOxSSdVQuB4aDeCRlCz/3d2dpCmaSVCmnrzpZHkak+lr9FoektLwvPVzqqHjlkdT9RZAWeC7SHOfvaDjUDXcaBla7LSuih0tV+IXkWvAfahcr3rzgj+xnfaS0F4u4tgCgY7mYLoU7mqRdFNDWHWyG5drCt4bUOMu133eXUVd999M27tngfuPe34U1796hK0GwywvAzcfffkItcnKCtQ4U00HdhIUmjypjAZZnEsg8k7HaCZnwfiGJtoYna2BFfn593ryJGCG5wnAWV5S0t4qufAiOVl98KDD7pV7pe+BMQxXvSOJcTxojfB+rpjg5mZcUDq3JxT63w/QosgbJbhwgV3zPJyWXWv55JAttvFlmssYvnkIqJez+lDwngThU86EQVzjx93WDZpVC5ccIvsTqdYiJMDnf1U6HXmO+48mvmBB9xC/w1vAI5v/Dmy22/moVhfB2ZmIiwsJOBCfTQCji8tOTqXwjvQXMqQplFwXUuKmJmZCI2Gi+pfX/fqTKxHyS6S526Rq76Vo0erIPtiuunGkGxvaCIH4tTzg/pVYdHnLQzxl28DhkV7WukQ+PagHNNUuui0w4ePuTG0+hAQx2h3HU9/EwUP/rKjyDm+sAl85UGny6lTQJYh77niHDtRguVlYJHbHtjo9XXX0BtuqKA9oxGAI5kH8p1eMdDpYBPlVvxF6lsA+AmAG9tt5N1jePjhYocIx0BhzPN5E+trwM1x7gZzu129xlim3hMo7ED7vTq9WMaUE30qU7kyUmRHHu9BfcJ7ZTM1oLlulwmhbcVNhnzIlXqKm+4YkdtJo1LnOLOhy/Z+Igi3T4zogb0oCMJayhXbFOtYn3jeCAjr5O4oVc+aiybMMiDJyrktTYETHbfDqNdr4swZ4IUvBJL1R7HQPoFvfrN4Vuk9CgwGGAxuxuoqcNttAL70JbTuvBNfWnHzA+6/34Hcnf8Oa2vu+aHZexRZ94QH0bkTjTRmeS40Zv0+0mzRU8Ztxi3E7RbWH3B5RgiiDwZuCm80Jqc9oOTV1/m46K6Kk4KPhUp5xumBz2HcscVjdsOLVayDJE0lAatNFsOD6aEfDITTxim+2O0C7dT39dmz1QAE+xzip2PrJNZBUtOQCS5zW0nI6RQa3Gbw2uvfYvtANRHqfqPKq+M/2tfOkKtFpnP3lZMpiH7ARMFNgukawT07O4s0TaHR3Br5TVCRgDGjspWOREFjBTUVoI/juELpQWCcYGooUSmjmJMk8ecw+Sgj4hkh3Ww2MTs7iyzLMD8/j/n5eQ+iaxS3pSexyUE1Ynw8HkOjs7e3t70ttA2aCJTH0x5Jkng7EJgnuDoYDPxngugWhGfbCZ7bKHagBHDZNxp9T0oYBaCt80DBWwWQqQ/LI9e3reU/DAABAABJREFU8qDzXNZB3nq1F3neCYDqGLNOFktDY3cfAKi0T50fIWcNf9PrITQO2HbWYemOeK5GouuYol4K3rOP2G9WF45zBeUVRK+LeL+WZQqiT+WqFrvi5CLDUqpoUiYFdfWJ/XnPc+ecPo0fvj0D7v2SQ2Q7Hfy3ryXY2Unwg7ffDqyvI1r5c7woBYZLN+P0aYnuEWB+E02srAAvOrVUAvwSvj2OE0SDTSCOceECfJIsrK4CWYa4eyOAMjfnwoJ7HT6MMtyaK7mlJSDL8NBq5HlCT54EWv1HXRtOnwY++lG3krz9dtx6991+RfVnpyOsrLjF59KSW8g+fjZBrwe0ltveMXFuzdW9iKeAdoqHr3PJTY8ccXqfPu3w+jNngFfcchIA8PhoEdt94MZugWCnKZBXF64eHFlZAb7bw42dDtBpY3jyGE6fdpFrOH0aAPBU51b0esDN3a4rL8vw5JPOPidPOlW/8hW3mP7FXwTw7/4zFn/sx7C0dDOAMh8oF5qPPeYWxMdfueQ8COLoSNPFynpPfTXkGSXIvrZW8ojrIp1+Gw5DRqAvLLj/PRUKV/trPd+YIRK3i4COl2yxMu430cSFs8Dx7YeA06eRtNtIul1grV8uxpeWXEWnT/uErEeWit0JKytAHCNKUzTTtDTcLbfg+PIy8MCKA0C6XeDOO/FUL/Jb3FdWXF8DwGLaq0akkZD/6FEgLcH/nR0H9MdpMe6L63KMCGsrbtjHMbCYFsZ6+GHXOY89BjQaWPprP4kvfanwGy0tlUbOMqyuuvNvPpkD3/mOQ2qYUZfG107RF+8bCgLQ07ELqHC1y3QhPpWrWtpt5/jrhzm+Kf4+qckXgaoT2aLMllYtjhFlDjS3nMtxnCAucoVUolkVJK/wgcl3FqWW+0WeAwn4OfH+N95WWFwrG1fLEYdz099TXbuZxDRIfq16AIiyzB1ftCVOm54azcYdzMwALQHRsww40c6Bfh+9XhOPPAK87GUA7j+N5is7WF1NnMnXHnD85Ms3Y2UFiNafAP74j4GlJZw+faN7Vvlvn3f2+KsORG/GQ+CBBxDFMfK83GWU5/AKjUaLZa7XXs/tHiuSja+ulnMu2cqQ5z41zMKC8/kSk9ZuYrQ57R/HLmiAu8NII6SR9pweRiM3tzPSntNyK96szh2DfHLeKPqNuyKqjGxFAtY4QdKWccyXfVblswI7ME3BFK7HOx2Mlxcru+Q2cze2/XNWLuOE5dSB3SK2Sd5RxLLsux5sbSGiTgu9jKiCtmXix13mZ70cOcYOikzn7isnB+upbSqVSHQCfASWZmdnPYiuQK+C4SyD4CLBeALwBG95HMXShBAM1shcC8TaZJ2MziU4Sd0UXORvjUYDaZqi1Wphfn6+QulCkFcBTwXRFcAnQDszM1OJFiYoOh6PPXi+ubnpo613dnZ8O6nroUOH/OckSXyCVNqB5fBY3QVAQFwj7zVpJYF0G/lvdwRQLP+2HhOis6Hu1slAMJ50NZZfnu3K8xzkqbfOhrm5OT9m2HZLf2JpWyyHue5C0DETAtFtmTbS3ZZTB7zW8aRr/UpHozzvpO1RwJ3HaIS+ljOVqUzlgIk+7HO1E+JD4YsguvIu8/3oUXf82hrw5S8D3/iGW7FtbeGb33SHPf/5LRxfKgDH1dVicXfMnWci13o9hydWIroZkR7HLvq3qH9np4zGqkQboVx0E9dbWMBElspxexFnzpT4ZadTLO5WVz3iuf7wwxgDOPbAA2U21DhGp3OrNxMj3HdwAv1+SX+yOXB0M4cPw5WZpjhy5FZsb5eB//2+w2pnZoCXvcwBvitfczhop5M4oDaOgbzsimiwCZxeLU+m8u02kpMn0W7f6Lrl2w797sW3YmUFuPmVbe+IuHChiKSLx4jjCA8+6Joc9c8D993nQOG/dDPOnSvzUVKefNJVeX6QuD7iorXfx8yMA9E5VfL/jY0qKw9xY0dHMhnpRhCdi/mFhWJBy2xpSgAr0fr9PrCI3B0Tx0BWHdM8/Xjec44SjdCnc6WwJVZX/fcJhmWC1jguAenTp92LHAMcO3DjgJfWzIw79YEHHFiBdtEwNrzXc56UYmWsC1mqlRTtHWct71taXy+cSCnKa7nX86vf5O67kecusSlOdirtZPJdLOfA449XQ/y1cnakSp67bQ9KJqxbEOoW7VOZylQuW4Z5hLxfApcWROelFuXDiTwY/nrmTVXp0ngvUieYeDMVg9dLu6gNcVzkAwndJ/jO+vV/FqrPH34iSCrtIT1JHKOK8gIlsq33nFA7bZh6Xbh6oUOEMXZ2qnAbb7Oco0Yjefwo6uCmoDiGc2zefjt6vYJuZWUF6PUw6BYMbtwK1uthbe1Gl3D0wQeBPEd+d3GPpsN8eRl8dvJmKurc2Sn9I/wujhNsbZUMY5we8twVkBe3fgVL1c9CoJZCh/DsbDmPK9gax+4ZopmmYLaXNAXQ6yFrL/pHuUoGcVZa4+Bg9HaeRxPDyUXKR64+HVPap/TgP/lkmbxG56rBAJGOyTR1FHvqnNFxok4n+x2FOsv0WcWuo3ogvcbxbLn3bbX+WlEAvU4/C6TL57qcAlO5dmTqYDjAEoriVE7qEM2Jnksg1772ipYNRXpr3aFj9f9QxHjod8ujvltbbPtDn209KhpRfikvazvbbu0Hy2eu+lse8jq715Vh23YpL6vzbvqprWxS1u8XKA71LWUvwHs/iUPr2rdfvUIR8JY7fiqXJnbs7+c1lak86xKKrNntM7/jnuGNjUoGLa5JtrdRXdjahY485IcWBxNf+EWVLP4CCwUFGOIYE7/z/MqiQRXIc+RwQUgVQGIwCJoiqDuKSC7zg/pjB4PSbNRpov2F+Kg/XfQNBm6RWJCdWm5RX3WhdB2myYU1y+S2ebtw5WtrC5MRyjWi0VJ1dtJioiL+0balcqJ9rzuuTrgKt8fVhXiGjldgiP0QqFv7N6jWLivXyjlynezZtkIv34S6SDmtYJc+nDiRjeJFuNfC/QBIdBmvS5Xf/u3fxk033YQ0TXHHHXfgc5/73K7Hf+Yzn8Edd9yBNE1x88034/3vf3/l929+85v4qZ/6KSwvL+PQoUN43/ved0XqncrVJyHQrPbAumvQ3tDtOXUV7vK1zi/7P6G+/H1JqMy9XqH6d5sQvw/9/KnFfdIXNxr5+729/1bu81bf3dDNwLxvdanr3r2GSUgmnq0CJ1emUCnMH1839napODRdVz7XKaRJV7Q+zS5qjbHbw8rVLJf7PHTAZTp3XznZ51PgVJ5tqQP+dgMGFfwLcZnbSN88zzEzM+MjtEnZorQlSicDlPQVobrJ4a1Rz4zQZgQzE24SZGZ0epZlmJub8xQuGlEfirhmdDkj6zViHwAYKT8YDDAYDCoUKvoKgeMW2A4lylTaEAv4Ky85y1QOdI101/MtlUwIsNbdBZbfnNHSNuGn8rmzHEbqs22MLCflTihpKHcQqB14HMu1UdlqO9uf2i7rUNCxFwJTNfKc5TMaXvtBdw5QbFkhHWyd1Fl3X2ieAj1Xk5CyzeqQuJZlSucylatadJFBrgwbiQ6EwW7dP8qQpV7PRfQypLjdBmZn0e06THFuztRd1O8jknz4lDt2fr6I8lo3gHshjuoiqeDa3LKdxGPPyw24KF0fqMwPUh8Q4FhlBtQ8R/dzn3PnzM9XdGmlQ3S7idOziCbuny71aRYK+N3xRUh8WvzLqLE4dqbrdIpIawDdrou4amLTh401swzk+E6UHJ386Z2Oz4q60XNtWlxedtH7607ncZwgarcBuKDj4l+kKfDiFxcRzQwNz3MsppuIO47blYHW2qZz54Cjt73UU/JsookNF0Dn6XQOH3Z1kUPWBPphMHDVzc+XgY/z85BOc9FsvR4wSCNk7WPVJKcM+UPZFvTK3QvJ4Hx5XBwjaxdryUHqCOVpiDyvKDhGhIhZZrPM2Y6fOWDYecwpoGMcQIIh5ucTbGxU+zpNUSYvZTuYMbYwTpqVEex+bHq+4jGyLPJpAtptlM4pGp7Zb9fXcfvti2i3i/5P4cMSs2yxmmw3jstrhFH4Kjbcld+F0Jt9OleuNnm6t4T/23/7b/GOd7wDv/3bv42/8lf+Cv6v/+v/wo/92I/hW9/6Fm688caJ47/3ve/hx3/8x/GmN70JH/3oR/Enf/IneMtb3oKjR4/ip37qpwAAm5ubuPnmm/E//U//E37+53/+itQ7latT7OWkvi9ewnEMYCAnqGhCDRtJG7q+BwNEce6izAEkWYxhHoUv6X4ABFUkNfR9nY55jrxfqjZEglyClSvPISzDOj+VdoO/10Wiqy4so9i1ZW9vNCGfaxoNR5+2sFC2vd0uaN4w9vbudotdaUePAo0GZmaKObfddtuT2u1yGjl1Csjzchpst12+jCwDeu67uTlRP459jpMsA9BzX3NKYxJznaaQZcj7ZfJM1jUzUzVLJnMRh0mWwdPqJQCyLOFU6Q/SepMsqz6vcQ4PDWbbDwEh/k0/7jhrVqkBWb6Wpx3IscNdltLnExHhoeui7jPPK36r7J4QmaBbCb0jcI5vTnjmiWNMXmv8QW2q1435Tp+Hd3PMXG0ynbuvnBycJ7apTIgF0JW73EZAW7DSCvmvCeoRwCXfNb/TZJQAJgBGAqgESy0IzWhvpYXRJJ/kc1ded4LoBNsVpGZ9GkmuerBe0rQQRCeNC9s9Go08rUoI2GO51J11KViu4LdSsVgwnmA+bUlbsA/VqWCjoOnUUO5z3VVABwhpWPh+6JCjr2H5bAOdDcppTmF/U/fBYOB11chrnqMJN/mbOgo0SeihQ4e8nUiRY/uSZbI8SwGjYLwC+ZbTX/WiM0X1CwHZCrTX0RWpaIJY8qVbIF2BfUudc62Cw1MQfSpXteiTcZY5XmvLh07gUQBIfzyPIRno2hpw++0OeO73PVHz7be7j7q4pHD9ggdXyu2ycYwjR1xAu+e1nuBhT9DvuwUUaVh6PaDFld5ggGaaIs8in9CTeDOWTrqDC0J2XfPMzRVmIdL5ylc6+pYsc/XfcENJIzIaAd0uTp1ylC4PrUbI88TTk/R6QHu5iTh3i+Q0hU/YOLdV4qds9m23FVTURfk3k+PzwRV4svYCMe1jEUCErHMCcQxE5KovFoOb6WJpto57wObO6V4PWOx2EceuaQQB0hT4iZ8ofAu9nuO539oCHngAraUlXH/9iQqeSiaT1VXga18DZmcjpGkTeQ7PH8sh9bznlYw/EcYYI6qwBwwGztye45avPrdQV5OQOgCjWRm+J5YzD/h6xwxP4LgrxnCr00HabQK9tiOsJTDOk2MHEiGH40ovxkO/D0ddc9NNZcU0JM9X6pM8B9bWcHxpCf9tJcLjjzt733Zb4SRYXi7HIj0Jwike5UNkWZk8LM8BZKkHhxIA3a6zw/IygHvXnPGvu869SOmysoIXdQdA3MVTvWNotxOXwDbP0V260anMATM3h0f7LXS7LURf+pKjayk42icyyeW5u2B2dkrSXCpqAfQDtBJ/uhfiv/Ebv4E3vvGN+Lmf+zkAwPve9z780R/9EX7nd34H73nPeyaOf//7348bb7zRR6i98IUvxFe+8hW8973v9Qvxl7/85Xj5y18OAPjH//gfX5F6p3LwJInNLiUgDJxZAFOdaPb8ABiXhIBnLacOvASqdDH2XlGIOsnzHH6+J2DqDk/cKy3AxZB3gc5RdRbofUzPEaB9jAiIHd92CM+cm3NF87kmy1wy0EYD3nmxvFxU2+/7jJ3Pf76bFzF7EhgMsLDgjht3jiG6+26Ml25Ep1OY5+67nUn7rrsePxPh+O23Y9w9gbjv6lhYKB7HCt27HY/FOydxnqPTcdPCxkZpdh9D0Okg77njG43y+9nZauJPD47D5XKJY0nSXkir3Ua61HRjsFft6q0tIF5o+senXg+IOy3EMowSPmfZcVH0jVKZMCB/Z8eywESI4ybiFEi6qPLNEFinYiqay8MC+yp1ziZ9N8ckaU1Zeq3oM0rR3goQTucPf0MVnLf4vxf9oXh4GsdJeb2gTFAa+XLLcpJ4XM13cJXLdO6+cjIF0Z8DogClpa2wILombgSqQJ8CuwRqGSnOSFuNPLfgeQjI1MhfljEejzE7O4vRaIRGo+HPieMY8/PzFZBcQXxLBaPAq41Q5v+MxmYyTILoqhfbvb29DUayh2wDwOvOcxU0JxhMkJplaGQ7wVY6LNgeOglYjkbRs5w6uXjxYoXLnXqyXVvFap2JRemU0B0KFpQH4COrGV3NJLAE0a1Yrn19V+CfTgLaTftYAWtLk2Oj3nVMhL6jTa3zguOCYLoC/dou/d3SteixdMiwH1gehWNTHT90dFzrVDBTEH0qB0a4gAhF/kiyLgBV8moCb2trnu8bS0vu+yI54Y3t80CXkT1SbgFgN9OxT36JImo6gYvwxtq644jm6q+Yq1g1F2N83dhplyvuwQBp5ri5mfhzawt4aC3B0tIxRAVntagDP2XHMcadYxhkxxCfApI77yw5S8+cKStst3Hrj53EU70IDzzgDiFFNOlZ09RFrAPAuL2IPAcacIvUtTV3/JEjAjSfXi8jq7nyVQLWOEY/XvSgchwD7fYJZJ1yLba2WvKf0rTs3n4fyLrHkGCMG7vskBjNdIzXvqpY1N3fc32xve0SZPb76L7qhG8Th0GaOor7P/zDEmPNshJTbrddoPfxI0Ngdc3vAIiEb7TVEcXWpENdwwo0oOUBe7Z5bq5cQHc6wCte0cKRIy0kGLroOILoSh1EI6ytISnKHraPebttbQFPOt+Pd3wkxe6KYdxEfx0AErSKHQq+vJMn3Wtlxb00ZL/gTz937gROn3aHFbls8eh6gm73GKIHHnCV06gSLZlliQ59bA4ixHGCJHe2arXbSJdbiNYedYlEAeCFL3RlrK+7AbayAnz+88CrXoX+qdcijoFWrwdsbaF7Z1H2/T3v7SI///GHH3Z2ZDZXrq7VuQaUofL2/qHnhHa5XKVyuQvx8+fPV76fm5vDXGULjtsBed99900sll/72tfiC1/4QrD8L37xi3jta19b+e51r3sdPvjBD2I0GvndlbvJ5dQ7latTQlhxHEtkqwXm9LrVQngyMMlTrjcd3bUVcpDpKwS8a10WsK5plKqg/1tAe2bGzdtx7Jy4nmM6BIaqfrSJ/DYmYB7wH1gfIZOVu6STOaI8x3EGChQnNQdP4eZOXAHRX/jCQqVs2d3fe26qXVsDOq/677G64g/F48df6sy/5ua7xx8HcPxG7Ky533lbdc1w9lvMhkhPJW4HW9HeVuacsY1G1YcCuJwm9N8qTsvPnGsXFtyuKv98Jc9Z2mmJBmKgdNJvb5ePMhcuVIcnI9wbDQeApykmgNsxokrfW2q0UHkLCy2k3VY1Ot06iyjWQaydba8VFfsd69DyAzspK8fyf+t80v8NgA44cF6j0Sdwf3E8RHQOxUmhXuR3lrDaZnE5RBgXzojixwOUWXQ6d185mYLoB0gUqLZR6HU82Qo2h3i5CeAp+EcglRG1yhVuQT+NRrYgulKQaBQyweeZmRn/P0HPVqtVSQKqwK5GH2u7LU2Hgt8KWjPanIC4peDg/xrBzLYSJNWIcQWh1caM6NYofZZPsJt6EdhmVD6j7wF4B4DaO0TboxHa2q+sh7rbflJnhY4L9lue5z45qrZTwWxLdaN0NdofFE0mq7biWLD2shz9ISqdOiojgujUT/vAOkoIbOuYtnWHHEbaPzqOVCc7dnXc1ul/rcgURJ/KVS02AktDWGxUjY2u5WqLvxP4nJnBJppoEvyMY4d8knOC5WtUKs9X6fddGf1+ufIyixUuxi5cKHNGWf1dVF6EZuwSrOWzLTzyiFNnURYQkFNnZ92Hft9hj+73FrKshVvbq649vZ7jMXnySWBtDVnnRDVZF0p6ch+JlqboD5IK9prnrnlHjwLHj45LpwQj+YnIm77IU2kzqjmvAODs2bIYspwsL5dJTPt9YLENt3InDcxg4BObYTRy/ffII06PdhsJhkjTxA+FVjYG+n30ei3cf385hLrdcjt5mhaResxeyRB9KmvBF3oG1tZKeqHBAJgrh8namhs+s7NOTdKknDpV0NdkKOl6dAdDHJf77wtQaJgt+oSpcVxuquChaepAa6CJC2cFi+80iVkAAHr9BKMRcDzLqpy1o5HXg31x6pRzmGxsuM9ZBrTy3KEMR45M7AbRZHp6WSa8Lvt9R3bDLRmNRhlZz3bff7/zdiwvY7BclFPYJhpsot1ulraamcFjj8muiCefrIIAFmRgR6joIA9d81e5HMKlPbscKubuG264ofL9r/7qr+Jd73pX5bv19XXs7Ozg+PHjle+PHz+OtbW1YPlra2vB4/M8x/r6Oq6//vo9dbyceqdyMMTjfHa+ptj7bFzstAEQp0k1x4aea4E9BabtayIE1hwfAtUD+jldImxtVfOChJqkWCWxqDRNHGAYAB0rnw2IrrujbBNC4oFetZGhiPOebGYQR5G0PI4xzBa9aTqdcq7e2ioB7m9/uyy60SifL3RTkAfRB/DO6Kb0M40XxTmyrInBwNHJsOmM8GedajYF6d1zzKB06CsgbY3ECRQlQ5lOxUwGr0Mjjt335aNBlS7ITjmh/CL6ruU5aj+3YyvSaHOr8wQKHZA6oDukrB33u5UVAtFDx5vPjB4nWB66BAEgkUfjyndx7CmSxog8qDzhlDsgMp27r5xMQfQDKCGwHAhzO+8FUtVRYuj5GhHMSGfLD23LC4H6/F0j5/mdJg+1uijNR0jHUHstfYrqr5Qv/M5GA1t6Gm2bPcYCrdbuWq4CznXc4JbCpa6/9yu76RmyaV1kdKhfFbSv062ufAWpQ7zjoTbU/XYpNlGHQahPQ/a6VO7y0FgKiY6va1GmIPpUrnrRh/3QAmI/iwoeV9A6+HUpw4G0HrP4cIu/msgglqvbsCuUXG4xNTvrDqkEdOzy0C/5vHw51p/gzk8q5+S5HNxoOBR0F2BwZ8cE8BSLldFocr3l1bXKsFFa0D76hHyWc3OTmIHvH7HRGJFfjAEoQ/JDwIgRqstg5JmZgFlUiQrBd01h2ohd6g3mWNO62Oi5ubI84TK3mJBtD8Wuky0uRJoBXz7M/5js2krTQqCUtYc9x7aZ9ZEkVyPaxZYTl/pg4AGGiQtJed93E9tXdcDVQZE4Bi7lWfTiRSDP8fDDD6PVavmvbSSbSuh5f7dnvbr1waU+M19qvVO5OqUOYLykE0NiQb267+oUMWB9bfl7qKi30f3cPoLH1IGYRaFjE7OqzeOpnGOoTxWoLUDHOieBfl/TEDtX8nmmrrhAMyYP3EXqQNbdTp94PtmtwD1EaVhsdD9/t0PIYta75Vbdl9Q9a+42XvcCxOvq2G0A2waGbFs3fvZp90tV+8DLdO6+YnLAntqmolHbIdoQTVhpkzgCJRBKihYOLpZHQJsR44Aj9Ce1C/m1qQfBbxthbCPRNbqX9SmIy8jhNE09DYzqq8lMKRbstGA56TvyPMfW1ha2t7cxHA6xvb1diXAnXYcC7JZDnttJNCqbNqdsb2/735RbXEFiRrizvLm5OczOzmJ2dhZpmvq+ZdtDQHPIBrYum9CS5ekxIUBcdyGQ35tt1ESn1va6S0HLZES+0rkwUp2c7Ywwt7ZSnaywXTq+1NnC8TJjnr74mfbXcUldOB50J4YF0dnHbK/SAFmHAN+t48g6jC4HrD/oMgXRp3JVi406sw/9/Fy3omMZQLn/eG0N0ZeK7YVLS5Nl8fyCy+RFp9rAg6ddWFKjUe7dpiwtuYhahiC3256/8fDhMnqq3XbRvT5CiuFahYpx6pIpjs5K+4vfm/l5NAtKkTEiRLmLWs+yxHOT+uJ6qeOazjLHU3LTTY6jvF+C1rrIHgxcVPjRo4uVbemcWnVX9ONnIiwstNBcWirDtvg+GpXkp2mKGJUgOh9gzXK5CWBrq+QvXV52wd1HjhTbskty8UL/BE0mhtVxUPTD+UHiI9916llaAu68s8Srs8zVMT/v2nbhApAePVZGB3JHgo1UtmOEhWUZMHIfNbh6bs4FbzMHagXvj+Myq1uWufGpY7HgarlwtgwU7Hbd/4cPuyKOH3VRWNz+TL+Cgil8MX8nullJ8s7sqIVirCPLyki6SsJZ6syGpimGSHD2TAmsVMHv2B97Pm+itbTkuGLSFOOlGx1/e7cYKMvLPux9aanofw6g1VU0s577v+D/P8puYQZUXYnbe4HuKlAJXfsHRS5zId5qtSoL8ZB0Oh3MzMxMRJA98cQTE5FmlG63Gzw+jmNcd911+1LxcuqdysEQf5kp2Kk/kuPbnAPAzXechDhp6f95Xm554gTDrUChZwND5+GlLmxYfyfdVxxjse10Xlgop0DKzk6pgvU9TvA3G8oWoKQGqSQpRdlsqm99BjpVbW2x/oKXPWs6KhMVTXpi9KCFFhbK+ABL3211sNMmk3wCKPO2qLI8uNCLNB2zs27OYnu4eYnm4u1eI/PdPNlE0pYDaDAeEAiRz3tVlSx7hbbPsqDsJXb4sQ4+nzian5pxIZ2p48F9JYlAyR9uO0Q98IEyQ8849hpE2pyM9g5dFyzT0g/tk7ikFnsvPoS+O0g86BWZzt1XTA7gk9u1LQStkySpcFtr8kSCkwSfgWr0LSlDlM7DRmyT55nlkeubYDvrnp+fBxAGBQm2ElTk5yRJguCvcqJbcDfPc89nrck/9aU0KQR/NzY2MBqNcP78eQwGAw+ihyLeqZPScahDAEDF5qxTAVg6H+ioUOCUv2tfNJtN35fkQlf7KcUI6UJUV0utE3IkhCLBSbdC8NkmBGWS1cFg4MHkJEn8MQp+Kuc7AWg6Avi99qnSnszMzGA0GlWcEypqC9tPoUjxKIo8fc3MzIwHt9kPHPMXL16sJKrlNaN89eTRt5z8dHTouFP6HrUFz9PxpP+znJBdrwWZguhTueqFizyirrqC4gpFI8FD0WVx7MC3TscRcD/4oEvIeffdVaDerkZPn3avXs+t6AB4NDrPMUaEtX4L6+stHD9+AscLQI/ML8ePOjqR7u0tDAZAs/+EA9pZT7EqLFVIfDU7O3Bt7vedDkW7Ip6XpojyHCe6bb/N2zW7DdxySwWMfaqfeLpywDWFZiUGvrFRNSFVJId6HDuQoNEAOp1FZO1FtE7FVUoS8ou024j7VVCV2CvL9klUUXZZtPYocK4PnEN5ULuNcdpEb9Ud2+nc6Ls/z4FWp+PBaJq23S4WwkUjTp0C/tpfC4Mag4FjA9nYANJ00R1TYOitrMi7wQUsnRVLLSQFnz4BiNliWBw/XpqBQdbiC6jugiAAvLSER/tuccSpdqcP5L0SA8gyIFr5cyR5juM0atFnUbeLOG5W1rCa7E7Bhk00nRMEcKA1s89lGbrd6qWmaQg8gl903GZBH3PunCum3XZ2jvJh9Rpqt/HUoImVFaDbbeHE7bcDaUoae5w82UK700Lz9oEfO8nqn1ev6298o0RU7rgD6HaxVNgEp05VqZbsNaxGqfuN9jxAdC6XtRDfpyRJgjvuuAOf/vSn8RM/8RP++09/+tP4G3/jbwTPueuuu/Af/+N/rHz3qU99Cnfeeee+OFUvt96pXN2iYG/lHwPmDfNo4vL0/NZ6M+MNVScwgui6G0pBYb3hy41Y63SO7PIUD9yrZ5kv4ROJADTT1NGTzJq6QpKjfH7hOq3gOc9z9zv/1ySlIXzUF5lP1DJhYr6naVJRLcsSpO3WxHkRXLLGBHlBqQG0svJEgqN1fgaaQPXdzBPEaeIo7Awny1O9yM+5pAcj2Dw7W7LtcVogOM/uUR9+HEfIMpcQtEmvtu/k2Ac5EJSm88N0CwD32+xs2SZ5/PPPanXTB3VXu9rhUQG/B/kEoJ3nLmkrx4M6FrSONC3ykGRxdZyGEHx5cewN+u5n64tydbgEukBS2dDl9ZD2VKqrwe8r1ExAdYehUTP02XOos5zdrrerUaZz9xWTA9TrU2H0K4FsjUQH4IHR4XDoQUmCifxM0JBgMMtQbvThcAhGbyvVCQH8ubk5NJtNn1SAIKHyW2tUc4iqQ6k0+NvMzAwajYYHqRV83C5mC+XKtpzVCs6yDZubm9je3kav18PW1pZvn0bcawQ+nQw2EpqgMJOHav3kdec7I6A1KWtoJ0AURWg0Gj4anc4FC6Yq2K2f7XYXBXXVNhqJTocJxdKOKAc8I9F5vG7dsXYnaK/9qeUr2E1weTQaebtxTOoYBcrdFHq+jUC30fpxHGM0GlUogrQfaRN1Mih4TgcME7MyAl93W/DaUmog9jG/13HG31m3PR6oRsNfKzIF0adyVQuzMmqkVGgRzsgyGyWuoPrysvvtD//Qcy+fjxeRZkCy/mh5PMuMY0c4/uCD1Tq4iioOP33aFXfyJPCKVywCxUJnbg4OMF9fRxTHbpFNLm2jX56XEdR57hZFeQ6gnTmdV1ZKoDCOHaC5tOTbG8UxmmnqFugF8LyJJi5cALbXS5yBUwiLIi7B/xVv1Aj07e2SLjxNy/yhp06dQLMzLDOoFgDFOG1iZqtKn9LK3MI5KcCLZHAeOO1Q74T9trZWRvzPzQG33IJxt8rlTt1prxtuaOHEbbfhqV7kucIJArNhJ0+66G2uB1jVaFTFYXQIZBnw/OdHnk5bh6IrOykW9iWlThw77njShqdpyYmuQ6jSj90uHlqN8MUvuq8XFiYX24wAxFdWXMN7PdeYTqfkFs+aJTiRphgg8nTnBBl2dtypTQLiq6vOzoWyDDpS+2VZsVjtdAAA49Rx1pLenEN6aakAnuT6QJpinDaxftoN4X4fwMlFDHrusuLY63SAkydvdVGSvZ47WBX5/Oedrq9+NfDylwPtNjqFblheLvn560AD61kI/cbPB0WexoU4ANxzzz14/etfjzvvvBN33XUXPvCBD+Chhx7Cm9/8ZgDAL//yL+ORRx7BRz7yEQDAm9/8ZvzWb/0W7rnnHrzpTW/CF7/4RXzwgx/Ev/k3/8aXORwO8a1vfcv//8gjj+D+++9HlmU4efLkvuqdysEUArP2SwWQdepOUyBBXr1Bc54ZDErQnDk5Llyolk3UkYVxgotjfw9jcXpLKAOjXfR2k8CxgumWZ9s4BPZ8mXuOzj8ESq1fn5+VasTOWfb/UB+wagWn+T0ToDobRJM7AKQShqcx8SN/T9ptNNsZgBIEPnu2qvvRo1Vqts1B5PN0t1IOBDevcjMBfR8q9J0wJc3GRjllsLwsizAzk/iIfAXNd2OiI1Cu1Hq608CC7Wpbmf4mur50zuThzipOUv57dYRbGn2WOz9fgumec5+K2ufa4jXMIw/Q1w3tkFhHgMWwCYuFAPfgFGsqqyQNle+AckxVyuFD0kGR6dx9xeQAPbFNBZiMhtVIZ4KdSk2ilCo8XwFvjZbmMUyuqYkYx+NxJSKbdVuKEZbLuixIC1SpUqhfCEi1UeJ0ElixgKpGYhM0Hw6H2NraAmlELCiqkcrWXgR1lcJGgc8QdQqjr0P821oeaU4Y5U9bhOxmE1aqjW00+l7gpKUNUQCetqZTgn1vqVG0DALjIR1VJ+XV1zHF/7VN1pFiHQChNvEYdeAAqIxJjQTXHQQsg1QwlsrG8tmzDH3X9ipPPMe5in4fote5FmQKok/lqhY+zTPDkxV9MjcL5QlhRFKvh/F3voPowgUfQbvIFZPKzEwJ6NkwalllrK+7Q8hIUdkdyySVFCblpM7FisjzVcOowYKIVlK4Ldqu+AoEeYgE62vlKXbRaM2r0WOcZjTYT49hdLUHtNtJmWA1yzy1COvyCylBSRIWwqRmRDPOnHEIQrvtwN3BwAPAdhHJd7foj3wRoa6P+udxvCFfdDP0+5F3EFhcJs+dCgwUZ/s1USqPU2B8ZsYtZqkXt75r9LsCScPcLZQfe6zEjY8cKQEDAu/z88V5HD/r69VVu6Ip3ghJBfhXMGZzEDmny9ycoiZoNKo7BPyiv6iLC3viWnRu9HoFw44OqKLBtBsvAw4VzeFK/9IJhsLzS9Lq9Hrw2VULx0FW6OcVts4pNiBkJ4q9VxwkEH1mBoj2t1UeAHCJVHU//dM/jSeffBK/9mu/hsceewy33XYbPvGJT+AHfuAHAACPPfYYHnroIX/8TTfdhE984hP4+Z//efyf/+f/iRMnTuD/+D/+D/zUT/2UP+bRRx/Fy172Mv/5ve99L9773vfiR37kR3Dvvffuq96pHBwx+GrwRzOdVnDviflWUT7e3MhTxbBgCm+6gWte5xIClIw4toB62g4Akoo42jbZe47lIFEAHSUoqM8AoVgAC6pboFM/7waA2uB87i7jXLa1VfZbErK7rcx2stxTozgGaUc4X7JLEjk3H/jHB192XDUTZmYmb+OcrweD0oeiPlw+y2i3qG0UPLe+1Tob8hz6+lVsGVp3Eo+rUQuW1iZQsTU/n1GAST7+OHa68bEyTaPJCG85WHfXhfxDOh6t6I4+oLqZSx9FmTR1P8C5FZ7jEolKtH7hdDtIU/WETOfuKyYHeRhck2KBxZAQkLRg3n7L12hblgdUOdYpNjJcI3MtkKlgqKVTsTQndXzd+r2Csuo40EhsBa0JUjOq3CY41TJZp0ZCK+gZSkZaB7jzXUF0rVv7qQ5UVFDZ9pf2mf3fOiIsvYuNSt9NBwW6rQ7qXGFZ+k5wW3c9qCNCo/uVguVSQNa9rgnbbut0UScP3+varKJjxuqiY5XvIT2ts+BaAYunIPpUrmrhQ/9uWwrrwrHsioari04H0Q03AI2Gp4NGz4TgxHE1nFi5r+fmKtkwlaZjAjSwKzdNWCkrmIWFxIPFFVyPH5iIcTcQUBZIJW/m5KEFzu6jm4nHs9mMvK7DHZVS1P+exv5LXYRRRqNiK7gs4CrJzmgXrkqlz4m3E+CvwUUq2IU3c91iP8/B7eIhnJXt52s0KqP4Wb/119j/0xSIBptI0hQ2qgqoco/OzroIdLZX9aqcp0ZgdtTiANfe8lC1kQ3SiuPiz8JCpaF5r2y/r1sMHgGI46RySegmkTqhPRRHIvbNMVjRkWS+HEx6QnHNJJkxvBrK9vl+xN4zrnaJ46d1IQ4Ab3nLW/CWt7wl+NuHP/zhie9+5Ed+BF/96ldry1teXt7XM8Ru9U7l4EkQlCxuoPa34FSvyJwipLw5Ew2251h0z9wP9KfQO2Ci562y+jl00w4VKG1n+XFcXscEQnW64u1+L7GPFnUqh1Tiefqe6OSr3uS9xKCcIed9kob7QoXTGx8HNE4iz0vwX7/nPB3ioueUqXz1FE2mrg5na7+Ar2Di8242rozlkAHiKsDNAIL9Tk0TRU88lE7+pI+laq+6OkPD3LZZHRi7KmuVMXJgec93k+ncfcXkEp7wpvJsSwiABTAB8ik3tR10li7EgsAEmw8dOoT5+XlPb6Hc3Mp3Tf5pUr+Q/oLl8RxSmFjKFwUqlX4jNjc0/sao4YsXHfXMaDTyCUNZv7aNwHmz2UQURdje3vYc39puBcYZVR1FEQaDQQUMV050nqt2i6IIaZqCvPMaWa/9RqCbUd+0k+pkaVrUsaF2JTjN9ipvPW1Ee2m/2HGh/1tgWSP97XjTtoT63tpWeeOVEgaA35GgPON2t0CdhCLgdTxY5w8pXEhdoyB6kiSeGkaTxVoHlSajtdHzIbqWOvvbc0LX7lSmMpVnWAhWK8oZklBYFnksAHc+aS/uvttxr5w8ieOzTwG9IiKakdA7O8Dtt7sw5LNnfbJQnwCS74U+113naJkZNMvqBwOUCRypC/dPb22VROMrK2h2Omh2OhjHiU80NTfnuFKjLANuuMEBnhcuuIg7i9pL6PLmoORHZxAcTch8nAQ/Cyps9HouGpoLVUZQA6hEeHMhqkF+bpNABKCJQW9y4cVzzzcipKnjXs0HQJPoqa6Idb92UWE02ES73fS0KOQ916ZTZ+bmZHA11npliBsbXYyJdnsxuFhk3zESnUlcAQBHMwzzyNPA6/D00VL9PtAflHVlGVqFYuOCadauHTsdN4a0XXyfm3P2HiNCRCCZq3+Grec5osFmxW5cfFMUwI5jkI/H8ZvHLQx6VXoDDrN2u3B4FKHkCdwW/uXlRW/aPC/YXhT0lmfIdtvt0sgyeMoYAh9kpPGRp/0+8Pjj7nzuUT950nXG/HwZpV5U/lTeQhw30WL/MrydXPnasXZwsrMvBWyfylSmsi9RCga+V1YReY4ojpGmUeXy9KAcExPneXUy42d912sdKLlJOBGKd5L3wdGoLJZ18zFjIoJWn0M0RBiBY3Z7SdspWZZUiqR/QEHtEBZqq1eqFzWDUr9QTRVu9GM95fNDhDhuIus0y3lQw5fVBvouDwxROsnDDrjdUGoS74gtvmT709RFcbfb0YT5qEKWlVRz1tS6U8yCvpabmwco37vuANgtOpu2ruNAnzA+x7HZGjBGVKHS0yjxECc6i7HgeZ4bqh1VpLju4jjydqdDom4MqWgUvG1WnUw8J+nLPoTFcZAnfb91TeXakelQOCBiwVqlZLHRxgQOCURaqg99URSgJDc3ObAVhNVI852dHWxtbWE4HPoEkaQlsVHQpI4hLzWP0WhjBdKV050vJrZUPuo8z9Hv97GxsVGJPqfuqk+j0cBwOMRgMKhEsJMLm/YgDYwKAXJytrPcOI59QlB+Z5OF8nh1GihITQcAI7C1f9lvbJfaVkF09gu58mdnZz1fPdvLflSxzhTdHcCy9ZgQAGyj7PV/nk9qGHKVk3Nc9SJHuo4BgtZzc3OV5KGh3RV2t4KlNVJHkOozGo2804l9zbbuBJ5Y1CaWn5/6Ke2PRr1TT6WX4bvuWLjUCO2DKtNI9Klc1ULAMLRC0P9DD+RKo0KkMsuAn/kZx8m9/ihw//3lymFjo/x899347JcS/PAP/ZDLOkkQPU1Ljo80RQwHDiqPtS7usNwu9eI+Y67aH3/crYgefNCBgzfdhKjbRSvLkHYTf0qatpCcOlXyPpOQXFf7aYph3Kzg9Qze5bo/icfu/DzHzWkKZMVqeT1Ha2kJ5CAlUE78gbg9mT90MZnnzmykOeF3c3POJgTZ2U1kEJmdBdJ204HCuq2ZCtOIaeo45dMUx4+0MTyS4MyZskt92zDEYtuBMQDQTMflGOA4INhSrFDby4sVnlUuwFl1lhWJTsk9UiDrSZpisdNB1j1WXRTyGPYR+73gEkeaIm8fmwCLOKTINmQTgeo6OOl0SuUAVzbHgaAIwzzCxkZZj3LfkuN8M0+wPjiGvF+qSnphggEEKBKgykec54jabbTSFK2Ty8jzyIHjIU5ylM6aNAWasQNjjrdZMYAeygM4zmmc+Xnn1CIPDGlb4hhYWsL6wDlmWhxLq6uuL8ivBExyI+j/dQv5q13i+GmPZpvKVC5XKmBZ2qxO4QaxjeIYSQHqRSjyOvBS1DlTb4YWxLbXuEVMBUSMMPZzBQFBS3nmQfQQ+rwXPVSobhWDjkdxjiSOXQLPNEaWRRXw1s65Wt1+bllqqhAonOclLQrF+iDm5hIsLCRIM3Es84FDlbE0JXmOtL1Y0YfPC8Ikhvn5Kj1KhDGyrOBl7w8QAWhpg2MAnbSalFWEJk9iA5TnuXNyq66Gloe75Ogw9nNRo4r61yVXtTpUEmDqO6pJZfNByfHOZwGbXJZDW4egAukaUc8dDkFAOs+LpLg1MKTaq85zU2n3ZNvUMTDhsKg8KKN6jpx7SUj9QZHp3H3F5DkyIq4NIfhm6UFsRLcmtrQAHjAZjU6xlBwErTVZJ0FHlj0YDDxATmDSguiMLNdoagui2/ZZEH08HmN2dtZHXVMnJg89f/68bwcj3pk0FICPIt7e3va6sj3D4bACbDM6mQCvRpEPh0PMzs76hKC0EwHuJEnQaDSQJIlPGMqocG3vYDDwOmhiTk2oqRHeSidDO6lt2Gfb29vQSHQLHOcyYej5pDthv9BpoGMkFA2vgLF1lAAlZzzrZrsIXLPt1IvjRh0PdFZYh5G2g+fa7zVPAOuxIDp14LGzs7OV3RMKkquDSqPRQyC6OhFUF00wqm3Wa3A3aprnkkxB9Klc1eIzKmLyYV4l9KCvUehx7JJt5gnu/aTDrd/85hNoPvDvXB0LCw4kLED0TTTxxS8CS0st3HzyZAVEf6qfYHQBOFIUe/SoeynFNxfk5/sRWp1ONSkot0hvbZV8rnFchncPBkjabcRpE2trbiHVbh9DkwAqUCKi8iJ4ThB2fr4AQJlscr3nsqCqncRZ3e7c7P+PY6CJTSDP0SyirxNI0si2+25tzRVNPVncwkJJC3PunPuO/JgaFN7USPQ4BpaXXV35ZukN6PV8WF6SZWg0Wj5RZxwX27eLhXyTi6w+ylXo2bMlgC4oddQ/j2aaotnmOX2g10cSF0la1/tlw06fZke4spaXq4tr6kkOfQK9zOzpMpAC7WO+C0cjZ6cIYySDPpKine2lY7446x9KiLTrVoNizOi2+9D6lA6MNAUwGODChSYeeKD8jcVY/GkwAJIUJR87FSNQDWBp6WZ3ma4YAKWQVjYu+jMvbfXAA9XtEEtL7qUgOrcXnDyJx0eLOB7/eUkeX1wHZ7duxPY2cOudbVfuhQtuWwV3jFhgR0VtyUF6UGS6EJ/K1Sxy43IAWmCs0lHqweS4nMSKORtAGLzmjcoC6/zf6sJyivmGEfB6uorf+KZgfggQVwmBfjUA5oTOctP1icgLAJKm2q3pu6mlACvNTRNbp62qZwFuOtMXFoqEqzppaGUsnE6LfFgpOM+b2NioNpuBCP7LAuStAPUW9M4yRGnqwG5VGEAwcScbagnAa5y/XhfO84peF3UDArTvNT7gQHMV5eTn46BGotdh2Nrn9jvbjzb5a+X/OrJ9C3bbY2gbIEybxM9ZNgnia937AdHNdeudbVredO6+JmUKoh8QCfGD7yaW1gTAxP+h8vmuQHcoglrLZ31K06EvRpmz/BD/udXBJhZVSg8tVxNB6rkKrCoYrYAtwU+KbR+TSwLwtiAoz6hzG82v/Ov2pXpbENz2Qx1YqPZTahFrc8s5r2A5RSOptYxQEkzap44T3UZSa6S10p9YahtGjKtedHholLetb78SoqPRdu9WBx0//Gyj0m3fhewS0mG3Y+01cS3IFBifylUrdqVopW7hw9/MgnZQ4KLf+Y7D25rMRkX+5bNngZ0dDAYuAN0lzmx75JeJIHUhy6isNGtNYHF5XmxhDy2sGF7EBacCoYMBojSFo0nhGqZIBlkToTPamlz/xDGqC0eluFHp95EuVRfP6A38sQkjhCXaOS6iC1k817mAW3DbCCpdb3kdzSKJVCmL7XRykasL2OLUyvbpECAxGFQTzllUWnlq2D6uQmkzNu7ChXJfs4b7U3jshQvl6hco98qL3S19bwXcb7eRponH5ivrVrto1fql7bnpYjaxTPLq+kaTfbLZoXW2b9/WVun8GY28bbJlAUrU/nquIgLqdNBjiCbIdUCg/ckHgeNZPJHZlcCDb+TOTqnfHoBGpaH7PfZqERL87lcOEsgwleeG2BuK/Y3vFgi3njwr4nglyFxJ/hl6t2UJIFcnlYSGpt5KOyzwV6evSu2N1urgziflDUV3Tu1mKhbP6Ye3AXu/1/81JYWWq85Wn7gy1LaQAqadFvf0pstrzhEqtgnFtFB1mNv61Rj2vY6rRR8y1OB7GX2P31QlBdDV4WGxa/6vQ50JcevqiGNUI8G1QDsAgKqN7fNSHeDN/1UxGyofUq7umd56hw7i/LybTOfuKybPoVFxbUkIBLdAswLOep5SUdjzgSoYrLQhNlmm0rCwbKUW4TmabJK/W4CX5fAYpcMg1QejhzXil9zjaZr68ghaW05qbatG/lqglxHSBNIJWCuPewgoV3vZdipwrGAqo7ctAK8gs+pv6VVsIlUFi9mGOrBY+1VtXjd2aDu1Wwiw1zGjba2LvFbKIf2dx2gEuaX40Xq0XRqBb9tcB3zrOTourVhnT4jyxbbV6rebXGsA+jQSfSoHWkIP9naRUMyBo5GLqjp6tHjGX1hwD7NEEW+4wZ9b4WkOCNcYaZogyWK/9kjTkh89TQtwURdeksgx2JbimHEock8josxCfna2TEoWLFdXZ5bUMo4n8OdKnRa4zx0Hd6fTRJq6RbeumdK0BNBpF+LOee5w5sEAyDtNpGkTzW7qbToaiePBZqMsoqwpHhQe5JP6sjMYfl33spFp2i/8/7rrSmoRJuMM9UuWud+5Ih6NKslSA76PSeBfwB3lxnUR5KZPdcErrzRtVjh1VT0CQ0r3c/hwNY+nNt9fAyxwZ6fc51+Ip2DQVb8AXF4BrUA9CbZTqRh5zQcDtNtN18+su9ilMkesnPWzoeQeCqFMIVRiLyDoahPaYL9yDT3XTOUqEDORVD7WgZB2rlGQHOPK/5SJxIN2AtNrW+oNUXHoqZXoaXX+2ZNCEgLVQ8B77aRrjqspfi+hbch9rbdeNom7wlhdnpePB6xe53CeA7hnH79DTkFXVTTkWMh3uX1Zh4p+L7sWgoaou8/v9qylx9Sh1YFxWTmuTgL9R2cPnTdxXH0c4xTG03R5a+dzVUcfk6yaFTqZ3YDput9Cn3eT0Pi39Wt/1pUXOJ85ZSai0Q+STOfuKyZTEP2AyH7AI6XCUECWIB4B10OHDoH82wAmjiU4GOLxZj0WKOZngt0ExwgQa3Q3qVLYLv7GSO+ZmRmQ+oPtHo1GGAwGFRCdCTx3dnY89QzBeALo5NtWug2Wy6hyRhyTsmZ7exubm5ue7uPQoUNoNpveVgTum80m0jTF/Py85yBn2TxPAWyltWH7lTdd+03trOUojYhGVCvozwh6vjOZKrnXdbwofQ4TaioorlzhCrDbqHONMNd+tWC3jjmlDWL0OX9Tx8bFi4433jqIlOdcgWd1fGh5FlxXOwClg0LP03eKUgppm+yOAPajRvbb9zonRQh8fy7KFESfylUvddEqoUWWvvO3InJ1jAjb28D115cc0VhaciDrTTdVI2EBvOAFjkkCK9V60tQdQlYL95wfVRYwrXRYjXTiiYpmdrsOTe71SkLSYrU6TpuVoHGfb5NRVkQ3pQ6lFx8MSk7rhLZQChlmEKVOWVZZ21Qi8GIXIZ7ogqeIIG7FMVpxjBMv7/iEpgw6JtWLgueK4x854kzgmDyalfWSY0Bplm6EOHZ0PIPIY68VX0Rv4NtRsRPB2HYbm2ii2Yk9CnA+byLvAYspqpHRmoSOfOYsL+BM8PqRc58UJRJFzUV8lA+RZUk1kC5HdfVblJtlSWWNmUASnFI4CNXIAJIsx9JSq7L2TfLNkk4lz7HYSXHqVOJVj2O/EcMX1enwPGlHp1PtzDguo/iZ9LPQg8MuzhK/9X3ieh4M3IKy9Eo5LvO5OeC221y9vR5OZLnrZ9q5yPx6hHZcXy+pf5aXS5J5b2h5r5ODFPE1XYhP5SqWMaLK/SyOEzev8P6gwKbeU/l97JJk82elg3EAGoLzvwfHkcjPbn0a2qGj1Vd43HXSsgBxAJSfAFmL+7kmkvb3Y62PP9QBicX3dKxajNN+DpUZoUwI3Ww7nZizRGng+HjA07e23FzNzT98bGDz5uaAI0cSxHGC+fkWGjJ1elvGk7sFUpQ5o3VaBYBhHrmxojvzNNN5yJERArftdzq+bER7yAFg+8OWb48JgdKhz8V3tEUzLXdDUAWz2So4bcllUvk95C8I6iTzdOU3ndtDY36/Yq+HQkhnE2XxZJ/WnVu8eC2Vl98unO9Xs0zn7ismB6znp2KjcC0YyMjmmZkZD84qiE4qE4LoBP7IQa2R0AQ5FeDUiHWlRtHPCvCmaYo0TXHx4sXKsfY4gqQEVJmsVI/f3t72bZ6ZmfHlzs7OotVqTURn7+zs4MKFCxiNRhXKEpZLQJm0LOPxGMPhEFtbW9jY2PAgtE2ESk70+fl5NBoNZFmGOI59NDx12N7e9o4BArsE7gnszs3NgVzq5E2nEDAnlQj7j/ayEel0YqizYnt7uwKiax/Q1kzcqe+qg44vjahn9L2NYFcA3VLV0P7sQ0vnYscz20ZaHXUU0XESArl1DFh6GT1HgXobra/j34LdBNLp7FFhmazDcqbvRukSitZ/LgPHUxB9Kle1WLCS/+uD/W5AGbM0oVwLLy05jC3B0INtwyXHB550u/6B/oUvBBYzSaBVAAFcpJw54/i++Yzf6biyW+nQcasPBtUEoOSv5mciyNvbJaF4QSdy5oz7mmtIL5oFk4vBYhVMju88SzAzU66HkhhlGwjYExClfgWIDkjkvPTBoC9AKMFSlleQezfjGM2i3OHyzVhZKQ/d2nJ5VJmjs9dzKhw/7gK3T51yi+pbbnEqlbnKmkg7LmFqb61kZ+HCssL5LiFYDnwpouTSFOPOMayvAlmWYLHbxRAJVh50dSyeRKno+npp54LHfBwnGHRu9GaPMK4CxgRvOsfcb2la8oeT/kb2wUdxjmax06ASSaX78wFEeV4mNktjoNev0s8AZT8w+yv7rd9H0h446MgCBZQ8x83dAhBfWQXyHMcJUHeFB39t3TsiKmD/+nrZUXRAnD1bIiOoAgJp2kTCZLbUfzSa3MueZQDzELzyla6+Bx90vPTklu928RQWgYGLol9YAHD/mvPc8EIkiE6dFRSwtjiIMl2IT+UqljwH0CxBucgivwb4KiNME0SpA9suFEmk/Y6jQrxTWR15Rbl6iZOhow6jI1OH918SVdZ36wG2hXAi0u/TFJt54hNFApOAqEvc6dYoaZoAceLmMgtaSp0EC5O4tBmrBARAtyCx0T2KY08Nl3Wbfgo5d65KP06Afbcg83bbteXIkfKze6yIkGVJ5Xgmc41jd7yWGeVD96xROE5a7ANxQnMOrcyDoZcYhaBtOVQSIHNBeXHbBAyEwGPTB0Fgebe5xD6XBnRM9D0GWhYIDzlZfN0oHfGAywdTUw+l3CGWTNIg0bYhED30f6i95uUcI9VT4zgqc7xofSxDnufUEcWxqIccOJnO3VdMDmL3X7OiIFyIkkKTTtrIYCaOVIDRUrUo+E6gEkAFxLWJGq1emiySiTIVpCQwqIAlo6VZDykyCFwDJYhOUJqAOwCf4FOTRw4GAwyHQ6+XgnUEOdk+jWom+MzEn6PRyIPm6lxg5DmdBHReUFdrH+UT5zvPmZub82XxeALhSo/DNtJeIZoXG/HPNigdDmVnZ8fbks4TRqKzvJmZGR9Vry+l9aFdrANAbc9xpDQwBKdnZ2dr+capx7bwyqr9Qhzt6nCg88LusrDtUYcQ3+uS99KppBHpeh1oW/m/UttoZL4eH6Kmea7LFESfylUvdQ/sdQtbvue5W7kWwDQPXVoqkmb2Bw7I7nR8vs1O5wRm5oFZOHwd6+uVFXiEsV8IbmyUmCtB6+VluPq+8x0HDDK5IV8KohOUpM6y2t/YCON84zhBlGUYx0kBkMvKpFjxZp1jFROB4ECeV4FW6lIA6aMLAiSIXbmAGQw0cWcBEBMpn5sraTjm55G028jzRb8QZ65IzbtZBBJ7rLPTKWl2aHIGKA8GZdJWqs9IuIqh4tjZpviKoD4xbXdI4sF8vwAj5zmTgBblnR8k3gGwteUW/lkWodttIRI+b3K5j0YRjh49hoieAE0oSwCAzz0K7Oq4YMdpuDrP1cbTuPRScI5W0JhtC6EfMmawulp+LqK8k3a76gjodoE0xfl+hK0LcIA7gEonb2xUAOscVUr6JAsseXZ2nP4aib60BHQ6eHyrhZ0+cIJj7eRJ59hoL2Ll/jLovIlNB+D3++7cbrfqgKNt99o+fpBkuhCfylUslUsscP8Z5lUAuIqhJd5hWld2YgHMoiDeOhX81XwdwGRKiTgWMFWpvfT/UDt0d40BSQd9B+IzgaaCfzxse7u8FccxgLSIwi4A5b3ASqW4qRgnBArbNhRGiLLMAeoLTb8RRw+lr1xtqiagH143KnGjENultyqazbUxKafE4uA8d3ZrzZa68nknHzhnrJ87LTBtgGONXKbeyiLmIAPncHenJohTGQ9qQ+uYsPatkzoQnf1rjw0B1fuhEVIeF362uz2ACiDtvjbR3JYHTh0W1hu1V7sNAM5TfJ9zvMdSnw4auU/YoaxqJjEubS58tmU6d18xmYLoB0z2S+tiear3KqcOYNTf6r7XMpWTW6Nv637XRJ4E0QFMJCjlcXWJNG1E827tt+3gd6pbHS+22slSi9h2UrR9ofKUHoX119GFqI62P0ORznW7Fqw9QsBy3RjR/q/jTr8UUcCZ9uL3+pn9b2li6iRE38JxUjc2rO3sMXTw7NbekD2uNXB8vzIF0adyIGW3CCAbmmIWOXEMB6AXH8bFQk4CwT2+HSyvRg1fBcFq7oUOgfz8n58v5YF6H6E3ofXZxAFm0bkbk8VoVKzHtG5mvmLiTC1vMKjtBmKucexw6zStYqiqtyZo5eJ6P/gnjyG3unLA7rruZSUixHiDOwOMjVhEQpA7dPBuY7fuWP5vz+U7wxz1uJooRADVAUJkpM5I6qBAVOL1dWCALsBNtS76PtBGHf9SrgfRjB42GBGDvBrqqXpZEOO5IvTcTWUqB1j0EuVn+87fKwkULeBYU7a9pdclYQyeaBWp3Nvq799jRJU8lXW3x1rZcwLfh4SAdPu9/B6n5S3F3lq0CNpyZ6d6HKcb5kcxvu1KlbvpPBollc/7lhqDahGq+97FGXDZzich3erm2f2ca50m+3pgMXXb+i5BynwDqOpp59J9XgO7iT4rASYYROtH9Ws990DLdO6+YjK14gETBQYZ6U2x4K5SXzB6mhQes7Oznq/cRslSFOBWKhEFOW2iR42GV3CU0dXUW9vCiGGl2tDIdQKXpDdhJLBtp0Z6M7J6dnbWR8hr9LvSvvB/npOmqW836VYYca50JWoXbbsF11ku7c4+4XEsi9Hl1HN7e9tTmSjPuaVIsWKdA0q/osDw7Oys14N9MhqNKnziAMAobu5w4I4FvqwOFojWd3VQKBge2lkRAvGV3mY0GlVoWkKAtyZpVdGxHXKasF8UdFcg3opSHmn9Gl2u7/t1bj3XZQqiT+WqljwHkqT+N5W6B/GCMoJrgSQe+23C4/aiZyQByqgqskw0u133g+wbjQabaMYxOp3EY5V57qKi8xxlWFYcl0kQFTC3Yila4KhNNNiKP0W5o5eJ0tQtPGoSauqaaxwniNpt92F52b0zBLxCLE79q3pGGGNhIUIzHZeRy0C5Dz602Ov1cPLkCRw+7A7laYzcZwB8lpXcqKyf2981EJvAu7aL0Ug4Iv3e7yNKU6RpE3leRpM1Gq65zDE6GlV34COOnRJzc26FXXCNt9IUrU4GIPEB2cXGu8p4S+IYR464OS7Ji10OIRTBym7gRui4EKADwGcg5W8aMcb/LSe/tp10QuwUe2yaemcTAQjPkw+U5VmaoH5pWh/dR70bDYfGC6WQH0/Frg1efliTEMfYJWilqgkK+qFOp1ycsrMswqNttujdpUaHPduy2z1lKlO5GmSXMcqvS0qryV2toVuiz/WRVstmtLL6A/WcOh08VUwdIGijY23bAg7pCGM0GmUUNOewOgzVgopxXCTWVgA3YEeNQg8mWbQVqUI6kcI5fhcWEv/V7Gzp7Oa8rHiqPpuoavRl1k1XOveyPJ/XJE0xO5uUQKnYM4mFmo4dHfK+iM0iwEXZA54L3vpCrPh5SsvcDSy2gHPo+N2A7bpzLHhfdx7FdoR1Hhc6RBgjjqOKuqri2OYuqItE1wJ0/BtSdjWhbYqvv6Yj7C4LXq+2SgAHL5/JdO6+IjK14gERBW4JIhK4U2BOOaoVwG02mx4MjqLIf1bKFI0QJ3h48eJFz7NNXm3le1a6GI0EpxDEJg2J8pNTSD1CHQ4dOgQmDSVQa0F6Ar1KLaKUKQSr2U7ygiutCT+zfbTPzMwMGo2Gbxe5wqkPgAqIOxgMKkkklW5GwXylFbGR18PhsGLnnZ0dbG1tVZwXSqmj0eB1EeMU6qYc3wrwsw/UQaJUJATbSfWizhdtg4oC8Rrdb4FrpauxQHYoal+PZ99Y+iEdn9ov7Dfr0FEufwvsK+CvfabOEtaj16G2cbfdG5QQOHwtAMZTEH0qV7WEQPRQVM5ui6ntbWB7GwlcUkesr7tXp4MHH3Trgo0NB+Z2uw4kf3TQxPo68PjjEYATjnqEgF2BBJ86dSM6nZLju9Eo2DC6LUTdbkmNoYhxaFXZ6TjwkWSieY7j3cAirp+XSLIumHTxEsc+OBwo8eA0O4a0c6wE09vtcrEEYHMQefxwTJ5Mrnj6fbcQ7fVL2g7WOz/v3kl7w1X3976Hm1+S4eaXdHD0aBO9nuOufvJJR+Vy5kzJXqOU4RcKShlugdfFONsElAt8AOh2k8KhMHCFpymaS0sYp+W4aWVjZFnkQdz4SAKaooIGNBru8+qq+25lBUhTnLj9duBkxy/Co3xYLhYLRRIuMNXRoP2jEoo2qyPu1XNCSEwcF6TghdADRAMplQn322tyUI1YLyhbfB0CknNLfwV7SVtILAgexxhmi+j3yiJ8U7S9pDci8M7xL2MvWfmz8ljypBcIDDF1z/Nz8qSrkNc3rznayEoIEJuC6FOZyhWTMSIgbQYBXkuf4ijAqtQNFH6uMl4xmbfjt1YKc8vCQrFTJn1uE/cmPRgI0mJUEOTA/T1Nk0ob6J9VAFpP42275H+PimOaRZnhtnhbqqHqXnqMziOFwZpZhubRDI1G5KcP+iNDtC6hKUqnKYtz8/ORI46OJ4pjNy8PNn1S6LTdrNqXJ1p+Hm1TiBxb+7F4RXBRz4keu9/7aBD9RfU7a9u68/lZUWU7OEP/m/ao1DpUtN7igojEBupYKA8lh3niKNiUYy80pqiXXg+i424+BK97nJQtSNMKjYs1BatJYvOcfFBkOndfMZl0vT6D8p73vAcvf/nLsbCwgGPHjuFv/s2/iW9/+9u1x//9v//3cejQIbzvfe+rfL+9vY23v/3t6HQ6mJ+fx1//638dq6ure9b/27/927jpppuQpinuuOMOfO5zn6v8fvHiRbzrXe/CiRMn0Gg08OpXvxrf/OY3L6ut368QbGLUtkZRE1gKAegEgBuNBprNJrIsw8LCAprNJhqNRiWSPcSrTf5tTVKpyRqZEJNAsUZcp2nqecIJFG9vb2NjYwMXLlzAhQsXsLGxga2tLQwGA2xubuL8+fM4d+6cf+kxBJr5roCvAu7KM842z83NefAXQAVE1wSijUYDhw8fxrFjx3D8+HGcOHEC3W4XR44cwcLCgm8Pk3tub29jMBh4GzGiPkkSpGmKZrOJZrOJ+fl5/3+j0fA7AVjW9vY2Njc30e/30ev1cPbsWTz55JN48skncfbsWfR6PWxsbGB7exuaHNTSvdjIfIL4dBBwHHAMzM3N+QSZTKrK/qBjQ9vCdjQaDczNzXlgXcco9dLv1AFQB6bry0aoq7OGjp2trS0/JmkXguME/zkO2Pcsl+NI+83qorzq/N1G+VM3jkF92V0hoV0iddd5iJrnmZD3vOc9OHToEN7xjndUdHq67oPWYbKf11Sefblm5m6lqQB2XxzqIkYXMltbJV94BrdYe+wxIE3x4IMOJ+X6IFp/AlhdRZ47PPb++4H//J+Br3xFFuTr68DKCpLVP8eJ+AmcPFlij/2+A4ixtFQmN9Rob11JsEAmQiSYzspXV10yxdOnS6SeyS/5maA1FzBp6qOFST9SqIsHHwS+tX7MvU4nePBB4KHVCI+fiXDhQmniwcBFGXv7kUCcLwXRCf7zRNp6ZQX44z8G/viPcXP8EP7yqU380A8Br3oV8OpXAz/6oy5n5MmTJW18HDudz551zacJVlbc6/HH3YvtojkGA+l7ntjruYU5x0Gvh2j1If9bkm/iuuuA665D2ZY4dkjH1par+E//FLj3Xve6/37ggQcQrT2KZHBewuBRKsP+WlkBHn64tJVFclQU9VFucbWxHqu/85iZmZKENk2dgTY2XFu1vwqgetw5hodWIzy6nuCpQROb6aLPtjtsH8N5tDCMmyUw3m5jGDe9vTl8+33XV0/1ImzGLQzbx9xOh+VlXzVpgNJUEsDSHvPzTmcZ/0MkGGet8oK6/37ga19zepw6BXS7GKdNxLE7pBVv+jaeT4/hocExd+yZM1XEh/bSe0Uocs9E0V2KPNNz9wRYsZ/XVJ51uWbmbpSX3zCPMMyjEujT+x6vTaEAYzS5PZRzG09jGgvN42yTYQLhSyFNy81UPqFnyDmvJ2h+EzoNLZBelJNgiGY69ocuLJQ+wPl5N9XMzLjXzk45Z2t7mKv57NlJHHlC3f0C6GpUGkyfK9bW0MJ5nOiO8bznuVv6855XPtIUeZ3944qaINRfpGobDFw7/JxddHSUD0sder3SlLS56sr5nZ1sdS/09w8PfK2slHOzvvQYTlo6b9cRwV/qfdY6y+0r1Edx7MfZuL2IYdrCZtzCU4MmHj+b4NG1CA+tli82+8yZYk4eFNebfS62niZRcTBw1xSvq34fON+PMEQyOd71uVZf5rgQvm13hrArx3ECxC4CPXQNu5xExTWL4d7PV/uU6dx9cOVZBdE/85nP4K1vfSu+9KUv4dOf/jTyPMdrX/tabDAMSOQP//AP8d/+23/DiRMnJn57xzvegY9//OP4/d//fXz+859Hv9/HX/trf20iWaHKv/23/xbveMc78Cu/8iv42te+hh/6oR/Cj/3Yj+Ghhx7yx/yLf/Ev8Bu/8Rv4rd/6LXz5y19Gt9vFj/7oj+KCrvieQbFgI7+jWAoRAnZK5ZKmqQc/bUSx5ZpW4DMEJirFhwXuFVSnngrKE6Tli6Dm1tYWNjc3K2Auo8htVLbSyrBufRFEJchvqWs0upvRywTSFxYW0Gq1cPjwYbRaLTSbTR/FT1tp0k6NcKcuCuLyRacD7a9l0S60wcbGBvr9vnciECi2nOF11CAWTNcxwHFAu6gOtDfBeoLCth3WpjpOAVTA9dD4ZR/sBZha4JRjSceO9iOFbbbR/xYg17Gk59vxob9Zehgd/xrpH+JGr5NnGyD+8pe/jA984AN46UtfWvn+arsP7lcudbFI+cxnPoM77rgDaZri5ptvxvvf//5nQNuDJdfM3G0B9LrfdhMC8VykFwkQx4iwumpyh3JBhjIZ5je/6dZbvjqiicXiq4lNDwIPBgVfNMFlu8DQlSaFACgXH6qHAqEWZOUKQx60ycWq6yWuPRWT5/pxfd3hrZrAbWJxbuvVVU2jUfKbKMLx5JMOtf/GN3ylJ9qbOHnSYaG33eYW52SVUfBEgYQzZ6r+A2021fIR6nleog524UtvAlfw/T4WFpz63oZEVRi+//jjrg30tCgwrnZnXVSWAK4qG5LQwlbfQ8eORlUCeaAMXbR0Ltpfo5E/xvphej1gmLYwzloVkGMMtwgfIvHF6XqfOzgIZp096xKxPn4mMolcZQ2o7W00yrFfjH+qvDkoFv8EQNIUj5+JcL4flQ4vRi8Wiq2tuaGGOC4VC4EVdfJ9LFafa3P3VJ4+uWbmbkzidUHQlzcXc21qMyzGyHmt7jLXS12nK75P/G8PDp2gjre6eT3QtiQeI4nHlcNnZyeBRGsr/s/5eWurTD8StOVunRB6aVS3AtLirD96tEz4zdt0kTt8AlMNVcdHAn7m3F5nK3WkVDpK9bMdvrVVRX0vXJhoRwVg1zlaQXN9rrKemJCDRSU4qPbRD7Z8W0dRlu2ec+fK+dvO5UxKz6IrjquauvTxQgMw1AniAysuAfTV6PhQ0yiV+0MBvFtzcOdKlA/LXSx79cs+ZDp3H2x5VkH0T37yk3jDG96AF7/4xfhLf+kv4UMf+hAeeugh3HfffZXjHnnkEbztbW/D//P//D8eeKScO3cOH/zgB/Ev/+W/xN13342Xvexl+OhHP4pvfOMb+OM//uPaun/jN34Db3zjG/FzP/dzeOELX4j3ve99uOGGG/A7v/M7AByg9b73vQ+/8iu/gp/8yZ/Ebbfdht/93d/F5uYmfu/3fu/KG+MSZK+oTBuNHEqEqcftVYeta6+I0L3A3bryLYBvQf06mg0FZW0ks7WHfenvoSh+BURDyTdtm/fb7lDEdai9e9mLv+m7bbPqb9tR11+7gb97gb2Xw/cdaoul/aGE+NP3q1tdnXV11ZW9Gy+9tWNovO1VzzMddd3v9/H3/t7fw7/+1/8aR44cqejydN4Hn85I9EtZLFK+973v4cd//MfxQz/0Q/ja176Gf/JP/gn+wT/4B/jYxz72fbf1uSTX/Nx9OQ/OeV6JcAqtl/kbI+H0Gb3C08kdZMUBEwFp+9XvUqOYLlPsIveKFEQhiKuLSK1I9K8LXiKltzWD5b+sbL/fS69QY0UXxZ33tC9Xl6GFr21rSK+Qfer0tYtsrY8hi7vpu1v5xW8a5akvy2drrxGLJdm+2Noqy9DEehO2sScWv00A7jVNiDCe6IddMXAt6/tcdFt5tubuysWwn9dBoqp5Dss1P3eHJHDh2lzDKoGppXKrJDWKTUKot2BePvvmv97tXr7bzacoLyrcknpJKph+KT68S7qF1emrv9eI1Vf13ms+qJvyKtUFJhrWGWyknZR0krEdroNAv594oAuUezkSmmNC5e73u5qi96pSxY/vOt1ELC//ZZkj0JeqS0i/Sxn3V1qmc/fBl+9r6AwGA6Tfx/ZDK+fOnQMALC4u+u/G4zFe//rX4xd/8Rfx4he/eOKc++67D6PRCK997Wv9dydOnMBtt92GL3zhC3jd6143cc5wOMR9992Hf/yP/3Hl+9e+9rX4whe+AMCBKWtra5Vy5+bm8CM/8iP4whe+gL//9//+RLmM4qWcP39+v03ftzAKnJG0cRxXAEBGnjNymO+kD2H0Od8toMqI5IsXL3rKFEb6arSuRv3uxQGtQlCXSS7rgDHWSxAbKBM18vetrS0wkphc7RrhTAoZ0s+Q1/vixYuew3pU3LlJw6L242c9njbQiH5LZ6PR2axbOd9Zn4LnjDC3dCSMEqddGYWtfPDaXuVMTwou30aj4Tm92fczMzMVbnFGUFvedG2H8obbPiUtUAjQ5/kcT6FknrQJP6tzgTrqscr/HwKl6zjjQ6C25UnXOix3vY57O25t8lH2nU2+aq85297dnASXIhcuXKjcg7iLICRvfetb8T/8D/8D7r77bvz6r/+6//5y7oOXIpcKjF/KsZ/85Ccrnz/0oQ/h2LFjuO+++/DDP/zDwXPe//7348Ybb/Rbl1/4whfiK1/5Ct773vfip37qp/Zd99Uu07m7Kvuau0MraT6w05Z86NTf2m33ENrvI8nO+73I6+vA8ePllm4A2OzejHQZWL3XRfvEsePyJkvGZp6gubRU0qgAwGCAxXYKtGN0uwW/58qaq1+jy3W1D8BnTWQoNleiNhqqTtg+0SOKYxw5kvgIop2dsug8n+QVZ1QZP6sa6Bf6qm2pD9/ZJp6Ypi4ynZ8ZjV/0SZQ7Xnp2EYEPJiBdWKhi8CEg10a+7ezA2XkwKHlhLLqiK8OCLzshX7aNLic9Sp67MDyxr+czUQBXoyhpA/arDderZDNFWafqx/J6vfK70ciFmPV6ZTlqBM2kxwy3PIZc73J8KNGemowLai7C4yxCt+s+t9KhHxfKp0rzqJmOHnWfHWVCXB2Mtn9yl8jV22swKLnb+30cX2qXbWAInuw4WF4uxvK5fpg+yQIJIbSnOOYgzN2XjD48yzvtnisynburUjd3h4anu7wixHGCKDPXptiUly7xUTvdcHrUcu1UyVuNlqe34ZISwoSva2XaEC1AC95LdBLLXRLqJJV7D0peartZhhjxzEx9clQtx9/XQui1zuN6/9My9LtCoSRNkWVRxQRqf3t71eP00caqELwvF7qlaeISjercysgG22agNBIHjEWAQ54K6wmwL63D2pf/2zml7vmozlCqE/tFjVUcG8cOSyD2aovg4foYlmUoKe3UjqyjeJ6LshhxTJrdSdNV8Fv7DFtHcyPKNYvnBAXU/eeisixz7XPUPgMkWYYsi4LtrJVC0encfW3JJYPo4/EY/9v/9r/h/e9/Px5//HH82Z/9GW6++Wb8s3/2z7C8vIw3vvGNl6XIxYsXcc899+BVr3oVbrvtNv/9P//n/xxxHOMf/IN/EDxvbW0NSZJUvDgAcPz4caytrQXPWV9fx87ODo4fP157Dt9Dx/zFX/xFsNz3vOc9+F//1/91l1Z+f6Lg9Wg08oCvjbomsEvOa3Jxk86DYKlGqiugqAA034ESwB+Px9je3kYURR4kDkV+a9kEgQF4oJkAuD334sWLvk4Cv3o+257neYW+RUFXtRmFYHeapsjzHGmaYjQaYXZ2trIF0YLCGiXO9hBEV5taihMFx/lZHRMhQJB1zMzMYG5ubgJgV7DcUpSo42NmZsb3uSb5VJsqXUuaphUb63EK7KvjRdvKccg2qEOD7VU6oLpIfB0PFmgPgffqYLEAue64sAC32ludEMrBHtqpQZvlZqa3Y1xplejoshHqoZ0G6mT4fuVFL3pR5fOv/uqv4l3vetfEcb//+7+Pr371q/jyl7888dvl3AcvRS4XRLcg524PKpTQYtHKF7/4xcqDCwC87nWvwwc/+EF/rzioMp27v8+5mysETSrFlZwChkC5Gp2ZccTXs7MelHyqcysePO0OW15277Ozbn32x3/sgOYnnywxzBtucMUTGOx2b0aaAlH/fLmaLAC9iItxnnzbbZOLLqKKS0sYx0nl68EAaLcX0cyG5WrVosmhxS/bDCBJUyRpjCxLJoAFLWY0ctiqYpoTwALBWE2KqmjpYFDandQc8/OlZ0JX0tQPDlDNlluYn69u8dYFuC7e9LJnm5RbddxedMlQFVnhjwoasK9mZkrd19bKPoljh+R3OpMASb9fZn5rt6soQp6XSUk5FpU3t7DB+X5UWcMmslD2g+Cxx5xR+G77Pk3LMc3v5ubK7LgLC1WDGSB/JI4Ugx374Uy14th9GeU5Fgd9d8DqKgcqoixD0m4j6XSQx4mnq11bK30QzD2bxEWF5P3nmFDe9jx3v3e77v+TJ0uHAp0kWVYS/RNlGo0Q3f9VHOf9QZKc+oaxPruADSxmD8LcPV2IP3Mynbsvfe5O4nEQROdtOU0jAAnibLHi9wxhmPyNtwrNh8GpluXaXN6aW5g+3STfBAZ5lfLKguc8ySKTcYxx2qwF7qlzhWfdOl7VIHHsEz0mBu0f5lFwDp9Us1iHVW7cKOft3cBcK4rSFjovZinQLvWxgH+oKNpiZqagTRNppmOgj6punG/7fdcOnReK7z3vnILmdU5SSmg7GxUKofshMF0lVI/tY+1rjZa3hmL51InPfDpHxjHS4lludtaZgENEu5pDh2Pc052F6JLU2Z+mHqTX7rC+Fj4LVEB5flYl7EWcpiXlRqFDZJ5l7e/IcyRZhiQueNJDNqvpp+ncfW3JJYPov/7rv47f/d3fxb/4F/8Cb3rTm/z3L3nJS/Cbv/mblz2Zv+1tb8PXv/51fP7zn/ff3XffffhX/+pf4atf/eqeFAhWLCAYEvt76Jz9HEP55V/+Zdxzzz3+8/nz53HDDTdcitp7CgE2RlAnSTLBD86knuTxbjQaSNMUjEpXmhKeY4HMnZ0dbG1tVcBOHsuoZP6vYKPlgw5FBBNwtWCyAocEg5kwVKPBCWASyLegqEYp83cFuAkME0yP4xiMDFegnAC26sbzlRecQDWTbCqIDpSA62g0wubmZsVBwShlyyuvjgHuBBgMBt7229vbFUeFgsE7OzsevKWONvpbo6ABB0JevHhxgutbAWbahnWmaTqhK/tVy+F33C0QoupR3n0F0O3YoL1C9DQUC6DbSHTbfnVMUDj2rKOC79bxo0LAnu8KonNc2Gh2C6BfCrBcJ9/61rfwvOc9z38OgcwPP/ww/uE//If41Kc+tWt006XcBy9FLhdEt/fVugcVPS+0WLSytrYWfHDJ8xzr6+u4/vrr963r1SbTufsy5m5d/GmEKh/gL1xwKwsLMipZ9tGj7r1YUDy4fiv+8A+BO+5wSS4Bhz+eOQN8/vMOACQWed11wPXXlyA6E4c2GsDycgutdupOWFkpo2O5cFpYcCCgPixzQZNleHQ9qazbGT3e7wPdboIWgVpdBIWAdK52NJoaQJRlaDJC267EswxgJGDuwNxhHrmFf69fPSfLcH6QAEgKjLiJREFp9s38fJksklnUrGNDVt5R2sPxLAMaMcZLLa9ahHE9uBHHHuBO06Y395kzwNGjLUSMXK6z1WDg+gsoF7br687w119fgueMIlckn51DW3M3gi7E9VwBXYZIMOiXw4M/L7ZTTAwCenAeeKA8gQvrTqcERubmqtF0BujxgL9GZRe2sGs4xUz0laYo27qy4t5Pn+YgLZOCxjHi7JjnZn3ssZJavtMREEV3ZVCRlZUyI9q5c67c225z7SjKxunTDrxnnevr7jNQcvI//rgrd3m5uoNAGxkCMfiS3w/C3D1diD9zMp27L2/utk463jqBySlJb1PRYBMA0PRAnMv3oSD66mrpsFOcstt10xD9C3p7bGXj0nGnu70syKz3BQW2swxjuJwPo1Hp4wy1Ic4i59i1N1UbRs8TgaoDNk2RZBnirDkxpVmamlLlok69N+wGMtv7of2ec1zxTgc4AKAt9zzzPKJc2BU6EV+ufFZnt9rLJtawYfp1utcJAfS9ItAr4fKYtCP/D734fMBtgIyeD4H92kczM24wzc2Vu8b4HJumiAqgu87/G8flqc5B0S8DBvK8mhGc44uDpohG39lxfaa4uALpvh/1eZSBBUD5rGGvH73Q1dmgtlbkXufiNEVUP7UG58Dp3H1tySVY0clHPvIRfOADH8BrXvMavPnNb/bfv/SlL8WDDz54WUq8/e1vx3/4D/8Bn/3sZ7G0tOS//9znPocnnngCN954o/9uZ2cHv/ALv4D3ve99WFlZQbfbxXA4xNmzZyte8SeeeAI/+IM/GKyv0+lgZmZmwmP+xBNPeAClW2x1XltbqwAneoyV/URDfr+iYKmNMKYQQGWUNGlGCEgTqLUR6CxfEy8qYKiAbZ7nE9zqBINDEbwUBTEtnYX+TlBVI4SpC4HWECBKPQmYa/JU2oWgchRFPqGpgugUHqPfs33WrpY/XR0TChKzLoLoPJeOBaWSsVHmBGDZN6oP9dOocZbNMuiwUECazhBG3lsHAEF5Rv7zPI49Bcs1CtuOV+3Dut0CmsRTAW0bsW0B873GWuh7tS/twzrrKGJ4HPUIRcZr+epwsLsyQlHoWu6VANGZHHc3ue+++/DEE0/gjjvu8N/t7Ozgs5/9LH7rt37LJ+K8lPvgpcjlgugPP/xwpW173XdDi8U6CT24hL4/aDKdu6/A3G0fPMkRrb/bY/iQXCyc1+FyRZ465RbaeV4WsbLiXoxQ73bLdW0Yy00coEz0kMAeddMoHbOI6vVKHwBQrudnZ7lmjRyIYAC+2ofvEHjMBbBNCGqjhQAgbk5GURXHK9d1HJsIaqBcnDYaZcLITqfabt0CTISWi0QuqihcQPPldSyOyTKk7abvWkazt6iXdTpQcS4o47gMYbQJQLnIJHBNNJiLY0bDcVHO9of2UxdbmXMToJambu3ptjVLu0ajMjHaww87QJ0Lcdooz8tINYbs05HEdqZpdTFugZWAkBHGglv+Sx3j2ieFreJ22V0bG+GhBCBM59Lrubaur5d9E8fVXQwFDQ+yrETStE2M3CfvjF47IQldA4UchLl7uhB/5mQ6d1/G3F1z3dmveY/QBNMhwDGKY0CSHPMWwF0vxWF+Tmg0qixXvjwFsvmuKPzMTLlNi1Jca2NEFV+wpZSh8BaXxKje51R5PYn20+eFQhilnudR8HamU1scF3OKRVrtc0gdMKz/7wa0h+493uGRlkC+LU/A0drz9XmB26L4uY7k3uqoPDg8TgF0Pb8Oldbf93JA2PZpYhB6Wqi7jjOgumtMn/X4jFTUE+pSVdEztulYq3PasDAz2e/mo5hoJ/tDdwcoD5wC9Xq+7mCk6IOR2j60cyzQDiZBB6Zz97Uml5xY9JFHHsHJkycnvtfo6P3KxYsX8ba3vQ1/8Ad/gP/yX/4Lbrrppsrvr3/96/H1r38d999/v3+dOHECv/iLv4g/+qM/AgDccccdmJ2dxac//Wl/3mOPPYYHHnigdjJPkgR33HFH5RwA+PSnP+3Puemmm9DtdivHDIdDfOYzn6kt95mWEABlo7/1u93AR3uO/V/r04hcS8tho37ryggdZ6OgLTgeogAJff/9AJAa5UxAW1+Mug7pG6LkUAoW3S2g7Q71z1662QjsOhuqTeqA31AC1d0ivVmu7X9LyWL7pG6sWvBddxJYe4XE1qGOprp2W5vt1lZtr/2fn0PvoXbaNteB6c+UvOY1r8E3vvGNyj32zjvvxN/7e38P999/P26++ean9T5Y13e7vQCg1WpVXrsBoFws/tf/+l8ri8WQdLvd4CIvjmNcd91133d7n02Zzt1XYMyGnuz3m3SnWEhZhhGuMQj86TrIUnAGsUj7gx4QWtDs0rSJ5tWVq7awJ9qFTt3voXMD9Y3NY2qey3EEixcWXPifUpjYCGi7aAjZxkSrV0BpLS9gojQNlBk6f37egRYEvkk0GpLZWfc7j5mddefOzblzFxZKwNrqVugQ5cMJFRg1FuXDah/QEZFlzsPTbldftC/bpSABuehD9jZ9WTuWUS7QPQBl+9BQDrAvuW6miZVRpVJHyNkT6mMLkNhramurOr5DAIm+10kdyL6HPNtz9zQ52TMn07n7+xuzu12COjwnjtN5SKjP9hIeU0lsvJtSep/fr+II3270lryrsvqbVTTQ0JAqFs/1p+12H9B7rL237zYxhJ4bQmB7HfiuDdlljqp81ihhguChROb2f0ZF67F1Eegh4+72bGXbVvdMautsNKrjjHM927kbVaUA6Tq+Qo+DlR/r7v16cDGH2ql3Yu627QzZ3/YNz9vt9SzIdO5+7sgeT3eT8uIXvxif+9zn8AM/8AOV7//f//f/xcte9rJLKuutb30rfu/3fg///t//eywsLHjw4vDhw2g0GrjuuusmgIvZ2Vl0u1284AUv8Me+8Y1vxC/8wi/guuuuw+LiIt75znfiJS95Ce6++25/3mte8xr8xE/8BN72trcBAO655x68/vWvx5133om77roLH/jAB/DQQw95L/+hQ4fwjne8A+9+97txyy234JZbbsG73/1uNJtN/N2/+3cvzWhPgyhQS0CvDujdDRgPgbcKqjLyW6NjSbsBoMLNTeBZy2AdFuxmGyyAyjqVk5zULjxPHxptZLJGwttoYB5PXTRhqkabMgGr6m4BTraX7eDvGrFt9eP5pH5hOxWwD0Xo63mxTA51ACz1YcQ6+cjZXo1e150J2g/sK0aqa32M2Ga5Olb0PHLnK/c9+8jqfejQoUqi05DDhv2hn9lO0sno+KGtFNxm+0ixwn7WMcIdCBQLmKvdbYS96kxnQF3kuV4XV5LG5VJkYWFhgt5kfn4e1113nf/++70PPv7447Xe88uNRN/vsW9/+9vx8Y9/HPfee+/EYjEkd911F/7jf/yPle8+9alP4c477zzQfOjAdO6+rLmbD5F84Nao6lBEE49RUJK/F+DjySVH49JuA3/6py6QhkwsZIDZ2nLfbW87MJHAO1Di4H7Rn2Uu+pVUM4yCYqQ1t44bYNsebgPkBgOUkeh13KYsz36mHdQuuii1AHscA1nTRbFplHPRXgZW8bRh1kTSScu+4TkEe9MUmwMXOZdkw1IfC5RvbVUzu2pfKTWJinxH02QZEPWeKvm6ez3XQaT/UBvQfrr1uN8vM6wCrlM0utxKu+3oX6gjy6cwcr0oP4pjNNMUNy91XXm9nuOdX+tX+ylN3TaIra0y4pr2yjKnY6NRRi4SfMky912n417qiBBb9vvO3KRUt01jhHyeO2YVADh6tOCbZyT41lbZzwTu8xxR/zxuu61ViQ7lTo4sQ3W86XXKC4u7F44fdzQu3A3Ajk5TV/f6uns98kjZP3NzJZWQAi86nvSzLvQ12k0SJO4lz/bcHQS6dpMrkOflWpXp3H156+4IY5Cvu264cjlZyX1sgHMGi2sqDutb0/85tdhA3GEncQmllVOGJ6kzhHNSjdJcQtkNWcRC0zTgIN0NeOb/IaDX82pVuaGprvXhuCJsfKbhlQZAehAU1Xi6Dp0n99K3LKx854NNCBTX/y1IbgFV3stVJ+YdseXtBdgDYYd+CESvcwLUeixEqK++awcprYsdV+RFV53E/s4ZX82ho2r4IPAsKZOmsx94wSi1jHk+XOx2MUbku4/CxwcMRG8d+PYC0OTpduyoHqEHEJYdcqbrxW3PwR4OMyPTufu5I5cMov/qr/4qXv/61+ORRx7BeDzGH/zBH+Db3/42PvKRj+A//af/dEll/c7v/A4A4NUkBi3kQx/6EN7whjfsu5zf/M3fRBzH+Nt/+29ja2sLr3nNa/DhD3+4AtZ997vfxfr6uv/80z/903jyySfxa7/2a3jsscdw22234ROf+ETlIeWXfumXsLW1hbe85S04e/YsXvGKV+BTn/oUFhYWLqmdT4dYuo2LFy96ehHl1Q7xkwOTkcsKIir/t0b1anQ1gWKCgayXNCcK+CqoawFDpbhgnQA8oKxgt9apgC3PU9A+BKBr+9geTXRJcJnJWEmJo1HVll6G4HRd3yivu+ponRw8RvtIQVkCw8rDrtHWGnVNqhXqt729jZ2dHf/O/pmZmcHs7Gwwgp3nj0YjbG9vT9Rx8eJFDAaDir50uOg7bUA72/HI9tF5wTFHQF056S2YrZQvdOxwzJDKh7RDBLOVukZBfR6njh0d37ZOHYN2fFD0/qPnKKjPc5VO6JkG0veS7/c++JKXvAT/9//9f+Ov//W/PvHb0wmi77VYBByf5iOPPIKPfOQjAIA3v/nN+K3f+i3cc889eNOb3oQvfvGL+OAHP4h/82/+zb7rvVplOndfxtxNsFAXAgQWgcmFkVKG2AVpsWC7uXMe3f+5hW98A7jvvhJz7fVcNDrgAESC68TDicVy7dFoFAvPLHPAJ22kIG6v51bzGxvlYrjddvQXWYnfDgaOxWNjo8Jy4nhH1ZFgOVwtokAFdds4Q4OZEJOV0l6FXnm6WBTr+M/jtAnA6aWLKjJrABFmZhZdAFXnGIDCjg+Wx6YpcN11CRqNBK12XO7Bp37r65PgBQDcfrszeLuNYVxywlb8AH1n4lY2duD5+jrwne+4jltfdwe+/OV4dC3y7ep0bkTrznYVHKDBQ4sa5arlOwfD0hKGeYSzZ53ai+2Cb3d11bXxzBlHUaLjlBzfHBdc0DIpK3nAKdbZwe+IKj35pPtc2ArdLsadY45TmMcXYMRTvchzlC9mw7KOOMbmIJrAKc6edVVvbADtdguLy8vleLpwoWqjPAfW13FzNgA6Kc6fbGFrywXTJ/G4yqPK9vCdwD+/08SiSv3DHAG9nuNcevDBauj7LbeUNlSgQhf96kDR8X8ZIPp+5Omcu6cL8WdOpnP3ZczdMjYJ0CYAFtvFunS3jfipy9Fx9kzJpjUYOOccmb4shsnLYTQqL2XLnuJuX4nLFVLU4wuytBq8b5hrTO+Ro1H5iMLHjTQt7nl94zS0aCdlNKrSYGhIvjzTxFkVCLd87HU4shXe560/cWYmQqORII4TNNtp1dFpk2iHgEwLWNdVVvw+RgTEiUsiClKbjavzAucAS0diG2yBXK3L6hS6Z9qyQoC5Pc5KqJ32970Aej2WInNnlGWVhPF0ePN0Tl9ZliChc1rnXXUeaV8Wz4xRmmKx3Qay2Cf0nHCuAKUtFUy3c60+i9vndoLoFN1dRyC+zomlz22x210XGpLfr0zn7oMhhy5eBmLzR3/0R3j3u9+N++67D+PxGH/5L/9l/C//y/+C1772tU+HjgdWzp8/j8OHDz8tZROEbLVaaLfbOHz4MG688UY0m00cO3YMjUYDCwsLmJubQ5qmmJubAxNNEuBWEFfBcoLWm5ubyPMcm5ubGI1G/mXBWwC+3Ha77ROaMmECQeuNjQ1fvgVUedz29nYFOCcIa2lLFKjl90yoOjs7iyzLPEhM8DlJEn8+k3yyncpPTnsmSeLBNraXQPRwOPR86pubm8EobL6Tmz6OYzSbzQonvdKIEOhVQFZ3AqhoNL2CsNvb2xXbjUYjb/fBYIA8z/1YoL04LlQ0kpxtZl0E1a1Tg04J1Z3CNlnO95C97G4B6qPvGvnNyHG+kiTxfU/nhOWZt84hjm3lq7e7OBRA16h5y/VO4D2UkFQdOMPh0Efq06ZXEkB/+OGH96QveSbkX/7Lf4l/+k//KX72Z38Wv/mbv4mnnnoKf+fv/B187nOfw7/+1/8azWZz32Vtbm7iTW96E86dO7cn71wd/Y8uFt/whjdgZWUF9957r//9M5/5DH7+538e3/zmN3HixAn8o3/0jyo8pAdZpnP3/oRz97mHH0YrScqHcF3UhR66NfTM8irzwb9Ykf/50g/jf//fS8ybmKQCxq98JfCqVzmM/M47y9Pz3OF8CSTajMkOL1wowU0KM6IdPw7ccAOwvIzHj78UTz7pgAHiyf2+w1Cf9zwHQN560iTl0oRoBDS5WKIeLPCxx1yyxXbb1dtoVPmi2Zh+Hzh1CptLt1awTg38sQsU2oiR+/QRXLjgHBDsEmLCDNZPMHTg58MPO91WVqoLLsBV/Ff/KnDnndiMW/4Q6sSmUKdFPOXKXF8HvvENt5JcW3OVvutd+Orplh8W8/MugJzDIk2BaPWhyRDHfoHQLyxUx06R2HMzXfTU4L2e+/n5zy9A49PfcuOABPtskwXRFby97joPAo9P3lrZwKCBWe12kXSPlTPyfmnJ/bi8jEd7TbTbQLP/hKu73cY4Tnzu21OngOb6Q6VeaYphtuivAzpJ2C7We+pUUXdoDPLa4zXHTlfnli7k+T+PJWACOPsOIpcgjUlMOQBWV13f3n8/8F//q1Ps5S93g+vVr3bvHEt0TKgTynKv6n0iTbH62GO44VWvOhBz97k3vtHdG/cp54dDHP7gB/c1d09lUqZz9/7Ez91nzqC1uOi+VEevBd2MY4vgOpOG8n7Ee6L6YAmsa3HMt9xulwlGl5fLTT5zc8DxI8PSc84J3VKtcYIQerJx1griyIoheyBYn1XyvFSceTUUUGfwD+9LuhOLya47nUpSU865NGkIn2exIYCReL2C/2nq7EOWsqh/vtRd2xLaCqAUMfpcFgCXh3kUxKfjuHCK6wMI+yjkDNV3nhOKYA6B27YcbVfoZQ1pyw8EbFSOqYvetnXq72pbsek4TiaGl15G7MNmPCwvEl5INqgjTd1AOHLE1cek3PxNRefxkGg7uR2NA1ajVGgnjg9ea0ycnmUYp9V1aYRxqUOh+zgtAyweeWQVt956w3TuvsbkElwRpbzuda/D6173uiuty1QuQWw0KyOQ66Kv6wClUIS6RuRqFG4o6lajrjWiPERlYcsIUcmovlEUVeqw+hKo5Wcm51Qgci8e7RCFhk3MClTBUuplk7GGQHQeo1Hm2kf83lKi2L7V/tW2aTLMuj6zehHIZeS3gvoqpEmhXjZKXoFsdcAooGx3Gtg+npmZmdj5oMfPzMx4PWwyXbWNfsf/eQ6j020btR7axPLd27FhP1vnhpU6Shdb/9UYgX6l5Bd+4Rdw991342d+5mfw0pe+FE899ZRPqPJ007nsJR/+8IcnvvuRH/kRfPWrX913PQdJpnP39yF1q9fQMSHRRdmZM4iXy+SeyocOVHe9UrieUIps5CgXDlyU5Hm53/vCBVcQwTpD/UEMQV+a46ySJEwXg6EFHoXhSRsbpbOh3S6TT9bYlHXXbZXXUxhEzWPPni2Te164UM3JRqw0z4EkLQrULcW6eDULXgLzrIuAboXZieezI03kmgbm53m53X5mxn1uKVWOFbs4LhZ4F866Nm9slGDzxoZrd8I+YJ9TdCG8vl6CuTMzpSMkjj1mQJxcgWwXqN2cjKSURW+FCgjAOE4m175KkyKdbIcYz5uZof2biAjw2MV0nrvoe6CMBqfyOlYV+SnawAVzngN50ZVxHLmkvToYOUAJ2M/OVsdOSC9tmAXwVI88v7Q94c+A7DZ3T6PZnlmZzt3fp4TusfpZgFO9XWxtufsg6VlsslBe1qFHAaUhU5w1eO3o/QGBY8zx9icPoFtgdi/RBw2G0fN9l1O0nfrcYE2q71b/OK7m36Q0GjKH0Ggh4Fplr7ZyPiqcJFqM5gHNMvfMwwjjxILTdc89QBX4rYtIV33sXKRtqZuvAm2qfN7tZRtu67O7Cmt0iuIYcRzVqs3uGqcJojifHMs2izhtQceygud27gy12x6rCgGuc/kQp4NtPzYN2SHw1X4utWdSpnP3MyOXBaL3ej38u3/37/Dnf/7neOc734nFxUV89atfxfHjx/G85z3vSus4lYDYRIgECpVuxYKcFji24KaKgrGWGoUv3bZneccJqFoqGKuTpc+w9e8GaBJQZZSx5YO35Sqwa2llFExXqhflfmdkNL8niK/OC9qVoO3Ozg40GlqTZap9bd8oaK22thQhcRxXnAm2H2zbQ99bR4faYLd+U/Cc5yqYvZdQT9pEaVYsuGr50q0zxtqUxyq1ja1XhY4E9lso8p9lWVvVtdsC9lrWcxk0D8nNN9+MF7/4xfjYxz4GAPjJn/xJnzTlWrLDsy3TufsSJc+BUMTGbosTewxFKWAWFhDHLgCYeB8DdQYDB5BaIFkX6lysJnWLKA2V1sXK/LxH4BkBphSSaVrmk8yyclHut9Yqt7NGfmn7WDA5opW/2nKMy4Izjqv05NoF2jRd583MlAt6rsE0CE3zjMYxquAmG28REDE4deLXMzMlDbec4MpRPlEq0ethaanlgW7mA01ToeTMpV6eryF62qg0xRAJtrfDeGueF3U3GqXdWfbcXBkZTXSIIX/SL2QnmZur4tBsvy/PAgZyfpoC6BcL7v55NOMYnU4TcSzRaWzrYODoB9LIA+aWEUWHcwW10qi/OHbtUVuqTbVvjMMkwjgIriS2fYxm63Tcjo52u6Sy0ZNDwEndKlv1vAoTeNXO3bslxA3JVeYgOGgynbuvgOi9IzRvFwAhEPmfeRvWdxV1butcwcvZ4r95Ls7pSwGz8rzC8W6bNQGgqyL2XklFLfLNMHp1uBodtV2Kb9KPTyHVTAhwr5vqgrKbfeoAaq2QvxcVu4jiqNIvmi+UdiRQHPQKhHSzc46A6HZu4eFRFk+WWecEsZ/t3FanS0hXLdMC1LY+PnQZW6epm8/pb+Hh9MsDEr2tOjChKVCNKNBnitDcvh/RY3l+qI0cdKQZDIx3O5V7up/AmLsUFZ9Jmc7dT79ccrd//etfx913343Dhw9jZWUFP/dzP4fFxUV8/OMfx1/8xV94btmpPH1C6hLScBBEJj/3YDDAxYsXkaapp26xEbkhIE+jyBW4JW82RXnYFQAl+EjwnEC+AtCW+kLrs9HWBMNDDgHVi7Zg5Lg6F3i8UqLws9KeqD2UR5x1UfetrS3/P4Fd6kF9WY9GovN39pVNgEq7KiDL3xgNr8lMtR2kWCHwb9tUB37rjgLlE7948SKGw6GnHCG9iToXLl686PvZRoOrbUK7Iy5eLBOaqvPBcubT7iwz9KJoWRTr9CBPukbe0/lCe9PRURdpT/1V35Djg+VpX9modwXkLUD/XJI/+ZM/wc/8zM/guuuuw9e//nX8yZ/8CX7+53/+2VbrmpPp3H0ZoqFkfLC3n3UxHoqWsRFF5BYB8LKXlXjzxsb/n723j5OkKu/Fv1tzpqamp6bpHXp3m2WAARZYcMUlbBQQFBWNEF8To7kmxhg1l5jkKmhMMJoYA3k1XuI1al5MjHoTvdGr0Rsvor8ICRGim7BXV93IIhsY2AGG3Wa2d6amp6b398ep76mnnj7V88LusGA/n09P91SdOi/POVWnzvd5zvcB7rgj3zrOwIryfTdNi6BxamwgpiBt52X6Ak2Sz5lgL4qxDqXj04knAhs2ZHm27OIphQ0oBVMFalW3aHBbxyUXh9xCvWFDzjHN7bJclLES2TVyJ7lv7SjVT+9wjRlIp2BWgyB6mM7m7uBEasfHi673lKygKC7GlxwczLYpRx3nqYY0svnISnIL/N69OGMiBbY2MJParb+k45RDp7DVWnpnSQ70KMJMEqI5nataAhLMG7VaTtsiO9mYHOw9dMi67stt+5nCKqaNaEPoNjDIdawDkBjIlfV10b/sz0rUAfZN2zSTkwCAsVoNY3EM7G3mnvpiB0UYRRiLrVKGh4MCDS0X5UkCVAhO6LbJRbfkOJWLcx3PgIOn1UIQx0izbf50Wqtk9+mBpIIkATZvj4qL81oNeMpTcvCe2/4ViFLqRacpB7QF6XGWx3vu/uAHP4g//MM/xP79+/GUpzwFN954Iy677LLS9LfeeiuuvfZaR8X29re/vYuK7TOf+Qze9a534e6778aZZ56JG264AS9/+cvd+Xe/+934rd/6rcI1mzZtcjFVHg/pz92rEA0gLufeyu5TBr3UjxreqpzOCRpqOyyPyx1RvIbTX4UTi34/4LNCA9hZmsCYPEynmwDRPWnyOhk42QfM8ltOJhKIzBpNINgY267BwRxzp+gYljJr+ZEiMUk5J9pv010vWTdfRr5CKdk1xoSFpJwyCpzogDV0yDx8Rgp+i3mmg6DQtb5XDMDywA8OhogiW59KI87HgqR2A/we6T6daF1lHxcDwIQ5uC0Bcpmv5umReWWe4kEcI4wibNoQF9orq1XQu7xx5M5JPWfT0C8M+wW+etavTA+8IUnRxnHPdxZZSfnSybKjqED3I9vRQWA59IVBxmfUOh6kP3dbOdZz94pB9GuvvRY/+7M/iz/4gz8oENxfeeWVq4qe3ZeVCYG/wcFBDA0NORA9CAKQz5kc2FEUYWBgAAsLCw7opeduLy9wigTRCXQCRa9z1onHJNczgC6wkOkpkkJDfsIwdKA6Az8StF1YWHA6IK/30NCQA0m18Br+JrVJkiQFwJeGBvKcG2MKZZI/XQYSHRoawsjICAYGBpzRQlPRkG9b07dor2nJMy/TsH8liC77kB7XEjDWOxMkKCxpUbQxhJ73SZIUuMJ1YFkJqmt6FZmv5iKXbdZUMtL7nTqW40iD1hw7Uk9SN9IIwh0L1BWNLRJUZ91pDNLGAwna64CukpJGtlcHK5XUOtLQIcfMk02e+9zn4pprrsFv//ZvY3BwEOeeey527NiBCy644JjSufSlKP25exXSagHr1hVf9OVqmKvrspd6IH9xn5qyq6nLLsNs/VSgafnOazVgc20Ws6ig1bI0zJKKmc7Ceu1L2mxjYGkn5Kpfe9DKRVmWNkxnMRYbjMUoogLNJnB/K+fwiCIkpuLYQSSAXasFmJioIK5VEEjqljTN+c8zXtWOCfHww8BiYgNFRhEQCC7qIG3bdiRJDhJkbeqY0PJhN1sIjUFlfVxc3ci2UUFOWQZooUjeSdJaAgwUzu0ZwBHWOojj3CsxijJP6mYLQRQhNAadqIJWXEG1kdgOod4GBix39s6dwNatqE5M5AC3FA24ysVgpv9ZU8Whg5bGnTiwxIJZv/l5oL1+zHpQ1+vAli3FsjheicJTBzLDqSkExmBzo4F22u1BBwAziQ3+GjVOzY0pmVTjTk4efPAgcP/9xQUzAXd6g3k8zqpRhKoCJg40A8zNAZUNppgP9Qbk0XfVar4TVdBsArXaGALNj8ybKYqQJKHbaW6xCwue79xpm3T55RtxxvbIju1Nm+zNOTFh8yLpOw0oXUiCqKcGPSgr4CldC+k1d3vb10tW+G7zqU99Cm95y1vwwQ9+EM985jPxp3/6p7jyyivxne98B6eeempX+nvuuQdXXXUV3vjGN+ITn/gE/uVf/gVvetObsGHDBvz4j/84AOD222/Hq171Kvz2b/82Xv7yl+Ozn/0sXvnKV+K2227DM57xDJfXU57yFHzlK19x/+sdoGst/bn7MYgP8NTnFdhKL2QJovMyUrqccEJubJMiY3rww+wZw8PGRQ5Q4fzjAzL1/SWBdllv+b+8RryzyOCHEheVRenfXdXJviV2XeCJBgBtpxAALh+71IE2grO6XbeanhN9uvA1hA9xzzM4AHfx2fktjoFg+qHuiY75+H7L8rhLLA3QatrxQdp5DaZL0bHn4zhAFFlQPapXrSMD26yDq/r0I/UkdN9tvLDlOM9q3/tqmuYBvPnslnO2AJ4DY6xRSM9n0iAkj8lBqD3PYwHKiy6292Ol6N2u53nDoKchoizYvJfiSG5bVHpKhJrluw3fheyYCWGyvAmkM8Dv8SL9udvKsZ67Vwyif+Mb38Cf/umfdh0/+eSTH1dL/Q+aGGMwNDTkvLDpsU0QGEAhGCiBuzAMvZQUUgjoEQgkOEnOcXmdpieRgLP0RAdyb3XpJS4pPQiMa4BeemoTzKSHPYN/Dg8PuzoTuKZor2HqggC59KDmOQZ8ZBp6ZrdaLSwsLLh2yB0BlUrFBbSUIHaSJJidnXXtke1l/SQgTpCb4LmkqZGUOvq6IAgwPz9f8IjXlCOSBkV6c8vAnexDgvIaPOdvjiu9m4E6ZDtpgNEPM6lD6f0tvc9l/8lAshKAlmNWG2hkIFL+ZnBTzUsvd0OwXbyG51LxJiK90+U9oftYtk0aGXwUM70olp6ocvPNN+PZz3524dgZZ5wB4NhyovelKP25exUi3an0IlwuPnR0JZ6XL+3CU3vfPuvxfd7WjgXXb7oDlUYDW7Zc4tZ9XDP51tKyqNFR5KCzBmNlwFMuKqenc2AdyIN20QWe/N61mg02aQxS5PGhHn44pztn/MY0Bcb0QjfjhJlNAjSn7fWkrE5TZIsOuyBZv154irM+zK9Ws94/MsCXXkDLwJzyHIFoeY1cvEkvYKlU6ixJEGV82W5Hs+SXjyIkJsTUFFBt1HO3vBNPtN//8i/WE5vWh1NOKS4a9XiSi016T8cxpqeKge18Q5DVP3gQGB6uAKYCxEU1sXm18SoCdDDTCjA9CdRqIcZik4/TTMKsrmFWt3YaFJJQlXbxn3mgM+DnwYM24d69xUpPTNjItUQQuB9cojYKnECthoUjG7G4aBezob4pABfsDACqtU5hC7qkhx/THpkc8/V6gd2At0uSALt321i09Tow8owq1k9UEXJ3QFqxOx0IojNImayjphHSbfSBDceB9Jq7j/VC/H3vex9e//rX4w1veAMA4MYbb8SXvvQlfOhDH8Lv/u7vdqX/8Ic/jFNPPRU33ngjAODcc8/Fzp078d73vtctxG+88UY8//nPx3XXXQcAuO6663DrrbfixhtvxN/+7d+6vIwxaGS7EI4H6c/dKxfneQu4cep2DwkpmK3ESfk49oHp+hL56NIhH/iIW1zM43oCQLQhtBRpPuBRg5tAtzdyWewFMcfMtAL3LOOrSBn+7MOriZuymg6UlO820kPYk2EQRXYHUWSc1zVfSagbLg8L1C4a3Zf60J4FWuQ5n5ECAHs/QCd/75Be0778fXWKIswmdm7UATelI7nMUjeF40ZM+zAmRJVOCaxTL4cN1Yn0qC57NTUmsHeJb1AnSTEArSSvHx7Og8/IuvnebfR7jbxh5DyZefD7wtQAedHGBPa9RL2Tt9PAxTMB8m++YwLA4mJo9RtXXZ9ow0ZZV7PKcqoOV4ygrp305+61kRXvQ4iiCDMzM13H/+M//gMbNmw4KpXqS2/RfOGaukRTUQDo+tacz73K0fQXmhtdc1FLoFB+pOeu/uj66DbqcuRxgrGaJ17WR+tFU2pIcE6flzQmPo9oSX8jg5ISrCUI7tMb2yL7RusAgPdaHy++zrsX6KipSCRNiY8L3acrfe1KRfev/F0mPj35fmsDgvxfA/CybKlTPZYkP7/2wKdOfXXR9V+tvp6Iwol87969+NKXvoQ5uqKge/ws59OX1Ul/7l6F+FYf/Pah272ELq7G5GtNIpKZ1y4XUFJWUkThIrEw6QKMZdu4CCb4SaoP6SqG4roqSfJAa24h4llcEnTlZ34+v55FuGK0t5Csn++3rr9sg4wEJxf5ui/VIq6rA9K0sMA3prt+rIJrPwlWGXSy2bT1YcM16iL7q+Qjm85h5BuWaZoDNQyIpz9UUzsN3P+F/tN69a3CVTIdbM9VhG2WfcO+4OpVota+PhU6c2WU6GhuzqbpICiMR2ZbaGePhaTsIladhiMGsEWthna2Q8MHSnmlbOHqe54cB9Jr7l5qzHo/AGZmZgof7jaU0m638W//9m94wQteUDj+ghe8AF/72te8db399tu70v/Ij/wIdu7c6RwzytLoPO+66y5s3rwZp59+On7yJ38S3//+95ehrWMn/bn76EnXo8x334kE8tnv+2hH2l63sn70d9UDPf73NcL34XlxvYzj6Jsq+b/vsVuKn/Wap8ue4WmK0HQKj2Cp41Lp9dzslUbrRJ0rXKLTlr1seY7TYCPnZjlXs/m+15eyD9MW5rKSZ2rhXPa70wPeKwyXpcaZ5KKRL2y+ebtM17qOnhtHesxrPeri9PyuOedZTX7ke6fsiyTpTis/y33fpkf68ST9uXtt5u4Vv7G99KUvxXve8x78r//1vwBYoOjee+/Fr/3arzmLQV+OnUgKDMn/TNFgKL2p2+22o9eg1zKQg5j8zW9NSUFPYum13Uu0Z7XMF8j5zmUwTlkfH3DJcnkt6WykLmSZEjyXHtU8T89mAnOSr1zS3sh6+XjJJdhMWhLWhW2jF7b2fmb5PM6+kZ7oOlCq7mNtMGFdSW0jv3U+0lAAwO0iaLfbkFz0Pg92bfyQ40aWKb3p5ZhiHaS3OD3R6fnPfHXQUfapvgd6Aa0a1JY6JJ2LTKupWHxGJenNr0F76aWuDRDaiNLLaPBEl0ceeQSvfOUr8dWvfhXr1q3DXXfdhXq27b7vib520p+7j4JIoFEf9y2C6T6cppYfPEtTq2U0ymmae0uPjqIWW2/XiYnc03tkpOh0xcCW/N8Cu6p+Qmw6+5wMpVeTdLOjp5YxFvyVHvitFqLGRufUzoCTadpj8StAT70gknUvrPV13SUyKVf5rLNsA9MYU+oN5wrTiIev7vJ8mrO/RBEsT7zwbDP1MczNAW1TQUgPGH7X6znFB6O1+uouFcE0UYROXO1yPKOnnsxG9gP7xccZL3VPNdZqGXdvGXAgCks9OAnl8GFgbi7A+vVVhPU0p8oZH893AwwM2N0NmmZGbgNnJYUnOZDz8IawdDoaQAijCIODdpzbS0NXT4JFADA6WoGJKzaYqShvNg2d453+SNtKkth7QHq1zs0BVUlfJEUBWq5M+X2cSq+5e8XByTJlnXLKKYXDv/mbv4l3v/vdhWPT09NYXFzEpk2bCsd78ZtOTU1506dpiunpaZx00kmlaWSez3jGM/Cxj30MZ599Nh588EFcf/31uOSSS/Dtb38bJ3KHyRpLf+5euZSBWl23Xg+kzJjcU9p3Tj9X9WNdM1bJUA0uDnXieUjLQvT8pQvUx8Wnkz0DfUB42a2r52jqIP9fBEX11WmZ0iu5tywfJUgxcf7tA9cVyCwvLaTlp8zLX+aTdayeo+Vv+cpYhnv7Pl2P1zKFLfEM5iU+j2tjAEQhwtgzztLUz6PPdutBreOQyAr46q7GjgTQJWAud3XwEltURqtiUHgvka+uujh+iCf7XuPlu1TZtO2u883tx4n05+61mbtX3Pvvfe97cdVVV2Hjxo2Ym5vDs5/9bExNTeHiiy/GDTfccCzq2JdMyPssvZsJtALFgIWLi4tIkqQAVpLKRdKzAOjpJc10BLvJvS4BYAmESmCSdB+SXoaULYODg4VAm2yfrgtlaGioANwGQYAoigq6ILBKwwEB2U6n4+hZJJ82QXQC85qahroBctBXAuwAXDupF+pI6oaAv6R64TfTzM/Pgxzt1K8EvWWdZD9Lqh7Wi57w5MSX/SP7aXFxEXNzcwVQnXVgvhTpaU0dS/51aRxgf7Eu0mCi9evz+Jc87CyXnv38nwC6BLY5LmS9+b+8T9hvNHjoHQESPB8YGHD0OjQGsN+kAUPSvMgApFJ/Oj6AbzeCNNw8WeSaa67B4OAg7r33Xpx77rmFc30Qfe2kP3c/BpHAKtC9mNKLPF5DOgtjgCuucAEfz5gQAayiyIKKcYxGlkWzaYH0pz3NMoDIF3sGKyusHRP5Ty6O5zFhQMsQUW1zoQmBDPJIBJariWyLc2W8DdRCRzlN1hLu5l1cRP42KZ6FPOcDJrvWH1KfRD6pQx5bWMhJ4jOu9XYaWOOA9nqTqy8p0njAc74t0m5bdw42B8ksMNnMAX1jYBqn4tFHLdXNqdu32+snJmx+e/fm/09MODBdArAFMBc5LUmaAq3J7qZwEUlc2rcWos71Lnu9vq3VVHBYrQMBxmhPeO5GWFy0beeaO46Bk08ewyZagmi4oRFhYgIPTIcYGMiBpEpkdUDqgTjO6H0Ed0w1zvQ0OVXkuhVKiaIxd4kcQgTRSdM+OAjU65bHdHGxatszXfT2l3ocGsptArxdOPaJ9c+On41oy9kImgeK3AldqN0TR3rN3aWDr0yytPfddx+q1ao7PNSDTNbn+NDL4cCXXh9fKs8rr7zS/X7qU5+Kiy++GGeeeSb++q//Gtdee21p2cdS+nP3YxBT9Mp1z1spHsQtAGBMiOHhnNVCGrM11spbQdpJ5fOa35xLoiibTzRIqQDaroe2rLNvIs0KJb0Fn2Wy3kt5fsvq8BHGOZ8AZheQ3gssVaB3YAxo2B8cLD5vdR2MCRASzKU+fMBuWUM8CHVHGFid6nieEyuf4Twn0yjebs4ZHCdSZHfqY7qrOU4YsLWr28ueubr/lQ75Ld/FinUIMDBQsTRwAKL6ZvtuKPnEZUaZDgHPJj/1rmJMaLnd5dgo6bs0zT3GW60ioM48BwbyON6aEa8sa1nsUpsBNU+9PO/N/zgF0vtz99rM3Svu+Wq1ittuuw3/+I//iH//939Hp9PBD/3QD+GKK644FvXrixACqxJI93lpE/RbWFjA7OysAygHBwfR6XQcgO3zsuVvfksQnqAoAUzNky09cjWgLb1yK5UKjhw54ryUtae29LSXXr8a6Jfg/pEjR5z3NAOs0pBAsJje+NJTmDeqBEjlh0C2DF6pKWgIyBNEl3pj3uw3zZvOvGZnZwuGACD31teUKwS52T7tDT4wMOACs8qgs0eOHHFe3rJvpIf57OysSyvzoz6Yh+xf9h3pbGSQVR2UluOD45UGBOn9zg/T0mDC/9nXvgey9gpn/ZmPTitBdN13eqz7dmzIIK6ap13XRYLo1KXvnnuyAek333wzvvSlL2FcB9RDH0RfS+nP3asU+ZJMr20tenXN6wBgzx67Otq2Df++K8APbWtbcFXSh2zZAhiDzaaDRsPyS09PW8y90ciBQCAHPhnoKEjbeVlqgcmfxHy5iJAL+TF6zkqeSa6YiUY2m6jUaqjXw0ITuYixxXUvbFm+j1WF9XBrK4Piiz15znWktsVFh0YcaAZoNoEoCjEwEGJ4uAoTZ6As694DHC7oS6+OBHgRRUAw9UC+s0BsjTXbLTA7OQk0dpwPwP42Bjh161ab79atzlAy08q3HhsDIApgsgVpmgLTU3kMWu6WZRexyrVa7uzOamvOVb1tWfYb0wStGdsenvStQKPIdQHrxLwPH7a/JyfJxW7r2mwCGy4/FQE6zmBAavh9/8f+jiIbnM/G5rTBWycnrYo3bQJOOqmCer2CSpzm4yFNrXLIsa76MZoYszqczkFzGpCkl3kUWZvG0BDw6KPFsShVwc/oaA7w0KYjbTtJYuOKpilw0UVjqLB+8r4sW+nL449zAEstvebu1S7Eq9VqYSHuk3q9joGBgS7PtYceeqjLG43SaDS86Y0xzgutLE1ZngAwMjKCpz71qbjrrrt61vlYSn/uXoVk95ikejAGSwOw4lwUhc6IJh839DCXXur6VpAYuAZJK6ad72jqNTcZGSyxCP4ZE9pPpJqTFoFdHy0Fp3eK9lKWQKvPcGAMUIkUOC2VXKxol16lviTAy29Jv211aedIE2eArBYf0CsbIXQqg5wWhPqOrVE1jFHcoScUoHnmeUoPLepZOv5y7Eh9SqOLNC4XxpQ0VPikx/NYjgMdn7QXJ7jkE7cSFoweUnw75Nx4j0oAdPFbv6tKeiHJROKLRT40lDuX6PtRF+u79alaze5X0EQ27viuZp8lovIr5A0/1tKfu9dm7l4RiJ6mKaIowq5du/Dc5z4Xz33uc49VvfpSIr5AkxpIl7QY69blgUYJsnc6HQxnT5zBwcEumgnpdS6BXp4Hcs9aDY5qj2X5TY9tCUz7qGXYNul5L4FnCXYDKICukqpFArNzc3OYn58vANGavqNSqRR0q8FpCepLyhbJ+w7AgbbSm53e98PDww7k1t78zEt6vbN9ZfQ0NAxIAwPLl7odGBgo7AgAci96md/s7GzB4CF3O2jDCftVGwyCICh43vsCa8qxKg0fDGZK8Jp9LT3AZf9pShmOQyl6V4Oug9Q5+03TtmhPepZBoF3eF/pD8dHuPJk90CmHDx9GpVLxnuuD6Gsj/bn7MYpejOk3dd9Kmm/mU1NArYYHpgLs2QP80HbjjqHRcMEJDYBK8yEESYLzto5jphVY79tmE2GthoWFAIODOWgeOn4JtcJlfUXVNQdqIZZZPcpRREFTUkBfM8/fOB5zixp61XUtSjxAOr/527tFXoOMrDQ5xePYrpZEoTLWqFz8xHGAMXqn60WbXilp9FlkRgAmQCdHZgtE4vbc/LwF8/fts1k4EH1i3KLL9TraURVJK1/EDgwUY2qyGq1W7tnNYSc90ySQLhfCPtsOq0nHbXazExoFuOL1rDA7CJzHuQSWWWaS2CympooL56kpYGAgwKOP2mLuugt45BGrm337bLpGI3f8iyJ7nFg5u8ItwKl33ekcD1GUUTgEbtiwyyiHDlngn/WMIlvPVstuEigLG0AAjDr1GYT27bP5bN0KVHii1/OhF5B3nEivuXu1C/HlSBiGuPDCC/HlL38ZL3/5y93xL3/5y3jpS1/qvebiiy/GF77whcKxm2++GTt27HD0ghdffDG+/OUv45prrimkueSSS0rrMj8/j+9+97u47LLLll3/oyn9ufuxizMayqCYFN+4zO7dAB0YE2B42M55enoHckMnkAOkZeB5FDGIZavceKveM/iskdTUvEQ6gmrguYzWQjdZnre71YrnykDIDoQ3ei/RbXS/Q2/SMslV0n2diUSAUFlRCYKbIu+2nGNkAdT3WE04FYh2ttPABYfV9n1fO6hPDZzL36Rk83lBF2iJpIGiB5gud7rp9y9+5GuPnMsksO4bQ7pYvk9wjI+M5IA2z3WQBTD1dXCmQJYrXz3le6tI2rVJI47z8c+yZfb6tzYCSK//wn3q6t5xGZjMsHa8S3/uXpu5e0WBRY0xOO200wogW1/WVrTnaplocFYCeBK4koBiGUClvWR9Xuu6bN9vH4d7L9HlSSC7LAClr90a1JTt1cC/DwTtpZel+kGm0570mo7EFxzV99G6LdM3yy4TXzu1zmTapcYJRXLa6zpLI01ZPXz6W6otZSKv8dHJSFlq/K/0WJmBaSV1fjLIs571LHzsYx9z/9NzH+gHFl0r6c/dx0jKVqh6RZWmxbWkWuEwIKJc5VhPl5KFdlnZJaLfgbsuXcFLsjHdnmyFPMQ3FyulfJy9CllORVaaZjnXCOXIxdNyitELVaesKOrqxuXeir41cy97Tq/6edPoFbIav491wcjFsQThy9IxrQSMvLJEP+p+0GCQBArkNfpaWZwxvR3FvW17Iqy2e0ivubtrEC7nswK59tpr8Rd/8Rf4y7/8S3z3u9/FNddcg3vvvRdXX301AOC6667Dz/zMz7j0V199Nf7zP/8T1157Lb773e/iL//yL/GRj3wEb3vb21yaN7/5zbj55pvx+7//+9izZw9+//d/H1/5ylfwlre8xaV529vehltvvRX33HMP/vVf/xWveMUrMDMzg9e+9rWr0OBjl/7c/TiIZ6zKOc83/5U9G+iFbIwH5H2Mzwfpvb1c6TUleud1Ib7npstkhfd3Wd1Wk5UE9r2WDo+UeWB7u0Tls5S+l2qHPl82dowBugKEHiVdUzTYvtLzvT3ZlfgGnzrmtbeo83IOPwq30ZL98ESU/ty9NnP3iu/Ed77znbjuuuvwiU98AmNjY8eiTn3pIdojluLzRqdHNr2qNe/0kSPFYKH8n963ukyCWARJ5TEdeFLSZ4Rh6PJft24dhoeHC7Q00guYddHBNCk+ugxyaNOLWXNPs12ks6EXfaqevJLfXNK5ENRmftJDX3quy48PIGcZ1I3sM0mbosvhb8m5LoF23Q9SB5IeRXKNSx31MnToespx56Nx0UFhfV7jHIf0gmddpB5YtgwoqoN1yrEp6yW98OUYkm2R+pbXMJ0eP/I8x47P4CD7T+80WAoElnV5Mskf/uEf4vLLL8fOnTvRbrfx9re/Hd/85jcB9D3R11L6c/cqxfcS6UNNl7iu0bD0LB0ECDIPdKZbXMyCE2Zp2wgtTUkjdEuo+Xm7eOvUQgRGeEn7OFOz/0PTQa1m00VR7tUjPXEL7WGbDh2Cu0gEukwFLUgh9maKoquuyDNNrfevVNHwcO5NHcdZsMjpZtGdul63bk1xbI/TzahWc1w0I9njgN5PBS8iuomVup4hP0aPdOl5nx2vxnGuNHmdcJWamKgWnLkZY9K5SWVlSiCWgAXrG0W2n8h3zuyNydtGXu4TTrB9G2aL7CiyY4N9IZvF5nIbdGG4sH4Zv7y7CHAu4sxrYCCvuzF2AcuhceaZeZuHhiyPf71u/5+ft9+ML1qr2d+SzoXXpqk9dtJJ9vrC+KzX84ZJNzoOwjjGbBIUup27JjjehE3DUesz5qscFtS7jBGaprmq5L3DtCMjon9XsvhkG45D6TV3rzg42QoRile96lV45JFH8J73vAf79+/Htm3b8MUvfhGnnXYaAGD//v249957XfrTTz8dX/ziF3HNNdfgT/7kT7B582a8//3vLwTevOSSS/DJT34S73znO/Gud70LZ555Jj71qU/hGc94hkszOTmJ//Jf/gump6exYcMGXHTRRbjjjjtcuY+H9Ofu1Yn2yHVc3lLK/jdFj16guNOGzyuCiNLTmOXxWsZPMHEAGDt/l1LDlQjz53MeyG8pPafw98JC8ZmtX1WWCz5KI2xPoJ2FuJcCFBUivsPIwJigUC9dH/0YdYYIdIPLBYN3qcdz7sUudwzIwtyGLI+iyANOnUoGPN1M/Vu2QfefCzKr0jJvaxzIvO17PHOpky6ecpGnDAlTZlD2cdPrfKRoChpNtxKgUzwpFEG6Inr367J8ux25M89HmaRpWHz11fnJdwOdXu8E4LtaWeDi40X6c/fazN0rfnN7//vfj71792Lz5s047bTTMDIyUjj/7//+70etcn0pivZYlseBIthHoE8DuTyWJAnI7016ksXFRRhjXFBITStCIZe6pteQtCYEe8mPDcDRsYRh6AXJNUiqPbYJwrNMApntdhvtdhvz8/OOC12CnGyDbKcEdAELnJLuROYtKVx0H7AtYRgWjAIE3tlGGUCVFDtsi6RKGRoagqQGkdd3Oh1HRyMDXfJcGWiepqnTC3nhpbFBgtyyTAnQS3oY2S/SCKKBdIoM4CmNF6SikaC/HGuSsofXMT/Zb3qMsP9IXeTbAcD85X0ky5BULxrk5TGOD0njo8etLx+d35OZxoVy3nnn4Zvf/CY+9KEPYWBgAIcPH8ZLXvISvPe97+2D6Gso/bl7lSJXBfJ/onQynX7rF/+HU/fiKU85FWkKhFu3FvapOozWAEhTHDwI3HefXbBXs5UUi7JMFoFYaFneyijqDlKJZhMBgDFjgJpBp1Hxx9uUK56DB20hw8M5x0UcoxNVsHAoX9hJnm4AmEUFUb1iebbTFO00wOJizsgC2MUaebNrNWAsbud0LUxEnZHLUS+KCfgag1FYMLSSzhQ50OVqSrshS9H9JIOZkgNF7hkmhwo7IuvDiy6yPKrE3gkgowVH2SPB7MICM6Pn4Xbner3qAHTaMnRgukrUcYUFaYrQGNRq1QKXqFSBL2CZMcgtGfU6ZtIK0hSIatVcbUleZ6qJ093gYL5wnpjIyxoYANavB8KpewFjMD6+2dGlcAxQWBeOJRoPRkayfo06wLRFrw8kFTt+GlUYk/EKS+L3Ws3Rt5D+4NAhy3nOBbdcfNdqtq4E8Kencw71ZtPWYdOm/DZg+6nXOC7S6GzYYKsyPAxgUS2tfEC5/J9j6jjzNu41dy/bSEBZhaHgTW96E970pjd5z330ox/tOvbsZz97yXnsFa94BV7xileUnv/kJz+5ojquhfTn7tWLBjXDsnErAGBH+6Gm95GRbluq7zf/J33W3Jx97vC5HBJA9/KhdVdLJpOc1Bq412CufG3RQLWk7PAB/zJf/btnZZlR2cWCMi4wBqExCKMemcsKJflvt8rUFdPGVZEH6XkoUZQZ8JPUTUJBMmuJZnoog0aRgQGrv0JslxKRc74XqBU6kzz+3YB4sNSQAVCk5pHc7KQA8hlD5DjyHZeyVB0KALo6KAO7Ji1bV8ZX4biU414PJd/ruAbR5TXSyOQLYisNY7zO0bh4Gura5CvkOJH+3L02smLNvOxlLzsG1ejLUuKjAQG6PYcJShIcZxrN200QfXFx0YGk0oNXApASxAbgQFzN063Ba3JaR1FUCDYpA2YyDwlK+tpMkWAuweL5+XkkSVLqjX7kyBHHQc5rNBh75MgRB1J3Oh3HFS9BcALd5HUntzn5ziWILkFlCQZL7nYN6NK4IANb8lvyh0twXfOmS/Cc+pifn8fCwgKSJHEc8dIjnO0HUPAml3WXeqLnuwS6qSNZJ00Bw/rT0DE/P1/gVi/zZvfx60uhnnS5rJ/2QJdpfSC6HOva21yPc2kAkGOWevLt0NAir3mySqPRwG/91m+5/2dmZvog+hpLf+5epXS57yL/TRBPrqzlC6r8vXcvNm2LMJNsxOR0gPHxKsIMqHUBqmoA0hSPPgrcf7/16K1mc0YRRM8BQQKuIyPAhg2Cp5SoruAFD4xBRSKyuq6AdQd65BHgxBOd63AnrqLVyhceerGSphaENAao16sI0S7gm8TH6a07MpJ5VU9O5aTUtCQQ1ZyYcJ5fgAigagxm09ACqciA1L17bQWojAwY9i4WdH+xj7lYkug1Ud5azZJdR5EL6BoSdG82EUxOIqzXUZs4w9a1ecAuzK1CCiC69ASzHvPCqzpJENYNGpmxQ9B9I4qE0aEpjAJZwkojQlQLC0NSgsayi51KMlfsWVQcnzuFqiNwLwFkXk9v8bH0IduPTPRg4rjWgyhCNYqAVjMfDNpAkX1vjmOgxnsr+2SVYdBR3geNRohaLUStBlTiNmbT0GWdpnasHj5sq3HCCbkHOQOyso0TExkgn+3+kBzycuODBEnYzCSxIL0xeb5RBCBdGhxz0guJOw6kbO5ei4V4X6z05+7Vic92ShDV62GbgXvaQZxDd3S0eFzHRdD5SoO1nDtNHCKI1IUllfdxgMs6uTwVaBnyfJYPgWoJ0MopTwZfLhMvCFyGvPoMh7JDyq7T4quQ711MWwI4r3iiiPJZHpqMn54THWAnDAnCM78oQoo8qKQEebWxgmkKALKb49PuNvH/LKMgA5rlZaQ4842zMlWQJ1wavAvjRFpWZN00SbrnZgmlIvR7ZBQBqahI9gJC8DxpoSvOCt8ReaxsetHvIMy+lye6rqJ+LlRM9m5po9s7I5oxAQI96XuMNB0E3bQ7x4H05+5jLyvWzG/+5m8ei3r0ZZmiwXQe0yIBPwmYEryVQUHpgU4A00fxwfKkF7rPA157LBNolmA6ryOgLEFICS7LMjTIKMuTALIGiCU1Co0F9I7WdfV575NyhKAsQXQd4FUCwPzN87JtEpCVIKs0VlAH0tggPaslhYvsL70jQOuFoLoGdHVfSwC6DOD1eXXLMSn7iW337VgoC7ZJYNxHBcOgo9rIIwFx9oM0CPCcNED56FzKxEdNsxxQV99PZdf47uMnqrhtYyXSktHe+rIm0p+7H4P4wGbfAkO/bMq0zaYFGic24uGHM0/sLBmds5gXHbOTBO4tjQspvSCQtB9d5UrXZK72ZHRJuT+dkqYWRM4oUxBFpbE3ZdMJPMaxBQkKazNVPxcgVQYOZfDQbIHSRoiDD+fgQxSFiON86+/wMBAiyYNjTk3lyiDXiG9VJdvp6yeNJjCPDEA/eNDWaXOjZs9PT9uokmmKgN7zXIiPjxc4Qagz7yJW0MNU6hGMCdxa1i0a2VbZAcJaEcQGMtRRF8WNEMcfawwOPVwM6Mky+ZF9rtfKtRqAXZPWkBFFuUfW/LxF8ZtNq4OpqTzaJ6OQcozR4MFBJFfK2YfxRGU9qbpGI8ShQ8WhLtVKb0tXX+RjsmLawPQ04ngzADhqJRoPhoZgA/wmCRBHhcWy1EUXwKRvECm9zj3O0p+7jz/pz92rFw2Y+YB1isTI5DH5W04VUZTPyfo6OV/zeIE2Q04Gvgp76sbT+lWkCxj1NTRLHGS/Q2PpVGR+vo0wvQDNJZ9xvdrFjLXS9LuILz+f3srKkXpOU0AbJZIEiGO008CC6pyH9Va7kqYZk4HxWRnOeKGNI3pi8onuWNEcvpJIm4BWj28+0uddXaWXg3z/kMc0gk9EXmaquVtIvyePZ7phdnNz1sDNNsgi1HAFUHTyHhzMX+2U7cHLUsJzATpu0qcBwJggd2Qo9LnHcKXf+wWAfrxIf+5ee+mbF56AslxvTF86H0ezBmEJ4ko6Cg2kapoYSS1SBgZq8F1yjWtAVNdVg/eajqVMdF208cFHi1OmR03H4Tu+nL7RBgipXx+w3Ut8fbiccsvaCHQH4NTGDIqkuJHAvg90L6tbWX00FYoUaYjpxdnua7MG0GU/aJE61caopfpH62s5APmTyct6+/btbhzonSRS+p7ofXlCSC+gvCydTi8AXce9mJ1zIGn2f1kRegsuvYzT1IJ9XZ5PzMy32FWeNIFcCLGgbMEgm7AS7E/joQUqEZ9OPat1bpmGusQ5DukCfdtqyxb0cjFe1neiTmma16VLZzpvIdL7b8m6CZFtNwaF7ewuQ4UoDwyEXVXqCpCqFoCFMkTZy5E0VRQJ3DMtgQvtDSgReq589WJ8CaExhWt2DQDJrAYGckCc29ldddyiuLsMeStosTrN+1V7x/WU4xRAB5Y/dy+3nwrp+9KX41h63ZbLGe5lQPeKhr4HSF2qbl2ynMQZoCyLGxjwvyZQJL96aTm90P7lSBlArt8XCsC46Z7Ll7Ca9KzSCuahoyqirpb7POhqmn5d8VVRHuvi+V5qkPt+y8zkOaknjeKr844iKS2+z+ljWny4vW9Y6XRS7DuKv02WtqX7XC87zfEq/bl77WXFmlm/fr0XEFq3bh2iKMKWLVvwsz/7s3jd6153VCrYFysasNVUJAQby7zSSduiAXJ6gTOgpvSKplc2ucylEEAdHh4GPcrTNHW0KuvWWf5vKdLLWILmR44cwWD29JN0Jp1Ox1GTyDx4nrQ1bJPkLpcUNBqYJh3L0NBQwQNaepazvRLMZZmyDvRIZ3tZHwnsSsOAEQ8jer+zH6RxQHqk+4BkSSviC6aq9aUNHbJNTCfHj/yWbZXHpEGD10pPbd9Y9PWV7BtJlcLjkmpFUrcwDx7TxgTNzy77Q49pSRXDD732SYMj6yGNTb4dIexPaVyQ+vaByU8mueeee9zvO++8E29729vwK7/yK7j44osBAP/4j/+Ia665pg+ir6H05+5VCkFASXwp0WH5P9PqN31jgC1b0NlyNkwCbNmS4elRDR0EOPnkbAGQAIhjRIng1c6Ad/JFHzpk05KiolYTXjbTmaeJ3GfMNsg6xzE6tTGLbbbs4Yrk/iZPR+a5EtZqqNUqXV7AALq8paPIepnXaqFTCYun43scA2gJNyI2UAQxNaZ7+zzLdUFWG1W72KzVcg/yoaE8r7LFgs+1XjaC53l9HDvAmcB2mmaULuwEorkyP2PQTovB7ZhtmDk9FfpIeIKFUYTRUcV/KtvDzOi9nY279evDgrEiilD0issWtFIFSdIdrIsfCTpLNQG55/fmRqMIlEti8ozWxdWhXs+59umJrndDyM7O8hwassk4Bg8dyseCcOIv6GtkxNKsnHSS/a7VgE0b7Dx8YDCwnqHiAv5kIFJ+2mkAE1VcuiC1NEJRRnO0sGDZj0ZHs3Mc+Lotvt/yJjkOwPXlzt3HOjhZX3Lpz92PXTTOV3Z7LmUvD9BBR4CbMkC0zybLZ6h8Jhc8xnUhYu6Qz+lly3ITi3JZd82hLZPKZ3/XLqpeCG/ZOV1f3/OxLK0P7JXHdF7if2n8dA0yJr+cyuC7iHgX8D3WgdygLr2SA813r/u5V3uzuTI0Bohyr2hCKmXq0fOznsuNAZCiu3/40e8vvhcXeZ0uDCjwvxE4T1pdrzcFxhja3KUQFPfh8yMjvWMDaFXa4zZ2kEzTFaNAvS9a8N3+z7aE4vzx5IUO9Ofux0NWDKL/xm/8Bm644QZceeWVePrTn44jR47gG9/4Bm666Sb84i/+Iu655x78wi/8AtI0xRvf+MZjUecfWJF0GNpTt5enq/SgJfBMnm0CgASACchKcJiBMsn1zWODg4MIw9BxiBOIn5ubw5EjR1yemlKF+fgCN0rAW/O4S2905iePywCeMm99PSlmRkZGnA6k/jS1CmDBc9K7yDoSfD9y5IgLlEnKF5mXDggr+097NkuAWlK+aEMKg3NK6hYfiE4amzC0kzHTy7xk2fpbU6MQgKbOWPbi4mKX4US3iUYaAAUjBscL28QgrxQGux0aGirQ5XCcyvuC/S3LpL7ZDo5BCu8LAK4es7OzaLfbzjAkdSp/++49Y4wbMzrmgDZ2rHQnwxNBZDTsn/iJn8D73/9+XHXVVe7YxMREH0RfY+nP3asQCVJS9AJCr5zJ7S1B3DhGe8t52HkHcNFFQLDv+0CjgQNJBXEMbBo8UECaY2ODGg4NoQCit1qWCSNNLZdzmM5aXvHp6bxu5Kzgb9aRoHpG8jw5WbQNVGpxDmzyeffww45mJYhjxPGY23YL5BTXsqgQlqYlMAZVY1CdiNBoBEUAwXHVIAfuJcIeRQjSNipRvmrtmNDhslzvNJtAFFVQIY86V2lsB/NnZdlHXMlxe6vop0I+bFQcFxZ5AwNZEhOiUq/nilRgNaLILSAlp2kUAdUMRG/DUt84I4ZYbVYy8L6wM1yCruyAgQEX/TIEMBbZ9nRM6ABfeX0aha75VMHoaJGSnqJBHC5iFxftWFxYAGpP3YjKFpNnSJQbACYni6Sl4+PA+Dg6UQUPZ3Q9aavLZmHHkuk4slQaVNj8Bx+0/8dxPvylRJEN9jk6au+ViQmgGrWBvfsAYzA2MWH57ZsESfJ2im533Uq2IWMypUxPIzAGrZYNyDo6ClQw271bgGNOIjDyfpRpjgMQfblzd6mBqkxWkrYvBenP3asTH1aY79YKutIudfsRPCZgKvOVATp99BOsB4CikVaeMMbF3GBQUxlssQzcdvn6GuADnD1J+JHPYddmmbeP09vTDgmiystNVEzqYp1osm95TB8vK1Om1R9xnj87CBBoA272TG6bCpIWEMcVBMms0wUpcHx5yTFkg7+LmC7amC3bQpFAblbnMJs3a7Wcr5/vE2UyPFxoSj7uixUsJpK/l7oRNKot+jtJ8mChkvNc112e01kDRYN+2bfPxiKPLSx064kG8sLQiMOMCi/Ph+9p9GB3r6tR2OW5HmSs6I+39OfutZcVa+a2227D9ddfj6uvvrpw/E//9E9x88034zOf+QzOP/98vP/97+9P5kdZNAjn807WgJ4EXOldDqDgmQ7A8WUT/JMe4wTRh4eHMTQ0BAbPlACtMcaBjxKklUJQWHOFS490egPPz887QJUewfTuZV6slwyCKj3R6Y28bt26Qn2kFz1BXZ/nPPVHcFaC6LoeBNHlrgDZZglKS0CVXOWSG53gsAZfJeAsvaXpjV7mAc58mLdun+4f/mZ9qcMwDF0AVOnhTdCbutJe15qqR3uPA3B9zkCxh0mYBgtIG2NcEFcGYGU9CKJzzLC9BLhl/8kxOKjeSLUxgCD63Nwc2u12of5yx4I2wrBdAwMDXTtAfOn4rXdMPFnkW9/6Fk4//XTvuT6IvnbSn7tXKRLs1fza0tuoZMFGVHD3bmDnTuCSizrA7t1AFGG6VbEv6ozqOD4ORBEiWO/Z4WG4FTgxYWKUxmT/TE4Ce/bk0TqJhhIFZD25KohjzKYh9u+3Xrx0BkYjKgLwrRZw332WvDJzgw9rNQwPB5ibK6qH7+QDAyiC05lUtIeT/C09maTxQYHeQa2GNA0LXcLLCiC6aGeXSPA8A0JdxYeHcw9pCXJm9eEhekBRB9GGKoJ6vdj/WfvaadAVQMtHlTo3B1RGFXKd1TcwBiaq2mw1UCC3JrAjeG0cI+D2Bck1Li4lxzhtDrUaUEkOFMawqY25oF9s2uhonm2zCaxfDzQaY6g2MkS72cxJXMmlesopLrLn96cqLkSAvF3Y9fW63Wmxfn3gPL/YLazH9HQObI+M5EFA5SKb98z4OFDFDDA5bfnrs3EeykyRL7ilF3qQtpEkoVOh40efngZqNTSb1kO9EnVs/kTepcJ8v/Wzgro6jqTX3N1fiK+d9OfuVYgabw5IdK6pRd5jCUxq+oiuhADImyw3fS0s5HEo5PWOhzoVeXjAYJ/nuZzSyugqgO6YF13S4/6TwUhDk9VPguW9LAwSgY+ivA0KMKVw6U8v4zjOQElphC7jD9fGB9kuCT6X1Tm7Vl7OAJ5Of9mzWxqYq1ERME0zQ4d8dPuKlFUtUJ7p537ZRQJMD6IIoTEIY9MF2GvpMhj1StyDh6zM07rQNdmH70PcGaa7T4aakce10UbWP3t1LszHAKxRIxV3sMsg14scd7IsORZZZ3t5UOgSxjNAlL8zsa6hkcFH/Wp9vKU/d6+NrHgvwpe+9CVcccUVXcef97zn4Utf+hIA4KqrrsL3v//9x167vnRJGXi+nGt8HxnwUYK6MhAl/9fgML3KpVc6PX19NBq8jiCm/AwODkLSqbDekrJE10lTmGjqEunNTfCa6SSYy3IlwCyDVJbpyvchiCzLYn4aTJZe0tS9bJMO1OrzXpZlltG5yPZqT3idr6yz/F/Tp7DP6NEt9SWDh0oPcZap+0WC0HIMSgOBrgvHi/xoj3n50fqQgWB1eurWN+bYR2yrBtB1eb3qovX/ZAWIzz33XFx//fVIBHo0Pz8PYOkYDb5PX1Yn/bl7lSLf+n0LO73g8Z03xsVURJo6Tgq3YCaamaU1xnqhG5MvZIK07YpwOADz4ufwYT//tFyVZIAwk87N2e92GuQIJK+RXBlZu4wpLuZlcYODSl8SqdWRIXvVkXpn2aIQDUgnSbYQlistX3564SD3Fs/PW0XI9otPxxNoanFRxB+VHv+iLC7adH31mnl+HsV2q09hDaMXNPPz+X5oFqIjbMp8PV0kA9YWXNSzZ7b0L5Bq5Phh8o4Ji2AGQf7Dh/N6xDEefjiPL0rMXX5arXzoyXK14zZB/EcfLTaZQhvIyAjySjabtk6+zlBt5D3Wtd1cKDAlgMD2loEVUspAjeMMRO81d+tnyrI+fVmV9OfuxybLHXq+uArLyZffmn7C7abRqKLn/aGjAEB+5OOb0ssLeVVS9o4jn2lLvQOZIrgrp1Y5983Pd09ZXYpcqn6ai0z/1t8lz3jvqawthelBA/TLVKE8Xmifr52+i/SLQ1Yh6xFfHGf6UdtFueMT0W/y007tR74KyFcCTutzc/n8z36VVeW7Jftdv86VDSdZPcYzYZsKOxfUHF6mVqB7uue7mfaW10KdyOu8xoX+3P0DKSvWzNjYGL7whS/YLQFCvvCFL2BsbAwAcPjwYYz6yCz78phFgkmLi4vQnsWUMuBO0qQwXafTcV61muPaB0rLvCTQq2k0NGgr00mvZ17D+gC59zS9jMsMBRJk1lQ3Mj8fn3fqHrzG5aXb7ytP9oPuEwn881t63Wu9aQOABJMl+Cy99GX7qCdSh2jQn8dl3hrwlm2X4qOiKaMNkmONFDSyLG1Y0fXUADv7hL99QL02Lvh46KU++VvuzJB9Jg0Si2JC9N1Lsg5leuFYKsvDJ09GkPjDH/4wXvziF+OUU07B0572NACWrw3oe6KvpfTn7lXKUgs7+b/vO3OvnZgAnvKU7PiJJwL1Opr77EKjqvLQRboglrDetWmaAYr8MTJi3YNHRrpddzQwnqaIotCxthQ85/jCTA/dej2nCqGbcFpcuHVRj/OkBJQ9oIFXzz7QWywCJF0pm95V96Ve+lk/yWFOT3T2gWdFxaQaUE4SWI9muq2laQFEp8HDt2uaeQwNoQuAl0ouVEWC7UBOuOvTpa/tniIKwcfkHnBRtgczQRQV1dZqAVW6tNfrKGxZEEDE4GBY0An5TyWrz9BQdj6xmTNgKr3LWdWhoXyL9gkn2Hzokc42DQ8DaGYNoNu6VELWOLYFsHWgJ1+BczUt3gC8H7ueBVJxSy1ClwO8Pw7Sa+5e8eK6vxBftfTn7tWJF/d093z+L78lD/NSGfumfi321s/n7kIdZF165MM2yCx8HunyHcFbFtNkzzQJDEqeZ28lfAijrFh2LjAGxuTrMC59df2N6e1VX1Z/563uA6N9QHcJaE1ee9YNAEIxIDoIHG20e+aXNN1XTYpMUwhEvtTFut5LDEg9RxujxkOJXnx0OzrPMpH9J/nJZXG+adD3miynYo4Zvtt1BaMvQ7vTFDJQ7sJCkVZpmaosFe+zRMpxxhven7vXRlasmXe96134hV/4BXz1q1/F05/+dKxbtw5f//rX8cUvfhEf/vCHAQBf/vKX8exnP/uoV/YHXQiWAkCapjDGOCBdez5rr2ftgUx6CgYBld7Y2luXHN9hGLp0BBHJA05ubgDOU5h0Gz4qFIKY2nNdApIsa2hoyHkBS8oQ/tY85VJkIEoNFJOShmlIqyKDmUpQnfqTFB3SIMH6JUlS4GGXNDM+b3KCufxm++ayBSgBXhlElOmHhoYcnYwEpRcWFjAwMADSo9D7X3p1ky6HIscKPczp5c3xIEFk2RYfnY5vPGqPcxnAk/0zlEUyk3zsksNcBmMlpY/saw1Uk6tfGiRIEyQNO+12G5peR/Loy35jv0pDhGyzNljQUMVjErj38aQ/meTpT3867rnnHnziE5/Anj17cOTIEbzkJS/Bm9/8ZgB9YHytpD93r0KIEvM3F3C+VYv8n24vxlguiTTFGZP/hDMuaACtGvD85+Obe0Ls2mWTbOLiMHP9MfEYBgeL6wVjAkRRBsQDCJoHbPpaDTj33GJA0EYjXyClGchLabUQRim2bas6R3E3Lbion7D5ZjQpBzBmqTOaRTyeTSYQbAzQiauWZ7TMG1oAkE53ApXtGMv9aeIw346c6SY0KcZqMchLKgNtFdroAwUkbUymB9dWHwAq6k098XJ6RzGb6ekAjUYVlXQ6TxRFaDYtrfwpp1hV0oNreBhON9UIqMbGcnNTNxkKPNMKwO3ShbpzrLCfNIEo0/J/tfrTTD9U19wcEK0fA+J8mNPLjKwsBKnJn04jimPIMSHGJ85GKN3YOLayuhEIF8wzMMbmNzJi6WGcB2fGX7R+/RiGh4ELL7R1Ia2+bCL/p+2HC/0qZvIOPOWU4t7wbOzJ28fpJ+sjlhFFAJqt/L6OY2zdinwg8FsDPfr5IP+X7nHH2UK859zdD062ZtKfu1ch4r7N/gWQ81TL2zNAByYOutjatHQQAFGl1H7uKCBQvNWNyYNsA/ncpmk5+K0BZgZS1PXTZcn2uTwT/fj3eNFGOT1J0Ast9B0n10x2PjAGUZRTXczNdd/6si2FR4jPkKwVrWnaytBrnY9UVppmvNYVHDpk/Q/CxD6/27ENuD48LPjsVZwLIylg0hSG7yye147id+A4zr2AsM9Q0audJWXlbHqBSJOPe/nuRE9sLRLQlsFz9RjUNEJlwHya5jZ1TbMiy6TwnSCKhFe9pPiTkik/QMeNPX2aAeHltMX2+aZon1+CruPxLP25e21kxcPhjW98I8477zx84AMfwP/+3/8bR44cwdatW3HrrbfikksuAQC89a1vPeoV7UsOohN4JIVFGIYFIEpTh8gAi5ITXQpBbwLlR44ccSAqgVqeI0AoAez5+XkHJg4ODhZoSQg0k/OagCLpQGgMkIA26yCpTlgGvwlWz8/Po91uu+slr7isr/7mb4LpBE/n5uaQJEkB2CSYKr9l4FNpHJidnXX1l8YC6UHOPmE9CbzKdh4+fLgQPFQaSghoD2euUxKcplEjSRKQ357jhfrgWJAguuT5Jge5vMa3C4G/eb0ei1LP1Bt1Rx1LqiAC+BLEl0YWSbMiee8lVzv7kyINCnNzc+h0Opidne3aPcCdAwTT5c4KyU9PPUujjA7US33IPpM7HeTuibIYB08mqVQq+Pmf/3n3/8zMDN785jf3PdHXUPpz9yqE7rAE0BW3dAGgVYs0B6Rt2WI5K2680X5/9KP44s6N2LMH2LXLAoqXbM2uzVY/Ya0GenTJBUkUAZsWHyhQbaBet2VkXOdJAiRTNn1mj8ToaAVRvYKgNeOIqMM0RRhFiCbOxsGDWTlZ8M65OWB+PkSrVcWhQ5ZGen4e2LEjC2iaBXwci2NEE8UFpA0WGaBer1oPN5K4UzweURKlLOLuAcZqca6bLGhrNQNk23HFqTpBYI/LvGVZWR9xm3LUGENIZFvv8+X/2YoxSWy7AMtVzzVIFNku3bvXJj+baHccoxNVsP+7NgDmKacAwdQDqEQRKuuzOpJzdnq6WM84xkzGwU3cl6B1GyHC2BQR5JNOKhomNJ0N2y50HySzqMYRoihwXv3kEN23r9D0ri6jikPTQaNhF6xTUzkNC2n6t207H3EMhM2HuvZv12oWVFpYKILym2uzNqOpbnAhjCKESFF9dApotbA5ioAoq1wrBWo1dLaeYds3nZWZ7V52lavV7ADW4EQUIYocLo6xWrZob9l7zGQqDZKsfvU6ZswYIgCbTVYWgRY5diSKpxEWjk/ex8fp6rxs7i6Mr+XIcdq+J4L05+5VSJoiSNsIxTOfInFV0kMEUCzpWQIJCvowPAmg8395zOdxbW+FbrCvO02Xra+sqV4wnjzUOq3Oj8cscCk8mH3GZV9G6juMIsgAnL56O3BUl9Nt+VjZs0Mqgc9ZGTxUzu+1Ch59lDuVmvb9IwP+C4Zc1VGBMZY7nvQqUQ6s62pQ3NgxAaIoBIxyEvB14DKby08ZMC6nGV0f6UGuYwFItdEjvABoy2++WyC/j/T9VPUZlnsZCtIUaKG7T3soIYDdWWHi4nup9GuRbZLV8b2a+u4XLWXc8Y+39OfuYy+r0swzn/lMPPOZzzzadenLMoTgofRI1hQfmjpCewAzH/m/BAwJ6hHEZEBHApva45nfMo/BwcEu72ntRS1BSM1RrSkyJBB65MgRFwSUYGySJA7E1d7TMk+pI9aV4KsMjEoPfen1Lj2TCY5LChDqmnUhaOwDYTWHN9tL3S8sLODw4cNYWFhwxgemGRwcxPDwcMFIIL20JT2P7Bcf3zz1KL2jJfc5+50i9SDbw+vL6IWkSG9wjhGOCe48kAYitksakeQY1vzoURQ5UJu6oJEmSRJXtuY3l1Q8moddUtTIccBvHx2Oj07GtzPEZ5B4ssn3vvc93HLLLXjooYecAQzo07mstfTn7hWKXEn04NfsAtAliD4+DiQJ2p/9LKYAnNpq4bbbLFi5Z4/Fv7HNFK9JU3AJIosLkAUlJSAYx8D4uPUUn1Je5cidf+mBs2nU5EjnffcBw8MIGw0MD1ddtSU39b59NunevTa/LVuyjOmanSSoZPrpRBUkSc5PPTAAbNogvK58Uduk/jLQMWkV161xnAWXZOUIzEcRwkYDJqoITDlApWwOysAUcnBbFpwQw8MhqvXYzyWeVWJhwbYLsItr2lZC00GrFWDvXtsdZ9fyFVerZa+Zns4cee6fyilk5KptejrfUZB12HSm96mpIi6eJHYRXuG1xuTcJVKP2tNfeqOLhW9oDMLIoI0QBw/aw1NT9juOc5YbucCUC+mqSYHIYDozvkxNWQCdcVZHRoCzztqI2ni2cyIzEhGIX7/e5kcPcOzdlwd75Ydt4eDetYuWmuL92Ghk3oXGVkIFtwUA1Go4kFSwsABs2JC1I9NTaDqo1wNUTBvYN2nTZ7p0a06OkUYDk/vsrR3u2WOPNxp5J3EMyV0serzr58RxulAtm7v7C/G1lf7cvUIpzNVhF7Dt6Jr08149eyygnBu05+aKU5gEIaVvGh9P8pjGhPX/kk5Gg+gOvBQXSEoS+TiRx3yPQWYhpyGJXYfyoGc+9OpafidJRu0SFinXkGcbpG1/HlIhPgOknox8dZDKkPMhlZO1ifpJU7gfcwM2hMemDZ3cit2rvUonUnXytHz9yYeZ7b+Q87Mcg72A9DQFBGjP1yuOOW3s4bQl66dtA1rFekObG/O8kPMxFag/PikD0X3/6/Q6T3lMGyCMQRBlb9CpPRZFlWVNQVon8pHgS8fzxyOQ3p+7j72sSjN33303/uqv/grf//73ceONN2Ljxo246aabcMopp+Ap3Gvcl2MiEtBdCoDSvOMyD+kJq7mpfTQdOhimrIsPSJbXSe/dIAgKVCe+NshrKQRDmYcvkKX0dGY+PkMCUOTqJuAs6TbKuKult7GvL3xexvp6gvDMQ7Zbt0kGVWW7NX2P9CCnN7s2HugAl7o+kjNc6sinh6XGnPzW12g6GEmHo3nrCaRLnchrWX+dt6YxIv2O1LnmnKdIj3/dN3Lsy3ZJEF3StshrWSefnn3lPZnkz//8z/ELv/ALqNfraDQaXeO/D6KvnfTn7hXKUos36eoiRb7UZ6uQFoAmgFNhccKDB4sO5YVrPZJmiwHnoiyIwVvTReYMwC7Iu9YzcgV1+LDL2Kg1HANCsSiuJV1eGgCMoizYVU6zsrjYg6e1TIwpePR1KUA3KE0zby7h1VeyAJVb57XOoyjbZi0VqPLwdkuaYmEhdPqS7ZBVdv9wUZ/1W+F4llAHZ5OL8ELTFha6Pc5Ztk/nWi9iwR7GOVAkHcwKi2etg0IFw4JupRc9N29UBWJjomLVjRFef+S7KQP/Wy3gkUe6FcT+o5FFd3K2fUBS14dG6CW12/ILO06yPspB9Lw812WCcqa705chZc+Q40B6zd39hfjaSn/uXqF47kHOS4BnOPa4b32AqLYFl8UV1I/csvO9bo8CgM6LjClwe7NePiy5TCRIKLJdWnxIo6ob0rTAkU6va8mZvqzGl81vS1VWni8D28va1Kt+vg7N2grY+XspDFxn08Wbv5L5A/5As3q86mZ7XqV6qqlQhg80l8YW6RJPketiHYEXKP5fNrfI/ijTkUa3s//5nsjLtcjzZWmeSNKfu9dGVqyZW2+9FVdeeSWe+cxn4p/+6Z9w/fXXY+PGjfjmN7+Jv/iLv8CnP/3pY1HPvgghCEhP2jI+ZekxK8EqCUgCOUBYFkRSAuySjkKD4PyW4KQM9EmAUgK+ZSCtbpMGSyVX9tDQkPOC5ofe5QSTNUc1f/u89umF7as79S6BU00dI7nBfbQdAAogt/T+np+fx/z8fBdPuPZYLzMOMK3kbSfILgN0Sv3J6zT1jzY8yHGzHEOOrJf87fOiZ/0kB7r0bGffyd0Bkpe83W4X8mJZkjNfGh3YRt0/ZcFpfWPVZ2jpS1Guv/563HDDDfjVX/1Vd2xmZgYnnHBCH0RfQ+nP3asU36Kr1+JPLvJE2hhADQBaLWzbZk898oig+IwiSzVRqwFJgqpJMYsKpqet5/OGDQCmm108053ME5tArjHFWJPEayNSXxiT86dnROayGVFkPYSBnPOa659GA9ZTl/VQi9kwihBFYQGIrUhPMLmw8a3iUht0Uqo2TTNPrTguRozM8uWilZzsOj+CqUHaRhSFXeuH+Xk6tgeo1OtFj/QMxB0eDrucitMUMJGt6+hopt8MdG2nAebmcjUPD6NYb1kJzdUuhpHkBR0dFfVupv4IeOJ/gvHGCJ7bMgAhSbBhQwWDgzY4p+Q/l1u6AetdXnBjy8aP9ezPvcq7FuRx5AZogA7S1OO5laZFlEvry5g8sq6oOw4d6g46p906s2ubU/Z0o4Hy+1gt5sm1ihbcPedo6ZcyYqRp8V7RItt3nHGP9pq7+7yqayf9uXsVIsamvJ1LsVcN5mX3peYt18J5drmBMoXtsvRxLKtk0wbdXOUEB02Rg1x7ydMOqR9JnDNZd843Be/8Lgu/qJj+XwPWJc+GAoVLL8Tfh+zL+U1xvzuectnJepePnHOz3+6nem53ECCQO4s4JsrEgbU2L/aJtPGyWnq60Lzipe+VJYdkcG8el6qMIptGT5tlKudUJJvcNb6lLnU/lunJN0bK+kan8VWUZfIdk7/lDZ+JNDbJe1Cfl8NO/6/7bYW2jjWV/ty9NrICLVr5tV/7NVx//fW49tprC5HAn/Oc5+CP//iPj2rl+lIu5G4m4KiBcsDv7atBKALakhOd9BiaZ5u0G9qTV4Lq/J8BGhcWFhzvNr24JZWJpHHxAfQACrQqQO49TtqPgYEBRFHk8uH/AFw7tG60h70E3AnKS8oYgtpsC7296QEfhmEBHJZBOEmpInVIQHZubg4SPKa+6IVO44AEzvX/sj38TTodgsgAEIYh0jR1/SyNLLyOfSO5ymW5TOcbS7o+vnMsk/0nqWc0yK8Bdupdjj16f7fbbdc3DDaq+4E6kH1BgwW552UfUagPvavDZ/wpa79Mo3XyZAfiDx48iJ/4iZ94vKvxAy/9uXuVIsFYTazq4+7UIHF2TfjUp+LUu+4CpqbwqldZsLHZFGBeFOHf941hagq46tIU2LUL0aXPwt69FlvftPiApanYt8/muX07UK87Cg25fpEMH2lq34FdgCwGD63XXRtktaPInmo0LN22XHCcUTsA7JnMgXy69tELOI4xMnKGc8xtNoFKPXaGgcJiS+qSgHWSOKBbGgFmWgGi2kaE9Xqha9ppgDRb3zqQORF6J4CZ9U0Qx4iiSqHbJMZpTABjKqjVKojrOaAQxyEmJuw1BB44HIaHLa1HrQZnEWEwzvFx+6lG7bxjsjZ0ENj8Cdxniz/qOopcXFc0Gjl3r2tbL/A2TUF+e2OAilzTasAiKzAAMBbHOOussULX0H7BIhwvOOAQ9pERW8ehoZyihdfSMa1jQhtwVtRZYt6FuhHR0YVHkeUUIq95FFkOGfLekO6H55hHptvZeCO++107VrZuRVGPxtgFkb4+A2MCcXOQYj1JUERHZD05yORzQwF0XcjKSha2ayD9ufv4kP7c/dgkQAdxHBT+L0UPxf3ZTv0AurRflmHG+hFLb2D9eiDTs3hpxMwZTYJuYyhgn02w1BWhMajEIk1kgPUlgKwHkEdTzdFlKKtPZ/J9KPufwKTXk17zzOh5TQKimfiCVmqc33q6h4iiEGEtN2oDmTFeSgKceGI2xWRzBXWeJEAUV+1znzv/9Puey0dPZHDc3EVecKYXna2BWDl59hAC76EBwrj7vA80lt3pY+nRXS2nqXx6En0tB/RSwHnZbx+Iro5rqhQfwG2rEiKMirszIIwtPtB7qer57lHuAJFpynaiPF7Sn7vXRlb8xvatb30Lf/M3f9N1fMOGDXjkkUeOSqX60lsI8NKrOwzDAue2pLqQoJ70JpcezZL7uiyAqASiNWguvc4JcvpAdHpHVyqVgje0Dn7q8wZmu4Hcg3x4eBidTscF15TnfcElaUjwed5TD0eOHEEURQiCwIGqC2IfE4NhEqSlFzmFxwlGs6943fz8fKGPJPAvvaOlAWFoaKgABvfySCfoLNPSo5ygNUF0H4Arvb0lfYo01six4QPS5bfOV1LSsN+k17mmQpH5ynGxsLBQANQZNFQGzI2iCENDQwjD0BlVwjDs2l3APuIYkfqnoUTSEul68d7SuwK06PEs9bRSj+wnkvzET/wEbr75Zlx99dVd5/qe6Gsn/bl7lSKBS7nakCsLnid4Jrm1uVi8/HJg2zZgchKbdv4Dnve8H8WePRmInnEq/59PWoz8qotS4I47EFx0EfbsCS3uOrnX8pgz8mOGru67w3KWc13DII0Z9oc0tUBvmM7af7LF4Gw0BsCus7nIDQHniR0CqBoASIHmtD2+O/smeJ4klp96eNi2s17H+ovOwKOP5iB6HIeoEkT3rdyk/oxBFBcXLgcPWkDaXmLnEa6z6HFfq3n4bSWSL/oyrlfcKZlEVunEEy0Y3GgEqKYWQD21kQGxSeCawi7nBgLqtrnPntu6NQtyOZ06UPZAMxB0AAHGCKIL0X0p+cS7xh9FLfBThKSORxQFdlmpx7L8PwMKxrZsAWqx8/IPklkbYFMSq7LhtRo6JsToqB0C9XoezG7//twQMj/PSypu8S9vmcLiVloRuPtAguvbtqGdBjh40DISnXHpFsuTThJ5IN9C0Wg4JbbTAHv3AN/+tq3nFVcgJ3/XCFh2H7dNBQAQtpqOC70dVR1nfbOJ7gZIMIE3Iccg+4z89xp4WgI4WWvpNXevGPQ/zgwETyTpz92rFIFyuecfn7XyvpMgoLExIlJh+5J81hpAjyIPSAwgjHIvdmKsMuBjGUYtsUS5KSeKuumnNMe3E/mML7vvytDDpURW0AekZ8e6OKJ1w3111gZFpRwNBi8s5Kx0Wuz0UQzOzv9ZdBRlsTHStnvmG2MNGIcO2c+mQbgYLPR+D/S7i+wL3d6y/2ko9uhUGgu0EMTtmr+VjgPR92H2KcwxmYGBu6p4OfWqg24Whoicp8qQaXlR2ZjwXK6Hhf5fFyPFxnDxe5QvdX2aZpRyasyRolAD93yPWWqnyuMl/bl7bWTFmqnVati/fz9OP/30wvE777wTJ5988lGrWF96CwFAgokadNZexjxGQBwo0pkQxJRe4vo6ivY6lx96vUsub1JmSMDMB2JLEF1ScJC2g0JAk8cIREsjAT2XWW+pHw2iSy9uCusivc2lh732Qpfe4dSl1Am9ywmmS6oW1pfXELQluCxpV2T9Nc2IPk79Mcgmy+BOAy3aSCKNJUyvuerLxAcm00gg8wmCAAwEKg0Pkjdfton1kWA/we/Dhw8XxtvIyIgD2iW9j6S5oQc7+5Zjl/WV9db3kzZC+LzVffKDBgRv2bIF73rXu3DHHXfgqU99KgYHB9EPLLr20p+7VykadOQxvQAEuheASWJ5VgDgnHMs2jo9bYH0Cy5Ao7EZJ54I4LBd0e3caYONIk0tMp4kmJqyYCimp4H778+BwijCTMsGypya6gbQ6U2VJQWarfyfWg2Te+2/ExNACLEgazZtWUSZ5+aAu+/u9qYdGLBp77+/4DEcwtKmtFp2EdpqAVUJVDJf6b0lFoRB2raBzTJZXAxcXocP20sIntMxPUCnG2Sm/uWKGUDYyLnbgdwOQKCXl87PW2qT6mLW7szL2dQ3O2w0c77Hpk3ZluoowmwSOHA+mH4ILupoBpw29+VqtN8BoqjiFnCsVxRl1DnNlgvi6qTME120Pc2SFezSGoWgfghAS+/tWs1uZ+euA0kjxPGdARsFIClN0V5f6eLRz8di4Bag5Hkv1I+IFQ1SBKmz7QIPTAVoNm11bRkBzhgftwcYAVdYIWZRQdK0l09O5rs2CpXTkumWdQ5F+TKWQZLAghFyLOt3qzS1liAg3y6hvespx9m26V5zd38hvnbSn7tXIRohk8+7XuCvCZG0/Lgo0A0uugCZ3S7R1hs5ioAoKDyLe71GaPxYxggxJugGUOV8KjPlTrEy6cVLLfXne64xnTYYmm6vYW+DlwLRpUFYPTf05T6QNU0FTV4mAwN511NdjQYQtGZsguzFyRirGqbZ1DAukDuvD2Wb+Fv2vw9VlUYNrWdlEC8be4Bql37H8TkpyLR67jEGQa1mKfeMsR4VyD33KQXgmIPTtwMr+5bGIyB/BV5K6Jchs9W+K7peeujKXRwUGgXkK1Lp9NVVSFiwlRTSZBkcjyB6f+5eG1mxZl796lfjV3/1V/F3f/d3zgPzX/7lX/C2t70NP/MzP3Ms6tiXEpEgs/Q+L0snPYspPlBQA4GaS93Hha250VcDdmludZ2nriu/fcCu/J9gtw90lqL5v3t5Fpfxw8u26I/P6MB2ETiX4LWvbmV61frROpK60jsRZHppLJF5awONTy+6/VqfvvGldyMQ4JY6lNdIwwP55GUd9c4IyWWv67OcMco+1jo9mvJkp3P5sz/7M8RxjFtvvRW33norAHT18XKlD6KvXvpz9ypluW/HS6UbHbVv8tPTDpDkgo2E5s7ZlygtxCKCAKNaWHKxwnVQKQ4nruvydNKLcnmM6LJGZAcGctc6WbcyWc6Luw9RyH5KLz6nt6MsZYs1qZdeTSCAUFhsqcx8a9scIEGxDF+/+ESuJFe6mjPGH5HOV75aPDKJMSptDx2laeZRWSYK3HHBaQWwzXtiYYFAtmd1/FgWieJ6d+9lbV9c7I1Nuet1P3AAP4EWpL3m7v5CfO2kP3c/BvHdi0cb8dLzliy7++exE/kMllFUtQwMdEeq1ghj2bOqR0O8AHpZHfUx/X+PckqDj6O7K1ak92UktvOX0FWvhL2O+4yt6KZh0VXzzp9l726+csteQHRBvcQ3PtS75XKGYS8pu6V86XSVFxfz98Ml5+rHImkK0sUcb9Kfu9dGVqyZG264AT/7sz+Lk08+GUeOHMF5552HxcVFvPrVr8Y73/nOY1HHvpSIBHHpkUsvbg3CSr5s/i+DaBLIlMK8mZ+krvCBlxLwpFexBDol/zk9f8nrrj2O6UEsPdc11Yf0FJbewjqwJ89pwFjqQNLdsF3MW3qJ81uCwqSvmZubA72ZZV1JFcK8JXUN68Q6yLpKOh1Sykgday96qSsCyJJLnu0gxYnsC22wkP3Ja+WYk+VJvVH/ml5G9j3byjRDQ0OFMcN663xlWTxP3XC8+AKf0jtdjied3gfwa6OLrAdF31eybPnbZ8DyXfdklHvuuafrWD+w6NpLf+5ehaQpsG5d0aXbt+jk/2WApzEZbwus2/PUFJAkOOGEjJv59/4auOgiTE1di/37HwFqNrJnJ65ictLi7jDGujuLcom1N5vWK3vbtpwlgtVwXkCiTkFrBlu2VAEA4fQDOSk409FjiTQsQ0MWTNfCiFZRZAnUybOeVdcF3GTecZxXTHqxSa9j+cKephgYCL1JjbHVGh5GN18920CCd2Ocm/5MK+ja0b9hg72EjtYnn2yPbdgAYDItWCoCWE/2Ws0G0lxczFUjh8fCgqqssRy7EgCW3lFRZOsdRWFOqS3bpBc+1GHmOd42FaRpxn+ejY2REdsHQTJb9FJjwzWlyPBwXl+mlV6OcptDtr09peEn3zSO1nQ+7iSmzWLIJ7phg9jEkCR5XzE6aRTlBoY4RgcBHn44D8g7MZHdVvTUjyILEJF7PklQMSmimh3rJ55oKdXr9QyMiCJ0oorgxAdMVLEwRhQBrazOUy3H/ZMkodsFUa/D8tvKMcffUuR9ItPoZ8VxRqzaa+7uL8TXTvpz9yqFRjgdewDo4u+myOlcG6Tl9Osu4+2rx7ei5vDhlD5nXvmslP+HptPtaawNm9plthc4Kh/IXY1C97fOx3M/dwXIlPXQnvK+PGW95LfKjgBpL/YrN4eKbPU81NWeKELaUqf4DiFcwDsmBEyY70KQupcV1RX3tddzbCkbj42nohom8+jiSBNp9cAS7yjtNADSbi/4PPtAHCuCxyxOvt9IH4uSprrfvNd8rzl6WtVDXv6W8cTLytK/l6qcLE+Pcb4PHm/Sn7vXRlasmcHBQfzP//k/8Z73vAd33nknOp0OLrjgApx11lnHon598Yj0pJZ0IYcPH3bgKOk/CCJTJFgrAWL5kYAhAUAdVFSDiRJ0ldQjpNIAcsCRQDRpOFgPCbpKD2K2QQaglNQcmp5EgqGsF7nBgaI3s9SjbC/TMH8CvWmadhkbyPnebDYL9eS3zxOc+tDndBvWrVsHSdcj6yUDXpKvXLZbXhMEgeuHkZERAMD8/LzTtwx4qr3hGahTB3+lPgliyzrzGvYt+0jSuPB/flNXNK5IIF3SF/Gb4Lg0UshxSWoWctKzLD22qW/S3kid6R0APm9/9gP71Oe579u9oXcK/CBKH0RfO+nP3asQEm5KUFauCHRAKQk6ynRRlCPcd93l0p10ElDZ9TV87+/+Dmd/7nO4a+BaAHfggakfxWZYrH3nTuBpTwNwQWxRY7HVmWwb+/bZOKPP2jELAHjwUAWHDxfxT0GQDUxPI5zeY+tB6hYZyDGjHunUN1qwcXsnXwjLNmY86I4YPI4xm9g5KI7tgsZW1xT1J8F0qVsjg5FZYRw9Vov4vlwHYrpVpHORi8V63YGv880cb2ds1YWFIu02YIHWYPohYDLJ8xUggDEhxqJZAAlmhsewd6/Nb3BQ4fmSHsVYL+rpaXv+0KFi8NQ4trQhQTKLsVpU1LdcHCsgqBNXkaZ2rKQp0GiEqEQGITrYsCHjNOdJ6kYA760WMLat0c3PKvtajh3BGyRZXlhd+dsYCzwRtw+SWcdPHsdANc7GVSsri5FYCdAXsKLAjfVHHgEuvRQ4f1vHto27Oxg0d2ICM0mIavNeYGoKQaOBsUYDZ50Vuji4AIBazdHCkKbcSgXIgPVK1IHjTEpTp4qJCVtV7Bb3ehlwUavlv6V+tZTt4T8eZWBgZYvr44yq5okk/bl7ddLOnhk2YHRoPzUb54BgGIFDoHs4S9AcyGmrvAEzFWonn1+8rSXHuczXcjnnZRijA0krwLwXmkgpA9AVaOyru1eWAoI1UC6P+0B/5iHb4AN4s99yl5eaAgvfvZrMPo/jIM/D2AulsWNhwb5qDQ0BbYQIJyYsX3p2/uGHbX7Dw5bqI4rD3FAjDdXyf0mlwe8yA0UPobpCeb18n9L5aCsNJzm+b2Wc6GmSG745TssMSjLgLdPw2jx+jd/OI5sugW+Of37L6tObXIPyetjq+0gLh5u+jvl1EEB7lnfdYvo+jKLs2dJd3nEr/bn7qMmqu/3MM8/EmWeeeTTr0pdliM87lp7eSZIgTVMHBgKA9CCWHswEOSXASY907XVLoIsAJkFNzWcOwPGDS4oV7QVOwJPALetBIFMDuUwjvZkJJMugqBJE1iC69DTXgCiPMZCoz/udnNoEi6VeyHUu+deBPGDm0NAQhoaGYIxBFEVd7dCivZslQCw97Qne0ntdXqd562UbRkZG3BgwxkBy1/t2Fsg6sr3yMz8/7wB5CYhLz3MGrKVBgnqRwDvr2W63YYxx+WqqFoLrBNvb7XbB0EAd0gud/0sQnSLT876hl7o2amhqF9lXcrwxT5ZNvUk6H5kvv59MAPG1116L3/7t38bIyAiuvfbarvPzmetmH0Rfe+nP3SsQuqhKkBkovkRzwWRMN3c6JYpwINqM6Sng7A0bbLqDB1E/HcCnv4LPAXj6wgKShYMA/gX33ZeD6HfdleDuuyPgsjj3FM7KCNI2Wq0Qk5NZ1f7P/wFqNQzueIEDcx3OLwE6ovOHDuUrpkbDui6ffrrzvtq9m3h5ACBErWa9pE88cQzrG5b/nN7DncZmBw4DOZ5pA37CeYGnaYgoCmEi4V0nFspykZOprvB/aDL+8xQAjAUYJF+3LDyO8f19FkgheE0cOI6BsVqn2J+U3XtsENfR0XzRKQCCMDLAvklgehrxRZeg2bQLPbluBmzQrkCA6AxG2WrlgTeZfaORcW9L8FyvGJXHfjsN0GqiAM6PjFjQKEQbAfUyPZ0rM2v8bBpicp/lCG80AmzZckauW5khK0xvvGxsdEyI5mSetNWy1N+PPJJXNY7t4jpiXzft/ZSmoR07+/YV2jYTb8b0dNGLkLdfs2k/d99ty3vZywDccUcx4GlmGXlgOsT0NHB+lNggA9kYG4siXLIjBowNEDvTChwGL29pjpPxceQRRDPkJIsviomJLOBr2T0vUR7PDgsvYO7b7bHGsty52wsC9ZInFMpwfEp/7l6Z8PEnQTaAz92gMGXLqb0M5ySwHfCkvMAU+cClMVVTSkhvWX5CtIsGxV781rJ8XVHfd8kxzX3tw2ALAHQZiN/r2/fb1w4NoAuQX9PESPzf1U2TZ8t2q2JDYxDGtr/aaZG/W2+6stNhxb1SpCnw6KM2HY36Nq19rwmjTjEjzqfaAWM5hosSSVNB6cJ2SuBev49KgwTB88zI02rmwcD1lKR1IavuA7blsJWe6LrJepeAbEbhfssMVsyjjGNde54bk71vUFl5KV1UONwVJ5P6hikNaE5Eo010fIDo/bl77WVZmvF1Rpm8733vW3Vl+rJ80R7UABwITKCXgLSPQkOC0vLj874lqChpMQgyyjIkeCo9siW4K0F4egoTDJYUJyybwKgMSilBbuntXBaklOClpjeR5WiDAetB0FV+yzYwX60neuAPDg46XUnAVOpaGg0kcC91IClOJHhOsFhS2LA9PmoaeolLYFr2j+ZE197nvnotLCyg3W67fAYGBtwY5IfjIQxDMJDo8PBwF0Av+1jzxOuxo+laeEyOX7ZxYWGhML58HuY0KOjdAmW60X0leddlO3y/n+xy5513OgqiO++8s+u8L9jwcuQHRX9HS/pz92MUutUsLOQAIhclPiCsDByLIkxNWcDybOYxP28dVPfswSyA7wEAmgD+E488Auf1Ckxjenq8uMgUb/tJEjrgEXv2AI0GzEWe9bc80GrZIIwyUCR5UjPAcTYJMDlpQfFHHrGX1et24cggn7VaiLFGAx0TFpydmaXc7txBUPBSHhgARkcDVKKoi6M9TUkMYhcuIT2AAAsyMGolV2ISsRDuRm2EePhhu+glJswYn4Xr9AL8vvtswFR62ftcqzJwmoYMFqtxg1D0Gy9rNm2dgNyBOk3RfbEOBCVoVGTVmWc2rDL9CeOC7GdYL8lDB12MW2cjiuMAY3FULD/JXNTEYrwNG3xPln/wIPDgg3l8UgZ9dQtp0R7bxDQH9zM0otm09WEfscksg/YAN965ZXlxMb8/o8ilQT1D+LntgIXHMdA4w+V58KANIssqHjyY74BAmuYDPk2dzSdoHsiVzk/ZYlNGg9PjSO5mOQ7oXJY7d/cX4sdW+nP3YxcxnRVEgnic3nWaAhDHhDo4pHhW++YwCTRKIehX8Drn5MhvjUpqlFAi/xqBlCizAqJd1knvgI86gCq9+V1wSd97ThmI7gPQfQpX7emKMSKkK8CqNmZqpF2Xm6ZAVHGXaNCXl09P568b1bgDZO8xHFd8PRga4tRiQdlAvpvotvbQhT5F2jd53hhB6eLTo3xfIIAvPND1uxiHnXaWl+ND2gC0PVh+5uZyPcqNCXJ40hHaZwdy74xZYYEx9l3QGCAqp03pshX1QsRFI+TOEtkenbQw3jyJjwdn7f7cvfayLM3ozvi3f/s3LC4u4pxzzgEAfO9738PAwAAuvPDCo1/DvqxYfICwBPLK6CM0gCwB5qXALl+emjKl13Fdpq677+OrO3+X1UNSb/jO+erJ3z7PcU3d0Ut8beslPtDXRwEiAWaKpFvR6ShlPPmyL3x9J39LA4o0mkgjgfToluX3GotLid6RIfvWFzRVjmW9i8PXF9r4Q/34+vrJ5kV+NOSrX/2q9zelz4m+NtKfu4+ylL2QA/6FkkpvDHKOE+mWA4LGVQDrlfNzYrPRKzfxIux+Zmm860ifl5dMODyck5hngK+veV0LqewHFxGF86K+vrUHgUqJJbK+nUwjblt7tvgLjCcxV4HC6xtJgjCOMT8fONBermvTFN0AOn/rffcEDaQSxCItjkPHtKOxDZlOYeEujatbUwEThVVhUZitHE6FPpN1l6vYLK/BQf+CsXSceOrgYwOIIgso8PKuncOppcPpyjNNAVW0XJjK6hTWgFyxE+jP6pWx1nUDXtmFsg80YFQIWssD+l7TOluNUAdLLfjXUJY7d/cX4sdW+nP30ZGVDlHvLfgY70s+xySYvux6aaTRd0wjiCXzhm6GDs5N0F8+D3XRFrxV66CylwMN2smJXqfR12XvIJxPA3SQJIHDhIuBLEwxLgbnLKK48oWKGRpT4LPWupCAbxQV56IyFpyuPpXt1+30gd/dKihk1XVZSR7eeT873hVUXpUlsxwcLBqYdJa+5g0OFl+ffNXT44vTq3e3Q+H6sGvK9JWzEikL5Ho08l5r6c/day/L0ozsjPe9730YHR3FX//1X2P9ehv86uDBg3jd616Hyy677NjUsi8F8QGIGuSlhzC9Zwn0ac9ZSUkiqS+kaFoQ6XEseb99gGsZ5QupUSSFCCljKNqTnB/Jqc76sG0SJPXVpQzUpSey5tTmucXFxUIe1Bc5t0mPAgD0Wmc7JdXH/Py8C54pdacpUNiuTqfjaGFYP5mebWTfsa9YL7ZRtlt7tbOukkJHe7LLc5ouiG0nbUsQBI5DnvQ+LDdNU8zPzxf0KYWe5XrHgPRol/26uLiIMAxdn+hdCtQh9cNvyb0vdxXIcxI81974ZVLmgS6PlRlRfhDB+D6IfmylP3c/RnFIXCYaCabo1Y5EJzOSxozqGZjeAFx0ETAxYZOceSbOALAVwH/5Lyfib//2rbj0UgAfSDE1BQD/gVZrC/CVr1g33Xrdus3W62gjdAEWJyYAfHovYIzzsJ2YsE0I0LH/sE6NBrBjR9HLbWIidzWPY8wdzKu/ZUuxyaOjeQxIbglfvz5ftyYJECYz1tt9fBwHEstDG0V2UbZvn/WYrtUANJtII8srXqsBZzQsr/u905av+7yJFNi3D+0t52HnTmDr1grGJieBOMYDkfUmPnt62tLTXHEFZsbPQzU9ANx+O3DWWZicPBtTU5Yzvl63VdqzJ9PXnj22EY2GrfyePXYxHkX2GD9S6MJljK1ws4mLLqrknN/GoFbLDACTlpObe8HrjSrGx61+xsfhxkUcA2HrABwvjwz4qUFt5Jjx6CgsN/uGCM2m9S4jmN9BiLS+GWF0wNaB7YxjBOh00RkQZ3hgKkAUVTDWaFhdjI/nRoQMlKBj+/i4HVtpFjB1eDhXF3nnTzop62fqrNlEBc08AwF20GG80QCqURtthDh4MKdWqdVsIN563Z4HkG+VqNWsQqancfaOWXS2VIA9BjjzTLtKn5qyF05M2L6ZegBjxqBe34hWy47fRqPotN9sAnFcRSjGAPsLaZaI2whKkRR0r87lM4KgkvRWfyJIn1f1mEp/7n6MYgyGQwvo6aEnOZ0ly0VoLKjqbmcNCi+JmhaK7wJmZUDMUhxL73wCup8vGsX18W2ozLmjy0dfQVDSh3mzaHoItxEiTQNUOCdk1GB2/stA63od7TRA2HyID1H77OVWIyDfaiSCUrSjKsI0i+FRq2E6tZ7ip8YHgOlppPWzXfwX7NoF1Ou4Nz4PxgCb9+2zLxZXXIEDZiPG0gfsO0G9bt+3AHueL0ZZdOkwTRECqMTGgcxAbrzfNJwCw1SSQcUAW7eGBYze0ZVRZP/5EGhNC0iFJwmCNIXJ4pxEkfV+7yBwm57i2NatgxBthIW+ybfYZaLnFGGYkEYC/mZy7YTheQXpcvLX7ENSP6J4V46k1csp+tLueEJCP0EUWSqezKFC1lXm7y1U/N8LONfGC/fbB+6vFIw+XqQ/dx81WXHv/9Ef/RFuvvlmN5EDwPr163H99dfjBS94Ad761rce1Qr2xS8+AF2DhgRJJRitqUI06CpBSKaT3un86ECgZV7N0kNZgpMy6COBVdJu+CgwNOVMmqaOKuXIkSOFQJa6TKkf2XbtdU/6EElXQsCbupQg+vz8vAtqSW52UpawHqwL85+dncW6descyMz8eD31pwOp8nqKbgP7e35+3vGEJ9kMduSIpXshHzs51tkXEriXgDcNFaRCkRQyMu3w8LDrIwmqy3EijR6Li4ulNDc8L3XO+ksDCvuUbWf/+3ZNUC/8LcerD8QdVG++0kOf1/h4z+X9pKlvysDzH3RQuA+ir5305+5VyAknFHmKNYiuVxs8Pjdn6R+iyC1sqslDqDZiIBoHXvQii8ZNAbjsMrwSQFSr4aMfBd7whtMRfPp/AWmKvXsB4A5MT/8o8PGP2wXGdddZJHF8HAcP2kXI1q3ZwnLnTsBYWozpaeCS7bMWNd6wDQ8kYzaYY9S2FxHAzNowE220NBkA4sQ2mwuoLVvs77vusjQktRpQaT0ExDFmUgsgh60DCAGYeMzqYd8+u9CNIkymGxFFNp8ksacefBA45xyg+sgUksYYdu60588w00AUYffuCqamgPPGU2D3bhw88Tx87nOWC/uS3buBRgN3TD4dU1PA2Sfst3zwL3whPvc54Kd/egzBP/wD8MxnYu/dduH9ilcAp0YPYe/ejdi5E3jmMzN91WpuQY077rCVe+ELrVIbDczGGwugdWXfd/JIlLUaMDmJyu7d+TgwBlUCBPfcY9Nu2ADUagiNwTnnbMbgoL20sJV4514ga5dDarPVJvlLQ2M9tdLUDq/16wHs3AXEMTZtOh/G2DoGySwOJBXs2wds2TKGarZinYk2otUENtfbCFstDAyMFTjskwTZmAO2bx9DdaKGeycDTO6zcXGr+74JpClaGe4b7LG6mNh+CQ4dss0kVrJnj83z1PFO5iWYrU4nJy0h/OmnY2b8PDt2Jr8PpCnG4jaiKLRja98UwvFxLC6OYXg4u38McOmlG+32emthsnnv3ZsbgJIE+MpX7Hb6iQngh3/Ynt+9G4hjPDhXtf24Z6et+wt/DM2mVXsweS+qcYxofMxRxzSbwBlbtzqwfGIiAy0Sk6MAGgzRrnJ6n7ymEfJuJTjOpe/NtmbSn7tXJxJb1t/0po4iC5qHaANJisAYONqSHiB6h2my/31O2BpwZBovvzIvls8IfYz/K9Bcehe7xwjBb5ZDJznxjAl5PAOSHfVY9mwK4xgwFVtU01oXW7DPxvHxEEGaoo3QPX43R7ZO904GmQE8ts/piQl8fzLExMRGBHv3Wkqw2OYzlk7aeBNbt2bzVQVB9my/7+BGzM8Dp9angN27sfDss7FzZ/auc9NNwI4d2B1lIPqeXcBttwEvfCFuuw14yQ7Yd4IdO3Bg6yUwBqju3ZvzhdFILCm5MqC20C9TU/bTaNhJMEkQ7Ntn9UXLbrNVDL4t+y8Lwu0GBOd1Ecujk9HKhEkLaDYRRBEWFkL76jg5aetkNiJJsrmn2QTqGx1TWdXYvGcS+55Qq9l0bYTOOT9E29G4cAxGUU7ZIseoHKdSeI0ckoUAveJ6H4jOWADMx9EYURdpmn9TWJgsPI4RZMdDdX907ZRQ844MIKvFB8i7eygVCaQxxNgdDV27M45n6c/dR03KCYZKZGZmBg8++GDX8YceegiH+Da+TPmnf/onvPjFL8bmzZuxbt06fO5znyucb7Va+KVf+iWMj49jeHgY5557Lj70oQ8V0szPz+OXf/mXUa/XMTIygpe85CWYpKWzh3zwgx/E6aefjiiKcOGFF+Kf//mfC+ePHDmCd7/73di8eTOGh4dx+eWX49vf/vaK2ncsRYPoEgyVQReTJEGSJGi325ifn3fe09KznEAkAVN+2u22+03vYJbDIKQEfyUgLOsoudeZdmhoCJVKBcPDw6hUKi7A5JEjR1w9+ZF1kPViOn6zjbLeMlCo5E5nIFIGU+WHx8MwdB+m4/8EthcXFwv1INA8MDCAKIowPDyMoaEhB6wDFnCdm5vD7OwsZmdnMTc3h7m5OSRJ4nYNSIMB6zM0NIQoilCpVFCpVBBFkasb9c32zs7O4tChQ3j00Udx4MABPPLIIzhw4AAOHDiAVquFw4cPu0CcUi9sH8tg/zAgqvR8p46iKEIURYjjGLVarfCpVqsYHR119QTgdJYkiWs79cBxyj7lGNWGItmHYRi6oK1DQ0MYHh7G8PCwawvrTQA/SRKne35YpjQ6ySC7LM83PphGi/ZWXyk10VrLhz70IZx//vmoVquoVqu4+OKL8X//7/9154/3Z2EvWWqO0XLLLbd4n6179uxZmwofQ+nP3asQSQ8CFIEv/SYuX0wXF4sBpYyx4OyePeg0NuP7OAPfn7QLHmzfjuiP/xi45hqE73w7nvu5/wZ87nMCRN9lHbj27cPU1JQFWLdvx4GkgkcftZ7mW7YAlel7MXvffcC+fW5tiD17gH/+ZyBNsXu3rcJsGuLBQxX8+94q/vWuMXxzaiO+ObURX/mKXZfu3p3vjOaab3N0AGOte7Fhg20eF3dotXIWjYxgO0TbLr6mppxn99SU5ZkOkllUog7uv9+Ws7ho0yUJcOedmZNahlzu2QN84xuZzvfsweHDtn5792btmpzErl123YwHH0T6z/8MGIObbspiQH71q8D/+38OPx0fR5bYljU/Dwvy895OU/v/V79qy5yYwGy8Efv22TL/4z+yOJitVu7ZXa/b3zfdBNxyiwXl+bnjjvyiyQwomJzEpuEZjCUPILjlHy3Yu/d7CKYesBaKvXstH7twD59NLa/79HS2UM1A9CTJQPU9e4BvfYs4PSqRDbLWbNosp6bgOpLOeoDV8+CgBeMBWA9AuGGKffusV/rtt9vmffe7cPVy69y9e4GdO1FpPYT164EzJjqo7vsmTo0POEwbk5M58boxtiG7dgHNJvbuzepDkKHZRCWdySuRgSlRBLeF4IzaAfzQtnYOoj/6qG3ovn15ANDbbrM7NwA8kG60g3hyEkgS3H13dul3v2vrns5kQMSs66swscfIGT8bb3TbMYLJe3OSXC6kZdBhDXKxs3yueocO5VFZ03TFnOhP5rkbWPpZr+XWW2/FhRdeiCiKcMYZZ+DDH/5wV5rPfOYzOO+88zA0NITzzjsPn/3sZx9zucda+nP36iQ0HVSiDiqmjTCdRZjOIkjsh/dgkLYzAD1xc7ajEBPzewdBwUiWpvZYx4RdXrGWJqTo4R6aThE81BzeQBEsJNiaGWs7tTF0amNoR1XMJCEONAP3efhhO79yB5q00bmKyecQg2jwwyASDCLN/zPENUAecDpJctyZc8HkZP44hjGYnMzm6ey5TqB9agqu3cSm+dzndUkC551+//3ZO8HUFLBrFxYX7dQBwM7Te/fiW9/KpvDdu+1EBTv1ArBz8u7dOa85XwaaTdtnSZKD5PfcAzdBskHT0zb9LbfkAaqbTftiQoM7g93wGhnAI3uJ6piwgMrOpmHBS9wBzuyXJMHiYqb3rB4LC5nOs/5JU1u9uTm4uZVNSRJbDruy1YIbs0mSU7QYk1OpDAzkQ47nOPw4vcUx7L2Edn4fZeMnTGYQJjOoYBZVM4uxuF3YzNdoAJs2dDBW66CSziCYfijXve/DMciXH+5YkB+pZ97PCszuOIg7cAA6k+tpWYox9r7tehZo55lVSn/uLsoTde5eMYj+8pe/HK973evw6U9/GpOTk5icnMSnP/1pvP71r8eP/diPrSivw4cP42lPexo+8IEPeM9fc801uOmmm/CJT3wC3/3ud3HNNdfgl3/5l/H3f//3Ls1b3vIWfPazn8UnP/lJ3HbbbWi1WnjRi17UFQRQyqc+9Sm85S1vwa//+q/jzjvvxGWXXYYrr7wS9957r0vzB3/wB3jf+96HD3zgA/jGN76BRqOB5z//+St+YTmWormytfe4DLhI0FTSVsi0ABythe9b84hr3msffYqsm/RMl6AkgU6Wr4OO+uqjz+uPpOfQHOC9Pr5AqzpoKUXXU+pHgrCSCkRSlUgvfBmsVepO10sC/tIjnJ7RzFMaFghY08hA/ejdBcxfGw90/8q6STCbwD4BbZmP7F+pM/2R/cc2ac50X59pY4hPP8xX6kiWK/tPUxDpfpD/r1Q0xcvxIOPj4/i93/s97Ny5Ezt37sRzn/tcvPSlL3UT9rF8Fi7HwPBYDA5LzTFl8h//8R/Yv3+/+5x11lkruv54lP7cvYrxKsmdAf+WTi0SJBP0ZFxs0BObONysqVrP9AsvBL78ZeCjH80QS7swBuyL/gEAM4DbGs21w/BwFjNxehqzAHDoUL6Anp62ATLT1C2yk8QCp1wv6s/0tMcbKVvEyK3vzMx1Fxc0vJAruGyhPT+f64br9jQFMDeHNLWMHK0W3Kqm2bTe6gDcovGuuzK9ZQuoqakMhJ2bs7oxBvv2ZcBwtsBlWUEy67aSP/igAP6lJ9r+/ehMTblAshpnOHQIBQ+ygvs2F9REXvfvt78ffdSmP3w4XyRPTxcVLgs6fNihH1z0zc93xz51AMn0NPDIIwjStt11m7UlSaxODx6EG8POuCIycH2dWs52Btpkdz74oG3eo4/CVcDVhYvbVivjdG9aI8D0dO6UJ6Oe8uJHHnFAP8e4O8dKPvxwgd8fBw/m5WVlugZwQc3BPTlpdZsBC65h2bhqtbK6ZvkYI8rOGh6aTgFv6sRVW560MHm8QgEUnxmsoxQqfXFRoV0rk8dz7paA4rI/K5DlPOul3HPPPbjqqqtw2WWX4c4778Q73vEO/Lf/9t/wmc98xqW5/fbb8apXvQqvec1r8P/+3//Da17zGrzyla/Ev/7rv6663LWQ/ty9yvGqjVZ6B0jZh9fKb4opBrz02dOzZF31cB6rZRfxQvHpmBCzGRe4xMDl//Pz+RwhQkMUs9cgoNaH/mSFGINC2jQtBpxcWMgfiaw/H+H0Tk4S+/hOkrx8PlcB2MpnoK8DimUaBRynKex7zfS0CxqO6WnMHjqUP/MBN7+6RywN4HoiZeDoZtP+li9LmfHbFZwkdlKcnCxOlFSCRGizctJUDAhhgFHDo9sTm/+LuVrO3QziSZHFd1AcM7IsXkNjD5B7iEsPbP0JTae7jXpQCmCbQLsD3PXg1Vafubn8+9ChvF9arfxcr3tYS9YY3yl5TF/uu3cLvyWIvkogvT935/JEnrtXDKJ/+MMfxo/+6I/ip3/6p3HaaafhtNNOw0/91E/hyiuvxAc/+MEV5XXllVfi+uuvL30JuP322/Ha174Wl19+OSYmJvDzP//zeNrTnoadO3cCAB599FF85CMfwR/90R/hiiuuwAUXXIBPfOIT+Na3voWvZF4oPnnf+96H17/+9XjDG96Ac889FzfeeCNOOeUUZ20/cuQIbrzxRvz6r/86fuzHfgzbtm3DX//1X2N2dhZ/8zd/s6I2HivxAdYauKYQfJIAsw+AJpjbCziX3N2+j/RG14BXL0BM8mP76q7bXcan7QPiJXAtf0vQ1gei6o/09tfAto9vXe8SkB78GpDVbVjKSCD1shToLssCUACT5S4F6QHOfKVHvPTEJsguaWc0qC93O+h6+kRSoWg6FD0uliNlgKvsR1999Hhge6S+JciuedqXqs/xBqS/+MUvxlVXXYWzzz4bZ599Nm644QbEcYw77rjjMT0L3/GOd+DrX/96zzTHGkRfao4pk40bN6LRaLjPagwmx5v05+5VzN1pWhZ3//4AAQAASURBVHyJ1N9l6Sl08+ExAarTsyhJYFcvw8M5aWpG0Gw9v9djYgKoINt+/fDDzu1Lb8UNARet0xgUt8CqcumFJB3f6HXEKtOGwAwLwUOzbcpuTSG2Mrtrsv8ZbJIXj4zk5WBwEMbku5558ciI4NKOIhhj6UKiCM47j/XG8DDirGDGTWJjyNaCNAUGBhDHwKZNWT6sMz/r1yOo1YDhYbfIJX1kFGXdQ7ct2d+kdoljuMYNDxeVKxstx4NelIn6cD1JiSIASeL6yu10yPJdXEQh/0I/yL3ZWRp6m8lTUZTHl2XWJ5xQ7BtXhK+sbAy7IuVCTGZqjBv2XToAXMBQl+/wsB1ETGuMPSbzHRnJ9SzHPWmVsnEEwDaStDuAx32zWO2uoGfSqqGl18JeZjwwkH9WIY/n3H2sF+JLPeu1fPjDH8app56KG2+8Eeeeey7e8IY34Od+7ufw3ve+16W58cYb8fznPx/XXXcdtm7diuuuuw7Pe97zcOONN6663LWQ/tz9GNbdve5DKXqceub6jgcy0UOczwkClKTgWvYzocc9oy/lo0M+TvhI5HNrVWX2uF/lYxdpisFBNYekqZvv3RwBFxrGVczVj2Vl18lr6BnN6J6cat38HkXusY84RiUrIo6Rz8uSF5wTpzE5sM0XITnJy/e24eHuSZKBRyT1p+wItlN+S32X6FWed1NC9r+IbV041ktYJebFdzpHiZ3Nr5oiu+xR7Rv/pdJrzMnf8sNGDg5avfMdamioOLCXO69kdfAlKcuG35KqyXvRY5T+3J3LE3nuXvFIqFQq+OAHP4g//MM/xN13340jR45gy5YtGNEBuI6CXHrppfj85z+Pn/u5n8PmzZtxyy234Hvf+x7++I//GICNVr6wsIAXvOAF7prNmzdj27Zt+NrXvoYf+ZEf6cqz3W7j3/7t3/Brv/ZrheMveMEL8LWvfQ2AtYpMTU0V8h0aGsKzn/1sfO1rX8N//a//1VtfUpBQZmZmVt/4JUTTW+ggnzxH4HV+ft4BUAx4SWAoDEMX6JLgKvPV/Of0ViYFC3mxNYWF9L4mCKl5qFk3AC4oqDHGAbmSe9rH/06RIKf0hAiCAO1221GQlIGdEhD1AeKkxiEoTc9r1p9As7yW+QJw/cMgoTwm6yL5vZMkwbp16xxFjEwjdSG5wdmXQ0NDjqaFaWQw0iNHjjj6mfn5eczNzRV2B8RxXKC7YXBQGZxTgvGyLNm3PiBccrzLvmQ6DbpL0FSmk7+l7pi/zEd7+HO8ai97igbQKew/HUiXupF9Qj35wF+pHw3OH205dOhQ4RnEXQK9ZHFxEX/3d3+Hw4cP4+KLL171sxAA9u/fjxe96EUYGBjAi1/8Yrz0pS/FFVdcUajDSoFxptXP1uW0bSVywQUXIEkSnHfeeXjnO9+J5zznOUct78dL+nP3KubuxcV8ceUD+vhNjyEe4zVupQgLmM7Pu9NkfAGAeGIzwokkBwIvugi46CJcNAl8/OO/gze8ATjjG7Cv9f/f/wc8+CCGfupa7Ntn1xv1OoAoQrXRALZuzd97Gw3gzDPt9uGsmocP2+9aLf9mtUnHzXPGZAvUw3k7RkasU9bmbdsw0wrQmrbXV+t150UVYtYufBoNwBgRjNHq76yzRHC3eh1RZHlOt2yB09tTn5pxficJUK+jXgcuvzyjZTE7gIkJnEyA+ZxzED7nOUAU4Yd/OCvrssuALVuwI2sXWi1geBhbtwIvf3kWX3LrVouos8GXX25PbN2KJLGLSwZMdcB1M8rTkxt9x44C/70TAq1btth8I3Ht3Jz1wJuetunYkeyERgOT+/J+iCIgaM0AU1MI4xbOqNeAqWmbb62GA1lg0QPNAHE85uq8uAhgYiILCGer1TEhgjhG3Vi9M8hpFFmVpClw8skWZ96yxf7faABIbN/UaplR5MQTrbeYMTnGkIEWWdcDickpCaIKgvFxS4Zfr6NuLECP+6dt/9CSkiQFOoEkyfhnecO0Wjmw0WjYThJBQ9FsWt3GMRb2wzbwoouALVsQ78vqtW0b0GigXduIZDLL86677H06MQEkCWq1CubmgLFaJ98nb0xOAyDvbw2U+Z4X2liSGbwwOlpAO54Ic/eKF9dZ2uXM3ct51mu5/fbbC20FgB/5kR/BRz7yESwsLGBwcBC33347rrnmmq40XIivpty1kP7cvYq5OwNmC6LHq5zHhcHc8Z1nzzJ6VPsuJ9gWZqAkkvy+l5zj3gykZPNeO2VgUztnJy0/eC5BVfntAlzyIhoFy95dWLaogwOeoyins8ikXhdzUZpirNbBxERg30Eyo26jIQyPGdBdr2fvElkGztiNyAX2Hh/P6MgyoHtiIvM7ODwMjI+7qbYSddzEdc4JGZicngM85zmAMfY9whjg0kuBrVtzg/3WrXCVYXvrdVtvzsvUDXUyPm7nagYfB6w1f2Gh+x2P//vAR0n3pfq8AI5nuh8dhXMgoA4XFopp3JwbRWingXtNpQwP2/l/dNT2TWAMNmzIgp5nlEaV2MCYPNhsFBUN94Aaf3ou09++CzUQrfXEdgLFwO3yWmF89+pbl0m8QlUpBBDG/uCiXQB6Wf2zOvC5AAALi/Z3f+7+wZq7V21OGRkZwfnnn38069Il73//+/HGN74R4+PjDvT6i7/4C1x66aUAgKmpKYRhWAi2AgCbNm2y3KEemZ6exuLiIjZt2lR6Db99af7zP/+ztL6/+7u/i9/6rd9aWSNXIRI8lQEtJTgJwIF+nU7HeRkTDCZgzSCd0luZ+VUqFZcnj0v+aZbPsgggElQs+ybQLb2qGXyTPN/SQ5xAtfS01iCxFAYoBXKAXILoEoAPgsAF+ST/N3XBcsnFDtiHButFowOvl9QlzJsAexiGhePsI0klwnqnaVoAdn3GEeZHQFnyfw8MDLh+IvgtdyKQD3xmZgbNZtPVPQxDNBoNRFGEWq1W8DbnuJNjUHKrM29yuzNArNw5IHn0ecyXnxzDMrCoNoDoIKEcX8zD50EehqEbDxJE5y4FAAUQXNbPiElncHDQtY/1Y19okN/nTS099Y8VkH7eeecV/v/N3/xNvPvd7/am/da3voWLL74YSZIgjmN89rOfxXnnnecmn5U+CwHgr/7qr3DkyBHcdttt+MIXvoC3vvWtuP/++/H85z8fz3/+81261bT9lFNOWXbbViInnXQS/uzP/gwXXngh5ufn8fGPfxzPe97zcMstt+BZz3rWY87/eJD+3N0tpXN3mubeMD6PLj4T5EKVL/l86Wfgwfl5RxNhTFDYzdpqAdu3n2G9oEdHgSuuwINPeS5euA349rfHcV58L/ATP2EDbn3608BXv4rRq6/F3Xe7GKO2vOc/H9ixI19njY872ozBwSLWT4+uWs0uyk8+2R4fHbW8lzAGcRzYRfm8bRMdhKamgPvus8/d+Xmb7/i2jQhkwKzRUQtGZotaYwA0rf62b7flxTGARgO1GnDFFdnatmkXShdeaHFOtBLg5JNRNbN4xSsqFifd/kKgVsPEw3Y9iwsuAF7/eqBWw+WXZ/lmwVsvrwv6jjjGqdFDuPrqjdgcHciB1KiKNAUqr3iFBW+3bXMBN084Ie9uu7CNbaFpatOS8FMaW7gQ5GfbNjzQqmLgCDDYAsZqNau4ZtNuCydoMT5uAe/GqY4VJk1zkBvT05Zbha5lo6N2ANTrjjKU69G5uRzTJ/8+h2erZY0ejchiy3EMILEL6+3brT9fJZ0BWgm2b9+IRiPDpydt39QISpAk3xibRwuu0ErrIXsuuwdmUcGhh4FNHAy1GsbjbKzt3G/1QUMDQfRmEwMD2W2XAdvYt882gKTr+/bZ3+PjwLnn2ryze411uXcqxPgVLyjg9LjoIiBJXHZIm8C3v21vlMwjvV63Ad8c3y3vaVLyRJEtl0AAPdT5TOBv6cUo/5fPCuE5/0SYu8kxu1xh2uXM3ct51muZmprypk/TFNPT0zjppJNK0zDP1ZS7ltKfu7ulbO52Y9MH7ol3+U4GVsOEQBbAOU0AIAcWZRbG5IB6FzWL3qEij0vgShvaM+CeUwc3rNEnTGJ5EkCPY1WHJO0GzWWbJSBZBqTpOqbFPMPmQxiLopy+ZHoa27ZttGD7lE07Pm7tq7TSG2Mfk6OjANY1AADra9n/zRxE37IFWdBMC7Rv25rVaVcMbN2KCmZxxRUVq6TLLwe2bMEFjSxN/MPu4b59e9bGl70MmJiAszXRUs8JNaPGcyJfkKijrVvznWbsx5NPtp0jQV0NDmc65Di0hmv7v1N7Ng+4S4QhvmJsoFvpcZ9dBNRqbp4fGIAzkGucntNKiLYLDOue2GKMuuCcxgbVdbsGUBxGaQqbtgwwL94o+bf+zfed1DNeqX+Zh2yMOM57RhqzSsF9VbdA/A7djY7izSaF/wvDWqtVvE2A/tz9gzZ3rxpEXwt5//vfjzvuuAOf//zncdppp+Gf/umf8KY3vQknnXQSrrjiitLrJHhXJvq875rlpJFy3XXX4dprr3X/z8zMdA26xyqsgwRUy3i7CeZJj++FhQUHBpKWg4Aw80vTFMYY523OvCQgHEVRARAlB7kM0ijBc5/HsfZE57cE1SStiaZGkTqRgCS9uWU+DAoqqVlkuYODg4U2SX1qOpYwDB1wuri46LzLNZWONHJEUeR0KL30yVOu6VvYLuYjPfC5k0D2P9tCsLrT6WBoaKiQ7+zsrNuV0Gq1cPDgQTz00ENYt26dC14aZxMEQWMGSZXANvU8Oztb4HVvt9vu3MLCQsFzm/qkbpmP9Bind7yk0JGGIepNi/bGl0YkDVBL73reK5qzXV+nDQG+snhfcueDbJ/2Rpdj9Vh6on/nO9/ByUTGgJ7W8HPOOQe7du1Cs9nEZz7zGbz2ta/Frbfe6s6v9Fkor7vssstw2WWX4Q/+4A/w3e9+F1/4whfw0Y9+1OWzGk/0++67D9VqdVltW4mcc845OOecc9z/F198Me677z68973vfdKA6GshT5q5W4LikoORokF0HpMfCcC7BXa+YCZ1eK0GnEHv2h078A+fBn7uhQ8Av/duu9B74QuB3bvxwD//MzqHDmFzZPHDM8/MvIRhr6MnehQBM2kF1S1b0NyXv+i3WgV2C9Tr2SKkNZMB4HlTQtbdLbDsNaScls7XU1NArVZBJW3lhYyPA1GESnLAJsp0d8ZEB+PjGUBfqyFIZnF2Iy14JG1afMC+oSYJcNJJwPQ0rrjiVCQJ8ECyGckUwC6aiTej+vKXoxNVsGNHtmi89FLAGJzfyDzpdjVt3rt341QufjMAms7gIyeeh8FG7v0nA205sIKNJmI9MYHZ2uZC94fJTAFMeXCuij17cn2PbYmLC/ZDh2wbM090EYcUxgiv7qlpyzlOy8WWLcBFF2EmCR2dd5paL3Gu8dM0B+MliB43KghaMxhrNYE0cokrzXsLi9tqLUV1vGaNGRlI4MAbWmKMsToH8kLpqd1oAHGMQwczXnWE2LDlbATooNKaAaabuec40OWJTkz7wYUQo6Oh3bLfalljQ20jwkbD6m3TJnQmzrAL/Ql77WwSYHExj/smnRC/P1VBmlbyQGxJ0xoo6HGY0eYYA2DPtG1Po5GDKQ8/bFGgRiMf2/I+50cuxvnskLQ+2isPT4y522dT7CVMu5K5e6V196XXx4/F/PFkkifN3E3RALZHypiZOK1LDJBSAO3ks1zzRUvRIKI4zstkNvpSCu36zkucD34N4GvgnN/Zc0d60jpJgZDPJ1+e09PFdk9PI5DxKYxBtTaL6nrjJtEAHTQaGXhsagDsHB0SOG40gCRBmDzggHcYg3Dq3rzO4+PA9DTOm6hbQHjHDiCOcfZE1g/RVme0P+ec7JpLLwXiGMPZa8zs6KkAMfMUMFGIIJsQOghsn5L7XBo36/Ui4EvjsdQpv/UxyP5UOxqyNAXqEI4N9mnWF0HaRiUyQGrcdSxCjlPJDFbgMNcc4vLdVRhzgwjgLggNoBcqr0+WAetSMqNCXoUQJs7LMgbWEcNzz5Lj3SbOvkS7oyjwA+lLTVRq7i3oRp4X9ZC3N41arFt/7l5d3Z+oc/dxC6LPzc3hHe94Bz772c/iR3/0RwEA559/Pnbt2oX3vve9uOKKK9BoNNBut3Hw4MGCVfyhhx7CJZdc4s23Xq9jYGCgyzLx0EMPOQtGI3spnpqawkknneRN45OjTSmwlEhQGSjSfWgvWk2tUcZ9TiHoLQeyBu91cEWC5ZoiQ5bL32Vg6FLX6vQ6nfRe13Qg0mNYe+z7gnoyzzJudEkNslR7tBe99sCX9dVUNhp418FhJS2K5pX38Y/LwKakjuGDhoA786DhROqE+mK7Zbnau1rXU+cj0+gAn7Jftdd6ma578Ztrqh05DuR1mhrI17/SCMMx4qu7ry1lbTjaMjo6WpjwekkYhtiyZQsAYMeOHfjGN76BP/7jP8av/uqvAlj5s7BMzj33XJx77rm4+uqrccIJJ6waRGdE87WQiy66CJ/4xCfWpKwngzxp524uKqXbifxd9vLNNAsLjgN7YCDbqi2ccFotuFVQO6raGJjT08Att1gPqmc+E9i/Hy3YNcQ4OkgS+9yKIgAJujhA5+aAeEPFuxiSzq9B2s4RfVlvbRxAfliu8SR2WJG60Ks80Vjr/ZOlYWAuqS/pzZ2B+RXMAlHFgcKsf6sFIK4gSoFqlAELXPjKSKkDA3lZ9F6OY6RNe/qRR4pdB4jt8VyEypPZAtQFSMv0OhZHhbFxeDpnfkmSbMGu+dABx/3amsoDxRUcv9LUnpibs7w8c3NoI3SxuWR2WpWqGy3YzI4E8o4UgcwAeC92BgXZx1I3HAxiLLE97O44DhAwHY0CIJiBLt0QY6/wXsqAJ+dFNzjoFrZj2Xjh5WxmrZZj5DoOHI4sdAFfDgfxRWebn+8mpV3J6lSOI/7O3qefCHP3ahfiy5m7l/Os19JoNLzpjTE48cQTe6Zhnqsp98kkT6a5O02R8an0Fi9QuFzRIJ38v9cNot8jVPm9Lu2yB8jJ11cXscOlkIkqTxyGMQECOVHIyujnYI95UU429PZ1VDnyOpkX0L2jSzojEMSnAVfOX5IKBXAe7Sar/qFDRQdym7UEdQPrOMCJSoDLhXnRR83ie54r0a+IDrjXHeCbyHVHpTmAy1NdoTV841BbZ2Ra0RTffUEd9fRh1m0pSaLHdz5cQwQCbJfntVErr1OPevgK0lLWYJWxrBO/FxeLrwH9ufsHa+5ecWDRtRJSaGhQjPQkAHDhhRdicHAQX/7yl935/fv3Y/fu3aWTeRiGuPDCCwvXAMCXv/xld83pp5+ORqNRSNNut3HrrbeW5rtWoj2ptUivWf1bXiODV7bbbSwsLLhvnyeuzkOC8hII08Cx9s4uq48vL6YtA0bpAU3gV4Ky2htYB62UHtr0gOan3W47XdAzXILxkpZEfuQxHYzTF0y0Vx9K73ddluR2Z9vYfq0TCYizXqTjGR4exsjICCqViqNuYV7tdhtJkmBubg6HDx92FDBzc3NIksTtONC60YFXNf2ONkhoGiHWQ+8GYFtlgFjZ77I/9RiShgW5a8NXL6aR+tcAfi/vcXmt5oqX43Ol4PFaC3eVHOtnoc9bf6nPWsudd95ZeJHpS2950s3dZYsBvWDyeJR2pRUxO4zJMW8XtyqOgfXrEaLtHFxx4okW7D3rLOCss1AHUAOAZhNbM+ersWg2B4tbLYyP20u4LZcsFFGUx8TqWnDJNpS0lUlY5xNOyPMltunIw+WHF/B/DbbyQ4CbgL726kuSQlv4GRjwqF2vFDKg1SlBJC7rtoUFTzCtsgUuStSXpZWAdrMJ60afcZ9j0ya74N+wATDW05v9JI0WjldlYsJ6oZ9yilMR42nKuJpa7SeemHdHiHZxka091nzKyT4dBEWAQdIX1esFbvdZU8WDD5PnV6lFjpGRESCywVRlALixWscNGRfYNeMzSFPkZUo++qzsuTlnl3BJBNZSaDZOOinXbebd7lQho+6ynXosS/GBKfpby4oRPL+s1dztwwuX+ixXlvOs13LxxRd3pb/55puxY8cOt1u0LA3zXE25TyZ50s3dPtHPM/gfd/rRFkXWoBpkZAje/HwXeeiaCuBz9nCvRB33bGJQbf6v5ztX9aVuqrK53BQ9gn1TQBvh0u2g+OZxOYfzWJJYg732jGYevoeFD5wu+5Q0m6cHB4vvCqHpIEjbbm52xeo+lX0rO0XPC0I/HQRop0FBLXNzXerAbBKgjdDSCvn0rAH0rKJR1B27fHQ0o+OLOrmetV5120Q7OnEVbYQ4eNAaHPiuItuQJBkFUlkf6Lqr94blzA8aQNfC9HNz9h2N+nS6jCp5v+gbSX9k/y5zbpb/et89Vyn9uTuXJ8rcvexuf8c73oGXvexlePrTn37UCm+1Wti7d6/7/5577sGuXbswNjaGU089Fc9+9rPxK7/yKxgeHsZpp52GW2+9FR/72Mfwvve9DwBwwgkn4PWvfz3e+ta34sQTT8TY2Bje9ra34alPfWph29nznvc8vPzlL8cv/dIvAQCuvfZavOY1r8GOHTtw8cUX48/+7M9w77334uqrrwZgwba3vOUt+J3f+R2cddZZOOuss/A7v/M7qFQqePWrX33U2r9S0SCkppKQ6fjNlx96YlPI+3z48OEChQYt+vSslUEpNTAoubsleK2DL0rvXw1IynIkEE6RdCAsg+A2y/cBy7Jc6b3NdjAvgrGsB4OmSs5sXrtuXc6pTdobyf9Nypnh4WHHSy5BdblrQHLIE+iWgTqlviSfu9QvkNPo0PgxPz9fAJKlfqIowuDgoOM7lx7h5MU/csRSzBw6dAiLi4s4fPhwwQjA/NatW9cFCnOckPKG/QfAAdeSzkX2Fes8KEy6bK8EoGncoNFH7jrQtDg6oCjrxf6Q4DzHM4+RE196jss+1luNOK5Ig1R2bdk4l/VYa3nHO96BK6+8EqeccgoOHTqET37yk7jllltw0003HfNn4Wo90ZcrS80x1113He6//3587GMfA2AjgE9MTOApT3kK2u02PvGJT+Azn/kMPvOZz6yo3ONJ+nP3YxivaktuYTFn3Wbyc9qTRS846YqbpSP+RmA1jmG5NjMqi4su2mxPPvWpwEUX4Xs4G2e/bAJj27cD998P7N2Ln/zJp+OM6AHgKzvzVc/DD+PULd/HqeM1IIrRQYg4LtJ2G2MXYO5RzBOse8k+9krUgann22qHhvKYiGlqnaMfRAXDcQWmloPrDi9o5cE6C1uNyTEty6bw4mzBFxiDer1aCH41Oiq2t8ut5bJP2HAeE+5ocWzrxS5isblTmvCOll7JmV7oEeboP5Li6oNr1SSxNDgAcMmll1qKEAppSbKAn4D1jCezSbMJRNvOwKkvm3D16MRVTO+z/3KH+ciIrcvCgrXZSA5dBx60DgBTraJ3HdF60tSQ74eVpxC8RoAwozZpR1W0mlRNCOsCWkXaBCZ32+yyprkhdfAg8OijAer1jRjL+M479Y1oTgGVLLgr6Xcq9TrSeHOhDogiNKeAsfFxy22f8dwuLAD3zo+5rhoezoGp0dGM670W466FwIEEaQq72+NlLwO2b8f3mhuBpjUSDQ/DAuuMqEf6AQkayHqxgfL4Us8RijCyLUcez7l7pYvrldoIlnrW67n76quvxgc+8AFce+21eOMb34jbb78dH/nIR/C3f/u3Ls83v/nNeNaznoXf//3fx0tf+lL8/d//Pb7yla/gtttuW3a5ayn9ufsxjtce9yeNo9qR2u3Okh7CZYZF+VvvupIAZi/AmNdnu7PGogiIbH4+MNGYbJ5LPPnqhD5dZGAmQd3FxeKOOCDXwcBAgNHRCqJaxXqmp2mOqpbpBuje0SZ1Jd8zZPuXYxAoA9TLmp7lGxogjGwAzTTNApOmqaUoS1MEcYw0C77Ol5aOCYVeQkRRiHA8LryjdOKqa0KATgEkTlq5evhNB31Zx+KUEcAYW5bh+0yJ53+QpqhSb4nVndt40fSMNwo7l5NxHDt+7+aUTXrwoE3K6YjvEHwVGBoC1q+v2Dq6OnjuEY43EWuA1SLvv5SyKsum67RyCEkxJsh2fIYFT3HfEKIw2GpXBUQi1oP1p170FL+U9OfuJ8fcvWwQfVkRX1coO3fuxHOe8xz3P3nNXvva1+KjH/0oPvnJT+K6667DT/3UT+HAgQM47bTTcMMNNxQU8t//+3+HMQavfOUrMTc3h+c973n46Ec/WqAZufvuuzHNLUAAXvWqV+GRRx7Be97zHuzfvx/btm3DF7/4RZx22mkuzdvf/nbMzc3hTW96Ew4ePIhnPOMZuPnmmzHq9gmtrWjv5F6ezBRJ8UEQXQcAJZhOkJPBRCXliKYjIYC6bt26Lq8FApY+ihRNPyPpX6THtw4YKYNbyqChEtiWAUHLQHQGCpV0HfwOgsAFXa1UKiA/ugZ1WZb09Ja6DIIAcRw7wFZToch+kO3nMenBT7B6eHi4ADxLcJllMygnvcQpMjgo8wiCACMjIxgaGkIYhmi32y7qMjnTZ2ZmMDc310VfQzCeupFGHfaVpHfRBh/Wh+1gX5E/XRoA9Hg9cuQIkiRBkiTO+CFBdJmW56QhwRjjDBx6jHNsSYBb8/hLXn5NXcS0BNEJ8HP8ydgEx5oLfaXy4IMP4jWveQ3279+PE044Aeeffz5uuukmF4TkWD4LjzWIvtQcs3//ftx7773ufLvdxtve9jbcf//9GB4exlOe8hT8wz/8A6666qoVlXs8SX/ufgzjlTrSb52+hR//12/2RGLFQmNw0GKUZBwh1QcmJuxb+dQUzt8SA7sTy/15+eX45IeBc84J8arXvQ7YvRvYswdnNJruN+LYuhonCfCVr1jU8DnPARqbnTNOT48ZyY3iW7kDQLOJEMDExJgDa9k8cktPTeXNlwAu22kMcM45wPr1AUIenJ62F87NwXGjjI7aDBYX7cVDQ45ypDoeoRrnQbsKoIJGBCiSa1P2IYBq3EEUBZiezrFkjZdXJCCitnVTD2E66xa0TtLULbKazTwu5vj4GahtO8Ph080m0GraXQbVqA3TCPHww5ZHfHIy584fGgowOBhmi+3coWrLlgwcYP3Wx3brfNouGihotdHGCknQD+QgehyjbSpObYXFbFQBjKMvd90oPe3YnZdemgexNca26847Lfj/3B1bgFYLU1P2+s0TExbUThLgW98CTjoJ8eWbbblZv3WiClotYKY+hur27Q7on58Hbr/d5s+gu+PjQNh8yBoOmk2g0cD8/GYcOmT/nZsD/n1XgB96xStwb7OKW26y2e3YkbV5sApEVXs7GwC1Ckx9Y2604bjygQjHUB7PuZu35UrSr0SWetbrufv000/HF7/4RVxzzTX4kz/5E2zevBnvf//78eM//uMuzSWXXIJPfvKTeOc734l3vetdOPPMM/GpT30Kz3jGM5Zd7lpKf+5e/XhNUxS9eLN7lDzgEivL2KFyAJ1gmuYalx622UOdgUlzMD60SeJqN2e5zE/OU9r4luUfGFMI+tjVnpUAz3xuZuBwklijN6slg5myG4eHbRq7k6dqDd/yWcdGkydFP/98FlzJpSLrKDtFI82SPsX3kWWmaQ7sUjJQP4wiy8PeUhO8MZnxF4hjSyfSauVGhrxaFpgdHrZpp/fZyy2wnOMgNEzILjp0KKckk00Duo3wuTN6iEqsdC1d2akz/c7je38rZgzUaminAaanbFYHs5glfCVjNvK+kMZoANl7bMUanErmPxps0jTXJ/OWY41QCw0NPhC97CMBeTnP8PVRliGHjXZCr8ZRN5LPymQdJm9dSog2BuGxCvSQ/tz95Ji71x1ZASpx5Ege8fXzn/+8i/j6kpe8BC960YtQl1GO+4KZmRmccMIJRyUvAnZDQ0OO+oJALY/RS1p7h0tQUQLbEkgmAB3HMcbGxlCpVLBp0yZEUYR6vQ4GnSQISXBY07Vovmv+JgAtPeKlR3Gr1XIgMIFcgt46gKb07AXgwGB6GDMNweVF8QRgXgS96b0NAMPDwxgcHESlUnG/oygqAP+ybEmhQnA/CAJUq1UHoBMwloYBSSvTarVA2pTZ2Vnnrc1dAUEQuLrI8nk9vfIJLM/Ozrr2UOf0POf4IOB+6NAhPProo5idncWBAwdAnnQGS5UGB/Y5xwiNDZKCRRplKNKDnv/LYKEcBxJYlsA4x+7c3BwWFhbwyCOPuICmMo3uG7ljgf03ODiI0dFR144gCFwfchxSl3KXgOSAZz7Dw8OFmABsA+s7Pz/v+uTQoUOFsS0NRdpYcDTlvvvuwzij0B9nwmfjtddeu6IF4fz8PN73vvfh0UcfXTNO9CeD9OfulQnH56P796MaBMUXa7/bi/1mOgLDtZr1km21gI9/HHjwQeCXfgn/PrkRJ58MbBqdBaIIB5oBajUg+MrNNmDhhg056AvggS3Pwk//tAWfP/TL3wF27rRoLFHZe+6x9CDbt9trpqft9W94g0USKVxwiQUOxW1RZ93lgpcfeqFJ7vU0RSeqYM8ee3pqKndEGxjIPYHpUT00BPzwD1tn3krrITjkVCLFgC2DETIBR9FRcKuX/aDBCd03+n/5na2iDrTCwi50ueu3ihl7YnIyd1OPImB8HDNmzAbbnH6oOEayusxEG7F3L3DXXcC//IvN76KLiowgXGRv2QJsxgNAvY7v7LUBQ++4IweqFxbyxWC9bru80QB+aFsGllMH7KNmM48sqsGOoaF8SwKtIfRS3bbN8cbPZACDtBNRFhbs4rvVskORw/Lhh217OBZ+8idtXbmDeu9e4P/+XzvUX/EKa8j4zh5ryNixA6hMfs8q7N/+zRqXfvIn0UaIcO93gGYTs9svwa5dOcMNkBtxPvEJ2+TMsRyba7PW2JQkVgennIJ/nD4f+/bl43XbNnursI/qdXt9rZaPB/YXVTwykt3DSVIcF9Sn5I2R35KnRxhkJvfvxyk7djwh5u49ex7F6Ojy5+BDh2awdesJ/bl7hdKfu1cmHJ/79z+KjRuruUd5dm/OpnkgQwJw5MmOYxQNY9ymwv81dVUUoR1VC49WDdjFcQbKy10+fE4XLJIogs4a4etllJPPFx8QbYwzisoYGpzOZfgRebloJk48Uezk4TwtaVsk0CufcxIAty7Mxbr73Hg1MK5RT2kUoCFd7hyQIgFn+dyVxuRGA/cmGwHkgdYPHsx3pml7B5nD+MinvZnVkqogwPvoo92vJrp5dEyQTCO1WtY2ORaVU0YXiC7dpDV43mgAUYSZtIK5OftK2mzmH6pLZsHXQMmMwlcwtt0ZWDJx3udp7rlNI4LG2rW9Radhk2j00c3XHyn6tV3bczjGjbFtcveqNG6J9+WHH7b1kHlUMYPJ++/HKeed15+7f8BkRZzo69atc9Fe9+zZg69//eu46KKL8Od//uc4+eST8axnPQvvfe97cf/99x+r+vYFRb5zIAdoVyKSakLzhWtAryzYYxlPsY8Hvaz+vbzpy9L4PJW1B7MPkNT0GjofgqA+j2GZn+Z81x8fz7b01taBTeW37zrf93La5KuzpOaRfOtytwKQe16TrkYC7JqDvtf40+3s9dFURfJ4r370jQuZRorm6ffVTwL/vh0fukxfm30BXXWdl8rnB0HKxm2vT19WLv25+/gSYzLPm+ytP4qyhRKJLoEC2M116uHDyFcyXFDpqJISTJaLa3ksOy65Xcn2WlphSsmqRa7fWBxjYMqkBa8W7fWjj8l0PcpekVuNbo+6Xp9adh5LnOMh6of8qOw+EVvTKTCKclCGC/LDh4vdXmhDr5UlC+lFAVCiR5+aGSeXmDz/Z/a9itLDCUBhK3whkQaastVrr+Gu/y8kyiqsu4h9oViXCrpnu3msp4fWsgfSE1N8Q2ypT19WLv25+3GSFc41fA7ymdAVN1oafeVkIMtbXCxeuJqbyGfk79HEsv97TcOFNvAE603h/yKg+opdYFc4x/asvDzX6/+SbGQT9UfOCT7pNU/43o16dnWvdyHqukzU+GN3lLUH6O7Wsiq5OCli/Mn8ZNuOpZSppOw28t7aq5m7n0ATXH/uPnrymN7yGPH17W9/Ox5++GF8/vOfx+c//3kAwNve9rajUsG++EFbigbDfcE89TXyGLnGCabSq5iUFQw8SknT1AWnlDzpzNMHqPrKl+d0sElScOg2yDZLgJvUGdrDF8g5w30gN2lkmF56SROYp3e55E3X+UvjA4/Ri1vrQ1KYcPcAj0vecO42YBpSncj6AnD6p5c/aU94nvpksNB169Y5L39Sv9ADm17bmqJF61/2Aa/hGNH6kX0p+5bt5XEJ4JNeR+4goD65+4L1ZBpJByS9wiW1DHUIwJUt9UgKFx6nLpmf7kN5rBdwr0WnpU6ezADxxz/+cXz4wx/GPffcg9tvvx3rtTdKX9ZU+nP3CkS+UPtciXQa/i8jbgLWU3x4GEhTbNqUOammpni5dP2iq3GthtakdcKu1WD/jI/nblB0CRofz/lh0jQvW7qZycLStLDY4XdF0p7QQ8z3LTzBuPU5TXMbgPTEq9XsQoYeP1kMyTwvulxRvwMDLsimWwnJiJla79rrTjaqbOeA1kmaIorsfMyqSAcutLK0niBijjI88wrNaWZSIEmcKkdHbbNGRvJvqSfqCFMW0a3XLYXIli25R/TcXNETnVTqBcoB9p/26GNFeVyONX7o2ZoZa0hXQFVJjzJmwywOH7Yf6i5rvhuejUZGedNsYcuWjfjhH7bFVZv3ApMtTEychygCKskBO77n5x3v0UxiPSg3NxpAHLv4s6QP4hCivhj0Nk2RV4TbIeIYcS0fh2maB/MbH8+pZ8jjzg0R9LrjMLX3cFq8X5YCsXyrU6bvivb7+Et/7j6+pD93r1Kcm3D3KVJMedPztzwOuPu3161Lo6KJK9bDXc5ffJBoL2LfXCZFzNvdbUu7j4lnPQNdamBUPselyMeZ8xJOVR3lXMhgHHxgSi9zuS1N1p+F6Mro9sm2i4nFrVLLjBw+lFTqOitf2wQWF4tqlRuL5PRpTB6TxTdkWJScN7Rw7DC+jHzF6PKwl/M7f5chncqTuvBOh6IXNn9TtfJyzoGjo5IT3Z5zlEWJKlOoXoP1snxjull/pP5kU4C8X4DirSPfT5iuTNekjmF/SmeFrpcaVRFdT93m40n6c/exl6PW6xs2bMDrX/96vP71rz9aWfYlkzIvXSDn+wbyII4a/NS8zUwrgVuC5ww+ycCZgN0CYozB3Nyco7IgpYekl5Gc6RJ01R6/FAKXkq9btlVyhFO0hzw9owELjBr1ICMoTioOgtQsS3qxSwOEpN3wGS0kHYgOGMmAp7qvpLGBfTU8PIwwDB2YKusnA4gCcHQgrMe6desczQtBZrZVcq7LIJvMZ2FhAa1Wy9HJtNvtArhPL3UNrFM3ANw1NBpI/TAN6y8NBOxz5inBdPYr9Ungn20ivQ6940mdQuMAaVMkJ7ocE/Pz8y4vbbxhP9Cwwf6XZckgvdpoI3ctaGMCf2ug/ckMnFM+9KEP4Td+4zfwlre8BTfccEPBOLJS7/IfBH2ttfTn7h6SpkClYl+QfVzhMp0EZgXA6sDNrVvdCmVT9ACQxO4t3jAPvS94yxZ8b6+luNi+3Z5+8FAFm7ZvzyJNZttzWy273/qUU3IEc2Ag57dg/gVU2Ir0Fl5YANLhEFFtY6F5DJIV18bsokmA59yZTj5Ngo9clGzYYKso1VQxGYc5V2hycTsxYY9TF3S5VsC1VdwSYALz1yvkkgV3xbRRqZlumhsJdhBk5ko3SRC0ZtCJq7h3Mr/OGGBzbPu/EnUQxwEaDTsM4tiCtXIN7Hg5o7ZrcxWWp7N+xRgOHcoBai56uZgNTQeYzManJr+X3yKYWMFgQ10wcwAYH0fbVJC0ip5p8/NFxh1jisaAkRG7gJWUrVEE/ND2juVwyfaNV+IYz51o2P8/dxuQpqi+yKA6MQHctgvYtStX1MQE9u7NbsGJKuK4in27cw72vXvtGLvwwpwqh0MmSQBEKRzqPjkJADj5R3PnfI7TTZsybnnMFnRXTZpAmgBTdrxUajWY+pjV+1TLb7zQY1OiExJNkYDIcQai95q7V+qh1vdmO/rSn7vLxQdy8bmu8erSiyWgJh/SlDRFkLYRGoPh4cDNoUAO4uUBsEPEtTEAQCB3kmkk0Af0ivK8dfQB0dlznRzwSasYSFTjyMS+gRxk1CCrNSZ3l4EswLTLSGaggVxyofQyFvQCwiXC2+sa+T6mr5XlZg2U06AWXXXANpM+CyMjOStaWbVovJAiA3cCxTyMEe8e0nAi35fku45PJ3pMiPuAQ7rRKALQklIljtX7j/ukwCNKUerdIkVYsF37bMZsO2PKGJO9y0jF8XdkEMdFg/5y5xQfyA7kw3RZzwrk3UCHB3etMk4cD9Kfu9dGjj/TSV+8IkFHCc5KwI5gqQRfZUBQ6fXKYwTMyZktg3QyPwKZBFZHR0fR6XQc6EgAVYL4ZVQYGlwn+EswmEE7ed5HjSEpXCTdiAbRgyBAFEUOqJVtkOAtkBsjpC6ZN8tkOgKtg4ODBf5uelATRNd9JttEPUjjg6RXkUYSeo7LXQESRJfe0wScCfpKIwFB4NnZWcdDT75u9jE92jkG1q1bB3rhs07UBfOXFChSl9ILnX0jaXfY5zJAqRzT0hhBnnIGNaX3PIF8tq/dbmN2dtaNIZbDevA63ic8R93rtgC50aHdbhfKk6C51g3Lln0uj/8gUbn8j//xP/Dnf/7neNnLXobf+73fK5zrg+h9Oe7FtyrSC5euF/4oX1hmpNDtibORJEB18juWn3nrVrQnzi5683BVlsn39ga44w5bxPbt9vvuu4FHaiHOI9e5XOjThVoimRIYjWNbBhFGAGkaYm4up7E4fDjPlpexSnNzcEG1gJxuW9KO0jOa1zYaQDB5bxFElECvXKUb4y5um4rV10SnaMCQKzHfolF6+GX5kyrE6Vqu6mQeWTmBPCeR7qx+7dQaEJImsLkRAfv2IYhj7NsXONUODQGbL4hcu+O4gnrdcm9HkQVrA3Tw4MMB5udtsytRB5icyvlPp6YAY1CJIlQk+J0kwHTWvkfV6l+6lEk9UbdRBNTr6BjLt96azr3MTK2KMOuHA0nF9akUSVvPKtXr1gBRq4XOYCK7JDQdy+M/OWkvJvkqB87u3Xn9Wi0LoN9xh1XWtm3AxAT23ZLj4MbYrBh4dXoaOPNMm3R0FDivcQBIEhyINhMzzyu+bx+Qpti0vo358dDFXK3XgU3r2zZI70035YF54zgH/zke6nWEE1m+cgcAF9JlSIpvzMn79zhbiPeau491cLK+9OWxCr14JT+zlq5btswAqecbiY4agyiquOlNU7mQQ5nP04GBiuWalsE6+SnjF/chkBKczjibeUnS7Oah1piyzErbpmXW/Hb0bxI09L0oyGeazkQYtVlfKQ48lpWWFlkfwK4zkPXy6VAbRaIIkScZsyFQPhbb9fdsaoPHMsZjFIl3uJYA6gEbPB2w8/dgST1lW3Rgcple6VwGyfWpZiEz4FjqwGK/OqA+mbUnkwSYT4BHk/y98eDB3OrC8WhfAu3FAwN5APiTTiq+y6GIu/u6yZgcQHfjq4znHbABYwHwDTRU5wvX+XQXRcCwUgBQAMzbaeDNRtuD5Gt/x4THnQG8P3evjfRB9ONcyvijKdJbenFxEfT0leCzj/uZgCXBzaGhoUKQSEnNQjoLCd4PDw9jcXGxAKTzGgnwSzC/jFJGgvoSdNb0NFIkpQsBzjRNCwCopKiRNCLSgCD1wjw037f09pegqfZklwC8DCDqqz+vp9EiDEMH+Euvbl6/sLAA7WUPWHBae4lLw4bkNieAPD8/7wJf0ruddWZfUY+yPtJLH0DB2CEBY0mF4ms7wXHtfS9pXeSYZnsY8JRjYmFhwRkZOPZoPKCxgXpmXVkvSfHC9nHcky5mQEyK/C13HUh9y/tNG1z0uP1B8kIHgHvuuQcXXHCB91wfRO/LcS++hXOZiEVkJ8q2cGfg2+Sk/flDJgXuuw9oNFzykCsgFYhweq/F78bH8/igzOe8y+suSFThDV96ux48WKRI4Zu/+E7T4jqJxRMg1c1m8LTBwRyX5GKd19BD2RggaB6wYHCS2OhrgPWYl9GzqOcowgyqmDuUe7afeGKA0dEqojhb8OkVjg+QFMe4KGKbKlEJGMJ85Ufu4c4ymE2Cgld4oxEgyOpDr3x5GQs3Jo+VOjwMBK0ZIE0xPDyGxcUMQCfATCBF737gxbR6DA3ZxasE2I1Bx4R2wanRgEznpEbhJ4ryfl2/3gbKYzU4vKSaNKYRRQCmmwiMQYXlSRAoSeCieE5P5+2cnLRjYt8+O6DIo8IIpRMTQK2GTm0MU8K2YAxcgK+pKZtUOoJjzx6g1UJ8+WZbb1aa0dPiGJieRq22GXFsT8Ux7I+9e4FbbrGo+lOfaq+dnLQFjYzke+6pBOkZqUFwvcDXaIdG8DzveI+n9Jq7y0DJMllJ2r705WhLr/Faetv5wHRfxgBM1G1PX4r9LUmAOA5gTAhjQoRRp/sZIcrwot/Z/3Kem5vLgzCWZSWzkQwzPK49hB1I7GsIjbZ8AOuPeEdpI0SadDdJZhlFQfY7m8fKDAq+Ti0zdmglyLqJy2RQTZnl4CDcu5yJx2CMCKaZpH7wV9fP029dx90kps6LzuogcK8ofPcqw4/l5fK9xNVdvgjQuM33NWnslu2JIsuXNjiY7xjkvOjW2v4pTzfXvSfKAMDyW4rvfz0WfJZ/IH/flEadTBmBo/QJCq9/lIGBcvs4pTSe0OMk/bl7beT46vW+PGbRdCdaNHDtC+QoPYrlR3J/S+9rCThrfnDWR3rtauBMe6frY7p9SwFvvnM+OhkfN7XvXC/ppaOytvr0rw0Iuk94ra+vyj69DBBlbSvT+1Ltl8FofZ7aK/346qXbL3Un9SfT++rbKyCqL6ipry966UN+9wU4/fTTsWvXLu+5ozE2+tKXYyYrfdukrBQMK1mcyuKV84y/DL145X5V6SWjVjZHE7db0hlnKZcWT2Ukn2ZX+3pdL9LIdVZXACxffj36nUaHMqGtolC9TM/sEmPgFomFdHK1SyRjaKi7P30iMipUXVZGVczXRL3Y9alIHyt4DvLb91sqR7aJIItvAGWFUh28jM5wQ0P203ORy4uVO1nXwn4pwGNwsPteOlpynAHoQO+52weSLPXpS1/WSnpNj2X/ey/2JSq5V5edvxB5b7i5qUcZZdJrOtR16pU9H5XeNL0yKtOTusYH6GvQWqYpgJO+MpcrvRpsipzovmnWGPTu0KUG3HLreozmgdJs9QNaRxXtlRnb1+PFr+ydQc7nXfXoZe3y3WS+AlchT6Y5qj93r40cf29tffGKD1CV3xQJbGuebAkIksaFnugSiPSVJYH1hYUF58Es6UMGBgYwNDTkvLxZpgYfpYevD2SW9DOS3kN6fMvrJJAq+c5l22QdZDBQWR9pEJCe5iyD9ZX/ywCWpH4hbQnT0NtcUoXQ21ly0Mtgl/JDnQwODiKKIrfjgMe0bmW/a0CYXt1SXzrgJ+sgvcV9Y0zS7Egvdh9QrY0M9IyX1+m+krzq3GGhdzcAOTf78PCwo9MhBQ69zmWQXMnFTl1KkWOQ9woAMKiubqtul9zNwPbrPpD6fbLLr/zKr+AXf/EXHSXP17/+dXz7298G0PdE78sTQEgL0suVpkwEIEqHHbQit/XVbWFl3oLwup1tWmVwQ2ZXq2VrFumxpD2rSAtDD7Fm03r80svIGOe5XB0fR9yo4OGHix7HsmnENwlcMg2LIiuHMflverKNSXRT83Wz7uJ3Ne44TzTGJqNqEliPvahWgZQgzYOfF4JlRhGSJOelpfe8MSFMPIYwIzmdTQIYA4Sx8lrTi+CsMgMD1il5ZCQrs9FABwG2bMm7IopQ8KoK4zZCA0S10NY385iK6hsRRdZjPqQLvyRo9XnftVq2P4eHc+4c2f+w4EPA/7Pgs53aWEEf0gNRfoDiEApNx3m/DQ3lVSE7jMtE6k3tMHC7JkZH7SA+dMhuseD4jCLgh3/YHtu1Kwe9s8G/datVJ5s7PW3VsGULcO65IvAu4LzjHOVwrea82rn1/IDZiLvussVT7TDG1vOZz7QHs+Cq2LIlD+DL/Ck+D0cKb5YycEmOr+Nwpdpr7u57s/XliSRLYWtd5+UzWN/Hnu8AHRgTuGeofM5qoRHWy+DE5yU9fn03mp4/kwRBZHdZtVM7lzHGp57TmV0ZwM7leReQ7NOBzlymXeIdKU1t/agLaZiWgSYBoEqaOt9cqHXhA/V9O4S4ZSxLI99p0rTEkJC9vzhP+sjuIoAJ7Xucr7+W8+Bbag7wgMc+FZfhyVKfrsnUARPKvqTnAvtcgul8KeOkye8s4DdqNUtvknZXm+OL75FRlO0uTNKiB79us69PmVaOBb2dUoresSmUob3I9etL2XB+DHj9MZf+3L02sqohoCO+nnbaabjxxhtx+umn46UvfenRruMPvJQB5/qbYB7pMoAcnPR56WpOdMkLrb3DSZdBOhAGG52fn0cQBKhUKjDGuECZQ0NDYBBIAsiSK1zSX/gAcV4jg3XOk9wtE14jwX/ZVlK5EEyXFCu8VtJ2aIOEPKeDmzJtp9NxgG0i9v+QL52UNAzASqCY+iKILnVMKhJJBzMwMADygUuDgqZPGRgYcBQ7pDuR1CX8pm6Ghoa6KEmk4UICwVIPsv2+nQQSlGe7mJZGB+omSRKsW7cOQ0NDrq8Y/JNlhmHo+pn89wsLC65N5Cun7hgslf9zHM3NzRXqxH7SYK68b6hXSddDehnqoN1uF+hk2B/y/pE0RT9I8rrXvQ5pmuLtb387Zmdn8epXvxonnXQSgD6IvtbSn7tXKCQKlwsOwP9GLV/+M+kgQJABbmNoAzGANLKgXByX8nPPooLp6XxtIulRxsezAGC+RTa3TGdbu6PxDGDeuzffnpsTs9rVTJIgiGNsGh/HTJLznXPtxB27Bb7KOMZsEmBkJA9MRW7puTn7m+uV2kTFbpclIqv1JyVbBIXGYNOGmgteSpyVWCs/zjCRXduJq1nzQsCMIU1yRhRj8m3P+aIgn9ejCBgfrxaXU3rhFUVIm/bUhg12AdhBBTNmDCYBzt+mnu2TzbxdGZF4oP9vNBDHlQzwDQBUMTBSzYNzigVcvQ5U407Oo0MlAK5fOyZE0mKVAyCqwoxXrf1kXz5suFCUupR9XIUtG5MWrQ6iCJVaDZXRGKNbK0jTrC5pCqToDahQl3LruFzRZ+BEu74548GfyMH2Wg0BOrj00sDWjwNta91x07pgZJTxcQBAM0v64MEQmy64wJZ71lnA+DhuucXakyYmbEzeKMrqunWru94ZfcbH7be8fyhlgI7WgXTrkoYeqaPjbLXaa+7uL8TXVvpz98pE8ncH6CA0uVezvB21OOMjgE5ctXklItAwz2V5yV04AXIO7NAA1fV+tI3zsw/4dAckRUpZZaXxPcswNAYhgEotN6bKR9RK71uK9ZIPbavl88pn6PWBnqKhEkDX7Ce+y+fmAgwOVroemYV3Et1IiX5qZdMCK+KlUDR1meyfAy37fsT3ouJUEACZkd+nCi1lRgw3nmQm6iJpsPElK83X9Re632e1RR0oRh1lOqaVgUSzb+rSBaKP8yyNkbzxLf97tUwsXk7aIkjpwlzO809QfnAQgAGiuuBWL9GdBMzTFEhV8axCQW/opmvhueONxoXSn7vXRlYMopdFfK3Varjxxhv7k/lRlqXoTSTgTZBSgryS51kH09Qe3BKMllQg/J9gKwHDIAgwNzeHgYEBJEmCwcFBtNtt5y0tr5Me6dITmh7nsj0awCQoSRBd05SwTZLeQxoHJEUK85LGBhloVFOqSEBeAsTkEadH9cLCAmZnZx0oyPIJALPOrNPw8LD7DsOwwO8uvZupE4LoQ0NDrnwC5TLQJ3WxsLDg9UCnvshnz+Cp0utbeqBrkFOC32We1NKAw3QajKf+qU8AiKLIBbel0UHunNDBYTWfOfuB3uUEzOXYoSc6PdujKCoYVfQ4kkYUpmO9eUzyo8udCdI44aOG+UEChN/4xjfijW98I6anp9HpdBBFEU444YQ+iL6G0p+7VyF84ZerKrmSA5Z0R2nDAn3B1AMkQbXIHVAMIsb8jcGhQ3nwRjrwsqhGIwMNGVhSeVXNJgEmJ+W6McQZ9bpFDOfmLIE0yxoasr8z996qiArJwJNRlPF3qwhRJqpidDSn6CaAvrhosUbSdydJFlSLCy6WrRfgxuRAf/Y7iCJE8RgOHswptJmNxCHJKS+7y+fYBFiaeMkXy/Xa0JDFbKsSvBALOganowTNA7aTtpzt6Luxe3fRw40XEDiWbX/4YbcSD+sRkuT/Z+/voyTJzvJA/OmoW1FRWVHV2dU53TmtmlFpaEktMRKDNDASCCQMCIkVOoAx5ugceWVjQDYCC4llzWIvI1uLDto9WItsMNisxTHWwv7AZhELMtJihIUY64tZMZJmmBbTmmlpaqZrurO7sqqisqKyfn/ceG488ebN7I/paXXP5HtOnsyMj/vx3htx733e9z5v0qAi3dgAnniiuf5fXfUc7J3OEjorSyFp54Cltgs60O6q/LjEn+k0RjtK8Aij4nShSzLydju4nrdo1ekVof8Ms1aTh925hhEky4/AtY8ELtYBUqytVTTk99bqzjLgb6yshEYeuBZSDJF88uO18cCT0ftynDkDfOlLvlKveIU38LilBqXrE08A8yvHgBxwK75K99zjz6+seIOIc77MF7CEk+vLyDLgeNcfv/9+XruMbncZKQZ1OSahQPpbgSf7LFzkHfKVlHFj9zQ42bWT6dh9BaKdk3N2QJ61ZOxjRzCQr+w8b4XhqZTH3Q8NSQUQlqPesI386v9pliH1LxwPaKIKTsjr9T2q46QFHO3xyHsnqYB1AP67igmiwRTtczwJr3cxr2sdTPV9NuG9pjRtHHLo8KxxV4AROzYAnk+Q5y3AKT95Ue/oM1aKYeZ3sCUcaDGqugRDpCiBLG0M5f1+vYkvy5rBGe23pkuJdIOGgzz/O1cbejxXfn2NAuw0DAHeYDPS3wvzX8emWKPrmGQLrcp3PuaKxhndKwCIQYFtx11sIZgJvxVEtwYPekZU+W2VaRjHez3fRzY3m8XiroH5eVYhaejOss2wX7G/8b8Wwzu41M9W0m6PNZzBuabx4zqR6dj91Mtlz9zGRXy988478ZM/+ZNXtXBT8RLz9B3H98xv6xGsntkqlnJFPa5jonQxCpADtYcu4D2xSfFivW+1DhpEk8e0HGogUA97oPasVtDf0pQo37ilhiGgSm9tC84r8EkAV3VMkJT0HfR6Jr3I7u5uAFRt3dgWBI1JA0KAVmlQLCitXuIshwVqdUeBpXSx1xFgV8CX+VuvaV5jg6ZaQ4hSyjAdBeU1UCt/a5srLQ/TU0MAhd7kgAfh6fVP/dNjXNudxhT1Lrd9UPVNXfIeAI0ya5+Iee9rmnaXxzNNOp0OAODChQsApp7o11KmY/cVChdmsVXQOKnO6VolJZDabmOYL1XbWIvmCqxCEvdQL8IWFpqT/BQDoNdvloHjhiz+NZ7obZ1qtbazUy9kiFoStNabyhJJntcLkV6/CaJX3s/0+nEuwfnz/lYueCgBROcNwPjgTzFAIK891kgTQ2lQdlY6iAWG0qba2WkC7QSS89wvCLMs8WCD+ehCf3YW9aoOtUoDCq4BrOxuAWa8s1NXrCxRlmmI7UVwuWkMaWICMzP17d4xzAdhK4umXljf7e1Q3FAU0pGnbgj0xTOMnYgFOnPGJ2pX/pROpyqHeHFWfZExUAn2z8wkmJ1Nsb7u7Tnr6972UJYe0O50AJxoB90VBZBmZR1RV8Hrdtsfv/9+v7vjjjuALMPGRhoCv5alN0isrdV1X1vzt507Z+xizqFXlafdrg1Ya2v+Q4r6m25KR/3PLmdVasCdcP/lpHGNxY7dl1vc67hq171Mx+6rINoBnWvg1LFL7VBEEF0pSJTTOeWN1rA2zuBuXur0ag2erQSrVcx4H/22FbMDR/Wy43vaA+yj6/6IDSIkod76IzfFjsuxcfYB6lVxVeqZYy6HUovt+np54DRx5WidZQwH4INfRwJXOoLRZQmXpU1AFenI1IS3x5hmYkZ8zl3IiGL1Wpa1X4PSr/CaIZLR+CP62ypWz8cya1Q88i3WCxrEtzca05ZGe/GWLBM6Hs4ldGKqIDrzU8cDmfQU/dHbGPyVtDCULPPzDeYd6yfaryg02jS6rvWUL8vmMxnT6XUq07H7qZPLbvlxEV/n5uawSfPQVK6qXCpwFAPqLGCnXN6XIxaMjZVRgVICyJZr23rIq4e7DUxqwUhNxwL/6lGuwDm/bVljPN8WFLYe2LYe6vUOoPFtgXybF73Yy7IMOlBOdi2D8rTr8ZgHv91dQMBbDR30RLcc+La9lU881gf1mP0d87a2Hva2Hpb3nuWw11qvcdsvlBKItDD0PNd2i7W19mG2ue2PVu+q+0mULbHn5unqkf61X/u1E40FakSZgujXRqZj95MQu7gA4gtGWQQQXA74uyzsyhLBO6xxLxcT1aTVUjiGW8YtlEVGuE1HEoncp4jtReo/Dg/gIpCe6I0yx27W/7qV2Hj8z8w0Pacb6Rf1qiBWfJuVXSPSq31+vgKUuVKTVWKr2q4c0u77/NjOjTx1cWX1q8fNyq3RBcp6Rz+PLyw0F6m8JxgWyhJA2uCzZfIEIfSekPWkVZJzXjFUtvYFWbRnuWyvd85vbncOs7M1v30sae4MZ33zHI1nKyzEtZPFdoOMaXTnmnXnmlh1GLIrCszNpYEKvd32AMrCQoo899dfsVdW7B1yKeeusVzq2D1diF87mY7dT73E8GcaKq2MOz52jL1YxpWMUKXwe9zDNuldMu6/VrT6JgVJTC76StK0LvPmmLp0XNI5jL76eS+vde4inuhV+bLKE111qjZujgEoSyRZBueShiEjOhfDKAXMuLra/9YTXcfqS9Z7TGIA+yQZ137mHMdS/rbFsdOaBq2Kna+qN4Q2pFGuPayGFEvvw6mKnaZcTKyn+jiv8ujx62DMpkzH7msvl936jPj67Gc/u3H8D//wD/HCF77wqhVsKl4soKpg6jiAXL2dFVjWe+z/WHoKeGveMQCaD2dRFA2gkSCzlpnUHLOzs5idnQ1gsnJLk5aDXt5MSwHQGGDOOjNwp/XIBtAoH4Fbnit1QpMkARBnoFYbkFVpYuYq9IDc3nmeB7oW5kX6lc3NTezs7GBnZwdKscM6q1HBerPzm3VgORU0pn6oU9LwEEQnx7i2G9NVXWmbW+94enVbL3M9RyBe+x29uZVjnIYX2//YftYzXvXBvk4KGPLNUy+7u7uBtoW7D9iOFiSnQQPwOwrogU7ue+VzZ90AjAR4Zd3HgcUx/T6d5Lu/+7snni+KAp/5zGemIPo1lOnYfYVysUVxDCStANgkywAs1aB5NfMvCiDNZRHEc50OBmWC4nQNKGoMQ+fQXEmUZRNpr6TdNng4F5V57l196drlXB08URdlVZrMIo2s+EIwz6JAmmVot1Ps7np+aaAGGfIczZWvfguKPSgTuHwpcMiTPoVO64cO+W9uE85zYCmrvPIrfacYIM+9B5ll2Qgc7e3RxWu77UH5pfIscKrn3Y7X15tRsPIciXOeQgSoPaL7fXQ6Sz7NLPO6pct3t9uMvKoFEgSZW/nJTc6mOHy49lpzzjtbHz7s6cItKMz20LqVpa+CgvEAcPBgnUbgKVWFaL/sdGql2cCn4mEWuN510ewcltttIHfYKn17bm/X3bHdrg0DVFe7DeBUP2wtb5UXaq9zRdxZPvbpPA8AyuysB0u4Nm+3vZd7UXiv9GpDSJB+vwJhTp3C0ZUV3HnnsgfQP/lxoCzxoju+IegrPBMxLzTrlmdX+LYh7DXXgVzq2D1diF87mY7dVyCX8DzxVTcOAJ2dbQKaNsnGxu6Ya7GVcd7BsXJPAkJ1/LTHbKVi+RuukcRUMHUOadasg+V+rjnSh01qqphU6SonvU4JxoHQFgxVGzvPJf0LCBzfnDDYRFhPjR9SxSVJsgxpnqN0nh4Np0/7cysrPtC3TIk6nXiAdVtVMwTaYoz4KsSKa4eJumvV7ZDELlCxhpjYuZgwcw7URYHEOWSVd35ZjqdECRR7bth0RGDllPNcK209GpwLTgucI7C6agi34P38fJ0kszbQQkPUQGOn+o3y2WebFzOT64DzZDp2X3u57FlbLOLr//l//p9417vehX/7b//tU1HGZ7zEPHAp1vtcqUcU5LWAsnoLqzd3DEhXwJ2AsvWYVs/znZ0dDAYDFEUR6DW0rFmWBSCXQTAJZitgab1+CYwrNzZBeQLb5B9XUJPAKNOzHu61da4MwCf5xQn27+/XPOcE6RkYNM/zEHAVQOBhJ8e3gsYKzKrnsnqOKxc87yHQTOCWdVfOewVj5+bm0Gq1gl6HwyGKoghc6GwbNVBY2hmKelYrkE6dKQhNg4QGcqWRQD3btV/zP0FqljfWH633vOqCxguWK8syDAYDlGUZjDM0KCgdjfLb8z+NF+zbrBs561lmlmdubi70uSRJQr7jnlmt19MRGP7Zn/3ZiecvXLgQtiU/Het/Pcp07L4CsZP92Hn95uyUgSM7HZS5B9FbWeaDX7q0immV1MvSanX48Okk0F7kuQcVW8XZ+gB8UDIgbVKOAECeh7UP14ph0blW1gBkxX8eRZVldTdEEhYfLfUOr+rR2O5aFFiutowGcJngvBKLWoS3OrZV8YH7w02vON568KDXh3NAK6sWaKfWmnvuez0sdzq40E/Grt8WFvx/eidnmXC+33/Sp/vgg8Bjj9U3cnXmuTz8TST+7PXQ7S4hLbdq3Zw5Ewo/7Bzx6VtwQ0B0tXGw3bVbcV3ZKi94gH6vbvtAlVMlm2RAK/PtVxS+2NYzfSmnt305maqIIDqNLBaosVFfWb9S0q0K31pZwTD3AUl3dvypbter8UUvqhbexYWaQob96dSp+mL2m7Ksg8MtLHiEnJajogCyZht3OkBy6q/RynNkNx3Bzg5w9KixefR6nhZmbQ3HVlaAk+vAf/2vwN4eWnmOF544gbP9NPDKh15q+3QMMNCGpEUnpu/rQC517J7yql47mY7dly9KjTJCPVKWgASAvAj2O/I7JoOyohPJXdPQp3kqB4ZmfjFUy6J8/AjY2ABuq9dOI5gk38exPG3lrIsvUDkE1NztdX4KrjfH7pBsxG6oQSdtMSzIzO8Qt0PrZHaMjegYaEZId86Pzxsb/lwVX6PsLnl9nTzZ5D2rBuUUQxzroj7Oiun/WN72dwSpTRsB1/15l1k9N799MuIpH0P1Y5YJS9Zuy6Zpmf6WuNIbWBzQakeeqdAG0haa/zg+nnF9u7qEDhSc1/L2FIPR/myr124Hh4wYxQ6zigZ01fIYS0fj3RKhBvpKyHTsvvZy2TO3WMTXZz3rWfjf//f/HT/wAz/wVJTxGS0xT3SK9SK3/N0EF8fxY/O+cTQtMZBdvaOVakS5vA8cOIDd3V0URREAZ0qSJNjd3QU9hxVgV09tAqoKmhKYVQBZ+cXJMa7e79RXIQOH0obwP1AHhhwMBhgMBqHsTJuBGQAEAF15yqkT6p/e4QrSWs9vloHBNGdnZ5FlWQO8JSDLMqvHvQ0cy/ZiXuwze3t72N7eDuA9g5kSWFdub+1LLKPlwVcgWYFv8tZr8FHVu1LbqN75X0F57eNqHND6s39Th1pGgufUJQ0dw+EQ29vbocxqFGIZWB69l/1G+7I1TGmfUh7+GAWMyhRInspTLdOx+wplHEhG0Ym2AsuPPgo4h925W/0kNHPBC52OUC1JY5i1cOqUP7e66tduLWx5EJFIYJahdOLZzvJVKwEGPeNiI+lfAHoG0KQ71aFDTaAPCIA3A0eF113b62DgWij6wFKe1VEq7aLsZAVE0wubSHVsVVwd2zjnnb+Jy6pa6Z186BCQ9s967m4unAnYKwe5c8jbywHP1makHSHFoOI079cGj6IAHnnEL6AfeMB7pLHNmXaWecCWSHe7DfT7WFoZ+iCbLHSvF1zI19aATmep5sxlelWZt4okcLMTLGd1Ari/3qvBam+BqQEBfnhTVWnPaZ80VB28zntFc+FpDRy8oSz97oh8udFsStsCoAmgA3U0U8CD3BUHT9LpwLlWwJE7naot2GdI3q6u4mtr/vfq6iiNS7/vXerpJl4ZdJxgEjMzldHgk6eAdhtJlqHdXsJNNzWTCcaT+Xn/zPV6wJ/9ma/TV32Vfwxuf3Ew9kQBKH0eFB3idTFw7ToC0Kdyfcp07L58uRhIRA7ycfj1hOHqIlgl1zj1utc5wGVVHAU1Pup8QQc+TVgN2Aq2ujrAI7nagWZQTueSECsjCjSPA1RjLt/V70RAe37Gefqqd7LVLUFLBsdsgvrVMaFpC+VVoFpBdEuqvrvrrbW8l2PjzIx/t+/s1DFisgxlp8qTgToYECPLPBd5sTUayyWmT91xBvjxLKYUO3brPCnPkWTVNbIDIN5Pk2ZAbyvjUPhJEgO9x1mU1IDA/zHEX+usThXGOGOLEWh6yjIEkB/ZdWBBbAN+J3mONMvg8iaYzkuCcSY2Fqtlh0YV1FXOsqQOKjyVZ5xc0ezNRnw9cuTI1S7XVEQuFWCLAeM2EKOlgpnEn0SxdBwxLmwFVflfeaU1P3oLK9WMAr8EK5VmJeaBrEYDeojTC5zgJstBT2sLaKpxQg0Els9dg6aqBzTzZB7UkZ5XWg+WQYFo5mOpS9RD34K4yr1taW54nnlrOvTSJ61LjO5G+xB/sy1iVD6avvKIx/rBuD6jv0mPY721mW6sT6snve0rtkwKrlsqGrtDgW1FqhmlU1I9aeBTfnj+mS6HDh0aazSY0rlcW5mO3Vco6pkDjHrv2sl3WfoFmi5Sq2tG5ttynHQTZVnxNOqirMqzrK5tzN7EMyYsUO3iIraA0cXGJeigLP2acInrCLtg4sKm16vdqm1eWu/qP1VVFLUTGG9h8mF7sC6cNzZqvhMpg1+gJyPVck6CaNpIVQR+GQXTRuFUhLssa5BX9cwMd3bC/6LPxWCz7jEAZGbGZxHqSkMFo7VubNTgtPXujyI7aQOwaCz2FQWZtNsiy3DuXJNrNCzctd3Z1wlecEsF0AQ3UPfv1A29IWN9va7b7q6/gOT6VBIBjcqrLCVCDjRJz40eQhDYfj+AAlnVlNz6XfKhYvtvbwNPPOENYYD/3eshwRBlmTSzUD2o7u2iXr9vEJk0dl8ubjDFGJ6cTMfup1YUCI7FlBgnik9TLB7HV2yqA5odN8eBnLGdQpKuxYttEv5dGbkpVmitlPKKX+ThpbHdYqaa3EgVYuNVrEwXA9G3t0fBc/7Xc87VgVR4jI1eFHX7k+8r5lWu6Cv/WxCdHu62TBTlD6mtHfV55QyT47EmGIf7TtTzuPOxhPTcuL4yCURXsUC6GILKEsEBJFqfceC5thMjito82u06TosYJRpTXzXWXKy/V0ofqeZ1NsBNx+5rI09qRseIr1N56kWBPuvVqoCh5Qu3YKh+M10LbhJwVK9aBS6Zj3owW9oX3kcAViUGMBKgJV0GvZstMKwc6DEvekvXop7Y6n2u+athgNQcBOfpiU4vcQXn1RsfqD2qbTBTSx/DvNWDWY0CsetsmRUAVh71mFe0BYvVEKFe/DFOfdWL1sWCmfZlrYC19iO9z7aRNQBQlzb92DOg9dK+aQ0TTE+NLcPhMPxXjnd6xXNHAPNmGdUAos8OP9QfjUbjAo4+3eV//p//Z/wv/8v/gte+9rX4+q//euzv7+PP/uzP8H/9X//XFET/Csl07L5EGQcwx0BzfpsF0Pw8QW8XKFfCLQYIHWF74CJAPHBDkRS4LL23DVAtSKqt5SkpLghoMnEFtm09yhJJOUCWpQED5/Gs2mI8spDVBRI9dUjnot5G3AIrHk5Ds6ixzDHh9hjY0CClFZ0UBfK8FbBXoMZbh6gAYM2MFaV3t6UOYYGcq+lN6GlvqU5Y9yrdYr3adZALIGHbshLix9GTQJODxoLokesbALoFT+ziedxKqShw6FBrNC1rONAyqg40AqxzcJUqG03HPjM7WyNCarSodEzDQ1kCKVFw7ctVn9MmG6lbWYZuWhSCYWRZc794lnkPd8AT0Vfn2K2xjvjzY0Xb3J6/zkH1SWP3dCH+lZHp2H2FEnn+EgyRZUn0Naav03F47zi8LWYzC2Bd7OIYp4ktSAP1a94K1K9O/ual6sk78f1jf1/EyG5x393dZoDGGJ5JaYwjlEstn1ot1NKu8wIdQwiqz8z4lzcLxsJWRvj5+eredrsZiGRcGfRb229xsVmemMOFgueah+1wpadPGSIZ782vbWuB7Et56VpwW4+PO6eibaEPheatkzpNL5LmWExfr1dDw7ibeL25JvZcpzYzvc9ePGbudr2N5dOx+9rIJbX6xSK+qnz6059+UgWayqiM89gFasCRFBfjAm8SyItZphQA5H8CfkyHxygKVirgaMusXtiUvb09FEURQGkth6bBPEiLQsqSGLBOUJ10JTZopfJt8z7rJU/amYWFhQCCZlmGmZkZtFqtQO9CuhDyEwJNgFgpZWwQTdZL24Pe4RakV7Bb9cR6AZ5HnOWxBhVrXFAAmHQ6rZYnFNje3m7QrZAPnvft7u4GOhhL56PlVO50DdapfZPpWsoW27/Vs9/WhSC51plGF+anfZN14v0Ezy3/+v7+fuBPJ9WN0uKwPOr9r6LGF/Ydlou0MOPepTFP/6eDfPSjH8U73/lOvPnNbw7H3vSmN01B9Gsg07H7SYo+33bFrLNoww+uE/cltwXkGQZlC4Vrobdee1y7znJ1nb9lZaXeRTw7CwzzJSSrqyEtOIeWqwJ6rq03t4C323CdY4GdxF+ewrkUnU4Lrc6wCfgSuLTeVFVeiXNYyjK/8A8UIaXn4CatiHr4ctG5uurT6XSwVRHWlFJMLymANBwHPNY6N9fEtUn5keeo84wBwBQ5v9ztYthuYWbGr4lnZxXzbyFtywJcvcvZEL1evQCn/pUT/fhxoNsNW9uDl6Fz/lyW4WzRwtoaMQlynKZwAFpuiBQlkDW3GAOeXzdVr3fdRk6wWLntVRfahta4Y7c/qyHFXktZX0ca4/yMARfz883dBzzH/pZlcGXdtqEMKyuj6RF8qPoWqYTIHLPU7dYe6lWCg2zJP4LSJbMMng6H6fb7SLIMKytLujPb6/TEifoZZl92DnjBC4DbbwfKErd2SmBdOjTradtIKRFUv1YuZsT4CsqksXu6EH9qZTp2PzlJXb3mGuEvBkKHJMczqkCaNoCm4pHqUNykTamPx3DHkZ1h1srHMSgGLupYZ44nxZYfSbPIPfz0yuZ/tRiMA3HH0a+hro9ShU0yJNR1NxeNo5Kx+Vljv83MEl3bMcTqm/MXva/d9mNBUfp3PenoghcBRul0eMyC2ByzLbAdqx+/Y20vXu8JJJC16sGC5fabv2NtGQOcY/2g+rbPBUUDzEfLMiY9uDpui73c5ODnQkxHAXt+2511Nl+O54UPkOoq6hjmnZIKbpxe9GJXO35kWdW/JxkZvkIyHbuvjVxSq18s4utUnnpRzmYFWclvbYFKBZstd7SCdfpNANqmz3yVmzzmja0e7AqiK7CqtCcE/+lJzbIBgAYfVUBbAXOWXT2/tUwEf+lNTMCU+VgqE4Lf8/PzyLIs8JOrEYJpMHiqBpukoWF+fh4zMzPBe93S0LA+BM+1vdRQwd9Ky6LtpRzrbBP1xlZufAW1eS7LsgDwkt6EZWDgVN4zGAyQpil2dnaC8UCNI1o3Ba6p7xiHOYFw5dvXvsR7hsNh0JfqgGVXKhW2gQLuu7u7DSqY4XCI+WofN/Pb3d0NH3LQ9/v9UA8VSxvE+qtBhHVnv2GMAEtT80yQ//yf/zN+/ud/PnpuCqI/tTIdu5+kxNx/rCg4SWAZ8CvssvQcm+021nEsgNsMZqg7pufmgFtX/IJzq/Qet2fOAHt7Huxbysln3fPfDKzIRcTqKtJuF/0ywalTTUx8ZQXodBJ0OstodVGDfEyPwCHLb1c2ChQ617xuY8N7XzmHYb6EouJs761XhgJXr13J0GEDG5Vl7fTLIFLEiEMQTAav1HawbkWsQ6WXJMtwdGUFgzJp2Ao83psgy5b8vQRTu7eGZMPiH2jqpAJs/+pkgrWP+nIePgwcPSQLu9tvB9ptPPigp/Qmnqrr7Fs7Ps00z+EqIJ2e6EUBlC5Bi1uReTMX250O0OlgiCRgt3nVRIEf1fLsUod2samL/lgfX1sb9aaznmVsVHpz5zmG3WO+POQbzfMq+B6w3Ca9jF/gb+VHUJY1fexs3mzisgS2z/ks6ri1LSxX/PRnewn6vZrGvtv1VOzL+aDZb6iXXg+rq0vhVFEAW2ihdfvtXmdstOPHgZkZDO94CT7xCeCuF5XAvffW9aRBg31EAapxOz1YKf1YoOM6kUlj93Qh/tTKdOx+klKWgfe8+jvKv23fe87Vu5Sqj3NJY1iX5MPYxrjTeuuIlzDnB7yZeZqdYVtF0riEp0eChALjObo1AfubBVSg3Hida6BSvQ2ovcgDeFqWowCvzTcGAMfEArkVeKsY6e5uauYPIbLMiH0g6zTtnJS0uzVi9Ez6F/zvyliqY5xPNwHypUbxXWbmCap/tlHMAG2tD7aAMXA85mU+CbC2+tRz2uYU3TFoQOaiN4n3Pq2SS5v9VMsl+QY+fYO5W2ncmkmcAZcG5DJtR4xTMTBff2cZ0rzJ659lSQicq7pSkL9VnR9UdG6tbDhKrn4dyXTsvjZySa1+sYivU3lqRUFs5ZYGmvzcShtBINECtDEATz1xlZdagXClglHaEd5DL2/1ZldPYILPNi0AKMsycE4T+AW8R7dSpCjlBvWiVChK5aJBQpXn3PK7M23SuMzOzmJpaQmLi4tI0xTz8/MNQHZzczMA8kVRBHBUvZT39/cDkEpwlyAw623BakvbovpRnVsjhdKm8NoDBw4EnnalqlEDAnnRqd88zxsgOo0YzIN1JLhtPaq1rFo2tj0NFNS39mnWXz3XFYiOeaJrP1UAm/Qp1hihaWs/oz6LosDW1lYjICnb11LsaPpqJNDyUOi5r0abmDxdvdABYHl5GR/4wAfwEz/xEyPnpiD6UyvTsftJioJcekxXa0ATQOfEmq7PFXLec8cCNkccutfzwDIBZKytAf0+WsePoygSbG56IP2mm4B8NfWexcyHntnk8q68qHd3U5w5A5w/D7P49N+rq8uhyC5Lkbh+sw66QCOqySCkWl8uWDY3A81IUXggkzg28V/ijRRmo6CDAu2zsxXQWhQ+CKYC9sp/bRej29t+G/fcXA06ZxnSPEdZBbSkTvb26upxUc5y+WQ8JY4HSFK0234BXfT8NX/5l8BjjwWncwxvqtrHOWB1FWd7CR57zDd/u11Tc4a1e7sMCkoAOJeGneZUr3OVF5ZVUp7jQj9p4DIATydNIJ16Yua6groUT+lez1fCuXpnxvx80ys/dCgXgteeOuUPdzotbwOo9L6UD0eix677bo+NDd98zIpNbW0+gXZ/ZQnnzvh26PW8vWpuztsYZmerslfPVChjpZPl7gB5noYq9npAtnobkt7Zui7VtpCTJ4EvfAG460UAHnrI17vq1APyzlvDjjXwTBL7jrlOZNLYbQ1hFxOzIXUqF5Hp2P0kRTpno5/GgGgdjCxVlhvdKTQmGwAG8LYestbbVfK70E/CUK5pZhkZsRJkWeq9zu3usRiwasUa92Q8GeZL9e1FPV8AavYTOmGnDqP5xSwM9vfF3nERsJcgJkOfKAX2OMdnHdo4n7AGjna7hbxdg++pG4YxjgbdPK8MBc4BZRMLbw6fCRh7pAHw2p1+VrTwdpyItaudm9ldcjo+W6oYBczt+CT9YlAFw2UcF2Yxrgq1DlTPft4EIDgHhCqLXQEYD8xbsT4dvG9+3uflCOCXg3jQXupH9edSpcRHVgH1NBIRZK8f2WS0C6sXzHUm07H72sj11/JTico4sEkBc/7XcxawpsR4sxXg5rFx4J6lQ4nRxPCbQK2ldaEQRGca6jlty2zBVFs39diOgc30Rla9WGoYgt78KDCstB88plzr6vGtwK1tP5tvTO96Tq+3OwlihgmlVtE+oW2qBhgC2+q9rp76seClmp/tA9aQorpjP9C2YXltwNWLSaxfW90p1Y0aO9Rz3uqIZR9HOWPLNq4NVMe2DXnf013+6T/9p/gH/+Af4L/8l/+Cr//6r8eBAwfwZ3/2ZwCmIPpUblCxk+aLudOUJeCac+4aKJXbddJf8Zvb+KQjK8e9PUOmPRpXixShsUVnasu6u1sXioimrZ8u5GQlpGtqZcW4lAk79RK2x1tQIIZWxCS2YKr0b6tKUaex3V0PZCjewaBtTJZYPddrtlz0fN/eHsU1RnCOqryx6hBIb5hxK0WVxUizh6pHdTGu8hdrIFZYF+YjGY3qYBLGokKgpCjqvs5s9vaa+IJNk110e7tpv2qUnZ+ZmWZdiwJp7gDxVC2KyuNMwYc8b6a9szOy+i9LeY6MHqK6vQ4X3TGZNHZPwuticjnXTmUqV1vK0gTY5EH95u8JnTU2FCo+Gb1wXJrVe4aAncaiVHy1OV+Q8cC+FO14ad8zsfdOdWwcPgvU/gAj9Rs3Po8DjS9HqjEklt3ubnPM1vN6vVKV6/Cl9wOAy5NgAOccIMsQ+MhtFfj6n2QndU4ohJ6MxNpXg6fGMq8LMT5dC6JXxgLVY6w/xooH1H4Lk67R89ShhYUMQ+pIGtZ2oJLa+tgEJlRE+7e2uQ71E9U9ruBfIZmO3ddGLvvpjkV8BTwolGUZjh8/jje96U34u3/3716VAk6lKQo6TaKFsECneutSlN5CQT0FZtWbWak1LMe3TTsGMsbqcrF60jOYNCJAzZWt16p3swa/VLCY91qaG3oW0xM95mmsHu42QKmWQz2q1Rub+lVdKwVKDIRWsFxpWBTgpacz//Ozu7sb+NLp1U2xlD3UgXqix8Bp6m5ubi6UXYOa0hueBpGLAc+x9gYQKHIOHDiAwWDQaDMF/akPet1bg4Ly4rPN7G4JrZ+NL0COfC0jKWTUQHCpwnS1rZj30xkc/qEf+iG88IUvxL/8l/8S//E//kfs7+/jq77qqwBMQfRrKdOx+yrIpSwY7SS+QvvopKsYJL2uG/dW9/EnecKDd5sufhYWarCv3cbQpYFVg1hgWY56YtmiAmiSSDPq4u7uaPBOBQZnZ33iWYZh5bHHetaL/oYDNYCa1kU9jQOHLdO2XtN5Xns+awBIvYduyhEPLHVet5Svmk1RjC4eCYizzBSdipRl5X0m3t033eS/GRuWvz3/aoUCV277aZ5jOa/vDUIuWSowyzDMWsEjnuUmzk2gpcU21DaziDYLMwkQoce56ptebzEPuspNvFPx/SutbEPZVV+jGmi7YdtQt9qPtD8B3kOxLGuAhF6bI6IPBAtT8bh0OkdMOV2zwbIstP0wayHpdBrB48Lim7pVr78bfPU5aeyeLsSvnUzH7icnUSxR32XKda2fsqw4lGv+b928w8v0VRjNVNFce3MFFtMgOum5cm5MUM5JlbYFt3WMJMUxToHnMAcZ5wVv6xUrg/4eZ1SglCXSzAUwmmVh1gzYTpBTnQTsNAkY9Q2w2baqsXX3XBPYTTBE6mpQ3Kp0HE4dbSerB56zExHnRl3fbeW08jqh0opPoOwZmQyWJXwMnWbRtKh22qvNqzqLVQtoAud2qmGvtXptYP3VNVb/QySNoPWNbzMHKMtRAJ9zJ4Dtl0Snv2G8j+nxOpHp2H1t5LJbPhbx9ROf+AQ++MEP4kd/9Efx0EMP4R/8g3+AsizxQz/0Q09FmZ+xMg5wsoC5pb/Q48rhDNQAI9D0olaQlZ7CBFgJtmo6BDnV21x/a7nVi1s91SkKWO/s7KDf72N3dxdlWUa9owl+856YEBydnZ0NHPIESUkTQwoT8qADCJzqBKsHg0E4ZtvCBrIkZYoC4XZ3gBog7DneN1cNkBaY39vbw/b2Nvb29rC1tYXhcIjt7e3A6U3wfn5+vsG/nqZp0BePz8/PNzyyLa+4gvEHDx4Mhg0C3mwr1oU0OrYvqEFDaXlYv729vcDPTp1zRwD7IMvPdqMBgGnpzgflO9e+PS4g6N7eXugHu7u7cM4FferOg3FgvBWl8FGwH0Co3zMBGP7Gb/xGfOM3fmP4f+HCBfzO7/zOFES/hjIdu69AyhKgMc0CkHoNUC9UdHUhi82DB5vbkbPM007oehTtPKSXZR4jL0v/3dh2TiBZF0bdbuB35ikWTS8F6oXhCNJN3pF2e5S/lYXWVZZzvhLtdqBwyfMakwDq/3NzQtGCqsK9fpMGJ7bY4+Kn2wVWVjDMWhVX/OhCr338Vh941S44AST9C5491Tk/8y1LD1DLde3VIyO7gckgw6QOHvT/dZs44K9PK/qPovDAyuqq56NXbH13t6LvWS+avDcW1Xeu5sGh7tttbKGFjTM1vbmKJtFupz74pvbTPB/pr4GOpBw0txDwmptuqonqY32eGW5ve2VVyljuVnXojV8Vn+01t+vbNT/Vo8JrigJ44ok66YWFZqzVkF1Z+hMMREp9VwTqSycc8oriyC+cnW80ADh+HIMyweZHfZpnzgBHb7+9TkdAqFSPjVulXoeL7YvJuLF7uhC/djIdu69A+N6vwMzGeMfzfFkAo+M4jxUF8txTf5BiSpIfYRYLdBDO8zc3uMx1UOb7t9q1NM7rN/rcjLtgHGgdA1YblvZ4Eg3wXOO+aCEtak2lmLyUg9rm0wCc9dPvIwHQcg6tDEDu8xjlSa9pcPr9UU96BoFl3nYH2d4eUOZLQFED7ARUk9LPJ1gO5h8MCkUZbyT7rid1jvDNl9y/FHTi6WBSJ3RA4+hIbEcZB57bAdF+SzoMRJ5Wn1bbd27ygGuTxzzC9/biVCH2Xvttu6uoC8AopdCIgcK5UEYgRelDtsNlQNb219fnARSjNgpKUdRODmmWIcua8QFSN8qFPkQyNvDqV1KmY/dTL5c9o4tFfAWAX/mVX8Ef/dEf4Xd+53fw4he/GL/4i784HcyfIlFPdEtFwuP8toFGCR5afm4ClwRoATTASF6nXNIK2CuoniRJ4JK2IKGCnJNAbwadpPf5YDDATjW6sa42+KV6MFtvc94zNzeH+fl5OOcwNzfX4Fonbzf1pZzqGkRUDQ8qCnADHoCn9/7e3h6UHkZ1pTQyMe90GziVQDPLsLu7G8D07e1tbG5uYnt7GxsbG5iZmUGr1YJzDgsLC5idnQ385+qFroE2AcAG1CQIzHZW3TBgJoF8rYNtUwCNtmGeuotgZ2cngPRlWSJNUywsLICBRhnwlUFnNR81zCiArv2bdVEds8xMmxRD2r+U99+C6BYMtnQ67HuW1/6ZIsPhECdPnsTjjz+O4XCIzc1NAFNP9Gsp07H7CkRXfAr02vMUu3Dhiq4ocOiQX+iRf7mijkZReNpmALUXOPxkfXExwd5eBbr2BX2nEDHPcwyyJfRO14fUiTy2th4huiTS2+1iyy3VQS2VS9t63rC87XYA8Dsdf5je27wkz1EHqeT3+nod2bHXqy0LeR74qImMDrIlnDoFnDsHfOlLzW22HI67XaDTSZHnaTActFAFttSgmmw79QZ3DsnxEkvtNtrtVsBad3Zq6pa5OQ+iA7UXPRd729tAdqgKkFlhybetDkcBctVpv+/BXA18Se6dPPcoPA0IWYYttALFt4LLMzOjnvJlCWxvqydVGhbpZQnsbgN7VbN6g0DqOXfVWEIA2oBKI9y+XFH3enUnX1+Pe4CznzkXgoRWw0FwjOcOjbL0yaiovtkmi4veoNFuG69Qtneng79ea/lgpHl1nOT9WYakW4SOOkA60k37fZ/uE08Ai6u3oVWcBe6/HygKWZgXo8/Upaw+r/MV6rixe8qreu1kOnZfocTQPIr1zLZgMN91cinfPSOgr08opKd8yoEj2qVIsyZFqdJ+WVB4UjVG8xaxY3QMWCWgW3FXT5rGhMDQHD9jIDpv4g4x4VovCh9HxN6mU4iZmaTa0Cac7/o+NXklzgVAG1kGzDsMDi01hlXdPUZwl2A60JzK8b6ozllnKXSgaNGIsxbQtkA2mtRlzNeq0BtqPP+9y1IfE0WRZqsTlYjxwgL3WsSR4OksjGmk1LmaKiVrBnuljjUZ2zW0HayqxoHonCboY0qDxkhjtdsg/aHy55clp9M1ZZudivFR5xQ/UPlUD7BzrdF5czVvaHiLXIcyHbuferlsEH1cxNdv/dZvxdvf/nYAwHd+53fiH//jf/zkSzeVEYmBTjHqltg59Xa2tC5JkkCpQYAayFZqEfJma5BGpq33xMpt/2te4+4ZDAbhvA2eSSCVXsoMCKmGAgVsCZLSk3l+fj4KoiuoS8B8Z2enQZui7cC8rdEhxus+jutdjRH6+8CBA8FznvUuyxL0lN6RfWkE1wmgnz17FvSkphf53NxcqL/mRa98rZsaCpTyhUAwA78654J+tra2oPQ1pHxRqhVSoqhOWH7+Zh3ZD5gG24vtqN7ySmXDdNl+NrCt/mY5mZ/uVDhw4AB2dnZCmtq2lwIAq8GEBpTBYADnXNDT0x0Yvueee/CGN7wBX/ziFxs7Bvg9BdGvjUzH7isQO9u3K0C7cKJw9i8uZqkbYmEhCXipc/Be01VQJMB7ryUCWDqXIs+BVjb0nstMm9/VwnULLWycq9cWnN9b7HNmBk3PuBiokOdYP+3B6BYXCbposSueCiEv1ms2i5YbYGEhDbh4llUePFzhrq35Rfmjj/oIqCFSZF67ArESnQ4AD56fPu29gU+dGl0IcG3V79dBPNttoNUxi3JdhHLV1Ot51LYKzprntzYW2/zOc5+v0uNQ9vZ8Gfk7y+ARYBtZ1JZjfR3BtV63yrfb3r16cdGD6M5hY6O2OShrTaxrqtjuahfvWVYvlFIafyiVkaShM3ZiFZ6nxYEu/HQPNwamIZLGzgyWQzD2hseg2iLUS93i87H6I89x+l6f1vJq7st/pnLnP3q0BoCcQ+nSYNs5ebJpGOr1fB983moeB8xJgh+TmCXLIgjXmUwau6febNdOpmP3FUjM2G2B8sqDFaX3AiY4OoQEZ0Y1dmVJ7YUa6/yGW4KvgxDjA0AptDBAnZR6oV8ygD6pztbQHQN13SjnuN4aQEsdk9SgHqu/vs+cC7uMNjeb8R6B0cDRYbmZJXV8CUsdo17ZxiCQdquxq7pbmm/EK53/dUMyAfaKnS5UMdVCq36tQcHOBSPvdW1jAr3jdE8niDz3YHqiF+q3bfNqThY8/013bXaLMfz6uuPSjt2lpzjKstaIfcNOq6jXmIpioL4t30g31z6oFxcFXJ4GgzynVbxF+4IC87Y8jR0M1Ulnr2UZqjkMz11vQPN07L42ctn7Dxjx1coHPvABLC/7LZGbm5tYXFx88qWbyiXJpQJ59v8kwJ2inuSWhmVcvjFv6ljak8qp6VtPZS1T7BjvscdseS5Wtlh9bV66K8DuBrA6UAPGuLwn6dT+1/vHeX9TR7YusQCoel3Mu1rzHlcXBebteXsP0NxBMa78sTYZV07bBy41rVifjj0blnZnnFhDiU1P/1/Ks3Ejy5vf/GbceeeduO+++3D27FmcO3cODz/8MIDJ7Tmpnady+TIdu6+RjAPFxsxERy6XA2PxNbuwQXMSr2u4GHYXynMps2N7o8n3Ypc+KZHCczEW2zIcW8jp8eiFmr4iHdX3OC9+LrxjatAFegBDYgtfK0q8qZUwK1C9bFI3m5TVRSV207iGtfob19ki/YWL1svphooF0eOc3+r0HrzRxyVO1IYfAcZi2NvMjAfoA+hChKwo6kX5xSpxA65EJ43d2k0v9fNUyblz5/DGN74RBw8exMGDB/HGN74RvZihR2R/fx933303jh07hvn5ebzqVa/CZz/72cY1Ozs7+LEf+zF0Oh0sLCzg9a9/PU5XNECU1dXVkfXE1Qazp2P3VZQx4OZYIZjmLnZh8/yl9ncLmluJjtvj8h2HTE6Qi4GbI0Zz/T0u/QhIHxMbGPuSCjnuZSLtpGP0pOTGAZ9jyxTT87gX3UVeelftffikBntMmCCOOWbEUudMyuZSPuOK1Hj+IjpPMGykYftAxO4SZbmxEnad3GAyHbuvzdh92UucWMTXj3/84/iDP/gD/Ot//a8BAB/60Ifwyle+8nKTnspFRMFIinoMK+VHDJhToNHSuZB2RK/lf/UEpicuwUTSYlihZy/PqRc3+aljZbXX01OXHuL06OW9LJN6McfA9FjaykmtgUd5z+7uLoqiwN7eHoqiaNSBnOP8T4qQJEnQarUwOzuLhYUFZFkW9KV86/SgZ5mUZ1uBZ7YLwWl6gTNfpjs3N4f9/X3klecg06aXuVL50Gvc0qCo97v2FQXeWVbeowYFeonv7+9jcXEx0KgoSM/7SA3E/xZIV/ohpUEZDAbBG5+/uVtCqVzYV6yHv/L9a5nYnmxT5bLXIKOqb6VK0r6l5VAueN6vbal0P09XefDBB/Hbv/3bOH78eDj2dDccXI8yHbuvUMpydKY9abFqrxF+CYKgdGYZIB3Z/ppKWjw3KBMftBKot5BKGbggsPHRKH7LdEVtrWTasZlyUaDdbnlgUFcdZdkkPNdMyhLdrscVW9kQ6BeYna23ivd6QJknnqOb7sdzc/7+drt2VSONS57XZOLdLgauhf6aT4uAplU7ABw+XLPBHD7svcpGPL9Vh+pyRtqUdhvFWnDoCrz1zG9x0V96+HDNNsNrCAxvblZl67brfNS1KhBvoqatYRlJhQLUHOMV78nyiTbc8VaIn0osV3Fg3f6soLJWG2iCN/PzwFJeeVmu9+pycGsBRfu9ZlDtFmic44e87vJ/mC9hfa32GtPkWS4mTQ560vPQsb3T8XVn2bnFHKh2eJAuaH0dWFvDysoxLCzIbg/yw6+vI7j4dzpIV0o861lHkOe1w9sdd9Te6AmGwD33Ah/5iL9ed53EjCH8zfrr++Q6lxtl7H7DG96A06dP44Mf/CAA4Id/+Ifxxje+MQo8U9797nfjF37hF/C+970Pz3ve8/DOd74T3/7t344HHngggNFvfetb8YEPfAC/+Zu/icOHD+Ptb387Xve61+FTn/pUYzflP/tn/6xBo5Lrg3YVZDp2X6FYi5iM4wyErR8NHmmfU/83bXiojyBMxgAesy3aqcLsrH9/qz3SUrFxqPSe8OWoZ/a4usfeNVUh9H1Jug1bdedSZHn1vnRu1K3X1p3v+qwONK4BP8cZDGw7KHVIGCtZX4u6WrowKY71Ztb89fjsbB32w45H4f2uJ8chjTr3szoqfaBUGI5t3qZjt8ZbGeFH150Qtn2Fhi1xDmmWIc3cCB/9WEXZgkRQ7kBJ06uZ52zaatBmMpqcSkRNjapwqG7oQbeoscz9Plp5jltX2mGXG6eszpkdmP0+kLkROhZ3KG3Q/ETFIv7XqUzH7mszdl92L4hFfD1x4gQ+8pGP4Bu+4RsAIGwvm8rVk5inL4FApTlR3nIeo/B6y18O1ME1SceiYLcGzOTxnZ2dESoUAoz8JkCYpmkDeAZqWgwFbLWsBIkVWFZOblLK7O/vBx50pqHGAAV5CbYSsNzZ2WnwtzNwKYHQwWAA8n1vb2+PBUgppIdZXFzE3NwcDh48iFarFdpEDQsaIBXwIK6tB9tZucBJqcKyUB95nmNubg7kPt/e3g4vAxob2H79fj/oTfWcJEmDL95FBgmrA/5nOZVih22unPI0Xmjbs58xP4LW2o/YdltbWyiKosElz/tIWWN3WhDYV9Bc9cFyUh8E/tlvaIRI0zT0EZZPjUjUiQYh1b7ItqJxwDmH2dnZ8Fw8Xb2s77rrLpw8ebIxmFOmdC7XTqZj9xWIkjhOmjQrh7QVrqTLElmWYnfXY3YbG57+Q4eRogBKWchzW2xRAGnFN8oASS0JEpm6IfI8CYtvFpULiU6HlDAeUAwIMeumq6D1dSy12z4gJFcxpPMgaTVpV3hfUWDJncXSLIB1f8zlS6EMpN04enQJ8/kSlo67JnkpP0StK7SUQUTPn/dFZxGJ2XKBxPoePOjjYC4sAEcPDZpgsObBT6eDoUvR73sgYacPlL16HUlAXheBFbMKFhZ823U6QFpcAJzDIGuhKDx3tl+MpcjzI76MgN+WTWCA/Yb/SYHy2GM1WECO8bL0K+uiwFKng6VOB4PucmDG0WoqrsCyBy7fclB3LJTNjnLa6Gl9vXYVZANaFy6lauFvKkrogQCEhfy5c8ATp315GQuA5SRmr9vtb7nFH1t2F/wFJ71BYaksscQHpSyRZFlNP8S++eCDnkC/3cZtL2sDWYYL/cT3b1o+Tp70hel2vWVkdRVHv+7rcHS1Dec81dKtpz8G/MnJmpbn938feO97/T2896u+yiMxCl6p0YR6seCWRVSuI5k0do8FZcbIU1W1z3/+8/jgBz+Ie+65B3fddRcA4N/8m3+Dl7/85XjggQfw/Oc/f+Se/f19vOc978HP/MzP4Hu/93sBAL/+67+Oo0eP4v3vfz9+5Ed+BOfPn8ev/dqv4d//+3+Pb/u2bwMA/MZv/AZuueUWfPjDH8Z3fMd3hPQWFxfR1SC+V1mmY/fliwb7S/S9VJ3j2KjA6gjnuRH/GCdAFYy5wXNedXC+52L4bgDyKjCS55RWJAY8kvZkZLy0IHrMaBD5cA5BA+w4LJh1mJlJsbi4DJcDaWfQfPgVzKwqvFUkKA3eeymyu1vlnQmwy/GRv8fVi8C9sWWqWhRDVWH4kbL0dF3sF84BwyxFoiB+7Fsrad/rBnhPnUOee/3TYKLjncZaScqBj4XDAZ6Fl3lXo5L8cECtvpMs84C6q3nwKUMkPsBpFS9FJRhZNuL9xFZbP2SiyzLDq69GoAll5nMUKJT6RT1nZDAVzVy4eBLnsGQnwfbZ4byWzhN5jrTT8c4qWjag8nJP6rwMb5x9hq8HmY7d12bsviJTio34OpWnXtQLPeb5WpZlAMTp2TuOdkKBKAXRZ2ZmApiqHN8aTJMgONOnZzW9r9XDVgNHKpC6v7/f4PK2ZQLQ8ARm/Xd3dwOQTLBcjQjW+53pqJczgABY0luZH+qQoPLu7i62trawt7cXgmaOo3HRYJdLS0uYm5vDoUOHkOd54O/m9QpAU6/0etdysbwEkslnrvVjGy8sLGB/fx9ZlmEwGGAwGKDdbgcDwN7eHnq9Hvb29rC5uYmiKLCzsxOMAzQktNvtUIf5+fkRz3j19I6BxK2Wj2LPb15bFEUI8rmzs9Og42GaBMuzLAv9SoF8gujqGa+AdpZlDQCeugMQDDlqEGJ/5m/2c4L6CqJrf7OGKuutz/5ljSz6/CqQDmDkeXg6yY/92I/h7W9/O9bW1vCiF70Is7Oz6Fez2CmIfm1lOnZfgdhFamzlYEF0O8GvzrkKINzZ8cCw9cQlhyqFCyzvKZaEawDvNZNmrrE4O3TIX5M675lLiuZWNvSI5fo68MgjfrGxstKsn66KGDiJnmU83+lgq0jgMsDlS35xxAUNUe6K1Nq163Ver+eTYbLHjx9B3jnS9A6qdLVVem+g3hoC6Lq56dOhfhYXm4C2Xbi13KBGl+2Cl65N3S4ePu056k+dqk8xXXGqa+RBj6glV5V7vR/43NNuF6VLAw8sjRrEXn0aCZxrIW3XOgWA4F4OeK54dhKgBrF7PZ/QLbcgXV3FcqeDft4K1VPHcZY9LGILWUiqJxfTVyvF7q63BJRlM6rqoUMN4vKtMkXRB5xbhussh6bc3QV2elW3WW92MzqHM0uWU3EBdrks81mmxQXgvvv8TWfO1DsX2KH4UY/4sgS+8AXfD2j8WVlBH8fgXIoWo/qePu2DhHY6NSi+uOiB9+PH/TW/+7vAPfcAJ04Ax48DH/gAPlMUWDp1Cqu//dv+2JveBNx8c/N5oWWA7acIlSqFDXadyaSx+0oX4hcuXGgcn5ubw9zc3BWX8c///M9x8ODBsAgHgJe97GU4ePAgPvaxj0UX4g899BDW1tbw6le/ulGOV77ylfjYxz6GH/mRH8GnPvUp7O7uNq45duwYbr/9dnzsYx9rLMR//ud/Hv/8n/9z3HLLLfhbf+tv4X/4H/6HMOe/WjIduy9f6mHFc5xrQETLR81AxgCQ6qNY3Qc0uZ55T5Yl1bjQfH45XowEIa0GGg/sJwEkj4HnzvnXbpYBKQb1u0SBQc1Q0fuYuGbQU3oRUycE1SkEBj03t/+d5ylmZtLay16yKqriKOf3pbwnFLwvS+8o4JyA1xYFjxhr6fmubUOQWqdtrKfiz1kGpL3HkTqHLPPGaYLGfjxqIeXuJmAUPOeFsV1bOiesypxmWQBl1Vtexz0/ZstYTRCdnhfsjBaBt4A0x0YC6gz+ap4HjtsKlmt17TkrCwv1XGdhoRq3+2eBXjXGco6ocxB1uT98uI6hkmVIuMtL53Ds+5wD2ELxgQFqvWxs+I7OQCfyDIZdj9xqxvZSy1cl4TmOPFtJZbK7nmQ6dl+bsfuKZm3DYTPiq8o3f/M3X0mSU7mIWN4eCoE7gnyxAJ28zgJQCpBqsEelDyFwqIAjr1GgkvQW6vVNgJDpkzaFAKKlWrHc1kobYgOhWj5rBqKMcWNbOhegBnetTmlIoEfy7u4uSB0So9yghzk9ngmYEwien59HmqbhRWMNCkpxoh7M1KG2q+UV1zZUL+c0TbG7uxu+kyRpBFxl8NGtra0QCHR3dzeAuiw7jSKaj+rcguhquFFqIfYn7l7QOrNu7BsEwQmis58Q2Na2YFBT9l22v7YJdcI6UJ/UtQLoGliX9VT6FdaHbc1+ZHc+8BmJGasst7oaKJ6u8jf/5t8EAPy9v/f3Rs5NQfRrK9Ox+0mKrsZ0kq2TbgXPzAKQtyuuSynL0QBYPA7U4DntbUUBuDxpBJwKC/miqBbpaX0xg3dubtbHdJuyFmjMin5QJo1LlnK5nwuU6h4pSmAlUQcgGgY87UvaKGZZ+nv29moPa66X1FNL14hcT6cY1HXV1YL+zjJsFUkAdLnGo2PSwYO1Q3y7XS2gigIo4cFooOnZRDCjKOCytEGvonYWXeemuV89k9JnqVNduLhY7/G3HaUsffsJv4lzrRHnN2kyKbuA6FQqpd/3wD1QW3G4+GTieV4veKsMtOrM3y7KrfR6tb2AGLiKYg5ZBqTlVk1xQ/f1oqiD0zLwaZbVGRI9YWZnzvhPu42yWpe32HFoRWHB87w2KLTbvpD33Qfce2+t1Pvvx5cB9AGsPPigX0jF9oEryGJF++V1CKADk8duG5fgYsL32S233NI4/rM/+7O4++67r7SIWFtbw5EjR0aOHzlyBGvc6hC5BwCOHj3aOH706FF88YtfDNekaYpD5HmQazTdf/SP/hFe8pKX4NChQ/j4xz+On/7pn8ZDDz2Ef/tv/+0V1ykm07H7yQvfTzYWg3M12Oocxj6zpK+gKA2LD9I4bNwWjMTM3KSpdnd7nJ8AsNuXqw6KlgB6XKJovpttUgTVeZ0O/zQI65jGz8zM6HzFYsyTqFx0WqU86YHWJTbnqgpGz2qrXi379vZkT2HnAEZBd255pHwAvMOCNpidW1ilxc7Jbx+cM4mWuRHQlQ3E/zs71ba5nVHFcnwmSKz5A6PBX9E0nlgbgaWKs1XWaW+W1VOH2VkTSJ6g99qan1ecP9/cNrew0JyPckKnwdi1/9OIbguoSmRhOdehEwngdba4WEehX1314Lsa5ceMyTSoXe8yHbuvzdh92TO3WMRXCsHSqTy1cqmAmwKUFMt1Hkub4DlFAT97TvMiAEkqDwWDY/mQ1kTLRTBdy3E1AEZb7xiNjFLkKFXJuD59pQFC7cfuGlDA1X7Ug1s9ofX3uLzUgMGPBvZkujSWEIBnXrxOQWb12FY9sl0JcBPkHg6HgV6FhhKlSbHgspZLAW4F8dVwoudUZ9boMgmMtVRIWg41ZOh/NdTE+u3F+gN/Px1B4oceemjk2MbGBl70ohdNQfRrKNOx+ypJxEtlIhBmrue6QRd5vJ0g6+5ufGFqk7UStq9P8EQb+W0Xe5cI6JWlzy+JVajKnz/n5/0pXZ/YLdfjRBfrXBtqOqScrwEQjLaHRQRMe+hhtsHEAtkV5Jh0NW0u4sOWdZNk448uJrVdbJ3KcqT+se7ZuCdWH+fqRuLNBPOzzC8wFxZGlL+73UxGixzDlHl+bq7Zlry/AWTZ8s3MNKOJaifQm3QlH1HGCFDmnK8b6xdTIhf6PL+4iHRjAxkAx3PU78TGNXKdA+mTxu6yvLwt7KzqI488gqWlQMQz1pPt7rvvxjve8Y6JaX7iE58AEF8T6bx4nMTm7Re7x17zEz/xE+H3i1/8Yhw6dAjf933fh5//+Z/H4cOHJ6Z1qTIdu6+uzM427YM81pCJL9LmO90evyhAFd7pl7FbIfaSj73rdDyOfSL2AVbTdiMdv2IUKaoezlfGDY8xscVmPtH7rGIv0jb6zbKzfpovh5XY/RMlNpe6lEpTyhKo6MLGph8b+3WstuXgu5QW+1hfqCQGBtssbXB1vSY2b5o4/9DGuNhkhccmGZ9jBdT0OL4rtx1Bd50/6IQ0VhbT5xIMbwggfTp2j8pTMXZf9qyNEV//n//n/8HNN9/8tPagvF4kBuYBo4Apj6k3rD2vHub6rcCf9W4mLzlF6WNsfjw2OzsbqFTU63x/fz8AqjzOcisASs9jps2yWM9dC74roKugZFmWgTJDgWhNk57Xeo96PfNaftNzmh7o5DmnZzM92WfM24ogsxoM5ubmGpQgWgcFbvUaC8Cqx78aIrgjgPzs9NpnmRk0FUDgAz9//jy2trZGvMupJwss85te4JYr3DkX6FwYBJVtkGVZY3dBmqZI07TRJ6hLctRb8FyNHayD9TxnfkqjY0FcNRaod7/2r5jhIWao0LayOyTUEGU9959uQPGzn/3skWPcFjYF0a+dTMfuK5Bxq2QFqWMTfnXZEeLuBEO02wm6Xe/pzJ21zIo0JYGLcrvpUOOcv4drgMBxnWUYlAn6PRbJezgFTzmWOc9rzhOWM8ZPyY96K2N0jVEUQNY95svB1VXlHl6WTQp1Xc91u5WnUiXkaAVqz+bFxXoNpLt2lVVEKVca1DA8qG3CugifZZ77tLvd2jmJt3JR6MHgxG8tVuF/ekZXN5aFT1fB+Dz3aavn9lLmy5pmDs4lnvOTF6+u1q7xWnmLDhQFDq34fI4e9ZfPzdXrwbBbQVfH49qa9VFecaBuRHH9H7hWcAgrCr8Tm7rTbhVTF6ltuLub55yrqYu0CdF2Na8LFUpv/Dyvt4Tr1nCNpNpu+8JVwEOnU+1WoDv86mr9YOW55zZfXW0i/C99aR3sttMBvvqrcds992AZAL7ru/zxmRlfIT7YuqBXI5N16WN7Xo5r2DWSSWP3lS7El5aWGgvxcfKWt7wFP/ADPzDxmtXVVXzmM5/BY489NnLuzJkzI95qFHKgrq2t4eabbw7HH3/88XBPt9vFYDDAuXPnGh5tjz/+eOAhj8nLXvYyAMDJkyevGog+HbsvXzyPcf2fwBeP8d2vOFy43iKFlXCDkO4o4iuC40/i/Pu84YU+QSyWaF8FjIniGOCThVcOrNi73Ay6gzIBzHtZX0/8Hgew6zVAc3yzZSagrulNst/ylc3Xt3OGBscWRn6P8wFwrqa1UwdsHZv4ip+fB7DndZqh+W5r9AsdxPQdTm9p25C2zHq9c75HVv2loR87x9TCW372mEJ1a57ZqjfMWiNqZTsqEM7qxjzQgdFnx7DGNBuEBnkO/M7VUcF5s+XP07prAZzzc1hea/mVaNC2dC6dTj3h4MSSYzXHdU5WVcY8ENcbfYuV6dh9bcbuywbRYxFfp/LUyziPZwXgKOoFTgBPAVvlK9d7FVQn8Mn7NMAnqTD03GAwAKkxnHNQbmpyShMws4A4Rek1SKuyKy9ISxWiwKvS0VigbX9/P5SP6TMvTZsAsBoaCMwq9YsGvCSVjXp2M10C6fTA1jYk9QgBZ6UuUYOEtrNS6mgw2Ul9g1zqzjksLS1hd3cXzjm0Wi1sbm4iTdNA6VKWZeBl39zcHAHpWd/FxcUAwlMX1AeDcGZZ1gCbLfc467e/7/nx9/b2sLOzAw06SsPH3t4etre3sbOzE7jVFdxn31RQnOmw7dRrneetJzvzVfoX/WY/syA625ztSuBedzSMW/TYPJ/OHkWf+9zn8PDDD2MwGGBrawvAFES/ljIdu69AuKKwC2qLJtuJtrrikmqiuufwYf+TQTD11hQ+aJereK7LsqakXlvzyRCwDFt+KwD93Dkfk1KLTa/foUtrLkxd7LGcRdFEu1k/cjmLEYBcnmXp1yc+TmmKTufWkcU0OcsDoMCF33oTuE+zLAQiZfnV03x2tr6VILpzlQ7KEuiXo21gF0MG0HTwbcDDXPSzybhADOu3rObFLUtgd9d7ER7tdIKFY6vwdDeMWUnpdIAWtoCsFdZx2k8STTjPPfd2WY4GxVKKleretLiA5TzD6moadngz7+1tf2lL25tieXAi4MsQSTMu61oTCyZNz+oq0CrOBitBmmWeLoV6L8sQuPTWTge33t7BAGmwP5A9xQI8vi0StLjQ5ZbvjY2mkrVQztWWhF7PHz98OFis0t7j9QPV63ld3357ncbqqj/mXJ3fa18LvPzlbHjgm74Jq1/6kr/u7/99n/apUz5NfYZioIq2q22L61RiY/eVLsQvVTqdDjrKcT9GXv7yl+P8+fP4+Mc/jq//+q8HAPy3//bfcP78+bEL5uc85znodrv40Ic+hK/92q8F4J0vPvKRj+Dnf/7nAQAvfelLMTs7iw996EP4/u//fgDAo48+ivvuuw/vfve7x5bnL/7iLwCgscB/sjIdu69AyjIAXeo5akFha9tqAOlmnFewl8NLANPk5ZXYd63NiNdhCPKix4KL0hAe3uMKQmpa9n3jHAbwHOHKU07hMiNSRQCjALmWK3Y9xdoGrTFAvdn1tTgROFepbiKvOxA3ChBAR78fWj4FkOa5NyZglA4Org04h0zw6kZavEnf1RZEn1T2mMGjQqmTLEPq6n46RAK4FMiFF56i4Pk4EF06OdMMWHQ/rtbY9DZWFQXRgVEjVHBo6Ms8k4pWXbFD6DX6rYW2mYtRHEBtQCcYr5XgWHvmTD0fYMHpULK6OjJPD3krf2EFvtvne+jS69Y7fTp2P7Vj92WD6JMivk7lqZNJngeWBoRe4gq0qlctUHvCWioO/iaYTPB7HFCvHswEnhkAVIFtBR75naZp4JYGEMB49RCPeQrHPHetJ7qV3d3dwK29s7MTvJspCqITFLbn+JtgMoFk8sET1KWRgQE+6VVt20l/M13r1a9tRY9xgt32furF/mZQzSRJgpGDXO285sKFCwE8p8e4NSDMzMwEKpY0TTE/Px/6CHWXpinIq64BOLW/EHC2fOf9fj8A6cybILoGQqUhgMYH9US3nvzaRwiCU6cxahft97HdDDyn/ZrPh3LXK+CuOxmsB7q2k6UZerrIX//1X+N7vud78Jd/+ZfR5/TpVt/rVaZj9xWIXTHqImWciw5/09tFvVLLEjfdlPqgS9UiL9V8KjflBGgEn9re9kBjntcMG+gXAeQrS++cqwBtlnnckTymKVeN6v4O1O7RCv4pJwfQWNjo+mFz0/OJA7WnPD/dLvms+02U1C4kK9Tae/C1QvrMcimvOL3b3liQumG9GLIraU1TQXTnQuAxLtYdagcpWR8FAIEqYDBTpRXXqtx0UytQ2nBtyLKzeC03ANZ7yLqtUZoTSzhKj2g9x+Cta2t+MTgzUxeiUvzRTgdDlzbozgP3ZSYZKlIk7mPDzpFGVkyn16vBcqB2KNOksgzA6fWag1z1T0WQD/Wmm4BOB2m7jVs7HQzzpdAFLbY8N8e6JGh1u83+qO1PXbGg9D5qt70SFhfreyy3+iteUXv+FwWwsoIvr3sDSbfbQoIhtk68BGUJLJVn/X3kZP3qr8aFl70aZQksnz7tz9GzXZEJLa8arrTPXocyaey+Ul7Vqy0veMEL8JrXvAY/9EM/hF/5lV8BAPzwD/8wXve61zUCk504cQLvete78D3f8z04cOAA3vrWt+Lnfu7n8NznPhfPfe5z8XM/93NotVp4wxveAAA4ePAgfvAHfxBvf/vbcfjwYSwvL+Mnf/In8aIXvQjf9m3fBsAHRrvnnnvwLd/yLTh48CA+8YlP4Cd+4ifw+te/HrfeeutVq+N07L4CMai4xZtrw66/Ls1zwABhBGsVnOXYEHaBaV6XIsbgZ/F2+785xDEo9ei8pBEkshgNnGqzJ3CvLBZqWBjrSW8Nl/J7xKM6IgGQ1nlTiTrWyLjCVsI2sdMvHcOdQ3PblzRimmXI8zQMfUmxBZQueGhzqGyMReKsAAAlWlWmFcie56NRVCdZFPS/NDiD3zZvTYAqbkqlQTH0RJIuEWjW9nqjKgWaAWPtUNVoe+bT6KDVd276YOiokfppgNhxHvR2J5w+CLaxzdwuzGvzHOh0GkaWUB+O+9pvq84y7Bzx+i39J8vEEDau3fh7OnZfsTwdxu7Lbv1YxFeVF7/4xZeb5FQuUcbRusREwTp6wypVSQy4IqBnPXMJGirfOa9VMF49bzXNGD0JvbYtWE2vYoKj1sN6XN0v5tHKsjGAJKlaFPhk3gp624CSWg/LFW89lq2ns4oNNFm/3Oq3lYLuzF+BaJ5T4JX6VG9qvSZJEszNzeHAgQOBWmVnZ6ehA4L0NAYohcnc3BwGg0HQU6y/WE99NYZQ37obggYX3eGg9aY+1Qtf+596mqvYXQ7qiR7rL7Z9CZgzXT4DlhNdPc1tXS/2rNo8n47yj/7RP8JznvMcfPjDH8Ztt92Gj3/843j44Yfxmte8ZuqJfg1lOnZfRTELYbtgD+d4rexrTsqBB84JglvPF64EyxIMuLm359doXPw0qEvkVsWotQhlCbgs9QsDW0aN5MXyjqsTRourgSVZ1XALF7IM8kmQk9wf/FQrRF3IhXUV0yhLbwig3sYZLWwiUhQ6FmdZvbWfO4KVBsWKevGprrnVvmWuYzFCE0XaqvHHoAFbpW/3LE/rwKCsjz63LIhz3usuy5BlrQYDzEUXS5USGKeL4Pn6et106u2nFKuUUEbewMrrRQTY1WrhXDCeaJUoGhNgmKVIclls2wYBRoFpeqdpgxCt1x0Y3W59vN1G76QWMcHamj914sQy0nbhr19dBVZXcfKkz3KZ+bPeEQAo2t620teRTBq7yxJILsP57qms4n/4D/8BP/7jP45Xv/rVAIDXv/71+Jf/8l82rnnggQdw/vz58P+nfuqnsL29jX/4D/8hzp07h7vuugt/9Ed/hEVSXQH4F//iX8A5h+///u/H9vY2vvVbvxXve9/7wtx1bm4Ov/Vbv4V3vOMd2NnZwbOf/Wz80A/9EH7qp37qqtZvOnY/CSlLRLnH9UXO/6ivUyBOh/nwaPflXRNLe9y5MWK9tDVvoBlLw2XN+tgYlCPVknRjxdKhuDG3sCi1rWMUSB9fx5G0bQFtoTSPCmDW7CeKHRc42BcF0twBSLwhpHIgKKu2J8hPg4Bz8OAqxhc7zyu6N6t4axHRG20ji+Ji+eg8K1bVSccizYSZmWYMEh4PY/mkCttEJx3XDMqyBtRj98UMyuOu1Xu4i7LdxoV+0mgGbyhKsMxI8ZH7e72mY3xZAmnUgBCZ31+nMh27r83Yfdkgeiziq1KFPJ3pCL7SMgkAHycxIBGowVoFcxWUjAHo9JRWr2nrVW3pZTRPWxf1lrec7NZjnvfEgk8qAEkgXKlaCMJaz2MFShUAtjqL6U2vt179+iwQ/KWnvnoyW+9+6sEC7OqZr8E5tf1inuiqfwX2WS4FlSnWQGAB4pje1co5CaS2OuLvGKWKlkM9/2kkmJ2dDUC9ph3ra5pvzKhhdwjYPqD3xTzdVS9aPzV+2D6l3093+fM//3P88R//MW666aagp5e//OUApnQu11KmY/dTILoQii0eKLHFqHrf2FWOLCZ4WZ57THB3twroKVnZXcb0qF5YqL2iA/WJzUcDSsbKoVKWcOLRrewfSsGaZUArGwI9A3Yr6alNvygqEHgMP2iWeVqaDM0V5SSk2Oic2SkozEts96d9wQagoyg2yx/EQQIYQSAmcyNlaCwsTV1cVv9NHUZ1tbdXWwT4LffOztYBaoMhYhJY4VwACvQwN1KQ1Yf11h3XHmQom2nxpCJAGxv+Q17+CH2JfSR0c0TtHRfpl5q30WWwbPA83ejVm83ox1aB5UoxqAH4zCt6IgvLOEBgHJp1ncmksft6WogvLy/jN37jNyZeE5v33X333bj77rvH3pNlGd773vfive99b/T8S17yEtxzzz2XXd7LlenY/SRk0jMWewePkeglMXQy8n7y43WEqqT0HOpq1LXBxJ1reowr2Gl53suyyeUdw7n5UQ5yvsPCHCEGnsYS02PjjBWoyztSf9FDI137OwIw69ASSyrlAF2WTcuvjsMlxr+jK49vBf6zLB2ZbjhXAe/FBOPouDrb8UrKZrH2i3Vjm+W46aj1Qs8yszsgZkC5VAA9Vi973yQA3abPtlMS+3F9BQCKIrTRSNKsjyq0utBV/Xbk0aWCYnW6xPfGV0qmY/e1GbsvewYXi/g6ladeLgVsUq9qy9tsvYqBGrgmoGsDYCqYq0A6A2kqZ7gVAoikaFEgUYOHMvCmgsIsy/7+Pubm5hrgL69VL2etP6lAlKqFosA2UHtrMw0LyKr3N3+Tj5vBL1V/1oDAQJjaNuQRJxWKgvgaaJXl5b3UhVKnaJljxgTlICd9DalRyNfOa9SDfG9vL3iZs63YJqRrYT3UU78sy8B3boO9xvqv0sXQQEK6GO564H8GRXXOgbQqqndNT8vMMmiMADVi2Hazbaj9imXVa6gjcsGrp7y2u5VnEpC+t7eHvAIsOp0OvvzlLwfOsacaRP/TP/1T/K//6/+KT33qU3j00Ufxn/7Tf8J3f/d3T7znIx/5CN72trfhs5/9LI4dO4af+qmfwpvf/ObLyvd6lOnYfQVSlkCa+gkzgTaLmsUWYTob5wJAOa+rBR63B9vFGrIMW4U/x52qKyv1IrvfB5a4uOj3kTqHbncpZM0sWqjoVCjqKauoe+2i3Sy7bq2trksyIMv89uJ2G3j+82uKD8+FWYGMJ3s17YrmpwtjdaGrgPFOZ7mhwkGZAlV+Xn2pXyCLh/oIiKt6ZzNlXj8bG6NAhd5OXnEeVyc2bXLGoUrd0P/JssCn6reIlyidz3OAFGm73XAo3yoStOiVpZ+iQNoehu35gHi5OVejBgqeE9kuy5B+WBz3+6Ok45PAaKmf1U3MC9051EYN52qXfsCXtdfz9CcPPODLUQV4V1SIVWdA1sXFGsBfyoV2ARgFRNjfgGbAN/aPzc36HCvR63kOc+6QUK7UCiyhihV3x+nTwIMP+jpU6ZH3H/eVdWQ2q0xVJEXrIUaQ60kmjd3X00L86S7TsfsKhFQNhqKlHmLTyw4O2DDojQHNB2WCsogNS4nPk+8seSAS53zcisxhKXcNL3jNu54jVPdVJ0j7pmNUDG+0AVFTV6XXL0bHoRharJlovatvBfZVGgC6Dq7j3nlmgIlRuBQRHQP+uB9DUs8hz7yk7I0yCnDtvbDL6tIKjOWOpdIbPFLnY7gwjTDnsXMRFatHA+LqNwPTalta7DempouJNlWDqsfSydn2GZeQnRCNq3MMiLeV0QlWYysj6vmNzBFHysZzpd9PkDqHFulmeF2v35znyvwwby+P0OwNygSOsYRic0yZQ5XlU0d5cqUyHbuvjVw2E/6zn/3siZ/LkT/90z/Fd33Xd+HYsWM4cOAAfvd3fzec293dxf/4P/6PeNGLXoSFhQUcO3YMf+fv/B18+ctfbqSxs7ODH/uxH0On08HCwgJe//rX4zRJOifIL/3SL+E5z3kOsizDS1/6UvzX//pfG+f39/dx991349ixY5ifn8erXvUqfPazn72s+l1NiQGR4+gfFFhUXm0Cp0VRYGtrC1tbW9je3g5BGweDQeAOB9AAzNM0RZZlaLVaaLVayPMceZ5jcXEReZ5jfn4eWZYFD2GClwwOST7r7e1t9Pt9bGxshM/m5mYAeJnn/Pw88jzH0tISDh06hHa7jaWlJSwsLDSAXPVIJlC8vb2N8+fPNz6bm5vY3t7GYDAI9SNozPqpd7gGhiQoXxQFNjc3sbGxgX6/H9IsiqIRuJT3MpDDhQsX8MQTT+Ds2bM4e/Yser0etra2At+3tpvqXL2vGcB0YWEBeZ6j3W6j3W5jcXERi4uLIWoy20eNHAzIubW1hX6/H8q8s7MTuM/V65tc9XNzc+G3/U8QW4O5ss5M0wbz1L7LshHEJ9hs05+bm0OWZaGvab3zPEeWZaGvE8RnXy6KYuTDvqiGERo3tH5qqNC+YPsO24vlZN9k+dl2amy43oDzd73rXfi6r/s6LC4u4siRI/ju7/5uPPDAA41rnsz78Pbbb8dnPvMZAJ7b893vfnewAI/bwTDpczmyubmJr/marxnZHjZOHnroIXznd34nvumbvgl/8Rd/gf/pf/qf8OM//uP4nd/5ncvK93qU6dh9FUQ9VhXIswtK/c8F1vo6Ai9EWWJQJlhfr6kaL/STMMHfKpKA65FtYnXVf5OnupH++jrS3uNYXQVu7Q6w3H8YrdN/Bdx/vwcLydesi3dF548fD0BwA9jjNllDh5GUA2QZsJQNcPTA41juP4zk3k8Dn/wkcM89/nPffTVQSWR/ZcV/ut0ahdYFUq+HtH8WrfICUgyQYBhiQFJ96+toLoSUmkNFgdR+P1RrZ6dO69FHaw5wZSPp9Tz1+NpanWevV6vPOWA520J66q+Afh8XsIQBUrSyYcUD3wsLPjb/wLXCGg7wYP6FflKXleWtCpKUgxr3ZlsAtRVFC3jmTCgc2yYtLjTbnkB6zHIgC0HqqdPxTXXiBHDHHcCLj2/hee3HcVv+OG5tX8CtnS3c2tnCsfZW01hCqh6W9bHHfDnuu8/3j/vv94qXe7YrDtd2G7j5Zt/Xb+tuYdldqJWvfDztNtBuY5gv1eC48qLaxgQwzJdwtmjhc/cn+HKx7DN51rN8xky/6uN57m0B1P9SPsQSLgAnTwKf/ay//vBhIMuw7C54rnQbOY/6GPdbn7FxQPtF5Cs5do/D3CZ9pnJlMh27L18GZeIB7bKJ1+mrdlAmI0CwFYv9BeC5OsCggluF/5w7hzCuM3Zxv+/f90UhAC7HPF64tubf1adPIzn9MNLe4/7TP4u0fxZJ72ydmAC7KH0A1dQNw2uFLFZ8j83N+VfjoUO1YTKMU71es8BaHp7XD/Mf83Bbw8QIgK7jXAwRtwp3Lly+sVGPp/qxRXziCV+NC0XqP2ULW2hhq0iC40IjD0ig9uqTFFt+55FODqinfh9JsYWkf6FZAFuwcfMS+210k5QDpG4YPq1s2JiOLeVDLOVDtNzAf3zt6k95YeQT+tH643X7sr21zflfP7ZuOu+KtZ+1cIwD4/Wj2ym1stVY3/jovFQdQfR5qp6lRl+2/a6qT5gzVfrW5M72ElwoUs+Zr4a5qtyjHPaXJtOx++khl2HHaopGfFV5/etff8lpEOD4u3/374btapStrS18+tOfxj/9p/8UX/M1X4Nz587hrW99K17/+tfjk5/8ZLjurW99Kz7wgQ/gN3/zN3H48GG8/e1vx+te9zp86lOfGvGspvzWb/0W3vrWt+KXfumX8I3f+I34lV/5Fbz2ta/F5z73uUAo/+53vxu/8Au/gPe973143vOeh3e+85349m//djzwwAMN3p1rIRY8skASwUBLNWGDHAI13YnSdBCA3t/fh3OuAS7GgHqlCKGHO72dlUrFcoKzDAo4DwYDzM/PB090eglnWRbA+AMHDoQgnQp+EvTWfAjGb29vNyhC5ubmgvc071NvaktlQ7EBKFlPfpRDXcFfoA5mSk98Baiz6sVPwFUpbKxYz/kYbYl6Y9P7XHcCKM85dUR+eAXybR5M1xotYkAzQXHVpe2/3AmhoLQC00mShN0J7I8HDhwIfYRGCt5HIw3LS2OR5SNXOh62g+7AsPQ6lm5GaXy0rOqRzjKoR7zurLDPzvUCpn/kIx/Bj/7oj+Lrvu7rUJYlfuZnfgavfvWr8bnPfQ4LCwsAntz78J/8k3+Czcob8J3vfCde97rX4Tu+4zue8noBwGtf+1q89rWvveTr//W//te49dZb8Z73vAeAD3zyyU9+Ev/b//a/jYxRN6pMx+7LEOvtElvkjbuHk3vew0l85dlSln6+T/xvbg5YuskDyhvnarrmpNhCyzl0u94bm/EQG65XVdoJFwanTjUBf11wEBCvPOGL0ntcLbezpkeuGgLs4sg5z0/d63lgkSTa/N7e9iv5uTmfRrfr88uWAg7qHHx5dUGjnNbtNpBlKIo0OAwHb6Fu1lzAWYDSLujAQHBpUJeCK3RYo5P3zk693mJVAF+d4Ci1tub13G6jVywhz4FlJwtMAGjXRSBPOYu6s+P/L+VGx9SFcygrbvShS5E46XdcuLOPkde++rgsrReUrDBdvC/BfY0geopBFYSzX4MtBLGttxhvVKMIO/naGvDQQxieOoXk8GGPzldeUUMkgb+da+ZWUQXwtIYp2cFRVMm32y0kdncIlb69HdqCxT950tft2OqKv5b6kYCubOMQh4C6PH3at3mWeetCltU6VguEKtLqKFKfcP4y3dmezmP3VEZlOnZfuuhQbYcx/nYOSDM39p1owSMbi0TT5Dt+c7OBxTbsZPPz/tqUN+puKpVJBnqg6a1bluEd4lw6wj6hrxoPFJejeWu0bGAU+I05CcTKMW5smYTMxRpK8lWQkixmLLIt6szM6C4zFaWcS91w9P2sZeG8QoFXnbxwngHU4LJmbNtOdUldxQB1LY/oJBDlFEZvMZRz3P+Y3rW+Ov+aVBcqkd+XIrGH0aZlf1cS6JCszuy8dFz9NV+gOUep2jjJ5F7XQlnWdH51MYX5oCrTlQLN07H76SGXDaLHIr4CTRDvUmUSwHHw4EF86EMfahx773vfi6//+q/Hww8/jFtvvRXnz5/Hr/3ar+Hf//t/HyKu/sZv/AZuueUWfPjDHx7bYX7hF34BP/iDP4i///f/PgDgPe95D/7zf/7P+OVf/mW8613vwv7+Pt7znvfgZ37mZ/C93/u9AIBf//Vfx9GjR/H+978fP/IjP3LJdbyaciXAm1JqaDoUpd2wfNEKQlraFALvGmyR9yhPOPNT4FC5whXAt/zbBJcBD+LSAGABTStKv0FR/mzLOT7JWKAfDZw6ztPacmcTVGZ6zGtS0FFbFstNHgtCqRzozCdW/ljZY+nY9tRvzd+WY5LnsILS9p5Ye2hfUiOD8tvH+Ov1nPZ/y10/rs6xgKDWuKKiZdSyM+1x910v8sEPfrDx/9/9u3+HI0eO4FOf+hS++Zu/+Um/D/U9fNttt+Fzn/scTp06hec85zlXTOdy4cKFxvG5uTnMzc1dcjrj5M///M9DgBPKd3zHd+DXfu3XsLu7OxLQ60aS6dj9FRq7dZYtQTxjC3p7m/5IM4fSjW7zbiwk7IeoMMFsuZmL0+1tv/AcIvFbzRuZT6gTvxWs5LeubCUt66DUYFDVxZwszKzqQnJ2QWXq19C7KNeuPZ1rOhFrQE4u3Jls4xER0IEGj0YGVZ7jFlhRFdtOAeF8jXWQ3d0anZd7A9ijAMBlinOog7iqFxqJ1id5WavOpX+WAFLbCUyeWQagV9Yghi7czT2WDzdcp3qpjjEIbMDVmVlkAe4yk5X2czEkAWjq+BIMFNHyXkH7AF/ZsVufi0uR6227+40k07H7ysbucdjslaQT0hjT6e1rmOMVv6NliAGhfB+MAydjoHX1m3E4YpdEPcJjH1aGMjs7WrZxxkEjF6XLseNARFFaJDM0No451wTQY0NMdLwYV65JBoFYHWKTucsdE3QeEwObJ+UZK9M461HsXnZWlZjCYvOQSXUcNwGyhqGI0YG7NnwWMj+NzVNj9bHljZVzTGfR53mcxKiLLlWmY/fTQy67BzDi62OPPYZWq4XPfvaz+NM//VPceeed+JM/+ZOnoIi1nD9/HgcOHEC7chv61Kc+hd3d3QbocezYMdx+++342Mc+Fk1jMBjgU5/61AhQ8upXvzrc89BDD2Ftba1xzdzcHF75yleOTRfwW9wuXLjQ+FxtuVxag3HXWS9b5c8mLQZBVgKDpKewVCNKqRL7qCeuBZ1tkEsFqcmZTq910oRonejpa8ujNCT0ELeAq4L36hVtDQnWmKDe5gBCWUkVQqqcra2tQCGi5ad3OOl1SKuidVVaGAWdFdxWLnVLH6IUIwQYqRfyndsApPrNtNUDXb3PVS+xNmda9HzXuto628Ci1jtcDSrab21fspQ0rDdpWizdkJaRz4D+Zl/UfqY0LvrbBjll2tqfWT/L5c5rr7Zn+sbGRuNdtEOT+kWEUbCXl5cBXPn7cJIw7ZjR5WIfALjllltw8ODB8HnXu951ReWwsra2hqNHjzaOHT16FGVZYn19/ark8ZWS6dj9JMbuiy0S9NueI8BGrgrngH5/hClFXx+zs6NBKzlhD86rukggIEi3t07He3/fcov/HDo06oluZAR4tdt3Yws15j8764H6+fk6cGS77ctBD98YKMDy6rcukIoieCcfOuSrdPgw6nLZuo+pGxdJzGZhATh40Ke7sFAHWJud9e0gjCGhneiFrs7Dmt/uLkbq0cqG6HbrtKK4iN3GLPXPc1/vpNiKB1Pd2an3rtut1wRismy08JE8Nf5mlo0BXShW7xO8yLSPhKPSr5JiK/R9dr+RBbUA8VhfR9o/iyW3haOHBn5LvZ4vijqyarfrqYq6XZw/j0Ab41wkD+bT7yPtPY4lXECn4/Uf2ok8CWXZpEIgZVGMz3UcgMBP5PyNMHZfDIsbh89N5fJlOnZf2dhtH2997EZeU2UZ/tuAnQ2xhr0xQu5xSb5+DvR9yQEm9omNDTEAWxJXWpfGeDUOsNcPL15c9O86vu8mjBtj3/lWLvYiiIG8Uh9ubNNpzuJiXG0ctxm/msVkdSa2a0wnti1i942rq51LxShflPolRpGiadq8bdntudj/2EPACZA6CvH/uPaNgdiXIxPKNJYmJTawWN1NAu3HpSH36VzwYl3bnp+O3c8suchbb1RiEV9f8YpX4F3vehd+/Md/HH/xF3/xVJQTRVHgH//jf4w3vOENWFpaAuABjzRNcSjMcr0cPXoUa2tr0XTW19ext7cXBUp4D79j13zxi18cW8Z3vetdeMc73nF5FbtEsd7Q47xu9fpxQQ01PQZB1Ov1PsvLbWkpCPbqfQQg6T2uwCRQA/cEPAleAgigKjDq/U4gUmk0Dhw40KBpYXpK88J7FMgHauoTpmONBlYImgJoBFfd2dkJlDMqBK7n5uYwPz8f7h0Oh9je3g4AK6lFFAhXkNt6NWswUguqa98gtcnMzEzjm+mq94oaM5SGRA0o5PtWEFl55ckPTkog1a8aBtjnmDbbz4LgSg2kbaJc9UpHw/alkYD6VGMJOfGVR5352DZX44W2iQZWnZ2dbewsmJ2dbdAVaWBX24bqGT9pZ8KVygtf+MLG/5/92Z/F3ROiWbMsb3vb2/CKV7wCt99+O4Arfx9eilypJ/ojjzwSxgEAV8ULnRLbhRA7fqPJdOy+grFb+TfGgW72WxeoFSgH5zyYl+eeEmJ9HUmeo9NZDkk5V9+f52nIaug83UpZOXcz4GOM+iSsInkRy1rxeOpCUCfGMzMYvxhxrsnbDLmW54k67+35a3d3gZtuqtFj8q0XTVzUZRUVR56PBuaq9LbcdmivtmqQv98H1tabIDGVpeWkfiS9BEC328LcXNPLSBcLmiTXt7qeDqwf/cyDtHkOrPv0tsoUWZ7WNDVra1hios6h1W6jKJJGvgOkSDudUdC4KJDibFPX6uHPY6R1YT8oS69vu/U8y/xxBW4rXnEmOzPjgYfZWVGKpRyYna31HAMPtHwKsrTbSHo9rygF/bMM8/OtQKHT7wNL7awGq7U/lKV/fvQZI2qiegJ8RY4fB9ptXOjchlP3+FMEUkaAIJa51/N5LCwgfcEL6uvYj/lsPfhgs+7s67H3A2US+OZcsKTdCGN3WQKXMyROF+JXLtOx+/LHbrVROeeNgjZgo3Oo6TFQGw7Vw5Rp+P5bBRusqCViQJ++FhnIk0JDZdZuea/a2E4Ym4gWIiZ2DuJcXXpNw46Hep4Brm2aWha9NgI2j/XKjaFwF0PmeK4aQ1qZD+SpQ4JeAtROCNR3JkMIrwlBqjVraUeXVWN3Na4MygSu3fI0OJx7qN60rM2O0twJaIWF1LHZGiTYUZWfR/uBdm5bjnE6jYHsqlDbz2yak8D0WB+1fdPmzd9Sb7aFTi95eU1pU9Ttobx7gJ9fzMzUHHwxg4EF25lO1Wn4rqCoQczurhhWOz/YXNOx+5kllw2ixyK+Pv/5z8ezn/3sEVL8qyW7u7v4gR/4AQyHQ/zSL/3SRa+fRL1AuRS6hsuhdACAn/7pn8bb3va28P/ChQu45ZZbLlreSxELmCvYaUWPW0DacqcPBgMkSdKgVyFvNEFJAsD0ZGY6yj/NNHhOgVT1+iWIqsEsnXMBgB4MBgFgtGXd398PACvbgiCsekwTwGdeCtJZYFepPDQfBXVZJ6AGaNWgwECVTJtANgNN8nlREH1zczN4qCuITr505mE9l1kmBbfVK539hGA8KSjYtsorTwspjSnq6c88FDi3dVdueV43NzcXyqE7GiwPvvKSs79o32H+CqKrYYTgtPZb6oP9lbsRWKeyLIPxgse0P4zbgcDyaBtpsFeC8Pv7+yiKIvQZBdLVAKTPBvPVa66WfO5zn8OzGDgNlwY0v+Utb8FnPvMZfPSjHx05d7nvw0uRKwXRGUj3aku32x1ZCD7++ONwzuHw4cNXPb9rKdOx+0mM3XaxQ4mB6HpPWQLnzgHz87jglnH6JPDC3PnAilmG5eN+QbpVJI1kUwyQZh5AV6rNLKsWgkXhqTZ4EADyPACixBlZnBMnbkXae7xRh5F1bMz7vCj8guSWW0a5QNXbGai/mSgDiDoXArxZ8RTsCZxrIe9Ui1USlgtfa+JcXS5d8FVc6w2yUy2jXlstnNKswNHFLLTR0KU4c6YJqnc6QMsNMEAaGEz29ir9ZwOv+wqUHiANyZN6/Kablr33+H33+aCfdJlbWcHMzJGGLs6dA2ZnE7Tby96goJ5pNhgo24OrzF4PeOihelHebtfnaVBhmzhXGzOq9AZI0e/5S3TtmWVoGlQ2Nuo+rZ55PMY87MKUrlwEofkOPXOm5krPMmTZsaBDABh2W7UulKe3KIDPf77m7t/bA77qq4AXvajZZ6o8B7e/BPfdB6zd76nMGaQ3y1AD8Nqn+PB8+MO+vDs7Xme33940CG1sAF/4Qn1PlgF33VXrV58DFQtGjEHfboSxe7oQv3YyHbsvf+ymB7OKD8BZ/bFgKt8BxsCMyCXOJSNpq/AccTwK42B4w2wKl6VIAw+YFwWjFfds8LHbd63+Hmeg07FQj1+sIvadZcBOACiL0WQb5YqVmedV7H959yfOIa0+DeSqbUDk8C4vgX6JNMvg8iWvP46nZmccp2mzs8By7sfHrSIJw97sbIosS9HqGFTeVph5kxwfiPOCWCtLltUxSxT9V93HZFLbqU6ijVMJjd2x/mSv1fIocB4D0DX/caJ9qjKUEN8mzSDnJI2i6Pxne9s/WATRgXo+xBt1/q4IPduRnhJSN+c81mWnOSF/OeBcbcSZjt3PLLlsEJ0RX2+77bYQ8TVNU/zqr/4qbrvttqtewN3dXXz/938/HnroIfzxH/9xAzjpdrsYDAY4d+5cwyr++OOP4xu+4Rui6XU6HczMzESBElp8ut0uAG8JurkKfmSvicnV4uUdJwqkW/oNftvgiMB4D0pNT4M9DodD0ItcwWRSgTBNAt28h8c0bT0PjAbqVM96AqIKnGsAT/J8a0BLAqcES2kEsCA/81FvZnK620CYlhPb0rmoN7YCpUVRBM90AscEnufn50PZAe/hQX5llps6J1irgLmlWVGvaNvu/E8Q+sCBA4E6he04GAwaerR9Sg0cDPJK73AF8Qkuqyc64AFk6p/BP1mGnZ2dACQrEK3tyTqrQcV6omuQ0b29PczNzWFmZibsACB9i1K28EMDhnrgs38oTQ31E6PLsbsGaLxRnkr9aLvYQKZPRbDRxcXFywKaf+zHfgy/93u/hz/90z/FyspKOH6l78NLkSsF0Z8qefnLX44PfOADjWN/9Ed/hDvvvPOG5kMHpmP3FY3dY0CuxrlJQDrgF1Ozs1hb8/jcC293NRVE5UWc5ZVu6BUXKGCWQ3K7u1X2CnBrubIsrCtsXNF2G7iV3r3VAhh2YqxA4saGX5j0en4P9U03xYE/5g80DQwVwP3YuZr1nGtFVRGrwbVNnqd+kcxyqPfcuXOeuoQLz4UFD9RXoO7Q1Xklth2YniK1VX2SPMf8/BK2t+uFUMsNPG1InqPdXmrcHvRfAfdaRK7F5ueBpTyrG4MAbLsNLBxpFGtzs1Ztnre8JxyVw0W/XeRqhl/6UpODZmWl3pmgbpdZhoFroSCA40bp69mMqRs2G2lnp9n31Ytby2MNF7onmjQBQLP/9/twedM2UBRAS8D+cIL1ZTBPAiIveEET7K8sASdPAp/8ZB2HlQC6c1WwVktFUJYe4P/Lv/Q8LjIODsrEA17tts+HZej3fRnooa86HwdiaJ6hY9VyI4zd04X4tZPp2H3lY7dzAkCbc+OPpeHecZhv7JXM4zHR5Glf9B6uycg1Nj3/qbzg+eK2hmJbmEtB+cd9j2be4KcuZcwbl3RUATHQP3adVe7FjI+aps0ny2oubTvhqI6XZW3gIChf9P0xJpVlANq+DVI3BmSm7EkEVPWQtvWxILrVjTVixIwgNk0LbuuxmOg4a9OLdf5YOrH0bTvYe02bEkCnAz91r7sPUifp0vt8Z2c0KP3enp8fWj3Gnhmgvrex+y1t3DauzvRM5/d07H5myWVzov+Tf/JPAsD5zne+E1/84hfxTd/0TfiDP/gD/OIv/uJVLRwH8gcffBAf/vCHRzwBX/rSl2J2drYRCOXRRx/FfffdN3YwT9MUL33pS0eCp3zoQx8K9zznOc9Bt9ttXDMYDPCRj3xkbLrXShTotAA6gAb4fLnpjgv4OO4/RcFU9YqOUZHo7xgntKW2sJ9JwSHHBcC01CeXUkc9fjHgzpZbgVOti36rwUKvi117MaBxUn31Y3nGJ7WVXm950CdZQe2ug0ttV9Wj9Qi/FNG2JRDP4wpax2hyrAEh1rf4fbF+bXWg3+PkUq97qmR/fx9vectb8B//43/EH//xH+M5z3lO4/xT+T6M9YWLfS5H+v0+7r33Xtx7770APM/cvffei4cffhiA92L6O3/n74Tr3/zmN+OLX/wi3va2t+Hzn/88/o//4//Ar/3ar+Enf/Inn1Q9rweZjt1P4dg9DkCn7O6OrhsvtpDE6NZRp4sIe8K5kfUB4yvWN1+B2B0yExba+n/o0nphimYQMBUta1lG0ucFXIRepDwNnU2a/ZuFFG1kDSqTsqy29koVY4v7cdlpcEtzwSUtTBqKMTJ2dYe4jsb0jxj+0tiar/koSeiYdh/5KKeqiRvCOo7tmpNA+ljBR5OeuKt+pH6A112M64fXsg5Ke2TTuVjZrvRZNPKVHLs1iOKlfKbBya5cpmP3UzB2XyEyNGmo56th3OtxUppMj2M2P5fwmptc0HEyaRw3H6WtGVf/idldTRTOvpfHFSxWwKvV5pPG3pjYl9+llsPmY8da/T3JIHIpZR1336Q8Lyf9qyWXk9e4Pm1lTHtEL79KfXk6dj895LJ7fizi69mzZ3Ho0KHL3mLQ7/dx8uTJ8J8Ax/LyMo4dO4bv+77vw6c//Wn8/u//Pvb29oIVe3l5GWma4uDBg/jBH/xBvP3tb8fhw4exvLyMn/zJn8SLXvSiEDUcAL71W78V3/M934O3vOUtAIC3ve1teOMb34g777wTL3/5y/Grv/qrePjhh/HmN78ZgAfB3vrWt+Lnfu7n8NznPhfPfe5z8XM/93NotVp4wxvecLkqu2oSA2vpsUsgUNtgHK2LgobqaUsqDfWEBgByjNOrnKCkglrKoW695enBSU9hXqc84Bow1ALhPEYvX3oMsyykbaHwWqXLUFqXcbQdFgDWdKlb0sRYMD+WpnK3WwoSAr1lWTYCfpIjXT3t2Y6qa3ppK3hsqWdiXuv02KZ3eKvVwt7eHpaWlrC7u4u5uTns7++HtmK5VE9sd+qXfOv7+/vYrqzu1LdylrPfWDoYpqnc4QBCQFJ6nGsfYX10l4KC/aoP/lbaGHKZ8xy95rWtYwYIll13RlgDiO7C0PbQfhLjQD9w4EDj/7WSH/3RH8X73/9+/N//9/+NxcXF8J49ePAg5ufnn9L34VPtif7JT34S3/It3xL+c9vvf//f//d43/veh0cffTQA6oCfuPzBH/wBfuInfgL/6l/9Kxw7dgy/+Iu/iL/5N//mZeV7Pcp07L6Cvmq9cSiTgDwF0kQCm4VztadwdS8vTdUrqALossx7xeV55SG81vPn1Ns4yxqUKYcPI3BMl2VzIWC5S8ME+aY2QkbttvfumZurPWwtF6rqwepszEJHwVt11qIj0Ows0Moii52y9AgFyzA3572a2T5FgcRJWyi4GSu3pouLr8sSDNFypq0rQwHQdGBqpMVAq/PzYav27Gyt87Js0qEmxVYcpLcocLsNPOtZNV2LcwgRTEmjE8jbETLYONNcQKnnF4tL2prldnuU977qu1tuqfJoR1V/77WFir8/da7mjyWHeKfTfF5IPRPG5KazWCh7ntfeg7u7dXq9Xu3FzfIpIa5zITxAUfi6aYzbsqyet06n4rVf92nmOXDiRK3LKoG0f9Yf+9qv9dsHKj53rK7WCbPwtv0myZMAIL6SY/flYglXE0d7psl07L7CsftSzkU6pn2MJ4mNM8lXkNpPY68DNS7rfyvRDZAsYAwIt79j14wQwyOA5SplieB1rsdixeG3c5Gg1ONujMmkOowD/jUv5Xe3OuKL3xCmZ1nLVNrTeWjyjY1Xdr4X0ymvsQFY9BrdVac7mTSQaTWucK5hVeoc4AzlSEP/Wi8Va4zQ37ZT6+RmHMhuRSd2drublqU6l+Q5sqzuf6oy7sIcZimSDM2xtii8jjWA59yc30nmXFOXsXmr1lfqEquWdWp5MjIdu58eclXMR4z4erkyCeC4++678Xu/93sAgDvuuKNx33/5L/8Fr3rVqwAA/+Jf/As45/D93//92N7exrd+67fife97XwBrAeALX/gC1tfXw/+//bf/Np544gn8s3/2z/Doo4/i9ttvxx/8wR/g2c9+drjmp37qp7C9vY1/+A//Ic6dO4e77roLf/RHf4RFbkf9ColSoCh4yHME4tTLlmAfgWcVGzCRwKYCnIPBINCVKC80vwkIE0glBYeC0BrUc25uLgCWPKac0kANgJI328kbjdfu7u4GqhLrYaz86AqiK1WINQAoYK6GCoqlVrGAul6nOmHaaugoigIHDhwI9Wu1Wmi1Wpibmwv6JxULjQcEuS2fuALKWh/1KKcuDxw4gIWFhcbEmxzz5Cvf398P6bMupKfRb+pJwWjqRw0Yqi9LAaPXq/55zAbp1DYjVcv+/n74P25HxP6+p47hNQqc07DBfqt9VtuRQWLVyESds38pdZEaUSh2x0es/1xr+eVf/mUACO9Uyr/7d/8Ob3rTmwA8de/DpxpEf9WrXjXxnve9730jx175ylfi05/+9GXlc6PKdOy+RLGrYA1MFFtQ6YKjAve63cpTzTnPMe5coAUJa4wsadKZ9PtoMWgiOcFPn/bXdrsYtpc9ENqrt8ACHtdj/MbtbeGArsqva0tm9eW1BFm2DNdeRtYlYL9WL0wFiGaw0xSDUeC6ukbXXbOzvnwKmvP89rY/TzUu5665qKFy5udrjksb2JK81pZDmxQnlraD56tt8TaG5cjikzw5ejzLwq56NhF3bjvnjRUJDRIMSJllYe2su4/zvNJlJI8GNzngldXt+kbe3QW+5mvqhfj8fE3nUi0ewzbpHnD+fJNyvd+vuUeLwiexuuqTKYoEWdZC1rkV2cqtNVV+HzjzUN0kWQYcPOhtBBsbHl9eWGjh6MqKr8/qas09rkaibje059xck32mLIFB1kLayeo+wE7T7fqCZpnv4DTwkGKHessytNueMp07vtkcoRguReGWUWbAcrsEHnnEX/Bt3+Yvvv32Op/Tp4E778RfnUrxvONrnov+llu8/m++uQ4yy2fV0t2wsSf9v0z5So7d04X4V1amY/dkISAcgK+LAOf2WdShh7eMgJcCGKf5aP52iqCgYGzDS6xIaj/1+SY1PQkvihnurOG4+lZje1kCKJvluphoTEzNBqjmDEBzDB6nBAWaNUH9P64u9jqma0FzmycB6azlKcMcQswV51JogPW83YrW01MDoc6LICz/K1Bv6727OxpUVOcz4hjBMm5sNB0OYsadUVsDOftTMQKk8XsyUzfVpdXjJAOHLRQnGBHAPNpWvR6SLAsGjUBfCF//em6VoqWB0+38yOqUIHo1b02KrbrdNFCsMcik2bBhVBoB0Kdj91QAHNj/SnEIPAPkwoULOHjw4FVNk6AmQey5uTnMz883gFX1IgdGKTEUZCXfNT8KQhL0tB7a5JtO0xStViuA7wAavOYEPglSEmCkx7EGmtzc3ERZliiKogF2Z1kWykiAmUDmwsJCoywEztXjmGAvy0RubgVkKSwXy0pvbeXp1iCrahggz7aCsAsLC5ibm0OWZWi1Wg3vZYLqbDPyaGVZhna73QCZ+cmyDHNzc0EXzjnMz883AGQrBKL39vawvb2NsixDUNN+v4+NjQ0URYHz58+Ha/f390N61N9gMMDGxgbKssTW1lZjlwN1r17WCpxbowwNCeRCZ/8iYB7bcbG5udnwSre0KtpvLTc6hXz1CnZrH93Z2QnGItaLeic3PIO+al20r29sbKDf7wf9ajBTlp187Nvb241rrNHmycojjzzS4Fi7noTvxte+9rWXxTW+u7uLP/zDP8T58+efksCiU5kKUPfP8w895PtZDHUGmosCoAb0uEjo94EHH/QLpzvu8IsknfT3+0Cng8f2j2Bvr57vp+tfrr1iec/6ur/+1Clflm/7Njy2vRQ8zil5DhzreHD7sY0WNjc9fruUDxvBwLiOsPzpXODTEVfXF4qX0xm+VV6oywcEAPcClrC+Xq9jGGuLalHVEVg+dAg4frzyyD59ugavCZDqwkgXMYoKE9nmovT227FV1IAG63joELx3MRe+zgdABYC0uFDrP89rbvOyDAvd4eptWFurdOAGjSCwxE+T+z/n9dLpBL1suSVsbHhq791d4LnP9aeS9ccRFEbFaIBRBWZXVjw4bXnP4YOFal1JG1oUnlZ+Z8fHtd3crEF0gszttnfCzjK/m2F+vk6n1/M2FW0zrvlXVjyQ/sQTCDo5frwKgnvypL/5vvtqA9DMjL9odRW4+WacXX0JwwOE00DtyJ8UWz4dXZjff79P72u+BviWb/HH2Aepl9VVnO0loVvQpqIqPn3an/uGE2d9QNFOJ3iXb2XLcA5IP/rHwKlTeOy/+3v4D/8BeNt3/7VX1Fd/NfArv9LgTg/9VbwIA7hPiS3AyxKnv/Ql3PLCF94QY/fXfd15OHfpY3BZXsAnPnFwOnZP5SkV9s8zZ85jeXlpvPfoOFSca0ck4X2ut+zu1sbD1A2b6CYvAprpVcZMXjYJGLXYZJ43gys6JzErJuRJANAWz/7X2yeBs7Zc6txbg8syQVAdx5Bfm/m4TMYYAwBEQU47x0kwDGDpMK/jm5QlsJwP/ADQ6eCx7SUfWBRnw+RmmLVG+fSpRC2LGnlVmVbJOo+UeUcweGetMOzrlEbnTrFuG1Of/q759+viqFr54bhrcf5Yc1nDC4PoatMl/Qv1PEYnjlp4Bb2rAXro0jCM2npynugcfCB6nSdRpyxABZxr0+Q5kJZbzX5qDS8yr+IOgKQcNJVn5PTp07jl2c+ejt3PMHlyppSpXHNRoJIetgoGE3xUoFxpUnivDcypILqlUrHBF0mjAgCtVqtBfwEgBLTU/JWyhV7Tg4F/KRFcJKBOr2Cl/yCgq970SqOhHr3qfU3veAZ+JMCr/ynWWEBwVb37Caza4KMxUZ0wH+ZJYwGpUBi4M0mSEPST5bQfAMHAobQyls5Hy0C9AwjBYTXYKOtLEN0GTqUu1QOd6avXeew871UvFe1nauhg+zM97X/az/X+cVz4tl2VjkfblDpV2hnNw9K5qHd7jMpFdxzYstj2uhKe76eTPNWe6FOZypMSIsex/7FFrF5H4YqEXsYExhk0EqMchSnQDIDFVRU/VR6bm6NOOHmOkPah7q0jxaH4Rad/1ynQynhNFovWqnPNMjMDtA5lozpyLni42fWJdRzicefqdWhqV290S9ItztoGXG2eO+dXm3LNoEwCaKG3zM9X+UghXOVhPyJl6dsPCEYSXYOhKJBk3turcb/Q7XCR6FB75lNdCYa1UnQhaK0XlDzHoH0E/T6wfqpe99lF8sxMM+4W2/j8+VpVas8piprdxLlmn1hfr0F0LsqpDto4NjZqNflummCp06k7kUbU4xZ250KVeUqNOkAVpFU7I5+jLKvRJeqb384B/T6W236buDITaT/s9Srs/Y4sPHPD1du8btd8Usf6fWB9HZub3haAN7VR7O4iKwpgZQXD7jEPGFij2qWIfcfcIHK59v4pr+pUrgcZIml6p8dAXBE7ho3IOPDUgL/0dtZ09fJJGDODLjfKESuUq3eJKWhOw7jFMW1ZOCapX4vYAcZmPeLBPA5IjolN7CKosAY4bd5WGw2aLF+Jv8O5UH/uvkIuN2BppA4BpNVxOTbX08+4OWFsjkSgtwL3+70aMKeBWx0PNOAmk4ypy7KT6NyA34zFqzRqto0VuAbirDT8v7c3GvIkBAePdTithF5XlkiAxrOit1TDelXeFHAp0rYbmTvRmFL0a+PX3l5lhMojc1bbRrEH/6IvgxtDpmP31ZMbvzc8gyUGxClArqJAngXJbZoxIdA6qQw2CKYF7y1XtwKYFgRVkDRWh1j9lV5EgVLqJcZfriC3lsGWM5an1dmVAHwK3Gs5xwXlpAFDeeGBGgC26VrubcuR7pxDWZYBIOe3AtO2XQiGWxoX7R8EkXmMRhSVmL6YhwW6Y21/KXKxPBRAV4MLyxzri9reMfD8YmWxlC7PZJmC6FO5rqUsgTRt/r/U+2LXxlYgFSDbOGVd1HSRxtUPJsznJ0z0YwsvcmHzf2wRresM/g5BOHnhGP1YDvSLrUNRGGBD3fBsYcZVsvrwdi6kSMOdZQD6gjQASHKH1E1IV4J8NorS56q95lFtADWNRXatu7B9flK/0nYXUJ7gyDj7DQFpDrsXW/vpQtp6GeoxvTYWJ3QEi7Llv1KxQMXcnP+MAZNioJhNQuOkqmiX1jo6V9lmytIvni5jF9VYuQEBdMAX+3KG4+lCfCrXrUx4OV4SZnYFhjCL39tx+ZLzjiQwaXi07zu9pjEmTRCbbsMwcSk3xI6PAzLNsSTUsYlzMH9SmYyMw2UZEK/w2pZ0g6d2Kee0gWL1GDf2jANbnwQIy9v0PapJcaxSj3N73v623umxa2PnLja1pdEHWaRjk4LlYhlV6Vxs3Gi0GQtinoOpNGU6dl89mXaxG1QUuFNPYQ12CDS9aRUI5W/ldtZApQpuW2BbOdh3dnZA714FUi2grh7RyudOKhJScPA+losUJloH9RQnV7j1uCefOMtpPenVY1/pRnhsZmYm0LvYoKzM14L0ts5sG9WP0tRoPZm20t1YuhLAg73keme6pPJRowT1oH2BgLRS0QA+yCapZYqiCICyGhP29/eR53nQNXXAsvEYPcnp0c560ONeOcZ1xwHzUe573k9vea2P7sLgf6bFsmkfUKGe6O1P+po0TcFArwCgVDT0zI95nbNPjAsWSh2R0kWpXewzpn1qKlOZynUksQVUjPfSet1wVWq9VOVapWbMMtQczEDtcXv8eO2dDgBZhrm5MZ5BnXYA57lgJBdqWGP0ekicQ6ezBMZXRJX1+npN5Z1lnq4EZYlh3gr3M84nev2mKzS/y3rBpd7Meim9gwnQtttA0jtb60oLpvQYsbaxi+9Kqcmpv8YSM5gXBGG9V7tWU/mscGw7uloC4Lcqd7tLnhJmfR0oCqTdbnOVyfJ2OrhQtpCVfit+nicN+u5Gf7DoClDThbTbfrtz50jwQFc1BYoBlrkogG4bqHjRuRlC7wvAMGqGFY2TSen1PO23xRZ4TVH4tmy3EfplWQLIq3a7+WZ/Qa/n28as4AlqW1UE/agHumbIgKVG33CusbV/fr6il1lbA5zDUp5j6aYM588ndXqMH+OGQJZgZUW2jGcZbu0O8G3flgKnT8N1u75disLTzdBCpM9ATCxy9jTxbpvKVK43CVQc1bsgwfDiYK88i+MeSx4fIkGiHNhMQy+MGPRM/OPG7RbsjDGaBNA6UsAEnrbNGgxjUxQei9FmWLXwHL+VszpqNLV6iADiY3/btCLWhUSvEUmdq3eYFWVjMEnzHC4XrvxePd62O9wRJuVlIA2l6LP5snza/hczqpgyJxjCuSS0NUHLLKsNG5q8nR7wW73LY8UcV4RIF23sNuM16ohgg+bq77p8CZyrYpuwk4/zpDDu8s75/NWwo7vJnKvG5qKst9JJO9DYsiRUfeE5i+VvJVRCnGjUmDIds6eCKYh+Q4oF0BX4VlBSvYoVDARGvcMJNNNbmNcpx7p66hJ4HwwGDYDUerwzDS27AqgEMlutVgCIFcQnr7WmyzIq2DwcDuGcCyCv9WJXOhDr3UywlED0YDAIlCq8d3d3twHqWiGQqqA120bzpp4I1CrdCcHVwWAQ2lTLyeNqdNjZ2Wnwp6vu1VBC0Ji87qSmybIsUMvQI53lVeodgsh7e3uYn58fAYz39/cDcM7fSsuiup6dnQU5xkljY6lSaFSgDre3t0d4yJm/0gupN716vrMM1AUNCWo8Yf8nzZAC9+wH/LA/qK5YXjW86HPD8+R21/KN2xnydJepJ/pUrmvZ2QFardGVqF2BKFLMCTaP8zknL6Ryo1TXkwJjdVX4wD//+RoQ7Hbx12stOLeElTuPhIXyoUN+UUEQnsU720+h1CS6WA4Lsoo/eqlTYqmdhfJ3bz+Gkyc9x/VyPvCJV+h30u0izXOkuUOeJ57CgjzeBJAr/leqpt/3uGVR1HaB1dU6GCXXqMvtirv05Cl/EVHhiiOT9XCu0pFdrFLXCnb3eghk29aV+tw5T+KtbXr8eG20sKtW7mUm78naGtJ2ValHH/VEnVzdKajbbuOxcykeeww4ehQ4Ot9H6hy6XW+Q8Ly60n8oNBrkeQha+eW1BOtrwPZDNWsN1bSEC8Bary4f+2Kng+6JFwZadx7e22vaPQ4eBG66CbjzTqCVCRBfpXfrSg7c3sagTEIWyltKznEF34sCGOQpXHsZySp8PU6e9AWZIHw0QsDV0veHQZnQXoHb7ryzRvWJuFdt9+V1z4PKWKtZVtVpfd3nDwRC95WV5/nyFkW946EokJal77h8brMM+OQn8fqXHQf+5CTwdV/nO3K/37ROqFXCLrYt4hC1FtwYUpZTb7apXL8Sw7iiHtP2wuqZTTBEliUjp0awNwueRyyMSkGi04NLKXsMk9Y0KRpsVPmbU8DvruJpMS4yzY0N/03qEC2rvsIskK7zCuckKLreoGLR/EnHxilmHBpsQW0tMI9nmdeTDlxVmZP1x5tp8r2f5zjbS5DnKdKyGMkrGFLG1cX+jvW3okDiXKCDq4Yg7O7G8XtbTQLesSHETl21OBrnNFY8mx6HQaanhhTbnKSPA4C5uQRAisXFZbjcGPrHWAR0SLR0NN5oXc+fG0F2Ypw0ziHNMqRZVu8+tBWzCrBjd+QhDO8TneffADIdu6+eTEH0G0wsbYsCegpy87flpCZ4az3NCfwpEGt5uWPe1zvVW1LpP9QjXgFj9f7mf6UGGQ6HmJubG6HUUBBSvdAtiE7ANUYBQ7DO8lyznsq9zt8EhQl4Wi90FQXRFXTlvTym6WvZFDQmWM7rLdDonAvg+WAwCJ7o1gudAG6WZY08aZhgUNqtrS3s7u42OOoJBjNfemoPh8PgRc8goNRNkiQBIGaQUF7D/sV8ycuuQWlpGCDNDAFt1sMGHaX3O9udulWqFPXC53n2SQL4GhRVdyqwr7MNi6IIPPIMPmqBeuXZt4YQti8/vDdGG/RMkSmIPpXrWmKgl65e7MRaJ/J29RPzRK/Qb/VER78CZr/wBY9qHj+OYdbyXMzweO3iYoLVVe8hnueMcVEXg/EVDx6sqUy46OHCJiwkWae1NWBjA8kLCnS7t3kc8PRajYJrfZ2rF6MSgHNQJoBUj4vBM2c8DzdB9JWV2qOo3QaWsoHPq9fzF83MBHLus/0U6+tNr+mlLLKqVyHCqxWmizRQWx7oGs90Zma8zsnjbVeG29u1Hgiwnj4NPPKIX2nQG6pKb9heRr8PPPaYvyzLgKMHfD9Y6mR1Wbnq1Eh2NLhkGc6WS1i738fSrByp1b7i142nT/v69HoeFdnZ8eVdXUXS7SLPl0M/0SpXzu1YWfFptdb+ulmOtbXaEJHnSPMcyxWon3WXQxcgn3qnU/O6At5W4Z3Ol+HaQKvT8/qagCKpqonOn+37wK0nT3LNnKDbvRXL2ZYH5dkHkeKRR3z+dODPMukTBPArd/tWp4OVlWXgVL+5gGZQ4J2d2vL0F38B3HOPL9yJE15hTJf9Qt1LLQqlRhI+HBow9gaS6UJ8KjeKEDSOPmLjAF8IGB2AvVFQHQHMrtY0WW3wZVyQcVnqVKJBO6IXliVQeg/rGB94PSURQG/SvKMau4PHtnNwh2qDu3Ju87YYiMv5hEqaGQXHxuYYSm/HV74s9H3JiK42fSAeOVOvoWWX71mO3Rz8yrIeWLvdOu9+H1hZCcN6agwkw2qHF/uFc+moh7zOUWKKFF0kWWX0yByyLIlezj4T4qioLntmfKluTq0DARC488dJyEMkdcI1Xtl+bawZcs6rcwdVsbnpf8/NJZid9Y4eGnNb8xt5NkJ/LpuBSjlW28zsQ2Y56oBRK0HMImDP2zFdK3+DyHTsvnpyY83aptIQSymhwS4VaBzHbx0T9aBVwMqC6DaAJL2BlY7DgoOW79rSj8RoZKz3MX9rWZl3jA9ePZTpUc0y2rwI2Ntr1Rhhda564zktp+XKtvQxsett4FStr+rc7hBQj3/WSeurQDI91+ldTkMHjSIWrFTDDHWtHt8ahJX3KxivoDz7EmmImJb1midIrtQyqifV77jjSjFkd0lQD7orQI0hTDNGtaLGHNW57QOar+072q+eiQA6MAXRp3KDCSfKsa3b+j92nJP+yPVckIRj6uZbeloWAuPO+YXu6qq/0eVpuFeDhwEeRKfQQZtpNCJKKiDe6yFbqbx96OHDSFy6FZcgIIMxhgVlc31BQJVV0rVNoMlmOfp9DwALBzoPl2UdfHIp5rSrC5nd3WbkSJ5nAoAvFD2ISZOzuend4y2KoN9cIVLJGxv+vo2NOp3qWl3fbWwQWBkDbti8WE7nQvDLtTWPldNBfWHBtCcjeyqIXtGnpO02gGSEU3VurjZmtNsA7u81QfQzZ7zHvnLuVIvJrLs88igw0Ci9GhU/LkvgVl01m2qrhHJWJ6lHssFwA0T7eMsDF1VmRb9uWgZJDelQRxoFjbqx7cBK8PmYmfGJfulLPlEmroiCKja22I6J9tvpQnwqU7kqMpG2Bbg0o5UFtDGKC497ZPWxtlk1vGoV+NYEYwB0JDCp/k9tlSxIzXTNJ80dgKQRQ2NSvXS+Eavf+IOmXJpRWTYjVypIquetxNywNZCFnuN7muOADl5KlafvbzSLYauh38BosPKRdhx33lyXVGkRoA/9uSiAEs2dazq/5DxH86BTB/N3zgP2UpaRnQ3aL6XDknqGxSW1i3azvb3RppLpTEhSQ5rQEMS8G8+v7cfqeMDvGM+6nYzy2A1otL6aMh27r548c3vR01jGAU0KLPIagncKCMfAdgskW7Hg9TiQ0/KGswwKaGteyretALzNRzm6Y2KBVuvVzjwsRYctnwXDVawHPMtOYFh1GtNlrF7jdK5l53UK6KpBwLaF5fC29bVlif235dR8SdlCwFzbjqC1AuPahtTpYDBoeG4rVY41omgZ1fhiA4LG2sG2l5bHPiM2TdZJ+7gC5PY7pkdrGHomyjO57lO5ASS2erIT9pgnSmwFrYszgtNFES5N3bAG7YhqdjoNJxsCnlkGoFdWi43mWMS1A52zYvhgi95Z6s2lnNCFWRXZxfgE8K8sm15qzMY6hNXBvOR+AujmXq1TIyO7QJ2drTk8QoQr1Nwetk2IdFsKF105q/GD5SPtS7tdg+9mYZa6IdrtBO12ncUIsMoGIjeLGmr4KWq9KdtMwzHPubreVp+VkcPiKEyjwXZDnVIXi4t1OnNzNQdPlo1cSnxC8xnZYl6ibvhKD7Zf9PuCg1TXzM3VOIfdRk6PSpQlnEtHaGXKEkj54NxySw2mMLKoLazu0CARK9Ak8FdF2vfAuHcBfz8NFvB7e5e3EB9eBNOcylSuulyiUWqIxO+smvRsliUS5wLfOJO3zqtPWiYh7hPyaRjhOX7p/9iNl/geMkUIrzx1AB8ZxycaA9zobyaohNv6XzOMpRU7Fys8f5t5RmMHkVYSirlG0jJCMHocZz2A0bnhOH3E0tV+asd6Ox7xmOVDkWsseD5RqrwSAfeV3/9iz4Dl9x8Xl3sSVZE1cESNRCp2Aml1FLv+BjJmX4lMx+6rJzf+TO4ZKtZ72QJRBMtjtCM2WKYFHunBbIHii4HfBMBt4E5bbuuZbT3StawUekwT8NZ0SH8S87CPcbUzX6Cm44hRrDCvmZmZQDNjdaUUHhYsTdMUaZoG+hJ6hcd0aoH1mMGD6WqeyjtOb3RyfmdZ1vC0ZqBNDfqpQS5tuygXvebJY2wP3kdamf39fRw8eLABgKt3P6ln1COd5WEQ0SRJQP5wUs3EAr1qnWk4oIc5j2ubsQ20X+guBKZHT3r13nfOYW5uLhgsdCcE60o6G/5WHnXte+MMKc80mXqiT+W6FusBo58oQij30ctZI0hygk7X4i99CXjBC9DvV0wjp055vopOB3jpS4FXvAJ/1T+G9VM1bvv853v67WT98YDMOtdqrCNIT57nCCC70nhsbAAtBiqltznBUqKY/Kj3uXp2Aw1wOSkHyDJPuUEWFZ4mkwrxx06nthEk/QtNGhx6Olfp57nfdjw3VwO+jfIoajsz48Fyoqi7u3V5b7qp6YlOz3q9hhE1WXcutnjd7GzgJ0e3W0dfPXRodKswfHu2ALzwxCoOH05w000ATkUWvYDnY19dbZwLW657dZa6K1np9cMfBu+i+3tVTsveQ0x5ZcVX4Vi34gzv971xh7ogtY20zdB5zvHeuk+v3W44doemnJmp2rgc4EKR+t36JUY46tO1hz0ZQrXloHvixWHnBa9ZXKw3ANAgwS6QChd9K3PodpMQE44O5GtFgoWFW3HoNbciLbeAe+8NYPoQCRKtK59djaRalsCznuX7F738gZqUXqmBYh9g9P1h+8ANJGUJRKbtY2W6EJ/KNZWiACraSAX9rkgEVAsgJmqKlYvZxcbhe0GsUVePuVEaF3tJ4JjW8VC/NW1rLDaFot2Zhy3wSSxbNovBOdKLlKOFNHUZUYwFhfVeS+cSA9Bj71Etgw6YfPdyKxfzcK6mcdFrqvJwWBi6JQC1V3hpHOWbr3Klxk3hsrSmBxrXkKbN4zaJKi2lOOEFMW9s1Y0cH5Sjz8NI/7TjleSXZhlSB7TaNa0NL9VdjyqWdccOfbH6evGc6oDfdZmSCk946xu755iAZqQdWcnWYyL3jYuhUD/3lQHuBhrDp2P31ZMbp9Wn0hD1xrXUK+rBDNRgtwLcBE4J6mqgRYLJ/LZe2CoKorM8SkmidBpKraJlI082wUwAI+WkVzKDhw6HwxC8kmBnzHtaec5ZB15LwFaDkWqwSS1zVr1smR5BUPJ/K5c2z6dpilarhSzLAi85gWnrGa4Avno1WwDdgugEaouiCLQss7OzIfgngfz9/f1GQFQNlLqzswP19gYwAjIrBznFUrgkSYK5ubmgI6VwYXmpA5aZ55iW9jMe29vbw87OTgO0p4FB24zgOA0W2qeVLkZ3ByiITp52pVohncz+/n44z76k9WMwWoL9ZVlCA7bSIKPBb1UuF0x+usgURJ/KdS3kuVYhkEw0mMd0FcXFrHP1NXp/WXpejpMngTvuQK9XUWmcPOnBvTvuAO64A39V3ob/9J/8gpV800f3vgzct1avMvIcyFuBwSTPq4CgRQH0/KrGtY8AaK6tN7MlZNkSjnWyGkQmGEkw1dK5nDsX92yrEk5zh93dJLBg8DYC5kx+ZaUC+Htna8AS8DqlBaBKd6ntA7yFhbouQDWIJjlTuVgiysr2I9hpV3BFUXO+U06d8jQmQNPVbn4+oM4Pr7ewfh/Q7d6KY3d2m3mxnU+e9OmcPo2j3S5wHnXelQxKvxhbW0tx5kwanP4VJNffyhzCNeDuLmp+7k6nSY/T7QZe+e3tGlcAPCa8ulr1l5Onar4U9oVOBxfcsqdaXwPW7/N5Lyw01bKyAqT9s9jKlnHyZB2odHGxMvYUBZZWVgAkwJ5revEXBfCXf+m9+c+cAfb2kHY6cO5YXcmyRKvcQisD3GqrYePp94ElevBXnXt1dalhWzl1yn9I7/+sZ7Xwt79pNRDVlyU8pQv7/tqaz3dlpQbIicoXhQ9M8IUv1OBLltU8M+yb/FZww9I5mb5wI8l0IT6V61oMgMzgjza4KAHq4I0euaYBJCoYm2VIsgzkI7cBO/V2CxZOBNQNUHdRXFq5oZWmDYhTyCm4XCWq5bG/Y+B5lsl43C+aadv6xL5tebSCsQrHxILo9l4F57U/kIqLFHadDgbtI36Ocfrhehyt3vet4nEfIPxMitlZoN1uBoolaKwsMlb81KTmzW/MZYxOCEprdWizpR3BG4VSuSuFy1rjQenI0KOiqmzw88cMwEDz2QLQCsC0AzKTYEzkIbCBd5k89TrapZKqLy7BZUDWlr4YiQHQqKAxSlmsHajeFZF0wnvBuUZZnUsnN/51JtOx++rJjTl7mwqAUQ5oPTZOCJQyiCQ9b8mRrR7I1mMaGPVwt17elrJFgyvyPvV2JsCZZVmDU51gKQNUKiUI8yiKIgDJMd5rgr/K5V1OGJRZPnqOE3BV4JzALIXgrnpUa6BM9UQn0AsglEP1Nc4TXeulIPre3h62trZQliU2Njaws7OD+fl5pGmKsiwD6EsPdH5ruygQb+lgFGRWyhcF+9ku/NBjf3Z2ttEPFESfmZlpAPekblHAXY0EavxRb3jl1lfjB4OG8pu/Y5Q0uhPCBsDVXQp7e3uh7ZReiAYU9lUC6Py2HOv6zKgxZQqiX/r1U5nKNRUFyDm57vVqMmldVOsim6Abr1EgjaTOp08DvV5N9UFg/VWvwuDEi/HJ3wb+5E880PlN31Q5T5086QMzLi6G8ri2TzoMbwT9qndW2ulgb69eOBB8zDLg2Cvypie4XkBPHwbn1O/tbb8yVI+uLMPeXhoA9J0dXwRipsQbW9mw1iOJ0vmxOu33PV1HEUEmqEsF4anzdqUUggndbiOYFm0D8+0KhGV5WO8vfanOa2HB04DMzQGdDs4WLZw8GZoP/ZUUnU6K5cwsNE+f9uhtr+eBWUYClYVZUemKmxBYrsVF3+557rFcdjcKbeIctrdK76Hm8spbrn/B59vtonfaV4kLUtoSDh2CD8y5VvXF7e2aSyXPMWwv4+S9PqApq0BV0IaU5/Ce3adOIbtjecRmgVPrAZRwrlW3U6CqKTwgzQyKAnjFK+AyD6IPysS3f+WavtQGlroZHj6d4Nw5f/lWmaKVuQAiJUWBlqsDu/Z6CO11zz0+Jujf/lvd0PfKEnBZy4NofDbbbaDbxQCpDyhnPR2/8AVfPtdC0QeWeNyAd2NBIk3zBgTSpwvxqVzXsrMTPNEtCjcCksvxEZlgNAbgvVWr51ep1cbhwfZRV2DOHrdZaxp8fTTAQ91ZxnFRedXUk1sTkUMxGjagHjPC7ja7Qy0mMeA8BqLHJHZ8HDAau8fyivF8WQJ5ji23hFZeBgP62pofY4+yPnmOC0WKJRRgZPPz59PGFAVoAr0xG4Itfv3KTwIneYMCBvE216kXmy4mLJdylceGF8t+M3KN7e/a1lafQDxIp03UHqvm1KRJ0my5mzGGi1OUkXBmJsH8fIosS6P1DUU1Q7DWnWmlDs06ykX6jtBTl0WL8xWW6dh99eTGm7lNZaxYb3QrsQCMCkwDo8FAFUgfx0HN3zZ/5Yq21DJ6rYKwNoikUnEoGG+NBuM835me0pDoby0jryUoqgA2fxOsZTpKA6Lltp7PMWqdSaL1o25jxgp64u/s7GB3d7dRB0szo/zv2ge0/WNgL3/rt5ZBy2f7gwYT5TUEpcmXbrnZWSf17te+a8tp28lS7mg/UGOQrWesjpoH6xHjW9ddBXaXgX0OxuXxTJQpiD6VG0p0MXEx4CsGlOn9XB3s7tYT+qIfwGhieU884ZlIAn0zA1nOzo73ftEFbqScxMkBASntwogfXVUzvbKMuwiVJcrSAxe6gKP9Ic/Jt1408wCaF1odxvTJY1YUjBcZurSBtxNn2NkB8hUBUFk/BQZUh1mGotcMdEmO+uW2uZ6BPRtcNKPCDQ/nzvnyEPDe2KiTIh23Yh9sBl3E8/pWBVKTesViCjMzVXF4klaPsgz9iv2E7ENnzvhLDx3y52inoDITDFEUSbOa1GVZwulxbUc1qFTlcXl9e+owAtgQkOfhIRIkpr8wCJrWY23Ne8k3+n3QXeqXwru7wO6u113fb10PhOz6LKPZRcc+c5OQlRtU9vYub3E9Hbqn8hWVSxmzJ92rv8ch5ACa3sFXJkrlEQNm7TA4Mmbr2G15NSaNnUYUkGV+jYCTsTFc054Enl9q5ipaZkX3eU7RZfUmjoC5RQG09H/fXOYctreBpdl6zJnU7ON+U2L0JpZiSI07mganYFrFWH52bqDltCqYmRk1mIyIbd/Yt06oVP8xwNwWpnGsGTRXA9zabMnswyw1q4htaCQdTSumH98Ok8XefyMF35yO3VdPpiD6DSoKcse8wfU3QUmgBg8vBo5aahELpivFi+WWtgChpQaxQJjyXCvPtAXtbf1skEeKBSotCBvjadeyqliDgv5n4E56KGswTXrVxwKQWoDcBhxVOhOtB8F6HtNdA6SLIZUJjQn09KZ3+OzsLMqybBgi6DVt+dFVj6TTUdCbOlEKIKXsUaBePcgJntPzW8Fy5XrXslu9qZGCuwOU7zxG9WL7uBootI/E+qi9z4Lk2ibqIX8xmXqiT0H0qVznMsntZ9xxC5wrqLu+Hrxq0e0Ci4tot4HDhwE8Vt2f5+j1/C0nTniP5JtuqpK46aZolo2Yh6VxrSlLZFkatsgCTUA2gIQsq3JDO+fdotV1SWlRjOR5Uy10Cp+bq24pyxosXV/3yDELH/Pc11UhV03KM686j/GSV9foAszi/x4fTT0vNttFPfkIgM/PB/oVZkda9AAoa3lIOk6+c9a9cs0nL6mqk/rK8zpb0uHompbFYz1s81CSYgvdbiuwktDLndcM28sefF5crIOHVnv2VY1zcx48564CpYVHWYaG73bjnmCe7icf9crPMu/eTgVWYLXG+HQu8X20UhB3FCi/atA5lSjebQsLNcvN8eN1bNG0ivjaCkqrGvWWW0If8ztEer7cx4/jApawxEixGxtoZR6ob6zEY8aei4FCN9hKvCyBy/EFmA7dU7mmQuR3BHH2EvMcHXlMLTKnx2JgIBAMcioxOm9KgzqjSkuNf42ko0UQTmYNeFyW8cCTfHnLWKmg/eys/7DMmnSCYXPgsSBrTC4FPNc20vRYRgXDrc5jgKwFcqmHat41zFrorQHLK3m4LxSzun5QJt77e75pMFVd5HkS7L+k0uPQ8MgjPjkOJbQRHz7s6dOGLsWZM17Hy23vWDBwLfT7SWgiThe0KrZqqvqYM/g4sUHnQ/uyopcisecidkyvjx2LCKGYWJMrpbnWeWQ+cJlFvxK5VFVdTzIdu6+eTEH0G1SsR6yC2gT4lLNZva8VlFXaDnu/Xq8gtP63Xr8Eei24yHutMD/LE22DVlrAUnXg5A1o8wSaHNc2b63D3NxcyJuixoGYF7LSnShtDNMjwGu9vpm3cnZbznhLA6KBSXkPuc/J7c68Z2ZmQPqWzc3N8J+AsqVq2dnZCfzosR0LCmCrpz6DbZKuRrnnVffWK5tUKEo1o+B5URRQXnG2hYLizHd+fh7OOczPzwdDgoLrpNRRbnztW/q8MB9bb2sUYH0Y+JRtqQYQltcag5TWyHqvP9NA4imIPpXrWrgQtwGvnBv1AteFoJ6vXL6Hq7d5wLp/r+eAnp8HXvYyYGUFx10V1+qLReA9OflRD/z9d/8dcPPNPqDo/DyAlTt8midPNugoSJfSyoZAHyML6jxPg+c1UAeD7PWAMm9hyfX9n9VVXHDLnuKEKzhyQ3OrOFHdXs9zZMhKZ7k9xHIbeOyM5zE/fBg4eqgKqIVq5XL6tHdrfuyxGqhnBRjgi4t1csrTNV8BACLLNADYIGLOYZi1GpeQr92urZ0Dut1lD6TffnsNpNNlv1ohKxVOp+Ox8VvbF5r9g3p/7nN9473qVfhvn0hw19cNgd/+baDTwVaRkI4VqfO874DP9sQJn0SD435tHWm3i7JMArc3r5mZqR2laf9Avwhe3csAljttFMeXsLFRx1gtCk/Vsrp6BK1urzZQVO2ZFFtg0NrFxfo+ggUvXN3yBXEucLKfOJE2QP6UoAa57++/H/jkJ4Gv/mrgzjt9JW65xSfIuVe7jXa7ZpfZ3QWO3uT7wdle0mhu5/x1ziGA4VvO13OxaoZDhzx4zu7Vbldt3j2C1snPeMTjlltC0NjBy74ZAJBiiLQsAm/PheMvwe//PvCG1x2v633qlDcOsM31XaBcvGrk0Q7J64vCd84bRK6nhfi5c+fw4z/+4/i93/s9AMDrX/96vPe970V7xLKl5dnHO97xDvzqr/4qzp07h7vuugv/6l/9K3z1V391uOZXf/VX8f73vx+f/vSnsbGxgXPnzo2keSV5T+UaCMeJ6kUxKOu4Gso5TfCQxlGg2i0FjCKVitgZEJpyMUyZyQKRGB/ynWQ+cCPBdDu0aF4tNSrzXSJ1b6SvhurqHstYR0ndsHpvA+hVCtMYJpruOCN2DFzV4xocUunysgzDfKky8iMMhgOkod7OeQpuoH6dLuWu+b7NMlzoJ8hyIM3WgH4fZ854+rR2O8Vyla+rqsc5xdqaD31xa7d2MGDxk2LL08zlOdLMYb30MUcOHwaWeg8jX7kVf/Infly+62sHwNoaTvdvxb33Aq94BYCTJ5GsruKBB1qYmwPueoGf25xbuA2nTvlpw3L5OFznSJgecQp25owfJrj7jTvq1LeAtn8LlKvaLeCeumE917FjlLXkjDNmWINH0xLepHCrCkFHAgtk05ijuyA0JjzQ7MZMI8Ug/LGGMmvnVhmxjUUsVokbfdZVVTeKTMfuK8/byhREvwHFckCPA9EJHNOjV4FugorWU5ogaYz33HoEqzczgVket8Dg/v4+lAdcQUQboBJogq/Kx62ApPUaVw9pBXMtN7fqaRzliqWhoa71Wzm41SNdQXQGTNU6qQ7ViGH1Ri9sXpumKfb29hre5lmWBU90pUEhME3dJkkSwHSCy2x76pi83pZOhf3BUtQcOOA54rMsawDY1hiibUC+cOccyrIMfSIWlHMwGGBra6thAGm1Wtjf30eWZQFAz/M8GBTUSMA6pmna8NQ/cOBAqOfOzk74zWdEQXRtKwW9td+y71rOdNLWWHoifdY0vWciQDwF0adyXYsuFnTWPTfnZ/h2AQzUi1dG4KoWEGtrfm34wl4P+P/+Pw+gv+pVQLeLE+0KO/7DXSDLcLZo4f77gbvuqhZhYaXUxmfub6Esl/GSlZWweuIaNOmdBfrGVama5aduAFdRmijYur5elasDn167jU/+CbC62sJt1UVn27eh3wduPe4X1WexjFMngePHl7BEBJp6On0aKAocXV0FkHoA/f7760CNRQE8+KBfxVoQ/fhxH1TVuRqw56KfyDE9mAmiU/9jFnu9XtMTkMkcPFg3FYtQlsDcXIrZ9m1wnduwlPkFcECFqx0CGxveuznLgNtWh8BH763Jy7Xv3H47kGX4rf9fgt/5HeCtb03wDQ8+CBRF0Pux7hBYX0eWHcHenk/iJccvAFmGvz5deXWfOhUMCCWWgu1Cqom9vbpdk3JQ07Tw4nYbJ171N9DrVTzo/T7+Gkfwl3/pL3vJiRUMM8/1XpbAC48PgF4PMzOtYMtYXa2r1+nAE4yfOuWRgePHgfV1JCdPIu12sTtzzHt7s5Cs8H33AR/9qAdJshaQtZAcP163deV6v5QPUZYJvvQlrsX9/PKJJ5rdApCdBVU/OnXKtxF3cFTYeGMR/sgjvklf/MgjwP/7/wIvfalfeJ94IT74+/76v/GKqtyPPAI89hhOrgC/+ZvAq161hGMPPVQHj6WhR3d0sA+w06mBQlfd/N/vA1tbuFHkelqIv+ENb8Dp06fxwQ9+EADwwz/8w3jjG9+ID3zgA2Pvefe7341f+IVfwPve9z4873nPwzvf+U58+7d/Ox544AEsLi4CALa2tvCa17wGr3nNa/DTP/3TVy3vqTz1MkAaXvAEzbOsooaCAdFKT0Om16h3dsqBQkF1GmnlOqYb8zzf3Y1gy4qOx+YSzoHhI12WhtfI6CskQZrnoSxpe9g0/qLOa5i1/HiHSj2Ff1cC/l2ZlIO6DOu92lrLsp47V0fR1Epy8NEKxoBW5eBgutXYOkCKFEW4hrFVjh7y1w/gwWq1EzBLeoMDCZbyLICdHP7yHLityvexx/yUpNsFltv+nVz50AXg/tEH/fRk6FIklaKZZ4idUpWzLI/h0Uf9cI//di+SLMPJk0fqsfvee7Hx7Ftxzz1+eoP77wc6Hdx7bwt5Dtx1s9fzE+3b8NnPensu1k4jyXP0en4XWQtbwHofs7NHgrpb5QVk7aWwWW4p90aZrYpSj/R5aiAa63HeL+o+o8YYtVarjNvloHMxutOLAWdQJt4oUpaeYq8X91NRe7MGs+U1zklf1b4kgH0TQk9HuqMO02psCMYtW+eiQCLAP9PY3Z2C6FcqN/rYPQXRbzBR7+dxPOL09LW8z+q1bTmjeb16Q0+iidH/9L4msGwpMhRIVQ5tLS89khVw1vJb4wDrQE9fLbcaBuglbD2dtY6kAFHvZNV1zPucYK3yoytvNuADizrnooCs3Q2gx1hWBZkJJHMXAMvAgKxpmgZPcnp4MyjnTuV6SEoTBtxkf1DdMshnURQNkNg5hzRNweChWv/Z2dngda9GA21Hpk/AmZ7zCkKrLgeDAXZ2drC9vR3qToMF24H0NGmaBjBf20mNHDQ8ZNUorMYl7QsK2FuAVw0xlnYGQKPfxWiNVKxh5ZnohT6VqVz3okC0Emqr2IUEP8YrjCwuLywKv7B62cuAEycwdClW2kDae9wvTivgd22tYm756Ed92lkGrK7i5Em/CH7JD7RDXmVZTfzpOa5e6ALSzcwsNxzSAIRFKToANjawVSQ4edLfdttqHkDJ9XVgbi7B0ZvaOH2fx0KdA16sdQZqAu08x2L7WE3fQf6PsvSr0y9+EcGyQH3pokuJvPm/8lDTRVrgEVUQQhZuisXPzNTezbpI0x3qWeZBhZ0dYGUlxcrKrd67aW3Ne+2tVzzquffOxtqaB1KPHq3B/Ur3Z4sW1k754LC/+7vAa14DfMNjjwHz86E6/DEz4xfH7TaAe+8FOh20uy/0yd237vM5fhzIlsK9dhEYaOBVB4yq2W4jOXECy+12Hey0ewSnTvlF6okTfos72/WFJzzgQZyENgLq6+BBAB/6vA+weeedONtLsExQGQCedax+NHgT4BGNv/xL4I47au/Byot92D2Gfr8CA/p9OLekWEXorwQz5uaafPBUBvH6m2/2h5byIZaysmGIuX/zCM6fB1782GO+0t0u8JznoN/3jvLdLvA3XlF1oMceA9bWsL7u2/KRR4BjTzzhE19b86touunrO4G7N7SABJJii/8baSV+ncjnP/95fPCDH8Q999yDu+66CwDwb/7Nv8HLX/5yPPDAA3j+858/cs/+/j7e85734Gd+5mfwvd/7vQCAX//1X8fRo0fx/ve/Hz/yIz8CAHjrW98KAPiTP/mTq5b3VK6NFEXFbexcYxhREH13dzRYs+JmfO+kWf1OZ5r8bwH0sqw9ZUmLQsw5KrEEIseT3EE5tJ2r03YOQOaB0o0NYH4+QV4FmKYRmUEXz50Bzp+vacK0vCMBQzmWaxRrotW660sVNo5TRFFKW3/hHE/5fsyy8O4f3pQiQRHiWgjuHuySLJY3btfe+9zAtr0N3HaTCzrh1AMVpYsa2be3vY6YV7q72/BED04NUl/qFKdOAceP4/TpI77N19eBBx/ETtdj50UBPwb2+zh58ogf7ytquyLzp8oSAajv91t1wXo9uG4NomOtj8Q5zM62vJqrscbly77fVvFnPBVatROjEENtA0SXgVbnDwqKa5vado05nJh7BqU3Zrk8RVLpU3nZbbdJXZPWKCm2KocQB5R1fUfm28aBBPBGqFj3s9VpzFmCojF2bGYA1MEgenoqE+TpMHbfOOFkp9IQBdMpMcAvRsmhaViJAYc27VhZbJli5bP5xP5PAhMvpQyTRGlKrPfvOP71i6U9rr6W7iWWhtWbFauTmI4U6FevdvX0150ACv7GeM71nHqiW/oTBZtjOogF9bT/xxkorA5i/XZcvWPlid0T49K3uo55oseeMTU4WT5+m75tW/v7mSbj3lOTPlOZyjUV674CjCc4vYiUJerVu3OB2zl1zWBd6mUWVnXV4jZgbTrz1wzGrRS0DLFbJK3gTFvlUa0hfUAiJFqceBnsfyZgM9VzsbJzhWXzqISed0MkY6+xSe7tjV+48fqdnSaGH+sDwTPKIiciTGNnxxv0iwKNNlbh1uUsq28M2Rn9qDqjza26pJuUNUhU520Ar6Lw3c0m7pwHrYmbzM5WN1cdNejUtrX2U+1ItuAVILW9XbWnOW/X9Pac5sV0Ggti6kC25o+crw408GwBBHi80dRj2r5R/5jEKnKDcaJf7gcALly40PjQyeNK5c///M9x8ODBsBAGgJe97GU4ePAgPvaxj0Xveeihh7C2toZXv/rV4djc3Bxe+cpXjr3nauU9lWsnYWyIyKQxwKZxta6LTSVGEpiQ0MXysElweFVDo/6+hCybAPqkl69aIOzcZNw7cEz5Jx2LvVMutY1iaYzLL3ZN+D8pczEIhB/VO84CtGGorNJrDJ1j9NxQZXVfULdcMzJ3iCnAVjqW79UQKXRjrEZ8PhZ7NqOOEprguAYVeSqqdiPKdOy+emP31BP9BpFLAajpJateywAagKEFHCl7ZvKuXrnqCWyBT3oj8zvmhayeyErJwnTVi5vUIRbUjoGX/K352Dw0HaarNDD0aNYAmc654K2twUEVmC7LcqROZRjAXKB3YTmV6ob58lpbHpZ7bm6u4cmvFDXMi1QtdleAepnvmhFJg3jSk393dzdK5xKjGlGQnmVVPvGYcUcBeuavHuPkOC/LEvPz81hYWAiBR1WHrVYrcJyTlsb2ZdtPbRkU8GZb2zQ0poD17lfdcCcD+eZ1VwZpfnidNVA8UylcVKZ0LlO5rsV63MT+8zdQg3Hqfb26CrTbyHqV924vbwQuBICtIvF8zqdOAWtrI8E5Q+BN5+pzdD12rp7IqQc6pSzDvTv9+tDIuinPgZtuarBqAACKArfc4nml222/hfbQobQOpkn6mLL0+Vak08PuMaydAlZWjiF9QVF7mrOc9ExnZqR7UU9+XuscQvRV4StMyoGnCykiC6gsw9ClDUCUjkmzsx4QznP/rfy4gD8WXXAVBVZW6sCf3hsMoY0bXngVmLu767ecP/e5s56yZ80r7vBhUX7VrjffXKmoSid0Eee8i53zwT4XF+tt7FRXpyMUJ+sCmM/ONvlm6XFWFCHuabtdp0P1DpEgyTJ0Os3gtkzWOdT0Ne22x3+dC3uvw5RSeeuLouaFabc9fz8AnFz3YEDnSG2fqvowt9lLs4burbiOZztawvYZ//htbtbB3Jbbrsmxn+f1c0QlzMwA6+tYygZot9M6YGqWebqassT2I37LfruNpuKUuNW+J7SRKA0lyjVj3VWvRxlif3+880nsegC45ZZbGkd/9md/FnffffcVl2JtbQ1HjhwZOX7kyBGskYoicg8AHD16tHH86NGj+OIXv/iU5j2VayN85Bik0z6Ck+zglqKF3uc8zmCeCtBr2mQ64THNi8cCpYY9Yce96j1BSg6+kgiIW9F8+TqWKUAw1MZs355qQ3bTlGUdyJz/uf2HYzaFru36/rPXWEVRydUxb5RG4z7n/LDRynMUa81kNClmMz/f9GDm692Pi32g3w+xvjudul5ZVnOtM72Fhep/FdU95MfBoypEVo2/WYYwgB4/Xr3Oq0G105Gxo7r/uc+VMX5uDocO+aExz2udcFxn4VrZEO12EryyURRY6uT1GAvvsd1SarGyrHdTxNohNlax72nnYZtOMgyPE1fv2vAO/J7KhY7j3KjGIhcFgCpOjD5zI3WYNN7KcWVZY5qERqL2EJ3TG9DeOU+Xo6pI0/FVv/5kOnZfrbF7CqLfAKIAdoyXGhjl/gbQAIA1IKMC6QpoEwhUsJ1AI8FmBTxJlUHAkGAu0yJYqPQkCoLxegWnWRbW29K+WFoX/U+Q0wLn6o2slDOW35w82+Qy5++YnhWIZr3If00aF+ra8nTHvKK13ix/mqYBBNc6EdhlfpbSh+2lxghtEwvelmWJzc3NRoBR1Z/2I+sxzvJRnwT1bbBX1Zvy9ZOnPEkSLCwsNAKtElBX3TCI6MLCQmgvNXDEjEXUw4EDnide68J+bD3vaVAoyxIbGxvY2dkZ6V80QlBPNAYxbzV2sD7KU6/t8UyVKYg+letaFBzjYgKoF1C6QFQ0b33d01qsrmKw+jycO+cXQgcPAjjf9sSYKyvVQjrBxgbQcs5zTD/4IDod49BLdLMCNbOsAt67XR8Ui9fp4g6oVw55joFroSjqdO2i5Ww/xfLqKoqUWV9xAAEAAElEQVSiBom5mjmWfxloOx+wFMDKyhGUZcXjfn9jZYSt9jFsbACnPgF86UveLtDt3oYMQLtXcZAePuz3nXMivLhYg+TUKcHXdhsD10Ja1TVIzLNaF+7VdnBSs7C+lTqwuOiDoPrs/YJ7e7t2riZOEDy8uGDt/xWWgBqo7nSqaGFoLrycC17ox48D3/d9/hv940Ce4+jiFm66qQX0fL/qZH6R3ekAOO0zTnpnfXpZ5q0Y1U8C8LSjzMz406kb1tzjCtSy03DPewWkL7sLuOOOpYD/53mdNjO7tT1Ep5N4TtaTp5HmOVZWjvnzd94J3H47Bt1bUZwG0M4Ckh88uVcrsHltzed74oT/Xl2tuVkefBDY20OyugrAc7CnWQYUFWWOiBqYtAusr4dd8o1vAGjfkSBZW/PGndXbSP1fKbHr61EUwOc/Dxw/jq/6qhdT3UC7jc8Uz8OpU56P/bu/u+r3d9xRWy3m5+t+J+BKKKhyRrC/Kv+sNRzdELJXfS7neuCRRx7B0tJSODpnrSSV3H333XjHO94xMcVPfOITAMbvqr3YDtWYI9Kl7GqdlMaVpjOVqysWU9NHEDCPmnNAWYPdFjfzQF8N6Plb4h7u+jjbcjT4qCcV1tW71MqK31qNwTHwT187zlV80QDyPA3nEgyxuDiegMBzrqdVMVK0ullzzsOLWE5jNOZLlcaFsgTKQsqk70Wlx6iOpRiEMd/HQfGnNzaAokgaQKjaG2ljXlioqMB6Pc8l7xxSAEvdSoGPPALs7OB5LxsASH2MjzWfSavtedQZyJrjw/Y2sLS6ii206mYKiLmXHH5sT8pBCIz+ildUzeocsLKC1VVP57a6inDNy15WJeMccOgQVlb8sLLcHob5z+oqjfVVxdfXfTDU9fUmVZjqVC0t2pF5LtZBFSBXg47OJ2nRiIHoSgXDfNQ7wdVOBbu7vk1p6GayvI3C0EPBkGL7os73NG/n+fNL6WJ8frTf6C48lQZlUwR9Z5yC1AHIHLIsuZHCmWA6dsfTuJJ0piD6DSIESa1nNEU9sZVHWwFcet1aHnT9aMBM3sfjmo4GatT0CBKyTBZEV7HeygAawLAen+R5rvkwGCfLoJ7yCpyTR5zXJIkP0kn+bHo6MxAlgd/d3d0AtBIU1QCg6klOzm4F1JneOJoP2+b7+/vBO5z84QrC0vOZ7apBQ+khrf1C60BdFkWBXq8HBvRk2WlYoF4sFQrbg+mqfulFrlz16rVPwPnAgQNI0zSA0WmaBv0PBgPkeR7aF0DQJw0dapRQj3W2Nz8E0QmQEzxnGmxHAKEP7+zsYHd3F5ubm9jc3AztzfT5XCRJ0jAOqEGD5R4MBtjc3Ax1URD9mQwMT0H0qVzXogtFXaly0m4n9Zypkye708H99/uFwp13VsGhOh3/p+IHL8sU588DRzsO/QcfxBqA4/2z2Nmp+cstiJ7n1Zql7YNXBSejGKhfgdvnzjSBZP1NENJ1j6C/htrLnBeSzHN1Feh00MoynDix5EFe6qRaRJ085YHz06cDjTiyzKf5spd58GHp5ps9uszFcrtdRzrl4oUL8nypCj61BNdZ8t7LJHLnItIGIXUOW4VfEJ8/X6+Ddnc92EynOQZNa1U6zm86Eppwe1uKQ0/3ft8DrZubNZLxXd+Fz5xsBc5wggWD0udP3PhrvkZAdAA4eRIJC5LnWM6HyG9PkBYXasSHHjFEuJ1DgiFuuinB4iK8LgiMn+rHF82KupMzn3o7fRovvv2EXJoEHvFw78mTaBHsrtDnpEKlHpu7FTsAilPV9dR/nqPo+SwePu35eZe78O123BsRsLBQA+sPPODvv/NOIGuFPk/wS/ur5bJnH+71fDfd2PAU5sRiytLrv/Xoo0Ceh8CpwWs/X/GJfPKTnhv9BS/A6uqLMT+PkMgv/6yPPfqmNwGve10VmPWlL63rrIt5oAk0WARPQXTryTlmUXp9ypUtxJeWlhoL8XHylre8BT/wAz8w8ZrV1VV85jOfwWOPPTZy7syZMyPeapRuBWKtra3hZunwjz/++Nh7xqVzuXlP5dpI6oYBsG4EIKyey5iDtGK8fIVehFGscb/9be8hsB3EIt+oAWi+opk/KcZieZFJha8hz23uK5G4sgrujKrerZC1BQ85PFCyLEGWLVcZVXnkR8ber57iQA1Y0sZIPvowX7AGR1aQVt3q/b65WaVfoCFa98XFSi8cdBX0Jyk6B4b77sPzVlaAtaKh1CTLUIXCDq/1nR3gQvsIeut1fS4UKbJ82RutAeQlx/Z+AMi/+RWVseS+DOh20ep9Gd/5mq4f86prvuFlFUXJKZ9hqziLl9zRDjFlUJZYdhd8W1JfDK6jLtujDVcrKGKg0f910NHUf0qEvuJcK7Q7YIwgtvHt3INlk/lyWXh98jI21f+fvb8PkiQrz0PxZ7JPZWXXZPfU9NTM1O72rhqY3R1ghRe0YpcPIWEBQnEx+rA+fLEl47CQHPwcCBQ2MpYUAoTBSA7FRlgSErZDyIEUVlxjruRrSwZFXJC5sEJIbIiVtCtGYsQ2bC/Tu1MzXdOdXZ1d8/vj5JP55Fsnq3uWWZieqTeio7qqMs/He07lOec5z3leFo1GP7N7VGB6VGxMxL6PC8g/dnEJfI8RIRvWi8h5nebD9Le2quClNV/leb2f8iatL/yGfyvfwsGx2dh9tcbuGYh+AGyafrRlaitYqmCevV/NSpQQmAXqTG6mo3InygQGKhDcssSVcWuZzPq//UzLqPXkZ1YqhHVgoFIGDFWwlRsFKuPCevFzraP1r7Levc5pVgNwuTundVaGNYFXW2ca/alBYAm4Mlgo39tAmgS/NT3ew3xUrmV3dxdZluHSpUvY2dkpA3lyE4GbDSqDYjc/CCCz7JadTV9YbWtlb5O5rZscOzs7pSQK21XbSDeEbH+y/VeZ8KrRTn+x72o5GXg0yzJsbW2VftPflUrpKOOdZWE99DelWvQKItvf841gMxB9Zte8ceFgAxZZxg4XYwTICoBwddUDe0kCYHW9ki0hwofYLyT6DgMA6wBODYfI86V6GQqQjos7JfmUshgW1C9ex4jKRbiVNuXr+fPVuqHdLvC8vLjg7FnUKOqDASIil7qBkKbl/gHXevx6eRm4807Pxl8kKNzrlX/j3gm/MNJVlat0qFnmXi/yTHBd4GhQrMIH/FoVTAC/2Ka2N9YFeHYOUZoiSTzjrLao0g2JL33JVwzVd8V+Sbn251Fysv57Pb/IjvNiE0UXvmzQ4RCxLjwVJdYNhjxHlOce+F8v+pk6KcQyW1iobzqQcj8Y+N2OAsyPnUO3W8kGxEni6/rww3U/FADwl77ksz92rGCMy++C2bBrLJ1KK5CB/XQ49B2P/iw6i68GA7SX7im7eLvtN0cUZFIGOq9dX5c2LPrqeuF2KgnBdf1Fn/mMr8xjj+H43cV9eY6xi/H//X/A5z//txgOvwF33134XY8222dCk4SB9iNluPH7AyXn8tQW4vu1Xq+HHjWLptiLXvQiXLhwAZ/+9Kfxwhe+EADwR3/0R7hw4QJe/OIXB+95xjOegX6/j49+9KN4/vOfD8ATHT7+8Y/jve99777L+FTyntnXyBRB0wGv+K0RYPdQe6RfTQDoqoip14SAdf2sxjoPlMEa5WL4Z/XMdcxWPJN7b86JdnRoQ9U5RPmolC7RR1DolhDp2D7KQn7T4ce5iuFfMnxtRryh2PBHkmCUV21iYzMDk3I81eaBmTBwjONEIM+r6J18ViuAj7pUB3FrBfAZpmZhwYO6sRsjzrNqdxaoAmw75ycGPCEG1K/ROWQRTLR8z8y18rpBYP1o53/c2DWMcJbL9rcm420x/WXHLy2L5q8d1bnyd6ThSUIbI9pntMjaXWyAXwBln9EpDk27hE1P5fvKodtu7OhnWgntuwfGZmP31Rq7Z4FFD4g16aADVwdYCoG5V3KvgmH6qkB3KP2QFrVNwzKYNW1rVm7EyraoH+3mgK2PlccJ1bfpL2SWgW7LqbI9+/kL+XOvMu3VzqHTAVaORZn4+l7baFreTT5pkh7SjQcF2Zt81bQBpPWyfcq2d0j2xvrItt00X17JdzeS7ee3tJ/f1sxm9nU3y/gpqa7eaoGR5NoSc8syRKiYDTXpyeIiGyRtz+Bokg+ztjidZeYADXqxTZnZDYX9mIKNArrWAoQWr9MWd8EySHr8iqo8T8WmHr9vqLf9uHxv0Y9p9QlZaKEaKk/TZo+9b6/Vc1NZGu4ZI5qumRpKcx/BNENVpdm+Gqp2nqMuFhy6gZ2k1arurV0vP5wmEChU4Gn5HWgbP4W/q2/Pfvaz8epXvxpveMMb8MADD+CBBx7AG97wBrzmNa/BnXfeWV53+vRpfPjDHwbg519vfvOb8e53vxsf/vCH8dBDD+H1r389Op0OXve615X3rK2t4cEHH8SZAhD73Oc+hwcffBBPPvnkFeU9s2vL9JkefL4b4zPGPtOvyEJjhbwPBUDV+Mv2kRJ63/jY2dcgOplGCGBtymefWVQWelAX/zcFg/2qbdo8pfiOAG5oDNeN9dq4Y8eCaTsP+p6fTQxWmLxu2til3+913R5GuZXQdK9sl6Y537Qy7MOmFdNKLdly7XcaM82lwbyfyvz2mrfZ2H21xu7rqVdcdxYCVvk5LcT2bgL3mrSXQ2CufmevZb6WlQugBFYVmNxvnQiQWbBcmeYKbmow1JAON6VCrK63ArHqF8rNbG9vl9IfFrDWMqi2N8uv9VDAz/o35HP7R9+Soc30NIinXqOSOeqzLMtKVrVKowAoweokSaDyPZRDAargpRsbG5ibm8OlS5dq5VStfEqzWF1yC8irX7Q9mHer1UKe54jjuFZ2e2pAdc9Z/jiOy/8tu5vtx2Ch9NNoNCp1z7MsA+VdeKKBddS60aax9O3mD/tq6ETIjWgzJvrMrmmz9KymmboCo4OBp7l+93cDd92FZK2Yf6+tVfomMjGPMcJzljPgwYfRB0AiTBlgam4OSFM8mXWQDcLMHZZrXOiZ1hg6SVJj/PBotVWOWFiopDOSpGAWX0K1IcCIZPqnAtVFfY4c8dVXTXfnPJm61LfuditmuwTkzPOC7STlzwd1llA5zBOE5xdkgVFOZK2qC+vHrMuj39zkEFCfzL5acFXmlaaeUq5ssG53wp8RxogdMD8flUTzWj5adjLkmr6jY/jesLvQ6/nPKOJqF+RkvTtXCcQraCz9cYyoxuByLsJir1dp19ORhb+7Xd/ORegSDIdeP3aULJbp0G0TzGtlefX7ZT/n8Xz+3Hj8m1VicVXPlF2UJH8W9/hxrxoDoNSxTRJf5ko5oOOhgZtuKgOeanvluW/ys2eXceRIUcc896cz2m3PSNf+QSq87Z9ab/7ArJbrgbKnl812Jfabv/mbeNOb3oRXvepVAIDXvva1+KVf+qXaNY888gguXLhQvn/rW9+Kra0tvPGNb8T58+dx77334iMf+QgWRIT/V3/1V2vari972csAAL/+67+O17/+9fvOe2ZfB7sC0IvBR4H6s4ZBOQ3GW0t+OqAc1YoRaQKBstopxtzc9GkHy1Y9r4WhqwU0eTIWS6AIE2nrK6/Tz6dhuDrMVGnG9QCRJmENBm7rPg309HMH1J+7vIjU5O1t/5kGhQZqcmkur6YFlomv8UecE2KEFjak220LvR/0VgdBFsY2BvNpkm9RvXAztwix0C1wHpIyim1Dc+6l5QnkPUaEVsv3VW0i3UvWfW7Om3SKoll4V3h18jwLF0HTZz9k0F/WL7RhwrSjcvISMPXpgQPZZ2P3fvPeyw5Sq99w1sSipoUYwgrqhhjLCrJbgNsC2xbkU7B4d3e3lKpQoJIgumqjq1yFTYt5WLCeYKdqkE/Tj6aMCrWurYa8rZetCwFo5jEajdBut0v5D4KmlObQ8qikB/2qvm1iLmv9NeApTQOgqi49QW3rC4LB9Bk1vLe2tmqSKJap3W63S+1xBs6kzwHUNNlDmwfz8/Ol7w8fPlyTyaH/WW8rXxJi32sfYADVzc3N2qaGgufqJ+q46yaAti3bb7uYTCmrnqA5pVuyLCt93W63y7Jr36E/qZUeOhmgGxcEz6mpfqPbDESf2TVtlgpmF0Zc1CjoORgA992HL3afV8oed7vwR3fPni11xblgjFa/CHzsY8CjjyJ65SuxVCyK7rmnCDK5sFBqq+e5xxuZfbnoGGY1INov3mNEBci9seHxU8CXpd2uWFWcd5aSHIV1knFVN6KTEoFy5DqIe2Z14xyOH6+TiwnaU8t9fh5Aq1c5Jk39go6bA2VgM18XgvFcz3jWvqy0+FocAc9zYONcpTTDgGOsb21BVrTDZlYwmYZVmSc0Mnnj3XfX+sQo8YE5eb1vj2Hhaw8ml0fNifbqApmLY/pWF6X8X69lfYvrx92liS5KfyUJEA0vVh8+8YRPo9eb2BQZIyoDoeZ5dap88dRKrX31td/3vqVU0Po6MHCLGA69jq1zXr5nYQGTx6JR+YnR08bdJWyvVovcra3qBDzdX8kXRZibq/LudoFbbvF9T+O+lW1YACdpVtWvOuXeQWdlBXjuc4Hl5fLecdJBNgTuvde7/Kab/D7YIjIv/9Lr+Q+Ldh0nnUrmSPRay4KwAtrW/O7AAeljXNni+umb7ywtLeGDH/zg1GtCp2Df/va34+1vf3vjPXt9v9+8Z3YNWeh35lwNSDdflX+102QFfGIDjtps6p9Hdrgsx7smEDAEZNt8NC8GQS03o0Oazs5NAOCh/PU1hM/yXgKVoVNB+gpIkFbH2BcybmV+vCfWHVK8sqYMZSDyEmQcAJ2TKOmob9qSAFBce3Ho23Ex8fr5adqZeHSXgU8Hw3qh1MfTQPQmwHUSwa2/Z31sY+s1mo4tuPyRaGE3KSgdZE03cnzV6nPLxo4pky1lihd75aVyj3UByQgKbof6J+eGQDVND/URm075OxazJx+qqVYElyyW5atJJYX8e2BsNnbvN++97CC1+g1nBAlD0hVW7iQE1CkoGZLZUMBSgVV9bZLDIAtdP+PnlrFtTQHQEMP+8uUq+CUZwgBq9dP7eS8ZzBrwVJnaasqUV8Ae8KDx3Nxc+Z4Ma5aB9eP/qv2t/raM62l/LHvIH8pMn5ubKwOZsuzapgqAKyisbUGmtjLZDx8+XPMFAWRqv49GoxLIZnr0f5qm6HQ66HQ6ZZBN6snT96oBbzd6NBCqSrjopgCZ6aG+ZAPhKhv+0KFD5SYAgBqYrlI0GuyTzH2+MpCp9nU9DaF9gP2Sn2udrW68lZu5EQHiGYg+s2veLF0ntDjigm1nxwNop07hV9/lAcRXvtLjd/jsox5EP3asBG/zHIjX14Hf/32f7rd+q6fPArjrLvggkwUCfeb3fVZcE3L41Yl9EUKsLG6nWKVcWvWgJvE7BZO5CD56tFgkMoFBVtWT+u0FWD1OOjh/rmBad5dq4ALT5yKt3fYgKsF75wCkvhIjxMiGk+5mtnlegaSHD/vsywWQgJJPDmMM1+ukLW4akHV+5EjFmKZt5j5/yo4eO+YXXWmKMmhYmVfhsE23WFsADtYNa50FANBuL2JhwSh3WPY8aXcEVtUBGjyM6apmepqWcq+8hAxwkvx7vUXEZEhvbHgxcTqT9ZLTCsxyY8Onc+RIhJMrK+VCOHbjEtnuYBOdow5PDr3G7mBQl3DlpknHjSbBHNYnSUqAmzFSqVG6ve3T1JMBncTr3i6mCZyLauw14tnPepbPV/XR0e9jnC6WLh5Kv0sSoLO8DDz72UCvV7smz4HnP98Tzns9L+GO+cwHIV1eBr7t2zxQkHQwGABLQF3E1+jQlhspNtjogbNrh802s5lZK4GxJnQamACWCaTrHibAwKQIAmiRq8uP2A1NayFM1d7XZCEwUT/jKR4AcElcbdxay/MSvG8yy0pWMJ/vyeqd2LAMmAX6mUeT5ru+NmGU9rM8L+J4AECSYDOLAAe4/mLt+sHAB0FN0xhJUs0BkgRYzP3uatxPkLuo2gBngFK7ma0b4nyua2WMc8Yubtxwcc63W20The0Y6lBNnSUAprOPqq9DQLRNZnfX/3EOU1VnyomCsjKu3JzXr4DqhNh+QG5/b1ROITjHsZr+ob2DSs+devnSfsUNkWHMs4l1Y8E3dYRO4sJte6BA9NnYfbXsILX6DWkhAJ3WpBccYqKr7YcBG7o3xBTWslht6VCaNh191XsIUKo8DNm+KoWhviHzmaCnlcxQHzE9ZRQrwEumPQFrBYRDetkETm27NPlA36vMTMjPBLrVv1bGhfkpIKwguJZXA5ZaVr4GTmV9dJMhz3NcunQJKuWj7Gq2EVnjGmhWN0ksG183ErhpwVMABNC5qaH+Zb6HDnnJFdZP+wnLwHZXwNyC6CodQ8CdzHq2s5UaampX5jeNfX+j2wxEn9k1bXZlN23RwhVHlmHkOvjMZzzB9u/9vQIvGwz8H+U0iiTjLPMs9bk54DWv8doRzqHfA7Dmkb5RHpWLvGAR5EMt5rhYgBEcteTXiUXGMJusJy/iKqUA/3d3q8CRurjguvLw4TqAXrLQwQBQPqAqF3FBHXZTnzoTEGXhub5VQGJ7uwLtVT1DF5D0y/nz/r40FXa/BpIVP6yv1dVX6JbaWrnIYL7r35d1M2nVQPI8DwbLqjnCROMaIyoZ1cRtrdxPkgBLTIs7Etq2ARBINy8uXPCbJVxwz89HWCTAXyDRSXoCQIUzMN/y1Ub1Ynl2dqqdnW63vEylWrS4c3PyoXNIkriWDPve8eNAlG3CdTvlveN0sXY8n/Up3bzcrY5LoH6NEhcvXQLQyoFz52pyQFx01wpNP4WAdHX2gbTZQnxmB9wUeTNAOq025oR+r/Kctl9Ni1liAfGQUf4iVGxNI/S6l9kNgyZTADVUPn2cceM5xOzV/xU8t0CovZ711FdeE8JwOYaO8qh6Jhu7dKmex9aWSLfIBME5AbB5ytBupFiGOB1ikWMD0Ib8Y4eGqj2jusxdyLEhhwE18JyvFkC3Zqd/gG+vVst+V0ie2MbghoEw0C3GrvUt55/A5GY7gW7nQAkiu/HSBKTXiqMMgcAcyN7EPspL5+b8/LU2R9P5zIGKcTIbu6+WzUD0a9j2C7JdDWDJSmQ05aNAK0HS0DWWHb1X2e31TUC1BZ1D0h668cD7tAwhhriV4lDfK4BPpn0Ty17TDMm3hORImtj+vJe+1jxDmwhWYkT9QB+oj8nsVka1nmoItZ1lj9u62oCdzIcbBE0bPras9hQG29b2F5u/3TSxJzCsf0N6+zT1sUrtqJ9teqFNFnttCEi/kcHhG7nuMzugFgLEgBKldq5iAgMFWE7Rca6MsgydbrFAs/TwhiztV+V7+VKvIaNHVDvKS3m4ppFEY1dSDRfa9VPsxnBphKNHPQCredukeXRb7+eUgmsSLpJ2dwN6rwIA23UQXU0Gc5J4RmHsXAkesByUseG1nnmY11eyRZs5F9f8KJhuxVorEuZnSYLJFZ9+WRSUR92dQ6XHacvABpX2TpIKEOaalv2v2wVwNguvYgsjoEJ/kQ3O90qu6yRjv7kj6TFfZeTXurLuMtC4syENlA8nNzj0vXPACDHibre2QOfmTK/nyx0NLwLDITr9BHnq+wfT46bD+rp/5QmNfj9Gp6gsWfjqsjRFyZRHr+dZ69RWKnxQmi6qA+BCzQ4skH6lAcdm8nUz+zpb02/RgI5BIHofv1MFxpsupQ7zlVgTKG6r8FQCaDc9qgiwqoa0NY1f4RwmNmOthYBbi0eGvtPxVo2KZDr2R7k/9RSnDkkSTaSf59UYqepptfGKIHoST47ZWjg7EUgSL9GH8SQDfYoGvZ1OWjC4xkTXCjWZlDcqXuOifXQqof01ZNbftu18lSPYUw32N2A3DZhWY1+1kzlXMdoZz4RzAhI5dN5IsJ9925ezg7ibTArdM58pP5wr/U1d+zYbu6+WXXdd43qxEGs7ZJZBbcFHBekIFjrnyustiDtNXkI1pWlNgPteGubKnOb1lHGhjEdTQEbKnthgj61Wq/yM12jZLUuewHKr1aoBx/QD5WlUH9yCr+ozC9xrG5AhT5a01T8niG/LrKaa7WxDsq8tW5w+UXkdZVjr5gf9re3CvGy9AZT+IkO73W5Dtc+pZc6ysG3IGLcgOSVc2H5kpOuGQZIktfaZJhNkgWyWg3WykjfqFwW86dt2u13+T1/Mzc3VTkiwTGTM6yvzZV9hnflbnLYhM7OZzezrbCFajoLKOsPu9YDTpxFhjFe8ogoqORwCS6dPV4gkkTyicvfd59E/ijk7V5Mtid0Y3W5Uy25+3ic1RoSoABU9V8cHtVTrdkvZ6ZqKByALHEvtUcaOkZ6I3RhpWj/2miSRX7CtrSHKMtyxsox+Py4Xzspao0sp18G1KNPTtSLjgfG6JIm8TI2rtMx5PRfFesy8g01/AYFf54/gx84hThJ0Uofu6SIg6+BJYCgIrvaBYpHcP7VYat3HbozNLMLGhseD43yzYvPDA87dbuTLsD6og+C9nm+7fh8A8Pi5CBcu+Hr4o84RWq0TcAmQ9gtwYDDwfadoxAhj9HoRdna8FA1Q+XkxGXmk+OGBF/KmLgo7jy7G8xxxniN2DulyB3nuu+LODnDy6AhYXUMMIGYDra1V/SJJECcJbu53MTdXnw+WJLWk4zc/9Lckuu6j7olSemVry19GaZj19arYScITB1FJGk8SLxeziAy4sOZliNbXfULPeAYW+32M0iWcPetPHJw96zd3zpypn87Ic+BlL13B4+ci/Pmf10lmDPK7vg6srgJ/sXIbnvOud02gL/PzqHaoGAzA7iKpH4TNDyBMO53ZzGZ2xVY+apqQWQE39bGk/5fs2BCALkhhJBuzNg1gOpvbFs1ipPq4UOkNNdUkn4oHmoJxQ9lUpxGr1c+IRbJuKqvVZNYvFiu13+k4znpNnAywVHb+DYd+UzTgkHHXz0tieMB9KU2QJH5zHGeH5XM5Auo7uToPcq4WFB3wG7znzwFAhPn5OrCsdWV9olzk8wAvNZIXony2U9qGsN/vY6eFBIQYheyNA5D4zxhPRrMKSb1MG6JC/X/a9DlYbNMpRnmErJgXXLjg76GqDucLykznrUqi4GuSREiSDg4f7kzIyPjCVsXgkp/Ny/cTpyFtJWd2Q9kMRL8GzYKyISDdMrcVRFc2tmpR6700e52aBcEpr6LAIY1MY5Y5BAxanXV+rxrVBDRV61vTJSBL3XMFpxWkpmQJ66AAKYFhlf1QtrcawWXWu0nHneVSbW4F/RUcPnToEOI4nmA0hzYttOwEfrmBQHBeNbi3t7exvb2NOI5LGZRDhw7V2o1a6QR6CXor85w+tkbNcQBIkgRzc3MliM6TCbqpw82CJEkmfEBfUcOcYDXbkf4OscTpK8qw6Ge8TkFsrZ/+bra3t7G5uVk7XcGyJUlSbhKoXr1uVrAvUT99Z2cH29vbE37W34sC53Ecl9/fiIzsmZzLzA6E6XinKzpLkVpeLoNwft/3dbCz45muwyGwdM89Xqrl7Fm/ChgOPVKYpl7GpZrpT+afZej3vTQFs0tTz7gdJYs4fz7CwkKhPc3VBVAy3Je6Yyx1IRTf3IPFAJLeCV89u1BTEF0jNRblSdNOqVCTJIWmep77+q2tAWfPYpFSHcvLnk2UdGr4IYFSYoxkCE+zNAV6vRjIq9PVbJbDh0XbfX29AlTtCkvbDkBkZFWCPigyidIUi2kKrA38aYJeD+7okgfQ19bqCMP6enHtWlWxYvH9+OUTRd+IsLVV9RNiyzs7ftFI96dpjF7vBLorJ6oNljzHUpIDCSo9lwvDSldlddVfx5UmI6aSZq6bJYXOuRfaAZYIGDy0VvVX1Y5xroosmudAt4uT3S6O3rVUti9f/f9x8edv3drpYBtLyIfAcK3aLNHF8aVLXjWl1aoClbKad9/tf05pCmDV9zf8wR/Uj9E/8QSwvAz3bX8XZ854d3z2s/7jBx6Y3MDp9SKsrvrvAO+mo0d9fIIlPIk8X8LDD3sAPkmeg1OngB/+ByNgOKw2ppyrtIPsnyIG6nfefKAW47Mj4TO7tm2MqB5Do3glcK7Dgv3p+U1S1IFZs/FYG/tdDOeqIcQGatwLSGcyBO5DQU6bwEmbRgk26xchlNx5pnLHOSDxzG07FE7zkw6poVea1tueNAttAJSAeS7zmXLu0gCahxpQJ0tiUQEk6459p9sFBpKXzdNPPGqVvJjF2DpfgbgMOwJMBjJvt2Vjv4jrMZGX/bM7GbbP2QbZa+fDOlgKGBeb4Uhcqdtu5dWUW8AiWl17m70WgQQHDo/6XUn8EPAcqKbJnNJwD59Dp5Wxy7IqDzY9pVhIIuHBzyNHfJvwBJtyCxTo1/fBigEHbAN8NnZfLZuB6NeoTdMPV7PSGCp9YQHfJq1uvZ7XhUDwEHhOU+CYshshKRCbHoAScGQwRwXvQ3ItBHiTJClBWAXPVZ7Fssj5XuvL8lq/KBOd5SKwTPY0y0g9dgWPrRSJgvwE3JWxr2xlPTmguvDj8bgEoukDlWphfmSjEyR3zpXg7s7ODrIsw/b2NrIsQ57n2NzcLOt86JAPNKrMfu0rrAOBcT0NoMC/ZdUnSVIC4/rH+hD4VxCd7aP9Ra1JkoYMdALZ6j/9y7IMW1tbNRkcbhKw/twkYP1ZBwZ5ZbnYVuzLqkvPcmqdyea/kW0Gos/smja7ONPVQImaVTbunUCWAZ3sSSydeQjo9/FFdxuGQ+CvzkRwbgnPTNc94Le66l/vvhuju1+ILAMWcbEeOFJWJUeO+Hk6ixBlm34FkSziwgW/GOgkeZ3dShqOrjYUxU4SRN0unIs9sK51VjCY4L4sYqNsE851sLFhFk2sF/21vFyyuKLlZTgXlwseLpC4uNHYXXbNx+SKpMoYrnxP7DLONysAeTj0KKwiGFwpcaXFVZn6hqu97e3KlwRCSYHmig4Fq0ujahIQVe2QtbUate6JrCqmYgOM4TocVm685RZf1OGQ2UfodguFUJaDpxrW1vyFq6v+T0FcbobMz9f1ckJB09i319a8DwcDjz7zGn7f7Xr/DgZAt4u45wH2uOgzj5+PS311xQVYxNDPa329qg7dz/vpr17PY/gRxr6MZ874AL0bG14UncBJliF66Utx9myMs2eBP/kTf/mjj/4tgIvY2JgDMIcHHrgTL32pT+bBB6uqUQ8dD51Fni9hdRX43OeAhx++hOc//zC+4ztinFxIqhMgSn8L6Sjpylw3JJybLcRnNrOrZPyJlRJgxcPH6lJzf1FtQhbFbsJqBpzbu0pazALotH0B6UVeNd3louyxXFg+azApFRIKzDiBcOrDuLA4TRGnnpVshvuJ/eWQREcTmK5jONMIgeelHBo3+jkI6J/V2uIrnW71XTi5CJlONDjQMD0LoicJxuliNT0SMJcbwAoysxgEbCntlySY1BZjPRWVDsmOqFPpQPqCcxr7mdaV11inm78oTb0Ge1LN1dQVlOGzew0h/J91VmCb1QjtfdgNLgXRz53zm+mcA3CqY/upc35vX08xJEkVo+fYMT8FkoOfZRfRzY/AT+Q6sdnYfbXsuuwe14vtR8qFr3uB7fYemtV9Jghp2eK8V7/T9FR6w8qmqM56iFGv8hoKegMowcuQvjjLTACXwLZeS8CzyUJ65bZsKoFCoFX9YOsU0kPXDQ0FkEMbG/azkEa81l9lTOgPLbuV7yHgrGxpgu1sQwLHIdDSyrDYzRqrQU6GOoO1Wn3wkAa6nqrgpkfo98D2DQHsyuIPaZTryYQQy52+5J/2Ectct31G0wz95qadMrmRbAaiz+zAmWXyAOVKIM/9Gq/Tgp/hOwf0bis/b7UAdF2dhZrnJQ66uNzARs1ztFoBbdI8L5Pa2QHg8vrKxIJ19jO+p6al5m2QbK/1mU1cpyykWOtFo8i2WY3s7NQXPYrb6wKdixtdWFn2kwLuGMoCdTj0qy6CviyDnj3f3vaNs71dL9z8fEUt04haiuoyIpkWvvSpqyrHShEozXPkqIrIAKvEAHSNzU2C3V2/EM8yvxis+ZsXb21VAWz1mACd2CSaq+XX+s3NVT68dKnataA/FdygQC3zLK3OamM7cXGsn6nEkC6OgcqNiqvkOeq/pbW1igrIz4q+SPxlMPCLcWAA4GJRxgjr63eW39vu6xzKgmxsAI8/DgB/gzNnvtF3m6Ou/tsJ7f6EqGwhxOHA2GwhPrNr22o/reIfO8RpEGO5LDgM126cYtP2whigcc+0WfgQ0mieGVHT86OpnJp24HrnqhNDCvoH9vb3baHsdBh2zmh/69jCgZDjtI61LIgmrgj9tOcrJxMhLRqdXMj8jn+UHbMAOjW6WScOlRPF0MR4o05qWD+768LOYwFyzUDrRdN6qgaPmm3g4nSFdZduiodAdJskXwlqa5GbtNHtfC/L6n7mvIldQv2vLuLUhEx0ElE41wL8PaEDoLbu14/Nxu6rZQdx5nbDmMpiTDOraW6B5hBQ3CQPYwMt6ncWGG0qc+h/ypCErlcAk8ApLRRwkqbgsmWTWxB7bm6udl2o7nq9raMFcZU1zrIR7NX0lWVO4FoZ4yFgXIFmZZizrropoCxoBYS179BvCggrAK73M4/t7e0SmNe2aUpH2ffaV0L32JMRoT4R2kgISd+of7XvKjNd/W7T4ckG9b9lxGt56Stltjf1+VD9Qr9V+/mNZDMQfWbXtOksOjSj1tc8h+t6rcWSepSmaLfN0VVl/6Qp0G5Xiw9BE0d55Nm8xSpM0yiLUnyYJMXCobYAciXzrhakcgJ1lvoRGA34Ic8LxjXrm2VIe4ulLGiSwB+HpoQLzZ7bNe61i3SrkENGUeHOqq6FKRg/HBYyJHle1yvVBSZf1SfCVKytuIj0KsLNgvB6jbxJsJr5WkYyLcvQ7VcYvBaz260YUsTdyYamWlCSFMEzFWhgu7OMdIz2tW7X142+0booYh2K/nb4sC+Itisp8rae9GeWYWFhsWwv1odu6/Umm8Qy1biHoev7rS1fHOfgN3d6PeDkSa/vUtH1/WtB7e/3Y+zseGmWXg/41KfuhAfRvWTfXXcBt9/um/nMGZ/28nLBds82Aedw7Ji/5sIF4FOfeiZOny5csrZWUQ5DwLgFxtSv+rcf4eRrxsa4ssX1LO7LzK4t40+OwJoFykKBrGvjpPx2yaAluNqUX9PnJYi8X9Nx3u4A2MRDQDIzbUI9UQGfNunQbaFrQsVlUexGg/8+gnMxokQy0fGEfg+htRyzLDKvY5IF3qcVPrABqpcsLFT77vPzdYBZ5zHKRE+SYizRY1Zal7m5aqO7aUyw9bNzPqCO5FtTsW8tqJUbk+TIJGeR5ucrzF+G+hq5QU1jmnD+xrTs/gWDnHPjIUmqwO95XhEICHzbfRXmzSmohoHRaZAezKO8DK9R1074Y1q/OTA2G7uvlh3E1r/hzDLOaRYQtyC5ZdIq4GklRyzQq3IuBAyZT1MwUgvEW8BSr+X1FgQlCK3MdVtmzU91wnm9DfB56FClIc5Al7xWQXwrwWI3FEKa8Konr9fqHxnfqhtPuRMFoG3QUfqNADDlQZgGP2O9NFCm+pxs/na7jUOHDtUCabLsVnaEEjZJkqDT6cA5h3a7XdNAn5+fL/XMQ5syzPvQoUNot9ul7A79zHaz/Vq18tX3ITa5Bu5kvRiclsFNKeui9zItSrfo74N1olSOMtbZHqPRqGTvWxa8/R1Y09+s9h+7aXEj2AxEn9k1bXahyQkz33NRVrxG+QhJEgMu8YBekmAhqRYdAIBDiUfeOOs/fryc/BM4f3IQYTgEut0lLK6kGCGuHQd2DhgXwRodvLZjtwtgzdB9k8SDtN0lRARLVYdTTRdR1GkmQOBiDAdel9ulsQ/Aub6OKM/xnNP96p4s83VTwJjItyw28rxaRFsdSgKrvI2vPI7LRRcx4u3tajGb50DWjdHtnkDndFIHmJXhlWUVWi2+2szj2tq22wWW0iKg59mz/jpGmaT+zPIyHj8XYWFhCZ3lvFr5AUAR8DWyTPEkwW2nL6LfX8Stt9abgos8LhRbLWAp2azOL68OKmeRXq1GoPuWW+o0S6LxdGqBEvuyn0DnVFEfnlFnebkxsLxcIQK8n+np6pW/l4Iq1oHX3E2Xl2rKJb2eLyIwua5nQFEl5LH5VlZ82zNQ7mAAdE8/x/fvwcB3BnYabhIMh/i2b/Ma/t/8zf6yBx5IMBgkZXVf/3rgBclf4K7ve05ZlnvuKfpjIdz/jaeAf/gP/ed33XUY990HxJ/5pP/+rruqhmOBtcNbYz+hT9nBD4yNcWWL69lCfGZfO9OhutQ2lzGIIJ0CoEBd7cLj5MVmto6rAu6OipM2eVaNR/uROuH/NQDdIs2hTTf7LLHPmf2C5aE0DB1XsdVWqy5TE3rM7WUh7gHHbjKGAaDViuFcjKTn48CUAV6tpgwLaU2cPUZU7ncwkGjtOjY0jx/pZyxk4YQo25TIHsDycqc27NEijOvzrGEGrGeTm9VaFxtBVTdsQqC+OjXkWJu+9U9gk8Cmy/oupa62UWSnUzqtVEK9Nc7fODyTYFKC08RVUEVQ6fQTdLtRmQebivGGbHlIuLd7ArpXoBIuKjMTu7GcmvSSSaxzrZvxA/29HLgN8NnYfTVsBqJfo3YlYNFeUieWeawSHLzPSnxoGULM9b3kWQjSEugMldcyjZluSO5CQUeaaqozHZWn0bJTg5zyIARmeT+A0kd81Y0F+ufSpUtlncg8J0hNYFzTp09tIEoCzwSkVWucQUeVkX/58mWMRiNsb2+XYDk/0/IQ3FX/se4EwXd2dkoAnnkQbN7c3MTly5extbWFubk5pGmK3d1dzM/Pgxr01ELvdDplmtx0UEb7oUOHakFD4ziuta3qmWvfASpmvG5aaNBSyzxXLXL6iD4fjUbYKhAs2y+SJEG73Ua73S5Bc+0rAJBlWekzDVSqjHR76sKe5mDeKgEzk3SZgegzu8at3QaiaJK5zRk734tudqfbxSiPkaU3I0mATr4JOGDxeDHhHiYeAWQ6/X5tIZIkURmH0mOAcQ1rY5b+Hv/d8eMFM9nod4/yqMRZd3djpGmMxV4ysRiNMMYoj5DnMTq6MCgWChpTcm4OOHko92ArJTS0YP2+B1ytFSsXLnTyvFIA0TUcF1jEZ7vdgr0lZdLAV8R7d3aqwJyehLwIYLG4B+gV6UWDJ325ez08mS+W+Phw6BnIKk968iSwshLj1ltP4MX39YA8x5fXY2TrQL9/Ap1eD19ei/Dooz4A5fLyiRpeMSgA2mf2+5V2yfa21xN58EHEaYqbu10gTWRjJgfO+oot0umrqxUAf+mSp2FzV4WIT7fr+yvZ1/zLMt+ZeI34b/Wsbz7v5w663Q6Wll3lBGk3nDqF0ennlVh+ngPZWgVoH+3JIpSaKHle5h2vrGCp16utvBcvDesL/uLzm3s93NxP6xs5EpSWl1IX/+xZoNu9Dc/8J/+k/ruUDnJzto6bswzPSTJgJcH3vuIUxukiHn7YF/Fl3T8DfvU/In7pS/Hd3/0DPkjv//V/eX8X9PXOmT/Dva0c9756Ga95zQks5V8BfvUPfB7ckFHdmiYQQ0Er7holiW/XA2OzI+Ezu3atBF7BAKOVKX7InyKHTmXGlnhaEsMV+tB5Bni5kxh5NqnCMZRHmsW/Q5IRgOiAA+FnRhOQvg8AvdRLLyRaQre4JIY1C/pPw2mtBnxT8UL7ivbzsLH1OmX1SUqwoH4oP+Lgy8uxJzkUxrlDrxfjtr5vHI6NcSbxaWiGOR7leRWg1E5GLl2qv4aE9xcW/Gu3W0eXOYlJEoxcpzbe7e4CyOvJzKf+f3vor7YxY8cj21dCDdJQ31jvTxIgcUCv2lTib0nl3fUWJUMkCft/AzrvHDpFERcBn9eymyy/NbuTFeogw+KzQ9362K1Ie9KpZ8Vyym/rik6QXBM2G7uvls1A9GvQyMzdj5zLNCZ6KKBlk/60Bb9tHjZYqDMPMMqMWFBcwXRNj/VUyY9Dhw6BzGVlbes9VlJF/UPJlibGvNbXynGo9IkGtrx8+XKZLsFpAuqj0Qiq2a7pWRkX3kv2tQVSWT4G2dRNEK0fmeRkQRNk5nuC4ayD3kfAO45j5HkOlSohW5sBVNXveoKBIHMcxzUmOsF5gs1sBwbnJAtd2fchjXTtTxYotxsa9jv6gAFUCXKzXpq3Bnidm5vD/Pw8Dh8+XP5e9Pen9dJNES2D9lX2bQXXQ7rt+jucgej7v35mM/uamXOA/m65ELGrRE6+C8ZalsVYXfUBjE4eGlaaHVw19HqVqGO3i3y90n0EqhiVvK3fB27uUy+UWcbl92WQUXPEXNd1FQEqQpp2vMSLWJ4Xeu5HJxfilB2hneyiLhzdbnsUOUkqprZuMJDZXpgylXQqwcBPaVrUdzj0zGulMKcpol4PzlUB4uhKyptTzpzfAx7X95IoS4gBbLpFnD3j/fyZz/giPvigf09gZHnZHyg4fRpYXvZHzR99tFoPHz4cYX3dx9vkMW6tD9twebnjpXCc84kzA11I0zG0wQB49FG/CGcELTZkv1/tMqhcC0H0fh+Pn49x9o+Bo0c7WF6+DUBFWif7zwfY9P4q4oJi6e5uvfCkiS8v47Of9VImZ8/W24++6nYjLKZFPa2ouRW3HwyAxx6rdwY9AsBNguI3E3W7PthZliHOc3ROn8aTwxiDAfD5z/s6rK11aoSwlZUOjveB6OG/8I28vl5Faz15ElG3i+d88zcDp5aB//h/+8CkWYbO6dPeOb/zO75Mt9ziK/jQQ/7v2DEs3Xqrd95nPuPL+JKXeN8rEECbBnodWDbbbCE+s2vfLLZcAxiBkm3qXKXPzGF+Z6diqBNjU6UrAoT6k9dApXtJc5fjRQhJ1huaNuRCzxhbUZN8KCsLvoZAWELPceK/JIDIKQf91VTEacC6ZbjrtCp0rz1gptey/LY8PHGgMUYHAz8mEkgHgI3z/ruTx9MqMTa+xgTRVybEuCF6nI2vNdC5+NveriY9qjfS62HkOrV43zaeKotG9TkdSqp2jDA3pxsk8YQUHu91hf55xLGb9bOScaF+JhTvOE29pJ5zQMFgvzicjEvH22o6+OpTzh/szrnmb79npYD6XIqaTfx/fr5eEM5ZtX6FEyOM64F7eU1BCKGfbXDfa9tmY/fVshmIfoDtSoG3aYzXkPSKmtWo3gvct/dYrWgF7pvkYZrY7jYdrcM0U+C6SWbDBgC1zOG96mtf9U83GpjmNLkbBa7pjybA1YK2oTRD4L0FfjUtoGJVh/yoaRH05waMyu9M07UP9TerXa7/2w0K6+tp9+lGidZFN5tUTsdu0oTatOk3M60dmuxGBNJnIPrMDow1MV9Ci9/iiPf2NjAR7BOodMqLlYQuIsnSJqherp8DE/wyyT2oXFzc8wh7nsMDknJf+e9eDB9ebBctUjayuQBU4HHAQvG8asCCLuCUrt5QHK5V7ToXqNc/dq7mY+L8/NM9EcWuk6QCTvhedc1tM7AtS3/TmAg/4wpfb8wyj1hz8a67IXylwxQtKHy0ve3X9K1WdakNxppl1WcEiEZ5VC8r00wSXLoEnD9fP5XA9Gtd3C58bSPxc7L01Cc7Ox5YUGmTPK8QglrDeoBge7vSZ1UgiNIKHaIQRCVoly4Bt97qL15frzoAG113VLgBws2jVqu6lh1jj99ho1n06kDYbCE+s2vY9votynhFHWYaxxDLcg4xri2Gx8eA/pRtjMenZJYSHqpL6HM3yTKfdvt+H0EEF+kr3rezU8cs98ozBKCHgHcbTJxsZ2WkazlCLrHE8iyr9LRt+5WnF0JzjtBYtr1dnyyEQPRQOlbCyxAgONzZctqiqXa97X/Myk5BrJ8m2l4bQOtqb2DiDRMht48+OGHWx9rofG87BTAJouvGNOPaaOekHJ1Ojvc5jof8fDBsNnZfLTuQzX8jmQUAaQRgraayZZjvBfzuBTyzDMoKJsAYAmVDearmOo2yJpq2gsXKKg+Br1o2fVV9c7LImab6jmmxHFovsrttvQGUDHUFiC1jXPOxfrHlIJN6NBohiqIak5xMbWVus54q9aKMec1Xfc16kUHNtMjKppSJ+gRAKd1CFn2e58iyrJSSsax/st/5nhIwZHzbjRxl+bMPqEQKXzUwKOusrHSWzUqsKBOcbRb6s22nYC1PCOzu7pbtr5r5WlbmQX1/7ZMh2wuMv97tawGi/8qv/Ap+4Rd+AY899hie+9zn4v7778e3fMu3BK/92Mc+hpe//OUTn//lX/4lTp8+fcV5z+w6MF2p7DXJlu9qoLTOtPMcUT7ynxUBEFut+iI7Tb1EiyY7gj9Sznudk/VXIA/kOZwwk8iG42njk8e7ADxoymPp29uVLnu5YMkyHF8xIMBAVqMsiLxXEDtNY8SFjIiXjKnH2bTrsNqiJKQRCgDDIdJ0sVTQALwShjKyDh+uL6yPH/efddwIGAyR9hexsOBxVJKQGMCTbUdlGn5O+RktN+N0MtBl4bJJEIYFY5QsjuEVFaxCH5gJX8ns4gpZdebZuCaql3O+TCGis/paiezsIzGDcmobJwmcq04KaJFUQaYElvVotGamn6t8iYLo3a4/2eBclREphGQDJgl2zlfsUZUGUu3VTlKMv91uRZnX1e/GRiV3c+xYxfJ3zh9ByLIqbza2nrTYzzNhr5X2gVyNzxbiM7uGzVWBIEu5hQJUtvIL1D3mJZbwGmJYSzaNP/0Qjqf3OefjqNSeHyx08eDWDWn/fQyXBBi8FvAE617oSxcZ2rpa4+2+GLxbL5i8Xo3zBA5JihGHJF9svHOgAsY5doXwVGKe9oCTfSyrO/lng5lznLR5kABQBpjVNgq9181f2yY6BvLUmAb4lgAwbHPrWx0i+L9Ko9hN5ND1tKmHniwSrw0R2mBnvXRCof0tm1aXqOybtS9Cc1rdndHvGPVUy2orq5NBvUbL25BvFKqzsYMl6TIbu6+WHbRZ2w1jKgVCsJymQCQBPppqaysLmPfZ9IFJkI8AIQErgrkEMpVJ3SpGTMs8VgDZgpr8X8FazReoWNgKVFsJGa2L9ZcG8lT5Dtp4PEar1cJ4PC6BUZaT2tohJnKSJKUcyjRWvrKe9c8GDSXoy0Ceqsk+Pz9fC3Spmxi8hnVotVolyKuBYQnQM/2dnR1sb2+XQTipwb6wsIDd3V10Op1af6BWuHOulDS5dOlSKWWT5znSNC3lWtrtdm1jIUmSiX5o+5xK0SgYzj5h+4gy+K32ufqT7ac68yrjor8Vy8jX31jLUEhU4kfLzfLxepWr0b6+Hyb7jWJPN4j+27/923jzm9+MX/mVX8FLXvIS/Nqv/Rq+8zu/E3/xF3+B2267rfG+Rx55BIuLi+X744pozuzGswBAHbSCgeS6i5WSRVcm7GTrkBK1soKR60zM+/t9D0ySHLu15dUlvGpKDAcTb8oldZoVQXTBLZn1xoZfdG1v15+tBA+GQ2CJUhrr68BwiGj1i1jSQg4Gk6s3WaUOB3WZFecqmY1WC1jqeg3Y7kqnJjlDF83NefAgcrJa1sXNYIAoy7CycgIbG5X0ty4k6R+ypZkn1oo6JQmOHVtCnntfs/hcoPOU9bFjwE03VfE6L1you9ni2XlelxQv19pcLDMh27d0IccFY7frG98ywLjgVpDZaAukaVwq7Gj3JVCe576OGoOTfQWI0FlergHpTw6i2l6JFnl5GVhyF4Gz62WfKRnbx45V4LPt6DfdVF+Ys/xE5dMUo2Sx1vxR0UibeVzK0rDtuJFCefildOTbG/C7KGzQ7e1Kk+bxx/1OinPAs58N3HknRsvPRLy8DLz61f4HQ93ybreKZ0Ajim/bNDRfrR0tOeh2GVcWcOzGnefM7Bqw4iES5aPqPTDxO1UJF9rubphZbUFK/Vlr8paFzvEpykf1kzUC5BFI5Vhq05ybizA/7zW+YzealNzggKpBwuHlOggO83WUV9Isms+0zYNQnZqwUKAZZGTeCl5bgrH9M/vFUzcDtGwcHzhe0GXdrg86Wure51Taq2KvLCYyNlt0v92u/t/eruZFFvUH/IDLgnDiUZAp0OthnHRqhHbWod2uDkQB9QC4lmtA4zXT2tH6LOb9uqvATEKbPXbClaYTwXbtppStQ5JESJJOfbNLGe0sAzsdP1c2hiaomdBUQk9P/nEOpewJdaROLG29i8sPFoAOzMbuq2fXPIj+pS99CT/5kz+J3/u938PW1hbuuOMO/Kf/9J/wTd/0TQA8qPKOd7wD73//+3H+/Hnce++9+OVf/mU897nPnZruhz70IfzMz/wM/vqv/xrPetaz8G/+zb/B93zP99SuuRIG49NhCnQTPLIa3yGAnQCmBXD5vepQW5BeAWErQaKsWwATTF4FTxVsV2DTsrtDAP6hQ1XQSbKY+b/1jS0b89G60BetVqtWf15PlvHm5mZNQ1vzIFNbGdsERwla202B0KaCDRZKMH57e7vMiz5M0xTOOczPz0+AvRbYZf1HoxFGoxE0+CXZ7QTRqalOtnQcxzhy5EiwDnoCQLXG2S67u7tot9u4fPkynHPodDq1DQCC6lpnu+HBNDc2NrC1tQUy5lViRYOusn8BqNWTbaabPewDBM3ZB/jebm5oOVl3XqvlZ4BaBf15jwXRqYcf8kFI9uVrbX/4h3+IX/iFX8Cf/Mmf4LHHHsOHP/xhfPd3f3f5/VN9xu7Hnm4Q/Rd/8RfxT//pP8WP/MiPAADuv/9+/K//9b/wvve9D+95z3sa7ztx4gS6BBJn9pTsuhi78xzodKr/LWVKjYum4RCuJ7inPd5KxHhlBV8edGrrK1q/Xyyw4TWft7c9NpkkXHT4v9j5I9WjPKrLphSZx84fU2cR1terOKBcWxMLp/nPYyxyUZFllY601kNp37KCYzBTKmPQ5uY8uThN4Quyvo4oSdBxDp1eD0kROHJrSxjRdpHEnYCCOdzpA535BMdPL9ZAa75G+ag6Tn1mMCEPc/JUF0BUrmFXVvx9J0/6sjKdbheI1r8COIcjR5Zqbj582GOzLLuC6GTJ7eygAr4JotsFIr/Xhdzjj1fMNjLU2c8oaKpUPMrAFCC6xeutIsr8vE+WxHPtngyex6TzvCLR89HI5lnCk8DZVd8u1DkfDCrmPdnbWla7+8DMgVITdm3Ndz22QZIA/f4SksQHbR0OK7ckSSXL3+97UASrq1UnJLucnZ87VIyS6pwPIPqN34iHHvL1f95rXlPXdqeTVNbFHidXs8y9EOoTYvft076eY/eMzXb92nUxdhdW+2mFUG5jVmmLl3KcDu2Xhcxip3bzsQTQrRZWcSG/4sEeDsUKnjLYeK8XI3bF/XpjCElW5m2RQNztlprOxBqnSWBrctyoBqrHe+yEJT80CZkEKR0Wa8IL1bhA5nwIRJ9mui+h4zVQDUdML00BDIaI0hRZFmNry19Dv+/sAIup7JJYEJ0D6c6OT6xpY5UxUDiYEURfXgaSBJt5jGxQkQ/UVfa0oj3gBdQxZG2raWaB95J1H6pn6MbiWgb+zrLJYLv2dtuHqrgDxTxWQXSzuQSgStzOH3S+qHMlpmM7BN9zLsK68hotvNa36JdPcdgGMBu7rxe7pkH08+fP4yUveQle/vKX4/d+7/dw4sQJ/PVf/3UN3Pj5n/95/OIv/iI+8IEP4I477sC73vUuvPKVr8QjjzyCBc74jX3qU5/CD/7gD+Lnfu7n8D3f8z348Ic/jB/4gR/AJz7xCdx7770AnjqD8WqaSkSE5FyAOjOXn1tJl2mmoKkCfWSeAxVrWPW8LSPY5s3yE1jU8lsZDN0sUPY489zd3Z0An0O62srUJqjpnKuVmaA2TbW/t7a2ShB2e3u7BMmdc4jjuARINSCngri64WHZzMrU5yaByseQSU3/MQ8yqMn0JgjM71WCReuZZRlGI8+4IFObYDrf02/K0rcgJduI9xH8npubw/b2dgkms61Yzk6nU/ObgsZsJ4LP29vb2NnZwaVLlzAcDmsgOkFzvgL1DQQrUWM3euh7trsF5UO/Ee1f2mbK9Gd6rIe2OUF+llNBf+2rtv9+vYD0S5cu4e/8nb+Df/JP/gn+/t//+xPfP5Vn7NNtFy9erL1vt9toG23B0WiEP/mTP8G/+lf/qvb5q171Knzyk5+cmv7zn/98ZFmG5zznOfjpn/7poMTLzJrtuhu7dUINNK8si2tql9tVnEzm19bqpGIugqJsE1hfR5reVt42GHjA9tgxAYizDEg9gBwnbrKcqK8/mI5zFVit6wdi1FtbwOJRVyHDql0N+EXgwkJVeMmMVaQENd8nScUCQzacYMh1lpdLuZfKxYGjvsVGBZwrdxaiLEOnXASh1hZlgEwWhgUqJGsWFhZLJjtlW5aXgQ42q/JlGbDm85zvLpUgA+Dr1MEmkCbIC1YdY4xxfba7C2De1X1ltcItyKwoPFCh3e22T1yDreo1xf1RPkKaVkw6oFqXcjql2D1BBRs7jc3OtuM9JHQlCSoGOqOssk7UWOExdS7QWWbWj69FppvoYFDg8QTRl5d91ZVFqPgQP09TIM4360L31Joh5Z47UkC147G87HdP+n2snWG6EdJ0Ebf1XNWJez1/z6VL/iKKAFeddjqyZt/rtVe4Kj+IY/fMrm27XsbuiWCA9n/57dmv7c9YH9X2J7pXLODG/TKdC9gL5WtlJdvTVnzu5bmA0Hrjzk4VRZoTDKViawIF851jG5+vlFahWemQkDxKjV2v/zdtYlhUVcDRyDnExR8Sz9APuGuiXULjHoNzdrt+jhUDQOI80F883/PihBMf9yx2qZFuy2t9S7q4perTUQqiF6/jYg63sVHF8WDZdfzV7BU/1o0VvSY0HDXsHU06U4FsuwshyD03ObJhvZnV/3babJsbkH6VxnUt+mnjo3UEJ1x81UyrY5FV/UI/pFBHsnnKNc4V1+y1q2NsNnZfH3ZNh5N973vfi1tvvRW//uu/jhe+8IVYWVnBt3/7t+NZz3oWAA863X///fipn/opfO/3fi/uuusu/MZv/AY2NzfxW7/1W43p3n///XjlK1+Jt73tbTh9+jTe9ra34du//dtx//33l9cog/HZz3427r//ftx666143/ve93RXu9EsyGZBWv1sL/DcAo37tZDudwjQ3itty7C3ZsHGJumLvTTd7fX6fj8s2Cb/WrkcK2ETAmZtHfT/pnpa1nIoWOZedbBl0j6imvEh+ZlpfyH/hOqsfrcM7JBv7EkFC47bTZivxvbyX+g7+xtTrfeQP5p+j1fKwn667Du/8zvxrne9C9/7vd878d1Tfcbu10J9ea8/ALj11ltx5MiR8i/EKl9fX8fu7i5OnjxZ+/zkyZNYW1sLluemm27C+9//fnzoQx/Cf/tv/w133nknvv3bvx1/+Id/+FXX9Uay627sblp52El+YT5QmXxlF10NRjJTU1ah//eR7IRxzr/fY76l6bl2u5r/amg506zJd5bmFNrkCDGogCDyMVEVXQ1KOqH1s03DAg217KbdOK3+/F8TpxZowypZjxmHym33J/ay0KK9XEQq4k4zjig3lQIFGiPadz/aV1cLbXjZRlFwQHyr+E+WIbxYZ/0sRXCv8ny114h9Pcfuis12JX8zu9btehm7axILezww9vM8Ce1/hUwfKzbtxmftFfzumwD/p9uuECOsmy3oXs4MVax4z3a143WEce1Pr+H/jWWT/+0jnu05VbIjNCGzAy0HTTtmNxTMDjE2Wb637HO9d9r0bN/jf2ieImN2qP89LX1yPz7e669J9+ZKJkFXyWZj9/VhX7se8xTsd3/3d/Ed3/Ed+P7v/358/OMfxy233II3vvGNeMMb3gAA+MIXvoC1tTW86lWvKu9pt9v41m/9Vnzyk5/Ej/3YjwXT/dSnPoW3vOUttc++4zu+oxzMnyqDcXt7G9vc9cUkW/KpmEpfKFjbBNiGQO2QFrrqjyvjvUknHagCfjrnyj+VK+F9O8VCikzukB46v9e0bdlZX2UukxFs9cWV+a1gMNOjrIky7Pk5meDMk9reLC/lVSjroXXWerE87Xa7ZJCTIU0Wt+argLDVslfmvQY/pQ+YPxnpWk/61WrJKytc8yC72ra19pk4jmu64nNzc1hcXESSJDXdc/bVra2tmpRJiInNvqEsdzWeCmBZtD+wzra+QAVg2xMS+jnz1j6zu7tbA8HtCQeWjxIv4/EYnU6nLD8Z+8yjielug6NqHa6mbWxs1J5BIbb2XvZUn7H7tSvdSOC1jz76aE2zfFq9pp00sHbnnXfizjvvLN+/6EUvwqOPPop/9+/+HV72spftu5w3ul03Y7el0zQhkRawyzJ0ux0ve1GAsWQbddJh+Vm3G9fm88xqfLyDqNst2T2qWU0COApAMsIYSRJVx6alXGNEE6QwstkqPcq6vHmaFqwnBRbtsdmjR+tC4jTnagxtDaypaxgkaXUWHQDSFJtZVHM3v6ox0S1Yrj7X97pQogPYTvy818MoWcTG+epWlcmZaPPifa0eKAJXDrLi/k6p2EL1jzJI7Nqw5qeJRlf6lorE05lkdjtXSbywMEAFYOd5xbp3XvfWpZ69xyB2R492yhMHbH9bLFWWoW9I7mL9Y4yATNqD8jJMhAzwNMVm7qWJer3YBy5lhhDWaPHeofIbGf1K3uskY+SipasnHpwDkMrvcmcnTIW76aZKN4gdvygr2Ze89clhjG7vhNdjJy2U6ahMDD/bi3Gu5QjQBQ/C2D07En592nUzdlsLaSwX/0fOwbmoZPs2DS92fOIjOZQ8YxlqwGO+TgQFteYcYB4LIcxQCeUT9/MLi8DyJj0h5LwWeGhTXQOFajIhYLaWv81TnWifkfsBQ4vvLXBbPT6jWlKalV4XPDkgg0evt1iOM7UxUPVV7JgdYGiXUVXVce12PZB4UThPuqj6n53yhDBfEt9tv2B6Ew4CPJN/v9xZJ9e6enDZPAfyLHwb+3ue1/3X1M3t38RmBX3KibD2H8419AdWfEZ5mTJNHisoK2DGZP1cpWC0HNYv+l3RsWZj941l1zSI/jd/8zd43/veh5/4iZ/Av/7X/xqf/vSn8aY3vQntdhs//MM/XLIJQ0zDv/3bv21Md21tbSo78akwGAHgPe95D97xjndcUR2nWQhwtCC6ZQWrxIemowAlgWQL8O3FIlfwvN1u14BlpkMwsYlVTABTQVvVo7ba1AoOb29v1+Q1VJrDBiIlcExfKFBufWODULJuKmNDOZFWq1ULdqp58VoG4jx06FAJqvI7gsX0j7ahDXbJdEejURD003tYPpWVoYxIu92GBk9ttVqlRjrlcnQSCqDWrlbmh6D54cOHEccx5ufnS4CefmZ62l8tW5t9Ymtrq1Zu/Z4bCFp/5qUyKdovbPvqZyrfo3XSstK07ynoTnmZKIpw5MiREkSnrr4GpNW0WR5uDlg99asNpD/nOc+pvf/Zn/1ZvP3tb7+iNJ7qM3a/9lRB9MXFxRqIHrJer4e5ubmJZ/ZXvvKVifpMs/vuuw8f/OAH9339zK6jsXt7GxiP6xNrYJLRwsm5AKArK0XA0MEQcA6rq34d9pxTvRKIW16udCRVceTcOeDo0UUMVqu5/smTIh0yzGt5R7q6pxWAtv2zwCgXi0wuTYHFtACGddFdpFkChwV4uJn5Z1sn8frsO+eqtK0ebHn0WwF05zBOFzFYqwBRXSQicdUCyAq18sy1XRQ5h5HrwCXwvtGVXK+HEWIMh8D62TooUgLFNj1JI3ZjpGnkJUOyDFivFtJx16HbjfGsZ3kApd8vpHnWBpV8jYIYzJjp88gxJUYoFTI3V0U6JepNhIaRwziGUw9XAIyo262AgjxHnGSIkwSLx5MysJt0m9q6VPtKTes2M+g14MvFjkqNmH4fI9fB6lng/Hl/eb/fqfULutgfjo0RuzHiJEeyHOPw4eqaVgvo5BeBtSGW+n1ANonoPgBAX5AF6qeqtmqSAKdO+Qaifi37dK+H7W3/kbrUOWB5eRFLXVdl1G5XQvoMLhcCfwJA+QSQLn3sIIzds4X49WnXzdiNCpCjTFiSxBX8pWNCnqOTVM/CpjAHVlKZr3NzKJ9TOhzZzeNyfzE0GE8xBeqByZjePk0D5Fo5iwDQiDTF2MXlY9zW22KMISCfOL0+6mJ9zmoZaE2ZTAPR3aQ+uiZt20Sz4ivx7OAphWIMu3ml52PM5JvA+tBLvsjYCaB6/uvgQ8p4ktR3I5ip3UnRjYUsQ+wcXBrX+o8toq1nbTMGqDa0Q8h10RmjUII66EMkWrLJZIBw9fR96GBW06lHGxw12DdYPvt5AETfzP2G0HC9mrYDEebmOmi1/Jy8k4zrmjmBMdg/C2LEab1DKYBu+xowG7tvNLumQfTxeIx77rkH7373uwF4ndo///M/x/ve9z788A//cHndlTANr+SeK033bW97G37iJ36ifH/x4kXceuutU8uxlxE0Iuit4KvKiSg4aTW/yTi2bHMykhW0bDLmF8cxWq1WDVRmWmTiWlCQeepmgPWlBie1khgWeGdZeJ+y25XJrX5h8M8QMGs3GMi6DgG0BMcJprdarbIuqldOcJr5KlOe7Qn43UXqrKtPte6j0ah2IkH7ADXIDx8+XILuLDd91G63oSz+OI5BXW/LnmZ9WSYb3JOBTtkH9DSCgsOj0ajmV20TZdkzGCrvUyNLne3PdmCf1rbmd1Y7X/2u/mvalLKa+QBqfZZ9hBsT9Cl13XlagGXUV21TlkF/L1fb/uIv/gK33HJL+f5Kd8PVnsozdj/2VEH0/Vgcx/imb/omfPSjH60Fr/roRz+K7/qu79p3Op/97Gdx00037fv6mV1HY3eWVStLroJDrCOgvnAZDrGYJB7sHg6BNMVjj3m56OXl2H+X54izi0XwzBg7OxWGmiQ+242NCic+ebyY+K+v+3wIRFtwWRZFXAgx3a0t/zc/X2eeMynnigUG2ba6QFEUoN/H4+dj7O5W68kjRyK0Wh545OKFi327lh4hhusule/Pn6u0uFWrPc/9YqZclLOuyrq2C8WibQjGL5oAwV9cjUqZdF0ksrxJguaoagAwHPo2Y2BKXYAOh4gAnFwoKnxmtQ40qwB9mlYa4XleRZBjsEtddZKipgxCNS7iSZ225ZKy1/pIknhWuPPMLWbB7kXmur/X+ISotTpSdfL7fSBJcDHvYFhUaTDwxbT9wuAYiJMcWF9HDOBkUc5xuuhBgzNr5U7LUq+HwaDOSAekz+jCWP8IovP3tLvrgw30+7g4nARqvvSlqjmSU51Kf39hoQLRbUS3EGBu31sgvZgDHYSxGxgXf1dy/cyudbtuxm75zSkg2HGY3BwtN0gdkHhtcD5K7SNPgXGg/izjcMz7uaThXmeaFsDnIJtMvAEF1kcLlzcKPOrjvfwwhMAaEL08pZbVSdb2UVVL3xTTuTqzm77x0lzFhoUtj17MG2wGzFQGiL0CjFrf2Ky07MGysOFWV30/0HE7tJsScpjOk6zDQlIiph9GLkcZzjuR72p5m86odWjqsDYNLYNu6su8kXMxjf/CJNWPJEZMO6nQNPxpcWqn/+yXthNqXy7+HyPyxIj1KiYPg46rdbtArxfBuQ46qSmg+IrzRyRh5n65iWFsNnbfWHZNg+g33XTTxK7Os5/9bHzoQx8CAPT7fQB+10ZBjr2Yhv1+fyo78akyGJ/KsY39mAJNCiJZ5rkFUfV+C+ABKKUxCKZSwqIJTFegUqVHANTAXWUVaz6WWa8AfmgDQE2ZwDQCwwr+qk8s65lArQVraXZTQk3TC13HDQbNm/UkiG/LDqAGwqtvWWZlLrP8KgHD69rtdnAyqrI3Wo+5uTns7OyAgVeV7a6AuYLpZOgvLCzUTiFoG/Fve3u7Vn6mwfopsK1sbDXtS/QX/cA06Xvbd5i29n1ubNjTBwTC7SZTU9+zrHcN6moDltr+re1qZWKuti0sLOzJ1t7Lnuozdr/2dILoAPATP/ET+KEf+iHcc889eNGLXoT3v//9+OIXv4h/9s/+GQC/APvSl76E//yf/zMAr9u5srKC5z73uRiNRvjgBz+ID33oQ+WYM7P92XU1disASrMAZWiRZaJqXrrkJ/hbW8AiQTNekyyVtykrvTZUWcCS5eCNgcWcLjaJ0VlJc7N+mmTJWfZUwfa5dKlarCgrjrfx5HKSFLIfzk1ItvBaAu+CI5blrtVTL9JgjoFF+s6O/0uSCmQFKoxab9GT7zW2tTVdlBLwJjCuFaP/1tfrsiwCCpD1GNu6qZQLUQq+hhbi1gchcELLpc7ga5J4qRJUR+LLwLV6jz0OrcFad3Yq9nmxMzPKIwwHdYJ9t+vbm/HXmJ9WpYaIF6B3pL8Z+S0416kVqbHPSHuOESF3HbhuBxHbr9gA2NqadCUPBjDbDtthbq6+A0W/hwD0EJJgUYai8x+EsXvGZrs+7boau8V44ASJq/8WLZCeeGkXVYHiZQRtLTAH1MdT/rR1CC1Bt2kbtA3Gx8TOTjgkRslI1htCx8AKgJfMfO5HNxUn9HzWz5qCqpaPNou2TsukKVNXyWdYAJ2f1fIMJGXbobHQOu5YHTz1qUWVNUPrd+v/UJ2bxoimz7S89n3oT9OxuyBa9sKJOs2y3VX9rH1cQXS6IMr9vC+eaJdowm1BP+iYqhcL8K+seU4N8tzLwPFzLScgt3fjyd9O8T/7l5UXbOw/hc3G7hvLrunAoi95yUvwyCOP1D77q7/6K3zDN3wDAOAZz3gG+v0+PvrRj5bfj0YjfPzjH8eLX/zixnRf9KIX1e4BgI985CPlPcpgVPvoRz86Nd2vlTVpiu/nnhBgZ4Epq0GtoDFQBwRVukUlXPQ7+36/pvlZCRULDitTO8/zkuGrUhy2nNYsCG9Z7SEfa/o2D023SdZEgdaQhTYFmoBZZdrrny2TbgYQ1KaOO08aEDxXXzwVa5L1sWW0baT1s5tFX00ZrC9C0kPadvYEQajtVPbG/um9+lsI5XMt2lN9xu7XQs+Pvf6uxH7wB38Q999/P975znfi7rvvxh/+4R/if/7P/1mOIY899hi++MUv1ur2L/7Fv8Dznvc8fMu3fAs+8YlP4H/8j/8RDP4ys2a77sbuvWbOIVMw07n6miXARgrt7RI3TRJMLpqYh01PzB6h1fS4FuFCPHbjCjidlhfq6xgC5YojcgFWJuPCTDI1BQaU1JvnxdFaMpz5t7BQ07EuwezEa7wCFeAQu3GNcBWSmuHCvJYX07JsLS20Fp7lsRlZUDXLEGPkAfvQxogA0WX9muqroLo2wH7BGmkQL1VT+EZlZYgea7q28QJar7Zt2+0wvmyvrXWSKwCd2O+GQ1RtqO1RZM7Av+UCemfH7watr+Pk0RFOnQJOn/Ykc/4tL/u/pXTk/XIlFgJJnsoz5Qrs6R67PTvtSgKTzdhsB8Guu7F7mgWQsSa5Bm6yauBQ+/gPMVNrP/OmZ1gowcBXfMTasXdPADVgez1Om+o4UaeGdPPcBIvWgut7O37ZvynltXMmPv+5ga6Au76fKFeobNO+t3Ww34U+a6rzNAvNwULgeBNgbu8LWYO/m8xWo92ufhOscoRxdYrNjN+heWCW+XlXOdeSuVyd4SF1KeYn0fAi4nwTi24T/b4fo2+5xb/quF0otZXTJ5azrJSt4JQmsa5kONurZbOx++DY0zuL+yrtLW95C1784hfj3e9+N37gB34An/70p/H+978f73//+wF4QOvNb34z3v3ud+P222/H7bffjne/+93odDp43eteV6bzwz/8w7jlllvwnve8BwDw4z/+43jZy16G9773vfiu7/ou/M7v/A7+4A/+AJ/4xCfKe/ZiMH6tjWCcsr0tuKnMZDXV9ibT1r6SzUtwVe8jWE0JEyuzAqAmZdHERFdJFd6rutZWm1rBc5ZNv1ddbOY/Go1KJrWVVlEgTlnkys7WemqZbDtYNrFKeChDW3XkFfTme0qiqFSPBeC1bcjCJsOdfYKSKJQ/CR0Dsv0gSZIaG1wtpA+urH6yt7WsFgS3wDXLbPXBKf2iwVaZJ2V1VL7HbjyENiFC4LjKw1iWOiVtlCWveYVONrAeu7u7ICueMjfj8RhxHNd8yfLs7OzUJGyeLib6fm04HOLMmTPl+y984Qt48MEHsbS0hNtuu21fz9ivxp7uDYQ3vvGNeOMb3xj87gMf+EDt/Vvf+la89a1vfVrLcyPYdTN2J0kVfNCCocAku0fZVjwPWiwEiOdtbwNY7lWrhzTFxrlJPNw5j5u2Wl5pogZkKljKPPR9sUrYXq8zaY4erY6V9/v+9ejRgim+PpjUuLb1pKa2c7i5nwJAyahm0QYDj0fSHUkC5GlUrnuYXJ7XMfE0rUt7AxVj2afVQdK7DckyEC0vA0AZrHUwALI1AccH1RH7aPBkpRsPYGXltrJ57DH2xx8HLlzweTnXQT5kE3Vw8/IykOel7ElEmRg2Vr+PvzrrpQC6Xa+9ubTiKtkXAtKUWrHOYFr9vpcaoQNlxTp2cdnEJQDMfrG6Wge8te3sQlT7LK8vyhOzPGtrlbaQ9usQuBACHYp+kqYRkqRUd0G3WwUy1U0e5wotfgBYNX2Rmkbs9zShhOqi/OxZYD2NsHL6eYiLvlJa4ZsyjsBg4Glrf/In/v3HPoa/u7Lir33UawvdsbIC9FPgwTPAo4969KrbresisRChRTgLliR1bfav0r6+Y/eMzXY92nUzdrt6AEAC0KXUiN3NM79b/Vnrq2J7c3N+jHaukr6KkwRk2k7dMwsBd6YMevhIL6Wqmo+PIhRc1iWUvhgvUTmUpsudm2ScUzmM/zNNTbe61mtLOwlO6RzgAtMpgprabvvZAw5dF3rE8jMvGVcFde8wZkhobNE5l86zQmY3zZucGgK57es0QLzp//3cz7Kwfgao5ikFO9zzf5IcSt8lYxmncy9haDs+/9K0vHRry8/v7FQTiOAccPjwot8kShnAPKs0/1ZXq8kmj0NubyMCsFSkcpI/Eh6JJCHBOSDjXMLMYYr25ZzWzk9sM1iG/ZXYbOy+PuyaBtG/+Zu/GR/+8Ifxtre9De985zvxjGc8A/fffz/+4T/8h+U1b33rW7G1tYU3vvGNOH/+PO6991585CMfwcLCQnnNF7/4xRoY+uIXvxj/5b/8F/z0T/80fuZnfgbPetaz8Nu//du49957y2t+8Ad/EE888QTe+c534rHHHsNdd91VYzB+rU0BU5UJUYDZBjG0gLUyZAGUgShVzsVqVzdJmFh2L5nflPGwwCDBUpbFAug0y+olI1pZ6JbZSxA4yzLs7OzUAFAG+VQf2frwM0qOKAtb5WrUpwQ/qf/NvObm5tDpdKBa4QRWWQatp5XFUYYyryUzPM9zMECoZTJvbW3h8uXL2Nraws7OTk1bXRnldrPgcBENR/uRtpGy+tmmqvM+Z2ZXtl9YBrpeR9B8NBqV/ROoNh5YdvqAvgxtgIRkWPS3opss6lvbhzQgLYOH2n6i9/Fa/h6TJCnrYn+jzINBXZtkbL7W9pnPfAYvf/nLy/fUl/zH//gf4wMf+MC+nrFP1Z5uOZeZfX3suhm7222g40HTaYvS8jNOxBX46/VKEL3f95PvL69FSNMYaeqDIFEaRZNxzoPn8/PAotsEvrReAXFA/YY0reeZpmXwTOpaOueLsrzsLy+K5QNfEoTlImVnp1p4AJMbA4I+e/3OBPHKCkbw9blwwdeJ6zMq4ehJ6eI2AMBSt9BhTxxQBLtcW6uqpNqcvrqL2NmpjuyeP+8XZFwn9XqehdRxowoMLhZc8V057ji1gicHEVZXfdpMh2szVpkgQ7cLZKdjJElcLiKXFEQH8Pj5GL//+/6j5WV/z3Ofu4STp7rAmTPVgi/Pq0zpZ6CiSa2s4K9WO2W9gap8NO9T34f6/SWkfSBi221sePF9VkK12C3grTsJLNu5cz5DRsI9dsyXiytnDXDKnRh2psBCfjH1R653dioAfWGhLlnU7VIreFDplOsCmYFKFUSXo9z8mATx9XX/2dmzwJEjSzh+3BdxMR2j7FjcPFhb83+f+Qzw4IMYb2xgCH9MtwMgarWAZz3LF/pcId7/8pcD/+gfVf5QJEk7trLm2Fe4k8DnBCvwFOzrOXbPdFWvT7tuxm6EgcDq8cSA2NVGHJ8nNIuFWrKxcyL/JWNi5JwPFOkqGRLnAOSBhBXALxIniNxqVcMD8y2fk8Ns8qSQFrxh41SZwJbJbQFzjVthTR/FBBtVlk2HgdB+hT0J5vOOgprm2nY6LmseqkUfMpUboXFYzJIISXqi3p5aYLvJ0rBRMcqrQNcAsLMVzp9NU26EK1u76S9k08D4pnvsho1M0hRAZ0xzYBJvj/JR0edyYG1Y7//2R8cJoIDoDP/CqQqnROorPYx37FiM48djP8cZDv3APhgADz3kB/vVVeCxx/xnTzxR6R7NzQG33uqj/t5+e0VLv+sun/jysv+9JR1pt7icbwKVciCro9VTmaEGleBGm43d14cdujxDJZ42u3jxIo4cOXJV0tLAlmRaR1GEJElKoJhALY1gJ18VGCdYqK/8Y4BLgoi8xwJeyjImeE5WcQjQ3N7eroGnBJmdc0iSpARJFeROkqQWzFRBTAKjWZZhNBpha2sLw+GwBhYfPnx4QsOd9WKezIvBIpkf71MQmIDvzs4O8jzHaDRClmW1+xcWFhDHcRk0tNVqlZrl/FPGszKpFSjWDQUyv5tkUQieX7p0CVmW1QJ/8lWBaBvMVH0LoEwvyzJsbW0hz3NsFxRBpkOfWsmS3d1dbG5u1voD/abgOvsl21HbnG2jGwDApOQO+w5QbXTQuAnADRYF0TV+gG5aOOfQ6XQwNzeH+fn5sg9oOZTlzjowsOjW1ha2traQZRk2NjawubmJxx57DJubm3jiiSewubmJwWCA4XBYlu/pegQ/+uijWLYsvGvE+GxcWVm5Ipme8XiMs2fP4sKFC1+17tzMZtZk7J8XHnus3s9C7B5dSBH1HQz85L7bBU6fxjjplNgkLyHYu7Xl5/28DagD3fHwSf/F2bP+SwJwXAGmKcZJx4Ph6+tAkmDUPVGuNcoASUB53DXGqALMWZ+HH/aLEdYpTaugiQr2OVetgrQy990H9Hr45AMRHn20HvzsyJG6vibX+6dP+/J08os+b+abpvjycBHr65WsOMncLJ6u2/h68iRw/Lgncr/0pQUL/cEH/Y2PPeYb4O67/QXLy/jimt9oIK4aInPnuW+Hu+/2a7GjRyv8OMaoXDj+2dlF/Nt/69+ePu3vueceX7/bkq8Af/zHlROyzDdOnlft+KxnAc94Bp7sPwf/9b/WQQGC6Lom5YbBqVP+9eb8i74iDz5Yib7nuS/o6dNhaZO1tUqonw7+27/1rwTReRZad0R6Pf96111e+7x7Auvr/qPFdFxvZBa8WKQTPLg4jEqwe3m52MzhhgcbnoA6K6q/tdOnsZksYW2t6udsP2JLaeox7mc/27ug3wcW1/8GZaMPh95fq6vABz+Iv9jZwTqAM/AMoyUAibzmxd8LFhaAD3ygHiiWvyXuoPCz4RD4/Of9e+083W7V2Yp6rT72GG69554DMXYD/xl+m2G/tgngh5+Wsfv8+fN405vehN/93d8FALz2ta/Fv//3/x5dE1RY7fLly3jHO96B97///SVI8cu//Mt47nOfW17z/ve/H7/1W7+FP/3TP8XGxgbOnz8/kebKygr+9m//tvbZT/7kT+Lf/tt/e9XqN7P9G/vn+fMX0Okslo+f2I1rADIfT7o3Z4d3gmn8jo/PGtiqG2X6PAfK3/XYGe3lhhgmcK6UIuMlJeBaApdZ9Ww0TNwaQstycIOzKPzIdTAc1lno9JFlGStubFniivsyLQ0OruO9xZ6Bqpiap25SAJMBKxUkZ7swDwaSVNdq3loXtv2RI/6RrM3Q602CpUwrhEsroK/7pfZaxZQPH66AYueAaHixutnKpoXmnCGzwL81FkAAbThX6pvoBgDrRBCdpy1ijKqNd5aVja7H+mxe7IMrK7g49OQF7pNz7mUV0ngLpx/Ly8DSsJjjfOIT/vVjHwM+/3kMBwOsAxgCWEcFETsAPfhRqg+gc/y4n8i9+tV+svj85/u692/D+fN1oobtA/Y5oQf08hz40pdWcccdt87G7iu0gz52u70vmdnX20LSHE0awU0yF3o9AXF9VVPmrQaCVDZySLJDX/UaoAq+qLIqKolh66BAKdnxrWI0VUCfMiQEZVWWhMAxgXnWLeQzzU+Bdb7awKDKYNa6kRGtLGWrj63pWl9q+toeTe1K4FhZ49ysYDqtVqvGXGd5FGBvt9sTJxgAvxEzNzc3wSK30i1q9jOVc1EWP6VVCKJr2qynbohoeiEJl1Cetq00Hz3Zob6lXI2V1dE/C75ru2oQVZU/stI29jTBjWgzJvrMrnkLrQDtysowkux3eV6xuhR75pFWLlx04j43h7pmdmhhJOnHUgamp8HRuDCI88168ErewIURV65KQQuhC7p4Asoy5nlcBjC1TCbFHGqB25hOjYK2WH61tVVhq2oWRHfOM/dKUh5vZnkvXao2AIZDOLc0sbhWlhSN7Qb4BSXrECeuVhbGxKNiCwNpIpU+Qf1t3cQQRIP1DK2nSXrWtcDGRuHfpKjIzk59AZ5lxtnG8tx3wkuXUEa/HQ6rTQdSwvT+NK0a17myO83NeYZ8ZH8DRePEzoFsTCfSNKXpD4P12NryFecpiyLPUDVYXWJLXBAfPy4/IV7EtIv/N3d28CSANQBfhGeib8KD51nxysX5aGPDn8AIsRP5ua1ciPZ5oO3aORL+ute9Dqurq/j94ijIj/7oj+KHfuiH8N//+39vvOfnf/7n8Yu/+Iv4wAc+gDvuuAPvete78MpXvhKPPPJIyfbb3NzEq1/9arz61a/G2972tsa03vnOd+INb3hD+T7VINQz+7qZBUL5mYKx+8UoJ4BlfbaF/uTGkFZ6c8KTY3YtyLOeHuJRs+1tapT4G5OkPqEwlVO2dlO9y7xN4EU+221wSPVjaMO8Kb8kmZwr6ByIpOK92keBbKtmZh/HukFhhigcPuznENpHNI9QXTTfJhBdDyzZISPWiZ8mGOpP00znEzQNMGNNxy8xraduqmCY1fsh51fb2/VJGFDpHdGZUge+5bxOk9OipWnVxSfmdMWEazQYYADgSQAD+PGb43QEP91I4cHOE+fOIXn00SogfDGn0D6r0wx16fVls7Gb9tWO3Qd9FnfDmLJ9mzSgLSg9DXBSgLIpGKJlGVtJGQskTwMFFQwl8NsEoNv60kLsdr2WAKbNk9cqeK+bAlongsZ8pZ673RwIAd/T6hKSjrHSIOpzTZvt2gTqKnhLPW4ytJWBrpr4BN3JFLda4zYIZ6jOuimjoPNeALf1kdW4135Bv9h0FUi3mw+WGW83O2wdQu1l/ftU6qWmMkozILiyGYg+s2va9gK6mr7XRXGWIU790W4eC7XByZzzixWSyUpTBFUv5ncAMBwi5oKg+J6LAi1OuQ9JOpQ9p93t1kF0pd1pYdUoYC4ouXNxmRexeGpg83YuNEv5UC1TAdrmg0mX6rFixQj4qkUuNxbm53055+fr1Ls8L9PjvFkVWlTalMTrw4frrhujAIyLCynXQwY02eLI80n97GPHfLmYeK8H9HoYrjcTyejPw4crYvnCgn+PS8UK0Ir52g0e257O+cIW0m6lbujx4z5xyszQKWQ4UmRYkqZrnYvqmsP8QvLMs+rj4dDrzpc681mGcieGegYWjckyuLTyB1BJuPNyVu/wYSmqLpK63XKjoHPrrVh+9FE4ACP4BfgJeLmitHiNir/41lurKKmheoaQOf4o+FmIjWrFh69puzYW4n/5l3+J3//938cDDzxQSoP8h//wH/CiF70IjzzyCO68886Jey5fvoz7778fP/VTP1UGDf+N3/gNnDx5Er/1W7+FH/uxHwMAvPnNbwYAfOxjH5tahoWFBfT7/atXqZldFathk3kOFCxvPkubjOBqq1Xpf1MSrQSWmzJUU3SW74E6RZuv5QZhPHFpksSIOFxbYJwIJKmy+pwmEilC7nzuhrTQa4Cp1sHWqQTSJ7/WocXuI+p7fSXWqtMNfsZrmJ4C37oRwn3e0BQpNH1pKovep32kSSYmhHUH9lGwu1tX/ZrwT2icvlKb5ny7WTMl/cZhSPsXG4LzGlaMliSTgvlZhiTplG2V55O66ExC46aX7cATFcePe4eeOoV4bg79s2cRA+jCj9U5KhD9BDzn+gQAd+ut/lja8nI175L5gM77dM7aFEz44Nps7KZ9tWP3ge4GN5KFpD+AurY0vwvpa2s6vEZlXSyQroCmZUIr85oyHRo0lMCnZU+rBjpZ26F6hjSoCYLaevOeVqtVA8lpCspqGpRBoXa1gttkuDvngnlaUHYaG5tpUkLG6pRbcF/bSNO23ynoDKCUknHO4fDhw6WEjLYj01AAfWtrC3EcTwSqDbUr24yvqjWvQLoyx5s2fIAq4Kzqnqv0DgDwBIAFuFWrnjr4NNXt5/dk59sTAvyNKDvf9n3th7pZMI2pHtpAsT6YAcIzm9kBstCsOUTF4rVcxBYUmyT1IY84Z9fFAS/VxXqrheroti60OctXqhdZ3MU1Wxt1yXRdkG7mPshX3Per8jGiim1m5T5YsGKBP4JnD3dWRpVkzRe+UNG/h0OkaaeGr6apX/MwOaAC0cv1C8/tOodRslgygtRPKiWtTGyVO+Ga6PBhf39MzRznKno4F5jDIZaWuxh341Keut2u0tIFOJVt5ub88W9dbGdZVO493HNPVS8qtJycvwgMsjoQPRxWlHZKe5w6hS+vx6U0iZZBwf40BW66yZen1/MqJ3G+CfzteuXYdrsOomi/1AU0nckIs3qqoNfzrywf71FN9CItxYAIXidJp+pXStVL05qsQp57Br9zQL9/Mzr9fiUzs7bmqfatVnXem07p9xH3euh24zKdXq8C5TX9Y8cqCfJR72agV/WvxbvuKo8MrPzBH2Dl0Udx35//uW/Q22/3N5Lafsst3vl33111BAUstJ70N1D9+GhWv/gGsosXL9bet9tttIlYPAX71Kc+hSNHjtS0te+77z4cOXIEn/zkJ4ML8S984QtYW1vDq171qlo5vvVbvxWf/OQny4X4fu29730vfu7nfg633norvv/7vx//8l/+ywl5zZl9fawEvfMckfOb2QRj+b19jfIRYgck3QrQ5j21Z5pmQlCRCYVOj/F3b58PUpgodUDxfNTHxNxcjFYrRpIuomMfdMoC1jSdA7pdjFFIdQwr4rAWXQ4VlVWZqKemX2yW8yMLMGt6ti3UXZyX8P2EzEk+El8W8VfKggJIq2DblKghKGubSI1yMxyntWpc8nOI02bUPXi+6h8PT+k1/J9psfg6VMRpUqdAN6HxIWeGLNQ/1fENQHooSd0oie39uqvR5HSdLA0GiJMMz1zp4uIwQr/vpxdbWz6ODpNhqJii+1Zl6Pd8fvfd58fk5WVgfR1ufR0n1tdxYjjEMzlf5hEGyqv1+34icOutlbxdr4exi7FxzhdRp03WPaENmAhjMO7BjTCMz8buSbsBmv1gWwic0z+yp21gSH4HTIJ9KtES0kRXKQoFamnKZN7e3gZ1nS1IqRIqzGMaWzkEECuIvlOM1BZ81I0AapgrwK5G8JwWRRF2dnZqQC4DcxL8tqCt1SUnUzzEjKaPCXLzgWM1ua0sjJWqsT4hM10Z/goGU8aGdvnyZWRZVgZ/pYY9AMRxXPYh9gsNtkmfqd94TYilrX1m2gkK2xcJovN+AuBqTJebEuwXFqzW3wa13bU8uqlw+fLlWp8P/QauRLfbnuSwJzxmVtmMiT6za9p0Jh1alPBzu+hRpLfQKY/TFEjiCVY22W5UrNjakuQHAx/MkCtLBbipO0Jj1NAkwfZ6ReYFqriMTNJbFRQJiNDt3oZ0+bZSDmNuDpgvFi+D1bpMRrcbI01PYHnlhFdWFDA/TU/UGN1cvyQJEK19GchzLMkCf5RH2Mxj5G7J68OvhtdhKuFJqXauOW1ctUp+JcIig19ubFQUIxHhjJzz5Ukces9fKtnMFlQpgYr1CsTN86jEeufmgFe8olwrwjngZOtJ4KGHKyekKUbJok+zYL9sdm/2kvefAR59FHj88bqUDDcQnKvrhN51VxGQ9cyZSkuGTiACQFRCj/krqK47E1zlEzwnKsG07M6C9EW+3dmpDjN4MD1CksRwSez16QugIMvjUmGGMQEA39UXFiIsL9+MRa6ez53zyAi124kAFWKpnSTBbctpcAGv+r+Av/Xhh30Z6bZudwlJsoS7X/MmPPNHfqTqy0mCTeclhToPftL797778PjczTh5vPB7CDQgoqOdyJ4PV9DL0i8PjI1xZQw1P9+69dZba5/+7M/+LN7+9rc/5VKsra3hxIkTE5+fOHECa9RXCtwDACdPnqx9fvLkyQmN1L3sx3/8x/GCF7wAR48exac//Wm87W1vwxe+8AX8x//4H68onZldfSvH0RpVOJ4AyBT7jvJRbWyAc4hRAIgyxkxkojokipBaaS39ngXhM7l4pjoXl4/gkE71/HwE52I4x435ExOPjt0cQA5kZ+uf6yNcfaDjTJSPjM/k5uJZFjmHJIlqwLDOaWr+R/0aC57LATQP3uvmANAsZ+ccoiRBzDF83gFHE4wL/7Fsqv/O5LRM9lDe7m4xX8k2kRRBJwFfbg1oanXhQ4FVbf2tX9ptIEkiuKTjZ2TOVTvR00DpAAgerKCdt+pOidyve8EKnKuNXQykAX1/+6r9PbRbvraGxSTBYpri5lN+XruZRTVZl9Cw+uW1CMAi5k4+D61lwN39smA11ULp5TnghoAz/aDWB+1vVja6YgCUpePG3IEaumdjN4CrM3bPQPQDYE0sV6DOROe1+0lPwUq+V4DWMnHVCJqTia7SHyGgUNnvVnLGSrQoC97qYGs9eS3LSyY6AWEtY0gbWzXMAZRMbA1wyTT5P8tr0wmZ+iKKolJ7nAEzrWzK7u5uCRxbKRWaguJ2g4J+YzBTyriwbmSUk2HOzY88z2sbBaofz3utnjh9pW1O32md9XSE7bPqH4LWGsBT28XqsVuJHauRrvkTiGdAUfar0EmIaacwQidArDWx0Jt+tzObgegzO4BmVxmhxQ5n5LoSHg4Rd7tYWPDPbF1oEr90zhypJti7sFAHOyHf6YJ8ZaUWICpUZLuuIcA4GPikz5/3rKA0reRJGGOS8cy42Mgy4HnL/ZqQ9+GTdf3PbhfouBGwPvARIMm4ShKPhqdLNS1yzp1JILfrvmPHyr0Cz8AGMF72C13GV9P19yLZS0ePVmeqFcgUJ8X9DEvOAWvDuqNCfaDbRZ53yjLfcgvwvLt88LozZ4rrzp71YGsRgHMTHZw942/v928GADz0oHfd6moV65I4Mde4GkuW7bLkLgJn16uomlofguPUOaHpwpmASJHwZh7DpfCbPdpB6Hwr+CoLcQXR2Y+VtZckRRirYkGa59X329sV/r+xURH0l5c7WOr3/QeMWqf11PehIGcA4n4fS8VphItZjEuXvLvW131sMj2c8IlP+Dx9V14sD4EkCfAjP/JiPPclwO/8jo9l9prXRHjdK7qTsQWkjmUD0jnqU/at0CmBA2NUnr2S633Acw1O1sRke/vb3453vOMdU1P84z/+YwDNJx73Wg+F5nVXSnR4y1veUv7/vOc9D0ePHsX3fd/34b3vfS+OHTt2RWnN7OpZhHElu1J7nsXl94A/iVX72elv2qKedkBS00GWf5YprpFKeY9qlJliWAl0bq5yjhDah9PiqNkgnToU6JxjAkAPoZll5pOMzaYy6F6D5k8N8jQtgksrkspXndDYiY1lVqcpoiRBJ0nQ6frn6yivCAMcjyx7nrI9HHu5ce5BUs92V3kXO4dSTfYmt+l9HCeBakoUa38IJaSNrOOKNbuhoxbqy0Vb2vaywHP1PkKeF5tRSdEHSA5Q/X6Ox2Ru2DmXyA510hSdJMFSr1uC6vzJ8HQg99EvXKgOaTLovMYhD1WZ0nrdbjV/XF6uH6xLEgnyakH0EEW9cFLk9oh7cM3ZbOwGrs7YfZBmbDMLWJNm9ZV2JgVlrXSGfq9sawWS+d6y1u09ljG/l1kt8KZ7tKxko6vki5qWXcFfy6ZX9rXVQw+B3NPKFWIna3k0LW07Zfbb7/S9gr8KojNd1Ty3OuFaTwscW/3zUHmntck0v6isiwWc1Tfqh6b+3sQUD7WTgvi2TE8XWzyU1wwQnoHoMzvA1kTX0e9DKxHEQT3WEEsJQFi81C7W7fFwhBcSesvWVpW8Xsvj0Aq6a3AnZUlvbaG+qChsgomm5WTGsirTGJLMm5rn1j9kzMVu7ANdFYuYTuKQ55GVPa/rltv5iS40nasYxEoBVMDDtgPq7sdgUCy6i4UGHVakn2dV/YinECTZ2Jgk3BH4YNH5miSYjMhly+pcFdQrUG7r3GzoP6qB6NZC/ggkF7ykKU35igBGGUgsdXUtcYtcsN0UcdIdFLZnlsGJ1jAvJYiu5RgMKlDfM+P9Bke3618Jwl8x4L3X8+LA2VPTVV1cXKwtxJvsn//zf45/8A/+wdRrVlZW8Gd/9md4/PHHJ747d+7cBFuNRg3UtbU13HTTTeXnX/nKVxrv2a/dd999AIAzZ87MQPRr1JyDPKQCR/ebfqdX8pu3qCl3Du0zdErQZzvEM2ZKKMClYvChoYrfh+Sr910XU/+oVJ6uvuYjGaik6Wg6/HKIYnkmpL+a/miU67BtEtjEdKE2lmRojEtTq7cAzF/N43uve/O8CFSumxRqdjLUOGHchwXusW05rZx81bZmkTsMcF4D6N3kkQo1boRIR06STi0P/Qlx6nPunAfYqf5GMN22qXPVAbs8r+LJ6MG90i3NOwf1zw/Uhre12dgdsqcydh/kXnBDW2gXxoKaTYDrtDQtC1lNAXOgku0gKGvlNLRsasoEpoSI5nHo0KEag1zlWqbJwPB/gqoEj5WxHPID66Rl0nKrbrreoyx4Ba9V11sZ1YcOHcLOzk7tBICWSf2p5WcaZJnrpoRtI96nwV4VKFeZG2X8WzkagtbUTt/Z2SmlVdRPTNOyxbWt9TPVqKcPbf5aPkoAaVuwDCGpF9VZpxyO9jEGWVW/6kmMaScwQn1G/aUSR/QXT0RYnX7mb09i3Gg2A9FndiDsSlZPdnKtAt6oE8nJQFKWFif6wyGwyNm+leAAqkhaW1slo2fsYmTDao6v2qQEYW3xNDlLctJ1EBfwCwvVImR+Xi4u5DdCC/xx0kGU5tVKJrAAtPivbjTomswevS5vdnVGdC35gqE2kYlNTDVjQuKmcu846WDrXNWO29uYOCKNJClPEVzM4pI51W5XR/Mp0UKyvBIhrYxLr+fv7fUArGeTq1i+hiLXKgXQ+I6nFzxA76UC4Pyx7XGxsC43IiwjPc+RIy7lg9i8zL7bLdhpXOUCWOz1sNjvIkkipGnFIuMi+dIl/1m3u4jOrbfWNPfL3Ydbb/WUfC1Xt1tnvpHCD38aoteLsbLiPx4M/B+b/FnP8gcjuCgfDj1gniTAd3wHcPLQV9B9/Qncc0+hfb+6Gn4uhHYTrF6y/RGGQKJr3p7e4GS9Xg+9Xm/P6170ohfhwoUL+PSnP40XvvCFAIA/+qM/woULF/DiF784eM8znvEM9Pt9fPSjH8Xzn/98AD4O0Mc//nG8973vvaJyWvvsZz8LALUF/sy+ziYDiP3pBRmk+wHImjZXQ2OM/rZ3dqqohUT4AlRyvm23p+OpwKT8WKg6IbkJFmturtq0di6uwFygDkozMxTSHmgcHvXSie9C85DaZrdlUiuobDNUhjDfm7EutP+qm+2cb+hJqlq7BMzWodWqhl1bdL1eyNfluF9mY48J8saQ85wr28BaUM9+Wn8t/o9d9VuYOKGByaaw3wHAZhYhSTpVYHFOcnVzW8dFVl7mXhozBfC/AeqV53k1zC8v++TPn/fjNjfGQ32Sp/iOHPFhTTjNYxHK34f2PR23tcEPNIAOzMbusD2Vsfug94QbxprkXACUALaydlVOwwJPBPWUHW31m3kdAzvyPV+tjEpIrkMZ3UAFglO2Q+umGuHU4Wb6KrES8oFldmsZ+D/BXmVus9wsJ6VOaFmWlaC1BgRVkFWlWg4fPoy5uTnMz8+DTHCC4hqgk/dYyRBlkxNAp0VRhPn5ebTb7RpLXPXTla2tMiw7Ozul9A7ldxS8Vi1y+o1tsL29jSzLyuCc6p/t7W1QN54a5aq1f+jQIbTb7RLUZllVioX9le2o7amyLLrRcfny5ZrOuQWi6X+mNTc3V8roWLkY/s86sG9aVrxl4bMO9DsB8yzLsLm5idFohM3NzRJQp9/YL5IkKT+/UiD5erIZiD6za9r2ArbsikIXJlyNaeT3LEPkcnScQ+7iUj86ykeIARw+7BlPJNT277oZ0alTddpP4jU/IwqN87t+v9Qsp7VaHn9Mkiq2oa2OSoUwOU2DqhlF7MUSQOcfVyijdMmvk1br6ZMxND+/iMXTp6vFVEEJIkBPANWezraLz2pdE1ULtaLQnSQBA8fVj7zHiHq9yc0IfW+dUqRdgsgMclYYWVCUre/1/GZBzcdp6vVnVlbw0GeqE84MDpokPsYV/aSnoHUNTxA9xqi6gI2tuwZ5Xumgq/NET3+U14N6ApX+rnPVZomffnDTGkiS2P/1FhFpAlkGpJ2aqopmG6192SPiZ87418OHy42FpeVlL7dy9xLOnQP++q+rRfC5cx4v/8ZvfB46p0eVthCde/fd+OKqShfFADxL6tjJ22oav3F2ETh7FotJghes+NX06dO+3v0+0EnGXs/lD/63/6F0u0CvC7zGM5PwGx8EHn4YzwTwTAD4RA/4hm/w17EhgcnNGfnNlmYX5crUG9X72LVtT+9CfL/27Gc/G69+9avxhje8Ab/2a78GAPjRH/1RvOY1r6kFJjt9+jTe85734Hu+53tw6NAhvPnNb8a73/1u3H777bj99tvx7ne/G51OB6973evKe9bW1rC2toYzhT7T5z73OSwsLOC2227D0tISPvWpT+GBBx7Ay1/+chw5cgR//Md/jLe85S147Wtfi9tuu+1pqe/MnoLJw3QCNOcDRMcSC3zbtHjdNDBNnwE0C2wq2KtSbagHOVSpEWZJfW5m1VSUaYCn7hPXn/0RWi1qx8cT1fb/1NnBLAerpXlp2fi/VYLIcyBWf1jk2/qRiYWevc7VgNgsqwcg12S0vDr3uTiMsFgQEyDZNdVzmr+1eO12XQ++pgFv+4fdkeD8rwgUmxWY9KQ0DTXzKbmCurSRLWjAvzVEhSB78X+cOGxmdYkcSzD384UlQLq1nUPBuXI+Ukqqr/lXnsIjP6OKVZADbuhfu0XmvSq9Wn/Q8jch68XrGJH3kZXTsZsYmjbT1R/BgbDZ2H21xu4ZiH4ArUnuQkFHvg/dw/ssC9qCh1ZPnGkoAM8otnyv+tkEGBm0UgOMKvCtZSN7WOs1Ho8Rx3EJZFvAXNnNAGr/hzYRLGhrNd2tbxQ8J0CroCuDeHY6nQnAlkA4WdPb29vlZ3NzcyX4HAKOqWlO1vLhw4cxPz9fAsMEky9fvoytrS2QNa7sZwXRCeiS6a7tTtCZ91AzfWtrq0w7y7ISOL58+XLpE0Zopua7Bua0gUq1/2leqgWvvqCv+F2WZWCw0M3NzdqGAYHqTqeDVquF+fn5sjydjgc32Ie0vRVE1zI3geg2CCxZ8QT2t7a2amC6bgqxzVnW7eLs4I0KDs9A9JkdKNsPA0Un1s5h3POBc6Lhxdqq1XVvLtUm+PnRo3EpL76+7uf4zzx92i8eVj06PYJnmy8qKJznGHeXMDhbXw8pyYdrAx6HJROaYHg0vAisDxED6BQA97i7VJO+KGI5otfzjB4y0TezqJQ7t65SiRLnPBDb73cQu3EN0OW9lPFWsIB16HarxXeeFxqiZqEdJwnixAc943V5DqB7okwzwhibWSRBVn0+R4/6vAiQK76SJPWAdMSw19d9YExuNtS6SAGyfnEtxoMPVvVSJZLO+heB9fUqQGuaAr20csowA86sW0dWbc9CEWk5erQOQshphhEmA9ZNI9zTdD1/7BhwkkcmCsQ8T+ry5AoA4cwZT+3+/Od91FQmzgix/T6eed996PcXcfZstT+Q51771Ovzx1hZeU4tsNvqAz5ZBUfOn/duIGN/ZcW7444+fP6kygO4+fBh//7/LsD9D34Qq48+6osHIAWQfsu3+IX+//v/Yh3AFwGsAXgBgNv+z//TZ0ARd9se6jj5nU6A6Pr5pUs4OHZtLMQB4Dd/8zfxpje9Ca961asAAK997WvxS7/0S7VrHnnkEVy4cKF8/9a3vhVbW1t44xvfiPPnz+Pee+/FRz7yESzwbD+AX/3VX61pu77sZT6Q3a//+q/j9a9/PdrtNn77t38b73jHO7C9vY1v+IZvwBve8Aa89a1vfdrqOrMrtzEi8GTNxIPOgujAJHOWphtfQP15bAE2oKLONmlU211iSYeb3hZPtllo1mqaXQiLzvNKWc3Kr+2FGwJhZvvcnP+zAPk0+Totb55H8IFfYzgBqCc2PsQRBMvLNLK6izXgpyUZaHLa5Hx1BYBu/c16Wnw7VC/9vOx/WeaBeZ4ma9qw0cSLVw3AWQLPpk62S1XBaP08xvsUkx2iCWC3HSJJanIrQCUDqD8nu/Gisjp23qfZcC5WBvocPOnH6M9/3o+RfOWEgXp4u7uTOwpJ4jugMkB6Pf93+rT/bGUFUfGdp7MAXvM9RtxN6v4INXBT212zNhu7r9bYPQPRD5A16TUrwK0AepOOtl5n09Y8bPBMCygqU5r/EyzMzUNFgWsyuwGU8htM1zKOmSfTV4DVSpNo3aiLTrDZSo5YX1hmtK23guIEuAnyEuAnkEzJEILMQLU5oEx09aUy0QloK3uZAH6n0ymvUxCXba75EDAniE4wV3XWWSeVSWG6DMhJ4Jp/ZLMTbGYZWKd2u13Wi76wALnVZNd2YB+hb1kfBl9lPbIsKzdpLl++XALS4/G4lNaxDHTdLNC8uJGgUiva3xV4t4C6SrmQsb+9vV3K4HAzSfNiANzQJs+NZDMQfWbXtFk2CjAdSA8gjwRqlxxqKwfXE1yUAHCaIkmi8ojquXNAtxt5tu7qKuCcsIZjJGm1KOECMYTTOeeP6uYumihmmhYAuqKXhTRGlKaYm6szlXkk9vhxfz9ZUaur/jayptUNxCJUviZN6yA3Gcx2QdpqVQx1lZyp+VxXc8WqLGJiqJhOXF+1WlG5MaDJkPl04UIlMcKNjjSta5RTVYSy5yEyGW987DHvH2XTl7a6WkVu5Wqe55VV/FPFWk+e9HImehyaDuTKU2nhRaYsG7/a2qqzG5uAGtufTvbrN2gbqp6+c6iipn7pSx715oW9nv9/YwPo99FZXgawVCsb02N1WM08r4KKMfAYA7w655OuHTLo5R7A18i1TOjBB4FHH8VfPfoo/hRVuK0ugLv/9/9GAuAMgCcB/CmAETz+cdtf/qXPbGOjrpukQJvuZvGVPwK1Elg5SIvxpxac7OmwpaUlfPCDH5x6jZ07HDp0CG9/+9vx9re/vfGevb5/wQtegAceeOBKijqzr5P5n100qfpsUb8QKm3nAA2feTZrYaHngN6r1wTydK4e0oJMXw0QGspKs6BES+jxoszhmg44KuAVqMuOh4qrxZ6IhYL6daHHWwjDnZxi2Varg7GKmxIwV5+oRJ6qyVl/6bU6lmld8ryqJ1/LE09uPNneWQCoNnOV8nXa7ojzrG0GT+fcxErT8FYPnNfnU9o+NSGYEKJtEzRliuTUH2VwOG7bveCmjQvbdoDfk2bfL8vOydrZs56x8OCDfgLwuc8hHwwwBLAJPy7bs1wxfO9J4YObx90ucPvt1QlRnSx0u5OgfsKNHdTk7WgHK6AobTZ2X62xewaiXye2F7gUAtL1viaAcD+metYKijflaZnkeo9a6DMt317WlP9+gEsrjcPPFFyfll/otID6OPRQUHkdssX5XYitrsBsk9RPk4XKassX6hP0ifpGTx9oOnqP1sPqrzfJ9GjZQhslTfnYsof8Y+Vcpv1v05/mKxto1/Zhu7F1JW12PdoMRJ/ZgTBdMIcW1FOsXCTwlj2AMpu0XWRokeyieMqaZ28LLfTyXI5119MLLSia6hAqt3XDtMX5ftKtZSAX6mKNIISqn+ynjE0YiLWJWGcNDTBRRxZIUQ+iyCx4U6Y2MdtY8pcHFrOsjwXNmVSTD6Y1xtQubpELCbYXihMXaoutreozjdUXAmR2dwNlVe2c4s8uwEfFXwS/OB8Xr5DXsgBNR7mndeImVOnA2BhXxlA7iGDDzK4H+6p/ZvscRGuAWtNApg/bfQzQFrgNFanpkcINaHvdfvzBsdIWucl0HzFULvvdtDLsVT6th86PrpaiBv1og5vvp0wTA+aVTiJqiaHsI3auZYfRvUwld/ZdDr0m4IjQraGYODYJvU+vn5ub0td0sOe8qBi3OXZzjOavkB5zxec5gJj3soEbJzjXs83G7qtlMxD9ANk0AMmCsPqqADfTUX1usoHzPC81zvV6m6Yyh0OgJFAxx5XlTDkLfQ/UwXKVhVGddGp6q5a5+kXBUvu5ZZY31Y3vyaYnkz3kO7KOVXJEpVJsW2mdtV1UB52M8yYmutUHV8kclp0BTpWtT9+Q/a8SO/qebG7VT1cN9FD/Y9swPcrWkK3OPqBtw/es9+7uLpxztXu0LegLlVGx6SqAr0FbVSbG+p7+Ul17e43WW1nn9E2WZaVUDpnnejpAgfVQm+sJjhvRZiD6zK5pC6GJuhIITbzt9/bYc3FuOMYIz3pWjIUFAHm1UMrzKsjkwkJ1rJs0bF0EkZ3rnF8wq2qEc14ahfqbZDGplEftSHZIS3I4RLfXwalTleyLc34tc3HI48H+MzKs+32fr8V987xifoeO/LbbFROc6fpAl/7abhdYTO1kPkDBK+owdnFtvdVq1YGI3d1JBQ6WhYxxypLweLG6h3Xo9z2x6dixyYXqOOkg6vXQGngpnDT1xCeeKO4k40ogXftXmlba50RQlM6ljWHp+WRWMY2iMpTO0aCrCrIoYKKv6h8j21sa/UV/q486rCwp/fxddLveeaI/3+tVwcK2trzPWZ3lZZ8mmXgE3LPMl51Vdq7S+a/9dpaXqzLw6IRzvgxJguW1NQxRLRc78FKrDsAygCX4hfrfALgDAJ7xDJ/Ro4/6QrFx6aQQu9A61Dr6QNm1cyR8ZjOzNkZU6RyHTB/2ekRqGgoMNO+uhsBxjk12/mDnEnp/niNyXo5srylG4NYJs+A2r1OFmSYLuUPT0fmDhuEIlXOvPUMLiO930yDkC93MzvMqkDdQPZaZF0+50brdSfCc6bD8tpx5zqElgiviokxokOv/Tbu+tr8VAytP++V5xbS3/lILHYwiM730WRboXNaZIUcXEwHOJ/RSzhG0DEDz5gbnC5oG532cf5V+5MAOoIwOvruL5Nw5JE88gaWNjQkQHaiY6NHCgp+YcsLGidjhw1Xhs6yUuwn11TI+TpFDubGx352Wa8ZmY/fVsoPW8jesqaREiK1rAToFvfWakLyIBRN3dnZAyQkGnlTgj6Dp5cuXYTXMmRZBYUpraB14TQgQI4BMEJvAMQFrgvgKyE8D1pQlrfIvQAXwU5qFf5QtATCxYaCAvkqRULed7+fm6siJ+s+2D2VL6G+VoKFPeB8BWQWV+ZkC6Hmeg8E8mR/lQ+gP1kd10y9duoQ8z0tNdLazgsH25MB4PMZoNCp9RNkV51xZDsqrqA80gCrTUNkYrZ/q67Nt1Ce272hAV9ZZfU4/aTBRleFR0/pT5mZra6vmL0reMAirlldPdWibq6wLr7vRbAaiz+xAWdOCiKYL5xKpNosIrhTW13Eyy4DdxE/onStvkdOl/n9+6BzifBNxmuDxcxG2t+uBqrjGYDaL6RjIMmyig/PnvUzJ+fMVwM2ixnrz+npVp8EAUZ7jvvtursnD5nkVI5JVZtzHZ66MPfh71AflijAuQYovr0UlNkzcgtgF9ci5iDp+vAgmpYjs+rDuZy4wc7/wSRJ/z9jFGAwqPVSgAujVPyrPoutE1ovWbvsNDTWC83QdQWSgAnP9psEi0hT4pm+qg8Lx8ElgLav0Oa2ODQXXKX2iejRMSEH04u9i3sFwAMzNddBifQd10CAEhFjQggt13SQpg8maC2OM0OvFJZhARlmWwXcMOmljo7qPDSLIPIFyGvM8fBg4edyPoU8OolLiRSV3LEig7fnkIMLSXXdVou3sgMMhcNddQJ5j0Tm88LOfre8qdLtAq4XbitMAtz36KJ4EsNzv+wbd3QUeecSX//bbJwME6k5R03OiCSm75m22EJ/ZtWtTf1LOS2MARTBLoL4ZyZvtxvK036vuHha/b2qx+88qAY0JbXY7lyiA9Ng5UDIjdNl+6quSI1dqId1zHSemAezApNSF1gUIA9N8/CoTXmVImHbsmtmx5eZJ8fwl2KkbvaFYIM75YZW2vV2NKbyWEmgcG4Eqra0tPYlGHnTV7qUmuEOp+e4camVl+ZlfNqxPJ1V3XP3FtOgvHQN1jliTnLEdSsF7fW8G1FFegfq6KW/k2xsxeTXbb/XnqPGCkKbVpvvcnG+ElZWSbBBlGaI8r0BN/Q1rYXo9n067XZfEK+6J800/z04m2wKY7Hf8fjwXEP6/Zm02dl8tm4Ho17g1SVaoWQY6AVwFA62EigVHyd5tt9slC5yfEfBTAFjLYwFWlejQOhBY1GCTFqRWBjXBVYLV+hkDWgJ1fWsFmhU8Vya6+kI3C5i3BXF1s4Bg6Gg0qm1qKIhupUe0LVQrXQHVVquFJElq9zLvVqtVtinLQtCa5WL5CVa3Wi1QOxxAqSWuJw8soz3Pc1y6dKkEs61ES5NpeocOHSrZ6ATxqU0OoKzL3Nxc2X7UUCcAvb29ja0i4g3Z6SwTwX7bv9WUOc6yME89WcC2p89swFsL8OoJBJZ1OByW2vHcXCGIrj6msb35O+AG042qjT4D0Wd2TVtoxaerp2krda52TJCtkrb78MPAZz8L3Horxv0KpCZeTmnsKNusQEiilMMhdndPYDAocb4angoUC7O1Na+/vvxMXLjgb33iCf997fHpPHO7ZA6z7OvrwGCApe4QS0mC8fJtOHeuAuPzvAK/ieni7Fmfb6+HqNutQMs0Rf/UHWWM1PX1CiBdWKgkKrkIi9a/Ul8tcgXJC5IEo2SxxELpt243LrFSuovu6yTjku1PfwEFWJ/ngEswRlSeAEgSWXSygYoFWafrrz16tLaWA1C1A+Ne9fv+mji76CuvzLPTp3Exi2uBSZ0DDh/u4OSpbp2RrrssZHAnvhzDIbC1UUl/2+7G/7XtnQszCOluGplhpd79sH4tBgN00hTdbgfnzlXsvDxHyfSuNTA3CZStnedYXq6q5VzB1Cfg/dA6AGBpeRnoea1+kkgHA9+PVlbqpH3qpq+vA65/M1xX+tbZs1XHTRLg1Cng1a/2NzJaKdtqZQU4fBid7W10ssyj/adP+wBn/8//4x30mteEQXQ1dbyy8g+kzRbiM7t2rTrtVK3F8ryCNPmMiNOkNv55oNGAiZpAk8Czebgqe1jNP9siOBvoNARoOleC6f6jSUDd/h8yPYVlgW77f5NZnNXWCWhgX4tFZlOAprre9nYF8jkulBvzerHcFIXeO4dF54DEYdztlMOPqqVxnuBctUFb1cuXm3FQBPMOnqxrapOQ/9ptr7sNTPpBq8fuZzcc1BjwlEOMPeFX85vdQeCr/HG+lOco5eAInocAfGWihwgK2ldCcoATvwmWl3OIPK/iqfA6Bqhhplo4ZTRkmZ8o6LFC/dMfLH9/ZXAVKas2fvH2YB0mn43dV8tmIPoBMWWgh9joQF1fWeVUQmkpwExmM+/V4ItMlwC6fqeyJ7YMKh/SpE8dMgXftQwKwitgvJeedEhSg6aMaA0+afNWRjwZ3CFwmoA22dcaDFMlSKx8jG5UEMRVsJAbGNwM0I0BG1yV7a1tx7Z1ztVkTdQ3PF2gMi7K3t4LRGdeo9EIrVYLOzs7Nc10ygTpZof6m+UgyM/PWV8F9a3mvpUHUla3bS+mrT5XYF/7puZjfbWzs1OC6XxPH4Y2b9R/VtLlRpVymdnMrnnT1RVQp2/TmlaXU1ZRY0SIhkMfbHF+fmI9MzdXSZlgWGzgJh0/jS+BR7924EKpBvjyj9otqL8NLfS4qOykwojmomIw8AuKbhet1iLy3GOMlMsgIB3lI7/6XF+v0hgOgcceA44eRdTvI00r4Jtrl4WFOgYRuzFqSLguqgxYoQEo2TSKN9fYYXleLuTLxZou1ArQIkmKMSUfAQNB44FqNVqkFec54jxH0l0qq812yApw/JZbgHjwlSrIJs+bpylGiLG+7vcdBoMKg01THwA1STro9Fy9UoFj3lwjEoxXIhbdZRezoT+6WfsG/ddJAoHTeEOWwblOjanomejpRKZjF/vNofX1WjJxvomllAB7DgyyqmK8tkDOj/dvxu5u1SzdLnDyaLEZ0vXHzRl4NMuqoKPOAcvLJ/zieGvL6/AwSq52oPV14DOf8TfffXe1GaDOWlvzQV/pg5AzQ7bX9zOb2cyeHnOuxi4dI0LkXDmG+J+4/yz4G7XjvZ0TFPfpMFwFtLZDmAQibULHBchvAqH3qO7E/zUwOlS3QAK6GWFtAjyfks4009ubLq+N2yGUOZSglsE5RF2gI4ExOR8BqjFubi6eSFJjqdisOf+wc6sQTm0/lylF8HtNy4LXmnZIl17f19qpqY0K9L0GnueTeYemvSwD54XsujGjjeQ5vDi5T7DWo5p2H7QzkEhiy6uFsccDCKIXhJBysgrUiRHqF9tQxfs8B2Knla+FZ53ZDWizWdwBtyZN8mlmAx42BU3U7/TVXh/Km4AkP9cAnSEgPZT+XhrwtrwKlltTZnhIM94yxzUfzavpur3KqWW8EvatrZcFY6f9H/JvKG39PtQXQnWy/lRZIPWZ1RbXuvAe+53dlGEeetLBygFN25ix5Z52nWWeW9+H2iLUtqGguFqfmXmbMdFndiBsP6vWhpVfTSZDFtgxUK7KdKE9cU9DWebkiG4JEhNRNX8sFsF2KYpPLvFBJ3d20Lx6LW8Ir8FqC3LdvA+sJgn8U/cyJMc+kbf6VxY1eknT8fNaugX4PeGnaYv8phWt3EO2WshaLXhQ2BZKwJaQUS5mnMQlm46VDS1y98IwLC7UhBNp3zAun/SFZKxr2PIemwD7P3cLdAGsGRKZ0L+5uRLpijDG3Fw0FbNuAi2yDOgcPuz/OXq0rsWjG0jtdlUp7myUzDRwp2MyM2tXgnodGJux2WZ2nZt9JvGzK0zC/l8Dsfd6eJv3BNJDl+5lU4e5psSKz6MrGR9D4LUAjxYwtpddlf3FafWR8Yqvdv4QOqGlMUSm7a+EPg/V2Q5309Jgnjs7VTlDZdnPcFRe8BTGpbm5uiQcP2vK3znUgHMAjZsbe5bX3jsNRKepxoz+6QbVU9E6Qp1Nf7CG+NnYfbVsBqIfALMAowWjVWaF7NYQMGzBPU3T6oGrLAelQ8jWVQY0Qc04jmtMb6strbIn1lR2RIFV3se6WuY4zbKxmQ5BVwC18pGtrextBXObzAK16n/9s8EryfRnXVk+BYK1HVgOlQOxeuj0u8rENIHqGjiWvlZWu/6FQH9ttxBTnv5rtVpot9ulVAv7AOu5s7NTO0XAejA/6rCT1U0faZu2Wq2axI/2aXvCQoF8liPUTlpfTUeDhKr/9HMriaNs9L0Ade1DNyq4PgPRZ3bNWwNoWppzFetFX4vJ/VLqNbqRV8fG86wAEefngXYbeV6XYua8v5IZkQVEwcw9eXcfCwudshgxRtUZZOqaF+WJhhfR7S6WwRb5VZKQtRw+el7Wj8znpIPhekUS39oSMEBZ0gsL9cWN0JdiN8bKSlTGdaJ0Tak1mef1oFehRVHxR78dPuy/Uma8rpOcKxhmw4pxrv6p8vXtFhVMrPKzEEjAdpf+waBU1MJNEl82r+1ZlJ2iqwUjyqqa6GL+wgXP+PdBy2L/lxaY8qB+FF33TwJNV8oDabNoMFG7lxBc1/Iie0Kg+K6TjNHvR2W55uZQX+A6h83MB7idn4/g0hNwzjDV1KfDoWfuq1YOxem7XSwsLNbqOnYxIufKoGdJ4jHyLKvk2MkGveNFL/LpLy/j4jDCYv6kz4u6NQyGmmWVFuvKCp4cVuyzpbsyL/WS55WTm5B7OteiagdW1mUMWCbrntfPbGZfG9sLl9Mh1Uq++GEgqmRd+Gp/31UCE4nGzsGlddZ4eVJM5wl249sW0J5+cQ5xmiJ2KHXdQ7eHgk5a3LR2IosJab2aHGbrb/+3G5LSGATjQ8z2EDirsUw8INuwazwNuA/VI8tAEZU4TQD4DVm2TZrGxav/LE6S8oTafkB+FontEGoP1X0PFZH/hzZiQkOLXm/vYz+PbGK2rQqLMJ5oI15OxRRLUNB8y36VmXmWTbD4YyB4VM1T1avBB6GylXOppIM8B7aKGEDd7gl0er3y9J5z/uTbRIKBfkSgvKndD9zQPRu7r5rNQPQDYlZSRAFlG7DRAugK1PK9Ao4KnkZRhNHIL2h2dnZK8Jza1hYgVnCb9/NVWclMR8FF5mkDWPJ++xcC0Ql25vIUCwXu5HuCqWrqnxDLXqVQrISI6sVTV1vz5nUEXgkoU3tewWoFxylfY5nrTbItFkRXQJjALiVI1N8qC2MDrzaBwFYzvNVqlX/z8/OlXr32gcuXL5f65nmeY25urtSAp2nZKJFDSSDbZgqWs58qeK1tR815fbX9wDLMx+MxNjc3S51z+kqlXLR9FGhXTXT1HaVqtO9oH7lRbQaMz+yaNgFXJ1YnIXDVgqxnzyJKEmB5GZt5XIKfHbJa5+cnZFaSpNBCV50S5rG6WiKCnW63AvzW1isR7rNn/bWMKLW2ht5KBThS3oKYvNooj6pQWKxHEQ3z3Dl//WBQaZqX1xFYVaBYfSQA7G1pDiTFPYOsAi5DC2SNPirvxy7G1jl/Wbc7yYBut6vqe1mcYaUhQyfwPdnFtQ2TuH7Om6s0bXPNNM/Rbsdl0vz6+PHiMvqGgTaLegxWJ3DmcqODeyEE1il7E8IMqJWq3Y9+YFdbTIpNmSJoVpLEaLUq3XCWQavG93Nz4jMLovPiwQBLzgFpghHiApTw11BzeGPDbw488UTVtXu92JfPGRB9MPCxAwiic1ci832ms5zAHY1L9pv3ewVcEddeW6tiAdA36+tLAJaw/qCvzrd/+xJOujWg18PfrC8iSRZx80tfWu02JQn+7OEYDz5Ytce3fMsduPnuu30CthNKv6hp+evzg581gQzXtI1xZQy12UJ8Zl8740/RgoEaE8OCYjo0OAe41G+Gls/ndLE5KKi+LzIola51U1A3Ci2IbgujfzoOFunH5bhY3wRQ2Q3dnCfwaetbK7f939ZzGmhuP7d1kOceg6bqo4/gLP+3wHBJKrBltXlqBUMIJxuY41maYpFzlmKjPU7gpcWGVft0kgQujctmnDYNZD0YhDRkTCMURNWeGLRV289+h/3eD2VxdRJPCzyJuDcC6aHy1eXxzDxOC2j6M+cFg/U6CC5KhDVTrXVNzoLo9id3+LDfuNdu0u12yrEcYLpxWbygTexexBMfX/s2G7uvls1A9ANg05joFlxWpnVTWpZBa/WzCUhbEJ0gMFnHGiTTsuEVyCaISjY1wUetj4K6BGYJomrwTQLaIcY266FgKcvF4KEEe1XvnJsGNoimlSSxbGGrrW2Dr6r2OH1H3yqgbtng/JwgLMFhtjfrQF9omfm/lldZ1Brw0rK5QyC6brJY4J7mnEO73Ua73cb8/HzpfwWHFXje3t7G3NwcRqNRDfy3wTgZ8JMbC7oxoVrp29vbJdhNkFtPVygjnunpH03lW5guA5raTQcFyXUTQn1spWnUt6HNKP5ObiS70vreaP6Z2TVgGswxtOrWxUggWCLZraP+bWV8SAA1iQjeWi7881GFbtsFI7Udd3f9DadP+9f1deDRRz1a+OCD/trlZb96WF9HvLxcLhrjNMXWkSVsb1dEXz3lGmuefrUBdLu4cLYC0c+fl0WOAgNc2HMVZBdTwyFw5kyldZ0VbF4NxmiBaok2WeqAZ36BCkgAyqISzkWl1E3Hjap8dVWmwKyCE1xA8j2Bdqu1GegHdTC3SjrKRzVfcuGYDevFUqyEwDYX5K1WGKfl8eomLKGQXvf7BOuD2oZQXAQD3dmpFv3U46+B56AkTVYBD5qRtm3RmWJGmi38yS5y6ZLvO5cueXCbfa7bBRaXzUYFN4S0rfp9X5giWG2cpkhTzzpTtjng6xy7MdbWovK3x3Lw0Mb5gqn2rGcBJxeAcbqIhz9RYCynlvxP1PnF0kMPAZ/4RNW28/PAa0+fRhnhV+Vp1Ohzovq27zRR3K5pmx0Jn9m1axHGk5rfmHw+2uFGAdAwzuiDgjKNSBPSi+24zeemAudbW9UgtrXlX1UPgwgf6dg6B+GzNUk8mI5ooh77thAgvRdYHbomND9S0NS8V2kavSV0+1QtdK2HPk/5PiRYnufVZEYHYJplFxTfxQnQbleSNCGfh06I2aKqsZh241o/C8nwaXpNWun8rl7Gqg+XMnG2cAZIDw1RVZugvjEUAs81H5IWnCs31tkMnFrwPZNUnzBYqt2fsd1jZ6faxLDDLKcSoQCoeqhsQmqQVRL/5PlBI8LNxu6rZQdx5nZDmtVfplkQTgF2q+9s0wmlTeDPSmOoEeRVsFbBYyuTQhDUBoy0choK4CtArPVU4NOyrdU3DGSpoCXBZw2OqgBok9zMNAA91Ab8TNuBoK5ln9s21usty5kgtvpdGfn6naZpGdaav91IscbvrQa65qmSNiqbYqV1NA/dFFAQ3coNaZ8CUILgTJMbP5QiUt9oG4RONFg/qfQOme0aNFTbw7ZhaDOkSZ9f7UaVcaHNQPSZHQjba6FoF5b6ORfHMPhrUlFgdOLvHMILEF64tVUHdpUVfOlSfUVC8FnBz2JxON9dqi30nAsfOfZlrRhDzEqB21oFiAKHwGYFR9fXKxDh2LHw4px+NAC6sq7Le2SlpQuimqa2+lQ3POj40EKyqR0CK2ibRLXwqhp3BC/ns7FR+dAu8viqGMv29mQRLS6gr9YPpeQOd0yKtoowRqvlx2oy4pStOKHPrwtlCwgTSAcmgAsuarNi84NdkV2ltiGj+djV9caG79dySiPuehBJp6q1OAHo1PruxobfPCKpfmfH/3Rw1NWUY1QCfW6u2qdi2mtrAHrdsC/UJ03oiW3wA2WzhfjMrg+zQ7YFI0NgafXTLU5fhxK0qJ4y0YnwbW3VB1OljvNBo+LXfGAqcoh6+UNF4fdAFWuj0Rl7gej2c5bHZm5OaoV3LsLBGXVsm5CcaQLQr8SYjrLSNVOdv+hnzqHVihsB66ZsphUx5GI13dS2J+72W23dGNL7Ytnobuo8UTH3Cgai3etPM22o++7u5P68Hniz+0vcS0qSSWY6f07KaA/Nr/K8mn+E9nlU6m7qb2U2dt/QdhBbf2bGQgDvfmwvxrWChiEt7FA+BCOVCax5WWkSZQpregRjp+lFE/S0TF7dSAAwwTbW8vA6DY5pWcEh0FtlayxIS6DXSoaEtLhVIoSfK0NdGdjqB5ZVpWi0Dbg5QGCazOgmIL2pXdQ/TScAVMJG/RUC7237NbWT1tleF2pDrTv/LHC+Hz10lbexG0p202Hahojts02bVzc6KDwD0Wd2TRuf3yG0khZaxQSAdl5GjBnDrNQamVgfNiGjzvkVg9KFOfvn38JCBTIq4Mn7ywJ4a7f912TfeP3urEI9ixVHhDGSJCoJcROsaF2U6iupQ1aShSuh+fkqQqoa0csCwN/TzQK06/ottgt5i1qrr+WzUR4hZkVZHr2f5TcFU0ZYSTzOqzcWkLGsR/2fGu80bTrrD3UtMV2rHhKUE0HVDHZNqJsqOzsA5qXxxeeluD1Qp40FjN0hTf3eCbtz7QIWhNJAhXxLqY/D/KTtXKFBH9oISlPPOuPiPEn8gY25uapZlfHHpG3AtF7PH5og5qUxRhsBHdvP9BoLNhwom+mqzuz6M/7uG2VPAu/LD3WcDZmeVLGI3tbWZKZamJAeO1A+P8gstpe12/7VEtydkxNS055DoTy1rvUdhcnrFJ20iCWAPAsnpW4aI6pOhmkeerFShu2Y3/S5HST1Gs5hdNANPcfFHSFXqfxaaAjQLNnc6s4pwgJB0F3Cz0yU0f7vX0X7f4qFTnVMJAzUN3lsw2rGrtIa50eMB5TnVb8Nda809ddyfmRUjpDnk7HtbRo6JWVeDc07kcbBt9nYfbXsuukSM6uDkCGzYCDvsUx2BXhDIK3eY5nhylC3eatGtLKYnXOYn58vrwEwAaArgGqZ2KoRzmtDALwN5qna1JaFbgHT3IxICpArC5vBNZ1zSJIEcRyXoKwC0dyQYDDN7e1tbG1tldcwD62jgr4M+hoClPk95UiyLIPV6raBRZUFzjZR37VaLcRxXMuD98RxDJVdsaxtK0mzn7Zinhr0VesZYtBbwJunD9rtNpIkQavVQpIktXZo8gc3NtRvujlByRgbYFSNGzNaPr7qvU333wg2A9Fndk2bc0Ac12fQNdps4HqzUCBNhgupm/tjT2EdDj2y1+shW6/W0OVQo0B0kiDLgA41oXd2KoHsXg8X8w4W+32P8JFGu7EBfOlLlW6FcxW1Nk2xdc5fdvSo/ztyxCcZrX25zhIHSuZ7v79YJtHr+eLXFld5XmmQqA9uuqlCJwFfTqUGF5rrpX9lUXsxi8uyUjNViXlzc6htDijxHADyNIZzMVx30QMHw4sVPclK9BSrqs08LtRCFpGe8lryZT3l3rGLEa1/xbdnmiKHdxmboNcrglclCTYLNjSJ2ly4scrahbi4K1R0aotHHj5QqXagWjTK3kNt/T/KI7jeCUQY1xavfnMEOHmyzoxn+gSlL1wA5ucXvR97N9fKPRwC+TrQ73f8poUunovK5FmlQHTTTf6r5eV6vSdAjOVl4N57qwanfBF3cJjXcIjIOSx1U4zhpVsUTL9teYxeLypZ5sOh/xmR3T835+VccMkhyjZx112d8udH3zoH3HOP77rr616RaGUFwKpBK+yJB4uSsG7MwF5/YGzGZpvZtW1jI3EC7A2EcUPRuSrYtXOT6dA4NWAw6SiRL/QiO4ewm2h7AdihzTjZsIyc1xmPASBxWEwDiK2WRQM+7pV/E7qoQKktb+h+VwV9zovxRQ7qBU9CVfhrBJd0JjXpbf0EoOW93CzgZrxzxXiucxLAb9h3l5DnhaQdQfQy+ItPn490HYNDh7I4/HEs0kMGymS3kiKK60/bzGE+nBPZ5gz1fduNfNyYqPgsLj8v5zvTxiaLTDdtJIc2jlydWCIhggBMchb09sOH6+xznQrYPxtygHVnjBnrF763QVNZjThQ12ng+7Vps7H7atmBavYb2ZrAoxBrWL9TUFHZyBZItozqQ4cOYWdnpwSXVUpEgc0QiM68NV/9Xstqddy1njbgpQXnQwCs/Z51saC4BeDVV8xLAWbqw2teGqyUIHOr1cLhw4dLwJbAs2X907a2tmrfOecQxzHm5uZw+PDh2nsFkDVIp8qtsPwEz3d2dmoBMslOtwFFWT8th0qzsD7arkxP2d3MnxIoBJtZbt18sPIqLXNunOmqWakhTdu239zcXKnTvrCwgLm5OczPz9c2I/I8x2g0KjXb9Xeyvb1dvqq/uEkxHo/LV2Xaq4a7NftbUBD9RrQZiD6za9qSBOh06gtQCirTCE6HFrkC7pYT+dVVr1lOFLrXw9ajHtC7dKlYjOliuwh8lWVA0u0g4oJuft6vgHo9rK4Cy8tLWDx1yt+zvOzRwv/6Xz3Ay9VVmuLiMEI+qADEft/nGWcXgcHQa1Cvrvrr+fwtBKUXuzkWeylu7vvFsHOofENAcHXVX3/ypEfnibgXK6UxIuBUFeTUWpQkGCMqi63KIZbVRYB5jAhRmmIzq7SvucDlK21lZdEvkNk+NMlkfTXUxFHx6sH4QbEP8pxTXY+oZhl22vXu4RyA1TVs9p+Jhx/2n+3s+KY7ebKuZ671IjaiMUjJvHKu2hfRJuLik65Wf7F6PphsBaD3esBiCsQY4eRRX+CLw6hWHqoOnD9fSZ9QZ1Sl0b1vgdOnl7xG/dpaBWi4GFtb1b5FWuTJ89SPby1id7doR0UjTp2qnFDsIDx+LsL2NtBLRQufuxbDIaIkgXNL2NkRGYCHH0ZndRWdNMXS8jKwnOLkSR8TgP6KhheBbQcMBnhm1zPf/+qslzAiEfSO9Mu4Y7AKvOIufLLXwenTAM6YDTU6RpGV0GkIPb9+IG22EJ/ZtW0hAI7gIDcSQ0BjktQlRMoAoTJe6P31fAq9bFS66WW+3W794hDQru9Dn4cytZv6dlyzr3uRAHQeQ0S3AJvHrgqeneeooUi2mDsGIG+qji2Cgs2ADSRZtoaplv9MAeuKO1Avs08rQpIsIuku+vYePAkkCVZX/TXP7BXP7DTFk8Mq2GSeaVnqJOsmkDvkG/3MYtGhfdcQoKvjswLGqhBk/c10qSuucwU9MOAZ6uPGjRLb/73F8n5Spsfpq0mScV05vW3SeCf4rf6I3XhCOJ2bKKGDkVYSZy+r/b7TqB4HIa9OgRwcm43dV8tmIPp1YlaKxZoyypUtHgLPlYnOe/M8L78jUBliSCtTXO+1ZrXT2wUty8qcjEajMj0LTGpAVRvEVINkWhb77u4uyEQmEK/Ap+q18x6rt01Qm/8TSFfwfH5+HnEcT5RLA1OORqOyjuPxGGSwE5RXKRUtC0Fq9Y+2NZntOzs7ZXBMZU9byRICuZbhr5sDnU6n9Al9yH5BY3osX5ZlJQtfgfYmmRuVDLIbHBY8t+CzlVkh+M+2oG/JQOd19FGWZbU+rFI4lnmuZbAguv0dWjkb3QjQ0xk3os1A9Jld06YzbtV6Jmin1CEiliE2lnPVunVtDfjc54Bv/mag38fFLJ4IQjVGhIgz940ND9AWetKdhYWK0pskGCWLWF8vFounbq4YRGtr/pURQJ3DZhaVH7Poi8nI121tzddrtUCQZeFc1j3Py7rHRES5+qFvHnvMa2W02xVbvt+vyawQBOZ7ZVw75xnDJOtz+nD4cMUcIt5dLmxzAIjoqloTadEAz7g/uSBULwU9Cx9Rsl32MNDr1dlL/P7UqRhxUZndAgA/VzDnGSA263q3Msvd3YqFzXZXNtnOTqVkwmaI8lHpjDTt1AN+SlftdotgqlkGrGeI0xQj1ynBfcVPksSD6KXDnMNiv49RHtXY7or5bm0Bjz9eB9EVQOh2gV4vwiJvLBhn7OPlhg3p3N0ujt79wjItyu9Q/36ARWRD4NwXKi31PPeE9JWVyC/VtSBJAre8VFUyz73zP/YxX7hTp4BuFydPnfKFebjY9On1/B8D3/Z6SNLn1IGOz3wG+IM/AF7xCtz1ba/FotucBL600+yFgPDag0dlw2whPrNr3XRjks+e0BhtgVB91k4AiMW91InWfOzldZCUbPY4CLo5s982cfLJ/tmMbeb6vRaED3GgPngw8waJk1EBkGaykWoP0VgfBEi7k/U2jz6dcrFdyFBnkRVgbdpH4KOV6iL8TJufr8eOASfnfUE4Rj5zuRiHkg4Ga3tzJaw2d8g0bwLgalZyx/opZAqWc+5w6VL1nk1tWf6qK66EfFUJDBZeKqFzVhtMld9r+W03s58BAdmYUB8fDOvOlPgozCxy/lRGzIx6xcnBfDRx2lFNwXdrLErs5IPi/oM1fM/G7qtlB6rZZ3Z1zbKjQ+Cfvtp7Qvrh9hrLEA5JzliJD/18x44ygWv4qqxzGwzVlq0pjRCjvUn3Wu9R8FlBYWXKq1+4sWCBWADI87wEk62/+d7Kj9hgq6qJrnIh9iSC1k3BeN2UULka9XUIxNb/FXTWDQmtj5UGsn1wr02hvUBV3RDQ9mCZLDhv5WhCuuhav2l9Y5qF2uFGtBmIPrMDY1yAAs2rwtCq0c6us8yvcgq9cWqCBhlaRB8hrByu2IoFgAKcfm3gFwEdlUeR5CYkq20CGrEzzyvRdL3ZohNaZ66uZQxWAJ3gqwLHypi2RaLVApkGmiCEK+j/TKs2NQitVKWqW1s1Ej+cqxahypK3kEgtj6IAlOuxdZ1mXOSWoE7x51ynBBNsVZIEXm9fF5Zpp1bmsqpaDh5dzz2zyq4vmT2BbIIUuqGxH3US56R8BYCs+ajUDLH9jQ2/L1OT6cnF99q5THoAagF1a69J4sF8r91TJbyxUVDm677FYOB3d9bX/eXrw+aKTrNQBz1Yq3B4ndQrWVzfuGSBmX19bQI3z3OggT06EcRyz8TCXxFYVIk2Pq/5Occ/BTcrQN+ffIoUBbZ523KGJhGKHOd5JdPW9LyxaQhgyjpxiNdnvY5Flkne9Nl+TIF0TctW2RabJ590vkOGNv2tUxbMoyQ7ZBlq/uHQyDqGXGf3I0Jmgfe9rmmypvFVgWz+2RMArL/6j1O+yU2QqFk+x5TFEkHs0Fb16/oGQrlxxXxCE7vQ5FATtxMbTVgs4uSLnSJAfPEs86iWlNYzZAdu6J6N3VfNDlzTz2wS7AYmpVRC9wAIgrM2HQskW3ayAuEK6gIeACZATNaxspwJ/hKQJbCp+t9MzwK7vJ762yoFY5no1qax41XvWoFgBffJBNfgn01/IT9ZP1vQXd+zLKOR13Ejm1vlZSjnsl1o1jJf227KslcJESvpYjXvVWKF9bL9wkr5MB+tUxzHJRNd/WY3H7T+Wg4rU2PrYZn9BMetRA+lWtjvmIb2v1arVUr9qA4+09UNCd0Esf0ttBGj/bBJkuZGtBmIPrNr2kJgMVCffOuqObRyKCb35eKRFOMikmOSxOh2/QKPyWUZ0GFw0AJoLJMmklvoQud5pR+5tuaTv7k3AtbWK4SzYCMP1n1yGpRps9tBp59UQtvz8572PT8/EbxxQiPERnQiXWtrq7ZS8+yiirVnSUAhZhJlNmiUAQHqayBDjppgslnWWpZ5dtmE5qfzEjUE92lmz2KCxZZlQKffB9IUc5er6wF/9D3qdksJF00jyybj1jrnm3VhodI/9/nUMx2uVyxxuyjOsmIDhY5I05I9yMBdzLfdRr2Py8ZMCEvRJmZa2g1Uv50X6wYKu/MS+3ZRySgfIU3jcjFNIJ2LewVNLEmy1hhFRnG+iePHO1WfVkRla6uKbMo/LsKpw3PrrUCaot+vihnlI//P8jKQ54ge+rOqI2oUNLvgV7PvtRMfuJX4LDjZzK59a8K8+ZyZgrkFdhox9Xdqx4ZpZgFPCzJXQRNjxKmrxl+dj+hAx9cmEF2vM9KZQdOHdpIgScPJ89LQ5vB+/KDAatM9+p0F0EPpAb6KHBv5GYNn81Sfzjs4VtFGeYS4250gHTDWelNdppktb4gjqBsvNr1Q/9IusLBQ942dnto0+Ge7Qz2NusRaWMZlsoyh//ne67CbcdwSVEJ9mh2lCdFu6jx6n90tsPNXk5TOUSeyLb6cBrBfmzYbu6+WHbRZ2w1vli2tjFkCiFZihdeqnIYF0Zt0nBX8JICtgCoBQNWRVqkMZaGz7NTbpkxIq9XC/Px8Lagm72u329je3i5BUwKz04BKBWMt6KaAJYHVkN4560wQ2ILzlGxpt9tot9vl/6wPgX7Lrrb/s76W5ZznOS5duoQsyzAajeCcqwWiVP1uAGi327U2AlBKzmgeDGKqPuUr5U9Yb7YRNdn1tADTVaBaWdVxHJeSKuo3tn2Tf+wGhMq7KJBuJW309dChQ2i1WuWmzWg0wubmJpxzJXCu6bfb7fIzbl7wPv6uKLtDf2mQUNvPCMxz84CmADw12FmHmc1sZtegZVmlia6Tb6K5Fs1Tlgsn5wXjdeEuT0BH0islJZBl6KQOy8sxdnZ88MY890RYLJxAp49KE73AAhe58lteBrpd5EMPOK+vAw884HWpbx6eBT7/+Wpl1e/jzJmKSKvYnU8+wh39fj3qZatVZ+dmWRUAVIC/MYOp8VrVbJd74yRBlvnnIatAF3a7QAebQA4gy9FxDnecSmqB4WI3Ls9njwrud+w8e4nBnubnq+ftkSN1kOLcuYpB5yVtGFg8xvz8CQDA1nl/D+/j4nJhoXKJNrlzRUzRU8/x+ReA68JClc/NKyvYXa/kYACfjrLsnfNHyikhTzA6xggAg7HFJcBP8rRdCCeJ/zxLIgCefb5zrpKJqYAZf8/CAurodJKUGwl27cpLvM+qEwQE1dmO5b5L6vsB8Wklg2fdGDdTtx8ABoNSxgUodPGdlzki651l6fUqDJzgR3lmnxevrvqFP99fulQ5/PHHvbP6fWyig06/6POUcVlZweiuFyB2Y8Rn/srLFnFHZ3kZeOlLvWTRBz/oC8FAp6wsHZbne+ud03n6fmYzm9lXbQqI1kwAtQg+UGDJuAXq6KUF17iWMnrqIeBQgWEF2UJs4SYwkn/tttcBn5/3417SXazlNbEhrK+WGsxnIr+3oKLeR8vzMnBptxvXkp3GQN8rKKaaTYvphYpn/w+lbzdbtUnX1yupF24Ij5NO7XG9tgb0eiewsVHdTwK/3VwObbI37Z9qPallbq/XtOymivYvArt8bbe9z0iqsFIrzIfp1rXm6xvx3Jj330/+lmyftmVX43vmyflfyT7P8sl+GsrI/qj2u/uiG0Kh7+VefW4EfvrVb63muIMIpM/sathsxnaArEluhOxZmpMHgmVE83oLLhMYVADesofJ1lXmN+8lGLi1tVULYGnLStCS6Tnn0G630el0ShBXr6de9c7ODihzwmvIILdSJcwzJCOj7F/qiZPNraxrZWITFLcgOvXPW61WCabr9ZZhznbSP4LJrIMCrPTf5uYmoiiCZY+zPPyOQD7rasF0BdG3trYmNl7oN7YRAfRWq1XTK+cfy25PGyhwz7Zkua3kjfYl3QTQPmwlUwj6U+udTP2sGCCpf8582b5sQ24SKOOefY+A9u7uLjY3N8s+yI0HKy9kT4VoP9M2199eKJjpjcqwnjHRZ3ZNG1FXwMhjFMCXDRjIa5QiXYDonWQM5yKg16/uKRa0S0kCLCRYWKi0q7/0JeDuu08gWl8Hul1k68W8vVj5baYnsHrWF6Xf97LP//t/++xf3HsYePhhn3+3Cywv48yDVQxGBdFXV/3ia/nvLXoGs4pxc3V29my1Wuv1Ss1sLjKSJK7YSgQcufqTjYU895sF6j7ngDjfrEfyLO6JBCAv00kSxFo+oCwIA4glSQGwAwUAXTUjddN5LF19weT4fatVybqTOaWBudhWg0FNbrusn9dX9WXq96tqMA/Fr2+6CbhteVxpmFTOxTDrlKRq5knZerK6Dh/273mrPfGsYDebueNGXlqFhUiSmoyNvZ9dgCA/g9IyPfVzqaGbVVUaDKry53mE20j1JpheO5JQv5/t0etVGvrlglYz39nxjax6N+fOVdozxe/pYt7B2bPA804v+8/X1oCHHgKWl/GJTwDLyxHuePBBf++LXuQr6yOnAh/4APDv/73//13vqhrXsj6bECCrPcyyX6nWwdfVZrqqM7u2LYS/lXrGsuFVWyE3IeJAbVPXml5qWe6KWbdadT1xHYtC6anUiwVqq+tYg7h4H5dA6cLCYrUhSxCdz0IWwm72hWTb6KskQewc4sSVQUZpvHRCEif0HFSHOQekSRkHg5fvNxipJmP9p//zwBBBdI4lQDU2MR8F2q0KiM3Xbq5bn2j5Q4FA9Tugnh6HCNsHIvi5Quyc79MOWEx95ptZdfortGkzzbTJ7aaB1k3BeDWSDdQ/tqm9Lnled4LOszUT62xb2JDTQ/fqBrctlGxk2zlPTWaGE6DigrGL9+XTa89mY/fVshmIfgAtxEQHKjBdwVoFxhUctzIS+9H7Vgax3kdQUwM0Eii0rF+WgfIoBNPJdk6SpHbPaDRCq9UqwV8y0QGUwD1BXPpAfaSmICzLR5DValMTXCWj2sqKEDjXwJv8CwU7bfojsKvtuL29XUqQUPrm0KFDJbBuNwdUr5zgvf1O9b4JCqueOjcmCHJzc4MbAtontKzURrd9yErVqMwP77P+Ud1yy9BXqR6VpNG66KYN66xlY9+lP3VzYG5urvQ5+waNabMPal/Wcmu/C+m7q4SLniq4kYHhGYg+s2vaFDjX1YVFXW0ERgXXNzbKz9vtDkaug5gsXIKHBSLd6feRdD24t7bm8buTxSpua6tItsh3fd0D4KdOAYvpGFkW4ZFHvBIF8jUPfAMl8L26WsdnrWT6+jpwWyCgWG2R43zgzY0Nz5onoJrnVUDIEmENLKJ3djy7eH5egG4WShfyeQ48+mi1iiP1Ocs8WozCDwTTi3ui1CFJIp9uAcrHaYo4SZAkUUlWJuOfdS9jT/Wqoms5QxIiXOiyGVdWgOecHgNJVALsrBZjVtLfxHJVF7TXA8pG4uq98KUyuYdDHyuWmxg0LpQZSIzka+c8K58HC9rtAoBmgC09154k2DpXZ8gB1ULZMsmWl4sNkOEQWB/6zY1ksYbLaPfZ2Kjw7TQFbrurW9y7Xm34ALVFrQXzfeDS6hRC+QVQIRQaaJTOYCEKJ/JUxqlTsZdO2try/s9zPPywv/WOs2f97+j224FuF+OVZ2J1Fbgtz3E2y3Dbgw8imp8PM9GbmHX8ngtyIjRa3gNhs4X4zA6wBQDi0nT8xnQJC3s7QbdILnCu0ljWR4IC6BpE2xbH5hEqMk1Z4M75R59/bsZeGqbrqucTUEeG1Se626uDnwCXkSlA7FzFKmZ6TCO0majzjCRBlCToJAk2szrxbxpQ2eQLi62qhJ0d+zleabE5Nev3/ZTDPspD4PBeZgFttr9l3Ktb+J4bADWnWGZ1YZ0kARKfiA2USV14Tcb6tukzrSffczpG4/yApvcEwXN1BlDvK2ohB4d+JKGCa7p6DFL7pHMTLPQagM77Xd2v+92cuLZsNnZfLTtIM7aZNdg0LXRrBNDt/3vd2/S9BYCtznMI0A+la2VorGa4bgZY1rSVYmkqp5Y3FBiySduaviKLme+1zE31mGYWdLZmJUNskEtl21tZEVtf/b/pz/re6pRb7e4miRrrH/Yzq5++V5vt5bemOoTAaz2pYH1k7wmd9rB52N9cSAqpqdw2vRvZZiD6zA6kfRVglwecZUFqvqR+uP2q1AJ1/rraxD3PAcTV+kODg5qyKt7IWyeqE2LryKtdhE1Y04LGWtPqgyi2fpfnexQ6kK6iFhL+kx/pwaIkqfRO7To/dFxb0wqt+0Lp5Hldv7yx3Py/wUIKYFofXZQ7598TVKnpn34VKz/nuAmSV2B8nperCvWtbeadneJ7dWZgRdrkisb+atNh46lJ2mVWe/2e5fdUAi3FX9mr9uPLg7XS3sNmC/GZzexqWRNoeSX3qFFXO/gMDSHAFjxvynCvcVf/t+9Dhd4rz0DSdtjQ4l+p2f3+vYr7dFhTHjs7E/s5028KtGFUbOLox+QkPNXy6XvqzodM2yNSXe2Qo0MZ2UxDoLm+308ffqpmAPeDbbOx+2rZQe8JN7SFACWVZQFQgteqZ22DN/K+EChsgzvmeV67jgC36kXzPrKQQ6xdDfzIMpOZa5nuqvNNdjj/Z95zc3OgFjsAhBjblkVNn5BtTha3DaKpQDLTUk10ysCoj8gg17rrd9Tbtm2omw6UYbEMca0XP6e8CVBpvVudetXftlIzZJzz1UqQqIUkTHSTwfYP/d+C3dpnWW5+Zvu0le5RiRiyz0MnLpgGfaLseZWi0UClrKeelGD7hcqm+YXKq+x5leW50W0Gos/smjZlyNgVaWiyTvqQLlAXFvwqI8uwsNCBc57ZFunilekUdDTnlqqkC3CSsiBYXQU2NnD4nueVRaFGeHk8mSsk6necPYtXvOI5OH8eeOIJlExywLOUFxYKJvQ66uxkZlAEMWW9NFgXg3SVYCLz5AUM3pgkaIkrswxAEsOlcZ3RRrYQqWHqJ6ZFtrv6WpoAOWqC3ZR0IRaa556RxSP0u7sVgE4GN5tYFW5YX5LiVWIly6pj1DQlGq+vVyo3WvQaqK2BXGtRz6qvGdCzSZafLHKDR5eupQ/ipl0B9SOqOlurbeCIHrlL/UehclBHPUl8vccogpYp7U4KbRl5QMXI73YjREonpBg9ZVycK+MG4NIlTztnoxayNSz2Yi8FnvEMn3Ca4r77CoWW9VMVy3x9HdGpU8jzCOj10AMQHz9e1d8u8PX5YJ8Ves9XgwB9XW22EJ/ZwTH+xGpjLxD+3ZlxneMTGeVqJctWdcnN/a6QPdFHu72fjxn9PKRb3VTcvXBDjtMuLWKYMFM9acfEbIb6EDYSauU9tvB2bsOB0FZc82hg+OoGMesCVGMnpwyhxyjf7+5WLGyO685VJwB4L6uqRdWxLFRdnv5qeoRrVW0aeV7Vg3MLbXfb5mUd7ZipGankiCFkhGLKhogB9r3tFhZI53s9XVe3qJpzaKL8X09kNXVm7Xuh91p4+6rjrP0rrvO/82iy7OrrwI/wwA3ds7H7qtmBa/ob1SzL1QKKNjCofhYCzXmdgtkKOIZ0ngkAU8tZwVPVQWeeIW3uQ4cOIUmSErBmvryvCXR3ziFJklK7GqjkXFQbm5IeLKsClRa0pDwNgVgb7JJ1J5jKa+bm5tDpdJAkCebn50sNbg1CSZ1yu5lBiRbqsVtQWX1gddhbrVaQ+Q+gDHxJHW+C5iofsr29XYLHKiNDkFiDvVog3Uq4sD0VONZ+Z8F0lS7R4Jx8z3QpN6MAPPPXjRYFo/XEgvYz/m+Z+0xf+5n+lug3AuhJkkwE0FXtdLaZSsew/9lgsNvb26Ue+iyg6AxEn9k1boxsaBeDOuEH6t/ZBfqxY/7/4RCdJMHYed3zjl1QZJkH+pIEzi0hy4rjx+vrwPIyBoPYL7QffhhYW8PRV/4fTBbnz/ukVlY8boizRXm6XX/e9oEHcEf3YX/BS0/hIhbxsY/5S176UmCpO64kNYgMW/HrYiGRuDpmeOmSf108lFeAu6xGxy720h7DSeCdi8/5+Q7SfkcCTZmj5rogT9NSd4W6251kXCLfJUBSrJKfHEQlYErwmwC6Dc6purRc11F/e8ldBACM0sXSRdRNJbC7sVHtX/Be7gesrvpiLy/X86A5hwqxlw2AsQAw3W6d9bW76/PlpoAG4qSfVZ6e9/gNjMhL8ASQBwUSeOQcqIMWeS7/DAZee6jbhetXmwZ6VF3x7mPHfFWzrDh6TjCHGjAFosQAouon+vyuu4C4CLo7ShZ9XWzl77kHXx4u4ub7nP9tsSN0u9jYqNotTWMs3nOP10bKMrxg/U+BQQK84hU+rQce8EFH77oLGxuLwKlT6J4+7bWTdnZK8L22O2IRB+3DqsVjwfcDY2Nc2eJ6RhqY2dfW9OdUVyWJaoGMAYTHcwXgnCuCa2LyvtCrGEH4JIlq2bB8+ozTmBsqnQUYNi8qmRmNG8ExTJWlAP85n8VJEsMlMWKNQGnrSzNgY1AX3nkN9lrQxdBOrgVIDUg/dnE5PnOc0vfWd1R7A6qYGTZZxT+feMLfPzdX2xutGU+kMUgnfRmqhnahJvBb8V5q5ev0JtRm2gRNmybOxYCL6/rz0ka8zrp9WrqavpoGJrXfh/5Xdrq2Se4YWF7meixIyMlqISBbSAYqxVLzierJhfqeFj7P4YzOf+1HGjAd3g+Ozcbuq2UHqtln5q1JFkJZvARtgTrznEbA0QbyVJBTjaAwUAG0ytAmKMw0CEBaWZa5uTm02+0JEF3zVHkNXssgnmRNAyjBzizLSmY3g0sSYLW+YvqqjW1Be6s3zjzJQI+iCAsLC+h0OojjGEmSlD4kMBqSFVEGujLluelA8FcZ6LyPadp2J6jL4JoEaLe3t0tfaBsyDdU5p/65vtrNFQX7udFAn1izgDb9ohsmDASq7HytX6iNlC1udcvZ39SPaspAj6Kodq+agul6UoHfKfhtmes2HcuCH41GMxDd2AxEn9k1bUYP3DJXJkS17UzaOeDo0SqttTVEKyvI86jUrKwtNM+dA1otuJXnVEB1AW4PBgWY+dBDwOqq16JGB1tbFat8ZaVg0J4pZvW9np/8P/CAB99Pnwbuuw+Ld9+NkydfAABYWv0z4GNnPLrb63mAb22tWjSkKcan7vDk9GKhnCRRTcvVOQAJShB9BA+cD9fqC05qjhPr1IWdZ1lHmJ+P4VyMTl9WJ/RT4evNLEIuIHySRBWbvbhnhBjZkME963shyiTXwG1sTmLZdOFiMgIeOgM4h/j0abhisX/uXBUkjlrrNC7U09Rft7pabXSEugoAjFwHLgGiNK0YedLFej3RIC8A5N6pExgOvXT39rYH8qmDqzqq6kL6LU7dRGEsEMF7lBFZW98SFH7iCeCmmxBhjJ2daCJQm0qSHj9egfSjPPJgjnNVdLcsQ4QxWq0IaVoPdMqAqqdPFyB6t4vz54H5+RiLDFRaXPxXa4v4xCeAf/SPnod45UHvnCIKLE8cFHF/cXYYYzA4gZfd9STw7/4dcOed+NMX/f8wGAB/F/AOzjJsby8Cp1aAV77SNy53LvQZ0MS6pFntdN5zoAKLjnFli+vZQnxmX1tTfG7iNI2Ly+8nAmHS7P/2oahmEcsAgh/BnwBKkgDbFdVjIMJYAiEPJwHG4mIG8+50u8VmpB8blVyuxdLpjH/URGi1/HjrHGqIUJlV7v/43m6o1stO4lwB8OajSb+E0FznSgDdjs+hQJxyWy0ZDaFitbm511vsoWJhofqM8w+gzpHgfSyH1lWatVYmPsaZftmessnfKS7udF0QVJ9mk/s7nuGtDP7QPdp9tQ72f02b/2sdbflsfraJdZnLdvFpRr7fpXFY6qUJRHdVQFv+RCzIPzfn+zXgYwGo/4MbOfJ+2kYV27PpEXBwbDZ2Xy2bRMBmdiAspAcd+p7/05RprUEclY0cCvgIVFIlyqjlH9npCiJr+vaV+ViGMQFSy2onIzhJErTbbbTb7fK9sqdplrGsYK0FyTU4KIF+1kGlVegj5suyMG/6nD5ioNWQn+yfllPLZtvL+lKZ3js7O9ja2sKlS5cwHA4xGAxw8eJFXLp0CVtbW7X2sW1v/xRw//+3d+bRUVxX/v+q1d1qLUhCyNCSQYjFbBZewBt4gSQ2MQ5eE4Njx2PPJPzsEGywPWPjcXLAyfiEcXI4ZI7XyTCOZ+wZPBOW4yQeYjEBYgzYrGP2AJYsy0hgCUmt7laru9Tv98erV/26ultIWEJq8f2cU6CuelXvvqXerbrv1n32fmSvEzXJoRZbVWFuVNuo3+qY3s/UdfXFO3Vjsx76xB4aRfeA178kSDaBoedj92i3t4My+Ks6UjLr/UOf4NCvqxvh7fLqfZvhXCTJxrGzbd3llVdewahRo+DxeDB16lR88MEHnabfsmULpk6dCo/Hg9GjR+O111471+KRgYDuDmV/CE/2QG5/ylYhSDRLrmEguVE+EAD8/njvFvMca060vj62ACViNjynM+Y1bb3p5OVJT/TqahgffAB88AGwaxdw+DAGDTLt+0eOSMO8cmlWcmpW0ObmmDFaFTOpVzKAqNONpiaZvqEhthimfq46RxkxVXYtLTGP7rAzB9G8fISdOQgabgQhF2X1+R3WYp6BQCz8ih3DkE2m7M1606kmDYViRnC92Prn2Xl5gFUBZiU4nTKN2Vxx5+tGZxVlRHmM63Mx6mU9xxOVnvRaV1OGELvzlBthKUN9vTTqmpMpygBgGLHyKGOEkkVvK+XVF4UjpQuV3jWTfQJutbmqaCWw1idbW2NtoE+m5ObGYsMbBuLdLbVCq3rKzo7Jo69DqvJT7RDNy4/NgOTlobpadu3qasRujuxsIDc3rg+oSYh9+xCbdDp6FEeOADt3moKYbW8YkLMZ48cDF18cK39nRnP9Hk9WZ+rctDKid5zD1js0NTXhwQcfREFBAQoKCvDggw+iWa0MmAIhBJYtW4bS0lJkZ2dj5syZOHjwoHX8zJkzeOyxxzB+/Hjk5OSgrKwMjz/+OFr0mbJzzJucP9Stp0J22fVAynFQT9jdzX6+7bcewUpteXlSFziaz8R0jdrq6+X2+edyU7/r6xMUrbqevo6Hnr0acpTuVLpUbWqe0b4pPdreHps81z3gk+nXuGcc/QurJPv0YVH9bV90Uz+uD53233pb66gy6EZzvz9++LaLCMS+YlNbqma269eE/qSUjaZ8HKGg9QyQlyfVk765XLEt2eVCIVjh6ux2YvvjqbofdEO62xmFwwjHbW5nFG5nNKGPque+VGrKfl/Zn7X0LwH19orCEZ+RnqH2O+rJsSZb9C8A1XOj2mf/HTYciHpyEr/062z2IEld630zVZ2mB9Td55q3HRrR04yzGZE6MzR1ZmBMlvZs2BdqtBsFk4VlOZcFJe0La9q3ZOXVY6/rHsp2o7TdE12XV5fbLrM9nI4+CaAMpPb6UefZsV9b/91ZnmczNNpjyycz9qbKM1lddLbZr9OVNtaN87psqcpql1s35ttj7evydFZ/qRaXTXUP6XWU7B7Rz7cvsksS6W0j+jvvvIPFixfjueeew969e3HjjTdi9uzZqKmpSZq+qqoKt912G2688Ubs3bsXf//3f4/HH38ca9as6YniknSkM0uiItmTtf18La21y/6Gqz2Nxz2Y69fWDI7qHUM58saJoS5gWiDjRquOjthl1NumfSVI7U0yznvJlN8WrjtBTl1+lYX9pV4VJ1kVJnsJtBuVk1a76ZVlx/5CqIy5ao5Df79STZ2ZaftEXWub7Ozk73talVtl1dsIkNdUL6z2QoRC0pChf2FvGSX0N1R1Mb8fboRjMW+difZofV5HeSFa3na2SR/983L1sqxCjKukCd5y9rgDSQ6lIq79bNaLVIYA+wWcTtuLvdZvrbyVhQIAOjoSjAlxdOIO6HSa/wwaJLeUhTkLycaTtPo6rf+8iN9///3Yt28fNmzYgA0bNmDfvn148MEHOz3nxRdfxIoVK/DSSy9h586d8Hq9uOWWW9Da2goAOHnyJE6ePIlf/vKX2L9/P37zm99gw4YN+P73v/+V8ybnlx43cKW6YKr7P8n+LsvUnTEFUrfYjZ3J5vT0sU8/frYhKNl4rIzWdiw9bLdK239r6OFQVBmS6Va7LVT/bY8lr7CrKKdTfq2l62v9evp1VV0q3an0p1LFKr2aMNbThA1HTPkqQYC4BxpVV/ZHQoW1GLfWDsnij9ufs/Sypvx9FitwV7tgSn3aCWfV7xp2L/HOFny3Xz9hsixVn9ToSjx5PZ/0gbr7XPO2k1ZzJ0SSyuinhwDR/9YNjfqCkuqYwh7bWt9vj6Wu0ENb6OgGWLfbHRf+Qw8XksxInSxWtYozbq8DAJbHcjQateKG5+bmxpVB93xWeahQNvYFKfW6VMdUWmUcjUQiCIVClgez2qfLrzzUVb0r72YhhCWnLo8e/z1Ze9jbXeWpvND1RUPtsbwBQMVoV2FNlFe1kknVk/Is143TyhisyqWH59Hb2/63XX77ZIMue7JFPVXdqLLp7ZydnZ20HVW+dqO8vhip3rdVW9uN//YJmmSTLpmZmZbnul5W5VGv/58sZNGFTneN4t1Nv2LFCnz/+9/HD37wAwDAypUr8cc//hGvvvoqfv7znyekf+2111BWVoaVK1cCACZOnIhdu3bhl7/8Jb797W93K28yANCtcPaHbrsrkn2fsmiquKPK07uhAfmFhUBIO6ZepsrLLRcprxdwhOQaFwiF4PWaNsCKCulRaxgYPlxGYckJnYFhFOH4cXneZYWF0h2nsFB6zY4dC8eECXLxRPP65eXmS4laactOVpZM5PFYRmb52Tvg8PuQ4/fD4y1Ffb15uulqLV90HCgulrIop2mXy/SkDhkwDBmG5qKLpIjK2U6tGdrRIZ3tDUPGzx48GNaiqHoIbeUdX1wM5OTJBVb9zfHVrl40hw+X+xoa5LWShS1RDv7KAy47G7EXXxVEtbkZ7jwDY8cWAYjFV1dt4XTGrqE+5S4vd1iO0G6EAX8ottClab13FxcjBAfq62X47bw84NJLpRxmJBGMK/RLd+nhw2X87uZm6TU9fDi++GIKqquBq66Sh7duldt11wFz5sjzN26U8t5+O5DTUINgcRmOHHGgvNyN/GbZkCdO5MAwpKP14MHAqVOy3svLgXFjo/D5HThwQBr6LUvB2LEyU6/X8qJX3vxer3zZ/eKLWPic7OxYt/d4EHsTUSvjFhcjGHLEeZ0ni2gAAPD74fXmw+mEnJQArMYvL5cx/wEAM2dKt/QDB4CGBgy/LtZ3VL8rLjbbu6QEKCxEXp75tYbqUH4/ysvN+3vChNiMhylHnPXEjv2FXRVE/4xCD8rf7+lA9/yweudF/PDhw9iwYQN27NiBa6+9FgDw61//GtOmTcPRo0cxfvz4hHOEEFi5ciWee+453HPPPQCAN998E8OGDcN//Md/4JFHHkFFRUXc5PmYMWPwwgsv4Hvf+x4Mw4DT6TynvMn5w+2Uz/qG0xE36ZtyAk3X7Xajmv3etT8H2NH36+cYBmCPu6xjF0w3uKpJwFSGP3OAVCFj1Fc8QGw8VsZlpRt1w6DSleqRQH+MsRdXGauV17W+2LgKf+LxyBOiTre19oRaXDKIHBghID/PDLXhdKOtTcpjPt4kVLWaTI6bHLVVm0IZx5XMkYhUU3oZCgvl84XLhbivuZI1SUOD1MPZ2cCkCbJffbTTgcZGqWOLQidxxlOKzZulriwzPgUMA/WecWhoAKYMN6x1NU4256CwEMhp+BRwOnHGkOuseL1AjjOMMyE3amulTF6vlEk9LpiPZGhtlXp5yBAg3xmE2+NBg99hlcthhBGEqvf4R00gZvRXXuyyWdx6N7J3q7g+kqre7W2mY9+v5+H2pDhge852OJ0ydBFk+CA9RJE9L7v8qowJIWRMdKO5Kof+W/1vL1uyLyH7N9TdPaW7aURPM+xe2cqwq/4HEhcGtYds6U4eAOLihNsNf8k8m3XjuIqzrWKh6x68yTyc7QtSCiEsA6S+KKd+viqzimOtFiC1p1HpVP3YFw21G3/1xVHV9ZQ8yoCuh1NRi3pmZWXB4XBYMdPVZi+z+m3frwzuyuiql1v3co9Go2hvb0/weHY4HFaYGT2MTXt7uxXLXhnD3W53nCFcGdDV+frisYZhJEwsJPPSt0/M6CFUVPgUPWSP+t3e3h5n6FchcpJN9CjZVZ/WJ130BXB1w3ZGRkZCLHQ9Jr3qE3pb2731VTx+VSfqf7Wp9gmHwwgEAlZfSWVE1+/bC5VzKb/P54v7rcIF6YTDYezevRtLliyJ2z9r1ixs27Yt6XW3b9+OWbNmxe375je/iVWrViESiVjtTy4QsrISjWL2QJtA/JumsqIqC6F6O1MrItbWWouFhguHwu0JxQIzV1TAF3LD2SxflizDu2m8y8uDtAqalsVxY6MyPMu+fSj/3v/Drl0yzR1jCuW5Xq/crrhCyqCshQAcRw7ZLJmIf/MYPBinxFCgDRgWOi3TKXft2lqgqgqOiSF4PKPlS4WyaIdCcLlykO8MArW1KPaOw86diKUxDABlCASAiROBfP9JRApKceCAPHTxxfLF/Phx+aJ49dXS2N7YCOzfL9dy9Hrly5wyLo8dCxR5DPjNl08Vx9zjcVuedWWFPqC2FkVeL6Jji+Rn89XVQMiwjJ+X3Szrv7pavrQWFiJmHFXxts3P5ydN8MDrzbGaurhYlgUwF8t0ATA8gAEUNdejqKEBMAoBFMu2OXBAWjZGjIitQIp8VFcDv/2tbP/ycin7vn3ylNvGNktL+He+g5MoRWmeAWzYAIwdi2ORKfjoI+A73wHK6j/Gzqxr8Pvfm5MxW/+MnOHDsWvXaHz5JTDv9iCwYwdCN5dh82ZpX74sJGcx9u2TZbriCsDdfBrAUNTWSpsxtm5F/tix8PtLAZjxzD0e+DxDZaxyP5AViX32n5UFjBkjDdEqBIDyTFf1lpkJwCnbIDq8zLJLd3TIqq6rk3WQLAavmpxyqzdkLY4/AIz2BDF6uBOf1rqxdr0Dc+ZcBrf/LaCuDhMmyFMKCqRhxOvV7unycqC42DLmwOm0ZnvKhvsAeBCsuAY5CMrGUbFr1D2iu7/pszTJLHf67IBNr/VvwuherFQ5tnRFd3eH7du3o6CgwHoRBoDrrrsOBQUF2LZtW9KX4aqqKtTX18fp+qysLMyYMQPbtm3DI488kjSvlpYW5OfnW44u55I3OT/ocZBz8vIAxMchTzDy6fdpykQp9tstr6kskOa50ls8cfFHp1Nb20N3dVZ52mWzjyfmswKUoVE7Jz9PS2MYgCcWW1qhQpsor2u7L4B+uvqwR0UncTrlpEUUDktlDh4MuA3DWmalsBAoLZRy15sT1hMmOOAIhYC8HLS3y497ckJnAKcTecPzYRiAO+QzlWweop4c6VxgD2auW4c9Hn3VaPicRTJ0WvNJIBRCePho1NeburHhtHwGME93689Cqj6bm1FaUYHjRo7MbutWAEA7bsKRI8BtN/iA1atRtHAhtm6VdTrFL9McHz4O+/YBU+4z5LPahAnYsUP6Qoyrl5by2uYy1Neba574m+EPDcXhw7FnAPXYGAqZzg9+H9rb81Fbaz42dDQDhYXw++UEeGmxGfatsFQtnQKH3wd3Xp5laFcT/CFzslr3nFcTLjr2LxRUl1N9RR3PzIxfi8W+IKn9VolEZD9SnvhW/9fCw1knK8y+7XY64QaAwjzp7W9rNnV9fXIotgZOzIicbIJIF0PL0pqY0xMbRpLFdvs11N09pbsHTDiX3oh7u2bNGkyaNAlZWVmYNGkS1q1b11vid4lUoTz0Y8nCHijDp25It8elVtg9d1OFS1FplNHQ7kWsDJ/KiO7xeJCdnW0ZlvWY3vbQKXqsb2UMVUZJn8+HpqYmnDlzBi0tLVbMb7WwqTIA5+fno7CwEEVFRRg8eDAKCgqQn5+PvLw8DBo0CLm5uVZMcz2Gt9qys7MteXNyciyvclXWUCiEYDCI1tZWtLS04MyZMzhz5gwaGxvR1NSElpYW+P1+qEVP7XG2lZwejwc5OTnQY72r+OK6l7gyhre1taGtrQ3BYBCBQMDalAEagBXHOycnB9nZ2ZahXHlFq5jjygPc7v2tZNPbTY8Br/efrsRTt3ugq9jnejxytRBqMBhEW1sbQqEQQqGQtV+VW8nscrmstlRtm5ubi5ycHKsO7bHLdaO9Hqdej7+ux/bX7zN9wkXvn/pEi+7trr5UULIrQ7rd613Ve3+gu2PoV8HtdsNrWS26R15eHkaMGGHFMSsoKEjqVd7Q0ICOjg4MGzYsbv+wYcNQX1+f9Nr19fVJ0xuGgYaGhnOSl3ROv9bdygiub3YXFf2pXY/Bod4k1eqSap9yNfb70dCAmFtRJIKaereMywzNiA4Afj8uvliGH8F110mrJyCvs2MHsGEDckJnLEdba+Us5Q5eUSGN7xMmmO62kLHQjxyJvQHrgbMBIC8PJ05ID2I0N0uDsypTfb00HtbWxrzCmpvlCpqqDmprgQMHkO8Jo7HR3G0GWFUv5/meMHDkCAYPjs0xKDGqq4GDB+U+B6JobgZOnJBZq5ArqipVlqp6/X5YscutlxtVV7t2wXHgE2DzZmD16tj2298ClZXIP74H5eXSuJqXh9jFi4vl1txsla2o4S8oNWowOu808uv/IvNQW3V1bBLk8GHg97+X+asgswcOyAKqGLdmLPzq6lhS1aWs2NzNzTKuvd8v2zkvTxrVd+zAiRPynLLhUWD9erhcQF1dFerrYcXBP3AA+Ogj8zq7diEUkvaA2lpIGUIh7N8vm9bplPtUc+fmmtc5fhyhkPTmD4Vk/923T4px5Eh8nHiXCxiW7YO79lPL1qG/iIZCpvO12Ui1tXKi5NSpWBj6U6fkZg8fbqH6pik/gFj88yNHZGUCWL8e2LvXTH/qFBzVn2LsWDlBk5cXu1WsmZwhQ2JzTk6nrADVbpB1/ZfanNiY0N4u+789AL/9zVyPAaQqQQV5DQRwLvSN7t4IYEM3to1d1t3dob6+HkOHDk3YP3To0E71PIBuPRs0NjbiZz/7WdxL+rnkPZDo17pbKRlzy/HE4jy7nVEZUkvb1F/6ZHjU6Y7b4ibKU7qz22RQ/9sM68k8Ya1r6ZsaK+zPIfYYYvYyKyNyqvjqDQ1w+H2xLRS0LqPH4E7mlRxb0Nu2toVZLpW9Ok8ZgdXjTNTptsQwDFjjtnoUUQcdDaflRK5at+XIETiO/0X+vWuXVIpHjkh9q9IcPy4zq662/vZ4ZLx57N0LbN8ujfKAnEhX55hrjKC2NrbujFpUY+dOc2ENUw/u2AHs2AG/Hzh2DDLt+vVAQwN27DD16a5dwK5dqK42be6GIRWrYahHJ6sd1Nd6AICGBoRC8lnn1CnpUe50xkQyDFmhoZCm8kyFq+Zy1Sdcyp8DgPWloGob1Zj6ujHqC7JAQH7IqOLf6+us2PuD6iuqm9rjuas+kiyOuooxnxBr3O6urvq0HqRf9WWzX7uNINxGEDnOsHV7qC8lOjpi8f9VvPTO4v7b4+6rcHZuZzS+EszKTTY50FWou9Nbd6cY+dMLFff2lVdewfXXX4/XX38ds2fPxqFDh1BWVpaQXsW9nT9/Pt566y18+OGHWLBgAS666CLrk/3t27dj3rx5+NnPfoa7774b69atw9y5c7F169a4mYvzjd1onuyYnWShQgD0iBesPYyLPV8ACQZWI8lok8ygqHvA6x7LoVAozvNceXkrw7zap8qbkZFheSXrEwO617PdIKpPAqj8k4VW0b3F29raLCOpy+WCx+NJ6oEMwDLEJpvIABK/JlB5KS9rPRSKCm+ie7XrseD1BVU7OjoSwpUkCyujL16amZkZF/akK/HiU8VsTxaLXBmsVRvrdaX6ih5uRuWpFvtUM6H6ArK64dsul11GPbyLKnuyOOb2vpEs9rtuSNcnCuyTUfo1+oMnenfH0K+Kx+NBVVVVwpcBXcF+bwDodDbcnjbZ+WdLn2w/+er0e92tv8za3yR17EZ17X/5Yu6WHgu6sd3QFhg1n/TVe255ufnSpxnlBw2SP0996YDLlY8iozlm0LWM8kXSMJ+dbQXvjHpy4Cgulnk3NclzlJuvffUtm6dbQ4NpSHaGYgZhQJahsdH0djfTWxZR7bfpnR4KycWg1FuJkae9PGsve21tsfcn9WLT1gazrtyWoV158umLhqosrbkMy1DhiF2wri7WntXV8sVbd60z3eDzr7gC2dnyc3g0hIC8PESdbjg8kAJpkxvW22NIqyP1LbnyMG9sjMVoUS9f+oqqKr6JKWZTUwCff55rlUsZkxEKyVmNtjbU+xErh9eLZsh3SjQ3A8ePw3kdAJyC3z9K9pFhw9DQYL68m2/ghiF/t7YCyJB9srExFqEEfj8imdrkRn29NQnS3h7z0lafuuflyagucS+V5guvJ2+06lbmwcSvItWiYB0dsSpVIWAMI4mtSmWk2kO/5wA4lGBXyOo/dQpx3oWO5jOWEcrjccu+bhhWvHMVNx+AbCM1e4DYZM64QlOotrbEVfDs2D3SNZkBnFNM9IGqu5ctW4bnn3++0+vt3LkTQHLdfDY9n+y8VOf4fD5861vfwqRJk7B06dJOr9HVvNOdfq+7Ffr9aHqBd5bU6XTI0cPptKvDhLU2HIgmPhsku6i6QBdEtUZF3UBvLWDRhQuo/9U5yeJcKIuo7nXtdMKZl2MlU9nbw3cYRuIwZYlm/mEY7pg3s/mcYzkWmxfWHoPkl0Q6avVP/WHgyy9jsisDqh6vRn8QUOeoL/yUbI2Nsdl65Meu5XRKna3iujidMWtqQ4PUuaaOcblgKlHAmCD1FZqbpTXd70dtrXl50xDX3Gz+qWajDSNuoh9+P/yw1Ip8PvLEP/s4ne6YgVyrU+tZxykr0ppkthl4rT/M8+wqR01eqDB2qstYkxraJZJ141RfeHS1y+r6PQpH7B7V791kfVnPVOsv0ps9dq/aL2Mvg97VUpXBem7R7zHrt/ucjOjU3emvuweEEb034t6uXLkSt9xyC5599lkAwLPPPostW7Zg5cqV+M///M/zU7A04nw/NPaG4fGryG83kva2YdQe87u75/ZEW53rNXproc2B/tLSm3R3DO0J1NcNvUVxcTEyMzMTZpVPnz6dMIut8Hq9SdM7nU4MGTKk12S9UKHu7mW68OJOkpDCyNu181Ls72wS5qvSyUKYZGAzEHU3ACxcuBD33Xdfp2nKy8vxySef4NSpUwnHvvzyy071PCC90UpKSqz9yZ4NWltbceuttyIvLw/r1q2LC+nm9Xq7nfdAIS11dyorIOkXpFSLyfSbFXS9/9PT6r47WFXXl0KQpFB3p7/uTntt0ltxb7dv344nnngiIY16AEhGe3s72jVPrJaWlm6WJjW6B7r6X/futccW1z1dldcygDgvcD3euEKlVR7CilQzNiqNMswqT2flhau8wNXipLpntH4dPfa2kj+ZJ3pHRwfC4bBVZhU/XC3wqHtOp/JEV/WWzBPd7hFv90Rvb2+PW0hS/a1Cg6hzVAxyPca7Cqmi6udsnugqDExbWxvC4bAVHkT3dFb9TZVXDzfidDrR0dFhhW4Jh8PW4qdAzOsagOXd39bWZtVtJBKJq08VT72zWPJKdmXgV/Wux7XXy6Uv0KruHz30i73fq/pS5dM919U5KnSKCqWjQrbYwx/pnuh6vdm/rlCy28O+6Iui6jHe1d96PPhUnvnJvijpKXw+X1wMs1Txy85lDE0H3G43pk6disrKStx9993W/srKStx5551Jz5k2bRp+97vfxe17//33cdVVVzEeeg+TDrrb19qaGOYEiHmcKtcf9dvjAYSQ344GAtIT3LwHHYEAEAxK9yLTA6k14oMvJyz3ud3w+30IBqXHkc8XjXlDBQII+nxWdk4n4Ay0xoJPd3QAra0QwgfDAHyBgDyvtRXRHB8cra1SnmBQbtFo7DtV5ZWi4nCoc/1+BIM+ZGQAPo8flmBut/y7vR0IBuH3++B2A05VNp8PPjjhVLKbcgeDgM+U1w9ZTp/PBwSDiOppfFKEUEiKFggAPl8YgYAb7e3qknKBS5XG7wd8viD8fgPBoPrtAxwOBAIyFq4vFIj/XlmVX7VfJCKPmUL4/W74fIDh9wNCyHo0wrE2dLuBjIxY25v1YfWPaFTWl8Mh00ci8WE72tul8CrP1lYE3T7T2SqAjo4OyyFPeYj5AgHZv4JBtEXN8V0IwDAQifgghFnuSATBoA9AAJGIDz5TNsPwIRo1+3U4jNZW2V+CQcCXIWWIRMw+5AOMQACBTB/a2+Vvp3mdoOFTTQunI4pg0GEVX+9CwaCZl98PP3zWp+M+Xxi+kPSuEwLwRX1ARwf8fg8CAVmtSi4VN13F6m1vl3VitY3K2OWS9R2NQj1eOsx2jiun6u9SENkGTieChlvedzBjm5t9OxAAfDD7ssMhhfP5EAy65TGnP3ZvRaPyb3W/qQZU6N/EKxkCAcsVrtXsPxe67gbkJHixCj3VCdOmTUNLSws+/vhjXHPNNQCAjz76CC0tLZg+fXrSc0aNGgWv14vKykpceeWVAGRdbtmyBf/4j/9opfP5fPjmN7+JrKwsvPvuuwnGh3PJeyCQNro7I0OOD9FoTM+lMKKrRQWdTnOBYqfTirOc6jS50LbmJaveHXRvVXWy02mNNVa4GCTGUnYjHO/lqj75SeYCrlDxJvSLKd1m995VrsaGIXWY2peZiXDUidbWmIhqGFOO2kDskUM9CpjDOzIzAZ87CDid8PvNsdEHGCEfWgNOTS+HEXW6LRXo8wFGayvCOT5rSHarcVPFAFHPLUo5KB3sdMZCYAWDskxKYDUmBwII+3yyXtWzV2srWg0ffM5WmUZ9Deh0yutnZsaeEdTK4YEAAoZP6jyzLwWDPkQipl6Oyue1aFTqcJ/5rh0K+aTubm2V8rW2Ihw2n39MnRKEeY6p0/yGz1JrPl8QYadhie7zyWc/f0DTp07pph4IeKTuNhsl7PNZ7aAqVzns+3yyr7W2xvRw1FxnXoV70ZvAfh+o/1WXth+XZY+/DdRtqq6rHp3CYZm/6ncORGMPgvrztRLMftNkZkrhtfvM53PEnapC0thlTFbOSEReTu9OOTnmuGD3RI9G4fO74ffLzwSouy8w3S3SnC+++EIAEB9++GHc/hdeeEGMGzcu6TmXXHKJeOGFF+L2ffjhhwKAOHnypBBCCJfLJd5+++24NG+//bZwu90pZVm6dKkAwI0bN279blu6dGmPjaHpwurVq4XL5RKrVq0Shw4dEosXLxa5ubmiurpaCCHEkiVLxIMPPmil//TTT0VOTo544oknxKFDh8SqVauEy+USv/3tb/uqCAMW6m5u3LhxO/t2Ieru7nDrrbeKyy67TGzfvl1s375dTJ48WcyZMycuzfjx48XatWut38uXLxcFBQVi7dq1Yv/+/eK73/2uKCkpET6fTwghhM/nE9dee62YPHmyOH78uKirq7M2wzC6lfdAg7qbGzdu3M6+UXd3Trrr7rT3RFf0Rtzb7l7z2WefxZNPPmn9bm5uxsiRI1FTU4OCgoKzFyLN8Pl8GDFiBD7//HPk5+f3tTg9DsuXvgzksgGdly8ajeKzzz5DWVmZ9aUB0HnccKD74106MG/ePDQ2NuKnP/0p6urqUFFRgffeew8jR44EANTV1aGmpsZKP2rUKLz33nt44okn8PLLL6O0tBT/9E//ZH1uTHoe6u7zz4U8Pg4EBnL5BnLZAOru3uDtt9/G448/bnk633HHHXjppZfi0hw9ejTu6+Cnn34abW1tWLBgAZqamnDttdfi/fffx6BBgwAAu3fvxkcffQQAGDt2bNy1qqqqUF5e3uW8ByrU3eefC3l8HAgM5PIN5LIB1N29Qbrr7rQ3ovdW3NtUaTqLlZPqs42CgoIBOaAo8vPzWb40ZiCXbyCXDUhdvsLCwi5f41zG0HRiwYIFWLBgQdJjv/nNbxL2zZgxA3v27OllqQh1d99zoY6PA4WBXL6BXDaAursnKSoqwltvvdVpGmELm5eRkYFly5Zh2bJlSdPPnDmzS6H2upL3QIO6u++5UMfHgcJALt9ALhtA3d2TpLvuTgzGnGbocW91KisrU8a1mTZtWkJ6e9zbVGkGcpw7QsiFx7mMoYR8Vai7CSHk3KHuJn0BdTchhJw71N0DhG4Ff+mn9Ebc2w8//FBkZmaK5cuXi8OHD4vly5cLp9MpduzY0WW5WlpaBADR0tLSc4XtR7B86c1ALt9ALpsQPV++s42hhPQG1N19A8uX3gzk8g3ksglB3U0GBtTdfQPLl94M5PIN5LIJQd1NEhkQRnQhhHj55ZfFyJEjhdvtFlOmTBFbtmyxjj300ENixowZcek3b94srrzySuF2u0V5ebl49dVXE6753//932L8+PHC5XKJCRMmiDVr1nRLplAoJJYuXSpCodA5lam/w/KlNwO5fAO5bEL0Tvk6G0MJ6S2ou88/LF96M5DLN5DLJgR1Nxk4UHeff1i+9GYgl28gl00I6m6SSIYQXQgcQwghhBBCCCGEEEIIIYRcgKR9THRCCCGEEEIIIYQQQgghpLegEZ0QQgghhBBCCCGEEEIISQGN6IQQQgghhBBCCCGEEEJICmhEJ4QQQgghhBBCCCGEEEJSQCN6L/HKK69g1KhR8Hg8mDp1Kj744IO+Fumc+PnPf46rr74agwYNwtChQ3HXXXfh6NGjcWkefvhhZGRkxG3XXXddH0ncPZYtW5Ygu9frtY4LIbBs2TKUlpYiOzsbM2fOxMGDB/tQ4u5RXl6eUL6MjAz86Ec/ApB+bffnP/8Zt99+O0pLS5GRkYH169fHHe9Ke7W3t+Oxxx5DcXExcnNzcccdd6C2tvY8liI5nZUtEongmWeeweTJk5Gbm4vS0lL81V/9FU6ePBl3jZkzZya053333XeeS0JI+kLd3X/Hfx3q7vRqO+pu6m5CehPq7v47/utQd6dX21F3U3eT5NCI3gu88847WLx4MZ577jns3bsXN954I2bPno2ampq+Fq3bbNmyBT/60Y+wY8cOVFZWwjAMzJo1C4FAIC7drbfeirq6Omt77733+kji7nPppZfGyb5//37r2IsvvogVK1bgpZdews6dO+H1enHLLbegtbW1DyXuOjt37owrW2VlJQDg3nvvtdKkU9sFAgFcfvnleOmll5Ie70p7LV68GOvWrcPq1auxdetW+P1+zJkzBx0dHeerGEnprGzBYBB79uzBT37yE+zZswdr167FX/7yF9xxxx0JaefPnx/Xnq+//vr5EJ+QtIe6u3+P/3aou9On7ai7qbsJ6S2ou/v3+G+Hujt92o66m7qbpECQHueaa64Rjz76aNy+CRMmiCVLlvSRRD3H6dOnBQCxZcsWa99DDz0k7rzzzr4T6iuwdOlScfnllyc9Fo1GhdfrFcuXL7f2hUIhUVBQIF577bXzJGHPsmjRIjFmzBgRjUaFEOnddgDEunXrrN9daa/m5mbhcrnE6tWrrTRffPGFcDgcYsOGDedN9rNhL1syPv74YwFAfPbZZ9a+GTNmiEWLFvWucIQMUKi70wfq7vRtO+pu6m5CehLq7vSBujt92466m7qbxKAneg8TDoexe/duzJo1K27/rFmzsG3btj6SqudoaWkBABQVFcXt37x5M4YOHYpx48Zh/vz5OH36dF+Id04cO3YMpaWlGDVqFO677z58+umnAICqqirU19fHtWVWVhZmzJiRlm0ZDofx1ltv4W/+5m+QkZFh7U/nttPpSnvt3r0bkUgkLk1paSkqKirSrk1bWlqQkZGBwsLCuP1vv/02iouLcemll+Jv//Zv08Z7g5C+hLo7/cZ/6u70bTsd6m4JdTch3Ye6O/3Gf+ru9G07HepuCXX3hYmzrwUYaDQ0NKCjowPDhg2L2z9s2DDU19f3kVQ9gxACTz75JG644QZUVFRY+2fPno17770XI0eORFVVFX7yk5/g61//Onbv3o2srKw+lPjsXHvttfi3f/s3jBs3DqdOncI//MM/YPr06Th48KDVXsna8rPPPusLcb8S69evR3NzMx5++GFrXzq3nZ2utFd9fT3cbjcGDx6ckCad7s9QKIQlS5bg/vvvR35+vrX/gQcewKhRo+D1enHgwAE8++yz+L//+z/rc0JCSHKou9Nr/KfuTt+2s0PdTd1NyLlC3Z1e4z91d/q2nR3qburuCxka0XsJfcYRkIrQvi/dWLhwIT755BNs3bo1bv+8efOsvysqKnDVVVdh5MiR+MMf/oB77rnnfIvZLWbPnm39PXnyZEybNg1jxozBm2++aS30MVDactWqVZg9ezZKS0utfencdqk4l/ZKpzaNRCK47777EI1G8corr8Qdmz9/vvV3RUUFLrnkElx11VXYs2cPpkyZcr5FJSTtGCjjvQ51tyRd25K6OzXp1KbU3YT0HgNlvNeh7paka1tSd6cmndqUupskg+Fcepji4mJkZmYmzK6dPn06YaYunXjsscfw7rvvYtOmTRg+fHinaUtKSjBy5EgcO3bsPEnXc+Tm5mLy5Mk4duyYtVr4QGjLzz77DBs3bsQPfvCDTtOlc9t1pb28Xi/C4TCamppSpunPRCIRzJ07F1VVVaisrIybDU/GlClT4HK50rI9CTmfUHen9/hP3Z2+bUfdnQh1NyFdg7o7vcd/6u70bTvq7kSouy8caETvYdxuN6ZOnZrwGUdlZSWmT5/eR1KdO0IILFy4EGvXrsWf/vQnjBo16qznNDY24vPPP0dJScl5kLBnaW9vx+HDh1FSUmJ9nqO3ZTgcxpYtW9KuLd944w0MHToU3/rWtzpNl85t15X2mjp1KlwuV1yauro6HDhwoN+3qVLkx44dw8aNGzFkyJCznnPw4EFEIpG0bE9CzifU3ek9/lN3p2/bUXcnQt1NSNeg7k7v8Z+6O33bjro7EeruC4jzvZLphcDq1auFy+USq1atEocOHRKLFy8Wubm5orq6uq9F6zY//OEPRUFBgdi8ebOoq6uztmAwKIQQorW1VTz11FNi27ZtoqqqSmzatElMmzZNXHzxxcLn8/Wx9GfnqaeeEps3bxaffvqp2LFjh5gzZ44YNGiQ1VbLly8XBQUFYu3atWL//v3iu9/9rigpKUmLsik6OjpEWVmZeOaZZ+L2p2Pbtba2ir1794q9e/cKAGLFihVi79691krZXWmvRx99VAwfPlxs3LhR7NmzR3z9618Xl19+uTAMo6+KJYTovGyRSETccccdYvjw4WLfvn1x92J7e7sQQojjx4+L559/XuzcuVNUVVWJP/zhD2LChAniyiuv7POyEZIOUHf37/Ffh7o7vdqOupu6m5Degrq7f4//OtTd6dV21N3U3SQ5NKL3Ei+//LIYOXKkcLvdYsqUKWLLli19LdI5ASDp9sYbbwghhAgGg2LWrFnioosuEi6XS5SVlYmHHnpI1NTU9K3gXWTevHmipKREuFwuUVpaKu655x5x8OBB63g0GhVLly4VXq9XZGVliZtuukns37+/DyXuPn/84x8FAHH06NG4/enYdps2bUraHx966CEhRNfaq62tTSxcuFAUFRWJ7OxsMWfOnH5R5s7KVlVVlfJe3LRpkxBCiJqaGnHTTTeJoqIi4Xa7xZgxY8Tjjz8uGhsb+7ZghKQR1N19PxZ2Beru9Go76m7qbkJ6E+ruvh8LuwJ1d3q1HXU3dTdJToYQQpyjEzshhBBCCCGEEEIIIYQQMqBhTHRCCCGEEEIIIYQQQgghJAU0ohNCCCGEEEIIIYQQQgghKaARnRBCCCGEEEIIIYQQQghJAY3ohBBCCCGEEEIIIYQQQkgKaEQnhBBCCCGEEEIIIYQQQlJAIzohhBBCCCGEEEIIIYQQkgIa0QkhhBBCCCGEEEIIIYSQFNCITgghhBBCCCGEEEIIIYSkgEZ0QmzMnDkTixcvTpvr9jTV1dXIyMjAvn37+loUQgghpEtQd1N3E0IISS+ou6m7CUk3nH0tACEXCmvXroXL5Tpv+W3evBlf+9rX0NTUhMLCwvOWLyGEEDJQoO4mhBBC0gvqbkJIb0EjOiG9TCQSgcvlQlFRUV+LQgghhJAuQN1NCCGEpBfU3YSQ3obhXAhJQjQaxdNPP42ioiJ4vV4sW7bMOlZTU4M777wTeXl5yM/Px9y5c3Hq1Cnr+LJly3DFFVfgX//1XzF69GhkZWVBCBH3WdnmzZuRkZGRsD388MPWdV599VWMGTMGbrcb48ePx7//+7/HyZiRkYF/+Zd/wd13342cnBxccsklePfddwHIT8O+9rWvAQAGDx4cd+0NGzbghhtuQGFhIYYMGYI5c+bgxIkTPV+JhBBCyHmEupsQQghJL6i7CSHpBI3ohCThzTffRG5uLj766CO8+OKL+OlPf4rKykoIIXDXXXfhzJkz2LJlCyorK3HixAnMmzcv7vzjCRzdfgAABMdJREFUx4/jv/7rv7BmzZqkMc6mT5+Ouro6a/vTn/4Ej8eDm266CQCwbt06LFq0CE899RQOHDiARx55BH/913+NTZs2xV3n+eefx9y5c/HJJ5/gtttuwwMPPIAzZ85gxIgRWLNmDQDg6NGjqKurw69+9SsAQCAQwJNPPomdO3fif//3f+FwOHD33XcjGo32Qk0SQggh5wfqbkIIISS9oO4mhKQVghASx4wZM8QNN9wQt+/qq68WzzzzjHj//fdFZmamqKmpsY4dPHhQABAff/yxEEKIpUuXCpfLJU6fPp1w3UWLFiXk19DQIMaMGSMWLFhg7Zs+fbqYP39+XLp7771X3HbbbdZvAOLHP/6x9dvv94uMjAzxP//zP0IIITZt2iQAiKampk7Le/r0aQFA7N+/XwghRFVVlQAg9u7d2+l5hBBCSH+Bupu6mxBCSHpB3U3dTUi6QU90QpJw2WWXxf0uKSnB6dOncfjwYYwYMQIjRoywjk2aNAmFhYU4fPiwtW/kyJG46KKLzppPJBLBt7/9bZSVlVkz1gBw+PBhXH/99XFpr7/++rg87HLm5uZi0KBBOH36dKd5njhxAvfffz9Gjx6N/Px8jBo1CoD8XI4QQghJV6i7CSGEkPSCupsQkk5wYVFCkmBfzTsjIwPRaBRCCGRkZCSkt+/Pzc3tUj4//OEPUVNTg507d8LpjL8d7fkkyzuVnJ1x++23Y8SIEfj1r3+N0tJSRKNRVFRUIBwOd0lmQgghpD9C3U0IIYSkF9TdhJB0gp7ohHSDSZMmoaamBp9//rm179ChQ2hpacHEiRO7da0VK1bgnXfewbvvvoshQ4bEHZs4cSK2bt0at2/btm3dysPtdgMAOjo6rH2NjY04fPgwfvzjH+Mb3/gGJk6ciKampm7JTQghhKQT1N2EEEJIekHdTQjpj9ATnZBucPPNN+Oyyy7DAw88gJUrV8IwDCxYsAAzZszAVVdd1eXrbNy4EU8//TRefvllFBcXo76+HgCQnZ2NgoIC/N3f/R3mzp2LKVOm4Bvf+AZ+97vfYe3atdi4cWOX8xg5ciQyMjLw+9//Hrfddhuys7MxePBgDBkyBP/8z/+MkpIS1NTUYMmSJd2uB0IIISRdoO4mhBBC0gvqbkJIf4Se6IR0g4yMDKxfvx6DBw/GTTfdhJtvvhmjR4/GO++8063rbN26FR0dHXj00UdRUlJibYsWLQIA3HXXXfjVr36FX/ziF7j00kvx+uuv44033sDMmTO7nMfFF1+M559/HkuWLMGwYcOwcOFCOBwOrF69Grt370ZFRQWeeOIJ/OIXv+iW7IQQQkg6Qd1NCCGEpBfU3YSQ/kiGEEL0tRCEEEIIIYQQQgghhBBCSH+EnuiEEEIIIYQQQgghhBBCSApoRCeEEEIIIYQQQgghhBBCUkAjOiGEEEIIIYQQQgghhBCSAhrRCSGEEEIIIYQQQgghhJAU0IhOCCGEEEIIIYQQQgghhKSARnRCCCGEEEIIIYQQQgghJAU0ohNCCCGEEEIIIYQQQgghKaARnRBCCCGEEEIIIYQQQghJAY3ohBBCCCGEEEIIIYQQQkgKaEQnhBBCCCGEEEIIIYQQQlJAIzohhBBCCCGEEEIIIYQQkoL/DxhrK7a3t1eDAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 23, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAksAAAGwCAYAAAC5ACFFAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABuT0lEQVR4nO3dd3wUdf7H8ddueg8hoQQCJBQhRHoREAgqIHblTiwICOp5oIJYTj0VBU/OhugZ20mT804OUc7z+AmoBBBQulQB6SUQQkjvu/P7Y5MlIRCS7GY3Ce/n4zGP3Z2Znflk1OTtd77z/ZoMwzAQERERkQsyu7sAERERkdpMYUlERESkAgpLIiIiIhVQWBIRERGpgMKSiIiISAUUlkREREQqoLAkIiIiUgFPdxdQ11mtVk6cOEFQUBAmk8nd5YiIiEglGIZBZmYmkZGRmM0Vtx0pLDnoxIkTREVFubsMERERqYajR4/SvHnzCvdRWHJQUFAQYLvYwcHBbq5GREREKiMjI4OoqCj73/GKKCw5qOTWW3BwsMKSiIhIHVOZLjTq4C0iIiJSAYUlERERkQpc9mHp6NGjxMfHExsbS6dOnVi4cKG7SxIREZFa5LLvs+Tp6cnMmTPp0qULycnJdOvWjRtuuIGAgAB3lyYi1WSxWCgsLHR3GSLiRl5eXnh4eDjlWJd9WGratClNmzYFoFGjRoSFhZGamqqwJFIHGYbByZMnSUtLc3cpIlILhIaG0qRJE4fHQazzYWnVqlW88cYbbNq0iaSkJL766ituu+22Mvu8//77vPHGGyQlJdGxY0dmzpxJ//79yx1r48aNWK1WjZskUkeVBKVGjRrh7++vgWJFLlOGYZCTk0NycjKAvVGkuup8WMrOzqZz587cf//9DB8+vNz2BQsWMGnSJN5//3369evHRx99xLBhw9i1axctWrSw73fmzBlGjRrFJ5984sryRcRJLBaLPSg1bNjQ3eWIiJv5+fkBkJycTKNGjRy6JWcyDMNwVmHuZjKZyrUs9e7dm27duvHBBx/Y13Xo0IHbbruN6dOnA5Cfn8/gwYN58MEHue+++yo8R35+Pvn5+fbPJYNapaena5wlETfKy8vj4MGDtGrVyv5LUkQub7m5uRw6dIjo6Gh8fX3LbMvIyCAkJKRSf7/r9dNwBQUFbNq0iSFDhpRZP2TIENauXQvYmurGjBnDNddcc8mgBDB9+nRCQkLsi27ZidQuuvUmIiWc9fugXoellJQULBYLjRs3LrO+cePGnDx5EoA1a9awYMECFi9eTJcuXejSpQvbt2+/6DGfffZZ0tPT7cvRo0dr9GcQERER96rzfZYq4/xkaRiGfd3VV1+N1Wqt9LF8fHzw8fFxan0iIiJSe9XrlqXw8HA8PDzsrUglkpOTy7U2iYhI3RAfH8+kSZMq3Gfu3LmEhoZW6biJiYmYTKY6MfREq1atmDlzprvLuCiTycTixYvdXYbT1Ouw5O3tTffu3Vm+fHmZ9cuXL6dv374OHTshIYHY2Fh69uzp0HEuJr/IwvG0XE6m59XI8UWk9hgzZgwmk6nc8ttvv9m3l35wJTk5mT/84Q+0aNECHx8fmjRpwtChQ1m3bp39D35Fy9y5cwFb59cGDRoQFhZGbm5uhTW2atWqwmP27duX8PBwXnnllQt+f/r06YSHh1NQUODw9fryyy+ZNm1amdpqc3CQuq/O34bLysqy/0IBOHjwIFu3biUsLIwWLVowefJk7rvvPnr06EGfPn34+OOPOXLkCA8//LBD550wYQITJkyw96Z3tlk/HuT1b/dwR7dmzLizi9OPLyK1y/XXX8+cOXPKrIuIiLjgvsOHD6ewsJB58+YRExPDqVOn+P7770lNTWXw4MEkJSXZ9504cSIZGRlljl3yO2vRokXExcVhGAZffvkl995770Xr27BhAxaLBYC1a9cyfPhw9uzZY3+KyNvbm6lTpzJ37lz+/Oc/l+v+MGfOHO677z68vb2rcFUuLCwszOFj1BWFhYV4eXm5u4zLXp1vWdq4cSNdu3ala9euAEyePJmuXbvy4osvAjBixAhmzpzJ1KlT6dKlC6tWrWLJkiW0bNnSnWVfUoQvNOEM1vQT7i5FpM4yDIOcgiK3LFUdlaWkhaj0cqFxYdLS0vjxxx957bXXGDRoEC1btqRXr148++yz3HjjjXh7e5c5hp+fX7ljlwytMGvWLEaOHMnIkSOZNWtWhfVFRETYv18SVho1alRm3bhx49i/fz+rVq0q893Vq1ezb98+xo0bd8FjDx8+nEcffdT+edKkSZhMJnbu3AlAUVERQUFBLF26FCh7Gy4+Pp7Dhw/z+OOP21u5Slu6dCkdOnQgMDCQ66+/vkyQrIxFixbRsWNHfHx8aNWqFW+99ZZ929/+9jeuvPJK++fFixdjMplISEiwrxs6dCjPPvus/fN///tfunfvjq+vLzExMbz88ssUFRXZt5tMJj788ENuvfVWAgICLtpSB5CZmck999xDYGAgkZGR/O1vfyuz/ciRI9x6660EBgYSHBzMnXfeyalTp+zbz2+xBNu1j4+Pt3+Oj4/nscce4+mnnyYsLIwmTZrw0ksvlfnOvn37GDBgAL6+vsTGxpa7m1Mf1PmWpfj4+Ev+Uho/fjzjx493UUXO0eX4v/jJ902+T7kWuMHd5YjUSbmFFmJfXOqWc++aOhR/b+f/ig0MDCQwMJDFixdz1VVXVfuBk/3797Nu3Tq+/PJLDMNg0qRJHDhwgJiYmGrXduWVV9KzZ0/mzJnDwIED7etnz55Nr169iIuLu+D34uPj+fjjj+2fV65cSXh4OCtXrqRjx45s2LCBvLw8+vXrV+67X375JZ07d+ahhx7iwQcfLLMtJyeHN998k/nz52M2mxk5ciRPPvkkn332WaV+nk2bNnHnnXfy0ksvMWLECNauXcv48eNp2LAhY8aMIT4+nokTJ5KSkmKvt+R1woQJFBUVsXbtWh5//HHAFtxGjhzJu+++S//+/dm/fz8PPfQQAFOmTLGfd8qUKUyfPp233367woEU33jjDZ577jleeuklli5dyuOPP0779u0ZPHgwhmFw2223ERAQwMqVKykqKmL8+PGMGDGCxMTESv38JebNm8fkyZP5+eefWbduHWPGjKFfv34MHjwYq9XKHXfcQXh4OD/99BMZGRmX7E9WF9X5lqX6yivY1vzuW5jm3kJExCW++eYbexAKDAzk97///QX38/T0ZO7cucybN4/Q0FD69evHc889x7Zt26p0vtmzZzNs2DB7n6Xrr7+e2bNnO/xzjB07li+++IKsrCzA1lVi4cKFF21VAltY2rlzJykpKZw9e5adO3cyadIk+x/1xMREunfvTmBgYLnvhoWF4eHhQVBQkL2Vq0RhYSEffvghPXr0oFu3bjzyyCN8//33lf5ZZsyYwbXXXssLL7xAu3btGDNmDI888ghvvPEGAHFxcTRs2JCVK1fa63ziiSfsn0tC3tVXXw3AX/7yF5555hlGjx5NTEwMgwcPZtq0aXz00UdlznvPPfcwduxYYmJiKrwL0q9fP5555hnatWvHo48+yu9+9zvefvttAL777ju2bdvGP//5T7p3707v3r2ZP38+K1euZMOGDZW+BgCdOnViypQptG3bllGjRtGjRw/7dfzuu+/YvXs38+fPp0uXLgwYMIBXX321SsevC+p8y5K7JCQkkJCQYL+H72x+IbawFGhJr5Hji1wO/Lw82DV1qNvOXRWDBg0qM9NARZN5Dx8+nBtvvJHVq1ezbt06vv32W15//XU++eQTxowZc8lzWSwW5s2bxzvvvGNfN3LkSB5//HFefvllh6aFuPvuu5k8eTILFixg3LhxLFiwAMMwuOuuuy76ndKhw8vLi86dO3PLLbfw7rvvArYQUrqlqrL8/f1p3bq1/XPTpk3tc4VVxu7du7n11lvLrOvXrx8zZ87EYrHg4eHBgAEDSExM5Nprr2Xnzp08/PDDvPnmm+zevZvExES6detmD3mbNm1iw4YN/OUvf7Efz2KxkJeXR05ODv7+/gD06NGjUvX16dOn3OeSju67d+8mKiqqzMDJsbGxhIaGsnv37io9nNSpU6cyn0tfx927d9OiRQuaN29+0brqA4WlaqrpDt6BYbahDUKNDPIKLfhW8ReviNj6f9TErbCaEBAQQJs2bSq9v6+vL4MHD2bw4MG8+OKLPPDAA0yZMqVSYWnp0qUcP36cESNGlFlvsVhYtmwZw4YNq2r5diEhIfzud79jzpw5jBs3jjlz5vC73/2uwukkTCaTPXR4e3sTHx9PXFwcFouF7du3s3bt2mrd2jm/Y7TJZKpSX7LSY/KVXldayS3E1atX07lzZ0JDQxkwYAArV64kMTGxTP8fq9XKyy+/zB133FHuXKWn4qgoKF9KSb0Xqv389WazudzPU1hYWO47F7qOJeMTXuh61sdR9HUbrpbyD2kEQANTJmeyHX/UVkTqt9jYWLKzsyu176xZs7jrrrvYunVrmeXee++9ZEfvyhg3bhxr1qzhm2++Yc2aNRXegisRHx9PYmKiPWCYTCb69+/Pm2++SW5u7gX7K5Xw9vaukVb+2NhYfvzxxzLr1q5dS7t27eytbyW3EL/44gt7MBo4cCDfffcda9euLdMi1q1bN/bs2UObNm3KLWZz1f8c//TTT+U+t2/f3l77kSNHyswysWvXLtLT0+nQoQNg67R/fof3rVu3VqmGkvOcOHHuYaR169ZV6Rh1gcJSLWUKCAcg2JTL2fQsN1cjIrXFmTNnuOaaa/jHP/7Btm3bOHjwIAsXLuT1118vd8voQk6fPs1///tfRo8eTVxcXJll9OjRfP3115w+fdqhGgcOHEibNm0YNWoUbdq0YcCAAZf8Tkno2L59O/3797ev++yzz+jWrVuFLVOtWrVi1apVHD9+nJSUFIdqL+2JJ57g+++/Z9q0aezdu5d58+bx3nvv8eSTT9r3KbmF+Nlnn9nDUnx8PIsXLyY3N9feXwngxRdf5NNPP+Wll15i586d7N69mwULFvD8889Xq741a9bw+uuvs3fvXhISEli4cCETJ04E4LrrrqNTp07ce++9bN68mfXr1zNq1CgGDhxov813zTXXsHHjRj799FP27dvHlClT2LFjR5VquO6667jiiisYNWoUv/zyC6tXr+bPf/5ztX6e2kxhqbbyDcFS/I8n4+ypS+wsIpeLwMBAevfuzdtvv82AAQOIi4vjhRde4MEHH+S999675Pc//fRTAgICuPbaa8ttGzRoEEFBQcyfP9/hOseOHcvZs2cZO3ZspfaPi4sjPDyczp0724PRwIEDsVgsl+yvNHXqVA4dOkTr1q0vOjZVdXTr1o1///vffP7558TFxfHiiy8yderUMrc6TSaTvb6SkNepUydCQkLo2rVrmZA3dOhQvvnmG5YvX07Pnj256qqrmDFjRrWHsnniiSfYtGkTXbt2Zdq0abz11lsMHTrUXtfixYtp0KABAwYM4LrrriMmJoYFCxaUqeeFF17g6aefpmfPnmRmZjJq1Kgq1WA2m/nqq6/Iz8+nV69ePPDAA2X6ZNUXJqOqg4EIULaD9969e0lPT6/w/3yqI2NqC4Kt6XwX/xXXxV/j1GOL1Dd5eXkcPHiQ6OjoMv0/ROTyVdHvhZI+x5X5+62WpWqaMGECu3btqvIjmFWR42nrOJ6f7liTuIiIiFSfwlItlu/VAIDCLOfdgxcREZGqUViqxYp8bWHJUFgSERFxG4WlWszqZ5t/yZSb6uZKRERELl8KS7WYuXj4AM98hSURERF3UViqxTyDbGHJpyDNvYWIiIhcxhSWqikhIYHY2Ngqza9TVb7BtlG8/TU/nIiIiNsoLFWTK4YO8G9gC0vB1nQKiqw1dh4RERG5OIWlWiwg1DaZbgNTFmdzND+ciAjYphO51MS6c+fOJTQ01CX1VMZLL71Ely5d3F3GJR06dAiTyVTlOeJcJTExEZPJRFpamkvPq7BUi5kDGgIQRiZnshSWROqrMWPGYDKZyi2//fabffttt91m3z85OZk//OEPtGjRAh8fH5o0acLQoUNZt26d/Y9JRcvcuXMByM3NpUGDBoSFhZGbm1thja1atarwmH379iU8PJxXXnnlgt+fPn064eHhFBQ4/rvsyy+/ZNq0aWVqmzlzpsPHrY7aFsqkZni6uwCpgL8tLPmb8knPSIdI506nIiK1x/XXX8+cOXPKrLvYPGfDhw+nsLCQefPmERMTw6lTp/j+++9JTU1l8ODBZWaSnzhxIhkZGWWOHRJimx1g0aJFxMXFYRgGX375Jffee+9F69uwYQMWiwWAtWvXMnz4cPbs2WOfJsLb25upU6cyd+5c/vznP2Mymcp8f86cOdx33314e3tX4apcWFhYmMPHuNwZhoHFYsHTUzGgMtSyVJv5BFFUnGczzya7uRgRqUklLUSlFw8Pj3L7paWl8eOPP/Laa68xaNAgWrZsSa9evXj22We58cYb8fb2LnMMPz+/csf28/MDYNasWYwcOZKRI0cya9asCuuLiIiwf78krDRq1KjMunHjxrF//35WrVpV5rurV69m3759jBs37oLHHj58OI8++qj986RJkzCZTOzcuROAoqIigoKCWLp0KVD2Nlx8fDyHDx/m8ccft7dylbZ06VI6dOhAYGAg119/fZkgabVamTp1Ks2bN8fHx4cuXbrw7bff2rdf6JbP1q1bMZlMHDp0iMTERO6//37S09Pt537ppZcqvI6VPXdVr4lhGLz++uvExMTg5+dH586d+eKLL8r9LEuXLqVHjx74+PiwevXqi9b366+/0rdvX3x9fenYsSOJiYlltq9cuZJevXrh4+ND06ZNeeaZZygqKrJvv1BrX5cuXcpcH5PJxCeffMLtt9+Ov78/bdu25euvvy7znSVLltCuXTv8/PwYNGgQhw4dqvC61hSFpdrMZCLLw/Z/gHlpCksiVWYYUJDtnqWG5igPDAwkMDCQxYsXk5+fX+3j7N+/n3Xr1nHnnXdy5513snbtWg4cOOBQbVdeeSU9e/Ys10I2e/ZsevXqRVxc3AW/Fx8fX+aP8cqVKwkPD2flypWArVUrLy+Pfv36lfvul19+SfPmzZk6dSpJSUllwlBOTg5vvvkm8+fPZ9WqVRw5coQnn3zSvv2dd97hrbfe4s0332Tbtm0MHTqUW265hX379lXq5+3bty8zZ84kODjYfu7Sx6/Ipc5d1Wvy/PPPM2fOHD744AN27tzJ448/zsiRI+37l3j66aeZPn06u3fvplOnThet76mnnuKJJ55gy5Yt9O3bl1tuuYUzZ84AcPz4cW644QZ69uzJL7/8wgcffMCsWbMuegu2Ii+//DJ33nkn27Zt44YbbuDee+8lNdU2tuDRo0e54447uOGGG9i6dSsPPPAAzzzzTJXP4Qxqf6umhIQEEhIS7M3SNSXPKxQsZyjI1GS6IlVWmAOvRrrn3M+dAO+ASu/+zTffEBgYaP88bNgwFi5cWG4/T09P5s6dy4MPPsiHH35It27dGDhwIHfddVeFf/zON3v2bIYNG0aDBrZpla6//npmz55drT94pY0dO5Ynn3yS9957j8DAQLKysli4cCEzZsy46Hfi4+OZOHEiKSkpeHh4sHPnTqZMmUJiYiLjx48nMTGR7t27l7k+JcLCwvDw8CAoKIgmTZqU2VZYWMiHH35I69atAXjkkUeYOnWqffubb77Jn/70J+666y4AXnvtNVasWMHMmTNJSEi45M/q7e1NSEgIJpOp3Lkv5VLnrso1yc7OZsaMGfzwww/06dMHgJiYGH788Uc++ugjBg4caD/v1KlTGTx48CXre+SRRxg+fDgAH3zwAd9++y2zZs3i6aef5v333ycqKor33nsPk8lE+/btOXHiBH/605948cUXMZsr3w4zZswY7r77bgBeffVV/va3v7F+/Xquv/56PvjgA2JiYnj77bcxmUxcccUVbN++nddee63Sx3cWtSxVkyuGDgAo9LH9IivK1PxwIvXZoEGD2Lp1q3159913L7rv8OHDOXHiBF9//TVDhw4lMTGRbt262TtuX4rFYmHevHmMHDnSvm7kyJHMmzfP4f8BvPvuu7FarSxYsACABQsWYBiGPRRcSFxcHA0bNmTlypWsXr2azp07c8stt9hbRRITE8v8wa8sf39/e1ACaNq0KcnJtlb6jIwMTpw4Ua61ql+/fuzevbvK56qKypy7Ktdk165d5OXlMXjwYHvLY2BgIJ9++in79+8vc44ePXpUqsaS0AW2gN6jRw97bbt376ZPnz5lbnn269ePrKwsjh07VqVrUTrgBwQEEBQUZP9ntHv3bq666qoy5yldlyupZamWs/qFQTpYs8+4uxSRusfL39bC465zV0FAQABt2rSp9P6+vr4MHjyYwYMH8+KLL/LAAw8wZcoUxowZc8nvLl26lOPHjzNixIgy6y0WC8uWLWPYsGFVqr20kJAQfve73zFnzhzGjRvHnDlz+N3vfmfvCH4hJpOJAQMGkJiYiLe3N/Hx8cTFxWGxWNi+fTtr16695FABF+Ll5VXuPMZ5t0fP7+NkGIZ9XUkLSenvFBYWVrmOi6no3FW5JlarbRy+//3vfzRr1qzMMX18fMp8DgiofGvnxeotXWfp2kvvYzaby13rC127C/0zKvl5zv++O6llqZYzFQ8f4JGnliWRKjOZbLfC3LGc98ekpsXGxpKdnV2pfWfNmsVdd91VpiVr69at3HvvvZfs6F0Z48aNY82aNXzzzTesWbPmoh27Syvpo5OYmEh8fDwmk4n+/fvz5ptvkpube8H+SiW8vb2r3CIWHBxMZGQkP/74Y5n1a9eupUOHDsC5pxFL94M6f/yhmjo3VP6axMbG4uPjw5EjR2jTpk2ZJSoqqkq1lfjpp5/s74uKiti0aRPt27e3n2/t2rVlwszatWsJCgqyh7WIiIgy1y0jI4ODBw9WqYbY2NgydZxflyspLNVyXkG2Ubx9NJmuiABnzpzhmmuu4R//+Afbtm3j4MGDLFy4kNdff51bb731kt8/ffo0//3vfxk9ejRxcXFlltGjR/P1119z+rRjfSQHDhxImzZtGDVqFG3atGHAgAGX/E58fDw7d+5k+/bt9O/f377us88+o1u3bhW2TLVq1YpVq1Zx/PhxUlIq/z+WTz31FK+99hoLFixgz549PPPMM2zdupWJEycC2MPGSy+9xN69e/nf//7HW2+9Ve7cWVlZfP/996SkpJCTk+OUc1flmgQFBfHkk0/y+OOPM2/ePPbv38+WLVtISEhg3rx5lb4epSUkJPDVV1/x66+/MmHCBM6ePcvYsWMBGD9+PEePHuXRRx/l119/5T//+Q9Tpkxh8uTJ9ta4a665hvnz57N69Wp27NjB6NGjL/h0Z0Uefvhh9u/fz+TJk9mzZw///Oc/K32r2dl0G66W8w21dRr0Lzx7waZPEbm8BAYG0rt3b95++232799PYWEhUVFRPPjggzz33HOX/P6nn35KQEAA1157bbltgwYNIigoiPnz5zN58mSH6hw7dizPPfccTz31VKX2j4uLIzw8nJYtW9pDwMCBA7FYLJfsrzR16lT+8Ic/0Lp1a/Lz8yt9++axxx4jIyODJ554guTkZGJjY/n6669p27YtYLtF9K9//Ys//vGPdO7cmZ49e/LKK6/w+9//3n6Mvn378vDDDzNixAjOnDnDlClTKjV8wKXOXdVrMm3aNBo1asT06dM5cOAAoaGhdOvWrVL/TlzIX//6V1577TW2bNlC69at+c9//kN4uG1y92bNmrFkyRKeeuopOnfubB824vnnn7d//9lnn+XAgQPcdNNNhISEMG3atCq3LLVo0YJFixbx+OOP8/7779OrVy9effVVe2hzJZNRm24K1kEZGRmEhISQnp5e4f/5VFf+tq/w+XIMG63taPfcWoJ9vS79JZHLUF5eHgcPHiQ6OhpfX193lyMitUBFvxeq8vdbt+FqOZ8Q2/xwDUnndGb1x1QRERGR6lFYqu0CbB0MG5oySFFYEhERcTmFpWpKSEggNjaWnj171uyJisNSsCmX1PTMmj2XiIiIlKOwVE2uGpQS3xD7/HBZZ9w0XoyIiMhlTGGptjOZyPayjeKdl37KzcWI1H56ZkVESjjr94HCUh2Q722b4bswQ5PpilxMyUjAlR3nRkTqv5LfB+ePFF5VGmepDijyD4fsPZClsCRyMR4eHoSGhtrnlfL399e4ZCKXKcMwyMnJITk5mdDQ0CoPiHk+haW6wN/WyducqylPRCpSMvN7SWASkctbaGio/feCIxSW6gDP4JIpTzSZrkhFTCYTTZs2pVGjRk6d8FRE6h4vLy+HW5RKKCzVAd4hmvJEpCo8PDyc9ktSREQdvOsA/wa2sNTASCcjt8jN1YiIiFxeFJbqAO9g25Qn4aYMTmdpFG8RERFXUliqCwJLpjzR/HAiIiKuprBUF5TMD0cGpzNz3VyMiIjI5UVhqZpcNjccgH84AJ4mK+mpeiRaRETElRSWqsllc8MBeHqT6xEEQO7ZkzV/PhEREbFTWKoj8nwaAlCQprAkIiLiSgpLdYTFzxaWLFmn3VyJiIjI5UVhqY4wFXfyNuVoyhMRERFXUliqIzyKx1ry1pQnIiIiLqWwVEf4htrCUnDRWXILLG6uRkRE5PKhsFRH+BS3LDU0ZZCcmefmakRERC4fCkt1hCmwEWALS6cyNIq3iIiIqygs1RXFHbzDSVfLkoiIiAspLNUVJVOeqGVJRETEpRSW6oriyXSDTLmkpqe5txYREZHLiMJSXeETjMXkBUDOWc0PJyIi4ioKS3WFyUR+8ZQnRRma8kRERMRVFJbqEKt/OABGplqWREREXEVhqQ4xBdnGWvLM1fxwIiIirqKwVId4hTQFILAwlbxCjeItIiLiCgpL1ZSQkEBsbCw9e/Z02Tm9QpoA0MiURrKGDxAREXEJhaVqmjBhArt27WLDhg0uO6cpyBaWIkxpnMzQwJQiIiKuoLBUlxRPeRJhSicpPdfNxYiIiFweFJbqksDiliXSOJmuliURERFXUFiqS4pblhqZ0khKU8uSiIiIKygs1SXFYcnPVEBaWqqbixEREbk8KCzVJd4BFHkGAJCfluTmYkRERC4PCkt1jCXANjClNVNTnoiIiLiCwlIdUzKKt1duCoUWq5urERERqf8UluoYr+CSJ+LOcjpTA1OKiIjUNIWlOqakZck21pKGDxAREalpCkt1TWBxWNJYSyIiIi6hsFTXBJZuWdJYSyIiIjVNYamuKQ5LjUxqWRIREXEFhaW6xj4/XBpJmkxXRESkxiks1TVBtqfhwsggOS3bzcWIiIjUf1UOS7m5uRw/frzc+p07d1ZpH6km/4YYJjMeJoOC9FPurkZERKTeq1JY+uKLL2jXrh033HADnTp14ueff7Zvu++++yq9jzjA7IG1eBRvc1YSFqvh5oJERETqtyqFpVdeeYXNmzfzyy+/MHv2bMaOHcs///nPSu9jGPrD7gzmkOYANDJSSM5UvyUREZGa5FmVnQsLC4mIiACgR48erFq1ijvuuIPffvutUvuYTCYnln75MoVEwnFoakrl+Nlcmob4ubskERGReqtKLUuNGjVi27Zt9s8NGzZk+fLl7N69276+MvuIg4JtLUtNTWc4nqaxlkRERGpSlcLS/PnzadSoUZl13t7e/Otf/2LlypWV3kccFNIMgEjTGY6dVVgSERGpSVW6Dde8efOLbuvXr1+l9xEHBUcC0MSUylqFJRERkRpVpbBU4siRI9U6WWhoKMHBwdX6bk26/fbbSUxM5Nprr+WLL75wdzmXZr8Nl8qxszluLkZERKR+q1ZYatWqVZW/YzKZmDJlCi+++GJ1TlmjHnvsMcaOHcu8efPcXUrlFLcsNeYsSWez3FyMiIhI/VatsGS1Wp1dh1sNGjSIxMREd5dReUFNMEweeGEhP+0khmHoSUMREZEaUq3pTqKjo4mJiany8u677zq7flatWsXNN99MZGQkJpOJxYsXl9vn/fffJzo6Gl9fX7p3787q1audXodLmT3sE+o2tKSQklXg5oJERETqr2q1LM2dO7daJ6vO7btLyc7OpnPnztx///0MHz683PYFCxYwadIk3n//ffr168dHH33EsGHD2LVrFy1atHB6Pa5iCmkOmSdoYkrleFouEUE+7i5JRESkXqpWWBo4cKD9/dGjR4mKinJaQVU1bNgwhg0bdtHtM2bMYNy4cTzwwAMAzJw5k6VLl/LBBx8wffr0Kp8vPz+f/Px8++eMjIyqF+0Mxf2WbMMH5NAlKtQ9dYiIiNRz1boNV1r79u154YUXyM7OdkY9TlVQUMCmTZsYMmRImfVDhgxh7dq11Trm9OnTCQkJsS9uC4rFU540KR7FW0RERGqGw2Fp+fLlLFu2jLZt2zJnzhxn1OQ0KSkpWCwWGjduXGZ948aNOXnypP3z0KFD+f3vf8+SJUto3rw5GzZsuOgxn332WdLT0+3L0aNHa6z+CpVqWdIo3iIiIjWnWrfhSuvbty8///wzn376KX/+85959913efvtt4mPj3dCec5x/pNi5z89tnTp0kofy8fHBx+fWtA/KNg2indTjeItIiJSoxxuWSoxatQo9u7dy80338yNN97I7bffXmaCXXcIDw/Hw8OjTCsSQHJycrnWpjqnTFjSwJQiIiI1xWlhCWwtNkOGDOGhhx7i66+/Ji4ujieeeILMzExnnqbSvL296d69O8uXLy+zfvny5fTt29ehYyckJBAbG0vPnj0dOk61hdr6SjXmLEmpGRiG4Z46RERE6jmHb8N9+OGHbNiwgQ0bNrB79248PDzo1KkTEyZMoEuXLnz22WfExsby1Vdf0aNHD2fUXEZWVlaZFqyDBw+ydetWwsLCaNGiBZMnT+a+++6jR48e9OnTh48//pgjR47w8MMPO3TeCRMmMGHCBDIyMggJCXH0x6i6wMYYXv54FObQsOgUyZn5NA72dX0dIiIi9ZzDYekvf/kLV111FaNHj+aqq66iR48eZfr0jB07lldffZUxY8awY8cOR09XzsaNGxk0aJD98+TJkwEYPXo0c+fOZcSIEZw5c4apU6eSlJREXFwcS5YsoWXLlk6vxaVMJkwNWkHyLlqakjmUkq2wJCIiUgNMhgvu35w6dYrIyEgsFktNn8rlSlqW0tPTXT9J8L/ugT3/44XCMVx5+5Pc2cN9412JiIjUJVX5++3UPksX06hRI3744QdXnOryEhYNQEvTKQ6fqX3jXImIiNQHLglLJpOpzKjf9YHbO3gDNGgFYLsNd0ZPxImIiNQEl4Sl+mjChAns2rWrwgEsa1xxy1ILtSyJiIjUGKeGpc2bN1NQUODMQ0pFGrYFoJXpJMdSMjV8gIiISA1waljq2bMnhw4dcuYhpSIhURheAfiYimhYcIzUbAVVERERZ3P6oJTiQmYzpoh2ALQ1HVe/JRERkRqgPkvVVCs6eANEdACgremY+i2JiIjUAIWlaqoVHbwBGrUHoJ35GIfVsiQiIuJ0Ckt1XYQtLNluw6llSURExNkUluq64rAUYzrBoeQMNxcjIiJS/ygs1XUhUVg9/fE2WSg8/RtWqzrZi4iIOJPCUl1nNmOKuAKAFpYjnEjPdXNBIiIi9YtTw9KUKVMIDw935iGlEkyNbE/EtTMdY19ylpurERERqV+cHpbCwsKcechaq9YMHQBlnojbr7AkIiLiVLoNV021ZugAgMYdAehgOsy+UwpLIiIizqSwVB806QxAa3MSx0+dcnMxIiIi9YvDYSkzM9MZdYgjAiMoDGgKgOfpnZp2RkRExIkcDkv9+/fn5MmTzqhFHGCO7AJAq8L9nM7Kd28xIiIi9YjDYalHjx707t2bX3/9tcz6LVu2cMMNNzh6eKkkj2ZdAIgzH+I39VsSERFxGofD0ieffMLYsWO5+uqr+fHHH9m7dy933nknPXr0wMfHxxk1SmU0tfVb6mg6yG+nFZZEREScxdMZB5kyZQre3t4MHjwYi8XC0KFD2bBhA926dXPG4WulhIQEEhISsFgs7i7FpkknwDZH3OcnUoBWbi1HRESkvnC4ZSkpKYnHHnuMadOmERsbi5eXF3fddVe9DkpQy4YOAAiOJN87DE+Tldxj29xdjYiISL3hcFiKiYlh9erVLFy4kE2bNvHll18yfvx4XnvtNWfUJ5VlMlHU+EoAAs7s1BxxIiIiTuJwWJozZw5btmzhxhtvBGDo0KGsWLGCd955h/HjxztcoFSeXwtba15b634Op+a4uRoREZH6weGwdNddd5Vb161bN9auXUtiYqKjh5cqKBk+IM58iN1JGe4tRkREpJ6osRG8W7VqxZo1a2rq8HIhxU/EXWE6yp7jqW4uRkREpH6okbB09uxZVqxYwbx582ri8HIxDVpR4BmIj6mItCPb3V2NiIhIveDw0AEHDx5k69atZZZjx45hGAYBAQFMmjTJCWVKpZhM5IZfiffJdXgnbwPK3yIVERGRqql2y9LAgQMJDQ2ldevWjB07lu+++44mTZpw/PhxZs2axeHDhzVvnBv4RnUFoFnePtJyCtxcjYiISN1X7bC0bt06JkyYwNGjRzl79ixr1qzho48+wmQy0atXL6KiopxZZ62TkJBAbGwsPXv2dHcpZfgUhyVbJ2+FVREREUdVOyz9/PPPrF69mgkTJrB3715n1lQn1LpBKUsUd/KONR1m5zF18hYREXFUtcNS165dWbVqFXfeeSdDhw5lwoQJJCcnO7M2qY6GbSg0++JvyifpwA53VyMiIlLnOfw03D333MPOnTsJDQ2lY8eOWK3W2jNf2uXI7EFuWKztfdIv7q1FRESkHnDK0AH+/v785S9/4eeff+amm27i2muv5c033yQ3N9cZh5cq8ikeybtJzh5Ss9XJW0RExBFOHWcpJiaG//znP3z22WfMmTOHmJgYZx5eKqmkk3dH0yF+OZbm3mJERETquBoZlHLw4MFs27aNP/3pTzVxeLmU4k7eceZDbDuS5t5aRERE6rhqDUp55MiRSu13xx13lNk3NDSU4ODg6pxSqiKiPRaTF8HkcOLQbqCduysSERGps6oVllq1alXl75hMJqZMmcKLL75YnVNKVXh4kRfWnoAz2yFpK4ZxCyaTyd1ViYiI1EnVCktWq9XZdYiT+bToDme2E12wj2Nnc4kK83d3SSIiInVStcJSdHR0tVoqJk2axGOPPVadU0oVeUZ1hy1z6WTaz+YjZxWWREREqqlaYWnu3LnVOll1bt9JNUXahg+IMx/kzYNnuLVLMzcXJCIiUjdVKywNHDjQ2XXUOQkJCSQkJNTeATgj2mPx8CXYksuJAzuATu6uSEREpE6qkaEDLge1dm64Eh6eWBpfCUBQ6nbScwvdXJCIiEjdpLBUj3lHdQfgStMBNh856+ZqRERE6iaFpfqsuN9SJ/MBNh5KdXMxIiIidZPCUn3WzBaWOpoOselgipuLERERqZscDktjxoxh1apVzqhFnC2sNRbvIPxMBeQc20F+US3tjC4iIlKLORyWMjMzGTJkCG3btuXVV1/l+PHjzqhLnMFsxhzZBYD2xm9s1TxxIiIiVeZwWFq0aBHHjx/nkUceYeHChbRq1Yphw4bxxRdfUFioJ7DczRTZFYBOpgOs3X/GzdWIiIjUPU7ps9SwYUMmTpzIli1bWL9+PW3atOG+++4jMjKSxx9/nH379jnjNFIdzc518l6nsCQiIlJlTu3gnZSUxLJly1i2bBkeHh7ccMMN7Ny5k9jYWN5++21nnkoqq/iJuPamI+w8eoqcgiI3FyQiIlK3OByWCgsLWbRoETfddBMtW7Zk4cKFPP744yQlJTFv3jyWLVvG/PnzmTp1qjPqlaoKbYHhH463yUI76yE2HNJ4SyIiIlVRrelOSmvatClWq5W7776b9evX06VLl3L7DB06lNDQUEdPJdVhMmFq3hP2/h/dzPtYuz+Fge0i3F2ViIhIneFwWHr77bf5/e9/j6+v70X3adCgAQcPHnT0VFJdUbaw1NX8Gx+r35KIiEiVOHwb7r777qswKEkt0LwnAF3N+9hxPJ30HD2lKCIiUlkOh6Xp06cze/bscutnz57Na6+95ujhxRkiu4HJTDPTGSKMVH46qNYlERGRynI4LH300Ue0b9++3PqOHTvy4YcfOnp4cQafQGjUEYCu5t80hICIiEgVOByWTp48SdOmTcutj4iIICkpydHDi7NEnbsVt3a/5okTERGpLIfDUlRUFGvWrCm3fs2aNURGRjp6+ForISGB2NhYevbs6e5SKqe431I38z72nsridGa+mwsSERGpGxx+Gu6BBx5g0qRJFBYWcs011wDw/fff8/TTT/PEE084XGBtNWHCBCZMmEBGRgYhISHuLufSmvcCoJP5EF4UsXZ/Crd2aebmokRERGo/h8PS008/TWpqKuPHj6egoAAAX19f/vSnP/Hss886XKA4ScPW4NcAn9yzdDAdZu1v0QpLIiIileBwWDKZTLz22mu88MIL7N69Gz8/P9q2bYuPj48z6hNnMZlst+L2LaOr+Te++y0OwzAwmUzurkxERKRWc9rccIGBgfTs2ZO4uDgFpdqq+FZcD499HE/L5dCZHDcXJCIiUvs53LIEtj5K33//PcnJyVit1jLbLjQGk7hJ8x4A9PbaDwWwet9posMD3FyUiIhI7eZwy9LLL7/MkCFD+P7770lJSeHs2bNlFqlFmnUHTDSynCKCNFbt1RACIiIil+Jwy9KHH37I3Llzue+++5xRj9Qk32Bo1AGSd9nGWzoQTqHFipeH0+7GioiI1DsO/5UsKCigb9++zqhFXKF4vKU+PgfJyi9i69E099YjIiJSyzkclh544AH++c9/OqMWcYXisHS170EAVu897c5qREREaj2Hb8Pl5eXx8ccf891339GpUye8vLzKbJ8xY4ajpxBnirI9ERedvwcPLKzal8LkIVe4uSgREZHay+GwtG3bNrp06QLAjh07ymzTGD61UMO24BuCZ1467U1H2HbMg7ScAkL9vd1dmYiISK3kcFhasWKFM+oQVzGboVkP2P89Q0OOsjMtmrX7z3DDleUnQxYREREnjbMEsGvXLo4cOWKf8gRsLUs333yzs04hztK8J+z/nnj/Q8xIG0DinmSFJRERkYtwOCwdOHCA22+/ne3bt2MymTAMAzh3C85isTh6CnG2Fr0BaFewE4AVe05jtRqYzbptKiIicj6Hn4abOHEi0dHRnDp1Cn9/f3bu3MmqVavo0aMHiYmJTihRnK55TzCZ8c06SrR3Oqcz89lxIt3dVYmIiNRKDoeldevWMXXqVCIiIjCbzZjNZq6++mqmT5/OY4895owaxdl8gqBxHAD3NE0C4Pvdye6sSEREpNZyOCxZLBYCAwMBCA8P58SJEwC0bNmSPXv2OHp4qSkt+gAw0G8/ACv2KCyJiIhciMNhKS4ujm3btgHQu3dvXn/9ddasWcPUqVOJiYlxuECpIS2uAiA6ZzsA246lk5yR586KREREaiWHw9Lzzz+P1WoF4JVXXuHw4cP079+fJUuW8O677zpcoNSQ4rDkdXoHVzWzjbH0nW7FiYiIlOPw03BDhw61v4+JiWHXrl2kpqbSoEEDDUpZmwVHQmgLSDvCPc2S+el4KP+3I4l7erdwd2UiIiK1ilOnmzcMA8MwCAsLU1CqC4r7LQ3w2QvA2v1nOJtdUNE3RERELjtOCUuzZs0iLi4OX19ffH19iYuL45NPPnHGoaUmtboagNCT64htGozFarB81yk3FyUiIlK7OByWXnjhBSZOnMjNN9/MwoULWbhwITfffDOPP/44zz//vDNqrHHffPMNV1xxBW3btr28Ql5MvO312EZu7WB7ovF/25PcV4+IiEgtZDJKhtyupvDwcP72t79x9913l1n/r3/9i0cffZSUlBSHCqxpRUVFxMbGsmLFCoKDg+nWrRs///wzYWFhlfp+RkYGISEhpKenExwcXMPV1oB3usDZgyTdOJc+i7zxNJvY+Px1mlhXRETqtar8/XbKOEs9evQot7579+4UFRU5evgat379ejp27EizZs0ICgrihhtuYOnSpe4uy3WKW5eanllP+yZBFFkNlmw/6d6aREREahGHw9LIkSP54IMPyq3/+OOPuffeex09/CWtWrWKm2++mcjISEwmE4sXLy63z/vvv090dDS+vr50796d1atX27edOHGCZs2a2T83b96c48eP13jdtUbMQNvrgURu72q7Dl9uPubGgkRERGoXp3bwfuCBB3jggQeIi4vj73//O2azmcmTJ9uXmpCdnU3nzp157733Lrh9wYIFTJo0iT//+c9s2bKF/v37M2zYMI4cOQLAhe5CXlZP8rUaYHtN3sUd7bwwm2Dj4bMcPpPt3rpERERqCYfHWdqxYwfdunUDYP9+29QZERERREREsGPHDvt+NRVAhg0bxrBhwy66fcaMGYwbN44HHngAgJkzZ7J06VI++OADpk+fTrNmzcq0JB07dozevXtf9Hj5+fnk5+fbP2dkZDjhp3CjgIbQpBOc3EZE8lr6tYlm9b4UvtpynEnXtXN3dSIiIm7ncFhasWKFM+qoEQUFBWzatIlnnnmmzPohQ4awdu1aAHr16sWOHTs4fvw4wcHBLFmyhBdffPGix5w+fTovv/xyjdbtcm2HwMlt8Ov/uKPbdFbvS+HLzceZeG3by6uVTURE5AKcOihlbZOSkoLFYqFx48Zl1jdu3JiTJ22dmD09PXnrrbcYNGgQXbt25amnnqJhw4YXPeazzz5Lenq6fTl69GiN/gwu0f5G2+tv3zP0ilACfTw5kprD2v1n3FuXiIhILeCUsLR69WpGjhxJnz597Le05s+fz48//uiMwzvs/NYRwzDKrLvlllvYu3cvv/32Gw899FCFx/Lx8SE4OLjMUudFdoWgSCjMxv/YWntH73/8dNjNhYmIiLifw2Fp0aJFDB06FD8/P7Zs2WLvz5OZmcmrr77qcIGOCA8Px8PDw96KVCI5Oblca9NlzWSCK4r7ff36DfdeZZsfbtmuU5zKyHNjYSIiIu7ncFh65ZVX+PDDD/n73/+Ol5eXfX3fvn3ZvHmzo4d3iLe3N927d2f58uVl1i9fvpy+ffs6dOyEhARiY2Pp2bOnQ8epNdrfYHvd+y3tGwXSo2UDLFaDBRvqwW1GERERBzgclvbs2cOAAQPKrQ8ODiYtLc3Rw19SVlYWW7duZevWrQAcPHiQrVu32ocGmDx5Mp988gmzZ89m9+7dPP744xw5coSHH37YofNOmDCBXbt2sWHDBkd/hNqh1QDwCYasU3D0Z0Ze1RKAf60/QpHF6ubiRERE3MfhsNS0aVN+++23cut//PFHYmJiHD38JW3cuJGuXbvStWtXwBaOunbtan+ibcSIEcycOZOpU6fSpUsXVq1axZIlS2jZsmWN11aneHqf6+i94wuGXdmEsABvktLz+OHXZPfWJiIi4kYOh6U//OEPTJw4kZ9//hmTycSJEyf47LPPePLJJxk/frwzaqxQfHw8hmGUW+bOnWvfZ/z48Rw6dIj8/Hw2bdp0wZYwAa78ne1151f4mKz8vkdzAOaro7eIiFzGHB5n6emnnyY9PZ1BgwaRl5fHgAED8PHx4cknn+SRRx5xRo3iKtHx4B8OOSlwIJGRvfvx91UHWL0vhX2nMmnbOMjdFYqIiLicQy1LhYWFDBo0iNGjR5OSksL69ev56aefOH36NNOmTXNWjbVSvevgDeDhCXF32N5vX0hUmD+DY21PDc5Ze8h9dYmIiLiRybjQ5GhVEBERwdq1a2nbtq2zaqpTMjIyCAkJIT09vX6MuXR0PcwaDN6B8OQ+fj6Wy4iPf8LXy8y6Z66lQYC3uysUERFxWFX+fjvcZ2nUqFHMmjXL0cNIbdG8J4S2gIIs2PstvaLD6BgZTF6hlX+uP+Lu6kRERFzO4T5LBQUFfPLJJyxfvpwePXoQEBBQZvuMGTMcPYW4kskEV/4eVr8F27/AFHcHY/tF88TCX/h03SEeGhCDl0e9niVHRESkDIfD0o4dO+jWrRsAe/fuLbNNk7DWUSVhad8yyEnlps5Nmf5/v3IqI58l25O4tUszd1coIiLiMg6HpRUrVjijjjonISGBhIQELBaLu0txvkYdoMmVcHI77FiET68HGdWnJTOW72X2jwe5pXOkgrCIiFw2dD+lmurdCN7n63y37XXbAgDu6d0Cb08zvxxLZ/ORs24sTERExLUcDkvTp09n9uzZ5dbPnj2b1157zdHDi7vE/Q5MZji2AVJ+IzzQh9u6RAIw+8dD7q1NRETEhRwOSx999BHt27cvt75jx458+OGHjh5e3CWoMbS+1va+uHVp7NXRAPzfjiSOnc1xV2UiIiIu5XBYOnnyJE2bNi23PiIigqSkJEcPL+7U+S7b67bPwWqlfZNg+rVpiNVQ65KIiFw+HA5LUVFRrFmzptz6NWvWEBkZ6ejhxZ2uuAG8gyDtCBz9CYAH+9smR/58wxHScgrcWZ2IiIhLOByWHnjgASZNmsScOXM4fPgwhw8fZvbs2Tz++OM8+OCDzqhR3MXbH2Jvtb3/5V8ADGwXQYemweQUWJi/ThPsiohI/edwWHr66acZN24c48ePJyYmhpiYGB599FEee+wxnn32WWfUWCvVy7nhLqTkVtzO/0BhLiaTiYcH2lqX5q49RF5hPRw6QUREpBSH54YrkZWVxe7du/Hz86Nt27b4+Pg447C1Xr2bG+58Viu80wnSj8Lv5kDcHRRZrMS/mcixs7lMu7Uj9/Vp5e4qRUREqsSlc8Pl5uaSk5NDYGAgPXv2JCgoiA8++IBly5Y5emipDcxm6HSn7X3xU3GeHmZ736WPVx+gyGJ1V3UiIiI1zuGwdOutt/Lpp58CkJaWRu/evXnrrbe49dZb+eCDDxwuUGqBTsW34vYth6zTANzZI4qwAG+OpuayeOsJNxYnIiJSsxwOS5s3b6Z///4AfPHFFzRu3JjDhw/z6aef8u677zpcoNQCEe0gshsYFtixCAA/bw8eGmBrXXr3+30UqnVJRETqKYfDUk5ODkFBQQAsW7aMO+64A7PZzFVXXcXhw3paqt4o6ehd/FQcwKg+LWkY4M2R1By+3HzMTYWJiIjULIfDUps2bVi8eDFHjx5l6dKlDBkyBIDk5OT62eH5chU3HMyekLQVkn8FwN/bkz/Gtwbg3e9/05NxIiJSLzkcll588UWefPJJWrVqRe/evenTpw9ga2Xq2rWrwwXWVpfN0AElAsKhzWDb+22f21ePvKoljYN9OJ6Wy9y1h9xTm4iISA1yytABJ0+eJCkpic6dO2M22/LX+vXrCQ4OvuC8cfVJvR86oLSdi2HhaAhuBpN22J6UA77YdIwnF/5CkI8niU/F0zDw8hg2QkRE6i6XDh0A0KRJE7p27WoPSgC9evWq90HpstPuevAJgYzjcGiVffUdXZvRMTKYzPwi3v5urxsLFBERcT7P6nxp8uTJTJs2jYCAACZPnlzhvjNmzKhWYVILeflC3B2waQ5s+QfExANgNpt4/sZY7v77T3z28xF+3z2KzlGhbi1VRETEWaoVlrZs2UJhYaH9/cWYTKbqVSW1V7dRtrC062sYlgr+YQD0ad2Q27pEsnjrCZ79cjtfP9IPTw+nNFyKiIi4ldOmO7lcXVZ9lgAMAz7sD6e2w/WvwVUP2zelZOVz3YyVpOUU8twN7XloQGs3FioiInJxLu+zJJcRkwm6j7a93zzPFp6KhQf68NwNHQB4e/k+jqbmuKNCERERp6p2n6XKUp+leujK38Oy5yF5FxzbCFHnhk/4fffmfLn5GD8dSOXpL7bx2QO9MZt1O1ZEROquavdZKm3Tpk1YLBauuOIKAPbu3YuHhwfdu3d3vEKpffxCIfY223hLm+eVCUsmk4npd3TihndWs+7AGWavOcgDxZPuioiI1EXVug23YsUK+3LzzTcTHx/PsWPH2Lx5M5s3b+bo0aMMGjSIG2+80dn11hqX3aCU5yu5FbfjS8jLKLMpOjyAF26KBeD1b/fw68mM878tIiJSZzjcwbtZs2YsW7aMjh07llm/Y8cOhgwZwokT9XtG+suug3cJw4CEXpCyF4a9Ab0fOm+zwQPzNvL9r8m0bxLE4gn98PXycFOxIiIiZbm0g3dGRganTp0qtz45OZnMzExHDy+1lckEPR+0vV//cZmO3rbNJv46vBMNA7z59WQmry7Z7YYiRUREHOdwWLr99tu5//77+eKLLzh27BjHjh3jiy++YNy4cdxxxx3OqFFqqy53g3cQnNkHB1aU2xwR5MObd3YG4NN1h/nvL/W7lVFEROonh8PShx9+yI033sjIkSNp2bIlLVu25N5772XYsGG8//77zqhRaiufIFtgAlj/9wvuMuiKRkwYZBtv6ZlF29h/OstV1YmIiDiF0walzM7OZv/+/RiGQZs2bQgICHDGYWu9y7bPUonTeyGhJ2CCib9Ag5bldimyWLn3k5/5+WAq7ZsE8dX4fvh5q/+SiIi4j1sGpQwICKBTp0507tz5sglKAkS0g5hBgAEbPrngLp4eZv52d1fCA3349WQmU77e4doaRUREHKARvMVxvYqfhNv8KeRf+DZbo2Bf3r27C2YT/HvjMRZuPOrCAkVERKpPYUkc124ohMVAXhpsmX/R3fq2Dufx69oB8PziHew4nu6iAkVERKpPYUkcZ/aAvo/a3q9LAEvhRXedMKgN17RvRH6RlYc+3UhKVr6LihQREakehSVxjs53Q0AEpB+FnV9ddDez2cTMu7oQEx7AifQ8xn+2mUKL1YWFioiIVI3TnobbtWsXR44coaCgoMz6W265xRmHr7Uu+6fhSlv1BvzwCjSOg4d/tA1ceRG/JWdxW8IasvKLGNWnJVNvjXNhoSIicrmryt/vak2kW9qBAwe4/fbb2b59OyaTiZLsZSr+Q2mxWBw9Ra2UkJBAQkJCvf35qqXHOFj9NpzaAft/gDbXXnTXNo0CmTmiCw/O38in6w7TMTKYET1buLBYERGRynH4NtzEiROJjo7m1KlT+Pv7s3PnTlatWkWPHj1ITEx0Qom104QJE9i1axcbNmxwdym1h3/YuQl2V791yd2vi23M5OIO3y8s3smmw6k1WZ2IiEi1OByW1q1bx9SpU4mIiMBsNmM2m7n66quZPn06jz32mDNqlLqkzyPg4Q2H18DB1ZfcfcKgNgyLa0KBxcoD8zZyQCN8i4hILeNwWLJYLAQGBgIQHh7OiRO2+b9atmzJnj17HD281DUhzaBbcetS4l8vubvZbOKtOzvTuXkIZ3MKGT1nPacz9YSciIjUHg6Hpbi4OLZt2wZA7969ef3111mzZg1Tp04lJibG4QKlDrr68eLWpR/h4KpL7u7v7cmsMT1p2dCfo6m5jJ27gaz8IhcUKiIicmkOh6Xnn38eq9X26Pcrr7zC4cOH6d+/P0uWLOHdd991uECpg85vXarEA5fhgT7Mu78XYQHebD+ezv1z1pOtwCQiIrWAw2GpQ4cO3HbbbQDExMSwa9cuUlJSSE5Opk2bNo4eXuoqe+vSGjh06b5LAK3CA5h3fy+CfD3ZcOgs98/dQE6BApOIiLiXw2EpOjqalJSUMuvCwsJITU0lOjra0cNLXVWN1iWAK5uH8I9xvQny8WT9wVTGzt1AZt7FRwQXERGpaQ6HpYuNaZmVlYWvr6+jh5e6rHTr0sGVlf5a56hQ5o3rRaCPJz8dSGXERz+RnJFXg4WKiIhcXLUHpZw8eTJgG3zyxRdfxN/f377NYrHw888/06VLF4cLlDospBl0HwPrP4blU+DBFWCuXD7v1qIB/3rwKu6fu55dSRnc/v5a5o3tRZtGgTVbs4iIyHmq3bK0ZcsWtmzZgmEYbN++3f55y5Yt/Prrr3Tu3Jm5c+c6sVSpkwY8Dd6BkLQVdi2u0levbB7Cl3/sR6uG/hxPy+X299fww6+naqRMERGRi3F4brj777+fd95557KdF01zw1VC4l8hcTo0iIZHNoCHV5W+fiYrn4fmb2LT4bOYTDDp2nY8ek0bzOaLzz0nIiJSkar8/Xa4z9KcOXMUEqRifSZAQAScPQib5lb56w0DffjXg1cx8qoWGAa8/d1eHpq/ifRcdfwWEZGa53DLUoldu3Zx5MgRCgoKyqy/5ZZbnHH4WkstS5W0/u+w5ElbaHpsK/hUr+/Rvzce5fnFOygostIs1I937+5C95Zhzq1VRETqvar8/XY4LB04cIDbb7+d7du3YzKZ7E/HmUy2WyQWi8WRw9d6CkuVZCmEhF6QegDin4P4P1X7UL8cTeORf23maGouHmYTE69ty4RBbfDQbTkREakkl96GmzhxItHR0Zw6dQp/f3927tzJqlWr6NGjB4mJiY4eXuoLDy+45gXb+zXvQEZStQ/VOSqU/z3Wn1u7RGKxGsxYvpe7P/6J42m5TipWRETkHIfD0rp165g6dSoRERGYzWbMZjNXX30106dP57HHHnNGjVJfdLwdmvWAwmz47iWHDhXs68U7d3Vlxp2dCfD2YP2hVIbNXMXCjUcvOvaXiIhIdTgcliwWC4GBtv4n4eHhnDhxAoCWLVuyZ88eRw9fayUkJBAbG0vPnj3dXUrdYTLBDa/b3m/7HI787PAh7+jWnCUT+9M5KpSMvCKe+mIb98/dwAm1MomIiJM4HJbi4uLYtm0bAL179+b1119nzZo1TJ06lZiYGIcLrK0mTJjArl272LBhg7tLqVuadYeuI23v/+8psDrep61lwwAWPdyHP13fHm9PM4l7TjPk7VXM/+kwFqtamURExDEOh6Xnn38eq9UKwLRp0zh8+DD9+/dnyZIlvPvuuw4XKPXQtS+BTzAk/QJb5jvlkJ4eZv4Y35olj/Wna4tQsvKLeGHxDm5570c2HT7rlHOIiMjlyWlDB5SWmppKgwYN7E/E1Wd6Gq6a1r0PS58F/4bw6Cbwa+C0Q1usBv/46TBvLttDZl4RAMO7NeeZYe2JCPJx2nlERKTuctnTcFarldmzZ3PTTTcRFxfHlVdeyS233MI333zjyGHlctDrQQi/AnLOwA9/ceqhPcwmRvdtxYon47mzR3MAFm0+xjVvJpKw4jdyCoqcej4REanfqt2yZBgGN998M0uWLKFz5860b98ewzDYvXs327dv55ZbbmHx4sVOLrf2UcuSAw4kwqe3AiYYtwyietXIabYcOcuL/9nJ9uPpAEQE+TDx2raM6BmFl4fDd6JFRKQOcsmglHPmzGHixIn85z//YdCgQWW2/fDDD9x222289957jBo1qjqHrzMUlhz01R/hl3/aWpkeXg2eNXObzGo1+PqXE7y1fA9HU21PyrVs6M/kwe24qVOkBrQUEbnMuCQsDRkyhGuuuYZnnnnmgttfffVVVq5cydKlS6tz+DpDYclBOam2kb2zT8PAP8Gg52r0dAVFVv61/gh/+2EfKVm2qXlaNfTnj/Gtub1rc7w91dIkInI5cEmfpW3btnH99ddfdPuwYcP45Zdfqnt4uVz4h8Gw4rGXVs+AU7tq9HTenmZG923FyqcG8eSQdoT6e3HoTA5/WrSd+DdWMHfNQXIL6vcUPSIiUjXVblny9vbm8OHDNG3a9ILbT5w4QXR0NPn5+Q4VWNupZckJDAM+vwf2LLGN8D1uGZg9XHLq7Pwi/vnzET5efYDTmbZ/V0P8vLirVxSj+rSiWaifS+oQERHXcknLksViwdPT86LbPTw8KCrSU0dSCSYT3PiWbeyl4xth3XsuO3WAjycPDohh9dODmHZbHFFhfqTnFvLRygMMeH0F4z/bxPqDqZpCRUTkMlbtliWz2cywYcPw8blwh9z8/Hy+/fZbLJb6fUtDLUtOtPlT+PpRMHvBQyugyZUuL8FiNfh+9ynmrDnEugNn7OtbRwQwomcUd3RrTnigxmoSEanrXNLB+/7776/UfnPmzKnO4esMhSUnMgz4/F7Y8z+I6GALTF7uuw22OymDuWsO8fUvJ8gttIV+T7OJ6zo0ZkTPKAa0i9BTdCIidZRLwpLYKCw5WXYKvN8HspOh9x9h2F/dXRGZeYV8sy2Jzzcc5Zejafb14YE+3NSpKbd2iaRLVOhlMWK9iEh9obDkQgpLNWDfcvjsd7b3I7+ENte6t55S9pzMZMGGo3y15Rhncwrt61uE+XNL50hu7hxJu8aBCk4iIrWcwpILKSzVkP89CRv+DoFNbINVBjZyd0VlFBRZ+fG303y99QTLdp0ip9RwA60a+jOkYxOGxDama4sGulUnIlILKSy5kMJSDSnIgY/jIWUPRA+A+xa7bDiBqsopKOK73cl8vfU4q/amUGCx2rc1DPDm2g6NuKZ9I/q2CSfY18uNlYqISAmFJRdSWKpBp/fAx4OgMBv6PwHXvujuii4pK7+IVXtPs2znSX74NZmMvHPDZ3iYTXSNCmVAuwgGtIvgymYhanUSEXEThSUXUliqYdu/gEXjbO/vXgBXXHzU+Nqm0GJl/cFUlu86xaq9pzmQkl1me6i/F/1ah9M7Joze0Q1p2ygQs8KTiIhLKCy5kMKSCyx5CtZ/DL4h8IdV0KCVuyuqlqOpOazel8KqvadZsz+FzLyyg7Y28PeiV7QtOPWOCaNDk2CFJxGRGqKw5EIKSy5QVABzhtlG924cB2O/BZ8gd1flkCKLla1H01i7/ww/HzzDpsNnySu0ltkn2NeTnq3C6NayAV1bhNKpeSiBPhcfNV9ERCpPYcmFFJZcJP2Yrf9SdjK0HQJ3/Qs86k9wKCiysv14Gj8fTOXnA6lsPJRK9nkT+ppN0K5xEF1bhNI1yhagWkfo1p2ISHUoLLmQwpILHdsEc2+Aojzo/TAMe83dFdWYIouVnScy2HAolS1H0th6NI3jabnl9gvy8aRzVChXNg8hLjKEuGbBtAjz1zhPIiKXoLBURbfffjuJiYlce+21fPHFF1X6rsKSi+1cDAtH294PewN6P+TWclzpVEYeW46kseXoWbYcSWPbsbRyt+4Agnw96RgZXByebAEqOjxQT96JiJSisFRFK1asICsri3nz5iks1QU/vg3fvQQmM4z4B7S/0d0VuUWRxcqeU5lsOZLGzhPp7DyRwa9JmWXGeSrh5+XBFU2CuKJxEO3sr4FEBPqoFUpELktV+ftdfzp9OGDQoEEkJia6uwyprH6T4Mx+2DIfFt4P9/4bYuLdXZXLeXqY6RgZQsfIEPu6giIrvyVnseNEOjuPp7PjRAa7TmSQW2hh61Hb7bzSGvh70bZx2RDVtlEgDQK8XfzTiIjUXrU+LK1atYo33niDTZs2kZSUxFdffcVtt91WZp/333+fN954g6SkJDp27MjMmTPp37+/ewqWmmcywU0zIfcs/PoN/OseGPUfiOrp7srcztvTTGxkMLGRwdAjCgCL1eBgShZ7Tmax51Qme09msvdUJofOZHM2p5D1B1NZfzC1zHEa+HsRHR5AdHggMREBxIQHEBMRSMuG/vh61c6R1EVEakqtD0vZ2dl07tyZ+++/n+HDh5fbvmDBAiZNmsT7779Pv379+Oijjxg2bBi7du2iRYsWAHTv3p38/Pxy3122bBmRkZE1/jNIDfDwhN/Nhn+OgAMr4LPhMGYJNIlzd2W1jofZRJtGQbRpFMSNNLWvzyu08FtyFntPZdpD1J6TmZxIz+NsTiFnj6Sx+UhamWOZTBAZ4kdMRADR4QFENfAnKsyP5g38iQrzJ8RP07mISP1Tp/osmUymci1LvXv3plu3bnzwwQf2dR06dOC2225j+vTplT52YmIi77333iX7LOXn55cJXhkZGURFRanPkrsUZMP82+HozxAQAaO+hsax7q6qTsspKOJgSjYHU7I5cLrkNYsDp7PJzC+q8LvBvp60aOhfHKL8iWrgR/Mw2+fmDfzUKiUitcZl02epoKCATZs28cwzz5RZP2TIENauXVsj55w+fTovv/xyjRxbqsE7AO75N8y7GU5ug7k3wqjF0LSzuyurs/y9Pcv1hQIwDIOUrAJ7eDqcmsPR1ByOns3lWGoOZ7ILyMgrYsfxDHYcz7jgsRsGeBMZ6kfTEF8iQ/2IDC159SMyxI+IIB89tScitU6dDkspKSlYLBYaN25cZn3jxo05efJkpY8zdOhQNm/eTHZ2Ns2bN+err76iZ88L93959tlnmTx5sv1zScuSuJFfqK3P0j+Gw4nNtuB031fQrLu7K6tXTCYTEUE+RAT50Cs6rNz27Pwijp3NLQ5QORxJzeFoai7HztpCVXaBhTPZBZzJLmD78fQLnsPTbKJxsC/NQv1oWhKkioNV42BfGgf70jDAWwNxiohL1emwVOL8R58Nw6jS49BLly6t9L4+Pj74+PhUen9xEf8wW4vSZ7+33ZKbdyuM/AJaXOXuyi4bAT6etuEJmpSfisYwDDJyizielsuJtFyS0nM5npZnf38iLY+TGXkUWQ2Op+VecADOEp5mE42CfGgU7EvjYB97iGoUdO5942AfQvy8NCyCiDhFnQ5L4eHheHh4lGtFSk5OLtfaJJcB3xAYuQj+eRcc/hE+vRWGz4ION7m7ssueyWQixN+LEH8v25N6F1BksXI6K58TabYglVQcrE6k20LVqYx8zmTnU2Q1bOvS8yo8p4+n2R6cGhWHqfBAHyICfWgY6E14oA/hQT40DPBWXyoRqVCdDkve3t50796d5cuXc/vtt9vXL1++nFtvvbVGz52QkEBCQgIWi+XSO4vr+ATBvQth4RjYtxQWjIQb3oBeD7q7MrkETw8zTUP8aBriR/eWF96n0GIlJSufUxn5nMrIIzkjz/7+VGZ+8Wfb03z5RVaOpNpuB15KkI+nPTjZQpQ3DQNsYSoi0JuGgbagFR7oTaCPp1qsRC4ztf5puKysLH777TcAunbtyowZMxg0aBBhYWG0aNGCBQsWcN999/Hhhx/Sp08fPv74Y/7+97+zc+dOWra8yG9cJ9II3rWUpQiWPAGb5to+930MrnsZzGa3liWukVdo4XRmPsmZpcJURj5nsvJJycrnTHYBKZn5pGQVXHDE84p4eZho4O9tWwK8CAvwJtTfmzB/b0L9bZ9t24rXBXgRpIAlUuvUq+lOEhMTGTRoULn1o0ePZu7cuYBtUMrXX3+dpKQk4uLiePvttxkwYIBL6lNYqsUMA1a/BT9Ms31ufxPc/qGt9UmE4r5UeUXFIarAFqSy8jld6v259QVkXWLohIvxNJtsgSrAyx6sGgR4EezrRbCfFyGlltKfg3098fRQwBepCfUqLNV2Ckt1wC+fw9ePgqUAItrDXf+Ehq3dXZXUQbkFFs7mFJCaXUBaTiGpOQWkFX8+m11gG8wzp8C2ZBeSml1AbqFjt+oDfTwJ9vUsG6LOC1i2dZ6lQpYXQb5e+HqZ1aIlchEKSy6ksFRHHNto67+UmQQ+IfC7WdB2sLurkstAXqHFHp7OBS1bsErPtS0ZueXfZxc43h/S02wi0NeTQB9PgnxttwODfD0J9C1+9fEiqPh9kK8nQT5e9m1BxdsCfT3xUuuW1EMKSy5QuoP33r17FZbqgsyT8O9RtqEFMME1z8PVk9WPSWqlIouVjLwie4g6P0yVCVh5pfbJKSQzvwhn/mb39TIT6GO7LXguaNnCVoCPBwE+ngR4e+DvbVvvb1/nadvubVsX6OOJn5eHWrukVlBYciG1LNUxRQXwf0+d6/jd+hq4/SMIbOTWskScyWo1yCm0kJlXSFZeEZn5RWTmFdne5xWSlV9ExnmfM+37FX8nr8jhW4gXYjJhC0/eHueClbcnAT6l1nl7Eujjgb+P5wWDmL+3B35eHvgVv/p7e2rkd6kyhSUXUliqozZ/CkuehqJcCGgEd3xkC04iYldksdqD1LnXQjLzbGErO7+InPwisgssZJd+zS8iu6CInHwLWflF5BRYyC5wbmvX+bw9zKXCkwe+xa9+pYJVmfVeHvh5e15y/5L33h7q/1XfKCy5kMJSHZb8K3xxPyTvsn3uN8l2a87Dy61lidRHVqtBXlFxeMq3hads+2vpYFVEVr6l+LX0vrbQlZVfRF6hhZwCC7mFlhoNYKWZTbZ5E33t4cqMr5cHvp4e+JS89/LAr9R7X08zPiXvvcz4lXpv+96545y/TVP61DyFJRdSWKrjCnNh6XOwcbbtc5NOcNv70ORK99YlIpdkGAb5RVZyCyzkFFrILSheCm1hq3SoKtlWfj9L8X5F5BZayS0oKrO+0OKeP5HeHuZSIaxU0DovnPl62lrUSoczH09z8WLbt+RYPp4eeJfadu69ufi9B14epsumBU1hyQXUwbue2fUf+PoxyEsDsyf0fxL6PwGe3u6uTETcqNBiLRu2ikNWfqHtNa/QSl6hhbyic+/zCy3kFYe4vOL3eYWW4m1W8opsxyr7HWuVB0itCSZTcVArFbxKgtS59+c+2/YrCWTF+5QKZyXf8S5e713qGN4eHue2ldpecoyabl1TWHIhtSzVI5mn4H+T4ddvbJ8bdYSb3oYWvd1bl4hcFixWg/ziAJVbHK7yigNZfqlAVj5olQ1kBUVW8osX23tLqfe2YxVYrOQXFu9TC0LahXiaTXgVB6h7erfgT9e3d+rxq/L3u07PDSfiVEGNYcQ/YOeXsOQpSN4Js4dA53vgupds20VEaoiH2YS/tyf+Lm7QtloNW3gqDlbnQpW1OFSdF7ZK71NUNpydH8RK71NgsR2j3PsiK/nFn0srshoUWW0teOdvczW1LDlILUv1VHYKfPcSbJlv++wTDPHP2ibkVQdwERGnMwyDQotRLkgVWCwE+3rRKNjXqefTbTgXUliq545tsk3Ie2KL7XP4FXDdFLjiBtvNfRERqZOq8vdbQxeLVKR5d3jgB7j5XfBvCCl74PN7YM4wOLre3dWJiIgLKCyJXIrZDN1Hw2NbbNOjePrCkXUwa7BtvrmUfe6uUEREapDCUjUlJCQQGxtLz5493V2KuIpviO0W3GNboOt9YDLD7v9CQm/4zwRIPejuCkVEpAaoz5KD1GfpMpa8G757Gfb+n+2zyQO63G0boyks2r21iYhIhdRnScQVGnWAez6Hcd9Bm+vAsMCWf8Dfuhe3NB1wd4UiIuIEallykFqWxO7oBlj5V/jtO9tnkxk63Ax9HoUo3a4VEalNNHSACyksSTlH18PK186FJoCo3tDnEWh/I5g93FebiIgACksupbAkF3VqJ6xLgG3/BmuhbV2DaOj5AHS5B/zD3FufiMhlTGHJhRSW5JIyT8L6v8PGWZB71rbOwwfi7oAe46B5Dw1wKSLiYgpLLpCQkEBCQgIWi4W9e/cqLMmlFWTbWpk2zoKT28+tb3KlLTRd+XvwCXRffSIilxGFJRdSy5JUmWHAsY2wcbZt0t6iPNt6rwCIvdV2i65lP9tgmCIiUiMUllxIYUkckpMKW/9pC06p+8+tD20Bne+GzndBWIz76hMRqacUllxIYUmcwjDg6M+24LTzK8jPOLetRR+IG24bhiCoiftqFBGpRxSWXEhhSZyuMBd+/R9s/Qz2rwBK/hM12YJTx9tswSk40o1FiojUbQpLLqSwJDUq4wTsWAS7/gPHNpTdFnUVdLgJ2l0PDdvoiToRkSpQWHIhhSVxmfRjsOtr2LXYdsuutLAYW2hqNxRa9AVPb7eUKCJSVygsuZDCkrhF+nHY/V/Y+y0c+vHcoJcA3kHQepAtOEUPhNAo99UpIlJLKSy5kMKSuF1+pq1v096lsG8ZZCeX3d4gGmIGQvQAaDUAAiPcU6eISC2isOQCGpRSaiWrFZK2wJ5v4cAKOL4ZDEvZfRq2hahe0Lyn7TWivearE5HLjsKSC6llSWq1vAw4vBYOroKDK+HUjvL7eAdBs67QpBM07Wx7DW+rACUi9ZrCkgspLEmdkn3G9lTdsfVwdL2t5akwu/x+nn7QOLY4QHWyvTbqAN4Brq9ZRKQGKCy5kMKS1GlWCyTvsoWmk9tsc9ad3HHhAAXQoBU0irUFp5LXhm319J2I1DkKSy6ksCT1jtUCqQds4SmpJEBtL99xvITZ0zbOU6MO0Khj8WsHW7DSrTwRqaUUllxIYUkuG9kpkLy7eNl57n3pqVlK8/SDiCtsLVARV9gCVcM2EBYNnj6urV1E5DwKSy6ksCSXNcOAjOPFwWnXudfTe6Ao78LfMZkhJAoatj4XoBq2hrDWtgmE1RolIi6gsORCCksiF2C1wNlDtuB0ahek7IUzv8GZ/VCQefHvmb1sg2iGtrTdxmvQstT7VuDXQNO6iIhTVOXvt6eLahKRy4nZo7jlqLVt0t8ShgFZybbglLr/XIA685utn5SlwPaaeuDCx/UJLg5PxQGqTKhqAV5+rvjpROQyo7AkIq5jMkFQY9vSql/ZbVaL7Zbe2cOQdtjWMlX6fdYpW/+oU9tty4UENIKQZhDczHarz/6+uW0JbKzbfCJSZQpLIlI7mD1srUOhLYD+5bcX5kLakfIhquR9fobtib3sZDix5SLn8ISgpsUBqjhEBTaBwEa2JaD4Vbf7RKQUhSURqRu8ip+ui7ii/DbDgNyzkH7UNslwxvHz3h+HzBNgLSpefxSOVnAusxcERNjm0QtsXByiIsA/HPzDwL8h+IXZ3vs1AN9QMJtr6icXETdTWKqm0nPDiYibmUzFISbMNmXLhVgttlt56cch45jtNf2YbV32adtrVjLkpYG10BauMk9U8vxmW2iyB6iwc/WUXucXagtWfqG2/b0D1YIlUgfoaTgH6Wk4kXqmKL84PCXbluzk4iB1GnLO2JbcVMg5a3styKr+ucye4BtyLkBd7LWk9ar0OgUtEYfoaTgRkery9DnXIbwyivJttwBzzkBOanGQKv1aalteGuSm2V4tBbbbgiUBrKoqClo+gbYw5R147r1P0IU/e/oodIlcgsKSiIgjPH0gqIltqSzDsHVYLx2eyr2evfg2R4NWaWbPUuEpALz8ixdf8PS19RUrefXys43M7uV77tXLv/x+nsXf9fQp/uxj++zh5VitIm6isCQi4momE3j725bgyKp995JBK912azA/s/g168KfC3Nsx7MW2b6bl+a8n+9iTB4XDlEXC1cOr/c9t01DRogDFJZEROoSR4JWaVbLeWEqyza6emGubSnKK/U+FwrzLrKu9Gup/Yryba+W/HPnNCxQmG1bch2/FFVi9ipu+SoVqDxLBS2H1pd69fAuFdqK35s9dauzjlNYEhG5HJk9ivs8hdTseaxWW2AqyjsvSOWeC1Q1td5aVKqOQigorHi6nRpjKhWoihePUiHL7Fm8mIuDlUfxZw/bUvqzyePc+pJ9TWZbGDOZL7Fcap/Kbnf0OJXYB1PZfXyCbE+VuonCkoiI1ByzGczF/Z1cPRuNpcgW1OwhqvSSX9xClu+c9ZaC4s/Fr9bCUoUYxaHO1c1p9Ujvh2HYa247vcKSiIjUTx6etsU7wPXnLt2iVpRfaskrFayKt1mLiher7Valtch2m9Sw2F6txetKfy6zn7XUYgDGeevOX2p6u6PHMMpvN7s3rigsiYiIOFvpFjWp8zQ+v4iIiEgFFJZEREREKqCwJCIiIlIBhSURERGRCigsiYiIiFRAYUlERESkAgpLIiIiIhVQWKqmhIQEYmNj6dmzp7tLERERkRpkMgzDcHcRdVlGRgYhISGkp6cTHBzs7nJERESkEqry91stSyIiIiIVUFgSERERqYDCkoiIiEgFFJZEREREKqCwJCIiIlIBT3cXUNeVPEyYkZHh5kpERESkskr+bldmUACFJQdlZmYCEBUV5eZKREREpKoyMzMJCQmpcB+Ns+Qgq9XKiRMnCAoKwmQyVeo7GRkZREVFcfToUY3N5AK63q6l6+1aut6up2vuWjV1vQ3DIDMzk8jISMzminslqWXJQWazmebNm1fru8HBwfoPzYV0vV1L19u1dL1dT9fctWriel+qRamEOniLiIiIVEBhSURERKQCCktu4OPjw5QpU/Dx8XF3KZcFXW/X0vV2LV1v19M1d63acL3VwVtERESkAmpZEhEREamAwpKIiIhIBRSWRERERCqgsCQiIiJSAYUlN3j//feJjo7G19eX7t27s3r1aneXVCetWrWKm2++mcjISEwmE4sXLy6z3TAMXnrpJSIjI/Hz8yM+Pp6dO3eW2Sc/P59HH32U8PBwAgICuOWWWzh27JgLf4q6Yfr06fTs2ZOgoCAaNWrEbbfdxp49e8rso+vtPB988AGdOnWyD8LXp08f/u///s++Xde6Zk2fPh2TycSkSZPs63TNneell17CZDKVWZo0aWLfXiuvtSEu9fnnnxteXl7G3//+d2PXrl3GxIkTjYCAAOPw4cPuLq3OWbJkifHnP//ZWLRokQEYX331VZntf/3rX42goCBj0aJFxvbt240RI0YYTZs2NTIyMuz7PPzww0azZs2M5cuXG5s3bzYGDRpkdO7c2SgqKnLxT1O7DR061JgzZ46xY8cOY+vWrcaNN95otGjRwsjKyrLvo+vtPF9//bXxv//9z9izZ4+xZ88e47nnnjO8vLyMHTt2GIaha12T1q9fb7Rq1cro1KmTMXHiRPt6XXPnmTJlitGxY0cjKSnJviQnJ9u318ZrrbDkYr169TIefvjhMuvat29vPPPMM26qqH44PyxZrVajSZMmxl//+lf7ury8PCMkJMT48MMPDcMwjLS0NMPLy8v4/PPP7fscP37cMJvNxrfffuuy2uui5ORkAzBWrlxpGIautys0aNDA+OSTT3Sta1BmZqbRtm1bY/ny5cbAgQPtYUnX3LmmTJlidO7c+YLbauu11m04FyooKGDTpk0MGTKkzPohQ4awdu1aN1VVPx08eJCTJ0+WudY+Pj4MHDjQfq03bdpEYWFhmX0iIyOJi4vTP49LSE9PByAsLAzQ9a5JFouFzz//nOzsbPr06aNrXYMmTJjAjTfeyHXXXVdmva658+3bt4/IyEiio6O56667OHDgAFB7r7Um0nWhlJQULBYLjRs3LrO+cePGnDx50k1V1U8l1/NC1/rw4cP2fby9vWnQoEG5ffTP4+IMw2Dy5MlcffXVxMXFAbreNWH79u306dOHvLw8AgMD+eqrr4iNjbX/MdC1dq7PP/+czZs3s2HDhnLb9O+3c/Xu3ZtPP/2Udu3acerUKV555RX69u3Lzp07a+21VlhyA5PJVOazYRjl1olzVOda659HxR555BG2bdvGjz/+WG6brrfzXHHFFWzdupW0tDQWLVrE6NGjWblypX27rrXzHD16lIkTJ7Js2TJ8fX0vup+uuXMMGzbM/v7KK6+kT58+tG7dmnnz5nHVVVcBte9a6zacC4WHh+Ph4VEu+SYnJ5dL0eKYkicrKrrWTZo0oaCggLNnz150Hynr0Ucf5euvv2bFihU0b97cvl7X2/m8vb1p06YNPXr0YPr06XTu3Jl33nlH17oGbNq0ieTkZLp3746npyeenp6sXLmSd999F09PT/s10zWvGQEBAVx55ZXs27ev1v77rbDkQt7e3nTv3p3ly5eXWb98+XL69u3rpqrqp+joaJo0aVLmWhcUFLBy5Ur7te7evTteXl5l9klKSmLHjh3653EewzB45JFH+PLLL/nhhx+Ijo4us13Xu+YZhkF+fr6udQ249tpr2b59O1u3brUvPXr04N5772Xr1q3ExMTomteg/Px8du/eTdOmTWvvv9810m1cLqpk6IBZs2YZu3btMiZNmmQEBAQYhw4dcndpdU5mZqaxZcsWY8uWLQZgzJgxw9iyZYt9GIa//vWvRkhIiPHll18a27dvN+6+++4LPn7avHlz47vvvjM2b95sXHPNNXrU9wL++Mc/GiEhIUZiYmKZx31zcnLs++h6O8+zzz5rrFq1yjh48KCxbds247nnnjPMZrOxbNkywzB0rV2h9NNwhqFr7kxPPPGEkZiYaBw4cMD46aefjJtuuskICgqy/x2sjddaYckNEhISjJYtWxre3t5Gt27d7I9fS9WsWLHCAMoto0ePNgzD9gjqlClTjCZNmhg+Pj7GgAEDjO3bt5c5Rm5urvHII48YYWFhhp+fn3HTTTcZR44cccNPU7td6DoDxpw5c+z76Ho7z9ixY+2/IyIiIoxrr73WHpQMQ9faFc4PS7rmzlMybpKXl5cRGRlp3HHHHcbOnTvt22vjtTYZhmHUTJuViIiISN2nPksiIiIiFVBYEhEREamAwpKIiIhIBRSWRERERCqgsCQiIiJSAYUlERERkQooLImIiIhUQGFJREREpAIKSyIiDmrVqhUzZ850dxkiUkMUlkSkThkzZgy33XYbAPHx8UyaNMll5547dy6hoaHl1m/YsIGHHnrIZXWIiGt5ursAERF3KygowNvbu9rfj4iIcGI1IlLbqGVJROqkMWPGsHLlSt555x1MJhMmk4lDhw4BsGvXLm644QYCAwNp3Lgx9913HykpKfbvxsfH88gjjzB58mTCw8MZPHgwADNmzODKK68kICCAqKgoxo8fT1ZWFgCJiYncf//9pKen28/30ksvAeVvwx05coRbb72VwMBAgoODufPOOzl16pR9+0svvUSXLl2YP38+rVq1IiQkhLvuuovMzMyavWgiUi0KSyJSJ73zzjv06dOHBx98kKSkJJKSkoiKiiIpKYmBAwfSpUsXNm7cyLfffsupU6e48847y3x/3rx5eHp6smbNGj766CMAzGYz7777Ljt27GDevHn88MMPPP300wD07duXmTNnEhwcbD/fk08+Wa4uwzC47bbbSE1NZeXKlSxfvpz9+/czYsSIMvvt37+fxYsX88033/DNN9+wcuVK/vrXv9bQ1RIRR+g2nIjUSSEhIXh7e+Pv70+TJk3s6z/44AO6devGq6++al83e/ZsoqKi2Lt3L+3atQOgTZs2vP7662WOWbr/U3R0NNOmTeOPf/wj77//Pt7e3oSEhGAymcqc73zfffcd27Zt4+DBg0RFRQEwf/58OnbsyIYNG+jZsycAVquVuXPnEhQUBMB9993H999/z1/+8hfHLoyIOJ1alkSkXtm0aRMrVqwgMDDQvrRv3x6wteaU6NGjR7nvrlixgsGDB9OsWTOCgoIYNWoUZ86cITs7u9Ln3717N1FRUfagBBAbG0toaCi7d++2r2vVqpU9KAE0bdqU5OTkKv2sIuIaalkSkXrFarVy880389prr5Xb1rRpU/v7gICAMtsOHz7MDTfcwMMPP8y0adMICwvjxx9/ZNy4cRQWFlb6/IZhYDKZLrney8urzHaTyYTVaq30eUTEdRSWRKTO8vb2xmKxlFnXrVs3Fi1aRKtWrfD0rPyvuI0bN1JUVMRbb72F2WxrdP/3v/99yfOdLzY2liNHjnD06FF769KuXbtIT0+nQ4cOla5HRGoP3YYTkTqrVatW/Pzzzxw6dIiUlBSsVisTJkwgNTWVu+++m/Xr13PgwAGWLVvG2LFjKww6rVu3pqioiL/97W8cOHCA+fPn8+GHH5Y7X1ZWFt9//z0pKSnk5OSUO851111Hp06duPfee9m8eTPr169n1KhRDBw48IK3/kSk9lNYEpE668knn8TDw4PY2FgiIiI4cuQIkZGRrFmzBovFwtChQ4mLi2PixImEhITYW4wupEuXLsyYMYPXXnuNuLg4PvvsM6ZPn15mn759+/Lwww8zYsQIIiIiynUQB9vttMWLF9OgQQMGDBjAddddR0xMDAsWLHD6zy8irmEyDMNwdxEiIiIitZValkREREQqoLAkIiIiUgGFJREREZEKKCyJiIiIVEBhSURERKQCCksiIiIiFVBYEhEREamAwpKIiIhIBRSWRERERCqgsCQiIiJSAYUlERERkQr8PzgCh1WkR01XAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "class DataDiscrepancyCallback(callbacks.Callback):\n", + " def __init__(self, A, data):\n", + " self.f = LeastSquares(A, data)\n", + " self.save_values=[]\n", + "\n", + " def __call__(self, algorithm):\n", + " self.save_values.append(self.f(algorithm.get_output()))\n", + "\n", + "mycallback_FISTA_lower_bound= DataDiscrepancyCallback(A, absorption)\n", + "algo1=FISTA(initial=ig.allocate(0), f=F, g=alpha*TotalVariation(lower=0), update_objective_interval=10) \n", + "algo1.run(500, callbacks=[mycallback_FISTA_lower_bound])\n", + "\n", + " \n", + "mycallback_FISTA_no_lower_bound= DataDiscrepancyCallback(A, absorption)\n", + "algo2=FISTA(initial=ig.allocate(0), f=F, g=alpha*TotalVariation(), update_objective_interval=10) \n", + "algo2.run(500, callbacks=[mycallback_FISTA_no_lower_bound])\n", + "\n", + "\n", + "show2D([ground_truth, algo1.get_output(), algo2.get_output()], title=['ground_truth', 'FISTA_lower_bound', 'FISTA_no_lower_bound'], num_cols=3)\n", + "show2D([absorption, A.direct(algo1.get_output())-absorption, A.direct(algo2.get_output())-absorption], title=['ground_truth', 'Data error FISTA_lower_bound', 'Data error FISTA_no_lower_bound'], fix_range=[[0,3], [-0.02, 0.02], [-0.02, 0.02]], cmap=['gray', 'seismic', 'seismic'], num_cols=3)\n", + "plt.plot(range(10,501), mycallback_FISTA_lower_bound.save_values[10:], label='FISTA TV with lower bound ')\n", + "plt.plot(range(10, 501), mycallback_FISTA_no_lower_bound.save_values[10:], label='FISTA TV without lower bound ')\n", + "plt.yscale('log')\n", + "plt.ylabel('Data discrepancy $\\|Ax-y\\|_2^2$')\n", + "plt.xlabel('Iteration')\n", + "plt.legend()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We see that the without the lower bound, the reconstruction overfits to the noisy absorption data " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Calculating a noise approximation for each iteration (A custom callback example) " + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/bih17925/miniconda3/envs/cil_testing2/lib/python3.10/site-packages/numpy/core/fromnumeric.py:3432: RuntimeWarning: Mean of empty slice.\n", + " return _methods._mean(a, axis=axis, dtype=dtype,\n", + "/home/bih17925/miniconda3/envs/cil_testing2/lib/python3.10/site-packages/numpy/core/_methods.py:190: RuntimeWarning: invalid value encountered in divide\n", + " ret = ret.dtype.type(ret / rcount)\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABdEAAAGoCAYAAACpN6wQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9eZhcZZn3/619r+o9nUCAgCIwMToGB4OyieAgKoOiODqIir4ijrK4oqKIjgzqy0QHAXUCuAzLbwYQF0TCjEQdorIqKoOKgYTQnU4vte9V5/dH3u+T+5w+1V3dqV5zf66rru6uOnXOc5Z+7ufePZZlWVAURVEURVEURVEURVEURVEUZRLehR6AoiiKoiiKoiiKoiiKoiiKoixW1IiuKIqiKIqiKIqiKIqiKIqiKC1QI7qiKIqiKIqiKIqiKIqiKIqitECN6IqiKIqiKIqiKIqiKIqiKIrSAjWiK4qiKIqiKIqiKIqiKIqiKEoL1IiuKIqiKIqiKIqiKIqiKIqiKC1QI7qiKIqiKIqiKIqiKIqiKIqitECN6IqiKIqiKIqiKIqiKIqiKIrSAjWiK4qiKIqiKIqiKIqiKIqiKEoL1IiuKEuMm266CR6PB08//XTb33nggQdw+eWXI51Oz8mYptr/IYccgte+9rVzclxFURRl/qD8cXt9+MMfBuA+54+NjeHSSy/FUUcdhVgshlQqhSOOOALnnHMOfvvb3wJAy/06X/fff7/Z71e/+lV4PB6sXbt2xudy//33t33MM888E5FIZEoZ+ra3vQ2BQAC7du2a8VimYjYynzz99NPweDz48pe/3NExtcN9992HDRs2IBqNoq+vD+94xzswMjIyabtPfepTeO1rX4sDDjgAHo8H73jHO+Z9rIqiKPsjKtPTLfenMn0vP/zhD/H2t78dL3zhCxEIBODxeOb1+Iqy2PAv9AAURZl7HnjgAXz2s5/FO97xDnR1dS25/SuKoiiLhxtvvBFHHHGE7b1Vq1a5bpvP5/Gyl70M+XweH/nIR/CiF70IpVIJf/zjH3HHHXfgsccew7p167B161bb9z73uc/hpz/9Kf77v//b9v5RRx1lfr/hhhsAAL///e/xq1/9Csccc0zb5/CSl7xk0jHPPPNMHHbYYZMU1NHRUXzve9/DzTffjAsuuGDSvjKZDO6880689rWvxYoVK9oew3Jly5YtOO2003D66afjrrvuwsjICD72sY/h5JNPxkMPPYRQKGS2/Zd/+ResW7cOr3/96839VBRFUeYPlel2VKbbufPOO/HLX/4Sf/3Xf41QKISHH354oYekKAuKGtEVxQXLslAulxGJRBZ6KAtCqVTab89dURRFmZq1a9fi6KOPbmvb//iP/8Cf//xn/Pd//zdOOukk22eXXHIJms0mAOBlL3uZ7bP+/n54vd5J75OHHnoIv/nNb3D66afjRz/6ETZt2jQjhTuZTE7adygUQldX16T3G40GVq1ahRtuuMFV4b7llltQKpVw3nnntX385cxHPvIRHH744fjP//xP+P17VI01a9bg5S9/OW644Qa8733vM9vmcjl4vXsSY7/zne8syHgVRVH2Z1Sm21GZbueb3/ymkdP/+I//qEZ0Zb9Hy7koy5677roL69atQygUwqGHHoqvfOUruPzyy22pSB6PB//4j/+I66+/HkceeSRCoRC+9a1vAQB+8Ytf4OSTT0YikUA0GsWxxx6LH/3oR7ZjOPdH3FK2mBZ3zz334CUveQkikQiOOOII1wisX/7yl3j5y1+OcDiMVatW4dJLL0WtVpvR+V9++eX4yEc+AmCPEutMn+N47rjjDvz1X/81wuEwPvvZz5qUsZtuumnSPj0eDy6//PK29k/aOV9FURRleTE2NgYAWLlypevnVMxmyqZNmwAA//zP/4xjjz0Wt956K4rF4uwGOQ0+nw/nnnsuHn74YTz++OOTPr/xxhuxcuVKnHbaaW3vc/PmzTjjjDNw4IEHIhwO43nPex7e+973YnR0dNrvnnjiiVi7di1+/vOf42UvexkikQgOOOAAXHbZZWg0Gq7fufrqq7FmzRrE43Fs2LABv/zlL22fP/TQQ3jLW96CQw45BJFIBIcccgj+/u//Hs8880zb5wQAO3fuxIMPPohzzjnHGNAB4Nhjj8Xhhx+OO++807b9bO+/oiiKMv+oTHdnucp0QOW0ojjR/whlWXPPPffgDW94A3p7e3Hbbbfhi1/8Im655RZjIJd873vfw3XXXYdPf/rT+MlPfoLjjjsOW7ZswStf+UpkMhls2rQJt9xyCxKJBF73utfhtttum/W4fvOb3+BDH/oQLr74YmPkP++88/Czn/3MbPOHP/wBJ598MtLpNG666SZcf/31ePTRR/H5z39+Rsd697vfjQ984AMAgDvuuANbt27F1q1b8ZKXvMRs88gjj+AjH/kIPvjBD+Kee+7BG9/4xo7uv53zVRRFUZYGjUYD9Xrd9mrFhg0bAABvf/vb8b3vfc8o4PtCqVTCLbfcgpe+9KVYu3Yt3vWudyGXy+E//uM/9nnfrXjXu94Fj8czyQH8hz/8Ab/+9a9x7rnnwufztb2/p556Chs2bMB1112He++9F5/+9Kfxq1/9Cq94xSvacpYPDw/jLW95C972trfhrrvuwllnnYXPf/7zuPDCCydt+7WvfQ2bN2/Gxo0b8e///u8oFAp4zWteg0wmY7Z5+umn8YIXvAAbN27ET37yE1x11VUYGhrCS1/60raMAOR3v/sdAGDdunWTPlu3bp35XFEURVkcqEzfi8p0RVGmxVKUZcxLX/pSa/Xq1ValUjHv5XI5q7e315KPPwArlUpZ4+Pjtu+/7GUvswYGBqxcLmfeq9fr1tq1a60DDzzQajablmVZ1mc+8xnL7d/pxhtvtABY27ZtM+8dfPDBVjgctp555hnzXqlUsnp6eqz3vve95r2zzz7bikQi1vDwsO3YRxxxxKR9TseXvvSllt85+OCDLZ/PZz355JO297dt22YBsG688cZJ3wFgfeYzn2l7/+2cr6IoirK4oUxze9VqNcuy9sz5p59+uu17V1xxhRUMBs22a9assc4//3zrN7/5TctjnXvuuVYsFnP97Nvf/rYFwLr++usty9oj1+PxuHXcccft0/m5jV1ywgknWH19fVa1WjXvfehDH7IAWH/84x9nfdxms2nVajXrmWeesQBYd911l/nMbR1xwgknTNrOsizrPe95j+X1eo28pRx/4QtfaNXrdbPdr3/9awuAdcstt7QcU71et/L5vBWLxayvfOUrbZ/Lv//7v1sArK1bt0767P/8n/9jBYPBlt+NxWLWueee2/axFEVRlNmjMl1l+kx5//vf72rzUJT9CY1EV5YthUIBDz30EP7u7/4OwWDQvB+Px/G6171u0vavfOUr0d3dbfv+r371K5x11lmIx+PmfZ/Ph3POOQfPPvssnnzyyVmN7cUvfjEOOugg83c4HMbhhx9uS7H66U9/ipNPPtnW0MTn8+Hss8+e1TGnYt26dTj88MM7vl/SzvkqiqIoS4Nvf/vbePDBB20vWbrDyWWXXYbt27fjhhtuwHvf+17E43Fcf/31WL9+PW655ZYZH3/Tpk2IRCJ4y1veAmCPXH/Tm96En//85/jTn/406/OajvPOOw+jo6P4/ve/DwCo1+v47ne/i+OOOw7Pf/7zZ7SvkZERnH/++Vi9ejX8fj8CgQAOPvhgAMATTzwx7fcTiQRe//rX295761vfimazOSnL6/TTT7dF1DFKXMrgfD6Pj33sY3je854Hv98Pv9+PeDyOQqHQ1nicuJW4m+p9RVEUZWFQma4yXVGU9lEjurJsmZiYgGVZrl213d5z1nbj991qvrFj+WxT2Hp7eye9FwqFUCqVzN9jY2MYHByctJ3be/tKq7p2naKd81UURVGWBkceeSSOPvpo22s6VqxYgXe+8524/vrr8dvf/hZbtmxBMBh0TVWeij//+c/42c9+htNPPx2WZSGdTiOdTuOss84CgDntt3HWWWchlUrhxhtvBADcfffd2LVr14ybjzWbTZx66qm444478NGPfhT/9V//hV//+tempmk7stFtHcP1gXNt4pTBoVBo0nHe+ta34pprrsG73/1u/OQnP8Gvf/1rPPjgg+jv75+RrOax3NZH4+Pj6OnpaXtfiqIoytyjMl1luqIo7dPaxagoS5zu7m54PB7s2rVr0mfDw8OT3nNGR3V3d8Pr9WJoaGjSts899xwAoK+vD8CeyGoAqFQqRpAB2KeaY729va7jdHtvX3GLDJPnJOlE7TtFURRl/+b444/Hqaeeiu9973sYGRnBwMBAW9+74YYbYFkW/vM//xP/+Z//Oenzb33rW/j85z8/o1qm7RKJRPD3f//3+OY3v4mhoSHccMMNSCQSeNOb3jSj/fzud7/Db37zG9x0000499xzzft//vOf297HVGsbN8f1VGQyGfzwhz/EZz7zGXz84x8371cqFYyPj89oX2vXrgUAPP7443jNa15j++zxxx83nyuKoijLB5Xpy1OmK4oyGY1EV5YtsVgMRx99NL73ve+hWq2a9/P5PH74wx+29f1jjjkGd9xxh81j22w28d3vfhcHHnigKYFyyCGHAAB++9vf2vbxgx/8YNbjP+mkk/Bf//VfNqHaaDRm1dDUzUM9HStWrEA4HJ50TnfddVdH9q8oiqIsf3bt2oVmsznp/UajgT/96U+IRqPo6upqa1+NRgPf+ta3cNhhh+GnP/3ppNeHPvQhDA0N4cc//nGHz2Iv5513HhqNBr70pS/h7rvvxlve8hZEo9EZ7YOOa+l0B4Cvf/3rbe8jl8uZFHRy8803w+v14vjjj5/xeCzLmjSef/u3f0Oj0ZjRvg444AD8zd/8Db773e/avvvLX/4STz75JN7whjfMaH+KoijK4kFl+mSWs0xXFGUyGomuLGuuuOIKnH766Xj1q1+NCy+80AjJeDzelif2yiuvxCmnnIKTTjoJH/7whxEMBnHttdfid7/7HW655RYjNF/zmtegp6cH5513Hq644gr4/X7cdNNN2LFjx6zH/qlPfQrf//738cpXvhKf/vSnEY1G8bWvfQ2FQmHG+3rhC18IAPjKV76Cc889F4FAAC94wQuQSCRafsfj8eAf/uEfcMMNN+Cwww7Di170Ivz617/GzTff3JH9K4qiKMuf73znO/j617+Ot771rXjpS1+KVCqFZ599Fv/2b/+G3//+9/j0pz9t61syFT/+8Y/x3HPP4aqrrsKJJ5446fO1a9fimmuuwaZNm/Da1762w2eyh6OPPhrr1q3Dxo0bYVnWjNO+AeCII47AYYcdho9//OOwLAs9PT34wQ9+gM2bN7e9j97eXrzvfe/D9u3bcfjhh+Puu+/GN7/5Tbzvfe+z9SBph2QyieOPPx5f+tKX0NfXh0MOOQRbtmzBpk2b2jaGSK666iqccsopeNOb3oQLLrgAIyMj+PjHP461a9fine98p23bLVu2YPfu3QD2GFSeeeYZE414wgknoL+/f8bHVxRFUeYGlemTWe4y/ZlnnsGDDz4IAHjqqacAwMjpQw45pK3yP4qynNBIdGVZ87d/+7e4/fbbMTY2hrPPPhuXXHIJzjzzTJxxxhltCZETTjgB//3f/41YLIZ3vOMdeMtb3oJMJoPvf//7tgafyWQS99xzDxKJBP7hH/4B559/PtauXYtPfvKTsx772rVrcd999yGZTOLcc8/F//k//wfr1q3DZZddNuN9nXjiibj00kvxgx/8AK94xSvw0pe+FA8//PC03/u///f/4h/+4R/wxS9+EWeccQa2bt3qGsU/2/0riqIoy5vTTz8dZ5xxBu6++268613vwitf+Uq8//3vR6PRwHe+8x189rOfbXtfmzZtQjAYnGSIJX19fTjzzDPxwx/+0DU1ulOcd955sCwLRx11FI455pgZfz8QCOAHP/gBDj/8cLz3ve/F3//932NkZAT33Xdf2/sYHBzEzTffjG9961t4/etfj//v//v/8IlPfAJf/epXZzweYE/E20knnYSPfvSjeMMb3oCHHnoImzdvRiqVmvG+TjzxRNx9990YGhrC6173OnzgAx8w2XXOyLjPfOYzeNOb3oQ3velNKJfLuP/++83fv//972d1LoqiKMrcoDJ9Mstdpv/0pz81cvmee+4BAPP3NddcM6vxKcpSxmNZlrXQg1CU+aRWq+HFL34xDjjgANx7770LPRxFURRFUZS2OfHEEzE6Oorf/e53Cz0URVEURVH2AZXpirK00HIuyrLnvPPOwymnnIKVK1dieHgY119/PZ544gl85StfWeihKYqiKIqiKIqiKIqiKIqyyFEjurLsyeVy+PCHP4zdu3cjEAjgJS95Ce6++2686lWvWuih7TPNZtO1uYvE79d/c0VRFGX/otFoYKpkS4/HA5/Pt2yOOx/U6/UpP/d6vfB6tVKkoiiK0llUpncelemKMju0nIuiLGEuv/zyaWvPbdu2DYcccsj8DEhRFEVRFgEnnngitmzZ0vLzgw8+GE8//fSyOe58wGbqrTj33HNx0003zc9gFEVRlP0GlemdR2W6oswONaIryhLmueeew3PPPTflNuvWrWu7S7qiKIqiLAeefPJJ5HK5lp+HQiG88IUvXDbHnQ8eeuihKT/v6+tTp72iKIrScVSmdx6V6YoyO9SIriiKoiiKoiiKoiiKoiiKoigt0GLJ2FNX+rnnnkMikZg2rUVRFEWZGsuykMvlsGrVKtdaeuVyGdVqdZ+PEwwGEQ6H93k/ytJEZbeiKErnUNmtzAcquxVFUTqHyu75R43o2FMSY/Xq1Qs9DEVRlGXFjh07cOCBB9reK5fLWLNmDYaHh/d5/4ODg9i2bZsK9P0Uld2KoiidR2W3Mpeo7FYURek8KrvnDzWiA0gkEgs9BEVRlGWH29xarVYxPDyMHTt2IJlMznrf2WwWq1evRrVaVWG+n7IcZLfX64XH44FlWWg2mws9HOX/wehIrXi4NNH7t2+o7FbmkuUgu/1+P7xeLxqNBhqNxkIPR/l/6Nyv7M+o7J4/1IiO6TsTK4qiKDNnqrk1kUjskyKlC2RlprJ7sSpXlmUtujEtJuhkUJT5YrHOFfOFym5lLpHP11T/a/yMPxeTo5mOb32eO8v+Pvcqyr6gsnv+UCO6oiiKMu/sq+FQhbnSCrmI5HPi9XpNncBms7lolPHFMo7FzEL8r+v8srTZ1/vnNocoe1DZrXSSVs+Dx+OxvchikZkafT437Ov8oPPL/o06YVqjsruzqBFdURRFmXdUmCuKoiiLFc2AcEdlt6IoiqIsLVR2dxY1oiuKoiiKsmxwW+jJmuOLJZJNUfYHlmJkGJXNxTbmpXgtFWU28Bm3LGtRlnNRlP2FpSR3FusYl9I1VNpDjeiKoijKvKMecWU+WYwGMUVZ7jhLMQCLe+5m9PliHCOv5UKPTWW3Ml9IQ7qiKPOLU3YvBvmzFFHZvTzxLvQAFEVRlP0PGek329dMufbaa7FmzRqEw2GsX78eP//5z6fcfsuWLVi/fj3C4TAOPfRQXH/99ZO2uf3223HUUUchFArhqKOOwp133mn7/LrrrsO6deuQTCaRTCaxYcMG/PjHP550LS6//HKsWrUKkUgEJ554In7/+9/P+PwURVEWI0tF+Vrs41wM41sI2a0oiqIoS5XFIPdUdncWNaIriqIo8858C/PbbrsNF110ET75yU/i0UcfxXHHHYfTTjsN27dvd91+27ZteM1rXoPjjjsOjz76KD7xiU/ggx/8IG6//XazzdatW3H22WfjnHPOwW9+8xucc845ePOb34xf/epXZpsDDzwQ//zP/4yHHnoIDz30EF75ylfijDPOsBnJv/jFL+Lqq6/GNddcgwcffBCDg4M45ZRTkMvlZnhVFUVRFg+qhHWOxXINVRFXFEVZ3jib+urcPXsWi+xT2d1ZPJZeEWSzWaRSqYUehqIoyrIik8kgmUza3uN8u3v37kmfzYRsNov+/n7XY7hxzDHH4CUveQmuu+46896RRx6Jv/u7v8OVV145afuPfexj+P73v48nnnjCvHf++efjN7/5DbZu3QoAOPvss5HNZm2R5X/7t3+L7u5u3HLLLS3H0tPTgy996Us477zzYFkWVq1ahYsuuggf+9jHAACVSgUrVqzAVVddhfe+973TX4z9FJXdM0NrMiqK0g6LSXYryw+V3YqyuFED+tJEZff8oZHoiqIoyrzTKY94Npu1vSqVyqRjVatVPPzwwzj11FNt75966ql44IEHXMe3devWSdu/+tWvxkMPPYRarTblNq322Wg0cOutt6JQKGDDhg0A9kS8Dw8P2/YTCoVwwgkntNyPsrxw1p2cK1QRUhRlX9FoNkVRlOWPztnLC5XdnUWN6IqiKMq80ylhvnr1aqRSKfNyiyofHR1Fo9HAihUrbO+vWLECw8PDruMbHh523b5er2N0dHTKbZz7fPzxxxGPxxEKhXD++efjzjvvxFFHHWX2we+1OzZl+eD1el2bL+7vyFRivTZLm3bvod7vpYEq4orS/ry2v6LXZ2kzk/laZffSQGV3Z/Ev9AAURVGU/Y99Fcj87o4dO2xpZaFQqOV3nAs8y7KmXPS5be98v519vuAFL8Bjjz2GdDqN22+/Heeeey62bNliDOmzGZui7E94PB5dwCvKIqBTsltRlOWPym5FWRyo7O4sakRXFEVRlizJZHLa2mx9fX3w+XyTIrtHRkYmRYCTwcFB1+39fj96e3un3Ma5z2AwiOc973kAgKOPPhoPPvggvvKVr+DrX/86BgcHAeyJSF+5cmVbY1OWD81mU5VMF9wcVsrSpN1ne6H/BxhJpxFXiqJMh84RirKHhf5fkOvEhR6Lsv+g5VwURVGUeWc+08qCwSDWr1+PzZs3297fvHkzjj32WNfvbNiwYdL29957L44++mgEAoEpt2m1T3nurN2+Zs0aDA4O2vZTrVaxZcuWafejLA900d+aVtdGjetKp/F4PPB6vfB6VTWaCk0JVxRlOuT/uZb6UOYSym59xqZGZXdn0Uh0RVEUZd6Z77SySy65BOeccw6OPvpobNiwAd/4xjewfft2nH/++QCASy+9FDt37sS3v/1tAMD555+Pa665Bpdccgne8573YOvWrdi0aRNuueUWs88LL7wQxx9/PK666iqcccYZuOuuu3DffffhF7/4hdnmE5/4BE477TSsXr0auVwOt956K+6//37cc889APYs/i666CJ84QtfwPOf/3w8//nPxxe+8AVEo1G89a1vnfX1UZTljC7mlblAFcXp0ZRwRVEUZbFAmaKyZWpUdncWNaIriqIo8858C/Ozzz4bY2NjuOKKKzA0NIS1a9fi7rvvxsEHHwwAGBoawvbt2832a9aswd13342LL74YX/va17Bq1Sp89atfxRvf+EazzbHHHotbb70Vn/rUp3DZZZfhsMMOw2233YZjjjnGbLNr1y6cc845GBoaQiqVwrp163DPPffglFNOMdt89KMfRalUwgUXXICJiQkcc8wxuPfee5FIJGZ7eRRl2aALd2U+WEyllRZzaRlVxBVFaQf9X1fmg8UoJxcjKrs7i+YsKoqiKPsFF1xwAZ5++mlUKhU8/PDDOP74481nN910E+6//37b9ieccAIeeeQRVCoVbNu2zUStS8466yz87//+L6rVKp544gm84Q1vsH2+adMmc8yRkRHcd999NgM6sMdgcvnll2NoaAjlchlbtmzB2rVrO3fiiqIoyrQsFiVRyx8oiqIoytJDZfderr32WqxZswbhcBjr16/Hz3/+8ym337JlC9avX49wOIxDDz0U119//aRtbr/9dhx11FEIhUI46qijcOedd7bc35VXXmkyviWWZeHyyy/HqlWrEIlEcOKJJ+L3v//9jM5tQY3oP/vZz/C6170Oq1atgsfjwfe+9z3zWa1Ww8c+9jG88IUvRCwWw6pVq/D2t78dzz33nG0flUoFH/jAB9DX14dYLIbXv/71ePbZZ+f5TBRFUZSZoLXZli4quxVFUeYOy7LQbDYXehiuqOxeuqjsVhRFmVsWq4ybb9l922234aKLLsInP/lJPProozjuuONw2mmn2bK+Jdu2bcNrXvMaHHfccXj00UfxiU98Ah/84Adx++23m222bt2Ks88+G+eccw5+85vf4JxzzsGb3/xm/OpXv5q0vwcffBDf+MY3sG7dukmfffGLX8TVV1+Na665Bg8++CAGBwdxyimnIJfLtX1+C2pELxQKeNGLXoRrrrlm0mfFYhGPPPIILrvsMjzyyCO444478Mc//hGvf/3rbdtddNFFuPPOO3HrrbfiF7/4BfL5PF772tei0WjM12koiqIoM0QV8aWLym5FmVu0weX+zWKWcyq7ly4quxVFmQ0aXb30mW/ZffXVV+O8887Du9/9bhx55JHYuHEjVq9ejeuuu851++uvvx4HHXQQNm7ciCOPPBLvfve78a53vQtf/vKXzTYbN27EKaecgksvvRRHHHEELr30Upx88snYuHGjbV/5fB5ve9vb8M1vfhPd3d2TrsPGjRvxyU9+Em94wxuwdu1afOtb30KxWMTNN9/c/glaiwQA1p133jnlNr/+9a8tANYzzzxjWZZlpdNpKxAIWLfeeqvZZufOnZbX67Xuueeeto+dyWQsAPrSl770pa8OvjKZTMv5dvv27VY6nZ71a/v27S2PocwfgMpufemr0y+v12t5vV7L4/Es+Fj0tf+9VHYvfwCV3frSl77ae+laZGm85kN279ixw8pkMuZVLpcnHbNSqVg+n8+64447bO9/8IMftI4//nhXuXDcccdZH/zgB23v3XHHHZbf77eq1aplWZa1evVq6+qrr7Ztc/XVV1sHHXSQ7b23v/3t1kUXXWRZlmWdcMIJ1oUXXmg+e+qppywA1iOPPGL7zutf/3rr7W9/u+vY3FhSYS6ZTAYejwddXV0AgIcffhi1Wg2nnnqq2WbVqlVYu3YtHnjggZb7qVQqyGaztpeiKIqiKJ1HZbeizAxrEUXtukWgac1uRVn+qOxWlOXFbGX3YliLKIuD1atXI5VKmdeVV145aZvR0VE0Gg2sWLHC9v6KFSswPDzsut/h4WHX7ev1OkZHR6fcRu7z1ltvxSOPPOI6Lu6D32t3bG74295ygSmXy/j4xz+Ot771rUgmkwD2XIRgMDgpTH+6i3DllVfis5/97JyOV1EURWnNvhqIdEG3NFgo2e1UEvR5UZYSi+V55f+Rx+NZNGNSFhaV3fsHqncryvLC4/GYMnHNZlPn4v2MTsnuHTt2GJkAAKFQqOV33HSxqZw4rXQ3+f5U+9yxYwcuvPBC3HvvvQiHw1OdzozH5mRJRKLXajW85S1vQbPZxLXXXjvt9tNdhEsvvRSZTMa8duzY0cnhKoqiKNNgtai3NpOXsrhZSNmtz4ii7Dv6P6Q4Udm9/FkqerdmwyjKzND5d/+lU7I7mUzaXm5G9L6+Pvh8vknO1ZGRkUkR4GRwcNB1e7/fj97e3im34T4ffvhhjIyMYP369fD7/fD7/diyZQu++tWvwu/3o9FoYHBwEABmNDY3Fr0RvVar4c1vfjO2bduGzZs32zwfg4ODqFarmJiYsH1nuosQCoUmPQCKoijK/KGK+PJmschufVaUuWa5G3Lc/ofm8/9KS8csLlR2L28Wi+xWJsNIYm06rcwGzr3zMQfzWVXZvXiYT9kdDAaxfv16bN682fb+5s2bceyxx7p+Z8OGDZO2v/fee3H00UcjEAhMuQ33efLJJ+Pxxx/HY489Zl5HH3003va2t+Gxxx6Dz+fDmjVrMDg4aNtPtVrFli1bWo7NjUU9C1OQ/+lPf8J9991nvBBk/fr1CAQCtoswNDSE3/3udzO6CIqiKIqidAaV3dOz0IZBVWw6gyx3onSehf4/UZT9CZXdix+dD5V9Yb6dmfq87r9ccskl+Ld/+zfccMMNeOKJJ3DxxRdj+/btOP/88wHsyVB6+9vfbrY///zz8cwzz+CSSy7BE088gRtuuAGbNm3Chz/8YbMNS7VcddVV+N///V9cddVVuO+++3DRRRcBABKJBNauXWt7xWIx9Pb2Yu3atQD2PJMXXXQRvvCFL+DOO+/E7373O7zjHe9ANBrFW9/61rbPb0Froufzefz5z382f2/btg2PPfYYenp6sGrVKpx11ll45JFH8MMf/hCNRsOE3ff09CAYDCKVSuG8887Dhz70IfT29qKnpwcf/vCH8cIXvhCvetWrFuq0lHnG6/UiHA4jEAjA7/cjFArB6/WiUqmgUqmg0WigUqmgXq8v9FAVRRFoRNrSRGX3vrPQz/5CH9+J3+9HJBKB1+tFtVpFpVJZElGrLGOw2Me5VNHrujjR+7I0WW6ye398DheLXGSUsc/nQzAYhNfrRa1WQ61Wg2VZWnN7P0fv/eJkPu/L2WefjbGxMVxxxRUYGhrC2rVrcffdd+Pggw8GsMcBu337drP9mjVrcPfdd+Piiy/G1772NaxatQpf/epX8cY3vtFsc+yxx+LWW2/Fpz71KVx22WU47LDDcNttt+GYY46Z0dg++tGPolQq4YILLsDExASOOeYY3HvvvUgkEm3vw2Mt4FN+//3346STTpr0/rnnnovLL78ca9ascf3eT3/6U5x44okA9jQ++chHPoKbb74ZpVIJJ598Mq699lqsXr267XFks1mkUqlZnYOy8AQCAfT19SEWiyEWi6G7uxuBQAATExMYHx83qYeFQmGhh6oo+xWZTGZS2i7n27/85S8zElZOcrkcDj30UNdjKHOLyu7lCSOGFmJZGIvF0N/fD7/fj2w2i0wmg0ajgUajocqYoswzKruXJyq7lz/zIcc9Hg/8fr8JYkulUvD7/SgUCsjlcmg2m6jVamg0GnM2BmXxwIyxxeLg2Z9R2T1/LKgRfbGgwnxp4vV64fP5EAqFMDg4iK6uLsRiMfT09Bgj+u7du1GtVrFr1y5kMhlYlqVCXVHmiamE+VNPPbXPwvywww5TYb4fo7K7s8ynEZ31MoPBIPx+P2KxGPr6+owRfWJiAvV6HZVKBbVabd7GpSiKym5lblHZPXfMtRxn9HksFkMoFEI4HEYikYDP5zNG9EajgUKhgEqlMqdjURYHakRfPKjsnj8WtJyLoswWj8eD/v5+rFixAslkEi960Ytw4IEHIhQKIRaLGWGez+eRy+Xw6KOP4plnnkGhUMCuXbtQrVYX+hQWNfuSnk5hKpvfyBpsmuKnKIrSHrKe5FzPm/M1LweDQVMa4G/+5m/wvOc9D/V63USulctllEolFItF/PGPf8Tw8LAxqDebTZUhc4TP5zOyn8EGsjGYXndFUTrJQmY/LVfm8loGg0GEQiF0dXXh+OOPx+GHH45qtYpCoYB6vW50vGKxiIcffhjbt29Ho9FArVYzsrvZbM7Z+PZXpJzm/Zdrx7mW3fPZsFRRFgtqRFeWJB6PB93d3TjssMPQ39+PV7ziFTjiiCPg8/kQCATg8XhQq9VQrVYxPj5u6qGPjo5iYmJCjehTIBt5zUYgyjp5VMrl4kk91Qqw73Ud9RlSZst8Gqb3leVoZAgEAohGo+jv78dJJ52EV7ziFchms9ixY4fpY1Kv15HJZFAqlZDP51GtVtFsNo0s14yyzkKZ7fV6TRkd+T6NI9Ptgyyn51Wxo7Jb6RTLRb4tl/OYjmAwiFgshoGBAZx00kk46aSTMDExgW3btqFUKiEcDiMSiWB8fBwTExMYGxszNdIpU9SI3llk0Jqcm2V0eLuyW+f15Y3K7s6iRnRlSeL1ehGPx9Hf34/e3l5Eo1H4/X6b4ZaTBeu19ff3o1qtwu/Xx55QyAYCAaNA86c0eDNCsFUUoIw+Z4MZn88Hv98Pj8dj+261WjV1btUQsv+iwlxZKNgMcimwlMbaDh6PB+FwGN3d3Ugmk/B4PKhWq6hWqyYa3ev1mjTxeDyOrq4uFItFFItFdcI6oOz1+XyIRCLw+Xyo1Womal9eL3nd+D0q11IR5+8ATMP2RqOBUqk0ZYN2bbK6f6CyW+kky+F5WA7nMB0ejwfRaBR9fX3o6emBz+dDpVIxspv6nN/vRyAQQCKRQG9vL4rFIiqViolUV/YgA85CoRB8Pp8JIGDAQCsd2SlnafuQn0uneLuyW1neqOzuLGpNVJYUVPz8fj8OPPBA/M3f/A1SqRQGBgYQDAZtUdQUIIlEAkceeSR6enrwxBNP4Mknn0Q6nV7YE1kEeL1e+P1++P1+9PT0mMYwkUgEfr/fJsQnJiaQzWZRq9VM2p6EinYgEEAymUQoFDL7lpFt9XrdRBVWq1UUi0WNSthPUWGuLCRL5flZbmmyHo8Hg4OD+Ku/+iukUinUajVs27YNxWIRu3fvRq1WQ1dXF/r6+uDz+XD44YcjkUjgueeeQzqdNoZ0ZQ90VicSCRx66KFIpVIYGRnBzp07Ua1WUavVjFJO57V0cNNBznUVX3Ssh0IhhEIhlMtl7Nq1a0pFHFg+z6nSGpXdSqdwrv81m2Xx4vV6cdBBB2H9+vVIJpNoNpvYtm0bCoUCRkdHUavV4PP5kEgkEIlE8PznPx/hcBg7d+5ENptVfU/g8XgQDAYRCAQQi8Vw4IEHIh6PI5/PI51Oo1qtIpPJIJ/P2yLJpYObTnI60BnARtnOQIRyuYyhoSGV3YrK7g6jRnRlycFoqWQyiVWrViEejyMWixnBQmhQDwaD6O3thd/vx+7duzUS/f8ho8Wj0ShSqZSJHggEAqaOHV+VSgUejwelUsm2Hwp1v9+PYDCIaDSKcDhsFHFpRKdCD+xZAKjnW1GUuWA5pVcvh3MgHo8H8XgcK1asQDQaRbPZNGVb6KBNJpMIBAIAgO7ubjQaDRSLRZMhpexFNljv6+tDb28vGo0GxsbGbH1IgL1KN6PU+H1Z/5wl8SKRCLxeL2KxGMLhsPlMURRFmTlLPUvH4/EgkUjggAMOQDQahWVZyGQyKBaLJtKZTcB9Ph+6u7tRr9dRLBZNSTBlL5S14XAYvb296OrqQigUQr1eN31huI7lsyON6JTvzCYPBoNmn16vF9FoFNFo1Oj5Svss9f9VZX7Q/yplSUIDuYw8n257pk6p4XZvSn1XVxeCwaBJrZdpZXwFAgF0dXXB6/WiXC7bjOCMYGOdvGAwiEgk4mpEr9fr8Pv9JloBAMrlsq1murL/oB5xZS7R52PxwproVPCAybW3qZSXy2WUy2VTV7VdlpMTxUkwGEQ4HIbP50M4HEYoFEI8HgcAUzueToh4PG7S7sfGxlAulwHsdWLLyPNUKmUy+oA9RnUq+Y1GA6FQCMFg0Cav3a7vcrzmyl5UditzxXIuCbUczsnn85nG4CzVSTkC7DnHSqViAqaY/SRf+ysyOpzBa+FwGNFo1BYg4Pf7EQqF0NPTg1gshmq1iomJCVsAG/dFHT0WiyEUCpl7wfvEALdYLGayy8vlss0g307NdGV6lsK8pbK7s6gRXVlySM+srOE51fay1vf+Dh0JiUQCBx54ICKRCJLJJOLxuM3LDeydMOkpz+VyRgDL6HRGsodCIfNTNnml0s16t9VqFR6PB8Vi0aSUqxDfv1BhrihLi04YpqUDl8ok32c/k0ajgUKhgFqthnw+j0KhgFKp1HYPDaezfLnNFZFIBP39/fD7/bZMPI/HY+RzOBw2WXjJZBK5XA6lUsl83mg04PV6EYlETMmWvr4+RCIRVCoV5PN5AEAoFEIikTBR6expUq1WjfItG5kBUKUcsytLsVSeWZXdylyiz8fc0AkjH7OUmJ3E/bH8V7PZNLKbDt1WvbT2JyifY7EY+vv7EQqFEIlEEIlETBS507FNeZxOp/G///u/Rt8G9tanj8ViJoM8HA7bjkV9nmVWw+Ew8vm8KeHGQDnLskzJNwVT2pOm+o6zz8xiRGV3Z1EjurLk4D8xm1RON/lTQMhSIgtFq0h4OTG5TVKtJvXZTGiyrjyj2FibrRVME2NjVjZAkU3NZD1V/i2jDClcWG+d9dKnc4IoyxMV5oqyf+KMSuNPv9+Per1uZAKNvSwpNhPmOirIKbPaORbl4L7OfcwYY5Q4DRjynHkNGbVerVYnBRIwGk1GowcCAXMPqNQzCIGOcZ6LNiPrPBrNpihKp+nUPE0HaaPRmOQApz7H7er1unG6LvT//Gx16On09ZnC7DHKZUaPS+MrryEzuyuVitGX5fEpj9mTjGsAbif7wwWDQQAw9dL5+VKQN/PNbNc1S+FaquzuLGpEV5YUFOD1eh27du3CE088ga6uLrzgBS9AOBy2GallWvgzzzyDHTt2YNu2bSadeT6hAKThmoKMky47lzcaDVQqFZvySkVYLlgAGMMCDQ3tTG70SrMRCeudTlcvTY4jHo+jXq+jVCoZwwbroVOYU6Dze/R6y6ZmfDWbTc0QUBRFWeR0YgFtWRbGxsbw5JNPIhqNYtWqVaZcWDKZNDXTk8kkCoUC/vSnP2FsbAy5XK5tJ7iMhN7XMcs1BeWUbMzJCDtmWjkd+lRspewvl8szarLmzAAIh8Po7u5GIBBAs9lEuVxGKBRCNBpFKBQy+5ZlV2QqOddQHJ8su8YIcyrdAEzkWiwWMxlkjDLUNH13ZnM99DoqijIXdEp2j46O4o9//CPi8ThWr15t5JAsH8YGmU888QSefvppjIyM2Jzg81VqzRmNLSO0qTdTRtbr9Unjod4tdXFG2M9E7sko5VAohGQyacrhNJtNW38SWWKFjghgj8yPxWImA5x6M3VuAEbPdgbrycajzAJ3rpFU7tiZzfVYzBHoytygRnRlyUGBNzo6ij/96U/o6+vDypUrMTAwYDziwF5FulKp4Nlnn8UTTzyB4eFhVCqVeR2vjNSmAKX3mRHdbMxCwzgFJA3R4XDYpGpRODItm4psO6nubEBCozdTuadrGEbjAWvZUlgw5VsaxukskFHmMvrO7/ebnzSiV6vVWV9fZWmiHnFF2f+wLAsTExN46qmnkEqlkEgkjFIZjUbh9/uRTCbR09NjoqInJiaQz+fbLufC43QCqUBLZ7JUgrkmcTPyy8afbJjK/iLtzIFu2WvBYBBdXV0IBALIZrMolUrGGB4KhYxcdZZakVHpHCvlNbMAiJThNIBEo1EEAgFY1p6GckSV8P0Lld2Ksv9hWRbS6TT+8pe/oKurCz09Pejt7TX6pM/nQzKZRCqVgtfrRS6Xw86dO5HJZIwMkZHSc13ixZl17Qxek3XbnYFo1JVDoZCRkSyXJo3vMxk/98n65awd75TvzAKThm46yVmSjTYC1j0HYMvicxrRaT/I5/PmMzl+nZP3jaVy/VR2dxY1oitLEsuyUCgUMDo6imazieeee8402mKkdbVaRaVSQSaTwe7duzExMTGjaLZ9RXrBGQFGJVYKPkaTeTweVKtVUzec6dP8PiPDnOlyFP4zMTA4x7kv21PQO5uNUchLj32rVzvHc/7kcZy/6yS/NFBhrij7H8y8ogN2YmLClCSJx+Pw+/0oFAqYmJhAJpPB6OgoisWiMTrPJ1L2SuWfRnQAppwce30QyilZ3owlUxgtNhM4XzrlIFPrGSFHx7wspcafztIsNCZwTTTV9ZXrDRoRZhKJ59yXsnRR2a0o+x+WZaFcLhsH6ujoqCkrFovF4PP5kM/nsXv3bqTTaYyNjaFQKBijr9zPXEMDM4PGIpHIJCM6HceMQpfR6LLMmTSi873ZlKhxllqTertTf3dmZ/PYsvwpZT/XH7I5qfO4HK+b4X+q8+h0ORtlYVHZ3VnUiK4sSWg4z+fziMViGB0dxcqVK02as9/vRzqdxsTEBAqFgi0Kfb7Kuch6ZQMDA+jq6jLR6BSQFHrJZNKUnqGHWiq88XgckUjEtv9yuYxgMIh6vY5MJmMWAHM9yXH/0nDeaDSMF7xerxslnQJdRstz0SJfboJfRv7J0jByAcIXxzCT0jbKwqLCXFHml/lKo54KRrNVKhWEw2GUy2U888wzCAaDpkFmOp3G+Pg4KpUKRkdHjfN7vjKWqGhTdnd3d9s+pyIN7JHDTLEGYNKlKaeo+IZCIcTjcQQCAZTLZZvSO53x2s1ZTKrVqmnkxojAcrlsi0rn93hMGvIpO3O5nC113S0lnGVjmDUnHfhTwbWAHDvltbI0UdmtKPNLq+Ch+cSy9pRiK5VKCIfDSKfT6O7uNo2ufT4fdu/ejeHhYZTLZQwPDyObzZqeZNzHfEWf9/X1IZVKmZrgTuc1I9ErlQpyuZwpW8Z+X9Fo1JSJlSVXqGcWi8W25JiMKOc+qCsXi0Wzb9lrjMhIdK6BuG6o1WooFApmjcGSOtLZzn2Uy2VzrjLgbKp7QfsDryv3pTq2O4thfT0dKrs7ixrRlSVLNptFLpdDJBKBz+fDxMQEYrEYVqxYgUAggNHRUezatQvFYhE7duzA2NjYvI6PgpcRdqz76mzuBewVlKyXKgUX65mxG7qERuhCoTDrCXxfan9JI3a9Xjdp5FwIyGh06TWX0WytjAiyjpyMBJARdByHdCDs713gFUVRFjOVSgXVatUokMVi0fTbAIBnn30WO3bsWFBDK2VNLBZDV1cXAHskGTPIfD6fcXoHg0GbsZr7oBJPQ7WMiNvXZlR0TANAsVg0TmlZjsWZps4xWZZlst+Avc5uy7ImlXij0s7t25WzXPNI5Y1KvsppRVGU6VksBrpSqYRSqWTk38TEBOLxOKrVKvx+P5566ik8+eSTM24E3kko48LhMBKJhMkAc5YXpdGcZeNoxGaJFQbByYapjUbDBK/NpJeXdCDLXmHUXdnfTPYwcZ6PbB7KsThlt9txqZ+zjFu7z5Bco0inujrAJzPTzEJleaBGdGXJ02g0jDeW9cp8Ph+y2Syy2azxwM73IoQpblSep0rhpmdZpp3RyCwFqPw+lXEqvO1M4jJlrVqtmhT5YDCIUCjU8nsU0LVazUSiVSoV45GuVqsolUpoNpsIBoPmXKjI81z4fR6b3w+FQohEIqb+OxcLjJiThgcZiS6N6DwvNl2h15118dkMRo3siwP1iCvK/gn/dxnNxdTqUqkEj8dj3psNnTDOUvb4/X5Uq1XkcjmbvGF9UWfmEyPBZNYUS9U4U8Pj8ThqtZqJZJ/JfMgINqajc5+stSoN68AepwWz8JxlcRhRTgMCf6e8LRaLJpqQfVuoRDuV+0gkYgwSzBqIxWKIRqO2cjDSKCFryVM28/tcM8xXCT6lPVR2K8r8Ih2QiwFmTlP/o86XTqcXtMEiM7Aoi2k4pmGcBnUANiO2bLBN2cdIdAl1S5/Ph3K5bCK7270vvG7yuFwbMGuMMFq9Vqshn88jn8+jVCrZ9G42K43H4zZDPw3slNeFQsEml6UzndnudIzQMM/rSHnNNYLMQOdY+KrX66Z8j5Tti+W5nSuWSmCAyu7OokZ0ZcnTaDRM2Rafz4fh4WHTDKtaraLRaJhIsfmcAMLhsGn+xSjyqTzXjG7r7u42ht9isQgAtu7nNJbXajVTl5XR7dMZidnE0+PxoFQqmRQ22S3cDQrLcrmMfD5v0vEpQGn0YK13GsK5TwrearWKbDaLSqViW0jEYjHE43GEQiH09PQgGo2ahYHTA++M3qMhgy9G4+XzeUxMTKBWqyGdTiOdTpuFhXrSFx4V5spiQkbazEdZrIVgMZ0TFa5MJoNsNmurOd6qxNd0SPm6L+fKBto+nw+lUsnmgAWARCIBALaSZYx8CwQCtoypVCqFaDQKAEYORqNRdHV1oV6vG7lEOdYOlUoF6XTaGNHZOC2VSiEWixllmWufYrGIQqGAXC6HbDY7aX9UAHndGVUPAGNjY6b3DM9VNokLh8MmU27FihWIxWIolUrIZrOwLAt9fX3o7e01xoNarWZT+guFgjEMUOkul8tIp9MmXb1QKJhxKguPym5lsSGbVS5HFtv/TKPRQC6XM40qh4eHjQxZSP0qFAqZEi4AjOzg2i4cDiMajdrGymh0qWPKDHBZwkSWYmFD75k0GaUOTGc3s9NYv13WPKcNo1QqYWJiwjgoeH0ZzBaNRtHT02OM8DRcZzIZ5PN5Y0+g/kt5zx5tkUgEq1evRjKZRKVSQaFQMHo5S+wxEJBQ76dTnrp8oVDA+Pi4yTSkbWB/CF5bCuensruzqBFdWZJQ4ZZp05wcpKdUlgKRJUWmmkg61QSLx5Vp1e3AscroeX53qmjzdp0E3IaR2lwQ8Hq5nT+Fr6xjLiPw6L2m84Lp2xw7FyryuzxXACYSnco1Fy+tjOjOc+G+mSpHJZ/NZcvlslm0SOP7cl1wLwVUmCvK/kmreVymMjvLibQ7X3fCWU6Htmz+5SxHAuw1iktZ59wPz0Vuy/f4+0yRSrGM0ma0mJTljGSj87jVNeSaifKZf7PeOw0IwN4mZ8BeBz+DBdi7hY6HcDiMUChkrh+dDdFo1FYTXkadMzvN49nTbJ0RctKQrywcKruVxcpSiAZdykhnN5EOYGaV8Xf+nG7e7lTNd+rdzj4cct/OMqPyu/wps547UXaNyEhvmUEuj0W5KPVuynDnucjSqFwL8Psyo0sGJvD+0HBP/Zsymesd6uEyM08Gmsh7Jku1MmiQx6c9Q5aBVRYGld2dRY3oypKCyq3X60UikTAR1Mlk0tRGp0dZGmxzuRxKpRLK5bLxktLLC8Bm6Ob+ZarSbKKXW5VhaRcK0GazaRR67heAUW4pZKdzDhB+XigUMDw8jGAwiFKpZGt8SkWc1yCbzZpUMpbIkQZpjpNCnM4DjpuKMcfO+rfxeBx+vx+JRAKxWAx+vx/RaNQIbJlKJq8hFwl8j/ePin6j0UAkEkEsFkOj0UB/fz+KxSIqlQomJiZMSRqmqS/XyFNFUdpD/v/rXDC3xGIxJBIJW4+QYDBoor/L5bIpD0ak7AYmG0ucpb725R4yi4zGbxm5RSVdwnFSBrF8CmWfbGbOaC02S2Xq80zGWywWMTIyYnPUAzCRcSzBUqvVkM1mTcQam5+6wawAfjedTgPYs06Qyi+j67u7u21ReMFg0DjCWZaO55TNZs1YWbaN14TlXXjfWIs2Ho+bzDI2Tk2n0yZqnRF1iqIoTgenMjckEgmkUimbrsxIahpOZdBUs9lEsVjE+Ph4yzmb8p/yciZ1u50wK0sGsAF79Wa3nmQcg7MECbO8JJRHjERvV+8m+Xwezz33nNF1Q6GQMWYzQ5wOcpZwmU5212o1jI6Omow+AGYdwkakvBaRSASJRMJcB9pMuPZiSTZeE+5LGv/5XqPRsDnTgb1rp2azaTLA6/U6crmcsVewzKqiLHXUiK4sKSi4/X4/enp6sHLlSoTDYfT39xvBwG7aFIbVahUTExOmDAnriRaLRZtHmEZbKnn0/koP60zH2qqRaDuw/AkAIwglFKw8z5ko4lTkGeXFcwwEAkgkEggGg8bzXa/XMTIyYhZB+XzejIvIa82xSgcCxxYIBJBKpRAIBNDb24uDDjrIeMFZe06e51TOB2ekIv+mMOc15PhqtRpKpRJ27txphDsNNftDqtliQz3iymJjf3+m5qNviMfjQSwWQ39/v630VyQSQW9vLwKBADKZDDKZjE3mptNpU35M7svNkL4vChprjNKpzJqqVDQDgYDp6SEjo2kA5tqDZVMod2St1Xw+b85vqujwVjAgwOv1IhqNmuhvHieXy2FsbAzVatWW0j1VbXE6y2U0nMz4k078RCKBNWvWIBAIIJ/PI5fLGSM609MDgQAsy8L4+LgpPdPV1YVIJGJqwUvnA/H5fAiFQiblvlQqmfUa5fRMG6QpnWUhZPe1116LL33pSxgaGsJf/dVfYePGjTjuuONabr9lyxZccskl+P3vf49Vq1bhox/9KM4//3zbNrfffjsuu+wyPPXUUzjssMPwT//0TzjzzDNd93fllVfiE5/4BC688EJs3LhxxuNX5hadC+Yej8eDeDyOFStWGJkdCARMUJTP5zPZvyz/ydJj+Xze1CV33ivq9YzMllHtM4U2ABr2pRFcympnFLpcO9DBy6xqKRNpR5BOgpnAAC6fz4euri4kk0mEw2HEYjGbA7xarZo1T6PRmKRzS2q1GsbGxiYF2nHcjDYPhULo7u7GgQceiGAwaNYedGLwJ68Z9XmuHZy9yHi9mZnG78diMQB7SsHFYjGT8c7yL1OdizK3qN7dWdSIriwJpDCIx+Mm+jyVSiEUCpnmVc463PV63RiEKQCo0FHZBWBT/uiRlTXVZcpxu8Z02XxjJoKWnm0afpkeR0WTxmI5Jl4joP1JTp4P65fxurDWqqxRSqP6dOfC/dJ4zv35fD6z2OKigU1XeX6zidh3IvchU/osyzLRjrwnhUJhUsM1FRLzgwpzRVn+yGwh1tWk05SKOBtbh0IheL1ehEIhU4uU369Wq8ZR7pbaTAc4s9AoO2djcKVMlFFxzqgs/nSWGZElXDjHUaZTOZUp4rNFGgJ4vowaz+fzNpkts8ba2S8Ac+1l8zE2PWegAZ3lvK/yfJ2lX5ghxog6lq2T6yOnAV86ytn8DIAtyl9GDirzw3zL7ttuuw0XXXQRrr32Wrz85S/H17/+dZx22mn4wx/+gIMOOmjS9tu2bcNrXvMavOc978F3v/td/M///A8uuOAC9Pf3441vfCMAYOvWrTj77LPxuc99DmeeeSbuvPNOvPnNb8YvfvELHHPMMbb9Pfjgg/jGN76BdevWzfqcFWWpIeuD08gtM4jZA4QOVBkwRqMrG00nk0njlKYMkNnf1Lu5P8oKyvl25gzqnDI4bqYBbDKoShqjpTG+E7KbcpvXolAomMwr9vWSQXztZJhzzLJkHNddbJJKGS6vi1t5nlbHkHK51bqC7/G6WZZlqgYwq0yWh1XmD9W7O4sa0ZVFDwWxz+dDd3c31qxZg1gshpUrV2LlypXG88kamlIgUCB2d3ejWq0il8shkUigWCxieHgYO3fuNOnJVObpUacRvVqtYnh42KRHF4vFtgzp3LZer0/q8N0KqfSzMSbLyci0LGCvl1iWUKEy2o7RXiqw4+PjyOfztmg5WT+ei5npnAiyNh6vvd/vR29vL3p6ehCJRDAwMGCaiEplvBMG9FbIZ2jlypXo7+9HPp9HT08PyuUyhoaGMDQ0ZCuho8wtKswVZflDRTaVSuGAAw4wihyjunt7exGLxWxGaRrSabz2eDymZFulUsHu3bsxMjJiDNM+nw+JRAKrVq1CKBQyinq1WsXQ0JCRo+3IbWZpDQ0N2QzIsgEYy8E5079laZpIJGKU33K5bGqGy1JnjHybqbyRRniuAVgCh04E1jGXpehmYkjntZc1zA888EAkk0lznkznZuNURvF5PB5jHGDEXaPRMCXUYrEYenp64PP5TJQio+qZaShr1tZqNfj9fqxZswbBYBCZTAbDw8Mol8uYmJjA+Pi4yoN5pFOy29nklo40J1dffTXOO+88vPvd7wYAbNy4ET/5yU9w3XXX4corr5y0/fXXX4+DDjrIRIwfeeSReOihh/DlL3/ZGNE3btyIU045BZdeeikA4NJLL8WWLVuwceNG3HLLLWZf+Xweb3vb2/DNb34Tn//852d9zooyl3Q6i0zqTIw+D4fD6Ovrw8DAgMkY4nxN/ZvlTqTs7u3tRTKZRLlcxsjICIaGhgDsKf1BB3pXV5dpZk25+uyzz2JsbMzmiJ5qvB6Px5R9Y8BdJBKxOXK5f14rymjKSFlHvNlsGvlPvVuWseE8OJv5UAZxeb1eTExMGJnKCHe5tpipE9zj8ZiSptFoFAcccIAJQpDZ2lL3djq15XqJ7zGqnfe6XC7bss6Z6c/vsHnpwMAAAoEAxsfHsWPHDnOfuDZT5gfVuzuLGtGVJYFU5np6epBMJtHX14f+/n4jwCkYnMbYZrOJcDhsotIZdc1JnPXVE4mEqc8tjeiVSsXU83LbfytkOZaZCEAKTkZI0xBNYUcBJhuA8RoBaDtSXkaMM+3O7fOZjF9uK6PR2TE9Fouhr68P8Xh8zg3nEnrO5QKC6Wvlchn5fB6jo6MAoJ5xRVGUDkCnNmV3d3e3iWJjxBkzypwOajln8yedzDSeUrb4/X7E43H09fUhGo2iUqmYkidUTimP2pFl1WrVGHYZbUeZKw3fUtGVTcIoZ2QDUJ6HjOCW0W6zubbA3qbawJ5yLqQTyg4NIXQedHd3o6enx1bXlEaFVk4KGkar1Sqy2SyKxaIxntAYIZuoO6MHuQ7x+/3o7u425eboNCgWix1r+qbML6tXr7b9/ZnPfAaXX3657b1qtYqHH34YH//4x23vn3rqqXjggQdc97t161aceuqptvde/epXY9OmTajVaggEAti6dSsuvvjiSds4S7W8//3vx+mnn45XvepVakRXFi1SjnRqLpSyu6urC7FYDN3d3UilUsaITic253Jgrw7FDCVmh7MEKQ3jzEiLRqPo6uoyRnuv14tKpYLR0VHTl6Rd6Kyt1Wq2LOdWEenSqMifsswJjfOU1bwmgD0ifTbXXGbUFQqFGX9/OpgtwOubSqVs/UTcSt+5XQ/5mXRI8Lrw/vBayD5jvP89PT2m71kulzPOFkVZyqgRXVn0yLqfXV1dRpGKxWI2oQu4G7gp+GhsZzkYpk0BMA0+uI0UEh6PB+Fw2BYZ1w6shdpoNFAoFIzRVjYJJVQUaeCn8T0ej5sapOycLRu40GPOOmNsdsJUMHbGdgpDmTYtr5FEGh1mWjOcXvBUKoVgMIi+vj50dXWZSLzZ1IjvNLIBTW9vr7mGo6OjJpJCI9LnFjV8KMriYa7+HxnVRme1TJmuVqtGmWKUNuupUgmjvKBBu7u728hWypNwOGyczjTyVqtVU4aEsnG6aDZeBxrGZWo3I66cZV4YpcYxM5LMWRKF5ct4rlwbcFzOHh5TIRVdOT46rmfjACeMpPf7/YjFYohEIiaiz9nEnHXdeY8ZTcfxy/UXM89YO9cZxc/rw7R2pvTTqMGgBsuyTMRyd3c3AJgmqlM1YFM6Ryfmih07diCZTJq/3aLQR0dH0Wg0sGLFCtv7K1aswPDwsOt+h4eHXbev1+sYHR3FypUrW24j93nrrbfikUcewYMPPjjjc1OU+aSV4XO2SIMxg6BYilM6cAGYiG3+LuUY5WcoFDJZSQMDA7Asyxi5GcXMfdIxTH1cypzprgEd3c4sLBrF5bayJBq3pTySfb1k2Tk6/xlxTXnE86Re3mqsUtd2ri1o1J5J+TUnLN3CHiTM4JOZXe0inf1yzSZLzMixO8cv72WlUjHrKY6nt7fXBCxmMhlbA3Zl7lC9u3OoEV1Z9FAYdHd3Y3BwEKtWrTJGdCp2U9Uok/XMKMAooMPhsK1xqKztRmFZLpeRSCRQq9Xg9XqRTqfbGjeVP0bdATBGfGlIl+VSyuUy0uk0KpUKQqEQ+vr6THQ8a8bRuy+FGg3AbOJSqVRQLBZtzcs4cVKAU0DKGqREeqkpKNtNCef+U6kUDj74YMRiMQwMDKCvr29eSre0SzAYNF3E+Yzl83ljAJAee6XzaFqZ0ik6ncq8nJCRVAtxfXj8YDCI3t5eM8+yYRbrdzNS3efzoVQqGcMyjeSUg9KxLWU3y7Bks1mjwFHOJxIJY1SfTomUdVW5JuB1oyxnvXHLskx6M2WuNB4DeyPPmdbMknE0xrN5GI/ZbDaNg6DVWOV9lOnbjAp0yq6Z3vdoNIrBwUGzHqKzmVlr0mjAaDoa3EOhkMlsk9fN5/MhmUwaI0WxWDROFK5B2N8mm81iYmLCfAbAOFZoyKdRIxKJoL+/H8ViEU899ZQa0eeBTsnuZDJpM6JPhVvgyVTrSLftne9Ptc8dO3bgwgsvxL333tt2OUZF6SQziS6fC9lOI3I0GkV/fz9SqZTteHSCsu45HaicHxgM5vV6EYvFzPmEQiFb2RLO/1JuU3eOx+NtyW6eP79L5zn1eDqvJTKbrFwum/OhDiu/29XVhVAoZOt1xlJkPL5lWaaBaqv7IZ3uHCtln9/vNwEAsy0Tw1K3wWDQOD5oz3D2hplu/uT9l3XmKfP5uyx5R7uE1J9l/zFe33g8jlgsZkrwFQoF/PGPf1Qj+jygendnUSO6suhhhFMoFLI1IKP3sx2DrEwVlpFr0WjUeI6l552Kr9PQPBMDMBcZgD2yjJ58adzgwkFGsMlO2eFwGOFw2Lwnm3g5vcFUNNlZXEaMyevh9pKfy6ZufG+6CVRep0AgYOqx0XiwGIznRF4zKu8sD0Cnx0wb0into8JcUZY/lAc0QDN7jLKASpcsxyadIlJxljXHqdDSgMvMK+lclsefyTpBylUpZ6kQSsM9G2dJOU6FUp6LdAZQOQ8EAigWi6b0Cx3XsrxJq3G6GVhkNNhsHEtyrMy+o+zm+bjtTxoonTVW5X65npLXkQ57+Uxw7cQId9kg3NnAlde02WxOqlWrzA3zKbv7+vrg8/kmRZ2PjIxMiiQng4ODrtsz63CqbbjPhx9+GCMjI1i/fr35vNFo4Gc/+xmuueYaE1mpKMsRaUSVxmTqqIC9ubWcE6RsJ1J20wEue3o5oTycadCVlN3Sye52HFmWzZk5Rqc0S5nxOkhZzzJlcn9umebO6+rMnJfZapR5M51fnbKb8puZ684xyWNMlRnuFqAox+aU907jv3xGqE/zOtK2I2U30F5PN2V2qN7dWdSIrixaOHnTG51KpZBKpYxwmE5YtdpnMBg0ddJpRJcNJRlxTqWckVaymVg7cLJpNBomzZj1wJwKNhcmNO7TS9vV1WUiAUKh0KR6qoC95jvrwFWrVYTDYZM2ncvlTL1UqXzKOq1TXUvnwqQVTLUPh8NYsWIF+vv7zXVezNDA7/V6sWrVKkQiEdO8TEbUKYqy+ND/z9bMNhq5E/j9fhMN1dXVZeQNHcnMwqL8zWazRjb29fVNUrRrtRo8nr3NNGUtTjcDaqVSQT6fNyXSppPdTsexrK/K6Gq/329quwIwjdVk9Hc8HsfAwMAk4zDHSIWc0XZMmWeE+u7du23R7lIRBWCaqQMw/V3ouKYzgufb7n3n2sPn8yGVSqGvr8+U1+BaRa4TGKEvFXGmbctIPJZkaTabJlJfOhlooABg6tg3Gg1Eo9FJzgo6T2SEm4zmY13dUqmEdDqt/U2WAcFgEOvXr8fmzZtx5plnmvc3b96MM844w/U7GzZswA9+8APbe/feey+OPvpo8/+xYcMGbN682VYX/d5778Wxxx4LADj55JPx+OOP2/bxzne+E0cccQQ+9rGPqQFdmXMWcl3D0itdXV3o7e01gWvAXuOznIPZINPr9SIejxvZTqeyrEvulh1NeUDDPaOanfKkXWT0M2WjW68N2deDmU3JZNLIaY6FshHYG2TG82MWls/nw9DQEDKZjOt4ZZAZsNexLiO5nY77du8Vo+57enowMDBg1liydrnbPmXZWmfGooxAl44GmbHDa1Kr1YyRnHYbadjn+TmDE3j9enp6TFDBxMSEym5lSaBGdGVRQ6Eai8XQ1dVlum3ToDxTpEAJhUKIRqOmDjmFKpU8RoZXq1Xzmqkwp8c6m80agUZhLj3SJBaLYdWqVYhGo0gkEqaci7NxqjMKTdZjC4fDxpgOwKSpMUJdHluWdpnKiC6NE1N5ydn8K5lMor+/H729vS094YsFKvI0QKxcuRLJZBLDw8MYGxubcXNYpT3UI64o88NC/a94vV6kUinTjIyKVTgcNnXKqYTXajXkcjl4vV7jQG42m0in06ZmOhU6Z01yvth0m7KmXC5jaGjI1NduxwEur5VlWSbF2OPxuJZyoxFdytZ4PI4DDjjAyD4Aps43lUZpUKcSPDAwgGg0ikajgZGREZtsl9F+oVDIlMGQZU6YsSdT6mdyrxigkEgk0NPTYyLtZLQdsLd2PQCboV4aVeR71WrVnD9L1UWjUTNmRuCVSiVUq1VjzPB4PMaIQiMH77GsGc/oPa4RWSJHFfG5Yb5l9yWXXIJzzjkHRx99NDZs2IBvfOMb2L59O84//3wAwKWXXoqdO3fi29/+NgDg/PPPxzXXXINLLrkE73nPe7B161Zs2rQJt9xyi9nnhRdeiOOPPx5XXXUVzjjjDNx1112477778Itf/AIAkEgksHbtWts4YrEYent7J72vKMsNlrgcHBw0va1o5KXTksZwYK+Dm1HQUl5JAzEAmzEWgE0vdvbzkMbZmWBZForFoq3ZdivdNRwOo7e315zzgQceaOSbM9qeRm+WXavVagiHw8ZwXalU8Oyzz06SPTIby5n9zXWA0+DdLrSRsCRef38/gsGgzdnPc3EbU6toc3kfKNtlIJ1soC7L6EgDOreT9gZnpgIzhOLxOCYmJlR2zyGqd3cWNaIrs8Y5AbtNwjP1qDr3LyOgZPmWThlkKSiq1aqJ5qIwY/Q5BRGj32Y7ifBYVHBlyRQq0oy2ojLM9+U5u6Vl0cgt661R4QT2KvrO77ntT37ebloZ70sgEDCR9PTcL2YDuoTny5RFGhRo4FGh3llUmCvKwiOjn/alGaUbMptMNraSSpR0zkpFa6oGW1KmMCqZsk/KLEZzt2tAn4rpronX6zUNvZjt5ibrnRFfNCBQ1jPlnc23uPaQUGnluKTy7TxXea2mikyXZXIYpECFmeXuZPMz+awwmo/75rbcr3yPz4K8HnKfUll3eybkseX1AIBIJAIAZi2nzA3zLbvPPvtsjI2N4YorrsDQ0BDWrl2Lu+++GwcffDAAYGhoCNu3bzfbr1mzBnfffTcuvvhifO1rX8OqVavw1a9+FW984xvNNsceeyxuvfVWfOpTn8Jll12Gww47DLfddhuOOeaYWZ+XoswnzshlYN//NyVS33YavoHJ5bt4fDc5I+U8I5LZy4tGaWYzUeYw0nsmGVVOnE5x5/lx3cAyM9J47vyO8zxl41GZocWMMgbeTTUmQpnnPJ7T4OyE15Ol1zgWym6uE5z6/2xw2l5aRbBL2T3VfZNrTq45isWiWWd08llW9qB6d2dRI7oya+hdlnW6JTQ8yoZZM0Ua0J0G5dkaZvk9phmXSiWMjY1hZGTEeFY9Ho8R4rVaDbt37zbe0anKmUwHlVxGTgF7rmM8Hkc0GkU8Hkd3d7eJuGcd9OkM0TJtKhKJ2JwX5XLZLFa4OOG9mM4TLT+bytjOenmpVAorV640ZVxk9MFSgFGQLPMzMDCAfD6PTCZjGtYpnUGFuaIsLIxgCgaDpqEVDZn7IueIx+NBKBRCJBIxdculciSjlJ0p04VCwShZTrnfaDQQi8VQqVQwPDyM8fFxUwuUDnCuPyYmJmyNsDqJHFM8HjeNtD0ej4mel5lfjKaWayIqvpShPp8PiUQCBxxwAMrlMkZGRsx9kc6BsbExY9zgmoXrFWbM8fozOr1UKrV0BgcCAfT29iKVSiGRSBhDRy6Xw9jYGPx+P5LJpIkElxGINHxzHFxH8fxpJGd/FBlQIB38LAsgDfD8jAaWYrFoc1CwjE4gEMCKFSuMAWPHjh22KESlcyyE7L7gggtwwQUXuH520003TXrvhBNOwCOPPDLlPs866yycddZZbY/h/vvvb3tbRZlL6LSVkcCUK26G29lAuQXYjePSAUyjrTToV6tVMzcDdqcv1xzlchnPPvssdu/ebfpn+Xw+o5PX63VkMhnTYLzTdbIZNc8yagMDA4jH4wgEArbodzcHPz8LBoNIJBKmL0q9XkcikcDznvc8VKtVDA0NYXR01DZ+t34tMpJbBg4wO5qlY5zXQGax9fT0mEwsyudyuYx8Pm8r9+I2d/MceV2ItDvwHLm9HL+0D8h9y8+cBnVeL2b+sxQbAAwPD5sshE49y8oeVO/uLBqqocwaWTNMRjCxmQXTdGlonynOSHQ3r/e+QEWsVquhWCwil8sZY2k2m0Umk0E6nUYmk0GhUDCpxvsqzGXEFZVP1j2PRqO2ZpxUMNu5fk5FnbXIGRXOe+JMqZouEr0dfD6fMQIkk0l0dXUhGo0uuWgwevTp0OA9cevsriiKspShA5TKZKczh5yR6FTyZXaPjCxmmRMARoGSUckcH420Xq8XpVIJ4+PjmJiYMPJ6YmICY2NjmJiYQLlcdo1e7iS8jt3d3RgYGEAkEjHZbUwpZzS5jPCm7JfXn/tKpVLo6uoytccl9XodpVLJlKnhdeF6RmbMsRzcdI29qWgnEgkTBW9Zlqkrn8/nzf2QjdB5Hk7jCtchsjE714ky2k9m/8kgA15XqahLYwORkfDxeBw9PT2Ix+Nas1pRlGUL51ip2znrfncCaRx1NhDlOOQ8zTlcGqH5Xc7TLHNWLpeRTqeN3M5ms0Z2j4+Pm/JnnXDou50XM74p9xKJBILBoE2+0UlM5Pk4S602m02EQiFTypQ6sNPI7CYzpT2A45PBg273VTqs4/E4EokEwuGwGYuM6Hcez3kfW0XA82+3agDSeeLch/yeHLu8fvI74XAYyWQS8Xjc9ElZavYDxZ1rr70Wa9asQTgcxvr16/Hzn/98yu23bNmC9evXIxwO49BDD8X1118/aZvbb78dRx11FEKhEI466ijceeedts+vu+46rFu3DslkEslkEhs2bMCPf/xj2zbveMc7bM+yx+PBy172shmdm0aiKzOGkyiN5zSgupULobIoa3TOpDEnBa+MLJOe3Nko+1JosWRLsVhEPp+3ed6lAJ1tJP1USCFEQ8ZMDeet9stUMyrgMkWbNV6dQtQpCKcTtPJ70WjUpvR3uuzOQsD6eMFgEKVSyRiB1BPbGdQjrijzC+djKcOpGFERazabJnvJmZo90/857ou1zqm4SkWREU6y3Asjo2SEFCOXABi5zXRp2dDK4/EY2T0fxnMq4rIkC9dGUvlulaotFedSqWTWUbI0DNPdOWfyfbn4l9HZ8lrIaH+3+8e1GyPiZeYfsKdECqO7eZ7yPkklmvdBZg9Ig75cX/Fv6Vjh8yADMGQpNY6L957HSSaT8Pl8JnKxVCqhp6cHkUgEuVwOuVxO5UUHUdmtKPOL09gjmzVSftNILR2Os5V/jAQul8sIhUKTZBdlNo/pNl46SKUuyX0yO5pZU8ViEV6v15RNnWvZDeyt6U0ZzvKdPH8ZhU7kmOS6yK3Gu9R/+Tllt3zPuT/5t1sZHWCv4z4SiSASiRinscyml0Z42ayVaw7nefE9+Qw5j9lq7m+l73NbGYkv1zxsgFqr1ZDP52FZFnp7exEOhzExMWGyGvYnWjklOsF8y+7bbrsNF110Ea699lq8/OUvx9e//nWcdtpp+MMf/oCDDjpo0vbbtm3Da17zGrznPe/Bd7/7XfzP//wPLrjgAvT395tybFu3bsXZZ5+Nz33uczjzzDNx55134s1vfjN+8YtfmHJsBx54IP75n/8Zz3ve8wAA3/rWt3DGGWfg0UcfxV/91V+Z4/3t3/4tbrzxRvP3TAMm1YiuzAjpjWTta1nTU8JIJCnI3TzZraAAYVPMUqlkmmQy+mqmSEN+rVZDqVRCoVBAOp3G2NjYJEVUCoC5MKJTuIXDYVNGhJEF+1IKhfumcGVkNdO7WhnI3f6eSpADe5vHrV692kTRL+UoMF7zWCyGlStXolKpoFAoYHh4eJ/r8yl7UUVcUeYPmcnFDDL5YiZRs9lELpcDAFvZETqeZwKbalPh9nq9RlGVhmEaA5xGdEZXcyw0yFJuM8q7UqmYcibAvvdjaReWS4nFYojFYsbIHA6HbU1TZc1wGXXfbDZNpBhT2WUj9Xq9bozpMnotFAohlUrZjA5sgk4jAOWYdCa4KcWRSMTIbaZ806lP2c7xx2IxBAIBU3aF58FSPdlsFtVq1QQDUDmuVqvm3vO4NK6wzAzLwQAwayBes3K5bMr98L1CoYB6vY6enh50d3ejWq1ix44dyGazCIfDWLNmDTweD/7yl7+YNY/SGVR2K8r8IQ2bTket/J1lxPx+P+r1OgqFwqR+Gu1CB3g+n7c5vonTIe+GnOMZkFYqlZDL5Yz8ZlBXsVg033MaXucCZyQ6ZXilUpkUKc3zazUeOvidpcycPURYvi2ZTMLr9aJQKNiC2tyO10rnZPBad3e3kbd0WlBOhsNhlMtl45hm2T6nc19meMnxyzWD7Lsir40cl/NZkGs5eT68xlxzNBoNFAoFVCoVeL1eHHTQQWg2m/jzn/+MiYmJ/U5eyMCITp/7fMvuq6++Gueddx7e/e53AwA2btyIn/zkJ7juuutw5ZVXTtr++uuvx0EHHYSNGzcCAI488kg89NBD+PKXv2yM6Bs3bsQpp5yCSy+9FMCexuJbtmzBxo0bTfPw173udbb9/tM//ROuu+46/PKXv7QZ0UOhEAYHB2d0ThLNlVBmjCyxQuVXesVldJvsyjzTyGSnEVemDu/L5OI0pFP5ZLS7M8JtX7z50+GWps6f+xrFzetOoShryrt5v9284O1MuM6SAMshCh2AUfplhJ6ml3UOp6FrNi9FUdpHRrI5S6Q5FfNOlFCTCrRM7+ZY3PY9XZQT98mGm3R6c43gLDHSCaY6f1kXVm5HeeGWzu02LlnjWzoW3Ers8H4507zd9j1dNJvMJJTHcdYzlWs8KngstSNlozMqb7o1m9PA7ywP4HZe8hgM4vD5fKZmeqPRQDQaRSKRMDXclc6hsltR5hdnCQ2p38kGl61kxmxgWRMZXDbT8Tr1JhpRKbs591N2yyj0uXaAO6+llNdyu3aRaxvni5/LY04V2c3tW31Oh4os08rt5JrOWX5lurFLprsHTlnfznk4I9F5zfkMAHuy31jvf3+W3XNx7p2S3Sx7zBeDKiTVahUPP/wwTj31VNv7p556Kh544AHX8W3dunXS9q9+9avx0EMPmfr4rbZptc9Go4Fbb70VhUIBGzZssH12//33Y2BgAIcffjje8573YGRkZIqrNxmNRFdmhNPgS4WKv0sajYZtu9lGjjOajYKCkW2Msp7JREPlu1arIZPJYGxsDLlczkS4TyWw3Ma2L0hHBD3FUpHd1wlULmCkc4Njlyn10ltMpICUSq4U1KwhHo/H0dXVZasPt9ThuTEyMJFIoFqtolAoaLMTRVGWHJzn3ZQqyloANiWW8p3vz1TusbRKsVhEJpNBvV43TlfLskz5DaYlM4qOi3K5vgiFQmg2mxgfH8fQ0JCpOT7XtDpnqcj6fD7TBI3OeH5PNsr0eDzGsUBjeSwWsykpjMyiQ4BZfpQ7NBZ7PB7j8OdxGOHvbCDqtp7weDyIxWLo7e21NVT3+/3muubzebP+orG9UqkgnU7Dsiwkk0mjyDObThrZpZNBriVk81Ngz7NVLBZN81leW0YK8rwLhQIajYZJu5XXgI5v1kYPhULYsWPHfq2IK4qyPHCW6JCGWM730kDJSHA3eTAdlEHcT7lctpXZ4jFl9HKreZZR3z6fD+VyGUNDQ6anhxtzYTx3rnUoX2hXYLaTM1LbbWxyfM6gNBnwx15nlE+U+/l8HsCeBuG1Ws2MRRrwnUZLNwd4LBZDf3+/eRZkICDlIuW5HGulUkGj0TCN3Pk8OY8h33NG1fNcAZgmprVazZSl5fpSlscBYGriE9ZrZ8acz7ensbrH4zH13fc3loKjefXq1ba/P/OZz+Dyyy+3vTc6OopGo4EVK1bY3l+xYgWGh4dd9zs8POy6fb1ex+joKFauXNlyG+c+H3/8cWzYsAHlchnxeBx33nknjjrqKPP5aaedhje96U04+OCDsW3bNlx22WV45StfiYcffthkTU6HhlUqM8IZge4U6PIlU8X3xTter9eRy+UwNjaGdDptUsGopM5ksuFkXyqVjBF9YmICpVLJtvhodd6tvNWzwWnkdl6jTuxfGiBknXUZ/SWjAZzvy2Yn0vAO7K37xs7q7Ay+lEu5SJgOx7JFbDTqLFukzI6FiGZbiAYnV155JV760pcikUhgYGAAf/d3f4cnn3zStk0nGpwoSjs4o6X4npzznUb02Wbh0CDMOqhs1s3yHgBMzfRyuWyUbTcjLI2jdGYODQ1heHgYpVKpcxdnFnBsHo8HpVIJ+XzeNBKlcVtml/HcGI3Hcmt0IPh8PjQaDeTzeRQKBTSbTVsWGbDXiM5yNqwvy6hy6SwHWtcrlUb0VCoFYI+hvlKpmLq1+XwemUzGNBYF9kQYsRE7FXY6A5LJJCKRiM2wI8v9OaMOZTYge9MwrZvXNhqNIhQKGWdMrVYzZXM4nnq9btYk0WgUfX196OvrQzQanatbb7uO+5OhXiPRFWV+4fwiM4ulA5JzqNTXZJbRTOenZrNpSp1SPlcqFVumF0uRTVe3WpZ8LZVKGBoawq5du+ZVdrtFh0u9mOVd2WvDGTAw1RzmNNA7jegsrwLAGNHz+bwxPMtG2vJYzt+d5xOPx9Hf34+uri6bc96ZVS97xsi1BwMd6XyORqO2BuROe48zI1sej+sFOgXonHCuMfkZe6twnLzmPp8P8XgcqVRqXrLIFqPsnks52SnZvWPHDmQyGfNiaRU33AI0p7rmbts7329nny94wQvw2GOP4Ze//CXe97734dxzz8Uf/vAH8/nZZ5+N008/HWvXrsXrXvc6/PjHP8Yf//hH/OhHP2o5NidqDVL2CSq5/OnEORHMZlLgREvjd7FYNNFfkUjEVgZlqn0AMAsNChEpTJxIxZVedIlMPaPxYTHivOZSOFOo8adzu6kUH+nJl06U5YKM0OdilIsOZd/Z10XCTL+7UA1OtmzZgve///146Utfinq9jk9+8pM49dRT8Yc//AGxWMwcb18bnCjKdDgN5zIyWM7flKk0gs/2f5Xfp7G0XC4bhdU5HipscmzA3mgnOVZGUrVKMee+pOzm96WS2wklRWZ6SaXRWVNVvnhdABjZwrUJ74XzurSKUnO+plL+5fWRxhiZPeaMMgP21j3nWkFGl8s0crkP5xjkvZbPF+F1kI4UwF5SwBl4wGtJQ7xskMpnTF5PNd52hvmW3YoyF8j5dLHTyvAk51bOiXJO3peyKJx7K5WKrek1f7oFlbnp+zS6c19TlUmVspsOYafslusH57FawevklINOud0OMriAvU1kA2238bQykPMn5Vsr2S31URmkKKsBOGW3MwCC++bfcp/yu63m91bXmNfRsqy2ytHKYD6uw2TJOL7PtQCAjq3X9nc6JbuTySSSyeSU2/b19cHn802KEB8ZGZkUSU4GBwddt/f7/ejt7Z1yG+c+g8GgaSx69NFH48EHH8RXvvIVfP3rX3c99sqVK3HwwQfjT3/605TnJVEjujIjONkDeyc12SRMQkVVvmbzD9xoNIwnHAASiQTi8TgGBwdNlBYjlaQizvFKQ0CxWMTo6CiKxSJ27dqFkZER42EnFDqJRAKpVArBYBDJZNIW0dRsNpHP55HL5VCtVpFOp03qW7v106VRwK1u6HTeunb2z59SEZW1TImbN3Y6b2gwGEQ8Hjdp+FR8l5ORmdclEomYcjXZbNbca2X2zLcivlANTu655x7bfm+88UYMDAzg4YcfxvHHH2/e39cGJ8rCIA10c9U7oxM4a3dzrFRq2VzL49nTsIqynTJuNv+vzWbTFt3F6OFgMGgWvCztIjN8KLOkrGIke7VaxcjIiC3qzok8zsDAAJLJJOr1uommzmazmJiYmGRgcMrE6WQglTz2A2Ekl2yYxmsvZSyj+Jjt1NPTYxqulUol04sDgDFyW5ZlotQBmChvaaxnVLg8L6kU871gMGjWTF1dXUgmk2Z9xLIo3H84HEZvb69R2vn9np4eNJtNW/N4p2HEqbxLhZ9OQpkeHo/H4fHsadZKpbxcLiOdTsPr9drWeYQRcF6vF/F4HN3d3fD7/SaVuFAo2JqczsX/6GJR7qWTZi7HpEZ0ZalDwx/ny5mWO5lPnA5vzmF0HrIpOOdtGiDZdHu2spulT9PpNJ5++mnE43GsXLkSkUjEyD4ZncxrKXV9OYdXKhXs3r3bVqrMCYPjKLu7urpQq9XMdyYmJjA6OmrkoaynPdU5ul0Dt15eAGw/uX+nk5ryiOVauDaRJdvcMvrc5meWM2GJs1YOENm3huuNcDhs1hPclvKQMpFOFTofWErP6/VOCgCU61hpwJcyl/uWY2VAkMx8kM4cpwPdeU8YrR8IBGxlflKpFKrVKvL5/Kyb5E7Fvsqipeacn0/ZHQwGsX79emzevBlnnnmmeX/z5s0444wzXL+zYcMG/OAHP7C9d++99+Loo482DpUNGzZg8+bNuPjii23bHHvssdOO3a12OxkbG8OOHTuwcuXKac+NqBFdmTHSYyo9pFMpJ9Mpo1PBB79arSIYDGJiYgLVahXRaNQYuZ3pbU4FWKafsSs4U6qY7sTvUdCFQiFT77O/v9943XgOExMTAGDSkEul0owVNDlGKaD31YDutn8Ak5RrIpUv5/dbwdpmVHipHC9H/H6/SVFfrue4VMlms7a/Q6HQpHpmbHDy8Y9/3Pb+bBqcbNq0yZQT2Lp1q02Qcxsa3t3IZDIAgJ6eHtv7bHDS1dWFE044Af/0T/+EgYGBlvtRFh7Om1S0FjvOaG9p+GQUMJW0er1uiwaeLYw683q9yOfzJpLMmSoso5ekLOSxK5UKxsfHUS6XjULd6prTSEsDdX9/P8rlMvx+vymzkslkWkaLyZ9TnbszKkw26HSTr4SGBgCmHJqMtHOuZeT1cYtG599uY3Vbd/l8PmM8YMkyGk2c6wN5TlSKfT6fkYdUxLm+Yo1cZx10rqtktCQAo8TToSCd8TQuMAoyFovZouZ5zvy8q6sLsVjMGF1YmkbW8F0I5ivi1fl8KIrSGjmnLXbkPM+fNJZzfpWy1Ck/ZwPn5lKpZMqwdXV1Gf2UupAzy0qW/2Qfsmw2a/qfTFV3nLI7Eomgr68PAwMDxoHOMmOUOdIg2ypKfypotJ0qk91N3tIGQr3Qee6A3Tnsti/n+KaT3U4HNO0eXKv5/X5bTxvKZspu+SzI0mp8Tx5LOvv5bMnzd56HXJ84S8+5XU9+zjUcbQlcM8iMPNZXX+iyfVOx1Azp88kll1yCc845B0cffTQ2bNiAb3zjG9i+fTvOP/98AHsCz3bu3Ilvf/vbAIDzzz8f11xzDS655BK85z3vwdatW7Fp0yYTlAYAF154IY4//nhcddVVOOOMM3DXXXfhvvvuwy9+8QuzzSc+8QmcdtppWL16NXK5HG699Vbcf//9Jqgtn8/j8ssvxxvf+EasXLkSTz/9ND7xiU+gr6/PZvCfDjWiKzNCCgmmH1P4OGtF07NKJdotasyptMrjuP2sVqumhjkn3EAgYJQnZ90uZ0M0RlqxXhnrq/K8GNXu9/vR19eHlStXGkVcGtEtyzLGY9mUlDU721m4yMgClpbx+Xzmes22GSuRafRMpXd6up3Xe7r3JGz0xpS75RSB7oTRhozSU/adTnnEl0KDEznmSy65BK94xSuwdu1a834nGpwo84/T+bkUoHLlTIVmrU6v14tKpWKrf9oJqIw3Gg0MDw8bYyjlEh1TgUDARBdLZBQSs8OYHi6N8swi6+npQTgcRiKRMMZZyldGYtdqNYyNjSGfz08ySLejGDWbe5phjo+PIxaLGYVaOltpYJcOC8uybA3NJiYmUCwWbWXxaMCQdcNblWrZF2ik5viokAMwxgo6QZzKOK+BvGa8D7y/jP6mEZsGCD5/cr0jSwPK2r40rPN+0wkA7G14xu/IaHNG4vX09KBWq5nrPN/M19zgZpyZq+PMVzSboswVjJheCg5wADZDrXRE1ut1Y1ym7Oy07C6Xy2g2m2Zty34VzJRiaVUZ1c+f5XLZXOtAIGBkt6yhzTVJMpnE4OAgwuEwuru7EYvFEAqFEAgEbLLbmQEOzGxeoeyemJgwEd20HchSa5Tj8lmhDKxUKsjlcq7XmnOkLB3nlN0zQW4vHSU0OAOTnULO4znXD9LZ73Tay3N2BiXK4ER+LqPsGYBB2c5jSQe6W0CANNg3m03TZ8Xn85lmrIuNpSbL5lt2n3322RgbG8MVV1yBoaEhrF27FnfffTcOPvhgAMDQ0BC2b99utl+zZg3uvvtuXHzxxfja176GVatW4atf/arJ/gaAY489Frfeeis+9alP4bLLLsNhhx2G2267zZRQBYBdu3bhnHPOwdDQEFKpFNatW4d77rkHp5xyCoA9/0OPP/44vv3tbyOdTmPlypU46aSTcNtttyGRSLR9fmpEV2aETE2iksvJ3GlEZ1MLChunAVcuAtxqVkpPLr/H6CKfz4dMJoNdu3aZdON4PG5qYtKDGY1GbV5y2fArEomYCDUqrNFoFP39/YhEIjjooINw6KGHGiN6PB63RWkxJbxQKJiFBMfXrhFdNl0rFArwer2oVqtGAd0XIzojy2T0Pc+11XhmAiPootGoLTpsuUEveTwed33OldnRKWG+Y8cOW222qYzObs66qTI+Wjn3nGUf2t3nP/7jP+K3v/2tzWMO7FlokLVr1+Loo4/GwQcfjB/96Ed4wxve0HJ8ysKzVBRwwD7HO0s/sN8I5RKNmJ1SxOv1OrLZLLxeLwqFArZv326c1lIxDoVCNtnPcVYqFaNkUdZXKhWMjY0Z5yYdun19fTj00ENNNhnXBPy/ZDOrYrGIxx57zGZEnsmc1Gg0jGE2mUya1OlGo2EMv4wao5OCJVcikQgAmEakvOaUL1w7VatVm1FkNs+bc20lFVg2WZcKP6PTed1lsIQzFdtZq5S11pnZwGALXi9nuT06UFiqxlmuhVkSwN7ADD4zXq/XGHK8Xq8xyBCv14vu7m5EIhEUi0VUKpUFMaLPF51wqszHcZaa4UFZfkhj31J4HuWczQh0OsRlE2uWJ+1kiRoarL1eryntwswfljTp7+8387Q0IPP7lGexWAwrVqxArVbD7t27bY0ofT4fBgcHceSRRyIcDiMejxtnqRwL9eVHH30Uf/nLX2Y1HzWbTUxMTKBcLqOrqwupVMpkVxHKMkZHO6O2Kbspx/iZNCbTAT5b2S3HC+wtIccSbzLYQPYJkddErqec9eudQWE8ZwDGQO/MMJABgJTpMrqd8p7BGFwHAXt7zfl8PvOcyv9BWbKIjhRmQij7zkLI7gsuuAAXXHCB62c33XTTpPdOOOEEPPLII1Pu86yzzsJZZ53V8vNNmzZN+f1IJIKf/OQnU27TDmoNUtqiVaoUhQqFusRZC537kbWxOKG7NSaRCrycvKmE0nhdrVZN/Uyfz2f7WzY+Yb04ChNGUsuoMBrhaYBnFFs8Hjc1v+T4GKFFTzaVwVbGN7f35IKDUVQUTNMZ+Voh9ynrlXayOYdMx1/u0dn0zjsjOJXZ0ylhvhQanADABz7wAXz/+9/Hz372Mxx44IFTjnc2DU4UpRVStjoj0Ik0Istans7/0VbZY277lH9zvcB9VyoVI6dpHKcxWa4TZGoxoZx2ppTLmqGsn81sKRkJxcg5RjQzFdq5VnE7HycMDgiHw5Mi0qSMlE3IZfqz09ghm25J5Xtfsx3cDOnyOMDUZXvkfXL7TI5dBkg4t5PPlFMx5zPiLH/DiDlnuTvn+lFeI+6Dz4o2Be8cakRXlguL+VmUMtAZtcvfnYFmrSKfWwV+SKOrE3kcOhxkeS3ZC02WM3UacqVcpcyVmeL8ndHtNJ6zNroMhJM9VMLhsC1q2mmHmOre8pzoJJ5qvdNqrdMqk0EamDshu53joT2Dx5KfzXRfrc7X+ZJMV7qXP+WaQR5nKj1a3gNmtMnSgsq+obK7s6gRXWmJTJOll9gptGW5FqeCIhtW0HPKshiMGqOAlIZYpwFYRrIzqoneznQ6DZ/Ph1KphNHRUeNF9fv96O7uRl9fny3ajelgVJppQGetVqaBx2IxdHd3o6urC+FwGKlUyhjROUZO6qFQCCtWrIBlWaa5SKFQMELUsixbJL4UQPy7WCwaJTCbzaLRaJjU8JkYb3lPLGtP6ZpcLmfq0c0kSr4deA/5bCxn+FzR2aIsLRaywYllWfjABz6AO++8E/fffz/WrFkz7Xhn0+BEUYhUtBidzahmKnZOeSsNmlRq5XucA5nlxWZcsmSajICTJc6o3Mpjchz5fN5ElhWLRaMcU/5RYZZpwZQ7lUoFmUwGuVzONMkMhULo7e1FT0+PrUkZ1w7SwMCo9Xq9jkKhgPHxcWPcZ6QXs9fckAYClmSrVComw4xR6VIpZHkXziG8T1LpLpfLKBaLZi3BVPrZRrI5FR/WcqWTgQZ9rs0Y4cZ1DpuquylgNH7IoArWMpfHc64juZ9YLGYzCPD5a7XekWVgeHzZhFUq8QBMXXSZ9q4oirJYoayMRCJG9lEGAPaoZCKDu/g7o4NlmVMpu1kSlWVIuS6g3CoUCqZ8Fr/DqPdarYZcLodyuYx8Po9sNmvkLR3U1LUpa2WgGvXSSqWCYDCIRCJhGlZTjrOMC+WJnL99Ph/6+/vN2MfGxsxYWT5tKtnNa0VDei6XM+OUpcVk9r20icjrT9lNuc+678Vi0ZR37ZTsoT1D9g9xOy/A3sSTY5CGcZ6XXP85sw/5LMra6nIdJ7dxOmecgZL8Po3ibs+xRK4Z1YiuLEbUiK60hEozm0hRmElFb6pmD1JxpBGbBmkpbKlcOZV6KqVMA2eaWiaTMVHbTM2dmJgwEy7HvGLFCjSbTYRCIZNGBsCWcsbtE4kEGo0GUqmUKd3S29uL7u5uo5xTkZTfpeI5MDBgUrQLhYKJSpMGBGfUFWk0GmYBAwC5XM78ztIUU3nDJdKAUSqVzHXL5/M2w34n4LXbHwzLjGhzOjTUKzt75tsjvlANTt7//vfj5ptvxl133YVEImEi15k+2qkGJ4pCqDxRdgeDQVMrVRrRpUxy+75UsgKBAKLRKHw+H1KpFJLJpG2NUKlUjDNappRToZQKkTRm8zOPx4Px8XF4vV6kUil0d3cbZZgym2OLRCKIx+Mol8umnEc4HDZObzrA2fha1lmXUU1erxd9fX0IBoOmcRkAW7NNWY7EDak8l8tlBINB8z06L6QjgiXBZPabrG/K9QAd4CxD0klkxh3vn8/nM6XZisWiKfHCWu8cn4yadwZA8Hq4GdFpiJHZB1wzRSIR1Ot1Y5RhtgCAScYTPrdcx9AwJJ9hZwQlywnMlRF9f1sPaDSboswNMoMmFoshHA7bSnHKzCG3/0NpuKThk/M9+4ClUikzH3O+Hx0dNf0w/H6/0V1rtZqtTCqd5ZZlIZvNmvHyuN3d3ejt7TV6NfVmadCngT0ajaJUKiESiaC7u9uUTqXsZgaZWxY1jeihUAiZTMY0kw4EAkbnZ+CA2zUGYJPvDF5jFjo/l45dnoe0ITid26VSyTi+GRjQyfmODvBwOGyCEHlO0hjObbmGckaCy+8AsDnAneWC+JJrQmBvoCXlLJEZBtLAzn2yPBzXAMQte0I6LZR9R2V3Z1nQJ/NnP/sZXve612HVqlXweDz43ve+Z/vcsixcfvnlWLVqFSKRCE488UT8/ve/t21TqVTwgQ98AH19fYjFYnj961+PZ599dh7PYnkhU6JDoRBisRhisRji8bjtRcWKEzknUvkPRmFDocR9sY42lSfuhx5ypl/ze/wuj8vvUyFzelqd9VynS9Nq5T11CgApCGSaNoU2xypfkUjEeI1lWrkTCnMq4nxR+eOCRqaHyZdsQMbvcB90ROxLJJuyh+mEOReuXADKaApdDNiREbCzfc2Es88+Gxs3bsQVV1yBF7/4xfjZz37WVoOT+++/Hy9+8Yvxuc99rmWDkxtvvBHr1q3DTTfdNKnByXXXXYdMJoMTTzwRK1euNK/bbrsNwN4GJ2eccQYOP/xwnHvuuTj88MOxdevWGTU4mU9Udi9uZF1qRnVTFlEuTSWPZPSR/D7ltDROM/OLSjFldSKRMDLbeUxnXwlnJFSr/21nNBMN0lPtU56TrMcps4t4Phw7z5FKqLMsnJtDm83XGEFOpIxmVLQsWcLzpvOhVCoZue00IHcKjomKrzNLQF4rnpuzQbyM2HMGQDhLtMjj8nPuU37OCEc6eZyl8eQxZTaDPB/ZvHSm5dfk+k8eS7Ez37Jb6Rwquxc31L1DoZCRvdFo1OjedIq3ikKWemk4HLbJXzc9mzKQawNuE4lEEIvFkEgkEIvFzLbO+VDK7XbKljiNvFw/SMO23A/ncM7FMqKdcluOl9eH8lvO4059n3ORlL10/ksbgnTEyiA0Kcsqlcok3X2mPVbaQc6hzrWB06EhZWQ745D7lPM0f3faU5xjkeVyiZTB8vq3KoHjdlznd92QNhm5bpuOdgMUlwsquzvLgkaiFwoFvOhFL8I73/lOm2GCfPGLX8TVV1+Nm266CYcffjg+//nP45RTTsGTTz5pjAsXXXQRfvCDH+DWW29Fb28vPvShD+G1r30tHn744WVfYmIuoJfT7/ejv7/feJQZSc6J0rIspNNpk461e/duFAoF2wSeTCaRSCQQCoXQ09NjDN/stsyJzmnM5j+pFMxUKCuVCtLpNOr1OiYmJjAxMWFSsavVqpnMZaqQ/Od3S2FyMpUhXX5f1mRbsWIFksmkGRsj8liChg1I6fFnqjRfFLg0CjBiv1ar2eq7yugCKWh4nFqthmw2a0rd7N69G9Vq1Yyn05Pg/iJ82jGeU4DTCMOFHwDTtE9GG+7vLIRHfCEanEw3zk41OJlPVHYvTiijqFAGg0Fj6JAp21QKa7UaRkdHUSgUbPvhOiAQCCCZTJqMMcoeKuQSRpFR9vI4uVzOyDdG042PjxsZ6ITy1WmklbJYyjSWU2PEmlRiGdHM/ThrrMoxyQg8rjXolHZGwfF9SblcxtDQkLlmPT09ZkyVSsWUnCuVSibbjc1RmQI+MjJiog7z+bwxvHcaNjllw2xGfdNI7vF4kEwmzdqkUCiYqL56vW4MM4y0dxoc3BzGlHk0dPO8uBbk2iWXyyGVSiGVSiEQCJhMBpZt4TqI6ztG60tnRSQSQTKZNM+K8zlqFVQho/J5TabLuJTrwv2FhZDdSmdQ2b148Xr3NM1mtnZPT4/JAmL0dy6XMw2q0+m0rbEkAJu+2NfXh3g8bvt/YyCazMYKBoNmvgf2ZvB0d3cbeVgqlcy8ncvlbMeUOrN0astngceTZeW4ZuD7MvALgM34Tad9vV5HIBAwspER9R6Px8gnBo7RSSzLwcjeJ5RbxWIRu3btMv2O6DDguJgBX6vVTKkZWdqmXC4b2V4sFk1Ue6czyDgeNjN1Rn8751VnFh3vE9dYTvg+bShOozrhe5SXzWbTlP5hDznef9p4+Her48q1h3TKy8xJRtU79WePx2PKFsrngeV0WskbN7vTckdld2dZUCP6aaedhtNOO831M8uysHHjRnzyk5/EG97wBgDAt771LaxYsQI333wz3vve9yKTyWDTpk34zne+g1e96lUAgO9+97tYvXo17rvvPrz61a+et3NZLlCgskZZf38/AoGAUcilEKKAKxaLpnOy9ITK0i29vb1IJBLGOz6bOt9cSAQCAdvfjLqW28vFgFskl5wI3JQpZ3Q6f0rhIwUEG5B6PB5Ti5UCjMZrLiikIOGxZVOUfD5vOlqHw2FjDOB3eZ+kcJNOBhotcrkcstmsUfjnKgp9ptFeSx23c5VGdFkTUEZYcFHnbD6nKEsNld2LFxoDaehOpVKIx+PG+Em5RMMuZbf8vsywYj8QachmBJiM2GL6tpRRVJRp1GZfjnw+7zp2yldnGi/fY/RdqVRCPp+HZVkmco/KMx3K0rjL/TLqjfvkeodZbSxZl8vlkMvlzOdUqKWD32k4Zdk5Kozd3d0A9kZx8/yLxSISiYQ5PzpWS6USJiYmkM/njSyfK4WFCj7XSjLiHIBZpwGwReCxLi/LvrCxu1yLyLRwt+MCMIYH/i6jAYvFojHQ835znMwa4LG4NuS58L47S+XINRx/ul1bGdxBRZzlf6a7F/ubIV1ZmqjsXrzQWMxAnFQqZSsjSjkLwDhand/n3MUSKV1dXTZnLKO2gb1zKOWcx+Mx8grYm91dKpUwNjaGarVqm5Odx3ZGA7fK2OJYOE/LXmc8vmxa6uZU59pCyi8GCkiDLp3klE3S+CyjqOX1oc7N8dNpX61WbaXDZAYZ+45xbTJX+jadENIGQKRjRGa/yfUUs8h4/vI6OKON3TLKnMZ0OtK5nuS+ncGI0k7gHLtcN0jnu7OMm+y/I8ch16wMAPF4PG0FIEy3JlCUqVi0NdG3bduG4eFhnHrqqea9UCiEE044AQ888ADe+9734uGHH0atVrNts2rVKqxduxYPPPBAS2HO5k8km83O3YksMQKBAOLxuBHk0WjU5lmmwKIixeZZsVgM1WrVtm13dzdSqZQpdcIJbjZGV1mPjHU8U6mUTfjSg8qIbhlBVSgUbGm6VMSZel0qlVAqlRAKhUxEfbFYNB3HZdo7J1oZPS7TiKm8UQiz/huFs/TeuqU0UWFlozNGq0WjUbPYkWORkfrVatXW3JRlYOZCoPPYc7X/xYRMQ3dbTMjyCYwC5UISsEff8aWoV3s5orJ7YaDy7Pf7kUql0Nvba+QQs7SAvU5cWdaEcxUd3IxWk/U3peGVyjpgdwBXKhWjFMsoMBnpzGydrq4um+GbSIMqDZpsBE45I5Vg9vrgsWR0tGx6zv1SRtNgIBuNUp4xcIDrIdlnxK0+qxNmzLH5KRupcZ1SLpcxNjYGj8dj6qfKmu00bMxVCi3vNZuKOp26zig62Tyc1082jpXrDJlJQGOHTN+XpVIIG8Ax2pzrMzpE+D3eHxmtJqPGuUZ1rpGcKe1OBZzPM591Xh+ZhchrIqP/9mdUdi8/VHYvDHR6+/1+dHV1oauryxiYKTP4om7u9e7tJcbv+3w+U0aN5VokUs4BdiMpnYVSdgN7DfOUgwxco4ym7Ja6aD6ft5V5o5HaWXKV5VP4fc6zMpONaxenjHYrUyIDCPx+v8lW45jbkaWVSgUTExPGkUy9nbKoUCiYHmz5fN7WAJzygXJjLvRi2he4tmsVVQ7sLX/mlJcSXg/5jDmN3VIOOgMTuXZgw1M2ZJdyX+rPMouMx3DTpQEY+xL34bzn0qbD/gFcQ0hjPAMA3PRutzXBcmd/Ote5ZtEa0dl8bcWKFbb3V6xYgWeeecZsEwwGTcSP3Ibfd+PKK6/EZz/72Q6PeOnDNPC+vj5Eo1H09fWhq6trUm1ICiIK9EKhYDziTAtj9HlfX5+JSqfSPdMakxTiMuqs2WwiHA4jmUyiXC6bibdcLpvGo4yQp0IlDdwAjMeaaXHpdBqWZSGRSKBSqSAej6Onp8cWkcTz509nuZlGo2EWDTK9mMKg2dzT6FQKZQmFNA0SjIaLxWJG4WUqmVxUUEDw+7K8y1wo4cBegz+j95YzXNC1qi/HkkdsQsuITD5rjIijIjGXUYZLBU0rW56o7F4YgsGgSTVeuXIlVq1aZaKqGSHE+YiKDh1/LOvR399vq6NOxSgUCiGXy6FQKBiZxX1QoZalPPL5PPL5PPx+P3p6esx8SIMt1w7VahUjIyPI5XK2SDEq4rK2qWVZKJVKNgN2s9lEOp1GLpczczAN1xwLa5BTXgF7FVGpsFNO0+jPqH0a5rnOYTT2VORyORSLRZOez6huGpeZJUYnAPcpU5elItnpzKVgMGiyBCm/pfJMAwkAk11F4zQN/PxcGjRoWJelURgUIBvZSZgNwf0z0nF8fBwAzHPKNQ+DNbgm5XqLY+V6kUYG3ne3sjz8DrMQuru7TXkbBi3kcjkTJDI6OjplFsX+gsru5YnK7oUhEolgYGAA4XAYK1aswMDAgJGDNMpybmPd73w+b8qEJpNJrFixwhjYaWR3Zj3LSG9p2KSzk9G7jHTmfMy645yjY7GYKeOay+WModqyLGO4pgE6Go2aEqeyx0e9Xsf4+DgKhYItOI7ztNNI7yzP6jSqykxgOv2pjxcKBWPknm7uyWazZr2USqWM7JO10rkOyWazJuqcY+G94jl2WjemkZgGY6cRWBqpeQ/5u8TNQe/MwJfGc7l+4/dkVoEsESTtH4Q2EBlR7izdwvOjzYVZZrSdOGvMM0CR9iaWcOM5R6NRY88ZGRmZZESfK9vIYkZld2dZtEZ04vSwTeV1a3ebSy+9FJdccon5O5vNYvXq1fs20EWGM31V0ioaB7CXc2HDEVmLlDSbTaN4cHupfDMilx7Bdps8THdOHIdlWcaYToWcHbl5Lkx7AvamJMvFAr3T0qDNBQQNnVQUK5WKa60/CnN+V0ZJcbxcpDjT0fi5c1Ki4KHnnNvKxY6znIs0ojOazS3SvdM4o7OXM1M1aHFGdsraqlKpp2FHUWG+3FHZvW9MJbvdoOGVcpiKJJU8uSaQ8kjOWfK7dNrKpsjScSznfkayUS7JBpo8Jg3hXq/XKOWyxIqMCqdMlZFp0sjNayGPJSOQpUGfihMj7Cxrb/q3VH6dRgUae7kOosLajkGbx6dc4DF5LWX0drFYnFQ7VWbrzTRrrx3kMyCNLFIJdqZXy3PhNvzpFhEo1zjyfWBvrVt+h44ZafiWNdPlGshtzcQxOrMNeV7yOeV7btdDrmlllKd0NDjZH+WQyu7ljcru2dPOdXJCmcjoceq2MvOLUF7Lxtcyapp6N2Wn2/Gdc7cct5veKLOreQxnqTNmhDN6nNlKUj+W9bmlrk17gsxiowOW6wbntXNGpMvrL/UumUXVzrwjy9VyDcT1jRwHZXexWLR9fzH1BJDy1+1/2m37VvuQ5fXcnisp053ylrSS3zwOn3W5/plqfzLbn1kP0sbCsrpcdyoquzvNojWiDw4OAtjj9V65cqV5f2RkxHjJBwcHUa1WMTExYfOKj4yM4Nhjj225bwqr5Qgjtb1er6nNLA3krEVJbyqNxHIbZ8dst4lV1j0LhULo7u42ykcymYTf7zfp4K32sS/I9Fufz2eagbDRCpuW5fN5IwRzuZxNwMr06WKxaNK1R0dHkc1mzWIlHA4jk8kgmUwC2DuJSKWcPxn15DQyOAV+K6EgkYYEAKa2mVMB5fFlNNh8GLZpsJdR+ssV1t3n/44TaVxyK2/De78/lL5R9m9Uds8O6Wx2OuCoXFK2SPnBFxuKMeuL20kHH2UCndzBYBD5fB4ej8d8VzrRaZAG9sjceDyORqNh65Eio7dlxDAjigGY0iwyWollOvr7+5FIJEyJExqXmerdaDSQyWRclSka1hlhz8i90dFRPPPMM7bodGk8YM3Yer1uItml8iYVd+mY5n2aSnY7jbW8Z9J5TjnRyigvjchzIS/YSI2R4T09PWasHA9LzskmoE4jOJ0gNDJL571MxWZkmMy+k3XYuT+uXRmMIK+bfMloOzosOH4Atr4kwN6GqW73jfdArpmY0cd1I3vLTLXOUeVSWeqo7J4dlNnSsCx1TekAlvMV5xyZDeMsgSUNihJGSgMw0eeU3dKpKJ3C0oEMYJLBkt+RZWBkEJg0WFqWhd7eXsTjcRSLRYyMjJj5lxnQu3btQi6Xc3WAszwWZQVLeu3evRvbt28358H1j6yxzmtHBzRltjwfyiNnBvF087R0ErN8GwDbOkhmRTmR8nouZEK1WkU2m0W5XDaZh3S4MHBAylbaEKQh3Ong5nVxRvvLQD/pXOG1lA4HPr8yK8HNGSOvi7w+8pjcjhkM8j5I5PqE45MVA2TJ3vksoSqvq7K8WbRG9DVr1mBwcBCbN2/GX//1XwPYM3ls2bIFV111FQBg/fr1CAQC2Lx5M9785jcDAIaGhvC73/0OX/ziFxds7AuJrEvV09ODrq4u877H4zGps0ylcnq6GS1F760Uxk5kaZTu7m6T9s160LKJ11zAxUowGESj0TDnnclkAMA0qaLB3BkFTk+4VKJKpRJ2795t81wzld1pRJeR6tw3je4y7UkaUKWS2Y4wp0CgAX267ecT1hlb7kZ0LnynM6I7SwPI/ytnCqUKV/WIL1dUds8ORpfJFFUZcVYul02PD6ci3mw2bUZ0yp9ms2mrMUlktDmN6DRyyGhcYK9Bl6VJms2m+a5UMOW6geVQLMsycjIajZo641SgacxvNpsmNZ3zJxVUljdzwv9/6SCgPB4dHTWp3LwmhOXREokEGo0Gdu/ejWw2a8bMa05kLwsaEVrVRHd7j9lugD3SazoH+lw6WxlAEQqFMDAwYO4lM9qk8YLb0rgi14Qyy0rWHWUwgcfjsZWMYekfqdTzGeXaiSn9fA7kmk0agKSxnrKVx3amjcueNU7k/xA/lw6rbDaLbDZrS11320enaaWILwYFXWX38kRl9+zg3MjazNFo1Mx9Xq/X9N2i3OPcwvnKqS87a5I75R+N4iydGg6HjWx1Bllxezcd3i1K2bmtdHLSWMq/GaQ3MTFhSrJRVvKcZZaP02gr9WEagMfGxswahsdhpD0dAdS3WKKFPdLovGDWLw3o0oHa7txDI71zvp1OhrdyjHcKlp8Nh8Oo1+tGdrOHiMzCkv23KIP5rDqN6HLMlINS3srPpRGc+2QkOABbFiKRz5TTiO68N5T3DHBkkKMT3lc6nviSfeVogJ9PG0WrZ0Rl9/JjQY3o+Xwef/7zn83f27Ztw2OPPYaenh4cdNBBuOiii/CFL3wBz3/+8/H85z8fX/jCFxCNRvHWt74VAJBKpXDeeefhQx/6EHp7e9HT04MPf/jDeOELX2i6hu8PyOhkClOpPEolBNirFLoJc5k2Letz8idxpk8x8o0CVk7kc33uPL40qlN4SIHLcUsvJ9+Xk7mzLmutVrPV3ZRGdCqKXADx/KViJq/3VHW1p2OxTV5unv5WURNLHf5PTKeIU/lmHTc+XzQezEWNvKWKCvOli8ruzsPmXVRUZfq0s/yI7LFBR7g0PEejUSPHqKDLLBmpcEjHOdcKMgtKGjulDKQMk1F4RGZgAbApdc7IX6cBwalQSWekhO/L7WUksTTYyjJajFLj+MrlsomIYyQ0jQCU3Z3K7losc5Yz8kxGfxFec2YbAnYDC7/P9adbSn276wE5HhkJ70xHl+OVkZryOFyH8Pnn/XPWU3U7Nh0J8hl1Zg8uBhZ6HCq7ly4quzsLjeXxeNzU9mY5Fcpxp/wEJmen0gAqHbTO0iCUeZyLZONtp5GyldycDc4oZZm5LuU/52E346jTGeA2h3C+Zj8RmY3HtYrU6WWGGGU8j8910r7Kb7cxLiQym0EGZbnJcqdsnMoh4OaokbS6DvL4s3X+y4h3niMwOfjMDR6bJXilY0audRf6vi0WVHZ3lgU1oj/00EM46aSTzN+sl3buuefipptuwkc/+lGUSiVccMEFmJiYwDHHHIN7770XiUTCfOdf/uVf4Pf78eY3vxmlUgknn3wybrrppkVVl2qu8fv9SKVSCIfD6OnpwQEHHGCiyuiZlRGxNJCPj49jYmIC5XIZQ0NDJmWVNVTZTIlKPWA3nnNio6JPRVzWUZ8P6BFnKlFvby8ikQiAPWnLVI5kOhYweWHAc6LiPTY2hmKxCJ/Ph2g0OqnTORUzr9eLrq4u00CsVqvZ0sdrtRrGxsaQTqdRLBaNx3ipT0a1Ws00lZHN1pajIZ1NaovFoms0moy+8/l8tkUgv5/P522Grv0dFeZLF5XdnaerqwuHH344QqGQLYJI1ommMsAmn9VqFePj46hWq8jn8xgaGjJyihHsbBBaKpVM0+16vW4ix3w+n2mmSKc7o8h8Ph+SySTC4TDK5fKk5oyWZZkIPJlCTEciFWDK5t27dwPYkyXm3H8+n7cZL8lUkV/O7fmT87TX68XExMQkmUTDA8fbbDbNdZLG1EajgXQ6bZzpy00Zk84Qec2lYUReF8p5mTbNurEyIMHv95tmsrIxqkwpl1HilInNZtNEU8q6vjSAy5R1/l8w+lOm8jcaDVNGIJ1Om7Wtm+zmubNxaCaTsTU3k+X5FgOLYRwqu5cuKrs7B+fI3t5ePO95zzN9SCh7+DnnOBkdy8aczNQaGxszOjsbg1J2yjKsEgaOSSO6NGRyLpXztcQtyp3fd86njCpnRhZluxwns8ycuEVntzKi53I52zEA2Azq3E4en1no0oAqZTflxr7OW4sBZjNYlmWy3KTs5pqPstH5P+k0Vsu/3TK+nEZybicdzM5ebAyumMqgLsfnNPJznSEbwrZ6ruh4GR8fN+V7GWnP7HHpnJ8PWp33Ynj2VHZ3lgU1op944olT3hCPx4PLL78cl19+ecttwuEw/vVf/xX/+q//OgcjXBpQiESjUXR3d2NwcNAoAK2QEWDZbBajo6MA9pboYDSWsz6m/D6RirJT2M0HPL7Pt6czNxUq1jkFZlZXVCriXDi4NSehUGF9OBrMaYyQ6cb5fN4mzOdzQp8rKMy5yKJAXo5wEdmqnIuMVisUCrZFNLAnfb5UKs27MFeUuUBld+eJRCIYGBhANBo1irbMnJIR4VLpoIG9Wq0il8sZp7rMkopEIsYAzG3ZvCsSidiaiAIw6cH8OxgMGiMAa5DLxpmybJtlWbbmYlR02VeCRlFZY5zGA2Cvc75d3JSCVgZTJ4wi5PgZDSiVQlmbfT6NqYsh9ZdGdNaPB2DqizqN7jJyjUZoGt+dQQN8lqUSzDVns9k0df1phAf2Bi3wueJxGSkv12ksW0hnkFTw3aCRJ5/PA9jjGOAaebk5TpT9G5XdnUE6BGOxGAYHBxGLxYzs5jacQ6hPS+M050BGX0vnLQAjW2XEuowilkZIZ6kUmUUGYFqjJpEZRnJ94XRUy/1T15FjcT5j7ergjCieDto9OPezlJvMkOa9kM7/pT6Xc31F54wMIuD9oC3GGakuz93td3k/+b60d8hMCH7O32Xm/3RI54jzd7k+ZLa/c73hhM6pYrFoKyncySxCRXFj0dZEV9qDikMikUAqlTLp4O0YM4PBIGKxmInCYuQPa0jFYjGjzMh6ZJyQKNhlPTiOab7hMRnBZFmWLUV8tooQv+NWD0wuYmTNOF4HCiJ6RuW4pLd8qSJTEBlNwWdlOUSk8FmnMGfk51TCnNcEsKfVyXJJKsz3oB5xZX+HBu9QKIREImErzSKVCrcyKjQeRqNRW6QQFYrx8XETWU7lHICrsu1Mw5bNxYG9NVqljHereSlLpVWrVRPxzZrkjAriuGlEKBaLAGCyyOh0lmOci/93GtHD4bDJZqPRgsoXI7sY9TVfivh8HYOOAqkQM5hClmSRJc1kk006R1gCh7XupdOFCrab8s0gCFkCptlsmmwuGXQgMwgInULcVpbvkU6hmZRSc+6zXQPMVFkTM2UxyzeV3cr+jt/vR3d3N8LhsGm4LcuLAHudc9IIztKj1Ls5V3GOzOfzmJiYMD06GIkuHY50rstGrVJOusnM2ZTZoE4r52uZBUR5z5rkHA/lyVzDNZCsBS/lCptuejweFIvFZTfvyKbf0lbB4DanYZvPhNMRwnUAI8id5QOJ07YjnSYysMPtOjsdPRyrM6uA4+WYKpWKLaCzFdwnvyOd8u3q3XO1zlxMqOzuLGpEX8JQaQ2HwxgcHMTAwIAtqmoqPB6PMZIHg0GkUikzUY2Ojto85LKBiUwL4z+j3+9HV1fXghpOOUHToRAMBpFOp01aDxczs0EuhCRs/sY67Lz2sns5FdBoNIpms2mipBiZt5SNqjKtLJ/PI5vNmuiz5WBEpyJdq9VQKBSQyWRsDeaAyd58y7KM91wiFwbKHlSYK/s7kUgEa9asQV9fnylBAext/Mlaj9J4SblCA3lXVxfC4bAp18LU1lKphHA4jGq1akvFp+LLqDj5HpUrRqhzHUBZFQwGJ0U2cUw0SAN7oslKpZKRB/F4HACQzWYBALFYDD09PSblOp1Ow+v14tBDD4VlWXj66adRLBYn9SzpNIxmSyQSCIfDiEajpokrja6U8aVSyTQ+XS5YlmWitmVUGHu4APbavbK3B2W/fEYYDebz+VAoFODz+UzpHqeiLBV5rtNoDGF5IllqJhAIoKenB9Fo1Di1nf17+Dsb1vK5YVO/du8doxilUYrXi7itAWRPgaUcIDEdKruV/Z1wOIyDDjoIPT09Rq8rl8s2Q6MMOKORMhAImHKrnCvZf4slzqrVKoLBoMlMk/KW2TV0KFLmOucpWZal1bznlPtSttOYKvupcL53lneNRCJYtWqVmWPHx8fn5qI7xk4HBnVvGTnPcQUCARSLRbP2WC7QyMxnTkaEM6PKmSFGZFQ598VsOzoe2FeE9h5neR3K83bGSYcLKxrw+HRQyyBIrjV4bvl8vmU/E+c58afTRsXf3XCWkpnq/2U5oLK7s6gRfQnDSY2RzozsajcSnBMshTqFJT2bVH7q9botepoTmptncaHLeUjBT4WtEzW6W3lWZbdy2bVcelRl9AGvJQXFUvZ8SucCo9DaTRlcCvDeyahELi7oJHG+gNlFfOyPqDBX9ndoxI3H46ZsCCO1JfxfoWGOMoYR41Juy98tyzIZQlL5lUo29ydxpvVK47qcF6WM42fcngq1zNTisRlBRmWnVqshFAqZWp7TlaPrBDL1mcZ+WY6O5yJLvci1xHKZf5g1wHWTrFXOn1zzSaO2VFplOTO+J59ZGnOmWkcBdqXfmcItDTjO+r7O7Ei3/jfSaCBxG9NsZZOMylvKa7vpUNmt7O/QiMtsbpm55CyHIf9fnLI7GAzaHIF0QPN3Z0CS7CHRau6Sv7ttI+W9LBPn/L6zbJx83+k8ZD14OkTnEo5ZZsw5y+TwXrCsx3KU3VzrOe0c0jDtvIetzr1VoJcs7UPkPuUacarr6hyPXDtyXHL8svyg/N9xPt9u5zFTB/Z0UfTLCZXdnUWN6EsYGs8ZKTXbWuRMC2O0NJUiNiHz+XyYmJgwhkNO0PF4HIlEwuZFXGgjuoyGk176duqjtrt/CuZUKoXe3l4Eg0H09fUhkUggFAqZLu3SoMDGbDRolMtlZDIZjI2NGSPtUo1cajabyGazGBoaQiKRMBkOwMI7VfaFer2OYrGIarWKSCSClStXAtj7nHOR22g0TONQGQ2nKMrC08kSC52m2dzTrJERzjQ4MzUc2JPxFAqFbNFsMqqWjR+l4VwaPUdGRkyksSy30mg0EA6HkUqljIOXEefSYUjFRaaPS3nF92gMZXQ6S7zJaGEZFSQd7zJ9GMCcz5+MOg8Gg+jp6TGZdAxEkGsZynsaCcrlsilfJo0nS5Fms4mJiQk0Gg3E43Eccsghpp6+rKMvI8ll6jwAxONxs3akY4TrIMpJKvosCyjLGzijCAGYe8NniSUPWPdfGsnleLgeLRaLGBkZMSVlBgYGbIZ9qcCXy2VTTmgmuM0lzmMoirJvLDb5LZ1kzghtZ8AW5RodlE7DIWs3W5aFTCZjsn3y+bzJhpLyFdjbiyscDqO3t9fMuW6ZNjyOHEs758efTqcp1wTOe+KMUJ5LYrGYyTbv6elBMpk0fV8YxS9LagJ75D3LlsmMsqXc74JVA+r1OqLRKA466CAkk0mbbGW2OIMFZOAlYC/Xwz4g0jDu9rt8/mV0uQyikNdUZhNKZ7azlj7tBul0GuPj4yiXy7AsC/39/bAsyxbcwPMrFosoFAodMwov1WdBWTjUiL5EoUITCoVsRvTZQOU4FouZSLharYZMJoNsNutar8rr9WLVqlUmgov7WWijKRcrjGajIuaW0jQbWP+dJWxWrlxpjOjJZNIo287u1vF43NQODQaDJm2PRtqlnP7bbDZNGYJyuYzBwUFb5OJShSnd1WoV4XAYBx54oIkcZc1XppqNjIzYDOhL9V7OJ+oRV+YDZwTOYnpu6Ihj/WcaE9nI2O/3G+esVMALhYIxsrMkGw2dNKKz5EaxWJwkl6XRUSpQUhmXKd0ATNScU1FlU1IZyVapVEyEmNxvq+wdGYFE5vI+hcNhdHd3IxQKobe3F6lUyrZ2YKq8ZVlG3kciEQB7ZFwul5vkrFiK0IieTqfR39+PF7zgBejt7TVrlXq9bsrtyDIEsvdLNBpFMpmEx+NBKpUCsLduLp8Fli2gEZ0GDa6neG1l3WCuK5kRyfJqTF/nGPhcsoZwMBjEzp07sWvXLuTzecTjcfT395v987mj82NiYqJjNXyX6nMwU1R2K/OBM9t5ISOJnYZiRjuzL5TUdZxRt9KBzcAbpy4hP2ekeSaTsX2fTkOWVqWe6/V6W9b8lkbL6dZB0jgKwGZolgZ1N11fGlvnCjoeVqxYgVAohO7ubtMHLhgMmjrYvH40vLIkTrlcxvj4uHHMziZqebHQbDaxe/dujI2Noa+vD4cccggSiYStKbpsxO0MDgBgi+KXDeDpfAb23lf5DEpjvDPznmMD3EsMAfYqCsCeQJF4PI5YLIZsNovx8XHkcjmzPpNZcjIoY/fu3SgUCvt8LfcneaSyu7OoEX2J45y09gXnPqTXkJFAzkgyuchZaAM6kQsBZxrSviJTyLiYoRGDk7xzQWVZli2Kn4Z9ltBhtFWnouVng1MwOq+ZcxHl9N6yXi8XMFxYLgbHykxxRkjyxSa7cuHLVEFGs7Fm7HLpBD+XqDBX9lecSoQzxVVuIxU9t/8ZKoRseunEGf3DfbspRc4oI3n8VinfzsZTzhe3l/KDipBUqmQKPGAvHdMpOCYabmkQdh5HOg8o71kvFIBxWCw23OStW/S/83OuQQqFgnGIy8wCtwgyuV8+A7JRmDS+OJ9vOQ5nKSLn8+9cbzjXdDIAgf8DbDDKQBPW93eWoGHkZ7lctj2TKlumRmW3Ml8stmdFykYi57mp5IKc26Te5Kz57Gbolnq2m+x2KyEjZVqriH63/2XneTi3me6eyN4QnYLnSGcunds8lnzJDAAAxgnu9XpNr4vFJr/dor+lLHK7lpS91EGZHQdMrgzgdKIAe8u+yGwFWZ5N4na95Db7cq/5v8CAQq49wuEwksmkue8s5UYjf6lUQrFYnNTsXGmNyu7Ookb0JYqcPPd14pBGXLf0Jgpj5yKBSspiKOMicQrTTo7P7/cjlUqZVLre3l7TzJTpZG6KLBV3v99vIqrYiIsKHCML5xuOjeOLx+O21C9gb3REvV5HPp+3df22rD3p3lRAR0dHYVkWotEouru7l1Q0ujT2+Hw+JJNJAHtS1plpEIlEjBG9WCyiVqtheHgYfX19yOfz+Mtf/oLdu3eb/08VOu6oMFfmg6nqMc830ohLxY7KAQ16AIzhz7Is02BT1jRntG6pVMKuXbuQy+VQqVSmXAtIRZJym6U4wuGwidSSirll7W1kxghiafjnd5rNPY0fo9GokRkympuORUZHOaOHWP6L8y/Hymj6qc5LyqmpFDkqYj6fDz09PVi9ejUCgQBqtRqKxaIZK8+P14rzPa8RS7lIWbGQEZLy/OjolddEpnZTSXWjUCjgD3/4A55++mmsWLEChxxyiFmv8HwZCcnGo7KOL9cwbjVa+buMsuRnLIUG2B0oMiuDyr7MeuBalc3H5D4rlQqSyaSJQu/r65sUNcc17e7du7Fr1y5UKhWMjIzYsgwUd1R2K/PBYnpOOP/JnlvA3vIqhLKd33EzaHu9XtTrdezevRuZTMbogK1gtjjlkWyCDcDMjdTl2RSaTkXOmU7nvZuB1ukkkGPn9s65Uc6nDDTiOKaT3XIfU50/r2sikUB/f78tilruR+r7Mnqf5dh43aVzd6GQDhBG0nOsAExTeZZlafWMlMtlbN++Hel0GslkEgMDA0aGcs0j15mUnTLwYqpADpnJLx08boF1bs+XEx5DRpWPjY3B7/ejUCggHo8jEolgcHAQg4ODtkh0GWlPG0yxWMTQ0BDS6XTHAy+WGyq7O4sa0ZcwMqrLqczNZl9TlaGQEyeVELcJdqFxeubd6tTtCzSiRiIRRKNRkz4cDoenbIYmvcxsLhqLxRCLxYwzYiFh/fhQKIREIoFwOGyrl1YoFFAqlWxp3sDe54LR54FAALlcziwIWCttKUEhw3vt9XrR09ODgYEBY9xhDWI23uXCLZvNYnh42Dgh2ukqrijK3LIY/gelXGL6sWyATQUPgDGuNxoN42ilQiTlWrPZRD6fx9jY2LTHpyIum2DLLCpmD1G2M+qHUT7SwClrYtMAwJrY/IwKLrDX0MB1Co2yNPwGg0FbJDCVSo/HM22GFq/pdIoTlTsq+b29vfB6vRgfH0exWLTV9WSmmc/nQygUMvKQjd5keZ3FAq8ZZQ/vD5XU6a5ltVrF0NCQebYOPvhgs9ar1WqTGq/yfgEwv7P8Gcfj9XoRi8UQjUbNWPgZnw9G0UmkEV2+x/8buealHJYNwKVDoaurC729vTaDgjRs8RyLxSJyuZxxWi20420xOGYURbEjndCAvUEiADNPyv4ITji35HI5jI+PT1vOUx6Tehp1LGBveTb26CCcDzk2GaVNWkUcO+efVgZ353Y0eALt9SJrZ56TkcjhcNj0HXM6MLits7SMHNPu3bvnJEt9Nsg1IYMO6CAB9joBZDNZN+r1ulnHAEB/f78tkFCWIKKDmM+K7KUjxwTAlO9zwm2dDUDd9P2p7EMyI4zjqNfrxonQ09ODlStXmueepQQpo3nN8vk80uk0stnsojGgL/T6QZkf1Ii+hOEkSM9coVAw6avtCAdOfIw0k/W5p/ue/LlYJi3i5intBFLYychtKpXtXHMq8vTYyzqz8600ScGUSqVMBHo8HjcLNOnRD4fDJsKBzdVofOBisV6vI5vNmmMkk0lzrovZmM4FrIyqCwaDiMViJtOACzfWdaXRqVarIZFI2KLWo9EoKpWKuV7KZNQjruxP0Dgto4L9fr/JSrIsa1JklYx+c5PtM3Fgc26jrGHkdalUQi6XszkDJYz+4XgYFe9muJaGAGdWljRsOqOCuX+5vVTQpruu7axB/H4/ksmk6eOSz+eNct3T02OOL8+FUdjSOMHvUDbQucxrMx/IIAHWKafsZskZGTXI583n86FSqUyKIpNlTgCYNSGfv0QigUAgMEk+8l7yfsqMCT7LrGMqAxz4PAMwziJefxkJSUWUUYMcq9NgziaozJaT9yeVSqG7u9tWt1U+xzTKMGKR65SFjkRfzPJNZbeyPyKjZ6l7c26j7HSWPXPWEJfbtqujUv7IuZBys1qtTirJwZrpbuVAplszyHG6BaG5jdd53u3KbnldpxqL3+9HLBYzspu92+jglvuQ18hZko6OezYQd8rB+UA6kGVPu1gsZuQm13nhcNiWWUDZ6yzvJ9cppVLJbO+MtpeyXgZ08G8iZbWE6wE+Q/KeO7P+nY4Mfl+OW24nnVC0SySTSVPORe4jFAqh0WggEokgHo+b97iW6LTdZzb7WqwyTmV3Z1Ej+hKGArxUKiGdTsPr9RpDaDsGS3ohS6USMpkMxsbGjGIyHVIRWUz/VHJczoYo+wIFCiORmQIvjent7ofRhNLjzPfmM7otFAohlUohGAxicHAQfX19trQyjhfYa1Co1WpIp9OmQctzzz1nPOSMMHzuueewe/dulMtlJBIJRKNRRCIRxGKxeTmv2SAdUtlsFuVyGX19fTjggAMQjUYxMDCA/v5+Y0RnJLqMygf2NFnr7+83zefoMVcmo8Jc2d+gbJVlLQqFgjGGUrmj4ZFKH+edRCIBr9drjIUzKVXGMircfzQaRbPZRDqdRqVSQSgUQjweh9frNdHLVKIp36QhmcioOxn17HTEBgIBJJNJo/zLOtqMKqIBmKU/uL+paHceiUQiWLVqlZG5w8PDCIVCOOigg9DX14darYZcLmeuLQ3jlUrF5kCnsZoNOBlJ6DRazCUyk6G/vx89PT0IBoOmWapMk+YaiCnPhULB9C5hEAXHLR0HExMTZo0zMDAAYM/zy2eIzyrXRs1m00SJB4NBU9onm82aOutsui5L/0hDjWweJh3zrHHO8bLMT6PRMOsLZm1Uq1XEYjH09vYiHA7jgAMOwKpVq2BZFvL5vHEi8FxTqZQxWMTjcWQyGXN9VMa4o7JbWW60G8REA7rX60W5XDZZyJR31J3kHAPAZqyUWb7t6NAslcXsMe6fGWrS8ErHpnQ0Smcp9UygdQCcNMjLzHP5PWkQlU55XqN2A/KmOndeq0gkgoGBAVPCJp/PGznc09NjSrLJCGvAnhXA6+z3+9Hd3W0MzVK3nYt5ybk+Yz8WjoON47u7uxEOhyc5tS3LMgGS2WzWZINLx0q9XkculzNyOZ/PG5nJNaJ07EjnhMxmaGXwlt9zGtFbfd+JvNfSkC+fm2azaRqVS9ktnQM01nMfLH+TSCSQyWRsfcn2FelMmE/bzFyisruzqBF9iUMhzDqdoVCorRIa/J7s4DzTpkrzqTTOlk5NfM4yMVxczCQKXe5HplrNdB+dQqYG0jEgSwVIGIXGKACv14t8Pm+LSJQecaZcOdPfeQ0WExy3/D/g/wIXp7xOvGayBAMdIoyKoOHBmY6u2FFhrixH2olccRoIWS4DsEfm0CAtjZVS2Z/J/4BU6uX35PFl5LA8Nud4pyLWKmKY5+GMbnI23JaRVFK54/l3UnGhgzgSiZgeHjw3GiakA8N5fFlihHLAsqy2AhY6jYz2pvymEyYcDqNarU4qKcBoLdl80+3a8rNyuWwMGIxspOFaBgMQKuq8zsFg0IxV3lu3FHP+LrMUmN7tfOYB2Iwi3Ebuh/eHcpvGCdZsl/fVLbOQ5yjPTeXNXlR2K/srMlCLegNLhfBz+VO+zzlF6ksz0bflflvtQ8pjzmVTjasVTh3Qqcu4/e08v04Fr9HxyhJvdGJQDsp1hzyu2+8sDdNoNGy691zM8W76n3TGywbnsVjMRJ47HSt0THPNQRku9y8bZVPvdvY2c94TuYZzZsPLF+HvblHm0rjO77k5ppwOGLc1IPVo6t48Z7k25hrEKbtnkp3ZDu0615YKKrs7ixrRlwG1Wg27d+9GPp9HoVCAZVlmcg6Hw7ZJVDbqmpiYQDqdNo2d2o0ql4sIpqTTA7wQxmDn2BgpQGNou9H10+2XOI0Jzs9nsj/piGg1uUkh3+r6TrcPCYVmNBpFX1+fEeAyHbHV9xjBGAwGUS6XkUwmUS6XjZdYLi4zmQyefvpphMNhrFy50maUXuga8MDeRUej0cDo6CjGxsbMwtPj8ZhFFo0V8nd6z7l45qKIn7WbDaIoyvJhprKPcrhYLCIWi6Fer08qkcE01Vqthp07d5qoNL5YB3Mm0AjJCHemEssaqlSsmC5bKpUwMTFhooUikYjZj9yXz+czPTQ8Hg9SqZQx6FJB5LZUjpw1qGUzzE7BaC1G8HO+ZlaVPF4rWeqM6pPBCDNRTmQ5k3ajpqQDPhaLobu72xj12VgW2BPpxlJrNJzTCM5Sbel02jQId1sbFQoFPPvsswiFQibSXWbjAXvr3cr1kBu83zSuBwIBWJZlmoFynUbjBg0/jGSk0YHf5/G5jh0dHUWpVAJgN/wwDbxQKJhaqYxE57bSkC5lt9OIzuuvCqSiKMCeeWt0dBT5fB6RSASpVMroN+yhwVetVjPRwdSXZiK7pZ7JLCPOVyx9IQ3JMtKYRmdZkq0dfZhzb7u6JeUYde5OZKlzrNwv7Q104MoIdLfyWzITi/uT0fky42m6sToD4HjO011Lt0j0ZDJp1h90CBSLRXPtpJGc9y+ZTCIajSKdTpssRrc1Uj6fx/bt2xEKhTAwMIDe3l7X68rrw0AwYG+2hHROO2v/83ut5KHTcSFtFtLJwizITCYDy9pbyrDZbKK7u9usDWnT4jpRGuG5HpHBbm6ye7Y4nx1FcbLwlixln6lWqxgZGYHX60WpVDLRQz09PZMinavVKvL5PKrVKp577jk899xzJs17JgorhVGlUjGCQE5sCwWFiozwa6UozgYpHGYbie/08k71femJd9YLlfuSkVlTjUnuKxaLGSM6o6yng0Z0YE9ddJYPYpQasLcubiaTQaVSMdEDMkJ7MRjRKZhrtRpGRkawbds2+Hw+9PX1mVIHsgkfxy2jH3geTiO6rAmruKMecWV/p16vI51Ow+PZU3eajjmpIDNLaHR0FDt37jT9T0ql0qwzwRhBx0jdeDxuM4gDeyOLOG8De5pyUYGjEZ29H7gtjej5fB5+v9/Um7Ysyxg+4/G4MaLL6CYpE2Uq/L4gAwhobI7H48bowevYKgvLuQ9n5pVsCNsuzM4C9hpG2jkPKbv7+/vNtc5ms2YdRsdALpeDZVno6uoyZXoSiQQ8nj3NPIeGhlo2K2NABiPZIpGIKSVAIzfXVVT8ZSQ5P6czWjbF4/gKhYLtOlKm8now6p3PHx1K3I7Py+7du/Hss8/C6/UilUqZsbJxbD6ftxnR2ctERtJL+R4IBGz30y0Sfn9HZbeyv0MjOrCnD1KpVEIwGERXV9ckfYHlsSqVCsbGxjAxMdG2MZtIuUgjtXRGOzNzANgalzubjMp9OiOKCQ3zTmOi04DK/XJdIdcR+wKPT6cqnazUrZjx7Bb5Lg2+8vrQGMv1xXROYF4TmS1FvW+m99Dj2VMHPZFImDVVs9k0xmJZJpTXmTacrq4uc9xMJmMrWyPJ5XJGdrPEG0sHyevCsVMeuhm7pa1BBhhMZ1h2swW5GdLT6TS2b98OYE8pVOlY4HqRpeDcAg4Z2Ccj+7kW6RTLTVap7O4sC2/JUjoCJxfZEErWJOXPcrlsFAmmts42UpuTOL/PyN2FRC4y5KKhU//4dB5IT/tMG6hwTHIxJK+/FGAy1YqCTjalkQsFKpUyKs7tvkpvukytbhcaESi8WgktqUiXSiXk83njLZbn50z7n0vk/apUKqaGqqy3xmhJp9fbeb2d91IuymZjAHJbuLil4XXyeV5IVJgryl5FkRFIVI5pLGRZDdZRp+NvXxofOmW3U7HmTzkv03nI91kWQyrLTqO4fF8eg8obf+fnstRIJ5GKoGxi6kw/lttLo77cxjnHu81Dzowup9GB8hzAJOPxdOfBfdMw7ZTnlOnMkmJ0lxwXU6F5TOdxea6MnCwWi5Oyr+Rx3WQX98OfHEMrme/8221NwnvHurAsHUfnhswuk+PjPZPXSJbmkVGardbD7cgbnpc8X7frsdRR2a0oe0usMGALgIk0pzORjlqWXN0X2c15Rcpu5+dOWSNlBuA+r0pZ75T7rcbhNFhLx3en/7/leTvH59Sd5UsaXOWc7IxAd5P9zn3yPRpsnfuZLnhN6vJyfUdjsNyWRm+uM+Q5yaAuPnPOa8XvUHbLbC75u3NcMjuL+5LjaoVb6T63/ViWZeslxv8Hrn+da5VWOO8zsHdNO1vnjduaZLno2hKV3Z1FjehLBGlUc4uK4cSTy+Wwfft2E+nEaBuZFsQ02WKxaAzuMzX4SS+hZVkmPc3ZTGy+YVS9LDHSiUh0TjxMHwP2pDwXCgWTTjdVbXPeK+m8yOfzyOVyRhGkMYXKHaMEZRozP3fbL5VHRnDJ5i7SsBEIBBAIBGydwWdaR4z7YRkApmZLaBSp1+vYuXMnMpkMotEoVq1ahXg8jng8brzkMm1sLpDGDzZnyWQyeO6551AsFpHJZJBOp02TEkatSUWdRiMq42zKywjHXC6HbDZrGqnNpKkoF0WM5uQ94f8SF+k0qsmxLFVUmCvLjdk+k5Sn4+PjNnnt9/uRyWQQCARQLBaRTqf3uWkS5TUV8WKxaGvySAO5rBlKxbW/v984bNPptJnjGc1ULpeN/ItEIkYpYgQ6FTiWkAP2GlVlajY/cypjs0Eq1JSHjHyWCqlUlGXjVbmG4Jwlr5/bHBwIBMz58/ykg5sp/8zQ4vzOlP9WcJ1BOeXz+YyMdUa4kUKhYBRpGbm1YsUKkwnBdZzzWjebTYyOjhojOku5JZNJDA4OTio9xPWEjFTnudHwwOMzaozHkQ4Nef1lYASjDim7aSSQjigaFlgrntH0jKTnGHl/GBHP39PptM2xMJVhRH7ODFBGspfLZZtDDIBxki11VHYrCmzr82w2C49nT2ktZoYzw5cBO9S/ZwtlDzOsWQbOmZ3s1EF9Ph8ikcgkI7vTScxzch5TIh3g3JYl5jjvdRLKTepT1I2cmb78nbJFrk1kwBqdGDJiXl4HZv/JdZi8DtTLAZj+I41Gw4zPLfDK7/cb2RCPx5FIJIwRnOXlmGUlG8fm83mTKUedz+v1Ih6Pmwbira53o9HA0NCQyVLj8Xt6erBq1SpbvXT5rMpSavLaUs479U43Azp/SucC70M6ncbOnTvN/wSDRGSjXdoouG7iOJ02Ahreea0mJiZmtD6W58/rIx0rdHwtJ1R2dxY1oi8hnJ43ZzSyZVnG6Ce3l7+3E+3ULhSYFAZSIC2EEZ3nxomPym8narMRKtVM0atWq/B4PK6pdG7jozBhRCHvl/SwU9mVijINq25GdC4yZF047o9eXm7L70vjwWyN1xS8VHrdzpfPxMTEBLLZLGKxGILBoFmEJRKJeXW6cNFRLBYxPj6OnTt3GmcLnQ+MIuHzI7MFpNGkVqsZ4xCfOfmaSbd3adxgIzdn2iKP1ar+n6IoSxcZoSYVWs5HlLedkGWcQxjhTiO4NGTSCMp67KyPDuwt9yHTeqmgch+UV1IB5DqEBgAakQOBgHHKS8XFLWBgpsi1jzTaSvnnlD90aFIRl4qglAOtIpVYo1NGffE6NJtNU0KN23LdQuP8VOciZYUs+8N0ZhqK2WS+Vqshm82aY9GBkEgkjFM2n8+7ngeVU1maRzbxkkon1ylyPSjXPDJanecgI89k7VWZJcC1UrPZNIao9P/P3psH13ZVZ+LfvZLuPGqW3uT3niewQ5LGHf+eA5hOlU2bdNplTOPuVLsgIRQuEwI4aRoDTkwS45hQrpc0YKDKYSga7Eo5LkI1DTbVjdOASQJhCk4Y7Ge/QdLTcOf56t77+0P1bX1n61zpSrrSk57PqlJJusM5e+9zzl5rfetba+VyWFhYMCXkKJrizvVQcoPemwRKeM/qfdmL2AxzsvvD4bDJGuF9xnXabgDME0882RuiQed2u20Iaaq7uf9onevtCgF0zZrl/mvrS3vPBZx1tLsBauuRqvQ7ysSnH6ulXfsl1MM813qkK2V5K9nILVvYLWNYe7toJhPXmT3EgNWAsOoot8A/SXHUzwSsuZa0E2y9ykAsMQbqMY5vvbKonU4H+Xwe+Xze6G4S54gDaAUBnp9jUttOcYdugLk9X36Xx+K9WiqVcP78edPHBIApN8RsMrcMeT2HZlVwvQnK90ouUzyNz6pdGmm92u+e9C4f+9jH8Od//ueYnZ3FVVddhZMnT+KVr3xl188/9dRTuOuuu/DjH/8Y09PTePe734077rjD8ZnHHnsM99xzD5599lkcP34c9913H2655Rbz/kMPPYSHHnoIzz//PADgqquuwh/+4R/ipptuMp/pdDr4wAc+gE9+8pPIZrO49tpr8dGPfhRXXXVVz3PzQPQ9LKqklSllpyDzYady0LRZ3SSo7BV83yqTleek8qhWq45GVt0Y2TsldGpZI41lOnSN+iF0djudjmHTNRoNh8K1N38Fk7nR8zcBXDpbdkSa9T2ZVWCD6Dy+DfZy8+f9YAM0thG0VbFLAXQTVaSFQsFhbGmHcjU81ent9V7Se5qgjkaUm80mlpaWUK1WDSNdgXH7ftFaa+FwGAAMEFKv11EoFAyDdHFx0bDQtdFqN2GQhAYO2QnxeNywFN1A9EKhgEqlgkaj4VjL/Qise8aJJxej2MwaOrkKLNt6SQPcyojWjBQ6dP0MCrMeJxnM3HupxxV81vmxJrqya2lf8DMatKVuYoCYTOBwOGzKgnHPttOttyOq6zSbR9nkzKCzM/cUtGbQlBlIBHR1bbRUCh1lAtzNZtN8R9dI7wvu+8rgUh1LkJj6gOtJYJtBYtpmwGodd14Lv99v9J6WpetlHTn2UqmEubk5M25gNRhAIIAOKcdrs/Hdjq/zpV5mfX3q3Far5QjgqPB6dTodY5tSvwIw8242m8hkMmi1WlhaWsLCwgIKhQLK5fK69xCF15X3DNc/lUohEok4rjWDHK1WC/l83vQf0uDMftSD+3HMnnjSTZTE5JZl4lZGk5+zWbtuIKqyePvx7BC4LxaLJuvG9pd0XPYYdd76GsfYDUgn4Mu/ycTXjN1+C31n6u5arebw83Q/VpvLJhgySFqtVh12i+pGBqA1O1h1jwYrFJehjtOyM8pMJx5BwpaWNSUDnLah+vFqA/KarJcF5yZqw+XzeczNzSEQCJg1InjOMWkAXsvuMXDRjdygpL5Op2MwDvVR8/n8mkCyjW3xs0NDQ0gkEgBWdTf7+jGYnslkTB34XnQp8RTeM8RbEokEotGoyVqwMxn4NzEmm/Cyn2Q3x/zoo4/ine98Jz72sY/hV3/1V/GJT3wCN910E5555hkcPnx4zedPnTqF1772tXjLW96Cz33uc/jmN7+JO++8E2NjY7j11lsBAE8//TRuu+02/Mmf/AluueUWPP7443jDG96Ab3zjG7j22msBAAcPHsSf/dmf4dJLLwUAfOYzn8HNN9+M733vewYk/9CHPoQHH3wQn/70p3H55ZfjT//0T3HDDTfgJz/5CeLxeE/z80D0PSwamWTkUWtpqsOhThE3a7eamcqeUgdwK2CqKiE2R0skEo405t0A0nWzL5VKWFpaMuyprdSmXk8IYtLxJRDK9dQoNkUVeLVaxeLiImq1GhYWFpDJZByMP6ZKM3U6EomsAdFtxgFBdG7+TCemotA0aFtJ8xhbuU56D220xrznKpUKZmZmDAhD4Hh0dBTpdBrBYBCpVMqsoRoa641RgRINWBSLRTQaDWQyGSwtLaHZbCKXyxnFbpe74bG4VsFgEJFIBPF4HMlkEu32SjMUNm47d+4cyuUyZmZmcO7cOZPKmclkHIwPFYIz4XAYU1NT5vfBgwdNSj7BFN5HdPwZBCgWi8hms3j22WdRKpVMQGc/KfTtggf7aa6evHhEWUcKanJvJ+tGwUTu4XQO1YGjzlfHtl+OOIG9VquFcDiMdDptxs4sIzrHCvJHo1HE43HzfTLH7UAA93C7dAf1G8t20KGjg+K2L7utM8+5ntgANHVPPp83epzjjMfjRs9qEzPqE937uW5ujng4HEYikTAlzwKBgNE5GmigHggEAg4nW8uhELgHVll4HAPtj0QiYQAG1ev8Dq8FA9XLy8umLICmbruBK7qOtDPr9ToWFxfh968086QeZ1A4nU5jdHTU6C+yvRU8toNCtE05PxIhFhYWMD8/7wCctba9iqacVyoVM+fp6Wm02yuladiIdWZmBtVqFS+88AJOnz6Ner2OfD6/7r1EYbB7aGgI6XQaw8PDCAaDGB0dRTKZdJRz4ZgajQZOnz6NxcVFVKtVLC0tOcoL9XIv7xXxdLcnF6N0OquNvYFVPaslPmyykuoXHkODsLTjCfBut58Jhbq33W4jFos5anXbdoKSi9Se0PG67ffqd3Ev134b9EUJ5tMX2ej53myGGRnMBLlZRpQNNEOhEFKplClxQhCdc6TfV6vVkM/nkclkHPgH7ZDBwUFj2zCbbGhoyJT/ZN8sfof3CfUy/XD+JpmK5V78/pVyndVq1diExA+o620QXrPGeT4G9NW/XE938/w+nw/1eh3ZbBYDAwOIRqMIhUIIhUJotVqIRCLGdvH7/WbNiBsoA1yPrefTMqfnzp3D7Oys4z7UkmsqtFGA1eyzaDSKAwcOOHR3qVTCzMyM+X3mzBnUajUsLS31hPUEg0GMjIwgGAwimUwa3GF0dBSxWMy1FNvy8jLOnz+PYrGIXC6HM2fOmPI9+02X7bbufvDBB/HmN78Zv/M7vwMAOHnyJL761a/ioYcewv3337/m8x//+Mdx+PBhnDx5EgDwkpe8BN/5znfw4Q9/2IDoJ0+exA033IC7774bAHD33XfjqaeewsmTJ/GFL3wBAPAbv/EbjuPed999eOihh/Dtb38bV111FTqdDk6ePIn3ve99eN3rXgdgBWifmJjA5z//ebz1rW/taX4eiL5HRYFv3UAVRNdIrCpErSNFJagprcp04t9bSVnRVC4yo2x2zW6x0elUcfOls9fvDU7TkjTtvF6vm+gto7r2d7hGWq+dgQg7TZvKW9lO64HoZAPQUSV4rowBFWX5bQdEVxDITexxEpQBVu9bGkGsRU72Pe9lvZ83Go+yDVkuh5FrAupkiq83bsDZ+NQOXtFQolLn8VnjjQx4t+MrWzEcDiMWiyGVSmF0dNQAOQQ7FIQgAEFDn2vFe2u/pZ15jrgnF6vos0ugUAFbiu6LCsaq7lbA1c5C267Qqa/X6wYspj5SR5tAnzptbvpIRdnWyqa356bBfhuY6KcomKDsaOrLTqfjyABS3abf0wavCj5rFprabNpnQzMK1Dbjfs40buowXSu12TgWG+CwHXCKnpc2gTKu7Ovmdm8pw4+MPh5PgSc6nW62io6JdiKvt8/nM++rLddrgFifE96vPC4DWpwbCRelUgm5XA5LS0tdnXs3IZgTCAQQiUSQSCQMASCRSDiCZwys1Ot1xGIxw5jjNd+p+30nxdPdnlysouQVYLVHg/aOsrPJVP/pPqSv8f9+ZYyqj8P9za4Tbvt59KmoC9xIPr3sszpH7qk76XdTT9DvIoBMnci5aMkT1dn8nuID/L7qRfrZqrtZdo0+oGYl2Kx0rokeV8fP8bAOOq+Hkhs1g9oOxvDYynDX67Le9aOOoU+s9h0AEyBguRcK7xFtRqrHtO8h6m7aCMVisSf9pvcV18Pv95vACNeJurtcLpuACLGVXoSB9VAohFgshmQyiUAgYMgAzWbTkD5Yeof3HOdnB9r2k/RLd7NEIEVLFFIajQa++93v4j3veY/j9RtvvBHf+ta3XI//9NNP48Ybb3S89prXvAYPP/yw6a3z9NNP413veteazxB4t6XVauGv//qvUS6XceLECQArjPe5uTnHuYLBIK6//np861vf8kD0/SrqYPGmJKhqM8sVxKYS4QOuDptGwnWz5nuqaDYr3NTy+bxxyGKxmAFFWQJjJ8B0HXc+nzcOEZs69qsGnQoVc6ezUit0YWHBRKpzuZxxqhip5zjJqmLElEwrGhysC0vmMyPUBJSZEg7AFUTnOqgTqmukUXd+lrXBW62WqaPai3D+9XrdNN/UuqIKFHGcmqKvmRD8LpuXDQ0NmTUl+KCghA0qKABFw0LrlDMiTrBbDRQ3YXQ+lUohEAiYOS4tLZlnjJkOc3Nz+MlPfoJCoYDFxUXMz88bp7+bYtWU79HRUVx++eWIxWIYGRnB8PCw41lXo4LPLu+BWCyGSCQCYKU+8blz59YYsp544smFET7HdMBbrZYJjBHUYwNGMoIBGH2phi73TTKcGYhUp2GrATTulzwns28ILPMzuu9yTGz+SRaXgs3q3Pp8PhPko22jGUy5XM4wxUqlksNBXk+2o9vJOtY5DQ0NmSZcdK7a7Tay2ayp1c4SYFwzXhNmffE3y7fwuvNa08mIRCKIxWImQMy52I64nT6u+p7rxHuJwKyC2OrMazkVDTDbuoL3mrLsaFcokM7/GZDmd/x+v3FyBwYGkM/nHevK+4tzoc5SUaCj1wwr3nMcK22IarWKubk5NJtNnD59GtlsFplMBqdOnTI2ozaOtUUBDK5jMpnE4cOHEY1GEY1GDRNUa/GSbchAud/vx8TEBCKRCGq1GsbGxlCv1zE/P49z585tyf72xBNP+ifUf6x5zf1AgVM2fmRZKep4+k8aFOR+yGOor6KyFWCLmUf8Hn1GloZUXczz87cGX+0yM9QRtv5g0Jz6g+xm6kUSiHrxPbrts93eU6lWq8hkMo7Sp4ODg8hms/D7/Y4sOWIBtVoNuVzO6D36Z8ycInmJf9tCG4d+MoPt9CVJWlM/W4PqOkcGPwAYrIbvKaDPdVC8RwFq6ix+Rs+ltmO3e40YANe00WiYuaVSKfh8K01yi8WiybwiwM5rxbVVf5fB6FarhUKh0NN9rfOm3cnvz8zMoNFo4OzZs8hms1hYWMBPf/pTo7tZHm09/cnnlo1VDx06hFgshlgsZjL/FQDWZ4b3PTMd2BemVqthbm7uRau7Dx065Pj/j/7oj3Dvvfc6XltcXESr1cLExITj9YmJCczNzbked25uzvXzy8vLWFxcxNTUVNfP2Mf80Y9+hBMnTqBWqyEWi+Hxxx/HS1/6UnMefs8+zgsvvLDOzJ3igeh7TNQRCYVCJuWZ5S10A6NwU6by01pXVIJaz43Kkg4Blf5mU8T5Wda5IngYj8cNwLeT9dGpsJiexOaVhUJhzcbeT+GGSQB5YGAAlUrFgN90qCjtdtt8lmC7NmLlRh2JRAyIzkhpJBIxrCfeFwoiA2uj9DpGZegrg15BdLLnewHRleHFlHIC4bzPWONWHXet/a5KvFqtwufzmVQzGp4EmrSsC+8lBRU4FrIMeExlH+g5uV7dZGBgpXne8PAwIpGIAdF9Pp8B5zOZDMrlMk6fPo1nnnnGBG6YWrkeADQ4OIiRkRGMjIxgamoKL3nJS5BIJEzQyY3FotLpdAxglU6nEY/HUa1WMTQ0ZMrU0Nja6+Kx2Ty5GIV7GI1yguk2C5l1tsvlsmFYEERn3UxlH+n7Cn6rft2qI07Hh0F47oM6J5tNx8Apg/2axks7g58lsMz9XEHc8+fPI5/Pm9rsu7F30T5Q1rI6vel02nxmZmbGlOdSG4m6SPtZ0CnXBu903gAYpz8ej2N0dNQ4qmR1M/OM18bvd9ZaVeeYDEQ6v9SZ/I4yD+0SgLxWNoiuziOPSV3NMal0Oh3jSOv3A4EA5ubm4Pf7TcCHpU9YS596ku9rlp8eazP3NI9Lm4pldGZnZ1GtVvHcc8+ZMnrPPfecKT2wnq2oAAWd/FQqhaNHjxqwQZ9t6l/WTWUzN/4eHx835XQajQaeeeYZzM3N7StH3NPdnlyMQhCd9XA1aMw9gr6YlsJS/0nrSOu+oOAg31c/ZrPPf7vdNgF4HQP3GeIBGgQH4MAR7DGpb6afJVDt9/sNK1d1N33B7dRDtxn03YTAPX1NsoapQ0ZHRzE1NYVOp4Pz588jm806/F4en7YL/XaWX+P7Oga/32/uCfpqAIyeZyCCepk6QIMoet34GR6H5+Ca83Mq9PE1S0uzFxWApmi2nM7HZqUDwNLSEjqdjlkTv99vdPvQ0BBGRkYMrkO7IJfLIZ/PO3SofZ5e93oGdNTmzeVyxoZ47rnnkMlkcP78efzLv/yL6YvSiy4i2YHktUsuucRkj9FOdzuOVgHQQMn4+DiazSZ++MMfvmh195kzZ0y9egBrWOgqNp5BXHIzn7df7+WYV1xxBb7//e8jl8vhsccewxvf+EY89dRTBkjfyths8UD0PSi2o60RSsBZmkOdP01LtjcXNfC1PEYvALdG1OkMq9Nus4MJjAaDQZM2RCdku2C6BgeoOFkihbVDd6tOlRo+mh6lLC5+jspKa9fb14brpNkG+qPsblU0Pp/POI6qSLXbtgLaFDLBATi6duu9pnPgbypvbWaqzrrW8+U5aXS6ib2p6ybGsfCeVodWjT0arix5QuNxO6mFvL4EjAg2VSoV05yGRhTXZCM22+DgoKkFz2CJBkg2En1eCUoBMAaCz+dzdD3fy+I54p5crKLPqVvQW7PEuE9ruqy936seAJyNSzcSW4e4GaIKllKfMMNNwVj9rg0o6znUuQPWlv6i/tAU6156a/RLdK4aGKbuYRaT6hPbntL58G/V4W72Dm2wbiVw9HOqx8lY0xraBL+5hm4Nx6kzNUOt0+k4gsucD3/7fKuNUfkde/5u5+Hf/A6zD6iXfT6fo8GoloZRfb2de8DNnmXAQEvoqa24mWOTiUjghRkANnCgc+D62M82ARt7rfdDerinuz25WMXNL9bMb/5PX4R7vepmm/Wt/rH6NBuJnkdLtaj+oZ9CMFQze9zAJ9UL+sMx655o+2X0u7U0KQlau6m7NUBP/aY9REgm4j6/HrnJtl24Nirr+Wa8N2yflcejD059q9eKNpAbOUznSz3J7xBQ1/vJxot4Ts0MtOevept/a3lQ6mbV3Tw+7RHqrH7u6Xqv0cdmGVyS9jZDtiCIzgxu+tz6THZbIxsrUwwsHA6bXgmbtSculPRLdycSCQeI7ibsi2MzxOfn59cwwCmTk5OunycBcb3P2McMBAKmseg111yDf/zHf8Rf/MVf4BOf+AQmJycBrDDSp6amehqbm3gg+h4Tsm61hIey0wGnQqQjzTRe3Qg0tUhBdI02KzBpM4D4vUAggNHRUUSjUSQSCUxMTDjY7vV6HXNzcya9e35+3kQxybBjKpCbI9+LcEwaUc7lcsjlcub8+Xx+TZrTTooqJ9bZtq8Vx67NaDg+Bb3JPOdvMgpYAkDBcTcQhM4cgxd6LmYycG3IqGZDTLLZ6NyzhIyeh0qbDcWYHscu2ZwDG6nZGQhU8lQ0610fVex0vrm2dgBBDUk1UnqNULudm4A5lbbP5zPMsXq9jvPnz6NQKGB2dhaZTAalUmnDRnh0lOPxOA4dOoRLLrnEMBhZsmazwjpu0WgU09PTKJfLhg1SLpfNGu5V8RxxTy5WIZNXhezrTqdjsnXIZCbDB1g12rW0hzrsAEz/DQ1qugnLUxH4S6fTxnkgE35paclkJNVqNfj9fuOsKFDP7Dgyg+wAJUHGTqdjHGt+j3qA+yQbNLH5M53e3XLE7ZIk+rrP5zNZPQDM2FR4jcgGbLdX+lNoWTbqUM2g0jr5bufnefT+Yb1bZtyRMMASKWS/0W6gPicbXZ1vlqOhI0o7hD+00aLRKJLJJHw+HzKZjLFzutlW9l6sQAE/z9Is2o/E1tfbvf62/UU7cXFxEY1GA9ls1pTW61V/cIyBQAAHDx7E+Pg4ksmkYbJxPQE4zq3sfz5Xuj58ZmkTVCoV0zR8r4unuz25GEWDvvq/rZu4bzLzyAYuqR+U8MPv01dS3e32PLCECLObx8bGHMH2Wq2Gs2fPmjIl2Wx2Te80uwcL4Cw3QzBRM9UVDOQ8lT2fy+VMeaxcLmdKgm537+71+woOE8RXQht1HLDKtO62XzFwS/yE4KgGP7p9h6JBE2C1lB/xGJZ2Y8ZhrVZDJpNxNCwPBoNIJBJG1yvoT0IDS8qRxKXkNZKzeD1pO5bLZfNZuxGprqUKs7n5N3+zZI8+I+uVQdus2HYY50xbdHFx0ejHzYLVgUAAR44cwaFDhxxZ39obR59VCm0efpbCZ350dBSXXXYZqtUqZmZmkM1mt70OOy27qbsDgQBe/vKX48knn8Qtt9xiXn/yySdx8803u37nxIkT+NKXvuR47YknnsA111xjiAcnTpzAk08+6aiL/sQTT+C6667bcOzM4D169CgmJyfx5JNP4pd/+ZcBrPgnTz31FB544IGe5+iB6HtM6DwzgqmM3vWANltRanQNWI2kMmqrTp1G2vhd+9jxeBypVAoTExM4duyYcZY7nY6pNQ2sOJzZbNakl5Fpy8CA21h7FY3iUinRqczlcqb+1m5GA3k+KqnNiB2t1gZd/NtmtnUTvY40kLRbO1OS+BkAxikno5lKmIEb/SyNKDrvrHnKFDrOgQAClRS/zyBCL0xpDZjsdmRXmRYMOmjH9Vqthmw2i1wuZxxypoSvp1wYFAuHwxgeHsbk5KRR5jaDsFdhwKPdbiOdTmNsbAyhUAhnz551PPueeOLJ7orNRgPgYGwxCE1HHFh1zuz0az0m91PqVjob3Vg5PH44HEYymcTk5KQj80XrYmutb45V9xDqJoLvgDMzTEFi1cPKwuP8arWaCT5qSvFWpZvt0k02shMYNN3oGMoOt5mI/OFaK7Bij9UNoOHnCGxXKhXk83kzPgVmqSuHh4fNa+qIc83z+fyagAVtC60xS8IEAyoss9Mr+4vX2n5tszbSZkQZeTxfq7VSt5fAOXvlrNcXxRbe336/H8PDwzh48KB5pgYHBx0p80oAUPCMbD4+C3q9I5EIhoeHEQqFTINyTzzxZHelV2KXAuzabFT3ACVJ2eQ1Lf3B47ntRQzAskb1gQMHTBB7cHAQxWIRS0tLyOVyDjAwGo2iWCxiaGgIsVhsjb9NYNDv9xv/UPWSvW/THqHOpx5qNBqmh8luC9fLLbuZWUe9HofXRq8XfTK366K6jd9TW43rqj459SgJBsxc5+fa7ZVecupvK4Beq9VQKBSM/qrX645zMwCuNd55HILA3Wwse45uZAbaDzstfBY4Bq4Z588g/GYDNoODgxgdHcWhQ4cctiLXlwEl22/W4Iy+zusdi8UwNTWFUqlkSgp74pS77roLt99+O6655hqcOHECn/zkJ3H69GnccccdAIC7774b586dw2c/+1kAwB133IGPfOQjuOuuu/CWt7wFTz/9NB5++GF84QtfMMd8xzvegVe96lV44IEHcPPNN+OLX/wivva1r+Eb3/iG+cx73/te3HTTTTh06BCKxSIeeeQRfP3rX8dXvvIVACt73jvf+U588IMfxGWXXYbLLrsMH/zgBxGJRPCbv/mbPc/PA9H3qGyWqb2RKCDK//XHTciMjsfjOHz4MMbHxzEyMoLDhw+bOq/tdtswzmOxGLLZrCmxwvrfNDTq9bqpG+oGDOvfdpqRpmqVSiUTBSfzVuu57SdRsETTAu10wF6Ppce0mdv2sdTBq1QqhsnAenM2g5DKvFwum3qeut62AlTwRN/fy0LFzUDG0tKSaZBG0CmTyZhGtr2C/KxnTLYigxXbfc55bclWabfbBuxaL4VxL4jHZvPkYhJlswCrDb81WKp7vBrz3Dc11dtmttl7LZ1zfc2WwcFBjI2NIZ1OmwbGylaqVqsolUrw+/0oFAqmpnmlUjH1KDkflosicKilzLjf0ymnDtCxa91SPVe/2Oe7uR/YGVGcAzPI1PlS0JT7Mp1pYEU3JJNJo1uZvUdHWO0pdeg0/ZpjYTYer6uuv5Zf47h4LAa4NYBNkH4n0rV3QhjQAGDuX2aT0V5hbxreh70ICQLMDGRQg9eFtqkSGMgi5XOqjFY+C/wZHBxEMpl0XPO9Lp7u9uRiEtXPfI753BLktO9ZJQnxGG6v2362m453k2AwiAMHDmB4eBiJRMIEwDnOaDSKXC5ngm8LCwsm+JvL5UwJTRKoWOdae5aQIKRz13FruU5+L5/Pm2zm3coc66fY/rESDTciK1KUeKhgOY/P4zG4rUx9no94BgPUg4OD5m8t20a91m3N9f7i5wnyUx/Z9+ReE9pDPp8P5XLZ3GOcF20j1sPvVX+o7uY97mab8jqSYU5ioBs5leurJBhm4+8H2W3dfdttt2FpaQl//Md/jNnZWVx99dX48pe/jCNHjgAAZmdncfr0afP5o0eP4stf/jLe9a534aMf/Simp6fxl3/5l7j11lvNZ6677jo88sgjeP/734977rkHx48fx6OPPoprr73WfOb8+fO4/fbbMTs7i2QyiZe97GX4yle+ghtuuMF85t3vfjeq1SruvPNOZLNZXHvttXjiiSdM/4NexAPR95joBm872+t9Z6MbW50jG0B3A9T9fj8SiQSGh4cxOjqKa6+9FseOHUMymcTU1JSjnEu1WsXBgweRy+Xws5/9DIVCwZS5WFpawuDgIHK5HCKRCMLhsElbolOiUXAV7fJM1ho7c9MhoqO4X+pRqajhplkHbnXFNwOk0xjiMYDV+ugK7NDR9/l8OH/+vOl4ziAHP0cFZzcmpSLS0ioKmNvMjI2CNntBlpeXsbS0hEKhgGKxaJq2cT2azSbm5uZMJ3ploXUTn89nGOipVArJZBLxeHzD7IJexefzIRKJYGxszDTIoWJn+Yi9KJ4j7snFJEyp5TNdq9Uc2UXM+GGWFuBMiXXb66nbyJbRgCjThXkcN4lEInjJS16Co0ePYnBw0DQqJxhYrVYRCASwsLCA2dlZU/ZicXERuVzOwbaLxWKmQaQGaMlqCwQCiEajjvRvgrHNZtOUqyAYrGyr7cpu7wVabofX0OfzIRqNIpVKGdazfX30O8Vi0TCkksmkaZpVKpUQj8dNY9elpSUsLS2Ze4HfVwedbHE2AaPtpOuiulsdRDvji3quWCwa+269fh97RUjoIFON96T2oSkUCgaM6PW+Y6O1RCKBeDyOeDyORqOBQqHgeC4VgOGzwCazBO1pL1A3swzQ8PAwyuUyzpw5s5NL1DfxdLcnF5PYfg9BMQacyVjtdDpGj/MetsFnZfJqcA1YC+B2E5/Ph3g8jn/zb/4NrrzySnNO9Q9rtRrS6TQKhQKee+45fOtb3zL+caFQgN+/Ugea5VQJwqsQbKVtQN1N35B+t+pu1sxWH28/CW0x9W/5OsmBCq667VV8T2trDwwMONaT+zybv9olb1qtlmkqPjAwgFwu5wB5bWBcS/8oEM9j8TXNGKN/v5cBdGC11BubcVN3c66NRgNLS0uGuNar7g6FQiarTsum2kEKni8cDptnn2tHUQCduntgYKXJuLL/97pcCN1955134s4773R979Of/vSa166//nr80z/907rHfP3rX4/Xv/71Xd9/+OGHNxyXz+fDvffei3vvvXfDz3YTD0S/iEWVnCoLAI5Nmp+1hfWt4/E4RkZGjLM3PDxsSoMAqx2qA4EAFhcXjWKpVqtGQQQCAbNhse6XRnO1aYoy16g4lFGkip0g4X41yjVqrWxx+2czx9OIuB7ffg1YXWsy3WgIKBCvLDY672oU2tfNTcm7sSn3olBhcw0KhYIJ9JCByfTwzTAx+AwQkNf7fbvCsREY0xTBvWw8eY64JxeTcP9WcNLOtNJ9mKJOt1tQzY3JZrOe3MZCAJz6WwOzzIgZHBw0oCCZ59wDyQzSsmK1Wg2tVstRd1PnpzU0CTyQrUs20XZLt+wFcdN7wKqDzmtvs52UkUxHlw4cnUatdUoww419pcQIHlOZkzy3MubdGHM6B3XcCcLbjvteFq4FGX60Hwmakz2+mfkww0IbANMeYkNXrrl+h3YwnwG1iXhd6YiHQiHzXO0H8XS3JxeTcN/U0iyaDQw4/Wk3vWszkil6r9v3vdtx6AMODQ1heHgYExMTDvBd652Pjo4iGAxicXHR7B3MzKb+4J6ljSF1PAq+2iA6AfNqtWpqcu/3Z1eJZsDqNbGzA7uJrUM3CoqoLraFdhKvFe8hG5fpJWDh9r39FOTQsrgsWwOskhQ2qm/vJrbfrVkl9tqo7dStKoJtI/F57EdW+W6Jp7v7K/vDYnsRCZ0Wn8/nqCO9nuOsbC6Cz3SEyVzS79Ap0nrP9ibv8/kQi8UwPj6OiYkJjIyMYHh42NHZWDfsRCKBgYEBDA8PY2xsDMCKMs9msybiSie6VCoZ0E8ddAX6FUQnw4j/l8tlo+C3siHYjD59ze16uG2e/RJVdt2cZDfDrJdjqvQyZnWe2WyFSiKZTBpmHI21Wq1mmnyQbdXpdIzzqulybMq5nQY0vRg42xWuAcdMdj7n0mq1HLXgN6vMmVqpAZN+CIF0dfb3OojuiScXk9AB8Pv9JqDlps8VNNc9XnULmykp61x1HpnPWjaE4vP5kE6nkUqlMDY2hsnJSYyMjBj9qTozGAxienoaqVQKAwMDOH/+PPL5PIrFoqnNTHuB/U7shqea9s7goKYeE8hcrwHqdsQGiXdS7LkCq2wv6j5N4+b1V2Yj7RwGNCqVCoCVa64ZSly/UCiE4eFhw+bvVpecNpPeW37/So1cluKhw09bTPUxGe3NZtPBrNJyLhutrw3QXCghk14DGbRtNqO3ea2ptzUbgPar1v6nDmbJIgCOJq8E17UuvpZe4zk9R9UTT3ZPuHdqSTZbv6rPqzWx+T5fq9frRndreQglIXHftfdyW3ezprkbuSoQCCCdTiMajSKfz+PQoUPmb/YH495dKBQc4+E+rWAy9RmZzCRXMQhoNxLfrOia2liD2hFuNk0/RIFRm+DgVuID2BhM12vKUnZK/mOAlOW/1mO220FvZv8xQ4DXif1kaG8Sw6HfTX0FwARBevG7u12f3ZZms4l8Pm8CCsBqo/LN2HgMRLECgga5tB8gP0v/Xm1V23/m/sCMBdqBnU7HYdt5+vvFIx6IvsdElTKVSa+1lqiUCVZqWo8Cmtwkady7RUr9fr9JAZuYmMDo6ChGRkZM40hVQD6fD6lUCuFw2IDuPp8PuVzObEp0+rkJcYMjoKgguhoqNAKoKBRo2MpGZTv9HItbLTRdKwU/dmOT3OrxuwHxbq91A9uVKUhQdnJyEgcOHDAlC1gvfGZmBrVazaShM71Z15XGGJXgVgwktyDHTl0DZVO6NVPZ7PXnerBJkF1vvh9CB16b0u51FoIXEffkYhK7KSifQepg1cf6bCqoDqzc15VKxZT7iMfjJpNLg97d9KDfv9IA8dixYxgZGcHk5CRGR0dRKpVMEzJgtXHZoUOHzP5x7tw5ZDIZzMzMGJDVdvrV0aUeJ1jpFti2AwXbETeQVm2bnSzppnaCMvHV8WR5ObUnSFbgvkxdxu+Xy2WUy2UAMOVCtKY5e2iwrvdGILquCR3xkZERk7I/NDSEpaUlnDt3znG8drttGrIFg0Ezt15LudhAyF5wxG3Zypg0AK72UTgcNnY0ARKSQ+r1OvL5vCMAwQwQPssKymnQZTfIAtsVT3d7cjEJdZsNoivYymAXdR11oO6fnU7HZGbr9+gDc/9Qlq2K3+9HOp3G0aNHTS10BjO5NyhTfWRkxARijxw5glgshjNnzqBYLDoCfix/CjiznxnQI3DoFtzn7+08szb7WwOGGqj0+Xw7UprVJi3Z+klBdMpG8yWZQcv8DA4OmkA3M4tY4k8D4G5+ugZjuVbpdBpjY2OOEjTZbBbnz583pDUF0YHV8mME7nspvWNjIBeyNC7Jn7Ye3Mr9pyC6EstIcKHovBkEsUso8v5U24/XZXl52TQm3epYd0s83d1f8UD0PSbc7JRBw824282rTrU6vNwQ6GDaILoCwt2O7RYBB5zObLdSJJwPf+uPvm8rWH5GHQubYbVZ0XHRSFIQ3a0+tR0dtoGLjRTTRmKvvds10bXqVdyOoefj3xsJu7sHg0EkEgkkEglTm49lX1iDlN3geX4KQXR1xDcLQPM4bvfUTgLFOxEs2UkFZANXe13Zecrck4tN3PSdOmhuTCTd9/V/tx+3fX29sbjt9+pIur3WrXwH93EbRKfuV7Zdv0XPo+OxdTfn5KZr+rE/uoH4Nnhsg+gq6izbDr0yBfnZbqnH3USBFjKlw+GwAc8jkYgptRePxw3hwi5xote3FzvRbZ26sbJ2i2ndr3Pofaf2r1tpJpsQYj9jG5XV2y/i6W5PLiZRXa06U/dAAA4AXZ9v1ZvK+uXr+nujAKP60Sr2fmF/Zr1jq97hsain6F/bPTT6KdSH9twUO2BmFsfbTV/3Y6+0AVTV3YoVuNkPqgPssdh2lNpSvdhr1B+hUMhRTleBW/rdwWDQ0XvF1t1bsR84B3vuu0Vg0+PvxDn4/HbDVDbCXtxA8u3gUhdCPN3dX/FA9D0mmkqijSWB1XQrAr+q+BmN5KaqdSABJ1uLP/p+N8eeUXNGXJUVb2/aVMTKcLdFN3SOwc1g4HH1HFt1eskKZOoN026omGwQ3x6DKkSN2JNh1oth5CZqpDH66ff7TRSW9TTdOqe7HcseL5mPHCev4UZgNs81OTmJq6++GrFYDAcPHsTExITD2CH7oVqt4kc/+hF8vpU0/lwuZxjcGrjZLOCt5QH0OeC4OUfb+N1rwuvMeqy8Bv1koxPA0h8aUntVPGXuycUmNLwVUNaGUHzmWUeZ77MMDPc4ZbeRSWTv3+uNoVKpYGFhAZ1OB/l8Hul02tRJ1eMCMCzaxcVFzMzMmAZO9jlslpbaEW4OZb+Ea2WXQwGctaf5vs/nMz1UuPdSR2gpu63WZidDkcxFMsVZY576irYSCRBk2fH6k2GozDvVcQRdtJlbrzo0mUxienoaoVAI09PTGB8fd4C4o6OjOHToEGq1Gv7lX/4Fzz33nCPQzYZoABygUK/ro4EN2iD6umZo7HXR66l9BXh9NbMjEAggGAw69LuWK7RZ+grerBfA2mvi6W5PLiahTrDJayyXYQfK7Axp7nG6X1MnknBEkHqjvZQlS8PhsAP4Vh8PcDaEzufzmJ2dxcLCginlstF8ATiY1DvxTGrWOUtqdAPRqbvddLPiIs1mE/V6fdNj4Xk1MygUChm9zYaRQ0NDZixuDHUNCNikOt43ZDLr7171aDKZxMGDBxEOh3HJJZdgamrKMZbl5WUcP34ctVoNP/jBDxwZg7bupk7hGDdaH10nJS7oby0ruNeF2eTM/lpP3AIiNnEDcAaraJtrv4C9vi6e7u6veCD6HhN1ngh8atdnPtC2sido1mg0TPMv/tgbgUbJ19tYFJizlYn9IOn5tPZrtznyOzspCr4y7Ua7nNORXY+JzjGqseT3Oxuo8bNbAdHVeeJ62w6VXb9tveMpWKDXwk7L7zZWZesnk0kcPXoUyWTSlARQA4jGTLVaxdLSEhYWFkzJAKYRblXUcVUHVue5VZbchRBe260y8jcS+7pvFvjwxBNP+iO6DwMwTqo6InZqMwOoBNbtQLPaBb04yPV6HaVSCaFQyNRXV6YTQQOen45ANptFNpvtyih321N2cp/heBnwDgaDRg9QFxHEVke9XC6bJlGqUzXovRVGtM00o33B86ue1prpai/ovUBRfaZBAo6ZYE6vax0OhzE2NoZoNIqpqSlMTEw4zk9hKbYXXnjBcd9pkGUr60PiAuekDqlev72ssykKLiggznkow5LzZlNefkfL+HCN3VikgOekeuLJbov6EPocavBP93O+T5uee7T6zHze1RfrRXezJCuDpm7BbNuHrlaryOVyyGazPTf/VP92p0TXToPdWgpNdWg3EJ1+txITtrpP6rw1CK/lfNTPdduX1X6zmc28BzgPJT9stFY+n8+UxY3FYpiensb09LSZM+0Dv3+lr8mZM2fMWirrfDsEAdoiXB/+KEayXf9+t0TJhOsx0AH36gJ2sEePC6yW6qvVavuGFOBJf8UD0feYKLhG51obTSkrmQ8yN02N1q4H1vUCOpLNlslkMDg4iEwmg1QqZWptaXmZRqOBXC5nPp/L5ZDP513rSe+GcLOj482IM2uW2crcZjpTyCLgpsrvAHA44Vx/t3q364kNolOJU0ERrGfApFt6OM9pB1RsZnIv7GSyBghYhEIhhMNh1+7TVKwEL+LxODqdjlHqWxV1SN1AdDVq1uu2vZeETeECgYABRPpVG53GfqVSMV3NPSa6J55cOKFjrVljtmPG4LiylNwMeQU2e73nuR+USiXzo/pOx0Enzx7HXhDqo2AwiMHBQYRCIcfYVUd0Oh1jc9RqNTMP6g5dR4IcQPd9pFvqrh28pRPVbreN7kwmkwiFQgCcTeh4LLfSd8rOJojC+0izGXqRQCCARCKBeDxuanYqaK3OYSQSQSqVQqPRQLFY3LIDrvPT9dGgEWvwKvtxK1lquyUELyqViqkxy7WknabOM1mA2kSdrEddf4JlAEwmSrlc3jeOuKe7PblYhX40M4bsYJ/6GwxsKhPYTXe7sVy7PQP1eh2FQgHBYNA0+VZfVo9LvaB2/4XeSzWoyAxwZuh0y/xejySmIC6wmqGsjODNiOp1XutOp2PqZFOH29dIx6t6Dli19xSDsQleG/ndGoSNRqOIRqMGZ1G9of9Ho1GMjo6iVqshl8ttiaHP4+p90y1AzOvAce113d1sNlGtVk2QxLZPKIqn6bzsoLlNfGD2AgNo+0Gvebq7v+KB6HtQ6KjVajWTYqZgOkFKfdi5cdu1zezf9t/rjWFpaQntdhv5fB5HjhwBsJJq1Gq1jMLpdDqoVqs4ffo0MpkMnn32WbzwwgvIZDKmucluirL9gsGgYaZFIhEDngeDQQeriN/TYwBra29T6YZCIUeaEGuUcSPtNdVJI+K1Ws04+nTI6bTZzCd+V3+U7cBMBDIQ6dhVq9UNGcq6VslkEqOjo0gmkwiHw64gOtcynU5jcnISwWAQZ86c6fFqrRU7e4Dp+6rAOGe7NMFeBY0J7uRyOQBAsVhEuVx2BHO2e3xmAxQKBRQKBVPKYC+uB8VT5p5cjELgjUFRZU/zfTv91mbJuIFttnRzxDudDsrlstEj58+fN3Wxh4eHHazY5eVllMtl08iUzKm98mz5/X6HQ0kQlsA/HfVAIIBGo4FCoeBwhmgH0Olmc8h2u70G6LTPq/pF9T+F/1cqFdRqNQwODqLRaBgnOJlMwufzmfR8m+GkwWbeM9Vq1TARqa81k6BXeyoWi5lGczyelmLj9R8aGsLo6CiOHj2KUqmE559/fssgOteKolmQvG6szU7nlrp7O+fcaSmVSqjVaqZ8He08295ot9vms2SmsuGYEl943xB0KRaLyOVyxkbbD+Lpbk8uRul0Oobkorqb+ziwyj5Vv1D3ZtXdqucp3BPd9nP629Qps7OzRnenUimHzmg2m8hms6hWq1hcXDTfudDPlupp6t5AIIBYLOZaltReP9XHBLN5DF1vLZvSi2jAmuelDTA0NGQIYMFg0NFwVcu2UHSsDH4Xi0Xja2vmeq+EJurmWCyGsbExxGIxhEIhR9DGXqOxsTFcccUVKBQK+MlPfrJlEB1YLdumTUw1Y07tBq5JN91t++oXSojLKNGBupfjA1bLqvE9Xj9WL1AMwufzGRuAAa9yubyt7IjdFE9391c8EH2PCpUEwUJlI9vgLoFbboJujtZWbnx29A6FQigUCsjn8xgYGDDODx1KOuCFQgHFYhGlUgmVSuWCpfxoGi0j+Iwud6uDvl4kXNednyfgTfBD2XC9pilrVJSKmCwtKnBloPO4dkBEmeyqCGwGeq8sQ64bwQk7Td1tnVkTlqD3dkQZehoUsRWzvTZ7WVhfUXsM6LO8VeFa0Gln0KTXOngXUjxl7snFKqq/beCVz6utH7vdzxsxmNze535fr9dRqVRQLpdNNpvuqfxMrVbbc4FIzUbSniZ2yRvV45pKb2c0ATBguurrbvuQm05Zb60JhPOaa5bbRsK5uKWA637eixAMCIfDCIfDBpi37ULq10AggGg0uqbnzVbEjazhZo/xGvD9vSy8vgzUqJ2l9jk/y+dbQTUtCcN1oT3GEowkP+wH8XS3Jxer0B9j0NF+drXcyEZBzW56xW0/oNA2iEQiKJfLKJVK8Pl8iEajaz5XrVZNwHwvsNABOIK1tu9t6xfqcYKYtlBvAHD83oru0H2Y/zPQq5lFvPY2C5vv8bs6fjvzWwPvveyVikMQyA8Ggw6fl6LrFAwGEY/HTdbjdoXnsefPMWoAyA5K2HPpFQfZSVE72C4z7IalKLbgtha6HiS40F7bC89eL+Lp7v6KB6LvYdGHmSC5bvb60Pc7DZsOIbCyifz4xz/G/Pw8UqkUDhw44MpEz+VymJubQ7FYvGA1ohj9HhgYMBF87XbtVvNsIyeXAQxV6Kr8tVEkGQq9NmvhZ7jWnU7HsAk45kAggEgkYqLSPDYbVSqriZFw/q5UKoaJ1mtTOi0rQ2d+aGio6+fVEWSEdrtip7rzb9sxd/teP54Bt3tDlWevxhFF08rm5+cRCoWQTCYxNDRkSiRtNvjA69psNrG4uIgzZ84Ylrun6Dzx5MIL91Pdd21gfTvH3khqtRqee+45ZLNZxONxjI2NYXBw0KEzWHptYWFhW0wmSj/24Gg0ilgsZvbFarVqnHEApuY7gVk6ncyU0zVWJhV/k9nearVM5g6w1jnW13oR6oRarYZMJmPGNzIyYjLW6NiVy2UAK/VsFZzl2NUxswMHG0mz2USpVAIADA0NIZFIGLKFgsBafmQzjUs3ErIH7UAx9dVmgvqbPa8b2aAfsry8jPPnz8Pn8yEej+PAgQMIBoPGDgNW2Xq0lxgsYNCchANeBwa/M5mMsZ888cSTCy+qu1V6qW2+0XHX0y0EKKvVKn76059icXERiUQCY2NjGBoacpCkMpmMaSK+3b3DzsDeqpB1ruU/qL+oc9gDhsSrbuthg+8KzpMlTobxRtdFGd36mtZZpy9br9eN7x0KhUzGHrEYfof3B8lR/K6ynnvRcUq6UBBe/UIb72HJvmKxaLLW+iFKCuT/Os5eA0eb1cFa+rDfweRms4nZ2VnD9J+YmEAwGDQBMcUbqKM7nY4jMKFYHK91Pp/H3NycaWTvyYtPPBB9j4sNsgJro687BZjRsSJLhk7q5OSkSX+iwzg7O4tCoWBSl3ebUaMMcXbbjkQiCIfDxslWIHizgKUbmEpHUR1dOokaod5IqISpPIPBINrtNuLxuDEyIpEIotGoKSNDAFX/poFC4LxWq5k6m2QaAuvfL1QSwCojotlsIhAIuH5WQXSmnW/32ttMdBtM57ndPtMvAF0Vqg3Y2+l1vZxTDa9z586h1WphYmICw8PDjvS5zcjy8jJKpRLq9Trm5+dx6tQpY1TtBxD9QkTEP/axj+HP//zPMTs7i6uuugonT57EK1/5yq6ff+qpp3DXXXfhxz/+Maanp/Hud78bd9xxh+Mzjz32GO655x48++yzOH78OO677z7ccsst5v37778ff/M3f4N//dd/RTgcxnXXXYcHHngAV1xxhWMuH/jAB/DJT34S2WwW1157LT760Y/iqquu2vQcPdk7ovvphZBarYaf/vSnBjgeGRnB4OCgMfpZLoSA7XYD33bNyK2Iz+dDLBbD1NQUOp0OstksKpWK6dHh862UuisWixgYGDAOO9nXnDfro9uMImCFwcU64NSfuh9txZHT7zLFnudJp9PGsabOJphMIFWD70xVV9tCmW0bCeubA8Do6KiZK5t+M72Z2Yb8e6dAdP5okF3Xq1+itcd3whEnSeTIkSO48sorkU6nkc1mjc2nZXpob/JaEzQKh8MGMGcQgyDYheojtFnx2GyeXOzSze/e7r3bK7mqXC7jmWeewcDAAOLxOMbHxzE0NGT26mazaQLg/dDdNli61WOwHwcz3whG8pi1Ws0EwFk6RUln6nfZ2eKdTsdgDwqab1QypZs+0GCu3+83/jWJbIlEArFYzJTaUv3MMfCHAXJ+Vkv0bXTNeSwl5XE97VKADEIQaykUCiiVSn0F0Rn80DHbzPqN5rPZczJYshPB9WazibNnzyKfz+PgwYM4ePAg4vE4yuWyowedlqwB4CBN8of2IoPf586dM31T9oN4uru/sr26C55cENkKE3Y752I6DFPH2DiUv7WGWz8dsc0IN35tfEHHejNNTHoRZbRpnSxG3LX5a6+igLSmh/P6uh2LhhMNCCpWvqYlXTbjgHMMVAys96UGB89NZUJQhmBANyC8G4O823q43ee2873dZ4H3DsFsbaiqP5FIxARm+EMGJEFwTfey58N1pRFZLpdNPWI73cxtzjwGjSiyMck+15IM+0HcrvFmfzYjjz76KN75znfife97H773ve/hla98JW666SacPn3a9fOnTp3Ca1/7Wrzyla/E9773Pbz3ve/F7/3e7+Gxxx4zn3n66adx22234fbbb8cPfvAD3H777XjDG96Av//7vzefeeqpp/C2t70N3/72t/Hkk09ieXkZN954o2GiAsCHPvQhPPjgg/jIRz6Cf/zHf8Tk5CRuuOEGA4R54slWRJ0u6nA2IKazx2B5PzLHtmOPaLqw6lFNqe6mS6iTqe90HPZ+rMexdfZ6e3gvQt3IfXy9vZhj5Ge5/ysgsN481hMy0bVGt5Z1U3KErXf6Jbb94hYI78c5VX+7le4LBoNGb7PWrb7fqz3IgBjro9M2InGArHMtFWTbwmqn8Rh6DfaLg7rbuhtYCYAfPXoUoVAIL3/5y/H//t//W/fzTz31FF7+8pcjFArh2LFj+PjHP77mM4899hhe+tKXIhgM4qUvfSkef/xxx/sPPfQQXvaylyGRSCCRSODEiRP43//7f2967J7sf9kNf9s+n5KlWNqF+wb9hn7p7u2IlutSFrOts/Xz9mvq96qusAlsG+nvrehu2/feqHcYv8PP2rp7MwQr+5gE5MvlsqtfSFIc/b1eMsw3OwbVXXYJE/1Mv3Q3rx91ciAQMFkA1N30s/Wn1xI2DIjR5qXvbTcEdbsvNWuPhAfa0bSt9mM5l93U3RezeEx0TzaUTme12QrLUmiarrLZLsRDplFMNhMdGhpCKBQyjS/JDtougE7RVCefz4dQKGSUOJvAkh3eK3CtRpOuuc/nMw3LVFETRNWUbP6ttW6p6HsRNstoNps4f/48fvzjHyMej+OSSy7BgQMHHIGDcrlsAijPP/88nn/+eeMQsnmdMsMAZx1/NydaXyMzoBtornXgt5J6r2lr4XDYZDBEo9E1TWh1HjwnnwXe/2QicA3cxtJsNjE/P296CAAwjWTGx8cxODhoxqHKXMEZAiPZbBanTp1CqVTC7OwsMpmMo17jXpft7hX8LteRwsCGLQ8++CDe/OY343d+53cAACdPnsRXv/pVPPTQQ7j//vvXfP7jH/84Dh8+jJMnTwIAXvKSl+A73/kOPvzhD+PWW281x7jhhhtw9913AwDuvvtuPPXUUzh58iS+8IUvAAC+8pWvOI77qU99CuPj4/jud7+LV73qVeh0Ojh58iTe97734XWvex0A4DOf+QwmJibw+c9/Hm9961u3ukSe7AHpF4PNPuZ6Nb3tvQNYYSdns1nDEHOr2b5d2cozzYCzBr25/3Y6K2XNOp2OCW4y24yl2qhrqtWq2QOVta6iqdHUi1oGRhn5yo7rVYdTd8bjcaPL2DRca86rHcKgKnWHGwC/WWAgk8ngn//5nxGJRIy+AGB0Vy6Xw/z8vLERNINuPVE9uJ7TSDuEthEz2WiHEURW3b0V8fl85lqT6c1UfwJL6XQaw8PDWF5exvz8vOkPQAecgeiN5t5ut03pnZmZGfz93/+9af5GgD4WiyEej6NerxvWPx1+rjsZpM8//7xhErLx7H4LgG/n+5sRBsA/9rGP4Vd/9VfxiU98AjfddBOeeeYZHD58eM3nGQB/y1vegs997nP45je/iTvvvBNjY2NGdzMA/id/8ie45ZZb8Pjjj+MNb3gDvvGNb+Daa68FABw8eBB/9md/hksvvRTAil6++eab8b3vfc/LEnsRST9Y2ls5H89Vq9WwtLQEn2+1ASJ9kH6J7Wf1ItRjzJbWbDC7jBrnxL2a+h5YzapdXl52+O3rkb/o77P0KP1FAp2bmQsDpBrkpC/PADTPyT2afjn7v5VKJUewWoHZzazp0tISfvjDHyIcDuP48eOYnp52BCZyuRzOnj1rsvF6LaPa6z1Mf5Z+McvtKJC/GVKe2zj4o2A4dbdmDMZiMZOBXywWHSWLOp2OIXFuNA71m2l/RaNRxONxJJNJE3wnxmLPk9+vVqsoFos4d+4cKpUKcrmcqbzg6e4Xp3gguicbCoFDACaFaK+JMolZy4yOuM1W6+c5gdUUNmBlrfg307N62XRsYNjn8xmFTKfQ/tHaXCylouVcyEDcjJOq15rKmo4hu8NT6ZVKJSwtLaFYLGJhYQHz8/NmbMoOsOfI+XVzoJkGR8Vtr5+u1Xai/gqih0IhxONxBAIBpFIpE4gJh8MOkEeNLQYxms0mCoWCAV/4PseqwhrELH1Ehnun00EkEjGNWZWVye/xfigWiygWi1hcXMTzzz+PYrGIXC6HUqm0b6Lh/ZRDhw45/v+jP/oj3HvvvY7XGo0Gvvvd7+I973mP4/Ubb7wR3/rWt1yP+/TTT+PGG290vPaa17wGDz/8sAFHnn76abzrXe9a8xkC726Sz+cBAMPDwwBWHP65uTnHuYLBIK6//np861vf8kD0HZJ+lX/q9VxA/wxQ3Y/cjHd9X4N/F5qxZoudQaZMYe6BDGZSn9uNt7i2LFdSq9WQTCbXNLlWdpuuG/U1a6y2Wi2HftqMI8711SAqdYVdX5fp0mSWaQBc9/6tMOuol5SFretarVaxtLRk7AOux3pz1WDyRnqGJd5oG9ll0Xph6vcidMQ5v0gk4qgb7PP5MDExgYMHDzqABt5HAIxO3UjIZuP8lpeXEQgEMDExgampKWNPhMNhYweQUEE7iGxS6u5CofCidkr3egD8N37jNxzHve+++/DQQw/h29/+tgeiv0jEzqABtq/H17M9dJ/kZ9wakfdbtgOIsnwqdTPFTYdpdjj3YK0r7vf7zTFYZqWbvlGyFnUpfbTN+r3KKrd/tLwK58XPMhuAYLp93M1KsVjECy+8gHA4jHg8jkQi4SBXVatVnD9/3pHB5Fa735ZebVBeC4LoxB/43X6wkrV3iBIjaOPRZkin00in01heXsbCwoLp88J7otFo9KRDO52OIRLQ9giFQpiamjJj4HH1WFxTBnlKpZLp/ccsNJIePXlxigeie7LvxU7r0jTdraZlb2UMg4ODWF5edqS10cjYjCNOZ56pw51Ox7DylK3GkiBkRGtd9H6kZxOUaDQaOHfuHABnzflKpYJ8Po96vQ6/3490Ou1Q5G7NMpXJTUeXRo++bjv2qrBtEH2zypxAQjAYNA3mkskkEokEAoEAksmkmSNZE7ahRsYCm5MwhbzZbBpDh+CIG9segGGk1et1AwiRzUYWJZ1vOuXNZhPZbNaUVWJ6Zy8swr0m/YqInzlzBolEwrzu5oQvLi6aOvQqExMTmJubcz3+3Nyc6+eXl5exuLiIqamprp/pdsxOp4O77roLr3jFK3D11Veb8/B79nFeeOEF1+N4sn3ZzedlJ8613vPTD0dnp0UDhVqGTfc8/qZeY/oyg9XU73RebUYy2WTUyyy7RYBcA7kaVGUgV9n+m5kTAEcKMFlr6vjyfaYE21lX27luql8LhQLm5+fN/AcGBpDP5805qbvIGm+328aRVRuKNo7P50O9XncwsFTv24xGXjceg9drO/OjbmZN/Fgs5shgAFbtj0gkYv6PRqNYXl52MOrJNiSzU8vrdBsjHfh2u418Pm/KwPl8PsN4KxQKaDabKJfLBojI5XKoVquGkb5fpV+6ez8FwFutFv76r/8a5XIZJ06c2GiKnlwkwkB0v4+5nfd3QjYT6FedYOtwzYCzm2Lqd/kZ6nn2kFDimwam7WvA/VvHSx1Of7kXcJmi/qqW7hgcHDTl8BgMp1+nGeBu67aV60g95PP5kM1mMTs7a1j3AwMDyGQyRkfpmOPxuLFv7KC12jb1et3R4LxbFjf9ctZ3175e27EtGXBh0DsSiThsNmYzUHfTHoxGo44Gta1WC4lEwgQ6aEeRQd5t/UlqYGYYQfRarYZYLGbmyuPwHiXrXEvk7acSbBSPid5f8UD0F5nYUe6L4YHw+/1mI2QqGB1Dvr/TosAsHXk67j6fb1NlXejQEShlM5lgMGjYasvLy8hms5ifnzeMJyo4uwHIVoXpUwMDA5ibmzNM6UgkYhxGGj6hUAjHjx8316JbbVkFxhkkYKpWsVh0NMtR5pcaC5yXMtV7nSeV9dDQkGmSGwwGMTw8jFQqZUBsOuNkOthz0JrwZLIVCgXU63XTfKxcLmNxcdGk8VOx83epVMLp06fh9/sxNzeHn//85xgcHEQikTD3EO8rGnFcHwLnbBy7H5U50B+FzHqlvYjbtVzPQXL7vP36Zo75u7/7u/jhD3+Ib3zjG9semyf7Q2wnz35tK7JRGQzVA3tR1NFj8JtAJJ0mlvugbiPoTB1DcFQzrlKpFAAYW6DT6aBSqaBUKmFoaMgETbVci9ZhZQBO2Wy9OuHqqHY6HRPUZpkXsqYIptvzA+A4F4H8rewDdBSbzSZOnz6NxcVFB5uN8/f5fEgmk0ilUiaDjY3hRkdHHTVuOT+fz2caarEcDPU1105/tKm5AizbyZoKh8OYmJhAMBg0bD21bcPhsGHwca4DAwOYmJjA2NiYcbpbrRYikQjS6bTRrSzZUiwWuzLlyUxjWTsGKZ577jlzD9MO4vqQAEEwQtdsP0o/xr4fAuA/+tGPcOLECQOyPP7443jpS1+6qXl6sr/FjQSzk+fazSw5wFl7AtWpgAABAABJREFUfCO7QTOS7AA4fW7OQcFM6lk7C4ifY58pDWQTzNZSb8AqE1kzszk2DZRzL99ISGDi8bWsGv1t+lqlUgmFQsEQqWzgVsUOHvRyXQnODgwM4Gc/+xlmZmbM/LUMDsccCoVMGZzl5WWTfaY9XvhZv9+PTCaDs2fPmtre1EOKG3Au5XIZ1Wp1zX1h/96MUHcz6zuZTK6ZE8dPXalscbL+l5eXEY1GMTY2Zkqs5fN5R1k+t3uZet7n86FQKODs2bOGSGeXItIec6yhzuu+l+3rjWS/jnsvigeiv4jkYgRkNL1KgVs3FvROCRX2wMCAcfLV8dwsG53OM0FaGgg0KqjUtYTLeiVEAPdrv9F41NFmzbehoSFT9kTr4MXjcaP46ESqYabnpDGlTG7OTY0lO93bzUnfrCLj8QOBAILBIGKxmHG4Wa6GILqC2FxDPTcBBx0jS7xoWZtu6YhaXoER/8HBQdRqNcOyY5BCWYyFQsGwA9Zjy+112c2I+OjoqAkGqczPz69xpCmTk5Ounx8cHMTIyMi6n3E75tvf/nb87d/+Lf7u7/4OBw8edJwHWHH8p6amehqbJ/tT+pkSvpHs5X1B9aLqbq39ST3h5gypI84gMl9TRjL3Xe7Ftu7Q46q+2moWmw1GcI9mcJwp6wqibxQM4XH5ezN2hIIArMtOnWY7ru122+hFppKTuW4zDev1uqnzzWPb4LnaLf0qM8Z1YEAgFAohGo0iEok49HMoFDIgeqlUMkAKM74ajYYZI4MDZB4qy68biK5sOJbT8/l8qNVqppwg2fFkr/Gz+6V26nrSL929HwLgV1xxBb7//e8jl8vhsccewxvf+EY89dRTHpDuyY7JhWSib6RjVHe7/SjZSUkD1AM2W51Cfa7Cvdh+ZrsFNRTg597e69wVM+B3mS1EH5sBe5Zd20wZlV5tP9Ut1F0aoKe/qiVsCf6zTAnJAtpwlUEClnmjD6tzsIMB/az1zfvD1t2xWGwN2E/WOf1cAA6WvWb8k0UeDAaNbWOXn7HXl9eVdgGPSfIa15M2G+vE75d+Y+uJx0Tvr+x5EH15eRn33nsv/uf//J8GZHjTm96E97///Y7N+gMf+AA++clPIpvN4tprr8VHP/pRr2adJXuZ2dhtXL0oc42Eq2PoBuLupCirrtPpOGph9upEUoG2221UKhVks1lTZ461PgmmlstlExF1A5OV2ce6qPrZarXqAHzdxsg1DIfDiMVihrVNNjcVM2vWKvDsdk25Rp3Oajq+jrHZbCIWixlQOZ/PO+qLco34u9cNXWvpjo6OIhaLIZ1OY2pqCqFQCLFYDIlEwgHA6P3jBqTzM1y3QCBgnPNYLGai4lxn1ix3G7MyB3ltuFYAHMaONqz1FFpvEggE8PKXvxxPPvkkbrnlFvP6k08+iZtvvtn1OydOnMCXvvQlx2tPPPEErrnmGhPcOHHiBJ588klHWvgTTzyB6667zvzf6XTw9re/HY8//ji+/vWv4+jRo45jHj16FJOTk3jyySfxy7/8ywBWjLunnnoKDzzwwPYmfgHF091rZTsMnq1Kv9jvGwkZ4gwAr1d/XVnNwGrqN3tRaACVeyADrwAMo5r6UmugshwJhcFerb9JpjjfV+Ybj8n9drPrxmMXCgWzJgSw6RRzvBsd2+/3I5lMIh6Pm9IsdOp6qW+vuluFjip1Yqez0mwrFouZGuPUdeo4Uud1Oh1Eo1HTlJUN17S2O9l6W9VT9n0bCAQwMjJizhuLxUzqN+fHdWXaOrPdarWaI0jDebfbbZNOXq/XjT1SqVQMiMLv2+I2J71/CP4wcOLp663JhQ6ABwIB01j0mmuuwT/+4z/iL/7iL/CJT3xiW/Pay+Lp7rVyMT+7qo83AoZVzxOotbO/bTtHs4YBGN3NTF76yrbfyONpeTElDtHX57G1hNpmgrcElNvtlUbgPC79MA1Ga3+TbvcE1zORSCAWi2F5ebVXGX3Zje4nn89ngGb+DwCRSMToPma+a9BXe61wPbVkHbASvCQYT71ELIFlWrUsbK/SLQATCAQwPj5uMATaGZFIBPF43PE9xUzcMKuBgQFEo1FHUJTXJB6Pm4arxEjK5fKGa61+tfr9io1cDMFvT/ovex5Ef+CBB/Dxj38cn/nMZ3DVVVfhO9/5Dn7rt34LyWQS73jHOwAAH/rQh/Dggw/i05/+NC6//HL86Z/+KW644Qb85Cc/QTwev8Az2HtyIRz5bqLgZDfmiP23ftctnUwV8m6J1lGl4lcQvdcNmMoPgEkfo9HCuprc7Fkju9t1DAQChjU+NjaGkZERR20z1lajk2crSw1QRKNRpNNpRCIRTExMGNZ5t8at6629GkB0ZGOxmDGC6Ihns1mTdsY0663eswQGIpEIJicnMTo6imQyienpadPMiuli3QIA9tzIFO90OiatnOz0arWKbDZrjCefz4dKpQLAPV1SWf/qsNtAwl56drcrux0Rv+uuu3D77bfjmmuuwYkTJ/DJT34Sp0+fxh133AFgpbHYuXPn8NnPfhYAcMcdd+AjH/kI7rrrLrzlLW/B008/jYcfftg0HQOAd7zjHXjVq16FBx54ADfffDO++MUv4mtf+5qjXMvb3vY2fP7zn8cXv/hFxONx47gzfdDn8+Gd73wnPvjBD+Kyyy7DZZddhg9+8IOIRCL4zd/8zS2vz4UWT3evlQsBnu8W+117SHAP7ybK9gFgGGrRaBSBQMABXFKnE3xutVrGiSTwTceXx2aQy+dbbfqtdbTViWVWFVO16TBtBUTnnsb5M72cDDDqdH52I2FzrenpaVQqFXQ6HdM0tJcSXj6fD9FoFMPDw2i1Wub8wWAQ6XTakfru8/kQj8cNC4zON+0FZfkRRAdg+omwbmi9XkcmkzFNt3pZQ1vP2TqYQfcDBw5gYmLCUTeWjc8BoFqtmvR/BkkqlQoqlYphuZGxRiEbjsECzbBjX5hemoeR4cZxMQ1+L4Dnm8lg6EV2U3dfyAB4t7Hz3rpYxdPdLy5R8tNGoKmWqtJGkNxX7QC6ZiYRFCWITnavlhthFjIAhz+vjcK1xAuw2jeF72lvi16EdgT1DsfJfUp7kW2091FPDg0NYWxsDBMTE6jVapifn0e1WjU6qlcQnZk6DApEIhGTZRUIBAzpgGXkuNY2u55lW3y+lRJuAMx1I4i8vLyMpaUlEzx2wwW6ifr/9tyCwSAOHz6Mqakpg10AK2A+x6JECGXE2764BlSI+dDvrlQqKJfLWFhYMPYj7ab1hDbbeu9fLOIx0fsrex5Ef/rpp3HzzTfj13/91wEAl1xyCb7whS/gO9/5DoCVC3ry5Em8733vw+te9zoAwGc+8xlMTEzg85//PN761reuOSYbRFDsDvEXs2yVje6WArkRyN3tODZwrj/2WN1+7PO5pZJdaOk2p82IljgBVlnqGiHuFlyg865ssUQiYZxPguesQcfXVWgsudWbtxuYbHZt7PPoe1SQWl+eoIrNaOj1fGrokZXPbuAMUPQaBHATBReYGh8KhRCJRAzIziDIekpsLzjcuyW7rcxvu+02LC0t4Y//+I8xOzuLq6++Gl/+8pdx5MgRAMDs7CxOnz5tPn/06FF8+ctfxrve9S589KMfxfT0NP7yL/8St956q/nMddddh0ceeQTvf//7cc899+D48eN49NFHce2115rPPPTQQwCAV7/61Y7xfOpTn8Kb3vQmAMC73/1uVKtV3HnnnYbV9cQTT+xrZ9TT3XtL+gGmux1D9bmWMVtP9NlXcNZ2/PS4BHr12Op02faIG4hvB7N5PKbz2vPaCvhoO7I8xmaafdM5JGOc5UqoT1QXrse4U92nOl6z9bpdPy2Foyn1dNb1O9oUjjVMaVtsVDe2m9hBIGXedQsikIXH73U6nTX1ZPWz/BzvO9oInU7HBFzK5fKm74O9psf7PZYXSwD8ve99L2666SYcOnQIxWIRjzzyCL7+9a/jK1/5ypbnvh/E0917Q3rRo/04lq173T6rvretu5VFbuvo9YB56i7brrDP303Hafm1fgh1FAF1BdF7BeWZAR4MBhGNRk1QmmVLfD6f0V/dWP+qV9kngvpOG37rOjEbzJ4Lr5dmoXO9WA5Gmdass85j8zsbzd3tuvHeYNY6yQo8lt5ralfofW1ng2vAR8vA0M5hWRYlNPYie0lf76R4IHp/Zc+D6K94xSvw8Y9/HD/96U9x+eWX4wc/+AG+8Y1vmA7qp06dwtzcnKMTezAYxPXXX49vfetbrsr8/vvvxwc+8IHdmsKek80C3tyM7DrXuikra8vt+PpdArB6TAVjqbzs41OJMWJpg+e2M77bYhsgusG7jUfX0g4SAHBE7sluUsXYzaggO2BychJXXnklwuEwJicnMTw8bAyE5eVlzM/PIx6Po1wu4/Tp04ZtxTElk0mMjY05Gm8qm49z6PcaEtQmU44lXiKRiGGGkeW1nqiSTSaTpozL5OQkRkZGDMi9XQBdPz84OIhoNOpgPLJ+njYsu9iZTL3IhVDmd955J+68807X9z796U+vee3666/HP/3TP617zNe//vV4/etf3/X9Xsbp8/lw77334t57793ws/tFPN194UV1oTK3yC7ejGgatzq1PAcBSNacVkYX/1anlE2rWcKF5b1U75NpHAwGTTo1WWjqiCrDjWnNrDnO9xuNhkntpf1gB4H1Pa353UsmmQLnCqDbunu9a0V9NTw8bEqNHTp0COPj46jX60in06bM2cLCgtGHxWLRMR+uM3uYkL1NxjjvgVar5aglSluFvT3UzlJ7pt1uG+a22mYEG+LxOFKpFDqdDubn57G0tOTo5+K2dvZa8FqSicgGoolEApVKxZFeX6vVMDAwYMr8kCTQ6XQwNDTkKGdD1p42Dedcg8EgUqkUWq0WUqmUmdvi4uKG1//FJC+WAPj58+dx++23Y3Z2FslkEi972cvwla98BTfccMOW574fxNPde0PUR7SBYvrFvTxLNvDIfY/PMYHObrqdfreek6ClrUOVFMVzMQhOfcK/u5V909JsHCP1TTef2rYFegnm2+ekvlY97eabryejo6M4duyYydoeHh5Go9HAxMQE6vU6crmcYUovLS0hm806vs9gMcuXsU8Sx2CXqlVAmuug9gbXTYPOeh24ZlzreDyOo0ePmibMG+luXSf97fP5kEgkTHYbg+r2mNW2UtuFupsBeo6RGfD8Po9F25O2JEvCdms+/WIVD0Tvr+x5EP2///f/jnw+jyuvvNJE2u677z78l//yXwDAPCBuXdZfeOEF12PefffduOuuu8z/hUIBhw4d2qEZ7F9R50kbTGmJEipDZVi5OUQ8DhUEwV6trWYbCbYDrHWh7Ui3KpULLbpG3QB9e8wKGug6brYOF53/oaEhDA8P4/Dhw4hGo0aZc03JlG42mygWi8hkMmuCEpFIBKOjowiHw0ilUiatbCcDFBo9Zr1TbTBXrVZRLpdNalovx2O99XQ6jXg8jnQ6jVQqZZTtZo2tbufhtQuFQma86XQa4XAY+XzelMCpVqseiO7JRS+e7r5wYu9nqsfVedqMKKOXDqs6q2RPuzHJyTKym03SKaQz7nZO1gX1+XwolUrmPTdwm2NkbVOei59nQJNMMXud6GAoIL0ZHbxdB4W2Qzwex8GDBxGJRDA1NYXR0VE0Gg1EIhHU63XMz8+b+qXVahXFYtF8X9O6qftY+zQUChngmaVdGLzQlHptZM3sMwrXjPeP2oE8bywWw8jIiLnXGECmHbeRcP05JgZoGPjWrAGW89FG4cp8pz3EwAoDPCRzKEOWJYU4hlarhbm5uQtCyvDEKRciAP7www9vaowXi3i6e2+IAqa2ftxMVq762KqfVQfz+FqGVOukK9iq/r7te6sPpwC7zkWPwTre/IwC2IovaHNosrOVLa3rYbOXexVlbW9FCBxfcsklpu9WMplEs9k0fU2WlpaMH8iynyosXcMSoel02owNWG12aYP769lZ9t/A6lrbNksoFEI6nTY2HnVmLz6rHsfn85ljhcNhY28pmUOJFvqbxyFgzmtLu0DLzWnpH+r1cDiM5eVlnD171tPdnuyo7HkQ/dFHH8XnPvc5fP7zn8dVV12F73//+3jnO9+J6elpvPGNbzSfc3OGuj08ugl7slYICDLVh6U1lBkEwME+oqJlvSs7YkonmaVBlDGtzrmKNmmiIUfHXZVrrynkF1KYZkxgWNO1gVVAgEqLjK6tAh2248nINllYZF3R4dQgCZuGMo1ca4heKIY/HWSCAlyb9Rq0EDTiPcdoOO87t0Y2/RI+P9xnwuEwotGogxECvLijul5E/OIWT3dfOFHmsFujZO7rBJvX0zPcJ0OhkGkiSfYvsArcKpucoLc626qzVZfTaVXbQcej9TkVOLfZ0bqnuqV/U7dRD1PnMZjP4LIyq5WRp1lYqje00dh2G2nSQeT41EbSLDumilM36jXQ7D5mdamz3O3Z0sBDs9l0lHzhfDR1ms+hnU3HY9EupM0zMDCASqVirvF6a6RAAOvCEtxmhgH7qNhMNWY5FItFtFot0zjUJnqwVJ6OQ1/ncZX5pqDNi7nRmKe7L27xdPeFE/rY6ncDa8unaXC4G+GKezjLgtEPtZ9fZaKrX2WX/9BsI73OyixXXcwx8bce084Gs0F2FRuYt/WhrpH9w3Wg3626m7qeOmM74LldJ97uzUYMgw01+R3V137/SiPweDy+JnitQQdec7uvjK4rxdbdtug10b+BFd0bj8dNoFltuF7WhH67ZrtpkIaEDI6XtgbtP7d7gWtgBwFsAN/n85n+Jsy83I59drGIp7v7K3seRP9v/+2/4T3veQ/+83/+zwCAX/iFX8ALL7yA+++/H2984xsxOTkJAKaDOGW9zu2edBdVapFIxLBnqYC6gehslkGGU7vddjT6jMVixlmlQ0UHz2a4U/T43ASVTVav101Tkr3CQqeos8bNPBAIIBaLYXp62gDUsVgMPp/PMLXK5TLOnj1rGGalUmlTmxaVcDgcRiwWM+lUsVjMOKF0+CuVClKpFPx+P6LRqKm/Njk5iUgkgmQyiZGREYei301R0CeVSiEajZoO56FQCOVy2TTvdBOWVmETtbGxMYRCIcNW2wkAXY/H6x0OhzEyMoJyuYxisYhCoWDKCniOuKfML1bxdPeFEw2mDg8Pm1JYLNnFHheNRgOzs7OGyex2HDpA6XQahw4dQjAYRDabRSaTAbAKsmvDJ9b/JDDL0iHU6eVy2VFrmjq+XC47AEt+lk0qCfjThlBQVx0uTROnsz00NIREIrGmbjZ7Y/A7BMUJJGg209TUlAEjyG5eXFxEoVBAs9k0+kkd0V6E56CNFIlEjI1Ap5wBcJ/PZwLKtVoNuVwOi4uLhkXNwDFLlQWDQcPi03nbP8xKI4AeDocBrKbJ8/wMJvDaMThvg9H1et0ELiYmJlAul42duFEmBJmHg4ODSKVSOH78OPx+P5aXl7GwsIBYLIYDBw5gcHAQ5XIZpVLJ3EN+vx/FYhEzMzNoNBoYHx93gCy8r+wgULvdNk3btTQRg/B03P1+v7nWWwVd9rt4uvviFk93Xzjh3jM0NIRUKmWyh9jkUVm4LA1J31v3I+osAuijo6MYGhoy/aW4F3KPC4fDjiyzVquFUqlkjksAslqtmkbNwCoIW6/X14Ck1C3KYtd9f2BgwNgXbj6mgusElDWDXdcCcDLSdS3C4TAOHTpkdCIbm5ZKJcMIn5+f33KG8ODgoME4YrGYsSmUJMhzxmIxo39mZ2cNwZC6O5FIYHh42JRi47wYfK7X66hWq0b3Urdp+VfVaWrD2MLrrbYZ7TGfz2fAfG2IzsyvjfZwfn9qasqQAngdSaRk2TXajww08J7TAAmF47MBcSU8cG6xWMyUwisUCqaXTK9lkC5G8XR3f2VLIPqpU6dw9OjRfo/FVXSzpmj35qNHj2JychJPPvkkfvmXfxkA0Gg08NRTT+GBBx7YlTFeTEKlx42fQLcdXQWczTa46VLJA6sMHmVGs2mFNq3UKKyKKm42/tKu23Y0e6+Im2NFZR8IBJBMJg2wTSXJEh+Dg4PIZDLGIVQWWC/ixmbTtVZjQ5t9MIhBY4o1yJUJcSGEClGNhXA4bAzH9UBwvYeVlc/7eKfHTFYCnXIaw8pEfzGLp8x3Xzzd/eIQ6nA6qXSQ6QgxM0dZtusdh/so+z2wfAZZ3TwX9zZ1GoFVRpGWZ9MgprLHyWbjvUNwm+CrzchTMH2jNVFAmudR20PZzLxPleXNYLRdIoQAggIZWwmQKrOeetwGF/heKBQCAIf+5nUKhUKOjLde9spOp2NY/xqkUHtGQQ2tS2rv5RogZnCg1Wo5dO9Gtg2PSWACgAGNNKuMwIed0UCbiuCTrXPt1HYdt2Y7cA1tcOLFrMM93b374unui19sfcvyVQyCaiCTDZy7NbzUbCTaAMwEoK6l7nYD0QncLy8vGz3kprt5PAYZeW6Km34AVgOa+sPz8317LjZjXV9X4pp+l+sViUQQj8eNz8s9nLjF4ODgupnNG103JQbquPi+zpEZcQTQiZFoyTKtB8558VrTjnNjkK+XlU/da+tq/rYz1ogftNttE7zge+utE+cZCAQctdA1aEM96sacX69hul5fG0B3uya0k+wshBereLq7v7IldOzSSy/Fq171Krz5zW/G61//enOT7oT8xm/8Bu677z4cPnwYV111Fb73ve/hwQcfxG//9m8DWHlQ3vnOd+KDH/wgLrvsMlx22WX44Ac/iEgkgt/8zd/csXHththOpv7eKSHzjJsPHTEFH91AdCohrSNKhTI4OOhIT1ImuqbMrgei0wkjS0qPr1HMCwn4ch3slKjBwUEMDw8jkUggmUzi+PHjptmGguiNRgOFQsEwqebm5tBoNAwLvxfWkzICKpWKYftVKhUEAgGTKtVut1EqlVAsFlEul+H3+w37jex17dC9F4TGUCqVMsZHoVAw95sNWvAeZkYFjcjdCrioIcVxsIwO7+deaxp64kk/xNPdvYute/eLcL+JxWIOEJW6nfNh4FtZ41pLmsFrstn8fj9yuZwpfUJgU8ub2DXT7VRiOq9k8TLLjVlSFDKUlGWuDSL9fj8qlQqAleaZyWTSsJd5XDqqWgKm0Wis2XfJzq/VagYIoJM4ODiIsbExJBIJk9ocDAaRSCSQTqfRbrcRjUZNs+tMJoNarYZSqYR8Pt8zI13ZfMvLyyiVSshkMgYwZk1zMqAJEpOtPTIy4mD1MWjL60/Qhd9VhhqdcgVoOH8NWBAM4drRkadNqIw2XXMtOTM1NYVkMolisYj5+Xk0m01zfK4D/1dyBe8xZnYxIK1gPe1FgktjY2NYXl5GNBp12GK8f7kOdkM6O/DAnjJks7Hc3n7bF3qR/brnvRjE090Xr6ivQNIPfWPuy9SdFL7GPYt7ue6dbNqtbGWypu1z6zGoB+j/83PcF6ibCfraoKwGwm2Sm/6vNgPnqp9zA1JtvTQwMGD0iALIAwMDSKfTiEajiEajGBsbMyQA2hvDw8NGX4dCIVQqFRQKBWQymU1lGWk2fqFQMKXEiHdo5jzPwUyoeDxumOhKauN6UDdrNp+ukQYCqMN0rWyiYbe9XXW8XeosEAhgfHwciUQCuVzOZHm5Ce0QzsUunUoA3Qb7eV1pu9GOs+8Jm33uFkTQ0rSJRAKDg4OOfjqeeNIv2RLi+IMf/AB/9Vd/hd///d/H7/7u7+K2227Dm9/8ZvzKr/xKv8eH//E//gfuuece3HnnnZifn8f09DTe+ta34g//8A/NZ9797nejWq3izjvvRDabxbXXXosnnnjCAJT7UZRJxg0CQM9O2VaFGxgjt2SrsU62Mr40dYopW9w86YBSOWtdLJaIIUPJjg4q+4lzp8PTaDQMAGnXDON3ufnvJgCsG72bUzY5OYkDBw4gnU7j8ssvRzKZNIxvACZdvVQqIRwOo1AoYGhoCJlMxqRu9QqiM2WpXC6jUCig0+kYY0pBhWKxiFwuh0qlYhzUWCyGVCqFZDK5pxj+vJZDQ0MYHR019XQXFxcBwKRhq/C+I4hOBuFuMcF57dvttgFgABgGnTaIeTGKFxHfffF09/qizCHKfrvPfD4fwuEw0um0cYaBVTCTfxMEZWYUHTwFQwmi01FeWloy30kkEsYRUscdgGFnK4hOcBdYYRTzvUgkglQq5SjVRhacss4GBwfNOUulEgqFggmqRqNRA2I3m01TixOAKfVB+4GOGO0XHauC6MCKPTQ1NYVDhw45MozGxsZw+PBh+Hw+jI6OolQqoVQqYWZmBuVyGXNzcyiXy8a57+UearVaqNVq8Pl8yOfzmJ+fNw06gVXdznT6QqFgAGOWUHBjgNGeW15eRrFYRLVadWSpKfOe62w73Jy7gs6a+q3gebPZdAAb1Lm8Jp1OBzMzM+ZaqfNugyO0H7VeLD9P/cnAD4PpzDhgyQkFEjgW/Z4SFBis0ZI/sVgMBw8eNGVjGLy5GEu59Aqie7p798XT3RvLftXbys5V8JH7IgFB+tkEObUUmZb80uwpBgWp79RvVtaxnY3F/VazkoAVPUXiFUF07WeiP2of8PuqX9V/pz3Cz+r+qmC6MrF5HDcQfXBwENPT05iamjKBb/5mGVPiCoVCAbFYDMViEWfOnDEB8F6Fa+Lz+ZDL5ZDNZtFoNBCNRs14WUanUChgaWnJ2CLsM0O/UDERrSnPrACuq71WbixrxWc2ykjj96kT1aYLBoM4ePAg/H4/Tp8+jfn5+a4gOjMWmf1Afapl/xRUt0XZ4/ZY7Lkp0dImc5IYmEwmEQgEjO26n/aFnRBPd/dXtgSiX3311XjwwQfxoQ99CF/60pfw6U9/Gq94xStw2WWX4c1vfjNuv/12jI2N9WWA8XgcJ0+exMmTJ7t+xufz4d5778W9997bl3NeKFEnDVhlZ2vUbaM0mn6MQZWwgvn6ugojhnZakILoVOb8rQwzzlk3SQ0e8G86jMqAUuY5jYELyZ62Mwa4fsFg0LCh9YfKgsqq1WqZztIMOug69XJ+Ku16vW7SMsvlsoOJzjT0arVqIuIMgOx0uZPtiLLSmMmg94TbZ3UN10t12wlRA9LtZy8x/XdbPGW+++Lp7vVFU1W3+mwqEL/de3yz59W9Re0FOoRuwWot20G2Gx113T+V6aTMOXve9hqojqe+Zoq52gTa0NM+jw3sKgPZ1vvdgBQ3VpuChvpZ3bcJAOt7yhiLRCLmGGSdaerwZq4/x8GyKgMDA0ZPU1frj50Obae82wEDt7ny2ug62ve+HcR3c2i7zcf+nm1T6nXTZ4+6nfez/XkFbRSI5z3N1xQkX+951HWz18Y+/4td93i6e/fF090by3buKzd9v9u6W/cYezy6N+t+D8AEqAl+8z0FFNfzOxR70HMoWEsSFs9FQFT3TVuHqt/qxjanX6av2TrbLZBr+8P2deL4WRJHfzNLi0EG2juhUAjNZtPonM0K90RmfPl8PqOnWcecQXA2SrfJhnptlGHtRp60r5NdFmW7orYwz2f70256QAPgbmC5BrXt79oBHS1VZNub9jlVbPKFbRO9mMXT3f2VbdW+GBwcxC233ILXvva1+NjHPoa7774bf/AHf4C7774bt912Gx544AFH0xFP3EUdUm3AQIXHVKD16kT1YwwA1oDe9o8qYWUvcZzd5sbIJNnnNiDfzYDRIALLuBBsVsaQ7STupmhKESPydPCovFOpFMbGxpBKpTAyMoJ4PO5IY2fDtKGhIRSLRQSDQSwsLJhUJILivYyF9cLn5ubwox/9COFwGJOTkxgeHnYAJIuLizhz5oxJzR8fHzfMBsD9muwF4X3DZjm1Wg2Li4uOZie879zAmt2eF59rNnhjqma/jZ79Jp4yv3Di6e7uovdVL/eYOqDUjXSMVHdvRhRQ7PU+Z+1oOtZkarMcC7DqgNp1xDudlZJpqVQKAIyTp3Oh86zOOQFf6mUFjxkg1nORecbm1XR0OQael86uMs1ZToMNuEulkpkfa8OyzAcA05Rb+2fw+nCszBKy7SymsodCIcPco+0yMDCARCJhsvQInOfzedRqNQQCAeRyuS054pRyuYzZ2VlTBoVNOWdnZ02tb9oDwWDQ0ZxNAQ3aAywTA6wCF3rdGbhnuRvegwDMumjpPABr5kcH2AYFyKDnvcJrosxKvk4JBoMYHh5GKBRCMplEMBh06MparWYa2PNe8fl8hpnGMTD7oFarmbHwuutYbfKD/q0ARiAQQCQSMfbYxcZG73U+nu6+cOLp7v4LfQUFJrl37sYzTj3CcQBrnxH+T3CSACx1r5ZStZnJwWAQ0WjUEdBW/0OBSzKPlUigx9JMA+oEJTHpOQhi0jfm3s/9WLPcVGyfuhvhyN6jiRnQVgmHw6Y0KcuAKhOdx6TO9vl8xl7SDK3NSDabxU9/+lPTkLNQKKBer2NxcRHVatXYLgCQSCRMOT3FV9bDNGi/2PdCN6KE2mS2bDQ3exzU07QzlYRH0TKqxHw4RmasaaNzzoXn4ef5Ppn0PLbO1bZBOF/ttcfXicWwPO6LVQd5uru/si0Q/Tvf+Q7+6q/+Co888gii0Sj+4A/+AG9+85sxMzODP/zDP8TNN9+Mf/iHf+jXWC9a4cPOB52Ok4LVfOh3moVOx8L+4cZmR7IV7KfSpTLneDVVyXa0NxoPhZshDQa73IudXsxz79YDr8pG65ZRmUejUSSTSUdTUQXRh4aGjIJiyno0GnU01Op1HExty2azBsivVqsoFAqO2mqZTAazs7Pw+XyIRqNIpVKOZq97UVQxBoNBpFIpU9NOPwOs1gykk20z2XZjrAAchp1do9YTTy6EeLp7Y9mM7rBZLwSAGVTdSpNJ3T96kcHBQeMo12o1VCoVo380Y0sBRAr1RCwWMwwqlhGjsL7kwMCAYY2rU6TgKrOvCJIrm5djjcVijqAvHexGo2HsBDr/iUTC1BFlOZNKpYKhoSEDECurq9lsmhItHCuBAw10kH0PwIDIwKpzSgCdjlkkEnEA7EouGBwcxMLCggHzt6NrarWa6f/C0l8MFrPkDQMDyWTSXEP7vJ1Ox9SJV8dTHXVeq25sRdpXGoCgHWaz1WibKetL7VeSBZaXlw3wzddUtIkrQQ2CNTwe684mk0lT95zvcUw8vzbDo1OuBA5+nnakzQZUIgfH0i2d3RNPdlI83d1/oe+tgVbusbsFolNPr6cz1Jfg3/xuJBKB3+83JC5gFSRl2RUGi9ezRzS4TtH9ksFj3S9twptmAtnjZxCc/pm9vrrnKhtbj+V2TZRAxXUhmMseMSQacA6KVUSjUVMKToOwm5VyuYxyuezo+Vav1zE/P2/6mDCIwAbZXHeO38Yu7P9VF3Pd3bLHe2Vf69rZrHG+p6XwNADeDUSn7817Wvvt8P6k/eR2Pg2Kq452myNFS9LpXJSg+mInr10I+djHPoY///M/x+zsLK666iqcPHkSr3zlK7t+/qmnnsJdd92FH//4x5iensa73/1u3HHHHY7PPPbYY7jnnnvw7LPP4vjx47jvvvtwyy23mPfvv/9+/M3f/A3+9V//FeFwGNdddx0eeOABXHHFFeYzb3rTm/CZz3zGcdxrr70W3/72t3ue25ZA9AcffBCf+tSn8JOf/ASvfe1r8dnPfhavfe1rzc189OhRfOITn8CVV165lcNf9MKHmw4aa0jxb3WEuPkUi0Wz+bLG51aipL3Iek67G2PHjvjZadfKfNP5b0UUIFU2mdZL4+fWi1j2S+w6bfpjR8nd0rJ0PfV1O/14s4AOv8uUMYLwCiqUy2UAq2tJtt1+UTAEOYBVdt1uBk56FV1PvX8JythGgkbKLzamm4oXEd998XR3f4R75sDAgAFW+ZoGolmrlDWYbWB6PdnO/U0A2maNcz9Rdg9B/mg06nDMbNBZbRIbONVyK1oiho4QHRf+bjQajswq2j52PxXaPwoqkyVHx1EdNJ5f7QAN9FOUDWWnkrvpZwVZdY/msQjcd0tL36womF2r1ZDP501gQOfKe02dVm1Ix/f9fr+xS+xsRq4vAw269rw2DBjwGqoQbNLrSBBKm4vyvuDnIpGIuffs54JrbTdTY6YAQXgyy5XEwfMpmMI1UZa9XfqG5+U4Nb1eAzG2I642707Z5HtNPN29++Lp7v6I1mhWHaklShgoLpVKZt+tVqs7+mzbAUy3UhgU7uG2T6l7Hn1vYJWEpp/RgGIv4ub72z69G3DOvZ9/61pzLnoOt/JfGqzWxuA2iU7XwwZjqaO0trj2c1MfuB/S6XQMeY33DwP+bnaVrpdNUuxWgYA6ab39eKsAerfPMoNgcHDQ9HCxdXe3EjQ6R/3tNmbbbuP1Wm9Otv0KrNaFp32ga+rGkr/YZbd196OPPop3vvOd+NjHPoZf/dVfxSc+8QncdNNNeOaZZ3D48OE1nz916hRe+9rX4i1veQs+97nP4Zvf/CbuvPNOjI2N4dZbbwUAPP3007jtttvwJ3/yJ7jlllvw+OOP4w1veAO+8Y1v4NprrwWwAsS/7W1vw7/9t/8Wy8vLeN/73ocbb7wRzzzzjCGvAsC///f/Hp/61KfM/yTV9CpbAtEfeugh/PZv/zZ+67d+yzTvseXw4cN4+OGHt3L4i1qUsTY6Oorh4WGEw2FMTU0hHo+bFCSNRjYaDSwtLaFSqSCTyeD06dOm3rUdBdyOqJK0lZQ+ePZvW8mpAw6sMoJ7ZaCvJ2S2dTodA6DakVK+ZoPS/QbSFehm9J/KstlsOtZBMwm0LI8qQTcjYLMbuxpfrVYLpVIJPp8PxWJxjbIlIMHsB23atR8kEAggmUyaBi5M6beNSjcQe7fFjogzKk7mKPeE5eVlZLNZlMtlk0Z/sTrlniO++/Ji1d3dWCxbPRZLaEQiERw8eNCRKq2GPBmztVoN2WwWMzMzxplbT9wc1l7F719pOEbgk8wq3Rs12FsqlVCv1zEyMoLh4WGTFaWAKsFDOh0aJCb4TWCawGYoFEK73TYNNhVsrFQqKJfLGBgYQCqVMsHEWCxmjkcGe6lUMuVAyExW1jjXmOPVdeBYKDy/MqiUjUadTFHWcqfTMU0lo9GoYZtROE8FArZ6zymTP5/PI5fLOcACzQyMRCIYHR11sBlJuPD5VtLT4/G4ceBpUzCIkcvlTP11MhqBVZ3FXi783yYIsMHn0NAQ0uk0QqEQyuUy8vm8aQDPEn5aJpDXvNVqmflReH0IRJAMQECC3yfrTWvb2sGDUChk2PNMpyeQo6w12lssq8eU9UwmY+racr0BmOw37gO8PzjWi1k/ebp79+XFqrv7KWT/xuNxBINBR1kx2uGBQADBYBD1eh25XM6U4njhhRfMs70T49Ksb9oQdrkpwAmgawYWRQOgCqIrcKms8V78Szeyl66ZBkjtQKbODwDC4bAZC0lwnJeK+kq0Y/x+vykhog0lNeCqr6meor2hpXNoD1WrVQeZUee8VWm1WlhaWkKpVEK73TZj1nWjTtR1VqBXe34pFmBjD+r322tIUVBZz2frSwWdVfg/m4Uy+J7JZByfa7fbpim8gtc6DjsArTaTzp/PAOdJwoJmy+v9yGNq9qP2ROE68V4NhUIIh8Pm/mD24sWsn3Zbdz/44IN485vfjN/5nd8BAJw8eRJf/epX8dBDD+H+++9f8/mPf/zjOHz4sOnH8ZKXvATf+c538OEPf9iA6CdPnsQNN9yAu+++GwBw991346mnnsLJkyfxhS98AQDwla98xXHcT33qUxgfH8d3v/tdvOpVrzKvUw9sVbYEov/sZz/b8DOBQAB///d/j1//9V/H6OjoVk5zUYpuDsFgELFYDLFYDKOjo0gkEg4nhjc7nYlwOGzSjTqdTk81sjcrbiws/k1FaW+KNohul3NRUGG7omAkAXUC0VQAbpHRnQRPFezWH47TLj3Dv23mnB202CyrzWYDaDCETchUWLOMBo6yIPaD0OAFnEz0vQ4663oz60TZggzCEJy4WMVzxHdfPN29faG+I0M3kUiYkhoM1lIPEjAPBAIGqCSDeaP7dyv3N79DR8LNubJ1D1nhHJeOH1h1wO1yWDyGZp6ps6IMIpYDodABo2NNx4hgvzKJCPYr8Mk9s91uo1QqmePbAIFtcyj7jc4nAOOouWWKuelpOmYamFAnfjuiTrbP53PUP1dRIILlyhjoUOY0X++WEq81ycnM5PvKluO8uS56HK4/wQ4Gf5WZ7cZWVPBFRW0qZRlSJ9pBHZ2XHp/3v4JACkKprWjbXVw3ggEMyHQ6HXPudrttSAh8lvjZi5nV5unu3RdPd29ffD6fAcljsZgpr8n3AJgANG1vLY2m5Ut2cozKQrezZGyxdY69/6kut8+zGV/Pbc6bIShxHyYwSnELOLuBwZoZZJPMVA/b/rQNqque1r2a69EvJjoAB/Oc57ftMbe/OU/VX90yEvj5br67m86nKEajen494fXTrDM3m4nry9dU1gP77bEzAG7rbLfv6DNjEyq5lgTiuReQ7MEMBU93b/x9YKXnkgqJRSqNRgPf/e538Z73vMfx+o033ohvfetbrsd/+umnceONNzpee81rXoOHH37YNP59+umn8a53vWvNZ9ZrhJ3P5wEAw8PDjte//vWvY3x8HKlUCtdffz3uu+8+jI+Pdz2OLduqib6RfO5zn8Mf/MEfeMpcJBKJIJ1OIxgM4pJLLsH09DRCoRDGxsYMo0Y3pk6nYxxHsn18Ph8qlQrOnTvncC62Ax7aTnWn0zHOtZ0Objumbg8kNy1VBv0WVXZ0pJThTefQ/iywvfIuGjnnpkvmV6PRMKn76tTncjksLCyg2WwinU4bphUNNdaCLRaLWFpaQrFYRC6XQ7FYRKVSWZe9SGYkHTsyrwBnIIYOnrIFWS9OjZr9JHSi6ciqwaJON0EFGmO7IW7sjWAwiKNHj2Jqaso0u6GjTtBtfn4e+XweS0tLePbZZ1EqldaUP/DEk52Ui01398PpZYB7cHAQw8PDhkE9NjaGWCxm9hgABhDmXksdTud8fn4emUymr6yXZrOJUqmEgYEBU/9TgWwKg48MQHOc0WjU1KdWPW8Dj8CKcVypVAyzLxAIGAYvv6M2CfdprW2twDqDhnxdx2yD9mpTcC72a8pwou7TurGlUsmk59Pe0WaRPFaj0cDi4qIhPbDJpQapmaZdKpWQy+VQLpcNY91mf7lda3WAtaa+NmYNBoNotVoOBp6CB1o2hXPhZ2q1GoaGhsy9CKyWXdGAhM/nM9dB05ztQIJeF36XDHhmDWgmg5aYUbuWx7MDLm4OMudHW4VAmJ1FoIAJmeN0nvV1n89njsWAjgaFOp2OyW5gxgIz31hG5vjx4+h0OqbubrvdNkz5XC6H559/3twHnniyW3Kx6e5+CHtrBAIBjI+PmwzwsbExw0Sl3uHeOzAwgGg0isHBQUxOTho9OTc3h4WFhb4C6SzZyvJwbDapupdiM82593IvpSjhTMUus8XMbntftkVJarb/rOArf/Mc7FFBEFyPpWC/6nkFMd3wBuo86nYNbHMe9XodCwsLRu9PTk4akI86gPpO+40UCgVHJv56ovpF+25pIFr9USXX9YKLuAXnlWBgX2PbZlLRa6rXUtfcJhLo2ncLouhcdW6a9WeP077uGuzQfiuAsx9erVYz9f1pv9olXphdSduPQe/Dhw+vCbZTd7daKz3iyuUycrkcTp065enuDeTQoUOO///oj/4I9957r+O1xcVFtFotTExMOF6fmJjA3Nyc63Hn5uZcP7+8vIzFxUVMTU11/Uy3Y3Y6Hdx11114xStegauvvtq8ftNNN+E//af/hCNHjuDUqVO455578Gu/9mv47ne/uyYg0E12FE3y2AZO8fl8iMViOHDgAOLxOC699FIcPnzYpD6ro6HS6aw0m2y320ilUkgmk6hUKuh0OqZmW79qMSrIGgwGjSOs0VBN27I3b/6tEfCdAtE18qpOH1nX6pADTpbgVkWdYaaULy8vo1KpGCBcWX1UEEtLS4hEIqjX60ilUqjX6wiHw8ZBozGQz+dx/vx5FItFLCwsIJ/PG2aym3Cd2aQ0EAggHo87DCM6d0w3573CJiusp7qfWOiA05hgORoGMWgUMPCkzf02W/OqnxIKhTA1NWWa5TGIpiD67OysUeTVahXz8/OmJ8LFtKd6bLa9K97arpVQKITh4WGEQiEcOHAAExMTprmxNn9k4Jv6E1jZ39PpNC655BI0m0384Ac/MCUs+rXW1EUKLNvOKvf4UChk6gLG43GjL8vlMtrttklzBbDGsWm3V5qBFotFkwLN8ykjTFNjaTdwr1NWHQP2CqRrrVbujXxdWesEnBkY5THJiqHj1Ww2jb5Tu4Z16hmg5HgVhD9//jxKpRLS6bQpN6MB+2KxiGKxiFKpZNK3K5XKGlZbt/1O0/YJDDMo7PP5zJpqMJhrzICE2n/MaNIsNGAVPPH7/aYEiYIfdD7J+tfz6/HJpiOhQ1nZhULBkTXA54C17nmNFBhSPa42rGYNsGYtwS2tq6sghQIVvI4kGLB2e7VaNUBZIBAwthGDXGSVsxwNg0VDQ0M4cOCAIcEkEgkHoN9qtVAoFFCtVnHq1CksLCxctI64p7v3rnhru1bC4TDGx8eN7h4fH0cgEDDPMstwUncz8NdqtQzZ5ciRI4ZZubi42Nd1Zq8L6h02+FZAWYFIbeJN/1pLZ9ggqwrtFC1roufpxsJ1yzKj2AF3Cv1g7ZnCY9jBAP64nV9BXw0cs8k4xcYh5ubmUKlUMDo6irGxMUejz06nY0rDVCoVzM3NmUD4RhllijvQ3mI5XupOAMa2oF9ql3OxQWVbdK7UZ4qrKDOfn7Xxlm64kK61BuV1fmoH2c2/9X0eg/efZoaTiKlZh26YkN47tGNpZzCYwPuWJf9oE3HMtH0qlYrR3cQ6LrnkEnMPUHfTTlxeXjZ+9rPPPov5+flN626dz17eg/ulu8+cOYNEImFeXw90drvW62FNbp+3X9/MMX/3d38XP/zhD/GNb3zD8fptt91m/r766qtxzTXX4MiRI/hf/+t/4XWve13X8ansT/rpPhRudoFAwNT1pMFOtk43xcebo9PpGLAQcKZPbAcYts/FTZtsbsBZG9RtXq1WyzVleKdB2W5sd24UqhTo6NHxsufRTezP2mx3Oqy2g8txEHSoVCoIBAIolUrGKKBQ0bKzN+tzuTUC07krG0xZX9r1nEqEIKwba28/gecUPhP8263cgN7LBBB2U8EpKEOwIRaLIZFIIB6PI5FIGGDJ7/ej2WwaACaTySAWi5l7Qed7MYjniHuyn2RwcBDhcNikexOcs9NG7b1aQVI6cdyrCez1617muTX9VWW91F5+zx6L6jvuoUB3g7ab7lVH284IsvcCdcioT9XZt/WVG8NJ37MBWWXeua2TvkfnjT/BYND8bTvifL3XuthcB7sci83etsvhKMt7vcxAnbd9b9rZe91Ev8fPkrRAnaTn0ewDN4ee95Ay4dezP/Sa2yn9PCY/p9eNut6+Brbto2KDUjpWguXcAyKRyBp7ixl+0WjU7A8K7F8s4uluT/aTsPQa/W4C5coIdmNuK2jJzzM4SJ+v37qbe7WC4go6c3+jblSdx71ZRfdFN1FftNe5uJHnuP/puTTYq/W8+bdbHW8ef71j2z9uwuA8dXK1WjWlO/i+6m4Gv3slK/GaqA6gLqfuJilAdRy/10uJWzddbt+rm/Hd7SCLnb1gz88W3m9uQRxbJ+s1Uxtuo3m6jcsei5vNoLaE3mO8Nnz+mZWigf7l5WXE43H4/X7jk/MZ93T32u8DQCKRcIDobsJePTZDfH5+fg2TnDI5Oen6+cHBQYyMjKz7Gbdjvv3tb8ff/u3f4u/+7u9w8ODBdcc7NTWFI0eO9FQ6jeKB6LsgZNAwDfzQoUOIx+MYHh42qcEbbYZ8PxgMIp1Om/Qkbv6MdG5XyNxSZjejewoA8LdGkOlA6EbtZpj0S9SBI1BB8IBpu2QX0BBi2pUaR0D3aC3gTC8jI4wRVqa/k4murC3OmSmA5XIZiUQCtVoNsVjMNLjx+XxGeReLRZw+fRqlUgnZbBbVatXRGENFGXnxeNyUBiFbjpudOqBskEXGhTag24/C54LMPWAVSFFmJVPs6Qi7RTb7LWoI06EOhUI4dOgQRkdHEQgETERcHXefz4d0Og1gJTo6MTGBn/zkJ8hkMn3JNtkr4jninuwHoR5LpVI4evQoIpGIYV8DK7X2qHOog7mvAqt1WBlMbTabiEajmJiYQKPRMI0L+yWdzgr7OJfLAYBhXYfDYbPfsLGnAqSqy/lsqW4j25aObyqVMnpXda7NiiZATJ3JY5Pxq0xi2xljNhHZzWRPKxjLa6HAKIPbtA94LRYXFwGsZAYoo8ttDTkPlihhUDsUCiGdThuDneB5qVTCzMyMCXoqE389ACOdTps6jfwcAXIAxoZRZzUejzsY0Zy7fp+ZBppGD6w6wnTiWfLMfp3/077SwMzAwADi8TgGBgZM9h3tXF4rgk7Koi+Xy2g0Gkin05icnITP58PCwoKDbcd14N+NRsM0fuNx2TuEtp3egzw/sGojavYdQXCCH0wPZ0ZfMBg0DUh5vZnBMDY2hnQ67WDo8TwMkEciERQKBRw8eBChUAi5XA5LS0s9AzMakNir4uluT/aDcP9KJBIO3R0KheDz+cy+1Gw2TTaSPn8KOFKPJpNJHDx40DQcrVarfRsvdSSbFnPf4h5E3WYLS5YoyK5z0Hl0Oqs9HZQh7kYAcBNb1/B7tH90L2cGMLOB7bUNh8PG/+HrPKaK7vc8x0Z7EHW39hSJRqNIJpPGvyoUCsYWImudvvh65DViCel0GvF43FQTUJxBbSBdf5aFI4DbTajzVcfY4HE34oab8Jpo/zo3YpYSEhSU5rMSiUSQSqUAAAsLC0bPEyNpNpsm6522I+83HtvWnW52EufFcdOGY0lFlmKjDaDN6FnKLZFIIJVKIRQKmb6DGrxotVqGoDY6Oorx8XG0Wi0cO3YM0WgUmUwGi4uLPa3vftFpu6m7A4EAXv7yl+PJJ5/ELbfcYl5/8skncfPNN7t+58SJE/jSl77keO2JJ57ANddcY2ziEydO4Mknn3TURX/iiSdw3XXXOcb59re/HY8//ji+/vWv4+jRoxuOd2lpCWfOnMHU1FTPc9yfyNk+E41eJxIJjI+Pm4ai3Uq42N+nMNoZCoUwMjKCQqGAoaGhrrWANitkXtFZBladMNa24mZIBTwwMGBAAHXEdgOoVAPBjtTTqWcElGO2mXGAe0TcjqjbhgKj26xvznPZhkCr1UI2m0WhUDCAC+veMZJH57JUKuHs2bOO8jDrOeCMpobDYXM/RaNRR8RX2QADAwPI5XKmzAnvy35lMlwI4bwYUeZ1ZEAIgGEjAGu7k+/U/akReK5zOBzG6OgoJicnjRFrn5+p781mE5dccgmi0SgWFhb29TXyxJP9KOq4MHBNZ9Xn8xmHl6m63H+oLzRLSEuWBAIBDA8Po1KpoFgs9h1EZ1YT9RSd8UQiAb/fb4Bf1S1DQ0OmqTmPA8AEi+n4Mg2WQAQBVoIR6uTTRtByN+122wCYDCyow2qzmqlbCcYzGMzGpNRjapvQOQJWMwFYLs1uQtpt/6f+pxNOfT84OIhcLmcyhjjncrmM+fl54+z3In6/H/F4HGNjY4614PpQD9hsSTqF2gtFx837TlmK9pjUQdZsCLWF3K4JbUM6s8r8Yjkatcd4fDrVBNHT6bQB+6kn3a4B7Tj+7/P5THCn3W4bIoqdcaZsSQUQyDLjvakNa5ndSRt4eXkZ4XDY1MJPpVKmtCJLNakNyuOkUimMj48buzmbzfbEaLMBKk888WTrwueJQetoNOrYF5g9rFnX6kfyGMCqPopGoxgfH0e5XDblm/opNmDM8WkdaI5Vx8RSV26An2bdKNCrAdPNiK0zNYCpGdkMPBPn0D4b3G/Xy6TSNalUKq4BhG5CMgHtB9pdo6Ojxt7K5XKGgX7+/PmeriX3e9bMHx4eNtlKqqMVGNZMMpIBtAzdenMAnAEdXfvN+LLU0XYpNLfv2FlktEMajYbBrvx+vyHg6bnpd5MAQX2sWRLUhW4+rc6Z36PuZmk4mxjAdSV7nPc7g2bBYBDxeNxh33IcJH8mEglEo1GUSiUDojabTSwtLXVdU082lrvuugu33347rrnmGpw4cQKf/OQncfr0adxxxx0AgLvvvhvnzp3DZz/7WQDAHXfcgY985CO466678Ja3vAVPP/00Hn74YXzhC18wx3zHO96BV73qVXjggQdw880344tf/CK+9rWvOcq1vO1tb8PnP/95fPGLX0Q8HjcYaTKZRDgcRqlUwr333otbb70VU1NTeP755/He974Xo6OjDsB/I/FA9F0QOp4E0mi4u6Ue93o8sm9ZV9tW/NsVOh6MvtMZUOeI89B05AsF9NlOps5BmeRalkabsdjp0oAzKk7DhYYBnXQ78t7NEeSxCJRTIdE55LEInmsN717nrT92upYCDLpO9vf2q9jzBlYDQn6/3xhTBD26lSfqh6gRwPuD57JBiW5zAWDAJ5Z82s/Xx008Npsn+0H47GrGmIJ+dG4JFAKrjUXVCaHzxFqeDMD2+7nm+LQUGPdCNqmmvtHAMsvVUKdzfnRCFOCjzrN1h+0UKiCre7SWPVPQl9/X3h3qPGpgkuvKwLb2bSHozf+Vca17fze2mZuoHVGr1ZDP5x0MbZvJ2Ov+xFJv/K4CwmrD6PvKIlS7T9Pk7bVSG0V1IwAD2KtzS4dXAXZlcFWrVcNE5zH1fLx2eq15X7XbbdO4c3l52dQl1XuWAQUNgLtl5ek9qLYWQSK13fR1va58jyx2BeS5Psqs13tXgzIUAnfMNNmMbFcv7oZ4utuTvS66V9rZ3rqf6d6h+kL3GWb9MmgXDAaN/uy3aIk37lvU3fRZOTbVAdQJnN96epOfoS5crwa47VPxu/ZnuM7c03WPtDONgJXr02g0zPEVYNXG2BpIVZ94M7pbA8WlUsnsySy91i3bu5vo3s9G3LRh+J7qcF0jBv7tOvH2eN1eo63E+04zB9cLhtjXi+veDWOwy+0oOZI6mWNye7Zo19IOYzaCDc4rUA6sLU9jN5nXWuv2XKm7ea80m00TpNHvuOEdvD9oy8RiMaRSKSwuLjo+10+M7ULJbuvu2267DUtLS/jjP/5jzM7O4uqrr8aXv/xlHDlyBAAwOzuL06dPm88fPXoUX/7yl/Gud70LH/3oRzE9PY2//Mu/xK233mo+c9111+GRRx7B+9//ftxzzz04fvw4Hn30UVx77bXmMw899BAA4NWvfrVjPJ/61Kfwpje9CQMDA/jRj36Ez372s8jlcpiamsK/+3f/Do8++iji8XjP89tREP2//tf/umHNnBeDkLUTjUZNPXQ6q5sVtygoGUDdNpfNijKwFITUtCSC+Opc8OEKh8MXDJTV8xLo5gbJSCjTrrTuqN3kBHDW9aKSVWVO0IQKc7111zIvVGDqzNlgh7LH7XW0lXK33/x+p9NZwzywjZ79DtAqQMO5sFFavV5HLpfD4uKieQ41Nbyfc1cF02w2TaM2GoUate/2jPA5ZrMasuH2+zVyk/1ukFys4unuFXFzxAEY54kl2gYHBw0YyuecAB6ZyizfBaw6sHS8+i3KCKcuYZNidYpZCoxNN9l4iSC/3+83DdkqlQqWlpYMM5r7mK4NU2676S8CEUybJluI3wuHw4bJRj3o8/kMw5fH5W+ynqjjCPYXCgXTuFWdOxuQVuB4I6HuZiC2WCya4IPNmNqolqYGcIvFItrttslOCAQCpjyMjo/n4mcZvFFQl9ecdhvf4zE4d4IytIMikYjDjlHbhPcO7xdgxZ6Zn58310bT0mkH8bcGQ1jmaHl5GS+88ALa7bYpc8c1ZWlCjoPHbzQaRndrLWJ9hmg/MVNicHAQ2WwWuVwOPp/PlGtREgvtOp0fwRUCJGQOalCAa87PkVlJu/LAgQNIpVIoFArrAhb2PbaTYoMdHhB+8Ymnu1eEmSFar1qDngCMXmHwm/u3srYBmDrKZDfTB+y37la/m/9zX6bfqIAiS3pxj6R+sOfPzDR95rlXci9123vsIDgBcnvv4N7n8/lQrVbXBMm1bIaWimXjTSXn6f7PvXW7urvVaqFcLsPnWymduri4aHQfs9Q2E0ynTq3X6yiXyw7igQYBtME3yYZs6q7lR3g99Bx6Lr5P1rQGHmzyop7fDvgCcNhVbj6lritBbo6fgHomkzHPgpIReX42c8/n88hkMg4imNoWNvBvk+GYMUk7kcdRG1BtcpZhy2azaDabCIfDZp07nY7R53YvI56L99r09DTi8Tiy2axjL7AD9bspdrBvO7LbuvvOO+/EnXfe6frepz/96TWvXX/99finf/qndY/5+te/Hq9//eu7vr/RHMPhML761a+u+5lepGcN8MMf/rDng77sZS8DsBoJeLELnR8FnbfK2lagV7sL6wPeL+EGTMfBBtFt520jx3EnRTde3RzpIGmJGo1MchOmslCxI+FUTpq6r8bOesL3Cai6jd/+mwrHPo7NmLCvi308G7TVnwuVOdBvcZuLOsdks9EIZKRca8f3C6S2jVSCbawprIp/o/lwv7hYrpOK58Tvjni6e3vSbW+hPmG2iAJsui9r3UYGwwi2uaWlbnesHJ8tCjza9ofaEwQsCRKEQiHE43HHMdU2ALAmTdhmYPG37o0EBVjnXJnoPKatu9S55N/K3KMjrqVj+ikKDBNQt9OybTKDrV9sHcxycGqHUHfQ7qK46Xx1kjU4o+xq6jv9jupABV9od9jOMbAKqmj9f5uBp+vEvzkv3u+tVgvFYtGsE0F4zpUOL9eZQItbxl+3gLSCNfw+Sx642XocK207tWfdyAa65ny+GdTgsw7APBN7RfrhJ3i6e3fE093bEwUZbRBKA+QKFlJ0TyHwBsD4724lQPshbgxrBT4p7LOi+7riAOo/kHHOwCRlI39d18AOwKnw3Hb2neprzVzj/ksdRJ1E3a1ZSG4+drdxdBM7wEyCAMvg6DrY17Sbv8Y5acCac1ZSnOp/ZaPbgVy349vHdPP/3djd9jXQdeJaKAHC7dw8h9px/J/XR7P63MgKtG2AVXtOsaT1fGG+T+Bbx+s2L64hGeW0YfWa6nfs86ptEQ6H0el0TJ81HdOFlM3e927i6e7+Ss8g+i/90i+ta3zpA3GhgNT9JP14GHfrgdZNHHDW57LZYfr53XzYVMm4jYMbPqOnZB9wc+Zc3OZNZaBMcY3WbnaeVHhsakWHi1FWMqjUcNMxKVOdx2PzDM6BDi7HTBCZRonWrtvta7UTotdfX+M1KpfLWFxcNGlaAByNYLbLyLfBIYIES0tLaDQaCAQCyGQySCaTOHz4MEZHRx2NeVUIxJXLZSwtLWFpacmwSLoJ58G/uR8ra2S/X2NPtiae7t66cJ8m0Ais1Qusaa61StXYp6NFdjGwwj4mG7ufa77RM07dbbObqCNyuZxhZvF91p5uNBoIh8MmqEfdz7qnXB878GszjZgNpo6gMuK4ZsoOU/IAsJrZ5fP5jE7z+/2G7UZQut/EAlsYEAmHwyagYpcKUTCca6QgNAMqBOM1MKFsKwIjBH0ILnAc/KFe4TjoCNIG4poyCKCMdTZKZ2aC3iucD7DKcgRgAsWcP7MJNHhEkIoAFMGcdrtt6v+6XSc67MViEcvLy6ZZLrMOeB/SPiOzNBKJOEgrvC6s59rpdFAsFgHAOPmq+6m/GYjJ5XKIxWK46qqrMDo6au5PBm645twnKpUKzp49i2w262hMZoMdev3sMSgA1U+xgzue7F3xdPfWRYOBWt5Kg3r0pWywzRYNylarVZOpspuMVPse0P/J/qVu5ny5B9vZRXoMG1S018AOUroR9mwdwTWmTUQ9wvtUm4zy2Bqg5XWxfbpua7EVoW3H7KhYLAbA2RSe11nnT93t9/sRi8VMDzItf0abSTPY1T7QNXa7hzTYoDaRBiKA1SAI7QElcPA4/O32uq6lHcywA9Mci14vEifsY/K41WoVuVzO9IAjpkE7x+341KMAHM3seV20woBiMLxfmHVRq9UwMzODarWKeDyOq666Cslk0jFWDa5xnygWizh9+jRyuZxpeq5zWm8v1mvH69JPPXshGPCerC89g+inTp3ayXF4sg1xY+H0W+yHV6OPmiLnlj60G2ID5vaPAhx0PnUD7baGCjaoU7PVuakyC4fDSCQSptlJMplEKBTC8PCwyTCwy3gwZYmNVsjm4nWwAX/+zTQnTVN2A9IvdKR1q8K5KgOShke73UahUEC73UYsFjN1iePxuGFe0vjczhrw3mOwIpfLYX5+3tS7BYDh4WFcfvnlmJqaMudWEJ3Xj9f3/PnzmJ+fNw1puwkNNGX7kQWgYMxeEi8ivjvi6e6tCw16BjgBrNEzBEOZbUa9QiYvnUbuA51OxzSZ3myzrO2Irb/osNA5q1arpgYkgV3unUxZJmtcA8qcB/cfBRXVmbCZamygrPqIY2HZtPX2PM5HGzzarG3aJju1V/h8KyVC4vG40d0Ew8nOZp8T6vyBgQGUSiXkcjl0OqulfwhMuwUKCEKoA07Am3pEr6s2y9RyM+Vy2VETX22j5eVl5PN51Go1JJNJ831dP14Pgg8Eo0ulEoLBIKamphCLxUzAiE4u06fZeFSBAdowbvqAjjhBIjrR8XjclCFSUIZNf0OhkLlXVccnk0kkk0kUCgVTmkiD6JRms4lcLodyuYy5uTksLy9jdHQUx48fRyqVMrq13W4jHA4b1jmvz9zcHJ599lnMzMw4moryXGoj632rgR9dj37dv/08jqe7d1483b11oe4mcKlBRPVXbWDRjZnLciDcQwmk72bgwt4LdA+hX8hSVnZwmnsv52I3JgWcYLm9H9GeIQiuILoGVvm/6nG1b9ZjHev3bX2zU8KgL4PGbB49OjoKAMhkMigUCg6Qv1QqmVJrLKlGoT1I3adrxL1/oxKiajep7uf/en+qD88G98wcdAPS9ZgcL6+n6iYbMKfoOnQ6HWMbc9wqtH1arRYikQji8bjpu8Om9Co8l5YI5nFZvjgYDKJSqaBQKBjdrSXmgBW7qFAooFKpIJfL4dSpUxgdHcXll19uyh8zAK4ZAbTDzp07h2effRbnzp3D0tLSGvKom+6ynxteQ33Wtiue7t6b0jOIziLwnmxNVLHQAd/KzaibsgKHux2hUiPfzTnf7QfNPq+d+qTj0c+4KRb+tr+/nTlpwIGOZCKRMDXtRkZGDJt8ZGTEOH7hcHiN0iSIXiqVjBPJ8TJKS8dSmRbauKufc9sLstFcyG5go5NqtWpqBXYzHDdzbq4pnWv+VCoVU0+23V5pSlQqlVAsFtFqtRyMTH6GxnC5XEa5XDbGkT0vDcgw4KJsPwILvBd4jL1yrT1lvjvi6e6tiwLmGpQDnOVJ1tt/3PSPnTW1W8JxKFCn75ExTadPGU92sI8/yvajA6YORze2kc7fZp1tRi/Z31kvKL4doYNHPc55x+NxEwwnsKsg+tDQEOr1ugGetVSKAuNkaSmga9s0+qN1vG1Hzc6w0h4pABzv2anY/G0DG/pdroe9Pt2+q8xz27lXUMvtemsgin0HaPfwPV0j7TNjs8z0vlcAQcsLKCOf5+R5qbv1uiiIz4AOs0xYZ3U90TJICppwLBeyTGI38XT37oinu7cufMbtH2BtaRLb91OxWbvb8d+3Khyjm21hj8stc4jSDbi0z6P/62tu51cdrt/pZgt1m18vn9uqUAcQLOVPIpFAIpFAMBhEIpEwgVb2FCALWsFjrT3Pv2k7ETgmLqPz4fq4ZSx2u+9sfGI9m2a9685j6O9uonZtN9F70b7nVLTsLf1uErzUf+12DrfP6H2u+pyZjMQ9SBJot9tGdzMTlPe02k1sEE69XS6X1/jd9roo4G/vKboGe0nfebq7v7KtrhjPPPMMTp8+bZhYlP/4H//jtgZ1sQlZXgTIuJFoeu9mhBsGI22FQsFR/2m3RA18ZTZrrc1uqUH9EN3EdbO2WdbdNjE1EGzjQY9v/71ZYRpxOBxGLBbDoUOHEI1GMTY2hoMHDyIUCmF0dBSpVMo44t0aXzLSTUevXC6b+4sA8dLSEmq1GhYWFnDu3DkTGc9kMg5gnYrNVib7SVSBKrvO/gxfbzabmJ2dRbFYRDqdNkB2PB5HLBYzgLSW+el2X6jzX6/XDfi9sLBgmIbnzp1zsMFzuRy+973voVAoIJ1O49JLLzWMOQLfc3NzyOfzOH36NH74wx9icXHRkRJOIWuCDekmJycNI52NDvP5POr1OhYXFw2jjuUFLrR4yvzCiae7exMa4CwpwbISbDQGrBr7Wv+RoJgClUNDQ6bWIptPXqgMEXVAODZ1VAj4AjCOhDK+qVt9vpVSYmT4VCoVk+rM43HfUrBQnX7u25o5wzT0zYoNAPRTIpEIDh48iHA4jHQ6jfHxccPOZwk2/uZYFMAlC4vNLufn5x1ZYAyAc4+enZ01LH2bfKHHZsCd56ftQLYX9TzvN5/PZ9LX1VFl7XGfb4XRzaAsx8T0dfYR4ViY0s5zFQoFACv6qdPpGOYmswJUt9Im5nPlZodoLdXz588jm82iVCrB71+pcc6sPV5zDTDwXOl0GgAcAW4lFAAr7PNMJmOcbepOpu/ncjl8+9vfxgsvvODQ3QTayQas1+s4e/as0eN6L2sQjtdxdHQUBw4ccPgCPB9T09l8dreDbt3E090XTjzd3ZvweWRWTKPRMHuxXetYRUuVUWhXM5i8nl+5U6LncgPtqCfcSoACq0xd7ns+32pmkF0+jb+p8xkA5Wv2fqZlS7hfbnW/2u7e4iaRSARTU1OIRCKYnJzE4cOHjY3DNWCAmz1udCxqI3E/5pppuT761qdPnzYNzzXQwd/EftR20N522tTbJgdoRp8enw27iRnYtmU3/MUtoKTX2+16EGivVqvIZrOO/nAqBLZbrRbOnDmD+fl5pNNptNtts/balJznU9xDm31rvXwKsR/qbjYz1TJxrVYL3/zmN/H8889jeHjY6G6Om1l41WoVZ86cwdmzZ5HJZLqS13gdpqenceTIEUd2Xb1eN7pbG9x7uvvilC2B6M899xxuueUW/OhHP3JEpJS15Mmq0FHsdFY7e2sazGZEnRd2hmbkc7dvbmXzKNOZhoY6fDs9Bh0Hx8K/NwIqbCXXT+FmG4lEkEgkTFpROp3GgQMHcPz4cYTDYVPOhUALmW5uNew4p0ajYZzBfD6PUqmEcrmMs2fPolQqYXl5GTMzMwZwZ0kTreler9cdCnM/CkF0Ag5uc9HgysDAgIkyk+1PBpuWIegW+FEASEuv0GBfXFxEPp9HLpfD4uKiuUY06n/2s5+hUqlgamoK0WgUiUTCGPf1eh3PP/88FhYWcObMGTz33HNGmdvzImsiHA7j0KFDuOSSSxxATrVaNTXZ/X6/Uex7kdnmye6Ip7s3J9TdAExWCZ1PgpRkE/F9m72lAXNmnmiN1gslvPZ2MJ9zYokQOho+n88AN9xPGcCLx+Omzrs2sQRWmUp0/BSsp64miN6P/cmNVd0PCYVCmJycRDqdxsGDB3H06FFTKsAOuirLPB6PIxKJYHBw0NRPXVxcxPDwsAE+qItzuZzRIbRpyIS258jAK/WYNplXVjubbKkjNzQ0ZGqU0j4aGBgwWVO0T3kdadMReKAz2+l0jDPM7Lhms2nqlxJ00Jr3WvKHzxdryLqJMu+5DsvLy6Y0G/UnX+d5NMjAEm6sc65ZecDKM8B1X1xcRKPRcDAKObdnnnkGP//5z3H06FETPMrn88hms2g0GlhcXESxWEQ2m0Umk3GUcuO9aAMbyWQSR44ccYAJLJ9UqVRMIEIJH568+MTT3ZsT+j0AUK1WzT7JYK7q324AtepwLdV2IUF0N59ECT1u94G+prqJ5W6oz21g1mYb29l3yvDXYKcdoOx1fjuFFQSDQUxMTCCdTuOKK67AL/3SLxn8RUFRzp9BBoLcWi6TZVSpE0gcoH91/vx5NBoNQ5x0A2Htfmd2KUAlIKhepO6kvaHXhcCzTcy0bVE9Xjd2Om1Wt55a+tl6vW5K17jddxwfm7nyO4lEAtFo1FGujmPVjDXbVlQSoD6/jUYD2WwWuVwOxWIRhULBYTM1Gg388z//M5599lkcPXoUyWQSw8PDqFarJsBG4HxpaQmLi4uGte4mvA7Ec9i8t91uo1Qq4ezZs8Z+0JK7nu6++GRLIPo73vEOHD16FF/72tdw7Ngx/MM//AOWlpbw+7//+/jwhz/c7zHue6Ej6vP5UK1WDVOHjo+Cdt2+T2H0UxkqZCPvtiiYaIPpjNark7ITTHRupgqca03wC8X0I9DChqEHDhzA6OgoRkZGcPjwYaRSKUxMTJj657FYzChrBXPd6owBq5Fgshp5fw0ODqJWqyESiRinnOAGGX/FYtEA6Qpc7DfpFsTZ6HpzjQOBAEKhkLlGNJLU+KbodeA9RaeezjkzQvL5PAqFgmGmayCn1WqhUCgYAy4ejxtghQ39Tp8+bRqS8fg6Jz5LzFpgOYFoNGrSy2hkca8g016ZjhdavIj47ounu7cudAboIHG/Zd8KAn1khem+SqAdgCMAvtt1Vd3mxPkocK4lKuigqT5lphmBUOpcDRgwUEAAV+t0k7nFZ5g6rB+ZMrovbHWPUKb3yMgI4vE4UqkUpqenkUgkkEqlDKtc7TcGCjTdGFgFMTTIq/qG7CtgxeEbGxvDxMSEyTYkE1kbrinbmvrLtrHUNtPvM+tJS8HZgWTWcefrWoJHU9KpS1QHa0M7e121xMxmhWvN+0ufKwAO3Uawgux6ZWtqujedbQIC9Xp9jd7mGtHOKhaLmJmZMfY3bapcLmf6z7jdw7w+Q0NDiEajCAQCJhCuz1goFDKvLy8vO2rZ74WsQU937754unvrQqKL7o922Sw+r+pbKVjH/YDM9n43Bd+sKJHK7kHC991KZWiAwPaRbVBV/U1t/Ek7xw5wksi01f2hH/uCBmlHRkYQi8WQSqVw+PBho8e1UbwbiK6MbF0Lez0Y+OTv5eVlw3RnRhPvE9Xdqh9ZWkbXXkF0vf90bDYoS7tLr7kbGcwG0lXssn0qOj772ejlunEcvDZajxxYzXBgdrwG+PX51Mw6/pD1TSKbPT8+K36/H/l8HmfOnDH9X8hwn5+fN/1d3J5r2+/mb9oiAExGA+1DVgHQTIULLZ7u7q9sCUR/+umn8X/+z//B2NiYUUSveMUrcP/99+P3fu/38L3vfa/f49zX0m6vpIT7/X4sLi7izJkzjk7QdFLXcyp449ZqNZN2MjMzY9KGGOXbTeHGpg4X2UztdttEuf1+/5qUnX4IlZGytbgpEjzcSkR8O6JO4ujoKA4ePIh4PI5f/MVfxNGjR00acCKRMM02VKkAzoanbsK5aHOveDxuFPXU1BQajQamp6cxMTGBQqGARCKBWCyGQqGA559/HoVCwURJNUVqJ4IdOyW8/lRQbrXobBkYGDBldZLJJMbGxhAOh5FMJhGPx9FurzTSI1uNQI+mn2sJo3K5bDIBcrkcms0mstmsGQsVOhVXrVbD888/j5mZGQSDQfzoRz9y1Gvl+Xk/M6NAjVwagKlUytxTIyMjmJiYcLAUyNbjM8LyP3QoLrR4ynz3xdPdWxc+NyyfRaYSM0q0HIk651rOg0BcoVAw5ZXstHxgbfOnnZJWq2Uag0YiEaRSKQwODppGqHQK9DXqdjKVW62WAflox5AVzaAhv8NsKzosnU7HkAl4fIKYW3m++7VWdEjj8The8YpX4Bd+4RcQCARM3VQGYLmGrVbLZBoMDAw4gIZOp+OoBcrf0WjUMK9s5lk8Hkc4HEapVMKpU6cwMzODWq2GbDZrAqvs6zEyMoLh4eE1wDTXQsFX6jUGeKhPeH424ARgmqcxRZxOLYESHoNz02CKz+czWW5cH2XrM6DCdev1mmjqPRuUcc4sJ1Sr1YxNDcBkifF6kknPhqWZTMakpOu9p3obWA1+NRoN44Tr/NQ2oH3gNge/3490Oo3LLrsM8XgcIyMjGBsbA7DaLDYcDmNkZAQAjK9QrVaRyWRQLBYdx7SZfLuhFz3dvfvi6e6tS6VSwdzcnCnFFYvFTBbq0NCQI7OG9rWCl9zTmW3ywgsvdNXdwFoQup/CZ492RKVSMQQa7qXcgzWwTX1AgJKfYzCRn1EQV0FYfod7oIK6tVoNmUzG7J9b0cP9WqtAIGAylF796lcb3R2LxYyOpu7mPLVEioracQxeqp+cSCQcIDx98UQigWKxiJ/+9KcGo1laWnKs3dDQENLptCmbRjuALHUNWDDYS33JMWhvE732bnPQIIHb2tuAvIqNR/Cz62U/2N/XUkrRaNQ8g2Rxs5ycXfJMfV8Sw9gXjuWMiQEpoU6FGByxsoWFBbOOvI+1DLBb5h8xmuHhYVx22WVIJBJIJpMmI5X2RigUMuXjWCK2UqlgYWEB+XzedW10TXdaPN3dX9kSiN5qtYxhNzo6ipmZGVxxxRU4cuQIfvKTn/R1gBeDEGwmkEXnkQ89P7PRzcnjcCOgc3ChmMQcrzKTuOGrM8HPEozs17mVZaWlZPRvnnc3H3wqVEYkyWAjA/3AgQNGgRCI2OzxKXbgpdVqmdRq3ivRaBRnz57F4uIiABinmYpDDaz9BKTrc2VfczdRtmAoFDJGNFP2AoGAuX9pVNPRViNJGWwEuXO5nAHRCcJr9JzCdC9g5dpls1ljBPE60BDtJmpoxWIxEyBhGSCdJ7BiVNJoAbCmZuKFEk+Z7754unvrQofT3hu559hZMVob3E4V3qiEBYCuDk+/58QgG4EDzkkdETLFCSyq00kHk/skAwYExtWJo9NEkBWAg0BA8PFCZ0ZxfsFgEJOTk7j00ksdKdPKBCNjX9lVyvTTMmL8rLLW9Ttcq0qlgvHxcYTDYWQyGeRyOQBwgB8cp5YaANY2jSW4bf/w/gRgzq/XQeuBKhNd9a4yGRV41tT+9djovJd6EY6P9xCdcreUb2ZCAkChUEA+n3d8XgMLpVIJS0tLPQE//Aybj7mNkeL27PLaBwIBYxsS2Nf1IlPd7/cjk8k4ykB1W5tu59wJ8XT37ounu7cuJLx0Oqvlp4DVvg3UYdyPuDdxD9FMZ5JRuu0XbizhnRDaI61Wy7Wu9EY+nPp9NoDK7yqhy95ndc8niKnZZRdKqCMikQgOHDiAyy+/3Ngk1Mm8rnaQoJsu4jz5N7+r5dxIGGSPj0KhgIWFBSwuLq4JXGiWmtt5bT2iOAfnwM+pfcXXNms/6TXj+bplMfAzGlzeSGwGOvW3NqTnHEmK42sU+rY2eW1xcbGnMdCeZTZ+t7l1mxP97lAohOHhYSQSCRPE1yAD7Uafb6VUWyQSMa+7ndPT3ftbtgSiX3311fjhD3+IY8eO4dprr8WHPvQhBAIBfPKTn8SxY8f6PcaLQqjUKpUKzp8/j3w+b5g4wWDQRLS40fA7CpyT5TozM2MiW4zI7SRbbaN5KbjAciJ0BOyUHU2b2s756Lwqw6parZqa82Sh7yaA7vP5TH3zcDiMyy67DL/wC7+AZDKJyy67DIcPH0YkEkEkEjG1+foNVmtKVzKZxIEDB0x6cSQSwcLCApaXl829Uy6XHQx+grNbSbXebaEy5fjdHHZg5brEYjFT+uSlL30pJicnkUwmMT097WhO1mw2TT3xxcVFLCwsGIVNUEGBdoLsdKo1bW+j+05TRNXw3ghY4zWmMcLnTA1eG0gne5KGnicvTvF099alUqlgfn7eBK9YaoF1rDudjmmwSKCvXq9jbm7OZKIRSF1YWOgpaL4bukuBTy0LRkdM9z11vN0ChBTaLGSa85ilUsk4Qsrkpt7eKBC6E6KAAcHo6elpXHLJJYjH45iamjKBRzfn1C3lmvcAAMO0UraUnpsAqYIVoVAI4+PjSCQSqNfrCAaDhsVUKBQc5XAqlQqy2axhWnOsDMQqa41Ov9oeqnP0OxynNjjXciqBQGANsMDf2lhXned0Oo1IJGIyMdj8er3rze9Ho1FcfvnlGB0dddR0p17j/VmtVg1rm2nexWLRsMbz+bwp+9Jutw241i/pBqDp9VUWoTZjtYkfNrjRbZyeY3vxi6e7ty71et00JKZwnySgbtvK9XrdNCjU7JKNQLvdBMNs3c0eGdxjeskA133FLgWiosAtg+oMEDOTebcJaxTOdWBgAEePHsWVV16JeDyOiYkJ8xk7UGDrXDdRv4x7M4PQtIUIAtN2CgaDGB0dRTweR61WQyKRwNLSEprNpgnW8nsM4rLJKOAkMDCowwCqBp01+GOLAv2cr70G9jzt9xXY9vv9pnxduVw2pUaZrdZNaAdHIhEcPXrU9M8ZHx83OAMz8wKBgKltrr3EuNa8FrQRSUbpl2wUeNJMO8VZ7ICDBkmUqb/Rc7EbgTdP+i9bAtHf//73o1wuAwD+9E//FP/hP/wHvPKVr8TIyAgeeeSRvg7wYpJOp4NisWgai3IDjUajpuwH04Q1YsqNpVqt4vz58/j5z3+OWq2GXC5nNrEL+fBpRJxOIRW61tgEVh1VoHu36G5Co0HTm1h3mo4TGfraTGs3hJt8NBrFJZdcgnQ6jV/8xV/EiRMnkEgkcOjQIZOGqUy1fgud906ng5GRESSTSTSbTUQiERw5cgSzs7NoNpuYmZnBuXPn8LOf/cyxflRs+wVEZ10zGrrdQPR0Oo3p6WmMjo7i//v//j8cO3bMMLQ1ktxqtQxwweNnMhnk83lTl1YZeFrnbjNZJfyc1m/V19cTPlMEDzQgo8dR9gP3lWazuWeurRcR333xdPfWpVQqoVqtYnBwEAcOHEAoFDLp3YODg6ZxtDJOyuUynn/+eczNzRknnNksGzniu3V/c8+kU0yQm6AjAOOsEPzbaL+jc02nMhKJmP2U32VjKabZagNmYPfYtRqYDIfDCAQCuOKKK/DqV78a0WgU6XTaZHe51bCn7qc+oEPPWvkcPxlqmqVEx1gZkAzGHzp0CK1WC6FQCBMTE1haWkKr1TKlcKh72OSMAfpQKORI09cMAVs/cH1tfaZOOJvo2tfCZqUpyE6ghfPi2o6OjiKVSqFWq+H06dMmILDeNWbpoOHhYfzKr/wKrrzySlSrVeRyOSwvLxuAvtVqIRwOo1arYW5uDqdPn0apVDJ1TjudDrLZ7Jr7qpeA92alm0NsA+gEvcrlsrGNmWZOUcanm9hA+26Ip7t3XzzdvXWpVCqGIAPA7KsATHkP+gK0qWu1Gs6fP28IRwy+9cK23q37m7qIYKNmEqntbwPFdmkPt32df9uZTUrOIXmI/v+FIvMNDAwgEokgGAziJS95CW666SZEo1HTcw5wLw1i/9hil3PRjIR2u210HH054h8HDx5Eq9VCMpnEpZdeijNnzmBxcdHYRQx0MMhLsJkZVNrHQ8tz2iRE6naKfa1sna/zItDb7drz+Gwgz/JppVIJc3NzKJfLpvG1m9B2iMViGBkZwXXXXYfLLrvMkeWmgSDtZVcsFpHL5UxZUzsAQn93Izt6K+J2PNprGlRQXEvve9qCvGZ6v+wF8XR3f2VLIPprXvMa8/exY8fwzDPPIJPJIJ1O7wgweDEJHRUAJi0MWHG2CYBq3cxOZ6XsS7FYNJ2ECRoyArkZAG6nRCNvOn5u/FrahZE7jfy53TduzoGmEbuVcOH/yggDnE1k9JjdWD+bFQLPoVDINB5LpVKm1jad850Cz21Rp9nv9yMajZoSAqlUyjQso/OpUd29vknqvUAlu1EZF9bE0x865zb7QpvF0GDR+ub6o9kOu6mYlPlop73p8WxDZS9dW0+Z7754unvroqUrbF3DDB4Cl3zmyLCm80QHfC/euxqkJmOeQB+wFtRWENIt/Zf6Vz/HdQBW2WC2Y8pzrWcbuI1jq6KgL0FoZi2x+eN6bDUtraL7rLL7bOdXx673C9eM7G+/349IJGLqhbIsFwEhu56n6gHbsVNARAH7jdaZ47THzmP1egyOifdYr0QHbQIeiUQQjUYBwNjOWg6HrFJmdaqTux4Q3W/pdk/qs8D7ntfD7TP8f6/tF57u3n3xdPfWhXsOALOXAjD9uwhWKqtYM5s1yOvG/L3QonqbosFRtz26W/BN9bYCrUoWcvM/1gPiu513u/sxj8nyV+FwGIlEwvQc6zYWFd1v3dbJ1uv6PTedQpIT8YBOZ6VOejKZRDKZdNxztCW1lJ7iIzaGYa+xHRiwbQ9+3x7jRtnImnHI42gGInuRbVQ2hqVNqLej0agj2019V86PpDASDOzSpnbZun7KesfTNVWci2NSfU2gnfPsZZxeAHx/ypZA9N/+7d/GX/zFXyAej5vXhoeHUS6X8fa3vx1/9Vd/1bcBXmyizhgZRIFAANls1mweTJ2lgmK6JxnDbKTg9/sRi8XMQ8vfW23KtVXRKCI7lysbb2hoCJ3OCvuOqXI0WNycOT2uKm8aCgQzGQVvNpsmyKBp4UyLHhgYMPWrFBRQw6hcLqNWq21p/mw2EY/HcejQIVxzzTWYmJjA8ePHcejQIcNy2C0AXYX3WiqVMoyLYrFoOpUXi0VTm/f8+fMmms9rs9eMc73XmFbGsjTd7nm/34/x8XFceeWVSKVSGBkZMfeCWy26UCiEoaEhU8s+FAoZVgqdXo7FTmffaeFz1Ol0zF7A7IFIJLKmsSjv70KhgEwmg1Kp1NcUuO2Ip8x3XzzdvT3hfsiaiqp7o9Eo5ubmDMOIJcWWl5eRTCaNrlIG914QZVKTEcuyK4FAAKOjo4Y1zrGzliwAB3uce4/OTdnsmUzGOI0sZ0d2tgKqyjZSXaTMMNoE1PdbER6fOvyqq65CKpXCpZdeimQyiWAw6GjYRseOosF8gt9kkzG4Eo1GTc+NSCRiCAYsgce1ZyZAq9UyjdEGBgZMRlkymcTy8jIymQzOnTtnCBYE0JVMoLotGAya0itcJ66/2pkKmChYpPaUzo+6UNnTDGhr3w1eq2q1irNnz2J+fh6zs7MbBr95H8TjcYyOjposD86VdpxmPNLOGhwcNE3HfD6f6UO007JeYEdtl1KphJmZGRSLRYyNjWFyctKUouG+webF3ZoXup13t8TT3bsvnu7eumgAsVQqGf/5/Pnzptkh92bu3bSbqct3u8zYZqTRaCCXy5m5EEsA4MAVNBMGcAZE7cwkfZ/ZMgqs0m+22cIa1CQYyr+VUEedsF7/p/WE9sng4CAmJydxzTXXYHR0FMePHzcsdJ2XzskOXOt1tbEJnstNmLmluEs4HEYsFoPP53OM41WvehWy2Sx+/vOf4/vf/77BG8hKV8DcjSWupDi9fko8UOkG8tugug32ct58FnjNstksCoWCaW6+UQNZv3+lgTZ7wQWDQQdRgDYd58U1n5iYwGWXXYZcLoczZ86YoIPOy64Nv5vCTLdqtYqRkRFMTEwYm5/zo81LIko37OdC7Cee7u6vbAlE/8xnPoM/+7M/cyhzYCWq+9nPftZT5l3EThsql8vGUF5cXFyj4DR9RJnn3OjImmK0jim8W1VK2xF1wqrVqqOMCxm9VDTAqqJi6RE3ppcqOBoxrAXKNWG9agXUuZkxRYpNnOiUMkjBlCE6tFtlYqujx0YmBw4cwPT0NMbHxx1pPxdCGGyJxWIIBoOo1+uYmJhArVbDs88+i3w+b0DWRqOBsbExRCIRtNvtPVP6g8Lngdc/n8+bdEI34X2VTCZx+PBhJBIJUzapW5obmei8pn6/H2fPnnWwKC+UqCPO+5+pdmrUsBQD7+tKpYJCoWAaEXvy4hRPd29d1BGnPmY97+XlZYRCISwtLcHnW+l9Uq1WEQwGMT4+jmg0asCzzTZ92mnhHtnpdIxjRxAhHA4bRjYABwjL4LiCyG5Cvco9iPXQuY+xnIsGKBWwZdBdA+5qG22XHUibKx6P49JLL8X4+Li5Ztprwg3IJyDOfiJ2Rt7Q0JCj1w1L9ZEIYDOTac8QrPf5fEgkEqauaL1ex/DwMACYfh3FYtGRTs/vK8OeTCmOUcvN0Ga0MwSVlFGr1cz4tR4u10DrsNPGo52lDMaFhQW0223k8/meUrF9Ph8ikYgpA8M6srxugBNEj8fjCAaDaLVamJiYQCgUcpRw2Q1Zb05cC9Zsr9VqJmOR9xKDFhqkAjZmD3pycYunu7cv1N30EbnvcZ+m/1qv1w0JSzN+tgtA9UtsVjeJZH6/35Td0OAmAXXqOgVruYfzdc2W5/vMXGYGFMvRkqWvvof6/Moqps+lwWLVF1tZAzKdR0ZGcPXVV+PAgQNIpVIIh8MOQpFNNNRgJ/dXJQIwo6nbtebr9EVZlo6gM0sD8Z4igY2B85/+9Kdmj6fedmPou5XgoW0EYI3dYwPvdjaaHod/0zbQMdB2UIIFbVfb3ljv+sRiMUxMTBifm2uv5WS45rxn0+k0Dhw4gHg8jkKhgLNnz65Z+wv5DDJgxTK5Gmzheijp0w3bUtkL+4knW5dNgeiFQsHcwMVi0dQUA1Y2ky9/+csYHx/v+yD3u6gjY0eENR2EwjWmI0bnhgqDDR64MQNw1AkvlUrGsdtt1imVEoFvGit0sujIEcxWAN0NROfGTgBT65KSvaasP56r0+kgkUggmUwiEAhgeHjYRIfp3DFiTmdwaGgIzWbTKMONhOMmSD8xMYGRkRED2JPtvBfY3FSuDL60222kUimMjY2ZBnha84/10ffK+BVsoJGrQNZ6iohRbmU0dpuTGiEa9d8La0Ahu4A1hmmkJZNJBwOQ17LRaJisi43YA7spXkR898TT3dsXgoX8rWwrijpkfE7JNAKAaDSKTmc1dVwd80ajsSbVdzczXHRfsBlaypTudDprSok0Gg1jn/j9fvMav6u/7XXSUi48H0uq0E5wy1ijjeT3+9c0deb7G8nAwIApuTY2NuYIsiqjiNePY9HsOA3Mq13HALTaZHQ+eW5glbmnIDfXlWtN+5HBjEQigXQ6bWyWarUKYJXVxkCwzdznOvPaENTQtVJ9SX2ogRatWU+dqver6k/9rTYtwYZeUrJZIo+NRDV4oteBa0ZWmGYa7jVdQf3NMZZKJfPc8FppkKlSqaxpSnshxdPduyee7t6+EMTV/VnBPLc9TH80AKp7nq0DNTNpJ8Xt+eFYqaf1c3zdzcdutVqO/hUEuJVVq3utZj7R71adwJIqXHPqLgXp7awolubstfQFsKLb6OMPDw8jHA4b/awYCq+xrePs8yiwTFHgnWsFrOpuO5jBNeU+rk28qZMTiQQmJiZMg20SmyqVijk22evdfDV7Ljrubvq4m7gdy36d9mmz2TTXqZdrxey7cDjsGJfNLNfXlQy6V3xVwBk4IdmEZBmS1vQZUaIn7ZC9IJ7u7q9sCkRPpVLG8L388svXvO/z+fCBD3ygb4Pb78INifW6yIpWcFU3YXWktd4zo8uDg4MYHx/HsWPHDIBO0IzfLxQKWFhYQKPRwLlz5zA7O7urzjg3GG6YjFw3Gg2T0kzW1tDQkHE+tX4lhUqr0+mYjZsgN9Ndy+WyiQLTkSeD7MiRI6aBZCQSWVOTXA2BmZkZ5PN55PN5PP/886be5nrCmtpksL30pS/FwYMHcezYMYyNjRkG2l4BYAm2TkxMYHh4GJVKBfl8HktLS6jVajh37hxqtZphSMXjcQwPDztAogslVKb1eh3nz59HLpczJXzWY7TxevN+20xWAMEylkvZK0IAolAo4NSpU6bcDPeWZDKJSCSCSqViGhJnMhnTqGWvMNE9Zb574unu7UsgEDDOoTKiyY6lTqIhDazoGPaeYIPpoaEhU3ObOrLdbmN+fh6nT582TFQF4nfyXud+AqxtFmkDlMVi0XyezKJCoYBqtWr0xdDQkEn9BWCYaMrKUTag9jChIz88PIyjR4860sE5LgBmX15eXsb58+dNRtLS0pKjLMxG6xYMBnH8+HEcO3YMo6OjOHr0KJLJpIPtThCZJbN8Pp9h4FGnavASWK2L2ul0kMvlsLS0ZMbDNWDAgRlzAwMDhvRAxpemOjNtnQwuNiVrt9um6TXvtUgkYoIQvF/VuScwwjWgHaZ9QBjk0XXgfc5Gocpo5GeURadBeJI8mApOYEWfF1t4Lxw/fhyhUAjBYNA48ixDx/PQTqnX68hms1hYWEA+n+/JltttWV5eNqXV5ufnEYlEjG1CIIvlHufn500pOU93v/jE093bl0AggGQyuaZMpfrdDMTaweRWq4VEIoHJyUmEQiGkUinE43ET4Go2m8jlcpifn0ej0UA+nzfl3nZLFODj/so+UCyjwf2efit930aj4VpqDFgl5xHUJDFHm2PrerH82NGjR42OZoCYOl519/z8PPL5PKrVKubn502GVi/BwkAggGPHjhndPTIyYnpdcVya/W9XArDJVApCE2TXUnHUb8qq537NoC11bKlUMqXcGARn4+/jx4+bEr3f+c53TIk7NqiPxWIYHR1dgx1oQETXh+MmWK92m9ta8p5XkN7ej+3/aWMQNGbwZL193OfzIR6PY3Jy0gQ41JZQ21azJRhULhQKPTXx3S3hmOv1OhYXF42/zUxB2mjNZhPlchnNZhMLCwuYnZ01z9leEE9391c2hY793//7f9HpdPBrv/ZreOyxx0xaKbCyoR05cgTT09N9H+R+Fm7UBNC7geia2kOho0PjemhoCLFYzJTb4PEonU4HoVDIsHWZWr6bN70qVm4aZN8Dq00z1Hni/92Y6GSYMcJOZaVNJfk+wdJgMIhEIoHx8XGz9jYYzHVhyQuWnHGr6+omdNxooI2Pj2NkZMTBmtorADplYGAA4XAYwWDQ1AcnEEAnmeAA695S4V5o4b1VqVRQKpVMMKWXaLVtQPUqW/3eTouCWmw8zE7pvL5q8BI876WR226Jp8x3TzzdvX2h86QBNeoMOiT2fqTMrUQiYZpfDQ8PI5VKGT1Jx3Vubs4Bnu+WqINmiwLdZFJznvy7Xq8bthGdZttp0Pkw2O62B9iZNerU8hjBYBChUMgRVKeDqwzn9fQ4geJkMomxsTHT14TNr8jm4+cAGFuMAQE3NjbgTJkmQGOXuNMyJGTj6bEYXNFsRALX8XgcqVTKlByg7UQGFEuucN15TZQppVmKdkaFDTZooEPHabPy9RrbelNBeAXaewl0xONx46jqubT+e7vdNuCGnX2113QFr2+ns1JeolgsGt+AYAPt0r3IqPd09+6Jp7u3LlouQn1AN18TcAcTO52OKRUVjUYxNjaGkZERLC8vm9IWPp/PZJNUKpVd97t17NyraZvYmWDc6xUcB2ACqMo6535tM9FtcFMBZQKLxCe4Z5PsFAwGHf4Jhbqx13Vjr7Px8XHT80tLl9nAud3PREXvBw2wdMsq0GwzrrPaKdTduubEQBRYZpk/Yja0DXi8XkVLvXCOvdyDbraX2/t63XvtD8A5s88ax6Ygutp0mvnAzI69wt5W0ZJrzNpvtVqmBBBtedp9DLTtFfF0d39lUyD69ddfDwA4deoUDh06tKmH/MUoWguMikOZVbp+ZC0NDQ0hHA47an2Gw2FMTk6aGs00tG2GFplErAmWyWSQz+eNo7mbD7Juhu32SsMyNhYlY5zp31RwuiaqANrttnEiGOVTpr5GW0OhEMbHxxGJREy6czf2Mc/BeqhUholEwrAT1iuHEw6HMTIygpGREUxNTWF6eto0rdyLADqwauz4fCv1yqampgw7fWxszDSLYfo5m9Qwi2A356QKtlQqoVQqmTroZHFtBDTxGPl8HnNzc0gmk0ilUiYt3i5Xo0GgSqWCxcVF05BzrykPBtZYeoAsWLI+1fEOBoNIp9OmAZAGqPbavDzpv3i6e3NCx4sMIgaCbTAVgKOWKh0glpyi800WuzZ5ZAkOPoPMaGo0Gjh//jwWFxdd62XuprC5Gh0D7jFkL5N9T/bQ/Pz/z96bB0l2VWfiX2blvm+VtXV39SZENwKEJUaWwBJgEBZesAxGE/ZgY4NiNMIsaocdyEaBDAMEhlH0ECABMRiZIQA5gtFgAmwQHiO29ngQu9ZWq9VLda1Zua+Vlfn7o37fqfNuvazKqs7a1HkiKro66+V799133z3nfOc758zA7XZLg1Luoxps14xofV+cI4/HI/rYDGLSEdOfcw/k89GOZKd58/l80gBMO3kMIOuMHb/fL2AAbRWWE6P9YNZsp2jmGtnnDFBr24f3RJCHeoh2CHvncM2x3rpufMrABNcLAxoMbnD+NBMeWLaD7NYZP6dTTya+ZrNrp1gTPggasIYobQtdAmA1Fjqvn81m8eyzzyIYDGJ0dFRqo5N5x6xMvU5MBv1OFI6XzvbCwoKsJU2m8Xq9iEajFhAD6Duzl4r0dff6hO8QCUMkVgFYoTu4H7JMKkG7ZrMJj8eDZDIJv9+PaDQqfjfBc4Ks7fZSU/GxsTF5N1lydDtLUiwuLoofp++dtbl12QnqGnP/ZBDSDKCbew/9C5KzdPBb21LAcgmxVqtlyc7n72uBpz6fTxpvs+E0Gd8ALMC3iZMA1gx3BqcBWLAH/qsJE1r/cz3pIE0gEJCMLg1o69I61OdmlpsGlOv1OgqFguhu6unVhPehwWmem+Mm9mRm/tkJP69Wq9LHhmVJug1KMzPu7NmzCAaD2LNnj2Q78D3R9ogmlJZKJQlQ7TTRASM+Lz5L3fi81WrB5/MhkUiIDcdAUl93P3dkQ3UaxsfHkcvl8O///u+YmZlZoST+6I/+qCeD283CTYvgo+7SbFceQ2/gunHTwsICQqEQ9u3bh3Q6LdFLs7wENyBuumSpVqtVqR291dEwXfuStTp13VQ6vrxnrXT17wQI6YSz+ZZOSQaWNv5AICDdoGn4rMYkppJhHXOHw4ELFy7A4XDIJm634ZENNjY2hlQqhf3790tXcBpuO1W41qLRKPbv3y8dtM+fP498Pi/NRpnmx8Yt+hlthejIdDabxdTUFGq1mjRU64atqb9/5swZJBIJjIyMIB6P2zojmjlaKBRw4cIFzM7OSl3KnSSsnccsgnK5LBHyUqlkYTH6/X4MDg4KsK77C2zXffUj4lsvfd3dnVAveL1epFIpBAIBC2uLIB6zw9xutzgcjUYDmUwG9Xodbrdb+nHwhywwlpkgGMh9eHFxEb/85S8tgON2OeLNZhOZTAbz8/MrHDMGndkgnfqZoDGDBYVCQUpvaFDTfH/9fj9GR0ctpUhMh8VkmBGwJTDA4DwBjk7CZpWhUAjhcFgC3wQzq9WqMAojkYgEUnjNarWKUqkk5+J86CbqvL5mQZItx9+B5QbyZJoTsOBc6WCxdrSZks9zM2DBdP7FxUWxr8y68iRrAJDgNLDSGednBOVZHoCl4LQzTjtOZ10CS4BSJpOxMLi63ftbraUyR4899phkb9AW4fpiYLzValkaZ+tAxE4UEzTgnHH9AJDARSqVwsLCAjKZjCUjYLukr7u3Xvq6e23h3kadQFITM1OYpaN1h/Zn6Fdyfx0ZGUEikZBGzAQAyT7neZghzmAzyWtrBQk3U5rNpjRV1j613++XjCYN5FLf0bZhqTZduqWTzxUIBLB3714Eg0FLGTEd/Nb+FoFsljxhs3HO12olOkOhENLpNCKRCEZGRjAyMiJYAgAJXujnynvl37VtYAK5Gi/QJbb07yYozzIsnHedBWYSl5g9r+vI81g+B1YgSCaTXZPXTJa3vj9NBiGGosF2jkNfh0GY2dlZKT9DUuF6dPeTTz6JRCKBZDKJwcFBS5afDmBwXlkeKZPJCFFhJwnXCgMS1WpV7sntdguG0Gq1EAgEMDQ0hEajgdnZWduKE1stfd3dW9kQiP61r30Nf/iHf4hyuYxwOLxis+or8yXhxqA3iLXAVZ0mRMeMwDOjtasBmfw+We2MnG8XK1o7WHz5zLp0VHDcUE3nWbOe9L/aQaIC0MAijaW17l2DAnRwdQS7E4jOSDEbZzBgsluYInquWK+NBhONQabb6XR9bRBtxrrSBgej9kxpNhvZdHs+1qkjAFCtVsUR1+wLAhGMvOt0rJ2iPEymhJlpoedPH0fGOhkJmnmyHdJX5lsvfd3dnWjHU+tkzaCmE2h+z/wO91iymQkI8/3TwDD1jq4lut36xNxrHQ6HOKrUw3SK+Rn3F62713rfdWaN/r523E3n1XQadWmUTrobgAXoZ61tE1AxHWpeUzPH9Nj1jwk0aB2jbRa7cXF+9fF2z0Bn87H0mmbi0+7TbHHTttI2Ke/LLG2g74VrWt+PKTwHgRDqbM3QWo+Qqe31eiW4odmQmi3P9Go6thu53laIdsQpej1r/U27FFgGdfQ63A7p6+6tl77u7l60/rYrFaoBR73P671RZ5FrApH+HkuV6H2U3wFWlo3ZajH3buoDzU7nveixMpCn/exOJW94PO/bbr55DMekg+mmzbSaT6J9GfrcDIBrn9TU23rMpt42n73dNfW/5r3wcz5/M3irbRiNgRBn8Pl8K+ZZl3KjLdMNgc20l8z7MIMZdt81/W8CxBsJSNOP9ng84kub5Vw4j7RxyNjmNXeaaL9b24LaDqHQpmWgRZej6+vu54ZsCET/8z//c/zpn/4pPvShDyEQCPR6TM8Z4WZP4LubEh96s/R6vQLQ8qdbJrDDsVxXVBvh2yWm8+lwOIS1BlijwWYzLYKgpuNu58RSubJmfLfCOSWzkA6ZnXCMbBTHlDLWcN3JLHQtTJsHgOHhYezbtw8ejwenTp2SiPjExATcbjcqlYrU7YzFYmIs9bJsjXa+GQWfn59HvV5HJpNBPp/fUHMtRsSbzSZisRg8Hg9mZmYsNfN57VqthrNnzyKfz+P8+fM4ffo0CoWCRO53gui1znIErNdIhiPvSSt0pk+GQiFLrdXtMlT6ynzrpa+71xYClARzNSuYoBwbB7ndbmnqSwYzdV0wGBSGWjweh8PhEJ2kG4fq2tvUkU6nE8lkUsrC7KS01nZ7uXQUx68dCP5dO4KmaACR39EBB4fDYWH78Zmw/jfnmhlDLPEWjUYRCoWQy+VWzSILBoMYHh5GNBrF+Pg4Dh8+bLm/UChkaX6p9RwdVH7G0jCmg2oCuGRit9ttKfGjj2fwhGuAPS4YSKFNqEEen8+H4eFhCfgSaGbjTdZZZc1O1hYn0A5AmrHzWZHFp4ECXfffJC/oNHE2eOd5FhcXkcvlJDi/XkCb7PLFxaVGqw6HA8888wyi0SiGhobgdrsxPz+PbDaLSqWCU6dOYW5uDsViEVNTU6Lndoqu4FpmiRbWjCUQ1Gw2pfwR3yuyHFk6iSAYa7Fuh/R199ZLX3d3L9TVulEzhf0gCGjpLCcAQo7SBCm9H2o/lt/R2S8+nw9jY2OSGWqWBNXksK0E0zhmMqF5L/yXOkYHxe1qgpv+nhmUBWCZV8AKVusa67rkja4pvVoz6GAwiJGREcRiMellYo5J70/m/Op7tSuva5Z74fc5DzpYoOeD39drTY+DzzwYDEr2wuHDh0VvTk1Nif6krqNeZTP61Uq76MC7CVTbBUH03/gcdMlcli2i/l2vrmm325KRkclk0G63cerUKcRiMezZswder1dshVqthomJCeTzeczOzlrmYqfoCq5fXXaQmXnanuVzJoDOf5klx/Xe193PDdkQsjoxMYF3vvOdfUW+imgQWG/U3X6PGyedSrKlumFW8zzsuG3HmNtq0S+uHauK/2oQnUx6HRm1YzNxzuiE6uj0egBensfv90spk04Gw8DAAEKhEIaGhpBKpRCLxRAKhVaN9O40YYoXACQSCQwPD0stQIfDgVqthkqlIk54rVaTskRcT71aV1qxU9HkcjlcuHBB6u1uFMhut5fqqhYKBWn6WiwWMTg4CKfTaWEClEolPP3005iamsL09LQo852kOLj+mJIfDAYFyCEz0QTRdfokj6Wi78ulI33d3Z0QRHc6nWLoaweRfSNYUoKlNQh8EVwNBoNSgkJnUWnHXYPQGqCNRqNwuVzIZDLbORW2wpR2YNlB1gwbliQhI9oUBva1g6fZ4ZxLimZ76ZRkOnzlclnqz3N82Wy24/iZ6h+PxzEyMoKxsTELMEk9z3vRJTQ0MKAD96bTreeD4AGdU5fLhUgkAmBZ9zGI4HQ6LWnTen6YocDfWWqN+hEAyuWyAMssXwAsgQBmw3OCtARPdG1u/bnJUNP6kIw6NgPjWDKZTE8yuMhgY2kBv9+PvXv3IhqNYmBgQJqMFwoF/PKXv8T58+ct79VOEr4rbrdb9DazIYDl/j+cZzLYuL/4/X4JqnUiefTluSl93d2d6P1XB5+5p7PcFfd3gun8rs785r+dQC9+T9c+9/l8GBwchNfrxdTU1Irv0H432bibLbyO2TSbPzrzmvu+2QSaYmZB6MAupVPWltapBG4BSDkWzfC1EzZmZ3mvaDRq2e81RqJL8OnAr64Tzuvq8ZkgtJ4LBkH1nOhrco/X963nmfhEIBDAnj170Gw2kcvlpHwfA+DtdlvGRltyNTzDHK/OatIZFGaAgT8s9UnyGoNNGyVwtNtt6WXm8XgEP2C5XQDST6dQKOCxxx7DxMQE6vU6isXijmOha93NwDcJa3Y4EQDxD4gz1Ot1wVb68tyQDYHor33ta/GjH/0IBw8e7PV4nlPSi4gPlbfpuHQDDmvg2WRta+BZK43tiJBR8WlHTbOeAFgcuU7n0ArkYubdTBHXoueNYKTf77c0FNktolPYmPVAp44p8Vx7bIwBQKLLdP5Mtp4JzNqltwNWkEGX6mHEls1Du+0GvppwTS0sLCCfz0vfAYIgHEulUsHMzIww29Zad1stpvFqsiDsPtelEHTAarvXaj8ivvXS193dickgMut7er1eATapqwCIPuXeqUuPsTGguRfyeDquAASQ7NSYbLvYbHaiHTLeh/6b3dg0M0ozw3gOHYzmOcz9iw47a9LrIPtqNowmOJCwQHYeHWUNBpCdZdpJZBmRKMEsKc2+p6POOdBZieZ8mGwxE5wgU1kfByyvTzL0dfMv6laC8sViUTIoyPjXQRCdPq6vYTLWdI1hXoOfa6JDL9clgRKHwyGNwv1+P2q1mjjeDIJs9zuxmnBu2SdI9wbi2M310cmG2i7p6+6tl77u7k60X6P1Bf/VpQxNO1nvg2bTZL1H261ffs7yU/QfOo1Rj3Un6G/z/u3Aby1aP5mlYABYbCbze9rvpH6kDl3NL+Hz0z03tI+mQWuTmKDHpzPf+eztdKt5n3b+LefGBKbt5lgHr/W90N/WLPh2uy1ANrDkd7NZPQMNtGEAK25hkgxNHU3AnELbhT96/fdCtL7L5/O4cOECAoGAZGqQlEKbd6frB9M/0Jl9Gs/iO0WsQQdTdsLYN/r9vizLhkD03/zN38Rf/MVf4LHHHsMLX/jCFZG83/md3+nJ4Ha76E18PQuPx3JjY+RYM4S6OQeZVXTsgOWUYTb0CAQCwn7hBstU7a0UrchNp1x/3klBcbxURNy01it01NgAyxQqfqbjDg0NIZlMSimN7d4g1yNU4m63W+6lWq0iHA4L44kgDpvDuVwuZLNZSQGPRCLCAGTnbV0Xz3T+dJScDj9TtUulkoDcvDbX4sUGdrh+SqUSTp48iWeffVYYhGSicGy6oR/T73ea2IHp5mfm8ZrNuVPW6E6c2+eyXIq6226tr7XuqFOob83SG8xe0c0SySRut9soFovCjibIR4Zwq9VCJBJBMBi0OEpkIQNLbOJsNttRDzGluNVqSYmH7RITZNCf638Bq3NLQJT2CEHiZrMpPTqA5UZdOjOMbCAASKVSopeefvppaZS52jPWbKJarSaNU6kHdMNm1uHWf/f5fNIkloziSqUiTVbJcGMqrw7atlotAbBNR58lbMhAbrfblsah1IfU28By1gTB5UwmI8Eajl87sMy2Y2kX2oF0sk3SBZ+hw+GQYEOxWBSmuQ5G0DnfDL3Zai2VdnE6lxq7zs3NWXQ3A/Db+S50K5osEAgEJEOA869L+7AkzU6Tvu7eWrkUdTewUn+vte50YFMHGDW4q/1KXoN7LAk83LPpT3JP0+cy/eRWq4VMJoPZ2dmO763JRNdZXFstei410UhnXpnH6gAAdZtm4zIwaAYw9LX4jKhD8/m87N1r+e0+nw+xWAyRSETK7Zm2h87yI5Nas4O1buY5eH3NTtf3xM90/XUd9NaB5tXmWv/r9XoRCoWkVjjL4PHvbBTudDoxPz8Pp9MpzVtZjlXbkXyGdgx5lnkrFovIZrMrsitZPoUY0MUS17TQZiBYPjU1ZakPTr9bN2HdicJ3lbYrS+wwW1/jbATPGRSwCzhtl/R1d+9kQyD6rbfeCgB4//vfv+Jvmk3Vl41HfbRzpSOU6wG/dE0zHTWj08MUIT4vRtO202A3DQvz807zqSOwGwlc6POYDAQtmolOEJZM9J2wOa5XqHDNe3G5XBZlziCOw+EQh1yDILpsEYM8mqnJ8+j5JYhOhzKXy0kZl3q93nPDktfO5/OWe9d/57h3stixa9Y61u7/2w2k9yPiWy993d29cH3RaTIzbehw6gC3Zk/zczJztXMSCAQsDoyZcUa2kB0TnTqcZU+YqaPHvB2ymgNp7jtaz2vWIOeAekWLyXajHg6FQgKGEwRZzQG0Y6Jrm0fbHnyOdNT5OUtmmeX6mI4NQIAFXRqFZTnsiBC8b15XlxvQGQ7MAuP8aGY7gRvN5tLMfN4nyxnwHpiNxWM5bjtGFQDL+tRMrE49a3oh1N+8frFYlOel36XdIJwrYGnMDNJxznRPhvXa/Vshfd299dLX3d2J1idmBpk+xs6f1CAZ/RStnzv5phQS0kgIsqsnrvdLu14b2yH6HvTe3cnX1nNqknJWY9ua7F2SAWq1msV+Wk1YGoPlbe3WPXWWBjb1eDSgyWvSlgKWS8qY98TvmtfSAfbVnqM5r9TBmg2vsQtdk56Z4Cz1y2A8r8nv2gG1OjuOdigDFk6nU+qS62yyXu7RWt/V63UUCoWenXs7xATM7WxTwJqduVPwob7u7q1sCETfLYbqdgoNfm7KBB7XikTpNBrNDJ+ZmcHi4iLC4TASiYQ4YaaiInDeaDRQKBSQyWRQr9fh8XgQjUYxODiIgwcPwu/3Ix6PSz0xKv3Z2VmcPn1aakxu12anFRP/r/+1O54OdDabRbvdlsZNa21e3OgWFxdRrVZRKpWk/qZ5PSo9ljJhh/Dtrjl/MULAgvfi9XqlUZ6d2BmfBMQBoFQqrXh++nu61AEBDzZBM9MoN1P0PewWxaDnVO8PXq9XUv1ooGvDjuCKbii6k5q2bJXce++9+OhHP4rJyUm84AUvwPHjx/Frv/ZrHY9/+OGHcezYMTz66KMYHR3FX/7lX+K2226zHPOVr3wFd911F06dOoVDhw7hgx/8IG6++Wb5+3e/+1189KMfxSOPPILJyUk8+OCD+N3f/V3LOd7ylrfg7//+7y2fXXPNNfi3f/u3i79pJZei7tZOXzfrnXsUnQxzj9BOW6vVEjaTXeZNs9kUfdRutyXzResM/q711MLCAiqVigDwAER/s2E4a2rzPBcuXMDjjz8uztZOEjsWG/+lw8agA+0VsrKZ3USHWTsw7GNRqVSQy+Xkd7MWLmBlKPr9foRCIWGRE9xm1h57SnAP1bpQp+UCkICvZm9p9pEJwBAQ5xjtys/oADTHR1DG4XBYmpuZGXDdlCBjCZtWqyVZEMxcNPU+51oz98i6p4NIUEqXd1nrXVvPO7ma2H1fAzkbtSV0mZte6EkzoKKbqlWrVUujOoJxTqdTslF5LPeFS3Evv5TlUn3e6333uLcBy+9cJ2BxNZY7GyIyyMXSldQh3OfMvVs3AOYzi8fjGB0dlQymQCAg2SZOpxPnz5/HL37xC1QqlXXda6+lGyKRLm1CXVyr1aSOtdPp7KpuP3UPsYr5+XnR33bkNc47mdjBYNCSIbiefVr7otTxOku/k07hdTTBjHOl50zv5fp7ph2kfTX6vmsFw/T64v0Tw9E4Uyep1WordLcmH/SDcfZCW5TrneQLNimm6DVBJjrr3LMnzqW6lz8XZUMgel/WFh154+92Dk+n79EQIDB54cIFFAoFDA8PSxqT3TmazaakAGUyGUxOTsLpXOoEHQ6HcfToUbz61a9GPB6Xzta6hMVTTz2F733ve5ifn8fp06dRKpW27YVfz3WpiBhwqFarcDgciEQiq843v8s0JjbVyGaztiAjo+dsKkGDyGTN7SYhQ46ggt/vl87ZdvNmGg1cs2xKVigUpAwB07M0EKUNl07lerYK3F1rjen73ymAs65TXy6XBfShYd5qtaTUg07p575QLpcFaNpu9stWRsQfeOABvPvd78a9996Ll73sZfj0pz+Nm266CY899hj27du34vjTp0/jda97HW699VZ84QtfwA9+8APcfvvtGBwcxBve8AYAwIkTJ3DLLbfgAx/4AG6++WY8+OCDeNOb3oTvf//7uOaaawAsleZ48YtfjD/5kz+R79nJb/zGb+Bzn/uc/J81H/ty8bLetaKbSJHdY6buAhCQk4xR00BuNBqYnp5GPp9HLBbD2NiYsIgZ8GJJNe6HNLqLxaK8vw6HA8lkEr/yK7+CSCSCwcFBpFIpeDweJJNJ+P1+/OAHP8D58+d3JIhuit5X6TwSTAQgTTPpNBNEJttcO3/MXJqfnxcg3XxGBD/Y8yMUCkmTaX1+gsgej8fC8KJzqhnkOk1alwDjdyqVigQJCHhrJ51BemYbaN1IG4Nl94LBoJQ445rz+/1S35xrSbPJVxMNmLNcTLPZRLFYlOtoEgHXoJk9YYp+z7oF0bs5di3pBLpw/tcLDPBZb/T7dsIxeTwemf92e6nEXLFYtGQ36ICODi6R5LGVNpKd9NlsfdmJov1n7i92jf8Y4DT1ugY6qbtzuRxSqRT27t0rtbgJorNRIGAth0K7nOdKp9O49tprpcl4IpGA1+tFLBaDz+fDww8/jGeffXbbQXTACgLaidaD3BtZTo2EHh5H0fpCn5/zlMlkMDMzg0KhYAuGM5DudrsRCoUQj8cRCoVWlOPU3zPvQZMpKDoorwl3OjvfDPxr/WpHxNKl3Mya65oprkFZ/l2X0ukkXF8MDnEdZjIZwT30HJjnMte5zsrQ97FTZCf44DooT+IGcbVKpQK3222x7Ti/tKPodzML/lLyu5/rsmEQ/eGHH8bHPvYxPP7443A4HDhy5Aj+4i/+YlVW36UmGig002Qp5gamWbq6jAujXZVKRYB1M+LICJlmmtLJ8nq9UsOaSjyZTCIej0taUKPRQCKRsHy209JI1xLOFWvR6o7dds28NFOXP3RaVktN1wyHnVRjeqOi0wxXuycGEVhX1e/3WwxLl8slTCkdWddGjmbKbUSZrBaA6oVoI8eMMJvj19fkuiCgodNK9TnMFNGNzIEGeGh8ca3r2rtamevyEnwuzwVH3MyWYc8CU+655x689a1vxdve9jYAwPHjx/HNb34T9913Hz784Q+vOP5Tn/oU9u3bh+PHjwMAjhw5gh/96Ef42Mc+JmD48ePH8ZrXvAZ33nknAODOO+/Eww8/jOPHj+NLX/oSAOCmm27CTTfdtOb9eL1eDA8Pd3n3G5e+7l5b9P6kmcTmu8r3Wx+v1zWDXQTjdMqvbmTFf83mjMByM8pAIIBYLIZoNIpoNIpQKASv1yusrEgkIrXE+a7vFuH9NxoNuFwuKYvC/Yz1ak3wlt8h4cBuP9UOkHaIWSaF+o4sb3PP1udYS99rx9jOKdXX0mvFBNF5D53Grsei6//qUkN2wnsjSO9yuWS/JNOca3MzWWkmsaGXekgHTfTcmeCBnWj7hyw/rVv1eNc7N+b39XvPOeecUKdrEL3Xzd4uRvqO+PZIX3evLXY2NrAM6tq9P/p4vW9Td1Mnc+9m0Jz6htfRgVQAsocEg0HEYjHE43HR4cwOZ2ZZOByWYKzOpNpqWc+7qX0iXe6Te5cdI1qX+9L7ml35G4rWfaaPau7xq313NdG62+5v+hp2hC9+z668jT6H/p16Spf/6DT/PK/X67VkNJLA53a7BbfQpYg2Y6/tVRaZeU5zfvScr1ayUNttem3o918Huy7G99W6m+u20/qj7jb3he2Uvu7urWwIRP/CF76AP/mTP8Hv/d7v4Z3vfCfa7TZ++MMf4td//ddx//334w/+4A96Pc5dKRpsKxaLqNVqlrQw7YBTsZDRy1QROonz8/PCEmo0GvB4PMIaBpaZc6VSCZlMBo1GA3Nzc1hYWEAwGMRll12GkZERHDlyBIcOHUI0GpXGWu32Upo5DflarYZsNotarYbz58/LRrATNoC1pFqtYnJyUtg+zWZTGpGwDi0VO+t61ut1TE5OIpfLoVAoSGmbTps1nW9dV3U3g+ha8egfDSbw93A4jIMHDyIajWJ4eBj79+8XhoDb7UatVsPs7CxKpRImJyfxxBNPCAuazCs7ALqbMepxmin1WjFuFJgmAB6LxaS0DRunapbo/Pw8yuWyvKtkMTBYNTY2hkQiIeuOwASwXN6B7LPz588L+NNtQzTNlMnlcpYUMZfLhUAgIExKnrNYLMr+USgUpPTAcyEivnfvXsvn73vf+3D33XdbPms0GnjkkUfwnve8x/L5jTfeiB/+8Ie25z9x4gRuvPFGy2evfe1r8dnPflaCkydOnMAdd9yx4hgC7+uR73znO0in04jFYrjhhhvwwQ9+EOl0et3nWU36urs70aBuNpuV+ssAxCn2+/1SAozvL/Uk08kZ2CYQTOBS71/UH6VSSTKg8vk82u02AoEA9u3bh1gshsOHD+PKK69EKBQSvbW4uCjB9WAwiFe84hXI5/N4/PHH8dRTT6HValkcil4ELTWja7X31+4Yu+P5Wa1WQyaTkSZjbMzK5k2aXVytViWlmVk13AdN0TUqmbLMeeHnZNPFYjG0221L8NTv98tnZJQzaMygMhmIwHKZrVqtBofDIY07dQCa2UBm0MUs6cO1xOZn/KHOHRgYQDwel6w5lqexqwvvdrsRiUTg9XoxODiI8fFxcciZeTY/P49arYaZmRmcPn1aMsp6DabredO672Kcfh3A9vv9iEajwuoGluYzm812ZHu6XC4kEgmxi2OxGFwuF0qlkrC/uaYrlQrm5ubWBXYRlNOkAgCSAUmAToMF3D9ITNgJTFWg74hvh/R1d3fCtUl2bj6ft/gPtO2p32nXa3+bDF8SsXSDcZbXIgjcbrelnJguJxoMBnH48GEkEgkcPnwYR48eRTgctgDPbIKdSCTwG7/xG8jlcvj5z3+ORx991LLnbjTg2Ol73epmOzEJAADkvslQp30cCoUkkEDdRt2uSUDFYnFV/4fzZZILOWbtl9PO0Yx5jbdQb/Jzrg0dzNQBdeoU/quztMy9nOfksXr8+hjOWzweFx3FviR2z8Hj8UjWwujoKC677DKxJd1uN+r1umTgT05O4umnnxYbtNeiG5kzYAIs++gb0Q20qXWPFs4jgwNzc3Mol8uWdUfbzu12i98eCoUwPDwMj8eDbDaLXC4HYDkIUSwWMTExsa7efyaBhrZAtVpFsViUzBTzeNoOCwsLKJVK65qTzZK+7u6tbAhE/+AHP4i//du/tYAH73rXu3DPPffgAx/4QF+Z//+io9vc5Kl8ueFz06HDxHpVOv2HbBS+tOVyGR6Px1LTnJGufD6P6elpS30rt9uNvXv34nnPex4OHTqEsbExhMNhW8YVx10oFPDEE0/A5/MBQM8BNzvHvBdSr9cxNzdniUr6/X4L+EoFWqlUUCwWUa1Wcf78eZk3BjFWE83a7jSPu0k0s97unvj3QCCA8fFxjI2NYe/evXj+859vaUZaq9UwOTmJUqmExx9/HJOTkwAgQNLFjE8zxMwmf2Yt9Y2C9C6XS+oNRyIRUcaM8BMYcTqdqFarYnjz3Q6FQjhw4ADGxsYQjUYxNjYmgSoa5efOncP8/DwmJyeRzWY3HBWn8akBH5fLJTVuuYcASyB6Pp+XJq529f53q5w7d07qQwOwZaHPzc1hcXERQ0NDls+HhoYwNTVle96pqSnb45vNJubm5jAyMtLxmE7n7CQ33XQTfv/3fx/j4+M4ffo07rrrLrzqVa/CI488Yns/G5W+7u5eGITSDQz1HhQIBNBuL5VKIthIp5q6kiAoHXGCr9QvZBO5XC5kMhlcuHDBAsx5PB7s2bMHo6OjOHz4MJ73vOchEAjg3LlzmJiYEGeWmUG/8iu/Io3Nnn76abTbbYsDu1Edrp1uUy90CjZ3+hvPYwpBTofDIVlhDMwSNA6HwxgYGECxWEQul7OUJaENZI6D96+ZbyaI3m63pVY6wUw6h3QYdRBEn5fPVDOH6cw7HEulVzSI7nA4RB/quqTAMoiuHXSy87mO9DN3uVyIRCISzKEu5vf0PA8MDCAcDiMUCmHfvn148YtfLCXAnM6l2tuzs7PS5G1qamoFm7NXQta76XhfrI1JUoPf75cANq9HMLoTED0wMCCZmuFwGMPDw3C73chms5ibm5O173Q6pXTQehmjulEcsNwTgGWMyuUy6vW6hU3HHj0bDYL15bkhfd3dnXDPW1hYkPIJOmDNnmLU7ySOsXya1pd8v7k/695RvFartVRSzNTdPp8P+/fvx759+7B//34cOHAAfr8fuVwO+XwerVZL9qJwOIxrrrkGtVpNfG+7jCrzHtcSu+9ofbMRH8BuH6KdxL2cJcySySRCoZAF0C4Wi+L3UJeRiNBJqA+dTqetv8Rna96r9hOptzX2on+o5zT5UQdmGUDXGUTm8QBWsNlNf1Sfm1mEhUJByFp2z4QB/kgkgsOHD+O6665DMBiUZ0EQvVKpwOPx4OzZs5sGotPXpU1FfXYx64o4De2XUCgkYLrH4xFczNTdtIG8Xq9keQwODuL5z38+AoEAJiYmMDExgcXFRXl+U1NTmJmZWReIznvSz552qhkA51oFlrKkc7lcX28/h2VD7WKfeeYZ/PZv//aKz3/nd34Hp0+fvuhBmTIxMYH/9J/+E5LJJAKBAK688ko88sgj8vd2u427774bo6Oj8Pv9eMUrXoFHH3205+O4GOGGy/qautEf2eU65UOn8+qIHJ0EbmBmdBZY3lg0KMpGVLoJmh3wy2N1nc2NgsTcbP1+PyKRCOLxOJLJJIaGhiw/6XQaqVQKyWRSGOPcTDdyXc1EIHiYyWQwPT2N6elpTE1NYWpqCrOzs8hkMpifnxc2W7ddqbVi3KyUqa0WrSC00mf03u/3S0mBRCIhSp2OOevuR6NRxGIxS/riRksD6fXPhqdMP+/0o9+TboUASSAQkLXKFEuWSgiHw4hEInJfkUhEauMnEgmMjY1hbGxM1rLO9uAP5y+VSmFoaAijo6MYGxsT1tt65kgzWthgVDfGZRScbBfuMTtlvep3aKM/ACTgwZ/VQOfVWLXdHm9+vt5z2sktt9yC3/zN38QVV1yB3/7t38Y//dM/4amnnsLXv/71dZ1nLenr7o2L3u91FpMGZlcL3vE9ZUNHfkZbwC7bi04cwUAG0cmc1llQ1N0MMppj3sg7z/RhlonhPs8fsqzJZjZti43qb9pJBD7L5TJKpRLy+bzUPWcQUzdetDuXJjPoNFzuh7qUmy69Z5btMplk+ns6hd28LutZ63qn5rMwWYK04fjczZJodo48bUGzMTcBWb/fj1QqhdHRUaRSKakJrxuUBgIBBINB0eVr7aerCW1HZmhp3Wz3GT/n/7tdO7QPfD4f4vE4hoaGBLxhEzoGxqPRqNTT5TqNRCIYGxvDnj17kE6nxWbR+j6VSiGVSmFwcBDJZBKDg4NIp9NIp9MIhULrWucm2MCMNvYs0RkHDM7tFJ1N6ZXu7kv30tfdGxdTd5v7tvb7zPWps8V1mUrqEK3/tVB304/WmWp6DwCWg4os3Wb3fqz33SEwSbuYZeDoy/BH9/UyG5yvV6hb2b+hUCiIzs5ms5LVVy6XhXxAHb4a0KifH3UeSUKm/WWK3d5s2gV2BCw+89X0tr6GHbGO5zDHbedn2wl1m9/vx+DgoOhu2ltan9I+i0ajSCaTSKVSXTV4XU2oV/UP/XCuV9qc/Gw9mfnat9elhmmb6HVLTCEYDMo1QqEQRkZGMDQ0JD3+IpGIEBsCgYB8l2s/Ho+L7iYpY6N2KrMS6HvrUsrU3TtN122H7r733ntx4MAB+Hw+XHXVVfje97636vEPP/wwrrrqKvh8Phw8eBCf+tSnVhzzla98BUePHoXX68XRo0fx4IMPWv7+4Q9/GC996UsRDoeRTqfxu7/7u3jyySdXzMXF6rANMdH37t2Lf/mXf8Hhw4ctn//Lv/zLitT6i5VsNouXvexleOUrX4l/+qd/QjqdxqlTpxCLxeSYv/3bv8U999yD+++/H8973vPwX//rf8VrXvMaPPnkkwiHwz0dz0aEjhQAeemAlY039MbebrctJTb8fr9sNvydkTC9UbMRFZlJZKUSCCTTqtOmQWZco9GQDZMM3G6FBgKdMY/Hg1QqJd209SYIQM5PZyKTyUjZCd1opNuXl/ORy+VQrVbhdC51Pycor9nLNGoIMvIZrHVunb6/3bWlL1ZMA1HXVCMgSENs7969OHLkCA4cOIDBwUFptkPji+WDuC7n5+cxPz8vLLf1zJNmxxOs0cxNbYhqw5YBETaKWysKzLXKOsOHDx/G0NDQinIuNMCDwSBKpRJmZ2fFyHrhC1+IF73oRQgGg9L8V6elUVqtFmKxmLBkRkdHUS6X8bOf/QyPPPLIumqn0WBlihpZ8gTXtNLTLNnNqnO7XrlYZ3o9302lUsJC0DIzM7OCSU4ZHh62Pd7lciGZTK56TKdzdisjIyMYHx/HyZMnL+o8pvR198UJ98RCoYBKpSLvVicjU+9RfOepo5mhUigUhA1nvvdOpxM+nw/BYBDNZhMTExPScDYYDFp0v27GqZvSXsz7zhIXJptMO7W8/1qtJtkuOt16NUZ6J6ED4nA4UCgUxCml3cC93g5QNsUskdFuLzHfOFYygZkl6Ha7ZV71v/oe6vW6sKLoyAKw2BYaGKjX6/JMmLZtsrB1thzLBvDvuleLriHLc7NkGn+07qajm0wm8dKXvhT79u1DNBpFOp3GwMAA8vm8pCTrlPJyuYxisYgzZ85IGnW3whRrXT6h3W6LfvP7/ZINSYYZ5wCAJSNwretyrsLhMI4ePYrh4WFLFhad/0ajgWg0inw+j2w2i2eeeQaNRgOHDx/GS17yEgnQ085mORgCbsDy+1wsFjE6OopKpYKTJ0/iqaeesuwDq80LmYpckywNBywHS3QQai0AZztkK3V3X5akr7svTqgjGIAFVvrdpuiyHNy7dLYQM765f2mh7maQjTY6S7Dpd4j7Cv/G81+MeDwejIyMyDPT2WjcGzmGSqUipeQIAG5UmBnmdDqRzWYtrG8AFt3Ne1wr20nbWbrRMuedYG+nJqMa79Bgu+kj8V/dm4Tlc4kf2Nl3xBW0/+VwWMud8Hy6nJ9dgF+vCWIww8PD+A//4T9g//79AjYPDAxIIEg3pOY9MKPhmWeeWfda4v0wmM7xA8u6HVhaYyx3x78zE7Kba1LnhsNhHD58WHpC0Xbx+/2CJ/h8PmSzWWQyGdHd4+PjeMlLXiJZ4LSBmfnH8pjAMpmA4HmlUsHp06dx6tSpjoGwtYQ9DLQdp+dqJ2JDW627H3jgAbz73e/Gvffei5e97GX49Kc/jZtuugmPPfYY9u3bt+L406dP43Wvex1uvfVWfOELX8APfvAD3H777RgcHJReZCdOnMAtt9yCD3zgA7j55pvx4IMP4k1vehO+//3v45prrgGwBMS//e1vx0tf+lI0m0389V//NW688UY89thjCAaDAHqjwzYEov/5n/853vnOd+KnP/0prrvuOjgcDnz/+9/H/fffj//+3//7Rk7ZUT7ykY9g7969+NznPief7d+/X35vt9s4fvw4/vqv/xq/93u/BwD4+7//ewwNDeGLX/wi/vN//s89Hc9GRad36/QXSqeFqWs+cSPXwJyuJUnjm84LlY2Ocq/F8GEUVTPZNxKp4zh8Ph/8fr8wexlx1ONYXFyUNFbWbabzwvvcCBCgG7TYpUxvND3WdNx3GktoI6LvRQMgwPKzZFCEGQVkY+u0bBoijUZDjqMyXK9QkXP9M4WMUe9OILoGV7pdt2TaswFQMpmUgI9pNDebTSnxQgWfSqWwf/9+BAIBxOPxVe+Xf2OZoXK5jHPnzsHlcglw1K1oMIslnzQTVBupO22NbqUy93g8uOqqq/DQQw/h5ptvls8feughvP71r7f9zrXXXouvfe1rls++9a1v4eqrrxYj8tprr8VDDz1kSbH+1re+heuuu249t7JCMpkMzp07h5GRkYs6jyl93X3xoh25bkSnC7PeKvui6Mw0uz4cOv2YwCYD3KzrqrPWGPAz63FuVBi0DAQClqCgzpjjfutwOCxggmZlr1d62dTS3GfoZLJMis54I0histJMx5tZBfzdrI+uwXcNpjebTXmWJogOWMsOcFzUOXrONehg6j6T/UR7LhAIIJ1OY8+ePQgEAuIkkO0PQID+cDiMWCxmG3jsRrTupqPNOTAzJliKh38jE1MDyWsB07QPUqkURkZGUK/XpSwi2fUENNgvh/ZtNBrF+Pi49BFpt9vweDwIhUJSwo7vOm1hAgflchkzMzOW92218ZolBLgWL6bU3XZIH0Tfeunr7ouXbnW33p+1n8r3lXqW4JudrtIZRcByaRj+zbyWLiPTCxkYGBB/DYDFlzZxA/oh1FsbCXxTeqm7tehAOf9dWFiQ+eV9rLU3meC9qeP1D+/FtAm0mCC6fo48h75us9mUQL2+Hzuh/gwGgxgaGsLevXsFVwFgGR/tilgshnQ6DZ/Ph3Pnzq37Wep1T93NueKYOOc8Xs/fenxYYlPsQZJKpSzrk1kS7BtCe0jr7rGxMclqMwM2LpdLAFNtkzBzO5PJYGBgQNb8euVS1t2FQsHyOZ+BKffccw/e+ta34m1vexsA4Pjx4/jmN7+J++67Dx/+8IdXHP+pT30K+/btk75iR44cwY9+9CN87GMfExD9+PHjeM1rXoM777wTAHDnnXfi4YcfxvHjx/GlL30JAPDP//zPlvN+7nOfQzqdxiOPPILrr7++ZzpsQyD6f/kv/wXDw8P4b//tv+Ef/uEf5EYfeOCBjoDERuUf//Ef8drXvha///u/j4cffhhjY2O4/fbbceuttwJYilpMTU1ZGsB5vV7ccMMN+OEPf2g7EZpZAqxcDFslqwHnOgrJGlF0FAi+cUMAlhX8wsKCsMeZSub1elEsFjE9PY1AIIBqtWppIMmxMCLNZiz5fN5S93k14cbFchUejweJRAKpVErqtzNljAACN61WqyWOjW6MReB9YWEBmUxGnKKNKGg91xfj3BM0YKo565Duto1UC9cNn7VOPafockI67dB0CrXhyPW63vRsiq5/zhQyXZcWWDYMddYGwWQAlgZ/qzm2DBIEg0HLtfSYeW80LBKJBA4ePIhms4mRkRFpgNetIcwav263W1L12LBso01I7KLhfYd1SY4dO4Y3v/nNuPrqq3HttdfiM5/5DM6ePYvbbrsNwJIinpiYwOc//3kAwG233YZPfOITOHbsGG699VacOHECn/3sZ0VJA0s1Sa+//np85CMfwetf/3p89atfxbe//W18//vfl2NYn5py+vRp/PSnP0UikcC+fftQKpVw99134w1veANGRkbw7LPP4q/+6q+QSqUsgH8v5Lmsu7sJSm+VcA/hfqHLrxGEIwhOB41p0CwVQpC3UqlIzUzqT5aq4N7dai3VV52cnES5XJZasOsRBhLJlGejJzZs4t4LLGdxAcvzvrCwgHQ6LSwo3YOhmyyvrRSdpqzT2Rns0MCu3kf1+Ml604C8DvqyiRwJCTrdmXYZAysE7/l3bZcRLOCYyMJjdiBTiLl2zLXPMeryA8xa4v1yLNT7ZESaDdK6FTMQz/uh3aDZeJwbOyBDz383Ypcl6Ha7ZY45Jp/Ph6GhISwsLCASich7xFRsvptk95k258LCgtixZEDyPV5tjWvbc7v3qL7sLunr7s0Xh8Nh0d0amON+RSIbAAFDScBhVnO1WoXD4UA+n8fU1BQcDgeGhoYshDbeK4Nxs7OzUrZsvXPAHi0MlgYCAQkqMvOb/owufUYcgVm4zJbTzRCpV3aC7iZRwCxPqwPXdhiBDoroz+wCIFwD/J36XOtu9h0BlvEarf/X0l28JvUNG0ebx1P3a+a+rmxAopi+F10ObCNMaHPsOkig7xeA9BbQc9+tvaDn1iy9yrk1s7AYGNqzZw+azSbS6bSse+p9bV/oc/F8TqcT8XhcSIHdlivu+9NWMbOf3ve+9+Huu++2fNZoNPDII4/gPe95j+XzG2+8ET/84Q9tz3vixAmLXgGA1772tfjsZz8rDYtPnDhhIa7xGALvdkKfKJFIANiYDrOTDYHoAHDzzTf33MG3k2eeeQb33Xcfjh07hr/6q7/Cv//7v+Od73wnvF4v/uiP/khYMnbN3c6cOWN7zg9/+MP4m7/5m00f+0ZEp/SynqPb7RYWNx1dDaJrx4PgbqvVEifR7/cjk8kAWEptLZVKkmbLDZ8bIDsXz8/PY3Z2VpTpWiAxxxyLxXDZZZdJWYuhoSHLRmkqMoreiPfu3YvFxUXMz88jk8lIk0qTZbxe6cUmSIADWGpMWiqVhJW8W6XdbksKlllrtt1uW2qOmrXRNJAOLBs5ACStKhgMWsqvdDv/uowRjVQNRgDW9HndH0DXENZ/7yQs3RKJRBAMBuUd08aDHhMZaqlUCg6HA2NjY0gkEuvK2mCgqdlsYu/evTh8+DAKhYI8i43KTjB2u5GtZrPdcsstyGQyeP/734/JyUlcccUV+MY3voHx8XEAwOTkJM6ePSvHHzhwAN/4xjdwxx134JOf/CRGR0fx8Y9/XKLhAHDdddfhy1/+Mt773vfirrvuwqFDh/DAAw9IShkA/OhHP8IrX/lK+f+xY8cAAH/8x3+M+++/HwMDA/jFL36Bz3/+88jlchgZGcErX/lKPPDAA5uSFv1c1N0ma2w7My+ou5lx5fP54PF4RDcDkD0GgDB+CaI3m03kcjkUi0W43W5xsHkeNk2MRqOWez19+jSeeeYZZLNZzM7Ornsf8Hq9SCQS8Pl8GBkZwdjYmKW+J+tuOhwOAW4ByLjoFLVaLZw/fx5nz55FtVrF5OTkhsqybaYw/ZeMawKpBEzZMAqABFRpf9Dho+PGYDrtM83g0sw0HVBh6RjqJJbio27jnNOJZrk7/st1AUBKuLBUgBbNmieATkC5Xq+LvibbmmA82ZYcy3qFjj6DRwwMEGjWAWoCEu12e0UN8G7WCu1BHdDgvXBe+X7xvH6/X1KJ4/G4fHd+fh7lchl+v19YjpopaDLVCVhxfaz1zu0UMOpipc9E3x7p6+7NFRLBwuGw+B2adUvRGdvcH7lfs9eWw+HA7OyslNs4fPiwBKipR3mfpVIJ58+fl7rh671/BgX9fr/43Xrfph3idDpFFzAASFY996+5uTnMzs6iWq3i3Llz0gTULlNuO8QMFPAZcN1oJrPOPtdrjPsXCWO0XagPqfe0PqbO0nPFZ651O6XTPq/HSZ87n8/bzq/W3brcjD63JjGQDEcffqPkPhNAN3vv2NkELGvSCeOxE23zaEY77Rjt09OGisViUiJpz5494iPlcjnUajWxU/XcAMu61+12I51Oo9VqIRqNdm3f7BTb9WKlV7r73LlziEQi8rkdC31ubg6Li4u2eqJThuPU1JTt8c1mE3NzcxgZGel4TKdzttttHDt2DC9/+ctxxRVXyHX4PfM8nXSYnWwIRP/TP/1T3HDDDfjjP/5jy+eFQgHvfve78Xd/93cbOa2ttFotXH311fjQhz4EAHjJS16CRx99FPfddx/+6I/+SI4zX1pGHu3kzjvvFCCD4+51TbmNik45sWP/6k1dNxjVhgc3Id0clNFORrp1BFGz2XTzLjplaxn9VDBU1IzwUdGtpyQMx9VqtaRUBmCta7kWYK0VZa+lk8PG+d9IStB2i8l2s2vSoteKTik3N2R9jKkQ1ysagNCAtm5epxU7nXVd0qAbpa4j7eZ5Ox2rGSksebDepjw0ToDlgAMZjZeCbIcjfvvtt+P222+3/dv999+/4rMbbrgBP/7xj1c95xvf+Ea88Y1v7Pj3V7ziFauO1e/345vf/Oaq1+iV9HX35gv3EupEgrDMuCKIqJ02/ss9jN+h7iZoXavVpNQZ9SD360qlgmKxiGKxuK6gLvczOqcs30KnW7OAdJM0jt+0SYBlfU3A0e12W5jA2y26GafWGTr1ei3Rc8Pv8BymzrIrsWWXxdWtrtLXM1nfnb7H+15YWJDnZLLCtYOse8ZsRPT+rvU0/9WBd51SvR4nXIseZyc2HedL62zqcE3k0IxGbc9wfWjwjPa5/t5zXfog+tZLX3dvrmg/gLpb94nQYoLo/B79bpLGdMZyuVy2sJqBZWCP2WaFQkH6SXUjvDaDtmzyTRDR1HEALAFNft5ut0UH+v1+CfBrgHOnNElkgJaluUzdqvf+ToQ9fazd8ab+Ns/TSWcTCNbzRIDfHAMBcWIIa80tMQeTjKj/5fUZLN+I723el75/cy64hnQ5lI1iIHaBDjtdqkmZOggEYAUmoedUB7D5DjCjQduDz3Xple4m6bAbWY+e6HS8+fl6zvlnf/Zn+PnPf27JEN/o2EzZEFpz//3344EHHsAjjzyC48ePizFZrVbx93//9z1V5iMjIzh69KjlsyNHjuArX/kKAEgjgqmpKUv92NWau3Wq3bMThI6sy+VCOByWmtMsFcEmSjqFSBv3ZClxU+OGOzc3Jw0eW60WQqGQ1LUmA71er+PcuXP46U9/inw+j2effdYWUDXF4/FgbGxMuuDu3btXGMjrraeuN2vWow6FQqjVakgmk8hmszh9+rSleRaAFcAqI8S9bsrE9Ot2e6khHJtllkolSSUyU5N2qlBJLSwsoFAoYGZmRkqJsDkM545lfoLBIObm5hCNRtFut6VZLI0Onqter2Nubg4XLlzA/Pw8isXiuhgmZjCJP2adfruACb9DRUnlqR14Gjb6valWq5L6TaDBBMX5/JnyzUwRNoHbiDgcS+Ud0um0pPlfCtJ3xLdenqu62zSat2NtUN9qsFnrJILT1NsEYc3SWcCSTiXDplAooFQqoVwuY35+Hj6fD+l0GslkEouLiygUClhYWMDU1BSeeuoplMvlrtlszEhzuVxIpVIYHx8X+4NZPJqNRPYVmU68B6a164Dy8PCwsJ3D4TBKpRJmZmYstWE3Uzg2cx7a7Tay2SyefPJJKVWTSCQsgV+yyjVQrRmHDKASNKXOZ8kCXXZPO6O0ETRAzfPxHLxWu922sAVpu7GUCBncJkivxeFYSk1ntkClUkEul7M0vONceb1exONxYVM+++yzyOVyG2JGcp6BZRYkAFnrdqCEBnd0Sba1xHSO6RRzPllisFarYXZ2FsViUWrMer1eDA4OSrNv2sGcM9oDvI62J/l8YrEYDh06hHK5jImJCWSz2XXP1W6Tvu7eeunr7s0T+hQE6HTpNJZu0b6lJqHpLBWHwyE1mIEldm42m8XJkydRLBYtTHFmnNVqNUxNTeHkyZPSY6GbORgYGEAkEpGyLQcOHEAgELCA/prwxFrV1FnMqtalQYCl55ROpyUrKBQKoVgsYmpq6qIajq5HOhHh2u025ubm8NhjjyEajeLQoUMYHh5eAeza6RczcMs5sDtWB1R1vw5gufmz3gM5v2YAnUEIzrX+Xru9lAFeLBZRLpdtWeMEeoGlZr+Tk5MIh8OS9czxal93YmICU1NTyOVy68po5pj1O8D1bwYC+H+NMfHv6yGSMSPO7/dLSVWSRfR7Rb+b5XOJh+lSLhof4Pcoeq3TvnM6nUgmk7jiiitQLBZx6tQpzM7Odj12YHld8Rq7Qa9tpe5OpVIYGFjZV2c1PTE8PGx7vMvlQjKZXPUYu3O+4x3vwD/+4z/iu9/9Lvbs2WO5DrA+HWYnG6Y8fv3rX8ett96Kxx9/HP/wD/8gzSt6LS972cvw5JNPWj576qmnJAX/wIEDGB4exkMPPYSXvOQlAJYU18MPP4yPfOQjmzKmzRRG13SjQ9ZE54ZMwE6zYXRNdEYGqdSpyGu1GsrlMiqVCvx+P8bGxjA8PIxms4lMJoNqtYozZ87gJz/5CUqlEiqVypqROSqKwcFBDA8PIx6PY3h4WMa4EWCR32PdWG58iUQCExMTmJycFGWugwXczLVysWMnXYxooIBgxcDAUpdsznknh3anCY0E1q2dn58Xo04r/FZrqc6f0+lELpdDLpfD/Pw8PB4ParWasBjIvCiXy6hWq1JWYH5+3rZ7fScxGWrmj2Z/UDSTjOtfs9g1mMHva9YY0/K9Xq+w8c1nqOeDIDoZmxcDfDscDmlI2m63LxkQvS/bI89V3b3dBqwO+tGY1/sO65ZqJ63ZbKJSqaBer4vzQuCTJSiKxaLo8PPnz8PlcmFoaAiDg4NoNBrSL6RQKGB6enpdadcEaX0+HxKJBEZHRxEMBlEsFqVmrWZk0dGjo8N7JMO5VCqh1WohEolIqarFxUUBghnI32zRgIedc5PP53HmzBkUCgUcPHhQ7oP7OxtfMoCsG5QDy+xjDbA3m02Uy+UVbGU9Fg2U64as2pYznRyOxe12i32nsxtWc1oJ0DNQUqvVUCgU0G63EQgELAwflhrgXExOTmJubk7K9mxUOFe8Nzu7kE65ZkV2K5op7nQ6LRmYACTYzWdUKpUQDAYRj8cRDoelQXq9XhfbW9fc5XtqPh/eSzQaxd69e1EsFqUcQ1/6shnS192bI9yDTV+De6/W5ST00A8wWawEBHU/kEKhgGeffRYulwsHDx7Evn37UK/Xcf78edk3JiYm1sVCZ33oYDCIwcFBjI2NIRAIiG7W5DrqG+rqThlX1BehUEjIRNQdc3NzWwKim/pBj7HdbiOXy+Hpp59GIpGQcrFmYNNkptsxx6nvaY+Z2Vz8zCyd0ikDm7aR2e+Ddpwuw0KdxbJx1WrVlnXNTAhgyWaZmZkBsFTXWQcGaF/y3HNzc2IXrscW5POnvaZ9Wz0/nGcdhNAkg27wDx2kYLNV3YBcP1OSBxqNhuBizLqgTaUxIP18tM/OMka0o2KxGA4fPoxcLoeZmZmLAtF7SdZ8rojH48FVV12Fhx56yFKG7KGHHurYx+Paa6/F1772Nctn3/rWt3D11VeLHXnttdfioYcestRF/9a3voXrrrtO/t9ut/GOd7wDDz74IL7zne/gwIEDlnP2SodtGEQ/evQo/u3f/g1veMMb8NKXvhRf+9rXpGB7L+WOO+7Addddhw996EN405vehH//93/HZz7zGXzmM58BsLSI3/3ud+NDH/oQLrvsMlx22WX40Ic+hEAggD/4gz/o+Xg2S7jpmMxbrdj1Z1Tqmh3GzUKnh5usOEa/y+UynE6ngL+sxTw/Py/1sNcC0DkWr9drKeGyVkmM9c4LWVKLi4uSasYNUdf1NNl/wHIkfiNp5J2YXdws2THa5/OhWq0KEKLrfe5koQKr1+tSCqBSqVgY6PrYhYUFaXzJdMFQKCR16VhmYGZmRo7L5XLCTN+IaAfZ/B1YyVjQzBA61NrAoGGjgR8AwvTjXLDWPWAF6AkUsa8AO4X3Kg1Mj/+5Ln022/ZIX3dvjlBXmUwYrcdNx8fpdMo+w/RwYJn1qs+p2TSFQkH0OXU32TvdvBc6oMisMTokOogJwPKZ3uc4Nq1jKdoB0s4Y58FunDrDSO/nG9XdGlzWjhnvQzfRZuCUTGkdiOf3te7X5cz0M2JDSuodPR/6PGuVQuMYtR3HUgH8Dh3zQqGATCaDXC63ooyPdlSpk1k+YHFxUTIe+D2ee35+XpiIGmhYz/zTbrUTfS7zORFsMMsWdhK+Twx45HI5acyryxwxWKUbww8MDEg9eK5fzSzr9D6ZrFQTuF+vdGJe7lTp6+7tkb7u3hzR/rQGA82sV+posr25jvUeBKwsZUXdsrCwIJlA1OMkHXWr5zgO1n6ORCJCWjPfS5NBbPoWdmVqNHjMMjEEVU3dbWcv8Hc7ELobMdm9gHW/aDabqNVq4qvqQAG/T73TzZxqrMKOmW7qaK0XOp3btAv0NfTvJOIVCgVbJjp91Gq1irm5OZlTZnWwNJCe6/n5eVSr1XWXc9Frd7W5Wu2eNYEAgOhF/l1fQ5MHWq0W8vm89BDQPc7ol7MkktfrFdtHZ1WsVsoFQFe2xEZlNwHoW627jx07hje/+c24+uqrce211+Izn/kMzp49i9tuuw3AUpmviYkJfP7znwcA3HbbbfjEJz6BY8eO4dZbb8WJEyfw2c9+Fl/60pfknO9617tw/fXX4yMf+Qhe//rX46tf/Sq+/e1vW8q1vP3tb8cXv/hFfPWrX0U4HBbmejQalX5FvdBhGwLRuQEkk0l8+9vfxm233YZf/dVfxcc+9rGNnG5VeelLX4oHH3wQd955J97//vfjwIEDOH78OP7wD/9QjvnLv/xLVKtV3H777chms7jmmmvwrW99a1Oasm2W6Cig3+8X1hqj2vyMDBm9IejNQzPDqEDIsGm1WpJSzRRkpsKYDbXWUn5kiodCIUSjUYyOjmLPnj2WGmq9koGBAYTDYQQCATSbTYyOjiIUCmF+fh7z8/PC5KUhoVOraZzo9KDVxC5irUVv0Cx5UyqVMDU1hbGxMctz2ulSr9elgd3ExASeeeYZZDIZcbD1vVIpt9tt/OhHP8KpU6ewZ88ezM3NyT273W5pRlMsFnHmzBk8+uijKJfLKBaLXW++GnAgo1yzJ+xqp/JYrluyLrgHhEIh6cTN94apZHwvWEv4/PnzqFarCAQCSCaTwippt5fS786fP49cLoehoSExYllyaSNCw2yt5qfPNek74lsvfd29eUJAnEE3BlXJnNFONfUVgUzNzuZ+S13GOpism9pqLZVfu3DhggT21rt/ENgPBoMYGxtDKpWS8mu0IxgMJvhN55V6lM1EtX6l48jPgKUmqj6fD81mE8Fg0MIK4rzR9tFjoFNWLpdXHLsWuElWP7DsSGugv16vo1AoYGBgAPl8XvZ+nX3HurC6UZldKRLOl9/vRzQaxcDAgLCmdOCXDijnjLpKgza8DueQa4ogBrBUEoV2WrlcxtNPP41f/vKX0u/GHBsD/NTDbrcbsVgMg4OD8Pl8Ul6gXq9jdnZWypIwK43zqe+lm/XFVGsy+s0AAe+V90dgm7WDI5GIzKuufWsyB6vVKiqVCprNJs6dO4dcLicgE1lnvBc2qne5XJiYmIDf75fgBO9N1/3nWO2EQQI2qdXBl/UIbRJeazcE0fu6e+ulr7t7LzpQrJtU6gA3S1FxnydhbHFx0QLkknxUr9ctrHUCfvl8XvTZ2bNnJSjOvbDbJpAETkOhEEZGRpBOp8W/14FP3p/OVqfu7CQ6UO9wOMRvarVaCIfDort5j8zc0eQB7tH0q8xMJtNvM0Xrbm3T8FiWvGH5LV1uC4Bk8fGe2SRbP2+7IIAeH0Xvc9QPWnfpvVufmz/6XvQc8bgLFy5I5r+d7iahsVqtCrFraGgIBw4ckOzBaDRqqTbw7LPPCpFtPf6k1s1cK3od2dkAOkhDmweAlDSKxWKIxWIAlnv36LlkE9SFhQU88cQTOHPmDEKhEFKpFNxut7D0K5UKpqenMTc3h2aziWg0imazKWXpyFTXpYlMsJwl83QDWNqEBOHXK7uR9LbVuvuWW25BJpPB+9//fkxOTuKKK67AN77xDclqmpycxNmzZ+X4AwcO4Bvf+AbuuOMOfPKTn8To6Cg+/vGP4w1veIMcc9111+HLX/4y3vve9+Kuu+7CoUOH8MADD+Caa66RY+677z4ASz3JtHzuc5/DW97yFgC90WEbAtH1JLpcLvyP//E/cPTo0Y4N2y5Wfuu3fgu/9Vu/1fHvDocDd999N+6+++5Nuf5miwYE6byS3WJXE1ozzXUKsnZUNDubzhgd8lwuJ9G+jXZvBpY2JdalCgaDkjLb60gfHXkAAtyznIo2Vrg56hpdNAa6AfXtAHQ7BctNk444a42S2bRbHAQaRKzLpsEE8x6oWMvlMqanp1Eul+FwOKSmLOv1l8tlXLhwAfl8HpOTk1ImaCPrTBsjem3bKQHT2AGsdfLZA4Drk04ym+fSCAEgTnar1ZLADe+/Wq2iUCggm83C7/cL400z9jYimuFwqUjfEd966evuzRM7JjozwwjScR+k095sNiVdWjNqmG5KUI/7Aveaiy2xoRl1oVAIsVhM7A3uY3SctB2h7QvaHqZjpUFOguO6KTrPpZlZejws6UEHx6zNroFUu2fA+7NLs9WOMMEA/kvWkw7Y8jsm08l0njhXJD2YGV2cM+1oa4dS23EU04EFIA65zsTLZrOYnp6WezGFa46l1oAlHadT9c0AOJnoBIbXa9PxeZJQYXdvnFMGnqiTWSqNoBbtS/1s9TPRQZxCoYBGoyHrmgx+ghEE22nzLCwsIB6PS8CDQJkJ1GvR7wftTbMe63pEv0u7Rfq6e+ulr7s3R/R7rEtC6HdbB0Lp9xJM1cFPnUmjS0pqgLuXujsYDCIajVqAcvPdsgN3Own/RhISa2IziEtCEc/LcVBHaf3M+18NpLbT4xr41yAtv8eyaV6v18K21qSv1djkdvPJ85sBev2vth14zbX8Pc6LJn5Rx7TbbZTLZSmZ1omJrrPAgSU97nK54Pf7JYOuXq9jamoK5XIZs7OzQnpbj+h77bRWtM1mAulc+3xHnM6lfnbMlKHtymtwrTJjjITIZDIpWBLnmUGEUqmEQCCAer0u5BMTBDfHrgNlGh/SNtfF+N27TZdth+6+/fbbO+qp+++/f8VnN9xwA3784x+ves43vvGNeOMb39jx792Msxc6bEMg+r/+67+uSCE7duwYXvSiF+EHP/jBhgdzKYs2yjVbVtdWNet+83O9+enPzO/p718sU5xM9GQyKc1NzLSlzRCPx4NYLAaXy4VCobAiqm1Gmte6BypQDbia6XtatDNIJej1ejE3N4fp6WmJvNJ53My52KjQGCCDfn5+XpqK0rHsJEwfbzQaokgJkrAkyuzsLCqVCrLZrCi5jWy8BPlbrZYYTFzDGsgBIMYEFXmz2ZRURKZsa2MJWC73wlqwrC/JRn4+nw+5XE4a9bZaLWlOViqV4Ha7MTMzg3q9jkAggHQ6ve57BJbWEVPtySboS182Q/q6e/PE6/UiGo1KJhIdULO+s+mgAVZd5HA4JF3c6XRamG29EAalw+Gw1ISOx+OWoKIGdslGdjgcwsrj+NvttoX5ph0X3WiboGY6nUYgEBCQ1uFYasSms+uAZYaQ6VjymlpP67nh3wj8U0zHmCA6S9hNT09b7C091wQO6CxqUBaAgL0ck84QNK/L7+hSYpqpph1tfpelABqNBvL5POr1OorFoqUWPsfTrTPIczFAQUZfJpMRNri2c9Y6r9ap/J1Os8PhQL1etxAdtK2rASav1ys2BcF1XR5PB2fIcOc5qUfZIJzri++VLn3E4JbP58PQ0JAtcUIDSnxWph3dbrcxPz+PkydPSjbbeoX3pK/Zl76Y0tfdmyfMJCUwzWAoWc3apwaW9RNF6yEGibWP3iv9TR0ciUTkh6x43dQbsJYH03rNDH5zb9f3pqXdbsPn82F0dBTRaFR8HoKlfr/foq90cFPvZ9o20AFufsY9lWC9/pvWpfTxmEk9MzMjWWyajKDPTz1KYJa/64be5j3b/Wv3PPivHfFOB7DZdLxWqwkgTB2+ntIr1WoVs7OzEqyfnZ3FwsKC2AaFQqHrc5kBDQq/zx43ZNR36lVCe5HBZILoOgBl2rs8jgEpMtKZAUIbmDhALpcTEtvMzAzK5bIw3k1iBcfTCSDnu8CMeZZ7W6/Yre++XFqyIRD9hhtusP381a9+NV796ldf1IAuVTEj35p1Tsa5ro2uI2r8vlaYgNXgN89BVvrFjDccDmN4eBihUMjS4GEzhPfp8/kwODiIcDiMbDZ7UQwe7fDqmpZ02uxY9abDk8vl0G63cf78ecTjcQwNDWF4eFiMr/U0yNoK4fgZ+X3mmWcwPz+PM2fO4Ny5c5Y0eztZWFiQiPHs7CxOnTplMc7IomQEXQMs6xWCFVS2ej7NuvMEzmksNZtNBAIBJBIJeL1eMc60UFm3221EIhF4PB5Uq1WcPXsW2WxWGqyYzLdarSb3GI1GJXCi371uhe9sPp/HuXPnUCgUNqTMd6P02WxbL33dvXni8/kktZql2LSY7GPtJJpBW+5XBHrp9PXKEQ8Gg0ilUohGo0in00in08jn85iYmECj0ZDAKDO+9H5K54b7LQFQPX6yohnA9Hg80oCR+oX6OxaLIRKJoNlsSvk1gtzcc3WgHIDFpqHu1o67bmZJVhwAAUNZuq5cLmNqago+nw/BYBDpdFrqJfJedHOvdrsttWzn5uYwMDCAwcFBxGIxSxahdvz1GAh06H4uLGFD/cHvagCa5Xzm5uZQKpWQy+Wk9AqD3yaws5poptr09LRkINiVvukGQNcAEvUlAXpmrXm9XqRSKYRCIZlXnp/Hstartnv1Oc1avTy/0+m0pPcTIOfnzArgM2F2nM/nw969e20BED5v2iEkjhDg53OamJjAI488YgmsrEd2YwZaX3dvvfR1d+9FB4cTiYQ0IWbpR9P/01msOqBL37rdbotfyQDfRvyC1cbLRqKRSATJZBKJRAKVSgWZTEZASDMQq8fOPU6X7dB7H3UVx9xutxEKhXDo0CHJ2JmdnZX9MBQKWQLwdhldqxEGCKiaAVaOWROj+DtLnMzMzODMmTMIh8PYs2eP6BTzunqPZTk0ziX7e5nSDTPbvAczCMvmrMyCYkkxNpSdmJhANptdlw5giRNNpjR1dzfYjmlz6mfC+aat43K5EI1GhexA/afXGHU1e+Q5ncu97My547UYNGdGXalUkrKFpu7m8+c80R7lO2j33DQRg3YZ5w0A5ubm8NhjjwnTfSOy23RZX3f3VrpG+I4dO4YPfOADCAaDOHbs2KrH3nPPPRc9sL5YI4Nama/GcDaVYadzmOffiFDxkTG0FcIN3DRMuDHoNHEdudai58dk65sgut0c6e9TYZG9ReeUZWR2mlAZ6fr3BG457rWUOQ0UsgHMdaYNN4qeM7t/7UTPPx1oKnh+V7PMzLR7MiVWa/TKsRMw0ulxnCcaclxLBND5zN1utwBd2phaS3hPCwsL0ihnvXXsdrP0lfnWSF93b43Y6RNgeb/U+xWwEkgHuku57oVo1pAGC0zH2/xM78lmqrWpLzWbncezLJsOaJrMNL2Pd+NYameQ19Lzr4F4O+YVU6UJZNs5/LpOu9YxZlq3Di6Y4+P9dXq+ZiafdgapK8hk0z/U2esBYmkHAOjK4TZFO6J6PeiSJrSPeL+cXzMgpMsi8DzAcr1aE1jR96nfN84B55/f0444hUAMHXUdqNHsUf1M9FrgORhUZ9PSS0X6untrpK+7t0ZM3a11ogn4UrpZw52CcxcjJBWR7WuKHWjfSd/Y6QzTTqEvReBU626tz0y9becHmtcx91UT6Ne2g9YF/DtLlDFbWAc2zHsxM6tWeyZrPVvTjrA7F8eh/UaNFWgG+nr2w4sJuur5tguemPehg+l2fcn0szczDeh3r7UGdNDHtJWJSWhhEASAEC14DpM0amaL8L3gOdk3j+SNS0H6uru30jWI/pOf/EQW3o9//ONVQam+rF9MRaTrPJmOm3Zc9UamWcZ23+kl48XhcEhDpUAgsKUgOhuIMnJNxUTnjBsq06e0IiBzjd/nOZh2rzd/velStMLQTu7s7Cyefvpp1Go1jI2NYWFhAdFoFPF4vGcMwouVdnspNZ9NR06ePImf//znyGazmJqaEkWyXme8UyQYWF6jrIc7MDAg9fV0xoU2mjgGzWTn8yRTXjvawHI5F33NbuvW8TwsGaOVvy5bo99RAKhUKjh79izm5uakURtLHJFtt9q8kQVZqVRw+vRpnD17VhzyS0H6ynxrpK+7t0aYXsweGdzzyOBptVqWBlcMtJI1TYOe+qxarQrzuddC3dZqtaRZE8tp6KbYBL65J+ZyuRWAOc9lOlPUp3QUGZTUxywuLkrTR80+1+fSzi9FM7U5R9zDOWYC9myURvY3ANmnGQCdmppCo9FAMpmEx+ORcVJfsTEqa4qTWe90OiUTr9VqIZPJWOwsXS9bB595XtpRBEQ0m82833q9jkwmg/n5eZRKJSnHshnro5PwuYdCIcTjcbhcLrGzGIymTcZnybU1MDBgKRek2ZzU8QRS2LyP7xBBEs32pv3g8XgwODgo7wzLtVB32wVGCH4zC2xubk6uE41G4Xa7xa7lO+FwOKSRXrlcxunTpyW1frcxyS9WtkN333vvvfjoRz+KyclJvOAFL8Dx48fxa7/2ax2Pf/jhh3Hs2DE8+uijGB0dxV/+5V/itttusxzzla98BXfddRdOnTqFQ4cO4YMf/CBuvvlm+fuHP/xh/K//9b/wxBNPwO/347rrrsNHPvIRXH755ese/0akr7s3VwimNhoNlEol2bNYfiocDq8IFmpfmrqQe5wOdGoyT6+AdNoLPp9PspNyuZwECU1wlPuS1pcU04fVY9TAMwOuBDR1hpIuj6V7gJjBYlOfaXCcek9nILGci8765TkCgYDohkwmg2aziXQ6jcHBQXg8Hst+zfPwHnhdzosZLLADhM3npnEBsw68HbhOXzSbzaJQKGB6ehqTk5PSGHwrhBiH07nUqJvrWttk2vfn/Wsi2WrP15y3WCwm9pc55/p3rmdNdONa0j68lmazKT1dcrkcMpkMvF6vpbE7s88ZrOBaGBgYkGzzarWKyclJCxHhUpC+391b6RpE/9d//Vf5/Tvf+c5mjKUvWFlzm6CiucHr4/SxAFYcY4K+vRACo8FgUEDRrRC9QeqNl+CqdvA1A4lGAkF0OtpM+SVjWdfgtAO/9TMgMEDnmRv+zMyMKFrd9GU7hXPAuqe5XA5nz57FU089Janh9Xp9w2vE7nua3UEl53a7EYlEpFSK3++3sL7o/NJhLpVKwgwnAGJntDD1TAdE1nMvdN51SiENr05CJex2uzE8PIw9e/YgHA4jGAxaarXZzVW7vVS/lU1Yz58/L0BOX0n1pZfS191bIywn4XK5UKlU4HK5pOG2Ll1BoVNLh5g6rNFooFgsSnrpZgSoud+2221xhH0+nzRj1EFJgou8v1arZdGXLF1GphL3Lx3gpCNsAqeLi4tyr9qm0UxAO0abZi3RwWYasW54TiHIz72d9eudTqeAr06n05KBxGsS5NaBDR10DwQC8Hq9qFarEhBgSR/aFqyrbtbW1sCx/tH3xzlgXdC5uTlJP6YD2Gu2o51ofR4KhTA6Ogq32418Pi9r1SQ2tNttCX7T/mBQg/aGBm7o6JLgQEDE7XYLwGUyyPncy+UyZmZmZH3Y6W7tqLNxKhupBgIBKRXo8XgERNf1hAn0FAoFTExMIJfLYX5+/pJxwLdLHnjgAbz73e/Gvffei5e97GX49Kc/jZtuugmPPfYY9u3bt+L406dP43Wvex1uvfVWfOELX8APfvAD3H777RgcHMQb3vAGAMCJEydwyy234AMf+ABuvvlmPPjgg3jTm96E73//+7jmmmsALAHxb3/72/HSl74UzWYTf/3Xf40bb7wRjz32mNh4myl93b35wiAsmcEE8egf6qCy3j80EAxAdBx1uO4t0kuhn0JAUI9NA/4maK33Q3PftQOKeZ/Acg8PDWhz79QkI2A5cGxiDiaAbwbhaVMwaK2zxziPrVZLAqzAUi+PXC4HAEJAALCi1rlZHo7H6ew1PTa7udDzr3+3A8/Nvy8uLiKfzyOTyWB2dlaIbLQnNlsIIjNInE6n4XK5JJuN+lA3/qS+1iXw+G5Qd2tshfetm5WbpAmTcKczIjWRbjW/m/XTm82mPP9QKCRlVXX5PZ1twfVVLBalnM7c3Jyl4Wlf+rJeWTfyyTqCP/3pT3HFFVdsxpguSTGZrnTkyOChg8rfNavNBHY1mx1YbgKqmyHRyaGy56akv9etbCULYjVQ0vy7naFj1onXv9Mp1s6i3fVNA4WMPrKIs9msGAOxWEwcwu2qj87nTQeUgLRu/Mb77yYNbzXRQQo21xsYGJCMBY/HI06qrjnOOaeSptGj6+1phhnXKR1p3SxGl1Ho9j7MAFU3QSd+h8bk1NSUNCRlPWCCChRtrLAZLRuZbkawaydLPyK+tdLX3Zsrem/SjS1ZD9MEhsl0pv4wQWjAWiKDwLDOuNFg4HqEzgsdC46V4LlO3aXO495Op4SAuC6bYupbDS5Sb5oZcdrB0p+Zn2umtj4n51UD+7pWKP8l+5v1tJmRRnCbQVs6YeFwWJxxgvC8JsfTKcvMdAQ5dupG7Xzr0jO6dICeQzp6fG7a+d+MfVA3AaXzTeKC0+lEIpFANBoVwoHuVcJa/rQnvF6v2B/aUdesRt6HJpBom4DOvGYscm40M3I9+p7XYz1h1v7P5/Pw+XxyfyzRpwMbc3NzyOVyEoC61HTRVuvue+65B29961vxtre9DQBw/PhxfPOb38R9992HD3/4wyuO/9SnPoV9+/bh+PHjAIAjR47gRz/6ET72sY8JiH78+HG85jWvwZ133gkAuPPOO/Hwww/j+PHj+NKXvgQA+Od//mfLeT/3uc8hnU7jkUcewfXXX7+ue7gY6evuzRX6G+12W+o40w/XDYqpc82gmQ4Kaz3OvZ211glI8tiN6m79Q9HsXhMc1jrL3GPN++DxdmCynodOfr9J8DO/p/Uf9aFph5g2EAAB5qnjAQhJrlarid/N+t36OnqOqUP1XJq6h7/zWpqgqEXrblMfa31B/W2uHf2seqVDaN/ocmgkdNCuicfjQgzgGqQ+5rrXWWT6MwArQHRNUKBNw+dlllTRogMp68GR+IxKpRJmZmaEhJHL5aRCgtPpRKVSQblctmBj8/PzUn+9r7s39v2+LMu6UT2Xy4Xx8fFLpn7QVogG8BjlIyjr8/mE+WQytZhm0+n73ABdLheGh4cltYkbOWswVyoVnDlzBrlcTpptdcus2Y40QrvUKZ2KpCOaNBSo7NhNnE4iQVytwNdT05rXpDICgJ/97GeIx+PI5/PCVEsmkwiHwxbneLNFO4qs+5XP50WJNBoNAWVCoZA4kRupD8b78ng8iMfj0qhnbGxMgglMtQoEApZGoVqR6rVMA7bVWmpux7qj09PTUst9ampKjqvVamIkktmpUypXE7MhTjfrn2NdWFjAM888g0wmg0AggPHxcSSTSXnubJ4CLBlTs7OzKBQKyOVyePbZZ1GpVFAsFi+qCetulUvtfrdT+rp7c4XOiMvlgt/vF6Yimao684YOid4P2ZdC/41/1/qK1yCLenJyEsVisetxkv0ei8WkbAWZ5vl83mJkO51OKWFBZjCw1NyqVCoJCK37iQCw6FPuwbqsC8ehWWwmiG6mFjO9Xpdb0+xl7ajrZqMcg8fjwcjICAYGBqR5HB0x3supU6cQCoXk/7S/aG9xTigmiE6wnMQEBtM5Hm2DcR7IKtTBboLFHB8BfjrBmmSxGcHXUCiEoaEh0eOJRMLCGmPWgsPhENuCz8jpdErzUx1Qqtfr0gyVtoYeP7Bcn51r3OVySa8ZPo9gMCjzRwAFgJT0W000wMHncO7cOczPz4t9yPUxNjYmgQSnc6ksEYPetVoNhULBYm9fatKL9VYoFCz/12WYKI1GA4888gje8573WD6/8cYb8cMf/tD2vCdOnMCNN95o+ey1r30tPvvZz2JhYQFutxsnTpzAHXfcseIYAu92ks/nAQCJRGLV++q19HX35kqj0UA+n5c9x+/3S+YVs5R0CQ/uCdy7mV2jm15q3U59Cyz3UmAmqvkOrCXUeSRmuVwuCQJTz5k9R7SvpbPMAGvvEjPLV+/NOpuLgX9gJXisfS5tF9DX1vOnyWtkD+vSZ7xfHgNA9Gm73ZZ5z2az+OUvf4lgMIjLL78cfr9fMuSoo2kjaBCef2fgwyQg+nw+2Y90405tk9DO0L1JeK5qtYp6vS7riD6pfibs8Wb27dioJBIJHD58WOaJmXSRSEQIfWyezrVAkJl2WqVSsRDqtO7O5/PSu4v3qW0vrnvaTsRFtK1kBnhW61tmiva7n332WWQyGSGsuVwuxGIxwR24bhYWFnDu3Dlks1nUajXk8/kNYx3PBen73b2TDVFj3/ve9+LOO+/EF77whS03Jp6roo16pnlrdi03LP5uOgNm8we9ATocDqnbyc2m3W7Lxs40o2q1KhviWrId4Lmd6E15NUdGM67pKNGxNUF07SR3Ypnp89L5XVxcRLlcxtzcHGq1GuLxuKS/h8NhyzPbqvnTCocMdLK66ahSybKO3EbYEToCHQgEEAwGkUgkMDo6KmByLBaz1EQ3mRRmWqAGCVg/rlKpCGhjsjo0E11HnrudJ/O96fZ7jIAXCgVJQywWiwiHwwKe8Tk0Gg1x2guFAs6fP79lKX07TfoR8a2Xvu7ePNFMdGDJwSKYqpnEBNEZ4NaMHTMYTN2kHUJgOWWa+ma9Yu77LpdLAACOk8fpsdDRJQgKLLPbzLIkOp2aOk87oWZ6tynmZ7rMh2a0MatJz52eK55rYGBA2FhkolO/LCwsoFqtolAoSAYUyQQE/80eG3YBcR0YMIEAPZ8axOCz1M67Pi/XkGZim+y3XgvB+mAwiOHhYaTTaZlrncUAwBIc0lkTtIuYnq8bePFezACA/j/nks6uy+VCIBCA3++Xdcr1pEsFdSu8TrFYXBGEisViaLVask7Ys+DMmTOYm5uzPKtLUXqlu/fu3Wv5/H3vex/uvvtuy2dzc3NYXFzE0NCQ5fOhoSFMTU3Znn9qasr2eGYAjoyMdDym0znb7TaOHTuGl7/85dvCBu/r7s0TzQrXoGKtVrNkL5sscNP/1OQ1goMsP8oSJPy72+3G7OzsusdqjoVj0LWt7fQSQWS7fUv7/SZBje+q9vHs2O5a9HeoLxhw0KXM6IPzvszr6rnW5VY10E7CIclJ6XRaAqs8VvuamjGt75nX1GV4dJaV1usmiK7JARrHqdfrqFQqEuDVoDPnplMJno2Kz+fD4OCglNplSbRIJGIJZFC3ch557VqthmKxaFknutcIMzPMZ62DLbQPOmVEaNH3361Q/xQKhRVBqEQigWaziWAwCL/fD7/fj1qthnPnzmFyclLsj0vVf+z73b2VDYHoH//4x/H0009jdHQU4+PjK2rD/fjHP+7J4C4lodOg2bfValWaXNk5WTplmZ/relW6vlg6nUYkEpEoNrC8MdJxjEajmJ2dFZB1tZeNDpJm/27VPNEIIUvOdNap5HSdbM0E0+VLGAG1qzu71qbO+9bGxeLicqO0s2fPCqDMjtxut1sYgBzHZswPnX8GRli6p9lsSi37wcFBOYZNOUqlEs6dOyfg/2qOogZLYrGYON179uyRxmNDQ0OSXkXnX5fNMefZZPXxh0463wcy230+nxhQdLZ0F3SyxfgemMqfBk+5XEaxWJS6iBcz94VCQYD0arW6orlNJpMRdmG/FltftlL6untrpNFoSNMoh8NhqaFN55FOBh0rlqwgm4xsnsHBQQQCAQvzizqQDOBEIoFyuYzZ2VkL05vHm0I2Dp0Mv98vOpXjJWBq6ldgiTEaDocBwMLWpaNqOoTUj7Q9TCYddSnvXwfFNQCtHW3T5tAOG+eH5yHwrvtt5PN5tFotsX/a7TYymYzF8Q4EApLqb94/HVKCA7wnHSjgfZGNZVd6hM9L3z9tF5YKY/CYZVVisZjoOM0go77rVhwOh7D2vF4vUqmUlB5IJBLifJvgvwZd2LSV9hgACZYTiCYYnUgkxB4g2zOfz8uzoJ6s1WqYm5uDx+OxXFNni/F5k+nHmr29kEajgWw2i3K5LDaLtqf6jmRv5Ny5c4hEIvJ/k4WuxbTH1yKj2B1vfr6ec/7Zn/0Zfv7zn+P73/9+x2tupvR19+YK9x76kCTjcD/XzZ81IE3dzQA6S4b5fD6Mjo4iHA5bdCODicyuGRoakoaT3L9W090M+ALL+ywAAY41SMrzUA9ptjCvY4Lnpg+myU2aIKBZ3WbNcTMrXB+rQXgz0G0KwXM9H7q0p24KyWyhM2fOCJlreHjYknFHMN/cZzSoTUKBtkkAWOwv/k5fk8eZGc3VahWVSgULCwtyfWYm1Go1+X+tVsP8/Lw8w26EuptAuc5+TqfTYpdw7rlOdcagzkrgscSO9DNzuVxih5KIUK/Xkc1mkc1mZV5IJJyenhbdzZ4ttJc06M6sNN30/WKlXq9jbm5OMvc8Ho9klZg12vvSl4uVDSF4v/u7v9vjYfQFsDY4MRnTZK8xdUtHo4HlVCOC6AAwODiIRCKBYDCIQ4cOIR6PW4BbOj+VSgWhUAhzc3M4deoUZmdnRRl0AlF12g+ALQMDOa6FhQVJ79YpbNr5ZD0sh8MhrDsqMDrvdEoBaz3S1UQrdDuG2fT0NICllPf5+XkEg0Fks1ns2bMH0WgU+/fvt4DKvWSlEyAgmDs/P4/FxUUxErQyDwQCGBoaQqPRwMjICGZmZiRliw7pagqHjDOv14vx8XHs27cP4XAYBw8elFrwzH6wi/53Ev5d16J1u92Sxp1MJoWdfuDAAVSrVTz11FM4deoUKpUKZmZmUK1WBVTyeDxIpVKWtH9gWekz8MHGnusxZCg0MhuNBmZmZjA3N2dhbejjtCJfT93255r0I+JbL33dvblCJ4QBPO6z1DncC8mebjablv2WYG00GkU8HkcoFJL9lA5gu91GPp9HoVBAvV5HOp1GtVrFs88+i0KhYAHDgZW1oum8zM7OIhwOY3h4GOFwWIBJOmcEt6hPNUOYwKhO2TbZwHRsNWuaOo/sZQDCmGKgmXsy2Xw68MBraUddg+m8ZzYBpfNGQJfOt66VSZ1EJjqwVLZhZmYGgUAAlUrFUkqFAEkwGLQEhdvttjiKOgBNZ5pAAwEa2gxkQGp9UKlUJBir64FTd/P51Ot1WRelUknS29ezXiORCJLJJOLxOK688kqk02lLIEDX+aVtwYwEh8MhvWBoU/HeCPIxuE6bjax6ZsadPn3awtRrt9solUo4e/YsBgaW+qkEg0EBSXS2wcDAAMrlMqampnrKDmfTcG2zaILCpS690t2RSMQCottJKpXCwMDACob4zMzMCiY5ZXh42PZ4l8uFZDK56jF253zHO96Bf/zHf8R3v/td7NmzZ/Wb2yTp6+7NE50ppfWY9g01I5q9QTR7nX53JBKRcmFHjx5FMpm06MFcLodcLoeFhQWMjY2hVqvh1KlT8hmvo/dgPc56vS6NnFmmw+l0ii9ux5rXfofJJl9NOGad7cMge7vdFj+WpAH63zoYwHmkzaNF+0Z6XzUz7vT4qY/1/BAXcTqdyOfzePLJJxEIBHDVVVdJaRMdwGXTb529pv1//k6bQfuteu/TPjLZzQSE6YMXi0UhmjHgQKA9FAohHA5LiZT1+J5OpxPRaBTJZBKJRAIvfvGLJWOM49f2AIkFAwMDgtdQB9MmpU1CrIQB9sXFRfh8PikbtHfvXtTrdTz55JOiu0nSy+VyYuPQ9tK2Aeew1Wohm83iwoULlky/i5VKpYKJiYmOuvtS9xv7fndvZUMg+vve975ej6Mv/79oVjk3JoKfJmBOhrr5HR5Lx5OsKbK2dd1SOkPBYBD1en0F6LnaOOngUaFuldCBZqSUzjlBCe3QE5SwS8XTAOda92sndmwBKlEAUipnYWFBOkgDkHqr7XbbNi3PjqFtiplCpRU5yweUy2VpWKlrxJKZT4OQrEI6w4xgr6bUOPeMggeDQUSjUTEKQqGQrK9ugPPVxASh+cx5v2TLsZlINpsV8J3PQtca5njIWuc6psGxEWVuGlk0zBjA0M9LK7FLWSH1lfnWS193b41wbzH3PZOJzL1C17imPiCzmcwpBoAByH7lcDgQDAYFWNVOcaf0YDoU9Xpdym6YAU7TwebfdP1LXVeUf6NogNtMe2fwmd+j80Z2E48z2XJ2Y9T3pOdU3zfnk3aDaRtQN2rwhDXImVHEZpPUoX6/X+ZCg+WdgAl9be2003bTzbLpuJNlbq4Lrf+0o0qWWTdCIIX63+/3IxAIIBwOIxKJiLOs1yifMX9MHabn3GQ78nmz/iuBKNqmtBM0KMHm3LqxmWYdcl51bfWLFbvgk3bE+zpnSbZSd3s8Hlx11VV46KGHcPPNN8vnDz30EF7/+tfbfufaa6/F1772Nctn3/rWt3D11VcLkHfttdfioYcestRF/9a3voXrrrvOMs53vOMdePDBB/Gd73wHBw4c6HrcvZa+7t5cMfUxAIuO0zY9/SNN6iLATJ1G34h+NzNSa7Wa9OVaXFwUslG3e7fOttX+TKesCjvfq1t/jHutyUTX+AIxBK27TbCS46Bf1kk4Zr3Hm+OlnuSxdkRCsr8JYjebTQGDiRNwT9djtZtD/svr6O/owC+fR71eR7VatQDLwHI5Ot4D2fEsddbt89d2AJvNBwIBCUhqO4LrVN8H7RT+Xz9XHmcGFNrttmQc8rs6W5L3yevW63XBNvgOEcDX49AZHBcreq13KlnUl77f3Wu5qFoSjzzyCB5//HE4HA4cPXoUL3nJS3o1rktWCOgNDAyIE8cSFnSkWUJFb1AmE93pdCKZTK5gB+nvUKmxlAewxIALBoPiYHZimJMtxPIv6XTaotA3c34YPXW73cIq0XVRCYQy1UkHGTTDn/PQrfJaTfQ56GhXKhVMTk7C7XajWq3i1KlTiEajOH/+vLC/hoeH4fF4LDXrNePOHJupwHmvrBlerVZx4cIFlMtlAQKcTieGhoaQSCREkdOYocHI9MDFxUXE43GJ9pv10TUjMJ1OY//+/QgEAjh48CDGxsbg9XqlgYlmn/dSeE6v14toNIpAIIBDhw4hHA6jWCzC4/FgZmYGzWZTGAtMl9MsDRo5BEo0C3K9Y9ER90AgIKCArj2nnxXn9VJtSgb0lfl2Sl93b45wTyUAyb3WLINB59MuDZhOC2upMhDLPhNk5HLv8vv9lmZR3YyR9b6Z5hqLxYTtrJuMEpx3u92SeUZWkk4jN5nUdKg0SM4SKgRCI5GIsNo5T41Gw5JRRnvI1EGcGwCWvZxM80AggFQqZQF+NZjOkmZkc7HOdjableAH2WRPPPEEzpw5I5lbfr8fw8PDKBaLEoymU0smunbudcYgGYy6Bm+hUJB5pTPKxpztdlscVTreumHYwsICYrGYpbFnNxKNRqXUGvuVMNOrWCxKXdRWqyU1Vbl++YxpP3Ed08bUoDnXhG5UxjXFQASZbLVaDblcTo7ldfj3TsEUjvNixeVyIR6PIxAICBmBc04bvFAoyFxfyrLVuvvYsWN485vfjKuvvhrXXnstPvOZz+Ds2bO47bbbAAB33nknJiYm8PnPfx4AcNttt+ETn/gEjh07hltvvRUnTpzAZz/7WXzpS1+Sc77rXe/C9ddfj4985CN4/etfj69+9av49re/bSnX8va3vx1f/OIX8dWvfhXhcFiY69wztkP6untzhLq7VCpJ1jfJQC6XC5VKxbLX03fivyzPwT3E4/GIziPgqAPRAwNL/S103XQ9Drt3jLp7ZmZG9DHJPzyWukWXTjGBZ30trSO1Dqedos9JbCIQCAi7OhAICCahM+o0OYDYgxZzHATh7chXeh6oZx0OhzDhCZzruuT1eh0nT56UjLJ0Oi0lXsbHxy090RiMXg0LoI7h/VFP87q049hjrt1uCwbBe+Ke4XA4hIkeCoXkeXUj1N0s08v15nA4RHfquv762VJPa3tE2yk6cwBYwn8qlYrlXCz3RvsxEAigXC7jzJkzyOVyFsIFy8g6nU5h5Gvgvle6e2BgqRm47j/GeSbRoVgs9qxkzG6Wvt/dW9kQiD4zM4P/+B//I77zne8gFouh3V5KL37lK1+JL3/5yxgcHOz1OC8Z0Ywlgm90vMjYoZOnFZOui0llTka6jghq1rNm87C+aTgcht/vl5TbTtJuL6Ucz8/PC7DdKZrb6/khgMD64lT2nCc633T0CRIz9dlsNnKx4zW/z3nV6VlTU1NwuZY6R2cyGUQiEezZswflchl+vx/pdHpF7Ta7mulmxJsR95mZGUkTPHnypHSf5voBluu4BoNBqQnH8xH0qdfriEQiEr23uzeCIqlUCpdffjkikQjGxsYwNDQk66obNv3FzjWfebvdltrBTItzuVyYn59HJpORmqm6lMLAwICloz3fuY2MhyB6JBKB1+uVMgxkkxKQ4Ts1NzeHYrEo67gvfdkq6evuzRfuowsLCwJAUi9xn+XepYXHkGlMB6dUKkk5EDr1mknt9XrhdDrXdAK1sCYrnXIC4bQTeH4GeAmwsgYpnU7aHLpmOD8zHUPuw3RkwuGwBWTnPqkz6aib9Ll0/XHaA3RiWfcyEAggHo/D4XAIKEzdwe/ThiKIzOAmQVIGOGdnZ1Gv1xEKhaTfB50/HSwOBoMYHR0VR9lk+GvwhYA5x8xa5mSwsRQbAKTTaQvgQkAbWHJyo9EoKpWKBCC6kVAohH379iEQCCAajSISiYiDywD63Nwc2u024vG45ZrUk7Sf9N9MBhvXtLYlnU4ngsEgUqkUgGU7iWw82q4MatfrdSm9Y1f+rFdO3cDAAOLxOBKJBKrVKrLZLJrNptSBZVP2Poi+9XLLLbcgk8ng/e9/PyYnJ3HFFVfgG9/4BsbHxwEAk5OTOHv2rBx/4MABfOMb38Add9yBT37ykxgdHcXHP/5xvOENb5BjrrvuOnz5y1/Ge9/7Xtx11104dOgQHnjgAVxzzTVyzH333QcAeMUrXmEZz+c+9zm85S1v2bwbtpG+7t58abWW+iMxIxeAANx6b6Nw7yGwyv2dgU7qezLPGSAHlsthMlCnmc6d9jTuz7rsl26yzLEAy31HNDuXIKpmBJvse82q5/2SnEbsgT4qs455HyaITp9H1zW38ynpq1K36HGbQl3odDqlNxbramvS38LCAp599llpMkndXCwWLRlYzPYjwczuuprJrbO9M5mMlOGhDTU7O4tz587B6XRifHwcIyMjEjzmWtIlz4LBoARoupFwOIwDBw4IqSIajcp3OQYGVewyq/gMdLaYGTyh2GV4eTweIXMMDAwgGo0il8uhVCoJ4UFn9OnAhr6W/uxihSB6JBKxBA4YGNDl4/rSl17KhkD0d7zjHSgUCnj00Udx5MgRAMBjjz2GP/7jP8Y73/lOS7S/LxsTrdi4CQDL0VCzHAk3DR0R56ZBZ5Abl3ZsqUR13ctua0fxWvqHCq6X4Kne4OmcE/zUjTP4OwMQBMx5zzoyvxWilSKNhFKphEwmI3PFtD/W0HW73QiHw5Z6+AAsz5lBAtb9bjQamJ2dRS6XQ6FQwNTUFIrFotw3a9bZpWHr37XYRYc5p6FQSEBj1js1medbMcf6GpxLMuGpvAn0aHaHbt6m09PXuhbfuUAgIFkhNCYjkYgEQchSIiBA1gFBk0QiIcABmZkEtVh39lIA1/sR8a2Xvu7eOqHeIihMB5POjZlFphlEBHPdbjdCoZAcS3Y0AW9+XzPNeG39Yzc2soXoADLdlmykdnu5dJZOH+dY9bg7pQGbbDJdmkQzyXW5D4L4DBZQz+seIrQFgGV2P4PpHIN2qJnWTJCD96f1KgDJZuOPmflFADWfz2Nubs7CZKtUKsKS1/YI70+zz1k6jaXeyH6kE8ym77xXkwihn6su/aPJBGZQmIEP6qtAICDZb3o98fnxPCbgosXU81rXcv70eXWQhfMFQIJDBBMIDuln02kM6xE+LwaH+Iz43EZHRxGPx1Gr1YRtp5vnkWnK9UAgi2w9DWY9l2U7dPftt9+O22+/3fZv999//4rPbrjhhjWbbb7xjW/EG9/4xo5/30nPsq+7t0b4zKmPTaKVZvJqv5u6nf4pYNXttAPMEo/mdbsZH+0K6hHu3/q8eoy6jFgnYdDTDBJocJw4BPdRTcijr611qs4A5z7L8ZvzajKiO4kJAGtMRN8zx899mUHZ+fl5TE5OSnYAs7uq1aqA6JqpzVI+bD5eLpelGXkul5PAPXV7LpcT/576z7xXDWaTEU/9bae7CbiTOEjdrTPh9LPXAQu757qW6HdAr0vajCwzDEAY9vF4XGwk9ubRtt9aNulqQrIFbUT2o6FN5Ha7kUqlEA6HV4D1fFcYrNDZn3x/NB7wXJe+391b2RCI/s///M/49re/LYocAI4ePYpPfvKTuPHGG3s2uEtd6CxTeVFR6VIRdKh0KhYj4tPT04hGo2g0GhgbG0MoFLJtzsWNjxF43Rijk1CZMOo8MzMjzR8TicQKlt3FSKvVknEVCgVhFzOCrNnRTNum0mCUW0cm7cqk9EpMEIFAAFPhyPByOp1S0oWNL6PRqDCZdS1cPVZu/M1m08Jgm52dlVTjubk51Go1RCIRDA4OCuuMjAAaVGYAhevMZAXwvpxOJ0KhEA4fPoxUKoWxsTHs379fGP+bNafdiC7Rc/nll2PPnj04c+YMKpUK8vk8isUiisWiGFSAtXb5WoqB6fOhUAjPf/7zMTo6ilQqhcOHDyMYDEpAgQrdNJxoTNPIZkBlenoa1WoVp0+fxqlTp1AqlfDMM89gdnbWMr7novSV+dZLX3dvjVD/NBoN5PN50Ul0oKm/WeqCDjh1FJvgkV3DTDGykwFIiQnqYToDgH1dUlO49+dyOWkQbQKLGhTQPSOY8UaAnQAj9bHpKDO4TXCYjiOdce7fZJfzPqj7TVuENgqwXNOc4DWw5HQWi0WZZ309jplpxmTYt1otCRBXq1UJRHMvX1hYwPT0NJzOpb4bExMTouP5w/r0rFFKtiHL2TCATr3EjDJm8tFW0TV1mU2mbQIyq1hTlynhtPfI3tbrIRAI4MCBA4jFYkgkEhgbG4PL5ZLgbru9XH6IwXyyJM0APNCZkanL6+hzamZapVJBJpOB0+mE3+/Hvn370Gw2EY/HUa1Wpbk9m+XRZrEDn7oVnfI9MjKCK664AuFwWNag1+tFKpWS3jV8hwqFAvL5PADIs6zX69LY96mnnsJTTz0l5fMuBbZbX3dvvfR199YJ92KWS+H+Rxa23++3+GL0nwYGBjA3Nyf9JYLBIPx+v2QcmfsXfa/12Pla387MzACAZF7Rv7M73i7YTdHBXg248t5Y3ot9WBh81fqW9bjpR3KM1LO67wX1Oe0FndFkl01FApcGYZmpRra7zvrl8+K5G42GlGKanZ3F008/LXqaWQMkr9GWoL5gqbf5+XnR4VNTUxY/2c5X8/l8UvqO98m1xWfh8/kQCoVQq9UQjUaFPKF1N7AUZH7BC14g+imRSEhpWhPPMAMaGgcBsMK+M4Ft2m783dyrSfgCICQPYgC1Wg0XLlzAz372MwlaUDYKoPM66XQa4XAYQ0NDuOKKK6QELrM8GFTg7w6HA/Pz82Izk0BQqVQwMzODSqWC06dP46mnnkK9Xkc2mxV747ksfd3dW9kQiE7D2hQa233pjXAuqWjpEDKlipun3pyozF0uF8rlMsrlsnRVZlSdor/DSDqPs0ubNYXpU263W661VuOQjQgNGp1Oy7rvVOYEx7WRop16Rix1lHszQV8zws7x0yBptZY6U2cyGbjdbszOzgqDOR6Pi1IywWkadgTRs9ks6vU65ufnhdVMYL3RaFga0ZnguVbmmpGtHWYd2aahk0gkkE6nLcD/VrHP7YTvBZ9tIpFAKBRCqVRCKBQSQ0vf63qFwALr4e7fvx9jY2O48sorBehijV+OyU70nBeLRalf73a7BViZmpoSY/a5LH1lvvXS191bJzpopj+j80fda6aZktXMElQApE45S7AQUGUQ3KyLymutJQSQy+WyBXCmPiVgrgF0bTPwHHSYCUiaTHTqZdoZdIqBZZCaYLo5f7x3zhX3UDr0OtuMTiWPdTqd4jxx7jl+zWrn2mf5HV1+hONnqj+fKfuN6NqqZC2Hw2HpScNzlstlTE5OipOcy+Vk7kzWezgcRjweB7DcyE4HZrUDzDEQaKfzrnUQ5ykejyOVSklghsENzXrnXBLU0EQNUzTTTK8pM1NBM/x1IIY2XDQalaALCQecV+30X4wQKA8EAkgkEjh48CDi8bjMHefHBIimp6dFJyeTSWG0kaxQKBRw7tw5ALhkSr30dffWS193b63oADH1HZnDbFKpAWOC6OVyGcVi0QJcaqBcZ6FtBFjUfj5Z0ZqRq7OtNIFsreuYmWGaEU1/sl6vC+hs+tJcmzrzivdvAr1249D2QKe9XtsT1Eu0pXRmH20MM4C/uLgoRDZmFRPkZh17MqupD4LBIGq1GqamplCpVDA9PY3z588LnmJmcLFkKseny+fo+yfIr4PjDJqb4na7MTg4iLGxMdHx5nXtWP3aViBpw7TJTJtRg+nmc+J8M0ssEomI3REIBNBuL2WZeb1eSwm9iwHQeT/BYBCxWAzDw8N43vOeh1gsJuWEaHtx/vnZ1NQULly4ILo7FAohn8/j7NmzKJVKqNVqmJychNPpFNLEc136uru3siEQ/VWvehXe9a534Utf+hJGR0cBABMTE7jjjjvw67/+6z0dYF+WhAuXTjNgVTaauUXll8/nMTk5iVqthtHRUbTbS7XZWP+SwGqxWMS5c+cwPz+PmZkZqXvaTY1obpqzs7NotVpIJpPw+XxSa2yjpV20w82NjmlSuh6pLlFDR5fOG4MBOqpqGpubCfyakX2TuaVrqzkcDtRqNXg8HhQKBYky63qj/J4G48vlsqXBiXbIyZZqNpuYm5uTBitkU3AzZU312dlZzMzMIJ/Pi4Ih8BAMBhEIBJBMJjE4OIh0Oi3raCeJTulnrXYC6YVCYQUjYzXx+XwSJNi7dy/27duHcDiM5z//+RgaGkI8HpfAh/mc1hojsMTCiEaj8Pl8OHToEFwuF0qlEmKxGKamppDNZvHss88K0/RSYLj1ZXOlr7u3XjR4S9HMcZNhS/Z1JpMRprjeX8hwZ3BwcnIShUIBc3NzXelsYNl2aLfbyOVyaDabkgpLoJE6gtdkQy8AEuDtpFPpxDWbTUxNTYke1+ngDHBrMJsOsQYBisUiqtWqRYcSXNcOtU651uPQ52K5FF3/k2C8DiwzfZjzSVBAp8YTVCH7jkEIBkn4GbPk6vU6crmcJdPPBDg4dgIkzWYTs7Oz8Hg80rA7HA6LI0uGIxtjs6webUTOAcvh+Hw+SWEna5zgMtPW6WjzWWtCBR1VAh60/9hYjgELvab1euDfuQ7033RAyOlcqnfLZ1AqlbrW2wAk5ZsMSTLQ9+zZg1gshmQyiZGREfj9fssz5zzqxrMEOwhCmIST0dFRXHfddcLCY3ke1tLXmRV96ctGpa+7t1a0HtL7DktR6bIQOuNHN/4cGRmRIB19Ye773C9KpRLOnTu37hKO9PHJiNaAsA6Acly6p4gJbup9WO91mUxG+mMRhAZgCW4C1jKjHI/eJ3VQXQeD+H8GBnh9k1lNMXWALo2jMwPDKPYAAQAASURBVPwYWNKAsPlcgeW+JyQJMHjKn0KhAJ/PJ7qbetnM+OO9aL++3W5jbm4O58+fRyAQAAD5l+sgm80KAY5YgA7w819mQHUi/uk1apZ30bpHf86x0o4xgxd2gWsdGNBzTjuA52Jwmpl3epxrCTPr2EOO5Wv2798vPUv4mdbJJMoxwDUwMCC2HQAL3kJ7aN++ffB4PKhWq5iYmEA2m0WhUMD58+ct4+5LXzrJhkD0T3ziE3j961+P/fv3Y+/evXA4HDhz5gxe9KIX4X/+z//Z6zH2BStrTXZz7OzsLKrVqoB9xWIRkUgEqVRK0osJtD722GOYnp6WpocEULu5TrVaxZkzZzA1NYXR0VGJBLJG9GqR5dWEbK9SqYSTJ09iYmLCwpRj9JNODmBNj+Pmqp1VbShsheior1Y4VNwE0MkmsGPwmeC7GTDhfes1AkCi5n6/H2fPnpXn0mw2EQqF5PsLCws4e/YsJicnkclkMDMzI021WF4gGo0inU4jnU5LsxTdEG6nCB35druNdDqN5z3veQIuTE9PC6OiG2UeDodx6NAhRKNRvPzlL8fLX/5y+P1+xGIxYavpGnrdsOU0U53ge7vdxvDwMF70ohehXq9LQOvJJ5/E17/+dQHJuh33bpF+RHzrpa+7t0dMJ459D/Tn2rlhCapyuYx0Oi3gNhk2dE4LhQKeeuopzM3NWepIryVk7rRaLUlzZoNKn8+HdDptcWY1ywcA/H6/NO3WAT5Td9XrdZw+fRozMzPwer2WlGnqDzrkPJfW2wsLC5iampKSM5FIxFLXmoAunVLWFmcQmns008q5j5rNxe32Ep/Ph1arZWnkajbOMp+tnl9t92gGvKmn7b5Pp57jLBQK0kSdNblp47AuK8FbplHTyWWtVZYYiEQicg066sFgEMAyGEKw3el0WhqkE5whCMLABbOpTBCd5+cPv6+Z79qGYDq70+lEOp0WwGpmZqYrEJ3nCQQCGB0dRTAYxIEDB3Dw4EGEw2Fcfvnl8j7RvimXyyiVSlhYWEAmk0G1WkUwGMTg4CA8Hg+azaasNV1+h0Ghyy67DDfccAMajQYef/xxTE9PY2JiAv/v//0/ZLNZsTmeS9LX3Vsvfd3dOzGD2p3E9LVN3W2+B61WS0DReDyOwcFBIS3F43HJMmN5kB//+MeYmJiw1FHvZuzUdzMzM3A6nSiXy1KeJJFISFNtneVlgs0cL/1ifqaDqWfOnMH58+ctuhuAlOjSdcl1gFoHCrjXczwk13F+OQazh0knX0rfD6/DY3UZEx0c0EQGDdrra5rsbX0trbvNoIm5jqgTa7Uazp49i0ajIQ0vo9GoHMfnl8lkxN5jcIb3wQAMA992rHZ9Xc4dCQa6zre2c/iZGQA3M120PafXCOeANhQz5LmGx8bGJJifyWTWpS+07r788stx+eWXIxQK4cCBA0ilUmKLcY3SJsvn86jValJWhsQFCvU1S/8MDAzghS98Ia699lo0Gg2cPn0as7OzOHXqlJzruSh93d1b2RCIvnfvXvz4xz/Gt7/9bTz++ONot9s4evQoXv3qV/d6fH2xkW4WsY6Ier1eFItFcZR0jU6mo7K+tu783a3QsWANy3K5LGm6ZDtppdhJOWrnkkzqSqUi6c901Oh4kWnucCw3E9VMMSrJ9dac2yrRm9lagRHNHOhWdIphpVJBqVRCu92W2uB8ziabjRFl7QgzxU2XmelVmnUvRQcqaHwAsDj3a5VKoVPP0jo0hoeGhiRVbz3Mc7sx8l8abmS+kaXo8XiQzWYRi8WkZnKpVNqxa3kj0lfmWy993b0zRDOv7PZPOqPUgWQ/EVQlyKr140aCbNz/W62lRtV04qjPdWaXWU7E3PvpCJMdZN5Du90WYFaX1tI/1Ncmk416jCU/dPpup4C4ZkPzh2PSKfV2xASTza6byenz81hz3rvNCFjtuXDemXHmdrtRLBYtADZJDKw1bzIjgeWAic5u41yTVWa3Bu0yHc1gsQbzOZ92jrc+P+eTx5vPiGuN/WA0630t0fZKKBRCKBRCNBpFPB5HOBxGIpFAMplEvV5HsVi0pP3zPnVfGDtbwQx8+Xw+xGIxNBoNxGIxOXcgEBBH3Cy1tNulr7u3Xvq6u7fSLZBuitbddmLqvVKpJPuE0+kUv5sl2wqFwoayVai7geXgIwPX9LvX+j73b/rOevy6cWm7vVS/2w641t/R/rYmtFEXaNb2WmPrdJwmw/H/ACylZM0McJOIZn6X99AL0bYG+2SwXIgGwBcXF6UPXbVatTRu571TZ+ueLmtlf5uEDVNfmX8znyWwMqBg92P6/3zmxH50SbRuROtuZo+ReR4KhRCPxxGLxQSz0n3bTNIk3wv9fLU9yPsjKa7RaCAej0v2RTAYlEzAvu5e+f2+LMuGQHQA+Jd/+Rf8n//zf4Qh8tOf/hRf/OIXAQB/93d/17MB9mVj0m63JVrXbrfx6KOP4ty5c1J/cmBgQCKF1WoVU1NTwkBfrzIhq4cb0OOPPw6fz4fBwUGkUil4PB7EYjEBMsnqAawpUIwwsqZ3JpPB7OyssIhZc53pONqZJqhrggKcAzqMOhK7FWx00znc6Aa2ke/o9PYzZ86gVCrB7/fj3Llzwtbms5uenkY2m0W1WhWwlorS6/VicHAQBw8eRCwWkzTpnQSem+JwLKXAJZNJBAIBAcFZy7RT01yfz4d9+/YhHo/j4MGDePnLX45kMimlXLoxYi5GBgYG5F3hu5HNZvGTn/wE//f//l9pePdcqL3aV+bbI33d3TvRzkQ3WWJ2sto6rtfrOHPmDObm5iy6k85pvV6XjDMz+L1a4NVOJ9brdenRAcDSgLndbktQ0e12C2hLsKDVagko0G63UalUhJlEJhpLatH2YNkylrQi+Gg26xoYGJB+EwSJdbNV2jFkqjscDgksEITWactMrff7/XKf2lHSDCcAFta63Zxu5j7Ubi83cGdGFXUD67zzc2bu6edKljlroY+OjmJ4eBilUknK+Oia/CzrwhIqAORZsnEqswsptL+0biQrkr/rcju0LYLBoDjOuqwde4+wlMvk5GRXtobT6ZS6tqOjo7jyyivF8WYpHKbkV6tVuX/dT4XOv67Dz/kkEMT7TSaT8r5PT09jcXFRUtCBpXXERuEnT560DXDsVunr7u2Rvu7urWjSTa/XZLVaxTPPPIOZmRnJ0mFPM5YWm5+ft9XbWs+Y47IbZ6lUwvnz5+F2u5HL5ZDJZMR3IxDLvU0D2hr8NolwDN6ylFmpVJLxl0oluFwuaSpJJrIud8XAgNardoEL+uLMcjODFObxdnND3WKWhtFZ6GvNYa+FWWKNRgOZTEZKw+jxFwoFyYIqFotic1B3s4loKpXC2NgYhoaGLOWEdEacZokzOKzL6WgiAL8zMDAgwR0C9WutNx7L7/Mz9n8JBAIYGhoSpv3p06flPJ3mnfXpPR4PDh48iOuvvx6JREJqnnu9Xmn6yabptCNol7GOPe0N6my95jWmoZ8RdXc0GsVll10Gr9eLUqmExx57DD/72c8sPeV2u/R1d29lQyD63/zN3+D9738/rr76aoyMjOxoMO1SFkbldBMsMoqZEk6HlTU6N/qC0OHOZrMScc1ms8hmswgEAhgbG0M0GpUSLJr9xIgt65+yjvvU1BQmJyct43M6ndKQipFOAutkGlOZMorOTZ8gOzdXAJbfey1aeV8MgH6x1282m5iYmMD09LQENDSbrdVqiTLXzEPOr8fjQTKZxN69e6U2umaR7VRhx3W/349kMolUKmXJuLATj8eD8fFx7Nu3D0ePHsWrXvUqpFIpC3NxM4W13CORCKLRKEZHR1Gr1TAwMIAzZ84gn8+j0Wg8J0D0vmy99HV3b4VgJlNauyk5sR6p1+s4f/68XMuUTjrFdMRNsXMsWa5E1zOnA91utxGLxaScjK7pTeeiWq1Kc2s2AGcpC56nXC4DWAJmWd6j1WohFApJY2UNaNNmCQaDYstQNxFEZ/CdZWg8Hg9mZmaEQcfvcF7oRBHk1f0/+MP0eoK9TI82536zRQckHA4HZmZmAMDSL4XPrdOYyLZiP5OhoSEpEQNAHG3tSNMRZ3CkUqlIPXaWIDPTx7VNp1lomqnGsTKji7Yb65kCELA+Fouh3W4jFApZwK5OQgYcm3+/4AUvQCqVsoxV6//5+Xk0m01Eo1EplcMsOzLSeT29Hgk8cB5qtRpmZ2flvqPRKAKBgDDcWq2WNB59Ljjhfdke6evu3okOiunPein1eh1nz55dkYHdiQlNoY5ajfFujpVsZofDgXw+j2w2C5fLhXA4LLqOZVwZNCThjMA5Ad9CoSBENp7T1N1kR7NZo65JzV4dACyAJufcbp6ZecRgO7DMDO8EonP+OE8mcN8L8trFCEFyNpmdnp5ekZml54rfoTgcDiGApVIpDA0NYXh4WErS6cbuPJ7PiufXut0kDbbby6XUqK/NcremnUgWN0FozUZnlYBgMIh0Oo1Wq4UnnnhCgvKridO51Dg0GAxi3759uOaaazA0NCQVCKhndQZmu92WZqwkzZFkot85M0OOQDsAIXYAkPclHo/jsssuEzvz5MmTsn76+rsvpmwIRP/Upz6F+++/H29+85t7PZ5LSjo5ur3e7KlkqDR18yszZbtX1wIg6WxsesJaVCYI2263JdLHenFULGQ92THHqbhpELjdblGm+l9d881M79ksNrppKG2XItdjIBOPDEKtGDj/eox0qtmoho7jRmvcb7VQgbZaS81GCMTYpZjxHln7fWxsDKlUSph5W3XP+hq6hmwikcC+ffuQzWalhutGUkB3kvQj4lsvfd29+8QE8rbiegTC+X+CublcTpp2mY0xmVLOGum6JIzpHFLvEADXbHGdJcTjtPOm9/V2u72ikZmp57VDpfuO6HHR0bdLN6ctcTEkg16I3i+py+k02wENnCefzyeNNZm90Gq1xOnV6c/aJtDnpBNupunzOLM+rhazHq9Zp1cHavS5OT6/349IJCLry8wi470yYy4ejyOdTguzjXagfo/oTPO7DBjxMw346PVnd396DBqkYp1/ZgCwWXCxWOx4nt0ifd299dLX3b0Xvreb9S5u9D3ZyPe0bmBNaO5BZNoSKKW+ow7Xeytrvut62voa1AEOh0N0t65TbddMVJd0NX1uO3BXg65r+eh2fhn3bP3vdom2dUwQXeslPTea2e33++H1ei1BDzMrzvzdtLdW8121fub3NflvNdElfLSe5fdYVq1WqwnOYF6bWQhDQ0NIJBIYHBy0zXS3s4P1WtTrTdt85lyYYga5SNxot9tIJBIYHx9HsVjE9PQ0crncqvOxG6Svu3srGwLRG40Grrvuul6P5ZISbXADywY1N9tei1YmOsLb6wibVly5XE5KsExNTVm6XmvWEjdSszan2+1GKpUSJjqVM0HgUqkkTHMd8eZGrh1J7TjrWmm9Fh0Z57OkkrEDFLZKeN+6bhlgNbzMsXm9XkSjUYRCISSTSSQSCWlSthtER6FjsRj27t2LQCCACxcuWNgRTqcTyWQSQ0NDGBkZwSte8Qq88IUvlFSyrSj7YycDAwNiQL3kJS9BLBbDzMwMHnzwQakJpxl8u036ynzrpa+7ey/byXbqJBczlna7jVKpJI0neZ5cLieNzMz7NeeAoLNmqmuQks724uJSQygG2wnwanCbetrn80k2m9PplBI2bKbJ0hxut1vSnTXAy6AkgYVqtSr2CgOr3EtZ45sMKN00bScIHVIN+ALWNG2ytIaHh3HgwAF4vV4p3dduL9Wn93q9ci7aRwRAKCxfwuxFzgPZ+2wUZwIDtDd0GjkZ6zo4reuacq7JKHe5XBgbG8Pll1+OUqmEM2fOrHBkWa4glUrh5S9/OS6//HJEIhEMDQ1JCRdmbunrs0EryRtut1sy7XSQyAzsmPY5nW6Wk2Etd92Eb3R0FNlsFj/84Q/x5JNPSrmgvu7uS7fS1929Fe2Db0YW2UZFj2MjQDoD0k6nE/l8XnxrXYZLZwfx/9SBrNNtNx/U3QTZmXlOQF5jDCaAznKY5t7BsTAwrPdbzRo25whYBtj5DKkP7fzv7QbS7cagAXTaRtRnPp8PiUQCw8PD8Pv9Uv6HYDxtGjOIbl7DrneZvq4OJHUKnncSDaKTQMGGng6HA7FYDIcPH0apVMLp06dXgOgk56VSKbzqVa/C0aNHEQqF4Pf7LYEcHcTmHHG8LDXHEnBa1iI+2PWD0aS5F7/4xRgZGcHc3By+/vWv4yc/+cmOsvM3In3d3VvZEIj+tre9DV/84hdx11139Xo8l5RokE9HAjdLeg2Yr3UdOkQUKlTNAOImzdptLPdCUNzv98sGys2N9TvpqAPLm6G+P6acaUdes8I3i1nMZ2iy3rfTSON11wMEkMXm8/ksTu12gcrrFZ0C7vf7EQ6HJRvCBB0CgYA0EB0fH8dll11miWxvh2jGSDqdRjAYxOTkJL73ve9JOt1uyAjoJH1lvvXS1929lZ0GnvdKGLA2hamvdkLdDtjrGb2fan1Ip59OrwYQCLIShGd9zHq9LqVBdMmYcrkMj8cjAKVOVda9Uwi6a9vCdB6pO3SN9p3ynPVYtJ6j8FmQCRaLxQQEX1hYEODbbPCpCQbUPeZzbbfbwkAEsIIUoZl3erwaUDEbtWoAnmuB4w+Hw0gmk3C5XJicnFwxFwSI/H4/9u7diyNHjsh3eV0Nyug10W63pXG3Zu5r1pwulaNZknr8vC+CAqwJz2N8Pp/0C1pPs7WdKn3dvfXS1929F50Rs5PkYt4PM+jXjegyq9St3PvtGMHc46vVqiWoDiwHAXS2mMPhEAIWx6f1lz6vbkYKrGxy2SkTSZ+L9gWvtRMCJKvtmRoLoe7iMwkGg/B4PBL45/EmAKzPbQYpOq1v/blmn/N3jdXYjZ0gus5AIC5DXZpIJCxZ1Vr4eSgUwoEDB3DFFVdYCBYmUcOcL91cVONp5toyf9efmd/RwR+W0JmensaJEydW4Aa7Ufq6u7fStTV37Ngx+b3VauEzn/kMvv3tb+NFL3rRCmbqPffc07sRPsdEb5YEKIFlxUMm1nZu+qbS0uMDNv4SmZtgIBAQxc3mYma5Fzq3rMFaq9WkIVSpVJKyFnoz1cqcn3Gz18wn3qvdhnsx96ZZ5yYLfSco826FtUkJXJjO8m4SnVbGe9EsxLGxMVx55ZUYHh6W+qg76T7ZZC0cDmP//v144QtfiEwmg5MnT0qtwr70xU76urv3wvqLBFkvZl/vpWG+mUa+Zi3Z1Z/0+XyIRCJwuVwrmnUC1rJmbF6mM7e0ca9rdNJxZhYagXfWynQ4HGI7kE3Nc5jj1nNEO4DBdnMcBHN1BtlO1N12Y9JAMUFrMr0XFxeFWQ4sB8v5u06J1g40GWAaCGfZFZMZqJ+V1+uV+eWcut1uCXzopl0McrB5LQMkvCdTnE4nhoeHsWfPHqRSKanPqzMNdLYWn7nuDcRyBgCkyRsdeQ3mmEF1M+W91VpqJMoSg8ViEQ7HUtNU2q/sz2LeW1/6Yid93d1boe4ikWan7OfcWwBsio+ogwW6jjQ/Y8kvMpt1vW2Oh/q8Wq3KnkrfVo9fB1+pU3XjUn1+u/2U80Edps8LLGMCPI5/Y38VnQHHn52quyna9tA6lkFZAFIijyA7YF03ZlBdiyYh0u+1A905Duo+j8fTVdCXQRLqbmC5XC7tKzvG99jYGA4dOoTBwUEEg0GxBRjE0TYk31diZ8ByU3gSAIifmc3AO73rZuCf60aXy+Pcx2Ix7N+/X8qy9XV3X4B1gOg/+clPLP+/8sorAQC//OUvLZ/vJOBpJwojjey8HA6HLZtaqVSSl3M7AFddVkVvumb9042K3hDD4bCkKg0NDUm6Fx0p7cARjCaIXq/XMTk5iQsXLqDRaFg6W1M0qM70NgC2Tt/FsKt15FYD52TJcVPmxr6TlbkWr9eLWCyGSCSCQCAgIMVue8cdDoc0V1tYWJASKVzPXq8XR44cwW/91m8hHA5jZGRkRdrjdopmcTgcDlx11VWIxWI4efIkpqamdi2I3o+Ib430dffFiQlMkxEdjUbRaDQwPz8vTsdGz29mUW30PLo8XK8zzhwOh+iAaDSKaDRqKZWWSCSwf/9+ST02m3VSTy8sLCCTyWB2dhbNZhPlcnkF4M4eFgygs846WcOlUklASr/fj2AwuEI36YZS/NeuhB5rjxIM4Hjp9AM7f68xx0dnVpfPW1xcRKFQQLVaFcCE9h5LmPBceh6pdwhUEMTQmQRM36awQV2r1ZJrNZtN5PN51Go1uN1uSwkYXicYDApDnmUCVmuiPTAwgMsuuwzXX389gsEg4vG4MClZ7odp4Q6HA/V6XcCJSCQifXRYDziTyVjst3a7bSF7MACv55z/skkZAXk9RgYLotEo9u7di0wmIw3idqP0dffWSF93X7yYOiEcDiMSiaDZbNr6jdshDFAyYNyrkq4ajObeHY/HEY/HLTqCmbgEPOkfMdjHZo6Li4uYm5vD7Oys7PGNRkMCtmbwFYCAnOVy2VKGA0BHkNbMWjIZ0/r/DBBQz9v53TtdiHHQxtKZc6FQCAsLC8hms6jX6+LLauY6sIx3UEwypC7/onW9nR5jOZ/FxUXb8q2cfx10Z6N2kksIeJNwQbuLMjAwgKNHj+Kmm26STHFd1s8uUwGAEC1ZlUDX4md9fo6f5dk0WXK1+desen39arWK0dFRAMDk5KT07tuN0tfdvZWuQfR//dd/3cxxXFLCTY1KAlhOk90ukFJvtHSadBdvh8NhYVdv9EXUDCmWCWHKUigUEodWs6E0iD8wMGBpUOrz+eBwOFCpVGxZeBynZpJpZ1nLehnpdvevr6Ojm/qz3SKMImsG+m411mls8F600eX1ehEOh5FIJBAMBm2j5tstOgAUiUSQSqUwMzNjW5pmt0hfmW+N9HV374U6TPeX2G5mm7YnNCNb656LGZ+2WciQ0k4uwWy/32+xHTQznI2dyQbkeVdjCQHLQQHONx0e2gnagdf3r20timYOa5Y1dYLZM2Y3CudEs/kBrLBJKDyGtpF5Ls0I1Kx02qz8nH8z15u25fQYzOfC9wqAhUVol01A+yQYDCKZTMp6JAiuG+Ppe9K2tvlD+5DfN23HtdYE16h5HN8Hn8+HQCAgZRC2e8/YqPR199ZIX3f3TrRu4N61U3waTV4DVpZ37UWAnddgvW3qYdaTZk1pr9crJa0GBgYElCbA7/P5hAltsqB5rU77vWa4m/Nup49MnW4ea4Lp+u+7UX9zTeoSdLruuZ1uMW0es0yansONkCD5XTOD3y6QwXWmbQG70m20H9hvjVmNun69DuZrO43/1++MvibX2mpEErv5M981cy4DgQCi0ShKpdKKgMBukr7u7q3s/uJ8u0z4gtJh0ang29V8kkwkprgyJZs/TANmimw+n5dUVLu6qXbCjSoQCCCdTsPn82F0dBSjo6PCCmKKsV1nZm6i3KypjD0ejwVA11FMbXjolB/eE8/LjV5vxqsZVvrZ8Dx0uHTaGtOvTIdut4gu50IltxtFMzH4Q6ZjKpVCMBjEnj17ZA3u5MapbrcbIyMjCAaDqNVqGBwcRLlcRq1Wk/T13SJ9Zd6X3SB268xkqno8HmFKr3ddXsx7oJ0UXdfU7/eLI0w2Wa1WQz6f33BzTOoDj8eDeDyO4eFhS0DS6/VKfXNty+j6lgzKRiIRySyr1+uW3inAEpusVCoBgKVeum4eRn3t9Xrh9/stJdMIZhLc93q9aLfbwo4nk91Mc9YA7G7cX7SdxRRpn88n9hKfH4kKwHIdcq4hp9MpzP92e7lx6MLCAmZnZ1Gr1RAMBoUNB2CFU+n1epFIJABAGnSzjAyZi9SzuqZ9u92WhqkEBQg+M5Xd6XQK6zwQCGDPnj0YGRmBw+GQZvZcq7w/3SSU/6czzHtnMJ3liFj6xmRD0n43GZJsCKfXX7vdRiQSQSQSkfkMhUI4f/48JiYmZE13a0fvFOnr7r7sFtHgGH1A7gfc/7ejYTSBRJanIImMZV7Z8JhZNblcbt3j5L0PDAzI3h+LxZBKpaQsiGaRaxYu9TN1IZsyh8Nhyd5hU2/qTt6X3hf5uy4h1k3mtxkAp/9cqVSkuTQbOfN46g/aHLvN5waWdPTw8LCwqPnMGSTWutsMMphgNW2bxcVFlMtlNBoNuN1uiz9vBikYYOHvZlYCg9cUM6DRai33EyG2RN0NAH6/H/F4XPxvZqoxy1AH5vX5+TvXpSaKOBzL2dosV9Rut20zD/VYdZCBtmm73ZY1RduH9kk0GoXD4cAvfvELybTbbWusr7t7K30QfRuE4K4Jopsslq1arCwtQwB9eHhYNiSd7rqwsCCKnA7BekB0OrSDg4MIh8MCotP5WA2k5UZII4NKPRgMolgsSi1KrUD1PHKc2hjQ7DOem4aVXaTbFM30004+r8/GZ/q57iYhQ4GlXIDdmzZKp13/xONxHDp0CNFoFKOjo5LevZPF7XZjdHQUQ0NDmJ+fRzKZxPz8PACsmvbel770pXei6yb6/X4AS04Igbf1yMXqBc1yZQA8lUohHo+j2Wwim81KGbRSqXRRIDqzv9iEWQOMdG6oQ/VnCwsLorv5ObDkEHP/0mLX2FSD6AQyGXQn6MA9kDqZf/f7/ZJ+zhIy5XJZAAxdT5WO2m4U087i8+J8MeVaM8loq9CJ5FzQoXU4HAKiz8/PY35+HqlUSoJHwHKdWtpEDFITvGFpnmAwKMENfqdSqVjSxzW4RYeajjGd4kAggJGREUQiEdGHLBOUz+cRDocRi8XgdrsFpOf64LtbqVQkYEBgYHBwUNLnWbOfa5HgAJumcf1pO5J2sw6ypVIpDA0NyXe5XzB9XQNVfelLXzZPuLdrEJ1Bs63OCtHZQn6/H9FoFB6Px6K7M5kMKpUKstnshnU3M3wIzsdiMWn2yNJZer/X+x2bRHKsABAKhUQnTE9PyzVWK5tiV07DLuvezBzSLGbiJNVqVWwGu+fFMe82cJPC8rbM6qPupp1iBm9NQFhjF1xfJHhUKhXJFOTz1CA6wWT2C2GGgn62zGBwOBwy1yaxkLYbA961Wk0wHJ/Ph6GhIUQiESSTSSlpXC6Xpdwagzo6AEbR9c51kMWO6KexF64Jk53PcerAhC5Rw9JPbrcbsVgMlUpFAg27NVDTl97JxgtB92VDooHdZrMphrUJ/q4mfMmDwSASiQQGBwcxNjaGffv2Ye/evRgbG8Po6KgwdXQEWItO7/J6vVL7kcpWs3b5GUFVpn51U35GpyeR7U52mC4VYpdea/7oc/J8HBuj0nb3qpn+5o9mKZmpQHbH63Ro3ThUn0+nJa03s8BuLrYDvNYOIse1m0UrXTrN0WgU8Xgcfr/fVrnuROH75PV6pTYzwandJHov3OhPX/qy1UJdQmeTP+sJlGrdFYlEpE5pPB5HLBaTwKVdVpYWAoxad+uSVGSlk9VEvW6WP+lGCF6GQiFh3HbSjRrkttNh3H8JOvJffaydQ8QgtU4H10CnmQqsj9FkBe1gArDobdpkG9lfNLN9O8S0L81yKPoY8zvaGeScci70M9UlCM2murQlmS3YaDQk06BaraJSqaBUKkkDMJ7HrGOr3yU67XSSyTDjmnc6l2uj6rR3rgVdFgZYJmTobEpel2MlAN5pDeg5Y5YHSRw8p66tXi6XpYQL7WcdGNht0tfdfdmNwr3BZCuvZ00SZGQ2TCqVkp9kMin61wQ7TSFIGQqFBDAlOMfgNH1v7XdvpNwkg5nU3RStr7mfmYxdM1ios3rpe681JtP/1vvyaqU3TACUQQS7Wum0yS5Gd2+Xr61FPwd9H3Y63G7uGOxlFrwG1c3nacfI1oEmZqSxL435vujsLm2DUbhezIxF+t0kP2i8xW4d2NmCmojKtWQ3V3bzq0mrJmZjjof3rrMe2c/Q7OuyG2Q7dPe9996LAwcOwOfz4aqrrsL3vve9VY9/+OGHcdVVV8Hn8+HgwYP41Kc+teKYr3zlKzh69Ci8Xi+OHj2KBx980PL37373u/jt3/5tjI6OwuFw4H//7/+94hxvectbLGvf4XDgV3/1V9d1b7vPetvlwg2q1WqhVCpJGjMX51rlXOh8ut1uHDp0COPj4wgEAhgbG0M4HBaDvtFo4Omnn8bZs2dRrVYxPT29ogEhnVemD8XjcYRCIWk6otOc6bgyXbxWq2FiYkKYPasBCHQcPB4PEokERkdHEQ6HEQ6H120Q6BQepje53W4MDQ3B6XRifn4epVLJwmLj+Dm3dAQ160mzn8z639oh1s9Gp31TebPkDR1IOmPdRit5P1rJ6fNzDJstZorTdoECvRQqca7reDyOI0eOYHBwUNbPbhC+k5FIBM973vMQCATwxBNPYHZ2dtdFxfvOdF92m5ANxbITlG5YKXRgQqEQQqEQfD4fhoeHEQqFLHplcnISMzMzUnbCLuOLbLB0Oo1IJGIpxQZAdFoqlRIAvNFooFarCRN7PVlSoVAI4+Pjks5dLpctDpnWc2S4kenH8ZKFzHqYLpdLyn7o5mWmY09HWpdgIRiqmzzx+rSTyFqnLq7X61KXPR6Py7EEVUqlkqUJ+HqEbD/WkdXNsbZKeL16vY5isYjFxUVJ3degN3U655Xri3Ndr9cxPz+PdrstgZl2uy3MOJYv4vdoK9CxLBQKmJqaQrPZFABcN95MJBLYs2cPXC4XSqWSXIu2F9cP1y1LszBbkOUA4/E4HA4HJicnhWlOO5rvqG4ux7TvxcWlJqt6fRGM13WDaRuafYBok7XbSwy6QqEgGZ2mY12pVDAzMyOg2fDwMEqlEgYHB2VcLImwXaLH2+04+rq7L7tN2u2lzBc2Qua677b5JP0GEm+ouynNZhPPPvssJiYmJJulU7a2x+PB6OioZMwQQGew0O12I5lMot1ui66s1WqYn59HNptdF0ErGAxi3759CIfDwiDmj0lOM7NrGHCnvtUBwMHBQTgcDtEXLJuq55v7MTN/NFjNUmOaJKeBbO3zEmdgSRlg2c5oNBpSZnYjuptZRAz+mo3Ot1KYJeVwOGRuNINaP3fOCfUabZlSqWQhE3DeGLQ1AXQK7QHiFqVSSa5JDIVBcqfTiWq1KjqXPyR30QbTWRBcMy984QuRTCaRSqUkoE5dDcAWF9IBBHNd8BoUswSQvj+tx3Vght/RGEy9Xkc+n5eMxWg0inQ6jcsuuwyhUAgXLlzAmTNndl3m4lau7QceeADvfve7ce+99+JlL3sZPv3pT+Omm27CY489hn379q04/vTp03jd616HW2+9FV/4whfwgx/8ALfffjsGBwfxhje8AQBw4sQJ3HLLLfjABz6Am2++GQ8++CDe9KY34fvf/z6uueYaAEs21Ytf/GL8yZ/8iXzPTn7jN34Dn/vc5+T/zK7sVvog+jYIX2K7lOW1FrdmjycSCVGMz3ve85BIJFCv16VGMtOXXS4XMpmM5TxUimQOMf2VjG690bbbbUnxbbeX6op6PB5kMhlxxFZT5jQIdBRPOxvrBS/18VQwoVBI6qtqp56ix2fWw9PlXHTUlufRGzEVF89DhU0WFBWwjmx2u2Fxvu2AfL3Zb5VoQ2q3RVtN0Wx63hfrxg4NDUmK4k4Xbfh4vV4kk0k0Gg2cP39+V4xfy8Uy0vpOfF+2SzQw163ovYfs8VAohKGhIcRiMQDL+3ytVkOxWBR91ulcZJgxG4U1GwniErhjTWk6Nwy285rdvEtMZ41EIigWiygWi2i1WrbpxXTeAGuqLN95ZqYRpGXdTDrh1HUamG+1WnJPmsGrnS9ek2nPGgTVTCNdK5OfkXW10frUdBoJ9Nbr9Q2d52KFTiZTqGnraMdRs9c0OKFtU5bmMWvaE1xmmr9+vsw0JEGELDaPx4NGo4FcLodqtWopodBoNFCpVABAnG6OW5dhI8jEcUQiEVnvXIvaubarpc/z64wDvXb5zHiPLM1iOt/a5q3VagI2cD416FStViXwoO1fsk+3u9+MydrrZi/o6+6+7Fah381gLn28btYkgd9oNIpgMIixsTEJxnLfLBaLyGQycDgcq5ZYZNAtlUrJ3mSSt6jHuM8w4yWfz6/rHfJ4PIhGo4hEIrIv8x3m9Uyfk2PgffP/uv9FKBQS0Jb7qsYNKJwbrS/08drvZpCX39P9xngca1ZzzNS3G9W52u/mWLdLCCgTc7ET6jnqNo4bgKWsXiAQsASJTQa/HZDO65tZ+cByaSD+3+xBx79zXfF587oMig8ODiKdTiMQCKxggK+2rs0ggv6ux+OR69rNmx2jWhMItE3NcWt7kYEAVoBoNpvI5XI7xu8237lO0ivdXSgULJ8zsGbKPffcg7e+9a1429veBgA4fvw4vvnNb+K+++7Dhz/84RXHf+pTn8K+fftw/PhxAMCRI0fwox/9CB/72McEDD9+/Dhe85rX4M477wQA3HnnnXj44Ydx/PhxfOlLXwIA3HTTTbjpppvWvB+v14vh4eEu736l9EH0bRStwLpd1NFoFHv37kUoFMILXvACHD16VOpDspYjU1vr9Tr8fj/m5+cl8s4mJQAkLYuMdP6uUxsArNgMuVnp41cDeBklZTo5naJeMH+56Znn50ZvAuDcODXTWwcCuHFyfuw2SJ5XpzlrxtNaTU14baYEMuWeEV6y2fS1eX4yrMh4Z508M52p0zU5D3o+OomOdO92p0enoPG5ezwehMNhAaB2m7hcLsRiMdTrdUlr70tf+rIzhenffr8fhw4dwv79+6WptsfjEd1Np2hoaAi5XA6/+MUvMDMzYzmXnUOkGWRkwXGPI6OMjGDquW6cFupTBr25hxII51g04E2bQIONWieyFAfHR6eQbDK7wDz3b+pe3isZWEzT1/s87QDqZp6TxwHLGQTrraNKEIYZfJp1b9pZuu5sq9US3b1ZelWTADSzSpcO0UCBLiFAhzEcDqPVaklNc65P3jcZO7xX1vtmCjSvpRuksflsMBhEuVyWQEcsFhOdTHuOdVlJDCkWi2J3cnyRSESyGrneGDhiwzLWWtX2qyYn2Nm6ZhambpSmAQtgqba5rg2v55xAGhuhBQIBJJNJzM3NIRKJoFAobLsjvtttu770ZSNCXdIJdNMSDoeRTCbh8/lw5MgRHD58WIBpr9drCcodOXIEqVQKuVwOP/3pT6VuOIVlxDQrWNvu1Ec62wpY9nWB7gLfBPx1LxKttwH7uuQmsMpANP1LDZaxzAyz8kxgXgOWmvHLOTeDzmQy6+vqIDp9bRIAFhYWhIm+3mzvgYEBRCIRBAIBC3jK/Z6AsKm7K5WKBG03Q/ScUWdr20o/d/6duo395aiPSFDQZfD0mjLXkX4u5uf8v850JHbBz0nuou4mU50VCzhestI5FtqZ1O/8PnEs2gaalc/rE7fRjUF1WTf9nPS9c8zEszi3mjjIcxCXCYfDUmqRc75TQPSt1uN79+61/P9973sf7r77bstnjUYDjzzyCN7znvdYPr/xxhvxwx/+0Pa8J06cwI033mj57LWvfS0++9nPYmFhAW63GydOnMAdd9yx4hgC7+uR73znO0in04jFYrjhhhvwwQ9+EOl0uuvv90H0bZb1LHyHw4Hh4WG87GUvQzKZxJVXXokjR47IRqDZXq1WC/v27UOhUMD58+dRLBYBAMViUZjSBJ7p5LDemt3GoJlGBOwI/FLxdAJx6TxEIhFJYaez1AthajiwxPphzVc7p1gDwpqhxO9QEZkMK4oGY7VjrmuHEgSwA6l1xDuZTGLPnj3w+XzyEtO40sqF12q1WqjVapibm0OtVsP09DTOnDkjTK5O80+nVwMd/LfTd6g8tPLVxtFuFH0PjIin02kMDQ3tytpmfr8fIyMj8Pl8eOKJJ3bd+Ptstr5cShKPx/GCF7wA8XgcN9xwA371V38Vi4uLyOVywmbNZrNYXFzEC17wAni9Xpw7dw7T09MrQHRdl9QEQAGgVqshm83C5/NJEzE6JwCQy+W6Ao2dzqXeK3TGNGuNYCTHoMte0CYAlpnOZC0BS2SAVColDjH17NTUlACWdu+3dqgbjYY4jWS1lctlNJtNBINBC5DM81H/k9FnMpO6dYxpG7Bm4/j4uIDHurY6g+VszMl64DMzMwI8dyPrJVvw3mkber1eeQa6fA31P4/jD9lW7XYbiUQC8Xhcsu3orLLB++zsrDARgSXHnc6Ox+PB4OAgUqmUpPTTXmGT+mg0iuHhYQuwxPlttVq4cOECpqamhDBANncqlZIm9Wz+NTAwgGq1imAwKI1v+Y7xPpmZoZusmiUMyOTnv/l8XkAXAhR8JgRiWq0WCoWCMO3JZuf9Op1ORCIR7NmzB8ViEalUSt7T7dbd69Wlfd3dl+eCdJvdm0wm8ZKXvATJZBLXX389XvrSl1rKU7Gk0+LiIp7//OfD6/XizJkzFt1NvUiQkbXTAWs2CIOVul8YAOlDwgD1WrqKZU/oe9M20IFUM1vLFOpl6jaC3MQKIpGIhWXeaUx24+V+z6B2sVhEs9mU/RywNobkT61WQ6VSkflcbfx24vF4BIc4fPgwRkdHLexrrbuJVVB3Lyws4MKFC9IIe7OEvirJC8yUM9erLo9DW4iVBYAl3RSJRKScHb+jAWLznAS0NTCtbSlmqRHwJl5BUoQmL5RKJeRyORQKBUtmGUkUBM451wzQsGxwLpeTYDvXHZ8NwW3+cMx8frpOO8/PwLbuNcR/NclC/zBQEwwGkUwmkclk4PV6N9SbYCdIr3T3uXPn5D0FYMtCn5ubw+LiIoaGhiyfDw0NYWpqyvb8U1NTtsc3m03Mzc1hZGSk4zGdztlJbrrpJvz+7/8+xsfHcfr0adx111141atehUceecT2fuykD6LvEqGS9fl8iMfjSCaT0oTMruQGN3iPx4NqtYpIJCJdkvXmoRnZJgO90zh0BM50VDt9hw4+lXYvSoRoBW+ef7X70I64ZuXpaCsVswmiaxBaNw81G1J02qQIPjCCy5TeaDQqILpdgIHnZp1P1hJlxJbKwtwgzSyCblno5nV3u9NjBjU4J3T0exXQ2UrRhsVuVOh9R7wvl5K43W6EQiFpJJpMJiWgTaeAjJ1wOIxQKIRCoSDGvw56al2tGeH8mw68anCYzpbWdasJHQ46UwAsOlKzdulE22V/2ekljoU/upzIWqLZbfoeOUd2pdRMVpxZ57qbuTDnnPsv2fTUxUwBBpaY2ATRmapO5xzAijmzu67d76uN22Q32t2nnZ1g3iNtIJNYQRuO59DgDudVp+1zjei6rdqB10x5k53J9PRGo2EBC7gmNRPP7kfPgx63Zlpqe5TAu7lu+R1tW9KGYIM0HQDQc6ZZr5xbBix2o+3R1919uZSEzRBjsRji8biUc+D+SCZ1q9WS7Jh8Pi9AoQZ5tc9s+tKmf6bfMztS12pCMNQuw5x7jj7nWv6DaUdoHd7NHma+87pUCPWGJqY5HA7R43pOdBlV+u5r7Uc6QErg1+v1IhgMSsZVrVaTcXAfZwCczHRm91N3d9sHR/++3r3TzmfnmjPvj38zg8IaONe4hp1vr7+nGfr8Vz8Prl/9r17TDE6QUGHqaT03tP/0ucy50+PS60/r2dUIjJ3OYep5HVgwMQNNhLyUdTcDNN2IubesRci0O978fL3ntJNbbrlFfr/iiitw9dVXY3x8HF//+tfxe7/3e12dow+i7wLhxu9yuZBKpXDw4EEMDg4iHo93BKPJEHM6nYhGoxgfH0ej0cCZM2cwMzNjqRdJJaYB4E6LUUcv9XfXUmB2IDfv7WJFGwbrAen1vepouhkgMO+fyks78GYU0xwfHb5wOIzx8XEEg0HEYjEMDg4KuKIbdpjCz7xeLxKJhLCfYrEYarUazp07h9nZWanJx4YxnA8aA3qsuu6ZnbAkANPleP+8p90kTPXnvGgHfLc2TmUGRrvdlnTN3SR9R7wvl5L4/X4MDQ0hHo8jn8/jpz/9qbCwNOjrcDhQLpdRqVRQrVYxPj4Op3OpafbZs2fl+HZ7qdFjPB7HyMgIgGWdxFRzt9uNer2OQqGARqMh/U7IGFrrHaLuiEQiUvKKThjtC7KHdfkWCsGFZrMpjSepkzKZDBYWFizNINcrDCzrmufAsu6yM7SpA7vdf3Q5GzKRWQbM4/FI404NHAPLOpK6B4AwxDwej5TiOn/+vIWtaIp21vQ5V6vbSpDW7XYjn8/j2WeftdhEtDkACEDNczocS43iWKecLMtKpYKpqSkUCgWEQiEkEgnRpcx24PrStmWlUsHExIRlvS0uLorucjgcKJVKAID5+Xm0WkuNQ+mgFYtFYXz6/X4kk0lEIhGZZ7LbCXK020tsRfbsWVhYsPQ8od3Dd0UDCrouP3/I5DQdb12SUDcppVPPkgMAZF4mJiZQr9cxNTUFh8MhbNS+7u5LX3au+P1+pNNpJBIJ5HI5/PznPxeQkDqc+wKJTo1GA+Pj42i1WpibmxPdzf2Hepg6QQPKOvhHvcIyn902vuN3yLrWekmDrMByGSruYdSj2qfVDHYCzmaQfj2iS7ho/7ler0uJK7ugvNbd3bDxnc6lbLrh4WHJQAoGg1IOk3u67sfBe2UgmaQ3MpDZEJPZBp1wEE0+4HU04c1OSFxwOJZ6fUxOTq4AxHlODeJrQh/nqlarie2XzWZRqVRkDnQghf/q6wCQ0jacHzK9dfAcgGRstVotaSwKLOnuXC6HSqUi+AevzUCArknOa7LHCCsm6ECVtpV1cIqZYxrDoe1qzq8OhJtrSAPr/H1xcRGZTEayzcLhMAYHB/u9yNaQVCqFgYGBFQzxmZmZFUxyyvDwsO3xLpcLyWRy1WM6nbNbGRkZwfj4OE6ePNn1d/og+i4QOqoejweJRALj4+NIp9NS67QTiE62DlNIyehxu93S7EiD4d0wjjXr2mSCrXUPOj2t1xuPCaB3C6JTNMNPO0udnHBTia91/0yzisfjeP7zny/19Vgap9Mz5Ll1kIBGVCKRwJ49e6SBWLvdRrlcRrVaFbCYc85rMVjAcTMzwW787BLucrksSn83Kg0CGVSyml1pAhS7RZhiBtinUvWlL33ZOeL3+zE4OIhoNIp8Pi8gHx1cMlOdTqcA6LVaDXv27EE8HsepU6ek3InWwbFYDMPDw6hWq1IORjvn3Pd4LdoF3QhBdDriwDKITn1Ex5IMbGZ1Act6lWU4EokEPB4PCoUC5ufnJU18o6nR7XZb5knrMN20XetxzTbqRrQdFQqFMDIyIqVCRkdHpYwM7SAzoM97Z3mTYDAIj8cjzeg49rm5Ods54LlMJqEOpNgJdb7H40E+n0e5XJagq8vlksxEMsv4DDhn9Xpd5pQ1YEulEqanpzE/Py/PkUA9AR6mdvOem82mNKHl+mPgmsA20/NJAKjVapJhOTAwgFKpJI30fD6f1OGlo1ur1VYQIBYWFqSEC9PH+dx5rxq44Zph41Om/HOuhoaG0G63pRwPy8I4nU6Uy2Wpb08AhvYG1z/LKE1OTmJyclIA9kAg0NfdfenLDhefz4dUKoV4PC66i0Fhvtv/H3tvHmPZXd2Jf96rt+9L7dVVveH2ig3Y/IyNwAYGMyaTIQ4eLGXEkAygWI40YGvExAEUh5AgEoRaiC3MkBgUBawRIiiKNdgkYDBuEtoLXtq9V3dVdW1v3/f3fn+UPqfOvfVebV1VXd19j1Sqqvfuu8v33vc93/M5n/M5BB4Zf9XrdezZsweBQACnT58W380ffvfD4fAKCQrGsrqCRc+d6zHiBlpmAzCCiOYKHCYENDhO2Qz6IHPi/2J8t5ZB5X420iB0veS9YDCI/fv3IxKJGKTptE47pUW6ScMwmQosAYOs6q/X67KOMeMgjDMpFaqTGKslwHnedrtdtNf5rNG/8l5oLXiuu/T94PsE00ulElqtlqw59TnpxI0mFlJuT1dNmVnbzWYTuVxOmtfzegmiNxoN8fler1eIa1xz6ONTzojJI12xx++IHmuC7YVCAaVSSbTLnU6ngOhcJ+oEOc+/G3Pd/F1pt9uShCiVSpIksHqRrW4ulwu33nornn76adx3333y+tNPP40PfOADXT9zxx134J/+6Z8Mrz311FO47bbbJG6544478PTTTxt00Z966inceeedF3W+qVQK09PTQkpaj1kg+mVi+otvLhVd7TM6m2YubaWzoANnxlFnunW2TuuFkbGzXvDdnEHeTOnFambOim8026a31efX7Rw1cL6eYxDsDAQC0sSSwMN6SvTM58D7SpCcwXkkEhEdMYLo+jz12Oh71usa6LT0Qmc9yYndaAxq6YR7Oc3LyTRrYDsSU9ttFpvNsqvV9BzMpocADA0KnU6nBHO9SpZbrZboTjJw14x2bsMAi0HVakGc+TwZSLlcLsO+6IfMOuBkbhEEoJmrn3SDKl2ivVEzlyp3u4Zuf6/HCKJ7vV75IWCsWVhas5SyHhrs0Owwjo/WqQ8EAuKjzIn51ZL6vYz70uALk8aseNPPlv4cx5Lser0Ne+JoUEaPO9eE+lp6MfS1dSMj6MpFvkdwhcAOz1UzJ/X2BDIY/POa+Rm9zuP9IGih98/rqtVqhr47TBjoqkb93Ov7poECSgYQTLB8t2WW7W4zr7MJHlYqFUm0mmNtM+NbG+Xb2K/MLM/B1+hf2J9qvdrfBKmr1So8Hk/XqmMC9PozvWLzbt/ZzcbbwPbHXDbbkv48QXMSEbX8B2D0zfxtxkn0/zoB4fP5EA6HUa/XRTN9LfxgLeP6jAx6c5xHM69reG91bK/vufZtZrC9m6SJ/l+Dyqsl7pm00LJm+rr02JDhbZaH0deij6uvz6yYwP2Ze/pp3InfH34/zdfZbQ2i77W5Es2Mp10uttO++5FHHsGHP/xh3HbbbbjjjjvwrW99C1NTU3jwwQcBAI8++iguXLiA7373uwCABx98EF/96lfxyCOP4OMf/ziOHDmCb3/72/je974n+/zEJz6Bd77znfjiF7+ID3zgA/jRj36En/zkJ3j22Wdlm2KxiNOnT8v/k5OTeOmllxCLxTAxMYFisYjHHnsMH/zgBzEyMoJz587hT/7kT9Df328A/NcyC0S/TMy8CF/vBN3rS68ZOZ1OB5lMBgBk0tYAr85O5/N5aWyZz+elrGu1LxaPVa1WUavVDGW0Zge1GdNMYwK+62ma1mtf3cp7ei0gVjOOu8fjwf79+0XGhSz0iw2euH+3242JiQnEYjGkUilpYqW7jOsGoVrKZ7VrYNOrZrOJYrGIer0u4M7lpAVGNl0mk0Eul5OyL90E73K0Xoury8WsQNyyq8k493L+JROK8lvhcFj6G1BCIpfLYXJyEplMBsVicYVvKpfLeP311zEzMwOfz4dgMCjgLf2rbpBI6ZNsNruu70+z2UQ6nRbJDLJ6dODRrazb4/HA7/cb2ERsygUs6yk2Gg3kcjkUi0UpB96Ica2i2b9rAekbsb6+PtGv9/v9GBkZgdfrRafTEQkPLW9HTftQKCRs6mKxiEqlApvNJuQD3ZSdrBf6W66RNJNeB7nrmTfJbvd4PBgfHxfmONnV+hnQQArPr9PpSJWT3W4XPfKxsTE5XzPArE0nVNjoTPsrvQ7lMZhY6XQ6wiZzOBzS2JaVFqVSSZqGer1eAbb1mOj1LvVv9bPK8W2320JqACD31syMTCQSaDabcnyfz4d4PC7PtQa2zIkD3i+CIl6vF6VSSRin65Vn2AnT4MNqZvluy65Go79hEpVMYUpr6obCnAd6VQ1Vq1VMTk4ilUohGAxicHBQpLA4b9CfMN6u1WpSlbOWNRoN8d3NZhPxeFzOyzxf60Qkq4vMfp7npa+fCXYyh9c7hhtNCm/G+vr6MDg4iIGBASGwsQG0lpExy8gRCNakRT0+bJDebrdlPVAoFDA5OSnNUc0SJYCxF9tqRt/NXmn02Tru1ueymia8xloGBgYMSWd9HprNbibY6WacvO/mzzOhQPkg+ntWVvJ7wIozavUzyWMGxLlPSgXyHHWCvtPpSFLEbrcLy12vl7TsECvWWDFnBuz1sXXyQBMe/H6/JCJ2Gw7CNdVaz9dO++4HHngAqVQKn/vc5zA3N4ebbroJTz75JPbu3QtgqTpvampKtt+/fz+efPJJPPzww/ja176G0dFRfOUrX8EHP/hB2ebOO+/E97//fXzmM5/BZz/7WRw8eBBPPPEEbr/9dtnm6NGjeNe73iX/P/LIIwCAj3zkI3j88cfR19eHV155Bd/97neRzWYxMjKCd73rXXjiiSekinc9ZoHol5HpCXmjzqebw6JjZzktS4Wo39mNKVatVlEqlcRxarB6NbBZZ9TXw1zfqJn3fzHHMH9us/vhmDscDsRiMYyNjQmrbb3l9KvtWx+DoASdSalUEsdlBjv491qTaavVEkCe93q1TPRutkajgXK5LI50rcTP5WK9WC6Xg12KQPzrX/86/vqv/xpzc3O48cYbcfjwYbzjHe/ouf0zzzyDRx55BK+99hpGR0fxqU99SjLotB/84Af47Gc/izNnzuDgwYP4i7/4C0Mm++c//zn++q//Gs8//zzm5ubwwx/+EL/zO7+z4lr+7M/+DN/61reQyWRw++2342tf+xpuvPHGDV+jZbvTOO9q6bB2uy2SHh6PR4IJAnsEwFmKan7mG40GEokEstksotGo6KxqJrQG0MlYN8ufrHbO1Hj1eDyo1+vSKI0+l4EKr4mBhy6VJhBL0IGMbh3sbJaJzsTudhjvBeVPgsGgALpMamhglsAxg0oC52RQczsGlzabDYFAAAMDA5KosNmWy711MGtmj61m1IQnQE72OLW5S6WSgPWaXKErDQjuMtnT19eHUCgEh8OBWq0mawwmEPg3wQleMxu56bVDN7BWg+yUv9MMepvNhkqlglwuh0qlIpV4vF6dyDE3aNfsNPMaCIAE4gQK+B3R97XRaCCfz6NYLKLVagkgY2b+dQMDCOqzmXy73RYA/nJMglsgumVXq/H7TNkJkov0XML5C4DB52tjUo6Jbepz6+8GE3TlclnkMjbiu8vlMmq1Gnw+n6GHma7I4bZ8jSBjN4IR/Q/nLC3btZHv9E7ELIyF4/G4rDecTqehslrL4tHWAvg5Voy7fT4f0uk05ufnDZVS3BewsfmO95t+RcuOctw1a1r7Pa499HZcj7HBOTGcblUJnNfNazf65tXGhT6USWsmnMyVG0wo0zeb17XmdYA+P/M900l4Lfui5YbNILrWvtcJpW7JfQAGEL3bvdhNtp7zuRS++6GHHsJDDz3U9b3HH398xWt33XUXXnjhhVX3ef/99+P+++/v+f7dd9+96rl6vV78+Mc/XvUY6zELRL8MjGwfYKlEIZlMSmaROqXmL4+eVCuVClKpFObm5pDL5VaUFjM40BlanfnUbDZqXNERMWNtLqnWE1in0xG2UKVSQa1WM3QN36xx8iPIUCwWJeu+URCdzoHSKCx75kJIB1Ms29JssW5GNh5/GBRux8RLhgEbnQEQDS+duTUHuqsZAZK+vj6Uy2UUi0VDZni3m36+y+Uy0um0NOzTCylzYH+5GK+NYIgVmK5uTzzxBD75yU/i61//Ot7+9rfjb/7mb3Dvvffi2LFjmJiYWLH95OQk3v/+9+PjH/84/v7v/x6//OUv8dBDD2FgYECy4keOHMEDDzyAP//zP8d9992HH/7wh/jQhz6EZ599VrLipVIJt9xyC/7gD/7AkE3X9ld/9Vf48pe/jMcffxyHDh3C5z//ebz3ve/FiRMnNpQVt2z3mmYAMenZbDYRDocl0PX5fMJy4TxbKBSQSqUEgDbvk0FIpVJBPp+Xz5lZZAzAOe+Z53FzqbqWyKCxPJqgIpnCOlELLDfU0ky8vr4+xGIx2GxLDZ80CLGZQJxGP6aT+eFwGJFIBAAk6U9G33qAaAZOmllFNjN9vtvtln3y3Jlg6HQ6koDm63odx+ZZXDtRW5ONSwuFgrAQ9ZiYffhqY0J2NjW76bsJkLhcLjk3nnc3VjmPy2vVUjB6rDj2NptNgB6uJfX6kKaBJd0AjusYPhu6samWiOG+2PBVkwQY9BI8Jyihq0C4tuP18Px0hZoO9p1Op6yntH6uTnTwszy+OfFBAIbnqcGQ3WK76Vwss2w3GOdTMs6DwSBarRb8fr8kmNkwUfccyWQymJ2dRTabXQGk0ydzvltcXFxR2cLf1GLm/EXAsFvson23WaqE2+qGmTwXbmeWDCEwy7lUM7PJJF6tUWY34xzM4+n5NhwOIxqNotPpSIVaq9UyVM6vdiwmUHX/DPNcrOU8mDTW47PWuWt/wYRzf38/3G43crkcEomEQRpNj+d64m76buqum/0oz5PrLD5LAAw+S9+zblX6en/829zkXisgaEk2zXzWYDvxnk6nI03BCdwT/+F95BqL+9D71s8px47XRMKJXuvq+6cVGHjfNbFD++5uySKei66c6/a92E2+cjedy9VklwcadpUbtdNqtRqSySTOnTuHcrkMp9OJaDRqmMy1cdIsFAo4f/48Tp48iYWFBUPQyYlgYWEBqVRKsqoEuKnLSkdJNhuZSWSTUf6F2UZO6pwwS6USms0mvF4visWiTEqbBdE1UF+v18VxEeDfKKjIiTIQCGB8fBx+vx+xWEwAaTozltdrwL7XcQKBAEZHRxEIBBCLxaQ8ejtKgHS2eXx8HPF4HGfOnJH7rQN6HfStNkb1eh35fF7KAlOplJQj76YS5F6mWRfpdBrT09Py/BJY4Xdgu0sLt8NYKVAqlaR65HKyrcqI5/N5w+s6+aXty1/+Mj760Y/iYx/7GADg8OHD+PGPf4xvfOMb+MIXvrBi+29+85uYmJjA4cOHAQDXX389jh49ii996UsChh8+fBjvfe978eijjwJY0nd75plncPjwYdFwu/fee3Hvvfeueh2HDx/Gpz/9afzu7/4uAOA73/kOhoaG8A//8A/4wz/8w40Mi2W71BgINptNDA4O4uDBgxIocZ7i91hrii8uLmJqakrAWm1McOtgzW5fbkzKxohut1vAVOox8zuigygGJUx4m4M+srE1k4lBKtnPAKSpJQP6Wq2GYDCIkZERuN1uSaqzCo5VQutlWtMITJtB3bGxMdx0003odDqYmppCMplEuVxGMplc11zJijGfz4dYLIbBwUEJnNicnUxkrg0o3cbkQTabFYaUx+MxaNsy6W+z2eD3+xGNRoXRWKvVcOHCBSwsLBjOdSNzJdd+lEAJhULwer0SSJKdzoSG2+2Wxp4MxvU6gestAvuaZaYrH/h3sVgEAAGczfqoDOb1ePP5I9GA66tUKoXFxUVJAplZ5FyTcM3JtSlLu0ulEtLpNIBloEA3BqUMIMdNg+dc43o8HpFi4nny2dMBNp9Fat0TBDCz8bR+/m4Kftd7LpeCzWaZZZfKGEe73W6Mj4/jmmuuQavVEplLYPmZ1j0YZmZmcOzYMYmftfHzrFZijMakMhN9DocD1WoVhUJBqph0o2QNQAMwJF85z+rkoRkMJaOcpuNEnZRkLxCeO+NKJji7se27mZ47NCDM+XZ8fBxvfOMb0el0cP78eSQSCVQqFaTTacETVjuWx+MRabxoNCoMf14n5/9urGOdJDCfs75vPD5Bap/Ph71796Jer+P8+fNIJpPi77sRHFeb/yip5na7USgURCWAvpWJd64tiNFoJjp9KP0pY0WC/5pVzrUmk84a6ObrupoKWH5GNHFBs7u5zkyn01hYWECtVhM5IsoXttvLDVP12OtYXK/tOGas8uD97JaU0OepCQJr9Rgyn4f+X69fNM61W2y9Ptny3Vtrl5UOwBe+8AXYbDZ88pOflNc6nQ4ee+wxjI6Owuv14u6778Zrr7126U5ym4yOg840n89LmbVu8MkJnizpSqUiLOJeuqPtdlsyygyeS6WSsHa5D/7NYzKTSA0xrRNlbrqgy76o1W0G8zcyFvpzBNJ1s9ONfNHpAJxOp5Ruh0IhRKNR9Pf3Y2BgAPF4HLFYTJwzJVl6Aa90YMyGc1y2g4muM699fX3CaPR4PIYS5o3K3fAzBHe0pv3FTsQ7YUyy8Pngc8znsJv+2+VkXCRv5pnfDcZn6GJ+AGB8fBzhcFh+ugHi9Xodzz//PO655x7D6/fccw+ee+65rud35MiRFdu/733vw9GjRyUg6rVNr312s8nJSczPzxv243a7cdddd21oP7vZrmbfTdN+VrO76CPIltIML7JxV2N7MZjhPM3t6a8J2NFX6hJfBvzmH+27e33vABiAT64BtB61LmdmQMMErG6UZtbY3KhpRhgrwDgfBINB+P1+aS62Hi1LnivHh0G3HkMd8OkEhmbq6fJlPabaHwPLwAvHR5caa3/d7R70Gg+dmCGhQYO2+j5pNrnZdFCpr4nvadPyK93Kv81rD70fjjmfIb1W5PdArz00aOByueRHj6FuKKorzzTAYL6vej2qvyvmpmnmMdLPunnc9H3hjy41v9xsq3y3ZbvfLN+9zA7WSUSdINWMWD3nMm4mKGk2Hb9y/4xTCGbqSi0N3prnpNV8t46V9fykAUINrJvNDCRy7tIJwc0a51e32w2v14tgMCjgt/bdlLhbqxJa+1H6AfOY6OvU8bO2XnOV+TWODav0NDFQj/16426z79Z4i3k7M/Bs/jFLu3QDfs3+yuyzVsMrem2nfbfuVbfaOrTbWpRrK/N4m7EU873i3/p69JiYr7vXdZl/A9jQvdyNZvnurbXLhon+61//Gt/61rdw8803G16/Wsrg+eAuLi7i3/7t3xAOhwUY93q90qySE1Wj0cD09DQuXLiAxcVFnDx5EhcuXJCy1m7BTaezxIoDjDqOnU7HEIhzEmNGnMEPWU4sL+KCAljOKObzeczOzhoaqTDw0iVGvUwHk+VyWTK1i4uLWFhY6MrWW8scDgdGRkYQiUQwNDSEm2++GeFwGLFYDPF4HDabTUCMdDqNWCyGfD6PM2fO4OTJk+LkzAsJn8+HwcFBaYy1E9bX1ye6rYFAAC6Xa9MgBZ15vV5HIpHA5OSkLG5YgaC1RneL8btSq9WQzWZRqVSQSCSwuLgobEmWiRcKBRQKBWGbXU5Wr9eRTqeRyWRQKBQuO+d2sQ6Zn52enkYoFJLXu7HQk8kkWq0WhoaGDK8PDQ1hfn6+6/7n5+e7bt9sNpFMJjEyMtJzm1777HUcfs68n/Pnz697P7vVrkbfrf0r591EIoGjR48iEAhgfn4ex48fh9frxcDAAPx+v7CT6/U6FhcXkUwmRWtzPYlmMr5ZEcbzMIPaZE7xO6MlPPid7AYKFgoFnDhxwiBRxmPR/xGc5PGYSAaW/Do1pVnZxIZpOqneLZjtZXa7XRIQ0WgUb3jDGyQIj8ViAJa0Dw8ePIhSqYT5+XlUKhXMzs5iamqqJxPY6/UiFouJn2MlHWVKWILMcyCrm/eBwbPdbpfSZh14McjnOOtkidZQv1hrt9vIZDKw2WyIRqMYHh5GIBCQwJaJHep8U6qObC9KrLjdbsM6gkx9AMjlcigUCnC5XFJ5pwFrzdri+oyfZ3Cv5QdsNpuASmSu6WQQsOTbU6mUkAYCgYDcC65Zea8oJQQsgxpa3z2VSknVAEEQMk/5bJDNp1mMmonPhqQ8T50M0EAAv4/NZhO5XE5YnFer77Zsd9vV7Lv1M764uIh///d/F999+vRpuN1u9Pf3w+fzSdKaPUrouy9cuCDJv17HoukkHt8jWMiKnna7LWAzTc8rjNV1YhdYYqdfuHABmUwGkUgE4XB4BRuZ56IbSBKw5v+dTge5XA65XA7VahXZbFYqsTYaX2rfEo/Hcd111yEUCiEej2NwcBDAUgy9b98+w7HOnz+PU6dO9ZRSZQNt3ZOEiVKzcez0/5pprkFXWrd4l0zni5Gl67bPdDqNyclJaTBK6Txee7PZNCSBzSC6vgZNeCCRgUkep9OJSCQiEnV8JjSGY06+0Pgc0fcy4cRGopQh4piyop8VcGS663vQ7e9upnuv8BlmskD7XDNxQFfHaVDd/DwQ/+B1EU9hVedGGuruFrN899baZQGiF4tF/Nf/+l/xv//3/8bnP/95eb3TubrK4DudpdLucrks5avtdhuBQAAHDx5EJBKRQKxareI3v/kNXn31VWSzWZw+fRqJREL2pbNy5kx1rwCu0+kYGjbRmeuSH5aKa2YcA7VWq4V8Po+FhQUUCgUp5dGlvOsxnivLdEulEpLJpKGEaiPmdDoxNDSE8fFx7NmzB29961sRj8cRCoVEV5UsLi5C2CF9dnZWEhPm43o8HsTjccmi74RpjVq/3y8dsHmPN2JcUDQaDaRSKdjtdlQqFezfvx/hcHjXNtegEWTm85FKpQyMDoJWpVJJAujLyer1OjKZDBKJhDR5uxqNlSPrsW4A3XqZFtze/PpG97lV53Y52NXquzUjmT8E6xwOB86dO4f+/n5EIhG88Y1vxNDQkJRGV6tVvPrqqzhx4oSB6bXW95t+1mazGRLJZhCdwHMsFkO73RbgTzOVeP5Mmnc6S/qWZ8+ehdPpxL59+0SezAwa6+u32WxSBt5ut6Uny8LCAubn56UkXAdZGwHRmRDw+/2YmJjA29/+dgwMDAgT0GazYWJiAh6PR0D0UqmEl156CXNzc13XCjbbksRJf3+/AKUshSYTUQP+HM9OZ1kLVDMAdRBHH8wKBI4fQW2tW79VgXg2m5Vye0q+AZDg1sx8a7Va0ojN4XDA5/MhHA6Lrmm9XpfkSKezpFs7PT0tiRkC7npNSb9L8CUYDCIQCMDhcAgJgedLQIKVk2Rl6ntF32632wXI0oAQEx66akDvv6+vD4FAAG63G/l8XsrcWTXI43M9y/vLe6erEzSI73A4DJIv+j7o54Vr4XQ6fVmC6JZd+Xa1+m4NQhI4TiQSSKVScDqdmJmZwcmTJxGNRnHzzTdjcHAQpVJJCDuvv/46Tpw4gVqthkwmY+hHpY+hj8U5mMekaRCdUh5kPJtNk9jMVi6XMTs7K+BpMBhcAbKaK6vNbF/O5dlsFjMzMyL32a1KzpyA72YE0QOBAPbv34+7774bg4ODBhB7ZGREgHAey263Y3JysquPtNmWZMYCgYBUYuu1kHlNbQaEbTajRIh53dQNPOZrZF5vlURXq9VCKpVCrVbDwMAA9u3bJ76N/pXjrskL+rq0LCCfH2I47faS/Fk6nZZnSsuP6Yo6TaTUCXZ9nXrNSACdVRX6HrAHn9vtRiQSMej7m9dJvcZRP5OUU2IFHDEsMtF53TxHguhMgLO/iSZy6PWCuVqSPda4PrF899VtlwWI/kd/9Ef4rd/6LfyH//AfDM58rTL4Xs7czPQxa+ruZuMEYbPZkMlkMDc3B7/fD6fTiWw2i0ajIZnhhYUFpNNpFAoFAbM5sQLLTkBPXmtlqbo5LZ1F1OCB2UFxQub5M5tHp8+JuVtZGSdVBpytVksaTjHraZbnWI9xPFhGxgw2gW+yxZgg8Hq9CAQCaLVawjDvlnjgfjUjaaeMjkwHe9qJdctWd3NgNDoYOkRK/ZC11Q1YvFSmE0KUPtJN2jTTg6x0Nl273EBLfgeoY3u5OfOdzIj39/ejr69vBUN8cXFxBQOcNjw83HV7h8OBeDy+6ja99tnrOMASI31kZGTT+9mNdrX67m7Ptq6iqlQqKBQKAJaqJMicJbulUCgICKhBWTOQR6ZQL9CW7zNA4Hb0o8Cy9BiBRHMAbN4XAEnUm0twdXBFTXVdwkvAlOejtaG7+e61vuMEMcnUolxLq9UyVNOx2o0Mcr3W0MfVAbO50kpX3OnATIMRfN2ctNYA8Go+RsuhdNtuPeCENjNAns/nkclkBFDv6+uTQNB8ffw8P0ug27xmoL4+G5UywNdEDZa4a8kBPU76uQSWmJO5XE50883Xy4QGm43y8yQ7aD+v15T8DnB9wG21RItOJPWqtNPnw+ea187vkZaE0cE7QYNisSgJDst3W7bb7Gr13TRzXMy5qVwuI5fLod1uS88pNvUmY5oxqfa5NC0von2P9t38IdNY+0ctSQUsA35mH6OPqcFGxnBmCVYC82afzXOhr6ZsqlmiY6NG3x2JRAy+W8fKvEbK5pCwxzHU46fZ0FoeRDONzXO5GaPo9dpqZl6TaQJBN7xEf2Yt09J+xWIRuVxOro1Gv6zXLvrzvVj4PGcCyd3Oi+OpWe7m6+bffA6q1SrS6bQkwM3HJoGtUqkgEAjI+fL5Mo9ft/Uoz4frFj22/NvMxjefOxMmNL1uMYP4eg3Z6SxVY6TTaVnjXk5m+e6ttV0Pon//+9/HCy+8gF//+tcr3ttsGfwXvvAF/Nmf/dnWnugOmS6VeeWVV3D+/HnJvPILTseWzWaliQMbfnHS1IGidpBko/UyMwBrzmZrh2beBlgKjghEsZGVx+PB4OCgsNLJbtdZegYpbAzJJAGbb/G1jUwQnBh9Ph9GR0dx8OBBjIyMiLSLblBIkLWvb6nxVzgcxoULFzA8PCzNNyuVimH/TqdTgPb1suy3wnTg6vP5xOmQIcWFilmflmAGA1EaGYRcBJ89exblchkDAwMYHx/f8STBatZut4XZODc3h9dffx3ZbBbz8/OSSOIzQmZlpVLBoUOHpPz/crFisYizZ89ienoaCwsLm1rIXkrbSWfucrlw66234umnn8Z9990nrz/99NP4wAc+0PUzd9xxB/7pn/7J8NpTTz2F2267TRadd9xxB55++mk8/PDDhm3uvPPOdZ/b/v37MTw8jKeffhpvfvObASwxLZ955hl88YtfXPd+dptdzb7bDA7q11utFnK5nJTRJpNJKaPlPMzEX7fkts1mQyAQENkMsnu17+a2fJ+sWgbF9FlOp1P6fGjdVnNyHYAhgE6lUgCW1xMOhwPRaFRk5ebm5jA7OyvnyoooJvQpw0bGsAY3N/q93rt3Lw4cOIBoNCrycmRb6XWJy+VCPB5HMBhEKBSS0lyOi92+pGuqmUo6MHe5XIhEIrIG0OAz1yt67cL7UCgUBLSgpqsObHm9DocDkUgE7XYbhUJhhZarZsNptt5axuAwlUrhpZdewtmzZzE+Po7rr78eTqcTmUwG2WxWpFHI5mJ5ei6Xk0aylGIBlptwhsNhQ1KC0jdMKvj9foRCIVlj8t6Q+KATKQTZ5ubmcOzYMRSLRRQKhRW+jZI85XIZHo9HZLbm5+eRz+fh9XoRDoeFNed2uwVIYlKA84zT6UR/f7+sHShp6Pf7pZKC90mXzdMoT6RNA1Baqz0cDiMajWJmZganTp3C5OQkSqXSRWkKXwqzAvEr2652393r+eQ8WiqV4HQ6MT09Lb6b8xirW3VlF43zidfrFRIM41YNDGpQkv6LcyoBbPokErw4nzJBqpn0jLU5R9frdcEN3G63SIC6XC7k83lks1nDdWs/nUgkkMvlpIqsW6Vzt/Ezg6H03QcPHpR1A31cN3ZyMBhEo9EQCRhNqNMJYBLdyK42yzuaq8Z19RzHjMnw1dYjOlFM3+nxeODz+SSRz3vIbczA+mqs9U6nIyz/VquFV155BVNTU9i/fz9uvvlmuN1ukVIDYEj4mhNATCrz+HyWyNgHIOdMgNlms4nv5L3W48V9cyzJip+ensYrr7yCQqGAbDa74vrK5TLm5uZQq9UEe2ETUu27dV8Vbfze0LR/5jhQ7kj7fq1SwPuq2eccM72e47PgcrlE4nd6ehovv/wyzp49K1Vsl5NZvntrbVeD6NPT0/jEJz6Bp556alWpBfOXrFvGUdujjz6KRx55RP7P5/MYHx+/+BPeAdNsl/n5eczPz6+YoHVw1i0TqrOluoEVt++WQe1mvbJ8q419s9lEsVg0HNvn84nTZDDG69HlQfxsJpNBtVpFKpVCIpEwLCA2YpodFAwGMTAwgGg0ilAohEAgYGBk0drttmhpsmlZu902NBOhcd+8pp0wc7kZg1V9fGbMycyz2WyGjvBkLNDozFnGnU6n5bO6zHA3sLhZbsXS88XFRanGMC9YqKvqdDoxNjZ2WTkHLozT6TQSiQSKxaIFoq9hjzzyCD784Q/jtttuwx133IFvfetbmJqawoMPPghgyS9cuHAB3/3udwEADz74IL761a/ikUcewcc//nEcOXIE3/72t/G9731P9vmJT3wC73znO/HFL34RH/jAB/CjH/0IP/nJT/Dss8/KNsViEadPn5b/Jycn8dJLLyEWi2FiYgI221LTrr/8y7/ENddcg2uuuQZ/+Zd/CZ/Ph9/7vd/b9PhcSrvaffdqzzbnU4J1ZgBuLWMZaiAQQK1WQ7FYlPe6VRHxONpqtRqazSbcbjdCoZCBvd1rHtGBfblcFrCaFUkMyHw+nwRFep3BEl8G5CyT5c9mrK+vD9FoFCMjI7KO0AQBHYQxuCKrjX6Q6wZeDxlsGkRnkE4JEgCGJnN8bhnIawYXiQydzlIpfjdmFSvHyEAn6868rtLEh/Wud7i+Y0l/KpUS0MTr9YqcGYEAl8tlaNKuG+HqknFeO+8512laY59rEK/XK0kEapRzLavXnwx0c7kc5ubmBCAwG1n1NptNqrA41ul0GqFQSCo0WSGhj0Mt/na7LbJKDM6r1aqQOfg86HtmBlZYOQJAAn/NTg8EAvLceb1ekZ5JJpOYm5tb1z3cbWYF4leuWb67dwzc6XRERxoAFhYWNrx/zi2aeNXt+0SQT5tOoGq/ppPBWo5DV8OwAjyfz6PT6YjP180wCcgzQUy8gHMcpSy4fqAP34hxbPv6+hCJRDAyMiIkQJ4Dr5/nryvedMNvzrU8T7KFdeJSV94DxmokTdbTPp/H59itZdov6zWAxlTMRMP1YC16bbS4uIhCoYD+/n54vV74/X7UajV5hjTpUJ97t2eLz4ju50G/rckaOlFDcp3+juv98/P5fB5TU1M9K00o58I1IddJrD4jJqTHjMb7xnuoWfTmBIDGuvT4cD88Z90HkNtpn8/9uN1ukcqdm5u7bPtVWb57a21Xg+jPP/88FhcXceutt8prrVYLP//5z/HVr34VJ06cALDxMnjNML4SjBNLt+BsI/tY73Y686gbaWjAmxOUbjBl3k+tVhNdTqfTiVKpBJfLJQ3LzBpbZOGTdU6nrkt3N2t6wrzSTDtL6pCxkaZuvtJoNEQjjSAHF1N8xur1umjP9/X1SfM1yuDweDs5jnwmufgjG21ubs4g92N+BqnlWq1WMTExISDSTp//RoyL4UajgWw2K4mkq1kTfb32wAMPIJVK4XOf+xzm5uZw00034cknn8TevXsBLLEfp6amZPv9+/fjySefxMMPP4yvfe1rGB0dxVe+8hV88IMflG3uvPNOfP/738dnPvMZfPazn8XBgwfxxBNP4Pbbb5dtjh49ine9613yPwPJj3zkI3j88ccBAJ/61KdQqVTw0EMPIZPJ4Pbbb8dTTz112Tbpsnz39hl9Z6FQ2DQArVm1tVpNAmOC3GaNU7PRN9jtdjQaDQlqz5w5A7fbjdnZWQE5yaxmRRz9+Hq13te6DkrjMMD2er0rZFg0u4/jxWCc/zMBy/OhRIkO2jWLzRzME2DpdDoCUPP4DNCY7NcNtbSuKc9bl6QzkGTVnAYUdEmyrsjrtiai72i3l5qNUsecMnV6zNiwy8xqJIONQIE5aa8bzBO8oDYw2ZrclgmPSqUiawtKkzHp3cvYD4RNvsgYGxgYEBZiJBKRZnwEjvTzxvf4fQIgVYPm5mN81mi6KoDvMaFAySCdTKDUg9PpRKVSQTKZXAGQWWbZbjDLd28vUMR5cDN9LxhXVyoVSdgR+DYD6b2SAPw852K32y3xtdPplOofnRShv+d828vHrPca+JtjQfCZyU6d2AaM7HEtQ8NrMCeVdc8Ks3UDV/Xnu2EVAAzHN/e7MPtufXyuE+i7SUADlkFyNtvkuJp9H0HmdruNZDKJ8+fPw+/3SyJAjxXjeI4pz9Vc+aavT1cg8hp4fpRkId7DtYtmtXPtUalUxNf3skqlIg3eDxw4AGDJF0ejURkb9lzjWpTnpu+hOU5nYl77Zr320581S8BwTcOx4utMWNXrddGnTyQSPZva7pSZsT7LLp3tahD9Pe95D1555RXDa3/wB3+A6667Dv/rf/0vHDhw4Iosg9+MbdSZaUe2kS8iJ9NWqyVBNCc7BqR05JrNZC716nQ6wvqx2+1Ip9PinMgSA5abpehFArUsdXn6Tk4mevJeD9h6KSc6HdyRvfiGN7xBSvgDgQBsNpswzYvFIs6dOydlYrpRCu/Z2bNn4Xa7USqVpBRwdHRUGPc7DaAzCKYu4fHjxzE3N4dkMomFhQV5XsyWzWbxyiuvIBwO48CBA2g0GoZGMrvRyNIrFAqYnZ3FuXPnMDk5aQjYLxe7FBnxhx56CA899FDX9whoa7vrrrvwwgsvrLrP+++/H/fff3/P9+++++41z9Vms+Gxxx7DY489tup2l4tZvnv7rNNZauaoNcc3arq8l1Iv1N1cS+OU8y3lPDhXptNpzM7Owm63o1qtCjC5uLhoYGABy8Hjxc4BrdZys3I2gGQTTDY41/qumjmny/A5Jlyz2GxLDUsJ/FDehWsO+lRgubKrUqkglUqhWq0iHo/D6/UagmoNskciEUQiEQGnNZtO65QSHCaLfmBgQBpZRqNRWXvRLxw7dgyZTEYCXj22ZFrb7XZMT0+L1MrExARGR0cNgIVOeBAYJgBDwgRBAn0MssK0lEGxWMTi4iIASOKArHdWvrHnyuzsLHK5nMgN9bJyuYyZmRl4vV5cc801aLfb8Hg8OHjwoFQ18jwWFhYMx+c56jJw9uYhQ5+vA8tkEcAIwOi1Au9TOBwWSR7+LCwsIJFIoNPpIJPJwOVyYXJyckUfndVsO4LmbszF9ZrFZrtyzfLd22cEHVndsxnfzViNoB8TsQS510pO8/M2mw3ZbFbmtNOnT69g65q12AEYXrsYoh6Z9pVKRebdQCAg/oB+hsfkfEmMQL+m/Y1OZhJH0KZBYp4Hk7gEpfk+r1EnYLUkLpMPZtCcLH/6c4/Hg4GBAXi9XkQiEQwMDAi7mwD68ePHxXeb+4A0m03k83nY7XacO3dOyIZjY2PSU4ljxSqrVquFYDAo5DZ9rd3+16QD+nVWD+qksNvtlqQ713HlchlTU1NIpVLI5XKr+m7G6D6fD4cOHYLNtiQbMz4+LngFfXg6nZZKS66D9HOhqw01c53kA3NSie+bqxPs9iV9fq/XayBT8DvFyrd2u40zZ850re7cSeO1riY31Mss3721tqtB9GAwiJtuusnwmt/vRzwel9evtDL4nTBOJpv5MmhWMhcBnNQ4YdGZreVsNbjOBirUSjdnErXeG53dVowDf/N8ec50puax0tetA6VeWf+dnnD0Nelz0M48EAggFApJSZiWfbHZbKKPW61WV4DJzIg3Gg0Ui0UUi0VhsmuWmlnLdTuukX/T6ZFJSS02Nunr5dBZVgZAdNS5QNqtRsfO5q7UcL3cAHTAcuZXslm+e3ttK6qvuB9dlq11I9f6nNnIXubi3sx80gwgczC3WSOwq+f5bolQHQhrgKGbJIG5pLlbGTDfN8vGaG1cGoN2HlcHrd2CfP05c5k6Ge7UGWc5O9dd1FynTzQb7wsDbQaI3bYzz69cB+k1nV5naGKBHjOu2QgwmANfneCgb1urUTZJHAQyGo2GlPCToacDaCZG6Nv1ufK50AG4+TngtXIbc+CuA3g+f1wP6eQE/fZaTPvdbpbvvnLN8t3bazpu3IxxvtJzv45d1/purpV4p78h4L9dsQXPg0C0ubpHmxmv6FYxTAB9o3OL9u26or/b+ZqPv9o+6QuoqU0pL8bfJBtwvcBkfa/x5j0m27vRaCAajcqzoK9FYzN6TFb73/zcaKZ5t+uj76ZGf7lcRrFYXDMeJejOWJZxt65u09iLeV/d7vFq6w+drDJXzuntNLhuvo+dzhKBkES93eK7N/O8W757a21Xg+jrsSutDH67TQcUnES0s1xPZotfQmaLCaJqp24uZ13PeemJ3Owg17NAMLPD15oseI7VahWLi4uYmppCo9HA8PAwGo2GZCaZ0ex0lroyLywsoFAoYH5+HouLiwLWmo2OBQB8Pt+qAfNWm762er2OaDSKQCAgWXBKurB5FkEIMswJrqfT6RWBM5+VZDKJ119/HV6vV8BrZtx5vbrsbSvAdP2M1Ot1KS2cnZ0VDdVz584JI3CtknBmzalTHQ6HsW/fvl3XZJTXXKlU8Prrr+PEiRM4e/asaKFfjo7NcuZXt1m+e/PGpChg9J2bqUhjAMtg6WIS7Bo47xbobDbQ7WXt9lLTazbRzmazcDgcqFarKxqzUkaGOvJk83cDm6vVKjKZDDwej7C5bLZlrUxWPpGxrptzkaXFdQyZc51OR7ZjA1Sel5bGsdvtUroNLDPvGITTt2rwu9PpwOFwoL+/H263G9lsFouLiz2lfsrlMhYWFqSRarFYNDDdnU6n+EA2Z2MpP4NmsrsJEmjfrJ8F6tYzic/GpZQjmpmZwYULF1CtVpFIJKRZ3WrPsk4SXLhwAa+++ioCgQDGx8cRiUQM49JoNISVyAq8arVqALI59olEomsfHD631NOnEfyIRqOw2WzyfPFZ63Q6iMfjePvb345CoYB/+Zd/wWuvvYZ0Om1ojraWbZev26wPtnz31W2W7968ETzWidjNfJ9YWaSlVbbie8UEJM/VbOakMm2jx242m5idnRX/t2/fPjidTtRqNUmicp+cTykbwsbsZh/IRGUymRTWt9/vl+sCjJVFWsJDs5K1BIq+T/yMWaebSV0ABulQl8sFt9sNn8+HYDAofWPMiXiXy4XBwUF4vV6RU+3lu0ulEubm5uB2uyUm9Hq9GB0dlf3H43FZb7DijuC21gHXmvGara0T+MQINF7ExrJTU1M4f/48qtUqFhYWUCwW1/TdOnkyPT2No0ePIhAIYGhoCKFQyJB4rtfrwvp3uVzCfidTX1cScjy1jru+1yQiaIk2yuzwGSsWi0IQbLfbGBgYwMGDB5HL5fDaa6/hpZdeQiqVMvQhuhR2Mf7X8t1ba5cdiP6zn/3M8L/NdmWVwW+3mVlYOlu33gCcn9fNKHVp6GZLvfjZzWi8mhlBvKa1QHSyshKJhDTH2rt3rwFcsNlswtTL5/NYXFxELpdDIpGQTu3m8h5+vlwuiwPYKT1AvfAgiO7z+TA8PIxwOIyBgQGEw2G4XC5DSTVB9Gq1Cp/Ph0qlApfLtUI6h/eHzsTlconOXigUEgdGp7cdTHTet3Q6jUqlgjNnzuDkyZMol8uS2FjrGSQTvVKpYHJyEi+//DL6+/sRjUZ3PYj+y1/+EslkUq7TMst2u12uvtvMaN4NxkBBB+RrybB0M87nmp3WLUBer611/ItdwJut1WpJQBMMBpHL5aQxJhtuscyaSW32YiFrqts5ahCdyWDNkqrVaqL5ThAZgAR8ZPLx+JQ647kQjNe9PHSgyoC30+kIA51AOhP7BN51wNvf3y9AVjKZ7DlulUoF1WpVwPhUKoVIJCJsOPY7sdvtImlDPXUA0sCz3W7D7/eL/jtZdbqSMBKJiMapy+WCw+GQarFKpYILFy7g9OnTK7R611q7sTpxdnYWr732GkKhEFqtFgYHB4VVxmeZzfPC4TACgQByuRyy2axUThDIIsuM46mZ50zUBAIBAXXa7baso5rNJlKplDxjbJI2MTGBt73tbVhcXMT//b//F88++6zh+3apbLfMZZbtftttvnu9idiL8WXbZWZm7GbPsd1uS3xpliC5GFtrbjJXlG3Gp9P3zc3NIZvNAgByuZw0y6Sv4Q8bmlJWg3Fbt3OvVCoSzxPA5nsAZF/AUoWFWdpDa6nrhKr5fZ2g5zlSYkYn0Jn8DgaDCAaDBoCe+yH5LBwOA8CqCXBWILNqv1AoIBqNIhKJSD8Q+mNdFaV71VGihTKvwDJRUVdTkUjIxpp9fX2CgZTLZZw5cwbHjx+XasD19LjR4PfMzAxeeOEFhMNh3HDDDSt8t+5NQjxBE/m08dgkHRC3IdM9EAjItfIcudbpdDqG5Dd13ffu3YvrrrsO8/PzmJ2dxc9+9rNNyzBtpe2m+exqt8sORLfs4q3bF3AzX0od9Onynp0yc8bU7Ax16fZqSQIuRrLZLAKBAFKplDgbMpAIMmcyGSSTSdHtZClat/FjcMwJfCeM520GvjlGuvxcl73r1/R25ooAbUx42Gw2lEolZLNZtNttCa69Xi+CwaDsU3c/N1cN9LoWjquW0OGY5/N5JJNJKU2ntMlGShD5bGjd1kKhgHK5bHDgl9K4MCyXy0ilUshms7KIvNTO/GLMyohbdjnZbnre1mJ9X46mwWWdjF8tGU5/R4A8nU4bwGnul6XTBE4LhcKaJcdamkY3DzWfD/0g96dLvfXaQ7PwzT5FAyDdZOLom91utzDZNNObPpVBIjXcVzPuo16vix5+Op0GAKlS08Gslg2gpjm3ZTNN8/kAkDFk4rvdXmo0m8lkUK1WRUqtVxP6ta6BCQ1guXErAENTVj5bBDlarZZoo+t9cY3BxEm3dQrHTW/L+6OZjUxm1Ot1XLhwQZL7myGJ7DazfLdll9LW+/ww9tlNpoHnzX4Pes1LO2XmJIYGPs2Vcb3Oi36TMpypVErmaL7PWFY3nSZLuJsRYK3X69II3EyqM7Pn9Tqj2/74DBFg5uvm7bTEK/2kHh/KjRGE1/eOTVUBGPxOL+PxOHZOpxOZTAYApFpKH9O8liCLndvSj5rxAGAZR2FyIJ/PC3ntYn13pVKRJIpO0us1hE6Ga2KC2Y+aj98LazA/A3a7Xe4tk+WUhGOVO9UHLnVD0a0wy3dvrVkg+lVoZidifm0t0wGbOVgzA5jb+YVjeQ5Bau2EgKXghQGT1tk0n1O9XsfMzAwymQwWFxdRrVYRDocRi8UwMDAAYLkZSzqdxsmTJ5HP5zE3Nye6ot3AzHK5jPn5eQQCAdEw3W5rNBoCFOhu38ByV/FuQDkXHHyd47oakK4B7ZmZGaTTaXi9XrnmaDSKsbExuN1uhMNhAdTJyjNrkHFhppn0XJhUKhX5YTCazWalDDyTySCbzRqazazXWq0Wzp49i0KhgOHhYWn6EgwGMTw8vGMVBGbTCYTz58/j2LFjSCQSePnll3HmzBkBjy5Xs5y5ZVtpWykTom03Pmeadb4ZH65NM3F7AcVbYZrBpo3HYhmyLunWJevdjAlQJhRtNpswo1mGTN+cz+cxMzMjCd/VwMxKpYJkMgmfz4exsTEEg0G0Wi2Uy2XRjqfv0udGH0tpO7LaKf3C6/f7/bId5UFYTkxgQTf1JrsqHo8jFouJdjiwLLdCxhWZ5etJ/nL8arWalMm73W5EIhGMjIzA4/Ggv78f8Xhc5Fy4Ptq/f7+AHjxPnjOBBD5L1Es9ffo0UqmUNJTj/d1sk1zKypXLZcRiMezduxf9/f0CILAKgCXthUIBiUQCbrcb/f39huZorBys1Woy3qxgoMwO7w37CLTbbbmPZN37/X643W6RxDt58iT+9V//FZlMBq+99tqGrm+3muW7Ldsq2262+G571ggem/32WuPA9zXAqSU2zOuBnTAe1+fzie+uVqsipUmQtdfnKH81NTWFn/70pwgGg4hEIojH4wCWCE31eh3FYhFzc3MCtq8GZmrfvWfPHpEiY6zKOBdY7tcBLI+vxjB0I3HGyGZCHsef+6e/ZyKf/pvX1U0uhz3hGo0GUqmUAMer3ct2u418Pi+V9IlEAi6XC/F4HKOjo+K7o9GogT0dCAQMcqv04Vx76Otj4rtUKuHMmTNSaUVAOZ/PG6oGNmLt9lLT7VKphP7+fuzfvx/Dw8MG1rmW1qGP5jVw/PSz1Gg0pLFrN7KgmZygcQ0mHCKRiBAETp8+jZ/+9KdIp9M4ceLEhq5vt5rlu7fWLBD9KraLCbp1qY0ZYDU31touI9hLXSuWHdEBVSoVQ+BDZ2m+7larJezearUKt9uNYDCI/v5+CVRZSpZKpXDmzBnk83kpB+81jsye08HuhLHxSLlcFkfOTHov9jlgrCpYLxNdOzAy81lK7/F4MDQ0JPfGZrPJvdJa6eb9a4YGFxtcjBWLRdGDy2azSCaTmJmZEcBls2Pc6XSE4c39j42NAYAkUS6ldTodZDIZnD59GslkEnNzc0ilUpf6tLbELIds2VbYbmObbbdtVcWXWQZtuxIR5uPR9LEcDgf8fj88Ho/4bq3f2c3IoNL7okZ1f3+/lPS2Wi1kMhmcOXNmXXqWjUbDoFnt8XgEGDD3etGNMzWgquXPzIG6bl5NoJdmbtDOz1FOJBgMytgw+eD1egXsZaJ6vVav1+X8yApjWbUuiddN4FwuF4aGhkT+jQxzJj4Y8OoEeLFYxPnz5zEzM2MAEvRzt5lnj806yWzTbDaOrc/nk/PMZrOIRCJy/ppswc9yrHXwzXPUDXh1hQETImzePjQ0BLvdjqNHj+JnP/uZSNhcKWb5bsu2wrbb5+w265YsXO/6hXOljs3oa7jvnTTNDA4Gg5K4BJaruXoB3qwiAyDxjcvlwtjYmMzDrDDO5XI4d+4cSqXSmrJ1BN0BCGCu2eG6OoHzuR5THYPqyiud9DAzngGI36Mf1mx0u90Or9eLQCAg0if0G7rSi9Jw65X5oU8DIDHhyMiIaJkzmauJEQSKGYvrtQQTxLqvHQH2qakpzMzMSC+yi12Ddjod6U3Ty3cTz+G5N5tNgzyeZv7zXDVJsFtFnHlMNTZis9kQCAQwODiIvr4+vPDCC3juueeQz+eRSCQu6np3k11N8+12mwWiXyW2Vdl+c8DdrZvxdgfjmgnv9XqlmReZZ2bZEAbidA50GNroZGq1GtLptEiD0BlzMVAsFkVKY7VsOB0SGW9kcBH430qJEO3UyZbP5/OGxlm8lr6+Pin/0k6cjr9SqYhebKVSMUjCrHUOACRobrVaSKVSUqZGDXkCJWS6s6RaL2B4PC42yNBj0oINTNjEZCMNbFc7f577qVOnAAB79uyBy+VCOByG3++X52s7TS/UisUiEokESqUSTpw4gdOnTyObzaJQKGzrOVhm2eVmOjC63Kwbm0wbA4Kt0GI0M9gIuDqdTplLL5apsprR5+gAjr7A7/cjEAhIqS6DJz0+qxkTyAyKdVk4GdfrldKgHyI7mSXkBAl0wlZLpGm9VFaBsVJOM9P4Ps+TVV2ZTAbFYlGS7wAkaPV4PPKbwDTBaLL1KW+WyWQuyifqdVCn05G1RLValXVQrVaD0+kUsIDrLAazHHeC9IVCQYLv7ahWrNfrmJqaQqfTQTgcxtjYmDRLJcGC6xGbzSZjpkFxnrvWrtekAz67TBDo6+x0OrL2zOVymJubQ6PRwJkzZ2T9dyVIuVhm2Vba5QzorCWnsl7fvdb6xRxzU/JDa15rcHk742/26NB+j76bfVqYVHY6nSt6rnQz7btTqZSMBZnqutn0Wn5N+26dIDVLxQFGWRyNkZjBXG26koDzPn1vpVIxSMVxW2q5s1eKZqLTR/LzyWRSYuDN3MNqtSr9shqNBnK5nCGuDgQCSCQScm18fiiXoxP4fKaKxaJUtnfDTy7WarUazpw5g06ng1AohNHRUalu0Ox9jjsrw8yVAZoAqJu7azPfX/M6tFQq4eWXX0atVsPJkydlTXY5V31btn1mgehXsJlZX6sF6hvdr9bP1sdgUymdzd1K0wxqn88nzbDC4bA03OI5kRGtZS9Ybmx26Py/UCgI2K111nVmmg061ip5p1Py+/0YGxtDLBaDy+VCIBDYcp1tnkupVML58+exuLiIQqEggALLmOv1upR3eb1eeV8nCZLJJPL5vMjCrNdp0rnlcjnYbDZks1nMzs6ir69PGqI5HA4EAgE4nU6Ddhvvq1kHr1QqSbOPcrlsWGxx2614zuiIM5kMfvazn+Hf//3fceONN8Jms2FoaAgTExPwer0rtOy2w3gvk8kkfvnLXyKRSODFF1/Ev/3bv0mp4JVgVlmZZVtpa5VBr7bNpTIyjMkmM8+11K9kE6nVKp/WMl2JpKXQfD4fnE6nNKzSTc/0b+DipGP4faeP9nq9Un5M8Jw+XLPUdFJ8tbWL2feYG61xfNdjDB4pi7a4uAiPxyM+vFQqrTgfNs7s6+sT5jUAhEIh+Hw+YcjRv3EfwNK9KZfLmJ6eRjqdloDRZrMZwP9EIiEJeoLobJ5VrVYxNzcnzOyL0e9kwtput+P8+fMSkPLH7XYjEAgYdMDZ5IyyeRx7vXbqBSRvxfeyWCzi6NGjePnllzEyMoJbbrkFoVAINpsN8XhcmOL0r9R/1+fJe8OScH5PuOZkybeWgOH6Uvd+mZ6exr/+678ikUhgdnZWGsVtVQXJpTbLd1u2VdbtWdhuiZetMs4L3UBy+m5KRq3lu1dbv+gfspX13KuTqoylzLG+1vNea1x7jb/NZoPP50M0GhX2udvtlriW8x+BZQLfWtqrm7HHlc1mE9k1YDkW2kisR9/tcDhQKpWQz+dlnaMTDr32oyVceG0EujU7XY9luVzG+fPnkUqlxC/oNV2pVMLCwoJU2GlpmFarhXw+j5MnTyKXy0niYLPPPkl+XOdpomOn04HX60UoFDJUhXP8iY9oX8Xxp+/eDlynUCjgueeew/PPP4/R0VG8+c1vRiwWw80334x9+/bJ8TUZElipc8/nT193L8Jkp9MxSNxyHXz69Gn88z//M+bn5zE9PY2pqSmDlMzlbpbv3lqzQPQr1HSpF/8HlplgwNZ8GcyA4k6yARnUMOChtIzWOyPTWTPfVjvHbgD7Zo363A6HA9VqVcrOzeD7ZsdMB6o6410ul0UDnkw+Btkej0cWN3SyGkSnLAoZ4NrWw27QWXYek/tnR/FarSbBqAbRNXiim6aQDUjd1O0MRtk8Np/PY2BgAOl0Gi6XC9FoVO5lt8ZpF2t6MUBQhAmNhYUFJBIJZLPZKyobbjlzy3bKdmvJ+FpziE5YM7C7mOswl4NrNtlqiV0e1/x7M6aBdGpPm6XYNCDJc1uP76Hv3oqAR7PECCgDxiZqGpjQ46hBFQIfmlUPGCV59HHMSVImlPX79BEMLrXfp++/mIrAtdZBBG3MwDI1Ui+FtdttqdLyeDySUCGLkUZwg4CAHifzusz8nTADWjyu3hfPY2FhQaTnCMBcKWb5bsuudutFUtP/X6zv7rYu0POPlt3std1Wf9cYNzJ+IzmKyUYCk6zCulS+mwA2400AK5LB5s/wt/bVxBO0RBuNQDiruMvl8op90j9UKhVZ8xCXIDjLzzLJDmx+zbqW72a1mAabWe1NEH2nG2i2Wi3kcjkAS3J8JEGQMNeLtKjvo3ltux7jfqlYACwl4xcWFnDhwgVpfn6lJL8By3dvtVkg+hVmZEPZbDYJbgCjbhezwyzNATb2xeBkpkFSmi7l3a4vmy7XMTfL1E5PO3P+vZPZRB2Ez8zMoNFoIBwO48CBAwY29mb3rR303Nwc0uk0MpkMMpmMNHThdixHr1arcDqdCAaDotFmsy3LubAUvFwuw263IxqNCtuKQTtLvtZ7ngDks1yI6BKqbqV0BCEYfOomaxt5rrhfsxa8OZGkFx58fmdnZ/HTn/4UoVAIhw4dwuTkJAKBAPbt2ydNdDwezwpJo/WaXrQVCgUUCgWUy2WcOnUKi4uLmJubw4svvoh0Oo2FhYUd6TOwk2Y5c8t2wi6GPb3dxmBPS0IAxqSvlpS42GPpZB3ZUpROMc/rerx6BZybMYLKHo9HGHUADGw96m5TS5TzMxPDO3Uvm80mEokEqtUqIpEIXC4XgsGgjJ25LLzRaBiYbgzOOLaUzuEaptlsYnFxEel0Wtjf2vh8dDod5PN5TE5OYmFhQeTrgKWgj/6+r68PHo9HZEs0yL6VDDKua+jPuabcLWytQqGAU6dOwev1olAoYHZ2Fm63G7FYDD6fDy6XSxp/kojR6SxrwhJYYOVbsVg0PLOsoGi3l5q7zc7OolarYWFhAblcDslkEtPT01LZeKWZ5bst2067HJ4PDcABENkPnUzVcz2tF1O81zH034zVWPHNWIp+UZ9Xt8+bX1vPcbu9xySk1hnn+dE36kT4pQAhm80mLly4gFKphHA4jImJCQSDwa7bamCd6wteG6+P6zFg6R62Wi2k02lpyG1OHpOhTh/SarXg8Xjg9/sRCoWk+ozENafTiXA4LFryWsJEJ2q3YlwY3+ueH7op+KW0fD6PEydOwOfzIZ/P49y5c/B6vRgaGhLdfZIuzEkrrbZAzILrFK6LgCWgnmuqubk51Go1zM7OIpvNYmFhAWfPnpWqgMthLtqIWb57a80C0a8w40Kf5SnsMgwsOXcylsxZ3/V+MbSz7JatpNPZrolYZxvNILouVweW9cw0iG6Wn9luIwB84cIFJBIJDA4OIhKJGCb1zZ4PgWY6gLNnz6JcLiOdThvYbNQ005lur9e7okkZEyA68xqNRuU1XUrVbZG22hhw/wAM59bt2rvtc7MTty6B5Fhr3Voz+1vrwF24cAELCwtwOBw4e/Yszp8/L83qqMOvQaDNGI/PQD+VSuGnP/0pjh07hlwuh/Pnz0uZ5qVe3Fhm2eVqu3XhR8DYbNQq1/PVxUqAabYX/7fZlhpw6+Cj2+e2yui7mYCkpIzdbketVpNkL99vNpvwer0S5OlAcifuaavVwuLiIhKJBAYGBhCNRoV1bm5epUvO9dqIPprl/fpesofJmTNnejZR5fNBxprdbsfAwADGx8el/J3SMVz3mZMy69Gl3YiZ/dFuq/Sg/rrdbsfc3BxOnDiBcDiMN7/5zRgbG0M4HIbP5xMmJZ8xstZ5z1qt5abmJB/w+QyFQgCWmrFeuHAB2WwWR48exblz5wzSTLtpXCyzzLKtM7N2to5LNVNc+3it17ze+UH7PFbVaBDdDLBuZQxlNsZIPC59na601v1MVmPLb6c1m03Mzs5ibm4OAwMDAlzrWJCmk9XEMOjT+beZhFWv15HNZnH+/HlDpbneZ6VSkSq2QqGAvr4+xGIxDA8Pi1Qbe5XpNQ9BdH6eMelW+G8tTWIeg91gXM/Y7XacO3cOzz//POLxON797nfj0KFDhmQ2TT9f7L/CcaxUKvIZ3euk0+lgfn4e586dQyaTwbPPPovTp08bEha7ZUws271mgehXiDGQ0zppZiY6JxkCobVabcPOnKazttp2kiWmWcuaUazLbPX7q8mobOc5Eyix2WyoVqui0RYIBAAsM+Y1+N9tH7wmOvtarSbgNkFyzUgwf15LvhCc4X41c83j8QjAQtMgusvlMjDXNfC83vHo9vdWma5IIBOE2naaHaJBBa3fRzYa7xuTEOl0Gp1OBzMzM9IglU1a9cJMgyRmhj2wzHTXi6W5uTnMzs4ik8kgmUwil8tJed1uYfdttVkZccssWzY9dxDc0/OHw+GA2+02JKo3+x0wA9E7+V0yM760T9PzspkNtpNri27ny+DMXJJNv6JNNyTTrH9eI6+FfpUM9rUYgLp6oNlsyjPB9+nPeHz6cTYSZ6KYDK2tGs+tTrR0kxyiTzfLsehz0JUWfGaq1SrK5TL6+vqQTqdF0o6BdSAQkMavWgqHQJBucM6Gr3y/0+lIJUE+n5cGogDWvR66HM3y3ZZZtmya2MW42yz55PF4DKzti/0OcL7b6QTmWpIZnJs14epS+W7OwfTdjLU9Hg8AiGa9NvP16bgNMFaYM+ZerW+Yjr31moYYDXukaekfPisej0d8D6vNGMNv1TO0laZxqNV8t7mqXH8nuB4keY9rrWQyiVAoBL/fLzgEq8iY8ACWe98wlifxgIkPvT5YWFhAKpVCNpvtWgl4JZrlu7fWLBD9CjAGSX19ffD7/YhEIsKU9fl8BmfeaDSkUQad72oNn1YzOkgzGL3dgDQnYGqEttttYe1xkgaWMuMsldLBqp7cGfxqR7/V509mWrPZRDKZxEsvvQSPx4N4PI6hoSFpWBYKhYSBaJYc0eXsbPiZSqUwPz+PWq0mwGsvPTPNuCaITyfOUik23zJrfgPLcizMvlerVSwuLuLcuXOoVCoGNtylNH4HnE4nAoEAotEo3G43gsGgSNewUkM/S9RcJzOQ/3NMFxYWUCgU4Ha7cerUKQSDQUQiEezZswderxfxeBz9/f3CVqPWO8eSoEWz2UQ2m0W5XEahUMCFCxdQqVSQSCSwuLgo41ooFAzs/SvRLGdumWVLZrMtNbFic6P+/n6R0srn86hWq/D5fAiFQuh0lspQCehtJEDdTobaRo6vmbqstAGWAOlOZ1neqtlsGvp7bFVJ82asVCrh9OnTErz5/X44HA7x3Ux+MOgjI5y9PfQ6q1gsyhxP3c1upARt+l6Tte/xeDA8PIx4PI5arYbFxUVUKhVEIhEMDAygr6/PEHhTn3thYQFTU1O7rscG/aXL5YLP54PD4ZCKSofDgXA4DI/Hg1KphGQyKUlu/nB8CXCQXc7vUbFYlHVxLBaD2+3G4OAghoaG0Gq1kEwmUSwWMTQ0hBtuuAE+nw+5XA4zMzNSndbX14disSgSLsViEfl8Hs1mE5lM5qpgsFm+2zLLlo0yWg6HA9FoFOFwGACkQSSlPJvNJnK5HHK53JZ8h7R02E59pzTg2606rlarIZ/PS0NN+vdL+Z0vFos4efKk6LhT0mt4eBixWMwAnJubcTJ2KxQKqNfryOfzyGQy0si8VCqtKWWm7xXjQIfDgT179iAWi8k6p9FoiOSL7rfCeL9cLotU2G6RXwFgAMl103G/3y8V26FQCG63W6rliSlo6VZK+uXzecN6qVKp4Gc/+xmOHj0qjW1dLpf4bgBSRRYKhTA+Pg6Xy4VEIoGFhQXD88eq72q1ikKhgGw2i0ajgVQqdSmHcMfM8t1baxaIfgUYJzAyb71eL5xOp0xg3AZY1m1jZtPlcgmwvFG7FMGCOVtJkLHRaAjbik6F2XD9Q4BdLwS4X7NO9lYaj0umkt1ulwwpnYzOrJK1prXsCaJTq2thYQHnzp2TbOt6AmI6JmrXkTkRj8exZ8+enjrfmo3HoN/j8SCTyaCvr29XZHC5EOJCKRgMYnBwEF6vF+FwGOFwWJh7DofDwG6kHjnHhuzCUqmEVquFQqGATCYDADh//jzsdjtisRj2798Pv9+PPXv2YHx8HG63G/F43KC3arPZDFUDiUQC+XweyWQSJ0+eRLFYRCqVQiKR2BULop0yy5lbZpmxbwN9N0FQVvywNNrpdErAweDtcjRdmsz1h67m4ZzLoGo3VOPU63Ukk0kAkH4ibrcbbrfboLep+31oTfJ6vY5cLidg9uLiogEEXo9xzmQVU19fH4LBIMbGxoQVx14mY2NjovXNQDyZTAqjbWZmZtvGajOmyQ1MQlAnlgH4wMAA/H4/stksABgq4agTzHUQZeN0Mpqfc7vdCIVCcLlcGB8fR7FYlN4y1DE/cOAAPB4PKpUKstmsAbBKJBI4fvw4SqXSjo/TbjDLd1tm2bLpZpsk7+i53+PxiFwmdZa34jtwKfy/Bky7WaPRkMSlruq9lN/5er2OxcVFAIDP50MgEJAYMRgM9qwE55zfaDRQKBRQqVSQTCYxOzsr67L1Xhfvlfb3kUgE4+PjBpA8HA4jGo1KhTMbbPr9fpG7m5+fl7XDbjFdiUGCQSQSQTgclrg4EAggl8uhr69PQHNeh24AXiwWDRUN1WpVGo96PB7pT7Nv3z75PhEXGRkZQTQahd/vR6FQEMCeGEkqlcLJkydRKpUMckRXi1m+e2vNAtGvENNdsbU8iJlV3Ol0BEjXjTfXAtF1iS2DRc2M2smMKL/EZBvR2WiggePh8XjQbrcRDAYlaNcJBd3UjM5SZz+ZHWZgtRUTEMeNDtntdgtDWWva63vGBVitVkMmkzH8pjNfj5EB7/V6MTo6itHRUWl0QuC427OggR6yrPv7+3HgwAGUSiUJ1jluGvQgy5KlcxqkZzUEQQYuMjfi2Ah68xhDQ0NSkTE6OipONxwOC9PfDKKXSiUp53I4HCgUCuK0KZdTLBbl3pNhyCasvJ9korOagN81BvJkL5TLZeTzeaTTaamYsJyTZZZdXaZLX7XP1vMo3wNgaHLFkl9qZl4uRn9WqVSkIohrEfaY6OvrQ39/PwCs8IXAMuAKwMDY4pyeyWSQSqW2bU2im5ym02lhltG3ad1bJs5JXODvjTII6VvI6orFYqLnzQSE1+tFp9OB0+kUn6KbvHk8HthsNgwMDOANb3gDKpUKMplMV2Yk13xOp9MgVcZ7oSsZOe704RsxAuculwvRaBRer1dkVsg+D4VCcDgckrjgeZHVT3AhEAhIQE7ZlkqlgnK5bLg2nivvH8voM5kMKpUK5ubm8MorryAQCIiurpYmKBQKl9V3zjLLLNta0z6bsQdjY87t3XpHEWRkMvxymkd0FRSBUN1rCoD4bvoGmn6fUlk6Hub+KWm5XRJu9N1MhjL5qtcZ2rcxPmXzUBKrNnJe2nfH43Ehd5FspX0znyF97SRY2Gw2jIyMSIJmfn4eiUSiZxWbbmROnX69dtLkws2sI4mhOJ1O8d1erxfBYBBOp1Oq9NiQnbE3yZulUknGMxAIiD/ns1Uul8V36ypGnmsymZR1FkF4kgM9Hg9SqRRSqZQhoUOZ1N3C4qfpxqgWFnD5mAWiXwGmm2Xwh07d3HwBgDgN/f5qTcs0050LAF0mzOZLOwmiswyc2mKNRgPFYtHQQGJ4eBgjIyPweDwYHBxEKBSCx+ORUiBeEwADSyCZTKJarWJmZgbnzp1DsVjEmTNnMD8/b9Bv3azRUWUyGRSLRUMJmU4C6Em1W5duZlHXM+lyX8FgEDfeeCMGBgYwODiIffv2CQNeO9le+3A4HAiFQhKwjo6OolKp4De/+Q0cDgdKpRLm5uZWNNKJRCKIxWLweDwYGBgwNLzlwomZ5NnZ2Q2V7fO6IpEIAoEA3vCGNyAejyMSiWBsbAwejwehUMggl6PlXBh0k8m3sLAg7PBgMIhSqYQLFy7IM8LfTKywAQrHz9zFndfIH63zq5uZXm2O08qIW3a1m5ZiYxVSX1+fyHYBEJkQMnLa7baAiwwGLqdAHIAkf/V8yeDK4XBgaGgIe/fuNTCYAGMjN/05rgEYSL388svC+t4Oow+w2WwolUqyjjCDzMAyoGImHWx0zvd6vdi3bx/C4TCCwSDC4bAAz1zH6SoosiDJ6Caru91uIxKJYGJiAtVqFS+++CKOHz9uAC203B2Px2BZ653q5mesUtvos+h0OiXIvu666zA4OCgJAYfDgWAwCL/fL2PZbrcxNDQkjT1nZmZw4cIFAJAgPZ/PY3Z2VtYT/N5wvBlM8/7Nzs7K6+12G6lUSirOzPrxvH8X+2xtR+XjxQbi6z0ny3dbdrWb3W6XuZWVSdoXdQM2bTYbfD6fVMxsZL7czkrpjRjjJE0A0PP10NAQRkZGJNlLKS6v1yvxF/t4aKY646CXXnoJv/rVr0SKdavXNgRabbalxp7nz59fEfNqnXkdt/H3RmXlvF4v9u/fj1AoJDKuVAtg3BgKhWRNweMw2UDZuHa7jZGREdx0002oVqt49tlnkcvlurL97Xa7rBM4/iTKMaFB4hhlRMvl8rqvSUsQ+v1+HDp0CPF4HG63WyoqY7GYyOXohABJd/Pz84Kr0HcVCgUsLCygUqmIb9d69OxNwvvHijreH4fDgVdffVV8tx4bjutGqwh2wphM2SweYPnuS2MWiH6FGCcg7dj4pdKBnbnDtP7ptU+yhAhQE0TX5TgETXeyiQgDGTZ/0uAlJ2pK2vT39wsDe2BgQIBUM4heLpfhdrul9Cefz4sup7lz9sVeox43mmY3mEH0iwFa9X0kiy0ajUrGeCP74bhRGsXr9UrDD7Ikua0+LseQ2/KZY2KAY6HlbNZKzJj37/f7BVAn+5zH5CLXDKKTuUf2Xq1Wg8PhQLPZRDAYNGjdApDzvBzBq91kljO3zDKjjAV/tMamZqfTOMd2a0Kt98vf5rWBZoHpYHGnEuG6pFn3Z9GJZPaWIJuJ5wgYQXQmxMlsqtVqMu/rz2gJmYs1zbLbKamZvr4+0cWnTjj9FmAkU2jAXrP3WbFHMkS1WhW/SIk3HdDyXtBnch3I89HjwXPQAfN6zCyFEA6HDbJy7GfS6XSkrw3XHATMKbXG4J3VhzxnrifMQDjQ/f5RLulytY3eA/05wArELbNsLeP8qOMhXRXV6xnX8/BqhCX+5nE4R2s/pn34TvluHffo+Z7AOOdx+m72qCJg7PF44PF4hNWuY9tms4lIJGLo5caExFYRjS6V76asaCAQEAzF7Ltp3fqz8X32MaPvNlc/0PicUWqO94GJHsDYWH61teRq10Vfzbib50fCHdduBK659gAgvcE6nY4B7yiVSnLuutk8z1XfP8q2Xe62Gha33s8Dlu/eabNA9CvAdBaXwTedLSdjzYrSWlO9GFE2mw3RaFQc2r59+xCJRKRJI/dPUJnNENPpNM6dOyfly9sJMnLRwEDP4/FIQ6hwOCxsa5fLhUgkIplYZsbNyYV2u22Qd/H7/RgeHkalUsHBgweRSCSQSqXw+uuvI5/Pi9zLVk4qvJc6kNUB8WaMGqnUCB8dHcXw8LA0/7gY49iPjo7CZrMhlUpJ2RudqdPpxMjICEZGRqThJ7XCec3RaFQahjUaDfh8PpTLZWns2c14z51OJwYHBzExMYFgMIj9+/cLE31kZESy5VyY8d7rBajf7xfmg8vlQrlcht/vR7vdFu1hNqhNpVIGaRfLNmeWM7fMsmVwl4GMDsb5PrAspdXpLOk/spmhWToLgFSZkX1M33jo0CG43W4kEgmRIWHDrGw2i9nZ2R1tNkkWm8PhQH9/P66//nphT0UiEQnSyMryer3iq+kXNEOaMl1vectbMDY2JmXYlUpFtDALhcKOXd9mzAyA8nlgoErwGFiuKqS0CaVLCKaz0TqZ1HzO2DcEAAYGBkRbdGFhAaVSyQDiaI1TlofrYI/vk5EOwFAlt5qRLReLxRAIBCQxQHk2MuhYueZyudBqtYR532w2pSKOTdP1+sNmswkwz0qF3aKBejEgd6/Pb2Sf3YLu9X7e8t2WXe1GSUfNGDYDft2MTSrJkqUxHu3mu0dGRnD99dfD4/FIHEqZUTZFnJ6eRq1W24lLB7AM0jocDgwODuLmm29GKBRCNBpFLBYTH6R7tWniWjfCGADccsst0g+GcpnJZBLHjh1DPp/fseu7WNNrm2AwiP7+fgwMDMg46BhUkwp0r7dujHhiA81mE4ODg3jjG9+IQqGAc+fOIZ/PG5LdvB96jaQleSkx4/F4UCgUBNPRlVerXZ/f78fAwIAA6OxdwsR8KBSSvnxMbuv1bTQalcqNVColaw9iBKFQCMFgcNf57s3YWr67G7FlI2b57ktjFoh+hZhurkSnzr+1g9Lb6M+YvxgEXicmJtDf34877rhDGicGAgFDIFupVDA5OYlMJoPTp08jk8nI/rYTROdihc7a7/djdHQUd955J4aHhxEKhRAOh1c46dUyfdTi7HQ6GBsbE5Z7KpVCPp/HmTNnROqFDn6rJ5WtHjPey+HhYQwMDGBsbAzDw8MXlfUEjJqpY2Nj6O/vx+zsLM6cOYNMJiMNdtxuN0ZHRzE2NtYz2+p2uxGJREQz1u/3C1jdazwcDgf8fr8sMlkut2/fPsTjcYRCIQwNDcmilEF1t2vm96Berxuy/AAE2Gc373K5LCw1y6FYZpllmzUzg4xBqZnl2+l0pHycOs75fH5FU0rOb/TTXq8Xe/fuRSgUwhvf+Ea8//3vRygUwsmTJ3Hq1CnRfy4Wi5iamkIymbwkIDp9xNve9jYMDg6Kb2+32ygWi6jVaoakKRs1a5ae1jXdu3cvgsEgms0mZmZmkEqlcObMGczOzu5qEF37J5IftN45EwyaDchtbDab9O/QjU6pAQssy5UwqCYA0mw2kclkkM1mJUHMc9EgOgkI+jyp71sqlSSxo8v0V7tWu92OUCiEkZERafhGVjoBe4LoNpttBQMTgIDvpVIJ2WwWuVxOvgNOp1PWgZQQ2o2B+FosstXWrubPrHdN0iuot9Y0llm2tnU6HanGdrvdK8BOACt8MwBpkqgTwboajfO8z+fDxMQEIpEIbrnlFvzn//yfEYlEcPz4cfHdCwsLKBQKOHPmDBYXF3ccRGfCc3h4GG9729swNDRkqIYimU7LaPbSSWfF0MjICN7+9rej2WziwoULyGazOHnyJKanpy8bEF37Tq7FqIXO9wEjaY4/GpMh0A4sg6y6co/9v5LJJJLJpFTOezweQ9W5BuNJNtC+vVQqSQNO+sn1guiDg4MIBAIip+rz+aSajP1NgO5M+VgshoGBAelJlsvlYLfbEQgE0Gq1pAqN57RRGZ3dZHrN1K1XwsVWklyu43K5W28hbMsuG9MTsWaZ6x8GD/o1DabrclxmJsnmjsfjoktJSQ79w9JasscoFcJGGNtlZEb5fD7EYjEMDw+jv79fFiBkMmm98W4yNuYfBuM6mPP5fJJtHRgYkA7QdFaracpfatOgCku6ejUQ3ez+uQhyu93yTOhnhMdcrXGpLuvmZ1Y7Ry7MeAyfzyeNTbxerwTR3e6/lk7Q91z3E+B1MIjn38zoXyyL/2o3nXXf7I9lll3uxmeZDCSzjqO5cSOlx8zfAc7BTATTH9Mnu91ulEolFAoFNJtNCYBZpcMfluLuhPX19SEUCqG/vx+hUEiCRjKv6cO7zdec282NRc1rH2BZV35gYADDw8OiE7ob/bY50OQ9YiUdr5uBsW5CqwNoTZzQPVX4wzUgx4b3nxJ49INMQvOY+jx5rnoNwPPciO/mD1+jTBwlXcxSPHq9RtCG6zSuc/TzzH3uVp99KfzZxTDZLd9t2dVumhncrbpbV4ab3zfLnurYh5U5jKNJRKpUKkIqog/gPMkmlazk2W7jvBuJRDA0NCTnqONtxlxmApu5Z5QGFvVPp9ORud3n82FoaAijo6MIh8OGJqC71cxkBs26N6/5tDyOHjMNqpsbsXKdREk3Hadqv8339bjrc9SNTX0+35q+m/30eDxiQlx7krCm+6d0w1j4LGiSgNlvcz3i8/l2re/eqOlk26U6/k777q9//evYv38/PB4Pbr31VvziF79YdftnnnkGt956KzweDw4cOIBvfvObK7b5wQ9+gBtuuAFutxs33HADfvjDHxre//nPf47f/u3fFpWEf/zHf+w6Fo899hhGR0fh9Xpx991347XXXtvQtVlM9CvAOp2OQdM7n8/D6XSiXq+L9hQnxUajIQFXoVCQzsicxL1er+iY3XLLLXjb294Gn8+HwcFBmcgYTGk9uD179khG0m63I5vN4uWXX8arr766LbpjNpsN4XAY8XgcsVgM73rXu3DdddchHA5jz5494kC2wtEyM0pdbLfbjUKhgKNHj+IXv/gFSqWSNAndjUa22TXXXCMOfTuOYbfb4ff7pXs49fO5CFrPvWATUq/Xi1qt1tVx0hH7fD6RpRkbG8Po6ChCoRCGh4cFNOIz263hm96fXrgEg0EpuWMZGX+y2SySyaSUlu1kQ90rzayyMsuudiMIarPZUC6XJThlEAEsM3hYKcOmxmaJL4/Hg3g8DpfLhfHxcezZs8fAZisWi/jxj38sDB9qRofDYfh8PmEjF4tFLC4uIpFIbPt3zOfz4c1vfjOuueYaOBwOVKtVzM/PS/KelWAMqDlmTNwDy+zqer0uzcaTyaRUy5HFFA6H8Vu/9VtotVp4+eWX8etf/xrValVY07vBNCjNZ2FwcBDDw8OIRCJCaOAart1uI5PJIJPJwOFwIB6PY3h4GLVazSBDxmeMfpqyK8ASoE0QhBIBBHzsdjsGBwcRi8XQ6XRkLM3GgHhgYAChUAjJZHLVKjKfz4eBgQGpIhscHITX68XQ0JAQNijnUywWZW2lE9hMzNO/E6jgObLZKQP5QqGAfD6/qysRetl2BN4X438t322ZZcvs0Wq1KnMwQUVgObHLGJ3+yOy7WYnr8Xhw/fXX49ChQzJHsnfFv/zLv6Ddbhsac/r9frhcLoyNjeG6665DoVDA3NwcZmdnt+07xjk3HA7jzjvvxLXXXitAvm4WbvZlHA/O3xq3IJjc6XQMaxv6rsHBQdx3331oNps4evQonn32WYMP3G3G6xwaGsL4+LgQ+zQwzmehXq/L/Xe73VJNwLVPvV6XJIseN5rD4UAgEBDJXYLsfX19hn4yHK9u1disJojH41Ld0Mt3+/1+DA0NwePxYN++fZiYmIDP58PIyAhCoZAk/TW5AViOu80AOivK9+7di8HBQdTrdWkQT4mkfD6PcrkszcAvR/+heyBcyvPfad/9xBNP4JOf/CS+/vWv4+1vfzv+5m/+Bvfeey+OHTuGiYmJFdtPTk7i/e9/Pz7+8Y/j7//+7/HLX/4SDz30EAYGBvDBD34QAHDkyBE88MAD+PM//3Pcd999+OEPf4gPfehDePbZZ3H77bcDWFIQuOWWW/AHf/AH8jmz/dVf/RW+/OUv4/HHH8ehQ4fw+c9/Hu9973tx4sQJBIPBdV2fBaJfAaYDceo283+tPwZAgD+W3HKioiNi+WswGMTExASuvfZaYSF1y2ICyww4ABKgUV91O7PFXq8X0WgUQ0NDuO666/CWt7zFoAW6VUamFrAEVEQiEdGQfe211yTQ261G3dHBwUFDmfdWH4MZ6lAohEqlIs5UPx9rGRehZLT1Yq2ToUcwiIxLasZSN3a9VQI6S07d4Xa7jXA4LJr6sVgMAKTKodPpbOvzfaWbFYhbZtny94AyKgQFte41AUwmvWu12ornn8042ctjYmICfr8f4+PjiEQiOHHiBI4dO4ZisYhDhw7hmmuuEfCRQRw1O3cqWCHg/8Y3vhH5fB4XLlxAvV5HLBYz+FwGkhwv9tZot9sol8uy5qH0FsuSgeUEbzgcxr59+yQJ/uqrr65oar1bjCwzghVDQ0NSKu3xeCSI7nQ6qFQqqNVqEtwGg0HRgWfihQlpvQ6k/6JMEEHwQCAgjTUptxIIBGTNSACApqu8eI7VanVV5hh9qs/nE79NGQMeLx6Pw263G6R7+KOZjmRlApBnplarIZ/Py3Xk83lZM1h28Wb5bsssW36OGVdzTuLcp2VTNSPdDPwy7qEk6bXXXiuxptfrxeTkJI4fP45yuSwJclaNUzudhKJCobCtvpvX5/P5cPDgQdx6662i8272Deb4iD7H4XAIbgFAkr3tdhvVahWVSkUS54xfr7vuOrhcLmQyGfz617+WpMRuBNGBpWsnqYsMbQArQHQmtFmdxbUe13lMBOvqM33NjLvj8bgkMugvyeLmc9crGetwOBAOh9HpdOQ57mVcKwYCAamYIKkhGAwK0dBut3ddW+lkPv14X1+fkCYqlYr0NSmVSqhUKlJpdrnbbvB7W+W7zdJKOrmn7ctf/jI++tGP4mMf+xgA4PDhw/jxj3+Mb3zjG/jCF76wYvtvfvObmJiYwOHDhwEA119/PY4ePYovfelLAoYfPnwY733ve/Hoo48CAB599FE888wzOHz4ML73ve8BAO69917ce++9q17H4cOH8elPfxq/+7u/CwD4zne+g6GhIfzDP/wD/vAP/3Bd42GB6FeQ0SlpZpVuUAlAJlhmfrux2QYGBqSLtJnFu5bRodPxsREYj3WxxgnY4XBgaGgI119/Pfr7+xGJRFY0C90OYwDHZpbXX3890uk0arWadJneTh34jZiuFqDUynZLzxCE1pIAm22K2u0zWoqFIL0uAeNi5WLlVngcLmpYEq7ljHRm2TLLLLNsM6bnEALmDIKAZbYbpVx6BY4sydVzoG505na7pVF2MBhcocvocrnQ398Pn8+HVCoFh8OxLUwvspuHh4cRjUbR398vDSRjsZhIzZTLZbRaLWGLU37GZrMJy5jjx3PV8za31SXhZIIFg0Hs2bMHxWIRs7OzO6olu15jsKP1YindUq1WUa1W0el04Ha7RbOcbLNqtSr+ib6QSWe32y33VZeU6+dLB78ENcwyBPr5oeSKfm81n89ntZvsGnVzmcih5jAAA5OPTHk2QeO97uvrk6bvBGZ0ibnD4djV4Itllll2eZhmlnJOJQDM1zkf8v1uCVvGzWyo2Gg0xKc1m024XC4MDQ2hWq0iGAyuqKr1eDxSCb6wsCCNpjcbe/W6VmqWj42NIR6PIxqNAlgGcikPxiSveY612WyGBDfHiPtgopPXxfmc8Vaz2UQ0GsV1112HfD6PmZkZJJPJLbm+rTKd6NWkPl2VwO0oMeZyucS3a2IjyRTsB+NyuXpqqHOfwPKYktWtK/LMZn5W19Id1+tMLeFjltXjuZklaPhD3844ncfUskc8npbX5XOwGwDpq9nGx8cN///pn/4pHnvsMcNr9Xodzz//PP74j//Y8Po999yD5557rut+jxw5gnvuucfw2vve9z58+9vfRqPRgNPpxJEjR/Dwww+v2IbA+3pscnIS8/PzhmO53W7cddddeO655ywQ/WozPWmymahm6Gh9TLKQujUVDYfDOHToEOLxOIaGhgy6Vusxv9+PPXv2oFKpSAlyuVxGoVDYkkCVwbbH48FNN92E//Sf/pOwrKmhvZ3Aps7+X3vttQiHw0gmkyiVSpifn5fJfTcEaGRpEWxmlng7tcXYkZuOTpeNr9dWy5Tq59rn8yEajSISichvrYG6mWdBb089O2be4/E4ACASiSCbzQIAcrncrmMxXi5msdksu1rNrBMKLMuyARC5Nb2N1oXu9uyzkRRLhxnYkI0cCoVw0003rdBtZfBDBnC9Xkcmk8HZs2cl6N0qf8ag8Oabb8Z73vMe+Hw+hEIhCchCoZAkERYXF0W6plwuS6LUbrcjl8shnU7D6XRiYGAAkUhEtGIBiJQYAz7dVLrVamFoaAhvfetbkc1mUa/XkU6nt+T6ttJ0coPXUiwWBSAuFAqw2+0YGxvD4OCgjFm5XDZUYTFI1yXXhUIBqVRK5P1YnUg9/lqtJsG31sfX0kJc6/CeMgBvNpsCbPcyl8uFcDgslWQE1Fn1SAY52YhM+nB9q/dNuRfq63s8HhQKBWmS22g0pPkpn7Ne1RyWrc8s323Z1WA6HtDPrJam4HtM6pKVze3ou83JR22Mm0OhEHw+n8TKlJUMBAK44YYbDBIg+lwikQj6+/vRaDSQTCZx6tQp1Go1YTRvxTgw9n3Tm96Ee+65B36/H36/3xCTsTKqXC4bKnUJKttsNqkMYuUSWcv03W63W46n8QeuV/bu3Yv3v//9yGQy+PGPf7zrQHStb09dbyaG9bxJ6VCn0ylkAVa08xkhgOzxeKQHm96Ofoy+2Ey8YOUin7tuzx5f0xWPq83PrHhk0seso04/rb87lKYhNkXTzwexCT63XEMQwyCJTfcEsmzjtlW+e3p6WqSCAHRloSeTSVlvaxsaGsL8/HzX/c/Pz3fdvtlsIplMYmRkpOc2vfbZ6zj8nHk/58+fX/d+LBD9CjOdedasaD3B6aZl3cp6/H6/wbltBIjkhA/AwDDaKmCbDpsB9+DgIPx+Pzwez440CeOiqNPpIBAIYGhoSMqmuAjolu29FMZz1Y1St7shC52hy+VakeFej5mz1r2OoRuB0sl2a6CymWs1O3Y6cj53/Hunmu9dqWYF4pZZZjTNxqFpn7PaM6+DTt3QieA7g1b2TimXy3JMXeHF+ZSB31b6bgaYusxZ+ymWPJM1RWCXAaAGwllRp5ls/NHXQFa6ZgO6XC5Eo1GpnNqtOpva1/EctY4ssEws0Ilr3fBca5CyIq1SqRiSN5rVphlpveRuuoFBGkRfK+miGXb8rdcmBKXIcteyhLxPPAZBezIgHQ6HIUnEMdJN7/jM78Z7fjmY5bsts2zJNEgOGNnXupHkanMimdy6kbK54sbv98v3ToPoAKTSilU7G60gX881MoYMhUIYHR01sKL5vh4PJljN50AiHxP8+hgADNIl9As6JvR6vRgcHBQilZl9vRtM+20dj/IZ0NfKyoNumuW6kTrHpduYmmNt/nCs9Tb6+Dqxo/39etaZ3ZrIms9HH6sb5sTx0OsUnXDqhl9s5Zr0arSt8t2UzV2PdXteV7uHvZ7vbgmY9e5zq87NbBYKdAUaHzhz6RAAg7Pv9kXSZbabAQm13IYOyLcK4A6FQrj22msRCoUwPj4uAPpOd26mg2cDrH379uHGG29ENpvF5OQkSqXSjp5PL9tuZn634/F3rVZDOp2WJifraS7aarWQy+WErdCtHFA3FtPANoH0rXrW6Lw7nY6AD+xK7vV6UalUdiRxc6WaFYhbdrWafnbXAvR0gLTWPrXPp2xFKpUyMK01QEpj8ELQmhqZ1WoV+Xx+S9hsbJTm8/kQCARQrVYNMiIEAthXhYx5riXYKNrtdqNarSIQCAhTnswsNgPSQEOtVhM/SP/jdrsxNjYm2tvhcNggdXepjcE1wXBW2dEoz8PXdHKAkmMMcPL5vMi/sCk25XDIznY6nahWqyiXy8J0z2Qy6HQ6on/K5AUAYZp1Oh0p7S6Xy0gkEsjn8yiVSqtWaJmftVAoJCQE3i+/3w8AUvbNcWHCh2PChrpMMLD53tDQkKwnstmslMSzUd9ulPC5XMzy3ZZdDbaWTyaAvNp263nWqQVOYJpzW7lcFmawjuu5b61BTrkvxitkBG+F+Xw+DA0NSd8K+kkmu3XlEyvdzeMALM3lrKwiGGuOCbXkDX/ruJK+oV6vIxwOIx6PyxpgN/hubZqB341UpvEYJg50PxyujWq1msTFrBQDIBXmpVIJqVQKxWIRpVJJ1nt79+4V39itKoHnwR4i5XJZGpKvdU1mAhuvU1cVaFka8zYaKwKW1zAkcpqfba79Niuj2quq5GqznfTd/f396OvrW8EQX1xcXMEApw0PD3fd3uFwiBpAr2167bPXcYAlRvrIyMim92MhQFewaRYRm22ZS4rM5nA4LgpEB5bBR63jtVUgdygUwnXXXYc3velNlxREByAao9FoFAcOHMAb3/hGHDhwAF6vd8fPpZdp4GCnAHU6yFqthlQqhVQqJazHtazZbCKXyyGRSPTsEK67epNlyN8E0bfiWs3sTIIFLCvjotHKiltmmWUbNc3MWUu7dD0LV80o1lU0qVQKU1NTmJ2dRTqdFlBVa1yT8Ub9awKbbNC8Febz+bBnzx7s3bsXgUAAlUoFxWIRiUQCs7OzWFxcRDabNTTF1LqgDL4DgYCUkns8HpG+aTab0uzK7XajXq+jUqkgk8lgcXERqVRKAF6Px4Px8XGMj49jcHBQSpN3S1KU6zAGjpr5RX/EpC5BZoInDKwDgQACgYBo69ZqNSSTSXkOWAbu8XjQ39+PcDgsSYlyuYxMJiNAOvfF8m2v1ytBtJbkyWazuHDhAtLp9KqABsu7G40G3G63jD+DfWBJ4oASdEyoaDa91+uF3+/H4OAg9u/fj/Hxcfh8PrTbbXg8HgwPD2PPnj2IRqMyhuyhstnKxZ0mJVi2bF//+texf/9+eDwe3HrrrfjFL36x6vbPPPMMbr31Vng8Hhw4cADf/OY3V2zzgx/8ADfccAPcbjduuOEG/PCHPzS8//Of/xy//du/jdHRUdhsNvzjP/7jVl6SZZe5reW7e1V8m42VVbqhJqVP0uk00uk0ksmkJEFpjO3p6yifudWEIp/Ph/HxcRw8eFBA9FKphGw2i0wmg1wuJwlYnTztdu1OpxOhUMhQvQ3AAKjymgjqlkolkfmw2Wzi42KxGPr7+7d0nbKVRixEM60BY3NRYjL06ZSAYT85+u5sNotkMilNN+v1uqGHXavVknuyuLgoMjfxeByxWMzQmJw/9KEul0uA+EKhsCaIzvUIe43oWFj7aD7HukKdZAjeQzYW53q1r69PfH84HDZItXLNsVkQ3YrXd9ZcLhduvfVWPP3004bXn376adx5551dP3PHHXes2P6pp57CbbfdJvNFr2167bOb7d+/H8PDw4b91Ot1PPPMMxvaz+6IGCzbNaYZQpvVQdXBvGa89Spx2ohRjysUComTuVSBDY9LlnU4HBbt0vV+ns5VA8PmEqmLuTazFt9WNprpZmRH8BkiA44LRGbDzWVnXChwOzLldkvGWN8n3ejEvDiybP1mfgY282OZZZYtmQYmdfMnLXNCM7OA+BoDHe5vKxs49fX1SdDGxbAu2TWfiy7hJYNJ68KbZWt6JSR08KQlbrjG8Xq9iEajAjivZea53lx9p5tsbdZ4HdqX8rq1z9HXwrWWWftUs970+Gh2oJmpr//XfpzMOC0TqJ87AgNrPTN6Lcg1g94nWeXm6+JzQbCd1Qx6vPTx9XVoMEP/WL5747bTvvuJJ57AJz/5SXz605/Giy++iHe84x249957MTU11XX7yclJvP/978c73vEOvPjii/iTP/kT/I//8T/wgx/8QLY5cuQIHnjgAXz4wx/Gb37zG3z4wx/Ghz70Ifzbv/2bbFMqlXDLLbfgq1/96uYGyjLL1mE6PqOfJDlsLdkD/mgfap7/LtbIDmZjai03oqUzu8215uOb1yOrzQV6n5rJTf/m9/sRi8U2DKLrMdPx3Fb4bp5jL5+kzdwk1Byvm9nra82fZpC+VquhVCoZSAn6vMxNxderN67Py8zw1uTNXutH81rBvI15TaLvleW7L8522nc/8sgj+D//5//gb//2b/H666/j4YcfxtTUFB588EEAwKOPPor/9t/+m2z/4IMP4vz583jkkUfw+uuv42//9m/x7W9/G//zf/5P2eYTn/gEnnrqKXzxi1/E8ePH8cUvfhE/+clP8MlPflK2KRaLeOmll/DSSy8BWFoTvPTSS7JmsNls+OQnP4m//Mu/xA9/+EO8+uqr+P3f/334fD783u/93rqvb/el7iy7pMaSXwDSeXsjxiZmbH5B1pvNZpMmKcwkMrO8HnCXE2YwGMTBgwcxMTGBgYGBXcEcczgc2LNnjzTX8Hq9q5b48VoIWPDvbl2qGehvppkGP8f7US6XDTqp22E6G55Op7G4uCj6d9RqHRwchM/nk890Oh0Dm2FmZga5XE7KzbtdF58XrX2qA/GtMp1F13IuOpOvx9my9dvFAuEWiG6ZZcvWaDSkoZnf78eBAwfQaDRgs9mQzWYNpcUMHFlG3mg04PV6pUGnzWZDKpVa0cTsYszj8WBkZATxeByRSET8XTgcRigUEk106sMCMJyf3W5HsViU/wn2a6CgVCoJsMuAi9sBMDD88vk8ms0mxsbGEAqFMD09jXw+j0ql0vX8NTigQV2tQ88+MuVyGcVicdNzVLPZRKVSETmeUCgkDa4JYnD8qtWqgM5k5APLjZ7q9TqazaZsbwYvNCihS7V9Ph9arRbS6TROnDghr+vKLGCpuTabq9frdYOmby+jni11fNPptDTG9Xq9qNfrSCQSUonAcfZ6vXC73cjn81hcXESz2UQsFkMsFkO73ZbnA4AwMcnQ143nqSPvdDpRr9fX/YxbPmfJdtp3f/nLX8ZHP/pRfOxjHwMAHD58GD/+8Y/xjW98A1/4whdWbP/Nb34TExMTOHz4MADg+uuvx9GjR/GlL30JH/zgB2Uf733ve/Hoo48CWArmn3nmGRw+fBjf+973AAD33nsv7r333s1epmWWrcsYNzebTQSDQYyPj6PVamFxcRGFQkGIRmTqAisZwZTAcDqdknzkNloiZTMWCARw8OBBYT0TsNaMac63ZBRrAJmJT4KuOnnaTZ5Dy5robTudjszXzWYThw4dwsjICM6dO4dUKrUuGdVumuv6/Nm0e7Pzm44HKY2m5W50AoJAtyYcstEoAENiWSe4zcfifWfFFfc9PT2NYrFoaEyqAXSupVh5Rhb6ar6bz6IGwjW5oV6vI5/Pi9/VTd2J+7DigmsArl/MSQPzM6TZ+g6HY0Nx91rSS1eL7bTvfuCBB5BKpfC5z30Oc3NzuOmmm/Dkk09i7969AIC5uTlDMnz//v148skn8fDDD+NrX/saRkdH8ZWvfEX8NgDceeed+P73v4/PfOYz+OxnP4uDBw/iiSeewO233y7bHD16FO9617vk/0ceeQQA8JGPfASPP/44AOBTn/oUKpUKHnroIWQyGdx+++146qmnRBZyPWaB6JYZrNlsolQqwe12d9U2W8s4wbLZE7UnGbgw+NIMJn5urYw0dbEGBwcxPDy8Lo3tnbC+vj5Eo1G4XC4kEglDcL9ahpWOVeuL6Wwfx0Y7vY04AQLNWs7HZrNJ8Lsd1m63hSHGxUi9XheJm0AgIIAAx4HAezKZRKVSEcmB1Uwvqsx/b7WT1CVq/DE3GN3ovbFsyazxssyyrTEGRdSp7O/vR71eRzqdXhFoEPTlvEmQlc3LCDR309HcrLlcLoTDYcRiMfFBBJ7N1Vs8PzNjmqB+p9ORQF4zsqkfq1nquqKL64VKpSKJhUgkIvqIBJ67md4XYGzISj/g8/lkXEul0kUF4rzOcrmMfD4vWvIEgwkQM9lMOZ5msynNyuhf2ZzOfD28Dg1waPkcgvm1Wk3YiA6HA4FAQKocKpWKJL0J3KxlNptNJNg4Vq1WC+FwGC6XC7VaDcViEY1GAx6PR54Rjnez2UQqlRLAnMANQYG+vj7DNZsrGmw2m4Aau01H93KxrfDd5nUeiQra6vU6nn/+efzxH/+x4fV77rkHzz33XNf9HjlyBPfcc4/htfe973349re/Lf0Xjhw5gocffnjFNgTeLbNsp0zHzW63G7FYTGTK6vW6AQDU8yvnN/bPYA8RHS92a8q8UeN6YmRkpKt2t/k4vCZKc+nXNLNcE8P0tek5Widl9TjZbDYMDQ1hfHwcnU5nXXGtPm8m2AmkE5dotVoXlQDXMSmruFwul4HlrhuN6oozcxWV2TeZfasG38264+12G5lMBsViUfw21yb8DOVySLJbT5+Qbgx7vmaz2VCv10VXndV9HHdgCWMql8srnk8zkVKz8TudjqHSj8D8RtUSrHhzyXZ6HB566CE89NBDXd8joK3trrvuwgsvvLDqPu+//37cf//9Pd+/++6717xOm82Gxx57DI899tiq261mFohumcEqlQoWFxdRr9cxPj6OSqUiYOFq7GU+rGRDVSoVhMNhXH/99Wi1WpI5JGBMthaDnkKhIMArg37N9qKzY0C1lTrrF2vMaJOdTJCVzp7baEYzwQM6bjoHwDiWzEo7HA7JWPdiaPcyOst0Om3QM91K4znz/Mg6Z7ZxbGwMg4OD8Pv9GBkZQTAYNIDo4XAYAwMDKJVKCAQCwkrP5XKSkGFShwtFSsCwuU2tVpNFAp+bi0my8Fi6NI0JCbJCzMCKBaRbZplll8J0g81UKoW5uTkBloGVjGMGIZyvyuUy5ufnxe8ODg6i3W6L36afIhMbgLB/OQ/36mMBLAWOrN4xN0EjYEu/r9ls9XodtVpNWEhmBpIOGnUwx8CNr+sSYDMAwPHpZubAHoBB75MJVc3010xuvQ7YDCmhWq0il8vJ+IXDYRQKBQn0WRnFoJ3nSvY+AIOmupbSAZaSL+VyWQLqYrGIer0uQTm18dkDhmscghbUYddBuF6/dbNqtYqFhQWUSiUMDQ3JvqiXyuQAEwEcdz4jdrsd4XBY9NjJwmRyhSA6AEOZOpPh1Fi/GNlCyy7exsfHDf//6Z/+6YqANplMotVqrWj2NTQ0tKK5GG1+fr7r9s1mE8lkEiMjIz236bVPyyzbLmOyu9lsYnFxEfPz8wJCmxPJAAx+rdPpyLzNOW9kZET+Nsut8LVWq4VCoSCkJ8Za3Yy+gH6ZvkWzuml6bUCwVSdogZVa8b0IUFxLdJujGZ/p2LCXmYFzTV7j6zw/p9Mp/oR+YjMELa6NMpkM/H6/+CkysYHl5K45Ma+PpbXGzckINvguFoviv4m3uN1uRKNRhMNheL1ejI6OIhQKGUBwriPK5bIk38mg7+UX6/U6stksWq0W4vE4KpUKPB6PYW3AxEc3iR1WGnLtZ96G56efH67p9PpzPbJxllm23WaB6JYZLJvN4tixYwgEAtKwyev1Cnu4l2lnvrCwgGq1ij179mBkZAQulwtDQ0MIBAIrMpIsJTpz5gySySSmpqbw61//WphNBEYDgQC8Xq80oGJ3793ARCdDXjfIYuM0c2BHx8bAW2vWmk0z0JlwoANbr1PnQiORSGByctLgVLfSNOBBBno0GsUNN9wAr9crjb9cLpeBicgFQ6FQQKFQQKlUwqlTp5DNZjEzM4NXX30VxWJRGs6RicAy/2KxiL6+PvksF3gE2i/mGeH1aL12/UP2pl4IWQH5+m2ny8oss+xKtmq1ikQigXw+j1OnTiEejxsaLXcr6dYyWOl0GmfPnpX584YbboDT6cTAwIA0n/L5fIaAr1Kp4OzZs0ilUkgkEjh16lTPJtKU64hGoxL0O51O6SVSqVRQKBQkeex0OtFsNlEsFlGpVBAIBMR3asAYWAYXdMBllhVhAM01CNczZLz3Mh1g8zfPRbOjyNomm9DhcKDdbgupwMy8W4+1223kcjnxZ8FgEMPDw+h0OlhYWECr1UI0GkV/f79UDdAX6eoDng+Da51wYEO4QqGARCIh6wuCDPv378fBgwfh9XrlWWCinJ8vl8tSAu90OiWx0ssfcp3p8Xhw4403ioyL3+9HNBqF3+8XqRc2lmNigMH5nj17YLfbpdlsu90WSRmd0NFkDSYCtE+3fPbGbat89/T0NEKhkLy+ViWIeR+rre26bW9+faP7tMyy7TCC2R6PB0NDQ4hEIobmjAAMpDE+o2wOncvlMDs7K0nHm2++WeJmgsZs3siYpVwu4/Tp00gkEpifn8drr722KojOBDjBWu7fLA+m1xlMYPK4nGvN4DmwUrqEsZ4ZSNefJaFpLRCdVXZaDkT7bsZ6AIRkRhCcgDKT/uud+1qtliQAh4eHceDAAQwMDCCdTotv0klt3l/z2kZXhnEMOSbVahWFQgH5fB7JZBKpVAp9fX3y/Fx77bU4cOAAPB4PYrGYSM1yfLPZLPL5PPL5PLxer+xjdna2p0xKqVTC9PQ0vF6vNHLvdJakWfr7+w1kCPpe3i8SDDjn837ohIGZtEbSIJut83/dm8Wy9ZsVd2+tWSC6ZQYjK1wHfzabzcBe1otM7QDp9MgMDgaDAn4zC6o/y0wvy8adTifK5TL8fr8EN8y00onostzdZFpXTZ8nYGxASia6x+MRB6LZAdq07rcu9dKA7XomNLLZisWiMOS3OljoNjF7vV4MDg4iEAhgdHQUY2NjsphjsERnTkYZs+I+nw+1Wk20qSqVioGpz0UNF2m6CZlmDmz2WvRxzGx0fT94DTSLib5+s5y5ZZZtnWkJkEKhgEwmI1qpLpfLACizlFZrWtbrdWGz0Ud5PB7E43FJogcCAYPMSrlcFlZSpVIRKQ7Neqfp8mkeWzPcCfQTMNb/8zx1wlnvv5s0iZ7HzaabWq5VsaQBdF1RRj+vk6js/6JLpzWAsFH2FIECJtC1bjz9HINs6obqsdPnrysKeG7cTvtO3heuVUKhEGKxmATJXJ/l83kBtHlOgUDAwGrrdU+47uO16WoBsh2pL1+r1Vbcc3NFH6+fvwm26+oxM0ijWZKWbcy2ynezymE16+/vR19f3wqG+OLi4gomOW14eLjr9g6HA/F4fNVteu3TMsu2y+g/W60W8vk80um0kMY0k5xmZuuSvFSv1xEOhxEOhwWsJGjM1+izSqWSJGjL5TLcbrf01zD7bsbcum+Xnk/5mp4XtL/jj5llzc/38tVMiGszj8Nac5H2fwSt6a80s5m+TyfFtc/cqP/udDoiS8Z1AeVWzExzxvW8Zn5eM9DNzVh5LuaGoDabDX6/Xwh7AwMDXfupaH/rcDgQiUQEv+F6sZvvpmwgAJHXo3SaZvUT6OZ6UN8PXqu5ikHfdz5j3cb9Yv3P1WxW3L21ZoHolhmME2S73caJEyeE/bR//35hgTH7zKCLTpwZ55GREclck3GtwWI6TU66GmSn08/lcnj99dfx+uuvS8k099dtUXEpTZ8Hy4U9Ho+hnNrv98Pr9cLlcslvc5ORXvumXhudHfVJyQZba1IjyxBYAqP37NkjCwlmpi/WuMCKx+O48847Ua/XEY1GMTIyArfbbWgmp9kV+vPMbDscDjnPiYkJlEolnDx5EmfOnEG5XMbc3Bzy+TxqtRpSqRQajQZSqZTIAIXDYUNzNLNW32qmme6UFqrVasLW4AI3m81K2btOcFgOZv1mOXPLLNt6a7fbmJmZAbDUzHNgYACBQAButxvBYBB9fX2oVCoCNFarVWlM9YY3vGFF0MZqKQbb5oB0dHQUkUgE/f39CAaDKBaLmJmZwdTUlAHY5fa6lwQDWAKd7KHSarUEhGWJMAF6rf1NRjmTrrpReTfmGkkBnU5HAjgC+2Rpk4VGkNmsec5rr1arMkb039R0ptxMX18fQqEQgsGgyO1o9tx6jNeUz+cxOzsLm82GXC4nPVRIfGAw3W63ZZ1ms9mkgSoAuR7qrBOk0JUG1CH3+XxwuVwYHR3F0NCQPBMsRWeCOxwOi98cHR0Vfzk1NYVyuSy+mf6agE0sFpPxJqNufn7eMC70EUy6838tU8TKBy11R1CJYD2T84lEAul0WqrWCGBYbPSN2U76bpfLhVtvvRVPP/007rvvPnn96aefxgc+8IGun7njjjvwT//0T4bXnnrqKdx2221CBrrjjjvw9NNPG3TRn3rqKdx5550buRTLLNsyYzNIYKlp59jYGILBIHw+n8Q1pVJJ5jzOyS6XC4cOHQKw7IM0AMvkIrXE+R6lNaPRKLxeLwqFAqampnDu3DmZd3UFk9vtlsaeOlmsG2GbQXP6eQ388j2yq5lEoD8ys9vNUjRMxDORHQwGZY2g9eAZazMW1MxvwCg9o+VSgGWplWAwiFqthlwuJ/3d1tOklSSDdntJmzyRSAhRUFe1mY3XZ36N+6zX6yiXywK8sz8JWdqs5nK73RgZGcHAwIDhurSUXSwWQygUkgbrjUYD8/PzOHnypPjLZDIpPr1cLgse4fP5AEDUBKhAwAS33W43yLF1I1/qBDrXLiRzMKGUy+VEFiedTku1nxVvb86suHtrzQLRLTMYnVmtVsOxY8cwPT2NcDiMt7zlLQJ0Dw0Nwel0Sjksg+t6vY7R0VHceOONArTrRk7dyigJnrI5yJ49e7B3717paM1AnF2cOTnvFgCdphcmdGgMsm02myyCKOGim4z0Mv2+x+ORwJ9lySyZXg+Inkwmkc1mUa1WcfDgQQFUujV124zxesLhMN70pjeJY+dzYL5n5mvXTWGGhoZksVCpVFCpVPCrX/0KR48eRTKZFHkXNiGt1WpIJpNIJpMC3uuFX6/FSjfTrLxisYhUKoVKpYKFhQUB0ZPJJDKZjCELf7Hsd8sss8yyrbBWq4WpqSlcuHABPp8P+/btQzQaFXkXl8slJbya5TM6OopDhw7B7/cbKm/o21meC0ACUpfLhfHxcQnux8bGUC6X8atf/QoXLlwQn8XksgbQKTXDAIpJYa4pGNgyECaziwBqvV6XBD2rmHK5XFcQXYOvwHIZMfdPIJ79VsjsInuMSXyyudi/RTPlyPZyOp2oVCoCNEQiEXg8HgHwtRzYWv6C11yv15HJZDAzMyOBKZMTjUYD+XxewGOy6cLhsByPcij0xdxfq9VCJBIRECIajYq+aSwWk3vM9d7i4iLK5TK8Xq8kZEhuYLLc6/Vibm4Ox48fRz6fx8mTJ3H69Gnk83lUKhUB0ePxuFTkERSYm5tDoVAQQF+TEvicECTRz2SpVDLcawJGbBKXz+dRLBaRTCaxsLAgzweTOJpNadnus0ceeQQf/vCHcdttt+GOO+7At771LUxNTeHBBx8EADz66KO4cOECvvvd7wIAHnzwQXz1q1/FI488go9//OM4cuQIvv3tb+N73/ue7PMTn/gE3vnOd+KLX/wiPvCBD+BHP/oRfvKTn+DZZ5+VbYrFIk6fPi3/T05O4qWXXkIsFsPExMQOXb1lV4u1Wi2cP38e09PTCAQCuPbaazEwMIBYLCbEoGQyiUQiIZU/bPp54MABeL1eg5Y0/ZCWUtGx6ujoKGw2G/bs2SO++xe/+AWmp6fRbrcllvX7/TLPaxCdzOpGoyGJeQ1203cAK1njmhxXrVaFia9jNb2tTu6TtMXzYn8M7bsp9cWmmt1iQY6VZqvTbDabkLoYa7MKeT3GpD0r9Fj1otnt+lyY3NdN1bk20/6pVqtJQ+ZoNIpgMAin04mDBw/C5XJJo3RdEd9oNCT+133pwuGw+O6hoSH4fD7Mzs7i2LFjyOVyOHbsGE6cOCE9ysrlspAJPB4P+vr6RPZldnYW6XQagUAA/f39UlHWLfbmc1CpVARIZwzNKjeSA3K5HEqlkjz33ZqwWmbZpTILRLesq+mMZ19fn5SGk/3jdDoNzpQTs5llthp4aWZwA0uBqN/vh81mE2Z6s9nc8kaYO2G6DFxrZ+tGIpvZn97XepMJLL2jA85kMgCW9d82IpGjFzbAcuacZYM+n0+Ybdz3Wqa34d86Wx+NRjE4OCigRD6fF2kaNmqhg+fChQADFyYayDfLrtCpMzinrioXDsViUZqwkC3JxZrlzDdnVkbcMsu2xxgccm4keJ7NZgVELxaLBjaYWYakV8m12ejnWWXE4DsQCMj8y2CK52EuCzc3g9bl49y/mS1sluUwgwTaP/H8dckzj2cO7M3rFia+GZT28rkavAAgAbmunNOB8UaM516pVKQPCNdY2sfy/DR5gefGcSZ4z23IKuPaSzcH61Y+3qusXd9L7rfZbCIQCCASiQCAgUDAJA1L3lkVwbUeEydmUIH3je+zGo/3lfeWCW6uDZgMslhsF2877bsfeOABpFIpfO5zn8Pc3BxuuukmPPnkk9K4fm5uDlNTU7L9/v378eSTT+Lhhx/G1772NYyOjuIrX/kKPvjBD8o2d955J77//e/jM5/5DD772c/i4MGDeOKJJ3D77bfLNkePHsW73vUu+f+RRx4BAHzkIx/B448/vplLt8yyVY1zKOdFJnvT6TScTqfoWDPByT4fWoakm9QZsPJ7R1+ntal9Ph8CgYDE3donmmNXcwWuJsfp+Nd8bM7hZl/C+dscH+vX+Llu25h/qKOtz0N/luOkJdC0dJt5nPR765nDuE2j0UCpVEI+n5ekMO+feX96vPTYsPJOjwd9Npn23Lc53jUnMPT/fE1LqtF3h8NhxONx2O122b/23VyPEIhnzN2tyo7HIVYEQBIT+lz47BN/YpLcqvreGrPi7q01C0S3rKsRROeE9pvf/EYAVzolOqB4PI67774bBw8eFDmWzbLF2WjM6/Xi0KFDkoVcXFyUZhy78UusHREdjAYomNHf7LjQeTIL7HQ60Wg0DPpqq40LHU82m8VLL72E06dPY3x8HNdeey28Xq+UdZkXD92uUzf34s/g4CAGBwfhdDqFHbFWEmUtI1PB4XDg+uuvx+DgIBKJBBwOByYnJ5FMJjE9PY1sNiusemblS6WSlNBzgaGbuJIByTGjHBEz9uVyGZlMBufPn0exWMS5c+dw9uxZVCoVzM7OipYgx8IC0jduljO37Eqx9QZVO20sz02n05ibm8O5c+cMgY7P58OhQ4dEN5Ngq24USSM4C8CQdCUTiQxyYElv+E1vehMqlQqmpqYEAIjH4xgcHJQmqCx5pryJLhvXzDGdQKa0DAN8ynZon6sT1gz+NIOJbHANOJPBTT1QBuGxWAyDg4OGKiUABtYasOSji8WiMPDIBGdzrGq1KkHhZvxFpVLB9PQ0ksmkrCfcbjcOHDiAcDgsSZNWqyXNV3mtTDCTPQhAmOZ79uzB0NCQsPLJXGMjb12yz0oAMg/5LBHInpubM4DtHo8H+/fvx9DQEBKJBDKZjGi7Z7NZ2O12ZDIZWTdoPXQ+Z1r6honrSCSCsbExOBwOnDt3Dvl8Xsr3nU4n0um0sOYXFxeRSCSEQEAQ3Sz3s9WmwZHdODdcjF0K3/3QQw/hoYce6vpeN0D7rrvuwgsvvLDqPu+//37cf//9Pd+/++67r7h7Z9nlYfV6HRcuXEAymYTb7cbJkydht9uFxBMMBnHLLbcIS10nJVmlQ3/cDUAFID6z0+lIfDQ+Pi6+O5lMShNR+hz2TQFgkGNjMpcxIQCDb9U616wSIjiq/S1BVs105zF4TfybpD59PhpAD4fDGBoaEik1Xq957tc9V4DlymqdjGVVFLGRjVipVMLx48cxNTWFWCyGoaEhaSJL0qAZROd18ViaAMCq9vHxcWmwrbXIM5mMjJ/D4RCZXh2v6mQzq/hYpQYsEeze8IY3YHR0VHwp1wapVAoARMYlGAzi2muvlX4TrDDrlgCPRCKy3piZmUEmkxHwnsz2RCIhuM/i4iKq1SpSqZQhYb6dfvVKrkyz4u6tNQtEt6ynmZlCZmNAOzExgXe/+90YHBxct1RJL6MDdrlcGBkZwTXXXCP602xgtttNl5LrRYHO6m/WGKDrkiyCCqsZJ85SqYTz58+LRl4sFkMwGJTybGB17XDNNtOANGV+dOOyizUN2IyMjGB4eFi0yZnBP3XqFMrlMtLpNEKhEGq1GmKxGICl55egDPfDkj2zIybIUavVkM1mUSqVkEqlZPEwPz+PCxcuyPssP7fA882b5cwtuxKsV3XLbjDqSvayaDSK/fv3G8qumTinRIbuYWFmdwMwNKRkkBeJRLBv3z7k83kBy6nfGQqFJBjVEiQAZF4no4rno1lMZnYym27q4JnvU9bL5/MZQGYCswS5GZRrmRRebyAQQDweR61WQzqdFt9u7rVBP9JutyVxC0CAAkrWbDQApzF4JZHB7/fD5/Oh2WzC5/MJ4K0bhvI6OcYMrNnIm7IqQ0NDhkCc1Wq6ySj3p++bBlEajQYymQyq1Sp8Pp/IBw0MDAhAH41GRXedcjj0A+FwGHv27EEgEECn01nB/NcVB2wQ6XK5kEgk5D7wueE1FAoF8eME+7tJr22G2LCWbYSxeLmZ5bsts2x7rdlsSsVwN4vH4yLVQn9F38YG4/p71u07pzXBOdfGYjHs3bsXxWIRlUpFpMB0Q07O27qqR/tc9jOh0c/q4wEQgFoz0HWVFcFY3XiV10hGtPZ52oeRPR0Oh+U6dJ8TjomZma7JX1oajrHjenuZaKvVapibm0NfXx+q1ar0LInH4ytiZV05x3PQ8mX0/ewrwkbIrPorlUrIZrNot9siT8fEt15LcY1AYF33oiHxIBAISIPaY8eOIZPJIJvNIplMStPQfD6PcDiM4eFhYcVTooX9Zfhs8m+uAROJhGF8+ZzQdycSCczNzQkrfTNjfzF2Jfpvy3dvrVkgumWbNo/HI+Crbsq1FQGJzbakI97f3y9OjZlUc+n3pTYNpjJgpUMyl4BthekFhy5d6za58T1dGs+FUK1Ww/z8vDRMISOM5YP6nHWXbN6DoaEhDAwMwOfzwev1GhYv22EMkoeHh0ULNRKJSBKBjUUjkYhk2FnOR4Bcl78TuCFbj70AFhcXUSwWkU6nJSOeyWSscnDLLLNshRE4vpzmAwbE1Axl0AQYF9n0HUw86oDIzAKjhAeZ7Dq4b7fbqFQqSCQS0jicYDJZSDqpqUFus26p2d/poJef19VGpVIJ1WpVzpH712wsniOPq5PSZGppEFyz/Mj20uXW1JIHIH6j1WpJg1cGoASk1/vs8PoIQjebTczOzq6ocCOQ0Wq1kEqlBHwncM41AP0gWfncD4NVVoNROk3fCz4PmiFI/6rXgUxS9PX14eDBg/D7/dK8TDPLWq0WCoUC0um0NGZ3OBxSIdduLzX7ZsN2ss4XFhYkqc3PLC4uIpVKSTDO8e+W9N5OsPtymhMss8yy3W8ul0uqbgOBgPgUYKVMh056M6bjXGs2+ks22aYfpKxlJpOBx+MRMJrHMxv9q44f9XqC5wLAsEbgOdOn8Fy1v9Wxtmals7KOgDD9GPtqMR7X59jNtC8ClgkCzWZTyGv083p/a8X22j8zGc/1QaFQkIQBx4MEAVbi63NmNTpjbq7D9LjosdZJBvP16yS2mUDA62+3l3rTUHN/cnISqVRK3uNahlKBGkBnU1zeR54HiRnEH3h8m82GRCKBRCKBQqGAfD4v984s57cTZvlvy9YyC0S3bFNmt9sl+zg2NoZ4PC7BzlaAqHa7HQMDA/B6vZifn8eRI0ekS7Mur9oKxvNWGAPFarUqkz+bp5EZt1WmnZ0ulTKbLn/3er3C0OJiKp/P4ze/+Y1k7Fmux+ZiuiyPCxG9wLj99ttx5513SnOTi5VvWe16uV+WMFKG5sSJEwJ6nz59Gh6PR9jo0WgU2WxWGs+wXJxJAg1gsON9rVbDwsKCMNgmJyelM3gqlTLo91p2cWZlxC27UuxyehbJrg6Hw4jFYujv70csFoPX6wUAA9DIxCWlXphAJKsXWA4QKcVmsy01s8zlcgK+k1V37NgxKRHXZeIM4BkEA8tjqpluOlmrQXQypcnAo89tt9tYWFhAqVSSBqTsm6EDdfoCMtY0UJzP54X1xgBRM9i0zjvPiU3XGTyyGTgbfmWzWQlESQ4w3yMNQOgfJpCZhEgmk3jppZcMUmpkmnc6SxIriUQCHo8HIyMj0q+EP2wyqv0s/aLdbhdNc44tjckT/RrHgiA9AElgOxwOvOc974Hb7caRI0cwMzMjuvwcs/n5eZRKJUnwOJ1OjI2NiWwMZf1mZ2dx7tw5AUp4X8g0X1hYwPHjxw1SP3oMzWPN528rK8u2a41gBmx6kSfW2uZizPLdlm2VXcnSCVttNttSr7BYLIZYLIbh4WGR0SRDXFdC62phJjZZXc73NYPbbrdLU2kAwgpOJBI4e/YsisXiCt+n1woARObSDMqaY0MywnneWmqErGrGW4zb6IcJxtJv0t9Wq1VD3FutVpHJZFboxOtnTYP4PH/+T/YzgWuuMzgO+lpW+1v781wuJ/Jjp06dEqJXf3+/yKmRwc0ksD6+3+9Hf38/AoGAyKLpuJ5jzzWZ1+tdQQ4wj4VOoBOr0FI2DocD7373u+HxePDTn/4Up06dksqASqWCTqeDqakpZDIZeL1eacA+PDyMoaEhGTNKFFGaqFwui+9msmRubg7Hjh1DoVCQ817N31xO80e3c+2WgNnOa7F899aaBaJbtmljsOb1eqX0dqv3HwwGxeEwGNJMdDMD61KYzp7rn27M7K1KMOhs82rbMdFAIESfjy7ZZ0Mvj8eDTqdjcOYARMtV77vRaBgam2znveB++/r6BBAneM+mn2RIEPQgWOT1eg1AjBlEJyhRKpUko14oFJDNZpHNZgVYoZO3bGvMcuaWWXZpjIGbBlN1iTNgbIyt5U24jQ42uZ252aUOUJvNJorForCM6cMBGJqZ0p+aQWRzdZQO/jSArc+fIDZ9g9frNbDP9f7JbNPMcJ43AXEG+eZz1BVhgFF6hDrqHGdqmRPk7+Yz9djrcmfNsOcYMplBQNztdhtY/myIzW1Z3q3HTTMH9fgwqCZYwntqBva17ItmPQLLoIrT6UR/fz8ikQhOnjwp2+rxr1Qqkrghm61SqUgFgPbTBEz4+WazKX6ahAu9ZlnLLvU6crO2Goue7201097y3ZZZtvNGYJRV4G63W5LQgDHhqudzXb0MGEFU83uMF7keoDxMpVKROVfPu2bTvlEz4fXxzOB9L39M30lfYJ7HzIxxguu6Copxm/a1WsKlm+mEqvZtZkLcaoC5+X+doNbSK4y37XY7/H6/HIdM9GKxaGi2TZkWxvOszOKx9Pjoxuz6nMxjbb4veny1745Go+jv7zesX3ifiCUwuU7JmnA4LNWJJOJpn837RsA+n88jn8/L/laz7aoi4/dnu6zXvrfjWsxm+e6tNQtEt2xTxkAnEAjA7/dvCyOc+yRACyyVVqdSKXi9XoRCIWG+XUqjlAgz9mS5aSdDW8t5r8c0W8o8IVKupa+vTxgLZKiRaajHkudKkLzVaiGRSIhz4j1gSVUwGMQ111yDaDQq+qU83k4YF282mw3xeBw33XQTBgcH8eKLL2J2dhaVSkXYaplMBoVCQRiIwWBQQHQuUgh0aCZ6MplEuVwWBjrleSznsbVmOXPLLNt5I9jNAJzgLv0VwVJqetdqNWES6+bYeg7lb8qCdDodCfSZwPX5fBgYGMDQ0JCAoWSia5Yc/Y5mRPG7rgNGsp15/pQRYfkx/S79Hs+Dx+I2nOeTyeSKRCmvi2wsyodpGRMAwspiUOjxeBAIBAAsJajJhM5mswCWdNK1xitNJ38jkYjhnlAD1ePxIJvNIpFIiMQM2WdkfbOZKLBULk7AXWups/KMRAjNZiuXy6hUKgCAYrEoDDwzmK+Z/GZGI42gDJlnvM7x8XF4PB5kMhmk02lpZloul+FyueD1euFwOFCv17GwsIBOpyNjyWeR58e1CxufUn5nI9+JS+lPNsKmW+82+t5stVm+27KtMutZ2JhpySwmIs0guLmHCU1re2uwmr9pXq/XQI7zeDyIx+Po7+83gOQavNWgu64m06x4DaprsJm+vlsCnCC2Tsw7nU40m02RO1lYWBB2vb5uJtDZG4Wya1rCTY8DAGFvA8uJae6L/lV/Tp+v9t28NxxvAuTValWanJKwZbPZUCgUpFm37vdSq9Xg9/uln0wwGBQwX5MQOD48V7124ZqIWIpeWzHxYE5867Ek4M/11qFDhxCJRDA3N4eFhQU0Gg0UCgXUajW43W5pZM7Gozrpr9eR2WwWuVzOsJ7K5/Nr+m6doDBXz22VrWdfZlLHWp9Z7f3t9Nfmc7B899aZBaJbtikjiB4MBsU5bPX+dRmaLg1OJBLSBCUUCm3pcTdj7IY9OzuLhYUFVCoVKQEzO9utMjMTjEZtNZfLhcHBQRw4cEACesq56AUGg9Lp6WnMz8+jWq1icXFRAmgdXHY6HezZswejo6N4wxvegH379kmDE2673aYXXAMDA3jTm96EVCqF2dlZCaJrtRpstiV93oWFBUkiUM6FUjWaLUhQp9FoIJvNyrjo8n3LLLPMsivBCKLzhw09dSDpdDoN8yHnUK0BTnYzq68089fn86Ferwtgy+bTIyMjyOfzwq6itjVZVZr9DMBQzquDKwL/BMa1UR+VLC/qjbIknJrh9XodyWQSqVRKAnE912v2ucPhEKkzAtdkTlGTm8Gnx+ORRtssWS6Xy5ienkaxWJTgthsTzG5fatQ9Pj4uDPBOpwOfz4exsTH4/X7Mzc0ZAvJyuSxMf13ODRi1Ulk5RuDc6/XK/7oMnmXUzWbTkHTWIAzXEzRzQMnjcm3Y19cnLHKbzYZ9+/YhEong1KlTAqKT8U8Q3W63Y35+XhI7XG/w+J1OB4uLi1hcXDQAN2ZQaDUzswavFF9/pVyHZZZZtmz0jQS4NduY73O+BlbOAzr5SWDTDHazGTeP4ff7pQE1q4IIchNQ19IsZmCxGxtbA+k6aa63I1jOa9b7pVTL7Ows5ufnV8iN6aSrz+cz+G76eSa9geUmoj6fD36/3yAdU6vVkEqlJEFtjgk1c9nv92PPnj3ipxiTDw4OwuPxIJ/PI5VKoVqt4vz585IoIJisjcegvFl/fz9CoZCswfQ95Wta/1yTHAiS89mx2WzC/uZzY7fbV6xNbDYbWq2WSKO5XC7ccMMNGBkZQavVwtzcnIDffA6I2czOzhqOS7Y9e91NT09jZmZmBTGwm2a/Np2M0ZK2O+3zNB5xsSC+5a8vT7NAdMs2ZTv9haeDq9frKBQK4hQv9cTDCb9cLktWXJe5mzXqtuqYvcB5MvvcbreAB5ptCKwEuynL4vF4DFqw5v1zceP3+xEKhQz6tDtpPJ7T6YTf75cSdp4Lx59BORdhAKS7uq4SYBk5kx+1Wm3VRmSWbY1ZGXHLLLs0plnTAGQ+ZCCggUUGRZxb+VtLm5gDds2WIzhfr9elRwXnYPoafS78PIMjBnba9HH1sRn8dZu3dbDOBAAD7Xw+L8zwbmYGBXgsvR+ety4l55jynM0+Re/XbrdLmTSTGwyKu4EOZGKbx67XvMr9M6mh5VQ0gGIGPTSwrFmPveZfbt9tjcLXCYi3Wi1Zl+j3+Xzy2WESg8CBDlhrtZokTDZjvQgJlvU2y3dbZtmlMT1Hat9n9sFmOZFukindvsdaBpTzfK1WQy6XEzZ3r8pj+jH6br1/+ijtA7vFmmafo80ca7IHmfbden86MU0z+2S9bw3y6/hQr5fMsTw/x6Q+426Cxkw6678py8JKMCble+EEdvtS3zKS4fTaqds97WbdpFxWM/0c8fnhOiQQCEiC3bw24jZ6nLmG47NRLpdht9vFd18MPrIb/PZuOIf1muW7t9YsEN2yTRuZZ2zmtNWmJ2WCm2yiFYvF0NfXh7179xoy2DtpXMzUajWcOXMGL7zwgjQxAyA6X8z4kyFGh7oZ4/Go9WYGQnw+H/bs2YNwOIxoNIpIJLJCn1aD0HT+IyMjCAQCyOVy0iiEpeLMYhNAHx8fxzXXXIN4PL7lFQgbMV5rMBhEPB6H3++X8jeOPZlzLC8jAGHWddVlb2zAcjk5xsvRLoUz//rXv46//uu/xtzcHG688UYcPnwY73jHO3pu/8wzz+CRRx7Ba6+9htHRUXzqU5/Cgw8+aNjmBz/4AT772c/izJkzOHjwIP7iL/4C991334aO+/u///v4zne+Y/jM7bffjl/96lcbvkbLLFvNOp2l0tzFxUV5zePxoFKpSDMn3RCbpcm6SRewsr+H9i8ejwfBYFD+r1armJycxD/+4z8iGAzi+uuvx4033ijSIbVazaCprftzcG4GlsFzym2RqR0MBlGtVqVZJwNOYJmVzuDW5XIJc7vRaGBqagqvv/66SKyYTZfHk3VeqVSkuZiWt6FsSb1ex7lz5wBA/A5Z1gymdV8O6rWTaR4MBqXKrlgsSqk6qwI6nQ4GBgaEwVYsFkWSjOXnZnO73RgfH8e+ffsQCASEfV6r1VCpVGT9QBZjIBAQ9jqvkWsGzRrnM8UxYJJFgxr8TQZcIBDA3r17USqVhK2m2XJMbujPkxlvlozR57EZ4z24lP7+cltnWIG4ZZbtvBHQzufzwqrm3KUrcQCsmK8rlcoKsFInfTn3MoFbr9eFjT09PY0f/ehHCIfDuPHGG3HTTTetkISh39G+Wyc4+T7jSpvNJv202KCS2ueadU7TsabNtiT9xiaUxWJR/AXHg/44GAzKOoHV1+VyWRKzvG7un8l+bWxaythbx5G8jtHRUSGY9ff3w2aziY485VqIlVBeZmRkRPp6nT17tqeMicfjwcTEBK655hqEQiEBrwlu89qY2NdSOWb9epLG+Ld+FsyJb524Jw7j8XgwPj6OWCyGU6dOSRWgjqeJdfDZ0An5crksrHU2cd+ocZ86qbGVRMWNnIc5ebXbzfLdW2sWiG7Zpo1B6MWwgHqZBjd1Jjifz2NqagrZbBaHDh2SgH+nAXR9jo1GAwsLCzhz5gwKhYIsFqjzpYPKi9UO5z41C07rlLrdbsTjccRisTX16sk26HQ6CIfDwjLw+XzS8ITXwkUDdVmHh4e3TQt/veZ2uxGNRuF0OhEOh+F2u2Uxp8EJy3an7bQzf+KJJ/DJT34SX//61/H2t78df/M3f4N7770Xx44dw8TExIrtJycn8f73vx8f//jH8fd///f45S9/iYceeggDAwP44Ac/CAA4cuQIHnjgAfz5n/857rvvPvzwhz/Ehz70ITz77LO4/fbbN3Tc//gf/yP+7u/+Tv7XDE3LLNsqI0DZ6XTg9/vRbrfhcrkk4GNlDwM1v98Pv9+PdDqNxcVFQ3Mxs9wafREltBisNRoNJBIJpNNp6aXyxje+UUBcAuLBYHAFW4v71uxmfsbhcEi/j2q1imw2K6Xa1HRnwpmyLy6Xy1CllEqlMDU1JUGi2cwapcCSpnk+nwcAAzuM5e/ZbBaZTEbOw+12yzpJB7gahHC5XIhGo4hGo1IZ1ul0RD+VyWCWVIdCIUOwC2BVf+x0OhGPxzE6Oirl8fSXlUpFEhgulwudTkdk2giM8z2yyphspjGg15rx3a4XWJLwGRgYEK1XNpbVzxETJ9o2onO+XrOS5Rs3KxC3zLJLY5SZpP9iDMj5VverYAJYN27UUhgkWGmQk5Jf1AVvtVpIpVIolUry3rXXXmsAcDVYqquaGYNpkhIlNzV7myA/2c3cl7mZuDbKqM7NzQkOASwnRZlEYL8PnZCnHwdgIOExaVAsFuU9JsApY6PlUrg28Hq9GBwclDg6EAhI/ExiliYbMvaORCIIBoNIp9OYmZnpec9dLhcGBgYwOjoqBAdddd3pdAxEA31+5ooEEu80AUD7bj03ayCez5jL5UI8HhfZG/pus5wan4lu4HahUFjlCV+f7Rbw+lIff6Nm+e6ttYvrcLgD9oUvfAFvfetbEQwGMTg4iN/5nd/BiRMnDNt0Oh089thjGB0dhdfrxd13343XXnvtEp3x1WEMZLPZLPL5vLB/t1L+gmXWuVxOdMjq9TpyuRwymQwSiQQWFhaQSCQMTnEnjMHt7OwsZmdnkUqlupaVcSFhbkqyUYkXnUjgvnTygkExQQKWgq83uUDgwul0yiKIyQnNsuO+d7KZaC/jefG8yTK81Odl2e60L3/5y/joRz+Kj33sY7j++utx+PBhjI+P4xvf+EbX7b/5zW9iYmIChw8fxvXXX4+Pfexj+O///b/jS1/6kmxz+PBhvPe978Wjjz6K6667Do8++ije85734PDhwxs+rtvtxvDwsPzEYrFtGYedMst3715jQERfpQNu7UP6+vpQqVSQzWZRr9fh9XoRDAaFycw5l/NvKBRCKBRCs9nEwsKCgO6AUas6m81iZmYGCwsLsNlsCIfD8Pv9cm5mfwksB/0ul0vKoPU5kP3OPi1aEoUss0qlgnK5jEwmg/n5eSwuLooEW7e1C9c5ZMtTi5tscb/fv0JblBqoTD7QJ+myZw0wmNlggNGfa8Y/rxOANAMHIE1cKeWmfTcDfbLu6B8Jgus+Klo+RSeh+Rmy+MiMNwfpWg+V++DrupkZAIM2ay95IMsss2znzfLdu9cIyBKI5nyv52L6mGazKT6UEp+M38yNOqmDXqvVMDc3Jz2yuD+S5vL5PObn55FMJiVJzIQ3K8Z1RTAAAcwZW2rJE8aWBGX1OWoQndeUz+cxMzODCxcuIJfLSYVSN9/NniHED7jOYSzLhLCutuZahusfnr/ev17LaB/O8ddyNWZ5HN5Dxu867jbfSy1Hw/WAlt7TppMNmnWuExlmGTz9nv689sX6emm6EqwbaG75ccuuFtv1TPRnnnkGf/RHf4S3vvWtaDab+PSnP4177rkHx44dk6Drr/7qr/DlL38Zjz/+OA4dOoTPf/7zeO9734sTJ05ISbFlW2udTgfZbFayv4VCAY1GQyb7rdh/LpfD3Nwc5ubmpMycpc0ulwvHjx/H8PAwIpEIrr/+esmc74R1Oh3Mzc3htddeQyqVwunTp6W5JcdEOxKWfjOopwNfj2n2ORMLZoCBwTWZXWwAtx4QXQe5BEIICLAJGhub6J9LKeUCGBdm7Fxut9tFTsey3W1blREnI5TGxai2er2O559/Hn/8x39seP2ee+7Bc88913X/R44cwT333GN47X3vex++/e1vo9FowOl04siRI3j44YdXbEMQfSPH/dnPfobBwUFEIhHcdddd+Iu/+AsMDg6uMgK72yzfvXtNN8wClkFbamUzoG02m0in0yiVSvD5fIjH41J+zeCTAWwgEMDAwADsdjtee+01vPzyy8hms1IazaCt0+lgenoa//7v/45IJIK3vOUtmJiYQLlcRjqdFrYXS76B5SQv+3Aw6LTb7QLAMwClv/J4PAYGXLvdRiaTgc1mw/T0NM6ePYtCoYBEImFoXqqt3W6jUCigVCohHA5jcHAQfr8fjUYDoVAI9Xod6XQahUJBEgxkx/t8PgEWNPvLXCWlg1AG+U6nUz5PP8v9+v1+ZLNZpNNptNtthEIhkdyJRCIAlsFuggNaZ50NVVkl4PP5EAqFJHnB82UVmv4M1x5sTEuwnDrnBEZKpZJUhNFHE6Cv1+uiiU5wnyX+HA/LNmZm8GS7zWKzXdlm+e7daZ1ORyRUKb0VCoWElc5tGHvSN7MyjExrLYHR6XTg8XgQjUZht9tx/PhxvP7668hkMuK76btarRZmZmbw4osvIhaL4f/7//4/9Pf3i5wY5U5YrUbgWCdXCcZrJjwAqRzToLmWT9HHP3bsmIDprJo2k9KYrC8UClItxiQ4q7Aof8a1D7ELfXy9DtFAsT4mK8X4eQ2iM4nPMWAin2smJjeCwaAkPSg3w7Fgo232EelW1WZ+Tjhe1BzX52wG07k+cDgchsSATrpzv1yj8N7qpPulkFSxbGNm+e6ttV0Pov+///f/DP//3d/9HQYHB/H888/jne98JzqdDg4fPoxPf/rT+N3f/V0AwHe+8x0MDQ3hH/7hH/CHf/iHK/bJciKaGYSxbG1jqZLWNGUDx40woHvtmw6sUChIOTMXBXTC2WwWqVRKMs46G7xd8i7aOZVKJaRSKSSTSWGhd9ueIDg15uh0dAlVL9OLHe6HWWxdkqWz3XTYG9Fd55hpNqK5zE3v25xZvxSmWXtMTFzss2fZztlWOfPx8XHD63/6p3+Kxx57zPBaMplEq9XC0NCQ4fWhoSHMz8933f/8/HzX7ZvNJpLJJEZGRnpuw32u97j33nsv/st/+S/Yu3cvJicn8dnPfhbvfve78fzzz69ICFwuZvnu3WuaOaSDQd2AWZeBVyoVQyWSlhMjk5iBKANlAuhao5vHqlQqSKVS8hrlTvi/Zsjr8nT6IbKYtU8CIGXkfE1/nmuWTqeDQqGATCYjgf9qwR/BCQbzmiTA89LAhPajOsDsNva9TPtjzfTW+uz8HrCEvlqtGrTsdQJC//A9LQXHc+X48PzMQTqDfI41x9WswapBB543AMOahfdRywJcrbbTIPjFmhWIX9lm+e7da0zAmoFUs6a1ZkrruE1X/pgrmdnPgwC69t30V8ViEZlMRvy8uUG1rsjS/qBbXy4N0tJfa/azlu/i+ZbLZaRSqTWbgfPzjUYDLpdLzovAtrnPivZzlG/T75v33e23nsf1a2a/qJvC6rjd6XR21TTX8b2+x+ZYtxuYbpbc0c+H/jF/rtdreh2mj2fN6ZeHWb57a23Xg+hmy+VyACCl7pOTk5ifnzcwBt1uN+666y4899xzXZ35F77wBfzZn/3ZzpzwFWxkshUKBZw5cwZerxfxeBz79+/fNCtcl5lfuHABL774IlKpFDKZzIrt5ubmcPToUcRiMWmE4vf7MTAwIGXCW2WcOEqlEubn51EqlfDKK6/gxRdfFDB/tc8yOGWigaVZDER1eZQGzrlgqlQqkhWnlMtq5VybvXbtvPU+9CJgO5MUmzUz2GLZ7retcubT09PShA/AqqBzt0Xmas9Lt+3Nr69nn2tt88ADD8jfN910E2677Tbs3bsX//zP/yxB6uVulu/efVapVHD8+HHUajWEw2EMDQ1J483FxUUJ9rxeL/r6+oS5RRAdgATRlUpFqrGmp6cxPz9vaIpJ63SWKrPm5+dRLpfx+uuvS3UZ9cPJfm6320in0ygWi+jr6xOGG9cIZH8xOOzG9i6X///2/jw6rvLO88fftag2qaTSaklehO0YDDF0iJ0QCAdDJ006pBNCk0D2MDOd0w5NxuDvaZaEHNz0hGW6Tw6d0ywdhiGTznTs6QY6JMMkmDQ4EBwgNgTjFWxZkrWrVPtequf3h3+fx0+VSnJJ1lJVer/OuUfSrVv33udW6b7v5/N8lriOVgNOPbeMj4+jv79fR4WVQjKZxNDQEILBoNZwSYN2u93aAJYsMTHwzYl/s+ydILplRqxJkIA8M0h/hGg0qvcj9zlzwlsansq1MSPPZD8SzS+vybEk4q2mpkY3BhOktqtElJulWMwyMOaxGxoatMMCOOWAl9J8LS0t6Ozs1JH0UofddC4sJc5mzMXS+OcbGuJLC2p3+RGPx/HOO+8gkUigsbERy5cvh9frRSKRQCKRyPsfzWazSCQS+j5tllmxWCzIZDKIRCJQSmF4eBi9vb26ibaJUgrhcBg9PT0IhUJoa2tDPB7X/UxM/Z6YmEAkEkE8HofVatUNNkV3zDJi5jmJQ1m0b2JiQmdWpdNpnDx5Ukegy5jk3AqRdVIGVrKoTE0S3ZHnmWQyqZucSlaW6Lo5WQ6c1l7JLJdrbkZ/y3nIc1Mul9N6bk56y3gLJ9fNcZnlaEz/gNmvRD5TiTCX953JNjYz9sRhbzruY7EYstmsfk7MZDLwer1au4uVmCFnhtpd2VSUE10phW3btuHyyy/Hhg0bAEBH8xWL9Ovp6Sm6n7vuugvbtm3Tf4fD4UnRjOTMiLiEQiEcOnQIsVgM69at0zXyZoMIWiqVQk9PD373u98hGo1ifHw8b7tcLofe3l4MDQ2hqakJHo8HmUwGbW1teUbZXDvSI5EIjhw5gvHxcezbtw+vvfYaEonEtA2vJKo+lUppw1tS5uVholh5l3Q6rY1ueaCRyMBiDvT5pJgTvVyc1YUz9uVyXmRhkDrM09HS0gKbzTYp6nxkZGSSdgjt7e1Ft7fb7Whubp52G9nnbI4LAB0dHejq6sK777477bgqBWp3eRKPx7F//3709vbi/PPPR1dXFxoaGrST22Kx6NIkknUGnNZ+m82Guro62O12JBIJDA8PI5lMoq+vD4ODg7oBWiHhcFhHtHk8HgQCAbS3t+Oiiy7S5VmkMenY2BiCwaB2NJuRUHLPlyyvwijobDaLWCymy6kBp5zoIyMj6O3t1U1ISzFkEokETp48qa+JlA8DTqWi22w2bYgGg0GdhWLus1j0uRmFJks6nUYkEtFGrUQJhsPhvBRvs9a5fJ6RSCQvI1AcAWK8Syk2iaAPhUKIRCJwOp1oaWnJq1VrOiEkY0DKuMjkiWwrn1UkEkFjYyNWrFgBh8OhJ/8zmQzGxsYQDodRV1en740+n083kzOzEMjMMSM5CZkLqN3lSTQaxb59+/Dee+/hwgsvRFdXly7LJeVCBDPoytQgKXGSyWR0ffHBwUEcP34cyWRyUmlMpRQCgQBCoZDu9zE8PIwVK1bgkksuQVNTky47Iu8vVl7TzE4SHRItlvImpmM2Ho9jYGAA0WgUPT09OHHiRF5fDnNcxe5/El0vJcekl4nootkoOxQK5QUQyD4L9yuTyaYmynmY11omLiSq37T3zRro5jkUG4OZnSYOe/E9yDOA+BdMh35hhn5hRoCcn+i0aDsAvV8JlozFYqitrUVLSwsA5Gl3scA+Mj2FfpRiGQ2kvKkoJ/ott9yCt99+G6+88sqk12YSYVisZi6ZPTLjPD4+rgVWhMKMCJ/q8zDTjKTmdzweRygUQjwenzJlS5zt0vhsdHQUNpsN4+PjOupKIqfMSO+ZjEuMWIn+Hh8fh9/v1+lk0rX7TLXAzNSwwocZs8ar6aBOp9M6DU3E3vy90DgvXIDT6fmlUBi1Zo5pqlSwcsB8WFjqaeGVxELOiDscDmzcuBG7du3Cddddp9fv2rUL1157bdH3XHrppfj5z3+et+7555/Hpk2bdEmHSy+9FLt27cqri/7888/jsssum/VxAcDv96Ovrw8dHR0lj7GcoXaXJ1JaxWazIRwO6+jndDqtHa1yzU0NMJH1Eu2VSCR0TexikVXyHjEaRevdbneek1ii2cwUYtFIwZzYNSO5zLR1aS5mllZJJBKTGquWcj+R7U1D10yTl+cds8ZpYRPwYhRLrzaNXolUk6VwEqHwsyhMi5fPWiLuzH2YJWLMWuhyTPN5ovBZznR0FIugK3xWMM9XvmNLNfp8PmA0G5lrqN3liWi3TK7KRLPcV83/MTPLR+6/ZmNIKdkmzlKZ9Jwqulu0OxqNIhgMoq6uDqFQSEcti2PetHFFY0wNK2xQKZHVouOxWExPDAeDQZ1VZjbFLkW75dnAPIZkSclPyQqXHiHi2JfrUMwHUUy3CzHHZ+qnOK9N+3U6HZ1Kh+UayPvNZwezXOx0Popi51/oLzE13/RhlJs/gEwPtXtuqRgn+re+9S08++yz+M1vfoMVK1bo9e3t7QBOzYybDoczRfqRuSOZTOLYsWMYGBjQEeNS1mXNmjWToqUKmZiYQDQa1alae/fuRSAQwOHDhzEyMpLXdMpEbuDRaBRvvvkmuru7dSSEz+dDV1cX1qxZoxtPulwuAGeO2pabTDwe13XXjhw5goGBAfj9fhw4cAChUAh+v78kB3rhWCUlXVLA3W43Vq5ciba2Nv23RKOJiA8NDcHv9yMSieDEiROIRCJ5BrFEwsfjcb1Io5BSxisPFqlUCtFoVNd4l2uRyWSQSCR0qro0YylsPLKQmE4BcZRItD4pfxZazLdt24avfvWr2LRpEy699FL88Ic/RG9vL7Zs2QLgVKRUf38/fvzjHwMAtmzZgn/8x3/Etm3b8I1vfAN79uzBE088gZ/+9Kd6n1u3bsUVV1yBBx98ENdeey1+9rOf4YUXXsgzOM903Gg0iu3bt+P6669HR0cHTpw4gW9/+9toaWnJc7xXKtTu8kVql0uqbjweR11dHd73vvfhfe97ny6x4nA4kEwmdQNxszGmOKWHhoawb98+hMNhjI6O6kjq6e7HmUwG/f39GB8fx+DgIPx+P2pra7Fq1SqsWbNGR4vV1taioaEBK1euhMvlwvj4OMbGxmCxWHRT0Xg8jtHRUaTT6bxouBMnTqCnp0c3JpdmqZK+Dcz8XiLGqzTzrKur045/Sbeura1FKpXCgQMH0NPTo7PICp8XxPA1a8/X1NToaDlzu3g8rpuYFS4mEhkmv5uf9cjIiA5wqKmpgc/ng9fr1U1Sk8kkfD4f2tvbYbfbdSCDjFvOpdDJIpHu9fX1urmo9KoRw76+vl5PhPT29iKbzWJkZKTkYAQymam+u/MZzUZDfGlA7S5fJGo6Fovp+399fT3OPfdcnHvuuTqrSbKEQqEQstmsXm9GDw8MDGDv3r0IBoMYGBhALBbL0/hiiL3u9/sxPDyMQCAAr9eLFStWoKurK6+ES11dHZYvXw6Xy4VIJKLr4cuzhdVqRTwe1453CY47cOAA+vr6dA+VVCqFYDA4KdIbmP6eIjasZM9JBHhLSwt8Ph8cDofOqDOD2I4ePYr+/n6dGWZmnItmT0xM6HKyEhUuQTYycWD2GzEj5kVHU6mUztoz68oLmUxGl5kx9y/ZaBLIODExAZfLpZvImg3gzZr55rObrCvU3sLIfrMHyvDwMDKZDPx+v+4rQ7t75kylo8Wi0+f7mDN5PzlN2TvRlVL41re+hWeeeQYvvfQSVq9enff66tWr0d7ejl27duHiiy8GcOrmvnv3bjz44IOLccpLjkwmg+HhYQCnbrwNDQ1obGyEx+PRKb3TOVol0jsWi2FgYABvvvkmhoeHMTo6inA4fMYZ1GQyiZ6eHvT09KC1tVUbgblcDs3NzbpOmzjRp8OM3pJZ+VAohCNHjugyLkePHkUkEpnhVTq9f9O4FYO7paUFq1atgtPpRGNjIxwOhxbOVCoFj8eDuro6+P1+jIyMaKPWbLgqQi3LTJzbItxiyCcSCS36ALQDQB4U5GFksTFT8WiIVx4LKcg33ngj/H4/7r33XgwODmLDhg147rnn0NXVBQAYHBxEb2+v3n716tV47rnncNttt+Hhhx9GZ2cnfvCDH+D666/X21x22WXYsWMH7r77bnz3u9/F2rVrsXPnTlxyySUlH9dms2H//v348Y9/jGAwiI6ODlx11VXYuXMnvF7vAl2duYfaXf5I6jdwqlzJ+Pg4PB4PWltb0dbWpmto19TU6HrcYpyZmjMxMYFgMIju7m49uVxYC70YExMTCAQCegmHw3C5XEin03C5XDp60eVyoaGhAStWrEBdXR1sNpuucy7bST1wSWUXw3Z0dBS9vb1IJpMIBALTll4rFTG07XY7amtr4fP5tJbb7Xa0tLRg+fLlusTJ4OCgbnJW7DMw9TeTyeT1SxGDSrTZjO4zI9EKS9kUGrXyWUciET3xIA4Fm82mJ+jHx8e1o0UalhYeU87XnICXSQWp95pKpSadlzyLAcDo6CiSyaQuI0AjfPZMp6PzVeKFxnT1Qu0uf0ztlgCo2tpaNDU14QMf+ABcLhc8Hg9qamp0UBQAXS5FHK+SYf32229jZGQkr9/JdEhvEQAIBoNau8VBLsdxOBxwuVxob29HXV0dxsbGtCNPAr0Ka5Mrdap0and3t+6ZEg6Hi+pnKfehQsexNEL3er1ob2/Pm/ytra1FfX29dlpLLfViZWlkX5J1NzExkZchJs8JZoS9fHaio6J9EixYzMkpPVUkmFCc/RLEJr3SZNKivr5eZyPIUqycj/lZFyvRam4rfhylFILBoA64k0C/amWxSqvMZ2k2avfcUfZO9L/6q7/Cv/zLv+BnP/sZvF6vrsXW0NAAt9sNi8WCW2+9Fffddx/WrVuHdevW4b777oPH48GXvvSlRT77pUcikdBO3iNHjugUZ2lAYRpUpuE4Njam6535/X4dmV7qP7tsJ7XPMpkMjh8/rmuPt7S0aONb6pfJIrOwhenP8XhcG+UScQacqlcsIisGZrE65cWoqalBXV0dampqdN1jqQ8qBqZED8i5WK1WNDY26msZDofR2NiIQCCA4eFhLYLioJdyOg0NDVr4zDpo5jUTcZUmLdFoVDujC5u0yWcVi8V0XdNSJibmC2mWI5Fy4uSnMU6m4uabb8bNN99c9LUf/ehHk9Zt3rwZ+/btm3afn/vc5/C5z31u1sd1u9341a9+Ne37KxFqd2UhepxMJtHf34+3335bRyxLve9UKqWN93g8nldCa2hoqGjzrVIRR0Aul8PY2Bh6enq0Ftrtdh09Xltbi0AgoJt5R6NR1NTUIBwO60hqsyGZ1WrVfVLMieZitdqnwywLV19fj+XLl8PhcMDn8+k64/LT6XQilUohm82iqakJq1ev1vXZs9msTk83r5Nk5AHQ0eaSxSfPKeLwlu1zuRxCoZDuG1MsY8/cvzjRrVarjlYzn7GkYaiUp5FxA6efL5RSsNvtuu+N6RyQbeXcZSzZbFYb/fJsY26/GCyVuqPVPj4y91C7KwvJBgOA3t5evPXWW3ryWRpFJ5PJvBKl8h6JKJfXZ3O/kH3lcjmMjo7ixIkTOqva4XAgEAggl8vB4/HkNfqWbOZYLIbh4WGkUiltqyaTSR1glkqlYLfb85zFMzlPmfC22WxoamrSUfFid4ujX7aR6yAT98lkEnV1dUin0/o5o9AZLaXwJIOsMAPfrAMPnLovi2M+EolMO3EhpXui0aj2ExRqp2nnmz4N+WmWupNIdvMaFvYWk+OamWTyXCA+gaWiLQs9zqVyXauBsneiP/roowCAK6+8Mm/9k08+iZtuugkAcPvttyORSODmm29GIBDAJZdcgueff76io/gqlWAwiHfeeQd2ux1HjhzBiy++qGehZXZUBEAafiWTSQwODiISiejIJDG8ZnoziUajOHbsGGw2G44fP47f/va3Woile3hzc7OeAZcGpDKTDJw2rsSBAJxKZVq9ejUSiQRaWlqQTqcxPDyMgYEBnWJWbKa6EI/Hg7Vr16KhoQHr1q3DhRdeCJfLpaP12m29AABGyElEQVTpTKGSaDSlFOrq6vSD0MqVK3Vn9j179ug0ODHST548ibGxMXR0dOQ1PpGxyBjF0ZDJZDAyMqInMgKBgK4hK9dfZsuj0SiGh4fR39+vm7iaRvFCkkqlMD4+jmAwqH+K44KUP0wrq26o3fPLXEeqiJM1mUzitddew8GDB/Miib1er9aUgYEBDA8PQymlo69jsZiewJ7NeZkTwPF4HN3d3Xk9Qmpra9HW1gan0wmPxwOPx5Nn8CWTSQSDQWQyGbjdbt0MtaamBitXrkQ6nUZ9fT1SqZTO6JqJs99qtWqnRFdXFz70oQ/B5XJpx4TT6URTU5Oe6A4EApiYmMDatWtx7rnnIpPJIBKJIJVK4fDhw3jzzTfzovVTqVReWnwymYTdbkddXR3cbjdsNhvq6+u100EiuEWvp4qWM6/vyMgInE4nstksGhoa8pzd0sdGHB+FE+8y2Z7JZNDY2IjGxkZddk7S8GUCQ/rRANAlByQQweVy6cmaYtFvC4F8rwHkPedUE/M5Jmp3dUPtnnvms0SDBI+FQiG8/PLLePPNN/OcuPX19ejo6IDdbsfg4CCGhobytC8ejyMYDM7K5pbjj4+Pw2q1IhgM4r333tN6KZPLTU1NOjpeHM1yTWKxmC7FJlnXElHt8/mQTCZ15tLIyAj6+/tnFCwlOup0OnHeeefhkksu0ba1TApLcJ05mb9q1Sp0dHToCflsNouDBw/itddey5uETyQS6Ovrw9DQENra2nQGvtvt1v1kikWGSx85MyihGJItMDQ0hObm5rwJcPm8xDFuTgKYPdTENna73fr9NptNR5GbAY5mj5l0Op03CWHud7EC1syMuPnWksXQqrPV1/ncN7U7n7J3opfygVksFmzfvh3bt2+f/xMi02KmLEciEYyOjsLlciGVSsHn82nHsMViQTgcRigUQjqdxsDAAMLh8Fn/g5vpSZFIRBvRkUgEXq8XtbW1iMfj2mld6EQ3Z2M9Hg+8Xi9sNptOfxZHtKSrSzMXqUt3pvOXFDKfz4fm5mbtFDiTISkCKYKWSCTQ398Ph8Ohz13ETeqCx+PxvG7bZlMSOU9xvps1xc0JBcGs3yaN46Sb+mIhDzZS8kbGwpt8ZUAxr26o3fODqRVz6UiX/8dcLofx8XGdqi00NzfrBlyjo6Po7+8HgLxoN7OZ2GyOL7ojEV8mLpcL8XgcDocDTU1NaG5uznPySpaUGJASdSVGo+iE1OuWppalGmKio5LyLU4BieYT577D4dA6CgA+nw/19fXauZ9OpzE4ODipHJppqEsdW7OuLQBdMiaRSOj0bmnMKvo3FWbZPNHuwiy8wqw1WW9Gn8kxJGrdPH95X2HUnbxmPosUHnsxMJvSktKhdlc31O75Za7vOWbTyVQqhbGxMQDQWUwtLS3aUTw0NISenp68Btxmea65OL40CBcnutPpRCQS0ZlbjY2NeY2rk8mkzqQS3ZSs7bq6Oq2xYsubtcZL1W6Z2PV6vdrulv1arVbU1NTouuGicR6PRzdLlWeb/v7+vIhs4HQAgmR4iZ1uajeQb3vLuGUCfDqHtKndtbW1RccsTnHzGGZ2vVnj3mwqbq4r1ihYmpPKItdnsZzoizXxXi1Qu+eWsneik8pFhEcphdHRUUSjUT07brFY8pyfplE3V5gCJ/VcY7EYYrGYLi0jqeINDQ16Bry9vR1ut1tHs1mt1rzabYlEQqdpt7e3IxaL4dixYxgcHMyLhhOkDIvdbkdTUxPWrl2LZcuW6cZdMxEEm82m69y1t7dj3bp1iEQiOHnyJEZGRvKc58PDw3oGWaLZgNNdtyU1LpPJYGxsDIFAQEeVTUUikcDx48cBnPp8u7q69MPHQgib+f0IhUI4evQoxsbG9NgX2ygnpUMxJ2TmLNb3Xkq1Wa1WPeENQEc6zfe9VxqDig5Ho9E8J7qUbXO5XLoRqTxnZLNZOJ1ObYCuWLECF110ERKJhG4eJoamiRjCNptNN0eT8mtyTmKcxuNxDA0N6WPKtZAG3fIcIBPpDQ0NqKmp0Ya8HA84FVXv9/v1tRYHQGNjI5xOJ0KhEEZHR/UzjdnYa6oyJVKmR55/1q9frycSpHyelL+zWCz6eU1Ky0gAhDjZJbItEonozDX5LojDQc5F6uqLY318fByHDx9GKBTCwMDAoqRLFzoaSOlQuwmZGaIBC/ndF02ORqMYGBiA3W7XZcRE7+YrotcsISL7t9lsSCQSOvhMzlG0VZzcDQ0NuuyIzWbTupPJZNDW1ob169cjkUjgvffew8DAQJ6vQTCd2A0NDVi7dq12oEvvLDN4Tn5ONRktkeSSkSeT15L9JZMIkUhEX2tT92pqanTDUvEhhMNh3ex8ugnweDyOI0eOYHR0FBdeeCHWrFmTF0AnWiv6Kr1rzMA5sdNl8kIi7qWuvnwepo9G/pZgBMlCPHjwIEKhEPr7+xe8B5k49ulInx3U7rmFTnQyb4hxKU7yYje9+TZmRMhlZtxcgFPi4na7sW7dOp1q9r73vU8bqxI1b0YsySI10yORiI7GC4VCuryKIDPybrcbra2tOO+887Bq1SrtwJ8JYswrpbB8+XJccMEFupSMOJJF1BOJBAKBAOx2u47CN9PzpcaaRK+LsT+dKMbjcbz77rsIBoPweDz40Ic+BI/Ho6MaFopcLodAIIB33nkHQ0NDGBwcXFI12gghZCGR7CcgPwJsujrcc4k4bC0WC0Kh0KTniRUrVuDcc89FS0sLmpqa0NLSglwuh6GhIQQCAR1Bbrfb0djYiKamJt2sbKpJWIvFosuhNTc349xzz0VjYyPq6ur09mLIyn4ymYyusSpl6yT7rbm5GQ6HAw0NDbr0i+zDHE8ikdDNy+XZQ2q4ulwuhEIhjI2NacMfOP0sNVXZgEQioWvVNjU1acNaMtByuZw2+C0Wi77WpnEuzzk2m01PFPj9foyPj0MppZ8tnE6nbrImE//yvGO1WjE6OorXXnsNY2NjGBsbW5Rm4GxATkjlUA09DBb63E3HbiwW0w7zhbr3iR0sjmOgeCTxOeecg40bN2LZsmXaiQ4gL0q7vr4eSin4fD6t3b/4xS900JoZaS3HERu+ubkZ559/PlpaWlBTU6NLsZhR4WYGm7kPIN+x7PP5sHLlSp31JvXdxTEdDof1tZZJ85qamrwmr4FAQEf+m+cwFdFoFAcOHNDR+VdeeSUcDocet6m9APRzgdl0XCYUJLIegI6EN8cqZWgKneoej0c3jt2zZw+Gh4dnXBJvruDkNykXrGfehJCzw0wDLlwWKnrYFEoxeM1jSydxt9udV+rFTKcWMZE0ZrO+m9frRX19PWpraydFZouxKvuUn7OtJS6i6HA4UFtbqxuVFhrT0jU8lUrpTuPSiFMaiZrZAHI9pkMi7sLhMCKRiHa+L5QD22wMJ3X8wuHwjBvNkMWncAJtNgshZGEwU4IX639PdNx0BIgOulwurauyiGabWl74u5R7kbrjhUjGmsPh0LXYpbxaMb0snKw3nwXkviWRXW63O6+JeKFRL89JUipHtFwyxmbyDKWU0iVgZD/SGN2sLW9uX7jPwiAEc52Z2Wc2Ji08vjyLiPN+tjX0yeJB7SakcjBt8MVyepoNTeU8JPK8rq5OT9AW2ttic8tP0/6ura1FfX29LrtSiGiSONNN7TYp1OvpEIeyqd0yRgCTdFv0VjQ3lUpp/Ta1e7p7omin7MO0u+X5opjeTrVP8zXT0S5LsYBHGYdot2SvkcpiMbT7kUcewerVq+FyubBx40a8/PLL026/e/dubNy4ES6XC2vWrMFjjz02aZunnnoKF1xwAZxOJy644AI888wzMz7uTTfdNOl5/SMf+ciMxsZIdLJkEVFtaGjAueeei/Xr1+t65TITO13KkBnZtm7dOvh8PvT19WFsbCzPgS0dwdva2tDe3q5T0842Hamurg4rV65EfX09Dhw4MClSw5yhzuVyenZctpMsAYnWL4VkMom+vj6Mjo6itbUV+/fvR0tLC1auXIlly5bNe1mXTCaDoaEhRCIRHD58GPv378fIyAj8fj8NswqDaWWEkNkgk9Iejwfr1q1DZ2cnXC4XfD6fLkEiEVYSRW4ai9KoLJVKYfny5bBarfD7/Th48GBeLXaJJnO5XDoVvLW1VZdCE4eEGP3SRAw4nb4vqdwA9AS2w+HAmjVrdCPXQCAApZSuz2pOEsj+pJG2pLUXi5wTit0bTef8+Pg4jh49Cp/Ph/b2drS2tiKVSunmbWajczkv81gS2SbN3yRNXJwUZgq/PAfJBHwmk9HPScFgkIb4AjBVFO9sy0tQu8lCw+9MdSCO2rq6Olx88cVYs2YNPB6PrpMu2i22qtvt1llSol9SevScc85BXV0dhoaG8Pvf/z5PSyR7S4LcGhsb4fP58srHFkOc37IP6XUmUe5utxsdHR2IRqMYGhrS7zMzwaRMjji/pfyZ1WrN027ZvpTvtkwqSAa2z+dDZ2cn2tratLaazwyFmfNmCR85PyktJ0F50q/EPL9cLodEIgG/3490Oo333nsPQ0NDGB8fX/S+aNWOPD+an9/ZstDavXPnTtx666145JFH8NGPfhT/9E//hE9+8pM4ePAgVq1aNWn77u5uXHPNNfjGN76Bn/zkJ/jtb3+Lm2++Ga2trbj++usBAHv27MGNN96Iv/3bv8V1112HZ555BjfccANeeeUVXHLJJTM67p/+6Z/iySef1H+bfX5KgU50smQRJ7jX60V7eztWr16to9pKKU0iqcp2ux0dHR3wer1QSqGurg6hUEhHTVutVni9XrS2tsLn88HhcMyJo9nj8QCArr1WKMamYE5X53wmZDIZXav15MmT6O3tRTKZRENDA5YtWzYnx5iObDaLQCCAsbEx9Pf3o6enByMjI2woWoHQECeEzAZpcOr1erF27Vqcd955eU21c7mcNlqdTmdeHVBx7IrRKeVZXC4Xjh07lncc6Ski5dgaGhrQ2Nioy7aJMSpOZCl1IhFoAHTmWSaTyas93t7ejng8jhMnTmjtLkxJN5mqbupM7oNiZEuN3Hg8jubmZni9Xtjtdl1nXRzkdrsd6XR6UvaBGHcSUS9O9fr6ejidTl1rVYIJZPH7/YjFYhgbG9P1YMn8YjqCgPxmsfJzplpK7SaEzAbRDrfbjfPOOw8bN27UvT1E/5LJpNZuKQ0mpWjkdQBobW1Fa2srnE4n3nnnnUnHkT4eEjBXV1enJ3KlrnZhBLo4wYHTUdpmJL3D4UBjY6OeyC9md8tPc4I7lUoVvR6l3AvNSPF4PI6enh6EQiH4fD44nU5ks1l9Tcz9mo50s5m3jF0i+80JcFO7ZT+pVAojIyMIh8MYGBhAMBjU5eZI6cxUa83v5VxlcC20dn//+9/Hf/kv/wV/8Rd/AQB46KGH8Ktf/QqPPvoo7r///knbP/bYY1i1ahUeeughAMD555+P3//+9/j7v/977UR/6KGH8Cd/8ie46667AAB33XUXdu/ejYceegg//elPZ3Rcp9OJ9vb2mV0EAzrRyZJEIsykHIrZAGSmDm4xNiVlTBqSTkxM5NWBmyrN+WzGIDVGTUNpvg0UEeJwOIzjx48jHA5r54LUX5fIu7Mdq4xFUs+DwSCOHz+OgYEB9Pf3I5VKsZkoIYQsIcQ5m8lktA6K0WhiGshmGrmZRi0aKpFYpo6akeg1NTW6sbj0Q1FKaSe5vKfQ4SwTvFI2RRqCSYkWALpO6Xyn2st5xGIxDA4OIhaLoampSTdctdlsqK+v188xpgPBHFsmk0EikYDFYskrLSO9VgDoGrIyaRGLxTA8PKwnwUvNfiOnmare/Zk4U6kAQghZCMxJZ3Goi5Pc3EYoLCVhaqQ0uTZta3OSUGx8p9Opg9qkJIlof01NzaR74FRBdIWlT+T5YiFsbnFqh8Nhrd2tra26CasE05nbmu83y8bIc5O8JhPi8lwk11JKx8ik+9jYGEZHR6ndC0hhRmK5YGZsAtATXibpdBp79+7FnXfembf+6quvxquvvlp0v3v27MHVV1+dt+4Tn/gEnnjiCR3gsWfPHtx2222TthHH+0yO+9JLL6GtrQ0+nw+bN2/G9773PbS1tU0/eAM60cmSpba2Fh0dHTrNSxpvzsaJLk54n8+H1tZWLTLS0FQc7Gbt8rNFor+KGf/zecOV/ff09CAej6O+vl7Pgjc0NGDNmjXw+Xz6fGY7XrMszdjYGEZGRjAwMIBf/vKXOHz4MAKBAEKhEKPQKxRGsxFCZoOkREvqpcvl0q9JCTPpTSIGoaQlmwagpHzL5K84xCXqW9LOW1tbUVtbi0QigWAwCL/fj6GhIVgsFrS0tGgnuhincm8yG49KLVVJWY/H44jH49oRLxMD8+VIN43roaEhhMNh3ShsdHQUPp8P559/PpqamrSTQK6lvNfsZxOPx/UY5ZzHx8cBQKeaW61WjI2N6Uao+/btQ19fn54UJzPDdNqUqn/FoiQLf58p1G5CyGwwe2dIf5LCMiSmHW7WUS8sg+J0OnW0udk0Uyas6+vr0dbWhvr6eqTTaUQiEYTDYa1TXq9XZ3SbkejyXGEeyzx/03Ev75vPCXDJrLNYLOjv78f4+DjcbreOGvf5fHj/+9+P5uZmZLNZ/RwhTnGzvJo8Z5iTEjabDel0GjabTfeJAU7peTAYxPDwMF5//XUcO3aM2n2WzGTSxQwQnCvNnCvtXrlyZd76e+65B9u3b89bJ6WNC6sULFu2LK8UksnQ0FDR7bPZLMbGxtDR0THlNrLPUo/7yU9+Ep///OfR1dWF7u5ufPe738Uf//EfY+/evZMmBKaCTnSyJClM0zaj0GfjRJf3iqA7nU4diSXbmAb9XI2h2LJQxONxXZ/crEte6AgwG7Wc6fzMm7vsQyL6g8EgxsfHMTAwgN7eXt0QlQZZZUJDnBAyG8zUZNHfwoZghc0yC+uBmlHqov+ymPolxr7dbtf1UqVRmJn6PdX9TIxaOSeZSBfHgKxfiPtZYWaXw+HAyMgIfD6f3sackBADW+q0yz5Mo9xcxGgXx4TFYtGp5vF4HH6/HyMjI/M+zmpmIZ/xpoLaTQiZDWYpsOkaWRb2cSjUGtOmNhcA+rlAMsSl1rfZ7FO2E+R381nCzCorfGZYaHtbzi+RSCCRSMDpdGJsbAxjY2M6SEAanRZG9puTE2bNc9PBLhov19DMOJMSbMPDwws2XnKKudbKudLuvr4+1NfX6/XTOZ0L/0/OFFxZbPvC9aXs80zb3Hjjjfr3DRs2YNOmTejq6sL//b//F3/+538+5fmZ0IlOlixm9++zbYhpiqvs16xllUwmEYvFUFdXN2XN05kixmkymZzU6bvUcxbBLOaEEIfDVNHtMqNtsVhw6NAhZLNZNDU1we/3o7W1FU1NTejo6NBR+DK7X3itzag9uVYTExMIBoMYGhpCIpHAkSNHcOzYMfj9fvT39+uIQhpjlQsNcVJpFBp2ZHGoq6uD1+tFU1MTmpqa4PV69WtiQIrhLHW4nU4n6urq4HA48qKpxKi02+1obGzExMQEIpEIgsEglFKIxWLw+/0AoFPApRGaRLvV1dXpSLdMJpOXJi5Od7vdjtraWng8HqRSKTidTl3OZbpa6CbF0sfNdcUmr6eLkJMsLwAYHR2F3W5Ha2urbsgmzVIl4g+A/l2MpmQyqScU5LknEong1VdfRSqVQl9fHwYHBxEOh1lH9Swx0/Jn+r65Pg9qNyFkJlgsFtTV1aGlpQWNjY3weDx59mBhEFUymdTZUGJXm40/ZRJaeoxYLBaEQiH4/X7kcjkd4DUxMaFfdzqdqK+v1xnkDocDuVwuLyBL9DQej2utbmlpgdPpRCQSQSKRmHUZUdP5LnopDv6ZRLNPTExgcHAQANDY2IhcLqfrw4t2S6laMzNPap8D0L1KTO0OBAI4fPgw4vE4+vv7MTg4iFAohEAgMOOxknzKQffmSrvr6+vznOjFaGlpgc1mmxR1PjIyMmUPvfb29qLb2+12NDc3T7uN7HM2xwWAjo4OdHV14d133512XCZ0opMli9lYYy6c6Gaal0S2Aaed6OFwGF6vd87Svsz6rNL8ayb7lnM168HK+QLQM/Yi8IU3XklVz2Qy+MMf/oDDhw/D5/Ohv78fy5Ytw/ve9z58+MMfhtfrhc/ny4toK6w5Jw8k0nwtmUyiu7sb+/btw/j4ON566y0cPHhQ11ZlBDohZCExm/ywD8PiYbFYUF9fj87OTjQ3N6OlpQU+ny9PV8QoTKfTugxYW1sbOjs70dDQgEAgoLVN9M10IA8ODiISiUAppX9KhLrdbkddXZ3WMykFF4vFMDo6ilgsBpfLhbq6OiildA1WWdfY2IhkMgmXy6Uj4qTR2XTfKTMCDpgcOWdGhpvfVXPbQsQQHx4eRl1dHQKBgC5v197eDpfLhXPOOQednZ06zV0cIc3NzbBarQgGgwiHw9podzgceOONN/DrX/8ao6OjGB8fRyAQ0NfZHA9QHoZlpTDfpfoIqTamimoki4PX60VnZyd8Pl+ejhailEIikUA6nYbT6YTP59MT4GKPSvCY3W7HihUrUF9fj56eHgSDQUxMTCAQCGi7eN26dbBarbqsKgBdTkZs3Ww2q58hZDI9HA7D5/Nh1apV8Pl8yGazefudCWawndjdUj5OGp3LdnINpiKbzaKnpwcnT56E1+vVGWWtra0455xz4PF4sGLFCt3bREq/mgEAsVgMsVgMwOngthMnTuDll1/G2NgYBgYGMDQ0hImJCT1xQUipOBwObNy4Ebt27cJ1112n1+/atQvXXntt0fdceuml+PnPf5637vnnn8emTZv0/+2ll16KXbt25dVFf/7553HZZZfN+rgA4Pf70dfXh46OjpLHSCc6WdIURlufTf1uM6XZTAMTsZfoN9MhfTaOe3GizyYq24yaN2f55Xzlp9kVfaoHBinhks1mUVNTA7/frxuUDQ0NIRaL6YYuZjq7iTyQpNNpBAIBJBIJjIyMYHR0FMFgEKFQCNFoVNdj5YNw5cNoNlJp8DtXHpj1PAvXmynKZrkXID/iWyLVAeRtL7VXZX9SjiWVSuWVYJHJd/P9wOkyMmYpN9PxXVgSpvBZodTxy74lm07GWmiInwm5JslkEtFoVI/J5XLB5XIhEAjA5XLpeqlyLWWMoVAI4XAYVqsVmUwGDocDwWBQO9djsRhrqFYZ1G5CyGwo1OjCMi2FS+F7AeRpK3A6m6wwGzubzeqyn+JwB5BXurUwq+tM5y7lRePx+Ixs0WKlKMTuFh0vHOeZJtZlzIlEQjd6rKmpwfj4OJLJJDwej9ZsCZiT5xeLxYJoNKp7m8g5SR30cDiMaDSqm7CS6mChtXvbtm346le/ik2bNuHSSy/FD3/4Q/T29mLLli0AgLvuugv9/f348Y9/DADYsmUL/vEf/xHbtm3DN77xDezZswdPPPEEfvrTn+p9bt26FVdccQUefPBBXHvttfjZz36GF154Aa+88krJx41Go9i+fTuuv/56dHR04MSJE/j2t7+NlpaWPMf7maATnSxJJDo8GAzCZrNp57Y4lGe6LzGuxRANh8NafCYmJuD3+5FKpWCz2RAOh1FfX69nhmdLMBjEu+++i1AohGAwWNJ7zPqxkvZVGIkuY5JOyLlcTjdAK+a4AE6LfSQSwdGjR9HX14djx45h//79cDqdaGpqgs/n0w3cZNxmw7dEIoFkMgm/349EIoFQKIShoSGkUimMj48jlUoxEquKoCFOKgnz+8bv3uKhlNINpWOxmJ50lbIi6XQa8XhcG4WNjY06vXl0dBR+vx8ulws+n0+Xa0mlUgiHwzh58iT8fr82kIFTD9upVAoOhwPDw8PIZDJoaGiAz+eDxWLR56CU0v1QJMJMdFQm6MfGxhCJRNDd3Y2jR4/q95aS2VBMe61WKxobG9HU1KSvhzjoJeV8qjqShc6DbDarJ63dbjdGRkZgs9lw6NAhOJ1OuN1udHR0wOv1IhaL6c9ArrlEu1mtVoyOjuLkyZP6M5lqPDNlqvMnCwu1m1QK/K6VD6LdPT09iEQiOO+887R+yOS12XtDgq6AU2XDRGcK7eZ0Oo0TJ05gdHQUkUhE66kEcHk8HkQiEXg8Hp0RZrFY9OR4YW8VySR3uVzI5XJwOp1IJpOwWCw4efIk9u/fj0gkgrGxsZKzEk3Hv4zN7XbrjDWXy6X9CJIlJxMAZyKdTmN4eBjj4+MYHh5GT08P7HY7fD4f6uvrtQ0uzUilZGosFtNOdGF8fBx9fX26aSn/f6qLhdbuG2+8EX6/H/feey8GBwexYcMGPPfcc+jq6gIADA4Oore3V2+/evVqPPfcc7jtttvw8MMPo7OzEz/4wQ9w/fXX620uu+wy7NixA3fffTe++93vYu3atdi5cycuueSSko9rs9mwf/9+/PjHP0YwGERHRweuuuoq7Ny5M6885JmgE50sWTKZDOLxuE6rNiPJZhohLjPCZiMOswO21FFraGhAIpHQNUSLRWWXglIK0WhU1yuLRqMlC7k8KDgcDt3VXBYTmbmWcZnjKRYhIBMT/f39AE7PsttsNjQ3N6OhoUGLucvlymt0IvVSU6kURkZGEIvF8rqIk+qDhjipNPidKw/i8bg28EQ3xBCXyWwAusSIy+VCLBbD8PAw0uk0Ojs7UVtbCwB6Al0mcIeHh/M+Z4kYd7vdCAaDuq6o2+0GAAQCAYyPj8PhcKC+vj4v8mtiYkKna0vUttVqxfDwsO7tEY1GS04LL/z+WSwWeL1etLa26lrsUvKsmHYWSxMXHc5mswiFQgBOab80LJMoPq/Xi/POOw9NTU0YGhrCe++9p2vWLuT/RWH0IFl4qN2EkNkgE71SszyTyWjdnpiYgM1m0xHjZpkX04FuNjGUieqxsTH09/fnZYWJdkejUe0wloAxq9Wa55g3y7FKpLrT6dQl3ERP/X4/Tpw4gWg0qku9lYqZlSZjESe6BKyZDcvN+u/T7VNKzBSul15kHo8HK1euhNfrRTAYxODgoA42YKT50mIxtPvmm2/GzTffXPS1H/3oR5PWbd68Gfv27Zt2n5/73Ofwuc99btbHdbvd+NWvfjXt+0uBTnSyZEmn04hGo6ipqUE0GtW/S9RaqUgkdSwW0ylQ0uwTOB1BJmlXAwMDAIDm5ma0tbXNqLGp1E7LZDIYHx/XkW1TRXsVo7CMi9nhXM4XyG88Kg8YM6kBZ3YBTyaTsNlsugasWYderos8XEl9dzPNnRBCCDGR5mOhUAiJRALA6clbs9zKxMQErFYrvF6vNtRjsZg25OPxeF4Ts2LRZaaT2ev1auM7l8sVLd8i6+SnlD0TPTTLuZSC6LG5f7vdrvcrzggpweZ0OmG325FIJPLK0xR7zigcq2i3WR4mm83qlPFoNJpXBm8h4TMBIYRUJpKdLSVOY7GYzvoSO9S0v0XzREdlYtcsI2ruoxjpdBpjY2NaO+rr6/N03tRUm82mm4KL3SpR21JHXCbtZ6LdYkPL84kZuFZoc8uzS7Fa8cWu53TXWbLFwuEwstmszqyT8jbU0+nhpD2ZDjrRyZJEIrnFgXvy5En4fD54vV7U1NToSOkzIV29pX53b2+v/l1m2wFo43Z0dBRvvPEGvF4v3v/+98PtdsPtdmuD90wkEgn09PQgHA7j8OHDuou2OBDOhFlDVZqqiGibDy6FkWrSgHUmzm0R8YmJCQSDQUQikTzHvYm5X7MmLaleGM1GCJmKUptrjY2Noa+vT2utlB7xeDw6kyqVSqGmpgYrVqyAzWZDKBRCf38/MpkMwuEw4vE4wuGw1rpijbRisRiOHz8Op9MJi8WCZcuW6egxcWjLhLjoq0SxWa1WHfklfT+CweCMnOiS/m1qtozP7/frKDaZMKivr9f3WJm8nq7OrIk815ivp1IpnDx5EjabTaec04E+NYWTKlNl8VUi1G5CyGyQki3JZBKBQACDg4PavqypqdE6ajovbTYbnE6ndmJLBHswGEQsFsPAwMC05T7D4TD2798Pl8uFDRs2oKmpSWeIyfYSge5yueDxeHSPLtG6oaEhpNNpDAwMIBgMIplMlhRUJg500W23243a2tq8ZwSzj4noulyjs0Em1qWEi2h3Npudts8ZOYXZoL3Usj0LgZzTbHSY2j230IlOlixiJDocDi3MMutszgxPhdxUpcGnGYUuddYEs9zJ2NgY4vE4li9fjlQqpcV7uuh30xiORCK6cVcoFCpZzGU8MsNdrAFase3E6S3G4EzKz8h1lJRwQgSKOSGkGKbOTPd/LllgMkErDmtxMgOnjXbTCS0NL6X0iWi2GYleyMTEhNZ3ieaSiWJzUth8dih0nqbTad1gXKLHZ3JNzAg2qQsrzysSPZ7L5bTTQaLuZ0Ox6PTC+qmkdKopoo3aTQiZDXLvEOeuZEpJadNifcnMSWMAOmM5Ho8jEoloG3iq+4o43O12O8LhsM7cNrOpTPvWtHdlO7Nvlzinz0ThPuUZRRp1m5le5nukUXgpkejTIWOThuZk5pSrbpfyfFwMavfcQic6WbKIsEh0dzabRUtLC5RSqK+vh8fj0Q1IRPDEaM7lcrp8SywWw+HDh9Hb24tAIIB4PD6loEtKdDKZxLvvvguLxQKPx4OmpiY0NDTAbrfD6XRqZ77MFktN9XA4jOPHjyMSiWBoaGhG3cEF06ifSqjN16spgoqUDxRzshRgM8SZU+p1ymQy6OvrQzKZRG1tLdra2uByufIMcvk9l8shEAjAYrEgGAxqg3h4eFg3s5aGosWiwyU6O5fLYXBwEPv27UNNTQ2cTqeOoAuFQnmR4plMBkNDQwgEArruejab1ZHjpWA6Fsz65VI7VZqZFpZnM/ufWK1WavgCI44ZuebVdP2p3WQpUDgRSuaOdDqNnp4e3Sts1apV2ub2er155VbM0qCRSEQ7zvv7+zEyMqL/nupzEqd9LpfDwMAAfv/738PpdOpGozIpLbot2Wii3el0GuFwWJeFKTV7TILjzGC1TCajS8OYvgX5aWJ+//gcuTiYjW7LBfOZYjbvpXbPHXSikyWLOKhjsRiOHj2KkydPorOzEzabDU1NTWhtbc2rUSaObamFNjQ0hJMnTyISieAPf/gDuru7dZ31qQxkmRG3WCyIRqM4ceIEXC4XzjnnHCxbtgwulws+n0+nmqVSKWSzWZw8eRJ+vx+xWAyDg4O68eZMZ5dNh3jhjXiqNO9CRzpvooQQUhpzaYjPNvqkEilljKlUCseOHcOJEye0Xjc0NOhSLhLRZrPZkEqlEAwGkclkEIlEdLOxvr4+3ZBsuklppZSOQOvp6UF/fz8cDgc6OzvR3NycFy1nGszd3d0YGRkBgLz1pWq32bNEDHJpSCoOdrNRt4xXnBCyjTkpThaGszF255tSauMTspQx+1mcbYnJpaTdpZBKpfDuu+/i+PHjaG9vh9VqRVNTEwDopt9mtrfY3aFQCMFgEPF4HN3d3ejp6dHl16bTbtHbEydOaO1euXKlPrboq+wjnU6jr68PIyMjuiScOPNL+S5IRLlkjAlSIgY4XULGbrfD7XYXLelqRrNLMAC/QwtDufo7ip2X+f0gCwed6GTJI7VEgVMNs0KhkK5NJrPUsphiLiVVxCBPJBJ6tvtMxwOgjykNy1wul66BJk50SVsLh8MIh8M6pWwmjUQLKRZlXhiRLhMMhVFU5SgopDLhjDgh5GyRGp/JZBLxeFw3Cg+Hw9ooVkohlUohEonoie5YLKa1dCb1vcUgl0U02SwnI5jlW4DTTpnZGjpmyRZxkMt+5XUzcq+wfwnvmWQuoHaTpQS/r/ODlPlMJBKIxWJwOBxwOBxwu9164heA1lkpqRaPxyeVYSv1MyrU7mg0mjdBLRMm0rBUMsunc9KfCdOOFv03tbswylzOgd87MtdQu+cWOtHJkkcppeucDQ4OIpvNwuVyoaGhAY2NjbDZbLoJp3QUlxlxv9+PdDqt08FncoOS2W2JNB8fH4fVatXlXMRQlmh5SQWXJmGzHat05bZarbrZiDRIk22AUw840qhM6rfSkU7mCoo5WQrM5QQkv/NTE41G8d5778HhcMDlcqGuri6v94dkdomeifYGg8FZX9dcLofx8XHE4/GiPUNyuZzOTLNYLJiYmJhxjU3TMS77kUlvqX3u8Xj0RIJE5clYxflAiMnZai+1m1Q7cxnVye/81ITDYRw6dAhOpxMul0sHr0lptkwmg2g0qp3uEs3t9/tnfS+amJjA6OgoYrEYAORNfsvrsVhs1navaWubmBlrtbW18Hq9eU5zCQYQ7TabjlYi5VpTvNoo9TtK7Z5b6EQnSx4ROzE8pdyK1GcTQ1Ui0cWZLbPYYuDOFDGKxTG/EEjKuqSaSY3XQoFW6lQTNIm6l4cBOtHJXMLvEql2+B1fGJLJJAYGBvLWSUaZRKSLQSuR2meL9CuJRCJn3Ha2pT3MbDFJAzcnB6Quu81m03VhJXtNotbn4zvI8gRLG37upNrhd3xhSCQS6Ovry1tns9nQ0NAAt9uNVCqFUCg0o0bcZyKXy+kM7/liqtIvdrtd9zOpq6vTk+0SJCe/m++t5O8iHenlBT+LuYNOdEIMxFg1m3dJbVGpiS610So1MlvOVyLyzBQ283WZ8TebuhBCCCGVgDnBbf5e6XUjTcd6MplEJBLRE/ymbs+nZvN5gBBCyHwgwW1Wq1UHe1UDYmtbLBYkEgnY7XZMTEzkZZrP5+Q3IWTuoBOdkALEQBWD1EzTNmuJSyR5pWHWZBcxl2g9IN/JLg8vdKKTueZsv0/8PpJKwiz1UYm6UakURoOV+32jlKgtef6QUnKhUCgvJZyaTeYTajdZajDzZmHJ5XKIx+M6u6panpnEQS4lUv1+v15fmHFWDd81ZsGVF9TuuYVOdEKmoFKd5KUi0fRitBdzomez2YqMtiflD8WcLBUKy2UxvXXhqKTrPJO6pzKuVCp1Vo3GCZkp1G5CyHwzVTmUSsa0p6ttbKT8oXbPLXSiE7JEMW+GZtSa/JSIe940yXxAMSdLBaVUnuOc3935xYz6ryQNq5TzJEsbajchhJDFgPoxe6jdcwud6IQsYczaqoQQQuYHPnwuXBquNM42S5wQQgghs4EasnCwXAchpBKgE50QQsiCwxlxQsh8wfsDIfMDtZsQQgipLKjdcwud6IQQQhYcijkhS4uF+p+VCHSATVwJmWuo3YSQ+YL3B0LmB2r33EInOiGEkAWHYk4ImQ8qqQ46IZUGtZsQQgipLKjdc4t1sU+AEEIIIYQQQgghhBBCCClXGIlOCCFkweGMOCGEEHIKi8UCi8VS9pkU1G5CCCHkFNTupQmd6IQQQhYcijkhhBBSWVC7CSELjTgpCSlXyv07Su2eW+hEJ4QQsuBQzAkhhJBTVIqmUbsJIQsN7xukkHJyWpfLeUwHtXtuoROdEEIIIYQsScrJECNLG34PCSGEkOmREirA4uvmYh+fLA50ohNCCFlwOCNOCCGEVBbUbkIIIaSyoHbPLXSiE0IIWXAo5oTMjHKJupkLymks5XAOS4FKab5FpofaTcjSpZy0myxd+Bwxc6jdcwud6IQQQhYcijkhpWOmrgKV/f03nalk6VBO6ddk9lC7CVma8B5OSOVC7Z5b6EQnhBBCCCljlFJ5TvRKhg/ipNqho4kQUm3wfrZ0YeADIfnQiU4IIWTB4Yw4ITMjl8st9inMGfz/XXpU0/d3OiwWC6xWKywWC3K5XNWNm9pNSD5LqVRVqeOb68w5OnEXj6WUgWC1WgFUZ7kYavfcQic6IYSQBYdiTgghpBoRp0O1ZI+YULsJyaca/8/ngrlyfPP6Li5L5fpXU9nEYlC75xY60QkhhCw4FHNCyFKK4CNLA6UUcrmcjkSvNqjdhOQj3+ml9t2eLjq5Eq4Jo9tLY6lcI1O7q3HM1O65hU50QgghhBCy4FitVlitVuRyOUxMTCz26ZAKp1yM32p0nhNCilMO95yFRkpWTTcBXs7XZSmVKDlbltL1YUAHKRXrYp/AXPHII49g9erVcLlc2LhxI15++eXFPiVCCCFTIA8qZ7PMlJnqxO7du7Fx40a4XC6sWbMGjz322KRtnnrqKVxwwQVwOp244IIL8Mwzz8z4uEopbN++HZ2dnXC73bjyyitx4MCBGY+vEqF2E0JI5UDtJgCvDVk46NQk5Oyhdudfi7O2u1UVsGPHDlVTU6Mef/xxdfDgQbV161ZVW1urenp6Snp/KBRSALhw4cKFyxwuoVBo2vutxWKZ9TLdMeZCJ44fP648Ho/aunWrOnjwoHr88cdVTU2N+rd/+ze9zauvvqpsNpu677771KFDh9R9992n7Ha7+t3vfjej4z7wwAPK6/Wqp556Su3fv1/deOONqqOjQ4XD4ZLGVqksNe0u/O5yOXVNrFbrvF4XXnMulbKUy3eV2n32+lTNLDXtLvwfLZf/08VeKv1aVPr5cymPpZi+LdZC7V44u7sqnOgf/vCH1ZYtW/LWrV+/Xt15550lvb+SxZwLFy5cynU5k5jP1zHmQiduv/12tX79+rx1f/mXf6k+8pGP6L9vuOEG9ad/+qd523ziE59QX/jCF0o+bi6XU+3t7eqBBx7QryeTSdXQ0KAee+yxksZWqSw17S6Xh+yltJSTccOlspaF/s6U03eV2n32+lTNLDXtNv9H53vSl0t1LvzOVO9STvcFavfC2d0VX84lnU5j7969uPrqq/PWX3311Xj11VeLvieVSiEcDuslFAotxKkSQsiSQi1ACqZ5Lw+Hw0ilUpO2mY1O7NmzZ9L2n/jEJ/D73/8emUxm2m1kn6Uct7u7G0NDQ3nbOJ1ObN68ecpzqwaWonYr1lpccOR687qTmbLQ3xl1FinT83Eu802la/dSZSlqt1BO/6OksuB3pnopp/sCtXvh7O6Kd6KPjY1hYmICy5Yty1u/bNkyDA0NFX3P/fffj4aGBr2sWrVqIU6VEEKWFJFIZNI6h8OB9vb2Odl/XV0dVq5cmXc/v//++ydtNxudGBoaKrp9NpvF2NjYtNvIPks5rvycyblVA9RuslCUg2FDSCVB7Z75cZcKS127qSeEkELK5b5A7V44u9te8pZljnRYFpRSk9YJd911F7Zt26b/DgaD6OrqQm9vLxoaGub1PBeKcDiMlStXoq+vD/X19Yt9OnNGNY6LY6ocqnFc8zEmpRQikQg6OzsnveZyudDd3Y10Oj0nxym8zzudzim3n4lOTLV94fpS9jlX21Qj1O58qvEeA1TnuDimyqEax0XtLg/tXqpQu/OpxnsMUJ3j4pgqh2ocF7W7PLT7bPW94p3oLS0tsNlsk2YORkZGJs0wCE6ns+gH3tDQUDX/oEJ9fX3VjQmoznFxTJVDNY5rrsc0nWHkcrngcrnm7FhnYjY60d7eXnR7u92O5ubmabeRfZZyXIkOGBoaQkdHR0nnVg1Qu6enGu8xQHWOi2OqHKpxXNTufBZKu5cq1O7pqcZ7DFCd4+KYKodqHBe1O59Ks7srvpyLw+HAxo0bsWvXrrz1u3btwmWXXbZIZ0UIIaRcmI1OXHrppZO2f/7557Fp0ybU1NRMu43ss5Tjrl69Gu3t7XnbpNNp7N69u6o1jNpNCCFkOspZu5cqvDaEEEKmo5y1e87s7pJbkJYxO3bsUDU1NeqJJ55QBw8eVLfeequqra1VJ06cKOn90rW21G6zlUA1jkmp6hwXx1Q5VOO4qnFMxTiTTtx5553qq1/9qt7++PHjyuPxqNtuu00dPHhQPfHEE6qmpkb927/9m97mt7/9rbLZbOqBBx5Qhw4dUg888ICy2+3qd7/7XcnHVUqpBx54QDU0NKinn35a7d+/X33xi19UHR0dKhwOL8CVWTyo3ZOpxjEpVZ3j4pgqh2ocVzWOqRjlrN1LFWr3ZKpxTEpV57g4psqhGsdVjWMqRjlr91zY3VXhRFdKqYcfflh1dXUph8OhPvjBD6rdu3eX/N5kMqnuuecelUwm5/EMF5ZqHJNS1TkujqlyqMZxVeOYpmI6nfj617+uNm/enLf9Sy+9pC6++GLlcDjUOeecox599NFJ+/zXf/1Xdd5556mamhq1fv169dRTT83ouEoplcvl1D333KPa29uV0+lUV1xxhdq/f//cDLrMoXbnU41jUqo6x8UxVQ7VOK5qHNNUlKt2L2Wo3flU45iUqs5xcUyVQzWOqxrHNBXlqt1zYXdblCqTdrKEEEIIIYQQQgghhBBCSJlR8TXRCSGEEEIIIYQQQgghhJD5gk50QgghhBBCCCGEEEIIIWQK6EQnhBBCCCGEEEIIIYQQQqaATnRCCCGEEEIIIYQQQgghZAqWvBP9kUcewerVq+FyubBx40a8/PLLi31KJXP//ffjQx/6ELxeL9ra2vDZz34WR44cydtGKYXt27ejs7MTbrcbV155JQ4cOLBIZzxz7r//flgsFtx66616XaWOqb+/H1/5ylfQ3NwMj8eDD3zgA9i7d69+vdLGlc1mcffdd2P16tVwu91Ys2YN7r33XuRyOb1NJYzpN7/5DT796U+js7MTFosF//7v/573eiljSKVS+Na3voWWlhbU1tbiM5/5DE6ePLmAo8hnujFlMhnccccduPDCC1FbW4vOzk587Wtfw8DAQN4+ym1MhJhQu8sbanf5jovafZpy0zlqN6l2qN3lDbW7fMdF7T5NuekctXsJopYwO3bsUDU1Nerxxx9XBw8eVFu3blW1tbWqp6dnsU+tJD7xiU+oJ598Ur3zzjvqrbfeUp/61KfUqlWrVDQa1ds88MADyuv1qqeeekrt379f3Xjjjaqjo0OFw+FFPPPSeP3119U555yjLrroIrV161a9vhLHND4+rrq6utRNN92kXnvtNdXd3a1eeOEF9d577+ltKm1c/+2//TfV3NysfvGLX6ju7m71r//6r6qurk499NBDeptKGNNzzz2nvvOd76innnpKAVDPPPNM3uuljGHLli1q+fLlateuXWrfvn3qqquuUn/0R3+kstnsAo/mFNONKRgMqo9//ONq586d6vDhw2rPnj3qkksuURs3bszbR7mNiRCB2l3eULvLe1zUbmo3IYsBtbu8oXaX97io3dRuUj4saSf6hz/8YbVly5a8devXr1d33nnnIp3R2TEyMqIAqN27dyullMrlcqq9vV098MADeptkMqkaGhrUY489tlinWRKRSEStW7dO7dq1S23evFmLeaWO6Y477lCXX375lK9X4rg+9alPqf/8n/9z3ro///M/V1/5yleUUpU5pkLhK2UMwWBQ1dTUqB07duht+vv7ldVqVb/85S8X7NynotgDSiGvv/66AqANmXIfE1naULvLF2p3+Y+L2k3tJmQxoHaXL9Tu8h8XtZvaTcqHJVvOJZ1OY+/evbj66qvz1l999dV49dVXF+mszo5QKAQAaGpqAgB0d3djaGgob4xOpxObN28u+zH+1V/9FT71qU/h4x//eN76Sh3Ts88+i02bNuHzn/882tracPHFF+Pxxx/Xr1fiuC6//HL8+te/xtGjRwEAf/jDH/DKK6/gmmuuAVCZYyqklDHs3bsXmUwmb5vOzk5s2LChYsYZCoVgsVjg8/kAVMeYSHVC7S7vMVK7y39c1G5qNyELDbW7vMdI7S7/cVG7qd2kfLAv9gksFmNjY5iYmMCyZcvy1i9btgxDQ0OLdFazRymFbdu24fLLL8eGDRsAQI+j2Bh7enoW/BxLZceOHdi3bx/eeOONSa9V6piOHz+ORx99FNu2bcO3v/1tvP766/iv//W/wul04mtf+1pFjuuOO+5AKBTC+vXrYbPZMDExge9973v44he/CKByPyuTUsYwNDQEh8OBxsbGSdtUwr0kmUzizjvvxJe+9CXU19cDqPwxkeqF2l2+905q92nKeVzUbmo3IQsNtbt8753U7tOU87io3dRuUj4sWSe6YLFY8v5WSk1aVwnccsstePvtt/HKK69Meq2SxtjX14etW7fi+eefh8vlmnK7ShoTAORyOWzatAn33XcfAODiiy/GgQMH8Oijj+JrX/ua3q6SxrVz50785Cc/wb/8y7/g/e9/P9566y3ceuut6OzsxNe//nW9XSWNaSpmM4ZKGGcmk8EXvvAF5HI5PPLII2fcvhLGRJYG1XBfAajd5TwmgNptUs5jmgpq9ykqYUxkaVAN9xWA2l3OYwKo3SblPKapoHafohLGtFRZsuVcWlpaYLPZJs3ujIyMTJr9Kne+9a1v4dlnn8WLL76IFStW6PXt7e0AUFFj3Lt3L0ZGRrBx40bY7XbY7Xbs3r0bP/jBD2C32/V5V9KYAKCjowMXXHBB3rrzzz8fvb29ACrzs/rrv/5r3HnnnfjCF76ACy+8EF/96ldx22234f777wdQmWMqpJQxtLe3I51OIxAITLlNOZLJZHDDDTegu7sbu3bt0rPhQOWOiVQ/1O7yHCO1u3LGRe2mdhOy0FC7y3OM1O7KGRe1m9pNyocl60R3OBzYuHEjdu3albd+165duOyyyxbprGaGUgq33HILnn76afzHf/wHVq9enff66tWr0d7enjfGdDqN3bt3l+0YP/axj2H//v1466239LJp0yZ8+ctfxltvvYU1a9ZU3JgA4KMf/SiOHDmSt+7o0aPo6uoCUJmfVTweh9Wafwux2WzI5XIAKnNMhZQyho0bN6KmpiZvm8HBQbzzzjtlO04R8nfffRcvvPACmpub816vxDGRpQG1uzzHSO2unHFRu6ndhCw01O7yHCO1u3LGRe2mdpMyYiG6l5YrO3bsUDU1NeqJJ55QBw8eVLfeequqra1VJ06cWOxTK4lvfvObqqGhQb300ktqcHBQL/F4XG/zwAMPqIaGBvX000+r/fv3qy9+8Yuqo6NDhcPhRTzzmWF2CVeqMsf0+uuvK7vdrr73ve+pd999V/3v//2/lcfjUT/5yU/0NpU2rq9//etq+fLl6he/+IXq7u5WTz/9tGppaVG333673qYSxhSJRNSbb76p3nzzTQVAff/731dvvvmm7phdyhi2bNmiVqxYoV544QW1b98+9cd//Mfqj/7oj1Q2my27MWUyGfWZz3xGrVixQr311lt5945UKlW2YyJEoHZXBtTu8hwXtZvaTchiQO2uDKjd5Tkuaje1m5QPS9qJrpRSDz/8sOrq6lIOh0N98IMfVLt3717sUyoZAEWXJ598Um+Ty+XUPffco9rb25XT6VRXXHGF2r9//+Kd9CwoFPNKHdPPf/5ztWHDBuV0OtX69evVD3/4w7zXK21c4XBYbd26Va1atUq5XC61Zs0a9Z3vfCdPECphTC+++GLR/6Ovf/3rSqnSxpBIJNQtt9yimpqalNvtVn/2Z3+ment7F2E0p5huTN3d3VPeO1588cWyHRMhJtTu8ofaXZ5Qu09TbjpH7SbVDrW7/KF2lyfU7tOUm85Ru5ceFqWUmn0cOyGEEEIIIYQQQgghhBBSvSzZmuiEEEIIIYQQQgghhBBCyJmgE50QQgghhBBCCCGEEEIImQI60QkhhBBCCCGEEEIIIYSQKaATnRBCCCGEEEIIIYQQQgiZAjrRCSGEEEIIIYQQQgghhJApoBOdEEIIIYQQQgghhBBCCJkCOtEJIYQQQgghhBBCCCGEkCmgE50QQgghhBBCCCGEEEIImQI60Qn5/3PllVfi1ltvrZj9zjUnTpyAxWLBW2+9tdinQgghhJQEtZvaTQghpLKgdlO7CalU7It9AoRUO08//TRqamoW7HgvvfQSrrrqKgQCAfh8vgU7LiGEEFItULsJIYSQyoLaTQiZb+hEJ2SeyGQyqKmpQVNT02KfCiGEEEJKgNpNCCGEVBbUbkLIQsFyLoQY5HI53H777WhqakJ7ezu2b9+uX+vt7cW1116Luro61NfX44YbbsDw8LB+ffv27fjABz6A//k//yfWrFkDp9MJpVReWtlLL70Ei8Uyabnpppv0fh599FGsXbsWDocD5513Hv75n/857xwtFgv+x//4H7juuuvg8Xiwbt06PPvsswBOpYZdddVVAIDGxsa8ff/yl7/E5ZdfDp/Ph+bmZvzZn/0Zjh07NqvrdO+996KzsxN+v1+v+8xnPoMrrrgCuVxuVvskhBBCZgO1uzSo3YQQQsoFandpULsJKS/oRCfE4H/9r/+F2tpavPbaa/jv//2/495778WuXbuglMJnP/tZjI+PY/fu3di1axeOHTuGG2+8Me/97733Hv7P//k/eOqpp4rWOLvsssswODiol//4j/+Ay+XCFVdcAQB45plnsHXrVvx//9//h3feeQd/+Zd/if/0n/4TXnzxxbz9/M3f/A1uuOEGvP3227jmmmvw5S9/GePj41i5ciWeeuopAMCRI0cwODiIf/iHfwAAxGIxbNu2DW+88QZ+/etfw2q14rrrrpuV+H7nO9/BOeecg7/4i78AADz22GP4zW9+g3/+53+G1crbCiGEkIWD2l0a1G5CCCHlArW7NKjdhJQZihCilFJq8+bN6vLLL89b96EPfUjdcccd6vnnn1c2m0319vbq1w4cOKAAqNdff10ppdQ999yjampq1MjIyKT9bt26ddLxxsbG1Nq1a9XNN9+s11122WXqG9/4Rt52n//859U111yj/wag7r77bv13NBpVFotF/b//9/+UUkq9+OKLCoAKBALTjndkZEQBUPv371dKKdXd3a0AqDfffHPa9wnHjh1TXq9X3XHHHcrj8aif/OQnJb2PEEIImSuo3dRuQgghlQW1m9pNSKXCqStCDC666KK8vzs6OjAyMoJDhw5h5cqVWLlypX7tggsugM/nw6FDh/S6rq4utLa2nvE4mUwG119/PVatWqVnrAHg0KFD+OhHP5q37Uc/+tG8YxSeZ21tLbxeL0ZGRqY95rFjx/ClL30Ja9asQX19PVavXg3gVLrcbFizZg3+/u//Hg8++CA+/elP48tf/vKs9kMIIYScDdTu0qF2E0IIKQeo3aVD7SakfGBjUUIMCrt5WywW5HI5KKVgsVgmbV+4vra2tqTjfPOb30Rvby/eeOMN2O35/4aFxyl27KnOczo+/elPY+XKlXj88cfR2dmJXC6HDRs2IJ1Ol3TOxfjNb34Dm82GEydOIJvNThoLIYQQMt9Qu2cGtZsQQshiQ+2eGdRuQsoDRqITUgIXXHABent70dfXp9cdPHgQoVAI559//oz29f3vfx87d+7Es88+i+bm5rzXzj//fLzyyit561599dUZHcPhcAAAJiYm9Dq/349Dhw7h7rvvxsc+9jGcf/75CAQCMzrvQnbu3Imnn34aL730Evr6+vC3f/u3Z7U/QgghZC6hdk+G2k0IIaScoXZPhtpNSPnA6StCSuDjH/84LrroInz5y1/GQw89hGw2i5tvvhmbN2/Gpk2bSt7PCy+8gNtvvx0PP/wwWlpaMDQ0BABwu91oaGjAX//1X+OGG27ABz/4QXzsYx/Dz3/+czz99NN44YUXSj5GV1cXLBYLfvGLX+Caa66B2+1GY2Mjmpub8cMf/hAdHR3o7e3FnXfeOePrIJw8eRLf/OY38eCDD+Lyyy/Hj370I3zqU5/CJz/5SXzkIx+Z9X4JIYSQuYLanQ+1mxBCSLlD7c6H2k1IecFIdEJKwGKx4N///d/R2NiIK664Ah//+MexZs0a7Ny5c0b7eeWVVzAxMYEtW7ago6NDL1u3bgUAfPazn8U//MM/4O/+7u/w/ve/H//0T/+EJ598EldeeWXJx1i+fDn+5m/+BnfeeSeWLVuGW265BVarFTt27MDevXuxYcMG3Hbbbfi7v/u7GZ27oJTCTTfdhA9/+MO45ZZbAAB/8id/gltuuQVf+cpXEI1GZ7VfQgghZC6hdp+G2k0IIaQSoHafhtpNSPlhUUqpxT4JQgghhBBCCCGEEEIIIaQcYSQ6IYQQQgghhBBCCCGEEDIFdKITQiaxZcsW1NXVFV22bNmy2KdHCCGEkAKo3YQQQkhlQe0mpLJgORdCyCRGRkYQDoeLvlZfX4+2trYFPiNCCCGETAe1mxBCCKksqN2EVBZ0ohNCCCGEEEIIIYQQQgghU8ByLoQQQgghhBBCCCGEEELIFNCJTgghhBBCCCGEEEIIIYRMAZ3ohBBCCCGEEEIIIYQQQsgU0IlOCCGEEEIIIYQQQgghhEwBneiEEEIIIYQQQgghhBBCyBTQiU4IIYQQQgghhBBCCCGETAGd6IQQQgghhBBCCCGEEELIFPz/AJ4qsPHS3MbRAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABdEAAAFxCAYAAACcBuH3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOx9e5gcVZn+O9XV1TXd1Z2eSSfTmXRCE4YwgSEEDBIuCiggAiorut6veEH2twoqiq4KsgqLuIq7XlEE19uquKw35OYCKoISMUgIAQYYyJB0kk7SmemZqemu7v79ceo79dWZ6smFAJnkvM/TT890V51713fOe77zfh2tVqsFDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDY0pMF7oAmhoaGhoaGhoaGhoaGhoaGhoaGhoaGjsrdAkuoaGhoaGhoaGhoaGhoaGhoaGhoaGhkYbaBJdQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDow00ia6hoaGhoaGhoaGhoaGhoaGhoaGhoaHRBppE19DQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0GgDTaJraGhoaGhoaGhoaGhoaGhoaGhoaGhotIEm0TU0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDTaQJPoGhoaGhoaGhoaGhoaGhoaGhoaGhoaGm2gSXQNDQ0NDQ0NDQ0NDQ0NDQ0NDQ0NDQ2NNtAkuobGXozrr78eHR0dGBoa2ul7/vSnP+HSSy9FpVJ5Tso0XfrFYhFnnXXWc5KvhoaGxkwEPcfpZds28vk8Tj75ZFxxxRXYtGnTbqe9Zs0aXHrppbtkI/ZlXHrppaG25q+vfvWr8rqOjg78v//3/0L3rlu3Dueffz4WL16Mzs5OdHd34/DDD8d73/terFu3DkNDQ23TVl+8Pz784Q+jo6Njt2yjOnbavYrFIo488kjMnz8fjUajbXrHH388crkcarXaLpdlOlC77w7uvPNOdHR04IYbbtijZdoZ/Pd//zeWLVsG27bR29uLCy64ANVqNXTN6OgoPvaxj+G0007DnDlz0NHRgUsvvfR5L6uGhsYLD23Pnz9oe67t+c7iv/7rv/DGN74RhxxyCAzDQLFYfF7z19j/YL7QBdDQ0Niz+NOf/oTPfvazeOc734lsNjvj0tfQ0NDYF3Hdddehv78f9XodmzZtwh//+EdceeWV+OIXv4if/OQnOOWUU3Y5zTVr1uCzn/0sTjrpJL1oYLj55psxa9as0GcHHnhg2+uHh4dx1FFHIZvN4iMf+QgOOeQQbN++HWvWrMFPf/pTPPHEE1ixYgXuueee0H3nn38+tm/fjh/+8Iehz+fNmwcAqNfr+MEPfiDL9Mwzz2D+/Pk7XY8zzzxzSp7HHnssXve61+EjH/mI/CyRSODuu+/GP//zP+OWW27BGWecMSWtRx99FH/6059wwQUXwLKsnS7Dvoof/vCHeOtb34r3vOc9+PKXv4xHH30UH//4x7FmzRrceuut8rotW7bgmmuuwRFHHIGzzz4b3/nOd17AUmtoaOwN0Pb8+YO259qe7wjf//73USqV8OIXvxjNZhP1ev2FLpLGPg5Nomvs92i1WnBdF52dnS90UV4QTExM7Ld119DQ0Hi+MDAwgOXLl8v/zznnHFx44YU44YQT8NrXvhaPPfYYenp6XsAS7hlMZ1MnJiZg2/ZuezkBwPj4OJLJ5LTXvOhFL0Iul9vpNL/97W+jXC7jL3/5S2hxfvbZZ+OTn/wkms0mDMPAihUrQvdlMhnUarUpnxN+8YtfYPPmzTjzzDPxm9/8Bt/73vfwyU9+cqfLNWfOHMyZM2fK5z09PVPyLBaLuOiii/Dd7343ctH93e9+FwDw7ne/e6fz31fRaDRw0UUX4bTTTsO3v/1tAMDJJ5+MdDqNt7zlLfjtb3+LV77ylQCAAw44ANu2bUNHRwfK5bIm0TU0NLQ9h7bn2p7vPbjllltgGEJg46yzzsLq1atf4BJp7OvQci4a+xR+8YtfYOnSpUgkEli0aBG+8pWvTDmWRMe+vvnNb2LJkiVIJBL43ve+BwD44x//iJe//OVIp9NIJpM47rjj8Jvf/CaUR7tjTlHSKyRvcvPNN+Ooo45CZ2cn+vv7pfHjuPfee3H88cfLY8Wf+MQndnkn9dJLL8VFF10EQOzS09GwO++8M1Se//mf/8GRRx4J27bx2c9+Vh5ru/7666ekyY8u7yh9ws7UV0NDQ2N/x8KFC/Hv//7vGB0dxbe+9S35+cqVK/HGN74RxWIRnZ2dKBaLeNOb3oSnnnpKXnP99dfj9a9/PQBBANLzmJ7jt912G17zmtegUCjAtm309fXh/e9/P8rl8k6VbWRkBB/96Edx4IEHwrIszJ8/HxdccAHGxsZC17WzqWQTb731Vrz73e/GnDlzkEwmMTk5iWaziS984Qvo7+9HIpHA3Llz8fa3vx3Dw8OhtE866SQMDAzg97//PY477jgkk8nnZNG4ZcsWGIaBuXPnRn5Pi7NdxbXXXgvLsnDddddhwYIFuO6669BqtZ5NUduiq6sL//AP/4Bf/epX2LJlS+i7RqOB73//+zj66KNx+OGH73SaP/nJT3Daaadh3rx56OzsxJIlS3DxxRdPGQNRoPnGjTfeiKVLl8K2bSxatAj/8R//EXl9vV7Hv/zLv6C3txeZTAannHIKHnnkkdA1z3ZME+69915s2LAB73rXu0Kfv/71r4fjOLjxxhvlZ/S70tDQ0JgO2p5re76noO35rmF3+1RDY3ehR5zGPoObb74Zr33tazF79mz85Cc/wRe+8AX8+Mc/lgQ5x//+7//iG9/4Bj7zmc/glltuwUte8hLcddddeNnLXobt27fj2muvxY9//GOk02m86lWvwk9+8pPdLtcDDzyAj3zkI7jwwgslyX/uuefi97//vbxmzZo1ePnLX45KpYLrr78e3/zmN/G3v/0Nn/vc53Ypr/e85z3453/+ZwDA//zP/+Cee+7BPffcg6OOOkpec//99+Oiiy7CBz/4Qdx8880455xz9mj6O1NfDQ0NDQ2BM844A7FYLPSMHBoawiGHHIKrr74at9xyC6688kps2LABRx99tFxgnHnmmbj88ssBAF/72tfk8/jMM88EADz++OM49thj8Y1vfAO33norPvOZz+DPf/4zTjjhhB1u0I6Pj+PEE0/E9773PXzwgx/Eb3/7W3z84x/H9ddfj1e/+tVTFo5RNpXw7ne/G/F4HN///vdxww03IB6P4wMf+AA+/vGP49RTT8Uvf/lL/Ou//ituvvlmHHfccVMWUBs2bMBb3/pWvPnNb8ZNN92E888/f4dt2mg04HmefE2nKwqII9XNZhOvfe1rccstt2BkZGSHeewIw8PDuPXWW/Ga17wGc+bMwTve8Q4MDg4+p7bw3HPPRa1Wk0fOCbfccgvWr1+Pc889d5fSe+yxx3DGGWfg2muvxc0334wLLrgAP/3pT/GqV71qp+5ftWoVLrjgAlx44YW48cYbcdxxx+FDH/oQvvjFL0659pOf/CSeeuopfOc738E111yDxx57DK961atCffdsxjQHeaktXbo09Hk8Hkd/f7/2YtPQ0NgtaHuu7fmegrbnGhp7MVoaGvsIjj766NaCBQtak5OT8rPR0dHW7NmzW3yoA2jNmjWrtXXr1tD9K1asaM2dO7c1OjoqP/M8rzUwMNAqFAqtZrPZarVarUsuuaQV9dO57rrrWgBaTz75pPzsgAMOaNm23XrqqafkZxMTE63u7u7W+9//fvnZG97whlZnZ2erVCqF8u7v75+S5o5w1VVXtb3ngAMOaMVisdYjjzwS+vzJJ59sAWhdd911U+4B0Lrkkkt2Ov2dqa+GhobG/gKyDffdd1/ba3p6elpLlixp+73nea1qtdpKpVKtr3zlK/Lzn/3sZy0ArTvuuGPaMjSbzVa9Xm899dRTLQCtX/ziF9Nef8UVV7QMw5hS5htuuKEFoHXTTTfJz9rZVKr329/+9tDnDz/8cAtA6/zzzw99/uc//7kFoPXJT35SfnbiiSe2ALR+97vfTVteAtln9TV//vzQdQBa//RP/yT/bzabrfe///0twzBaAFodHR2tJUuWtC688MJp7e+JJ57YOuywwyK/u+yyy1oAWjfffHOr1Wq1nnjiiVZHR0frbW97207VpR3UsnM0m83WgQce2Fq6dGno83POOaeVTCZb27dv3+18aQzdddddLQCtBx54QH4XNS864IADWh0dHa1Vq1aFPj/11FNbmUymNTY21mq1Wq077rijBaB1xhlnhK776U9/2gLQuueee6Ytz86OaY7Pf/7zLQCtDRs2TPnutNNOay1evDjyvs2bN0+ZE2loaOw/0PZc2/NWS9tzwt5gz1WceeaZrQMOOGC379fQ2BloT3SNfQJjY2NYuXIlzj777FCADcdxIndYX/ayl6Grqyt0/5///Ge87nWvg+M48vNYLIa3ve1tGB4ennIMaWexbNkyLFy4UP5v2zYWL14cOsZ3xx134OUvf3lIPy8Wi+ENb3jDbuU5HZYuXYrFixfv8XQJO1NfDQ0NDY0ALcUTrFqt4uMf/zj6+vpgmiZM04TjOBgbG8PDDz+8U2lu2rQJ5513HhYsWADTNBGPx3HAAQcAwA7T+PWvf42BgQEsW7Ys5AH2ile8IlLCS7WpHOpppzvuuAMA8M53vjP0+Ytf/GIsWbIEv/vd70Kfd3V14WUve9mOqhvC7bffjvvuu0++brrppmmv7+jowDe/+U088cQT+PrXv453vetdqNfr+PKXv4zDDjsMd9111y7l32q15JHvU089FYCQQDvppJPw85//fI94xkWho6MD73rXu/D3v/8df/3rXwGIo+2/+tWvcM455yCTyexSek888QTe/OY3I5/PIxaLIR6P48QTTwSw4zEEAIcddhiOOOKI0GdvfvObMTIygvvvvz/0+atf/erQ/+QlzucOz2ZMR6GdTIuWb9HQ0NhdaHuu7fmegLbnGhp7L3RgUY19Atu2bUOr1YoM4hL1GUXaVu9XPweA3t5eAJiiSbazmD179pTPEokEJiYm5P9btmxBPp+fcl3UZ88WUXXck9iZ+mpoaGhoCIyNjWHLli0hbcs3v/nN+N3vfodPf/rTOProo5HJZNDR0YEzzjhjp56lzWYTp512GtavX49Pf/rTOPzww5FKpdBsNrFixYodprFx40YMDg4iHo9Hfq8e0Z7OrqjfkS1tZ2/VDdfdsVlHHHHELgUiIxxwwAH4wAc+IP//6U9/ije96U246KKL8Je//GWn0/m///s/PPnkk/jwhz8cWmD/4z/+I+644w78+Mc/xvvf//5dLt/O4F3vehcuvfRSXHfddXjRi16EH/7wh6jVart89LtareIlL3kJbNvG5z73OSxevBjJZBLr1q3Da1/72p0ah9PNa9Q5lTp3SCQSACDzebZjOiqvLVu2TJkjbt26Fd3d3TudloaGhgZB2/MA2p4/e2h7rqGxd0KT6Br7BLq6utDR0YGNGzdO+a5UKk35TPUy6urqgmEY2LBhw5Rr169fDwDSgNu2DQCYnJyURgGYOgnZFcyePTuynFGfPVtEeVjxOnHs7saBhoaGhsbO4Te/+Q0ajQZOOukkAMD27dvx61//Gpdccgkuvvhied3k5CS2bt26U2muXr0aDzzwAK6//nq84x3vkJ8PDg7u1P25XA6dnZ1tg0KrC9rpPHfV72hxtWHDBhQKhdB369ev36W0n2v84z/+I6644opd1si+9tprAQBf+tKX8KUvfSny++dq0V0oFHDaaafhRz/6Ef793/8d1113Hfr6+vDSl750l9L5v//7P6xfvx533nmn9FYDgEqlstNpTDevidpwnw7PdkxzEMH14IMP4tBDD5Wfe56HtWvX4k1vetMup6mhoaGh7XkAbc+fPbQ919DYO6HlXDT2CaRSKSxfvhz/+7//i1qtJj+vVqv49a9/vVP3H3PMMfif//mf0O5ns9nED37wAxQKBSmBUiwWAQB///vfQ2n86le/2u3yn3zyyfjd734X2gRoNBq7FdBU3e3dGfT09MC27Sl1+sUvfrFH0tfQ0NDQmIqnn34aH/3oRzFr1iy5COvo6ECr1Qpt0gLAd77znSkBtdo9j2mhqqbxrW99a6fKddZZZ+Hxxx/H7NmzsXz58ikvsoO7AzrKrQbLuu+++/Dwww/j5S9/+W6nvbuI2kAHxBxi3bp18kTazmDbtm248cYbcfzxx+OOO+6Y8nrLW96C++677zkNXnnuuedi27Zt+MxnPoNVq1bhXe961y6TF892DAHAQw89hAceeCD02Y9+9COk0+lQQPLnqzyEY445BvPmzcP1118f+vyGG25AtVrFa1/72l1OU0NDY/+GtucBtD3fc9D2XENj74P2RNfYZ3DZZZfhzDPPxCte8Qp86EMfQqPRwFVXXQXHcXZqt/+KK67AqaeeipNPPhkf/ehHYVkWvv71r2P16tX48Y9/LB/4Z5xxBrq7u3Huuefisssug2mauP7667Fu3brdLvunPvUp/PKXv8TLXvYyfOYzn0EymcTXvvY1jI2N7XJa5GH1la98Be94xzsQj8dxyCGHIJ1Ot72no6MDb33rW/Hd734XBx10EI444gj85S9/wY9+9KM9kr6GhobG/o7Vq1dLLdJNmzbhD3/4A6677jrEYjHceOONmDNnDgAgk8ngpS99Ka666irkcjkUi0XcdddduPbaa5HNZkNpDgwMAACuueYapNNp2LaNAw88EP39/TjooINw8cUXo9Vqobu7G7/61a9w22237VRZL7jgAvz85z/HS1/6Ulx44YVYunQpms0mnn76adx66634yEc+gmOOOWa32uGQQw7B+973Pvznf/4nDMPAK1/5SgwNDeHTn/40FixYgAsvvHC30n02+PznP4+7774bb3jDG7Bs2TJ0dnbiySefxFe/+lVs2bIFV1111U6n9cMf/hCu6+KDH/yg9EbkmD17Nn74wx/i2muvxZe//OU9WIsAr371q5HL5XDVVVchFouFPL12Fscddxy6urpw3nnn4ZJLLkE8HscPf/jDKYvo6dDb24tXv/rVuPTSSzFv3jz84Ac/wG233YYrr7wSyWRyl8rzbMc0RywWwxe+8AW87W1vw/vf/3686U1vwmOPPYaPfexjOPXUU3H66aeHrv/tb3+LsbExjI6OAgDWrFmDG264AYCYE+5qXTQ0NGY2tD0X0PZc2/MX2p4DwiavWbMGgPCOHx8flzb60EMPDZ0409DYI3hh4plqaDw3uPHGG1uHH354y7Ks1sKFC1v/9m//1vrgBz/Y6urqktdgmkjYf/jDH1ove9nLWqlUqtXZ2dlasWJF61e/+tWU6/7yl7+0jjvuuFYqlWrNnz+/dckll7S+853vtACEIn8fcMABrTPPPHPK/SeeeGLrxBNPDH129913t1asWNFKJBKtfD7fuuiii1rXXHPNlDR3Bp/4xCdavb29MjI5RXpvV55Wq9Xavn176z3veU+rp6enlUqlWq961ataQ0NDLQCtSy655FmlH1VfDQ0Njf0B1113XQuAfFmW1Zo7d27rxBNPbF1++eWtTZs2TblneHi4dc4557S6urpa6XS6dfrpp7dWr17dOuCAA1rveMc7QtdeffXVrQMPPLAVi8VaAFrXXXddq9VqtdasWdM69dRTW+l0utXV1dV6/etf33r66acjn+lRqFarrU996lOtQw45pGVZVmvWrFmtww8/vHXhhRe2SqWSvK6dTaV633fffVO+azQarSuvvLK1ePHiVjweb+VyudZb3/rW1rp160LXnXjiia3DDjtsh2UlXHLJJS0Arc2bN097nVrme++9t/VP//RPrSOOOKLV3d3disVirTlz5rROP/301k033dQ2najyLVu2rDV37tzW5ORk2/tWrFjRyuVy016zs2VvhwsvvLAFoHXGGWfsch6EP/3pT61jjz22lUwmW3PmzGm95z3vad1///2hcdZqBe3OQfOBG264oXXYYYe1LMtqFYvF1pe+9KXQdXfccUcLQOtnP/tZ6PMnn3xySj7Pdkyr+NGPftRaunRpy7KsVj6fb33wgx9sjY6OTrnugAMOCP2G+WtX52caGhozF9qea3uuQtvzAC+UPacyR712Z26gobEjdLRaSghpDY19CPV6HcuWLcP8+fNx6623vtDF0dDQ0NDQ0NDY51EsFjEwMLBTknoaGhoaGhoaeye0PdfQCEPLuWjsUzj33HNx6qmnYt68eSiVSvjmN7+Jhx9+GF/5ylde6KJpaGhoaGhoaGhoaGhoaGhoaGhozEBoEl1jn8Lo6Cg++tGPYvPmzYjH4zjqqKNw00034ZRTTnmhi/as0Ww20Ww2p73GNPVPWkNDQ0NDYyag0WhgugOhHR0diMVi+0y+zwc8z5v2e8MwYBjG81QaDQ0NDY39Adqe73loe66xt0KPOo19Cj/96U8xPDyMyclJVKtV/P73v58SIGqm4rLLLkM8Hp/2NTQ09EIXU0NDQ0NDQ2MncNBBB01r01/+8pfP2HyHhoae96PfQ0NDO5wnXXbZZc9rmTQ0NDQ09n1oe75noe25xt4MrYmuoTFDsH79eqxfv37aa5YuXQrLsp6nEmnsK3jmmWfw8Y9/HL/97W8xMTGBxYsX49prr8WLXvQiAECr1cJnP/tZXHPNNdi2bRuOOeYYfO1rX8Nhhx32ApdcQ0NDY+biwQcfxOTkZNvv0+k0DjnkkH0m3+catVoNf//736e9pre3F729vc9TiZ5baNutoaGhsXdA2/M9i33ZnmvbPfOhSXQNDQ2N/Rjbtm3DkUceiZNPPhkf+MAHMHfuXDz++OMoFos46KCDAABXXnklPv/5z+P666/H4sWL8bnPfQ6///3v8cgjjyCdTr/ANdDQ0NDQ0Ni/oG23hoaGhobGzIK23fsGNImuoaGhsR/j4osvxt13340//OEPkd+3Wi309vbiggsuwMc//nEAwOTkJHp6enDllVfi/e9///NZXA0NDQ0Njf0e2nZraGhoaGjMLGjbvW9Ak+jPIZrNJtavX490Oo2Ojo4XujgaGhr7AZrNJp566iksXLgwFEgmkUggkUhMuf7QQw/FK17xCgwPD+Ouu+7C/Pnzcf755+O9730vAOCJJ57AQQcdhPvvvx9HHnmkvO81r3kNstksvve97z33ldpNfOMb38A3vvENGSvgsMMOw2c+8xm88pWvbHvPXXfdhQ9/+MN46KGH0Nvbi4997GM477zznqcSa+wN0LZbQ0Pj+Ya23WF8/etfx1VXXYUNGzbgsMMOw9VXX42XvOQlba/fke3+9re/jf/6r//C6tWrAQAvetGLcPnll+PFL37xs8pXY++Btt0aGhrPN7TtDmO/sd0tjecM69atawHQL/3SL/16wV+XXHJJ5HMqkUi0EolE6xOf+ETr/vvvb33zm99s2bbd+t73vtdqtVqtu+++uwWg9cwzz4Tue+9739s67bTTnuvH6LPCL3/5y9ZvfvOb1iOPPNJ65JFHWp/85Cdb8Xi8tXr16sjrn3jiiVYymWx96EMfaq1Zs6b17W9/uxWPx1s33HDD81xyjRcS2nbrl37p197y2h9t93//93+34vF469vf/nZrzZo1rQ996EOtVCrVeuqppyKv3xnb/eY3v7n1ta99rfW3v/2t9fDDD7fe9a53tWbNmtUaHh7e7Xw19i5o261f+qVfe8tL2+5923ZrT/TnENu3b0c2m92jaRqGgY6ODrnDbhgGYrEYYrEYLMtCLBZDZ2cnTNNEZ2en/Iy/A0Cr1UKr1cLExAQ8z4PrupiYmECr1UKz2YRhGKF0TNNELBaDYRiyDJR3q9VCrVZDo9HA5OQkPM8DDauOjg55byqVgmmaSCaTSCQSME0Tpmmi1Wqh0Wig2WzKwBipVAqWZcG2bSQSCcRiMZimKfMFxM5fq9XC5OQkarXalDw7OjrkjiDdT7uCsVgM8XhctmWr1UK9XofneahWqxgbG8PIyAjK5TImJiawZcsWeJ4n27y7uxuZTAazZs3C7NmzEY/H4TgOOjo6kEgkprQTlZlA7eW6rmyvZrMpX1QPqgu1NbWZbduh+tXrdTQaDYyNjaFWq2F8fByjo6NoNBpoNBqyDahfLctCZ2cnkskkLMuC4ziyDtRfsVgM9Xod9XodruuiWq2i1WpNGYPUD7z8tVpN9mej0QjdQ/fRPZOTk6jX65icnJSviYkJWJaFWbNmIZFIYPbs2bAsS7ZtVN6UJ31GdTAMA6Zpyrz4tbVaDZ7nwfM8WVbqD3rRuGg2m/L7Wq2Ger2OkZERTE5OYvv27aGgLvy3QeWkvqY2pb+fq0fwQw89hEKhIP9vtyNuWRaWL1+OP/3pT/KzD37wg7jvvvtwzz334E9/+hOOP/54rF+/HvPmzZPXvPe978W6detw8803Pyflf67Q3d2Nq666Cueee+6U7z7+8Y/jl7/8JR5++GH52XnnnYcHHngA99xzz/NZTI0XEGS71917LzK2LT50HCCVAsbGgO3bxWeplHg3TfFOHihbtwLPPAN4HjA5CSQSwAEHiOtnzQIoTc8DtmwBnnhCvN93n7j+fe/Dpkwf5m5aDdx5J3DkkVg7+3hs3Ag8+qjI/s47RRZXXgmcNuvP4p8HHwT6+7HyoDdg/Xpg9myR5bL5m0Xaixahtqgfjz4K/OIXogiveAXQ0xNUwXVFFQ89FDB+9hMgHgde8hJg9myMVA14HtDd2AysWSMK8vTToh62DRgGkMuJvw8/HOOzF2DLFmD9etE0jiPy8U0pTDNoskYDyGSAuR2bxQWmCSQSGEEGW7aI7z1P1KenB7DMpkyoBgueB1SrovlmzQIyGAm1/9pN3XjmmSCd5cuBuU/+WbT73/8uvpgzB0ingRUrUJt/IB59VDQptcns2cCbzqmJ/vIzax57PO64I6iPbQNz54pyzs01gWoVg5syuP9+8Z1tB3U2TWDhwmBImKZfL9cND0i/c0ZcC64LbNoEbNwoPqYhODkZNBsghpxpBsM2kQjyoOSpeehvGtKeJ4Ywv47q5rqiyQDRHrYN9PYCGbuGcc+SPw3KL2nWggRMEzXPgOuKdCiPp58G6nUgnxdtceihgPHUk0HFZs3CSGqeGHuTG4CxMYzM7cOjjwblqlbFOHv0UeBf/3UbgDJ+97uDsfz+a/DnI96H174WeM1rgK//2wjWrs/gmGPuAzCC7Ud9Dl+8/3589NBD8eer78ExB28F/u3fgDPPxJEXnIhnngE2/XUd8J//iZFPfQFXXAGccw6wfMstYswkEqJ+69eLsi5ZAsyfH/Sd6wbPi1mz6AEjPqfOSaWA2bPxzObNOPSoo7TtBnDMMcfgqKOOwje+8Q352ZIlS3D22WfjiiuumHL97tjuRqOBrq4ufPWrX8Xb3/723cpXY++CtN0rVyJjmuI3Sr8xIHjQ0YOPHpT0eaMRPORoLC1ZEjykEwnAcTDuWUhiXBiILVuAv/1N3Pe+92EdFmDB2Frg5puBk07CrZuWwXVFEmNjwFVXAfff38DPfhbDadt+AqxaBdx2G3DqqbjpJVfgkUeApUuFnRvYchfw858D7343fvroMmzfLp7/yaQwy6rtnpwE+mdvBv71X0WdL7oIm7xurF8vHjtHHglkNg2KB+Uf/hA8w1Ip8WVPj3jNmoV1W5L4y1+Azk5g0SJxGSDyWzC/CWzZgierc3DLLcDBBwMvX/SkqGBPD5BKYRxJ+ZzfskVk0dsrHntWdavI20dt1hw884ywKRlvq6jknXcCiQR+nnkXbrpJ5DF/PnDKKcC8v98CPPUUcPfdokBnnim+XLgQmD0bg09beOABoFYT9Z41S8x1up2asPebNqF5+hm44QZhj7NZ0b1+0THP3CyM7OLFWLfRwsMPA7ffLtI5+mjxnkqJrGfNEq8kxoPJzuzZYWObzWLcNbBmjRgq8+cDJ5wght3f/gZUKkChINLcvl28Fi3y+9JvH5qH0PvYWDClTCSAudkaYJpY+6ghTQ4NcdsWaa5ZIz5buFD0w9y54v7uTWtFey9Zgk1LTpTzKN9sy/HF5xjbtwP33CPGHM1jDj0UsDauCwbKrFkYXJ9ELAYcuGWlMPZnn42V9xtyPlStiu5+6CHg0kufAbAed999NAZ+/lls+sAlePvbRZtfdJH4mbz73d8GMI7ts/4dV2zfjk8sWoTPv+5veO97gbmfeh9w9tk44ANnoFIZw/ZVm4ArrsD41dfgX/4FeMc7gGUPfh+YmBBzPcMQgwQAFi8WA9Tzgt+FbYv/n35aNIA/L5X1cxygtxfPbNqEQ484Qttu7F+223xOUtUAgOfkKJlKRPL/iaylF5GIRLzS30BAotP/dC0RuO3uj8qDSMyOjg5J2FL6RGASaW2aJuLxOCzLiiTRKX/LsiRpygn3KBKd2qEdiU7vRKLbth1JosdiMUmSep6HRCKBeDwOz/NkO1HbUB2I6I/H47BtG4Zh7BSJTnl1dHRIInVHJDq1ASfRqVxEytMGCBHEUSQ6talt25JQTyaTiMfjcqNDJdEpzR2R6FQGGks0Jnhb8PvoGn78icYD9T8vJ22AUBqNRkPmTXlOR6JTPfg7kdmUHh/TrVZLlpvqx8eaaZryHt7H9NugvqTP1M0EvqGwp5HJZJDJZHZ43bx583DooYeGPluyZAl+/vOfAwDy+TwAoFQqhYz5pk2b0NPTs9vlc10XNZq87AKoTzjaTVQ4Go0Gfvazn2FsbAzHHnts5DX33HMPTjvttNBnr3jFK3DttdeiXq8jHo/vcnk1Zh5ofGUcB5nOTvGh4wREMS3+HEe8k32g91otYCNjMXGf44hXJhMm0enaiQkxOW+1AMfBRDqDzLifZyoFx8nAdcWCdnIyIKAzGSCTSolVdSIBJJNIpTJIJkWyjgNk0q743nFQy2TgOME6IJUSawkqejwOdHSIdI1kUnyQTvsfCBI947nixno9WGQQO5xMir/TaZiZjKxeOxKd8vU8P5sON8zaQqTheeJFTRhFond0AJbltwkl6rqAbcMZz8gukXlRu1MdOjvFK52W7dTZKdJtNMTfmUwt1O/NTCa0l+JXHakUkMk0AcOAM56RzUJENl1PTRsi0X1nBwm6wbIQjwPj42LhyUl0aldOosfjwbDjeVPy1Dz0Nw3pel0MS0qrXhdpqSQ8pZvJCBLd9CyQyaP8okh0yxLpUR7JpMhDjtcMYFDgLBp/TkaMPbcqB2gqFZSr1QqGHtAA4CKVyiDT2YlUKhMaG85IBkAKQAOZWAw2gEwsJq7PeOLCVAqxmLgvk07Lm4lvykwkxaCwbVF4GihUCd53vHGpsWOx4Fq/0iMTEwC07a7VavjrX/+Kiy++OPT5aaedFiIdOHbHdo+Pj6Ner6O7u3u389XYuxCy3fF4YDT4bw8IHmL0UKPPPU88VCYnxW8aEPem08FDzXFgehaS8B/AtVpgu9NppJFBpsOR1yarGRiGuLTVok3UBpLJGDKTycBAJhJIJjNk8sVjwU2JZ4/jIJnMyKzoGtV2x+O+vbcscWEmg4m6sGWe5z+rx51gvuB5bMczGdQ1k0G6lkQyKZqBnvWAyC+TaQK1GtIdQXkz6bR4BqbToo2QhGWJ5qE9w0zGJ9ENL2hzALVMBiMjfvk8Txg5ar9kRj7nffOMDBUsHg+MyKxZsuyOYyGZFM1KXZnJABnHt9/VKpqZjLwmlVKmaabPVGcySI+LtKhJ+dyK2/AkTGBkhBoobGwzGZiWgVRKlCWZFJeQYwDNk6if6nU2d/Pbx7LE9JPmaHxoiq4WBtVxDN60ctjSFAcI9pWo7HyuOZHOSFvJ52iWFZ5jNJuiHjS25dxsPM0HCpyRpPhz0pEVT6UMdHYGY6papb9HAGTgOBlkEglMpDNynpPJiNsBB0ATmY4OJCBsdyKREXWxLCCZREdHBoCFTHoCsCyYfvs5DoI5fWen6HziH6hBaJLIG45+o3JeioBE17ZbYn+z3ZpEn4HgZDH/X0UUic9JPf43EbL0GZHMRESqXugEIk2JrCXikRPr9D8RkHS9YRjyOyIq6cdChDvPm8hTtd50L/+fX8fr22g0pNc2rz95HDcaDellTOQzJ6tVIpq3URSpzD32o8rJCVsiaj1m/aL6WN00ASDf4/E4ms2mJJypvrzsvMxqn1IbUZ5EMHMPbbVdqQ953flnal3oHn7tdHVTNxg4GU9tFkVMR71TmkR+U7/S2KTxSv3AT1nQi3ui04YLH8c8T16+KBJ9b8Dxxx+PRx55JPTZo48+igMOOAAAcOCBByKfz+O2226T2my1Wg133XUXrrzyyt3K03VdHHjggSiVSrt8r+M4qFaroc8uueQSXHrppZHXP/jggzj22GPhui4cx8GNN944ZfJCKJVKUyYoPT098DwP5XI5NJnR2A9AKwjPCy+yCXxFod5Hk2/6n99DL85GAkB/v5y8p9MAngnIR06+AsJr13eKC1bU8+cD/hiloptmuMxU5FxO/O+vdyXI26haBTLz5sm6NGFgYkKsK7sLWVEA0xQuVJQhbRgohY3FgrUubw6Vv4jHAZh2iHQ1EW7K0Jzdbz/L9GCZJswuK1iMeSwz05zSJQCE+xkAHHSQeJ83TzRGLodqVfDroespPbaI4kOAmkBW3b+ZbuEL0nafhf8I/m9C2K5GI9y3tL6gfR0qA5EORAxQfgaagC3SoscoH97U/2p1eTnp/1BXex5M05rS17xyTQSLe+aEOKX+ngdYfHPG/4K3a8ZpYt48A9kskHGaGKkasi2OPbYL5XIXFiwA8Ega+Txw0kni9AGGh1EoHArgEAAjQDaLAgDk82ItTe6Ito2BATHMacciY9fQ12eJdAcrIjO+kUaL8ajfPa9s1Ivft5N4oWz3nM5OVHd86RTsrO0ul8toNBqRtrjdnGF3bPfFF1+M+fPn45RTTtntfDX2UvDfFRBtv3d0LyfL+G/UdZF0TKDiBr//Qw6RD+esA6DiyR3O2bMDD+KJCfFMOfjgmDA/1bgwxkuWAIUCbBvo6gqerTBNYadMUxKsdNiLyFN67rkuMDoKoC8rTr75G5GdnYKUrVZ9u57NikSy2WCTgRhqpe70UbtmJR5RltU3OE07CdN/fNMBHNMU5fA8wKJJhm98LMdBKiXIVpi+0Zo9G+jsRJcjvLSz2WDTGOm0sNcDA+K5OzAgLrJtNE1LOhPz7vaXwpIpp+kX2atQ3ZjhIxtPB4fIX4D6iIaJvCjq2Y4gL3UuR59TmjSvE/MYUQHLbMJ0hN0m00jzE3qk1mABfn3JDtP19Jo1K5hDcP8Oafg9D/F4YJ/53IBAJD+Z5ynjQpkoTGmGahVdXRnk8+LEYM0WpLPrAsceW0CpVECxCCCXQ1cXsGKF6N6MOY5iMQlgAMCY+CH5LvxS9MH/cfT3A6WSLb3HkxjHkiVJke6dFXHtnDmiYHwyos7v6cV/F5GTtl2Dtt0BZrLt1iT6DAIRfJxY5YQ1kZGc1OVkpErQ8uvJw5fyoc+iPKs5YcplWCh9IiR5Gbm0B99V4h7tgPBA7+jokJ7RnKgm73KOZrMJ7l3P24q/U/u4ritJZbqHvJlJsoPkYWi3jiRyWq2WLMusWbOQzWaRTCbR2dkZItEpfe7tz73JiUAleR3yxqcyENFOJD/vZ+pTnh6vS0dHB+LxuNyE8DxPyvTwDQDTNGXevOzUBjROqB1qtVqoj3n5aHy1OyXASXo+dnhePC1+8oGu5RsBBPpb3UigfNTTAK1WC5Zlye9o44I2Mni9SOKISxQReU5jxPM8jI2NhYh0leCndiFvdWpj/ht5oXHhhRfiuOOOw+WXX45//Md/xF/+8hdcc801uOaaawCI8l9wwQW4/PLLcfDBB+Pggw/G5ZdfjmQyiTe/+c27lWetVkOpVMLTTz+9U7v2hJGRESxcuBDr1q0L3TedF/ohhxyCVatWoVKp4Oc//zne8Y534K677mpLpEdtEkV9rrEfQF2Es0Wf/CzqWtsOFqjkMswX4dWqmNxXKuLaQkF8v2KFJKaT1U3iGl8zgzu4xmLiUroVXlZ8eeCBQD6PxtqwV5XUz4B0zMbAgMiqWPSPIftEORWtVAIyJ50UquPGjeJzz7NQKB6KZH5rwIKrC0d/kWqaci0f+joWCxbofJ3SdMTv2oCwCaYnOYSp6xUqrN8vVi6Hbt+Dp2knRRr+TY4j1lyhRWFfn/hn2TLANLG1Kkh4txSc6OdHmE0TaMKAQf1rmiiXg7rR+jmRCDy+4HlyOPChQteQmoAkuP0LiHD2PMDzF/u+s5McYrQI5uBrPfJ6yzi+RExZLIIsfyFo20lZP/5Ow5T4GyJqSM6F+mHWLN+rzm4CVQ+W3UQ6bchyAEDNMwC2uOeLfwKRQ9zxy1K8uW3q+4rfKIODWGjbwKohYHAQmZ4eHHX00Tiq38HppyeF12XpUaBQwCJnE7761blYmB0B/vuPyAxUcN55x2HLli4g34+X3XYbsGIFurr8cXPssUAuh/e8xy9nqSQaYu1avPGNS9FdfhQYGhID+8ADRWXpd06NGLXQVsk5zsCouxc7gRfKdlcBfATA9Ge/wpgE8O/V6i7Z7ihbPJ0d3hXb/YUvfAE//vGPceedd8JWfkS7mq/GXojQbiaidweBsPHhnztO8NBWH7LVarB5nMsBhQJqy4+D6wpSMFPxJc6KRcA0ceQAUC4LtYxKRWzmLVsmvkY1Cxx2mNhALxYxa0J8ns/7G90VWxDito2eHlEksuH5fNiuVCrCZj06ZGHxP/yDrE/GaWJszECpBAwOAvbAXHT3AXjSl8zKZsUDPpeT9SbpNrK99FibPdu35357OozgJuZ3xEuiWhLls7xxJNNAT5eJGiwMD4ssk1vKolEqFZlWT38/YJqoeUlY+Txw+OGAaaJoik1QelzGYhC2u1gUjZnN4s8PZ/DM7aIZCwWxmaDKjzQaQNO0YPhEK3WhbQcbE/KR7E+gap4hbVOxGHzf2Rk4vlP6TdMC8r0AhC1vwgAcSw4zmiPw/QtGRyCdDiRUOjv9/h+uyH40TFNIFNkm6rOSclOmWhX1pTw8L3wKDQh+DvV6cIDKNEUeVmWT6IeJCcB15eEqPt9QeWaaUlI6/KQC30ypeYFsiyxgqYTFRRtYuRK4/XZYxSKOOvtsHLXMwWtPKIuE15aAZctglZ7G5z63EJY7AqxchWOWLcOppx4vNg76jsbZa9cCJ52E+fP9TYNly4BsFu98p7+5QLZ79Wq89a0vRvfQ/cJ2Z7PiWtsW19CkhE9w+A6F6hzCyfSonYYdQNvuHV8f9Tmwd9luTaLPQHCyWCUygbA3LyeRuSSH6oVOxCv3+m5HXnPikzSlXdcNSWlwz3b+eb1el6Qxz4dIUyLsSYdd9UjnZaA68PJxkpZDlRyhskRpaXPPekrf8S2RbdswTVNqotu2jaQ4XyTvpXRpg4EIa8MwQJIvXGaGb0xwAp6IWSovJ6VVUp6IYGpz27Zh27Y8CkNyJ9Qv1LbUvlSGer0eOj1AGuX1eh0TExNSx517rBNZTfVs5w3OvbzJozvKw5yPPd6m1BeUHif/VY96TqJzMptIdBqDJFnD5W+IFJ+YmJB68DTO6Rquac+99HlZ+IYC9QuVm+R89gYcffTRuPHGG/GJT3wCl112GQ488EBcffXVeMtb3iKv+djHPoaJiQmcf/752LZtG4455hjceuutSBM7tptIp9O7lAa18c4emQPExlxfXx8AYPny5bjvvvvwla98Bd/61remXJvP56fsWm/atAmmaWL27Nk7XU6NfQSJBKQ+BfdKUUl0lUjmJDqBvqOVXaUiFpG5HGqFRSiVgDt/Lebs553XDePeP4lr58yRnuljYyKpeFwsKotFnyCtZNHMdqNUAqo+qUsLqGwWQMkVqyLTlAsfWj8kK+tFptksDNuGaWakx9rwsIFUysLhhwO2WPtgcBDYtg0YHgYKhW4sHhgIr1T9+jWdDOqbg7LwZqAFl5RksU25WN3s39PZacA0BUFreS5QDVZtzWx30IaViihYpSIaxHWFJ7nZDdM0YPtkejYbkLVUzCeGLVSrFoaGRH1LPnleKIjFZbksFqdEIMdi4vuk42DczGB0NOyIT/WSnth+ZtQP9Xogkd/VFSyWJYFO9YMReBViqkcdd4jijtDccZvyNLwaUCoH7UUFMk3YhYVyGI+OhvMhjdhsVki10LhPOjZMUxADkpyveoGHJiOjmjBQqQRyMKYp1qqk307DhnPKVA84Tshz3TT9utCNa9eKDlq1Smj7Llgg4gK4LpI33CAG0v/7f8CppwJ//CMWrlwpOrlcBoaG8JWvHIdSCcDty1B405uAk07CrFm+p+ZJJwHVKs7w1ogP1g6LhnjwQXSvWwc8/jjwyCPS8zFw5/NRrU4d9LzjqFJ0H9VpF49Zv5C2uxOAvcOrAtAKZWdsdy6XQywWi7TF7Y6y74rt/uIXv4jLL78ct99+O5YuXfqs8tXYS6FuXKtepeoxKHWXllhq+pt/T7Y7mwUGBrBxs4EfflV8fNmljngedXWJDTbPg7X6fvT29aFSyaBUCmx3ryNOwqBYxHpvLjwPmOMIk5/P+5uTjiPZ2wULwsXvtseFN7xfLs/LSBvm9h2KbBZYiBGgUkG12o3h4aDKhx02Fz1Lloj60KkyH+OehXI58HrnU5502i9XRey2+sUXjzvfrgyvFWXozTfFRMHf6Lb6+lCpzA3acN06QWiSgLff5uWqkOLI9S+FaQKL0cTiPmCkakhOczzbKx//pZLYoCiXgbe+VRRjbCzgP9WhYObmwsjlUFkbfJ/LBRv7sizZrPSbSCTknoicW82ZAxjVEcAU3u+0tyI2n43Q0OOnt3p6RDvSfIDKQGnSnCBj1yB36ekivyPm9B8qY8WUy+IrkvnjXudz5gRlSKdFf01MBE1uuSOij8plkcDoqDRRVHfaWKd2pHp6XviUm+QzbRtNJxPapODmUOZ3ww3Al78sJqOOA1QqqJ17LjYBKHz608AFFwD33APrq18NdvTXrcMNN7xFpH3zCVjmusDpp6NItNjy5YBp4n3v8eeW/1sWOz+rVqH7sceE7V67VmzC0KYR97AmEp0agWnaT3k+cAJ3F0l0bbsDzGTbrUn0GYYo6ZYo+Ywo2QjVs5l7cXOJD07Qcq92HmiR0iHCkV4EIkA5+e55Hjo6OuT9RO4SmUla36RdzvXYubc699qme1XPd95WvL71el0SouQZT0SoKgdD6OjokOUhD3nHcZDJZKS3PCd6ydOYZFB4G3Pin+qkamlzaRzeZ7xsvK+ovXl/kl47lyLhhLvatryPaKyQxzV571O7jY+PyzSJrCYCnerANzbU9qS0ebBOTkBzCSHe13ycqp75tEmkSgmpG0pqTADKl3u+U350IoG0tyj4KR/vRMCrvz1O6FN5qZ1VWaK9AWeddRbOOuustt93dHTg0ksvbSuZsruIkv3Z0fV7Ik8eBJbj2GOPxa9+9avQZ7feeiuWL1+u9dD3R5imING5e67quab+T/eRyxhfpNP15D3tL8R9Xg+//rVYnLz1rUBm2Cfu/FVK0m7CtoNn9cAAYKz8i2R8SyXh2ENZkyeybUPk52/aua74vBtbhWdyuRySlYnFMrJ45MRz8MEinXJZrH9GRwMv7VwuE6p6JucArsuzlBIsjUagjW6gGazSTNP3jrbkRgF5SyXhikYhZj+bBYhEr1YDRp9Wkv6KbSLYc4dpGmLh7+fVhPDKGx4GNmwQscmqVfH35KTw8u/rCwKV+k0juw+2jXIp3HT8KLZctLtibNDpdGoTIuVJitZAM8RU0J+cbOZDiP5WHaO4N3c2CxjueHjFS6ta/0LDq8HzgqPv7MCCXDM6DoByJRi3joMMaQGRFyHfQGGEsWHbqNcN2YZEGqhOoZxgoHqMu4JAn5hg3vT897dunSCy//AHjKxahcxDD4lCl8tY/Yc/YCuAlz7wAPCmNwGrVwNf/KJIfP58oFyG9YPvYmGhIJiR884D+vvRaYv8hocN9PdnYNx4ozh+USyKtB9/PCDQhocDBiHkhodwOXmH8Zfq2cYbfxfwQtluA8Hiemev31lYloUXvehFuO222/AP5FEL4LbbbsNrXvOayHt21nZfddVV+NznPodbbrkFy5cvf9b5auzFUG1u1M4d3xBXN7toI1wl2Mk4miZGqgaGhoD//V/x0cUXG0g+/jikFlSpJEg708To6FJUKsLxvGf7o0AJgONgxJ6LX/+3ID1POknw75bnE+S2LWRLTBO5HNtMdN3guSzLl5H7ysPDgqxd+CoTqFQwMdGNzZuDaqdSQM/BRQBAzemG5wXxK8j+UxO4brC5bZoI7DaEjcnlhAwLEcnSLpLN2bxZTBiyWbiu2CzAtm3is6eeEm2Uy0nX+kolI2+1bWCRLYx1pliEnZvrb/BDtvvwsNi3cN06li+PY/ny6adengfU64bcpCaSlz/CmzAAOwnXb2IKl0LXm6ZPoFcqwgHBMTExYWDDhoAEJ8KZdxHfQFeRSIj2zDg2TNMIXMypEswJwygUYPsyKIpZl3si6bQoo0XzK88D4CHTZaLREHZf2jOy5Y0GDK8G05fE4W3G7TNtFtBpNL4nZdm2PGhJ81HLZI6N5bKYDPzxj/g7gIWrViG7ahUwOIj/BvAEgEvvvRdb0Y3uoSHgm98UlTrhBKBUQmbLFiFJNDAgfjB9fZg37Kfd1yfSp8n06KhoiMFBMc7KZfGezweeBnTEjirLnw38JCn3wqBBQ3Z7F0l0QNtuwky23bvSNhp7KXaHWIoKeMi90Llm9nQazqqudRShP913QNhzPip4qap3HVUO1fNZhSp7w73NifRWvaOjNiWmK1tUfmo7TFf3dmlH1VH9PCoNVU++Xdrt5IHUV7vv+Gc8jR1t+ExHoHJin28m7Kgdo9pKvabdK6qs6nih/7n0S7s6qOlyYn1vItBfSESNhx29dgWf/OQn8Yc//AFDQ0N48MEH8S//8i+488475W7/Jz7xCRnZGxARwZ966il8+MMfxsMPP4zvfve7uPbaa/HRj350j9ZbYx+ASpJxcLIs6j5694Ulae4+OsqcYuicL1sB0pFc02QEqb9Co6O9bXk4dpIrHkcw+efkgudJHU0qk+uGjxwTuavePjEhXk0YgGlGNg8rwlRvfvYxfSTzjSIlo26a7jr2Hcmm8LpUq4H3Wrs2VPfReLsAYQ5G/uH/0244hMo39c8pxVfz4nGxTLNNG/O/27Sh+nXoMp55VFtHfbcLaNcuRO5PSc40gy9cFzUAzXpddmQVIjyZXBC7Ltx6HU064++6YjFNrFI+D9i2TJaOxmP7doT0eoCpAyTqtx7VUfzvqM92YxH+QsLYjdeu4MMf/jC+853v4Lvf/S4efvhhXHjhhXj66adx3nnnAdg92/2FL3wBn/rUp/Dd734XxWIRpVIJpVIppPW6o3w1ZgiifmvAzv3Oon6fKtgzYHIy2OMN5cE3yFi+6TRCG5ATE4JTHhubeooJgGQoTZOdWFKfv3556vVA/1z1FeEbpZOTkKyo3L/zy0t618BUVZxQ2fx3evypZkD+QxmzTeLQhWwuxK+Rt7DJBpGx9D21u+vWAUxM6V4qG7eLtJkbFZeDMN0+aOSFrI2jQJdw/fXpMGUMtJnfqPOlHQ5vv1Fle1Db8/b3vGnLyPOgOdGO2o/mhfJCf0zUANSoXNUqKiyBalVc542OBkaZtAbXrRPjt1DAuGvIZJumJfKg3SQgYP7JdtPEjW9khyZOEeDPE16PHXXkXghtu/ccZl7va4TQjgwk0o97w/LryRs2Ho/LYJNcvmVHQUSJeFbJaJIfId1tnhe9U9BL/k763GowUVWShhOaPOClqjFNpCvdwyVRVK9u8mDmBCfXJe/o6AjpppM3fa1Wkx7GlAeXJaF2pPrxz3j/qeQ3lduyrJA8jGVZiMfjMi1VvoQTzZzkJqgnA+g7akP+GV2vypSQ1ArlTzIxVBaVVKb2VoOEck/7KCKat4t6GiFqI4DfzyVe1Gt40FSu4c+9//nYVjcNuAc+l2NR84yCKjGkjrM94WWtEcbGjRvxtre9DRs2bMCsWbOwdOlS3HzzzTj11FMBABs2bMDTTz8trz/wwANx00034cILL8TXvvY19Pb24j/+4z9wzjnnvFBV0NgboE6UueYxf6krmCiCMYJ0IyeXgw9mTl4U5JK5+KTTFopFcijy5CJA6E4HnlK0vt++XaxVkvm8IANtG3a7heCTTwKNBrqXmxgY6JWeZ44TpMsdd8hZh6/nAfKytkJ6mmpQUcMdD3v02DZqsLiDW+DUPMcOPIV4wclNzjQF+5BIBMdzTVOWWTY1dY1f4Gy2W57WLxYDJ3fPE85MhUKIm5DZOQ6AqotEwkI6HTiKUWCweJzVwUsCZhKVclhOn28+dHYCHsnOeDVZZmpvWvDT0KHvqfupnnzxTnxykjyliUymTvM/H/esSAdoTlBUKhA68/ShaQpdWTB7xkkiZYz35PNiYeuDe82pJAUvokqSVCoGTDOJXGGx8N43TdFJjoMceWuuWAGUy1j+hz+I4FknnYStbhLdfX2w83lBlh9+eOD1SMeiFeJmclKQWj3k0rd8ucwLth2cIunvB/r6UIMFi9wvo54Jim5nqJM54TYDF+TPFd7whjdgy5YtuOyyy7BhwwYMDAzgpptukoHXdsd2f/3rX0etVsPrXve6UF48QNqO8tWYIfA8IJkMP484oj6jaxVieoo0k2nK3zTZhf5+pvjATpDJaz0PxaJ45Ng2AqOfzWKyGmhr02Mkl8vAgi/vJKNlt6nn6tXA8DAWv/OdmDcvI5PO5SDrkE6LR14qFVStaYvYEZUyPaaEHZosBzxjZ6ewaRTbTz732XOrWglsX8iWUN0pIqdpBlxlV5dwlSfDO2+erCM/xGearM39zc/uXE56kvf1ieS3bYtjbCwuDw2RfjkVk+YuGacJzxOno2KxIOaH2qTUD2SDeMBsae4KjjydRXMwMhHU/VxS2zKbME1B+CYSQmqFK381GqJPKN9uxxHtRAmzsVmzM9i8OTwt4ie+AH+fxs6IOZ8HmKYFI5tFEwY6/bkHSp6o2OSkIKdnzxYntbJZ9OZFvbZtC2ToaH6jbqxQjBfTFEQ2bQwBwfSjuPzFgfe+6wJnnYWjHnwQRn+/+AHZNk761a+wHgBe/nKUy8DCYhFmsSikkSiQD9lUvxD8pyrnPSTUz8XufckYZLPCbud6Ua367Uy/MT4Jidog54NkNxwG9gfsT7Zbz9j2AagexpwgBAIik8tZEClJZDeR2VwihO4lzXAuYVGr1VCv18GDQ9J3jUZDEvOkvc09o1OpFBKJBFKpFFKpFCzLQjKZlOXgUjKcrOV5kQwLlxnhWuN0j6onzqVDePupIM1qIkqJpDcMAyRpQhImUUQ1b8dEIgHSQo/H4yENdEqTyHEASKVSIeKf6s03REzloR4l1cMJX1XihghvSpukaKK801Xtedu25b0qeV1XXPO45ItKGPOAohx8c4MIdK6Pzzd5VO9kuo/6VZUy4v1JY5ukWvi4pnHMN4gouCrvGz6GuGxM1JhS25/qxwn0/Y1If67lXK699tppv7/++uunfHbiiSfi/vvv36V8NPZReB5gWVOZPQLXSuWLb36/eoycWGjycPU8GfTy+OOZ91h/f7gs1SqStocVK8RRZ7n6chxs2yaS57FMyenGtoHssl4k+z0gl0PWLzaqrIzVqtCCGRoC1q3DolNPxaLDC0inRbwPkl/J5QwRyNQHOfwAwcKNn4ala6iZLG88yI8K7DgYqRpSg5UchWhxmMsZSNLCxv9QNLEBi3YUaHHENh1oYSqOvrMFj98wyayHQ/tzyOcNuTCuVkXeS5YEsV6pWycmxALSKIuArz0FB/G4eM5zrXoyza4LPPaY2Mjg5pqGQbkcOD8Fx8lFAE7TFAvupFj5YqRqyE0JLolj20KftolAf5UChwmna0GKJGm3wO8Q0hovDUO2u7ompPHjeUDZMWDbFhzHL58HmKaBJGVKcjvUiOTZFY8Dw8NBIFbbRncuBzoqTgSDsp8S6iqS1KVy0pjq61uK/LKlWHT22cAb3yhu9AV8zeOPR3ZyEuOnvxar7gVedsIJwKteJQL0nXxyMJYoMb8gdJKjWhVKAz0DA0C1ivV9L8Xq1cApZy8SEkp0Vr2vD39aKeZtxxWyU8ZgqDKUV9Q7VX6aQF17G57LI+GE888/H+eff37kd7tju4eGhp51vhozBOrmFBFlKvvHN7NU280ZUHpXiDULNRQKFk45Rfz8LbMpGFzSXiFdNQAveYm4xqiOyBMwI14S1Wogvz446BOORSCVstDV1S2CLJtmIPvF4bpCW/rXvwZsG4cc8T6k02L6YLiBZnqhID4jB11SQQPEOyWbSonvx8YEf0vxMLodv52qbP7jeWialpzK8MedaQpJriRJfwGA46CTCFgysPPmiQdvV5eUy+gtNCV5CwBomIGN96VHevJ5pA/PYPt2URfaCH/Ri4DeXA29WQ+HFgTZOuJaME0g6W4Fyh5MW0jK0B4ql1ehOcjgYKDYxXW/2V4y8nkD3bmctM+NRrB/YrkjAIBYLBPso1YqsJ1uAL7UyvDTyNg2slmhE1+tisNRdDrOzCeRoYHBNblNE0NDIgRIvS76rNEIqewAgIz1ks9DztvqdQPxONCdbQa7BDSRe/hh8ffgoKy05W+EI58NEs8lQdLT1C5dXeK3UIMlA9z6IUpCphbIIJfLIJsFjvvc52CsWCHy8vXzlgJYWi4Dn/gE1v43cNRJy4FXvlJ8f/rpogwPPhjo/bE+A3zlOieJzMAAAGC9NxflMrD0rcvEZlOpJBpmYAB//KO497RlebkZMmWzijqfMuLPD16xGbQBrm33nsPM6XWNSKiezOQ1TYSm53mSnOX62URs27aNeDyOzs7OkA45JzmJtCYikV7cc5fycl0XnufBNE0kk0lJ3HOdc06ip9NpmT+RyVyHnV6c8CUtczXwYywWk17aFECSyknpqJrZnHhXCWTVW5q+M00TY2NjchOCE+eq/ja1cWdnZyiPer0u76PyJpNJ2TccvP2JuI6SuOBe03TtdB7O5M1fr9cxNjaGVivQl+fe5fTOTwhwz3ueJz+dwPuMa7+3I4w56c3bkAh0ruPOdfCpjvxenibfYFA3JnjAUBrD6vhWx7nq9c9Pd/Cxy8FPRvDfLQ++q3q37w94rkl0DY1nDZXo4qvEKK/THZHouRxqdkYsjP1raJ5+0knio3od2Gr3isWYNx5yyc24w4EnjuOgaScx5i9ocjlBntJCjDQpRWyyhbBNIGk2wxsBVMZ77xXRuUolsYLu68Ohp58eIhxzucBLiq+9+CJmbGyqxqhpigWWZEKJnMhmMe4aMjYoFQcINhNGR4HkHCfk5Uv5ua4Fz7OQzS+G08e0YuETFTxBzg6TBmiphG7HwUtPKEpi2fNosV0OXLEdRyxmJxGsVG0b3dks3KwVkmMnTtZ1hWT34KBYxM6ePZVkJ3R2iiQTCbG4tqiP/IQz+TxMMygfkeeCwK7CME3Ydoa1C0LXZrMW6nXRN7w5qBmo7IR6XRATjUZ4DKVSoqxEFIRIdEqMjjDQPIaY8fnzxUrb85ApFKTnnh/vFoBPPphNjLuClCDp4XJZrH9JAn9yUoz1bFYEcMvnj5IbUZ4HrF3bKzZz1oqs+/sXo/c1rwGWLMH9lUUwTWBp/9awFqw/dilYbLkM4fkG4PvfF7r55TJw+ukvllUaGhI/GdsGjjsvJwpLLo8qca6CL8ypnTSJrqGxZ9BoRJPk/LQIEPZy5u7PZHOBgMCkByX/rVYq6M5mcfrp4lQPXFfGUGialthATKcFOew+gV7HBCoAbBvjSGJwUDwDczmR3eBgUIVcTjzrHMcKnvlUZoLnATfcgN/X63jpD36AJW98HzIYAX59p/jed5Gn2Hq+0zq2bBExQBoNoYxBzZXNBnuiponAJZvagjx7/ecWmSm1WPRdMpsV//gbqbbLSHTfkDRhBB7KADA0BMtx0NVFQUh9A1QqBQahWkUym8UppyxCtQoceaTIb+lAExgcCkTTs1lk+vqC+RkAu38un0KFnLwB0R+rVwtOuVgUL7LRZDdNUxSlXjcwNhZwsLmc30+DJcA00ZnLYHLSn5tUq7AcB6Zp+dcIsnr2AXNDtpuCbwNApijYbzo1Rpvkg4OyesjlIO2laQan0oaGxHWHHBJ2sLBtoNusBpHUaVd/7Vphtx9+WIxZmqRQEE7/N9Dd1wfTNGS3SgeJchlmYSGP3x3aCKf/KXD7r39toFB4NWbPBg73bffK4mWoZAH338T/T5/Qi4VnngkcfDAexWI4WaB3QSWYmJimdLqgNqxWgaozF64rNPOHhoAVKwwsW7YUhRVLkRlYjxGnF3+8WlTvlFPmwqBAwVznvB05zuf6yqbaTIC23XsOM6fXNSIxnZwLEASqJFKSPKG5NAfJjZC3NBF7RMgDU+UvuAyGKulCBCQRXkSgkmQLybjYto1EIiHLQFIvnLjlUGVcyHOYk+iUHwVzJCmUdnrU3Os56ntOEAOQEi4UZJKT5aonMhG+1L4Eup/nT9fF43HYth3yZibiloJ8Ut1VeRLu5a3qlBORrbYn9dfExIQk0flJAPI+J5KYysxlbIiwNwxDnlqgdqexoMrY0Njk76pHOT+JwGWGOMEfJQPD0+Qe9Zz4Vzcm+PjlmwHqS/W+V73e2+mrq/XjdeRtGlWnfRmaRNfYqxHlQRrlyaYuauk71b3X/9x1AYst7g2vhqRtIulWAAAb693yZO2cOUkYfHVAbmP+wobP94nvJo1WyrZUChx1u203zOB6nliZDQ2hVK8jf9994sJ6PTij7hMHtEgkbhkI8uFJhj2PfFK46obdm1n2PD11n2JyEqh5RtBePoler4uFGl885vMWMo5CgKj9QsG6SIelsxNwXRimCQuABYQJdIquSgWidz99254bOTRcV3QVkSL8pDA/sGXbAYFBxZENyiJz2f4xb+nVpuxmiE2ZwCOdFuMqac6HIp1YYCejJYhw54cGaI0przdZQkSgP/PMVE9ruoFc9VwXlm3LhThBbh4gKWV0idBeuzYImEfBRvkp7VxOqK6MjgI/+QmwbVsdJ58cx8CA6IPeI4/ExlgvbvuZ4PL739kNizYA/AHreYEXYKUCNPO98Dzgz38WZHlfnyBUYjGRP5EUjiOO4RucZFN/93wMqs8LvRDX0HjuwIly9TOVaOd2m65X7DdMM9gk9FnkXscBHAAeAqKZrifDTMbAJ5Dp2UYHdVxXmBvPE0onvFjZLMTJJBWui1K9jjUAXnrvvciY44JEXrUqcGk3TXQ5oshDQ0HVtm8Xf2/ZIpIi2ZKQiSYjQUw53x33vJCNUE+g1esAHDvQK7FtWaeRqgHTzKA0JO7v68sgSXMT/5ls+RsRoTYk4jcWA6pVGJ6HjG0jk8/6XtTDAYO7apWvaYNAb8Qvg+eFCXSC5wkzVSqJONLptHCWJxvND1uNjgbqXpSeOOVXDS7KsYT9ho3FrGD3oVpFZ3+QHtet37YNGC9Ycp+aE+18AzyfF31L0uaESkUMOS6PQ4elQgHH/XHkui7sUkkMiLGx4HuyZ2TbqlXYdkZugJsmqzNLml5DQ+J95Uqg1RrB4GAG/HBcfz/wlreI8fipTwGbN4/h2GNTOOIIUf6Fhx+OWn4h/najkMDpzedCOjaNxtS6U4yBlSvFhgh1QbkMDAz04rGHxZzCtn3JOlXKRf3Nq+D2vZ3U0l4Kbbv3HGbOjE1jt8GJxXYyEzuDKA3rdoQ0JxVV4lMlrHka3EtZlR5Rva5V7W31XSWRqQ042pGw/NpdIUb59ZwIVzc4yEM6agNE/Z+kZagdicCm+1XyVdXx5l7Qu9L/UW0ctdGwo/t3pPetarWr6avf7Q7pqo4HVQe9nTY7z1/VV9+ZNpiuvNPVeX+BJtE1ZgxU8jzqbw6VQGPXe65yHy0I/HtoIRV5MIUTcaYZub6nvyOLMM3iwACmCpgzUJCxWCyaJ4ziDQERVKqd5Wm3TxFZTKU8nCBuW181EZ4GBaeMqkREsK0p13geTLttc4UCwdJttNCjvlUdJCcmhOehoWpzKvW1eGOZgUSLimnbRCljVJtT2+401MbgN+8geFcTBgz/98GbPKpcvF2pTYkAEdc3AMSD+00TDS9MUliKPEMU561uCAHth421u0T4DCLPCXohrjFjwDc/6f/dTYfe6W/SL+M72ex5YrHnS4jlM03Am5p81H582/qwh1Db35efqLpn0I4XnDLnUC9skwj/aIrNiMiQP9tlNbjR8d8NnjC3HyywNICgH9rYaTV/Sk6dM/G/OZ/K7SO904YreY5L6XzFpoT60TRFG9M1OyBgp5lGht4JaqBPdf4xHQxgqo2O6n+Wl0wzor5Rt9brsSmfk3d9cG8NQCq4wLblfNjzEBad9xE1V263Z02OJtPWc0efz2Bo273nsO+Njv0A7chWIEwykUc2SalwnXFV85q8cLlXMBGMUeCfx2IxJBIJeX+j0YDjOEilUlLKxDRN2LYtJVfIK53npRLBvC5qIFFVFoPqSvfyIKecSOda2lHSGSpRrGpWc7kZNdCl6jXNPe9VyRgqA3mfc49v3gZ8U4Luo+Cm3OOb7iFP6lqthrGxMZB+O+VF+cbjcUnGU9/Q/5QP9/amNlXlUaI2KrgEikpi8zGsaq2rGwe8nXn/8M2HqLT5+FQJc/Lkn5iYkGOKZIhIY5/KRxsWpmmi0WggHo9L+R41qOh0BDgn7lWinm+2tPut7cvQJLrGXo2o1aayUAYwdXWlsrvKq15H4H5mmsK9lmmglIeCj/J5hBcN5BXNSFZ18ZfNBh7G3ENKeDD7ZeOBzwCgWMTcxx6TwRJx8MGhQJ1NGIi7QVp02pecy4FAy5yS5yfkLe5uR8Svk0F9c+AlT2XnTZfLsWBmjBCIx4M8+Dq0CUMQ0Orimd6p/Vw38EbnWrl8tRyPT3W/5ot2AJlcDcWiOG5veDW/fAZsWzQheUyrJCx53vNTw9REQqokiULfYgDiWr7QrNeBzs6kuCcnZFyqlXD7U/HVccGbJJEID2VOFqgkNnnt0fWxGBt4pPVCmRJ4xegMt3+yoeYFOrJhaRsrpLJCyVNQPKrDrFlBkD6qW6Eg7lm+HKhUbPT1iftME+LUxlAw7AcHRfC+hb427ziS8gACpUmSNv39gijp6wuGMJWNfiLVqh+AdToWTP1ffYbsiOXYi9CBXVtc738uAhovKIgM5M9zYOrDmO9i0v/8WkrDf46Nu4YIXEgPgsceEw95PzDiOEQgaflcdTIw6MFE6edyQC4Hb1g8O4jMTaUCSaoQQUlF8R9O40jCdiwY5dXAhg3IAugDgMMOCyYNy5ZJT/SamYQJkVehABxxhHh25nJh7nl0NOxc63kA8rlwG+bzGPcsJPOO9Dz2nd2l7SbP7K4u9o98volT2bRHzSVMMmm2GcH7hOY/c+aIulG/TEwIQ6FuOHOjEREU1nDHkc8nRayX6ggEFSa+s20D2axoPpIv42Ss50HaraEhIYkzNiaqScFMHSeJ7n7hXl4eFN+N5JLIFAoYcS2/yBa6BwYA25ZNFI+HSXCedyIRrhrFxqbqmabwmKfvTTOwhzSm6DvHQfAPGdtcDtayZSKA5+zZgW4bJUSnKxwHTScj941o/pfr74Zl2xgeDk6Lkew9yc4IucJUUAa/GPl84JixbBkwPNyFgQExfzJNoJadi2o5KM5IbhEyxUCCj0/JaCpHBygHBkTRBwZEecjz3HWDKrkugsR3ZIfVXYIZSLJr273nMPN6fz/HdB7LqkY2EdY8sCXJpXDd746ODkm8EgkOhD3PVcKSPiP9dNu20Wg0JFnsOA5mzZoFy7KQTqcRi8Wk5ndnZyfi8biUluGBLVXNagKvG0mrcAKdS6qQjAgAKSfCg3Py+6YDEcxEZpPcDA9yyYleSpMkauidX0cbB9SepE1P79Tu3NOcX0NSMKZpwvM8SQZTv0xOTqJer2N8fByVSgX1eh1Vf6JDmxnUjkQUU3tEefoTic4Dc/Kx0+5kAieuqc94e093IkFtL76xQwQ99U8UgU5l4dItpHlOGwsjIyNSD53KSZs0vO8BhKR4qF+itNGjTnpEScLw8aRukmg5lx1fr6HxgoKvUgh8kai6WPHVgmmiBkt4weSzwIIFYta/dq1YJR19NOA4GB4WspQB6WnBoBUvrbhyOTSdDLxKmKMnQpoIZoBpWNtNoFwFHCfQZbdtsXIbGBAJrFgBnHACUChgK7rhMkKA1rIE0qzmx79JH5Tf47oAbAuWf7S6BnFEeXRzEB9q/nyxsE9WN/mbBEQu2kEQVHaUnLqBe4vRoty2fSKd9VnNEwuuJC3CSeuVBMABsXDkhEEqFRZOBYJVP/09NIReOjJe9QsGschcsSKQdaG4SOS9xgOp8oU5XxwTOZFIhLlpPhTbreH4mKD/VV12rq6jely343upT+NxhNtmzhwx0OicNtn7dDpYiPsDseYZqFYDyRh+1BwINHknJoJ+7usL9o74up6XmbrOccKx6kwT2LhZ5Ek/o5UrRVpnnTUX3fmgj6h+ALBxo3hfsUJwZAMDonr8KD3J7ZbLAHJz0e3UwlpKUZ6RhKhAZjMEHdi1xbVeiGs8r1AfjpxF5J8pm6Ih0LX+75Tid9j5bhh58ezHX/8abBJmsxgaEh8XCkKSRQSkngsnD1j+g66WnYvSsMiey60D4jmjTifkM6ksGMLhkthE7BkeBh55BPbBB2PFY48Bp54qZFKcuUiecgpg23h62IDriueUUR3BwEAGhULgFL99uzBzY2OBrEs+H8w9RpCBU8gISTnTxPqyhVJJBPx2fDJ1YMAno4eHRWGLRdRgwapuDR7qDJ4n7KDnBSogY2NAc04Shs36wX+OjthzUa0CvWQESPKFEkokwnMyYpkPOkj8T7ojRLaXy8jYtmhPCtDu7+IbnoekaeKUU5JYsUJIgQwOhjefiTSnOC6lkijO8uXcYcGS39EjP5cTG7VkP4rFxfA8oFwSRSRTydVTSLmGviPwvQa69pBDAucC0xRjqVgM/yTkHoTp2+4nnxSFLBSAN71JDIYFC4KJJO3s++R5tQpMbA7MFgWnFT+tpNSSnzdP7Olks2J6C4i4oIVCOOi9H0tWqu+ddZb47qCDxJTCNMX9nifmL40GcPvtAGCgv1/Uh+YP1ar47dEel+MEcYZIjq5cFmXetk3MOTs7xX3j2QySZi36OcAHLr2r3gczCNp27zloEn2GIYpA5x7MXEKDB/QkEp2ITE6UU8BE1SM2yjOWk+icaKR0KVBpKpVCKpWSATNJ65tIZh6AkUhWIjKbzab0GKY8ibBXwSVOeBmJQCVP48nJSelJTeUmcjpKf53aOB6PhzYRiBRXCXT+zjXmKQ+6ljYxiBxWCVROWtPnRCZTHvV6HbFYTNaJNg54nScmJjAyMoLJyUlJolOQWUqL14V7WHPtb+5lrkricPKenwygvOh7Tmpz8I0PVXJIrTOBl6EdAcv1z2lsk25+tVpFrVbDli1b5BhTxzmVizzked1o84J+J7Sh064cPF4Abyc+xqJkf/YXsliT6Bp7NVRPUfpM9eJuR6JzRs6fdBMHW4NPKlM0MdsGjj4a466B4WGhx3nwwTxJS3if5XKSKaxWg/WhaQbePHQJaWxKro4ydxxfi9VAN91MK5Jly4DlyzFuZvDYg6LoXV0BT2C44zKd7mwW9dlJuagEgkUxcatcm9u2BXlOxDv3Iu52aoH4tWAeRIJ+kDbZlqYpJ67EcUxMBF1Ga6CkzSROvMCrGNkkknl/lVoqiQ/JI73RCB9n5sLbnK2nFVu9HqymaSFu2zCdDACg19wEeBWYxcVSyp5zAHwTgrygczlRZccRiz3uUMed4TnpzZpGDk3V4dI0xaLU8GqyIJl8QGgTKUzx8lSHcv4TkJ9RRuSCqGbMdjpqtliAoxL0E9fTpyblxArVjbzKiAQgUr03H9jTmmdIwoJzLURCbNwo0qSF9H33ie7u6wOWL5+L4dWivbNZ8Rkg+sY0xU+C+ATDq0EEtA2GJxD0nzNgCa119VnABycHtVVIiHjvR8x/7cr1GhrPG6J2GLk9JvJrut8d3wm2bYxuE8/JWAzoyecFY7dypXggnX66ILiHA9KQ7N/oqLChi/0dvFIpeNbQo5Oyo3uGhwObapr+c7tSAbJZuQHbQ0E3li1DcmAAOOEE6WW7bZuIK0Fp9PUBqFRglEropp3GfB6dnRbS6UAHnJ6RRG5SOXv9UzZDK8PX9fcDxto1ge32DZSVywUuv9SOrJ35M59ergsk+bW+gHfFnYsNG4Ds4d1IFotBcFGKlm3bgrXlx7rogU1GdmIiaGAqF+8cMpx+wTLlMjKeB7fvxVi9OszRk0Q89dHwcECW08Y3MHVYkc1n8VMRiwXzKyoGgYYnTT8oOCk8D4XCXJhmELbFP3QQ8l7vzTeBahXjZkZOMcmWwvP/aTRELJMlS8RuCHWKbQP9/dLhwXWBypC4NJ0ONlko0Dfxyg8/LAKqd3WJJLlD+xvfCBgr/wIM9KHmdMtg8818L26/XVxz0knhU29DQyLNOXNE/TZvFvFJKhXgda8LNhpouNB47e8XaRy1rBlEgjVNeF4GK1eK9pk3T8x3aIgUixYMPy5RW3Kc23V1TjhDoG33noMm0WcgomRc2l2nevS28zgmsk+VmmhHWqmex0SIU7BQ27YliUxSMiRrogasVEnvRqMhCWIC92JWCUeVBI8iL4lM5aQ1SbVwT2dVi1ttZ07+q/lz0lttd+5xTGQ6L0uU/jgFA+WkMm0kEMkdi8VCnusAZDu6rovJyUlMTExIL3og8BLnZaN0uTwMl9jhXtdRJx9UmRJ+fTudcV5ntR25d7/at+r4jQIn93nA0MnJSdkm3Iuf/1Z4HXmgVQ7uVR7lDc/Lpkra8DpHvfYnaBJdY8aAJtXt3H+jvNCBKSQ659MsWpmVy3L1RAGliJSj64mIzvhuSlwOgxeH65VTUUi2A9WgXFP4PP+IOYpFjCCDckl4qQF+sEv4sip8xWuaSKeTsgycl6CFDcmQAMHftPBiMUuD1eWGDYFgJS2GVWZY6QbyWKY8TBOSQKcXeYCLR7wRLNaBQCclHhd5cCkATqLzRqMKUlmJmDDNoD9KJWDdOuROXjxlqFAzUvAt8mYj0kNxgpT3maao79hYUEROntOxb/qO7ovF2AYIaxjLceA4lqxaOh2+1zRFv6vtKUl0zuKr57RNIdnjeYHjP5WRe8DT36OjQVBcIg+IZJo1S4xDcmjvdUaA1UOyoFY2i1yuV3YDNT/xJTz4nWkGpDq1Of3NyRJSCigUAGP4aXmzbXfLNpg1S1xLG0mui6kkOnUCfyfMQE82QOuqauzliLLRUZ/TQ6gd4c6ecWRDZLBr2ogl5ts0sW2b+Gj+/CDpLVuEiVlcEA/yKiOhbTvwCqdTQpTsFPgPSuI4JZvb3y/c3gsFOX8YGgrsrjzsQru127YJVtJxYDvd0uTRc5Kq73nBBnVv3kYThgyGGpoGlcuQOwOmGews8g0K5cQNf0RyW5B0zPBFrgvPFnORSgVIZrMBC01aYHQEjc/P1NOCvF9pF5tIdK6dQwUZHgbKZeRe92LZP3y+QU1ZLgMbNtQBbMPw8FyUy6ItaVpAp8jIcZ5sDbVtPB4cgFObidtGw6sFH7guktksstlgM9c0BXFtmU2MVH3nAZ9VTvb3g2R0knYz7BDiecJ4OQ6afYvFHGFoCLBtKT1DqFSCOeHs2eKd7DU5cWzfHpyyyzhNZLNGsAmwdg1w771ik6VYlBMfw/NgmgsBiM2ejF2TeQ6bFrZvF22USgWBSmkfhbqfuo6cAWRbDg0FzLrjwPQ3800zkHchXwjP8203n/yotjnKts8waNu956BJ9H0InKjlJHU7EPnKSWdVt5qTVjxt8hImcpHITtWDWPU05nnT59ORrdyLmcjrKP1rldDl+tNcPoOXNapt1M0B3q7qpgT3Ruf1ViVe2hH9KtFMmuS8bYjM5veTd307ORXuad9sNhH3XcqozNOR05x4pvS5x7k6JqhtqdyqPv3O6HzzvPkmD+87tX94WdU25BIy6ouPiR0hSqdcbTs+pqJkj9R89icv852BJtE1ZgR2huhq537Ev0OYc0TFZy5zObFCcBy4lcB7hwjUEOEtN1LDWcRiAdlNl9HCgDhiS/UU5gUi4pjJpaivKfALwYl7zjnze3ggTeV28U5lS6fDwqA8Ef8G0xQLQiJ3OzvD3uhR7UP/07o7ybVpuPZqO5k3vvCkSsdiQcVo4c7aD64LNBpI2mIxyQnofD7on1QqqH4+H3hb0/4BHwvUrqqnOHEGtA8Q2Wd8pyPignZVb063jKKCExHFPT1NU+XsQ+tTPkZoD4PkfYAwJ8+dQslbPgTPC1XJQBOxmDFleFNanOund97OlD9tIoTq603th8jfyXTPjemeFzMAeiGusU+A/2h3YOf5XqHljYsPaVcvm0XNE7aIJKX5faEYEgz1ekCe80cpoBRFsS8AwhuXFCDCh2ofDDDylGl6UZ780FUUSA6N7qHyeZ4f78Sfv8gyUUJ8g8LzkEoFnsu04cntgiwQZeY4IhC7n1/TTsKgGBzT2LJQQTn4Ea5YLDCY/JgXq5zjCI9lOjXgeeJ/IsZFEeIol+dKiTGae1EXUdepXuZU1XZzppA95mNUqZdq30JfKHPPSEPsy9bJeZG/u0OOG2qSnZ3i1WgIW8w3p/l8Ba4Lx0kim/XLR7v5vBH84O28y6OqwKvMhxif86RSov1nzRLfJxIAvHAisVj4ICnd33aOq7b/PgBtu/cc9p1RsZ+D9M5jsRhs2wYPJkqEOhAmLIloBAKSWtV15h6y5D1dr9eRSCSkBzOXJyG980QiEcqftNY5cax6xqvevfwzIs9VMhyA1LbmpKoaWJQ0xYmI517YKlkbRZCSLAtJ06RSKXR2diKRSEitd5JHSaVSIM/7OJvJ8D4g+RyVFOQbICRTQzrn/F4eEJO3m2ma6OzsRL1eR1dXF+r1OpLJJIBAEz2ZTMqxorYzSZy4rhtqUz4uuJY9LzcPSppKpULl4tI8qkQM96rn/aCS8lGnJvjfVF6ug08SQRQ0lN7VwKAqOc77hedN4HJJanl4PdVNDnUcqJ/tb9AkusZej52ZPEcQvfJzzv4BcPx/rcqm4PjzWWcB2SweHU76eqNCX7NYFIt100miUhGLlkxerDppYcmlp5MYBzwPmbTIr1QypJO7WKQlkSwWUfOMYOFFiyZyi/Ndf00z0JzmiyJ1pUNrZR5g0T91DscRCxRaUPLmoSYjpzAzl0GyYE/19KGzwHQxAIMWz54HwzSR8b2pSUebPL4IPIAZrenrszPo6e8XH6jC7jx/VSycM9b82nwe41nfE9r0vb6pMQYHccIJi+Xlriv0Sycng1PpW7YE7TZ7dnBk2rZF25JHm2kGnuh84cfXppzYpXVqZycbj4zobsKA5wZ8Aq2veVOo3BLlKcaRBYONHfKCc6vh5otyFCTZIfLSSyTCjv2pVKCLSuOVvO1QqgYF8xO23BH/YuE1yTcU+CLdNIXzpq9sBCAIgpbLCS9SQHjVmSbCmyyOA7MaOFtSW5DHfMjTj18QBXWgRgS731uhF+IaMwrqQ43eVfaMX8eelzXPkHa0210P/HGleCB99KNANouNsxZjy2A4BiN3wo7HgaZpwQhPB9BoiGdzxvY9jQdLSDoOEonekM0aqRrIFIsiqCg9wufPF667/f0i43weZkXYDgpNITlscoEGwjuyCDZtybGdq3PRi0vHUQxpst3JQkEkQEx8X5/4n3RfCNUqevLCdhIpP2tW+KRazTNgkc13HDRNC9VVoi3LZXFdLrcQyaPtcHAR5QRUqH/JONLRIt4GnZ1APo+N9W7EAXQ7bP5Rr8NY/XecffZS2LaYizUHksjnhQP7448HJ8mqVaGGcsIJQVZ8SHG1GNo8pw0U0il3HGHb+Kb15KS4rwlDbB74g6cGS/ZHeLwFJxSb+QyMfB41WDBNn1QmY0udTPpxhYLfvgYSiV40WNNyEFGdcTchk3VQLAo5Pz5Ny+WEBBqGh9Gdz2P58kxA4PMAnvQDqFZRLAZjtWla8tRcNtstNfpJ772vT8yRqN5Ud9pLIjkXyxsHJs1gfus46IT4DgjupU0vwx0PjxvqPHrnn5Pt5v/PEGjbveegSfQZgulINvJgJtKaSFySUyHimK7l3rqq1jWXJaHPiHwlwphIQ34tD1xKeXKvZwAhspHKrAb3VHWjeXBKItDUe7hnNgV8pM0B7kHO9cmj9OFVmQ0Asg5Uv0wmA9M0kclkkEwmYds2ksmkJM1JqoV7pkdtCrTzlI8ikmu1miTPiSgm4pkT0ADkGKD6NRoNGWSVf65uXhCxTIE3x8bGMOmvZomcpzagdiWogVXJ+10luKkv6W+qF+9f7n1P46jVasnNCHWzhdqi2WxKeZbx8fGQ5zkFFiVJHy7hwuvTThs/apyShjyVg2Rw1HzV8RxFoKvf7U/QJLrGjIBKkke559AKSZ1UKy5GRnUESdcVBPqqVcDy5fjz6KHYOBhwuQMDYhHS3w9gqAQjn4fris3QrRVBXPIixOMQQZHWDoY8uOr1xZJED6oQeOfG4wgWU/4CnaoXi4lFSizGtLQr1SksuOHVkLRNLCxAkvO0VqV1B62jSc6FnLjr9eAorpDvsODkFodIBstjEiSqWzMj2g3bhpObK49a8/ahW0lug9beW3IZOE4GhYG5on7UAZxwUEl0dRFOmRWLWHmvWKgec3QT8tx7qQTcdx8yC0pBYWwbvdks0GUCeYS9DPkZbipDOTzeMnLlCKDqhtkOLiAOsfimYVnzDADWFEIbCHtOthvi9K7saQBIAmYSlWFR7YmJ4Ng3Lxr9T3s1xtATgGki46+Gs1kjJKGbcZqBrgFlNsYKZdvh6Kj0WT4PD1ZoDHI4jtik8rzAc5AChxruuGRAegpZcQMxIraNkao4nr6oIOZVTXYqInQtbzT6W9VQ4rs6tq1JdA2NPYV2G1mqcaBnL3/oKW7CRPhmnKa4/857gRtuAM4+Gz+pnoktqwLP11e+EshU12M824vBwfCjXXBuVohUJS9eqU8xOAikUuhcECbRSyWgbCblZqNtAzjwQGHEly0DCoUQwU5mXcpbENtLu9tSHFtwqFR9mi/wJgACQtU0A8kvsqPZvl6YuV6g71CZhlcBFhXygVg42VXfccByHFimKeZCfiGeHjawbRvQ1TUXngcMDwVEPVgTieLPFY/6/oVi43J4OPws5XabhMJJ0H7evIB09zygrw8P3SluO265E9jdsTHg3nuRefBBuTNtmCYO9Tv0mBWFsHt5uQwMlQHTxELaxZDj0X/ZNpBjhD+VqwrAFWU3/O8yjoNq1UAsRmPHgGkmAVMecpOn10iOh4rteaRf3o3RbcF+AYbLwaCjgCu2jWZxEYbvDTZSgDAxTlOLOXN8rfXbVwHZLJYseXFImqhYFGn0OiPAHx4DymWcdtJykcBKTyRAg4oGXaWC3uIIkHcw7oo5QNKf/+Ty3VJ2hX43AwOirrT5Q5sP8Dws7Yc/zoalcwNd2DQt2F5g+2m4ZDDSPjYCP5rBN+05ic7HwAyAtt17DppEn0GI0usmEIkej8cl6U2e0ZzwVL15OUlNnr9qPpQOaZ2rIJKZiGpO2nMymEhFIjK5lzyXleGeu3QflROYSqITcVmv11Gr1WTdAIT02KlsXNM8KtijSqzyDYlUKoVEIoF0Oo1UKgXbtuE4jjwBQIQrEeI8D04ck7e06unNZXioHJOTk2g0GpiYmIDrW0mV8CfiPh6Py+ChlmVFekKrOvFE1Hueh4mJCdTrdVSr1VBelL4qT8MlbmgDAYB8531OmwB8TBCojDQOuG49lYHLpVC6XO98dHQUjUYDo6Ojsux0DW2uqNr/qsQP5c/HAtfN558RiJDncjF8o4OgEujtSHMt+aKhsRdB9SSNYuVUhpEvyG1bEm0AYNAqZWhILCiXLcPP/zcIYug4IrjSoYURsSDzNVeJROf6kwA7tl2tAuvWBWelczk07MXSs8xxAg/mVEosdoQ5FyvurW5SBrJMpQKnMtMEjMrWaPIBCFZu1Sos00SxODfkabV9e5gDB0QepITieYH3MUciIcrQ15dE0vTCruQ8iimVwXGEp5a/EcD5Slrv0KKf+G2qrwiEaomFL4926bqBTgz1LbEf5HrvX7dxm4XVq4VX0zFHemHB82pVuK0p40KWXWUsqNCUL3UEd0cnTRNyVSMWZ8GCkNi8YZpI2rYk02nNTuto1VObsuVa9kBYLoi6njzeqKmouqOjwrMegDzKTWoDlL7hjkOyTH4k2u5cDsjafkJVYLAsNPJpoNDgIfd8LsdjmgHD4hMYKoFPRHc2a0ivd0rCqmwS5aFG4OyX30BNU5x2yDhNsWFl28ILn8Zi1O9DJdJ5/9I4U8/xa2hoPHuoHqUqUU6fq/cQ/IcHPTeTXlXY41WrgN/+FjjlFHz+avHRWWf5es4YAW6/HclTTgHQCyD4efN42ZzDNU2IREolYPVqIJuFeeCZIZNHZo8IctOEjEBdKy4mGWtpNzNO08/bX7sMV8JRQ/3NAdMEjNJ6WAD6+nqRzUKe6OLTGQrMTY9FetyJAOXB858/PnM5Cxm6GAgiOAJBJcplYTAcB64ryHMKiDo4GPZLIBlz6ppUisydgUPzTnBx1M5tFInuX7O+ZGDtWlGkFSssQRrSDv+qVcFEgT/r+RyAbDwZUscRGvXcYHIbru5YkycBlYuuNU3YdpIUT6bYZs8LSGTPCwLJ8314HjvFcRAw5ETy53JANiuDo/L4sHSggE6pyUC4pRLw2GNAOo1MsYhMLutPqlxkPA8ZzwMGS8Azz4iJANk46nd1njM6KubDjgOzsAjVKpCEsI2WN46enqSc9ti22PCu14Pmt9yRYGJHMXUmJuQpg2a2W7RJ1Q9gPzQEy7aRpDYYHA7/NvgPU7XZ9Bk1Mk2iZtAGuMaeg5617UNQCU1OenKo5CWRiqr2NhBIWQCYQvICgRc8EbftSHsiBjl5HxVMUSUnuSRLQ3lIcUKV0iTZEwoiyvNvJ1fD8+Pv9D33sqY6xuPx0ItIa5Vg5u2ptrvqkc4/5+1ORHG9Xpfe4WrgS15PTjxziRF65wQ+XUf5EtFNpDd9T17takBQKosqicLLr0qbqH3AT0KokihqXjxNPi54/6uSLXxcqH3MCet2nuhq4E9edoJ6goCXX01LzXd/hvZE19irsTMEertr2eeh9TqthkdHpYvV8HAQ+0h6ptGigK2eVA9hHv8SVVesmGj1ZNvwFMcZCowWKqq/MiHOlxanQODdIxcM7cBYa8Nx4DjJ0GJXdRwHAv1rXi+VY6byJm0z+kKuFaL0Dc9LvUV1bKdmzuctoRsftXjinei3Wc0zhB6s52GsIrrUtll70OqXGAe1EYBQkNYpi3/Kj0dg5Tquat0TCaF3wuRaqPyGacLzjFA7mGZwRF/tK85bAyJbzkmpXU+v0VExDImvoIUvOQPKNKldgLDwOX1OjDzpGPHC1OthNzlOjFElfI9PQNED9tuiq8sKl4c2t1RyzXUleRLanOGRStX/d/a5oY6Jds+WvRDam01jr8au/JbUZz3/3DQB+ojtFtYqFVieh9WrgVZrGzZs6BK8JBHFTMaEkuHhMygrz/OfT5wpN83QNSRHxoN+miYko06ByLNZFljaT8e2k0HZFRsmn+f+d04+kEPje8c0d+CPOyBs3miDmvhgilOSSdthnfHRUfE32TGKoF6tApgbsicUaJp77ZOsDFVJ8tEFxWa261s+waBNkkrg7e55fuwYQHQYOTzQ5Ix2DoDgyF25LNy+u7rCm7vk7cB115mMjmxEAtnuiPkMXRYVW8YymzBNA6OjU80Jd86XdpDf7LdDtSSupbFkmkHgTZ6vHFvUYLR5QDsc/KgfzYFop4WOfal2m3ZN/M/rdQDxoL/U+AJqnJTQLv4zzwSN5fMlvFhwWL9Rn9L4Uz3Ko+w4f283p9vLoW33noMm0WcoOKHHSfN2ATNVqDrSUZITahBRlfzkUKVhVNKR66cT8R6lQc29eOnFyVJOQqpBHDn5yuvBdbnJM5zXJeF7dHEJF9oM4KR5uzagtGkTgsuzcLI8yvNf7U9eDvU7asMo72aqEy8L3xzhZCX/jsYP6Zzbti017/mmB9U5ithWteyjoJLspDPPde7VDQfuQe66buiEAw98yk8icC18Xt52ZeJlU8eUSnTvDOGrjnu1nXYG+xNRrEl0jRmF3Zwsm6Yvh+J6wSpg3jzhUpPPY9asQJ/Zj/EULNz9BLjTNTk7Eec4MeFLfMibAeRyoHU2n/uTt5r0YPe/pGKZZvBdzTOig5HSDfQdra799jHQhG0bkqTNZgPPNrAyqcQsXzeGsqR82MI3RJiyi/mCi4NIgVQqzFnT0Xjb9jcN1Dp2doYbpw3BTkSxaQI1Mwkrnxd9TF5R3CWMg5Po6vdUR3Ln5hGweFDT6cAWebYtiGOKycYd23nfUB/w9T2LRSeT5dw2pUHtrwbuVIs0JTEu1RN1tJrqTJ581Gkkrk7XOA6adhKe36SRxIHnwbTF6RBJilNalD8nPNSAfrzCUSRNVF+qaLdpMkOgF+Ia+yyU33TG8f8v+b/tnh5YBx8MzJ+PbBbYti0Tjuvp30986LZtgScvNyX06Jd619ms8BD2d7Hp8UMcLHdSlhdA8I38EeV5wXcUmyJJk4tsVpKZJhH4/kPfQBOdnYY0K5Qnf0RxM8SDl9L1/JHWaGDqc3TevHAbJxLSOKuPw66usK3mSXFyOBS0ldsPuiCXCwhd0kBhm6S2nZTtt20b0JPLCdkR2g2myRkF8WBzrFDduExOVMPx8UW7IwQ1EqzfJ8TzUpXicXEbmX/ThNw0JscENVgrmU4+ZtQTkjQuu7rEMFGD3VKTybFFAeC55j11DNlaPlh4B1OCdOzBtqXkSrXqc9+d/rWui0zOEbFb2NyQ/hZOFsrAo8r4E50pJpZ/0M72tp24KGnMQPutbfeew8zqeQ0JIiQty4JlWTLQZ5TcBid01YCMJOPBSVouDUJSJolEIhSMEkCILFZ1rclDG4AkfkkGg7yE1QCTJCvSbDYxPj6OWq2GWq0WkuKg9Hi9KD0iUql9OBnNvajJo5wCpdI7bRbQ9zwPItFViRzKNxaLyWChBE5ac09vVeqDE8xR3tBUNiL7uRa36sVP9ScdcJ4nbwsir7k+PAWX9TwPpmlicnJSenWThA7Pm8rKxw/XXKey800L3ra2bYfqQO3BtcupTScmJqbUVT2pQFI0k5OTU7z7VQ90Kp960oCPYfVURNTfHPx0QKsldNyjCP0oL3TervsTNImusc8givQDANcVk9ChITHjz+VkEDAsX46tzkIcfHCwtkwkfAKy5LN7/mKDTkED4vtiUcisjNvdGBsDmsVuGAsWBAuIbBZYLeRFaN3E13ihhbjnwUGgrUmLJdLhtJ3uEMEdqqoHmKYFK4sQCWp4HiwAPV020mkrpG3K01G981S+vl4Hxj0Ldrbbl2uBXFxFRb6itazUqJbdYUhnJ060E6cgA6eSRzFnO2iRN6XywT3ZXDd6esRH4kT+XCw64QTRUXSqIHQW3wedk1fdxyhtahSufyPbnpHDnNVQPdn8dCzThAUgOccJBS+TnpAALP+VzIpBQ9fxbDnfzRfrpCgzNhYs9nn/TtkYSSQCb79YLGgf6gfSPyAWiSKL+v0xbmZgF7uFNIxpommKcTa6WSSbzyPshsYWvYZXg2WacF0xLrr78oFHGg0UHvHNtlGtiI/VIG8Agvuof6dbpPPBzv+fQYvxDv+1K9draDxvoN9SlF1WybCo7/n9a9cGRKrjAC95iSBZTz4Zy5YB1WoMxWKwl0fMZy4vTpg98ohI7qCDBPe4MDsCDA8j09eH9WWxsWlRRFLKA4HmM+ccySzFYmKz1swmYbuBrjk9m5t+3BQyZ91+5ORacbGULikU/PJSwatVZABkcjaaeUts/FerQD6LSsWQTWCaAf9Lf8digYnknuJbKway2W5hRXI5IWjteUH8EdIgQSAjl3GafvyOsK2hNhgdFTJxs2aJV1cXQsSzPFJnmkHgTNcF7r1XfOc4aDoZGNURoFJBrhDY7scfBzY6FpauWCEqNH++cHbgnsu0I0/RLunEFNk0ThxzG+y6wUYwfQaEDSPfOHddGMNPC7vtb3xwMlny+a4HA2KTnG5Vh7nn+XbLHwcjyKBaCp9mpODaZI5J3aSnR7Qxbfx002ZPvQ6pI+RLC4XmT9Q+1CZsINfsDCwa646DjfVuTLrBqcCFBX/g+yfEDMeBlcvBsm04jhEy68l8kI4kz5cskf9bqMFFsGEwhfymPlU9AtRGpO/oXT1VMEOgbfeew8yZsWmEQMSqZVno7OwMBZScjpAFEPLedV0XtVpNEshcSz2ZTEqNdSLRTdMMBWZUiWIe0DORSIR0sgFBghFBSiQ59zin/0mTmwhV7h2vBjXlUh6e54V0ybnkC3neUzsR0Z/NZhGPx2HbNrjnvUrUdnR0yHbmuuxcC5uTr5w85y9qByL0OYnL9dQJtAlBmxyqxrdKJlM/EJnsum6kLAr1Kfdw7+zsRKvVgm3bmJycxNjYGKrVaigvviEBhD26SUpGJanVzReqKy8PDzxK2vGeYsB4O6ukOg9Uqkr/cEKd2pQT/lRO3p5cukYluVXin59iUE9V8LGklotfF+Xlvz9gf6uvxgwDX1AT2i3Qo4520kx/7VqxQjjlFGxFN4aGhaxkPC7WlUDYYw3DQb41WBgeFtfQnN2obAUGB5FcvhyVioFSCejt6wNsG08PG3B90n3evOCIt+q0CwTBJjNOExnbk0QkrUXV6nJnYe4Zls0mYTsicKp0sfPJyKQpdLm7i3k0YUjnLnLGIu6X1qmcL240eKxGi2nDJlEoLBTHlN0g+KhRHQmO9rL+6y0WMZ4VwSZpoQYEbZK0m0CpEhZdpQI5DjaOCl3ObqfGSGpIMj+Zy2HBgiQqFSGjCgCVZXORz89F7zI/8Fkuh42j4ng9BVglD0bDqwUNSwWkd+oA3nD8vD0Q3v2IevHxapow1EWgStyTLfcXk3QioWlakvdXHf6IC6C9oomJ4HQ1nYCQ61LazeCRzPhKnQ8+IkMYoT2CDIYGKe+k3FMBFNlVZSyqEf1cN+lLqRvoLRZFvqSBm8+jBqGDXh8NH6W3/HSaTsY/ZeIGGyXt3PD3EU82QHinxXZ4Vfh6DY3nFSqLCETbbv7c5NcA4nf9t78JbecTThCbd8tfilLhpRj8owhSCAj96FwOAXnoeei2x1Eyk1i9OnhGzp8PMRe47z4AgJ0/VEwR7LmADXjOQkFCb0cooGIqFQT0pGLSxvrCggjA3Mz3yvialUqgpFGvA6lUBl3FDP72N+CBB0R5FxbEemjjNrFG72mUZXAWgx7k1SqQzyObXYxqNVDk4BvgJLkyf76w5VwujcqTz3cLOfk/ivgjy5cvRBLjooC+VkxXF2ChBgyXYAFYlBfP/JGqEQoKTqYhnWYxQunZXipJohy5HJrZbtx3H5BOWzg0l5NH4zZvBno6AVQqsHIjKBYz2L5dbICLoZDB/PlL0dW/VAQ3Z89pvrHsef7cgUu2cRtOL9o0iMeDXXxu44hY9+3SOJJIwgUefJCCw4i4L2SL4cvOuMG4tf3TVUZ5E+C6QmqO7LYj5h3NwkLRL0NiM4IftCMNdFLcoblJsQj0zGli42YDGzcC+XxGbPpQIFxi4HO5YOBRRHqqH5ssjpvCdjtOEtnsQpRK4ic2ORnY7pGqIU5XDg2JF9l/z0M2m4HrBqpJjmMI7X0i0OfNw9PmIlTLQH9OzEltW9jxkM2lTRfPC/SK+ISG/9jU50XU6cwZAm279xxm5gjYz8GJSU7+qjroUdIu3AudE9kqwWmaJjo7O2X6RKwT8amSgaoXLXkfc89jupeIYADSi5nLd9TrdRlEk5PoRNDy9MgTmgeZNCMebNx7mupJ3t3pdBqJRAKpVCoUQJMHNZ2cnJT3cIKey6UQ6H/aLIjyMqZyUJuo3ugcnJAmT3Humc/lVFRpE9IIj5LricfjocCpACSJ3tHRgVqtJk8ZkIc35Ut1p++p3lESNXy8Unlp7FJftFotmR+1XbPZlBsBtGlAeUSR36p3ftTY59+rGxeUlkrc7wz4pg4fqzQmucc+Lxv/3e2PZLL2RNeYEdjRMyHqe75Yp9WkLzZZKgErVwK33y6cnN76VjEn37BB3GK446HJPOcZaS0hyb5ly+C6ls/fJVEtizW65wkvdM7npVJAxq4JjzRfH5s4U8sUCz8RKFEEs1JjJaqKG8Qxk5Ow5wEZupCCbXE3Ms+DYdtwsnMl2cqVTOjkNfGo5EnH8yXJWe5dn8slYTmMfOX61qwdk7kccrlkqGsSCSBp1oSmPBWIM+zZLMY9Cxs3+ovNPguWzbqYClWpIJsVZO7gYFD+fB7o6zNQLC7E8LBYpJOnXjweeBo6jgXbtuA4SeTy3YJYp4CuVFhqGKlBAvE/PyoeRaBzVoOT8hQpjF/Lj2erC04AhmOi0Qg8wfhlpLRCmyNjY0GAUdMMn1hvwoBBnmZEJlCivI58M4MtxMtlhE5n0KLaNMWin2LAyTrRsXFaOPtt4LpJOVxs2xLBTX0SZsS15K00hIlAIoJCHCdnhFMUGaeSeXwBzhfyMwj6SLjGjAAnwbgX6Y4IMPredYV7sm9r4ThY+Ufg5pvFT5eclHncSamnUS4DWIjBQXFNX59/TXlIMNlLlsAuHioDMfONwGJReADTZnI6DSS9EX/jLimfS64LLMyJh5+RzcLzklMe554HbNwonsePPy5skOMEbbJ9u8izB9VgEgIIYtFPwFm+WFbNMpuo2EZIvcM0BdEKz0PNEZvdQ0OBvrZti7jnK1cGsZ+LxaTYjPQJZMtsAuVK8GD3n9mZQgG2bYVMM/HkoQ1T7onuP2M3bwYeekjMfQ49OitvHCsD8El0lMuYNy+DRkOUeds2cTtJeScSSdkkfPOYholtG7DtTOAMnYUgdXkHbNvGb5jq+UzG0W/M0VEg2eGJXWiaGKm2QxmvBhkn0pmna7NZGDlxUouIZ+L0+SmHDEZgFjKhA36JhN+vw8PozC5Etcokb8jo+hfXYAl/b5LM4RrjbB5RqQRzOLLjf/1rMO5nz/YlCuP+fGdoSEwoikUAgGHbIGk6+h1kcn5+6TSQy2HVKvF5sQgkXRewM1PK0oQRtJlqt9WNNfU7+pt/N0OgbfeegybRZxg4MciJv3Ze59NBlbtQ5UXayYyoZdiR1AVPBwiTwpxMVL1+VdkTrvut5sXLr8qcqGXj9SRimnviE7HKyXEiaqNIUE4s8/aM8kBXNbcp7ah+5f+r/RK1SaJ6MnPvZ95WfAMgavw0Gg2pV74jLfyovlP7RkW7cap+rurJ8/HAy8Y98dX2i5JOARCqD2/LHZG03Au+XbrqaQkaO9Olub9Ck+ga+zxUMhPB2oqvdTgBqU7KKYAXT46n63mWJC4p7XpdLEamrLdk2tbUz/2XaYe/ItKXV4PIbwpMKZVGzKnpSa9p/6Y2a8Ap6xOVC56YQIi85aolls0S5bsDvPCuCzubhG2HiezIRRQrmFsNlEUIUg6FdQz3xObKIKOjYX5YXXPxoppm4AmW5KwtLaC5LAkQEOiqQG0UeD2jFo+7SeZScaL01dX15hTQ7gvl3y5xTuab5pRi09hoO96nqRsf13JhPf0tITRhwKAf3862nzLGZhr0QlxjRoKee7sCZk+aMCQJqRyOCX7Gyu+Z20wAkDvUExNT9tr5HqYqk42qKxljqka9zm5W6qU++rgEhpxD8GepjbBkGD1UWbq0cWz6gZv5/m0wf7BC9aJyEifP62upBDJ/hjJDbzqW5MiprfmLP7e51kzDZTEr/Ru5JArla/qOAK4bBDQnW833c6OamvhyLnGeydoBS63uNqs7ynSKjDVyw4WYS6mTL3XsRtkOXmi+SWtaoWR4UrGYaGc7lwkVWc6PXFdm1WiwfNXGaLdRxf7n45HanPsKNBp+Hp0sD+4p7k0NlK62Aw1dSjT0ddTvn3fedFAnqPyzGQJtu/ccZlbPa0zRneZkN4EIXU4q8vuJOG61WrAsS+o3cy9rnhYFluQkq1qmKIKde+BybewoaRGukU4e40Rq0/1RJCvdT21Aciwk18E9y7nnMZeoUevL6xkVLFUtsyrFoQby5Jsd3IteJe35Z0CY6KU24YE4qY/JA508tskDnV48iCgvC5crob6huqpyQdSenPznfUWnCbj+utqu3FOce+cTMe66rvT65x713BOdTgaQF3uj0QBJqNC4VH8TvN/4CQD++1FPaHApGfo86rdE7cDzUX8PPG+V8Fc3IPY3kliT6BozBlETb/UzdWVCjLbrCrcyX4C7OiQdhKREuuHVMDkpvK2aTkZqV8I0sb0UPl0qF8C+x3ehIIhhIjFpUcfXabJYfpqeG+a3M10BC2CZTaTTBsbGwotGHnCM+EyK8SjXgSq7CZavDwo8yh2DacFDTsncE31iIljbcxkYWpCTHIfjdAvPNrWxGPnK86YFOVy/nNxt3++grRUhP0N1d10Ir3c/eYu5w9leoCFKMjHZrDjVTFLfhUKYCODS2qYZbKbIhlbbkla4pL9NZ/wpIS6iyxd6UQSFuvhTGQPeFvSdaSKbFd6OJA3kOIocjWki6dioOZYkmohs4WROksgEP5AecrmAmSLmg+qRz09h5DlxRU5odKnUxeeapVy+xm+L2bPFn6T7KuWAAHTnaujOBm1EGydGZavUgk3m80BVWUwTebIzhAdHbFcOWb+w0Atxjb0e023O0ecqGcafj/Sc7ekRD+ZcLsQZ2rZ4nodksHM54Z7uP7u8SuChzqVI4HnAli2wKpswZ85cbNwY2FDOP5Ld8zxIGQ9e/FDwTtdFLhd43E5MMAKZVZc5f4cIcQDhBzXpWPsb37EYpE66bXdPKUsNFmBaKA0HdaUmJLNFz+zRUWG3M8WibMitVQvZfK94VnDb7TjSXNm2MBf0jE9iHKi4qDnd8DwDSdLAyeVQs4Xut2xP31bL4UAu2L7dj8dFV9u2cEDI5aaerqImAQI591xOaLNTGraNoLB0cbUqEpriPo+pkwDTFF97EEaN2wWSieGTJzmRQdjGU5p+/gaE7B6XVaOx0JMeB9YOw/A8FIu94bHqz4Wm7NOYZshD3vMgtNu5hjyVidrbNIGSaC+aOzYa4hZA/J5CcbwdJ5CK4T8Mz0M2KxxBcjkEuvSjo0ClgmJxIcbGgGR1EzA0BMPz0FsoCLv95JNAOh1sugDBpIsPtHbPjaiNOG2790toEn0GgWQiVO1yHsgRCAeOBBAiCgFInXLytqa/Ozo6JKlMpCjXOSeiNYosVD2VOTlK98Xj8Sme0/ROkiFEYHItdUpb1RNXSXVOoJMeeyqVkmQwfRePx0PyLURsE1nKCWXelpyA5gQ6Ea8km0L1tiwL8XhcBn41DAOdnZ2IxWKyfBSwtJ23t+pZTuXk+t2kIU7vRJ7XajVJSgOAbdshvXgiddV6Ult2dHTI9iPpHx6clghu3hau68pxqo4T1TuciP/x8XGZPkn5TExMyDZttVpSSoZL91C7RemfUx50jVoeVfaIS/eQvBG1O/WnSpbzunBZHr5Jxccql8HhpwR4m+5v0CS6xl6NKM8fIEwqqter73Se+eijAcfBE8OWjEFVLIrFg7H674DnYeGyZdhaMTA8DHjeXJl9qRTwuzJbWuUMDmLRgA04DsY9C/W6WKDQiVrTDIjnyUmEPLEmJiCPcnd1WUKiwi9z0rZRLGbkEXNOaNMCnNaEth3oZ6LkTvVOUtl814VlmnAcYeNp/cM9krikKG9SIv0nJ4N4ndSe4ji1hVRqLuYMzA0CZtJiHKLd5OFs2wwt1pv5XnieOK48WQWqpaAcRABMTACmaQSkA0Xxsm04rljcH3lksG+STvtBYIeeQG8uB3uZ8PRKYjxMbFOC/uK4CQPjrgE6ZQBYsJ0k4MwVUi+kw007Ce080vjn1Onk1UWV4vfzBS9f6LMNoSRdy1kSVZcnm4XlOOjrW0gn5kM/l9FRIEm7PXPmiHv7+rDVywiPyFwgCeN5AIbFfbT4pvU79wTNZsNBUlH1ggv4Ipx+l66LHmcreor+j2S4Gma6aOCXy8DoKIx580Q6pZLQTKIIv6YpfnD8CD8nRThUDz05Fm3GbO390AtxjRkHdYM76p3+JqmKel080H09ltFtgRJHKiXimVA8xXodeHTQgOv2CqUsO5CUIDtq2wBy8UCm4o9/hLF8OUxzIYBw3Gk63BLadPQ3ggED9br4vAYLlr9Lm/HWS2OYmWNjctIInYxKJAQnOWcO5DObtLThQthqHg3af7iaps8z+sfnnGJ3iGek+rmukIvhcUeIzN+2LagfyctUKkk4ziJUV3OJuF7YNtBbEPIwI1UxX8lmhdRdT5eJOXMsseG5eq1wCujv9pVFMuI1JPInZZdYDBg3M0gWi9JkjnsWkn5AzNg2UdUlS0R5Dz442AR3nMAsOA6Qqa4HPA+1PiFv0u1tCuJo5HKAZwKmjaadlGonub6lSPbX5PwLAAwKskp2hm1+Ow6ACoJorTSRGxoSBcnnRV501K2zM4gUy+c8bE6HahWZXA6ZTqCnUWWOGC6wcp2Qjsnl0O3rDmWLQj993DVg5+aiMqRMiW1bRMv1B67nAevdblTRDbcCTPjKQLTBlM2K8ZdIiN8EzR8LhbBzgW0D3dkmUEUQ3JvsONlvz0Nv3kQ+b8AorRftX6mIgdVo4JjT/Y2sG+4UwYcOPlikNTQkgtZQhFoiz/lOF7W1+lxoh3Y2fS+Ftt17DjOn1zUABEQxBcXkwUSBgLyOIhe5tIRlWaGghzx9nhZ5AXPSkutZq17w3GO8VqtJjWnymuZe9DwAJ+VBpCInPYncbOcJT/WidqHyxeNxOI4D0zSRSqUkoU3EuUoqE5HKPYyjtMS5BzhpjtdqNWzfvh3kQQ0A6XQanZ2dcBxHkuakM0/kNJWX0lU3LTjhyglfamfS3HZdV+qWcxKd0uMyOB0dHXJDg5PovC/5OEsmkzId0ikngptIevIer9VqoXFBbUtpUV/ROPU8D2NjY6Egs5OTkyA9fCLPaXxQGfhpAzWILM+TCG26lo8r6mM+BnmedI3a/pQmHyN8o4fIcfptUV9RGfhYVjch9jeSWJPoGjMCfCLNyUa+WGGTewlaiKdSGBk4DkNDIWl0SaLj3pWgVWJ3oYC1ay0MDoazJhJd8qa0QhwclC7Oyf5+AAbmzAnzo0CwICctdPLupsV/Lgd0O47UCIVpwnCqSNo2crlujI6GHZxofUaeWpLY5RHAeJvxRQZpnTomTNMI6U6Tx9f27WEHqyiQfiyBr7UEZ2rAcZJSUtQym4Fmulo205Qxyeide9ERPzo2FpYtcV0DnpeB7QEZpwnHMWRgVFrzGUNPiH4qldCdz4tEBwfDGjGplGjIXA4oFmE4DiqVQHuct40gkS2YpgXbzggvwVagsW6avq6+qh3jeUGkVsqbKsJlYYLKBQny8+1EFA8NBewMDThybfPd7zPLbGTyWVSrVmhjZGwM4Z0h08TGiQwefzy8qcLjgRJnTURMLueTGnZNDIbbV4sGogClxSKQy2HcFacJYjHyFLQEIeW6ggzn44FAv91qVbBC5bJgzPr7Rb1JWLhcFn23YIH4n5gtYg34IG630GZjcKZAL8Q19mqo5Je6oUifcaPGP6tUxLPBtoGTT8bG0SQmS4GyBCAeM93Vp4FSVTzXuxz8+c8WVq8W3OLBB4vri8XgMQIAyEF8QM8exwEKCxGPT5XEoud/vQ6x6cvqwGVHuulZRGLT/g5jPr8wJC3W2SkCgOZyQRvRYwsuAlvgeYGLvU+i2zaAobIIxlkswjQt2WT8cblyJbB5szABqZT4jDbriaskcpnvIfPHZDYLLF9uwHEsaXa6s01pGAyKpTE4KDzVi0ehVBL/btggNq/JvNApPTEVywjbAz8puxuoiu9nzQqCvOfzfqyUchkYKiOZzQov91IJ+PWvgXod1rHHin6/915BzNKELpcD+vqkiSQi37YtaSJF8Q3YtoVly3qRNGuoQWyY2yZgebWgINRARKKToDlVgrws1NNnlBmNC9MMbPjgYNhzoVwWr2xWTFJnz0by5JORzOextWKgXBZ9GvKPsG0xyH0D7fljfPXqIFk+VxwYkE2DjOnPT8pVJD0PC+V80QFgAxVbnlAYz/kB5KsjwW8UAIaHYdDAUydvd94prrnzTlHXZ54R/bN2rRig5EGfy4mCka3mTgn8ecFtNG9jbbv3a8ycXtcAEA6GyF8cKjFK9wEIEYBEKqqSHnQd1/WmdFVPZVXnnJOk3FObk4+qBzmAkIwGlwghEJnOSW3+N+VLpDQR5YlEQnqdk3wLeYWr3skqac61zrlECCfziUR3XRfbt2+XRCyVuaOjA4lEQtaJSPxkMgnykOdey9RWXBaGnyKgdLmEChHcnDzngUCJ0KU0uIwJ925XJUh4+3ASnU4wAJD1pWvI652PL8pLJbspTSLhOYlOXvQk48JlXTjpzIlqSp82a/h4pnKopyG45j6NQfqMbybxdqG/eT2jxgmloZZF3aTaXwl0QJPoGns5VFJ8uu+jrqPFuGlKBxhahNi28FTO5yEWRuQt5DioVOZicDBMoJOnjsySJvzkxeR78gpidapjMT8WzotMix3XBZA1wwsJnxhN9mXheYZ0YCayOhYLJDSknAclShm0Iy6kF1xSZkXeXtRs5O1HzkKUFL3zYtKan7ybOPlN68vuLML1o8R8opjWYLTRwdNdsCB8AIEW6OTNP2sWkIQLw/PQ02WH68rJDWIzaDDQAowYYUASINWqFeKuucM3d/pmDoPypHg3abLy9ieCd2ICkkmgNmCECWIxRaRfGSy0EbF2bfC36waBSh0n2KHxSQDb7g3tO8nxxlzJN24UweeeeSaIF0AEBB3zJgKdssk4TWDY77RVq0QdFywQF+TzaMKQ0gHUTgDEaQTPE/dR31A7dHYixICsXCkKRg0+OCjqnkoFfTdvXqBZwF/qgrsd9EJcQ+P5gbqxSFA3yEslIJvFxtEkHnggsCVk3gSpPBQEscjlUCrNxcqV4t+uLvGezwfPM5lPvR58ODAAsxg+vGKagc2mDW/1+cAfyXD8Zw8xyADgOLByOThOYGPpcZvNBnU3ab6w3c+DvNHJHtg2DDRhmQgF+eAyMGSzK5WA5200RN0nJ4NnL3GXmzcLE0Tvaozr2bMF56nOWaRRILLUJ3ypOQcHxSuXCyRfenpE/sQZUxfweNOOIx77tP8qg3qXSqJNyeiXSoIlrlbFM9/zgIcfDuw57RL09WFiQlzON/tnzRKbC2ReArUSKyQPY1FBqVHIcJbL4sZUSlxIbZFKBUffuL2hnQk6rgeI/qONYUqXOo8mT/k8cPjhgG3DdbtRLgebRxJswlGDOAVJZpibv9CYg+84wg18tSpuNM2g03xZHjqZmcsBvTk7PLeko4jE8PPd97VrxTWrVwfza9cVffXggyKfQkF8RsdJ6F7uENPOLnO7Tv/PEGjbvecwc3pdI1KPeXfT4J6zquyLiij5lCjiXS2XSnippLwqY6EGX1QlVKiMqp46kad8U4F7vPM0onSyeX14uTmpzjXJqazcS5yToJz05nnvSN5EbSu13VREpafWS+2TqDz4ZkHUvar39XR5caha8XzMqAQy33Dh1/HyTUegRn2njp3p6h9Vxunqp3qyq9fuzN8amkTXmIGIIoangz8JV/l4Wqu2S2pH3L1MhIhRPwPTtkKyprtS1CaM8ISZFSIqnR3GsuSs9x702KH1i7qOaQeKGSXrx1f+jLngC3Yez2unVTbUTQT+WdR1vIMiKrIzY4P+pqCk9P+UvmyXKPUJDUZy16bjBc+231j9VScutQyeGygJUB9wDj8ydif/p14P7xbtDFRvM3pXNU75j5XGDA+I1+6+fRQd/mtXrtfQeN6xs8+BKEQ89zivFvqqzfObP+qnfXZFgDTS29nZUBnoDx4YVPmq3f/TwidhpQTJLtwc9Sjkn01j+uT3U+wFzz8WkwmqTgJqnEiaKvE02zkahxwCPC9slHbBtuxoftd2XKgFV/+PGhT8GANlwO+Psk3cuO4EIqcByoec71djok7Jm09eov6OKOq0UBucOpkHbqV2isejE302z4sZAm279xw0iT5DoJKwO7om6n/yLgaiiUPy4OXe5PQ5z0Ml0HkgSU62c49qAFOISfKaJtkRALJ8VMZ4PC7J1Xg8PoVQ5t7Oqpc5ybqomudqcFO1XbnEBuljU1vatj3Fc5w8nB3HCbVVV1cXHMeB4zgykCnX8Vbz43lyAlolkHk/JpNJ1Ot16alPsi6u60pd8bpvySgt8vKOxWKo1WqynagNaQOCy5iosiPqmCDJFH6ygepG0i10rWEYqNfrGB8fB/c8J0908m7ndVa9vbk3Pf9flZCJihfAy0We7lQG9eQFHx/co56nyUl3jqjNEQ0NjRmGKPab/x21SuJa1f5R0ZwtPHDIgYpunZjwg2t5ntSvzGYDeUtaB3APXtNE4LpFnsP+xYZXQzpthRaTPG6VWhV+e2SdPE9qqKsvWpQCgGlbYpnNtU94JuSxy9Ju2smQIk4sFtxKl6nS3PQZ1YvaCBBkN2mzk8cyrzuAcFAvv64jroVqOewtSM58vEpUDVqT0f/ptH/0e6gU3MBX5VzmhAo9f35YuN5xhDcZ0+3J5SykUoEzGjltRfH0nDsxTV8bXG3/rq5gIFEFYzFBmFO7RDUc7wQagIlEoFdKhaBGSqWCs/x+Ovlc4P03Oio8DTEZ9vYibzXyYiOempKkInMyvWlaMKh9yTOQaafS74G8IeV62vbbOZ8PRwakl+MI1ztq8EpF/IALBVH4gw4KpHGoPUxTtCX1K+8glQ2azstNQ0Pj2UM1WGqMgqi/SdoCAJYtAxwHc+aInz5XraJ4DCgUguMynod8XshVDAwAhx0WKD/5YRXEPRQFmR2TUu1UID0V/N9k8imeFzyqYzFhSw1Kj+/6mmbIc54ukXMI08TENsbJ0vOTbLX/UKbHXMZ/5jedDNxS9EY9mQUKIcHNIJ0qmzMnuLerK9AfJ/iqZrDtwC6Pu4YI5EyGolIRBc9msW5d0A35fOBozOcEtC/M2y+fZ3E0PA8os4kWdTblCQSaYvV6kNHBBwtbQRHFfUOXzWbQ1xdIl1NyYcm5QLIsxHNT23MtN88L5F2owRKJYC44MBA0GB8gjhNoq5ONpqjg1HncE72nR3SQXxc6JEcH2AoFAENeeG6BwITSmKWmoD6gg1syX24jyc1dRlUXY5FPnaT9pPuoYHw8UIYLFohruKc5JVYoRM9xonbH2jlAqNgPyHeNqdCztxkAIvC4Z/V0UElFTqpTsE4gCOhJpGFc2dmMIgc5ocpJczU4JhGPXMeaJDl4gEruiU7SJ6psCgAZ8JGXg4hfNcAqf9E1lAa9qyQspQkEEiWu62JkZES2RUdHBxzHkVIx3PPdtm1ZdsrTcRwkk0mpi851wdWApUQeczkRlcwlkpryoPS4ZjiRwRMTExgZGZFkNSeziTjmHuZUJ5KZoY0Guobu5QE4aUwRgU5BanlwVbqOE9bUxqOjoyBNdCLT6RpOZnMS2zTNkM44/13QBgCPE0D9pNaB68VTm9PfUTJBXEaJ/qay8U0DkrrhZVd/Uxw78ubf16E90TX2eqiLGE4oqiwuoVoVbHmhgK19L4brAgvzTSzMe7h/tYXHHgsWdGNjAFasCNJGcMqUsHmzWIwTZwdALIooYhln2gEkbQB2EEC0szMIyElS2KTUQQRtLOYHL+MkOJM9oXVlVBxLmjqYpgWL2kQhkJum0MQGW3RPbA7IXyKjiSjlDlTcuYr/T0QD/U88NEm6GGjKvqnB8pvKwsSEJfVk6cQ2cSe00CVOmdZZtDYjMpc04K1qFRY/Yg6ECWkaL8QsEEvMBVvpnZM8rouM6SHTaQJpn+zPWXKtSzwPdyYLSb1wRp06mS7kOxVUpnweTdPC8LA/jFg/iyS6kSnYwZF11xWdNzrKosoiqItCyierm7DQ9IC+HEZcS+iYD1ZDdZ8VC9a3pHyTSkmeRDYPjRnqvyQxEv394UWu36nJbBb5fBIcNSSBbBLWgB0+409t5HmBhtLy5WEGJJ/HeLYXyeom4PrrBaHCRXhVgmC6Bbaa5wxBzH/tyvUaGs8baNOKPyg446u+E0haIp8Hzj5bnOgprcdCz8XW/CI89ph4FvX3i597rbAIVqEmjUh/v0jmpJOAzOD9aCw4CvfeG3CUnZ0QCeRyARGaSslHtMrfEbHMN9Lpu54e8QJE2t2kccXIwKZpwa2GH/XZrLCdI14SnivmILbtJzoxETDQvkyH6wJl37TZxYWw8nmpjw0ExDQ9IukxTNUj28k3eqleJNtGzcHLmSk/IZwKCosFv10GgCRMM4nYrLlIFyADgz5yg5gjETFO0yPa7OfxQmgzur8fMFbdH25w1cuA2Hz63nHEfA0ABgZQszOwViC4htq+UoFRreLQvA0UTGz1MpLbpvkW568pAC3Nf5q+zJ3BWX9A7NDk88EY8gnkppORCiZ9fd1ImjU0TeFMYckdHwSSY5s3i83gbFYMShqgiYTY/SCb6jiwSuthVavIUN2G2dzCt4keGws0B+MbBrYtNkvkRgkZc76zw70D/DonnSZyOUMU3/XncmZS/FbyC4XDAAVZp/gknZ2inRwHOOEEkRZpDNEAKZeBO+4IysJffJJJPzp1TqxOTLXt3i+hSfQZAO5tq5JuURIoUfrdAEKkMpFRatBOnq7HHgpcT5uT6FzOpdVqwVQmJERcEllar9dlIEki0KI0wjkRGovFJMkKQBKZnZ2dkkjmgU7V/HmwxyhilmvKk1fy5OQkxsbGsGXLFnmfYRiYNWsWEokEkskkEokEbNuWQUJTqZQkz4mQJg108pCn8nHZklarhVqthsnJyVC7q97ylAbX9lbbmzzRR0dHYZqmbDPP8zAxMSF107l3Om0CcG90Iuspb66JTu9EsnNtfS7JopLUNK6I7KfxMDExITctuMe6eooi6oQFJ8v5pgrfcOJBQGkjh/LkxHlUwFp6j5IKonLxMdaOFOee66r0z/4MTaJr7PWgiTNN8PkilXvhcpA2aaGA224TH73h2GFg7VoUl58WkmCuVoGR4qGC9C2tl95sqpPcQw+JZEl+teZ0wyoWxWJoy5ZwWf2FiGHbsEwTlm0i45gywCIQ5J/NBotMz0OwqKHFgufJhShxEbFYmCOkR6dpQpDobHE17hool8LrD8qb1h4TE+E1Htdapxdfp9BnPKtQ0NDtbpgYNU1YfX1wXUNqlPJga8PD4S4k/W3SVeUEdSiIqucFIurVqujzeFx4maurSM4OUCb+Z00mvGK444E2JzEMfh0y+TwyhSwoGCtfc3L5czl21E0fviCnhaFtY2vVwtDqIE4b3UYcQtAWgsBwCt2i/oCod6Ew1YWc/zY8TwZWRT6PTKEgPP4462+aSDtBHxCJ7jiBszxfs9Ktrgsks3bgGsp3RTxPtqGl/G7Xlwy/zzMwzYyfcDD2AMC1xbifdAKiJ+M08ef7DPziq8CKFXPxalqQUz/zAUqFpQFMoL+lSyjCA3wGoAO7ppW6OzOdr3/967jqqquwYcMGHHbYYbj66qvxkpe8pO31d911Fz784Q/joYceQm9vLz72sY/hvPPOk98/9NBD+MxnPoO//vWveOqpp/DlL38ZF1xwQSiNSy+9FJ/97GdDn/X09KBEG2QaMwecQCd3X4JKnvPr/Q3wW28XI/w0ZwhYuxbd7yyi0TDgOIKjM03hZZ7NWljk2EClgr4+oXudGbwfuP125D96FFauFI8h6W1NBCh5/HZ2ipNMrEiSADWFl3TTTqJSCSQy4nGgZ474bqsrvuvOO8EzyK8j2TggOAiVywWcI7ch8DzhEZzLYX01A68SPohDl9i2CPZJG/O2HY6n3NcXeB+TFzGFmaDNXyLX6TFdKABJjAd2b6gKiq6eLBRgmklpu7n5KhbnoloSlw4Pi3T6+8M+BvTTTaXC3Wy5IyLeBbH8HLQxXCxi40QGXV2AVd0qMl22TNiQsoXKMJDNLoTdtxDdTi2YTJAN3yw8BbqXLUN3X0EG6bRtyADwFGO8UACSdhM1z2D+CwZM0xLODdS4NH5tG+N2N1atCmw3mZp8PoiN48KCh24AQH0USKeTSB58sLhJCLKHA5T6trQGC/AAa2gIePLJoG3mzBGN65eh5hm8SLLfySTTBjjn8uUfqlHnQVP9321G2aXZti0IqitutQBYKBQyyCwB4DjY2JqL7WXx+6xUgNNPn4ve3BPYml2E224DDj98MQ6dtzaYZHBSX52gUvmYo0pojjPDoG33noMm0WcIojS1owh0eo/yWFelKNppbaug6zgZyb2oSe5EJcS4BzgRp/V6HdVqVZK7dL/tP4xIWoQIS/K+puCVACTBnkqlEI/HJelLZQPCMiLkBc/ry9tQbQOSmZmYmMDo6KgsP5HW5MlO/9N7Z2cn4vE40uk0LMuSxDQRvFHlohcR95zMVSVcyOuck/+cWKdryMt6cnISHR0dU04fEIlOZDd5ahPpbRgGPM8LBQLlMi6ql7jq/c/HIvcqp40Mz/NQq9Uk4c898Cl/grpJwD3k+SYLf+cbMPx3wEl+HoiVn4bgY4OPc7WOVA4uM7MjuaV22J+JdE2ia+z14N5s/B0IJtvcy42eWX7gxscf94/oLqkAQ0PoPqUJ2zbkus3zxLrLcYCFjmAOLW8cuVzgOUvrCtcVi4d4HNi2DeghspuLoPN3IFQm085M8YLizs+ex65XiL9GI5DRiJBdDTRIHWHLSaqFHJw4ic7UNqYUk77jqiuUPpH15IGezfpkNm0c8Mw4iS7lZSwZy4peo6Oifev1sAw4PyVMdaM1lvRwp0pRdDR2vDw0dihB8sqHIYcMeeMHdUrCQCVMovNGAuA43YjFonlZeZkbfEAyAAZf83keamZSHpqgYKqDg4GzOa1difCgdSMRKUmfYa9l5/oxcS04uYxsFtMEMo4ZkAkUnDM04ILOp/6mALbc/KuO3fSq14GaJ4gGZH1yn9pNJaapEqYJ17UkQcSJKdsOxnelIsiNjRsDz8X58w088ghw++0iuVcvcwIdAWocXke1c/j/M4g0V/FcByf7yU9+ggsuuABf//rXcfzxx+Nb3/oWXvnKV2LNmjVYuHDhlOuffPJJnHHGGXjve9+LH/zgB7j77rtx/vnnY86cOTjnnHMAAOPj41i0aBFe//rX48ILL2yb92GHHYbbb79d/s8dbTRmGLjNjvq9qc8ieu5CxCY0TeC0A7YJT9ZqFZ6XkaTwxIR4ZtbrwCI/KLdR2YqetC2uHxyEUR3B8HAG9boL27bDG9XpdPCgVUh+wzFhmoYkEg3bhusaoaIGkTHFczyK2OMmKB4Xcw4LNbgInn+hNCHSKQ+Fm4474MZiYVtsmmEbyVU2qEiGV4NpWjIdbl8AIOmNCEOkBpv0j8jFYsnQaTHiPqnLKK4k5Z/PC9LbchxUbGH/+GF7z0OQBzH+VDH+e7dtbBkW93b7dmrES2JiWzAvq1TELcWiFczJaE4yNCQ3JmDbyObmhuZB/NKgYJbcoAD80ws0NhRJvNKwsNmcRCd+mw4m8IMYgCjOQt+oN/O9KJWAXG4uLL+zRlwLcIPNdKtaFdG+OXzPezrtSKB5HKnMqAfy5PDk80w/HcO2px6x457pCMpPsnCNRnj6ncmLwbdxtUhq5UrRxcUi0Lsij7WrgN/9TqRxKD/+wefuVD6VRKd3dXIywzbAte3ec9Ak+gwCJ9s4mcR1yNVr1aCKO0vYEXE4XYBFXgYiVblUiqovHaVDrv5NUL2Nudc1J9i5d3C7duEvtRyUHr+Xeyfz8hKpzD2coyRk2nnDU/tQe6nl4PWlsvM6qBI0at2iThO0S5/e1VMIapBP+o57oHMpmqh8eH78nY8Dfk+7+zkhT+OJ/6/Wp90YpbRpM4RvBETlrW5Gqe2nph/1twoekFbNZ3+GJtE1ZhzaebOpi3EfU/TGPQ+2v6ijheh0Di1E8vFr6ASuTJPcdNuUYUdQCe2oRQXXaOWOO7Solp7C/orNsG0AxrRxFqfkyz6Puo/WLjzOlxXlURh1o+fBNAPvLHqnOvHPuEc3EQShJlFXjaQpwxOj79oQq7TuitqQaLuo81+eJ7JqNNqv+6yA7Zbpy7ZSFoGUtNoOahPyd7W47fq5CUMEo+vsFIUm1kVdvPr1ogU/jy8W1Ry0IO/sFKQQqFxqAdWOZXkB4QB01M9yg2Mi3D98I0eWh9ginvfOjEkVeiEewpe+9CWce+65eM973gMAuPrqq3HLLbfgG9/4Bq644oop13/zm9/EwoULcfXVVwMAlixZgpUrV+KLX/yiXIgfffTROProowEAF198cdu8TdNEnjSENWY21AfHLsLzEDzfXReOk5mSfDyOqTaBdmBt2zcBduCJTtfSkS56RgGhB63RzkBGVDFETrIvQt/BnzcwW8j3eFFxxUPP89raZhXc9EU9p6lKpmlJyQ8VHn92R21+el7oYBcQPnnFy8GToT8SCTHfUp2fAQTxMOhLYtopQ3492Q43sANToNgZpNOhxolq05APRET64nMlDz8hnpU6j6S5o2qWTDP4x0ATsZgRmtdweyev5afYeGf7IJvtDx9ZL7qV/pa3uWEy2uDzpHbtyeYzUdy260J6xlM51N9GKItEItxo7QbwdJhBNpugbfeegybR9wGQ1AgRuiRrwUle8kjmXrmqDAUnI1XyFQiTzar3NieJKdAlybDQi/Iir2wqI0m4qGQ2eVbTi4hb8jQmCRiqIyfIOQmuekKT9zFJynAyGIAMcknyIoZhIJFIgCRbOjs7kU6n5d8k20Je51Ea7KQRzstHnsyqLItKsNM1iURiitwN9xantqP8iDCmtiQvf07kc696rltOsjacgFa9+rkHuyqHQn1Jnvrkfc/bn48JXlfyJqf7AUD1UOda7NQmNO75Jg71Pw8gSl76vF/4GFd/R/xkhLpJwn9HUYQ8H4tR3/ONKj729xdoEl1jr4Y6C1c1MzgRqCz66L2ry/+XzrdWKujvnyu9f+n4q0zTz89zhafN9u3Ca4bkmcm7KGOO+15odnAkl2uPqAtSf0FNxQ/pZ7Ps1XLAtmGZTaTThoynlU6LY8dT8nC90HnrZC4HzzOkygadmI4iqmldRnwkmROufx3FXdu2ITSxQxVA2DXO86Q2dqEgSJDR0cBLi5MJphnW3yb+FxD5GZWtgawP7SjkcuGgoNRJ+bzQTEVN9lXNM6QnXRRvKjW+OSNOBcnn0bSTqG+eyrvQZeStZ9sGbDsDj7WbbdOxa8tfNAdtPnt24BDJ9fhNM1iIq2pGcsOkOoKeOY7vsujCchzU6wbrAt9rfWIiCFhGBXccNH3vvPJw2BGRYNuYInFE2r5GZSswWAr3NTUuC6JW809heJ7w/lfrSaD8eTL1euCkSA6jvhRvoL3KBxFvvKhO5tfMwEU4sPsLcYozREgkEkgoUgq1Wg1//ev/Z+/vg+S4zutg/KC3p6e3t3fQGMxiB8sBPASX0JIEGdCEQlCCJdqiKcmRIyly/JGKXrt+tqtUsl0l03qdKE7Fskux8iaKo7hsyVZFZUmlsuWqKLZjW2EsvQ5l0xLzijRhEaIgcyVtgAUxIAbYwe7sTu9s7+D3x73n3qfv9uCDpkSsME/VYDEz3X0/536c59zzPLVls/zwww/jC1/4QuHzv/jFL+Lhhx/Offb6178eH/3oR7GxsbEl5tOV7LnnnsPMzAzK5TLuv/9+/Nqv/RoOHDhwzfeP7AawLAM8byuoCRSjvBI5TBWYbC7j3Npu4/DhPVhcVARjwI5D5rlaBiPQwQxPtQIcPqy+PnpUE3jJtiUTvV7HuZVIsZ1joe8sx37YMciMW7vUmCPjRrr6YxV/DZW6ldwI0Ac6XUQx0GxG8H3A6y6rge255xTjuN1GHFdNdQB2yKYznUamsTs3817ft8omcp7q9ayTEgAqMfLSO6Ril0pAu41KI0SzWUEYqrn7wgX1HAar5ImxLINmVgNE7aen9ESp6z2O98A4QPfuLWai79tnFgIkf/N0HdnwrA/a5iaAyTA/9xw6ZNvFAYBZt0Y+LAUudrycBI/BeGNsnV+yDHEcoNm0dcz65/zlKKaZUxTIYCb86Ukf6NoJnvMek6qw/1NPcGLCMOvZZAsLKg/nztlwKdShZzgYrh2CdNlmmBOq1ByXyHgYKu1+rgE76tQB45AC4kBGCDzfVqcdLlxQWZWn6NaygI9USdx6q9UNlDItRWB60Wcyn0O9Kjeejebul85GIPo2sSIGrMvoJdAnQXQC0RJ4BZAL8ijTkHrPrkSKTDdzFv5Sy1oC+EUyIMyPzBfBcFdypVQqIYqiLeXxPA9hGOa0qSVwLvXPJYDZ7/exsbGBNE3R6XRy37kAN0Fe6q8HQYBKpYKJiQnzV2qih2GYY4vTeSDrTbKvARhwnmBwEbtfBs6kI0Sy4iVLWwZsZYBU1o8EtBkAU4Lsly9fRq/Xg+d5WFtb2wKQU0+caRG8lsCyzLOU+pGBRtfX1yHZ/nxJVr+UyZGsfFkW9iHWu6v3zzxLh4gMbiv7NuuU/Z7OnSKN9aLfYNHJAn7Hsrta8q5MzDBG/neyjUD0kd3QtrkJBMEWndErMlXk3JimqNX0ZklsxKthF6gfwMmTziP16p5A67lzCmgHFFY3MQHcfrvetJ+YVxuRZhNoNND3I7QWgXI5wK5dgdJS5W6PbJ+sb1jwkp2UK5J0HHBD0e0i8n1EaUc970Kal7fRZQWQR4d9H3FS3cKQKmI6My9ck29uWtBSYxpG5oPX8ln1eqCY10UP5Q1aULXSaGBubo85hp2mSpqWYH2W5YOTSn9C4A+Aky2VqdlZBZbUaltpUfqGZVTQWlD5q+jgqt1OsVILs7+yAvi7IvhJpNn8tpEudjx0Nf4iY4MCFpBYWlIveTjBdVhIRh//Npuqfunw4EbV9/OODN4b+AP7ITUncx2pgvV1pXLj+8D+ZjN/jEHUk1ZKwOKiKv/qqgXs63XVJ5pNBQAZaZrORWCho9Ken88fh5Bnx2s1LKOChZMWEJdHwF0CKEF0ggNAXm59aUn9f25O/Q6XawdQaTatFIGsXIlmFJm7Ib8JNuL79u3Lff7Lv/zLeO9735v7rN1uY3NzE9OMmqjtSvqmrVar8Posy9But7F3795ryuf999+PT3ziEzh48CDOnTuH973vfXjVq16Fr3zlK9i9e/c1PWNkN4BlGRBpSTSOCUUeY9f5zcFhfd04WY3AdqsFr9VC/dj34YtfVIES6UNDVw3GgzDC0nlgNZ1BJ5zB4nHgoYfUWPHQQxpE/9MFi/w2GujX9+Mrj2tA/nAAD3pM7XRU2rUaAAVKUgs6y5RMlxeG8LrLqGQZkClpLd/XsTXS1Gh0bzmx1ekgANTY9NWvqkH35EkzENeOHtyCLUrjUMs4jVxmuD5BgtoLC6qeGg31+aVL+eqfSXwL0tLJQIR6cRHodFBtNFBt1tRap2Xn627XOllZ5NlZAGnXIqxZZhZT9aPfh1YLGMQVeLOz1hMgMjSYuxPnzwOTGVBNlE45Vdsoe75zpw3QzlsHYaROEOg+thZWText3wdWlmxdcV6l035lxZaHU4lx0MQib/DUeJplqCYDHDrkGZ9Lr2frgfVDR0+5rHzYHgZAV/8mGCCGv5EsQ6cT5JaB02RwtNuqTaamsOZXkOppLU2V9vjCgn0c59aJCeBAc2An1DSzXvKzZ5XTJgyVF989TgAVRHRxQdXNuXP5/sX1GbX25ZKUbUQAPwztmotrp/7snQgay8h5LZzAvFvWlPK99MKP5m4AN9/cPQLRt4EVyZ4MA9EJyLo62QQEXYYunyPTkACtvE4Cnq5Ui2QtAwqIlN4jCU4zf2RvSzDRBdEJLvMlwU3+dfW2JeuZLwKYgHIgrK2todPpQLLkmU9Z5wR0y+UyxsfHEccx4jhGpVJBHMcIggDj4+Om7mUbyYCVUudc1rkMWEkQmMY8sb7IdJd5k5InrF+p+c3PmJYMlikBXl5Hdr4EuCWDnO2zY8eOLYFdZdklu132JZ4AYN4kAM37ZR+mY4V1J69hv5bOC0rUSAY6g5gSwJe/HfZ1qZsl65t/5UkN2Ufd34MEhV2Q3WWjF8nRuKdAvtNtBKKP7IY3LqRd9LbouoIdZK2m1+dEBPVOI3nLgS2xzrhr4X6j3VaX1+tqU1ivA5XFZ4GTHZjoSnGMcysRVlcV8EnW9OSkhwiwyKfOj68Dlm1sqFccwwaJdMssRUcBu0uSIpsSmeS1GxsmeJoXhvD9qPDUrHxPhhs/J3ju/mVy4+OWQJamQBCH+bZifhgxVQf4QpbB63YRhSEiTVOq1YItJChAgMW67tDpKkSg1wNmZ1W6Zpcr+oau88VFtZnzfaDS9O0+MrV6no78KtbXVdOqulAgUE9fS3CXCiI5VhWz2Mkz0iQDjNljlokrVeIBKmGGgR+gXLYsLxICiSuR6ef7QK4wfAmQfHOzYtpNpVlBpZnvBAN4BjzvdlX3WlmxQBEBl8lJIOi8YLSBAah+2Omom06csLTE8fFc0LNBXEFrXl3GvsNuIR0x7Mp8pCBzbgmC5/vq9xiGDCzo4c56aEV5XcSpyIoYbdvIXuxG/PTp06hUrCSGy2STVkQeupIM3jC5veuRznvjG99o/n/33XfjgQcewG233YaPf/zjeOSRR675OSO7QUyAg4XgGH/4fHEs6/VMzBLUamowevpp4MwZBIcP49KlqiGSR34f6KjfcJoqoPVLXwKeekrN2UePqtvvxLPAEy3rdNSnmOgHrNWUcy4CFMB44YI96ZRlgIK90eup8StNgcj37Vg4O4vFVqB9hxGCEBaMB6yjkd4BBgZ54ol8PJF2G1E4QKpjt7jVxWrlEsHrXFSBL5MoN49yCm63FT7faFjGPOcTgz1ygF1dzUdCBWx9dbtAkiCo1bC/0cDAD8xXu3dbQJXzCTLhCU1TG6j02DEwOGpFOndZQN/HyZMq2cOHgajbRlCr4dIlD0tLNjs7d1rnqgT0wzBAkCQY+AGefFyVn8FOJRGAfxk8e3VVORe41nHn7S2mJ6xKlqHSrKHbzQcc5/zt+6oLlUr61AEXDuw7i4s22C1s+vzZ9JtVBE3YekySXLBWVu2JE7Yp+XObnIRoEG0E0c+cUTdJujr/6sphey4tqfhCgJ2P2f+4VpZrxHZbfc96Z98giA6oPO/eXcG0n24NMFoEnrtr/KvtCW5QG83dL51tr5YfWc5cVrME4lz9bDdAY5EkC58h7+NnEjSXaUqgUAZodOU5JMAopTgItBex4mXepWyHZAhLlrMslwsWS4CSeWWgU94vy8d8M38yv3wR2JfMf+Zd5oUAtNtuRexqCUQzP3w+GdJuW/OZUtJGsv95PdnnktVPYJtG5jpBbslAJ8DuAuPyeW4duLriEkh2TwC490gtdBecl/IqTJt9XPZN1gODrUqHCR0PBOolSO8+2w2yWmRFvymXqe6yzYscZDeTjUD0kd3Q5m68gasvmLmb0saNeD/zFFtab169rI80DbbiZ74P6jsTbN29W23YKvHAMKrl9Zc6ag+wuqo2pZIcbfLkmAvg5srLfHDTwNfSkkpbikXz2LWkcgM5RjrTkZsrWY3c2wN5UBiwp+uZlNSoZpDVLBPa20W2sWF3r6R4iQ1QpVbDAJ7JnwRLTb3w1eupis4yZNDt6srJ6AJK2RYG4OJLlkNqojJd2T46uRxW7badbKqVFXvkPstUH9zYsMAxwWSD9ep68cIQu3apIHXcHPNr2cS5wKqsU/csuah6QFVbGAZbiFy9nu3nlC+SeJYxySjkexkhVjpPREXyOcSRePvEhH20BDUkCNTrWaahBJEIrAPiREFDFOxqAHlRP5Wo0zawHfp1PdcDQKVSyW3Ei6xWq2FsbGwLc+2FF17Ywlij1ev1wut93/97sdAmJiZw991347nnnnvRzxjZy2BFASOkXWke17/Fkp6T+tAnndbXTTTJ3EmWbpq7lafIGJi0XtcOwb/6pgIOV1ZsHuIY3cWt0xLW1y01uaBoTAuhbxFTWKwyTYEg9O3A6padgyJB1E7HDtZ6PKcT160uOYeHIYC2Kn8oQHRpTEr6mwmgb1mnUFibWiCAzX8YWo2YOIYXxxgbiwxYSwc022aLY0QizNBrLw2c9nVZg3CAATx0OsrvnqZQjPZajQcU7PNF3bhzSBD6BtxttYBbblHruGEY7Ph4HkBPU+SDh4u1VZbRnYKcJEocV3P1n2UFp/fkpMqMd7t2oSqSYnN0u0CVnnut408WOvtsp6PK6Sqbqd9HN98pZHvQ609HBgsu+kmaqrohMM71oqxzFktKsZGBniT5k2WsV64JpmtOY8j6KTL3c2fNf6PbaO5+6WwEom8Dc5mtQB50k0E1JYgqgWQJiEtQUALQfIYEnWX6bn6kSVBVpinB3isBhQQtZbDQIqkQMo2ZR4Ksw15F4LwE8d36kgCxBFFl3RCYpU631OuWQLJb524bstxSxoTXD7uftulstqQEjQSKZZu5/Ugy9PlXsvqLAE43L/I57E+yzdznsLw8keDKuRQ5gAhcE7B365OOAToA5OkD6UigSVCfwLtksg/rp279uUxz15Ej05XPuxnB8mE2AtFHdkNbEf3qWu4RKDFjVgX+wG4W9G6yVrNsIwBYSz34fpALzkRZk/V1AdhyB6B3p/X6ntxexKzpJSv2SnmX6HZRWVgHk5NWn4NUMreOCKoLVHdyUv2XeyM3DqrvazZ8lgFphgBAWK8YJrBkZnHDRBYSiUMG2KW5kVD5Hc8288YwzAHcUv9bAb+qTTxmlIHCwhAbPbthHsAzm7RIF455dIF5NgsZ9XyfAyaE5dpUNCUlXPkZN41GY/8qzb7Fsgy+zgerTqbJ4GDGYcFE2YkZTC+O0W1ZbVQgjw97GOhyebl23bXLMiyzzErLm/qQvy3+jsig8317NIH69EKDVva1sTF7vJ64AKVrej2r8csj8CYgoK2mXL0kCfJ0RLehXAabU+e5jG0TG9Ov67n+Wi0IAtx333347Gc/i7e+9a3m889+9rN485vfXHjPAw88gD/5kz/Jffbnf/7nOHLkyHVpqrq2vr6Or371q/ie7/meF/2Mkb3MJscNibzJ790f9NiYwXCNdBUZs76P6Wkdk0GPZbxYjvE06n9XpqbUQEh0ViOPSTKDOLbEazMwTU7m5KHog+fUlmV6LHauMWlzvnId3HIuzDI7fnIC0xmRBG2OfwS/jaxXtqbKEYbwoIJX12qVXHVOT9uTdJrsbLLB5YK5oVSyk+LERD6IJScEMTGU0rwDmfPWxgaAXUkOZM4dwQKvUXMXQWE/9sxaxQRvj2MM4Jl5ig5YkvrZNdx2l3MyhyAXYJZzk0sgYBunqe1fqrDIm76IaUlfs5unLUfXZF/TdSqnMlNPfJDOFMvNNUGtpg6AhaGdM6lXv2Vhw4dLBvru3apCuTbTr83MZpsM9F278spwIoZvTuaO72XbxLGStJmYED8tOW+76+CiNfE2AsyLbDR3v3Q2AtG3iUlAjmCilL0AFHjoMmUJDFJLW+pnS+Y4nys1siUDWF4j/9Jc9rAr5wIgB0hLkyxzSnNQKoSsc6a5sbFhWN2y7CyPlDRxwU7Jmg6CABMTE0buw5XZkGAqtd3JaE7T1Eh8kLE9NjaGcrlsQGLmTbLfJWBI0D4MQwRBYJwHRc4LlwXN8pFNL4HotbU1rK+v51jjEuyVQPv6+jrSNM3JujBdeQ/rZKxgg0eGugxIyuslC519idrxrLPBYGCcGbKfkJVPwJ316DpVsixDmqY5Jw7Bc540IMjOPiPrVLLYpTZ/kf45/0onCtOSf2UQWbaz+1sqYqPfjDYC0Ue2bWwYIF20oNZazIhjw4IxDHLqq/o+jhzJP47653wvlTJItp2ZnVVvnnxS/T15EpVuVx1LblTNPqDbBaqNJL/D1BswAsVMw/cJFA/y1+rdhwlK1tCb0aUlBabLzEownRsknfEoUV9VuCRod/J0LikPoxlLXpIgCkPsr9WAmtoJDcI8043s6ko8yIuMc6fl+3aTpo9X84hzibgKAKT5bPAaMrkUNhsgTKrwmk0gy7DmV0QVeEaXEwBqtcBUH4+vt1p54F9uxNm1DCCj65/gPrtduWwZ6qVSPnaq3Dxy4y0OwJnr3D1hrs2hnBlxHCCOrY+Em1FiOspZE8FLEkv5AgygfbHj5TRrZZoeBgas8QBUkxDNpgLTd++2eugEsQ3w0g1ZuTZTRODJViLgUq+r/hJXsHJefSWVDApOjZu8StyGWui8lnVIYh1xnslJAK3uVhB9KJJRYNsMRH+xR8Kv1R555BG8/e1vx5EjR/DAAw/gIx/5CE6dOoV3vOMdAID3vOc9OHPmDD7xiU8AAN7xjnfgN3/zN/HII4/gp3/6p/HFL34RH/3oR/H7v//75pn9fh/PPvus+f+ZM2dw/PhxxHGM2dlZAMC73/1u/OAP/iD279+PF154Ae973/uwvLyMH//xH7/OEozshjHXMzkMLCOgPDsLTE1hdlbM3ToOBubmgDDEgw/q370eCJZRMXE7XMx+dVUx06eO/EN47RcURX1xEXjmGSDLMHPsGJrNPWY8GsQRvEbDDj4aQI38AZB4ZqojS7gihJ8Zg0XJeHiIGHWSgxZvimO1DmHAZznwTk0B3S6CGKjXIxVEnBpXrLOOmCwduZggSZQGu37df0cdd9+tgoJ6nYuA7yNJKrn1TS6S5vS0leXSQuoM6mmI1CngC/Cacx6B0fV1YK1xUOVdnx4giL6cKh736ipwsRTkZMc4vRDPTVNgrb4HSNVpAulM5Xsv65vE+9CnrdIUQRhi927PzM8E5d0wKpJ3IJnoLFO3C1zsBgjDqlmrBD7seknXf212BmNjdinEuqCDJsuAtbACPwSCrgiQ3myqflav4/mWZwgEfIYhcAiUen9T6cRz+j92zMZQ3dhQ8VoZmxUdgXbLuZCeFRcR1+vnQRihO2/9H4cO2f/L+XlszH62c6d6NH+Hs7NAJewDiVpP0e/u+2rZoOZuUdku4F8kzVbkHL/a/H4D2WjufunsZW31D3/4w/jwhz+MBR3m+q677sK/+Tf/xujaXL58Gb/yK7+Cj3zkI1haWsL999+P3/qt38Jdd91lnrG+vo53v/vd+P3f/330ej287nWvw4c+9CE0KKY4xD70oQ/hP/yH/4CzZ8/irrvuwgc/+MGct+Ja0v52mQS3JdNbAn6e5xkgk2AgQULKjhBAliD6sP8DKNQrZx5csNQNysiXfB6Zxy5o6Ps+oiiC7/tGX5xBQwmuE0AmkM06kNIb/B6wTociFnK5XMbly5cxOTmJjY0NI3NSJK1BkLcIsN3c3EQQBCZ68OXLl00gVOqou44El6Esg3MO08YuYqETIF5eXs4xyilPI7W/XcZ0lmXo9/vo9XpYWVkxwDOALSx6aRJEl0xzV/KF1+7YscM4FvhM1ocEz13AX4LYEoSXbUNwnNrvNDpaipjo0pkkA5eyD7HvurI6Mn3Wo9SJl0FcWR9u3ADZ/4bJKL1c9t73vhe/8iu/kvtMBgH5Vo+FI2B8+9lNM3dLUEsu/ouAc7mYJrAXhnbTNb+oGGjf8z14vltBHcB+/3kgjrGMitFiphY0QUwpXZplQFarolavIsKTCrVtt4Hjx4H77kPjjf/InNDOMuBix0MYVhCFfbPZl1l39w2+76nNr75oLQuQpRYcPsBNLR0CAmjPsYwAu/tjAZhYmsJE6JJRHvliYtzp1OuGZuRNTCAYH0eVtKNGQ13TFjtPILd7XKvtx8oK8LUn8jg7pWb5F7A4A1n9q6v2UdxcJ7X9APJSs6WSyvb8vN1XESiv1RReQm37el0zG0kX66bFDGbfh5ckCGCPbke7Qgx8q99eKlmGt7s/leWgvIsr9+lzIy47hJZ12bkzyvURMroAqzJQcRj9FzseFk9YHVOZL5OMPFavQZmZOAYSH81mlAMOmKY6paAaoh8q8AVhBD8GwsZ+eIf6+frTzEHZzQigNxpqoz09rgOK1WumTgHVXnv3qmur6fMazfCBLkwalVoN/VrVBu9tiz4u80Er2ohLQEqibtdhL+fcvQPXt7m+3hXOj/zIj+DChQv41V/9VZw9exaHDh3CZz7zGXzXd30XAODs2bM4deqUuf7WW2/FZz7zGfz8z/88fuu3fgszMzP4jd/4DbztbW8z1zz//PO49957zfsPfOAD+MAHPoDXvva1eOyxxwAAi4uL+LEf+zG0221MTU3h6NGjeOKJJ0y6291umrlb/gYlou06uPg9f4+1mkLrkgQHGjpWyPFFNVYcO4ZvLAY4EPYxffL/sxNDkuDECRvnW2o2Z5kdh9ttoFbbg3sA4JvfVB+eOQP4PmYP/WMz9nU6QJXAZpJgLfUUGNzpIEoShKFnwPn1dSCLA4TxHoSwQTBbLa1oU9+PoNGwki2tltJaTxLlEKC3Uspl1WoGxY38LrDQVk57TiQS7ZW6LKxTSQvWnt8oy9T/kwSYnETUbCod9XpNOekXu1ZjjEjn3ByW0wBPPG51yPl4AtgH6msI4hAbGx5WVtTYzeI88YSKVzE7OwM/AVBXWeQSg0Xu9ZRciJjKTNN2u8rn0Wyq+aDq+4gP7UGWAVG2rJynXA81GghmZ4E0M/W3b18Fu3apOcf3tX5+u63WWXEMhD7iWM0/4+M2gHqaKq7CmTMqzwsLlrA9OQlb3+xYaYqgXsfUVBVf/7r1GbAZKH+yuKg+2+/rjqYXQWuI0FpQSzNOZZubKj+sJyPpkmXA/DyCOEaYzMD3ge871jeTdh+BWOPALAIuphHSLjBTFw2pF18DMZtkmeZptPKHCBoN1YVc4kGtptp+fFwTKmRfZAwfaKd9GKLaiIt/oBJA5/3u3O063viM63SAj+bu74y5+2UF0RuNBv7dv/t3xovw8Y9/HG9+85vx9NNP46677sK///f/Hr/+67+Oj33sYzh48CDe97734fu///vxta99DZP6vOq73vUu/Mmf/Ak+9alPYffu3fiFX/gFvOlNb8JTTz1VyJwFgD/4gz/Au971LnzoQx/Cq1/9avzO7/wO3vjGN+LZZ5/F/v1qg3QtaX87zdVTLpIbcWU5AMuqLpVKBiCUYOrY2JgBUCXQSvBSBqOU17gmmb4SjJTXyvaQsikEzQlAu6xuybTf3Nw07GkCrSybBNFlvlw9djLcx8fHUSqVTF1I+RvmkSA7geZ+v5/TeZeBTKXuPMsQhuEWUF6Chi7j2a2noj5AsHx9fR3dbhf9ft/kQ7ZtERNfyq+sr6+j1+uZ57Fu+PdapHgIghPUTzlZiTpifcu+QfkWKaPDupEnAYrqRNY9X6xb6Uhg/gALUvP34jovXPY773HZ45KFzv8XsdLl9dIZcCWw/OUE0u+66y587nOfM+9lfd9oY+HIXn67aebuYQtmFyQrAs30mdM41qDp+fPAhQvohxUcfxx46CEgePppYO9ehIe+G4AFZnlamZspiUcTHL0HsAHF2m1gbAzeAw8gSaqGeGU2hPUAnmY2u1qkPB5OlpRhOIUhVnTsUsbkDEMPtdoeBeoSKZY7NVk/DCYloz11OmpXduZM/nMWrNtVAdUA9dxSyYLo3MCVy4opR+8EGe98DttKn/FdXFTV8+STlg1ObJ4bTYLDso67Xcv4lgA1gXMGBiUTq9u1z2d11OtAhDUAEc6fV2kF6KsApdzcSUBZ9jN5Ll9854UhgjiGL4BfLVNqN65pimqSwPcDdDp5Cd5CnNYFl7IMk5MKRF9fzzPaCOBvbgJxHMCLfSx3PfTOq2Zls9PHwibKpeW2l0Y1PN9XToM4RiWOFRjRzXLIBg9B5PHqAL4f2BPv3XwylEeemNDBeeMB8ORJ8+OiswIAqr6Pak039OOPq8LQ20JR/npdgyWp9XwNGx+2eC2wdbyQ116nfSfP3e985zvxzne+s/C7j33sY1s+e+1rX4u/+Zu/Gfq8ZrN5Vaf9pz71qevK43azm2buprm/KY45w0B2MnMB+9vWx2qebwd47DHgwE/4amyo1VTU0FrNxNzevdsGuWTSnDPOn1dT1z2Aeubqqhowb7kFzTf94xxhHIgQhhHSjsKWoxAGUQy1I1H6pTmnMQhmlnniO0+d6GKZV1YA38fzbeWirc3eqeYO19nNsez0aeWoJ6LJQslFhjwu51KFqbsuHBQAzIQSxHGeia7n/FOtAGfPAo89phzUnIfZPOoZarDf3KyYU2O1GnLBWjmVklxAINZdUxHj59LG91XRz53TJ8p0lPAgyxQIzjpYWLBeYxk51VfSNjkHd6djkWztmffCEIHvIwh9VGLfMLzlFNlq5QFxcJ0mSQrttgZHq+YUmZREY0ibOAb2J3oibzZxbiXChQv2wIVsejZtmgKohXax0+kAcYywPqO61RNPqHrYvRsB9VaY4UYDa6ly7KysALV7KwjiLtbiPXjmS6p8EhgHrHODQc6TBNhfW9OZ0f24ozIZhSGikq/WVQsdu0iRjuqiNbpsKzmHA1sZ6eYIBOz3BNuHzedXsdHcbW27zt3Xy9J/Se0Hf/AH8QM/8AM4ePAgDh48iH/7b/8t4jjGE088gcuXL+ODH/wgfumXfgn/5J/8Exw6dAgf//jHsba2ht/7vd8DAFy6dAkf/ehH8R//43/EQw89hHvvvRef/OQn8cwzz+Q6pmu//uu/jp/8yZ/ET/3UT+GOO+7ABz/4Qezbtw8f/vCHAeCa0v52W1HnGQbMuTIcktVbpP3s6pnL+10pkGH5kc9x5VBkHouAQnm9qxFeJKshdckl89eVcAG2MtFlPl0mv3xJfW5ZXpm+zIeri+3qqpdKJQNQS6a+TINtWgReu3XgMqLJyJZs6CIpFwmkyzp0JXCGBc+UdSTrQ7aFy8x2JTvcvijrwQXQh7WLNOk8okNDto17asJN39Vhd/up29eZjqxT2f5Xq8Mb0XzfR71eN6+pqSkA3/qxcJij50qvkb38Npq7r8H0ItywfTVyTWYwAHuEWluW2WO0XJdTeoUvbi5ylOOVFYO4G0kQDCfGuiaJZANnWZhleTA/TW3ZJLg58AP0Mw8DP8AgjCwoQTo9hWHX1y1SIKnfRBBWV/MBI90Akoy+xQ2sK+Ap6p76nnKjzCTJpnZvlZ9tbm6tfz5POiLk58yOkYvXF62vC3kV9wZZP7I8bsJyV13Q3VwAZBhofi2kKd/Py9G698j+IvuI6xsZam6FSu+F63wRDcR6l9Umu4rbJWTbsjzmopWVre3AFyPL0QvR7eZ/CNL54/5oh1Wo/Dvs++u0l2vu9l7Ea2Qvv920c/e1/r6kA9MZTDgsDOAh552EHQo2N63+NY1DxeqqiK/I8WdlBVhdhZf1c4e5OG3S6T2AZ/JBHWp3/jFv9BdynMxNBppsJofctdSziKt0BqZpfs5252U56K6sKKRWTrRkSp89u/V6d6B2AnxwOcBHkjPAITc3n2rjiSvATqfu9CK5djILck6Xc56JUSMrVJaDC4qCCS/wBzl/eKGTwnnJLlh0yRYbcoGcuyWW3OuJe3w/N63JeDxO1dqH5ipFOAfYQEtL+flbFJtpwVeBVy9dsks6OR1zqUgcPAwxfH3gfu72TRZa0urdxcKwAheNG0PZCNdno7l7+9sNUzebm5v41Kc+hdXVVTzwwAP45je/iVarhYcffthcUy6X8drXvhZf+MIXAABPPfUUNjY2ctfMzMzg0KFD5hrX+v0+nnrqqdw9APDwww+be64l7SJbX1/H8vJy7vVS2DDw2pWYuBpo5wKZEswtAq4l61bKYkjd7yAIUC6XzYvvJUDtWhHI7gLjRUC1+50EKwmWyu+KAHQgLwPjapgP08KWbOVSqYRSqWRkcsIwzL2kxrlbt0XAvTRZZrKbNzY20O/3zYu68JQSkWxoarb3ej10u12srq6i1+sZprgMOirrwAXqh7Gih7UHTfYLnhAoqlOXje/Wl5TokXUh64F1IR0CZIGzjzEfsr0osyPbk+nJunAdNmwH+ZsoClwq+5mst6vZSw0Qr6ys5Maidbr0C+y5557DzMwMbr31Vvzoj/4ovvGNbwB48WPhtdq3EkR///vfj1e+8pWYnJzEnj178Ja3vAVf+9rXrnjPY489VujAOnny5N+3qN+xdtPO3e4i2t3E6O8NqB2GQLmMSjygJLqhSQXpsgleuGuXZfKmqWXo8LGGiUSqc6OhxCfJyO52zWnonTuFhmccF4Ka3EdInXQaN6Q8dVuvAxV/zQLY4gYXEzU7n/FxKxw9NaX0TptN4Lbb1HHyuTnFTpubUwKWzSZw++3qXDZZ6JKJTjb6xEQeyOQmrtWyx6vbbVOvzD8fR+a9zLOrAc4gVLxHZkVuctNUbVR5D4udZTCOlDjW4IpwPOQS2rXLJsbv2I/cTVsBQJ5lwMAP7L063TDMxQwzLDz2q1yfdToA7+c9Ug5GbvDZd1gHExO2zmXsz6B70UoQEU2SiIEsVBFiIAAkmgQ+5G3yRc3UONbH6Zm2QdULTMoKUAxeirTLNpTehqttsIfUtXy/Hebu0UZ8+9t39Nx9LSCX+1u80hjk+4Y8DEDNY5OTZr7hWEcpK0ls5TDP4QS33ALcey9w991qrtO6IVE4MNdNTQHVuI9SSbDTOYgjX8SVFTslS6PiWbMJewGR5ywz8ZcB9VU/87bOTRy8Gw31knP24cPq/82met16q1qL8OQOx/UkUZ9z7JRadSwc5+7Tp1UFLi6a+tq3z8p2c3o0Uma1GgZJNQe2cqiemspnpVZTpwToJ+AJLkqv5cBuqDRKJRGo240wTavXgTvusPov4nQZncymvbgYkMezRJ0P/MBcK9SCcus5I1nCDlYu5+ZQzvlyemJ5fF+vfcQ6QaY3OZmfs+XLtJHxBIn17diYygcrTf6O0jTXHVhm15cgyRwE2ycmVLer1VDsHS8gdOTWVUxw1y67pnTb8Wpzt8tQv4KN5u6by/7+rpS/pz3zzDN44IEHkKYp4jjGH/7hH+LOO+80HWV6ejp3/fT0NP7P//k/AIBWq4UgCLBr164t17SkgJawdruNzc3NwufyHv69UtpF9v73v3+LxtFLaS7rddg1UiKj6H7AAsmUTVlfX8eOHTtymuLUt6bUiQQ4yaymxjQAozEtdawpGyLNBSwpm0JpEH7P/PIaF9Dnd0xLlo/gl9Rgl1IdgA3EWi6X4QaDdJ9HsDUMQ0RRhCiKMD4+jvHxcUxOTsL3fVQqFZRKJUxMTBgpF+rKy3y6+ZUsd9a3ZDq7QPHGxgZ6vV4OSF5fXzdSN9Q7X11dzemBU66EQDNBZimBU8SEl3kryhfzKwF59gM6FNgWRUztouOf0jnCvkiplsuXL+eCpxbpjgPIsf/lKQCXeX6l0xiStS+dEHTayLaiuZr2VwN+v1Us6zvvvDP3/pd/+Zfx3ve+d8t1999/Pz7xiU/g4MGDOHfuHN73vvfhVa96Fb7yla+86LHwWu16y309137+85/Hz/zMz+CVr3wlsizDL/3SL+Hhhx/Gs88+iwlG9RtiX/va11CpVMx7MgRGZu2mmbuHLaqlcUHvnoOV1DJumhYXcf+9daWFfeiQumd+HlGSoNk8AN+3J35XVrbsm+1GPGyqD7RMDOp1c6x3pql3K3oz10cVz7e8XFb5/6IsR/pLSmTwdHaw+A0bpEtFLjOvbtey5gAgShJz5De34ZMeAZpkuPEIvTzezc2Z3NiXyzbz7baqLJ5JrtXUrrvTwcyRBEkSKfnruiUgyf3V0lKePShPmzOpqSm1YeSmmBKzvB8w8WLNRh8ABmEE37e461rqIZIbPF7Iz7gJdzdu8uhwliGMLXjPKlR5r8DT9/rIn1pmkiaYaOp0AGGBPwBCu33ifX7sGeCcoA0PVJRKNmgam7zRUBvhqH1KVRpphUmiNrXydyIdM3yA7KhhiPFxK6NPMhzzwVuYPtuagIo5kk+ES56zl5lmP7v1VpMufN+K2vvqyH0gHQDSEcAK499hDjf2b/k5tsfc/a0OTjayb53dFHM3B0Y5KEgb5swCiscEqJ/+K16hPgoeeEDNOydPAp0ODh3aD9+3MiLtNgxILdVNkgRA/YG8nki9biaUKgfrE/NAt4vw8Kts+JHmHnMKShbj0iXqrQPVxIKi5TJQWXzWTlREJ/VcMj2l9NOXluypq1LJQ5JU1RzCB9FBz4iRnIsAe2qHUmzr61ZehM9oNhXYniRWi4UnewD1vJMnlWRMHANf/zrQbGLmh5oIwwjHjqnb6R8nMJ5lwLMnvdz6hX5O/p9cA9nUxLgBq0MupwIXjKeT2AQq5RqF9XP4MAa1PSpo6sJC7gGcn0wAUno2OEGFIfp+lJv64ljJvtVqgVlT7NypNb+xDCx28vPU1FROWo/rFzodZFOa9/r6fuaZpmJZGaebjvP9tTVgYVGVbWFBdeypKXVTmqq+Mj6eR+6ZN0DJzIQhwnAPxsZ0OeMQ3ZZVAGI3kOsZxhg4WLuo1svuETcuqmhc7LBu5QK32cSgPmMDm6epkWkyz5COhWHjgjQ5j+sf5WjuvrnsZQfRX/GKV+D48ePodDr49Kc/jR//8R/H5z//efN9kVTJ1bSDr+Waa3nu9ab9nve8B4888oh5v7y8jH379l0xH9dqEpArYqO717rXuIAegzqGYWjAZAKsruQHAzcy6KfneYZxPT4+bsBpyTAnuEqNbGku2xiACUxJdjD1xekQcKVCWBYJlEvQ3Q1Myc9lmgy2urGxAd/3QbazBNJlnoIgMAD65OQkoijCxMQEdu7ciSAIEMcxfN9HHMeG/cxyuKCqmw4/dwHawWCANE1N3qSeOcFz1vPGxga63S7W1tbQ7XaxtLSU04x3QX3qtkt2OoBc3bn9TuaLafN7BoIleE7Q2vM8c0+RA0ieApBtzT7BQKosNzXg2Q+K9M6ZB7LOZX5kW9Cks0DK27CcDGjL/uyC7fI5Mngoy+7+/mR6ErB/KYH0Z599Frfccot5Xy6XC69jQCkAuPvuu/HAAw/gtttuw8c//nEcPXo0l1/atYyx12LfShD90Ucfzb3/3d/9XezZswdPPfUUXvOa11zx3j179iApYpyMzNhNM3e7C+dhADoX7ATd3MU4dy8LC2rDeOgQnscMZmprwF/9FTA+jtmHFIj+P/6H2keSARSGanPDIJgKRJ9VmzF5vJoMX4KEegORHfqHOH3aBleUxstZhDgGolCVMQw1mEr20YkTVs+TtCUoBrRzehf1egWejLAW2qCQZNlzDxInQG1WbzRPPmsFxiVzjuymclmxipj5jQ3FXut0VKUxgidR8yRBVKvhyJEZQ4JmYDGmf+GCxQrGxoycPWo1rWmepkprE2pDEfg+arX95gT7pUtqk8sNr8Rv2B3YjkpGxlOa34KateZXNBBSQRRezG/iWIeC4eZlffiatba5qYBsWhxH8KFA7ygEIl8AHrLgbt+VYHCW2SCzYh2nNsNBLjvs9gSK2HfKZWB6l2Z+P/mMahvK9TSbCpCRYLakU+boezaPYVLJ7VvdorCYGxt5jKrZBLz2CyoPqpKGs05ZB9Q913laq+3HM09bZn+tFimHiATaXTC9yNj5h1yzHebu0UZ8+9pNMXfL+dcdS92xj59LBFVOUHpA99ov4I47VFBJHPpuBPPPAn/0RyoI6UMPIcsiPPMM8Ld/q+YDyerl3F0uA89vHkB25AAaDT0mtdsq0CiPL2WZCuLRbiM6ehSnT3u54cIdNlotNS3fdhuAxF6zaxeAP3tCjXmMxMnjVr0esLiIIEmwuVnJAcsbG8DUVMXMb+NxhMqxBPB9nGoFJrTJ5qb2Vx8GgmzNepafe079pR7HLbcohyQrodtVgDkfVCqptcX/+l+q0mo1NfYeOYJqo4HXHIvRzzw8+aRaOtFJnWXAM8/YZPj4atxHNQYGzcCCplkGQBUwrlextGSfQR10tzsQl+ZS6vhxoF73cMBxsHyjuwePPwo89FAVM+0n7UTo+8bhDMDME/2woupLOxu4dKOFIRCkXURhiLm5SJWh01FAMtdijD4vvQVxjEEYIUkUzr1rl24X+AB8hKGXO5lI8oME0eV0bIJ6P3ncRkdfWMjP3dKDIY/i8ZVlRtB9YnqPmZP7cWCAcvfgHWCXtbUalCh+uazSdEF0elOYBz6IBdOLzbVkBsefAMLQQxhGqNcjVCFAdDl3u1ZE/nCd/NpGc/fNZS87iB4EgQlwcuTIEXzpS1/Cf/7P/xn/4l/8CwDKO713715z/QsvvGC8M/V6Hf1+H0tLSzmv+AsvvIBXvepVhenVajWMjY1t8Zi7z71a2kVGSZNvlQ1jrMof1pUAOTdwI43ApWQUF8l1EIwk+FoqlTA+Pr5FBgNQoDhBeRnck+nJlwRmS6WSeS+B8SIW+pXMdwbCIm1xMrBLpVIOMC7SViebuVQqGZb5+Pg4oihCHMcIggATExPwfR9hGELKk8j6l23msuldJrwEq10ZESnrQkCZDPVut4vl5WUsLS0Zhwfr4/LlyyZvZIyzvmSdFsmvuOxwpi2Z3wTsy+VyTsalSDee6TAvbAe2uzyBwLTW1tZy5XWBcZ4soCNGthfTkPmRJtvElRJi0FTpFJK/IVcKx+3zL4dNTk7m2NTXahMTE7j77rvx3HPP4S1veQuA6x8Lr9VeLIjuym1cy9h76dIlAEC1Wr1qOvfeey/SNMWdd96Jf/2v/zW+93u/95rzeLPYTTV3uwvoogU1Xy7LVdKLABuEanYWCy2gfjSCd+YMEIao+Guo1SKsrqrLSFoKQ8s+SxIgCgc4d97D+nqEJIkQ12fgLZ6yUR2ZB9KTDymgWDKkmTV5OaA3fKEqUxD6lrFDlvjioqIqJYm5UQKpkqAWic1UHwEWFlR6zz1n2cty81urAYcP36kkN+bn80ejJcDBtBllstNRBVxcVPf1enZnrMH4yPexv54Y4Jlk9yxTQAGJ7pLsHmHNgvlk8+nKixuKeUhW9M6dZt+8BZumzAlgwe7KrtBs4PqZh9aiSgoA9tdj2zjA1h2m7mt+yHCYdl/Jv4rNluWfIzMm0YIi1hU/k+gKi6/Tle2+sWHrzpxoCAfAou47Z87YgLKdjtrl0yTwXAR8ifzIy/gxD0XwvQyey++8jpCSIWLgAt463QE8wA/gkVavwY7FRevcajTUvj4iUCCfI9efw4D6IieB/mw7zN079Ot6rh/ZjWE31dw9zIb9DuVfdxzqdFCph1jOKpifB+6pJTCRqxcXUa8fxIULCuidnbUE4XJZB3NsqD3HXzzmGSyy2dyDA40QePppNTkQwCedPU2xuhoZtTJJ8KXR5ywdqYAOYn3ypHqWLBcnLk0DzrKKmQcBlQaJ8pz24lixpZ9+Wk21DMPSbKppeNeuCLOzB+F1l9WNpZJ17u/dq6jkYYhBGKmxmF5OIswLCxgsLMArlfJzt0awAwC33XYPWi2r6JamakmyuZmPb87x2pMLG1ZUliGYi1EqBbnTZ2xultf3lRM6jj34vsWQsww40ESuXywsqDizr3gFMCODq2YZskzVE09/DfwAS+eBqakInu5fRq5Hdk09sXro2IylqTp5uL5uFxsCvB6EkVlP+T7gpWuG7c5OY07I+Soo+MZ5iyNPTGi2e9jX9d+x+kQE0BcW8h1Q6ha5AHoYQiLl4838bdS253vZPXlbHAP46lfVj4njjbyYvxdduLVMrU3CpKocALrN2231MyiXrTxPlZXtOr+Fg2TLXD5srTSau29Ku+EcDJRquPXWW1Gv1/HZz37WfNfv9/H5z3/eTNT33XcfSqVS7pqzZ8/ixIkTQyfzIAhw33335e4BgM9+9rPmnmtJ++W2FwvOFYFWMkBpkZSHlLtw5S+kNIarfX0lne1h2uNFwKMEceV3RXXgMn6H3SvzdKVy8a8rA+IGu3SDVLpll/U8rD2KWMkStHaDdxYFtryStjzr90p2rf2qqA/J/lIklzLs3iulWcT4dgN7FpnbbhKsl9+5QHiRfM2wvrOdAodej62vr+OrX/0q9u7d+y0fC93f57W8AGDfvn3YuXOneb3//e+/ajqPPPIIjh07hkOHDg29bu/evfjIRz6CT3/60/hv/+2/4RWveAVe97rX4S//8i//3mX9TrfR3H0N5vtq06h1KLZgheKNS5BzVa+kpIXRIJcLfmex7+Km8u/QvBY9IMuKo6dp29gQ+uoiIQm4ykBWBPH5d2UF6CPIb8QkcirBdLLTh+TFZEjkn5raVwuu6ftOmd2XKB7rlcz9IiJyuVxc3wzkmnu0C3jIxK5gRdjzFrCo8KJrfDDBeycrMous11A7YoynREZodW92kXH3wVcwNr98RKmUb99cWxblw3WQaVNger6R5a2m210JQP822rdz7h57Ea+R3Zj2HTl3F/32rnfcK5pTu134vgb/HCkmOVS445Ecg+R8Z+buK+TxWodsOXeY8c+Zs8yX1NUQ4xqw9XQPX+7cLWON0iGe02135239WZoiP3cDZiAdAHYBUVABrtS2W2Vm/nEzXlCgoiXFlqkoK4494n7IZKTMjsmQNhmw3Y3jIYvtFj3Xhq4VzJvse0X3DZtmZVZNP5WsCHkisOhhw+bwq8x/8muuy+TLxD+REd6BIZV0Zbvi78ddb32b521gNHdvV/v29xRh/+pf/Su88Y1vxL59+7CysoJPfepTeOyxx/Doo49ix44deNe73oVf+7Vfw+23347bb78dv/Zrv4YoivDP/tk/AwDs3LkTP/mTP4lf+IVfwO7du1GtVvHud78bd999Nx566CGTzute9zq89a1vxc/+7M8CAB555BG8/e1vx5EjR/DAAw/gIx/5CE6dOoV3vOMdAHBNaX87rQjYJlOZjFd+LoFDwIJUkjEMAJKZXKRNTWa2BCrHx8eN118CkBJM5P8lyMvnkl0u88E0xsbGtgCmRQCz/L8s9zBg1k2PeZTPo+yKZMFL6ZRSqYTJyUmUy2VTBwxSKYNSDgsU6uZLMu+ZDpnV/OzyZas5Tu1zV8pEypzIQJdkZFOLnH2CRvkeyfCm1rjb11wAWQLS7EMsP08qSK182V8J7sv30uTpBRlQVWrCyzalRIurey7bZliAW1k+/oakjAvbXr6GAelF8QeGOYOGOT6ul5H9Utq73/1u/OAP/iD279+PF154Ae973/uwvLyMH//xH/+Wj4Uvlol++vTpnLf/akykn/3Zn8WXv/xlPP7441e87hWveAVe8YpXmPcPPPAATp8+jQ984ANXlYC5meymmrtd9LkIBJT/58ZaMlx4T5qqHeelS0CaIssUu2xGH99EGCLMjJw3ms2thCNFuvG2JI04VvRY+YXeELTbWwk3zGKttlUjfBBG5rFm5JSZ2L1bHdGu19H3IywtKTYaj1UDKv+VRqKep3XEWRUuk455YfWUSkCVDCOpV8njwtS99H0pBm7ZUPW6Yr7t3q2ikmmh1LXUw+pqHvSWf2UdZJmSbdmyg9YV6GGgjwbbYK9ephhc5IcHcWg2zx6s/qwJMKo/933PMBZ9X9WXJ9jnfQTIMiASAS0HfiBVVnJZNJLqsWKbmS/kX1lwIM8o43VyMy0+83wfURiiVgsMSZ+3ra+r8nnpWh7A4DF9CtQyUlwcYw0RkGkdfXYStr3sLL5v2Gu+bwmLvK3RyP9EqW5UrwPoCOSbFxH5kUAPdN5ZJ/yRpikac/sxOyvkYci6LPqtMw13zHgJN+gv59w9OhK+Pe2mmbuzDPC84eBj0We+nx+zODmePq0GNs06j47VcemSh7WwiujYMTPv+L4aG2ZnbRxODtm+r9i/nEJkrGyEoQowCtgx5PBhIE1xMY3Mx5zi3OWu1AFnYuPjug52787LuzGugzj+1V2woD7zJ+dEDpW9nkpbsr45PJMN39vpYZonxaRsVaZO+LRawMREhOm5ufzRrcOH4Xc6Vk+NA62YMzpt20yMjdFsqr9jYyLYKGOL0OREqdueybK8UajinbBrBP4ASBWbPcoyNBpVtFpaSo+VomnrtZpabsQx7CSkpUboaFAM+ip657d2SbKjye7v9YCKnJtlZvmKY80mj00h3EN7puG0eQAqLGBHfT45WTXrtixTdRhJBzjrcXxcVfYtt6iTBbrxl30V1LXKDijWif2wgqAemtNfPJhAFRaGrpmctCcuKalXLqsTD17nonW6yLW4DEwr5t4IXOfo/t5uA50OGg/ek+tO9TqA42l+vpbG98MWWdfhLCiy0dz9nWEvK4h+7tw5vP3tb8fZs2exc+dO3HPPPXj00Ufx/d///QCAX/zFX0Sv18M73/lOLC0t4f7778ef//mfY9KESgb+03/6T/B9Hz/8wz+MXq+H173udfjYxz6WAw2//vWvoy0Ep37kR34EFy5cwK/+6q/i7NmzOHToED7zmc/gu77ru8w115L2t9NcfW+pDc7PwzDcAuYSDCRAKbWupTY0QWzf91Eul3H58mUTfI9AqJQoITBLIJsgY5FMBoNXSo1xCX7v2GF1zSXbWIKmw1jafIb869abLKcEmVmOKIpyoDOfRWB1bGwM4+PjBkwfHx/HxMSEAdQpHVLkIHAZ2FIKhSC4BMol85zA+OrqKtbX17G6umrkTBhUU4LyruPC1SeX5eIzCML39JkqF3AvMqkpL0FqauSzvoqAa4L1bpBQWRZXtkbWF58TBIHJC/NAqaEoiowGPMvusuHdMsr6o2OBbSO12YfZsNgEroSP/Fy28csp+7K4uIgf+7EfQ7vdxtTUFI4ePYonnnjCjIffyrHwxYLolUrlmo/M/dzP/Rz++3//7/jLv/xLNAgyXocdPXoUn/zkJ6/7vu9ku6nmbnl0lOYuouVn3PzojWs/8wAECLgp6XSMREiWaYnm2deojave0B0+bPe5Mqam7+cBS4l3rvkVRIcP59JeTgMlffp19TFlRWTWuSHn8La5aSQslSSIZOcQtbz9drVrrNeNgsyFC3nC0sQEDDgs1UjC0G6i9P7G7O9XVqx6SrUR53W6tbjsGiKcPA4AAer1AwgToNpoqIfNzam/DGAWhhjUZ9TR4MU8+29szAYQddVSZPArU3a52dIAfxxHRmY2SZCn1QNAHKugW/qzoFbD1NQeW/n6uR6AcjnA5KRMykOGCFlqNeSTxEMYVrCxtDW4HF/cU/LzMPQQxhUbTFSnO4CX0zIPEzWeBr6es2Rlyf/TceH7iJIEURgiblQMWNDtiiP1EpmRSLfezS6jgl5P+ZQAYOfOCOPjEcJY5aOfeaYq2a8oWTAxkXcweemaDRqqrZIkQD0E2qnNv/x98jdJ9IugGY/OM/+Li0CvhygM8aqjc+r9Y/O2Dem8YaU77ZvrXPIe2beyrIDKeGV7Oefu0UZ8e9pNM3enKTAY5OfqK7FM+R0FquPYxkRgzA3qkc3NYXFxD554Avi+n/op44UO/AEOHVJAbKOh8MbxcTX0jY1Zf9vEhB1ukkQFm/YP/0M19rLODh/GWurhxJPW8SyXrwQ8y2Uz1SGOgTVE8DOgEg+Adhe44w4lhSEDRBw5YmTECPAWKadR1kyGKJmcVC85rHFo5dQ7fbixtV6zzIRV8X3gvvvuweSsHrsxyGvXhSFQr2MwdyfOnwcutfOKaswb6yTLbP6yDBjEFTXesEASaNV5ieIB1lKhNd9uw8syRG6+Wy2g3UZldhazszPwfShwuBGbZ8/OAg8+qPW7m4fU/BpGubqlkhG1yrMMytmeZZicVOA510OXLgHTswkA7VDHwM4TBM3rdZw/D4yPB4hrKuBst5Pz82+du1kXoozRbIgkidBuK6UYAKjWMtug1Pgpl9XCdG7OdsBaDU8+oS49enQG1dma6RhriLC4AMRxgBkdLObsV1U93HabAsdnZ6tmaVdJX9CNrNps+vYG8MoEOL5g1w7Uz+c8yQ5RqymZIErP0InBBXarhaDZxD/4BwcxPbmmxO3nxdw/zNy+49rfA0gfzd3fGbbj8suJ3nyH2/LyMnbu3Pn3fo7UiyYLnMAh9Z7DMDSBLcMwzAWSHB8fRygGgCLNaoJZEiCXDGuaC2DzMwKiBDt5v2Rdp2m6JQgjYIFb6nePjY1hYmLCAKBSs52gJp8r8+TmUYLYEqDd3Nw09URgvFQqbdEyl2x35lHqn4dhiHK5jImJiVydSuBWmqwLguEyQOj6+nqOmcy6XF5eRpqmuHTpEpaXlw0ALoF/lq/X6xnG+tra2pYgn1zk7tixA9T4ppY6YIOtUvNetpNbHhk8kyB2FEXwfX8LiL66uoo0TbG+vo40TdHv97G6uloIlLuscJkWP6fjggx4Avf8KzXR3d8SAHMvjUFDmS/WCVnoUiLnSlYkP+OeLJAnDHq9Xs6h8FLa6dOnXxRo/O0wjo1//dd/jbiIljrEut0uXv3qV+PSpUtXBdEvX76Mn/u5n8Mf/uEf4rHHHsPtZPpcp/3QD/0QLl68iL/4i794UfePbPsZ++elb34TlSDI07NcJi8X2nJBTnAuSXAxVBuvSuvv1A7i0UfVIv7d78Zn0u8zWqdxDLzhDTYwI2D3QGNjajPe6wHnzllMcmLCSkpwzyPxvPl5tc8gAHn77WofJI2s274fmY0qtSjrda1rffKk1cbsdoGjR3GxdtD4A/iVJAo1GsD0tNowknws97RpavanOeIxgYXXHBvYL/Wm8WI3wOIi8MQT6nkM3tZsKsIdA6cSB2FaGxvIMdB9X9UdNWsJprunlqemdOA3AiiApRY2GhjEFdN+9TpQaX/DNoQEjrk7JkNeM8lN/WcZ1vyKZunZ+HKsLwIEw07J81rqi1IjVgYIY3dlO7BvUTKVz2WWg+5FewEFSunxcLVPddC6c+c9nDmjwKPpc1+2G3dpR47g2XnFyGR+19fVX/exzGOW5dulVFL4VgXL+YC63/ympfIBqnOwgQmQSx1eaXfcgX7jAIJ02fbz8+dVx+H7225TJxtOnwa+9jWVYVIQ6fVieaX3iCbZbZJprxtw8exZ7DtyZFvM3U8DuJ7t/AqAe4FrmrtHNrIXa2buPnkSFbJXJYAqT4oVAeyLiypox759OJXcA98HZp7+MxUM4fhx9f0HP4hf/a93mp9/kihcOkAfp1oBzp5Vc4ecy4GteOb0NDA9NcDzLc8EzOT8/Kd/qqYcZu+++4D7b7+o3uiBvZ955qCMDNCYJEAlu2jH7W5XiZmfOwf86I/iWdyZ8xl89atWkiVN7Qk4suo7HaX53espEnK5rOYoOvU5/J4+reb7H/1RnT714jXj/XnM4GMfU2WfnbVAuO8Dhw4BVVw0bdRHYJYdDI+ye7d6fq2m5pjJSSDqvgD4Pk51q+h0VNlNQOuFhfzCiHO3nuR4im5qSgc0lw5wMqvn59VrdhY4ehSDMDKA+Ayet5N/rYa11MsFLaf/lVPU0pLlHzQaQGXhy+riQ4ew3FWBUxcXlbb63Xfnu2gca2eDfvjFbmCKxT5CvJdTkbfwDasrz8ZutdT8x7lRZ+YbC6oPNhrAPY2LqmFPnDD68gCAH/oh/PkTFTQawJ2NZSyjgv/yX9QlDz2k+g3n8FYLuT6dZcDnPqfq4c1vBqYv/Z0tWLut0pKeEsbd4XxOJgkrF7Dt2WxiLd6j+sLjj6sOwP3eH/2R6gdveANw9KhK53OfUwut229XabAzchzg8yWTnx77YXP3889j3733jubum8yuz3UyspfFikBMVx+ashSu7ItkvfK9vF/eQ8CaQD3/kjkuJUMko9hl1hLcJkhJ4FYGjXRBbymLcSUtZF4vyzFM6kWW12U5y+8YfDKKopwMiLyPgDyBd74IxhaxnaWkjJs3WY+ULZGMbMlSJsDe6/WwurpqQHS2lQTsJXufALvUc5f1wRMKbptJB4JsNz5XOj/kPawPyrnI9KRzgvezLShRw79FzOyiwJ10LBFEl1IyrjNEllv29aLnF8m5yPYcZm6/dPNfFFi2KNjqzWQvlol+LfYzP/Mz+L3f+z388R//MSYnJ01Qq507d2J8fBwA8J73vAdnzpzBJz7xCQDABz/4QTSbTdx1113o9/v45Cc/iU9/+tP49Kc/fR2lGtl3lEmar/xMbr6L2Kf6M4PXSaqwRgazTO0Zjh9Xa/kHH1S3e+0XDHPZTyo50HRhQe0rCPzSXBLOxoa6loA49wg5RjIzkGUIajVAy7hwM2aKxbKStl6rodVSJCVJ2pVgJ8FZ4hhAXi/bIYaZ/QrT7meeYsHr9PsIzIadgP3OnRZw5klwwOq1yubq9RS4zE0e8xGGUIFMAUAHzJQy6oaJzw8Fs87L+gjDwOKlLMDKikqMmy56G8LQZCzTaQW68L6DufK0siRGy3qTQAbzyrJLgrXvb9V/J5jDuKwSF+e+kCw5kwnZOEA+Q+Z4Q8USwV3HkgYunm8HeOaZ4j2xBAzoDGG/ktg0qxYdjU6cPq0KcuZMvjPyKAd39/J3K2UbYD8KCDYQgFpdzaNUm5sqvfl5ex7dBcuvNl7Q5P/de25wG7HZRnZDW5YBO3bY3x7/ygGziKGeZcbjykCeM4D1+j73HNDtGp+i9I1Wwwy1WmDGryBbM3OXHEY5hk9OQp9Ii7CwYPG8LFNY34kTVtVkfBzWialfQRjC9z0DHFOvPMtgx0Ae++JEGcdYPGnnkPV1C6Bz2jKniaCcvL4foddT15bLCsjm/dLJe+GCjVdaaSQ2EqquW1Yh8zgxYbFcAGg0qrm1AMF5YvG+r9L2fcqODICTatGTNKt5n61sT+k9FwsOX6frYWDnK4LGnNM4d09MKLZ6rYZuVwXwnKnpNPT8EM4exNmztguyLoldt9uWhZ7rg2mKUK+90tS2IwNkc/72fU/fG5jssliuT8g8X17Eo37MHNcjaQogwsqK9T+bDsEOWy7jYlbBk0+qj+6ci9FtqbbpdICzZ+0UmyT2t0EnD2DrolSCXaCRAs9o826/ZcR52Y6i3vhZmgIRF4KMOgtYL0+rpV7z8+qHVasph/jV9NVZfjmObHMbzd0vnY1A9O8QIygnQUMJMLsgtGtS6/pKATMlO9u9vyhPw/Iqvyu692rPkyCk+7witrsE7yUr+1qCgvJeWT/y3iKQvMiGBQctChI6rHyuZvmwepLA/zBgd5jJZw4Dmt1rhrHU3fxcDTS9GkjKdIYFepV1UnQSoChPzO8wMNuNO3A1GybtUpTuzW7fShD9wx/+MADgwQcfzH3+u7/7u/iJn/gJACog1qlTp8x3/X4f7373u3HmzBmMj4/jrrvuwp/92Z/hB37gB6453ZF9B9q1LJy37GCu8Bxn4V4uW0ZxDsD0fXNLgD58X0l+FMXTlFnk5ov/J5Dq+9dWFgm6DuApSRIi4qQNa3N9CUUxPt1qkfe4MtKFN+sLXPb1+LjdoxepkEnchPni/dqPdtUmMw8C8g/RG1Q/DCwGI8EYmZipfJugKRafk+RlZWQ9ynLr/azpA6wLPr7osJTciLvN72Z5Y0Pngw8nJbyogp2bCYxv6QPiGmrXurhV0SOHtc2WvizbRdZ1UV6F3MtQk52G9UBBYheQuZIVAenDOvs1dcQbx0Yb8ZFtSxs2/8lBVMzPV5oufV9hq2Gob0lC+Jnwqen/BFkffhyYWA7uM118UC4PcsOM9KbrDxU72cZIMZg1J4YiB981mAR6fV/Nl6VSfuymE9cdurJMrBvEIC8P53CekJ9JvoL0WY+N5U8o8XNphcNx0cOEnJcXxyiVvK0PcOu5YFIzaYmG87I+xseDLfNZuWzj2dBZveV+pxyyD3BOl33ErQPZr8w6suj0pGQyiIz4vpXqMR/Ixtbll9OrDAbq2pWmYGOy41PkXoL+8mIZCMBt1yyzaKa7eJqYuPa5u6gjX4uN5u6b1rZXy9+kJgE4+dcFC13JCb7f2NgwbHDJBJbBGAlAUtaEzGJ5Pe8hUCmZyq60hwRvmWfJBCfz3AWvXVDUZVmToT0YDNDv93NgtHwGAW6ysQmAE5wulUqIosjI3TAopguMs375+fj4OIIgMBI6UiKFjGVq1ReB+9TXduVcyEaX9UXZD5aP7SPri+Vjm0umOwO5EkyXdSHLxnoCAMngZjvKkwpFJvuD1JyXjguWk21XBDTLdORJAtlfpXSMq/nOvMv6cfuf67whcE62P9uH9eX2XbcvyraVf2W67l8pTTQC1L91di31+rGPfSz3/hd/8Rfxi7/4i9+iHI1s21rR4lqCYvLlfFbiPkWe4xaL/N27gQceUHsEsq4O1GOg28UgjLB4Ul0TlboIsgx3NhVDai0LcmwlmQVpk5NWzSKnnOQilfpvHKvjzYAlBVV5bFbIq3Cv4u7VuT+R0hz8jHrb1CJlekI612zM0hQIbCRVBP4AceyhXldHvwH7bJaNVcxNp9wHk1jmypz4Poy0Subgq4E/sJVA1J0FMzrnQK1WUUFF+UB5BFhWuggMap6vKVsegKo4XhAmUY7sTYaXBNAlLixJZwTCi/aK8j0dMvLazU1FQPN3VeDHFRW4jBov6+u2EvmX9HVYKfpqMsgjBSIjk5PqKD6g0jagPfKxYeWeWZaDVRz4Qu+YH/q+otJ1OjavFL/nw1lhzz2X34inqcpHBlsuQF3D49mURpictEfAr4TmSECAzyqyK3qRRjaykV23uR7dK/0GJYAukEifQ5h0pukJj0OKlhfHuXPAhQse5uaUFNZFVPHccx5uvx2oLpyAB2BazwfPp1UT5yKK7W9eKoFR2oxBjE1ASwkEG+dygFJJsZwD9DHwA1zM9gCc++pQgLZmHTN4I3FLDlnUOs8yNQdkmcpUFAL331/JOWNdpSzmeWzMHgaqMIYKAHS7qM+ZeKlGHUMWiWnz1Bg/37dPrUmaTSubboB6PWfKZ5i64YJgddVkdpBUlcyJrui4NqOurdfzx56oK9doqMqgRkoY2iFeSpwBQKuF2dn9OUI7oMpCBvrsLHBwdmBp9nqe1Op/qNdVHZKrwCmMXVTWDZcL7tqPB6cONBvqQuZzfFxVpO/b01lac0grsul4Jsg7jvWxtyRRMjPNpuoX4+MRmk31aJ5OmJiwSySu5bhmkd3BLNg4nx46tFW7J0lUnsfGbAfodoEvftHqFPKEBZ9Zr+e9Sd/zParTjY/b+ubcLR1MVwPQ5QKr6JqrxJIb2XemjVZs28SuBUAnQEmwWAKoAAwoKJnUBMoJQlLXmt9JoJGBRH3fNyAg05aBQQmCuiAjwcM0TbG5uWnkPyR47sqCSJPPyLLMANHMC7Xifd83ZWDgT/6VIDs1tAmGE0RnHbFMUl9+cnIS5XLZgOlsExmIUmpou3VAkLbX6xldbGpmSykW6SQg+EzAOAiCLUFXAeQCkkpQnmB6EARbgGqeLqB2OIFoGSyV9XElEJ1GBwIDn7KPSPka1o/sy3y2TE+yvwmOU7e+XC6b9pKyLnQ0DAPRmR/WudTZp5wO88F+KMsgJYsoceSePpC/VSnZIvsvHSQ3O4j+rWSij2xk3xLjYlqCzcUNMwABAABJREFUpS6QLj4zGy7KfNB8xTLfu9dqRh4/rk6cNhoRAqhTrvPz6v7prKU2Dt/8JgAg+v7vRxbuMfuQXs9igjJAWBwr0HLfvjyeO4AH+AE8h6nEvcXKigIGfB9AvYK4VkEQLqgEdLkkcL6ykmeL8Uh7HOtj12kKtBRaHumdc6UZo595WFjY6gDo9YAwDBCEts6rsY8kCYzGugSSoevrwoU8MMvNHLVcp6YAr7sMhEqXPMvsyWKJqZoPeNyZmzICrPPzRhA+aDTsd7IQjQbWsgARK0XvUgfk9lA0taXblpvWMISXJEiSPWZ/7/tCn130IcQxgjBEllTMHpFt75IQXSM+Tnb4xoY9Sn7pEoH7CuK4gkoztP1eBAntZx4C9BUTr3MR1W4X6GRbN6i6gaNsGXfcUTF1zSPvgJXnCUM6XKzGLPNo9r5SG4EdgnVKoX7a3r3GoXGxGyBpAF6rpQpLD1SaqnLwefRa+D7W4j1YWdE6708+qTb4t92mnu3S6iVQ74Losj5c0I5oyTaxEZttZDe08XdNk85tvudnQ+7NOSEdEL1WUxIur6p/A4hj/LfH96DVAu6cGwAnTqBdfw0+/WmlD159/HE1QU5NAUmC+A0/jPl5+vYCM0ykqQ29EccKM5ybUxrZk5MAwgQDeEZVK4Iat8JEyaAEnReAkyfhHTqEJ5+sGmC2VgPupHRHt1sYUFvijnL8pxbJNMFiisCnKdBJUa9XTRVy+iKIHDeqCrxvt5UUyuIpPPjgfmRZ3u8JWNWNLLMAMuduAu6NBlCN++gLOZNIg8CcllZWdPDpLLNOTz23roVVtBaAA4xwmmWGrT2ozyhHOPtIvY5z5z1Mz84aT/0gqeZik2CxrXRM6KzJMkTdLqIkQdyYMc4CQDuWKY7++KL1FkA58Xu9vO+W6mFyzZZlVnpn927VnZhd2YcomZOmHur1GVSbiSqvWJT1Z+/E0hKwK1aOF2/+71B57jmFhuu4LcaRoAvsdZfx0EMVHQC3i0otxKFDqj/Sx7BrFxCky4jjinHQM2A6ZeZ9H1bzhdFojx61hWi3reeIBWw08DeLe1Cv78HM+mNqcUp9oTTFRhkYJBV4DHyq83zKP4BOB7in9rwKphPHyvPFazh/S2OFciHljh3yOvkD2iY2mrtfOts+rT6yQp1oCRQSaKVeuQtM8jPJFJaANcHJiYkJA7oCFhAliE7AWgaCJOBJwJH/lwxgCVgSbHUZ0i4T2pXckCA6A0EyHywDg6wSRC+VSpiYmMgFZaXDwNUOl7rsTF+C6HEcGxZ6qVQy+bl8+bIBxGVAShmIUgaVZBBRvnelZPg8yVqmBrpsTwnsso5cEF0C4HQgEMRmudkWBKCvh4nOvLCNZaBMVyJF6uq7/XgYkM7P6OgggC410GU+x8RGlEFpZV2xjshAZ1tRZ57llux83s924HsJoLuOLjdugQuk3+x66MAIRB/ZNjIJevElGadS/1lcY9bXZETJ+6D2KZWT/x8Qx+h27zSBqKq+jwsXFFY7PQ1gva122I89pp5x993wZ/eY9f76ugVBibOSWTQ1BczUB7lFP/8rdceRqQ1VkKXAZAVf/7rdTyQJcCAMzZFbuekGLIuNbGke9S6XYRlHrVYOnITvI/B9NJv7sbRktcx934K5fhyoRbx+hpemqNBLwHzrDdOu2gwuXVJpy414GKoNXJAuA/MtE+zMazbh6w0sp6Qcjsl8y3SSRAHHnY4CwPldkqBfmwF8INAb53NLAS5cUFqvlabKyFqq5rko1O1x+rQVr6dIrAYporlErdLJWltYUJ4CbvzIJEsSxA0V8MnVUQXU+yKZF+rbsggET8iI5PFzFUCvqgALohVxjFOLagPdbAYK0GnrPioZYbIuNbBRCTUSkSiHguyvXtY3v6fJyT2mHOxPORA9y6xzIlSB4nwfyjFElEWzCgdJFefPq/iAtRpw0NUQ4G84DLGGSLE4a0rj/XOPqq77zp+aUyD61JQCGugEkSY31OzMElh3PT/bFETfoV/Xc/3IRvZts2GAufwNFgHoRXM3f5ucA7IMu3erIQCf/K9As4mFxR/GiRP6/vl5LJVfg0cfBY4dA777iScsWFivI/6hHzb4rtTxzjIrWU0AdXYWmC5dBPwYy93AFCEMgchXb7xMSb2h1VLjU72Op5+u4tIlhUXW68CdHH+6XcR1Wy1ZZosmD1ItLRHj7ao56q//2pa/0TAZ9wDU61UzV9DvzLl/164KAr+jHphlmGnowrZF2wBA/UBOL136LBoNHSiz/QIw30ZQrwOo6vWBihnjYYAoVMAxADt3k4Udhmi11PR0wO+ohRXnz3odi4tAuRxgWgO35857OHcOKDUqqM7NYeAHZp4y4PbSkvLaA6oSCZLXagiOKOe2KdDjJ1Q9cpHDeWt83KzfiFdTvhtQjmUgH2um11Nt6nUuIvCVNn6YBGapcvZsfh4/fDhCRaxfUKvh6adV1g8dAvY3fHUy64//WH3AYNk8YsD1WqeDoD1vK6DTweysdSyMjan1IzodxDqWTxjatU6tFljfepJYtkeS4G9OBAjDAHfOzqqO02io9DXQPqjP4HH1U8M/7vXsWnJiQhV0p9byb+w3GveDuII//STwzDPA//P/zKDS6ajF9Nxc/scmfwz8IRLQF/I/uffu2HI1xsINZKO5+6WzEYj+HWJSq1wCdgQiJfhH8FRKpkhwWbKRAQvMuiCqBOqBrUEpJUDmylnwJfPtBkYt0rSWgKQb/JHlkqxgloPgq+/7hn1fFBRU3i/riddT9oV/+/2+ud4NlEmAnCaBdYLokkUvpUgkk90FvF3JEyDvKJF1xf9LFjbvd3XWi+rCbZer9UGmK9n4sp8UadhLK9Ifl/liPbntKOuA97h5c/PossJdWSDWtXuqQp7uKHo+yzmsfuTv82a3EYg+sm1p3OXJRbf8zvm/70PtgjSLW1oYAjixANRq6PXuNEEkAcvo2tyEDfRE2na3uwWHozE4FDHPiQlsCUpmrIiF0+0aAFHuFWSZ5W0STJcAuu9rkhY3JZIiLxjwQb2O8fHABoyEJWqFodCIl1G6ZCY0qBvUB/B9O/bL4gbo20310pKgbAeGtOj7WwFoUwFkrEFJ0QRkupGVl2Wm3QJNH7vUUk3W7QJxPcphOObZjOxGKjhgRWB5MRGX8+ft8YAwVBWkI3AG/gBhqMouVQyGxc3yfdVOlNhRoFFgMCQ3qGenA8Wo12kP/MAcrkhTICKwff58vvJlgnwwd91QgHeog6x6Wd8mmqYIa/nbJbCCbpbrS4MwwpL2L1S56WdacYxuV1UzGX454+9StzVlkgB1z+Ki+tmtZQEi9gW2u9yIu+WWP54iwI7XFP0ub3Ab06/ruX5kI3vZbdjvsOC73M/RCUQyPq7lNBYWAN9HtwsbVLLTwfq6+qrbhRojzp41GikeBsgyb0tWODwC1gEex1AnuHwfvZ6dq9T4lOXnY4K4aYpz52xQ8TAEkGh0vNdDuZyf50olG2eSZTahT+j81+VEp6MWFkJDLEjU3ONyCOgIDwCrE8bo5w4IGTYPbGkGjveVeGBZy5xzQxt82/e1QyHLADVC5zOi88o5DXFmwXU9aRu/fKLmXWLdar4IkKU2NIiZN1lA2vo6jPA9H8i/RPCp+00xfV1Y+oOjUK1hpA+IxranUhk6XTuPxj583zMEBC5xWLYK55ckQR8Bzp1T1Tk7a/ssFhYsdZ5eFWaM6P7Zs1bLJ8vMNGhMO6NlX2IbxHFgLhv4gTqloNNqtdT1d87GqoJ5TE43MKUODTNfEld0RfE0Zhh6iDRRZH4e+MpXdLDbXk91dkr3uHO3NIfsUvi5nLu3kY3m7pfOtlfL38QmAThX0qXo2iJ5Cd7jSsEMA6yLACv3OoKVvu8bKRk3Hy5oPzY2ZtjXEoDesWOHYTATZJYMZ6ZH0JSs7LGxMWRZlgPLS6VSTqpGlsl1NhTVx7D6d6U5pA69yzTmi1Yk8VKUnmQnDwMNi9rU1ZGXzG633SXjveg5rhTKMHP7pdT8lmxt6eCQfULmkwx5F+Av0u6XeuuyrqS8kaxP2ZeKynylskvHjbxfXjusvmSdFKV/s9sIRB/ZDW2bm8AVTuDkTO56xLhPlhTW1y3dSOtRkpDLe6amFIMIAJAk2Dgrvg9Du7kQz2fQKspDAjY4lAEcmZGiBb/+bC31kKZANbG7H+7xLPsXJgqq3DhJTNw9RZ+mAGqhRQTkJoQbIA3gSvBaPisIC/Itg4WJOncxTL4GlK7hEWFN+5J53RL0Ms3yujB6Y5ZlyMmzSK1Uk7Dvm9PCYQh46Rr8MDLX9DNPMdWkYP3EhGpEeiHEswzqLQVHuZnV4D7bhFVTFJDM7QIDeKp/+j6Q2XaUf80zBPrsQWnUA3pjm+pEmCfZ36TjhImLZ+UwZgdwZp92H7mlH0GezPadi/MgfO4aCrCLiG9CtQGbm7aJjSNJdq6i/8PJn8zAMCtCTW5gGx0JH9kNbdf6W5LXOeMJh1n0egp049wdhoiRd8bVako1Cr4P1Gpm3hwbg/oPozbqOTCOg1zcEE6NrmKW78P8R6iGwGQQQB8B2m1gRoxhBBup3W7ejI+7scFzsi4yPwAs4Cg11JgJnRHKk8mvWF1Zhvy4V3QaB/kAqTTi0bm5Uo/ZaTdfBgvURtZxLEHgctkmJ05wcWAvGp7py47CAfrC6aHy5SGSgvAbG/kA124ZqWvC/FA8PI6NP0J2RT5ShvaQGuPmmSINeaJg167c8io3F/uh7RNxrBMbH7d1Ik3fN4Cn1k/sw+I3wmbd2AAQ+rlbwxBijWez4WV9m4EwtH3d3ATbV0TMlYkJABjP6wWGoVF2iWPGsrHl5OnI3A/Irewh63dTEMfpk/t8NHfftDYC0beJXQlEl2CeCxK7gKELtBYBrFLrnM9006PMiW8Gb8VAD4IAZPdKtrXU5C6VSjlQlddS5mXHjh1YWVnJSawwrbGxMcRxjMuXL2N8fNxIpBB8JZN+cnISlHbhfYDV5paALQNTuqCoBH8JhG5sbBi2tAwIysCU6+vrWFtbM59J/e8ioFUCty7Y7J4akLI5bAM3wCjrX0qWMB0C0fwr88M2l4FkXSBf5rEIpJZOAraJPBFRBHCzXVgWSghJkzItUkef+dhwqHayPpneMFBfauBLpwNlYADknCFsF15LRw0/lycPWHbWBZ8zDNC/GW0Eoo/shrY0tcicXCjL3ZZcRHMXzGt83wanXFhQr8OH1VHV2VnMJlpmRad15EF7UvpUVsHqqo1FibCmmFyUkQhDBOhjesrH1JRn4kb1elaig/eOj8NsuLjhZVG6XQ8bGzDMtdlZDzNJDN+3+2YTH/MEjK5r56TFkXkNN8889uz7rI4AcVxFZXYWuR2joDoTtKQWKxVMFN7tKSYVM56jPiFX976W9GCTMS9qv1VFMluF12wq4KGVb9KpKSknop9JOr/e3Bl2frOpPms0lIwLnAV1miJJVF6qcR9YWISXJAiTPeaYdRhGqB45ohpdZhrIIzTctDL6l0Q69Pvz55EDR2Q1CRwht0e1+LYC0gnekCTHwwN89et7zHFtdLvYX4uBum8ZfWGoqG3M2xCnjQHudWUGoY+AwLZwEnlZH3EcmHz5vpDBEfXURwBkUj9WbMKF8ZT4zp0AzjlI1ewslrMIMYAovWieHdcj4mbqt+yy3EV7m8p2N92ywnmNNL4v0ty5QW20ER/ZtrEigKsIMON4pceuel05P/H1rysa7OHDatyfncVsquVF9KDz0ENqbFlLPUQPPojucaWMMTkJNWfX62rs2Kl0J+bmqmg0lCRHs1k1Y2y7bYYj7Nyph4xaDYMwAtL8KaM1REAY4ZmngTNngH/ypjkllg2VzSxT8s/1OoCTscpHo5FTKMuyfEgJDlG1mhqO/i7dj8bR/Yrf3etZprJAyjknMlZku60AXeN85xjIo3VkAzsOU4LFfPyFC2o9oKa5CIgjZCHQ7XD+FESBVlvJjdRSTMexmr9nZ+0CQOc7DHV7KB0yoNnEWupZx4FmOJe1P7teBzA/jyCOUa3V0EeAhQWVr4PHjqlnMaZJr6dY+3Lu46TEiKgsKBOs1cxBM3WwzIL16+u2P9RqW2NkMx0GRt+1Kx+js91WjPRuFzbOR6cDL01x+PAe9HrA9K6+urBeB97whny76Of3Mw9ZCivnJuY0r3MRke9jZaOCS5eA6V2qAzEQfBzDnI6ozCbK+eD3raSN1j7no40UHBeBOjhAlirZ9HodwDengbvuUhUxOQk0mzj7jHpU0Dol1g8ZDh2qwvf175ALYnnEErD9klY0d1/JyIrfJjaau186G4Ho28AkaOkyp4t0ql0tZmkuU9mVdKGRGc70aS57ONQDDK8lSLi+vg4GIF1fX8/pi0uQXoKOku1LsJOgaRzHqFarCIIAO3fuzDHMJbjMvEi9cwmqSl1rAuK8ztUAl2ArHQEMPkn9bMq39Pt99Ho99Pt9rKysYH193bxn/qjRLoNgXolV7TK2mX8X7AWAIAiwubmZCzoqdbcBmLog8AtY54frMJH9SLaP20YyHenQkCx9t++5wD+dKrK+i5jhUsKGTgTZx6V+ugv4F4H/LL+rEy9fBMGlQ4JpyN8LQXb2FVkvlIthX3ADit7MwPAIRB/ZDW2rq1tZwcBWNpYE0C0yqa7hAn1+Xr1+6qfwZdyD6Q3gYFOBq7yucuILqNRq+LvsIL70JbvXDEPYzU2no3ZXYWgQa6/bRbVWQzw3wxPbAPKyKgMh1UHLMrX/W1lROAFPt9aPqSPRjYYGDhcWgMXUALnLWYRWS+3XGw11TxyrdNttq+jBPHS7CsBsNqsYj4GKv5YXhE1TJEnFVC034oBV2oibETxZzxsblnIv2oB7JFk+mt0P2boIQ+sk8DoXrXRKmqo6bzSMhEuWqQ08ACzHMwgPz6DVAhafVPu5uTnNqOuqDFTCPiqxD5zUbd9swq/tAaDytbEBTE3tx8R37TdtFWEN5mwz+xEZV6T2xTEGYZTrdhcuWBybGK+MrUmWlnJKqHxKdh2B9GqsPpieUpvn+XnrGFlYAOr1QGnSS70XJlqvY1Cfyf2E2MS9nuq2zPPOnZ7acBOMAdAPlYRQhX07TVGrBbZeskwFLeVD9CaX+/HIV+y2gR8gCwMEoQW6fV+BDLt2aWmfS7rhGw0M4orRoZ2bA6KTJ1XmazV4cYy77ppRm3fSKyWIzgoUfTnHPnQZiWxXychkZx2B6CMb2Utn7mRX9J17DRFL34e38A018J08qUD0d7wDX2gfRDMD9ifLwPyiEa0+mH4ZB481cG6livnOfnS7CsBOEqj/pKl12rXb2J9kwIIaQ4Oki8OH96PTUdLUpZJeG7RagN/Axa4C0KU/cmNDZSlNgf/9v4GvfhWYmwtw5759QBia2JDf3byonhOGKh+zs2g/bgHr8XFDrsfKihqCpqdVHk6cAP7rf1XV8YY3fB9qNSDqvmDH/qUloF6nSo3BixcWVL60vx2ox3a9cuaMnXQdJq/vB4azINU26KxvtfLgeRwbn4EN0M2yzs5iuXYAlabe88UxiNF+o11Bcvj7VDFO2ucnCYB5NadN1hVQ7rWeVxHfazWg2UTQaKDVCrS8SIAwnMGhQzOoZBdV5hYXc45ukhY8Avfas8DPu12gpeuLRAQ5r1OShwHAJca9lkXI9FqHc2SQpjhYA1ADvuxXDb7fn60iyNaMlnjFb6ECAOd0/TWbNuCmnjPXMiVjY6Y47bThksTL+mpd4/vYjCtYWgIGs4FZpyVJoHwXC23T/6M4Btodc7rhYlYBupZHgFjX3eKiqs9Dh/CNVoSJCeD7HtSEFNyqjn3oujzVjrCwAOzbB9VWgJEcevWrq2g29fqBCz1XCsZ1iLvztePsyX3OZ62tYbvYaO5+6WwEom8Tk6DeMJkOmquFLZnEEpAsYqTzfim1UiQ/IvWpJSBK8JQAo2SJE5gnaLq+vm6ClhLsTdMUm5ubSNMUWZaBATwBIEkSeJ6HOI4RBAHCMDQgMPM5DCyVoC4BcLKyJTAt68Zl9RMklvVAEJ1seoLnvV4Pa2trWF9fN8B9qVQydeMG7iySHCk6dSCBYsAyuQmQl8tlk28C6lIKR2qKS/a1BMaLAHXp2JB/5YsOkyJnCAFxps8ApjKQp1v/sl/RZDDbTWfDOYzx7zqhWG9FpwCknrt83+/3t8jmsN5lWi5DXwaTLQomOgKFR3UwshvYZJQrYPixTaKEXFTLRTgX2YuLKrDU3Bw+9V7gzW8Gpi8tWLQ4TVVQsDBEevQgvvY1Q3pTIHhSVRqSt99u0yDarKORBr4K1FkZF0u7DEAYYy21QLDcF7Tb6jU/rx5zyy3UuB4g6HYsi77XA269FajVjDSpOD1uWMOAjZ/KtHgtpTHm5iIEYd7RENby0iHttsVnSyX1f6ONLkXjSWE3G/F8c3U6+bxISW65eR4bg7q41bIX1Wo4d16N9VIahc+lJPbiomqnO+cGeQRf6qGePg2EIby5OWRZYJj2Z86oy5mPW26JVHAzaXGcA/Ip5wrkGffSxyNZjfoR5ntqj/tJNbd3DHzkKiwAEMf7c0UJQygQnf1uZcVuaBsNLCzYepXgOYl6lJFtNBRQL9sz8yvo9YDKLtuAcaLz22oXA16+j25Hl1Of8U9DVa6qwyIL/EG+YwG4mFXQOmnrdHYWNlioRoam5xLs2hUBndQWTArGsy/KjTc7WBH1X3ZI2am2EZttB65vcz0KTjayb6sVzdNXuo6/TamtQtR2YQE4exZrjYP42AeAn/gJYCacV99RouOxx4Akweqx/wuPa5Ca8RlNIEM64NptGxhRjyVemqJaq2FqSjFnMT8PfPOber6NDJBK29iwc/eJEwo7PHkSuLOhUFZN8AX+1xdtBMlmE8+3vBwTvVTSJ6W6XYRTatyMfH3aCHtYLABqzP6BN9Ts/Li6CsA6R1ltZECz2GYMZJ3aI0O5dvD9IDckcqjeuVMld/KkqhaNZwOAjaPSbiu9buqnNZv46leBqSkPB/SpMb+t5nk6hpnW9LQO1MlTaNoZr/ToW9YroBuh06marsFh+/DhKqqN0ALl+sSVjYEeAX6EbtvOy6wSriXk1CBBdL6PYyggvNOFX9tjlo6AzivXa7pv1ea+z5wma7WARiOCJ+PKkCiQJMChQ/iLxzwVhLapfhO8l/XU6ajpfnJS3VZNfLMQycKDJphppG+mZJGZ/LloYR7CEAsndND6pjphtpYGyLIIFXYA38fCgg7i++ST6n4thzgII6QpsPCkje+K+Xn1d2wMyDJM117A9KFEAffsyC4TXRYS2HqSTn5XZOK3sB1sNHe/dDYC0beRXQl4cxnpRSx0IC8fIj8rsqLAh5IN7DKG+VwCxRKoJ5DuyqbIdAg4bmxsGBCd5XKBYN/3TaBQCfpKWREJRBNwLZLcuFY2rHw28y8B5GGa6LyGdeNqftNk+7r5kfIkLmNbtoV7yoBOAPc79xrpNHCDlso0JQgsA8O6wWLd0wZ0dtD5IvPvBi5lG7unI1jf8tSBmze+d9n9RX1Z1pus3yImu3Reyb4sT2vIfiHzNcwxMrIRE31kN7gNY7JJZsq1bNYJuq2uYi0LsLio19ylbh507XTMeWZunojDZRmULqjQozQ7LW5KXCCP5mxaid+R5U2cv9u1G2IA+S+YzzBE6uCZlObwQiDLAvNMiRPycXpvg8Bh97v7FJkv5jNwL+Bf8X8/3HosnP4NkuG4zwUsa39LoroA1GV3u8LKiqorBg41+KcLrDIDq6sisGzgJmNMMffC3HMIoHe76hEM6AkoJqGsb0q2ZFk+qGium+pnM8Bdrv4dRrUf56smy0QZufvv9UzCBGiYHutPAuhbTj+LzG1uItcZvKyfRxZc09eafEGUvZR/1paOqeV5ZBtmGfJOGu2RCBLf3jcsP/L7IfkcuiG/VtDvBrERm21k29rcAV1OVvzLgVYPDisryhfa7QLIuvkJTUtW8L/EJn0fQKgHUYJ4PP5F4xwbhgjDqk1bA3N0+tKkf55y7XTK8ss41tJX9A76vpJeaeX9BiatbhdeHMP3A5sf7DFYKwneSopLm55g3KErTdVYb6Y7dxEwhOXrDo0cjzlvsCg8bbZlDllfVxOIztfqqj6sJiqvVLL1RYkzA8QXjcGceBlBO8tyADf/drs6now4fcRutbFh50HZHIxlI5eA0uT6zHwnnK1bsssE9eJEroH4CtzM6+Cd/czD+fP5fmbaD7aZZAz0ATx4ohHcKdHgz/IYmrMA4CkyW6bAzuW6rxhHBCsuDNH3I6Rd9ehcX+CCbn3dHoNk5hzCxZa6KzL3BFmRZdnoFNlNaiMQfZuZCwxKUImsWPmXMiWS7St1yhnIk0Y2eRGA6QKHLiPeNQmQSlCULwn8SxaxBMjL5TLCMDTvXc1uCY4WOQhk2QjAUkpFfk6plo2NDZMG65myLRLAZ5mp/84XZT9cHXcy0dkmLrOcwLtsYxf4dU8O8FrXIeKyzflcyrjIPPBF0LsIfJas88uXL0PKt0j2ugSRZTBXybiX5kq4MH35l89y29l9jrRh/bHIigB39zlFvwWX9e46D4qeU1T2m91GIPrIto0V7Q648fb9vHZK0X2aahz5fTSbgZJBWeyo7+t1uyOGkYE08qOFz3OjkkkWPN8LEJZfuRKP/IxZp+xHjhrFtEQATTLjgnTZMpt8H43GPQbslfIdvq+0tkncQxzmEpfVRPY6YJnoaao1OQF7zpsXOwG2ANUcm5v2iDRPWE9MqI0gL5+ctNKaWA/tDRq54OaM1UkCIQPJZZk69u37OgAa6Xhy0zY5qRLWlHoTRMvpTkxjEEbKMaErhZtIbsYB9VcWm0mNj9tyyu7JdlWBxGA6gpsXY9rLQIlSQKU/MQGgLRorTVW5NEogu6TsrqwrOjFqNVgqnwAdAK0rzEQFaJDbABsxXPHTNGtfBiS1laOUWAK7IaRcTHOP2QMvLWn8RQak0529j0A5cSSNkxV4NQDc3bS7G/ltBqADo434yG5wG+Y84/uiAVi+5zVkNpdK2LVLHQSr1wEsdNS1t9+uBo2vfx0YG+OBHExMiMdyjODYEYZK60TKShjnHuw1OjhFr6eG2igcYAAV/2Rz02LyuZALuqxmDqfkWZIYCbAwVOzuvXt1WR57UuXt2DEjN8b6YDbqdTs1BlwP6DVP2rVzIoNxcgyOYz0vNpsWtJ2YsEevhPfSBCLVyVMqrl5X+eWpPFan9gvA6y6rCY4RJPUkyDaAr3TDFxfVuoLxQI2vQFdVEIdm7DfALJF2equzfIBM5qdc1qCy1luRjm8J9rP+GQSUdSy7Jk9yce0Tx6r8im2uLlQxTDwDlJvuy0XN+DjGx1Udsu2CTEuOUFxdODQCf4Dxcc8yx30fmlOOel1LoCEwimbTUwPr0RDzbrcLFfvG91GPdduMj9tFHC/Ua1Q6/c0zWFG64+VkCFnITgdBovohddfNcpf9vVy2C5EkgWl82XDMi7sAkp+xjoo8BGww1uk2sdHc/dLZCETfZkYWLkFXGSiTgC3BUkqhEDQluE4pFTKlGYCzXC7nAlcC+WCkrgQJn8V80STwePnyZZTL5S1yKtSKJpOcICTToqZ5FEUYHx9HpVLB+Pi4CTwppVaK2O0sKwFSpkPwXoK+lGNJC47SyrJ7noder2fqlxI1rMder2cA5h07dhjgnzY2NoYoinJyIG7QSWlF4HjRaQTJoGb7b25uIgzDHEOa+eZLMsllfUr5Gsmmd2VJeL+sZ5kP2Wdlf2KeJeBMsL1Is5/t4DLQZT+Qz5bBSoex0GX9FcmryN8A21BqvcuTEfyOf1lfEoR3TxGMwGBlIxB9ZDe0yQW3pDBLZrcEceVq3qUYM1jS4iIeeugADtaXgcfmlX7Kgw/a3VOaotlUgcrkhtL3ARPsUqPCa4gU2Eg6D3VTHL1RbhZrNSDKlgHfxxoilEoWXJ2YUK9du7Q2uNxh8nmNBi52PPi+icmlzli3WsATTwC+jzvf1YDvV00V8DT82JjatJfLKlvLXQ8VbuTiGCsr6hrutanDvXOn2gN1OkAHVTRnq/C4GaJgvMPCl5tQNtX0tNpfkbG3sqLA71pNB3fl0Wa2k87X+efs8eVuVx2dX1pSR/qnV7+B+PABc9JbBVTzMDkZgGzzjQ1gutFQFEbtHYgaMcLQyxGjaGT9jY15GB9XG0hNcnR9IwCsukiWMTCZxZenpvIb/Wq4pvqQON4QIQP8EH3NSDebQ93mFfTx3YeAvi5PJewDX0ttn2amdaPt3LlH9aHFU4DvI6nP6CPeWge/qSRypifXgCdPqrxo3YOsox6n1IkCNJtAlcceWOh2WxVUa/8yvxsbAHbFBshX+fKBWg1riIzfpcr8agA/ALA/SZDV9+D0aU3+ZB/QlbmcRWi3gAN+pjozURjZGHL96AJ4PHfvAnVygw6M2GwjG9lLZRJtlWD1MMCsCFwjgqznqWDxG3jTmw7gnuYy8NgCcNttWDv2MHwfCMb/Auh2MVMf4OhRL5ekAYsXFlR+Gg07YZARrNcXYxM6QLQe2Je7nnH6otWClyRotyPje6/X7bwQhjBH2DxODBqJHjT2G5Wqel0B0tHxL6g1yKc+ZQBu79gxdZGeOJNEDbVHj6o5NE2BLN6DqNZRE2GSoDWvhsODswMsdz089phdbzQaKkbKpUt7cPBootYLExPA3JxavyTLZq1U9ZeBWgULCyr5o0dVmRoN5UC4/XbPxOag9HXUeV7VI6NqUvc6ScwUMfADdDrAF7+oAqj/7M8CB/xTuBjvx/Hjat2hqs1DtdEAsgytlsr3gX21/MIlTc38ynkmSdRc2+0C7Y6S4yn31HB+9qx12gN2vSWd5lyj8P3EhA0MyyXn9PiykhMTaHuSBOa+wB/YTqDbvBL2cexYgEo8sDJ1AAy6rp/D423T0xVMTwP4P4tAGKLUUA6VYOHvgJMnMXPsGLo1pTGOJ56w7IRYBaLfuVO1zcmTAe66C5g+92XrXZELmdlZFZA98zA1ZdvIwwA+dL2GIbB3by5EDeLY/o70etsLQ9RqB810aipu1y7l/E6U7M1MlqmAA1NTtuxFxzvkmADkvSzu99fiQL8BbTR3v3Q2AtG3mUlwk2C6ZHCXSiWEYQjJ5pbMb4KKBIzJypZyJBI0lqCmBOh9389JehAYJ5haFKiULOYgCMw9DD5KRjwZ0lEUoVQqIY5jTExMYGJiwoDoksXtypO4wUElY3wwGECys9fX101dyDLIQKC8nvURBIGpBwLzBFfTNDXvCaK7IDzLTvDcZbEDFsBl20j2PSVhJADtOg8keCsBZOaHz6PWt9RB571Mg7r1sr6o804AVPYx18niytC4pw8A5MonnR9Fzhp+J38PRf2AZWcartwR75VMdNmnmC8J3rON2G5uXtjPJSgvQfRhjPeb2UYg+shuaJMLax6BBbZKqnAXxJ2V1IbgIvuWW9Q98/N4zeEYeOwJhcjWavjfTwfY3AzwqsOHgXYb3sI3cGcI9BsHGLfJSKbweWtQwZTunGtYgF/Qtwd+AC9dA3wfKyvqq1oNCqGMY/j1/QAscWdyUr127oSlW/Mcud70n1r0DJNrdhaodJ9XZZifBz75SbUZO3wYBx96yACcfzfvYWHB7tu8rI9zS2pTW2kmZpd4qaXSruIikIQ4vVuxoHbtUvmen1f77/PngftvnwUAnNuoYr0L7K/H9ny2wIh9Xx9pT1O18fp6B/trNaCWoD+7B/PzOjCZ1tG8WDuITgc4UK+r58Wx0dqcnVVZffJJhYf/3/83gP/6P1B94xvRaBwAYOOBctN89qwCRKaPNtRGXDg6wrBaSIjqdhVGTAJklln50kYjD5rTb8NuSMxnclL930ihENFpdUxh+gjUKQI6XuJqrt+vIcLKEjC9fgqYn0eQJAjqdaDVtRvKRkMlND9vzrTvaujTCXqj64UhojC0FXf77ZhuNoETCwoJqdeBI0dwseMZ+Rm1EVf/r4YdW1huxDsdcPdN8H9zUwH9fqj7vf5dDuChtaC6ve8D1VBX1unTqnHOngXGx9F40z/BE0/oPbMGUviMxUV1/4FZvRFvNu1GnJUvG0W+OG5I9is9HUXMtm1io434yG5oMxRX5ANhkL7N36OkcRe9CAKmKXDiBB5+sKb0z0+eBG67DZ/8pLrs//dDR9TAtbCAO5MQ/dqMwfrWECEKxUB++DCe70SYaei0OaaFITCt81+rAWFonL5jYwC+vgA0m2i31dx456zSMq/V1NgdhlATpDyRpvWj5+dV8rWaAsOj+S8Dv/3bwDPP4JRGpPe/5S0quKSolyRRQ909zWWg3cbzmwfQbgP3NNUc2Q9VUOYkAXD8OCpJgqmpA8ZB7bWex6XuDB59FFi6P8D9OuLpqXaEs2eBZrOCXbsqCDovAAsLqB4+jCxT7OJ7GjpY54kOkKaoZhmqAGpHvg+PP67r6cQJVXeHDwO1GvpxVU3dqXKOkxHeaqlmO3MG+PUPDID3/hdUf+iHUKvdA8BKsmzsVg5wBuTEvTV7JFDPoyQdcBmYJIp40OlW8cQTjPuius6ZM7Zpx8aUQ4KPcw8i+b5aQu3apedQ3wfqelEwv6DSF8Exo9i3804q5p5aTbHiF0+hsriovl9ZsYsKSbRgAM9uF3v3VjC9qw98TjMHGqpu8KUvAf/v/wuEIWpHHlYBd//X/1LXvOUtQL2OsSWV78cfV9N6kgDTx59UaT34oG2rdhuYncVaWEWW2sOEqst6yhlAxoDu/5Rcw6QqN+bnYY5njI+j8YaDRuIHs7P2/jjGwoJq+5lapk6LAOo3IZ3X7twrNRR5DFCeQJPjhvxsm9ho7n7pbPu0+sgA5JnoBPgILJVKJQOiS6BXguF8BsFFgvEE4Ane8jqaKxNCMFgyc10g1g3WSXYuwUnmTYKL/G58fBxhGKJSqWBiYiIn6UKQVwKeEkSXAD4B2rGxsRxbmKDoYDAw4Pna2pphW29ubppyMq87duww74MgMAFSWQ98Dq+VpwAIiEvmvQxaSSDdZf67JwJorv62vKZIzoZ5d50MBOMpV+Pqy7NcWZaBOvWus6FcLps+w7K78ieubIurYS5PIcg+UwSiu890me7uc4YBr8N00mX6Uo5G6rxTtkcC7rxGMvTlc0Y2spFtM5OLY4JhRXoocmHN1bwE/nxfgX6AWtF/6UvAM8+oDUyvh698RV12220VTDc04Li4qI5NQx+vdhgvnY7aj+QY3WSk+75i/+r0NzetLrgB2rURyyOuNzmJLVEqB0kV58/bvX6tBlT8NZV/jXi2T5/GAMCeEyfsuWvfR6120FQTGe6bmEG3a+VP1lLF3Nu5E+qZYYhduw5ifd0S/7tdtXcaGwPuvVeBBgtPKxy0VgsUUOv7gMBGvHQNmF+0NzPzSYJgdhZJsl81y9cU+t3xD2JhAThwNDGOiJUVHdDLV8enT55URfa6y8BTTylQ+B8o0IBMP9qFCyrJ5TRQbcTNWLeLsTEFosvj2GNjCoCXGAhxYx6jliA6YEF07vUmJx0tXALoBNN1f+52gSoyIdCa79O8fTrrqM2vZOgTkNJ1icVF83mAvg3Q6vsWkJ6fVy8K0LLvQPUDCTS0WirJuTkASdcy3jKd3/PnjddAAhHMVqDLO4grxrfUbmvwIkReYFfP68FDDyHLVGBTzNZy5WQAPzQzRWWUFH+ZOBtSGgGMzU3b2PIIggTetyGrbWQjuyHN/X1Sg1w6s2hFQDrfE3SMYzVe/dVf2bm7VDJg7j/6RxVM12pGNiI47COO1dy9sgJEu0JzimYQRjh9GkiSCFEcWwQ3TVEqqTmt70cIEh8dPX2VSjCDGPE8BiiNtQPU92F1wfVYQ1B5cVENm7WaXor89Tzw2c9iudXCCSigbL8IoDnwFcuZeCtOnAC6XWRzB9BqAfccio1MVqejTwKdU2WfmDhgmMk410Y3m8GTT6oh/P6jdSAMsbCgsq9kt4DpzQwaVQdQVU1y4oR1dmaZKsDqKipzc0jTGXUjZTqOHcNaWMWCdhbMzQGVtA0vDJGigpUV4G//Fjh7dhNYPAM8+ihw6BDiI/eYg0lyCOb0sJYFSkZOxJ2hkg27TRgC6HaRplWcPKkB5GnVZpw7uL6iLx2w8mzyYOPmppZO4dEpQLUJwXDpBHKDW+vMXOyogKb7Ox3g6aftd5OTFkDmKT4RHTWp6T517hywvm5/Jl//uqLx33cfkoceBk62gK98xTxjLQuM7EyrpYD0N70JNgosvQ0rK2aRxDqRyyLFqBfrizBEd9Fq7GMqzLe5ZsFHfh++ln1Bo27n4jhGa14nmWTqP7t353/f/OuC6iTDsI45h4vTb1v2AiO76WzkYNjGVsTilJrURTIn8l4Cue7ramzZIqa3TLvoWvn/IsZ40feujvqVyuKWv+i9m440ySi/npdbd265ZTu4euYy/64O+bB6H/YMt2zX83LzfKX8ybpyg7L+fYHioralXQ3wvpbAocPKd635KmLAu9rxI7s+c/v+tbxGNrKX3dxN+NXe8zOtiY3VVRtpChaDW19HngHjimmKDZPzNn+NTNNXWtNGKWLLTVv3Eu73vF8GqsxlIMuQAciAfOCoNC2sisK8QwMFzhfSH5umttqYpy3l1+ZhkE+Meer11CvLtshYmqR1podhmlmG3DNLpfwezKkaBcy6DMchxue4L/cavjwM4GGwVZJT3uj+HXbdMMuyfJQxmtxQyjIVXc/64l/dBu4zZfsWZivXCa9QFPE7uWrZdL5MEQrayLT5MPbalZ7PQvFH6NbLNgTPvRfxul770Ic+hFtvvRVhGOK+++7DX/3VX13x+s9//vO47777EIYhDhw4gN/+7d/Off+Vr3wFb3vb29BsNrFjxw588IMffEnSHdk2sL+PVJJ0pK+u5qJvc1rZ3ERe+3zYWKvzsWXuulK68n73vR63pMa2TEAOu6wCDwMTkTED0NevovkztybY2DDD1QAe4PuFawLOh5zPZYBMObby3s1N5MZJ4+fgoojRI9fXt9atGI/l0sOM1/nqABhrpGB9UjTnGl30AsA0N52L+YblKpoy5X2l0tZ2y81fcu3iXuDO7yIh0yasU76cTPczLwcgm3KI55l20J3ck/VnGiqfPROs3Z0rnTXvFc1XuvKF073bUGmKctmpXJEvd01wpTSHLlivNn5sQ0300dz997drXAWO7OW2YcDflYBBCf4VaZm7TN8syzA2NmYY2pRskbIlUk4GsPIVRWlTw1uynsnQJoOZATcJMpOdHscxyuWykXCRjPoixjXZ5WTWS8Y+AJApn6Yp0jTNSajIVxE47gLbRYEypWyIC/hLXXI+U2qgS6a7vN+VkikCrOXpAlffnGxpN+Cn1HPnc8jUZ9nILKfkTlHQUJ4gkPXA6/hcl5Ut685tT1ku16Eg+14RmCqZ53w+2fCyHeTJAZr7rKI8uGkyz/L0hYxTIO+VQUhZZumQuJltJOcyshva5IKaWhlF7JMisFseCZUi3/W6pRQnCVAqoV5XGw+zEWDaOn2jdWooaOpaHilG2wHctSmpiyC3uQx0vgJ/YHS5AXti3ffFG5EeALM5Nsbj4lmG+l/9lbpnYiKXl0rYR70eqHxq2lF33uYn0hkwCjmashXq/25uWpYSA2RFoRo363V1VDvCmmHPR3EManwHUhydzCuhmbraUWWqanZW2lZ5HviB0pSFYu3JAG533aWZeaSGZxmq4Rr8WoTz5y3RWpbp0iVg6tA9RpJnDRFWT6quQTmdnTttrDlXM5VdiDHZyFKfmIBoNMUc7HSANPQQJ3vyQU5Jt4MtCzqpOb0QpMv2Ot9HnOg9ZxoqWh0rIstyGRzAg0dKmWYwmvfsMGw8CrzKPg7FvJuYCLC6mm/rMIQNgMZyMGKsrpww3hqojZ3aw8AEHiNp3jinWPEExNptHD5cRZLo9g9hWHpxXM0H2/V9+xshC1+aZMDKz4o22tfoXLnR7Ft9JPwP/uAP8K53vQsf+tCH8OpXvxq/8zu/gze+8Y149tlnsX///i3Xf/Ob38QP/MAP4Kd/+qfxyU9+En/913+Nd77znZiamsLb3vY2AMDa2hoOHDiAf/pP/yl+/ud//iVJd2Q3qBUxyuXvzAUp5W9WztvyN8/5hK+NDczOqq9zP219baeliK/T48vAQivndAxDKK3qhbYd3MPQCcjsGTJstwtU9bgbxyI930ezCbzylXrYo5yFgz6SUG+GmCQB5uZQPXkSc52O+n3KQJ8Ams39uO02Pd81GkCamsNNnQ5Q1RNjva6HUz0HxPqzjQ31n1JLLRMYQgNZZqTJmk0dZ+NkJwewGlktwALn4lSAmUbm5oCVFaV9vaDKt3u3XkvtsONpGCqN9Xa7ZAXbdT548E42PeeLTgeID323Csq5uAjU6+g8aU/2haFOK81Qq5nwHiaQto4zapjotZour267fuYZ9TxKuZXLgZI8Yx+UncL38/2VJgow1VQnsNANbUMwEq0W0R/4AbIUCBjfQwqz62tY3bjlFuDee1XFck7juqrdRtQI0e4qeZ5yGbj7btEXJybyUeL1GoK3bzH+PtMUnp9hairC9LSeu/lbpAZMHKsEOx3ce28FcQwM4go83zcnGuO4YufuNFVrknpdy9u17HpGEgJkfTJPYajq0Z2rt9GcTRvN3S+dbb/WH5kxF0CX2uUuA9oFK12j/jVBPQK41LvmZzIYJYAtACMBVIKlLghNtreUhZFBPqnnLnXdCaITbJcgNdOTTHKZD6ZLmRaC6JRxYbk3NjaMrEoRsMfnMu9MS4LlEvyWUiwuGE8wn3XJumAbSqeCy4KmU0Nqn8tTBXSAUIaFf3fsUPI1fD7LQGeD1DSnsb2Z9zRNTV4l85r3yICb/E46CmSQ0B07dph6okSO25Z8Jp/nSsBIMF4C+a6mv8wXnSkyf0VAtgTah8kVSZMBYqmX7gLpEth3pXNuVnB4BKKP7IY2uTPmzsjVQ5esHLm5kRsfLthbLaXd2WyqHZMWaj58WL2dnMQWtgz3jji5YI+5+j527VKkOKNrvUWHPVAanxtWhqXTASrcMKQpojBEFnsmoKfZ2DRm1cVakF1uMMtlXS3cbB09qjZLWqcT+/ZZGZGNDaBex9ycknQ5teghywIjT9LpAEkzgp8ZCVij1VnuWfyUxT50SO+r9fMPJHoXdnIhd7wXtRq6qALwENdm4PuAx+O5mlW2FlZttdXUApt7vU4HqNbr8H1VNDo3whB461v1Br/TUZvLXg84cQKVRgN7987k8FQqmSwuqlPVpZKHMIxybC12qVtusYo/HpSWq9wzpqmq7ko8yANAXV05yAchVRvgKNd9Z5qxAUiMY4Y3SOqd76NSqyGsR0AnURtoAuO8mUy2DEorXfeHbhdKuubWW23CrEjeL6VPsgxotTDdaOB/L3g4d07V96FD2knQbNq+SLBJaIp7WR9xHOR+L4hDsxEPANTrqh6aTQCPtVTl796tXpR0WVjAnfUU8Ou42NmDJAlUANssQ72xX2WZHaZcxvPdCur1CrwnnlBHvRkhTYJ1bKOxMZWGJieYjLoA+jZks13P9ddjv/7rv46f/MmfxE/91E8BAD74wQ/if/7P/4kPf/jDeP/737/l+t/+7d/G/v37DUPtjjvuwJNPPokPfOADZiP+yle+Eq985SsBAP/yX/7LlyTdkd2gJoEuooEuUAbkxyL3OynnANiAwtPTBuBlTHDlkwtz87/GXIHPfc5GfdaTSZJATQzz8+ozHXckyNZQTUIsdz0Ty4SSIPu1Z9GA0Rrcu/9+K7vSb75G6Yt/6Uu5tQSTjmOoz/fuVZobDzyAOUbpbDatdli3i/1HfDz44AzGx4GLyQFsbACtp9TXrRaQzO1HqaPG6loNQDwLhCEabVXV6+vAWm0GYQc4dkxNAVwPHai9ACQ+sLBoFyfaaU9/7+DonfDqdeSQ+zTFIKmaOhgcew0A4OkvKWd1va6WILt2AeiqNs1SlT/9k1bPOXQIAOCd+DKq9TrQ2GPWJL4P3Hab8tc++STwp38KTE9HuPfeg+jOK1Uf4fdQbX8uRRUX8frXV5VjPu4Dvo9u10Otpup+fFzXgY7BgjBEEMfw/T3IMvXcTofliHSbVuDHUAHkuY6UMi6SrKEXMB70Oi+OYRaXmsCxXDug1h7n1XQUMchtHCtAkILuvm/6Iu6+WxX29tstsaLRUIV67jmg28XZje/G3/6tmgbf8AbdH/jjkFI0+vdRDddMTBO55FVOeN/0w0bjALpdXW9PttXvaHpaJTA2pgoxP4+DtQ5Qa+D5VhW1WoRAy+Hc8gpn7p6YwDdaEer1CBHXPuxM8sSBXBPJ71jf8lq+3yY2mrtfOhuB6N8BJgFKV7bCBdFl4EYgD/RJYJdALZniZNpK5rkLnhcBmZL5y2cMBgOUSiVsbGxgnIJoUKDtxMREDiSXIL4rBSOBV5ehzP+Tjc1gmATRZb5Y7vX1dcNkL6obACbvvFeC5gSDCVLzGZLZTrCVDguWh04CPkey6PmcYXb58uWcljvzyXL19G6dgUXplJAnFFxQHoBhVpNdzSCwBNFdc7X25V8J/NNJwHqTbSwBa1cmx2W9yz5R9Bnr1HVesF8QTJdAvyyX/N6Va5HX0iHDdsjkxAvLxpeOHzo6bnYpmBGIPrJtY3ITXrTZlgC6FK/m4r3VMuwYQ3/SG/H9yTJQ52ZIPFcD2FE4sBsvzZoOoBjeaLWNVqgB7GGT5t6Tr/21xNKe0hRhrLS5Gfiz1wNOtQI0Gnvgac1qkR2jYQrfx6C2B2m8B/4cEBw5op554oTKDxNMEhx84ywudjzKqhp5SWIUYWjZWYOkqgjHUPujVktdv2uXAJrn23an3etZIXEGyfR9dP2qAZV9H0iSGcQ1u/dsLVo5ULGnhe9rwnR9DwIMsL/OBvERhQM8fExvro53VFusr6tIWt0u6sdmTJnYDcJQbcT/6I/sviuOLaZM/dTpXX1gsWVOAHhhqLRYfR+VmshYSzSoKphGZCpmv8oyl8uqnlMNItx/vw7ihr7SiydCI6WDWAmtlmKpJQn6yR5Tb70ecGHRkrHDUIPoSYK+H6HbBoAAFTLp+LzZWfXSwfdylH2tn37p0gzm59Vl3Ns/3w5Qr++Bd+KEDSbGiiRrPg5k18da6sH3AwSZqqtKkiBsVuC1nle6uwBwxx1WE3ZlReXp8ceBY8fQnXsYvg9UOh2g10P9iH728Y7xdlGff/r0aVWPjObKDbV0rgGWKu+OH0Wb8m1gL3Yjvry8nPu8XC6jnDuCo05APvXUU1s2yw8//DC+8IUvFD7/i1/8Ih5++OHcZ69//evx0Y9+FBsbG+Z05ZXsxaQ7shvU5O/NDfwtWaaS5Sx/i/L0GK8lUr13r9KNhsIJ6bREZp1ha1mAxUXlY8Zjj6nPX/c6YO9eeBggSTxgvgV89asKnLz3XnUNg0P4Vayu5kF0HFIDbj3RZeyqvE6vfgPTTQV0f+5zwOHDezCj+zuLSv9lkugPGw3gB38Q5iLAzisLCwb4vP8Nb8ByFpmgy5wzGfKiVgMOzuq9ULJfsa995Z+8dAlGI/zYMe0APqnXHt/8pg3svLqaaxtORydOAHFcRb1etQHC09RouwPKPyFx2kYDmKn1805KXe5/fPQFVb6THeAVr1APOH4caDRQPXoUcRyZuXt6cg1otbC4eAC/+ZsKV15YUGuSwpNxaQrMz2NaMpTDEHNzB7G0ZDXUg9YpVXZAPSxJEM7uMWVg1ddq6nRas8l7A4RhgP1hx87ZGxvqS3rZWy31Gdnrc3NYq+1XJ/UWF4FGA8efVF/reLN4vuVhbKyKcX0L4lg5GAQoj8OHVcBZ6WVoNFRaX/86sLqKc+F34+mnge//fuDVr1bT+6nsoAom/z/+TLXxxIQ5AcBCZmHVdD/LQ/FUXJN2G0EYYm5uRjmGeJJu3768k3phQf3GHnoIrfg1al7WzobpY8ewuuoBXzxv5u4TJ9RtB/njmpiw4wOfK+du19nNMULO5TeBA3w0d2+1EYi+jUwC1S4LfZhOtgSbi3S5CeBJ8I9AKhm1UivcBf0kG9kF0aUEiWQhE3weGxsz/yfoWalUckFAJbAr2cey3K5MhwS/JWhNtjkBcVeCg/+XDGaWlSCpZIxLEFrWMRndkqXP5xPsZr4IbJOVT/Y9AOMAkPVdJNsjGdqyXZkO8+62k3RWyH7BdsuyzARHleWUYLYrdSPlamR70GQwWVlX7Atufbka/UVSOsOkjAiiM3+yDVxHCYFt2afdtIscRrJ9ZD+SeXL7ruy3w/J/s9gIRB/ZDW1ykSwXzgByK3+J4HERzo04v+cGdWwMa4gQEfz0fbWh4Aa9aFEuNzS0blc9o9u1ILLjwEtThQ+urNijwm7+A38AwEPk95VGaqmCM2dUdqr6WrmXADSh1vfR7ar9i/q+gjiu4GCyaAM/Xbqkomu2WohrM6YK+DzKk4chDJreTYMtBKvVVQWeT08NrFOCTH4i8k5bZKEoMwTQoW1pyT6GezNuLM3x+QRqY8pz2NzZM5JakgBnzqh8JAkC9BGGgekKlXgAdLvodCo4ftx2oXrdnJi2TDYiJdyoSpaTy2zWAeWMvFCaAmXbTVotS9La2ICRSZmb0/I1MSxIJE8wEHAql40noB9XTcBUTe42AArzv5Z6ACKsLAksvhYB4ufT6QbY2ACm4zgvNbCxYfLBtpibUw6T1VUbgKySZQp02bVry2kQL1OBxWRfzTIg4O+y21ViNzySMT6ej2rm+wpMefJJoNlE2tTP0XXjpWtIksjW1dgYzp4VpyIuXMhLurCtaGwIabKTb8ON+A5c39plh5679+3bl/v8l3/5l/He974391m73cbm5iamp6dzn09PT6MlA+4Ja7VahddnWYZ2u429e/deNY8vJt2R3cDG36ELgNHkiR553IrXUIubv2VSuTlXb24iaJ1SsmFhkns2fbq+D+WljWMLeEKcBLpwwR4D49ieZcjiam6I7nZhnAGR38+XcX4eOHsW8T89gJMnFYA9w/Jpy0lepZkBS/uZxwNx2O9/WT2r1VITe5IAJ0+icugQFhcDnD+vnlUqqawTE+X8d75Xweammts8DHDhgmcCOleyi8oBzHyRds2xkwx/2OUUl0UAMDHhoVSKEIYRVjt2nj550vrRTdOx4vVrY0M/53OPK9A+SZQjpN1W78fG1ByR+DABKtttYGEB7fYBPPfcEjqdXcZ/K/kUOZmvpSWVtgbHEccI6nVMT8XaAaDb98KFLV2VczeXNFT+m5y0RZmYAPbv8+3xPAbL5SlAE+EVZsGjTkNEqCQJ1hAZZwOXmsw6FV36mYc0ixTgr/viWjKDxUXg4Gxo16Fce2qiRbem/hvHwHTpIpbHq3jiCXXpfi78qJHDfh7HyJypkv8PSPTodNTvi4QJ1i1PFvJZx48Dr3gFuvtUXzCLiU4HExNVK9s2NobWGd3VWNHr6+q36a7pXSY6/xaNJ6O5G8DNN3ePQPRtaEVgOVCs7Xw1kGqYJIa8XzKCyXR29aHd5xWB+vxeMuf5mQwe6uZFynwU5bGovK58isy/lHzhZy4b2JWnkWVzr3GBVrfe5XMl4DxMG9yVcBnW3tdqV8pnUZ0OY0YXtasE7YflbdjzJUhdpDteVIZh311PnUiHQVGbFtXX9WqXF/WlIpP962a0EYg+shveXDaKa0WfFZlmqGFz04K53NnKdJwdRRhiaBAn81w+UG8S5FelknqFYV5NwgXcpW1s5DE/d7/g+7w/yN2TZeLi8XG1m7nC5kLGu+KDs9RKT8qsmuy6mWGh5IOuoU0o110ub/WTmPYRdTSAp7Q2aaTkF0kEOMbsEsQYGyuoFpmJLVHiCh4mC3GFdAsDc8m0WOhy2T5PaJkXYUuyPDTX0cJ7+DllWc3z4fwfW5s2V7QiNphbH+49bpmZXrmcP55NrVR985afepoiDLU0jvtDkrrvVzK3rdzrr3UcuVHM94HrWYtevgxkGU6fPo1KpWI+dpls0orW+1da6w3bH1zvmvl60x3ZDWpyjruW35s7J7rBGHmsB7CDuJycxP3SyTjUOPbK8VB8JeejXHavUK7cOCuSoFPVLbZl/xYkehUzwcb1fdKX7fte8RJDjsNy7LzO8c+dBnNOAibslkHewDmA+ZDfb7llbMuct+VSZy67Ynko7zWkXLKd5LJvyy0y37KjjI+byjC+3Swzl0lpb2keBvB9wVHWEzgx+wE8xUouKBv7l820k8+ieVKvL4Y8cuuHfIY8UcLOWzR36/yb05PD5u5rtSvN39vJRnP3S2bbuBfcnCZZ20WyITJgpRvEEbBAKCVa2Ln4PALaZIwDStCf0i7U12Y+CH67DGOXiS7ZvUxPgrhkDodhaGRgZH5lMFOaC3a6YDnlO7IsQ6/Xw/r6Ovr9PtbX13MMd8p1SIDd1ZDncRLJymad09bX1813UltcgsRkuPN55XIZpVIJpVIJYRiatmXZi4Dmojpw03IDWvJ58poiQFyeQqC+N8soA526dS9PKchnkpEv5VzIVKdmOxnmbl3JPLnGcsn+JZ0t7C9jDlLB96x/2S+ZF/YHeRLDBdHZxiyvlAFyHQL86zqOXIfRiwHrt7uNQPSR3dAmGebAVuCO77mgd6/jMwCru9hqwXtCHy9sNIo3kdxJtVq4cy4BTs4rFs74uGUh0RihixTkJMFAs3J37rRMriRR7N5cFC29ycwywA9VMMWNJVF+/X2ULSPSkiIDePAyxVqP48CczjWP64SKChfHiu5z661Ko7xrQWv3+O7SEjA1Vc3FcePUSrJRtwucO+9hcrKidDzJCubfjQ1F29LIhY/8HpoEaz6XhwB6PUVu9n1FCJyYUO8D9KW4uM5/oLRJeTZetlujgeU0MMx3OfU0Guo0NPd/cazSmJhQZVtZAcKpPQqkJyuPFw9DleXD4hjYUG8lubpcViQrxkDNgTG+rz6kbgp1zfnSWi0rS+p5vCTLVL8C9MmALMPAV+x7bla5T5WELhLBUI/t8XNGR9UZYxpxrJ6xuekEnGWeWdAwRB8Bls5bICUPfvvm2uUsQqXRUFoxYYhBY7/Sb6/rjkI94DhGo6Hbnx1ocRFR3FH/1/r/U2wWRkDVG3ZTcLed3PaT/Wc7bshf5Ea8UqnkNuJFVqvVMDY2toVB9sILL2xhmtHq9Xrh9b7vY/fu3deUxReT7shuUJOA95WQOs7d7tgqf8+Urmi31WmVMFQSLBLplEG4SyVUsot46KEqvIVvWJqvWE9kGYz2tBnvOdD6vjn8dNddaqg7dAh5fXY5PzBgd1cVO8tsuaLO89ifCOq0XD90OojiGHGspMAQJzaYJxcM9Tr6CMy8Ip2qgPKT9xszuccuiTWEmYM55hMAZVyYiQn1ELKUBVOf4S8mJqxaFqVwOH2wLlkdB5oD4HhLPa9W08HVVdIBGf/yCBjl9ZJEy4DpsukMNBrAK19ZQbNpFWA2Ny1gv7EBNbfMzubk5KSTtp95gK9OZgUMlELmuK4g37fzK6uBOH/OryHnk7Exxaifm7Mi7aIyuB7xfdXWge/j8OE9hnnOx5hspKmKHQPlAAn04i7t2ixHZL1zgaHrcmpKTY07d8J0DrMs5hwpT1+GIfpxFa159Yj99X5uTYo4Vu1Sq6EfVhA0fJvR2VkVOL7zgpVFnJsDJicxN6e70PS0yt/iIipxR6WpxftrXX3675ZbbHq9XjFhxp2j3TFkGLnlRrbR3P2S2TZr+ZERtA6CIKdtLYMnEpwk+Azk2beUDJFyHi5jmzrPfB61vgm2M+0JrSVVBAoSbCWoyPdBEBSCv1IT3QV3sywzetYy+Kd8SZkUgr+rq6vY2NjA8vIy0jQ1IHoR4515knIc0iEAIFfnTFMCsHQ+0FEhgVN+L9siiiLTltRCl/UnJUYoFyLz6krrFDkSipjglFsh+OwGBGWQ1TRNDZgcBIG5RoKfUvOdADQdAfxctqmUPRkbG8PGxkbOOSFN1oXbTkVMcc/zjHzN2NiYAbfZDuzzly9fzgWq5W9G6tVTR9/V5KejQ/Y7Kd8j64L3yf4k/8/nFNXrzWAjEH1kN7xxdygW/2bDy12CZIIXLap9X+0wajV1XPrkSSWW+tBDeaDeBd/m59WLR04BK8iZZRjAQ6tbQbtdwfT0DKb1ZoUnbqenlJxI/XBFbYC6LyignenoXajNQmCS2dyEPbI7P2/K5fG+MISXZZipJyYIpip2YgEGDRBc7AZmfwmoorBaiYGvruarkFmkhjo3rOPjQK1WRZxUUZnz85Ik3BwnCfxuHlQl9spnmyCqsE3mtZ4HLnWBS8jtZgdhhM6iurZW22+aP8uACjf/jYap2iTRQLIuxNyciuEm2YB8pak63a1kYavqGo2pVGKtNas3tcZZ0aiozTj7ZxiipLvF9LStBpKshS8gfwqCm9tGA8931eaIU+1mF8g6FreJY8Bb+AaCLLO6r7rNvHodvh/l9vd0hvB+vl9DpJwggAKlymUDbDB2Gn9quViAEmEIQ6xp+ZhLl9RjkkTVs5c5UgdJgotphIUFoF6vYObwYSAMKWOP2dkKkloF0eHU9J1g8Rv53/Uzz6hO6/vAffcB9Toauk4wN5eXWnJ/w7JShn3H+txGR8Jf1Eb8Gi0IAtx333347Gc/i7e+9a3m889+9rN485vfXHjPAw88gD/5kz/Jffbnf/7nOHLkyDVpqr7YdEd2gxo9sRz8iuZkIO8Al2gsYIG1uTn123zqKaW9/PrXWzF0OqWlc9r3gePHcQBQciHNphrnKF0FrTaRziCtzWD3bmAafQuoAwjSNVT9DPffAeAOWJkvOaDPzWEQRvD0YES98jQF0Egs6A9YyRiaiQ6aIJn9bnS7wKA+A4+OVT0Q98MKlpYs6Mo0fF9Vyfnz6kUnJmBVRdRcra6/2FGSX2EYIUyq8AjGLiwo1F3LdK0hMs1DXfDpKa053lGTSDVJEDaV47Ze17Ep9FoHT540Emz9TK1LNjdVU/qz9+S6QVC/aMD2c0uBCdNhQPRaDYcT4B3vUFXH+clK2KlpQcmYVFGrVZWjVixg1rIAKyt2zbNz5x5MH6nZYNlhaJjhzaZKY/duJV/HJmc3jWPkJ0YdXOXL8xGACElSNe0CAOcWrMwNvvlNoNXCATZkGgMIEcdVE5eGizTfV06Vi1mEjQ3bnp0OVJyWLLPR1rWDqNkE7r9fx6zRlWyIys1mLhLrml9R6nULqqmaTSgdGzn561gsS0sqBsvu3RVMz80BcYz//SUP6+vAkSN7EBEc12uI6uKXgZavdNP37rXye7t3q5gEjQaa0HV5993qu9OnbUwh2pWIMa5J1sd2sNHc/ZLZCETfRkb2K4FsyUQHYIDRfr9vQEmCiXxP0JBgMJ8htdH7/b5hb0upEwL45XIZURSZoAIECaW+tWQ1F0l1SCkNfjc2Nobx8XEDUkvwcV3v7KVWtqtZLcFZlmFtbQ3r6+vodDro9XqmfJJxLxn4dDK4TGiCwgweKtOnrjv/kgEtg7IWnQTwPA/j4+OGjU7nggumSrBbvnePu0hQV9aNZKLTYUJzZUekBjyZ6LxeHt1x652gvWxP+XwJdhNc3tjYMPXGPin7KGBPU8j7XQa6y9b3fR8bGxs5iSDZjqwT6WSQ4DkdMAzMSga+PG3B35aUBmIb83PZz/g903avB/Js+JvFRiD6yG5o4yZcMqhcVhs3NS7LC8hvqrmR+KM/MtrLy34VYQwE7eft9Xym76vd2cmT+TQIouvL5+fV42ZngfvvrwIbasNWLkPtUNpteL6vNhvU0nbyl2WWQZ1lakOcZQASsdHlbo6UKW6001Q9PwyBDAZ4XkOkNo9tC6RyCuGjJIHPxS8kA3193cqFh6ElfM3NzSCq9S24oDeWgzDCWC8vn1KJ1UY80JvrIF1Wgd2yTAWxotg3Gf/lMnD77RjU81ruzDvra9++CmYOHcLFjme0wrkPZMHI0OJ+wI0BJgmG0r9x222ekdOWXVE9O9DSvFZSx/fVJpay4Ty6zY20lBI37Viv49Sihy9+UX0sNVj5GhvTm84nF1TBqftKhmWSAHGk9PV1O6TwDGbEgwKbm3ojTkB8cTHHZiPpSNZfHCv2IcGlQRhBxxwzQfdaLdUdvayf+30gDDEII7TnVRfudgHMVpF21M+Kfa9WA2ZnDyKIYxtYT2bk8cdVXh98EHjlK4EkQU3nzTAqCQLIjTfr2fUsFH3H99vFvoUbcQB45JFH8Pa3vx1HjhzBAw88gI985CM4deoU3vGOdwAA3vOe9+DMmTP4xCc+AQB4xzvegd/8zd/EI488gp/+6Z/GF7/4RXz0ox/F7//+75tn9vt9PPvss+b/Z86cwfHjxxHHMWZnZ68p3ZFtEyN6ygFzGJDOz4oCCdKjrE+f4I//GHj0UeDIEfzdQoBaLUAVnby3UIDoOH6cg4tKn9G0dXJf+hLwt3+r/On/+A0qqeWuYkNHRFCfe04FMZUobqejxs1Dh9DpAFUNjC59VYDoHMueecbGTOGpI6Lh8/NArYbK4cPIMg/nzwObmxHSNFLFaNuqkmR6OcReuGDjVjSb6rNWywavJDmac6Ot3irKZWD6UGw1zMPQxCchE7+aDFQCbB9dwChJEPkAQl3gx07auDO9HtBomNibgKqCr3/drkNKJaBer2JmLsFy18O5BVvOMITx+B+IB2j8c8/k+/z5/DKP0xj9u/W6CgDKwKdcmjD2e7sNnDvnYXq6imkRA4dLRE7LQfci1upVPPOMeo5xgDt9eRkq3orsui5hwPeh+lCvZxeHd98NJAniuaqdhtiwcUUFEL9gy8p2X44DVHhUDDCUecYRr9V046Wa7Q1g0NgPDwNDBljQ8/HKikpD+XZaOTLEWrwnd83KClC6vYrOovrNdLuqnmZntUOm2bSL4SSxBJU/+iP1O/zn/xz43u/FIIzQ1P2wH+9XQdHZYV0SjBwvttPcfDUbzd0vmX0H9Yqbw1w2rGQ6E+yU0iRSUoX3S8BbsqV5DYNrykCMg8Egx8hm2q7ECJ/LtFyQFshLpTB/RUCqyxKnk8A1F1CVTGyC5v1+H71eD5QRcUFRyVR264ugrpSwkcBnkXQK2ddF+tvyeZQ5IcufdVFUb27ASlnHLhv9auCkKxsiAXjWNZ0SbHtXGkU+g8B4UR5lnqSuvuxT/L8sk+tIcR0ARWXiNdKBAyDXJyUTXJ4g4DMoBeNK2bh69nyG/CvLK3Xi2c+lyc+L5HVuBhuB6CO7oY2LannUU5pcbMtj4UULbu4mOx0MnnsO3sqKYdBWSW2WNjZmAT13VySYTjr+lTkhnVMAkVQmwAblZJ71TtDoqMLJBh9EtJImj/TyOpY9SdBHgHbL3sKNrEsqkUXh4zjNcPPm7J0Nu9oA2klgA6zGsZEWYVpG9lIw/gM+hLQ6udNdX7dnqdPUAMC8nZtn/h0fB8LQM48oanqvu4zpcfFBPUa36xkHAZ/b69nj+MRMZLPLQKm8TgLjY2Pq6DvzRdBDst892HmMTL2zZy1uvGuXJbkReJ+Y0Pex/7TbxQxr2ZAIcsA/L0lTFYg0CkNVx6oCAd83cfek+omX9U1aPPFAxwMxk05Hb8Rlh9IFZr258dBkDFf6l2YkSEUqJPs/o6tqNCnW+TMZdp1TLEBRPdHcsWI7bdTHxgCx7rmqXadU3Y/8yI/gwoUL+NVf/VWcPXsWhw4dwmc+8xl813d9FwDg7NmzOHXqlLn+1ltvxWc+8xn8/M//PH7rt34LMzMz+I3f+A287W1vM9c8//zzuPfee837D3zgA/jABz6A1772tXjssceuKd2RbSOTR2CG2ZWAdTGnceBIz59HmKZmCKxybpFjHweUEycUi/0f/AOrdZVlBkw8c0ZdwoM58H0TOzHiOHTmjAIHKdvW6+Xm8I0NNZ6GccVg/lkGO+acO6eeI5nonPs5zqUpfD8ycxiHeSpwSNyWc7T0PXAa5TxP5jVg5dskt0BW9eRsBVECk0Cq1wxjY1ZiJDeJ8EHyiBMDXMoFR5puWdfQ8SqlzTh3d7t5vfMBPAXOttsqwKaeFKenaohjC6pnmSrvpUt5BzjridmmrBqzG4bAdKwysanvY76C7kWg1ULUDFEqRYapbnhsYoLsdNT8beTSYNcNRgKG9cV1XBgqlrbvm8DyHga2nmPbjobJDrsUrkzqytvYMHO4l66hXo8s0G//6G7mmfpiNnjKMMsApF3LjgjDXD/kSUTO9S2Nty8tsX4DZFmAahhajwaPPXIN7fu4mEbwM7suUs6fABUWzu2cwwD17W6jufsls++gXnFzmAssFhkBSRfMu9bnS7YtnwfkNdZpLjNcMnNdIFOCoa6ciitzMkyvW34uQVnpOJBMbAlaE6Qmq9wNcCqfyTQlE1qCnkXBSIcB7vwrQXSZtmynYaCiBJXd9pJt5v7fdUS48i4uK/1KeZBAt5sH6Vzhs+Rfgtvy1IN0REh2v5RguR6Q9Wq/CbfcrtNFOnn4d1iZpck+4+ZF9lX+Lcqn6yy4WcDiEYg+shvauGu80pFCl0LM/7uMU25cazV4+/YB4+NGDhodsdnnwl3SiYlqUthbRMOUMh1ys5NLlx/I3a/Y+E9OBgYszuF6fENxziuBgPy/r4KD8iP3UmISZDcTj2exybwehjuyOnJlDe0un8+SATU3NoBKbDOQC5CVZbZeCHSINifeLsGDYdVAsCEX4Mw9uaA/8/1gy338muXni3tVmWXXX+P+PwwBL11DEIZmAyttADuvlUqWNSbBki3+IFkJDKwnN8zOT4DmqpT4vv6HmrT6lXVs+U3aosI9AL4f5H4S8pDIMGN9WODEAhbsg7k8EsliZ5I36N9MEG/t91sKfz0bb3fMuNHN97+lG3EAeOc734l3vvOdhd997GMf2/LZa1/7WvzN3/zN0Oc1m81rWkNcKd2RbTMr+g1e6XfpOKnN9ZoaHeoxyzCDU+HhpPfTnM7RF8mAiBrco4PSDT5qVCEkcg1sRa41QlsqKRktDwOUy55dU/AZEjjnpCjHLL2WyNKt05U7P0lskn4FgqyySrlcCkM1pVIJi9XrVjfLSedC7jvOAXxA7jgV7BhdLitv7+amGezlss1lZsuq5XRWKtl5wIDKBeu6cjnIfTw+jpwUjHw+1zOunL0sAvNm5rFOahD3MIxMe5qAseJmd9nCbsL/G6NXomABFYZBLmNZVqxOklsKsx2YcdGHGJzU7UOybqSefbkMIC2oGFE+uS7hqYjx8SE/ZVY4f2Q63gvT3LKGo0NfMjXctbO0ogXgdrLR3P2S2TZr+ZvbigBYAFtAPqlN7XY6Vy7EBYEJNu/YsQMTExNG3kJqc0u9a+pPU/qF8hd8Hu+hhIkr+SKBSim/4TuDEr8ja/jyZSU9s7GxYQKGMn1ZNgLnURTB8zysr68bjW9ZbgmMk1XteR7SNM2B4VITnffKevM8D2EYgrrzklkv241AN1nfrCeZJ1emRTo2ZL0SnGZ5pW4964j1JdvF7Rfy/y6wLJn+bn+TZSlqe7dupW68lIQBYE4kSJ1x97TAMCtiwMv+4Dp/KOFC6RoJogdBYKRhZLBY10Elg9G67PkiuZZh9e/eU/TbHdnIRvZtNoLVEuUsMnfTzU01WVNczPOY6ewsMDuL6dJFtWHicWV1nho4fFgt/JeWjG6pOYotj2RDST3OzVnSLJNPU9hgXsxLqaTu7fUsvWdhAVGthqhWw8APzMakXAYGfqDYWPv2KcCTFDMXtRfU5bXU6qPLTYvczxP8JM5ANhV1VckUApBjeMvNLvc36pCA0ltNO1v3N7x3edxDGCrd7yzVAbLkRpDUbZpO0EvXkCSRkUWh7rksOvPM2Jzc9KHVMQx5U2jdJ6hf6u7T2HZkojOIKwBgKkY/84wMvOyeHga233VTwSqLUdEZG8DbAlRwUzo3V0y84tH3ATyll0tQCLC09SyDl67l6o3sfZoEsH0f1OMxGqlpx7Y1mXvqJ6MdHppKHgAIfB/NZtVUbZbpY+QS9BZryCRRRMw4hpGMIXDBDXkYwtbfuXPq/okJVdbZWdUYExOWvakTv5hV4PuROuIuKfLUypcNW4QgDTu+MLKRjezFm+8ryQIXmHN/a0WDLymwBNSSBOfOe5h+/evV/bfdhtlZIMIacKJt5ZyyDJibQ7++H8GhRcUg56TAo2JxbH7yDDhNGZQBPEMyn27WLCi/c6d14nGM2dgAWi1U63UD5DebVdx7r45hzgnp8GFLs15dtWN2kpgxai0LcmOvBPeJL05N2WpKU+Bgsw8sLiI5fMDEe+S0wBjqu3crGTXf90yQa8qicRuuyhuYz+Rw2OsB8VQEL9ZtxExxLJXxUPbuVS8+KI7NvBz4Ayx3PdO01B6XgdcZXNycXJPP5iSt637v3moujiwJCLyXDgYvXVMM680Muw7NGMY+wJNTqizVuI9q4lMoX/UlfTRs9vA/zMnhD8IIXgJTByHU9CRPybmxVwCo9Rs/lBFLu13U61W76EgS9FZsPuUz2G2Q+SpRMX9d7AaG5C4d/nEMVEIdNLSrMthsVs0U2u3qvrUjsTfote3YmOqijYZNO46tUkuzqQKABz4UkYKeitVVpdcWhmqNoaOVB61T5kF0HGQZ7Do5TZV2/N699njIlcaLkd30Nlq5bRNzwVopyeKyjQkcEoh0pT7kiyYBSmpzUwNbgrCSab65uYler4d+v28CRFKWxGVBUzqGutS8RrKNJZAuNd35YmBLqUedZRm63S5WV1dz7HPmXeZnfHwc/X4faZrmGOzUwmZ9UAZGGgFyarbzub7vm4Cg/MwNFsrrpdNAgtR0AJCBLduX7cZyybqVIDrbhVr5pVLJ6NWzvGxHaa4zRZ4O4LPlNUUAsMuyl//n/ZSGoVY5NcdlvqiRLvsAQetyuZwLHlp0usI9reDKGklHkMzPxsaGcTqxrVnWzQJ3vKwTV5+f+ZOyP5L1znxKeRn+lScWrpehvV1txEQf2Q1t3BlKdBEoZp1LmlOW5WVUJH3mn/9zpcndfh5GzJIILd8/9BD+8okAr/me77GikdxJiLO6PtRGQupYc1+TZQCaSX7DKZHtc+fUrvbkSQUO3norvHodlThGWA/MLWFYQTA3Z4ECceTW1FEYou9HObzePQoe+AMDNBwIQyD29VnwTAXjQmCqamzMsoyI21P5g9VFOZPVVStzws/KZVUnBNnZTNzglUpAmEQKFJbnzJlhyUhqt+GFIaZ3JejvCnD+vG1SUzaoTXAYqnVUFA5sH2A/kIKyWYakWc0xsrinZdJxrAOdUntEb3KDMES1VkNc35MHz3kN24jtTnHWMESW7NnCNmSXotqQGwhUOmaCWs1mDhACsrBn1H0f/czLxemi74bdz8MAa1mAdroHWddmdWVFtSFBAAI6AZAPqpdl8JIElTBEZbaJLPMUOD5EukGSQiNfOSWmEyYMoAN7Afs5K2diQgFR1IGhbItGwdqpcsxU2JcWF+2ReaJjso8NGzuGsd5uVPs2sNlGNrIXbfRmyt+WdIa7v0k5T3Ls1ozv5TTAwgJQeuAfofq93wt0OogWnrVjRber5lEA+ImfwOceBX7gwWM25oMe+PrNg1haArCiPp6bU9N6rabykCEwQGutFiiAvFZTKKOQlDGyJQsLuXJM14Fjx6oANNhKCZg0VQLsZ85YWZgsMzExKHPCR+lYm6Ya4xjwFk8BWYb9SQIkPvDoY8Dx46i+6U1oNr87R3KnrFw17gPtDqIwRLQrxFoWGPB5Y0O9mLZ0mhPMXl1Vf6uJmjwuphHaC8DOnYENJMrx+MgRlWmhq82xHu02KvU6ut0I7bYa0ptNmBgeSRKZOjRE9wWdMXoS2DcANJrV3MFBzt0E6ZNEzN0nTwIrKwjuuEPJhcXCwcu/dMCw7z33nBJw73YRxDGqtRo62INuV/EsJicjRLEqfxKr6YlrL/kY2b0D6dA1QU6g5GrEgq3vR0ZCXzL5OYd7nYtAkuBUt2rqi12Rjn3yETjvGs1x3cGq9QzVQzVDCFDAfJLz3jAwbaMBVEPhoE9TVLvzqlCtWp74wI7U7QJPPKEe/P9n7/3DIzuqM+F3rqqvrlpX7TuanlFblgd5LBvZHjsDNmCDCV4wP5cQSEhINmHDPoQNARKwIT/YhEASE54kbOIQEsgPAuEhCeyGsLvw8RnbD8HggLPYZj57iAUWWBnLTI+nZ9SWWtJV66rn+6PqrTq3+rbmh+3xjN3neXp61H1v3apT1XWq3nPqPVdfrcf5zIzmS5+YAKam9NrP0MNZR9e+fbov6DiXCpQLJz8K4UyTvu1+zOQM7P2nrhB88+lB/IhumdjSB/CA7mh0ik/JQdBaJusk6Miy0zS1ADmBSR9EZ2S5jKb2QXS/fT6I3ul0UCqVbNQ168TkoYuLi7YdjHhn0lAANop4bW3N1pXtabfbOWCb0ckEeGUUebvdRqlUsglBqScC3GEYYmhoCGEY2oShjAqX7U3T1NZBJuaUCTVlhLekk6GepG7YZ2tra7lIdB84zsTkL+8n3Qn7hU4DOUaKouElYOw7SgDHGc9ns10Ertl21ovjRjoe6KzwHUayHbzX/1zmCeBzfBCddeC1pVIpd3pCguTSQSWj0YtAdOlEkHWRCUZlm+VvcDNqmieT9EH0vpzWIjcbRZGkFP87opBALgx7JQvxlZv0ev7Nbx5Hed8/6meMjOgNgAHRV1DGN74BTExUsGtqKgeiH2mFWF8Ctppit2/XryJu0sVWgEq1mk8Kymg2JpkiuMAopTRFmCRQUdlyTybJDpQJoAJupyleku8zy/RGlVFgunJNHZkn9SSc1Ul1l/2/UibKL8tQNtHXIUTSyER/xr0Z68niGHS1vq65SgF3ylsGhZdlJLrZ/bezAGG24jbj3EhnGcI4xtBQJXeEfXAQdnNd5oaqBbeZW1hwALrY4QatRQ0uJLynBTRbCJVJ0tpouYbNzsLuNk0SrVCi+Kwn+T8JLPBYcxybqMMdtgvX17WeAnQQpi2Epp3JxA5bnO8fCgm+yKMGRA/4WRTlHTlG6MDQFAgplpbK2LfPfcdiJHDPz8IILjqUFSNQDWBiYpf+mc4JYExsbisGcECaOV3t25c/DjExoV8SRGc059QUDq6PYkx935HHm9/BwupOrK0BF16R6HKXlvSxCp4YkXOBL1KXHKRnivQ34n053UVyZEl7zO+K7HYm5og0BYaHLTX5974HpGkZr31tGZXbb3fzHjm5ARw8FOCOO4CpqTIu3L1bf7+0BEQRZmd1scSxt283J41MHYjd812pUNvvJNGTNedbXnTggGuTmSzLccMk9t6BNA3QaFSgVAW7RkYcl7o8vlOtotnI+/yjyCT0hDmB1Fp0QC8B/NtvB77yFaBWwzk/+kwsLzsAfLxm8mfUW7ljZOVaDUrlqVAkgA7kp0OqNooCRFEZ9Tmt5okJYGQk0PaWD52YwPfnAiRJGVHVOLJpM8x83mrtxMKCVmXYfNg+M8gyJEnF2p4gazvibplR1YyhoP4DbaOjSEdAm+eE1SqQVLS9mWvo+/fu1e9ra867wEUIk7PTztMAzs1pm0/7NDkJJDuwuqrXMxsbgKoGCJU+KTee6DGwkoXWj8ugAivyGKAUhoNPTKCtylhYyIPwBNJt/MV8E51k1PqMzjpLvzMJqU+bFqLt+oGLNPP7CpXSPOZ15NeUUQSYg5KjSQfYO2PplNBoALfeqsu85hrnqAZcxASJ06tVrLz2P+P224GXTMbAfSbzLvUOnUAXtap+2J13ugHmOzp8AP1MBtL7tvsxkzOs55+6UsQPvpn4tCYAuv5fVD7fJdBdFEEty+fzJE2HfDHKnOUX8Z/7dfATi0pKD1muTAQp75XAqgSjJWBL8JPit4/JJQFYXRCUZ9S5H80v+df9l6y3D4L7/dALLJT6k9Qivs59znkJllNkJLUsoygJJvXTixPdj6SWkdaS/sSntmHEuKwXHR4yytt/3vFKER2NbPdmz6Djh3/7Uel+3xXppagOm13r/yaeCtIHxvty2goX9UAxgL5Z5KhEA01ZqcFF779fr/PLS0v6O/IvLywAGxtIU70p0YkzE7vpYiJIGbxKuo8ornRhcVlmNsFFi3yGbROYlkBomiKIImiaFO4dTTJICZ6Ltq2vdgfsKAW3+ZRh6r60Wogm3H2WF9RcGzJCWEQ7q6icwzzk8eqhoXy0uuyKHHbiOQIYGTWaRPlwbAEQiybbiGmr7FzDjeKYYU1eIyvO57N9BPWpMzZuacmRnMpwfwqvXVrK74KZFFfo3Ttolwf3zVFnYvO5PaNUoqcP2fbM62I20SV51X0jk32y2T6mlWvf6qpz/nAz3mohnjS/A/lAePdSJxIkk8gRGys5BajTJMHhGWAsVl2ZXW1CNzZyY8PV73g31/5ccSYIOfGPV84kB0Ffznw5lu0uuqYIUN/YsFPGgw9qELPVAiry+JNI9knKkoUFAFuTHCXI0pID0ZUydB8EgQ24mWW6OE53FQksCrAcWeayVXoc14giZJFzrA8MALs4wUKsCcx9Mm+6VYmpcyDtkbyw0dCLmUOHLCe4FWm7fFTcnDgDnH32DwX4XSKnbZq33A3QyVU5nWte+ACBZ0e5JpDtYxkBOpoWRJbrG0BZHkVS7MQxVFzJ60tmv+YpPipa6ov2aX3d9at4ZXF+PZNlmtZM6ricJFAqsGscqePQH0dyIWn+n6bueik5PDlNkWVmfCPftdJs2jL8tQzXGtQdO5wgv0fFZm21jH6o111mUtk/UkHmd2Fzgk8p/eMVleOt7SzQa0zeR9u92fr+TJa+7X7M5AxbtfWFUgSC+0CzBJzlfZKKwr8fyIPBkjbET5YpaVhYtqQW4T0y2SS/9wFelsNrJB0GqT4YPSwjfsk9HkWRLY+gtc9JLdsqI399oJcR0gTSCVhLHvcioFzqy2+nBI4lmMrobR+AlyCzrL9Pr+InUpVgMdvQCyyW/Sp13mvsUHdSb0WAvRwzsq29Iq8l5ZD8ntfICHKf4kc+R7ZLRuD7be4FfMt75Lj0xXf2FFG++G3167eZPNUA9H4kel/OaCnacfgbL2MD19f1Bm/7doM/jozoxSxRxHPPtffmeJoLhHuBKAoRxsru6xiww/2SjXSTmyi+itpirpGJJ3Ntk5t5cV+pJDaoReXyRfJQlmfeffw590wfuM80B3e1qpNura7mgw6jqHuDLgO9lpbM/6tlRFEZ5Vpkdbq+7oEMEjA2UdYUCwqnWXd92RkMv+71kptLHxjn/7dtc9QiTMZZ1C9xrL8nsssz0eaaAt9HN/CfZQiUglKBzUVGnUKC41K5HmjCZGiyaFaP9DOS7uess/J5PGXz7W+ABW5sdGUUs0ngWB8zju0YZgXkA6Qnwe9UVoxRoKk58p9m7tnmlMogsXI+nw0llYREhYpAPX5/pm3YqYPjlafQuqYvZ4AU2Wg/Ot0D1nnCKYqgr5dzweSk/X1Xq27albJ1q7NLzSagqmWECazNyFr63ixzUwgeQff8wfmfz+bELurt+wQkqbQFVc1FfvLPgQG48gjkcu7lc5m0Y/t2C/pbejKpUy/ymQHHPqsOm7Cw4G6ln4LTf72uWehKJQ2MTk7uQCgikSXLXJYZ5zsrFUU2cWiWATkDBdhcIUrB2X5ZoFwPSG52ab+NXSP3NwBtu6UtkWsKPp9lEuX3E9NGUe62nHjrMCbelmYnt1yQNsgD0uOa06O1+eI2OqpD1cHWrVpfTBtC8FwuM8tRB2hleR2yQnIAyJtlxaVu/HURF34MPCj6bVSrdj0MwJHgMxDD3GKj5TmuabtlnYtst9D7GSV92/2YSR9EP0PkeMAjSYUhAVmCeARct2zZAvJvA+i6luBgEY83n+MDxfybYDfBMQLEMrqbVClsF79jpPfAwABI/cF2r6+vI03THIjOBJ4bGxuWeoZgPAF08m1Lug2Wy6hyRhyTsmZtbQ0rKyuW7mPLli0ol8tWVwTuy+UyoijC8PCw5SBn2bxPAtiS1obtl7zpst+knmU5kkZERlRL0J8R9HxnMlVyr8vxIulzmFBTguKSK1wC7H7UuYwwl/3qg91yzEnaIEaf8zvp2Dh6VPPG+w4iyXMugWfp+JDl+eC61APgHBTyPvlOkZRCsk3+iQD2o4zs9997OSmKwPcno/RB9L6c9tJr0ezvUnsttk3kagcB1tZ0ziLyS2JiQoOs552Xj4QF8PSnmwRdc/nnRJG+hMeg9f4hyOHbNpGTBA0lGEyaCobGbWzkQMhOVM4Fjdt9sNxdyU1kllnqVUC/k9M6pC4YmbW25pAI1sls7LkXsjzfRp+5SCEiENBRehWlMP6sqk1oyqAuUr1I8Fzi+Fu32nxTmJgo5/ZhOqis7NwIZnO1kgYWe835IpppHjCgngjGJglWUEa5qixCspiVkTWB0Qj5yGiZtJW7P5ZX4Eyw9eOxcx4BF1HU3FgGWRtxHOaAC2TIO0dMuXHsNuO6H0WCU4rkIBVjLYwzTEy44/EANEVO6sbLaDXC9HRoq04AhUMxy/Tn+j7RDqJMEqgh0MONsKkHh52KQwQSXZGSpnpD6bxSGhAbHAR279bPbTYxHme6n6lnAyJtpR5J7sv7SX1jFS3ee8mZFPHV34j35XQWjk3/Nygdbb799kF0E83q4+RJAv0PqdgA4IILAKUwOKjpucfGACyrXLmTkxrHO3hQ2yfNn1221S2V9L05GyjtLeBsNz+XxNXCHnNKtFKr6QZUq0hT6Khr0z4/CLhUAtoIEaYtR3btHxs6/3z99+7deOghfe+2bUYdjaabs2WWcKU01YsUadNbLeBZU/jqWmAZcqQN2bdPf1araf1NTADXXvsSlKMOVKabJ219aAnOAVSriGNt97MMjl/egLDUFddTobS9tO2mH1ZinVukgiP5XB3Npk7ETntYKgGXXqrLMbrP2S1p6KSzgYuU7dvtIoVqz4nvfM0yBACSJMTgoDMnQbqSXz8A7nQbvTqNhs4zEsdALbRNDyD6q96w9n5iopKz3TInTZqavJzMwk57KZ0H7PN63X2WQ7z1xytpgPLkZP53yYc2m/pY59lnu1xBVNS2bUCSYDRu4znPCYFlABddZG1zR+k2RhG0R6Ze13+cf75bP0m7Lf/v61I6mM4E6dvux0z6IPoZJn4Urg8GMrJ5YGDAgrMSRCeVCUF0An/koJaR0AQ5JcApI9YlNYr8WwK8URQhiiIcPXo0d61/HUFSAqpMViqvX1tbs20eGBiw5ZZKJVQqla7o7I2NDSwtLWF9fT1HWcJyCSiTlqXT6aDdbmN1dRXLy8sWhPYToZITfXh4GENDQ4jjGEopGw3POqytrVnHAIFdAvcEdgcHB0EudfKmUwiYk0qE/Ud9+RHpdGJIZ8Xa2loORJd9QF0zcad8l3WQ40tG1DP63o9glwC6T1VD/bMPfToXfzyzbaTVkY4iOk6KQG45Bnx6GXmPBOr9aH05/n2wm0A6nT1SWCaf4XOmb0bpUhSt/2QGjvsgel9OaymKPpGLefn/IqBsdVVnx0J+czE5aUBJs6BvT2g+8LBWs5v8iy4yiblEpBOjjACdYOqRR9xavlrVZVeitubhTNN8BI8fAkYEmUeHyZ+tFA4d0h/LfYQtA8hHUZsNIzm+szi0wXFZZjbrYpOJjQ23oWL9DIgO5Dliqc+0JYBQbuhZniH3Lit9nBlRhPbkrtzef3VVAxfMycbkX2NjetM/Pa0jqi64QFfJbajLiKo6YWrTgPKSRj7H+S4i9FfSAECoeeSjCJ3qDjTmgTjWyeLaCDE3o58xOgVXUfLN8uhytYqOCpFWd1q1B+jkAWPTQZ3qDv1dFOU5SKWzIk0RqAzlSJ80yG2Qvei4IMsQwkQsRgpotvKhZoDrB2Z/FeBTmKTagSI9K97vaFfNgApz80CWYYxgQk3w4NcbDrmSYD+Pc7Me5FCg98b85si+EkVlhExmy/ozux3rzg0/8xBceaV+3syM5qglt3ythiMYBVINio2MANhbtzysueR9PjjnO7fOVOlvxPtyOkuR00z+BiWYyes5/3FeESA6oM31xIRJrmjnKm1Hj6TaTkQlncuwolaANZUDwMP572MsjvG91g47ndAsDw/rg2ijs/9XP5f2meAi590o0t/xWJuMvBVrBWKkgMHZCbxXq1hdACojsPY+mc7jxDTro2mqkWsJ5lNXl16qFXLFFZi/SdvSi6cFD3maApOTONIKbbXDbMUh45wDmRD7wQe1kb7mGtQmXoj5eZcKhOaF0/C2bfrRZ5+tp9xaLcArX6m5ysNaDUeapL0LtA2f2Gn9m8SxV7JQ09MZ5wC7nEnNQ5k0W8zjbVXGrLHdl9WyfHtlP1BfJin1ShZiaQnYWgXCdNEpGXCgMO+nMNo/ilCJtANcMpjkqPrEmK5EQCVW9hrUm/lgCgLYkpCeJ+biGBWOldl6F+0N752a0iB60HgYSDNUWOdaVes2PaLBaTqV4xgHDwVYa+lm2TwljYb73RFsF7K0BGBkh04Sy1wlY2O6vs2mHjPMQGpzvyTaGxXHQL2OMbZhzx6gWsViqnn5edIOc3O67G3bXJZ1rp3kmlfOG1I4ns8U6dvux0z6IPoZJBKEK6KkkEkn/chgJo6UAKNP1SLBdwKVAHIgrp+o0a+XTBbJRJkSpCQwKAFLRkvzOaTIIHANOBCdoDQBdwA2wadMHpmmKdrttq2XBOsIcrJ9MqqZ4DMTf66vr1vQXDoXGHlOJwGdF6yrrx/JJ8533jM4OGjL4vUEwiU9DttIfRXRvPgR/2yDpMOhbGxsWF3SecJIdJY3MDBgo+rlS9L6UC++A0DqnuNI0sAQnC6VSj35xlmPNcErK/VXxNEuHQ50XvinLPz2SIcQ33sl76VTSUaky9+BbCv/L6ltZGS+vL6ImubJLn0QvS+nvRQtmuXnfjQb3xmdYjaqvHRiwiTNbKV6wV6t2nyb1eo4BoaBEky+JG4wjQToIIr0vLK87DBXgtaTk9DPu/9+vevkxkLu1rkxJCjJOjME2JRdhPN1VIggjtExycFCubkyG8m4uiOnIiihKwm0si5m576+xMjovF55zDpNZeLOlkvm1mrpDRVpOIaHESYJsmzU7lOZW0zm3eT+lFhntepodqhyBiinqUvaKveig4PIK0oprRvzEUF97rP1JWFu72jbQ7JXEbm3mIbWAbC6qqPo4jhArVZBIPi8yeW+vh5g+/YdLhpOJpTl5p7rHrkplOOCHeefs/dPNVC59FLQRkvQmG3zfyMSrEpTl7SO7U8SncRUOgIMmLDYCrC6BA24A8h18vJybrObIU9JH8YFWx5yGkvgY2ICqFZxcLWCjRYwzrE2NaUdG8ko5vY6fKCMFdiMbBMTuq7ytyHBp17zyZkm/Y14X05nUao4IZ50ZMlr5TxH0JpzD7R5qdWASusHzkGdJGgnO9BoAHfcoT9+5SuBSnN/vlz+7ufngThGmu7gf60JTBINCmPfPj2nGsDPzh/yJFmSOKouCboynwOcw5dfL7YCVGo1rGShC5o1xo04YSXSTvtMVbS9yjINbgMu4h5wdYgi7K+HaDQM1khHsDF2HRWiXnfLj9FYdR8RY0j+7KzWT5KguueFqNd13tSDB12R990HpOkCDh2KcfBgCWNjFqvHq17ZcYYdZakKDAxo0zA46FTXbMKdDIO7liwhSoWIklEdxW3GRFuVLRU8AFxWg2sHbSuB6dVVYGQEi9EOzM/qr+mv3TlhFM5FgHGsc2hWJiZcvxNUbjYRKIU4GbVriSyTDPPI21wjAcextPUc/4xEB7RyhobytCrMUEq+Fo6/VksnZs0yF20unOXlWs1x5htn02IrwNyc7oeJCSCrBhilvnKRGlr4yOVl/arVQpT5ZZLoCx56SD9jakp/Tk9QtYqDA+NYawI7m3N6bO3eDUxNYSUN0Gq6cRFF0APtwQfdaY0iJ9uTSfq2+zGTJ+HoeHLL8dK6+DzVxyqnF8Aov+v1uSxTcnLL6Nte38tEngTRAXQlKOV1vRJp+hHNm7Xfbwc/k3XrxYst9eRTi/jtpMj2FZUn6VH4/F50IbKOfn8WRTr3OrXg66MIWO41RmT/9+JOPxGRgDP1xc/l3+x/nyamlxTRt3Cc9Bobvu78a+jg2ay9Rfp4qoHjxyt9EL0vZ6Rws1IEhvmLbg80UwqOM9OArtxgkd4xd3R3k0W8rIZ9BMHq1VVdaBHIz//z7xNZUB/HpkIENPe+QL6w+WnY9XWz2SkCDEia6gEhvbqB+3el9B6Sm2Z5DJwiE7RmWbc6e4kfKcb7/FfhjV7WT2K8hScDPB2xiJAgd9HFm43dXtfy//69fJfZyHyQqqixcoAQgOilJOmgQODwetnffj3tM/KP1dH3BW2U41+UawF4rx4SM1EKmqaGOvDrVRRh+GQQeu760pczQaRTa7NrCgwHpwf9W09zjkdJIWZxee9kkhUxJxNnZbm2WuR5pl0rqq90ePri2Q/JaiMdvLJ9ATpQKrDPU/SBMhDA1xHrEMdI697aQxQup3BbLWkfCOTSCbqwAKyu5tQmbbaej9cBtLG6WsIjj+hbLANIwfMLPs591+sz3hOK+VtW3XarbFyBcV9dzWPVWVZgh5ROxk0zWBkSgDUfJJw+PafdXmO71+eyUjIpp1wM8Rpz4q9LQbIvWU/PftNuS6o2Ox565SbxPsp9RYTdB7uVshH1XC/JH1o7C3I/X8uEtLHhEvoU6DsnvZR/JtG59G33YyZ9LZ5hIoFBRnpTfHBXUl8wepoUHqVSyfKV+1GyFAlwSyoRCXL6iR5lNLwERxldzXrLtjBiWFJtyMh1ApekN2EksN9OGenNyOpSqWQj5GX0u6R94f95TxRFtt2kW2HEuaQrkXqRbffBdZZLvbNPeB3LYnQ567m2tmapTCTPuU+R4ovvHJD0KxIYLpVKth7sk/X19RyfOAAbxc0TDjyxwJdfBx+Ilu/SQSHB8KKTFUUgvqS3WV9fz9G0FAHeMkmrFDm2i5wm7BcJuksg3hdJeSSfL6PL5fvxOree7NIH0ftyWkuWAWHY+zsp/iadfxvKCK7PQ2WOsSYJOsmoZSQBXGQaWSbKtZr+QmymgnQFZaVQrYa5/c7goHm05IVkpFoROEDxKVrgTokLrEBTiWQ6Ui2IIr257JFQU+4jOypEwGgqJgFjCDgLNs/V9c/XM0AHIyOBSVIlkAryqheBrs0mpqbGcdZZ+lLexsh9Rv/FsUuMxecT2PBPZ8tgLn4fRQC2in5vtRBEEaKojCxzfKJDQ7q5PDG9vu7lW+OOjkSmJpqtEkWoVGMAoQ2KNAfvcuMtVApbt2obF2bmlIMXIV8omwHjRdf1QiVsSBfyALpUpIyklI1npByVIjnhxUkFOpu4V7U8+YArz6cJajnVKuVx7TObngwH5Xgypzb480M9cvQNStmAtzg2tExZpr/n5pSd1WtD7gPs/OxEnFlPtGw2p/SlL0+0ZJmORPfnwF4e3gIAlGN8aEj/1itxB5htumNMcYyWAZF5oslObbUaftAIUa0BobENdPwy4FUK2TV2jozo0FsZZS7bwHlCgvQSxDQZTVkPXpIkmnojru5wgcrG9vpJxDm/IYs115m4Nme7Tf0saxznbFPfUHVQrQZIEnNap97IP0Qi/FGkj4JBU+FMTpZx0UUujzYPVT344A6MjDi6dSZwPdIMNFVaVEGrnlcJTRIPwkmfL417tVrJqdk2L3VAcTlWSJLAMY5YRSHXv1hdBQ4fBtbWMHZ1B2trga3H8LA4VSei18txjHJikmE3s3zEuJAga0Op0E29adY9xv1TZWynPCEm6y7vkcfuuDAdGckvBCVNIAc+F0j+iYkkQbOph7TJxe3qHsf6+IU0qOZL+tQ3Xb6edVaetpCk98Z2ZxmAWeWOGMKVxeoFrUXHp26i7HM6KwLTiyrTt91PSelr8QwRCdwSRCRwJ4E5yVEtAdxyuWzB4CAI7N+SMkVGiBM8PHr0qOXZJq+25HuWdDEyEpxCEJs0JJKfnELqEdZhy5YtYNJQArU+SE+gV1KLSMoUgtVsJ3nBJa0J/2b7qJ+BgQEMGcvMMgmmSz51grhpmuaSSEq6GQnmS1oRP/K63W7n9LyxsYHV1dWc80JS6sho8F4R4xTWTXJ8S4CffSAdJJKKhGA7qV6k80W2QYoE4mV0vw9cS7oaH8guitqX17NvfPohOT5lv7DffIeO5PL3gX0J+Ms+k84SPkf+DmUbNzu9QSkCh58KgHEfRO/LaS1FIHpRWJNckPobmrU1YG0NITSnJRoN/apWMTOj1+jLy3pzVatpkPwHqT42fPBgAGBc79kJ2BkkeHp6J6pVx/E9NGTYMGoVBLWao8aQiHERCEoOSZEEbIzJv+T1rYKNEtspdp3cQwIOD47iHYiqOxyYbhI7EWReSQO7B+moUB9B5iay1TLcpS0XscbnDg/rd9LeMMT8gQew69IYuy6tYvv2MppNvd86fFif/j10yEVFyZPyS4ZSxtDY53AVtgnQoCyrUauFxqGQ2uRU5YkJdCI3bipxB3EcWBBXbQ3dRlx6KoaG9N/k/pybA6II43v2AFNVS20TZG23iTUVCbnZy4VEonjD5I+Dgs161328pgjYkRFq9ABRQZLKJDJgtEywJpEObmZ9MCCOLf263N8iqujkcXJjrxTa8ag9sp0LCJXt5YadgBDHvxh74dx33bXkSTfAg80FR8CBR8r5++ZvjjryxQfQ+yB6X/ry2EmWAT7d42a/Q38OFNGapFq2HCO1GvY3K0jrbppj0tEgXQEAfHcuxBe+oFkkXnJ1Td9rDOLFV+u1AGlKGg3NwFarAZdJND6OXd4JODo1ayek4eIiwJufaF6C+f3A3ByC3QoDA6M54NItB7QOgnQFo0kEZInmpxFz/WJWxuoqMKQcgGTnQh9gbbUwnihtz+bn8zofHMzrXqLi+/ZhvFbDy162E/W6TvFSr2sdS/YPCbDOzQGY3InGXD7PtOxaLl9y2GiaAs0mKtRlHOfzhfBic2MlSVAziTet/eBDyBND3jiTnHon6VmyDJ1kFIcOAeXtArAV66eAZbGRHGC0JWmKMNJdZevHdY9wPLezwOVryTI9RgYGXF/K4460O7TbpJmh559rRFHPTqTJVQLWi2swkUydtGhkhRkack6RjQ0Atap20siOFL9RDvE4hg6ioBDc375dF0jaQq4xsgzh7L9pqhtyriVJzszGMRDMfV8/ZM8e/QXHqQjs6FrHsN+lyOvPBOnb7sdMugmFT6F84AMfwLOe9SyMjIxgx44dePWrX43vfOc7Pa//hV/4BWzZsgU33nhj7vO1tTX80i/9EqrVKoaHh/GqV70K83LC7iF//ud/jvPOOw9RFOHyyy/H1772tdz3R48exfve9z6Mj49jaGgI11xzDb797W+fVFsfrRBsYtS2jKImsFQEoBMAHhoaQrlcRhzHGBkZQblcxtDQUC6SvYhXm/zbMkmlTNbIhJgEimXEdRRFliecQPHa2hqWl5extLSEpaUlLC8vY3V1FWmaYmVlBYuLi3jkkUfsS15DoJnvEvCVgLvkGWebBwcHLfgLIAeiywSiQ0NDOOuss7Bjxw6MjY1hfHwctVoNW7duxcjIiG0Pk3uura0hTVOrI0bUh2GIKIpQLpdRLpcxPDxs/z80NGRPArCstbU1rKysoNVqodlsYmFhAYcPH8bhw4exsLCAZrOJ5eVlrK2tQSYH9ele/Mh8gvh0EHAccAwMDg7aBJlMqsr+oGNDtoXtGBoawuDgoAXW5RhlveRn0gHQC0yXLz9CXTpr6NhZXV21Y5J6IThO8J/jgH3PcjmOZL/5dZG86vzej/Jn3TgG5cs/FVJ0SqTX77yImudUyAc+8AFs2bIF73jHO3J1erzmQd9hcjyvvjzx8pSx3bmQJRRHPUswUX7GRSqPZ5N7tNnUG/EowsyM3mtxQxc0Hgbm55FlsJvH//f/Be68U2z6Gg1gbg7h/Pcxrh7G1JTDHlstDRBjYsIlN5TR3qwj4ApkIkRulPhwZvaanXVIPTlP+be/eTPH2zc2HP2IqS5mZoB/a+zQr9kQMzPA/vkABw8FNgEaq9XOgvwmks+UySS5UeMmlug9+atvvRW49VbsUvvxzOkVPP/5OuHbNdcAL36xzhk5NeX2X0rpOi8s6OZTBXNz+nXwoH6xXVRHmoq+543NpgZTOA6aTQ1imO/CbAXbtuk8VrYtBBZWV/WD77sP+MpX9GvvXmDfPp04jUnJZORYs+n6a25O83tSV72OJXM8EyTgZtx3VMhr5fcyExtJfaNIK2h5WbdV9pcBqjvVHdg/H+AHjRBH0jJWolGbbbed7MAiKmirco4suK3KXXnQePr/SDPAiqqgnezQm+XJSfto0gBFkUgAS30MD+s6i/HfRohOXHE/qL17gW99S9djehqo1dCJylDK8COrFdvGxWgH9qc79LWHDrnBIfVaGOqI/GcnKafadncBH8fz6ssTLk8Z210UWU7xxyOdoAKwltcFrUV9KqVe1zzMUYQ779T05cQOJydFYk3o7z7xCeCmm4DFrKznGj5j717szL6PPXv0fVGkbUu9DmeHJRht2qAdh1E+zwnn3MOHHRitFEbjNlOuaAfA7Cxw772O0Jv2Mweim2cZO7+YhvjyHWV8+c4K/vW+Cv713jL27gW+/W2XYwTwQHRG6ddqjut83z7g9tu1TeOzJZpK8JWA6t69wB134EJ8Fz+8+wiuvlrniXzRi4BXvxq49lptvy+5xGG2MzN6nTQ3p/uEtnt2FnadxfQdXSB6o+FsZ6Oho5M98BytlrXvXC5ZpzD7YWNDl3XggH7od76j275vn27TnXciaDyMRx4xCT/p/JCVZUW5psgnVHFjSHKxe0flVtIACws6OMGOIZKLSxDdJMnG2Wc7R3izqes7M+P40KtVtKvjaCc7sKIqWMy0PT50CNhfD7G/HqJdHbdrzo4KLYi+Eo1ifl6P7yjSax7+9I40A3SmL0Zn6kJ0Jnfp+41dlOxoSYL875Jf1mrOLscVdJJRdCZ26v741rf0gIgivdCLY0NbZBLHom0T5Pwg24Gvz4zq+ziAqFOp66LQ+MfAAd633WeuPKEg+m233Ya3vvWtuOOOO3DLLbcgyzK85CUvwTLDgIT8r//1v/Cv//qvGB8f7/ruHe94Bz73uc/h05/+NG6//Xa0Wi288pWv7EpWKOUzn/kM3vGOd+A3fuM38K1vfQvPf/7z8fKXvxz79++31/zBH/wB/uiP/ggf/vCH8c1vfhO1Wg0vfvGLsSR3fKdQfLCRn1F8ChECdpLKJYoiC376EcU+17QEPovAREnx4QP3ElRnPSUoT5CWL4Kaq6urWFlZyYG5jCL3o7IlrQyfLV8EUQny+9Q1Mrqb0csE0kdGRlCpVHDWWWehUqmgXC7bKH7qSibtlBHurIsEcfmi04H6l2VRL9TB8vIyWq2WdSIQKPY5w3tRg/hguhwDHAfUi6wD9U2wnqCw3w5fp3KcAsiB60Xjl31wLMDUB045luTYkf1IYZv96H8fIJdjSd7vjw/5nU8PI8e/jPQv4kbvJU80QPzNb34Tf/mXf4nLLrss9/npNg8er5zoZpFy22234fLLL0cURdi1axc++tGPnoLanlnylLHdPoDe67vNhAv+1PB0mwSIHQSYn/dyhxKkhkuG+e1v63W9fRzRRBM1U8aKBYF5ZNmCyxJAl6CdrDsBULlpZz0kEOqDrAWbig6CLmpr7j0lJj83B9v25eV88scu3MN/rgQih4YcvwnR+zTVgMLMjAYNzEPHkxVMTek91+7dGrzgyXSqhfrj3unQobz/QDab1bIR6tzwLix0HwPmRp0gTauFkRFzFF1GopVKLnz/4EHdBiIAEhiXeuezWFkCuLKyReI7gmTDisY6I+0kgTzguFJ8OhfZX+vr9hrfD9NsAu2ogk5cwcKCU1EHAToI0EZoi+Nj+YjlZZeTdWFBJ2I9eCjowh3sHlC2l1Gb4hQGq7ySBi4yzZwGOHgowGIrcA6vdCWn53pdDzUo5SomQY7N+qKroicmTzbb3ZfHT54yths49qkx/1pp02QyxVbLOcAPHQKUsgmqOd1Xorb+wEw8c3PAvfcuY98+81EUuflzbg647z4E8/tRrVo/qwalJTjuOb6zDDmHta3f6iosL5yIoA1ai86BqI+2Aa0WSiUD4ppycgC6mL9bLY39Ejj/zndcYm7pH2V1OwjQUSFW0kDPodKLPjurn88+8G0GAemBAT3v3n+/BZ6npzUOeumlGky/5BL997nnuiL4mEYD1o5I3zvXWXSCWypu337KedtfyJiFQVm1NbCrVJ5+jNc98ohzqB84oN8ffFC3q9VypkAuNlhJJl6VixJ/HerbFVlXONuYZXBUPb4NEk5qu1bc2Mg5CyxPeJJ0xU4wjzc/X1gAVrIQ7UyflmtngU3EyrEdRZpthQHxXOPOz2v1H2m64Ak2Z2AALrmrL3QEJEluzYYo0s6uuTlAKRw8FOjADDH00Grpvmk2MTen/QaWN2hpKf9b8PvAn0MeBYjet91ntjyhIPpNN92EN7zhDbjkkkvwQz/0Q/j4xz+O/fv346677spd99BDD+Ftb3sb/u7v/s4Cj5RHHnkEH/vYx/Df//t/x7XXXotnPOMZ+NSnPoV7770Xt956a89n/9Ef/RHe+MY34ud//udx0UUX4cYbb8S5556Lj3zkIwA0oHXjjTfiN37jN/BjP/Zj2L17N/72b/8WKysr+Pu///vHXhknIMeKyvSjkYsSYcrrjvUM/1nHigg9Frjbq3wfwPdB/V40GxKU9SOZfX34L/l9URS/BESLkm/6bT7edhdFXBe191j64nfy3W+zrL/fjl79tRn4eyyw92T4vova4tP+UIr404+3br2e2etZvcrejJfe12PReDvWc0511HWr1cLP/MzP4K/+6q+wdevWXF0ez3nw8YxEP5HNIuWBBx7AK17xCjz/+c/Ht771Lfy3//bf8Mu//Mv47Gc/+6jb+mSSp7ztPl4A3btHKdjNY+Ga3HzHTZ7EAOymTy7YzQX+nvq463c8ESebRfQdp/gBzY9JQRQJdshr+CBRf9+nwJdPMcsiOGRlsFGhmjYDZvy/zSsXeHws/a6v55wxXX3iv/v1KtJPr/r6wLp8HhNwbVbfzco33xXlYWPx/mfyVom9FA1ZJi8jbp/D84oK877rAtx7NCFAp6sfNsXAN3PGPUp5omx37sdwPK8ziarmSSxPOdvt/yiP5/cnHbXmbztXG67yQhsgJye/OALzUpfCDlh2E05em7XB/22VSvr35ZWNLMvngRDPtHQlxylyfttMhYXlHo99HBjoniNEPhlpr4eGnN0umnflksB/SRaZTdc8vf7fS6+9hI59YdxOyF/q2+3jWKtxCEaRAKD99VCRFPVB8SNyfnU2s9dS0TcVku6fsrGhy2pnQRdHf6F4epA/hVxlvcozGl1+90Tl2ezb7jNfHtWwSdMU0WPIA/TII48AAEZHR+1nnU4Hr3/96/Erv/IruOSSS7ruueuuu7C+vo6XvOQl9rPx8XHs3r0bX//61/HSl7606552u4277roLv/7rv577/CUveQm+/vWvA9BgSr1ez5U7ODiIF7zgBfj617+OX/iFX+gql1G8lMXFxeNt+nELo8AZSauUygGAjDxn5DDfSR/C6HO++4AqI5KPHj1qKVMY6SujdWXU77E4oKUQ1GWSy17AGJ9LEBtwiRr5/erqKhhJTK52GeFMChnSz5DX++jRo5bDet1YANKwSP3xb3k9dSAj+n06GxmdzWdLznc+T4LnjDD36UgYJU69Mgpb8sHL9krO9NBw+Q4NDVlOb/b9wMBAjlucEdQ+b7psh+QN9/uUtEBFgD7v53gqSuZJnfBv6VxgHeW1kv+/CJTuxRlfBGr7POnyGT53vRz3/rj1k4+y7/zkq/5vzm/vZk6CE5GlpaXcHMRTBEXy1re+Ff/xP/5HXHvttbjhhhvs5yczD56InCgwfiLX3nTTTbm/P/7xj2PHjh2466678MM//MOF93z0ox/Fzp077dHliy66CHfeeSc++MEP4sd//MeP+9mnu/Rtd16Oy3YXbcZlVA+vUSr/XZLoRWirhTA2SYyqVTQawNiYy48JACu1XYgmgfmv6GAmpTSXN09sr2QhyhMTjkYFANJU85cmCrVaoDdNc3X9fP9IOIFRADZrosd1mYs6PxYViNRLmiJQClu3hpZZhYFMhqayi1c8STSrBv/OYRCtzEWo8TmsD9/ZJrnL5i6ZR8tFlFiQaS5adhExYiYgZf4sWbSPvfoYycYGtJ7T1PHC+EC03MAavuxQconK6HLSo2QZbJgi20w+Ewngyuh8yc0pTxcIvteuPmR9+TfLk4Sy6+s67IzHzHPZweA8PoDLcMtriHqI6z1Mrkvf3JgT7FFxgFpN/12J2nZckCOeKmEUO9W0fbtjvgklyFXUP5lO5Gr1laaOu73VwthE4trAyEFx4mBy0ozlR1rF9Ek+GOODIuKaM8F2nxgSBOAJPmn3ZJG+7c5LT9u9sdHtBe3loQNcZC7tzPq6tpG03emipZvoRGWbb5Nyz74AUbQDExOav1kp4LzzhlGrccoPMTo15eZQU5+wdQRTU6N4/vNNDk/SeVx0UdcpMqV0ZHEgOLatnWB9/bmZ1wwP2/mskh0BGlmu6VkGgObe3M9UEEq55UK97nKHyOltYMAkacwylGWiZ6W04V9a0rQh1ar+7sEHXfIR2ghmCeViwHwWoo2zzgqtGaGJV0qvk6S5kRQ2VIsvcawf0c4ChMxAyWTQRSf22FBGKJvcJ1ZoZAYH9SuOncL8NUCaojZhwG3O6dJ+yyTdMspd5usA3PqM39FmN5soZxl2RhGwr+6i25tN/Tzadz+/TZa5DOgTE+45q6tAlmFgILSJWeWwYp/I9R27j4HuF12kPx9PVoD5BirVKuJa2aqGeVgBNyR4yqFUEn/IQuUasNFAOU5d/zWaucXlyAgTrutyQkDrxSD/F10knpMkbiHo/47kM4vAZvRt91NNThhE73Q6eP/734+PfvSjOHjwIL773e9i165deM973oPJyUm88Y1vPKmKHD16FNdffz2uvvpq7N69237++7//+1BK4Zd/+ZcL76vX6wjDMOfFAYCxsTHUyf3lSaPRwMbGBsbGxnrew/eia/793/+9sNwPfOAD+O3f/u1NWvnoRILX6+vrFvD1o64J7JLzmlzcpPMgWCoj1SWgKAFovgMOwO90OlhbW0MQBBYkLor8lmUTBAZggWYC4P69R48etc8k8CvvZ9uzLMvRt0jQVeqMQrA7iiJkWYYoirC+vo5SqZQ7guiDwjJKnO0hiC516lOcSHCcf0vHRBEgyGcMDAxgcHCwC2CXYLlPUSIdHwMDA7bPZZJPqVNJ1xJFUU7H8joJ7EvHi2wrxyHbIB0abK+kA+oViS/Hgw+0F4H30sHiA+TyxIUPcEt9SyeE5GAvOqlBnUleepYp9Sdplejo8iPUi04aSCfDo5WLL7449/d73/tevO997+u67tOf/jTuvvtufPOb3+z67mTmwRORkwXRfZBzs4UKpWiz6Ms3vvGN3MIFAF760pfiYx/7mJ0rzlTp2+5HabsJwAnuydx5Zn4PuE3TwIAmgSyVLCh5pHohZmb1ZZOT+r1U0pu9W291GwpimOee6/KLZRlQq+3SEUbk7SRneJoiIKjHm3fv7kaFueGbmEBHhbmPNTXpKMpx2wGJPujgL74lyAsgjCKEkUIch10YvCxmfd1FlPHzKDJcla3UPdtPiirRUm4i5dHk4WHnmSCQLgD4EBpQjScrGB52J6rZFBYng2/kz55tkvS5nWRUJ0NlQfJC7jD5faOhC2fdeXybm9mREb3794GyVksrjd4HPkvuZiWaIGkBjA4WW0Fu3xxa9ARuEBw4oJXCd7/vSWwqAarBQZcdd2QkrzAPyF8XjhQfq+BwZrWU0h8GWYbR1IAG8/OWQzeIY4RJgrBaRaZCy6ZQrztsiblnQ2UeSN5/jgnJS5BljtM3yzSCRHCCTpI4dtwBDHdfX0ew926McX6Q4Acbxuf5G9iCzeyZYLv7G/FTJ33bfRK2WyJ8viMScJ9xniWdCOdoQBvogQFrfDu7L8OcuhDDh3RuDdJRNBradrdaOkfhxESAONY5OWs1N2Xt2fNMlFU7T7c1O4vxahX/6bUTek65805d96uvRicq62TcZtKmSW40K1AKGK91dDlMjEIbKAE/vm/f7qKi9+517c0yhGgjjJR2XAtQsBK18ZznaPC6kj4MKIV71Cjq9W5/cakE51jk3DcxgcVoBypXJZrHI441QEueGCZllhzvkl+N/dRqYWx7YqhPWignCbZuLVt+bYlRT08D49U22ghtrAHtiVw2ZJmmIBmbnnZ2gOPAL5T1OXzYcZHIccW6j4w4bnHaDj6Y5TabGK09DNRbzlbyWZKCz5TbSUbdEix168CJiQpCacxJ8Zemmg98Y0P/Xa/nvf90APi0cNQ9oNeNXL8aoLlUclQ4rI/E9jnkqJIk0QnQKyrDZRNG6XfM6HpOTCCoVvVaMY6hRir49rfzLHhcykURtK6ks0AmJs8yS5Nj1zpZBpxzjp0HytliN1UPaVFWV1GZuwfPTGINvpOXvSjggL8nOWY9EL1vu59acsIg+g033IC//du/xR/8wR/gTW96k/380ksvxR//8R+ftDF/29vehnvuuQe33367/eyuu+7Cn/zJn+Duu+8+JgWCLz4gWCT+90X3HM81lHe/+924/vrr7d+Li4s499xzT6TaxxQCbIygDsOwix+cST3J4z00NIQoisCodElTwnt8IHNjYwOrq6s5sJPXMiqZ/5dgo88HXRQRTMDVB5MlcEgwmAlDZTQ4AUwC+T4oKqOU+b0EuAkME0xXSoGR4RIoJ4At68b7JS84gWom2ZQgOuAA1/X1daysrOQcFIxS9nnlpWOAJwHSNLW6X1tbyzkqJBi8sbFhwVvW0Y/+llHQgAYhjx492sX1LQFm6obPjKKoq67sV1kOP+NpgSKqHsm7LwF0f2xQX0X0NBQfQPcj0f32S8cEhWPPd1Tw3Xf8SCFgz3cJonNc+NHsPoB+IsByL/m3f/s3nMOFBFAIMj/44IN4+9vfjptvvnnT6KYTmQdPRE4WRPfn1V4LFXlf0WbRl3q9XrhwybIMjUYDZ5999nHX9XSTvu0+CdstAUQZocodw9KS3gT5IKMky96+Xb+bHdxM40L8r/8FXH653ogDGn88dEjn3qrXHRa5bZsO3iKIzsShQ0PA5GQFlSTSNzB6jZvS9XVdAMPIKEQp4xg/aDiQW0YEtVpArRaiQqCW9/QC0rmDkpsyAEEc64g0uTOixDEQcweuwdx2Fmju1mYrf08cYzENAYRm71LWm0cJWkeRVhqTRY6M5CPs2XaxMQ6iJsbiGBhS6ExUbNUCdPJ83n70kQG4o6hs1X3oELB9ewWBv7nzdZWmLrEb7U2joRXPKD1uBOM4j+Szc6hriRDI8Skj0M0mr40QaSuPWUQR9AkGfxDQg8Osefyc/KPcyA4O5s/N8/ncWBLwl9F9RhdFQV6yi/iKIri2zs3p99lZDlKXFFQpqHiH5V89cMBRy1erLsAxdyqDFSHJ76FDOqyxVtMgAgEfpfQz5+fdM5m5DnDRhAcP6nInJ/MnCGQjPed7bgMuvj8TbHd/I37qpG+7T9J2SwQVcIAm4OYleR3tO6PF6eU2pM8z6jJ8/vPAa14DjP37/8VorYa0uhPNJnDLLc4MT0/r000ve5leIsjcJ0kSYmpqh7av+/bpm+6/X09Y9boG0c0c22oBFc63SiHI2sgynZQbAOI40N/HsaXAyDLjiJbrFMDZFmbKZkIQ2hPp7OWr2cTYWgocbOrcHFGEiatfZfFKXmbBUwKVRpdH4p3Ytw+YmBjFriuvRAc6p0RZKTeHymh7ApN0YhLYlkeMmk19kqtaxVgcozRdsRh4lplo5zv3IowijLJNzSZCpVCenASqCY5kFTQaerpfXg4wPFzGmIzupyKlnZBjh+HSVMD0dN4RQGodrhHTVC/mokj/PTvrQOEoMkTe6HYixLHOswH3ER3FUQSMR8ifICSXOZPBP/CA5gY//3xNKE+9s9MYpl8qadCZ9s56axrWGKtIr5F428aGW3aVSnlfNH9eiEwf3nuv1t1DD7n1pHD6lKencehQgMOHXT9ecolzgLPP7SkG9g/rx4Q7HDtx7DL28jpJzi7ngI0NgMmNL7gA9sibFxxix4Mfwe+B6H3b/dSSEwbRP/nJT+Iv//Iv8aIXvQhvfvOb7eeXXXYZZjizn6D80i/9Ev7P//k/+OpXv4qJiQn7+de+9jU8/PDD2Llzp/1sY2MD73znO3HjjTdibm4OtVoN7XYbCwsLOa/4ww8/jOc+97mFz6tWqxgYGOjymD/88MMWQKmZozj1ej0HnMhrfDmeaMhHKxIs9SOMKQRQGSVNmhEC0gRq/Qh0li8TL0rAUAK2WZZ1casTDC6K4KVIENOns5DfE1SVEcKsC4HWIkCU9SRgLpOnUi8ElYMgsAlNJYhO4TXyc7bP16vPny4dExIk5rMIovNeOhYklYwfZU4Aln0j68P6yahxls0y6LCQgDSdIYy89x0ABOUZ+c/7OPYkWC6jsP3xKvuw12kBmcRTAtp+xLYPmB9rrBV9LvVL/fCZvShieB3rURQZL8uXDgf/VEZRFLos97EA0ZkcdzO566678PDDD+Pyyy+3n21sbOCrX/0qPvzhD9tEnCcyD56InCyI/uCDD+badqx5t2iz2EuKFi5Fn59p0rfdj4Ht9hee5IiW3/vXcJFsFvwN6P3o9LQOzsoyVwT3t9y7y9PZxVhuqAFlbhAI7LFuAtTObQ7h8icxaJh4eanEPXWgN7sewNdz8V0EHnNz5ycE9SO5AECV3abfK0dyXSvlRVADbtPKI+FywyURWr4ToTW70UCGUFE5MpmpraPb3EZJ2XYto9krrJfvdGDFuRFn5JhUvNQPnQ9J4tDgLNNAOqkLlHIguyR1l4BEZChP0rxqo0hvhDsINPTCdq2v60HRbOrj9ocPu10zdcSIORZE3cvwNB7PlxFwx9i4kRHG97fYD+UYl31idKWSfMKzoqEEoJjOpdmE3cGzb5TKn2IwNDyIY5cMTraJkftyE059FUnRb8DImWC7+xvxUyd9230StrvX74vObf+3KSOAV1edI1ZXCFhfR6OhE2y++MXQhhpAPK31NDenE29edJHzN05NudzE9J+2WsZ214ztJqgnE0ua566uApXtwgmZZciy0GLL2h8eWIzZnjCKPZsv5+Esc9HIcg709SSB2UOHbILl+GXdlGZWpK03ToADB9gNgb2nXI3cHEpwnzzNtN2sl3R+M3G3sKejEzFW0sAtMahDCYIy8sC0KZ662IK1vG9kJIBSoY7IL6LtYH1oI6UD2Xc+DA05EJ2ds7Gh27i2ptswNNTtbKXdNvrrqBALC/pWDkWu29IUOhBB9i1tt3EMtx98EIsAqnNzGiCWR73kmgzQdkuuIXgiQ/Dh8HKZd4R+ct92Zxmcguld4npC0gwa/S0vhzkH+NSUowPsuocPYCc2m8gdjwDytloGHjASpVRyzpqHHtKfM2JF1Kur8bKhss/NWqxvu59acsKJRR966CFMTU11fS6jo49Xjh49ire97W34p3/6J3z5y1/Geeedl/v+9a9/Pe655x7s3bvXvsbHx/Erv/Ir+NKXvgQAuPzyy1EqlXDLLbfY+w4cOIB9+/b1NOZhGOLyyy/P3QMAt9xyi73nvPPOQ61Wy13Tbrdx22239Sz3VEsRAOVHf8vPNgMf/Xv8/8vnyYhcn5bDj/rtVUbRdX4UtA+OF1GAFH3+aABIGeVMQFu+GHVdVN8iSg5JwSJPC8h2F/XPsermR2D30qHUSS/gtyiB6maR3izX73+fksXvk15j1Qff5UkCX19F4j9DOpp6tdvX2WZtle31/8+/i96L2um3uReYfqrkRS96Ee69997cHHvFFVfgZ37mZ7B3717s2rXrcZ0He/XdZi8AqFQquddmACg3i//8z/+c2ywWSa1WK9zkKaWwbdu2R93eJ1L6tvsxGLNFgNjxJt0xC22fYYT7GgJ/fDHRkry9EIv0v5AX+BvRLoQy37Su5vUqV+rCv9EHKHt9X3RvwfP8JFNZJq7jpnNkRIctSQoTPwLa3zQU6caLVs+B0rK8AhVFUUGZRfcPD+voZQLfm2W1YsI4XlMqOd7VKNLtJmDt183UIcjaXVUYHNS3BFk73wd0RMSx9vAkSf4ljzCz7lSCJKrtcpDk+7LnWIbbu1qadb8P5UZfjHPiL1SxZFTJPaPI2VPUx/I3xOvkuFldzY9vgiqyIfK9l/QC2Y8hT7Tt7icnO3XSt92PYsz6v3egOCkDry0SM/cS31UKdj6UqUP8KUJOq0XzXOHvRIDdQ0Posk38Kcnc4tIBmWXaOdpzgvUrISvd60UZGECoOr6f1j1CfmgATz/XqX2uP+eOjFj7spIG6Kjw2LbbgKJl1Ua16oBmWwfOUUNDefvkqYBV0FRyXof69aSjvte8Ju2579xmPWivZZnylBRtd7pizbHUOZc7XesrXmzsdVgqIQKK86NI+yTHnW/DRAf6l0o+dKkKW6VeOivoT3mIMI7dEsc+WBbsO+ypcy5u/Iyzcr3JQAQGBkj7XvRb6bWeEXW3C/bjlL7tfvLIMVZ33XLJJZfga1/7Gp72tKflPv+f//N/4hnPeMYJlfXWt74Vf//3f4///b//N0ZGRix4cdZZZ2FoaAjbtm3rAi5KpRJqtRqe/vSn22vf+MY34p3vfCe2bduG0dFRvOtd78Kll16Ka6+91t73ohe9CK95zWvwtre9DQBw/fXX4/Wvfz2uuOIKXHXVVfjLv/xL7N+/33r5t2zZgne84x34vd/7PVxwwQW44IIL8Hu/93sol8v4T//pP52Y0h4HkUAtAb1eQO9mwHgReCtBVUZ+y+hY0m4AyHFzE3iWZfAZPtjNNvgAKp8pOclJ7cL75KLRj0yWkfB+NDCvZ11kwlQZbcoErLLuPsDJ9rId/F5GbPv14/2kfmE7JWBfFKEv71Ni8u4FwLI+jFgnHznbK6PX5ckE2Q/sK0aqy+cxYpvlyrEi7yN3vuS+Zx/59d6yZUsu0WmRw4b9If9mO0knI8cPdSXBbbaPFCvsZzlGeAKB4gPmUu9+hL2sM50BvSLP5e/isaRxOREZGRnpojcZHh7Gtm3b7OePdh48ePBgT+/5yUaiH++1v/RLv4TPfe5z+MpXvtK1WSySq666Cp///Odzn91888244oorzmg+dKBvu0/KdnMRyYWyF2nVBVzK0CbdaPe9AR+nJjSNS5IA992n1/MMRGOQ3Oqq/oxrfQLvgNvf2b0aj7DyCK48ayv40n1g279cAvr8v41EF9FRXQC4f9yVz5LRwnLDw79lnZQC4rKOjJZRznBBXLL4dlxGWHVgg42MJtgbRVhJdeRbGLddfXygfHU1n9lV9hV3rP7GSnxG1cQxEDSPOE7SZlN3EOk/pA6oP4ZvKaXrxgyrgO4UuQH3JUl01BTryPIpjFw35QdKoRxF2DVR0+U1m5p3vt7qPoM9Oan1wigu6iuOdR0JBABu48hdL7O5yc2p0GWrpdVNSnW/aYyQzzJ91B4Atm83fPOMBF9ddf1MYCTLELQWsXt3xQalZZk7yRHHyI83+TvlD4sI2diYPtbO0wDs6CjSz2bE6EMPuf4ZHHRUQjJaTo4n+bfclNPZopQ7ZXAc8kTb7mMCdL48BnlenqrSt90nabs5B8l5n9xO/m9Rzp9DQ3ngyNiX6Wng1a82U8b0NVhMQ8zcqad9prJYXdWBrtVqPvJcKRd0HceGNoyUUUzGDDgaijRFBYvA3LyLTk8SVCZinH12aKuWpnquXFhwACQAjNImslxWhrZV2hZ/bqRO5DzOua3RwPT0Dp2TpdVCpVqFSdWoj9d5znrpa2XxK2mA8jnnOKXEMbB7Nxaru3ROmDn90U6fc5q2Sp4EMqeHRqXNvuIKF+GfZa4DzDWySXFsklXPzObXMxMTQLWKtipr7vSpKWdY2BjpwJJJUgYGtD3Y2IBF9885R1P7STS8Vsuvl7LM1XthAUhTTE9flhuuHGNjQ4s6gbxc/01Naft11lk6KmNyEvH99+vjEZdcogeITHg6MODAbR6fkGtc4bBfXdX/HRvLnwqUS7utW3W12T1HkhCjExPOnnJMSe73KAKaTTz/+WU0m5r5ZXlZ5wJKEvM74fXUL/uVY/jss3WUe5K4G+XYARwdHhcIUeTWyXJ8yPHPAUyR8wnbQpHrqGNI33Y/eeSEQfT3vve9eP3rX4+HHnoInU4H//RP/4TvfOc7+OQnP4kvfOELJ1TWRz7yEQDANSQGNfLxj38cb3jDG467nD/+4z+GUgo/+ZM/idXVVbzoRS/CJz7xiRxY973vfQ8NnoEC8LrXvQ6HDx/G7/zO7+DAgQPYvXs3vvjFL+YWKb/6q7+K1dVVvOUtb8HCwgKe85zn4Oabb8YIE0c8geLTbRw9etTSi0he7SJ+cqA7clmCiJL/W0b1yuhqAsUEA/lc0pxIwFeCuj5gKCku+EwAFlCWYLd8pgRseZ8E7YsAdNk+tkcmuiS4zGSspMSRUdU+vQzB6V59I3ndZR19JwevkX0kQVkCw5KHXUZby6hrUq2wfmtra9jY2LDv7J+BgQGUSqXCCHbev76+jrW1ta5nHD16FGma5upLh4t8pw6oZ388sn10XnDMEVCXnPQ+mC0pX+jY4ZghlQ9phwhmS+oaCerzOunYkePbf6Ycg/74oMj5R94jQX3eK+mETjWQfix5tPPgpZdeir/+67/Gq171qq7vHk8Q/VibRUDzaT700EP45Cc/CQB485vfjA9/+MO4/vrr8aY3vQnf+MY38LGPfQz/8A//cNzPPV2lb7tPwnYTLJQbShmp5EfJSsoQedxXAMi7qouo/VQF994L3HVXnuqTVJuPPOLAdbnOB9xafWhIbMQnJx1/qARxm029eVhedue9k0RHtMVuX5qm+iTw8rLD3qMIQCLaJ9suEW250WYFRZSYDQ1mQkw+lPoy9coiJtDS/OcqKgMQR5fhmqebGmBgYFQHSlV3ADB6nHHXRhGwbVuIoaEQlUS5TRTr5x1XtlFXe/bYzW9blbsCnwAga2kVV+KOI729/37dcY2GvvBZz8IP6oFtV7W6E5UrkjxgQYUXbWr4MCIjBAoMF3g7C7CwoKs9mnR0u+bndRsPHdIbSzlOyXnKccHdMKPXCOpQfGcHP2OS08OHHUhhEnJ2qjsQpCtd4MuRZmBP74/GbfcMpbCSBla/zI9qMAQsLwNJUsHo5KQbT0wKxrZlGdBoYFecAtUIi1MVrK7qTX2oOq6/ZXv4TuCfn8nEomJ82mSuPC4/M5MPfb/gAqdDP7qNdZQOFDn+TwJEPx55PG13fyN+6qRvu09y303DIe2WdJj2+n0qlU+cbBxt5dl78MNVhZXqxfjiraGdCkjZPDGhp9SHHnKHhIhxshjr9+RcMzWlP9jYcCTQnKM5z8zPa/TyggsApTA5uRNpqu3P6qrGBA8c0Bgtpy6lQigVIorNiSMaTkmNQV0QlJTzEZDXSa2mHzg3h6Bed/RaU1OoTl+GNAX2t0ahFFCb1GuTbE43kXM6X80mUL700lwekB9Eu3DHrfpR6+u6LRPXjCJIV9Axa4Egbrj6PvhgPvqXBuTNb8bdc6OYnBzFaPyw/o7tNOOBTapWgbD5MDA7rxOd0iZGkU6KmpUxP6fVPz09ip1MuOmDufy/XPf5ttuA8ogidKKyTko7A0RRGbuYbFVSls3NAYcPu/wvRipZhgqfR25xDqwrrnDtzDLdppkZfc3UlBt8bAM9PGbwHmmF2hnB+0dGLLi81tSXlrFifxcdFdqlBJ3VCwuOcWd9HTj77BA7p6d1fYeHXQJyeXqu2cR4Wsd4HKP24gvRaLhqWRstxyedGZOTuu3UxbZtwHnn5aNOSJvHBfXhw5aayP4W9uzR9/oguu9cM+3OjScO6oUFPJbSt91nhpwwiP4jP/Ij+MxnPoPf+73fw5YtW/Bbv/VbeOYzn4nPf/7zePGLX3xCZZ0MWDRneMikRFGEP/3TP8Wf/umfntB9b3nLW/CWt7yl5z1btmzB+973vk0T1j1RIkE7AncykSRB2yIaiaLPJYAno3l9oI+82j53NZNqyijcouSSGxsbNrK8iJKE93Ahxut92hIJ1PLzUqmUA0slH7VfD59zXZYThiGGh4cRhqEF29heAtHtdtvqgiCzH4XNd3LTK6VQLpdznPSSRoR170VNI6PfZTQ9gV/2h4yoJv86QXTqjE4K1isMXWQDAFt3Wa5/msB3avB58np/vPr9QicDv/eTccr6BEGQe6b8DUg9cvywHOlc8ROOSuoYniIoAuypT/4to+Z9rncfrJfOGzprin4XpwuA/pWvfCX396OdB3/t134Nr3vd6/BzP/dz+OM//mMcOXIEP/3TPw3g8QXRj2ezeODAAezfv99+d9555+GLX/wirrvuOvzZn/0ZxsfH8aEPfQg//uM/ftzPPV2lb7tPQuRCWgJxElH1aCW6QGUPRMfMDMppiu0TP4y9ex3mLU+XSvpGPoogOqsTRXAAqDgCbgFG7lYBl/VpbMwCBiKI14KVxBoYtINa5B4mN9QSkCSqL4F1kqEePKg3M2Nj7qgxhfXjRg55FRft4ynEZRi5Tx/B0pJ2QHCvmMOeayFCfrC+7jarclNMBRtgYwVlzM3mu5xNyTKDs7CcRkNvztbWHD9nFKE+6/Z+hw4BZ59dyQEqAfUgI/jInyqPggN2Z7kSjWJ+1mG6UQScf36ArVvLjmf3oYcsb28OmOG7BG+3bbMAcGdylzvAkAGRwFuSBBogJy85jzAIEF0HTZZ1Ulmj/I4K0azrx9ZqcMlVTdtUPJprJrEE+hfSFEimx/WzufmVyVUNiM6EbZWJCZ1wr6nyDjAfTKdjgZt0U9+VNEA56rgkpoxS4yZ8fl4nbSPgzh8oIwvlWPLnED/SjfXgb+xRyKm03f2N+KmTvu0+CZEAGI0sf8fyGv/3CXSfACIgd/vt2n6/73246aYwN51ICmbSchssFtPTziYNDorEn5IfZmHBcXVwEcCko9/7njuBoxQm9uxEq+WYKXgwBtD4pJxitJ0JEZALOsscVwbnHNqepaVuR55S2hZJfnjprFUK4eQkUlQwM6OLm54GhocDqxd/edRqQdtYYzc6URl7b9LqpZ6Wl3XxSVK266OxKNJGd2lJ60QenWPgwNvehjvu0B9fffUO6ztQChiv6vZmppvDbMUlouFiLMt0W1/5SmtSZs0aoHbtLueUpXOVz+Y6iIr3o+gnJrCYhlhdApbrbtmgfeIVVKqR1u3Cgv5iZsZxfpMCBnCOEMDx+kxMAEmCIxjV1THVe+arJ3XyWp7ckuOciyh+V62iMafHSpkLHrOGaWe6L7VNnLftDOIYUDuwseEc1qVSgLU1tzRYWwMmrt6pTxgygEI6kyPTbtP5oy8DRhktn8INYi52OI4BYHoaKyijXKu5deTkJKB0MnWloE+xAW5R22hoBwzHfrWq1z8XXNC9bmcdOXj5uVzr8rfKCJiTlL7tPjPlhEF0AHjpS1+Kl770pY91XfpyAuJHsxKA7BV93YtPuihCXUbkyijcoqhbGXUtI8qLqCz8MoqoZHxAXT7Dry+BR/7N5JxykXgsHu0iCg0/MSuQB0tZLz8ZaxGIzmtklLnsI37uU6L4fSv7V7ZNJsPs1Wd+vQjaMvJbgvpSSJPCevlR8hJQ53ggqC+dKXJc+H08MDDQdfJBXj8wMGDr4SfTlbqRn/H/vIfR6X4b5XOoE5/v3h8b/t9ybBZJL0oX//mnC4D+eMg73/lOXHvttfjZn/1ZXHbZZThy5IhNqPJ4gujHc+0nPvGJrs9e8IIX4O677z7u55xJ0rfdj0JkKBXFX4gWIb7+tSZKWE26JFGSDx1wFCuyKK7lJUU2MjgAjpu6LHPnp5eWdEHcgHjUH3I/wBefDZjEk6y3XHj7N0khHwdReW6CmHyyh075bOmDKFrnZ5kLGOO1CwsuuefSkttvAg6jzDLopGGAU64fnSzbqJTFFfgsAsk5Zifez46UjgXkA/MJvPOIe5ZBg729xo3chHNjHsdYMtFeBBqiSP9/aMgcrF9fd31OkcenuTlnRQiQKGVPRRAnlwC6Dp4UALmkpDEXEl8oGz12VJjDsG2nyPah+0/ZLQMD1H9Zb9wl+CP7gZtr6lQCRXLjy+tNGxjpmGVAZrpSqUA7JORg5AAlcMLkcVIHfr1kw2RZsqF8PwFe1VMhm9nu/kb81Erfdp+k8PfIZKG+FNlwf2yL0y6YnQXSFPV6aG3DwIArWh50ksHvUaSx0FIJbi6KNO1YOY7zRovfr65qrzCPqRlDFKQriOMyVledzW61tA0kBi4PuygFPZetrTkjxEWEnBf5PU9n0dDRoQvkj87R25llgPEDcLkh1StVySm0E5URJEBbldFqOscDp24ZEG3XBCyIUcUEg9fX9c2mvvW6xpXlVB1FQKcWIoA4fEaHM19eAAT9tJJhZWQk0HZI0otQL0Vc0wZMbyPM4f1ySaYTxOq6WQVy7eQ7fw4dckcGo8j1GVy5ZJU755wQY4ZKxUbzZ+18xxivhbTTvp2yZpBrJn4HAMkO92eWAQhzay46wiv0MhWtGxldrpRzsAvaG7sO5X1icZym0L8f8+pE5VzxNjxQchamaf5vBnjIU6ayjf7/OXbk6zE+RfZopW+7T42cFIjebDbxj//4j/j+97+Pd73rXRgdHcXdd9+NsbExnHPOOY91HftSIH4iRAKFkm7FBzl94NgHN6VIMLZXBLuMqPV5xwmoymj5IuDVp8/wn78ZoCkjmSUliuRFlyKBXZ9WRoLpkupFcr8z8pufE8SXzgvqlaDtxsaGrRcpb4r06/eNBK2lrn2KEKVUzpng94Pf9qLPfUeH1MFm/SbBc94rwexjCevpnz4oisL3+dJ9Z4yvU14rqW3850qhI4H95oPj7Gc5TnznkN9uH7CXZT2ZQfMi2bVrFy655BJ89rOfBQD82I/9mE2a8lTSwxMtfdt9gpJlgHdKB0D3RonXFl1DkVFuIyM2AFiermWQEY/DshgWz/9zDxH6C2E+k6HSvJHPHh62Gz2eOpaBeeS1JCtFgA6QZTrJF6ABTD7Hj5LmM1gwOaIlf7XPMc57owhK5enJZRfIpsl97sCAwx1lQK+MRM8lP/M3SPL4rvzcPJh14scDA46GW9ygyyG3KNsVRUCziYmJit3EywBAywmeiefy/oGBPB2QAMDbCG2kly9ZZp49NOT0zrIHB/PRaASVqCzzbLKTkKZXHrawyw9ZJ94k7o8iAC29uQxaiygrhWq1DKWAsmrnKQPSVEf3RYEFzH1GFDmcbf3lGOSLSFbR71P2jQeUBejYpKfyZxP67SOYVa067lWZ0c7/0cqBsplzja/TMIFXT9u9WULcIjnNHARnmvRt9wkKwWLATSK+TZaOrSLPLT+jM5KcLVGUo10GnC2S1OPe1O3EzEEdBM7hyDrKOiil+a2r1XzODANs0kQMDblpiLzrZFCzzaEnlJViBLy049K5yXffzrMenMNZJlwQvV+cnKZzKlbKmuFazdHBM0BfBg7khM+VJwPpzYA75SX9AVlmAORWC0NDoxrzVEo/iM5XWdkssweN0lS/cwjZhNxsqM1oiuIxplSO+UN+xbqlKVCWHmt2pk+9Qy++XOiY+lJnxOC1w8Y9Qz8z1Os4mQskirp9R3QwKIXy5CTOOit0ILNoH9VFyqAoChHHbglDW95BoE/dSR3JsZUkeZsiruGJhBzprGlznABo5dtBfSoFhFRKkrg1KbnpZc6aHo79QpE2m4rr2+6npJyAFrXcc889uPbaa3HWWWdhbm4OP//zP4/R0VF87nOfw7//+79bbtm+PH5C6hJJ30IqivX1daRpiqNHjyKKIstN7kfkFgF5MopcArfkzaZIHnYJgBJ8JHhOIF8C0D71hXyeH21NMLzIISDrRV0wclw6F3g9y2A7ZaJNn+tb8ojzWaz76uqq/T+BXdaD9eVzZCQ6v2df+QlQqVcJyPI7RsNLuhLZjk6nY+vLZ8o29QK/5YkCySd+9OhRSwHTbrfRbrdteyVlC/vZjwaXuik6HXH0qEtoKp0PPmc+9c4yi16UIuoe3+lBnnQZeU/nC/VNR0evSHvWX9a3yPHB8mRf+VHvEpD3Afonk/zLv/wLfvZnfxbbtm3DPffcg3/5l3/Bdddd90RX6yknfdt9EkK02o809UE8YPMdkgSyuWME8IxnOLx5eRm44w7HvMLEinK9K4NV0xTIVIAo8qKLihJNcsMpIt4kHi4DarZt03sMveHUO5EMoYkEqwBJxe4fAoijzYzkkseYt293lBdy4y51Ye6hKiWAKtUn1c8IQB//kEHBrAb3oGG24jbdRGonJvKh9xTzoCjO55cslTRQUI406KqjsyJdjqwkN26zs9g1mQHTNSxmZbup5x44B3DIRsi+FOUtpiGajXzQnNzLra+bvib3uexkAg+AO7Yvk7EZhZVVG9H20AbEyf2ijcBn0jrWl+WYLi1HHWCuoa+ZnwegE92NxjEw23TRbOIERRhFGI21UoaGglw0I/enFmjwB7APqLPz5Sad6IJEdjh4Wi0EcYzMHFtnkFrZ/E6PpGWkKTC+R3gUskzrgQnbABc1KEEnCdTxbznO5O/F9yA9wfJE2+4///M/xx/+4R/iwIEDuOSSS3DjjTfi+c9/fs/rb7vtNlx//fX49re/jfHxcfzqr/6qTVpJ+exnP4v3vOc9+N73vofzzz8f73//+/Ga17zGfv++970Pv/3bv527Z2xszOZUeSKkb7tPQtbW3IQlnWHydwm46Fppv+XcQO92lmk7VqthJQstRQvZnBgFvG+fZgc5/3yXboFmb2lJz9EraYAorth7Rifi/OkZXwj6eY44TnWTk+5910Q7hyJ24oq+mDZ4chJHsoqdbkK0c0AsVlfzfNXSplE3WaZtTKvlkka2XDqNbdtcEevrzma2Mzeva9sVImgeQZimuOKK8ZxDnyYpVB0MDRlb20x1gbRxft+ZNuze7RJw8kBcHMPSeVQmY6hqqKPhd+/OU5sRwG42sXP3BKrVAJdc4oKVg6ztou9lLhGi7T5abub4Vt3dxsN6FNrZMmnFmE1+eFjzxktbziNhfpRAmqKSNlFRCgPnj+ORR4y5r2dW3+zeUinE6PS0U4xxylgzzgsfekjXRSmMTU7qJLcLC7nI7XK2aH4Auh9qtYp1hsjTEK0WNJc77aZcACUJwESbEpiOIhw8FGBuTvusx3k9fyvNpo40V8pyw7ea+W6oowygjAt379Y/QGbfNb8F+3tj4nLf4+MLP/d/p9LJdRpI33Zrebxt9wmD6Ndffz3e8IY34A/+4A9yBPcvf/nLTzx7dl9OWAj8lUolDA4OWhCdfNHtdhvLy8vY2NhAFEUYGBjA+vq6BXolz3WvKHCKBNEJdAL5qHPWiZ8ReF0zR1t8sJDXUySFhnyFYWhBdSZ+JGhLjvRSqYRSqYQoijA4OGhBUl94D/9PapM0TXOALx0N7XYbKysrUErlnrmxsYGVlZVcItHBwUEMDw9jYGDAOi18Kpr19XVbZ0nf4kdNS555eQ37V4Losg8ZcS0BY/9kggSFJS2K7wxh5H2apvY0gXQ2yPLkZ9Qt68Ry6TSQ9ab4VDIy+p06luPIB605dqSepG6kE4QnFqgrOlskqM660xnkOw8kaO8ndJWUNLK9frJSSa0jHR1yzDzZ5IUvfCGuu+46/O7v/i5KpRIuuugiXHHFFXjGM57xuNK59CUvfdt9EtJqAVu25ME5GebCjY13DDi3COfupV7XG5LnPx8r1Z1AE7j6ar1/GE9WsAKdbIocnNwbMljYB5ZbLQewh2LTAaA7Qtjf3CmFMFvBaKwwGsO1idFHD7Vc9E4UIVVle/xYAthJEmBysow4KWvOVW5CCThQR9UqOirEoUPARqoTRUYREAgu6iBr63akqTuCa9rUUaHmw262ECqF8tY4v8nxN645ZSkdqSQ320xyKiPIABe2ZpDzMOkgjoPcvqms2kCzhSCKECqlk4TFZVRqqTv2zqiqvXuBO+8EpqdRYRIsmbhTtDE3bmR0VhRhRVWwtKAp5okD+1F+gMaN2ltHdQR1tap5Z6VwvBKFpw5kgfU6AqUwXquhneWjsymLqU7+GtV2OmeKkUrcccf8Fxb0RpxcONIxwFA1P5ocQCWKUJF6iHRi0tVVoLxd5cuh3gAH9HgRb52obKLZRhHI3yrHg+GtSdPQAhwa7NHg+Z136iZdc80O7NpjkLOxMf3jnJzUZTHDIB0oRRtx/i0HlLym6NTLEyib2e7jitiTcoJrm8985jN4xzvegT//8z/H8573PPzFX/wFXv7yl+Pf/u3fsHPnzq7rH3jgAbziFa/Am970JnzqU5/Cv/zLv+Atb3kLtm/fbnOafOMb38DrXvc6/O7v/i5e85rX4HOf+xx+8id/Erfffjue85zn2LIuueQS3HrrrfZv/wToqZa+7T4JkXMOnVVA11yTc3Dzexpc0nTNzOgJ4dWvRnv3M1Gf17kIazXg4kmdaPEHzTLqdeATnwDW1w9geflsC6BXIu3kTkuh9TcDIt9DEqAiHZOAm9uYKZR8JxYsdpdMTelpqJI+DNwx4+a1OEawZ4+m8piYACYm8NXbA9x+uwb5n/98IElClGkDWDYjoIWuOolO/C3pOwJoYDxtuXooZZI5Z/oEW5YBYboIzDcRKqUdqVGElUx/VzbtGo3reG41zkd2ZwqAQhwbJ37D6CeOgac/Pe9JF7zhV1yhmyPzvEQRtA4NEXm5WsWRZhlzcyGeOT3t2sqQ/kZD8983mygvLGgwe3LSreWUQqc2boLYRwEAW2umreRUMXZqsRWg0XDc7MxXL1n3AKA6tUOfLkwSlyBTRgMAOdvdiSsukKHRAL72NQDA2ItfjO1TOxC0Fq1+aOLpD2rEZShVRiTGURybnCeAVt7evW6wkgt/fV0vNPj7YTvNc0YnE5x/flk7TlQbbYQ29UyFFYljnYCcCW+ZHFU6RYzdfmgG+P/+P93V4xPe71Mkt11Uo1g9lM+Ps7bm1tJnvW4Xxi4yupuedl6nLNO2+9Ch/LERtslbS9h2y/lFqdMORO/bbi2Pt+0+YRD9m9/8Jv7iL/6i6/NzzjnnCfXUP9VEKYXBwUEbhc2IbYLAACwAysjpLMsQhmEhJYUUAnoEAglOknNc3ufTk0jAWUaiAy5aXUaJS0oPAuM+QC8jtQlmMsKeyT+HhoZsnQlcU/yoYeqCALmMoOZ3TMLJaxiZ3Wq1sL6+btshTwSUy2UMDAzkHBadTgdpmmJlZcW2R7aX9ZOAOEFugueSpkZS6vj3BUGAtbW1XES8TzkiaVBkNDfBcxllTlDeB8/5f44r/zQDdch2ykS1UqQOZfS3jD6X/ScTyfqJOP1od17Desg6KaWsbv1TAT5tC+/hd/xb1kv+XdTHsm3SyVBEMbMZxdKZKjfffDNe8IIX5D7btWsXgMeXE70veenb7pMQ/r65uQTy73z5kWz8np95kdpzczpa6+Lpjt6c3HQHyrUapqaea6OS/DxVFBbJR42MCN5HH4wVUUp2g8KdHIEDhkcxBJ47kCTRyZaUQgZHW0lKThmElmXAqAQ9ARuhtZIGaDb0/Tw1nWXcSAYAQp2UipHilmNVWVA+iCJHTCrrTpGJOeV33JDLe6TDQQIFfvSYKSsyXKL2FLMkM40ipCpEvQ5UalUX+bhtm37/l39xCdiWlnQ4lQR2/PEko5vEce1G3XUdVeAPQVZfB4qVAVUG4rya2LxkQm++F1sBGvMaSBmNFXIIDwydiVJ6Yx/pBGPyEqoyjvWJiHLUcWfJFxb0hbOz+UpPTgLnnOO4Bkykm9yI50Bm04frR3UCs3YW6Pp4m8COCu1vppJ0csfOJT38qM9BzzFfreZyEfDnkqY6uvTBBw2rwnMq2DpZscfEF7OyjugkiC6j7OSGm1IEpMtxdxrJZrb78d6I/9Ef/RHe+MY34ud//ucBADfeeCO+9KUv4SMf+Qg+8IEPdF3/0Y9+FDt37sSNN94IALjoootw55134oMf/KDdiN9444148YtfjHe/+90AgHe/+9247bbbcOONN+If/uEfbFlKKdSY3O40kL7tPgnxAWn525Jj10+yzO9pt5eXcw6yO+7QU//UFLCz1gZuuhUYGMD4s56FZHqHeWwDWXa2ZeSwNlftyPmraa4sZ7RcZ5g6c16rRJE91cNTUOVIg9VhatYfMzP6xf1vkuiKRmUcPBRgeRn4xjeAL3wBuPJK4NJLNZCby3EB5E7LQSl0EGgH+Eae6x0IcgHR5fRIrg10NKPZdJzXvDgZ12U0m3pyXVtzFGNcWJgQ+wCGuo59Sr4X2Z+Cw2UUD6Nd3YHZWZdPcngYjsfdrAlaWRkzM8D09CjKspw4duuQmRltwxjezkADpSlaDh92/agpaSqadsTUldH3ctngT5uku19YALZuHQXi0dwwzjKg1WDTdyBKdDMac0C1GmC8amz3d76j3887T9dBOIzJRU8QndPGtm2aws+qtCUG5+wsTKZwx8POfbwcwPI31WhgjIk+Gw2E1SrSVCcOh4I9baF1ESJUmXU0aDv6Xft7ZH1nZ03dJj2byd/u1JT1L2WZSyXAkyH1unZ6jU1PuLrGMfbXQwwOAmOY0x159tndtttfk/D/XCOyPvSMnCbSt92nRoJjX5KXKIqwuLjY9fl3vvMdbN++/TGpVF82F58v3Kcu8akoAHS9+5zPmz3Hp7/wudF9LmoJFMqXjNz1X359/Db6z5GfE4z1eeJlfXy9+JQaEpzzv5c0JkUR0ZL+RiYlJVhLELxIb2yL7BtfBwAK7y3ixffL3gx09KlIJE1JERd6ka78e09U/P6V/+8lRXoq+r/vQJB/+wC8fLbUqT+WJD+/H4FPnRbVxa//yerrTBQa8tnZWXzpS1/C6uqq/a5oLjjWqy8nJ33bfRJSBIzzvQjd3kwY4mo2BwAcaGmidv29vnzk8Twid5NZ6HcQdAPGsm1yJ8/MnCTdFg/kpWtr+n111d26vo7uTYZSFnTli4nP+P+NDfEYPzpY1q/o/379ZRtarXwFJYAu6+gfWfc7INO86Nw3KtVdPxvIyPaXSu7F/mXWNz8K2u+vHi/ZdA6jomGZZVqfq6sOPPBfVBM391395+vV99qg+zL/eLqtCNss+4Z9QaBHotZFfSp0Zp/RQ0dMtNdBkBuPLDbXzk02krKLWHU6jpjAFkmik+KJJh1Tem1ci+aT00A2s93HGrOFLwCLi4u511pBQrZ2u4277roLL3nJS3Kfv+QlL8HXv/71wrp+4xvf6Lr+pS99Ke68804bmNHrGr/M+++/H+Pj4zjvvPPwUz/1U/j+979/HNp6/KRvu09CfGPp/76KgLKi72QyYQP+AQYzk1knm01hOjr5YnrMnbm53P+tGNvEabPr1IpfoJzcaWjFb4sUVcvLzl/OaXqz3yx523k/Tau0KbZ5/pztewyKbEmWuUmVzmbaTNk3Rbab6xpJq2LqQcw9h/95Spdqy9kFdiQDCvyko8Ie+eaqaI2Wsz9C6HPn98wR6ptLuZSRuufntrHypgKj5NeXS71C+1VkhzkQZHBJ0UvafFO4rxe5ZuggyLfF9IO/xrDC8SkKkcOLSwp/SSjHy0oWWru+qRTNDX49TjO7DfRt96my3Sfc8z/6oz+K3/md38H/+B//A4AGivbv349f//Vftx6Dvjx+IikwJP8zxQdDGU3dbrctvQajlgEHYvL/fPcpKRhJLKO2NxM/slqWCzi+c5mMU9anCLjkc3kv6WykLuQzJXguI6r5PSObCcxJvnJJeyPrVcRLLsFm0pKwLmwbo7D96Gc+n5+zb2Qkup8o1e9j32HCupLaRr775UhHAQB7iqDdbkNy0RdFsPvODzlu5DNlNL0cU6yDjBZnJDoj/1mun3SUfer/BjYDWn1QW+qQdC7yWp+KpcipJKP5fdBeRqn7DgjfibKZ0+BMl8OHD+Mnf/In8c///M/YsmUL7r//flRNFEk/Ev3USd92PwZyPJtu+RnDh7NM85qaa5LE0CibqBx+kMQ64mZy0kV6Dw/ng1WZ2DIXICPBRU/0dXqeDHlkVm4UGVHDNpRK+U1Sq4WotsMGtTPhZJZtkktJbDIlUMBHy72orbJfd7mz8zZkXdHcvEap7qhfvvgwHzwvqrv8PnPsL1EEHanFZ2UZVHUUq6tAW5URMgKG79Wqo/jgJr+o7lIRIpFYJ650bcwZwC2Lkf3AfinijJe6pxqTxJyCLwDK7U3mYZmHg0hVLy8Dq6sBtm6tIKxm7kj+xIQ7DTAwoE83+DQzEiBiJUUkOaDrWCoZDt9mq2szG0YRSiU9zvWtoa2n3UQDGBkpQ8VlTTkgnreShRbE8F/St5Km+jdgOfGhwYyKpC+SkhvkQqfy/TSVzWz3CScnM8o699xzcx+/973vxfve977cZ41GAxsbGxgbG8t9vhm/ab1eL7w+yzI0Gg2cffbZPa+RZT7nOc/BJz/5SVx44YU4ePAgbrjhBjz3uc/Ft7/9bWzjCZNTLH3bfRLig11F/+ff/vwD6PFar2uk0VChAG4608whyp06UgpB1sb0dIhvfetiTE2JqcDMhQp5+wmI5J+SQobPB5BlmgIGk1X78KJpOtceehQHB4FmE0EUIcsqWFrSX5Nxqgu4FBXj/MYqST5vuTwofLZvtAhCAzkO7iyDrszEhAvTHhzML3J8nUgDWASsG1Q/QAdRFFizs307gLpROI1C5LD7UdLmMAqesn27Rpol9Ztpg6wGq5KmQCgi5Ytst2QWku9MPC6bK30QgFsPMibCsoiwYH7pnWrbaObVxPIY7c3bLRXc6qq209Wqpj+RROfypILMb8JCPPA150wyut9eqxg6F62g5WWt5opZK6ygjEYDdsyurcElF6DnhrYkSYB5dAnZ9dhHNj8AkFvLWMok2e+5BTbynxfZvdMssWjfdp8a233CK7gPfvCDeMUrXoEdO3ZgdXUVL3jBC1Cv13HVVVfh/e9//+NRx74YIe+zjG4m0ArkExZubGwgTdMcWEkqF0nPAmDTKGleR7Cb3OsSAJZAqAQmSfch6WVI2VIqlXKJNtk+vy6UwcHBHHAbBAGiKMrpgsAqHQcEZDudjqVnkXzaBNEJzPvUNNQN4EBfCbADsO2kXqgjqRsC/pLqhe+8Zm1tDeRop34l6C3rJPtZUvWwXoyEJye+7B/ZTxsbG1hdXc2B6qwDy6XISGvqWPKvS+cA+4t1kQ4TX79FEf+Sh53PZWQ//yaALoFtjgtZb/4tfyfsNzo8/BMBEjwfGBiw9Dp0BrDfpAND0rzIBKRSf35+gKLTCNJx82SR6667DqVSCfv378dFF12U+64Pop866dvuRyESWAW6I1B8UJT3kM5CKeDaa23Cx12THbc7iiJwx10zRTSbes/yQz+k9wlyfW5oP/Nr/LR4wc+NMCN5SqUQUTKea0IgN0FEYLnzNDvn8kQbSEJ7gpoRVENDItqLjxZzoYwKKnrlqiv1yU0udcjPmKWMG7lqVdN7SF5vf9fpbxak84Df+Zt+CaxkDmwO0hVgvukAfaWgajvxyCMab9m5Z4++n1ybs7Pu78lJC6ZLADYH5sLRkmQZ0Jrvbgr3qcSli/ZCMhKLzfObDJg2yeSwvg7Mq6PCrkh4RsVtbDiqXgYFnnPOqE5E1mo5rlM6ESYn8YNGiIEBPX6UMrQEABZbgS0nzFYcegPDtQ4A83WXic1TShSN5gAfq8eWA0sWFvT4rVYDDA4CGxsV3Z5GPtpf6nFw0GEo/Llw7BPrX5m4ENHUhQiaR9yDpSPgNAfMi2Qz291z8PUSc+2DDz6ISsWBGYObHIMvCnzYLOCg6Hr/82OV+fKXv9z+/9JLL8VVV12F888/H3/7t3+L66+/vuezH0/p2+6TkM2cpT6o7lO98Le7d6/+7GUvs7b7mXtMIBkCIFXaKQhYZPJHfzRErVbCnj1uzliESeRpHlUq6TlG5hJtqzJC0mEBuTwNmgYtwMSeZ+uqmemvg8DRCbCdAwO6UIbYzs0BWYZUXYyHHtJz2fS0NkWHD+tLdk2qfLvRHclLXmslLpX2IMuEXsmf3TCTKvNfCKNlH0WglhH9/MJ3KrBS7C8qj/qKY61DEQV91lkVlEr6ESHaGkQfHnZ2paarODcH7Lr8cj3h796ty2c0/PS0ph/butW1zzhM6ZCQ0mhoZ/KYcRSnzfz3w8POiSFNrlLapgTpCqLInXDS5blDBdu26XvHa14gYxzrPB0bGy7XianvYivILTepxixzFHGAGa9x2eVvIcXOVVcBk5O59WSzqcfSmFnLdqKy7Ta7pjC/vzg2a9iHzGCam0PQbIrI8Iql+ksuGkU8MYrZfXrMHT6s65qmwP56iCTZYamPVpR2DC3P5QMEuIQdGtLNWF/XzZibc4/kab0sAxanLkRlasoNdjknFM0fRQD7aWbf+7b71NjuE+71SqWC22+/HV/+8pdx9913o9Pp4JnPfCauvfbax6N+fRFCYFUC6UVR2gT91tfXsbKyYgHKUqmETqdjAeyiKFv+n+8ShCcoSgDT58mWEbk+oC2jcsvlMo4ePWqjlP1IbRlpL6N+faBfgvtHjx610dNMsEpHAsFiRuPLSGH+UCVAKl8EsmXySp+ChoA8QXSpN5bNfvN501nWyspKzhEAuGh9n3KFIDfb50eDDwwM2MSsMuns0aNHbZS37BsZYb6ysmKvleVRHyxD9i/7jnQ2Msmqn5SW44PjlQ4EGf3OF6+lw4R/s6+LJmQ/Kpz1Zzn+tRJE9/vOH+tFJzZkElefp92viwTRqcui39yTDUi/+eab8aUvfQkTfkI99EH0Uyl9232SItFeGcIjRUZFSSAY0JyacQzs3o279wZ45u62BlclfYjJyDWuOqjVNDdko6H37QyS4V6RwCeTPgZZ2z3LC4sSgT85bJmgcBQZjmh5r1IOJeemttlEOUlQrYa5JnKfoR/nnitVx2fKE8ayHnbzo5Bf2DN6TSSaglJ6k2girY40A+i9WIiBgRBDQxWo2ICyckPeAxzO6curu0ScowgI6j9wJwvE0Vi1RwOz8/NA7YrLALhcWzunp3W509PWUbLYcsk6lQIQBVAqtJ816i4HLTfOMnKNfcdAMFZbHmeWf0u9+0MzaC3q9vBLXwem8ewC1ollM4nX/Dy52B2d7PZrdiJAx268SQ0/9wWb2w1nncXcnDpicH5eq3hsDDj77DKq1TLKcebGQ5Zp5ZBj3evHaHLUAgMEzelAklHmUaR9GoODmjtVjkWpCr5GRlz0JQEH6dtJU4tV4corR1Fm/eTvUo5tfzxSTrNots1s98luxCuVSm4jXiTVahUDAwNdkWsPP/xwVzQapVarFV6vlLJRaL2u6VUmAAwPD+PSSy/F/fffv2mdH0/p2+6TkKITP0C3U0saMWnD01RnFI5j4IYbcPdMGc9Ui8AddwDVKoJaTZ8WmrpQg4ZmsvmJn6jgxS92jri1NT03xDGwa0InUkySSm4KyDI9f46MBChLD3OWIU0rOHhQg4mzs44qPNcsORcODTl6FE5MaYp08mLMz+uviRPzp2DBeAFaS+oQAs1Zpu2OXO5wXl1fBzAkQHTe1Gi4RMxizZMavPK7swGAUZx11ii2TxqbNDeX7xO/b+hF5voA2gmxsACMbYE1eiMjFZ0IfHbWGcGRER3e3Gohq+qqzs0BeOWzAABH1A6kKTA+Eeu60zPMZxE5VwohOkiSwPa1WSqh1QIeeSToirNQSj++VnMOXcmIEUUAGk0EVQWepKKDemnJBVAEWRs2U2m1ik5tXOeNOftsfUG1ipUsRNrqttnyRBXLJ7hcq5lmRhVEcQXJq3USyG9+E3hob/cphDgGpqcDRCZxd5ry0Eag60MQ3fwX32nphjCT6rnn2sTcBw/qMulY37fPjTn+HGdm9JrhggvKUAq443a9ZhAHRbp+EnRk8XfItROZaZaX9c8cCHD11RWENOx0gPvR6XIcnsYget92nxrbfUK9nmUZoijC3r178cIXvhAvfOELH6969aWHFCWa9IF0SYuxZYtLNEqQvdPpYMjMxqVSqYtmQkadS6CX3wMustYHR/2IZfnOiG0JTBdRy7BtMvJeAs8S7AaQA10lVYsEZldXV7G2tpYDon36jnK5nNOtD05LUF9StkjedwAWtJXR7Iy+HxoasiC3H83PsmTUO9vXi56GjgHpYODzpW4HBgZyJwIAF0Uvy1tZWck5PORpB99xwn71HQZBEOQi74sSa8qxKh0fTGZK8Jp9LSPAZf/5lDIch1L8Uw1+HaTO2W8+bYsfSc9nEGiXvwv/RSmi3XkyR6BTlpeXUS6XC7/rg+inRvq2+1GKBHH9nVHRO//PXUqS4Af1ADMzwDP3KJesyexIF7MyFIBy82EEaYqLpyew2Ap09G2ziTBJsL4eoFRyoHlod0MFi3qxQ+e+WHJD5pJbVSOHIgqakhz6ajaPcTxqN9c8MdyFuxYA6Xzn/5lLMic+yMhKc1fKo97ioTLXqMRT4zjAKDfZPlohoxNlOJi/OVKaDxYwkVVEZnNE4vq7tTUN5nPvb0H0yQm9U65W0Y4qFjgANF4qc2qyGq0WckmylNLN5lFwCaTzGtL2+sJqcu/PbrZChERG9nlCvlL/RIGkCm40dJ3lMfN6HRgYCGyCr/vv10DQ/LwDlWo1FzAXRS5/n+yKcqTyniC/0zkeokj3EwI7bNhllKUllx+N47de19dUq73TBsi9dC+H0NycC1ws84vN5ocih8VpJpvZ7pPdiB+PhGGIyy+/HLfccgte85rX2M9vueUW/OiP/mjhPVdddRU+//nP5z67+eabccUVV1h6wauuugq33HILrrvuutw1z33uc3vWZW1tDffddx+e//znH3f9H0vp2+6TFIajHmvcFX2vlJ7gTAbw/Y0ybr8deOYUNCCbZdYLzXlubEgBrRaCvXdjtNUCpqawkoxjbc0xuqGm57FAafopN8GUsbam53g7dxiRUx/nqVpN+Nv8NQf/5gR16BCgFLIJxyw2NqZBRVKQZ5lJTm7RcP1fYvGSlY5zpD99WW51QN9w6JDWH4EvAtGmjmw65+ht27RDc2KignLeO5+30WyjR5uVpib4PnHrl3K1AzSawAMPuAhtOuINkNts6qouRjsAAPffp7+uXlFBGKdoJztQrwO1WhmhMaRtaIC6ErURZBlGRso5XcnuIMuX/CxoLSKOKzZWYWND92eoxKkwA6JLinO7NacdZLLW2ngeMY5ju9bw4wik/eeYmp/XWLa0a4ADze+80+a0zZk1Hi6LYxdbQCabshiLUSTatrHhBt7QkEW/2U426cEH9YsHD1dXna0mM+LsrAbWlXIgOh0a/jDJMpfYXi4NGQSQZcAllwBjvoO7YE19TNt+Gkjfdp8a231CiUWVUnja056WA9n6cmrFj1ztJT44KwE8CVxJQLEXQOVHyRZFrfvPLvp/EYf7ZuI/TwLZvRJQFrXbBzVle33gvwgE3Uwvx+oHeZ0fSe/TkRQlRy16+brtpW8+u5cUtdPXmbz2WOOEIjnt/TpLJ02vehTp71ht6SXyniI6GSnHGv8n+lkvB9OJ1PnJID/8wz+MT37yk/ZvRu4D/cSip0r6tvtxkiIgzF+gms2fxGlzyDLcsVKJUiqV//u4nt1D/DVw160nsEhWygWqF5Yh3rmh8RNqHfORx1Ofk7nmeO4RyglMgrhj6doHXW2XUVlR1NWNx/tTlICyfF4vf85m9Su8pmjTKC58tFgvcRkJwve6jtfKiLdCOUY/+v0gnyuf49/j3ysfp9TmgeKFbTsDgPLNZDPb3TUIj+d1AnL99dfjr//6r/E3f/M3uO+++3Dddddh//79ePOb3wwAePe7343//J//s73+zW9+M/793/8d119/Pe677z78zd/8DT72sY/hXe96l73m7W9/O26++Wb8/u//PmZmZvD7v//7uPXWW/GOd7zDXvOud70Lt912Gx544AH867/+K1772tdicXERP/dzP3cSGnz00rfdj0IejR3Z2LATUW4+L3AS57omTTVAKNDIovlm07mhYDLJMrFOON5yvLbxUsvDjmPbIT9ptLQl8nXMQzTeHHDc9t9v3yZGr3DNxA6SAHxBUbwll09dOdoZn1XG/6NgyZd7ju/T4f83XUttJv6gokPZBAnI6PgikX1W9DjaYOm/8JatuarI34Etr2j95Sdw8cqQZcluk02W1xWtLWU9jsf0+PXvKacZUL6Z9G33qbHdJzwifvM3fxPvfve78alPfQqjo6OPR536son4EbGUomh0RmQzqtrnnT56NJ8slH8z+tZ/JkEsgqTyMz/xpKTPCMPQlr9lyxYMDQ3laGlkFDDr4ifTpBTRZZBDm1HMPvc020U6G0bRZ54lkPzmks6FoDbLkxH6MnJdvooAcj6DupF9JmlT/Ofw/5JzXQLtfj9IHUh6FMk1LnW0maPDr6ccd0U0Ln5S2KKocY5DRsGzLlIPfLZMKOon65RjU9ZLRuHLMSTbIvUt7+F1/viR33PsFDkcZP/5Jw2OBQLLujyZ5A//8A9xzTXX4M4770S73cav/uqv4p577gHQj0Q/ldK33ScpRYvIItT0GPfVajpapoPAHgXndRsbJjmhubaNUNOU1EIb6bC2phf5nSREoESUtE8VIeoXKn3cGHA5twzVaj73lL8D5HFbeWEUIUvd5TKgO8uQD9UVZWaZjhCTKhoactHUcWz4ShvN/E61WtUEooxgI4k2+T6jCMNmOhgedseALScnw7D8PiraoDMiXUbem88rceyUJu8T3KuTk5VcMLeNPlMqF/Yv95DcPLO+UaT7SZ5UZ+Ae28ZAs7PO0n0bKj2eokiPDfaFbBaba7D8PLMI6ycSodl2mqg9ljUwkN90k9M3ioDzz3dtHhzUp7SZA2xtTb8zIV+S6P9LOhfem2X6s7PPdryx9oHV6jEjE1fSINftPDXB8SZ8GjbCjTlf5bDodZKbqpK/HV47PCz690Q2nxIlOM1kM9t9wsnJTpCq5nWvex0OHz6M3/md38GBAwewe/dufPGLX8TTnvY0AMCBAwewf/9+e/15552HL37xi7juuuvwZ3/2ZxgfH8eHPvShXOLN5z73ufj0pz+N3/zN38R73vMenH/++fjMZz6D5zznOfaa+fl5/PRP/zQajQa2b9+OK6+8EnfccYd97hMhfdt9EkKekSKqNaC3zea7GK9JYqZHzkMiijzLQneP5EmLYzun2dQInIDNs9uqjFaq7+e8goawn0rZvI5M/si5qlQyOToYTpym+tQTQ4JZz8lJ4Oyzsb7uklKyqvaZfJ6kdjMqohqpDpoK0pwzMj5nw2USTnJtMCeIKZs82bSZSQKMJoJLm4oT9bFSQMFTidqIaiEw3+q2D7QdbF+SAAMDGB7W1Dakx1HK0efxObTD1olSMOdxuESRy4kK5BNbbt/uli9IUwRRhLGx0EawA8BKGqBcq6ETlZG18lVnU3RCerg/4hiHDgFDQ4bLHJoDnZT4cqlaBOI//emkZXE2m0JbOjXlupT3sV28R+cX0accQrRz68A0BTIVoEz++wcfdMcikC9Xrl84PmS9ZF5ZRp+zmNVVx/PP3wmHnIya57NI6c31Vs5EbebxPwOkb7tPje0+4ZXbhz70IczOzmJ8fBxPe9rTMGxTA2u5++67H7PK9SUvfsSy/BzIg30E+nwgl5+laQrye5OeZGNjA0opmxTSpxWhkEvdp9eQtCYEe8mPDcDSsYRhWAiS+yCpH7FNEJ7PJJDZbrfRbrextrZmudAlyMk2yHZKQBfQwCnpTmTZksLF7wO2JQzDnFOAwDvbKBOokmKHbZFUKYODg5DUIPL+Tqdj6Whkokt+1ws0z7LM6oW88NLZIEFu+UwJ0Et6GNkv0gniA+kUmcBTOi9IRSNBfznWJGUP72N5st/8McL+I3VR0QkAli9/R/IZkurFB3n5GceHpPHxx21ROX55T2YaF8rFF1+Me+65Bx/5yEcwMDCA5eVlvOpVr8IHP/jBPoh+CqVvu09SJGIs/5abPH4uv/OuDev7ccklO5FlQDg9nTv7azFaBSDLsLCg9xlxDFTM7oeP0kwWgdgcBQBCd2SWzzUXBwBGlQIShU6t3MWPnau7Unoj3mzqHR85LuIYnaiM9SW3GZM83QCwgjKiallzmmYZ2lmAjQ3HyAJo4JW82UkCjMZtR9fCi/wdkr+ZEbuqEeh9ZDlbzHOgswz//qIQKvlMmcxUJphig8mhwo4wfXjllZrjlpthu+lrwVL2+JtAvkjPQ07aarViN+70ZXDjR/C2LBLQBVmGUCkkSSWHp0gV8H6fFsbuLqtVLGZljTklFae21NWZaqK5K5UcuC85egcGdA62sL4fUAoTE+OWhoBjgMK6SGwjTTXYMzJi2tnQ4MeRtKzHT00n6Surdv5MdpJYagDS2CwtaYoAAudsP5s9MOAAfCZY40n54WENCPBnwPZLAErS6GzfrqsyNARgw9taFQHlRYDeaRZtvJntPm4nAeUkHAVvectb8Ja3vKXwu0984hNdn73gBS84ph177Wtfi9e+9rU9v//0pz99QnU8FdK33SchfiiwD6QXGUJp40slmwF0NG5jcjLUn5v8JT5VWCcq6zlcTrqZMydZZkBSQSHWSMuYndVz0IVTnuPXoJSjahGjU8DBcyq2WPvTI7UVDcbBg474mcjn7t1AtYqNGT1HEeNnVS2ITkTU2HuVurmw1dKqGBlhvgoHSIbpIjAzl9c5gfPpaf23THRp7GkFK6gMZcAWo8d6E5hp6uuYmJvcHjR8sn+kXTd8WqFSLvkGbbVcS/A+U+bY9g5e+coASWLsCXSSVQYotFGWZh6jsa6DHTKmDqHqYGTE5TqRztsk0XYsSXRukDBbAZp6UIyNxMD2CAcPBZblpImydVAMDlrKcFt9ne8lc51XrWLuXn19raaTxjfndR2ks1eqjt09MABcc43+29pbsYbiepF2mcC5TfytFBbTMGfeKmoFqDdy3ppWg2rfiYGxnRibmHCJUcTwk2sodi2d7vI71oEOED57ednlDWCcCn9uHILyeSMjuo/48xkaArDWw3bLsePLaegE79vuUyMnrJlXv/rVj0M1+nIsKaIBAbojhwlKEhznNT5vN0H0jY0NC5LKCF4JQEoQG4AFcX2ebh+8Jqd1FEW5ZJMyYSbLkKBkUZspEswlWLy2toY0TXtGox89etRykPMeH4w9evSoBak7nY7lipcgOIFu8rqT25x85xJEl6CyBIMld7sP6NK5IBNb8l3yh0tw3edNl+A59bG2tob19XWkaWo54mVEONsPIBdNLusu9cTIdwl0U0eyTj4FDOtPR8fa2lqOW71XNHsRv74U6sl/LuvnR6DLa4tAdDnW/Whzf5xLB4Acs9RT0QkNX+Q9T1ap1Wr47d/+bfv34uJiH0Q/xdK33ScpXeG7yG/EuVGT3/nhPgAwO4ux3REW0x2YbwSYmKhYjk3unZEAyDI88gjw0EM6ordibEYeRHeAIDcAw8PA9u0BArnglxlFAQRKoSwRWb+ugA49O3xYk5SanUcnrqDVyh+TlZuzLHORctVqBSHaOXyT+DijdYeHzYZmvu6ILulJIKo5OYmOSbgJiASqSmElC/WGkhFPs7O6AlQGQweLNgt+f7GP5Yac6DVR3iTRgEAU2YSuIUH3ZhPB/DzCahXJ5C5d1+YRzVWvFZID0SWAoSPmRdRcmiKsKtTM5lXQfSOKhNOhKZwC5sJyLUKUhLkhKUFj2cVWJQY4WUHZ8rlTqDqJX/j+JEZ5jWYPO8BDKeBgarnWgyhCJYqAVjOPysjCzPt4HGtOWwBIzctUhklH+Tuo1UIkSahBiriNlSy0RWeZSxrWaOjodoI+TMjKNk5OEkDR90sOeXnwwcfhiKM98oj+P8uNIgCZGE/HEnndaRj51st2n4qNeF+09G33SYgEyYsAdRne609s/IwBZPU6JiZ2op0FCCcnHXhtynXTcBmtlgFQ4eZv6d8tJ5G1U42GTqCoFHBhtZmf4Djpz84CDz6IsWc8A5OTGiRlhDPmGnkQ/cABDaJPTemJrVbDysSFNnc052s2dWDARDazzSbsuSMSXbN4Apdnn61BzaDxMDDXdJkpBwY0Sh9F2lYmCRbT0PkFWmaNkhhbXq/rgh94QE/U1Okll6A9dTHCqOP6Kkl0dLbRYRyZKHxhN60Bk/ow/duZ0Emuc8bRLFqeOWHa3oJdMwUAOpO7sLCQT4OCqls3KAVt483zNY+7BsOljWeS86DVQmiPJMAtmqIIY5OTWEkDm4e1WtXLr6EhYGx7Jz9eafuNJ3gxK+Ohh7TdYi4WOaQZbe0vX2kPg5l/0zdyzURPvFIIqlWUldLJbpEBDaOMhQXtsEkSVK65xpGiy4QhpryOCq0OmTfkyitHMbV7VAdcNJsI0AEDQ6QfqVRyPhV2q3RiXzipHR9HWqFdRs7N5aPP+XvZulVHyHeUs/O04dWq/lsHsnjzgxQfSJcLgtMsKTjQt92nQk5YM+9973sfj3r05TjFB9P5mS8S8JOAKcFbmRSUEegEMIsoPvg8GYVeFAHvRywTaJZgOu8joCxBSAkuy2f4IKN8ngSQfYBYUqPQWcDoaL+uRdH7pBwhKEsQ3U/wKgFg/p/fy7ZJQFaCrNJZQR1IZ4OMrJYULrK//BMBvl4IqvuArt/XEoDuBfAWRXXLMSn7iW0vOrHQK9kmgfEiKhgmHfWdPBIQZz9IhwC/kw6oIjqXXlJETXM8oK7/e+p1T9Hv+EwVe2ysh7Rk9p2+nBLp2+5HIUVgc9FC219symuZCGpyBw4dMpHY5jK7tzJlMTA7TWFXaVmWT0QpcXy5N8s9V4Ymc/PIHTHgdiPy5izTIDJD1syRZtlUidNTCDzGMaDiMKcev342QapMHMrkoWaT0kaIhUMOuI+iEHEc5qK8QqQu6xk35QxDZrt8wFy2s6if1tfdGXZ+Z/TQzgIsLOg6jdcS/X2joXduWYaAEW/MwjYxkeMEkXuwAN7mWNDDlKsRlApyeIpScG2VHSC8FUGsIFMddVHcCOkgsOUsHcon9OQz+ZJ9Ln8GdqO6d16DPQxvA7QOBwd1wXGs+4fZPpmFlGOMDg8OIglqmRcxFllPqq5WC7G0lB/qUq2kupEba47JsmoDjQbiWANUpFai82BwEDrBr0FvOkK/PuaW25v6PxApm333BEvfdp9+0rfdJyHS41v0W5MgOqXo/yZEOJnQp8igygijvEGUcw3N2bZtDqtdXXWAXQcBAnODTJZobaBvl5pN4HvfA7ZvRzyh5yjLo02HL+3VI4+4CdLwrMzPa8wzy/J+cwLonN+1PQgBFVq7Qz88q0L7HrQW3dGdet1lgCS/S5LgSCu0oDDvr1ZNxDNtWbOpwdgDB2AzUJ9zjn5+FMC60JXK4bPage71JRdMVLhwomgnfoAkKet1B/u2XtcvelfT1FV4chfW1hwPve77HpCZuSCKQrvEsraAlebA4JpLgNWoVhHFFSwt6cfnWHWkB0Z61I1BW10Va0VTxbPO0rZfLmFkH9o1QdbWToxvf9uFdJMWSPLN8QHs82ZTA+9jYzocHHAZYvlQU0dWnQB3s6lVrVVeQWAiLOQSTPg/rM32fxbSEZNMXYh6HVYX8vAg2xumi9pBkiRQyo0ef52TA9GLpG+7+yKk7144A+V4ozGLriviaPZBWIK4ko7CB1J9mhhJLdILDPTBd8k17gOifl198N6nY+klfl1850MRLU4vPfp0HEWfH0/f+A4Iqd8iYHszKerD43lurzYC3Qk4fWcGRVLcSGC/CHTvVbde9fGpUKRIR8xmnO1FbfYBdNkPvkid+s6oY/WPr6/jAcifTFHWe/bssePAP0kipR+J3pczQjYDyntd518vAF2b2Mt8Z0FS83evR/hJqBhlnGUa7MsBpZsh3vJzmI293GHxQWYzIZtwIvsHHw/NUYkU6bQgQmZgwOEhXUG7vp56RQT5CpUorB9VVNQAcw0jnIECnfllCyHwWqi7TcaTbLvekHsFyM2e+f/AQNhVpa4EqaLfgYKEYDj+wKosgz5Gz5sNBYLVrdwVU+TOlfycHmh+LKEzhXiEz4Qii5J8tYzMs9WxYFr3M+RPwRetU9ev/mGVTeU03YQDx2+7j7efctf3pS+nWjb7rRXZBd/ba+YnRqpayjTzgz/Wz0DaPU41obmBJ11k7oXCetn8U/pPS4nFwosyKXq22y+uVCo2g/LxnJYloNllu6WevElQ6qarHr0WBqXSpvq0dM6pqLwsj9wzvR7s2/teUceeSBA9V6IoL1AKSgXHTzktAxqQz92Re7AfwcB3pbCR5v6EUt3l+E0bGDDjMFJ5XfE5csHlr9Ok7ZYP8n8IPRQg4wXSFChH2jHtL92oFpmHJZfHR+oQefUcS/f8nr8j/lxO2kRJnT2B0rfdp15OWDNbt24tBIS2bNmCKIowNTWFN7zhDfgv/+W/PCYV7IsWH7D1qUgINvaKSidtiw+QMwqcCTVlVDSjssllLoUA6tDQEBhRnmWZpVXZskXzf0uRUcYSND969ChKZqci6Uw6nY6lJpFl8HvS1rBNkrtcUtD4wDTpWAYHB3MR0DKynO2VYC6fKevAiHS2l/WRwK50DCgxGTH6nf0gnQMyIr0ISJa0IkXJVH19+Y4O2SZeJ8ePfJdtlZ9JhwbvlZHaRWOxqK9k30iqFH4uqVYkdQvL4Ge+M8HnZ5f94Y9pSRXDF6P2SYMj6yGdTUUnQtif0rkg9V0EJj+Z5IEHHrD//9a3voV3vetd+JVf+RVcddVVAIAvf/nLuO666/og+imUvu0+SeGqn5sFrrb9HaYEDP3do1LA1BQ6UxdCpfq0dRQBiBJ0EOCccwxYlwKIY0Sp4NU2uwbyUi4t6WtJUZEkcEeVGy39TMkDwjbIOscxOsmoxjZb+uOyDN/heVgTuRImCZKk3BUFDORPn7P4IGsjScIccCAerUGDlohYYgNFElOlxFFzrztsktVaRQPZSeIiyAcHXVm9NgtFofWyETIUyuiEgDOBbb0JjVwnEM2V5SmFdhZ07deVAkICJ7KPRFR5GEUYGXH35saSLIzRbGbcbd0a5jCJKBKdZMroIMipIE3z1C9yTyxBZ6kmwEV+jzOKj5WVxOTmyLqtQ7XquHdFEr7CfhJ9NDioL+MYXFpyY0EE8ef0NTyso97OPlu/J4k5Hg/gSCnQm2hxA/9LbICvdhZARS56Lcg0jVBkaI7W13Xk6cgIXKSjj1x0eYBEnx4nkHMq5Hht9+OdnKwvTvq2+ySESCHnR4qMlPV/k9JQ8RoziRyc12wllst5YgJQChNJMdYo8z3QvjOYd7yqJ/+pqqCYaqp8nWR9DJ/U1q2ujI0NYJzJGjj3Mns5J8ooQlLbgSxzbBukp2JwdJa55JV0EIRKv6rVIEcnHkXmVE5d2DlOslw3mNNkcRxibMw9S+bmbiPUtDgyF0oU6Ul9eDgfFWx0UY4UyhGcwfIj98mnxWhpY8ho6wAOhQBKhVCRTtCeE2FfqX5Jh7bYCsxayZwio/eDUeZxjDjWOTuYUDu38PHahGZTG7Y0RRDHGBsL7KU8RdblgDbltVXZqo9rRXn4jk3hIQUOJVnlJgKMT07qZwwMAIfM0T8uMmU4exS5rKtpqsdZtYp2bafmi6/V3IDi2jPLEEY6abpUdbOpo9LTFJic3IFm3WHyFC5Bt2/Xf5NRz3aRUrnx02zqtkq7LVVNxxXSFOVYoW1oXaQD3AYbHC/ILNf8co31BEnfdp96OWEQ/bd+67fw/ve/Hy9/+cvx7Gc/G0ePHsU3v/lN3HTTTXjrW9+KBx54AL/4i7+ILMvwpje96fGo81NWJB2GH6m7WaSrjKAl8EyebQKABIAJyEpwmIkyyfXNz0qlEsIwtBziBOJXV1dx9OhRW6ZPqcJyihI3SsDb53GX0egsT34uE3jKsv37STEzPDxsdSD151OrABo8J72LrCPB96NHj9pEmaR8kWX5CWFl//mRzRKglpQvviOFyTkldUsRiE4amzDUh+N4vSxLPtt/96lRCEBTZ3z2xsZGl+PEbxOdNAByTgyOF7aJSV4pTHY7ODiYo8vhOJW/C/a3fCb1zXZwDFL4uwBg67GysoJ2u20dQ1Kn8v9Fvz2llB0zfs4B39lxoicZzgSR2bB/4id+Ah/60Ifwile8wn42OTnZB9FPsfRt90lI0SZcLrAliC6vl8Cg2bm0py7GnXcAV14JBHPfB2o1HEnLiGNgrHQkt4GPlT4pOziIHIjeaukTrFmmT9+G2YrmFZdnpnn+VUYNyY2N2UXPz+d9A+UkdsAm57tDh+zmMIhjxPEo1tdd0A034vJRITRNS6AUKkqhMhmhVgusKgJ0us8fEzwnwh5FCLI2ypEDIzvmmDmTOSrFvXIZZfKoc8PJdrB8VpZ9JDfisk/ZZ/7R6TjO7WMHBswlKkSZPKISKBZ9kZp9PvXGSytmM9uGpr6xTgwBppcNeJ/bn0nQlR0wMGCzX4YARiPdno4KLeAr78+iMIdDAO5oP1VJKdrDDw/rttTrul3JpTtQnlJ5YIO88gSd2D6TdK4Tle2ePWt1+Sxc1KfZJNOhwuYfPKj/Jh2rL9yAj4zo38rkJFCJ2sDsHKAURicnNb99kw6TPF7A4chuJduQBTYaDQRKodXSXL0jI0AZK92nBTjmJLAuf4/ymtMARD9e233cQAPlRK7tS076tvskhD/cNC0OYZV2EcjbDsCB10mCIxjF7Cxw2dQKMDMD7N6N/Y0yqlWgXN+PEICa2Jljo1LKOZMvukgXTY7tOA5RSRKU992DXXNzQL3qPOtyjuCks307oJSmpIgqOHTIJJLcsxMBnbe0BaTPOnAAyDKMTk1BqTBH6TIx4ajMo8jRzYRwtgdpqkH63aGt0uAg8rQdSrlJlgWb33mYrWCslAJbMnQmdli+bmd6y1CqjHEmak0SbTO2btV85+wDwDllpcEiiLq6qpUxOanrMDurvzd9Lp2rrDIj8Ue7wprdM6V/nd1C6vByovW9EulAhFFAKzRJEEDb8jjW++2OCnUf+XN7muo+Ghmx/Tc2lGFsSNd9JQ20HmQ2TVOZTlTG/JzjQJ+YyPl1rNroT5CPZlXuv1+DzskVF+q1x/y81l2WOZ3Si759ez5YwDxkJQux905d/T17RjE6meQDFMxiR6nQ4rDUY6Oh1xr0oTD2YX5erymmp127AL28KadHtE6jUX0SkPR26HYSDQ66OJAsA8qxcmu7VgthtYpms2zX0nGM/JrUD1iQ49F3yjWbwOJi91g6xdK33adeTlgzt99+O2644Qa8+c1vzn3+F3/xF7j55pvx2c9+Fpdddhk+9KEP9Y35Yyw+CFcUnewDehJwZXQ5gFxkOgDLl03wT0aME0QfGhrC4OAgmDxTArRKKQs+SpBWCkFhnytcRqQzGnhtbc0CqowIZnQvy2K9ZBJUGYnOaOQtW7bk6iOj6AnqFkXOU38EZyWI7teDILo8FSDbLEFpCaiSq1xyoxMc9sFXCTjLaGlGo/eKAGc5LNtvn98//D/rSx2GYWgToMoIb4Le1JUfde1T9fjR4wBsnzNR7PLysr2fCVuZxJUJWFkPgugcM2wvAW7Zf3IM8vQDxXcGEERfXV1Fu93O1V+eWPCdMGzXwMBA1wmQouv47p+YeLLIvffei/POO6/wuz6Ifuqkb7tPUuTCutdGHMhHk/qgexxj3z7gzjuB517Z0dnEogiNVlmDhUyKZXYNEXT07JDZUAEOE5b7V7RaetcxM+OydRINldFPBBTMZytZiAMHzCYqMc2qRXkAvtXSXKfLyzacLEwSDA0FWF3Nq4dr8oEB5MFpI2U/Qlv+X0b9SeeDB3oHSYIsC3NdwttyILpoZ5dI8Jwhfaz40FAuks6CnKY+MjJtfR1WB9H2CgKG8klQRuko9NVVF7nOx0shLUl5xEOuTX0DpaCiii7W37zJownsCN4bxwhkGKDYOEn8nZgLN5/l9EhuDKtk1G502TTu+xkItnUrUKuNolKL3c6dIXAbG1q/555rwy6/Xy9bOl35c2HXV6v6pMXWrYGNIJM4BCMriTENDztqBP5MicsA+mdVwSIw33DIUZIg9MANLgFlNFuQtZGaBHlKCX70RgNIEjSbOkK9HHV0+RKwk+tg///+XEFdnUayme3ub8RPnfRt90kIbZ5wTgPIe+ukw5STopxAzMQ4P2/yVqapRh+npzE3Z5zPxnbrfBh6X2R/GlmGSqwwORmg1dJmOssYORygfO+9wGc+A1x9dTGIzroy1LjRQDgZ45FHAgtGVqujKCed/ISeZTo5+NoaUK+jUqthaCi0aglbRzA4OGrnfjvt8JnCGWqj3YmAzzeLE0NHEdrJDgCGfzpNdQWbTQRTU0iSnTk1mzQiGL9m0j2TDg8fzOTf9bp27HOyJ49XqYRObRz1uonON5Ho7SwoWo7YYkdFotCuL5EfOuvrDvAdV1o3S+uayn00yVweFDNu4nhUdKEB0lkoxxz7iBcafWFiAtHETn1arwDYTVOtin37NAC8Z4+x3Y39ufEdReP2dqaJCdGGikIcPmxNGCYnd6JCg+zrYXBQL0aTxOqY2HWr5XwWSQKsnxNgaKjsgikMZ7lSYY4WjelrGMBfrWrQXF4zMQFctruDxVaAZtPkLrnzTh1gcfXVOsmvB6JnmVvHjIzogI3MjAGXsDy142N1tYy1NaOXdDHv7Jah7BR/bc/PWi29Tj6NpG+7T410cx0cQ770pS/h2muv7fr8RS96Eb70pS8BAF7xilfg+9///qOvXV+6pBd4fjz3FL1kwkcJ6spElPzbB4cZVS6j0hnpW0SjwfsIYspXqVSCpFNhvSVliV8nn8LEpy6R0dwEr3mdBHP5XAkwyySVvXRV9CKILJ/F8nwwWUZJU/eyTX6i1qLoZfnMXnQusr1+JLxfrqyz/NunT2GfMaJb6ksmD5UR4nym3y8ShJZjUDoI/LpwvMiXHzEvX74+ZCJY/3rqtmjMsY/YVh9A95+3WV18/T9ZAeKLLroIN9xwA1KBHq2trQE4do6GoldfTk76tvskRQJePlAK5KNTen2vlM2paCNXssxF+XLza67l3kUpx1sdZO1cJBc36bmMi8vLxfzTEjQwgDAvZQ6udhbkNsRQKs+VYdqlVH6zIx9XKnn6kht7PzPkZnWk3vls8RAfkE5THe2VQz6LyvM3DiLizmYQk+0Xr44K4cvGhsg/KiP+xbOIi/r19fHUtTXk2+29cnsYf0OztuY4yH0ngdSz+L/fRTJhbS7iz8zZMlK5CJAAAQAASURBVL5AqpHjh5d3VOgukCD/8rKrRxzj0CGXX1TmKuOr1XJDTz7XD9wmiM+cdEVDnyC7rWSzqetU1BleG/kbo3pzDzevLDMOFQmOHEv88U85zUD0zWy3P6cc16svJyV9232S4v/OCuxy17X+BBJFLgCahhMiwndpyXFL9ahDJe5Y85Cbpw4f1sh6vd77tyInPnMjp65WSz96JQ3cZEdP4tKSM+7m92sxwDS1ftdc4kxeJO2uTPy92SQbx85kSDtk0FaJScplwUoauBNodEBKBwJFem3ZLlFxy+whIqWzTNsuvuQtWYbiOUkA6PIjniKzU2GW2c9k30ibLU16z/WN7ADqK027E4+Lykjbx5iBctRxibtNnynl2i7Ho98HjQbyQQis1+qqWZzo72UO9wcfdJg/h8jysjgsINrpN511P3TInc4QqgdMN6LZdLEQWQa7cJBrGtMB0l9mYzTFescmBBd2mus3u5Y+WbGLuNNH+rb71MgJa2Z0dBSf//zn9ZEAIZ///OcxOjoKAFheXsZIEZllXx61SDBpY2MDfmQxpRdwJ2lSeF2n07FRtT7HdREoLcuSQK9Po+GDtvI6GfXMe1gfwEVPM8q4l6NAgsw+1Y0sr4jPm+CsjIr221/0PNkPfp9I4J/vMure15vvAJBgsgSfZZS+bB/1ROoQH/Tn57JsH/CWbZdSREXTizZIjjVS0Mhn+Y4Vv54+wM4+4f+LgHrfuVDEQy/1yf/Lkxmyz6RDYkNsZot+S7IOvfTCsdSrjCJ5MoLEH/3oR/EjP/IjOPfcc/FDP/RDADRfG9CPRD+V0rfdJym9FpC9Nuj+u9nUTU4Cl1xiPt+2DahW0ZzT+5SKV4b/SJvEEnqPnGVmX83/DA/r0Jvh4RyvuB8pRnAzikLL2mK5N/lgpVzYb7XqqEK4Oc3yQWhd1OP8UgLK/o60l56LQG+xCWCxrF4uWOh4F/2sn4x4YyQ6+6AA5JQRXbKoNIWOaOZOkLsys9mVwY2yHbKMwUF0AfBSybmq5HbmcGTmRbosanvBI2RuMVs50Qb5OHl/FOXV1moBFYaCVavIHVkQ4HqpFOZ0wuP1ktWHx7FhQBkmTGV0Oas6OOg4zM86S5dDHIltGhoC0DQNYNi6VIJpnORkjWPHkUr12s226Bv+HrvmAqm4Y21CH80G/nGUzWz3CW+u+xvxk5a+7T5JOV7bXfQ9jVsUYXIS2L3bfF6rAdWqA4w9x1duu2eez8SJ0mZGEfQ/27blJyx5EsqvrwE4q9XQ2pW1NX0SyNaZE+TSkp2H2+YkE5cBaGV22SDnvNzEXuB8zdkoX89KJFlVeRtCkQfiJKBe9qnQKP6RMzoJSB+TpsJQeGsB8Te7SE77tkzqvscahf+VSypZJW2jUnexcChwraLLMHol4swOkR0gFlS5xOWyIlkGpUJbdYLMHQQ62r3HuoHOfGQZgqyNOA7zqUh0SHq+v7k4MeWxaJk/hbZ7cFCPJ8sh741hpSzjnFVDraYPqLELWA2OTWQZAnQQx4Eua2jIJWlhoaZDJAvTyEh+iOaGq9Apbbd1WByP8Hfm2/fTzL71bfepkRPWzHve8x784i/+Iv75n/8Zz372s7Flyxb83//7f/HFL34RH/3oRwEAt9xyC17wghc85pV9qgvBUgDIsgxKKQuk+5HPftSzH4FMegomAZXR2H60Ljm+wzC01xFEJA84ubkB2Ehh0m0UUaEQxPQj1yUgyWcNDg7aKGBJGcL/+zzlUmQiSh8oJiUNryGtikxmKkF16k9SdEiHBOuXpmmOh13SzBRFkxPM5Tvbt2o2oAR4ZRJRXj84OGjpZCQovb6+joGBAZAehdH/MqqbdDkUOVYYYc4ob44HCSLLthTR6RSNRz/iXCbwZP8MGiMp+dglh7lMxkpKH9nXPlBNrn7pkCBNkHTstNtt+PQ6kkdf9hv7VToiZJt9hwUdVfxMAvdFPOlPJnn2s5+NBx54AJ/61KcwMzODo0eP4lWvehXe/va3A+gD46dK+rb7JISbGv6fO9dem0r+zWgepfS51CzDrvmvYtczakArAV78YtwzE2LvXn3JGDeRJtpKxaMolfz9jE46dckl+u+gecSRQF50UT4haK2GDkxSysyAvJRWC2GUYffuio1GsmbBZv2ELtfQpBzBqKbOaObxeDaZey2lgE5c0Zu5XtHQEk2g7sTmvaM0B6uKQ5foyegmVBlGkxhKBTbKjMXm2igX/Xy2pI0xerBtLQIsRL2pJ94+MJAvptEIUKtVUM4a7qIostFW556rVcnA7KEhWN1UIqASK83NTd2YXeViKwBMH+bqLkPikiSfEVS20wdERDGS6YfqWl0Foq2jQOyGOaPCycpCkNoMM7sRtww5KsTE5IUIZUQ7x5apG3EewTwDpXR5w8MaFApVx0UfZhm2bh3F0BBw+eW6LozCk03k3/T9EPyuYNF14Lnn5tEQM/bkz8fqx/QRnxFFAJot97uOY0xPww0EvtujIq783DiTf8vIztMsgdemtrufnOyUSd92n6TI355vuwtoMqzQTk1NAQDGv/X/4Mcmtmvbfe21uGe2jL179Xx1IXM/ZBmAMOdUXIF2/CnouWNyUn83Xm07Lo2rrtJcFnGs6UcyaLzVzIk2pwVDhufn8dwrp7GSBpifF1Qlzaaz2Y2GBZy/2xhFfZ8ui8nI0UhRVm1MTroTVqurQBSFCGWyZz5XcqJY/jehY5O7gx+vZGUgKqOcJDrUGIbeA0CoMkTVss3x0moBUXUU5Thz4DL7xn8ms0OzfsKTbpdqwmnJLmUxnN8pR5oB4unLTG6Zef2hAKBZPB8Vx1qHLNyqYs6B4ivxDiwtAQ89pJ8/PQ0E6Qraqow0K6OSNTQHyuqqM3isKIMVqlXnXPANdaaTrE5MBFY1gHFGmAHGqOu0rgHlpSWtgySBpbCbnNyZ8yEsxuOo/NRP5aLhLb2LWRcquJwpPMlIZp9zzwXGtrbd76vp+pLPedGLtE2em3Oc6FNTbp2RZZqaBjBlzeuOG00SvT4SJOlKwTrqA3QwORnYdagF0d3w0GtJGnKjUz47R5ovvU297Jtc19qjAOXia58g6dvuUyMnDKK/6U1vwsUXX4wPf/jD+Kd/+iccPXoU09PTuO222/Dc5z4XAPDOd77zMa9oXxyITuCRFBZhGOaAKJ86RCZYlJzoUgh6Eyg/evSoBVEJ1PI7AoQSwF5bW7NgYqlUytGSEGgm5zUBRdKB0BkgAW3WQVKd8Bl8J1i9traGdrtt75e84rK+/jv/TzCd4Onq6irSNM0BmwRT5btMfCqdAysrK7b+0lkgI8jZJ6wngVfZzuXl5VzyUOkoIaA9ZFZsEpymUyNNU5DfnuOF+uBYkCC65PkmB7m8p+gUAv/P+/2xKPVMvVF31LGkCiKAL0F86WSRNCuS915ytbM/KdKhsLq6ik6ng5WVla7TAzw5QDBdnqyQ/PTUs3TK+Il6qQ/ZZ/Kkgzw90SvHwZNJyuUy/ut//a/278XFRbz97W/vR6KfQunb7pMQEYWT2zH4oJiPKktEb2pK7xhuvFG/f+IT+OKdOzAzA+zdqzcXz53O7/bCJIFSQe4RXNuPbfwgR7WBalU/w3Cdp6nePGWZC9oZGSkjqpYRtBYtEXWYZQijCNHkhTbpGEzyTn2KN0SrVcHSkt70rK0BV1xhEpqahI+jcYxoMswF2+pkkQGq1Yrms+YGhVIU8SVQyjzuHmA0iZ1uTNLWigFk23HZBegh0J/LsuWzTB+RJzWqjSIksi2BTAlsmg1bmup2AZoelHuQKNJdynxcFxLtjmN0ojIO3KcTYJ57LhDUf4ByFKG81dQxNY2Ux5PNvYuGg5u4LzfrbYQIY5VHkM8+O++YkBtA6pfIgXlOkK6gEkeIosACBEx8Sq5aCTZ41QOgx0Ctpp0Z9Xr+1P/8PLB792Waa7T5cNdR9yTR4NL6eh6UH09WdEH1rGvMhFGEEBkqj9SBVgvjUQREpnKtTHO2Tu/S7WuYZ/KENSvHaDs/TC2KEEUWF8doYiLTWvo3poxKg9TUr1rFohpFBGBcmWcxoagcO9KpUQTSScDoNI326mW7+9Fsp076tvskRIJhEiDzf3cMjwXy30WRRvTqdeD3f18bgL/7O3y9cSG+9jVNzzw9DSBbtjZERWX7s+D8TQAxVB3srBpbMzNv5xG87GXA5CQWW4FNHL6+7lKbDA+HGBoKUYlSDUgvLAAPPIDy9u1Q1WejXjf1aDbRmboQe/cC1epO7NwTo5OM4taP6jKvuUYvE8JsxQLyF1wwjvV1bdvX1nTRQ0MBgDKgyqhER9zcSZD5iitclnOjpyNNDaCXVRtQCvPz2sZeXK26vCMiSCBMElSroxgYcKbswsnEgbbsKxpAA553ktG8eY6B8qQDVbXjE3auCbI2AJ1UlX5me3II+nFaf2WMs1ADGKcGeKdTl9OXToxuym88jDLgKGaSBDMz+s/5eV3U7t0Ami20VBn1OnBxlGky8zgGnv50h/hmmUX5V1KzRklCndeEDRR63DWZWPubZRoon58PupZXUaS/W1jQauR648IrJ1CtBtbu790LzMyEqFZHsXv3KKoTwCiDIapVvfZQHYQqhaqVcznElTKOoZkZV08BSCtlONvv/CpQr2N0agrYM6GV9IVZbXh3PxdZBuxMFg3ZejNPCUQvlCk/QMd5RbIMl1yiHVhcn+i+F+sYGcBhdFquf98pCsgHJ+TC9NEdOCPWo44z7vSSvu1+/OWkNPO85z0Pz3ve8x7ruvTlOITgoYxI9ik+fOoIPwKY5ci/JWBIUI8gJhM6Etj0I575LssolUpd0dN+FLUEIX2Oap8iQwKhR48etUlACcamaWpBXD96WpYpdcS6EnyViVEZoS+j3mVkMsFxSQFCXbMuBI2LQFifw5vtpe7X19exvLyM9fV163zgNaVSCUNDQzkngYzSlvQ8sl+K+OapRxkdLbnP2e8UqQfZHt7fi15IiowG5xjhmODJA+kgYrukE0mOYZ8fPYoiC2pTF3TSpGlqn+3zm0sqHp+HXVLUyHHA9yI6nCI6maKTIUUOiSebfPe738VXvvIVPPzww9YBBvTpXE619G33CQp3Zty8iOjkruuA/GZdRqKnKdqf+xzqAHa2Wrj9dg1WzsyYYLfdKn+PiWpjkZQAJikpAcE4BiYmdKR43Ysqhwv+ZRTx2Ihyi/8HHwSGhhDWahgaquT2rXzNzeWTR5nAvFyEWpnHj6My0tTxUw8MAGPbXfSUDRv3qUeoPwM6pq08ph3HJrkkK0eEIooQ1mpQUVlgygHKvWyQAdBJGZoDKKqx27B1Eafqqj/yiC5m61bnWwlVB61WgNlZ3R0XJpl9Vqul72k0TCDPQ3UX3Sc3moz6Yn9GERpG76TKJRaUpkDGNnJTKM9C+yC6/KzASRAqhTBSaBuggcFnaaqrQpYb6Y+wUV1ZhorKgEihYZwv9TqT3enrh4eBCy7YgWTCnJwwTiJudAlO2AjB2TkHuvDFtnBw791LT03+91ir6fg7pZAP0RSSJDiSlrG+DmzfLqLToPuyWg00EDRnACOjS7vn5Bip1TA/p3/a4cyM/rxWc50kARnWyR/v/jxxmm5Ue9nu/kb81Erfdp+gSBBdgmP8rldktbx3agpIUzS/9jXMA9jdauErt2sAfd8+gyvHLcdrDeNgzjJkWWgTd+qEjpkzqPW6RjYvugiYmkInrqA577DqLMsHXMcxUEmUDv8lQjs2Brz82Wg2Cew20WzqutVqwOBzRnFwH3DHHfpxV15psEMay0YDo5MxkMTYb0DvLBN5PgBUJgyIeuiQrju98tQpoG1dU/+3rDSofuhQiEceAS6eErqVgGiWIY5H7UfNJjA5GeoVj5wXTRQ7lLIJJqVPXjs+K3YqimNoh6p8JkJ7kmpw0Jlgmt69e7WdGt+S5sZM1tR/lkrG8dBK83O1Us52LyzoB8Qx5u50XWSpx1otpNEODaJPZHpBNTmpHeDC8b+CMpp1NwzTFHp9JaMUhDOiDADVKo5kZSwvO2c+L52YcD4i26/s/7k5jCYJ2ltHsbCg7/30p/U9JrcpXnJ1DWg00InKaDWB0VgrrVytIknK1owNDkI32Kwpc078TFMHhWgDX/mK/uHs3q3b/+CDwHe+A+zZg/hKDaLjzn16wPoJums1dCZ3IcuAkPQrXDNlGcZGzJiZa+bWRRb1oWKkl4sLW0a4c0D684EvHJ9yDjkNQfS+7X785aQ0873vfQ8f//jH8f3vfx833ngjduzYgZtuugnnnnsuLuFZ4748LiIB3WMBUD7vuCxDRsL63NRFNB1+MkxZlyIgWd4no3eDIMhRnRS1Qd5LIRjKMooSWcpIZ5ZT5EgA8lzdBJwl3UYv7moZbVzUF0VRxv79BOFZhmy33yaZVJXt9ul7ZAQ5o9l954Gf4NKvj+QMlzoq0sOxxpx89+/x6WAkHY7PW08gXepE3sv6+2X7NEak35E69znnKTLi3+8bOfZluySILmlb5L2sU5Gei573ZJK/+qu/wi/+4i+iWq2iVqt1jf8+iH7qpG+7T1D8iFWJJAL5HYsUCe6ZDUULQBPATui9FxMqyb29vbdAsgxu88/dudn0tRp55gxAA6BdmL+MtDMJ0pBlUFEeN2beLj6KAWG2LB8AjCIE6EDSrGxs5Lncj0uUylG0dCnAb1CWGcoXEYHlR6AbIb2NDEKkRFGAMIryCvTKKOyWLMP6emj1Jdshq2z/YIQjN+vycwY2iHrK+5n805a3vt4dcc5nF+nc1wsLV0pHt/MIeJrvWunzyOkgV8Ewp1sZRc/DGxWxqWZkt9zTWvoW8t30Av9bLZ2Qz1cQ+48bZL+TzfEBSV0fKqGXTHPN5k6ciKPjGkR3z7NdJihnujv9OKTXHHIayGa2u78RP7XSt90nKUW2uug3WjQ+DaC6COCIuY9OWJtLNMu6EwJ7c6L9jABommpUUyl04kqOTWJ11SWxZBWyzNSPWSIFFZksn18xyePqqgskZ1loinnT0k45KoouM0tjLudTT1e5NkIkhZZzRJZ/7sBZ+eWIBke9QoVeeR3Zc/gVmyBzWPgiu5rrFH5OXSESF4n2KYVufTGcnZ+JOVF2sUwJYnXKh3I8inWAfIQ115FyFfEXBllmxkHZ6iJN81Rm3I7m+lNUUiX62lYLOHBAA+KHDhlMmA4Fs6aTnSVtd6mE/JpSjg9pF5mVlDxwhw+7RKi8bWHBBUvIAIwsc+MkFp0jA1w4+NlHfuf7/esHxmTFYyAn/hpK1uM0kr7tPjVywpq57bbb8PKXvxzPe97z8NWvfhU33HADduzYgXvuuQd//dd/jX/8x398POrZFyEEARlJ24tPWUbMSrBKApKAAwh7JZGUALuko/BBcL5LcFIm+iRAKQHfXiCt3yYfLJVc2YODgzYKmi9GlxNM9jmq+f+iqH1GYRfVnXqXwKlPHSO5wYtoOwDkQG4Z/b22toa1tbUunnA/Yr2Xc4DXSt52guwyQafUn7zPp/7xHQ9y3ByPI0fWS/6/KIqe9ZMc6DKynX0nTwdIXvJ2u50ri8+SnPnS6cA2+v3TKzlt0VgtcrT0JS833HAD3v/+9+PXfu3X7GeLi4s466yz+iD6KZS+7T5JKVpgy8WzL7kdkLs2BpAAQKulj/hC7yFsIBKPqyYJkKaoqAwrKKPR0Bub7dsBNJpdPNMdE4lNIFepfK5J4rVRBLdxIwG0ITKXzYgik6gMbq/DjVitZo5ssx5sJ6N5owhRFOaA2LKMjOa1PQBxZDrppFRtlulybVIx6teUy6Rt5GT3y+PmP8jaiKKwa/+wtsbgowDlajUfkW4QjKGhsCuoOMsAFem68ug9N8TtLMDqqlPz0BDy9ZaV4Cbai35iN/GWXLKsZuZlAxU3GSEYrxS0I6PXZhEA0hTbt5dRKmnOV8l/7p9qHh5G/qiAcgnHhoddVHnXPjqO7AAN0EGWdQd45ICTIn1JAEPUHUtLLpKMD2YDvHsZ6VeroffvWN5j6htFAdCC/c3Z4NZjOTG4ue/h3Mm17zTjHt3Mdvd5VU+d9G33SUgReFv0Pa/Z5J4EQBWwtrvV0oHZFmhUCivxDszOApdNpcD8PKKJC+2JpxDtvEdaUMnMzeUfKZMYyykQWeaSUE5OArWawwpNeUNDev7lSykd9Ev+6RDtPOBoIqmr1Z1YWnLgt226nEvlQsCz23wWoHOa8KSWTXYpc63wmJORXGJyaQM5H5rkMGQW8Q+ycWpdXQVKpUDzZ1PSFFu3ViyP98YGsJLmKU/sukE4tzsIMDgoEnc20nxlfYousTjgcieO9ToqyDRPeFIVzEHkdpdrAGFH5XiQei4cx60WRmsxlArB5QslirS+tm7VQ6ZaBdAo5WwOMeokAS64wK1XSiXTf9AO7pGRwLXZnJbjAQylYPn6MTmpF6tijaYdEdAR362WvoZJTE3UeZCu6HvIyeJHoicJGg2qO0DX6kH+hr1IeCvmsw4CBFHabZPkj06uleT/2WfyOaeh9G33qZET7v1f//Vfxw033IDrr78+lwn8P/yH/4A/+ZM/eUwr15feQu5mAo4+UA4UR/v6IBQBbcmJTnoMn2ebtBt+JK8E1fk3EzSur69b3m1GcUsqE0njUgTQA8jRqgAuepy0HwMDA4iiyJbDvwHYdvi68SPsJeBOUF5SxhDUZlsY7c0I+DAMc+CwTMJJShWpQwKyq6urOfCY+mIUOp0DEjj3/5bt4f9Jp0MQGQDCMESWZbafpZOF97FvJFe5fC6vKxpLfn2KvuMz2X+SesYH+X2AnXqXY4/R3+122/YNk436/UAdyL6gw4Lc87KPKNSHf6qjyPnTq/3yGl8nT3YgfmFhAT/xEz/xRFfjKS99232SIsFYPxrL45rOLcA9EDe89FLsvP9+oF7H616nNyvNpgDzogh3z42iXgdecXUG7N2L6Ooftid/xzZ+oDcpc3O6zD17gGrVUmjwcaR8lHgA98BIM7dB4c5X0FXw/mpV1+vss125SgG7kiOaz5VAPqPUGAUcxxge3mUDrZpNoFyNrWMgtxmRuiRgnaYW6JZOgMVWgCjZgVDy10KD1ZnBTS3InAq9EywwfRPEMaKo3LVRdVT3AZQqI0nKiKsmsi1NEcehTQrHE+0cDkNDem+YJLCbaSbjnJjQr0rUdh1j2qA3qIbXk+03m1oOLW7+azW3Ge8KV5PjMYfwh/ayssTn/c24eWAAzYF6wQWjXRtx6UCwvOCABRWGhw2FwGCeP5a4xPo60FGhBlREnSXmnasbPQj+w0mxQG7UKHLEtkrlI9h4r3DirMQ7cN99eqxMTyOvR6X0hsi/XykgTRGIHwejO9NUNNLfXEtKAf8YNTff8l6/P08D6dvu00P6tvskhAaNP1R/zvRPAsl7JJI8MIDKBRdg+v77gWYTr32tBs8bDZMo9BE9r996K3DffcBlb0qB229H+Q1TmJ3VYCwiM0fNzur6DA4CQ0NoV8fxlU9ps3DOOboKfh5J+o6RwSUOveoqII4xeNTUwbStErWxe3eIWg2oNPejEsf42Z8dxdIS8Mw9HUeXRUC/XgeGh1G+FCgnCQ4iHxVPEBWlErBtW57bi/NXq4VKpOfGdlRBq+lA2FYLqBiqjJU0QFSrIDBz40bT+URtt/B0HfuD3vxmEyGAJBmV5pxfWRsDAOeeW0atVtb0YfU6QgBXXrnDDoF6XVebOCLp2ajwTqT5vi3dFyd7s2ZqZ0H+dJUBeFGroROVc8mpkwR2/FWwiOnpCjAHnR3+7LPznawUyqqDqBZYX4u1m3DldNlv04+VahVPf/ouLC/nc3nzNTkJhOmiq5yIMt/Y0N+/7GV582QDGFotTSFn1imLaWiZUOxac2ZGcwkliTauYiFqTwhceaX+zjiB7LowSZwNp82Vjhel0JnYiX03ufVpWaF4bW6e2Yl0vpxQIbe+WkkDLC0BY9uTbo+VdOKwbJ8j0e/g0xRI79vuUyMn3PP33nsv/v7v/77r8+3bt+Pw4cOPSaX6srkQ4GVUdxiGOc5tSXUhQT0ZTS4jmiX3da8EohKI9kFzGXVOkLMIRGd0dLlczkVD+8lPi6KB2W7ARZAPDQ2h0+nY5Jry+6LkknQkFEXeUw9Hjx5FFEUIgsCCqgShAYDJMAnSMoqcws8JRrOveN/a2lqujyTwL6OjpQNhcHAwBwZvFpFO0Fley4hygtYE0YsAXBntLelTpLNGjo0iIF2+++VKShr2m4w696lQZLlyXKyvr+cAdSYNlQlzoyjC4OAgwjC0TpUwDLtOF7CPOEak/ukokbREfr342/JPBfjij2eppxONyD6T5Cd+4idw8803481vfnPXd/1I9FMnfdt9kiIX6hJ49KNduFAnoOyDuNdco8PC5ucxduf/gxe96D9iZsaA6GkK1Gr4wqc1Rv6KKzPgjjsQXHmlSfYEYH5Wc0gy86NBV+fu0Htz7gHkup5VGBoyvJ5ZZoHFlWgUgD4tTI7rELCR2CGAigKADGg29Of7zLs84n3okH6ASUC19cpdeOQRt/+I4xAVbpaKNoFSf0ohivN7loUFx+fJ6GXudRhxnyQO8M4h46yE6Mu4WrZfyUtklbZt05vrWi1AJdMA6s6a24TJI9vyAAF125zT301PmySXjcyCskeagU2oCQQY9cPH0N2Xkk+8a/xRPIdOhtDSe0aRAUP8sSz/NhRBo1NTQBLbiLwgFXywrAMbniToqBAjIy4KkonqDhxwe1RGOEZR2W6o5U+mK+JOgtjy6LxSwO7daGcBFhb06fFdV09pYltyDQPuCAU36lGEdhZgdgb49rd1Pa+9Fi4q0t8Em99xW+lj8mGrabnQ21HFctY3m+hugB9NSd3yOyJHRVGN3mmEJ1o2s90nDPqfhkDDmSJ9230SMjjo5lXaY+no4u9Pep99251lehJ72csQ7NkDNBqofOX/4Ed+5FWYmzMA9uwwMDGBL3xC0z3/2k+3NPfza1+L2dkKJiYAbKlrT/fMjC5/agoYGsLMDHDTTdpOSJ+h3AYNDwOVuKNtiPFu31Pfgaypixnb3gHmzbzcaGDPnnFtc751L7CxoZN7KgXcLuZwD0QHAJx9NoamntllIkJAV+zccx3yzPkuilx0fa2GRlyxmCjVvjpQxkZTMqGMIkvddF6tCiqWajXfVwRRTZ0ruxPEsYsk55TPKTbL3MmyCydjSxUymjSAJMG/peNoNNwzldInr4aGYMFXgteV7Eg+0WmS4OChAGtrLqdKhVQrpl+MiUCa6jXEyIirO+bm9Km8LAOe9awckG0B39YigjRFFO+wKtBAsHKLFW+tgHpdj6tt2/D/s/f2YXJc1Zn4q5qampqemlZp1NK0x215LI/lsSI7si1ANjYxQRAcIJgsv4SQsIEAuyQhu0BIsrD52izkk7DAsoHNxxMS2IVsYCGQBIc4iwgGKyCwAIEHPLYn9lhqWS2pNdMzU9NT0/r9ce5769SdmtGHLSHsPs/Tz0x3V92699zb99z7nnPfM/zsEKhVMJMIxdyGDeb0Qb0Oe+RBh8qHIRJT7OiojKdmU9aTrGoQhpnjxQDbjYaM9b4+4Nprzc/q4EHgs5+V4A5j39phOXO8A+jc8iykqUlEXgeu2707c3xPT2f10sfZTD0nJ8XMx7H4IEqb1AJXL8bM9VyqBCHseG2nAqAfOWJOLbj21nVuc4DptapeYOs9wEUWrd213RdGzlozcRzj8OHDuOKKK3Kf33vvvbiUrtSunHchAEgw0QWd3ShjfkZAHMjTmRDE1FHi7n0UN+pcvxj1rrm8SZmhAbMiEFuD6JqCg7QdFAKa/IxAtHYSMHKZ9db6cUF0HcVNYV10tLmOsHej0HV0OHWpdcLocoLpmqqF9eU9BG0JLmvaFV1/l2bE/Zz6Y5JNPoMnDVxxnSTaWcLrXa761aQITKaTQJfjeR6YCFQ7HjRvvm4T66PBfoLfc3NzufE2MDBggXZN76NpbhjBzr7l2GV9db3d35PrhCiKVi+SpxoQPDY2hl/7tV/Dvn37cO2116K3txfdxKIXXrq2+xzFBR35mQbO9CLbBdZJjHn11bJTMcdeh6+/HtXqCDZuBDAnm/j9+2U/hDSVnUySoF4XMBSNBvDoo9nGLgwx0/IszaQLoJvAbl4KNFvZmzjGtIkkGh01Sc905I1J/iW74AXggQdWRtP29Mi1jz6aixgOILQprZawbLRaQFkDlTo6UH9mXl7alk2jkeVlz5Y1Nye3EDxnYLqHzkqQWW+uCJIACKoZdzuQ+QHco+yLi7LBLi+bdpvNnl8Zsdgo95XDw2YjbiLuuN/1Go/BZh01G8vmVKZG+eshDEsqIV3WTSW/Lf2mKQBYaXcj5OgyRcaPukIvrn64WdTR23EsUYMEATSNkIpGpGrpiEGaor2htIJHPxuLngXSyfOeqx+DFnTEHMeM7+NQ3bP4jzzDw9ZaLYv0ZP1MG+ZRQtLMkvbx1Eaucq4Y3bLOgXq+zmWQJADicCVApyVNswR5PC7hRtdTLrKN+Fq2u7sRv3DStd3nIBxvrsNQR51yIqcUgeiAAIOkP9m7F6XxcVx11TZccgmAR8V7uH+/gHxotYBvfANotVCvC6iMZlO8ikx4XKsBkCnrwAGpxq5dGUYHZI/u70cutLgdb8a+T8i14+PIAE7fB5pNeAy3npoSI3bggNxLVDdNM7L0qSmZizZtApaXEe64AYCloBYQlXtPy1mGTI/U7yOPCHBp3tIeEl/nI/v7V06V5ahjHbhtBALa8kvO/Uzg2WrB98s5HJ9mifM6fQLbxnxZNCwvWx7uJByx9HiMRrcn2Mx4IKiMuWY+szckUTgB+74+AJeZhsQxjrcCLC1lAdRJYupyMsnakKaCsjNDu9GjdViYwsPK5tyQDXysDOSgjpggs9kUPpYkQblWQxgGGX1PvS5jMo4F9TY2vuMHtq9rNSCoP4zq+BZMTytfSehnThejIyZOjSLJjev7AKamkNTrCHldFOGEia8oQ+o8MZHZ7VYLiOMSttRqmVLDMHOAm2e1EaDVzA5hVioyrK1oRfE3Yuj0AKBM8+r7SBNYJ0gcA0N6ve7abx1coNdbeg65iKVruy+MnLVmXv7yl+NXfuVX8Nd//dc2AvMLX/gC3vzmN+Pf/tt/ez7q2JVVRIPMOvp8tet0ZDGlCBR0gUCXS72IC9vlRj8XsMvlVnfLdOvKv0XArn5PsLsIdNbi8n+vFVm8Gj+8bov7KnI6sF0EzjV4XVS31fTq6sfVkdaVexJBX6+dJbps10FTpBe3/a4+i8aXexqBALfWob5HOx7IJ6/r6J6M0Fz2bn3OZIyyj12dPpHyZKdz+eM//mNEUYTPfe5z+NznPgcAK/r4TKULop+7dG33OcpqQNvZXjc4KMgvN72tFnzfROsaQnMb7Ks293bfRIBRb2CRj+hdMyBG3Ue+7Nx37mZEo8lEDHXhPT2yQeV1rNtqciYLd9cxYa5P0+xRLMrlRn0iRDd9xRfmw7Wa0EGWsMy9z32GW7TvZzyf9hlF/VIkegN4puNV36v7rmgMuHVwxp/vO9euoSMLCqwmDo+5TU6rgG3+JpgjDbHa+Lqb4jPVgftejT3d9uXlDOdfszy3HziAv4c2pGvZ7u5G/MJJ13afo6w2oZ/NHKmdXsp224NAhhi61QJOnTKJFV3bzZNbzjxK35w7ra6YPtSbFdOwdgLo8vk8fl+wtztj2+3mlnDFlF1kplxzwr8rbFyRFDkk1VdFpmt5Wd1GHTBhjBN4nHuEKTBXnYL5Wvti9He0CVwihaFxgBxTleNFa82Fa/WDC6DrclgxM+j8MMio7biO0/lGnGI5lph4dUUV1aBbzf5ZlMDYbbtmM7piUEXOR6VBa3rVc86aIPe8NX+6q+nV+f2sek3R/We7nrpIpGu7L4yctWbe/va345WvfCUuvfRSnDp1Ctu3b8fy8jJe/vKX41d/9VfPRx27sopoEJcRuYzidkFYzZfN9zqJJoFMLSyb5WnqiiLwUgOejCrWQKfmP2fkL3nd3YhjRhDryHWX6kNHCutoYTexJ79zAWOtA013w3axbB0lzr8aFCZ9zcLCAhjNrOtKqhCWralrWCfWQddV0+mQUkbr2I2i17oigKy55NkOUpzovnAdFro/ea8ec/p5Wm/Uv0svo/uebeU1fX19uTHDervl6mfxe+qG46Uo8Smj0/V4cq8vAvhdp4uuB8X9Xeln6/+LHFhF9z0Z5aGHHlrxWTex6IWXru0+B0lTYN26fEi3u+PV71cDPH3f8LZAwp7NGeT160002e/+BbB7N+r1N+Hw4WNALFygnaiM6WnZu8P3M05S81xi7c2mROjs2LHylDojcnSdvNYMxsbKAICgcSiLZON1BA5Iw9LX54T/GGGiszAUjs8swxh8XwWvsWxynqZpPgJXRx07G8OenqDwUt+31LJ5TkzdBhJoMsTPRO/nIvQhgXgENADhp920ySRznVab0zC0m8w4lkiz5eVMNXp4LC05lfV9tFMvBwDr3KBhKPUOw8DelmtT0aZZRY63fTkSXjLl+L7Ub3DQHKfWO1c23KUU6e/PE6JSKVphvN5EsqV0/CAwL6DVyMadxl74GCaD3bRJHWJIkqyvFO+odTBEETrwcPRolpCX1Ko2WozhheSeTxKU/BRhLGN940YJAqxUDJhvjtJnnPiAH5bEmRGGQMvUud6yaFeSBPYURKUCASr0mOP/WvTvRF/jzhVFQNd3Uday3d2N+IWTru1+HOKCYxy3OiSa1xX9Jn1fwnTTVKLJjS2IImAkmgH+7M+A5zwH9fp2AJNA5RL5HUcRpqfNwbFdm2TSchBwgophKMHuvr+StcP3IXRa5t6S38bOnQF6eiRy2NJg6N8jI3qXlmCTeQwMyDy0sCD16++XMvv6rO3mM/v7M1Ngy+bcrBcYfNbGjUAU5cwI7TOjsjn/r18v1zB5tW1sksCPDPDLtvCoGa+JYyRTmc1IU0OZgoz1a3zcrKmYO4a239SPgfe0AXPG70F7Zh0fUWbnNOXX0pIs4Xp7Aeyu2AjqXqUO9lvgK9CSjhh9Ks/odvao6KMcR3YRwkeXQkVTp+6xIe+kB9LlJonYMNrFNM1Ow5FKzNhW0t9MTwPV0W1o1DP1p6nixTfPPt4S+7dzpxQzPm4OVoyNobRzp61LLmjedP6xY/ZQgLLdyBaqps9nkkDodBoNBLUaentLlmqd/T7T8rITjlx4hULblqaZybVHFSoVzM5mXRBF6rnuglB7s6Jo5WKtCFjv2u6npJy1Znp7e/G//tf/wm/91m/h3nvvRafTwfXXX4+rrrrqfNSvKwWiI6k1Xcjc3JwFR0n/QRCZosFaDRDrlwYMCQC6SUVdMFGDrpp6hFQaQAY4EogmDQfroUFXHUHMNugElJqaw6Un0WAo60VucCAfzaz1qNvLa1g+gd40TVc4G8j53mw2c/Xk36JIcOrD/c5tw7p166DpenS9dMJL8pXrdut7PM+z/TBgzrstLi5afeuEp240PBN1uslfqU+C2LrOvId9yz7SNC58z7/UFZ0rGkjX9EX8S3BcOyn0uCQ1Cznp+Sx3bFPfpL3ROnNPABRF+7Mf2KdFkftFpzfckwJPRemC6BdOurb7HIQ7LA3K6gV00UZch9pQwjBDuO+/3153ySVA6cAX8Z2//mts+8QncH/PmwDsw6H6CzAC2XDs3w98//cDuD7KziGbZ/H0+dSUbGqetUu4J4/MlmyCKYvDZgTZsjlpTEg9eMxYk7KajVbHHCsOdnZyUU62YLM5QRjKriiKMJ+IDSK3q1TXz+tPg+latyaCCYDduHGTzGrpfbzdCzRaeToXVR4qFQu+LjYzvJ3Um0tLedptQPaBXuMxYDrJyqUi0xS+H2AonAeQYKZ/CJOTUl5vr4Pna3oUX6KoeTJ9djafPDWKhDbES+YxFId5fTubbv2+E5WRphl1Z7UaoBT6CNDBpk2G09zl9VTAe6sFDO2o5ilG2F72tR47ijdIs7ywuvp/+n2I23vJvN3oRpE5yp+mGUjETKwE6HO4lmfH+rFjwC23ANft6EjbHM5WjI7KRrz5MFCvw6tWMVSt4qqrApsHFwAQx/Z4ObEFkRJggPVS2IHlTEpTq4rRUQMeHFS/9aLNNUEc/q/160rRZxerkB/5bK7vyjlJ13afg6RplrdD2wN+p7MvEjF0aVwAuY+JEicmJKlCq4VKDcBdd2H/Zz+LnZ/9LGbxOgD/jHb8CwiSBO2wjAMHhL8Zd9QEeeWzfR/o6cHJk8Ds7BzieABbml8HwhCHom12OsvZbt47PY2bxwwyvW+flHvNNZYixraJdTbzqeVV0RReTNBsKDTo+CTW6iXzGUdcrZafvzjR0/5XKhhYWukLZ7oU0psMb5K9EdcJmhvL03YuinBktoTlZaA6tg1eMm+pvKpVoIwZRLUyDh9WUd8AbhibAe7amzf0l1wCxDEiPwNwvcZjQHWzZdqaScTe8D1qcT4zpwHhl5eF3Q4AHpzysHVsDO3Us0Ms8A3o3WjmndZuomzj0E9TsWcAUKmUEBhbYRPKEgjXQG8UYT4cwvQ0MLrjBqHA0esE8owbTnhrWysVdGpb5Cdhqkb2Pq41lXm3J71KHHuVCu7/sqzJ/s2/kb+lxsPAZEty/uzcCdxyC2ZaGZ1KkgDtqIRWU2z31JSsZ59xfTtbe7Iivb041AgwNQXcXGsJFVGaIhrbjksvNXlMkDHULKz3MDhYQgoIYUySd9gHfgeYMAa+VsPcXGCH+1DckUUY+V24JlWAfM6RQ6EDzpWu7X5Kyjm7F6688kpceeWVT2RdunIGUhQdy0jvJEmQpqkFA4F8BLGOYCbIqQFORqS7UbcEughgEtR0+cwBWH5wTbHiRoET8CRwy3oQyHSBXF6jo5kJJOukqBpEdkF0HWnuAqL8jIlEi6LfyalNsFjrhVznmn8dyBJm9vX1oa+vD77vIwzDFe1wxY1u1gCxjrQneMvodX2fy1uv2zAwMGDHgO/70Nz1RScLdB3ZXv1aXFy0gLwGxHXkORPW0iFBvWjgnfVst9vwfd+W61K1EFwn2N5ut3OOBuqQUeh8r0F0ir6evxtGqbtODZfaRfeVHm8sM1ULcZfOR5fLv08mgPhNb3oT/ut//a8YGBjAm970phXfL5rQzS6IfuGla7vPQhiiqkFmIA+a6QV30SYckAiecASNOrBt0ya57sQJVK4A8NG78AkAT19aQrJ0AsAX8MgjGYh+//0JHnggBG6NsvAw8wwvbaPVCmwwGv72b4E4Ru+u59l9l8X59SKfOyZyhgKysxgYAK64wm6KDx7kHtcDECCOAxN4NoQNVZO0ykSodaojFhwGsr2nJPyE2jQGCMMAvt5wmp0PaWb0NO0Gpwe+4T9PAcCXyDXN160fHkV4cMqzdLYMVuZediju5PuTcnBCeF4HB7NNrwLRg9AHpqaBRgPR7pttMjLVNQCATliCp0B0Uou2WlniTRZfrRrubRfM0eC3E7HfTj20msiB8wMDErkdoA2Pemk0MmVyE54GmJ4yEWhVD2NjWzPd6gJZYWZjM2Oj4wdoTmeXtloCQBw7llU1iiTQy25om/J7SlPD18pkZ+aGmUg4a20kPrKfH/l1H3hAnnfHHRAQyXIgwXpGDjUCNBrAdWEiwJcZY0NhiJt3CWg2n3iYaXkWg9c/aY6TWg0ZH6wBwZg8bnTUJHxd7TevASF3EOtQUy1Fpz0usJyp7e5Gs1146drusxT+NjV4yc8JLuqTN5orCrD3Pdgoo9kEbmD4cqsluUzuugt/C0Bm12kAezE9/QvYurSERgOYnX0M3/72ZnSqI/A2TWfPBoDeXgPYNhBFA8CnPgVs2oTwpdsAOCZN56KYns44sKfNBHzZZXnjY5Iqz6cB9u1jsPIQqlUgrGQ/XS9t5+zuYj3DDUvpjDg3DZp7PCnlaOPKjIKOY0m4nHroN01jfo+SDyD04fuS0HHDBoCE2yVGtjcUqO9EAE/dl0VKR1HJztXVKsQ5GifYtGkz+vszBzv27gU++lG56PLLswTTUYTIrC28+iFgagrlXTH6+yW4jFj1yZNG5yo3CHm2OUwmJ7O/vu/Z5UYAk8NEJ6RUNlMT3rdTL2diAbGfw5tipKlcWvIdoJn1imNMTYhpazSAK6/cLklEpx/Me7J5jLFSsaHfTMRKfXF5QIB7dBR4znNgHQZJApRMv8y0PDzwgPD3Dz/wxczg9/QAt9+OGX9Ilg+N/M+QJnRyUl6bNpl+4kBMEglYiWNMTUm7bo6aNpNoMD6O4Q0phpcbQBzjqxNZcniODzrCN26UZbLNJ0NHArITm9Uq5PO5ueykJZXO8ceFqAui698wrwO6tvspKmekmaLOWE3e+c53nnNlunLm4kZQA7AgMIFeAtJFFBoalNavouhbgoqaFoMgo36GBk91RLYGdzUIz0hhgsGa4oTPJjCqk1JqkFtHO6+WpJTgpUtvop/jOgxYD4Ku+q9uA8t19cQI/N7eXqsrDZhqXWungQbutQ40xYkGzwkWawobtqeImoZR4hqY1v3jcqK70edF9VpaWkK73bbl9PT02DHIF8dDEARgItH+/v4VAL3uY5cn3h07Ll0LP9Pjl21cWlrKja+iCHM6FNzTAqvpxu0rzbuu21H0/5Nd7r33XktBdO+99674vijZ8JnIU0V/T5R0bffjlMVFWSQzY5SO+CkCwlYDx8IQ9brsabaxjMVFWbNPTGAewHcAyNnWf5XIJBP1CjTQaNTyUcgK8UuSwAKPmJgAqlX4u1disLkPmIxKb857erLQIwMyTk8LKM6T6NwHMslnHAcYqlbR8YNcsDOL9NK2fdNBlnCT9OqDgx5KYbiCoz1NSQwiILxNrAXIxp67TiKtOlJLbYDaCHD0qGyMuWFllF3uPg2cpKkA6I8+mkXZ5UOiMx02GtaRwcdqnaepUIaw33hbs5lt1hlAnaZYebNukwLReexcBxUSE+KQDaCcC7qfAXT8ALMnbI5bu9ePIg9DUZh/fpJY3l/WoY0ASSv//BMngCNHsvyk3HtaXlTVHmlimoH7ZkdPXIh9xCbzGdzw2/HOI8uGPoH64TWoGISfxw748CgCqlttmSdOCM0Aq3jiRHYCAmmaDfg0tT4fr3k8Uzpfq202NYDnjiN9muUiOBJ+pra7uxE/v9K13U+Q6PGqJUlWcoGvMJpyX70uJuGGDWaiXliQ+cEkMp4AAJwA0BbTtLxsproGDh/ejKNHgWEed1K82IJpJTKXffObQK1WaNJyc0SzKeAivYr6ewX+H2/JuuDgwSwwmT4DexLHWFn3cEwYAphuZqeWosg6TKOINC1C89EJS5bexJbt6DGMJMGqddIC2QkANlSf8jMO4mPHZOrlZbnofNOoMNxsuyoMAdw1KfrZsSOLnjdt8I2txVTDgqu+L/fnkkUDaKee2O5QKL9StazjWqJeF7PS18dABWVzefJARaDPtDxxKCOb+knpA4jtbqde1paWAsTZUUY3tN2sb7UKbNUdSc9zo5GjcmnIYLUJWFndel3GSk9PxlyihyuvbTRMW++9V8o34PdxDOHuvXlfAbuUeqVdHhiAnMjctEkqzouWl21UPJJEGnj0qHzfaNj17dLS9iy5K3I4eba20wo2djpJDCtCMi+N4e9f8/Fpu8YFiBZ3fuD7iwBE79ruCy9npBm3M77yla9geXkZV199NQDgO9/5Dnp6enDjjTc+8TXsyllLESCsgbzV6CNcAFkDzKcDu4rKdClT1vrcfaZb96JXUd35/2r10NQbRd8V1ZP/F0WOu9Qda0lR29aSItC3iAJEA8wUTbfiXkdZjSdf90VR3+n/tQNFO020k0BHdOvnrzUWTyfuiQzdt0VJU/VYdk9xFPWF6/yhfor6+skWRf5EyGc/+9nC/yldTvQLI13b/QSLG22qxV1oFkSn+j4yjhMdqQpuZ8sANjjBz4kUw10eF/ZqIWz/NdfotbLdA/AiDcjqC/v7MxJzA/gWNW8FJmH+oQ83972qb9G+g0ClxhJZ347RiJe27e5fkkwWXEx0WkV9I0kQRBEWFz0L2muAIk2xEkDn/zoBl46W0kpQYHcUBZZph0CF1YG6zsHC7TW2bk3HAaM3c46wWD2ccn2m606AV42Z3t7CIbr6OCmoQ66dyC4nqMC25W5NhQ5nRZlpCjiP1qeIdXVye0CdPI6gTZiBBCscT+ZG3Qek1eGluaS1/MD9rbk6OxfRDjm+/y7Lmdru7kb8/ErXdp8n0b8xNzs1vyMHMpxLOQHpCQPadhuQdmnJ2O45LC+bCOxHWytOEsHc3deHnB3SNgTASmOhjYieFOlxNGWv5j9YTXidnB5Lcs9wpyjt6Ka5tL5CbSeTBDAgegcePGW7O34Aj2Av+bQMWh5EEZIkwNxcZuNo5gHY63oGsqnI8lxTZ/r0IBydmvpZB7ZzDaPpkaY2Dwrtkct81ttr1ik6gMIdW36WtDQIfSDNll2Wlx15kxDwA+39UJ3p+twRKdSa9wwMZGizuo9OD9d262q7trCnR6nUrThWjje2xR2yvb3IwtxnZ3MdkHPyuE4B897y9avL3PVCrgE2N9sqv4UVRn8N0Q7zi8Bea+na7gsvZ6QZ3RnvfOc7MTg4iL/4i7/Ahg2S/OrEiRN41atehVtvvfX81LIrOSkCEF2QlxHCjJ4l0OdGzmpKEk19ocWlBdERx5r3uwhwXY3yhdQomkKElDEUN5KcL82pzvqwbRokLarLaqAuI5FdTm1+t7y8nCuD+iLnNulRAIBR62ynpvpYXFy0yTO17lwKFLar0+lYWhjWT1/PNrLv2FesF9uo2+1GtbOumkLHjWTX37l0QWw7aVs8z7Mc8qT34XPTNMXi4mJOn1oYWe6eGNAR7bpfl5eXEQSB7RP3lAJ1SP3wr+be16cK9HcaPHej8VeT1SLQ9WerOVGeimB8F0Q/v9K13Y9TLBJnxEWCKS4YqHc3hqyT1KRobAJ27wZGR+WSK6/EVgDjAH7iJzbiwx/+RdxyC4D3phKRg2+j1RoD7rpLInMqFQmbrVTQRmATLI6OAvjoJOD7NrpodFSa4KEjb1inalXO5OrNyehoFkYURVg4kVV/bCzf5MHBLM8YI6c2bMhHHQXJjETq1Wo4npQAZDybU1MSuEPOzzQUXvE4BrZWhdf94YYc2d0+mgJTU2iPbcf+/cD4eAlD09NAFOFQKNHE2xoNoafZswczte2SlOqee4CrrsL09DbU60LXWalIlSYmjL4mJqQRjIaamLCJwlCtZi8tjAzzfalws4ndu0sIQxPh5PuIY+MAmBZObkbCVapl1GqiH1LY1mrmKHjreJYkTifMckFtZJjx4CCEm31TiGZTIv0J5ncQIK2MIAiPSx3YziiChw6iyLO+gTTNgIFDdQ9hWMJQtWq5RO2FBiQgkFGrydhKTcLU/v5MXYxaNHS0mc6aTZTQzArgoEEWMF6tAuWwjTYCnDiRUaswuVilIt8DyI5KxLEopNHAtl3z6IyVgAkfuPJK2SAzbNAk2vPqhzDk+6hUNqPVkvFbreaD9oUqtYxAjQH2F1JkyI12CBRtON3Ntp4jCCrpaPXvBenyqp5X6druxylFQJELMOo5lp8niRgnJk9IU6b7ANJY7OboqNBc7NiByqc/jR0Arr32BnzjG7+Abf6DwNycYar6KhqNpyG485NiW5jzwSRUiKeA3t4rcM01AP6uYZMfJokEUluQc3w87/Dle8474+Nox5stPVonLGHpqHxVq2UpLXi5zimipyb7E52elkjhyy5Dp7Ylx2rHE2dxDAStFhK/jEcekflzeHAegI+H6wGSJMC2agJMT6MVbsbnPw/cdBOwxRj6r+M6NJvAs2YfAv7hH4DXvx7/vL+EZ90SAh/4ALBrFw4efBampyX/xbbaPCYnSzhwQLoABw4A1So2jF+HJAHKyWNAvSkLjFpNFPj852eobJJkdGmAtd1bKhm62/GDbBomdwwg98Yx+vtLqFSypRNt0hCOA/sO5hFgnnwy79smpwcgyb+5xGA+TeLvPCABAMODvkRi9/dnOXUABMbmkmWNp7aO+5sR1TYjCA9ljgmKed9qSVLaIX8GqDdQq23F0aOyxjPMPPb51Wq2pkGlguENbezZE4iN37kT9qiD79vTZxzizWZ2Km14UwcbNnjYvVu+G4ra8sXsbEZXY/S0axdV58szBgdlPLJCUYTRKJ/Hhv4X7TOZRwlhpQSPiW+SBJdcUhIV8nff358/QuHSrnHO0P9ru62DEy4yQH1N6druJ0zO2r3wh3/4h/jMZz5jDTkAbNiwAW9729vwvOc9D7/4i7/4hFawK8VSBKC7oCFBUg1Gu1QhLuiqQUhep6PT+XITga4W1awjlDU4qZM+Elgl7UYRBYZLOZOmqaVKOXXqVC6RpftMrR/ddjfqnvQhmq6EgDd1qUH0xcVFm9SS3OykLGE9WBeWPz8/j3Xr1lmQmeXxfurPTaTK+yluG9jfi4uLlic8MVb51CmheyEfOznW2RcauNeANx0VpELRFDL62v7+fttHGlTX40Q7PZaXl1elueH3Wuesv3agsE/ZdvZ/0akJ6oX/6/FaBOL2Oh5pHaHPe4p4z/XvyaW+WQ08f6qDwl0Q/cJJ13afg6xfnz+mWbSgBrJFOT9fWJAoHXJqQjZ55WoEhDXghS+U3UQdwK234scAhHGMD3wAeM1rroD30f8DpKk5Lb4PjcYLgA9+UBbub3mLbKJrNZw4keUQ27kTAiT7vj3Fe/POeUNCuQOHkiFJ5hi25SYCmKYNM+FmockAEBkcgXuKsTH5//77hYYkjoFS6zE5opwKgBy0jiMA4EdDooepKdnohiGm080IQyknSeSrI0eAq68GysfqSKpD2L9fvt/qN4AwxMGDwoG6vZYCBw/ixMbt+MQnhAv75oMHgWoV+6afjnod2Lb+sPDBP//5+MQngJ/6qSF4f/d3wDOfickHtmFqCnjpS4Et4WOYnNyM/fuBZz7T6CuOZdeWpsKxPTUlm+/xceGVjTbnQOvS1LeyDWocA9PTKB08mI0D30eZu9qHHpJrN20Sbk/fx9VXj6C31yRuQ8cmUsX+SdmQVqsZUmt2hUyyyei4NJXhtWEDgP0HgCjC8PB18H2po5fM43hSwtSUcOGWzQZxJtyMVhMYqbQRtFro6RnKcdgniWUowM6dQyiPxnh42sP0lOzhy1NfB9IULYP7ehOii9GdN2N2VppZqUiTJyakzC21jiGcNRvO6WkhhL/iCszUtsvYmX4QSFMMRW2EYSBja6qOoFbD8vIQ+vvN78cHbrllsxzdFg9TRrZKNCFJgLvugheGAlY97Wny/cGDkqxuoSz9OLFf6v78H7XJ6rzph1GOIoS1IXt0vdkEto6PW7B8dJRRh37m8NDzQNGmWtPy8L0GxQqPElzk0o1mu2DStd3nII7j0QJfRIQ1X5T+XepEyuazkWgGI9UIaBjbPToqvM8/8AP4qT/4A8RhiI98BLjrrucBf/pWJEtLmJgAgE/jxImfAd7xDplIXv96mZPGxgSUvF+Ku+UWAP/xEaBWw8mTUo1t8WPA1BQ6tafjqwdLqFRKkjeD9abnMwxxPNqC6QkgDMUByuaHoZgxmnnm7YhjJ3I6itCBlwHId00A//IvwOAgpqbyUxTp2K++Gig3m0jCETzwgDRrW0jbvVns8h0pcN99aMQ34GMfE3u15cABYGwMdx0UU/us2jfR+e//Hd7rX4/3vx+4+moPw3/wB8BP/ATuPvgsHDgg6sNddyFJfwSf+pQktcTevcDoKILnP19oV+7cKwXOzYl+9+zBJ/ePoFIBbt5taGTIf0IEe3paaEn6+4FKBV4YYgujAyYm8wmrq1VEo1sxOiprEKo/igDs2y/1ufRS4KqrRMFM2mqc7qQzEXVLzpJy0kS510d/bQgLC1lwNofg8A5f2nTJJXi4Wcbh+4BrrzV89SjboVytyn3790v5t902gsD3ceTUZkxNiQn09v4/oFJBq1WWoX3gADA5idGf2mq50Jmuh2sCb+rBPJH45CS21OtAUsPx0RswtJO2PUEp7KBa9bClMg8cmMDQ+Dim05L8tCYnEQC44w5JmoupKYnu+Pa3pR6VilnAAkOTX8JQFAEIJZNovS59dMUV6Oy+GQBQnn4Y5TRFu7bVsrVx7PJnbqj3sVV59bdUxCHQ8QNZH8SxLOyYSbUgYGHFEQzNSaiDKS4CKrYzlq7tfsLEO/0leZmZmcGRI0dWfP7YY49hlr+8M5R//ud/xote9CKMjIxg3bp1+MQnPpH7vtVq4fWvfz1qtRr6+/txzTXX4H3ve1/umsXFRfzCL/wCKpUKBgYG8CM/8iOYptdqDfmjP/ojXHHFFQjDEDfeeCM+//nP574/deoUfvM3fxMjIyPo7+/Hbbfdhm9+85tn1b7zKS6IrsFQnXQxSRIkSYJ2u43FxUUbPa0jywlEEjDlq91u2/8ZHcznMAkpwV8NCOs6au51XtvX14dSqYT+/n6USiWbYPLUqVO2nnzpOuh68Tr+ZRt1vXWiUM2dzkSkTKbKFz8PgsC+eB3fE9heXl7O1YNAc09PD8IwRH9/P/r6+iywDgjgurCwgPn5eczPz2NhYQELCwtIksSeGtAOA9anr68PYRiiVCqhVCohDENbN+qb7Z2fn8fs7CxOnjyJ48eP49ixYzh+/DiOHz+OVquFubk5m4hT64Xt4zPYP0yIqiPfqaMwDBGGIaIoQhzHuVe5XMbg4KCtJwCrsyRJbNupB45T9inHqOso0n0YBIFN2trX14f+/n709/fbtrDeBPCTJLG654vP1E4nnWSXzysaH7zGFTda/WypiS60vO9978N1112HcrmMcrmMm266CZ/+9Kft9xf7XLiWnM7GuLJ3797CuXVCdkTf09K13ecgmh4EyANfGkQH8gvT5eWMfoX3m4xJneoIHsRWPDgtwCh27kT47ncDb3wjgl/9ZfzgJ/4D8IlPKBD9gHBFT02hXq8LwLpzJ44nJZw8KXuRsTGg1HgY8488AkxNZXSpExPA5z8PpCkOmk3rfBrgyGwJX50s41/uH8LX65vx9fpm3HUXcOedGYeqDpAdCY9jqPWwJISC8QtMTwOtVsaiYUg6A7Rlk1av28juel14pr1kHqWwg0cflecsL8t1SSL7pOlpWORyYgL48peNzicmMDcn9ZucNO2ansaBA8DddwM4cgTp5z8P+D7uvNPQkX72s8DXvmbx01oN5mJ51uIiZAPH33aayvvPflaeOTqK+Ug2oZOTst+bmkJGIGqis1CvS8X27pVdLF/79mU3kdtzehrD/TMYSg7Jpvauu+BNfkcSnd1/vzzokUdy4eHzqfC6Nxom6t+A6JZjdmIC+MY3iNOjFEo0YrMpRdbrsB3J5GGA6Lm3NzuRHaRyAoCJvaamJCr9nnukeffdB1svS9M6OQns349S6zFs2ABsHe2gPPV1bImOZ9yo09MZ8brvS0MMp+/kpKkPwySbTQEIWAkDlIch7BGCrfFx3LCjnYHoJ09KQ6emsgSgd98tJzcAHEo3yyA2AMoDD5hb77tP6p7OiHPJn7d9FSTyGXln56PN9jiGN/1wRsBKpEqHwLnAnD6eoeeNNM0i8ajQs9yIP5ltN3D6ud6Vz33uc7jxxhsRhiG2bt2K97///Suu+djHPobt27ejr68P27dvx8c//vHH/dzzLV3bfQ5CCoui3yGPyWj7rr9nODjvM0akU9mMh8NteHBaclLg1lsRv+1twC/9ErZ/9n/gP+A9wIc+hDZoVpYBNPDY5z+Pxje+IYj2nj2Yr27F8bSMSy4Rf+1Q80GZlJpNnDhhTsPs2yfrAIg5OXhQLjkyW0J7/DrMj9+AB/1t+HpzC/bvz5I2Tk2Jj5L2e3RUHhtFMr309ABeayYLFTb21mvNyKt5XAo5eBBoNGxuSqqRX83NAWi1rOO10YBNQv2Nb0j1AQAPPIBmU5oyOQm5eXoae/eK3xsHD8Jgv/jwh5dw7BgwUa8Df/u32LcPOHp0UubmvXvNUuCEPPvuu0UxJNrmnJ8kwNgYjteuwwc+IB914MnnZn0EQGx3owH80z9lZX35y3KCbd8+qSwT2UxPSyLTZB6ldAZb8SC2+Q9iJJ5HOepIm+66C/ja1yz/djvejPlwyI4v5i3JUcmZTitjBsObOujpyXJ0NBpm7B45ArRaOHgQ+MpXzLA0lH386Q9FbfT0yLpm/36zjqpU8C//AvzVX0n12DcnTpgyJiaAffsQNA5h/Xrg+uuBrc2vYnttJjNDU1NiJ30f7WhI6vuhDwFTU9i7F/jiPs9Gh6PVkghyDpDpaaSpCWKengYOHsTQ5JewLf2WvO/vl0bu2yfPoP38x38EPv5xcQ5Vt0vZ3/42cOIEpqbM2m5iAti/H0HrOMJQbDfXUQHkhBq7rlMdkb5utewaIUmQ/f6ZPF7PBRo01pHn+kUvO9f5Z+kA79ruvHyv2u6zBtFf8pKX4FWvehU++tGPYnp6GtPT0/joRz+KV7/61fjRH/3Rsyprbm4O3//934/3vve9hd+/8Y1vxJ133okPfehDuO+++/DGN74Rv/ALv4C/+Zu/sde84Q1vwMc//nF85CMfwd13341Wq4UXvvCFK5IAavmrv/orvOENb8B//s//Gffeey9uvfVW3H777Xj44YftNb//+7+Pd77znXjve9+LL3/5y6hWq3juc5971guW8ykuV7YbPa4TLhI01bQV+loAltai6K/LI+7yXhfRp+i66ch0DUoS6OTz3aSjRfVxv3dfmp7D5QBf61WUaNVNWkpx66n1o0FYTQWiqUp0FL5O1qp159ZLA/46IpyR0SxTOxYIWNPJQP24pwtYvus8cPtX102D2QT2CWjrcnT/ap25L91/bJPLmV7UZ64zpEg/LFfrSD9X959LQeT2g35/tuJSvFwMUqvV8Lu/+7vYv38/9u/fjx/8wR/Ei1/8Ymuwz+dceCYOhsfjcDidjVlNvv3tb+Pw4cP2ddVVV53V/RejdG33OYxXTe4MrIxKKRINkumsTCY8nJHYxOHm/bKEo914o2wgPvABg1jKZgqQNfpxADOA5bzg2t0EUQGNBuYBYHY2Y95oNCRBZprazXmSyAaYgKr74ulaNlEoaBpAvZ47Ac/CbHcxfEpH7JjCWi0DWpuCGSmfpgAWFpCmwsjRasFuSJpN2T8C8vw0Fay02YTdENbrZk+8sCC68X0bjIapKaBet8/yknl7LPjIEQX86+SQhw+jU6/bRLJ0RrCM2VlkGyj2BTfD5nkWeT18WP4/eVKun5vLMoA2GnmF6wfNzVkAhwlXFxfz+zTu6agbHDsGL5WNNNuSJKLTEydgx7B1rqgCbF+nqQ2c41hptURXk5MmEaqpgK0Ls4C1WjImmk0BKhqN7GS7znrKm48ds0A/x7j9jpU8ejTH72+RhXrdPtM2wIwHO7inp0W3vp85EczY5KUWRGq15OfNZ5uGB37HdnWzCXQi4TzOeZhcwJxStBHXQqUz9NB25tnJd9N2r4jaO5PXWciZzPVaHnroIfzwD/8wbr31Vtx7771461vfiv/wH/4DPvaxj9lr7rnnHvz4j/84XvGKV+BrX/saXvGKV+DHfuzH8C//8i/n/NwLIV3bfQ7jdbXf4MJC9r0LmunfpZ5szZxNHI65Duf9MvCSlwDPeIZQkrzvfWg/8gg4NYq0cQhivxHHOFT37JTf12fYpep1dMykysTQqNeByUl46BBfR6sl8zCnQDp4XRPCw3M9PUDJbyNI520Te3uRj8rXGTX5ajbFfi0srMhLnbPdZt5qNo1aTRtYR34pFCXHRCdHjwLNJqamgIceWgaaTTxmO+lfkSRyQA/334/Z2TkAR2wUuXTJY/KYo0flIawz5/w0BeIY09OyjKL/1vajTkrO++gpOHIky47dbGZZP7V94SBgSH6SZJ1Bu2TWPM0mchRsubiLNBWbxjoZJdPet1oG/DfPpelbWsrGsv25JQl6e6XqjzwitzAx/H33mbFo6mWHNu1fs4n+fkMnNzlp10hpiqzt5l/MzkqBzSamp+VZ2gkVRcgGSKuVLX/ZRjrHGUKfJOiY8WAH6KOPAg88AMBUJQylvMVFuzyyGcg5MHUfGd1op4U9LWY+SFPk7XcReK5FzwX6lSTZfHKWDvCu7c7ke9l2nzWI/v73vx8veMEL8FM/9VO4/PLLcfnll+Mnf/Incfvtt+OP/uiPzqqs22+/HW9729tWXQTcc889+Omf/mncdtttGB0dxb/7d/8O3//934/95szKyZMn8Wd/9mf4wz/8Q+zZswfXX389PvShD+Eb3/gG7jJRKEXyzne+E69+9avxmte8Btdccw3e9a534bLLLrPe9lOnTuFd73oX/vN//s/40R/9UezYsQN/8Rd/gfn5efzv//2/z6qN50uKAGsXuKYQfNIAcxEATTB3LeBcc3cXvXQ0ugt4rQWIaX7sorq77V6NT7sIiNfAtf5fg7ZFIKr70tH+LrBdxLfunhLQEfwuIOu24XROAq2X04Hu+lkAcmCyPqWgI8BZro6I15HYBNk17YwL6uvTDm49i0RTobh0KO64OBNZDXDV/VhUH3c8sD1a3xpkd3naT1efiw1If9GLXoQf/uEfxrZt27Bt2za8/e1vRxRF2Ldv3+OaC9/61rfiS1/60prXnG8Q/XQ2ZjXZvHkzqtWqfZ2Lw+Rik67tPgfbzehZLiLdv6tdT2FCQn6mQPWlJYVlan5GwBI0S+T3BoyOAiWYRFPcPCJbv9tkWIDN1un7KOR55HN9P08HGUUZtySrTB8CC8wlDzVHYO3GUPGB2nvM+zBUua3SFAMD2XPQ2wvfz07U8uaBAcWlHYbwfTluHIawVCqsN/r7EZkHM28SG0O2FoZFRREwPGzK0VyYYQhs2AAvjoH+fkuzopNi2eRyWhGsPJXHxjH7FSupG63Hg95Z601dGOb2aFadSWL7yp50MOUuLyNXfq4fOEiQXWMC1HNfhWGWX5ZFr1+f7xv7iKJnmTFsH6k3YrpQ37fDfoUOAAtk2XL7+2UQ8Vrfl890uQMDmZ71uOfRbTOOAEgjSY0A5EGkvJoQhiavgOvFWM2ZtgIxcYQF9/Rkr3OQ76btPt8b8dPN9a68//3vx5YtW/Cud70L11xzDV7zmtfgZ37mZ/COd7zDXvOud70Lz33uc/GWt7wF4+PjeMtb3oLnPOc5eNe73nXOz70Q0rXd52i7gZXjT9M1uqAYhZM+X+Z7/stbc7bbGNQgDBFD01EPI4LQpKHRwEhV9hatVh5380xdc3NrGFo7tNp0os2XG0zrJons6TFLEB15q9cIBImXlux6RE9VtBeW9sUYDpo7XSeb5NPM80BZPtuwAYgiEwTcA8QxYlYQG8ScAsCmTQjDAQAVW45wZV8i07aa0+H7YuQ3brR22PflUTzkVLQGQ09PZrtZ6b6+LJMpo5Rdm7KwkOfQ1zbIJCUh5s7PfV/saBwDJcyLnrk+NEq1DhRkw87WD/kpNHcAynxRqcgaiZ9HUaYD2lw2zdYZaryZl7XdPT12bC8tIUs+r223EutYUWD28jKchSScDKUQPfT1FUeDh6E0TOcMUY23TgWLmK/Ext11fBQh77heKyjGFXc/wB/ZWdrwru3O5HvZdp+dZgCUSiX80R/9Ef7gD/4ADzzwAE6dOoWxsTEMuAm4ngC55ZZb8MlPfhI/8zM/g5GREezduxff+c538O53vxuAZCtfWlrC8573PHvPyMgIduzYgS9+8Yv4oR/6oRVlttttfOUrX8F/+k//Kff58573PHzxi18EIF6Rer2eK7evrw8/8AM/gC9+8Yv49//+3xfWlxQklJmZmXNv/GnEpbdwk3zyOwKvi4uLFoBiwksCQ0EQ2ESXBFdZrst/zmhlUrCQF9ulsNDR1wQhXR5q1g2ATQrq+74FcjX3dBH/O0WDnDoSwvM8tNttS0GyGtipAdEiQJzUOASlGXnN+hNo1veyXAC2f5gklJ/pumh+7yRJsG7dOksRo6/RutDc4OzLvr4+S9PCa3Qy0lOnTln6mcXFRSwsLOROB0RRlKO7YXJQnZxTg/H6Wbpvi4BwzfGu+5LXuaC7Bk31dfp/rTuWr8txI/w5Xt0oe4oLoFPYf24iXepG9wn1VAT+av244PwTLbOzs7k5iKcE1pLl5WX89V//Nebm5nDTTTed81wIAIcPH8YLX/hC9PT04EUvehFe/OIXY8+ePbk6nC0wzmvdufVM2nY2cv311yNJEmzfvh2/+qu/imc/+9lPWNnfLena7nOw3cvL2Yq8COjj3zTNh2vxHrVRwdISsLhovybjCwBEoyMIRpMMCNy9G9i9G7ungQ9+8LfxmtcAW78MdAA5fnzkCPp+8k2YmpI1fKUCIAxRrlaB8fFs3VutAldeifk0sNWcm7PBWvYvq006bn7n+ya36lzWjoEBCQwa2bEDMy0PrYbcX+aR2TRFgHnZFFWrgO+rZIyiv6uuygB8VCoIQ6HEHBuD1du11xrO7yQBKhVUKsBttxlaFn8XMDqKSwkwX301gmc/GwhDPO1p5lm33gqMjWGXaRdaLaC/H+PjEjw4Ogo55z48nDX4ttvs+fckkX0RE6Za4LoZZteTG33Xrgyo1cKN9tiYlBuqexcWJOSs0ZDr2JHshGoV01NZP4ShOYZfryOIWthaiYF6Q8qNYxw3iUWPNz1E0ZCt8/IygNFRtBHY4dvxA3hRhIovemeS0zDMOHQvvVT2y2Nj8r5aBZBI38SxcYps3CjRaRYogd3smq4X7nADBHTCErxaTQh1KxVUDLCARxvSPwQzSCBrfiBJAgTMkAdkPLVhKA/asCGXNNSGY0YRlg5DGrh7NzA2hmjK1GvHDqBaRTvejGTalHn//fI7HR0FkgRxXMLCAjAUd7KoR4JNpPRhw11Armi+cJ0lxuFFYIIb8e8F233Wm2tz7ZnY7jOZ61255557cm0FgB/6oR/Cn/3Zn2FpaQm9vb2455578MY3vnHFNdyIn8tzL4R0bfc57rsJvOmxyglVO+P077KvLwNP+ds2do1FMJq31QKGmCmaYOuLXgQvjrF7F/Dnf/5avO51IcY+YOa0v/1bicbd8zOWCtqaDIN+EqzmfMYpD8iSUPLFFBDE7zQma53Spl2+L806dgw4eTLA+vVDGB6LrJMaaZpRaC0vy5w5MGBx4cFBAU1J9U1gNgzFRgwPw+p4bIxzfwKsX49LLwWe+9xese/NXcDVV2N82lzzjGfg5g9+EIgiPO1pGxFFwNbeXmDPHjy3BUxMXA00vwXEMXbvBl73ujJ27ADw7GdbbnmEoRDLM6Ho6CjC0E75mJ0FSnGcAZ4Evy+5RC7q6xP9u+s6IHOOV6uYRwmlMM1OldXrmSP20kvl+ZdcAtRqmJyguSghjkuoGFPlTT0I3HkgU2ocYz4cQmM6z+wVhhKoPmyycfoHFI7s+zY3fLUqSTQBaYrvC60a6nXs2DGS5Rf1ZWFH2jdrL8MQHCZMhsqlCuobrA4W67BUgqhUMBqZy1uJrXCSACUmRNm5E8sVg1WTB5C/00susUnbPUB+N1dckS1CTXL3NDXPfMYzgLExLB015ZlMv+14M45NAsNoCkXc+DgwOgo/zPK6Bul8/uRgmgp9nj5NxjFBKfJY6fmCPzKWqcrp2u6nlu0+axCdMjAwgOuuu+6JrMsKec973oPXvva1qNVqFvT60z/9U9xyyy0AgHq9jiAIcslWAGB4eFi4Qwuk0WhgeXkZw8PDq97Dv0XX/Ou//uuq9f2d3/kd/Jf/8l/OrpHnIBo81QktNTgJwIJ+nU7HRhkTDCZgzSSdOlqZ5ZVKJVsmP9f803w+n0UAkaDian8JdOuoaibfJM+3jhAnUK0jrV2QWAsTlAIZQK5BdA3Ae55nk3yS/5u64HPJxQ7IpMF60enA+zV1CcsmwB4EQe5z9pGmEmG90zTNAbtFzhGWR0BZ83/39PTYfiL4rU8ikA98ZmYGzWbT1j0IAlSrVYRhiDiOc9HmHHd6DGpudZZNbncmiNUnBzSPPj8rKk+PYZ1Y1HWAuElCOb5YRlEEeRAEdjxoEJ2nFADkQHBdP18Znd7eXts+1o994YL8RdHUOlL/fAHp27dvz73/jd/4Dfzmb/5m4bXf+MY3cNNNNyFJEkRRhI9//OPYvn27NT5nOxcCwJ//+Z/j1KlTuPvuu/GpT30Kv/iLv4hHH30Uz33uc/Hc5z7XXncubb/sssvOuG1nI5dccgn++I//GDfeeCMWFxfxwQ9+EM95znOwd+9ePOtZz3rc5V8M0rXdK2VV252mWURx0cKac4LmT9VhMAzbSlN7RjfwO/B9L3eautUCdu7cKlHQg4PAnj048n0/iOfvAL75zRq2Rw8D/9//B69eBz76UeCzn8Xg696EBx6wOUblec99LrBrV7bGNxv8ZlP2jxrr594vjmUTfuml8vngoBwBh+9LAiy/AyxKm3p7RR31OvDIIzLvMnqqtmMzPNKbtFpSkNlx2011U/S3c6c8L4oAVKuIY8khVakAaMqm5MYbZT+MVgJceinK/jxe+tKS4KQ7nw/EMUaPmv3Z9dcDr341EMe47TZTrkneeltF0XdEEbaEj+F1r9uMkfB4BqSGZaQpUHrpS2Unu2OH5Rtdvz7r7sFBAGkkD01TudZsBnPOFu6E+dqxA4daZfScAnpbwFAci+J4LJkbslpNAO/qFssKk6YZyI1GQ45cEzUZHJQBUKnYE+jcgDNfFgDLv8/h2WqJ06NqgAaJzBLKm507ZUNeSmeAVoKdOzejWjX49LT0TWz2jXZz7PtSRgv2oaWWOaRvfgPzKGH2KDDMwRDHqEVmrO0/LPrg7p0gerOJnh7zszPANqampAFEoKam5P9aDbjmGimb5+FNXR6uB6jteV4Op8fu3UCS2OKQNoFvflN+KCYivVIpybMNJ679TfPIehjKczUox7lAR7XrUH/9Xs8VKnL+e8F2d+BlSXHPQHjtmdjuM5nrXanX64XXp2mKRqOBSy65ZNVrWOa5PPdCStd2r5Q1bXeppEKRjXBSdCNR9ekW2m1NA2FsNwzFVsYKE2DEODKxaRPw0z8N3HQT9jSBj3zkR/CSlwDo/1mZt//8z+W6PT+De+4BbrrJzKtN2ChqLjcQ14Bm07KPcAnR2yvTP5NTp2kWqKt9AUE6D6Sw0ez035I7XfztAXw/ME0NEDz0kMyBvi/o86ZN6Dtl1gSYB0If3/d9gaXBRlhBFIk9Hx4GcEzmsB07jM0yE+5w/wxe/eoyxscBRLcBtRp2nTTXvOhF8BYXgUoFr3mN6Z7f+A3gmmvwk0uGRswktxya+CLe9+5dAtK+4AXA6CiOp2UkDWDkhS/MnNphiLApfPNRJJj3/GBJoGZNoTU6KsrToKKes42d6sSSaLo+DYyNleGRgqRSyRwoV1wh5Y2OYj4ewcGD2TKgUgFu3jEjhOUHDggP+NiYZDuvVjExkafRozk4dgwY3rMHx5seenqkHPED+MSRAci9fX3AD+42gPH+KSBJcMMtVYShJw5wfxydqIxq1ei4UbUPi0MzaIwuhnAcaKXW+T2TBGg2gS1jY2I3KxWMEaj+/KwddEkCoQEymdvT2NjWWk0a9Mgj1s4fSobkd0NnMrPXky8pjrH0EHCoWcLI7bfjeNPDct2M8bExcVRMimneHjWF135pCbjlFgR+B7WalynHrP0QxxmtDNvr/v61U00Lr3Gj5fUJBHRt91PNdp8ziH4h5D3veQ/27duHT37yk7j88svxz//8z/i5n/s5XHLJJdizZ8+q92nwbjVxvy+650yu0fKWt7wFb3rTm+z7mZmZFYPu8QrroAHV1Xi7CebpiO+lpSULBpKWg4Awy0vTFL7v22hzlqUB4TAMc4AoOch1kkYNnhdFHLuR6PyrQTVNa+JSo2idaECS0dy6HCYF1dQs+rm9vb25Nml9unQsQRBY4HR5edlGl7tUOtrJEYah1aGO0idPuUvfwnaxHB2Bz5MEuv/ZFoLVnU4HfX19uXLn5+ftqYRWq4UTJ07gsccew7p162zy0shYZYLGTJKqgW3qeX5+Psfr3m637XdLS0u5yG3qk7plOTpinNHxmkJHO4aoN1fcaHztRHIBah1dz9+Ky9nu3uc6Aoqexd8lTz7o9rnR6Hqsns9I9G9961u4lMgYsKY3/Oqrr8aBAwfQbDbxsY99DD/90z+Nz33uc/b7s50L9X233norbr31Vvz+7/8+7rvvPnzqU5/CBz7wAVvOuUSiP/LIIyiXy2fUtrORq6++GldffbV9f9NNN+GRRx7BO97xjicNiH4h5EljuzUozqhivcB2N178TL80AG8pIAKLtZI6PI6BrVyg79qFv/so8DPPPwT87m/KYv/5zwcOHsShz38endlZjJj9xpVXmihhyH2MRA9DYCYtoTw2huZUtjdotXLsFnYP6bVmDACeNSVg3U1bWC7pR3XwtQRllVBKW9lDzOaplByXi4zuto7KJifwO0Acw0vmsa2qdpAAhpcPyQqVEWONBvbs2YIkAQ4lI0jqALtoJhpB+SUvQScsYdcuSHKpW24BfB/XVdty0YGmlH3wILYwesgA0AwGH9i4Hb1VIGll+yVeauk82Ggi1mbTrLs/SGZydB9HFsqYmMj0PcQIQHo0ZmeljSYSXeUhtcFZvg+JPOdGlBHuu3fbTS437X19ghUQWCEYr0H0qFqC15rBUKsJpKG9uNR8OAcGl+MU5VoszgyzeYwiow96YnzfJvSyD2WktkFcZk8YQAQBNo1tg4cOSq0ZoNHME/k6kejEtI8sBRgcDAQIabXE2RBvRlCtit6Gh9EZ3Yo0BYJRuXc+8bC8nNHeUv8A8GC9hDQt2QBzJM0MXTLtt5RDEw1pDxGINJUOGhzkjy/vNNHUMDrii3OHjl7TG3Jz7feC7S7yKa4lvPZsbPfZ1r3oevfz82E/nkzypLHdQPY741ysQTLt6NSind/aKWz5lEv20uVlAdPDsIQhXn/77fjfH/Hw8ucfx9avvQM4UgXuuAPYvx8Pf+pT6DSb8CA5KK+5xgChTdiIZ+tLM5HCGkRPEpnbGXHOgwhD4TxQb4i9DkMgSXM0IzRbvi/NOHhQpi8627kGCI4cEYDaRPQiijBo1EhbddVVmzNaNUQI/A7GxjxJaH3St07zJAEwlUi7pqfxohdtl3uqu9CJyhifluXBw9iC2hvehFYLePGLzbNe+1ogDHE7jC4+e0Iq+dnPSgLP0VGJRK9WbfR2MxyC7w8hbAF9S1lw+uyscIU3m0BJOzvT1EaXs9s9dDK7btZiR456ODmZDYNqFSg3m4JwE/n2fXt6jPZ7clKu7+kR035ztZElHL/rLjn19spXolPZjKm7Mx8tsd2+Pqn7F/eJ06a3V9Hz+D6C5mMYQYpOdQQHDpggiLvvNpk3jRw8iO2mH483y0BTfDWDg8gMoe9n9C46ASffm9wwCwvAfDiE0s6dQBRhtGLWjAav6PiBDVbo3H8/vCNHkF5jhs24eVa9Diwuoh0N4eB+YKRWk0aZqPJWCxgyi52OL4GCjzySBWwAUo8jsyX09pZsChosnZCksMp2D8Vm7TrdzE6uRVHGX8+Br9f22lbrSHU9T9Bm6/lCOcC7tvvc6v69arsvWhB9YWEBb33rW/Hxj38cL3jBCwAA1113HQ4cOIB3vOMd2LNnD6rVKtrtNk6cOJHzij/22GO4+eabC8utVCro6elZ4Zl47LHHrAejahbF9Xodl1xySeE1RfJEUwqcTjSoDOTpPtwoWpdaYzXucwpBbz2QXfDeTa5IsNylyNDP5f+rgaGnu9e93r1OR6+7dCA6YtiN2C9K6skyV+NG19Qgp2uPG0XvRuDr+rpUNi7w7iaH1bQoLq98Ef+4TmxK6hhONATcWQYdJ1on1BfbrZ/rRle79XTL0de4CT51v7pR66vpei1+c5dqR48DfZ9LDVTUv9oJwzFSVPeitqzWhidaBgcHcwZvLQmCAGNjYwCAXbt24ctf/jLe/e5341d+5VcAnP1cuJpcc801uOaaa/C6170O69evP2cQnRnNL4Ts3r0bH/rQhy7Is54M8qS13VxM60gV/b+7CNfAWJpKlIzhwO7pkQ2CDmBvtcw9PT1oh2VJqtRoAHv3SqjXM58JHD6MFiTArIYOkkTmrTAEkCA7emxkYQGINpVyC2b+r9f+XtrOEH1db9c5gOxjYhDETLnJL2ldcLPhRv21Wgh8H4C5hiDFaiCHAfMlGq5kQWHWv9UCEJUQpkA5bGfhX4wWZzk9PdmzGL0cRUib8vWxY/muA2CiD7ESiOFnvm+BDup1KApzY2OukQXJJYlE9nguHzpguVhb9SyZaC4wiuGICwsSXrewgDYCy7/q7vW0Kp1uFLCZHQlkHWnJXI0U3GwdCrqPXZBKb0J937aH3R1FHjxep8hgO/Ak7snRDTH2En9LJvIt4DN6ey1uPWTGC29nM+M422eTQtX6Ok4treBEt3tl5/NcWKiWs9md6nHE/816+nvBdp/rRvxMbPeZzPWuVKvVwut938fGjRvXvIZlnstzn0zypLLdpPZ0o0uLnFru3OU4tbRTUd/KS5Mke86Rox4mJyF259OfFlqx5z9fkoEDaAMYglB15JYMhnvaPtYY6NV+Y2bKE3F4qPWPk1GkuikMzNWn0tIUYlf4IXmsWUdTZlS10y/gywRZCjs5h2Ep7CAMzZ6qtxdotYwjPUQnKtu5mKA+wenhTR104GE+2gzfB8qk4lhelrnx5Enxhm7cCFQq6MRDSKalProtxEdLmAcGS8ytvrLzwhCN6cyZEIaeDRzohCUkiZjZEyeyAPY0RfZmYSFz1KgFlT5lSOYXuxZpNJDOzsI36x3tc9VDE+YxOie3HpJ8iFepIEnMSfejR8VjwDoxoWcY2mtyPOrmOlumXvcpJ2+aZk0umQK8tF0cWLK4iDaA0NjfNDX0cQp4tsuOamjJ9nMc8n19tkgeKqOKe3pEp1z3JQmAaDkz6NroU7nuum1hQSXpUePBXd+7Pz53bnA7DF3b/VSz3WedWPRCCSk0XFCM9CQAcOONN6K3txf/+I//aL8/fPgwDh48uKoxD4IAN954Y+4eAPjHf/xHe88VV1yBarWau6bdbuNzn/vcquVeKHEjqV3RUbPu//oenbyy3W5jaWnJ/i2KxHXL0KC8BsJc4NiNzl6tPkVl8drVgFFGQBP41aCsGw3sJq3UEdqMgOar3W5bXTAyXIPxmpZEv/RnbjLOomSia/Whjn53n6W53dk2tt/ViQbEWS/S8fT392NgYAClUslSt7CsdruNJEmwsLCAubk5SwGzsLCAJEnsiQNXN27iVZd+x3VIuDRCrId7GoBt1Qlidb/r/nTHkHYs6FMbRfXiNVr/LoC/VvS4vtflitfj82zB4wstPFVyvufComj9070utNx77725hUxX1pYnne0uWCjnPlebjVUX13yvcnb4frbhsxsbkwkqQNsGuGLjRgF7r7oKuOoqVGASbzWbNmBsKJzPwOJWC7Wa3MLETwyu46lTbkZW1FFF1BTVn5ewzuvXZ+US27THZvWLN/C9C7byRYCbO1C9ETIv3Ra+yCObq7q7UyDqQCWoi1frtqUlrDz2WoRUI9PzCvWZazWg3WxCwugZvTY8nGUF832b34zlZZvOqj0yjrEx4LLLrIqY+0znQHPVrvKuSeS43jzqfnD15rw68PLAgaYvqlRy3O7zfhlHjnorfExpivwYGRiwvKq20r6Pobhjh4xN7GpCMdMU2TM1H7159sJCliOOl1AnrIPFxy+5JNOtiW63qmB9tGLdsazFnRvcz4rkbHa1a8iFst166Jzp60zlTOZ6V2666aYV13/mM5/Brl277GnR1a5hmefy3CeTPKlsNw3cWoOvYG5b86VPp5jbmYeSc8LgoKEpSVOZz4eHLU3XZkDsdwxce634xkdwKKP08n07dQJyoaHjtgmzacJWTCOrgHruJSxPz4fWR8As3NWq2CczpyYJMtoyyLoi8DsrbTeNW7OZnWzTiTxVPbQdt+ufNIWHTtY+9hspP5iZ0+SS4LXMOU1clPg2vaB2zmeHKcev72frB36my/b9jAM/Z4erVViCcdpl45kosjOWr33XLvhPe5p0vqmHVjvzx7CfN26UIcRlglCvJTm7XamY/DFA1j4nUSdNtPWTKNCfQLe1a6YyM+FmPFyXU5O2j0x/HDkRoFPZbPvU2tHhYYTmmCPHmYdO1vFQa8U4tpQ6Nv6jWgWuugpJkvUr15pUOR1BtshKJUuqU62i7ZfQCUvZqUFdeX7GPCSrrXeLXjoC/TxI13Zn8r1iu9eecZW89a1vxR133IGnP/3pT9jDW60WJicn7fuHHnoIBw4cwNDQELZs2YIf+IEfwC/90i+hv78fl19+OT73uc/hL//yL/HOd74TALB+/Xq8+tWvxi/+4i9i48aNGBoawpvf/GZce+21uWNnz3nOc/CSl7wEr3/96wEAb3rTm/CKV7wCu3btwk033YQ//uM/xsMPP4zXve51AARse8Mb3oDf/u3fxlVXXYWrrroKv/3bv41SqYSXv/zlT1j7z1ZcENKlktDX8S8XP4zEppD3eW5uLkehQY8+I2t1UkoXGNTc3Rq8dpMv6uhfF5DUz9FAOEXTgfAZBLf5/CJgWT9XR2+zHSyLYCzrwaSpmjOb965bl3Fqk/ZG83+Tcqa/v9/ykmtQXZ8a0BzyBLp1ok6tL83nrvULZDQ6dH4sLi7mgGStnzAM0dvba/nOdUQ4efFPnRKKmdnZWSwvL2Nubi7nBGB569atWwEKc5yQ8ob9B8AC15rORfcV69yrIrvYXg1A07lBp48+deDS4rgJRVkv9ocG5zme+Rk58XXkuO5j96gRxxVpkFa7d7VxrutxoeWtb30rbr/9dlx22WWYnZ3FRz7yEezduxd33nnneZ8LzzUS/UzldDbmLW95Cx599FH85V/+JQDJAD46Oorv+77vQ7vdxoc+9CF87GMfw8c+9rGzeu7FJF3b/TjGq7to1rtnE8lkRa80+Z3e7TIU11xH/I3AahRBzuQaKovdu0fky2uvBXbvxnewDdvuGMXQzp3Ao48Ck5N42cuejq3hIeCu/XL2t9UCjh7FlrEHsaUWA2GEDgK7cdY4uQl8y9qjI4oZdecAf6WwA7/i2a+ZG4vtmJsDjqCE/qgEP87AdYuFt7JknblNODmm9bMpvNnstj3fR6VStpy0gNQhDFVEPduh+4QN52dEQ9IUUST1YhfxsTzpG4YqOlpHJRu9kKPWAixJfvdBoCBJ5CQxANx8yy1ytJjCHWckCT8BiYwns0mzCYQ7tmLLHaO2Hp2ojMZUhtcAgkX39somlQF8PP7PV9A6DtSVo4JtYV+kacb3w8pTCF7DQ2BCGNthGa0mVRMACACUkTaB6YNSHHl7OaROnABOnvRQqWzGkOE771Q2o1kHSia5K+l3SpUK0mgkVweEIZp1k9jPkvBKux9eHLJdRYrjgQHD7ZvOAHGE+5c8i/mkKWQTfscdwM6d+E5zM9CUjXt/PzLuXOqDPyZ3Y6035e6Rby3uPEJRTrYzke+m7T7XaLYzldPN9a7tft3rXof3vve9eNOb3oTXvva1uOeee/Bnf/Zn+PCHP2zL/I//8T/iWc96Fn7v934PL37xi/E3f/M3uOuuu3D33Xef8XMvpHRt9+MYr/xtuQ5BCo0TsDJSle95DQH5VgvV6pAN8PV9sWWDgxDbHYYotR7Dnj2bZX7duRN42tPwL98o4frdz0Ll1luFnyJ5DK985Wb8YPVbwO++X8o2vOrl+ndQ5txbq2H9rNCSsClRZCK/0xS+b5JFr+YAV6Al6UpqNQ+7dsn0zlwbxL9xzTUyB+3eDezcieOtAEkiS4tm04PvBxgbM6e9mq08mNtqSduALJK50cgQaFMRL20jDANs3JhRjvm+aVNLbJF14bB8LpbCUAwd5980xfr1gbWtnPNnZ+XS+UEpqVYzuTeiSJylai0QRYEt2p6wMkrxfB9AyZpJpjDZsnu3tI2IN+9JEmByElt27sToaCBUI5D7/uUbJVz/sn+LYM8eyddCZzPE1CVJRrXC8RVFWR9xSHr1Q/nw9GYT20ZD+ay/X5S6caP8bxJn+5Dk2POJZ2ljyuTwiSLMHhWdLS8H6OkJMFgro9kE7vyoFLtnjwxPOXHg43grwD/9k1AJPqOvD1hYsOsUXH89cPvtQLWK68bm5RlMPmqcGEliqN3Gx4EXvQgYHoY39SDKlQoexha0UiBq2pQ+SBIZAkM4DkQRvrg/o68DIDSGr30tsGsXvn5Q+nx4GEL/Njqa0Qv6vuicuVP0ukbPAa5dBjIbfhpH1ZlK13Y/OWz3GY+GM8r4epayf/9+PPvZz7bvyWv20z/90/jABz6Aj3zkI3jLW96Cn/zJn8Tx48dx+eWX4+1vf3tOIf/tv/03+L6PH/uxH8PCwgKe85zn4AMf+ECOZuSBBx5Ag7MZgB//8R/HsWPH8Fu/9Vs4fPgwduzYgb//+7/H5Zdfbq/55V/+ZSwsLODnfu7ncOLECTzjGc/AZz7zGQwaD+iFFjc6ea1IZoqm+CCI7iYAJZhOkJPJRDXliEtHQgB13bp1K6IWCFgWUaS49DOa/kVHfLsJI3VyS500VAPbOiHoaiA6E4Vqug7+9TzPJl0tlUogP7oL6vJZOtJb69LzPERRZAFblwpF94NuPz/TEfwEq/v7+3PAswaX+Wwm5WSUOEUnB2UZnudhYGAAfX19CIIA7XbbZl0mZ/rMzAwWFhZW0NcQjKdutFOHfaXpXVyHD+vDdrCvyJ+uHQDueD116hSSJEGSJNb5oUF0fS2/044E3/etg8Md4xxbGuB2efw1L79LXcRrCaIT4Of407kJzjcX+tnKkSNH8IpXvAKHDx/G+vXrcd111+HOO++0SUjO51x4vkH009mYw4cP4+GHH7bft9ttvPnNb8ajjz6K/v5+fN/3fR/+7u/+Dj/8wz98Vs+9mKRrux/HeKWOijbj7kJbb9r1glxzLpq/TApGxhFSfWB0VBDPeh3XjUXAwUQ2CLfdho+8H7j66gA//qpXCanpxAS2Vpv2f0SRbJ6SRDg3BwYgvKEjNhhnzWA1zY3irpp5U7OJAMDo6JAFa9k8ckvX61nzNYDLdvo+cPXVwIYNHgJ+2GjIjQsLWYjR4KAUwE04Q5LSFOVaiHLk2yhxOVrsANxuG7jZ1QCm+b8cyfHzRiPDkl28vKQiv+yHZmNFPQTpvNRDS5pa7JU5rVotoFbbinjHVruPazaBVlNOGZTDNvxqgKNHsxPs5M7v6/PQ2ysJ4XS0+diYOlafJMCGSI5Rp+28g4KAh+us0AT9QAaiRxHafimHL9lbwxLgW/py242M2CPwAAgQxCS2vi/tuvdewUR+cNcY0GqhXpf7R0ZHBYBKEuAb3wAuuQTRbSM52oROKODGTGUIZcPTCogj5J57pHwm3a3VgKD5mABbzSZQrWJxccSAQzLsvnrAww0vfSkebpax904pbtcu0+beMhCW5efsA4hL8CubM6cNx5U7H5znyLXvpu3W2NiZXn82crq53rXdV1xxBf7+7/8eb3zjG/E//sf/wMjICN7znvfg3/ybf2Ovufnmm/GRj3wEv/qrv4pf+7Vfw5VXXom/+qu/wjOe8Ywzfu6FlK7tfhzjVdvjIqOnQXRez+voQeXvlx7nZhO18S0ALEsGqlUz715xhc3cuSWqy7ywaxewezf+6b0y7//4618P3H8/MDGBHx5rAr/5NrQ+/GFE4+MCAvb1Ca91HAMvfCEONQKMVDsYXtdAp7IZk5Mm0bWZc/xQnIW5urItjhAgHh0VAJtO31ZLHJonTkCckVGE9s6nY//+7N5mUzi+w1DsjDXyOhL9xInMQ3zkyMr1ECVN4QEY3qR0naaSdFzbWN0OAs5M5MlTR2mKTZuCnGmbmpK5v7dXOU5bj8kFOvTd3M9/vbSdr6sNeNiSM42+D+x44XUo7+hgpiUnrGj/bhifF87zMMTo6HXWj9BqAf/wD8AXvgBE0QiiaARVALvMMNtanZdnTU8D/9pCaccOJEkJ1Srg7f8SkKaG/k7Vi22h0eU4j2NxFEQROtURTE+ZMdqso1StotHw4PuyhvN8HzMtz1LOaP796WngQx+Sz3bvBsrJY4Cxv9PTwJ13At/3fcAzru8FFhcZvwG8ZJckTPX9bCyPjmb92d9vx9zXD3q47o47pE333Qdcdhn2HrgOExPAy14GbKnMA3GIduqJ/d63D6jV0GzegMnJTAVfPRhg7KU/g6kpuYRr3cVFwPcD9PQMYTAESn4nO4Khx6Yec25gDMeDjmQvmk9WHO1cW7q2+8lhu9edOgtU4tSpLOPrJz/5SZvx9Ud+5Efwwhe+EBUmKugKAElwsn79+iekLAJ2fX19lvqCQC0/Y5S0Gx2uQUUNbGsgmQB0FEUYGhpCqVTC8PAwwjBEpVIBk04ShCQ47NK1uHzX/J8AtI6I1xHFrVbLgsAEcgl6uwk0dWQvAAsGM8KY1xBcXlYzAMsi6M3obQDo7+9Hb28vSqWS/T8Mwxzwr5+tKVQI7nueh3K5bAF0AsbaMaBpZVqtlqVNmZ+ft9HaPBXgeZ6ti34+72dUPoHl+fl52x7qnJHnHB8E3GdnZ3Hy5EnMz8/j+PHjIE86k6VqhwP7nGOEzgZNwaKdMhQdQc/3Olkox4EGljUwzrG7sLCApaUlHDt2zCY01de4faNPLLD/ent7MTg4aNvheZ7tQ45D6lKfEtAc8Cynv78/lxOAbWB9FxcXbZ/Mzs7mxrZ2FLnOgidSHnnkEdQYxnCRCefGN73pTWe1IVxcXMQ73/lOnDx58oJxoj8ZpGu7z044Pk8ePoyy5+UX00VItEYYNTAcx7IxbbWAD35QNpevfz2+Or0Zl14KDA/OA2GI400PcQx4d31GdiKbNuUinA6NPQs/9VMCPr/vF74lCaqmpjJU9qGH5Pj1zp2wu7ooAl7zGkESKdwsGIBPU5XYI7esOyN1dHQOeSc193oq/KETE/J1vZ5xWPb0ZJHAjFTq6wOe9jSzsWs9BoucaqQYkGcwQyaQP+usI4Hdtrng8Gp9pf+ajdHxVpBjktH55cqYkS+mp/MgS62GGX8IUQR4jcfyY8TUZSYUAOT++7mRlo2pZgSZnZVN39iYOeJfqeBbkxJxtW9fthlfWsocEzzFXK0CN+wwYLkO3YqiLHwuTRlulo3lvr4MIKI3hFGqO3ZY3vgZw6daFNy5tCSgBfORcVgePZrnM33Zy6Su3PhOTgpl8KZNsucuRx18a0IcGbt2AaXp74jCvvIV2YS/7GVoI0Aw+S2g2cT8zptx4EB2kh7InDgf+pA02QSWYySeF2cTwxQvuwz/r3Edpqay8bpjh/xU2EeVitwfx9l4YH9RxQMD5jecJPlxQX3mzvMjvyHn+FCb9+nDh3HZrl3fE7Z7YuIkBgfP3AbPzs5gfHx913afpXRt99lJoe12o8z1Xwq/J5oYx2jXtgrt1Uc+IlHWz342sGMHjiyU8bWvZfOvl8xnE8nkpMzDxl49XLkBb3iDzFHv/N22zEP33SenyX7lV3A3gN0A/A99SObmgwcFAP3VX8eBA8ANo8eBAweA8XEcwojYotYhAEC7Io7FcuicwOJf30enshlJYiKxC0DtTjyEfftkGtq9W3jEvzpRwr59GVPJ0aPAP/2TTGdvextQmvx6Hnxk6PTUVN5pQV6ya64RRWlbrI986XtcJzWBYTo9VnN8hAK2Hjwo1SDjSrWq6utS7rmcK66jOU1xKN6OvXuztU0cS3qa/n65bGlJurJeB175SqD0394O7NyJL254AaamYNdF09P59Cy7dwNvfrPUL5j6Tqa/ZhO47TY8HG7DlngG+MQn8vrREdVMcM4TbQMDUjFDLXPk1GY88IDYtvL0t4DRUfz9XsmRc8stEp1+qO7ZJd/hw5nNnpoC/uAPlgEk+NznBvCs6KvWAP6/A0N43eukDX/5yv8HTE7iO7f9O+zdK1HrW6PH5Hewf7/cc9ttUmczPr4ePwuf+IQMiT17gFLzEPDxjwNXXYVfvut5uPtu4B3vAG6uPZyts7hguOYa/NXSj+JrX5PloOXzR+ZP4CO5hF5aEpVs2pQN1zAEhqJ2tuYhMb87n7rgup4nFFn79GOP4bLrr+/a7qeYnBUn+rp162y214mJCXzpS1/C7t278Sd/8ie49NJL8axnPQvveMc78Oijj56v+nYFeb5zIANoz0Y01YTLF+4Ceqsle1yNp7iIB321+q8VTb/aNUWRym4EcxEg6dJruOUQBC2KGNbluZzv7quIZ1tHa7uJTfXfovuK/p5Jm4rqrKl5NN+6Pq0AZJHXpKvRALvLQb/W+HPbudbLpSrSn6/Vj0XjQl+jxeXpL6qfBv6LTny4zyxqc1FCV7fOpyvnqSCrjdu1Xl05e+na7otLfN/wO5sdlT1KTIJPIAd26yRVOSJTlzvcjZbWG2r9mfncAucQ7u8V/N+6whQ3gseUxUcxX2aSZDkw9aW5qBa9KdZ/XYDD/c4FA84mrMZtj3P/GZ/WXevCgu/4EfWzsJCP2Fa5Na0CyffOj5aWskRlK4LJXRCgKNJKUwoV6WwVPRapmXlyicnzPYtf61HucAJk/OWuLQx9hwVA1hru7vvcRabCbhexLxzWpZzu2W5+tmaE1hkPpO9NKRpip3t15eyla7sfp5zNwFvNQc4jVYCdi3hpLskyvYwEtE2OB/JQzySBgHSLi0CziQSSaDQFpPyeHjsReejIXMPykiTP3X26epvPc83X86CZ5PQaIEmyOhdh25pCLVem/t+1QWvJahPEamC5cnivuB/FdiV3nS7nHOdn2mDabybctDZjeRlYXFxxOIBj4MSJjJ7N6lf3iSnI95Hpkg9LkkKOefu5w9uWizguWKdxvafXZnqIAEuQ8HPkjOKKLjN1sqaaDdeGVOmc99qDh2EoD19asnY4TZ0HqQWla3cJjLtLH1ZteVleHjr2u6UlrDFg1Hd6rKw2Zr7HbH3Xdj9x8rh6nhlff/mXfxlHjx7FJz/5SXzyk58EALz5zW9+QirYlWLQluKC4UXJPN179GfkGieYyqhiUlYw8SglTVObnFLzpLPMIkC16Pn6OzfZJCk43DboNmuAm9QZboQvkHGGF4HcpJHh9TpKmsA8o8s1b7pbvnY+8DNGcbv60BQmPD3AzzVvOE8b8BpSnej6ArD6Z5Q/aU/4PfXJZKHr1q2zUf6kfmEENqO2XYoWV/+6D3gPx4irH92Xum/ZXn6uAXzS6+gTBNQnT1+wnrxG0wHpqHBNLUMdArDP1nokhQs/py5ZntuH+rO1gHtX3GupkyczQPzBD34Q73//+/HQQw/hnnvuwQabBacr3w3p2u6zkKLoqbWu4XudcROQSHETvmQTRKV+/nadZUtFG7Wms6gbS2bKyFdGZddqGT9MmmbP5o5Eb2aA3A5Zg6QlTXuij7C6f83mogPhliZYTh8A93PMVbW0lAW2mxySWVlM9kT99vTYJJt2x6MzZrp6L9rwFGzecve5OklThKHYY1aFVQtDAC1zrZvV1Pczak0TxZTRzMjmj6ocHJRmDQxkf7WeqCPUZSdZqQiFyNhYFhG9sJCPRLfBU9xBst/ddvMhWl96rPHFSCzjrOn4QU6dS0uyl9XFsIi5OXlRd9z7cnhWq4byptnC2NhmPO1p8rhy82FguoXR0e0IQ6CUHJfxvbhoeY9mEjklMFKtAlFkOVF5kp1DiPpi0lu7GScyYE5pRHE2DtNU/udPi9Qz5HHngQgGRHKYym84zf9eTgfQFO1Oef1ZHgm/ENK13ReXdG33WUiRPVjtOn2NS9nAhBPm9MimWjY3dODB0797Uo2YMOi0LlGwGzbI1FMerVlDGFar2FqvI2TOhYWFbBKr13HNNSNAvWnrxnk/V2cAMy0Pvl9GKeooomi5hqeXwk0BPN+xD2GImZaXYwhBo4E43mznv1otm1NtPm6tL0Zzh2F2nIrC02TuiTZdf6KfLE/Pp8rWdvxAOMo1qKr7OEnghSEqFQ9LS9kBq1x9i+ZnY6zmIdRkYaUs1C6ATRI6OppFkTO/Rn+/dBdNVE+P0Z9p66WX2mpZGjsuaQCJwq7VIAlY2Y6NG+0a0JoC3sDFAh9OehvfF72Tn8dpo6EsR9kk3NSSplm9OfQZXJ0kwPh4iMXFUCh89tVtn4yNycmy7/9+SHT5sWP2RNjYGICDk+ItUEZ1PvFQqkm/tablWYuLJnJ8fAilWg3YsAFjY1KHvj7Ib4hh/CdOyE3Ly6iNZhSIeklaqQhP++Cg3MrPuJxEq4Uoknw6/f3Ie4pWo2lxnTvu/xcxgN613edfnrDe37RpE1796lfj1a9+9RNVZFeMrBalC2R830CWxNEFP13eZl6rgVuC50w+ycSZgBwB8X0fCwsLlsqClB6aXkZzpmvQ1Y34pRC41Hzduq2aI5ziRsgzMhoQYNR3JjSC4qTiIEjNZ+kodu2A0LQbRU4LTQfiJoxkwlO3r7SzgX3V39+PIAgsmKrrpxOIArB0IKzHunXrLM0LQWa2VXOu6ySbLGdpaQmtVsvSybTb7Ry4zyh1F1inbgDYe+g00PrhNay/dhCwz1mmBtPZr9QngX+2ifQ6jI4ndQqdA6RN0ZzoekwsLi7aslznDfuBjg32v36WTtLrOm30qQXXmcD/XaD9yQycU973vvfh13/91/GGN7wBb3/723POkbONLn8q6OtCS9d2ryFpCpRKslAu4grX1+kNngJY7UJ9fNxu/obDQ0ASWVDTZxncFXATNDaG70wKxcXOnfL1kdkShnfuzJOytlqyAbvssgzBZFQbj/rqeikgWkfvLC0BaX+AMN6ca15i9uVRPCQbTAWek0Hk5MmsCdy4AFkeMK2mkm84zLlR1ij+6GgGRoRhFnLtANeiuAJwnP3A9zqbJZ+hn6ek5LdRiv2VNDf6iDlBZm5YkwReawadqIyHp7P7fB8YiaT/S2EHUeShWpVhwIRh+oQ6m2WP5icJygDKUYjKniHMzmYANfd8fX0qSet0K9vlF4EVWheaG5ZjQSPeAFCroe2XkLTywW+Li3nGHTpFCPAMDAjgrNkFwhC4YWdHjk2bo/+lKMIPjppN8ifuBtIU5Rf6KI+OAncfEAoDKmp01J64TkfLiKIypg5mx7cnJ2WM3XhjRpXDISORcSks6j4tO/hLX5AFt3GcDg8bbnnM53RXTppAmgB1GS+lOIZfGRK911vFzgt3bGrgRzvj9Cb+IgPR17LdZxuh1o1me+Kla7tPI/xd6bltLZuhQfQwhO8bkHx8XOySccJ5vo8dO0asjzoMA+GsDkO5ztixI7MlJInQl/k+pz8PNxD8fO5zMTo1JV67Wk0KGx6WCXRiAuW4noUsJwmiyMz1TjvqdcEYL7vMw0hF5vOOH1jzn6aGG5xt833MJx6ajYy9xveBIJkBpqZQG9+MalXmwq3xcYyODlnVBH4n8+gCmcEnobb2stK+GI+DPm2UprLPKsfIhxEzFNmU24ZwnqcJ4PuS3DRAkov216B+rVa2sQQLC47TgYA/G2PseicqY3JCm88AW2ti50vpDG7eHeFQ3bPLD4LhjMwny5zXPC5venowvHwIw6MRhofLNj8Hgd84ljy0wdR38h5ZGtQ4xqAPoJmIke/ryxKiUqejozjeCjA0Xil2lochwlTWB4uLwEy8GY3pzNzwxNXgoLwGBqSbuKaLY+AnfsKsY5IHhYLI1G1r+DB++82RAOjv3ydrlcaDuPHGrQgOflW40Kmo0VH8y5eFd318fARRBWgckHo0GkKfBgA3GLqfPbHQzwwOAg83StjiNyUvCsdXkuDqq/NLa6qtVgO2VmYyffLHMZcAJ6XPvUqKDRuGRGWNVn7x5a4TtWhHD0Xf17XdT0m5eF0oXcmJBh01OKsBO4KlGnzVCUF11Cs/I2BOzmydpJPlEcgksDo4OIhOp2NBRwKoGsRfjQrDBdcJ/hIMZtJOfl9EjaEpXDTdiAuie56HMAwtUKvboMFbIHNGaF2ybD6T1xFo7e3tzfF3M4KaILrbZ7pN1IN2Pmh6Fe0kYeS4PhWgQXQdPU3AmaCvdhIQBJ6fn7c89OTrZh8zop1jYN26dTYKn3WiLli+pkDRutRR6OwbTbvDPtcJSvWY1s4I8pQzqSmj5wnks33tdhvz8/N2DPE5rAfv4++E31H3bluAzOnQbrdzz9OguasbPlv3uf78qUTl8t//+3/Hn/zJn+COO+7A7/7u7+a+64LoXbnopQgM06tKDdrye4bFcpft+2iPbkOSGG7KgweB8XG0R7fB91VSK+7+jHxn0sO+ffIIUoo+8ABwLA6wnVznOsqKIdQaydTAaBRlybkMeJqmgY2oShJDGYPiID6J4Als/RgklKg9LSOjeW+1CnjTD+dBRA308n8dfe/7AuAmQHm0k3dgnC7CnMgp260271bX2nOgyzDP8dzoYv2+UkE7FQdC0gRGqiEwNQUvijA15VnV9vUBI9dnAE4UlVCpyAYxDAWg8NDBkaMeFhel2aWwA0wr4KQu0V+lMERJg99JAjRM+06Geb1wo+3qibo1oEbHF771VkPqOjgI+HEZgemH40kpF9SoVUQQnVWqVMQBEceBdZjoLgn8jvCjkhiWoAkHzsGDWf1aLQHQ9+0TZe3YAYyOYmpvhoP7vhTFxKuNhkSgcfO9vXocSBIcD0eImWcVN7yswxvaWKwFNsKwUgGGN7SFxPbOO7PEvFGUgf8cD5UKglFTrj4B4PKmUvTYdcec/v3qUxYXgaxlu893crKudOVxC+c97YjVRk3Pjfq3aV4eOminHpJYkomWGw/a+cNrtRBUKjixNISFBWC4P7TgeRsBpqfl0jAUp97srKR3mJoCbtht5uEf+iEBRxnG22yKI3x2VuZATkxmLRFAOZ/VHMJnAUC1KqBzq5md1EkSweZLG3y0EdjvDh/O6MH6+iAX338/ymNjqNWGJKr4rv3w4hjP2r1TTiUlSWZf0hSoVvGdqQCVSglDO5Cnl6NtNzaTS4ClJeDYManv2FgJQZRmayWi31Fkc5SwK9l9AZDNx3o+9X14zaYkAa9UgP6yOMGprzjGfCJAvKwFxLmaxptx330yR9F8VioBymEoOmk0MDI6inR8xPr3CQLPzQl4O4TjGRd+moq96+nB8GWXYTiKsG1XRQqenhZ7cniBmS8thzlqNcynUrfQN2OUIfU6tDoM8XA9MNzvHraNja1YX7VTSSC6fr3YyPvuy9Z2HP7sIi+ZR2kQwCDQqZWszbT5uj+xF/j2t7OjWvv2CVc7ydQHBoADBzC8y5es3nv3ijEeGwNGR/GVj2S2O46zuA4uBRYXgdEXbkUcA9vrh7A9SvFgugUTE8CWHQC+9jW5wax9htc9hg27NmNqKgP849jkknn/hzLbHYayttDeizRFMBrK70g7YvRfV4oc4EWn+C4i6druCyMXV693ZYWsxh9N0dHSy8vLYKSvBp+LuJ8JWBLc7OvryyWJ1NQspLPQ4H1/fz+Wl5dzQDrv0QC/BvNXo5TRoL4GnV16Gi2a0oUAZ5qmOQBUU9RoGhHtQNB6YRku37eO9tegqRvJrgF4nUC0qP68n06LIAgs4K+junn/0tIS3Ch7QMBpN0pcOzY0tzkB5MXFRZv4ktHtrDP7inrU9dFR+gByzg4NGGsqlKK2Exx3o+81rYse02wPE55yTCwtLVknA8cenQd0NlDPrCvrpSle2D6Oe9LF8HNex7ZTp1rf+vfmOlzccftUikIHgIceegjXX3994XddEL0rF72sFZ3iigIuO2FJAFuz2Zueln9v8FNJUlatZtFdekejymlMyn6rVsvyg7Kc7bdVso2VXszrxf6JE3mKFL3pNH/TNM/ryccTIHWbvbycUcQSl2TwGe9hZJDvm+gs7uRnZ6WQyy7LHwOnnsMQMyhjYTaLbN+40cPgYBmh2ezlNjRu/6jNNIWbd7apFPrFfcpy9Ys7aqWU+cTLRYVXqx48Ux9G5evb+HBuvpnL02vNAGmK/v4hLC8bAJ27SoIJ7ukH3kyvByPUNMDu+/mj71o3RuekRuGLlKQ9PcCGDWUYbMF+p1mJWC3VNOnCRhOe78MeGNeOiiSBzeLZaGTtnJ6WMTE1JQOKPCrMUDo6CsQxOvEQ6sq34PsCoM/NSZEEqyyeMjEhR7dvk2hRW2kmwIsiQ1sgifpaLdNfTAy4d6+AFddeK/dOT8uDBgaMt8HPlKBpBdxNuOtc0y9gJeh+kW3E17Ld3Wi2rlz0ogFzPWD13yIAzKF2oPm6LvYzTi3jzVv0h+SifnneTCKOOU4Z5iCNPTWTpgD2GHD5mmswP36DVCUByozqpgO1XhcwkqC1S2FihFNprZYP6NZc0QTC9FR47Fje34xWSz5sNhHHQ5Ioe2rK8l559Jiq9QYdBkkCDO2oZkZFOxajCKljWlVgsUTxs3Kqsqyn7o4whCBX7skCvmcGbt9HWC3n+pi2m7h0ydyXppkuaLtbLaAch1IBk2y7tlvsSeB3cqfV4hjAgansjXLWotkUm8GTdfffD3zzm5nTOIrs6buZJEC9Lh8PRe2sr1mpKEInKlsHyOHDcsn69R76+wOUI9EF1zyAtPXYMclpn6ayVuPSIElMUAH7K0ngxTGqVYnU9uqHgOmG2NPpaclsn6bAxASSj38cHQAlnoacnpaKP/BAdjQsitCJhyzYzbXh7Gz2c+Qag+Z+6OBB4OhRhM/+SQHzd0DK5tgz9jhIU6xfP2Jtd6UCYJ+y3ddcIw975BFpPJN9MghB/570glXLWvbbPRHZtd1PSTmrxKJdufjFpTtxxQWuixI56ohi/dLc3zr6WgPOLj8466Ojdl3gzI1Odz9z23c64K3ouyI6mSJu6qLv1pK1dLRaW4v07zoQ3D7hvUV9tdprLQfEam1bTe+na79ORlsUqX22r6J6ue3XutP609cX1XethKhFSU2L+mItfei/XQGuuOIKHDhwoPC7J2JsdKUr503OdrVJOdsFtfsMc79+/IqAl6Jn6It8P0uGpo+aOpuBJ3Ltf9oTracLaSmoDKNm0hQr27fW/eoajZl04K0sxy1vjX6n02E1oa8iVz2jZ3aJTxDA1T8v4gatpycjotX9WSSqoFzVdWWcihU10cXdi1TkfmaT02lFF/2vlaPbRLClaACZh1IdvI1ACE+7rxYEnrvZiRxz27ryA6cMJv9bS4HnKhfZJhxY23a7mMKZvLrSlQsmZzLozvU3x3lYzetnIivsd5gl8cxdoOd8CkE/hZCv9VztOF7NLuv7e3qw8mKirjkjvPLmVeth2tCBZyPQ1+wStlllUHVxTJsQsmh+1hcWPEjbbncdtebSwpTnoZOzEyvsn7bfbEN/f16nbhiwMqqF1dZGLwzX1J8G9lkNN1ha8+rbahU5mNz/nfWH3T2TD8bNgK7apOsTRXm++jNiMWMjeMRPdVKuv9ZSzvmyrxeh3Qa6tvtCycXZ+11ZIUWAqv5L0cC2y5OtAUHSuDASXQORRc/SwPrS0pKNYNb0IT09Pejr67NR3nymCz7qCN8ikFnTz2h6Dx3xre/TQKrmO9dt03XQyUB1fbRDQEea8xmsr36vE1iS+oW0JbyG0eaaKoTRzpqDXie71C/qpLe3F2EY2hMH/MzVre53FxBmVLfWl5vwk3XQ0eJFY0zT7Ogo9iKg2nUyMDJe3+f2leZV5wkL93QDkHGz9/f3WzodUuAw6lwnydVc7NSlFj0G+VsBACbVddvqtkufZmD73T7Q+n2yyy/90i/h53/+5y0lz5e+9CV885vfBNCNRO/K94Awwmk1gG2tRbQCRG0SpFYo0cNRhDA0GzCWrQiv23Jo2QYrsTgmsbI7ZKj/+TxG7DCCrdmU8B+SpPq+jVwu12qIqiUcPZqPONZN40aHmx9ew0eRlcP3s/8ZrT6k0U2Xr5t1V/+Xow7CkCerMnA0SYAEAXw/QBjnE2TZRGBA/pitASnIXcroed8P4EdDCEwSODniDTlWruvkIsemMj09Epw3MGCeWa2iAw88VW0vVaBHELUR+EAYB1n0F4CwshlhKNFjASOiNE+5u7ll+BZD6sido/sfhsuX703y2U48lNOHPsWsX0B+CDHyLklkD8uqMCjRFuLumPX/PDXBqLzZWYkO4/gMQyEPrtWEyoCgtxn84+OiTjaXAYdjYxJ0ZhPvAjbqj8wCNjscfzyXXILj/mbcf788nmqH70s9n/nM7Ph3FMlDmMCX5VNc0MGdG9zP9LjS4+si3KmuZbu70WxduejF9UJTzvJ3Zw9M0eApsW+T/DP6+rJ5hSdoxsYUYKizIppqtFMPASc45j2hUT1xIgtlN3OKV01QjmNcemkJzaZQd3DK4bTDxKBxzLbKuiIM5fowhE3EaXnfq1X4TVMxDfqycEVpwSnTnuRxTuZ0QllbkL6FReRMXYo837eZe5mLRZs+4fEuSSJKNkTbm0ZDDFySCI0Y6W+MPWg2pc+CZMYqKE0l4J96s2aHD+7rs2Uziazn+4hjgwPAg0f7QGVzLJCqhUe7qtUsESgXd4ayZ2lWbltaEk57L4qEV9zYz/nEQ2qWFP39Yko1KE0wP/A7mV1ttbBtbBQw9ptDav164UvP0f2xg0zTAxp4HoO89FIbOV+66ipZAN1+u3x+/fUZ9RAd48ZOUrfPfz4wUu3gn+/2bMoTqiCXnN2A72Fo3u/cmZVXrWJ+7Dq7jOX9vm+u3b07C3mPIuCqq2S9zffsGz2Oi2y0HqzuZ2pdb++/yAxc13ZfGDknEN3N+Hr55ZfjXe96F6644gq8+MUvfqLr+JSX1YBz9y/BPNJlABk4WRSl63Kia15oNzqcdBmkA2Gy0cXFRXieh1KpBN/3baLMvr4+MAkkAWTNFa7pL4oAcd6jk3Uu6qzfWJnk03UWkMqFYLqmWOG9mrbDdUjo79zkpry20+lYwDZRR8zJl05KGiZgJVBMfRFE1zomFYmmg+np6bF84Nqh4NKn9PT0WIod0p1o6hL+pW76+vpWUJJox4UGgrUedPuLThJoUJ7t4rV0OlA3SZJg3bp16Ovrs33F5J98ZhAEtp/Jf7+0tGTbRL5y6o7JUvme42hhYSFXJ/aTC+bq3w31qul6SC9DHbTb7RydDPtD/340TdFTSV71qlchTVP88i//Mubn5/Hyl78cl1xyCYAuiH6hpWu7z1JIFK4X3EAxiF6wWe/Ag2c2EkNoAxGANJTddBStys89jxIajQzT06dNazWzp+MuQ6+IzcKex3nDmgGYJyezM9SkoSAqniTwogjDtRpmkozvnAFFvb3yfJtg0yCr84mHgYGMApTc0gsL8j/3GPFoSTaeRGRd/WkxEXaB72N4U2yTl3I/SKyVrxwOYRKESfMCwB9CmmQnlX1fujO/gcjsehgCtVo5fzzTDeUKQ6RN+WrTJqGX6aCEGX8IfgJct8OZ26ebWbsMkbjnvq9WEUUlgz94AMroGShnyTkV3lOpAOWok/HoqI0q+7XjB0harLIHhGX4tbL4T6ayYcN9oNal7uMy5NmYFrTaC0OU4hilwQiD4yWkqalLmmYgSNFuS3tiNIeM3oiaXXC7MmJ48EczsD2O4aGDW27xpH4caOMVyx8b+I7eDcDSNJceORFg+Prr5blXXQXUati7VzCp0VHJySs0Ab4ABgRouDsnEqV/PxSN8Kw2rjWyxd+Bexxcl3WRyFq2u7sRv7DStd1nKXQ2AqvSoFgp+t7PEkxnQHkoE4bi/Q4ah1b+jiHTFyD2k4Df7t3G8XoytdkoddLmJAGCWi3jSE9T4XSenBRKimZTQG0awrExoFLBVVddh+VlwQoDv4PUz3KA7Nzp5AEJS9YGMA85f5vfqZex/vKnA7NKh87aJDd3hyG8tI2xMeMYnm7kDAwB9EcfFUYO4sthKLjr4CABX2RIqi90ZK0WrK2laLr1Wm2L9S+I8qT8chhm6zYd5h+GaEwbKrzxjlRobAwP1wNEEXDzznnA9zFvEp6W/DbQMu0eHJSHTk9nDmEA1WrJpqHxKyN2mbjUA+DyEczNARP75bPdu0sYqc7YuuSUYQByfcItSSSBNcfJw9OepaOnf5n5Z6LIOQ1GRZGGZXoa23bsAOIYD07JmB7e0M44dfTY9bOI+AQl+FEJpd27pR4cmzt2AC97GVCr4ciL/51lSxmKO1lWeVITIWNpG/r0/wK+/W086z/9J7RaJYyPA1ujx4AowpFZExhhHDlJS9p1qBFg5I47rN46lc34yAek6i98IbBtTNn+Wg24444MXecCmnohXw8pXTiYtFNc66PIprs5fC5Sw9a13RdGzhpEXy3jaxzHeNe73tU15k+wnI7eRAPeBCk1yKt5nt1kmm4EtwajNRUI3xNsJWDoeR4WFhbQ09ODJEnQ29uLdrtto6X1fToiXUdCM+Jct8cFMAlKEkR3aUrYJk3voZ0DmiKFZWlng0406lKqaEBeA8TkEWdE9dLSEubn5y0oyOcTAGadWaf+/n77NwiCHL+7jm6mTgii9/X12ecTKNeJPqmLpaWlwgh06ot89kyeqqO+dQS6C3Jq8Hu1SGrtwOF1LhhP/VOfABCGoU1uS6eDPjnhJod1+czZD4wuJ2Cuxw4j0RnZHoZhzqnijiPtROF1rDc/0/zo+mSCdk4UUcM8lQDh1772tXjta1+LRqOBTqeDMAyxfv36Loh+AaVru89BuCHRQJkGv4DVgTMjbZgkVvVDWVKu0VH5UnFR2vJ9H7OzWfJGBvDyUdWq2XgysaTeHPjC+zk9rYPTA2ytVGQnv7CQZSBL0yzCymw4yiorJBNPhqHh79abDgB+WMbgYEbRTQCde3zSdycJJCkmwVI+W7/YOB0qlSTwwhBhNIQTJzLeVxajcUhyyuvu0irV3XTihHBpa2yAp4TjGCjrpGkKbe74QW4z4TVNIrGxbZbPEwcP5hPY8QYCx7rtR4/a0PigEiJJPMu9y4MDx47pfpRnVKseKpUyKrWyLdr3gXLsWx3o4bqwkLWX+DMjB+lHCUOHb15vxElGzk2xAdMFVE7s+OmEpTwPuwGhLD1utBl+vNlGybUh/K+tFjB5IFN3GAI/aIADRBHafgkBOvD2fylzHphoyVIcw6I01ars1qMI8345xwd87BjQXxsBIsCvSZP27ZPvazVxiPi+1HkGZUw2hgSjqsrnExO8dgjV6pAk+GM99EArcKQVAuXub+E0c8h3U1az3d3kZBdOurb7HISJPvRv0gHJc/MdP1PCj4NkJnN+MaqYk6kOiVX3M5q52ZRL1q8Hrqsdz8LS6R0/kVV3YQFYWAiwvByg0RCw+4ZqNbMrPOalvdStFoZqNVx55ZAA92kKILDzqTf5HbneoK1+lM211WpWJPM7J4kkab7sMhSjbSoKvROV4SXz8LThAqydaLUkt0m9Ln4ATnkbNxondGsGoE/SOOZnT2T83W5f6OlfxzSw68IQKPu+jUR3s5I2GmIurF0bH8fEBPD93w9g/90AIBHuBc5zC6LzhBKAwE8R+D5m0pK13VQDc9ccOJAt+yq3lSWpJe1nFKHjBzh6NBuuvp/9D3gIq8L7Td55msac8zuZz49fdujkpFRA2czq2HVyDY2vzktj2sx1A08PjI5uR2lsLCt/fNx6aN7yOqnb614H7NzpYSsdA2GIdihrlK3hIWByGnjve4UPftcujI79iHz+kY8Co6PY8PwfQasFzIdDQCgOlCgSSvPmoDhM/BSYngD+9m9Ft3v2IONLjyK0oyHUY+Fzrwp+j6kpufbSS4EN5idqk83qAJZV5oAV73XkAb/Tc8hFJF3bff7lrFduq2V83bVrF9785jc/oZXrikhRpO9qfM/860YE68hsLS7lio64LhJNF6MBciCL0AUkEpsUL270rW6DTqLJz3Q9tINAR9gDWWS1Bv1dmhLNN+5SwxBQZbS2C85r4JMArtYxQVLSdzDqmfQiS0tLFlB128a+IGhMGhACtJoGxQWldZQ46+ECtfpEgUvp4l5HgF0Dvny+GzXNa9ykqa4jRFPKsBwNyutErfxf97mm5WF52hFAYTQ5ICA8o/6pf0aM636nM0VHl7tjUOubuuQ9AHJ11mOiKHpfl+me8niqScVEJszMSERGF0S/cNK13eco3GifbnFd8J1emwfc2MSx3XzmFt8KuF1GtkkcGMioKH0fAuA1W7nnsIwOvBz+CQhQurViNkmLi9kmnjtpgtb6pjSFF0XwfXEAoNkqjNwJQxieUA8nT8qtBC4pFkTnDcDKaF5X17ptUbapJE0MRUfxUQduAJouiirQQDuB5CiSjWMYepLozHmx6YzO16ABVWp30jpayT0twAcvLuaAnjQN7HFz7m/zzpA8BtTTk90ugI0kE02TvF7Y3oWFDONgVXjqOvA7QCtZCaKzQkePZhnJFAWBlUrF1MNQyCAbi8yBSrC/p8dDb29gc681GgLeSHShCV4bj63ukgQIwjRDJTSKEsfy+cSERGWaY9+zs4FN/Jqm4pCo17O21+ty24kTjl/M99E09TEnxxGGWY4/UtRv2hSsTCh1NrtS3ZH6/otwI05xbXc3mu3CSdd2n4OkKbBuXTZBalnNsaU/06Lmm5mWJ45WTvq0n5rCA/JI0lnbxMWcSOjF9P0cQKUDqKemZO684dY4m5fJYVWvywN4XK3ZxKbRIXOSKAPRAWTJnGmLjPT0CIhdiiJEkWfnReLt9PNjaSmb+6krpZYSdVCwTiKWPTubTyS6vGyAX2aV9DPe9JMnswACvfbR3WDtreouexAq9osdKJDHLS7C2rcOPJwwTgxMTWXt1DwjLHx2Vl49PSuA19Qv2XVPqyV2ZXJS6mlyXFubHoYBSpVKzsFMJ7ceerThNMVaxVxeMCIdrSSzKbyo1RK7zeh5Mz5LPC2ns4prRfo+kIoKZ2flr+DUQYYfx0PwxsfxrckAd94pbXvOc8yYiSK7sLDjnjb6K19BfWkJ1clJxLvM5wcOAGmKwJd1JJ9Juzw3J04VPntqCrjvvkxn9vcXhmglASYmcoca7E/O93X6FU/sNxd0rriONvc7N5AGuKiR5q7tPn9y1iD6ahlf+/r6MDc394RUqit5OVPgqAiocwE7zeV9NuKCsUV11EApAWSXa9uNkNcR7m5iUheM1OW4wL+OKNfAOf+6dS3i+XZBYTcC222HjnoHkPvrAvnusxjFnqap1YHmZNd10Dzt+vOiCH73dAEBb+3oYCS6y4Hv9rfmEy8ag/oz9/+iaGs3wt5th8t7z3q417pR4+640JRApIVh5Lnut6K+1mOYfe6OR1fvWvdrUbYU/W6erBHp119//ZrOAu1E6YLoF0a6tvtxSNEGuyiClIvuNLXgst1XKhQ0TSFArXuvjXqSj3QwVA53cxf3BaAcwWa7CV1RSMF9GrE9TfuLivH9LLidkei5OhfdrN/rjb6zUenpyUdO58pPsl1BUfXdR+nHcc8chlKe8KgmGdJuXqUoQgdeVnZLnsd+zj3TjX5c7XOVQE1/rNlvdJcMDGQq0o6VXIIwBDnggcVzA6nvsY9ea5fk+6IYnQ2MnyvHQBgpOhjfhwcZ4729Gb99UdGM2NSBnvq35fvIK6FoE7tGp+vNM5A73a/zA5pxlKCvL8jRp3ppGwMDgcUGznmvvBZIt9Z3F1jO1HZ3N+IXTrq2+3HImfy2VrHrZ3RIhPORPX2Un3P11/Z6NV9x7l5eXmnre3tVJYiYEl3UL1139xG6/aox1kYYmwHk52H77N7evLFR877Mzcg7ivX8bPDJ/n6xXTqCOgdEF9hArT/9uc6zqdcbXBfYYAB6jVUBMXOpGCPgoWPtk71uYaF4rdLbKw9hpdRaD07ddK5s8s67bfd8H77v5R6xlug1C/PNZH2wyuRKLj4umNZ6EMtIEkSRjIfBwbxfhD4Grl99P8udMjio+tWUZx30HBNxjPDoUQDKzkeRSrQSFOZd1al0uO5bXDT4dxTmnsc1RDlsA2mKKCpZXwjrn8tDtJYutKxmt3ntabOjnn/p2u4LL2e9YmPG18svvzz3+ac//Wls3779CatYV0RcQFWDqasB5DraWQPL+h73fVF5GvDWzy4CoPnjTJIkBzQSZNZ1JjVHb28vent7LZisuaVJy8Eob5alAdAiwJxtZuJONyIbQK5+BG75XapmC8/zLCDORK1uQlZNE9NnrDm5vaMosnQtfBbpV+bm5rC4uIjFxUVoih22WTsV3Gh2/mUbWE8NGlM/1ClpeAiik2Nc9xvL1brSfe5GxzOq240y198RiNfjjtHcmmOcjhd3/LH/3Mh4rQ+OdVLAkG+eellaWrK0LTx9wH50QXI6NAA5UcAIdHLfaz53tg3AigSvbPtqYHGRfp9Mcgc57FaRJEnw9a9/vQuiX0Dp2u5zFBegWw0ABrLVpgFgvTAEUM5Ac7OZSBIgiNQCnN9VKminHpLpbDOg6RrtplhvWjXSbiSOHTycOyFGWDGc2vezhEt6Q6CO9dq6682672fJPJMEQRgijgMsLclRbSADG6MIxdFO6jmIIrRTD35UthzypE9h0PqGDfK3t9fZKDVbVt8B2ogiiZ53WTb4KCefm/2srw8op8eBqWYWkqezqUYRPN8XChEgi4hutVCplKXMMBTdMuyOpKX6aLkLNpgj3VSHznu1cWOWXNX3Jdh640a1YUXWTvaHi6n09OTBeEA29izDS9srd616XDJZmK6cPlFgOslyvatNNHwfQ3EMRMI1m6ZZdCL1TscA1RXHAKZaNgqwlM5kUecacWf9dNSgCVXs7RWwhKAGqWUZFWkOhFhptcxmf2oKw7Uadu0aEgB9/5eANMW1O2+2+rK/CTcU0u1b/R1/iG5HuNdcBHKmtru7Eb9w0rXd5yC+L5HowEobWfQbpdDoxDFSv5T91tWJoVwZPK4SxzKPt8SW0LxGkUp6nPi5pIft1ENvbz4Ylgmr7e9Lg+ZxLCG4fE/7QntsbgrCDqLIk3mVlVCAu2XwcKbRnTuliNFRYCg09F6c/3mT+iH7PjJ6Ov0DD0N04GHZRACz/ZyL4xhZkhODwtIZzWbq9Yu23QRSOR+TRYen4vDpRyQCmzxetOFxjFtu+0ExzXVj25MElUpJkqrSfjSbgtDqRKF+vt+sLoydp1ny/QzMZ9Q8bfiOHcaWNVNrAEtRBEQh0tTD0lLeQbu8nHf+rl8vn1WrZt3jS/R+LqKf/UM7fOml8tnGjcAVV+SNnu5LTWsCwPMbKIchRkclRwnH5+KiDL+BAWB4U4goEgryVkvGTrUK4N4la+dKyXEgQZbYe/duxBMTgO+j3HhQnrtjh+UViqIgl3aETdLMZ6S0CUNzqqBWszw/pTjFjh1Dop+//VsgTXHdS18KJqo/eVI5h/gA7QxZy3ZTX0Xrf3eP8F2Sru2+8HLWvV6U8fXDH/4wfud3fgd/+qd/ej7q+JSXoghciht9rqlHNMjrAso6WlhHcxcB6RpwJ6DsRkzryPPFxUW0220kSWLpNXRdwzC0QC6TYBLM1oClG/VLYFxzYxOUJ7BN/nENahIYZXluhHvmnUst8El+cYL9p05lPOcE6ZkYNIoim3AVgOVhJ8e3Bo01MKsjl3XkuOaC5z0Emgncsu2a816DsX19fSiVSlavnU4HSZJYLnT2jXZQuLQzFB1ZrYF06kyD0HRI6ESudBLoyHY9rvmeIDXrWzQe3eh5rQs6L1ivMAzRbreRpql1ztChoOloNL8939N5wbHNtpGznnVmffr6+uyY8zzPPne136xu15MRGP6N3/iNNb+fmZmxx5KfjO2/GKVru89BXPC46Hv9l6tTHr2uVJBGAqKXzM6KSbOiyMsoIcxu4eFpz9JeRJHsLUrJ8ewDAO3UAxDkKUcAIIrsGp97JbtvrqfZbkTvOl1UWe1cO/Ds5qmko8P1DpFtTRIMMfsawWVuODVHuIvwms/mDR+4fJwlN+UjfV82kdzXlkKTXHOqnqd/aTYxVKlgpuXlAsl1Vw4MyHsdLWY53ycmpdz775czxLyRG3Hh8siHgzWbqFbLCNL5TDcm2gqhJMLyWjP5zZquUBTlfBzsdz2suGeXTXgTWM763lLlmGK9ECiF2fF4Bs/pIVuOGG2fbehzosc1AWo91tgWN+ur3ozqRoUhSrUaOpGAUouLGf7U0wNce628D5KZ7Ow6x9PUVHYxx02aZtQGAwMZSsPnhvk+rlQAb+pBlKII4abNWFwEhocdnwfP3tfrGKnVgMkG8PnPA8vLKEURto+P43grsFTIdpS6Y9rtX+c3akGxIn1fBHKmtrvLq3rhpGu7z1Fcb6nr8NKfa3tmIpgX+oYAAGV+DgMoas+sAdFnWh4WFlYe2tHRsZjObO58GgBpNkUQB6Xt3rDBVHGylXcgLixkNnx0NEOWtZPWl6hr68DWADAUiG5u6euT17aqsS+NJJvfObfyOQpw9dDBfOKh0QiQpkHulA9NRBhKEQR+26knlHQH6vm1QZrC9wM7XyuV5wL9eUscm3UAk6bzhm9/G/jXf833kWm/t7CAoQ0b5LreXiBJUK0aPcVxxqEGiMdar7FUTpC2L07awNSb6wquLajqNM26biQ8DkxNr6xXGGKoWpXgCdUMDs8AbfhRYIMIypgRfvE4hhdFGS0LeV60/b3mmjwSrX8Pes3Hvqaz3yTDKe3YgVIUob1hM06cyJa1cQwMDnqIY+FCB4CRaifjy4ki+aFMTeW9SC98oaDtAHD33QLu795t101eGCJJAszOZs6IWg0oJ4+J3sOydfKw6UdmSxheZ/qt0UA5jmX99oEPSIUrFWzbvRuHmiVbHaCVDSTt9Nd/OTdoSh9KkSP8IrDhXdt94eWse70o4+ull16Kd7/73XjZy152Pur4lJaiSHSKG0Xu8ncTXFyNH5v3rUbTUgSy6+hoTTWiubzXrVuHpaUlJEliAWeK53lYWloCI4c1wK4jtQmoatCUwKwGkDW/ODnGdfQ79cVIa9aRoDTfA1liyHa7jXa7bevOspmYAYAF0DVPOXVC/TM6XIO0buQ368Bkmr29vQjDMAfeEpBlnXXEvZs4lv3FZ3HMLC8vY2FhwYL3TGZKYF1ze+uxxDq6PPgaSNbAN3nrdfJRrXdNbaP1zvcalNdjXDsHdPs5vqlDXUeC59QlHR2dTgcLCwu2ztopxDqwPvpejhs9ll3HlB5Tmoe/iAJGSxdI7sr5lq7tPkdZDSSj6I2W3gUdPgz4Ppb6tsgiNPRtFDr3KyVVRieURX6rlW0SSpiXjQh3lmGI1FeR7ayf2a2nxsxxI+618pFPFkTv6ZFdugb6ALux6PiB5S6VAkUHbb+EpAWUozBLrKbJxwHZ1LZaWZSc3gGvEuUze0KCv7mX02pldPKGDUDQOi78nwRvCdhrDnLfRxQPWTxbdyP3kgHaBixpZTvDJDFZrJqyEedmWoH9dldHpNtsvMu1jiTZZKWbTRtCXq8DlUpZQFcd7WTqPJ/I5pkR4zqqzYL7jWYGVpNolKAGX7yJR9WjCJpmxvdV1HkzA0Jy7XPHtYlEbEdDuW7TtC0A8gA6kGUzBQRZMDtir1KBb6I7OaQDtLMxQ/J2HSper2eRbHqsAnLd4GAWlmgcOn6UNaGnxzgN9k8J8BCGiOMyNm3KF2OdJ/39WTayL3xB2nTllfIz2HGddfbkQDiozzTyU7QhL5o/utKVNaRru89RXHsDrPxN8qXBRzPHLuqyzH3WJhq7czwpIWlmP3uCf76f0UYEaQtoInMapxJxS3Bd2ymvNWPuSbMI+IEBcd4yE+jgoJRFW0SnNrK6leMw77ALQ7QVbYuHjm1Xf7/JfbJvv8x9BM3pJLBeAKUzc+/sbGDXLc2mzLeXXJIP2C5jBrh7PxBFCHgkiCTiRMwViM6pk9zo/Ez78r3WDDDVkAQW2mM+NZUlwyZ3PB3BrZZ446+6yp4Qq1aNXYzjzKOq7aKyrzP+kM050tsLDBk9eGkbGzbknf9UXzD9IFBvSrkLC9kFmmolihCEIRAGdi1guzNJ4Pkp1q83q8Xp6SzLaKWSKV4PJK5DazUc9zfnmhGQyoTKdMHzZlPscV+fVGTTJgQ7IvT2lmxiVz5iKO6gNLXPkL6btd7CgtRleVn6olbDfG0bUr+E8p490if798vrttvQ2XGd6N84xZNkCHNzmSOq7M/bJCXB2Biq1bJdCiSJ5BQfHvWzik1NAQcPIv3Up4RpaM8eoFJBWLsuy9fjK0eGBs9d20wdFYHkenzwmq485eScet3N+Lp58+Ynul5dUXKmAFsRMO4mYnSpYNbiT6K4dBxFXNgaVOV7zSutn8doYU01o4FfgpWaZqUoAlk7DRghzihwgpusByOtXUBTOye0g8Dlc9dJU3UENJ/JZ1BH+ntN68E6aCCaz3GpS3SEvgviau5tl+aG3/PZuhxG6ZPWpYjuRo8h/s++KKLy0eVrHvGicbDamNH/kx7HjdZmuUVjWkfSu2PFrZMG110qGveEAvuKVDOaTknrSSc+5YvfP9Vlw4YNqzoNunQuF1a6tvschZtsDTa7kShaGG6rN7bmmhVrdfU56SbS1FAsahoQ88zUXJtbvfkSecziLOejDmnSoXFulOyZbAB8oXdZWADKkWqnuwnRmzoH3F4tekcnVCMTio5mA5j8Um340jTLfOVEVQlA4K1olu+rJJram0Hwdm4uy4LpZuHUCDdDzHTH6fGxuGjfJ6aqgdN2Oir0cWnS3tq20lHB3d/sbAZOu9H97gYwTQEE2XgA8k4eDaKvddoiDHHiRD660vezBKI58AmQxuhMokCWKczUkeM78DviyGg0srYtLckFJLulkgyKQpqfgAg5kD/37ujBJoFlqGcq/O1hKG2yt6Rp1v8LC0IFcPiwXHDsGNBswkMHaeoV/n5zH7o/8u/RjfZatrsIc1hLzubarqyUru0+BzlDu5YTx27Kn1UGu+/b6ck19bk5V/NTqHuIS+eqwudr2835jfZU/yWaWDT/OLafU71dHyib5fsQO0PnsV4vhKFdX+QyfKUplpflZB2Th/p+5p9nNXO2LI7z7XP0quMR9LJLLx9sUnbaaQ2i06YzITZPjaVplvj7ssts4WGI7CEmOn01QJWPsUOGf9MUfhgY/Ui/B5HpeybEdvRtk59yjPg+/DBYaU7MP7RV2smzwo5rWRJalca0PJK+7ECPOdeGc01lItEtmm3KXloS05imZs2SJMBDD2VrpTjOyP1VX7C7yzxBsX9/Lil7FAXiMMr95kz12F7fB1othIY6j8HuNkf9wkKm00YDMwDaAKqNBtBswh9dqdNCHawmRXb+Ipau7b4w8rhWdMz42pXzLxroc6NaNWDo8oW7YKj+y3JdcJOAo46q1cAln6MjmF3aF95HAFZLEcBIgJZ0GYxudoFhzYFeFEXv0rXoSGwdfa6frx0DpOYgOM9IdEaJa3BeR+MDWUS1m8zUpY/hs3UEs3YKFF3n1lkDwJpHvSgq2gWLtSNCR/EXceprvei2uGCmO1lrwFqPI32f20euA4C6dMsv+g3odumx6TomWJ52tnQ6Hftec7wzKp4nAvhs1lE7QPRvhy/qj06j1RKOPtnl13/91/H2t78dt99+O57+9Kfj1KlT+MIXvoD/83/+TxdE/y5J13afoawGMBdtvPnX2SzZPYjZVepLXSB0BduD72fRSmqzm9tsm8K8KAIQmMd78P0AASkuuAlh4RrYdtuRpvDSNsIwyDbB5vPQbBRzmzftUODOGcjzqJoG2Y04I4Ac8F9jwjr6zG50XdBe85TwM7Nji6KSxV6BDG/twADA+mFsKKO7XeoQVsj3s6g2Rtq7VCdsuyk3aZhTB5G/whnj3kb8uPBLIM9B44LoBdfnwBytPxdg4fdFkiTYsKG0sizXcaDrqHWgM8D6PnyjylzXccyQIJhHwjUXgnI8pCkkco/lUhdmzOkuW9G2NLXDlKf6fVaKdWaZg4PyfuNG+51lRWig+Pfjiu5z9/uLHFRfy3Z3N+LfHena7jMUN9Hf6ZxdBXMigTqsi+xvuKcHDoCdN3uZSRQnrlcwL/PaKJKI6jAqZ1XTjmddV03HUTRvuO1yAdYkQSnO7LCn1g9hJPO7bUgcZ1zv7jqhwPnu+1kEvjNli76WVZ1ZL/aPstlBHKrHeLlcmHpZFVA3YaiSUhoh5xvB8zAUVJ+0IgMDOW7zJAGC0LHdS0tAHKPtl+RZpq0EbHnADlzXGQeF6ILOBid5JfWl86yssr6kmZevsrFoyyy6t2iCNeug3DrKPerH9SHbnqaCbOusrqpe/NiC+rSR1OnGjaJn2swoysYBK7Fxo+Xa5xJ2yKy99E9rYACZg8TUWTezv185opgF1dSlbLqHmV15IGFgANl41O3TA22131fR9RepdG33hZEzGgWny/iq5atf/erjqlBXVspqEbtABjiS4mK1xJsE8oo8UxoA5HsCfiyHn1E0WKkBR7fOOgqbsry8jCRJLCit66HL4DNIi0LKkiJgnaA66UrcpJWab5v3uVHypJ0ZGBiwIGgYhujp6UGpVLL0LqQLIT8hkAeINaWMm0ST7dL9wehwF6TXYLfWE9sFCI846+M6VFznggaASadTKskRsYWFhRzdCvnged/S0pKlg3HpfHQ9NXe6TtapxybLdSlb3PGtI/vdthAk122m04XP02OTbeL9BM9d/vVTp05Z/nRS3WhaHNZHR/9r0c4Xjh3Wi7Qwq82lRZH+Twa5++678ba3vQ2vI3kegFe+8pVdEP0CSNd2P07Rv28XBNOLcB3hq6PC0lSOo0Yh2mkJiV9Cs6FoVytD5jq5pVbL9q69vUAnKsMbHbVlwfdR8k1Cz3ojvyGKY/iVEctOIpcH8P0AlUoJpUonD/hy9+FGJ5tneb6PchgCSbbZ9qJUOLgZ/aUjfLnrY5KxSgXzhrAmVdUUCQAE9nMg42XVuLY+ib0i4ixfoIj6fqhaRScuoacnS9KVARwl2bCzT3V0OTui2UQu21ea5jnRx8aAahUdSGQy+VHh+/JdGOJ4UkK9zj19YIoJ4AMo+R0ESIEwyPlDAOG9D3TUe0spimCx5rbXutB96AJE1A/7WgMkRWASADQaCNxIR/e6NBVdcVer60WdmA71U53YLs0octzy6JwxY4tUQgzqK5PagHoKhTM1SYBEDckwhNDhsNxWC14YolYr5yNB4xgYH89+wxzLvi/csjt2AGmKLZUUaKgBrY/F6z7S/ANav66czonxXZS1bHd3I35+pWu7H6e4gFeREwvIRwM7VExD4TwQ+YBfEXuWeOjvB9oIEIyOSiLReuZbpWlsNFQeiwLgLWgdxxAgeReaTXi1Gnp6RrC0BBxviW3k6aRNYyanRhRhpuUJTYvllFJt0POPXodki4EsYWpYlsjfRgPwfQRjkSCOzMC8Y4fYMIVc898wHlqhQoNT2mnPJlKlNNPsZBGjlonI6gUL513fhxeG2LChpOMErJnp7fUQRWUEVYg9HhzMHOCXXipO2GZTThIR9e3rExoXOgjiGPN+GfVpIBwNxMYB2Zw/NobJCWB8fDO8ZhOdqIypKWnr2JiJhudY8X2kymch/e5MkBwQpMqhPVZjk8lVc7EHiS+ULtMP5+12ke3W0tsLNBoYqYVmwZnkn2nGr9dqCQXK6Ki8arW8PVaOEl39ctSRnCpc75FayPcliSltfhTZqs6nAfx4M4Jrr5W1wvg4hyCWNpatOisVKTZIZoBHGxm9mxqHQHYdgIzqyLz85z4XfpqK7a5UECQz2L27LNQxTT/rEz249Jpe/38mzu+LzMB1bfeFkTMC0U+X8bUr5180Z7MGWclv7QKVGmx2uaM1WKf/EoB2y+dzNTd5UTS2jmDXILoGVjXtCcF/RlKzbgCgk49qQFsD5qy7jvzWdSL4y2hiAqZ8jktlQvC7v78fYRhafnLthGAZTJ6qk03S0dDf34+enh4bve7S0LA9BM91f2lHBf/XtCy6vzTHOvtER2NrbnwNavO7MAwtwEt6E9aBiVN5T7vdRhAEWFxctM4D7RzRbdPANfVdxGFOIFzz7euxxHs6nY7Vl9YB666pVNgHGnBfWlrKUcF0Oh30Gzc6n7e0tGRf5KBvtVq2HVpc2iC2XztE2HaOG+YIcGlqngryD//wD/i93/u9wu+6IPr5la7tfpzi0lystngmOElgGciOEBuO0QZG7F6R1Jtqz4i+PmBLTSKN5k2SrqNHgeVlAfvKEfmsm9nmWIOio6MIqlW0Ug9TU3lMvFYDKhUPlcoQSlXkI91YEU1voneuWg/qWK29bnbWcrR2ojISw9nebGTHu7mJ4j7aTWyUpllAExNoEZSwSTDJ16n7wd3osA1GL14YYrhWW5G0S/BeD2EoGzcQTK1uscXmIsm0TswO9zuTHup3Sz03bgSGN6jouB07gDjG/fdntKxUN4/xb6lImUEUwTdAOiPRkwRIfQ8lHn3nzdykVgTU6cCz2ElkusgjWKSBFd/PdMgdFNumk5EVjXEegdef6+MCFNLqmOizTnVE6pPM27q3U4nOHIpJdSAb1/loM9I0o4ztjfJdnKbAwgl5RJa3toQhs3E/3vTQamZMBNWqRJwNRe38uKFemk2MjpbtV0kCzKOE0o4dht+1njlKenrQ2XkDvvxl4BnXpsCBA1k76dDgGFGgw6onPdgo/XI38BeJrGW7uxvx8ytd2/04xf0tFTkL+VfbcM7haSrc0FGEIwNbcexYRg+eJEC9GdhiwxAImo8BSYKlvi04fFiw3TgGwjjIU6AAMlFxnjFczr1jI5Io8Uge+964Edi0qYy0Lu+rVU+4uPUPqogehdewIGY9HR9H6hsQ/ZFH5DOedjMh1vO1bdh/N1CpBKjVxOnLYpm7hAeMAGkrp9YwBLZUzbwbx+JoaCI7kkfUlLas1RLDpyi7+F1QqSAIfcwkARYW8ixhzSZQrZZRIsc6QdwwzJKX0t4ZR/98ZYtlgEubmWmoVIAhzsHj40AU4VsTHiYmRDUjUYSjR2UpV60CXuOx7EZj1zStz8AAUOpXa4aenixSu1bDkdkSNlTMmHHGoe8H8NI2gjSRxK8cixMTGZisUXbfzxYO2o74fsYNbxcVqS2jM7YNzSYwRA700VEcj7YAEeBXt0nk+4GvKl6d7JDCxo3IbOr4OOD7ON70kDSBnvXbgPXbrD/dQwdB2oYfBpbKvTZ2HUpjYzjULFl/EE0uc+UGjUPyO+H6Y2FhRSR6tQoM4bi8GR3N1jj2CCUkkWm1CkxPw2sczJwo2vZqBxR/O6sB6PokBuUiNG5d231h5IxWbKfL+NqV8ysaxNbc0kCen1vTRhBIdAHaIgBPR+JqXmoNhGsqGE07wnsY5a2j2XUkMMFntywASNPUck4T+AUkoltTpGjKDepFU6FoKhedJFTznLv87iybNC69vb0ol8sYHBxEEATo7+/PAbJzc3MWkE+SxIKjOkr51KlTFkgluEsQmO12wWqXtkXrR+vcdVJo2hReu27dOsvTrqlqtAOBvOjUbxRFORCdTgw+g20kuO1GVOu66rqx7+mgoL71mGb7deS6BqKLItH1ONUANulTXGeELluPM+ozSRLMz8/nEpKyf12KHV2+dhLo+lAYua+dNkXyZI1CB4ChoSF86lOfwhvf+MYV33VB9PMrXdv9OKUogk2DXhQNoHPjxNBns4lt+iN2o8C9Y7Mpm1ECyKjXgVYLpbExJImHuTkB0jdtAqLRQCKLNeen5vI20U1LSwGOHgVOnszvq7nPGh0dslX2wwCe38q3QYOsRDVJcqrby43Z3Jw9f0wKUOLY3BcTb6RoblG+NNDe22uAVkZQacBe81+7Gx3utHnE22w2gyhCahJaUifLy1nzCOqzXlKMUOLI6esAcSyAe9KUa77xDQE8TNA5OptM/5gor+NND0eOSPczeisXMBhnqIMHwPcDS3GS7Ye93HFyqyQTleju/+RrLw+kU098uN5BnUmkNEMrfT87mdHfn4/KtwPKt8lrp6bk40pFjpMzUk8i2BS47/toyLDH7Kx0Hx+lj7Vrn4+l3a+VceKo9EOzKSBHX59gG729yJLL8XlKJ0PVNqIosE1sNoFwdCu85vGsLeZYyOQk8MADwDOuhXDAEiHzfbTJO+86dtbaiLvizjEXiaxlu11H2OnEOZDaldNI13Y/AVJkq4E8cFlETcb58vBhYMMGHIu32nybQ3EHJxY8HD4s06Cl9phqAK0WlmtbcPJkRm+SpkDgVAuNhrwIElarwFgWlE18nSbv5Mm8b24FiK6NF0PYXaOWJDKp1mpII8j7Y8ekQOuJjYAowuSk+AqZ4JzzL5A5Hek77OkxFBnZ7dkiAJLg2jomuDAgqByGUiAnfi6GeL21eUNYXs5sBJAFmG8xFZmPNqPZFL/AyZNy8iuKNiMMRb1LS8A392V04uxiu2SjPms1dOIhTN0p9mR8HBip+DjZlGaFITKbWKkIxZjyA9hUIL3pSltbqWAmlQTyc3PA1mq0AtH00MnnleEgIrf6jh0rgdzVJmN2FinSAFncLCxYWzrUaknZvm+DL1otGdc3OFlv6TMeHIQkS40iHDkRYG4uG2a0zzzUEMcehkI5Fddqlez4jiIB0E+cyKjMeRis5LezBKpcSBqudeaYAcwYlMztNlGsrSSBchNEETSbwL33ymkEHvek/vQxQDaUei/S60Xm7C6Sru2+MHLxj4SuAFgdbNKAOd/r71zAmlLEm60Bbn62Grjn0qEU0cTwL4Fal9aFQhCdZejIabfOLpjqtk1HbBeBzYxG1npxqWEIevOlgWFN+8HPNNe6jvjWwK3bf+5zi/Suv9PXuycJihwTmlpFjwndp9oBQ2BbR6/rSP2i5KX6ee4YcB0pWnccB7pvWF834erppGhcu7rTVDfa2aEj510dse6rUc64dVutD7SO3T7kfU92+bVf+zX87M/+LD772c/i6U9/OtatW4cvfOELALogele+R2W1TbkrerPu5/foOnDI3q439Ybf3M1PmlvYEw3OkWlni2TmWuIeyr0VUBt8frC0lFWKiKbbPo3Mc9OuPtab0zPFB6kXS8WpwfwiHa+2kdFK1a81Aof0if6lJdngavyZ+08bFa2i4la0zfdtZBqTcLl4R+4eU9+i5hBIz7lxjaLSZEW3r8SLVgywgsafroPYYHbMasCUU6ZWvbtH1dJBFsXHsc7HMEcZq+GWySG6sJD3X+XqzldPT76tSYIg8sFUeSyz5DotDG+uLXtxMTfmee8KoMzo4Xt1Ew6sbbtXwxdWk4vQR9CVp5KsNg+usBPqt2kMac4sp5JMc3HRyeugjn65ZsvODdou0UDoI2NY+bU7J6YpxJatNodo+jHXhrqiQXfWz/exsJD5512V8BYuPejs1EXkFbaKuCCwfkDBpbp5PT3K9hk+c4K/c3OwibB56otYsM4Xrg9gsV9ZJ8739hmmArlr1zJqRW1RurVruqIx6Ro8vmdnuLpby5bofmDHLS4Cy8v5Nad5ow/yRRGA2M+VTxOqH8m2cK1JHeuTd/DT3JqAuiU2vmKdoOusx6/TVjvWYCjwXAe2WosFXCy4451/3b46U1ltffpdlq7tvjBy1iu5ooyvgIBCYRhibGwMr3zlK/GqV73qCalgV/KiQae1aCFcoFNH61I0vYUG9TQwq6OZNbWGy/Htll0EMha15XTtZGQwaUSAjCtbX6ujm3XySw0W816X5oaRxYxEL4o01hHuboJSXQ8dUa2jsalfrWtNgVIEQmuwXNOwaICXkc58z9fS0pLlS+/NrfSQA4/5XJa72okFDaz39fXZuuukpoyGp0PkdMBzUX8DsBQ569atQ7vdzvWZBv2pD0bduw4FzYvPPnNPS+j2ufkFyJGv60gKGe0gOFNhubqv+OwnMzj82te+Ftu3b8d73/te/N//+39x6tQpXHnllQC6IPqFlK7tfgKkaMG8Griro1zSLJmhxiAZdZ2719zHf8kTXphUamAgA/vM0WmyahALTNPV81jl9gqaRJq7TiEgXdk+trm314bcdfzAVk9vUG0wmZ9RUJLWRUcaB75KWgmsjJqOoizyWSeA1PcwDEqDoOYaHbzuBnLpx7gbOw1osM4UvRRJUyDQyd8g1QWyoDv+H0XIH69utRBEEYai7F4ridpAmvI7YclGxLPexLkJvJd0FJkL3lBYGXezqsc0I861vn0/21Hr6xVSUTF8//pkdU7ZZqxRDfTdsG903jmOIz2eAIlKTNMM3w/DbGzlRP8gWBkTpVepbHbq6ec7LAxt33fCErxKJYuWNABbDjg6HVft95CsZbu7G/ELJ13b/TjFBRP153pO03ZDzYVMQQEAM4lQrXGesUWae2iewlBNke6agMhuHIuxiWOL7bEKLIP2P2e/3fmcN+i5nRMqPyP/SprKaaBGsjJ5s7m2t1fe0p4AmcklDkvT4aVtRXUWFnsztVL4qtWyBmkvgSUDz/qIVWRRvLRSgfDKAwhHN9vb6ODQ0fM0OUXsW2mK7LhcGCJN8ssN9gsDnm0Fmk14AMq+j/KGENjkm6StbaDeyh6gsq4ut7JxM58GCCOhb0GaohPKabkcGMxGX3aZGDxWgn1HxNs9Ecb1Ql9fFuqt6GWsmnldkqA2lpnwOEbWH60WyhHgD5bs2igwAyCZyq+Z9DqP5lCvaVlFjqswzHBt2+3aXvf1SYE9PUCSIIoCS3tvc5oYgB5+AL+yObdWbjWlHmXqrbc3H+WvK1S0QC4C8F3Pkvv9RSBd231h5Kx7vSjj65e//GXceeed+Pmf/3k89NBD+Nmf/VmkaYrXvva156POT1lZDXByAXOX/kJ/rjmcgQxgBPJR1BpkZaQwAVaCrbocgpw62lz/r+uto7h1pDpFA9aLi4totVpYWlpCmqaF0dEEv3lPkRAc7e3ttRzyBElJE0MKE/KgA7Cc6gSr2+22/cztCzeRJSlTNBDung7QDgj3O97XZ1ZrLjC/vLyMhYUFLC8vY35+Hp1OBwsLC5bTm+B9f39/jn89CAKrL37e39+fi8h2ecU1GL9+/Xrr2CDgzb5iW0ij444F7dDQtDxs3/LysuVnp855IoBjkPVnv9EBwLL0yQfNd67H9moJQZeXl+04WFpagu/7Vp/65MFqYLwrmsJHg/0AbPueCsDwM5/5TDzzmc+072dmZvCxj32sC6JfQOna7nOQNAXoTHMBSH0NkN98692C2a2tX5+dTOWGrlJxgrbiyJYXhoKRp6k5Lq05UPSmlAv/ajV31FrjAPpSwPBUEvhzy+RLU2Dwr34e76tUgDjORTDphI1839enKFpgGtxs5WlwXIRbb6qrVTlqHZYMV/zK4KF4bIscBdagsGm015qRNKe+D0vymuSvi0c3r8i9SQYZFrV+vbwnJqF9JYE5JsyT88zTpfdrS0vmOHRDhX1pEIG6JjBCXZv+mUcJs0czYECLLiKOA0m+qcdpFK0Yr5aOhGCI3mz7viAJJKovGvN84MJCdtY+STBUNW1oFmxCzfvjTc9SFtD5o7ud6tHCa8hGwKIHBvK5Vu3j0lS+YOIx6tsQqJfHfUSG4shDB4AvnQYAY2Nopx7m7pYyjx4FhnfscM7tm2lCf7baLvUi22ifiaxmu7sb8QsnXdt9DuKC5dp2u++1vdF23OwTttQk4aOaNuzcTwdr2UzwUZTlZLD2QZcLZIh8X5+lnuDpJ81ioqtGeyOfmw8532ib7XJgc07etCmb/6emMqQ0jtGpjphTOACSJLe8oE336oeAJMFwHAP9vtCZTJkJ+sSJDHl3Ra0R4PtCf5IYlrsEGBjebLnVeTlgAgcawjPvNY+jHIYox+aiJJF2TrSEz7uvD6XRUURRyX7FROWLi9Jcqmn9erEbjJa26yRD/zGfCv86+e/Xr5fKDAwIk4o1qb4vVCIcEKZeXrMpnX/JJSv6/HgrsF22sJDRw8SxJIBPmrI+GN4UWR73duoJYG0SW2N0FG2IDtMWMFSpZHRreszrTuR4IOdZby+8ZB5xXMoGbKuFLXgYiEOgZvqxZRapjQYwNYXS2BjSaAhpCsz4Q2g1shwlFL3+Y04cVDO7x98Mq8ohybGdJEA7CiQgIY6zSJP+fgHzYx9Pe5o4G7zWjC00TTXznIdqNbBdNDsLjDxtLFtDT0/LuK9ILpagyAHuDkjXMV4EpF9k0rXd51/OegQUZXwFgP/5P/8nPvOZz+BjH/sYrrvuOrznPe/pGvPzJDoS3aUi4ef86yYaJXjo8nMTuCRACyAHRvI6zSWtAXsNqnueZ7mkXZBQg5xrgd5MOsno83a7jUVzppptdZNf6ghmN9qc9/T19aG/vx++76Ovry/HtU7ebupLc6rrJKLa8aBFA9yAAPCM3l9eXoamh9G60jQyRdHpbuJUAs2sw9LSkgXTFxYWMDc3h4WFBczOzqKnpwelUgm+72NgYAC9vb2W/1xHoetEmwDgJtQkCMx+1rphwkwC+boNbp8CyPUNn6lPESwuLlqQPk1TBEGAgYEBMNEoE74y6ax+jnbMaABdj2+2ReuYdWbZpBjS40vz/rsgugsGu3Q6HHsur/1TRTqdDiYnJ/HYY4+h0+lgbm4OQDcS/UJK13afg2iwUAO97vcUdyOukmZt2CBHjcm/bKijkSSwyZV0yFXgdzA46GF52YCuLYW+U4iYRxHaYRnN6ewjHUTu7gPsvbr+RHqrVcz75SypJcFBHamjd7pms0MAnxyxBBd0oJsleuXfRiPj7eSullFW5K00yGg7LGNqSvbrjz6aP5VLc1ytSjK0KArs/rEEk9hSJ9Vk3+locN+HN5aiHMeI45LFWhcXM+qWvj6zqUYW6cZ918ICEG4wCTINbrF1tLMSINc6JR+pTnzJUL8oEhSeDoQwxDxKluJbg8s9PSsj5dMUWFjwVOS8bNRh9tpLC8Cy6VYBaAKEYSAbSn2MwZL+Kp1pkB2QOi8vSzs4yBuN4ghwjjPftxtwYw5sdCP3zWlq8+5Z0fpmnwwO/v/s/X2UXFd1Jg4/un379u3q26WrUrW63C6JsmjbbSM7AgSWGQMmOMZkHC9CGMLy+5JhJiHwEiAGMkwYMismww8GZhZhhXySMCErhEXWjwyZwDBMzDCGYUCADIqRsYwb3LbbVskqq0vd1d23q25Xv3+c85yz76lbrQ9kIdm116pVX/ee73v2Oc/e59k2Pp50kDf9XS7jx/WCCkYawW6kNVDhVRIzUNsIeoYpaXyffBIYr+1GITmhAr0liX2E2C4ueHcqucB3qP1094BX9fzJQHf/BELdLU8oSRC9n9E2Te0kND+PqTjGD1tKB6lgn+p26gijt9MVVKsFk72Hrkl7JVH7uALnVOrYahWtuV47tQQcpRM3UvEnAFSrKjAy0Us5T1MB0J2egSSpW8tlo1OumI60t6+13xqAlHqKBaTubjRsVEjW69JLreFV13tpKcDJk8jwblP3SKYw6aS/m3M19aOMB8PJ+fhxpQCuuQZRZZfRGeWy0gkE0cPQBq0kiL59uwklowz08NCsq++Tk9YADvjYtk3h2FEEoKHHyexsNjB7va4yq1aBW2/NeC+0/YLRd0NDaj6s17M2cvb1+LiHgm6QJAESeEB5t2qK+SxoHdYKaq3mjnmACyK7xiEXv+8DzSYKZd+eCmg2gQMHsp1A/vUjR0wjhjMlswYzxhAxbsfGVHcsLal29n2g6wfw0M2MaRkjlUOWbdFqASWWIQxhopTqDHfzxF7DPtOrS6o9Dx/Onlqgmv/xhIfde/aoPjtyxBjKDYiet5Z3vTQoF7jOpgx091MvZwyi94v4+vKXvxzvete7AAA///M/j9/+7d/+yUs3kB7JA53yqFvy/pPezi6ti+d5kNQggAWyJbUIebNlkEamLe/JK7f7XebV7552u23+d4NnEkillzIDQkpDgQRsCZLSk3l0dDQXRJegLgHztbW1DG2K7Afm7Rod8njd+3G9S2OE/LxlyxbjOc96p2kKekrTsMB82+22AdBPnDgBelLTi3xkZMTUX+ZFr3xZN2kokJQvBIIZ+NX3fdM+KysrkPQ1pHyRVCukRJFtwvLzM+vIccA02F/sR+ktL6lsmC77zw1sKz+znMxPnlTYsmUL1tbWTJqyb08HAJYGExpQ2u02fN837fR0B4YPHDiA22+/HQ8//HDmxADfByD6+ZGB7j4LcQExCaq7/8tFNne74pxr4HcxNuaZ/aDv6wBKYWBu7foBPAFY+n6AKAIKoT5+zbT5rt2rVlDA0oIFVglcu9jn0JCghXE3Drw4itCYV2C02ZRLxFbWU2y4koZ15in4bYyNBRlvr8DvWvS3XlebtqNHVRQwGUgrSbLHzLXX3sKC2hAdP672c+5GgJsvbs5oTCiUhQFEAp1slE5H5T08bHbUUbTL0Ilww8pira9n6XEo6+uqjPwchrCbVhlZ1C1HowHjWs/fWHjuSLWX3NKS3bO7mJA7NKW4w5V14vcwtBulgMYfChEN2WYcxFL4Py0OdOGne7gDVHXhZU5msBwCY89wzrsn/tnXLj6f6xwWRZg/pNIq1SJV/uPanX9y0rop+j5SPzD40Oxs1jDUbKoxeEUtygfMJW9tv05wN+MXsDfbZrp74M12/mSgu89C+ulu97s7kXOC4YTDOTpJkKZFNBrZeI8mKeHxG/gCVRRppno+K8honWmKdljMzIG+b088cZ7jybQwBJA4E38YojEPVCoF5cErJ3jfVzqO8zj1zcSE0itxjMacmrq68HSQ6yz1HAB1z5NPWhJ06nB6Y9PYS7BetDcBVYKcUgVT6LkvVL7i5JbGbk7Mx48rFJf/aZ0T+F2kqWf0Bruk0VDpy7S5NGMdTzQ98zugqhKgbfovQBdTFXGB76tyMKp1kqiFyaFDCny+8UbbiFFkHPblECSeTW9sqf4ZmyNNLFhNPnV268iIyrqQ1+cAEMd4vO5BBVktKW5+rvPkIoLjYm5O9S/XHPv2YSUNUKCxf3oagd/F+rpnDALSvwKwBxLcZU6g/x8asms16bUuQfQkQdaY5VqUZCBc/R/52Ofn1c+XXqouXVhQS8x6HRgbCzBJRR5F2TF4OgpNPnP8fIHq74HuPj/Si1yeQhjx1ZXPf/7zKJXUkcjl5WWMj4//5KUbyGnJ6QJ57vfNAHeK9CR3aVj65ZvnTZ2X9mbllOm7nsqyTHm/8R73N7c8pypbXn3dvOSpAPc0gNsG0oDRL+/N2tT9Lu/v5/3NNnLrkhcAVV6X510t8+5XFwnMu/+79wDZExT9yp/XJ/3K6Y6B000rb0znPRsu7U4/cQ0lbnry++k8GxezvPnNb8a+fftw+PBhnDhxAgsLC3jkkUcAbN6fm/XzQM5cBrr7PEm/RXWflWjP5eKHvutzF5RE1ltE4gJ52J0pz+msjt0bnXxPdelPJKLwBM3X1/MBdL7LavVUz/1D7vychurnxU9wPa8ZWDZAeMq7eea1uSRal5VwyNl7ArjlyKb1Px3Ju6lfx7rt12+w5YyXNLWB2053GBJ38n3rcc536fRuvNH7Je77trOk8SJNcx3OhoYsLav5QwcFtN6hp6jERbgT3Ux3y2F6uq+nShYWFvD6178eW7duxdatW/H6178ezTxDj5CNjQ3ceeedmJqawujoKG688Ubcd999mWvW1tbwtre9DeVyGWNjY7jtttswL+kbANRqtZ79xLkGswe6+xzIqQZhH52WlwzQGw9j03v1fyZ7B1zvVwxXzUs1JaUroRxZRzk/y+/u/45kTvO4fwA9gZV7RBS6KwI3bzbnn9I7djPjpNN3p+pGV5ec9jolb90g/2MF3Yji+n142L7cZHOHpygYlwPuX0ND6MlHJiRji+TWZ5P13GYNs9lay7VJyfEsT/C59G1n1A+O1aHfmGV+JgBumiqrjja6GN19pgrqAtfnA919fnT3GW9x8iK+fvvb38YXv/hF/Omf/ikA4K677sJLX/rSM016IKcQCUZSpMewpPzIA+Yk0OjSuZB2RF7L79ITmJ64BBNJi+EKPXv5n/TiJj91Xlnd6+mpSw9xevTyXpZJejHngel5aUtOahl4lPd0Oh0kSYL19XUkSZKpAznH+Z0UIZ7noVAoYHh4GGNjYwjD0LSX5FunBz3LJHm2JfDMfiE4TS9w5st0R0ZGsLGxgUibdZk2vcwllQ+9xl0aFOn9LseKBN5ZVt4jDQr0Et/Y2MD4+LihUZEgPe8jNRC/u0C6pB+SNCjtdtt44/MzT0tIKheOFdfDX/L9yzKxP9mnksteBhmV7S2pkuTYkuWQXPC8X/alpPt5usqDDz6Iz372s5ienja/Pd0NBxeiDHT3WYr0NuG7u6p0dw3yGrG65+aJHjqG21JsRAKRFv9rp57yMAOyrjsiS8EE07Mn4iZi2zZkybTzVspJgjguqM2F3OGkadZ1SGaSpqhU1N6xEHaBVoLh4cBk0WwCaeQpjm66H4+MWC+o5WXrmkQyUp6lrlTQ9gto1VVaBDTdZgfU8WyywWzfrjzbelyiZBtKd0LhSZfUrYeYdKrzfeWkFYYqfXEiPrOHXl7WZavENh9Dvgrr1g5Y2hqWkUfkActnq92+SjMx/OmCiZ9KLFfiwJJLV4LKstpAFgcZHYUKNpckQKNpy8GjBRR3p8wMjOug+I8v8gKI792oiEZdtZNMku3HJvN965HJk/F0bC+XVd1Z9i4844xX8NvWfU/TDVSrUxgbE6c96P7XaMC4+JfLCKopLr10B6LIOrzt3Wu90T10gQOHgK9+VV0vT53kgSr8zPrL+eQCl4tFd99+++2Yn5/Hl770JQDAr//6r+P1r399LvBM+fCHP4yPfOQj+OQnP4krrrgC73//+/FzP/dzeOCBBwwYfccdd+Dzn/88PvOZz2D79u1417vehVtvvRX33HNP5jTl7/3e72VoVCL5oJ0DGejusxCJysrnL09cIJHPLjmyqAjqlqaZl5nTMi7i7ftop55OPsjPl97GaW/gTHrWMmvfhwlA6aKOXtrGyEiAIF3pPSXEU0Scx+NYBakUVCPUX16yAiQJRmMbj5JYJS6/HBnFQ5djep5TYbLA+nX8uPIEltPhyEj2gBLrLZ2gy2X01pUTchzb42B00a9WcaLpGZXD6mnK+QxIW63a/9ifUj1TLQwNBdi2DQjStjII+AE8udi69FL1mXqm1VIVoDGLFC++j1IcI5wp9ah5ro/c5QFi37SL7EbXyDsxAeBQ3TYiE9RrjEkGcAWAllC21O1sKPad75tg4ost5dVfqFQMFw717NKSPXQG9D5acm3ktRaBJMHuWhnt1MOllyrdz4N2ubad2UaWgo8dyQFJt/PVVaDZxGSthtE9u/Doo5ZCPYqU7vZ91ede4wl1UuD//l/1Q62m+ObzdLI7d/Czu/a/QPX5QHefH919xj2fF/F1ZmYGX/3qV/GiF70IAMzxsoGcO8nz9CUQKGlOJG85f6Pwepe/HLDBNUnHIsFuGTCTv6+trfVQoRBg5DsBwiAIMsAzYGkxJGAry0qQWALLkpOblDIbGxuGB51pSGOABHkJthKwXFtby/C3M3ApgdB2uw3yfa+urvYFSCmkhxkfH8fIyAi2bt2KQqFg+kQaFmSAVECBuG492M+SC5yUKiwL2yOKIoyMjIDc56urq2YyoLGB/ddqtUy7yXb2PC/DF+/nKAa3Dfid5ZQUO+xzySlP44Xse44z5kfQWo4j9t3KygqSJMlwyfM+Uta4Jy0I7EvQXLYHy8n2IPDPcUMjRBAEZoywfNKIxDaRQUjlWGRf0Tjg+z6Gh4fNc/F09bK+7rrrMDs7m1HmlAGdy/mTge4+C+Ecf6qFsuSQdoXuY2mKMAzQ6agNyNKSOmoq1UiSAKnvZb5rSnW12IcC1NNUH+HV+QV+F1HkGR50s2fS+91ymZQwDUvEKcF4uTloNFCMYxUQkhtGbjRIYsnzusIjqOifQHEYQEP95kdFUwaeGp6cLGI0KqI47WeDavLFDbjegTGI6MmTdsMJWMxWnOYFoADXiQm1OZvc1s6CwTIPsdnv+irY1+oqsNYC0qbFHAjISxuKZlbB2Jjqu3IZCJJFBZqEKrDZk0+SDSBAFO1QZQTghxrAlXy8/E4KlGPHLJUAOcbTVG1skwTFchnFchntSskw48hqSsxBsgYYEIYDC2l2oMw77dRoWLdBdiATkuA5O4Cf2VCCHghQ3pJpqsb8k/OWCUD2I/f1fCaGhhTeE4ZAyVcbccwqg0IxTVHkg5Km8MLQ0g9xbD74oDr2H8fYvT8GwhCLLU+NbyJH5LWtVJRlpFbD5AtegMlaDN9XVEu75r8B3D1rUZcvfAH42MfUPbz32c9WVioJlGdQEeQD6a4V4QKSzXT3mXqoPVVVu//++/GlL30JBw4cwHXXXQcA+PM//3Ncf/31eOCBB3DllVf23LOxsYGPfvSjeO9734tXv/rVAIC/+qu/wuTkJD796U/jTW96E06ePIlPfOIT+Ou//mvcdNNNAIBPfepT2LlzJ7785S/jFa94hUlvfHwcFRnE9xzLQHefpfQbdFJpSOBb6vE0VRPR0JCJE8L5n3TfEgBtQwdD1Om2Na0Is5BZ80M3LJhrqNP4P/XdVLmtaDaksZfAKC9OEkxMBMB8Q0arzCosabR1xupUWYPzWplEVQVuUi01m8Di9BWIpgFv/hH1IwFN2cacwDXg+si8Z+JuErfi+mR6Oovbsj1pRy+EXaCeZnUJI1UyULQIikrua99X2U9OqiYAgJmZrDH56pludv3i++iGxQyDz6OPKtU7MwNMxeoalb5n6Xie+1ytk2atIqYTQKdjecg16lyYmFB8+OUywrCI2Vm17jh+XJWLdoFWC0BF1bkQdhGGnmmCAlbMOqaNQPXH/ferhmW/svCkqqO+Y3APWt1bLaBaRdsvKOoayTUYRajPqcumZmZMv/I2svDJMU58W/pblMsA5uvqwtlZBGmKSY4X6VzAxue4nZ9XdH+05EQRjnVKymge1lVZDx1Sz4Ye08X9+3H99S8yj0kYAqX5e1V7HFxTjf3f/zta/+N/IGK8g2oVuO46GwiWIkF0vvfbA5ypMjwPMtDd50d3n5X5xI34OpCnXqQXep7na5qmBhCnZ28/2gkJREkQfWhoyICpkuNbBtMkCM706VlN72vpYSsDR0ogdWNjI8Pl7ZYJQMYTmPXvdDoGSCZYLo0Irvc705FezgAMYElvZb7YhgSVO50OVlZWsL6+boJm9qNxkcEui8UiRkZGsG3bNkRRZPi7eb0EoNmu9HqX5WJ5CSSTz1zWj308NjaGjY0NhGGIdruNdruNOI6NAWB9fR3NZhPr6+tYXl5GkiRYW1szxgEaEuI4NnUYHR3t8YyXnt55IHGhoALq8J3XJklignyura1l6HiYJsHyMAzNuJJAPkF06RkvAe0wDDMAPNsOgDHkSIMQxzM/c5wT1JcguhxvrqHK9dbn+HKNLPL5lUA6gJ7n4ekkb3vb2/Cud70L9Xod11xzDYaHh9HSK68BiH5+ZaC7z0Jc71u5As3bfANZr2cBnPkaIFxbU5sQ1xN3dTXrzMp4jcohzjPXAIC/LUAQ2vIEvo9t29Q1ga88c3mqWG1I62pD9+ijaremAytlNgl8kYSVGxr+Xy5jJfHgh4AfFZXnGjeJ3PVrwlg/tnsj7n2Z7PT0DkTlHVl+dt1WK6nyzmeAr4UF1U5JYtuH3kvEB/iiZ1PBb9tNrSQa5e5K79QfmVcc9cQo2I2kdpVdy1fgqzIXfV3uRstwbAaVClI/wNKS3cPSi9o6ZHvw/QKC2LYpAOvlB6jNIwcJYNEBboh37kRQq6FULqMVFUz1pOM4yx6G9DBMrdFCko0zfWml6HSUJSBNs1FVt23LEJevpAGSFuD7JfjlkunKTgdYa+ph08gOM+m0R05YeSCAe2lA/b5tmzZSHD6sbjp+3J5c4IDiS3rEpynwox+pcUDjT7WKFqbg+4ECM4i+HDligZlmUw2iOMbu6Wl1zd//vQq6NjOj0J/Pfx73JgmKc3Ooffaz6rc3vCG7EeemW3LPuhtxd265wGQz3X22G/HFxcXM7yMjIxiha+9ZyDe/+U1s3brVbMIBYP/+/di6dSu+8Y1v5G7EH3roIdTrddx8882Zcrz0pS/FN77xDbzpTW/CPffcg06nk7lmamoKe/bswTe+8Y3MRvxDH/oQ/sN/+A/YuXMn/sW/+Bf4N//m35g1/7mSge4+Q3EHqPt8SRAd6J2ExIS64hcxP291QxjamKME0VstoBSrybcLD4kDMBo6CSHUjVEElGLh/AUFPi8tAYgaau6jlMsKJebEqcvpAZafnPOdPLqjpR0WUa+LPMnlzfpC6YsoUns4TrMHD6rk9u3bZYzGAND2C1hY0HoXKwBgYrTMzWWLw+mPMbPLZV0G7XK/knhWd0uR1mAAqFSwWL0a9Trwvf9XqSgGKGXaExO9vO7ss+DIYRttVIPy3vQ0wrBgmmpuTqnASgWYCtU4IAYdThSAUJ0I6wwBk3sja4w9csQGT9HAsXE7j2NVuFoNpZkZhGEBq6tW1UaRWsO0WsoI4/vKi9sDVKBRx+gblMuqoA88YPt7aCjL0/7kk9boQmPu0JBRtItpAfd/n4HFd5gmT+u2Gx4vF1GeuVatwRQTilmXcYxzecC2NuOLgUTYFrTK0BBTq2UfpFpN3Tw3Zz3ROx1geho/+pG65HmxNggdOqT0Mo8uNJvY9eYaUFZxggphF/iLL9nBG4bAF76AewEUOx3s+dSnlPF7elrpblP5tHetL2UzQP0CkYHuPj+6+6xGQbebjfgq5SUvecnZJDmQU4jL20MhcEeQLy9AJ69zASgJkMpgj5I+hMChBBx5jQQqSW8hvb4JEDJ90qYQQHSpVlxua0kb4gZCdfmsGYgyjxvbpXMBLLjrtikNCfRI7nQ6IHVIHuUGPczp8UzAnEDw6OgogiAwE41rUJAUJ9KDmW0o+9XlFZd9KL2cgyBAp9Mx757nZQKuMvjoysqKCQTa6XQMqMuy0ygi85Ft7oLo0nAjqYU4nnh6QdaZdePYIAhOEJ3jhMC27AsGNeXYZf/LPmGbsA5sT7a1BNBlYF3WU9KvsD7sa44j9+QDn5E8Y5XLrS4NFE9X+aVf+iUAwL/+1/+6578BiH5+ZaC7f0KRC2vXvSwPPHM8Tl1vHe5peJtUMdIJHrDgOe1tSQL4kQoExosMFUySqGPHCOzF3LwsL9vfuCmV4AHr47776ni6vKQYifu54dH3iKIYVhJ5gpiGAUX7EmSKmabqnvV1uxekQUFyanLfKB2kA7RtXeVuQX4OQ6wkngF05+dVHjzZvHWrdYiPY03hkSRACgVGA1kveu4kkwR+GGToVaSdhUCK7wNBpEAbUvoUy/rC8XF1kRtolHVYXs7wm/h+ITP0KMzXll2A6GxUSqulgHvAIj08r83Eo8i6yukMZNWZv3Twy6PObTbtHpoYuBRphwpDWIoCBpWjcYSB7UgpEIY2w+Fh64XHQHTHjwNxjFTjTgUOHFpRpAsdDQpxrAp5+LDasLNRjxzB4wBaAKoPPqg2UhL9l5XZbCPO9wt0Q76Z7j4lh3HO9QCwc+fOzO+/+7u/izvvvPNsi4h6vY4dO3b0/L5jxw7UXTBO3AMAk5OTmd8nJyfx8MMPm2uCIMA2uh2La2S6v/mbv4nnPe952LZtG7797W/jPe95Dx566CH8xV/8xVnXKU8GuvsMJe+5y3UJR/7pEE5gYWhOjfGUkwTDOY12Oujh/5bZp6k4Jab/4Pw5MoKMwvDCEGnqKV2fJNm5We8lu/CUjpeLCnnsS6CZXT9QhtQ0NVP9tm1AFHlK87r6IE158MmUs15XWddqwFRFAd5pCjQ02KrAawW8MzlOv5KCjc1tAHQCrHGMQhwrOjEZcdM9/aR/n59Xt953n6oqHcAJ2I+NqZNXhdBHuezgIvW6AnR5g24vD13QWWF52aoatqXUTUwmSYDJvWVkIs5KbhYuMrhGord1qwWggPX1rKr1fXv6MIqQHUh0Vjh+3F4s05cn2OhVzoSkYwcrkyRotdRhLdm84m9TBffxkI4NQHa5Ami9LpU9wXSehmw21WAaGVGVbzTsok6OZVF/4uwo60Y6fhzJ8eMIm011iqxSMYu5sLZbpXPkCPCd76iHN46xuLSEOpTu3tHpYMeRI3aBysG5md6W4rbnBSQD3X1+dPcZr9zyIr5SCJYO5KmV0wXcJEBJcbnO89ImeE6RgJ/7n8yLACSpPCQYnJcPaU1kuQimy3KcC4DRrXcejYykyJFUJf3G9NkGCHVf7qkBCbi6L+nBLT2h5ed+eUkDBl8ysCfTpbGEADzz4nUSZJYe27Id2a8EuAlyd7tdQ69CQ4mkSXHBZVkuCXBLEF8aTuR/ss1co8tmYKxLhSTLIQ0Z8rs01OSN21ONB35+OoLEDz30UM9vS0tLuOaaawYg+nmUge4+RyJ3GpTNgDDnerkf5HfeTpC107Gnbpl8XrKucBPvuchk3k0u8sr30wT00lRs5N0K6fz5cXRU/SUBb9crr59IL/A0zToes83kNUiR7/HrGATcZuDPeR6DPQWS6Lhb0JyvTBdQfdvPKdJ8Yf/Jzbibn97kufXPG56Ze/Lq4/u2k3gzwfwwVBvdsbGexu+s9tbBPZ3tCpOTfcn72TY97cEGlNFE5SCQN7Hz3GCnTnIZY9jYmK1fXiOGYfb/8XEES0sIAfj8j+27aec6coED6Zvp7jTNBlc8lbCqjz76KIpFQ8TT15PtzjvvxPve975N0/zOd74DIH9PJNfF/SRv3X6qe9xr3vGOd5jP1157LbZt24bXvOY1+NCHPoTt27dvmtbpykB3n0ORAHOeSPBseBgYGjLBIKXekvOdq27dR1nOhWkKIOxThjz9IedmMV94vp+lKKPekPMk7xGc7NKwmSTamOvqGWSnfsB6esvA2nyXwStdfUqvff7GNKUxwYi7BsnT4U4ESVcdZ6ZuXwU27enyTCGyIutnljXiZne51FM+AukklZfWfpZfjzGOHbk+4hjrKVq/MSvzZP/T7Z/WBJK+A0qvO8pXqlLZphIQpxGEOppDhn3rDrlMceWY5M2u8pf1cdem+rtZGiWJatvRUYTDw9ayJfS3OeUYhjaQTRjCh3LZCPXLcP70M7r1a/dN1pQXggx0d688Fbr7jHudEV//+3//77jkkkue1h6UF4rkgXlAL2DK36Q3rPu/9DCX7xL4c72byUtOkfQxbn78bXh42FCpSK/zjY0NA6jyd5ZbAqD0PGbaLIvrueuC7xLQlaBkmqaGMkMC0TJNel7Le6TXM6/lOz2n6YFOnnN6NtOTfciZrQgyS4PByMhIhhJE1kECt/IaF4CVHv/SEMETAeRnp9c+y8ygqQAMH/jJkyexsrLS413OdnKBZb7TC9zlCvd939C5MAgq+yAMw8zpgiAIEARBZkywLclR74Ln0tjBOrie58xP0ui4IK40Fkjvfjm+8gwPeYYK2VfuCQlpiHI9959uQPGznvWsnt94LGwAop8/Gejus5C8laYEOfkd6PVKEZ5gcmEfx545fcr1O7MiTQk9gEjH4joxEUM0HNdhqDhYmyyS8hJbXxcbce6EyHnCcrou0/IlvdPQu09IEiCsTKlycMOhN3R05JW8p5IuJfDtHEied8B6Nsu9Hr3Q0zTLKiIpVzLUMHKXJwsr+wOWurRSUe9sf+5F2QS+76kAklL4ne5o+sZUYxoSjI+iLMcsABRDVdYg9OH7HtAS5avVrGu8rLwLLiQJtlVVPuSAJdhhyh5pQ4cL2Lov1kfyigNZagD93vYLGW+07duzAcKkF5vbXKS2oVMd//N9S10kuxCxb3ld2KD0xo8iVeHRUfsuUR16Go6PG6SiXIblf221LDUC6/nsZ6vf5Cb/+c+3wW7LZeA5z8HuAwdQAoBf+AX1+9CQqhAfbLmxlghFnpfbqYC9n5JsprvPdiNeLBYzG/F+8ta3vhWve93rNr2mVqvh3nvvxbFjx3r+O378eI+3GoUcqPV6HZeIY/xPPPGEuadSqaDdbmNhYSHj0fbEE08YHvI82b9/PwBgdnb2nIHoA919FrIZsOX+Lp9HOXnp4NZkReE0SCE7B+f6NNV6LUkQRQUTZFoFqbR4pywG02v7BVucRFwbx4pGit68w8MWPKfu4XxVLqsAoM5EbE6rpak55MR4GqtbPUxWKlk34jRFKWojigLjGMxplYBvgDYCpCiXC+a2Tke9iE/TO1zqftYrimB1Xp4RXr7L/tGKhuooL1wL23gl8UyS1IdpCjvn05VarAlGR22skzTVDGGaRq3VUqe+6Lhsik1v8KEhRQ0Sx5YeZGZG/UfAcXTU8KVXKhbf5skrCVhnxqpr3OGFlYrKI4pU3kThtXc/whCoVrFS3qXWSWwwnXYU2ttcEJ1rlStqbeXhXS6jGxdx8qTKlqcN0lR1C7H748dVtsVQJ3bJJareP/qR1bmAatyJiSwt2/btStdzcSBOmlW5Zj54RJ0eY1vzeahW7aDjb3v32oIBKOzcid2PPooYQHH/fhV0BbCxBNw2d0F994TpBQaeUwa6+/zo7jPu/byIrwN56qWfx7ME4CjSC5wAngRsJV+5vFeC6gQ+eZ8M8EkqDPlfu90GqTF834fkpianNAEzFxCnSHoN0qp0hNncpQqRwKuko3GBto2NDVM+ps+8ZNoEgKWhgcCspH6RAS9JZSM9u5kugXR6YMs+JPUIAWdJXSINErKfJaWODCa72dggl7rv+ygWi+h0OvB9H4VCAcvLywiCwFC6pGlqeNmXl5d7QHrWd3x83IDwbAu2B4NwhmGYAZtd7nHWb2ND8eOvr69jbW0NMugoDR/r6+tYXV3F2tqa4VaX4D7HpgTFmQ77Tnqt83/Xk535SvoX+c5x5oLo7HP2K4F7eaKh36bHzfPp7FH0gx/8AI888gja7TZWVhR34gBEP38y0N1nIVxAu56ieZtw9zt3ntzI6Hu2b1cfGQRT3hpABfjyNc91mlpK6nrd7jHGxzWArnde7dTDwoKiwpTFpkNU1w/U5gmw5WK9pDebG6mTR8OFEcD37ZH1pSXGKQ1QLu/qwQLJWW4Abm5AGlngPghDE4iU5ZeOW8QNJIju+7oN0hRopb19kNmJij7TCftQfcCf6TTGLiNea/auoWeaL02BTkd5901qLk74PlYSRXfDDTilXNZ8sWHB7A3lOPFkwlGkNsXcxfKdvDg8963vDZJFlKIQtVqAtbXsXnt1VV1akP1Nke5n8l2gHl142bis9ex+kmBCrQYUkhPGShCEoaJLYbunqQlcuqtcxq49ZbQRGAxInkaX3aX6wlPH/KtVizQsLWUb2d300pLAI+3btxuLVdB8wj5QzaZq6z17bBq1mo1Ex/xe+Urg+uvZ8cCLX4zaY4+p637t11Tac3OW18A1ULhldDnp89xZLyDJ091nuxE/XSmXyyhLjvs+cv311+PkyZP49re/jRe+8IUAgG9961s4efJk3w3zZZddhkqlgrvuugvPfe5zASjni69+9av40Ic+BAB4/vOfj+HhYdx111147WtfCwA4evQoDh8+jA9/+MN9y/O9730PADIb/J9UBrr7LEQ+f67BSr4D2UmTyCBByTBEIeyiWvU03Yc98UVgnZIkQOCr+4Oyj/HxACdP2jAktF3HsaJh45S7vo6sXoBVxyt+EYX9+23shiiyfCkPPqhQ+kpFBYfUoH8G3XRpPIRqJwPJ8MwORBUb74PUGwGgDIVRhGjPDqQpUIy6Nv1WC4VyGZVKKWMgJvPX9HR2icFmHxkBvOaJ7FpE9g/XKpwTWQcaCsIQoQbOq1U1JU9MWMM6jeOk/yDffKKDWy/Gu+CXd6HQekLN29o60oWXMfSHITBV6apg1pUKlpYKPUNrbAyWEy4Mgf37rcGVFzNICvWJtmJM780yz3Eocl3C8ZZpAw4a6mr2eRShXdmFNAUKuuG7fmD06/whNV9PTOwwhgwFdHdRrLSygy9JgNBHt1pS3+/+uqK/mZmBt2cPqtUSGC6E7Bi0YbOvt22DdvdWID7iWNGiUefKYI6kfRkZUaB2uQzQkzqOTRTa6WkgaJ1Q1Grz86qtq1X1HPzoR8CePWiXpwAAQeNxVZAbblDX1etG51/9qU8Bz3kO8I53qPQffFCNA8ZFca0JbtuwH2VfXKBg+kB3P7W6+4x7fbOIrwN56mQzzwOXBoRe4hJolV61gPWEdak4+JlgMsHvfkC99GAm8MwAoBLYlsAj34MgMNzSAAwYLz3E8zyF8zx3XU90VzqdjuHWXltbM97NFAmiExR2/+NngskEkskHT1CXRgYG+KRXtdtP8jPTdb36ZV/RY5xgt3s/28X9zKCanucZIwe52nnN4uKiAc/pMe4aEIaGhgwVSxAEGB0dNWOEbRcEAcirLgNwyvFCwNnlO2+1WgZIZ94E0WUgVBoCaHyQnuiuJ78cIwTB2aZ51C5y3OedZuB/clzz+ZDc9RJwlycZXA902U8uzdDTRX784x/jF3/xF/H9738/9zl9utX3QpWB7j4LcRfG7sbc9WCj8HfpLq3vmZgIVLBEXwXUCmQ+ehfqAQpY9m0wUbPh1U5IaNnFPL2C5UacexfjISddt6Rw9yvBP3px53hvy33F8rLaywDWU56vSoV81q0sSiq9eyxSCs/3QX5vYsm+LzbtsTIWBH7XgqMS+HD7x3H56/qBydpDFz4sYwnzpAc62zhNbTBTSSsuqzIxUTCUNkmiNu9uQLOC3wYaTYSVQi/NiSQRly518j8Gb63XlZsXj4QTzPB9TJbL6PpBht7WcF+GDmAkDQp6XHTLOzJZSV5bSRlKOnaZVBgCmG/YzbBsfzZEva4SmpgAymUEcYxd5TK6UbGHApVieXk9FOj6xvEo+59txYLS+yiOVSPQTQ7o5Va/4Qbr+a+92R5vKANJpVKAhy5WZp6nAKT0hLqPEdWe8xws7r8ZaQqU5ufVf/RylOCQLG8eqnSBbsA3091ny6t6ruWqq67CLbfcgje+8Y34sz/7MwDAr//6r+PWW2/NBCabmZnBBz/4QfziL/4itmzZgjvuuAMf+MAHcPnll+Pyyy/HBz7wARQKBdx+++0AgK1bt+JXf/VX8a53vQvbt29HqVTCb/3Wb+Gaa67BTTfdBEAFRjtw4ABe9rKXYevWrfjOd76Dd7zjHbjtttuwa9euc1bHge4+S9ns2ZJGLb47RuWVSAPHyQo8YVD2NGgWpAmCVlMZUKMd6pFOE2N8LpTLADw8+aS6dXLSTocB7NxJIFUWmTE51HTlYWZmFwIilpycH3vMTJoqywIQFVAsty0y6xjC4duf63UFAtuDRh6GhgJMboGdH1dXgfFxFGegXaZ9C7RrvV6o+gjjoll/sOxea1G1R6WMY8c9jI4Kfd5oZaloJHDpegSzvmI9xeWM9BgPQ1ufhQUbh9taZ9XpAMas3LdvB4qRWljRMBKgjSD0Ual4atqml3mSGCP16KjKa+tWbRh5oKEsJVddpQyyUYSudgrwaNSYn1eZdjrKEN5R5QGrAAEAAElEQVRswpt/BMUwRLGs2qCNIKOeTRu4a00eRdT5pOUptFrA/BHaeT2srwfmFnYV7RNhaB22ryg3FUAunwddCK9SUZ8PHlQAuF7YFSo+arVibrxsSYOOiurXdlhEII8KTE+rdmLBAKXsx8eBSgXd8g541uJkAqMGjcdV5xGM/7Vfw4npF6JUqaiFyfQ05ufVGJjUjgeLtWvRaAC799eUEYqLmr17sXLra9XzTRB9z57e+YEi54k83X2B6fCB7j4/uvuMez0v4quUa6+99kyTHMhpSj9alzyRYB29YSVVSR5wRUDP9cwlaCj5znmtBOOl561MM4+ehF7bLlhNr2KCo66Hdb+6n8qjlWVjAElStUjgk3lL0NsNKCnr4XLFux7LrqezFDfQpJ3c7GwlQXfmL4Fo/ieBV7an9KaW13ieh5GREWzZssVQq6ytrWXagCA9jQGSwmRkZATtdtu0U954cT31pTGE7S1PQ9DgIk84yHqzPaUXvhx/0tNcinvKQXqi540Xt38JmDNdPgMuJ7r0NHfreqpn1c3z6Si/+Zu/icsuuwxf/vKXsXv3bnz729/GI488gltuuWXgiX4eZaC7z6G4nq9i42FEeskKahEvbSvgnCC4u3khmpumYMBNHr+m90iGukTc6p40let+PwxsIDJZxk6n11OvX53QW1wZWJJVNbcQHeWGniAnuT/40psSuR8xe2mmkabKEMB262e0cBMRRbFHpu0xb9LFSBoUVySPrGxrBgArONf1nELP6avMF/mj72MlVf0eRoENDMr6yOeWBfF9oNWCF4YIw0KGAeaUmyXdCK2WwkuIVzQatuukh7g8lk8xZeQN7s4asLtrabXwfWM8kVWiyJgA3TCAFwmAxe0QoHdzS7RDdgjRenkCo1Kxv8cxmrOyiB7qdfXXzEwJQZyo62s1oFbD7KzKssT8pZGIZXHL6nbMmexoz6NsprvTFHB8azaVp7KKf/M3f4O3v/3tuPnmmwEAt912G/7wD/8wc80DDzyAkydPmu/vfve7sbq6ire85S1YWFjAddddh3/8x3/EOMEbAL//+78P3/fx2te+Fqurq3j5y1+OT37yk2btOjIygr/927/F+973PqytreFZz3oW3vjGN+Ld7373Oa3fQHefpeTpO/f3vGdRf2dw62IolIdMh4BcGALRDvufNIwiwNKSpQnpJwzQ6FA7Z+biEtcFzEOg79RFaQpE1cBSePV58KTupuM9oKsYInv6iRG+5UklaXBIEgUWQziIpe1M9OjR0aJKWx5tkv2R12eb9B0vGxmxlChhmI19bbLQ90qglweRirqxmXyg2yyKtE6iYkzTnunbrBeSxJ4Q08ZsQ9tGuhF5qoxovAyc6fsIogh+aHVhbqeJdurCk4cCMk3L8QQAJ08qowIdKjIHn+I06wHBcsmLGAyUFvYkQaSNBGNj2fjjHIdmzeCrAOR+JNaf2mjvsX3puaCNA0kCFCQ5PelYmk1VET4Q5TIefBC47vKqcT4gsM92bTSUjaBSKSqjFnX3s5+NI0fUtdeS/qbHw6FPH8i18UB3/0RysevuMwbR8yK+SqqQpzMdwU9bNgPA+0kekAhYsFaCuRKUzAPQ6SktvaZdr2qXXkbm6dZFesu7nOyuxzzvyQs+KQFIAuGSqoUgrOt5LIFSCQC7bZbXbvJ616tfPgsEf+mpLz2ZXe9+toMLsEvPfBmcU/Zfnie6bH8J7LNcElSmuAYCFyDOa3dp5dwMpHbbiJ/zKFVkOaTnP40Ew8PDBqiXaeeNNZlvnlHDPSHgjgF5X56nu2wXWT9p/HDHlHx/uss3v/lNfOUrX8HExIRpp+uvvx7AgM7lfMpAdz8FIhfR7uI7DzyTv+d5XPGz2EjyMh6R7nR0QE+RFfc7TI4e1fTK8n1BfeLmIwNK9tvMinr4wqNb7qkl92kYAoWwCzQdsJs7XKeOANRGPAwRhl520S4S7foBPG7w89rWFafN5ebavcQd/rQvyA2ilMwpXv2B0Jbv8yi2rkvo95Qhs2l16uILrCbw0dtW6+sW1OG7uJeB8DodYYjo10amHL0/0/HPbEyR7XNTHxeccq04nY4CY5aWLC9/Dn2J+0hIJ0VjOMoblzJvpy2NZYP/043e5WEQ7eNWgeUK0Lab7VA19KYsLDnPT+b3U23Yf8qyme6+kDbipVIJn/rUpza9Jm/dd+edd+LOO+/se08YhvjYxz6Gj33sY7n/P+95z8OBAwfOuLxnKgPdfR5FPJOcR/vq7zw9xomLtGG+pR+TATiDUAU5pBGX+I/U5YHfRRhaipFMHpzL9B+jo9npzugEqWfSFGE5O7ePjNjDT4zPaLjK2Qg90bsd0ahpGFp+9MxkHoZIW849pzIm9pvj9TqAsTPcJAkeLy/3+gckiVKdY2O27kBO/wFAqvvL9zM87G4RA79r+3xoSBsUfKyuqsmxSDUj9RHfuRARVpOMg0SPQUZnyv2/XmPIYrPZN2m+jMd+5maWhwPVzVtQHfllZTTi1EMcfNs29ZvL/e+haxcP7rp3dNTG6kkSFMqRcGeHBdH5MImjcKOj2FS5yDpnTjRALEFktHfX+O+uKfIy6PffT1EGuvv86O4zXsHlRXwdyFMvpwM2Sa9ql7fZ9SoGLHBNQNcNgCnBXAmkM5Cm5Ax3hQAiKVokkCiDhzLwpgSFWZaNjQ2MjIxkwF9eK72cZf1JBSKpWigS2AastzbTcAFZ6f3Nz+TjZvBL2X6uAYGBMGXfkEecVCgSxJeBVlle3su2kNQpssx5xgTJQU76GlKjkK+d10gP8vX1deNlzr5in5CuhfWQnvppmhq+czfYa974lXQxNJCQLoanHvidQVF93wdpVWS7y/RkmVkGGSNAGjHcfnP7UI4rllVewzYiF7z0lJf97sozCUhfX19HpFdU5XIZjz/+uOEce6pB9K997Wv4T//pP+Gee+7B0aNH8bnPfQ6vetWrNr3nq1/9Kt75znfivvvuw9TUFN797nfjzW9+8xnleyHKQHefhaQpEARqoSx5OaXkAWVys8mNiXETi8yqvp3aDVBm8xSGJigWGVj0iVbjlV4kgNpqIfB9VCpFkzWzKEDTqVDyeDX5u0SFWXZJyaGv80IgDBXXZhwDV15pKT48dC3IONvMnlF3uSNlmwq3uHK5lGnCdhoAOj/VfIHySJfeXS6IK9ud3RSq9qFjHbtKvvu+dRLj73ROkt3u+5YPN/C7GZ5W3we8ZEV5rvkqzzYCBHGccShfSTwUuDl0Ns1B3DVeZoAOaspGIUoiwXNuTtPUpE8QxpDfsjJ5Y9QR1s9tmzwvdN+H3ez6vnXpBywx7fIy8MADqhw6wLtx4/N9U3XiEOPjFuQpRuTT1wWRhfB9O94AG2WOdW21VN78j5VoNu2Zfnq4UdIUYRiYJpa4O+bnFX/q2ppJz1CoHk4t2OQ2pmxIiqyH9DC9gGQz3X0hbcSf7jLQ3T+BnAqYdf8T1jtyaWNeu9YKqq0uPEXrUi4bsFx5cccZPTc2ZkMsEEw3FFVhF4W0hcJEhOFhD74PFP0VDVaqcpc1zVYUITtPhKElHQ9DNU+yXOgqj1upVzSdSKFSQRwXEUWWjqRWo9G7qa4lxQZpQ0iH5epv6mGtX8qV3aa5VxIPflSCH2cc0pWnt9TdUgfKdKFiuQDIejBHRTSbyrs6TbOxSwDgySetJ3SrpX0EKqrMiS7HxISKdTk+DmC8bHSQHB6mqsORCWDpxOREMWwD9Ya6uFZTmdXrQLmM5WW1jpmY8ODJMcgFHHXW+LjloqFImhN3kSLHaqqcGuTyAMiqOnYR109cNtRqekw1UpU/ac6owzsdS+nDsjYaio88TYHybkjhECFNu4nLmKYokMKHi4oo0g4CwppzzTU2j3pdcZzPzQH792MRRYVWRkBxJrTBWtNUUc9zjZumCENtHNHPTxyrR8GbfwS4/361HhgbA0ZHM84AuSB6nu6WDeueTLmAZKC7z4+cQTMqedaznrXp60zka1/7Gn7hF34BU1NT2LJlC/7+7//e/NfpdPBv/+2/xTXXXIOxsTFMTU3hV37lV/D4449n0lhbW8Pb3vY2lMtljI2N4bbbbsM8STo3kT/+4z/GZZddhjAM8fznPx//5//8n8z/GxsbuPPOOzE1NYXR0VHceOONuO+++86ofudS8oDIfvQPEliUvNoETpMkwcrKClZWVrC6umqCNrbbbcMdDiADmAdBgDAMUSgUUCgUEEURoijC+Pg4oijC6OgowjA0HsIELxkcknzWq6uraLVaWFpaMq/l5WUD8DLP0dFRRFGEYrGIbdu2IY5jFItFjI2NZYBc6ZFMoHh1dRUnT57MvJaXl7G6uop2u23qR9CY9ZPe4TIwJEH5JEmwvLyMpaUltFotk2aSJJnApbyXgRwWFxfx5JNP4sSJEzhx4gSazSZWVlYM37fsN9nm0vuaAUzHxsYQRRHiOEYcxxgfH8f4+LiJmsz+kUYOBuRcWVlBq9UyZV5bWzPc59Lrm1z1IyMj5rP7nSC2DObKOjNNN5inHLssG0F8gs1u+iMjIwjD0Iw1We8oihCGoRnrBPE5lpMk6XlxLErDCI0bsn7SUCHHgjt22F8sJ8cmy8++k8aGCw04/+AHP4gXvOAFGB8fx44dO/CqV70KDzzwQOaan2Q+3LNnD+69914Aitvzwx/+sLEA9zvBsNnrTGR5eRk/8zM/03M8rJ889NBD+Pmf/3m8+MUvxve+9z38u3/37/D2t78df/d3f3dG+V6IMtDd50DcI8juy/0dsDtIbg705rGdeoZus9kEFlueWZivJJ7B9cg2UaupdzoDZdJvNBA0n0CtBuyqtFFqPYLC/A8VB+TcnNpAi7xNwkTnp6ftRk4Ce9wVOXQYXtpGGKpN5OSWJ1BqPQLv0HcVd+aBA+p1+LAFKglMVKvqValYFJo7QH0eOWidQCFdRIA2PHQNd6s8UZzZHUpqDilys95qmWqtrdm0jh7NnFA2R6KbTUU9zlhU7CM2n+8DpXAFwdwPgVYLiyiijQCFsKt54JsGWGb3t/1ChhFgaUn3OcvK8uqCeGnb4t7sC8BuwmUBjx83hWPfBMlitu8JpOdZDjSIsL5uu79cVl01MwPs3QtcO72CK+InsDt6ArviRewqr2BXeQVT8UrWWEKqHpb12DHLY3rwoBqTR49m7qH3YBwrcKNWA3ZXVlDyF23jSz6eOAbiWPHOEjHgeCYHrexMAN2oiBNJAT844uHxpKQyufRSlTHT12M8itRGnO1fjLooYlGdC7/vPnX99u1AGKLkLyqu9E4nS7XD9uj3WT5jZ+nN9tPU3a7t53ReAzk7Gejus5DNBp2ro3mdC45JBa3nh5XEw0riGeNoNy6hGxXN47zY8nAiKWAlDdBOPWzbBuzbp+iWt261aqvZhPqg5/BSuIJi8oSaIw8eNIGKC8kJVKvaMCsBvDhWie7bp77rOd5rngDSFIsoYtEvWRLs48eVAXB+Htu3q7n9uc8Frp5uq7XC4cPqdeiQBXCHh+0agPMt1wJyTXD0qClrMWwbY3W9rqZMLj2SBHYeJzWHRHcl1ZbukzQV/RVFOH482y1ul9PO+eijKvlWy97PLKtVYFf4BAp+GytQfWWGix4TAdoqlonm8O6GBbNsMVO5DCg6M6Ou1WseljNNkZ0El5asXnrsMUZmRzcs2PZsNJSe5Prt0Ufz6W/SVJ9WyC4/KxW1pLui1sau6ASuKJ/AtbVFPG9PGzMz6r9S+gSC+R9rQFxXiusI6rFHH1WNSSP5/Lwam7OzPd7uBKuvmO7i6toKJkcXbadwPcSClcu2rcNQ/b5vn2rD+Xk1Bo8cUaB3p4O5OfXx4EHgx82SWpDMzABJotYIYiDwxCbzLoZtBbQfOaJ09/HjyooSRSaOqFn4sLwuaH6ql3RQOE0Z6O6nh/inviRfZMRXKbfddttpp0GA41/9q39ljqtRVlZW8N3vfhf//t//e/zMz/wMFhYWcMcdd+C2227DwYMHzXV33HEHPv/5z+Mzn/kMtm/fjne961249dZbcc899/R4VlP+9m//FnfccQf++I//GP/sn/0z/Nmf/Rle+cpX4gc/+IEhlP/whz+Mj3zkI/jkJz+JK664Au9///vxcz/3c3jggQcyvDvnQ1zwyAWSCAa6VBNukEPA0p1Img4C0BsbG/B9PwMu5gH1kiKEHu70dpZUKi4nOMsgAed2u43R0VHjiU4v4TAMDRi/ZcsWE6RTgp8EvWU+BONXV1czFCEjIyPGe5r3SW9ql8qG4gagZD35khzqEvwFbDBTeuJLgDrUizQCrpLCxhXXcz6PtkR6Y9P7XJ4EkDznbCPyw0sg382D6bpGizygmaC4bEt3/PIkhASlJTDteZ45ncDxuGXLFjNGaKTgfTTSsLw0Frl85JKOh/0gT2C49Dou3Yyk8ZFllR7pLIP0iJcnK9xn50IB07/61a/iN37jN/CCF7wAaZrive99L26++Wb84Ac/wNjYGICfbD78nd/5HSxrb8D3v//9uPXWW/GKV7ziKa8XALzyla/EK1/5ytO+/k//9E+xa9cufPSjHwWgAp8cPHgQ//k//+ceHXWxykB3n4HI1WPeijLPs01uyOV93IhrdybulYj/jYwAxQkFKC8tWLpmL1lBwfdRqQRmz50kIm9uSJNEeTy1WmrjJTddwvtdboLbqYdEbyBLcZjdlbogAzcKGkX2Il9dPztrvdH4vrqqdjIjI3ZXF4Zoh0WDg/o+VHn5kt5ZdP8NQyRJYBzkDGVlJcxuvl2AUqar0/TSNoDANBf/ZlaAdfJeW8tyi3JTRu5V34fqiLk5xaGdKM++kt+yYAAAxLYI5ClnUdfWNN9u5LQx28L3kWpu9K4fwPPFuCNAzDHGI+L65YeBNdywwnTxzhuzjhBED6AD1NVb1juOAI5MR27upVGEg7xeBx56CN25OXhEcLRXVBee4W8nDl5IThhwITMWxQmORCcfxwXlESqFjb66avqCxZ+dVXWbqlXVtWwf4WXKPjZxCNiW8/OqzwmahKFtY2mBkA3ptlFOfcz/Z0jL8XTW3QPplYHuPkvJ09nuPChBMT6TUvFoZUF+cybLwNOlWJ2YabUCM53EsQoqHTSVovfHd2BpSTnDpimAKFXzHL2xCZ4miZojtQ4MfD9Xz3WruxR/dOsJu5gAgDBEva7jatQCdT9B20YD26b13E50+6GHrHW507GFFzElun6gdbdnPcM5/zWbau7SqHHq78DyssIrl5ftNNfpoNdgLE+jSYoy3/KUs19WEs/we9M2L8FcNuGjj9qiM8Y0fMXNvbamDcxHjgB79qCZlDA0ZOlwutD1o7NDVDJB3UtxFyuJZ+nNaG2/7DLVX3Nz6nulguVlgatK3U4juCNJAhRC2LUijVJsPFYIvWnSG52PXrkMBK0TlvidDRnHKPH0wtycKof2sgegOosnxDodZQAn/zhgdWCtlikGoE/lJYvWwkFUnc+Rzp8L3rQFILIGocebBcRxAYXjx5WSnp1V43V9HfPzyvbA0we7p6ftOm9+3vLNpWlGpTLvQhSp62ZnTSwThKEykvCEWz8Qnf/JNY5rhDsLGejup4ec8QjIi/gKZEG805XNAI6tW7firrvuyvz2sY99DC984QvxyCOPYNeuXTh58iQ+8YlP4K//+q9NxNVPfepT2LlzJ7785S/3HTAf+chH8Ku/+qv4tV/7NQDARz/6UfzP//k/8Sd/8if44Ac/iI2NDXz0ox/Fe9/7Xrz61a8GAPzVX/0VJicn8elPfxpvetObTruO51LOBniTlBoyHYqk3XD5oiUI6dKmEHiXwRZ5j+QJZ34SOJRc4RLAd/m3CS4DCsSlAcAFNF2R9BsUyZ/tco5vZiyQLxk4tZ+ntcudTVCZ6TGvzYKOumVxucnzglBKDnTmk1f+vLLnpeP2p3yX+bvl2MxzWILS7j15/SHHkjQySH77PP56+Z8c/y53fb865wUEdY0rUmQZZdmZdr/7LhT50pe+lPn+l3/5l9ixYwfuuecevOQlL/mJ50M5D+/evRs/+MEPMDc3h8suu+ys6VwWFxczv4+MjGBEERz+RPLNb37TBDihvOIVr8AnPvEJdDqdnoBeF5MMdPdPSXfLDZQg6ZRrdYK57m3yQxD6SH2vZ32fuynli6gwwWxxc1fzda+uqn2d2TxmMt+kTnyXYCXfpVeOSMul2Azy0pTu2uhtuszG2m3AfkYP0biuhw33i3y0ZUBO7nmZbOYREQA9DR6ZDHSeeXsyp1l6yywuMBy3eQOk07HovLjXUANJkOIMxfdhg7jSQ7DVskTrm3lZyzYX4zMFELiDwMkzDKGOYkvuG5muEBnwNZOIbBf9GyloDa7OzNz2SRWvfCYrOc4FoAYg28Zns6nOqdfpyk9Td8vn4nRkQNt99jLQ3edRd+d5lzoDXT7qeU3fM71pLhM/tsEdM/pdAvUikGXmP5ZNgHm8tLAF2fkyTbOYu+/bOBppaud2zulra3ZuSxJlbJVrXd/PFCdwpzlOBrw/sj+zHJm5ejOl6Og/WQb+zOzybJRpqqrDdpZill9izt5sDcY/zZIktVRfmcwkmq/54PpVseePPA9m2eei7j2f+0zAgd/NHq+TFnzpfMAjYCw79aYsmyxHkig0O0lybVBInHWoWyfdTl2XBEOP5TAECpLuRqfBZuZwRS0ioX1Pe+b2IRe6NOxLDqBTeZBvBqDLNc4ZKriB7n56yBnTuTDi67Fjx1AoFHDffffha1/7Gvbt24e77777KSiilZMnT2LLli2ItdXsnnvuQafTyYAeU1NT2LNnD77xjW/kptFut3HPPff0ACU333yzueehhx5CvV7PXDMyMoKXvvSlfdMF1BG3xcXFzOtcy5nSGvS7zvWylfzZpMUgyEpgkPQULtWIpFTJe0lPXBd0doNcSpCanOn0WidNiKwTPX3d8kgaEnqIu4CrBO+lV7RrSHCNCdLbHIApK6lCSJWzsrJiKERk+ekdTnod0qrIukpaGAk6S3Bbcqm79CGSYoQAI9uFfOduAFL5zrSlB7r0PpftktfnTIue77Kubp3dwKKud7g0qMhx644ll5KG9SZNi0s3JMvIZ0B+5liU40zSuMjPbpBTpi3HM+vncrnz2nPtmb60tJSZi9bIRXsKYRTsUqkE4Oznw82EaecZXU71AoCdO3di69at5vXBD37wrMrhSr1ex+TkZOa3yclJpGmKBo+4XqQy0N0/ge7eDBzrt+njb9y0kKtCezm5TCly+hgeFjil/sCNh/G0cRf2/COKYM6p7typXtu29XqiO9IDvErgNA+IlfkPD6tNzeiojVAWx6oc9PB1vYVZGf7ncq7qstA7eds2VaXt22HL5da9T924kWI2Y2PqaH0cG3pMUw3SwNIZj/1EL/SMp5PIr9NBTz0KYReVik0rrwkyiTr1jyJVby9ZyQ+muramSGDp/eXyzjBNt/A5ecr4m2HIoGUiL9n/brvL73keWrpxza9iXHnJSibgnjll4W5S+WejgaB1AkV/BZPb2vBai9n/k8RGBOTx8UoFJ09azMD3c/JgPq0WguYTKGIR5bLwZJTegGlqj+RLLll3/PVDUmTeOf9fDLpbDovTfQ3k7GSgu5+CfffpDErOJ8Krdtu2Xr09PKyM0PB9oz8yALb+IfC7Gb1vgEU5l05OKp1N6jMZl8Rxs6UKMGUVaxHmY04TAdloj+7axH0xAV3YHjshlSTXGoLnJAyVXpV/XXKJnktZRuokiN+c+TPwuxYQbrUySxwW0Z1uy2XlaCzZ6dg+27ZpWm7fN/XiMOgB+XXfB2j36G6jNrjWimO0EVhdC/VzuawBbdc4wPUV6djm59XpK0m3x0bcvt0uHmR7iXHF8ptAuCwkRRo5+B8XF7xOLnry1lDSapQk8FqLMr6nKrar/1ynDn2Czms8oSjQqDfhPBM86bV/P1Cr9WD9AOyiTf7YaqGYnkDQeNye/KTIRTUDnc/NqdfQkKFn6xE5R8g1bx8Z6O5nlmyyM8yXvIivN9xwAz74wQ/i7W9/O773ve89FeVEkiT47d/+bdx+++0oFosAFOARBAG2mVWuksnJSdTr9dx0Go0G1tfXc4ES3sP3vGsefvjhvmX84Ac/iPe9731nVrHTFNcbup/Xrby+X1BDmR6DIMrr5X0uL7dLS0GwV95HAJLe4xKYBCxwT8CT4CUAA6oCvd7vBCIljcaWLVsyNC1MT9K88B4J5AOW+oTpuEYDVwiaAsgEV11bWzOUM1IIXI+MjGB0dNTc2+12sbq6agBWUotIIFyC3K5XswxG6oLqcmyQ2mRoaCjzznSl94o0ZkgaEmlAId+3BJElrzz5wUkJJNtXGgY45pg2+88FwSU1kOwTyVUv6WjYvzQSsD2lsYSc+JJHnfm4fS6NF7JPZGDV4eHhzMmC4eHhDF2RDOzq9qH0jN/sZMLZytVXX535/ru/+7u4c5No1izLO9/5Ttxwww3Ys2cPgLOfD09HztYT/dFHHzV6AMA58UKn5J1CyPv9YpOB7j4L3S35N/qBbu67XGhrUA6+r8A8HittNOBFEcrlkknK9+39URSYrLq+5uvU+wHGZsqjPjGbXl7EsvJIrgBO5cJ4aAhZEFJ6C3PD5dZb7qq5AVtfV9d2Oop3kpsy7miTLC7qh5qKI4p6g4TqdivFPuJawYL8rZYK5iVBYjaWLKfrRdhqwQNQqRQwMpL1MJebBZkk930S5zCsH61QIQRRBDRUeitpgDAKLE1NvY4iE/V9FOIYSeJl8m0jQEAAwjEgBDiRbWvXK4xgLgvMyGflsnWfk4VnPiyA5rllskNDat8+PCwahY3Ae8iTmweWy0FFF0RRNk8e++crDDE6WjAUOq0WUIxDC1bL8ZCm6vmRzxgRFdlOgKqIPqq+WN6NuQPqL3MqXnY0N8+kdpmfB8bGEFx1lb2O45jP1oMPZuueB0C4u085l7giLGkXg+5OU+BMVOJgI372MtDdZ6G7XUMVdZWrs3mtex/nVt8H9u7FYhKgiBUF0Ok5oRCGSFPPqCXAw+ioZcRIU6Cdemp+T1NlAPR9lMsldb3Un9KYDKBb263mQn/FzPHtsKhAcRFvo9kEdsWJpdDQikszqAFz85bOS+thL21biirft1HLSe9C5JsSRebEmmk7qdur1cxcXcAKChMhJiZU2wRoawNoy87jHD9sKDkPMw+C/9ow7DVPoFwuIY6VrYHeyRIIn55WlNmPPqpiU4YhzJrmimkdzL0FoFo19HKy+4sMgkljtO+jZCJLqws12wZQqQJRhHa8A40GMFUuq3UPbMzXHkoVHokit1gcq9gcO3cag28G0GbkaupcEq37ikeddZdLVXOqUK7pWi0b6INrgTRVwVrhwSuXgauuUgnIE1pyDSgp+44cQWF6Gr5fMs0VVgoIZJwbGbhb9ieju9PInaaI4wAFrNj8b70V2L4d7f0vwfKnzDC0AXbZRlKPa9o4ABY0Z/lp1fF9RVvDYOdcN3G96q7D5HjkeJXvjgx09zNLzhhEz4v4euWVV+JZz3pWDyn+uZJOp4PXve516Ha7+OM//uNTXr8Z9QLldOgazoTSAQDe85734J3vfKf5vri4iJ07d56yvKcjLmAuwU5X5O8uIO1yp7fbbXiel6FXIW80QUkCwPRkZjqSf5pp8D8JpEqvX4KoMpil7/sGgG632wZgdMu6sbFhAFb2BUFY6TFNAJ95SZDOBXYllYfMR4K6rBNgAVppUGCgSqZNIJuBJvm8SBB9eXnZeKhLEJ186czD9VxmmSS4Lb3SOU4IxpOCgn0reeVpIaUxRXr6Mw8JnLt1l9zyvG5kZMSUQ55ocHnwJS85x4scO8xfgujSMEJwWo5btgfHK08jsE5pmhrjBX+T46HfCQSWR/aRDPZKEH5jYwNJkpgxI4F0aQCSzwbzldecK/nBD36ASxk4DacHNL/1rW/Fvffei69//es9/53pfHg6crYgOgPpnmupVCo9G8EnnngCvu9juwk3f3HKQHf/BLpbApGnAtHlPWmqCDxHR7HolzA/C1wd+SoQVxiiNK02RiuJl0k2QBtBqAB0OiBz72M2ea3E/giozZAGRIkzsjgzM7sQNJ/o8V7KLI7zvM+TRG2+d+7MArJEDWT+rlcZA4j6PtppDg0NuKfy4PsFROWC2txzw8X0Wy3LUSp3zL5vN5zcYLpllNfqTWEQJpgcD00fdf0Ax49nQfVyWXHZthFkTkOHoQqmilZiNqJtBCZ5YhUTEyXlPX74sOJIHR83gVWHhnZk2mJhARge9hDHJWVQYD9wsyo7iv3BzXGzqTaNdD+LY/u/2XHCtgGNGTq9NgK0muqS9XUYblgJPJgj3BzTEvDhb8zDBb2HhrLWB86hjLpWrwNhiDCcMm0IAN1KwbYFf+Tn+++3m/H1deDZzwauuSY7ZnSe7T3Pw+HDQP2IcjhjkN4whAUG5Jjiw/PlL6vyrq2pNtuzJwsaLS0phIb3hCFw3XW2feVzIMU1yLnzhf7/YtDdg434+ZOB7j4L3c25xwXEXCMrf5PPJN/13P3j+QCzs8DNN0BxadOYFkUINRBLPc1YEtQdSQKkfgGFqGsUc1CFAmbnk4wBuOsHOL6xA2trwOzdKs0bbyygmNSBchn1OhDHgTLMpqmNmxwmai4FzJxWCE8AzcRyXw8PW29bFvj4cTWn1WrKmBtFKsFKBe1QBUv1UlWXk3JZnKZYQUGr6gBpWkQcq2CVRi8B8FotRd8lG4j1lQZdqa/kPM61QKOh5tw4RrEaAkjVayLGj+e8DIPcFdNd4PBhxNdci2PHtApk/o2GopDTXv6Nuko2Q/3C8tBCwXLoud9DF6Ojao93bCEAsAMndROX9xQRaMC92NLBeGXk8k5H6ZRmU/XXoUNWn1arVk/6vuqriQkFMssxzDKFoVGDpKnJ4LpynLP+8lSDXpsZahX2h+wrqd8A9UwtLVnufgDAC2XzYko6MnD9QtB8aUnVXzuS4LrrlMc5gEK6mD0x8ZrX4FvfL+CxL6if6RsyNgaru/niwmtuTgW1pyc7DQW+r9ZgBN1ZWF77a79mnVxccdf2ec4DgLEwDXT3M0vOGERnxNfdu3ebiK9BEODjH/84du/efc4L2Ol08NrXvhYPPfQQvvKVr2SAk0qlgna7jYWFhYxV/IknnsCLXvSi3PTK5TKGhoZygRJafCr62Fa9XsclOviRe02enCte3n4igXSXfoPvbnBEoL8HpUxPBnvsdrugF7kEk0kFwjQJdPMe/ibTlv8DvYE6pWc9AVEJnMsAnuT5lgEtCZwSLKURwAX5mY/0ZianuxsI0+XEdulcpDe2BEqTJDGe6QSOCTyPjo6asgPKw4P8yiw325xgrQTMXZoV6RXt9ju/E4TesmWLoU5hP7bb7Uw7umNKGjgY5JXe4RLEJ7gsPdEBBSCz/Rn8k2VYW1szQLIEomV/ss7SoOJ6ossgo+vr6xgZGcHQ0JA5AUD6FknZwhcNGNIDn+ND0tSwffLoctxTAzTeSJ5K+ZL94gYyfSqCjY6Pj58R0Py2t70N//AP/4Cvfe1rqFar5veznQ9PR84WRH+q5Prrr8fnP//5zG//+I//iH379l3UfOjAQHefle7uA3Jl/tsMSAdMsCZ9ahdX7/EtFYT2MAsj3TYMcmSOWZcyDky+jx6+SAnwc//qxhWNY2AXvXu5cXIXxhJI5Gan2VTeSxMT+cAf8weyBga9SVObTCV0DJJNxGoQ140iHQRNelDxhoUFRV3C8/NjY3bjqQEIiuf2A9OTSK2ujxdFGB0tYnXVUuoU/LbacEcR4riYud20v94syiLSa310FChGoe0MeUx+bEemWMvLEkcpKC92No7wOuuxejDDxx7LctCIgHQZz74wRNsvIGkBvq+Af5e+nt1ojqCzHOR9lRf1oy6Rhgvy4xBIZzAsOf5bLfhR1jaQJEBBgP3mD9aXwATBl6uuyoL92hIwOwscPGjxEALovq+DtUqjC/M5fhz4/veVp6TQg+3UUyBTHFsgQYIT9NB3vSk51igSsGP7Opvyi0F3Dzbi508Guvsc77vlXOoCYvLZFLp7bg7ADVDPPWAmEj8q9qgVNFvw41KGYtr3PQQ0BBMoZRlCFbiz2VS2OaqNpSXlVV3U8ynVMXvDxHeQQC+Q9aTmKTTqBKlfl5eB8XEsJgEaDaBW2wEvDLHiF9Goq7zGxwMzJ8um4hRIHVKpAKWKvkAGlSatBj2hJyYyNDFGxwHWqMk+kkbc5eWsgV/n4fs7ssuS+Xng0CEUKhWEofrPpFWvq8/VKk40FfguwmaoNKSukYFlAeOdT9XEIKc0wLdaQCmKrDHW1YmyXgsLWOx04HU6iA4fVnldd10P6LsSlkyeKjg6zDXuYTtZj4CdRc93bYSgrKQBkpbwOwgL8CqhbV93zUG9RjD80UcV0L/N4uS+D6AcWqCaHgjk3H/ySXXh7KxqHxkgVDpJjIzgB3MF/N3fZQ5PIgx1UF9hzO+GBRvLp9lUCp8e/HINQWPF0JAqS6MBfO97qp1HRpSul4tmKbLv8gxz4p6B7n5myRlzov/O7/yOATjf//734+GHH8aLX/xifPGLX8Qf/MEfnNPCUZE/+OCD+PKXv9zjCfj85z8fw8PDmUAoR48exeHDh/sq8yAI8PznP78neMpdd91l7rnssstQqVQy17TbbXz1q1/tm+75Egl0ugA6gAz4fKbp9gv42O87RYKp0is6j4pEfs7jhHapLdzXZsEh+wXAdKlPTqeO8vdTAXduuSVwKusi36XBQl6Xd+2pgMbN6itfLs/4Zn0lr3d50DezgrqnDk63X2U7uh7hpyOybwnE83cJWufR5LgGhLyxxfdTjWu3DeR7Pznd654q2djYwFvf+lb81//6X/GVr3wFl112Web/p3I+zBsLp3qdibRaLRw6dAiHDh0CoHjmDh06hEceeQSA8mL6lV/5FXP9m9/8Zjz88MN45zvfifvvvx//5b/8F3ziE5/Ab/3Wb/1E9bwQZKC7n0Ld3Q9Ap3Q6PRho7w+96Rleai1mQ5gHZPt+z54tEycqz3vmdMQ9IdMPdHC8bLt+gLU1e7uIqZoRWdY0zUmfF3CneoryZNpss9W/s7mljSxDZZKm8NDNVnETAKYnOxnc0rngtDYmmYZxpJ9HFJDfRn3Gh7vHB5AN/CXzkd6dffq950VuA9/PEv+LOvYdmpuB9HkF703aOAD2Fbcd19fzuX54LesgaY/cdE5VtrN9Fh35aepuNtHpvgbByc5eBrr7p7Tv1hNH5lGWk0nO803aMVd3ZxJyUU/0zsdJkp2GeI37HGWK4M7JbnnzOJ9z0uj3zMqir6/b+KdmGpSG9jxFg2w+ZzUP9pn7TVLivx6dzbLgFDpByiYXymVJpiBuG7hyOvV2dHbm95zThMR3e4T61zFoi6Yw97dTb3ODrxStJ/NUel+RDcbBw3xYGZ0Xcf/cpZYoU2bN2LPoFfkqLwXVDnItKYPB5AHkeXIO9PdAdz895IxHQl7E1xMnTmDbtm1nfMSg1WphdnbWfCfAUSqVMDU1hde85jX47ne/iy984QtYX183VuxSqYQgCLB161b86q/+Kt71rndh+/btKJVK+K3f+i1cc801Jmo4ALz85S/HL/7iL+Ktb30rAOCd73wnXv/612Pfvn24/vrr8fGPfxyPPPII3vzmNwNQINgdd9yBD3zgA7j88stx+eWX4wMf+AAKhQJuv/32M22ycyZ5YC09dgkEyj7oR+siQUPpaUsqDekJDQDkGKdXOUFJCWpJDnXXW54enPQU5nWSB1wGDHWBcP5GL196DLMspG2h8FpJlyFpXfrRdrgAsEyXbUuaGBfMz0tTcre7FCQEetM0zQT8JEe69LRnP8q2ppe2BI9d6pk8r3V6bNM7vFAoYH19HcViEZ1OByMjI9jY2DB9xXLJdmK/s33Jt76xsYFVHQGE7S05yzluXDoYpim5wwGYgKT0OJdjhPWRpxQk2C/bg58lbQy5zPkfveZlX+cZIFh2eTLCNYDIUxiyP+Q4yeNA37JlS+b7+ZLf+I3fwKc//Wn8t//23zA+Pm7m2a1bt2J0dPQpnQ+fak/0gwcP4mUve5n5zmO///Jf/kt88pOfxNGjRw2gDqiFyxe/+EW84x3vwB/90R9hamoKf/AHf4Bf+qVfOqN8L0QZ6O6zGKsZFychmwF5fRbhhs3C961XmL6XlwbSc0bvTMNQeVhHkfYQrjfVf9LbOAwzlCnbt8NwTLubq67jO2EWyBMxTEZxbD3H6GErebBdsNBtsz6bDLmPXV/vpfoeHgYKYc7GLU3VBpBlUC5yGa86zxd9IcHNvHLLdHHqPZGHLgq+09faUABk6bszaTHQ6uioKm8Ymj0cs5e03F6y0gvaAr2bQvKousez6YnOz05QuqXj2Q2UPGXO4pK2phTHvbz3euyu+EXt0Q5df+XZDs3fH/h+lt+A7/J5IfWM0clZ/MGUnZ59YagKyvTo4cibwtBaQnRZeQQ8SVTdZIzbNNXPm6ZlMF6TUaSOgrMtdQJB64T67bnPVV6Rms8dtVo2yl1e/20mP8GG/KepuzfDGM7F9QOxMtDdZ6m7gd6Bl6ez3Imbn0dHAdgAmfB9FSFT6OlWS+GBYShii+g0x8cDk1SQLNrTK1GEFb+Igp7KEEVIUzV9lctKvYmDaorDWxRLnjLyfV3A6WkbjFQaNjmpSzoqGd8hilCKuwhDT+mfJIEfFjJNI9VpkgB+VECrZYOaGgYPOYFz/uc8vr5u9aGkGeM7A23SC5zrJGbKtLg20b+R5ts4WYehIkwPQ8SxCiCOk4lVtloBrDtZmOWBawQmDQipZnzlAb66anFZqweR1Ues1+qqaiyWQfdRMUlUp+/ZY6OvCl58ctGzfGEYwJueBpIEx1aLOHoUGdFLDKvbyKdORV+p4FinhOW57D0B2lhJA32YoYACdT89ntlPExOKPm1iwqRJvb1tm25rrkXkiQL25/q66jCWCVCe5GnblnFkBBgZQRiq5mCXj42JttZr3xUUsLQATAJKJ4+MqFNpcayeh3LZPnOViuJZ/853gP/5P9XDRd3NE3Kyru7a/1Sg+hlZEwa6++kiP7k5BTbi65nKZgDHnXfeiX/4h38AAOzduzdz3//+3/8bN954IwDg93//9+H7Pl772tdidXUVL3/5y/HJT37SgLUA8KMf/QgNHsEC8Mu//Mt48skn8Xu/93s4evQo9uzZgy9+8Yt41rOeZa5597vfjdXVVbzlLW/BwsICrrvuOvzjP/4jxuXD9lMQSYEiwUP+RyBOetkS7CPwLMUNmEhgUwKc7Xbb0JVIXmi+ExAmkEoKDglCy6CeIyMjBrDkb5JTGrAAKHmzWUfAArSdTsdQlbgexpIfXYLokirENQBIwFwaKigutYoLqMvrZJswbWnoSJIEW7ZsMfUrFAooFAoYGRkx7U8qFhoPCHK7fOISUJb1kR7lbMstW7ZgbGwss/Amxzz5yjc2Nkz6rAvpaeQ720mC0WwfacCQ7eVSwMjrZfvzNzdIp+wzUrVsbGyY7/1ORGxsKOoYXiOBcxo2OG7lmJX9yCCx0sjENuf4ktRF0ohCcU985I2f8y1/8id/AgBmTqX85V/+Jd7whjcAeOrmw6caRL/xxhs3veeTn/xkz28vfelL8d3vfveM8rlYZaC7T1NcUIy7yjwAnYtvB9yrVPQ62/cVxzg3ElFkKTVCL0tn0mqpDQ03Iq2WOgYLAJUKurEK6pQ07alZQO0NGL+RG3zXe0diDEkCPF73EIYl+HEJYYWAvT7+7ADRDHYaoN0LXOtrJKg8PGxPFctL01SVT3KSliI/y7fNxhkdVS+5c2UleAzY5dCWwadcEF1s1iUInulv2UAyOBgAhGFmr8+6sNhdePC4AyRgEYZmvyWP/0eRbsucPDLc5IBqrEpFdXKnA/zMz1h6m9FRS+eiwYIuPDNGTp7MUq5zf0+DxtiYSnZ0FEgSD2FYQFjehbC6y56kbwHHH7JdEoZq8zw+bk/dj40VMFmt2o0qj+lLI1GlYvpzZCTLPpOmQDssICiHWRAgTdV9Y2OWCoCgDCl22G4aRHn2s20AOnaHKYYfIPFLSEOgFKfqiHocAzfdpC7es8fmMz8P7NuHH84FuGK6rrjod+5U7X/JJTbILJ9Vl+6Gnb3Z9zOUn6buHmzEf7oy0N2nIa5ulqCte02eMVgDfrWaAFg1iEn6FLKRkFkMLT1Pt1qKkqqVWGqQuTn1X7mMI4eAWq2IUlVRuSTNbPLLywJvbqbGoD40BCCMMl7lK9EOFPbtQ7e6C3NzVqfE1SK8I0fsvFmpoB2VUJ8HdlWrlppmfh4FMRf5wh64uppVP6RwYVxoYvNhqAFRXXcz4UrqL0mz4c59jJHBTLdtQ3fmakXtVdG6vFLBYlpAMfZN0NfRMGuARRqpGBlRhEsvBSYnusDDTYu0RxHaCIy+o21XUn+bxIaGrDFVlJf2W1aN6tZLVrJW8SRR9GDLy7YRqVf27AFuuEFdy1gaOhC2uT+OsayXe1wjzc0V0GwWjM2XxY0idTvAvvKA8i6gvMusbRoN4OD/ssOBVOyo15HGauyUy8AV0xp8v+oqBZjPzVldXqvZTFot0wblMlAKV9BOC2ihhLhaUjQrkpYuilTf/tM/GQP48ePAxESggo6Tdmh4GHEMXHmlNQxI28Ij8yqODvthsuyrdh4dBW68URXmhhvUTQcOAMePo/v/+w185jPA7S8A8Du/oxLet88ayt3xKA30eUY3KWGo5oozkIHufnrIOQHRz1ZOBXCcDmAShiE+9rGP4WMf+1jfa+aouIS85S1vwVve8pa+92zZsgV33nkn7jxFVN3zLQQtCdoRPCSgl+fNmgfyApb2gjzPMoCipD9h0E8CgOSbloEmZWBI6YUsPYCHh4czPOUy0OTy8jLSNEWSJBmwOwxDhGFo6sogkhJ4ZT4EzqXHMcFelomgqgRkZTtJ8Jze2mwnabBwvT/yPNFdEF3mS1CdYDWBaXqmE0SX3tCsC8vAdmfb5J064PVbtmwxADABY9aBwD1B642NDQM2M09ZPtdAwvpLL2sJnLt0KiwP+8oFzPNOXBDsZt0kUM66ynGbR7sCIBMUlNz/QRAYQ4wEwWWfE0TnmHe55CUtjzxRkecl5NZPjsufhpzOPPtUzYdPNYg+kKdGnjG6m6CABMW54wKynN1A1i2J95BaqvEEJrfFQKI9dQSv56pk/Qg9BAJEh9yI0FtLl+X4cetxTokiYHKbAreHhgqGcxu+4kLPswcwK8B6icexh2p1KuOUZfDyFp3hAxQIYDIBwPCzy6ZhXsQY5f88Vev7mqvaF+3Ni6Q3vNvOEhVmm4mN6EriIU1sWTodYNu2AgJfG+3TtuYQ1UZPd9Mg+VQ1YtCFZ/Z8Bb+Nbmg52c1+jK7Q9P7TIDqL3emIzWGjaYCBTEJyzHGDThDd5T2HChZqDAIt6wSnaVixtqbi2pJilv+L/SvCUP0+OmrbjLHQWHZiIjL7J5+EDn4HjE4XUCTHKkF01o3ghAapmCfT6nQYj9dDFOsgrQR8qlU7aIiEsF04qHRipbiLyy/3zLAg4CGbdH5e/feimUg1SrmsiIg1H63vA8HsLDA3h2PPfhG+8AXgna+qKW72OAZe8IIMd7rZ2WcGwiYiB8QZyk9Tdw824henPGN0t1RYUtxnU1p73fu1ka/QegLT0zvUaa/yLhRaT5jJ8PhxnqDqZo2gUrEScdYI92LLw4MP6nxqgdG5UQQEjccRAKhWp6xu0GX0GfdD6D/fV8lu374Ljx1Sn+mEXKkAU3GsJtRKBSdQQmOOU6mngPRWS92UpsYzXTYFHaipu6miWCVpp261dCwQYWTIAJTyu3RCIMLLOT5NgeFhzM+rZK6dUSB2OyyiPgf41UAZKGB1RpAsKoNFuYxFFBFCr4PqDVtobWCmzX10FChiEYhCrFB/c93A/i+XsRKW1Emx1iK68NBsKv24c6fW/+kiMNfIAugcA+vrWS73Ws2cdGpXdvUsLdMUCLXOW0ltYPmxMXX7wYOKUlwOW7kkYLadjlJRxKabTdW8hw+r6/fts47qaDaRRrtMDNqtWz1MTOxQXu/lsk2kWlUn4J58UgUWFSB6KWoD83Uk5d148EGFvddqU0p3s0/5TgMDlGF/fBwoUG/qMRjHCsN3lziSbp79+LwyVJkqFWWcqFRwbGy36t/5zwKHDuHIy34D//E/Aq86cAW6c3OIxseBN70JuPzyDFd8blnlb67IBfIZyEB3Pz3kpwqiD+TMRQKVBCDlw0hwTgLlEtTjvf2A9DzOaDf4ImlUAKBQKGToLwAYsFvmLylbCGASnCcwS0CdIK+k/yCgK73pJegtPXql9zUBdwmQut8pLp0LwVvp3U8Q1Q0+mieyTZgP86SxgFQoBHM9zzNBPyU4Ll+A9eqWtDIunY8sgwTfGRxWBhtlfQmiu4FT2ZYSNGb60us873/eK71U5DiThg72P9OT40+Oc3m/++4C0i4lkHx2ZB9J2hmZh0vnIr3b86hcXGBclsXtrzMFkZ9uMgDRB3JBi+uF4nqzbebFRiHFBDfYdIcVAbVcjsIAsKApdwvypfOQDk7MVgGyKu1tlV09xaEozlY110mglUeVJRbtxkHjfnBoCChsC/t44/diE9yMyzLzd2KgaarpQOSNRNhdlySD6muwYmFBAaHimnbqYWkpS6HCDXTgFM7XHvY9QvQAMN7G0paCJIEXquPWmftlRCztlefDeuazuTx0baPITbi7u6ZEEdrxDoXPzNm9nou/Dw1ZgDxJbB8zIJocP7yG7Ca+nx0TdBQEbGxXNgcd7JaWbDOpYeqhSNCEx/BlYFjtQsgq8y9JHwBoYEYORj5HYWhPJ7C9+e77QKuFUhwhDL0MM5EchwQXsDc0z1y3tlu1bV0lNaWBsOVlBULgDTGSTgdhkgDVKrqVKXitxV6j2ulInqfbRSBnypM64FUdyHkV15gt51FXKcnreK/UQc0mPABptAONhg7Sre8zcT+k0Vta6TjB0HU4DLG6Chw7pigwqFtNkTWQvHVyCkmSDSZpiu37ir9aS6Oh5t5jxxTAyPk7DIEp31cTXxyjOafmfbJW7ZqJrW7jJO77mbWBi3WzinIpwrl7dRWIIk8Fx5a6zNGDXXhqvpRCJSO+s+naCBBEERYWrJ6i53zgd20jJAna8Q7U6wrvDRIBXlMHRxGSuujupkJiw1ic7JD9H4bGHkCSG66XGM8b803rlk995xoKqHC0haMd78DXv67+2ro1Szem2rSApeP2pB5txnNzSgfJw3Wu7pd2iTnd58eOqW6enVXX8oCYh67pyEZD1UnH00WJKDv1ahwDl12WWbCax0Qj9Wms8GxeHkUFFZBbuvpzsTc0ZIBw80H3E73bOWzS1NKoN5vIrOnMgPR9YHoa3fIOzH1HgfNX6xMg9Trw/e8vYH5+GwoAwqUl+Dt32oZwF8kcIKejm88CRP9pykB3nzu5eHp9ID2SB8RJgFyKBPJckNxNM08ItG5WBjcIpgveu1zdEsB0QVAJkubVIa/+kl7E9cp3g0fKevF/WQa3nHl5um12NgCfBO5lOfsF5aQBQ/LCAxYAdtN1ubdl29JwQu/+brdr3iUw7fYLwXCXxkWOD4LI0qvbLWNeezEPF+jezPN/MzlVHhJAlwYXljlvLMr+zgPPT1UWl9LlmSwDEH0gF7SkKRAE2e+ne1/ete5v+rqey126GLmpE8dG+67bN1nQ52EFpE3ldwKk8hoXkwBEEE5e2Kd9XA70PJtDJp8kzf5BoDSvMP0qKTZ59KjudDKxtYCWvp80cpGPwN8kXREgLVOUlgYM/MD8ZgLLueVObdsZVrvNxpXsdwFG0Nusn/2GgDTV7qn2eHJDLk/gu7/Ja/NoQHv2k275z1YybZga7tTcirnjpE8SMk6qFDmkZR1933qG+kD2QTlbuQgBdEAV+0zU8WAjPpDzKq7upuTNF3lAuvt/nu7ul6+8nhPoyEgGrJPAZybbzeYzkUfg+xge9szU2k9FZssbZKlPKCI2hfzD9ReQVSaALDHWjEhF27dQm0iaGvYP3kb6sDAE0EwyHs2uXu4RoSwzawAN9nvo5gfU9n1b7yRRFG36uuFhG0g2t99lOmNjVoFo/c3L2SdUkVw/jI565r/N1k1Occ31zC5NFTBOjFoesOzCg+f7xk+hJwN3QdDbTT1fch8NpkUDuD721jPuxULDXV9wnUpDw9KSpTB0G4TtRlFJKnDegwY/ORD6rdc3E3n9RabDB7r73MkARL9IRQJ30lNYBjsEst60EgiVlCMEO2WgUgluu8C25GBfW1sDvXslkOoC6tIjWvK5k4aFVCO8j+UKw9DQjbDc0lN8y5YtGW9x5kX6FJbT9aSXHvuSboS/DQ0NGfoQ2ZYyXxekd+vMvpHtI2lqZD2ZtqS7celKAAX2kuud6ZIjXRol2A5yLBCQJl0MhTQ7QRAgSZIeuhemE0WRaWu2AcvG3+hJTo921oMe95LmRp44YD6S+57301te1keewuB3psWyyTEghe1Eb/+NjQ1D1UI6HQCQVDT0zM/zOpdULi6QLtuIFEF8l9768jUAigcykAtQ8nYw3BTI3aZ0sQYsUup6qYprhXO5WuyTgxmwHrckSxXetgyq1VPMcmzAeeJ8DDxqPbCa8Hwf5XLReP0AWa5TegIVfEUP040K5n7G+aQnV2ZHrcFi7k+kN7O8lN7B3DfFMeA1T2RpOVgwepKdDshBlzkA3tyPUWQGo2LX2Wha12o2Piss+4ovaQmAOtpdqRRVwEntBRfQc4tlYXnLZSymBYSp8pyLIi9D350ZD/J+lpV0IZqAtlveYTzQZTOFofbMk95vlRjQvOg8DCHvM8CwTt6Nk0lpNtVpaRcn4DVJYhwezbhMUwCR7rdLLlEX8Gi4s8slqO02hWkf6YEuMySprdPe8LP0RaOjQDHqGjqkYhShOBHi5EnPpsf4MX4XCD1Uq9oTVA/aXZU2bropAObn4Vcqql+SxATkMw9HH8DBVI6Nl3kgBzKQgZwzSRIForvPVg5YbCYciQa7+iRJ7C2COiwDAvq+pV2TAGStZvXY8DBGRxWjx8iIneeYbEFTS5BGpY0AgeDNGh2FWRtceuluhKEKJL5tm0qDXubkKse81l2tFiqVksknjmHLOjFh51ZdGKm7ySLHS0ZGVH4Mz1GKu7a9Womdo8tldKOihab1einj5ifnS+ly3Gxid3wCu2ux4dwqVoCZmRK8+uN2fUQqDp0/9XIh7AJw5mHdLxMTJYyP67WG8ID2pELjSbawaDzRSQuzvl6y07ZsJDmfs1wM8s20p6fxeKuY8eJn4MzJbe2Mki6Wy7j00oJZdshlkelfWJXHcCgsyvS01dmrq8pDnOqSXdRqAUWdEMcRq9StaF5zBgodGckGjNXxfNwlL9edcaz1p85sBQWkAIp796qxd+ml5uSbeT6qVXSjIpLExPU12XnNEyhGPio3qPY7cMAOg8x4guV8J6Xenj3A618/jF3xIlYAxcXD4PSSX5BjkGn1s7DLvpZrxoE8o2SwcrsIxQXQJfAtQUnpVSzBQKDXO5xAM72FeZ0Moig9dQm8t9vtDEDqerwzDVl2CaASyCwUCgYgliD+yMiI4c6msIwSbCa/NUFe14td0oG43s0ESwlEt9ttQ6nCezudTgbUdYVAqgSt2Tcyb7YTgVpJd0Jwtd1umz6V5eTv0uiwtraWCdIp214aSggae55nIj8HQYAwDA21DD3SWV5JvUMQeX19HaOjoz2A8cbGhgHO+VnSssi2Ji95GIYgjY1LlUKjAttwdXXV1M/1/Jb0QtKbXnq+swxsCxoSpPGE4580QxK45zjgi+NBtpXLGc/+5XPD/zudjgHTKf1OhjzdZeCJPpALWtbWgEKh11tFLqxdpJgLa/7O55w7G5eUOU0NBUatpoNTzc8D999vd0eVCn5cL8D3i6ju22G8priR5b6GxTvRCiCpSfhO72UD1AMollMU49CUv7JnCrOz6ohxKWpbTtc0hVepIIgiBJGvjm23FtV/3GjpDQU9urg/qdctlyXryWCUpDovxfpY8eycuoiocByjq7lg2bResmK/yEqSXJ27zmbTHKHvcaVeWFC7Stmn09PZYGhMl2kTnNcc6UGsK3X0qNp9EoSQoG4c49hCgGPHgMlJYHK0hcD3Uakog0Tgd5XnvbsbFcfPuSN8vO6hUQdWH7KsNWymIhaBetOWj2OxXEZl5moT144/r69nsYutWxWWsm+f5vdlvXV6u6oRsCdGO/VMFpL+m5zjEnxPEqAdBfDjErwaVD00v/hmwkfDBFxN1Xhopx7tFdhNUleJuOu+e7xhA8fRe7EQdtVYnZ1VmWhgqlq9QpWXu3bfVwaRNFUDVx4zP3gQt+2fBu6eVVzotZolnJWbakk35IJ18nOuteDikIE320AuaCEK7epq97N8DvmcSyANMM9o4Hfh+56d/Fot6y1Lnf/oo4qMmkY2zX0NAMGePUCaIgqB/fvV9HL0qJp2yHjRrUyp4szZ2BCTlQoWW54FP+8+DACYvLGMbdNFBI3HgcN17Nn7PAOiX3qpms8xm5go44UyUKmUqBaAQ1ohMyqqnsy78Ey9WFVOm9WqDchZqehgluRUZ5vqOCDdyhTm54FyuYhCRax5pHDeo94l79jRo8D/+B+qcWhtr9cVqNtsqnYGrBWeqGm9jkLUsrqTc/H6ulFYXqul6GDIUSZ1PhWYtiTX60rFV6uwZNwQIDrnf5Lj1+uqgS67zBpQwhCLKKLRAI4/qKhVOOWPjamiF7ACHD5iKW10+SZrNWAixg9nvUxcD3LeU2o1oJQ+Acw2UazV0PUDlHACSFWdsaUF7K2iVpsyNC90bChWq8CSwpXZHYxhPzJSVGXgs0J9uH07UC6bJZb5H3aN6TWeAHwf7ahkqGhWV4HrbrnFBPScqmgqOz0GH2kW0ZyzBgEOGa+1CBw6BKyuwltfRzEMUa3erJYSHHeGXweYKmuDhI6WXjzybXz0oy8EvvxlFHbuVNzp7Gt6d3AxBZGmfJdrTbnWBxyX+AtbBrr73MkARL/IxKVtkYCeBLn52eWkJnjrepoT+JNArMvLned9vaYnDkn/IT3iJWAsvb/5XVKDdLtdjIyM9FBqSBBSeqG7ILoMZEqRRgJZF0lLQoDY9TwmKEzA0/VClyJBdAm68l7+JtOXZZOgMcFyXu8Cjb7vG/C83W4bT3TXC50AbhiGmTxpmBgZGcHo6ChWVlbQ6XQyHPUEg5kvPbW73a7xomcQULaN53kGIGaQUF7D8cV8ycvOtgdgDAOkmSGgzXq4QUfp/S4DsBJAl/0i21gaMQjg03DDPmN/cayzD5MkMTzyiV4IukC95Nl3DSHsX754bx5t0DNFBiD6QC5oyQO9pHeKXFgDWW8WnqOVCLZMkxsSZD3R0dLA7I9+pHbB09PohgXFxQy1txwf91CrKQ/xKGKMC1sM7sPItclidDpirU8ElHWq14GlJXhXJahUdqu953zdouCyvr5vN7PctUeR4mkV1dN4JI4fVzzcBNGrVctPHcdAMVRBqdBsqouGhgw594lWYAKYEZ8shn42E9kHbOtmM1thukgD1vLAzRPTGRpSbS6Dn8m+X1217UCAdX5ebegZQEy0UTcuodWyXLVhCExuUeOgWA5tWaU3mxxvGug9kRZRP6JieYm4sgbIULys85Z3l+ecV1eBWg1epYIoKplx4jrMxbHqk0oFKNR/nC1HvW4NEVGEIIoUV2oUIayUzBAgn3q5rPJYXla3LyzQ6bwEPwYK5aZqr028r2VTEzk40VJB1mZniet7qFR2oRSuqN05xyACPPqoyp8O/ObYPi0JHA9RhEK5jGq1BMy1ssBaqwU8+KBqR6IC3/uecn9bXVWupAwQTBRBelWykeVGWwJIfDiIjFxk3uiDjfhALmhZXlaGTflM9/NCd5/TPC91/XloKFA6Wnuij8bqEtJi4MknLfG01mGHD9OuqYzbL9m3gmBuDnH1ajMdEUSnx3erpZ6ZkycBwDPPj5esWES7VkNQLiuS7Lk5eHFsdPfkRDer47WuK9RCbN1aUIE45+eVkboypT2SV3pA7iRR6oS6Wx4AimOgkJzIugOHoUFAaV9OU6BSKaAQde3ixKV5IaJMBdVqqTWQ75tAnJko2CKmjAHBqZd9H6jVsOIXDXc60tTqMc7XJIjvdCzgrtPpRkXVbHMqq04HqjK+D/hiuDAWS7NpjfdxbAjv29XdaDRsQFAuScplVa3RUR2YtF5XFyjk2jYyAFQqSJIpE1KE8coZY1vHjVW6Ta/HvDhW42J2VpX7sceAWg1Xv+516M7sMocQmk1gsazY3pkehwx19+R0Tf1w9KhazKSp8oCIY3OwjDqPPgy+D9VwUYQWSmZpp5q+gJ07X4hKBfDmHzHPStsv4MjdKr1yWY11P9RM9K2Wcix58klD/F/5nZszYxXDwyowPbq2LcbHVcUOHEDpO98BHn5YNfz0tHVo4ZqJDSvX7RSOU8nDQwO4719UCm6gu8+dXFyrtoFkxKWUkMEuJdDYj986T6QHrQSsXBDdDSBJb2BJx+GCgy7ftUs/kkcj43of87MsK/PO44OXHsr0qGYZ3bwI2LvXSmOE2+ay3fifLKfLle3Sx+Rd7wZOlfWVbe6eEJAe/6yTrK8Ekum5Tu9yGjpoFHHBSmmYYVtLj28ZhJX3SzBegvIcS6QhYlqu1zxBckktI9tJtm+/3yXFkHtKgu0gTwVIYwjTzKNakcYc2ebuGJD5umNHjqtnIoAODED0gVxkwoW19FLO+z/v9zwvLH2dPNJtrhMbYO6BAXXd2pryPEKSwI8Ccy+dpZnN1q02K25umIbxVibwSzS02URY1Zt1uhyvrvaSmnNDoY/BdzVliLQxMF8GsNSnoU0ZDE22OB6PpaUMwSt/ppPg0BBQzHPalRufTseWjRtmmQCgCkUPYh7lX15Wmy7XeCLfGemLjby0pO5bWrLp6GuJBbBaaSrScY0qbl4sp++bAGv0iuN+f2zM6U9G9pQgut7lBnEMCcbIPsgc/z/SzILox4+rjavk3NEb5rBS6nkUCAaRg1Xix2kK7KJnoNN1rphy6j/Zjty08wBEPF1Q5x50ZknLdq05Ks7/2Ubr67Z92TZuP7ASfD6GhlSijz1mN9sySqnr5eoCc/1Ejtu8hrhAZbARH8gFLXyWXCNrP89S9z43LfOcBhmkUT7qge/bOZhKS8/f8lAU9qZAvY5w+mqkaSbMibmNRvE0dZxcCQZLUPj4cfVqNhFVhE6V6w3q2CTB6GjB6vWREfNXsRKae0gDx/ypEsidTb2BuWbvnBqG6IYF41TOovi+p074uMJFg8xUHl2jUZvtShdqea1cm+j6pimy869EiLkwWVuzpxZEe0m7dpLo+UsvZNJQTO1pqv6kvl1ezoCt1FXz89kDWAznEYbIKjd6DNAoQCcFZIe066dh+oLrRrbR3JxaOBw5oi6cm4Pn+wjDKTMsaLCm7mYTsWnMAkEaLnQZ05Z4ZMS6xyQehmY5xmfgscfsSbpSq6WCzYYFLBxXwP3Jk3atZILcJolah7BOOvio28fqORRtSqvD3Jw9SUALkDSw9PMkz9PfmfkA2c8XgQx097mTAYj+NJR+QJMEFnkNwTsJCOeB7S6Q7IoLXvcDOV3ecJZBAtoyL8m3LQF4Nx/J0Z0nLtDqerUzD5eiwy2fC4ZLcT3gWXYCw7JN89oyr1792lyWnddJQFcaBNy+cDm83fq6Zcn77pZT5kvKFgLmsu8IWktgXPYh27Tdbmc8tyVVjmtEkWWUxhc3IGheP7j9JcvjPiNumqyTHOMSIHff89rRNQw9E+WZXPeBXASStzjmZksuwvsB6v3ANe5euNmDpvYgaEdUs1zOeKpzPxOGAJpik4FsNtyTuhgCsy7wKCvLNzSU5YROxEaB6Hy/jYNTdwkCyPIwS+4PDS22vJ8AunOvu8/ObXdeQA6PoSH7P7k93D4h0u1SuHAnCWTBCJaPXmtxbMF3Z8MV+F3EsWd4SsMQvcAqO4jcLM4mVR1xz26cDcW74AyF79t6u+2pjRxySDI9GazNlI/lAVS9mM7IiOXgCcOeS6WjFr/3sJSksB2v28EdF9z7yr4if3AYWiCHXRUwrTSF7wc9tDJpCgR8cHbutKC3G1CPhZUnNOgVCGQJ/GVDuvNAv7mAny8yr/M8WV8/s424s1wbyEDOj/R7JvkfJc87nb+L+WV0FBmkMUnUfGR0N49Ybd8OVCqG3xkQRj2t0N0s5VTCE2Q9SwypJ/gndR7E9OSC6IBBhYvVWAXmHB0195n5Vs/r7jxO/m3qnNFRES+CCQjd7UFR3xAs7mFBzVtHUCERHaYFdGzMfg7DLH8dlQIrIGLQRBGAhgDX5Ykf5tnpWERbdEjgd+FHSndv3aqzd64xQUXZJ0liPLRNYBFkdTezzqxjmO7YWJY/nZaKMMTqQq9elcuVKELvoiuOFYecbg9DeROGZgkTRarItP2wiXtUlFTQ4k+OCxo4xsdFvG+RkGyDTBLiy/CwKovxZAcMfVyRrvdDQ8bQwDqYBghDvXYV63Ops7k2kg+b+xC6kqevL3L9PdDd504u7pHwDBbXe9kFogiW59GOuMEyXeCRHswuUHwq8JsAuBu40y2365nteqTLslLoMU3AW6ZD+pM8D/s8rnbmC1g6jjyKFeY1NDRkaGbctpIUHi5YGgQBgiAw9CX0Cs9rUxdYzzN4MF2Zp+Qdpzc6Ob/DMMx4WjPQpgz6KYNcuv0iuehlnvyN/cH7SCuzsbGBrVu3ZgBw6d1P6hnpkc7yMIio53kgfzipZvICvco603BAD3P+LvuMfSDHhTyFwPToSS+9933fx8jIiDFYyJMQrCvpbPhZ8qjLsdfPkPJMk4En+kAuaJEbcPeVixCK++gtJjd/BEzpcfTYY8BVV5mYTZibU8dvy2Xg+c8HbrgBP2xNoTFncdsrr1Qnhb3GEwaZ9f1CZi9KevIoggHZJY3H0hJQYKBSuloRLCWKyZd7fNUQYCKzSffSNsJQUW7wyDL/JpMK9zF0BIpjzXUpaXCkh1CSIIoUt/vIiAV8M+WRu/2hIbUR5W6t07HlnZjIbrbpWS+v4caXdecmi9cxkhp5yhl9ddu23A0m5uZQAHD1TA3bt3uKo3bOAW54/fS0Pl5g/+uS175ps5ROapJe33whryzd33U5XfYeYsqamlRxk/KM9+qqbQt6AYq+6fqKc7zZUOnFccax23Tl0JANLraYBMrjjUCQQAGC+iMIeHOaojJzrXE05DXj4/YAAA0SHAKB4KIvhD4qFbXxjiLrQF5PPIyN7cK2W3YhSFcUv6oG07vw4Mm68tmVkVTTVBENj41Zr0PA8qhKaqC8F9A7f7hj4CKSNAVylu19ZbARH8h5FU6MUn+5gK28Ng9Mc3V3kqj4IYy+3WqhoW837saagxnPfS4eCa/A0e8oR+A4Bm66idzX80CqDOBh6GUAVZ4u2rpVzXc8QcaqnGgFKN1wA8wExwlY18PEMWEgEiAbEHJuzs5VpOXSTdFOPfjaI1jGu4giRSHt+9YQoCjY5m26o6PWuq8N0+Vy0TSv2QJJfQ3YNQYTZ1svLdk+ufxyOxfzHp62OnrUoq+0sC4vK/50wHqvDw1ZnU2ha7REpZnn3By8VgvXzswgigIVc0QrzVTfYtZxlYrqczluKhV0/QCd4ypZ8pdzCGaCdzP/yy5T6xSuPyYmgFoN3fIOLM/aQ3BUxVznjYyIoKT0qA5DRVtSrdr04hiYmcFKGpimnpkBgsbjWBqawpEjyvZzzTV22QNoqqJy2bY7YAqyd1pX++6DwP33o3DDDZiYKKl66UyG9TKYIURov+50YMaMXLtu3667KUkNhVtSLWL3q16l2ntiAuh0EPhd7NmjldCzn2048U39ocvQatkO4JqRY9W1GLiGJ9lpUvoZ3S4CGejucycX38ptIACylCYu9Yr0YAYs2C0BbgKnBHVloEWCyXx3vbClSBCd5ZGUJJJOQ1KryLKRJ5tgJoCectIrmcFDu92uCV5JsDPPe1rynLMOvJaArQxGKoNNyjKHekJmegRByf8tubT5fxAEKBQKCMMQ5CUnMO16hksAX3o1uwC6C6ITqE2SxNCyDA8Pm+CfBPI3NjYyAVFloNS1tTVIb28APSCz5CCnuBQunudhZGTEtJGkcGF52QYsM/9jWnKc8bf19XWsra1lQHsaGGSfERynwUKOaUkXI08HSBCdPO2SaoV0MhsbG+Z/jiVZPwajJdifpilkwFYaZGTwWylnCiY/XWQAog/kghbyXEshkEw0mL9J7xZ7ftleI+9PU7UBnZ0F9u5Fs6k3DbOzCtzbuxfYuxc/THfjc59T+1PyTU+uqyBimQ1bVDBHZqNIBwRNEqCpFvd+vANAFlNYDosIwyKmyqEFkWWgJQmik85lYSHfs08nHEQ+Oh3PsGDwNumY5ftqXxdFgNc8YQFLwO42hbdYMVZAg+8Lzy/mKYNodjoWZeemlNcA2Q06kO0rbrwoc3PqeDyQ9ZoeHTWo8yONAhqHgUplF6b2VbJ5sZ9nZ1U68/OYrFSAk7B5a2mnykO8Xg9w/HhgABMJksvPkjmE+8ROB5afmx5x7L9KxfDKr65mPccvvVQHJIvaKqArj5RzLJTLWPRLimq9DjQOW4c52SzVKhC0TmAlLGF2VqXPwLFe4wkFPlWrADxg3c968ScJ8P3vK+Dj+HFgfR1BuQzfn7KVTFMU0hUUQsCvFTI2HuOlJgZ3rVbMYDVzc+pFbOnSSwv45RfXDFF9mkJRunDs1+sqXwbc4/PA8+5Hj1q+Xlo2DDksekFzbszzNugXIYAODDbiA7kIhJMlJwOpl6VbMJDxNjfXuyA69Q25OVot1FvaAM7f4hi45BIc2341Pvs3NsvnPAcofP0fYZBKPfdFUcEUw/ctFuwlip+8O1EygDZDcHQufR7Gx4FC4xE171Qq1gBIYJuBN+kdzjmM8TuqVRVFOgzhJSso+D5W0sDE2zZGTKii/rN/Zmm6owhqjiQ/iQzuKRwFimUfUa2QmRp7QHT+SU9jgr0EOgGF4EsLMnVts6nWS4DV75Ly5ehRy0WjLcYnkoI17ld3oFBdsenJdcP99xsqlN3T08Bs0yxk0oYoe70O3HgjHmmVrPN/E1g9am3utKts325t9xn8luORfTg3p/qpWsXj6Q40jyjVSKaYKFIO5iYQfbOp1oTCwaHrB6hjSjniA2gB8FvA0PfserJWA4K5HwIPPojh66dw8KBael6383FFc6afiW60C4tpQelwuVZLUxTn7lVt9/Wvq/XOy16GSuVF8H2gW1brzlA/ctPT1oeEFDndil6bimsAbWxKEjQT9cjMzgLfGSvhkktKeMmrYjOen7c3AhoAnvtclfjcXNbawwajgwXXGfoZNLEM5LOfp5Opy/Pc9NP0ouI8GejucycX5+ptIAB6OaDlb/2EQCmDSNLzlhzZ0gPZ9ZgGej3cXS9vl7JFBlfkfdLbmQBnGIYZTnWCpQxQKSlBmEeSJAZIzuO9JvgrubxTqbwdYfnoOU7AVQLnBGYpBHelR7UMlCk90Qn0AjDlkO3VzxNd1kuC6Ovr61hZWUGaplhaWsLa2hpGR0cRBAHSNDWgLz3Q+S77RQLxLh2MBJkl5YsE+9kvfNFjf3h4ODMOJIg+NDSUAe5J3SIBd2kkkMYf6Q0vufWl8YNBQ/nOz3mUNPIkhBsAV55SWF9fN30n6YVoQOFYJYDOd5djXT4z0pgyANFP//qBDOS8igTI6eXbbNqjtlx8SxCdmzKel5VuPdwN03Ot2bRUHwTWb7wR7ZlrcfCzwN13q83Oi1+sN6+zs2qDxd12ksCPVdJGvXHDrOesoFzG+rpnriH4GIbA1A1R1hNcXkCCVno3yffVVXv0mvUKQ6yvBwZAX1uzexjuscMQKITdLEkm240XyzblZi5xdDc3PCwjy8825wacu3ftGcZLaRsYjTUIy/Kw3o89ZvMaG1M0ICMjQLmME0nBxABrNoFWNUC5HKAUOgYGAivcbDMSqABuEt1WPITAco2Pq36PIoUtGA5aLbSJU22vpAH8MIAfKe8/r7VoAJbmvA1UJ/eB27ZBBeas67G4uprhEe3GJcweUptYVoFNQRtSFEF5ds/NIdxb6rFZYK5hwH3fL9h+MlQ1iQKkmUGSADfcAF9ztrZTT/W/RnWKseLufWTew8KCunwlDVAILcjlJQkKvg3s2mzamG0HDijvu1/+FxUz9tIU8MOC2kzz2dSufm0EisdXequmqSozgLZfQNICivxdgubyN36Wv8lxf5HJYCM+kAtaSOUlwfMkUZ60dP12Dar8Tt3JCVf+nqZqfjh+3IB8YQirz/ftA2o13HOP0t20FT7nOQC+/GUV7PGmm9QEnyQIw+wpMqMb5+fVXCZOmlHdEat/yUyYdWvmHNpqqQCQpN/i+oMe9OTdJuitA0wkKJl4EvIglnZgNtM1ADWvqyjn2SNmgJ3Hm014YYIoKll81wXRFxYUsElDAC3uBDM1srqYBGjUOWUHCMMSKpUSitMti0rLtRcbCzDKczEtGGNqmtIxoaACpIaqTF14yoP9sceA++6zoGscKw/oKLLF157o7aiEb95lQ2gAdinCKpGeRxbLDDk91hZRRLMJ7KrVjO6e07qXcWV4jzmNKCN2NpvGaJKmSm8fPmyHZhwrkLxcVmB1ITmhgmc/8ABw/T/H4cM6GHe9ng0AW1WBSMNqUQWy5Vq40VDgeb2ujBkPPQQ89BDil73InACTTv5eaxHwAb9cNMlLvwPft+A5WmqcUHcvLSmu9EoFKP/aDtRqO1BoPWGPeUxP2/UzF02Sno0WKgaSjWPjwJAJPiuNahRXp7trAfl+EchAd587ufhWbgPpK643uit5ARglMA30BgOVQHo/Dmp+dvOXXNEutYy8VoKwbhBJScUhwXjXaNDP853pSRoS+VmWkdcSFJUANj8TrGU6kgZEltv1fM6j1tlMZP3YtnnGCnrir62todPpZOrg0sxI/nc5BmT/54G9/CzfZRlk+dzxIIOJ8hqC0uRLd7nZWSfp3S/HrltOt59cyh05DqQxyK1nXh1lHqxHHt+6PFXgnjJwn4N+eTwTZQCiD+SiEumFfSrgKw8ok/dzYd7p2LV7YjeExPKefFLt3Qx9MwNZDg8LIlNH5BH2nHJKp2kDUrobCb4kzybTo+eNu3FIU6SpMt5Kj2pupKIIlrPS9WiXF7ptmNee/M0VCcYL6fpBBm/nZnZtDYiqAkCVHkkyTUoYImlmY4HxZHApdq5nYM8MF02v8MDDwoJ1nFtfz55op7Mfiye7QVLW8/qC3rmSekViF76vhk4YwoJLtHqkqRlX0uFP4EbYts1iN7IxPXSRJF62msKz05e/y36UBhVdHj+ytwc+egBqAvL8uQsPnjNeyMsr61GvKy/5zLg3bRcoAKXTATod1XYtICB6JCl7dD4yy77P3EW0wT5dWV8/s831QHUP5Kcirj7bzGNUPNeZ36S+kYB8p4PVVf13pwPzJQzNnEkDMgD1w9Gj9kgQ+qgymYf4g9kbL3HeLKix8u4z9ep07ESYJMaoHDBxPzvNyumu4LeBVoIwKqqkaVwnB3zeGoJzddynPwDVHzrIRdcPlB5mmbUObyMwxSYwS3q4omvokA0lLQGwNmI2kbTlFtw0ZIabxVPR67eTJ639lYYHOZzcZQ1laMj2D7PcVQlN47uMehl7Dysij/0JvcTy8NBApWLjlJr7l5cNNRljo2eQfr3+YxkCedLP9+3igMaQtTXDqiPHkAe77gs1zQ/7xMTGYbuLtRfTWV62cWZp4y4gNQuwNgKlz/kMyhedQ1iR4WFgeDiru09HniZ6fKC7z50MQPSLVCTInecNLj8TlAQseHgqcNSlFnHBdEnx4nJLuwChSw3iAmGS51ryTLugvVs/N8gjxQUqXRA2j6ddllWKa1CQ3xm4kx7KMpgmverzApC6ALkbcFTSmch6EKznb/LUAOliSGVCYwI9vekdPjw8jDRNM4YIek27/OiyHUmnI0FvtomkAJKUPRKolx7kBM/p+S3Bcsn1Lsvutps0UvB0gOQ7z6N6cce4NFDIMZI3Rt37XJBc9on0kD+VDDzRByD6QC5wydtYU/r97gLnEtSlJxigdjXj44hjdboUx/T9UWQ2OzMzyiNZO0GpDzmSiXmYio2oLkMYBob1BMgCsgYkZFklNzQ9eIaGrAdf3pFWW/RMs9Ap3ASbSlMLlnLzxcLnee5LxNg9iu/y2spdP0VfwzJJjlmK2uwFiheb/ULEXdLEjI4a7yVmR1p0SbVqykPScfKds+4aWWmnpIuzRWZ7RZHNls55En9g8VgPt3soXrKCSqVgHMfo5c5runFJgc/j4zZ4qPZmk804MqLAc4JCkhYeaWo6vlIJ8odGkijuctcrPwxtQDXbGY4TmafGqG4ggj+ZzTfbnI3oK65zQCXPwwbT0za2aKAjvhZMo+lO3bnTjDF1QqSpyj09jUUUUWSk2KUlFEIF1GfA8zxjT16jyEF4KoDvApM0Bc7EF2Cgugdy3kUCsnxxopQWxVOJ1N0LC+rzJZcA4+PYNqyMclhbM9xl7XiH4ZseGVGXbtsG9QOg5tocBM/30QMiIkkQlYtGJdJ4GUWwrs5Sr8zMKLTx0UetDpLXAWpS277dGBkJMpKGi9ise6gLUN7EAaAsquRWZ9u6VBhaZ3tpG2NjgTKgE9CUBgD9XcVvEaIVo7BZ9EyzrrHcrF3qdXux9kCQ0yuXETbYK4zh1TRytaqOEFxzjeoX7ZEeRYq6BeUysHOnaSs55XN9UK0CQfMJRY3Wysam4WnAyQl1Y2ZIaCC7Uima5RLXAqxyt7pLGR1IR1erGcVOvUSbeLms+pZlDNIVS0s4MYEwVIwotRqslUKPaS9ZQRwXUEgXFRpfLqu8ueCMIsXnrhcIpbiLxZZnhodqG82rDuUrQnW+vu7EGZcnEWGpZ7hGYvfK8YVWy4L7l1+eNSix8Rj85dAh4DvfAcJQeb2HYhzmibvG72ckH+juZ6QMQPSLVFyPWAlqE+CTnM3S+1qCspK2w71fXi9BaPnd9fol0OuCi7zXFebn8kS7QStdwFK2gS8mNDdPIMtx7eYt6zAyMmLypkjjQJ4XsqQ7kbQxTI8Ar+v1zbwlZ7fLGe/SgMjApLyH3OfkdmfeQ0NDIH3L8vKy+U5A2aVqWVtbM/zoeScWJIAtPfUZbJN0NZJ7Xra965VNKhRJNSPB8yRJIHnF2RcSFGe+o6Oj8H0fo6OjxpAgwXVS6khufDm25PPCfNx6u0YB1oeBT9mX0gDC8rrGIElr5HqvP9NA4gGIPpALWuj+zQW23Hi7XuCum5ATabFb260A69YhxQE9Ogrs3w9Uq5j2ddyjhxNzzHr262rN/8//udqEX3mldoaq7oWJtiToKHg6uxB21YaQZdYbkigKjOc1YINBNptAGhVQ9LUbVK2GRb+kKE54BptHY7nBJ6rLo8Ri91iKuyjFwLHjisd8+3Yd9EoVRrXT/LzakB47lj3zW6nYAFDyzDW/S9c+AgTcSLERHHftbljIXMIj19JBid5jlUpJAenkYKW7OWDQBEmFQ17RXfFidnyw3S+/XHXejTfiW9/xcN0LusBnPwuUy1hJPDSbKo3AV7zvgMqWWAs356WoDdQbCCoVpKlnuL15zdCQ3WSbTWYrMWhICUCpHCOZLmJpycZYTRJ15LtW24FCpWmRBd2fXrICUgmMj9v7CKxcXVtRBfF9w8k+MxNkQP6AyAC5748cAQ4eVODEvn2qEjt3qgS59opjxLH1HOx0gMkJNQ5ONL1Md0vnM4LhK76q57juhm3bFHjO4RXHus8rO1CYvVcBTjt3mkB77f0vAQAE6CJIE3NcfnH6efjCF4Dbb5229Z6bU8YB9rmcCzjACC7JsSm9Rfl9eRkXi1xIG/GFhQW8/e1vxz/8wz8AAG677TZ87GMfQ9xj2ZLl2cD73vc+fPzjH8fCwgKuu+46/NEf/RGe85znmGs+/vGP49Of/jS++93vYmlpCQsLCz1pnk3eAzkPIi2T/dyAKa7nKu/Tk2q3vANJAhRahxX1xdCQmrsqFUxrYA8Hm+r6Wg0HDqg58jWvsSqpUgFQe5V1Dda6VOJxvg/LpcI5pNWCB8D3d6Bet0E+wxA4thBgNN6FYuPHCty84QZ842CA/fun4H396yrRWg0rfhEFAsMkptYBFz1O6AAKyQoKoymGq8UMyKwM87qQ5Fy/7z7FFUJj6OqqSpvzm0SEGw1MlstKJ7lgJVFhd41FxFh79buUJiMj6nO7ukNRjFC/aJ53HD6s9AwN4ZqGhXoDULzipfQJoCk6gPPy9LTK/1Wvwhe/5OGWWwDvox8B1tZQ2XMFGg21pvP0moDLFiZBb+ngyL1qrXbTTWg2i8bJu9WybDi1moeCXscZ+8nSElCv49o9ZSwmAUZGlHrcs0cFdf3hXIAvfQl4/vOnMBnNqcxYd10A39+BNFX6T+ruKILlj9O0ZYV0EW9+c1HVYzay67TVVWB+HlPVKnBIt+nevTg+sgsTEzvgxbFq31tvVeUul4EjR1CcmcH993sGBE9TYG7OI7Ob0e9ra+r2UqyMFysoAGHB0BpxvANZf4YkAZAmdo3abCoO+eoLVeDbRFPdPPQQsLyME7Xn4bN/Afz6/3cG+M//WR3xnJmxFiKOQbnGdw1dUr9fxF7pA9199nm7MgDRL0JxOaD7gegEjunRK4FugoqupzRB0jzec9cjWHozE5jl7y4wuLGxAckDLkFEN0AlkAVfJR+3BCRdr3HpIS3BXJebW7ZTP8oVl4aGbS3fJQe39EiXIDoDpso6yTaURgy33eiFzWuDIMD6+nrG2zwMQ+OJLmlQCEyzbT3PM2A6wWX2PduYvN4unQrHg0tRs2WL4ogPwzADYLvGENkH5Av3fR9pmpoxkReUs91uY2VlJWMAKRQK2NjYQBiGBkCPosgYFKSRgHUMgiDjqb9lyxZTz7W1NfOZz4gE0WVfSdBbjluOXZcznbQ1Lj2RfNZkes9EgHgAog/kghbXm5QyMpL1ZpP/cSHOgF5611evqzX91c0m8E//pAD0G28EKhXMxHoT9j86QBjiRFLAkSPAddcB1z23LY4mx7j3SAFpWsLzGIRLb75MoM6W2ATwlaYI/DZ8TWkiwdZGQ5erDBOA6+DdQK1WwG590Yl4N1otYNd0F2g2cQIlzM0C09NFFIlAs500l+tkrQYgUAD6kSPWLStJFA/n3FwviD49rUg7NXiQcYcjcsxNO0F0tr/rIaS/kwKTXtpMZutW21UsQpoCIyMBhuPd8Mu7UQzb1qNNc9w3m2p/Ozam7t9d6wJfP2R5OOXY0WjH3/6/Hv7u74A77vDwogcfBJLEtPtUpQs0GgjDHSbe2/OmF4EwxI/ntVf33JwxIKSaN5VHm1nt9XXbr17atu6EvDiOMXPjz6LZ1DzorRZ+jB34/vfVZc+bqaIbKq73NAWunm4DzSaGhgoGc6nVbPXKZSiCcQ3eYHoaaDTgzc4iqFTQGZpS3t4sJCt8+LDiUQ1DdEO1Yfamp21fa/CkGHWRph4ee4ygh1pfPvlkdlgA4mSBHkdzc6qPeIJDY+PGrrW+rnDzVgu49tFHgf/1v4DnP18ZXWauxpe+oK7/2Rt0uR99FDh2DLNV4DOfAW68sYiphx5SBZmdtYYeeaKDY4CDThooJFrC760WsLKCi0UupI347bffjvn5eXzpS18CAPz6r/86Xv/61+Pzn/9833s+/OEP4yMf+Qg++clP4oorrsD73/9+/NzP/RweeOABjI+PAwBWVlZwyy234JZbbsF73vOec5b3QM6DSP1HCyPQe/pDnl5ydKbU3Y0GcO3qqpq/ZmaUnqpW8Zzt+nDYlxpAkuCRRgF33w284hXAdZc9YfMrl/Gt712BdVyBF9W+awDekTFbnKEhqPgU5AijHmy14Jd3YH5ezWkzM+qvQ4fU3y8pJ8D992Nx38/ir/9aFftntWJ4vFXE3Bywd+8VKNBImHrKK1yfiDuRKnqNUlNVtDQ9jbBWUhQuNJJzjnvoIcUXfuiQagsamzsda+RmnSW1DOdAV2fLudOdN8tltFPPHN4j65jvK/3L6TcMPdRqJXjJCu6dLeiwMteixKNX2kvftbVPjq8o3U2vc8AazXUjf/wvPPzhH6rrf/bgQaDRQOWmVyNJGNO0ZGzIPJW2sADcc49e0/2f/6PWe3v3otkqYnXV0qzfd5+6Z/9+oBAJFhUuSjS3W7FcxuWXX41OByge+TYwN4d0z2vx93+vivrzVWXt+NajU1hfB140cwKYn0cYKuNPpQI8+9nq2uFh1XaYnVXOHL/wC+juuRbekR9g1/e+pwYzB5gGoI3h5MABRfQfRXiy/BKsrQG7aGW54QashCUU5n4AfO97QLmMY8d2ZJZFhw6p5dRNNwG7qkq/P/mkDsyrF2GNZoBmE5ic9DA+XjC2gShSQHs79TA3p4eK5JoDgFoNn/mUCpj+yy+D+v2BB4BmE4fKr8V//I/ADTcUcPXBg8q7Y2bGLmwMx40jeZ7oEkTP2wNc4DLQ3WeftysDEP0iE+n93I9HnJ6+Lu+z9Np2OaN5vfSG3owmRn6n9zWBZZciQwKpkkNblpceyRJwluV3jQOsAz19ZbmlYYBewq6ns6wjKUCkd7Js6zzvc4K1kh9d8mYDKrCo7/u5gKx7GkD+xrJKkJlAMk8BsAwMyBoEgfEkp4c3g3KuaddDUpow4CbHg2xbBvlMkiQDEvu+jyAIwOChsv7Dw8PG614aDWQ/Mn0CzvSclyC0bMt2u421tTWsrq6autNgwX4gPU0QBAbMl/0kjRw0PIR6IS2NS3IsSMDeBXilIcalnQGQGXd5tEZSXMPKM9ELfSADueBFbqolobYU11OFL+mFGoZmI3h1kijgcf9+YGYGXT9ANdZHftfXDfBbr+vNOT3KwhCo1TA7W0CzCTzvdbHJK0015yS9cqQXugDphoZKprjyhHqaAigDWFrCSuJhdlbdtrsWGVCy0QBGRjxMTsSYP6z2z74PXOt67wky2PF4ytJ3kP8jTRV4/vDDMJYFthc34Gw3SQZKQFgeB48iHQism93MiE2OxOKHhqx3s3QKltQoYagA2LU1oFoNUK3uQgANpochkobmUY+UFxnqdbUhnZy04L5u+xNJAfU5te/8+78HbrkFeNGxY8DoqKkOPwwN7QCgMYZDh4ByGXHlapXc4YbKZ3oaCIvmXok5EKPtaQNG5opjeDMzKMWxDXZa2YG5OWXvmZkpoFm3/Xr1jAKfaHzgZpjttXUrgLvuVwE29+3DiaaHElENALh0yj4avAlQG/Lvfx/Yu9d0b1F7sXcrU2i1gGLUVcCRXzT9x2YlmBKGMN55Gccw3zd4/SWXqJ+KURfFMM0YYo4s78DJk8C1x45ZMOiyy9BqKXyrUgF+9gbYIH31OhoN1ZePPgpMPfmkSrxeVwASXf3knMDTG7KA0ttRGug43gdyRnL//ffjS1/6Eg4cOIDrrrsOAPDnf/7nuP766/HAAw/gyiuv7LlnY2MDH/3oR/He974Xr371qwEAf/VXf4XJyUl8+tOfxpve9CYAwB133AEAuPvuu89Z3gM5T8JTZPI5o+7I8yTdBECj8/i1BBT37AGuugqIIkzGbWC+bibk+Xk1nbzmNQDuukulMz4O7NmDu+/ejSefBF701rIhex6O7emw4WFYT3QaFElHUbZzftA6AaQpGg3lnf6SOAUeewzNprIHXnUV8LOaZ5zqSc3fRdSPqPrUah52Qc03rYQgelPVL4pQqIUK0GcUU4Ldx46p3x56SL1LijUZJRLI6nCeYGM6vE/oS1ehrSQelpZUvRcW7EElidFzSaBoWQq4/37gW99S319CgH9tDQhDc5+JB9JoWLJwupLr8dIuT6HRULFgv//9WRw6NI2ffeghIE1RDNsIwwCHD6v8n/MchcNOTnSBuTlMViqIYwUA44EHjLVDxjt98knDjKKm/djPqoDlZfVqNIByGaVaDYh84L8dUk4Je16LgwcVDvzz06oB7vl7VfwX7fGBZhO+b5zwsXOnVcOjo1BK7LHHgCjCkSPauePv/k4Zh+jIwGAtNEYcOaLqsm+fGYu7tLHnh40SDh8GXr0/BqO3Nps7zEGA9XX1M5e+6hSGMtCvrwNYa+lTB0UT95Z0+6VIGfRxYBZBHCOMrs4aG9hwvo+vf10tk375ZbD6vtHQQ/YhzM1dhqsffFBZMRjJnSD6Zuv7PGcad805kDOSp4PuPoP4rAO5kESC6ZQ8wC+PkkOm4UoecOimnVcWt0x55XPzyfu+GZh4OmXYTCRNiev9249//VRp96uvS/eSl4bbbq64bZLXRhLol17t0tNfngSQ4G8ez7n8T3qiu/QnEmzOa4O8oJ7u934GCrcN8sZtv3rnlSfvnjwufbet8zzR854xaXBy+fjd9N2+dT8/06TfPLXZayADOa8iN3kUIotnKGkKe7zY921gL7+b2dxLR1UTNEpvRs1GS25AZQanWMz3c6yRaRlnWp0HeTzX11UAR1Gc/DK435mAm6n8L6/sJHDPAzigypKm6r3fNW6SjGPWT9JU7bnl/j9vDBD3N+XO4cRkGurIckcfQbZ9LIVxYsPQ3miyc9pHNmdud8u2ZGQu1yCh/5fABP/SccYyifu+Debm+/oRWF83A9W0qdvXcpzKgZQDYqWpyrsLr+d/2QR5Q0zmxXQyID7bQNc9k47TJhkwQ2yi+Xumq/v0fab+eZJXkYuMV/VMXwCwuLiYedHJ42zlm9/8JrZu3Wo2wgCwf/9+bN26Fd/4xjdy73nooYdQr9dx8803m99GRkbw0pe+tO895yrvgZxncY28/a7ZRHrmCiBrhXV0twkITQ6SpSUgTc1Hl9Kkp4h9Jjgzx+rvZp2gy+FMY+YeqWozeq0faOgqF1d3cxJ0g45vJkw3rz820d2uqmAS1JfuNErc17QL0/dtjA+GYDGN0ifvJNH9hVV1mbDYEqCmnhgeFjelqQ0EnyQmjzPGWnWA60zHGnd1peM6HVu/paWs7ib9P9cqmrE229xaryFNkbFYy4s6HRt0XFfYfR7oFG7Adz0e3SHijk9X5DXmXsmBIw3N7honTc3a1PyeuXRVrxfRa33PA8k3kzPqyAtLBrr73OnuzTXHQC4YOR2Aml6y0msZQAYwdAFHyrqzeJdeudIT2AU+6Y3M9zwvZOmJLClZmK704iZ1iAtq54GX/CzzcfOQ6TBdSQNDj2YZINP3feOtLYODSmA6TdOeOtFr3Pd9Q+/CckqqG+bLa93ysNwjIyMZT35JUcO8SNXingqQXuYdZ5Egg3jSk7/T6eTSueRRjUiQnmWVfOJ5xh0J0DN/6TFOjvM0TTE6OoqxsTETeFS2YaFQMBznpKVxx7I7Tt0ySMCbfe2mIWMKuN79sm14koF88/JUBml+eJ1roHimUrhIGdC5DOSCFtdTKu87PwN2ByC9r2s1II4RNrX3bjPKBC4EgJXEU3zOc3NAvd7rFMNdn+/b/+j95ft2ISc90Clpau5da9mf3I0pogiYmMiwagAAkgQ7dypezThWVCHbtgU2mCbpY7i71eeau5Up1OeAanUKwVWJ9TRnOemZzsxI9yI9+Xmt78NEXxV8hV7aVnQhSc7uNAzR9YMMIErMY3hYbSijyHKryuYbGemzR0oSVKsOjWsdpo8z4IgGczsd5W12+eXDytmtrhpu+3bR+LpfL7lEN5FOxwwR31dnsDUQMD5uHfrYXAyQFkUAGgIwpzsXqUa4EU0Sc4qdzAFsZkAB2V4YolzOBreVWIg5px3HCv/1fUNjZJaUkreehKi6vQqhXp/NNhQwUd5h7VN6DHPjL7rVDG+5D1ZsR0WsHrfYFbl0S7Gf5diPIvscsRGGhoBGA8WwjTgObMBUfVQdaYrVR5UTahwj23BETNyXGAs9z6RpRHGNG2fhgpYuNjb6O5/kXQ8AO3fuzPz6u7/7u7jzzjvPuhT1eh07duzo+X3Hjh2oM3BAzj0AMDk5mfl9cnISDz/88FOa90B+SuKCZRQXPBPe2OTFDue1o/LRMcuVrZ/fFRRQiCLl1Xr0KOI3i+Sot8fHAd83czZ835xcCUOlI4zqkIEyhe5OU+1BDJhJ2oCFeg7zfTW1lssAGipIdK2m5sly2aoCw26TqERMzFG/YvTwYlpAkXqNZSbASl0NqIapVtVJLFdk/BKxXskgpe56SuhtOhlThobUSx5qk8Gl09T+b9qT5RXtX61CU9VAue3LaJ26jlRXtRqwZcs12LkTtnFbLZTLBUxMqLYlc5+pT5LgkkuKKj99wglhaLJIU7WUec5z1DAol9W4u/TSkgXe2Slsc4LIOo/t21XIlYkJO4Y1k4WpN5lZpqcVxcnysj31gEsuUT9EEdCAbVRDgq8bKooUMr+6qj4/+9kmZomidJsHVlcRvUAXIwxV5fTYNmMW2YMI3bCAVl3g8pUyumEBc19XS2eG3fF92BMOetFplofkzReUQbVaST2rfMZuuUW1+REgDK/G5CTg1WqqsdjveUacfvNFHvAu16sXhQx097nS3QMQ/SIQCWDn8VIDvdzfADIAsAzIKIF0CWgTCJRgO4FGgs0S8CRVBgFDgrlMi2ChpCeRIBivl+A0y8J6u7QvLq2L/E6Q0wXOpTeypJxx+c3Js00uc37Oa2cJRLNe5L8mjQvb2uXpzvOKlvVm+YMgMCC4rBOBXebnUvqwv6QxQvaJC96maYrl5eVMgFHZfnIcuR7jLB/bk6C+G+xVtpvk6ydPued5GBsbywRaJaAu24ZBRMfGxkx/SQNHnrGI7bBli+KJl3XhOHY972lQSNMUS0tLWFtb6xlfNEKwnWgMYt7S2MH6SJ562R/PVBmA6AO5oEWCY9zQAnaz5AYsI5rXaKhNda2Gdu0KLCyotfrWrQBOxoZP1UMXgDqyXPB9xTn54IMolx2HXqKbGtQMQw28V9Sm1+d1RAY5/3JzEUVo+wXjFMViyktOtAKUajVz6jqKYHY4U9HjQOyrgKUAqlV1TLdSAXAktQmFIVbiKSwtAXPfUaeF1Wnp3QgBxE2gFEdqk7W0ZDfe3NDozRcAC1TEMdp+AYGuq5E8z2r2iX61WpaahfXVzYHxcR3MCsD4uPJoX121ztXkGDebY51PsfVDFAELVJfLCmRlP4nxQS/06Wl1vH96GkBrWtEAjK9gYqIANNW4KocKoC2XAcyrjL3mCZVeGCorBuweldmRpmbbNlieW561Zptw0BCV0EB6yV/E3r1Fg/9HkU2bme2KuyiXPRSwAszOI4giVKtT6v99+4A9e9Cu7EIyDyAODZJvwI+aBpsZTG9mRr3Xapab5cEHgfV1tbmFOuIdhCGQOMCAGOLuEGg0LHWrfAeAeK8HT+/Mu7XdpP7XjVhR9UgS4P77gelpPPvZ17K5gTjGvckVmJtTR/Bf9So97vfutVYLRjuTVEOcM1hoCscrB6QEmS6qjfi6fp3J9cCjjz6KYrFofh1xrSRa7rzzTrzvfe/bNMXvfOc7APqfqj3VCdU8R6TTOdW6WRpnm85AzrH0O9XhPpsUTiRHjyo+pyuvxLHn/CxO1tWcqLYil6i5nrE9fB9HjgB79+6A9/Wvo3X8eCZuhHmmNRpoMGkG+IyizMmeMIQJ0GxAU230S1p2Gjm2EBg9laZAtzIFT0dfvOEGxq5QIOzk8o8xuadsuNBZrHIZwJyqc6H5uIrFEk6h4U8hmaMu9JAkJcSx0k0BoKyacaxiSOzdawJTmiAhUmjZZftqgNwDssd9HOOjDLxJB2iC5b6vmn/KfwKIQsRx0Uy5NDTEsTC+cu3k+yilT6BUCYHDRyw92o03AoClhdP0cq2mWju84AVKB+3bB6C+XyXcaKBY8VGrlUz3Ks92GBB9V7wINFvW6BLHiIUtdft24LnPVWvCYP7HQLOJyWqKyZlYrS1qNdU+Cwuq8jIIShhicnwFN91UUEHINa2dq7t3V9u49dYAlQoQNB4HqmUkiY6zooOnt6OS7avpabVm1TQrhb17VXscOqTyn5wEXvYyoFZDrQYUsajWrEmC8iv/P/B9oBsVlR7XQLtUfZOTtv7U0TSWPB4qmsIDB1TX0Dbjpe2sQ0oUYWhB87qnGvgnBdL8PK6/fpd1RKjV8LUjOwxry3veo9ocL36x5aczSL0QOaDkXCGdAaQ13/d7rf0XtAx090+St5QBiH6RCEFS1zOaIj2xJY+2BHDpdevyoMuXDJjJ+/i7TEcGapTpESRkmVwQXYrrrQwgAwzL3zfzPJf5MBgnyyA95SVwTh5xXuN5Kkgn+bPp6cxAlAR+O52OAVoJisoAoNKTnJzdElBnev1oPtw+39jYMN7h5A+XICw9n9mvMmgoPaTluJB1YFsmSYJmswkG9GTZaVhgu7hUKOwPpivbl17kkqteeu0TcN6yZQuCIDBgdBAEpv3b7TaiKDL9C8C0Jw0d0ighPdbZ33wRRCdATvCcabAfAZgxvLa2hk6ng+XlZSwvL5v+Zvp8LjzPyxgHpEGD5W6321heXjZ1kSD6MxkYHoDoA7mgRQJbEpTkAtrlQOYCm0Sk5TKOHFFr/H37oIDIcll90a5UaRrg5Elgsuyj9eCDqAOYbp3A2prlL3dBdHqT+fEOVQyu5PJAfb3gXzieBZLlZ4KQfmUHWnXj8GMvPHLEumWVyyiEIWZmigrkFd5X8H3MzingfH7e0IgbztL9+wHf91C85BK1O+Yuiy5K0mNXo5zdqIhWE/D9IvxyUXkvk8idnlluEFJf8am2WsDJk9njwdu2WVwD2uOkoNs4mthhupABzJRnmDCQ3H+/8uDiCa9f+AXcO1swezLfBzzfRzv1DBgwMwP8zM8IEB0AZmfhsSBRhFLURbTHQ5As2p0nPWKIcPs+PHQxMeFhfByqLQiMz7V6z9/yXu6uyZnPdpufx7V7ZsSlnuERN/fOzqJAsFujz55G74+N7MIagGROX8/2jyIkTZXFI/MeoqiIUgWq3zR4hLExC6w/8IC6f98+ICyYMU8jgRyvLpc9x3CzqYbp0pKi7dX2F6Spav/C0aNAFJnAqcZrP6qqRA4eVGTGV12FWu1aBZrpRP7kdxXX8BveANx6qw7M+vzn2zpL4w1gvQd1PfqC6PJ5leftLwo5u414sVjMbMT7yVvf+la87nWv2/SaWq2Ge++9F8eOHev57/jx4z3eapSK5j+u1+u4RAz4J554ou89/dI507wHcp7FBczlcymF1zz2mJoL4hj33KOmrNe9TscsKZcV6CqAtCNHlJfv0PHj+DGAF2IRgAJ2Df+V1t3T02p+Wkk8FKan1XyerCDwfXVaBrAAPXVuFKlYEYcs3jc3py7lND43B+zeuxd+YmM8Y2m7mhS/+U0Fwu7bh6BaRRwHiCIgSFeyyj+KcLhZwsGD1pP76FGV9uWXqzQDQKHUY2PqRxq2OUm7gTrKZSymhYxaTxMgDAN4VI6uJ3oUoaWB1WPHlB6mjZLTbKUC4MBhIAxRnJkBwhBtv5CJXWqMr/whTW2bHjqkKvbmN+Mrd3uIY7W0CUMPBZ0R1w779yvDaSlcUV/YXq0WavteaAwSgd9V6wSuhVTUUdVwe/YAUQR2cZqqMTN57F6g0bLrGUnwXqtZHcE1JflbwhCYm8NNN12tVLvme5+YEHWOIuDIEewCgPmWAuN37kRcvhZpCrQrV8CfvgLzc3opI46cLSyo5ZnvlxDGJZT8w6ps1ap6lcsKQD9yxIDopbiLoSFPnfy6/HIgirB9uxp6tGfxRCOg1odyiUqjycGD6r/9+7WNJUnUHzt34gRK6CwIz/8tsSoPufnn57Fvn/WIX0wLuPNO4H//7wT/z/8T4nd+B/Bmf6ieYd+347efUU3OGcLb3Rh/5BG+ge428kzS3QMQ/SKQzfijXU9tCZZKMM+9X4pLUUJgFsh6cjMdSXciPYEBC4K7XuLS49b1ZJaf3d9kGWU9+ZtLFcI6MFApA4ZKsJWGAknjwnrxd1lHt32l17viOU0yAC6tc7LO0sOawKtbZwrbUwaBJeDKYKH87gbSJPgt0+M9zEfStayvryNJEiwvL6PT6ZhAnjQi0NggaVBc4wcBZJbd9c5mW7jc1tJ7m57b0sjR6XQMJQr7VfaRNAi548kdv9ITXnK0s704dmU5GXg0SRKsrq6adpPPlaTSkR7vLAvrIZ8pyUUvQWT3eX4myABEH8gFL1wkS65I+QLsRgewOwINEM7Pq41zGAKYb9ij0NzYIVBgYMVHE+pk7XSrhTQtZcugQTpidpKCxNBiuKC+fu/CMzzfLhUk3xcW7F5iZETvCVLYXbp0UW824bmbZr3hp/2AgVT5d7UKXHml8rwqcuNdLptXt7xDeYIRGdXtKzlcleO3pzzBpQe65PLUbSCdhuS+Z3zcYhtoCODZ9+FFEcJQbfrNRo2JMcHHHlMVg/1P20uMR5rvewa0p7P69LQGLhhJjIA2O7TVQsA8XJRYGhjSFF6aKuC/oceZbCQ5Lvk+Pp41OtDlntQFGugJfB9x7JnqBmGo6nrkSLYd9Ob+scdU9tu3a9BCPBfMhkOjNB2p++SJgpbe3LM99WBR1WCAdtM8ZoiPjCiAg23MpOjdxmsbDdGHeqw2dLOTSQh+rC46eFBV5uhRTOy1JxC6foD/+3+BBx98GK3Ws7B3r253ebTZnRNcj0yDIKXZgSkBJ+Aio3M5u4346Uq5XEbZ8F/0l+uvvx4nT57Et7/9bbzwhS8EAHzrW9/CyZMn8aIXvSj3nssuuwyVSgV33XUXnvvc5wJQjg5f/epX8aEPfei0y3g2eQ/kPIoEyt1nzX0m+bnZVEEzWy0TUDvwu2puqNXQDosKUNeewY2GmosAxeyl5jIBNAkDKPVDkgAIi4pShMivfi0mAcKwoABrPZ83m1nKF859fDWbwEqlBCRKz5TLUApsbU0ZfdfXFShbqcBLUwRyQk0ScyJovq6w30pFzelzc8A//ZPDS07lWK0CMzNop0pfmLoI8LHtF9CoW4yRVF3KazvNcrUIMDNJYAKKJkkvr7eiYpm3a4goAsoFhprJniDjD6wn9dncXEZ3c6opxKFpljRVzVY48l3j2WxOLC0twWstolwu2vqwfdLUGsD37TMnwUJRzYkJAF/+vjLIcyy2WoaPphuXlJGdBaG3tQ4+j0YDMzfogPKp0rdjYyJcj++rNjp+3Hbg6CiimlX7mS6gdaJcxvIyTB+MjgKloSFjQFeu71CJHD9u14atFgAVCLxULqOdetk1FOz6iPzp8hFMEhuzdn5eLC25Vtq50ywTaFRBGlogW183Pa0+duGh0VAAOvC/kKb/HN7dX1EJsA7uOl6Ku5aSv5PaxjUAXTQy0N3nSncPAoteJNKPBx04N8BSHph7JvdKMEy+S6A7L/08Lmo3DdeDWabtiks34tK2yHZ0jQNufVx6nLz69nvlieuB7pZT0vacziuvPU9VplP1c97pAJeORXriy++yjzbLu1+b9KMekoYHCbL3a6t+BiBZL3dMuf2dR3vjtpHbd5u15Zn890yS03mWTufZGshAfuoiF9H0BBIeqGqzk/ZcazC3JIEH69kgT4vyoq6zZNssQKabD7N2cbo8nCE3bmq/zDbbiGxWLrnb1aBrJkCofncdhE5ZBpEe/zJBvs5CPOTQbZ1i8+T+bL7LjdlmFetX2DzrR155+hl73Ptcr/XTLUufe7rwnIF7GmmeRjDNvKpS3LGaV+00RZY8N+8GDpLhYXtv5nrx4EgEK69Qp+pb5ndRS/csXuderrrqKtxyyy144xvfiAMHDuDAgQN44xvfiFtvvRVXXnmluW5mZgaf+9znAKj11x133IEPfOAD+NznPofDhw/jDW94AwqFAm6//XZzT71ex6FDhzA7OwsA+P73v49Dhw7hxIkTZ5T3QH7KcjpznDRgjo8bxNrM2/pl5gX9zFPNe9Ce2sjyQEs9l6uHcuaRTHF9Fdib2GmuXtH3SPY580deEGeR12n+bEVkwsDeaSoK4+hgiZP3pH8qXZVzWe7axNH3RgVtNt876wQjjk40/d9TeJjxkFkj8Jqc9dKm0z7/1Lw+PW2ao6tz1yZuHfv8JWV4WOtuQSafqbLk0uHN5KoDcivVb8j1sy+7jHwmSafT85Y/efW1/w8B8LJ1PtXz4P5/Nmu1C1oGuvtc6e6LsfefMZIHrPJ3Sp63dz9wrx/3ch6YK/9zr2W+rlcuAAOsSmDydOtEgMwFy6WnuQQ3ZTDUPB5uUoW4vN4SiJXtQrqZtbU1Q/3hAtayDJLbm+WX9ZCAn9u+eW3uvti29NBmejKIp7xGUubINkuSxHhVS2oUAAasDsMQkr6HdCiADV66tLSEoaEhLC8vZ8opufJJzeLykruAvGwX2R/Me3h4GGmaIgiCTNndUwOS95zlD4LAfHa9u9l/DBbKdmq324b3PEkSkN6FJxpYR1k3ymZe+q7xh2M170TIM1EGnugDuaBFgmWbAY5yo9NsKo+eV70K2LMHofbEQr1u+U3Eoj9AG1dXE+DQEVQAcI+h6R+NZ9KJpICk2WdTynnfV9t4T4KqYZihH6UXj3v6dHzcnsoOQ+1ZvKzTIPG24BvPHOMWbbB1q6q+5HT3feWMZY5YMxgUo0eJjVsgN0O+j7Rp08kzLJg/0jRLJ1K3dWH9mLWO82aNHMxTb14ZdNRs+JgXg81Jj7s47mlPD10EPjA66mXjVsnNnqT+cLwRM/+xYfhdAvFs2DTNBoCTyAo9uXzfEsRL0FiMxy4846SukvJQLJezQeMIMKUp4lj1M0GjVgsoam9NpsNm6/G8lghLpWLGOb0J+biRE5dVYnFZRv5Hp8QkscWdmNDcqYD1BgxVme2J7IIyTV1yiQl4KvsrTVWXz81VsXWrrmOaKpe5kRHlkS7Hh6QpkONT1psPWL+j5BeFPLXebGcif/M3f4O3v/3tuPnmmwEAt912G/7wD/8wc80DDzyAk3QZBvDud78bq6ur+P+z9/9Bcl3lmTj+6Pbp23d67rSuWj2attxSGnlsj23hCGKwAENM+BGo9ZIlS5LdLMmSWkj2Q6USSGXJskkqQFgIyVbKVbsJCZstyH7Y1KY2bH6xGxb41ELiAgVM0Dc4IIOAwRrbLasltTQ903e677S+f5zznPPeM7dHkrFBY/Vb1dUz3feee371+fG8z3neN7/5zTh//jzuvvtufPzjH8ecEOH/vd/7vZy260te8hIAwAc/+EG84Q1vuOJnT+27ZFfyu5Io3pkzevD4l/8SeN7z0FwxSlgcLHo9BNRDNuLn/+gfAQtr38A6DCvRyLZYImYcYz3Zb0+B5bKWmbE/jjGOqlZGbGYGbhxPEjx6XGdh927BwgVs7BT+Xy7r8S7Ihm488uKk8DlVOSaZE2ZN6LGO25u5OV3MVouOfuhB1Qq4u7IMswChF0i013On8EgYrkbj/PgodVqY516efS6DTFpwXOuvWCb66nlN6p6ddRLtWBMQl1I26DkGA12oZjMXW1Ip19ZxHNplhS0X+xM1SdIUYbQOKKP1ziqJIgf8sqxpijCKMDdXw9mzZh65+eb8go4ZabXQ7QKNRuhOJJC+LdcCUjbM2GgErGehjpfDuYaTaaNhq1guMZh87cgRXOwHOPNNnf0bbjDLim7kgqcrpS/+2tc0q7/dBpTCuqrhwgVDSDe6NTJrpZKJCQSXHdvcPc0+H42cjAunVbvGiWNwqcvlzP6mWb+JCOlMm+V69rPL+NKXnq/XIEtL+kEnTugM3XBDvt9NqNNcYVifE5wUO8Omc/eVPvtytlN7wHVhk1jUtCKGsAR1ixjLEmT3AW4f2PZBPgkWb25uWqkKCVQSRJfa6FKuwk+Lz/DBeoKdUoN8O/1oyqhQ69rXkPfL5ZeFADSfMRwOUalUrPwHQVNKc8j8SEkP1qus20nMZVl+GfCUJgOgSl16gtp+XRAMZp1Rw3swGOQkUXymdqVSsdrjDJzJOgeQ02Qvch7MzMzYup+dnc3J5LD+WW5fvqSIfS/7AAOorq+v55waEjyX9UQdd+kEkG3L9tswHnTJqidoTumWNE1tXVcqFZt32XdYn9RKLzoZIB0XBM+pqX692xREn9o1bZLFVcQ8ldQZwAGWR4/ikeROK2mZJNAaJ8vLVlccSumN18ojwKc+BZw6heAVr0Dd7C54Chhzc1ZbPcv0PpCPt+TafuoxiAIoFSIwG+jVVb2ZBVzQLR615brTSnIYq0ZjVzaikyIC5VBVETY81rFSmJ/PgwXc9PPU9cwMgHLDVYwJipVxL6kYq0SXhWB8bvOXmmcSBDdf8Gj56hm335yd1S+WNwfEm3ZYT/V9DJw6M4MtR5HtjUeO5PrEMNKBOXm9bo++qWsNJkeRYY0R7ZUoMXd7rFu5WZcbYAk6U0c+ijBO6lu6KOsrioCgf9F9ePasTqPR2OIUGSOw5DJuqgGgttjOta98J1hBqaBuF+gpfaSbp9R37zb9SoIFTIcPMYDIOKljY8XhD4OBU72RWIuWLwpQKrlnJ4nWmd3cdHFU5aO4yY4FaOAkkaqottvAHXcArZa9dxxVkfaBu+/WVX7DDdoPVkOq5V8aDf2haddxVHUyR3KzzYxIVIh1z+92HJA+xtVtrp++9U69XseHP/zhba8pOgX7jne8A+94xzsm3nO576/02VP7LlkhbdWYN5ah1wO+/nXgnnvwjeS5yDJgifMNJxNqYBw5gm90azgUj7Hwyf8GLC+jevQoDhmv4fd9H7C/OdaDUZLg2DH9COK+lqScpXpAabVyqhsAUDPjxWOdACdO6PGHClIcNjiVENu0c1s/deA5QWPzJeOet1pGMkaA7a1Yg5grK/oayrq02wS/zQLEgNFBNoRSoXVKhkavmAz17gk95dBfGGIIrHTy8xt1tcz8zSlBltPIcFsbI9CBVA14m/bd1LZnj8b59+wBsOGNvUaHnrIsF6N9aDT0HGWH445u6ziuYXZWp2kBaQKsppxWq7zVQj8NoVSIKA61o4VjOh3uJg/VxUUopSX8anfdlVtXjiOt697tODWY/eyfDBjO/7kwMmkrFdr+o5Vuqmi0b0HYauX6f5ANUXP+DyDRzvOVFeDBBwNbzEYDONhYt3r5DESKONbr2C98QZfNREOnhN/qqm44rufkWrWejIE0xeZmFYOBbqNmUyd3/rzu/697nQuRE0VwAUAbDaieTuvxx+nHCZAkNQStlm7bVitHGAHIZdmLJAG+ke7HoaSvNYvo6DAL03FcQ2C07nPrMElYkGt9X85lR50sm87dV/rsy9kURL+GjSBhkXSFL3dSBNRJULJIZkMClhJYle+T5DDIQpef8XOfse2bBECLGPaXLrngl2QIA8iVT97Pe8lglgFPJVNbmmTKS8Ae0KBxqVSy/5NhzTywfPxban/L+vYZ19u9mPei+pDM9FKpZAOZMu+yTSUALkFh2RZkaksm++zsbK4uCCBT+304HFogm+mx/uM4RrVaRbVatUE2qSfPupca8L6jRwZClRIu0ilAZnpRX/ID4Uo2/K5du6wTAEAOTJdSNDLYJ5n7fGcgU9nX5WkI2QfYL/m5LLOvG+/LzVyPAPEURJ/aNW8+C90H0gG3ex2N9EZncRG/9269OXvFK/QeAF88pXcLe/da8DbLgLDbBT72MZ3u93+/jQ51+DB0kEmDQJ/8mH4UmVOcfq1MTJYhMwfKmV2yzdZWNKgpGWGSEF8q6Q1NiKErY0/sgqjfbja746iK82cM0zqp56RqpEQlWd1zcw68VwpArAsxRIhUbJr96iUTOU01WKuPzY/dBaYg5/oh+t08SYtOA7LOyeKTtp7p51O7nYGw4tjo4NJEha2rGmPKAQB6XY+1zgwAqFRqmJvz9lc+e567PgKrsgJYiVJvX27Q4xgrK8htHMkAJ3uv0ahpJl2/ryvlwgVXmYIByDT4yNVVnc7u3QEW2m0LjIRqbJHtKtZR3aNwrh9ahhjrkt1lZsZo2EoWvaynKLIANzVwKxXX9r1e/mRANdIb8VocQakgp9JCPPumm/RzpT46mk2M45qtYh+sqbZawG23WbaexD+e8xwNYDUaerOPmVQHIW21bJCycVTVQdUAdyO9GT6Q7kk97TwAHbiW2GxTm9pEuxyAbgfynp6f3/AGvPstGpN7y1uAanYRWO7pdDodfd2RI3joIeBQKwN+//f1oPWqV1mU/DnPgUNBkwTHP2oJxnYuGI0ArPUtWn1BDI9KwY4bnY4mzi4t6Zf0t3FOY3Hs2Mxxh4sFBgExIPqZM3oKWOCNBrFsJe5gU6/nwMxmE7lTQ2MVarZ7lgEGvNVDnt7ncR5hdbl5o+/qhWuJxj497vfyB69k0zSbQDU9Z+eqYRbg/KiOTTFf8TnNpnFgcG4RgP16VNeHsVQdWQSkK7oO9+zRzwvV2I7dcUOvHUYjYDxf185ossqJ6DMIR7OJwSBEuWzif0hHOb21zEejAWCfmSs12SGK9LrtzBnk9MjjGNjfUMhNrpwIuTAyz1FJ1dZ9t6vnKe3LreamnVr/XH5NoRQCpdDr7cMDD+iuMj9vpicKlPM4Ap/d7+v5TyntdWm3reNlzZxelD87K2NkQOqkeQi9nq6KGi4iSTSLPY514O5g+RsYtw+h0zFBeFstjKMqlKl+BovnWrPWbFpyivQtAPpnycN+x44Bh+6Ndd4ZTXZ2FoiirXO3zzLnPC6PLUyZ6Ne97dQecN1YEYBOm6QXXMREl3YlDNiie4uYwjIvvrZ0UZp+OvJd3kOAUsrDkO0rpTBk3ZD5TNDTl8yQdcT0JKNYArxk2hOwloBwkV42gVO/XSbVgfxfyswU1TOBblm/vowLnycBYQmCy/zKgKU+K18GTmV5pJMhyzKsra1BSvlIdjXbiKxxGWhWOkl8Nr50JNBpwVMABNDp1JD1y+fu2qUlV1g+2U+YB7a7BMx9EF1KxxBwJ7Oe7exLDU1qVz5vO/b99W5TEH1q17T54PkksIsL6s1NIE0xVFU8+KBeo//jf2w2JL2eflFOwyQZpqlmqZdKegdh2FLNBoCORvqGmQ6SJPeEW/JZkOVxFCLA2G5qffKrBNP1BjLdWk5eJHb4WaaLysCRSgWoRsowuPRls7N5AN2y0E15GFCVrLxCrVOvPDldeWALu457GgKwBO2leob0ibBezp/X98WxYPdzg+oBLt1OXn3F3/Ar5TI9k+j/c8G+ZJ1KkDzLNMPOZ0jKipBINzQjj3t07v18uZ8oAupMixtv2bZK5bT2WTe89MIF7SzJMkq3BJolaYOJAVG8DwBsO/C59j0V/UrWKbUIDOLPy6RUi8xuqSQ+VMqCD0yGfW9+HgjSdQssAMA4ruVOarM8tpqJIAlwm9eQgJdlBiQoZxrxEHJAaWr6sgdQ2B+eD6TLyt6RNt2IT+0aN/nb8oExf5wdjYB+H+O4hgceME5o5TGniUDDYcE4flwPTD/7s9rzrZQGnc3cjSiyKm5bfur0VmaZHfty15lxhQAxhxuOY3v26HmbJ7ByYw8T8o7kpKkewyhnTWBwrEJUsyGqsZYyAfT8aWJN2nSHCNHvAUkS6lM3oih0TMq5yOLH8gPAIqCyfP6Uy+xVo3EuCHhmpEP8udwWl8eXmIDJJ5dgJo6q9WXaZ4qEOGSbJZ0mJLAPcTIQntbNTXECL4mctyRN9d9eRHeC3YAjRZw+nfe/Dgau3bbIvsm5w1srsB24BuL6o9kEasprGJPeYLAPy8uwp+qyDC54qNAnGiPQ7d7p6Iv37gVaLfROuLz7sXtyGev1ELXFmqnXR6XiiAnB8jeA48cRJAkAfcpuHFdz6wCueWzfEg6jzSz/M7jpJl3+Y8eAU6fMtZ2Ou8gEG7DpS5KC9FjJ/uSD6DtuDp/O3U+VTUH0a9iuFGR7KoAlXyJj0nMk0EqQtOganx19ubz7108Cqn3QuUjaQzoeeJ/MQxFD3JfikHUvAXwy7Sex7GWaRfItRXIkk9j+vJd1LZ9Z5ETwJUZkPbAOZB2T2S0Z1fJUQ1Hb+exxv6x+wE4+hw6CSQ4fP6/+KQy2rd9f/Of7ThP/BIZfv0V6+zRZx1JqR9azn16Rk8W/tghIv57B4eu57FPboVYEiAEWpVbKMYEBA5ZTdJwL8zRFNTGg8Jbz2MWP9L+y/4sv5TVkbQvVDnspD9dMJNT4QPqEC31sIlRjqDjAnj0agJXP9pMejXI+BQBuI8o9KPeKm5twILOof27YfEyEVU3yVBTpo8yhUlAqyO1BKWPDay3LTm6kTJtp5lh+L8t9l5VtMQnzsygSBZEbX9kocWzS0UGwAqLCfh7YoKK9KREg/R3sf0kCYDmduOEGdJ75XEqD0gEhZXWzzAAanX4uPT5XMvJzXVl6GWj0bIgGyvq5qs5h76zjIUKESWKZ8YBzzjQaOt9kDVabEbI4z47kBpxACk9oNJshqqawZOHLKqN2a5qaB912m9NWMnVgTSnXgYuAO2k7Fki/2oBjU/m6qX0Xrei3Jz8zR5ACjNFsBnrclM5ODviGbtxoQP9ueXyJdNssgw0xasYAf/6zxjFQjB923Mz080uX8mTybYtWBKxStktca68Xg7Q80ZYkIRYWNEhvLxF1xWKGUYS0n3+sBIBzw5q/hjAThlw/8OstihneCawozjsb5HpCExa8MdVkik3EtY+/LvLHYTmMSy/BGAEyhPqEl/FupF2X/zECBPPzeX084UDIrQtEOdfW8lmem0Ned8xfMwgLMEYcBxavl+XjbUkCPXdLRNrUzcxMfq1k29zo3+eAcXM60gaYMQWRazay6aV8fs2ceMg5+rMMc4nG6ZPElHcwANLUOo34EZ0gnId5Ci85UkegVjSjfCW/dGO18e9xUkdw5MiWH6Vt51x03gm2Y8Fz2nTufqpsCqJfo1bE2i4yn0Htg48SpCNYqJSy1/sg7nbyElJTmjYJcL+chrlkTvN6yrhQxmNSQEbKnvjBHsvlsv2M18i8+yx5AsvlcjkHHLMeKE8j9cF98FXWmQ/cyzYgQ54saV//nCC+n2dpUrOdbUj2tc8WZ51IeR3JsJbOD9a3bBc+yy83AFtfZGhXKhVI7XNqmTMvbBsyxn2QnBIubD8y0qXDIIqiXPtsJxPkA9nMB8vkS97IepGAN+u2UqnYv1kXpVIpd0KCeSJjXr7zuewrLDN/i9s5ZKY2tal9l80Hk/leBCw3GsDSEgKM8fKXu6CS/T5QX1pyiCQ3RtwNHD2qd3YUglQqJ1sSqjGSJMg9jpueMQIEBlRUcEEtpfHkqmTrcv9gNzQS5JXIJbBFeiJUesPGSzQTONDbrE4HQZrilnYLzaaW+RiNHMNbknso18FNm2SUsZyDQf66KAo0K0w5LXNez31RqeQ2b1Ws6wsI/Cp9fDlUCmEUoRorJEsmIGvvnNZ99YU1+ZAoQnOxZmUzQzXGehpgdVXvJcNs3bH5oQHnJAl0Hrq9PAjeaOi2M/qqp88EuHBBl0MHwwxQLu+DioC4aYD9Xs8GomMfaTQCjEYmAB5cPdeioUaKT/TcuXqiB1IDwJQtzDKESiFuVZFlLmjdwh7NxgwBhGwg70h+GEXY30xQKuXXg5a8F1W180P+loSu+zDZZ6VXCL6QMdjt5kEPfeIgsKTxKNKM0RpS4EJHyxB1uzqhZz0LtWYTw7hudVeXl7Vz5+TJ/OmMLANeck8bp88E+Id/yJH0bJDfbldv3L/cPojb3/1uR300dWkDAjLogERpJCOU9SDY/ADywQSmNrWpPXnLsq3Hm+TE5wNhzabWS0lT/KN/VMWBA0ZKgo6yNNWDrPHAvehF+/WA8IpX6O/n522aFpubmwOyDIuLLgubm25+wkxiWb6RAWGtFnRHT9Z7oLN1881APR7aeY82zPS6wJ4kk4C/UjYPHHfiOKSaHMbNgw4857je7+P2xUU0m9Uc3o0UFuznmqbfD3JzNqXE/FNRo5FZpxDJVQrj1kF7XRy700RyqNy929TT8rJjPicJAgDNZl07m62sjMkstcNl25pCzC/uw8yMTpfOez4vTC/maOAhhpidDZ0EHOV+mk104lvQ7wPt9iGErSEe6wQ4c8atyVZWgHjx+W4eJuJrqOeMq87nN5u6/ZrNICd7frA5BB5Y1iLg9ORSxD0XsRxAv487D8fWuSznryBd1/V3su/mbnY0U+bWkj1IgUbDrEHi2B7DcusvaGmX++7T8xy10o9rp0uW6Xm20wEeflhfQjL+6ZkalKoBPfETTFNUu4/gza9PdF7+75dsXdfawHqyHydOuLm319MxTdfW3CGQN7wBuHs+xkXUcPw47PqFWL/0fz3wAPCSP/gDnUEmkGWYmQm1hr4M+F1kctzg3B1F07n7OrUpiH4Nmg/KFgHpPnNbguiSjS21qOW9NP86aT4ITnkVCRzSyDRmnouAQV9nnd9LjWoCmlLrW6ZLQJa65xKcliA1JUtYBgmQEhiWsh+S7S2N4DLLPUnHnfmS2twS9Jfg8K5duxCG4RZGc5HTQuadwC8dCATnpQb3xsYGNjY2EIahlUHZtWtXrt2olU6gl6C3ZJ6zjn2j5jgARFGEUqlkQXSeTJBOHToLoijaUgesK2qYE6xmO7K+i1jirCvKsMjPeJ0EsWX55O9mY2MD6+vrudMVzFsURdZJIPXqpbOCfYn66aPRCBsbG1vqWf5eJHAehqH9/npkZE/lXKa2I8zbjOUoUxLZZgSsNMXrXlfFaKQX+/0+UL/rLr1hXl622pDo9ZwQJDdJRXSzNEWzqaUp+Lg41ozbYVTD+fMB5ubM8XO5uDcb1noyRj2BoPhmGiwGEDX26eL5jFi5C5aRGk1+4rhqWUFRZI6WZ5nb8C4vo8ZNc6ulN85RNYcfEijl5kwecZ5keh8ZApk7Bs5mmZ0V2u7drgNUfYaebDtABwKTaEBRHZiHBHGMWhzrAGRpimqjAbWnrgF0eUxYKaDbNdd2XMGUApIEpy/tM30jwGDg+gmx5dFIg72sfg1+7EPS3uccLFmGepQBERwAcKHvdFVWVvR1RDcYMZU0c+ksMcCDFtoxuq4A8FDH9VepHaOUiyyaZUCSYCFJsOdw3bYv3/XfIcjQVAoYjKrYQB1ZH+h3nLOE3Zd1cuaM3vwyUCmLeeSI/jnFMbTkwvIy8MlP5ll7Z88CrRbUvT+Akyd1dXzxi/rjY8e2OnAaDR1gjYEAKxXdnw4fBuo4hyyr48QJDcBH0e1YXAR+8p8NgX7f4XMErnwA3d+Yy3rnzTuK2TY9Ej61a9iKfks+iE5wPMtsXAb0+/h//p+qdeT1EKLZ3K/BWoo+dzpY4Bz7+tfbMZ2/4VAN3WdZhsOH3UkhajlHETBUNWDxdg6f2iHYf0IzqQ2a2VRWdloPYErpEzNRhCF0PkMM3bgsAyMSRfRA9GZTX/7QQ0AcBzjUgr5vZcWArSe1BFijYYJwKnusLsAY1QhYWQmYHVQqeuzudmHXPHK6tZIoBIHjGA89pB950002DIwrixnkqxspcCHVovC9HrCwYMsZJn0H/EtnJB2YfvuLubs2A4AOT04qPJrE+aPfx549dXd/t6srLMtwqgQ8+ijXLqFdB/FAYber404DwOHDIRqNEM89vGiTqidjy+wOsqEuX7+PeqOBOueBLAMeWNHPZIAXBtncu9cdc6T1eloGJU0RxjFC6UhZXtaTllws3XWXA9G7XdQXn8DRo/vsJUkCINYI9Lqqodd15VPtQwjeoOOknDkDrAlcHtDrluVlXQdx7Obu5WX9uKNHnb4/0lSD2X/yJ/nf4YkTGo1/6X48+KDDvOnL0MpKKYA13HDDXtz9s4ldAihl451iaUmTGXjS7k/+BPi3/zbEvfcexHv+Wc+2exSF7jcr52PpoJHvcvHLzrtjbDp3P1U2BdGvUdtOP1yaL40hpS98wHeSVre8ntcVgeBF4DlNAseU3SiSAvHTA2ABRwZzlOB9kVwLAd4oiiwIK8FzKc/is8j5vywv8+vXi2SiM18ElsmeZh6pxy7BY1+KRIL8BNwlY1+yleXJAakLPx6PLRDNOpBSLXwe2egEyZVSFtwdjUZI0xQbGxtI0xRZlmF9fd2WedcuHWhUMvtlX2EZCIzL0wAS+PdZ9VEUWWBcvlgeAv8SRGf7yP4ibZIkDRnoBLJl/clXmqYYDAY5GRw6CVh+OglYfpaBQV6ZL7YV+7LUpWc+ZZnJ5r+ebQqiT+2aNh9YltQsuSE3Nm7s05vF9BzqJx8Cmk08ojTj6qsnAyhVx6G46wI2LS8DR45geOT5SFMdZCmnychnZxl277byjQAMu6jfByKtD1ouA9Uoy28oyVYig1mmaWi4QZJAqVAD67LMEgwmuC80NoJ0HUpVKenqjOVifbValm4WtFpQKpT7VLsPIUFfYt5yH8jkJHNNasUSuwyzdQcgU8OW9D/AsbBLJX0DN+Kybkhn39jIs40ISpCWbAoSRlE+qiY3YFI7pNPJUeTPpi6bUrqEMVz7fVeNN96os9rv8/FabiAAXD54qsGwCbGyol8+oBJFug7k2WtZ8Wwc9u1OR9dhr6fRZ17D75NE169BEcKGBthD02dOnw+tvrrcjzKLRT8vkgllV+b9rC8GvAswtsAPPvYxDTjYyGj6xuCee7C8HGJ5GfjCF/Tlp059C8BFrK6WAJRw7NituOcenczx465o1EPHQ8vIsjpWVoAvfQk4cWINz3nOLH7wB0MszEXuBAh/L5LmKJ1t7MQslNS53VFstulGfGrXsBXN3f5LznXNpv6drqygdvzjQKuFL+N2cRgr1HIUvR4HEODZz8b6y1+DLANq2bn8HMtxINNM9MEAVsebQwMPCBFbrqqhm4vabSBJUMMYtXamP+908oB986ABp5F3csoJkxOKKW+ohqgnCo91AquBfagFfd+pUw4dNgHSAVgGuA0oCuD8eT2ezs7q4VZKZLEaGAvFTSsBqkmCi2mIkydh2NxmLQPjhOeigAlyIpQndvgQHi0yjg1kmc5zs6kXCJL2z2NMMtCnPBlIhjbrKk0RGub/MAv0NSdOaAd4pNnQfhwWVtXKCvDRj7oTVa2WlgvbT4C219NzNy/4kmFfz8/n11lds1aUnWbvXh3lWp4OhGn/Bx/U7+wfXMc8/LD+jo6RJNFeaDoQzpwBlpdx+K59ORkW6uZw+ch12soK8NBDga3CHPAOx0Q/ccItHbMM+NSn9KP27nVdi96cJ/7H/wAA7HvpS92XvR7UK/4RTpzQ1fDAA7qaRqOzAAYAvgTgLB544PXAryRYOaaLSe6GHQKyDJVKCKWAT3wCOHHif+Gzn30Z3vOLLbuIDDHMz92++UA6+6pc7+0Ym87dT5VNQfRr2K5EyoXvlwPb/Xtovu4zQUifLc575XcyPSm94cumSJ31Ika9lNeQoDcAC14W6YszzwRwCWzLawl4TrIivXI/b1IChUCrrAe/TEV66NKhIQHkIseG/1mRRrwsv5QxYX3IvPvyPQScJVuaYDvbkMBxEWjpy7D4zhpfg5wMdQZr9fXBizTQ5akKOj2Kfg9s3yKAXbL4izTK5cmEIpY765Iv2Ud85rrfZ2SaRb+57U6ZXE82BdGntuPM34gDdgGdZXoDUi3DbXgbB+3n5TKAROVZqFlmN5+11oTFeJahXC4IvpllNqnRCIASoIDIVw6NlJ/xfxXmv+PfAskeqxAB0i3XyXhZoSwXjSLb3sZkNMrj9BK3l+Rv7hUl3sH9sfzMNgePtBNUWFtzoC/zYKOHQgPlq6si0hoYQVPfz4ZjmSWqa7Q7c5m3dapc4aSmq8l4BpdFBljd3MzvoeVx981Ndwy8UvHqmxf7wqHSQwE4vU/fZP5l+UolV4dra/kIcDKjvJbOhJxzKbS3yHYiViI/kxJDMngY4KqR+Io9NCD7XKfjWHv8zPRFggOMlabPlF80eQzQ7d5qv/e7r2XMQadx+jQAfAMnTz5bd5s9Kv/bKfL+yP/9ei9qk2vephvxqe1Ak781+XcU4WI/QI2euihCluSHt5pkqJ49C6SpdQTe3o7y4z/TzzI7/BJEp3FdYIcGb6AcI3DOcgmQ+/Np0bwty+hfm2UAqtZ/Zz+nt5NOX8PMz82dJu3NzdB+xY+LpkQamfjjKLT4o8XF/TULK116Upk4I5ozv72enpu4iCJILNMjpuAfj/IZx3Is9v8X+eApKSC/lBiN9CtNnYP4zBntaEhTALGXtpy7OOnMzbn1CNFrwFU0ZcKK5hKmk2Uuqjvn5Mcfz5M//Prp9xH0L6Iax8iyINd3sl6+iegABxz7nJfrvuHmWok10w8kl1rM9xPm333nz7ubjElpt0uX1gD0oefuJwA8jm5XywXxmVGkn0+JO51xvcY9exYAvgxgEYgOiO+RX4QIx1POZL0PBvlC7xibzt1Ple3Eldt1Y1IWYzvzNc19oLkIKJ4kD+MHWpTf+cDopDwX/U0ZkqLrJYBJ4JRWFHCSJsFln03ug9ilUil3XVHZ5fV+GX0QV7LGmTeCvTJ9yTIncC0Z40XAuASaJcOcZZVOAcmCloCw7DusNwkISwBc3s9nbGxsWGBets2kdCT7XvaVonv8kxFFfaLIkVAkfSPrV/ZdyUyX9e6nw5MNsv59RrzML+tKMtsn9fmi8hX9Vv3PryebguhTu6Zt0obbB6nNDkMlVQ10kwEWx7mAYEohz1A1EcPsBkWgicMs0GxeA1j6p9AB2ISjyADscqdD8JtapDI6ZA51FuUjMFpQD1lmGNcsb5oibtRypCf0MkcDovkatF71StUwZkFmbXZWl42sNltWYxKM7/eNDEmWOTYW8+sziWSdcLPEDHGjSqRXItySXkfmkggwliuzz0impSmSpgMcZDaTxBHGuc8nG5pqQVFkgmdKEJvtzjyyYmRfSxJdNtaNTxVk2xuJtFzDzM7qjMh2JUXeLyfrM00xN1ez7cXysNq4AZdNIptJOp+ko2Uw0NlRCtq502joo/6Li5KunwNUms0Qo5E75v3Zz94KvRHXzMrDh7Xu8OamZqMrRQahYUoqhb179TUXLgCf/ewhLC2ZKiHgJDM5abzwf3PyVSChd+3aGFe3uZ7GfZnad8F8IMwHx8TYp1Q1x9Yl1mjnnE3zO+Wk7kuvmYFNM7az/OC+jUWRkGQRA2CWQctyiHXARJas9ER6zoHcNaasSVK1alx23Ge5OH9zsjFp2PyYuiPRWRQdSum6Go1cYOs4zsfYJKBOZ+qwUdOa7rJtOB8NBu6UFExeZ2fdHHbbbfoayta02+70G1/SmUzmOTPMsvr1ZBYbYwRb1lvz825OrlTceiRJ3Frl8GH96Jtv1tNkswlgubulHdDv65tmZvIJsT3kfCLLwJesSHkfHf+MtvqsZ5nTC02NLjebus4aDV1/goFt118GBY/j/VZqLsQQcRwijnXbc9rjfST+z89rKRWS5zc3tXQP+wObsmokg/azc9x8s24/U4YQQ9x6a2i11Xu9WSwvz2I0SqHn71ksLQHByiNotw+i1dLpP+c5sH9DKezZo7vG4iJw5swigO8BVh5xzhfZ5yat+/kjoMnYMtO5+7q0KYi+A8xnnNN8QNwHyX0mrQQ8fckRH+iVci4EDPmcScFIfSDeByzltbzeB0EJQkvmup9n+TypE87r/QCfu3Y5DXEGuuS1EsT3JVh8h0KRJrzUk5fXyhcZ31I3nnInEoD2g46y3ggAUx6EafAzlksGypR1TjZ/pVLBrl27coE0mXdfdoQSNlEUoVqtQimFSqWS00CfmZmxeuZFThk+e9euXahUKlZ2h/XMdvP7tdTKl3VfxCaXgTtZLganZXBTyrrIe5kWpVvk74NlolSOZKyzPYbDoWXv+yx4/3fgm/zNyv7jOy2uB5uC6FO7po27CQlMA/kNnXgPsqHRVoz0aj2KMBfptfZgYNLcZTYyXLTPz9s1PIHzc73A7InqqLVjDBHm9nqa0aWDNSroOFNJAqCTbqH2pikQJXUEBEtJC5LHo2XCgNNpJhCvQvR7+ki7ikMdgLPbRZBluH2p6e5JU3csnkbkW2xGJDlM7kOIX8jb+B5Fbm+olMOINzYcsynLgDQJkST7UF2K8gCzZH6lqUOrRV2tZ+GW4+j1eOiEOJVyUSa5GW+1cPpMgLm5OqqtzKEugD4Cj0BrrkumeBTh4NJFNJs1HDiQbwru6wkWl8tAPVp3Ui0rPVdZpFdLI9B9442uktkn2DbcMNu870N1MXbH2mV+ueOlVqlES5ieBPH5ezFUwyqAqlKIW/WcckmjobMIOOyA3YSsMzYXi0CMZDRygXJ7PSBZul33715PdwZ2Gu7Y+33ce6/W8H/e8/Rlx45F6PUiW9w3vAF4bvRlHH7d7TYvd91l+qMR7n/2IvAv/oX+/PDhWRw9CoQPfkZ/f/jwVgak7PC+sZ9IDVZGUN0RNsbVba6nG/GpfQdNemJ9h5YEa0WQ72rDjG1HjgBxjAb03Do3Z5LIlEOGm00gSZzf2iDu5/ohul2g1aqj2oCdC4qyALhglHYgEl7kLAMyE0uiSpCYg6IYU8YqRMAFAstm0hrHNXFqB6ilPeDkSVRbKe6666DOV7en62FmxjkeRyMtG2LQ4mEWGEe6LkgU6brh/E18Vg51TKrZNAG+lcIwC+39WQYb8HluLkCShCiVQsw1a1AKCFstdxKK1us5sesowsU0tHN1kA1xMQ3tWsvOnceO2fluHNesA3rc2IdOB2g0a/pUF2DH42FUM2se5KU+ANxxh+sG0m9MhvriIvDGN+rPvvd7gYX5sdYI08E08tp1rAwdTVzbs56lJ7heD/jmNx0rnXNuo4FxYx/OnHGKc63WQdRuvVVTrbkWA/QFN97oEG0DnJ9r3o5uF7jlyJG85x7CSX/iBJCmqN+TIE2qei20soKD7Tba7QClku4iUWTqud/HMNF1etddeZ872yhNdf1kmS5+o3ULqi9/Oeo/8iP6wx/6IZ2okKf7kR85iF4PePWr9ccnTwK9XoSPfexFOHlSz934y7/E3f/8n+Pee+toNoGffr2JURM1ARVhcVE/V8dFeS1+4iegtV2+9S29tuE6RsYU4A9XvuT4Ide2Rc6ta9amc/dTZTup1a8ruxqw6HJSJz7zWEpw8D5f4kPmoYi5fjl5FoK0BDqL8uszjZlukdyFBB1pUlOd6Uh5Gpl3apBTHoTALO8HYOuI79KxwPpZW1uzZSLznCA1gXGZPuvUD0RJ4JmAtNQaZ9BRyci/dOkShsMhNjY2LFjOz2R+CO7K+mPZCYKPRiMLwPMZBJvX19dx6dIlDAYDlEolxHGMzc1NzMzMgBr01EKvVqs2TTodJKN9165duaChYRjm2lbqmcu+AzhmvHRayKClPvNcapGzjljnw+EQA7Oq8vtFFEWoVCqoVCoWNJd9BQDSNLV1JgOVSka6f+rCP83BZ0sJmKmkyxREn9o1bpUKEARbmds+21Qcua0mCYZZiDTejygCqtk6oIDavFmU9yMTJcyk02zaTa5evwc2DqXGAMMc1sZH6nv0d/PzZtPj6XcPs8DirJubodF1jbZswgOMzSY5RFUC4GZ3LE+Tl0rAwq7MCbpStoYZazb1psQ3s9kgOSrLnAKI3KNwX0J8NkmcZirzNFZOIoT7ntHIBebUJOQagJq5B2iY9ILeObsRP5fVcoGq9ObMVc/CAtBuhzhwYB9eeFSDGI91Q6RdoNnch2qjgcc6AU6d0gEoW619OZ9Lz+Aih5pNd7Z5Y0Of8T5+HGEca53UOBKOmQxY1gWrsdJXVhwAv7bmmHiA8yokie6vRC744vF8XiPqb2XZ7DMjIEmqSJIq6i2V34SzgRYXMVy602L5WQakHQdo72lAswnl8XTulJVC2G6jTiDIVHBtrb+VEZpl2N9oYH8zzjtyRFBaXkpdfK3texCHfuqn8r9L0UH2p13sT1PcHqVAO8IPv3wR47iGEyd0Fl+S/D3we3+A8J578E/+yY9qfeL/8T90fRv6evXk3+Pucoa7X9XCffftQz17Avi9TzoZAYJXEqQrMn5OUIN/SyDlmrfpkfCpXcNWxBIH8uMNWcryiEyS4PSojjKMA9VeD+f9S1M9LggQnQ7w5eNOxnpxsQ6l9PyqlNu7UvKD2UoSACdW9Adm4hurEFnq5l09NrdywSTk8kOpEFXOCeJU0ZkzLkC1UkBNpXqi63ZRa/fyYxadjnzn38YZD2jZjEApxLGe81htlUreH0i8txqNzTqhp+srqudky5aX9fvCgl7HSL9HHNeQJDUcbLfz88rSEh7r17D8kA4k6WRlQtvsZEQfOVLFDxg091xWQ/cksHt3DXNzNSyf0M9vtYA7D7cBAKfPBNjouypptYBQCYAdwMLGI1hYTIy3t2/nmNriIs4lB9FuA3fi73XGPr2i3x9/XDcEGQ9ra/rhUQTcc4/+rNfT8/ziIr7c3Yck2Y/9r15yyLHxIg+jmp27icV3u8BLnv1sJ0be7Tr5m1tvBV7xCgwR4vx5nY0vfkK/p0drWFq60/Zxpcx6q9t1Wu2tFppLtwPLKzZQy003HdJOCpj11Gc/C5w+jfDee9E8/FwcbKzjzrhjf0+bm8C99+r0uXRk+JxW604c+o3fAAAMW4f0icL0MXvBofQEoBSeGwNoxsDrDmMdVdx7r9amf2Xry8C7/xgol3HffT+NpSUA73iHLsMv/iKGi7cjPPll4ORJ/PQbXgUgxH33AXj9R7QH5557dGeVGkP+wpQdix3Dd4DvKBB9Onc/VbaTWv26MTJzr0TOZTsmelFAy0n60z747T/DDxaqvAGDMiM+KC7BdJkeyyklP3bt2mWZy5K1Le/xJVVk/VCyZRJjXpbXl+OQ0icysOWlS5dsugSnCagPh0NIzXaZni/jwnvJvvaBVOaPQTalE0SWj0xysqAJMvN/guEsg7yPgHcYhsiyDFKqhGxtBlCV9S5PMBBkDsMwx0QnOE+wme3A4JxkoUv2fZFGuuxPPlDuOzT871gHDKBKkJvlks+WAV5LpRJmZmYwOztrfy/y9yfLJZ0iMg+yr7JvS3C9SLdd/g6nIPqVXz+1qX3HTClA/m4lEwXIM9KzzEpjpGmIlRV9jHVhVz/PMCNwxgV7kiDr5jfW1IDkbc0msL9pjjvbR4b2e6ubKsEApXIgs9tXB4jjqpZ4EZZlRs99j7csVMrKjtAWEuSFoysVvaOOIsfUljt8sqiMUc+cVSqToTrI/ubYAAa9fPDFOEbQaECpwIKprErKm1POXDKZebS31aojBLCualjWWAIefFBn8fjx/N6z1dLspaUloNUKoFSIU6ccwXt2NkC3q8lfGxtbCUlsw1arqqVwSFfjAxjclA5zqavZ6+lAbwyaJj0ZzabzMki5FoLozSZOnw+x/Hlgz54qWq2DABxpncx9xsebmbFxQVE/kuQzT5p4q4UvflFvvAkSsf1YV0kSoBabcvqi5r64PXVaZWeQRwAICJnfTJAkWkogTRFmGapLSzjXD9Hr6Y30zAzQ6VRzp6rb7Srmm0Bw4su6kRmoDQAWFhAkCW5/3vOAxRbwB3+mA5OmKapLS7py/vzPdZ5uvFEX8KGH9GvvXtQPHNCVx4BtL3qRkxSQYwTLLN/5t9ycAzvsSPh0Iz61a9w4X/ssUiDP6l5dtfPzMNmHhx/WP+V6o7d17gZyTsqsqz9KUwDGAb6y4hjYUQRUPTyfQx6zZUFLMZbL7HGqVSpEjZErvSIOBoDaE2oJOMCOpRcMyEpQGXGqxy06D+TJJJaz3ca4sc8+w682pbTEye7drjzlsq4zLgWUAoLuE0BHzANKIVN1AK6oJ0/qaYDzt998SQIcXGo4kHltDYgiLC/r+frP/iwf4JNKXkrpMo9GwA/8RAJkmdXkpg+EIK4Gy/X+7dFH82udZhNAluaY6JZRznm517OTa3T0IILOYy5j0iGdZTqDGxv6u5Mn885vszYYN/bhwY/pr9rtAI1GHftbLSBNMYxq6Ha1c0SC0VkGHD16UM+RKyuu06QpcMMN+MyDoY3FurGhcfZ+37WhlN6xa41vfcsi9EH/ov7baKsvHG3rtE8s68//9m91ZS4sIFxc1GX77GeB+XksvOpVuv7MQ1tHX2JjlTP++XLzkF42nND5uffe/ahmmZ5fjx1z9RzHwOHDqO7dix/+x/8Yp19UA/7gTzH+m79B0G7j6Bt/Ws/3/+//q69//euRtm5HuLKiI5MCeOMbX4Pggb/W+WNQdLmQlHOyZKTLHwTg+gM7246x6dz9VNkURN/BdrXA23aM1yLpFWm+RvXlwH3/Hl8rWgL3k+RhJrHd/XRkGbYzCVxPktnwA4D6zOHLldd/ly/paGCa28ndSOCa9TEJcPVB26I0i8B7H/iVaQHYwqb205FAcKlUsg4YKb+zna59UX/ztcvl376Dwq/r7e6TjhJZFulsknI6vpOmqE0n/Wa2a4dJdj0C6VMQfWo7xiYxTXy2aZaBwRQ3NoAtwT4Bp1NudtGU3AYcS5uguiW0yjTs6acJeSjI4mDgjlBnWV7bNJfElTBqZF6ony3yRqYzAAceF5gMykWzQLSkmnvOgUnZkQRgKXMJ5MsfCkY8904yFqf0iUjsOop0OzFLUZTXNfebgW1p65vGRPjZzEz+ZmbswgWHokhvCN9ZYVLD3NTRxoYGCspld6kfjDVN3Wdkdg+zIJ9XphlFWFvTm3B5KoHp57q4Txn3G4mfr625vLNORiMNKkhpEzK/AK9htTTAxoa+XXYPpVycvCo9RPIIPaCff+CAvpiAB4O58Vo6POgAIThRLrtr2TEu8zucaDLTO8amG/GpXcN2paBWwW/WyZ94Ewvg3gvmNX+Io/b3dma/5w1etvgx5/A41kxwaXIKDic8Jxf3kGMtj3AVsG6l37poWFPKaZ8zXjU/U0pLq+Tk1PzyinJubBRzE0iSz4Ga5ksm7QeCls3EOYAfynlKTkOy6qXf106tZS9xBjZl4PE01Q8aDPQlPP1FxF5WoKwT+TBauWyTpi86igA0Ilv8LNNNKNcXTMrGrfGCzRDnX1vLr2lMti0enKvnLRM7ihcRPpNBen9mZtxaxyy0QjUG4EgQAIN9O25BmmoZOOtw53zMmCdZBnQ6WFiMgbNnMQQQ9fvaIWU6RZamUMw789jtaudOt4txmmIMuGu8PralU8nvdxz7XNp07n6qbKf2gOvGfACQRgDW11T2GeaXA34vBzwzD5IVTICxCJQteqbUXKdR1kSmLcFiySovAl9l3uS71Dcni5xpyrpjWsyHLBfZ3X65AViGugSIfca4fI5fL34+yKQeDocIgiDHJCdTWzK3WU4p9SIZ8/K5sq5ZLjKomRZZ2ZQykXUCwEq3kEWfZRnSNLVSMj7rn+x3/k8JGDK+fUeOZPmzD0iJFL7LwKAss2SlM2++xIpkgrPNil5+20mwlicENjc3bftLzXyZVz6D+v6yTxbZ5cD4Z7p9J0D03/3d38Vv/dZv4fHHH8cdd9yB+++/Hy9+8YsLr/3Upz6Fl770pVs+/8pXvoKlpaWrfvbUngEmkbkilqk08V0OlPZYLEE2dEfD4xjlcj5YZhzro80y2SFCqCi09yolcMaCZyDLoASJhnGmuG9emE8AaNA0S/VGamPDHUu3x1rTFPPtfP7QS/O71Uol97/cf8VxiJA6o0ZX1ZecZJa3YOT+5l6w2+O4ZhU0AK2EIfVZZ2fzjL/5ef1ZVQ2BXh9xs4a5Ob2ppFw8g4Wx7ahMw88pPyPzzTidDHRpqsxudG1fYMYYYY1zODNNNhPPurP87BAS0fC1OIlmCCBXKZ2nIqKzrGtJZGcfCRmUU7ZxFEEpd1JAZkkqyNgNrzz2LB8mP5fyJRJETxJHZ+SDuMunTEwUYXTeAVVSGoja+XFs5AQAnSYp8xIUW111VEYGXGs29f9LSzpPfDYbW560uJIx4XKb7Su55pqz6UZ8ate4yd+UD1by9yq9n5N+w3Jg5/9GQ5q39/su0CIPY5FZHUVBDjulEsSZM2Ju4DgujMAux2U6RetmbJbqE8z+OK7qoKbmRalrO8T0xQTMZ8pJwIzTg/NbA3iXy0YfvJ+i0ahZkJtAb35+CTVRQDqLldLjcRJgdtbNuUoVxwMFzNDLemceYQ9c2RiUMzP6koWFvMyM1eU2eZAAvYw9zSl0YjfgDTIwC0XRWYdzc67LMa9+/5JeCU6aFDY3z+HXnNOiCHZOzWLnwN6zR09pzMZgANTmE1dopt1oACsum6y/LNP1d+CAvrSKdb22o9NeBkpnefgwdmbO6xTE5wmyJNFBQo0G+xiB1e0fI7BVyJdcu7FqsZLlFxhSZJ2yRiaBaG4OaDYxVFWEzSZw5AiUiT8Tx6YyeVQi1QveLTtzf505qTPINuS1Uyb6dWk7bdV23ZiUAiFYTpNAJAE+mtTWlixg3uenD2wF+QgQErAimEsgUzKpy2aW9ZnHEkD2QU3+vbm5WfhcwLGwJVDtS8jIsvj1JQN5SvkO2ng8Rrlcxng8tsAo80lt7SImchRFVg5lO1a+ZD3Llx80lKAvA3lKTfaZmZlcoEvpxOA1LEO5XLYgrwwMS4Ce6Y9GI2xsbNggnNRgn5ubw+bmJqrVaq4/UCtcKWUlTdbW1qyUTZZliOPYyrVUKpWcYyGKoi390O9zUopGguHsE34fkQx+X/tc1ifbT+rMSxkX+VvxGfnyN1b2FrZS4kfmm/nj9VKuRvb1K2GyXy/2dIPof/zHf4y3vOUt+N3f/V286EUvwu///u/j1a9+Nb785S/j4MGDE+97+OGHUavV7P/zEtGc2vVnBQB1oZkdpUpqjmSUCBSTu05uLNttDFV1i3yriR1lybGDgSY16aPSIRS8eEbK26wSRBe4JR+9uqo3Uxsb+bGVwHe/D9S5ETLMn2DlEdRlJnu9/GZSorFRhH4vT05SyslslMtAPdHa2Um7miMysYpKJRMsTWV5BIDl6/UQpCna7X1YXXXS33IPxPohW5rPRMeUKYqwd28dWeZiavFRUeSkZfbuBW64we3fLlzIV7OPZ5M4JfGWLINDTuRGUPYtyWzKMofIkPUmQSAJePCdILRp+zgOrcKO7L4EZLJMl1HG4GRfAQJUW60ckH6uF+R8JTLLrRZQVxeB5a5ji5EeuHevA5/9jn7DDXkAmfnnpjmOMYxqueYPTCOtZ6EAqRwmz0dVKkbTuNPVF83Puwbd2HDn+E+f1uiUUsBttwG33oph65AOaveqV+kfDHXLiZBJK6KbbvEGwZVPbsB3tF3C1QUcu37XOVP7Lpgc+IoYv/wdyjHUN9+BSwehGQfGURWJGbIYCJkSYD4Jm7EhAf24oPsEZmb24exZM9cxD2ZwTjPkxjcSe/t9AC0ttdLr5uc9QN9ej8042++jHj2m/+fY2+m7cZ0orad/vp6FNpan9DXoh/Z0ENa4j2oUYdyso9PJVxuruibnKZZtZQXVOMYNN9RtUNU01fVmFEtsvVkWNlHj2Vk7f7bb+pq77nJSZATNuXwBdFvw+RL3JTYrsXDZVVifm5sAZsyCYmHBIdFcZAAOkW40EHBMpDfeP0HFgrEQUST1eoBKxdY5HcFJAmC5p0H0hj4NVi67eJh83IULwOZmgP2HD+fi0qwn+3NLNLZnqaRj6Gr9cTFnsxI4DzcaGCJEyHL6IHoca4fzjTe69Q09HHGMr57Ua81bzP/ylAOLHce6eQ8ccL8PK9+yuEgtPl34T39aA+gPPeROlh09CtxxB1ZWgGbzEKqvf70N4h50n9ALg3Zbl8cEq7Wzl1w0snKkyTW/nLulp2dHOcGnc/dTZdd8qz/66KP4pV/6JfzVX/0VBoMBbrnlFvyX//Jf8H3f930ANKjyzne+Ex/4wAdw/vx53H333fid3/kd3HHHHdum+5GPfAS/+qu/iq9//eu46aab8O///b/Ha1/72tw1V8NgfDpMAt0Ej3yN7yKAnQCmD+Dye6lD7YP0EhD2JUgk6xbAFiavBE8l2C6BTZ/dXQTg79rlgk6Sxcy//brx88bnyLKwLsrlcq78vJ4s4/X19ZyGtnwGmdqSsU1wlKC17xQocir4wUIJxm9sbNhnsQ7jOIZSCjMzM1vAXh/YZfmHwyGGwyFk8Euy2wmiU1OdbOkwDLF79+7CMsgTAFJrnO2yubmJSqWCS5cuQSmFarWacwAQVJdl9h0eTHN1dRWDwcAy5qXEigy6yv4FIFdOtpl09rAPEDRnH+D/vnND5pNl57Uy/wxQK0F/3uOD6NTDL6qDItmX77T99V//NX7rt34LX/jCF/D444/jT//0T/FP/sk/sd8/2TH2SuzpBtF/+7d/G//qX/0rvPGNbwQA3H///fg//+f/4P3vfz/e+973Trxv3759SORKfGpXbc+IuTvLgGrV/b0d65SbxH4fqiFwT1/ng4hxu43HetXcPovWbJrj0NCaz5TQlKSnKNKBHMcINHvcB2HTFKHSAc2YBZ4wJh5g9mw5xpn+PESNm8A0dTrSshw+dci8GMzUP2ZN5lQcw+lsRhGqSqHaaCAygSMHA8GIlrs+1jGPSiuFahOozkSYX6rlQGu+B9nQ6Wyf7G2Rh1lYTAAEVke13db3kc3GdJLEbOqUwu7d9Vw1z85qbJZ5lyA6iVyjERxYwU2mz07j95LhdPq0O25Ahjr72WgEi0IwHcrAGBDdx+v9/fzMjE6WjDzZPZUKQXEAdnmS6Dk0snnqOKeDjlEzlTqjZN7LQHVM0Pc+8OGA3rSrKjod3fUk0NFs1jXu0NH5ZLVEkZPlbzYNY1Jqw5LyyM5PDxWjpCqlA4g++9l46CFd/jvvuy+v7c5KkrIu8ni7bz7DfNJG/EluwL+bc/eUzfbMtWfE3M0xlaCl9NICefRR/B4Lf4r8sN/X40WjgUe6VRtMM021BHSa6iEkXPkGhq1DOHFC3yalR5QCwmwdWFlBfGSf/a7q6WnIGClRpH15/twtpw4WVc87IUL+Q4Sb4y2dADR6UM0ksJ4G1g/K02nUOa9UkB8zAQTtNpLmodwQyKquNWM71o9VqIN6r6wAcYzmUj03BYS9J4ATGmDXc0WEYdPMtcdNRYhYGbX0CSwt7cPdd2sfKPXnm03tJ+WwHMeuLzCPXPdUKs7Hy/qTa5CcvzOOtdOXdSY9z7xR/p0ketHDaKlSkoSoPxcc7J8GZOY6QimtWV6Lx1ZabPQ9Giyn00H6XrpdjTFnN9RQqdSsnBl1xuloLpddfdX7j2hx+dVVF9hFOgcMg/v8eWB+fp87XeCfNDtyJMdEX4/qOH5crif03F1rxRicz/um+DtKEmB/fNHVEb0oOigNHsFBHDw6Bv6//8/1QXpPjh4FnvMcrKzoEx53/9RPuUUoo6cvLubqO4c+FZE1gO0d3vL6q5zDp3P3M8OuaRD9/PnzeNGLXoSXvvSl+Ku/+ivs27cPX//613Pgxm/+5m/it3/7t/GhD30It9xyC9797nfjFa94BR5++GHMccXv2Wc/+1n82I/9GH79138dr33ta/Gnf/qn+NEf/VE88MADuPvuuwE8eQbjU2lSIqJIzgXIM3P5uS/psp1J0FQCfWSeA441LPW8fUaw/2zmn8CizL8vgyGdBZI9zmdubm5uAZ+LdLUlU5ugplIql2eC2jSp/T0YDCwIu7GxYUFypRTCMLQAqQzIKUFc6fDw2cySqU8ngZSPIZOa9cdnkEFNpjdBYH4vJVhkOdM0xXA4BADL1CaYzv9Zb5Kl74OUbCPeR/C7VCphY2PDgslsK+azWq3m6k2Cxmwngs8bGxsYjUZYW1tDv9/PgegEzfkO5B0IvkSN7+hh3bPdfVC+6Dci+5dsM8n0Z3osh2xzgvzMpwT9ZV/1++93C0hfW1vD937v9+Knfuqn8E//6T/d8v2TGWOfbrt48WLu/0qlgorU0AUwHA7xhS98Af/23/7b3OevfOUr8ZnPfGbb9J/znOcgTVPcfvvt+JVf+ZVCiZepTbZn3NwtGGIAti6sJaqaZfnLfZqYAHG5tpeBsMplF2gsjg/a23o9vQHau1cAxGkKxDWjham25lNkjV9xA86NIjeyvMacdEVtj3I7SqldDeiNy9xc7ng1E2ARKUHN/6PIbVaR9l1GTAarrZaVe3FVbPS5/UJwV2Y8C0GaospCsOisBwbIZGYc0gD0+5ibq1kghLItrZY52sxnp6lm8CmFmaRuSd+ALlMV60AcIcv0PErtUTKsLJtN1hUTYJ58kFmi8IBDuysVJ2zqb96EfkyQDRHHoXPmwO0TuZyS2D2xJKqlcI/MZmfb8Z5SSbQnGeiMssoySaZjFOkj3TLPLB/fzUPXUUXP4PEE0Xlsn/iFZHlKICmODUglhe65QyfwQY8U4DwerZb2njSb6JxkugHiuIaDDeU6caPhAtwBThTYddrJG2p/3PAB9KvciO/EuXtq17Y9Y+Zuf2yUp0DkO19FjjB/7hGI4OOPa2B5YV7rOxMHDbN14ORJhM0mBoOqTYqKHZZZ3eshyIYYjUz8EM+TzjmGYy79koCTjpmb2zo1sqgh/6AuN8e/UkkPkpT/EoPnxb4rBwF0Tptzc2Z64bjKdUwco9puY2zqQPIM6NwfK00GqCulUd40RZitI0mqGlgn0Lmyohc58/NAFCFsibYDxIQDoNtFVSm023VsbOjhe3bWtEe3C0QCDM6Qi9Mik9L63DDrNn2N5JLZezh3yH5B54PvFOX1gJMQ4X0yngmdsoxWTkevsJkZUedev6jFru/RScP8l0oabGefYz9in7HLjePL2gMkF2oEplm+JMHaMteLNb0mk+x56eU25e92NVGc1RHHhjTeCG234+0khszOQvcBHusgSJ4kGDYP4sGPAv1+gNuzTCPlJFQcPqwB8lYL3Qd1un9XriJJqjgUpdZxYxcOpoPr2oObv/n95Rzf/njxJED06dz9zLDtBbO/y/a+970PBw4cwAc/+EE8//nPR7vdxste9jLcdNNNADTodP/99+OXf/mX8cM//MM4fPgw/vAP/xDr6+v4oz/6o4np3n///XjFK16Bt7/97VhaWsLb3/52vOxlL8P9999vr5EMxttuuw33338/Dhw4gPe///1Pd7Enmg+y+SCt/Oxy4LkPNF6pFel+FwHal0vbZ9j75oONk6QvLqfp7l8v/78SFuyk+vXlcnwJmyJg1i+D/HtSOX3WclGwzMuVwc+T7CNSM75Ifma7V1H9FJVZ1rvPwC6qG/+kgg+O+06Yb8cuV39F3/m/Man1XlQfk36PV8vCfrrs1a9+Nd797nfjh3/4h7d892TH2Cu1or58uRcAHDhwALt377avIlZ5t9vF5uYmFhYWcp8vLCyg458/NXbDDTfgAx/4AD7ykY/gf/7P/4lbb70VL3vZy/DXf/3X33ZZryd7xs3dk9goExbPAcb5r+SOYRtjsKhJjyr6+wqS3WLcaE161kTb3HQ7TAlAPIlNxBXbpLqTu3X54nfyGt8K9Cu3FEUevxbp+Nnx24WbQplW7nHb3bhd+fm3TFxGdJP1YiwQXKuifPsY0eVMPlZmw9aP36G8irBOpYIMjRFccT+6oq42afPr1x2vEXUrfV1pCgc0+ZXGYAbeycBt8/PtXiPsuzl3Ozbb1bymdq3bM2ruvsrfE23LuHYF49KkqQZww6AdcsSFhUNHQUL+FCdNOkW3ZNW/gYjlzEx+/vg25285BWxb7eLkToDxZGJCkRXktVx2ztWZGUyct3m7fM9lXFyzZX4ryl/R/D2pgWQHKLpfpm8+zxW1IE2uUa6m+WT5c32xaO4WCY9NENCJ60XhiLlcRvz1x0STD1Qq37dsYyPvtIgijEbuFIc9CepXkrknwGVA0O365JMcW2jTufuZYU/Truepsb/4i7/AD/7gD+JHfuRH8OlPfxo33ngj3vzmN+NNb3oTAOCb3/wmOp0OXvnKV9p7KpUKvv/7vx+f+cxn8DM/8zOF6X72s5/FW9/61txnP/iDP2gn8yfLYNzY2MAGRcywlS35ZExKX0iwdhJgWwRqF2mhS/1xyXifpJMOuICfSin7knIlvG9kBj4yuYv00Pm9TNvPO8srmctkBPv64pL5LcFgpkdZE8mw5+dkgvOZ1PZmfimvQlkPWWZZLuanUqlYBjkZ0mRxy+dKQNjXspfMexn8lHXA55ORLsvJevW15CUrXD6D7Gq/rWWfCcMwpyteKpVQq9UQRRGk7jn76mAwyEmZFDGx2Tcky10aTwUwL7I/sMx+eQEHYPsnJOTnfLbsM5ubmzkQ3D/hwPxR4mU8HqNardr8k7HPZ0xiuvvBUWUZnkpbXV3NjUFFbO3L2ZMdY6/UrtaRwGtPnTqV0yzfrlzbnTTw7dZbb8Wtt95q/3/BC16AU6dO4T/8h/+Al7zkJVecz+vdnjFzt6TxStaovxPwN4JpiiSpauKS2dSNDWO8GvftZ0kS5tb2fNR4voogSZD2dZLy5DAJ4DCAZIAxoigA+h4112x+uKf0lEzsRjGK8vLmcWz2JxJY9GU39uzJC4nTlMqRxmRgTYlDIood2wkA4hjraZCrbn4V+psff6M6id3Ll9TulN81GhhGNayed7dKmZwtbW7+z5UDJnBlLzX3V61iC9U/bJDYTj9XT1saneXyReJZmWR2K5VntrH+ZVQ0UgKVQhhFULGWZQmyIZBl2LOnak8csP39bPkEO3nowB7BxxBIRXtQXoaJkAEex1jPNBux0Qh14FI+EAZAF/8ruHojo18SyavRGGT9y+JaElksfpcS1ZG/jxtucLpB7Pgmr4OBq9IsA871QyQNc5RdMgmVysvE8LNJfVL+718rvt8Jc/f0SPgz054xc3e/D9RqeZBN/kZ9DTVjQTZEoxHquduMweOoqpNjdGm4+ZJmhwAzSI2jqmUEkwTLOReAHSftFOqNUTKItZwSOFRJWTeuCTg12GDKHDjJ6OXNHNy5uDAZzHrutrk5V0Z5WslqfzG/zSbWUyfhxiLIugmyIZIkBFZ6bj4mbZptw/E3STStXK6tmF8Z1DmOMU7qWxuQE4EvAwdXBbt3G91tjGFPrqUpqrFCoxHk1kTNJoBOz9WVBIx5uoqnAskY73bdCSU5oZZK7hSZbIONjdzapFzWJw737jWn3Pp9O0nHsT4w1WhAs/GbTSgVOiY3XH+gzJxsE77m5kw/kYszHi9jhzXvUhElxDDfJmL+vNgPUIsV0OtZeTzZHI2GLo9q6N/TmTM6b6ORPr0XRXD99dQpXZeGOq+Uw81t0IFOx8kTGTF8/r743HFzvz79xrzymAWAiBFlfUDe708+4u+vP8X/07n7+rJrGkT/xje+gfe///34hV/4Bfy7f/fv8LnPfQ4/93M/h0qlgp/8yZ+0bMIipuG3vvWtiel2Op1t2YlPhsEIAO9973vxzne+86rKuJ0VAY4+iO6zgqXEh0xHApQEkn2A73IscgmeVyqVHLDMdAgmTmIVE8CUoK3Uo/a1qSU4vLGxkZPXkNIcfiBSAsesCwmU+3XjB6Fk2aSMDeVEyuVyLtipfBavZSDOXbt2WVCV3xEsZv3INvSDXTLd4XBYCPrJe5g/KStDGZFKpQIZPLVcLluNdMrlyEUogFy7+jI/BM1nZ2cRhiFmZmYsQM96Znqyv/psbfaJwWCQy7f8ng4EWX4+S8qkyH7ht6/8TMr3yDLJvNJk35OgO+VlgiDA7t27LYhOXX0ZkFamzfzQOeDrqT/VQPrtt9+e+//Xfu3X8I53vOOq0niyY+yV2pMF0Wu1Wg5EL7JGo4FSqbRlzH7iiSe2lGc7O3r0KD784Q9f8fVTewbN3RsbwHic30ABW9ktBNXEbrfdNgFDe3rnu7Ki1++3LzYsENdqVbfgplmmNxd79tTQW3Fr+IUFIR3Sz3LPDiT6TDOAtv/ygVG5L+UeuxYbYFhuGE2aFjg04OF6qse2aqT12UdnXNryNn5WKiEPoCuFcVxDr+P2OAT5Z2bgjmXLAghnRU6HVKQ5VFWoCLpu5E7SBMnq94Huch4PtUCxn55II1RjxHGgj+2nKdB1wH6YKCRJiJtucqezg3Rdb8IpXyM24PbBcoMnj8tzI14quUin3OEToSmX9XWcw6X4rnlewI2pqb8wShFGEWrzEYZZfr0obsvtG61zwYL9HnoN6HyxoxJ1aTYxVFWsLBu91gxoNqu5fsEq1rywEKEaI4wyRK3QAgOALmo1uwh0+qg3m4BwErH6AABNsekl81Ee06Y+arPpAoOyTzcaVhpWVqlSQKtVQz1R7kGVitO1rVS2IhWy/xQXON/+5rOdMHdPN+LPTHvGzN0XLgByLywdd0W/Tb73+2i16joQ9YNdIIrQ6Wi87rmtxKLgHB/pAOQ0dLEfoNZqWbUJE5cxP6Z2ATSbGCNAkghgkvnIMszETk4lTfXY2eno9BYW8o51zuFRZORkumZ8iiIXg4OTvNAVZ32sZyGyvvPDEh+VVWaDb9IzbOpwnNTRXXHKGr7MDOs0yDKnda2ULgwBec5PZhy+GOnAqbWIknWxdXyj0cAwMxImnQJ2tHRAi3wGGKPVCjAaAQt7hnpdJrXBzFy2uFjHYOCm2qDzGHK6ewYNtvIwGRDy/k5HS6MwU+Wy84awEiXFXWrmiH4axzrAZrsNrWeWprZSa9EQN98cotp/wsaqmZ09iI0N46yH4zewXzG+iGhyVJWpA85/BKKlg8nUz/KyLlazCbdAoyPFxKc5fSbA2bNAux2gqhTq8Rh33RXYfhFFWsce3S7CRgP1JMHcXGh9CDooKtA+akDvkyeBRx/NRX213faee3QQ0//zf/R1jQawtIRz/dD2O64LTpwAomgf2m0T1wbQfbBcBp7zHNeuksQg64DzM9tQrrO93ywwnbuvN7umQfTxeIy77roL73nPewBondp/+Id/wPvf/3785E/+pL3uapiGV3PP1ab79re/Hb/wC79g/7948SIOHDiwbT4uZwSNCHpL8FXKiUhw0tf8JuPYZ5uTkSxBy0nG54VhiHK5nAOVmRaZuD4oyGdKZ4BflzI4qS+J4QPvzAvvk+x2yeSW9cLgn0XArO9gIOu6CKAlOE4wvVwu27JIvXKC03yuZMqzPQHtXaTOuqxTWfbhcJg7kSD7ADXIZ2dnLejOfLOOKpUKJIs/DENQ19tnT7O8zJMf3JOBTtkH5GkECQ4Ph8Ncvco2kSx7BkPlfdLIUmf7sx3Yp2Vb8ztfO1/Wu6y/SU4pXzMfQK7Pso/QMcE6pa47Twswj/JdtinzIH8vT7V9+ctfxo033mj/v1pvuLQnM8ZeiT1ZEP1KLAxDfN/3fR8+8YlP5IJXfeITn8AP/dAPXXE6X/ziF3EDAwpN7YrsGTN3p6kD4YgwS/BLsp3kgrrfRy2KNNhtWEePP67lolutUH+XZQjTiyZ4ZojRyGGoUaQfu7rqcOKF+bHbqQIOiPbBZQEScE8gdU4HA41xSuY5k1LKsJO4c5c7f15sNrqnz2ttS+7/du8OUC47UpVkc1lpUlNFQ4RQSd3+f/6MI6ZJrfYsM7qqcmdEcJkJ+qwg0zbc69W8AMGPrARWJl2SwJnfKMJWsF5av6/bTAICrKd+HwGAhTlT4JMreaBZCtDHsdMIJzOPAHrHQwfIlOKm3wtChyxzYDrTkvkSec/1kSjSrHClMI6q9hHsXmSu63u9OiFqLStS6uSbyGUXsyr6pkjcu/r9QjYvAISR3pyHABZMPsdxTTMHT3bsRr7eaKDXyzPSAdFnJDgtXwTR+Xva3NS0v2YTF/uBj2nj0Uddc0SLVae/PzfnQHSpy7Adc03+7wPpZg20E+ZuYGxeV3P91K51e8bM3RcubNXVkr9L30HK32Caop4Ix2cco5NpvPK5hxM7aHFalLdHkbmltR8XTrrxLEmMM/XkMr2IVg87jpH3bps8RA09TnJauHDBTf0cO+mn5Okcy4JmWpwvxDw+buzDmTPFut/Sx+hXWZCuA6kuzFhowKfLzudr8FR7cMoav2TEUg9EH0dVBAacX4/qeOi4/urw4RCBylxMjcY+K/He6zlZd/qZlYJb8BQw0evROqAy3bZSJ14wGWoJUCvDXdPrwUTVtA6Ec329XmP3Cjnnrqxo1JaeBEp9ybUT22J1VQcO5xwqOlGIIdrtUIP9/78VXQYi470e6lGk+9KpU0AcY2bxYK6rV7GuAXIz6YbtNhqNg3aqjiK4IKf0FPsnAGhRhJUHNVZ95AgA1QOSBOtZCKVCvRYCcLarH7d3L1Cdgc6nWfsmiwwQu+y0zNMUSXIw1z1ILm829yEYDHR9cn6FA9Evtm5HbXER+Id/0D/MRgPn1D7b/yQe/qUvuaIcapp1E+OZHD7s1mT+pC87sD928Hv/hencfb3ZNQ2i33DDDVu8Orfddhs+8pGPAACaxsPa6XRyIMflmIbNZnNbduKTZTA+mWMbV2ISaJIgks8890FUeb8P4AGw0hgEUylhMQlMl0CllB4BkAN3JatYPsdn1ksAv8gBIE0ygWkEhiX4K+vEZz0TqPXBWprvlJAm0yu6jg4G+WyWkyC+n3cAORBe1i3zLJnLzL+UgOF1lUqlcDEqZW9kOUqlEkajERh4VbLdJWAuwXQy9Ofm5nKnEGQb8bWxsZHLP9Ng+SSwLdnY0mRfYn2xHpgm697vO0xb9n06NvzTBwTCfSfTpL7ns95lUFc/YKnfv2W7+jIxT7XNzc1dlq19OXuyY+yV2tMJogPAL/zCL+AnfuIncNddd+EFL3gBPvCBD+CRRx7Bv/7X/xqA3oA9+uij+K//9b8C0Lqd7XYbd9xxB4bDIT784Q/jIx/5iJ1zpnZl9oyauyUASvMBSh8kk7Rys2tZW9MbhcEAqHGlz2uiur1NstJzU5UPWDIfvLFg0c+1PbHVIklzuc+2m1CZngTSzcXrWYi1NX3Z6moeq+BtlYoI3oWhZrx5ki28lsC7wBFtvnPllBfJYI4FYDe1MaPIgayAw6jlLSxeueyxrX2TGyYC3nITJk8kkKUlWWYCNSYDPPTLJpl0Sjl0QDLaJm3o5N/ye5kvWRkCbAmiCFQIVUoErpX3+NIzMpLcaORQHYPsDLMA/V6eYJ8kur394GKyKDlE3IDegfzNiN+CUtVclib2GdGeYwTIVBUqqSJg+xkHwGCwtSoJEvGxVbZDqZT3QEkHRa5AyD3f/i/zCNjOvxPm7imb7Zlpz5i5W/7mJwHpvI5Gp7QcY6LIYqljFepxCO7nL28FHO4qcdEgXc8D3M0mxlHV+vPQ3zpmS7+cXBPI4SZ3qEnmWxrHN3MTAXk5Tfi+BTnl63nAjf1DVbVjOR3zdKYz4OmWqVMOnvSSr67mvo6iKgKl0Ovm40qGzEyW2WeIOJuIIk9XvmC8t58zD3LekpkAnKeCjcgo4Xv22Irpm/XD7KypN6a1uupo16Tj+40l7dFHt+bXzCNxHLpKlunICjDf+84PdHoOJH/8cSCOEbU0YG3nRzm3c20hTwiyzoycy/nz5l5zD8H40OSZ/X5jAwCDoZr1T7UdARlcns1cW9rrHpOmOhssXg0mDTLl4Q4N6DihIQ7ymJrJI6tKdoOzZ/U9t92G/I9UKXdqrmgdLx1rbBdZN/I6YdO5+/qyazqw6Ite9CI8/PDDuc+++tWv4nu+53sAAM961rPQbDbxiU98wn4/HA7x6U9/Gi984QsnpvuCF7wgdw8AfPzjH7f3SAajtE984hPbpvudskma4ldyTxFg5wNTvga1BI2BPCAopVukhIv8zv//Sk0+z5dQ8cFhydTOsswyfKUUh59P33wQ3me1F9WxTN9/hkx3kqyJBFqLrMgpMAmYlUx7+fLzJJ0BBLWp486TBgTPZV08GZsk6+Pn0W8jWT7fWfTt5MGviyLpIdl2/gmCoraTsjf+S94rfwtFz7kW7cmOsVdqRePH5V5XYz/2Yz+G+++/H+9617tw5MgR/PVf/zX+9//+33YOefzxx/HII4/kyvaLv/iLuPPOO/HiF78YDzzwAP7X//pfhcFfpjbZnnFzd9Hi+XLm7VJza3B/1woPMDfGvU0UYfLG0E9PmH/UWabHfR0x2lCNHXC63bOQ3xNyDyJxROLcNhnlglNN2uPy/pxurHnsMAvy1Ls41hsxoWNtwYIowlhpDXDLFFPjHOAg97Ny0zUaec9iWvImWc8+8sD8+A/yN6ZpihBDDdgXOUYkxZDlm1ReHxySYPwkZ4DfrualpWoEU81Hj2W6fuPNzBSDVKJ6KpXJ+FWuSmUnudJywPW7fh+uDWV7mIcz8K8NbEdR1m4XC3uGWFwElpY0CY6vVku/6vHQIThXakVA+pMZU67Cnu65W7PTriYw2ZTNthPsGTd3067m98bfqdC0tniaN55vN5fZSwvmaY5Bk/InHYJ+enIs3eLw9NFxb9KVc7ecQmRZcnO0BwT7Pnap3MVpKleNfCAvmJ/XY7K4kWlSIiW3NOIckKaF0x3gGOlZhnxm4hjjqIphFuh5fDsnipxr5dwtRbbNuwxkqhTcHFkuW8mZXHpFryjSKLxkqAugf8sJBdkR+BLSQnGsyQpB/2L+6OHmJpCmCNL13Hot1yelwH5B3VBJrlyGvcaGGhEAd+52f+4mcO0HExBdXzpjMDen61FoA8nfgPWbKQWkKRoNrfCyuKhfcu7m/I2VFT1383c9M+Nk2Ip+xNK2+6HL/vEU2HTu3jn29K7ivk1761vfihe+8IV4z3vegx/90R/F5z73OXzgAx/ABz7wAQAa0HrLW96C97znPbj55ptx88034z3veQ+q1Sp+/Md/3Kbzkz/5k7jxxhvx3ve+FwDw8z//83jJS16C973vffihH/oh/Pmf/zk++clP4oEHHrD3XI7B+J02gnGS7e2Dm5KZLE1qe5Np67+TzUtwVd5HsJoSJr7MCoCclMUkJrqUVOG9Utfa16aW4DnzJr+Xuth8/nA4tExqX1pFAnGSRS7Z2bKcMk9+O/hsYinhIRnaUkdegt78n5IoUqrHB+Bl25CFTYY7+wQlUSh/UnQMyO8HURTl2ODSivTBJauf7G2ZVx8E94Fr5tnXB6f0iwy2ymdSVkfK9/iOhyInRBE4LuVhfJY6JW0kS14+q+hkA8uxubkJsuIpczMejxGGYa4umZ/RaJSTsHm6mOhXav1+HydPnrT/f/Ob38Tx48dRr9dx8ODBKxpjvx17uh0Ib37zm/HmN7+58LsPfehDuf/f9ra34W1ve9vTmp/rwZ4xczc3UaSMFS2sAfc5GcmAo8WY3QXxvI0NAK2G21jEMVbPFJPmuHHZuxdbj/3KzbI8jkoQNoqw0XX4rFKaTEWplGZTv+/ZY5ji3d5WjWu/nOb5oVLYb47GklHNrPV6jmTGjVUWB3Z/yOSybOu+Ukp7A46xrNOqImocRNQCglYLAGyw1l5P66NacLzn9oVB75zeRJoytNsHbfOwuMzT6dOapRdFVShVRdZnE1Wxv9UCsszKngQ8W8zGajbx1WUNAiSJ1sOvt5WTfSEgTakVvzKYVrOpd4GsQLFzlCCDBYDZL1ZW8oC3bLvcUQPk+6xk58EcTc8yF7TLNmJBB/WRHQ/MD5VCHOtAbUbdBUniNsDSyaOU0eIHdAA62RdJe7NIFlz9iGLytbwMdOMA7aU7EZq+Ys3UjY0j0OtppuEXvqD//9Sn8APttr72lGZN3tJuA80YOH5SH6GfmXFAkAQFJHgljRkjle4pAtC/u3P3lM32TLRn1NztjZ+Fvzv5OcdNjj179gBJggR6/Or3gXq7DcQxKgN3iz81K6XnbI576Pb0l9QnNxNlEEVaDoOTIWDn7jR1cyHHzXZbJ9FqOa31EEM99kv6tiyTYNRDKVRj4GArtsUfZgHOn8/rr8vhtlQKUC6HiKLQjq2cFpRymDElOeQ4vLoKYC6EauyHau7XjHw5HkcRHutV7ZDK4ZFrpaB/McfgDwEcamvJLZ4m6/X0GoHTbLO5D8kRLVlz+iGdxyTRuOn8fN1JlLGg3S7QaOAbXc0etnriSZKvEMFgX4hSYIZjPnT9nzypG/11r3NrMFNBwyywJPw9rX0IGxedpA9Pq/V6mjUOAN0ugmYz76yVngWmbzTMg85j+TlbnoDLMv3/8jKCKEKt0dB5Zj9h5bTbuKjquuz9cznw++abdR0nCbScT1zDhY7uM7VEz8mc3/c3x3r+Jn2d851Yl/K9XNZBXuVJROLc+++9V1+3uIiLWRXI8rEFgr4J3pkkwIkTqGUZatSljyLdFnNzur/FMfAnnwIefFDXGed33cHd78QfK+TajOs2f9zgdRMUDibZdO5+Ztg1DaI/73nPw5/+6Z/i7W9/O971rnfhWc96Fu6//378i3/xL+w1b3vb2zAYDPDmN78Z58+fx913342Pf/zjmBPu0EceeSQHhr7whS/Ef//v/x2/8iu/gl/91V/FTTfdhD/+4z/G3Xffba/5sR/7MZw9exbvete78Pjjj+Pw4cM5BuN32iRgKmVCJMDsBzH0AWvJkAVgA1FKORdfu3qShInP7iXzmzIePjBIsJR58QF0ms/qJSNastB9Zi9B4DRNMRqNcgAog3zKOvLLw88oOSJZ2FKuRtYpwU/qf/NZpVIJ1WoVUiucwCrzIMvpy+JIhjKvJTM8yzIwQKjPZB4MBrh06RIGgwFGo1FOW10yyn1nwaw5DiX7kWwjyepnm0qdd6lBzjaR/cJnoMvrCJoPh0PbPwHneGDeWQesyyIHSJEMi/ytSCeLrFu/D8mAtAwe6vcTeR+v5e8xiiJbFv83ymcwqOskGZvvtD344IN46Utfav+nvuS//Jf/Eh/60IeuaIx9svZ0y7lM7btjz5i5u1IBqho0LQQgpUlQUe5Eza6Me54sAx7rBIjjEHEcIk1hpVFkMtyIz8wANbUOPNp1QByQvyGO88+MYxs8k2Qkbni5p+BmUWudpm73QgocgUJgq2NAoM8hAEQRwnYbQ+jyXLigyyQZb7xdZp1FqSdGhz1SgAl2Se1Tbj4NocoUt4bRSD8jy2BBAJK/Gg29T6qqodtYGhA7PJzhlsU2zvUCrKzotJnOykoeVCfDLUmAdEkDCWTK1yWIDuD0+RAf+5j+iCDHHXfUsbCY6A22POPPh7KeAcdea7fx1ZWqLTfg8kfTdar7ULNZR9wEArbd6qo+w8xCEJWQoBJf0pPAvJ05ox/ISLh79+YDoskAp/TEsDPJTaf5uxZHOuDsyAHoc3N5yaIkMU4BKa4rj9OTtShB9Ciypxv4MTEHaqMuLwO7d9etnG0tHsN2LAIkjBr44IPA8eMYr66iD31MtwogKJeBm27SmT5jxPtf+lLg9a939eGzFeXxcOk94vhAdrxE3p6EfTfn7qmu6jPTnlFztw+iA1tPhUhwMorcXKGUnSwTga2PKnWUe24Mk8O6/PlX1RCYSTWATmDv8GEdr6HziB5fZZBP+R5F6HXcdMyhVgPBem6LYxMoMU31/KI1LjS7meMzAVSC9ErlNdMBhHGMPe1bcP68G/I5zctTYRyuvvY1PT0Q0G82geDBz+lA1UkCNBI80quh19PrgI0N50NWqooousU5FwA89KAep6PIzQ2tlpGMZyANmbFuF7VmE1F7H86f19PDxoaTaDOxNu00SOdDFOnrKpUQC3Gck0UZNvbjox/V9x0+zBibNcRxDbWk6+ZHKaOSCVT3oYe0FvrrXoe/7t6eG9I9/gEaDZ12FNUQtfejfnioM51lWt7l0Uf1RVK2Q87bnMcZBDTL3PrixAnndEhTV5Gc82ZngRtuyDtZTCMOmwfxkMGYDzWUy3C/jyNHNMu7XAbWozp6Hf2IOAYONvVvpo5zqCcAlnsuD6dP6+cwEA87rqiYPXvyv6OvfIV4dA2Liz+gs7Csq2OhfE7HZpFOgmZTz91/8ifAl76ER9IUCsA+AKpc1kfKZmcxPnYMHQD7b74ZePe7dV1wTSMbx483458U5Nwt5+wnAaJP5+5nhu26NEUlnja7ePEidu/e/ZSkJQNbkmkdBAGiKLJAMYFaGsFOvktgnGChfOeLAS4JIvIeH/CSLGOC52QVFwGaGxsbOfCUILNSClEUWZBUgtxRFOWCmUoQk8BomqYYDocYDAbo9/s5sHh2dnaLhjvLxWfyWQwWyefxPgkCE/AdjUbIsgzD4RBpmubun5ubQxiGNmhouVy2muV8ScazZFJLoFg6FMj8niSLQvB8bW0NaZrmAn/yXQLRfjBTWbcAbHppmmIwGCDLMmwYWgTTYZ36kiWbm5tYX1/P9QfWmwTX2S/ZjrLN2TbSAQBsldxh3wGco4NGJwAdLBJEl/EDpNNCKYVqtYpSqYSZmRnbB2Q+JMudZWBg0cFggMFggDRNsbq6ivX1dTz++ONYX1/H2bNnsb6+jl6vh36/b/P3dA3Bp06dQstn4V0jxrGx3W5flUzPeDzG8vIyLly48G3rzk1tapOM/fPC44/n+5m/AQfyi2kuuLmJSBJgaQnjqGqxSV5CsHcwcLqNBAEl0B32z+kvuDvkIl6wesZRVYPhRo9zmOxDv+9YY3K/1GoZ9ho3gizPiRN6s8oyxbEL6uTT7ChAKQtz9CjQaOAzxwKcOuX2J1Gk2UYEwSXRfWlJ56eaXdTP5nPjGI/1a7lYZNy7MnvEJuX7woIGGRYXgXvuMSz048cdy2ttTUfHWlwEWi080tGOBu4xi8jc3FsdOaL3XXv2uD1siKFFT/5+uYbf+A3979KSvueuu3T5DkZPAJ//vKuENHUbZ7bjTTcBz3oWzjVvx5/8iasr6SxgfUqll8VF/b4/e0QX5PhxhyiQ/bi0VCxt0uk4oX5W8Le+lQcuWi1HI+fDudk0iMMw2Wc31bV4nG9kZjyOMcwCKKUB84v9wILdrZZx5kgmHYEA/o4WF/O/taUlrEd1dDqun7P9uCGPYw3M3HabroJmE6h1vwHb6P2+rq+VFeDDH8aXRyN0AZyEZhjVAUTiPTOv587NAR/6UD5QLH9L9KDws35fI09AvvMkietsplwrjz+OA3fdtSPmbuC/QrsZrtTWAfzk0zJ3nz9/Hj/3cz+Hv/iLvwAAvOY1r8F//I//EYkXVFjapUuX8M53vhMf+MAHLEjxO7/zO7jjjjvsNR/4wAfwR3/0R/i7v/s7rK6u4vz581vSbLfb+Na3vpX77Jd+6ZfwG7/xG09Z+aZ25Wbn7hMnUJufz4PokiYtEW/OcRxvCHAfPgxEEdbTwPrbNNtZT42cYwcDF3z4BS8ADraMs44D0uoqMD+Px1rPR5oCh/ANGxDRArGCrTvMAouLyoNAg4Ge3w41Lublth40SDRR7UZDj5cEWE2AR0SR0/imh3jvXuAVr8C5fogHH9TFJ3juk58Jcl64oKf7pSXgluQJ4M/+LEdLP33TC/Hoo65Nlpf1iyfNOHVEkc56p+Oewbm71QLC45/TX7IyCAqb01rjxj58/vPO58vmk9rpzaaeh+NYr0Pm5oDb2+uONNDr4eLRV+L1r9d5ffnLHdkgSYA7428Af/VXznvR72vQPMscKPypT+mC3H8/fvr+2+2awZ6MM8bpmEN7lum/n7vyFzoC5te/bpnxaDR0hg8csOvI3BzOAnY6ulFOnwYeeMCtPUcj4HnPA2691QG8XNNVKhpMF3P5l0/q9l9cBF54WPQvenGUAtptPLIS2OVokoh1liRhAJb9bh3NSQK8+tVYj+rawdTv46Kq46GHtk7H/b5z0rAqFheBQ+mX82uTwUB3qP/8n/HYiRP4BoDPQc/dB6Fnp33Qc/cjADoA7gNQ/+hH9VzM6PWsr2c9ywb8BZA/XsEFGTuG/FGkqZ67jx6dzt1XaTt97laXv2Rq320rkuaYpBE8SeZCXk9AXL5Lk8xbGQhSspGLJDvku7wGcMEXpayKlMTwyyCBUrLjy8YlLgF9ypAQlJWyJASOCcyzbEV1Jp8ngXW++4FBJYNZlo2MaMlS9vWxZbp+Xcr0ZXtMalcCx5I1TmcF0ymXyznmOvMjAfZKpbLlBAOgHTGlUmkLi9yXbpHmfyblXCSLn9IqBNFl2iyndIjI9IokXIqe6beVfI482SHrlnI1vqyOfPngu2xXGURVyh/50jb+aYLr0aZM9Kld8+ZTivzPfCZpwXdZ5uRFJPbMPQDBUkm0LZWQ18yWz6eJ9EORB6ZndSvh1vxhtp6T77A3yMhgzKz8Xr4TdJUsW5PHLAttAFMO2z4xl/mzRWI6OUZuzX41GDhsVZoPoiulCU+WOMSbmd+1NecA6PehVD1HyiIA2+/n4p7ZdgP0JpxlCCOVywtj4pHIyECaiEWfoP623HAS0ED+NLZ0OmSZIz3LvcDqqqnfyBRkNNqqRZqrbM+yTHfCtTXY6Lf9vnM6UGtH3h/HrnGVst2pVNIM+cD/DZjGCZXSKDQA5enf2gbgD4PlGAx0wXnKwjyzqBgsLrElnlyYnxc/IV7EtM3f66MRzkFvtB+BZqKvQ2/AU/NO/tZwddUGVJs4PviF85lqT5J9fu3YtXMk/Md//MexsrKCj5mjID/90z+Nn/iJn8Bf/uVfTrznN3/zN/Hbv/3b+NCHPoRbbrkF7373u/GKV7wCDz/8sGX7ra+v41WvehVe9apX4e1vf/vEtN71rnfhTW96k/0/9tmMU/vOmwSmr+YewOlMRZF1/BHI5lwTYAyYkzCbm178EV7Y6znkOMucozwBbARj6ZxWW2OHyKJEkXbkFsqM9Hr6y717XZoc6ziGKuXmQM45pmAcjzlmcrjiMF8u61suXMjLoOW8/+bD8pKrD+pc0ydKPP/GG/Vczaxz2SHVP3Ll44UCQNaSai7fvEQ+q1Jxc3cUGWa9HLPTFFnm5m46du1PuBG5BuZ6ghMMAVdHtQcVOsShwNzjKhU3ndopjRnr9/VpJ9nofv80fSSQ6zO2abfrTkux4iV7gXmV83kUYYgQq6tCj9xnWQt2R5qGdkmVG+ZkQ7ICJIN7YwNQSq9X5l2AXqlwxkexmZltW1TZyGmqn1WpAL0enoCeuy+KLMUAhtBw8WMAnjDf16UGPOuBHd6fz+XCosiK5v9r3qZzN+3bnbt3+iruujHJ9p2kAe2D0tsBThKgnBQM0WcZ+5IyPpC8HSgowVACv5MAdL+8tCJ2u7yWAKb/TF4rwXvpFJBlImjMd+q5+86BIuB7u7IUScf40iCyzmXabNdJoK4Eb6nHTYa2ZKBLTXyC7mSK+1rjfhDOojJLp4wEnS8HcPt15Gvcy37BevHTlUC673zwmfG+s8MvQ1F7+fX7ZMolTcooTYFgZ1MQfWrXtF1uAz7pe7mBT1OEsYJSgY1nJOKV2cvKZbvPcCYRVHkxvwOAfh8h5VzM99zYy+xYPyR343ITBmhkVoLo8tiqzKw0Kdpq8qRUmNt485i2vF1uapXy8mRA26y3tUr5mCjKOx34LrNsHQszMzqfMzOuUszGiOlx3SwVWuSJXRKvZ2fzVTeGAYzNhZTrIQPantbPsq362Xv36nwxcUO56neL92PsIwRSSEqbmzPAyprZtBZRCGUifnuSKWak3SzLan7eBffiZ/IEhI2qIVV1jQAAsTxJREFUlm9b3R4CSKd5fThL3ccaWKk6nfk0hfXEUO7G38SmKVQsgCU4rV5ezuLNzoqsyk1SklhHQfXAAbROnYKC3ngH0Cy2EHozHprPAgDhgQP5yH5+OX2nE+B+gPzMd4zlfqQ7wa6NjfhXvvIVfOxjH8OxY8esNMh//s//GS94wQvw8MMP49Zbb91yz6VLl3D//ffjl3/5l23Q8D/8wz/EwsIC/uiP/gg/8zM/AwB4y1veAgD41Kc+tW0e5ubm0KQ+xdSufZPeamDr75BjqACX/aFzDL2e53hDkDnLdIDMANiq82KStxO09PSZL3k5/XuMe7gl/0R6lXITzfy8C9zJCcw/ucb76cE3a5Qoruame8lG56PIpCYQbuduzg+kDUMP25Qjk2kwK1ScoY9WOgqckzrKT7q+Yz9NMTOjnfa7d7tq5HLo/HldHVT24ftYhXquEWSCvXth25MqfM0m3JGmuTm3QKATmfV+443WY16pTFb2iCI3pXJpt3s3gAtwFcQA4tudnpCVyjri0Ub2X+qnSQaDnF+8uUu2tf1eTqbm+UqFKJddvM9+H0bGp5Ev7Npafs4zCPl8q6Z16ZHPPvtXu62rkkx+2W3t3O3LoN12G1qdDjJooFwB2A8NnvMUGcx7gw++UvMXmb53S/69Y2w6d9O+3bl7J7X6dW1F0h9AXlua3xXpa8t0eI2UdfGBdAlo+kxoybymTIcMGkrg02dPSw10sraLylmkQU0Q1C837ymXyzmQnCZBWZkGZVCoXS3BbTLclVKFz/RB2e3Y2EyTEjK+TrkP7ss2kmn730nQGYCVklFKYXZ21krIyHZkGhJAHwwGCMNwS6DaonZlm/Fdas1LIF0yxyc5fAAXcFbqnkvpHUAz4YscOVKrnjr4NKnbz+/JzvdPCPA3Itn5ft+X/VA6C7Zjqhc5UPw6mALCU5vaDrKiRfJ2G3HuDA1tK4rrANw+gHsdfqaUI4fZ7+RxUgk0m41vjoIlNlWDVYc5ckNMLHI9C6FUiLCptxZjBC5IpS/3wYyZXczQsL6q7aFjPn3zm47+3e8jjqs5fDWO9UaWyQEORLd4ZhTpY7JKYRjVciQmCR4ze5KJLeVOuCGfndX3h3JjSXo4Nz79PuqtBOMktKynSsWlJfdGPAVdKulTwBIwTtPA+h7uusuViwotCzMXgV6aB6L7fUdpp7TH4iIe64ZWmkTmQYL9caxPYrfb7phzmK0D3+q6iiXdTVY6CyN3yqxMRpiVpwoYLY754z1SE92k5e+39f9V168kmyuOt7AteZy/2dyParPpZGY6HU21L5e3sB3RbCJsNJAkoU2H4ISsvyxzQf7SFBg29gMN179qhw9bAKT9yU+ifeoUjv7DP+gGvflmfSOZbzfeqCv/yBHXEYo22bLzAu7HR5MOgR21+f727eLFi7n/K5UKKvSyPQn77Gc/i927d+e0tY8ePYrdu3fjM5/5TOFG/Jvf/CY6nQ5e+cpX5vLx/d///fjMZz5jN+JXau973/vw67/+6zhw4AB+5Ed+BP/m3/ybLfKaU/sOm+/k8oEv/3PJChcxC4JIO2PHCHLhH6QkszyFRDLxAuAGNh8Jp8SLBDXNGJv2dRoXLjhWtPSLbmwAaAjwHHBz2+KifsUxhqoKpYBgUQyOHMt42sjIv6HXQwggSeo4cya/LqGSF3Em+to5rVqpLRMEEnEM9F3WODdSqp1hNKh4Qb1ymgTAF/iQs2fdXCaZzv0+FhZqucNSbHIWk7dJBZNeD4Dah3o7ss705z3PLYFmZ/VcHq58QyfSagGtFsZLt2vpkk5HewioERZFwM0345zaZ089sZuRME31kFZLS9mwbhoNAA+KymaGmWmu7cSiSKcfAKqKsNHQki/Uypb6dDfdpNPkvZK9wWdEEbLU+UBmZ+HWKbyWOkZZlvOZAFppR6kA7fYtqC0u5oMEMMjMaKTzdfKkjt1inC2R0vXR7+s+t7Cg/5fcEcrwZBkwXrxFA/B+4HUAjcVFNE6cwHP/5m8AAMH8fG7RuHTiBNLVVUSvfrX7fcsxwXdyy7FD/s31ti/jdh3YdO7eatfX6m0HWhE4J19kT/uBIfkdsBXskxItRZroUopCArU0yWTe2NgAdZ19kFJKqPAZ27GViwBiCaKPzPkwH3yUjgBqmEuAXRrBc1oQBBiNRjkgl4E5CX77oK2vS06meBEzmnVMkJsDjq/J7cvC+FI1fp2QmS4Z/hIMpowN7dKlS0jT1AZ/pYY9AIRhaPsQ+4UMtsk6k/XGa4pY2rLPbHeCwu+LBNF5PwFwaUyXTgn2Cx+slr8NarvL/EinwqVLl3J9vug3cDW63f5JDv+Ex9ScTZnoU7umrWgTzs9pPvM0y/JIr9mohnEMROEWVna5rF9UrBgMRPK9Huyu1g8OSd0RGoU8owgbXUfmBVxcRiapjY5K/XeSHETcOmhPZ5dKwIzZCPZW8jIZSRIijveh1d6nlRUFmB/H+3KMbh2kS2c76DwGZBnqgiU3zAKsZyEyVdf68Ctb9yUSz2egMAncSg1zQIIcAWrcta+uOkBDHEEPlNL5iRQaz6nb/ZHcPwXZ0CGzXQfiZllgsd5SSeupGsIVlDKBsB464SohjjGMajpNg0qsJ/u1xuiDwKlTWtpUSsnQgcBNLv0Nhw+bgKzUvOXGGXAgN4NnyehwElSXngmizATP+329+ZVB6uQGU/RF/su9cqnkNvpRFEJFoQYfzPn1NAtzp+MZB/XMGWBuLkCrtV+z25TSH25sOO12nn4wWu3VKMLBVryVqQdgqKq2GIC+9cQJu59Hv6+Boyiq48h9P4dDb3xj7pz9utKSQtXjn9H1e/QoTpf2Y2He1HvBMy2KLzuRz6CU+kM+/XPH2BhXx1DT660DBw7kPv21X/s1vOMd73jSueh0Oti3b9+Wz/ft24cOkc2CewBgQQbvM//7GqmXs5//+Z/Hc5/7XOzZswef+9zn8Pa3vx3f/OY38Qd/8AdXlc7UnmKTDkPJXJUv/tal04sDLZBH8lSYk+YgG7seD5EkoQ1xwSl5QWUu2Kfx7tnlRK/vJDfW1vSH7TaGWSDjZ9o4E7Ozegwrl81wY8be02cCbG4C+w8fth7Vry6HQM8VpVLZj3IEdJbJ8K2j0aijvjjWmtV01Pf7SJI69uxxQxoDdNeioR44swzPNQFb1lHF6qoeY8MjRzBO6vj85/V9N9/ssNt+X68/9uzRQ/bRo3mSNZ8jfRicqhfa+llbhNo50SiFhcUGxvMa9ApgxuVORz/srhbWs9CGWznY0k7dry7rz+64o4aFZhNKaW1v2dzh8c9prfM77tBBNdptfP7zwA031HFwcRFIU1xs3qK1wZvPR7L0fDx4TJebsvNA3hFOf8P+7BH9YRLpQJmAY7RzPi6VdP/gYkDI3bHbjkbAnj37ENJR0m7rL6gZTge5DGQu9dHN+otlbjQMFm/mpaEWLUMY9Wxh6J9vNHR/euAB98goCtBu19FsAtVWqnXemfeNDa0bPzsLvPjFQLOJIF1HDRlqjQhJop9V7etgucPmwVwM3DTVeumjUYiNjdA6WjY3gZtueg1u+w+vQRSZODXseBKN73YREcCXJ97Y6ejolg42jgnyXc7fO9amczfw1MzdUxB9B9gkliuQZ6Lz2itJT4KV/F8CtD4TVxpBczLRpfRHEVAo2e++5Iwv0SJZ8L4Otiwnr2V+yUQnICzzWKSNLTXMAVgmtgxwyTT5N/Prp1Nksi6CILDa4wyY6cumbG5uWuDYl1KhSVDcd1Cw3hjMlDIuLBsZ5WSY0/mRZVnOUSD143mvryfOupJtzrqTZZanI/w+K+uHoLUM4Cnbxddj9yV2fI10+XwC8Qwoyn5VdBJiu1MYRSdAfJvEQp/0u53aFESf2g40uQHn/z6YRtSXi3nzHiYJ5ub0mM3hnDga2Uu5Y7UEe3mUWB5p5ndy92k24kVKERIzkCxdAozUoTx/XrPgSIwioUjqmpLElKbAna1mTsh7dsFpdwM621U1BLo9t2lnOdptIK7bokhGnx9vjfW0d6/1FWgGNoBxq2rJfdSYJ5hRaxrkec8eveMiEuFvhJRC2ExRVwro9AuP4ucqNEmQZVWb5xtvBO48PMYYgdVFxfKy3tSbAJzrqGL5pGNdA8BDx10sOwbXIk7MfZs8kc92qauLwHLXRdWU5eGOnTonNAns0tljEl7PQqgY2tkjO4gEolipHgAsQXRfU5ePqbLPms/4/caGw/9XVx1Bv9Wqot5s6g82N3Na9tZTISPIyd+DyWfYbKJuTiNcTEOsrenq6nZdDDYW74EH9DN1V65ZbCmKgDe+8YW440XAn/+5xlXuuy/Aj788ydcJzWeZs3J8Rj6RC//aHWNUiL+a63XAcxmcbBKT7R3veAfe+c53bpvi5w1qN+nE4+X2Q0XruqslOrz1rW+1f995553Ys2cPXve61+F973sf9lIjYmrfefN/T3K+lu9Fczd/r+5YDQKlEMcBosiBpHEMoNtFEMeoVGo5vB4NuFNkSWKfYef1tTWnSW6ek6UO0yeTWqppwdxK4PP0aY2PRjfXUV+M8Y2VEF/8oh4yZdfb3NQO2rU1l16rFeBQq+UmHwCz33tnbqiKY6CGi8BKVwOim5s6VsbMDKpHjiAt183wV8fKQ8AXvmBJ2QgxhJTCsfNW/xGgpxMPowitVs2uJVh3HNIvpiFqQiImBwJz7O12tXQY54BjxzTg/z3fA9x2G6rNJhrN23X9mfY4f34/Tp7UyS4sJgjVGN/7vYGdH6IIOnjoAw/oib3ZxCMrAR5+WK+NDt7VAtIUX/mKvp5ZYgwUpdw6hF2L8m6tFoC/MeAyJzvAaY5RAwdwMUrKZRH8JB9LBwDmzVoiax50DnrHlnAyb+xYAiSX/iNi7mMEgArRNWux/eK3Qj5HmF5EFtes47/TcV05y4Bbmg0npcffEhd3z362PgHJSVYpVCmvYybm8OhR7F9cBKIIF/tBYQDxM2d0Fc3O6kfp+PEh5uZCHD5cs9r7lJ5RMbDYAg7G5/JrGTkeyHFAjiHyB0iT8kg7yqZzN/DUzN07reWn5tkkzeqr7UwSlPWlM+T3km0tgWT+77PW/Xt8xvzlzNcCn3SPzCvZ6FLyRZrMuwR/fTa9ZF/7euhFIPd2+SpiJ8v8yLRk20lmv/+d/F+CvxJEZ7pS89zXCZfl9IFjX/+8KL/btcl29SJlXXzAWdaNrIdJ/X0SU7yonSSI7+fp6WKLFz1rCghPQfSp7WCTQPqk7/1rsgxACOEPzV0u3635AY/ksyUo511TxOaWt3CvtrmZv3ZjY+tx5H7fabRKlvRggPxGw5h0ENjMMDE+WOwwZQxJPpua5379kJkdqrFmcWUZAqVQjRSyLPBlz/O65f76RJ4g4EacNHYfRJ/QQLL60eshUArKMJhthZn0CZJwr8zYXwxk6js/JPlO6ulHEXLOmVzDMo9kV223SRR/p339UQ5E962oPgqSK7xkUpriKzoP2A8Qq626qtL7w3YjAiMjzQKuPdMUSoU2GV5KPEHmo9dzoL5mxutNe5Lod4LwV71xvtx4sePsyemq1mq13EZ8kv3sz/4s/tk/+2fbXtNut/H3f//3OH369Jbvzpw5s4WtRqMGaqfTwQ033GA/f+KJJybec6V29OhRAMDJkyenIPq1anIsl85CflYEmKF4jLMDugiEnbuIY9VolJ8POcGJQV9OR/6QjoJkOWamKTBOwpwDlqx5eR2HQ3tSi2U1nnR/XaIU3IC5saEHZjKkswxQLm4q5zCbX7PWoeXmLVHfUVKDxOL4tdWXZxBNVp7c0/trIILEvZ7WADFBNO1BIHMd5ejt+gVODcUuEzhBGEcHk09TWPCU8bilX1Qqpkgrl0UdsJHkl+VyPgYI4OjsZDp4nYHOaD57MNC314oc4fRyi8b1fUdF/btoHcl+QWcBA7/LZihcL/H3JBMlqYI38/QlneRK2bmb8zZfDHJLkn63qzkL9Efs3k22fp6QcDBGMRHmSm3Hz+PTubvInszcPQXRd6gVeWF8UHMS4Lpdmj4LWZoEzAEn20FQ1pfTkHmTJpnAlBCRz9i1a1eOQS7lWraTgeHfBFUJHkvGclE9sEwyTzLfUjdd3iNZ8BK8lrreklG9a9cujEaj3AkAmSdZnzL/TIMsc+mU8NuI98lgrxIolzI3kvHvy9EQtKZ2+mg0stIqsp6Yps8Wl20tP5Ma9axD//kyf5QAkm3BPBRJvUiddcrhyD7GIKuyXuVJjO1OYBT1GVlfUuKI9cUTEb5OP5/vn8S43mwKok9tR9jVLJr9HZQU8EaeSM79A2+RTJ5+32yGSA/yE+BGaTCwbOKxCpGKPSrxRwnC+tmTycl9j1SZ4CZcKRf3KknMfo8XGwqW77fOMmAcVRHEmZMKKdhg+fiv3NBLUpBUxsjdrPKM6FzypML5D/ETk5oxRRs+ce84qmJwxrXjxgbyjcnKNacILqahlaJl8LFSyUm0kCwvyc2+jEujoe9tNAB0063gD9+LItcyMb/MWWZPL+hNfqA3rSpEgLENoGcdET4jPcuQGUYbN/SynyWJkcPpdi07rtZooNZMEEWBPa3Pfk+Fg24XSJIaqgcO5DT3rffhwAGnIct8kfFJFp4IrFZVQzQaIdpt/TGxFjb5TTfpgxFra+5EAFmJP/iDwMKuJ5C8YR/uusto31Pv1bciJIIgwSRP2XaI2TVrT29wskajgYYfrK7AXvCCF+DChQv43Oc+h+c///kAgL/927/FhQsX8MIXvrDwnmc961loNpv4xCc+gec85zkAdBygT3/603jf+953Vfn07Ytf/CIA5Db4U7sGrGjyu9zvTeoeG2etUoE9zJRlsOPqzIw3tHLAJk1WTmgMAsr8xDHW0yA3PVELmuMTHaqAm5r4PL6T6cz7gfzYymtzwRqjSOdFpEvTjszYJcxJwmSEcy3BYykbR5CWwx7ZwFBRfg0Ahx8zT6ORF7eaBZKTC49lkfrNAjIi6A036PdGw+ajyvmh4541Vi6mRm7twjWNYaF3u953or6BrXj+7Kyb48tlJ58eYuiO6snFILDVYcw+xHWEqVwGoZegNZ0Zm5tArRHn+7aMmbOxYTX6ozhPkJD557pDKQDHu5ZqXmsroKPn4lo7RrsdQqk8uN3rAeuoosoooaWSfi47R6uFTkdLC4Ut3b7DqKZj2CwuugC1Zt6sRgqNRoB2O+cXzzU553TO2WSg792r39ttoJpd1Bed7GCLsbOxw/pzt9/I/jw/nbutXU9z9xRE3yE2Sc4FgAWwJWtXymn4wBNBPcmO9vWbeR0DO/J/vvsyKkVyHZLRDTgQnLIdsmxSI5w63ExfSqwU1YHP7JZ54N8EeyVzm/lmPil1QkvT1ILWMiCoBFmlVMvs7CxKpRJmZmZAJjhBcRmgk/f4kiGSTU4AnRYEAWZmZlCpVHIscamfLtnaUoZlNBpZ6R3K70jwWmqRs97YBhsbG0jT1AbnlPWzsbEB6sZTo1xq7e/atQuVSsWC2syrlGJhf2U7yvaUsizS0XHp0qWczrkPRLP+mVapVLIyOr5cDP9mGdg3fVa8z8JnGVjvBMzTNMX6+jqGwyHW19ctoM56Y7+Iosh+frVA8jPJpiD61K5pu9zi2GewyIU4dyIy8nuaIlAZqkohU6HVjw4yrT45O+s2JFkGNA/vR7C4uIVRNFahPrIrz143m1aznFYuw27upeSjNCkVIglBNBKCeFSZ+1a+uKEdxnUN/q/k0yejd2amhtrSkvMQZBkQxxag5yZWgvc+eC7zqJRhmIv6rkYRlNJgBBnc+toQQaOx1Rkh//crxaRtQeRsmLuER4lJnGo0tLMgV8dxrHdx7TYeetARrRgcNIr05pr1JMl0EvfmftLqfRIBphdGMtWogy4rT+jpUwrAde3Q4tPcYzsHDJ3WQBSF+tWoIfARg7iaU1WRjw06jzmKWLfrIswlCeqtlpZbOaID2n39606R5cwZvbl/9rPvRHVp6LSFWLlHjuCRFSldFIJs0L0LB3Na8mF6EVheRi2K8Ny2Bl+WlnS5m02gGo31MfJP/o3+oSQJ0EiA+zQzCX/4YeDECRwCcAgAHmhouYAkcQ0JbHXOSBYgjZ9JDxWdAMN8H7u27endiF+p3XbbbXjVq16FN73pTfj93/99AMBP//RP47777ssFJltaWsJ73/tevPa1r8WuXbvwlre8Be95z3tw88034+abb8Z73vMeVKtV/PiP/7i9p9PpoNPp4KTRZ/rSl76Eubk5HDx4EPV6HZ/97Gdx7NgxvPSlL8Xu3bvx+c9/Hm9961vxmte8BgcPHnxayju1J2FynvaB9O3uKZjP9ZwTunnSjKsyaHaWIR+8I4daQw86S0sO/Ww0cvrPUaQvmZ3VYz+BdGZH+ghLJTPOYoxmM7B+RI7pX/uanqc4p1NWxSp9RZEGLqMIveX8sL66Cpzrh4iS/ajek+gPqaWRZahGY2RZgAsXdFILC3r4HI10AHPOCdIhABXnnM0sE6unUtF/U3s7yIZuPuYEKQKtPNYJUCoBC5QwWVx0db+0hCFCDIx29mOpm59379bPO3NGv0tGd6Vi2qjdBo4cwQOfzOOm53oBkqSKxUXXxH5X6XT030mi05ufB4K+kcbZs8eB9Fmm63QwcIx0BvJgJFJ2CFNJcVx8WI5zbxyHiBv7HBbf2IcgXXeTq+moAYAMdVy44NJiu8/NAdXON/Q9x49rGZ9uV6PUXCCkKY4evRMrK1rmrNPRl1UqWlHnuUeP5vVXTCe82LwFDx3TbTA/7+T8SqUQz7nnB7RMHzuEub8eRXjhYb1ms7EAmmN944MPAp//vBGdN86pSgW4BOD0JvBoBrz7T4BPflL/7u69V/+wlpa2LjjZiDQJovM7Ojjk//7pgmvapnP3UzV3T0H0HWiT5C4k6Mj/i+7hfT4L2gcPfT1xpiEBeEax5f9SP5sAI4NWygCjEviWeSN7WJZrPB4jDEMLZPuAuWQ3A8j9XeRE8EFbX9PdrxsJnhOglaArg3hWq9UtgC2BcLKmNzY27GelUsmCz0XAMTXNyVqenZ3FzMyMBYYJJl+6dAmDwQBkjUv2swTRCeiS6S7bnaAz76Fm+mAwsGmnaWqB40uXLtk6YYRmar7LwJx+oFLZ/+SzpBa8rAvWFb9L0xQMFrq+vp5zGBCorlarKJfLmJmZsfmpVvXiiX1ItrcE0WWeJ4HofhBYsuIJ7A8GgxyYLp1CbHPmdcNMvNcrODwF0ae2o+xKNuDcsJtd17ihA+cE/Ys5drNK9ltWDT/fsyfcElTs0NKS3igY3dIhNNu8JkHhLMM4qec2wYDbH8g9PCVEyJIiGB70LwLdPkIAVQNwj5N6TvrCxHJEo6E3QGSir6eBlTv3q0oyhpTSQGyzWUWoxjlAl/dyc8/7SaomeM+j31kGhLKuzSuMIoSRQhS5wKka1Nhn0wwwxnoa5GRDSyV37JcAOfOucdBwC5BBSc+zZ3Onj50ZkPWRTojjx125pBJJtfsI0O26AK1xDJBJlqZasuZk169I1/bMVLnszi77wrbG+zEUgLncNPPR0nyiFR+zdy+wQCqY2bVnUZ6JRgBEKbhAb1/7mhZPZeIEOppNHDp6FM1mDcvLzj+QZfq4ttbnD9Fu355TElg5ppMdjdyR+vPndTWQsd9u6+q4pQn9fCIlAPaTKvhnBtz/8IexcuqUzh6AGED84hdrltz//b/oAngEQAfAcwEc/Of/XD+AurZ+e8iKE7/TLSC6/JzH93eEXRsbcQD4b//tv+Hnfu7n8MpXvhIA8JrXvAb/6T/9p9w1Dz/8MC4Q7QPwtre9DYPBAG9+85tx/vx53H333fj4xz+OOeo6APi93/u9nLbrS17yEgDABz/4QbzhDW9ApVLBH//xH+Od73wnNjY28D3f8z1405vehLe97W1PW1mndoXmz9Xy9wZsdZBvd70Y62BAdEpYoKF/25IQ3e/DRZHMMgeI0giMcrBrNNDVWI9l/7ZaGldlXGc+WjpZm00TbwQAMiDsdhHqIzwYtw6i09HjJ2M7cCgiWx3Q64luWkfay4dY4XBklh0YDKqYmanizrZy2ta9HlSk1wjlsvYn0hELOJYzfY0WRPc89dJhzKZRChr4BRzrnBNMq4VHOqHF9JUC5u6qoprAOifWk/048VB++CWWq5Ql3+Ps2a3Y6eYmbKDWR9J9+OQndV0fPqyv5bqhnj5mY8GwPCGAahSh3mjoiWS5kw/WwgDw9GYQcaeUCxt5Y0Nn8vBhd1TNZDTEGEBgq5CHs6TPlrFEHbBeRaNRRSglz9IUaNRtgE7ahQtmbffQQy6ui+xEpOD3erjlpQ2079mPY8fcmpUnC4Aq4riK1tK+HOZ87FM6aTpXNjY0+F4u68fNzWkHRbMJ1LLMHQ0z+ukLJKZ8+AGdt//+3/HV1VUoAJF51efm9GIySYByGX/3pS/hMwCef+YMnt/ruaMBXADLDMpOyBOM0hEnrwPEUcSdYtO5+6mau6cg+g6ySXrNEuCWAPokHW15nZ+2fIYfPNMHFCVTmn8TLMy8HZkErsnsBmDlN5iuzzjmM5m+BFh9aRJZNuqiE2z2JUf8uvCZ0X65JShOgJsgLwF+AsmUDCHIDDjngGSiy7qUTHQC2pK9TAC/Wq3a6ySIyzaXzyFgThCdYK7UWWeZpEwK02VATgLXfJHNTrCZeWCZKpWKLRfrwgfIfU122Q7sI6xblofBV1mONE2tk+bSpUsWkB6Px1Zax2egS2eBfBYdCVJqRfZ3Cbz7gLqUciFjf2Njw8rg0Jkkn8UAuEVOnuvJpiD61K5pk6AXbTsgvQB5tBsuJdJLU6iGwEUJAMcxokhvjs6f12BukgSarWt2i441HCKKneYoQd0inE4prSGeqWBLNuPYAOgSvTRsryCOUSrlmcrc+HATOjabOW5QyZqW1UD1DylfE8d5kJubPbmZJjZMhrqUnMnVuU/HgpEfiSIAgU2fhO1yObCOAZkM2csEHlhuPltqlHPjSuZWkTQ5b3z8cV0/W47SA/oLRm4lw4kMNW50z5zJb9IWFrScidxcu91ynqomvCjMG79igDIfy53Qle1roZm/QbYhH2l/Ngxc9+ijjp7HjpJluvKaTVRbLQD1XN6YHovDYmaZwy4IFjDAq1KOvWmtkWkAX0auZULHjwOnTuGrp07h7+DCbSUAjvzN3yACcBLAOQB/B2AIIANw8Ctf0Q9bXc3rJvHle7P4zh+BNNaJ78m4pu3JBSd7Oqxer+PDH/7wttf4a4ddu3bhHe94B97xjndMvOdy3z/3uc/FsWPHriarU/tOmxzQJs3dcsKR10pnpATRVc1iomMje8WfNAHu9TRAlSCpF3zhXC9AnOzTTmAA47hmA3vz8Tz1JbPE7HAsrEZjHbCbc0C3qynAzSaCJEEc1+zjmV4UmYDcGeycQIxS4oeAyzpx3koFWFqqIYzdhE5MHMgHQKVWO+cX+52sUzHeSdA8BHT++H0cY5gFCM2Yvp6FePxxJ71VKpnA6M0qMlVFFmkw9mtf004I+jI4ZzSbjom+uurm/dzwmyTA3r1YXtZVCmg8G3BrAnQ6GsSlB52VF0Xa2ywjurKQR45oADdJdD+Iq7YfbHGsRhGGyT69pDGAeS0e63pX1Vw7yXUf2/L8ef3oKHKfHUwSyMXPaHc+ezmn+qlTunz0bgN6EUVvSZYBJ04gbKcADtlku1231uLcLZudScoA9ZyWCcRznVnblblAJSdOmAXIgq7bj34U+NKX8Herq3gQ+tycgnaAL66uorq6ilqnAwXgAeg5/BiA537pSxr87PedgLq/4JHt4XtZ+LesrOnc/aRsp8/dUxD9GWKXA5eKgHR53ySA8EpM6llLUHzSM30mubxHWtFnMn+Xs0nPvxLg0pfG4WcSXN/ueUWnBWQdFw0KUl6HbHF+V8RWl8DsJKmfSVaUVz9/RX2CdSLrRp4+kOnIe2Q5fP31STI9Mm9FjpJJz/HzXlQ/vpzLdn/76W9XV36gXb8P+46tq2mzZ6JNQfSp7QiTQLoPql/GbOgG3nKZxbaftBf6IZclmRTZzTKN7XCDwgRlwuZVLoe5vQTTk3rZlytDUb6LmM8y/aI0rqgsXvvwWaORY99PiNM1MY/+dZPuG40cyJ4r1IRy2K+YIQabyzKHIjPjkx46CQAqeGVpcRJ+l5b9aFIdbNcY23ZxfyPKsmVZvu7EJX5bDAbuM3H7li4MGEacn6jUzjGvDBogpw3NSx9519tI5tyWgBkoCGAPFDxXfuYz23acjXF1DLXrO/7L1L7D9u0AW3JAnDB+Xw6Pz/1j3mVc6ywzJ6mU2jL+Sp8cr5X3bbsE4UIgywAx/Psxtf1b/LIVzXn8PLyKsYvPLqyzosG+oGC5dYb5vmhK9JYuW4ZluUbiwS3/3txzZmZyn28JGsqFhb+gkBMTvS0FD2F+QpGkX2F0KBfNjTIbRXUg50a3Ds03xJYg8NuZvxgV6xR5WsLPi/xbtkHRWnBL+0UFfUQKwq+taX+L+XoMN3eH4nP5bmcisggu15cnzdny/0lrgGvSpnP3U2VTEH0H2XYAkg/CyncJcDMdqc9NNnCWZVbjXF7vpymZw0WgJOCY45LlTDkL+T+QB8ulLIzUSaemt9Qyl/UiwVL/c59ZPqls/J9sejLZi+qOrGMpOSKlUvy2kmWW7SJ10Mk4n8RE9/XBpWQO884Ap5Ktz7oh+19K7Mj/yeaW+ulSA72o/7FtmB5la8hWZx+QbcP/We7NzU0opXL3yLZgXUgZFT9dCeDLoK1SJsave9aX1LX3r5Hllqxz1k2aplYqh8xzeTpAAutFbS5PcFyPNgXRp3ZNWxGaKHe2RYtv/3t/82ooOSGGuOmmEHNzADK9+xgb1jSDTM7NOS1z0tIkiVXGiyqX86oRSrmYZkoBwyywjGkyl3Iba0mDEw9IGlUrM0o22eYmcLEfWHacUo7lRr1Vf5ObZY7MJGVS+DgZa4vp6kCX+tokMSysfGUX7/iVsgHDiENTbpS2ublVgYN5IWOcsiSUepHVwzI0m8DNNzvimazKcVRF0Gig3HMnuBkEq9EwTEIKpMv+RXoWTwaUy3mtHNkYPj2fNGymYQpD6RwZdNUdu87HNJPvsn5IfPeN9cX6lnVUZWF9Ohp1bQV9kSfdCRzs2eOKwwBuPBlPUCFNnS6wjAsr4wDYBGRUMuoAGK3ZVqeDPtx2sQqgAb1JagGoQ2/MvwHgFgB41rP0g06d0pli47KS2F6TgPQihGxH2bVzJHxqU9tiaQrUapd3VhV9bwaxYabnON9VXIvHaLcDN86b01gyyCYA2MncjNMzM268zTLkjsswRjLnQY5dZIJzrOPfpZJ+bi4uCAc/sVY4fFinzXl/NAKGqmru0bfNzelnctzs9fSQxngqcr7u9QDV2IdQjYEsw/nzbk7h0MchnXPeDTeYuY7yZKx3pax0WhQBoTl2tI4qlALCSD8jyIYIObmkqdbrQD7upnQ8MB9UMms0dB7n53WZrD478qDtaCTmOHOKQPV0Hd56q1PvYrnQUTpRHsuTIPPMjPP2Spq/YD5vcQQwsww822rZW8noj6IAoel4DFAu5cP96YZTjQ3UKuemNLV1JEkGtijMD+drmc8kcQu9NMXioibZR5H+2GTfqrbJvtxo6L/Z1zl1+n7/NAXQTJz8kcmzZf43GsBNN2HRHBVIAaxDz90t8x5Dz+FLAD4H4DCAkFIu3/qW7nysczkv+4tCWaEF681tvVTXnE3n7qfKpiD6DjEpKVHE1vUBOgl6y2uK5EV8MHE0GoGSEww8KYE/gqaXLl2Cr2HOtAgKU1pDloHXFAFiBJAJYhM4JmBNEF8C8tsBa5IlLeVfAAfwU5qFL8qWANjiMJCAvpQioW47/y95A6qsP799KFvC+pYSNKwT3kdAVoLK/EwC6FmWgcE8+TzKh7A+WB6pm762toYsy6wmOttZgsH+yYHxeIzhcGjriLIrSimbD8qryDqQAVSZhpSNkeWT+vpsG1knft+RAV1ZZlnnrCcZTFTK8EiT5afMzWAwyNUXJW8YhFXmV57qkG0uZV143fVmUxB9ajvKfFTY/0zSuCxS7ZFUuMvrdrGQpsBmZHcQvIUbPO6H7YdKIczWEcYRTp8JsLGhNyLcIMl9jlLu6O86qjh/XsuUUP9yC7OMN8sIZ70egizD0aP77WllFpkxIllkxn081DbBnvbE9qg7wdzHOkHuiLhUI6EeOTfE8/MmqJhEZLv9fD3HsQYwMs3liiJ9z1iF6PX0RpAqKAToZf1IeRa5X2K5aJWK3jxLIyAhcQtWG8Fc7TSoIY6B7/u+PCgc9s8BHbOjJBIgN3AUXOeuU+rRMCEJopvXxayKfg8olaoos7w9d+vmZv4xXKpIBwPb2MOAXDBZ78IQQzQaocULSiX3E7DoUJJoZIbGBhHIPIFyGp85OwsszOs59FwvsBIvUnKnVHK/A789z/UC1A8fdpq67ID9vkZIsgw1pfD8L34x71UweqoHDcJw8NQpnAPQajZ1g25uAg8/rPN/881bypPzFE0aJyY54655m27Ep3YNGwMlFAFhRSCYBKMNGpmaQMU1P+1OB/sBABHGcHFDmGyONSw0vGrxGHEc2GvP9QIoVYPKgFsW9fi2nuo9etUAyD2EOH8+/3jO+WkKVOks5WB9ww0WDQ/VGC85mmGsQhw7pv19m5tO9opzFsfZ/fFFoNvF/nbTAdlKxw/hY06d0q89ewLs3h3iwgXYdQiHvlo0BPp93L6o43CE2TrQ6bm6jSKg1cIQIU6f1vlpNKD1upMEK8u6nI1GgCgKUU3P5bTXZBBSBvak0yFUer3RaFSxsKDXEXV1EYgU1to6ADbna86JFy44ORE6Ek4Paphp34nKV3QcynYbePazjQZ9p6PnblMOO4ez/7Ccaarnas479AwbJz/nLdu/Wi1cVHVkEYCGWwLIbloqAXNz2iEug8VLhjfXJbxHytH5Hu8wvYgbb6xhbU2rxnEdsLkJ7Sgul512O+AWTVyoGXbE3XfruqNkTqsF3HGHLm7YeQQAELcO4vz5/DxPfJ7tSN4AZWBOnwmwsLSk/2m3dd1/7GO5ID31m2/G88+cAU6cQKfXQwQgIbPB1Pe9f/mX2A8NouO1r9XlefBB/aA77nBAvRwr/L+L5nCgWKLtmrbp3P1U2RREv8ZtkmSFNJ+BTgBXgoG+hIoPjpK9W6lULAucnxHwkwCwzI8PsEqJDlkGAosy2KQPUksGNcFVgtXyMwa0BPL61hJoluC5ZKLLupDOAj7bB3Gls4Bg6HA4zDk1JIjuS4/ItpBa6RJQLZfLiKIody+fXS6XbZsyLwStmS/mn2B1uVwGtcMBWC1xefLAZ7RnWYa1tTULZvsSLZNMprdr1y7LRieIT21yALYspVLJth811AlAb2xsYDAY2HqWADvBfr9/S5PMceaFz5QnC9j2rDM/4K0P8MoTCMxrv9+32vF0rhBEl3VMY3vzd0AH0/WqjT4F0ad2TZsPmktk0f/eN7KmKt7n3MScOAF88YvAgQMYNx1IzQ0EGV1Buu5ASG7O+n1sbu6zWqfctEtScoCx3nCkKVTrEC5c0LeePau/zw2fZlNnmcPMe7cL9HqoJ33Uowjj1kGcOePA+Cxz4DcxXSwv211xIPU34xjNxVtsjFQT/wyzsxqgZqwobvqC7hN5nWhJcza79WFUywEYGgwI7Z5V4CFIEg1MkO3P+gIMWJ9lgIowRmBPAEQRLOPONpDZPFUTfe2ePXpvR+cA4NqBUqLNpr4mTC/qwrMfKQUsLeFiGuYCkyoFzM5WsbCY5Bnp0stC5lSk89HvA4NVJ/3tdzf+LdteqbwTQZrs2mR6W737fv5a9HqoxjGSpGo34hYbNkzvXAPTSSDZ2llmmWu8pBqNHeD9kEYT6q0W0NBa/STV9Xq6H7XbedI+N/TdLqCa+6ES0beWl13HjSItnPuqV+kbGa2UbdVuA7OzqG5soJqmesO9tKRFdz/6UV1B991XDKJL85GNHQugA9ON+NSuaZsUY2ASEMb/RSCMgVlu1srKjdeAHlCWl/WYdtfz7dAshzMJog9NUOugd07rNkf1XCyHxUXoSItRhOrior6PYz72gTH1uPTgGJmmgIpDhEgdkGfG27EK9drhgQcQpCmW7nmNHUpXVvIxPqyz/oHjulyLi1rP3Ty0GkU41GpiPQvxyU/q6Z1BxiU73s6pnY6dDENZb6zbOMa4fQjnz7iQIIcPAzUzAXJoBjRrvLrR12kakDPAGFmmgf2DTT13D41GeJjpCSFpVjE/b6adkzrB9tLtXIogVG4tQP125j+KdDVcuKDvf/nL9Xtw8qs6/4y2evgw0GjgkV4NJz/Ftg9NIOwqooZwclB43iyU5NqE6PgwruMrX3Trq5mZrcSIKHJ+Xp9NL8OmyG4u+8x6GqDKuWcw0GSOVoRz5TDnCEpTOGBZrlfk3M1O3OthYe0bWDjSwDe6NZw8qafMhV1PAMs9vdYtlRDGMebn61hb0w6QjQ0HuN/ZfEK34+J+nD/vgrVnGXDhQgCgBqVqOHRXS8+53a4Gv+fn9Q+o3QY+9Sk0/+N/1AvKe+/NRaKvtts4srys6fL33adjoXzwg/oH8PrX5xkdssKLzL9GHoXYETadu58qm4LoO8QkA72IjQ7k9ZWlnEpRWhJgJrOZ98rgi0yXALr8Tsqe+HmQ8iGT9KmLTILvMg8ShJeA8eX0pIskNWiSES2DT/rPlox4MriLwGkC2mRfy2CYUoLEl4+RjgqCuBIspAODzgDpGPCDq7K9ZduxbZVSOVkTWTc8XSBlXCR7+3IgOp81HA5RLpcxGo1ymumUCZLODlnfzAdBfn7O8kpQ39fc9+WBJKvbby+mLetcAvuyb8rn+HU1Go0smM7/WYdFzhtZf76ky/Uq5TK1qV3zJinbQJ6+TePfl2O70ZSWbQn6fR1s0dPdBPR6nFIm6BsHblTVx8rtTl3vYaLIscAs4OuzoZD/VxaHxn1RNY7ym17DNIJSCJIE5XINWab3TmRCcfMZZEO9uel2XRr9PvD448CePQiaTRvsTALGc3N5gDdUY+SQcAmke0iwDEApyb3Mek5PNMsQKAWlAu1kkBebNAOlEEVmTsmGQE+g8YDbaJm0wixDmGWIkrotNtshNeD4jTcCYe8JF2ST+jKxZup1uw53kEfRy+UAUVRFtaHyhTIXUEaATSRPOrPKZHVJcEf+73/n90fWH9mRW/q2yZtS1RyjXTPR4y0PtQCPpNlBB7yrx9ykZ0AvdQXjtQY5n2/ux+ama5YkARb2GGdIEmGYBZb8RwyDZWy19iGIY/3l3r3uOL7sQN2uZqqlqd540xkgK6vT0fQ91kFRZRbZ5b6f2tSm9u2ZRBSvxPzBL8uwyZ+od0oHvZ6mY5dKFtCdqF2tlJ3ramawVnEdgPMvZxn0eENmswQq1T47xkspLqX0/2nKQJxuXiBIG6apdvT1eqjfdx+iKLBTWankqiiOjbP+1CmNHos5DoD9v9pooNcLbZBsia/K4S932kdIitkJyuRvY0P/S4c85+Hz5/PyMnbBwLxkGQDtROXJOdU6qD82c1GQrmN2tqqZ4wbQD/oXkSQ1XdbUzN9KoVIJcyfjSiUN4q6s6ObY3xgCKx093q+u5iaTcVzDykM6WCaNftk4BprNOsJ46CrI1CXbU06l58/DMvNJMvCnCrl+k+9y/QNs7St8ZRkwjkK9lmRk9F4PUbzPXm/z5B87YyLWM61gj/wtLwPdLlpHno9Ox9y60nFBQc21QRwjSULb/+1jTp7Up9qiCAvzCS5ccGubfMzWAPu5FiKF/Z578LdfDHH3qyLg2DFdx0eO5FklBw7oe+gA73QwpKOH1P0ip9p2dqXz/dSesTZt9R1ukzTJtzM/4OGkoInyO/nuX1/0bAKS/FwG6CwC0ovSv5wGvJ9fCZb7JpnhRZrxPnNcPkc+a9J1l8unzOPVsG/9cvlg7HZ/F9VvUdry+6K+UFQmvz6lLJCsM19bXJaF9/jf+U4ZPkOedPDlgLZzzPj53u46n3nu131RWxS1bVFQXFmeqWmbMtGntiPsStiiEmwXlpPJMIvtLDMbX7PTkRvkLfdMyEtJyLjYjTt3Hd6L2SLYLrKik4t00MnRCNuzb5QCRNLSAhl8yI+gJt/hgH/qjvsM6cJny/o17z6psIgMtAXUMOD3lnrabhNU5DTx7tHlL14flMvQoLCfKdMXJnUv7u3spleUnyw6/+VnlzZpj1hUbNk3/A37lroQDyZGINMp2vFnGbSuqwVEsPWB3CjLV6lkQZkAY5RKwbZ7WPmZ7zCqzs664/ZSi4c3panunCwUURGhY2w8HVsf5tuVjB87zqZstqld43alv7sccugsiryAjAUmg15uOdUj/pHjZ6jGmJkJcj65nENXgOgq2er4LMy/HLeiCFChWxyUyzaffAzxRbd2yPKaZxMmEx6CImNbZrnQ/Gic3oVShsv/Llc3Xl44NPPz3PxryjAzgy3zSzAhSOK28wed7PILk4EiJwKdGxbcjkMEngM2F+RbKWBmZktsSn8+zdWJK/rEbl4SUoKyD9k6EAsmPqswLd4snSvM2MxM7iY5XebmcEq/ZBmUKghW7z1cKX26rDAuq9SON56GchlOJJ/t4zPLDSV/HNcQxDEULhMyk43qr1GKrttRNp27nyqbgug7wHyA0QejpcwK2a1FwLAP7sk0fT1wKctB6RCydSUDmqBmGIY5prevLS1lT3yTsiMSWOV9LKvPHKf5bGymQ9AVQC5/ZGtL9rYEcyeZD9TK+pcvP3glmf4sK/MngWDZDsyHlAPx9dBZ71ImZhKoLgPHsq4lq12+ikB/2W5FTHnWX7lcRqVSsVIt7AMs52g0yp0iYDn4POqwk9XNOpJtWi6XcxI/sk/7JywkkM98FLWTLK9MRwYJlfUnP/clcSQb/XKAuuxD1yu4PgXRp3bN2wTQ1Bp3SkD+3Sy467HW6EamF/RjFSJLDYg4MwNUKsiyvBQz1/5OZkQAi4bhtXCkibm5qs1GiKETiaauuckPGVh8JL+KIrKWHeunsHxkPkdV9Lt5iU+7KZMs6bm5/IZDRFMLlQ7Kxj0QN+OhGrsypmJn6O8ihWQG6212Vn8lmfHck7Euq9E4H9RM1I97rm63wEik2M+KgGO2u+gfUaQZVmMEgNJMudlZsungNnnMQxwXygBwb3vhgjvyH0WhfsVmX9pzwcBkNn3HgpDktcw2XiODifq+hELAhhf5JwTMd9VojGYzyAcpkxtQpbCeBiZoXQAVa5mDEMN8G/AeHp2XWjkUp08SzM05tWKloBnuStkgqlGkMfI0dXLslJq55QUvsGfJL/YD1LJzTueAGrc8usEAqO02zvVD+8z64VQz4YhK+Zt2v98UeTF2rKzLGJeBIAqun9rUvkNWqbj50v9dSpMDIsceMXfrcV6Ah3KOm5vLka35lZ2yGOCTYCjZ2cvLqEURVGu/dugx6GaaalkXsaZoLt2OvXu3AvRZ5pjk0Z4qwobS6Xe7QBxDNav64htvBBoNuyRZNZJfShkdciUks5JEX88JVU4MpixHjughj7E9BLl8q5FKLtcGZiJilR84oMfoKNLXr6eBlVKzPstu5jzKhuU+P79PM5h7qZ03qlGEMWpAXEOAMWrpumt/wM1bshKVwtxcuIV0TfW8vXvFfRzjTWOMm/vRWcmrzDFYJqXElNLrpIX5hi3UxX6AXs8RwdFsAnFsH8O5moG25RKTLPcsc6es5Mkz2Q4Mph7HRsudFzDDIohIiCFardAuHy0IDth2G0dV3debGoS2FHHruFEI0nU0m1VUs4v6BOLZs046zfTNWjMCEOT7zOKifl6SYJgFaDZ1WU+e1Gow7Dq9HnDwvvt0WocPY5zomATttsnnffflF37yPYqwHu/D8WPAC48cQXDgAII0devVSXN3kfnXXu3Jl++qTefup8qmIPoOMV9SRALKfsBGH0CXQC3/l4CjBE+DIMBwqAfb0WhkwXNqW/sAsQS3eT/fJSuZ6Uhwkc/0A1jyfv9VBKIT7MzEgFcUuJP/E0yVJuuniGUvpVB8CRGpF09dbflsXkfglYAyteclWC3BccrX+Mz1SbItPoguAWECu5QgkfUtZWH8wKuTQGBfM7xcLtvXzMyM1auXfeDSpUtW3zzLMpRKJVADnibzRokcSgL5bSbBcvZTCV7LtqPmvHz3+4HPMB+Px1hfX7c656wrKeUi20cC7VITXdYdpWpk35F95Hq1KTA+tWvaJNUqR53BZFauBFmXlzULqdXCehZa8LPKHeLMzBaZlSgyx6ulTgmfsbJiEcEqd1qNBtDpOhHu5WV9LSOQdTpotB3gSHkLYgzShlkACxOyHGbHfOaMvp57dbvxlMCqBIplHQkA9mCcAZG5p5c64NKvQ1aGBEG4oVMhBmfsvmsLA7pSccXXsjh9IUIKt/s0YPaWvKowf4xcgig0+dAsQ6US2qT59fy82JBGkQu0acrRW9mCM1tHB30hBNYpe1OEuaapOx4u8Voy/uPYBHzLMiBSJn8hymV3Opt5kEXj/6WSqDMfROfFvR7qSgFxhCE024wMfGrur65q58DZs65rNxqhzp/yQPReT++gidTQK5HqPlNtRVB7QksG1/Ue2NuJeXQ6LhYA66bbrQOoo3tcF+dlL6tjQXWAhtZ1jaIa9t9zjwMIogh/fyLE8eOuPV784luw/8gR2Gh1vsOHD5Qoixw/+JnPdNwRNsbVMdSmG/GpfQdNBtz0T5D4jizAjWv8LE01gmfm7qGq6gCZMshGkuSCZANuGAgwtl7LKuXJqLVlYi1Ujx7FwsJ+PfiurmqP6YkTOiEz5gSLizhw4KAeH2Md5JPTO4unHZYhFnZBz/2NBtDcr9O47TYgy7C6qrN99qzG6ZPEBLeW5W42ndA5B9HBwNbfGAEOqUcA1QP6SsfGaDTQXNpnh+jcvEQktNPJOyiN8xgAbrrJAb2IW1g978btRsPMWWmqC0m9nG4X7aV9bo0E2PnhzKiO06eBpaUAITVWxPxkG0kE16w2IjQazjkq23F+HjoeB5FtwCLZJ0/qYrFLVCraIcBlGrtWHANrawFmZ2vY6OVU9pBlwHqyH1ET6B5zB6DiWAPDt7Q1HrOe6cDdNbXuHB4IsLbmgqKyi9OBzeklSZCf4LkWYd0o7YCppimqSYLR7pqeU4UDZT0L0V2RknM1xHEN9cUIucbv9bC/oYATy7ovnj7tHEN33WWfV0sSQwzQt3+1U9M/K5PFWqrl75Lkdpw6pdc+rZaJpxPdrrP8gO4SL34xsD97BEha+Pv4hYhj4FD8RG5ePr1axemO/kkfOwaU/mkddx85AhtYSK4x5drGX+PIzyQZY0fN4dO5+6myKYi+A2w7JroPLkum9aS0fAatr59NQNoH0QkCk3Usg2T6bHgJZBNEJZua4KMsjwR1CcwSRJXBNwloFzG2WQ4JljJfDB5KsFfqndNp4AfR9CVJfLawr63tB1+V2uOsO9atBNR9Njg/JwhLcJjtzTKwLmSe+bfMr2RRy4CXPpu7CESXThYfuKcppVCpVFCpVDAzM2PrX4LDEnje2NhAqVTCcDjMgf9+ME4G/KRjQTompFb6xsaGBbsJcsvTFZIRz/TkiyblW5guA5r6TgcJkksnhKxjX5pG1m2RM4q/k+vJrra811v9TO0aMLkR9+lWksXmL6b5ndk8DpsH85tMIRHBW7lO11rcPZeufIYJ9onNTX3D0pJ+73a1punZszpoUpbpXcfsLNDtImy1LAgaxjEGu+vY2HBEX6muEcpnCsDgwrID0c+fF/sGuaPnZoQ7RR8Y7/f1TkZqprbb+WPkPlAtxEGtDnjqyD82AKUphFKBJVlV1dA9V250JDArjykblNVKvnCHzPwVbZbMtXkw1yUdZIIFliQWUE77+WwJbN0C21nmJNSLcFoe2fb3fOyqBCg0o6+XcwiFJhjoaORkC6jHnwPPQUmatJj6JtvWdKaQx6pNfbKLrK3pvsPNP/tckgC1lueooENItlWzqTNjIsSFcYw41kHlJNsccAHkOp3A/vaYDx7aOH9e199NNwELc8A4ruHEAwZHW6zrn6jSm6WHHgIeeMC17cwM8JqlpfxG3PdusEPQWeM3oM+A2zE2PRI+tWvYKhVgfT0/fnsM5C1sUuksp6c5imwQzIX5yAYd5aDKIZE//1o8tsEzh6oKpfRJMPT7erDp9XQslH4faDax5679Ovji2pqOr/AP/+BOv8QxsLKC/UdbxqHYQbXZhFL13FKDGPhCExa9DTDGMAug2oeQZcDaih7L6Zc8fBhuLcFyt9u6IIz8TYQeOiClUkD4N38DfP3rmqKdJMANNyBYXEQ1SdBDzQ1/xvl+erWKBaZpxu+xCpF29CULcyY2RtzEuX6ItTVXvbVo6PLHwdsIqQedx/JzhZmTLqR1nDypic3h8rJDo7l2kosdcYxg9+66PTC3uenw8qB3TueBZAXTl4YIsXLCxRil83v3bu0kJrDN5ZPpEluWiIZnQRwbaeoedeONsGLrVTrfO13bXlGk65sa8mTCSwmXKDLrIxlThF/K01P9vg2WO9e+XV/T03U7hI7t8vjj7hQD/dm33VZH3DRCOnQS9ft6LXr6tK6gr31NZ5Bi6SYPYRShnsQ4fSawOPvSkuFgdDrAl76E2ZffjkcfNX6hpn7Epz6VX7o9+9nA/pUTGDYP4kMfAhYWgLe+dR9CpTCM6+j39c/q5Ek3hzebwN1GGz23sPJJHBwrWGfyf1qaAgZH2hk2nbufKtuJK7fr0nz9ZZoPwkmA3dd39tMpSpvAny+NIY0grwRrJXjsy6QQBPUDRvpyGhLAlwCxLKcEPn22tawbBrKUoCXBZxkcVQKgk+RmtgPQi9qAn8l2IKjrs8/9NpbX+yxngtiy3iUjX34n0/QZ1vL5viPFN37va6DLZ0pJGymb4kvryGdIp4AE0X25IdmnAFgQnGnS8UMpIlk3sg2KTjT49SSld8hsl0FDZXv4bVjkDJmkzy/tepVxoU1B9KntCPNBZWk+kO6Di4OBvTSHv0bKIpRy3a6Ul46fj8EgDwxIVvDamkYS5fFs7tQIfhpwfiap56RAlMrrsufMML/lXlYCt7kCyA1qUf4BR2UfDPSmeO/erXUo69ED0CXr2t4jGPu5AwO8wZdlkbtZVrxf59u1g/9dlm1JwnYV0bhDaDmf1VVXhz6mw3dWD6Dfi9KXuJB89+vBSu542gMBxiiX9VxNBpvU5N+iz+87TPzv5BFvkUE6A1Lj/GBXlFjGloIQPJfA/eqq7tfilEaYRACCnKZsLk4Aqrm+u7rqGIT9vs7X2hqAPco+EsgTWEsl56di2p0OgEZSXBeyTor6EBtIvu8om27Ep3YNm2SJTgLEfON1Uv5jNLLYbS5t80rNsGQdjxyXDMAex3D52Nhw0TSNJ9oGA+cgxCNiMg9y7o5jAPVcdgExdwtmOYdjzpXlshtSBwPkx1WznhhHVX1yzqsTThvh6dPupNvGhkaOrWSKO+3GerywAiy0XHpcR1jjWqDRQJqGti7t6S2//ZgZGW2S71mGLBOM+NVV5wXmOmgw2DJvI8tyMnfsAkpBS8B5axtKkhEzlgeMZmY0iM5s8/SVeFTOpwq4731n+twcgK/39Ickccj1jAHRNzYAD6bB5mbBGmjSAoLpmv6VW7cg330ZlJbl41xZk+lwLcq+2Ovpzre6ms8/84CqTYdrO/T7wNmz9qRcHLv1w8mTDvu24Ux6PWSZ/o5L5HoU5X46KyvuUISeuxu5daPLT778W+rMB9K3m+OvSZvO3U+V7cSV29Q8KwJ4r8Qux7iWoGGRFnbRcwhGSiawfJYvTSKZwjI9grHb6UUT9PSZvNKRAGAL21jmh9fJ4Jg+K7gI9JayNT5IS6DXlwwp0uKWEiH8XDLUJQNb1gPzKqVoZBvQOUBgmszoSUD6pHaR9TPpBICUsJH1VQTe++03qZ1kmf3ritpQlp0vHzi/Ej10KW/jO5R8p8N2DhG/z05yXl3voPAURJ/aNW1yA+ajlbSixXMB0C7351peJLVaI1sw+EnIqFJ6MyLpwpK+zJ0XQUZ/EyqvNUbpWJKSogjuHuqQZjogVxQFliW2hRUtd4jyXamtQZ6YCHedNrKYMO4wDYB/2WoWQLvc04Q+IOCj1kXsRKV1tUMWlPmR9zP/XsaoB85bNBjg/vH3WwQ//H094DTeabLp/PqQVSt9GTnCZZGcCFwz+HtD6VQZjQDMiMYXdW53s8DWTaln7A5xDKv1mzs8KTepPNNPNIrn6/k80XbKaNAXOYLiWDPPCCpFkT6wUSq5ZpWn25m0zFe5rLPSbjvnh1SIKGxAWUd+nci+tKM24LSprurUrnHjGCJ/e5eTXfABtXLZfSRBZ45HBsu1TmVxbRRVtfNSjgHyNTOj5xkea6E8m3TuEgEn6hpFQDphWOFAZijn1ThGppxMCYfqdtvIlEhHvMmzlUjhmGQGQ/scUoIZ1FFE+LRVbU6PDTMR6NNj7gNmfN10dS5PQNl1EOcApRxBgGkWjJscTvt9oDY/7zyh/iBf4EyRcmj2Eta7qfux0fLeLvi7UpqlzcOCc3MuiPra2uT7eOiOj7PPZx7k3Cjmbuqw870wYU5WTIflNjr0VWZQtrU3Z8nlo7jcVbx0nM/O6gk+TbXwfank5m65DjEODLmkkHnmQYIk0fW4uakPWMolbxTB5rvZ1I9h3TGAK9Pp9Vz33VLGokVVEWDuvxfN79e0Tefup8p2UqtP7TJ2OW1lHwzkPT6TXQK8RSCtvMdnhkuGuv9sqREtWcxKKczMzNhrAGwB0CWA6jOxpUY4ry0C4P1gnlKb2meh+4Bp5g2uEiCXLGwG11RKIYoihGFoQVkJRNMhwWCaGxsbGAwG9ho+Q5ZRgr4M+loEKPN7ypGkaQpfq9sPLCpZ4GwTWXflchlhGOaewXvCMISUXfFZ274kzZW0FZ8pg77KchYx6H3Am6cPKpUKoihCuVxGFEW5dphUH3RsyHqTzglKxvgBRqXRMSPzx3d576T7rwebguhTu6ZNKSAM8wvp7fQPfYCSuy0DomcZsL851jQYc5wbjQbSrpP7tFONBKINo6bKM7SjkRPIbjRwMaui1my6XQKgN5yPPuqOMMvNYBxjcEZftmePfu3erZMMOo/lWeKAZb43mzWbBPfSgVxgZ5k7Bi7r4IYb8hu5djt/RJtRyli/AiG4mIY2r+VyHqS2QKfY3flEpywOoVQIlWjNTXu0XgLhNLO5W89CQ8qqIV7U7DpbTnHvWP3/23v36LiqK8//q9Ktq6tSqVSWC6ssZLtshDGOAGOcYAgBkhgCCSEh3QE66Uwy3WGSpgmQZCYhk+4F6XRWM0kWQ/fkOd1MkmkyQ6bD45eQtDt2N6ZxeAQDDjZYBIGFLXDZLlulUql0Vbqq+/vj3H3uvkclP4hfJe/PWrWkqrqP86q7z/meffaxESvsUfWZTMJD6GgIBBu3eRXlvRZ4Q5Ne0dIS3pY3J677kE5BSdS6TTkavhcIBV829xAR3ateDFZmHmKoqY1PA9TkiFoCzT3j6fokSo+MAK2tKVWOme5IustlwCsA2WxCCUJ8gBlkxnNDUWH+fPVVT0803zrzdG5PD3D++WGFO45a700DcbpXuYyYZaEzreL2FotRMX1hTw2ZTEw725XL6mdE3v3NzSqcC8bUxmh9fYmIVyKJO6tWqaZbKCiPt1wOwJAx8DZXPPA8cYWIbmAe3zCIN5twAkP2DoiGrCgUoqIkt9mmuBo8Y2KoIZmMqec8xRzv6QEyGXj50CPXcYDOHkv/pm2rHD7IgVDMpffZLIaGgCW5XKgUUjop5NnYWOgGvmwZqrCBYqgtUzZiqAED5XA/kv5+tYljXx8qbkwft2KFOqSvT90fjhN6lufzoWc4eb339DDFEeoCtNsl5Sl4DndmlG2pJZcAAApB2ewvxtDZ24taMoXCUPQ0lKNiKnU5PE/FAXcy8+Cl5wEA7K3PqtlPyjyPeRZcsJxX4U0GBqD2tKB65f0pMqx0I9YHIC/2TCYIBZdMAr29qKU7dZxz2tyTTqfmQjhOYBug9GOad25pUV2yvXujE+S0sonOoeTZqOqb7Ucn3DKQ7UmpiQ7HgRWU4/z5YTeL50GXoxtT4WCCfgjZd9cF9m5XTWz16oVInJJX7d2tRH4DfOEZzfP09qpDRkeDe1HnhhK/eHG4SuHUU1UmV62KKuCB/UslLaxendBmcWoKesbaLu7BJz4xLxI26QMfCL3iPU/1XZFOw/YquOKKhG7rfPXkOecAq1erMqbfAfqN/oY5qW2K46a3C59xsaMx9U9sxHYfKUREbxBmEo/qeQ3z77ioyL2RTSHZ9KhuamrC5OSkFpd5KBEubNYT0ene/L78e55WM447z6e54aUpztcTYM3vKS+mKG4K8Lys6F5cYKb48PxefLNSEpnj8Tja2tq0YEvCs+n1T4yPj0e+sywLtm2jubkZbW1tkfdcQOabdPJwK5R+Es8nJycjG2SSd7q5oSjlj6eDh2ah/PB6petx7266P4VAIbGZ0s0nH8zwKnFjCp2uyzFDDfFrm/XX3Nys47S3t7ejubkZra2tkckIz/NQrVZ1zHb+O5mYmNB/eXnRJEWtVtN/uac9j+FuYv4WuIh+MiIiunBC4zhAIhHtPLtuGF8SmHlATt8FAwbdNx8aUjHLSYXOZDC+Uw0KKB5oRLAP1rK6LuCkE4jR4K+1VY3KMhkMDQE9PZ1I9faqc3p61ODlpz9VA2NSA5NJlMoxeMVQQKRxtO2WgGJZDagp0Cc9f4NRWSrtIZVJojurPLUtC2HZ0ChnaEgd39Wl1HlS3AMRvYYY0Gss+2bEAm8vSjYfwNFYmMa9pDnUEEMsmUTFDWNfkwhMf4lcLqVivlP9EOwmhaF6VRwL/ioxvhjMgyzvTasRu+tisiXaPCwLwFAelewSvV/c5KSquq6uaDxzni+aR+B7kDY3hw77NC/Cq4gG5VTUvLwoeypSQCigZzJAKqkG611zVIJL5VgkPZOTqq0MD4ehASYmwjLm+m8uByxb1qlisObz+vdQs2y9ip4mYWxUtfK0ezyFqamgHvnKgd7esBACkWT33hgmJoBMksXCp1mLchkxx4FldWJyMhCWPA/o70diaAiJZBKdPT1ATxJdXWpPACqvWLkETFhAsYglaRdIJvG7QTUIp3izS5NvYGlxCFjTh8czCSxbBmDAmFCjguHieb3VEDzEUkMiA3HhBIYmwLkw7rrhc4km4rjtNjcfZQJxMmkDW4eAbduAt74VleQ8FPNqrnlqSl26uRlY0oNQoXRdIJtFxelUnr5ku8lw9fRgcBNgWTEsXLZMHd/bqx7wQ0OhLS2XgVwOvxuIaRvhOECnVQLyxTDkFaCel8PDwKZNegmOk5mHZFKl76KLAlvvOKiiU0160qR+sOGpzhS5rTsOrMAO7+85G+gBOtO1UK0lI1AoIJZM4sVBFZ6DQoPl80DRScEdCicbtEgN6HJPJsNbj4+HdrS/X2XpustyKl+WpRwH0uGEBdVXsah09v5+wLIS+l4tLTa6gsn7qpVAuQh0UpDyoH1MTYWxzClmfC3bjaFCAsWgT9DWFpokYPpCIrJxZ52ljunoULY55VSBchlj6U49UcC9r0l4t91S0IlwdUFVnRT6N/GIPomIxzrp0jR/wvs/NMHjJTtRLqpwZBR+n/9tawPOPyWjElMsRvq1k8PqWo6j8p7LAYn+Z1W/tme5yj/F/KeA7tksasuWKxt86aUAgJKl4pM7HmC5wUbiQaa6gxvsT6u9g9CTVTcdHMTCoY1ALodS70oAwIV9JcDzsB+dKBSArlNqKmGFAj50laqcqheL/AyXWDuA9Y/hXe98JyyrW9XvgKUyTgXFw96Y/XnTA53bbnJuaRjEdh8pRESfJZihWEy4Rzn3Fq8nnnNPdDrX8zz9HQmV9Tykuac4P9fEjJ3eErhlmWFOqtWqvp4pTPINVc1NTPkmmaYX+9TUlPZEJiGeC588XjudY8bbJlGb/ichnYvnra2tsG17Wrr4xpTValXnsVaraQ92EuV5KBWeFhKpefnwuibP9snJSb05JveeNkOWkJBrevjzyYFEIqHLhMqQ2gVB16P0ua6rvfC50D5TmBseMsic4DDFc1N8NsOskPhPdUFlSx7odByVkeu6kTbMQ+GYnuc8DaaIbv4OzXA2fCKAr844GRERXTih4UIYj/VMoh11srliaS7rDI7R3sbBhkl461uBbBYl147EJve8QEyk0VkQR5LiQSZoTWtwz6qTCp3rertDj2kaDdIOoJaFihuLbHhlWeHgTnuh0aZiXFQwR2QINh8lgZxwXbX71L59SuAnb/lsNhJmhURges89ri0rprUOLtK2tQUxQhFdbh0KxbFIyE2qIp40QA1qu9qdsAC46BmUETnjsTkMZDJKFKA00Pe9vTbsIDNTwZh+b+A5TxvEumm93xssK1ySTHmhOKAkxkxORlexJ5PBtYLCSCYT0Q0/WVNNpwNxIhiI28EGdyTuc693x1Eiui4wy0Iqm9UDUF7tVK7j42q/MC6i87Gm8lSLqei4wZfkXaadttxS6M6dTmPOirfpa1H4HYp/X0QKbll5zHHvs2XLgFwuBpvaJ1OXrJ7OMJOepwp/wwaVuN5eIJ1GV2+vSkz/UHTjOPICzWTgJJdHPQ03bQLWrwfWrEHfpVcjZVWmKyi80XCvVg4X0lnbayxkIC6c4OiAyQFkn8j1lyvSwHR3YhZCw7agjNJrrwHnnqs35KbnGv2MAYR2slBQnrxpAIiplWT0kLYsVJ1UuN/mqm6dJLu8H7jvvnDm0nVRcWMYGFDH9vQEK5kKBZUmMpY9Peo1PKxU5HRabcKZTsNxbDWvMPAi8OSTQF8fCj1vQzqdQMKylNGhPgATEPe7CcANi2jzZnVIb28MPT2dSGeCzTfZ7PHgYCKY2FcRPfi2LeRN7DhQk/as3GNeFfG4cjybmgpjt2/apMTfa67phB2EmCsWAStjI0Gif1CPo6OqyzQ4qO5LXvcq/TG0tioBXXVfbNi6H6A+o42mLQtAsYhyshsDA6HTu15953kA7MiKJ76ggYTtmBvYiKECUCwineuMRDzjUfns4p5wVQCgBPTcUm0qqRypr5RK1vTkvmUFdtWy4DiJSEQgEt9pn27aQ3R4WK0wK5eVPT3/zEzYFwjaaRV2xHY7DpAo71ENIZ2G07tc9RPoJpZayVfI05xMDJ4X2mPy5E+ngVTWCZfVbd8OtLfDWbMQngeUXBvJnoWIbdqkfgurViFFE00PPwwUi+i86CJ05nJAwdNtHevWAXPmwFp9IcbH2arE7VuA++8HxsZw8Sc/GfaPeaeSDqaM1hPR+bF8k2G+tPCER2z3kaLRem3CEcT0jq4n/vG/5jn14oebx5gewvVCzpghPvjnk9xC1YGnnXudm5uhmmmb6Rr1PNpninvNz+HiMxeFuac8LxeaWDCFWADwPE+LyWZ503sz/Ii52SqPic7DhZgrEXjeuBjPJyV4uBpe1vVEbP4/F535hATPjxkayGyDB5sUOpioyicEeH1Qmkxx3gxHUy8uOs/fgdrGgahXDycjIqILDQO5CAMzh1+o1+E2xTHXVa4/wWDQY2LytMuS+gi2cZRlRUZevO+vBmdKrE7w8CjsctNCVpsX4Dt2el4YNJ2fzN2mTQ+diYlQXQjgAjoN6rhwzD2mzSQRkY1M61QBT0a9/+laka5BvQkPllUahAGhnkKiNfeSNxfyRu4RJIDC9Zh5PRCk72gBPXhZVkKHtjGzopbIRxoEkExE0qyzytNBg0dPxRc3dV26PQnZNIbkExqHEp3Eslj6AuWJ34eHmqHx/OiompeJhOnxWNnzxmVcD0BkQ93IX8eJhi6ga42OBm5+0bJFsagG34WCOrxQnjmjB6JeA204Eb2Gwxtcn7zOAsJxxLRR9HDmzww++V3v4UXf00w2oj9dfljky+BhSFuLRLxbm5sjZpeea+PjQNcp6XC2lUEbUGr4zCbF1eCT/sxWW06wr0ixqCYScjmdxIR5PbZyhmwMi5xF+4BqMVyfH9yL2wb6mE/Ieh4XohEpeyuI4c7tTbEYbtZJtnYmOzM1FU5G842rqThpRZS2H8Zz19ww3ewLzGTbuIQRsdt0UmA0efeJY1mYvjKJ3Z9eo6PT+xCOwzYOtyw0Nyci1+bXIM16eFh1Q+mv62K6wWf9IZ4vlN1wssUsPHY/c1Ug9aFoAYCGeT3QJWleJDE+rmZQKAQgd/goFKIx1j1PdRSMvANQmSwUlIdDoTB9BdjB+vR0jNkJbUj7Lbb7SNFItS4E1PM4NwXXeucAqCvOmtcxhWTTO5kL4VzUBZQATAIxeR1zL2cSf0mQJWGTx/+m65nCLh1P8bd5KBjTE93kQN7xPN41F4K5uE+e4Hzzz5le9crJLGdTdOfvKS3VqlrqRt7cPLwMhXOZCNaF0X3NeuNe9jyEiBnSxYx5z0OsUL7MdmGG8qH78DzZtq090Xm5mZMPPP88HWaYGjMfpmc/ieNmiB4K1ULtjq7B2188HtehfngcfLoun5DgkyBme6s3EcPb4UwhaU5GREQXTmjqicVA1OucD77NTjWNJsAGWeRiHOzk6Dg20ulw0EBiZII2Bw0Gw/rSpOQGgwfPCx3u8nl1+e5MFcgXwkF14I1cDMYOFBoEACrpBBLcI6i1Vbl9t7ZO27xxWowQPnihxNOa7OZmfZzyjo/py3AtgS5jOv7wuKNAuHQZCAfF5u2p2HmYSx5DnaqjRhu+0YfBiVUvpsV9wpizmOZc7LpQ8UaTSTT74fGAiskZS6d1CBd+Ddedvm+tZYUbaFEkAXWf6E3LbAw4NRUpapUeqreg7t2yylNzcxgaBgicp3gbZxMz5niRp5FCA/BoJZR2PZYMDuYTKNScO6ltB5mMeVUkk0q45zHbaT6HCxu8nUTuRXXpebC9Ck45JRG2aVJOSA2hnU3pRQoDxQ8IAtlms2EyY141XDvveYhtfT5siOSFVm+QzamnnJgNv2GQzcmEE5h6vz3z91bPfhNchbUs/Syn5UHcNHJ7oY9jHq0jI+oZplfnsJjcmYz6aGAg3PxQi3yTk/qZUygoQTkeZ17v2ay6KcVAobzNmaMu1NKin2mxbFbZBcdRz7fg/pOTUP+TfSdjF0yez5kTFWEdR63miuxPaUxEnHqq+pciurW3h5PmExOBHTfFx6BuvGJo5+mrdFqJx+PjQGr+fLWPTDF4z+Ka1CxbbxbNH6fUvzAhW1mzbFiBqEu2sVwGUpmMXhUGqLJPJhFsmGpHJhja21W5UJx6PUlAJweZMkOgEZ4HIJ2MruzLZLQGT5fh/Qh4nrKURh9solzfDFmWSqNlqc03g33tdZOs18HhfQFKe2cmrW237ZbQmU6Gu3c7ji7vZDKccKd6jJg7/puLx4F4HLZVQ0dHTC9i5BPXutNz6qnR5Yt8qUMQfihWLqHrlCSmplSfDm1tYdD5rVtV4zmY7WX997qVxkNFzSTCn5CI7T5SNFqv7aTH9JbmHrMkIJohVuhYHk7DFNFniuPMxU8SsLmgSgIgjyPNQ2VwL3RKO8XbpjAh8Xgcra2tkU016byWlhZMTExo0ZSE2QMJlVyMNUU3LliSsFov3jnlmURgU5ynkC0tLS1oaWnR/1N+SOg3vavN/ym/ppez53kYGxuD67qoVquwLCuyESWP3w0ALS0tkToCoEPO8HvQJqa8TOkvhT+hfFMdUUx2vlqArsuFau5Vbdu2DqnCy43qfqbyMScgeHgXLqSbIW3436amJsTjcT1pU61WUalUYFmWFs759VtaWvRnNHlB59HvisLuUHnxTULNdkbCPE0eEFyApxjslAdBEE5AXDeMic47/HyUZw7ESVijgU0wEG/vU84wcDI6pARcF4mkhZ4eNSAbGVGnjI4CaJ+HRBZhTPRAC0zRCCXY8Msrq3FXoaBWaedyQHd5EHj5ZXWx9nYgm9X7lFFIWOr/q8vHsDSbje56SSNGni8aIbLBR82yEXNYmfCY7exc23Hguup5yAe1JL4mUAE8AK6HhGVhaa+jBVgAsK2aXj5bDfzRbEsNVMmbrLU1fN52dETjje/dGzrJq5W8tLG4jdZWtXHZ+HDoyeZ5odd5e3tYJKb+ks8Dyd7l6v6B4EqiQT4PdOdymCqE4WAAdR3uiWVZatk7hZCnsaGNKgAl7nuerYUIcp7m6SAv92IRcJ0YyD9wcm/omUdVQtXX3o6oOu04eiKhnpMV1RnFcqfrkGhBeoZlAUiqdsA94MgJ3E3b6Ka4/QBQLOowLkAQF99Sy8hpEE5pUfFt2X2oMdNNXBcYGlKx1em9drWDikUTj6tYxUggkQ3aPIVxyeVQ7VsJ26rBHvidCltEMzo9PSqo8K5dwL33qkTQRqeUWSow7oI3E1R4/L0gCL8/fCUOF3kpoHVkxs84nmY5BwfV737FChSLQOeCBXrjkp6ecI6Oa23lMpDK5dSHQYzooX71COlGcI/eXrUpqaseHxRtKpdT+y6gvz+MvZXL4cWhFAYHw9DnNO/nOJ1I5zpVOBaaWKc8rlmjDhoYUNdbsUJ9nk6rHRazWXiFoAh6etRFKUYNTS56HuyhV2FnMsgXUyiXlV3lYrGNatTVGMD5b60FQjP0xChcFzUnoSf6I8uYApvuBpfp6gqrZWxMJa+5WfWPulavRiXdjeJgINT39gKeh2qyE8N7lU3r6Yn4H4ThYxDtE6jytHWYtpYWZSPJ2RnZbkwUw7Bq9BoeVn0JGroFe2Bi7lygqz3YlLOs2htt5JkK7F2xENVv+VZgFacTiWXhDECpHEMhH3a9SOwm+6c7AXw223Hg5tU9OBSiZsECdR3aWJvqKJcLJoCYRwNNZnPTqsxhSm1kD4S/Edps17JgexVkMgndLMjM53Jhu9ET+PTDaWtTCSkU0HVKJripB7z+OqqDg7AHBkLP83PPDdub46h2u3272sz0oovUuf39gOehe9ky1LIpoDgfeM97VHp/+EOVkPPOi24wW2/moV7MOj6rQe9lHH9SIj22BmKmcCPkPUtYrGNgekTT8aa4TMIgF+BN72Hy1uWe33QuiYHj4+ORDSzNtJJoSdezLAstLS1IJBJaxOXHU7zqyclJUJgTOoY8yM1QJXTPemFkuPcvxRMnb27udc09sUkUN0V0in8ej8e1mM6PNz3MqZ74i8RkygMXWKn8KpUKYrEYTO9xSg99R0I+5dUU07mIPj4+Pm3ihcqN6ogE9Hg8HolXTi9Ku7nagAv3VJeUbjPkDW9LfBKAt2EzZAqJ/hTrnTz13cAYU/xzui/VL9UhTRJwj3tqeyRoT01NoVKp6DZIEw9meCFzVQhvZ7zO+W+v3mamJ6uHtXiiCyc0pLoCRniMQPgyO9LcXcsQ0RNODZYVAzLZ8JxgZNLpOEC7g/b2MHb1668DK1bMQywYOLg04A1cfCrJeRgaDB2AhoaAxx5Tt78w068HEUingZ4eDGwO42JyEX1oSA1oet6fCj3VaNRIbkoUpzP4jmJm07jCcexwQ0gSHEkxZhMLnmdr5zoqPssCbK8S3ckzOCfGBHJ9HceBzdMH6IQkk7a+rm0Fm2x7schYjeKmk1ccLwu6HH0fj4dh3ckDjI5pYZuIFouRcNs6f0oHUWmiMSf3GOf69fz5wMKeWugBGRYuym5CCzZ0TwpbTwN/GoPSqfz6dCm+nNpxgtjpZTdMhOPUXbrO54QcJ6rVkMcZNRUq5yrsyE+C2h6l3/NiWEiu3jTKjixJiJ5P9UFhBNJphKsJ+M0nJ1Ul83g3e/eGg+Hg91TyEhgcBM5e1hMu49i6FejpwcaNQE9PDEs3b1bnXnBBuKPasmVqEP4//of6/6//OqxcXmjmxBsfoFM++XOCL01oCCSuqnACQ7a7nogORCeIgVAppN8lBZAOfqOFAtDZ26ufybH8G0g5DpLZzsjPXE1UB5PS+bze+NvzgLPT6uFaySzEwIASi5cvq2FwMIaHH1ba9ocyAyre9K5dSkHO5bB+rXom08bjZIcKBZWNd13aq9JPanE6jVJmCVIoqecTbcjhecCyZdg92YmJYvjY2T2aQHs6gQTtCUEPWM9TG6kuXoy9o8sxMhLaOD0RXiyH5UznbNwIe3RUGbVkUhXK3r2InXIKunt7VUGxTRkrno3RUZW/dDoQooMJ+tZW9dhNJqmL0I3hnWGokGQyhZYWYGwo7HrlcmGYeC6i0zkE7dmayagJbJokb24Ot4ahxQfpNJDwSmrD6YGY3mqG5i5yOSDh7ge2DoR9qGQSheAec+famDNnHvJbVT7b26Mr3DyPYojbuj3xVXTUbOn4VLKmNpXlfaBgc/VyOXDYQHSeqKVFieh0Peoe8hV+jpNQfTkrXJE2Ohrab9o+ZCVNgvf3A46D2lVXY2BAtY9Y/g0k0sDcuYlIWJe2NtXm9cQBn62nAjFDrQwM4A0AuS1b1G8imcT+7HK9BUCsXFKV/cwzwPz5+PeNMfT0JLBk61bqaCCWzaqDe3uB730P1X/8R9i5HPDud6sCoQ6TWWB8dVpk6UVY3nqynGYkGgKx3UcKEdEbkHqe6EAopnOxlgvjXBw3w0gcSrxv7kHMzyNRk2/QSEKh6fVLaaDwKCSmk7ez4ziRc6rVKuLxuBZ/yRMdgBbuScSlMuBlxOEiLKWPRFYzNjWJq+RRbYYVIeGcb7xJr3qbnc70ImGX1+PExIQOQUKhb5qamrSwbk4O8HjlJN6b3/F43yQK83jqNDFBIjdNbtCEAG8TPK0UG91sQ2aoGh7mh84zy4fHLTc99HmoHh6ShueFT9pQnnnaqO1SefLJgebmZl3m1DYIuja1Qd6Webp5u6sX352HcOGrCk5mYVhEdOGEZiZvNlN1NXdg5OI6xSp1XbS0JFC1ErBpAELiYTDaS2SzcNJK3MvnlX7XFYxWyXuJ7lsoqEFXb68aULluDC+9FAySvLwSAAA9oCMnMxJZzZDphQKw0FzqTh6+TAivuGoDz5GRUFD1vHBDSK2w1hETJyeVdzEtI7YtJhobsUCxc2eocpPrs+uqkRiCciAxPTgnlrTgODF13WDwYyeTsB0HjhPTOgl5/FPeKdt0OXIsonSaxQKEA26qxlxOCSJwYlpg54N0WqVNxVkohBov3VtXEok5QVlyT26KZxrZyA6hhx15oJHztWUpz0FaWNDSEgjQFK+VhR2A42A88NjnYgNpu83Nocc7OWbbXiUIlFtWkxtOKuKEzZsPbfpGaVnYlw6D7NKIHoh4Z5tiPokatApBfwGEMyPce4wKgxIRFCKtyujttVXopPFxUjHQ369OXTo4qH5Hp58OpNOo5ZZgaAhY6HkYdF0s3LwZsdbW+p7oXCDghUnfMy/MyLOlYZCBuHACU29Cix4gQNR20/fcIIyPB8uMkqhBCZMlL6G8zNmmoTHLgm1Zam2UZWGobCOfB3K5FOzAw3rXrsDzNqkMSz6vtOmuLqhnDhZi06ZAKKVdJGnGMZPB1q1hCDaalw+cdmFZwLJlMXTT5LVloeTa2LQJWLYshe6hIeC559SEX1cXkEzipSfDfb8BFUZ6bAxYwt2ck0nVARkcBObMwUhZFVVbG9CZDMZHHkIbQjOp5bLaOH33buCMM1SHZOdO5RVAs67cmFoW3ED0Jf2eMhZLp5FKOshm1eaZ3FRQ9Q4NReceSb/mYVOSSWUvRpujq6zKZaXL1uvy0ObgtDIsgYoqi2wWw8Pz9B4dABPY83mVICo/x9FpBjBtZRX1IQjSj2kim+wkn7jWpoQ6BaxPysPRmXO31Ocj20krBeziHiXGZ7PY76aUUwPr6FBfiEzn0FDgpd+XCZfbNTejWFTNNpsFUkHnZM6cBPbtC5PZ2godHsjzALjMNlK7MJfY5fPYD6C7WIQd2PGXX1bNq6UF6GoPzhkYADwPm7eqSy7ZuVNtAkzLGlavxov9MSy3LAwAyA0OItHaGrr414N3ZHifnjcW/vxoGMR2HykaqccmzMCBYqGbkIBu/n+wc2f63hSAzTjP9QT9etc1w9CYMcP5ZIDpNW2GYpkpnTy99TaGnCm2NZUVeTHTe57mmfJxIEzR2cQMGWJucsm97c2wImZ++f8zvcyyN+OUm7G7ZwpRY5YPtTMzfvrB6uxg5TZTHuqJ13ylgllG5jn1VnuY9zB/c/VCIc2UbvN6JzMiogsNye8hdinB2TJGROGXFD/c/ErHhbbUcZF+u+cBsEPdgI+ijLRyvZFOnZYdUzE2/vKVq3XHDkzYPiAzDT5o5Ma/I9esGRNd57p88oNt/8k9vQjH0Xu9Rm5LGr5ZJPxaXK/h55nX8bxo/PIZ003/z0C9lcM8P3zJumWp9zRg58vHf5+Bnxps19RAmIQUz9OjCl62ZjVPTgbf88LkgnNw8ExFMWN7Na9Dlcdh19a3Otjvmf2eSDjxgpduVYdSlg010D4YMhAXGpRDtd/Gg8vzADiGbZv2m7anmS0KEUYfeB4LBxI8ULQNof0bgNDw1En2jI8SK7pZOYDw5kFMD3qGtbfXMcE8ZplxM1oNNCN0DqmuZIjovbYR4bX5RtKRdLCEcb2Swr+TvatXDry7orNi9AHoFrybYU5KR9JUZ0J0WjOq07GoY9bqNj8+j0N5NMskct5B+gcznUdloVf4cTHeOIE38WllTQXL2ka0P3rgbmBdG87zFmkjQVTuoFwnJlgZ1euU8etQ20PUdtcOck/9GS+EhprkPhBiu48Us6VFnJTUE5R4WBYAWrzm8azNzRvpvHqisLm5o+d5keNI4Obxouk88kKu57XLN36kNJNnrunpzuN8k3c4/U/3bm5uBsViB4B6HtumFzWVCXmbkxe3uYkmF5LpWjwmOoWB4WVEHuQ87/w7irdt1iGfdKAwLKaHOM8XfU7hTYAw1rsZp57H3zZDzZDHOf01Q5Bw6oUw4ZMMZvvg/5tiN2+zlG76zGzTZugeHiKGvM/rrbiga1CZcO95HoqGb1RK+eQrJaj+6qWN369eern3PA/Lc7IjIrpwQkOjGvrf7FDXU/fIo4be0zJV10V7ewKWpQaOMT4IoesEgxnL6gwvHQw8KSwIhoaA0VG0rTpbJ4VihNOyYz0CoyWog4NYs2Y5hoeV1xl5kgPKS7m9PfCELiDqnUw34DtCITq2n5xUh+vhqbnslXllxVlRui4Ax4aVtFVZ8DLn8ax5OdG1yC2LlzWrAniIBOymkC400PM8NQijFbhTU6GATh7cVMU8wg3ll8ZlPMSK6wIVNzr5wR2NA8dFXXb1YqJGdkTjLvDsa9rQc6aw/ORFXmfMHykD2zzRgH9sRDHT14pUZlAQVhJaJDLTQXHUHUflu4aYXjoeaW9sEM6/AkKP/HQ6hhj3HKVg9BTGxbL0vgEYG1Mec1SpQdgaSnYqk1TxVItFIJmkkMFAoTf0XC0UEOvthefFgEwGGQD2KaeE+TeVCv58MJ8V/Bz6ruEG6DIQF05g+G+MT6rNhGlP2ObdMa+KdNoOn0MHmLTzvITuMsB1YVlhF4I8lZOrw1ORTOpH1dy5iAavTqeBgQFcf/3KiMC6e3f08ZbNAhgo6zRRSJNsFmGA8LlzdfiJjg61Ioz2TT311MArvWyFoVzouQcA2SyShWhZVVzl9dxJbt9k6IAgI8G9KW6I64Yx2XkIElb02vwxm2Dabl61ZFe5KaMX7QHd0wPEivuDKu0EoFZykec7F6+pufAoW5OTQTllU4gFCZwzR1XT6CizTdRRIIIE8i6kZal+RBASX+eX8kV5IhGc97NoPniaIE0JdhydXirLekK6qiobNq1EY3HWrCT1y1K6bOttDJpOI7xJ0E5OOUWHRNdL+mJuBel0QsfwJ698XVSWFS5lNBPb24sSUkj19SH52GNwAF0wXBuvWTZiuRxw/vlAMomLLgra/fgKFU7I89QKAteF6yaAri7MA5A048/xQjJtN8GfI7RkgY6hzcUbArHdR4pG67WdtJherqagaG4Myj+rJ5rTcVzM5oJjvTjPJABTLGcunvI46HTPerG5m5qa4DiOFqzpvnTeTKK7ZVlwHEfHrgbCcC48NjaF9KC0cqHSFC0pPA0JseZml5R3ElPpmObmZiQSCTiOg9bWVh2Dm29CSXHKzckMCtFC8dhNUZmXgRmHPR6P1/X8B6A3vqQ43iSa8/AhExMTWjzmYWRIJOabvZpCuhnCheqTC8e83ZliOg9dwjfnpPd0XQo3wwV4uj+faOFiNF+xwNsZ/W967tP1eTvjvyUqNxLQHceZtoEuj51OdcZDx1D7MzeDnZiY0PHQZUNREdGFExxaf8s7+WYIBiD6HR9gW1Y4oCyXkXAc1Cw1yE6YA3FaGus4sKxOuG6wEWShAPT0oFi01Xilvx/I5zHnsvfRZTE8rC6Vy6mBDAaD9KTTav31k09iabpfHXCRGpxs2KAOuegioDNdC9dJkzJsBr8OBg6OFdUMKfZmqskLBXemftYsW62IDcf4Wnin0COtrQkkswnlhc8HNqbQSEJ6MEijuNsJp6ZHoHpyIhih7i/G9ACZBl4koJsrh3lYS9LySU/otEoAgGoypYuIBpkk7I6OhvMXdC7NBwwNhXtv8XsQloVwdMkmAGqWrb9Pp6OO1SSE0KQAXy5O5UzCPT9HDZRjKgRPHXGJxohUFSSik+Cvmz79E8S8RToNKxuKGzThwKvUcUI9x3WBBBUUjbKp3SKMLMDLicq8rw+wg013q44KnTAt86tW4Y1yCt2rLfXbooaQTmN0NKy3ZNJGatUqpW64LlYWngWKjtqcD1A79g4MAH19GB1NAb29SC9bpoQuUllIEan3DOCTbvQb499HGkGjUMPhDa7FaUA4hnDbDdRXWk3VlR/nOMrutbQA5TKy2c5AIzV+t/TMCmym583TUdpQLMK2aiiXg8nVrVuBwUGkP6m+dl0A2SQcRz3PTj8doc3r61MHbdiAd+UGVVr6ciglu3HffeqQNWuARHkP0F/Q969ZNhKoYmmmDAwVgXPOARYtAs48UwvaCxaokDP9/eqjlb0lIF8IY3SR2O26qs+QTiPthUVUcWM63NyCBcEm0bw/dPrpalKSlHw+E53LRbzPgWh0PC3CBvfhtpuq1XVVnyco4shkN7/VqaeqJKiQOYDTq0T03btpc3HoSQ6qMy5s02Twzp3q/4VByJyso5wPyOQAwO69MXTxzWqDC1AYM0rjaaeFYjOtfqPQMNwEep5qeqTPWpayv6aXOXU0ql4Mo8PRDb+5RzsRRChCtxN0YKgiMxk4mW4MD4dR5WhvW7pOTw9z1KBJlp4eYHISsfwbWLkiixpiqGCeCn+TzyPTswQdHSo9NI/d2xu0JZrpIJtIfQkAzw+qPurNV1yBed/9brgjqtZ41Cl79wJdF12kLlouY2XhcaCYRvWy98GygNh3vw288AJwxRUolxPAmWcim8upNkoX4ZNnprheZ3Jf90PpO8dpMBFdbPeRopF6bELATGEhuBcvibZA1POcIMHR3MiTi5wcEoWBUKDlHtokCtM1SIA0w7I0NzejpaVlmojO78nDa9CxtIkneU0D0GKn67ras5s2lySB1Swruj6PjW2K9ma8cboneaDHYjG0t7cjkUjAtm04jqPLkITRemFFuAc695SnSQcSf7kHOp1H1zTrnURd2lyTBNqJiQldFrwO6Ro8zjnFP+d/zckVLvbTRAOViYkpaFO58AkT2giUe+fz/NWrI+4tbsYtp/bGy5HDPdBjsVjkXA4X0/lKBfqOi9+m57p5HdMLvlqtiohuICK6cELDAzrzATcwvaPNvyMsSwWBpGvl84jlcsqblYd0odfevUA8Diu3PBSqA3G7WAzEzK1bgaEhFYsaCYyPh17l2vtswAvdnpJJJQL296u4qKtXI7ViBbq6VgIAOoeeBzYMhCOkcjkcaQFKyO1dqpzTLbWZo+PEIuGnlfcYtIhehRLOy/kwazSwtaxoXFAqJuVlHUNrqw3LspHIMvGRewY5jvL4ZiK848RCb/bgnCpsuOVwIMjnQrgnOcX5pioKshyJk55yqmrDMMuCvWwZLMvWcVNp/zqKtU40N4ebdu3dG+7tlsvVbyoAULUSsBwgFsTh9TzAY00sk2ExyAMBOdM7D+WycraamIDeoM10juJFSOVmJ61piaGyMIudx2+NDOJpILpvHzB/PmKoYXIypkP6ml52jqO81misWvVisEm5oJNcFzHUEI/HkExGNzoN4wAHIno6jeFhoLXVRoo2Kg0O/l0+hY0bgT/+47Nh5zaHO6Sl03rFAXljDpZtFIvzcHHffuCb3wTOOAPPXvDnKBaBdwHam21iIgX05oDLLlOVS2IdfwZwr0wqTA73YOPujw21saheZH8YxwvCMWIm223G5DZXwgChSEa7IAYT4PCs6b9xuo9Wc5eGInpgfMrlhHrf3w9s24aEVdU2pBZsjLlsmdIBMehqT1wkk8DDDwPf+AZw1lnKdq9ZA8e5GJYFJLb+Rm1CSpPl6TQ8L3gubtqkOgxnnWW4eQPd2RqKxRh27gweOQMDKjh4ILRXrBQKQwCQgOclgGLoC0BFm8+H264kk8rbOFbYoz7o7QUcB/vdBIqDQDa7UE+WvpGPabPe3Ky6R7ZVg20BCUfZg1I5Fila8+W6ytxQVQHhfuY035/JqDKNFfboDWKtZWr1Xj6vskwT5GS/qVrJyXhyUtn0XbvUPbLndsK2aki5FaTagXguoU3W7t1A17J0+KwP7JDrho4GjgO12euI6l/V0t06L5OTys7xDdvpnHh8WmSfEMtCqRyLrKzj80G0Bwmg7kG+Et3JoHO0d69K/IIF2pFgYCAaf576Q9kssDxXARwHpXIMTrJTbdBJXgJDQ4itWIGhIRu9vQnECgXYmQzmzElhakqVe7GorhNDDTXLhpeep8LC0YYvwY/nySeBe+8Fbt6wBp1086AjQG1A2+7BGEZGunH5qv1qI91Vq/DgluUYGwP+ZGJC/RaKRQwPdwMXLQPe/35V8ZOT0QKnBsAn4+m5YDZGVv660TQMYruPFNMVMKEhqBcPut739D/BPa35Jo7cG7neho9AGKqEe9TSi7zTuYjMr2/+pfuYHsYkkJpe7eQR7DgOWlpa0NLSot9z72nC9FjmYq0pkvPNQUnopzzw0CpURnRfSgvdm8qcyog2Wq1XTuaLp5Onzawvsyy5p/fk5CTGx8cxNjaGcrmMYrGIUqmEsbExjI+PR+rHrHvzxQV3sx2ZZUKTHLTZKoW5obqh9/Qdb2d0Xb55JxebeegTMzQK94DnKwnqTWDw+5ge7WY9kOBPZURp5u2DT3Dw63IR3kwvb9sSzkVR7zl2sNfh8p3vfAeLFy+G4zg477zz8Nhjjx3w+EcffRTnnXceHMfBkiVL8L3vfe/NZk+YDZAoR7FKTY+Ueh1qrj5SCBKm5Hoe6ovywRpjOt2yoM8xl4TTB6ThWRZbhU2uw8mkGlwPDsJ77DHgscfUgGLbNrS3B/p+f78S5smlmdLJVFDaR41rf3W9kqGW1w4Pq+MLhXBsxM/lg2E+dhoZCT26q1YCtWQKVSuBimejArUpa6kc0yuQx8bC8Csm5J1NerM5CKcXieA82yQyawdFKoCgEMjLi5aE8/O56EzaBXmMcz2Hxl0Jp6Y86VlT4x54vHnZqIbeY4ODejKFBs3kOceXhVNaeF2RN1sNsRm9n3nTrBcHV9c5FTQlmLXJ0dGwDvhkSltbuDTd8xAdhLJMUzm1tobp4YN7uh/VQy2ZirgkDg5q58/wx9HaCrS1RdoATUJs3oxw0umll9DfDzz9dJCQoO49D0qhOeMM5epI+T+QaG54J04rMzq3oUT0qTfxOjoMDw/jYx/7GDo6OtDR0YGPfexjKGolsz6+7+OOO+5Ad3c3Wltbcemll+KFF17Q3+/fvx+f+cxncMYZZyCRSGDhwoW4+eabMcJnyt7kvYVjgPmg5yIY//9AAjtXWck+AtHfN10vWNrC59bpuaB/4oWC2mBTO3upf+NxpRFmMgjv0dOjZlwHBrAjn4e3bh2wcSOwZYsWoPHyy+qhlc/rzZP1c/Hll5U629ODam5pOKEeCP6WpeztxARLl2Whlkxp+7prl3ou7t0bbgoJhItvCgXojSO5Da4mO7HfTSCfV0krFIBaZh72l+1In4DEZf4gJtvKq41vhULFSkXOr8cn55NJIJZ/Q/WVggOo2shPgHd56EWmiKKDeZ4qp5GRwMYgpkOg0CbXgPqoZtnhMzxILG8PesPz/n5gcBAxt6LTRHHzZ9JpzU1I+ZflcjR8Gk2gW1bUdlLeR0cRTn6zcC4x1OB50PVGL0p/Og3VIIpFXd7aU6BYVN95HoaHg/QH16f5YVqw5rrQbbVQAErl2DQhemAAePrpKewoJMKVEUa5UtkODiqTjWRS9XH7+/HCC+rnAs9TB5TLmJhQmwNjxYpgiQLqPws43Et9pmeK/kE2CmK73+y9TUREbzAOJiIdSGg6kMBY79iDYW7UaIqC9cKyvJkNJc2NNc1Xvfzy2OvcQ9kUpU1PdJ5enm4zzWY4HT4JQAKpWT50nol5bf7+QPc8mNBoxpavJ/bOdM96ZXGgl3mdQ6ljLs7ztM2UVzPdXMw3Y+3z9Byo/GbaXHam3xAvo3q/EX6+ucmuMJ2jLaL/5Cc/wa233oovf/nLeO655/COd7wDV155JXbs2FH3+O3bt+O9730v3vGOd+C5557Df/2v/xU333wz7r///iORXaEROZCSSJijnnrns2P1R6a4xjrxkf48vzYbbNC431yCHLlAMIqKPK2mpsLLULBRcydIJiZQOiwrTD8fW0TOM24PdgtzzoCyU68I6w0mTVG5brFb1rTl4rys+KutLZzj4JFUqKqbmxFs9IppddPaGr0WLxNz4Go4AiKGGmJeFTGvOi0TJA7QwJWP2yICEBsV26jqEDncqZJ7f1P7cN0wrroWsNmkD60woPzTZzx/02Kk04xBHW8s+momIvVnTCzVawP1LjBtDMvarb53MhnERwIwNRWpn2ntuF4QeHZpWJZSWNrbD5CZg1DvedJQq9NOnIH4Rz7yEWzevBlr167F2rVrsXnzZnzsYx874Dlf//rXcdddd+Fb3/oWnn76aWSzWVx22WUYHR0FALzxxht444038M1vfhNbtmzBD3/4Q6xduxZ/+qd/+nvfWzgGHGgii1PvN8tnQrlh5S/zeuxBZ2px2laS0fG8SOgRYIZNMuuJc1NTWuCNqK5mtslA1cub60a/MjbCJPsAhKFUeJ7oPeXLtMvm3CDZHf5YrTdJTDcwQ5ZQNVDUjPb2UOSmeQ76jvsvmAUaQ23aJHY9+13Pdkf6O0GGYm4l0vdyXYR2ITiY8qkdIkipB4BCAbZXiayKI614OAjNQvemfkFzc7DCjGb4LUt7qbN57MjEORVtPB6dXAeg2gkVnIFZJnV1YtOQWlZYf/VEaQNdrkbBq3ppVtc55ZTQG4FNsNel3q6qQcL1yjzq8B2IQ+p8NCpiu9/svU0O3LqFE5KZRD8eAoT/z4VGvqEkfUeYsa3552YsdYKHtuBwAda27Uj4Dx4upJ5IXS9WNcUZN8sAgPZYrtVqOm54W1tbJA/c85nuQaFszA0peVnSd3QsiaOTk5NwXVd7MNNnPP3koU7lTt7Nvu/rdPL08Pjv9erDrHe6J3mh801DzVjeAEAx2imsCXlVU5qonMiznIvTJAZTvnh4Hl7f5v9m+s3JBp72ept6UtlQ3ng9t7a21q1Huq8pyvPNSHnbpro2xX9zgqbepEtzc7P2XOd5JY96/rdeyKKTncMVxQ/3+Lvuugt/+qd/ik9+8pMAgLvvvhv/8i//gu9+97v4m7/5m2nHf+9738PChQtx9913AwDOPPNMbNq0Cd/85jfxB3/wB4d1b2EWwFU4c3TFR4j8f/pLIyfm/UWuN6l0GnDZdzSazOV05z6bBWKu2uMCrotsNtAA+/r0Zky0cVbC3Q/P68TAgDrv7HRauU6Rq1RvL2LLlqk4pcH1c7lAIKYRsUlLizrIcfSYQ8UsB2LlEhLlMpxsN/L54HTmzQTEkMmotJDTdDweeFK7HjxPhaE55RSVRHKupn2qpqaUA5nnqWXkc+ZAb4oarAqH64be8ZkMkEiqDVbLxWix08C9p0d9Viioa9ULW0IO/hTLu7UVhhuWyqed9NAbxFelZdRUFzSYpXjkMdSQy8X0YN9GFSi7YYDQYJRsZzJwEdNLzZNJ4C1vUekIIolgabqsPA97etSS+WJRuWD19OD111dicBBYtUp9vXGjeq1eDVx1lTp//XqV3ve/H0gUdqCSWYj+/hhyORupoqrIV15JwPOUo/WcOWql9759qiks7a2hVI5h69bAm40UiN5eHUuXvOjJmz+bVWPY118PhYLW1rDZOw7CkQgFXM1kUHFjEa9z7jAWoVxGNpuCZUFNSgC68nM5FfMfAHDppcotfetWoFBAz+qw7VC7y2SC+p4/H0inkUwG3pfUoMpl5cDmeSpWACkbQTr0jEU98coUGygj3IWTB+U/4ZnC4flhHZ2B+LZt27B27Vo8+eSTOP/88wEAf//3f48LLrgAL730Es4444xp5/i+j7vvvhtf/vKX8aEPfQgA8KMf/QhdXV34P//n/+BTn/oU+vr6IpPnp512Gr72ta/hj//4j+F5HizLelP3Fo4RdcS9iJ0z7bf5AtQDgd7Tci/6jttuQMf+dlwVBSbmVdWDrlxGX19KhVk7/3x1nOtixQpgSbYCbB1AMnk2fvtbpb1ezNPsOMDpp6Nn82bETj9dP0xXrQp0wf/Pjc4Auy7sstpEE6tW6fzabinM99AQsHMnFl6ZhWXF1CEU38yy4LrKLne1V/CqlcBvf6uymUAFKLpw3U4Ui6poOjrUJSm+eCqp0j00FG4gSftGFgphkZbL6jE8Oanse6IdKp47YpEVa2Y1UqiWYhG638H2fdY2Qov1dLG5c1VdFIvo6enEsmXqOOqj0F4l/LFNenc6rR71ySSQStaiLu/FImKWhY6us9HfrxzMe1dcrI4bHAQyGQwMqEUBuRyAf/q56oOtWqW+/+lPgVwOm4sfwubNwPXXKyfp++5TX61ZA3zkD6uoWTbWr1e3vOIKwM7vAOZksT+zFI4DdCWrKLk2tm5V+VqxQqWXVgFQd2F4mHmW8w3ag1UPVS9cATc5GZYJhcrRFZhOwx2k98nwc8fR+9SMjgKJoE9APxkKnWdZqm5suOi0AMACLCfs3EH1fT784eC+V10V1mexiExO5YWc4OfMYas4gg1XstkgfS0tqpLLZZx+enDvvr7ojANfvkDeBfXEc/pN0iRawwrtYruPlO0WEb3BML2ySdilv8D0jUHNkC2Hcw8AkTjhpvBXz7OZi+MUZ5tioXMP3noezuaGlL7vawGSb8rJz6c8Uxxr2oDUPIaOo/IxNw01xV++OSpdj9JDAjoPp0Kbera0tCAWi+mY6fQy80zvzc9JcCfRleebe7nXajVMTExM83iOxWI6zAwPYzMxMaFj2ZMYbtt2RAgnAZ3O55vHep43bWKhnpe+OTHDQ6hQ+BQesofeT0xMRIR+CpFTb6KH0k5tmk+68A1wubDd1NQ0LRY6j0lPbYLXtemtT/H4qUzoL72ofqrVKsbGxnRbmUlE57/bk5U3k/9SqRR5T+GCONVqFc888wxuu+22yOeXX345Hn/88brXfeKJJ3D55ZdHPnvPe96De+65B5OTk7r+hZOElpbpopgZOxWIxungLkHkxgSEOyLSCLOnB9X0PNiOGwZ37OtDybVhFYNBFwnvgXiXTEKpgoGyuLS3psKzbN6M3B//J2zapI65+rR0GHwym1WjKiAcOAGI9b9oKJmIDgbmzMFufx4wDnS5e9RxNMgYGgK2b0fsTBeOs0QNTGgU67qIxxNIWRVgaAiZ7FI8/TTCYzwPwEKMjakQrKnyG5js6NYDwFNPVWP6gQE1EHvrW9Wgft8+YMsWtb9UNqsGeSQu9/YCnY6HsmvrDTxTThWOY2uvq4XpEjA0hM5sFrXeTsSK+4MLeFr8PHuNKv/BQTXYTKcRiqMUbzsI67J8mYNsNqGrOpNReQGCzTLjADwH8IDOYh6dhQLgpQFkVN1s3aqU5gULQlc6pPjYWq843rxZnfLe3qJSwv/wD/EGutGd9IC1a4HeXrw8uRJPPQX84R8CC/O/wdMtb8PDDweTMRv/HYmeHmzatAR79wLXvb8CPPkk3DULsWGD0pfPdtUsxubNKk8rVgB2cQ+AeRgaUkICNm5EqrcX5XI3gCCeueOg5MxTscrLQEsQZnRiQv18TjtNDXIpfj45bFK5NTcDsFQd1HoWal16akoVNcWjNR+9lgU9OWXToJbF8QeAJU4FS3osvDpk44GHYrjqqrNhl+8Fdu3CsmXqlI4Opa/oQTdNZmUyWgDSak2hgIU9JQAOKn1vU8LS5s3hGnn6jZgeqzTgruf6zmcHDLt2YlPF4cVKVc+WQ7Hdh8MTTzyBjo4OPRAGgNWrV6OjowOPP/543cHw9u3bkc/nI7a+paUFl1xyCR5//HF86lOfqnuvkZERpFIp7ejyZu4tHCNaWoCmpqhdrid6mTN0/HdLIjrNrpLQRnaUXIgtC1ixAhUkYA0FG4QGe1agXMallwaPpNyHdWiRJdarwPqtQH8/Mp88G2vXqsvceFFgi6nvcM45iJGB6ekB4nF0F54P000h2yhk3OAgkM1iR/psWBbQ7b4RpsVxlGHduBGYPx+Os1I9f9nqpvFxIFXcAWzejOyaq9HfH5RTPg+Uy3CTnSgUlA7ZaZXwakHtO+F5wJI+JTJu2aImTVevVs9VivRBccrz+dCmnXUW0NXqoerFtPc1QY9JEnFj+TfUMziZxNkrkuoCmzerA6+4AvvdBDZv1vuIhrZ7/nydh1ihgFWrlqKjQ9kl2qfczu+I3Lgzk0EtbSM2tEMlng6kPsDoqN6IZM5NZ6NQUPddtw7I5WK47poeVDwbmzYpcd0eehX4/veBW2/FU80X4vw5BeCrXwUuuABrkx/CT38KfPnLQOIf/g5O5mY88shryGYXAWvXItbTgw0bViKfB65evQdYuxa1T/4nPPSQ0uPPtgaQ6u3F1q12aLvdElw3haEh1T+y+59HVy4Hz0sp7ZhmjYMZgoobg1vWUYnQ3Bz6a5C3fTwOVJx5cIth8yu5NpLpTsR6VD+VinzfPqA9twT5wah3vPZLoXLM54FMBrW+s+FZCdjB5reXXQace27wu7n1VlWIDz8MFArIrFJppDl3HU7IdXV/SveXm9Oqo1kuY+WlNVS9GPZnlyOdDvrAPFQTd/ufSUTnTjT81VCryMR2HynbPWvCuRyNuLf3338/li9fjpaWFixfvhwPPvjg0Ur+ITFTKA/+Xb2wByR8ciHdjEtNmJ67M4VLoWNINDS9iEn4JBHdcRy0trZqYZnH9DZDp/BY3ySGkihZKpUwPDyM/fv3Y2RkRMf8po1NSQBOpVJIp9Po7OzEnDlz0NHRgVQqhWQyifb2drS1temY5jyGN71aW1t1ehOJhPYqp7y6rotKpYLR0VGMjIxg//792L9/P/bt24fh4WGMjIygXC6DNj0142xTOh3HQSKRiMR6p/ji3EucxPDx8XGMj4+jUqlgbGxMv0iABqDjeCcSCbS2tmqhnLyiKeY4eYCb3t+UNl5vPAY8bz+HEk/d9ECn2Oc8HjlthFqpVDA+Pg7XdeG6rv6c8k1pjsfjui6pbtva2pBIJHQZmrHLuWjP49Tz+Os8tj//nfEJF94++UQL93anlQqUdhLSTa93KvcTgcN9hv4+2LaNrFYtDo9kMokFCxboOGYdHR11vcoLhQKmpqbQ1dUV+byrqwt5cp0xyOfzdY/3PA8FcqURjigntO2mgSx/8cE4EPVU4zE4aDRBoxD6jFyNy2XlneU4auQyOYkdeVvFZQYT0QGgXMapp6qxMlavVqonoK7z5JPA2rVIuPu1oy3SaeXWRq5WfX1KfF+2LAziSa5TNAFgrv9NJvHKK2owrEfBlCcaBQ8NhYOiSMBLqBHl1q1IOVXs2xd8HMTfpAFYyqkC/f2YMyecY6BkDA4CL7ygPouhhmIReOUVdWsKuUJFSbek4i2XAbhuxHFQl9WmTYhtfR7YsEG5fNHrpz8F1q1DauBZ5HJKXE0mEV48k1GvYlHnrbPwO3R7O7AkuQep/O/UPegVxA6F5wHbtqkB4JNPhjFIt25VGdy5UyfastRpdCg1KR2bu1hUMT/LZVXPyaQS1Z98Eq+8os5Z2FMDHnoI8Tiwa9d25SUYxMHfuhV46qngOps2wXWVnjI0BO2itmVLqEsgn9fV3dYWXGdgAK6rPMFcV7XfzZtVMvr7o3Hi43Ggq7UEe+jVyGZnthXGgJ+YCNvc0JCaKNm9O4y5u3u3etVd/g/WNs3grel0OPAG8NBDwHPPBcfv3o3Y4Kvo7Q1XitNPRc/kzJ0bzjlZlioAqjeosv7dUCJ8JkxMqPZvBuCnBNMAnMcQoEIgMU4HCT48jo/tXg9g7WG81h+y7T4c8vk85s2bN+3zefPmHdDOAzisvsG+ffvw1a9+NTJIfzP3nk2c0Lbb/K2Zk+EzeaCTcSIRnYRTem4HNrni2eEmhJ6H3aMJ9Perj3I5qHOCZ8bZuRJyOeB3WIrfpd+mztm4UdmgDRuQTALDw6+pZzxf+eY4SmVes0bZ/d5e9d369epcEtEpdAtt7mBZZBZCN3B6KA8MAI88AmzbBsdhq63GxwHHUc/jwUFgwwYkvBIGBgJP83we2LlTa5+dTgXYsAGZjN6eQ6f5lVfUY5K0f89Tx4yOArHifiST6tFM5hBBEii+Oqe5GUh4JSVmb9qk8v7ww8A//RPwwx+qjSTvvBNYuxadxVd1dQEIL0bu5vk88PLL6HTfwPlvrWFpTwXdzn4lcA8M6FjlZE9ixf3qnj/9qaovcu0mw/TMM8DGjbDdktbzf/hD4Be/AHYP28jnlc3ZvBnAtm3Y/9hjQKGADRugJqyLRVT++Z+xcSPg+/+KrtYS8N//e9AE/lVNYKxfD2zeTN08de/16+G66v3gIIDt24FiES+/jHDSo1jE5GTosY/Nm/VOsK4btN9MBq8WUvj3jTG9mSjtqQKoCfDlvVUszFbRnanCssIiILNF3b5aZh6QzfIFl7o465lAuK662NatwM6duntcdVJAOo3OoeexdPBXSCaBn/xzCpW+t+kOHlVnOq1WB9D8ElxX/ROI6Lkc1EG5nPpu82ZYlmp3mzcjnJ0ZHw8D69d7FnAnGR7/p56dP0zEdje27bYO+cgTGIp7+53vfAdvf/vb8f3vfx9XXnklXnzxRSxcuHDa8RT39oYbbsC9996LX//617jxxhtxyimn6CX7TzzxBK677jp89atfxTXXXIMHH3wQ1157LTZu3BiZuTjWmKJ5ve9M6oUKAXBEvGDNMC7mfQFME1i9Og+beoIi94DnHsuu60Y8z8nLm4R5+ozy29TUpL2S+cQA93o2BVE+CUD3rxdahXuLj4+Pa5E0Ho/DcZy6HsgAtBBbbyIDmL6agO5FXtY8FAqFN+Fe7TwWPN9QdWpqalq4knphZfjmpc3NzZGwJ4cSL36mmO31YpGTYE11zMuK2goPN0P3pM0+aSaUbyDLhW8zXWYaeXgXynu9OOZm26gX+50L6XyiwJyM4tc4ETzRD/cZ+vviOA62b98+bWXAoWD+NgAccDbcPLbe+Qc7vt7nwu/PCW+7TS82wrRhpqjO/qrNG23lscDFdo9tMBrsKkXjs1xObTjJRfn2dvV2994Y4vEUOr1iKOhqUV55iaG1VQc2rTkJxGgkOzysziE3XzMQK//fsvSSbFhudGO1clmNeItFIBscrxVR9j4YbbmuHXoKuS68YE6BjiHn/fHx0NGH9IrxcQRlZWstQMU2jUU2DaVb6rkMz9OhZfQFd+0K63NwUI3yqO6SSe0Gn1qxAq2tMTXYKyihombZiDkIB1xUDjSo4h5NLS2qDsjDfN++MEYLDcz4jqoU3yRI5vDwGHbubNP5ojE7XFfNaoyPI19GmI9sFkUEYkexCAwMwFoNALtRLi9WbaSrS3vL0QCWnCxHRwE0qTa5b18YoQTlMiab2eRGsBub54UbmVE7IWe9nh5jTBmo4U5yCTWr4MvpqyLLZRWFaGoqLFLyiuOO3JH26nlhffDfHIAYJWyFKv7duxH+BotFJZIEA2LHsVVb9zwd15ZCGANQdUSzBwgnc5amg0SNj8+8MxxheqSzNAN4U95ss9V233HHHfjKV75ywOs9/fTTAOrb5oPZ+XrnzXROqVTC+973Pixfvhy33377Aa9xqPdudBrCdlPoBXp/GHYbUOHBbCc4j3azDK6jDxsfB1pa9KbYQVQXoOiGQajzecSywMBACp4HLM24avI0WNGlJhX3YffuRdGHnWWxJTIsvRTrrKsrjL9tWcqeB8Lx0FDw7yqof1g4Mrz+OrBvX/gYYp60ngdlAALv+0Ihpa4TTPLR4xPlMrBzp95TkvTqGmK6HwOoCVPPi2mBFq4LKx06IZOtpu4An+eg8B/aEFBsOGJwENUtW2ABiAWx7JzMkrBu6B9qB2S7SSSj8qTdST0vtOe0wmDXLmU8uIcy7ZbNFGXXTSGfB/r7pzBnTrPe8HzfPsD3Vb9rD4DOclllwbLwBoA0gF27pgC8BhRPhzs4GNTLa8qsDQ4CXV3YtQvYtWtST5R4nu72AZa62ciIMk/NzQDKLo/SE+YRoS6cSDrYu1fdgsLdUfekrU1NMGMozwTkebqeeZ+LTKbjJPR7+sv7Z1DZDlY/eOEu4XPnwvOg93WBE4O9cyeweTNia9bgt7+N4ayzgOXBhW2rhmQypp0ckslEGOI8mQSam3Ve4MbDVSO7diG2ooahoaBP2OuE/W/qC9ez33wFWb3VZG8Ssd2Nb7tnhYh+NOLe3n333bjsssvwpS99CQDwpS99CY8++ijuvvtu/N//+3+PTcYaiGPdaTwawuPvk35TJD3awqgZ8/twzz0SdfVmr3G0Ntqc7YOWo8nhPkOPBLS64WiRyWTQ3Nw8bVZ5z54902axiWw2W/d4y7Iwd+7co5bWkxWx3UeZI9DRPymZQeQ9tPNm+PxAkzC/LwfYCFOY3cxG2w0AN910E66//voDHpPL5fD8889j9+7d077bu3fvAe08oLzR5lOoB9TvG4yOjuKKK65AMpnEgw8+GAnpls1mD/ves4WTznaT0Hb0bjDzV83N0Qk2037U2fHxSJuYI02dOYtDO+FoJWQmDjaxeYA2cbBL1yL/TRmfHRpqIvswTzoKnOjt7UREbHfj2+4T4Kf3+3G04t4+8cQT+OxnPzvtGOoA1GNiYgITzBNrZGTkMHMzM9wDnf5y714ztjj3dCWvZQARL3Aeb5ygY8lDmJhpxoaOIWGWPJ3JC5e8wGlzUu4Zza/DY29T+ut5ok9NTaFareo8U/xw2uCRe07P5IlO5VbPE930iDc90ScmJiIbSdL/FBqEzqEY5DzGO4VUofI5mCc6hYEZHx9HtVrV4UG4pzO1N8ovDzdiWRampqZ06JZqtao3PwVCr2sA2rt/fHxcl+3k5GSkPCme+oFiyVPaSeCncudx7Xm++Aat9PvhoV/Mdk/lRfnjnut0DoVOoVA6FLLFDH/EPdF5uZmrKyjtZtgXvikqj/FO//N48DN55tdbUXKkKJVKkRhmM8UvezPP0EbAtm2cd955WLduHa655hr9+bp16/CBD3yg7jkXXHABfv7zn0c++9WvfoVVq1ZJPPQjTCPY7tLo6PQwJ0DocUruNvTecQDfV2EZxsaUJ3jwG4yNjQGVSujRVi5jdLKEUqKqPrNtlMslVCrKEaxUCjaxGh8HxsZQKZV46FJYY6Ph+tupKWB0FL5fgucBpbExdd7oKGqJEmKjoyo9lYp61Wrh7lHklUJxOOjcchmVSglNTUDJKUMnzLbV/xMTQKWCcrkE2wYsyluphBIsWJT2IN2VClAK0luGymepVAIqFdT4MSVoL65qVf1fKlUxNmZjYoIuqTa4pGPKZaBUqqBc9lCp0PsSEIthbExtnlZyx0J3d7oBeR+RQDI+rhNRLtsolQCvXAZ8X5WjVw3r0LZVzF2q+6A8dPuo1YL16zF1PLlZURlPTKjE0z1HR1GxS8HigzFMTU1pZzja6LQ0NqbaV6WC8VrwfPd9wPMwOVmC7wf5npxEpVICMIbJyRJKQdo8r4RaLWjX1SpGR1V7qVSAUpNKw+Rk0IZKgDc2hrHmEiYm1HsruE7FK1HVworVUKnEdPZ5E6pUgnuVyyijpB34SiW1EVpQtCjVSsDUFMplB2NjqlgpXa6rNKLxcfV3YkKVia4bunE8rsq7VgN1L2NBPUfySe1dJUTVgWWh4tnqd4cgtnnQtsfGgBKCthyLqcSVSqhUbPWdVQ5/W7Wa+p9+b1SBBI+9TGkYG9MebqNB+znZbTegJsEzFHrqAFxwwQUYGRnBb37zG7ztbW8DADz11FMYGRnBhRdeWPecxYsXI5vNYt26dTj33HMBqLJ89NFH8d/+23/Tx5VKJbznPe9BS0sLfvazn00TH97MvWcDDWG7eWgGIAy5ZMYLAaIiNQvfUC2VlJc4f6DZNjA6qp5ZXkl/Rs8KMpE2PQOamlS/oKRsnrbPZH+mpoK9EMrw/RJKlUpo+ChAdaUS2pnx8dBmU8wsevCSbRodxcSEo2JW82cRPUAD+++SHaY+SamknoGVikrb6Cg8T4V4KQXPuHI5ePaPjgLj46iVSswuK/syMaFOV7a7hnI5ps1uaXQUlZh6HtPjshT0GajKaE6guTl4NE6Nhn0h7kU7OYkqlJAVc11gbAxlp0RFoNIMqPKdmgr7P7SHBdltKjtK1NRUWF5UTxMTKrHcMFH9jY7CdZ1AT5+C5zVrE6BskarXMoCS66JaLalyAKAWfZUAjOvPlO2eQK1WQinoN0xNlQBMqnY9NYVSqYSpqaDca1HbPToKtJbLGBtTdTM6qu6LsTFUKtT3Aqya6ldR3VCaKaRLqQTVdwzsU6nqRDzRaXFHc7Nq87VaWJRUd7yompqUvR8dBVrHRiP9yEqphHI57JLadGKphIkJtZKhVK2COiOjozGVPreCkuep7/1RUGMcHVXX07811rcbH4+F/U9KMG8XZmg1c3UI/faoPTQ3YzQ4Xmz3SWa7/Qbn9ddf9wH4v/71ryOff+1rX/OXLl1a95zTTz/d/9rXvhb57Ne//rUPwH/jjTd83/f9eDzu//jHP44c8+Mf/9i3bXvGtNx+++0+AHnJS17yOuFet99++xF7hjYK9913nx+Px/177rnHf/HFF/1bb73Vb2tr8wcHB33f9/3bbrvN/9jHPqaPf/XVV/1EIuF/9rOf9V988UX/nnvu8ePxuP/Tn/70eGVh1iK2W17ykpe8Dv46GW334XDFFVf4Z599tv/EE0/4TzzxhH/WWWf5V111VeSYM844w3/ggQf0+zvvvNPv6OjwH3jgAX/Lli3+H/3RH/nz58/3S6WS7/u+XyqV/PPPP98/66yz/IGBAX/Xrl365XneYd17tiG2W17ykpe8Dv4S231gGt12N7wnOnE04t4e7jW/9KUv4XOf+5x+XywWsWjRIuzYsQMdHR0Hz0SDUSqVsGDBAuzcuROpVOp4J+eII/lrXGZz3oAD569Wq+G1117DwoUL9UoD4MBxw4HDf941Atdddx327duHv/qrv8KuXbvQ19eHX/7yl1i0aBEAYNeuXdixY4c+fvHixfjlL3+Jz372s/j2t7+N7u5u/N3f/Z1ebiwcecR2H3tO5ufjbGA252825w0Q2300+PGPf4ybb75ZezpfffXV+Na3vhU55qWXXoqsDv7CF76A8fFx3HjjjRgeHsb555+PX/3qV2hvbwcAPPPMM3jqqacAAL20oWPA9u3bkcvlDvnesxWx3ceek/n5OBuYzfmbzXkDxHYfDRrddje8iH604t7OdMyBYuXMtGyjo6NjVj5QiFQqJflrYGZz/mZz3oCZ85emTYQOgTfzDG0kbrzxRtx44411v/vhD3847bNLLrkEzz777FFOlSC2+/hzsj4fZwuzOX+zOW+A2O4jSWdnJ+69994DHuMbYfOamppwxx134I477qh7/KWXXnpIofYO5d6zDbHdx5+T9fk4W5jN+ZvNeQPEdh9JGt12Tw/G3GDwuLecdevWzRjX5oILLph2vBn3dqZjZnOcO0EQTj7ezDNUEH5fxHYLgiC8ecR2C8cDsd2CIAhvHrHds4TDCv5ygnI04t7++te/9pubm/0777zT37Ztm3/nnXf6lmX5Tz755CGna2RkxAfgj4yMHLnMnkBI/hqb2Zy/2Zw33z/y+TvYM1QQjgZiu48Pkr/GZjbnbzbnzffFdguzA7HdxwfJX2Mzm/M3m/Pm+2K7henMChHd933/29/+tr9o0SLftm1/5cqV/qOPPqq/+/jHP+5fcsklkeM3bNjgn3vuub5t234ul/O/+93vTrvmP/3TP/lnnHGGH4/H/WXLlvn333//YaXJdV3/9ttv913XfVN5OtGR/DU2szl/szlvvn908negZ6ggHC3Edh97JH+NzWzO32zOm++L7RZmD2K7jz2Sv8ZmNudvNufN98V2C9Np8v1DCBwjCIIgCIIgCIIgCIIgCIIgCCchDR8TXRAEQRAEQRAEQRAEQRAEQRCOFiKiC4IgCIIgCIIgCIIgCIIgCMIMiIguCIIgCIIgCIIgCIIgCIIgCDMgIrogCIIgCIIgCIIgCIIgCIIgzICI6EeJ73znO1i8eDEcx8F5552Hxx577Hgn6U3xN3/zN3jrW9+K9vZ2zJs3Dx/84Afx0ksvRY75xCc+gaampshr9erVxynFh8cdd9wxLe3ZbFZ/7/s+7rjjDnR3d6O1tRWXXnopXnjhheOY4sMjl8tNy19TUxP+/M//HEDj1d2///u/4/3vfz+6u7vR1NSEhx56KPL9odTXxMQEPvOZzyCTyaCtrQ1XX301hoaGjmEu6nOgvE1OTuKLX/wizjrrLLS1taG7uxv/4T/8B7zxxhuRa1x66aXT6vP6668/xjkRhMZFbPeJ+/zniO1urLoT2y22WxCOJmK7T9znP0dsd2PVndhusd1CfUREPwr85Cc/wa233oovf/nLeO655/COd7wDV155JXbs2HG8k3bYPProo/jzP/9zPPnkk1i3bh08z8Pll1+OsbGxyHFXXHEFdu3apV+//OUvj1OKD5+3vOUtkbRv2bJFf/f1r38dd911F771rW/h6aefRjabxWWXXYbR0dHjmOJD5+mnn47kbd26dQCAD3/4w/qYRqq7sbExnHPOOfjWt75V9/tDqa9bb70VDz74IO677z5s3LgR5XIZV111Faampo5VNupyoLxVKhU8++yz+Mu//Es8++yzeOCBB/C73/0OV1999bRjb7jhhkh9fv/73z8WyReEhkds94n9/DcR2904dSe2W2y3IBwtxHaf2M9/E7HdjVN3YrvFdgsz4AtHnLe97W3+pz/96chny5Yt82+77bbjlKIjx549e3wA/qOPPqo/+/jHP+5/4AMfOH6J+j24/fbb/XPOOafud7Vazc9ms/6dd96pP3Nd1+/o6PC/973vHaMUHlluueUW/7TTTvNrtZrv+41ddwD8Bx98UL8/lPoqFot+PB7377vvPn3M66+/7sdiMX/t2rXHLO0Hw8xbPX7zm9/4APzXXntNf3bJJZf4t9xyy9FNnCDMUsR2Nw5iuxu37sR2i+0WhCOJ2O7GQWx349ad2G6x3UKIeKIfYarVKp555hlcfvnlkc8vv/xyPP7448cpVUeOkZERAEBnZ2fk8w0bNmDevHlYunQpbrjhBuzZs+d4JO9N8fLLL6O7uxuLFy/G9ddfj1dffRUAsH37duTz+UhdtrS04JJLLmnIuqxWq7j33nvxJ3/yJ2hqatKfN3LdcQ6lvp555hlMTk5Gjunu7kZfX1/D1enIyAiampqQTqcjn//4xz9GJpPBW97yFvzn//yfG8Z7QxCOJ2K7G+/5L7a7ceuOI7ZbIbZbEA4fsd2N9/wX2924dccR260Q231yYh3vBMw2CoUCpqam0NXVFfm8q6sL+Xz+OKXqyOD7Pj73uc/hoosuQl9fn/78yiuvxIc//GEsWrQI27dvx1/+5V/iXe96F5555hm0tLQcxxQfnPPPPx//+3//byxduhS7d+/GX//1X+PCCy/ECy+8oOurXl2+9tprxyO5vxcPPfQQisUiPvGJT+jPGrnuTA6lvvL5PGzbxpw5c6Yd00i/T9d1cdttt+EjH/kIUqmU/vyjH/0oFi9ejGw2i61bt+JLX/oSfvvb3+rlhIIg1Edsd2M9/8V2N27dmYjtFtstCG8Wsd2N9fwX2924dWcitlts98mMiOhHCT7jCChDaH7WaNx00014/vnnsXHjxsjn1113nf6/r68Pq1atwqJFi/CLX/wCH/rQh451Mg+LK6+8Uv9/1lln4YILLsBpp52GH/3oR3qjj9lSl/fccw+uvPJKdHd3688aue5m4s3UVyPV6eTkJK6//nrUajV85zvfiXx3ww036P/7+vpw+umnY9WqVXj22WexcuXKY51UQWg4ZsvzniO2W9GodSm2e2YaqU7FdgvC0WO2PO85YrsVjVqXYrtnppHqVGy3UA8J53KEyWQyaG5unja7tmfPnmkzdY3EZz7zGfzsZz/DI488gp6engMeO3/+fCxatAgvv/zyMUrdkaOtrQ1nnXUWXn75Zb1b+Gyoy9deew3r16/HJz/5yQMe18h1dyj1lc1mUa1WMTw8POMxJzKTk5O49tprsX37dqxbty4yG16PlStXIh6PN2R9CsKxRGx3Yz//xXY3bt2J7Z6O2G5BODTEdjf2819sd+PWndju6YjtPnkQEf0IY9s2zjvvvGnLONatW4cLL7zwOKXqzeP7Pm666SY88MAD+Ld/+zcsXrz4oOfs27cPO3fuxPz5849BCo8sExMT2LZtG+bPn6+X5/C6rFarePTRRxuuLn/wgx9g3rx5eN/73nfA4xq57g6lvs477zzE4/HIMbt27cLWrVtP+DolQ/7yyy9j/fr1mDt37kHPeeGFFzA5OdmQ9SkIxxKx3Y39/Bfb3bh1J7Z7OmK7BeHQENvd2M9/sd2NW3diu6cjtvsk4ljvZHoycN999/nxeNy/5557/BdffNG/9dZb/ba2Nn9wcPB4J+2w+bM/+zO/o6PD37Bhg79r1y79qlQqvu/7/ujoqP/5z3/ef/zxx/3t27f7jzzyiH/BBRf4p556ql8qlY5z6g/O5z//eX/Dhg3+q6++6j/55JP+VVdd5be3t+u6uvPOO/2Ojg7/gQce8Lds2eL/0R/9kT9//vyGyBsxNTXlL1y40P/iF78Y+bwR6250dNR/7rnn/Oeee84H4N91113+c889p3fKPpT6+vSnP+339PT469ev95999ln/Xe96l3/OOef4nucdr2z5vn/gvE1OTvpXX32139PT42/evDnyW5yYmPB93/cHBgb8r3zlK/7TTz/tb9++3f/FL37hL1u2zD/33HOPe94EoREQ231iP/85Yrsbq+7EdovtFoSjhdjuE/v5zxHb3Vh1J7ZbbLdQHxHRjxLf/va3/UWLFvm2bfsrV670H3300eOdpDcFgLqvH/zgB77v+36lUvEvv/xy/5RTTvHj8bi/cOFC/+Mf/7i/Y8eO45vwQ+S6667z58+f78fjcb+7u9v/0Ic+5L/wwgv6+1qt5t9+++1+Npv1W1pa/IsvvtjfsmXLcUzx4fMv//IvPgD/pZdeinzeiHX3yCOP1G2PH//4x33fP7T6Gh8f92+66Sa/s7PTb21t9a+66qoTIs8Hytv27dtn/C0+8sgjvu/7/o4dO/yLL77Y7+zs9G3b9k877TT/5ptv9vft23d8MyYIDYTY7uP/LDwUxHY3Vt2J7RbbLQhHE7Hdx/9ZeCiI7W6suhPbLbZbqE+T7/v+m3RiFwRBEARBEARBEARBEARBEIRZjcREFwRBEARBEARBEARBEARBEIQZEBFdEARBEARBEARBEARBEARBEGZARHRBEARBEARBEARBEARBEARBmAER0QVBEARBEARBEARBEARBEARhBkREFwRBEARBEARBEARBEARBEIQZEBFdEARBEARBEARBEARBEARBEGZARHRBEARBEARBEARBEARBEARBmAER0QVBEARBEARBEARBEARBEARhBkREFwSDSy+9FLfeemvDXPdIMzg4iKamJmzevPl4J0UQBEEQDgmx3WK7BUEQhMZCbLfYbkFoNKzjnQBBOFl44IEHEI/Hj9n9NmzYgHe+850YHh5GOp0+ZvcVBEEQhNmC2G5BEARBaCzEdguCcLQQEV0QjjKTk5OIx+Po7Ow83kkRBEEQBOEQENstCIIgCI2F2G5BEI42Es5FEOpQq9XwhS98AZ2dnchms7jjjjv0dzt27MAHPvABJJNJpFIpXHvttdi9e7f+/o477sCKFSvwv/7X/8KSJUvQ0tIC3/cjy8o2bNiApqamaa9PfOIT+jrf/e53cdppp8G2bZxxxhn4x3/8x0gam5qa8A//8A+45pprkEgkcPrpp+NnP/sZALU07J3vfCcAYM6cOZFrr127FhdddBHS6TTmzp2Lq666Cq+88sqRL0RBEARBOIaI7RYEQRCExkJstyAIjYSI6IJQhx/96Edoa2vDU089ha9//ev4q7/6K6xbtw6+7+ODH/wg9u/fj0cffRTr1q3DK6+8guuuuy5y/sDAAP7f//t/uP/+++vGOLvwwguxa9cu/fq3f/s3OI6Diy++GADw4IMP4pZbbsHnP/95bN26FZ/61KfwH//jf8QjjzwSuc5XvvIVXHvttXj++efx3ve+Fx/96Eexf/9+LFiwAPfffz8A4KWXXsKuXbvwt3/7twCAsbExfO5zn8PTTz+Nf/3Xf0UsFsM111yDWq12FEpSEARBEI4NYrsFQRAEobEQ2y0IQkPhC4IQ4ZJLLvEvuuiiyGdvfetb/S9+8Yv+r371K7+5udnfsWOH/u6FF17wAfi/+c1vfN/3/dtvv92Px+P+nj17pl33lltumXa/QqHgn3baaf6NN96oP7vwwgv9G264IXLchz/8Yf+9732vfg/A/4u/+Av9vlwu+01NTf4///M/+77v+4888ogPwB8eHj5gfvfs2eMD8Lds2eL7vu9v377dB+A/99xzBzxPEARBEE4UxHaL7RYEQRAaC7HdYrsFodEQT3RBqMPZZ58deT9//nzs2bMH27Ztw4IFC7BgwQL93fLly5FOp7Ft2zb92aJFi3DKKacc9D6Tk5P4gz/4AyxcuFDPWAPAtm3b8Pa3vz1y7Nvf/vbIPcx0trW1ob29HXv27DngPV955RV85CMfwZIlS5BKpbB48WIAarmcIAiCIDQqYrsFQRAEobEQ2y0IQiMhG4sKQh3M3bybmppQq9Xg+z6ampqmHW9+3tbWdkj3+bM/+zPs2LEDTz/9NCwr+nM071Pv3jOl80C8//3vx4IFC/D3f//36O7uRq1WQ19fH6rV6iGlWRAEQRBORMR2C4IgCEJjIbZbEIRGQjzRBeEwWL58OXbs2IGdO3fqz1588UWMjIzgzDPPPKxr3XXXXfjJT36Cn/3sZ5g7d27kuzPPPBMbN26MfPb4448f1j1s2wYATE1N6c/27duHbdu24S/+4i/w7ne/G2eeeSaGh4cPK92CIAiC0EiI7RYEQRCExkJstyAIJyLiiS4Ih8GaNWtw9tln46Mf/SjuvvtueJ6HG2+8EZdccglWrVp1yNdZv349vvCFL+Db3/42MpkM8vk8AKC1tRUdHR34L//lv+Daa6/FypUr8e53vxs///nP8cADD2D9+vWHfI9FixahqakJDz/8MN773veitbUVc+bMwdy5c/E//+f/xPz587Fjxw7cdttth10OgiAIgtAoiO0WBEEQhMZCbLcgCCci4okuCIdBU1MTHnroIcyZMwcXX3wx1qxZgyVLluAnP/nJYV1n48aNmJqawqc//WnMnz9fv2655RYAwAc/+EH87d/+Lb7xjW/gLW95C77//e/jBz/4AS699NJDvsepp56Kr3zlK7jtttvQ1dWFm266CbFYDPfddx+eeeYZ9PX14bOf/Sy+8Y1vHFbaBUEQBKGRENstCIIgCI2F2G5BEE5Emnzf9493IgRBEARBEARBEARBEARBEAThREQ80QVBEARBEARBEARBEARBEARhBkREFwRBEARBEARBEARBEARBEIQZEBFdEARBEARBEARBEARBEARBEGZARHRBEARBEARBEARBEARBEARBmAER0QVBEARBEARBEARBEARBEARhBkREFwRBEARBEARBEARBEARBEIQZEBFdEARBEARBEARBEARBEARBEGZARHRBEARBEARBEARBEARBEARBmAER0QVBEARBEARBEARBEARBEARhBkREFwRBEARBEARBEARBEARBEIQZEBFdEARBEARBEARBEARBEARBEGbg/wf3gERmCI+XyAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 24, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAloAAAGwCAYAAABxbMuTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAACABklEQVR4nO3dd3wUdf7H8dem90AIJISShCIY6b1IU6kWVBSwoAhyoudJ0UOxgXrSfsopAnIqAnqeIFJEVKRIJ/TeEQKhJIRQklDSduf3x5jFkEKCSTbl/Xw89uHuzHdmPjuJzCffajEMw0BERERECpyTowMQERERKa2UaImIiIgUEiVaIiIiIoVEiZaIiIhIIVGiJSIiIlJIlGiJiIiIFBIlWiIiIiKFxMXRAZR1NpuNM2fO4Ovri8VicXQ4IiIikgeGYZCUlERISAhOTjnXWynRcrAzZ85QrVo1R4chIiIit+DkyZNUrVo1x/1KtBzM19cXMH9Qfn5+Do5GRERE8iIxMZFq1arZn+M5UaLlYBnNhX5+fkq0RERESpibdftRZ3gRERGRQqJES0RERKSQKNESERERKSTqo1VCWK1W0tLSHB2GSJFwc3PLdbi0iEhJoUSrmDMMg9jYWC5duuToUESKjJOTE+Hh4bi5uTk6FBGRv0SJVjGXkWRVqlQJLy8vTWoqpV7GJL4xMTFUr15dv/MiUqIp0SrGrFarPcmqUKGCo8MRKTIVK1bkzJkzpKen4+rq6uhwRERumTpBFGMZfbK8vLwcHIlI0cpoMrRarQ6ORETkr1GiVQKo6UTKGv3Oi0hpoURLREREpJAo0RIREREpJEq0RBxg9OjRNGrUKF/HdOzYkaFDhxZKPCIiUjiUaEmB69+/PxaLJcvr999/t+9/8MEH7eXj4uJ47rnnqF69Ou7u7gQHB9O1a1ciIyNZtWpVtuf682vmzJkAXLt2jfLlyxMQEMC1a9dyjTEsLCzXc7Zp04bAwED+9a9/ZXv82LFjCQwMJDU1tUDuWXE2b948IiIicHd3JyIiggULFuRaPjk5mf79+1O/fn1cXFwy/axFRApDcpqVNKvN0WFkS9M7SKHo1q0bM2bMyLStYsWK2Zbt1asXaWlpzJo1ixo1anD27FlWrFjBhQsX6Ny5MzExMfayQ4YMITExMdO5/f39ATMhqFevHoZhMH/+fJ544okc49uyZYt9RNuGDRvo1asXhw4dws/PDzBHvb377rvMnDmTN954I0vn7BkzZtCvX79SP6FmZGQkffr04b333uOhhx5iwYIF9O7dm3Xr1tGyZctsj7FarXh6evLSSy8xb968Io5YRMqKaauPEnn0PIE+7izZG0OAjxufPNaERtXKOTq0TJRolSCGYXAtzTHD3T1dnfM1EiyjZupmLl26xLp161i1ahUdOnQAIDQ0lBYtWtjL/Pk8np6epKSkZHvu6dOn8+STT2IYBtOnT8810fpz0hcQEABApUqVKFeunH37wIED+fjjj1mzZo09NoC1a9dy5MgRBg4cmOP5X331VRYsWMCpU6cIDg7miSee4O23385xTqj+/ftz6dIlGjduzJQpU0hOTuaxxx7jk08+yZTM2Ww2RowYwRdffIGbmxuDBw9m9OjR9v0TJ05kxowZHDt2jICAAO6//34mTJiAj49PjrHm5qOPPqJz586MHDkSgJEjR7J69Wo++ugjvv3222yP8fb25tNPPwVg/fr1WtVARArcwdhExv1yMNO2Kxeu8dDU9Qy75zZeuru2gyLLSolWCXItzUrE27865Nr73+2Kl1vB/7r4+Pjg4+PDwoULadWqFe7u7rd0nqNHjxIZGcn8+fMxDIOhQ4dy7NgxatSoccux1a9fn+bNmzNjxoxMidaXX35JixYtqFevXo7H+vr6MnPmTEJCQtizZw+DBg3C19eXESNG5HjMihUr8PDwYOXKlRw/fpxnnnmGwMBA3n//fXuZWbNmMXz4cDZt2kRkZCT9+/enbdu2dO7cGTCXrpk0aRJhYWFERUXxwgsvMGLECKZOnQpAdHQ0ERERuX7vJ598kmnTpgFmjdawYcMy7e/atSsfffRRrucQESkMu09dYum+syzadca+rVWNAB5oWIXIY+f5cdcZJi47TN1gXzpHBGGxWDgYm0jdYD+HxaxESwrF4sWLM9WidO/enblz52Yp5+LiwsyZMxk0aBDTpk2jSZMmdOjQgb59+9KgQYM8X+/LL7+ke/fulC9fHjCbLr/88ssc+1jl1YABA3jllVeYPHkyPj4+XL58mblz5zJx4sRcj3vzzTft78PCwnj55ZeZM2dOromWm5sbX375JV5eXtxxxx28++67/POf/+S9996zL7DcoEEDRo0aBUDt2rWZPHkyK1assCdaf+4sHx4eznvvvcfzzz9vT7RCQkLYuXNnrrFnNJ+CuQRUUFBQpv1BQUHExsbmeg4RkYJwLdXKfzeeoJyXKxuPXWDe9lP2fb7uLiz4e1tqVTKfNY+3rE4lX3emr4vib19vA8DZyYLVZvDtoFa0rumYFVaUaJUgnq7O7H+3q8OunR+dOnWyNx+B2ZyUk169enHvvfeydu1aIiMjWbJkCRMmTOCLL76gf//+N72W1Wpl1qxZfPzxx/ZtTz75JMOGDeOdd97B2Tl/sf/ZY489xvDhw5kzZw4DBw5kzpw5GIZB3759cz3u+++/56OPPuL333/n8uXLpKenZ0pgstOwYcNMqwC0bt2ay5cvc/LkSUJDQwGyJJ+VK1cmLi7O/nnlypWMGTOG/fv3k5iYSHp6OsnJyVy5cgVvb29cXFyoVatWvu7BjU3GhmFoQlERKVSGYbD68Dk+XnGEHdGX7NstFuheL5g7Qvx5tFlVKvl6ZDrute51OXw2ibVH4gGw2gycLLDvTIISLbk5i8VSKM13hcHb2ztfD3QPDw86d+5M586defvtt3n22WcZNWpUnhKtX3/9ldOnT9OnT59M261WK0uXLqV79+75Dd/O39+fRx55hBkzZjBw4EBmzJjBI488kmvStHHjRvr27cs777xD165d8ff3Z/bs2Xz44Ye3FMOfk5ob+3hZLBZsNnOkzYkTJ+jRoweDBw/mvffeIyAggHXr1jFw4ED7ck75bToMDg7OUnsVFxeXpZZLRKSgnLp4lbcW7mXloXP2bdUDvKhR0ZtB7WrQtlZgjse6Ojsx7cmmLNhxmmupVo7FX6Zv8+o0dGAH+ZLx1JYyJyIigoULF+ap7PTp0+nbty9vvPFGpu3jxo1j+vTpfynRArNTfMeOHVm8eDHr169nzJgxuZZfv349oaGhmeI5ceLETa+za9curl27hqenJ2AmbD4+PlStWjVPcW7dupX09HQ+/PBDe1Pjd999l6lMfpsOW7duzbJlyzL101q6dClt2rTJU0wiInmVlJzGr/vO8t7i/SRcS8PN2YnezavydOswagf55vk83u4uPNkqtBAjzR8lWuJQ58+f59FHH2XAgAE0aNAAX19ftm7dyoQJE+jZs+dNjz937hw//vgjixYtytI5/emnn+bee+/l3LlzOU4tkRcdOnSgVq1aPPXUU9SqVYv27dvnWr5WrVpER0cze/Zsmjdvzk8//XTTuacAUlNTGThwIG+++SYnTpxg1KhRvPjii/ak6WZq1qxJeno6n3zyCffffz/r16+310xlyG/T4ZAhQ2jfvj3jx4+nZ8+e/PDDDyxfvpx169bZy0yePJkFCxawYsUK+7b9+/eTmprKhQsXSEpKsid3+Z2kVUTKBsMweHL6ZnadvARAg6r+TOzdyN7/qiTThKXiUD4+PrRs2ZJ///vftG/fnnr16vHWW28xaNAgJk+efNPjv/rqK7y9vbn77ruz7OvUqRO+vr58/fXXfznOAQMGcPHiRQYMGHDTsj179mTYsGG8+OKLNGrUiA0bNvDWW2/d9Li7776b2rVr0759e3r37s3999+faeqGm2nUqBETJ05k/Pjx1KtXj2+++YaxY8fm+fjstGnThtmzZzNjxgwaNGjAzJkzmTNnTqY5tOLj4zl69Gim43r06EHjxo358ccfWbVqFY0bN6Zx48Z/KRYRKT0uXEnl68jjzN9+iisp6Ww5ftGeZN3fMIRvnm1ZKpIsAIthGIajgyjLEhMT8ff3JyEhIUu/n+TkZKKioggPD8fDwyOHM0hpkDGPVl6bS0s7/e6LlF77ziTw2GcbSUxOB6BKOU/OX0khOc3GYy2qMfbhvI84d6Tcnt9/pqZDERERKRIJ19J4+btdJCanE+LvQZrN4PQlc8k0dxcnBt4Z7uAIC54SLRERESl0sQnJ3D95HeeSUvBxd2Hh39vi4ebMO4v2s+bIOcb3qk+tSnnv9F5SKNESKQYyFsYWESnpjp67zMz1x/HzdOFv7Wri72VOS/NV5HHOJaXg6erM5McbU8nP7BbwYe+Gjgy30CnREhERkb8kLikZX3dXDp9N4oOlh+wThn666ih31Q3iWlo6638/D8DE3g3pWKeSI8MtUkq0RERExO5cUgq+Hi545HFFkKX7Ynn+m+1YbVnH1tkMWH7grP1zaAUvOkeUrQmPlWiJiIgIAF+ui+L9nw9Q3suNSX0b0SaXWdgB4i+nMHL+nmyTrCVD27HuSDwnzl/FZhh0uSOYRtXK4eJctmaWUqIlIiJSxv0el8R/Vh9j7jZz0eb4yym8vmAPq/7ZCTAnFE212lj/ezwHY5N4omUoH/x6iK83mqtehFXwYug9tzHptyMcO3eFwR1qUjfYj7rBua/xWhYo0RIRESnDLqek8/DUDfZ5rZ5uHcpXG09w/PxVouKvEB7ozehF+5gVeX0psQlLDtnfuzhZmPJEE+4I8adT3Uos2nWGXk2qFPn3KK7KVv2dSDExevTofC9H07FjR4YOHVoo8YhI2bVo5xl7kvXmvbcz+oE7aF2jAgArD8axaNeZTElWBldnC/fWr8ynTzbljhB/APw9XenXKhQvN9XjZFCiJQWuf//+WCyWLK/ff//dvv/BBx+0l4+Li+O5556jevXquLu7ExwcTNeuXYmMjGTVqlXZnuvPr4ypEa5du0b58uUJCAjg2rVrucYYFhaW6znbtGlDYGAg//rXv7I9fuzYsQQGBpKamlog96y42rdvH7169bLfr48++ihPx+3Zs4cOHTrg6elJlSpVePfdd9EiFCLFj81m8FXkccBMsp5tVwOLxUKnP0YFvrt4Py99uwOAR5pW5ccX72TZsPZMe7IpG0fezZQnmpS5zu35pZRTCkW3bt2YMWNGpm05Lezcq1cv0tLSmDVrFjVq1ODs2bOsWLGCCxcu0LlzZ2JiYuxlhwwZQmJiYqZz+/ubf0nNmzePevXqYRgG8+fP54knnsgxvi1btmC1WgHYsGEDvXr14tChQ/ZlFNzc3Hj33XeZOXMmb7zxBhaLJdPxM2bMoF+/fri5ueXjrpQ8V69epUaNGjz66KMMGzYsT8ckJibSuXNnOnXqxJYtWzh8+DD9+/fH29ubl19+uZAjFpH8+GVvLAdjk/B2c6ZXk6r27Y+3rM5vB+OIPGZOyXDP7ZUY36sBzk7mv4W1g0rfxKKFRYmWFIqMmqmbuXTpEuvWrWPVqlV06NABgNDQUFq0aGEv8+fzeHp6kpKSku25p0+fzpNPPolhGEyfPj3XROvPSV9AQAAAlSpVoly5cvbtAwcO5OOPP2bNmjX22ADWrl3LkSNHGDhwYI7nf/XVV1mwYAGnTp0iODiYJ554grfffhtXV9dsy2esddi4cWOmTJlCcnIyjz32GJ988kmmZM5mszFixAi++OIL3NzcGDx4cKaFpydOnMiMGTM4duwYAQEB3H///UyYMAEfn1tbnLV58+Y0b94cgNdeey1Px3zzzTckJyczc+ZM3N3dqVevHocPH2bixIkMHz48S9IqIoXv97jLvDpvN3fVrcQDDUP4ZlM0T7UO5T9rzAXhn21Xg/Le1/+t8XZ34ZtnW7It+iKp6TZa1ahgT7Ikf5RolSSGAWlXHXNtVy8ohAekj48PPj4+LFy4kFatWuHu7n5L5zl69CiRkZHMnz8fwzAYOnQox44do0aNGrccW/369WnevDkzZszIlGh9+eWXtGjRgnr16uV4rK+vLzNnziQkJIQ9e/YwaNAgfH19GTFiRI7HrFixAg8PD1auXMnx48d55plnCAwM5P3337eXmTVrFsOHD2fTpk1ERkbSv39/2rZtS+fOnQFwcnJi0qRJhIWFERUVxQsvvMCIESOYOnUqANHR0UREROT6vZ988kmmTZuWp3uUncjISDp06JDpZ9m1a1dGjhzJ8ePHCQ8vfWuZiRRnB2ISeeGb7UTFX2HbiYv8369mR/Yv1h4j/Y9pGfq1Ds1ynJOTheZhAUUaa2mkRKskSbsKY0Icc+3Xz4Cbd56LL168OFMtSvfu3Zk7d26Wci4uLsycOZNBgwYxbdo0mjRpQocOHejbty8NGuR9Bfcvv/yS7t27U758ecBsuvzyyy9z7GOVVwMGDOCVV15h8uTJ+Pj4cPnyZebOncvEiRNzPe7NN9+0vw8LC+Pll19mzpw5uSZabm5ufPnll3h5eXHHHXfw7rvv8s9//pP33nsPJyezO2WDBg0YNWoUALVr12by5MmsWLHCnmj9ubN8eHg47733Hs8//7w90QoJCWHnzp25xp7bKvR5ERsbS1hYWKZtQUFB9n1KtESKzonzV3h46gaupVmz7MtIshpU9SfQ59b+yJWbU2d4KRSdOnVi586d9tekSZNyLNurVy/OnDnDokWL6Nq1K6tWraJJkyZ5Xv/ParUya9YsnnzySfu2J598klmzZtn7Yd2qxx57DJvNxpw5cwCYM2cOhmHQt2/fXI/7/vvvufPOOwkODsbHx4e33nqL6OjoXI9p2LAhXl5e9s+tW7fm8uXLnDx50r7txuSzcuXKxMXF2T+vXLmSzp07U6VKFXx9fXnqqac4f/48V65cAczEtlatWrm+KlX660tj3Ng8mNERXs2GIkVr8e4YrqVZCfB2Y+mw9jzc2Jx2oV6V639QtQxXrVVhUo1WSeLqZdYsOera+eDt7U2tWrXyXN7Dw4POnTvTuXNn3n77bZ599llGjRpF//79b3rsr7/+yunTp+nTp0+m7VarlaVLl9K9e/d8xf5n/v7+PPLII8yYMYOBAwcyY8YMHnnkkVxrfTZu3Ejfvn1555136Nq1K/7+/syePZsPP/zwlmL4c3JyYx8vi8WCzWYD4MSJE/To0YPBgwfz3nvvERAQwLp16xg4cCBpaWlA0TQdBgcHExsbm2lbRjKYUbMlIoXPMAx+2WsOJhrRtQ63Bfky4ZEG3N8ohNY1KvCf1ceYsyWaJ1pmbTaUgqNEqySxWPLVfFeSRUREsHDhwjyVnT59On379uWNN97ItH3cuHFMnz79LyVaYHaK79ixI4sXL2b9+vWMGTMm1/Lr168nNDQ0UzwnTmSdg+ZGu3bt4tq1a3h6egJmwubj40PVqlVvcqRp69atpKen8+GHH9qbGr/77rtMZYqi6bB169a8/vrrpKam2jvyL126lJCQkCxNiiJSsKw2g8vJ6fh6uPDqvN3sPZ2IkwX7FAwuzk72qRuG3FObIffUdmS4ZYISLXGo8+fP8+ijjzJgwAAaNGiAr68vW7duZcKECfTs2fOmx587d44ff/yRRYsWZemc/vTTT3Pvvfdy7ty5HKeWyIsOHTpQq1YtnnrqKWrVqkX79u1zLV+rVi2io6OZPXs2zZs356effmLBggU3vU5qaioDBw7kzTff5MSJE4waNYoXX3zRnjTdTM2aNUlPT+eTTz7h/vvvZ/369VlqpjKaDvMqNTWV/fv329+fPn2anTt34uPjYz/P5MmTWbBgAStWrADg8ccf55133qF///68/vrrHDlyhDFjxvD222+r6VCkENlsBgNmbmHNkXNU9vPgTEIyzk4W3rz3diqoD5bDqI+WOJSPjw8tW7bk3//+N+3bt6devXq89dZbDBo0iMmTJ9/0+K+++gpvb2/uvvvuLPs6deqEr68vX3/99V+Oc8CAAVy8eJEBAwbctGzPnj0ZNmwYL774Io0aNWLDhg289dZbNz3u7rvvpnbt2rRv357evXtz//33Z5q64WYaNWrExIkTGT9+PPXq1eObb75h7NixeT4+O2fOnKFx48Y0btyYmJgYPvjgAxo3bsyzzz5rLxMfH8/Ro0ftn/39/Vm2bBmnTp2iWbNmvPDCCwwfPpzhw4f/pVhEJHefrT3G6sPnMAw4k5AMwOgH7uCZthqA4kgWQ9M1O1RiYiL+/v4kJCRkabJJTk4mKiqK8PBwPDw8HBShFIWMebTy2lxa2ul3XyR3KelWxv9yiOUHzvJI06o0DwvgyembsNoMetQPJtjPk/BAL55sFaqa5EKS2/P7z9R0KCIiUsIs3hXDl+ujAJi47LB9+8ONq/Bh74ZKrooRNR2KiIiUMMv2n7W/z5iwvW6wL+8/VF9JVjGjGi2RYiCvc4aJSOmy+9Qlzly6RnigD6EVvPBwdb7pMVdT01l75BwAP754J85OFpbtP0vfFtXwdLv58VK0lGiJiIg4wPnLKTw6LZKUdHMuvPpV/Pnh721xymVNwdiEZJ7+cjNXUq2E+HtQr4ofFouFiJC/Ni2LFB41HZYAGq8gZY1+56W0yvjd3nXyEo9/vsmeZAHsOZ1Ajdd/5qGp61l1yJzkd+vxC3yz6QRpVhtzt57kvk/WcehsEoE+7nz8WGM1E5YAqtEqxjJmAb969ap9EkuRsiA1NRUAZ2c1g0jJl5icho+bCx8tP8z0dVE81SaM6euiSP0jyfrXg/WIS0xm0m+/A7Aj+hLjfjnIjuhLfLziiFlm8QH7eoU1Ar35amALqpbP34od4hhKtIoxZ2dnypUrZ1++xMvLS3+9SKlns9k4d+4cXl5euLjonygp2b7bepKR8/cA5qztAJ+uuj7vXK1KPjzQKAQLcOriNdxdnfh280kOxiZxMDbJXi4jyerfJoyRPeri7qI/QkoK/StWzAUHBwNkWjhYpLRzcnKievXq+sNCSrR9ZxIYOX+PPcH6Mx93F7a9dU+mhGlin0YAXLiSyq/7zFGFj7esjouThRUH4ni8ZXWe71Az1z5cUvwo0SrmLBYLlStXplKlSvaFgUVKOzc3tzwvPSRSXP1vUzRWm0H72yrycufbCKvgzccrjvD1xuNMfaJJjrVSwzrfRuK1dDrUqcjAO8NxdXbi3ZuvSCbFlGaGd7C8ziwrIiIlR3KalRbvLycxOZ1vnm1J21qBgLke4bU0K97uquco6TQzvIiISBHZ8Hs8G4+dx2KxsGRvLIfOmv2rqpTzpHWNCvZyTk4WJVlljH7aIiIif8GSvbG8+L/tpN/QF8vN2Yn/e6SB+lSVcUq0REREbtHqw+cyJVlNqpfj3gYh+Hm4cFuQLw2rlXNsgOJwSrRERERu0fhfDpJuM7i/YQgf9WmEs2qv5AYOH9YzdepUwsPD8fDwoGnTpqxduzbX8qtXr6Zp06Z4eHhQo0YNpk2blqXMvHnziIiIwN3dnYiICBYsWJDv686fP5+uXbsSGBiIxWJh586dWc6RkpLCP/7xDwIDA/H29uaBBx7g1KlT+bsBIiJSIu07k8D+mETcnJ14r+cdSrIkWw5NtObMmcPQoUN544032LFjB+3ataN79+5ER0dnWz4qKooePXrQrl07duzYweuvv85LL73EvHnz7GUiIyPp06cP/fr1Y9euXfTr14/evXuzadOmfF33ypUrtG3blnHjxuUY/9ChQ1mwYAGzZ89m3bp1XL58mfvuuw+r1VoAd0dERIqzrzacAKBzRBDlvNwcHI0UVw6d3qFly5Y0adKETz/91L7t9ttv58EHH2Ts2LFZyr/66qssWrSIAwcO2LcNHjyYXbt2ERkZCUCfPn1ITEzkl19+sZfp1q0b5cuX59tvv833dY8fP054eDg7duygUaNG9u0JCQlUrFiRr7/+mj59+gBw5swZqlWrxs8//0zXrl2z/c4pKSmkpKTYPycmJlKtWjVN7yAiUoLsO5PAfZ+swzDg+8GtaRYW4OiQpIjldXoHh9Vopaamsm3bNrp06ZJpe5cuXdiwYUO2x0RGRmYp37VrV7Zu3WqfzDOnMhnnvJXrZmfbtm2kpaVlOk9ISAj16tXL9Txjx47F39/f/qpWrVqerykiIo5nGAbv/rgfw4D7G4YoyZJcOSzRio+Px2q1EhQUlGl7UFAQsbGx2R4TGxubbfn09HTi4+NzLZNxzlu5bk6xuLm5Ub58+XydZ+TIkSQkJNhfJ0+ezPM1RUTE8X7ZG8umqAt4uDrxWve6jg5HijmHjzq8cS0zwzByXd8su/I3bs/LOfN73by62Xnc3d1xd3f/y9cREZGil5xm5f2fzO4rz7WvSZVyng6OSIo7h9VoBQYG4uzsnKX2Jy4uLkttU4bg4OBsy7u4uFChQoVcy2Sc81aum1MsqampXLx48S+dR0REir+ziclsjrrAjPXHOX3pGpX9PRjcoaajw5ISwGGJlpubG02bNmXZsmWZti9btow2bdpke0zr1q2zlF+6dCnNmjXD1dU11zIZ57yV62anadOmuLq6ZjpPTEwMe/fuzdd5RESkeEu4msbdH66m938iGb/kIADPd6yJp1v2i0KL/JlDmw6HDx9Ov379aNasGa1bt+azzz4jOjqawYMHA2Z/ptOnT/PVV18B5gjDyZMnM3z4cAYNGkRkZCTTp0+3jyYEGDJkCO3bt2f8+PH07NmTH374geXLl7Nu3bo8XxfgwoULREdHc+bMGQAOHToEmDVZwcHB+Pv7M3DgQF5++WUqVKhAQEAAr7zyCvXr1+eee+4p9HsnIiJFY/vJi1xOSbd/9nV3oVeTqg6MSEoUw8GmTJlihIaGGm5ubkaTJk2M1atX2/c9/fTTRocOHTKVX7VqldG4cWPDzc3NCAsLMz799NMs55w7d65Rp04dw9XV1ahbt64xb968fF3XMAxjxowZBpDlNWrUKHuZa9euGS+++KIREBBgeHp6Gvfdd58RHR2dr++fkJBgAEZCQkK+jhMRkaLx0bLDRuiri42npm8yXv1+l/HT7jOODkmKgbw+vx06j5bkfR4OERFxjAEzt/DbwThG3R/BM23DHR2OFBN5fX47fNShiIhIcbIj+iLzt58myM+dSn4eRB49D6AFouWWKNESEREBrqVa+XlPDP/8fhe2G9p6An3ciKisVgfJPyVaIiJSZkWfv8r7P+/H292FndGXOBZ/BYDwQG+aVC/P9uiLWCww+bEmeLhqlKHknxItEREpFdKtNt5bvJ/1R8/TMjyAN+69HS+3nB9zF66k0uezSGISku3bPFydiKjsx/sP1ed21WBJAVCiJSIipcKqQ+eYFXkCgN/jLnMlJZ2JvRux4+RFTl28RoOq5Qir4IXFYuHE+SuMXrQvU5J1b/3K/OvBepT3dnPUV5BSSImWiIiUCr/uM1f88HB1IjnNxk97Yoi/nMq63+PtZSIq+/F0m1DeXLiXNKvZEWv6083oVKcSTk5/fRk2kRs5bGZ4ERGRgmC1GfT5TyRzt50CYEb/FkRU9iPNarDu93jcnJ2oX8UfN2cn9sck8uq8PfYkq13tQO6qqyRLCo9qtEREpETbefIim6IuAFC1vCfNw8rTp3k1Ri3aR9XynnzWrxkRIX4s3RfL377eBkDL8AC+ebYlLs6qb5DCpURLRERKrOQ0K3O3mjVZNSt6891zrXFxduLJVqFUD/CiSWh5/D3NtXDvuT2I+lX8OR5/hTEP11eSJUVCiZaIiBQr63+PJ/rCVfo2r4bFkrlJzzAMJvx6iBnrowjx9+RMwjWS02wA/OOu2lTwcQfA2clCp7qVMh3r5GRh7uDWpKTb7MmXSGFToiUiIg61YMcpPlsTxR0hfvRrFcqzs7ZyLc1KTEIywzvfZi+XnGbl3cX7+d+maAD7nFdgTijaqU6lLOe+kYers+bDkiKlREtERBwiJd3KF2uj+L9fDwFwICaR7//o0A4wacURLlxJ4e66QVy6lsq7P+7n4tU0LBaz9qpleACVfN0J9vfAxckJTzclUFL8aFFpB9Oi0iJS1qSm2/j38sN8uS6KlHSz2a9jnYqkpNmIPGauK1ijojdR8Ve48Qnl6+HC+w/V54GGIUUdtkgmWlRaRESKhf1nEjl58SpVy3vyytzdHIhJtO/zdXfhpbtr82y7cAB+2HmGMwnX+Fu7Gvy0J4ahc3bak63QCl4s/sed+Hqof5WUHEq0RESk0Jy5dI0+/4kkKSU903YPVycm9m5E93rBmTq8P9i4iv19z0ZVuCPED293Fw7GJtGgir+SLClxlGiJiEihGbVoX6Ykq0ZFbwa0Dad5WAB1gn1venytSmaZyv6ehRajSGFSoiUiIoViz6kElu0/m2nbhF4NaBYW4KCIRIqeEi0RESkQVpvBjPVRfL/tFPWq+LM9+iIADzeuQv+2YSReS1eSJWWOEi0RkVIiOc3K3tMJNK5eHmcHrN03fslBPltzDICDsUkABPm5M6zzbVQL8CryeESKAyVaIiKlxIQlh/hyfRQuThZa16zAB482JMjPo0CvcTz+CmuOnCMuMYXLKek80CiExtXK8d+NJ+xJVvOw8ni6uVAnyIfnOtQk8I/Z2kXKIiVaIiKlgNVmMGeLOWN6us1g7ZF4Rv2wj2n9mgJw8sJVfNxdKO/tdkvnj0m4xtJ9Z/n38sNcuppm3z5zw/FM5Z7vWJNXu9W9tS8hUgop0RIRKeF2nrzEg1PW2z/fc3sllh+IY8m+WKas/B3DMPhg6WGqB3ixdFj7bJegOZeUwt7TCZw4f4XaQb60qVnBPu3CjuiLDJy1lQtXUu3lwyp4YQAnzl8FzOkaBrWrkWnJHBFRoiUiUuJ9uPSQ/X3vZlWZ8EhD/rP6KGN/OWhf3gYg+sJVPl9zjH/cXdu+LTXdxov/287SG0YHdr0jiI/6NOb0patZkqwJvRrQu3k1Lqek8/x/t+Hm7MTYXvWp5FuwzZQipYGW4HEwLcEjIvlhtRm89O0OXJwtfNSnEftjErl30joA+javxqvd6tqbBz9ddZTxSw4CUDfY195B/ZGmVRnRtQ5Ww2D4nF32ZW+qlPOkViUfNhyNJ81qPhqcLGAzoH4Vf2YNaEH85RRuC7r5/FcipZ2W4BERKYXWHD7HT3tiALirbiXG/2ImUt3rBTOuV4NMZZ/vWJPbgnxISbfRvV4wY34+wOdrzekXthy/gKuzE7/HXcbD1YnP+jWj/W0VAdh6/AIDZm4hMTkdmwGNqpXjy/7NCfB2I+AW+3iJlFWq0XIw1WiJSH4M+mprlklAa1T05vvBbfKUBG04Gs+zs7ZyNdUKQKCPO3MHtyY80DtTuQMxiby5cC8Nqvrzare62fbrEinLVKMlIlLKHIxNZPmBzElWkJ87Xw1okeeapjY1A3n7vghem7+H6gFe/LtPoyxJFsDtlf2Y93ybAolbpCxToiUiUkKM++UghgE96gfTLDSAa2lWHm1WNd+d0Pu2qE73epXx83TJtKCziBQ8JVoiIiXA+t/jWXXoHC5OFkZ0rUtYNrVQ+eHv5VpAkYlIbpwcHYCISGl0KDaJ3+MuA7Dr5CW+3niCmIRrt3SudKuNf/10AIAnW4X+5SRLRIqOarRERArYkr2xvPDNNlycnHihU00+Wn4EgDWHg/j8qWb5OpdhGHy0/AgHYhIp5+XKP+6qVRghi0ghUaIlIlKArqam88+5u7AZkGq12ZMsgM1RF7DZDJxyWPA5LjGZcb8cpG2tQHo2CuGLdVFM+e13klLSAXi9x+1U0LqBIiWKEi0RkTyIPn+VoXN2UM7LjY/6NsLPI3MfJ8MwSLXaWLrvLEkp6Xi7ORPg48bJC9eoHuDFyYtXSbiWxrH4K9Sq5IPNZvD7uct4uDhTvYIXiclp9P5PJMfPX2X+jtO8PHeX/dxuLk682q0ujzatWtRfW0T+IiVaIiI3kZxm5bHPN3L6ktnHqs9/NvJ/jzTgjhA/+6i91xfsYf7202RMTPhsuxq8eFctDsQkUq28F899vY3Nxy+wPfoiqek2Ri3ay5bjF3F2svD1wBb8vCeG43+sG5ghwNuNoffUpnezaprHSqSEUqIlIpKLC1dS+Wj5YXuSBeZknvd9sg43Zyde616X8IrefLv5ZKbjHm5SBVdnJxpULQdA49BybD5+gRHf785UzmozePzzTfbPE3s35IedZ2hSvTzPd6yJm4vGLImUZEq0RERykGa10fs/kfbRg692q8tDjavwr5/2s3h3DKlWG+8u3p/luJc730ZohcwjAx9rXp3vtpzk4tU0LBZoHhbAq93qMvy7nZz4oybrrrqVeLhJVR5uoiZCkdJCiZaIyJ+kWW0cOXuZ0ApezN9x2p5kBft50Ld5Ncp7uzH58SZ82NvKE59vYuuJi4C51uCz7cI5GneFXtn0pQoL9Gbu4DZ8uzmah5tU4Y4QfwBGdq/L4P9uB6B/m7Ci+ZIiUmS01qGDaa1DkeLj2LnLDP7vNg6fvZxp+9v3RfBM27Ass6jHJSUzY/1xWtWoQPvagbc0y7phGPzrpwOkW22Muv+OHEckikjxktfntxItB1OiJeI4hmGw8+QlPlp+BC83Z7ZHX+RsYkqmMk1DyzP7b61wdVZfKRG5TotKi4jk4ou1x5ix/nimTu4AoRW8mDu4NWsOx7Px2Hle6VJHSZaI3DIlWiJS5ly8ksr7Px/AMMw5quqF+FHBx53QAC8Gta9BJV8PHmlalUc0b5WI/EVKtESkTDEMg8hj5zEMqFnRm8X/aIenm+aoEpHCoURLRMqMMT8fYPq6KKw2s2tq+9sqKskSkUKljgciUiYkXE1j5obj9iQLoG3NQAdGJCJlgWq0RKRUMwyDAzFJrD58jtR0Gy5OFh5oFEJquo12tynREpHCpURLREq1T377nYnLDts/v3Hv7TzTNtyBEYlIWaKmQxEptY7HX2HKyt/tnx9uXIUnW4U6MCIRKWtUoyUipVL85RSe+GITKek2WoQH8MEjDakW4HlLs7eLiNwqJVoiUiot3HGa05euEVrBi0l9GxPs7+HokESkDFKiJSKlSsLVNL7dEs3EpWa/rMdbVFeSJSIOo0RLREqNxOQ0ekxam2lZndY1KzgwIhEp69QZXkRKje+2nMyydmFEZS3WLiKOoxotESkVpq+L4l8/HQDg751qsvrwObpEBOOiBaFFxIGUaIlIsRWXmEyq1UbV8l65llt9+BzvLd4PQJ0gX17sVJt/dq1bFCGKiORKf+qJSLFk9rdaR7eP1nI2MRmA05eucTU1PVO5j5Yf5ukvNwNwb/3K/PBiW61fKCLFhmq0RKTYWbTrDC99u8P++ZuNJ6hS3pPX5u/Bx92F9x+qzwMNQ0hOs/L5mmOA2RdrzEP18XBVkiUixYfDa7SmTp1KeHg4Hh4eNG3alLVr1+ZafvXq1TRt2hQPDw9q1KjBtGnTspSZN28eERERuLu7ExERwYIFC/J9XcMwGD16NCEhIXh6etKxY0f27duXqUxsbCz9+vUjODgYb29vmjRpwvfff38Ld0FEMvx344lMSRbApN9+59V5ezAMSEpO559zd/H1xhPUfWsJV1KtBPt58NNLd+Lv5eqgqEVEsufQRGvOnDkMHTqUN954gx07dtCuXTu6d+9OdHR0tuWjoqLo0aMH7dq1Y8eOHbz++uu89NJLzJs3z14mMjKSPn360K9fP3bt2kW/fv3o3bs3mzZtytd1J0yYwMSJE5k8eTJbtmwhODiYzp07k5SUZC/Tr18/Dh06xKJFi9izZw8PP/wwffr0YceOzA8JEcmbxOQ0xi85CEDDqv6M6FaHyn+aA6tTnYq0qx1ISrqNtxbutW+/v2FlzfguIsWT4UAtWrQwBg8enGlb3bp1jddeey3b8iNGjDDq1q2badtzzz1ntGrVyv65d+/eRrdu3TKV6dq1q9G3b988X9dmsxnBwcHGuHHj7PuTk5MNf39/Y9q0afZt3t7exldffZXpPAEBAcYXX3yR43dOTk42EhIS7K+TJ08agJGQkJDjMSKlxZGzScbO6IvZ7rt4JcXoPW2DEfrqYuOeD1cZVqvNMAzDmLLyiBH66mIj9NXFxuao88bZxGv2z6GvLjYemrLOOH3xahF+CxERw0hISMjT89thNVqpqals27aNLl26ZNrepUsXNmzYkO0xkZGRWcp37dqVrVu3kpaWlmuZjHPm5bpRUVHExsZmKuPu7k6HDh0yxXbnnXcyZ84cLly4gM1mY/bs2aSkpNCxY8ccv/fYsWPx9/e3v6pVq5ZjWZHS4ve4JF79fjfdPlpDzynrWXHgbJYyb/2wj01RFwAY3vk2nJzMGqrHW1QnPNCbjnUq0iy0PJV8PfjfoJY0qV6O7we3Zv4LbQkp51mk30dEJK8c1hk+Pj4eq9VKUFBQpu1BQUHExsZme0xsbGy25dPT04mPj6dy5co5lsk4Z16um/Hf7MqcOHHC/nnOnDn06dOHChUq4OLigpeXFwsWLKBmzZo5fu+RI0cyfPhw++fExEQlW1IsxV9Owd3FCV+Pv9bvKf5yCr3/s5ELV1Lt24Z/t4s1Izrh5+HC3tOJHIu/zI+7zgDwUZ9GdK9f2V62nJcbK1/pmOmcbWoGMv+FwL8Ul4hIUXD4qMMb+1UYhpFrX4vsyt+4PS/nLIgyb775JhcvXmT58uUEBgaycOFCHn30UdauXUv9+vWzjd/d3R13d/ccv59IcRCXlEyXf68h3WrwwaMN6VYv+JbP9e6P+7lwJRV/T1fe6HE7n609xu9xl2n4zlIq+3sQk5BsL1u/ij8PNq5SEF9BRKRYcFiiFRgYiLOzc5baq7i4uCw1SRmCg4OzLe/i4kKFChVyLZNxzrxcNzjYfKjExsZSuXLlbMscPXqUyZMns3fvXu644w4AGjZsyNq1a5kyZUq2oyFFHMEwDJ77ehvnLqcwsXcjwgO9b3rM/O2nuXTVbI5/bf5uOkcE4eyU/87m26MvsmjXGSwW+ObZltSr4o+7qxNDZu8EICYhGQ9XJ0IDvLmSms6wzrXzfQ0RkeLMYX203NzcaNq0KcuWLcu0fdmyZbRp0ybbY1q3bp2l/NKlS2nWrBmurq65lsk4Z16uGx4eTnBwcKYyqamprF692l7m6tWrADg5Zb6Fzs7O2Gy2m98AkSKyPfoiS/efZUf0Jfp+FklymjXHsluOX2D25mjmbj1p33bpahr7ziTc9Do2m8F3W0+y55RZNjnNypTffgegV5Oq1KviD8B9DULo3yaMp1uH8tWAFmwaeQ+/DmvPulfv4q662f+RJSJSUt1SjVZ6ejqrVq3i6NGjPP744/j6+nLmzBn8/Pzw8fHJ83mGDx9Ov379aNasGa1bt+azzz4jOjqawYMHA2Z/ptOnT/PVV18BMHjwYCZPnszw4cMZNGgQkZGRTJ8+nW+//dZ+ziFDhtC+fXvGjx9Pz549+eGHH1i+fDnr1q3L83UtFgtDhw5lzJgx1K5dm9q1azNmzBi8vLx4/PHHAahbty61atXiueee44MPPqBChQosXLiQZcuWsXjx4lu5rSKFYt720/b3ZxNTWLI3NtvmuZiEazz95WauppqJmJebM42qlWPD0fN8FXmCXk2sXE1Np03NQPvM62sOn+P8lRQebFSFrzeeYNSifVT0dWf0/Xfw9/9tt5/7+Y7X+y06O1kY/cAdhfV1RUSKlXwnWidOnKBbt25ER0eTkpJC586d8fX1ZcKECSQnJ+eryaxPnz6cP3+ed999l5iYGOrVq8fPP/9MaGgoADExMZnmtgoPD+fnn39m2LBhTJkyhZCQECZNmkSvXr3sZdq0acPs2bN58803eeutt6hZsyZz5syhZcuWeb4uwIgRI7h27RovvPACFy9epGXLlixduhRfX18AXF1d+fnnn3nttde4//77uXz5MrVq1WLWrFn06NEjv7dVpFCkW238tDsGgJbhAWyKusCnq47SumYFgvzM+alS0224uTjx/k8H7EkWmKP9qlfwYsPR83y/7RTfbzsFQL0qfnw9oCXzd5y2ry/4+Zoo9sckAnAuKSVTktWgqj81K+b9DzARkdLEYmT0Js+jBx98EF9fX6ZPn06FChXYtWsXNWrUYPXq1Tz77LMcOXKksGItlRITE/H39ychIQE/Pz9HhyOlzOaoC/T+TyTlvFz5ZUg7uvx7DUnJ6bg5O9G9fjDnklLYevwiVct7ciz+iv04f09Xfh3aHmcnC098sZGYS8lU9HXn/JVUEq6lcV+Dyizbf5aU9NybyX09XPj0iabcWVsjBEWkdMnr8zvfNVrr1q1j/fr1uLm5ZdoeGhrK6dOnczhKRIraykNxPDNjCwAdbqtIZX9PFrzQln9+v4sd0Zf4YecZe9mMJOvp1qH8s1td0tJtlPc2/x9fOqyDvdyqQ3H0n7GFxX/UklUt70n85RSS02y892A9Ot8exNNfbubQ2SQea1GdsQ9nP/pWRKSsyHeiZbPZsFqzdqY9deqUvVlNRBzLZjN4Y/4e++e76lYCoFYlHxa80Jbdpy7xzcZo1hw5R/UALzxcnakb7MuQe2rj5eYCOcxA0r52RaoFeHLywjUA3utZj4q+7lxNtdIiPACAX4a04/j5K1Qt71W4X1JEpATId6LVuXNnPvroIz777DPA7Dh++fJlRo0apb5JIsXEzlOXOPPH/FS9mlTNMg9Wg6rlaPBIuXyf18nJwvsP1mfmhuP0bV6NTn8kcDeWqaE+WSIiwC300Tpz5gydOnXC2dmZI0eO0KxZM44cOUJgYCBr1qyhUqWs//BKztRHSwrDqB/2MivyBD0bhfBx38aODkdEpNQptD5aISEh7Ny5k9mzZ7Nt2zZsNhsDBw7kiSeewNNT642JONqRs0n8b7M5WvfhJlUdHI2ISNmW70RrzZo1tGnThmeeeYZnnnnGvj09PZ01a9bQvn37Ag1QRPLnoxVHSLMa3HN7JdprtJ+IiEPle2b4Tp06ceHChSzbExIS6NSpU4EEJSK35vzlFJbuM5eXGtb5tlzXDRURkcKX70Qrp0Wfz58/j7f3zddQE5HC8/22U6RZDRpU9eeOEH9HhyMiUubluenw4YcfBsxRhv3798fd/fr4b6vVyu7du3Nco1BECl+a1cbMDccBeKJldccGIyIiQD4SLX9/869jwzDw9fXN1PHdzc2NVq1aMWjQoIKPUETy5Oc9McQkJBPo407PRlnXMhQRkaKX50RrxowZAISFhfHKK6+omVCkGDlx/gpfrj8OwJOtquPh6uzYgEREBLiFUYejRo0qjDhE5BYYhsG7i/cz448kC+CRpprSQUSkuMh3ogXw/fff89133xEdHU1qamqmfdu3by+QwETk5jYeu5ApybqrbiUtfSMiUozke9ThpEmTeOaZZ6hUqRI7duygRYsWVKhQgWPHjtG9e/fCiFFEcrDqcBwA9zcM4ZtnW/LvPo0cG5CIiGSS70Rr6tSpfPbZZ0yePBk3NzdGjBjBsmXLeOmll0hISCiMGEUkB6sPnQPgntsr0bZWIP6erg6OSERKPMOAExvg+DpIuezoaEq8fDcdRkdH26dx8PT0JCkpCYB+/frRqlUrJk+eXLARiki29p5O4GBsEhYL3FlLM8AXOsMAWzo4K5ktcU5uhk3/gbSrcP53cPOGinWhXHXo8CqcOwjL34Gm/aFuD0dHW7BsNnDKZ53Kmg9g5b/M985uEFwfQttAeEeI3gD1ekHQHeb+1Cvg7A7OeUwnrGng5AJlaDLlfCdawcHBnD9/ntDQUEJDQ9m4cSMNGzYkKiqKfK5PLSK3yGozePm7XQD0qFeZCj7uNzlC/pK4gzD7MbA4w8Cl4BXg6IjkRoaR/cM7PQXmDYRL0Zm3n9lh/vfkZohaDYbN3FbzLnD1uPn1Ui7DsVVQ6568lc9O2jUzeXf3vbXjb+bCMfjmUfO7VW8DAWEQuxeaDYAaHbKWNwxY8hpsmmZ+dnYDayqc3ma+Nnxibl87EZo/C/GHzFovizO4ekLtztDjg8z/f6SnQuxu2P8DHPgRLkZBQE3o/C7cfl/hfO9iJt+J1l133cWPP/5IkyZNGDhwIMOGDeP7779n69at9klNRaTwPP/fbfyy11xmx8/DhXd73uHgiEqRy3FwcDHc3hO8K5jbIqfA8tHmAwdg9uPwwGQIrOWwMOVPkhNgzf/Bjv+Cux/c9Sbc8dD1mscNn1xPsjq/B/5VYfFQ8ziAYyuvn+tKHGybAS0Hm78Hp7eZCYpfZQiqdz2RSzoLXz8Icfvhjofh0Rl5i3XvfNg3H9q9DAE14It74OIJaPYMlAs1a9zSkwGLmZw4uUBKEgTeZn6fsDuhTo/sE8ozO+DYamjcz6x1SjgFG6de/+4Xjl0ve2wlDF5n1uj9WeSU60nWPaOh7VAzMYpaAz8O+VNBA7Z8/qePNkhJg73zIP6w+f/HtQuQlgxL38h8bYALR2HOE+Z3bviY+f1dvcDDL2/3sYSxGPmshrLZbNhsNlxczBztu+++Y926ddSqVYvBgwfj5uZWKIGWVomJifj7+5OQkICfX+n8JZOCsyP6Ig9N3WD//HTrUN7pWc+BEZUiZ3bArJ6QkmA+XJ/52XyQTrvTfJB4+F9/OHuWh2dXQIWaZtNM6uXsHxIXomDxMLOZ6p5R5l/9f3YlHg7+ZD5cmz4DLvr3M8+uXoDfl5tJcOLpzPtcPKDufWaCsnqc+fN78FNo9Li5/8p5M3Fe++H1hKHl87DpU/N9hdpw/kjmc7p6mc1lzQbAlulweuv1fX2+yb52xjDgxHqI3QM7/2cmT2DWFLl4QEpi/r93rc5mjZEtHao0NZvuzh00k5yM756efL28kyuEtzcTr/hD17c7u0H1VnB2nxln+dDrtXzd/w9a/i3zdX95FbZ8AY/NgZid5nGhbcxznz8Kl07A6glmgpWd6m2g9QsQ3MBMADMSOjuL2STZ5h9mbEERZlw7/web/2PuL1cdbutm/jxjd4NPkHkPrWnme3cfSL1q1hS6ephNntVagVvhjMTO6/M734mWFCwlWpIfL/5vO4t3x9g///TSnflb09BmNf9qvXYB6t4PVZsWQpQlSFqy2azkWxlObrr+IARo9IRZo3HuINS5F/p+A2e2w8K/w7kDZm2Dm/cfiVaS+SD3rgQnN5oP9N/+BfsWmA8FgKD60PFV81zRG2D1eLOmIINPMDTpBx1fN2ss9syFrV+aD59mA/Pfz6Y0S7tm1gad3Wt+9gmG7uPh3CEzcbpyLnP5Rk9Cz8lZa4KSE+Gn4VCtpXmP//uQ2RyYwc3XrElKSQJbWuZjnVzNROfkRvNz+TDwCoRWz5u1XBeOwU/DMv+Mb+Tsbpa/dtFMmFw9zSQj+ZKZnDu7wtXzZq2Xizvs+R7IwyPb1cusHQN44BNo8pT5PjHGvDffPWXWVGWn+bNm89+N98owzBjdfXK+7qmtZm3huUNQPtxMdvyrQfcJ4H/DahXxv5v/z2361ExEb9TuFfOeLnrx5t83Vxbzj6Au/7p+HwpIoSZaycnJ7N69m7i4OGw2W6Z9DzzwQP6jLcOUaElenbp4lQ7/twqrzeCt+yKoUs6DbvUq5+1gwzD/yt35P/PBkuHP/wiXRTv/Bwufv/7Zw99seon806Ae70rw7HLzL36ASyfh28fgbDYPh1vhEwyXz2J/gIa2NWsrTm66XqbF38wHz5U486/0kiYxxoy9csO/cI4z4F3RTD4WDzOTUAB3f+i34PofDbY/+lqt/zccWW4mr13H5q2z9rVLsPs7M4Gu3Rl8KpnbUy6bTXCHfjJ/Z6zp0GmkmVAtexs2f0amBMgnyKytNKxmMlWtBdzWFRo+Dp7lYNtMM8bWL0Klunm/B8fXw9HfzATm2iXY/DlYU8x9LZ6DNi/C0ZVw+/2wfZZ537uOyfrdrWnwZTezVq7eI2ZydXavmdjUuqfoO6qnXDZrEL972qwZu1HT/mZNXswuOLzE/Peseiuzhi450azhsziZ99yzvPk9UhIheuP12s6eU6HxEwUadqElWkuWLOGpp54iPj4+68ksFqxWa/6jLcOUaElevf/Tfj5fG0XbWhX45tlWeT/w9DaY9+wf/SQsZHogVLwd/r6xoEMtGazpMP2e680lFid4ZAZE9IRds80aJf+q5qi0G/8aNwyzD8/aD80+M9tmZm2+cnaHR7409yfFwK+vw/6F1/fXewTufst8KCQnms0jv/0r8/EBNczasz97cp75MMzJqvGw879w/ySo2SmfN6WAnd5mJgfL/1hR5NnlZi1QfhiG2Ty4/iPz97VqM9jxNWCBfvOhRqecE4OcOsgXtLiD5neNP2Q2K6b+MSVC7S5mbU5AeOFcN+2a2VSYejn/HeqvXYSotebvZ15HDBa2tGtmDV70Rlj0EqRdMX/XH5tzazEahlmDd+0SeAcW+CCWQku0atWqRdeuXXn77bcJCgr6y4GWdUq0JC+SktNoM/Y3klLSmdG/OZ3qVsrbgdcuwaTGmftNVLwdnl4EH9wGGDD8APiFFEbYBe/axT+ac/7ig8FmhTlPwqGfzRFTdw41+5rU6Hhr5zu1DbZOh9sfMGsuLkaZ582oBcsw50lz5FXtLvDE3GzOs9WsWbCmmaPfKtQ0pyX49Y3rTVfB9eFva8ymxKRYWP+x2VTToI/Zp2z9R2Y5F09o/7J5rag14FXB7Hhc2IlHymXzeucOwop3Mu+7/QHo83X+zndgsdlx+kbtXjET1eLm2kU4uQV8KkJIY0dHU3KlXDb/3fKvVmyngii0RMvPz48dO3ZQs2bNvxykKNGSvPl4+RH+vfwwNSt6s2xYB5yc8vgPz4r3YO0HEFgHnlpo9rHwCzGbRj6/y/wrvBCq1HOUetVsTrmV4ezRG2HW/ebD+pHpN7nOFbN2KLw9+AbDT6+YzU53DjWbHH57H9ZMMJORXp+bTS1F4eoFszam0ZPXRzXm9bhzh8yh+qnm3IUE1ISEk9dHQ+ZFoyfMEWF/7u+1/SvYNsu8Lx1f+2tTDcTsgrnPmKPKMrh4Qvq165+7jTdr2pxczEQyJ8kJEDnV7MwOUL+32Yfp3EGo/6jZ3FVMH8BSNhRaojVgwADatm3LwIED/3KQokRLchebkMxr83ez6o8Z4Cf0akDv5tXydrDNBh/Uhqvx0Oe/WZOJjCSsfm8z2ShsNht81gHiDkDrv8Pdb4OTc96OtabBlBbXh4n/fQtUvC3n8j//849+M5i1VPYOzhZz1NjWPxK1h7+ABo/ewpdxkF1zYMENo8FCmpjJa8wu8A0xO4XX6W5OJbBxCsQf+WOagD9GuDV52uxwnXDK7IO08xuzT1iGCrXM/jAn1kNYO+g2xtyenGg2l57/3RwZ5lk+cxzHVsM3j2RN/N44a/YpWvrm9XmYMjR6AnpOyZwwXToJu+eYTXBJZ8xtFmcYuidrE66IAxVaonX16lUeffRRKlasSP369XF1zTxL8ksvvXRrEZdRSrQkN4O+2sqy/WcBeL5jTUZ0rYMlr3/Fx+yC/7QHNx8YEZV16oBjq+CrnuBXBYbtu95hvpCGQnNyM0zvfP1zgz5m7Yqza+41E8mJ5gizPw9Nb9zPHEV2o5jdZifyX0ZcH+2XIaje9VFqYI4yu2/irX0XR9rxXzMZqdYc/KtDYG3zZ3dqizn9QE6jwnZ8Az+8kP0+Nx9zVNvV81n3Pf6dmTzNG3S9ZiqsnTkK093P/NldiILPO5nNZrU6m8u3pF0xh9YP/NU8xjDgf33gyK9Zr9Hkaah7r5msbZxyfbtvCFRpYjbHluVBG1IsFVqi9cUXXzB48GA8PT2pUKFCpn/0LRYLx44dy+VouZESLcnJrpOX6DllPRYLzHqmBe1vq5i/E6z5P7P57Lbu8PjsrPtTr8C46mZtxpDdsPJ9sz/M04vMDscF7dc3/hjNZzFrsjJqUer0MGvccqrdipwKv440azWaDzRrqizO8PdNZpIBZn+O7bPMEWB/rp3JEHqn2Yn80zZms1atzmai4FLGZtRf/g6sm2iOdKx7rzmdRZVm0Ol1M8k+d8icwuL8Udj17fXaKSdXs49Y4G3mSLaM5kvvSmbt2e8rIPGUWbv2zC9mrdfq8XD3qMwTu0athVl/zDfVduj1/mQ38qpg1pq1eK7wEn+Rv6jQEq3g4GBeeuklXnvtNZw0r8tfpkRLbpScZuWdH/fz7WZzRueHm1RhYu9GOR9gs5mTbGaMlGv3ilnL8G1fc392kw9m+OIesybk7rfNfkuG1ews/9yam0+eaU3L+7p/Nht83MDsU9T7a7Pm48c/1X53eM0cLp961ayJq97KfPAfWwULBpvzCt33b7PZ73994fAvZhNXv4VmE9bnncwZqTME1ITHvjWTO8/y0P4VqFjHnNE7OtJMMsrimoWGYS6ZUini5n3EkhPhh7+bzYWGzRwtOGCp+fuy6B9ZJ/T0CYJBK3Nv3jMMs4+aV6C5puD5o2ayt+ETOLvfbA72LG+OmLxxIIFIMVNoiVZAQABbtmxRZ/gCokRLbvTdlpOMmGdOnOnr4cKKlztQyTebtdQMA1aOMUelpSRc357Rd+baRXMW5v4/5by0xapxsGps1u2tXzTXIsuulskwzLmnDiyGB6dCxJ/mzjuzw2yK9KmUeWj90d/g64fMeapePmR2aj76Gxxeen027ntGm81b54+Y8+YcW319UkW/KvDiVrN240IUzLzPrEH5MycXaPMStB1i1lTdOAu73JqEU+bcTHV6XE/ODMNcrujkRvNn7hVodlD31Uh0KTsKLdEaNmwYFStW5PXXX//LQYoSLcks3Wrjvk/WcTDWbJr5emAL2tXOocnwxAaY0f3653LVMy+c6xMMQ3bmnnCkXTMn38xY761qCzi1+Y/3zeHpxWZH5sQz5vIat3U1JwzcNtMsY3GGJ74zm+aiN5jJlMXJnFLg2Gqzqa/zuzD3aXNag+aD4N4Prl/fMMwO1L8vzz4+z/LmA/zOYZmnoDh/FD5pcv2zs5tZuxXWNufvKiJSgAot0XrppZf46quvaNiwIQ0aNMjSGX7ixBLYudSBlGhJhmupVrp8tJqTF8wOx+te7UTV8rn0T/npFXO5kZp3mxNjevib80LNfcacLfreD80h8DdjTTNHnsUfgY4jzb5aG6de3x/eAaJW/8VvB2AxF7INvmFtxkvRsGSk+d/zv19fOiSsHfT6wpyeITuRU8zJOTv80+xMXUoXpBWR4qnQEq1OnXKeadhisfDbb7/l53RlnhItyfDDztMMmb0TyMNi0dZ0mHi7uazJ43Phti7X9yUnmhNZBta+9XmGNn8OP7+S/b6AGtDj/6B6a/iya/brlIW2NTvUb/jk+ui/loPNqQduxppmLknjX/XmZW3WvE8RISJSgPL6/M739MorV678S4GJSPbmbTeXcHnprloM71In98KHfjKTLK8KWWcz9/D767U7TZ4yJwjFMBOrPXPNjuihbc1pElz/6DP27G/mXEdL3zITqrveMhO8jOSn0h0Q+Yk5yq/Dq3m7trNr3pIsUJIlIsXeLS0qLQVHNVoCcObSNe4c/xs2A1a90pGwQO+cC188AV8/aE7e2e5lc8SgiIgUqQKt0Xr44YeZOXMmfn5+PPzww7mWnT9/fv4iFSmDLl5J5ac9MTSqVo56VfyZs+UkNgNa1QjIPcm6dgm+7GbWIrl6m7VMIiJSbOUp0fL397dPTOrn55f3malFJFuvztvN0j9mfP9Pv6bM2XISgMdb3mTuoN/eM5Ms/+rmPFF5bWITERGHUNOhg6npsGyITUhmzM8H8Pd0xc/ThSkrry+6a7GYsxwEeLsROfIu3F1y6Hdks8H/1TDnx3pyHtS6p4iiFxGRG+X1+Z3vqd3vuusuLl26lO0F77rrrvyeTqRU+mHnad7/aT/JaVZ+j0vi4anrWbTrDF9vPGFPsmpUNJsIM/7UeaRp1eyTLMMwJ42M228mWa7e5pQLIiJS7OV71OGqVatITU3Nsj05OZm1a9cWSFAiJVma1WafpiEq/io7oi9y/koq5bxc6VSnEp5uzvi4uzCgbTjPfrWFvacT8fVwoV+rHJoNV75vrlsY8MdqDNVbls3lY0RESqA8J1q7d++2v9+/fz+xsbH2z1arlSVLllClSi5rXImUEXtPX18OZ/kBsx9WeKA3855vQ4B35vUDpzzehI3HznNX3SAq+mazwPGZnWaSBeZiyABhdxZG2CIiUgjynGg1atQIi8WCxWLJtonQ09OTTz75pECDEylJEq6m8dGKw8xYfzzLvoF3hmdJsgBCK3gTWiGXUYYrx2T+7OplLkkjIiIlQp4TraioKAzDoEaNGmzevJmKFa+vv+bm5kalSpVwdtbkgVJ2jVywm5/3XK/pfa5DDWZvPomLk4WejUJyOTIbhmHOuH7kV3PtwN5fw/F10GKQuaahiIiUCHlOtEJDzf4jNput0IIRKamSktNYfiDO/tnbzZknW4YysG04WMDXI499qq5dgs86QMW64PLH7Ot3PAS332e+RESkRMn3qMNZs2bx008/2T+PGDGCcuXK0aZNG06cOFGgwYmUFCsOxJGabqNGRW+ixvZgx9tdqBbgRSU/Dyr5euT9RId/hYvH4fAS2L/Q3Hbn8MIIWUREikC+E60xY8bg6ekJQGRkJJMnT2bChAkEBgYybNiwAg9QpCRYeyQegG53BGOxWHBzyff/WqZjN6wlevv9EJzL4tIiIlKs5Xt6h5MnT1KrVi0AFi5cyCOPPMLf/vY32rZtS8eOHQs6PpESYX9MIgCNqpW79ZNY0+Hob9c/V20BPaf8tcBERMSh8v1nt4+PD+fPnwdg6dKl3HOPOTu1h4cH165dK9joREqAlHQrR84mARAR8hdm9/91JFw+C+7+MCIKBiwBD/8CilJERBwh3zVanTt35tlnn6Vx48YcPnyYe++9F4B9+/YRFhZW0PGJFHtHzl4m3Wbg7+lKlXKet3aSuIOw+TPAAg9OAa+AAo1RREQcI981WlOmTKF169acO3eOefPmUaFCBQC2bdvGY489VuABihR3+86YE5RGVL7FBdf3fA9TW5rv695r9ssSEZFSId81WuXKlWPy5MlZtr/zzjsFEpBISZFmtfHx8iNMXvk7AM3Cyuf/JBePw8Lnr39u9XyORUVEpOTJc43WhAkTMvXBWrNmDSkpKfbPSUlJvPDCCwUbnUgxtmjnGXuSFejjxrN31sj/SZaNAusfa4c+/LmW1xERKWXynGiNHDmSpKQk++f77ruP06dP2z9fvXqV//znPwUbnUgxtjnqgv39pL6N8ffKYVJSw4Dd32UeUQhwYoM5V5bFCZ7fAA16F16wIiLiEHluOjQMI9fPImXN1hNmovXFU81oUysw54KHl8D8Qeb72++He/8NXhVgyWvmtiZPQ9AdhRytiIg4Qr77aImUddtOXCTxWhpHz10BoEnoTfpmbfz0+vsDP8LVC1DrHojZBe5+0OmNQoxWREQcSYmWSD7sPZ3AI9M2kFGhWyfIlwBvt5wPiP8dolabzYN9/gtzn4ET680XQIdXwadizseLiEiJlq/pHb744gsmTZrEpEmTSE9PZ+bMmfbPX3zxxS0FMHXqVMLDw/Hw8KBp06asXbs21/KrV6+madOmeHh4UKNGDaZNm5alzLx584iIiMDd3Z2IiAgWLFiQ7+sahsHo0aMJCQnB09OTjh07sm/fvizniYyM5K677sLb25ty5crRsWNHTdxaSqVZbbz74357kuXv6crYXvWzL/zTKzC1NSwean6udY85dUOLP5oQnd2gy7+g9d8LPW4REXEgI49CQ0ONsLCwm77yY/bs2Yarq6vx+eefG/v37zeGDBlieHt7GydOnMi2/LFjxwwvLy9jyJAhxv79+43PP//ccHV1Nb7//nt7mQ0bNhjOzs7GmDFjjAMHDhhjxowxXFxcjI0bN+bruuPGjTN8fX2NefPmGXv27DH69OljVK5c2UhMTMx0LT8/P2Ps2LHG3r17jcOHDxtz5841kpOT83wPEhISDMBISEjIz60TBxjy7XYj9NXFxm1v/GysPHjWOJeUw8/5crxhjPLL/Nrzx+9oWoph7PjGMM4fLbrARUSkwOX1+W0xDMf1am/ZsiVNmjTh00+v92G5/fbbefDBBxk7dmyW8q+++iqLFi3iwIED9m2DBw9m165dREZGAtCnTx8SExP55Zdf7GW6detG+fLl+fbbb/N0XcMwCAkJYejQobz66qsApKSkEBQUxPjx43nuuecAaNWqFZ07d+a999675XuQmJiIv78/CQkJ+Pn9heVbpFDtO5PAvZPW4exk4Yunm9GpTqWcC++aAwv+Zr63OINfCLy4BVxvcdZ4EREpdvL6/M73zPAFJTU1lW3bttGlS5dM27t06cKGDRuyPSYyMjJL+a5du7J161bS0tJyLZNxzrxcNyoqitjY2Exl3N3d6dChg71MXFwcmzZtolKlSrRp04agoCA6dOjAunXrcv3eKSkpJCYmZnpJ8Td9bRQA99avnHuSBeYoQ4B2r8A/f4fn1yvJEhEpoxyWaMXHx2O1WgkKCsq0PSgoiNjY2GyPiY2NzbZ8eno68fHxuZbJOGderpvx39zKHDt2DIDRo0czaNAglixZQpMmTbj77rs5cuRIjt977Nix+Pv721/VqlXLsawUD1abwbL9ZwF4uk1Y7oUN43pH91r3mGsWamFoEZEyy2GJVoYb14YzDCPX9eKyK3/j9ryc86+WsdlsADz33HM888wzNG7cmH//+9/UqVOHL7/8Msf4R44cSUJCgv118uTJHMtK8XAkLomklHS83ZxpWDWbpMkwIP4IpF6BpBi4fNZsMqzcsOiDFRGRYsVh0zsEBgbi7OycpfYqLi4uS01ShuDg4GzLu7i42Be3zqlMxjnzct3g4GDArNmqXLlytmUytkdERGQ6z+233050dHSO39vd3R13d/cc90vxs+3ERQAaVS+Hi/Mff5tcvQA//B1C24CbNyweBi4e5shCgEq3g5uXgyIWEZHiwmE1Wm5ubjRt2pRly5Zl2r5s2TLatGmT7TGtW7fOUn7p0qU0a9YMV1fXXMtknDMv1w0PDyc4ODhTmdTUVFavXm0vExYWRkhICIcOHcp0nsOHDxMaGpqneyAlQ0ai1bT6nyYm/WUEHPoZlr5pJlkA6cmwd575PqRR0QYpIiLF0i3VaB09epQZM2Zw9OhRPv74YypVqsSSJUuoVq0ad9yR96VEhg8fTr9+/WjWrBmtW7fms88+Izo6msGDBwNmM9vp06f56quvAHOE4eTJkxk+fDiDBg0iMjKS6dOn20cTAgwZMoT27dszfvx4evbsyQ8//MDy5cszdVK/2XUtFgtDhw5lzJgx1K5dm9q1azNmzBi8vLx4/PHH7WX++c9/MmrUKBo2bEijRo2YNWsWBw8e5Pvvv7+V2yrFUFJyGsv2mf2zWoSbtaacPwp75mYuaHGC0LZw/I/52EIaF2GUIiJSbOV33ohVq1YZnp6exj333GO4ubkZR4+a8wGNHz/e6NWrV35PZ0yZMsUIDQ013NzcjCZNmhirV6+273v66aeNDh06ZLl+48aNDTc3NyMsLMz49NNPs5xz7ty5Rp06dQxXV1ejbt26xrx58/J1XcMwDJvNZowaNcoIDg423N3djfbt2xt79uzJcp6xY8caVatWNby8vIzWrVsba9euzdf31zxaxdu0Vb8boa8uNu76YKVhtdrMjQcWm3NjTW1jGD/90zBG+RvGin+Zc2RtnGYYP71iGClXHBq3iIgUrkKbR6t169Y8+uijDB8+HF9fX3bt2kWNGjXYsmULDz74IKdPny6cjLCU0jxaxdeJ81fo/vFarqZamfBIA3o3+2OE6IbJsPQNiHgQes8yO8G7ekEugzhERKR0KbR5tPbs2cNDDz2UZXvFihU5f/58fk8nUixZbQbDv9vF1VQrrWoE8EiTqtd3XjTn1CIg3Pyvm7eSLBERyVa+E61y5coRExOTZfuOHTuoUqVKgQQl4kjHzl3mlbm72HbiIr7uLnzwaEOcnP6USF34I9EqH+6YAEVEpMTId6L1+OOP8+qrrxIbG4vFYsFms7F+/XpeeeUVnnrqqcKIUaTIrD1yjrs+XM2CHWYT+L8eqkfV8jdM03BjjZaIiEgO8p1ovf/++1SvXp0qVapw+fJlIiIiaN++PW3atOHNN98sjBhFiszSP0YYAozvVZ+ejW6opbWmw6U/5klTjZaIiNxEvqd3cHV15ZtvvuG9995j+/bt2Gw2GjduTO3atQsjPpEitfGY2c9w2pNN6VYvOPPOxDMQvRFs6Wbnd78QB0QoIiIlyS3PDF+jRg1q1KiB1Wplz549XLx4kfLly9/8QJFiavXhcxyJu4zFAq1qBGTeabPCl93g0gnzc1g7cHIu+iBFRKREyXeiNXToUOrXr8/AgQOxWq106NCBDRs24OXlxeLFi+nYsWMhhClS8AzD4O//287mqItUD/Bke/QlACIq+1HOyy1z4VNbridZYC4YLSIichP57qP1/fff07ChuVjujz/+yLFjxzh48CBDhw7ljTfeKPAARQrL9uiL/LwnlvjLKfYkKzzQm/97JJvFoA/+lPlzrbsLP0ARESnx8p1oxcfH2xdd/vnnn+nduze33XYbAwcOZM+ePQUeoEhh+d+mk1m2ff5UUyJCspl47shS87+1u8L9k6BCzUKOTkRESoN8Nx0GBQWxf/9+KleuzJIlS5g6dSoAV69exdlZfVakeEpJt7Jkbyx33x6Ej7sLVpvBr/tiAZjzt1Ys2RdLlXKe1Krke/0gwzAnIk1OgHMHzW0PTgXvQAd8AxERKYnynWg988wz9O7dm8qVK2OxWOjcuTMAmzZtom7dugUeoEhB+ODXQ3y+Noq2tSrw9YCWHIhJ5HJKOr7uLjQLC6BljQqZD4icCusmQrdx1xOrctWVZImISL7kO9EaPXo09erV4+TJkzz66KO4u7sD4OzszGuvvVbgAYr8FYZhsGjXGT5fa04yuv7388zYcJyMid6bhpXH2emG5XP2L4JfR5rvFz4PTZ8x34c0KaKoRUSktMj3otJSsLSodMGx2gzSrDY8XK83Yf+6L5bnvt4GgLebM1dSrZmOebeDL081rQSV6ppNhSc2wI8vwfnfs16g83vQ9qVC/Q4iIlIy5PX5nacarUmTJvG3v/0NDw8PJk2alGvZl17Sg0gc47mvt7I56gLfP9+Go3GX+b+lhzh27op9//8GteKT346w/EAcAK2c9vPk1v+DzWnw1A9wfD2sHnf9hI98Cd8PuP655l1F9VVERKSUyFONVnh4OFu3bqVChQqEh+e87IjFYuHYsWMFGmBppxqtgnHs3GXu+nB1jvsXvNCGxtXLk5JuZe/pRNydLdSZ3RrXy2eyP6BOD3jsW/jmUXPEYceR0FFN4yIiYirQGq2oqKhs34sUFwv/WAQ6O34eLjSsWg4AdxdnmoaWh9g9kJFk+VaGpBjzfcPHoGFfqNLU/NxrOpzdC9VbF2L0IiJSWt3yEjxgdjQGsyZLxJFWHDSbAx9qXIUVB87i7urMohfbsmjnGZqElsfpzx3ej66Erx8039fuYiZWGU2EHV6FgD/V2nr4QWibovkSIiJS6uR7wlKAr776ivr16+Pp6YmnpycNGjTg66+/LujYRPIkzWrjyNnLOGHjX7ZJ7Kz6Ib89V5fK/p4816EmzcP+tG5h4hmzs3uGmndDxEPQ+V2z9iog56ZxERGR/Mp3jdbEiRN56623ePHFF2nbti2GYbB+/XoGDx5MfHw8w4YNK4w4RXJ07NwVUq02XnRfgveheQD4/jAAuo6BBc/B1fNw99sQswu2zbx+oE8w3PEgODlB2yEOiV1EREq3fE/vEB4ezjvvvMNTTz2VafusWbMYPXq0+nDlkzrD/3U/7DzN27PXsdFzCJ7GtbwdlNHZXURE5Bbk9fmd76bDmJgY2rTJ2melTZs2xMTE5Pd0In/Z8egoPnf70EyygupDjw+u76zcEIIbXP/s6g3O7tDmH0UfqIiIlDn5bjqsVasW3333Ha+//nqm7XPmzKF27doFFphIXhg2G513v0KE0yFzQ6eRcFs3uHgcnN2gwwhIToTV482O73W6gc1mNheKiIgUsnwnWu+88w59+vRhzZo1tG3bFovFwrp161ixYgXfffddYcQokqN9m5ZSL/0AAEk9Z+Bb915zR9f3rxdy9YT7Jl7/rCRLRESKSL6fOL169WLTpk0EBgaycOFC5s+fT2BgIJs3b+ahhx4qjBhFcmSs+xiALQH349v4YQdHIyIiktktzaPVtGlT/vvf/xZ0LCJ5cvhkHNM2nOaeign0uLIBm2HBu9NQR4clIiKSxV+asFSkqJ08uJXQb7vxiK02HpZUcII1Ts1pf0dTR4cmIiKSRZ4TLScnp5vOAG+xWEhPT//LQYnk5Ozqz6lmSaON834A0gxn9t/+Dzo6aXUCEREpfvKcaC1YsCDHfRs2bOCTTz4hn1NyieSPzUZo7LJMm/bf9jz9H+rhoIBERERyl+dEq2fPnlm2HTx4kJEjR/Ljjz/yxBNP8N577xVocCJ/dnbfKoKM8yQZnlhfPkI5T1cauno4OiwREZEc3dI49zNnzjBo0CAaNGhAeno6O3fuZNasWVSvXr2g4xOxu7B5NgDbvdpSzs8XlGSJiEgxl69EKyEhgVdffZVatWqxb98+VqxYwY8//ki9evUKKz4Rk81K5dNLAbh22wMODkZERCRv8tx0OGHCBMaPH09wcDDffvtttk2JIgUpOc1KbEIyP+2J4eTe9YyzXSTR8OL2tkq0RESkZMjzotJOTk54enpyzz334OzsnGO5+fPnF1hwZYEWlc7ZwJlb6HH0HepZovjR2ppXXOeyy6M5DV9b7ujQRESkjMvr8zvPNVpPPfXUTad3ECkoCVfTOHDoANPd1wJQx2kuAA1a3ePIsERERPIlz4nWzJkzCzEMkeusNoP/bY6ms9PWLPss1Vo4ICIREZFbo5nhxbEMAw4uhqMr4Y6HuBzSmvG/HOTrjcdZ6LYuc1mLM1TRDPAiIlJyKNESx4paA3OeBODq9tl0vTqG01TkIad1NHI6is3JDSfDChYL3PshePg7OGAREZG8U6IljrV3nv2tl+0K090+4MnU13nNcyFYwanTSGjcD9KvQTnN0yYiIiXLLU1YKlIgrOlmsyHwz7S/EWeUp67TSbZ6PE+QNQY8y0PLweBTUUmWiIiUSEq0xHHObIer57ns7Md8azsWN5oGFWpd39/kaXDzclx8IiIif5GaDsVxTm0BYIv1Nqw407BJS7h3LexfCAmnoPXfHRufiIjIX6RESxznlDl9w5a0GpTzcqVRtXLgZIFGjzs2LhERkQKipkNxGNsfidZOoxZ9m1fH2UkT4oqISOmiREsc4/I5nBKisRkW4nwiGHJ3bUdHJCIiUuDUdChFyzDgh7/Dzm8A+N0I4e5GtfB0y3n9TBERkZJKNVpStE5usidZADtttehyR5ADAxIRESk8SrSkSNk2TMn0+Xe3ujSqVt5B0YiIiBQuJVpSdKzpGEeWZdrkU7OlOsGLiEippT5aUmSSTu3D13qNq4Y7u40aWDBo0Li1o8MSEREpNEq0pGjEHeDq133xBXYbNeib+hY1Knrzc231zxIRkdJLiZYUCeOnVwhKPwNAnE8EB4d1w8XJgouzWq9FRKT0UqIlhS/1CpYT6+wfe/ToiYurpnMQEZHST9UJUviiI+1vZ3k9hUvEfQ4MRkREpOgo0ZLCF7UGgO/SO7A3/FlwUm2WiIiUDUq0pPAdWw3AetsdRIT4OTgYERGRoqNESwrX1QsQswuASNsd3F5ZiZaIiJQdDk+0pk6dSnh4OB4eHjRt2pS1a9fmWn716tU0bdoUDw8PatSowbRp07KUmTdvHhEREbi7uxMREcGCBQvyfV3DMBg9ejQhISF4enrSsWNH9u3bl21MhmHQvXt3LBYLCxcuzPuXLwtOrAcMjtiqEEd5JVoiIlKmODTRmjNnDkOHDuWNN95gx44dtGvXju7duxMdHZ1t+aioKHr06EG7du3YsWMHr7/+Oi+99BLz5s2zl4mMjKRPnz7069ePXbt20a9fP3r37s2mTZvydd0JEyYwceJEJk+ezJYtWwgODqZz584kJSVlieujjz7CYtHs5tk6sQGADbYIqpTzxN/T1cEBiYiIFCHDgVq0aGEMHjw407a6desar732WrblR4wYYdStWzfTtueee85o1aqV/XPv3r2Nbt26ZSrTtWtXo2/fvnm+rs1mM4KDg41x48bZ9ycnJxv+/v7GtGnTMh23c+dOo2rVqkZMTIwBGAsWLLjJt84sISHBAIyEhIR8HVdifNndMEb5GcNGjjCenbXF0dGIiIgUiLw+vx1Wo5Wamsq2bdvo0qVLpu1dunRhw4YN2R4TGRmZpXzXrl3ZunUraWlpuZbJOGderhsVFUVsbGymMu7u7nTo0CFTbFevXuWxxx5j8uTJBAcH5+l7p6SkkJiYmOlVahkGRuweAPYbYUSo2VBERMoYhyVa8fHxWK1WgoIyL8ESFBREbGxstsfExsZmWz49PZ34+Phcy2ScMy/XzfjvzWIbNmwYbdq0oWfPnnn6zgBjx47F39/f/qpWrVqejy1xLp3AkpJIiuHCCacqPNi4iqMjEhERKVIO7wx/Y98mwzBy7e+UXfkbt+flnH+1zKJFi/jtt9/46KOPcow1OyNHjiQhIcH+OnnyZL6OL1FidgNw2KjKE61rER7o7eCAREREipbDEq3AwECcnZ2z1F7FxcVlqUnKEBwcnG15FxcXKlSokGuZjHPm5boZzYC5lfntt984evQo5cqVw8XFBRcXczWjXr160bFjxxy/t7u7O35+fplepZVxZgcA+21hdI7Q4tEiIlL2OCzRcnNzo2nTpixbtizT9mXLltGmTZtsj2ndunWW8kuXLqVZs2a4urrmWibjnHm5bnh4OMHBwZnKpKamsnr1anuZ1157jd27d7Nz5077C+Df//43M2bMyM+tKLWSj64HYJflNhpWK+fYYERERByh8Pvl52z27NmGq6urMX36dGP//v3G0KFDDW9vb+P48eOGYRjGa6+9ZvTr189e/tixY4aXl5cxbNgwY//+/cb06dMNV1dX4/vvv7eXWb9+veHs7GyMGzfOOHDggDFu3DjDxcXF2LhxY56vaxiGMW7cOMPf39+YP3++sWfPHuOxxx4zKleubCQmJub4fdCow+vSko20dyoaxig/Y8jkOY6ORkREpEDl9fnt4sgkr0+fPpw/f553332XmJgY6tWrx88//0xoaCgAMTExmea2Cg8P5+eff2bYsGFMmTKFkJAQJk2aRK9evexl2rRpw+zZs3nzzTd56623qFmzJnPmzKFly5Z5vi7AiBEjuHbtGi+88AIXL16kZcuWLF26FF9f3yK4MyWf9fROXGwpnDd8qVe/qaPDERERcQiLYfzRm1wcIjExEX9/fxISEkpVf63TswZSJep7ltOSViN/xsfdoTm9iIhIgcrr89vhow6lFIo7SOWo+QAcv22AkiwRESmzlGhJwTIMjJ+G44SNX63NqNnkLkdHJCIi4jBKtKRgHVuF5cR6rhrujLE9RcsaAY6OSERExGGUaEnB2msu8L3Q2pZq4XXxclOzoYiIlF1KtOQvSbiaRsI1c51J0pKxHfgRgB9trflb+xoOjExERMTxVN0gN3X+cgqjvl3FgPMTcW3yGGerdqdtFRfGr45l5objuLs48cuQdtTYMR6n5EvEGAGkhLSiXe1AR4cuIiLiUEq05Kbe+XE/zU58QROXjbBhI4etc3F3Wk+g9QEecw7kis2DyB+PUCN6EgBvpT3DPzrXzXXNShERkbJAiZbkat+ZBBbtOs2b7pvt23o5rwPgRZcfrhf8Y17ZGeldsdbuRsfbKhZlmCIiIsWSEi3J1fJtB1nh9gqVLJfs26wWV5yNtCxlDxBO8+em0b9qedVmiYiIoERLcpF84RRttg+nplOMueGut6DmXTiXDwNXLzizHQJvw/phBM62FEIeeg//aprOQUREJIMSLclWQmIixietaW4kAnDtsfl41rk7c6HQNgA49/8REk7iX+++og5TRESkWNP0DpKtb/43g3J/JFlRDYZlTbL+rHpLqP8IqLlQREQkEyVaksWlq6kEnV4GQHy9AYQ/PNqh8YiIiJRUSrQki+2/n+Eep20ABDbr5eBoRERESi4lWpLFtR1z8Ldc5YJrZaje2tHhiIiIlFhKtCSLOifnAnCq9hPg5OzgaEREREouJVqSSWJcNLXSj2AzLFRo87SjwxERESnRlGhJJsc3LQLgsHMtqlSt7uBoRERESjYlWpLZkaUAnA1q5+BARERESj4lWmIXffoMtyVsAKBco/sdHI2IiEjJp0RL7Db++AUeljROuYTSoHlHR4cjIiJS4inRErsa51YAkFr/MSxO+tUQERH5q/Q0FQBS0tKpnX4EAP+IXJbbERERkTxToiUAnD52AH/LFVJxISC8oaPDERERKRWUaAkAF49uBuCESzgWF3cHRyMiIlI6KNESAGyndwIQ7xfh2EBERERKESVaAkDguU0ApAY1cXAkIiIipYcSLcF6OZ7Q1MMABDbs7uBoRERESg8lWsKpbT/jhMFhqlOndm1HhyMiIlJqKNESkg+Yy+4c82+Ji7N+JURERAqKnqplnGGzEXh2PQDOtTs7OBoREZHSRYlWGXdkzyYqGBe4arjTvH0PR4cjIiJSqijRKsPikpJZ9+OXAET5NKacn6+DIxIRESldlGiVYf9bu4+H034CoErHZxwcjYiISOmjRKuMstkMXLfPpJzlCpd9wijX9FFHhyQiIlLqKNEqo+ZvPkzvtB8AcO/4Cjg5OzgiERGR0keJVhl04lwCVX7uT0VLAgnulXFt3NfRIYmIiJRKSrTKoONbltDaaT/XLJ749p0Ozq6ODklERKRUUqJVBiWf2gXA8fJtcApv6+BoRERESi8lWmWQ24WD5ptKEY4NREREpJRTolXGWG0GQdeOAlAurJFjgxERESnllGiVMVFxl6jJaQAq1W7q4GhERERKNyVaZcyJQ7txt6RxzeKBc/lQR4cjIiJSqinRKmMuH98KQJxXHXDSj19ERKQw6UlbxrjFmSMOUyo1cHAkIiIipZ8SrTLEZjMIvmyOOPQOb+7gaEREREo/JVplyMnzidQlCoBKdVo6OBoREZHST4lWGRJ9aAeellSuWTxxrXibo8MREREp9ZRolSFJx8yO8DHqCC8iIlIk9LQtQ1z/6AifrI7wIiIiRUKJVhlhGAbBlw8A4B3azMHRiIiIlA1KtMqIC0lXqW0cByC4bivHBiMiIlJGKNEqI04fP4iHJY0U3HCvVNvR4YiIiJQJSrTKiITofQDEulZVR3gREZEioiduGZF21pyoNNGnhoMjERERKTuUaJUR7hd/B8AaoGZDERGRouLwRGvq1KmEh4fj4eFB06ZNWbt2ba7lV69eTdOmTfHw8KBGjRpMmzYtS5l58+YRERGBu7s7ERERLFiwIN/XNQyD0aNHExISgqenJx07dmTfvn32/RcuXOAf//gHderUwcvLi+rVq/PSSy+RkJBwi3eicJW/as4I7145wsGRiIiIlB0OTbTmzJnD0KFDeeONN9ixYwft2rWje/fuREdHZ1s+KiqKHj160K5dO3bs2MHrr7/OSy+9xLx58+xlIiMj6dOnD/369WPXrl3069eP3r17s2nTpnxdd8KECUycOJHJkyezZcsWgoOD6dy5M0lJSQCcOXOGM2fO8MEHH7Bnzx5mzpzJkiVLGDhwYCHdrVtnsxmEWE8DUL76HQ6ORkREpAwxHKhFixbG4MGDM22rW7eu8dprr2VbfsSIEUbdunUzbXvuueeMVq1a2T/37t3b6NatW6YyXbt2Nfr27Zvn69psNiM4ONgYN26cfX9ycrLh7+9vTJs2Lcfv89133xlubm5GWlpajmVulJCQYABGQkJCno/Jr7hzcYYxys8wRvkZqVcL7zoiIiJlRV6f3w6r0UpNTWXbtm106dIl0/YuXbqwYcOGbI+JjIzMUr5r165s3bqVtLS0XMtknDMv142KiiI2NjZTGXd3dzp06JBjbAAJCQn4+fnh4uKSY5mUlBQSExMzvQpb/Cmzf1YCPrh6+hX69URERMTksEQrPj4eq9VKUFBQpu1BQUHExsZme0xsbGy25dPT04mPj8+1TMY583LdjP/mJ7bz58/z3nvv8dxzz+X4nQHGjh2Lv7+//VWtWrVcyxeEpLPHzBhdgm5SUkRERAqSwzvDWyyWTJ8Nw8iy7Wblb9yel3MWVBmAxMRE7r33XiIiIhg1alSOsQOMHDmShIQE++vkyZO5li8IqfEnALjsUbnQryUiIiLX5dzGVcgCAwNxdnbOUkMUFxeXpSYpQ3BwcLblXVxcqFChQq5lMs6Zl+sGBwcDZs1W5cqVsy2TISkpiW7duuHj48OCBQtwdXXN9Xu7u7vj7u6ea5mCZkkwO/mn+lQp0uuKiIiUdQ6r0XJzc6Np06YsW7Ys0/Zly5bRpk2bbI9p3bp1lvJLly6lWbNm9gQnpzIZ58zLdcPDwwkODs5UJjU1ldWrV2eKLTExkS5duuDm5saiRYvw8PDIzy0oMm5XzBGHlKvu2EBERETKGIfVaAEMHz6cfv360axZM1q3bs1nn31GdHQ0gwcPBsxmttOnT/PVV18BMHjwYCZPnszw4cMZNGgQkZGRTJ8+nW+//dZ+ziFDhtC+fXvGjx9Pz549+eGHH1i+fDnr1q3L83UtFgtDhw5lzJgx1K5dm9q1azNmzBi8vLx4/PHHAbMmq0uXLly9epX//ve/mTq2V6xYEWdn5yK5h3nhm2zW3rlXCHVwJCIiImVM4Q+AzN2UKVOM0NBQw83NzWjSpImxevVq+76nn37a6NChQ6byq1atMho3bmy4ubkZYWFhxqeffprlnHPnzjXq1KljuLq6GnXr1jXmzZuXr+sahjnFw6hRo4zg4GDD3d3daN++vbFnzx77/pUrVxpAtq+oqKg8f//Cnt4hPd1qXHy7smGM8jNO7d9YKNcQEREpa/L6/LYYxh+9ycUhEhMT8ff3t08NUdBOnTxB1ekNsBkWbCNP4+LhXeDXEBERKWvy+vx2+KhDKVxxUbsBOOtcSUmWiIhIEVOiVcpdOb0fgPOeYY4NREREpAxSolXKWeIPAZBSrpaDIxERESl7lGiVcj6J5qzwLpXqODgSERGRskeJVilmGAZBqeZkpeWr13dwNCIiImWPEq1SLC7+ApUt5wEIrtXQwdGIiIiUPUq0SrHTv+8C4KLFHzffCg6ORkREpOxRolWKJZ4yRxyec9eM8CIiIo6gRKsUs8UdBOCaf00HRyIiIlI2KdEqxbwSjwLgVKmugyMREREpm5RolVKGYRCcEgWAf2gDB0cjIiJSNinRKqXiLlyiuhELQFCtxg6ORkREpGxSolVKnfl9F04Wg0v44e4f7OhwREREyiQlWqVU0ok/FpP2CAeLxcHRiIiIlE1KtEop49wBAK6Uu83BkYiIiJRdSrRKqWreBukWV3yqqSO8iIiIo1gMwzAcHURZlpiYiL+/PwkJCfj5+RXsya3pYEsHV4+CPa+IiEgZl9fnt0sRxiRFzdnFfImIiIhDqOlQREREpJAo0RIREREpJEq0RERERAqJEi0RERGRQqJES0RERKSQKNESERERKSRKtEREREQKiRItERERkUKiREtERESkkCjREhERESkkSrRERERECokSLREREZFCokRLREREpJC4ODqAss4wDAASExMdHImIiIjkVcZzO+M5nhMlWg6WlJQEQLVq1RwciYiIiORXUlIS/v7+Oe63GDdLxaRQ2Ww2zpw5g6+vLxaLJU/HJCYmUq1aNU6ePImfn18hRyi630VL97to6X4XLd3volWY99swDJKSkggJCcHJKeeeWKrRcjAnJyeqVq16S8f6+fnpf9QipPtdtHS/i5bud9HS/S5ahXW/c6vJyqDO8CIiIiKFRImWiIiISCFRolUCubu7M2rUKNzd3R0dSpmg+120dL+Llu530dL9LlrF4X6rM7yIiIhIIVGNloiIiEghUaIlIiIiUkiUaImIiIgUEiVaIiIiIoVEiVYJNHXqVMLDw/Hw8KBp06asXbvW0SGVSGvWrOH+++8nJCQEi8XCwoULM+03DIPRo0cTEhKCp6cnHTt2ZN++fZnKpKSk8I9//IPAwEC8vb154IEHOHXqVBF+i5Jh7NixNG/eHF9fXypVqsSDDz7IoUOHMpXR/S44n376KQ0aNLBP0ti6dWt++eUX+37d68I1duxYLBYLQ4cOtW/TPS84o0ePxmKxZHoFBwfb9xe7e21IiTJ79mzD1dXV+Pzzz439+/cbQ4YMMby9vY0TJ044OrQS5+effzbeeOMNY968eQZgLFiwINP+cePGGb6+vsa8efOMPXv2GH369DEqV65sJCYm2ssMHjzYqFKlirFs2TJj+/btRqdOnYyGDRsa6enpRfxtireuXbsaM2bMMPbu3Wvs3LnTuPfee43q1asbly9ftpfR/S44ixYtMn766Sfj0KFDxqFDh4zXX3/dcHV1Nfbu3WsYhu51Ydq8ebMRFhZmNGjQwBgyZIh9u+55wRk1apRxxx13GDExMfZXXFycfX9xu9dKtEqYFi1aGIMHD860rW7dusZrr73moIhKhxsTLZvNZgQHBxvjxo2zb0tOTjb8/f2NadOmGYZhGJcuXTJcXV2N2bNn28ucPn3acHJyMpYsWVJksZdEcXFxBmCsXr3aMAzd76JQvnx544svvtC9LkRJSUlG7dq1jWXLlhkdOnSwJ1q65wVr1KhRRsOGDbPdVxzvtZoOS5DU1FS2bdtGly5dMm3v0qULGzZscFBUpVNUVBSxsbGZ7rW7uzsdOnSw3+tt27aRlpaWqUxISAj16tXTz+MmEhISAAgICAB0vwuT1Wpl9uzZXLlyhdatW+teF6K///3v3Hvvvdxzzz2ZtuueF7wjR44QEhJCeHg4ffv25dixY0DxvNdaVLoEiY+Px2q1EhQUlGl7UFAQsbGxDoqqdMq4n9nd6xMnTtjLuLm5Ub58+Sxl9PPImWEYDB8+nDvvvJN69eoBut+FYc+ePbRu3Zrk5GR8fHxYsGABERER9geJ7nXBmj17Ntu3b2fLli1Z9un3u2C1bNmSr776ittuu42zZ8/yr3/9izZt2rBv375iea+VaJVAFosl02fDMLJsk4JxK/daP4/cvfjii+zevZt169Zl2af7XXDq1KnDzp07uXTpEvPmzePpp59m9erV9v261wXn5MmTDBkyhKVLl+Lh4ZFjOd3zgtG9e3f7+/r169O6dWtq1qzJrFmzaNWqFVC87rWaDkuQwMBAnJ2ds2TccXFxWbJ3+WsyRrDkdq+Dg4NJTU3l4sWLOZaRzP7xj3+waNEiVq5cSdWqVe3bdb8LnpubG7Vq1aJZs2aMHTuWhg0b8vHHH+teF4Jt27YRFxdH06ZNcXFxwcXFhdWrVzNp0iRcXFzs90z3vHB4e3tTv359jhw5Uix/v5VolSBubm40bdqUZcuWZdq+bNky2rRp46CoSqfw8HCCg4Mz3evU1FRWr15tv9dNmzbF1dU1U5mYmBj27t2rn8cNDMPgxRdfZP78+fz222+Eh4dn2q/7XfgMwyAlJUX3uhDcfffd7Nmzh507d9pfzZo144knnmDnzp3UqFFD97wQpaSkcODAASpXrlw8f78LvHu9FKqM6R2mT59u7N+/3xg6dKjh7e1tHD9+3NGhlThJSUnGjh07jB07dhiAMXHiRGPHjh32qTLGjRtn+Pv7G/Pnzzf27NljPPbYY9kOEa5ataqxfPlyY/v27cZdd92l4djZeP755w1/f39j1apVmYZkX7161V5G97vgjBw50lizZo0RFRVl7N6923j99dcNJycnY+nSpYZh6F4XhT+POjQM3fOC9PLLLxurVq0yjh07ZmzcuNG47777DF9fX/tzsLjdayVaJdCUKVOM0NBQw83NzWjSpIl9iLzkz8qVKw0gy+vpp582DMMcJjxq1CgjODjYcHd3N9q3b2/s2bMn0zmuXbtmvPjii0ZAQIDh6elp3HfffUZ0dLQDvk3xlt19BowZM2bYy+h+F5wBAwbY/42oWLGicffdd9uTLMPQvS4KNyZauucFJ2NeLFdXVyMkJMR4+OGHjX379tn3F7d7bTEMwyj4ejIRERERUR8tERERkUKiREtERESkkCjREhERESkkSrRERERECokSLREREZFCokRLREREpJAo0RIREREpJEq0RERERAqJEi0REQcLCwvjo48+cnQYIlIIlGiJSJnSv39/HnzwQQA6duzI0KFDi+zaM2fOpFy5clm2b9myhb/97W9FFoeIFB0XRwcgIlLSpaam4ubmdsvHV6xYsQCjEZHiRDVaIlIm9e/fn9WrV/Pxxx9jsViwWCwcP34cgP3799OjRw98fHwICgqiX79+xMfH24/t2LEjL774IsOHDycwMJDOnTsDMHHiROrXr4+3tzfVqlXjhRde4PLlywCsWrWKZ555hoSEBPv1Ro8eDWRtOoyOjqZnz574+Pjg5+dH7969OXv2rH3/6NGjadSoEV9//TVhYWH4+/vTt29fkpKSCvemiUi+KdESkTLp448/pnXr1gwaNIiYmBhiYmKoVq0aMTExdOjQgUaNGrF161aWLFnC2bNn6d27d6bjZ82ahYuLC+vXr+c///kPAE5OTkyaNIm9e/cya9YsfvvtN0aMGAFAmzZt+Oijj/Dz87Nf75VXXskSl2EYPPjgg1y4cIHVq1ezbNkyjh49Sp8+fTKVO3r0KAsXLmTx4sUsXryY1atXM27cuEK6WyJyq9R0KCJlkr+/P25ubnh5eREcHGzf/umnn9KkSRPGjBlj3/bll19SrVo1Dh8+zG233QZArVq1mDBhQqZz/rm/V3h4OO+99x7PP/88U6dOxc3NDX9/fywWS6br3Wj58uXs3r2bqKgoqlWrBsDXX3/NHXfcwZYtW2jevDkANpuNmTNn4uvrC0C/fv1YsWIF77///l+7MSJSoFSjJSLyJ9u2bWPlypX4+PjYX3Xr1gXMWqQMzZo1y3LsypUr6dy5M1WqVMHX15ennnqK8+fPc+XKlTxf/8CBA1SrVs2eZAFERERQrlw5Dhw4YN8WFhZmT7IAKleuTFxcXL6+q4gUPtVoiYj8ic1m4/7772f8+PFZ9lWuXNn+3tvbO9O+EydO0KNHDwYPHsx7771HQEAA69atY+DAgaSlpeX5+oZhYLFYbrrd1dU1036LxYLNZsvzdUSkaCjREpEyy83NDavVmmlbkyZNmDdvHmFhYbi45P2fyK1bt5Kens6HH36Ik5PZWPDdd9/d9Ho3ioiIIDo6mpMnT9prtfbv309CQgK33357nuMRkeJBTYciUmaFhYWxadMmjh8/Tnx8PDabjb///e9cuHCBxx57jM2bN3Ps2DGWLl3KgAEDck2SatasSXp6Op988gnHjh3j66+/Ztq0aVmud/nyZVasWEF8fDxXr17Ncp577rmHBg0a8MQTT7B9+3Y2b97MU089RYcOHbJtrhSR4k2JloiUWa+88grOzs5ERERQsWJFoqOjCQkJYf369VitVrp27Uq9evUYMmQI/v7+9pqq7DRq1IiJEycyfvx46tWrxzfffMPYsWMzlWnTpg2DBw+mT58+VKxYMUtnejCbABcuXEj58uVp374999xzDzVq1GDOnDkF/v1FpPBZDMMwHB2EiIiISGmkGi0RERGRQqJES0RERKSQKNESERERKSRKtEREREQKiRItERERkUKiREtERESkkCjREhERESkkSrRERERECokSLREREZFCokRLREREpJAo0RIREREpJP8Pb/uMI0WOTRQAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import skimage\n", + "\n", + "class SigmaEstimateCallback(callbacks.Callback):\n", + " def __init__(self):\n", + "\n", + " self.save_values=[]\n", + "\n", + " def __call__(self, algorithm):\n", + " self.save_values.append(skimage.restoration.estimate_sigma(algorithm.get_output().as_array()))\n", + "\n", + "mycallback_FISTA_TV_alpha_01= SigmaEstimateCallback()\n", + "algo1=FISTA(initial=ig.allocate(0), f=F, g=0.1*TotalVariation(lower=0), update_objective_interval=10) \n", + "algo1.run(500, callbacks=[mycallback_FISTA_TV_alpha_01])\n", + "\n", + " \n", + "mycallback_FISTA_TV_alpha_1= SigmaEstimateCallback()\n", + "algo2=FISTA(initial=ig.allocate(0), f=F, g=1*TotalVariation(lower=0), update_objective_interval=10) \n", + "algo2.run(500, callbacks=[mycallback_FISTA_TV_alpha_1])\n", + "\n", + "\n", + "show2D([ground_truth, algo1.get_output(), algo2.get_output()], title=['ground_truth', 'FISTA_TV_alpha_01', 'FISTA_TV_alpha_1'], num_cols=3)\n", + "show2D([absorption, A.direct(algo1.get_output())-absorption, A.direct(algo2.get_output())-absorption], title=['ground_truth', 'Data error FISTA_TV_alpha_01', 'Data error FISTA_TV_alpha_1'], fix_range=[[0,3], [-0.02, 0.02], [-0.02, 0.02]], cmap=['gray', 'seismic', 'seismic'], num_cols=3)\n", + "plt.plot(range(10,501), mycallback_FISTA_TV_alpha_01.save_values[10:], label='FISTA TV alpha=0.1 ')\n", + "plt.plot(range(10, 501), mycallback_FISTA_TV_alpha_1.save_values[10:], label='FISTA TV alpha=1.0 ')\n", + "plt.ylabel('Noise Estimate')\n", + "plt.xlabel('Iteration')\n", + "plt.legend()\n", + " \n", + " " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We see with a larger regularisation parameter, the resulting image is less noisy. " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Image metric callbacks (custom callback example) \n" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " MSE MAE PSNR\n", + " 1.07888e-06 5.48145e-04 9.48530e+00\n", + " 5.85316e-07 6.22034e-04 1.21411e+01\n", + " 5.05844e-07 5.72563e-04 1.27749e+01\n", + " 4.31374e-07 5.19819e-04 1.34665e+01\n", + " 3.64704e-07 4.67054e-04 1.41956e+01\n", + " 3.06416e-07 4.16492e-04 1.49519e+01\n", + " 2.56388e-07 3.70092e-04 1.57261e+01\n", + " 2.14156e-07 3.28810e-04 1.65077e+01\n", + " 1.78987e-07 2.92725e-04 1.72868e+01\n", + " 1.50022e-07 2.60981e-04 1.80535e+01\n", + " 1.26383e-07 2.33361e-04 1.87981e+01\n", + " 1.07187e-07 2.09652e-04 1.95136e+01\n", + " 9.16141e-08 1.89309e-04 2.01954e+01\n", + " 7.89449e-08 1.72049e-04 2.08418e+01\n", + " 6.85910e-08 1.57283e-04 2.14524e+01\n", + " 6.00884e-08 1.44610e-04 2.20271e+01\n", + " 5.30737e-08 1.33746e-04 2.25662e+01\n", + " 4.72670e-08 1.24414e-04 2.30695e+01\n", + " 4.24393e-08 1.16364e-04 2.35374e+01\n", + " 3.84176e-08 1.09416e-04 2.39697e+01\n", + " 3.50543e-08 1.03451e-04 2.43676e+01\n", + " 3.22300e-08 9.82989e-05 2.47324e+01\n", + " 2.98493e-08 9.39156e-05 2.50657e+01\n", + " 2.78304e-08 9.01341e-05 2.53698e+01\n", + " 2.61075e-08 8.68679e-05 2.56474e+01\n", + " 2.46249e-08 8.40164e-05 2.59013e+01\n", + " 2.33423e-08 8.14809e-05 2.61336e+01\n", + " 2.22266e-08 7.92211e-05 2.63463e+01\n", + " 2.12462e-08 7.72332e-05 2.65422e+01\n", + " 2.03792e-08 7.54337e-05 2.67232e+01\n", + " 1.96080e-08 7.38151e-05 2.68907e+01\n", + " 1.89173e-08 7.23520e-05 2.70464e+01\n", + " 1.82934e-08 7.10307e-05 2.71921e+01\n", + " 1.77264e-08 6.98001e-05 2.73288e+01\n", + " 1.72101e-08 6.86725e-05 2.74572e+01\n", + " 1.67384e-08 6.76756e-05 2.75779e+01\n", + " 1.63068e-08 6.67997e-05 2.76913e+01\n", + " 1.59109e-08 6.59966e-05 2.77981e+01\n", + " 1.55498e-08 6.52429e-05 2.78978e+01\n", + " 1.52207e-08 6.45565e-05 2.79907e+01\n", + " 1.49199e-08 6.39012e-05 2.80774e+01\n", + " 1.46448e-08 6.32729e-05 2.81582e+01\n", + " 1.43935e-08 6.26837e-05 2.82334e+01\n", + " 1.41640e-08 6.21308e-05 2.83032e+01\n", + " 1.39533e-08 6.16084e-05 2.83683e+01\n", + " 1.37602e-08 6.11234e-05 2.84288e+01\n", + " 1.35827e-08 6.06739e-05 2.84852e+01\n", + " 1.34200e-08 6.02613e-05 2.85375e+01\n", + " 1.32710e-08 5.98831e-05 2.85860e+01\n", + " 1.31342e-08 5.95365e-05 2.86310e+01\n", + " 1.30086e-08 5.92132e-05 2.86727e+01\n", + " 1.28935e-08 5.89066e-05 2.87113e+01\n", + " 1.27882e-08 5.86154e-05 2.87469e+01\n", + " 1.26929e-08 5.83402e-05 2.87794e+01\n", + " 1.26069e-08 5.81077e-05 2.88090e+01\n", + " 1.25294e-08 5.79025e-05 2.88357e+01\n", + " 1.24593e-08 5.77139e-05 2.88601e+01\n", + " 1.23964e-08 5.75408e-05 2.88821e+01\n", + " 1.23400e-08 5.73717e-05 2.89019e+01\n", + " 1.22899e-08 5.72179e-05 2.89196e+01\n", + " 1.22457e-08 5.70800e-05 2.89352e+01\n", + " 1.22065e-08 5.69476e-05 2.89491e+01\n", + " 1.21716e-08 5.68219e-05 2.89616e+01\n", + " 1.21399e-08 5.67079e-05 2.89729e+01\n", + " 1.21121e-08 5.66082e-05 2.89828e+01\n", + " 1.20881e-08 5.65168e-05 2.89914e+01\n", + " 1.20672e-08 5.64386e-05 2.89990e+01\n", + " 1.20490e-08 5.63735e-05 2.90055e+01\n", + " 1.20338e-08 5.63197e-05 2.90110e+01\n", + " 1.20213e-08 5.62742e-05 2.90155e+01\n", + " 1.20117e-08 5.62335e-05 2.90190e+01\n", + " 1.20049e-08 5.61994e-05 2.90215e+01\n", + " 1.20006e-08 5.61720e-05 2.90230e+01\n", + " 1.19991e-08 5.61517e-05 2.90236e+01\n", + " 1.19998e-08 5.61385e-05 2.90233e+01\n", + " 1.20029e-08 5.61309e-05 2.90222e+01\n", + " 1.20088e-08 5.61240e-05 2.90201e+01\n", + " 1.20170e-08 5.61242e-05 2.90171e+01\n", + " 1.20275e-08 5.61325e-05 2.90133e+01\n", + " 1.20408e-08 5.61499e-05 2.90085e+01\n", + " 1.20565e-08 5.61750e-05 2.90028e+01\n", + " 1.20747e-08 5.62071e-05 2.89963e+01\n", + " 1.20954e-08 5.62405e-05 2.89888e+01\n", + " 1.21182e-08 5.62744e-05 2.89806e+01\n", + " 1.21432e-08 5.63137e-05 2.89717e+01\n", + " 1.21702e-08 5.63569e-05 2.89620e+01\n", + " 1.21990e-08 5.64026e-05 2.89518e+01\n", + " 1.22295e-08 5.64532e-05 2.89410e+01\n", + " 1.22611e-08 5.65052e-05 2.89297e+01\n", + " 1.22934e-08 5.65577e-05 2.89183e+01\n", + " 1.23272e-08 5.66137e-05 2.89064e+01\n", + " 1.23621e-08 5.66716e-05 2.88941e+01\n", + " 1.23983e-08 5.67352e-05 2.88814e+01\n", + " 1.24357e-08 5.68040e-05 2.88683e+01\n", + " 1.24743e-08 5.68758e-05 2.88549e+01\n", + " 1.25140e-08 5.69482e-05 2.88411e+01\n", + " 1.25548e-08 5.70229e-05 2.88269e+01\n", + " 1.25965e-08 5.71005e-05 2.88125e+01\n", + " 1.26388e-08 5.71802e-05 2.87980e+01\n", + " 1.26821e-08 5.72615e-05 2.87831e+01\n", + " 1.27264e-08 5.73452e-05 2.87680e+01\n" + ] + } + ], + "source": [ + "\n", + "class MetricsDiagnostics(callbacks.Callback):\n", + " \n", + " def __init__(self, reference_image, metrics_dict, print_interval=1):\n", + "\n", + " # reference image as numpy (level) array\n", + " self.reference_image = reference_image \n", + " self.metrics_dict = metrics_dict\n", + " # if data_range is None:\n", + " # self.data_range = np.abs(self.reference_image.max() - self.reference_image.min())\n", + " self.computed_metrics = [] \n", + " self.print_interval=print_interval\n", + "\n", + " super(MetricsDiagnostics, self).__init__() \n", + "\n", + " def __call__(self, algo):\n", + "\n", + " \n", + " for metric_name, metric_func in self.metrics_dict.items():\n", + "\n", + " if not hasattr(algo, metric_name):\n", + " setattr(algo, metric_name, []) \n", + " \n", + " metric_list = getattr(algo, metric_name)\n", + " metric_value = metric_func(self.reference_image, algo.get_output())\n", + " metric_list.append(metric_value)\n", + " \n", + " self.computed_metrics.append(metric_value)\n", + " \n", + " if algo.iteration == 0:\n", + " \n", + " print (self.callback_header())\n", + " \n", + " print(self.callback_iteration()) \n", + " \n", + " \n", + " \n", + " \n", + " def callback_header(self):\n", + " return \" \".join(\"{:>20}\".format(metric_name) for metric_name in self.metrics_dict.keys())\n", + "\n", + " def callback_iteration(self):\n", + " if isinstance(self.computed_metrics, list):\n", + " # Handle list of metrics\n", + " return \" \".join(\"{:>20.5e}\".format(metric) for metric in self.computed_metrics[-len(self.metrics_dict):])\n", + " else:\n", + " # Handle single metric\n", + " return \"{:>20.5e}\".format(self.computed_metrics) \n", + " \n", + "\n", + "from cil.utilities.quality_measures import mae, psnr, mse \n", + "metric_callback= MetricsDiagnostics(ground_truth, {'MSE':mse, 'MAE':mae, 'PSNR':psnr})\n", + "algo=FISTA(initial=ig.allocate(0), f=F, g=G, update_objective_interval=10) \n", + "algo.run(100, callbacks=[metric_callback])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## More complex example, image metric callbacks with region of interests \n", + "\n", + "Warning - this is a complex example! But the code may be useful to adapt and reuse " + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [], + "source": [ + "class ImageQualityCallback(callbacks.Callback):\n", + " \"\"\"\n", + " Parameters\n", + " ----------\n", + "\n", + " reference_image: CIL or STIR ImageData\n", + " containing the reference image used to calculate the metrics\n", + "\n", + " roi_mask_dict : dictionary of ImageData objects\n", + " list containing one binary ImageData object for every ROI to be\n", + " evaluated. Voxels with values 1 are considered part of the ROI\n", + " and voxels with value 0 are not.\n", + " Dimension of the ROI mask images must be the same as the dimension of\n", + " the reference image.\n", + " \n", + " metrics_dict : dictionary of lambda functions f(x,y) mapping\n", + " two 1-dimensional numpy arrays x and y to a scalar value or a\n", + " numpy.ndarray.\n", + " x and y can be the voxel values of the whole images or the values of\n", + " voxels in a ROI such that the metric can be computed on the whole\n", + " images and optionally in the ROIs separately.\n", + "\n", + " E.g. f(x,y) could be MSE(x,y), PSNR(x,y), MAE(x,y)\n", + "\n", + " statistics_dict : dictionary of lambda functions f(x) mapping a \n", + " 1-dimensional numpy array x to a scalar value or a numpy.ndarray.\n", + " E.g. mean(x), std_deviation(x) that calculate global and / or\n", + " ROI mean and standard deviations.\n", + "\n", + " E.g. f(x) could be x.mean()\n", + "\n", + "\n", + "\n", + "\n", + " \"\"\"\n", + " \n", + " def __init__(self, reference_image, \n", + " roi_mask_dict = None,\n", + " metrics_dict = None,\n", + " statistics_dict = None,\n", + " ):\n", + "\n", + " # the reference image\n", + " self.reference_image = reference_image\n", + "\n", + "\n", + " self.roi_indices_dict = {}\n", + " self.roi_store=[]\n", + "\n", + "\n", + "\n", + " self.roi_mask_dict=roi_mask_dict\n", + " \n", + " \n", + " self.metrics_dict = metrics_dict\n", + " self.metrics_store={}\n", + " for key, value in self.metrics_dict.items():\n", + " self.metrics_store['global_'+key] = []\n", + " if roi_mask_dict is not None:\n", + " for roi_name, value in roi_mask_dict.items():\n", + " self.metrics_store[roi_name+'_'+key] = []\n", + "\n", + " self.statistics_dict = statistics_dict\n", + " self.stat_store={}\n", + " for key, value in self.statistics_dict.items():\n", + " self.stat_store['global_'+key] = []\n", + " if roi_mask_dict is not None:\n", + " for roi_name, value in roi_mask_dict.items():\n", + " self.stat_store[roi_name+'_'+key] = []\n", + " \n", + " def __call__(self, algorithm):\n", + " if self.metrics_dict is not None:\n", + " for metric_name, metric in self.metrics_dict.items():\n", + " ans = metric(self.reference_image, algorithm.x)\n", + " self.metrics_store['global_'+metric_name].append(ans)\n", + " \n", + " \n", + " for roi_name, roi in self.roi_mask_dict.items():\n", + " ans = metric(self.reference_image, algorithm.x, mask=roi)\n", + " self.metrics_store[roi_name+'_'+metric_name].append(ans)\n", + " \n", + " \n", + " \n", + " if self.statistics_dict is not None:\n", + " for statistic_name, stat in self.statistics_dict.items():\n", + " ans = stat( algorithm.x.array, np._NoValue)\n", + " self.stat_store['global_'+statistic_name].append(ans)\n", + " \n", + " \n", + " for roi_name, roi in self.roi_mask_dict.items():\n", + " ans = stat( algorithm.x.array, roi.array.astype('bool'))\n", + " self.stat_store[roi_name+'_'+statistic_name].append(ans)\n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": {}, + "outputs": [], + "source": [ + "def mse(dc1, dc2, mask=None):\n", + " ''' Calculates the mean squared error of two images\n", + "\n", + " Parameters\n", + " ----------\n", + " dc1: `DataContainer`\n", + " One image to be compared\n", + " dc2: `DataContainer`\n", + " Second image to be compared\n", + " mask: array or `DataContainer` with the same dimensions as the `dc1` and `dc2`\n", + " The pixelwise operation only considers values where the mask is True or NonZero.\n", + "\n", + " Returns\n", + " -------\n", + " A number, the mean squared error of the two images\n", + " '''\n", + " dc1 = dc1.as_array()\n", + " dc2 = dc2.as_array()\n", + "\n", + " if mask is not None:\n", + "\n", + " if isinstance(mask, DataContainer):\n", + " mask = mask.as_array()\n", + "\n", + " mask = mask.astype('bool')\n", + " dc1 = np.extract(mask, dc1)\n", + " dc2 = np.extract(mask, dc2)\n", + " return np.mean(((dc1 - dc2)**2))\n", + "\n", + "\n", + "def mae(dc1, dc2, mask=None):\n", + " ''' Calculates the Mean Absolute error of two images.\n", + "\n", + " Parameters\n", + " ----------\n", + " dc1: `DataContainer`\n", + " One image to be compared\n", + " dc2: `DataContainer`\n", + " Second image to be compared\n", + " mask: array or `DataContainer` with the same dimensions as the `dc1` and `dc2`\n", + " The pixelwise operation only considers values where the mask is True or NonZero.\n", + "\n", + "\n", + " Returns\n", + " -------\n", + " A number with the mean absolute error between the two images.\n", + " '''\n", + " dc1 = dc1.as_array()\n", + " dc2 = dc2.as_array()\n", + "\n", + " if mask is not None:\n", + "\n", + " if isinstance(mask, DataContainer):\n", + " mask = mask.as_array()\n", + "\n", + " mask = mask.astype('bool')\n", + " dc1 = np.extract(mask, dc1)\n", + " dc2 = np.extract(mask, dc2)\n", + "\n", + " return np.mean(np.abs((dc1-dc2)))\n", + "\n", + "\n", + "def psnr(ground_truth, corrupted, mask=None):\n", + " ''' Calculates the Peak signal to noise ratio (PSNR) between the two images.\n", + "\n", + " Parameters\n", + " ----------\n", + " ground_truth: `DataContainer`\n", + " The reference image\n", + " corrupted: `DataContainer`\n", + " The image to be evaluated\n", + " data_range: scalar value, default=None\n", + " PSNR scaling factor, the dynamic range of the images (i.e., the difference between the maximum the and minimum allowed values). We take the maximum value in the ground truth array.\n", + " mask: array or `DataContainer` with the same dimensions as the `dc1` and `dc2`\n", + " The pixelwise operation only considers values where the mask is True or NonZero..\n", + "\n", + " Returns\n", + " -------\n", + " A number, the peak signal to noise ration between the two images.\n", + " '''\n", + " \n", + "\n", + " if mask is None:\n", + " data_range = ground_truth.as_array().max()\n", + "\n", + "\n", + " else:\n", + "\n", + " if isinstance(mask, DataContainer):\n", + " mask = mask.as_array()\n", + " data_range = np.max(ground_truth.as_array(),\n", + " where=mask.astype('bool'), initial=-1e-8)\n", + "\n", + " \n", + " tmp_mse = mse(ground_truth, corrupted, mask=mask)\n", + "\n", + " return 10 * np.log10((data_range ** 2) / tmp_mse)" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABdIAAAGiCAYAAADjmzR1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9eZhcVbn2j9817b1rrq7qKZ10kiYDhBkTiImMAongAAiHHLkOgka/cEVBQI8a0CMOB17wvLxRIIDngAgicDCAIIMElTAFTQIJEMaQTrrp9Nw1V+2af3/k9yxWVVfPQ1V1PZ/rqqu7q/Zee+2pnt73etb9GHK5XA4MwzAMwzAMwzAMwzAMwzAMwxTFWOoOMAzDMAzDMAzDMAzDMAzDMEw5w0I6wzAMwzAMwzAMwzAMwzAMwwwDC+kMwzAMwzAMwzAMwzAMwzAMMwwspDMMwzAMwzAMwzAMwzAMwzDMMLCQzjAMwzAMwzAMwzAMwzAMwzDDwEI6wzAMwzAMwzAMwzAMwzAMwwwDC+kMwzAMwzAMwzAMwzAMwzAMMwwspDMMwzAMwzAMwzAMwzAMwzDMMLCQzjAMwzAMwzAMwzAMwzAMwzDDwEI6wzAMwzAMwzAMwzAMwzAMwwwDC+kMwzAMwzAMwzDMjOTFF1/EF7/4RTQ1NcFgMODxxx8fcZ0tW7Zg6dKl0DQNhxxyCO68886p7yjDMAzDMKOilLGdhXSGYRiGYRiGYRhmRhKNRnHMMcfgtttuG9Xyra2tOPvss3HSSSfhjTfewLXXXosrr7wSmzZtmuKeMgzDMAwzGkoZ2w25XC435rUYhmEYhmEYhmEYpoIwGAx47LHHcO655w65zA9+8AM88cQTePfdd8V7l19+OXbt2oWtW7dOQy8ZhmEYhhkt0x3bzePt6Ewim83iwIEDcDqdMBgMpe4OwzDMjCaXyyEcDqOpqQlGY/GJUbquI5lMTmg7iqJA07QJtcFUNhzfGYZhpo/piu+5XG7Qd7qqqlBVdULtElu3bsWqVavy3lu9ejXuvvtupFIpWCyWSdkOM344vjMMw0wfMyG+T2ZsZyEdwIEDB9Dc3FzqbjAMw1QV7e3tmDNnzqD3dV1HS0sLurq6JtR+Y2MjWltbWUyvYji+MwzDTD9THd8dDgcikUjeez/5yU9w/fXXT6hdoqurCw0NDXnvNTQ0IJ1Oo6+vD7NmzZqU7TDjh+M7wzDM9FPJ8X0yYzsL6QCcTmepu8AwDFN1DPXdm0wm0dXVhba2NrhcrnG1HQqFMHfuXCSTSRbSqxiO7wzDMNPPdMT39vb2vDYmKxudKMyIIzdUzn4uDzi+MwzDTD+VHt8nK7azkA7+h4hhGKYUjPTd63K5xh2IGQbg+M4wDFMKpiO+T+X/CI2NjYOy6np6emA2m+Hz+aZkm8zY4PjOMAwz/VRyfJ/M2M5COsMwDFOW5HI5jLceNtfRZhiGYZjypNzj+4oVK/Dkk0/mvffcc89h2bJl7I/OMAzDMENQzvF9MmN7cZd4hmEYhikxFIjH+2IYhmEYpvyY7vgeiUSwc+dO7Ny5EwDQ2tqKnTt3oq2tDQCwfv16fPWrXxXLX3755di/fz+uueYavPvuu7jnnntw991343vf+96k7D/DMAzDzESmM76XMrZzRjrDMAzDMAzDMAwzI9m+fTtOO+008fc111wDALjkkktw7733orOzUzx4A0BLSwuefvppXH311bj99tvR1NSEX//61zj//POnve8MwzAMwwymlLHdkOO0PYRCIbjd7lJ3g2EYpqoIBoNF/c/oO7m/v39CxUp8Pt+Q22CqA47vDMMw0w/Hd2aq4fjOMAwz/XB8PwhbuzAMwzBlSSmsXTZu3IiWlhZomoalS5fipZdeGnb5LVu2YOnSpdA0DYcccgjuvPPOQcts2rQJhx9+OFRVxeGHH47HHnss7/M77rgDRx99tCissmLFCjzzzDODjsX111+PpqYmWK1WnHrqqdi9e/e49pFhGIZhSglbtzEMwzDMzKNa4jsL6QzDMExZMt2B+OGHH8ZVV12F6667Dm+88QZOOukknHXWWXlTwmRaW1tx9tln46STTsIbb7yBa6+9FldeeSU2bdokltm6dSvWrFmDiy++GLt27cLFF1+MCy+8EP/4xz/EMnPmzMH/+T//B9u3b8f27dvx2c9+Fuecc06eUH7zzTfjlltuwW233YZt27ahsbERZ555JsLh8Jj3k2EYhmFKSbU8aDMMwzBMNVEt8Z2tXcBTwxiGYUrBSFPDent7JzQ1rK6ubkxTw5YvX45PfepTuOOOO8R7S5Yswbnnnosbb7xx0PI/+MEP8MQTT+Ddd98V711++eXYtWsXtm7dCgBYs2YNQqFQXob55z73OdTU1ODBBx8csi9erxe//OUvsXbtWuRyOTQ1NeGqq67CD37wAwBAIpFAQ0MDbrrpJlx22WWj2r9qhOM7wzDM9FNu8Z2ZeXB8ZxiGmX44vh+EM9IZhmGYsmQyRrRDoVDeK5FIFN1WMpnEjh07sGrVqrz3V61ahVdffbXoOlu3bh20/OrVq7F9+3akUqlhlxmqzUwmg4ceegjRaBQrVqwAcDDzvaurK68dVVVxyimnDNkOwzAMw5Qr1ZKxxjAMwzDVRLXEdxbSGYZhmLJkMgJxc3Mz3G63eBXLLAeAvr4+ZDIZNDQ05L3f0NCArq6uout0dXUVXT6dTqOvr2/YZQrbfOutt+BwOKCqKi6//HI89thjOPzww0UbtN5o+8YwDMMw5Uq1PGgzDMMwTDVRLfHdXOoOMAzDMEwxJhJQab329va8qWGqqg67nsFgGNRO4XsjLV/4/mjaPPTQQ7Fz504EAgFs2rQJl1xyCbZs2SLE9PH0jWEYhmHKkcmI7wzDMAzDlBfVEt9ZSGcYhmFmLC6Xa1Qea7W1tTCZTIMyvHt6egZlghONjY1FlzebzfD5fMMuU9imoihYuHAhAGDZsmXYtm0bfvWrX+Guu+5CY2MjgIOZ6bNmzRpV3xiGYRiGYRiGYRiGmVzY2oVhGIYpS6ZzapiiKFi6dCk2b96c9/7mzZuxcuXKouusWLFi0PLPPfccli1bBovFMuwyQ7Up7zv5ube0tKCxsTGvnWQyiS1btozYDsMwDMOUG9Uy9ZthGIZhqolqie+ckc4wDMOUJdM9Neyaa67BxRdfjGXLlmHFihX4zW9+g7a2Nlx++eUAgPXr16OjowP33XcfAODyyy/HbbfdhmuuuQbf/OY3sXXrVtx999148MEHRZvf+c53cPLJJ+Omm27COeecgz/96U94/vnn8fLLL4tlrr32Wpx11llobm5GOBzGQw89hBdeeAHPPvssgIOWLldddRVuuOEGLFq0CIsWLcINN9wAm82Giy66aFzHh2EYhmFKRbVM/WYYhmGYaqJa4jsL6QzDMExZMt2BeM2aNejv78fPfvYzdHZ24sgjj8TTTz+NefPmAQA6OzvR1tYmlm9pacHTTz+Nq6++Grfffjuamprw61//Gueff75YZuXKlXjooYfwox/9CD/+8Y+xYMECPPzww1i+fLlYpru7GxdffDE6Ozvhdrtx9NFH49lnn8WZZ54plvn+97+PeDyOdevWwe/3Y/ny5XjuuefgdDrHc3gYhmEYpmRUy4M2wzAMw1QT1RLfDblK6u0UEQqF4Ha7S90NhmGYqiIYDBb1L6fv5I6OjlH5mxcjFAph9uzZQ26DqQ44vjMMw0w/HN+ZqYbjO8MwzPTD8f0gJfVIf/HFF/HFL34RTU1NMBgMePzxx8VnqVQKP/jBD3DUUUfBbrejqakJX/3qV3HgwIG8NhKJBK644grU1tbCbrfjS1/6Ej7++ONp3hOGYRhmsqkWj7WZCMd3hmEYZig4vlcuHN8ZhmGYoaiW+F5SIT0ajeKYY47BbbfdNuizWCyG119/HT/+8Y/x+uuv49FHH8UHH3yAL33pS3nLXXXVVXjsscfw0EMP4eWXX0YkEsEXvvAFZDKZ6doNhmEYZgqolkA8E+H4zjAMwwwFx/fKheM7wzAMMxTVEt/LxtrFYDDgsccew7nnnjvkMtu2bcMJJ5yA/fv3Y+7cuQgGg6irq8P999+PNWvWAAAOHDiA5uZmPP3001i9evWots1TwxiGYaafkaaGtbe3T2hqWHNzc0VMDZvpcHxnGIapLji+Vwcc3xmGYaoLju8HKWlG+lgJBoMwGAzweDwAgB07diCVSmHVqlVimaamJhx55JF49dVXh2wnkUggFArlvRiGYZjyolpGtBmO7wzDMNUEx/fqgeM7wzBM9VAt8b1ihHRd1/HDH/4QF110kRid6OrqgqIoqKmpyVu2oaEBXV1dQ7Z14403wu12i1dzc/OU9p1hGIYZO9USiKsdju8MwzDVBcf36oDjO8MwTHVRLfG9IoT0VCqFf/3Xf0U2m8XGjRtHXD6Xy8FgMAz5+fr16xEMBsWrvb19MrvLMAzDTALVEoirGY7vDMMw1QfH95kPx3eGYZjqo1rie9kL6alUChdeeCFaW1uxefPmPK+cxsZGJJNJ+P3+vHV6enrQ0NAwZJuqqsLlcuW9GIZhGIaZPji+MwzDMMzMg+M7wzAMM5MpayGdgvCHH36I559/Hj6fL+/zpUuXwmKxYPPmzeK9zs5OvP3221i5cuV0d5dhGIaZRKplRLsa4fjOMAxTvXB8n7lwfGcYhqleqiW+m0u58Ugkgj179oi/W1tbsXPnTni9XjQ1NeGCCy7A66+/jj//+c/IZDLCN83r9UJRFLjdbqxduxbf/e534fP54PV68b3vfQ9HHXUUzjjjjFLtFlNCDAYDjEbjoN+z2ay4ObPZbCm7yDDMGKikgMp8Asd3hmEYZjg4vlcmHN8ZhmGY4aiG+F5SIX379u047bTTxN/XXHMNAOCSSy7B9ddfjyeeeAIAcOyxx+at9/e//x2nnnoqAOD//b//B7PZjAsvvBDxeBynn3467r33XphMpmnZB6a8UBQFLpcLZrMZVqsVNpsNuVwO4XAY8XgcqVQK0WgUqVSq1F1lGGYEJjIyXQ0BvJzh+M4wDMMMBcf3yoXjO8MwDDMU1RLfDblK6u0UEQqF4Ha7S90NZhJwOp2or6+HqqrweDyoqalBNptFb28vAoEAdF1HX18fdF0vdVcZpuoJBoNFPS7pO3nv3r1wOp3jajscDuOQQw4ZchtMdcDxnWEYZvrh+M5MNRzfGYZhph+O7wcpaUY6w0wGJpMJVqsVZrMZXq8Xc+fOhc1mg9PphNvtRjabhaZpqKmpQTgcRi6XQygUQiqVQiKRqKiRr0rHYDDAYDAAyB9x5HPAFKNaRrQZhhkZt9uNWbNmQdO0op9HIhF0dnYiGo1Oc88YhhkrHN8ZhiE4vjPMzKFa4jsL6UzFo2kaDjnkENTU1GD+/Pk44YQT4PF4oKoqVFVFLpdDLBZDIpFAV1cXXnnlFRw4cAADAwP4+OOPkUwmS70LZU8x8XssGI1G4VlPv8u+9ZlMpqK+OJnpoVoCMcMwI3PEEUdg7dq1mDNnTtHP33//ffzmN7/B22+/Pc09YxhmrHB8ZxiG4PjOMDOHaonvLKQzFY/FYkFNTQ0aGxsxb948HHHEEfD5fDCZTLBYLMjlckgkEshkMvB6vdi3bx+SySRSqRR78Y0COYscGPsXHK1PQrrJZBJ/k5hOPxlGploCMcMwI1NfX48TTzwRixcvLvq5x+PBH//4x2nuFcMw44HjO8MwBMd3hpk5VEt8ZyGdqWgMBgNUVUVjYyNaWlrQ0NAAVVVhMplgNBrFciSY22w2NDU1AQDS6TT27t1bkn6XK5QtTsVaTSYTTCYTzGazEL6z2SwymQx0XUc6nUYmk0E6nR70xUfZ5yaTCZqmDdtWIpFAOp1GNptFKpWqqC9RhmEYhmEYhmEYZnS4XC4cddRRqK+vx/Lly+FwOIZc1uv14uSTT4bP50N7ezveeecdxGKxaewtwzBMPiykMxULCbUOhwOHHXYYjj32WDidTjgcDiHWAhDCsNlsRk1NDY444gg0Nzcjl8th586dCIfDJd6T8oCOk9FozCvaqmkabDYbgIODD+l0WhRtJcucSCSCTCaT15bFYoHFYoGqqnC73VAUBWazGYqiwGAwIJPJIJvNIp1OIxwOQ9d1JJNJ8R7DVMuINsMwDMNUExzfGaa6mTVrFr7+9a/jxBNPhMPhQF1d3ZDLzpkzB//f//f/IRaL4amnnsItt9zCQjrDlCnVEt9ZSGcqHpPJBIfDAbfbLYqOylYkwCce32azGU6nE0ajEXa7PS9rvdoh6xWz2QyLxQKr1QpN02C1WmG322EwGJBKpZBOp2E2mxEOh0VGeuHxBiCy0Uk81zRtkJCeTqdhNBqhKIrISC/WFlOdVEsgZhiGYZhqguM7w1Q3qqpizpw5Q9q5yGiahubmZgDA66+/DovFMtXdYxhmnFRLfGchnalYZO9tuZDlaNYhCxPmIJRB7vP5YLfbYbPZ4PV6oSgKLBaLEL/NZjOy2SwURUE2m0UikUAwGEQ6nRY+9Ol0GiaTCTabTYjxDocDqqoKIR2AsHUhWxiz2Yx4PI5EIpH3OcMwDMMwDMMwDMMwDMOUGhbSmYpHFtELC2MWg5ZjMf0gdMwsFgtqa2vh9XqhaRo8Ho8Y8S88TtlsFlarFZlMBqqqIhQKwWAwCGsWk8kEq9UKt9sNVVXhdDqFdz21KXukAxCfR6NRYe/CRUirm2oZ0WYYhmGYaoLjO8MwDMPMPKolvrOQzlQ8lBkdj8dFEUsqLjrUsuTHXaqbVfZvL5ZFn81mART/IhpusGA8X1zUHonciqJAUZRBBVtlyAJGtm8xm81Ip9N5Wf/UhslkGjR4QW1TNjrZvPAgB0NUSyBmGIZhmGqC4zvDMKMllUohGAxC13X4/X6upcUwZUy1xHcW0pmKhbKVo9Eo9u7dC7PZjMbGRthsNiHckhhLy4ZCIXz44Yfo7u7G/v37kUwmp73fJEIbDAZomgZN0/LE40wmg0QiIQp7JhIJZLPZvKx7skkBPhHlU6mUyAin12ggEZyKilKx1uFsckh4NxqN0DQNTqdT7FMqlRLiusViEe1bLBYhqgMHvyjpHNEytBx5rzPVTbUEYoZhGIapJji+MwwzWj7++GP87//+L95//320trYiEAiUuksMwwxBtcR3FtKZioVuUl3X0dnZKYTcBQsWwGaz5WU153I5ZDIZ6LqOjo4OtLW1obu7G6lUatr7TSI02Z/IwrXRaEQqlUIkEkEqlRKZ87QeCdGqqkJVVfE+ACG4ZzKZUX8JFWaiq6oKTdNGlRFOQruqqrBarcLahfZDFsdpf2X7HRLSAYg+FC7LMAzDMAzDMAzDVCd9fX145pln8NJLL01IpGMYhpksWEhnKp50Og2/3w+LxQJN07B//34EAgFRKBOAEKS7u7vR3d2Nvr4+hEKhac16JmFYURTY7XaYzWZR2JM+IxE5l8sJUTqTySCTyQgRnYR0TdMA5PuX07IASuIvTtvL5XJC1KcCpZQhbzQaxT9B9KLPC38fCtkaZzibm2I/mcqhWka0GYYZGb/fj127dsHv9xf9fPfu3QiFQtPcK4ZhxgPHd4apbmKxGN577z243W7xntFoRGNjI5qampDNZtHe3o7e3l7s3r0bwWBw1LOtGYYpHdUS31lIZyqeaDSK9957D62trWhtbUVnZyccDgecTic8Hg+y2Sz6+/sRCoUQDAbx3nvvYWBgAIlEYtqsXaiYp8lkgsvlQkNDAzRNg8ViEZYntFwmkxEidCQSgaqqSKVSIpvbZDLB4XAIIZ3W1XUdqqoinU4jFAqNuljnRIVmeT3K/AcgrGlMJtMggZ9+0vK0rPwa6p8l2UedZiHIXvOyQE/HcjTiPFN+VEsgZhhmZN5++23cfPPNsNlsRT8PhUJobW2d5l4xDDMeOL4zTHXT2dmJ//7v/8amTZvEexaLBRdccAH+7d/+DYlEAo888gieffZZBAIBju8MUyFUS3xnIZ2peNLpNAYGBoQ/N2V6e71e+Hw+ZDIZdHV1we/3IxKJoLOzc9qz1mRbFkVR4HQ6YbVaRYZ5IbKIrOu6EIwBCD9zsmCRSafTSCaTeQLzdH4hFcsylwcGqBgsZaXLAjeJ7XIbhciiuVzMlAYYgE8E+sI2OIuh8qiWQMwwzMj09/ejv7+/1N1gGGYS4PjOMNVNNBrF22+/nfeeqqpYunQp0uk04vE43n//fbz44ov8DMcwFUS1xHcW0pkZA9mhhMNhJJNJpNNp6LqObDYrRPRYLCYEXVpnOqCinJqmCQF9ND7kFosFdrtdZG2TCE3e4/L6sje57EU+nJhOYjYVKo3H44jFYsImZzjbFHrRevF4HMlkUrSZSCTE8VZVVdi8UP9kgT0Wi0HXdei6LvbTYrFAVVVRXFVRFBiNRiiKIgYg5KKochFT+oeL2qIBBtpX8pNPJBJIpVJinUr68mYYhmEYhmEYhpkJZDIZvPPOO/jjH/8IXdexd+9efjabAbhcLhx33HFoamoa03rt7e3YtWsXwuHwFPWMYcYPC+nMjELXdfT09IjMb0VRhNgr24ZMd6a2yWSC0+mEw+GAzWYTovBQBTXlQp41NTXI5XJC5KZ9I/93ErtJsJbFdGDkUcFUKiVE7lgshkgkImxnhiv4SQK0rusIhUKIxWKIx+NCICcRnQR5TdNgNpuFOC6L3KFQSAjxqVQK2WwWVqsVTqcTiqLA4/HA7XaL2QZUmLRw0ID2l44HZbyT2J/JZBAMBhEKhZBMJuH3+xEOh8Uy/M9aeVEtI9oMwzAMU01wfGcYppB0Oo0XX3wRb775JrLZLAKBAN/vM4D6+npcfPHFOP3008e03jPPPIOPP/6YhfQKo1riOwvpTMVDVh/0k27edDotlpGnhJHQTNnQoylqCUzsxpY9vSkbfTiRWl7PbDYjl8sJKxO5T0NljA9XhLMQ2WKFhGy5QGixdmTbllQqJV7y8aQs+lQqJQYwgE88zgu90Un4pv2krHgqzkoCusPhEAMRFoslL/Oe9od+kl0M7RNtJ51Ow2g0QlVVJBKJPA93rgZfPlRLIGYYhmGYaoLjO8MwBCWJ0Yxl2cbNbreLWcRs8VL+mM1mKIqSpx+43W7MmjUL8+fPH1NbTU1NcLvdsNvtRT/n66I8qZb4zkI6U7GQKG2xWODxeIR1isvlgtlsFoU8SVQnQZWsX2KxGILBYJ4QTO0W2qTIorssCo+F0dq5DAUFC5PJhGQyOUiITyaTSCQSQrwmYXo0X0i5XA6pVAoDAwPQdR0OhwOpVAqqqsJisUBRFACfZHmnUikEAgEkk0kEg0HEYjEhSMvt0XEDIIqtUia9XJgUOHjcbTYbZs2aJTLPnU4nTCYTbDYbNE0T68vnqBA6viSukw2MyWRCNpuFoihwOBzIZDKora1FPB5HIpEQBWjj8TjC4XCeXztTGqolEDMMwzBMNcHxnWEYYtGiRTjjjDNQW1tb9POPP/4Ymzdvxv79+6e5Z8xYMBgMOOaYY3DqqafC6XSK9+vq6rBw4cIxt7d48WKsXbsWAwMDRT9vb2/H5s2b0dbWNu4+M5NPtcR3FtKZioQytRVFgc1mQ2NjI9xuNxwOB2pra4WtCwnAJCzrui7E4v7+fmSzWei6jlgsJsRx8t42m83Cz5zEaVp+pEz2Yv2lPhd6m48WskFJp9N51i3UVjKZFC+yTRmL73cymUR/fz8CgQBcLhcACE93u90uirlSAZju7m5Eo9FBx4+gwQkS+CnTnPaf+mYymeByuYSVy7x582C326GqKmw2W162uSycj+UYkqUMADgcDgAHv6hJ/I9Go+jo6EAkEoHf74eu6+ybzjAMwzAMwzAMM4UsWrQI3/jGN7Bo0aKin2/fvh3vvvsuC+lljsFgwNFHH41169ahsbEx733SZMbC4sWLMX/+/CGfxf/xj3/g3XffZSGdKQkspDMVB9mkqKoqRF6HwwGn0yksQMhDnLKfyaqEsrnNZjMSiQTsdrvIVE6lUqKwJWU9k693Op0Wy5E1yHiE1rGK28AnmdtyJjz1h44HWaXQ1CZqf6xe8LR+KpUSYjJhNBqFkK7rOhKJRJ5oP1z/5X2m/spFU61WK6xWq/CPVxRFDBbQfk4EWXSXi5KSD7yiKLBarWKgxG63w2w2i4EJzkwvDdUyos0wDMMw1QTHd4apbhRFgdfrhaZpaGpqgsvlgs1mK7qs2+3GnDlzMH/+fESjUfj9/nHNDmcmD7PZDK/Xm3fOTCYTGhsb4XQ6hzyXY8FkMsFqtQ75ucfj4euiDKmW+M5COlNRUEazxWLBrFmzUF9fD7vdjrlz58LtdkNVVTgcjkHWHyTkptNpeDwepFIpeL1e2O126LqOrq4udHd3w2AwiOxoyna3WCwiszqdTqO/vx8DAwPIZDKIx+PCEmY4SKClbOyhvL6KrUd2LZQtTYU6NU0T+2gymYSwTXYpNHhA7YwECfa5XA6xWEwUbSWxG/jE2kXe95EGBqhdEvXJ793n88Hr9UJRFNTV1cHtdgsPdBK4R+MjP17I9sVoNMJut6OpqQmpVAo+nw8ejwfJZBI9PT3o7u4WAxnswTa9VEsgZhiGYZhqguM7w1Q3jY2NuOiii3D00Udjzpw5Q9q6AEBzczO++c1v4pxzzsGrr76Khx56CH19fdPYW6YQr9eLr3zlK1i+fLl4z2AwYMGCBXm2LlPJ3Llz866Lhx9+mK+LMqBa4jsL6UxFQVnMiqLA4/GgqakJdrsds2bNgtvtFlnkhbYnwCeZ0eSPrWkaAEDXdaTTaUSjURiNRtTU1Agxl0T5dDqNRCIhBHUSkROJxKj6TRnvuq5DUZRRf0nQerRuNBrNK6pKnuFyUU8Sw6kw6VjEXzpGtK/F+iMX8xxLu/KLzpPX64XVakVjYyM8Hg8ATMhHfqxQdrps/WKz2UQR0mQyCb/fLwYMWEhnGIZhGIZhGIYZPx6PB6eeeipWr1494rJerxenn366ePb885//zIJpiXE6nfjMZz6DCy64YNqe2wvx+Xw444wzhH7x5JNPlqQfTHXCQjpTUVgsFlF40uFwwOFwCDsQKj4qF5uUkS1FAIiik2azGS6XC16vFwBgtVrzimxSNjZlUquqKny+RpsxTcU3jUYjdF2HrusAPilASlBhUxKck8mkEPqBgyKv0WiEzWYTv1OV81QqBYvFIoRwyk7XdV0IwalUashRQjo+ha9i+zIeMR0AVFWF3W6HxWKB2+2G0+kcdDxLFYxpuyaTCaqqitkJPp8PyWQSgUAAsVgMwOgy/JnJoZJGphmGYRiGGR0c3xmmurBYLJg3bx6ampqwYMEC+Hy+Ma1vMBhQX1+P5cuXY968eeJ9XdfR2tqKnp4euN1ukRXd1dWF1tZWJJPJyd6VqsRkMqG5uRlz5sxBc3Mz6uvrS/bcLmMwGNDY2IhPf/rTmDt3Ltrb29He3s7P6yWkGuI7C+lMxWAwGGCz2YSdS1NTE2bPng1FUeB0OqFp2rACMLVBwrjD4RACtNlshs1my8u4pvdMJhMURRHWLg6HQxTZDIfDo+p7JpNBJBJBPB5HJpOBoijQNA2apolCnpQ9ns1mkUwmkc1mhZ1LJpOB2WxGXV0dzGYznE6nKIRKfu5kuUJFNEmAD4VCwtM8FAoNyq6WjxkNRMgDDjKyxztZyIzmi5LadLvdaG5uhqZpqKurQ319vbDqmQwv9MlAURS43W7hqe9yuRCNRrF3715h70IDEszUUi1TwxiGYRimmuD4zjDVh91ux7nnnosvf/nLcDqdmDt37pjbOO6447B+/fq8WeGdnZ3YuHEjnnvuObS0tODb3/42Dj/8cPz5z3/GXXfdhd7e3sncjapFVVV87nOfw0UXXSSe6cuF4447Dtdeey0CgQDuv/9+PPDAAyJxkZleqiW+s5DOVBSFhSmpKKSiKKMSYmWR3WKxQNM0YeGi67oQsdPptMhwp4KluVwOBoNBZKqn0+kxZ6Sn02khypNNTTabzWuHRGry5ab+WCwWWK1WcQxkkd9kMuVZp1DBTtomtUsZ30Nl65OAXjggIRcKpax58jwfTUFTWo8GPWw2mygqUy4COmEymcTxdDgc4pxrmpZX4LWSvugrlWoJxAzDMAxTTXB8Z5jqw2w2Y968eTj++ONFYttY8Xq9YhY5sW/fPpHd7nA4sGTJEixduhRvv/22eI4vB4ZL9iuk3LKpjUYjLBYLmpubsWzZsmGLgJYCn88Hn8+HSCSCv//976JeXrkdx2qgWuI7C+lMRSALsWTpQgVBZTuXsbZJQZwyxEm8Jq8tyj6m98mvnMTtsX45k11LKBRCLBYTr8LAStsEDtq5GAwGOJ1OOJ1OWCwW2O12YT9ChTmp/VwuJ4Rf8jnXNE0MFFC2ejweFyK+LKJTW/Q+ieUErSPbuwz3pWexWES/vV4vPB6PyMafymKikwENXgBAbW2tsMrp6+tDIpGoqC97hmEYhmEYhmGYmUpPTw+eeuop7N69G6+88oqw5Sw1drsdS5cuxYIFC0ZcNhwOY/v27di3b9/Ud2wULFy4EEuXLoXX68XRRx897kGQ6cBiseC4447Dv/3bv6G/vx/btm0rm+PIzCzK9y5gmP8/ssBrtVrh8XiEmE5i7Hiymmlk1WQywWq1wuFwCE9yEtIp65wKi2YyGeE/ThYpo4VEV/IsJyHfYrHkZYLLArXL5UJdXR1UVYXb7YbH44HFYoGqqmKktVCEp4x2+mm1WpFKpRCJRMT2g8Gg8IujNugYD5eRTudDtsAZ6RgoioLa2lo4HA7U19ejoaEBqqqW1A99NBgMBuGRrygKZs+eDafTCb/fj2g0Ko4fi+lTR7WMaDMMwzBMNcHxnWGYqWDfvn248847YbFYEI/HEQqFSt0lAAeLq15wwQU477zzRkwk27dvH37xi1+UhQBsMBhw7LHH4nvf+x7mzJkDh8NRVln+hSiKgs9+9rM44YQTsH//ftx4441lcRyriWqJ7yykM5PGUEU+J3IzFbZP4rNcWHS8YiytJwvJJGRnMhmReW00GpFOp5HJZIRVClmvjGe/crmcsFuhrHd5+9QngqxkVFWFqqowmUxCgJf3Q0a2X1FVFcBBXzNN00TGOmWVy8dQbqvY78Uy1IeDfNcVRckr4mo2m8taRCeo/9lsFqqqwmq1Ih6Pi+uPfOmZqaFaAjHDMAzDVBMc3xmGmQqSyST6+vpK3Q0BPX/X1NSgoaEBs2fPHvEZWNd11NXVwePxIJVKQdf1aX/epERDi8UCn8+HxsZGNDY2TmsfxoM8iz+RSMDn85X0OFYj1RLfWUhnJgx5SpPNSKHoKtulkEA9VuRimCRiDuX3PR4ymQySySQSiQT8fj/6+/tFxrrBYEA6nRZWKAMDAwgGg8LmZSJQ1nuhdzvZ1rhcLmGFQnYulIE/3H7LxULl7PVEIiEsbKLRqLCQyWQyeeetmLAu+6TLAnyxfsjZ3E6nE42NjaipqYHdbh+3FU8pMRqNwo8/l8vB6/XCZDIhFoshEomw/9oUUS2BmGEYhmGqCY7vDMPMdCwWC0488USccsopqKurw5FHHjmqZ2Cv14svf/nLOOKII7Bnzx489dRTOHDgwDT0+BPmzJmDs88+Gy0tLViyZAncbve0bn8yqKmpwXnnnYfDDjsMe/fuxVNPPYWPP/641N2a8VRLfGchnZkQsrhtNptFxrRMMplEMpkUdiATEdLl7cnvTSQrnfpEI5XBYBC9vb1525FHMQOBAEKh0KRkI9PggoxcUNXtdsPtdovRbPJFH+2+0YADFRpNp9OwWq1IJpPC3kUenR0qI53+HiojvbD4plyg0+l0ora2FrW1tWLQpdIwmUyw2+2wWq3I5XKoqakRxyMWi7GQzjAMwzAMwzAMwwA4KKSfcMIJWLduHZxO56i9xd1uN84++2x87nOfw9/+9jf885//nHYhfdasWVizZg0+/elPC02k0nC73TjrrLOwatUqvPjii9i+fTsL6cykUXl3BFM2FMsSL/yizeVy4r1MJpNnXzKWESd5ZEu2VZHfH4+YTuuTKE6Z6clkUuwbZaSTRzoVGZ2KETP5mFJGN2Wgj9dTXLaLobbofFH7xHC2LWPZX8pIJ/FfnkVQydDx0zQNNpsN8Xi84rLrK4lqGdFmGIZhmGqC4zvDMBMhl8thYGAAAwMDaG9vLxsvdABwOp2oq6uDy+VCY2OjmGk+WighDTjo+V2KZ02amU8WsZUKJXuW6jhWI9US31lIZ8aFLMpqmgZN04T4S2Ip+XRbLBZhIQJ8cnON1mOchG45M9xsNucV+xxPlrMsxFO7sVgMwWAQ/f39ednz5GVOVizyvkwWdEwVRYHNZoPT6YTNZhNi9EQyuUmc1zQNFosFdrtdFFdNpVKIx+ODBibomBN0POTlCtchTCYTvF4vamtr4XK5YLVa8wqZViLUb03T0NDQIKa49fb2imujkr78K4FqCcQMwzAMU01wfGcYZiIkk0k8//zzePzxxzEwMIB33nmn1F0SHHPMMfi3f/s3NDU1YeHChRUvRjPMWKiW+M5COjMuyINbHq0kEbhQ8CVh3WQyQdf1cRVplLPGyZucMsNpGxPJSJc90mXfa/J2nw7kwQlVVUWBUSrOOdFsbjo/mUxGZIvT+/I+FnqhFzKcgC5vy2azoaamBjabTWSkzwTI913TNPT39+cVva2kL3+GYRiGYRiGYZhKI5PJ4L333sOTTz6JaDRa6u7kMXv2bJx55pk45JBDSt0VhmGmCBbSmXEhC+mFr0JBm8Rh8ukm4XaswmMul0MymRTBUtd1JBIJITKPVWgmX/RMJoN4PI5oNIpYLJbn5z7dyJ7vhT7wk9m+LNrLVjvZbFYcRzkjXc5SL5aZLrdvNBrFFCpN04oOrlQy8rkhH/hsNiuuG2byqJYRbYZhGIapJji+MwzDjIzX68WKFStQV1eH9vZ27N27F8lkckq2paoqFi1ahKamJhx++OHweDxTsp1SUFNTg09/+tOoqalBR0cH9uzZM2XHsdqplvhe2YbFTMkoLDJK4in9lF/ycvJ7Y4FuyFgsht7eXnR3d2NgYAChUAiRSERkjo/l5kun0yL73O/3o7u7G729vYjFYsK+pVh7xQYRJip0U5uyz7zZbIbFYhHtT8Y26LyZTCaR6W4wGPIEcvKKH+4lW93Ix4jsfTRNg8fjQW1tLTwej/B5mwnIHulOpxMulwsul4un7U0BQ9kIjfY1HjZu3IiWlhZomoalS5fipZdeGnb5LVu2YOnSpdA0DYcccgjuvPPOQcts2rQJhx9+OFRVxeGHH47HHnss7/Mbb7wRxx9/PJxOJ+rr63Huuefi/fffz1vm0ksvHVRg+dOf/vS49pFhGIZhSkkp4jvDMEylsWjRIlx99dW46aabcP7558PhcEzZtjweD9asWYObbroJ3/rWtzB//vwp29Z0c8ghh+DKK6/ETTfdhH/5l3+By+UqdZdmLNUS31lIZ8ZFoaBDwnixrPDCZcebZZ3L5ZBOp6HrushGJ4/v0fqty22RdUsqlUIikUA8Hoeu68OK8mPJxB8P8vGcCj9xalMW52lmgPySM86L+aKPlJFOQr2iKDNKRAeQd34sFot4VXoh1XJkugPxww8/jKuuugrXXXcd3njjDZx00kk466yz0NbWVnT51tZWnH322TjppJPwxhtv4Nprr8WVV16JTZs2iWW2bt2KNWvW4OKLL8auXbtw8cUX48ILL8Q//vEPscyWLVvwrW99C6+99ho2b96MdDqNVatWDZqq+rnPfQ6dnZ3i9fTTT495HxmGYRim1FTLgzbDMPnI9cbGcy+THiDXX5vJOBwOLFq0CEcffTTmzJkDs3nqDCUURcG8efNwzDHHYOHChbDZbFO2remGjuMxxxyD5ubmGadPlBPVEt/Z2oUZF7KgSlnM5H1O4q8s0MoZzBMpzJhMJhEOh5FKpdDb2wur1Sq8vtPpdF7B00KxnrZH247H4wgGg9B1HYFAAIFAALquI5VKiXWoDVVVYbVaYTKZ8rYp9ysejyOdTgtRfjz7SMeLsr4n+8ukmDVLoSg+nN+33Kdin1ssFthsNlitVlgsFiE4z0SRmYR0h8MBo9GIWCzGPukVzi233IK1a9fiG9/4BgBgw4YN+Mtf/oI77rgDN95446Dl77zzTsydOxcbNmwAACxZsgTbt2/Hf/3Xf+H8888XbZx55plYv349AGD9+vXYsmULNmzYgAcffBAA8Oyzz+a1+9vf/hb19fXYsWMHTj75ZPG+qqpobGyc9P1mGIZhGIZhmKlE13W8/PLLAICGhgasXLkSzc3NY2pjz5492Lp1K/r6+rB9+/a853aGYZjpYuapW8y0UCiOk/gr/5RtQiZDRAcOBmC/34/+/n50dHRg3759+Pjjj9Hb2wu/349wOIxkMilGumWhP5PJIJ1OI5lMCq/1gYEB9PX1obe3F/39/fD7/UgkEgDys8/tdjvq6+vR1NSEQw45BEuWLMHhhx8uXosWLcLs2bPR0NAAl8s15ozywgGHQjF9MkboZAG80KZF3j4dp2Iveb3C/hgMBiiKArvdDofDAU3ThJg+2Zn1pYb2R1VVuN1ueDyeQYMrzMSZjBHtUCiU96L7u5BkMokdO3Zg1apVee+vWrUKr776atF1tm7dOmj51atX5/1jP9QyQ7UJAMFgEMBBX0SZF154AfX19Vi8eDG++c1voqenZ8g2GIZhGKZcKUXG2lit2x544AEcc8wxsNlsmDVrFr72ta+hv79/XNtmGAaIRqN45pln8POf/xx33HEHPvroozG38dZbb+FXv/oVbrjhBmzZsoV9rhmmzKiW+M5COjNu5AteFtEBCEGYliuWAT3ebdKUsGQyiVgslveKx+NIJBJ5ti+pVEqIwPJP+VWsP1RUkixKKNPabrfD6XTC6XTC4XCIl81mg81mEwIyecZP9HhOZoYzHT8AgwY1JuPLjTzyZfF8ponoMnSNjPVcM6NjMgJxc3Mz3G63eBXLLAeAvr4+ZDIZNDQ05L3f0NCArq6uout0dXUVXT6dTqOvr2/YZYZqM5fL4ZprrsGJJ56II488Urx/1lln4YEHHsDf/vY3/N//+3+xbds2fPaznx1yYIBhGIZhypXpftAeq3Xbyy+/jK9+9atYu3Ytdu/ejUceeQTbtm0TM9YYhhk7uVwOkUgEfX19IpGNfi98DQwMFP0fN5FIYGBgAP39/YjFYsNuT1VVeL1e1NbWjvhyOByT9sw6lj6ORCqVQiAQQG9vLyKRiHiOZ5hypVriO1u7MOOCxOxsNgtd1wEcLMKYyx30LZORxWzKFpcFXNmCRf69UOAt3DYFWKvVikQiAYfDAbvdjpqaGuFbTTYviqIITzFqKxKJIJlMIpPJQNM0+Hw+JJNJDAwMIJfLQVVVuFwuKIqCxsZGzJs3D1arFTU1NXC73Xk2HrFYDB6PB8lkEgcOHIDBYICu6wgGg4hEIqM+pnS8dF1HLBaD2WxGMpkUgu1Yi7QWtp9IJJDJZET7ZGVT7EtrPF9klJFO1i4zGYPBIKxs6He2dplcJjIyTeu1t7fnFZQZqShs4T/RuVxu2H+siy1f+P5Y2vz2t7+NN998U0x9JdasWSN+P/LII7Fs2TLMmzcPTz31FL785S8Ps0cMwzAMU15MRnwfC2O1bnvttdcwf/58XHnllQCAlpYWXHbZZbj55pvH1WeGYfLp6urCAw88MGTmqNvtxuc//3ksX758XAK3wWDAcccdh89//vNwu93DLpvNZvHKK6/gmWeeGfVz+3C8/fbbuPXWW1FXV4dTTz0VZ5555ojPH0PR2tqKxx9/HG1tbdi9e/eg+kkMU25US3xnIZ0ZF5TNbDQakUql8gqOytnIuVxOWKlkMhkhqNNnhFz40mg0DhLOCzOnM5kMQqEQIpEIFEVBPB6H1WqFw+FAbW0tVFWFoihQVRVmsxl2ux2apuUJ9bFYTBQqUVUVHo8Huq6LrHZVVVFTUwOr1SqEdJvNBrfbDZfLlRfUo9EoHA4H4vE4DAYDotEoYrEYEokEotHoqL4UaL8ymQySySR0XYfVahXvycd4vOeMzoFcsHWojPyxQmK/1WoVfvIzORsdOHita5qGXC43pcVfmPHjcrlGVZm9trYWJpNpUKZ4T0/PoIxyorGxsejyZrMZPp9v2GWKtXnFFVfgiSeewIsvvog5c+YM299Zs2Zh3rx5+PDDD0fcN4ZhGIaZaYRCoby/VVUtKlaRddsPf/jDvPeHs25buXIlrrvuOjz99NM466yz0NPTgz/+8Y/4/Oc/P3k7wDBVTH9/P/785z8P+azY1NSEBQsW4IQTThi3kH7YYYfh4osvxuzZs4ddNp1Ow2Aw4IUXXpgUIf2jjz7Cvn37YLPZ4HA4cOqpp45bSP/444/xyCOPYOfOnXkz/hlmJlMJ8Z2VH2ZEZJG7MGOcMnDJgoQKjtJ6lKFOXtwkBpP3OAnnZrM5z5Oc2gc+EYBlv3N5+kc2mxVivtFoRDgchq7rsFgs0DQNZrNZLEvbIrGe+kNFSnO5XF42u6qq0DRNFBilF2W6E9lsFvF4HACE/YvBYIDVaoWqqoOmrMhWNwT1J5vNIplMCnuaZDIpjhUdw7H8QyHbxaRSKWF5Q7Y2kxmQ5XM400V04JP9Hes5YUbHdI5oK4qCpUuXYvPmzTjvvPPE+5s3b8Y555xTdJ0VK1bgySefzHvvueeew7Jly8SMjBUrVmDz5s24+uqr85ZZuXJlXl+vuOIKPPbYY3jhhRfQ0tIyYn/7+/vR3t6OWbNmjWk/GYZhGKbUTEZ8LyxS+JOf/ATXX3/9oOXHY922cuVKPPDAA1izZg10XUc6ncaXvvQl3HrrrePqM8MwgyFL2GLE43G0tbXhrbfeytMG2traRu2LTs/5IyU7GQwG1NfX4/DDD0dvby+6u7snVA+B9A/SQMZKMplEV1cXgsEgPvroI0QikUEz/hmmXKmW+M5COjMsZFlBArSqqjAajXlZ4qlUColEAgaDQdiQyJD4TW2Qh7jdbhdtUra4bF9CgjMJy2QjE4/HkclkhDUJAITDYQAHi/T19/eLbZEg3tDQAK/XC7PZLOxacrmcyCYGDmYXUxHSXC4Hp9OJ+vp6OBwO1NXVoba2FlarFS6XC06nM29AwWq1wmAwIJFIiONBnmhGozGvsGcymRT7QO8RFHgjkYgoVmi324V1DQ1CjDbbm84PHa9AIABd1xEIBBAKhYSoPlnQgISiKFUhLBuNRlgsFqiqKs4J27tMHtM9Neyaa67BxRdfjGXLlmHFihX4zW9+g7a2Nlx++eUAgPXr16OjowP33XcfAODyyy/HbbfdhmuuuQbf/OY3sXXrVtx999148MEHRZvf+c53cPLJJ+Omm27COeecgz/96U94/vnn86xbvvWtb+EPf/gD/vSnP8HpdIrA73a7YbVaEYlEcP311+P888/HrFmzsG/fPlx77bWora3NE/0ZhmEYphIod+u2d955B1deeSX+4z/+A6tXr0ZnZyf+/d//HZdffjnuvvvucfWbYZjREwqF8MgjjwzKKu3s7ITf75/UbRmNRqxcuRINDQ3o7e3FAw88gKeeempcIvhk0NfXh/vuuw+vvPIK+vr60NHRUZJ+MMx4qJb4zkI6MyxyxjhleBcKw7Jdy1BQtrqqqqIdh8MhRHSbzSZGjGnUuNAzPJvNIhqNwmg0ilFeEonJOkaG2qLMchI8ZYsX2paiKCLbW9M0Yatit9uF9zoVG6WfhR7IiUQCJpMJDocDHo8HiqIgEAggHA6L40QWLclkMi87XSaTySCRSCCbzcJqtYrBAlVVxbKjzfiWM9HpOMbjcWHrQn2aLEjkJ8F/pkOZDoWzNUa7LgvuwzPdQvqaNWvQ39+Pn/3sZ+js7MSRRx6Jp59+GvPmzQNw8J93uXBJS0sLnn76aVx99dW4/fbb0dTUhF//+tc4//zzxTIrV67EQw89hB/96Ef48Y9/jAULFuDhhx/G8uXLxTJ33HEHAODUU0/N689vf/tbXHrppTCZTHjrrbdw3333IRAIYNasWTjttNPw8MMPw+l0jnk/GYZhGKaUTEZ8n0rrthtvvBGf+cxn8O///u8AgKOPPhp2ux0nnXQSfvGLX/BsMIaZYhKJBN5++228/fbbU74tg8GAuXPnYu7cuejv78fLL78s9I5SEIvFsHPnTjz77LMl2T7DTIRqie8lFdJffPFF/PKXv8SOHTvQ2dmJxx57DOeee674PJfL4ac//Sl+85vfwO/3Y/ny5bj99ttxxBFHiGUSiQS+973v4cEHH0Q8Hsfpp5+OjRs3jugvywwPZYZbLBaRwa2qqvC+JhGdvMrj8TjS6bT4KRcPpQxls9kMp9MpClG63W5ho6JpWlEBloRgEpFJCE+n01AUBVarVWRwk5gue35PRjXgYuJoocUNCchUfNLj8UDTNIRCITFlhGxUYrGY8JaPx+OIxWJFs9JzuRx0XUcoFBJVy2mGAB1PGugoRLbBiUaj4hhRf3RdF+eQxdzxQ9fAcIMGtAwN6siiuzzAQtc6U1rWrVuHdevWFf3s3nvvHfTeKaecgtdff33YNi+44AJccMEFQ34+0j1otVrxl7/8Zdhlyg2O7wzDMEw5MB7rtlgsNsgOQp4xW81wfK9efD4fjjjiCNTU1Ixr/UQigffeew/79++vivsok8nggw8+wFNPPQVN00a9XmdnJ2ehM8woKGV8L6mQHo1Gccwxx+BrX/taXgYfcfPNN+OWW27Bvffei8WLF+MXv/gFzjzzTLz//vsiC++qq67Ck08+iYceegg+nw/f/e538YUvfAE7duyYUGHGasZgMORlis+ePVuI6Xa7XVi7kGg9MDCAUCiEWCyGrq4uIaSTV7bb7RYZ2rW1tXA6nTCbzbDZbMKvfCSrEhLA5Sz0cDiMaDQKXdfR3d0tfg+Hw0KYJEFZ9iSnl5wRPJTITgIp7Yvs/y0PFlC2vclkgtfrFVnt5LlOWeFksTIwMABd1zEwMCBEcjlDnaxy6H2LxSIEebPZDIfDIWYHyJ7vtDxloKdSKXFuYrEYuru7RTa6nBU/2dcPe4YfRL4P7HY7nE6nGDAiK6FIJCKKvtI1wxxkujPSmcmD4zvDMAwzFOVu3fbFL34R3/zmN3HHHXeIqd9XXXUVTjjhBDQ1NY2r3zMFju/VS0tLC6644gocddRR41p/YGAAt956K9rb26sieSiZTOKvf/0rXn/99TFd16lUCj09PVPYM4aZOqolvpdUSD/rrLNw1llnFf0sl8thw4YNuO666/DlL38ZAPC73/0ODQ0N+MMf/oDLLrsMwWAQd999N+6//36cccYZAIDf//73aG5uxvPPP4/Vq1dP277MJEgYpsxnsjihjHSz2ZwnpJPAm81m82wu5CxtKrppt9uFNzpltw+VVV2IXAhU9hY3Go3QNE0I1ST0F65bTEyXC5oO9zm1UWjFIn9OgqlsgWO1WmG1WpHJZGA2m4XAT6PS5D9fmBlO20in00gkEshkMsKWhc6LPPggF2EhIZ38zykDnQR0snSZChGdGQzdD+QfTxZGdL3I9w/bvQyGj0dlwvGdYRiGGY7pjO9jtW679NJLEQ6Hcdttt+G73/0uPB4PPvvZz+Kmm26atj6XKxzfyx+yLx3q+ZqS0wqfl2WKFemsqalBS0sLDj300HH1q6+vDw0NDeK5faQ+lAq5LhyRzWbzZr2Phlwuh/7+/gkVLmWYSqQa4nvZeqS3traiq6sLq1atEu+pqopTTjkFr776Ki677DLs2LEDqVQqb5mmpiYceeSRePXVV4cMxCQmEqFQaOp2pAKh7NmamhrYbDa43W44nU4h4MrCbyaTgcvlEsE2GAwCgLCCMZvNqK2thc/ng6IowtpFzkIfbeayLEgaDAaR0a5pGrLZLBwOByKRCAAIsTiZTArLGSquabFYkEql8v5BiMViiMfjSCQSiEQiiEQiMBgMCAaDyGQycDgcItNdzkoH8n3Iyd+cRGzK7ichnY4becKHw2FYLBYAKFrZm/pO+0wZ6eFwGJqmCbsQykinVzKZFFnO4XAYuq6LIqepVGrKLF3on4zxVimvNGhAiQZIis1ooJkKlJFO3v1ms1kU0bVYLIjH4+JvhpnJcHxnGIZhppuxWrddccUVuOKKK6a4VzMLju/lQV1dHU455RTMnz+/6OfhcBgvv/zykP7jFosFJ5xwAo4//njxnAoAhxxyyJC+w6NB0zSccsopUFUVXV1d2LJlC/bt2zfu9qYCq9WKU045RdRPIz788EO8+OKLGBgYKGHvGIYpRinie9kK6WQYX/hl3dDQgP3794tlFEUZ5NPV0NAwyHBe5sYbb8RPf/rTSe7xzICyw+12O2pra2Gz2VBTUwOHwyEEZBmySNE0DRaLBcFgUPxNHugkpFN2Ok1tGo/1h9wH8iNPp9NQVRXJZBJ+vz9POKdCndFoFMDB4KgoCtLptLBFoc9jsRgSiQSCwaD454zas9vtCIVCSKVSeceqmDVMOp0WAj55xMs2M8DBfwYpU19RFACfiLIyJEgbDAZhW0Pnh0bKyS9dzpjXdV0I+9FoVAi0cib/VCAL6dWAPDOjmJhuMpnEveFwOFBTUyNEdLJ2yWazwjs9HA5zVroEW7vMTDi+MwzDVDcc32cmHN/Lg8bGRlx00UU47bTTin7e0dGBYDCI3bt3F72fFEXBySefjCuuuAI2m028bzKZYLVax90vu92O1atX47TTTsNbb72Ftra2shTSV61ahVNPPTXv/aeffhrvvPMOC+kMMwLVEt/LVkgnCsVWEm6HY6Rl1q9fj2uuuUb8HQqF0NzcPLGOlhmyT7WcPU3INiaFwipNB5OLf1IbhUJ6NpvNs3CxWCzCX11VVfGebGUxWd7Z8v6RIE6Z8JTlS9ujoo5kpUF9IcFXtj2haWYkiMfjcWGrQhnmJHwWE9IpG7yYaC1bsYz2OMjniTLpk8kkgE8KI9BUM3k5ufiq7Bk/lcgDBpX0RTgRig2AFKPQhke+fuW/mU+olkBcrXB8ZxiGqU44vs9sOL6XFkq6crvdRT+PxWJoaGjArFmzkEgkRLKYpmlwuVxwuVyoq6uDx+OZkHBeiMFgELanXq9X9EHXdYRCoUmdzZzL5RCPx9Hb2wuLxQK73Q6Hw4FMJpOXbFeI0WiE0+kcdOxsNtuorGgZptqplvhetkJ6Y2MjgIOj1rNmzRLv9/T0iFHuxsZGkYUsj2r39PRg5cqVQ7atqipUVZ2inpceGi2mn4XZ5NlsVlh8kJUJCcqFfs6UQT5c4CARXdM01NXViUKYDodDeKFbLJYpEwop65cEXNovo9EohPFkMpln60IiO+2XLH5Ho1Gk02nEYjH09PSIqV3kxV5TUwOPx5MnpJO1i2x5A+R7s1P/ZHG7sBjqcJAYTuvpul50oEReRrYemWrImz0WiwFAVWSl03VCMwCKIZ8HWXSna0A+V+xbn0+1BOJqg+M7wzBMdcPxfWbC8b0ycLvdOO+883DkkUfio48+wiOPPII9e/bgmGOOwZe//GU0NDTg6KOPzrN1mWwaGxtxySWX4PTTT8fOnTvxxz/+Ed3d3ZPWfi6Xw+uvv45f/vKXqK2txdlnn40zzjgD/f392LRpE954442i3yVOpxNf/OIXccopp3DhW4YZB9US38tWSG9paUFjYyM2b96M4447DsBBsXPLli3CCH7p0qWwWCzYvHkzLrzwQgAHzeTffvtt3HzzzSXre6kxmUwia9rtdsPn8+VlhKdSKQSDQei6jmg0ing8LmxI5CKhlJU+0ugrLa+qKtxuN2w2GxRFEQI+tTNVkH0Kkc1mkUwmEYvFMDAwAKPRKGxbTCYTdF0XnuPUL8rgloXvRCIBv98vlqXBgng8LrLT6Wanop5yhj75Y8vWLYWCOomoo/nSkAX6chWpqfisyWQSwv9MzbKWbXx0XRf7W7iMfE2Rxz7da3QNjOU6YJhKh+M7wzAMw8w8OL5XBjabDSeddBJOPPFEvPbaa3jppZfw0Ucf4ZBDDsG//Mu/YN68eVM+U9br9WL16tXI5XJ4/PHHsXnz5kkV0gHggw8+wJ49e+B2u9Hc3IzTTjsNwWAQzz//PP70pz8VXae2thYLFizASSedxEI6wzBDUlIhPRKJYM+ePeLv1tZW7Ny5E16vF3PnzsVVV12FG264AYsWLcKiRYtwww03wGaz4aKLLgJwcDR17dq1+O53vwufzwev14vvfe97OOqoo0QV8GpBtmOxWq3weDzCl5kKW5JwbLFYhPUJ2YTIxTnl4plms3lEQZTEP+oDgLyM7+kUUqkPuVwOiqJA0zSRmU7CN9mbFGaUF46eycsmEgmEw2HRDnmsE+l0GolEQhxXRVHyvOBlAZ2EVzrmM0lEpRkB8n5N9zUwnZCVD+1vsc/p/UQiAV3XkU6nhW1S4bUwE66ByaRaRrRnIhzfGYZhmKHg+F65cHyfGpxOJ5qbm/M8yYciEAigo6MD8Xh83NsjodzpdGLJkiXQdR0LFy6E1WqdNgsT6oPP58NRRx0Fp9OJ7u5udHZ2Ttpsanr2bmtrw7Zt29Dd3Y2BgYEh7U4TiQT279+P7du3C10DAPbs2TOkHQzDMJ9QLfG9pEL69u3b84pgkO/ZJZdcgnvvvRff//73EY/HsW7dOvj9fixfvhzPPfccnE6nWOf//b//B7PZjAsvvBDxeBynn3467r333qobQTSZTCIb3OVyobm5WVirFNqq5HI5+Hw+ZLNZRKNR1NTUQNd19Pb2isBFxTozmQxcLpcokEiZ7RR8ZG9wo9EIq9WKXC4nBPvp9n0mD7RMJoOamhrhb55KpRCPx0UWMYBBdijFhHTK1Pf7/YjH48LepXBqIXmq53I5OJ1O1NTUwGKxwO12w+FwiGVyuRzC4TB6e3uFHxx5mVfSF0cxKIs/HA4jk8nkZfjPVDGditOSvUshdC/RP6SZTEaI6DQgE41GhQXRdFjwVBLVEohnIhzfGYZhmKHg+F65cHyfGhYsWIB169Zh8eLFIy772muv4c4775yUQp3z5s3DunXrEAwG0dDQMKgI7HRw5JFH4gc/+AECgQA2bdqE3//+94hGo5PWvq7rePrpp7Fz507ouo7W1tYhl41Go3j88cfxz3/+M+/Zta+vDz09PZPWJ4aZqVRLfC+pkH7qqacOe7AMBgOuv/56XH/99UMuo2kabr31Vtx6661T0MPKgYpg2mw2OBwO+Hw+OByOEcVL8v/WdR2RSERkT1NGeiqVEgIxieeFIjr9Lmekk73JdEMWLOSbTgVSzGbzoIz00UD7mEgkRIFPar+w2CiJoJlMRhRZpRfwiZCu67p4kYg+1UVApwsS0C0WiyjaOpMLs2QyGZFpPlxGOi1HszRITCePdfLXnynXwWRRLYF4JsLxnWEYhhkKju+VC8f3qaGmpgZLly7Fpz71qRGXjUajIlFrorhcLhx77LGT0tZ48fl88Pl8SCQSeOONN/IywSeDTCaDvXv3Yu/evSMum06nsWfPnrxZF9WCnFg4ExPgmOmhWuJ72XqkM6OHBGyn04na2lqRiT6aL0Cz2QybzQaz2Qy73Q6r1SpE9GAwiFQqBbvdLixLNE2DyWTKK5JJLypQWspsAtpnOiYkpCuKArPZLLzJx3OTUlApJnaSbY5ssUM/qU9GoxG5XA5ms1lktCcSCSiKkueTXcnQtUN2QfF4HGazWVw3MwHZpieRSIg6A0MVG6XrhgYZqA6B0WgUhWdZRGcYhmEYhmEYZiRmzZqFs846C0uWLMGHH36Id955RyR8AQetX/7+979jYGBgxLZ8Ph+OPfZY1NbWTmWXmQogHo/jtddeg6IoqKurw7HHHgufz1fqbjFMWcJCeoVDgpyqqqivr0dzc3OeUDsSFosFHo8HmUwG4XAYbrdb+DaHw2HhkxYOh6FpGpxOpygkSRm4NOqkqio8Hk+eeFwKSKjUNA1utxuKosBqtcJisUzYj1y2e5GhY06DCRaLRVjh0PEgoVRRFNjtdlgsFlGklDzW5X+CKhEShQ0GA8LhMEKhEFRVFVn8MwHygads8lAoJLLKZfskmVwuJ9YBkLfcREZtZzrVMqLNMAzDMNUEx3eGGT+HHXYYrrzySsTjcdx///3Yt29f3jPkgQMH8Nvf/haapo3Y1nHHHYdrr72WhXQGgUAAf/zjH/HMM89g6dKluPbaa1lIZ8ZMtcR3FtJnACQcK4oiMsJHK2RTJrXRaBQ2JCQ2p1IpmEwm6LqeV0TUbDbn+TmTDzplqpcD1B/Z150ywidD5C92k8tZ6LKITv7gZAVDn1GWP3nJD5XRXEnI2drpdBrJZDLPU3+mQPcIvei6osGCYjUEWDAfO9USiBmGYRimmuD4zjCfWJLS7N3R2mFarVbMmTMHqVQKXq93ULJSMplEV1fXqNpqbGzkIppAXl25kSD725lGJpNBb28vent70dTUNKOuCyo6m0qlkEgkOI5MIdUS31lIr3DoS5+sSyZS4NNiscBqtcJgMCAejyOdTkPXdfT39yMSieRZdJA9islkgsvlgtVqFWJ7qTPSCRocyGQyUFUViqII25HJgGxcjEYjbDYbfD4fNE2Dx+OBz+cThU81TcvzU08mk7BarUilUrBarVBVFYlEQky/IxG6UsVn8gUPBAJQFAVOpxNOp1PMkiiHa2MiUAHRRCIBs9mMxsZGMehEgzWJREJYv4RCIaTTaaTT6Rn5T9dUUi2BmGEYhmGqCY7vDAN4PB6cfvrpOPzww9HS0oKGhoZSd6kqMRqNOPbYY3HKKafAbrcPu2wqlcK2bdvw8ssvzyiheabT3t6OzZs3o6OjA6+//joikUipuzRjqZb4zkJ6hUOWIhO1zyBR2GazAUCef7Ps6ywX2czlclAUBbNnzxZZ6pT5XQ5iKdmsUOa3oigAJk/IpWNmsVjgcDjQ0NAAu90Ot9sNr9cLi8UiBHyZdDoNh8OBdDoNm80GTdPy7F1k25xKJZ1OIxgMitHfxsZG8Y9JpVu8kJCu6zqMRiMaGxsBHMwO0TRNWL4kk0mEw2HkcjkhvFPhXoZhGIZhGIZhqhe3241zzjkH5557Lsxm86BnRmZ6MBqN+NSnPoVvf/vbI1rcJJNJbNy4Edu2bWMhvYJob2/H/fffjx07dgh9i2EmAgvpFQ6JclMhzlGbhTYVcnZ1McG3HER0grLzZXuVyewf2biQUE/COU3Tk61dCLJ3oYx5VVWFx7zFYgHwyUBGKaHphfKxk6HrYqhCmRSk6CVnbZfTNTJa5HuMBow0TYOqqjAYDGJQJJPJwGw2i2ljNptNHEvKVGcxfXRUy4g2wzAMw1QTHN8Z5uBzpKZpcDgcpe5KWWAwGOByudDc3AyHw4FAIIBoNDpl29M0DTU1NbBarWhoaIDL5RrxXCSTSVGXzul0IhAIzMjs5kQiga6uLrS1tcFut4s6eJWKxWKB2+0eVS2AeDwOv9/PM8nHSbXEdxbSKxy58KHs1TzetpLJ5JC2IoXt008ShM1mc1kJpCR20muyRVyTyQSn0ymCi9frhcPhgM1mg91uh9FoFIK5jOwnT8dT13VEIhFRfJSE51JhMplE8VRN02Cz2fIGJDKZjMieTyQSiMViwu6HfNLlApz9/f3IZrOw2WwVG4jpnjAajeI822w2OBwOWCwWIarTvieTSQSDQXg8HkSjUXR2diKTyYhzW+qBkkqgWgIxwzAMw1QTHN8ZhinEbDbj5JNPhs/nQ3d3N/74xz/ixRdfnLJ7fuHChbjoooswf/58LFq0aERbF+rjSSedBK/Xi66uLjz66KN44YUXZtz30v79+3HXXXfh0UcfxYknnogLL7wQXq+31N0aNy0tLVi3bp2w0h2OXbt24cEHH0R7e/s09GzmUS3xnYX0CkcueChnjo9HLCZv7uH8ueWsdHlb5ZppLGek02uyMBqNUFUVDocj70UWH0Nti94nwTmXywl7mFgsJixjSgnZ4pjNZmFXQ+fYZDIhnU4jEokgkUiIgQA505p8wpPJJCwWC0KhkLAFcrlcFSeky7MzjEYjrFYrAKCmpgYNDQ1iNoKqqsL6JZVKIRgMAgCi0ago/EPnnYV0hmEYhmEYhmGYg8/Ihx9+OJYsWSK8rF966aUpE9eamppw1lln4Zhjjhm1hmE0GrFkyRIcdthh6OzsxJtvvoktW7ZUlAA4Gvr6+vDcc8+JZ/8vfOELFS2k19fX43Of+9yozpPX68XTTz/NQjozLCykVzhU2JFsNOLxuBB4RxsQSISnbGjKNB5LHyYy8jSVyBnSk9lHEujNZnPei8TmsbRjMpnyLGIos1+20JkO5OKpVqsVbrcbFoslL8OeXul0GsDBKXFms1kMwui6Dl3X8wR1Et2BgwK9x+MRhWrLXVCXrx2yZTGbzaK4LmWly7Y+2WwWBoNBFLalKYI2m00I8HT8mOGplhFthmEYpjwxmUxobm7G7Nmzoes6WltbR5XRxgwPx3eGOWgh8e677+Kll16Cx+NBS0vLqGxe/H4/WltbEQwGsXfv3hljQZHL5dDR0YH29nZ0d3ejp6dnWu738SQCTrZdbLmSy+XQ3d2Nf/7zn2hvb8ecOXMwe/bsSU1OnCp0Xcf+/fvR29sLt9s96vvL6/Vi6dKlcLvd6OzsRFtbGz+7j4Fqie8spFc4mUwG2WwWuq4jEAiIbGiTyST8toeD7FwymQwikQgCgYAQ04dDFkopu7bcvJ8LxfPJEtMpcJL9CQmkJKZS5vVo2pELy1itVthsNqTTaSFo0/GdDsiqRlVVuFwuzJo1SwjlFotFBEyydqHjGYvFEAgEkEql0Nvbi97e3jybF13X0dHRAUVRoOt6XtY+WcaUKzRIRYMBuq7D6XSivr4eDocDNTU1qK+vzyssS/djKpUSnumxWAzhcBg+n0/Y4MTj8VLvXtlTLYGYYRiGKU9sNhu+8IUv4MILL0RnZyduvfVWvPzyy6XuVsXD8Z1hgP7+ftx333146qmnsGzZMlxxxRU49NBDR1zv3XffxW233YaPPvoI3d3diMVi09DbqSedTuOFF17Avffei/7+fnR0dPD9XmJyuRx27NiBn//856ipqcFXv/pVfOUrX4GqqqXu2ogMDAzg97//PZ5//nkcd9xxuOKKK7BkyZIR1zv00EPx3e9+F8FgEI8++ijuueceMcucGZlqie8spFc4dKGSV7Wu60LoHI2QTkItZc+OJyNdbqdcmeyirLKYTtnkJH5PJCNdbqcUGekkCFutVjidTlitVjGlqxjZbBYmkwmZTAapVArhcHhQNn0mk0E0GoWu63C73UgkEsI6ppyRB4loxoeu67DZbMIT3Wq1iux0TdPyMtLNZjOSySRsNhsAiGKkNFDCjEy1BGKGYRimPDGZTJg7dy6WL1+O1tZW+Hy+UndpRsDxnWEOFnTcs2cP9uzZA5vNhnA4PKrre2BgAG+99Rbefvvtaejl9JHNZnHgwAFs376dhcsyoq+vD319fXA4HPjsZz+LVCoFRVHKLhmu8N6Jx+P48MMP8dprr0FV1VEXhXW73TjqqKOQSqXwxhtv8HP7GKmW+M5XxQwhk8mIgONwOGAymfKypOXpR7lcDslkEtlsVlQlTiQSGBgYyCtaOhJ0k6TTaSQSCSiKIjKRgfFNk5pMqG/0ogKPk3GDylnu9PdEvjDomMtZ88O1J/vRFzvOhX7lw0HXhsVigdPpFBXLZUF/uH6QxUkqlRI2MGTzkkql8vYrHA6jo6MDVqsVdXV1YiCBLG3KAcq2z2azCAQC8Pv9g84R7bc8CCLXCaBisrRfhYMlpb43GIZhGIZhGIYpDzo7O/HnP/95VOL4rl274Pf7p6FXDPMJ6XQar7/+Ov7whz/A5/Nh6dKlmD9/fqm7BQDYu3cvduzYgWg0Kt7r6elBa2trCXvFzGTKQ7liJkwqlUJPTw8GBgbgcrmQy+Vgs9ngcrlQU1OT57tNVhOJRAKBQAD79u1DPB5HLBYTAvtoIWsYXdeFkE4ZuaUWC8m3O5VK5b0ma6Sr0N5G9mMfSxuyKC8XjS2GnAlPme9ytrjcFg0ajDQwQln0qqrC6/Wirq4OZrNZ2NSMhNlshtPpFJnnkUhEXEd0vNPpNAwGgxi0URQFiURCWNu4XK6yEdLpmk6lUujs7MS+ffuEt7vNZkMmkxFCOgnl9LJYLMJHPZfL5b1PL0VRKsJXrhyolhFthmEYhqkmOL4zTD6tra3YuHHjqGbs6rrOGdvMtJNIJPDXv/4V//jHPzB//nysX7++LIT0XC6HXbt24b/+67/Q0dEh3k+n0wiFQiXsWXVSLfG9PJQrZsLkcjmRcU0WLyaTCYlEQhRJJBGWMshpuUQigXg8Pm6RmcTfcvNJJwE3k8nk9W0y+1csm3w8bQz1kjEYDCLjmcRvEtVlKxV5vWKZ84XI7ZHYO1qfd+CgEE8WLyQc0/VWuJ+UqZ7JZMS1R9cuWRGNlAU/FcgDIJlMBslkUgwQxeNxmEwm2O32vOXkPk5Xf4vNQih2vmcK1RKIGYZhmPKEio2HQiGRKMBMHI7vDJNPIpFAb2/vtG83nU4jGo0iFAoJ68pSJ8NNF6lUCpFIBKFQKG8W/0gkk0kkEgmEw+Gqigm5XA6hUEgcr4GBAYRCIWFxOt2JYqR7pVIp9Pf3o7OzM09IZ0pDtcR3FtIrjJGENLJr6erqEgGBCjqSYErFENPpNOLxOMLh8LhtT7LZLBKJBCKRCIxGoxDoR2MLMpWQfU0sFkM8Hoeu66Ko6kRvUNn7W9d1RCIRmEwmMXihaZoozjnU/tMXTCqVEoJyJBJBJBJBNBpFOp1GLpcTXttkvULtKooistLl7VDfaACBzg8NJqRSqUGCP/mVK4qSZ0UyFui6slgssNlsQlQvhLLUM5kMenp6REHO+vp6uN1ukZ1OovpY+zFW5OMVi8WQSqUQDAbR29sLXdfR19eHcDgszqvBYIDD4RDnLJlMimx7Giige5D+MaUXndtoNIpUKjXqPtJ5puK2dM7pnxX5XFN/JnvAqFRUSyBmGIZhyhNd1/G3v/0NwWAQwWAQH374Yam7NCPg+M4w5cGBAwdw//3344UXXsCxxx6L1atXw+PxlLpb00JrayvuueceNDY24tOf/jQ++9nPwuFwDLtOJpPBa6+9hr///e/o6+vDzp07q/I7KRAI4LHHHsM777yDhQsX4uyzz0ZTU9O09qGjowPPPPMMWltb8c477/AsjTKhWuI7C+kVBInhhbYphVnMJBzL4rm8PmXVUmbtRIqEUqYOZTPTqCBtpxRCOh0HWUgn0XOyBEY6hrquC3sSylwmf+zhPMxlf3kSZXVdRywWE4McuVxOCKhGo1EUt5SFb9nmRd43ElTJZoRsbQq902WPckVRhA0JgHGNKlssFlitVtFuIfJ119vbC7/fD03TxICCw+GApml5+zTV1xAJ0OFwGLquCz81XdfFiwYIjEYjotGouJ5kIZ3OOQ2w0PUXjUYRi8XE7zRQMhroONJ5cTgcYsYAHV+5H/LMiLEWDGYYhmEYJp9EIoGXXnoJW7duFQkQDMMwM4XOzk488sgjMJlMWLNmDVasWFE1QnpbWxseeOAB8Ry/cuXKUQnpO3bswJ133gm/3y+ev6qNYDCIp556Cs8++yxOPfVULFu2bNqF9K6uLjzyyCN45ZVXkMlkRv18zTCTAQvpZY4sxhbaegD5IrosUtLfsghZuA79PlHI1oX8yJPJpBBBpxvab8rAJq9rykSfzExdEsJpnxOJhMgapyxhyswvXE/OIKZ16XcSQOlcUxa6bLtC2eOUsV7Yvjz7QA4q9ABIx6eU0PZJRKfiIDRDgsR92b4GGJ/1S6HFDd0rdJ5oZoFcK6DwupEHIej4yv7o8nUnWybJYnoikRDbHA65QKnNZoOqqkJIJ491Ou+ykG6xWMRADFnojOS7X+5U4z+nDMMwTGlxuVzwer0wmUwYGBhAIBDgeDTJ8PFkmNJDyWcGg0FYbk43kUgE/f39CIfD6Ovrm7ZnVHoWz2Qy6O3txUcffYRQKASfzwe32z1kH7u6usRzXbVCA8upVErU3LPb7UWXVRQFPp9vxEGK4bYVCAQwMDCQ90y7b98+BAIB6Lo+rnaHIhaLoa+vD9FoFL29vWO+Hk0mE2pra+F0Ose0nq7r6O3tnRHXVTXEdxbSyxgSSYvZOlA2qiwOUyCQLTxIjJMF+EJfb9kKYqwXvbxdk8kEv9+PbDYLp9MpfMams/AoWZlQcYn+/n7hcz3Z/u2ZTCavsKbNZhNBlTLBZcGbSKfTQvgMhUIYGBhAMplEX18f/H6/EG/Jp87hcAhBlTLSVVXNuzZkj3R5YCOTyUBRFCEMm0wmpFIpkQFfuA5dA+M9X7KYPNKxpgEFXdfR1dWFgYEBaJqGnp4eWCwWUSiXBGSr1SoGFOSBpZG2IfeLZhFQTQC/3y/87eg8kKhPy1M7cpa3qqqwWq1wOBxwu92wWCyIRCJiBkRPTw+CwSACgQDa2toQiURw4MABUWx1qABJ9wrtu6qqaGpqgtfrhaIocDqdQkin7wAayEmn0xgYGBAWQe3t7SJ7PhaLVaSYXi1TwxiGYZjywWAw4Pjjj8dXvvIVKIqCTZs24amnnuJst0mE4zvDMMQ777yD+++/H+3t7dizZ8+kC6Mjkc1msXXrVgQCAdTW1uLCCy/E6tWr82ZXv/vuu7j//vvR1taGjz76CPF4fFr7WM589NFH+PWvfz3kTIbm5mZcfPHFWLZs2bjaT6fTeOGFF7Bp0ybEYjHx/sDAAPbt2zeuNofjgw8+wO9+9zvs27cPe/fuzdvmaHC5XLjgggtw2mmnjWmG/+7du/G73/0Oe/bsGWuXy4pqie8spJc5ctarLJ7SSxbEDQYDUqkUjEajEDJloZV+L7R/IHFwPBcuZWVTsYdYLCYEZNrGdNq7yJnxlGUs27pMJmRrk06nYTabEYlEkM1mYTQaxbkqJl6SNz15aJOQS7YfwCeDKCSmk2UK2YsMJ6TTOaHzQv7qZLtD1w2JuYWzGiZynOSZEaMR0ml5qqhNgrTFYhH/oNAAkpylTfY5o81Ol2cByNcF2cskEgkEAoG8YzJUfwGIa5wEdbPZjHg8LgaxwuEwBgYG4Pf70dvbi0gkAr/fL/zRhxK16T61Wq2oqamBzWZDc3MzGhsboaqq8I8v9EinwZm+vj4xOBMMBsW5qNSiQdUSiBmGYZjywWAwYP78+Tj77LNhtVrx5ptvTnsRtZkOx3eGYYgDBw7gueeewwcffFCS7edyOezduxd79+5FbW0tli5dKhISic7OTmzevBnvvfdeSfpYzvT29uLvf//7kJ8ffvjhOOOMM8bdfiaTwfvvv48nn3xSaAZTSXd3N55//nm8/fbb41rfarXiU5/6FM4777wx/e/g8/nw5JNPjmub5US1xHcW0ssQ2duc7DxIVJWFRCDfqoJEaxLRSWgksZF8p2l5Ethk64fxTKWiC54KNlK/KQuc9mEqxTza/1QqhWg0KvypdV0fVricCLIQnEwmEYlEhF82DX5omgZN0/LWo+OUTqcRDAYRDodFljKdMxLJyQtdzm6Xr4tiXuR0HdBnlEGVy+WEVQqJ/3RcSIyl7GZ58GU0yMefbE3o+iq0ZqGfJGwXWg3RDIloNIqBgQGoqioGGuRBBLkQqzzrQW5LtjahmQNktUK+6JSdLmefF0Lnwmq1QlVVpNNpMXAUDAZhMpkQCAQQCAQQiUTQ3d0tstL7+/uFR/pwAwzkw26xWFBbW4vGxkZYrVZ4PB44HA7xHUDnvfB+okKodM4aGxths9kwMDAgzms5WPowDMMwTLlz4MABvPjii1AUBfv376+ohzuGYZixksvl0NXVhZdeegl79+7FvHnzMH/+/CkbRIxEIvjggw/Q39+PXbt2jTnrd6pIJpN4//338de//jXvGXvnzp0i4Y0ZG5FIBDt37hykiYyWRCKBPXv2TOmssFgshg8//BA9PT14/fXXEYlExrS+0WhEc3MzWlpa0NjYiNmzZ49Z+6qpqcEJJ5wAl8uFAwcO4KOPPpoRNi8zFRbSyxDKMjaZTLBaraL4Iv2UxVPZusJisYiMbFVVB4nHxYT0TCYjMtgLi1GOFhJCE4kEBgYGEA6HkU6nYbPZoGkanE6n2PZUiOlyVnwkEkFPTw/i8bjIziWReCogoTYWi6G7uztPUDWbzbBarbBarXnrpFIpIbpHIhGEQiGR0U/nQ9M0IdySiErXAonqsogsn1fqF/WN7Fx0XUc2mxU+6SSskihsNpsRi8UQiURE+6NBvpbi8TiCwaCwkqFrmSxpqK90vZC4TX2lNoCDPmF+vz9v4ICEdHlwoZjdkSye0/mn40uiMtkakXA/nB2NyWSCy+VCXV0dHA4HkskkQqGQuPYMBgMCgQCCwSCCwSDefvtttLe3Ix6Po7+/X8wGSKVSQ27Dbrdj9uzZsFqtWLBgARYvXgxFUeByufIKuBYOSMgzCqxWKzKZDGpra+FyuRCLxbB3714xEEHWM5VCtYxoMwzDMOVDNpvFP/7xD7S1tcFgMKC7u5ttXSYZju8MU37s3LkTN954IzweDy655BJ89atfHbf4ORIHDhzA//zP/+DVV19FMBhEb2/vlGxnrESjUTz++ON4+eWX83SLQCCAnp6eEvascunu7sY999yDRx99dFzrZ7NZ9Pb2TqnlT09PD+6991688MILCIVC6OrqGtP6ZrMZp512GtauXQuPx4OmpqYx614tLS248sorEYlE8MQTT2Djxo0Vec1VS3xnIb0Mkf3MTSaTEBDJ2qIwU5iymOUik0C+wAZ8ItBTpjAtRwIkCYK07kh9LPblQOIsZSUbDAZYrda8fky2mE7CKYmk8Xgc8XhcZKPLXtdTAYmp8Xg8L/vfZDIV3bacvU7iZqEdislkyitkSS+alUB/y17huVxOWPcAELMNzGaz8FwncZyuJTmrXi7OStdJYbb7UMi+7NQG7bd8HcvXnVxdW7YXot9pcEFug2xP5Ix/uido3+RMdBLS6bqQxfOxQO3Llj3kNR+NRmEwGIQ3eSgUgt/vx8DAAHRdF8VTRwoqNFjidDrhdruFRzoVGh2ub3IbZOmUSqVgtVrR398PRVFEfyuJagnEDMMwTHkxMDCAgYGBUndjxsLxnWGmn2Kzjek5EAD8fj/8fj8cDgcOHDiAZDIpdIjJen6n591oNIo9e/Zg165dk9LuZJHJZNDR0YGOjo5Sd2XGkEgkpsTLfDKg6zEWi+Gjjz7Czp07x7S+7CLR2NiIo48+Gi6Xa1x9cTgcWLRoEbLZLN54441hn//LmWqJ7yyklyGyLzqJn7JFixzMSDQj0ZMEVRLWZbFSFuFJuJWz1GVBthhU+NJsNsPhcIgimBSAKcOahNC+vj4oiiIyfimrnuxFJlKElGxEaLuhUAiJREJYaSQSiSkpMDpcf2hbiUQC4XAYRqMRiURi0NQgEptJKJZFXRLJKQObMq9lex/ZI18+jnTuSPSlcywLzIqiAIBo22g0Dip+SoVTDQaDEI6LfZHT/spiMVXOJm92sqOxWq2ijcJCubL9ynDHlzLG6ZiRWCwPPMnt0rUhi/wjbWe47VNWO72omC593t/fj4GBAYRCIYRCIeGHLhdxLYT8641GI1wuF2bPng2XywWv1ysE9LFOqaTzTzYxPp8Ps2fPFgVPK7XwKMMwDMMwDMMwY8dkMuGoo47CsmXL8p7rurq68Nprr6Gzs1O8l0qlsH37dtxzzz2ora3Fpz/9aSxcuHDCfdB1Hdu2bcPu3bvR1taG9vb2CbfJMOMlmUxix44dePPNN3HgwAHs379/zG3MmzcPK1asQF1dHZYvXy60Fmbmw0J6GWIymfIEVDmTV84QlkXoQtsWCpAkkhYK7QDE8mazGZlMZpDQXphBbrPZhO9yU1MTmpubhWBPBSP37t0rxFSaikKFPhVFgcfjEdugjOqxQtsjiw7aViQSQTgcRm9vrxBbp9MPmsRJyoYfarBAnilAL9lXnSxLaNCB7Fzob9n6pxDZ9kM+N3SuqXAn2f+YTCaRpZxKpdDf349gMAi32y2sZaxW6yDRXvYcD4fD6OzsRDKZRDAYFB53JARTQU6aGkiDL9QWZYyT5UwxCjPnC/d1uPXk9ceLnIFOsy3IW50GbLq6utDb2ysKjdKgxHCDObJVjdfrxbx58+D1eoWdy3gzQMxmM1wulyiuSkVt4/E4ent7J3w8potqGdFmGIZhmGqC4zvDTC9msxknnXQSvvOd78DpdIr3t2/fjgMHDuQJ6clkEi+88AL++c9/Yt68eXA4HJMipMdiMTz99NO47777oOv6mH2oGWYyicfj2Lx5M/77v/9b2NuOlSVLluCKK67AwoULRS21aqda4jsL6WVKYaaxnIFcuBzwSYFJAHkCa6GNC61DYrm8LfpdvoDlbauqCofDAafTCY/Hg5qamrzMZ5PJBKfTKTKsI5GIEFzJn5u8uKmPJN6PJBYWFpCkjHTKDtZ1XQicqVRKZB+XgvF+eRQ754Xe8rKgPVJbhJzBLmduF8tmp+OWTCaRSCTE8vKgB107JKST1zkde/m4y8VGgcHnezwzE+RrYTqRrW8SiYSYbUEWPsUshUa6FujYyIMncib6eGdsyPetxWKBpmlIp9Oi3eEKq5YT1RKIGaac0DRNDOQRqVRKFMlmGIaZKBzfGWZ6UBQFNpsNNpsNdXV1qK+vzxPS6+vrUVtbC6/Xi2QyKWauRqNRRKNR2Gw29PX1ob+/f8J96e/vR29vL7q7u6c12Y1hUqmUcC4gyJu/p6cHyWRyXO2qqgqfz4e6urrJ6qqY1V9TUyPqm02lP/xkUy3xnYX0MqRQ4KT3RlpnNBceLSNnycq/F174ZrMZHo8HmqZh3rx5WLZsGTweDxoaGjBr1izhpZ3L5RAOh1FbW4tQKIT9+/fjzTffFB7g7e3tsFgsCIVCsNlsQpQny5JC+xq5v4We12QdEg6HhaWI3+9HPB5HMpkUAm8l3YgA8sRzOh6UeS4fo9EKz7LNDwnydL6oPSDf0oeKlIbDYXR0dIiMck3T8rYt+4+TlQ3NfqBBncIsciqGK/u4F/r4lyvpdBqBQED42xsMBthsNnFMM5kMent7hS96LBYb1X6ZTCZhk+R2u+FwOGC32ydlWhidA03ThN+60+kUsxJI7C9nqiUQM0y5YDabceKJJ+LMM8/MKzDW2tqKJ554Anv37i1h7xiGmSlwfGeY6WHJkiX4whe+gMbGRnzqU58alDE7Z84cXHrppTjzzDOxY8cO/PnPf4bf7xef+/1+bNq0CW+99daE+xKPx7Ft2za2mGSmnf379+N//ud/0NDQIN5LJBLYtm1b2T0PGwwGfOpTn8JVV12Fvr4+bN68GVu2bKmYZJZqie8spJchsg/6UJnoY6HQ3qPws+HETLPZDLfbDZfLhXnz5uHoo49GbW0tfD4famtr83ypo9EoPB4PIpEIzGYz9u7di1QqJSxXTCYT4vE4bDZbnrhH1h9kb1LMQ5tEv1gshmg0imQyiUAggFAoJLaRSCQqQpQdClnwpizwYtnkY8nglgdkZDGdXnRdyEI6/YzH48LDm/zAaVnKRKcBDvLBL0Q+H7LATgMdlXK+yMImFosJ6xqy3KEM74GBAfj9fqTTaei6Pqr9MhqNsNvtQky32WywWq0ic3+ikM+9x+OBoiiw2+3iXNKgCcMwDGE2m3Hcccdh7dq1ecWSXnvtNWzbto2FdIZhGIapIA455BBcdNFFWLRoUZ4VLNHQ0IBzzz0X2WwWDz30ELZs2ZInpIdCIWzevBl//etfJ6U/9KzJMNPJgQMHsGnTpkHP16RllBuHHXYYFi9ejEAggL6+Prz88ssVI6RXCyyklyGy8E22KWOxPgE+8eumLwdqk6B2C1+F7RiNRmiaJqaEkWe2bD9BYqjZbIbVakU2mxWe2JqmCQ9pAMIuhDzTySaDikcWExDJUiObzYrpLalUCrqui6zoiQbl0Wb+FzvWMxF5H0kop4EOEvRp8EMWw8nvHEDe9UvnVx4EIAueoUT4ckK+f+jaI8jeSPblH21ApuNBA0gTLcI71DYKB2kms/2ppFpGtBmm1LhcLtTX18PtdqOpqUnEePnzBQsWIBgMIhAIoLu7e9i6FgzDMMPB8Z1hpg5N09DY2AiHw4H58+eLWeDFoOcQepYv9ozAyTczD5fLhcbGRpjNZmG5U46C8mRBFraVgmzRWknP7kD1xHcW0ssQuaCi7PU9ktWLnE1M68l2G3LmMYnm9Lm8jnwBK4qCuro6NDY2oqmpCfX19fD5fLBareLGlvH5fLDb7WhsbMTs2bOhaRoSiQR6e3uFf3YkEoHJZMLAwECeP/RQQrostsrWLSSi0/Ea6403lAd9sS8r+QuhcHBism74wi+doTK85f6PdztDbbfY9kkcpuNiMplgtVrR2NgIp9MJk8kk/jnz+/3CAsXv9yMajSKTyeRlxFO/ydOertPxUOw8TRV03qlgpzwwQJ79qVRq0KDVcFDGuNVqhaIog47RZEBBmDzSLRbLkDNUyo1qCcQMU2qOOuooXHrppZg7dy7mz5+fZ+sCAPPmzcO6devQ39+PF154Ab/73e9EQXGGYZixwvGdYaaO2bNn4+tf/zqOO+44NDY2ora2ttRdYsqMo48+Gl/72tfg8/nw6KOP4pFHHkE8Hi91t5gZQLXEdxbSyxAS4khMG01GurwuCeQkgJIITWKxLADTCLMsDsuYTCbY7XZh70L2E5StJvcrm83CZrPBbDbD6XTC6XSK4qIkdtMAgcFgQDQaFaPg1BZZjhRmRJNAKYvqk3GjFRb2lAXfwuNaeHymy5qk1IUhafuUXQ4czML2+Xzwer2wWCwiO5189+LxuPBNz+VyYiaCXPiWipSORXguhlwfYLS1AsaD7Pk+WZmYcrFROWN8MpEHiuj+qpSR7WoJxAxTahobG3HKKadg0aJFRT/3eDxYvnw5crkcAoEA/vd//3eae8gwzEyC4zvDTB1OpxPHH388zjzzzFJ3hSlT6P++pqYmvPXWW8Jal2EmSrXEdxbSyxDZczqVSonpVrLwRWKbLEDKWejkXy0Lz0MJ6bReMTFTXobE9mKCu2wpQ30YbhqYfIPJ1iGF2cmyT/pkZICTcCkLmIXWGrLFhtwPOYuf+iP/Llt6jKePtA150EE+T/TZWERQeV150ER+jaav5JVeW1uL2tpaOJ1ONDU1wePxCA914ODAi6ZpiMViwrqFzimd40I/9rF+2cqZ4PIsi8JjSH+XO4X3YOG9PlGGu64YhmFGg9/vx+7duzEwMIDXX39d1IpgGIZhGKa8CIVCeO2116DrOmbNmoXDDjsMDoej1N1iSoCqqjj00EMxd+7cvOfLZcuWwW63w2Qy4dBDD8XZZ5+NgYEBvPfee/j4449L2GOGqQxYSC9DyBPcZDJB13Uh7gIQQmoxmxYSLqn4pixmFwrpcnbtcGIqtZtIJAZ5QBcT00kwJcsYsl8phpzpLC8znK0K/T1W5IKbqqoKEZ1+p7/lzN3CPhQK6bIvtjx4IVvzjBb5XBQeQzo2hcL3cCPHhcKy3CZdI/QaSVilY6JpGg455BAcdthhcDqdmDNnDpxOZ16WeTweF9nodMyj0Sh6e3vzfMWpb2M5l9SexWIRgx1m8ydfYdQe3QeTbb0zFVB2O2Xnj2ewZDTbkM97pfjSA9Uzos0w5U5bWxvuuusubN++HeFwGIFAoNRdYhimguH4zjBTx4EDB/A///M/cDgcOPPMM3H11VezkF6lOBwOnHfeebjgggvE87rBYIDT6YTP54PZbMZpp52Go48+Gh0dHfjVr36Fjo4O/p5lxk21xHcW0ssQ2epCFmXJa7rY8nKGsSyYyiJpYbuF2xqqL3LGbGFGK/WnUJgvzHge7qaYDnsU2Q9dFs7Jm73QXqbYcZYLv8qDGATZz0zki6MwAx04eN5NJlOeL/topl8VDpjImcnyeyP1V7a+oaBrt9vhcrngdDrFMsBBT33yz3c6nbBareL6nYwCJrJNSeGAEr0qxbaEKCz2O9n3w3jPezlQLYGYYUoNDeolk8min4dCIbS2tuK9996b5p4xDDMT4fjOMFOHrutoa2sDACxZsmTI2M7MfMxmM2bNmoUlS5YMqR/QjHObzQa32z3NPWSKQZoa1TKspLhXLfGdhfQyRBZoqRgjCankbyxnqNNPyl6mzNPCTGNZiJczlocjmUyit7cXmUwGDocDHR0diMfj8Hg8qKmpERnuABCLxdDd3Y1oNIqOjg50dnaiv78fkUikZDcFCa+KosBsNsNsNsNqtQrhXFVVcTzlSuXyiC2Qf04omzeTycBsNovjbTQaxRdeIpHIsy8ZDfKgBWUpUyY4CcRkQTOUj7tsl0PnP5lMCoGEMugpA5quk+H6aDaboWka7HY7nE4n3G43NE0TBUZl0ZoKj6qqCqfTidraWphMJnR1dY3qGAyFLJzLfuJ0zgoHDOgY0DEtVzKZjLBI8Pl8iMViUBRFzJSYDJLJJEKhEKLRKCKRCBKJhCj8yzAMAwAffvgh7rvvPtTV1RX9fP/+/ejo6JjmXjEMwzAMwzBMdfHOO+/glVdeQW9vL15//fWy1jOqFRbSyxQSAEnwNJlMSKVSQkSlrGk5y5SEdLJymAyhLJlMoqenB6FQCJqmYf/+/UKMo+xtEjFDoRDa29sRDAaxb98+fPzxxwgGg4jFYiUR0uXCoaqqQtM0mM1m2O12IaRTRvpYijzKoi0J0eRln06nEY/H80T00X7xyUJ9IpEQ+6DruhCPLRaLGFAhobXQxoXaoBkBJJwmk0nouo50Og1d18XvQ1nvEBaLBTabTWShe73evAx+GTre6XQaXq8X0WhUtDER5Kx4GhCRC8QWZnIbDAYxKFHOZDIZRCIRpFIpca/Q4I6iKBPOrM/lDhZ6DQQCiEQiiEQi0HU9b8ZDOVMtI9oMU2ref/99tLW1DTmAR7GNYRhmMuD4zjAMwzCDyWaz2LlzJ37961/jwIEDQrOpFKolvrOQXubIViKyHQvZqshC+nDFQMcLeU4bDAbEYjEEg0HhM261WvM818k3NRgMIhqNikGAUo2gyQK5bOdS6IdeaAUynKBO54OWI7GefK1lkRf4xNd8NMjnVD6f6XQaRqMxT/iUhf+hLFyKFRaVB1nGcq3IxVdlm5yhlqVjM1k2K/I2i71GWrZcv5QLZyHouo5EIgFFUfIGBcbTrlw7QR44mQr7mKmiWgIxw5QaqpnBMAwzHXB8Z5jpQdd19Pb2CjvOocjlcggEApz5OkUYjUZheypDtcUqIcGJGYyu6+jp6YHb7YbNZoPD4ZgU7SOZTCIYDFZkTaJqie8spJc5si0LZYHLxR0Ls5En2/+YrCcSiQT2798PALDb7airq0NdXR3MZrPYbjQaRXt7O6LRKPr6+hAMBkUBzumEvrzIYsRkMsFut8NqtcJkMomfckYzMLyATpCgTedBURSRIU5Z0NROOp0e0nZkKGg5XdeFqEHbsNvtUFUVZrMZDocDmqaJrPhsNot4PA5d18XsBBLPSZxNpVIIhUIis5CWGSlwk12NbBEDoKhXO+0rXa/RaFT0aaIUE/KHEtKnAnn7hdY/QP6AxmjvQTrXyWQS/f392LdvHwKBAJqamsS5lgdmRgvdt6lUCt3d3WhtbUU4HIbf76+YbHSgNIF448aN+OUvf4nOzk4cccQR2LBhA0466aQhl9+yZQuuueYa7N69G01NTfj+97+Pyy+/PG+ZTZs24cc//jE++ugjLFiwAP/5n/+J8847T3x+44034tFHH8V7770Hq9WKlStX4qabbsKhhx6atz8//elP8Zvf/AZ+vx/Lly/H7bffjiOOOGJc+8kwDMMwpaJaHrQZptTs3r0bv/rVr0blfb1nz56KFO4qAY/Hg3POOQef/vSn86xjt27discff5yPe4Xy7rvv4tZbb4XP58MZZ5yBs846a9BgSbVRLfGdhfQKQBZiS7FtshlJp9OIRCIwm83w+XzC/5r6FovF0NXVhWg0KrJgSyXYGQwGmM1mIUZqmgZN04Q9itl88NIfq0BZuA4J65RNToMG6XQaFosF6XQayWRyTOePhHAS+nVdF9eAoihQFAWapsFmswnfe5o1QFmFJHrncjkhmpO1C/mvj9Ynm7LYU6lUnh/8UF90su0NzUqY6HUgi9j0c7jM+ML3JysrXR7IKtx+sYKeI0H3l8FgQCgUQk9PD+LxOGw2GxoaGvKKq46FTCaDeDyORCIBv9+Pzs5OhMNhhMPhigpQ083DDz+Mq666Chs3bsRnPvMZ3HXXXTjrrLPwzjvvYO7cuYOWb21txdlnn41vfvOb+P3vf49XXnkF69atQ11dHc4//3wAwNatW7FmzRr8/Oc/x3nnnYfHHnsMF154IV5++WUsX74cwEEx/lvf+haOP/54pNNpXHfddVi1ahXeeecd2O12AMDNN9+MW265Bffeey8WL16MX/ziFzjzzDPx/vvvj5hlxDAMwzAMw1Qf+/fvR1tb26gSjUqlN1QDDocDp556Ki666KI8Id1isWDz5s0spFco+/fvR3t7OzRNg9vtxhlnnFH1Qnq1wEI6M2pIHCVxNhwO5wUCynwmf+5S+aLLliuU0SsXqByPeD4ccpa6bCGTTqfF7yR4j1ZclWcYyLYshWJtYTFZudgs+bfLHun0+VhmCeRyOdFmJBKB3++H1WoVHumyfQptNxqNCuGWPOOHyuIu/L3YMSrM9KZ/8uRtD5cRPtZrURbMabZBYZFTWUwvPB9ysd/CczfcMabCvIFAAAMDA1BVVcw+GEpUl48bndt4PI6BgQHE43EEg0GR9c5Vv4fnlltuwdq1a/GNb3wDALBhwwb85S9/wR133IEbb7xx0PJ33nkn5s6diw0bNgAAlixZgu3bt+O//uu/hJC+YcMGnHnmmVi/fj0AYP369diyZQs2bNiABx98EADw7LPP5rX729/+FvX19dixYwdOPvlk5HI5bNiwAddddx2+/OUvAwB+97vfoaGhAX/4wx9w2WWXjXlfGYZhGKZUVEvGGsOUmkqxc5zpyM+V0WgUH3/8McLhMNra2qbUWi+VSmH//v3YsWMHnE4n5syZwwk4kwxpZAcOHMAbb7yBmpoazJ49Gz6fb0ztRCIRcV3s27dPuABUGtUS31lIZ0YN2YQYDAYkk0kEAoE8cZgsQEisK8WNYDQaYbFYhI+7zWaDyWQSmdxjLSw6FsxmsxhZpmzxYmLqaKDlKKubMpcp0FIBWrngaSKRQCQSEZnnVFQyHo+LbPJ4PD7mvlDmei6Xw759+5DL5eByuXDooYfC6/UKYRkAgsEggsEgwuEw9u7di7179woBn4R32Q5GvnZoG8XEXrmvsmUOgEFCujxYMJ56AfRPjtFohM1mg81mE3Y6NMNBURSYzWbxTxEdT1nIpmz8cDgsCsjKswsKiUQiaG9vh8ViEctarVY0NTWhtrYWZrMZVqt10GwKus7S6bQYuAgEAtizZw/C4TD6+vrQ29srzkMlMRmBOBQK5b2vqipUVR20fDKZxI4dO/DDH/4w7/1Vq1bh1VdfLbqNrVu3YtWqVXnvrV69GnfffTdSqRQsFgu2bt2Kq6++etAyJL4XIxgMAgC8Xi+Ag5nvXV1dedtSVRWnnHIKXn31VRbSGYZhmIqiWh60GYZhCtm3bx/uuusu7N69G52dneL//qkgEong0UcfxWuvvYbFixfjsssuw3HHHTdl26tW0uk0XnjhBezbtw8NDQ34+te/jtWrV4/Jcnbv3r2488478d5776Gzs3PQM2ylUC3xnYV0ZtSQSAmgbIuSkVArF/6UX1MFiZrZbFb4xhsMhjwbmbF8kdKXiFxslARTal/OgiaxnjLPSYilwQ8a4CDRfSzQeTcYDAgEAtA0TWSnk8hM/aWCtOFwGKFQCMFgUPRV9qWX2y7MHB9K/JY/Gy4jfaK1AuSMAUVRYLVaoSgKnE4n7HZ7nqAt+6XLvvSRSASJREIMYtBn8gyOQlKplCjma7VaYbVaYbfbxXYVRcmbBUDIMxFisRgikQgCgQB6enoQCAQQCoUQi8UqsnjQZATi5ubmvPd/8pOf4Prrrx+0fF9fHzKZDBoaGvLeb2hoQFdXV9FtdHV1FV0+nU6jr68Ps2bNGnKZodrM5XK45pprcOKJJ+LII48U26H1Ctuh2hUMwzAMUylUy4M2wzBMIYFAANu3b8drr7025dtKJpN4//338f777yMYDOLCCy+c8m1WI7lcDm1tbWhra0NTUxM+97nPCevf0RIIBLBjxw7885//nMKeTj3VEt9ZSGdmFLIFh2zpIou3U5GNLrctZ7ybzWZYLBYAEELyWL5cKEM7nU5D13VRQJL80CkTPZ1OIxAIIBgMiix2ufBoOp0eV3a2TDabRSQSQV9fH3Rdh6Zp6OnpgclkgqZpMBqNiMViiMVi0HUdqqqivr4e2WxWHA86NnJGuTwYIGeTk7+8/D750JNVDA1YFGakjzUbna4bo9EITdPgcDhgsVjgdrvhdrthsVjgcrmgaZrw3ifLFwqQJKJnMhnY7XYkk0nE43GoqopkMikEbrkArHwtyAMBVLA3EonAaDQiFApBURQ4HI68mRUA8qx8/H6/sNUJBAJC0K+koDTZtLe3w+Vyib+LZaPLFP7DM9I/QcWWL3x/LG1++9vfxptvvomXX355wn1jGIZhGIZhGKa0RKNR/OMf/4DFYsEHH3yAvr6+ae/DwMAAXnjhhSG33d/fX/EJOmazGYceeigWL14sNJix0tXVhV27do17pkA8Hse2bdtgt9vH9Jz27rvvor+/f1zbZKYfFtKrjGIFGGeKyEbZ6GS7oSgKVFXNy1KfDoxGIxRFQTabhaIoQgAm33TKHh8NlEVOInYgEIDZbBZCNdm1pNNpBINB9PX1CVGV/OxlQXki5zqTyaC/vx+BQAAWiwUdHR3CJoMytWngwGAwwG63w+VyiQKvsse3LKTLdi40YJDJZERWezqdRigUEoUyaTYEnddCIV0W0Ue7v5QFbrFY4PF40NjYCE3TUFNTA6/XC5PJBKfTCVVVxWwHGpwpLDaazWbzbHUCgQCSySQGBgbQ09ODRCKB/v7+PNufwkEFv9+PcDgMk8mEzs5OkQFPor48w4JmHNA1QFnwdF3IGfyVyES/n1wuV56QPhRUPLkwU7ynp2dQJjjR2NhYdHkqyDzcMsXavOKKK/DEE0/gxRdfxJw5c/K2Axz8x27WrFmj6hvDMAzDlDMz5fmDYRhmJAKBAP73f/8XzzzzDHRdL4mQfuDAAdx9991DFsNMp9Po7++v6O9mRVFwxhln4Bvf+Ma4i36++OKLuOmmm8YtpIdCIWzatAnPPffcmIT0eDw+Y4T0Sr6GRkvZC+npdBrXX389HnjgASEiXHrppfjRj34khNFcLoef/vSn+M1vfgO/34/ly5fj9ttvxxFHHFHi3pcvMy2LkfZHFmtJZKWfpeiPnKEu93EsUNY1ZZ/LhUtJeKafyWRS+KGTDU/hF9lw/RhJfJZFerKx0TRNWM5omiaytq1Wq/hdURRxHooVy5SFdJPJJERmyq4n8Vj2m6djU9jvsfi/EySOWywWMTBAmel2u1343pOQLg/MyEI6idZkxWM0GkVmfSKRgNVqhcFgEMdDXk9GzsDP5Q4W8lUURXjw04wLAHmzD0KhEOLxuMjir/QgNp1TwxRFwdKlS7F582acd9554v3NmzfjnHPOKbrOihUr8OSTT+a999xzz2HZsmUiC2LFihXYvHlznk/6c889h5UrV+b19YorrsBjjz2GF154AS0tLXlttrS0oLGxEZs3bxa+hslkElu2bMFNN900pv0sFzi2MwzDVC/VMvW7GuH4zjCDSafT6OnpQU9PT8n6kEwmceDAgZJtfyqhxD273Y6GhgYsWLBg3EL63r174XQ689aX67CNRCaTQW9vL3p7e8e1/UqnWuJ72QvpN910E+6880787ne/wxFHHIHt27fja1/7GtxuN77zne8AAG6++WbccsstuPfee7F48WL84he/wJlnnon333+fqxIXQFYA5WoJMFSfRrqpZOGaREaydCn0lJ4OZEGfBGDqj2xHMhIkiJLdh+zdTdnulP0ci8WGtXEhCxbKvnY4HDAYDHm2KqFQSIiyxYp+0nGk4puapsFut8Pr9cJiscBisQiRmOxP6DXUjAC5ACmdKxLprVYr0uk0PB6P2D8Si6mAZ2HG/VjsXEiUttlsaGhogM1mQ01NDZqamqCqKpxOJxwOh5hlIPuiF15Tsn0NnTva93Q6LbLIE4mE+J2K9uq6LvpfCA1akGUNHUvZ2oUsZWigZaI2PuXCdAfia665BhdffDGWLVuGFStW4De/+Q3a2tpw+eWXAwDWr1+Pjo4O3HfffQCAyy+/HLfddhuuueYafPOb38TWrVtx991348EHHxRtfuc738HJJ5+Mm266Ceeccw7+9Kc/4fnnn8+zbvnWt76FP/zhD/jTn/4Ep9MpMtjdbrcYfLnqqqtwww03YNGiRVi0aBFuuOEG2Gw2XHTRReM6PqWGYzvDMEz1Ui0P2tUIx3eGYaabJUuW4LTTTkN9fT1WrFgxodp4LS0tuOSSS9Dd3S3ei0ajeOmll/D6669X9Ezv6aBa4nvZC+lbt27FOeecg89//vMAgPnz5+PBBx/E9u3bARw82Bs2bMB1112HL3/5ywCA3/3ud2hoaMAf/vAHXHbZZSXre7kii+nlgpwlPZTncOHvheuTwCkXF5VF2umCvLtlUV8WVcdy3OVCn5FIBMlkUoi6lLlN4mkmk0EymRyyfbPZDLvdDlVVUVNTg/r6eiHykkUMZVQPJcbScbZYLKIIptvtRn19fZ5wTsehcN2RoEECALDZbOIYkKe4ruvo6OgQFia07+MtKkoZ6E6nEw0NDfB4PHnWLmRdM5rBGPlzOgaqqsJmsyGXy8FqtcJmswnRHDg4hYtmEhQLOmRlQ774sVhsyJkE8k9mfKxZswb9/f342c9+hs7OThx55JF4+umnMW/ePABAZ2cn2traxPItLS14+umncfXVV+P2229HU1MTfv3rX+P8888Xy6xcuRIPPfQQfvSjH+HHP/4xFixYgIcffhjLly8Xy9xxxx0AgFNPPTWvP7/97W9x6aWXAgC+//3vIx6PY926dSJ767nnnqvYB06O7QzDMAwz8+D4zjDMdGIwGHD44Yfj8ssvx9y5c6Eoyrj90YGDz3df//rX8wTzvr4+RKNR7Ny5k4V0BkAFCOknnngi7rzzTnzwwQdYvHgxdu3ahZdffhkbNmwAALS2tqKrqwurVq0S66iqilNOOQWvvvpq0WCcSCSQSCTE36FQaMr3Y6YwlC3IWIU8WZik3+VXYdty+4V2HoW+73Ib0+WLXohcCHOovo0F2f+bxFXKJJeLXBY7/rL4bbPZoGkanE4nnE6n8G1PpVJCaCc7lWQyOagdslghCxdN00SwkrPPx0sxMZrsTOh3TdOE8EyiO+3/WLdFQrqqqoP2iWY1yNfQWM+dPIVVHiTQNE0I7LJtzXAjuNUolpdiRHvdunVYt25d0c/uvffeQe+dcsopeP3114dt84ILLsAFF1ww5Oej6avBYMD111+P66+/fsRlK4GpiO0Ax3eGYZhKoFoy1qoRju8MM3lQAhw9QxZSOLu5mlAUBR6PB1arFY2NjXC5XHA4HBNul2aryySTSTQ0NGDOnDnQdb1qj/loqJb4XvZC+g9+8AMEg0EcdthhIgP3P//zP/GVr3wFAMQU+MKCaw0NDUNWHb7xxhvx05/+dGo7XuaM5SIlIVa26KDsb7pRZHsQufBjIbJnuMViycvalu1QCvtKImMmkxHWJbKPNPVT7hv9XmoLm0KfdHoVHh/ZLkQeLCBkoZwylOVjU2x0lPy4qfjhYYcdBrfbjZqaGjQ0NIiMdCpO6XA40N/fD7/fj3379okMaCqWWltbC4/HA03TUFtbC5vNJuxcip27ycJsNotrpampCT6fD+FwGIqiIJFIIBKJIBgMjmqEmK4PKizq9XrhcrnQ2Ngo9s1msw0aFBjvdUT3iaZpwjNd13WYTCZEIhFEo1EYDAbouo5IJDLmAYGZTLUE4mpkKmI7wPGdYRimEuD4PnPh+M4wk8eCBQvwr//6r5g/f37Rzz/++GM8/PDD2LVr1/R2rAyYO3cu1qxZg0MPPRQtLS3weDxTti273Y4vfOELWLx4Mfbt24eHH34Yb7/99pRtr5Kplvhe9kL6ww8/jN///vf4wx/+gCOOOAI7d+7EVVddhaamJlxyySViuWJZzEMJX+vXr8c111wj/g6FQmhubp6aHZgByMK0LH6TaEo2ICT0khBYzBZE9g0nexISYmWxXoZEehLPk8kkstksEonEkNsotXhOFIroQ/VNtqYp9LGfSBFNyromK5bZs2ejtrY2z9qFBiei0ShSqRSsVitMJhM6OjoGWeaQjYumafB6vdA0TWxnqpCvC7pugINZ3TQAkMlkEA6HxySkk897TU0NXC6XsHUh//nCYqLj7TtBAxqZTAYej0fcTy6XS2T/x2IxFtKZqmAqYjvA8Z1hGIZhSgnHd4aZPGbNmoXPf/7zOO6444p+vnv3brz00ktVKaTX1tZi9erVOPHEE6dc+1FVFSeccAKOP/54vPnmm3jppZdYSK9yyl5I//d//3f88Ic/xL/+678CAI466ijs378fN954Iy655BI0NjYCgKgKTvT09Awa6SbIyoEZHjlzl4RHVVWLCukkpst/U3a6LCCTjQXZg5BASj7UZKchQ22TkC4X7CThmbKyp9sPfSSKZYuTMExe53RMSWiVC4ymUqm84p/jsS+hwQoSoVVVFXYsZO1iNBqRSqXyrE2oj3S/KIoirGGoz7SN6ULeFlnVmEwmxGIxUZg0lUoNW1FbHrzRNA1Wq1XsE2W+T/ZMBnlghO4DOhfUBzoP5Va/oJRUy4h2NTIVsR3g+M4wDFMJcHyfuXB8Z6oFi8WCuXPnoqGhAdFoFPv27UMwGJz07Qz3XGq323HEEUcgFAqhv78f+/fvRzwen/Q+lAuKoohjfuSRR8Ltdk+7FlEuCZvlSrXE97IX0mOx2CC7CBJSgYPFABobG7F582YxUpdMJrFlyxbcdNNN097fmYKcOe5wOERWs9VqFYJ3oZBOlhXpdBqJRAKxWAzZbFaI4yaTCXa7XQjGNptNCMgWi0W0W+hvLhe/JKE0k8mIIo1ywU0S/cvxC46+VEwmEzRNg8FgQF1dHerq6qAoCux2O2w2m9i3dDqNQCCArq4ucTxjsdiYbXmo4KXD4YDL5RIvp9MprF0ymQyMRiPcbjey2SyCwaAQzz0eD2pra6GqKurq6lBTUyMGU0pxnOm6sFqtaGhoQCaTgdlsRi6XQyKRQCAQQCQSGXJ9i8UijnVNTQ3q6upgs9lgt9uF/cpU7RcNbNAAAFnu0Db9fn/ewFG1Uy2BuBrh2M4wDFO9cHyfuXB8Z6oFl8uFCy64AF/4whfw/vvvY+PGjSPWTZpsGhsb8fWvfx3nnXceXnnlFWzcuBH79u2b1j5MJ263G//yL/+Cs88+G263e0jLG6Z0VEt8L3sh/Ytf/CL+8z//E3PnzsURRxyBN954A7fccgu+/vWvAzgoTF111VW44YYbsGjRIixatAg33HADbDYbLrroohL3vnKhbG/K3qVsXTkjnbK/CzPQqdAmZYuTIE8Z0ZqmiYx0+X0S74eydqEim5S1DRwUVeUCnOWWkV4MOSPdarWipqYGmqbB7XbDbrcjnU4jFoshlUoBAAKBAAAMKv45lm2ZzWaRBU0DF1QgFEBedjy9aABE0zQ4HA6RkU6zB0oFbZsGc3K5HGw2W94gz3DQNW2xWPIKjFKG/lT3m/oOHPS6t9ls0HV9ykX8SqRaAnE1wrGdYRimeuH4PnPh+M5UA5SstnDhQqxcuVI8yxezLJpKrFYrDjvsMABAf3+/sF2dqaiqisWLF+Mzn/kMPzOXKdUS38elGrW2tqKlpWWy+1KUW2+9FT/+8Y+xbt069PT0oKmpCZdddhn+4z/+Qyzz/e9/H/F4HOvWrYPf78fy5cvx3HPPwel0TksfpxJ5+ghdWFN9gZEYSWIj2U+Q+C37fgOfZIyTwE2ZymRpItu5OBwO0ZbVahXvy5nkhWK4bN0iZ6QbjUYkk0lRcJSsMeTs9lIhZxPLRUKBgwHP4/FAVVU0NTVh/vz5UFUVTqcTNptNZPaTX3kul0M0GhWZ6YVWOsNBAwzJZDIvq11RFMTjcWHtkslkEI/HEY1GEYlEkEgkhHBut9vhdDrFTIJygQZ7stksrFYrvF4vdF1HPB4XsyEKjz1dF1arVdjUkJXNVBVKLYY8SCVb5iiKIgZQOCOdKQXTFd+rPbYzDMMw08vGjRvxy1/+Ep2dnTjiiCOwYcMGnHTSSUMun0gk8LOf/Qy///3v0dXVhTlz5uC6664TgnClwfGdYSaO0WjEkiVLcPTRR6O+vh6LFi2CwWCAz+fD6tWrMXfuXLFsOp3G7t278fbbbw9rOzoRAoEAduzYgY8//hg7d+5EKBSaku0wTDlTivg+LlVs4cKFOPnkk7F27VpccMEFUzry5XQ6sWHDBmzYsGHIZQwGA66//npcf/31U9aPUiBnLstiMjC1YrrBYBCZ42Q5oqpqnrULZaRTcVESLYGDAiBlN5O1y1BCupwtPVQxThrVIlGYtqfrOhKJBNLpNBRFQTKZzBt4oP7RPk0XJIDSOZMFXYPBAIfDgZaWFjidTjQ3Nwsh3eFwwGq1ClE7k8mgr68PTqcT0WgUJpMJoVBIiOKjEVqpKCsARKNRhMNh4X9utVpFRn8mk0E0GkUwGEQgEEAymRT3tcvlQk1NjRCby2n0l64ZEvp1XRf7SRZDhb7yiqLA4XDAbrfD4XAI6yJ5AGeq95GOI/Ull8shEomIAqo0aFRJo7JTQbWMaJcT0xXfqzm2MwzDVDvTHd8ffvhhXHXVVdi4cSM+85nP4K677sJZZ52Fd955J0/4krnwwgvR3d2Nu+++GwsXLkRPT8+UiWHTAcd3hpk4ZrMZJ554Ir797W/D6/XC5XLBYDBg9uzZ+PrXvw5d18Wy8Xgc//3f/40PPvhgyr47enp6cP/99+Nvf/sb4vG4mMnOMKWiWuL7uIT0Xbt24Z577sF3v/tdfPvb38aaNWuwdu1anHDCCeNpjilAFoMLfyemIyudxHLZ5kX2R5czeGW7jXQ6LTKXyROc1pGz08k6hH4OJaQDGCSGkl1MJpOBwWAQ4mPhPpRa9JW9rqk/lNlvt9uFmKuqKux2uxDSybtc13XY7XYAEAMQtM9j6QNl8icSCei6LgYhZI/0RCIhXlTUVZ6ZUE7Z6DJ0rSqKglwul9fXQjsc+VqWvfuL3WNT3Wd6yfcHvUp93ZYLLKRPPxzfGWZyoenfFoslr6YLw1Qz0x3fb7nlFqxduxbf+MY3AAAbNmzAX/7yF9xxxx248cYbBy3/7LPPYsuWLdi7dy+8Xi8AVLwXL8d3ZqKYTCaoqjpuK1WqZ0WzbysJsri1Wq2oq6tDc3Mz3G63+FxRFNTV1eWtE4vF4Ha7JzTrmZLdwuFw0c8DgQA6OzvR3t4+7m0wY8NoNMJms8HpdIrEPZ5J/gnVEt/HpYwdeeSRuOWWW3DzzTfjySefxL333osTTzwRixYtwtq1a3HxxRcP+iJhhocENVlYI9GPsoapsOZU3qiF4h75l8sWLJQlLwcF+e9ifSTxkrLbKRAX+qIXE79JjJfbouxui8UiRo9ITKdty32YTtsO6jP5xtOLBhJsNhu8Xi9qamrg9Xrh8XhE5j8J6aqqikzxcDgMVVVFgVDa59F4pudyOXHd+P1+fPTRR+jp6YHH48HAwIAQ0tPpNOLxOPbv3w+/3w+TyQSHwwG32y2KkgLTm9k/VsgqxeVyoa6uDvF4XOwbIYvu5BUv32/TAdkeAZ8MCJGFEg1ajMcPfybCQvr0w/GdYSYXh8OB008/HUuXLsWBAwfwzDPPzOhCYAwzGiYjvhdaGFCNn0KSySR27NiBH/7wh3nvr1q1Cq+++mrRbTzxxBNYtmwZbr75Ztx///2w2+340pe+hJ///OewWq3j6nep4fjOTJTm5macddZZaGpqGtf6sVgMf/vb37Bt27aKEx4XLlyI1atXY9asWTj++OOnzYt83759uPfee9HY2Fj0897eXnz00UfT0hfmIPX19bjwwguxdOlSvPfee/jLX/6Cvr6+UnerbKiW+D6hFFOz2YzzzjsPZ599NjZu3Ij169fje9/7HtavX481a9bgpptuwqxZsyayiaqBxGQq+qgoSp6QnkqlBvluTxWFBSrl7HF6FQrpdMPIBUYps5bEbbPZDJvNJqxFKAuXtjlcf4hC8Z6yrcn2hWxUZDuVidzM40G2u6H+kXc8FRj1eDxCTHe73bBYLML2Jp1OQ1VVkSkeiUSgKAo8Ho8QtSORyKj7kkqlkEqlEAgEsHfvXiiKAp/Ph0AgAIvFglQqJYT0AwcOIBQKwev1oqWlRXh3l3uWtDzQQqPDkUgEwWBQvC/PmiDRWr62p3P/5Ax48kkv7A/DlBKO7wwzOdjtdpx++um49NJLsXPnTuzevZuFdIaZBJqbm/P+/slPflLUKqSvrw+ZTAYNDQ157zc0NKCrq6to23v37sXLL78MTdPw2GOPoa+vD+vWrcPAwADuueeeSduHUsDxnRkvc+bMwUUXXYSlS5eOa/2+vj4MDAxgx44dFSmkX3rppTjssMPE89p00NbWht///vdDJgVms9mKzPCvZOrq6nD++ecjk8ngySefxD/+8Q8W0ieZSojvE/oG2L59O+655x489NBDsNvt+N73voe1a9fiwIED+I//+A+cc845+Oc//zmRTcxoKBuVMpXJs5pGXOTsbLLakDORSagtdealnGFrMpmEaEziZDabzRsoIFF2PNYrcuFVCijUdjabzduenJ0OQBQonWpIuCcxv5igX2jZIx8T+ffCZSeCHGhpihhZ8cgFTumY0fVZSaIuWefI2ebysSs8juUyOFB47knsp2sa+GSAphSDQ6WCM9JLB8d3hpkcyNrFZrOJmXgMU+1MRnxvb2+Hy+US7xfLVpMpNuN1qP8D6f+vBx54QNg33HLLLbjgggtw++23V2xWOsDxfTJxOBzw+XywWCxFP9d1HX19fXm+2ZWG2WyGz+cTtb3cbve4r3+Hw4FZs2Zh4cKFiEaj6O/vRywWm+QeTw0mkwmapk1bJjoh1ztjygOqcwZA1JBjPqFa4vu4hPRbbrkFv/3tb/H+++/j7LPPxn333Yezzz5bXEQtLS246667cNhhh42n+RkPiWWqqqK2thZWqxVOpxN1dXVCRNc0TQjU5Cfm9/vFz87OTiSTSeF1PdnIRU0LR4zlm0P+XR4YkD3VaRn60qHCohMRMQv91Mk/nLLT5T7Lgw2ySDzZUNvkgUqeWfTPE+0zievULxoQKXzJgnzh32OBzkcul0MsFoPRaISu6wgEAmLggb5Q5Axp+mehkoR0AKIgLt1jZrN50HGj64d+LweoT2azGU6nE06nEwDEfZRK/f/Ye+8oOaoz/f/pWF2dp7unJ89Io4wkEEJCRJPBwiRh0mJjG5wwuwZbXnvN/tZnndZe26yNfWxs40RwwsYGL0uSECKIIFsCIQkkIY00mpw65/z7Q9/3crunJ/X0dJi+n3PmzEx3ddWtqtv1Vj33vc+bgM/nQzweZ573810sFkJ66RHxXSAQCARzTTHiu9lsznrQngiHwwGVSjUuO21kZGRcFhvR1NSElpaWLA/kFStWIJPJoK+vD0uWLCmo7eVExPfis2rVKnzoQx+a0Hbj4MGDePjhh/Huu++WuGXFw2az4Z/+6Z9w1llnwel0orW1teB1kYXCqlWrcOzYMfz2t7/FW2+9VcTWCgSCclMr8b0gIf2nP/0pbrvtNtx6660TBo729nb86le/KmT18x4SzMjP2WKxwGazob29nYmXNNpJAmA0GoXRaGRCqN/vh1KpZGLtXDCRiJ7vb9ov3kM9n5BezAxnXgjlM9Rp/fx2SYieK9E0N/OdsrzJVgUA8+HmRX1eIM83QJHvh96fDrw9EPBe8c1wODzOHkitVsNisTDxmSyGaD3VAFkjKRQKxGIxaDQaZgFUieRmy/O1CWhWCn1nIpEI4vE4O/e1MI1PCOmlR8R3gUAgEMw1pYzvWq0Wp512GrZu3YpNmzax17du3Yqrr74672fOPvts/PnPf0YwGITRaAQAvPvuu1AqlbMSEsuJiO/Fp7W1FRs3bsSiRYvyvv/qq6/i6aefrmoh3Wg0YsOGDbj++utnvS6tVotTTz0Vp556Kt566y1s3bq1CC0UCASVRK3E94KE9MOHD0+5jFarxc6dO/GBD3wADoejkM3MS6jKr06ng8FgQH19PaxWK8xmM4xGIxMvSQzkBWCz2cw8tEOhEKLRaJZ/Otk+zBYS0JPJJBQKRVbBRvIDI/sWfvl8Yiu1vVArl+nA22Lk2qKQHQb90D4UKzOdF2jpGJGAzgvq1BaFQoFoNMp8z4PBIEKhEDvWdB4poz0YDLJlwuEwwuEwYrHYlB75JMbSgA2dN16EJVGWjg1vi1LK4pvFhrK6+QK5/AyATCbD/Of5bPxSkm9ARJZlNDc3Ix6PQ6/Xw2AwjBPSbTYbwuEwvF4vhoaGWHY6X1BVIJgNIr4LBMUlFovhwIED2LZtGw4fPgyPx1PuJgnKhEKhQHt7OxYsWJDlr+vz+XDkyBF4vd7yNW6es3nzZtxyyy1Yt24dzjzzTNx///3o6enB7bffDgC4++670d/fj4ceeggAcPPNN+Mb3/gGbr31Vnzta1/D2NgYvvjFL+K2226rWlsXEd+Lg8lkwpIlS1BXV4eTTz4Zer1+wmWtVivWrVuX1WdSqRS6u7vR09NTsYk+uczV83s1MTo6itdeew2Dg4Noa2sbdx3nGR4eRldXF9xuN7q6uua0tp2gvDgcDpx11lnjPL3zMTw8jCNHjlS11VMlUq74PqdVEn7729/iX//1X0Ug5iCfsYaGBpjNZixbtgw2mw2SJMFgMDBxms/aJqHaZDIhnU6jrq4OVqsVkUgE7777LuLxOLN5mW2WKgmNiUQCsVgMmUyGfdmpSChv3ULwon8uvMA9Vx5SvH0HBTVeLCVxm4I2tYf81GcLL55Ho1GEw2FWwJNmDJDA7/P5MDQ0hEgkwoqP0vmXZZmtI5lMYmxsDIODgwgGgxgdHYXP50MsFpvwPNM2ZFlm/cloNI7z7guHwwgGg0ilUgiHw4hEIlCpVJBlGRaLhX222m5yaP9pQECn00Gv1yMWi7GBA6ozQMeRH+goZ7vr6+vR0dEBlUoFu92O+vr6rOK+4XAYQ0NDCAaDOHz4MF577TX4/X422DIfM7BFRnrlIuK7QDA9/H4//vKXv2D79u2IRqPo6+srd5MEZUKj0eD888/HbbfdxrKgAGD//v34wQ9+gD179pSvcSWm1PH9xhtvhMvlwte//nUMDg5i1apVeOqpp9DR0QEAGBwcRE9PD1veaDRi69at+OxnP4t169bBbrfjhhtuwDe/+c2C2lxNiPg+OS0tLfjUpz6F9evXo66uDna7fcJl29vbcccddyAUCrHXwuEwfv3rX+P3v/+98L6uIt5++23cc889MJvNuOmmm3DbbbcxG85c3nrrLfz4xz9Gb28vhoeHxXmex6xevRpf/OIXpxTHM5kMnn32Wfz4xz/G4OBgiVpXHmolvs+pkC6EjGxI5NPr9TCZTMzWxWq1Zlk50LI8mUwGWq2WicXxeJxltWs0mqJm1eYWyuR9u/ONqNJ+5bOBKXbBzHzw680tZEoZ19R2lUrF9o/3WC8E2l+6WPAZ6PTDZ8JTW+PxOMLhMNRqNcsyp4xwAFlCeiQSYctEo1HE43Em2E92PPjMclmWodPpxnmuUzYzf8wog3u2x6ac8EVo+SK3vM1QPi/6UjHRtnQ6Hex2O2RZhtPpRGNj4zghnWYx+Hw+GAwGxGIxRCKRkrW91AghvXIRx1cgmB7JZBI9PT1ZN/GC2oK/x2pqasKaNWuyvD9TqRSsVmvWPep8pxzx/Y477sAdd9yR970HHnhg3GvLly+vSesJEd/zQ88SRqMRS5cuxdq1a6f8jNFoxLJly7JeCwaDaG5urvgChbmzvecCek6rhuuez+eDz+eDVqvF2WefjXg8nvd5PJPJYGxsDPv27UN3d3fpGyooKRaLJctrezIOHz4MvV4PlUo1YQLqfKBW4vucCumC9yCBUqfToa6uDg0NDTAajdDr9cxXnJgsWFHBTpPJBK1WC5vNBofDwYRX8sCeLWQ1kslkEIlEWFY3ieMk8PG2KlRVmmxfeBFwLoV0grZBARlAlmgcj8fZ+xS4KVOb9xGfinxibCKRQDQaRSqVQiQSYX/TMeOJRCIYGhqCz+dj65EkCSaTiWWkRyIRJBIJuN1u9PT0IBKJYGxsjInfE2X+kw2ILMssE91gMDCvc2o/nS/ycI/FYlm+6GQtVI1Qv6Xvilarzco6TyQSbDZANBpFNBqFVquFJEnsuM71vvPBU6/XQ5IkWK1WNDU1QZZlmM1myLKc9f0BALvdDqPRCI/Hg4ULF8JiseD48eMIBAJi2qBAIBAIBBVIR0cHNmzYAIfDgfXr14+bJVhfX48rrrgCS5cuRVdXF3bu3IlgMFim1goEglxkWcZpp52GFStWYMGCBWhubi53k+YUtVqNNWvWYPXq1WhubkZnZ2fRt2Gz2bBx40a0t7eju7sbO3fuhM/nK/p2ik06ncbevXvx8MMPT2gDsWvXLnENF4xj0aJFuOGGGzA0NIS9e/firbfeEvasVYwQ0kuERqNhvsdOp5MVFiVf9Iky0XnoPZ1OB5VKhWQyicbGRoRCIQSDQQQCAQQCgVm3lcRGEoKVSiXi8TgTJEmEJiGdxD7y5E4kEkyYBJAluM8V/PGjtgBgGeGUBQ685/Ou1WpZljpvWZOvrbynNT+oQAMH8XgckUiEFX8Nh8NZGc/8eoLBIHp6eqBWq+H3++F2u6HVamGxWKDX61kmeiKRgMvlwuDgILOLoe3lQ6VSsSx0o9HIZjoYDIYskTiTybCscxLRw+EwNBoNO28ajaZqhXQgu6CvJElZtj7xeJxZoQSDQXauaFCrFNAMCaVSCbPZDKVSyaxdaJZJ7mCGJEnQ6/WsP7tcLrjdbkQiEfT29s5LIV1kpAsEAoGg2lmxYgXuvPNOLF68mNVJ4mltbcVtt92GWCyGxx9/HO++++68F2FEfBdUE0ajEVdffTVuvvlm9vw+n5EkCRdccAHuuOMOGI3GOdnfxsZGfOQjH0EsFsPTTz+Nrq6uqhDSk8kkXnnlFezZs2fCJDyqhyYQ8KxevRoLFy5EIBDAfffdhwMHDsxLIb1W4rsQ0ksELzjzYuV0M6F5QY2mhwJgQmEsFiv6FDESgik7XalUMiGdrEzob9oPep+3PSk11CaCzx4H3isKmnvsFQoFs1jJdyz5z/PZ6PmsXPKJ6AQJoSSYB4NBJlzTOkKhEBKJBLN1IUuXqaa98dPw+AEPmkJEqFQqVnSVHzzInWlQ7dDx4IvPkohNx5rOHV/Yl7clKia5AzJ8G2kghK9FwMPXT9DpdJBlGbIsZ802mG/USiAWCAQCwfxFkiQ4HA44nc6876vVatTV1QE4MU2cn6U6XxHxXVBNKJVKmEwmNDQ0FOX7qdPpYLPZEAwGEYlEijajvFiQhY3T6Zy0mOpsUKvVsFqtAMCsraoFej4XlJ50Oo1gMAi3280SVScq+lpp6HQ6Vr/NaDTOC60lH7US36uj180DtFot+9Lo9XrIssxsOGYKL7zJsgyr1QqFQgFJkpiIPNtOSJ9PpVKsKCMVaOSFWoVCAY1Gw2xBSERXKBTQ6XQlF2R5UZgXIsn2hgYAKCubfOkpk5sXlHOPBy+k8xnp9H8sFmPC7GTe21TwUqFQwOv1IpFIsAEWrVbLLFfIKicUCjFxPneQgNYHjBfRqX/l+tuRSMwvm1sQttJ9+6ZDrrcf7X8ikUAoFEI6nYbX64XBYIDBYIDRaGQDCXMRkHm7IbL/IRsi3n5msu8MnX+yd0okElm1FeYj1RRQBQKBQCAQTA8R3wW1iCRJOP/882GxWDA4OIinnnoKb731VrmbJRBUBX6/H0888QSOHj2KBQsW4Morr8TChQvL3SxBDrUQ3+dUSP/whz+cVUynVqEMcrJ20el0kCQpb9bpTNapVCqZn3I6nWZCNonFxYDEXOC9giC8UM2L0DTKBpzIlC/3F4gXJEmcpmzwVCoFjUbDROx4PM6ywmkfc+ELrlI2MwnpqVQqK2N8sn3nz08gEGBTv/ht5vs8X0Q133K54nju/yTs85nnuR72uZ7c1U6+gYFEIsEGRvx+PwwGA9LpNPNKz2QyE/aB2ULnIB6PIxQKQa1WM9F+OkI6vUcj8GS5NF/Ol6B6EPFdIBAIBIL5h4jvc4tGo8GZZ56JDRs2oKurCwcPHhRCukAwTYLBILZt24bt27djw4YNWLt2rRDSBWVh2kL63r17p73Sk08+GQDw05/+dOYtmsfk2rMUYz2zXddMIPGRF/oUCkWWjclkmdilhm8D3y76m/eAJ8jehV7jhfjcz5GonmvjMtN9z80Qp4GXXKsVGsjI/Sxl2NOsAJVKBUmSsmY85O4/WdBQ++m9Sjl3xSaf1Q8NfpCAHo1GIUkS0uk080qfTu2C6W6XtwKKx+MsI50GcsLhMBvsmcheiM4PedtTkeGpyP3OUnsq/VzXytSwciPiu0AgEMwdgUAAR44cQTqdhs1mg8PhmBcz/2aDiO+lQcT3yoSe7zQaTVVZmgimh9lshtPpnNJ+k5K6RkZG5qVX9lxBGkYgEEB3dzfsdjuzXpqremepVAqjo6PweDxZMWi65xoAO9c+nw/Dw8NTWvZWK7US36ctpK9Zs4Z5B+eD9xWej0XvisVcid6lENNzfZ1zBb9ccZkKeZbyC5ErGOeK/LkiMu//zmdx5w568PtO+0d/89ubKfy2+dkKFouF+WCbTCYmkudmHyeTSUSjUVbwNB6PI51Os/UQlC1PbY9EIsyHnax71Go1y66fLxd2ftCDoMGHeDwOt9uNZDKJQCAAWZYRjUZhMpmybm6LcYNLWehURHZkZAQulwvAe97nqVQKixYtYpZNuVnxJKCn02kEAgEMDAzA7XbD5/NNer5oX/gZB9Qesiiq1PNdK4G43Ij4LhAIBHPH/v378b3vfQ91dXW46qqrcMMNN8yZ73C1IOJ7aRDxXSAoPSeffDI++tGPorGxcdLlMpkMnn/+eTz88MPsuVAwfY4fP46f/vSnsNlsOO+88/DRj34U9fX1c7KtUCiExx9/HM8880zWtXLDhg342Mc+htbW1inXsWfPHjzwwAMYHBzE0aNHK642QrGolfg+bSH92LFjc9kOQYEUK8t9uuRmXfMZ3PmyssuR4cy3I1+2NV94lC6EfMZuPmsTfj+KKTzyliqSJMFgMECWZdjtdlYl3W63Q6PRMGGdPgecENLD4TCSySRCoRD8fn/WPlEGNInjJConEgnme8+/z4vt1XQhy0fuec/tk3Ts6PVAIMCEZrPZzPoBDQbNJiudxPtYLMZsXXw+X9YMiYaGBlZwKN+oNq0jlUohGo3C7/fD5/MhGo1Oeq5oJgP55qvV6nFFcSuVWgnE5UbEd4FAIJg7hoeHMTw8DEmSsGTJEiQSiXI3qeyI+F4aRHwXCEpPS0sLLrzwQnR2dk66XCaTgdvtxqOPPlqils0vvF4vXn31VSgUCphMJlx//fVztq14PI79+/fjySefzJo9oFarccMNN0xrHf39/di+fTu6u7vnqJWVQa3E92kL6R0dHXPZjnkNL6KRLzdlABdS1JAXBCnLlSweyiFc52Z785nguVYvcyn288eFhEL6m2/PZJ+nzIxc7/FcIXY2qFQqZsFCYrlWq0V9fT2sVitkWUZDQwP0ej30ej2sVivUajUkScrKMgfeKwabTCYRiUQQCASy/NpTqRSCwSCzAfF6vex9shKhIqy86D4fslLo3JNdSr73qUhsJBKB1+tlfYT8/mnwgs/mBibvx7xwz28/FArB6/UiFovB6/WyTHL6jgwPD6O7uxuhUAh2ux319fVZnvXxeBw+nw+xWAx9fX0YHByE2+1GMBgc1ydVKhV0Oh1UKhUMBgPMZjO73pCQHgwGWQFhv9/P+kwlC+uCuUHEd4GgNFgsFixfvhw2m62gz6dSKXR1deHYsWPiWl2FpNNpdHV1YcuWLTAYDHnf37NnD8LhcBlaJ5iPiPheefDX8b6+PgwNDZW7SeNIJpN499138cwzz8Bms2HZsmVoamoq6jYCgQAOHDiAsbEx7N69G6FQqKjrnyuUSiUWLFiARYsW5dVxlEolTj311GnPOmptbcWFF16I0dHRvO+7XC4cPHgQfr9/Vu2ez2QyGQwODmL79u1oamrCokWLsHDhwlnPKs9kMujp6cHhw4cxOjqK48ePj7v3GhoawgsvvMCKny5evLggfS+X1tZWLFmyhNUfBIBwOIyDBw9ieHh41usXzJ5ZneV33nkHPT0946YlXHXVVbNq1HwkkUiwABEKhRCJRKDVagvyccrNqPV4PPD7/czio5RCeq7nNvk/U6azQqFgAj8xl0UcSQxOJpNswIL+58X1fJ/nf88VCoUCOp0OdXV1kCQJbW1tWLBgAQwGAzo6OtDY2AhZllFfXw+9Xg9JkqDX66FSqZjnOX/8+Mxi8tkmkZSE0uHhYfj9frjdbjboEg6H4Xa7mbULn+kcDoeh0Wiq9iGdn41AXuRkeZO7XCQSYdY2/LlJJpPQ6XSwWCywWq1MmCaLFH7WAv3mBXTqb/F4HMFgEIlEAm63G6Ojo4hGoxgcHMTo6CjrryS663Q6WK1WLFq0CIsXL2YDLiqVCsFgED09PfD5fDhy5Aj27NkDv9+PYDA4bt+0Wi0cDgdkWYbT6URbWxuzBqLBPK/Xi0gkArfbja6uLtZfaGClEqiVEe1KRMR3gaD4tLW14dOf/jTWr19f0OdDoRB+9atf4aGHHmKF4AXVQzKZxIsvvoi33357wgd8n88Hj8dT4paVHhHfy4eI7+UlFovhmWeewUMPPQSfz4eRkZFyN2kc8XgcW7Zswe7du9HR0YG77rqr6EL64OAgfvnLX+LVV1+F3++fUEiuNFQqFc477zx88pOfhMlkyruM1WqF3W6fcl0KhQKnnXYa2traJrT52LlzJ+655x4hpE/Bm2++ib6+PlitVtx222249dZbZy2kp1IpvPLKK7jvvvswNjbGnt153n77bXzve9+D0WjELbfcgk996lMwGo2z2q5CocD69evx2c9+Nsuqpru7G9///vcrXkivlfhekJB+9OhRbNq0Cfv27cvyXSNBaT5ksxYbXuDli1zmCt9TZbryf5Ngx3tjl6vz8Vnp+SxU5jojPde2I9cXnX+tXPCFRCnb2WKxwOl0wmAwoKmpCc3NzUxIJ59zyiyeqtgoicbk+a3X65mIrFAo2IwIWgcNNvDniBeBqxm+MOxknu/UPxKJBCKRCNLpNPNKBwC9Xs+mbyWTSTaQketdTr/5THQ6vnQOyJeeBitoe2S3EwgE4HK5kEwmYbVa0dDQAK1WywZQaDDE6/Uyb/RAIJBX+CbhX6/Xw2QysYEbXkhXKBSQJAmJRAKSJCEajVbcea+VQFxJiPguEBSHfDHbaDSis7MTq1atKmidfr8fDQ0NrDA2wd8LCCqXTCaDsbExjI2NlbspZUfE99Ij4nvh0DU2Ho+zZ6lCn2nT6TRGRkbwzjvvIBKJFLmlxSGdTmN0dBSjo6OIx+NzIuJGo1EcP34cb7/9dtHXPRfQM7wkSWhoaMCKFStgtVpnvV6r1TrpekZGRmA2m1mSm/ie5icQCLBEQZfLlTeBbqb3SVTX7ODBgxN62AcCAQQCAUiShIGBAUSj0XEOArT93OTSXGgGvFqtRn19PZYtW4bm5mb2viRJsNvt0Gq1rC9UYjyslfhekJB+1113YeHChXjuuefQ2dmJv//973C5XPjCF76Ae+65p9htnBdQUUiFQgG3242hoSHo9fqsYDzZqBnfqUiUi8VicLlcGB4eZgJdOeD9xhOJBJRKJTQaDRP4tFotGzgAMOvRwVx4wZz3/aYBBvqfF9VLBYmuGo0GNpsNsizD4XBg0aJFMJvN6OjoQGdnJ7Nzqaurg0ajYXYvfKHIfN7ttA2ypaHBGbVaDb1ez0RSsgtRKpXw+Xw4fvw4gBM3MSTKAieyJEiEpYtzKbz3iwU/Q4Ky7cn6ZiofcUmSIMsyjEYjLBYLK/RK06/T6TRCoVCWXRB9lt6nbdOABlnGxONxeDweuN1ulqWe2ycp41yn0yEQCGBoaIhZsSiVSoTDYYyMjCAcDmN0dJRZ8/A3CrSswWBAQ0MDy4iw2WyQJIkFZxoUoGuSy+WCJEnMeqZSbtJqJRBXEiK+CwSzR6VSYc2aNTj99NOzHqja29vR0tJS8Hq1Wi02bNiAT3/601k+28ePH8eOHTuqJqNPIBDxvfSI+F44kUgEL7zwAqLRKBobG3Huueeira2t3M0SlJCFCxfinHPOgdPpxFlnnZVXLJ0L2tracP311+OMM87Avn378Prrr1fsAEw5WbJkCc466yw4nU6cfvrp41wf+vv78fLLL88om5sy0qejsaVSKbzxxhv45S9/mWXHwvPGG28gEAhMuI7m5mace+65aGpqwumnnz7OAs5qtWLjxo1obW2t6Pu+WonvBQnpr732Gp5//nnU19dDqVRCqVTinHPOwbe//W3ceeedePPNN4vdzqqHtxgZGRmBRqOB1WqFyWRigulEQilBHSsWi8Hn8zFhbWBggPk8lwMSAkm8Jj/nWCyGdDrNsmBJ5Cs2fOYxL6CTLzhv8VJqD3kSt2VZRnNzM+x2Ozo6OrB+/XrU1dWhpaUFbW1tTMSVJGlC65CJoIGJTCYDnU6HTCYDk8nEROX6+npm5WGxWBAIBGCxWFjmOom4AJg9kCzLTCyeql9WGiSiUx+gzO/pCOmUwW2z2djfRqMRqVQKHo+HCeCRSISJzXyGP2Xzk01KKBSCx+NBLBZDMBhkxWDzZf3TSLpCoUBXVxd0Oh3rC0qlkm2XPptIJMbNZlGr1dBoNDCZTGhpaWG++/X19dBqtexcptNpGAwGJBIJaDQa+P1+GAwGZDInit5UipAuKD0ivgsEs0elUuHMM8/E5s2bYbFY2Os0yF0okiThoosuwtlnn511/X/xxReZh6dAIBDkQ8T3wgkGg3jyySfx3HPPYc2aNWhraxNCeo2xbNkyfOYzn8GyZcvYzPJSsHDhQnzqU59CLBbDQw89hH379gkhPQeFQoHVq1fjrrvuQnt7O2RZHiekd3d341e/+tWMrnOZTGbaGlsymcRrr72GPXv2TKibTLWutrY2fPzjH8fatWuh1WrHCel2ux033HADrrnmGmzfvl3c95WZgoT0VCrFvH8cDgcGBgawbNkydHR04NChQ0Vt4HyB920mgTccDiMajSIWizGRmYSuXOsIPus6FosxawiyjcjNTC0HvKBNYqFKpWKZzbkZ4bMVZ3lLDVo3iYz5Cp+WGspEV6vVkGUZZrMZdXV1bAoXDaQYDAZoNBpIklSQZz6/Pf438N6xoSxzk8kEhULBtk/FKOlmgLd2oWNGn68WeM/+fAVvech/XJIkGI1GmM1mGI1G6PV6NrBBMyr4Qp0k1PPwQno4HGbBMhKJsMGdyQp68q9TX6ZrgVKpZIVlJxO5aVmayUCDWPzMF/qhc0rv80J7pVArI9qVhIjvAkHhaLVaFkPq6+ths9myhPTZolAoIMsyZFnOet3hcKChoQEjIyOIRCJ5i1ALBJWEiO+lR8T3wslkMgiHwwiHw3C5XBgdHcXIyAh7fpjoOSmRSLBaSUQwGGQzXKuBVCoFn8+H4eFhtr+FFlOk5K1IJAKXyzWhL3iloFar2Szx+vp62O121NXVlbwNZrMZqVQKDocDTqcTwHs192oZtVrNklKnOj/Uj91u95y1JxqNzsohQqvVwmw2T1iQXqlUsmu4yWQqSlHTuaBW4ntBR3/VqlXYu3cvOjs7sWHDBnz3u9+FVqvF/fffj87OzmK3cd5AIuXY2BhisRiMRiMTNY1GIxwOBxO16ItBHZEPxKOjo+jv70c4HMbg4CDLkiUv53LtG4n8qVQKSqUSOp2OWbqQYMmjVqvHDRrMdHskllLmOQ1QUOHNcDjMjk0pxXTKDm5oaIDD4YDdbse6devQ1tYGp9OJZcuWwWg0sgfufF6qxWoHiahWqxVKpRLxeJxZmPj9fphMJsiyjEgkgtHRURaYI5EIVCpVRQqsE0H2K8FgEIFAgPXHfBdltVoNu90Ok8kEp9OJU045BQ0NDTCbzVnfRY1Gg2QyCaPRiHA4jLGxMQwMDMDlciGRSCAcDmd5nVN/pH5H2esksk8nuJBNEZBdzHSyPsz7quWK6PwAHVkB8UI6efFrtdpCD/2cUCuBuJIQ8V0gKJzly5dj06ZNaGlpwerVq8cJ3nPFwoULcfvtt2NkZAQ7duzA//3f/006fVggKDcivpceEd+Lw8DAAB544AFs3boVa9euxaZNm+BwOPIu29vbi7/+9a/o6upiryUSCbz55ptZ4nol43a78ec//xlvvvkmli5dimuvvRYdHR0FrSsUCuGpp57Cyy+/jJGRERw5cqTIrS0uTqcT1157LVauXIkFCxZkFX4sNUqlEuvXr8eXvvQljI2N4cknn8RLL71U07OIW1tb8cEPfhCLFy/GkiVLiuJZL5g9tRLfCxLS/+M//gOhUAgA8M1vfhNXXHEFzj33XNjtdvzxj38sagPnGzQaFggE2Iiu1WpFXV0dyxomUYuWz2QyiEQicLvdiEajGBoawtGjRxGJROD3+xEOhyui06XTacTjcaRSKWg0Gla8UKvVsqKJJOoplUrmvz1TH27aV8o6Ji9sKrZJWfr0N4mYpYKygtVqNWw2G9rb29HQ0IDVq1ejs7MTVqsVLS0tkGWZLTuX0CAGTSkn6xaDwcCyAsLhMHw+H/PIph86X5UmsE5EJpNBNBpFIBBgA08Tic9KpZIV9WxubsYpp5yClpYW9v3j+yRfhJRqFJDVi8fjycqA57P6pxK/J6LQWRR0nnkxPTcTHUBWv1Or1Vnf0WoYMBHMHSK+CwSF09HRgeuuuw4rVqwo6QB0a2srrr32WibMbNu2TQjpAoEgCxHfiwOJmAqFAtdddx0uuuiiCYX04eFh/O1vf8Nrr72W9Xqpa3bNhkAggOeffx7bt2/H+973Ppx77rkFC+nRaBSvvPIKfvnLX1bEbPqpsNlsuOyyy7Bx48aSPLNPhkKhwIoVK7Bs2TK43W709PRgx44dNS2kNzY24sorr8Q555xT9vMjqD0KEtIvu+wy9ndnZyfeeecduN1u1NXVCRFmBlDmajgchkajgdvtZoIWL6RTpjd5Lft8PiYcAyeEMBr54S1kSg1vQZNMJtkDHdlaUGY9ZV/zYvp0M9N5GxcS0amKOm2T/uYtSihblzK06ULLV6rnRdDZHD+q6C3LMurq6uB0OuFwOGCxWJiNymyy8QuFtkXFYMl3y2azwel0Mm/tQCAAtVqNaDTKRHidTlfRWem5RUbJ9miymwvyrrdarTCbzczGhfpJbjDm7VJkWYZer2ee8rmFQyezk5lLqC253wX6DvAZ6dTnaTlatpJu7GtlRLuSEPFdIJgZOp0OLS0tMJlMWLx4MQwGQ1ns0GgA3+l0YvXq1RgeHsbw8DDGxsbE9VBQcYj4XnpEfC8e9Jzocrnw9ttvw+fz5V3u0KFDCAQCVS920v76/X4cPHiw4Bjn9XoxPDxc8pniM0GlUqGpqQkOhwNLly5lVqiVAOkZkiShra0Np5xyCoLBIAYGBuD3+8vdvJKg0WjQ1NQEm82GZcuWwWw2T+v8GI1GLF++HMlkEm63GwMDA2V1c8hHMBjEoUOHoNVqYbPZ0NTUNCvb33JRK/G9ICH9tttuww9/+EOYTCb2ms1mQygUwmc/+1n8+te/LloD5xu85zF9kQOBACsaSpYgZO3Ce39Thi3ZlmQyGebdBYAFJRKWSx2gSIRWKBQsK5hEfgDMX5qEZBJn+f3NJ9byWb28aMnbZwQCASag+v1+ZrlBAj6fdVtXV8e2TRdesjOhdUUikYK/yGQVYjQasWbNGpx66qmwWq1YsmQJnE4nE2TLMWpK/c9oNEKj0bDMc7PZzGxd6Jx5vV54vV40NjYy0b1SxXTKCKcBp+HhYSYO50OhUECr1aK1tRUrV65EXV1dVr/g9zOTyTCrIuo/zc3NUKvVSKfT6OvrQzQazQoa5RDRM5kMmxESDAbh8/lY8NXr9czih+oWkB1SIBCA2+2G1+utOM/GWgnElYSI7wLBzGhsbMTHP/5xnH766aivr0dDQ0PZ2qJUKnHGGWegoaEBY2NjePjhh/HEE09U3MOiQCDie+kR8b347N27F//93/89oY2Xz+dDd3d3aRs1h3R1deGHP/xhwbU/EokEjh49WrEiOgAYDAZcffXVuPLKK2G1WrF48eJyN2kcer0eV199NdauXYtjx47h/vvvx9///vdyN6skWCwW3HjjjbjkkktQV1eHhQsXTutzixYtwp133gmv14unn34aDz744Jz6pRfC0aNH8aMf/Qh1dXW47LLL8LGPfQx2u73czZoxtRLfCxLSH3zwQfz3f/93ViAGgEgkgoceekgE4gngbRUUCgXS6TTLnFUqlfD7/WykkURWyhpNJpNMOObXRwIx/U8j3uUSOykwJpNJJupJkoRoNMoEc6VSiXQ6zUR0ai+fMZ27Tt7OhYR02gb/Q8JwIpFAIpHIKthImeLkCU72FwBYu2iQgto00y8zCbRGoxF1dXVoaGhAW1sbTCYTbDYbzGYzW66ckH+2TqeD0+lEOp2GRqOBw+HA6OgootEovF4v63eVflGjQRyy+QmFQmxGwkSoVCqYTCbU19ezPpFv1JfOFfVVKtoai8UgSRLri+WGsszpWJC1Ec3aoMEBmgnCZ61T8WIaeKoUaiUQVxIivgsEM4MGzS+66KJyNwUKhQKtra1obW2F2+3GSy+9VPb7DYEgHyK+lx4R34vPyMgIRkZGyt2MkuH1erFr165yN2NO0Wq1WLZsGS688MKKzQZWq9VYsmQJlixZgv379+Mvf/lLuZtUMnQ6HU466SRcfPHFM7q/sVqtWL9+PdLpNHp6eiBJ0hy2sjDo+6VUKtHa2jplMdlKjYW1Et9nJKT7/X52YAKBALMfAU4InE899RSrJCx4DxLHNRoNE1rp79wigACyLCIo45qyqlUqFfR6PcxmM8vq5m1gKBs9EAgwL+dgMFjykV+yjKDMV/JuVqlUTLSlgoc0GMAfj3zrI2sYPiM9FoshmUyy7HPysCYBnbLf7XY7LBYLJEnKm5FOxzSRSECSJPj9fsTjcZbdPhV0jqmoZ1tbG/Pfttls0Ov1WQMelQAdb71ej7q6OiSTSTQ3N7NK6n6/n52/QCDAhPdKCjw0WyESiSAQCDCrJPLdm+piPFEh3MngB7sqzYuNvufRaBQul4tdO8hSiM4fFUENh8NsNgYdt2oKYILiIeK7QDB9tFotVqxYgc7OTixYsACNjY3lbtI4tFotTjnlFFx77bVwu93Yt28fhoaGyt0sgUBQYkR8rwza29uxcuVK6PX6vO8PDw9j//798Hq9pW1YhaLT6bBy5Uq0t7dP+bwVCoXw9ttvo7e3t6BtKRQKdHZ2YsWKFXA4HFi8eHHFPeNNhMViwTnnnAO9Xo/BwUHs27dP1EiZpwSDQezbtw8DAwN46623JrSUEpSGGQnpVquVCb5Lly4d975CocDXvva1ojVuPkDHS5Ik5pspyzITVcmPmRfPo9EoIpEIs6qIxWKsUKRarUZzczMWL14MWZaZrzORyWQQCoUwMjKCSCSCoaEhHD9+vOSZpiTAUlZ3PB6HWq1GIpFg4nYsFmMDDHwR0lxRkzJtAbCMYzpOlH0eDAbZ35FIJKugpizLWLp0Kdra2qBWqyHLclYBRuA9W5x4PI7BwUFma3L06NFp+UaTj7hGo0FLSwtOOeUU2Gw2LF26FO3t7WzQo1JEdEKpVKKurg4GgwEGgwGrVq2CxWLB4cOHWb8JBoMYHR2FVquF3W5ngx7lhvci9/v9zGLF6/Wy/p7vvPEDVzQrgZ8FMhX8TBDqR5UCXUeCwSC6u7uh0+kQDoeh0+mYH7zJZEIikYDX60UwGITL5YLX64XP55uVpdFcUCsj2pWAiO8CwfQxGAy46qqrcPPNN8NgMFTk1Fu9Xs+KCb777rv47ne/K4R0QcUg4nvpEPG9/CgUCqxduxabN29GU1NT3mVee+01fOc73xFC+v/DbDbjuuuuw7XXXjvlM1p/fz/uueeegoV0pVKJM888E5/97GdRX18Pm81WMb7oU9HQ0IBbb70VN9xwA7Zv347vfve7Qkifp4yOjuLhhx/G1q1bEQ6HMTY2Vu4m5aVW4vuMhPTt27cjk8ngwgsvxF/+8hfYbDb2nlarRUdHB5qbm4veyGqGblwo85qEO7ISocDA2zJMlJ1O4p0syzCbzSzLmYRN6ngqlQqRSIT5OvNiX6k6J32BFAoFkskks5OIx+PM2oWOB7WJjlNu9jwvmPIZ6VRwlSxe6D2+wKhWq2WDGJTFr9VqxwVkagMJx7ROKgrKL5MPXpSl88MXF51p1nOpoHZT4U2TyQSLxQKj0ciOUTKZZIMXdGyB8vul03eDZj/wAyvTnYExka/5VPuV+7lKgway+JkbKpWKzRKhmS75CvNWErUSiCsBEd8Fgqmhezm9Xo+mpiYsXryY2X5VGkqlEg6HAw6HA/F4HFarFTqdjsVMcY0UlBMR30uHiO+VgclkwoIFC9DW1pb3/b6+PphMJuh0OqRSqWnNiJ7PUPHs6WSHazQa2Gw2yLLMjt1MrhMKhQIWiwULFy5EfX39bJteUrRaLRucOXjwYFaC5XyE9KRIJJJlGzwVubbAlR5HKMEzGo2y14LBIPr6+nDkyJEytmxqaiW+z+ju/7zzzgMAHDt2DG1tbVUz5aVc8EUldTod9Ho9ey23uCaJzplMJsuqhQQuo9GIlpYWGI1G2O12Vvgwnzir1WphtVphMBgQjUbh8XgQiUSYhUMpIfGVBDvghFitUqmYqE7e5byoyw8m8JAPeiqVYv7yJBqSwE7H0mw2o7W1FQaDAVarlQno+dZLx16lUjHBXalUwmw2swvZZNm6kiTBbrfDYDCgubkZ7e3tqKurg8ViydqnSoTaJkkSK4YaDAbR3NzMfOPHxsbYftCgDhWwLPV+0ewEyj5PJBIYHR2Fz+djnt+TQeeQiv329fXBZrOhrq6OFQvKPV9ks5ROpxEKhTA6Oorh4WF4vd6KE5+BE+2nQSQArO/SwBYvtKvVavb9IDsf/tpTTmolEFcCIr4LBJOjVCqxZs0anHPOOXA4HFizZk3VfE/sdjuuueYarFixAkeOHMHzzz8Pl8tV7mYJahgR30uHiO/VQXt7Oz70oQ/h/PPPx549e/Dyyy8jFAqVu1lVgcViweWXX46Wlhb09vZi27ZtGBwcLHezBHNAIBDAli1bMDY2htbWVlx44YVobW2d8nN9fX14/vnn0dfXhzfeeKOiv1uZTAb79+/HL37xC1ZfDziRkd7V1VXGlk2PWonvBaXRdHR0wOv14u9//ztGRkbGCUkf+chHitK4aofELLITIUuTfHYQ5FdNf6vV6qyMUaPRiNbWVjgcDuh0OmYTQ8vzv7VaLWw2G8tG9fl8CIfDzA6l1B2UMl4VCgUSiQSzb4lEIlke6fQ6HQf+ONHfNDKXSqUQCoWYGEj2K3xWvsViwYIFC5ilxVSiLx13s9kMs9kMpVLJjmMoFGICfj4kSUJ9fT0sFgva2trQ0dEBq9UKi8VScfYfudCghU6nQ0NDA4xGIxPSFQoF+vr6MDo6CuC9gptUmJO87ku1f3R+yRd9dHQU4XAYHo+HFUedTv8mYdztdqO3txfxeBzt7e3svOdCfSyZTCIYDGJ4eBj9/f3wer1lF5vzoVKpoNVq2aBcOBxm7afBNBoYUKvVzN5HoVBkFR2txH0TzC0ivgsE+VEqlVi7di3uvPNOOJ1OSJJUNYKUw+HADTfcgGQyiWeeeQZ79+4VQrpAUGOI+F7ZdHR04LbbbkM8HseDDz5Y8WJfJWGxWHD11Vfj8ssvxyuvvIIDBw4IIX2eEggE8OSTT2LLli04/fTTsWTJkmkJ6T09PXjggQfwxhtvMKvgSiWTyWDv3r04dOhQlsZCjgyCyqAgIf2JJ57Ahz70IYRCIZhMpqwTrFAoRCDmIPsWsi2Z6ef4H41GwwqVTpbhnM8DerrTXuYSsmihNpKVDf1Pli+0b2TPwmfsU5Ys2VDQOnJtOXgf66mOVy4qlSqrECp5aE/1GZp1QAUdK9FDezIUCgU0Gg0kSYIkSZBlGbIsQ61WZ/n30xQjKiKbOwAyF/vL2/vEYjE2SEQ/ZFkyk0EiWkcwGITBYEAwGITRaBxn/0OCcjgcRiwWQzAYRDgcZgVuK2nklB9Uo+luufUA+GXp3JHFEi1fKf22Vka0KwkR3wWCidFqtTCZTDAajeVuyowg+zYArE6MQFBORHwvPSK+lx6tVguLxQKdTgebzTapFZhKpYJer4ckSdDpdGV/bi8XJpMJJpMJTU1NMBgM0/oMJYTxDgDTQZIkWCwWlnRX7cdclmU0NDTA5/MhGAyyQsPzCV6P8Hg8GBwcRF9fH/R6PUtgJFKpFEsoHRoagtfrrRr/eI1GA5PJNGFfpmTZSrSAqpX4XpCQ/oUvfAG33XYbvvWtb01YeVoAJn6TkE1i+lQCFX1hyPIknU7DYDBAr9ez4DBdkYse+lQqVUUUL+F9tkko5wcb6H/+WNFxJCGdMmlJPKX1AtkCoiRJTNieiYcpnwVvMBiY/7pSqRyXoUttJb/UhoYGNDY2oq6uDkajkVlrVANUCFej0cDhcKCtrQ1arRY+nw9qtRrxeBxerxeRSAQ6nQ7RaJT1ybq6OibCFtMvlveup9Fjl8uFUCiEUCgEl8vFvPJneuFNJpPo7++H3+/HyMgI8+KzWCxwOp3QaDSsn8ZiMfT29sLlcmF4eBhdXV1wuVxsRkSlQN8lrVYLvV4Po9HIRB9+kIQGJigjnbcvMhqNiMVizBu/nNRKIK4kRHwXCAQCwVwj4nvpEfG99LS3t+Omm27CkiVL0NnZCYvFUu4mVTRqtRrnnHMOrrrqKtjtdpx66qlzKm4vWbIEN9xwAxYsWIClS5dOW7ivVJYtW4a77roLY2Nj2LZtG/72t78hHA6Xu1lzRm9vL37xi1/giSeewBlnnIHrrrsuq/i72+3Go48+ip07d2JoaAh9fX1lbO30oeLEH/zgB1FXV5d3mf379+NPf/oTenp6Sty6qamV+F6Q4tXf348777xTBOEp4EXdiSxdJvpcrphOGc5UWHS6QjrZytDf5YYv0JhPgOSz6flsZ8oq57PQ8xVH5LNsSTjMV1x0KujckY1OMBic0FudPPDtdjucTidsNhsb+KimrC8azU+n0zCZTHA4HMhkMjCZTMwbnUa3yTKERvDJuoifPVAs+GKikUgEY2Nj8Hg8iMVi8Pv9zHt/piSTSbhcLni9XoTDYZjNZvh8PjQ0NLAZBjT7IRQK4ejRo+jv74fb7cbQ0BB8Ph+Ayrng5/Z9nU7HZhXodLqs7wPwXrFWpVKJRCLBBlLoPIrppLWJiO8CgUAgEMw/RHwvPQ6HA5dddhnOPvtsAHMza3c+oVKpsGrVKtx0002wWCxzfryam5txxRVXYM2aNfPi3LS2tqKlpQXxeBw+nw/PPPPMvBbSR0dH8eyzzzL74I0bN2YJ6cFgEC+99BL+9Kc/zUrcLTUKhQJLlizBddddh5aWlrzLbNmyBVu3bq1IIb1WKEhZveyyy7Br1y50dnYWuz3zjlzbkUIgwSt3PdO54JO3c67tBZ/9Tdny/Hbo73KQK7bzNjC5bZzo87k/hcIL97mQ2E9Z2CRa8pYu1RSUc/sE7Y8kSWwgiI5nKpVi2cpqtRper5cN+JBvLF9kNXcggwZFcqF102++wGckEkEsFmOWKtP1Q58M6kfxeBwejyfLF1yr1bLzH41GMTIyAq/Xi2AwyMT7Sg7IuTM9JiN3em+l9NtaGdGuJER8FwgEAsFcI+J76RHxvfTw9+KC6cEn1ZVye/MFfnZ/LUCxZHR0FLt378bAwAB7r7+/H2NjYxU1e3ymTGXlXInUSnwvSEj/wAc+gC9+8Yt45513sHr1amg0mqz3r7rqqqI0bj6QK4JPp8PzAjAVHCVrC8ocnW52OYmAkUiEiX/kha1SqSBJEvOFpkKeVMixHLYOvIhOx4u3geEF9ImEWBI/U6kUO16FZIaTwDqRaKtQKJgHu9lshsPhQENDAywWS5adTzVBgrder4fD4YBSqWSFKDOZDMLhMOuHHo8HSqUSXq8XLpcLarUaBoMBFosFarUaRqMRsiyzTHfe758/d/zsgmQyiWg0yopiBgIBJBIJ+P1+hMNhpFIpRCIRJBKJSQdTpgv1Lb/fj0OHDrE6BOQhS6I6tYcsTyKRSMVe6Pkb0HwCOe+jniu05/5dCVTqcZ6viPguEAgEglIg4ntpEfFdIBDMV958801861vfyrLVjUajOH78eBlbVbvUQnwvSEj/5Cc/CQD4+te/Pu49yh4WTG1jMhl81jXvKU6C8kzWw2f2Au9lUlNRRb1ez6xTePG+3OQWEM19baIvKJ81PRvoHOSzkKE2UeY1ia9UJKZaR4KpzWRrw3vM89ZEfNXoeDyOWCwGpVLJBmsoK5+OTzKZZF7cuYNAuUJ6LBZDIpFAMBhkRTT8fj8CgUBW0dFiwHuwU5/PzaCnZaphNHuyUWv+73zHrxL7bDlGtO+77z5873vfw+DgIFauXIl7770X55577oTLv/jii9i8eTPefvttNDc340tf+hJuv/32rGX+8pe/4Ctf+Qq6urqwaNEi/Nd//Rc2bdrE3n/ppZfwve99D7t378bg4CAee+wxXHPNNVnr+NjHPoYHH3ww67UNGzbg9ddfL2g/J0LE9/nHRN95gUAgKBe1krFWSYj4Xnr4hLrp3mNP1b8nW898+W7MJAFRIABO2LyMjo6WuxlFJ9/3oBiuC3NJrcT3goT0ahCUKoFMJsMyZ6lIJnkYTxYYSPhOJpMs+zccDsPlciGdTkOv12dV/s5dF3lKkyUGeUADJyphy7KMjo4O1NXVQa/Xw263Q6PRIBqNMtuM3t5eDA0NMY+tchYdzB2ImOziQa+n02lWzVmn06Gurm5c5sVE2yJRNxqNIhgMIhAI5C0qST7qlMVM1cKrMRM9F6VSyarGkzc/Dbbkks9Gh88uB054lPHL8p8FwAZ66DN0/EOhEBPXSxU0JmpjpcN/T+iYkS96LBYb13/pxp4GQqiYazQaRTwer8kHqkceeQSf+9zncN999+Hss8/Gz3/+c2zcuBHvvPMO2tvbxy1/7NgxXH755fjkJz+J3/72t3jllVdwxx13oL6+Hh/84AcBAK+99hpuvPFGfOMb38CmTZvw2GOP4YYbbsCOHTuwYcMGAEAoFMIpp5yCW2+9lX0uH+9///vxm9/8hv1PfvfFRMT3+UNzczPWrl0Lk8mEd999F/v27auIQXKBQCAQlB4R30vP2NgYtm7diu7ubnR2dmLNmjUTetQPDw9j9+7dGBsbw86dOxGJRLLet1gsOPXUU9Ha2pr389FoFHv37sXhw4er5tkll1Qqhbfffht//vOfYbfbccopp2DRokXlbpZAUFIymQy6urrw2GOPoaGhAatWrcLy5csRCoXwxhtvoLe3F/v27YPH4yl3U2ua8lefnMeQj3QikYBGo0E8Hmfi90TWLCS6JxIJJoZFo1EEAgH09fXB7XajqakJZrN5QkGe7FySySQrjBiLxSDLMmw2GxwOBy644AIsXboURqMRTqcTkiQhEokgHA4jFAph586d2L9/P3w+H44cOVJ2IX0moh7dKAYCAQwMDECv10Or1cJgMEwpcJOwmEgkEAqF4Ha7MTY2hng8nldIp6KOVJTUYDBAkqSqF9LVajX0ej1SqRQMBgN0Oh3i8XjeApS8gMvfuJF4G4/H4ff7s/p0roUPP+Mi1wefX6ZUTLUt/vxW0s0qDQLF43E2eEZ+9xqNZtzxzGQyWb7zoVCI/Z1IJMq8N6Uf0f7+97+Pj3/84/jEJz4BALj33nvx7LPP4qc//Sm+/e1vj1v+Zz/7Gdrb23HvvfcCAFasWIFdu3bhnnvuYYL4vffei0suuQR33303AODuu+/Giy++iHvvvRd/+MMfAAAbN27Exo0bp2yfJElobGyc8X4JapNly5bhzjvvxKJFi/Dggw+iq6tLCOkCgaAiqJWMNUFt09PTg5///OfQ6XTYtGkTFi5cOKGQ3tXVhR//+MfYv38/S+Tiqa+vxy233IKLL7447+ddLhd+8IMfoKurq2qTYZLJJF566SW89dZbaGxsxBe/+EUsXLgwbyKXQDBfyWQy2L17N44cOYK6ujr8y7/8CxYtWoTR0VH87ne/w7PPPotIJAKv11vupualVuJ7wUL6iy++iHvuuQcHDhyAQqHAihUr8MUvfnHSKfC1Bi/+8cUy81mW0PK8LQn98Jm6CoWCZYzyntP8OsiahbLZScw3Go3Q6XQwmUyw2+1wOp3jhPRIJIJgMAibzQaLxcIsOaoNmg0QjUahVCqZiEu2NkD+Y0/Z/LFYLOsYTlRwlI4/X3S0Ei0yCoH2a6pCOXxhUa1Wy4qTkk882b3QsaWMc76/T6eIbLnhPcbpeOQbEKD/c8kt/jnZNK3ZFPvlryH8oJxCoUAymWRFY+l40+wX+qHrTiUEsmIEYr/fn/U6FcTNJR6PY/fu3fjyl7+c9fqll16KV199Ne82XnvtNVx66aVZr1122WX41a9+xQZQX3vtNXz+858ftwyJ7zPhhRdegNPphNVqxXnnnYf/+q//gtPpnPF6pkLE9+qFrsNqtRo2mw0tLS1oa2tDQ0MDzGYzEolExQyUCcoDDZQbjcYsWzOBoJTUyoN2pSHie2mJx+MYHh6GQqHA8PAw/H4/TCZT3mXdbjcGBwfR29ub9TrNCrZarWhqaso7QxIAZFmGw+HIurZXo6AeCAQQCASQTCbhcrkQDAbZDNtcQT1fDItEIlW536WGrGmnM0hB9461eO0l54GJdJDcJMFiEQqFEAqFEAwGMTo6yixvBwcH0dPTU9RtFZtaie8FKaS//e1vceutt+Laa6/FnXfeiUwmg1dffRUXXXQRHnjgAdx8883FbmdVQiKVQqFAJBJhwqQkScwmgy5eJHxlMhlWHDSVSrFM6FgsBo/Hg2AwyAQySZIgyzJ0Oh2A97JRI5EIPB4PYrEYXC4XYrEYFAoFmpqasHjxYjidTixatAjt7e2QJAkGg4EFKIPBAKPRiOXLl0Oj0WBgYADDw8Pw+XxM0K+GDp7JZBAMBjE4OAhJkqBSqRCNRiFJEsxmMwscdFGkQEw3PF6vF36/H8FgkNnk5IOEeV5Mnw+j5vx+8YMFfBCh42ez2dDe3g5ZltHc3IyWlhZoNBompEejUYyMjCAajWJoaAhdXV2IRCKsn8/GsoWONV9QlkTqXIG+UHGYjgXZImm1Wlagl18v+bhTQVSycqLCvjabDU6nE1qtFiaTKSsjJZPJIBKJwOfzIR6Pw+12Y3R0lAnb0xXVaf/IV57akTt7gj82sViMbZdsoEhULzfFCMRtbW1Zr//nf/4nvvrVr45bfmxsDKlUCg0NDVmvNzQ0YGhoKO82hoaG8i6fTCYxNjaGpqamCZeZaJ0TsXHjRlx//fXo6OjAsWPH8JWvfAUXXnghdu/enXdgoFBEfK9u7HY7Lr30UixfvhyLFy9GfX09VCoV1q1bhzvvvBOjo6PYvn07/vGPf1RFLBcUn0WLFuHjH/84hoeH8frrr+OFF15gNmwCQamolQftSkLE9/KRyWSwb98+3HfffTCbzXmX6e7uHndvqNPpcP7552PDhg1obGzE4sWLJ9yGwWDAJZdcAofDgb6+PmzZsgVdXV1F3Y9SEgwG8dRTT6G/vx9tbW14//vfj46ODvZ+IpHAK6+8gh07dmSJ6T09PRgcHCxHk6uKZcuW4dJLL4XNZpt0uUwmg7feegtbt24dl5w031EqlVi7di0uuOACGAyGvMu888472LJlC1wu15y0IRaL4cUXX0Q4HIbP58Phw4fnZDvFpFbie0FC+n/913/hu9/9blaW3V133YXvf//7+MY3viEC8f+DhHTghBiXTqehVCpZAUfgPYsXEqlJCA+Hw1mvUQaZQqFAOBxGIBCAWq1GXV0dLBYLsyRJJpMIBoMYGRlhYnwikYBOp0NjYyNWr14Nh8OBzs5OtLW1jcs2pkzuRCIBq9WKuro6vPHGG+jr65s0M7tQ8mXlFotgMIhwOMwKX8ZiMWbvYjQaswYyQqEQ80Lv7u7G8PAw4vE4gsHghIIin5nMi+nzRUin/aFCo3w/ofeVSiVsNhuWL1+Ouro6dHZ2YvHixVlCejgcxuDgIEKhEA4cOAC3281mCcymP/HHn0bV+df47w9fbHcm2yNRXq1Ww2KxwGq1wmg0oqGhAbIsZ2VyDwwMQKFQsO8hCek0cNbY2IiVK1dCr9ejsbERDocDwHs2Ml6vF729vQiHwzhy5AgCgQDzL59pdjoJ6XwBWMpC5AfeyAbK6/WyWgx03aimQDYZvb29WQ8tU4nO+a5Jk80wmegallvgdSbrzMeNN97I/l61ahXWrVuHjo4OPPnkk7j22mtntK7JEPG9urHb7bjmmmvwgQ98ACqVChqNBgqFAmvXrsXq1asxMjICj8eD3bt3i4ytGmXRokVoa2tDLBbDz372M7z++utCSBcIagAR38vLgQMHcOTIkQnv/+h5n4eE9Ntvvx2SJE1aG0ev1+Piiy/G+eefjz179uDgwYNVL6Rv2bIF27Ztw2mnnYaVK1fmFdJ/9KMfZVmP0gxoweQsXboUt91225Qe9KlUCn/84x/x+uuv16yQ/s///M+w2+15l/nf//1f/OMf/5hTIf2ll17Cq6++ynQ6QWVQkJB+9OhRXHnlleNev+qqq/Dv//7vs25ULv39/fi3f/s3PP3004hEIli6dCl+9atf4bTTTgNwQpT42te+hvvvvx8ejwcbNmzAT37yE6xcubLobSmUdDrNxCmyW6CsWaqUniv6USYtkC0a0ud4WwYA7O/cUSBeDCRbAxJHcy0maDuUoU5TxHMtZGYCL9ZT5jC/P7TdXOsbOg6FZhPztjpUSJUyh1OpFBOKgfemz9AgBomhM80Ens0IXKWRu0+5fUqtVkOtVkOn08FsNsNkMsFsNsNoNGYJ6Uqlknn60/vJZJJ5eBcCL/RTfyXBiBfS6bsFoCD7GLKtIY99o9HIvPB1Ol1WYWB6PxaLIRKJIJFIQJZlWK1W6HQ6ZpdEU+opI52OazKZhMVigUajQV1dHWw2G6LRKHw+H7tBnG7f4veRbKHoXNDrdDyi0SgbPOO/c5VAMUa0zWbzhNk/PA6HAyqValw20MjIyLiMcqKxsTHv8mq1mt1wTbTMROucLk1NTejo6Ch6ZkIp4/t8iO2VBg3eybKc9Tpdr41GIxobG7Fw4UJEIhG43e5xBc0E85toNAq3280SCKZzjVUoFGwweaJ7wUAgALfbLQZoBNOiVjLWKgkR38sLJbDMBIVCAa1Wy2bETgU9D+l0ujmxZtXpdLDb7VlJKel0Gh6PBz6fr+jbo4EFqhV39OhR9l44HMbo6ChLAhLMDJVKBVmWx90v5pLJZGC327FgwQJoNBp4vV74fL6quA6TzaHRaJxyWZoRHg6HIcsy7HY79Ho9GhoaYDAYJjxONpsNHR0dWdpCMpmEx+MZV+egUOg5vVqolfhe0BW2ra0N27ZtGze9aNu2beOm0c8Wj8eDs88+GxdccAGefvppOJ1OdHV1wWq1smW++93v4vvf/z4eeOABLF26FN/85jdxySWX4NChQxP6kJUaEoJJ2AuHw1leybyITOIc8J6tBIng9FuWZSYiUiFQEsEUCgVkWYZarUY8Hkc0GmVB2GQywWAwTOqJxQdtWZaZoD7TLEraN71eD71ezwRCg8HAsmN5u5BMJsP83BOJBDweD7MAoWKVM/1i0qg0eayp1Wr09/dnDSQAyBISg8EgotHolIIrf674n0r1+J4JufuW65tNsyFkWUZ7ezuWL18Oh8OB5uZmtLa2Zg2+xONx6PV6xGIxpFIpuFwueDweZDIZuFyuGd9U0nkjcZv82GnmAd9HKeudsq2pAPB0fN4UCgUMBgP7zixcuBDNzc2QJAkWiwVarZaJ0VSU1W63IxQKQa1Ww+VyobGxEaeeeirq6urgcDjQ1NQErVYLnU7HbkKpHQaDAVarFclkEg0NDWhvb4ff78dbb72Frq6uGVkr0flLpVIIhUJIJBJsUIBurPkBK/JRrLRM9FIGYq1Wi9NOOw1bt27Fpk2b2Otbt27F1VdfnfczZ555Jp544oms17Zs2YJ169ZBo9GwZbZu3ZqVAbZlyxacddZZM2pfLi6XC729vWhqaprVenIpVXyfL7G92jAajbj66quxatUqHDt2DA8//DD2799f7mYJSsjBgwfx29/+Fr29vTh8+PC0BrU1Gg0uuOACXHPNNWxWE08mk8HLL7+MP/7xj3OWlSWYX9TKg3YlIeK7YLZ0dnbiwx/+cFYWcygUwmOPPYann356zmwhe3t7cf/99+Oxxx5jryUSCbz77rtMBxHMDTSr8ctf/jLcbjcef/xxPPnkk1VRX8Vms+Gf/umfpvXMNTAwgN/97nfYtWsXli5dig9/+MNYsGABFi1aNKGtCwCsWLECX/jCF7JEc4/Hg0ceeQQvvPBCTcarWonvBQnpX/jCF3DnnXdiz549OOuss6BQKLBjxw488MAD+OEPf1jUBn7nO99BW1sbfvOb37DXFixYwP7OZDK499578f/9f/8fm97+4IMPoqGhAb///e/x6U9/uqjtKRQStgBkBZncgpe58JYhNLpMRUdIEOOLOZKIS6IicCLQkDc7earTe/kg8Z7fjlqtLmgkjARPspSor6+HzWaDVquF2WxmWcQ0mBAOhxEOhxGNRqFSqeD3+6FSqZgIWki2bDqdRjAYRDAYZG3KLfhYaHFHulCQmDqbIpGVBO0TDQzkHnuVSgW9Xg+TyQSbzYampiY4nU44nU7YbLas2Q6JRIL1H6/Xi+bmZsiyjL6+vhnbW/CWMpRxQf1Up9ONm7VB/vbRaJQNDFDtgelAfugmkwn19fVoampiWZ28IJ1Kpdh3lLLyotEo6uvrsXz5cjQ0NMBoNE6azWcwGFBXV4dMJgOj0Yi6ujp4PB709vaiu7ub7f90+z/1w1gsxuok5No40e9K7bOlDsSbN2/GLbfcgnXr1uHMM8/E/fffj56eHtx+++0AgLvvvhv9/f146KGHAAC33347fvzjH2Pz5s345Cc/iddeew2/+tWv8Ic//IGt86677sL73vc+fOc738HVV1+Nv/3tb3juueewY8cOtkwwGMSRI0fY/8eOHcOePXtY/YFgMIivfvWr+OAHP4impiZ0d3fj3//93+FwOLJE/2JQqvg+X2J7tSFJEtauXYu1a9fizTffxNatW4WQXmMMDAzg2WefxTvvvDPtz6hUKixfvhybNm3KK3JRIsTf/va3YjZVMI+plQftSkLEd8Fsqa+vx8UXX4z169ez1zweD9555x08++yzc7Zdt9uN7du3z9n6BZPT0dGBjo4OBAIBHDx4EM8880y5mzQtjEYjzjjjDFx//fVTag4HDx5kfayxsRGXXnopTj755Cm30draitbW1qzXBgYGsHPnzhk9t88naiW+FySkf+Yzn0FjYyP+53/+B3/6058AnBiNeeSRRybM3CuU//3f/8Vll12G66+/Hi+++CJaWlpwxx134JOf/CSAE4LD0NAQLr30UvYZSZJw3nnn4dVXX80bjElYIsrp90RZ3rmdhkQvEgk1Gg1kWWaZt7IsM3sNlUqVVTyQvJlTqRSzuJAkCYlEAj6fDyqVKqsYIi/skShIBQ3IN3y6lb/pIkWFSylz2WazQZIkVk2c9ketVo+7sJFdSCqVgizLzM88FoshHA4jGAyOs74p5LhP9v9018FnbZOfdaVl9RYCZfLzmfp80Ut+pgT98D7quT/Uzyh7PHdGwHTht8vbx/AWRLn2R+l0mi1Pwr5KpcqyEZpoW9QXSbCn9fDfGdoeDT7pdDo4HA4oFArU19fDYDAwn/Tp7q9Go4Fer2e1Cmw2W1ZR0ELI3VdeSBec4MYbb4TL5cLXv/51DA4OYtWqVXjqqaeYJ2NupfSFCxfiqaeewuc//3n85Cc/QXNzM370ox/hgx/8IFvmrLPOwh//+Ef8x3/8B77yla9g0aJFeOSRR7Bhwwa2zK5du3DBBRew/zdv3gwA+OhHP4oHHngAKpUK+/btw0MPPQSv14umpiZccMEFeOSRR4qeuVWq+D4XsR2orPheiSQSCXR3d2NgYADvvvsuPB5PuZskqBL4gdh85FoFCgSCykLEd8F0UalUaGtrQ3t7e9Yzz5o1a8bZJWo0GixevBjnn39+1jOK2+1GV1dXln+5oLqhZ/pqYrr3JgaDAatXr4bf78cpp5wyLTsYQW1TsHnWpk2bip4Jl4+jR4/ipz/9KTZv3ox///d/x9///nfceeedkCQJH/nIR5j3bK7fbENDA44fP553nd/+9rfxta99bc7bPl1yhSxedDSZTExAJ/9kSZJY9i15jvPWMOSJTII4LRsOh9Hd3Y1gMIj29nbYbDYmFJJ3MllfjI2N4fjx4+jt7WW2KLyQmg8SExUKBWw2GxYsWAC9Xo/6+no0NDQwWxreyzr3YkwCeTqdRmNjI1KpFAKBAMbGxhCJRNDX14fu7m7E43HmY17o8Z6tgEgZz+S/HggE2MBDtYuTyWSS+aeS1Q31KeC9mQYkMtMPicx80KLsceDEjbJer0c0Gh03G2E6KBQKZjUkyzL0ej0bbJIkKSvAZzIZaDQapNNpNgODMuypgOdkVikKhQI6nQ4WiwUmk4n5mlO/ze27Op0OmUyGDf4kEgnY7XY0NjayQaXpBHKyQ6J9XLhwIUKhEPx+P44cOTKrqXSVmnk+EeUY0b7jjjtwxx135H3vgQceGPfaeeedhzfeeGPSdV533XW47rrrJnz//PPPn7S9sizPaaZPLqWI73MR24HKi++VRjAYxF//+lf89a9/hd/vR39/f7mbJBAIapBayVirNER8F0wHrVaLyy67DB/+8IezvKFNJtO47FtZlvGBD3wA69evz/puvvrqq/jRj36UNeNSIKhU6uvrceutt2LTpk0wm81Ft86sJWolvhckpN92220477zz8NGPfjTrdb/fj8997nP49a9/XZTGASeEn3Xr1uFb3/oWAODUU0/F22+/jZ/+9Kf4yEc+wpbLFagm8/O+++67WcYftbvY3u6zIde+goRDyoqlv/lii8B7BU3JcoKE73g8DpVKhUQigUAgAJ1Ox7zI6XOUuU4Z1pSRHgwGEY/Hp+1PTm0nAdJoNMJut8Nut8+4aCmJfpIkIZPJIBKJwO/3Q6PRsGKh5YZ8pSlrmzy5q+kikA8+I533Secz0nlBmS8om2/kly80SxnlhZw/PiOd9/zOlxHP91feG5yWm47nf67F0WRZ9CqVChqNhlm8ACcKXVKdgZlA7U2lUswShjLra4laCcSVRKni+1zEdqDy4/tcww9G5yMWi6G7uxu7d+8WRSEFRYHvc+K6K5guIr6XHhHfy8t0MmPzxW7eYnOqdfGzcQv9npD+0NLSgrVr10Kv10+6vEqlymtvMTY2BoPBwJ65xPe2eqHzN1VSZTWj0+myvP9nA697ANWXyDZbaiW+F6TKPPDAA3jkkUewe/du3HvvvUwQi0QiePDBB4sqpDc1NeGkk07Kem3FihX4y1/+AuCEhxEADA0NZY0cjYyMjBvpJiRJmrGwVUr4zG3KuiWrlFw/6FwhnYItWbvQ6yREDw0NIRqNYt++ffB4PNDr9airq4NWq0UkEmH2Kfv370dXVxfGxsbg9/un9YUg6xadTofGxkY0NDSw7FzKxp1psVIAzE9dp9NleagPDw/D7XZneTzzGcn89kjcLuaXk7L/FQoFotEofD4fPB4PgsEg8wWfaip0pUF9JRaLwe/3s/2hAp10nGm2g1KphM/ng8/nY4M8BoMhS9ROJBKs4KXX64XL5WJVsWd6Tuj8kpjOb4f3ZSchnd5LJpNs5gaJ/nTDnvvDi1CpVIplz9MMCP47x0MDKkqlkn1/KYO9UJRKJfR6PStCWmtCuqD0lCq+z0VsByo/vs81Pp8PW7duxcjISN73/X4/Dh48WFU3qoLKZXh4GDt37sTQ0BBef/11MYVfIKhgRHwvL4sWLcL69esntIwgX+WxsTH2WiwWw86dO6HX67OeAdrb23H66aejrq6OvRaNRrFr1y4cOnQI3d3d6Ovrm3EbFy9ejPXr18Nut+PUU0+d1XNHS0sLrr32Wqxbtw4HDhzA7t27RWHQKuXIkSPYtWsXxsbGsGfPnjkrKjtf0Ov1OOecc6BUKrPukwTzi4Kvjk8++SQ++clP4sCBA/jTn/6UdSEvJmeffTYOHTqU9dq7777LPGsXLlyIxsZGbN26FaeeeioAIB6P48UXX8R3vvOdOWnTXEKWGQaDARqNBmazGSaTCVqtlv2ejpBOWdv0fiKRQDAYxOjoKGRZRjgcRl1dHSwWC9ra2liRRMpC379/Pw4fPoxYLAaPxzPlSJpCoYAsy2htbUVdXR2cTifa29shSVKW2DnTYwGAiZLpdJqJk+FwGOl0Gn6/P0skJ1/rXOsYEkFJKC0GlLWdSqUQDAYxNjYGrVaLpqYmJBKJrCzmaoD32Y9EInC5XBgZGYHX60UkEkE0GmWBM5lMwu/3Ix6Ps+WAEz55JpMpK2ucRPloNIqxsTEMDAzA7XbD5/PN6FzwXuR8FjqfCZ47WMN7pNPNIH9OaOCA7zc0K4P2k4R0ys7PZDJ5byyTySRisRizZDGZTKz/F4pSqYTFYkFjYyPS6TS0Wm3B66pGamVEu9IoRXyvtdheKkZGRvC73/2OCRa5UPHtWsuOEcwNvb29+MUvfoFdu3YhEokgEAiUu0mCKkHE9/Ig4nt5UCgUWLNmDf71X/8Vzc3NeZfZsWMHjh8/niWkRyIRPPPMM3jppZeynm8uuugidHR0ZJ2/YDCIJ598Eg8//DCi0eiMr8cKhQKrV6/G5s2b0dbWxhL4CmXp0qX453/+Z0QiETzwwAM4cOCAENKrkEwmg7feegv33HMP+vv7WcKgYGJMJhM2bdqEyy67DG+++SaGh4drSkivlfhesJB+0kkn4fXXX8cHP/hBrF+/Hk888QRsNlsx2wYA+PznP4+zzjoL3/rWt3DDDTfg73//O+6//37cf//9AE5c9D/3uc/hW9/6FpYsWYIlS5bgW9/6FvR6PW6++eait6cUTGZfwYuHJFDzGdj0N4mKfDHSTCaDeDwOhULBssyTyST0ej0T0kk09Xg8CAQCTDycDBLJ1Wo1y0AnX/eZFFic6nhQ8VWaYkbFH4H3Cn/msxzJl4VcjC8prYe8tmOxWFZh1mqc5szb+5AvOr8/BPWdRCLBZjGEQiEmuJMtiUqlQjQaRSQSQSQSQTAYRDgcZsVuZ3t8Ci1uxvuo81nufJFeWi/tJ/2mvsYfC+oDuXZJxYC+W9U2u6EY1EogrjRKEd9rMbaXglQqBa/XW+5mCOYZmUwG0WgUXq83656QBtJr6QFRUBxEfC8PIr6XFpVKxZ6JHQ4HnE4ny8jPpaGhAXa7HVarlT1TZjIZVoOLZ2RkBG63OyveezwejI6OYmhoaEbWbbltbGhomHRmwHTRarWw2+1IJpNwOp2w2WxIp9OIRqMVI6iT7a3X62U16Kr5WSuZTLJn7lAoNOm1MpFIwO/3w+v1slpnPKlUCpFIBIlEAmNjYxgeHsbw8PBc70JRSafTCIVC8Hg8zOmBT3Cje5tYLAalUsm+B7NFqVTCbDbDbDbDbreLRLgZfrZaKEhIpwuM3W7Hc889h9tvvx1nnHEG7rnnnqI2DgDWr1+Pxx57DHfffTe+/vWvY+HChbj33nvxoQ99iC3zpS99CZFIBHfccQc8Hg82bNiALVu2wGQyFb09cwUJdyQWkx86Xdi0Wi3zSucz0kkA5P3Q6AJB4id5XEciEeY3PjAwAOBEkDt8+DA0Gg2rhp5IJDA6OsqyvifLXCPrCUmSWGHF+vp6NgWtmMGIij9arVbodDo4nU74/X7EYjF4vV5Eo9Fx1iJ0bCKRCBOE6fd0tse3P9++0GuxWAzDw8NIJpNoamqCx+NBKpWCwWComqrPqVQKoVAIsVgMLpcL/f39GBoagtvtZkU66eJGWevxeBx9fX144403YLFYsGDBArjdbmg0GjbQEQqFMDAwgFAohKNHj+Ldd99FIBCAx+OZ0cWS9/3jZ1/QQAuJ17y1C+/bSn72NLsDAAuYNGBFNjB0g0fZm8lkEkNDQ8hkMpAkCVarFRqNhm0jlUphZGQEY2NjbGBKqVTCYDCMm445U2jQohb9BWslEFcSpYrvtRLbBYL5QDKZxI4dOxCPx7MeCAcGBgqyDxAIRHwvPSK+l57W1lZceeWVWLhwIVasWAGLxTLhsgsWLMAnPvEJDA4OYufOndiyZcuEWeWHDx/G/fffD4fDwV4Lh8PYtWvXjGectba24oorrkBnZyeWL18+aRsLQalUYv369di8eTPGxsawZcsWvPbaaxUxM+7o0aP4xS9+gcbGRpx55pm45JJLqua5PR+HDx/G//3f/2FgYAB79uxBJBKZcNkDBw7gJz/5Cerr63HeeefhggsuyLJO6uvrwxNPPIGjR4/i4MGD8Pv9pdiFouLxePDXv/4V77zzDhYtWoQrrrgiq65CNBrFtm3bsGPHDthsNlx++eVYtWpVGVs8P6iV+F6QusPvoFqtxi9/+UucdNJJuOOOO4rWMJ4rrrgCV1xxxYTvKxQKfPWrX8VXv/rVOdl+qSBhXK1WM/FclmUmovNCuiRJWZnawHvZxLlCOu/bTFnGo6OjCAQCeQuYUOefTkcmSxeDwQCLxcJGsknELjZ0DGKxGGw2G+rr6xEKhVjmND/aSNn4JJqTSDqd6Uh0s5nrn50LHbdYLIaRkRHEYjHmK69QKKrKy4/E8XA4DI/Hg6GhIQwMDMDn8zEhPXdZ4IRH6v79+yHLMrNwocEejUaDQCCAnp4eBAIB9Pb24tixY2yEu5CLJS+k8yI5Cem5VkfUx/nCoyRu2+12mM3mrBkMiUSCWQGNjo5idHSUjcan02k2I0Kn0zFxPplMYnh4GIODg6zArizLbBbEbODF+moKLoLqpJTxvVZiu0BQ7SSTSezatQtvvvlm1us00CsQCCofEd9LT1NTE6677jqceeaZ7Bl/IlpbW3HjjTcimUxClmXs2LFjQiG9p6cHv//978c9mxYy27exsRHXXnst83Qudj0mpVKJU045BStXrsTIyAgbKKgEIb2npwd//OMfodVqEY/Hce6551a1kH7s2DH87ne/w4EDB9gz6kQcOXIE3d3dTGs655xzsnSLwcFBPProo2zQoxpjvc/nw7PPPoutW7fife97H04//fQsIT0Wi+GVV17Bfffdh46ODpx00klCSBdMm4KulNu3bx83DWzz5s04+eST8corrxSlYbUIn5We+z//O9/rZFFBGdi5AnCuLQSf3Tsbiw2FQsF8y3U6XZYFxVxMjeIFbhpooOKq/Pby2d1M1R56n29/7jHPhc/SpkxmsjmhApV8pnSlQmJ0NBpFMBhEMBhEKBRCOBxGPB6ftH/QbAeyFBgZGWEZ6RqNBqFQCGNjYwiHw8xXrVBRmBeVSdynwSO6IePte3gBmn7TrI9cb3X+N91E0n6QRY3f72f+95IkZc36CAQCCIVCUCgUCIVCCIVC0Gq1s7pRJDsmKgRcCTedpaRWRrQrCRHfBYL8ZDIZuN1uHDp0CF6vFw6HY87qAxWbeDyOkZERBINB9PX1FTStfqqHcoFgJoj4XnpEfC89SqWSPUtMBT1T02cme26casb4TKBn6rm0n6BnL4PBgJaWFixfvpzVbitnkepMJsMSu4phOVpuKIEyHo9Pa1my/B0eHsahQ4dgMBjY+8eOHYPP55vWuioZGgDwer04evRo1j76/X4MDw8z/aO7uxsHDx6EwWCA0+ksOCGSkvF8Ph+6u7sRDoeLsi/VQq3E94KE9PPOOy/v6xdffDEuvvjiWTWoVuGFW94Xnc+spixv/n/evoTEQ97ehZanAon8eovhGa5SqWC1WtHU1MQsV+a6uCZ5RlutVqRSKbjdbgwPD8Pn84276eD3a7J95I9n7vHOFdT59ZGQrtFoEAwGEY/HMTQ0hGPHjqGurg6SJMFisTBP+0oU00kMDofD6Ovrw9DQELq6utDT04Ph4WH4/f5Jb9YikQhGRkagUqng9/tx9OhRduxUKhXi8TjC4TASiQSbEVGokJ5Op5mgnE6nswrRptPprPNEN0e8vVEmk4HFYoHFYoFarc7y2adzQ/2X+pharUYikYDH40FfXx80Gg0MBgP7XtG+0OCD0WiE2WxGPB5HLBZDc3Mzy2KfCXRTNzY2huPHj8PlclWMp2CpqJVAXEmI+C4Q5CedTuO1116D2+2Gw+HATTfdhI0bN1ZFQfGhoSE88MAD2LVrV1X6nArmHyK+lx4R3wXlxmAw4JprrsGaNWtw9OhR/OY3v8GePXvK3ayaJpFIYNu2bejp6cmajeB2u3H8+PEytqy4HDt2DD/60Y+yEiASiQQOHz6MVCqFsbExPPjgg9iyZQvWrl2LW2+9lRVInil+vx+PPvootm3bBpfLhaNHjxZrN6qCWonv0xbSN2/ejG984xswGAzYvHnzpMt+//vfn3XDahFeTOezY3nBnM9Cz1doNF9hTV5czC1SOtvRbCrMYDabYTQai1JcdDqQpYzZbEYymRy3XRJV6e+p1sUfa41Gk1XolT/mufBZztFolGUmu91u5s3OW45UopBOAwKJRIJllLtcLng8Hni9XsRisSkz0oPBIACwwYx8XuXFuDDyhT5VKlWWsJxbaJcEdF5IB04I5EajccKBDRqoAcDsWcLhMAYGBtiAAWWp8/YyVJA0mUzC7XZDkiQYjcZZTYWjIikul4sV/60laiUQlxsR3wWCqclkMuju7kZ3dzfsdjs2bNiAdDpdFUK63+/H66+/jqeffrrcTREIAIj4XipEfBdUElqtFqtWrcKqVauwd+9ePPnkk+VuUs2TTqdx5MgRHDlypNxNmVNcLhd27Ngx4fvBYBC7du0CcGIW3wc/+MGCtxWNRvHmm2/iiSeeqLnZ5EDtxPdpC+lvvvkmE3HeeOONCQXBShQKq4lcf3L+/4lep2OeuxxvdTHR+mcLiY7kh12q888XZiWxG3hvmhJ5o5PYybpdLAAA4whJREFUGY/Hx1mK8HYearWaTafj1zmVVQ2tnxfJo9EoXC4XUqkUPB4PfD4ftFotjEZjxVVtpkz0cDiMsbEx5os+OjrKfMwLyR7P1+cIPvObnwVAx5DOSe7ACH/eALCM8FyvdVoP2aLkeqjT92I6fZWfBUJ9jM9Cz/c9o8EUtVoNg8EAl8sFpVIJnU4HWZan3G4mk2HnxO/3w+Vywev1IhwOV6U/naDyEfFdIJgZiUQC77zzDp599llYrVYsX748q+hbJZBIJHDkyBH09PTg2LFjGB0dLXeTBAJBiRHxXZAPnU6HxYsXo7W1FStWrIDVai13k8pKJpPB8ePHsW3bNtTX12Px4sVob2+viu9FMBjEoUOHMDIygt27d7PkNoFAMLdMW0jfvn07+/uFF16Yi7bUPLwwl6+gIv+bFwP5z+UT9/Ktr1hQZrjJZGJFPksBX8iTtqtQKJBKpZhPNZ+ZT0I6P/hAmcVUiJWyjOk1ElD5dfHw2dH8336/H11dXTCZTLDb7bBYLNDr9cyTm9pfbsg6hKxxhoeHsXfvXhw+fBhjY2Pw+XyIRCIFi+j5PsfPutDpdJAkiQnONIBBXvvAezYrlO2dSqUQiUSYQJ5IJBCLxdj5yc2EJ496mmkw0/5JAjplHfL9aaL9jcfj6O/vx8jICOLxOJqamhAMBlFfX4+mpibWpyY6dul0Gi6XC729vfD5fDh69CiOHz+OZDJZ9T51M6VWRrTLjYjvAsHMCIVC+Nvf/oaXX34ZS5cuxebNm3HOOeeUu1lZhMNhPPHEE/jDH/6AYDCIoaGhcjdJIGCI+F4aRHwX5MNiseDGG2/E1VdfDYPBgMbGxnI3qaykUim8+uqrOHLkCBwOBz7zmc+gpaWl6IVX54Lh4WH86le/wssvv4xAICCs2wRlp1bi+4yvDslkEjqdDnv27BFVbYtMbhYvL4znyzbnRfTcz9HfE3Vk3hqGz7SdaeclQZqyuUspEPM+3CSe8gMFvJBOIizw3nHm7XL4fSDxNFdIz+eRTv/zgxzxeBzBYDCr6KRSqczKii63kM73jVgshlAohGAwCL/fD6/Xy4qCFns6Uq6FDnmc88VqDQZDlo0RcEJIJzEdOHHu6LV8g0vUFyijns94n0kf59ubmyE/Eel0mhUHpcKter0eRqMxqzBuPj9/Ko4aiUTg8/ng8/kQDAYRDoeLZo9TTdRKIK4URHwXCKZHKpXC4OAgBgcHoVAo4PV6kUgk2L1DJUBtfPvtt2vOFkxQ+Yj4XlpEfC8PZC85nfhASVn0zMo/r070jJ37DDRdNBoNWltbsWrVqrI/k1YKbrcbbrcbdrsdLperaq4zkUgE3d3d2L9//5xtg58xXiwK7bulgLQj/t5pqsRKvr/Mh8K1s6FW4vuMhXS1Wo2Ojg4mSgqKAy+AJ5NJ5v0ci8VY5jX/ZaYsWbIvAd7z606lUiwTlzyiM5kMTCYT9Ho90uk0HA4H4vE44vE48/YmEZUyX2dqI5HPQ7wcUN/kBxvo2JCNC1VGlySJZUdTRjp5pAPIGonOvYnJtdUh0T6TySAUCiGVSqGvrw+yLLPilolEApIksWKVQGmz0+niRJnc8XgcgUAAfr8f4XCYed7HYjHIsgwA4wLJdOEtWPR6PSvSabVaodFoYDKZYDKZoFKpYDQaIUlSlv84f1xSqRT7iUajrCJ5MBhEKpVCOBxGMBhEOp2G3+9nfZr6MfUJukGdLjT4wX+PpnOBp++z1+vFO++8g76+PjQ2NmJ0dJSdf51OlyXsR6NRBAIBxONx9PX1oaenB6FQCG63uyJvMkpFNQXUakfEd4Fg5rhcLvzf//0fjh49is7OTpx99tlZxawEAkF+RHwvHSK+l4ehoSE89thj2LNnD5YvX46zzjoLRqMx77L9/f3YsWMHhoaG8NprryEcDkOSJKxfvx6nnHJKXhE+nU5j7969+Pvf/45oNDrXuyOoUZYtW4YzzzwTJpOpaOus5L7b09ODRx55BC+//DJ7TZZlbNiwAatXr87SKI4dO4YdO3bA6/Wy13w+Hw4cOFDTMa4W9r2g+Sr/8R//gbvvvhu//e1vYbPZit2mmoQX0kkkBMDEbuCEqM5n3dLINi8S0shePB5HKpViGbkAYLVaYTQamZisVCoRi8WYeNfb24ujR4+y16YSHOkiwttplJKJsnrzeXrz/tq075IkQafTQaVSZVm78BYgExUZzSWdTjPP7lQqxYTpY8eOIRqNwmazQafTIZVKwWQyTem9PldQP6Ns6Wg0Cp/Px7LQlUol9Ho9EokE9Ho9FAoFE6ULma1AFjx2ux2yLMPpdGLBggXQ6XSw2WywWq1ZHvu5Fi18u6nt1KdpECCRSGBkZASDg4OIRqPM3ocGpBKJBDs3arWa7Qs/EDIRuf76080Kp++py+VCMBiESqVCQ0MD2traoNPp0NDQkCW0ZDIZ+Hw+DAwMIBKJYGhoCIODg2wQoxaCkaAyEPFdIJgZIyMj+MMf/gCNRoONGzdi2bJlQkgXCAQVh4jvpaevrw+/+c1voNVqcd1112HVqlUTCunHjh3D/fffj7179yIajSIcDsNiseCyyy7Dxz/+8bx1thKJBH75y19i3759FSdGCuYHCoUCJ598Mj73uc+hpaWlaOut5L7b1dWFn//851mDV3a7HV/60pewcuXKrNcPHjyI++67L6tYK9WgE8/v85uChPQf/ehHOHLkCJqbm9HR0QGDwZD1/htvvFGUxtUivL0DZdLyPySc82Ix/SYRnV+eMqUVCgV0Oh2zzSDRMh6PQ6FQIJFIwOv1Qq/XQ6lUIhqNTmmDwW+ftldK+OxgfqqNSqUad2x44ZSfmkPWMPQ3PzhA6yUmmlJHy/HFLFOpFBOhg8EgNBoNs06hAQyykaEM+bkS1Pn+QSIy2aLw4jBl5hsMBiQSCRgMBrY/0Wh02iIy7Qtl9suyzKxNKAtdlmUYjUYYjUY2kEHFaumY5xPSM5kMNBpN1sBFIpFAOByG0WhkGfXkm0/2NPx5oe/WRFO0+G3SsoUWXaUMeqVSiVAoBL/fj1gsxgZw6LwAgNfrZb70wWAQkUikoG3OJ2plalglIeK7QDAzaPAcAMbGxjA8PIy6ujoWT0sxWJ5IJBAMBrMSIDweD8Lh8JxvWyAoBBHfS4+I76UnmUzC5/NBoVBgbGwMIyMjrF5WLqOjo3C5XHC5XCzhqK6uDg6HAw6HI+/nEokEnE4nnE4ne9aYjihJcWtkZITNlJ2oXbVGJpNBMBjE6Oho1jGh41Qp9m2ERqOB1WpFfX191uvhcHhWYq5arYbRaIRWq0V9fT0cDgfsdnsxmgwgu+/yDgDJZJJZzJYL0sV4MpkMRkdHMTIyktXe0dFRjI2NweVylbiVlUutxPeChPRrrrmmyM0QANnFCkOhEDQaDXQ6HZRKJSuASdnqyWQyy+MbeM/ahTJxU6kUZFlGXV0dJElCU1MTnE4n8/5WqVSIx+OIxWJIJpOwWCwwGo0IBoM4cOAAIpEIEx8n6tTksR2JRABM7h1d7GPFW9jodDqYTKasjGYSQUkIJn86KnCp1WqZ2Et/A+/ZueQTdHPhBxv4opT0v8/nQywWg9frhVKpRE9PD6sGbjQaUVdXB5vNxtpQ7KImmcx7hVYTiQTL4KZjk0wmoVarYbFYmNVIe3s7vF4v6uvrEQ6Hcfz4cXR1dY2zSckHDQxotVo0NTWhrq4OZrMZbW1tMJlMMBqNsNlsrG9LkjTOhzzf8eYHOEhAp4GIdDoNSZJgs9kQj8fR2NgIj8eDYDCI7u5u+Hw+NqARj8fh9/vZzZHJZGIPErxNDw0weL1eeL1eRKNR1scLOQd0w0r9Y2RkBDqdLmu5aDTKMumFiH6CWgnElYSI7wJB4VBmUn19Pc4//3y8//3vZzZpc8nRo0fx17/+Fb29vey1aDSK3bt3CysHQUUi4nvpEfG9fGQyGbz11lv4wQ9+MG4Ag+jv78fAwAAUCgXWrVuHD3zgA3A6nTjttNMmFG9VKhXOOOMMfOlLX8Lo6Cieeuop7NixY8rncb/fj8cffxwHDx5EZ2cnNm3ahEWLFs16P+cD4XAYTz31FHp6erKeSU855RRcc801aGhoKGPrxuN0OnHzzTdnFTxPpVJ48cUX8fTTTxc8oN7e3s76xdKlS2E2m4vVZADZfZcf/Onr68Njjz2GgwcPFnV7syUcDuPJJ5/E8ePHx1m7CBE9m1qJ7wWpdv/5n/9Z7HYI/h8khEciEfab7Cg0Gg0TQHm/bxJ8+Yx0yiDW6/WwWq2QZRmNjY1oaWlhQjoJvySsUlawz+fDyMgIBgYGsryh80Gfj0QiUKlUJfVyJuuadDoNrVbLfLjJ95x8wHmvdN4DnZbls6eB8V7oU8Evmyu+h0IhVjQymUzCZDKhqakJSqUSFosFyWQSsiyzgZJiF/Kg8xOPxxEOh+FyuViGNGXuK5VKGAwGliWeSqXY7IRQKIR4PI7+/n62vskeyun4yrKM5uZmtLa2wmKxoLOzk/nE0/mZiIn2nz+HANi6AMBkMrGMe7vdjkAgAI/Hw2xdvF4vG0QIhUIs20OSJGZhQ9CsEBoRHxsbYwNOhUDfHSo8O9X5raYAIph/iPguEBTO8ePH0dvbC51OB1mWccEFF5RESO/v78df//pX7Nmzh71GsUzEFIFAAIj4Xm4OHz6Mrq6uCZ8DKPFGpVJhxYoV+PCHP8yeGSf6jFKpxOrVq7Fy5UoMDw+ju7sbr7zyypRtCYVCePHFF/Hyyy/jjDPOwBlnnCGE9P9HNBrFq6++itdffz3r9SuvvBLnnXdexQnpdXV1uPzyy7M0GHpuff755wsW0p1OJ66++mqceeaZk87gLhS+7/L3KXv27MHf//73ihPSJ+oXlVowVTD3zCr9dffu3Thw4AAUCgVOOukknHrqqcVqV03DC+KJRALRaJRlftODEWXxUsDlH5goI50XPXkbC/4HABNvtVotdDodYrEY8wmnoD4R1K5oNMqE/lLBe8LzPtsk1JJtC+8zzQ8+0H4XU7yeyA6HsuIVCgW8Xi+Gh4cRCoWgVCpZmy0WCwwGA3uNbpx4cT6fJzz95vsADTAkEgn4fD6Ew2HEYjG43W5mLUICMg0kkEhNGf56vR6ZTIYJztQfc6da8XY5er0eFouFDeBYLBaYTCY2C2C2vvCTfY7OKfVjg8GAuro6pNNpKJVKBINBZqlDdQfIF57aTzMZaHCJZjLQgNJMye1n+eyD6Jzx1jsiKJ+gVka0KxER3wWCmcPPlhsaGsK+ffuyinPp9Xo0NzdP6JE7Fel0GsPDwxgdHc2KEUeOHBln7aJSqdDU1ASHw5H1AOz1ejE4OFjw4LBAUAxEfC8fIr6Xh6meqXlo1u10bEToGYOsQqcLPWtMVROtmKRSKQwODsLlcuHQoUPMFq3SyPcc5vF4cODAAcTjcTgcDjQ0NJTE5iUYDLIaWna7HY2NjeNmsOcK3Xzi2VQoFAo4nU7U19dnrXfZsmUwm81Fny2fu+3cdhqNRixZsgRjY2Pw+XwVdb8ins+nR63E94K+GSMjI7jpppvwwgsvwGq1skJ5F1xwAf74xz+O82gSzAzeooU8lbVaLctKpyKZvFjMe6uTaEuFLfksbArKvC84fd5kMsFms0GlUjFRl4qWThT40+k0/H4/BgcHEY/H0dTUxIT+ufQF5TP30+k0K+BJWcoKhYJZl6RSKej1elY0k0TR3GNSzJFWyvbnC8KOjo4COOGl1dfXB61Wi9bWVnR0dECWZbS1taG+vh6SJKGurg6yLLMBglz7E4Iu6HQjRPsYCATg9/sRiUTQ29sLt9vNZg6k02k4nU60tbVBkiTIsswe9EnUJdufcDiM+vp62Gw2aLVaJi7n7isJ5R0dHVi0aBEMBgM6OjrgdDqh0WhgMBjm3AuejpHRaIROp2O+buFwGP39/dBoNOy4eDweACemNtLAC7UvmUyyfk+WLtTfZtIWANBqtTCZTNBoNMwnnrZFfYQsc6LRKLxeL/ubBs5qmVoJxJWEiO8CwexJJpN48cUX0dPTk+WxunTpUnziE5/AKaecUtB6o9EonnnmGfz1r39lA8LAicLWNHOM0Ov1uOqqq3DllVdmPQjv3LkTv/zlL9HT01NQGwSCYiDie+kR8V1QboLBIB5//HE89dRT8Hg8OHz4cLmbNG3efvtt/M///A+sViuuueYa3HTTTQUPis+Ew4cP4xe/+AW6u7uxceNG3HLLLbBarUVbv0ajwYUXXogbb7wxawad1WpFR0dH0bYzXVpaWvCJT3wCmzZtwo4dO/DrX/963P2NoLKplfhekJD+2c9+Fn6/H2+//TZWrFgBAHjnnXfw0Y9+FHfeeSf+8Ic/FLWRtQbv0UyCeDKZZEUZKWs11wqEL45I3uGJRCIrGz03Mx04IYRmMhlotVrIssyEeyrqOJnwSW0MBoOQZZm1DZg8e7gYx4j2jzKoSaAkmxReSM9kMswih7K2eIub3Czh2cAXKqUseBJHE4kE/H4/XC4X1Go1e40y0QFAlmWWIc5bvpDAzbeRz8onr/pkMgmv1wuXy4VQKITjx49jeHg4qwCtSqWCw+Fg2yOLFDq2yWSSib5k+0LHLBc67hqNBhaLBc3NzTAYDGx0m8TzuewP/PnTarXsR61Ws9kIQ0NDUKlUCIfDzIM8Go2yAQq+DgHN6JjNyDMJ+5TRbzabYbFY2GwPmsERDoeZh3o0GmXCeqWMvpeTWgnElYSI7wLB7MlkMuju7kZ3d3fW6263G9dee23B600mkzh8+DCee+65KQvKaTQaLFu2DJdcckmWmB+Px0vy8C8QTEY54vt9992H733vexgcHMTKlStx77334txzz53yc6+88grOO+88rFq1Kss+qdoQ8b16mK/3sIlEAgcPHsTWrVtLmglfDEZHRzE6OgqtVosVK1aUrP1utxuvvfYa9u3bh46OjqxB9GKgUqnQ2dmJiy66qCLuDUwmE0477TQAQCAQKIk9nqC41Ep8L0hIf+aZZ/Dcc8+xIAwAJ510En7yk5/g0ksvLWSVggngp1yRSEqCMInhJG6SSMpnDQeDQQQCAQBgojzwnpc3dXR+OjJZWfAi9ERkMhlEo1EEAgHodDoEg0Ho9Xpmr1FsPy1qVzKZZJ7TJHSSKE6ZV/SbxFUafNBqtex1/vdcQAMXudnkdJypOIVOp0M8Hsfo6ChkWYbT6YTBYGCZ1SRU51ZUJwE9k8kgEomwKtculwtutxvhcBi9vb3weDzM9kStVjPxljLQeYsY+k3CO/3keq2SOK7X69HQ0ABZltHQ0ACbzQZZllkmfbkgGx+FQgGTyYTm5maYTCZWcJT6OfVxGnTiByemupjzszqsVivMZjO0Wi2rS0DFfsnDX6/Xs+XJRodE+0gkAp/Ph3g8jmAwyP72er3Mq56K187XG2xB+RHxXSCYO7xeL15++WV4vd6CPh8KhXDw4MEZ2+gFAgHs27cPw8PD+Mc//lGx0+krHaPRiFWrVqGpqamgz6fTaRw5cgSHDh2qOhGp2nnkkUfwuc99Dvfddx/OPvts/PznP8fGjRvxzjvvoL29fcLP+Xw+fOQjH8FFF12E4eHhEra4+Ij4Xh3QQOxTTz0Fp9OJ5cuXo7Ozs+jP1ITb7cYLL7yA0dFRtLW1YeXKlUK8nIR0Oo3Dhw/jiSeemFJ4VqlUWLJkCZYuXZqVjOZyubB//3643e4pt7d3796C7xmqnZaWFlx22WVYuXLlnMROSjhYtGhRUb9f0WgU77zzDo4fP160dQomplzxvSAhnWwxcqEMZkFxIHGPMszj8TgT7shDm88s5zNoKQvXaDTC6XQiGo3C6XRm+Z9TxjQJh7FYDOFwGKFQiFlLUMb3RKTTaQQCAUQiEQAnpg0CJx426uvrix704/E4ExW9Xi/cbjfz5iaRWKvVMkGUzwrXaDTsOJKvOmV4z9XNCTDe5oUyx6mo59GjR5mdDtmSOJ1OyLLMvMZpYIJsawjeziUUCsHr9SIej8PtdsPj8SAWizGPdKPRiMbGRuj1etjtdsTjcWYZROeYH1ShAQt+YIWfbUB9r66ujvmoLViwAO3t7VnnoVyQ5Uwmk2EWM5SBHgwGEYlE4PF42KAT7/0+3esYWe9IkoTly5ezqubLly9ngwtWq5V9X6m/5drzANnFc10uF0ZGRhAOh7F//350d3fD4/Hg0KFD7LtdC9dakZFeekR8Fwjmjt7eXvziF7+AXq8v6PPpdBput3vGD5LDw8N48MEH8cILLyAUCjGrOcHMcDgc7KGrEOLxOB588EEcP34cwWCwyK2rLkod37///e/j4x//OD7xiU8AAO699148++yz+OlPf4pvf/vbE37u05/+NG6++WaoVCo8/vjjBbW3UhDxvTpIp9PYuXMnjhw5ApvNhn/+539GR0fHnD2r9vT04P7774der8cVV1yBzZs3CyF9ElKpFF566SW8/fbbU54TWZZx6623oqOjIyvuHz9+HPfdd9+0MmDD4XDNxuxVq1bhX//1XxEIBOYkdsqyjMsvvxy33HILS7QsBiMjI7j33nvR29tbk9fWWonvBQnpF154Ie666y784Q9/QHNzMwCgv78fn//85wu+uRTkJzdbmOwiSJjls5zzFS2Mx+OIRqPQarXMMoJE5lxv9VzRdDpZubwQT9uKRCKsOCWfFT7b4wCAZc3HYrGsIqfAe1n2vJUIL2Kr1WomrufzGy+F6Evb4C14qABmIpFAKBRi9j16vR4Gg4GdP51ONy7Lm3ziybKGvNC9Xi88Hg/zS49Go0in07BYLMz/nD/PqVQKCoUiS9TlM9Hz9QU6jpIkwWg0wmw2s4GAufZDnw789jUaDUwmE7RaLYxGIyukSt8BYGYXbr5Iq06nY4J5fX096urq0N7ejqamJsiyzOxc6HMTwRcZNRqNkGUZwWAQIyMjLHuQbHhIdJ9NoKoGhJBeekR8Fwjmjlgshr6+vpJsi2zaaNZgT08P3n333ZJsez6Qr3if2WxGW1sbli5dWtA6Y7EYmpqaoNfrswZD+ASYWqEY8T13ZoUkSVlWhUQ8Hsfu3bvx5S9/Oev1Sy+9FK+++uqE2/nNb36Drq4u/Pa3v8U3v/nNgtpaSYj4Xj34fD74fD54PB54PJ5Jvyv0TBmLxWY8Wwk4kT3b29sLhUKB/v5+BINBxGKxaRc7nQ7URn52fLWSyWTYeZkKvV6PoaEhRCKRLNHd5/Ph+PHjM4rJ0zkXpAFRMuRk/Ya0EapzVokYjUYYjUZEo1E0NjZCluWsGeWFQvFdr9ejsbERS5cuLaqQbjKZ4HA4oNPpspIVKdbPd2olvhf0rfnxj3+Mq6++GgsWLEBbWxsUCgWOHz+Ok08+GQ8//HBBDRFMTT5RnRcLeZsW+tL6/X709vbCaDTCYrGw7Fmr1QpJkpgAnkql0NPTg6NHjyIQCGB0dJQF5Km+CLTNSCSCvr4++Hw+OJ1OqNVqZvFBI9uFCKv8zcHw8DD6+/tZIUzKxtbpdOyiSKIwLwRTAM9nUTKX8EI+/1rueUulUszig/ZVo9EwAZ2KopJ9DcFnMUejUXY8aECDF1xjsRjLwKbjaDQaWZY+tSWdTsPr9aKvrw+hUAjDw8Pwer2IRCJsOY1GA6vVCp1Oh8bGRrS0tMBiscBsNo8boKgE6EaBvOEXLVqEQCCAWCyGYDDIzsF0+oUsy7Db7dDpdGhra8Py5cthNBrR3t6OtrY2yLKMxsZGVul8JhkkNPhjMBhQX18Ps9mMTCaD9vZ2+Hw+dHR0wOv1or+/H4cOHWLfgam8cqsVIaSXHhHfBYL5QTQaxYsvvohoNAqXy4Vjx46Vu0lVg0KhwMqVK/G+970va+p+fX09Fi1aVPB61Wo11q1bhzvuuCMrbg8MDGD79u3o7e2dVburiWLE97a2tqzX//M//xNf/epXxy0/NjaGVCqFhoaGrNcbGhowNDSUdxuHDx/Gl7/8Zbz88ssVKzLNFBHf5x/pdBpvvvkmXnnlFYyOjmLv3r2z+l4dPHgQv/71r+F0OnH66afjjDPOmHX/T6fT2LNnD2vjnj17aiZLN5FIYOfOnfjJT36SJdQeP34cg4ODRd/esWPHsH37dgwNDeH111+ftN7WkiVLcP7558PpdOKss84qqpBcbNRqNdavX4877rgDIyMjePnll7F///6C1sXHd4fDgdNOO61oA0aE0WjEJZdcApvNlqXdHThwAC+++CJ8Pl9Rt1dp1Ep8L+iTbW1teOONN/Dcc8/hwIEDyGQyOOmkk3DxxRcX3BDB1PBZ2dMdhfP5fEilUpBlGUajERqNBrIso76+HkajEYlEghW8PHr0KA4ePIhgMIixsTFEo9FpfQlomXA4jJ6eHmg0GkQiERgMBphMJtTV1UGSpIKmpFFGFdm5DA4O4uDBg8yWRKPRQJIkmEymLP93pVLJxHNaB29PwgfwubR14eFtePINgJAgqlAo2AWWX26iDO/cARb+h14DwCxfNBoNzGYzG2Ch4wK8N6vB7Xajp6cHgUAAg4ODzCaGllOr1bDZbKy4aGtrKywWS1b2QiWJ6VT0M5PJMG9Tv9/PCsfMZIBFlmW0trairq4O69evxyWXXMJseQwGA5s1ku9cTwZ/nmldmUwGzc3NSKfTCIVCOPnkkxEIBPDGG28gEAhgbGxM+KYLioqI7wLB/CAajeK5557DSy+9xAbbBdNDoVBgzZo1+OxnP5v1cEb3EoWiUqlwxhlnYM2aNVkxe/fu3Thy5EhNCenFoLe3F2azmf2fL1uNJ/dejJKSckmlUrj55pvxta99reDZB5WIiO/zj1QqhX/84x+499574XK5WFJWobz99tvo6uqCyWTCXXfdhdNOO60oQvru3bvxgx/8oChtrCYSiQReffVV7N69O681a7E5cuQIfvGLXzCtZDIhffny5bj99tvR2dkJSZIqXkg/44wzcOqpp6K/v58VTS7k2ZeP742NjSwZs5gYjUZcfvnluOSSS7La+Oijj2LPnj3zXkgvBtUQ3wu+Mm7btg3PP/88RkZG2Ejj73//ewDAr3/961k1SlA8aAqJUqlkBQzJJz2RSDAhnQoZknd0IVNMaVtUODEcDgM40fGp8Chl6E4mLpIITKI3FdGkIozUPkKlUmWJ5GR9wwvpiUSCFfik/aq0IF6IxchMoGMCnHjA9vv9zEJGo9Ewa5d0Og2fzwe/38/88kloBsCEYp1OB71eD51OB41GwzLmaZlKgm+PRqOBXq9HIpFgNw70XZjs81qtFiqVCiaTCfX19bDZbGwwwWw25/WwL7Sd/DromGYyGWbNY7PZUF9fD+DEeaXisdPNqq8WREZ6eRDxXSCofvgBesH00Gq1bPam0+mE1WqFxWIp+jZyBQubzYaGhga0tLSw19LpNILBIJs1N98oRnw3m81ZD9oT4XA4oFKpxmWnjYyMjMtiA04U5921axfefPNN/Mu//AuA9xJN1Go1tmzZggsvvLCgtpcbEd+rC3omGxgYyCtoJ5NJjIyMwOfzIRAIzHp79DyUTqcxMjKC/v5+mEwmmM3mafmmJ5NJ+P1+pgEAJ4SrYrax2iA72mIQCoUwODjIZojnMjQ0BLfbPWFBcY1GA4vFAkmS0NDQgLq6umldQysBsvbw+/15az1MRb74Plf7rlAoIMvyuO+Mw+FAU1MTEomEiO+TfBaojvhekJD+ta99DV//+texbt06NDU1VZxoJniPZDKJcDiMeDyOrq4ujI2NQZIkJvzxtikejwculwuJRCIrAE4XEqxTqRRGR0eRTqchSRIcDgccDge0Wi2sViuMRiPz1uazdvnM8UQiAZ/Px0T0oaEhRKNReL1e+P1+5pVOxR7VajXzcyPRntaTSqXYYAGArMxjyk6fq6x0XqzP9Rovtb81f36Gh4eRTCYhSRK6u7thtVpZGzOZDLP3iUaj8Pl8rEArDYIYDAa0traisbER9fX1kGV5xjYmpYauU2TNotVq0dDQALfbjUgkgpGREVY0NxdJkrBgwQI4nU60tLTgvPPOQ1NTE/NEp0K3c4lWq4Xdbmf2OUajEX6/H6+//jp27tyJSCTCCsvOF4SQXnpEfBcIBLXKwoULcf3116OzsxNLliyByWQqyXZbW1vxiU98AldccQV7LRaL4ZlnnsGzzz5bNBGmkihlfNdqtTjttNOwdetWbNq0ib2+detWXH311eOWN5vN2LdvX9Zr9913H55//nk8+uijWLhwYUHtLjcivlcfkUgETz/9NLq7u/M+Y5FdRLHv/WOxGLZt24bR0VE0NTXh2muvxemnnz7l58bGxvDoo4/ijTfeyGrjwYMH59XzSTlIp9P4xz/+ge985zsTzozq6+vD2NjYhOtobm7G9ddfjxUrVmDhwoWw2Wxz1dyKo1zxnWf16tXYvHkzXC6XiO+TfHYmlDO+F6T8/OxnP8MDDzyAW265pZCPC0oIZanS9J6hoSGoVCrIsgytVsveo2zyeDw+q45P26PsdpVKhUAggFAoBJ1OxzKbNRoNG/kB3hPSadQ2FotheHgYfr+f+XVTJjpllScSCajVauaRnkql2D4pFIosIT0SibCinhqNJqvIZCnIzX4vR5FI/vzQaDVlWJMHKJ+x7vP5WFYCtZ986HU6HRwOB5qbm1kxTZVKVRU35TSFS6lUwmq1wmazwe/3w+12T/gZjUaDpqYmLFq0CJ2dnTjjjDOYvyQ/GDSXqNVqNjJrNBrR1NSEUCiEYDCIrq4u+P3+rJkg8wEhpJceEd8FAkGt0tjYiCuvvBLr1q0racF0h8OBjRs3ZsWtUCiEoaEhbNu2TTxo5/nsTNm8eTNuueUWrFu3DmeeeSbuv/9+9PT04PbbbwcA3H333ejv78dDDz0EpVKJVatWZX3e6XRCp9ONe72aEPG9+ojH4/jHP/6BXbt2TbjMXDxTJpNJvPXWW9i7dy86Oztx6qmnTktI9/l82LZtG/73f/93zttYa9CAxKFDh6ac1T8Rdrsd73//+3HBBReUNMZVAuWK7zydnZ1YuHAhSxIV8T3/Z2dKueJ7QUJ6PB7HWWedVchHBTnkemXzv4sNZV+TyAwgy/6kmEU4+W1RQcdEIsEy3qkQKXlSkRhJwnc8Hs+ycNFqtSwjWqlUZrWTCnTyn6d9TCaTrKBqIpFgAioJ9+SfxGdbzyW5HubluqngfeLpWNNxyGQyrAAt30aFQgG1Wg2tVsumV5GtSyUWGJ0MlUrF7GnIJz5fRjntp9VqRXNzM9rb29HQ0MBmPRCl2nfaDg0I6XQ6VvzM6/UiGo1mFU8VCGaKiO8CgaCWkCQJbW1tsNvtOOmkk2Aymcoyuy73wV6j0aCtrQ3r16+H1+tFb28vXC5Xyds1X7jxxhvhcrnw9a9/HYODg1i1ahWeeuopdHR0AAAGBwfR09NT5lbOLSK+Vyflel6k7YbDYRw+fBivv/76lM87x48fx9jYWMXZp84nZtsf+CSwakSSJCxatAgbNmxAIBBgNd0mWrYS4juPQqEQ8b3IlCu+KzIFfBP/7d/+DUajEV/5yleK3qBy4Pf7i+6BOB14z3DgvazlmRQTnSkUACl7eC6FXdoWFQVVKpWQJIn9zXtqkxDLF2mkNpIQThnrlEFPWeb08EGfV6vVUCgUWb7etH61Wg2DwQC1Wg1JkpiYT0GlmIIoidXpdJpZ7FBxERpYoFkA5YA/ZjSgwfvH5wrpSqUSdXV1MJlMaGxsxAUXXICOjg5otVro9fqiF+qYK2ifotEourq6MDAwgOHhYezatQvDw8PsfaVSicbGRjQ2NsLpdOKaa67BunXrIMsyHA4HK3pRjgEEvl/19fWht7cXIyMj+Mtf/oKdO3cimUwiEolUvJju8/ny+p/RNflDH/pQwcVv4vE4fve73024DUF+RHwXCAS1RFNTEz71qU/hwgsvhNVqRWdnJ5ulV07S6TR6e3vR29uLgYEB3H///di2bVu5mzVtRHyvPER8FxSCTqdj9pZTEQ6HcezYMSEKVihr167F9773vaqt8QCcuP53d3djeHgY+/fvx89+9jPs3bs377Iivs8NIr6fYNoZ6Zs3b2Z/p9Np3H///Xjuuedw8sknjzP8//73v1+8Fs5zlEolsxkhYXsuR3FJFKWM9LmEtpVbZIME3NzCo0qlkhVhUqlUMBgM0Gq1UCqVzAuMRN9UKsVEaBIUKQOeF4XpNSqGCbw3YMEPHsyVGMqL6bRtPvu/nNPcaPtk6zMVdBx1Ol3WT7VYuhB8f9PpdDCZTAgGg2wAhs/Al2UZFosFDocDLS0tWLhw4ZwMuswUmpmhVCrhdDqh1+thNpths9lY4KqmczIRwtqlNIj4LhAIahW9Xo8VK1bgfe97X7mbkoVSqURHRwc6OjrQ3d2Nxx9/vNxNKioivpcGEd8FsyUajeLgwYM4ePBguZsiEECr1WLp0qVYunQpNBrNpGJrNcT348eP4/HHH8/SIKqdWonv0xbS33zzzaz/16xZAwDYv39/1uvzQbyZa/jsaFmWmV84iavRaLTsQiuf5c1bzxQjcz1XuJYkCUajEWq1GkajEXq9Hmq1Gnq9nt3kkVgbj8eZ7QhVBY/H4/D7/axoKlnV8O2kDGulUsmWIUGe4C1jZtOPc7fJZw/TbAN6vZouFgqFApIkwWAwsH5LAxvV+L2nGRK0P1QwlL6LGo0GLS0tWLt2LRwOB+x2e8X5ydHghizLMJvNWLBgAU4++WR4PB4cPnx4wqrtAgGPiO8CgaCWUKvVWL58OVauXImmpiY2/VcgmG+I+C6YazQaDVauXInly5dP2Y/i8Tj27duHw4cPV9UzsKB6qLb4bjAYcNZZZ0GpVGJ4eBhvvvmmmNFRJUxbSN++fftctqOmIPFRq9XCbDZDp9NlFYIkwZjPnC41lClPGd5kscL7qRcjc16hUMBoNKKxsZH5PdtsNlbQkoR0EjDJA52E9GAwiFAohJ6eHvh8PsRiMfj9/iyBnI4tCfiJRIJlFdMgBu0f7fts4TPQ+WKu9ENifjV5yCmVShgMBthsNlitViamV+vNt1KphF6vRyaTQTAYhCzLkCSJ9W2dTocVK1bg/e9/P7OzKVVh0ZlAdkkKhQJr166FxWLBsWPHWLHeaqZWRrTLjYjvAoGgltBqtbjkkkvwyU9+EiaTCVartdxNqjlEfC8NIr4L5hpZlrFx40Z87GMfm9LOwe1244c//CG6uroq3n5SUJ1UW3y3Wq246aabcOWVV2Lnzp341re+VfVCeq3E94KKjQpmDwm55OlNwYS3jSjHFA/edoX8yuk3tTHXGqVQaECBss9lWYbBYGDZ6eStzmcB8wI0L0LrdDpEo1E2EJF77PgMdfosv47cQpOFZKbzmej0Py+o5/6U29qlEMjbnnzuy12wYzbwnvp8f6eZCVqtFkajETabDUajEZIkVZSADmTb1Gg0GmZD43a7odVqq36aWK0EYoFAIBCUDqVSCavVio6ODuj1+nI3Z0poBh0VR+eTbaoVEd8FguqGntVNJhMaGhqwYMGCKYV0k8kEu93OrmUEXdfEd1swW6otvqvVajgcDjgcDhw/fpzVYKtmaiW+CyG9DJDASqIwWX6UW2Qlz2uyWDEYDFmiejKZRCwWQzKZRCgUQiAQYBnX0/VcJyGSss/pd0tLC/Or1uv1WYVYefGSRMN0Og2TycQKXaZSKdTV1cHj8SCVSiEajWYV8uSPeSKRYMeW9o1fP198dDr+6fkEdDqflIFONwj0d7Ey+ksJeYobjUbIslzVIjrBD9hoNBomnlNR1ZaWFjZrJNdLstLQaDRsZkcikYDD4YDH40EsFkMkEqmqwETUSiAWCAQCgWAizGYzrrjiCixYsADd3d3YunUr+vv7y92sWSHiu0BQvSgUCqxatQoXXXQR6uvrsX79+qzn6YmQZRkXX3wx6urqsp6bDx48iOeee67qM3EFAkHtxHchpJcBPiuaxHReSCcbklKK6eR/bbFYoNFo4HQ6UVdXxyxolEolEokEIpEIkskkRkdHkclkkEgkmOXLTLZFAjqNYre2tkKSpHHCdr7PkoBLomc8HodGo0EkEsHQ0BC8Xi8Tv0k0px8S0qkIKS/W817farUa6XR6St/0fOeHtsEXRCUhnfzdq80fHTix/1qtNssjvdIytGcCnXMS0OnHZrNh8eLFsFgsaGlpgcViKbjydCnRaDRobm5GQ0MDwuEw6uvrMTIygmAwyOoHCAQCgUAgqC4sFguuuOIKbNy4ETt27MC+ffuqXkgXCATVi0KhwCmnnILPfOYzaGpqYnWzpkKv1+Piiy/G+eefz15Lp9N48sknsXv3biGkCwSCqkEI6WWAtxhJJpNM2CVxdToiK1k6UDYtWTuQyEyjvIlEArFYjAn0+cQ0EpI1Gg10Oh0kSYIsy9DpdExo5C0vkskky15XKpWIRqPTtpAg+wzall6vzxLQqf3TyXYmMZzamEqloNVqodPp2HHNd+zpc/zxSCaTTFTnl+GzxvO1iX8/t6gof8zzzTiYLiRW80Vf+d+lJLcAbbWTW1RXqVSy2gUWiwU6na6q9pe+yzRTw2g0spoA1UitjGgLBAKBQDARlOwCgN2bVzsivgtqFYVCAavVCrPZPOH9eSAQgNfrnVESjFKpZDNqJ8Ln88Hr9Rb8HdLpdLDZbJBlGU1NTTCbzTO2z6DEJR5JkubFTOdKRKVSwWq1spnWsiyXu0lzAtVxM5vNsFqtVfnsq9Pp0NzcjAULFiAYDDKnhWqjVuK7ENLLAGVGAycCZTgczsqapoKeE3Uksj1Rq9Vob29HW1sbdDodGhoaYLFYmAVLKpXC4OAgjh07hkgkArfbDa/Xm7UulUoFSZKgUqlgs9nQ3NwMnU6XFeApU5vPtCbxOhKJZBXUnEwkJmsQSZJgtVpZYVGj0QitVptlqTITVCoVDAYDJElCIpFAY2MjgsEgFAoFQqFQVrY8HV+++KhKpWLtpocV3h+eLsSTCen8TALKQE+n04hGo+xckC3OTC4udJx5sZdmAvAzF0oFtUetVldlgMqF+htfC8Bms2HZsmVwOBxwOp1VdWNHA0FGoxGdnZ1QKpU4duwY3G73jGaNVBLVFFAFAoFAIBBMDxHfBbWIJEm45JJLcPnll+ed8ZpKpfDCCy/g0Ucfhc/nm/Z6jUYjrrrqKlx44YV5B9sSiQSefvpp/O1vf0MkEimo7QsWLMCHPvQhLF68GJ2dnZOK9oLKwGg04pprrsH555+P+vp6dHZ2lrtJc8KaNWtw4403orGxEStWrKiK2eS5LFy4EJ/5zGcwNjaGF198EX/+85/h8XjK3ayCqIX4LoT0MkAdiwTdid6fCBL9tFotnE4nFi9eDJPJhMWLF8PpdCKRSCAUCiGRSODQoUPMzzwSicDn82Wtn7LDNRoN9Ho9bDYbdDodG2HmBdx8tjPhcBgul2tcJnw+KFOWioparVZYrVZotVqWDT4T+G1KksSsXqxWKzQaDQKBwLjCoySk8+I4ieW8iE8Z8iSu5/NL5wdEKBOdftPAAtm50OsztcDJ9YqnfeE91ktp/0MDD7ne9dVMbka60WhES0sL6uvrYbFYqmY/+ZkLNLCWTCbh9XqrNnutVka0BQKBQCCoJUR8F9QqarUaq1evxvXXX583mzuVSiEUCuHJJ5+ckZCu0+mwbt063HTTTVCrx0s8kUgEAwMDeOqppwoW0hsaGnDZZZdh/fr1BX1eUHp0Oh3Wr1+Pf/qnf6ra58GpUCgUaG9vx1VXXYWOjo5yN6dg6uvrcemll7JkzCeffLIqhfRaie9CSK8gpttxDAYD6uvrYTAY0NHRgY6ODhgMBjgcDpaRTvYmoVAIwWAQPp8PyWQSwWCQCb2pVIr5hJNPNGUb88ItL9BRoU/KTKbl1Wo1szCZaD/IPoZEb/pcsS7q1FZJkpBKpbIsaXIz5XnP9Ewmw8RhXiDms9Rp33OFdFqGvO4pW5z3SJ/KE53WrdPpWGY+2d2o1eqs6W60L5T1Tpnu6XQasVgM0WiUDXhMNaiRuy/873zwlkTV6PE+EbwHPg0s6fV6GAwGaLXaqhHSeahgsNlshizLVbkPAkEto1Kp0NbWhtbW1iljZDKZxPHjx9Hf3z9vrssCwVzgdDqxcOFC1NXVoaOjY96KCgKBoPJoaGhg158FCxZMeP1RKBRobm7GmWeeiZGRkUnjOy3b0dEBp9OJlpaWCRPTxLPA3GIymdDZ2Qmr1Trlsj6fD0ePHoXf75/zdsXjcRw+fBgvvfQSzGYzFi1aNK02CgSCyRFCepmZ6UOvQqFAU1MTzjzzTFitVpx88slYtWoVy/TWaDRZYmdrayuWL1+OQCCALVu2IBqNIhKJYGxsDKFQCCqVivmd6/V6yLLMRNzcQMyLyeTBDIDZtSQSCZaVnQ+lUglZlmGxWGAymdi2ZvsgQ+IycGK6nMlkYmIoTevJl/3P27ukUinE43HmkU37zx8H3uYFyM5IJyE9NyOdstAnGplTqVRsUKKpqQkOhwM6nQ5OpxN6vX6ckE7Q/kSjUXg8HkSjUbhcLvT39zNBPRqN5j1elFVO2QokivMDCxNBx4n2qdrhB0PouOj1ejidTjQ2NjKP9GpDkiQ0NjZCq9Wip6cnb2ZKNVArI9oCQS6SJOH9738/br75ZuaNPBF+vx+//vWv8eijj+atDSIQCE5w6qmn4o477kBLSwsrkCcoDyK+C2oJhUKBtWvX4jOf+Qyam5snvf4olUqcccYZaG1thcvlmjS+q1QqnHvuubjtttvgcDgmFdIFc0tLSws+/elP47TTTpty2bfeegs/+tGPsH///jlvVyAQwF/+8he8+OKLOOmkk/DZz34W69atm/PtCmqXWonv1amu1Dh6vR6NjY0sYDY3N2dlkROZTAayLMNkMiEQCMDhcMBoNAIAE695v3USV/min7nw9h6UyU6fmaoYAp/9Tp/JFacLhRe7aTCBMtInWj8Jx/z7lJXOr5O3dsn9PF8gNpFIZGWk837sE8HbtxgMBlgsFuj1ejQ0NMBoNLKs/9zBBso4D4fDUKlUiEajSCQSGBsbY23JVwA2d3YBn30/Hfis9Gq60E0Eb1PEF92VZRmyLFetAE0DAvF4vGoHA4DaCcQCAQ/NjGlra8O6deumLAzl8Xjw1FNPVe33XCAoBQqFAjabDaecckpVT/2eL4j4Lqg1HA4H1qxZg7a2timXra+vR319PTweD5555hn2nJ37vKZQKNDQ0IA1a9bAbrdX7X0AX7Oq1PW/CiF3ZjcAmM1mrFixAqeffvqUn08mkzCbzeP0lrnY92Qyie7ubnR3dyOdTpckC15Q29RKfK9OlagGIYFPpVLBYrGgubmZeThPJhaTTUgikUB9fT3a2trg8Xjg8Xjg9/uZmEzBeTq2HfQZ3kJkusIqica8z3axg37uuqfy8yZhmL9BSSaTWQUoc21u+M/xn+eP50QXET7T3Wazob6+HpIkoaGhATabDZIkQa/Xs/M90aAGZc9bLBbodDoAJyw9otEoRkdHMTo6imQyiUgkwoR1uknRarVMYOXPP4n/Ex2neDyOcDgMnU437pxX280bnSuy36EBonyFZqsNlUoFWZaRSCSq1p5GIKhFFi9ejNNOOw02mw0nn3xy1Q7mCQQCgUAgmB2SJGH9+vX4yEc+gtHR/5+99w6Tozrz/b+dc5qcNKMZZSEECkYkE0wULCbINvZ6wQkWLtjG5rfrXW94lg0X1ru+rGxjGYMxBvsCWi/GIoNkgzBIgHLWjEaTQ0/nUJ2qurt+f+ieQ/Vo8vTMdE+/n+epR5rq6lOnqqvr7fqe93xfL/bu3Yve3l7+ejabxfHjx/H888+jsrISa9aswbJly4rud39jYyNuvfVWDAwM4NixYzh06FDBzrBTq9VYuXIlzj///JxZBS0tLaitrZ1QG1VVVbjxxhuxbNkyvk6SJBw+fBjHjh0bNzmRIIi5h57QigRmwaIsMFpdXQ273Z5TLFOJUnxXq9Wor6/H8uXL4Xa70dvbi6GhoRx/byaojmfvwWC2JcOF2NFQZl+PlEGfD5Ri6GTEejYYoFKpeDFSZfFR5f8Zymxmpag+3igc+yx1Oh0aGxtxzjnnwGg0wmq1cj/r4X7tI7UBgF8TsiyjsrISTU1NSKVSaG9vh0ajQTweh8/n40I6G8Rg+2NCOvss2ec5Uv9Z4YtoNAqDwcDtXYrtx5oSSZKQSqUgSVJO4V02awIovgEC4BOPdLVaDbPZXLTTPEtlRJsggDP3mvPPPx9/9Vd/hYaGBj4riSAIYr5B8Z0gxsdkMmHjxo247LLL0NbWhv/9v/93jpCeyWSwa9cuHDlyBFVVVXjwwQexZMmSoqv/sGLFCnznO99BPB7HL37xC7S2thaskK7VavHpT38a3/rWt+BwOPh6vV4Pu90+oTYaGxvxl3/5lxBFka+LRqP46U9/itbWVhLSiaKmVOI7CelFBBNXmW828zIfSygeKQvZaDTyAKv0Ux+ema4swsi2BXDWthMR0YsF9sVXHjM7v6OJy8rzMtGsfFZw1WKxwGq1wmg0wmQyTTp7WGk7o7TbMZvN3MNep9ONWDiWDToobU3GQym4j3SNFBMjzURgFOPxKGHXxVgzGoqBUgnEBMEwmUyorq5GTU3NXHeFIIgCRGkFKIoikslkUcY7iu8EMT4qlQp2ux12ux3BYJDPQFYSi8UQi8WQzWYRi8XOel2SJCSTScTj8YK9X2i1Wm5jx55bCw3WR5PJhIqKCtTV1eUI6ZNBr9ejoqIiZ100GkVlZSWcTif/rAp1MIEgxqJU4jsJ6UWCUghV2pVMJNAM98VWCmuZTIZbf4TDYYRCIRgMBm51oczEVnp+R6NRBAIBHphZcc3xLGHS6TRSqRRSqRQXY/Np78LsR1j7yoGBybYDgPcPOFtcZdsM/3c02HE6nU4sXrwYVqsVNTU1vCjqdLMHWPs6nQ7V1dXQ6XSIRqM550H5L/u/Uhwf68aXzWaRSCQQDAah1+t5gFcWLi0m2PGEQiFEIpGca4ZRiD/kJgr7rpOQThAEQRDzg8bGRnzta1/Dddddh7179+Ltt98uSs9biu8EMTu0trbijTfewODgIPbt24dUKjXXXTqLkydP4s0334Tb7cbevXsLso9Lly7Fxo0bUVtbi3Xr1o04qDEdDAYDLr/8clgsFrjdbrzxxhuzUoyUIPJNqcT34lVYSpDhYvpkRb6RLEOYkB6PxyEIAsLhMCKRCBKJBFKpFERR5OIiG9Fm9h6hUAihUIgL6azA5ljFPdPpNJLJJBfR853JrhSGmff1RK1qRuvz8Iz9kTL3J5qJrtFoYLPZ0NLSguXLl6Ourg5msxkGg2FantzsfUzUrqysxOLFi9HS0oKKigpYLBYe8Fn/lQK6Umwf61ww4TkajfLPcTrndy5hQnokEkEsFkMqlcr5PItZRFdmpM9EHYL5zJYtW9Dc3Ayj0Yh169bhT3/605jb79y5k/+gbmlpweOPP37WNi+++CJWrlwJg8GAlStX4qWXXsp5/b333sNNN92Euro6qFQq/P73vz+rDVmW8dBDD6Gurg4mkwlXXHEFjh07Nq1jJQiCIIqL+vp6fPGLX8S3v/1tXH311bBarXPdJYIgCpj29nY888wz2LJlCz744IMcO5FCoaOjA8888wwee+wxfPDBBwUppLe0tOCOO+7AN7/5TVx66aUwGAx5bV+v1+OSSy7B/fffj69+9atYvHhxXtsnCCK/FF8aaYmiLGIpSRLi8TgSiQR0Ot2Y9hpKITiVSkEQBMTjcZ51q/T3Zu1ms1kYjUbuY87EWeYnzcT3ZDKJVCrFrUGUfVCKy0qxnAm4kiTlZP9OJ2tWKf6y8yOK4rQtZzQaDXQ6Xc45UB5bNpvl+2Gfz2gwax2tVguj0citXfLpFa889+x86nQ6mEwmWCwWPnuA9Z15wSt97idSZDadTkMURb6w/RQLSh/7VCrFp88pBxTYdkBxZqUrP+Nitl2a7RHtrVu34jvf+Q62bNmCSy65BD//+c+xceNGHD9+HI2NjWdt39nZiRtuuAF33303fvOb3+CDDz7Afffdh8rKSmzatAkAsHv3btx+++3413/9V9x666146aWX8IUvfAHvv/8+NmzYAODMtNzzzjsPX/va1/j7hvMf//EfePTRR/GrX/0KS5cuxb/927/hmmuuQWtrK2w226SPlShMIpEITp8+jWQyibKyMpSVlRXlPYggiJkhmUzC4/EgHo/D7/ePWiC+0CmVjDWCmA7ZbBY+nw+hUAgdHR0QBGHUbdPpNIaGhtDa2pozy7mnpweCIBSkOM1gz9T57qPD4UBFRQVUKhUCgQCCweC0dAFmrTtTsBpv+ZipPl9Jp9Pw+XwIh8Po7u5GIpGY6y4RwyiV+E5CepHAxGtRFOHz+dDd3Y14PI6mpiZYrVbudT38gZuJ1vF4HIODgzh16hSCwSAPxEwczWazCIfDyGQy0Gq1CIVCvF12M2dejOl0GpFIhG+fyWRgMplyPJmVIh4TtrPZLBdytVotBEGAXq/nXu/TgYmFyWQSgUAAsVjsLFuTicKy9s1mM6qqqmA2m2G1WuFyuaDRaHimfiqVwsDAACKRCD/Ho4npOp0OlZWVsFqtqK2thc1mg8VimVYW+liwjGSDwYD6+noYjUb4fD5Eo1E+CMIevpSFUscaDGAZ6ZlMBkajEYFAAFarFTabrWgC/vCBJa/Xi97eXsRiMYRCIT44xAYVilXAUs40YYNdxchsB+JHH30U3/jGN3DXXXcBADZv3oy33noLP/vZz/DII4+ctf3jjz+OxsZGbN68GcCZYkl79+7FD3/4Qy6Ib968Gddccw2+//3vAwC+//3vY+fOndi8eTOef/55AMDGjRuxcePGMY9l8+bN+Pu//3vcdtttAIBnnnkG1dXVeO6553DPPfdM+liJwkOWZezfvx///u//jrKyMtx222347Gc/C71eP9ddIwiiQOjs7MSvfvUrtLW1obu7uyhtXYDSedAmiOkQj8fx2muv4fXXX0cwGMSJEydG3TYWi2Hbtm04dOhQzvPLwMAAfD7fbHS3oFCpVFi/fj2+9KUvwWQy4X/+53/w6quvku94kRMOh/Hb3/4W77zzDvx+P7q6uua6S8QwSiW+F5W1yyOPPAKVSoXvfOc7fF2pTHeXZZlnhAuCAL/fD7/fz4XpkS46tp5lEIfDYbjdbvj9/pwRXyYuMv/rQCAAn8/HF6/Xy//v8Xjg9XoRCAQQDochCAKy2Sz0ej30ej0vwsEyrpnAygK6KIo52exM0J3ul2Z4Vj2z6pisiA58IqQbDAaUlZWhqqoK9fX1aGlpwaJFi9Dc3IympibU19fD6XTyIqFjZdVrNBouxrPiospisflE6W2v1WrhcDhQVVXFBwKUFjvsc2AzBMbLSGefHzvHgiAgmUxO+hzPJcrM+lgsBr/fnyOiS5I0KcueQoR9F5jve7Eeh3L2wFQW4EyGr3IZLdtFFEXs27cP1157bc76a6+9Frt27RrxPbt37z5re+Zby36oj7bNaG2ORGdnJ9xud047zEtxMu0UMqUc35X09vbirbfewquvvoqTJ0+OObhJEETp4fP5sHPnTmzbtg0HDx5EMpmc6y5NiXzEd6I4oPg+dSRJwpEjR/Dyyy/jD3/4A9xu96jbplIpHDp0CNu2bcPvf/97vnz88ccjFiGd76hUKjQ2NuK6667DjTfeiCVLlhRF0hcxNolEAvv378fvf/97vPfee/D7/XPdJWIYpRLfiyYjfc+ePXjiiSewevXqnPWlNN1dKQx1dXUhHA7DaDRyIZcVrWRCoSzLCIVCPBO5v78foVAIiUQiZyqoUshlgqgoiojH41yM1Wg0vFAoy0JXFrdkQjKzQmF2JSwznQUupdd6OBzm+1ZaybB1YwnTw+1c2DEJgoBoNMqnsE32y6jRaGC322E2m1FWVoaFCxfC6XTC6XSiqqoKGo2GC66xWAzpdBoWiwXhcBjpdJpb4wwXP9RqNUwmE2w2G8xm86wV52QDAtlsFgaDATqdjovpUxG/lZY24XCYZ9VXVlbmXBOFnMnNBgOi0Si/VpjozGZPsIK4rHJ8IR/PSLDZH1P9HswnFixYkPP3P/3TP+Ghhx46azufz4dMJoPq6uqc9dXV1aM+uLjd7hG3Z9MOa2trR91mrIehkfbD3je8ne7u7gm3U6hQfD+bdDqN06dPY8eOHeNOI45Go+jq6iqqAc1Cor6+HosXL845z7FYDKdOnYLH45nDnhEEQRQ3FN8/YXBwEDt37kRdXR1PyhrtWbevrw+nT5+Gz+crqPgeDAbx0UcfIRQK8dg51VlzgiCgtbUVfr8fBw8ezJvY73K5sHTpUrhcLqxatQomkwk6nQ5Lly7F1VdfneMR7/f70dbWhmg0OmJbVqsVS5cuRUVFBc4//3xYLJa89HE8zGYzzjvvPESj0XH7OBkikQj27t2LdDqN6upqLF26FCaTKQ89JojSoyiEdEEQ8OUvfxlPPvkk/u3f/o2vL8Xp7rIso7+/H++88w6sViv8fj/C4TCsVisaGhrgcrm44J1Op9HR0YGjR48iHA7jyJEj6O7u5nYvSl9zlUrFBfhMJoNIJAJBEHJEROVIEbNx0Wg0MBqNMJvNXEhnArooinx7lhnOsuM1Gg23RUkmk9xzjIm9wBkxcCwxnYm6qVQKwWAQ8XgcQ0NDGBwcRCwWQyKRmLSAqNfr0dDQgNraWtTU1GD9+vWoqqqCzWbLsXZhonlDQwO8Xi96enqQSCTg8/m4BY5y3zqdDmVlZaitrYXVap1VIZ2J94IgwGg0QqfTTSlTHwB/XywWQ29vL6LRKERRRHV1NfeRn61jmwzss5BlGbFYDF6vF6FQCENDQxgaGkImk+HFRgVBQCQS4eetGH/QMwsoj8eDUChUtFmt+Zga1tvbC7vdztePJ0oOHzQZz+JnpO2Hr59sm/nqWzFA8X1kUqkU3nzzTezdu3fcGiKZTIbfx4jJoVKp8KlPfQr3338/qqqq+Pquri5s3ryZhHSCmCFKZep3KUPx/RNkWca+ffvQ19cHp9OJb3zjG7jjjjtG/E2azWbx4YcfYsuWLfB4PAUV30+fPo0f/ehHsFqtuOWWW3D//fejoqJiSm0NDAzgF7/4BXbt2oVIJJI3+5nm5mZ885vfxOrVq1FWVgaHwwG1Wo0bbrgBF1xwQc79Y9euXdi8eTNaW1tHbKumpgbf+MY3cOmll8Jut+f8TphJKioqcOedd+Lmm2/Ghx9+iP/6r//CyZMnp91uf38/fv7zn8Nms+Gaa67BAw88gIaGhjz0mCA+oVTie+EpXiNw//3348Ybb8TVV1+dE4jHm+4+WiBm2aaMYvMXZIJtNBqFx+OBz+dDKpWC3W6HXq/nIm8mk4Hf70d/fz8ikQj8fj9isViOQM0sQIBcoXw8kVWn051VjJRlrzMhndljMN901i4T8mOxGFQqFZLJJCRJ4u0oC1eO1Q/WHhNBE4lEziJJ0qS/jMwb3eFwwOVyoaqqCtXV1bBarXA6ndwrntmCRCIRqFQqRKNRnlU/UuEnlUoFg8EAo9EIvV4/a+KXSqXi4jaz2dFoNMhms3zwZLKwgRFBEKDRaBCLxXJmKRSikM5gFknMXogVGmXXpdIKSRRFGI3GohQrM5kMt+5hA1rFSD4Csd1uzxHSR6OiogIajeasTHGPx3NWJjijpqZmxO21Wi3Ky8vH3Ga0NkfbD3AmM722tnbK7RQiFN9HJpvNwu12T2rmAjFx2G8fNqNq5cqVqKur468bjUY4HI457CExU7DC4mz2JDE3lMqDdilD8T2XYDCIYDAIq9WKwcFBpFKpEa1GMpkMvF4vjh8/jqGhoTno6ejEYjG0t7dDrVZjzZo1I85yV84uHwmmEQiCgNOnT+Pw4cN56RuzknU4HFi2bNlZsyBqa2tzfkMDZ35Xj5WRbTQa0dzcfFZbM41er0dTUxMAwOv1wmg05qXdRCKBjo4OAMDixYv57PpiiIfsuilmy9LxUGpbzF2iGCmV+F64itf/44UXXsD+/fuxZ8+es16b6nT3Rx55BP/8z/+c347OIsrs2c7OTmSzWRiNRpw6dQo2mw2ZTIYX93S73bwwqSAIXBRk4rYy4DHfaPYlnuiFzILl8KCpVqtzRtCVr0uSxP2KWSa7wWCAw+GAzWaDRqPhNiTK97KbKLOuSCaTSCQSGBwcRDQaRTgc5r7rUykwajAYUF5ejvr6elRXV6O8vBxOp5N7miuFaLVajfLycqhUKoTDYZSXlyOVSvE+KI+dHSOz35lNYZYJ5mq1Gnq9ngdj5uGsvBbYgIjSHohdF0rS6TQv5mq32zEwMIBYLAaXy5Vj0VMoAjT7TqTTaXi9XnR1dSEajSISieRc88CZH4kDAwOQZRkNDQ1FmZGeSqXgdrvR19cHv99fMJksk2U2A7Fer8e6deuwfft23HrrrXz99u3bcfPNN4/4nosuugivvPJKzrq3334b69ev5wOCF110EbZv347vfve7OdtcfPHFE+5bc3MzampqsH37dqxZswbAmVkHO3fuxA9+8IMJt1NoUHwn5ora2lpcfPHFqKmpwYYNG2ZtujYxd8iyjFOnTuG5555DdXU11qxZgzVr1hT04P98plQetEsViu+jI0kSPv74Yzz11FM5yWMMWZaxa9cuJBKJOejdxJBlGSdOnMCvf/3rnGSVsrIyXHTRRWhubh7xfclkEh9//DGOHTuG3t5e9Pb25qU/NpsNF110EZYsWYLFixfPWuZ4MXP69Gk8//zzqK2txfnnn4+1a9eOeD0WAplMBocOHcK+ffswNDQ06gyCYmdwcBC7du2C2+3Ghx9+WLS1DUolvhf0r8fe3l488MADePvtt8cciZvsdPfvf//7ePDBB/nfkUjkLB/dQkaZbdrW1oaOjg4u1Gq12hwRlGV/M/EZQM62TFQHwMVS9r6xxLfRvLCZMM8+g9G2E0URgUAAarWaZwYbjUZUV1ejsrISWq0WFouFe6+z9yt92lnB03g8zrPumf/1ZIVDlg1vMplQU1OD5uZmVFRUoLq6GmVlZVzYV2ZxGwwGiKIIk8mEeDzOvZGz2exZdhpqtZpb4DDhejZhIjnrAysuy2YMsEELk8kErVabMxjDzrfyxiZJEoLBIMLhMPR6PaqqquBwOJDNZmGz2XggLhQhnc3SSKVS6O/vx8mTJyEIAgKBwFkj28xvOBaLwWQy5WQpFgOyLCORSKC3txft7e0YGhoacZYEcTYPPvgg7rjjDqxfvx4XXXQRnnjiCfT09ODee+8FcCZ29Pf349lnnwUA3HvvvXjsscfw4IMP4u6778bu3bvx1FNP4fnnn+dtPvDAA7jsssvwgx/8ADfffDO2bduGHTt24P333+fbCIKA9vZ2/ndnZycOHjyIsrIyNDY28iJdDz/8MJYsWYIlS5bg4Ycfhtlsxp//+Z/P0tnJLxTfibmksbERd999N9auXcvjIjH/OXLkCDo6OmC323H//fdj1apVJKQTRJ6h+D42oijij3/8I3bv3j3q8SaTyYIW0WRZxsGDB9HW1pbzTLt48WKUlZWNKqTHYjG8/vrreOaZZ/J6jE6nE5s2bcKtt94KvV5Pg+MT4Pjx4+ju7obVasX/+l//C+ecc07BCunpdBrvv/8+/uu//guRSASxWKyoBNeJ0t3djSeffBL79+/n+hhRuBT0r8d9+/bB4/Fg3bp1fF0mk8F7772Hxx57jI9GTXa6O/PiLmbYzYNZUAA4y0KFbTfajWa40K30Sp/I/odX11XawijF/JGq8Cp905mnOPPeNpvNOV7rALiYzopCMmuVeDzObTrY+qkWZGHHz+xl2GADy0JX2uGwPikHJZQWNyOhLMI6WwzfF5v2puyLXq+HwWDgAwlarRbZbBYajSZnQEZp16P8/FjhVTYowjLd2UDNaH2ZaZTXXDqd5tdJIpHgovpI08NSqRS36mGFOkfyvS40lN89NqAkCELJW7tMhttvvx1+vx//8i//gsHBQaxatQqvv/46n145ODiInp4evn1zczNef/11fPe738VPf/pT1NXV4cc//jE2bdrEt7n44ovxwgsv4B/+4R/wj//4j1i0aBG2bt2KDRs28G327t2LK6+8kv/NHhS/8pWv4Fe/+hUA4Hvf+x4SiQTuu+8+BINBbNiwAW+//XZRzpgAKL4Tc4ter4fT6ZyytytRnDBrCFEUEY/HiyY2st/HbNajslhesVIqGWulCMX3sZFlGfF4vOhFMpbUp8TpdMLr9Y7qd+73++HxeOD1evM6W1aj0cBms6GysjJvbRYLGo2GJx8qYc+7o90vmYZUyIM2oigiFovx+mZ+v3/UoqssSdNqtcJkMhVlgoQkSQiFQnmrFzBXlEp8L2gh/aqrrsKRI0dy1n3ta1/D8uXL8Td/8zdoaWmZl9Pdp4rSjmUiF7By5H+yF202m+Ue5MyehfmAq1Qq7kHJhNbhWfHKfSaTSQSDQWg0GiSTSfh8Pp49zX4wMfFXFEVIksQ9uplwywTDyVjSjEU+CgEOpxAqrrNzo9PpYLPZoFareda9TqeD1WrlPvvMnsbn88Hn80GSJESjUf7Djx1POBxGe3s7zGYzZFnmgnx5eTlsNtucWbywa4/ZuZw+fRqCIKCzsxN+vx+iKOZ4LTJCoRCOHTsGl8uFuro6Xpi3GLzjotEoEokEhoaG0Nvbi56eHgiCQNYuk+C+++7DfffdN+JrTNRWcvnll2P//v1jtvm5z30On/vc50Z9/Yorrhi3vyqVCg899BAeeuihMbcrFii+EwRBTIxQKIRXXnmFFyscHByc6y5Nm1J50C5FKL6XLj6fD1u3bh3R0gc4I+7u2bOnIJ6J5wuVlZW4+eabcc455/B1bODqzTffLGiLoPE4ceIEXn75ZQwODuLAgQMjPrcDZ2LCkSNH8KMf/QiVlZW46qqrcNVVVxVshv18p1Tie0EL6TabDatWrcpZZ7FYUF5eztfPt+nu02GqFy0T1CfzXmVmsiiKOUIj80Znwjbzph5J5GZCfCqVgkqlQiQS4dnfLEtaWRBVaVXD2p3Ol3UsJiL+Ds9SLxaYlYtOp0N1dTWampq4kG40GiFJEveaZwI5K1zJhHR2zgVBQG9vL/dft9lsvB2LxZJjHzRbsOxsdm35/X50dHQgFAphaGgI4XB41CIebGDAbrdj3bp1SKfTfIZEIX/OmUwGsVgM4XAYfr8fAwMDGBgYOGsAiyAKAYrvBEEQEyMajWLHjh3YunUrL0RGEIUKxffSJRQK4c033xzzeamYiygWImVlZbjxxhuxceNGvo5pJO+++25RC+kdHR147rnn0N7ePu7z7KlTp9DR0QGr1QqHw4HLLruMhHRiRiloIX0izLfp7rMBExmHC9vDrTsm2hYrRjlcSB9uB8K2H69f7P9MJFfazrBMd+Ux5ANlleRkMglBEGAymbhlDPPQZNY5bACBWYUw2xAmPo90nKzSNLOAmQ2Gf76sCrRWq+UDFRaLBSaTKacYKhvASKfTMJlMMJlMUKlU0Ol0OeeA7SOTyUCSJMRiMQSDQYiiCIfDwfdhNBrPEqPzKUoP7wsryBsKhRCPxxEMBiEIAmKx2LgzF9h7E4kEotEoAoEALBYLnypWaLDjyGQyCAaD8Hg88Pv9fMCpmH+slsqINjEyFN+JmSIWi6G9vR0mkwkulws1NTXklV1CZLNZuN1uHD16FA6HAzU1NXA4HHPdrVFR/s6aL1B8L20ovs9f5mKgTxRF9PT04PDhw7BaraitrS3IZ7Z8odFoUFVVhfLycixZsgROpzPnNwyrgTYRstksPB4Pjh49muMtbzabUVtbO+sWKclkEoODg3wWeTwen1CtL6YdTcfmdy6QJAlutxuhUAgdHR1Fb/kElE58L7qnhnfffTfn7/k23X02kGWZ26Mos72Z0DpRWxi2MHsV1hbLbmdtMS/tiXwx2HZMJB8uuirF9tFuksr3sL6Md0ysr4lEAoODgzCbzYjFYqiqqkImk4HJZOI2JUyojcfjGBgYQDAY5FNth4aGEI1Gz+pbJpPhwiwTlWfLKkQptDK/tPLyctTU1MBkMqG2thbV1dXQ6XTcY01Z1JW1EYvFIAgCQqFQzrWinB3Q19fHByEikQjq6upgtVrR0NAAi8UCnU4HvV7PP5d8iOnKzzeTySASiUAQBESjUZw6dQp+vx+BQAC9vb1IJBJIpVJjBthUKoVAIIB4PI7W1lZ89NFHcLlcWLlyJerr6wsyK519PgcPHsShQ4cwODiIYDBYVD8kRqJUAjFxBorvxGzR0dGBn/zkJ3C5XLjmmmtw5513ory8fK67RcwSqVQK27dvx6lTp9DQ0ICvfvWruPzyy+e6WyUFxffSguI7MZMEg0E899xzeOedd3DuuefirrvuwrJly+a6WzOG2WzGZz/7WfzZn/0ZnE4nli9fPuW2JEnCH/7wB3R2duaI7ytXrsTdd9+NFStW5KPLE6a/vx9PPfUU9u/fj6GhoaL3Cx+PQCCA5557Du+++y7XK4qdUonvRSekE9NHWZQQQI6QPlnhjY3+McGVtTV8H5NtUymYT5bhQjorWjpeNjzL9olEIggEAjAajYhGo3xE22AwQKPRQJIkbn0iCALC4TAikQii0SgEQeAFKoe3L0kSRFGERqOZ9ZsE+2zT6TS34rHZbDCbzbBarbBarTwjXafT8az1TCYDm80Gh8MBjUYDo9HIg6xy9gL7vCKRCBKJBEwmE6xWKzQaDVKpFMrLy6HX63k2+0yI0awP7HMJhUIYGBjggxssU3482IBDJpOB1+vlAvzChQvz3ufpojz/kiRhcHAQbW1tCIVCRT2Vj1EqgZggiNklGAziww8/hFqtRk1Nzby4XxITJ5PJoL29He3t7WhpacH1118/110qOSi+EwSRLxKJBA4fPozDhw8jkUjg85///Fx3aUbR6XRYvnw5rrvuumnbl2SzWXR0dKCjoyNnfTQaHbO+00wRiUSwd+9ebN++fdb3PRckEgkcOnQIb7755lx3JW+USnwnIb2EYRcqy/yeyoXL/K+ZuMqEa6X/2Wx8ITQaDVQqFbRaLc94ZtnxAHgGPiuSOpqwnslkEAqFoNfrkc1mcfr0aYTDYdhsNpSXl0Oj0fAq1/F4HO3t7fB6vejv7+cFT0eafsQy2MPhMGRZht1unxXfLuZVL0kSEokEP3YA3NeeedKz86VWq5HNZrnozV5T+sGPJoSzTHVRFBEKhaDRaCAIArRaLfdOZ9PPDAYD/6xYH1j7yn+BXOsWZfY5Ox6WaS+KIrxeLwKBAKLRKPx+Py9KO9mBmWw2i0AggPb2doTDYSxcuJAXZbVYLHNuA8DOA8u4HxoaQn9/P3w+HwRBmNA0OIIgiFJGlmX09vZi+/btKCsr4+sHBgbmRUFHYnxisRj27t0Lo9HIPZydTudcd4uL/adOncLg4OC8yFIjCIKYafx+P9577z243W40NjZi+fLl0Gq1aGtrQ0dHR471zMGDBxEKhUZtKxqN4sMPP4QkSaipqcHKlSthtVpn/BgEQcCJEycwODiIQ4cOIRKJTOr9KpUKixYtwg033ACfz4eTJ0+iu7t7Um0EAgH86U9/gtfr5es0Gg2WLl2KRYsWTbv+mSzL6OzsRGtra06iW0dHBzwez5TbTafTOHnyJF599VWUlZVh+fLlaGhomFZfCWIkSEgvUZQi8lQFdLYYDAYuCjPxk/lQKz3PZwq1Ws19vY1GI+x2O/f4ZtnfzOucZZyzG/bwfomiiL6+Pni9XgwMDEAQBDidTjidTu6hyrzQBUFAe3s7PB4PBEGAz+fjgu3wdtPpNPx+P/9/RUXFjJ0PJbIsIxKJIBaLIRAI8HOQzWa5VzsbCGGiOhPTWYBk27GFCe0jwQYr0uk0enp6MDAwALPZjIGBAZhMJlRUVGDBggXcl5aJ6szuBgD/7IZfo0r/c+ZjHo1GIYoifD4f3G43kskkF5NFUUQ0GuVWLpP17MtkMjyYV1dXo7KyEmazGXa7HQsWLJhTIZ2dm3Q6jc7OThw8eBBerxdHjhzhPxLng5dqqYxoEwQxN8iyjD179qCzszPnnp5Kpeb9dGLiDGxa9SuvvIILLrgA3/ve9wpCSBdFEdu3b8dTTz2FSCSSI2bMByi+EwQxE3R0dOCxxx6DyWTCrbfeiu985zswm814/fXX8etf/xqpVIpvG4vFxry3ut1u/PKXv8TWrVvxmc98Bn/1V381K0J6IBDAb37zG7z11luIx+OTFpa1Wi0+/elPY8WKFRgaGsJjjz2G3t7eSSWVdXd3Y8uWLTle8xaLBXfffTcaGxunLaRnMhm8//772LJlS85gRiqVmpaQzqzb9u3bh8bGRnz3u98lIX2WKZX4TkI6MS2Gi66M2fL/Zn1gYrBOp+M+3Gq1Glqtlgv6LHgwsRg4+8vKrEGY/UkgEODZ7ExIZoVFWfD1+/38PaOJtSwTPpFIjFjsMt9WJ8rZBqwoKjuOqdygJhN4meCdSCSgUqkgSRIXyzUaDex2OyRJgl6vh9Fo5OI8cPZ5UIr2Sj92ZUHQVCqFSCSCYDDIC4sGAoGzfN4niyzLiMfjvNgss/BRq9U5NQbGytCfCZRWOul0GtFoFB6PBz6fD9FodF4UKVFSTAGVIIjiIxwOIxwOz3U3iDlCkiQMDAwAACorKxGJRJBKpWa1MLwSFtsTiQSGhoZw6tQpxGKxWe/HbEDxnSCIfJNIJNDd3Q21Wo2BgQF+/3S73Whtbc0R0scjlUqhr68PALB8+fIJWYTmA1EU0d/fj9bW1im3YbfbYbFYYDAYeJ23yZBIJNDT05Ozzmq1YmhoCMlkctrPvpIkwePx4NSpUwgEAtNqS4ksy/D5fDypLhAIIJlM8pheKLXOMpkMt9ydiwK9M00pxHcS0kuAkW4Y+bi4mYg+mpDOrEHytb+R9g+cGXU1m80wGo0wmUxwOBz8RqnVaiHLMrcSSaVSSKVSUKlUXGgdSUxXFh4NBoPw+XwYGBjgHunsxuf1ermNxlg3wXQ6jVAohFQqBb1ej2g0CrVazUX/fKIUWlOpFLxeL68GzY43mUwiFApBkiQ4nU5YrVZuZ8OKjbIbeyQSQSgUQjwez7GHmUhBWnbs0WgUyWSSn3OdTgeHw8FnD5jNZuj1ej4YwgY72GfMstDZQAfzqI9Go5AkCeFwGMFgkP+fHed0rzsm4guCgIMHD/ICqpIkoaqqCjabDWVlZbPysK20tfH5fOjp6UE0GsWePXtw4MABRKPRvP4QKQRKZUSbIAiCmHsGBgawdetW7N69G6tWrcIll1wyK9mHStra2vDee+/B5/Pho48+mhezy0aC4jtBEDOJLMs4duwYfvnLX0Kv12Pfvn3zUrAciWw2iwMHDmD37t3w+Xw4cuTIlGvPKZEkCR9++CFPXJwOmUwGu3fvRjKZnHa/RiMSieDNN9/E4OAgGhsbcfnll6OmpmbG9jdRJEnCnj17sGfPHgwNDaGtrW2uu5RXSiW+k5A+z1GKkcOzsKdzoSo9yJUe6QylRchMBS3Wvlar5QUzTSYTF2eZXYksy9Dr9RBFEYlEgmdKp1IpiKI4opAOnJnuxbZl+wJyz99E7WvS6TQCgQDUajUMBgMikQg0Gg0v7pnv0VHWr2QyCbfbjY6ODj6IwNazEVqn0wmbzQadTpcjpKdSKT4AwLK9Y7EYJEma8A2SFcGMRCJQqVQIhUIYHByESqWC0WjkGelWqxUGgwFarRYmk+ksIZ0NXqTTae6FLooiH8RIp9M5An8+fiyw/rPBhI8//hiHDx/G4sWLYbFY0NTUhPr6etjt9pxZDjMJO76hoSF89NFH8Pl82L9/P/bt2zeqPz9BEARBEOPT3d3NRZcvf/nLOP/882ddSD927Bh+8pOfoLe3l892JAiCICaHLMs4fPgwFynZc20pkMlk8PHHH+PRRx/lz/v5EChTqRTeffdd7N69Ow+9BNcmZopQKISXXnoJr776Ki699FIsXbq0YIT09957Dz/5yU94siFRfJCQPk9RWk4oC4ECZwvAUxUdhxeAHO21mUaZGa8U9lmmPCucOby45njCJxNR8wFri2WJx+NxLhyz9cM/p6nsg/0rSRK3dGEPYspCo6wgqEaj4YMLkiRBo9Hw7Hr2g4P5qqfTaZ7lzwRd5TJe39h1p7REkWWZi9DpdJrvX1l8FAAXy9l0Z+Xxsf5O9bNSnu+RLH9Y39n5iEQi8Pv9sFgsMJlMCIfDMBqN0Ov1fFBkItfXeLA+KH3n2bH7/X74fD5eVJV9RvONUhnRJgiCIOaeTCYDQRCgVqt57RXgjC9svgX1bDaLaDSKRCKRE688Hg9CodC8txui+E4QxEzDEq/yQTKZhMfjgdPp5DEhn0lUsixDEARuHTuWuJrNZhGJRDA4ODhiZrgkSfB6vQgGg5MuVDoeTFsoBrLZLLc89fv9GBoayikkr1arZyS+Kxlenw8A4vE4fD4fn/E/3yiV+E5C+jxEo9HAYDDwIpwGgyFHWGdiLhMmmY/0ZC5cZdbvSFndzEN6IhYgU0Xpz878y1nRUWWxUZa1zgRmrVYLnU4HSZLmxNs6HA7j5MmTMJvNWLBgAZqbm6HT6XIKbk61bSYoDwwMYHBwELFYDENDQxAEIWfwJJFIwOfz8f1Fo1Ho9XrYbDYYDIYcaxdBEBAOh5FOp2EwGFBVVcWFdlbUcjJe5Ox6YO2r1Wou6isLnioz0lnf2WfIBPl0Oj2la0w5yMT2x/5VDg4oBXr2/8HBQezYsQM2mw0LFy7EqlWrYLPZsGjRIjQ1NUGn03GrmqmitMVhYnkwGMSRI0fg8/nQ19eHY8eOQRAE+P3+eTtVsVQCMUEQBFE4yLKM/fv34wc/+AEqKytxww034KqrrsqrjVs0GsVLL72EXbt25SS0dHR05BRem69QfCcIopg4ceIEfvzjH6OyshJXXXUVbrjhBpjN5ry1n0qlsGPHDmzfvh0+nw/Hjh0bddtEIoE33ngDXV1dI9aly2azOH78OBKJRN76V+x0dXXh8ccfR0VFBV9nsVhmJL4r6evrw29/+9sc+5Z0Oo1Dhw7N2xlnpRLfSUifhzABnRV4tFgsOVmyrBCkKIo8k3Ui9iRKlGIjs/pQwrKEZ/LLMNyjndm5KDPSmbULy0xnhS2HZzzPBuxcCIKA7u5u6PV66PV6VFVVcYuT6fiNMbFZFEX4/X50dnby4pvDR46ZrY1Go4Esy4jFYtDr9bDb7TAajdwqRVkIAwAMBgN/PR6Pc69yURS5CD3RczGdLPLpoBTp2aALG2xh14tStGf9ZaJ9IBBAMBiEWq1Gf38/otEonE4n1Go1ysrKeHb6dL3vlbYyXq8XfX192LVrFzo7OxEMBtHX1zfiINZ8olQCMUEQBFE4yLKM1tZWnDp1Ck6nE42Njbjyyivzuo94PI73338fzzzzTI6Qno/6LsUAxXeCIIqJnp4e9PX1wWAwwG634+qrr86rkC6KIvbt24dnnnkGyWRyTMeAVCqFjz76CB9//PGo25RKLJkobrcbL7/8ck4S5UzFdyU+nw9vvPEG3nvvvZz18/nzKZX4TkL6PIIJ5SwzW6fTwWAw8Ox0tg0TR5nwyUbgpipsjmSBMltfAqVdiNLig2XeM6GYrWdiKBP5lf7xSiF4JvvP9i9JEqLRKLxeL4xGIyRJ4lny7DNTWvOMdNzKDO1UKsU9zNlUodEyxYfbwDB/MnZOlAMwrL/AJ+eJ2Yyk02le9JOtSyQS3IqkUDKllZnurMCrWq2GyWTi/2cDMezakGWZDzYpi5yyYwPOTG/z+/0QRRFdXV0wmUwwGo2oqKiAxWLhRW6Vgz1A7vWmzH5n7TPbGlEU0dfXx6eY+3w+CILAz3ExBRuCIAiCKCay2SwkSUJPTw/27t077eJqSnw+H7xe74wnnRAEQRD5gT0DDgwMYP/+/bDZbPw1i8WCBQsW5KwbDUEQ0NvbC0EQ+LpYLIb+/n6uVYzHSGKlw+HAggULYDQaJ3xMsizD7XZjcHAwbzXGZhKdTof6+vqczHIl2WwWbrcbbrf7rOMZfs5Gi+/sPJpMpgn3i9UwGxwczPHiP3bsGEKhUFGcW2JykJA+T2ACukaj4QU3WTFHi8WSk32dzWZhMBh48U3ml80Ew8lavDBRfvj6mX4wYH1lGdPJZJIX82SWISwTnWVgJ5NJpFIpLooq7V/YOWKWNGwfM9Fv1p/u7m4Eg0Ho9XrU1dWhvLwcRqMRlZWVMJvNOUKs0r9b6WMeCAT4vyxLORQK8Zv2aN7ZTLxlxTstFgsqKipgNBrhdDrR0NDAM+WV54cJwCzQJxIJhEIhfjzd3d1IpVIIhUKIxWJ5P39TQafTcWHb5XLB5XLxDHyz2cztkNg5Zg+28XicZ94zETuVSiEYDEIURQQCASQSCWg0GrS1tcHhcMBkMqGhoQEulwtWqxV1dXUwmUwwm82w2Ww5syaUNkvxeByBQACSJMHj8WBwcJAXi2WzCljBGGbLNN8plRFtgiAIojBJJBJ49dVXsX///hETG6ZKKpVCV1dXycYqiu8EQRQj6XQaO3fuRGdnZ44dyPLly3Hvvffi/PPPH7eNrq4ubNmyBcePH89pt7e3d1rPdytWrMC9996LhQsXTvg9qVQK//3f/43nnnuuKKxgnE4nbr/9dlx//fUjWvQmEgm88MILeOGFF8YtZDpafL/gggtw7733oqWlZcL9SqfTeOedd/DrX/86x/c8Go2is7Nzwu3MB0olvpOQPo9gwjHz22bLcCGWCdBqtRrZbBY6nY4Lo1NhrqamsH2y0WHloswuZxnVTCBn/2fZ10qvdWW77PV8H5sygz8SiXBbFebrrhRcR8qSZxYubACEZSj7fD4uvrLBgon0hVm4sJFY5vFdUVEBq9Wa47M//L1MbA6FQrz4iN/vh1qtzhllnytYnzUaDbdbsVqtKC8vh16vh9Pp5OfaaDTmZKRns1nEYjEunrPBmVgsxjPwU6kUP06Px8MHsgKBAMrLy+F0OiGKIqxWK+x2O5LJJLeTYYVmWQHRaDQKj8eDRCKB3t5edHZ2IpFI8GIxpUipBGKCIAiiMEmn0+jo6EBHR8dcd2VeQfGdIIhiRJZl9Pb2ore3N2d9LBab8PNaKBTCgQMH8OGHH+a1bxUVFbjggguwYsWKCb8nkUhg7969M+YRnm8MBgOWL1+Oyy+/fEQhXRAE7N69G1qtdlwhfbT4bjQaJ61jZDIZ9Pb2YteuXfO+WPh4lEp8L45vDDEuTAxmWelKsU5ZUBEAtzxhr+t0OmSz2Ql5hivtRtgNlwnzTNCeTVsX4MyNK5lM8j6w88COTa1Ww2g0wmq1IpvNorKyEtlsNsc2hZ0j4BN/d6V9CRNU0+k0otEoBEHg+5vuMbDzxqpqG41GiKLIi48ajUb+2bHBDzZgwLLPWQY4y7SfqKWKRqPhgq/VakVTUxMqKipgt9thMpmg0+nGzMBiMyHMZjN0Oh1qa2t5gVJ27bFsa+VADbOPMRgMXMQePmWaWc6witupVGpS1xYTtbVaLex2O/eir6ysRE1NDfR6PVwuV44FC8sSZ32NxWKIxWJIpVIwGo0Ih8MQBAEajQaxWAzxeBzhcJifbzYDIBQKIZPJcKsdo9EIk8nE7XLYuWE2LkxQD4fDPPudZfnP10IkBEEQM0VjYyNWr14Ni8Uy4usejweHDh1CIBCY5Z4Rs015eTlWr16NqqoqdHd34/DhwznZYgRBEEThYTQasXr1ajQ3N0+5jc7OThw5cmRWMq0DgQDeeecdeDyecbdtbW2Fz+eb8r70ej1WrlyJJUuW5Og3a9eunZC1jBKNRoOVK1di06ZN8Pv9OHLkCLq6uqbct3zS0NCAc889F3a7na8rKysb85rQarVYtWoVNm3alCOkT+Z3n9vtxltvvYUTJ05MuK+SJOHgwYP03F5CkJA+j2DCMcu8ZYsym5gJsSy7Np1O84z0VCo1ZgY2E6hZ1jQrsMGEW0mSzhJMZxqWSR+JRKDVarlNCRNGDQYDF0wrKipgMplQW1sLk8kEq9UKl8uVM6igtE1hWd6JRAKDg4M4ffo04vE4Ojs7c7zHpyOms+z0bDYLr9eLQCDAhValrzYbwGCfDzvnysELJv5PdBSQ+YU3NjZi2bJlsFqtWLhwIT8nbBCCbTvS+4EzI8PsGrJYLGhqakI0GuVCeSwWw8DAwFlCut1uR0VFBQwGAyoqKnjgZ+1GIhFuZeLxePgPjskcm8vlgtlsRmVlJRYtWgSz2Yzq6moupDscDlgsFm7twsRttjBrl2QyCZ/Ph0gkglAoBKvVimg0CrfbzcVuSZK4Z7zb7YbH44FarYZOp8spjKv05Vd+VkrvfjZQMlL9gVKiVEa0CYLIL+eddx7++q//Gg0NDSO+/vHHH+ORRx4hIb0EWLBgAe69916sX78eL7/8Mnp7e0lILwAovhMEMRZ2ux2bNm3Cpk2bJpTsN5xsNosXX3wR3d3dsyKk9/X14cknn5yQPzmzZJ0qJpMJN910E+64446cTHKz2YyysrJJtaXT6XDllVdizZo16O/vxw9/+EN0d3cXxH121apV+Ou//uscqxpm0zqSNgGc0SWuueYaXHDBBTkazUcffTTh331tbW340Y9+NOm6KOFweEKOAPOdUonvJKTPE5jIOrx4ptK6RHnDUa5XirQjwYKX0q/bZDLBZDJBrVZDFEWk02luVcEEwtkqoKTcF8uABpBTRJJ5xTNbD5vNBpvNhvLycp51zYR0VvAxFotBq9XyrHTmZW61WmEymXjGdD4KlLL9DvczVw5eKIV0JvZPdZ/sc9dqtbBYLLDb7bDZbLBaraNm8I2GMrPfbDZzixSbzQaLxYJMJsNfZ8fArFaUPv42my3nGmQzDdRqNfR6fY7IPdZxD98HywRnx2e322G326HX63kf2bbK4rTsemIiOxthzmazsFqtkGWZZ+IrC/WyIqXE9CmVQEwQxNRgg6bKB0mVSoXy8nI0NTWhsbFxxPf19/fD4XDwhADgkzhcCvUn5issoUT5W4LVfGlubkZtbS1sNlvO565EWfSbmFkovhPE7DA8OWos0uk0JEma0+8Yu4/bbDbU1NSgubl5ykJ6TU0NbDYbotFozvrJzN6eKKIowu1257XN0dBoNCgrK8PChQunXQRbpVLB4XDA4XDwmepms5lfC8PjIfvNNZpuxJjqbyqWhKbRaOByudDY2DipWQkqlQpOpxNOpzNnfX9/P6+NNt51nkgk0N/fP6l+E59QKvGdhPR5ArMIGe4DPtwPHMCIrysLbCrR6/X8hupyubBw4UJeOJE9iLD3x+NxeDwexONxeL1e9PT08EKKM5lVq8zqBsDF2ebmZixevBhmsxk1NTUoKyuDwWCA0+nkmeomk4kXGx2etc/EZkmSYLVaUVFRgVQqhZaWFrjdbkSjUZw8eRJDQ0MQRRGxWCzvD+DKjGSlkD7ZorDDsVgscDqdMJvNqKurQ11dHT9v04ENzhgMBl413OPxcJsSds51Oh2qq6tRX18PnU4Hq9V6lg+7w+GAVquFKIr880ilUmOO9qpUKv7Z2mw21NfXo6ysDNXV1WhqauKfY1VVFS9AajQacwYs2M2fZdinUilIkgSDwQBBEOBwOJDNZhGNRqHVapFMJnmh0FAoNGc1A+YjpRKICYKYGhaLBVdeeSXOP//8nPgxfCrwcBYsWIAvf/nLuOKKK/i6ZDKJ999/Hx999FFJzwQqVrRaLTZs2IBLL70UBoOBr1+wYAEaGhqgUqmwcuVK/OVf/iVCodCIbXR3d2P79u0YGBiYpV6XLhTfCWJ2WLJkCa666iqUl5ePuZ0syzh69Cj++Mc/zpnHs0ajwQUXXIBLL70UlZWVOPfcc8cVbEdDpVLh3HPPxb333svtUwHA7/djx44daG1tzVe35w12ux0bN25EfX09enp6sH37dvT19fHX9Xo9LrnkElx44YXjCviJRAJ/+tOfsGfPnkn9pqqqqsLVV1+NlpYWrFy5Ei6Xa8rHo6ShoQF33HEHrrzyShw8eBDvvPNOQdRzm4+USnwnIX0eoRTImTXEeEK6skDnSOKswWBAdXU1ysvL0dLSggsuuABOp5N7jgPgInY0GkVXVxcikQhOnjyJUCjEA9dMP5QyEZ0JqRaLBYsXL8YVV1wBi8XCvbCZ0Mu2HSs4s2OUZRl1dXX8vDHBlHmgZbNZCIKAZDI5o0J6PrFYLKirq4PVakV9fT3q6+tzfPSnCjunTEivrq5GT08P2tvbEYlEYLVa4XQ6odfruYCvzLhXwsRwZnHCfMnHKqTKvNfZZ15fX4+amhpUVVVh4cKFsFgsKC8vR0VFBZ9hwbLXRjp25ffEbDYjHo8jEolAlmVEo1GoVCoIggBBECCKIiKRyLQHOQiCIIiJYbVasXHjRvzFX/xFzj2c2dyNxoIFC3DHHXfkxNdIJAJJkrBv3z4S0osQrVaLCy64AA888ECORyybVQYAK1aswKJFi0bNOH///fdx5MgREtIJgpg3LFu2DHfffTcWLVo07rb//d//jb17986ZkM4GRB944AH+vDhdIX3ZsmU59/z29nZ0d3eTkD4CNpsNN954I6699lp89NFHOH78+FlC+qc//Wl861vfGjf5LhQKIZFIYP/+/ZP6TVVdXY0vfOELuPLKK8f9LTcZGhsbcccdd0CSJDz77LPYs2cPCenEtCAhfR7BbC+UAjmbUsPEY7VaPWo2ujLIMEsLo9EIp9OZU5CSZfGyG6hyvywDjE0RAoBoNApRFGdMXFR6ijMB1eFwwOl0wmKxwGw2c7/4qbStJJvN8ilByWQS5eXlqKqqgl6v5yIqOxeFCpsKbzabYbFYuDf4VKbNjbUPNtWeedUbjUZu56LX6/nUsNH2q7Ro0el0MBgMOdfyWPtl+2QzJ0wmE79m2b7ZNa4spqr8vGVZ5vuSZRl6vR6ZTIZn1TNx3WQy8fWsLcpKzw+lMqJNEMT4mEwmuFyunCwoNtBvsVgmFcOYRZ0SWZZRVVWFpqamnAJViUQCwWDwLOs1ojAwm83892l1dTW3cRsJVg9nNJhlITHzUHwniJmD1YlitcEcDseo90WGLMsoLy/HggULAJwZXGbJQzMNi+9msxlVVVVjWnBNhpHu+Q6HA7W1tWhqaiq6+M4S0srLy2G326edADcclgxnMBj4rP3hsBndw39DDUeSpCnZzrCkuPGu18nCfvcZDAZUVlaioaEBOp0O4XA4Z8YCMX1KJb6TkD5PUHp7syxZ5rnNbDGAT4T0RCIBURSRSCR4gU4mdqvVajgcDu5NduGFF2LhwoWw2+1cNFYKkKxtq9WKBQsWQJIkbpcRDodx/PhxHDt2bMZ8R3U6HSorK2EymbBkyRJceeWVKC8vR01NDSoqKnKykaYLK7Sq1WphMpnwmc98Bueddx46Ozt5pW5BEBAKhQraY9PhcPDP1Ol0zkggZmK11WpFbW1tTmBkQXgi+1WpVDyYGgyGUTPFmIjudDpRU1MDl8uFuro6fh1UV1fzIrPs+hxNRGd/K+sHsPfpdDqIosiz5SORCKLRKC+Omk6nkUgkiuZHWSFTKoGYIIjxWblyJb70pS+htraWrzOZTDjvvPPyIn4ajUZcf/31aG5uzhkMP3z4MJ5//nn09PRMex9E/lm5ciW++MUvoqGhAcuWLcvb7z1iZqH4ThAzR11dHb70pS/h3HPPxYIFC8a1dQHOPPecd955+N73vge/349XX30Vr7322qzUfWLxvb6+HsuXL5+21ehYVFRU4C/+4i9wxRVXFFV8V6vV2LBhAzZt2sRtb0YSuomxUavVWL9+Pf7u7/4OPp8P27Ztw1tvvUX1cfJIqcR3EtLnCUqfcLVajWQyyS0mWFav0tolHo9DkiQkEgkkk8mcYhJqtZp7oldVVWHx4sVYtmwZH9UdTfxkBUjZFyCdTiMcDsPr9c5oho9Wq+UZ6AsXLsTatWtRXV0NnU53VtGp6aIcqbVYLLyYps1mQ2trKz+PLDu9EGGDAdXV1bzoRr6FdOCTgqZGoxEulwvpdJpnczMf9Yn2lwnf2Wx2xGwyZfFcdu2WlZXB5XLxxel0wmQy8dkJExXx2WI0Gvm1zaYbRqNRlJWVQavVcqFdFMWcbEZi6pRKICYIYnwWLFiAP/uzP8PSpUtz1ucrful0Opx//vk477zzctaXl5fjzTffLIoH7VKkqakJN910E5YsWTIjv2WImYHiO0HMHC6XC5/5zGdw9dVXT+q+uHDhQjQ1NUEQBHR1deGtt96aFSFdGd9n+j5us9lw2WWX8Qz8YonvKpUKS5YswW233YaqqiqKd9Ng0aJFaGlpQSgUQltbG7Zv3z7XXZpXlEp8JyF9nsEKUSqtVJQio0qlQiaT4eI5K+SovODVajWsViu3c2HWHxO9YatUKu5vDYDbhwDgXuz5gAm1rGBmTU0N6urqYDAYxrQMySdM1LXZbFiwYAE/T4FAIC9FQfMNO2darZYLyjM9mq1Wq7mly0SqfE8FNlik0Wj4vpSLchbFdK6L4VYzzLJGFEW+H6UlDEEQBJE/xqttkq99zPY+iemRr8/I4XBgzZo1MBqNcLvd6O7uptllBEEUBTqdDo2NjaipqcHSpUvhcrmmdF9UJhHNJBaLBc3NzXA6nVixYsWMJXaNhkqlQllZGdauXQur1Qq3242enp6Cv+fP1m8Su93OZ/x5PB50dXXN2L5GunZnmtm6zon5Cwnp8wgm2EqSBEEQuNUFy75VZqRLksQz2CVJyhHSNRoNamtrcc4556C8vBwOh4N7XE30ZmO1WtHQ0IB4PI7q6mo4nU7E43EIgpCXbF2WGa7X61FTU4NLL70UK1euhNPphNPpHLOAZL5g9iVarRb19fX4zGc+g2g0ip07d2JwcBAAIIpiwUwVYgI68xBnPqL5KuIxGlqtlnvnp9NpntkwlQGG0d6jFNBtNhvKysp4RrrT6YTNZuO+aGxAaTIML2JntVphMBgQjUbhcrmg0Wj4tceuc2L6lMqINkEQBDH3LFq0CN/+9rcRjUbxyiuv4IknnoDf75/rbs1LKL4TRH6xWq247bbbcMstt8But6OxsXGuuzQmtbW1uPvuu7Fhwwa4XC5UVlbOeh+WLl2K7373u4hGo3jppZfwi1/8AqFQaNb7UYgsXLgQ3/zmNxGJRPDGG2/g8ccfRzwen5F9Fdu1S4xNqcR3EtLnIUwcB8CLiTIhUKVSIZvN8szwkS50pT2Gw+GYUsVsJjZqNBpe7HO8QpGThWUGm81m1NTUYOHChVxMnY2MYKVQb7FYUFdXh2QymeMjX2iZySwjndne6HS6Ge8jG/QwGo1IpVJTniI41o2VzbhggjrLFmfLcF//qaD8DrGBGuW+WIa/JEkF97kXK6USiAmCGJ25zhpS3vsBurcUCjNxXdhsNqxatQrZbBbHjx+f8USDUobiO0HkF51Oh4ULF2LDhg0F7Z3N7tlWqxUrVqzAhg0b5qwvDocD5557LtLpNA4ePAiDwQCVSkX3GJz5fFauXAlZlnHq1CkYDIYZE9KL5dolJkapxHcS0ucp7CLMZrO8aJbyIXCsC5wJhQaDYVpCq1LcZJnb+RIYNRoNqqqqUFNTg4aGBm5BM1PWIRPpD6tuXVFRgZaWFgSDQQwODsLr9c56f0ZjpIfO2Zomr1KpIIoi949ngyzjIcsy4vE4otEowuHwiFPulNYuykECloE/GWuiiRyP8rpmAjoT00VRpB8BeaJUAjFBECPjcrnwqU99CvX19VizZg0cDses96G2thaf/exncd5556G1tRUHDx5EMpmc9X4Qn1BWVob169ejvr4ea9eu5bPeiOKB4jtBlB4GgwFr1qzBsmXL0NjYmFM8fC5Rq9VYvnw5br/9dni9Xhw4cACtra10ryGIKVAq8Z2E9HlONpvlnuSTyabS6/Uwm81cHJ4sw4VNo9GIdDqdN4GReWmtXr0alZWVqKqqgsVi4fuebbRaLSwWC0wmExYsWIDVq1cjEAggnU7D5/MVxE1BKWjPdoYf21cqlYLP50Mmk+FFSMfrgyzLEAQBHo8HsVhsRGsgpW0NE7eVGelsECcfx8ssk9iAk9FohCRJMJlMsFgsvCAqZTQQBEFMj+rqanzlK1/BZZddBrPZPCeC6ZIlS3D//fcjmUzi2WefxalTp0hIn2Pq6urwta99DZdeeinMZvOcDLAQBEEQk8NiseDGG2/EnXfeCaPRWDD3brVajQsuuAArV66Ez+fDo48+ivb29oKxZyUIovAgIb2EmIyox7adjhA4Xtb7VPvG3m8ymeBwOGCz2WbFomS8/rCsZ6PRCKvVCkmSuC3ORI9vIqLydFF+ttMZMZzKfjOZDFKpFNLpNCRJ4oMrI4ncrFgr81VPJpNIpVJ8hsVIsDbYZzGTAwYsM50t7DjYsZANwPQplRFtgiBGRq/Xo6KiAg0NDXPWB4PBgKqqKqTTaTidTrLuKgC0Wi3Ky8vn9LogpgfFd4IoPdRqNZxOJ+rq6qDVFpYMZbVaYbVauT1tqRehzGQySCQS/F+WmMlmlytniGu1Wm6tK0kSkskkotHolO1cieKmVOJ7Yd3BiIKAZQD7/X5ks9kp3QTZ+0RR5LYciUSC+2Uzn26VSgVJkiCKIhdOx/PCZpnA1dXVWLx4MWw2G89Gn2tUKhWcTieWLFmCQCCA1tZWqNVqHnxG2p4tLKOaifJqtTpH9M5kMkin05BlGel0ekxBeSSYKC3LMlKpFJLJJM+onkkrknQ6jVgshkgkgmAwCL/fD1EUodfrIcsy9Ho9HA4HTCZTjkARi8W4lUt/fz88Hg9EURy1WK1yYIAV0mVLPm/Kys9MWeSULel0GkajEQaDAZlMhhfzJSZPqQRigiAIgiglKL4TBEEULv39/Xj99dfR1dWFY8eOIRKJQBRF7Ny5E/F4HDqdjm+7aNEi3HDDDaitrcWBAwewY8cOeDwefPTRR5PWK4jip1TiOwnpxFlks1nE43EEAgE+sjiVNtiIZCKRgCAIXAA1GAzQaDRcwGWjnJlMZtwvHssC1ul0qKysREtLCwwGA0wm05SPN984HA40NzfD4XDA6XRy0XWs7Hy1Ws3tSNj/NRpNjjjMRGQmDDNxfqI3HCbAs7aSyST0ej20Wu2MFtTKZrNIJBLc45wJ6RqNBplMhtsH6fV6ZLNZngHA7FwSiQSGhobg8Xhyjnv4sSkHYpQi+kyJ6QB4vyVJ4gVV2f9ZgV1W8JcgCIIgCIIgCIIgCpmBgQFs3boVH374IU8MA4Bdu3bh448/ztn2iiuuwPr161FTU4MjR47gySefxODg4JQS/wiiWCAhnTgLWZaRTCYRiURgNBq5FQcTfCdiP5JOp5FKpbioWFFRAUmSuFe1RqPhonEymUQ8Hkcmk+H2Hel0GolEgmfzMhGUieiskCT7fyFNtWbiql6vh06n44I4GygAPhFilcUwmfjKhHSWkT5cAFaKwkpxfKKw97CMdIPBkKcjHxmWCZ9Op6HVauFwOJBOp1FWVoaKigqYTCaUl5fD5XIByPXyZ4MxoijyjPxkMsmvC+XgCxPM2XbKhZ2z4ed/KgwX7IeL+MprtdSnBeaDYhqZJohSRafToby8HFardcTXZVlGIBBAKBQa9zut0WhQVlYGh8OBpqamCRWlng3YjLOWlhbYbDb4/X6Ew+G57lZBo9PpUFFRMeqswWw2y6+LySCKIvr7+3Hq1ClYrVZUVFTkZMcRxQHFd4LIH5lMBh6PB6dOnYLZbEZFRcWU46darUZ5eTkWL16MeDw+4fdJkgSfz4dYLDal/RJjEw6H0dHRAUEQUFZWBqfTOWP7Yu4CyWQSNpsN9fX1o9rxVFVV8desVutZ1j3jXRf5vHaJwqAU4jsJ6cRZpNNp9Pf3I5VKoba2FgsXLoTVaoXBYIDFYhnTBoSJifF4HENDQ0gmk2hoaMCf/dmf8aBssVhyPMWVovvg4CCGhoYQiURw/PhxDA4OIpPJQBRFZLNZGAwG2Gw2OBwO2O12WCwWLlYXAsy6RqVSIZvNwmazwWazIZVKIR6PI51O5/hpWywW2Gw2nqHP7G7YuWEorV3YjIFUKgVRFCEIwlkDDqPBtolEIuju7obdbodarYbNZsu76MuEbUmSEIvFEI1G4XQ60dDQAJ1Oh6amJtTX18NoNOYIMKwfLIM9mUyip6cHAwMDEAQB7e3t8Pl8SCaTCIfD/JywLHe2L51OB0EQYLVaodVqx/Rjnwwso5/5vSeTSb6wz4TZD8mynGPtUwpBJZ+UytQwgih2ysrK8KUvfQmXXnrpiPdXQRDw4osv4rXXXhu3eJfFYsHNN9+M6667DmVlZVi6dOlMdXtSqNVqXHzxxXA6nfD7/di6dSvefvttyrYag7KyMnz5y1/GRRddNOp18dvf/hZvvPHGpIq69ff34xe/+AVefvllXHTRRfiLv/gL1NbW5rPrxAwzF/F9y5Yt+M///E8MDg7inHPOwebNm/HpT396xG1/97vf4Wc/+xkOHjyIVCqFc845Bw899BCuu+66Ke2bIGYaQRDw+9//HocOHcKiRYtw5513YvXq1VNqy2Aw4JprrsHChQsnFeP6+/vxzDPPYO/evVPaLzE62WwWu3fvRigUQmVlJT7/+c9j48aNs6KBrF27Fl/+8pdRUVEx4uuVlZVoaGiAWq3Ghg0b8Pd///c5Vqy9vb349a9/Pep1kc9rl5h7SiW+k5BOnEUmk0EoFEIymYRarUYoFOL+5mONDiptSFKpFMLhMERRhNPpxIIFC2AwGFBXVweXy5XzQMUEYkmS0N7ejs7OTvh8PgwMDMDn80GlUnGfdlbMwmw2cx/q4aLzXMOy7k0mE+8jy/IHPilMysRzJvSyjHQAI2bYKzOu1Wo1z2RPJBL8AXQiNx/Wl2AwiHQ6jerq6jwefe5+lLMTkskkXC4XFi9eDIvFgpaWFixcuBB6vR52ux1GozHnc0wkEojFYvwaKisrQyAQQCQSQTKZhEqlQjQa5eeGXUfMAke5SJKUk70uy/KUrhll9jnLdpckiRdOZf8COKvwKAm7k4eEdIIoDiwWCzZs2IDbbrttxNdDoRAOHz48odljer0e5513Hm655ZaCKkamUqnQ0tKClpYW+Hw+7Nu3Dzt27CAhfQysVisuuOCCUa+LYDCIAwcOTHpWYTgcxgcffADgTKy95ZZbpttVYpaZ7fi+detWfOc738GWLVtwySWX4Oc//zk2btyI48ePo7Gx8azt33vvPVxzzTV4+OGH4XQ68fTTT+Omm27CRx99hDVr1kyp3wQxk6RSKRw6dAiHDh3C+eefj+uvv37KbWk0GqxYsQIrVqyY1PtaW1uxffv2Ke+XGB1ZltHV1YWuri6UlZVhzZo1yGazMy6kq1QqNDY24vrrr8eCBQvG3X7hwoVYuHBhzrrjx49jx44do74nn9cuMfeUSnwvnCcUoqBgXliCIKCnpwdqtRp2ux11dXU8c5qJvkofauaFJYoiHA4HZFmG2WyG2WzmNixKAZOJjCxL22azoaqqCnq9HsuWLYPZbEYgEEBPTw8SiQTfb6HZuQxHWYyS2bew/jIBnXmTs4z6iRyPsjApK9bJrFmYkDuRrPRkMolAIIBUKoVIJIJ4PM4tafJ1XpmIbLPZsHjxYlRXV6OyshKNjY0wmUyoqqqCzWbjBU+H+7Sz42B++CqVCg6HA8lkElVVVQgEAujs7EQsFkM8HkcsFkM2m0UqlYIgCNDr9RAEAbFYDAaDIcejXzkFfCKCutK6hRXQZfuJRCIQBIHviw1sKL3ZSdQlCGK+UFNTg8WLF+fUJqmtrR1zUFar1WLp0qW46qqrEA6HcerUKXi93tno7oxQSIP3c4nD4cCSJUu4NdtwamtrUVNTM+r7dTodli1bhquuuionI93r9eLUqVOzbg8QDAZx6tQpBINBHDt2bNTi5kTx8eijj+Ib3/gG7rrrLgDA5s2b8dZbb+FnP/sZHnnkkbO237x5c87fDz/8MLZt24ZXXnmFhHSi4IlGo9i3bx+AM7YbixcvnhWrDLPZjPPPPx+JRAJerxft7e0QBGHG90vkH6fTiU996lOwWq1YtWoVjEbjlNuyWq04//zzeVIhcEY/6u3tRWdn51n1+Oi5mZgMcxXfSUgnzoJllDM7lZ07d2L//v2oq6vDOeecA5vNxjOEgTNelSwTl4mIlZWVaGpq4oKxVqvldhcM9iDKBFeNRoO6ujpUVFQgmUyirq4O4XAYra2teOWVVzA0NASTyZQjzDNhuZBQHpder+c/XJiYbjAY4HQ6odfr+fEoBxRGg1mEaLVanpGfTCZ5xjc79xMJPqFQCJIkcR+y8vJyGI1GOJ3OaQVKJewzr6urw4oVK6DX62GxWOBwOHgGPhsQYYsSk8kEm80GWZa5x74oili3bh3i8Th6enqwe/du+Hw+tLe34/jx40in0wiFQjAYDBBFEbW1tdBoNNxmx2w2w2q1Ttrihfm1p9NpxGIxeL1eXgS1r68PsVgMbrebF1KNx+N8+3wXOi0lKCOdIAqPNWvW4Fvf+laOlYbBYBjTWsNkMuHGG2/Ehg0b0NHRgR/96Ed49913Z6G3xEyycOFCfPOb38R555034utsJuJomEwm3HTTTbjoootyCom///77+NGPfoT29va893ksOjo68OMf/xhHjx7lM+CImSEf8X3452MwGEas+yOKIvbt24e//du/zVl/7bXXYteuXRPaZzabRTQa5c8+BFHIDAwM4Mknn8QLL7yAq666Ct/+9rdHzMzMN1VVVfjqV7+KW2+9Fbt27cJ//dd/zfp9nMgPCxcuxP333494PA6XyzUtP/bq6mp87Wtfy5mdlk6nsXXrVjz55JNUb2aeUSrxnYR0YkTYA00ikYDH40EoFIJKpUJ1dTUkSeJe4AC46K4U0l0uFywWC0wm07iipVIMZyI585l2uVwIh8M5XujDM7wLEaUwrvREZwMGymKkI4nIo6Hcjtm76HQ67hE+UWFYkiREo1Gk02kIgsCzrvI5RZ0dt9lsRl1dHWw2Gx9YmOw0NJb5mMlk4HQ6udd8V1cX1Go1hoaGoNFouN1KIpHIWVjBUuaVPvwGP9p5UxZ1VVoQsQK5yiWRSHArmUwmQwJ6HiAhnSAKC1Zwc+XKlWhqaprw+9hAeV1dHQwGA1wuFy/ErRRQieJAOeNs6dKlOP/886fUjvK6UDI4OMhr8ox3jTBrt+G/XyYzWM7iNUveOHTo0OQPhpgU+Yjvw20G/umf/gkPPfTQWdv7fD5kMpmzZs1UV1fD7XZPaJ//5//8H8RiMXzhC1+YUp8JYjZJJBI4ffo0AKC5uRnxeHzUZ7zxErkmg8FgQHNzMwDA4/Hw5CWK9flFaTOqtBLNJ2azGUuWLMlLW8rrgiFJEnbt2sVtepXPzSyu5/PaVKI8f3Rd5p9Sie8kpBNjwqwyMpkMvF4vTpw4AZPJBKvVCqvVyouFZrNZOBwOLFq0CNXV1SgrK+PC91SyxjUaDRfhq6ursWzZMjgcDu6BXeg3PqUXNwsGGo2G29vo9XoYDIYp+78qs9MNBgPUajUvpjkRATebzXLv+YGBAeh0Ou5b7nK5YDAY+I+f8T47JjKzfqnVauh0OpSVlcFms3Ef+OkcrxI2iFJeXo5zzz0XjY2N0Ol0kCSJi9qhUAgAMDQ0xPtntVphsVj4TAultQ67RtmxsvPHrIoymQyi0SgSiQSi0SjcbjcEQcDAwAC6uroQj8fh9XoRiUSQTqf5TAEmqBNTg4R0gph/OJ1OXHfddaipqUFvby927dqFQCAw190iJojVasWGDRuwdOlS/psv3yxYsACf+9zncOGFF+Lo0aPYu3fvqDYrnZ2deOGFF1BVVZXTxwsuuADLly8fd1+RSAQfffQR2tvb0dbWVtSWQ8VEPuJ7b28v7HY7Xz9StpqS4b9nJ1ov5/nnn8dDDz2Ebdu25VxnBFEMjHSPVFJTU4OLLroo7wWbGxoasGnTppz7OJEfUqkUdu/eze1PL7744lmZcZBP1Go1zj33XHzlK1+B1+vFnj17cPz4cfh8Prz22ms4ffo0Fi1ahAsvvBAOhyNv+5VlGSdPnsTHH38Mn8+HQ4cO0bN6nimV+E5COjEm2WyWF3ZkVhbDiyiyv5csWYJVq1ahpaUFZrN5Wn7barUaVqsVsiyjvr4ea9euhd/vR19fH06dOsULRxY6LENalmVoNBo+LYUtk8lGHw7L+DaZTNDpdBBFkQvpbBkNVgQ0m82io6MDg4ODcDqdyGazqKurg91uh16v5zYvY92Istks92bX6/VcoK6urubWKkysnu6oMjtf2WwWNTU1cLlcEEURdrsdGo2GFy5ra2tDKpWCw+HgGelscCCZTCKbzUKn08Fms8FkMnHfebVanTMIkkwmebFSv9+PaDSKcDiM7u5uRKNR9Pb2orW1FfF4HMFgEOFwmA+cKNshCIIgzlBRUYEvfvGLuPXWW/HHP/4R7e3tJKQXEXa7Hbfccgs+//nPQ6/Xw2q15n0fS5cuxX333Yd4PI5f/epXOH78+KhC+okTJ9Db25sz062urg5/8zd/g2XLlo37IBUMBvE///M/2LZtG699QhQHdrs950F7NCoqKqDRaM7KTvN4POMOBG3duhXf+MY38Nvf/hZXX331tPpLEHPBSPdIJevWrUN9fX3ehfTFixfz+/izzz6L48eP57X9UiaRSODNN9/Ezp07sWzZMlRUVBSdkK7RaHDhhRfi3HPPhcfjwX/+53/i5MmTcLvd+PWvfw29Xo8bb7wRS5YsybuQvm/fPvzwhz/E0NAQYrFYTo0WojAohvhOQjoxLsrM6uE3GuZ7zmw1lN7X0/EvV77XYDDAZrPxrHgAOdYZEx1xmi2UAio7bywDnInJ+fJ2VxZqncy0LmUGNrPqYQU7BUGARqPhxTtZ++x9w4+TzRIAwK1mlFn3zM4mX8cLgB8vG5xwOBwoLy8HAC7+s9kU7LhisRhUKhXMZjO3IFJa67BjVX5uqVQKyWQyJ9td2R4rdJpIJCCKIr8uydYlP1BGOkEUBqw2h16v5wOXU0Wj0fCHoqqqKlRUVKCsrAzJZBKJRCJfXSbyjMlkgslkQllZGaqqqlBVVTVjv730ej2f1VZZWcnjOyv0rYRZqinRaDTw+Xzw+/3j9tHv98Pr9WJoaCi/B0GMyWzGd71ej3Xr1mH79u249dZb+frt27fj5ptvHvV9zz//PL7+9a/j+eefx4033jilvhLEXDPSPVJJMBg8q9hjPlDex202W0E9qxc7sixDEAQIgoCysjIe76aCSqXi8X22YfvNZrN8/6zeGQB+XKyGG0t+myjZbBbxeByiKObYxrC4TzPQZoZSie8kpBPTQqPRwOVywWazoaqqCk6nE1arlReazAdmsxmNjY2oqKiA1+vlhRyTyWSOf1ahBGg24MAKgEajUW59wrKe89lfluWt9GMf6SakPE9M6GbbM6G7q6sLHo8HJpMJLpcLOp2O+9az7ZjorLTYYR5ta9aswfLly3lRz9nwsddoNKivr8enPvUpBINBHhwzmQwCgQACgQCi0Siy2SzMZjMCgQDC4TD0ej0cDgcsFgsvDKvM6JdlGbFYjPurezweRCIRhEIhdHV1IRKJwO/38wKjzAKJstDzBwnpBFEYNDQ04LOf/SwWLVrErdbywaJFi3DPPffA6/Xigw8+wJtvvpmXdon8otPpcOmll+Lqq69GRUUFVq9ePSu/uTQaDTZs2IC//uu/hsfjwVtvvYVdu3aNOw07Go1i27ZtaGtrG7ef4XAYx44dy2e3iQkw2/H9wQcfxB133IH169fjoosuwhNPPIGenh7ce++9AIDvf//76O/vx7PPPgvgzEP2nXfeiR/96Ee48MILebabyWTKa3YkQRDEdPB6vXj++eexe/fuKb1fp9PhiiuuwDXXXDOufcZsc+LECTz22GOorKzE5ZdfjmuuuYYnzE2EYDCIV199FQcOHMipe3b8+HFEo9GZ6nbJUyrxnYR0Ylqo1WrYbDZUV1ejsrISNpsNZrMZwNh2IJPBZDKhvr4eoiji6NGjXNhkQu5wf+u5hlmdSJKERCKBeDwOWZZhNBqh1WpzsrPzITSzNpjIPZZIz17X6/VcQGZLJpPB4OAgJEmCTqfj/XU6nSgrK+NFXlnBzlgsxkd4ZVmGTqfDihUrUF1dDYvFAqPROKMDHCzTXZZlPogTCoVw7NgxnDx5ErFYDENDQxAEAclkEgBgsVgQj8e51Qsb+GGZ7UxIZ5nlLPtcFEUMDQ1xIb2zsxPRaBTRaBTBYLBorIYIgiCmQnV1NW655RZceumlObOUpktjYyO++MUv8mLZ7777bl7aJfKLRqPBunXrcNddd8Fut89asXe1Wo3Vq1fjnHPOwdDQEPr6+iYkFgiCgHfeeQc7d+4cd1tlnRdi/nL77bfD7/fjX/7lXzA4OIhVq1bh9ddf50WTBwcH0dPTw7f/+c9/jnQ6jfvvvx/3338/X/+Vr3wFv/rVr2a7+wRBECMSCATw2muvTTkum0wmWCwWXHHFFQUnpJ8+fRpdXV0wmUwwGo24/PLLJyWkRyIRbN++Hb/97W9zntPZsz4xP5ir+E5COjEtmLc0K9o4E8IpE0yZUAycefBhWenMNmW2HuzGQpZliKLIBXRJknIsaGZDbB2+D2UWutlshlar5QVAlSI8K1bK7HtUKhVkWUYqlUI0GoVGo+EDAZlMhnuKsbbY9Cy2zWzOElCr1dxWxm63o6KiAjqdjldyTqVSiMViyGQy3J9er9fz10YS0tm0OTYlLBgMIhKJIBqNcjGeecOTiD4zUEY6QRQGLIbodLq8t6vVankdEeCMddvAwACOHTsGi8WCmpqaGfHhngqBQAAejwc+nw8+n69k7jPsdxirgzKbKBMAJvM7jxUKJwqTuYjv9913H+67774RXxv+8EyDegRBFBrMWm20OByNRuF2u8e08mHY7XbU1NTAZrOhoqJiTnUUrVaLuro6rFq1CoIgwO12IxaL5VjIut1uHD9+fFK/B/v6+vjMcWL2KJX4TkI6MS2Y57QyszffqNVq7rnOLGMymQyCwSD6+vr4g3a+H/CnSjQaRX9/PwKBAILBIL95s4fA4SOi0w1cw4V65c1LrVbDaDRCr9fDZrNhwYIFMJvNfPRZafeSyWS4OCwIArxeLy+8xQQDlvnPMriy2Syam5uxfPlylJeXo6mpCRaLhXujzwbsGJiH79KlS5FOp9HX1we32w23241QKARRFKHVajE0NASHwwGdTgeHw8Fta4xGIxfSWYFYlpEuSRICgQAX1SORCCRJ4ueAmBlISCeI0kMQBGzbtg0HDhxAc3Mz7rrrLqxdu3auu4VMJoNdu3bh//7f/wuv14v29nYSagliilB8JwiCmDhqtRobNmzAHXfcAafTOeI2H3/8MX75y1/mZN+OxurVq/G1r30NDQ0NaG5untNsdKvVittuuw3r169He3s7nnrqKRw8eJC/LkkS3nnnHfT09ExqMD8ej6OtrW0GekyMRanEdxLSiWnBstSMRiMMBsOMjGYqLTyU7SeTSYTDYWSzWV6IqhBIpVIIhUIIhUJIJBLcx50J3jNRiHK0dpV+6BaLBZWVlbDb7TAajTlCOnBGkGe+836/H5FIhI8CBwKBMQXjqqoqVFdXw+l0zknGGrtGdDodKioqsHDhQmSzWej1eqTTaZ55zoqqCoIArVaLSCTCs/QNBgO0Wm2OtYsgCEgkEpAkCZFIBPF4HJlMhs80IGaWUgnEBEF8giRJOH78OI4fP47Vq1fjlltumesuAThzT+nq6sIf/vAHKlBFENOE4jtBEMTEUalUaGpqwlVXXYWqqqoRt8lkMvjv//7vCbVXU1ODyy+/HIsWLcpnN6eEXq/HypUrsXLlShw4cAAvv/xyzuvZbBYdHR3o6OiYox4Sk6FU4vvce2EQRQ8TFpnNRb5hX0YmcDJR1Ofzobu7GwMDA9yHfK6+fMo+RqNR9PX1oa+vL6eQBct0ZiJtPoRYNuWJFf1Utssy+O12OyorK1FWVgaz2cxtTZj4zLLMWeY/s4ApKytDRUUF7HY7DAYDt+5hsPcYjUaUlZWhsrKSi/NzhVqt5oVSHQ4HTCZTjrDPzpeyEGwoFMopUur1euH3+xEIBBCJRHLsXdhnV0w3eWJybNmyBc3NzTAajVi3bh3+9Kc/jbn9zp07sW7dOhiNRrS0tODxxx8/a5sXX3wRK1euhMFgwMqVK/HSSy9Ner9f/epXc+pBqFQqXHjhhdM7WIIgiDGora3FlVdeiRtuuAHLly+fkVmHE8VgMGD16tW46aabcNlll6GiomLO+kIQBEFMHlbv7NVXX8XOnTsLZlCaDZS/9dZbeOONN9DZ2VkwCVMVFRW47LLLcNNNN2H16tVjZo5XV1fj8ssvx4033ohzzjmnYGbrE8R8hDLSiWnBPMFjsRj3K58JmEDMRNBYLIbTp08jmUyioaEBLS0tqK2tnVMRlwn9brcb+/fvRyAQwNDQEBfZmRWIwWCAJEncjmQ6WfysXZY5zoR6JpIbjUbU1taitrYWJpMJ5eXl0Ol0OX7zSpj1DPNDZ37p4XAYqVSKF3plIr1arYbT6URzczMWLFiAsrKyORfSy8vLYTKZkEwm4XK5YLFYuG99NptFKpWCJEkAzlgIDBcnlVW9lZn+ykEKEtJnh9ke0d66dSu+853vYMuWLbjkkkvw85//HBs3bsTx48fR2Nh41vadnZ244YYbcPfdd+M3v/kNPvjgA9x3332orKzEpk2bAAC7d+/G7bffjn/913/Frbfeipdeeglf+MIX8P7772PDhg2T2u/111+Pp59+mv+t1+snfYwEQRAT5dxzz8WDDz6IpqYmlJeXz/nU71tuuQWXX345jh8/jh/+8Ifw+Xxz1h9iepRKxhpBEJ8Qi8Wwbds27Ny5EytWrMBf/dVfobKycq67hWw2i927d2PLli3weDzwer0FY922ePFifPvb38bKlSvhcrnG9AhfsWIF/r//7/+DIAh47rnn0Nvby595CWK2KJX4XvAZ6Y888gg+9alPwWazoaqqCrfccgtaW1tztpFlGQ899BDq6upgMplwxRVX4NixY3PU49JCmSmu9OrO9z6UWdxsf4IgwO/3IxQKIZVKzWm2sPI8xONxBINBhEIhJJNJ3p/h/R+eQT4VlFn6rEAm2x/LGDeZTNwXndm8KDPRlYtareYWKRaLBRaLBUajkRcQVYrkyix2tm0hCHt6vR5msxlGoxE6ne6svrMBGTYok0wmeXHYWCyGeDyOeDyORCLBBw7YIAgVFp1dRvL+n8wyWR599FF84xvfwF133YUVK1Zg8+bNWLBgAX72s5+NuP3jjz+OxsZGbN68GStWrMBdd92Fr3/96/jhD3/It9m8eTOuueYafP/738fy5cvx/e9/H1dddRU2b9486f0aDAbU1NTwpaysbNLHWChQbCeATwaDWQwfTjabhSiKfKB4LmB9ZLOSSgm73Y7Fixdj+fLlqKysnNNiZBqNBjU1NVixYgVaWlpgs9nmrC/E9Jnt+E7MHhTfidFgCWcnT57E6dOnIQjCXHcJwJnr0e/3o7W1FW1tbQgGg3PdJWi1Wuj1ejidTixatAgrVqxATU3NmDPDrFYrFi1ahJUrV467LUHMFKUS3wteSN+5cyfuv/9+fPjhh9i+fTvS6TSuvfZaxGIxvs1//Md/4NFHH8Vjjz2GPXv2oKamBtdcc02OrQYxM2SzWYRCIbjdbvh8Pu4nzUTHfMBsXAYHBxEKhbiNDNtvX18fTp8+jba2NgwMDMxJZWZBEHD69GkcO3YMnZ2d8Hg88Pv9SCaTAHKFdlEUuU83E9onI6gr22FtRaPRnBkBWq0WRqMRJpOJFxY1Go0Tfghm2fI6nY6/32q18iliarUaBoOBt8/+P9z+ZbZR9psJ6uzY5zJTnpga+QjEkUgkZxmtkr0oiti3bx+uvfbanPXXXnstdu3aNeJ7du/efdb21113Hfbu3cszQEbbhrU5mf2+++67qKqqwtKlS3H33XfD4/GMdfoKGortBAB0d3fj+eefx5YtW7Bz504kEomc1/1+P15++WX85Cc/wWuvvTYnD7c9PT144YUX8NOf/hQ7d+5EPB6f9T4QxHyjVB60SxGK7wQxPZxOJzZu3IhvfetbuOWWW8jKjCgqSiW+F7y1y5tvvpnz99NPP42qqirs27cPl112GWRZxubNm/H3f//3uO222wAAzzzzDKqrq/Hcc8/hnnvumYtulwyZTAbBYBDxeBx2u50XYwSQN0E1mUzC7XYjGo3C7/dzATkQCCAUCiGdTqO1tRWZTAb19fVwOp2zPv04Go3i5MmT8Hq9aGtrw+DgIOLxeI44zs5LKpXixS4BcIF7MudLWUBTWRBzLCF9MvtgRUo1Gg1MJhP/bNmPYCakGwwGLlYzIX2uYbY1JpMJVqsVdrsdsizPqcBPzB0LFizI+fuf/umf8NBDD521nc/nQyaTQXV1dc766upquN3uEdt2u90jbp9Op+Hz+VBbWzvqNqzNie5348aN+PznP4+mpiZ0dnbiH//xH/GZz3wG+/btm1O7halCsZ0AgI6ODjzxxBM4fvw4kskkH3xmeDwePP/889DpdLjxxhuxatUquFyuWe/jL37xCxw5coTX1yAIgiBGhuI7QUwPp9OJTZs24bOf/SxPaiMIorAoeCF9OOFwGAD4lPbOzk643e6cbD6DwYDLL78cu3btGjEYp1KpnKzESCQyw72evzDbFTbtmYmtBoMBGo1mylOKlKNRkiRBEASEw+ERrVJSqRTC4TACgQAsFgvi8TgXgbVa7YxlImezWe5PLggCL1oZjUZ5Vv5o72NT1NPpNCRJ4n2d6H6VBV6VBUwZzHZF+S9bPxGU2zMBfjRrF+U2hZL1rbSqYf0qlL4REycfHmu9vb2w2+18/Xii8/DrRJblMa+dkbYfvn4ibY63ze23387/v2rVKqxfvx5NTU147bXX+INoMZOP2A5QfJ8pJEmC3++H2+2GyWSCzWbLy+CkJEkIh8OjZpozGzcAfGaa1WqF2WyG1Wqdsft6JpPhM72Ghobg9/sLYqo3QcwX8hHfieKA4nthM1PxXRRFRKNRJBIJhMPhs2Zep9NpBAIBuN1uGI1G2Gy2WbciUfYxGo0WTIFRrVYLq9U664kDBJEPSiW+F5WQLssyHnzwQVx66aVYtWoVAPCMvZGy+bq7u0ds55FHHsE///M/z2xnSwTmHZrJZOD3+3H48GFEIhE0NDRg+fLlMJvNU25bkiTIsgyv14v9+/djcHAQnZ2dZxXNiMViOHz4MLq7u7FkyRLo9XqUl5ejqqqK+4Pl82GbfcETiQR6e3vh9/vR1dWFDz/8EENDQ/D5fGN6uTIfdbVazUV1lvmt1+tHFK1lWea+3uz9yWQSkiTlZKOPJtDl4/hHEtELWahWer5TNnpxko9AbLfbc4T00aioqIBGozkr+9zj8ZwVXxg1NTUjbq/ValFeXj7mNqzNqewXAGpra9HU1IRTp06Ne2yFTr5iO0Dxfabo7e3FU089hddffx0XXHABbr311ln36D9x4gR+8pOfoLy8HFdffTU2btw4Y1laPp8Pv/vd73DgwAH09fWNOiuFIIipUSoP2qUOxffCZ6bie1tbG373u9+hp6cHJ06cOMsWze1249lnn8Uf//hHrFmzBrfddtuYv3tngvb2drz44ovo7u7GiRMncuyHCIKYGqUS34tKSP/mN7+Jw4cP4/333z/rtclkEX7/+9/Hgw8+yP+ORCJnTf8nJg4rdBmJRNDR0cGD0KJFi6bcptJTPBwOo62tDd3d3QiHw2eJ1IlEAqdPn4ZarUYqlUJ9fT2i0Si0Wi2qqqqg0WjGzSqdSv8kScLAwAB6e3vR0dGBY8eOYWhoaFy/c3a+VCoVz+jXarXIZDKwWCxQqVRcUFfuL5VK8YJrkUiEW8eIonjW/kYStqcjJo/0XmXW92Qz3meD4YVUieJjNgOxXq/HunXrsH37dtx66618/fbt23HzzTeP+J6LLroIr7zySs66t99+G+vXr+c2RxdddBG2b9+O7373uznbXHzxxVPeL3DGO7q3txe1tbWTOs5CJF+xHaD4PlN4PB689tprUKvViMfjuOaaa2ZdSO/u7kZvby+MRiMcDgeuvvrqGRPSw+Ewtm/fjpdffpn/HiEIIn+UyoN2qUPxvfCZqfg+MDCAl156CUeOHOHJXkoCgQDeeustqFQqfPazn8VVV10160J6f38/fv/73+PQoUMj9pEgiMlTKvG9aIT0b33rW3j55Zfx3nvvoaGhga+vqakBcGZUUykojJXNx7ydifwiSRKCwSA0Gg08Hg8GBweRSCRgNpthNpvHzVxmojIrpOn3+yEIAgYGBvgU6+HZ6Ox97EE3FothcHAQqVQKBoMBFouF/2symXgxysmIyqxfLBs8FoshHo8jEomgr68P/f398Pl8SKVSkwrCynYZTES32WwwGAxcqGbnN5lMIp1OQ6fTwWAw8Clpoijm3LRYpjv7l2W9T9R+hbWl/DyUHuzK15TWMoVy81MOxLD+EcR4PPjgg7jjjjuwfv16XHTRRXjiiSfQ09ODe++9F8CZh7j+/n48++yzAIB7770Xjz32GB588EHcfffd2L17N5566ik8//zzvM0HHngAl112GX7wgx/g5ptvxrZt27Bjx46ch8rx9isIAh566CFs2rQJtbW16Orqwt/93d+hoqIiR3wvRvIZ2wGK7zMJGyT2+Xw4fPgw/H4/ampqUF1dPW5MzWQyGBwchMfjyYkTbW1tZ/mij9cHNoh94MABWK1W/prFYkFDQ0POuong9/vR39+f8/uiu7sbwWCQYgdBEMQUofhePEwnvitJJpPo7+9HKBRCa2srBEEYM46y58pgMIijR4/mFJvV6XSor6/nMzynw2i/QSbSx4liNpvR0NAAm8024uupVAoDAwMIBALjtpVKpXD69Gns27cPNpsNCxYsIJ90gigwCl5Il2UZ3/rWt/DSSy/h3XffRXNzc87rzc3NqKmpwfbt27FmzRoAZ/yudu7ciR/84Adz0eWSJRaL8czxUCgESZLgdDqxbNkyLF26FFqtlnuXj4Qsy9xjPRgM4sMPP0RXVxc8Hg+6u7sRiUS4ODwcluHtdrvx3nvvwWAwoKWlBa2trbDZbFi5ciUaGxthMBhgt9v5D7HxRGUmKDN/t0QigdbWVrS3tyMSieDkyZNwu91IJpOIRCKTzlpjx6PT6eBwOGAwGGCz2bBo0SI4nU4YjUZYrVao1WqIosj9AQcHB+H3+xGJRNDe3o5wOMx901m2PHDGYy2RSOT4xk/kB5HSsicWiyESiSCZTEIURf46E+/ZelEUoVKpJuz1PlMoPeTj8TgEQeCDHERxMdsj2rfffjv8fj/+5V/+BYODg1i1ahVef/11NDU1AQAGBwfR09PDt29ubsbrr7+O7373u/jpT3+Kuro6/PjHP8amTZv4NhdffDFeeOEF/MM//AP+8R//EYsWLcLWrVuxYcOGCe9Xo9HgyJEjePbZZxEKhVBbW4srr7wSW7duHfUHe6FDsb14OXDgAB555BG4XC7cfvvt+MIXvjCuuJFIJPD666/jd7/7HY8jwJmMtMHBwUntP51O491330VXV1fO74nly5fj3nvvxerVqyfclizL2LNnD55++ml4vd6c/ra3t0+qXwRBTJxSyVgrRSi+Fy9Tie9KvF4vfvWrX+GDDz6YVHw/evQo/vM//zNHLK6oqMDXv/51XHfdddOeWZxIJPDGG2/gd7/7XY7PfjAYxMDAwLTaZixYsAB/+Zd/ifPPP3/E14eGhvDLX/4SO3bsGLctn8+HX//613jzzTexbt063HPPPVi8eHFe+kkQM02pxPeCF9Lvv/9+PPfcc9i2bRtsNhv3VXM4HDCZTFCpVPjOd76Dhx9+GEuWLMGSJUvw8MMPw2w248///M/nuPelhSRJfJTVYDCgsrIS4XAYlZWVkCQpx1d7JJh4m0gkEIlEuF9ZJBLhhUbHQpZlCIKAWCwGtVqNTCYDWZbhcDhQWVmJiooKyLIMi8XCpw+ONY1QeRNgomwsFsPAwADa2tq4lY3H45nyOWMZAKwPGo0GBoMBLpcLlZWVMJvNcDqd0Gq1XEhn50Gn00Gr1cJoNCIWi+UcExtZZ0VgJUninuwTgWV0s2xuJpSzdplnu0qlyvFuL4SbnzKbXlmQtRD6Rkye2f7c7rvvPtx3330jvvarX/3qrHWXX3459u/fP2abn/vc5/C5z31uyvs1mUx46623xnx/sUGxvXgZGhrC0NAQrFYrLrjgggllckmShFOnTuGdd97JEdKngizL6OnpyRnUAs4M5odCoUm3NTAwgA8++AD9/f3T6hcxu1BML37oM5yfUHwvXqYS35WwumXvvPPOpN7n8/ng8/ly1tXV1eH666/Piz1rJpNBe3s73n333UnNgpsMNpsNa9euxRVXXDHi693d3Xj99df5s/pYJBIJHD16FMAZe1Vlpv5EmI6QSRD5oBSuv4IX0n/2s58BwFk3paeffhpf/epXAQDf+973kEgkcN999yEYDGLDhg14++23izZTbz4Qi8X41C6tVgtBEKDX62G322E0GnOKVDKhlhUsDYVCCIVC6OnpQSgUQjKZnFQgZ8FDEAS43W6Ew2GYTCZ4vV6YzWZUVFTAZDJBp9Pl9IUJ/EqPc3YTSKVSSCQSXAAoLy+HyWSCKIqw2WxIpVKIxWJcuGXZ2uNhtVphs9lgMpnQ0tKC+vp6WK1WVFZW8gx1pV86s6aprKyEwWCA1WpFOp1GMBhEIBBAX18f7yObAh8Oh7m9DfOL12g0I84MYPYsLMM+lUrxTHylF7tSrGfZ+kzAMBgMs151Xdl/9lkJgoB4PM77Xgo3dIIoFii2Fz/pdBpHjx7Fiy++OG7GWiwWQ2tr64zODPL7/XjnnXcmVRiUZaQPL4JGnKGvrw+vv/466urqsGzZMixfvnzOZp2lUikcO3YMp0+fRmdnJxWAJYgCheJ78TOZ+K5kYGAgbxneiUQCe/bs4fXDJotKpcLChQuxatUq6HQ6nHvuudi0aVOOjZvb7cbhw4cnPQjPMBqNWLVqFZqbm7F48WJUVFSMuq3FYsGGDRv47HHgzG+Q7u5uHDlyBIlEYsT3DQ0NYfv27Whvb0dLSwtWrVo16mcyODiIQ4cOIRAI4NChQ9NOXCAIYnQKXkifiPilUqnw0EMP4aGHHpr5DhETIhgMIh6PQ6PR4OTJk7BYLDAajaitreUZ1kxwZX7joijC6/XC5/NBkiTEYjEu3k52RDybzXLrE41Gg9OnT0Ov18NoNKKyshImkwl2ux1lZWXQ6/XQ6XS8OKBSuGeBW6/X8ywKlUqFxsZGSJKEsrIyxGIxhMNh9PT0IBaLIRqNIhQKjdtnlUqF8vJyNDc3w263Y/Xq1Vi8eDHPStdqtTnFPPV6PR8ksNlsyGQySCQSWLBgARKJBI4dO4ZIJIJoNMoF/WQyCbfbDUEQ4HK5oNfrkc1modfrYTAYuECvUqm48J7NZrn/ezwex9DQEARByLHVYUVOgTPFftxuN/eedzgck/qs8gkbQAkGg3xQJhwOj1sAlihMSmVqWClCsb34SaVS2LFjB/bs2TPu4Gkmk0EoFDqrWHg+6evrwxNPPDFpH9FIJIJIJDJDvSpujhw5gh/+8Iew2Wz4+te/joULF07agz5fCIKAbdu24YUXXkA8Hoff75+TfhD5geL7/IXie/EzmfiuhNU4yweRSAQvvvgi3n777SkL6Z/73OfQ2NiIyspK3HDDDbj44otzrs8//elP+MEPfjBlId1ms+HWW2/F5z//eZhMpjGFdKfTiS984QvYuHEjXyfLMl566SX09PSMKqSfPn0aP/nJT2A2m3H77bdj4cKFowrpJ0+exObNm3Hq1CmeCEcQs02pxPeCF9KJ4oTZfQDgVi3spp9KpaDRaGA0Gnm2ejgczhHS81G4UtmHWCwGlUoFo9EISZJgNpsRi8WQTqeh1+v5wry/mee6RqOBSqXiIrpGo4HZbIbRaOTFNvV6PYAz2eXs/Szze6wbiVqt5p7tDocDLpcLLpdr1IKsynUsI0yn0yGTySCVSnHvdzYQwLLGk8kkP/bhXubDxWWllUsikeDZ3CMV7GTvZduyjHwAeZmGNxWU9kCsOC2zdSmmGzNxhlIJxARRjMiyjGAwiGAwONddAfBJIS8if8RiMcRiMZhMpgkVSJtJMpkMvF4vTp8+TUVg5wEU3wmicCmE+M7u+cr6JRNBrVZz+1OW2KZWq1FWVoaysrKcbbu6urjlUDqdzslWHwtW981isaC2thaLFi0atwaZVqtFVVUVqqqq+DpZllFbWwur1QqTycSfW5UkEgn09fVBo9FgcHAQgiDAbDaPuI9gMIju7m50dHSMewwsIS+RSPDjmUvYsSeTyRlNuiBmnlKJ7ySkEzMOy17OZrPwer0QBAEajYZnXLPM6XQ6jVgslhcRfThKr/NIJMKtP1jGOivCqdfr4XQ6YbFYYLFYUFdXx7PpzWYzNBoND87MAiWdTkMQBFRVVSGRSKC3txft7e1IJpMIh8Nn+ZqxjHOdToe6ujqsWLECVqt1TBF9NDQaDSwWCwwGA2pqarB06VKEw2H09/djYGAgp4/ZbBZqtRpGoxEmk4lbvbB9soAqSRIEQYDX60UqlUI8Hh8zm5sVXQ0EAjAajWhsbMzJpJ8N2OebTqfR39+PtrY29PT0IBwOk4hexJRKICYIgiCIUoLiO0EQM0FDQwOuuuoqNDQ0YO3atWPaBTU1NeHOO+9EX18fDhw4gPfee29cqzeNRoP169fj0ksvRWVlJVavXj3l512VSoVVq1bhnnvugcfjwa5du/DRRx+NKCRns1kcPHgQP/vZz0adGdba2jrhGQFtbW345S9/iaqqKlx44YW4+OKLeXLgbBOPx7Fz504cOHAAfX19Z9XAIYqLUonvJKQTMw7L3JYkCalUKifYsIIbSq+wmfoCsWzlcDjM+6AUrlnm+dKlS7nY3NzcjIqKCm4LM1wcZv1NpVJobm6GKIo4ceIE0uk0otEoMpkMBEHIOSatVsuz2uvr67FixQpYLBbodLpJB2ImpLMR7WXLlnFvc7fbjUwmg3g8DpVKxQcP2HtsNhsX0tVqNR8QSKVSEEWRZ+yP95mEQiGcOHECbrcb9fX1SKfT0Ol0yGazs+qVzqxp+vr6cPjwYXg8HkSjUbJ0IQiCIAiCIAiCmOcsWLAAd955J9avXw+dTjemONzc3IyvfvWrEEURTz31FPbu3TshIX3Dhg144IEH4HQ6YTAYppU4tmrVKixevBiRSATZbBb79u0bUUiXZRmHDh3CiRMnRt0fm6U+EVpbW9HV1QWz2YxvfetbWL9+/ZwJ6bFYDNu3b8fTTz8NURQnfAwEMZeQkE7MKoUgao4kDCuLnxqNRlgsFi52M9uX8YTuTCYDrVYLi8UCh8MBlUrFfchlWebHzjLSh7c93pSw0WCDAWyKWSaTOWt6FrN5kSSJ95PtU1lkNZlMQhRFvt1EPi+Wwc5seuLxOGRZHnHgYSZQHhsbLAiFQohGozQ1rMgplRFtgiCIQkaWZYTDYfT29sLhcMBut8+aV3o0GkU4HOYzGon5AcV3giDyhUajgdPphNlsRm1tLVwu14RiFLNsNRgMqKioQENDAwwGA8Lh8JjxRq/Xw2q15iUOarVaWK1WXsNsLFgNtHzALHCz2eycC9dsBj1LQiSKm1KJ7ySkEwTArVscDgcWL16M5cuXw2azwel0wmQyjSsIazQamEwmGAwGNDQ0QJZlbiETDAZ5Nn4mk4HRaERNTQ1vnxXpnK7gbLFYUF9fD4fDgVOnTkGj0eTY5LCMfFZYlM0OYPtlr7PirhMd9BAEAd3d3fB6vThx4gSam5vhcDh4cZfZ8EsPhULwer0IBoM4fvw4Dh8+jFgsRg/dRU6pBGKCIIhCRpIkvPvuu/D7/aiursamTZtwySWXzHhsz2Qy2LVrF7Zt2wafz4dDhw4VREIGMX0ovhMEkS9cLhc+//nP48ILL0R1dTUaGhom9X61Wo0LL7wQf/d3fwev14vf//73+OMf/0iiLkFMgVKJ7ySkEyWPSqWCXq/nmeS1tbVobm7mo82ssOdYMH91ACgvL4dWq0UkEkF7ezvPzGZZ3gaDAS6XC06nM8deZboYjUaUl5fzQYHhbbLMbQC8mEc+SCaT8Hg80Ov13NesrKwM5eXlqKyszMs+xiKbzSIej8Pj8cDn86G3txednZ05xWaJ4qRUAjFBEEQhk8lkcPToURw7dgwLFizA2rVrcckll8z4frPZLE6ePInf/va38Pv9dF+fR1B8JwgiX1gsFlx66aX44he/OOl6Y8AZLWDZsmVYunQpfD4fTpw4gXfffZeEdIKYAqUS30lIJwiAC+nMzoUVFJ2KwK3RaKDX67l9i8lk4h7lLCNcWeA0XzCvc6VNjTLbfKZgN8tMJoNgMIiuri5EIhFUVVXBZrNBp9PBbDbzAYnpDhooC4uyQqqDg4Nob29HIBDgFdpnomgtQRAEQZQqbPp1W1sbPvjgAzgcDixcuHDMYm5TQflboqOjA6IoUjwnCIIgRoQ98073uZq1MdOzrQqJbDaL3t5e7N69Gy6XC01NTbOSCCfLMgYHB9Hb2wuv1wu3201xnigqSEgnSh6VSgWr1Yrq6mqUlZXB6XTCYrHk+IdPBpbJrlKp4HK5UFVVxb3Dk8kk1Go1F9mnUmB0NNRqNS+qotVquVifyWRmPDBls1mk02m0tbUhGAzC5XJx+xiHw4Hm5mbYbDbuFz/VY1YeRzwex8DAAARBwIcffogdO3YgHA6jr68PkiTNaOFaYnYolRFtgiCIYiEUCuGFF17Ajh07cN555+Gb3/wmVq1aldd9nDx5Elu2bEF7ezvcbve4xd+I4oPiO0EQxNwjSRL++Mc/orW1FbW1tbjnnntw3XXXzYp12/vvv4+nn34aPp8PfX19ZN02TyiV+E5COlHyKAt1ms1mLkRPZWoY8InNSzqd5hnp6XQaGo2G70+j0Uw5432s42Cj6MMz0meDbDaLUCiEeDyOaDQKt9sNv98PALwwSjab5WI66/NEUN5UWZAVRRGRSASRSASDg4M4ffo0otEoYrEYBeJ5QqkEYoIgiGJBFEW0t7ejvb0dwBlhfbIxfTRYO36/HwcPHsTRo0en11miYKH4ThAEMfdks1n09fWhr68PDQ0NuPXWW/nzupJ8agpsJnt/fz8+/vhjBAKBvLVNzD2lEt9JSCcI5Irb053SxQRslUrF21O2mclkkEgkEI/H81Z5m7WbSqWQSqV40dDJ2psohXhln1kbyiKkI4nVLDM9FouhtbUV6XQaFRUVEAQB5eXlcDgcqKqq4pnzzFd+pHMuyzLfB6tSLooivF4vYrEYhoaGcOLECYRCIbS1tSEWi/GCrsT8oFQCMUEQRDHi8/nw1ltvoaOjAy0tLVi7di3MZvOU2gqHw9i3bx96e3tx6NAhBIPBPPeWKCQovhMEQRQW8Xgc77//PrLZLH8uV6lU047vSvr6+rB//374fD7s2bMHqVRq2m0ShUWpxHcS0gkCgFar5ZnobAQ2H2I680tXZp+n02kIggCNRoNkMpm3G0Y6nUY8HucWMul0elK2Lkz4Z5Ywer0+R0iXZRmiKObYpgxvm+0znU7jo48+wqFDh1BZWYmuri5UVFRg8eLFWLt2LaxWKxwOB/eJz2azPGOfoRTsY7EYYrEYwuEwDh48iP7+fvT29mLfvn0IBAKIxWKIRqPki04QBEEQs0RPTw+eeOIJGI1G3HbbbVi0aNGUH7Q9Hg9+85vfYMeOHUgkEgiHw3nuLUEQBEEQoxEOh/Hiiy/ijTfeyBHSpxvflbS1teEnP/kJTp48CUEQkEgkpt0mQcwFJKQTxP8jnwLsWG1ls1lIkoRUKoV0Op03G5JsNgtRFCGKIhfQJ3NMykz04cVQlQVFWVa6SqUasX1ZlvlgQTweh1qthtfrhSzLcDqdCIVCSKfTfD/Kf5WDF9lslu9LEAREo1GEQiH4/X54PB74fD74fD4Eg0Gk02mk0+npn0SioCiVEW2CIIhiRBRFeDweqFQquN1uhEIhWK3WKbUVCoXgdrvR29ub514ShQjFd4IgCHBNIBKJQBTFOe1LJpNBIBDIsVrJR3xXEggEMDAwgL6+vmm3RRQmpRLfSUgnCADJZBKRSARarRbJZBKZTIZnlE8WZm8iiiL3CxcEgQu9yWQSQ0NDiEajaGpq4kW0dDrdlPbHiEaj6O7uRjgcRiAQmPCNiInnWq0WJpMJer2eZ6SzbHEGy9xPp9NIJBJjFvVk2eHRaBTt7e0YHBzE4OAgOjs7YTQa4XK54HK5oNVquTc98MlMgFQqhUQigXQ6jUAgwP3P+/r6EAwGEY1GEY1GuY0NMf8olUBMEARRzMiyjKNHj+JnP/sZ7Hb7lNrw+Xw4depUnntGFCoU3wmCIICjR49i+/bt8Hq92L17d8ElhuUjvitpb2+H1+vNQ8+IQqVU4jsJ6UTJI8syHwnW6XQ8o3u4T/hEYRnnkiQhkUggEokgkUhw7+5kMgmv1wu9Xo9AIIBEIsH3kw8hPRQKIRQKTVhcZtnnOp0OZrMZBoMBarUaBoPhLGsXrVbLvcolSeKZ7yP5krP3CIKAjo4Obh3DBgxcLhfKysqg1+vhdDphsVgAfCKkx2IxRCIRpFIpBAIBBINB7gOfTqdzPNQJgiAIgpg7Tpw4gfb29inb4rHfTgRBEARRCsiyjGPHjuHJJ59EX19fwc6wnm58V5LJZCjWE/MCEtIJAme8vZPJJF9SqRT3S5+suJ1Op5FKpXhbTFRXen4zH/F4PI5gMMgDik6n4/7qE4HZuWQyGcRiMQiCgFgsNqkApbR0UVq7sPVsP+zv4dtPRMxm2zDxW61WIx6P8wx3ALzYCNsnOx5WvJTNFMinHQ5R2JTKiDZBEESxw6zfCGIiUHwnCKIYkWUZwWAQHR0dKCsrQ1lZ2bQytTOZDNcMChWK78RkKJX4TkI6UfIw+xFZlpFMJjEwMACXywWz2YyqqiqYTKYJtyPLMiKRCAYHBxGJROB2u+Hz+bh3OduOZXN3dXXh/fffh91ux7nnnouWlpYcW5XxSCQSGBgYgCAIaGtrQ2trK7c8mYjYzLLgdTodX7RaLV+UfRheyFOr1fLAOtGipqxPmUwGkUgEyWQSarUaPp+PD1goi7KyAQh2/igLvbQolUBMEARBEKUExXeCIIqRTCaD9957D16vF1VVVbj99tvxmc98Ji/Z2gQxHyiV+E5COlHyMAGd+aIza5RMJoOysjLIsjyh4MhuGolEAoFAAOFwmHt5s6KZbDv2NyvCabfbUVdXh4aGBi5mjyeky7IMURTh9/t5kS632w1BECZ1E2L+6GyfWq2W270oj1ulUvFseuU2k73hsfNQ6KPvxNxTKoGYIAiCIEoJiu8EQRQj2WwWbW1taGtrQ21tLT71qU/hyiuvJCGdIP4fpRLfSUgnCHwibouiCK/Xi56eHp6VLooidDodjEZjjr0Ju0mwDPN4PA5JkjA0NIS+vj5eZFS53fB9svepVCr09fXBaDTCYDDA6XTCYDBAo9FAq9Xm7C+bzSKZTEIURYTDYfT09PACo8w7fDI3oZH6N9r7lYMByvcSBEEQBEEQBEEQxGySSCRw5MgRVFZWwuVyYcmSJZOyW5FlGf39/ejs7ITX60Vvb++EZkCnUimcOHECf/jDH3IS4Kqrq7Fo0SIYDAb09PSgq6trRGuUbDaL48ePU2IZQRQhJKQTBMAzxAVBwIkTJzAwMIDKykqIoojy8nI4nU5UVlbyQplarTbHoiUSiWBgYACxWAzt7e04evQoYrEYgsEgF7dHIh6PQxRFBINBxONxHD16FFarFY2NjbDb7TCZTLDZbNBoNLwAiSiKGBoaQigUgiAI6O/v5x7iyWRy0sK2UkhXivUsE18pmo/2HoKYCUplRJsgCIIgSgmK7wRB5ItgMIjnn38eb731FtauXYsHHngAq1atmvD7s9ksdu3ahSeeeAJerxeDg4MTEtIjkQhefPFFvPPOOzlC+nXXXYf77rsPFRUV2LFjB5555hnE4/ER2/D7/QiHwxPuK0EUOqUS30lIJ4j/BxPGw+EwL3wZCAS47YnD4eDbAZ8U+kyn00gkEgiHw4hEIvD7/fD5fEgkEuMK28xfnBUMDYfDsNlsMBgMSKVSsFgs3EqFFS1NpVJwu93w+/2Ix+PweDyjBufJHLtSMGfT05TrhhcMLaYbHVGclEogJgiCIIhSguI7QRD5QhRFdHV1oaurC2azmduqTpR0Oo2hoSEcPnwYXq93Uu/r6elBT09PzvrFixcjkUhAkiQMDAzg4MGDEARhwu0SRDFTKvGdhHSCUMB8x1lF7lOnTsHtdsPhcKC3txdarRZ6vR46nY4L4Ol0mhcWTSaTGBoaQiKR4OL4RPfL2ovFYhgYGEA4HIbBYIDZbM7xJ5ckCcFgEIIg8P1P53hZm8CZHyKsACmAHA90ZdFPlh2fTqep+CcxY5RKICYIgiCIUoLiO0EQM4Hb7cbLL7+Mw4cPT/g9LCM9kUjkpQ8dHR3YunUrHA4H9u3bx5+zCaIUKJX4TkI6QSiQZRmpVAqiKCKRSCAUCkGtVsNiscBqtUKr1cJgMECn0/HCokxcjkQikCQJ6XQakiRN+ibC3svEdObFzhZldngmk+HtT2bEfSRYW9lsFnq9HgC4kM5EerYvdm5YP6dynARBEARBEARBEASRT7q7u/HEE09Ap9NN+D3smT4Wi+WlD0ePHkVXVxfUajVisRhEUcxLuwRBFA4kpBPEMJQ+4SzbmlmZaDQa6PV67pGeTCYhSRIXv8fyQ5/svmcL5T6Z1QxwRkRXViBnoj1bSEAnZgO6xgiCIAhi/kHxnSCIfCNJEgKBwJz2gdUtI4hSpRTiOwnpBDEG7CYgiiIEQeC2J8zyJJ1O80KlTFwuNpRZ7czPTaPRQKfT5XilMw95SZKQzWanPWhAEOMx3UEpgiAIgiAKD4rvBEEQBDH/KJX4TkI6QYwB+zIzAXk+wo6R+Z2rVCqo1WpotVqo1eocSxk2cEDZ6MRsUCqBmCAIgiBKCYrvBEEQBDH/KJX4TkI6QRAcpWjO7GyUr5GAThAEQRAEQRAEQRAEQZQiJKQTBMFRiuUsO52tV75OELNBqYxoEwRBEEQpQfGdIAiCIOYfpRLfSUgnCOIsSDAnCoFSCcQEQRAEUUpQfCcIgiCI+UepxHf1XHeAIAiCIAiCIAiCIAiCIAiCIAoZykgnCIIgCpJSGdEmCIIgiFKC4jtBEARBzD9KJb6TkE4QBEEUJKUSiAmCIAiilKD4ThAEQRDzj1KJ7ySkEwRBEAVJqQRigiAIgiglKL4TBEEQxPyjVOI7eaQTBEEQBEEQBEEQBEEQBEEQxBhQRjpBEARRkJTKiDZBEARBlBIU3wmCIAhi/lEq8Z2EdIIgCKIgKZVATBAEQRClBMV3giAIgph/lEp8JyGdIAiCKEhKJRATBEEQRClB8Z0gCIIg5h+lEt/JI50gCIIgCIIgCIIgCIIgCIIgxoAy0gmCIIiCpFRGtAmCIAiilKD4ThAEQRDzj1KJ7ySkEwRBEAVJqQRigiAIgiglKL4TBEEQxPyjVOI7WbsQBEEQBEEQBEEQBEEQBEEQxBhQRjpBEARRkJTKiDZBEARBlBIU3wmCIAhi/lEq8Z2EdIIgCKIgKZVATBAEQRClBMV3giAIgph/lEp8JyGdIAiCKEhKJRATBEEQRClB8Z0gCIIg5h+lEt/JI50gCIIgCIIgCIIgCIIgCIIgxmDeCOlbtmxBc3MzjEYj1q1bhz/96U9z3SWCIAhiGsiyPK1lKkw2luzcuRPr1q2D0WhES0sLHn/88bO2efHFF7Fy5UoYDAasXLkSL7300qT3K8syHnroIdTV1cFkMuGKK67AsWPHpnSMxQbFd4IgiPnFfInvxPSg+E4QBDG/KJn4Ls8DXnjhBVmn08lPPvmkfPz4cfmBBx6QLRaL3N3dPaH3h8NhGQAttNBCCy2zuITD4XHvySqVakrLePvIRyzp6OiQzWaz/MADD8jHjx+Xn3zySVmn08n/8z//w7fZtWuXrNFo5Icfflg+ceKE/PDDD8tarVb+8MMPJ7Xff//3f5dtNpv84osvykeOHJFvv/12uba2Vo5EIhM+vmKE4jsttNBCS/EtpRDfielB8Z0WWmihpfgWiu9nmBdC+gUXXCDfe++9OeuWL18u/+3f/u2E3k+BmBZaaKFl9peJBOKZ2kc+Ysn3vvc9efny5Tnr7rnnHvnCCy/kf3/hC1+Qr7/++pxtrrvuOvmLX/zihPebzWblmpoa+d///d/568lkUnY4HPLjjz8+4eMrRii+00ILLbQU31IK8Z2YHhTfaaGFFlqKb6H4foait3YRRRH79u3Dtddem7P+2muvxa5du0Z8TyqVQiQS4Us4HJ6NrhIEQRAK5FkoKKK810ciEaRSqRG3m0os2b1791nbX3fdddi7dy8kSRpzG9bmRPbb2dkJt9uds43BYMDll18+at/mAxTfCYIgipNSiO/E1KH4ThAEUZz8/+3df2xV9f3H8delv1togXbQFkppDRGwotDqJjQFBnMZCOIWUQGBLTMrrq7YRYqDBGSTH3MxugxxMMc22QYzrQ7JZmiVlhGNEKCz/BgqKxYZXYP8KMxhW+77+4ff3nlpudwW6L3n9PlIbkzP+dxzPq82/bzkc9tb+v1zjt9IP3XqlC5duqSBAwf6HR84cKAaGho6fM6qVauUlJTkewwZMqQ7pgoA+ILz5893eDw6OlqpqanXfP3evXsrIyPDb71ftWpVh2O70iUNDQ0djm9tbdWpU6cCjmm7ZjD3bftvZ+bmBvQ7ADhTT+h3dB39DgDORL9/LjLokWHO4/H4fWxm7Y61efLJJ1VSUuL7+OzZs8rMzFR9fb2SkpJu6Dy7W1NTkzIyMnT8+HElJiaGejrXjVtzSe7N5tZcEtk6y8x0/vx5paend3g+NjZWdXV1am5uvub7XN4DMTExAZ/TmS650vjLjwdzzes1xo3o9465dd1xay7Jvdncmktyb7Yblaun9TuuDf3enlvXHIlsTuTWXJJ7s9Hv3dPvjt9IT0lJUURERLtXHBobG9u90tAmJiamwy9GUlKSq76JvigxMdGV2dyaS3JvNrfmksjWGVf7R09sbKxiY2Ov2/2upitdkpqa2uH4yMhIJScnBxzTds1g7tv26n5DQ4PS0tKCmpsb0O/Bceu649ZcknuzuTWX5N5sNyJXT+l3dB39fnVuXXMksjmRW3NJ7s1Gv9/Yfnf8W7tER0crNzdXFRUVfscrKio0duzYEM0KAOAkXemSu+66q9347du3Ky8vT1FRUQHHtF0zmPtmZWUpNTXVb0xzc7Oqq6td3XP0OwDgWt2ofkfX0e8AgGsVyn53/E+kS1JJSYkefvhh5eXl6a677tL69etVX1+vwsLCUE8NAOAQV+uSJ598UidOnNDvfvc7SVJhYaF+8YtfqKSkRI888ojeeecdvfTSS/rjH//ou2ZxcbEKCgq0Zs0a3Xvvvfrzn/+syspK7dq1K+j7ejweLVy4UCtXrtSwYcM0bNgwrVy5UvHx8Zo1a1Y3foa6H/0OALhWN6LfcW3odwDAtQpZv5tLrF271jIzMy06OtrGjBlj1dXVQT/34sWLtmzZMrt48eINnGFouDWbW3OZuTebW3OZkc1NAnXJvHnzbPz48X7jq6qqbPTo0RYdHW1Dhw61devWtbvmK6+8YjfffLNFRUXZ8OHDraysrFP3NTPzer22bNkyS01NtZiYGCsoKLDa2trrEzrM0e8dc2s2t+Yyc282t+Yyc282t+YK5Eb0O64N/d6eW3OZkc2J3JrLzL3Z3JorkFD0u8fs/99ZHQAAAAAAAAAAtOP490gHAAAAAAAAAOBGYiMdAAAAAAAAAIAA2EgHAAAAAAAAACAANtIBAAAAAAAAAAigx2+kv/DCC8rKylJsbKxyc3P1t7/9LdRT6rRVq1bpjjvuUJ8+fTRgwADNmDFDR44c8RtjZlq+fLnS09MVFxenCRMm6ODBgyGacdesWrVKHo9HCxcu9B1zcq4TJ05ozpw5Sk5OVnx8vG6//Xbt3bvXd96p2VpbW7V06VJlZWUpLi5O2dnZWrFihbxer2+ME7Lt3LlT06ZNU3p6ujwej1577TW/88Fk+Oyzz/TYY48pJSVFCQkJmj59uj7++ONuTNGxQNlaWlpUWlqqW2+9VQkJCUpPT9fcuXP1r3/9y+8a4ZoNaEO/Owf9Hv7Z3NLtEv1Ov8Pp6HfnoN/DPxv9Tr+jC6wH27x5s0VFRdmGDRvs0KFDVlxcbAkJCfbRRx+Femqd8vWvf902btxoBw4csJqaGps6daoNGTLELly44BuzevVq69Onj5WVlVltba098MADlpaWZk1NTSGcefB2795tQ4cOtVGjRllxcbHvuFNznT592jIzM23+/Pn27rvvWl1dnVVWVtqHH37oG+PUbD/5yU8sOTnZtm3bZnV1dfbKK69Y79697bnnnvONcUK2v/zlL7ZkyRIrKyszSfbqq6/6nQ8mQ2FhoQ0aNMgqKips3759NnHiRLvtttustbW1m9P4C5Tt7NmzNnnyZNuyZYv94x//sHfeece+/OUvW25urt81wjUbYEa/h9t6Ggj97oxsbul2M/qdfoeT0e/ht6ZeCf3ujGz0O/0e6mxO1KM30u+8804rLCz0OzZ8+HBbvHhxiGZ0fTQ2Npokq66uNjMzr9drqamptnr1at+YixcvWlJSkr344ouhmmbQzp8/b8OGDbOKigobP368r4idnKu0tNTy8/OveN7J2aZOnWrf+c53/I5985vftDlz5piZM7NdXlbBZDh79qxFRUXZ5s2bfWNOnDhhvXr1sjfeeKPb5n41Hf1PxuV2795tknz/SHFKNvRc9Hv4rqdfRL9/zgnZ3NjtZvQ7/Q6nod/De01tQ79/zgnZ6Hf6PZyyOUWPfWuX5uZm7d27V3fffbff8bvvvltvv/12iGZ1fZw7d06S1L9/f0lSXV2dGhoa/LLGxMRo/Pjxjsj6/e9/X1OnTtXkyZP9jjs519atW5WXl6f7779fAwYM0OjRo7VhwwbfeSdny8/P15tvvqn3339fkvT3v/9du3bt0pQpUyQ5O1ubYDLs3btXLS0tfmPS09OVk5PjmJxtzp07J4/Ho759+0pyVza4D/3unPWUfv+cE7L1hG6X6Hc3ZYP70O/OWVPp9885IRv9Tr87LVs4iAz1BELl1KlTunTpkgYOHOh3fODAgWpoaAjRrK6dmamkpET5+fnKycmRJF+ejrJ+9NFH3T7Hzti8ebP27dunPXv2tDvn5Fz//Oc/tW7dOpWUlOhHP/qRdu/erR/84AeKiYnR3LlzHZ2ttLRU586d0/DhwxUREaFLly7p6aef1kMPPSTJ2V+3NsFkaGhoUHR0tPr169dujJPWmIsXL2rx4sWaNWuWEhMTJbknG9yJfnfGekq/OytbT+h2iX53Sza4E/3ujDWVfndWNvqdfndStnDRYzfS23g8Hr+PzazdMScpKirSe++9p127drU757Ssx48fV3FxsbZv367Y2NgrjnNaLknyer3Ky8vTypUrJUmjR4/WwYMHtW7dOs2dO9c3zonZtmzZok2bNukPf/iDbrnlFtXU1GjhwoVKT0/XvHnzfOOcmO1yXcngpJwtLS168MEH5fV69cILL1x1vJOywf3csMZ8Ef0e/rkk9/Z7T+p2iX6/nJOywf3css60od/DP5dEvzst15XQ7/6clC2c9Ni3dklJSVFERES7V18aGxvbvUrlFI899pi2bt2qHTt2aPDgwb7jqampkuS4rHv37lVjY6Nyc3MVGRmpyMhIVVdX6+c//7kiIyN9c3daLklKS0vTyJEj/Y6NGDFC9fX1kpz7NZOkJ554QosXL9aDDz6oW2+9VQ8//LAef/xxrVq1SpKzs7UJJkNqaqqam5t15syZK44JZy0tLZo5c6bq6upUUVHhezVbcn42uBv9Hv5Z6XfnZesJ3S7R707PBnej38M/K/3uvGz0O/3uhGzhpsdupEdHRys3N1cVFRV+xysqKjR27NgQzaprzExFRUUqLy/XW2+9paysLL/zWVlZSk1N9cva3Nys6urqsM46adIk1dbWqqamxvfIy8vT7NmzVVNTo+zsbEfmkqRx48bpyJEjfsfef/99ZWZmSnLu10ySPv30U/Xq5b+0REREyOv1SnJ2tjbBZMjNzVVUVJTfmJMnT+rAgQNhn7OthD/44ANVVlYqOTnZ77yTs8H96PfwX0/pd+dl6wndLtHvTs4G96Pfw39Npd+dl41+p9/DPVtY6o6/aBquNm/ebFFRUfbSSy/ZoUOHbOHChZaQkGDHjh0L9dQ6ZcGCBZaUlGRVVVV28uRJ3+PTTz/1jVm9erUlJSVZeXm51dbW2kMPPWRpaWnW1NQUwpl33hf/6reZc3Pt3r3bIiMj7emnn7YPPvjAfv/731t8fLxt2rTJN8ap2ebNm2eDBg2ybdu2WV1dnZWXl1tKSootWrTIN8YJ2c6fP2/79++3/fv3myR79tlnbf/+/b6/fB1MhsLCQhs8eLBVVlbavn377Ktf/arddttt1traGqpYZhY4W0tLi02fPt0GDx5sNTU1fmvKZ5995rtGuGYDzOj3cFtPg0G/h3c2t3S7Gf1Ov8PJ6PfwW1Ovhn4P72z0O/0e6mxO1KM30s3M1q5da5mZmRYdHW1jxoyx6urqUE+p0yR1+Ni4caNvjNfrtWXLlllqaqrFxMRYQUGB1dbWhm7SXXR5ETs51+uvv245OTkWExNjw4cPt/Xr1/udd2q2pqYmKy4utiFDhlhsbKxlZ2fbkiVL/BZxJ2TbsWNHh99X8+bNM7PgMvz3v/+1oqIi69+/v8XFxdk999xj9fX1IUjjL1C2urq6K64pO3bs8F0jXLMBbeh3Z6HfwzubW7rdjH6n3+F09Luz0O/hnY1+p9/ReR4zs67/PDsAAAAAAAAAAO7WY98jHQAAAAAAAACAYLCRDgAAAAAAAABAAGykAwAAAAAAAAAQABvpAAAAAAAAAAAEwEY6AAAAAAAAAAABsJEOAAAAAAAAAEAAbKQDAAAAAAAAABAAG+lAABMmTNDChQsdc93r7dixY/J4PKqpqQn1VAAAuC7odrodAOA+9Dv9DnSHyFBPAOiJysvLFRUV1W33q6qq0sSJE3XmzBn17du32+4LAEBPQbcDAOA+9DuAL2IjHehGLS0tioqKUv/+/UM9FQAAcB3Q7QAAuA/9DqAjvLULcBVer1eLFi1S//79lZqaquXLl/vO1dfX695771Xv3r2VmJiomTNn6t///rfv/PLly3X77bfr17/+tbKzsxUTEyMz8/v1sKqqKnk8nnaP+fPn+66zbt063XTTTYqOjtbNN9+sl19+2W+OHo9Hv/rVr3TfffcpPj5ew4YN09atWyV9/iteEydOlCT169fP79pvvPGG8vPz1bdvXyUnJ+uee+7R0aNHu/R5WrFihdLT0/XJJ5/4jk2fPl0FBQXyer1duiYAADcC3R4cuh0A4CT0e3Dod6Dr2EgHruK3v/2tEhIS9O677+qnP/2pVqxYoYqKCpmZZsyYodOnT6u6uloVFRU6evSoHnjgAb/nf/jhh/rTn/6ksrKyDt+vbOzYsTp58qTv8dZbbyk2NlYFBQWSpFdffVXFxcX64Q9/qAMHDuh73/uevv3tb2vHjh1+13nqqac0c+ZMvffee5oyZYpmz56t06dPKyMjQ2VlZZKkI0eO6OTJk3r++eclSf/5z39UUlKiPXv26M0331SvXr103333dak8lyxZoqFDh+q73/2uJOnFF1/Uzp079fLLL6tXL5YaAED4oNuDQ7cDAJyEfg8O/Q5cAwNwRePHj7f8/Hy/Y3fccYeVlpba9u3bLSIiwurr633nDh48aJJs9+7dZma2bNkyi4qKssbGxnbXLS4ubne/U6dO2U033WSPPvqo79jYsWPtkUce8Rt3//3325QpU3wfS7KlS5f6Pr5w4YJ5PB7761//amZmO3bsMEl25syZgHkbGxtNktXW1pqZWV1dnUmy/fv3B3xem6NHj1qfPn2stLTU4uPjbdOmTUE9DwCA7kK30+0AAPeh3+l3oDvwUhNwFaNGjfL7OC0tTY2NjTp8+LAyMjKUkZHhOzdy5Ej17dtXhw8f9h3LzMzUl770pavep6WlRd/61rc0ZMgQ36vOknT48GGNGzfOb+y4ceP87nH5PBMSEtSnTx81NjYGvOfRo0c1a9YsZWdnKzExUVlZWZI+/7W3rsjOztbPfvYzrVmzRtOmTdPs2bO7dB0AAG4kuj14dDsAwCno9+DR70DX8MdGgau4/C90ezweeb1emZk8Hk+78ZcfT0hICOo+CxYsUH19vfbs2aPISP9vzcvv09G9rzTPQKZNm6aMjAxt2LBB6enp8nq9ysnJUXNzc1Bz7sjOnTsVERGhY8eOqbW1tV0WAABCjW7vHLodAOAE9Hvn0O9A5/ET6UAXjRw5UvX19Tp+/Ljv2KFDh3Tu3DmNGDGiU9d69tlntWXLFm3dulXJycl+50aMGKFdu3b5HXv77bc7dY/o6GhJ0qVLl3zHPvnkEx0+fFhLly7VpEmTNGLECJ05c6ZT877cli1bVF5erqqqKh0/flw//vGPr+l6AAB0J7q9PbodAOB09Ht79DvQNbzcBHTR5MmTNWrUKM2ePVvPPfecWltb9eijj2r8+PHKy8sL+jqVlZVatGiR1q5dq5SUFDU0NEiS4uLilJSUpCeeeEIzZ87UmDFjNGnSJL3++usqLy9XZWVl0PfIzMyUx+PRtm3bNGXKFMXFxalfv35KTk7W+vXrlZaWpvr6ei1evLjTn4c2H3/8sRYsWKA1a9YoPz9fv/nNbzR16lR94xvf0Fe+8pUuXxcAgO5Ct/uj2wEAbkC/+6Pfga7jJ9KBLvJ4PHrttdfUr18/FRQUaPLkycrOztaWLVs6dZ1du3bp0qVLKiwsVFpamu9RXFwsSZoxY4aef/55PfPMM7rlllv0y1/+Uhs3btSECROCvsegQYP01FNPafHixRo4cKCKiorUq1cvbd68WXv37lVOTo4ef/xxPfPMM52aexsz0/z583XnnXeqqKhIkvS1r31NRUVFmjNnji5cuNCl6wIA0J3o9v+h2wEAbkG//w/9Dlwbj5lZqCcBAAAAAAAAAEC44ifSAQAAAAAAAAAIgI10AEEpLCxU7969O3wUFhaGenoAAKCT6HYAANyHfgduHN7aBUBQGhsb1dTU1OG5xMREDRgwoJtnBAAArgXdDgCA+9DvwI3DRjoAAAAAAAAAAAHw1i4AAAAAAAAAAATARjoAAAAAAAAAAAGwkQ4AAAAAAAAAQABspAMAAAAAAAAAEAAb6QAAAAAAAAAABMBGOgAAAAAAAAAAAbCRDgAAAAAAAABAAGykAwAAAAAAAAAQwP8BErYreQJZftMAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 28, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "#%% create masks\n", + "top = ig.allocate(0)\n", + "bottom = ig.allocate(0)\n", + "\n", + "top.fill(\n", + " np.asarray(ground_truth.array > 0.8 * ground_truth.max(), \n", + " dtype=np.float32)\n", + " )\n", + "bottom.fill(\n", + " np.asarray(np.invert(ground_truth.array < 0.4 * ground_truth.max()), \n", + " dtype=np.float32)\n", + ")\n", + "\n", + "\n", + "\n", + "roi_image_dict = {\n", + " 'top' : top,\n", + " 'bottom' : bottom\n", + "}\n", + "\n", + "show2D([ground_truth, top, bottom], num_cols=3)" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": {}, + "outputs": [], + "source": [ + "img_qual_callback = ImageQualityCallback(ground_truth,\n", + " roi_mask_dict = roi_image_dict,\n", + " metrics_dict = {'MSE':mse, \n", + " 'MAE':mae, \n", + " 'PSNR':psnr},\n", + " statistics_dict = {'MEAN': (lambda x, y: np.mean(x, where=y)),\n", + " 'STDDEV': (lambda x, y: np.std(x, where=y)),\n", + " 'MAX': (lambda x, y: np.max(x, where=y, initial=0))},\n", + " )" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABdEAAAGpCAYAAABia3+1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9eZxdVZk1jq9bdeehbs1VKTKCJISEgAREUBlEULBtRFCcEBVo6YCNYH9pgyJBFAR9eWPLbCM4NMPbrTTtDA6gSOiXQYSXKMgQMlaSmoc7V53fH/mtnXV2nVupSirzXp9Pfarq3nP22dPZz97rWfvZIc/zPDg4ODg4ODg4ODg4ODg4ODg4ODg4ODg4jEHN7s6Ag4ODg4ODg4ODg4ODg4ODg4ODg4ODw54KR6I7ODg4ODg4ODg4ODg4ODg4ODg4ODg4VIEj0R0cHBwcHBwcHBwcHBwcHBwcHBwcHByqwJHoDg4ODg4ODg4ODg4ODg4ODg4ODg4ODlXgSHQHBwcHBwcHBwcHBwcHBwcHBwcHBweHKnAkuoODg4ODg4ODg4ODg4ODg4ODg4ODg0MVOBLdwcHBwcHBwcHBwcHBwcHBwcHBwcHBoQocie7g4ODg4ODg4ODg4ODg4ODg4ODg4OBQBY5Ed3BwcHBwcHBwcHBwcHBwcHBwcHBwcKgCR6I77Bd4/vnncf755+Oggw5CIpFAIpHAwQcfjM985jN4+umnd3f2dgihUAjLli2r+v2JJ56IUCi0zZ/x0pgIcrkcli1bhkcffXTMd8uWLUMoFEJXV9cOPcPBwcHBYffjnnvuqWpL/vmf/9lcN3v2bPN5TU0Nstks5s+fj0984hN4+OGHA9MOhUK45JJLxnx+9dVXIxQK4R//8R8xOjpaNW/6zFAohFQqhSOPPBI333wzPM/b8cLvQVi5ciWWLVuGVatW7bY8rF+/HsuWLcNzzz035jvafgcHBwcHh2qYyDo1FArhW9/6FkKhEH75y19WTes73/kOQqEQfvzjH++SvH/yk5/E7Nmzt+veJ554AsuWLUNfX9+Y70488USceOKJO5Q3BweHnYPw7s6Ag8POxh133IFLLrkE8+bNw6WXXooFCxYgFArhL3/5C+677z4cffTReOWVV3DQQQft7qzuFNx6660YGBgw///sZz/DV7/6Vdx999045JBDzOfTp0/foefkcjlcc801AOCMvoODg8N+ANuOAEBHR4fv/7e97W345je/CQAYGhrCSy+9hPvvvx/vfve7cdZZZ+G+++5DJBKp+gzP83DppZfi29/+Nr7whS/g+uuv32a+9Jnr16/HTTfdhM9+9rMYGBjAlVdeOdli7rFYuXIlrrnmGpx44onbvYjfUaxfvx7XXHMNZs+ejSOOOML33QUXXID3vOc9uyVfDg4ODg57B1asWOH7/9prr8Xvfvc7/Pa3v/V9Pm3aNPzLv/wLvvvd71a1LXfffTdaWlrwvve9b6fld6rwxBNP4JprrsEnP/lJ1NfX+7679dZbd0+mHBwctglHojvs0/jjH/+IJUuW4L3vfS/+8z//E9Fo1Hz3zne+ExdffDH+4z/+A4lEYtx0crkcksnkzs7uTsGhhx7q+/+vf/0rAGDhwoU46qijqt63N5fZwcHBwWHnY1t2BADq6+vx1re+1fz/rne9CxdffDGWLVuGa665Bl/60pdwww03BN5bqVTw6U9/Gj/4wQ/wjW98w6dyn+wzZ86ciTvuuGOfItEni11t16dPn77DDnoHBwcHh30baq8BoKWlBTU1NWM+B4AzzjgD//Vf/4Xu7m40NTX5vvvrX/+KFStW4POf//y4zvm9Afb63cHBYc+BC+fisE/juuuuQ21tLe644w4fga744Ac/6FPOffKTn0Q6ncYLL7yAU089FZlMBieffDIAoKenB0uWLMEBBxyAaDSKAw88EF/84hdRLBbN/atWrUIoFMI999wz5ll22BRudX7xxRfxkY98BNlsFm1tbfj0pz+N/v5+370DAwO48MIL0dTUhHQ6jfe85z14+eWXd6B2toL5ePbZZ3H22WejoaHBKPOrbSfT7WurVq1CS0sLAOCaa64x2+4++clP+u7ZuHHjNsvp4ODg4LDvY9myZViwYAFuvvlmFAqFMd8XCgWcddZZuPfee/Fv//ZvEybQg1BXV4e5c+di48aNvs9LpRK++tWv4pBDDkEsFkNLSws+9alPYfPmzWPSuPfee3HssccinU4jnU7jiCOOwF133eW75rvf/S4OP/xwxONxNDY24swzz8Rf/vIX3zWcY7zyyis4/fTTkU6nMWPGDHz+85/3zSUA4LbbbsPhhx+OdDqNTCaDQw45xDgB7rnnHnzwgx8EAJx00knG7nLuceKJJ2LhwoX4/e9/j+OOOw7JZBKf/vSnAVQPAzd79uwxdnvdunX4h3/4B8yYMQPRaBQdHR04++yzsXHjRjz66KM4+uijAQCf+tSnxoSHCwrnMjo6ihtvvNHUeWtrKz7xiU9g7dq1vuuY/6eeegrveMc7kEwmceCBB+LrX//6uOF8HBwcHBz2XZx//vkolUq49957x3x39913A4CxddXw2muv4cMf/jA6OjoQi8XQ1taGk08+2ReWbKK2ysZEeYBly5bh//v//j8AwJw5c4z9ZFjUoPX3RHgIPueSSy7BD37wA8yfPx/JZBKHH344fvrTn46bdwcHh4nBKdEd9lmMjIzgd7/7HY466ihMmzZtUveWSiX8/d//PT7zmc/gC1/4AiqVCgqFAk466SS8+uqruOaaa7Bo0SL84Q9/wPXXX4/nnnsOP/vZz7Y7r2eddRbOOeccnH/++XjhhRewdOlSAFsW5MCW7ezvf//78cQTT+DLX/4yjj76aPzxj3/Eaaedtt3PDMIHPvABfPjDH8ZFF12E4eHhCd83bdo0/PKXv8R73vMenH/++bjgggsAwBDrxLbK6eDg4OCw92BkZASVSsX3WTg88anl+973Pnz961/H008/jbe//e3m88HBQZx22ml44okn8MADD+Css87aoXxWKhWsWbMGc+fONZ+Njo7ijDPOwB/+8AdcccUVOO644/DGG2/g6quvxoknnoinn37a7FL78pe/jGuvvRYf+MAH8PnPfx7ZbBb/7//9P7zxxhsmveuvvx5XXnklPvKRj+D6669Hd3c3li1bhmOPPRZPPfUUDj74YHNtuVzG3//93+P888/H5z//efz+97/Htddei2w2iy9/+csAgPvvvx9LlizBZz/7WXzzm99ETU0NXnnlFaxcuRIA8N73vhfXXXcdrrzyStxyyy048sgjAcAXmm7Dhg34+Mc/jiuuuALXXXcdamomp51Zt24djj76aJTLZVx55ZVYtGgRuru78atf/Qq9vb048sgjcffdd+NTn/oUvvSlL+G9730vgPHDw/3jP/4j7rzzTlxyySX4u7/7O6xatQpXXXUVHn30UTz77LNobm4213Z2duJjH/sYPv/5z+Pqq6/Ggw8+iKVLl6KjowOf+MQnJlUWBwcHB4e9H+9617swa9YsfPe738VnP/tZ8/nIyAh+8IMf4K1vfes2Vdynn346RkZGcOONN2LmzJno6urCE0884YtNPhlbtT244IIL0NPTg29/+9v48Y9/bLiKanmfLA/xs5/9DE899RS+8pWvIJ1O48Ybb8SZZ56Jl156CQceeOAO5d3BYb+H5+Cwj6Kzs9MD4H34wx8e812lUvHK5bL5GR0dNd+dd955HgDvu9/9ru+e22+/3QPg/Z//8398n99www0eAO/hhx/2PM/zXn/9dQ+Ad/fdd495LgDv6quvNv9fffXVHgDvxhtv9F23ZMkSLx6Pm3z94he/8AB43/rWt3zXfe1rXxuT5rZw9913ewC8p556akw+vvzlL4+5/oQTTvBOOOGEMZ+fd9553qxZs8z/mzdvrpqXiZbTwcHBwWHPB+1I0E+5XDbXzZo1y3vve99bNZ3bbrvNA+A98MAD5jNN684775x03mbNmuWdfvrpxr6/8cYb3oUXXuhFIhHvpz/9qbnuvvvu8wB4P/rRj3z3P/XUUx4A79Zbb/U8z/Nee+01r7a21vvYxz5W9Zm9vb1eIpHwTj/9dN/nq1ev9mKxmPfRj37UfMY5hj2XOP3007158+aZ/y+55BKvvr5+3LL+x3/8hwfA+93vfjfmuxNOOMED4P3mN78Z8101Wz1r1izvvPPOM/9/+tOf9iKRiLdy5cqqeWB9Bc15aPuJv/zlLx4Ab8mSJb7r/ud//scD4F155ZVj8v8///M/vmsPPfRQ793vfnfV/Dg4ODg47N0477zzvFQqVfV72pZnn33WfPaTn/zEA+B95zvfGTftrq4uD4C3fPnyqtdMxlbZ6+HJ8ADf+MY3PADe66+/PuZae/09UR6Cz2lra/MGBgbMZ52dnV5NTY13/fXXVy23g4PDxODCuTjsl1i8eDEikYj5+V//63+NucZWvv32t79FKpXC2Wef7fucW59/85vfbHd+/v7v/973/6JFi1AoFLBp0yYAwO9+9zsAwMc+9jHfdR/96Ee3+5lB2FG137awrXI6ODg4OOw9+P73v4+nnnrK9zMZJbrneYGfv+Md70B9fT2uueYavPLKK5PO189//nNj32fNmoXvfOc7+Pa3v22U0gDw05/+FPX19Xjf+96HSqVifo444gi0t7ebLdWPPPIIRkZGcPHFF1d93ooVK5DP58eEQpkxYwbe+c53jpkfhEKhMYeeLVq0yKdsf8tb3oK+vj585CMfwUMPPYSurq5J10NDQwPe+c53Tvo+4he/+AVOOukkzJ8/f7vTUHAuY9fTW97yFsyfP39MPbW3t+Mtb3mL7zO7nhwcHBwc9i986lOfQk1NjW8n8913341UKoVzzjln3HsbGxtx0EEH4Rvf+AZuuukm/OlPfxoTImyytmpXYLI8xEknnYRMJmP+b2trQ2trq7OfDg5TAEeiO+yzaG5uRiKRCDQW9957L5566in893//d+C9yWQSdXV1vs+6u7vR3t4+Jr5na2srwuEwuru7tzuv9sEosVgMAJDP582zw+HwmOva29u3+5lBmGzYm8liW+V0cHBwcNh7MH/+fBx11FG+n8mA9lnPJQG2EKW//vWvkcvlcMIJJ0z6/I+3v/3teOqpp/Dkk0/iBz/4AWbPno1LLrkEjz/+uLlm48aN6OvrQzQa9TnVI5EIOjs7DWnN+OjjhSih/Q+yoR0dHWPmB8lkEvF43PdZLBbzxYY/99xz8d3vfhdvvPEGzjrrLLS2tuKYY47BI488MuF62FGbvnnz5ik9GHSy9WTPGYAt9eTmDA4ODg77L2bNmoWTTz4Z9957L4rFIrq6uvDTn/4UH/zgB33EcRBCoRB+85vf4N3vfjduvPFGHHnkkWhpacE//dM/YXBwEMDkbdWuwGR5CGc/HRx2HhyJ7rDPora2Fu985zvx9NNPY8OGDb7vDj30UBx11FE47LDDAu+1DRSwxRht3LhxjHJu06ZNqFQqJjYaF8b2IR87SrJXKpUxaXR2dm53mkEIKnc8Hh9TFgDbpYpzcHBwcHAAtqjQf/KTnyCVSgWS74sXL8avf/1rEwf0pZdemnDa2WwWRx11FI455hh8/OMfx8MPP4xIJIIlS5YYxVlzczOamprGKOn5c+uttwLYerbHeIeJcbFqzzUAYP369dsdO/VTn/oUnnjiCfT39+NnP/sZPM/D3/3d301YSRZk04EtC+kgu27PMVpaWrZ5iNpksLPqycHBwcFh/8L555+Pnp4ePPTQQ/jhD3+IUqmE888/f0L3zpo1C3fddRc6Ozvx0ksv4bLLLsOtt95qDvrcEVu1M3gA5mkiPISDg8POhyPRHfZpLF26FCMjI7joootQLpd3KK2TTz4ZQ0ND+K//+i/f59///vfN98CW7VLxeBzPP/+877qHHnpou5990kknAQD+/d//3fd50MnkU43Zs2fj5Zdf9k0Guru78cQTT/iuc6pyBwcHB4eJ4pprrsHKlStx6aWXjlFlE0ceeSR+85vfoFgs4qSTTsJf//rX7XrWwQcfjCuuuAIvvPACHnjgAQDA3/3d36G7uxsjIyNj1PRHHXUU5s2bBwA49dRTUVtbi9tuu61q+sceeywSiQR++MMf+j5fu3Ytfvvb35r5wfYilUrhtNNOwxe/+EWUSiW8+OKLALbf7s6ePXvMHOW3v/0thoaGfJ+ddtpp+N3vfjeuA2MyeWBoGbuennrqKfzlL3/Z4XpycHBwcNg/8P73vx9NTU347ne/i7vvvhtz5871HVA+UcydOxdf+tKXcNhhh+HZZ58FsGO2ajI8wGTs50R5CAcHh52PiQeudHDYC/G2t70Nt9xyCz772c/iyCOPxD/8wz9gwYIFqKmpwYYNG/CjH/0IAMaEbgnCJz7xCdxyyy0477zzsGrVKhx22GF4/PHHcd111+H000/Hu971LgBblF8f//jH8d3vfhcHHXQQDj/8cPzf//t/d4jwPvXUU3H88cfjiiuuwPDwMI466ij88Y9/xA9+8IPtTnOiOPfcc3HHHXfg4x//OC688EJ0d3fjxhtvHFNnmUwGs2bNwkMPPYSTTz4ZjY2NaG5uxuzZs3d6Hh0cHBwc9kz09fXhySefBAAMDw/jpZdewv33348//OEP+NCHPoRrrrlm3PuPOOII/OY3v8HJJ5+Mk046Cb/97W+3K0b3P//zP+P222/HNddcgw996EP48Ic/jH//93/H6aefjksvvRRvectbEIlEsHbtWvzud7/DGWecgTPPPBOzZ8/GlVdeiWuvvRb5fB4f+chHkM1msXLlSnR1deGaa65BfX09rrrqKlx55ZX4xCc+gY985CPo7u7GNddcg3g8jquvvnrS+b3wwguRSCTwtre9DdOmTUNnZyeuv/56ZLNZHH300QCAhQsXAgDuvPNOZDIZxONxzJkzJ3Abt+Lcc8/FVVddhS9/+cs44YQTsHLlStx8883IZrO+677yla/gF7/4BY4//nhceeWVOOyww9DX14df/vKXuPzyy3HIIYfgoIMOQiKRwL//+79j/vz5SKfT6OjoGBOiBwDmzZuHf/iHf8C3v/1t1NTU4LTTTsOqVatw1VVXYcaMGbjssssmXU8ODg4ODvsfYrEYPvaxj+Hb3/42PM/D17/+9Qnd9/zzz+OSSy7BBz/4QRx88MGIRqP47W9/i+effx5f+MIXAOyYrZoMD8Ad8d/61rdw3nnnIRKJYN68eYEhaSbKQzg4OOwC7M5TTR0cdhWee+4571Of+pQ3Z84cLxaLefF43HvTm97kfeITn/B+85vf+K4d70Tw7u5u76KLLvKmTZvmhcNhb9asWd7SpUu9QqHgu66/v9+74IILvLa2Ni+VSnnve9/7vFWrVo05lZuni2/evNl3/9133z3mtO6+vj7v05/+tFdfX+8lk0nvlFNO8f7617+OSXNbYNpPPfXUNvNBfO973/Pmz5/vxeNx79BDD/UeeOCBMaeRe57n/frXv/be/OY3e7FYzAPgnXfeeZMup4ODg4PDno0gOxKEWbNmeQA8AF4oFPLS6bQ3b94879xzz/V+9atfBd4DwLv44ovHfP7nP//Za25u9tra2rwXX3xx3Ge+973vDfzulltu8QB43/ve9zzP87xyuex985vf9A4//HAvHo976XTaO+SQQ7zPfOYz3t/+9jffvd///ve9o48+2lz35je/2bv77rt91/zbv/2bt2jRIi8ajXrZbNY744wzxuS12hyDdpL43ve+55100kleW1ubF41GvY6ODu9DH/qQ9/zzz/vuW758uTdnzhyvtrbWA2DydMIJJ3gLFiwIrIdisehdccUV3owZM7xEIuGdcMIJ3nPPPefNmjXL2G1izZo13qc//Wmvvb3di0QiJh8bN24019x3333eIYcc4kUiEd+cxC6T53neyMiId8MNN3hz5871IpGI19zc7H384x/31qxZ47uuWv6D5h4ODg4ODvsOxluLK/785z97ALza2lpv/fr1E0p748aN3ic/+UnvkEMO8VKplJdOp71FixZ5//t//2+vUqmY6yZqq4Js0kR5AM/zvKVLl3odHR1eTU2NB8D73e9+53neFht4wgkn+K6dKA9RbR4VZOMdHBwmj5DnWYGVHBwcHBwcHBwcHBwcHBwcHBwcHBwcHBwAuJjoDg4ODg4ODg4ODg4ODg4ODg4ODg4ODlXhSHQHBwcHBwcHBwcHBwcHBwcHBwcHBweHKnAkuoODg4ODg4ODg4ODg4ODg4ODg4ODg0MV7DMk+q233oo5c+YgHo9j8eLF+MMf/rC7s+Tg4ODg4OAwCThb7uDg4ODgsHfD2XIHBwcHh30V+wSJ/sADD+Bzn/scvvjFL+JPf/oT3vGOd+C0007D6tWrd3fWHBwcHBwcHCYAZ8sdHBwcHBz2bjhb7uDg4OCwLyPkeZ63uzOxozjmmGNw5JFH4rbbbjOfzZ8/H+9///tx/fXXj7m+WCyiWCya/0dHR9HT04OmpiaEQqFdkmcHBweHfRme52FwcBAdHR2oqQn21xYKBZRKpR16TjQaRTwe36E0HPYMOFvu4ODgsGdhW7Z8Kuw44Gz5vgRnyx0cHBz2LOwKW75f2XFvL0exWPRqa2u9H//4x77P/+mf/sk7/vjjA++5+uqrPQDux/24H/fjfnbyz5o1awLH4Xw+77W3t+9w+u3t7V4+n59y2+Kwa+FsuftxP+7H/ey5P0G2fKrsODB5W37LLbd4s2fP9mKxmHfkkUd6v//978e9/tFHH/WOPPJILxaLeXPmzPFuu+22Mdf853/+pzd//nwvGo168+fPH2OPFNddd50HwLv00ksnnOf9Ac6Wux/3437cz577szNt+f60Jg9jL0dXVxdGRkbQ1tbm+7ytrQ2dnZ2B9yxduhSXX365+b+/vx8zZ87cqfl0cHBw2B+RyWQCPy+VSujs7MSaNWtQV1e3XWkPDAxgxowZKJVK+4/nex/FVNryU089FaOjoygWixgdHUW5XMbIyAhCoRCi0Shqa2vhySa8SqWCSqUCABgZGQEAeJ4Hz/MQCoUQDocRi8VQU1ODWCyGSCSCUChkFHLFYhHlchmVSgXDw8MoFou+e6LRKKLRKDzPQ6VSged5GB0dNc+KRCLm+3w+j3K5DGCLGg8AamtrEY1GEQqFzD01NTWora01ahJeS9TU1CASiZjramtrAWx578rlMkZHR1GpVDAyMmLqyPv/q1Ty+Txqa2sRj8cRDoeRTCaRyWQQDodRX1+PbDZr8hUKhUz9VSoV5PN5DA8PY2RkBENDQyiXyyiVShgeHjZ1DMCkG4vFTB2zLguFAmpra5HNZpFIJMz1oVAIxWIRuVzOlFnriNfxWv5dqVRMH2D5tV5ZF1p37D/lchmhUAixWMw8IxQKmTasVCqmrlkG9i1VULI/abuXSiWj+olGowiHw6a/2PdWKhVTVuaV9a+KotraWpNXlpv9mNfW1NQgFAohn8+jUCj4+hTrTZ/P8rGttO/rb+Zfn18sFjEyMoL+/n4MDAyY9Ox7o9HomPSpaKqtrUWhUECxWESlUsHQ0BCKxSJisRgymYzJG21AqVQy/TGXy6FSqZi+oO2j7wgxOjqKXC5nVLH8LpFIIJPJoLa2FpFIxPQFtmsul8PQ0JB5v7XOa2trMTIyYvod8xLU1gBQLpfNO6r5KpVKGBkZQTgcRm1tLcLhMBKJhBkHmKdyuYxisWjyodC2C4fDyGQyiMfjvvsLhQIGBwfNO5DP5/H0008H2vKpsOPA5G05w4XceuuteNvb3oY77rgDp512GlauXBm4nnv99ddx+umn48ILL8QPf/hD/PGPf8SSJUvQ0tKCs846CwCwYsUKnHPOObj22mtx5pln4sEHH8SHPvQhPP744zjmmGN86T311FO48847sWjRou0u874Kty53cHBw2HOxs2z5/rYm3+tJdMKehHICG4RYLIZYLLYrsuXg4OCwX2NbW3EzmUxVon1bsAkCh70fU2HLo9GoIciUfCIp5XmejzhTgo3XKLGqBGcoFMLo6Kj5OxQKGSKOhC3TJClI4p2fk0glwcnn828l4TzPM+QW77frSkloErUsP8m2SCRi0qypqTHEKZ9RU1MDz/MMAWkTxSQASYozXXUSjI6OmvtGRkYM4adlGhkZMcSzksCsT3UYAFucGrwOgCH31QnAuuTzlUSnw0PbRUlEPl/rVdufJDdJWZaHjgmmr3lUkpYOG+aVZVLyXx0WTJNEPtuAZWB/CCLqCSVPlcjVOgz6zb/5/rC9WFdsJ/4omHeC7UJHB/NkO39YT5FIxOecYpuwjXhPOBw2xDqJd16j7zeflUgkfM4wtuXIyIiv3/EevoO2c4pOEs0Xy8l72G7a1kyHZWRd8Vp16vFZfIbWm+aZeWEdMF2te6ap4wHbX50H6hBQsL+oA248W74jdhyYvC2/6aabcP755+OCCy4AACxfvhy/+tWvcNtttwWGC7n99tsxc+ZMLF++HMCW0CJPP/00vvnNbxoSffny5TjllFOwdOlSAFuI3cceewzLly/HfffdZ9IaGhrCxz72MXznO9/BV7/61e0p7n6B/W1dznHEYQvUYRfk0JuqZzB9B4c9HXvKGLGzbPmeULZdib2eRG9ubkZtbe0Y7/amTZvGeMEdHBwcHPYs7Mjken8z2PsyptKWK9HJ/0lCFQoFQ+KS4LJJPWCrIh2AIRRJyPMzJWFJAIbDYZ9alKQhiWRg6wSWpKgNXRgq8arP4f2jo6OGlANgCHqdJJMMYzp8phJsSuLzb1Xosx65CODzSALapCKJdyXLPc9DsVg0dcjrtP6V0Ka6n/khMcj06ByhAp6kLYk/JaG1LEFKayUSlYxlG6linCSuqs9VYc40+aMK9FKphFwu52s3pkXymmQt7yExSyjhq23J+lengTpjCO1TNuGubWA/k+W0SVdbNV8oFEzdFQoFo2hmWytJraS5TfgrMc62Zd9j3Wtd5fN5nwNHHQJsd6bBsrMutP3YHmw3viPqJNJ77LZXBxzbT8vJ/hnUR/h82/nC+9UhoPczD0xHCXTt0/p8viO8vlQqmbzbzo9tYUdJMt7L3QpEELlaKpXwzDPP4Atf+ILv81NPPRVPPPFEYPorVqzAqaee6vvs3e9+N+666y6Uy2VEIhGsWLECl1122ZhrSLwTF198Md773vfiXe96lyPRA7C/rsvdfNQPjuU6zk41XJ3vP9gXHCZ7Q97dmnziCD7tbS9CNBrF4sWL8cgjj/g+f+SRR3Dcccftplw5ODg4OEwENiE02R+HfQM7w5YriW3/3tYOCVW/8n8guL/qPXZ4DTvNauEwCFXH8n+CpJb+TyhpFvR3tXxsK39KSqrqW0PBaD6UEFWiUNXbeo3m384HiUH7OUFhUvQa+2+7rSbS9hNFtbbW/Orz7bqy2yGoXcZDNcU3n8vfdrifoDxs67l2uvbn+n9Qvuxrx3sPqikY7Z0Ldt2qk0ivV2IeQGBdVXtPtI3tvhRUNiXpNS2bOJ9ovQfVy3g7ECZiG/l8e3wZ75njYUftOPM7Y8YMZLNZ8xOkKt+ecCGdnZ2B11cqFXR1dY17jaZ5//3349lnnw3Ml8MWuHW5g4ODw94JtyafOPZ6JToAXH755Tj33HNx1FFH4dhjj8Wdd96J1atX46KLLtrdWXNwcHBwcHCYAKbKlpdKJZ+ilWpfKkpJ8FFlzP8BGIU1Qy0EgWpQ/m2rSKl0VmU0FalM2/O2KquVGGN4BipZbZKaKnoFY5ozPyQT8/k8QqEQEolEYOgSVeOrWoz5DSp3qVRCTU2NUZkXi0WfippqXap5mZ6WhWmrSpjpqzJXCXBbpUto22ldqEp/ZGTExIimqt0m8oNiymsZCA3tw/ZgPpRYZXn4PZ0ODN2iZbFDh/D52ha2ok8V1byepDLbQOslSH3P0Cg22avnCGhaSrqyrTW9SCRinCxsA8ZEp8qZz7BDw6hjK2gnBgCfOpz9gjsEbLB8fPd1kcddCfrsIIeUDVXFa13zN/ucxq/X/sK2tkPXaHntfDAtvhvs06xDz/PMu6/q+iBCXJ1bugOC74itqOd4NBmSf0dhx2MdL8THZMKFVLve/ny8NNesWYNLL70UDz/88H4R73VH4NblDjp+72/kmsPUY0/pQ2q3bWGLw/6FfYJEP+ecc9Dd3Y2vfOUr2LBhAxYuXIif//znmDVr1u7OmoODg4PDONgR77WbvOxbmCpbXiqVjPJZyXQNy0BSTwkwJbVVNW2raZmOTdooCQxsJVg11IqtMuc9/ExJfBL9JDGZVxJkGkrEJoR4L9NiCBKGgiCJr+SZlp35V/LRPhyRJBxjz9vEKPOnDgWGutF4zBr+AoCPMCZhqSFqWG9KMvI5JIDZzkrI8xo7rrwS9Xb78FrtS3q/hkYhNISGTbaGQiFDwGlf0fs073Z4E4W2sYY1sZXSNjTMkU2G2ySsOi/sd4DX2+Q3Y8mTRFdiWetWdyjYdaF5YdoaC555YR/VdFk+pq/hnDS0Dx1l+gx9NmGT3EoM2TsedPeE9heNn893xm4f22Gm5bPHFvYNHdPU8WaPB3ZIGc0T+5e+g1rnk1Giby94b11d3TYPNduecCHt7e2B14fDYTQ1NY17DdN85plnsGnTJixevNh8PzIygt///ve4+eabUSwWA+PL749w63KH/VGZ6rDvQ+fI+2Ifd2vyiWOvD+dCLFmyBKtWrUKxWMQzzzyD448/fndnycHBwcFhG9jVW8duvfVWzJkzB/F4HIsXL8Yf/vCHca9/7LHHsHjxYsTjcRx44IG4/fbbx1zzox/9CIceeihisRgOPfRQPPjgg77vb7vtNixatMgQBMceeyx+8YtfjKmHZcuWoaOjA4lEAieeeCJefPHFSZdvb8dU2HIlYJU8Y3/ROOUaH5iEJ9Ow+xlJKCVKgvpi0AGEQXnUNBVKMCrJOBGVZbV3Iyjch6pjbfLYJhRV5UoSkj8atkN/7Gdp+kw3iPCzYYfj0LJputVIUH0mAF9+1UFgh48B/DsLNARGtTAuSqxqaBnmL0h5HZSGqpK1T9rQMkwkNIrmQw/rtA+PVJWVtrsd2kcdUTahrP1D86Jkrob3sfuh1sV4fSSo39qHg9oq76D60zKMB82//g4aK+wfJb+1vpQsVwQ5UGxnib5H9lin9WKPe/YuEPudtet3POyoHZ+MLd+ecCHHHnvsmOsffvhhHHXUUcahUe0apnnyySfjhRdewHPPPWd+jjrqKHzsYx/Dc8895wh0C25d7uDgsK/Bnrfua9jVa/K9GfuEEt3BwcHBYe/ErvR6P/DAA/jc5z6HW2+9FW9729twxx134LTTTsPKlSsxc+bMMde//vrrOP3003HhhRfihz/8If74xz9iyZIlaGlpwVlnnQVgy4Fl55xzDq699lqceeaZePDBB/GhD30Ijz/+OI455hgAwPTp0/H1r38db3rTmwAA3/ve93DGGWfgT3/6ExYsWAAAuPHGG3HTTTfhnnvuwdy5c/HVr34Vp5xyCl566aXtPil9f0WhUACwNfSJkuSqxCSZxfAv7IvlctkX/kXDWGj4D/vgRapM+b8SsYQSo6qs5f0kEiORiFFRF4tFkz/7YFA7FIEqc5VILJfLJrQMP+OhoAzdAcBH+tfU1Iw5ZFDLXltba56nZDPzpoSerarW7xU2Oa31r+pdJaZVXR9EbjNPqrBXlbnuTLDD3ejOAOafbUSCWJ9rH8ZqK4D1R/uD/q19jf1InRVMS/sg694m8tRhwV0AJFF14aMhQfTZ7Dd6QKY+i79Vfc5DZcvlsjlYVJ1CtvrcDmuji1Rbaa9kd9D7FgptDYmkjgDmy34nta2YTw0zpDZGCXLtb6oG10OFtUx6yCnbjfWrKvZqfUZ3NWh5+TcPcbXbXR1yDN0Si8V8YVqYb7aZnZeJYEcX0JO9d1vhQpYuXYp169bh+9//PgDgoosuws0334zLL78cF154IVasWIG77roL9913n0nz0ksvxfHHH48bbrgBZ5xxBh566CH8+te/xuOPPw4AyGQyWLhwoS8fqVQKTU1NYz53cJgM1EG8txNRttPWYf+A2sx9ue2DBA77Enblmnxvxz6jRHdwcHBwcBgPN910E84//3xccMEFmD9/PpYvX44ZM2bgtttuC7z+9ttvx8yZM7F8+XLMnz8fF1xwAT796U/jm9/8prlm+fLlOOWUU7B06VIccsghWLp0KU4++WQsX77cXPO+970Pp59+OubOnYu5c+fia1/7GtLpNJ588kkAWyYey5cvxxe/+EV84AMfwMKFC/G9730PuVwO9957706tk30RtlraVhcDW7dkatgXDW1hq4GD1KS8zlYDKzFoK463pfRU4oyEI0MuBKmugyatSrTbRJnWAZ9hK6ztuOMso61A1jq2r9FYzlo2uy7sHQJBsMNK2IpfJZ2rqWbte5WI17Kow4DPHe9g2qD6134TpFgaT8lu36P32s4DwN/W29qtYD9f+2g1lb1NQmv7B4U1CVJY22FCmH99drV+x992HfJ/dd6oIt0m5W2llL4X+m7YTh1NV++1leh2W9njhF23dv1o/H/Nnx3qJqgf206HoHGLDqGg8DlB7WeXZU/DOeecg+XLl+MrX/kKjjjiCPz+97/3hQvZsGEDVq9eba6fM2cOfv7zn+PRRx/FEUccgWuvvRb/+q//apzhAHDcccfh/vvvx913341FixbhnnvuwQMPPGCc4Q4OOwt74ju2IxjPFjvse9D58f6Afd1R4DAxOCW6g4ODg8Nuw1R4vQcGBnyfx2KxMQeSlUolPPPMM/jCF77g+/zUU0/FE088EZj+ihUrcOqpp/o+e/e734277roL5XIZkUgEK1aswGWXXTbmGiXRFSMjI/iP//gPDA8P49hjjwWwRfHe2dnpe1YsFsMJJ5yAJ554Ap/5zGeq1IBDNdhEKUlRW72tCnI7nIdNVFKBCmwlxahCVZLOJt2UqFY1d1DYCFUC2yQcFdN2OBLArzxlHkmqqULcJvVURa75ofLYJlm1bnloJNW/9nVBZaQieqJgufQATX7GgybtwzYZRz7I8aEEo7aRhjNhmxJ6n5ZJlfZKfiYSCZMm60LDdRSLRV8bEKOjWw6NpEq4Wn3yME2qntl/eRCuHYveVtHbZVe1O+uvGrFsE91aP7xeQ8SogyroM5sgVltAdXRQeBKbwNby8CBT/UzfF7sP8Nl2XSo5bYeaYTqqItd3UYl8vmfsl/a7q4S5/d7bh+uyfm0njD6b77Pt+NG615A7rGeOLUqGVHOC2NjVSnRgS7iQJUuWBH53zz33jPnshBNOwLPPPjtummeffTbOPvvsCefh0UcfnfC1Dg7VsK8Rco5k3L/g2nvfgVOiTxyORHdwcHBw2G2YCoM9Y8YM3+dXX301li1b5vusq6sLIyMjYw4ea2trG3OYGNHZ2Rl4faVSQVdXF6ZNm1b1GjvNF154AcceeywKhQLS6TQefPBBHHrooeY5vM9O54033qhWfIcqsAknkkUMwWGrSDU8B++3CW+SkapEJkFlk/UEiSgqQJW8VwJWiW0Sc0qEMQTD6OgoCoWCIbsKhYK5X1W4TIekKENe2OB9DDWh6mmN567EPMG82NfbRK0NJWZtYltJyVAohFgsZp7Lz1WVH4vFzOGo6mSwSWoSpGzjoBAy9o4BDWdRjXjXz1nX8XgcmUzGR15WKhUMDw+jVCqZECee5yEajRpnn/YbW/2uB0aWSiUUCgXTR1gfsVjMHFiqZbAV29XKo7sHGJbFVjhXKhVzKKaStKx73q+7KPQwW935YYc80T6sRDXDwSiZTYeN5r+mpsaEpNGQJCyH9jXdkaGOLq1Lvm9aJptE1zrTfqUOAyXRSeyzjPrus760LuwdDUHhaHiN3sfxQsc29hW+m3RO6HjC0DJsXwCmv20Lu4NEd3DYV7Av9f99qSwOE0eQKMRh74Mj0ScOR6I7ODg4OOw2TIXBXrNmDerq6szntgpdYW83tJXJE7ne/nwiac6bNw/PPfcc+vr68KMf/QjnnXceHnvsMUOkb0/eHIJhk6Gq5NXv7bjnQdtRqxGo1Z7Ha2y1u/aboDa1r7e/U0W15hvwE+caksZ+frW+ZJef6dvPsYk9W+VLMtsuj/1cO3+22pkEseab7Wg7KbQtg8D7tB+wzJo3WxFeLb/alnY9MK+2Ali/V+V8tbFP2yLIOWPfp31Dy1RtXLXvV7K8WkgT+77x+rG924F1b/9o/Wp72yFK9Lc6vzSf1fqU9leS2UFQh1q1+lTYoWyYfjUiwW4vW1mvDh+7vnUHBHeW2H2QjiymZ+9isccXTY+7b7Sf6rUT2TniSHQHBwcHB4e9G45Enzgcie7g4ODgsFejrq7OR6IHobm5GbW1tWMU4ps2bRqjACfa29sDrw+Hw2hqahr3GjvNaDRqDhY96qij8NRTT+Fb3/oW7rjjDrS3twPYokifNm3ahPLmsG1wQkf1OaEkp01OU0Wqyk8SSXoYKYAxaepnVHYSJACpvlXySpWfinK57MsbsKUfRaNRQ6aRvLYPs7RJaSrxlWBTdbaSlSzH6OioL8wNy8G6VbVv0GGaqsLV9tA6IUgsKtHMwz6p6mUebFJPFdFU4LK+tf0Av+KX6TJNWw3PwzKrQQlnO4SHHZZD+xMJY9axhvFQhbGGVVGC3t55YJfFDoFDsGz251SfU52s/Vt3KFBBruFi7HdHy8PQNPxNpbe+Ixqmh32gWCyafDCdSCRi2lZJZua5XC6bPqi7IWwCnt9rfWgf1LrSvq7P1B0rqmpneCEtn+1YsQn6oLAseogs1eHFYhH5fN6MQwz5o0r2eDzue681fSrh9T1jn+Q4RQearYSfTPglBwcHBwcHBz/GE8o47J1wJLqDg4ODw27DrvJ6R6NRLF68GI888gjOPPNM8/kjjzyCM844I/CeY489Fj/5yU98nz388MM46qijTIiMY489Fo888ogvLvrDDz+M4447bpt5Z9iJOXPmoL29HY888gje/OY3A9iyjf6xxx7DDTfcMOEyOmyBkmRA8DbTWCxmCC6SWp7nGZUnySMNP6LhYWyiNEgVroQk72XcaiVr7fv4PckthmEgSUzytaamxhBstqPABkl0lk8JM5LxSrLyWeFwGJVKxYQgYd5sklFJdj3o0b4n6J0dT/nKe5RI5/c2KWmr4ElAqio5kUiYMDB0XnieZ9JWcrtcLvsIRkIJ2kql4suHrbRWEt2Ota/Q8CgsNwlO1nWQytsmsm11vraRhp6x67tUKo1xGGj8c9aPHa7HDm2kziSS33QUkURnmqw/rSeOi6xXdWxFIhFffSrJrI4ihl6ydwiog4jlUYeL1gn7i6ZhO5DsPq1jhzrw2Gfs9tK+YqvD6UCig6pcLhvngta7OoQ0zI22A/tzkCOMhD3zr+NCtZ0JQXBKdAcHBwcHh+qwd6HtiXBK9InDkegODg4ODrsNu9JgX3755Tj33HNx1FFH4dhjj8Wdd96J1atX46KLLgIALF26FOvWrcP3v/99AMBFF12Em2++GZdffjkuvPBCrFixAnfddRfuu+8+k+all16K448/HjfccAPOOOMMPPTQQ/j1r3+Nxx9/3Fxz5ZVX4rTTTsOMGTMwODiI+++/H48++ih++ctfAtgysfrc5z6H6667DgcffDAOPvhgXHfddUgmk/joRz+6XXWzP0NV49X6CIlDDQOiClyqxUki27GJNVSHqoKrhbkAxoZnULI+SEmuTgCbPCP4PObFVpMHPVvJNCVJSSZrWqxDPXg0SOFMNTuvs0Nn8H+qmW0Vr+1sqAaWg/kaL0THeGOLtgGvUbW73Ya2Ql/LxTYIijmu5Dmv13tt1X5Q31HV8Hiq4KD2Zl+y28T+rY4gTc8mY+3+RyLaJq4VLJd9qKX2RduJFBTaRPsjAB+BDvgP5tR7bBJYHTWaL5tIt507dnsA2z48V51rWiZ1lmhd6Huhuxfsfql9Rn+IoP6m4xSv0XzZTphq5QuCI9EdHBwcHBz2bjgSfeJwJLqDg4ODw27DrjTY55xzDrq7u/GVr3wFGzZswMKFC/Hzn/8cs2bNAgBs2LABq1evNtfPmTMHP//5z3HZZZfhlltuQUdHB/71X/8VZ511lrnmuOOOw/33348vfelLuOqqq3DQQQfhgQcewDHHHGOu2bhxI84991xs2LAB2WwWixYtwi9/+Uuccsop5porrrgC+XweS5YsQW9vL4455hg8/PDDyGQy21U3+zOoHiaRbiuHVe1JxTXDI1AtbhN27Kc8ZC+IwKqpqTHx+ElQaWgHjQ+tB/lRTU5inuEylETn/aoEVkKOeSYhb6ehKmg6GZTg40GKSpqREKdim4eZan0wFAjvSSaTJoSHKqSZH1VD53I536GZhIbdsJW7GjomHo/7VM3qQLBJWtYXv1O1uRKJSjzrZ5qO1hvrkep2hschsax5sEP2qNLaDumjxLnneSbciu5eYNr2bgpb9c78ahgSTYN1YxP8tvqbUIKXZY1Goz7CXklfOhii0ah5h+y+pir8oMNGNTyShp1hmZhXbR8NCaTpK8HNfNvvHZ9lK861n9pKdDuvLDfbmX1F3ycdA1guOks4RnGHAPPH94v51zA5ultD2013ADDv9u4Z7e/6ow6+anAkuoODg4ODQzB21EbuKjgSfeJwJLqDg4ODw36DJUuWYMmSJYHf3XPPPWM+O+GEE/Dss8+Om+bZZ5+Ns88+u+r3d9111zbzFQqFsGzZMixbtmyb1zqMjyBCloSiEncaSoIEEkk1AIbooipdla02ec7QGQy9QtiqTpJbqjzVfDDcSxBI5pIsVGUp88+86W/Arxjmvarq1oMw9eBCJdZICtqkmpKOlUrFxFFXMB37fluJbit2g+qAoT4Utqpcr7fbQb9jm2pMb/taJd+D8qpKZtthw36jpKWqibUN9XBNLYuS8UFhRqrlUz+vpqRW2HVqh4ghQWvH+rcJ5qCFFElc9nkSw/a14yny+Sx1JqiDopqSOmjnhPZvm7Sv1o/0MNGgerRjrfN/u41ViU7inPWqSnT2dQ1tYyvQNcZ/kJJe60PLpw4jPZCUdTZeWzo4ODg4ODg47M9wJLqDg4ODw26D83o7TDXscA5KUMZisTEEHBW844XwCIo1rNeRNNMY1rbiV0lsJeSUlFUFqYatAPyhXILIYVUv23VBaKgIOgdsBS/TtMO6kLBjHTI9VYeXSiWfQpvpsg3UCUB1MhXhSmzaeVdicVthT7Te7XZTorNaiBXmXYle7mCwHRYkyZkfPeAT2Eq407kSFPqD17Htg5TjpVLJtwtCVf7sv0EHWSqZyrSCQsKw72m9qHNJFfmqhtdy6Gd2fWtZ+b06kjzPHwrIdqQoqWuHPyI0n1qnbCPNE9tZFehB5QjqZ/qdlk/fG02bP7qLhGpzKs01DrrdLtwlo3HQbVW7XWd2WUOhkK8P8j1RwlwdbqqKd0p0BweHPQXjOTsdHBx2DG5NPnE4Et3BwcHBYbfBGWyHqQbJIpKFqi5neAoe1Af4lbokoOzwIAxPAoyNba7hI4LCH5D4sxXi+gx+z7woaciDBVmmcrmM2tpaE0JEF5RKMKo6VUNNUNnKZyaTSV88by5SNRwIyW4AvntZx6VSyZC9o6OjPhJdiUSS4TU1NaZMJBGZdpCCdzzHgLaHksQ2gcjPeA8w9tBZPn90dBT5fN7UGfNY7YBLtlMsFvORlQx3wjA3ShyXy2VTLltRzfpheYrFIoaGhhAOh00YGyX8GVbHdmAoCcxQPtpntQ7Yj1Q9r/WioXc03I3Whf6vcfTZn/Q9o/OE4YU0jBCJbQ0DZIeRYb5Uac0+qepuEtaqAifBzdAoNqHP9DRt9hv7M3u3ix6sy3dUQ/cwX+VyGblczoS3odNGiX32GXUcRaNRc4go+5tC20XLzHyxrHogK/PPfsl6YxihbcGR6A4O+zfsHU876xk6jo53RoiDg8Pk4dbkE4cj0R0cHBwcdhucwXbYGQhSkKpaM4hgrpYOSUqSq6pgtsMeKGlYLd2gUBr83CbQNbyDxku2YxcTqr5nmrYyn2napKPmTUNWaF0oOadOAU1f42KTkLXbQBXHdhgRm5zUfNjfaZns/Nrp2YdiVrvOVtATSpiTkNY+MR6JoHWnCLo+SGnP+rQdCKo6tsnfIOV7UKgaOk8U7B+qdNe8VEsvqNx2/1Rou9l9SUOP2PcEfR7UJ7RtlEi3w6LYYXwmalvsXQzqSFAnTlCoFTuf+lzbMWA/U0l57jgAgg8Ltce9oPawx5Lx3qcgOBLdwcFhV2BbNsfBwWH74dbkE4cj0R0c9mPYC7Wg0ADVCB8HBweHPRFKINnhIJRQ5SGgSprasYcBGFWmTXwpccW/lZhTgs5WiypZZhOCNhFnk8QMtcDnBU16bbJfP+e1PPzQVjTbjgCN16z5JvlNtbVNtBaLRaMyrlQqPjWybV8Yh90+YJPQsCmsk/EOJa1GaithqSE39OBHliUWi5nDZwuFgukX+jwlLVl/SghT/VssFsfEAdcDIGOx2Ji43lS92yF+qL6Lx+OIxWKm36oTQEl7qsvVWaL9S3cw2IQu79G8sX30PeH32q58JncoMH0NO6MKdNt5pHWl/U1J4yDHAvOgzifNYywWQyKRMAfy2qFv+H4psWw7k+x3hfnSXRSqege2hmWyQzqxHlR9zvEiyMEViUQQj8dNOBd1Bmrf0b7A+0dHR1EoFJDP580OB44D2r/53Nra2jFjl4ODgx86Pu+v2BVlVwGAW5s6ODjsTjgS3cFhP4dNoujiVVWE+/Pk0GHnwXm9HXYG7FjMJO6UMCc5xD5IMo2EaCQS8fUxDbnC+wD41OFKZFaLgw344w+rQlRDkWhIC42PrYS+jt+An+BTsjro2VruQqHgu09JNYaTIVSZT8LOth0MT1GpVBCNRg3RriS+5oUkpsZ75ndKviqByrqw88W8Bx0oyd82+RuJRHxhNzzPQzQaNY4WhqJRQpLlZFtpvdohTehQUHU7y0SiXR04/D8SiRgHhLYnr1ESWJ3hLAPv08M42U9Y18yf7iIIcjoRSqLbh13q/UqoV9t2P9592s+0jLbTJqhPabgSfW9raraEJkokEr55jzocQqGQCU+kceL1GbxH460rmc++qgeqatx/7fusS45HsVgM0Wh0TLtpeCptdy2bqs+ZT60TkuiDg4MYHd0aTocOBTrNbOfDtuCU6A77I1SIRLi+vHOxt5LnztHisDfArcknDkeiOzhUgS5KlBwJ2oq7N0LJDxI+dhl5nS4mHRymEs5gO+wMBJFVSgwFqV3tv4GtdsBWafI7EmhMNygMRxCUKLU/V5KXz7TDUDBtJWR1zGaYFjsfQYppJS+1Dkg+2uSzXTdaHiUSbQUsCU1bJa91pMSoTQRqWVg+Ktht9bSdB5tkVtLaDnmh7crr1JFht5cNVTbrPVrfQc4Veyzk30xP46Uracu/tTzqzFHS3a5P/TwI2uZ6nU3cBoUtARDYr7TPaP40XX6v/Z5Q1bj2+aB61La2nWR2PWqe7ffDBtvVTl8RtLvPrk8tI8um99i7XhT23NT+n/cDW89C0N9aNnWe6XxvojbWkegO+yNsm+iwa7G3OS8mk0c6VjkH1LF8b3UkOOz5cGvyicOR6A4OFnQ7LA9cU5UQD1oaGRlBLpfb68hlVY0lEglz8JVuC+YgWiwWjQqR23/3prI67PlwBtthZ8BWW5O4pKJaSS+N720rfQEEKqM1bRKctnNVFbC2mlPzp6p3DVtChTLT4LV2OiS6SbYzXX6vRKYqe7U8xWLRRyraCnZbmazkJ8OO2PHB1UlAW6JhQ9QBQWj9azgUhkKxQ4HwHiUFNewFy6p2jorboF0DBNNPJBJGhR6LxVAul81BkEFkPA/+jEQiZp7AQ2xtYlIPANV6IZGqbRCPx5HJZHz2m6FvIpGICQdj9xfWcZAyXwnkag6QIPW1Ohe4yFeHie6qqFQqY5wmepinPksV+Vqvmi+WOxKJmN0Odj9iX9CyM6/80XldTU2NL59sY7v8BMO91NTUIB6Pm3xrf7SdIUqGq8OG9WeT+7xHD5+1xxB9hh1KhuAhrJVKxcxX8/m86cNK2tPJVSwWUSgUJkUQOhLdYX/FjvZ9h+0Dx3ZgrLhtT8RE+whtQzKZREtLC6LRKAqFAgqFghnHOT67fucw1XBr8onDkegODgHQbb9cdHFbNxc75XLZqOG4YN0boIpBlku3swP+uLFcwHK7N793cHBw2JNhL6qUtFMylp8p8WirbknSVSoVX+xnVY7bKmgNVWKT3/yeRBpJQSWnVYlOkt6+n+XUspEwVcW6rcy102KIDCXqdDKtynAbupjVBawqcTUkix2CRfOpSm2my7zR3mrIGztNkqHqhFCCm6E8dFeBrUi2FeCe55nwGUF9w3a4kCQOhUI+p4g6NEimKvGq/VR3AGi6tiJbFdZ27Gol4m3FsvYFbQfmi3WsOyxslbOtomY5bFK9mpq6mgo9SNmufY91q+FabNJf3wemY4c+0c9s55cqzW2wj5GAt3cyaFntv7XsbEPtC/p+su50zLHzo3Vktw/zSkcOBSAan5/1qXVG4QTHHQcHB4c9DfYcScf8vXmNquvzdDptHPnAVsFDkJN7qvOwM9N3cNgX4GZHDg7YGn82HA6jsbERmUwG8XgcTU1NiMViRr1GdXapVEKhUEB3dzdyuRyGh4fR29s7RnU1kedSJZdOp81CWBc1VCNRRVQsFlEsFre7rFys6bN0qzgw9lBRz/N82+arxTd1cNgeuImaw1RCY5F73pZDDW0HoBKASpraIRiCQjRMRO2kxCkV2nwuMFYhrt/pNXY+lKgLyoMSaYylrWmR2A3KLwm7oGcxDZYp6LlKptO2UW1tHypp51/jq2uYMW0ntqnmS2Pdj46OGqcwVcLxeBy1tbXmIMl4PG5IdJZbn0WyUXcRKOHOHyrGWUbGqWb63FnA3QVUllUqFR+BORHYdattrPmk88QOoWIT9kHEsE2sB5GxGqOf9W3XU1DaulNA+5aStEHOFD7XVqLbabMeuMuEymt1puiPkun8GRkZMeOEHoiqOzxsh4Omow402yFSbd7EZ+l7yvSZJ31vWe90uun7FeS40PTZr/m/9g875BD/V2J/InB23GF/w95O2O4NqKmpQTabRSqVQjgcRjqdHnMIOHe60b5SsT04OLjd69VoNIpkMhkYUgzYsit9aGjI58QFJjcOqjOV9p3jPm2Szns4l2F4uZ21Q9z16f0brv0nBkeiOzhgC+mSTCaRTCaxYMECzJ49G+l0GgcccIAJ6UKVF4314OAgVq9ejYGBAbzxxhtYuXIl8vm8T7E9Hqh0r62tRXNzM2bOnIl4PI66ujqk02kf+dPX14d169ahUCigt7fXbGHeHvAAqXA4jFgsZkiGoEPwVKHH7c3cou7gMBVwW8ccphrxeNyoaUkkKXFpE9sc45TABbYqXm0ilaTwtmJTkkjX8VIV26r25CJJD3skEajjsx58STKM+WJaqtK1D6UMUlKTAGS5+DntRFCZ+Defb6thGdZEFVQ2ea/vvhK0bAMSnnqgKOvGDt2iC8xMJmMW28xDLBZDKBRCPB5HMpn0kaDMNwAMDQ2hr6/PqHYZToNEpJKQqm5PJpNIJBJIp9Oor6/3hVopl8vIZDIoFAoolUpjwmro87WP2vWp/ZHfaZ/UkHMat1/bk38DW0PIEJqu7rbgDxf0Snbzfu5kq0ak831h/9d0lBhmmDwln9kv+M4qka5kMf/mtnftVzwklm1mO8xYPo4VSqjzveJ9FFboTgBeq4p2z/PMO671ru8r55O20lydgFpHOm9T54m+UwxHQ8cC1Yv5fN53YCqv5xjANtL+wHJvCzsaWsDZcoe9DdtyaE8GTvlbHZFIBAcccACmT5+OTCaD6dOnI5VK+cbawcFB5HI5lEol9Pf3o1gsYv369XjllVfGiBUmimQyiY6ODjMPssfBnp4eI6hTQn+ipLYKBDimj46OYnh42Mw9GLaFRH04HEZdXZ1Zk1NYNxV90GHfQTUxw0Tg1uQThyPRHRwAs+CPx+PIZrNoampCOp1Gc3Oz8URzuz0X07FYDENDQwiHw+jt7UU8HjeLUiqigsDBrba2FrFYDNFoFKlUCtlsFolEAnV1dchkMgC2LoY5SQiHwygUCohGoz5F3GSgW5ntbdO6IOPiSrfTV1sgOzhsL5zBdphq6IIG8IcwCQqBQmhc7SDCmWlrCIptKdFU8UlyWwlKO096aKLmz1bBkkwMCoehYTk4fmt+7JAbRLWwG0HlC8oj86mknk0GalmCPlPbpPnTsBWsJw3Jo2QzSc5EIoFEImGIT5Lo/Ft3XxGlUsnsugpS+NrOCN1NRiU6w8BpODgNl6OEJecKSgwH9TvWgdYT8xTUT5iGpmWXNagNtH8p+BwS9+qYmagKL+g7rWN9Z23HzLbGen2ftPwstwoCdCzQMulOAyXnmZbmVVXo9vP13bCfwTLzeXq9qvqD3it9v+1dGvreahn0b3U02H1GwyTpO6XOjm3VvyPRHRwcpgoce7hGTqfTqKurQ0NDgxGacWyjOIzEciQSMWeT2Icojwcd2+lw53kj9q4crsU5vus4PBmhme4003Ee2Opw1Ws5b9F1uRs/HaYKbk0+cTgS3WG/hRrL9vZ2zJs3D5lMBvPmzcOMGTMQjUZRV1dnFICqTqRnetasWSgWiybUy9DQEF577TWsW7cu0PsdCoWMYq2urg5z585Fc3MzMpkMWltbDZnP+Os0/rlcDrNnz0axWMS6deuwfv165HI5rF69Gr29vdtFpNuLMn4OBJMbSlQ4ODg47MngoodjGYlMqk2VLFeyjWpnjVGu6m+9TkN2KKFsj6NKUClhxTxojO/R0VGTrn6vizRVRHHspsqYClkScswTdxCx7CR0NTwK86yhNLQOFFwoKpGtdWSTsUF2Q0nxamSuqpS1PVVxTId0OBxGQ0MD2traEIlEUF9fj3Q67Xu+HVtcfysxTQUx24b9SZXFsVgMmUwGiUQCBxxwAOrq6oxtVyf5yMgIUqmUcYrzkNGBgQEMDg6iUqlgaGjIKMqoxGZeNMQI8xK0Y4xtlEgkfCQq21RJUs/zjNqe74HOcVQBbtcP216V2HQM6HulYDpc/FPVHhTuh3m2t8lre7FvBTls9DMSDkp6a5lVMU5VeD6fRz6f9yntQ6GQ2UZPBwmw9ZBhrV+2hU3c6HjA3/bYYOdfz+RhH9fv+Xw6ZKhu58Gh+XzeqBpzudyY8wg41tARZNe1HWffwcFhC3bUcWSntb9gIqr7UCiE1tZWHHDAAUgkEmhpaUE2m0UymfQ5PTmekWDnLq/h4WG0tLSYcb2npwf9/f0+m6igjUilUpgzZw6y2SxisZhxwtM5rqFP29ra0NDQYEK8Ujm+YcMGDAwMbLMe1AnA37QzFAKout0WTKhDdH/qP3sSJiog2NXYk/KyL8OR6A77LbjoD4fD6OjowKJFi5DNZjFz5ky0trZWJY25qOC2cc/zTLzVgYEBDA0NobOzEwDGGLdQKIRUKoWGhga0tLTgLW95C+bMmWMOOwtSigFbJ2uVSgWrVq3CqlWr0NPTg76+PvT19ZlrJlpu+4ef6zUKW5HnPN8OUwXn9XbYGdDwFlQpkWSyVaYkGRkCRkNfcBcS01LFM+CPeWwrZ/mdHduYi0D7exLsdhxoVcPqGKxxxDlGk2wmGcf09KBLjU+txCjLw3yVy2WEQiHjNLYVykEHMI6neq7WTrYiXwl0phOLxXx5ZlgVkugM15HNZtHS0oJEIoGmpiZkMhkfKW6HI2G9s35Yj6VSyZw/QscF65v5jEajyGQyqKurQ0dHB5qamowjXNXpIyMjyGQyY8Lv0H5TPcddbCTRtW20rOr4UdvMcrBvcqu5tqndvgwno/Vu9z9CSWB+T3Jaw9xUU1FrH6LiX8Pz8H51GPA5+g7o5yyzOm9U0af9iJ9r3HuG31PHUaFQQC6X85VFt/Qz/j3vVyJd55W280PfMZ3T8Rm2Q4DvM8cyhqOxd6vwOSTJtXzDw8Pmb/YFdYioop3P0vmfhr0aD06J7rC/wfXZ7cdEiPTm5mYsWrTIhGSjnQfgs5c1NTVmB/fg4CCGhobMM2KxmAmJQoK9mpM3Eokgm81i4cKFmDlzpgm95nkeUqmU2ZXO/AwNDaG1tdXERuf6f2BgYEIkOrA1bJsKOvgcwH8GD0PzVQtp57DrYIsLgbF8z94KtyafOByJ7rDfgotcbvtOp9NIpVKIRqNjFhJBUOUdF9Ojo6PGY021FQcVXp9MJtHU1ISmpiakUimTh4kc4BQKhUzc9Eqlgrq6OqRSKRPzcjKLHVtBSQPO/OpgaHu7JzNQBm1/1gPSmJ6tmJtKlYfDngtnsB2mGkHbd0mmqcpWxz/bYapbcoNCjHC8DAqpwu/HQ1BYGH2+PZbzeapMV2KdBKX9XFtJTyUwx2M9MFFh50XthH5mQ9MLUunoPXb4GY0Xr2S11rWmqUSgxiDnbi6bGFdi1a4jtU2q6teDt5VsBGDimJJUDToUVclmloVl5XZx2nUu9tWxUK1t1BEwXj9W6FzE/tyuV3Vo6D3sa8w/HQZ6mGe5XDbvT9B2eiW39RlK8E5kDmbfq9BnKdmgO0F0Z4bWhd1H7TwHvRusm6AxJEgtqAS93UeD5kiaN5uEVyeLqhqDdiHYZdEY8UFjwUTaIKjeJgtnyx0cHAg677lGth3BtjKbzs9KpWJEaRwXga1kdNA4o8/iOSqxWMxni20BA8dszq0476hUKr5dcxMN60KSnPMzzhFUSEB7oTuZtnfctJ0YnDvRyTxeSFqHsdiX+Aq3Jp84HInusN8iFouhpaUFqVQKHR0dmD59OpLJJFKp1IQXDryurq4OM2bMQENDA15//XWsXbvWHAJaLBbNIj8ej2P+/Pk48sgjkUql0N7ejkQiMe7CV1FTU4OWlhak02n09fWZWOx9fX1YvXq1T1VWDTzxm4vdoEO2eF3QwWqTifXGdKPRKLLZrJncpFIp3yKxUqkYxVQul8PAwIBRcLlDTPdtOIPtMNXI5/MAtipmOf6SEIvH42ZsU+WrEr08+JELLC4w9DBKVbwSQUS2OiyV4OJ3+pv32+SZkpDFYtFcC8CElwgipT3PM7aH9cF8kwxmHTEPqi7n57RjQQoyJUQ13ISG5VDVP++Jx+NjlP28T0PYsA24U0DJRyqD0+k0EokE6uvr0djYaIhtu/6ZFslUm1jmApphPWhTE4mELwZpTU0NWltb0dHRgWQyiXQ6jVgs5qsjtatULisikQjq6upMyI1wOIzBwUETSkShSu4gIrdYLPrIUCXite9pOhp+JWingbYr48tS7c/6ZRtS/Tw6ujXMTqFQwNDQkGl/O5SITdyyr6mgoBrxr/2NYBm5vV7fJT1cmPnTd591ynfN3uWh2/lZ51ou++BXVYfb8zLdLcA65xilYYBUqc752MjIiCFoPG/r4fPcdcA8UcDB+ZvWFZ9PR4jusgnCROysI9EdHBwmgomOFTxENBqNYtOmTSYcC22YhtXq7u42NjCbzaK5uRmDg4Po7e3F8PAw3njjDd9ORAVDs8yYMcN3Jpru8tF5B9PheOx5nnEoR6NRNDQ0+NazE1nDMk0l6NPpNBoaGoyDfWhoyNhV7oAKOhhc6zboMz2km3aQu+lqamrQ2dmJrq6uXU4MT2R3wp4Cnber+HBfgFuTTxyORHfYbxEOh5FOp5HJZFBfX28O9rRP4N4WuGWsvr7eLIoZh1W3ZNFb3dLSgoMOOgiRSATpdHpSzwuFtoSDSaVSCIfDaG1tNVu/J7p9ngtNVWQBGBN/lNcFHbY1Uaj6k7HgOTHQhXK5XEZvby8KhQJCodCYrdQODg4OE4U6Bzk+k3TjQVBUENnxxjkecoGhBLlO8lWhay9alFi3HZMkgkm0adgVohpxCGwluHWiq2EkdLHHNDSUhR3DXFWwJN6DVPAcj7U+NJ+q5LZVWKqYZTpBIThYFtuhQQcInQIaQ5o2hjGj4/G4sY9B9afErard+Zsqskql4iOOuWjXdBiHlcQ740sr1EFuK+CZHp0AhULBbE+307CV0NoXdbEfRKDb/UX7Q9Bz1EnB6+mIicfjqK+vRyKRMCRGKBQyMWH5zvA35w78zl582u+KhopRpWHQ4kzLoQptuy5UKQ/AONB4HdtG32Xty3oODq/js1g+3WnHPLPcJO+1ju3yB+12YPq2Al37rtYtf9tb/e33lH2ZzyERFbT7wYkYHBwcdjU4b8tms4hEIujp6TFjNR2HHP9HR7ec/dDT04O6ujq0t7cjk8mgpqbGKKqD5kb6rHQ6jdbWVmQyGeMQ5xzF3h2tYcs4ZtrzhkQiAWCroGNbCBKMcU6TSqXgeZ7ZqVYul42jXW21vX7X8ulnOgdSJ0BjY6MJS7s7iOFq+d/TsTfl1WFq4Uh0h/0WVBclk0mjcrMXr5NJi4st3dalxE19fb1Ruuvic3sRiUTQ0NCAQqFg4otOBLrgLpVKZtFGgkS30NPbTY/7eKQ2jXgqlUI2m0U4HEZzczPq6+sRj8fR0tJi6judTo9Rog8NDaFcLmNwcBBdXV0olUro7u5Gb28vSqUSent7kc/nHbm+j8F5vR2mGqoSJYGmY61uy9XDMPU7YCvRpwpTLnYmEn7LVgzbCmVdhAU9V0OAcFGjxLlez4VdEAmrhzYGvTNBYVMAVLUpSuoB/m3FupjT2M0Mo8OFIkOQkYBkfQaVUVW46sylepc/3DFg17UStxrWY7zxwyZ4ma/a2lpz2BgX2iSLqX5WorWa0wOAye/o6ChSqZRRUDNNbR873+r0Yb+07TQ/07ZSQl6JdCVbOZ/hzjGq+zKZDOLxOJqbm32HbAIweR8ZGUFdXZ2JwU0lOg/r5Oe2U0XLqSFW9F1lvepz9b3UQ1/13bNJBN0pwc+Zrk1W684Tdd7wPp03quJflYr2exH0tx5+Op4gQh0GOn5oX9bvNL9K8muMfyKIMJ+ofXZKdIe9HfuaonRvRDgcNmFVM5mMsbH2+pohU7u7uwFsGdNbW1vN2TdDQ0O+w6szmQyam5tRKpUwPDxshBZ0ktfV1ZmDwUdGRow4LZ1Om3Exn88bu8/dPyT0k8mkWfe2traiUqmgv7/fKNEn0q/sOSDTKBaLyOfzGB4eNutxe7yt9jf/13PXUqmUsd+s38bGRkybNg3hcBhNTU04+OCDDUegc7SRkRFs2LABGzduNHOeqXK06jzNYffBrcknDkeiO+y3oGq8oaEB6XTaKHO2h9jmYp6Gv76+HsBWEiKdTmP69OnGkDOcyfaS9sCWBfj06dNRX1+PkZERxGKxCd3HxV0oFMLw8DCKxaLZQmwvBqmM4z3VyGtdmLe1teGQQw5BJpPBEUccgblz55qFNw9kYWgEghOG0dFRDA8PG8J85cqVePnll9Hb24vnnnsOnZ2dLl76PgZnsB2mGkrE2UpyJa3Y95SwVrVxEJTEJUmvY3k1kpKgTdDDCJUMU2Wrqmx5La+hc4B54j16PX9r6Br9juko4cZFIstiw1YUaxn0et2FpKp7OjcAIJfL+ZS3Su5p/hlaxc4PbS53Z1EdHUQaEqpktxF0PcF8U+nOnWSMCU7ClIt8dWxoXSqxHovFkEwmEYlE0NTUZOKHq9OG9+hvVe3zM6rU7PtUaa27BfSHdcxnk6TgtvhYLIb29nY0NTX5SHS2r+dtObRNndx0wnMLel9fHwYGBlAoFNDV1WXIdYYmUme9vrt2CBKKH/i5Etdc0PNejffNNmRarGuSIExf3xH7HdZdHOrMYL0yfb5vOlaoKp750n5HR5A9L9QxS9XyGhYqSMWojib7WTyENxTaenCpji28zu5j48GR6A57K8ZT8TrsWiQSCUybNs0ow1OplC+cFnd9x2IxrF+/HqtWrUIoFMLcuXMxY8YMFItFc7AnbV08Hkdra6tx6q5ZswaDg4OGPE8kEmhpacG0adMQCm0JTdbX14doNIqWlhaEQiFs3rwZ3d3dZgdaJBIxjmHP8zBt2jRMnz4dhUIBhUIBdXV1WL9+Pbq7u42NGa9fBTlji8Ui1q1bh9raWt8cjggiy23ws3Q6jfb2dlMX9fX1yGQymDVrFurq6sy8hee2JZNJ3w5xKuLL5TIefvhhPProoygUCujr6wucT423g6wa3Hu3Z8CtyScOR6I77LfQ7brjLZ4nk55uzdXFFw15IpEwcTV3hEAHtirpASCZTE4qPQ50qsTSPHEhrLHgtjUBYLnS6TQaGxvR0NCAjo4OzJw5E4lEwizAdTGv+eEzcrmciRPLuO+cuDCW8Y4cqOKwZ8EZbIedAZK6St7au42ClKHVVKCq/lQFMJ9jq17tv+3n2gS/PkOvU8KOZJf9m/faIbdU6RuUdtBz7bE5CPaiyVYT83+1q0HhbTQ/GnajGjQNm1y0nRlB5dQ6mYyt13FGCU+NQc507UWu7Vyw24G7wEgQjHeweVCf4ed2uvxcSVG7b9r9i+nQkUGSPx6P+0LXZDIZQ6Kz7EH55ZxAdxHU1tZicHDQqPi4U4D9V98z1pe2sT1X07IrmRxUh0qAa5ra91nHQUr2oB0MQc9QZ5G9A4DPsfPH/4PyHTQ31f5mO82C+kLQu6NjXZCafTJwJLrD3oztIf0cph5cSzKUmm2nuGbn2MWzWrgeph1RpTltdiwWMzYH2BqmjOd7UGFO9TjtPJ/NEGG0Y2qneCC553lmx7mekbI9uxzoZKaDlnMjznMmkh6fH4vFzLkxjPueyWTQ1taG+vp6H3fR0NCA+vp6lMtlJBIJ5PN5MwcolUomZnxNTQ3y+bxvp6PD3g+3Jp84HInusN+CSjElZSe7uLbToyGxD6qLRCLm5G9bhb29oGHkpIMTi6AFVLX8Mo8kX2wVIxel1QZVkgiNjY1YuHAhGhsbMWfOHCxcuBDpdBoHHHAAmpubzdbwbRH9LBPVAYcccggaGxvR19eH5uZmdHZ2Yt26dXj++edN+Bd3iriDg4OCKktVYpNE1wUIf5TsUiixruSWHX6CDkcl5rjoAvwKZ1WL2+Oqfq5nVOi4qcSfjn12fHMAgfZMyTSNDa7jfhCRzc80trStwGVdk4jklmv+HZSm2h07bAmVucyXfW6HHpjIHVWq2FK1si6cWU/a5hqeh/OCQqFgDobUECw8WLOurg6ZTMZHkGqYDM0ry2ET/TwMkt/RVrLueEAky6AOA3Vwq0pN219JYRL//E6vZflTqRSmTZuGVCqFhoYGtLW1IRaLmR17VOLzQFG+SzrnUac788lzUQqFAmpqajA4OIhcLmeUeqVSyfQH/ma4G60T1iuvKxaLZms9F/OqsFdFNvtsEIEN+J1D+hymo0p+bm23iWimpwp6/s85EEkibSPG8+d9fLY6BYLIe1uNrvM6ey6oOxxsp0U1sYQdWsjBYV+Dvif7Gwm0p6FQKGDTpk0YGBjA9OnT0d/fb2KNc8zjWJdKpTB79mxz76ZNm3zhTjhWj4yMYGhoCJ2dncjn8ygWi/C8LSFOGhsbjT3j3Kavr88c3qljOW09iXmGQwFg1Os8TNQOVVdtjklU64MqdCN0nB6vv1LVn0wmMXv2bMyfP9+cS0ZBXywWM2O/xpzv7e01YW3K5TJqa2vR09MDz/PQ0dGB008/HcPDw1i9ejV6e3vR1dWFVatWmUO03Xs0eahtdvW3d8CR6A77LWg0pkLZbBMy/FESnYeYBpEJ2wMlz7n4sg+o2xZUuaWHX00EnKBEIhE0NzfjuOOOw5w5czBr1izMnz8fsVjMRxgEKUD1f37PMgFAfX095s2bh8HBQcycORPd3d149tlnsXbtWt/WaYe9F87r7TDV4BjLxZQSu1wAAVuVp0pAKYIIZ2ALMcgxXhVCSnAqiarkJ0lBLoSUeLM/I5ms5LGSvZofJdA5Ea+mfmIaugtLiTf7HpK5zJOqr2wFX7lcNoQ2iWyqwEg4sqyMjc37lYBVstJWOTFttkE4HEapVEIkEkGxWPQtorUNNE1CSeaamhqjYmM5SKKzfhgGLplMoq6uDqlUyqeUCwKfq0Q7P+f8g+2h8d3tnQW2IwbYeiA4t4wHgaQynUta3/yedZRMJtHe3o6GhgY0NDSgtbUVkUgEiUTCKOWTyaRJi2Svhi/hb41zTwWckugkK2pra028Vz0YUw/15LPZH9lOVA2qEEDfMQ3Xoo4a2zHFutQ20z6in+s4ojHog0h0OkNInJN40bLwOu4o1DyyfXVM0Lyr48neKaPtbO/W0FBOQU49DYkzERLdKdEd9ma4/rdnoFgsYuPGjQiHw9i4cSP6+/tNnHOOQyTUuaYeHR3F0NAQNm3aBGDsmTc1NTUYGBjAhg0bjOPV8zyfc5j2VsPBVCoV3+6wTCZj8kmbQvW7TaLTqUtbsC1hW9D4Wa1PTnSsTSaTmDNnDpqbmzFv3jwcffTRSCQSpn4YO56HX/Ow0r6+Pp89UEdrbW0tOjo6cOSRR2JoaAh//etfsWnTJrz88svYsGGDIdEdJg8Vd0xmPJrqXTRuTT5xOBLdYb8FF35UQdlxZScDVaDTSKvnuRo5sSPY3YMVJxXpdBotLS1oampCY2OjOQyGi8yJ1mWQao+qskQigUwmg5GRETQ1NaGtrQ01NTXYvHmzTyXosPfBGWyHqYaqjm0C1iaKlLitpka3w0toWgolvpTQVlLMJq2DnmkTaCyTbinWPOn2YoWtXtK/7bjjdMAqYafPDjqAVcdsm5ylPVWyXheUdp41rSAFPWGH2VAClDbXVgjbeR0vfXvRaJPYWod2fegOB61bpmUT+0rq6rOC1NJK1JMcsA/MtdvNLhcJU+1/XLSRFGc8VKrzdJdbtXAqtvNH86COntHRUUPIk+AmcUyCuaamxhDfNnlrk71ad+MRDnod28h+p6vt2LCfT2j72wvfINJdwxCwHgEYcl/r1c6L3Z/UQbatuSXTU+eekvwKO5QV+9l4B51qHh2J7uDgsKPQ8U93yAQ5gO0wVXq/rsuDdojTDtCOcnym81bnSLbN47M5fgNbnbscY9XW7Krxraamxqy/s9ksGhsbjdqeebd3KwYJOnitOmFpu7hDkOKIRCKBZDJpzoKjit9h8tgT7KBbk08cjkR32G9RKpWwefNm5PN5TJ8+HcPDw/A8z8Rimwzo0R0aGkJPT49JlypperhVeTcVUNW7qrF2NkKhEOLxOA4//HAsWLAA06ZNw5FHHmm2jqnacyoQjUYxbdo0NDU1GbKnu7sbTz75JJ588kkXJ30vhjPYDlMNhsyKRCLwPM93sFMQ6Rc0ZlLpDGwdv7loskOBaFpUH9mkNRcvVE5rPuzr+EzuZtIFnO444rjHhRzJ0aCY5VpOXZRyscdtyfaClWVSRbi9CNVFmYYnoRqLeaYaOhKJmIWrEul2PnVRTNJPCUjdWp3P5zEyMoJMJoNSqWRsVDQa9ZVbyUdVdavDo1QqoVgsmt+6yGYZ+btQKPgO5aJz3iZquaikeo0LbDpGmBYP/dYQQrqA1T6oCje2jV6rfYzqO61XDbXT0NBgDkWfPXu2ObyN5aK6244Ry3eLbU2wnrUtufhubW1FpVJBNptFIpEwB5exnngAqS7m2Y/0PdH5D+DfGaE7TNgm+m6yX+i7azuQlFjRtPleavnUWaftzp0FJBvssDr2e8080InG95z9gN9r2WxnINPTOmEb8vlUwvN+ltHeTaMk0XhwJLqDg8OOgqIpjpG6A87efQVsHT8Z6ovzNo6RQ0NDyOfzJiyJrpGLxSJ6e3tRLBYxe/ZsZLNZJJNJVCoVs9tKw7BxLOTORo7rnHdxV1Q4HDbqdrWROxMct6PRKA488EB0dHSgpaUFixcvRnNzM0ZHR7Fp0ybjKGcYF87XVEAYj8cRj8eNXR8ZGTE7qWgbhoeHUSwWEYvFkM1mMWvWLIyMjGBwcBCvvvoqXnnlFSdumyS2x4YGCUT4uf6/s/NhP39/gSPRHfZbVCoVDA0NYWRkxBgE3U492bQKhQLy+TyGh4cxNDRkYqIB/vjrQSTF9kDVclTg7YoBjIN2JBLBjBkzcNhhh6GlpQWzZs1CU1OTuWaqngVsWRBms1kAWyZTxWIRfX19WLVqlYlNuiu9/Q4ODnsuuOBRkswmNpXoAqofEKjkmE22KpQstElhOjlJClZToNvPtO+zF4n8XsutilstVxDhxzrSkA2qOFcVMclHPkNJW71Py68knxJynueZ+OVKzNsxzxUagscOi6LqZSXu9T79m/mzCXR+p7vKuPDW+lcHhu46CIfDpkyqcmNdeJ5n4nwrNISMrWRTssBW9avazSaD9TfLZIdsU6VxJpNBU1MTGhoa0NjYiPr6et8zeJ32Fa0H3Xmn+db3gumQ8OBBbPl83oR3iUQiKBQKvkNH7fdJ7b2G9CF0bmTfr/nQa+1+wr5OVaIdQsVWh/Nv+91mvjiv1HpUlXiQEl3Lof1+PHWjzi3paGGbKTFOEl0JFJ6xo2Wm48/BwcFhZ4NEMEOo0PFpiw10VxGw9ewGHfN5rgnFaxpiFYAJB8bxkuR9JpPx7dphvjjHoTiOO6hCoZAJ4UK7oQKBXTV+0kHa0tKCAw880PxuamrC5s2bsXr1ap/tZN44v+F4z7jpo6Oj5uDQRCKBuro6I1hgnYbDYSQSCTQ2NsLzPORyOfT09EwZB7A/YXv5C3X+T+Y7hx2HI9Ed9luQjAWA3t5erF+/Hul0Gm1tbWO2LgeBi+nR0S0xxNavX4+BgQH09/ebuKxcTJVKJfT398PzPBQKBZ8SbkfyPzQ0hFwuZ+KJ2h5EVbLpgaa2mslWGI6HeDyOTCaDuro6tLW1ob29HfX19ZN2PGwvGMcuHA6jvb0dHR0dGB4eRk9PD3K53C7Jg8PUwXm9HaYaqqrhYgbYSjBxEaYKZRtBZJaSWAQJN5u0DrIdqnzmgo9gmnYYGP62iUA71Ai/q6aE57OVpA3KV5BNUgW3xk7X7dG6eNU88pmqPOezaTPoCLUPvQzKq0Lrin+XSiUMDw+jXC77dkRVGytYV1wA53I5DAwMoFgsmhihzD/jpNOG01Fuq75ZVyyvkqt2v1KHCYl0jQ3O9tGDKmOxmI8c1frXOlb1HttRofHXM5mMUaNzrkAS2SbvtT6VuFfVniqqtZ/xdyi05RBxHraeyWSQyWQQDocxNDRkYtyTeLafq04FQp06+j4qqcF7NC9KMANbY+5qmWxHi8IWSdgOH6bB75UEYv9QUlzDD7A/aD7UGWir0QlVovM5bFcNVaAOErax7oKoNibYcEp0BweHHYXneeYw7c2bN+Pll182h1lztxLtAtXfgH8ukEwmEQqFsGnTJqxfvx7Dw8MYHBwc8ywS7Tz7ZGBgwIytdsg8kvG8L2idnUgkUCqV0N3djeHhYfT19Y05hN2+n5+xTCw/7wtSGQeBdiwcDqO+vh5tbW2oq6szdcTDQTUP9pxW58O0P7yXinQ6NtSGkUhvaGgwZ5+kUimUSiWfCMFh5yDIoW9/N9n03Jp8YnAkusN+i3K5jP7+ftTW1mLVqlVIp9PIZrPwPM8sUnU7lw0ap0qlgnXr1uG5555Df38/Vq9ejaGhIZ8BHhoawrp169Df34/58+cbD+54JP1E8r9p0yZs3rwZGzduNAo4QhdLXKzaB8nxpHJ67Cdi7BoaGjB79mw0NTVh4cKFOOKIIxCJRMzEZWcjnU5j9uzZKBQKWLBgATZs2ICenh688MILjkTfC+EMtsNUg+MrSVpVtOpWX1V024saYGuMYF5LqDKZUOJMd+vwOlvVbYddUQKU8a6ZT57bYRPmXIxRWar2xLYFfHbQGK3EIklLYKzi1ibLqUZi/lTVpPmjfRkdHTUhVph+JBLxqYZra2sNOc1nqEqW15KE1XAbNTU1KBQK2Lx5s1E5c/GotlwVyTU1NSYcW6lUwsDAALq6ulAsFs1nlUrFKLJqa2sxMDCAWCyGVCplwqRorHrWqYbf4Gf2QtYm5/P5vPnR2O6qlqPTmveoAl/bUsfWICc5D0lNJBJob2/HrFmzfNu2Gb9cy8J82OFEtL+rwz7ovWJa3A5PRWA+n8fQ0JARBYTDYaRSKd/7q+kxNA7LzzrQOubfLBfrnQSCTTazzzAdW4Wu74XudCmVSsa5wlAEqrxnHgH4vlMHAX/TmaLvmLar1ruOI/ytoWHU2cLQA9wNoSS57Vyw22pbcCS6g4PDjoLEbSgUwksvvYTVq1cjmUzi8MMPx4EHHug72Lqvrw89PT3wPM8cfB2Px9HY2IhYLIY1a9aYdfng4OCYMYZrYM/z0NXVhXXr1hmbRJJeneu5XM6ozzUcVygUQl1dHerr6zE4OIhNmzZhzZo15qBRAMYO0L7YuxvT6TTq6urgeR56enowNDTkExDo+Bo01tKexGIxTJ8+HQsXLjSOfu7s0vkobQptIHeVsV4Yyq63t9eUmzYjHo8bW0IbmU6n0drailKphDfeeAPNzc3I5/Po6+tDPp/fSb3FoZrd3VFb7NbkE4Mj0R12CXQSHuRZ3RUvniqP9PmMdzswMIBQKGRimZOcsO9TFR4XbsPDw+jt7UV/f79ZbCtorGtraw1ZPRmVTxCY5vDwcCABTgNHD7ce3KVkhKrltxUShQuwTCaDbDaLuro6s/WtmlpwqlFbW2vitGazWTQ0NGBkZGSXKeEdphbOYDtMNew+pWMtx3xVCPMzQnfwMD0Nc2JDld+qYGU6SjRWs0O2wtbOg6qEVJVuq5xtRRGACR0OqKSyxkG2SVDWg73oqtYOzAevVzLcVvmS2GT9abxrfsfy2vWsKmnmi/aZ4SlsYldtebFYNOpzbs2mTdTQIaqqt4nkajsa7PbW+lEyVM82UWU5651EJ0lQdQxp/1MluIbWscGFMYmJZDLpI2B5TbVQI3ZaupU9aD5gk7ZMhwQvCXUeZsqdBNzNEAQ7zIrmTd8l9utQKOQTHGj52LdViT5eu+m7p9v2dWwJUiAyXTt8Ee/RUEEabkV3pmiYoKD20HJrn9A5oLaTjlf6jk0UjkR3cNh7MVHF867IB59PZzLtsq5XOX7quTAMT8dxjUK5vr4+MydQqN3VZ6jSXeeH3OWnO56YF2Crc7RQKGBwcNA4uHkN5y8ahkYdynQIq9jNHoPVttlzXBLaDMdSqVQwMDBg5jFB47nyAUxf7Rqd/MDWM1RoS3XXEp8bjUaRSqWQTCZ9SneHvQduTT5xOBLdYadBB9h0Om0URRx86elkTPJcLjflLyCNRjweRyKRQDgcNl5sVelwC/Po6Cg6OztRKpXMwjIajRoyGoBRbufzeWzcuBG5XA5r1qzBG2+8YZRUNqi0Gh0dxbp167By5Uqk02l0dHSgrq5uUmXiYr+/vx+rVq3C66+/jp6eHuPxjkajiMViiEajaGlpQTqdRiwWM1ullbDQCcrmzZuNEm5oaKhqWzQ1NeHQQw9Fc3MzGhsbt0nO7Aywb7W1tWHhwoXYsGED/vKXv1Rd4Ds4OOw/4OJFQ4goCR4UeoWklC5S7K2uNjkYFG5DySmbjNTvgS12SRdofJaqhmtqakwMaY3VrXnVA640hIkSuMyr3s+8kISlfdYQGQAMwUkVEm0lVbJcNFYqFQwODpqzRmgra2pqMDQ05FsccuGmqnBd5AWRpp635eDvZDJpnKlUzmu8aZajXC5jeHjYF/ud6ZCs5M/g4CBKpRIGBwfR29vri4dOslPjrtbW1po5DPNlk7asey2jhhbhdudisYjBwUEMDAwY9TuJAbY9VfeMTcq5DPNI4l/BslEdbTuMUqkU2trakEgkkMlkzFyHfUBtu5ZJoQt9rV8VCgDwpWcv0qn6TiaT8DwP6XTaVxZ9H3gf3wVu/dfdJKry1vmbhjDh72ohf7SegoQXQQ4TTd92FDB0ANPjO6bvstYLy6yhfUjeBO1iYR0zH+p8s3cKMA/aH4PIGnUyOTg47JuIRCJoaGhAPB5HLpdDb2+vsXF0qKujdqrBeQWdw3Tmav644zsej5udYFy7ep7nW7O+8MILAIDXX3/dF+rUBoVo5XIZa9euRaVSQV1dHebOnYt0Og1gK3Hc0NCApqYmjIyMmHkP80rbyPPQSNzTjhMUYzD2OpXj4XAYdXV1yGazqFQqiEajqKurM7yBhnqrRnDW19dj+vTpyGazSKfT5lrWK/MGwIRtGx0dNQenl0olozhPJpOGL2lpaTHXcj6dSCSQSCR896s6fcaMGTjmmGPQ09ODp59+GsPDw1PXWSYIxwU47Ao4Et1hp4ELlHA4jKamJrS2tprtt+FwGMPDwyb2KAncbSmhJwsuDpLJJBoaGhCLxdDa2moOyKCiWRfM69atQ2dnpzFkzHMymQQADAwMmPhpr732mjGYmzdvrjrRqFQqGB4eNludIpEImpqajJJ7ooofbs8aGBhAd3c3XnvtNfzlL38xi3kAhjBPJpOYPXs22trazLZs+/CtYrGI0dFR9Pf3IxKJYGhoyMQWDyIxQqEQmpubcdhhh6G5uRktLS1jCJudDSWlpk2bhlAohPr6ejz66KM+paLD3gHn9XaYanD8YigPKlt1rCI5DWxRLKtyl4RrkNpIocqioHAu+pkSkqpQJZmr7wGJOhLNSmxzay6wlcSn41Qdw0zHDgFD0lYRjUbNYlGVqkpE0jFLm0X7QQK3v7/fHAbJui8UCj7Vr8Zn1t9K4qkqShXeJPkTiQSampoMoawkOu9VJToJWo0rDWxZQNOWl0ols5imbbd3JqgzgwtKVa+RRNdQHjY5abclQ3zQCdHX12fiuXMxzTkKY8LG43Fks1lf/Hg6L0goMO86p1JSle2RTqcxbdo0JJNJ1NXVjSGcbUU1CRUSunwv+KM7D+g4UKeBbmdXEp0Og1QqhVAohEwmYxb29ryQ5bUPNLUdMlSy0+Gi7xv7gR6gqc4rrUPd4aF9kk4Clk+Vftq3NfQLyWhui1dCXvst86pOMx1jNH/az8aL367jgD1e2btydCyyQ1lVg1OiOzjsGKqpjnc2IpEIWltbUV9fj82bN2NwcNCMybFYbNydVlMBErdUMDc3NyORSJjvKfhas2aNsRN0MMdiMXieh4GBAQwPD2N4eBhr167F8PCwL2RfEGh7QqEQ1q5di+7ubrS1tZmwZrzG8zzU19ejrq4OhULBnH8WiUSMLSZJPTAwYMLMAME7tkh0x+Nx1NXVIRKJIJVKIZPJYGRkBMlkEv39/cjlcti4caMJE0aHsY1QKISGhgbMnTsX2WwWmUzGzH0TiYRRxzOmO+Om04nPXXeFQsHHmXjeloPQSeDzjBiKCxkGjyR5Op1GbW0tZs2ahebmZnR2duK1117DmjVrdryTTAI6955qTml/wO5Yk9966634xje+gQ0bNmDBggVYvnw53vGOd1S9/rHHHsPll1+OF198ER0dHbjiiitw0UUX+a750Y9+hKuuugqvvvoqDjroIHzta1/DmWeeGZje9ddfjyuvvBKXXnopli9fPuF8OxLdYUrBhSYHb6qg29ra0NTUZLYs1dbWGiNCpVptba1ZxHL70WQPpOAiVrc1hcNhNDQ0GE97U1OTUWUzjiwNiW5h5fdcOFJJPjAwYBRjVN3RMz1efrmQKhQK6O/vRzgcRl9fn8kjSRB7saQLMBLevb296OnpMcS8KgtJmCeTSeOF5mLRJtGBLYukWCyGRCJhPPr2ooppcyHMyY7GWNsd4CKZZAoVh45I33vgSHSHnQlb4QlsJb/tz+37JpI2f6sqXX8HIega+zMl6Pl5NXU2AJ/SmpjooleJPg0ZwTji0WjUt1U3nU6bBRYX2yQBuTDjos2OFa4qWt3WrOVmegAMGUo7SdtGJbrmkQS+hrogaUqyUUPLcOFIQtxW+AbVo6ZPhwQVWUzfdkLYCmOSyBoDvVgsGltuh2ahY0RDrSixq7ZZw95onG97W7neF+TM0L5FVFN3qdpeyWgl2JWIYX70/eHchT/aB2wbQeLZDqWjzistUzXYY8C2xgL9biJKN9sZpOUNGjv0XQ/Kt9ax5sMeR4Kcfzq3tHfH2HVgn2swkXm4I9EdHHYMuv6canCc4FkeOt7H43HU19cjm82iXC6jsbHR7MamClzHge15V/k8rnV1rKPQLpvNIhaLGWJanYnAVic07QMAY39zuZwh0fP5vCGMtwWOW+q05dpeQ9bpORXqUGbscj6b4VPsOqJ9pmOccxfWMedItNsMs5ZKpcx3dJIHgXMkWyyn9kHH8Wp2g/aFzgPb5umcTZ3WTJ/p6rkbDnsXdvWa/IEHHsDnPvc53HrrrXjb296GO+64A6eddhpWrlyJmTNnjrn+9ddfx+mnn44LL7wQP/zhD/HHP/4RS5YsQUtLC8466ywAwIoVK3DOOefg2muvxZlnnokHH3wQH/rQh/D444/jmGOO8aX31FNP4c4778SiRYsmnXdHojtMKah+rq+vx4wZMzB//nwkk0mjjNbFDdVElUoFPT096OnpQV9fH/70pz9h/fr1yOVyvtOtJ4JoNIpp06ahvr4eLS0tOOSQQ8yBH42NjUZVzsFdVUT2QkG3Uq1bt85sDVu7di26urpQKpUwNDTkM67bwsjICDo7OzE0NIRMJoN8Po+mpiY0NjZi5syZJuwMCW2qrYaGhtDV1YV8Po/Vq1eb0DHr1q0zkwUukBobGzFnzhzjMKC6yz40SlWLmUwG06dPN0QAt7ZTSUjnSCQSQX19PaZNm4aGhgajzt8doHoB2HJwa2NjI7LZrDkQbrIOGIfdA0eiO+xMaGgEwB9DmbBJpPGutck2e0GhIbP0gEciiKwMircepCAlSa6hWZSs1JAzWhab8FO1typvaZc9zzOK52QyicbGRhxwwAG+xbbWRaFQMArqzZs3o6urC8PDw3jttdfQ3d1txmSS61xE68GgemgVF9B0AHN3VSQSQSaTMX9TEaWHgKszwFbtU7E2ODiIcrmMnp4eDAwMGCc164KKaSq0eD8X0DzslIv3SCSCwcFBxGIxo+rmojYWiwHwE7+066yrUqlkDvDivMjzPKNQY6gTdeprvGwAZrcc1e1c0PK5FCYouayHS2obsLzsU4RNsAeRuSQjqJ62Vdf6nmn/5ZwnGo2iu7vbnDXDbfpKlutB6CyXkiusKyUFlACiupvCB33/1Hmj9ylU6MA21TBJGqefu1x0jmmrOnmtHnzK9uMcWeudYwufZRMVOr7we5IyFFPo4b6sB/ZLu76C4gnbcCS6g8OOY2e8B7S1tbW1mDt3Lo455hhzlhWFUByTc7kcDjvsMJ+Ce2BgAH/+85+xYcMGnxN4Ms/nTqr6+nocdNBBJmQL1+Rz5sxBa2srCoUC+vr6UCwWzc6rcrmM9evXo7e316QRiUSwbt06vPrqq+YezkHssGYTAce+np4evPjii9iwYQPi8bipp/7+fuO8TyQSaG5uxsaNG/HnP//ZEPe5XA7lchldXV1jyp/NZtHa2opoNGrWzrq7jXwDbR3PKGlubsbIyAjeeOMNDA4OVuUZUqmUCQ9LRbg63BmGhuO5LZLj3Io2vLu729ha+5n6uR7+zQNh7bR3NYLm5/saJuLE315MxZp8YGDA9zlDQgbhpptuwvnnn48LLrgAALB8+XL86le/wm233Ybrr79+zPW33347Zs6caRTj8+fPx9NPP41vfvObhkRfvnw5TjnlFCxduhQAsHTpUjz22GNYvnw57rvvPpPW0NAQPvaxj+E73/kOvvrVr066vI5Ed5hSkMRub2/HIYccgre//e1mwVvt4EfP88yhnBs3bkRXV5cZjO0XcTxwIdjY2Ihp06Zh5syZeOtb34rm5mbU19ejoaHBt921Wl74O5fLYdOmTeZ3T08P+vv7sWbNGqxfv367BhnP89Df328Msud5yGazmDFjBtLpNNLptFnwkASoVCro7+/H+vXrMTw8jJdeegl/+9vfjAqO5AeNZjqdRnNzM+LxuNkJUA1aH1Tx9fX1ma3pdBBw0Ubior6+HvX19eOmvSvAiWE6nTaK9J2p5nBwcNj7YCusgbHqcVXsagiHIOJQCeogspq2iEQiUU2BzvGbJC0/1xARgF9JpKQiD14k8ar5VZWrrdYNWhxxwUViM5PJoKGhwcTOJomu+VKHM+3YwMAA+vv7TbzxgYEBY0/0sE9VxirZR+cuVVtcOHPbt4Y4oUJdyVCetWIrzXngF4n/wcFBU3YAZq7CxabWs/Yd5rlcLiMSiZgDMdWG63XsJ+pQ6OrqMmew5PN5QwgTVK+xThiyRkl09jES9nR68zuG6uHCVxVnushWlbKtktb20T4f1JcBmPrWcwLs90frhPVFpzjLQjLEVkmzHymho7vtuM3fdoqpslqdRrqTjwh6P/Q7fq/X6G4Lzq0YR9Yeg2wHBOPjct6l/UzrT5/PPmIvqLWNea3uZtDQVtqP6HyxRSUuJrqDw94Ljq+RSAQdHR1461vfisbGRqOELpVK2LhxownXwTGV42xXVxdef/11bN68GQAm5FRTkMRPpVJobm7GwQcfjPr6eqPMTiaTmD9/PqZPn47e3l787W9/w9DQEBKJBFKplLED3H3W3NyMaDSKrq4u9Pf3mzjkQeeRTRQcB4eGhrB27Vr09PQgm82ivb0d0WgU+Xweg4ODZod9JpPB2rVr8corrxihQDX1O8UBrPO6ujqzxiY4LwBghH4UD9TW1mJgYCBQ1MH0qeDPZrOIx+O+eSQAX7tq2DIAxn7Sscp5Eh3OnGNSFELHK+0Wd42poz5IGLIrsa+S5zZskc6eghkzZvj+v/rqq7Fs2bIx15VKJTzzzDP4whe+4Pv81FNPxRNPPBGY9ooVK3Dqqaf6Pnv3u9+Nu+66y8zHV6xYgcsuu2zMNXaolosvvhjvfe978a53vWvfJNGvv/56/PjHP8Zf//pXJBIJHHfccbjhhhswb948c43nebjmmmtw5513ore3F8cccwxuueUWLFiwYDfmfP9BKLQlhmUqlUJTUxNmzZqFjo4OtLW1mcWwPaArqD5KJBLIZrM48MADEQ6HjRqdC86giTwXgFSap1IpzJs3Dx0dHSbGG1VJQQRGUHqq9GE8sfb2dsybN88Ysng8jkKhgO7u7glvGyN0qzcNWi6XQ1dXl9lGRkUZleB9fX3o7Ow09UHlkC6aSHJzYjKZrVRKItF4e97W2KEaY1QXY7ubrFYCSvO3u/PlMDnsiZMAh6nDrrbjNunkeZ6PVAIwhrDmb71G0+D3SjQq6WzfrySlfb8dH50/mm/dMqzhT0iCKSnH8gBbSTsbQWS/lp92ibaDYVsymYwhqFXVy/KxPHRoxuNxpFIpjI6OoqGhAZVKxcQMLZVKhuTXcjNNKrC4iGxoaDBEObd4kwyw61EdBLaymiFnqFwuFAqGVOdCUQ8Bs8lXrd8g9TU/50KV8dXVacNnUWFNotlOl/WsbW2HXNHdDNqWLLfGIVeFuMa9t20m71Mosc66099KiNuEvB1OhfWsZVUCmnlQAprp24dr6v92P7LbTYl7Pr8aOR7kVNJDd0ky6Pul6Qapw/W3htGx+47+rXVMp5O2q9337N865yZhru2rRArDL42MjPjeCdv5NhE4O77vw63J9x7oQZ0HHHAA6urq0NLSYshaOit195AdR5w7qtra2kwM7M2bN5sxY7yxgaHXYrGYb4c4D6vUkGo9PT2ora3F0NCQcSjTho+MjBgHNXfTUDzFtLizu1gsore3d8y5L5OB2vLh4WEUi0Wzts7n8+YgzbVr1xrxQLUzxNSWc95C2x9kG9XJau8WtNMF4LO/3MWuO/KGh4fN/XV1dQC22AQeCAr4D7u3/9c5KJ0ZDEWjUCU9w+eWSiUTvlfL4zB12Fk2d0fTXbNmjelvAKoKLru6ujAyMoK2tjbf521tbejs7Ay8p7OzM/D6SqWCrq4uTJs2reo1mub999+PZ599Fk899dSkyqbY40n0xx57DBdffDGOPvpoVCoVfPGLX8Spp56KlStXIpVKAQBuvPFG3HTTTbjnnnswd+5cfPWrX8Upp5yCl156CZlMZjeXYN9HOBzGzJkzMXv2bEybNg0nnngiZs6caeJs6/b2IFDxRq9rOp1GLpfDn//8ZwwODmLTpk1mC3YQoREOhzF37lwsXrwY9fX1WLhwIaZPn26IABrcbcXH1HSBLROQpqYmjI6OIpvNYu7cucjlcnj++efx6quvYuPGjXjyySexcePGCW9/CYVChuRm/FI9WFW3Aet29Hw+j97eXrMAZ2w0XXgzZi23gXGyMRFQqcBt4zxkLJfLAdiqJEgkEr5YbkFbiXcllCxJJpNIp9M+csxhz8dUbB1z2LOxq+24KmKVTFRSUGNVA/6+RFKLalXATzjzGo39rCpRJXL1eiUwNS2NvWkTkzYBqGEYlMDngpYKMj4rKHQLn03brCQtD71Kp9Po6OjwOaKpli8Wi74Y3SQYVRmfTqdRqVTQ1NSEjRs3olKpmHNFVEmtIWoYiqOjowOJRMI8Xw+I5A4su92YrsZLVcKebZVOp1FXV4disYhUKoW6ujrk83ls3rzZdzCnrTLWOlebx/KzjXjQaE1NjQnxQvKXC3OSlSoQ0HbhwpMqfFtBHOQgt+Oae57nOyiM9U9FIO05f2Kx2JjdgrrdX0OoUN1vk+Uamof9ne+NHevddi5x/qLOD6rbKCbQ+Ldc0Os7pLHwtZ8BMIevU3VnE9p6rb5zJE0499H3SQl+PWNHxxlNXx0M9pxUx5BCoWDIGRJKSh6pA0mdKPxMz78hcaMkDgnz0dFRc6YP32udP7EcE7GzO2LHeb/Dng+3Jt87UFNTg7q6OtTV1aG9vR0nnHACZsyYYQ6r3LBhg9nBq/ZR5yIML1pTU4NFixZhzpw5WLNmjVmbb0t93dzcjBkzZiCTyeDQQw/FjBkzkEwm0dLSgmg0inXr1uGNN95ALpdDsVjEG2+84bOVumOHO405XwGA1tZWE3qG9mXTpk14+umnjWpe518Tge5WouOfNjccDpud4cVi0ajHqx1eSpvIkDUM4cI1veZLRRSAP/yb7TilHeB8gvXT2tpqnBN0jPDA93g8junTpxvbwzBptIeaZ7VhnCPywNSRkREjeKR9Zv339PRgZGQEBxxwAObNm4dkMomGhgbEYjFDwrtxfnIIcpgAO9deTsWanGPPRGHPZ1VYMNHr7c/HS3PNmjW49NJL8fDDD5swetuDPZ5E/+Uvf+n7/+6770ZrayueeeYZHH/88fA8D8uXL8cXv/hFfOADHwAAfO9730NbWxvuvfdefOYzn9kd2d6vUFNTg3Q6jaamJjQ3N6OlpQWtra0Tvp9GAdg6+R8ZGTFGfmBgwBgc+z4uuLjtqrGxER0dHejo6DDX7Ei5SFhQCZfP5024mZGREaO+s7e/Visn86xECgCz5V1RqVR8W9H7+/tNvFR7ca/pBm2T3xbshZi95VeJFiX6dzeBzgWt5nt358thcnAk+r6P3WHHbVVqkHoX8JNXQRMxW7HOH1WBj6fWVAJN0+B9fIYS5rayVAk4Lmx4YCewVeVsL8hom/Q7VZgqyadEG8lbEqx2fGkNd8O0WAc8OMvzPKNIz+VySCQSZtHFONHMjxK/JNJ5lgoV6FzMM66nTXRr2YOcGLyW5H0kEkE6nTYkQCQS8Smsg/qCwraBvEcVZUrMcpGvCnTdTWany/bTNrIXuNrHtF9paCDtY6ocVJuu5KydF60/Lpa5SA/a9aX51DzZ6mb7es7lbBuuz9U45vbOA20DG7YjKqj+tC20T7G/aH+o5pgKai+7Xfi72njE99UuM+fI9thgw56f2f9z7LLb01bdsw+po248OBJ9/4Bbk+8dCIVCRlRVV1eHtrY2TJ8+HZ2dndi8ebOxwTq3APwHf3P8iEajqK+vRzweN45hOjarPZvCK4YYaW1tRVtbmwlnQmKaY93w8DByuZxvl7PunqIDENg61jDMm9pshjDbnjWg1oNdF3RiFotFdHd3jwkdU238sm22Otz5DMBvE/j5eLvfbFEH20nDt5FILxaLhsSnEMF23CvUOa7raq0Pfs/2IaHPXX+pVAqpVMrMHZ0Kfe/BrlyTNzc3o7a2dozqfNOmTWOU5ER7e3vg9TygeLxrmOYzzzyDTZs2YfHixeb7kZER/P73v8fNN99shELbwh5Potvo7+8HADQ2NgLYckprZ2enLz5OLBbDCSecgCeeeCLQYNODSEwm7rbDVnDRnUgkMHPmTBxxxBGor6/fIaWBGpzm5mYsWLAAbW1tWLlypfGCEvX19TjwwAORyWRw2GGHYe7cuWb7+c5AKLRFrT1t2jSEw2Fks1ls3rwZra2t2LRpE9atW1d1UqEqJR6yqoec8hqFKtx4r0427EW4TRptL6opM3WL2VQ9a0egi3LNz+7Ol4ODw/iYCjsOVLflaic4+R+P3NJxQyf79vX8XpWoQQRdEFGufwcpmvU5HPeZJ/1cY01SaU9iTNNhPdiLH6ZZU1NjlLU8EDMcDqOxsRENDQ1Ip9NGla75ZlxN2ieqyWnHuJgDgGw2a+KFt7a2YmhoCN3d3Sb2KhdgjBcaj8dxwAEH4IADDjB5shf3GtqG5WXe+HxVbwU5grlFub6+HuFw2KjJEomEiZOuRIKSrvaCWB0b9qTbdmrYThhVkrEMdv/jDjENuaKHdQY51HkvSQXGtuXCQBfodJhw678N3d2gMbNZLq1//U4X4PxfHQx6DetPn6mxz6nI5nZxtrPWRZAzQAUaXNzbRDnzrLHRmbdQKGRi7pPEIanMerGdALaTQ8cOJaxs5wKdKywrt+Hbcxy+b3qIKZ+hB8VqyCXmg+p9OrKoDtS0bIW7m085jIedbcsdtg/hcBizZ8/GoYceikwmg5qaGvT29mJkZASNjY1m506hUEA4HEYmkzGhXUiw8myu2tpatLS0oKamBuVyGatWrUIkEjG2XMcHEuexWAxvetObsHDhQrPTieeRUN1dKpXM7gXaH1Wgc3cx7aVN+OuuLmDLWEXlfSgUQi6XQ39//zadgDU1W3bg1dXVmflLOBw2O4I8zzMEdTgcRktLC+rq6nyOR4aIs9fH6kTn35xTFQoFc1YMDzH1PM/sDlKbWVNTY+LD6zxIxW5sy1wuZ8QGVPBHo1GfQr1cLpvdbrW1tSiVSqas3JUWCoV8YekaGhpMW/f09PhsWTweR1NTkyn35s2bsXnzZqPmdyS6QxCi0SgWL16MRx55BGeeeab5/JFHHsEZZ5wReM+xxx6Ln/zkJ77PHn74YRx11FFmDnvsscfikUce8cVFf/jhh3HccccBAE4++WS88MILvjQ+9alP4ZBDDsG//Mu/TIhAB/YyEt3zPFx++eV4+9vfjoULFwKA8TQExb554403AtO5/vrrcc011+zczO4HoLFJpVI46KCD8Ja3vMVsEd5ecCEAbNmqtXjxYvT19WFwcBAvv/yyzxg2NjZi8eLFaG1txYIFC3DooYfutBAjTC8SiWD69Ono6OhAe3s7crkcNmzYgJUrV2LTpk3jkugkKWisVWkG+MkWYMsij3XBGGx6GJZuv7MxVV7EakT6nrawYt50cuGwd8Ap0fcvTJUdB6rbcj1AEYCPELVJIv5tE1Z6v60gsmOBctFZTW2raaiSW1VE9qTNjk2qSnV+Fo1GDVkWRMCq+ppqU+aTjlk6cxnCq7m5Ga2trUgkEiYmuX3oIBdgwNaDOFXRzh1avN/zPAwMDJh4p5s2bQKw1XHMnWSZTAYzZ87EzJkzffGbtU3VWaDkvi5a9UBXtiUXhSREa2u3HEJeV1eH4eFhc5hWT0+PWYCSrLT7goYtoR1Xcl6dK2xr3q/hTkhiaigfhZLDXCyrQ153pWl/UgKU6ZM4DYfD5vAljaNKIp3vgvZB9h+GQ9E+yOexH+q7U1NTY9LU/k/U1m6JpW+/K1p3DOeSy+UwODiIUGhr6Bc9UFb7hLYV64J1qGlrOehs0H4JwGz1VbJCyROWQ3cBKpGvjhTdHcB8kSQpFAro6+szZDoJb60b3q9hpDRv7Ieq4NR7OJ7wYF2NL68KUJ1XTmSXJcvnlOj7F3aFLXfYPoTDYRx88ME44YQTMDo6ioGBAXR3dyMSiaClpQXAFmVmd3e3caRmMhkz1nMM4K6ttrY2E6LttddeMweSdnd3+97dRCKB9vZ2pNNpHHLIIVi8eDFCoRC6u7vR399vbBjHNR5SzpBxDDs2MjJiwq0BW5wsDFOn4b7sszFKpRIOOOAAJBIJdHZ2+hzi1VBTU4OmpiZzGCLnOX19fcbxkEqljOggnU4DgLFNlUrFiPyYJ1XGqx1mqLtUKoX+/n709fWZQ8np3Mjlcsjn82YsZ5kzmQyKxaI5MJ3zGdq1fD6PUChk5lnRaBTZbNYQ6CT5VZ3O0G5Ml+N9IpHw2XrODUOhEPr7+9HV1YXa2lrU1dUhFoshHo+bd97zPGzYsAEbN27E0NCQsWX7K3RONVnsDru4q9fkl19+Oc4991wcddRROPbYY3HnnXdi9erVuOiiiwAAS5cuxbp16/D9738fAHDRRRfh5ptvxuWXX44LL7wQK1aswF133YX77rvPpHnppZfi+OOPxw033IAzzjgDDz30EH7961/j8ccfBwBkMhljswie62h/Ph72KhL9kksuwfPPP28qQWGTpjrBtLF06VJcfvnl5v+BgYExJ8k6bBtcAPGHqmp7QTRZ6MIglUqZsCmq+KmpqUEymUR9fb3v8LGJxgDfkbzxGfF4HNlsFsViEZlMxkwqbDKDCzs9xEsJ9Gr1pZ/rAkfVXbaaSeOoqWJxW7CVmPbBpTZJrQvQ8d61XQElinTy4rB3wJHo+xemyo4D49tykkcakqCaSrlaP9Ln22OhXqNQUpPP5uc2eW6r0bUO9L3QsdkmTZV8D7IlqpbVz5RIVHJZf2xHQ7X07Wtoe7i4o4qLCiebkA6Hw2YeobGftbxqo4Lay1bq2vVh5xPYSj4yZmilUjF59LytseVt4l5tt70N236Wto19TTXbT/Wftrvt5OEzgt6PoPmATRrbRHhQ/w4im/WZthpf+7XWUxDBD2x1HqkTyH6m/VxVv7H/258xbzZ0Mcv3Iqhc9j32vdWuseuPdaiwHSw6f9HQMVqO8caJoDA8mpfxfghtJyXeJ6MedCT6/oddZcsdJge+x5FIxKjLac90jazOPxK+Ovba6z3apVQqhWKxGBg2hWRvXV0d4vF44Nil+QzamaPPVSenHrAc5JCtqalBIpFAKpVCuVxGX1+fCV8yXj2p49Ne52oeCXtctHeZaZmD5nFB0O+YJ9pF234H2W7Wm523anMm22ZoGWnr7GexXPxcr1NbzL5GJ789h3bYs7Gr1+TnnHMOuru78ZWvfAUbNmzAwoUL8fOf/xyzZs0CAGzYsAGrV68218+ZMwc///nPcdlll+GWW25BR0cH/vVf/xVnnXWWuea4447D/fffjy996Uu46qqrcNBBB+GBBx7AMcccs13lqoa9hkT/7Gc/i//+7//G73//e0yfPt183t7eDmCL93vatGnm8/Hi6XCx5rBjSKVSOOCAA9DQ0ID6+vopV4HzRHES5aoeo/p94cKF5tTvHSXvJ4t0Oo1DDz0UM2fORKlUwiuvvIK+vj709/cbxRQXl6r0i8fjvi3OEwGVdPSC00iROOZ2MoZ7GR4eRqVSQSqVmtC2FKZXqVQwNDSEgYEBs+0O2OKZ54FpuVwOw8PDRkG2sx0X44FKvkKhYPLNUAEOewccib7/YCrtOFDdlqsKCNiq9lRlMRePQSpZWyXKBUJQX1XiSQnzoF0x3EVkj8k2CWgTgbqQUpKOZVeyWW2KLp6BrXG/mQZtBlVWiUTCbKGORCIYGRkxiifuirIV1aqSpvI4HA6b/HDxy3AuPT09Zit0Op1GNBpFQ0OD2SKdSqXGkLSq7rLDbrBNqJ7TfKp94veq7lcb5nkeisWiOQSrUCigq6vLR2wyJAiV9lRx244S3WpN4oGOCT5byX7tB1pWqq+puKajnuXThS/nXuVy2RxKOTw8jKGhIZ+yWRfbGuKFSjmbfNd4s7bzPhKJ+OLlcwHNd4VEut4DwMwVuQsiFAqZA9MZa9cmBJSQ4VyQJJGq9O1n2aGd9H1ivfEe7qJkO9pOGN4T9G6rqptpKNSpoKQO25ptNDo6avoY86VOCW1r9kGOYzoX465F1qVCd0cw9JINdaQ4JbqDjV1lyx0mBx0XKR7g7hYeIMyxOZVKGfX50NAQ+vr6fGlx7OG4REXzwQcfjHw+j/7+frzyyivmuaFQCE1NTVi0aBGam5uRTCbNzgQ607krm85rhmPJ5/Mmj319fSbMFG1zd3c3BgYGEI/H0dDQgGg0ag6YDoVCyGQyRuFNe1JbW4t169b5SHEF1fccP3nuGNXTnueZeqQtL5fLxqbS5rBO1Xmhc1AVa3BuAcCUneM/QxjF43G0tLSYOQBV8f39/Yac1p1fNTU1xn6wjskT5HI5E2ueP7TZFJVwhxrDsTB9JeAZZozP1BCznBtonysWi+Z6rY8gJ8C+jh0t666uq92xJl+yZAmWLFkS+N0999wz5rMTTjgBzz777Lhpnn322Tj77LMnnIdHH310wtcSezyJ7nkePvvZz+LBBx/Eo48+ijlz5vi+nzNnDtrb2/HII4/gzW9+M4AtW2wee+wx3HDDDbsjy/sNGAOrvr7ekLUTjSM0EcRiMTQ1NZlFPRcI9fX1qK+vR0dHB2bPno329vYxKq9dAZ52PTIygrVr16K5uRnAlm25PCSUhooHvOhW7MlAPcRUFoTDYUPWc4sWiREa6YmeOsyFOwkPnpauseY4qWDsN27v353gBLFcLpst3+4EcAeHPQu7w44r6UVoXEqd9Cv5pESbqq+qpQmMPWxwvGs1nnGQmtg+ZJuLEi5qlCwneagkuiqYGMaB4DjPZ9NxOjo6ahbeDO3BdHVhZhP9quDSMBoaeqZSqZhDQrmVmVuFSQxz27atXrPVXNWcE3boG7aHKsBsVbaGRtG42eVyGf39/SZW+vDwsOk7LCOdBySR+b2tnta/2Z7az4LmLEqi0xbzeaqGJgnNHQOaHre+Kyltq8tZj2xf2v/R0VFf2BYNhaTEPRfHQWpEtb/2d7r7QOsPgI8g0GerWlDT1N19/M121DZXtZy2C98t7QsAAmO4Bin/bKjTTh09zCvHG1vtyfeM9a950XpTVbyGFOK1dr5Yh/Y4Y78nfNeDyqVjhoODW5Pv2aB90pAntGtcG9EB19jYiGw2i1wuh56eHgwMDJjvuHYNh8PGwUpBWEdHB0ZGRvDCCy/45gQUec2ePRttbW3o7+9Hb28vQqGQ2S0ejUZNCC6SxzpO5fN5Eyc8FosZMri/vx89PT1IJpOIxWI+hzp3xWcyGZN2oVDAxo0bjX3XuRPBw8XpeOf6sb+/H4VCwYQ70XkWSfbh4WGzrudcw949pGp2wH/+hYZxA2BsPR3LqVQKhUIBvb29JtQKneME0yOZzfkt7Wu5XDaCOs611Iao057PBYDBwUEjOiA4V1Dbq7ZMncQUtvGMA9a/Tcw7OOzt2ONJ9Isvvhj33nsvHnroIWQyGePVzGazRgH0uc99Dtdddx0OPvhgHHzwwbjuuuuQTCbx0Y9+dDfnft+GhijZGSpwXUhzgK6trUVTUxPa29vR1NRkBvLdBeYtlUqhra3NENvd3d1mMqLbz6ZCqa9ecVsBNjo6ilwuh76+PhNeh88MqisunOgFp7HWrViAn8SgYeeEigfD7Gpwsd/f32+U86q60n7D8tskgBp03TKnYWGcsd+5cEr0fR+72o7b4SUImwhk/9GFDu8PSkcV6bog08WBkt228sZWmNv5IpQs1L/ttJQYtaH2s5rN0TzpfRoiwx4reR8JeiUjWTYqnHi/KrH13JRMJjNmoarlsbd522Sgfqe7AexxwR7zbcWuqqeZR8aCZbqqAqY9J5EZVI8shyrGtExUAVOlRZWbqtqpzKNqnc4Opme3MRfTqoq2nQa6a4CKMSqaSU6oU8YmBuz+pP/bJK32V+aJ6mjtw6qYJNnDQzbVacAysgxKyLB/AVsdGiSP7B0CmmcVKPCzIDGIvmNaP5qGlpuwHTnq9NK5BuB3oGmYGz5DFffsm3QeVMuTOreq2UvbwWJfN9HdjDtij50t3zvg1uR7Nqj0TiaTxg6rk1xtQKlUMoRpJBIxKm57PNexn2tAjqsk2js6OpDNZjFr1iyzi41rRJ03kfzWOZTak9raWrN25Y4vYMvOdIZb41pW13UcS9W2xONxNDc3IxqNmrPVFOoo5pkgtKHqtGWe6VxNJBK+XXgAzDkqOg7qHLBQKKCnp8cnElAHLudFoVDI7BArFAom/vl44jA6H3p7e1GpVIxQAYBxIujB4boDTe0M28UWlrAPjMfzqI1hXvr7+8eco8K5mm2TlKPQ+TnnATsCe17iMD7cmnzi2ONJ9Ntuuw0AcOKJJ/o+v/vuu/HJT34SAHDFFVcgn89jyZIl6O3txTHHHIOHH34YmUxmF+d2/4JuZ95ZIT10AR6LxZBKpTB//nzMmzcP7e3tSCaT45IEOxM6wWhra8PixYvR3d2NwcFBrF692ii19GdHSX8aXHqMdQFFMqCnpwejo6NIJpPGeEUiETOpUoNC9dPg4CDWrFmD4eFhbN68GUNDQ76DsziJGB0dRXd3twldk0gk0NjYuIM1uf3o7e3FmjVrsGbNGvT09GB4eNhnqHlgDre3cfs+FWFKevEU8VKpZMofpChzmFo4g73vY1fbcSVkgbGLQUIJTo51XGhonGCFkpIcEzlO2OShKlO5OOFCTRcS+jdtqW7JjkQiPjJSlbYaPoILDxKuGqNSoUSt2g6Om3pgpi5obMcBQ+PwWaOjo2bhq8R6LBYziq36+no0NzejpmbLYV7pdBp1dXVmYQrAqN6UpFaS0Fa/af50cabl1tA96hTgopvEOM86iUQi6O3tHUNaM7Y7F7483JUEMa9TpVwsFjN55840YAsxkEqlTF/i9md1ZJD0L5VKJuRBXV2dISrYX3h9oVBAPp/3hWdhGoz3znAq5XIZvb295hAze5Gsi2xVLGs/UgeQfb8qy6lMY7/Q/kJCh6HiBgcH0d/fb7ay8x2gLacaUbems104ryGBTvWeOsn1PQt6LzQmv33Oik0yazvxXdT3UokVfe/0Hdb5iqri9fkM6aOEiI4nuoNAnW8a69duN7tc9pyvWj0FwZHo+wfcmnzPRiKRQEtLi1FY5/N5AFtsDdeNtKnDw8Po6uoy66OGhgafg4/jt47/3OHEtRLt5bve9S4sWLDApM8dTkFjcqFQMDYPGCuYi0aj8DzPOHZDoRBaW1vNWpNjDcdA2pShoSGT91AohObmZixYsACDg4N46aWXMDQ05BtnOOap3R8d3RJmjkSz2o9CoYBoNIq2tjZD6nM3H0l0e/cT89Ld3Y1cLod4PI6ZM2eauqaNzWQyaGpqQqVSwfr1680B5wzhMjg4OO4Y2dfXh1deeQXpdBozZsxAa2uriU+vu5ZGR7ccMjswMGBEdrS/ahttcZzOhW37Bfh3cHZ3d+O1115DX1+fr014D8/I4fWjo6NmR6LuriqXy9i8ebMJc7M9UPsX5CDeFdjbSHy3Jp849ngSfSINEgqFsGzZMixbtmznZ8jBgItsXdBOJXThqlvLstksWlpakM1m9wglOrBl4tLU1IRQKGS8yZpv++CmHYHWhV33VAnwRHJOdoCthBHBRR8nC0NDQxgaGjJxcm2VAAdWqtb1INUg1efOhOZlcHDQxKgjqcMJH4kDLkAZUocLcN02TgKipqbG5z0PIqEcpg7OYO/72NV23B6PqtkoXejwOs2PrYTWtIJIcyWqlDzjWKvkKMcWW4Wl+VAFl6arRJetkA2qBz57POh4r2Oo2hbbdmlcaXVI6KJY1cP84fibSqVMPHZ1fNjlUqIvKI+at6A21rZknXIBzXzzezq8NYSNTSSrGl0JZLv+qxGvfBYXt2x3DRlDgr9QKBjlMcuncVaVEOV3LJfGgdWFNMvA+UIoFDKku02K6/+su2qK7qA+RvuqhIUdboV9iaQN86KhSEgeq2pe50EkbLSOeJ8S2NoG2qfsdrTnSnrteIpAu611bGA++Lf+1r6lczvWH51bGsZH1en2O27/zXLZedc86fdaZ06J7kC4NfmeDYY20fjUOq4QHI9JDFOcpc40jtG287lYLJowLBQltbe3Y/bs2UZxTacvCXHaJHUc2o49wH9YNcc4PpuORT5bbVOQw5Pnrajj2oaOvxq7m3Yjl8v5xnDaoXQ6bRy/rHc7TR1LuT6lszydTpvrVSwIwIRhYVgUit303bPXpeVyGQMDA+ZZGtaFjtZwOOw7J0fT0J1aqsLX5wXNrYCx3AI5CA0Lo+3CvPC5dIiwH7L/MlZ7tedOFDuDn5rss/cm++bW5BPHHk+iO+y54EBPj+FUvzy6PUvVVNlsFq2trUZZvScgkUgYzy/jt9sL96mCpheUNo00Y7UPDQ0ZL6967kdHR5HP581CnWFc4vG4ORBISQo9mI1e5jlz5hjV4FTHxK8GTsDK5TI2bNiAF154AZs3b8bw8LBRq1Gpp4fS1tfXmz6jMX9JNtCBkMvl0N3djVKphIGBAfT19ZmDeaqd8u7g4LDngDuUbGWlTaYpQU4SSpWcQSpMTU9JJtv+6SGESspxEVktDIiSs0q8EVzsBaWrxHXQWOx5nlEg6wKWCjNdnDIN5kMXwfaPqqx18cjncCs0na5cjHJ3WTKZNAuooPA1Wi8sB/OtixQlJTm2KzFtO4R1saBkLfuPhnMJIpYZJ5RhUexFvIZzq6baikQiqFQqiMfjSCaTPjJAy8OwLlywqlNCncY6X4rFYshmswBg1F8kPVjPdLKTuLbDz9l1Z/dx2n91KPD52s9Yn+qMqFQqhoTo6elBZ2cnBgcHDYEAwGxLT6fTRl2ZzWbH2HLm1fM8Ix6g8p12W9XobCMlb5h3hTqOdOFvg+3L60noa7/h37rDjf3Frj8l99m2HJPs+Pra59g3bBGErR7kM1hn1UAyycHBYc8HSWYeIs7xWXcf0c5TAU37pGpxJVVDoZARI1GwxLO3SPT29vZi8+bNRtik8xOOORr+zXbqcXyjTeX4SNujto/3M/woy01bqQc0t7S0mHPVgnbkcHylHaL9pQ3mrh89T2dgYMDULQ9rDYW2qOUZM51Ets4JmLfu7m4TL5zl58GuIyMj2LBhg1l30u4DMLvW2BYa89zztoSMYTx4CsF4nTrOOTfgDsFEImHqknm0Y6/Trmj9q3OEjgU6HlatWoWhoSHk83kzZ2Uf1B3iPAeH9Q5snasw3ZaWFlOXo6OjZqdakB0Owu60X8527ttwJLrDdoOeT27dmmro4ls9pI2Njejo6KhKcuxqhEIhpNNpHHDAAUilUqivr/eFBNDF0VRCCQRd4NK45/N55PN5rF271hzQouT+6OioOUBUVU6ZTMZ47/mZGutKpYIXX3wRDQ0NOOyww4xSbqKHmE4FSFqsWrUK//M//4P+/n7jLKirq8OMGTOQSCTQ3t6O9vZ2o0hQJXo1En14eBidnZ0oFArYsGEDamtrUSwW0dfX50j0nQDn9XaYanAyzwWOLoCUlOa4rFtZSaaHw2EfKWZDSSo7fAzT4fdcbPC+8ZQpqtLReN22St1WzCr5b6umuYCh4ocOUU2fqh9VnnFhy0WVqpuVjOT3ukijo5b1S/WaLo4TiYRZRHFhyLJoHQNbw+woaPvUYaFkP9VWumOO+RuPRE+n00bRpwQxSUe2t+5kYpxYbQOq2lkvSnCzfFTJJRIJQ3BoPevfemCXEqokSUh4csGuCn89kE3JfL4jPCxcw6ZQ8cz+av9oH9fQcho+RYkTzj90NwZDp23cuNGElOP5LOFw2JA82WwW9fX1iEajaGxsRCqV8m0B17piHFnWU6lUMu3HerQdGlov2h+0/e13XO9RckjfHRIH6hShQ4np0+HH95Jl0bGFZI62u+ZT3wkdL5SQt/uUvmNB6ei7sy3siB0Per6Dg8PkQRKaJHexWPQpkZUsTaVSyGQyPketxv7WcY8xwzVWdy6XM39v2rQJ69atM4IjAIbEBeCzy7Yd5jjD3c0MkcLvOGaWy2UTaoTr0v7+fp8DkTuw6Zju6OhAPp9HNpsNdMJzfBsaGjIhU5i3eDyOdDptHLEsV29vrxlHOY43NDSgtbUVpVIJGzduNCpsFR5w/N24cSO6urp8IgGGxvU8z9gvzSvbKhKJoK6uDul0GkNDQ+js7EQ+n8fo6KhxKAwPD5s6APyh7JhmPB5HIpFAJpNBMpk0O7qDiH/OESkqIMnNOVapVEI6nTYO++HhYbz88stmbsG5Xn19PWKxmHl2IpHAnDlz0NTUZMrC/sr5Xltbm5k7Uei3Zs0aDA4OTohEt+d5uwOTefZEVPcqorTnr1MBtyafOKae2XPYb0ADogvsoO2i2wsudrio1C1pemDmngCS0FxI2qq5iXpMJ4Px6poGmwaOE6p8Pu+bXOk2NsZnzWQyqKurQ11dne/vbDaLbDbrOwROyQOdFO0M6MKdsVM1BA3VEolEwsTZ1fxrmfTH/l6v4wEtnEDqgV8OU4MgcmYyP5PFrbfeijlz5iAej2Px4sX4wx/+MO71jz32GBYvXox4PI4DDzwQt99++5hrfvSjH+HQQw9FLBbDoYceigcffND3/fXXX4+jjz4amUwGra2teP/734+XXnrJd80nP/lJn1MsFArhrW9966TL5zDWwVhtYqoEk36nBLF9TdA94+VBxwslo2yFvP5tL7r0xy5DkDM16HlKqusuKV7DhauS5Xa+7LxrffEeLsK4gNTPuDjjM6uFJbPrYqKwlebV0tFFt/7YhGm1/qPQvqL9yiZhg8rG77U9tL/Y/ZB1abeVOnS42KVjgqovbq3nAtV2/ChZP5k6D1rEVVv42XWqhDLJGc5LeA/newzXYv9o+fRvltf+W8tebaegEgiaf21PLZNdPjvcT1DfssP8jdfPqu0EsPMbVPdB/X9bz9P3YaJznR214/vb4tvBYWdAlcS2U1ntim0DbRtmjxG2bVNyGIAZp0nY6hiq47mOJ9uao9HmBdlY3q9EuNoVlpcOR72GoGOB9sAWBzCN8ZyIOn7ZDvpq12voMg1hprv1aEcSiYQJe8dde+l02hcKzz5sVeutWj3bc6UgcYFt01UNbrcBFfgDAwNmJ5heSwU6yXMefqs//C6dTqO+vh719fVIp9M+biKTySCVShmbrjZ0W9jXbMzO5lqcHd82dr+M12GvxfDwMNavX28OJ6ESmCqmHcXg4CBWrVplPKSpVMocDrmnEZn0opPEzWQyvkmMTcLsiDJdJya2sbShi+KBgQHfpCEWi2H69OloampCMplES0uLWXAyrrsq8HSLX7lcNjH3Vq1aZQ4zUbXkVLaPLmg3b96MF198EX19fXjxxRexbt06AFuUANOmTUNTUxPe9KY3IZ1Oo7W11SjRs9ksEomEz6Ou9cgt5MPDw2hoaDDqhXQ6jeHhYaxatSpwC93+ZjSmGjtSh5O974EHHsDnPvc53HrrrXjb296GO+64A6eddhpWrlyJmTNnjrn+9ddfx+mnn44LL7wQP/zhD/HHP/4RS5YsQUtLC8466ywAwIoVK3DOOefg2muvxZlnnokHH3wQH/rQh/D444/jmGOOAbCFiL/44otx9NFHo1Kp4Itf/CJOPfVUrFy50neAz3ve8x7cfffd5v9qcRwdxocqSlVRGURGE/b2VF7DRVoQgsh4JdmoDGZ8Sn5PaD4Y4mV0dNSnMuVCjuMpxy4uEIOer4spJfm0rKHQlhij/JxjWl9fH3p6ekz8Uf62CUPWlYaooJqNn3GhzcUVtybrYioejxulroa44G8+27Ynuhi07St3DNlxSm3QFiphyHagnaCd4/ZoOgH4XNrXoH6iu7nohLXzo4Sltj/rkA5iDefB+lfSlgtMnv9BpR7rgmmqc0aJXu7G4uJUy2AvvINIViWLma46YrSN+P3g4CA2b96MfD6PjRs3YvPmzWaewb7BQ17r6+vR2NhodpvxIFqqEpnPSqWCRCJhCPlkMolyuWwIB4ZpGx4e9oXjUXDepvWm/VGh/6sKXdtJHSHa7rxfSS4lN5SQ136u4xP/JhGj40A1Z6DudrHzxv6nuykno/jbXrh5lMOeCL7DewsYkzyfz2Pz5s3mEEyGAtHxheFIAPjsGA8BV2J1eHjYt0tIx8dkMok5c+Zg0aJF6OvrwxtvvGFCi9gOXtpC2iLad517AfDZKt5PG8g00+m0OayWNkWJaJ2vRKNRYws4D4nFYmhqakIkEjGhR/hMCvf0cHimSUU414KetyWESX9/v1HCMw9BfUfLTOg8lSHK6urqMGfOHGQyGd96nFzD4OAg4vE4hoeHjRKcxDLrn2Q77x8dHTUh06jk544COrB1pxP7jPYV3aWXSqXgeR42bdqEJ598EkNDQ3jxxRfNdSxjKpXCjBkzfM4A3VWm85O2tjZMmzbNqM43b97sizxAfiKfz5vDSzUMkU3+T6W4U9uL6U8lJpLezh6PduWafG+HI9EdthtUIDOsC7cUTRXxk8/n0dnZib6+PuTzeeOt5KJ0T4IqpkgQ8NAR25O+o+SyrUwcTwGuXmYuplWN1tLSggMPPNAXAqWaOovpcbsfsXHjRhSLRROnfkccBNuC53no7+/Hyy+/jE2bNuGNN95Ad3c3YrEYOjo60NLSgtbWVsycOdOQ6K2trb6FNxeQtloin8+jWCwin8+bbYu8jop3XsPJxs4y0A6Tg316O51BNm666Sacf/75uOCCCwAAy5cvx69+9SvcdtttuP7668dcf/vtt2PmzJlYvnw5AGD+/Pl4+umn8c1vftOQ6MuXL8cpp5yCpUuXAgCWLl2Kxx57DMuXL8d9990HAPjlL3/pS/fuu+9Ga2srnnnmGRx//PG+fLe3t29nLTgQqiAiWUjYTk1gK1GualwNTwIEE7L6W8OgEFxEVCPiuZhiCBlbnR5EXnme5wvxoGQcMFZBpp+r/eHCkmRnLpdDuVw225ptMtW2CcwH88q6C4fDZrFFcjCfz5vQYZ63Nc4obZGWWfOsxKKtYNPf9r1c+DI/QQp+XdSzrUKhkAn9oTvfNGSH3Ra0wUwv6DMNjULS1IYS08yzbhdX8psHhLHuSHxks1nEYjHU1dUhHA4bhXeQooz5JFnAXWUAzLZ5vhO2aMF2zNjkur436njgNZxj0GkzPDyMvr4+DAwMmPsYIi6TySAWi6GhocGEylMlGkl0DScTDocNkcEze7hAZ1gA/uiOPI4XVPmrKECVVqp4VCjxoOOA1rXWYbX5m95rO3i0HwD+g1tJIvCeoOcyn+rg4z1a97Sf1cYhB4d9HTqu7S1zfN3Zw8Mdga3iLbWZtC9aPjphSSCT2M7lcmZNa5Pd8Xgc7e3tOPDAA7FhwwZ0dXWZ59nzEs5bgsY/O+45AN9z1HkNbCFms9mssdt06lMQoGtZ2hN1iDM0is5B6EBVpyzzQdtCdTjP3KhUKhgcHDTlngiC+hPnHMlk0pxNdvjhh6OxsdE4SXldKBQyseeHh4fNTizODRkaLB6PGwcK7Xw+nzdlGh4e9rW15qWmZuvhruwrnueZsDPalv39/VixYgW6urpM+tr+8XgcTU1NRpjG8LJ0hpM7AYCDDjoIb3rTm4yzhiFeOK8h50R+hTvz7N2TQb+nAjrPd+v//RuORHeoCl1IUsWjKl5ewzjTfX19ZksOVSyTJYy5gBkdHcXAwAA6OzvR09ODwcHBPUp5bkMnIawz3VbFAX48VeNEwEmHbTQmMohzMsGY5+l0Gk1NTairqzNtOB6BzjS0DCwjJxEAxijZt7e8ungrlUro6+tDLpfD6tWrsWbNGnR3d6NQKBinhYacYcw4bnsLh8PGQ6/KLl0Ua+zXTCZjjDYNd0NDA3K5nPHac2KhcUydMZ08psLrPWPGDN/nV199NZYtW+b7rFQq4ZlnnsEXvvAF3+ennnoqnnjiicD0V6xYgVNPPdX32bvf/W7cddddKJfLiEQiWLFiBS677LIx15B4D0J/fz8AoLGx0ff5o48+itbWVtTX1+OEE07A1772NbS2tlZNx6E6dNGmxKlNbunfdj/kAs4mBfW3TYLpdRp32CajbGcj87mtXTxcZDJdJfgAGMJQyTetCy4AufjVw8ZI9OqilotRHfO1TtXuEbRTPIyZ8VO5KFJHhs4z7HaxnRT2AlXVS8wb5yhap7bijWO+fl4ttnVQe9gKMj5H1em8Lsjprd/ZYVls57jWqRLRVPSl02kTU51hx0goq13Sfqo/mj7D8JBYUXWirU7TsjM/qtjW+Y+dB7Z/b2+vUcKp84IEPskE/iQSCUPwaozwajsA+L4wFjDnOalUKvCwcLt/sY70PAMtPz+jo06JIyUkeJ2OB/os9i99x/i/XcdKLnmeZ8ImaUx126ETNGYpCa//6/zP/j0edsSOa94mg1tvvRXf+MY3sGHDBixYsADLly/HO97xjqrXP/bYY7j88svx4osvoqOjA1dccQUuuugi3zU/+tGPcNVVV+HVV1/FQQcdhK997Ws488wzzfe33XYbbrvtNqxatQoAsGDBAnz5y1/GaaedNun8O+zZUDuxpyEUCvlCWjCkB8cCEpNcK/Ieksm6i0ztgY4XumOFY0CxWERXV5cJqQlsDSFDxyXvVfUw80Hnrm1XbVtFwprEKsc5JWZ58Caw9VwbnktCG6J2yZ5DcG5Cx6rtfGQ5+Ju74Dm30bkR7SPH+cn2mXg8jvr6elNmkuL6LJL2bGv9IQlNx3cul0Ntba05gJP9gWWhQ4FzKD6Dtkzjnyuh7nmeqQOu+yuVCrq7u00sdmCrWpz1TxEbVfTcmcd8qaO3XC5jcHDQ2Gf2E82fnpVCYZ8dy31nYUdt3Z6OqViT7y9wJLpDVUQiEbMwe9Ob3oQZM2YgHo+jpaUF8XjcKHlCoS0Ha7766qvIZrPmACud/E8Uo6OjZvB8/fXX8cQTT6Crq8vEslQCf0+DqrCoYKaRj8fjvi1k20Ms0ygUi0UMDQ0Zwz8R8lbzNXv2bCxatAjpdBodHR3mEFEay22BhpV/j46OmtO4uT2rra3NGPXJ9gEFSeq+vj489dRTWLt2LV555RU8/vjjGBgYQCwWQ0tLC+rq6jBr1ix0dHSgubkZs2fPRjKZNHHVNO5dkKISgDkohY4ghqyJxWLI5XKoqalBY2Mjenp6AMBsa8zlcmYS6Q4enTymwmCvWbMGdXV15vMgFXpXVxdGRkbQ1tbm+7ytrQ2dnZ2B6Xd2dgZeX6lU0NXVhWnTplW9plqanufh8ssvx9vf/nYsXLjQfH7aaafhgx/8IGbNmoXXX38dV111Fd75znfimWeeCSyPQ3UoGWcThTahaBN7urAkmahQhbumy/+50FOoc5hpK6GvJDevVwLX/o6HOasiVrcdM3093JAqpcbGRuMY5Gc8JwMAMpmMWYjzIC0NeRJE5Gn+RkZGzOKnp6cHhULBOMR50KOtAFdboc4H1pkeuKkkuB0LFIBvpxrbVrf6ErpYZxto3esCXOOpkri0yUrmXduZefe8rQes6fMZPow7oLiQ1Z1eaj9VKRyNRlFfX49p06YZlVddXZ3PlrMMzJetYOaCmHXN7/v6+sx8i/MVng9CMkGdH9rXmGfWE+c9Wraenh7kcjn09fVh7dq1ZgHM9sxkMoY0b2hoMGVVkkEP2bTfUaYzOrolLAxJBB5cxxAEuVwOAEzdUwnJMrBe2K+DQrywT9qhlfS91H7Ia6jw1/CHSlqzfkk2KKHleZ7Z+cnDADV/thJe+xyh+VOSzc4Dy7It7GoSfXeFZps+fTq+/vWv401vehMA4Hvf+x7OOOMM/OlPf8KCBQu2u/wOeyb2VFKotrYWzc3NaGpqQiqVQkdHB5LJJPL5PAYGBsxaJpfLmbUNx5v6+nozdlBdrEprvvMc07mO5VrshRdeQG9vry/8Wn9/Pzo7O81uIsbzTqfTqFQq2Lx5MwYHBw2JriFQga1nctAZODo6aoRenueZEDUqNqCSGtg6pupal3ZCHY46DxgeHsbatWuNPaBzgfMFHfcYm5v1NjQ0ZOyjqtMrlYrvUM+JIBQKoampCQcffLDPORyLxYz95ByopqYGzc3NZjdWIpEw+aurq4Pneejt7cXAwAAGBgYwMjJiwvlks1lT1ubmZp94jAehjo6OmtA3bEOWj6FzNmzYgI0bN2JoaAivvPIKenp6sHr1anR2diKXy6GpqcmEXquvr0c8HkdDQwOam5t98dBZRrYR50pDQ0N49dVXTZx1AL6/a2trMW3aNJRKJSQSCTQ1NaG/v98naLPn+lONnUnS7244En3icCS6Q1Xo4rupqQkdHR1IpVKYNm0aksmkObCSXs/BwUGjarPJCGB8NQuv4ZahfD5v4mVu2rQJjY2NaGpq2mMJdBu6AFE1eigUMjFmt6csSgjo4myi+aEHt7293ZDMGpN5omWz27JSqRgvNA0nALN9HRirvNwWWG/lchn5fB6bNm3CmjVrsG7dOmzYsAFDQ0Noa2tDfX297zBRHgqqsde2pbAH/KEXWKZMJoPh4WGEw2HU19cbtUMymTQnj1P9sSfvlNjXwXafCIJUpeO1XTUVqn4+mTQvueQSPP/883j88cd9n59zzjnm74ULF+Koo47CrFmz8LOf/Qwf+MAHximRQxBsQkiJKcCvKq12roSSliTHqbAldMKpClw7HZu8tPsH1T32WGKPXRqKQ5Wv6hSgQkptMEm4VCrlIyNJoudyOXieZ9RKartUwc08KXGsz9LFMJ2MVK1x90YsFjPlsNXHLJM+L0jVrCoqWxnNsVydzCQGtC7VdtptaP8wfVXz2srhIAetqueUkFRbbh/CyrLbDmjts1SG6WKa5DaJZRIi9jzBLpf2YxLdqqgjcU5xhObB/rH7tpaRodD6+/sxNDSE/v5+DA4O+kgV9kuNmc+wPxoGiG3PNlDnijo8WPeMh05igPMnVWsGzaWU+FZiRMOh8HvtG8xTEImun2mfsOvW7oP8TOd/us2f+dOdM1oX6jCy31ftazpXs3eJ7Gzs6aHZ3ve+9/nS/drXvobbbrsNTz75pCPRHXYJ+P4y3FUmk0FbWxsymYw5m0zD0mnIJo6zFP4A1Q+X5PU6d2HM9Z6eHuNo9TwPhULBp0TXZ9nOZ6apMbNtFTq/j8ViY+ZVKlhQ7oBpq2gqyOFJUImuSm5Cx2V1aJIkp8CCim5V3U92rUtBgMY057jLPDNMj65TdYcY51W024VCwTg3GLKMtpOKcM4hampqzO5q1iF/mHYymTQ7Z3t6eoxjvKenB52dnejt7TXOaNaL9k86xnUXGZ9vnx/CNb/tzKD9pCMgGo36QgeqyFLnjvsbseuw6+BIdAcfdDE7Y8YMzJs3D6lUCgcddBAOOOAAc0AjjTQXqVSeRSIRo9BVFRPVvYA/jikH/IGBAXOA6N/+9jd0dXXhtddeMwagWCz6Dr7YFvG1q6ELcKqveGAVJyv0XANbF7HbMrqcLFAtVKlUDClhxzAbD/F43HiBW1tbzSGbzM+OQgmd1atX47XXXkPt/4+9N4+RLK2uxE9EZmTsS+6ZtXZV9ULTDTZuPD3dZvEsYOGZEcJGRvII2SMbGTXDgPsPZgCjwRv8sC2rbbEYRsiLLAbGwghbYoC2LNoGGg97s/TetWblGvu+ZMTvj9L58rybL7Iiq7KqMqvelVKZGct73/a+e++5595vbMwTkZ6cnHRRe0a/lWHHtdRoNFCpVNDpdNxhY8ViEd/97nexsrKCfD7vatYlEglMTk4im806phpLuRBU2M06YZuojBloiMViqNVqbp6z2axzPMnWVCc0UNqjy/WKes/MzGBsbGwbQ3xtbW0bk5yysLDg+/nx8XFMT0/v+Bm/a7797W/H3/3d3+Gf/umfcOTIkR3bu7i4iOPHj+PZZ5+9bN8C8QqdGu6rtq61dRoVaNS6wwTWlHFr60MDW6CVXhfYytQhE0xLe7Etds8g8KbgMK+veoNOpQVw6ZSEw2F3wGQmk3H778zMDHK5nHOQ6MjQWVVANBTy1mFWdpodAzorzWbTOVNM8WVt1m6364KaBALpJCkbVkE73oe6g3pPgUD9nG2T9kVfo+i4qxNHp5U/vC/rwtKpJoiggRgb+NDx49/KzrYgt12DnEuC5tls1h26SYdYwWRmRLE2rgITFkxXx5ltZvtarRaq1apzsum4qi6njlVHl/X1K5UK1tbWHNOedhHPuWFwhWw5Pme8rq3zns1mPRkCOpcW/OEaYT+1rdFo1NVZ1edA9wMNVvGaBIR0jSrQouQIC0gz4M7nmWVmdN4UJOD3NUOGa4jzY/cZimaj2ICcjhWFc2+BDb/PDpOr0eP8PnCwSrNtbm7ib/7mb1Cv1/HAAw9crouBBHLVMj097bKPZmdnMTU15Sl1pYeCMjs2HA6788VUNDuXe6OWtWTGUKPRwPnz51Eul7G0tOR8HoL0yt7W/4EtchJZ51pas9/vo1aruYAAA538PnWJBvNtwJb7huov1YGhUMiVkmOwWsF4+uk8nBLYKlOrgUteR3UDsQkA7swsvj+KaKbR5OQkFhcXMT4+jnK5jGaz6YLjkUjE1f8OhUIuu48kRsBb/pTZBtQZzWYT9Xod58+fRzgcRiqVQiwWQyKRwMLCApLJpEcfaXlWltI9e/asC4afO3cOS0tLaDQauHDhAiqVCsrlstM7jUYDhUIBqVTKVS7IZDJYWFjwlHkBtjIXtf3UyYPBwJW0sXgTM7BSqRSASzpvamoKkUjEHYCrNkEgo8v18slvBglA9EA8os7anXfeiZ/7uZ9DJpPB9PQ00un0NlYKHxjdPJeWllCtVl2d6omJCczNzbmIrUaVqXBXVlbcIZFf/epXcfr0aXfyMpVAo9HwpEntNyCdTipBdCo4RukHg4EHNOffZItZIF1BGaYyUbkxZW5UZZ1IJHDs2DFks1kcPnwY09PTnkPprlYUfHj++efxgx/8AJubmzh58iSOHDmCTCaDO+64A7lczjnE2l+m5XW7XaytreHMmTOo1Wr4wQ9+gKeffhqNRgMXL15EtVp1Y8K079nZWeRyOczNzTmAiCCDGomjCg2bwWDgyh4wlZFGBlPhALh0QmV8BTK6XC+FPTExgfvuuw+PPvqop8bpo48+ite//vW+33nggQfw93//957XvvzlL+PlL3+5C0A98MADePTRRz3O95e//GU8+OCDnna+/e1vx+c+9zl85StfwYkTJy7b3nw+j/Pnz2NxcXHkPgZySZSRrM++BTZtyqeC6H6MXAAeAM9PlC097D2/fVuBMgr3SA1uawkT9kM/rwwiAqyzs7M4dOiQYzulUqltDGdly3Ms6LQoU1eZQwo+sm88hLnVamFlZQW1Wg2NRgP5fN7DMGNpDTLXmLVEYFr7zXtrXVC+7xeAtmOic+8HousexGw4ZtrRUaYDqYA4s7jIFKMjqnVE+b7tA1l9WgaMDqwC7QRf6fim02nMzMy4AC8P6NIa4Gp3sEapAgwKsHI8tKYr1z2dbwCORcaU9lQq5Qm8aGAgn887R3ppacmlv9dqNecEK/ACwDNmrAdL9htTyWmD6vPl9zzbdUCQhmPJOrgsIaP1gdkPrn3OBxnxCqrQDtF7a0kBXYP6LGu7tfSQHynCjz1u37d7EYNTem8NAPqxzlnqgfubjscoslcg+kEozfaDH/wADzzwAFqtFlKpFD73uc/hxS9+8eidDSSQK5BQKITFxUXcf//9LtOW5DQ+f9FoFLlczvnj1GEvvPACWq2WpwTJzMwMpqamPLaC6sHV1VWcPXsW1WoVP/zhD7G+vu4pN8a9kjqMv3X/oa3A/Zw2TCgUQr1eR61WcxlyqVQK7XbbXYcEO2DrrBf9Yb8J/kciEVd6RktcETugjqZQXzG7hweqT09Pu2AE/fRms+n0F4UZ80py280+yKBHNBrF/Pw8Tp486fR2oVBw48I5Jo7AEnB6DoYGB9LpNBKJhOtTt9vF6uoqzp8/7+rSs7Tfy172MszMzCCTyWBqagpjY2MOb1EbZWVlBU8//TRqtRrW1tbcIaoM8qr+qtVqbj2cOnUKyWQSU1NTOHbsmJtjtp8BA9VPXKPEo3g4OMmDzGJj/6mzFhcXkUqlsLa25krZBP747iUA0UeXAEQPxCPqwCSTSWQyGVfygxu5n2j6NADnKJXLZefg2RRVTfNlelihUHCHTVGJKiNLN2xlGd1oUfaSTcvm+1TemoqrjhWNAf2OAvNUGDoGo25YZG3zgFhNcdvLMeAaICBeLBYRjUbR6XRcbbtEIgHAy7bSg0SKxSI2NjZQrVaRz+exsbHhnHDWxCNbgmAMgRetm6/MhN2Ifl7T2ajY+bcCdPthDR5UuZ4K++GHH8ab3/xmvPzlL8cDDzyAT3ziEzh37pw7XOzd7343lpaW8Fd/9VcAgLe+9a348Ic/jIcffhhvectb8Pjjj+OTn/ykS+0GgHe84x141atehQ996EN4/etfj89//vP4h3/4B0+5lre97W341Kc+hc9//vNIp9POKSeTtFar4f3vfz9+8Rd/EYuLizhz5gze8573YGZmxgP4BzKaKMCme4AF0SncdxVEJthLUZaSAlB6bV3L6mwpK96WafBrO19XAE3ZU9o/vY/2R/dGMpr4t81AUn2igXFthwYU6Fhyr6WOouNO551gNAFJZeIrUEwHUNllds40QGCBSDsHOr+qVy3wasfMbzz0NwAPSKp63k8nW11OEJ3jMIoO1zYzkKI6SMdDv2N/hul7O846Duqcc26YfcUgPNcA7bNWq4V6ve4AEgZU+FsBaj9AX/ukdc/5un02duoLsMXSVvDYZlv4BcX8vq/3t+xvHTO/PYbf0d9+39X5A7b2HV3bCuL7XUPXK9tpmfMUPwKHXTt+/Rx23ysVfvcglGa766678L3vfQ+lUgmf/exn8Su/8it47LHHAiA9kGsm1H9kGTN4ytIsBHCpHxjgs0Ex+ty8lgatCY5TVzODrFKpuD3dT2zQl+3le9QbuocPy2az+7HuPX77O/9Xu0oxAj/bRtvNz2k5GP2+7sMaKAXg8cm176MK9aeWN7FBURvkV/vS7zUNmGrAgDYcy9DQniiXyx7AemxszHMIPH35crnsDpQtlUqO0OYnDD5Ym03nX4kX2m72ndnmvJ6+z+sPBgNXjk3JI36ZgIGMLgGIProEIHogHkkkEjh58iQmJydx4sQJd2gJD5IcJtywJiYmXBT3zJkz+NrXvoZms+kO7eBnwuGwq3vV6/VQKpVQKpXQarVw8eJFlxZFpURAPpVKOWabpufeaGGKt5alYRAA2CpXwsg6a5sR0NYDslRp0zHVsbLR9FEkHo+7QzeZ5rWXokZRNBpFKpVyh40+9dRTSKVSeO6551xQZm5uzlPSpd1uY21tDbVaDfl8HmfPnkWz2UQ+n0ehUPCwH+hckxWXSqXcD4M9FuS+UiEQBcABUHpyOstE7KY+fSA3Tt70pjchn8/jd37nd7C8vIx7770XX/jCF3D8+HEAlw7MOXfunPv8iRMn8IUvfAG/+Zu/iY985CM4dOgQ/vRP/9TVUAWABx98EJ/+9KfxW7/1W3jf+96HU6dO4TOf+Yw7iAwAPvaxjwEAfvZnf9bTnj//8z/Hr/7qr2JsbAw/+MEP8Fd/9VcolUpYXFzEv/k3/waf+cxn3GE+gYwu1mmyAUo/0BzwMkZprKuxP8z5U7HAtgLhmuZs36MocGWBe4KVZBJR/9k2ETTL5XLuEClmH5GFpo4JWUN0Inkfjku1WsXq6qrvwclkIRMYZTkXMsC0hiiDrM1mE5FIxDnpmkrOMVJglc6Slr7QOWI72Hdl/LPsFgAPoDAMBNU6sQQnFMhUhi4Zb3a9aACCwvGkLcC22qCLBXY1iEuHm+n7ZA77ZVwoOK1rS0XHWAEKMhKZfaVzyYPqarWaI1uEw2GXrVWv1102YqlUwsrKiivZYwMiBFfYT63tyqAPwQW2R8dEnxGCG/osW9CZr/P7+ltLq/A7WqqGnwHgsdXUHtPyT34Arc4xr6XCdWvXD9erZjLyHgpEMJAFwHP4OwCPjantswEgHSddu/tJbnRptomJCXew6Mtf/nJ885vfxJ/8yZ/g4x//+FX1K5BA/GRiYgKZTAaxWAwnTpzAPffcg0QigWKxiFqt5tGT1Af6dzKZxOTkJMLhMM6cOYPvf//7aDQazpdRvxzYskH0zAoe6ugn/X7f7feDwcCDF2imLtnd9P24X9Nmot0QDoc9WT/8vs0CtIFQtp32DEulDLPX1AbkGHa7XeTzeQ8B0JIparWay2TSgPBuheX1kskkQqEQNjY23J7OQ7yr1aoLTDOrjOeGtNttB3IzeKJEBOASK30wuFR6Rq9FMPypp57C2bNnkUql3MGj7DOZ4u12GxsbG47QRka8n4TDYczPz+PIkSNIpVKYnJx0GW4s9euXTc+zL8bGxlAul1EsFl1J2HQ67WwL2ob084mrjI2NuWA9M8zGxsbcPAUSyLWQAEQPxCOxWAxHjhzB/Pw8FhcXkU6nd2SgU6ikeKhkMpnEk08+iW9/+9vI5/Puc0yrZYkM1iGzdWKtMCqqLDey7PaDsG2M1tO5VkdFWXfNZhNjY2NOEZBRQEOIn9eULR5kuRtlzXlhTXTWP7sWgQeCOTzZu9fr4YUXXsDp06cRj8dx4cIFpFIpzMzM4OjRo576os1m09XcKxaLWFpacqCLH5tLQSSe9M2DyPRglqvtD+/FMgP2hwDSTiUcAtlZrnfU+6GHHsJDDz3k+95f/MVfbHvt1a9+Nb7zne/seM03vvGNeOMb3zj0/cu1Mx6P40tf+tKOnwlkdLGsYMvaVFYxZRhTXPduZdgoI8kyQxWc5Wt0aFXX+Rn3fE+Dc9oeMsHpMCmwx/uR2UPHiCWubEaYgul0aOl4sp42AfJisejRa8quZkq3pv9yXICt7Ctgq043nTGmDUcikW0gqDrN6gyr823nT+eeY62ON8EFdbwVtKajyuuoo2eFzjoz+LguCILqPXXsLGBuRXUXQQc9VJPgB53dYdfROWA77Of0XnyfoAGvz8zCWq2GdruNaDSKVqvlHHmOGx106nLWRO/3+45IoQfaKoChjHPNmFDAmGCBAt42E4DXU1tKx0FBfGW465rQ58KCOQDc92wA3S993H6XfdUDfHXfsFmMlnnH//1AdC3/o8854AXRdVyUdallbbT915OJPorcyNJsw9rO2siBBLLXMj4+jmw2i2QyicXFRZw4cQLxeBz9ft+B1MraJYjOvSIWiznfb2NjA8vLy+5wyMsRskZ5Lqn3K5WK8//YHuoHZSPTVrEscdbGtsxjZbJrIFbtH+5zDEKSqDZK27WfWm6Nh42S8MYD0YlDXK0QL2GZsmKx6AIK1DvUqzxnhuPAc+nYXtpsVk8lEgmMj4+j2Wy68+y0nNrZs2cRCm2V2+Fay2Qy6HQ6KBaLaDQaqNVqKJVKHlvOT8LhMKampnDq1ClEo1Gk02mnu3hWSrFYRKFQAHAJm+D+S9uTpQA539T9BNFZyigSiaDZbDqfnyX4aMeqjg5kdAmY6KNLAKIH4hHWK+MBUrsFIq2Dwh+mkFExUslpGtTlHj46p7VaDcVi0bGOR1GU11Ko/EulkgMaduqLAhDc3JUFpO8zynqltb1ocOh87DUL3Yo6/WRsx2IxxxaPxWLb0q2oxAnGcF61Xqxfv/xYdNciQABsGWeaIaAH4NxqymMvJRi7QPZSCPyqI+m3LyhQZVNK9YeOlrJEFQxVsYxOZShbQMyvLfq3Xse+bwFeAmAKivtdj23ScRnGWPYbO6YF82/em7qKuh7YAmgJZOs4cq+nYzgs5dqCvH7jxPlQ/alMbB1D6lULVPPztE20vqvu+erI83oMbnCt2M/o960oq862V9togQPLkNOgho6RBXB13DgXbLff86L3VXDD2jBaQ57XIoCj2RNcmzpneg8FtW05Ag2OKwDjZz/awBnHk/e2n2Ub2G4AnnbouNo5tSUM7PVt8ELBK9oOvI4fqGXnR0sN2IChBZf8ggN6Hw0m2XHbrS11PfX4jSrN9p73vAeve93rcPToUVSrVXz605/GV77yFXzxi1+8bn0P5NaSUGir7MdgMHBsWwKrgDfjRIWvk4jV6/XctQimXq0QRK/Vap4MKc0eVhIB90vqV/qoBIbpQ+v+w++rDeG374VCWyzldruN9fV1x7y+nF9u9Qn1G21DANuyCa9E2NZIJOLIX2Tna1uUXU7bivu46knN0LM63s8npu4iyM71QBBb7VWtHKDX3Uk4biQIMvtRS+GRnMm+qD6LRCLu3DTiPOFw2LPW7VpQHEl99VECwIFsl8AnH00CED0Qj0QiEUxNTWF+fn7b4Y+jCDddbs6ZTMZFHrkBtlotj3M5StSLm2Oz2cS5c+eQTqexuLjoDi690VIoFPDjH/8YhULBHaA2rE+WPaQOnH4G8JYl2K0yCIW2aqgyPZqR5msFNAOXosnZbBZjY2OYnZ11hy+dOHHCsSG1DA/7fujQIfR6PVe+ggeTFYvFbaCAGkzWmNiJlXclosBLu912h9TY2r9Xa1jdqhJEvQPZa+HBSzTOlZlpDXYAHkdE9xAyuoCtfbvRaHjKdKko0GfZVNzftYyDgvSWzUpHhwAbnV0FzsiCtvcheKksK3VWLTBKoFB1krZVGaw8TIv9BbbYWwwo20PF2Fc6PtxLmTKtNV7V+SPwyvZbm4E/7IfOEx1KnW/N7tLra1/q9TrK5TLq9ToqlYoHsOj1ei6DyqZ4E4DX8SWrXXW+OsF+a0bXIr+reo5MP5bZUwaeDSLoOlPw27KXeR8dd65Ljo/NwOL7BM1Zko9BFIIZyqDWtdhsNj3AOu0C+8NgvGYeavaXZvzZ50oDGboOOe4cV7+9gXsBbSZ9HrmGNHhE1jrnQh18CueVz67+1pJIup7VLlSmvYLvXH+cK2Xxa/+47vQQPN0j7PPP++83Jjpw40qzra6u4s1vfjOWl5eRzWbx0pe+FF/84hfxmte85or7HkggO8n4+KWDpXO5HLrdLs6dO4fx8XGsra2hVCq5vUfZ3hSyfEulEkKhEDqdjivpWSwWHdB9NdLtdrG+vo5oNIrJyUlX4ot+UjgcRjqdRjQadfpfA+mRSASTk5PIZrPuO2Swc49OpVKewzI1uA1ssZgnJiawuLiISCSCH/7wh/h//+//oVQqYWlpacc9xpL5BoOB29tDoRBarZbbC68m8EDbLBKJIJvNYnZ2FrlczmMXch8Oh8PuAG/VuwTeNzc3XUkTBoD9dKHaaTy3pFarIZvN4siRI5iamto2n7Rl5ufn3bpaXl6+LOFxMBi48j/hcNiVEwyFQu66ZKhzLfBeHO9sNotUKoWxsTFkMhkkk0nHQm+3267/1GEkZLL/LBk4SqaFFb/g+60mgU8+ugQgeiAe4QbPyOhuRZ01TUGmg3k1QoehUqkgn88jmUzuG+Cy1Wq5FKXLMdEpdGavpagTdb2Y6ARkFLhPpVLIZDLIZrO+31Ewo9PpuPS2nerwqXFgWZXXQjS6TcWvbPRbTXkEEsh+FYK4ZGeT1aP7hbKIAW8NZX6GvzUwR8dPRQHIaDTq+b7ftSygTofSMk15bWXuUixQx8+zn7onWYayBdxt4FHb4veeZgeFw2HPXkhgcViftb9kL+9UuktZ6toPywzWueCP6gN+hs6yBVX5GgF+BgO419NR8wM1AXjeY5v1h23Ssjt2LvzAX11DCoZaXW7HY5gzbQFRHS8FcPW50Pvqe8rUY3keBR40CGKBex0vBUssC12BIS3hotfzA8n1793YBLpm2A7asBqgUea4siF1bnWMtQ3abgW0h7HQVZQVyTljiSe2WcvFKNNPSwZa9rxlddrnZj/KjSjN9slPfnJXbQwkkKsVguQEoavVKsLhsCPxcI+knaPf43PMYOfm5qYrCeZ3LsOVSL9/qZ55uVx2GcUENwk+Ezim3uf+zXrWJHsxg5A6RPdiHqLKe6otws8xyMxyN6urq652/E7ipzOvlY/O/ZnzwOxs9kvtFwaTSVQgtkLdZPW11TVWVP8Cl87By+VyHh3NOusE7NkGDdLvJJxjst25JjhXLB3T7/ddhgDtXgAeVnwymXTf55k5O2Ul2ID0qHItiYWB3LwSgOg3sVh2M2WnSCKZMVea5qXOGJ3p3W5mO0m328XS0pL7/5577vEcznk9N0IFUzc2NvDCCy+gUCigVCpdtzZcTqzCu54OERUwa+SParAxlWtiYsJ3LFVRKmijgIcaIVcq9j6sf8sfPiNXy8C61SWIegey12IzQ8jiUaCJouwVZdgq21hZ6VrewbI5WYPRgmr8voJd6vgoE5zgHPWv9mMnYMsPNNXXLfisTpOWpLIg5OWCkwoU23aoc2RtETreZCCzrmckEvEFydVu4Vz4gec2MMJ+aPsVULfXr9VqqNVqzpFk/zUQ4JfBoLW5bbttG1S38HqWYQ9sAaB6YJidS81mUyeXa8jPjtPgDa+rYLRmHpBlzZRq22ctOccxZ3vZbz5fBEg0OKKgtKbK20wJvZbfnNrUba47vt5ut51jzxqzrDfLQI6WgKJo/VheS/uigI/e2z7n+izp+uMaU9a/fl/tWrv+7DNgA168FkX3lFGDaqPq56u1gwJdHsjNJPY5vNr1zedS95t0Oo1EIgFga59QvaJ2iwLQPL9rL1jowKV9JZ/Pu0wtZvAQPA+HL5XliEajnoMe1b9ilq9m+JKExeB2uVx2OotAq/afY1QsFlEqlbC+vo5yuYxareZbFvRGCHUhgwyqV4AtndDpdNw5K8yEarVaAODsT/7P8WaGAWuPA3C12xlsiUQiSCQSyGazSCQS2Ny8dEabAtGK/9AOAoDJyUnEYjFnHw0TBjzC4bA7SJSvhUKXsqgY1FBigS1vyzWhLHb2jwed1+t1R3LQQP6VzEsglyTwyUeXAES/CUUdczXAqWAV+LMLnowiKtgreSC4GVMx7lXdNeCSInjuuedw8eJF9Pt9/Ot//a+RSCRcHffrKZubm+4Q0QsXLuCJJ55AoVBArVbbVxuJOtXX837ApZPBNeo+isRiMczOzqLdbmN1dXUbI48OdzgcdmA2f2h4qJN5NUC6AhFU0FrK5UqfkUC2JFDYgey1kP1EZ5KsFhrrWuoA2KpzSXaLsjkJKBFYpGOjAWKrT/l5WxqGTp4CxYD3MDA6AZY9bpnyyrxR0eC5BaL5eQVMQ6GQhw2rjH39rUCtit91tY32OwoG0AEaHx93ad909hUQtmCl1gDlfWxZDwUGAX+QgQ48QdbNzU2Uy2WXUaYHpCpITf0zMTHhGG/NZtMXRLdtoRPJ95WdbYFgHmymh9nqOCvgbMvWcExsH8LhrUNQtf/8scEjtpOAiI6ppk1rHXzqYJ17OvY2mMDD0Ki/yfr2Y6RTbN1fC9Lr+lMQnfdoNBqoVqsuYKL6nGA2n3Fdi5wbAu4WzCbAoyV9NKCgwQd+lmcCcH4tmK1zr/Pvx173yyrRdasZH5aJrkx1nWMNSu0kAYgeSCDe4N7lAlF+gd1h17T2ytjYmCudQvIb/XeWnFP7Q0urlctllMvlPQPRu90uLl68iLW1NZfFzjOw2H7uY6zjzj2b+1ij0cDY2Bjq9Tqq1ao7uDqdTiMUCqFcLqPRaLhra8kv6lQCzSsrK2g0Grh48SKKxSKq1eq+2V8IDrfbbTSbTc+5X9zP6WtS3+rBnMryp+4eHx9HJpPBoUOHEA6HsbGx4UqrlctldLtdN74stxoKXTqHrNPpoFwuu/v7gfvUBQsLC26ud6oxT9uI88kgCkujUQczOE+GuQar+XelUnGHhxJPqFarKBaLbqyINXHtBH751Ungk48uAYh+k4k6e3RALIg+zOEFvEx065CMInQwlSW8l6UuaCQw5ahSqSCbzXoAhmvNRlcWEQ8sUUdsrwIGeyEWhPBjBF6Le6pDruDVKKJr16+tFlSh86yKl+9f7VpgX1Sx689OWR2BjCaBwg7kWouChMqa5v7CPYOsWz/gWvXoTuxsv33HjyU8DFhWh1l1uRUF6hR4VQDXsszt3kxQWgF7BQa1ZIYF9W3f9G8LxA2bC4Kqfgd52nbtBELo+NrXOb7D5krBZh6+puCyApO8Bl/X14bNg37WT/zG1QKpfp9VXW51vJ0vv7XL9eYHump/OK6WCc/ftpbssPv4AUZsLwNIeh0/MMrv+35jqf/rONjMC7u+de3rNfS++h2/NqjY4InuN8M+b8fPPuO6Jvyef30W9JnQtWHHbC9swgBEDySQ4aLPpJ/eupwvYfeywWDgSqAQRNzpMHXqVOu/7IUoIE4Qn1lmBIL5OQC+/p0GPGn/2OwvnmVidZvurQSbq9WqC9xeLwLZqKK2gZaX0x8KP8O+Ulf6kQb87FIlDahvTWKJDfToNdUeBODJjhqlj7w3/XMA29poMQr7GuedbdVsDEsA0MNEA31y5RL45KNLAKLfRELAMh6PO+Uai8UAeMECOomMhKpCajabOHPmDGq1GqLRKE6ePLlNme0kehr2ysoKyuUyqtWqO1T0akUjsBcuXMBXv/pVzMzM4N5778W9997rOVzlWogGCdbX1/H4449jZWUFTz75pIuAXosaalci6vAxSsvT069l6Zt2u41SqeQ5GOZKZCfQgcZivV53JV9KpZJL/cvlcr6BpFFEFThT0RqNBsrlMkqlEsrlMiqVimNL3GpKI5BA9rvw7AXuEwp4cY/Wmopao5nMWHX0tMwIsOVMqJHP4KmCkPY8Cgap6TjzO8pEj0aj7vN0GC24aIV7PbDlbPKcjl6v5w7uUmdjmKOmAUmyc3mAGbNw9DAvPfCSQW5luNm+ap9brZZjWfHgMK37ybbZa6kzTqdKnUtN57X3V+eMtkSz2cTq6ioajQYqlYrLxFMQXR1IZQfbMiYKsmqglXNpMwQpyv7m9xVIZ/s14KDfIyjc7XYdw5/jGAqF3Pk0O9lyfJ1rr9PpOBvRsuSBredLnVoL4HBeNAChDHm1qXTOdnK0FQRSRrYCzQquUJdzbVgQibYz1zDn1zro+reuY11jHF+Wb/Kba6br63U5NhYk14AKRfcTjo+1dTQ1nmuK97IlYhRg03nT+QkkkEAuLxaEBLyHNdMvV11Gf1zJOiq9Xg+1Wg1jY2NIJpPodrtO90UiETQaDTz//PMolUpIp9OYnp722CvtdhsbGxtoNptYWlpyh2Tvpa/Ke128eBFf+tKXkMlkcPfdd+Oee+5BKBRCpVJBq9VCNBp1xDceUK7BwImJCSwsLACA06dKkOr3+8jn804n0wbJZrNIJpNot9t45plncPHiRaysrOzbvYt7MoMOPDeMezr36PX1dRSLRYyNjWFxcdHpMrXT+v0+yuWys1tJNAyFtmqah0IhZzMwgy4ajSKTySAej6PdbrvyMHp/JWuMjY25LIidpNVquUyHZDLp7EN+l+VkSIZkaRfeLxKJOPuPtisxLQ0at9ttrK2toV6vo16vO4b/fguaBHLzSgCi3yRCY3t8fByJRAKRSMTVE1ODmY4xlTIdGTp6rVYLy8vLqFarWFxcdOUxRgUhWRutWCxiY2MD1WoV9Xp9z4BGgiAAsLKygm9961vu9OY777zzmgLoFDqqhUIB3/ve9/Dss88in897aoftF6GRxIBJo9HYs8Nkhkmn0/Gk4ykTYVTZaQ4J9BBEZ701pmdPTEyg0+k4pXslQuOWaXBU9NVq1a3pqyl5FMiWBFHvQPZaUqmUczYULOV+SGYLAA87C9haU8oGj8fj7tq2nrqC17wef/MaCtApYMZrESTr9/ueQ6OUoUvRkiC2pIOC+gwAbm5uIp1Ou0C2Zf6yrXyNDhqDoa1WC4VCAZVKxVOeTQMEClbq2NgAhjp9oVDIld0B4NJ9I5GIq5/KsdB+636hKe7sm/2MBWAtGMsA89ramnP0STRQUFZBdAWJbWBFwUhl1SuQwnXlBxxrfXy9F8EEliShjqPYgHm323UHeO1UUk3HUtctnXyCO3ZMAXhKA3LdMUig5AsNImimIq/F93QcLICu7aUNpgCvZZ+pDcF7KAtT67izz3bc2Uf+EPjWa+ra09e1X7y+7j8cV8tqZzaMgtxcd1xj/IwVZW3ymjrOnC/NDtSAje5drNWu19hJrkaP8/uBBHIziF3L3NcJIKbTabcf0M8A4PYY+7yxbjUBUj7H1CmdTgfnz5/HxYsXcfToUUxPTzuSAH3mlZUVFItFrK+v72mJVdvvtbU1bGxsuJrYJ0+edGBwqVTCzMwMFhcXkUwmAWwdeMrxmJiYwNTUFMbHxx3ArAC6Bhw0gB+LxZDNZtFut3HmzBk899xzV1wf+1oL9Rtt03a7jUwm4+xWtR/y+TwGgwHm5+exsLCAwWCAjY0NN24cm2q16vZsDdSTSEmyAAAXYInFYo68wKAvdRRtC+pCDfBq6TgrSj7r9XrI5XLuwFgSOmKxGHK5HLrdrquvzgNIeX2uH5ZwsRlhwCWwfm1tzZ1tQts1kKuTwCcfXQIQ/SYRZUvRWeJp3tYY5+YUiUScU8eNp9/vu422VCo5dhaBassy4sNGZlS5XHZKtFQq7WkpFyvcgAFgdXUVZ8+eRTKZxPT0NFKplMdpvVrRUh75fB6lUgkXLlxwp34z8rtfpdfroVqtIpFIYGJiAplMZs+Z6GqwsVa8vjdqzXoqYRqLfu8r86terzs2Rr1eRzweR7PZ9DCqNN1vWL+5ThXo0frnBM61jt1+yTo4yBIo7ED2WrRUBQCPEa4AKsWCgfwOr0XnQnUp9yE6H7yXsmD1mlo+QvUir6NAtjrdw9a4AueA/wGfZHWz9BlriJKdrD+8Hg9o6nQ6qNVq7gDGYTXg6VyxHQT7FBDUsfYre0LmfCgUQrVaRblcdvaLZgPwu6oDtBwF50LtE/2bY8/9nVlGdOSUoafgop0Dvk4n1jKftY+6NnSOuL50znSMFEi265pzpEx1v+CNAtk2vd9vDvm61l21B2irE83+WZa61jDn9e0YcoyUhahsetZHp20ViUS2scIV3FcAQPtoa8haIJ3tssx1v+dJA2AKttvx52c0OKDrQAN62n/dX9Rm0XU3TOz86uc5Rvq867V177LXssGCYRKA6IEE4hU+N+Pj44hGoy6YqQHXzc1NR3qjnrQlSBjMJKObZ3bEYjGMjY2h3W5jZmYGkUgEU1NTntrpPLeCepVnd1xL4R5dLpdx8eJFdzBmLBZz9a+V2KD7E/dqDbSGQiF3AHm/30c0GvXocwCOtHfhwgV3kOh+9s9o99RqNYRCIZdhwPeAS/swQXDacQA8Z4so6ULXG20wrqVms+nqozMITxuR82PxHbaB65RBiZ1K/XL+arWau280GsXExITDlpgVx7lnHzTjSvUmx6rRaDj2Pu1S9cv3MwZzkCTwyUeXAES/CYQbKVnomUwG0WjUc7I1f7rdrkurAeCig/V63UV419bWMD4+jieeeAKhUAjZbBZ33303Tpw44crFkLFDZbm2toZ8Po+1tTU8/vjjWFpaQrFY9ACpey1MTSMgsLa2hlwuhwcffBC33367O4jiapnXg8Elhn6lUkGtVsM3vvEN/PjHP0axWMSTTz6JYrG4L+uuqTQaDZw7dw6VSgWDwQDT09N7ytjv9/vOaCkWizh37hxarZaLrpNlOAozvNVqudTDYYeXcKzL5TLGx8dRr9cxOzvrjAKufZ5WHg5vHXTi5xSq00wDoNvtYn19HUtLS6jX67hw4QLOnz+PQqGAUqnkUuZvNaWx1xIo7ED2WqwxTjANgKcsg2XRUmjYkxlDZy0UCjlnmPcB4IBp3o+ioDmdFu6TFjCzgBwD3QqC0pnQsh10apQZxCBfoVBwurrX67lU6mQyiUgk4g56UgCT9Ux5MBfP++B+p8AinSllajMVV8FVOsw2uMHrtFotrK+vIxKJOBZTIpFAr9fDzMwMJiYmXFv9HC0A7j0NPih4y3FrNpsuC295eRnr6+vodDoOmNASMcqO5rV1zSjjmIQFZTTzvjrH/A5BAjrOCsJqPy043+12sbGxgVqthnQ6jVQq5ewypjvHYjH0+31HpmCbNLjB8VMdxiAEmfhkLuqzMT4+jnQ67cAQMuKUqcY1wBrzCnzzPjq+nE+Wj6lUKg4cIoBOR1yfadXbZOjrWiD7jg44s8c0k4zzqAA6n1EF4fW3PgN8lvzY9X7zyzWh4D3nhWPILBQNpFhCipIC/EBu3feUtcrx0UOTeR0tKcTrj3o2UgCiBxKIV6hL4vE4JicnXVCYtoI+M5lMBgCc76PvdTodrK+vuwO4i8UiYrEYlpeXMT8/j8nJSTz44IOYnJxEqVTC2toaOp2OKzuZz+dx+vRprK6uekqBXUvZ3NzEc889h3q9jmw2i5/8yZ/E0aNHHeGJwL4Cq9yzS6USBoOBGyvqHOod6rxSqYSNjQ3U63V885vfxLPPPotWq4XV1VVPqdr9IjaIXavVcPr0aaevM5mM0/GDwaXSfgyOVKtVnD17FgCcftCyJ5RweOsQTwLnjUYDS0tLeP755105QQL3PJSU9o3aV4DXRrt48SLa7bbDEfxkMBigXC6j1Wo50h4zG8fGxhCLxdzBoOwD176OD3U521Iul3Hu3DkPJtBut3Hu3Dmsrq56KiscNNF+W4b/la5fu9Z2I4FPProEIPpNIOq4WSY6FRM/R2YMQUVuwOqUUqltbGzg7NmzyGazWFhYwOLioueayuqq1WooFApYX1/H+fPncf78ed+0tL0UjeIuLS2h1+thbm4Od911F44cOeL6o87KbkQ3A43mnz9/Hj/60Y/QaDSQz+fRaDT2rlPXSJgl0O/3dzxV+0pFQQGtI66A0Kj3pMN7uUNaCZjXajWEw2FXaiUWi7kMhXg87uoH0rFW4MMqK/aDZQvobLOUCwMpdNhvNYURSCAHQTQFlf8TIFTQnPuLMmn9gFn9IRBlQU4FBhVgVYNU90k6LQokqiPD9Fb9nywfpu1qXWntgzKHQqGQS3cm0MvAOwPQBOX5HYLodMJt5o0FMDmGCmKPj4976nZSFKBToLnRaHjKaDSbTczMzCCZTDpAmHNi2eWWYavAoI49g71kMZVKJeTzeXS7XZd+bEGOYQAl+2z12zAGsdZO93tdM6b8GMFqv/EsDk1nn5iY8IClBCF07fI6FA00KHOc5AqWgVPQJRqNurI7CsLb/o+NjTkwwALAw+aJzyQz0RicIABvbTnLGNea3nw+2H5mV5CJxz7q866ZDgqIK6Nb582WNLLMdb++8/ucKwXL/ebdb93pOhoGots2aHq+nrmgP7YtCuwHEkggo4s+R9TlDMpr1g+DyvSrq9UqwuGt0k8AXHCbe0yv10MsFnP7fDQaxaFDh3DixAmcOXMGhULBlbagD1MqlVAsFq9b/weDAYrFItrtNqampnDvvfe6ciX0nWxwXfXb5uYm4vG4s1E0QDw1NeXK41UqFTQaDSwvL+NHP/rRvvXJuB5UV9IvZzacssKBS7ZOKpXCxMSE8283NzddHXMGrHVd8LVoNOr0HLELrgsyvweDS4ewEjOygVUK7SZm3V8OrGZpFWI0PIeNZE22lZkTtF10zVv92Wg0XLaB2he0UZvN5r7NPFB7ZZTPWWxir+65F9cNxCsBiH6TiHXytS6lGtlq9HMjUlacSqPRwMrKigMmC4UCIpGIiwar4726uurKnPBAieuxobHPZPpVKhU8++yz6Ha7SKVSWFhY8LDyWSfbprPTqaECZ+S0XC67w1LJynv++efd69ciSKDzZZ3FKxVl2q2vr2NjYwOxWMzVnr1S4YbcbDaxvLzsDpTVcgAEUViLTw/WoXDcWS4nn8/vyETnvVmzPBQKYWNjA8AlQCaVSiGVSnlqgJIJr0CFOrx6yFw+n0e73cbq6iqWl5dRq9VcmSKyPwNltDcSRL0D2WshM5vsYzoTBL8UuFYQVkFTAmljY2Nub6DTqod6KZBuwWyKXpPvc+0qcKbBbbJ2LIhOUeYvr8/X9H9g66An6j06MJ1OBxMTEx7WOEu4UA8qMK/lZRQwt/e3gCeBO4KcFpRTUIFOHwAUCgWEQiEXDCUrjf1gX8mq58FXbDeBUp7TQZ3Eg6+LxSIqlYqnxIe2R5n3ai9ou60uURCZafz6utaQ1/mza8mOja5JHvjK6xIU1Rrplv3Oe3KOFITnumQAmfXveciqBXSYVq+v8160xxSI52/7DLJvDCaRJVcqldDtdpFIJNy8x+NxB0LZvgJbB67qmHG+WS6o0Wh4gCXuDWwv26fPr84b70nHXtPobbBCv8+5swE6nXe/4J0NDFm70O+6dl9R9jmz8fyAd12LfsGRy0nARA8kEK/4PVN8tgF/5i0At+9Z1rjqx263i7W1NbRaLdRqNcRiMczOzmJ9fR0XLlxwZ5o0Gg0P4/t6CvfXWq2G5557zp2xRiY5sOXvsl+21J1msw0GA+TzeTz11FPO3y8UCqjVatjY2NjXe4hf2zQDstVqoV6vu2CKEg36/b6zBxl0oVCHqz6lP9tsNrG+vo58Pu9IdNbv5uc0Y4lrVjEennPGevSj9JffY7tYq1/P+2FZOtU5tIEHg4Fbuyzbqs8G1z5Z6Pu1GsDl1qUfqW+YjPo5fYZ2+/3AJx9dAhD9JhELnuvffJ+bpxrVTDv2Y5qUy2XU63WEw2GcOXPGpdMyMqoHLbGmKJ0wZfFcyz6r00bH8l/+5V/wwx/+EJOTkzhx4gRSqRRmZ2exuLiIaDSKyclJd7CLHvClNc8rlQqKxSKeeeYZl0b0zDPPOOYzU5Svxaat7eKP1nG9EmHpG0a2p6enkUwmcfjw4asG0fv9S7Vln3zySaytrWFlZcWVQ2EdP9bTz2QyyGQymJ2d9TA6eXo82f3nz58fKUihh+CdPXsWxWIRpVIJoVAIqVTKgQATExPIZrMOaJmYmNgGevF070aj4Q4ruXjxIs6ePYt6vY7Tp09jeXnZAQK3mrK4VhIo7ED2WpgFQ2CQQT3LKLXAsAWXFFgF4AB1gt0EpegY08m19cqt40KniA6RApoECxnwpW7XEiHcu8gGVv2tfSKY3Wg00Gq1MD4+jmaziVQq5Q7w5HX5+Waz6fZVda4I4vNz2m8VsqG0LXooooplpCvLmoyparWKeDyO6elpZ4Nw/+Y1otEocrmcGw/u6ew3D0dttVoulZjB8VKpBAC+7bPlumyNes1M4DpRlq+WA+LY+dUq1+CJ3xpVh4jstVAo5GqWc1xoO+i68SsTpP0h843ZVY1GA+vr6w58KZfLnpI0vA/Xk4LIOm4KXPNvzq0ynNlGJTBwbcfjcWSzWec8J5NJ94zo2T4EYfiMa4kXkjq0LaVSCdVq1QVatO6qBaW5J0xMTHjAbT8hO5JzxXmz+4GOG8tDWdtOgXMNzFgAXQkrfmuT7WbJHxJnbBaOgie07TWoeDkJQPRAAvGKBk31mVPfB4CnhBZwqbQLa4rbOtncp0OhEMrlstMn3/rWt9yzrRlA3AtvRKkLDWZ/85vfdH75qVOnkEqlkMvlMDk5iVAo5PSDDTyw/41GA+12GxcvXsRXv/pVrK6uenT9tSwdu1fil5FEggaD+9FoFOl02hHNuG5Y0kb1C4Owel4I3+t0OiiXyzh79iyWl5c9pfeU9MBMeh7kqjYJ20USAv36Ufdqlp4jg35+ft6jw3q9ntOZfAYGgwGy2Szi8Tg6nQ7y+TxWV1c92RzFYhHFYtFlSxaLxWuGx1ypjMo+p4wKoI963WHvByD63koAot/EMqrxO0z0oCaWxGDNUtbDpJK0B0leL7E1vBjZpNPHw01ZU5U16VQBacSVDhY3ZrLrNzY2HDv5asBsK35sI1sPU9tHB09Bh1HaQmWtNWGBLRBaGWuXE3Xo9Zp6cI2tG0onlk4d/+a8MW2coMeo5VI09brZbLqagewfHW+tWUxDk+CG1gImG4BRdwaHuL5Zo1UBDgUnFNihWKVHBcUfWyLhVpNAYQey16LlNuxrumaU2Ukw24/BoWCYsmgVeCUQZvc+vqeOC597P0ao7vt+jGW//4ft27rH8L7U39wD6YBRt3DvtYx5ts0+c5ZFq2OtNZb5vwX6+L5N5SWLrd1uu0Cr9kX7THa0gqB0rPlDJ5wse+o+2grK0NbrK5Bo+6/lZ/iespO1LAzbxu/wczpWfE/LkuiYcGxVrxIc0fJ5w9awAsR+eohsbOprjg8zMghWs32WucY2cy71WdB76Xrhd/V1DaDrGT5KnLDrRw88o43G8eF7tFmZoaJsevbFBgR4H6a867OpgapwOOzKLGn2AgNOmvHJ7/tlCeiYWPa53tfvx++50/ItSqzRNu60xkaVAEQPJBB/Gbbv6fu2HNswve4XnAPgfJ79IOoHcb+iXx6JRFwZVvrldu+zgYfBYOBITuVyGRsbG1hfX7/m7be2mP2MtRf9/r6ccF0w0DwYDNwBrH62pLbDr30MtNP+ob2jtpyuRyVDWiyChDHaSn5ZlpfrG4MgvA5tIs4vy7YpxqGHn9J+YxCY9pHqdj/Spq5Bte2VyMD7+tmv+wmQtzIKEH41Evjko0sAot8koiAwAW9VRvzh5kMHVdPcdxJ1gpieo87Rtax97idUwJlMxh00kkqlHNBPh6FQKKBSqeDixYvuoFS+rw6ZphkTMG21Wsjn8+5QUaYxXe0mocymqakpxONxx7hi+jfrvyqITkXHGt3dbhf5fN5lAFwuQkylubKygu9973tIJpOoVCqYn59HIpHA7OysYyr5sfKUCUFm54ULF1AoFFAsFnH69GmUSiXfU7IZUWZdtpWVFU86NkFssh93c2An1x8PM+E8JRIJV7qGY83D6cjUU0eaZQxqtZorSbO+vo7l5WWX+s8xpnOaTqeRy+U8GQ7j4+OO4cmgCADP88n6d9VqFRsbG+61g1BfP5BA9rsQECVoSxaLBq1U9MBFe/AnsP1QQIJjO4GdCnQDl2pJW3CTYJ8eQEiHR4N9Wv6KmTSDwcDt16p/NQPIgpvAVokLZdUrGGjZ9xxP+0Nnh220Yh3paDS6zSn0K1thS9GRJc1yNLy2BnGZYaU1wAeDAZrNprNzKpXKtlIeDLBb51HHyw9Q5WdYe1QPXNdyM+p48m+bCaXACQBXRoVzoM6x1Yn1eh3NZtOxjTc3NxGLxQDAExxRu4frfDAYuMM2WROegWTqcQIfvDfXPQ/+1ICBjg8zNPgc2QC91n/X4BIDAizjNjEx4e7FA8p5EBmzNVgOhU66gghMVVenW20ptoXPki0XwywHguh6poCmoDODgynzGoTS3/pcaRaGfd60dIzN9iAgxb4yIKDCbA3eh+WhdC3ZoCIDaBqE8Fv/gQQSyOVF9yEATr+nUilks1kAcD4HsGWDaBnMg3hQoma8aGk6zeRZXl7GysqKJzDJfUj1rwZM6T+xNvi1Eu75Y2NjSCQSyGQyjvxFva4BZZLGSD5gG9vtNgBs84X9ZDAYoFAooN/vO18yk8kgm826THGeOxcKhZDL5ZBMJp2tQ8Cch2VfvHgRxWLRsdttaS7d/4vFogcP0fFXu+VKyqWojbixsYEnn3zSldelLs/lcs52ov7N5/NuLFmuR21U1vcnQ573okQiEXdmwNTUFNLptPtst9vFwsICTpw4gbGxMaysrLix53UYqLkaXOtagMlXe82rDXQHsl0CEP0mEDpFdMTpGCszhqJguzJ0LlfjSpl9N1qxqwPL0jIsE6LAxebmplMgZJVrv1Vp0JFRFhuwPbq8V+1nyvXs7Cyy2SwmJydx6NAhl64Uj8fdZwF4osWsGU4gQNlVl2tjv9/H+vo6CoWCS5eqVCoOYKZTOoyVTiOPDvcLL7yA559/3tXP56nyVjgHGuH3u7b+3o2w9hqBaAILrNEfjUY9IDqVtTq4rL1GEJ210alMFVyjcZdOp3H48GEkEgkcP34c8/PziMVimJ6e9jj5dHzp1K+urrrDcEKhkHP0h43fzSxB1DuQvRYF/RjIorNhSycoKOoHIPMzwNaBglx3zJZRnaFMYwJ8GsymUOeSWUOHhc6ZlmqhvuPewz5yH2MWGAGwdrvtdIyC2dy/Cf6TBaTBBY4d280gIPutbHwdW80GU+CWnyOIqzaKgpVaC1RZ9mxXvV73zBEzoLSvBAzZZvaVdcRp75Dxxc8PEz92MPuo7GQ6vnTceH8NOmiGnD3wk3OvJTa4FiyIrq8RTKXTGAqFXMadZhfYQAmDwY1Gw5UMoNOtJVD0eeB8cH0xIKDB8H6/74LInE8FgRUosUEmDbBwrhiQ4DVZhqjVarkScVzjWi6G64PgBv/mc6b2LsczHo9jamrKAT4ETXhPAikK/vN56vf7DozQQ0wVZNe9Q8F1tb/tM8QxYsYCf1hWUANa7Auvw7ZyPeoeZm0tZR3q/se+jiJX66AHujyQm02473Df5POcSqXQ7/ddqQzLvmbZqcv55ftRuFcz6EimOXVjrVbD8vKy5+yxUUUDftdKCKJPTEw4vzwajSKZTDomNPUeDycnCYpseb9Dqy8n9FXJ1E+n05ifn8f8/Lwrw1cqlRAOh11pUmBr39Xg97PPPovTp097wHIVjiP1o58/bj97JaJMdAYXGBCnXp2cnEQymUQikcDMzAwikQjW19exurrqdDbtIQb8mS1uA8EUln+LRqM4fPgw5ufn0Ww2nV9/11134RWveAXGxsbw5JNP4oUXXvDo0qWlJRSLxetODh1FroeeDHzy0SUA0W8SUedW2ehU0ArGaoouN6grXfg7gaHXSpQJpA6CrTOqn2W76GDZEibq4FyLaJ22OZFIuJ9sNotsNotUKoVYLOaJ3PN7KmSaMQqdy+UAwLEZ6JDtZHwpeAHApZHRmWaNNb2/stdqtZor26KMtVHW0V4HJPyurfU86/U6yuWyY2Wx5AsdbyrOXq/nqYnOuveafcBoOYM2ExMTmJubw5EjRxCPx3Ho0CHMzMwgGo06BoGCDDSuCFyxLWxXOp12gD0PweMzejMrpkBhB7LXooEuYAsMtSC4dTCoR2yZAwKRgH9g1S9Vlj96D12vCk5xzyIrVuulk2muBr3ux3o9ZXNb3cE+KDuZY2Xbpt8dZU/X8bLArWX0WwYy2251uB8jCtgCmBnQ15rWBN3J3vI7LNK2SQHMncZE+6D1rKm3CaYzYMB2EyzlulKWvep66uVut+vY5LwGf9s51TGi3qeOoV4jmEqA27KnFczQUj7D5t2uDc3a0DWvxAv7GttDIFqJDPqc8jnm+tfSNbYWPdtvMyb4Hb0354trDgCy2SxyuZyzD2gHsQ671jFXJrqt6cr6tbSJ+FtBMTu2OgZcw7yP7lk6PnZv8cuk0HHXfUtJF1p6xwYXtH2XkwBEDyQQr+hzrZlm9Xodg8HAE7TiM059dVBZo2qD+AXwgK0sKbVJ1Ia6EUI9zqw2nslBXWCD6NTr1AkkvjHIOzEx4ckqGGU++T5tAZK7mClNwLtWqzm9w328Wq2iVCq5YPJuAjDXY9xVj7FMC/tFTIbEhFKp5MZNnwvqV31GiGVoBgSzPWKxGBYWFjA7O+uIJq1WC1NTUy5bLhaLIZVKObub40HdTbtCs+Vvdgl88tElANFvAuEGQ8O7VCo5BcB6ojSstVwGWbs2zXRUUWeQok7jtRI62WSBkblNJhodLzqteiAFN291TCnX0mjR1LZTp07h+PHjjr2WSCRc1N6ys7TPNEimpqaQSqXQ6/UwOzvrDkh75pln3EnV1Wp1W1+4BhKJhGPwA3BOdK1W8xg0+h0C7VQk1WoVvV4PlUrFraH9oFz4LFQqFYTDYXdIGlPzCFoo+1CZggRd+IxQYU9MTODYsWOYn5/H3NwcXvayl2Fqagq5XA7T09PueaNjzt8WCOLzQaCi3W676PrS0hLW1tawsbGBb3/727h48aI7dX4/RsT3SgKFHcheC0szKAMd2CoZYUEoLavCvYF6jOCszU7S7yujU0FlsnX9dKLuDZ1Ox6Xqcp+fmJhwjF5tB/cVMrr1IEbu1dZppSiLnDoF8JbXUKfXlpGwrGwLyPOevL5fMNvWRd/c3PSURVH2K8eZ+oVzRECSoK8Kg8zaX3V62UcFMTQDS9nhvJ+OO9ORx8bGkMlkkE6nXWkvXkPZ+7SvtCY6PxePxx2jTIO1oVDIBXRZ2mSnfZJjyv6QPEEgmM4iwQvqHwaMWQ6tXq97HHM/MJ1zyXWta5/t4HeVjUf9CngPYdVngM6qPo+048hY5HyzbJwyvi2rUW1ULT+Ty+WcDZTNZt2zxrkkcEJAnf3yY75xDOr1Oqanp93BrzxXJZ/PuzJtNkCh5Be2V/ckrvPx8XHPGrLnxei+wT7y2n5p+LoPKDOfc6fPrmXuD5MARA8kkO1ifRICq8CWjUH/imA7dfpunwnaH/Y1tuNaiup3BiljsZjTbwRAAWBqasox8elLMnvnerTVytjYGA4dOoRDhw55Ss9ohhdtKwYzadsxcJ5KpVzbjx49in6/7/xy+ng7+XHUUQSD6eM//fTTALbK9IXDYdTrdUQiEbeu6KdSf+6n+vgUtcFYMjccvnRuHXUzgxW0BfQZsMFk6qlUKoVEIoHJyUnceeedyGQymJqawuzsLCYmJpyu51h1Oh23Lvv9vluLzDyIxWIeQsKZM2ewtLSEUqmEp59+Gvl8/sAGuEaVwCcfXQIQ/SYRdVyprPxSZlkygg6HZWntRpTJrY7UtQTQlQWkwLKmhWub6MwSGKDTZpmE11o4VhMTE5iensaRI0cQjUaRSqUca+5y36dTQyXb7/fdad2s7aXOpt816GzF43GnsLgWyuWyc2BpzKjxUK/XXVo8U4n344ap7DOtDaw1+XQdsB9kfiuIwP6HQpfq0B06dAhHjx7FT/3UT2FhYQHpdBrZbNaT0r4bobLq9XpYXFzEysoKLl68iKWlJZfSOWo6dSCBBHJJFADzY5T7sWMtWKqf8xMF1WzQU0FPBaBscJLPNgEy7s9k3zLQSYdOQW4a+grAAXD10hUEVWYb9zjbZrKUqatsfyh2PHlvdXY0aKFAOn9bcJ73t/W1NdhBAJIOI/dsPXBbr6UgvzKT2V7rkNlzQIYFIqhLmDKs52xwbhjQ6HQ6HnBBU8HpgBNk0DlilhJBFQtksp8EXcn653qg/tPgPIPBWhqu2Ww6vc6Dva3YIIldB2yXjp8GmRQ41z6wzby+Bkr4o4EoPp8ElXlt1qS12Ro6xhZITyaTyOVy7iwYrdOqAQfabLSTuFZsUGMwGLj511KBtJX07CG/ABzHwD5DvK8GkmxwQgNe3Dt0vmwGiwY47Pt6vd0y0QMJJBB/sRkxzITm89rpdNw+fKUybI/2A9avpVj/nOUsAbgsHQaKOS7UT9e7rZRwOOzKp1BHKAlKAWC2udvtOr1B20XtTdpQ586dc+D2TqI2IfU2g7C6XgB4MhmKxaIDnK8l9rIX4mcXXI2w9E4ikUAul8Px48cxPT2NmZkZLC4uukwyHjpPn5pkyl6v5yoCxONxLCwsuM/H43H0ej1XMjEej+Ps2bPXLSgVyMGQAES/yYSbk6ZoqlGs6aVq1O9GlIlEZ5GizK9rFa2zTECCnqpAlEmmEcyrKV1zpRIKhZBOp7GwsODqbpLJdjUAqYIRyWQShw4dqX4ZOgABAABJREFUQjqdRjgc9jCpycansz87O4v5+XlEIhGk02nE43HH6iM7oFKpuIg2wWUaApc7wHRYW9WRJcihxgo/p46mMqbYl92sK3VKFRhn1oauJXXy2da5uTksLi4inU7jJS95iVPSU1NTjiXqZ7zudmzC4TCSySSmp6cRDodx33334fDhw1haWsJTTz2Fer2OQqGAUql00ynvIOodyF6LBnUBb6kOZaerfuTnuF/aMhD6GQ2wKXNT92RlX5NpBXjLW1C4VytITrYp28I9i8FATW9lIDUU2qpDrnuf7nlktgPYtiez3RZ4px7V/zVd244PxS9Ar88s76/X0BJYCvjzWmQ0sx3csxWUJIOZ/VFwXr+nwQtl/WpghcLADA8b4wGXPNCcIKoCqwR9bd/9svh0/Bg8YbYBHXcb6GHWBBlZWlfeXlsDxFpqRLMRtdyP3Vtt5sJgMHBlZ+j4c+0SuOYa5RjYNukYKPiiopkRtAUs+9zadrqumKafSqVcGbaZmRl3IDhfI2vfpu3bsdDnWp9jZhZEIhG3jhggYfZeNBpFt9t1B7ra61kblu/bcgDWdrRBOY6V399cC377kF8pK/bzcnK19n6gywO52YR7iT5n9NEtSHu1618JP9wHGAhUv9/ve8DeHFpIPU3QV0kDmtHDfZylMq62rOyVSjweRzqd9mSFs920Da3O1iA1dTBtDZbqVFtwZmYGiUQChULBsZgpqvN4kOjExATS6bQjQySTSU/WIfUefXEN7O6VWHvWBpFvtKTTaae/jx8/jpmZGaTTaXfuWSgUcofKM7tUnwHaBrRVYrGYJ9jOsWbQZ3Z2FrFYDD/1Uz+FkydPIp/P4+LFi44xvx+y8PdSAp98dAlA9JtMbPqsZZWos3ElkUvdVJnqpIa7ApGjpoHuRiy4qimv6mBy01fmzpUc9nG1QkU0NTWFl7zkJUilUpicnEQ6nQawFa2+UqFiJzDfbrcxPj6OSqXiHOROp4NoNIqZmRnE43EcPXoUt912m0thZsSVxsza2houXLiAZrOJ9fV1bGxsbGMX7majJEjDgzYZOWbJAgIGVGAK/jcaDU89MnWeRxWuGaZJDgO9+TkGhyKRCO655x7823/7b5HL5XD33XfjyJEjntpr6gBfidCA5hxms1kcPnwYJ06cQLvdxlNPPYV//ud/Rj6fx/e//30X3LiZJFDYgey1WKDWMoCVjanPPAF0BhUJMGo5Fj8ATWt/avYOr6+lLNg2DWTr9fU6THVNp9OYnJz0lJpQljJZULw2wVC2Q9ttQW7ekwFBDYQTyPezFegY29qcei9gi+GvjGb+zX1W+8y+8LscG62jylIeyqhVtpuyyzn3ZGRrYF1tBAaRFUxln7V0XCaTwfz8vDsbgwdc8jsWONY1yX7rwaIKunMtkg3FOdJyG8qOZh12OoNkNrItPGSbwQeuGWWfk8mtgDbXFdvIZ0hB+1Ao5OqJknHI+/Ja9XrdpZuzrZaBzb5pAInXUOHzoutHAXUFkHgtnk/C2qiHDx92gIkGPyxw7/eM2GeI64MBHQa3gEukBq6t2dlZV67p4sWLaDabWF5eduPO66ldo8+vPjcUDQr5Be3UXvN7LpW1r3uW9k3X7SgSgOiBXG/ZSxB6r0WZ5tynlKyjz+3V+qRKSNL9nyUmu90u8vn8tmCm7ivKAr8ae1yDtPF43OksHjDKAzBpX9XrdY/NcT0lk8ng1KlTSCQSmJ+fx9TUFHq9nqceN7B1jkYkEvEQItSv1cCoEhpOnDiBXq+HZ599FsVicVs2FvXG4uIibr/9dk/5P+rDXq+HYrHodClL3yjZYS9FMx8JLrdaLd8ysddbQqEQ5ufn8aIXvQjpdBo/8RM/gRMnTnhA8sFggHK5DGC7ru73+w5wB+DJ2lO7qVwuo9/vIxaL4cSJEwCAl770pQCAJ554Av/4j/+IUqnkDoS9mSTwyUeXAES/CUWdFKssrwQ4t2KZQ1YRXy0z93KiDpQCELZffM/Wf7zcQ6598nMm9Bo7XUsdOjqb6XTaKd29YDBTyHrS2tx0nNkPOrGstxaJRNyBpoy4Mn2JhhfB591uqtahVaaeTZtW9hwAD4jO79LwJMgDYNcGxKgGIueL9dTm5+cxOTmJ2dlZTE9Pbxv7qxVei0qcDL/BYIBisYiZmRkAcHOmKd43gwQKO5C9Fl0XVg8SuFTGpQbENJjHPUnXqF5L2e3KptZ9i2IZyVqWgT/c3xQU7PV6iEajLkCqTjevb0FE7uX6N4MHlsFKJ5evkz2tdoT+PWxcVez/ZK7rGOqeb9lwFhhUsHk3AB/nk6x5nXsNrADwBDTYVrVxFKBm8FcDABzDYaxr2y4L3FJ4LQ3u6PUsUKx12Pk308r1IGu1h6hjLbuMa5jrURlpmubO1zSdneOhY0bH1o6FLTOk86FBBj+bjt8nOKVt1fsokM52knWYSCQQj8c9wL2ucwvMaQBk2NwSNLHMxX6/7w6ZI0uOwAQ/Z9cx22GDT3xNx3gnUgDHSr+r82uveTUSgOiBBOKVYc+n7n17HQCwfhdJAaM83wqkX6nQtlH2MrBFZlAbR/3zUXQ5f9u+XOk4akk264f6Xc9iA9oOSxpU37/f73sy1VSfcI5isZjLJNf68Jr1p+N3taV/7A/7TP2kwXnqKmZEUnR8rgVp0raZNlgikXBs9KmpKUxPT3tK5qj9qpmMam+r7W8z4hVwJ1NdAyYzMzPIZrPY3NxEs9l0evpm0WGBTz66BCD6TSzW4d2rayqYbGs2K1B9rR4mGiCdTgeVSgUTExNu01RnVg+IrFarHlahFRoeZAQzNTqTyXgOder1esjn856I8DDFEYlE3EEVMzMzyGQyDujea6EiHB8fx/T0NE6cOIF6vY4zZ86g3W47QJiKhynMNB42NzddvdRGo4GpqSlEo1GsrKw4BuAowK061uy/pssxbSqRSDiAQI0DYEsB2nS/SqXiDuLM5/PodDqoVquoVqseBXmlwjbMz8/jp3/6pzEzM4OXvOQluOuuu5zSZh+vtVApz8/P4/7770elUnF18qrVKk6fPo1isXjN2xFIIAdR6GS0Wi0HZNmyI8p0VaeWBrfuR+oM+u2BdIb0f7+9SJlo1pFSIJ/fZwCz0Wi4fZLOHkFTAvjUKwRf6XBQ5ymrXNtMvcHvs69aUoVgvvadAKkC+RaY01IcOu4WCGdfWQKE91awVTPOFFDnZ/2CHDxgluePEOTU+7FczmAwcI4rf/NwWjq5iUTCc4YJHUcFOvm3/dE5YRs4LwroDwYDFyxlgHtsbMyx4whYs00MSPN8Fc4nx0d1tw2MkF1uA8x8f3x83FO6RjPIyHTkYZwMAnNcOH5cgzrfZP232213sGmr1RpqXygwbV/T8jvsMw8by2azOHLkCJLJJObm5jA3N+eAdQL+fAYsQ14D9BrMAbYyPvk865yzDWxbMpn0ZIu0223EYjHE43G0Wi2sr6+7zACOgYIA9nraRn1f7e5hdu6wa2pQhuNh13Eggew3GZUYcyOEe8Mw8hYJSjYT7UrvpX6TliLRkh+jgH1XOpbcJ6hHec9Go4FIJIJcLodkMukAYj2D6nJtoi7nvs3sJ/aXTO1qtTpSO7nH8UBKlt0qlUro9/uudjawRbDQQ09JsgLg7sn+MIjNciycj6mpKRw9ehSdTgf5fB71et3pV56VNjU1hXA4jFqt5oLP1HmZTAa5XA6tVgunT5/G2traFc1TOBx2WEA0GkUul/OclRIKXSpjOjU15eaTeAsxFLV7mMlXLBZx/vx5p9t1PvciODM1NYW77roL2WwWCwsLOHbsmMcvZzZhs9lEIpHA9PS0s1upD4kHkWDA93UdAVuBC9pHtMc4FkePHsV//I//EbVaDd/4xjfw7W9/G51Ox10/kFtHAhD9JpdrYVyok2E3S8swuhbC+3e7XdRqNQ+TR6OKmrZcr9ddWrOfsUJlxXqZ8/PzSKVSOHToEGKxGFqtlvt54YUXnKGg9eetEETOZrOYnp5GKpVCPB6/JmPCvlNBHj9+HJVKBRsbGygUCpiYmEA2m0Uul3MKlOx1stYZZW61Wu70b4IIo7AFaERpCvXx48exuLjoObSD4L0GPCjWGWQJlm63i3K57A5aOXv2rEuLVmPsakH0cDiMubk5vOpVr8Lx48dx5MgR3Hbbbc7hvh7OpBqjc3NzmJmZcan4ALC6uop8Pn/TgOhB1DuQvRYFoK1RSza3gmLKiOWzp+/RweD/fsxXDS5TlE1LR5dOrQJUCgZrH7ivsTSbsnVjsRhyuZy7D78/MTHhAgcMgKpjo6AvWUbKeKYjpfupBWHZPu69KpbpbkFugnXK+lGn36+cBMeNDhz3DF5L26bfjcViyGazLohLxxaA52yPZrPp9liW4WD7CBrH43GX5aVrg+OpDDbLsFcQXdvHflkQneuL91UG2mAwcIAswdjx8XFks1kkk0nP/HDuWLtTx1QDOGqzKSDDc1M4fiQV8J7RaNSB+AzoKDjE9cUgPddjs9l09hkAV9fcr76rrhs7x7pWuF7JVKPddfjwYaTTaUxPT2N2dtYDJFmdznvpOuM9de6Uwc8fG0Rj2xjYSCaTmJycdDVaJyYm3Jkz+iwNA9U0KGXLsbBdDAbp9+2zpONpA2la8kjHaFjWhMrVEmcCXR6In2hw0k/287oZFsyi0LfZC9EsHa1JrpnE3Ps0m3evRO2hdruNUCiERqPhMnHYBgLoVp9f7tqJRMJlTs/Pz7sAM0uRdrvdkUB0YAsniMfjmJycRDweR6VScQFdSyQA4IB0JTK0Wi33Hf0cfVwCu6FQyNlqLKFGH5vnkpFVrfYgS66Oj48jl8thenoatVoN+Xz+qkH0hYUFpFIpHDt2DOl0Gs1mE7VaDeFwGKdOncKxY8dcQIFrikFe2kh8v9vt4syZM9jY2HDrWTPyLvcMjyK5XA4/9VM/hcXFRVc/ngEVAM6uaDabrmxuOBx2a0NL1BFEZzupc/VZUb2owevNzU0cPnwYP/ETP+EOBH7++efdONwMIHrgk48uAYgeyK6FhjU3HnUUryV4bkXTh3jasgXR6Zj4OWcqVHqxWAzT09OYm5tDMpl0dcQZ4Wy3244RzXqjwwwBAh3qeF8rEFaVFMHvdru9J3W7R7mvpjrlcjnMzMwgFos5xzsejzsWH51pOn9+adg6VzQqCCZ0Oh3kcjkX3FCmOoGQ3dbXY93heDyO6elpZLNZd2K3Bfqvl+jYkgk4NzeHfv9STbdEIuGMmYOuuA56+wPZX2KNdoK0ZJ7QOfLbF5WF6Vd2y+71CrTZdWyztJQ1qwCzBY4JBvL+FghjGwnGawkYmw3mB0LqNezndBwUpOb4KcirjH1tuwLKFkSw37OAvU1V5v1soFTvy7byN3UM9S8Z26zJzbnge4PBwFOvW7MObD181VvsL7/D4IVtF4Fv3teCwFYHqv5SdrNdJ7bv+r+mKFug2bZR54W6vN/vO/Y968EzqE5GIBnxw2wbvTedUYLzfBYJyOtcE2CxGRB+fdf20/5hyTiyF2l/ab91fHW/8APwdew4PxaIskEmvbZlkjM4wlrxWn6JDrwC2H7BAn2W2bdhz4ftu64V7auSYPS7o+rnQI8HEsjVixJpKLt9tlSvq81yrZ5RtSn4vzLj2+32Nhb65cp/UI9FIhFks1mXzUz2tga9K5WKA0tJnht2TQZ8qa+VWGCDrH66nrabLW/G162txH7ynn5+ObPSVOfpd7Us7aii7dEydCTSsawZ9X273UY4fKkkHQMgeq6cn/1AQkQymcT09DRisZjnEFSWWfGzBUdpP/Wj6nLNliJJgIF66kPiH0rE02xGkmLU1tK5tLaGBvk1eMK6+uVy2a3xm0ECXT6aBCD6LShqQFtHehThZ3kwlXVCNFX9WgoZeowq1ut1j0OpG7+m0FsJhUKYnp7Gbbfdhkwmg5/8yZ/EqVOnEI/HHRhMxd9ut3HkyBFcvHgRa2tr+Jd/+Resrq6i2+06NhWFKVpzc3PI5XLbmIbXQkKhkCuVwki7HpJGZeNXU9TWj6cSVFDGCu+TSqVw9OhRpFIpLCws4OjRo44pyQO8CLJbo4Ptpuh9qPwV5JiamsL8/Dx6vZ47+LRer+O5557DxsaGO7hmNxHhWCyGe+65BydPnsTJkydx9913Y2FhwffQsespfD7Hx8dxxx13YGZmBhcuXMDKygoAoFKpYHl5+UCfDh5EvQPZa1EdAGw5KMrm1HrYKlxTZAL5iTo43FeV6Usg2ZaQ4T5GQ1/fp2OijHEyd8liVrHlVLTP7LcCbXQ8tOyVH8NcGUTc/8imot7nZxQsZ7sVEKWjosK+qIOqeoCMJxWOMe+h+oPOLueVJctisRiOHDmC6elpJBIJzM7OOl3Og17JFK7X6+j3+6jX62g0Gq79HGOtX80yKgQ6mSVAB5nCNrGN/Lzud3Rs1XlXPQxsMeHJPGdQg/Ou40CQntekw8k5IyvLBpq1rQQtwuEwpqamsLCwgImJCed0067wW9tsNx1vlp8hcM61TwAkmUwilUq5MnIEWfL5vDtInO3l+Kuw3ZwXBk4OHTqEubk5x0iLxWIIh8PORlQAhGNFO1HHRB1nzcbTDAxrb/L6Op5c59wXyEpMJBKOvTc2Nub2EM3U4BxqSSbOowXIdEzYLw0ysH0UBYwsyMF+cb1dTq7W5g90eSB+cq3XhQWrb7Qo89VmB10JkO4XUL8W4geS8n69Xg+FQsGV3rQlQYYJz+9KJpN42ctehlOnTnnmi/tbv3+pxEalUkE+n8d3v/td5PN532uS1U0AmYD7YDBAPB53thxBWRKpSNii/qe+icfjHtKD2moEo6l/WTaFYDazvFlydmVlxe3T3O8JrDcaDdRqNTQaDY+tuZMw+BCNRjEzM4Njx44hGo26A9FZspb12qnjVlZWcPHiRWcf0YawhC1mfcViMRw7dgwzMzPo9Xool8uoVCpoNBo4e/YsCoWCb4B2lPYvLi5ienraZbJTH9Hu6nQ6btynp6ddhsDq6qpHN7JcWq/X21b+UG1IZo7xu9TtDNQwq5NB7zvvvBOveMUrcObMGXzsYx9DoVAYuX/7VQKffHQJQPRbVKh8VAntdvEr+02N9d1sklcjqrTpIALbncrL9YtRVILdx48fx+233+6Y1NFo1EUyCZSzJtqPfvQjFItF59iojI2NIZlMIpvNugOlrofwcLFut+tAEE3RtcC4jpN973LjRzCKdd8nJydx+PBhnDx50jHXtIbsKGNgnTwKAa1kMolcLod+v+9qopXLZeTzec9BqrsRno5+xx134OjRo64m3H4QAiysmTc+Po75+XlcvHjRGW8HGUQPJJC9FsscsiCcsqEtIwjYYlXR0PZj2tKwVrYQv+sHoqvjR0CbQJeyr7n/7hR05T3o/I2Pj7s9QB0V6zwPGxf2x742rHSJMvu1zdruYcwjtoe6g+3SrDarczTVluNns+Co51j/nIw11mKdnp52dajr9bpLxWXqO2tX9/t9x8JSJpbOHR1lLc3DdvMzOt7A1trTvigrTceG64HjxB+tqa7sOf0u72XZ6NoX1fsUOpFMkWYd22w269LKCSiQia5EBdqD/Nu23/aV64uAupbNY2q0sr39bAeOCZ8l2hxkLRIo0ZJ1vK+faHDI2pA6XvbAPLWjOZY6rgSr+TkeNE8mfjQadUE+zoMF4e3a4N7D8deAlGbP6fOrQL6uGz+b/VpnMQYSyI0W1R/7Bfzh8w94z4e6ElH9f62B9J2uOxgMXKmN3QgZyOl0GocOHcLtt9/uyHu0QQiqplIptFotxONxPPXUU0OvSX+V55PRbiKozX7QPqQ/zYxnXTPUl7TBlByg4CttDC3ppoFS4gfVatVj96ldyMz3nc5hsxIOh10Zurm5Odx2221OHzI4S0JAp9Nx9m6pVEKlUnEZ2jw3zdpgtBWYyb+wsAAAyOfz7uy4jY0NVCqVK1p34XAY2WwWc3NzmJyc9BACNWAfCoVcSRziNdVq1dmItC9JItSSfTbAbcvucW9gQKTZbKLRaKBarSISieDee+/Fq1/9aszNzeH//J//s+s+BnKwJQDRbzFRA9uyn9RpGPU6foa+MndGOYxSr6mbGl8DsM2Rsdf0u8flDAa9VyKRcCAw2dM8oZobN/uYyWRcVDibzaJUKiEUCjnFrtcn++paHCZ6uX5pZHUwGDilkk6nPQey0sGkkVAul1EsFt3hJtaI4/V5iCmBisOHD7u6bjpu+r296h/bQKBkbGzMHTSSz+exubnpDI6d0qvIBMxmszh06BBuu+02zM7ODnWyb5To2MXjcdx2221ot9t44YUXcOHChW1ZEAdJgqh3IHstyjRVYFeZ09RVNgtG9zp1aIbtZdR/3EfVCbbXVUBUHSk/QIuAMF8H4AEpFUQnqDeMWar/637O7/B+Cvxzj+Xfuu/a4IBeQ8FEHTv7GX5X+2KZ6Xa+mEGlYKfqZguik8WmpcQoBIZ5VgqBTDLPtV8KSnMeaN8omN/tdl2pEgU0tQ8aTNE5UtBSx57rl/+TMEDgmKVrtH/M0Gs0Go65RnadlrlTRj91IcdPgXMCCVzfdp1y3SlAq9fmM8Fx1fJ6/BzBiFAo5A47azab2w52tzagrkmy9QmSkDGo82YJH/pMKNjNvmkGgYLktn8KrvDa+tu2m3tGOp124D4PttNrcu41Fd2yOC1grs+237PI9rC9tryVBjzY/8vJ1QJ0gS4P5HoLn/X9tPaoC/n31TxX9NFtls2ViLWTdvv+lQiZ0ul02ulxjo1mAlF/A3D7fywWc/pOJRwOI5lMujKjLO2ieisWiyEU2srEo02j9qLiHQrmMjMb2Bp/AB79pxlq7AeZ7hYz4Py3220Ui0X3uWFCQJnnlRw6dMidCUJSBMvT8lB1Mu3ZF2ZuKcjuh72QCU52PVncJCUAwNzcnOtfsVj0lFcZJrQpYrEY5ubmcPz4ceRyOczNzbnz1BikYJndUCjkSBHsk8VC4vH4Nn3NMVYiigaceWDoYDBw48rg/NjYpQPff/zjH+PChQuYmprCi170IlSrVaytrR1Yclvgk48uAYh+i0k4vHUohjoIZFSNorTV6eKGRieL12LUj4yuy11TgQWmD+lGRwfKMsNUeP3dgPaMJE9PT+PEiROOST03N+ecHCpLtqPT6ThndXFxEe12G2trayiXy552MdWJJ4nvlh19NUJlTmcSANbW1pwiJ0OcYIOmOi0vL+P8+fNoNpuoVqu+KVxMmz5x4oQrg3P77bcjk8k4I8CCMHspvC7rmE9OTiKZTKJer+PixYsA4KLgLAPgJzyAbHFxEffccw8eeOABF1XfjxIKhZDJZHDffffh1KlT+PrXv44nnngCtVoNwMFUYIHCDmSvhfu633NPR0EZ5HYNWvaoMq+VpcrPKkOG+k6Z6hqw1XIy3Cf10FItt6WlHHhtMpGoa1kKgkxWYMux5PeUuayAO8dHnTZ7kBIABxRbJr+WFLGBAwr7TJ2pwLH+Zv+Y5cUxpgPLzwDejALVNeFwGKlUyjlbMzMzLihKdjXrozOzrN+/VAIln8+7YDLHnPfhmND5VUBTy+NwLLX8iwXR+bp+X0F6u/Y0G4JjxwO+eF2C6RxjOtmlUgmFQsEdwk4dr2nN/OEYaRk7HuCla1Dnza/kEZ8VZV6zH5oyznWr/WN6POuFNxoN5PN5dDodVCoVlMtljw2ogAZBA2b/5XI5Z4vQQdZnlqKOrgYwrM2i6ex+690Gw/QZZQBCa+3TDuNaHRsbw9rammev4fohY5LX0DR/XTf87WcfM+iibeTrujdxLWqAbxTmYwCiB3IQZb+tO91nKVfSRiVRaSmoKxVl7GpgUO9Hnb0XY0oglhniJLnxYGYt1cr78aBO6i09s4zCDKvZ2VlnDyjewGskk0kPYaDb7bqAuwZcqUupH7T2OPf4zc1NF+TWkiH8/tjYmDtsNBqNOh2o9mCtVsP58+ddJt0wGRsbw+TkJCYnJzE1NYW7774buVzOYT/9ft/pUgLLLDNDXcgAA+dB1wCwVZ+dZWjIYiewHI/HMTU15bL75ufnUSgUcPbsWbRaLVSr1R3Z6Rpgvv3223HfffchmUxidnbWlXXlmr5w4YLLLKQt1+/3nV3CeSVZjmMAbJUcpG7l2CqGUS6XUavVEI1GMT8/j0Qi4dbd5uYm1tfX8dxzz6Hb7eLYsWOYn5/H008/ja997Wsjg+hWJ++FXM3zGPjko0sAot9iok6CMoj8onOjXENTm7l5KfCgD/KwawFbziYdBk2LArYUuLJvLGvwasZDnTcCCn7pxwA8acOMvmpqloo6JnsNJA/rj/7tFyhhOpIyF+mw2pQlP/YCnV063blcDplMxrH+LJvwWvZR66Gm02lX3zadTqPX6zkmgZ9S0Oh0IpFwhpcyDveTsN+s6cd6dwq0HUQFFijsQPZalMWponUZNThqma16Hf5WdorVaX7Am4Lntl3AFiPb6mK93rDgK++vJViUnc3+aADbsmmVVWufQWVBK9uVY6Cf05TZYfOgoJzuU3p9bbMymrUfw8aebeHezSAKWdrKNLPsJPsZGyzRa/sxmOx4jrKWeH0b4PDTtfzhtRWMZRCF86BBDbLXyMyi46uBFb2fjgUZ3Tou2lf97k563g+U9nMY2T+y0fVZaDQaDmSwjGm9D9dYJBJx7Va7zM++9bMhdZ7ZFr9+DXtdr80fnV/+8BrRaNQx+TRL1I4R4D3cVJ9Lv/XqZ+/wtx+Ars+otVkDED2QQK6/XO0zof6fDf7vJHafpM+nwXM/XcU27xWQThCaukiZ3Lr/8TUAHpLCsD2aekL3OdUPmtlG289vfKhHNVNKyQmqJxTjsMFWwKvL9RBPLT/SbDadLvcT3k+z8FKplGPGW4LH5uamC2Lzfhp8YRtVX/E+HBdeLxTyHgJOIJyM9Ha7jUQigcFg4M6dGSZKvGDWAPEWlpGztjiD6xbPUl+AeI21izn+HGvtJ9noXBME4Zkh1+12USgUEA6HXQB/dXX1hmMIV4O/BD756HKgQPQPfvCDeM973oN3vOMdeOSRRwBcmrDf/u3fxic+8QkUi0Xcf//9+MhHPoJ77rnnxjb2OosqAAWZh31Wf9u/L3cfKimCyfybILqmWzOF2J7EzcggGThM2SJ7mxs7NyI9XblSqbgyHTyRW0GEK5UridZdyfduhBAc7/f7uHjxomPTJ5NJx1Qgw7FQKLjDrjRtjGtscnISi4uLSKVSuO2223DkyBFn6FxL8HyYqOEwPj6OmZkZ3HnnnS56zMPKWGdVvzc7O+sOEZ2cnLxuwY6rET4vZLEdOXIEoVAIpVIJ5XL5QKzHQG5tuda6vNFouCwiC4RbFjqwBYBqYNiCpjSsLfOY11YnknpQQS8Kn0/qRQLLbA+zu3hdbR8Ad137Ppmp1tmx36OuVlGWMxk+2mcVBYm1vif/pnOq32dwXIFjsoC0xIiymC3IryCxjrsVDRaQtUvGlzKvATinSteK/rZjpOtCy1zQkSZYYcF4O4d+QQot06HtYB/psGmKOg9h3dzcRLFY9OjrwWCAcrmMcrmMbrfrDu7kHA8Glw65ZemU2dlZdyArDyOzBAEFXdl+W65EnX+OMZ899pdsNWVR23IvdFQZDKCNooeW6vgyqJ9MJt1aU/KADTTpOOnfdMz9gCRdN8MyL3gN7jMsiWfXJ+87MTGBweBSTV+WpqvX645tyNI8LDXEa3FcFfi2wSJgq0yQtVcZqCIwAWwdaKq+hAZtAgnESuCX761o9nC9Xh/5EEmKgoaxWMwRisLhsNOzLE/hJwyiakA6Go1iYWHBlQJdWVlBp9NBPB5HLBZz9gf1bb1e9wRtr2YspqamkMlkMBhslSQlw1xBUgXPe72e5/BlwJtN1m63nY0IbAG+BGjb7bbnwErgUoYZz6SiXlK9z3GyOkuBZupu/ihoyz1+fHwca2trDqzlT6FQcKx3P/Ig543lPk+ePOkwGdbvpp3DkiRKGLMBe7vnq92m85rL5ZwNSza42iUcm2QyicXFRfd6qVTyXYOhUAjpdNrVQU8mkwiFLpVqYalWEh4Hg4GzXVSIXRDYJqu+XC67vvplkqkNo/2nLVGpVFwfdR5mZmYQiUTcOSz5fH5XJXyvhc9+kPCpgywHBkT/5je/iU984hN46Utf6nn9D/7gD/DHf/zH+Iu/+Avceeed+L3f+z285jWvwdNPP410On2DWnv9RZls1mD3kysB0PlZKtbLgejc4KwDQ6UXjUaRzWYRi8UwPz+Pubk5D6NYjXmm3HQ6Hayvr7t0INYhG1bi5VqJ37j6MX/2AyDLCDFB5E6ng2Kx6BxZlj1gajsP9rJABtfY5OQkbr/9dqTTaQei2wj7jQDS6fRzPRI8X19fR7PZ9KSr8Ttzc3N4yUtegpmZGUxNTfmCT/tNCKIDwPz8vAPRqeQPmtIMot63llwPXc6AoR8opPWYFTynEIDzA6LoIBD85vtkSQHeIPUwVqmCU9yfCSCzljMdUr5OsSA5r6UHayuzVJlWylBVMI06m4422TzaXv2fn+X4alo0HWsbgLCMr36/j2az6RxKOt7UUQA8B6zZ9G3aInavVhBTS7ZQR2m5ODq+eoAqX+e1CPoqOGHLr1hGlmWu69zrulC7iCw0gri2b3RMgS0HlyV8SCTQsl6DwQC1Ws2VQNHMMgW4CZzPz89jenoa4+PjSCQSHlCC7da/2TYtyaNjr2VJaKMpcKtswlAo5HGMac9xXth3HnZGB1mFh5yRhMFxtyCUnQ99HmxwyvaZ19WSQ37X0bNkCPzbwIyC/8piY31aex6NBlHIpFTwiEQCv1qwZDcqi1G/oyV1AC9gcrn6tdr/q9HHgS4/eBL45XsvBI5pq1wJiE4fPR6PI5PJuNJk1LMEeP2EgKfqxkwmg3vuuQcLCwuuXGa9Xkcul8Pk5CT6/T7K5bIrSUJQfSfW9Cj9YFkQMqkJovO6WoebfqyC6JqZRRCZpb2Yec3x0pJ2LHmmfi2DtNxTra6j/qKNxXOq1M5S4NyC1O122/lvCtD66Sc/YftIbnvJS16CVquF5eVlVCoVJJNJD4ieTCY919S+Ul+rvaaHWbPfDMInk0nUajVsbGy4flqyRTqdRiwWQ7fbRblcxoULF4b2J5PJ4NChQ8jlckgkEg5EP336NBqNBqampjA/P+9KCjNQxOBKp9NxNkI2m0UymUS73UY+n0er1cLExISbK1t/XoP9FNpl1WoV9Xrd6VIArt58PB7H0aNHkU6ncfbs2et6Dp6fXK0uDnzy0eRAgOi1Wg3/+T//Z/yv//W/8Hu/93vu9cFggEceeQTvfe978Qu/8AsAgL/8y7/E/Pw8PvWpT+E3fuM3fK/HQ5YolUrl2nZgj4XGMVNulYVLB4mbOGt40fEHttLMVfzSey8nlvWmr/t9lr8JUjDliJF3ArpU3OqoUdERZGCbWT6EIOlu+8BNk6lSPIySEWEFHqjcuEHzhxF4v2srY8oCEddKrNLVerNskzq0fM1GWK3jT4Yh542HrypQdaPAZ70vnfTBYOAUbDgcRrVa9TjQfIaYBUGlt58BdMBb60yNiButtK9UAoV968j10uU2aAtsGcJ+7HDuhX5/k2XDdvLaCpTqGh7GAPEDsHkfLUFB5ow6BQTyLPNX60Lr/fyY8no/fkYB4p2yiFTX2x+yzBnAZDDT6m/7N1nrHD/to6bC+rHhOd7aZmXbsa65BvA5VjYbwZY48eu3jgvXh5IW1E7Q+VB7TPUw72VtMcu+Z3tsGTv9PNemlmfj5/Te+l0GCThv1ON2brVtfnNp221tD9W12jYbbLfjrGuNGRQEQdhu1hrnZ20GiRV9BvyCGxbwsN/R+VJ72T5/fF2vp/2xY6ht5z5gsxf0OlpCUYMtw2q06/OmQQFtl2ZV6NrU9Xc5CUD0W0tuZb/cT+dSdB8iu1n3Yuon+119/vx8Wb978j56fbKqGUC3+/DldDx9PD3gkqWmgEv7FZm9rKdNQFvLUuk4XMnewLFqNBoIhULIZrMeH9Zek0QE+rF2j9Y9ze+HPv8wpjfvGw6HPbrcBsyHCb9DIN2Oh877sDb4Ce8bi8WQy+Xc2S+0DdRmtQdnAvD4jX7Asa2lz9d1PBVYH7beaO8BcD4rsRTFT7gGiQlpViP1I/WVtaf4wywMtQ31IFoA285k4b11LKgvY7GY57vUv/oaAM8zyFI6DCYdJAl88tHlQIDob3vb2/Af/sN/wL//9//eo6xPnz6NlZUVvPa1r3WvRaNRvPrVr8bXv/71ocr6gx/8IH77t3/7mrf7WohGTE+dOoU777wT8XgcCwsLyGazLhVpc3MTZ8+exXPPPYdGo4GlpSV3cBYBdeuA7gZI1w2Lm72fI2WdiUgkgqmpKcRiMczMzOC2225DPB5HKpVyYKfWgWX7dLNMJBLodruoVqtIJBIu2rq8vOx70Ncw0YhpPp/HCy+8gGKxiFwu52qjp9Npx7AngL6ysoLV1VWcP38ey8vLWFlZQa1W23ZPpp3V63XHEPIDBPZSrBPLgzLYT2BrrkOhkGOyWYVo10A0GsXMzAzi8TiOHz+OU6dOOebUTuDLjZBIJIJkMolYLIajR4+6EkB60C0Blenpadxxxx2YnJxEJpPZV/0YRTKZDO644w5ks1kUi0WcPn36Rjdp1xIo7FtHrpcu36lmpzJv+LxryYphTiywxWRX54nfsSxO60zQCeXew2yucDiMXC7nzjnIZDKIRqOONdbr9VCv11GtVt1exqCxMottcEBBNQWsCZyp/lPGsR8LH4BLL+Z7WnqNjDcy0ul0KAinh6xqEHAwGDiGtQLgFhjQ8SVLiv0kc4z2QTabRavVQjqddqxqsu11fqvVKqrVqjt0k7aTrUVPgkK323WEBVvblHOqLHY69CxFQrvLrw6rArfK/rJlPPhZ/s8giwZV2HYy8tTR5HyNj49jdnYWCwsLnlqhnHPth65hJTRwXtWh1UPWlIhg++z348cAYzvS6TRmZmbcHDGIws/QwVYQWteztoHtV5tX14UGXfjc6DzrfFmbjutE0/xt5gLHk+tRSSXAVm14FS0tQGCLa07bxPWggA9FGeccF1vrmNdg+/3sQT8JQPRbS25Vv9wGUC1gmE6nkc1mXVmN6elpBwZ3u10sLS3h7NmzHp9bAc9ms4n19XUA8GSX6Z7LZ5uZN/SHO52OO1Cbew11B0Fm1cEA3D7KfSCXy7kSnbYEysbGBgaDAY4cOeIJAHMvpF7hORbcY/T+Kpd75tfX1/HEE084myiXy7m9yZILqMeLxaIba8UkNItHwWXuc6VSCaVSCcDW+SA6TpohR+n3+55DRDX7StcI9T+zvK0+57V2Cs74CedtbGwMR48excte9jJnf62srDj9PxgMXImwUCjkgjs8RDUSiaBer6NcLnsY/s1mE2tra6hWq8hms1hcXMTY2BgajYarDkB7tNlsukyBTCbjaqFz/aouP3HiBOLxOOr1Op5//nm33vnZTCaDw4cPOxY5yZNHjhzxYFe0HWnjcC5TqZRbo6VSCevr667f0WgU7XYbtVrNPVd6OL3Fn7LZrAtK2APNuS44xqVSyWUUvuhFL8Ls7CzOnTuHpaWlkYMi+0ECn3x02fcg+qc//Wl85zvfwTe/+c1t762srAC4VNJAZX5+HmfPnh16zXe/+914+OGH3f+VSgVHjx7doxZfW+GmyZOCX/SiFyGTyeDEiROYm5tzjOput4tEIuGc70KhAMB7kIXd6Hf7kPN7NMBHiTgzQscUmPn5eZf+zYMs2E8/6ff7rgYbI+CNRgO1Wg3r6+ue/o0iNGJqtZqrt1UqlRxgQeYTU1qZclUsFl0N6kql4jZxOz5MQ74Rh0wo8K+gko7RqLUuNbI6OTmJmZkZT9r0fgKfyYbs9/uYnJxEq9Vyh4dahilPf2dZoYMkZB/MzMwgFAq5VMNAAtmPcj11uV8NZD+wy9Z75uvKqFGGGN/X1wmGaUBZPwfAAwLzPQVdM5kMFhYWnFMTj8edrul2uw5sp+PS6/WcTuF9uJcrKMj7K4DHv9lH9sGC5/oa204nXp0Pnm1CZ0x1Oa9PNpM6mbwH/242m579S4Ff3luBWo4f55kB0lqthmq1CgCulAaAbSnGJBzQCWOKeL+/nQlPRh/XE0FmdXwJZCvjWplxmuHG+VRglPOm462kB11/GhDn3Kvjp4e4KgGB77McCW0xW5qEzqStC6qgtWW963pXdr8Gbuyc6xrjdSh2XKPRKFKplBs/e4Ac50RrgCtAb58Bv6CXskXVWbbBMu2Ln62qz5Y+Q7rf8D2OMcsnMPhgRYMYBG6031r6gX3XtayBPGWy63OvjEIFoa5nqcRA9r/c6n65n53NZ4h1yOmXHzlyBO12G+Vy2emZ5eVlAN7DHLWsly2fpCA696pQKOTKcpAgxL2B5C9mVvtlWnGPpGgJmMnJScTjcU/Qr9froVaruRJgoVDIMYlZziQSibjztlTvWB2kMgwvoF++vLyMWq2Gu+66y+kY1S/8LIFREg8s25vf8QsOKshNG0yZxsMCiwq2D7NXKCRFaFm1UcdimKgNOTk5idtuuw3RaBTFYhHVatUTGKV+IEhN8J2EM2Ifat8NBpdKhLLGN20+DQKQSd5sNj04CIkHajOQHT49PY1IJIJyueyeBRWy6hk8AbZKz5GcwDaoXafPxczMDPr9PiqVCmq1GiKRCLLZLCYmJty6BbwYiNoLnIt4PI5kMol+f6skHvvD8aHtyrMGwuEw5ufnEYvFUCqVXAmkQG4+2dcg+vnz5/GOd7wDX/7yl3cEuKxCU7aInzB99SBKKpXC8ePHkUqlcOrUKRw/fhyJRAJTU1NIJpOuTlWv18PRo0fRbDZRKpVQqVSccmGKOOBlP3Gz05qwdBBUYfF7amircuOmTeePjjOjgOl0GpOTk85503qywHAAncJ20QlkjehMJoN2u+2iobsRRlybzSbOnDnjarvOzMwgFot5Sri88MILuHjxItbW1lCr1YbWY6djX61WEQ6HXR3ray16eAwV3JVGQalQeKhKNpt1CtgPmNoPog40DcrNzU13cJcGNljXn3VyD5qMjY0hlUqh3W57GHMHSYKo980v11uXc1+yALgCUWooq1OjulH3TQWj+D9BNV7PjxVq1ygd4VgshsnJSWfwz8zMuDRWBspZx5SlXhTwZVDX6mb2UdOx+b8FzWjw+wVCNbhu+0ImLFlPzNwiiOk3hzull3MvVmaZssbp4CuQyzlg+3lA9mAwcGd6FAoFd+1MJuO5Rq/XQ7FYRLlcRr1ed8Fmvbcys/VAMGVfaz/9/mY/lTXmtwYViOa60jGya0gBTnX0FZjVcjXst86bsu38yqFomQ99nXOo1+e4ELhVoNv2RQ/A5LXZXv5WvaBsczIQlT1NEMpvnWif/J5Nux7ZbwXfdb3pHsJr6ZzrutDv27nmd3ktPkckirCkk12HHA+/4APL2Nm2W8DMr91qx3OO9HOXk6vR49qOQPa3BH759mcimUxidnYWsVgMi4uLOHbsGBKJBI4dO4aZmRm0Wi3nR5IN3Wg0cP78eeTzeTc2w54B3Z9twJzt4fPX7XZRq9UwPj7u7ATd56y+AS7pcxKjcrmcs1F0H9C9SO0msrNZZxqAA+8rlYonq2e3zzjP8gKAM2fOAPDWbG80GlhfX0e328X6+jqKxaI7gHPYfrS5uYl6ve729HQ67bFZaNuwPI0NvivArMFIzV7UrDvqHy3Zt1d+GgkYLO1rM/QAuGeKADrgDQoTD1IAnPM6GAwcOUuBd9Wn1M0kU3Bc/ALwit3E43Fn22rJI9pyZKFzvNQ2om/f72+Vm1G9R+yFn1fbkyA416o9n0XtKGDr3BlWFuj1ekOz09gOZmnyswdNAp98dNnXIPq3v/1trK2t4b777nOvbW5u4p/+6Z/w4Q9/GE8//TSAS5HvxcVF95m1tbVtUfCbQUKhEGZnZ/GKV7zCsdDvueceTzoRsKVQWaqiUCi4uky1Wg1LS0se0EAVNEFHbiyabk0nk2A8D26ggiAzi6Aynf3BYODayDSdubk5x4JSpTIKKMuNkgdDMJW70Wi4TY7p4aPIYDBAPp9Ho9FALBZDvV7HmTNnkEgkcOjQIWf80DB4/vnnsbS0hEajgdXVVVd33m4e3W7XldABtk5wvpZCAKFcLruDXmjkXMnmRoXJ4M3c3BwWFhZ869bvJ2GbWB+Oxm2j0UCj0UClUnGGQTabdQy3gyaJRAJzc3Pu2dqPc3E5CRT2zS/XW5eTGaQHSylwp06TMsC07AaNegCeYK81uhWgJFhN0JW6AfDWWAyFLqWJ8iCixcVFHD582APeqS6t1WqO8cIgKfd5Mp3V6SXrh7rcAudsj9aW1DNTNCgObB1qOBgMXB1UsoV4ECrLpvDaFhCOxWKORUSmHdtEu4OgIoECBQ+VDW4zqJgxxjavrq46J7hQKCAWi2F6etplrzHAX6vVXCCc6fDtdttzABjHo9lsOlun0Wh4ghIUOnj8rTYWs6MssKnjpOxly2Rm/1Q4HhrA0TaxLwRmSTzIZrNIJBKeA0TVydfMAz+bjGPCtcjnptPpIBQKeWqtM+DOfipRg9di3/S5U4eZ3+EhY8q0Z+1kOuQK3vM5YOaFZiXYNWTBZ4qOhTLZdY9RJpwNTClrX4MPXAsMlnU6HeRyOUxMTGB6ehqlUsnZ2VpGQAMEui743PsFDGz7bIDQBhC1Viz3octJAKLfGnKr++V+QaXp6Wncf//9mJqawl133YW7777bkxXT6XRcWc277roLnU4HpVIJf/d3f4dSqXTZtc99gs8ky0fY/Yd6Kp/Pe/ZctTv8WOnxeBynTp3CoUOHnO9OQh6D01oGljqn1WqhWq1iYmLClcTMZDJIJBJot9u4cOGC278IbO9GqFPIJv7Od76DmZkZ/MRP/ARyuRzW19exsrLiSuCwnAYBVD/pdrsoFAqo1+uOLMd+soQNWfha4oQ+L+A9W4Tsai0zRruPNhjtQc7VXvma8XjclT3JZDKODEB8ZGxszOk/+r3UO/3+pcPoS6USxsbGHOFuMBh4APWFhQUAcPaC6jRrN/BgcF4b8J75QTyBWQsAXOkX2svAJb99YWHBY59o9gHHnetfs7nC4TDa7TaKxSKAS88ry7VwfsbHx12wKJVKueAzr6d2GwMN/X7f+QbxeNxjJ3AseA3qcGaKHDS/PPDJR5d9jRr9u3/37/CDH/zA89p/+S//BS960Yvw3//7f8fJkyexsLCARx99FC972csAXIoaPfbYY/jQhz50I5p8zYRGMcs3zM/PY2ZmBrlczuM8UeggUynwwAlN+7XXZ1RVD5rSwxa5aXCjo9NjGUpkn6uyVnYcHW5u7rthANu2M3jAa7LfuxU6gp1OB8Vi0dXVJjOw1Wo5Zvf6+jry+bwnBdxPqEgIZNuNaS83Vr0uHS8Fg+z9Rt3orAPLE7Ztzdj9KjRWlH3HtCwFnA5Kf6zQuObzehAlUNg3v9xIXW5ZXgomK4BH0JQ/1GH8jt0flIUObIGd1GnKEFaxe2oqlXKHiVpwnoFpBUuVXc52qKjDQgdH7QMF0fX72lY/cFf1HPdMgpZ64JMF6HTMdZzs+3SwlM3OceT3rPBe/J4ywQaDgXOUe72ec4LJsmJwgoF3AufKUua60LWhTCW1NezY6Rhrv3cKPPuNi31dgWUFQ3TcdQ3p/HLeSGrQjDLL8ud9bVaHrg1dHzouwxjguhaU7cj2axaI1QsKHNtnmJ/3Y8kpa53t17Hymwu/ebL3p/gFQew17P31N+1uZT/qQb29Xs8TnFIQX9eEsvB5fw1c+DFR+V0/0euMktkZgOi3hgR++XaJRCLI5XKYnZ11RKNwOOyIZ5ppw32EZSKoM3fyB9VXsZlM9nNk5/rpXO65VpjRmslkXKDe7gs2CKhBbfaL+AHBTwYI/XT+KMI9lfqZe1q1WkUsFnNlXFutFvL5vKtpvpMwkA/AZTGx7RwrHWNbOkbH1eobq5OsjtlrMJXYRzKZ9BwmqiXOCHDzIE0NrnAM9HwdAB77hv6+BsNV1EagDWZxEdtv2r+0Zfk9DTxr0ALYWn/aP722xaGUPGjf43OkgS6+ZwkQmpWovoHaQNYeINteya0HSQKffHTZ16hLOp3Gvffe63ktmUxienravf7Od74TH/jAB3DHHXfgjjvuwAc+8AEkEgn88i//8o1o8jUROs5M3Tl06BCOHj3qImnDNmZuoIlEAvPz8zhx4gRWVlawtLTkDpjghjU5OYlUKuVSzBnFJIjOiDDT0ggMM7qsB1Ryg9EDLFnGJZ1OO8BgL8pPcAOMx+PI5XKeyKuCJJcTtrvb7WJjYwPNZhMTExNYW1tDJBJxSpzMNpaM2cm50Ih3NBrF0aNHMRgMnNLYa2EfSqUSzpw545j5VIZkJKqC9zvshUL2YCwWQyaTcYffMQp7EETZaNPT02g2mx725n6s6b4b0QDSQQXRA7n55Xrrcgso8TVlZKlYw88PdCPbRQPH/IzWx9ZayjZ1lzUlGZzNZDKOLc5ra3vooDBVNhS6xGDnwV2lUsmzn4dCIXdwJPWMOlTsG50E7v/K+lamNxmoen2OrQXRlZ2kTC3tiwbUlXnMYKAGM/Q3P6vzYUFB9k9rlzIba2JiAuVy2TGOeA2Wx+H3+FvtGLab6dATExMOeGfgg2PEude0anUObSBAX2cQQvvHEnJkuXH+/II7yqy2WYmhUMgFwZPJpGML0iZTlpiC5jbQ5BdYUVY1HW0FrjluFky2tpmyzxXEsQEvrpVEIuFJG2dt11gs5mG6EyjRwz45Rn7Pvc6Lgh8WKFEHmn1XIMaPEW6FtglLLzAzk+cijI+PewILttQUx1pLCuh9uY45DsqWtO2xQRRl3R9EICCQayOBX75dqHfHx8dRLpfx/PPPAwDq9bortag+NQFPHtZYr9exurq6zRdThu/k5KSrC02AUDNuWKJS2bS6f1En2T2Qz3y73XZMZi2LxnIqDDLTh+X+QR+KfrES8ViWKhQKoV6v73pcubcBW+VkarUann32WSwtLaFSqTj2+ajZ59RJvV4P1WoVxWLRnctGO4z+YafT8Ry8zDFmCRUda83iyWQyzg4iK54Hl7KWNzPzVDRwPwy7CIVCTsel02nkcjmXTc2xZqm/cDjswHNblkZFQV+OET/barXcGmFfeBA7z+JQ35PrjrYf9Raz+QE4u2MwGGBychLT09PusFLambSvuSZpF3D96cHauVxu21xw3dJmoy5TG4Tlgkg6rNVqaDQaSCQSLoit4642NXWtjqkC82pTBXLzyoFHXd71rneh2WzioYceQrFYxP33348vf/nLSKfTN7ppeybKNp2cnMThw4dx5MgRpFKpoSA6HVU+7IuLi6hUKu5a+plIJILJyUnMzc0hHo+72m7cELh58WCM8fFx1Ot1FAoFVCoV37RY/c1NP5PJONYdD3m8GvCSGxjrT01OTnpAdD820zDh5zqdDtbX17GxseHuYfulm+ZO1yYgT6Vaq9UA4JoAnqqsCoUCzp4969jznGOyHpRRp/XxrTA4wdPmc7kcJicnD0ztbWULRKNRTE9Pu7Q8HgbLSPFBBdLphDOV/SBKEPUOBNhbXU5DVpksVrjvKcMK8NY+H8a6JViqgDSNd+pMYMsJ5vdsNhbTn+mQ0XFQsFmdgLGxMedEh8NhrK2teZhETE+mQ6iMGwJtfI1BY5biUIYS+2hrMtMJoT1CtpAtA0JRIJm/1a4gGE0HRT+rpUIsmK+MOIKJDBKrLidoqIQAsn4BOKYg7QZlntm1wrYSRKcuIajNdup+poAyx0edYw1wpFIpd7CkZpER6PdjdimITjtNwVSCHrSRWH6HIHo2m3UgugWqLdCqz4EGGvg350CdVQYf9JlUcNe2nz96zgyfRx3TaDTqyvlxLZCcQVCa39OAEP/W9tmAFd/3Yw/qeuYPr0Ng39q1mt3A7+rzwvZyjUUiEaRSKXfWCQEEXZd6f1saR0EI/SwBAxuo498cV+v4K0tzJ7kaPW7bE8jBllvBL1dRcLxSqTiSValUQqPRQCaTcXXS6X8PBgNks1kcPnwYhULB1fKmUO+zJMTU1JQLrHG/rtfrDsxst9sYGxtDq9VCvV73BWGVYQtsMYLD4bArzaL7u5YDVSERgG3c3NzExsYG2u02crkcjhw54gHRqYOuZFwZXOceWK1W8dRTT3lspd3sPQTDQ6EQqtUqCoWCO/+M52fVajW373I/ZDCb/SJrv1wue0gI4XDYZWzX63Wsra2h3W5jY2MDGxsbbh/X+v/WztRyKlbol1OfK7mNY91sNl22NYF/3odttHqNzHAAzubQgLbavywPrEQH20baeLRNadcMBgOXgRkOhzE5OYlqtYpSqeTGUu1qljJUe4QEjvHxcUxPTyOdTjt8ipmGDN4nk0lnp1Hnsv3sC8esWq06zCSbzTq9THtcSXd+2QbK/Ndshv0i1h4fJoFPProcOBD9K1/5iuf/UCiE97///Xj/+99/Q9pzvUSZPNwMLgf8WUfLplUpi0UPWNTUbMvW0ZRoPYB0J0XG+w+r2Xg1QifKXn9Y2tooosprlDTWYaLgDOvRA/Cwwq9mHLR/rAPPumLqfOm64ZzbNDM/oSLUmmcHDXDWZ4CAMxWhKriD0p+bUQKFfWvKtdTllvVrASNl19rvKNDHz9l9TwOqwBb7ORwOe5he+jllqGtbdP0roGedHN2/VY8C8DgI1Od+qd/WJlDQ0Iqycgm6W0auZeryb7/5sGAlHRP7ORuc8HMmLaPZgtNsM0FtBWw1q0DnnwEQe31+jvNLMFbT8G3/NRBigzBsM9+z31dw2i/V2m9s/cQGPrgWuD7sIWGjOFYWxFXnetja1nb6PUM6TuqU6nX0ejpmdPwHg4HH9tNnw+/50nGz9vCwMbXPiF2/OpYKaut6pz1tWd+j6kC/dW4zBWz7ufdw3VrSi+2fDRQCGPodOx4BiH5ryq3ql1Ns4FBZsXxfgWDVIfS57Z4TDl8q+ZJKpRz4Tr+R+pg+L4N43A+Gsb7tM2Z1AdvKfYqgoA0M++2P/Cz3KO4fmilzJWL3FeriqxVeh4ELPRhb55NjSp3MuSR4bAOXyu5nYJTnqRF4VtKGtfUutw/Sl2UgQ9uigK8GLbSMEO+huAn7aLPyeD/+5ngo43owuFQ+z9qjVgfRfuBYWla84iK0rayuU5t0p/Gx48n+kmSgWRW8JnGOzc1ND95h7UdrV+j19dnW+ThoEvjko8uBA9FvVfF7YHcjlsEFwLGTWcJlamrKHTxF1hY3GG5wY2NjmJ6eRjKZRK/XQz6fd5vSToqNylqZLnuZ5qI1Jf1YSLsR3aj9NmvrlO20aXCe1tfX8f3vfx/JZBInT57Ebbfd5gE7rlSo7LSEy9mzZ1EqlTzp3zRw1NEbVh+fEg6HkUgkXO19Hih3ENOTyA4YDAauJJEqUD9A5yAI199BVdZAoLAD2XuhngG8oJA+K6oLdQ+OxWLue3SEVecqSMo9lsY52bhaCoHX4n34PtNb6QjHYjEP2Ml7UdSppZHP9zXozYwvZQZbsYxcdRTppPX7fcTjcQDwOJBkYrG9FNWXfiC0AsvKildQlN8lA4gHsvEaBE4pZNaqg0R2Lz9vD0XUfoZCIc9hYQTdVUcqiE3GPs90YXYXr0OQndfRe9LRVkZxMpl036MD1mq1XKYU2Vm0r2xgxZIchgUwSJLg4WBkbSsr0gKnlkWljq+W2CFjza55ri0CRAzIW9uJY+UHvGgKN8dVMxdY5ojMMc2KUCac2r5+gSSOkQJRVrf4AUkWtLcBAn0+FNTQseV60ENt7bkMXMM2uMTrky1qGYPK6u/1ep7MQ15LywhxfCzYPgqZJADRA7mVhfsbWbfhcNhl+mjZLx7wyHIbk5OTjkWuEolEcPLkSZw8eXLbnstnU4HUTCaDfr+PlZUVd0j2TkKfaGpqyjGDafvoHk5AkwAwsYBQKOQOCScuwIBms9lEvV7H5uamO1jxSvxcW6fbT+yeuxtpNpvuEHKO7cTEhDuoU7P1NEjLEiPUf4PBwOlY2j6dTgflchlnzpxx800mtmaI2XMshgUpKOFwGJlMBjMzM4jH484GIlDPwMzk5KQra6LZdoPBpZryjUbD6bxoNIpyuYz19XX0+32PDUlbTYPMXOPsZ7vd9tRN9yuTqrpYWd8k/YXDYczNzSEUusQe10wAPcjT6u/Nzc1t5e4025CZBxwjlp+h3svlcg7PisViaLfbrtRdKBRCo9FwmQvqU3BtamY/D2nlgfU8THi/yKjPSOCTjy4BiH5AxILofG0337OOAR13OlepVMo56LY0hCr4VCrl6rRNTEx4UlWHCRWvArl7KVTSquiU7TXqNfjbsqZU/OZimPD9Wq2GpaUlxGIxTE1NodVqeU5bvxqh0bK8vIxKpYJCoYBms+kUu6aM05BRh2nYGIVCIQcUsMbufktPGlXC4UupymR12ANFDqooOLDbwFoggdysoodcEtgEvCCT7nkKhtFp0M+xtAiFjpCtHa7BSb90Tn6P32VaKR0S3adVzyub2ALtvC8DstTnyqr3K1HC7/G3gozqMHF8+FuDv1Znql73A9L9AHNrC9h208GyekzZz3ofDUwr4KD3YVvUgVXQ0DLdATiWVjQadfpVGUocD1tz2jr5BEwBuBIyGsTQbDKmZWvKtAXSd9Jh1HNkbNNpZpq92gPUJXY+1D7QvmmqtoICNiBNx1pZk+yLDW6RMUe7RWucqhMObNUfZTkULXWgz4ef3azrlWuAJWI4h35lCjXoxvXI/vE7fgEjjqM+U7yePZdAx3MYa1HHmO/pWKpjTwCBTEOOsWUW6n6oLDruf4EEEoi/qH7WfZqZr9xjBoNLWcms/8wyWzYgDVzaY+bm5nDq1Cm0223k83l3Dhn1h+4/3PPq9fpI/nUotHWWGIFUzS7nPhyLxTzlzKwQWGed60ajgUKh4EBQlnu5Ep/fLzNpL4VAN2vWk0SoREH2Q/dXW2YL2MI4uC8TtF1fX0epVPLFCwgSX84XVyFJIJvNIhQKeRjuAFxfUqmU59w6rhX2hQx86iiWsuV8avCD3+X6oH7h9VlSCNjSjby29lUDxgT9WZ+eBBCy7LnWlKBgs0S5ppT8oHY0sJVx0G63US6X0Wq1HJGAgfhsNuvs9k6ng4mJCVcah7a/6ksbqNb1AcAB7wy03GrA8q0kAYh+AISbAKNihULBbfR0loHtrDU+1GQ0ra2toVgsejYndU7VsR0mCi4r++ZyYKS2R53pvRR1NnYDnCujCPCm7vuNBe+jzpIq+2HKkky5fD6PCxcuuGgxnUAaUsMi0byPKvZarYZ2u4319XVUKhVXy00dKzqFVLRax8yPcaVjQ4Wm5WcOqtDIpDGrqWXqpB4koUHXarWuqvTQjZQg6h3IXosedK1AFf/2c8wURNc9AvAyqVWH2X1fdYkNLvOarNXIMyvGxy8dMjosUM420+EgsMrrKDtdD/pUvXy5YLBNP7X7ofaTDgngPYTTHmpo72GDFgC2lRZTO8EGBxXA5L15DW0rAWN+X9/XcVC7SR0wZVTz4Cy9v/aLB3hxXKxT5RfcVGYxmWPaNjIV6aBaPW3XHXW8khM0A0L7Yut16jjqNZWZzB9dH9ontZPsM2AZztounTO9jgZ0bN91jjTwZW0TdaI1+MLrKAPQj2Rg51kDNnZ96zyobWgZ37qGdG1oJgWfbR4KzyDbMEDfBql0v9Kx4N5jbVu2i9/rdDqeAB6/H9REDySQ4dLr9VCv11GpVBxL2OpcPh8886DZbKJSqWBpaQkbGxueQDyf2VarhXK57CnTQfZvv993meQaOBsVtFO7gv9zn+BepiXRNFOInwe2dA0Pjdzc3HRnstRqNef3XolvpeVkaKMosMvx0vHlZ0cZA+6/wCWi29jYmKslziwxHuiu1/fTfzxzot/vu8D3+vr6tnNS7BxY//Ny+yjv3+l0HJjOoDP9dAZMeW+OP/d2tRWVSJnL5dDr9VwdcQZ9+v2+A+dDIW85FD2Ek3pCQXqC/rQ5BoMBUqmUI2Dy3pubW2fzEMNgIErHCtg6awjYskc1UK9jSeG4kETHMWu1WigUCh7fQG1ctl9tILaB80DgfXJyEolEAuvr6y7odRD98sAnH10CEP0ACDckRgqfffZZ1Go13HnnnZiamvI90AuAc8JY6uOHP/whSqWSU3bqXPHncuxcddqV8XM5BTkMuN0r0FJZXDZ9d5ioA0UHk4qGDpgfcKzXppJiepPdaCnse6vVwjPPPIMLFy4gkUjg+PHjyOVyyGQymJubG5oJoA4lTyRvNps4d+4cCoWCC66w/+y3HXMFd+i4DZNQKOQOIWPaur53kCQUCjljjMAI08O5Ni278yAImRQ89f0gKrDrrbA/+tGP4g//8A+xvLyMe+65B4888ghe+cpXDv38Y489hocffhg/+tGPcOjQIbzrXe/CW9/6Vs9nPvvZz+J973sfnn/+eZw6dQq///u/jze84Q3u/Q9+8IP427/9Wzz11FOIx+N48MEH8aEPfQh33XWXpy+//du/jU984hPuMK6PfOQjuOeee3bdx1td6vW6xyFRIJb7ozp2Wk+cKdL8PJktDEYqK5bGvjJPCVZZPafAHY1uMrZisRimp6e3AXH8nw53s9lEPp/H+vq6c/boCDFDLJFIuDIsei32h8L9n/YFWap2bw+FQk6nDgYDdwBZt9t1zhCvzTHUtFf7jGq2GB0ZHUMA2wABBRIZcKaoDmcqM/tvAybKMKf+Vuec/WWZEwXEeS0NvnIsdC1ZG0TXnbULNjc33SFwrVbLOb88IEsBdwWWlQVHggWBCwWWFRTXci56to1dw5bFrbaOMq3ZJgsqc44UeOWzwbR5v7WhjGhtk4IMvCZrl/KZsjYonWQ+uwq88z62/IzaXfqcaykVbStF54Wf9dNpakvS7tB1Va/XUSgUUK/XUSwWUSqVHGPPguhaZkrHh/Oi42+DDHxONYhCph3XkmZ16vO8kwQgeiC3qjATuNvtYnFxES9/+csRDoedb0Y/vNfruT24VCphaWkJjz/+OLrdLhqNBgDvoYmlUgnnzp1zzGCC2uVyGQCQzWZdZvPa2porjzHqs9RsNlEqlZBKpdweSZ0AePf/YcE8ArPFYhEbGxvIZDJYXFxEJBLB+vq6A0avxGekXTMYDFz5j/HxcU/JWW0L9SxB7MuNA3V4KBRyZLSxsTG88MILGB8fx6FDh3D33XcjHo97Asjcv8lYJimCTOdz586hWCy6eR3WDoKwfhjDMOFcNJtNJBIJHD58GNls1nNYJoP7HA/6v2TKx+NxdDodd7h4KpXy3Js2JAmYtVrNzQXXCPs/MzPjWPu0IUulEkqlEsbHxx2wTDa76pfx8XHkcjl0u11UKhUXdKjVas4WYZkhMslZIiiXy2FzcxMrKysol8uIRqPI5XKurC/HUAmS09PTAODGZ3NzE8ViEcvLyy64xZJMnBdWaeBzx3IwJL7U63XUajVMTk7i9ttvx5EjR/CjH/0ITz/99EhllfajBCD66HLwihvfoqLRMYJmmuZrGVD8PFNteMJxo9HwpJtZ5TaKorscw81PFBC4Fg+ZHytnp/tYBjqdMf1RQFvr0KqRo6wuy8Lza1+v10OtVkOhUECxWES5XHb1yZjWr6xA/SGoQAYjna58Pu9Ada0NpuPA72tdUXW+ho0RFZ8ymA4agA5sLzeg65HPz0EUNZgOasq1Mjyu5Gc38pnPfAbvfOc78d73vhff/e538cpXvhKve93rcO7cOd/Pnz59Gj//8z+PV77ylfjud7+L97znPfhv/+2/4bOf/az7zOOPP443velNePOb34zvf//7ePOb34xf+qVfwr/8y7+4zzz22GN429vehm984xt49NFH0ev18NrXvtZzANQf/MEf4I//+I/x4Q9/GN/85jexsLCA17zmNahWq7sc0UB0v1T9qODYsP1Pg8N2b6coKK2sUj8drOArgTamiLbbbZfOqsFOBdEJYPKzTCXWMiXUQ1pmwi9TzM9ZsyU6VOdYwFTBQgXWh31Pf+vzqoxp21beywYAFHBUcNxmEHAcLDufwDGZ+lpaTgFSy3D2e1/7zPlkQMLqFa4Bq3sJXlKfk4Fer9ddqrOyABWQt3NlwW3OtR1na6/4jbXfGvTTlTo31ob0sy2HrcedGN72HtZms3aJflbnjp8luG7tN7/nxs+e87N/dpofv/1BbTLdizQ9ns+4rikNLNn/lbHuZ2Nr8MCOnX22tS/D+uwnV6vHbzXnO5CbRzY3L9Wepj2XSqWQSqVciRBl6OpzSPJTtVr19csJCCszl8CogqMM2itD+HJidTnvzXZa/9P6SFaX8zyPzc1NR0a4GlKS+p8sI8LXrZ9uiYA7+eK2D+wrg9fVatUFBPQ8EqsHrQ9N37zRaKBcLm+b18u1Qcf8cvOnezRLrnK8GYj2O6fO6kS1l6LRKJLJJBKJhOdcH2u7WD1EhjrJJ7y/rlGy5OPxuAvis60sJRQOh52dqwEQrgEli2r2Je9FIoSfzufveDy+ra18xhisVryEc2eJITqW/DwAx+aPx+Pb7NSDJDdCj3/0ox/FiRMnEIvFcN999+Gf//mfd/z8Y489hvvuuw+xWAwnT57En/3Zn237zGc/+1m8+MUvRjQaxYtf/GJ87nOf87z/sY99DC996UuRyWSQyWTwwAMP4P/+3/+7q3YHTPQDJqVSCU888QTOnTvnUrqj0air4UWlyAjdhQsXUCwW8cwzz2BjY8NtUIA3DYZgu9Y6taABNwuWj7D1XIfJYHAphb1Wq7l7sR7c1dQEV6el3W6jWq2iVqu5GpB+D7OykDT9SaO0ypTzY/irM8SUHh6uwr+5ufq1g5srDzWpVqtYW1vDysqKc/LI7uM86LzW63V3YEWxWHSBkWFzwLmjQlMn63Ib3qgZCgdBFFTgHDQaDZd2lcvlkEgkbnArdydkoOTzedTr9VvWEa1UKp7/aZhZ+eM//mP82q/9Gn79138dAPDII4/gS1/6Ej72sY/hgx/84LbP/9mf/RmOHTuGRx55BABw991341vf+hb+6I/+CL/4i7/orvGa17wG7373uwEA7373u/HYY4/hkUcewf/+3/8bAPDFL37Rc90///M/x9zcHL797W/jVa96FQaDAR555BG8973vxS/8wi8AAP7yL/8S8/Pz+NSnPoXf+I3fuIrRufVE9037TNjyHxpYoyPkt1fws8PKg1DUAebeqyAvwdNms4liseh0OJ0CphGrU0ynrN1uO+fMslnZRh5SpiAm2dXqcLAdLCNB9rNl3NpxImjHVFjqUE0ltqCsjgt1mRrddFr6/b6zRcikUufZArPUT6q3tUSMZhlp9hzBCNoDHEfeQ9cMHTDWLyfzDIA7BFT7R3a6DShoajU/z/YThOGcEjRRsFudV6aNc5y5JjWDwjKU1cFU4JljoQ6QzosC+RTLyuc42QCGCueW7Du2z09ncU1zfnQeNjc3EYlEnFPPaxGABuABkziftPd0rnSN0rbV/rMdtv9a8knHRDMELHjC+VYbjGAHf6tdTVBcgW2Ou322LWjE1/hZ3l8/Z4Mo+n1l6WtGQyCBBLJd6vU6zpw5g/X1dYTDYVdnm/sXD8i2xLbl5eVt16LOCofDnr1HM2/IHKb/SV+evi914E6kNfrNANy+yj1R9bMNsmvWNq8DwOl/AI41zoOxqa8IevqBbrovaRYM+8C9m+XauJdSP9CWIVNdQe/BYODev5ywr6FQCKVSCU8//bS7N+eHAW7668AWu5m23ahyJT6bgu4KPKt+oA2p7HSup3q9jlKp5Bjgg8HAHYZJhjkZ2bRJCRCPjY2hXC6j2Wyi3+8jn8+7bItqteruPzU1BQAuO4JjxbaxVn48Hsfs7KzT43w2aBuz7Z1OB7Vaza1vDShphifXr5ZHsjoP2LIB9DBd2qcqGxsbWF9f9+A59tliUKBSqWB1dRXr6+sum2w/ZIj7EYD2k5Dc9tGPfhQ/8zM/g49//ON43etehx//+Mc4duzYts+T3PaWt7wFf/3Xf42vfe1reOihhzA7O+v8cpLbfvd3fxdveMMb8LnPfQ6/9Eu/hK9+9au4//77AQBHjhzB//f//X+4/fbbAVzyuV//+tfju9/97sgZ4AGIfoPFj9WykxQKBXznO9/BxMQESqUSqtUq0uk0Tp48iZmZGU/k+sknn8QTTzyBarWKF154AWtrax5ngEAuAKfYB4OBJ4JsmWE09PVU5cvVfVKQmyB6u932dbSuRPr9vgdEV5aejic3Uo1cx+NxT1STzrg6Ecpw4v3U8efmyhRj1qpVRWfby9cvXry4jblFQEVfo6LU73IuR4n+WXbRKMJ23SwgugZGOHa1Wg3r6+tot9su3f0gSaPRwMrKCtbW1rYByQdFriZ6ze8dPXrU8/r//J//E+9///s9r3U6HXz729/G//gf/8Pz+mtf+1p8/etf973+448/jte+9rWe137u534On/zkJ9HtdhGJRPD444/jN3/zN7d9hsC7nzAdl4bm6dOnsbKy4rlXNBrFq1/9anz9618PQPRditY/pijYR1HgiPu0ljvTkge8HvdCLVeh+yMdGQLp/X7fU8qFjk2tVkM+n0etVnP6IhKJIJvNIh6PO8e41+uhVCq5uqmlUsmVANHyEdRFehAngWM6nAoMsh32AEvLtAHgmEp6z1Ao5IBL9o3jqe2i2IC0MvIILhBoJaCsALF1BPr9vmP68frWUSKLCthydBg0HwwupaIrO1zLmOhaGRsbc7U0eZ9+/1KZHeuYN5tNx2BTXU1gVfUQg/cMjhPUoGhAnXaNlvhQm4ZrUplROu6WnW0DEuy3ggha7kVBEwV3tU+0rdSe4v3ZbjrKHG89jI2iwQ+OeSwWc4FR3rter2NjY8PNs4LoHB9l4etzoPfiM6EH9tnggt1PlF3KezIT0Ja+4Vqzdh3XKJ9F2tbMONH1o+n6Ct5wbvk86W8F+hkIsvM+zK5TcGsU2/Fq9LjeL5BADppUq1U8++yzGBsbw8WLF/G9730PsVgMx44dw/T0tAd4u3DhAs6cOYNWq4V8Pr/tWtwL1H5Qv482Avd97pXUmwTgWbZyJ9+cvriC6BoEtEF1YOvAVNoy3P91L6d9WygUXJnRfr/vgF31Xy0Dn/sUdTX3HhJjWJpMs8e5xxJQZcBbbR0SD0YR3rNQKKBcLrvgeSwWc3qHukL1ogatr6Xo2GlGI3U17QrqFM1YGgwulcYhKSOTyThfmMF/gujAVpkzrfVfr9cd2YRj3mg0UCwWMRgMcOzYMSwuLqLb7WJ5eRmVSsXZByxNlEwmEQ6HkUwmkclk3L1JTNjY2HDBEOq+er3u0de8P/Uqg+e0Z2nHUPg3S7SEw2HHTNcx5Txubm66QND4+DjS6TQmJiacrUH9mkwmXfmlwWCA1dVV5PN5FIvFXZVXuhZiyT6jtGUvfPLdyI0it/2n//SfPNf9/d//fXzsYx/DN77xjQBEPwiiLCNlAO2k9AjSbm5uolKpIJ/Po91uOxY6QfRut+vKfPDwSXtdBYIZxQbgmNTKZlEQXZnouwFxbeqpZbj4sb53uh7HQxWJHrDoB6DbVB9Nbdbf+ll+395fnSg6+9zU6Xxzk/UbI7+5puNGg4Y/nCN1ygK5cuE4MkOCYMpBEc5/t9v1ZCYcxHWxFwr7/PnzyGQy7nU/FvrGxgY2NzcxPz/veX1+fh4rKyu+119ZWfH9fK/Xw8bGBhYXF4d+Ztg1B4MBHn74YbziFa/Avffe6+7D79nrnD171vc6gQwXZWRyT70S8Ej3Z2UQW12laazAVtCSzin1jF6fwBgAxwSnk6GOMZ02sp/UseZ11BlVFqyCwNaQVmBX2a7WERwGtNJppcOvrFf7eQtc6nsWJGDflU2sc0Kx9/LT1VaHE2DU1FwFjbVNHMud2q3p0ron2/Fk39TeIbCqbVN2sF2vOk78sWtxVNawguX2h3Op652BINoifuwuC85b582uI8tktO/5gf46XmyjzgUzAneaN9t/DXJoxomf7ca1rPuCPguWtal/W/Cc17fZJAp8cS51PaityrFgu/wCTcN0Kz+rJXEofuSPy0kAogdyM4gNxALby4Va4fPLYCiB3Ewm4wlkEcy1ZC97L70mA6sEQNU3pO9LlrUG70Z9nnhNBVx1r9L2azDVXkP3ELbBZqv7+cAU63/rXqeiOtLqCLX39Lqq9y83lypqZymo71cq5XqK9tsPX9Dx85svu8Y5Jpwna5f46WqrmxnUoF3DbAi/ayhupLqY79P25Xxx7P10mvZTMRW7dm2Q2dqG1v6146i4EbBlWzOYzQCRZlLeygeLjpodvl/IbZubm/ibv/kb1Ot1PPDAAzv2USUA0a+z6APP+kzAljPX6XRcBG2YE0An7ezZsyiXy5iYmEA6nUYsFvOwg5gC3uv1PLV3KWSib25uYmNjwzG7ut0uYrGYpw4Uay43Gg0sLy+7Gus0BHZ64AaDgQMDAGBtbQ39fh/ZbNZT72yYE25FmT8EDzc2NnDx4kUXjbftsYwmlq2Jx+POOWMUnZss58uvP/yt9b+4YXOO6VDRuBpF6er8KhCkG/z1cjb8nMODLBYs6PV6WFtbw49+9CNMT09jamoKc3NzQ8G1/SJqeJRKJTzzzDO4ePGiSzk7iHK17WZNs1HEDxTcac79Pm9f3801/+t//a944okn8NWvfvWq2xaIv2hpCcDrDOn8WdayBj9V1EGjvtLSIFpqgmC3PeBIdQX3n3K57MqilMtlhMNhV5NSWVQMElOP+KWVEkCkHcHDj2x5DYKNZC/Z8mfc69V50FqjvEa73XY2AA890zRsPyCVc2EdP6br9no9V5OUZWaUHcx5s06ZOkjqOJJRpax8PXiUZUHC4bBjQun4amCCDqKKOu1av5ptIlOOTqG1ASYmJhwBIhwObwvkcvz5Pdp2bKOWAbJzpNdQBjYBE2AreGOdXfab9U51XBkUIuOa16INZckhHDNlouk6s88l72uzKHiArtpIrGnKTEQAiMfjyGQyjmnGPmnZQb8SKdoXddrtWFqnn6Jr2oLpeh+uC44hSS8864glCdXO5L1ZxsGCAFwben8F3fQ6XJPRaHRbUEnnmGO0W0AukEAOssRiMcdk1iyaWq12WSA9FAo5NvjY2BhqtZoHOBoMBmg0Gq7sxbBDB2knFItFdwh5tVpFNBpFLBZz+qtcLiOfz6NarbrSoNTvuyFbdTodLC8vu8Mqs9msJ+tK7RaCo3yt2+169jSydLmnEYPwC4rr3kamN/cslvpIp9MueGv1smZq8aDsXq/nyn4wu5gs4mg06vCQ3ZKmlDR4o4BR7tfJZBLZbNZlTrMvtHfVFtJSb9SFiUQCk5OTbq2zLBCZ3mojqQ3EDIPx8XHMzs66DD2y3mdnZ9Hv95HJZFxb9G8K54ys8c3NTfd8hUIhVKtVXLhwAblcDsePH8ehQ4dQrVYdSXJiYgKJRMLpdcVYuEaz2axnLU1MTCCTybjDzdX2VOAd2LKZBoMBpqamkE6nXV85VvwOD2alPV+pVLC2toaNjQ0UCoVdlfa5FnKlmNHV6vJRssOBG09u+8EPfoAHHngArVYLqVQKn/vc5/DiF7941G4GIPqNEG5u0WjUbYI0uEOhkAdwtqKbwsbGBjY2Nq64HWoosy4WU1sYzWHaMyNrPMxSa4+PEtXlRhUOh1GpVJzCnZqa8mXCDBO9FwELOlCsoeVnmKizwEPG1OnTVF/An9VGsdHYwWCwzfkAtsAKC06M0sdRI+XXWtT5uxlEHWCC0OfPn0er1fINNO1XYR8ajQYuXryICxcuuGc4EH+ZmZnB2NjYNiW6tra2TdlSFhYWfD8/Pj7uTnof9hm/a7797W/H3/3d3+Gf/umfcOTIEc99gEvGweLi4khtC2S4cE9XwM6yO1XnqHOkzCfLStHrEphVkJk6joAwU40VjFIgj84PdWs4HHY6Se/vxzTSfYwgqwZwCazyezoW6nT4sdeUiUxRh4xOBJ0aAnx+zOhhjF69lwLDrIlJljsBCZshxuAyAWsF0ikaGNfa6QQ2+B3V2byvgrsEbq3ommLpHQYttEwcwQUF0dkWkh+ALSdYAwQ678po1+CMLRfEebekAF5D1x3tTQKzymzWvnDclTnNMWPb7QFw2n5ej3PGaym4zfvyOjrXmmKu19SsDc6Jzp9lrKsNrew7PxDdrn+uZT8WqT4f+qzrPfW54nNLG5YHExJUt6LAtwYHeG/2QbM52H99Tkj+8GPX8RnRdUCQLJBAbnbhPpNIJDx7T6PRcOS2nWQwGLjgNHDpDLMrFbLWW62WK6U2MTHhDi4ELtVir9Vqrsb1lfowBOxbrRZmZmYwPT3tSrZwb7FlUnUf5Z5NPUc/XEuE7CShUMjhIcym5z7FuWD5ELJ9ua9RZ+r5ImQDh8NhpNNp149IJLLrmuUUtSFvhCgrOhKJuAM6ge2lCv2yt5RcEIvFkEql3GHrtBc00M81x/kn0A3AETfHx8cdMM0qCdTt1J8kKmrwQe03zhXLnvB5W19fB3BpXln2UuvgUxfqD7MeSFDla71eD/F4HFNTU4jH487eVpvA4jr80WAzcSPaiOFwGJOTk5ibm0O9XnfVH8rlMqrVKqrVqhuTW01GyQ5XuVHktrvuugvf+973UCqV8NnPfha/8iu/gscee2xkID0A0a+z6AOvGxyZzNY4vh4PH50CbmKlUgmNRsMDorP2Jze7URjofvfhRkyHqlwuu3rUGv0f9oDYtLlCoeAOtPA75JTXseCH/bEOyW6E31OQhRuzpjjRKTkookwDy2w4aE4VlaUFkGq1GtbW1gDAKTw+l7tdB9dLer0eKpUK2u22O1h2p8N097tcaaSc3x1VJiYmcN999+HRRx/FG97wBvf6o48+ite//vW+33nggQfw93//957XvvzlL+PlL3+5A3QeeOABPProo57UsS9/+ct48MEHPe18+9vfjs997nP4yle+ghMnTniueeLECSwsLODRRx/Fy172MgCXmC+PPfYYPvShD43cx0AuiaaTAvA4A5Ylq86ggoQqytBVHc3AqAK8ygYiQMu9xwZU1fkhwHYlQUs/oJUsXbtXM6tMdaWCzPZ6/N+2SceMtgEZ2zxAimOj11RnVLO1aFNom6xTaHU1v+t3tooC7rqnq32hv3l9DYoruUHZR3Ye6UAqWMnPKZCtekXvoW1W0bYqy58gs2ZFcO55He2/DSYpAE69ofpOgx0a9OFryiAkq8ym4dv+qBM9bM9XO0mDP7wenyXaoASdyaDjfBCYVrBYnWXNrtPa9eyr31jo9fl9G4jTeeSc2+CRrhuy6LWmrR66yrZw3jWjgD9K3lCQh332G2MGL3TOuPfo/OizcDm5Gj2uYxNIIDdSVO/oob9Xuj6v1O9T24T6lcA6heC+X7nW3d5LDwvXQ8a5F0YiEccU575C0BrYCs7yjBUGlW3f1dYgEK77tOpO+vt2L9P9mWAmddFgMHA1rgkQ8/vcKw+a/wp4MRBiHhxD2mAMAhMcB7BN/1O0PA2JCqyPrmdnaHkxCvWUBi6YOUgbkDYt7U3FdqwNbUvgsS56JBJBpVJxvrnWu+fZc1z7qjMJeANbpYW63a478JZttUQJjhdF7SklLtCGYvCHWSckthLXOqgExL3wyUfNDr/R5LaJiQl3sOjLX/5yfPOb38Sf/Mmf4OMf//hl2w4EIPoNEW5q3ID4GpWQn3N1LYXAdqPRcIcjKMAMwDnddBY11XMU4UPZbrexvLzsUtCYsjU1NYVcLufYNpZRpgAoU8gLhQLOnz+PRqOBQqGASqXicYR0s9YTvXlAlaZ4q+PH7w4TVfL8jjIRATg2IsEMPwdlv8tgsJV6GI/HPYr0clHC/SZUouqwNptNLC0tYXV1FQsLC/hX/+pf4c4770Q0GnWsyv0ozWYTp0+fxvr6Op599lmsrq6iUCjcUJbE1cj1AtEB4OGHH8ab3/xmvPzlL8cDDzyAT3ziEzh37hze+ta3Arh0+MjS0hL+6q/+CgDw1re+FR/+8Ifx8MMP4y1veQsef/xxfPKTn3QHkwDAO97xDrzqVa/Chz70Ibz+9a/H5z//efzDP/yDp1zL2972NnzqU5/C5z//eaTTaafceYhkKBTCO9/5TnzgAx/AHXfcgTvuuAMf+MAHkEgk8Mu//MtXNDa3skSjUQeIc43QGaNwP+B7+jkFwSwgCngZwQS4+PlEIuEJ2tFJoSNuWc58n84KQT0b4LX6yQLn2i+K1jjld+jUUJ8S6OYeT0Yv78Pr01nl63S8VOdRf9N5ZVk4FfaRbWH/2VY9sEvLvSkYSuG49ft9p9N1nnjAljJuNViggXP7ngY/OAa8l7KL+RqdJi2bw3vT2VKmL+AFIZSxr8EVpqDbbDmy8LRECvuufSbYDmzV1eVYkAXGsWC7eH+Or3WmlR1OZ1XLydjnRsfKsr94LQ1IsO/MHOS88kDVQqHg2Jdra2toNpsutT+VSmFhYcEx5DhufN4JXnMe1ZZVprgN1uh5BApgs6/6Guea/eHc8p60BVkSqV6vo1wuOztc9wiOK21Y2pbsi+5xunYs+E0ggPNqa85a4VrgHFxOAhA9kIMoVpdyvZMRzeDwlYBhNhi7W1HCD/eRfD7v2U80o+ZKhaQ07ikaCA+HL5VAPXz4MHK5nCdgztKom5uXylI1m01Uq1Wsr6+7jDL7XI+PjyOVSmFsbMyBsZq1pcQHgp12H9OgMRnnkUjEc/AjMwpoX+vevV99u8sJdVexWESv18Pc3ByOHj3qOdgTgMNSqKM5psrAJxjNcYnFYjh+/DgAuCxGtYFoHwwGA5f9EIlEHAmSB6pvbnoPJuWYk/2u9qDOMXU79Xu1WkWpVMLZs2cxNzcH4NKBoMxWKJfLTv/Z4HE0GnXlXBhs73Q6KJVKnmAPACSTSRc0UFvKkge4xmm70lYolUqIx+Oo1Wp46qmnsLGxgQsXLqBcLo+UvbIf5Xr65DeS3Das/Vwbo0gAol9nUcNcnZbdMD6uhdCoJ1huGUy2DuuVPmB00judDqLRqAO+4/E4UqmUM+itk6vp3qwb32g0UKlUnPL2YwsoAGGZ5+rs+TGnLif6WTr3TPUhoMBorEZeD4qzwLnWrIODBp6raCBGAavNzUs14PTE8f04R8piq1Qq7uR4Pk8HVa6nwn7Tm96EfD6P3/md38Hy8jLuvfdefOELX3DG4/LyMs6dO+c+f+LECXzhC1/Ab/7mb+IjH/kIDh06hD/90z91J4ADwIMPPohPf/rT+K3f+i28733vw6lTp/CZz3wG999/v/vMxz72MQDAz/7sz3ra8+d//uf41V/9VQDAu971LjSbTTz00EMoFou4//778eUvfxnpdHpXfQzEW3qB+y8BI8Bb4kFBPorqBD8Gu5b/UMa7ZVKxDfxfQVL+Vh2roDq/ZwF07aOfKHBH50f7rfufHxhIHWbFsqyZccU9lYC4stcUwPcDp3UPVjYShWOj7DUCrjqm2nerlxUg30kP65rRwLdmMegYsn+cKwWcOe5+rHr2y4LM2m9lRamtonaGtlPXpv28kiE47rSVFIBlO/X+6iwqgz0SifjaUJblb+dGAWg7/ta+0DEIh8NufLnW6HgzKE6Aenx8fNvh9Tbgocw1fQ6s2Nf8mJV+Y8V2c+3YALcCYGwrfyzzj/M3LDihDLlhos+E/Q73CmCr9ItmgNjvD5MARA/koInfXqVrnc/n1a7tKxXdK/UA770mzFB/EUAiWOint5TJzX1f9QoPKGVddCuaVaNMc9V1FL5vCQ16X9pgBG43NzcdGO93lsuNxFn2QuiTU/dR52ggRe0OHSu14TiefE3PhQO8+7HVy1ryjj4zz6OjntWSeWoT2SC1HzmBujAajbqyKJFIxJ29o4Elfk/XKtcY2802EydSsgYDBlpKT5939Q+YLaZjw3GvVquec0201vpBk+vpkwM3jtz2nve8B6973etw9OhRVKtVfPrTn8ZXvvIVfPGLXxy57QGIfp1FlUaz2fSkqVKBWcfmRrTRz9BW9txeSKvVwsbGhkux4SFrPLwB2DLi9eTxcrnsDsRi2gyBfzU61LGz5Vz495UC6H6iDq6+xg1ajZGDsLkOBgMXqEilUo5pp8GVgyL9ft+xJJgKrgfB1et1PPXUU0gkElhYWMDLXvYy5HI5j9K/kULDotvtolAo4Mc//jGeeeYZnD17dldR00CAhx56CA899JDve3/xF3+x7bVXv/rV+M53vrPjNd/4xjfijW9849D3R9kzQ6EQ3v/+9+P9PoevBLI7UcDJGrwEt8nypU7WfXsYW4nGOOBlfJPtwpRirYUObDHKLFivoka/loEgyOXHnvZrI3WaOtzqqFjgXFnMOjYK7Oq9tCyKX2CBY0Oms185FwWe2TaOTzgcdmfFUPgenSVbu5mBDNVP6gzx+/rZwWCrlAewddiVdeY4zxx3rW1O/U7gkcA270nWHr/HNnCsSAjgvWzwIplMIpFIuH5zbemYc1w5ppwfzi37wrkgAM51lUwmHXuLa1BBdp1Dzbi4HBihASGOK8Wy+Tm+ulY4lyzLos5vo9HwnMtDUJzgz8rKCsbGxpBKpRzLjgA876+gmWWSsw0K7gwGA1cuQEXHQMfHBhn4Wc4Fs1PIuKtUKh47l+OlWSMapLH7iA1e0R7V4KEFqBQw175Y0CqQQG5G8bPLyHym7uQeeiU+mwJxV9tOBUv3WlSXMLNbs+CYDZVKpRyLV/EA1V/NZtMDIqotwfso9kF/nMxxBdcBuLId1E/AFunPEiEUPOb1NZjKfZX3u1xgd78KbQsNCvPw1FAohHg87rIpNBsR8GYX8lr8rX/T7tFgPQCXmUDdwUxB1kkHvOVkFDtiCZpsNusyxfxK8VHa7TaeffZZx7p/yUtegmw2i7GxMXeWTK1WQ7PZ9FQW6Pe3yh5p/ycnJ11Anv0jiK46T/Ue2z4+Po5cLufsAq5F6ux6ve4OFSU5NJDR5EaR21ZXV/HmN78Zy8vLyGazeOlLX4ovfvGLeM1rXjNy2wMQ/ToLlQjTpzRyqGyZG7WZ7+TkX63YzYlgZjgcxsbGhktVTaVSngPBgK3UezodTCdj+hmVpipTbnRM09E6orbm9dU6C1TmFmDWE8NtmtB+l36/71LEFES3AYGDIOwLD/xgzVSulWq1iu9+97tYW1vDi1/8Ypw8eRKZTGbPAixXK8oQWVtbw7e+9S18+9vfdlkYB1mud9Q7kJtfFERUAEnZOuoY+JXp8BN+RhndKkxVjsfjnmC0X/v424/txXuQ7aP3UTY1U65V1IFUII5grgKDPDSJ9yUIy7NQFLzmONoydMqCovNl90vVy3ZM7DPMMeR77D/PbKFeZ/8VtGY5Fc1CsEQAZabp3sMybwp8WD2hZAcFWTUIw/Ho9/sOAACwbQ4BeOrAk7mnjDzaglzPem4McMmGarVaDsTo9/vOdlKyAO1Nvk+nN5FIIJfLeTL0tIQA7x8KhVzqvrbfL8isY6pjpqwwZYJzfthegvha1iUcDjtnlQfJ12o1dwAtwX6e2cPDwnO5nAsUaLv1WaEtOEyXaMDAj6XHedUx5HcIQCiRgwEC2r+lUgnr6+suKGDZ6LRlFbTSNax9sXsax1uDYbymPoMMqGh5Qw1ojOITXC0IFejyQG60EEQmkG6zeHa7RvcSmL3WfiP3ZJax0X09HA5jeXnZ2SY261v3Ufrl1LWaaUd9UK/Xnf1BvZJIJJBKpVwZtF7v0plV5XIZwFaZHb+yX5pdxP1SCXiqk/v9vse+0Xbtxz3IBnk1QE8gnSVUJicnPbqadkGr1XJ2Ha+nuljnSu2e8fFxJJNJ9z1KLBZzr1EXxWIxd+BtNBp1BBXiBo1Gw5VTSafTyOVyaLVabi78pNVq4Yc//CGee+453H333a7cKgFzzh1LAtEeZLY2yXOdTgeJRAKzs7OIx+MeFruSIvQZo87lOEUiEVeOhusWAIrFIsrlsmOhLy0tXfUZBTdaboRPfiPIbZ/85Cd31UY/CUD0GyB0JjS6vZPDvdeiG6i2aa9FnXV1MOjk6mau7Ck/9hKdC5tSYx0VfoeK1DpAyhDS33shdkz5mt/PjRR1wil+a48KlqlVVDbKBNzvooAIjQmCDaooaNjxZG0eZqLK8kb0V40mMkSKxaKrSXcznPwdgOiBXAuxTiDXiqYkW1CMLE+CXX7XUmfaD2BSJ5Pv2YCtMqb0/nxNy1DYfZm67XIsYL2/396uYpnuCuRbe4HOGP/m5zUVWNvgB6ArIKj98QMuVMezrfp5Ou7qJPP6FiwEMNRZJgOOY0AWnd/rfE37q2npbKff2OtrBFQ1KKN2iQZ31HbhuJPxb9ehgqYcJwIGmtrNa1m2tP3bZh7wPb+1pHNv9azfZ1Q41/a3zqsGVuw9NOBSq9UwPj7uABsFEbRvlqHnZx/ZPuszwfFX1rk+TwqAs61k1LO2OYFzzRaxIJHfWrb2pN0TdP7sOHP92vf8QPtR/JIARA/kZhAN+Gk5sZtFdH9Su0cDfxR932/vtcFRtVsAb1kNtZn0f+5RyhRnQE/3UepifofCfYx4Cv+3GXa6nw0bi/1EcNtpzVEX0D9vt9vu/Be1H63etGLtMb+sJLXRNHhuy7ipKL6yUwCaAXO/MinsJwMyZHpXKhWXsaD30/voWrD2pY6PtaPt67qedU2z7Qw4MKhPIsR+DciMKoFPProEIPoNEhrJqlj4+1osQt3QyERSNpCmj16tcANKJpPIZrOIRCLI5XLIZDKOTaX1TYEtpdDr9dwhEGQOs86aBSai0airkaVpQVqmg8qeadDDNv29FCoYdbDUAPCrN3utRY2FWCzmGG1cb4wUK2tsMBi4gzFSqZQ7QIOZAvtd1Hhqt9vY2NjA+fPnsb6+vq3OYa/Xw+rqqkvDWlhYwOLiIu644w68+MUvdv293sY0ne1Wq4Vvfetb+Na3voX19XWcPn0a9Xr9wCtrIFDYgey9+O3x6owpyEwnkO/vlF6q7B1gOyBLRrGyunhPW2d4Jz10Of1kgwDq3FDvETjVflOsY6ltoTOsjqgGpHlYl6bPkp2jYC1ZQMpQB7bSX+lAWadZDwNlHwkWa78VyCQbifsl+6PMNAKo/Kz2myCrOoYcB53bwWDg+qrOKZnoCnrbdUOigJIElPHNcdHvRyIRz+GsHOtEIuFhN7NP/J6ykHlAWKPRQK/Xczqc/eW1dF4IfkSjUcTjcTd+vJe2U9uqNo4NMthgjF2/PBiUa1DHRwM6GhBnUFwPy221Wu7w+lwu52G+TU9PbyuvpwCSBZfYFzuX+jyzvfbgV77OsWLJp263i9XVVcc+X19fR7FY9PSB7D2uLV5LMxO4ntS25VjabBE73nzdL0BHYEAPGN6vIPpHP/pR/OEf/iGWl5dxzz334JFHHsErX/nKoZ9/7LHH8PDDD+NHP/oRDh06hHe9612u7irls5/9LN73vvfh+eefx6lTp/D7v//7ngPPPvjBD+Jv//Zv8dRTTyEej+PBBx/Ehz70Idx11127bn8g+1dskG0/yU4BzMtJLBZDOp322EETExOYmppyGXQ2A437KolUmgnOcpJatoN6NJVKuZJafqSfaDTq9DIPVo7FYu5gTLWhJicnkU6nHbNYmcTarlBo60Byrd0NbGVG8bvj4+OOPV2v12+Ib+4nep6ajiuwpVM2NzdRLpdx4cIFNBoNHDp0CAsLCxgbG3NjqWVLAWwLlFCXbm5eOpeO1QCYCcC573Q6ngx+vxJhPKtE9ZPamGNjW4fXDwYD1Ot1VKtVnD9/Hs8884ybVxW2r9frYWlpCf/4j/+IXC6Hu+66C/fee69rDw+PpX3H+uzAJbuEoLvao9o/2ogsQ6PjwzVGm1/71e128cQTT+DJJ590c9FsNocGLQ6KBD756BKA6DdQ/JytayXqKDIdho7bMJbLlYgFa6emphCLxbC4uIi5uTlXp1INfDoYdIyWl5dRrVbRaDTcYY9UlOqMjo+PI5PJOEczFothMBi4yCUP3yBzTJ2lay1+DC510q63aOSYp2RrlFUjwco40FSsarWKVCq1Y/rVfhNVduVyGRsbGyiVStvSETc3N1EsFlEsFhEKhfDEE09geXkZsVgMd95557Z0tusl6nw/++yz+Od//mdUq1Wsrq56nNxAAglkS4axYzSwqSxnwHsoo33WldWi7E0a4co61hIsdMoU1FLWr7JpKLY2uxXL5LJMH9XlbBfBVjoZ+jk6PWwX+6hjwRqiY2NjSKfTLsWXdUqpgwl406ktlUrO4db63OoYcvy0NqqWJKGu52etg8Pr2VrSWs5Ef+gUcqz5OvvnV1ZEx5yHl/G+WktUAwbKzOM1Cewri9oy0bV91L+6bhQ4pfAeCthybBjYUJaVMv5oD3JONHgwMTHhAiacIy3zogEBzR7gOChrHvAHpvg+15N+ptPpoFarbbNNCY5wfBQcGQwGyOfzLnDAoAEApNNp1z/LTlOig7LPeE39DteJXkOfMQ1S6XpvNBpot9soFotYX1935/pUq1W3bvhc2lr8fI1tYeCGwSe7h/ix7+zfHEu2T4EF/s3ndr/JZz7zGbzzne/ERz/6UfzMz/wMPv7xj+N1r3sdfvzjH+PYsWPbPn/69Gn8/M//PN7ylrfgr//6r/G1r30NDz30EGZnZ10t1ccffxxvetOb8Lu/+7t4wxvegM997nP4pV/6JXz1q191tVQfe+wxvO1tb8NP//RPo9fr4b3vfS9e+9rX4sc//rErGxTIzSP7DUi37dmtLxaJRJDJZDzntiQSCRw9ehTZbNbtrcCW3dPtdlEqlRzQSX2hQUK1Obg/ErBX4Jptpl1BXcvzLDKZjMMNut0uYrEYwuFLZV6z2SzGx8edD6f6h79pi0QiERcMVFvH6jmC6PvlbCnVJWpbqLCvzE7udruYnp52wZFyueyC5koU4dyoHcVgCMdMy/mxpI4tM2eD47wO52RiYmIbkMxAPEkq7XYb9Xod6+vrWFpa8gDuKhyDfD6P73//+4jH4xgfH8dtt93mbE5ek/Pc6XRc/fXJyUmXTU6bQYMzFMWIrP5WUgJtXJaOe+qpp/CNb3zDMeoPchmXQHYvVwSinz59GidOnNjrtgSyx0Kjf2xsDJlMxh02QRCbynJzcxOlUskxW/XQkFGFmyuBbdbnmp2dRTQadff3cwD1GqFQyLHXw+GwA9Z5QjMA5+wSOKfS1NOg6SACWwrHL3Xneok6kddTOKaM7kciEWSzWXdoJhVFs9lENBp1dbdrtZp7j85stVp10Wqmhe83A9MKlR0DMky52ml9k7Xe6/Vw9uxZPPvss0gmk5ienkYmk/EEJK6FEETZ3NxEoVDAhQsXUKlUsLS05IJLN5OiDqLeN05uVl1OUA3YXtpEGZi6L9vUbft8W9Y3nQ17yKV+TgOV3EsJKIdCIbePqmjJDRuA5XXpOCQSiW2MWBryCtDqoaX6WQ0mqJPE++iZIrFYDGNjY0gmk0ilUp7PWnCObeIh4dyHNUMMgGOy07nSs0o0YM6xUgaegtjKImef+JoNXltHiWCh2iT8WwFzLTHH+VEmuYLguj+zHQw4dDod1x+dJ7LsNXvABlS4hsjg0wPSFFRg4IJ91HXJvmiNcYL7um45/7TFdG416KKiQQWtE8/7KoCh65Hzxr5rpiJ/2G794Xf9Al9ksZGRxlRwDdBwjjlHlkmv7Hdd537Pu86PZXAyw7JcLqPdbru22PJyFA0cKYjOcePY21I8+n3NIrHBCw0KcU4s61/HdxS53kz0P/7jP8av/dqv4dd//dcBAI888gi+9KUv4WMf+xg++MEPbvv8n/3Zn+HYsWN45JFHAAB33303vvWtb+GP/uiPHIj+yCOP4DWveQ3e/e53AwDe/e5347HHHsMjj/z/7L15kKTrVd75ZGZtudfeVb3e29IV2mzDWCBLYAQeWxowg0ZItiJsYxs0itFojEAX7LAYGGvAwAgzCtlho7FihISCMMgRBIEV1owl2UYEICxzbbTfq7v03l1dS1ZW7llL5vzR83vrybe+qq7qrq5ebp2IiqrK5fve793OOc95znk/pN/8zd+UJP2//+//O3Ddj33sY5qdndVTTz2l7/7u7z7QMxymPKq6/H5JvJ4PW9LpW2c1AAR6AI416Oxtt2d8He92bWmwrBd+c6FQCOQz1j5+tGeESQrktnQ6HXQ5IDr4QaPRCPaIZzCR5cQBkM4ydjDdX6cPuKfrUerUt9vtHWeFSIPBQAKQbl85COpt9aD8UYv3NzXFaRd9zPN2u90B35V5Qr1z/NuhoaEBkpjbQXzP9SsAtDPfXeIACK+xNtA/XMuBbITXpe0SLZRAoa2363++J92qQ379+vUwv8CUCPh7IJvAvJMLXL96AMiJAV4yuFAoDGSI1et1LS0tqd1ua3V1dSBY8SjIsU++f7kjEP2lL32pvvu7v1vveMc79La3vS1EeY7lwRKYPdlsVi9/+ct18uRJ5XI5TU9PB8CUjfm5557T9evX1Wq1tLCwcGCWKxHlUqmkJ554IgCOs7OzIT3bN+sYOOBAr16vF6Lh7XZbZ86cUbfb1fPPP6+LFy9KUkhvLhQKmpycDCk4OJNsaDiTbIitVutIgHMHQFySWFj3UlBqmUxG09PTeuUrX6lSqaSpqSnNzc2FdvZ6PdVqNV28eFGtVktXrlzRCy+8MMAwqNfrunTpkqrVqvr9vk6cOCFpGwR5EKXfv5UyVqlUVK1WdePGDd24cSOkh+0ma2tr+vKXv6yRkRGtrKzo+vXrmpyc1Hd+53fqla985Y4U+8OWjY0NLS0tqdVq6atf/ao+97nPaXV1VRcvXtTVq1d3GKQPuxwr7Psnj6ouT8qqiRnXkgaMf68t7aCZtF1H3dlbDrqh/zDUAfkAHx2ETdo34nmMc0J6LTqOlFj0KZlB6LyNjQ2trq6qXq+HgChgZtxW7su9nYWNc5fNZsNvgu8ErGH6AgrTrxz+lUqlAtje6XSCwwSTx8FYruvgAI7l6Oho+HzMOAYABpBwB5B+cyCe50f3kYGFDgMA8PvzPJ7SyxzodrvBySVV2AFIDtgaHh5WsVgM7Doy5GDKbW7eOkwNJ4/nYz1yP4ID5XJZuVxuIJDBvPG+5mA2Z5dvbW2FlON6va61tbUdoDXXzmazwTFlXDyDwMFibCxsL57BGfjO4GeMPNgEeOKOuQcsWq1W6DOCRVx/c3NzgGXX798qS7KwsBDAH5iNsNhgInoWgrSdAeDggQPnHtTyOQt442zySqUSnO1r166FbMubN2+GsXBmf7xG6Sdnivt6SwrkQTJJEg9GxJkQzEsX9q/byWGB6LVabeB11pDL+vq6nnrqKf3Df/gPB15/4xvfqD/6oz9KvP4XvvAFvfGNbxx47U1vepM++tGPamNjQ8PDw/rCF76g9773vTs+A/CeJBx8ODk5ufvDHYE8qrr8fon7knc6t+Ogtcvw8LDOnTun+fn5AXIb5Uu73a5eeOEF3bhxI+gK1z+7iWf/0P7h4WFNTk4ql8tpcnJSp06dCsAmQX0v0UZZLcpbonOGhoYCAEr5qUqlEnQ9+hqmu2eIj42N7cjSq9VqWl1dlaQQUEin04HshN7q9XpaXl4O+yt9OTIyEuY5bYrB3djeQodyHWep+7g5EHuvZGRkROPj4xodHdX8/LzOnj07EPzsdDpaW1tTp9PR4uKirl69OjAnNzc3ValU1Gg0VCqVdPny5YDtEGxNOnyePdVZ/ID2zAfPxgOop/8I/mIjoYNzuVwIjFSr1UDa8zJBECOXl5dVr9fVbDb31ceA161WS88995wkqVAo6PHHH9eJEydULpd14sQJFQqFEFBg3WCTNxoNdbtdFQqFcOg489jtkkajoWq1Kkk6deqUTpw4oVarpRdeeEFra2u6ePGivvSlL6nRaGhlZSXM1QcxY+tO5Ngn37/cEQr0pS99Sb/2a7+mn/zJn9Tf+3t/T29/+9v1jne8Q9/xHd9x2O07lrsQZ5BNTExobm5OhUJBs7OzGhsbC85Iu91WpVIJpxkfFBR1Fvro6KgmJiY0PT0d0rLcQdtN/J4oXZQ6zGCcWwAEDn10VhbXckcWheP3OCoWepKzdTvxzyV9xzep221YOKTMgcnJSZ04cULz8/MDLMl8Pq9WqxWMGpxRnMj19fXg3ADMkPIVMxzvt3ifAFi0Wq3w21P+kwQgKpW6Vdc/n8+rVqvpla98ZTBOSFfbja16J23lb5xZyrY8++yzoQxNs9k80PUfBjlW2PdPHmVd7iCf/45ZyexfgEWxQ8Xn2C+dyeyOWlzD00F5advx9X2D+yTtRzEbGEDY2TfFYnGg9ieMVwcmAd7i5+T+DhLyPjqW++RyuZAqTMDaWczen85kx4ED5MQm4V68DxMdsNWzx9DbjCf3w1ZxZpHX6nTW9G5ZaD4+/Paa+F4GBoeePnNH1hnoztLiXg4oOKDMXMOBhYnugRoX2gB44GVFmIuMiTuOPr94ZsYP4IFAkvcb8zoGUt3Rp01epzZ+Pmd40QYfJ2dg+przH2dLOyDvoHasf8my63a7IRCEI++BNS/rw3h4RkC8Pvw171cHZADR2+22Op1OOBiNzMpmsznQVy4xy521zH2ciLIXE91Z9M6slTRgH3tGhQc46Pf92DWHBaKfOXNm4PV/9I/+kd7//vcPvLa8vKytra1A5kBOnDihhYWFxOsvLCwkfn5zc1PLy8uan5/f9TO7XbPf7+vJJ5/Ud33Xd+nVr371bZ/xXsqjrMvvl9xLEBVWOKQ22OGwv1utlhYXF4M+Ooj/GPucgJ25XC5kkhEcZn37fgKI7iUustlsYKz3+/0dB1ni/2ez2VDujc+4PvO9xgPrfj/eZ1+WFDKKCY6z54MLeMYAwWyCAogT3DwwnWTv3Y7t75/dz+eSxDPqwWhc57fbbWUymRAYx95xHUMwmWxr7D3a5vrb93b6xQOU9F+c3ej3RKc4sQEBePcydG4fe5spU7oXoc0FfUrwZWFhQcViUVNTUxofH9fW1lawVRk/J5fQZv6mXwjM8KzYdBBJIRNw73a7HUh59Xo92D2Pkhz75PuXOwLRX/3qV+uDH/ygfvmXf1mf+tSn9PGPf1zf9V3fpSeeeELveMc79MM//MOamZk57La+6MWNeHdaJe0wlCWpVCrpxIkTKhaLOnPmjM6cOaNsNquJiYngBHu5lEwmo+XlZa2urgbW1e02BxTs9PS0JiYmVC6XNT09rfHx8eDk3Qn7mo2XFLK5ubmwieEcAio4g86/z0aZdP8kpvi9kDhVyJWbp3LhFPM3KUgxIwlFCBAMi41oMe9tbGxoaGhIxWJR2WxWMzMzmpub0+TkpGZmZjQ1NRUUIAZRq9VSsVhUtVpVqVQKRguR2rW1Na2vr2txcVE3b95ULpfTxMREqDfKc91vQdlubW1peXlZFy9eVK1WU71eHzhk5XbS7/dVq9V05coVVatV/f7v/76uXr2qUqmks2fPhhp9BIq8TNFe/eBrFbboxsaGlpeXA6vgueeeU6VS0cWLF7W8vBwi6MdyLIcpj6ouh1njey+/WUfuOPqe4MCfvxZLDNzFABROnDuI0iDoxT0c9HI2KQxZnN+RkZFdS7N5eY5+vz/gVEnbtcfduXHGlgdcOYgJZ9sZ3VwrZnw5qBmXVkEXS1I2m1WpVBroZxwXF08J9jJzcckJB6IdZHfwNQ4UOMuM73MoGeze2HZxZhY2iLPaAGC9r6ampoK9RW1Ozmoh4AGYms1md7CD47Fxp5ssAWwF2ozzh6OKo+e16t2+wm5wIN3BjE6nMwCiewCBvnVQm/ns/Z8EkLvd5p/zueA2H0A0LHTAgpjFzbrxUkHMDUCb69evq9PpqFgsan19PQSmqI8bPw9t9dI2cZDK54Vned68eTMcolatVsNY0E/0R7y30H8eHPI+9H0iXmsw8GI2pe9VfC4G0PksQYSjtumuXLmiUqkU/o9Z6C5x225H6Ej6fPz6Qa759/7e39OXv/xl/cEf/MGu9zwqeVR1+cMmgMfsCbEPDcicz+c1PT2tycnJHb4ggfP5+XmlUik1Gg1duXJlX4Aj6zqdTgdbIZvN6sSJE+G+lFtxcNSDwsx5BxilQdsolUppampK0vZ+4gFaaduPJ1gJ2Y2svXK5HPY0gvMebJW290iAc2kwiMselZR5QQaf6y/HEPjb7+nAcxzIZd939jVtYr8nSOt94vYnbR0aGtL4+LhOnz6tfD6vU6dOaWZmJtho6GOwDpj+HsjH1wULaLVa6vV6gfwgKYDGHnDf2NgIn/XgBvaW6zrGhDHzuRLbADCy/ZBQxpdr9ft91et1raysBN83JpzsNbelW4fAwmTv9/u6fv26xsfHdf36dRWLRRWLRZXL5QGmeTqd1sTEhHq9XlgHjJsHbAj8gJE9//zzev7559VsNnXhwgWtra1pYWEhtP1RA9CP5WByV/UIhoaG9Ja3vEXf//3fr1/91V/V+973Pv3UT/2U3ve+9+ntb3+7PvCBD2h+fv6w2vqiFk8j9c2bDdUVGE7SxMSEXvKSl6hcLuuJJ57Q448/ruHhYeXz+eB446jy+StXrujy5cthg0iK0iIOBM/Pz+v8+fPK5/M6efKkisXiDtbOQQUnHsUDsLuwsKB6vR4Ukf+4ooQZiFI8KiDdGYdIEvMKcAQwZHJyUiMjIyqXyyoWi6HGV5yORnoSKVOAJZVKZSClmhS8yclJnTx5Uo899lgIcExNTQ04WMViUel0OtTtvHLlihqNRnAI19fXtbS0FNgTMzMzoY0oowcBQJc0kCZ//fp1feMb3wgHsBy0DEqlUgnp7pcuXVIul9Pc3Jy+4zu+QzMzM3r88cf1ile8IgBDnia4V3+wrprNpm7evKlWq6Uvf/nL+uY3v6lKpaIvf/nLWlpaCoDLXuvwYZfjqPf9l0dNl6+vrwej34EqL8vh9YRjMMWzdHyO+Zp2VjVgX8zi9HvvtR8AVLt+d+FMBtKyAc+TQHScolqtNpBqimONwwPYiC7CnsjlcoEVVywWB0pd0FfYDrQXwFVSAJElDexbgJn5fD44ipRAAXDwvpO2dZ0Dyw724cABMtN3MXtdUri+pyo7W9oPbXQgnPbgVKITva95Phxk+m1mZkbT09Nh3Lycy+bmrYNXyQDk+bDhHOT0fsnn8+FwVwIeOPbDw8Nqt9tKp9Oh76rVqlKpVMg69KwAzkpxtiAATiqVCn3vQR8HFTygH4POtNkzMfh+TH5w9qEDA9g5OP3UFPeyN0kgiBM4aAv9DYiwuLioYrGoZrM5EBD34JuvcQ9Y0BfMK+YyIP3a2ppqtZparVY4y4SABEw876M4SOdtx87djR3pwLgHmpjvHtzydcnrvnfFgSU+ux+5Gz3uz1QqlQZA9CSZnp5WJpPZwRBfXFzcwSRH5ubmEj8/NDQUwMDdPpN0zR/7sR/Tv/k3/0a///u/r9OnT+/9cEcoj5ouf5DFdTrzF3+u1+uFde+fLxQKoezE3NycZmdnw54AAEqplVQqpenpad28eVPLy8v7ykT1oPXk5KTm5uaUy+U0MzMTzlBhH4BF62WlRkZGgn7wPTUGTVOplObm5nTq1Cl1u11duXJFlUol7Nv43uyfsY8OeYvsIMcjIIe5HiYY4PuTlypBH3INQOhsNhvajy6CdBbvmdL2nu+gquus4eFhTU1NBd8cnQAJiqztdrs9ADh7sD+fzyuXy2l2dlZPPPGEyuWyZmdnNTc3p1QqFewi6sB3Oh1VKhXl8/mQtYaO7Ha7SqVSIVC7ubkZAu2bm5uh5B5YA+NKcNwzjgjAu13oAQMv/8IYuh4Ge3DGN88PiM7zXL9+PQSewWr24+cCwjebTaVSKV26dClkSkxPTyuXy+kVr3iF/pv/5r8JbWfcZmZmQpCKTIy1tbUw37GJyajo9/v60z/9U33jG98IJWgoeeZBkkdNjn3y/ctdgeh/8id/ol/7tV/Tb/3Wbymfz+unfuqn9I53vEPXr1/X//a//W9685vfrC9+8YuH1dYXpbhTzyKP2TDSNuPZnW/KnXAYJGVPcGbdweGzOB9JqbFJbUMhj46OBjbPYdXJdsYYaTo4uKQ5xUEEaZB1uNt7Ryk4MLTVD3ChTmqxWAz13cvlcgBkYRz6tQCIieDyGRSq34eINBH5+AA3+oboKwx2B024r7PfKRlAOwBTkKMG1H18MRAADVqt1o7DOJOM3yRxxmMqdStVnlrpqVRKxWJRy8vLARyB/bVXtghGR6/X0+rqqpaXl9VqtbS0tBQyQarVqtbW1gZYlI+qHCvs+y+Pmi53FqUDYtLOEiquMzH2/X+XGET0H64VB0uRJNYpf7Mvx8xTxFOjXZfjEPh+w2fcEWQfwfmNS1W4jmIv91ImMYDnbLT4Gf1/Z7o5wIqu8M971oA7vTHrPGlP3G0ccPLizyY5a86ySgqGOAOM78ZBj83NzYF09mw2G7LpALydXQ9AHAOYDii4w8pccGacl3NxtpnPd2eLA/zjjJOZ4XYfARfaGetzd7y9P5L0/m76K2nfd5vPx92DRJ594Pf04ImvCV7zeU8dfIIOgD1e/92DYFwbO4C2e0AFW2NjYyNkGLTb7VDOxYEib7ffx58pLq3jzEjvO7+er6WYNRivd5/LzHcPKO42nrvJYYHo+5GRkRH9+T//5/XZz35Wb3nLW8Lrn/3sZ/XmN7858Tuve93r9KlPfWrgtc985jN6zWteE0obvO51r9NnP/vZgbron/nMZ/T6179+oJ0/9mM/pt/5nd/R7/3e7z1wh3k+arr8QRbWpM999grWLvsJa5ADwckkYu0DJHqpppGRkVBG5SCEL9pCtpFnbfv+Snud+BXrzViP+DrNZDIDZ4j49ffyy/kds3h9T4z3M9//4gCk62lvn7/uZdv8GX1/BLtgbDyg7Ge7lUqlkK3njG/0FEEMDwhzL77j13NbDRvQ50ISHhPvlwRyU6lUaEM8Xt6fcTk0v6brFOzHJDsvySZkLrgdi50D8z/uK2/bfsRtQD9Ednh4OAQcqtVqwKPAqBgr2kHwiAAS5ZQajYaazWYocVutVgPu8WLICD/2yfcvdwSif/CDH9THPvYxPfPMM/r+7/9+feITn9D3f//3h4X4+OOP61/+y3+pl7/85Yfa2BebuCMLUMpm4KC6tK0YSHuWpJmZGc3OzqpUKoW0bAdG2SC3traCgweQPjo6elvwbmxsTKVSSWNjY+FefijJYUkqlQr1X0dGRtRqtcLGHqfd+muwl1AunqoUOxWHLSgvGD7OwBsfHw9pdmfOnAnMm9nZ2cBiIOLMmNEP/X5/wJms1WrhoJfFxcWQPgybhnnD4SUOoDvQALCB0eC1UKVBA2p5eVnf+MY3lM/nQ5vGxsY0NTUVovL3un9jQVFTwuX5559Xo9HQCy+8oMXFxdBfDlSlUtvstySwZbfr37x5U//5P/9n5XI5/emf/qk+//nPhz52higGMuPnRgQp9o1GQ6urq+p2u1pZWVGlUlG32w0H+rwY5Fhh3z95VHV5o9HYUeM53o8AtaRBx1dKTvNH4iCZO2DuQHAPrk+fehCb3+y78b35HumpnDnimUqZTCYcREYmE20aHx+XpIFUX3QSbWSv536wcOJ62HEZGALB7KkeJGA/xTlx8NuZ3s5scsfPmeL85n133pxU4P2FeLo214IwgGADuf20trYWHHQfXwcIMpmMxsfHwxjSDkD0kZERTU5Oanx8PDDuRkdHA7t6a2tLU1NTajQaoR20BbDbD8iCUYbedbsndo69TF+lUgk1VTkgjHGoVCqStg84w8ZKpVJBl3tJmaTAMH3EuHrww9eAA8CMu8871gHvw2xbXV0NjPparTbAsqa/6Y9YhzsIQltpO2D3tWvXNDIyoqWlJd24cSPYXcx/wBJnojMHaFe32w01zznQlVJKjUYjHHRMX8Dw8/5l7HifPqH0Aq9jt8TZGP7sgPsxcB/3i48Pr8dgVwxM7SZHCaJL0pNPPqkf/uEf1mte8xq97nWv00c+8hFdvnxZ73rXuyRJ73vf+3Tt2jV94hOfkCS9613v0j//5/9cTz75pN75znfqC1/4gj760Y/qN3/zN8M1f/zHf1zf/d3frQ984AN685vfrN/93d/V5z73uYFyLf/L//K/6F/9q3+l3/3d31WxWAy2Ngfo3S95VHX5gyYO5LLPs+eiX1i/lOBg7adSKU1OTmp+fj4A481mM+jtoaGhQP7p9XoBZKXcqt9f2nvNcX9Kd25tbanRaAzoDGqx4wfhI7E3uc5FZxH09UBdKpUKhL0YTMe/irPKJAUAM5VKDRDG8vn8wD7U7/eD/hsbGwtZ2x5k9YwogGvKcqRSKbVaLdXr9YFsfWkbMAYnyWazOnXqVMimR69DbmPv9kwqSeHcrc3NzeDfoYPx2Zkj/OYgTn/fgyr0ESxzz8Tyce/3+6pUKnrmmWc0NjYWzgGh/dhbjAmAMAGB3UB6nyvuNzO/+E1gHruKrAH0X6VSCSVYYHSDzbh9eDcCHpLJZPSNb3xDKysrA1hHPp8P5wIyNk5YgHyH7UGZl8XFRa2urg74C4+6HPvk+5c7AtE//OEP60d/9Ef1Iz/yI5qbm0v8zNmzZ/XRj370rhr3YhfSXwDliKol1eNy1g4pOeVyOdSs9qh3zGghMgqAjmNMmZfdFgX1WXO5nMbHx8NpxweJmO9XvMZlsViUpKAI4tqNngoMU5oNcTcW2mFKHOF2I2NoaEinTp3SqVOnVCqV9LKXvUxTU1PhZGnGAda9O7DS9jjjaDebTW1sbIRDKNvtti5duqQLFy4M1LXnALrdWE0xky1monNvSUGRc9J7Pp9XqVQKDrh0f5joGCKcnr22tqZr166pWq0GYIbnwrDyPt1rrksKCr/b7YaTuxmbTCYT1hoBBa9x70Zku93W0tJSMCA5+C12Xo/lWO61PKq6nJRLZ8PghDrjmcCqM6P5HTurSLx3OhDGXur7vjQIirkuI72WfYl9DJCT9gPMkrVULpcDC4zP4eTk8/lg8JMqLWnAacBx4LnRjYDBAAHYGR6sdt3gIKgDfIB8OCMepETHbW1taXh4eEcQHKcMFhf3xgGPs/GSdBpj5t/D8WSMGGtn/TMnaCvP4oxg2IGAKLDO0X9jY2MhmBpnlVHjlOciSwoQgTR+xqdaraparYbDrpvNZqgR7QCGz1H6DXY0gXZsIUCNTCYTQAU/fA07kLnujG5nVcbC+85i8xRtzxz0VGhfnzw/bDVACD+M04FhSBtxlgBj73OZsaSPKPuGneufhb3JuEIswL7hHhx6D9BRrVYDaYMySkn2JtdivXmKvpMafA/wgDxt8L3M74EfEINe7AVkSHgwJg6UMIa7jff9lre//e1aWVnRz/3cz+nGjRt69atfrU9/+tM6d+6cJOnGjRu6fPly+Pzjjz+uT3/603rve9+rf/Ev/oVOnjypf/bP/pne+ta3hs+8/vWv12/91m/pZ37mZ/SzP/uzeslLXqJPfvKTeu1rXxs+8+EPf1iS9D3f8z0D7fnYxz6mv/t3/+69e+DbyKOqyx80cX2Xy+WUy+XCXsuexDry8kkE/igbRUCOrOp8Pq9sNqvV1dXgE+D/x0z0/azLVCoVfPOtra2wj0rb56OgqyD2eOkL9uV4z/T9xPcdsAna5YFBAHxsEAB5SpFmMhlNTU2F/Y690TO12GOl7ZI5gMXohLgcGO2SFIKbDgy7nUaN+lKppJe+9KWhVj1jfeLECc3MzOwgT3jGFs8L4A9wjP4FpKU0D2RFDwR4wFS6VbObZ282m7uWJK3VaqrVaoEkQMbixMTEQMYDeqvVaoVa69hNu/nA6H8vV5r0GUh/k5OTmpiYULvd1vLyshYXF1Wr1XTjxo0QHKeMjtt/d6NnwEPoi0uXLg28XywW9dhjj6lQKKjRaKhararf7we7utPp6Nq1a4HUgDyIuu9YHhy5IxD92Wefve1nRkZG9J/+03/SX/2rf1XT09N3cpsXraCA/UAvNkYUlTPYnOHiB4HwHj8AhTiqvO6RNzb5OGU2SXAMSVd2B/ZeiBsvbOZEZT0F2xm/RDu9RptHPWMG3Z1KHBWWtllS/X4/gB/Dw8M6ffq0Tp8+rUKhoNnZWZXLZRUKhcB4YpzdcUdgFNAPgAo4/xwUhkOG4zwxMRGcdBgGHlBAUeP8eb/GgtKHhbW0tKROp6NCoRBq6mH0ef8elsTOIoZdpVJRq9XS8vJyMCi2trYCYE5pGxxXSSH67w61r6fbtcGNSOqcbm7eqsdP/Vnmqke56WdP5X+xynHU+/7Jo6rLne202xxBD0o7Dwl1HenCnulgViyucxEHyv3wRq/h7QCk7/Exyzjee5yJ6gyxJHGgOdaFPJ//Rj/c7nPOtHPn0p/Lr+F/x9lO/mzs70lpydwDIN/HxK8dp0jH/SppAKSkXxgHMsm8NiuZAKVSaQBEJ2WYTDLYdUn9SZu9vJuzxHu9WwdgOSguacAuTKqV7XOBseBe/j/tIUiADZhKpQLY4u3z8XaJGX3xPExaQ94WxtoDJrVaLQDn9Xo92CMe6AHwoX993THOMbgerwPaS/CHgBH9j50UZ5W5zqd9AAMeRIr7iHvH+028Z3ibfX0gfg+31329eF/53sIc8jZ4MJD2xsHC28nd6PH4+fYr7373u/Xud7878b2Pf/zjO157wxveoP/yX/7Lntd829vepre97W27vv+g2hyPqi5/0IQ90bN2fR15NrbvxYjvVfjzTozzYCVrmaDjfoR24e94hhvr3GuJs++iI9GBrp9in8gDoLQZvw+/c2trKwT5k/Yp19FJZED2bm8HQU58e2dkuz3EPkgGlqQBIh19XSgUgi6fmZkJZ30BArsPDjufeyUJr9MflHdDV4+MjIRMNOyDONvP+xrg3Q/Svp30er1wRhrBfoIlnF8GSzwuvet6inY4A9uZ6D7f4oAJmVkw6Gu1Wgji+KHs0napwniOck2e/aAS99Xm5mY4xB3/W9pm0uOfP6j7+1HKsU++f7mrmui3k9/4jd/QT/3UTx0r6wMITCc2+HK5HFJucNAAKL3chisfP6DElVfsgPPe+vq61tbWtLy8rGq1Ghg/8cncscQnft8rFnpS/2Sz2VAKg4gqGzGgKGUxiO7ygzOGI+eAyd0A6e5EAiaPj49rbGxMJ06c0Ete8hLlcjk99thjOnXqVEj3Jijijs1eTitGDeA895uZmdHW1pbOnj2rWq2m9fX1wF4jcg+QwKnWGGkw2RuNhpaWlgIgnRT19mj/c889p4WFBU1OTqrVamliYkJTU1M6efLkQKr/YQdXeP5WqxVSp5955pnQ9osXL6rT6Wh0dFRTU1MaGRnR1NTUwDwlmABbcWFhIbD+YJXsty0wLUhNrFQqA2CVNAigeJ28F5vSieVYYT/48rDpcthJgGCuHxwcikF0l6RyGThgu81ZHCFALL7nbDKCmUmMau7rQV5+KNPmLF6ejyAoWVcEknk2HLjYeYUVhnNJn9AXXr8biQFo3qe/cMQlBd3m+523n75hH/bUXgdWvR8AtGHi+yFYtMXZxbBtGTd32qTB4IQHZbk/Dj3l7jisjUw8Sndho8V1VL02qjPk+v3+QPu935Bisai5uTmtr6+rUCiEMjNOovA0bfqw2+0GOzDOKODezCWcRw44pTwB4E6hUAj2CRIHY7iW96OvHZ9bPscc9G42mwEwWFhYCAdzVqvVEAz34IEDOG4HSwogDmPrpYi8TbSVeeNlBhy8gbwQ62s/oI6/42BPUqCOeUGbfQ46EOSgvu8RrHHmagxO8V0H0T1IFO9fcVAM8M3JGreT+wGiH8vB5WHT5Q+KsGeMjY2FwClZ3tL2OQzsU71ebyCwRobT0NBQINyUSqVQmgTA09ceNZgp6eVt2U2y2awmJyeVzWY1Pj4eiFUAkhxMzV5Sr9clKbCXfT+lHAq6kL2KbCj3qyntCpbQ6XRCBh2AdtLZENhF6AOITdIgwErWu6SQCRyXpWI/BL+gZCaB4fX19XD2xejoqKanp/XYY4+FvuIeJ0+eVLFYHNhz/bBMD3B6Nh+YCYEU+oZn5ne5XA4ZaDFgLG1jGJVKRZVKRbVabYBFv5dsbm7q+vXrWllZUS6X0/z8vPL5vM6ePav5+fkwphze7Hu7E0fAjeg3n5foK7fBfJ6urKxoZWUllFRdWFgI76Ob0K9k8DmphB/3y+9WOp1OKNfmur5erwc9uxvL/8Umxz75/uWegugvts48DHEGlx8ICRPdQfQ4Yu0OAc5szFTjs/xm48cJjyOFe40h6WwYFPeShe4SOxMAnh69jZno9KG07TTfq/bSZzjepIlRZ+3s2bMBZKbvDvPeuVxOpVIp1I+r1+tBYaVS2yd/e8Te08VwZndjojv4Xq1WQx+fOHFCkgIbwedoEhvtIM8U/+9gNGyDlZUV3bhxQ7VaTWtra8FgYu2QWh87/kShq9VqCFAcdG5g/GFEtdvtA33/xSzHCvvBl4etn2MmLga/s4y9LIkD6DEbFLldgNidK77nTgH3cxAwfl8aPNzP+92Bau7BXuZp1jEbPQbHfT/mGrE4KOttSWKg8xvbw/vU+5zXnGnlwWKeyZ/BS9vELFl/HkBoZ9U66O5sXgervX8dMExqix8OCmBQLBbDeTOA6DHTHQfNAxsOMHtNeQdcmT9DQ0MBDPBgB5+L2WMxKJs0t3xcaZPXCQUMTqfTA+n8jCNj4vf2e/ra83vzmzFx1jr2WrvdDmVsYKNvbm6GPsc2duamS8z8TApqxQxrZ91J2xmdPj5ebsXvRbAiLpOUxPDbLYjAnPP/4/Xl9rgDUbsxPLmfn3EDCOLAezw+0iAIRBDodnIMoj8cctzPdy7oGQ+WsrbY+x14dlvDWbbspZy54LYI93BSnJcYu514hrgfKOrrE8IWPouzs93OYZ/2YCf7Nu974C2dTqvRaARMgXNPYiY6e34cBHX9Jd3avyh7w7N54BIGfxKDmkBurL/cDiuXywFkJiA+NjYWzrcCJO/1euG54r2YMY3tPrcx3CbDpvHSbr6v9/vbB3FSH59a6/tZu5DLCODAOu92u+F56DfIhug9t+vcBoK17naj9yXPwrMyr/DFOSsErCYmGlC+1gMqnA9wWPgIQa1jub0c++T7l3sKoh/LwcU3OBQhitbLubjSkwYPsvTUmrW1NXU6nVC3LZVKBeYTyrnT6ei5557T9evXw4EPzoZLEjcmUNRHIc4OkrYPTOt0OsFQcKXtZVyceYdhgBEQgym3A1FjR8p/u1P9kpe8RBMTE5qbm9Njjz2mXC6niYmJgZI8h90/sA4zmUxgwruD1W63g4KtVCpqNBpaW1vT5cuX1Wg0dPPmzVBqZK85gMLEwb9y5YpWV1dVq9XUbDY1NjY2cAhenLIYAzJJ13eDBZAI0Hx9fV3Ly8thzl67di0coubKGaaHp9Uj9P/w8LDK5bIkhfl0u5Iuu/U/DBXWKoftSNtZCjAlSHvbr4F8LMdyLLcXHFoEx8T3e1/fvte5E4e4kwurOc4a4rvOsMbJRk/iFHpJl5gVHwPK6CyegfJZOBqwrAiOwloCkHQnyUFi2st1YH35/fiss4jZw+hX+s9Tqx00BFgApPRggLcFveDAtYszeZ2t62ME2IlD50QDguixxMB1zFqXbun0+fn5UM/25MmTO2pa05+edRD3tTOEuWcMlHoggL7EweTANdeJgLhxnXVYbehdJ0c4SMuYYhdhI7jjD2HCbU/ahe3nZUScVBE/n4PxONYbGxuqVquqVCpaX18PB5Exli5xEMlBDN73gIiXVvE57MxHB218riWtERdAJUq4Ja0BlzjQ5M/kNpqvO29XEuvfxykJBAPk81rDZIfsJnGQ6bDt1GM5lodN2HdgMrPvseb5n31Y2q4Tjd3APg35aGRkJAB7rDl0+fr6uhYXF1WtVoMfj+zlL3BIKQcuQ47jO5ubtw57jIN8/FBuBKA33gvcVnFwHX8bXAH9A0iMT+lBVvZOAqO+D/O+35s9kcNa0ffSdsCZg9EBc2kH9k0ul9OpU6dUKBQ0NzenkydPBmwF8Htz89a5FtgBPIfXlO/3+8GWc+Kj92dcDof9nTPnYM0zXyCkMT+q1aoWFxdDtvVBAcrNze1DTl944YWQ0UWWmZcmwk5jDjGfec0P6KZ/sBnAAJaXl0MtePxoDlb1NeHn+nAf11UekCCTYWNjI2BTdyvYUmAwBJQA++82IHwsLx45BtEfEPFIay6XC+U3AOOIkOKgeXqmNMhEJ8K4uXnrAAv+r1QqwRnIZDLhUI92u61nnnlGV65cUafTCRvJ7YS2AvQfBRMdBw5ptVqh9rWnKrvj6uJONW12h9mdK+4XSxKAjrNHdHtqakozMzN6zWteoxMnTmhyclKnTp0KDJ+4lulhCkqx3+8HY4KDY3BQAVq++c1v6vr16+EgDsqjtFqtAQBgN4HRhILLZG4dsHnlyhWNjY3pscceCyfRT01NBeMTkN+dszgKzvVxLgHOq9Wqrl69qna7rWvXrunatWtaX18PdVSZ4wQyTpw4MQCCuTgQNjk5qWKxGFLoML72Kw52wG6YnJzU7OzsgCEK4E/dOlKzX6xK+zjqfSyHLaT9Mrc8sMre6Kx0Pw/BWaGIp7Kif2NdJG3vJzgnsMyy2WxI1/ZDvp09TXvjYLC0nXGVTqfVbrcDGOaMMtLG19bWAnjeaDQGynoA+nntbWn7UDAYdDFjx0tCADx6HxGMjx3tuEQZWU9e0oXvAHoCNMRrOw6+OmNrN3E2LUEM+tKDA5ICay4+ZJOybOfPn9fk5GQo5zI0NBQcRdpEn+bz+QCqug5bX18fANljgNnnEP3Ib9ha6HNSrbHXSP1HFwIu5PP5QK6QNAC6+nxn/vD8ADz1ej2Uq6EcmgMHccm2TCYzwHTzueKsQObZ6upqSNu+efNmcNAhfQBGxGxt+g3xPmRtYpdR3sftbP5mfPx9n+/Y1mQh+PwDAMIG8kwLLyHjxBb6KAamveSDfza2a5NsWu7jtq0HDBkzD+7EbNlYPFCxH7lb4OFYlx/LwyCjo6MaHx+XpAGA2s+bgrgFG5w9kD0bELvRaCiXyw0EQdn/19fXdenSJS0uLoZ9VLr9OqPkGHs1fhM6l30+nb5VWo7AKLqQ86UAXN1Wcd+KwICTqSjZAnvaM3J38yfZo9C1rkfivYdgBfswfZlKpQYwEgDSarWqmzdvqtfraWJiQqVSScViUd/yLd8S6p6fOnUqlNihnAd/E3jnXvFh0dgV6EwnGZD9iK7xcjDlcln9fl/tdlurq6vhbA2yr65fvx4IaVeuXAng+kHJVhsbG1peXlYqldLi4qKeeeYZDQ8P6+TJk5qZmVE+n9fJkydDf6EfPKAAqYDxYA41Go0wX0ZGRlStVnXt2jV1Oh2trq5qdXV1wFbxgOzExITOnTunfr8f/PZUKhXwAcrRSbcO4s3lcuFQ1cMA0QuFwkDJ2aGhoVCKhrJ2L2Z9dOyT71+OQfQHSNxhwEFJSvnmJ05l9fQaaZCtQo1Hd0QBTNvtdqiDfpBNyp3jowDQEXd23OFIYiwhzn6KnTEcX38/joAnSQy20Pejo6NBWZdKJZXLZRWLxQHw5F73l6cFAsoAHjnDCmVI5BhH/CBKBCMKAHtkZCREn2u1mvL5fKiphmHmrKk4HZu2YXTyQ9vq9XoA+vmNgYLxyjry0gl79TnsOWm7BMNB+xuDk5qDjP34+PgAiE7/ZDK36vMDrnm6/4tJjhX2sRy2oOtclzmzE4nZ586S8u/E+kNSAM9ixnscGPQf15nogZixmyTO4IVZDosLB43Xcfb80GIHaJPKN9CW/ex7zgB2RnP8k9QH/uxJrGvvx93GywFG16Vx4NvZbG5XxfrXv+f7NIw3wNN8Ph8OACeQ4uBsDOK6+P9Jzxr3QxJITPt4JrfzvCwfQCy6xD8bA+dJfc77XvKOeYf9Qls9IOXgPwAC14nv6Ux6/8H+xHZ1Jme8XuLxc4nnl5MjWMOAQDj4fg+u4aQTCBBch4CXA/C+j8T9GgPjgO5InKXBZz1zwEEUD4rsxipN+vF+8L7aTfZrCx6D6MfyKEu8P/hr7nfHepWAtesJzwqWNLD3oac2NzdDVtFB2+mAp++l7tfGfrDvUf53zESXBg9lT9L5cbbTXmubvYi9j3a6Xx/v4/6Mfj/u41mAfA72MSXYOGiTOvAeaPb9Ng50x88S6yQPfEuDthX624O1kPckDQR9+YnPUjmIuB4hgDM0NDRQX77Vau0IiCNxGR7a4IeQ8zkCSh5IcXvaQXSAenAJ75u4fxk/v99+hXnipZIgOVAxAIxA0sBB7k6quZO+f5jl2CffvxyD6A+IsNGy+ROVJcrJoR/UeI4ByLgWpUdCe72eVlZWtLi4GBi9bBKePlSv1wcY3fuR+xWxi++JsSLtZP6wEZJ6hIJ2UBkANFbOSQ63GwcxS2lsbEznz5/Xy172Mo2Pj+vs2bPh8FCUxf0IOJDNwKEmExMTkrbrhDmQvt/aa7HQH6SdDQ0Nqdls6vLly6EmOfXJiXzjmMaBEa9VDtODIA9AOsC6syP42w8gox9u10+Mux/2dztlQrtHR0f1kpe8RKdPn1apVNJjjz0WAicwQuijjY0NPfbYY4F998ILL6jZbOrSpUu6fv36XTujD6O82J73WO69uAHs65s92B0MSQOpu3yHz/pBgOjIpKBtDMJ6+jK60nUVa93BsySH1l9zhwbAlH0RByAut+Kgot8fYe9MArvZO/cK8BEcpB/p69g55PnjEmPxb2fs+v1TqdRAarqUDFjjOJVKpQBK8DrtJOAA+wx7KpvNBucKthpnmYyPjyubzapYLEpScBT7/X64Dll+Xg92a2trgAnsc5Bn8YD3XoQAJ0I4wx3WuLP9nSBAOrr3s+tNntltSq8nzj18Xfg8wT71s178sM3YdpK2MxgYW+q3AqZASvDrO4nEHVwfZ9YiQS7Ggs92u93QpqS+4EBVstkoB0d9Xn+euMzcxsaG1tbWwrjjjMeAhvczr7FfxMG1OKDkgR/ft/jtAZSYNBH3G3/H84p2EZDbjxzr8WN5FMVLuKTT6QBGlsvlkO2EH+PrCb+PWt7OymXPYP8mI4c9rNe7VYf7oLKxsRFITNQNlxR8kVi/sgeyJ25uboaz2PCLXTxAy3pnv3YCUhwAjnUYn+EHMhSfp30wudn/IQuy/3LtarWqlZWVcNArzwpJaW5uLpxLNj8/H4Bkz5aLSRfx/9zPx5z+8DOx+LwHWZNsOEnBT+QgbbLAXZ8dpvR6vZABPTw8rJs3b+4oTTc1NaXx8fFQDoaDcLEbwQpcp6P/8MsdR8DuQ8fAYM9ktsvEbW1thcNT+YxjJnHQeTfxgPHw8LBOnz6t6elpjY6Oqlgshqy6ycnJEKzC1nn88ccDe//q1auBVb+2tnaoY/AwyLEu35/cUxD9b/2tvxVOAD6W3cUdVwBAP1QUx8RTk92RkDSwWXsaDg5MtVpVo9FQo9HQ0tJSSJd1A/9hWTQxy0caBEFdIXr0GEeNvkI5u0L2jVtKrl3p4AzKEAOlUCjo9OnTetnLXjagrJMYVEchHvHmuYvFoorFYhh7Ishx+t1BhbEA+E6lUlpZWQl9ilOazWZVKBRCWh6OKcrSU8AwKoiix0aWf8/XR3za937EFbc76bcD0XHwH3vsMf2ZP/NnVC6Xdf78eRWLxV3HnetevXpVhUJBa2trajabWlhYOJR0tWM5lsOUh02XEwBzZrDrBmkQZPfgaszaRqfiQHgpknh/cKcPHSwNZi05G5TXnREbM3di3cw+2O12VavVAmMJgNTbDGOa5+F3vCe6s+KMbfbC3dhQrif9oKg4UOEBAWfnoaedeZbE+vF+8bRqF3e8GQfOpPB+p50OotN+dBKHhJL2TE10nLDR0dFgQzC+jN/Q0JDa7XZgWjGnAIS9re6Y0z5P3fe5Qt/xjAgOvB9ARkDF9SM61MEBT9HHzvS2wWwnSOB1eV0ymYzy+XzItiPFe319PdRXT9KjMVDv5Yn6/f4Ou9fnlrPguHZcVpDvOQPc7+mAkJeYGx0dDeUBTpw4EQA0ru/rmb+bzaZGR0dDKnq9Xg/j46CTzwlf/wTYeQ4PdPke5a85YOCMctYXc4a9iHXgwULaEwchWIucO3Qsj4Y8bLr8QRBKhOBHdTqdQJyitIsL6wwyTzqdDvWc3S7AL6We9N34X0hcZ1u65f+hu+LAHmsd3YEudHKZpIE9M7Z7fJ+JbQvXJ/zvRDdJA4Sp+Lvse4DevV5vIGDBtclQLhQKIXje7/cDjjIzM6OzZ88ql8tpeno6AOiUtfJn8X0xft3JX77Psk96P8Tseg+cOogsKcwR7Di+4312GNLr9VSr1VSr1XboSvTlmTNnND8/H+r3EzRCJ/lZLJQHcj2G/x6Ptwfp0WkEOZrNptbW1kJ2Nq+z5piTe0mMC4yMjOjUqVN66Utfqlwup5mZmVDCKJ/PS1KoxoDeT6VSunTpkjKZjNbW1kJG/cOCjx3L0cq+QfQvf/nL+77on/2zf1aS9OEPf/jgLXqRim+SvunEr8XsMN8E+ZvN2x0oSYmG890wyXFGPG38XgPFSZFcj1zG7Ch3zOOoOY6lM3+cpc61YxDdDSB3WijhQboYjtf9AM+ThGek3v76+romJiY0NTUl6ZYTedBSLnuJ948bbtI2kLO5uTnARHcQwQ0rBxFiJpw7hRipScbc7cQdbTf44us4qDUyMqJcLqdCoRDGn3q4e7EIAEZg6KdSqfBdwI4XC5h+NwG8Y8Pm4PJi1eW+HlnTAJ1JTp2D6B5UQ3yfTJqH/j3fBxyoj9vH97wdvMZ+EF/LdXksMZtqrz3Rn8fbHJeE8WAA7Yn3Od8/d+sT708Hij2wHbcv6fl2+7vX6w3UaueAZwcCHMT0cl7ZbDZkTfnhYbQj7iu3reJsvhj4TtIpfBe95+PvAHHcZwD//E6q9y9tA7nOcI/bAJju7XOwnqBDkuDk+oHvONgw6xgXJzx4cAMCCUEbPudn1zB3fA4hcSp6TA7x9RwHvvg+ARIC/T7+MWkltqcBVrhWzBD3NeRjHM/z+LNuz8b2TlJAzAN0cTDR52W8nvnfQb6DyN3ocb5/LAeTF6suP2pxQNkzwj3zLAaJWXv4n+zXZCTFuvmw5r/ve/gnEKj8nBVpW18R/HUiEc+NuF5ICogn2SCuE9xn9306aa9xO419m4BDKrWd4eeZa24LwbL2zDIPkvJD4DK2b8A0yGBCD1GL3e2V2G90IkBSJnQcWHeiG+eeYAckHdB9mOLXdPuSEr+cTwIojg3ih8+S8eD2Q5KNw/x3shyvSxrQd+h7aZsk4CQOtzmT9I4TX0ZHR0PAhOfkmtJ2KSVwA8a6XC4rnU5rcXHx8Dr8IZFjn3z/sm8Q/Vu/9Vt3GJ8ubhC/WMCfw5YYJE8ynuP3XNk4mOyRzPj7hyEomnq9rn6/r0KhcCjX3c99ORjMgUYYzu4o+aFPcbo7QC0sOJQ9isD7LRY3FrhXsVjUS1/6Uk1MTOixxx4Lh4gS2XwQhPEfHx/X8PCwJiYmtLi4qNHRUV2+fDmU+0FBHuS6/HaWljTIIKT0SjqdVrVaHXCm4z6KlSXGEMyOuPwA85GxiWvr3W7eY5Dx/BhCHn13hgIKeGJiQmfOnFG5XNbLXvYynT9/PqR+7jXutHt8fDwc4OYHvt64cUPNZnPfY/Awy7HCPlp5MenyJCaP7+/uLPK88QFf0k4GqQdSvR/dicxktg9YxBnCkaW+I06HH6jlQJs7Zq7PaJ87ca7341IRDlo7wOqgnLOmAACdfeaBSncs3XGi3W6XuJOIY8/fPA9MV4KggAzs6b734rx7/7gTzLjwHJ1OZ+DgLN4HZIcRxnWy2WxgH09PT2tiYiI44HyPdqXTt1L2sS8oX8KZF7CeHAjweee1cDkADnE2lTO2aPfW1lbIfuMwLmn7kNytrS11u92QuYDNRD/4PJEGbSgfN+wswPAYMOHzTqSAkdftdtVsNnfYo2NjYwHk8P6hnAsHovtaA9B2dloM3DCXGQvWCroc1qHXjkcKhYLK5bLGxsZ0+vRpzc/Ph5T9OBDmaz4OzK2vr2ttbS1kHbCOaAfzxu0mX5s+P1lXcUAhSWJSge/d3NsZqPEe4MAFfcV1fZ7sJscg+tHLi0mX308ZGRnRxMREyGwC7BwaGgr7CPsfLFppkL1NiVaA7a2tLa2tre0amLxTcZ9rfHxcp0+f1vr6upaXl8OBpgDb6C1KXKB3HSAGuGafcNIcAKXrBPfpisViKB0KGOv604FRD0J44NRtJz/rBRJWfAbIxsaGVldX1Wq1NDs7q1OnToXsMvfzAaspS0K5EEqYkK0Pkz2fz2t8fDzoasrfsK78EHHa6EEMfhyk9+z5Uqmk+fl5dTodDQ8PBxA7iVBwL8QDAIuLi1pbWxuYSz5v/JBUxp2sjDh4zDVd/2cymXBOH+D8xsZGCORwFs3W1pYqlcpAqVlJO9oSlxciIJHP5zU1NaXZ2Vn1erfOIGg2mxoZGQlZH1ybIAkkipe//OVqt9uqVCq6ePHii0o/Hfvk+5d9g+gXLly4l+140Ysbxq6w/L0YrIy/4++5YZz0GnI3Ex4njbpgRyFsyq7IcUy9thnGDU6pM7BiR8aNUP7mvSTnwb8vKaRpj4+Pa2JiQuVyWYVCYaCG2IMiqVQqOKLpdFrT09Oh1A+AD0DKfuZGPMek7UwIl92YkrcTjB6UIgwvghPOLHO2BYapO6V7gdoYAzi7sUHHM2DMcc/R0VFNTExofHw8/BwkaAIwMDY2pvHxcZXLZUl64ObNvZRjhX208mLR5fHeLg2yOgGKYoBd2i7t5MyrJBBir/nn93HGEfsMzhG62Vltrp+SnMzd9pgYAOU7Dsjtthc6YAmo586pt401G9sqziqK7RMHA6lt6ow270vYbbGj5sFVD3B4HznzDz2Aw+z7agxqugNGaRIP3NJ37ljyPDHADrMJPeV94Q5gPEYcVBqPIXqIw7lpv9eJpQSg61kywHDw0e20w9uFDeX2Ylw2xgELn0eA+DDIaSMgumeI8cM9uQ9rhfXiQW30OwEw7IA4wOPzM7Y5+B6gdkySgCEKCx1dnGQvx3uKpND/XAsWo89Jty32svGT7uHrh8/GgLivcQdP6Qu3mz1QyFzwdetrZT82zTGIfvTyYtHl91sA9ijbSQkOX9cQa9Bn0mD9cM+QZW+4V0QZ1tLo6KhKpVIAitfX1wfOd2FPQFcB7juz2/crt0nQm16nPNb56FLaxH7kQftYXP+5D+1luPhM0qGXgO3ch0xhP0vObbE4mEo/UbLHS9wUi8UQkPb70T7mgpczIRjp14/1Viq1nSE+NHTrLLGNjY0d2VX3WhhvL+3qY+GZAF7WEHHfHBuSMYoxKS+vS5/wd1w6ptlsBhIkbUIPJp3V4/Y9pVuwRbzUnbRdftYD8yMjIyqXy+p0OrclxD2KcuyT71/2jdScO3fuXrbjRS9x9JfN2H/7T5LTGjub/LhS9Gvd7WSHcbO1taWpqakdDJt7IVtbW6rX6wMHocbijtFegAN9HTurOBfuqLvQd0SnAVJnZ2c1OTkZWG+Hxfo/bEFxjYyMaHJyUqdOnVK73dbs7Gw4FIsoe5IA+g4NDWl8fFyFQiE4+el0OhxUCtOCg0YPCqI7cECqtKevJxltKFQUMHWDMYIxStyIQtHX6/VwuM3k5KTK5XKIZrvx1+12Va1Wtbm5qenpac3OzqpUKgX2yZ1IOp1WoVDQ9PS00um0rl27dsfXOpZj2UteDLo8dpZ8r3BQ2xna0naQkb8dTHanj7/jA/xg0zrjCXHAlf0Lx86BRXdgHfRmP/aSFgQ9HQjzupNSslHrAUGcUU9vjR1/t088u8eDmA7+O0AJQO1ZAXy20+mEGtKuH5LA7aRggjPLcepw2ng+AG0OvaJvt7ZuHYLd6XQCAIoO4/+4nIn3aeyAOzPfn9+dfgeo/TtJDrmkAYeUzDbSzLe2tgLQD1MdHeVgOw59Op0Oz8hvgGPK0RWLxXAv5hLMOa/x7QEXz36EzUeb40BDnDLt/zuT0eeeB8k9AyQWnp0gOkAKtWthgUoKddudSVgoFAbAFuZQUjDO2ZZui/NcHExKX8ZBuSRCy/DwcCIg4HsVz+77Wxxc83nH531dJIHotInffN6vcywPnrwYdPmDIF4bGjCOdR5nh7jdIGmH/vIDRl0fHZasr68H33htbU3VajXoQBj0yPDwcCB8+WHLtMnLv/CMHhCVtoOrKysrqtVqWl1dDbq40+mErGMP5Hu2uPcbEoPavOZ7H2QtD0xyHfzFQqGg2dnZEBTnen5N9IDbZrDy0a30iduAsY3lektSOBfE+9sDEtJ2xk8mkwlMd2yK0dFRbWxsKJ/PD5yDczvBLiLAns/nNTIyEmq2k1XGteLAayy85vMAWwJbybMufZ7wjDDNKfPmvrx/x9vi2WT0b7FYDOQ1sumwl70MarFYVLlcDucYxAEh7ysnOzCXsHsymYxmZmb0xBNPqN1ua3Fx8cDnFsR4w7E8WnJXdMevf/3runz58o7SDz/4gz94V416sYkrLhxzPzHYlYVvGp42Ezv67uT7355WereKu9VqaXFxUY1GQ3NzcwNpP4cNpNPWjY0NVSoV3bhxQ9VqNSjAO70mStxBhCRn14W+KxaLyufzKpVKOnHihB577LHARj/qCPJBBANkdHRU8/Pzymaz6vV6Onv2bHjuarW664bPAR25XE5PPPGETp8+HRzzdDqtlZUVXbt2Ta1WSy+88IKuXLmyqxK7nVAaBWeflEju5UrX676yFkhtHxoa0tTU1EBUnbWEsq5UKqpWq8rn8zp9+rSy2azGx8fDKd6so3q9rsuXL6vdbuvMmTM6d+5cqIl+J2NOeyYnJ3X27FmNjY3pueeeO/B1HlY5jnrff3nUdLmnhTrI5cBv7PjiHAJ68bqkAfAJR8AZuc6g9YwZB8F53wOCgJm8B2CJLgJcjK/DAWFecoG2uuPmwGIcjKdPuKcfSulMak8ndtCR7+MMo4sdxHfw2HUp9ggBV5hy3MODCFzLiQJcm1qX7OMA234YJqVNvN9Iu2bvh2HoJUb8TBP6iHZ7kNlBXsbdbSDmlfdZDLw4McIde0AP2pTL5QbIEhykNjIyEljgzAEHMrAXSVcmxZznpLwb6diMO30CQ56+o32MD/Oo2+2G5wNIcta5HxLGeBBsckDF2YcEGQBimCOI28/MQ+YV9gOAF0AK405fS1KpVArl1chkjINxjLcz5ZjXzvDM5/OamJjQ0NCQVlZWQuq67ylJdmYSeJSU1Udf+vViwT9g3VO6IQad/DkAHLxk1H7JIHejx/n+sdy9PGq6/EGQbrerlZWVAVIPhw6XSqWBNRyvaddn7MeUpvDSkYc1/zudTiiBMTU1FfZ8mOZ+2DPEItpCWTXXRTHGEB9Avb6+rmazqRs3bmhhYWGgVBbMX+wi/Db2GS8v5fus2y3MYydESIPZcm4XeBB8cnJS586dUy6XC3uf6xC3BSjbQjkPPhN/1rP1fM9Dn/X7/WBnxHaPEyH4PPcsl8shuJvNZtVoNCRJ4+PjIXDj54rtJul0OuiyQqGgs2fPKp/Pa2VlRTdu3FCn09Hi4mIoKehEkt2yLX0OpFKpUKYOxraTGdwXT6fTAVznAN319XXlcrmBw7q9jBjjTzkd5tLw8LDK5XIgqnhJpVTqVh335eVldbtdlctlTU9PB5JB/GweAMf+cLsLuzqTyejcuXMaGxtTpVLRU089dWAQHfstDqY9yHLsk+9f7ghEf+GFF/SWt7xFX/nKV3YwIaTkgyKOZW/BIXGHwJUDAJ47Ju5c78ZAj68lbW/gbEDckx++d7vFgOOayWQGDpe4F2x07wfqfDoLLO43adsA2M+i5rnpz5hFFn+WH4AQAN4H7TDRvQRjI5fLBaW2V/tROkT4c7mcJiYmND09HZxU+q3VaoVr49DvpqR3EzdGna3pc8zZWDj0ziBDMWKw+anuqVQqnCzu9VMBZ6g3CzvPDTBSFOm3mLV4UMExx5B7GObPYcmxwr5/8ijr8rhsBL/dqXHGmH8vBo6cJQ6o56xYB8J3A97i/Yw9LYm5S7scHE/6Pvrb70k7XA+yf8Xi+2T8kwR+e5/5M3lGV5LE7wHUeS3x2F6hb9128d/eH+6Eu1PIZwG/U6nUAKPL932eza8R22TMAXQBn4kZ+N4uvpM0J5LG1e0W39/iOcL/ABLO7IqBfJ5N2g4w8TkceWfjo8udjYezT8CA4ADtju3IOFATM6p9LsTzIw58+VyI56vPmaRMSwfrAZ7pQ7eh+ZzbP0ltc0naJxxo8vq7/nlf1z5OMeCS5BfE1/H/PcDk14ntZL92/Blpe74eRL8eg+j3Vx5lXX6/xf0IhLWeNO/jPcn1WKxnfS26T8N1knTBftqaSqXU6XTUbrd3HKzpcwM7xG2aJJ83bivXQbdyLz9A1J/dgwW3exb/jLeVPTvWM7GeRL+h06j13ul0dvXnXW97eSuCrE5O9D6Kx44xcIn1RGxj8BnsTMqQAFZz7oqva7+WtG23EjjGfy2VSioWi4G0MDIyorW1tR1BXf7ea2zifna/lXmQ9H0nQsR62g889/5zkgrjAyAfn4+Cnq3VaiEg4ufR+HyN55Pbsz4fGFdKyXLOy53Iw+bPH/vk+5c7AtF//Md/XI8//rg+97nP6fz58/riF7+olZUV/eRP/qR+5Vd+5bDb+KIQFAHKiA3fU1J9sbsDzvfZmPgO38dR7Xa7Gh0d1blz55RKpQJAKCkcOtVoNHTt2jU1m82BKHCSrK+vq1arqdvtanFxMUQkJycn76q0RSz9/q0aXa1WS7VaTYuLi1pYWNhxgFbcL6QPEUHeL5guaQAU2A1QHh0d1YkTJ3TixAnNzc1pYmJCpVIplAN40CWdTodo7tTUlE6dOqVUKqVGo6FLly4NBFO8HMq5c+f0bd/2bSqVSnrpS1+qkydPBoMlnU5rdXVV8/Pz4RCbdPpWiRfm1UHbGKeB7waio6hxgtPpdDDsUqlUODwExQ+g4hkIRPBPnjwZMg1gmGOwjY2NhXU2NzcXUv+8zu2dCMbfvQhCPchyrLDvnzyquhx27V57uDtIrjfi4HLsOLu4QQ6LBlA5dspi9pHvZ/1+P+godFoMfvEajhJM8X6/H5wuabscDGWnAIxxbr2Uhj+3l/9A73MvfnP92Al3HYsD5E6lr3EOcup2u1pYWFCtVgtsthiM95rScaCcIKj3ife1Z9+Rrg6LPOkwNxwvZ/LjyDGmvIa9BrDCs8K0Q784I8sZ6fFBsqlUKjj6sM0Ye+4Py9uzJaj3CZuQ+Vuv1zU6OhpS+/3gLWekF4tFTU5OamRkRDMzM4GJ7oeZwuJznUoNdBcPXADieKo064F+8aB0/D6vOWDiNd29L9129gPbSOH3g2G9/wFEsBE9BT7OpvD1zr1c9+Bww87zOu7j4+M79pIYOJO2yS0OmsfPx3xnXu7Wdw5SOLjhGXhxuRZs5hiA3S9B4BhEv7/yqOryB0EcRIeJzp7caDQG9CgZUdQ8Z+9kbXo5F2pv9/v9sF8Bfkq3yEiU8vB9/HZthWC2vLws6VapKuwO9KljBR5w9P2CZ3V8AWAxk8mo2WyGwxppaxz05v9WqxXsCt/T/bMxcO7i+yE6kWfhdUmB9Q6+USgUQklOL7fG/gspwsFzPuMHmzcajcAOZzzRcdJ2wNf3WRe/vvuw6Cz6sde7lTVWKBQ0MzOjl7/85Tpx4oReeOEF1ev1HfYoxLepqSnNz89rdHRUMzMzKpfLymazmpmZ0djYmE6ePKknnnhCrVZLf/iHfxhK8XpJnP1iJLGN4rYef8Pm7vf7wVZwUh1Afr1eH7CdfS74XB0bG9OZM2dUKpUG7CpK6FarVTWbTaXTaU1MTGhubi7gUYVCIWRZcFgs6zUOeMTzlswRSuEcVOJgwMMgxz75/uWOQPQvfOEL+g//4T9oZmYmbAbf9V3fpV/6pV/Se97zHv3X//pfD7udj7y4cc4GRf01HGKMXwfbSBNxQxsn3FleMK7GxsY0Pz+vXC6nEydOBOB0dXVV9XpdS0tLarVaQcHuBT5jCJDqViqVQl1JHPrDAAPpi2q1qrW1NS0vL2tpaWlgc8Jo8L7xg7CSNsq97ue/Y0H5jYyMaHp6WvPz80FpYaw8DEJkd3h4WOPj45qbm5MkXbt2LaRfeYkeIrunTp3Sn/tzf07j4+N67LHHND8/PwAc1Ot1zc/Pq16vh5qzlUpFKysr+wbR3UiJAfP4t38eRc66wJD1VDzaKiko4+HhYZ08eVLlclkTExM6ceKEyuXywGFhSDabDdkXk5OTA6e+3+14vBhB9GO5f/Ko6nIYtS4xCMueIG0fYBwD27HRzL7vTrG0zSbFMQS49X0pZgA7aO/sZmfmSNsBctru18IZ4DBE6VZAnPRfDqjiujhoXlYDR4JnRW+yD3ntbPSqO6z+fWyVOAXb+77VamllZSWkFa+trQ08M2OwF0uJ/mX8hoaGlM/nB5xTxpf2AbLiFDHuXJdn9PGNwUp/FvRLnLbszGOAe9rgZU6cGQVYyXex4RgPSWFMYBXyHQBxL+dCWZJWq6V8Pj+gy72Wb6lU0tTUlEZHRzU9Pa3x8fEQkEilUgGMILCCvScpACbYYB4UwHZijsbBFL7DZ31dMJ4xiA5Zgr6IU6R9PcPey+VyKpfLQYfHdqCzDJ2JzzjRZn47CzFmVY6MjCibzYY9gM9xGJ3PJQ8gIIyLzzPvM+aElyB0FqPbNTyrr3vmnDNRGQOehznmn/e+OJYHVx5VXf4giO9z0nY2D/4lWbeSQpCW0o+dTmdgT/Wyk+yrqVQqZPxMT0/rxIkTkhTqjHPQ435BdPbDlZUVdbvd4N858OzZwU4s8mclM5ZgI3sWQVaekZJscWDV98fblcHYL4Dr+3BMcpC2yWGQoDgINpVKhbFw8BR7we0xbBAP4jMGANyxHeh7q++XrgtjkJ75AMbRbDaVSqVCHfNer6eXvvSlwZd+9tlnB57Vy+ScOXNGr3rVq5TL5TQ1NRX8UoLs6LVms6nLly/rmWeeCbbqQfARSQPkM4gZPn6uh/z6lFbhTDtngCcJgWky/s+cOaPJyclwLl4mc6tm+dTUlMbGxrSwsKBer6dyuazZ2dlQkjWXy+0IGnugJBa3uSkPFx9Au19J8iOO5dGRO7KMtra2gsM2PT2t69evS7p1yMkzzzxzeK37/+XatWv6W3/rb4X6Xt/6rd+qp556Krzf7/f1/ve/XydPnlQ2m9X3fM/36Gtf+9qht+MoxB0zlCyRazau+AfnMOkHJ47NtFwua25uTidPntTc3JxmZ2c1OzsbXpufn9fc3Fyo9XY7BgpKrN1uq1qtqlarDSjUONXqIOJsejZNWGvOBpO2DQdn3sROzmEJShanh+jqwwiAuvNF+hhp2/4sOO+kxlECxg8o8/RwrkVZFIDng0rMTkj68fdippfPC+YG8yNO/aYfeHbP9KCf3MjiPdbanShYFwCeO1XWD6vsNq77/TmWO5ej1OVHqcedbe1gNveJ5068ppGY5bnb3h5fM74XAJ/rahxoP0DJ9yScWWdUEwTEqYC1BtuKn/h/QNO9ADHa7PaHt9cdCz4fs3Tja7EHe+kWz5BLAhOTxjIeQ8Yk1gF+f3dYXZ/FICV7OoEUDzLEznB8D9cZ/v147kka0D9+LdfBXgYk1qvxnOLvpGwHPxjVA83x50hVzuVygYmN/o9LvfDjTO2kgLbPjSSd63OI+RHbbF5izW1fXwe+nuLrZjKZgfZ6uZr4h/c8+yQeY88AiDNckn587cZj7IE6l3g+70YkcDvK7V8PSsT3jO/tQYvd5pnPt/2AAHerx491+d3Jo6rLHxTx9RXrHAJ8XposDjQjsNo3NzeD31UsFjU7O6v5+fmQ2Tw3N6dTp07p7Nmzmp+f19TUlMbHx5XNZvflY7KPwnZvNpuq1+shUBbv47EO282nI3hAMBo2+lEChUk6H8lkMioUCiqXywE8R9zG8QPU/boeZHD7p9/vD/RX7A8mZUz7no6ujm0mv4frt9g+3c1uQ/cBOAM6x1nbTiQYGRlRqVRSPp/fQTY5qMR2Tdx2PuP++H78+lgPe4aU24zYAoD5ZE6QhZ5kXyf1c2y7I+BPHEz/YpBjPb5/uaPV8+pXv1pf/vKXdf78eb32ta/VL//yL2tkZEQf+chHdP78+UNt4Orqqr7zO79T3/u936v/5//5fzQ7O6vnn39e4+Pj4TO//Mu/rA9+8IP6+Mc/rpe97GX6x//4H+uv/JW/omeeeSaUK3lYBOZsHLXs928xUTjkyd/je/zudDra3NxUu91WvV5XJpMJkcmTJ0/qL/yFv6Dp6emBwxBhjy0vL2tqakorKyv66le/qj/+4z8Oh34lLQ6UwMLCgur1ukqlkiQFhu709HRwOvbLZuFesM+73a4uXLigCxcuqNvtqlKp7NjMMEyknad8H+aiTqUGT/6enp7W3NycxsfHd9TTfBgEBUvaVyqVCoZxv98PKUxDQ0MaHx8Pxt7s7KzK5XI4AZtrSQqpcxxcurq6OsCy2s94OAgO4wqj051JV66uIGOn3ZmeXNfv46w+apwnASk8pzMxqtVqMDJhoxxUtra2VKvVdOPGjXA4yotF7kbxvtgU9mHLUenyo9bjHO7JOvcSJTGTmj0dVrLvUQ4owbZJcoicpea6zllGGxsbgT0Ni8nZ3uhyBxY5DAvnJ5VKhTRdssk8YAkTfGNjIxys2Gw2tby8rH5/myHrz4Z4ULDRaIR2bmxshMyymGntIEJSyqof4EmJuEqlokqlEoKGu4Ho6XQ6MIjZ39FFsROVSqUGUq8ZG0pvxYEJB+MBnXG8i8ViCBAT0EwCrZk3XIM5586ijyekhpj95HXtYf8y/gRB4lIfzAU+j/NISRjY1ysrK6EvsMNgTA8PD2tyclLz8/MaGxsLutzHcHNzM/RDuVwONVVJO49L+MT90+/3Q4q1M/8ciCbL0terjzlj4Oy3pHnLczIWjOPk5OTAPPLPYlPTn86Q5zNxmScHI6TtEk+eZbC+vj5wYC7jh8Dq9znC6x7Q4T0AHFLhaat/10F7gC/+jucjfU1/kfnh5XDi8kW3k7t1oI91+d3Jo6rLpeSzAo5SYj/Ey0pR2oosW4JynjXkWSiUQU2nb5WdKBQKmpiY0Mte9jKVSqVwzhT708bGhpaWlvTUU09peXlZ169f14ULFxL3Qhe3OzY3N3Xx4kVVKhUVi0VNTU0NBOO8LEin0wl6zA9jxrenpGqn09HNmze1tLQ0cCjpUche+1Eul9P58+d15swZnThxYofuwdfyrH63+RyUBUDd2toK2X5kV6GP3R9lr8VuQ+ejp902xGbhkFkCEuz/MOGRpDkPQ565MD4+rnw+H0qoYSM4qNzpdFQsFvWKV7xC1WpVzzzzzB35m/QZAZU4gxJ9R997NvhBAi4eOKY/3Z9vNBrBzsD+2dzc1LVr14Ke6/VuZUACqjPP0+n0ALjOc3mWwOLiop5++ml1u90jneP3U4598v3LHYHoP/MzPxMUxj/+x/9YP/ADP6C/+Bf/oqampvRbv/Vbh9rAD3zgAzpz5ow+9rGPhdcee+yx8He/39eHPvQh/a//6/+qH/qhH5Ik/fqv/7pOnDihf/Wv/pX+p//pfzrU9txrcUMW1tbIyEg4EAPDN65j6tFANhnKwQBgTkxMaHZ2Vo8//rjm5uZCDVBpO5pZKpW0tram8fFx3bx5c8Bx26vNjUYjbOarq6th45uYmBioRbkfYQGjYNrttiqVihYXFwObLW7PURpWzkgi3RkD5GFLe3UHm2chku3PA7PL2eXORHdAhoNNJIWDTWq12kDds/0C6cxrnDr+5n3/rEfBY0ZnUuQ7Fp4xZhIk9RltwIjxNOs7FeorHjWr437LscK+f3JUuvyo9Tj7M3PLgVMPonmNyrguI8L7ceDNxYGmOPDGnuQlXnDg+AHkS3Lm+A3g50AobCvX5QTEh4aGwrkU2BHcey/gGuCS4DoAIm3crdRFnB3mwHe321W73Q61z3EcYyAw7nfvL5hGcd/5GMTPwnigR7hG/DkHoWEnDw8PDzh8ScETZ+x56jtgLIETSWEs4/Ia7ojTj9hwZBzEJASfizHDnO/QPn9O+tTZhcViMQSASbf2EjY+R8fGxoIOBjCIx4HvsWZivehsPV83SWPpJfkcuI7Fn1/aLs3DT1ySzQFyxoh1FgfRYqampIHSCnGmCvMVoNw/wxjy3NzLx5Nx98/6M/prfIe5xHygn3kGJyXwHt8hgOdleWKA/xhEf/DlUdXlSezd+yGsV/craA/kNc9qdX/C/RH2NN4vFouanp7WY489psnJSY2Pj2tycnJgf7xx44Zu3rypTCYTarDvR9CxqVRK1Wo17HWzs7OhPrq07fuwv/EcvAawm06nw/lkjUZDtVpN1Wr1UPyfw5Lh4WFNTExoZmYmkAS9DBfAb7fbDXoinl/oasgXvV4vZGmj+5yJTjDS68dL24QNbEDX9dJ2/XrPTIzny177KngRc9EPAk96pkajofX19VC+Dd//TgV9FWdfuA3Ib8eo9qNPEF//MeudsQQMxw7b3NxUrVbT8PCwGo2GCoXCjiwRyuw5uc7vyf2azaZWVlb2tD8eNTn2yfcvdwSiv+lNbwp/nz9/Xl//+tdVqVQ0MTFx6Czcf/Nv/o3e9KY36a/9tb+mz3/+8zp16pTe/e53653vfKck6cKFC1pYWNAb3/jG8J3R0VG94Q1v0B/90R8lKmzSrpBarXaobb4bcYOVyBd1PdkkUITurLuCbrfbIfLWaDSCgzQzM6OJiYmBkh3OyJJu9d3ExIQkhdQxr4d5u3ZzyCipXrDZSBf2KKsLyr7X6wUwvl6vh2tVKpUd7J07lbsxyHCqcFRx0vygsIdRYE3EIIKDJc4G81pqsfJBsXrNP1f0B+lzDBlJYd7Hxgj3JKIMiITSi8GdJOn3+4FNwkFqlECIQTTusbGxoWazqVqtFvoul8sFg3Q/hq7X6F1aWtKNGzeCoXM3kjQXX2zK7VhuL0ely++FHpd21+U4jjErWBoEl9zZ2Eu/xVksDrJJ206ns4M9zVbaTsnt9XoB3HSQ2Nlt7pjznu+hcekPADTahRMPsL62thYAQwcLAQbiZ2H/BoAHAPcyGQ4wstfTbnSDZ8Wtra0FR84PX7sdkI6DSt8RHPExZIxwXl1PxLYG1+v1emHPJthbKpVULBZVLBYDOE5bKT/D/bBlxsbGgk0Q16SmXZubm0FnpNNpNRqNwCzmeXycPZsKAoXfl3mDriM4AFgM+5Gx8sCypBD0534ANh50Qt/7uTpuZ7L24rJ9cbDKMxRoJ+xsB4a9jJkDVd4v6EUHlukXGP2p1PYh4r1eT8VicQBc5p5OQvFxioNWZKX5vRhvn7M+ZvV6PZQeJCDia5sx9r52sMDr28fzyfv4du/vZoPEAFAcVDyWh08eVV1+P5jnuwl+AsHp9fX1EDhF/3nwF1/cA6McwMneXCqVQnASn5/9hr1hfX09AOuVSuXAZK2tra2QCcY+7OWtMplMuC97FnYK+yr6o1qt6ubNm6FETBIIeT+F/up0OonEKPSk6wH0q9tR7MnoVLezCJgQhEylUgHf4P6OV7DPo/89y9lr5fM6/iSZYJ6F7RIHxfmJ7Qra4Vl8SWVj9iv0lZPJeG7e5/4eCKfNB92PPDDspcgIAkB44HOtVitkwM/Ozob2UMuekodup0uDJf68HEzsQ+zVTg9aH8ujL3cEov/oj/6o/uk//acDaVmTk5NqNpv6sR/7Mf3ar/3aoTXwhRde0Ic//GE9+eST+umf/ml98Ytf1Hve8x6Njo7qb//tv62FhQVJCgdxICdOnNClS5cSr/lLv/RL+t//9//90Np4N+IOB7/ZkDjMAEcOYx5wz9k8vlniuALO4Rw+/vjj4QDMuFYYm2IulwsHLJJ658b+bsIm02g0dPHiRWUyGRWLRV29elXDw8M6ceKEJicnQ2122FUIaUaA8I1GIxx0iqOIkXKnm1PMFqLPDio4VqR3weR62FjoLplMRvl8PqSQj42NBdBEUjACR0ZGgrHLPHPn2SPTAMReM+8gY4ezydxDUXr6u6QBxhvtxGAEALjdvGG9VatVjY6OqtlsBkPGDQ/agiF89epVPf/88+GzxWJRo6OjKpVKO9hvSdJut7WysqJGo6ErV67oueeeu+vUyDi44M/9ICr246j3/ZOj0uX3Qo9Lu+tyX/PsSe7gOisXSaqPGWd6xTojnn8xMB8LzhYOAM42AVnazn7W6XQGAgF8hmAnP5IG9lecBkq/rK2taXh4OOxd7C9JtcLdQep0OsFBox4qB0y7A4gDxW/AcQLiODUxoMrnYoDS9bQHMhEHURk7AAscW29fOp0Oc8JfBzSfnJzU9PS0ZmZmNDs7G8rQNZvNYHvU6/UA8jg7nxRvt8m8tAa6EJ3BPKNPKcPjKdE+ls6ii4PH1Jf3OZTJZEIGQTabDYGUWq2mVqsV7BZPN3e2ngeJnciBDvfALxkG9LsDEQADzsaDxb6xsRHGyFPP0eVOJnH2IPOWOeTzg6BEr9dTrVYLQHg+n99BPEmqge4Bi3a7rVTqVpk7dDntg6FJW7HX6SvKIi4uLob14Ew87wvAN2f3+5yO+4U9I8kW932O/cL3O19bvt58DcJK5DtuV91Ojpno91ceVV0u7V2+46gFYI09x20ID0zDYiUQDojO2uTcktnZ2XDwIWWyyATzA6bPnDmj06dPa2lp6cB1rCmjlk6ntbS0pEuXLmloaEgzMzOanJxUOp0OusMzqTzoV61Wgz7nmdg7HqS1S6CCMiwE3ovFogqFwgAYzjNg73h5XABvypOiMwiScsgowHe/3w+BafAMtxvxRz0TC/3nJbfwxSmtRmlVdA76UNKA3vNzP4rForLZrLrdbjhcVlIIHqRSqYFa7wcVJw2gb7xKgJdyAS+IbZcY+9pN3A70kmZkEGD30HfSLdLI888/r9HRUZ0/f34AfO/3+8pms+Egei/PRJsajYYqlUrALpIIg0ntRL8y7g+rHPvk+5c7AtF//dd/Xf/H//F/7Kht1m639YlPfOJQQfRer6fXvOY1+sVf/EVJ0rd927fpa1/7mj784Q/rb//tvx0+FzutzjyJ5X3ve5+efPLJ8H+tVtOZM2cOrc17Scz68o3EgfSYxeNppr5x+W8UgrPNvMYhEcq9IoEY0s5E3gsUiIVNk2uxsZNyjsJx5k2/3w8Oph/iwO+4LulBJI4y+2s4ft7f+93QPaodp+8/jMIz+fP4uMfzy4GSOL3e514SE/0ggjJC2Tnz0R1Dj7bTLgcjbjeuzhQAQHDmJfOFtYjBgLEG4IIRDCM9Bn+4Fz8A/o1GY4fCPqj4GDijzOf3nWQD3Gs5Vtj3T45Kl98LPS7trss9+2SvfT0piO1t9ms4Y5rP+Tp1XbKbg4DzApjrwL4Hqx1kc6aXl9mIQct4z4jZprTHHUd+J4F1gHi+j8asbj8bgufytFlqsqLbHTCPbZgkHer6ezc96993Zn08xj4e3n84Z56B5QeqYT8lzUNvV+wc+lzx/Redhq50YNVLvfhYub3owZ+YAe5j7m1y0MAZ585E9wwz/+12pI+Xg8IOePO6O9JxECruA2e0SdtnCXhfert3Y11zTZ7JU+T9zAEPjsX97XPegxnxGMSss5id730W90ESoM4z0C6fX96/PveY9x4E8f6K14v3FcBP0vtut+zX/j8G0e+vPKq6/KjF17W0c17GdjR7Bvutg9D4IV4b268DOOhrjD1ZUtiHKcmKT71ffxyhnewRBFnJEAfEdT3htsjGxkYIwjoucad+ubc/xkJob9Lvgzyv77nsZUngbZKv5XsfAXe3AeKsN58vXDP2PWmT+5J+L7cjPCgfH+Idg+j+PG6r8brrWr7rWVd3On7x9WP95rYC948DTvu9t9vg4EE+X/mf9UYmAngUJV/obwfz/R78T0DdiYL7bWtsA+4nYPCg6b5jn3z/ciAQvVarhc6t1+uBFSXd2lQ+/elPa3Z29lAbOD8/r1e+8pUDr73iFa/Qb//2b0uS5ubmJEkLCwuan58Pn1lcXNwRCUecvXUUEoOuHlFMUlqe+sLrsH5gxAwNDYXDoSQNKF1Sr90RarfboRYpm1uSImbTgRXuabz7FRZRt9tVtVoNzKjl5eWBiLff3x24ZrMZNj4/LOygfT42Nqbx8fFwaFixWAz3xWmkP9bW1rSysjLADNpNHDyP2UMPq9AnPEts2DkT4erVq3r22WdVLpcDoOzfqdVqqlQqajQaeu655/TMM89obW3tjtjVPu9gBfqhINJ26r4Hj2BK7DfS3uv1wmF6/X5fFy5cULFYVKlU0vj4+ADg0Wq1dP36dbVaLd28eTOcAfDlL39ZS0tLKpfLOn/+vEqlknK5nEqlUljn0q209dXVVXW7XS0sLOiFF15Qs9nU5cuXDxwwcuPd6+HBbnBDDqOg1+sNMCLvtxwr7KOXo9bl90KPS7vrchjU7ig5cCgNOkruFLsD7PoHZ8x/YlDZHZn4dUkBoEN3uEPsTgnXYR/jGjHY6d9jH/T2osebzabq9Xoo8UZdVf9xFpY77jFbnYOX/dlcl7PPuHjQ1bPnPM04PrSUZ/KDvAG2uX+32w3Xpc56LICqnpbrIKVfk/NAkthS3n7e6/V6gbHG9bDh2Hu5Rz6fHwDpGS8vneLs5Bj4oM88KyCTyQRGluso5qA7stiNqVQqpF1XKpXQv5VKJRwS7jYcfQyIApuOPSMJ8HZ9jIyMjAz0eUxAiINUrvv9GZgX0mC5N+YsYxC3Fda/zzX0uWfNOYC8tbUVsvLiM4R4Pr6/uroayhysrKyoWq0OPFf8bLzuZWDoL+ZKKrV9eK1/3wEJd/yxXzwo5vsLc9fLNCTZ9jAa+/3+QEbiXnIMot8fedR1+VEJa8bPhiAI7D66z1P+50wpPzchlUopn88rm82G68R7GkScsbExTU9Pq1QqBUJNDMqSleZngjkz+aDEm36/r0ajEcBI3yu4lgPRsNB55jtdr9gVrtsJDsD0pkyMZzIllZR1G8z1Yz6fV6lUUj6fV7FY1NDQUDjvy3WutDPTK5PJhOCC22hOGCO4Pjo6qnw+P3CwONdKArqZQ2QleBDfs6XwxdmHNzc3Q1YZe7JnXm9uburKlSv6z//5P6tQKOixxx7TiRMnBny99fV1tdtttdttXblyRRcuXAjkxYOK41XYpa7T+Eyvt11RQdre4/eLKeG3bm7eOuDzK1/5ivL5fCjhwhwaHh5WvV7X9evXQ4lVbIOnn346ZJiPj4+H7MHJyUmlUqlwADjzSZKWl5d19epVdTodLSwsDPgPe7U1/hx7AFkFXtqNe3kZqwdFBx775PuXA4HogEmpVEove9nLdryfSqUOvUzKd37nd+qZZ54ZeO2b3/ymzp07J0nhkMzPfvaz+rZv+zZJtxy2z3/+8/rABz5wqG25U8FopRZXLpcbcFxxoFAUHin0CBsbuR8Kxabt0U6cWBwqwOKkshpJbAGieIDod8qMhQWUSt061CRm8sT3vdvoM8L1x8bGNDs7q2w2q9nZWc3NzQ0Axd1uN9RpZcMExNwLRGcDTIoSP6ziz4Ry8hpsMBEymYyuX7+u559/XuVyOTh4HhyqVCq6efOm6vW6Lly4oBdeeCGktx1UWAseefaadh5dd/bYQcHoXq83cOAd2RNTU1M7TvGu1Wq6dOlSyJZYW1tTv9/X1772Nb3wwguanJxUt9vV1NSUpqamAkjEHAcwr9frunTpkr761a8GY+agB5dg9GUyGRUKBZXL5WDQkdpOn3AQUFLJgGN5cclR6/Kj1uOA6C4OYPX7/YE62w6w+6FSflgYgCgBKkmJ92B9SUrUIw5k9Xq9gQC7C46P10dOp9MDNbMdMOP+7gjjpKP/AdFbrdYAqMa+T98RrNzY2AiHZeEIcQaIA784fJLCXkZgD4fTU8RpK3tTnG7rQCGgMQFx6lnioHnddXe8XSe4TeGALHoPZ572JtknXNftGGf1Eyh1EN2Zwl4Gx+0FZ/VxPbdDvN96vV5gzLve9fddXzqQ7jqd9q2uroYx9rNyAIQIkm9tbQX7EWffgQQHmNx+crAnPowtKVsq1kn+moMdXBN7Nx5PD7anUrdS8cvlcugH1hwEEwJWzWYzzAf2hnq9rvX1dRUKhUBicTuDkg0rKyvBjmStebtpM2vTn9kZ+Kwx9xv8kGT2IfYLz85zJ937kH5j3vlai8dOUsjM8DYfy4Mpj7ouPyphfeRyOU1MTGhzc1Nra2thvcf2A8KeApjKawDyIyMj4QBOt+8JNOIXUVJsYWEhlD4DIAQM9QCrpAG9c1DgC19kL3JTUtAgyX8/iNBXYBiUQwPkpsSlZ/V4oNEFveJ7MvqrUCioUChofHw8+IzYLT6mMYkBEJ39F12AHeWvU8KTcfJzOfjtAVBnaHNenJdgczvIg/sEc6md7/gQGMv169fV6/VCWVb6h/s3m02trq6q2Wzq+vXrunz5ctB7B5U4qyEOGmAb8py09aA+J3gUP81mU0NDQyqXy5qenh6wIer1ui5fvhwCUPT3s88+q+eee07FYlFnz55VsVjUxMREsFGXl5dDwJu+unnzpi5cuBACVgfBEWIBRwBj8HFGfE0fy8MlBwLR/+N//I/q9/v6S3/pL+m3f/u3NTk5Gd4bGRnRuXPndPLkyUNt4Hvf+169/vWv1y/+4i/qr//1v64vfvGL+shHPqKPfOQjkm4t2J/4iZ/QL/7iL+qJJ57QE088oV/8xV9ULpfT3/gbf+NQ23InwibqBz9gGDtDXdqO+uLExUZtOn2rxmWxWAyneudyOUm36muioKnhyCna/f4tJnulUlE2mw2HjdImNj0WebVaVbVaVaPROBSwbTdQPMnQv1vBYYIZQN05jBkHLPr9fugHAEgUdhw5vd2zPSrixlj8bMxF5tL6+romJiYGDkNJp9NaXV0dqGvvdcndab6TdmEAxWUInF2QxBjZ7z2k7fq6/X4/rFecVJxq6iJ6RB0ntt1ua3V1VdJ2xN7BoVarpeXl5QBqe+r3QQUGB0Yi8xmgy0EUL8VDfWRnZd4vOY56H70ctS4/aj0eO1vxHHPQzV9zYBjD3cX3HAcCY/YJr8W63QHA2FnygHgMrjuDut1uq16va2hoSI1GI7SFe3kpFZxkz05L0sPuBHmfAcj589G3BPfj/cNBBs+4c8a/39f/9tfcoXSGFvfwMXEwAafa2+zAdczQ9es5SIKDSr/RTu8X1zfopLj8Cd9zBzvuf58TPIPPAdoYA/DeZ7sB2d7/3jfMdScPQNKQFFiBHoilb5xB56zwOFixmyQ9w0HszDhbwa/pQSSekcABh83RHw48M2YeCJE0cBAu9/EsTRxjguCeBeBg+W7AkwezeB6vtctvFwfKee44kOC2ls8d7hnfn+/Hdtp+QfS70eN8/1gOLo+6Lr9Xwp7se6gHp3gfO1raGUx14pEHl6Vt2xx7nEwqdApB4Gq1qlwup3q9rtHR0cBKxacaGRlRu91WpVJRq9VSrVYb0Ff++6Byu+8nvR6D6vsRDwiSFUR2FqRC+sozrdjHbgf2smfF4KSPrZMUHehmr2YP9kwpPsuYOwHJA9Wue+JMx6R2IswfD+x6FpSXJvGDvZNsNciS0q0MMzLvCQLU63VVq9UQDHCywd1KPCfcLnIdeDf3ismmno0uaddSqPzPmSpOzkin01pbW1O9Xpe0PWb0z0F9490yxvyQ1XicY/LfneAAhy3HPvn+5UAg+hve8AZJt07fPnPmzJEwFL79279dv/M7v6P3ve99+rmf+zk9/vjj+tCHPqS/+Tf/ZvjMP/gH/0Dtdlvvfve7tbq6qte+9rX6zGc+s6M23FGLO8mlUmng8IfdDH7qhsMcZXMfHx8PbKzHH398IKWF7/f7t9JFTp06pW63q6tXr+rChQvq9Xp6/vnn1Wg0wuGia2trKpVKKpfLSqVSwZG6efOm/tN/+k9aXFzU17/+9QCC3ouFfS8W29DQrdOYS6WSJiYmdP78+XCQqR9gxWcxkEj1aTab+uY3vzngVCaByb7xPQqsXowJf57YKcZwuHHjhjqdjsbGxnTx4kVNTU0NgOi1Wk2rq6vqdDpaWlrS2tpamD+wKtwIPGiUNwYI/BkcRLiTPuj3bzHbbt68qUwmo8XFxcDI4n1nr3kfecmCL33pSyGY4+m10na9NcD6RqMxALjsV1KpW9kWk5OTGhkZ0dTUlCYmJkKpJ8AQrk1QibRQN07vJ5B+rLCPXo5alx+1Hnf2C7rR02cB0HYzZPkf8NT1Ns6ypyLzXWcOu1CezFOYx8bGQjYPhz2y/2Bs0wYyeba2tnTlyhWtra1pfHxcm5ub4WBr2FM889rami5cuKBaraYbN26EElKAZTBu3QZBHJCPAxJJzgXsZAfhAA9IRwYciAN37rTGTOVcLhcC4PQ5wX4PnPb7/YEyKzwTwU7exx7zEmxxOQ36PJ1OhwOm0PnOsnKHiHtxPVjxzv72eUebcLKkbTCYTCgPujAHIVnE/RTrRs7s6PV6AZCH8ea6vtPpqFKpKJXaLtMDuOFZZvGa8pI3XA+WurStcxycAshlzOMMDF83SfuRs/p87oyOjg6AID5HYa9BjnDHmzb5/gA4vba2Fubr4uJi6H/WmAMFAByeTcZ657oe3HEg24E8bAX0NwefAaL73HY7x+u2cm0n6rhd5IE+fmPf0F9OCuDzccZNkhyD6PdHHnVdftjCGuLgbbfv2Y9ZS+hkdEKv1wvl0LC/R0dHVS6XNTs7G/ZYD3xKCqzozc1N3bx5U9evX9fGxoYuXryoxcVFLSwsKJfLaXp6eoAMUy6XVSgUdPHiRf3hH/6hLl++HPQ4178bgPJuvrdb3/pvrp/JZDQ5ORnK25BVhk8ibbObsYecCEDgIWbNswcznvj0HuCnLc4CpvQKGdabm5tB93EIKXYL/hGEBLcRpW37xQ+rhszH3OH50IHYgJRryWRund/h528RoL1582YoN4s9k4THAPwODw+r1Wrp2WefDXN8eHg4kLY4+NoPrT9scd1xJ75tkuB7kyECA5/re+A7SSifSpYVpdmouiBtz1vshYMItkgmkxmwd/3w+YmJiTC+zM9CoRDmNxn891uOffL9yx0dLHru3DlVq1V98YtfDCfQu/jhIochP/ADP6Af+IEf2PX9VCql97///Xr/+99/qPe9W3G2GQrD2d9JEtd6bLfbymQywcmemJjQ3NycisXiDiaddGvx5/N5ra+vq9FoBAcKUHNkZERLS0sh9RpgmZTUSqWiK1eu6Nq1a1paWrqjzeR+Sjp96zTtiYkJTU5OampqKpyunSQEIVDcjUZD165dG2AjJEV9pZ2HUj3MgjJ1hzLeSPmf2rqZTEaNRkM3b94MCiSVSg2UDcGZRNzAP+hG7YD+vQR9Nzc31Wg0wv8xUL+bOADTbDbvWfu8TaQuoqip/0dZAoAmvoOxWa1WA7Njt7VxVHKssO+fHKUuP0o97uUR2M+cZRsDDc4gxUlxUI3vObNkt4O6MaLje9C3STUvYWTFLCmuD1C2ubkZslfW19dVLpfVarVULBYHWONkzKysrGhtbU1ra2sh8OdgHM8W67EYWAf8c0eGfnQGlrPBnMkXM41ppwOaMRswdjQBBrGNEN8D3OZi72Mc+W7MXMcRd33O/3GdbBwgntVL9zjjCQcV4J/nYR650xazh2MAxoFlAAkHYmOdGjPHHWxnbfhcB5jodrsD5XdoL3rd54jPGwB1mNneDu+zJADcGVm7gX8xazruE/++A+M4qZ4t5qDKbnovlUoNHF7G98n24nvcyzNXkg4Tdf2L7e9BBYIr6HAPPjnj3wMuiN/H54UHKXweJZUw8NI2fv2D2rXHIPr9lUdVl98LYd4TrPK57nsXQXIPMLnd7GdpUPsY/SNpYD/IZrPBt0B3VCqVkLV69epVdbtdTU9Ph/PO8Pt7vZ4uXryop59+euA57nbNHab4npK0T2ezWZVKJY2NjYVsefpMUqidTUCX1zKZjNrtdvDVY3Ed51k7rqskhYAqBAY+A8bBdQBYCdi7roTI4EFaP//ExwP96P6qBxXYd/0gc+wmD4Y7g9yzpWJB/6ZSKbVarTA3JycnNTY2FjLDCXjfS1zH19Nh+eoekHBdxvjcTiCmShpYo/v9/u0kZp2zDiAYMh5k+OFnEKwh2+RBkGOffP9yRyD6pz71Kf3Nv/k31Ww2A5iLpFKpQwfRH1ZxZ9vrQe4FWrHocFJwYsbHxzUxMaHx8fHbgvC8n8/nVS6Xw4ZPVPMrX/mKrl+/romJCU1NTQ2A6EtLS7p06ZKWl5cH0sbul8TPudcCpc8A0TFo9gMS4qxQs57oYBxFdVYCbC+U8MO8eWAQAM5Q+mO38Y+ddzcGMD4xQFxZO6MdBegGiQPRR2UgxgbfbvIgjS/7CCAV7FjYEPzGue71euH9Xm+7rm7MdjyWF5c8qrqcPSd2WhykxRmSth0QByClneuMIHh8FoY7jkl10p0BjeOey+VULpcDSMx69HXpYCA6hnW9sbGhSqUSDouCZcsz12q1cEgZTGR3OGkrzLt4T47FQYYYiPT+dduFPkK3bm3dqlnq/QsQ62nNfNf7jWsxnjFY6Qx3DybQbndcPUsH55jDVymVl0qlBlhfzuxlfByUpE+5jzuR9Dljl8vlAkuctvj85DndXsTOiBnJrj+xRzgXp9PpBIa4O/TMEXS1pDC/maMASO5s+nhzDcaV4ArX8HmSlHkJYAI44raWr1FvK9/l2b3fk8B0n6NJc9rXgjvp1J71/uUZfYx8fbqt5GPtzFbu42PBGFDmAEY6IHqcdeDX8PngARRfr/5+DPTwtwcZ4r44lodDHlVdftjieiYpQOd7imddxfZ/JpNRsVgMOpzME8696Pf7A6XAEIJkHrhvt9u6evWqarWaVlZWtLKyEnzZ0dHRcIbSwyBxUNvtAWwdMu4lDZRKi4OE7IEcFgpDPT7g1IOV6D8ObPWDkZPsNifMubA3Yzehr7xkDM8T6xxsF64RB6CxHQBPh4aGBgiLw8PDYe7EeiWdTt92b6av3SccGxsL841AeTxWzHs/7NL9Y372wy6/l/5yDKjfyfd3W9d30yafh9hPBNniIDcZdOwb2Mi8/rBjSi8WuSMQ/Sd/8if1oz/6o6HO2bHsFJwDmD04ybcDrIhaAXRls1nlcjnNz8/r9OnTYaFxj6Tvc7L45OSkTp48qVarpZs3b6paraperwcmerFYDIfSkOrUbrdDqs9uzvRRiQcd3HFN2rwxfIaHhzU1NaVTp06F6N9+xJXrxMSEZmZmQmAhKZ0d5xTHe2Ji4qHe8La2tsKhczz3bmlj7kS6k4zjTc3+mKGJuOPJfdbX1wM7mpq/DrbfK3GDOXYskQdtXB0IJOjjwBx1B710jhubZGtgJDnr/n7IcdT7/smjqsvjwzidBcy+hTMGkOr1MgG9CArCNEP/cg4BzpQ7izhNrDcPJo6MjGh8fFzlclm5XE6zs7MBxHS2L9dAl8Ng8bIZjUZDly9fDuu5UCgE5126VV5kaWkpHK5YKpUkaQC4lQbXEH3C3uCfiUtG+He9nJcD6YDjMXBNH+PUefDfgxWAi34t7gvI7aV36GtSqZ1lxP3d0WH8s9mslpeXg4OKPUA5O9d5iDuXziTv9/sDqdyebg544Ew4vh+X7KAvKDlHNgH3dNAU/c0BspzbUavVVKvVwuGhHnwgGJHNZgOQS9vK5XIAD/yzPAvPzxqIHfIYoPK+QO8DuJO1wfxy/eaBCO4Vs6+x8Zydz5zzID3EANoTf5908FQqpY2NjeDM+g8ZEHEteJ45nuvxGooDP8465xA85nxcBo4+gSlPW90Oi7M0JA2sS++nmCno9o+vUeb07eRuSQ/Huvzu5FHV5XtJkn9xu3mE3eyHB8d7O3tHq9VSt9sN+sdleHhYMzMzOnnypDqdTsi+HR8fD0FEDmP2PR8mNtniW1tbqlar+tKXvhRKjVDKibMX1tfXtba2dgg9dviym48nKehw/JRcLhf2NvyTdrs9gJe4f5jP5wMQXqlU1Gg0AjsbIJ39F3yATOhCoaDh4WGVSqUwHpAaHUCHCZwErALeS7eA5Xq9rlQqNVD6hUOgGScAUoDqGDxH/3nprHQ6HcqB8TlwBj8vy/XtXgQ3Kh/Q77SX+e42IPs2z7K1tbXjsE3sothv300Ocy+Pg8DSINP9Tu51t99Pkn6/H8aKDPGhoSEVi0UVCoUwRwDMmYeUJoRcAUu92Wzet0D2sU++f7kjEP3atWt6z3ve86JR1Hcq7gzEzN3bfUfSQM1IWCruaO32fT6DAsMgdqZdJpMJNb5SqVQwFjY2NlSv1+97CRd31GLWW5JRz+cATFxp7Pd+9J2zDePvu+MKGzCujf0wCoADz5P0TDHrMHYa4xIF7sxyD2kbxMAx53ukwKOEkMMG0pNYg94PjG/M2nqQxIGWmKnp4+Ksh/i9g6yPeynHCvv+yaOqy50F6+ygWGJQi+9Kg/o7iREd6ybfHwGzvRyMA8POPgdw9Xb6NQBlR0ZGQskF9k9nC8VZbgQG2E9Z7w4AxnsrTl4MAjrjNQbRcQpiJrX/7w6LBwtoh3/Wf/ue5m1MsoHiAEQs3v7YEUX3+UGirgf8Hg7WJl2fe+w2n7zt3gb/fpINx/jFTGKe20sQ8TweXPC2+/38XsxRfrwOPCBFrHt43R3zJBDZ2xv/HY9X3E/xvPBniOcObUnKCIjTwf0aThrh+95W3ne7IAaifT77HhTfP35W18n+g+7mmnE2DX3v9/Dnc9aiz0ts6Ph3PFb++3ZyDKLfX3lUdflhy276w8VtAtZRfA3AUgLdse8QB+AQfFQPSHupCWcBQ257UMQDx7tJbE8k2QS8hp+J/nG7BPGyYQDvewH36DwvpeOBag+YeLv8nr6X+Z4eM+tjbMd1OZ/10nc8M59Fp6BjuScYjROg/BpJtge/YwyDNvK6pB0H2WNjMpcbjUZ4P7bj9otl3an4/PDniu2xu9UXh61vnNggbWcjJGEM0k4yovvnMQnhqOXYJ9+/3BGI/qY3vUl/8id/ovPnzx92ex4pSTL6D/p9d2wOurgA391ZZeNGaTsji9dvl6ZzLyV2oHEknBFFNC/pe+6QJIEm+xFP3U/qayKFrVZLq6urWl5e1uTkZGB73c2YH7XQp51OR9VqNZTxIdLsDjKHjVEmaGhoSIVCYeAwLPreo/3eFxiObsSQZpbNZkNKOqyOWq0WWOl3e8At41IoFDQ3NxcYd+Pj48G57PW2yx7BLlldXX0gU5tjY8Ideje+dlNqLzZldyw75VHV5c7wQZyx5GxkabAMGmAl+pO0bVTI0ZEAAQAASURBVA4H4vCgJFDL74lB3e/3lcvlAst0dnY2HFwFo92dA3cmuQ6/3SFz1qm/533gbUWfOcs3CcR01j7tJzuOe+/mRPEezoOXkIprh7uDxHc88BGDxf58Xi5kdHR04CBw2oCu4bP+g33h7SAFvFQqhT6CTcYccbsE3UUmges0t9NoUwxAx8/pTGyu73rUJQYz3IHDPkFf8gyw4/r9WyVYYJ8xR2D9ZTKZUJsbfezABP3PM3EtB4353+cabQJYIIgeA+48tzuY8ZjR1zj+zDVKKdBnnU4nHEJGpp2TIGJAg/VEGx3EjwMq/reDKMy5GKTwIIaTBfYi2TjQtlvQxvcZ5roDedj2caDB57+Pm89NxvpYHnx5VHX5XnJQG9YBOmmwRBW/2fN4jfnP3pBO38q6zWazYf/v9/uanJzU1tZW0HesRwhd7JnZbFbFYjHxoEzaRMbRg+B3xMFWlzgwyef9sxsbGwMB/HQ6PcDEZl9Ej/qe1Ww2tby8HPZmGPq1Wm3X9uIrwnCn/jqguusV/FoPdqRSqYFDtLHRhoaGVCqVdpDB2CcpqceYu+6QNGCDoe/T6XRgr6fT6cB69z2YgPjw8LDGx8fV7Xa1uroaCBXobOaklwFivvl8d9ID/QXWRJWDUqkU+gJ7tNPpqNFoDNReP0wfkqysoaEhTU9Pa3Z2NozF1taW6vW6rl+/rna7PWC7Pkji9ls+nw9zmgAZJId0Oh3W/mGTBI/laOWOrKO/+lf/qv7+3//7+vrXv64/82f+zI40px/8wR88lMY97OLK+iCRO3cqAXTdyT/INUhVYsMEhJa2D9pA7udCjiOpbEQ8c8wMiDfQOJLnTt5B20FfJ4Ho9F+v11Or1VK1WtXKykpg76OQHhYQHWVEORUOouMUcBTpyMiIyuWystmspqamQhkCgg3Szjm+Vx8w19xwmpiYkLQNZqyvr+vGjRuhz71W8Z0Ihkq5XNb58+c1Pj6u06dP6+zZs8FJJpXt61//uqrVqq5du6a1tbUHTtHF4MlugHnM/Lvd5++XPCjteLHJo6rLnX3pxj7Oi2fDSNssI4BRZ5kBMOLg+OGA6IhYbzkTXdpmtg4PD2t6ejqkd6KjHKBzBwzhHn6oZ/wcAAK+tinREQNozpSOdSm6z8tvuOPpwQP+91IZnsWFA8Z7vhe5kxkTDpy95/rfa25LCgAGgC/ALP0PgBsD+FyX+0sKgXH60RldDn6T9gxw62Ap13Pw1+dWrCO9njZnkTiDCQfY+8vb7q+5feSHoHF/9LXPJ8oUDQ8Pq1wu73Dincnsc8yBAb8mrEEAEuY84uuBvokzqLwP6f8YsCYgMDIyEsoslUollcvlgfXUbDYHstw8dTq2Iz1IwJx34CPu+93+7/V6Awd7e1abA2wOovva9OvEwRfGwdeK63jmLfd0eym+RwyK7eZjHMSOPtbj908eVV1+2OLrKa473O/3Va/XVa/XlclkVC6XQ1knyFupVCqUWWVPZe04uxi9JG2XUMO+KJVK6nQ6iQcJ3u8yqi5uLyRlrqK/vA/RA+zDAMDoTkhbrtPYs6Ttwz4pd0MZG0hbfH434fsEIorForLZrNrt9kAgRNou18JeiV7ADpAUgGl05MbGRggCeGZSq9UKpXtKpdJA8Jf2U+YUn9b1nZfw8gNEyYwbGhrS+Ph48I+bzaYymUyYh+Pj45qZmRlgobsOcFuR+Uj7eI3gNfYpc31oaCiQ2YaGhkLfHqY4+P/444/rla98pdLpdMjGWFhYCAHxByG4tJf4s0gKOJtnrLBmGIsHLShwrMv3J3cEor/zne+UJP3cz/3cjvfYOI9lsO7iQRaIL7I4JWw3xspuQmrvbgviqBeKG/FJf+MExA6Mz6nYoeB33F+xEtuPoHT2qsftjC/qolO7zJlwD7rwrET5qana7XbDc2P8EOV2wzEpVWm/Eo+Jp127sYGTT5q99/1BhIj8yMiISqWSJicnNTExoVKpFGoJM+br6+uanJwMhgMMea9N9yCIgwFegkdSiHY7K90/x2cfhDJEdwPm38n3fvVXf1X/5J/8E924cUOvetWr9KEPfUh/8S/+xV0///nPf15PPvmkvva1r+nkyZP6B//gH+hd73rXwGd++7d/Wz/7sz+r559/Xi95yUv0C7/wC3rLW94S3v/93/99/ZN/8k/01FNP6caNG/qd3/kd/Q//w/8wcI2/+3f/rn7913994LXXvva1+uM//uMDP+N+5cWiy2Pd4KypGEiKSyr4HueAF3/zOuL7fxJQ7K8nzf0YNPPv+/M4aMtrfg1/TxoE5eLPJ93f7RbP8PLni8F078NYl3s97SRxIDAOnCfpmCQmFG3zzDsPGvgP14gzd2IWfFK/EBwgLdqD60nX8L06Bj8d/Ga9MU5eliVOZd4tGOp7fdyOJPD9dqBwfH360zMOXH86gOtMcy9L43PR56/fJ86mckCHvoeJPjQ0FM4GYd+iXwEmYIRKGujr2z07zxGLM8tjicclXnMATX4PD0TFIIc0uAfEpfe89rs/+172bzzX7jaofhjfP5Y7lxeLLr9bYd/1/YTXCVABQlJ2zWtm+37N+SEeyEKS9ivf153F/CCJ63Jp73JkrkdjHRT/jvdc39cYA3SHB5LR3QRxb3fgIiC6H6wtaQcBgXa5fvF7uU7259vNhvOgb1L2kF8vyVbztpBluL6+HkBzMrliHUEg38kS/MRECW9XbAMw7j7OvjZ4PknhYHQC9t6fBxXGOZfLaWJiQmNjYyoUCuEsD4LP7XZbExMTymQyarfbarVau5Iq76f4GDJfnWxDv8eBbp8f95u0d9Q++cMsdwSiP0gT9kEWT7d2YHcvR9IVNcyoVCoVIo+efruXEO3lsMb4sKGjFt+YUTLOfImZbm58pFLbBym5EkqKsm5sbKjdbqvRaASGwH4Bbfq+3W6rWq2q3W4nGp7ct91u6/r169rY2ND09LQqlYq2trZC6v+DLh49X15e1pUrV3T16lVVKpUQDJiamlKpVFI2m9Xs7GxIX4SteZjBAo/YkyqZyWQ0MTGhTqejGzduhAPT1tbWDuQUjIyM6OzZs5qZmdHp06f17d/+7ZqYmAiH+LgTOTk5qcnJSXU6HZXL5ZCxsbS0tGca4VGJsyY47Kbb7QZQARapHywKu6LRaIS0vHq9PnC4zf18nqNS2J/85Cf1Ez/xE/rVX/1Vfed3fqf+5b/8l/q+7/s+ff3rX9fZs2d3fP7ChQv6/u//fr3zne/Ub/zGb+gP//AP9e53v1szMzN661vfKkn6whe+oLe//e36+Z//eb3lLW/R7/zO7+iv//W/rj/4gz/Qa1/7Wkm3mAh/7s/9Of3Ij/xI+F6S/Hf/3X+nj33sY+F/WJ73Su732N9rcdDJnZderzeQduuOBzppdHQ07HMeNCTlVBpkHzvzL8nZdOfMg4C7gYT8zz0wyEk3hz3E+6TYAvC6neFgLA6q7yNxf+GAOQsNVrS3izZ5vxFkjZ1uD/DFACO2koMY/X4/6H23exxMdMCQMXFGV6vVCgAv7e10OoGR7Cn2zgqHce1zhucZGxsLzhzzYn19Xaurq6H0SbyvplKpUCLAnWXGhb2c8QFIoORev98P9oh/34OoDjR4cN/nWuywOzsNHeI2GP3F9Zk7ZGiQrcG489ydTieAzFyzUCiE+5Fp1u12w+F6PIc79A5OeRAnn88rm82qUChofn4+tCObzYb1hg3MwXS0j3T4TqcT7sH9YI4llX7ygABBagdffL0xTr63ePDG2e3MC2fpFwqFgYyI2G8AINrY2Ai2KgxJd94dEPS17WxX9hvWXlJgcD964hhEv7/yqOvywxD2R0kDB16iV3u9nkqlUjiMslgshv2j2WyGM8M49G9paSmUyiKY5yAv4Cbs83Q6rbW1Na2srNz2cMb7JSMjIyoWi0qn06FECfsQPjt2Ez5EHPzEFnGbh/2JgKfbXOxN4BT4z+ybHCzabDYDoWk3WV9f19LSkjY2NpTNZjUxMREIVARw2Sfjg8u9fCy6udVqDYD66DU+S5tzuVwog0YpFWwoB/a9pIfbfGAK6MdOp6PFxUVdvXo1ZIhXKpVwTebmxMTEQKk2bAhsNPSE6zfuTYCAZ4p1DXgIz8Lh9NPT0wHMvnz5sqrV6m0Jm0kyNDSkyclJ5XI5zc3N6VWvepVKpVLwZdPptCYnJzUyMqITJ05oampKnU5Hly9f1vPPP69ut6u1tbXEskj3Q9iDwd7Q5dinxWJRIyMjwa6iz7CHGo1G2Fvu535+DKLvX46L3d1DiR2cmAmWJA6io9g5UAzFwUZ4O9na2grG9v1mIbhj5Cw/Nkpn+8VAOpLksDj4iXLC8cbJ2Y/4NTxdK2kj45qcmJ7JZMJGjlH2MEi/3w/P2mw2tbq6qpWVFTWbzaCo8/m8Jicnlc1mNTk5GcCJvebw3YrPBZQQLHn6ntSy/crQ0JAmJiY0Pz+vU6dO6ezZswEIidfk5uamisWiNjY2Qr37oaGhkFb4IAjzkvHD2AGIcUYFDr2zM2A1HNToedjlgx/8oN7xjnfof/wf/0dJ0oc+9CH9u3/37/ThD39Yv/RLv7Tj8//X//V/6ezZs/rQhz4kSXrFK16hP/mTP9Gv/MqvBDD8Qx/6kP7KX/kret/73idJet/73qfPf/7z+tCHPqTf/M3flCR93/d9n77v+77vtu0bHR3V3NzcYTzqsZg4qOVrnYAu+giGKGA0+smZJF5iwtmcscQMK9asfy9mqvr34rY6aLqxsTHg9AAOONPIr+PsFvSiO7h+b77v9/c+QhyAdSfby4Ygrtv9uf1agPxeDxud7s6dg/i+vzkTbGxsLOg3+sXtMWcP+uHrHnTEYfZ5w/jjlHtpG2k7WOP94k6578vOVvK2+Rj5OSAOoPve7valAxZx9pT3eQzC+3jG89bZf4wz4BCBJp6fjAOAWgfRPZhC4KHRaKjVag2w2LmHz3nmIPOaMS4UChofHw/jgW1MfxDMWV9fD1ll8fV97icB4d6GeP7zHWel+xjHNizC/sJzA+x59gsBHk/5d2AEfY9OZ17HwL+XaPH2+j1pU1JA7X6z4o7lWA5TmPvug0oaANd5r1QqaWxsLOxRMdjbaDSCPojL50jbgT/PmJEUQNK9wOD7JR4wZ09xsJfa1ZJ2LesR+82x3cIe7vsbusZB6PX19XCPzc3N4Pft5ftBGJKkSqWixcVF5XK5UNZlc3NTjUZD6+vr4ZwbgtZuWzgG43uwtPOQZklBJ8X2orfLD/mObSzuB5jearVUr9e1urqqSqWiWq0WfFDmpWeHu11HGyUN2EDoAt/PY0A/tjk9uAuRoVAoKJ/Pq16va2VlJdT8vpMMcc4LmpmZ0fnz5zUxMaFmsxnWFtni/AaXWV5eVrPZfGAAdGnbnoDMiR530qHbJNjt+OOUMbrbgPSxHJ3cMYj++c9/Xr/yK7+ib3zjG0qlUnrFK16hv//3//6eafEvJnFAVtLA4REsImkwDcoXFN8FFF5dXQ31u2IGnV8D4Hxz89ahjDBP74eydkfeT4qGYezPEdfDRGKnHoeRiD8bqjuEtVpNS0tLIVLr7UgSGG/tdjuw2Kmftlc0cGvr1uGsqVRKlUpFy8vL6vVupQ8Xi8UdCulBEuZarVZTpVLRysqKVldXtba2ps3NTZVKJWUy2wfqoaTvhwBceJ9SJ81ToPcSngVmfVJ9P78fhhUKPpVK7Tt4dZTiwAdMA/YJDtxzBxvWOq89CCD6YUS94wyB0dHRHeO1vr6up556Sv/wH/7Dgdff+MY36o/+6I8Sr/+FL3xBb3zjGwdee9Ob3qSPfvSjodbjF77wBb33ve/d8RmA94PI7/3e72l2dlbj4+N6wxveoF/4hV/Q7Ozsga9zEHkUdbnX5UYcBGRPifVPDHoBREnbwBysT2nn4Zh8ThrUYwTBYQRR49KBMgdjY4ATBi11WR3MQ7hfDJDj7Hk/xOstCbTns/4d+oPPelkTHF+AbP9er9cbAA29fTFQ6anznU5noFxK3Hb+xq7CGeY9B4H5G3C53+8PpF5TR5XsrJhJHTPnnBjg78Wp+v7dmIUf9wGvweSLWWU8q89Vruulh7Cv/LAw3vd7+Xgz3xwAdoa7kxR8/mMb+NpyUMLBZYT5weG6OJXMdwcp6Ef/G7IC4DnAl9+D+QnIgCM+PDwcMtri5/dn9fHbLaPRP+MAgrfFAwTxeqJf+ImDWj7eHuSBIZkULHEmOXPI+9TbHffrbnbyMRP94ZBHUZcftjhAShZMzKRGB+FncEBxnF1OpvjW1lYgTzkwz/5CJm2v19PKyspAPe37KdlsdqDmO/4rpa/YXzKZW/Xh4+A4rHX/vvcf0uv1VK/XlU6nAwBLNpyTC3yP82Af+tv3qt0EEB0w2g8UzWazYT/c2NgIZ1egK10vYR/4M6D3YsyGwLfbB/5c/n3XLdgtTjLY2NhQrVYL+zrPnk6nA54BeI7N5bqGIKsHG2KbBR3tOgfblrbG5cT8+u47jo6OqlAohABJXJJkrzmeyWQ0Pj6u+fl5TU5OhiC8VxyAPBfr5N0C1A+K8Nz4GcyvTCYTbIVerxfIBPgHDwKAfhg++YtF7ghE/43f+A39yI/8iH7oh35I73nPe9Tv9/VHf/RH+m//2/9WH//4x/U3/sbfOOx2PpTChrm5uRkcSDblON2aTYy0MRQBQO7ly5e1srKi6enpwLKCKefS6XS0vLysdruthYUFLSwsDNQCO0oB1CPaSAowEfkYxIidLd+ESanb3NwMJ22z+Tj7fGNjQzdu3FCj0dDMzIyKxeIAqycWrl+v17W8vKxGo6Hl5WWtrq4OgBhJ0u12dfPmTVWrVZ04cULPPfdcGJ+pqakBZ/dBEuZat9vVjRs3dOXKFT3//PO6dOmSrl+/rtHRUc3Pz2t4eFhzc3OamJgYMA6OUnAex8bGQjoXqc7tdlu1Wm1PEB1lOzIyorm5uXCgKHORz7h40GdyclJnz57V6uqqrl+/fk+f9U6EoBkGUbFY1OjoaEiRazQaIeW01Wrp5s2bgZXHKef3W+kdhsI+c+bMwOv/6B/9I73//e8feG15eVlbW1s6ceLEwOsnTpzQwsJC4vUXFhYSP7+5uanl5WXNz8/v+pndrrmbfN/3fZ/+2l/7azp37pwuXLign/3Zn9Vf+kt/SU899dQ9C+A8qro8l8vtWkfb2UKeiZK0t2HMu8EO+Abr2vcL5rKD4DCKSYvudrshjRhQD8BP2gasPOUTxi56POnQQmf6xiCpO7X+PQc+nekbs09xnOgD9CkgtKdFcw2C0x7gd32Kcxiz9NnbAYB7vZ5yuVz4P+mgSRxM7hszyQhCEFTkoCfa3Ov11Gg01Ov1lM/nVa1Wlc1mw2HaPn8cNMcGcxAbx8/7MJ1ODxwk5teKgW3sGX9G5kc6nQ4AMkx5HFoC/4A4sB/pc/ouZsL5eLgTx7xljOjLoaEhtVqtcC0H7x18iAMD/GassF3JjGK+SNt19Zm3zFnmXz6f19TUlPL5vAqFwg4wgWd01iRBEthrZHBhYztTkGuwT+wGLsdrKV4jjCef9XXJXIjLCHBvromt7MAEJQchf3S73R2BOK6DrexrnTaw3vgsc5X3kf1k/R2D6PdXHlVdftjCPO92u1paWgrgKr4iZZSwk9mPvewU6waG8Pj4eKgTXSwWwwHNYADValUXLlwIGbVk+97PDPF0Oq3x8XFNTU0Flne32w3ZPehFfO6TJ0+qXC4HH7nb7YaSWgDW6FpAbNb05uamlpaWVKlUNDMzo4mJiXDIMsLe5mQAMm39IE8HUpP2jI2NDVUqFaXTt8qRUgZ3ZGRE5XI52BPobLdhALTBbPw+gJxuK8XAOPu/2wPYdwQ+vc1DQ0PhYG/2706no5s3bwZSnx8sCrkNH9YzKNHR9DeEB9eNcZDZ92xn/WNreZAfIhbvMz8gpXU6HdXr9WC3khUVB6lcRkZGdO7cOX3Lt3xLsMXQw9gCEAl4lpi88KDhKwjPDKnS7Vdf981mU4uLiwNZhfdbjkH0/csdgei/8Au/oF/+5V8eYN/9+I//uD74wQ/q53/+54+V9f8v7kizQNxQ9g0Ao5/PxwwgmFG5XE7dbncAfPb7kUaCk3C/SjagaLyOGoADGwkKjM0wBj3cQUHcyMFJkgZTXUk/I/XHWVOxI0Qfo+DoM5zJvQQgutfrqdlsql6vB/ZvHAF+kIR+dSCaWlydTiekaPPbMyfuhzBuHKBC20j9282Yiq8xMjIyEL3f7ZkcSOJ+ZE88yOLrjNR2WCQYdhi5D4qylg5HYV+5ciXU65P2LnmVxLbda37vxs711w96zSR5+9vfHv5+9atfrde85jU6d+6c/u2//bf6oR/6oQNda7/yqOpyz2xycZ0EUBeDiQ74JTlsXgaB68UAXgyie41ir/0NMOhAnKQBm8F/cNbcAUpaO/Ha9s/59128H+LrJt3LQWAvzRa/70EIntsDzDG4iH7C8eTHAxoOBnrwPcmeim0rfrstJikcEgfgTttpl//2eRK/7nab952XRPH+dtCA3zFjPf4cfeDBk6TPAwJ7P/G3z+247fFv71PGgXnLevAMhXiOJvVXvA53Y5XRDmchelnApAC/Ax30kx8SiP3p5BJf7zGLbrdxlwYP6PQATvzc8Zr0/2PbNA5qMV4+v+M9wcfA1xqf8fUd95cH7pKIH8cg+oMvj6ouv1cS7ycEzXwPwH/Gbo7XNWuL98mGYl9mLwCQB2SM9/f7IQRmx8bGAvDZ6/WC/+DkAD6XzWZDQA7dQjCVACS6IWaYA4qSBcvnYnvL7SG3gZL21CThXthazvD1jB/XP3Fw3IPb8XM4m9vF7T3fb31e8b6D2nHpLj7rGUZgHU5ecAwo1k/0GbJbENhtEXSKtF2GKCkIHutjbD/8Zb7v199NnBRAMCO+l5f545m59oOIryAO9jsLHfHsAZ7xQdGBxyD6/uWOQPQXXnhB//1//9/veP0Hf/AH9dM//dN33ahHRZhMnlZELcikyCCflbbZsO6493q36kA988wzgWUEy4YF2G63wwFXa2trOxhl91qcMTU2NhbStvL5vHK53ED9OJh8rsBc3BF1R5o0M+pzbW5uhgPE2HSJfD/99NPK5/PK5/PhsBR+AJG3trZUqVS0tLQUSl7sp89Q1ltbtw6YeeaZZ7S0tKSJiYnAYPM64g+C9Pt9NRoN1Wo1VatVPffcc3r66ae1uLgYnMtCoRAO83CldT/Fge1cLqfZ2dkQFYf1sJsSQiHsV1n5exiHDxLoLG07wcViUWfOnFE2m9X8/LympqZCCvvw8HBgU46Ojmp8fFylUikcFvQgHmp0p8JhUHsJh+HEDPHFxcUdTHJkbm4u8fNDQ0Oampra8zO7XXO/Mj8/r3PnzunZZ5+9q+vsJY+qLsf5c3EA09eyM9FjsNm/GzsQMEo8wOcOFs6M39udlW63q1qtFhxRWEAO9OKYwp5154o24qQl7dP+LLQltjtwKNGf3mb2Su7hgLWkHc8bO0Dex3G2WZxuzLP7NdHRvV5vR5DQdbn/eACiWq2G8iytVisEvb02KOBBpVIJzg4HV8JeHh4eDodCbWxsqNFoBPtleHg4sLi8rIY7uDjKTipIClo4uOLzNck26vV6gVnd7XZ1/fp1VavVEAzHwc1ms+HanU5H0k4Q2ksWOeDvjHVnsDNHPBDg7HJfKz6HYgY8/3uAoN/vD5Rq41kIfkMUaTabSqVSYX74deO/Je0gRsTrgGfg/t5uxiIpAMX13UbY2toKtq3bLgTSfB04Ix3buFwuh4MIY2A8lUoF2xrwIga/PQhCG3cLXPn8SrJzUqntkjDH8uDKo6rLj0I2NzfVbDYHANRerzdwMDPMXPalTCYTyiYODQ2FDOalpaWQvcR6or61s3Olew84uS51XeP7JfuP++foBWfR0h+9Xi/s9e5Lsz9SehP/GNIAdk273da1a9e0srISdKLbLr4/Um4Uktt+gXTer1Qqevrpp0OWAfoa/8h1NEF0138EUNh33c4Co5mamhoI+EuDJAi+S1+QjU8pM7AQiGzNZlOXLl0KB3bS59ggQ0NDA3XQ3cZgLCn7EgdjHZNiXnsQFpsZuyi2rWKSgo8DdnA6nR44m2Mv2dzc1MrKiq5evapisahTp06FfkEXYzdil6XTaZXL5YBRVCqVPe9xP4QxIiv85MmTwW7a2toKWZPYt9iO1Oo/lodH7ghEP3PmjP79v//3eulLXzrw+r//9/9+R1r9i11QHtROcwfKNyZn8fimgfFNOni73dbKyorS6VspaK6scboBho8aQJe2N1I2ERzPXC6nfD4fFEgMou8GAjhTHINkeHg4gBDOTEfpkQJFehFlOaanpwei67CwATMqlcqOlPO9hHFJpVJaXFzUN77xDY2Pj2tubi6UkmEjle7tYZz7ERyner2uGzduqFKp6Nlnn9VXvvKVcCr4yMhIOEzUD6R6EIS1kc1mdeLEiWBYraysBGMlHjtnhDC2B3EIPTPkQYmw+t5RKpV09uxZlUolzc/PB6DYa/0S0CmXy8GYfJAOST2qqPfIyIj+/J//8/rsZz+rt7zlLeH1z372s3rzm9+c+J3Xve51+tSnPjXw2mc+8xm95jWvCayL173udfrsZz87wAD7zGc+o9e//vUHeZQdsrKyoitXrmh+fv6urrOXPKq6nGwnN/pZ9zHLNAbgYjBY2naKANj6/X4I5qJTcCCckR2D0BjSDjCmUtslGyQNgOQOKnr5CQe6pZ1M1pg95Q6NA3gxO1UaLOvh14mZWkmAJff273Fdr7GJDmdMHMR1NhaMKoIJXqqEfue7ScyeWq0WwHPKXvT7/QD2AizjQPMskBT4Hk5rJpMJrEIHxj2F2XUF7XUbD3vIAX93auk374skEARAolKpqNVq6dq1a1pcXAxzhO+TIl2v19XpdMJc48d1hevJGCj3eRXPYWfa8Z14LjmgwPjx3dhBh93pDEnmCcA6xIn40L+YSchz+bj4XKbtXo7H13v8TM6yZIxxiHGAYbkzR2OmXwxMsG+Mj49reHh4ICjMGsb+BUQn05JSBz6G9GNSIAtQ3MEPXkvaV/z/veRu9Ph+73Esu8ujqsuPQjY2NlSv18Pe5KDxxsZG8IvS6XQAvNLpW/W9i8WiWq2WlpaWwvqP57IH445S4j3G176D6/jrgOPsn5S9ZP8CyKZcTUxIwj+H4MYBkW4TtNttXb16dYCh6z4Nn+33b5VFazQaA4Hl/Uq/39fKyoparVYo+1UqlULgww+Z7vf7wT7gu5IGgrj0CftsJnPrfDfKnfKsMWkSHecZ6qOjo6GMC/ZBq9XS9evXVavVdPHiRV24cCFgPjCx0Q8efPASethCnBUCRhHbvtiYbgt7VQA/jJRDZp04wdjHZBSyGihJfLvxguyYTqc1NzenkydPhj4ZGxsL8ymdToc+y2Ru1eeHMPYgnlUGcTSbzWpmZkYnT54MRI12ux3WGzYcJYu8jM39lKPyyR8FuSMQ/Sd/8if1nve8R3/6p3+q17/+9UqlUvqDP/gDffzjH9c//af/9LDb+EiIM4swhON6XBjjXuMKh4L66F7qBUUubYPonvp01OIbOc+GQeInnnstWncQ403aHSCUA8pE2lbYkgZACK4J+I4x1Gw2B1Kn/HAmnN87MXS4T6vV0tDQkNbW1rS6uhoUsx+ker9AaRw45lK1WlW1WlWtVlOz2QylURyYiIGZB0VYIwBZGCEOysTic4CU7r1K7jgTlBT/OP1Qun8Kg7XDuQKAhp6eyPhRuw6Dw+u2PghylAr7ySef1A//8A/rNa95jV73utfpIx/5iC5fvqx3vetdkqT3ve99unbtmj7xiU9Ikt71rnfpn//zf64nn3xS73znO/WFL3xBH/3oR/Wbv/mb4Zo//uM/ru/+7u/WBz7wAb35zW/W7/7u7+pzn/uc/uAP/iB8ptFo6Lnnngv/X7hwQX/6p38aau43Gg29//3v11vf+lbNz8/r4sWL+umf/mlNT08PAP6HLY+qLnfHEX0bg2quZ3z9+2ecWRqDw87oknYepC1tM3viWp7x/dzJwYHxe3gQOYnh4/bFXuJtANiPnzVpH3XwPNbZMcjrfej9xfuUSXE7wZ05Z/q6Po4DmezFDqKjBwDR2bv9mZx9Fz8Pr3MNQHTYVdhrMBV9fDxIQRYhgL+DGAAH3vfOdJO2a96788rfDqjCyIbNxPkY8XyI7Ssfq5i8IW3XIXUw1ZnrcRkVxixmajNXff34mvS2uU5yADue63FwBRa2B1/oJw84ePkTSQM2hPcB2Y4e1KD/Y4mZevSZf9ZZgEnr01mEzJe4TrrvQ/gLzJHY9kWS9qgkiYMPDrD5eNxOjkH0+yuPqi4/CvG5y/7N/g5YWigUBnQW+6D76Q9CmRYX1wNxENxBV2nwQOJY57h4ENHPgUGvOTDs5zkQNGUvjnV+DKK7Xr3T/uQa3W5XjUZDq6ur2tra0tTU1A49kQTUe6Ah3ufj/uR+rutcdzEGrjsBtPv9W4fY1mo1ra2thdKyMQs+xk24ZxJm4jYdn/MARWyPeqDf7WeXJP2GMNb9fl+1Wm3ADthNeH6Ij1w7SV8xll4+CbLAgyK0G78cxrnPBffL2V9ifXu/5RhE37/cEYj+P//P/7Pm5ub0f/6f/6f+9b/+15KkV7ziFfrkJz+5K6PvWG4Jm1cmk1GxWAwpKTMzMyoUCgOHbeJEkJbcbrcDi5i63XGUdj8pNPdC3AngoKdcLhcOnSAqx2cw+r12VryJsKGy0fBsODrUZoOJTrTXlbMfTtFoNAYUhm/KdwqgI41GQ9euXdPq6qq+/OUva319XbOzs0qlUpqfnw9jfdRAOs/TarW0urqqTqejr3/96/rSl76k1dVVPf3007py5YpyuZxmZmY0Njamcrk8AC48aIKRm07fOhjnxIkT6nQ6WlxcTDxklHlw5coVSbcYO56VEAPjsN/W19e1vLysy5cvq16vh9Pck8C1ozSc3YnO5/MaHx9XuVxWoVAYSLGUFGoZkiI+NTWlkZGRAx96eS/lKBX229/+dq2srOjnfu7ndOPGDb361a/Wpz/9aZ07d06SdOPGDV2+fDl8/vHHH9enP/1pvfe979W/+Bf/QidPntQ/+2f/TG9961vDZ17/+tfrt37rt/QzP/Mz+tmf/Vm95CUv0Sc/+Um99rWvDZ/5kz/5E33v935v+P/JJ5+UJP2dv/N39PGPf1yZTEZf+cpX9IlPfELValXz8/P63u/9Xn3yk59UsVi8o77Zjzyqutx1jDR4qCU6x+ddks50ABgALnb42CNhLrMmOSQJZ9Id7KSsMU9XJmCH/uc7OJRJrHJeg6UKiM8zevvRde4Ixu0j0EaKt7OAnAnltR5jx8qdZXfQAJLR79lsNjif/X4/AN9xQAGWjpckIXjo4+XsMZxR37MdDHYmXqFQCPslDh0sb5h3hUJB+Xw+2DU8P9enz8rl8gBg7nqUuZJKpUL6toPju5V7IRiwsbERyq8tLCzo2rVr4SD5arUamO5+uCdgKwF9B059LAm4MidcyB5wokfsjMdlCmBnO8gUB3AYQ/qBNYDtlgQCdzod1Wo19ft95fN5bW5uamxsTLlcboApR8bi5uZmOJy32+2GeYej6zq83791kLmXfnPwxwWGHDZpzF73/nV7yoEUmJ+FQiEcTE/bXLy8E33c7XYTy7L5PuGZK3wvCQSBeergl7R9VsDt5BhEv7/yqOryoxJ0e6FQCCU6JIU9fWZmZuCwzU6no6tXr4ZyIx74flCEvYj9jr0Gv6dQKAyA55J2BBX9MEfEPwtInkqllM/nw/4hbQOG7KVkJXFAJ/szn0Wn0If7YTPvJdxTkp599lmtra3pxIkTwa5xJvNu+zvlWLGXPJue+UBAGyY6do+D7GSlewa+Z8M///zz+uY3v6lGo6HLly9raWlpYBziM+QYX2wddGw6nQ6kOD7jfeF2Jc8Snw3khAL0NZ9l3P199NfMzEwY1+Xl5duuic3NW4fzdjqdgWvzHt8j67NWq2lra0uXL1/WxYsXA/v/qCSJKOLvoddLpZJOnz4dDoBfXFyUtG2jYmdKClmR+7nvUe0txyD6/uWOQHRJestb3nJPGXKPsrihXiqVVCgUdObMmZCqg6PDRre+vh7SkpaXl1Wv1yVtG7cPwqRFUeCo+Y8fzojT4Kyo3SQJVMcB8Mg2Tj8OHukygBU4481m8549P0GNVquly5cvh1S2xx57LNQnA5y+3XMftuCcE+G+fv26nn/+eVWrVS0sLISaYpT8YJweRABdGlTw2WxWpVJJw8PDe9ZGQ1nDKmm32yE9ExAGwfF09kKj0Qg1490IkQaVxlGsRZQ1rLVsNhvKDSQd0DY6Oqqtra1QUgmm3YtV3v3ud+vd73534nsf//jHd7z2hje8Qf/lv/yXPa/5tre9TW9729t2ff97vud79pwb2WxW/+7f/bs973Gv5FHU5TGLxo1CD6J6uZUkiVlR7iC6ADQ7iE4gGaeGfQNQj5Rf2uHlWpzdxvdigE7aPkjQ9R+1o2l/DMbGrJj4WXEAPTOJ8zEceHen0gN3Hlh0ZzJmbgFaODMKsBfnlLqcni1GW9H/ccDAS9+0Wq0djrEDAwj7KHso491oNEJAFbAWljb9QhCf54NI4MC0z0NqX0saAHlxZKnZ6ixBB6c5t6Xdbmt5eVk3b95Up9PR6uqq6vX6wFk5vufQtnjcGUMAf2wqJxwwx+Mgkpcw8TH04I2Xc8Fu8+AFaeeuu7iuswC9DwmUDA8Ph6BKUuCh19s+HBDAGdCGecNhgD5vsWW93XGGJ30AsMG88YCPrxPvc/rAySejo6MqFothHnp9eeY8bSH9m/Uep4DHGQC+PrwNfJb/2Tuw2QFpHgQf41huL4+iLj8qYY6Pjo6qXC4PrO1yuay5ubmBNbm2tqabN28OlE990MTXLWuaUhnsWdLg+R3u+7E/JV0X8gD7t+tiPoPd42xtt7di3XzYwr3W19e1tLSkWq2mTqejV7/61eFMIy+3lSReO52gKHu0kxfRSa6rsb/4nu/70i0MZ3V1Va1WSwsLC7p8+XIoUVqv14MtEGcQIE4E9H7NZDIheIBd4QesIj6GsR3sepTxZnzjQHwqlQqlS4aGhnTlypVAfNwri6nXu3XeD/gMulfaDqB4YL1Wq2ljY0MrKytaXl4OevCo5HZgtgdZJiYmlMvlAviPfmU8PEPxWB5euSMk5Ud/9Ef1hje8QX/n7/ydgddrtZp+4id+Qr/2a792KI17FGVkZCTUCZ+entbc3FwA03GcAF3doC+VSmGjW1tbU6FQ0PLycnC476cSRyl4KioRXv5OYuMcFKRNcvzc8XSnCKciiZl8LwRFA+N9aWlJknTx4kWtr69rbm4uGDHUnosNlsNsC8qLMkCVSkUXL15UvV7XlStXtLCwENjVnoLnNWYfBsGgAXzZTcmhrGGVvPDCC6pWqyoWiyG4gZFDjXwYkTAwM5lbBwk5YwFn2RlfGDb7iebGQIWz+3b7ro8vc84dfAcLHTTzYNODZPAfR73vn7wYdHk8R9zJ8RrAOArsywC17gQ528T3TM4n8YCxs4Zg6fpvgFPa4wx1d4oc4IsFUFIarH/qjC7/vgNmScY7zyltBwb8AKzdnG2AQ0mh/b7neLmJOAjhzhhOk2cHOSCbBP7vNs6MVdLrznDCfgC8x/YCxIdlNjY2Fg6aoz94TgBqrs0Yexu8HA8gNd91ADbJoadmL8z1xcVFdTodLS8vq1qthhqnPld97nHdeF6ht2KGVdLccF3lpVOcjefX9f8dfPf+j53sON0doc/QtV7bnQyO+LsABw7k+9yLMxhi9jYBLn4nsbH9nrF96vuFg1LODGQfkG6dhdBqtQYAi9g2iPvQ2+595oEOn0sxI10aLM9AII4AiV/rdnI3etzbcyx3Ji8GXX6vxDPJPBuD+tkjIyMhGOeAMGdgSdus71qtFsp5PgjC+k0KfhPEjH2OOBgpDZaCcz3pQcyhoaFQnsNZt+AYezF575WwN6Ifa7WaLly4oG63q5mZGZ09ezYER/byfb0PyYR3EL3f7w8A65J2YB/YNQDH1WpVN27cULPZDCA/hDzaA4Odg215PQ4sx0z6WC/FGZgA/DwLz4hOduwEncRnHG9x3cwZdENDQ5qeng6+9G5AN2tmY2NDa2trwS8H8HfbjDPuwLxYp+h2MCh/BoLAh4UDeT/s9r7bP9gc9JX7E/vFfZLW4r2WY598/3JHIPrHP/5xffKTn9RTTz2lD33oQ2Ext9tt/fqv//qxst5FUqmUisWizp07p3w+r8cff1znzp0L6bdJzgOTuVAoqNfraWpqKhxk8uyzz4bDrKgpdb+eC9Ydad+wY/P5fHDGnQV1p8Axm6ovVAcInJ3vaeFHsbC5//Xr11WpVDQ+Ph7qr50/f16dTkfFYlEnT54MEVvS6w5TcBo7nY6uXbumarWqa9eu6amnntLKykpIG0NJMVb8PMgsdBcAcQAMSigkRb83Nja0sLCg5eVlra2tqdlshtPAz5w5E9iDY2NjarVaIcWs0+loZmZmoNahR/85+IWSS9TYJ0ARR/eTngGDlH53NmqSuOHBHHcA351sB9kxbp0t8SDIscK+f/Ko6nLmvf/vAKeD07E4+OWCE4ieHhsbUz6f18jIiMrlcsiIQQ/idOGoeD1J7ttutyXdKgeGkw5QG0vMKuc1SoD4/XjW+KwUaduxo1/YM6Rb+pV9dGhoSMViMehu2M2IA/ae9eVBPZ4JvQ0bBya4XwPxMxt4PQbkPZ2Y5+C3g9IxC9z7DfY1wX4CH874XVlZ0dramsbGxtRoNJTP53XixAlJCuNP6RTvC4BXMhK8/Q4qMx4xMy+25brdrm7evBkc7StXrqjZbKpSqWh5eTk48MxNP7yUeYdOwTbw13A8mUt+uJ479DyjHwZH32J3OfDsGRQeUHBwHYGdJWmA3UifsS6wm3gWMgvQgd5+sgO5BuzqQqEwsB/EARsvAxSfq+PBKdrNszHHmT++JpLAegdFONwegkUul9uxzuI57IExD3DF4tkV7D18z4N48Tzk3vs5vO0YRL+/8qjq8qOQfD4f/AB8MohupVJJnU5Ha2tr2tzcDJk+6XRajz32mE6dOjUARn/1q1/Vl770pV2BuxgUu5fzHjwBnYmuQ38S/PfMOAfZaaPvFRCXpFtlQpvNpoaGhjQxMaFCoaC1tTWtra2FM0TANtBPu9ld90J8rwYrWV9f1+/93u9pbGxM3/qt36pyuRwyDwiES9vlydgL0TOSAoDu+gm94uIl/bDRut2ulpaWgu5++umnVavVtLS0pIWFhQFdMTIyoqmpqYCj8Do2WSqVCkFkL7uFDSclEyawUdLpdAiie2aCl81zvxcpFouBaY5dQx10bLxv+ZZvCWdB7QWiE7C+cuWKPve5z2l0dFSTk5MBI+FZyLYDYB8fHw/2ADYl5ZHxiTc2NnTz5k1Vq9U7m0C7tHk38XWCDUAJQIIVbt9K28EZaXdiaUyyu9dy7JPvX+44p//f/tt/q3e+8536xje+oX/9r/+1JiYmDrNdj5y485HP51UsFlUqlVQul4PxvVuJBWfQ4KwA+uHoHGVKi4uzY9iE3cmNGVGHAc46G8qBDRQ09wUkPsooHsoaJ5g63aVSKRxqgtKmrTFgcDf3doB1fX1dzWYzHHS6uLiopaWlAAz0er0AAsXR8odF3GF2Jz9WNqybbrcbapQ1m81QAx5QB9YhtVPd8XbAAMea0kEodoAuyjHtBqD7HPa0LgA2Z5UnXcMNG2eXO9PUQYK47NGDpOiOFfb9lUdRlzso5uLAU8ySlbZZW/4/v9lfHLDGKcWId0c1aS9iz5c0cB0PegF+x0xvD5D58/C+62Le8wCzg21JOtH3JGySOJPM2+mMX0k7AEP/2/c1guDObOL+9I8zdn1MD7LeeRa+63WqkThNGjCZz1PSa3NzU/V6PZTFIvjhdlu8Z8dziD4BaIeV5vMkHlcEMLjZbKper6tWq6nVaqnRaIQydTDEsIccDHE9wtjxnHGQw+dRUn/7+4ytB2K8v31OOxMvTnn38YjHwq8JoAEIQNk1SUG/OxklzrxiPtA/fk3ve3eGAQs8KJU0n1j7zDvmvwdEfG369Xkm6rWzVnYjWMT962PjYxgHkuJxi8fXAXb+jlmPu8kxiH7/5VHU5UchQ0NDIUMYQb9ns9mBjBYykGAJs3cCLFNnfC/A66h8UvZBtzOcDevAKe3x4CDXAFDmdd/LPchKAIL9ww/iTtrTj0r8uTqdjpaWlpTJZHTmzBl1Op1Q5sbL28Q62W05DxDj9yVhON7nCH4jh4iurq6qVqupXq+HzDcfNwBz3699DPwZ47715/D2O3Dr+s5fi8Fz/1zSGIJDQTCJa5zvJlyr1WppcXExkFjAJqRbwQRIbZRJGxsbC2eh+JkonGnDZ+O+28+aiwkCsex2Dbd3PAADPhFnvvL8B2nbUcixT75/uWMQ/ZWvfKX++I//WG9961v17d/+7frUpz6lycnJw2zbIyNEOCnLMjc3FwD03Q7lisVZS7DDKAdDatB+Dv85TPGNHCABQJOIflIZl8O8P9f2E8FHR0cD48bBzKNa3CieTqejGzduhPSkzc1NFQoF3bhxQ2fOnFE2m9Xs7GxgLnLwqgMWSYGHGEDlN0wtnOxms6lvfvObunnzpm7evKnnn38+KG2ceGdg79dZelCE8e/3+2H+oVD3quPpyr5er2t1dTUwDFB8AGGwNLgfRgiGI4p9a2tLpVJJ9Xpd3W5X+Xw+gPH1en0AtBsbG9PMzEyom0apHwAPmArNZjOk+3mdZO5P6ui1a9dUq9UCOB6Xpmk2m1pfX9fNmze1sLAQ2OjHcizSo6nLMWLjfT92EOP/HXiMQSoPeg0N3TqIcnx8PNRQLZVKO9ig8e/4ngDKfgAlejwGyPfSoe4UoRMA/bgOe4IDqw5u4mzAnibg74ECgDkcPd9r0En0Hf0Zs84IeLtznRSkIDDp4Lu/H4+h96sH1JOcwKSgA32FY8z/9CsAZ71e1+LiYjhbA3sMcBxdkslkVKlUVK/XB/Zs+h9AgbHy7CPGBkYVNVNv3rypRqOhtbW1wKzjWbyUEEEdWIh8hvvGTHe34Zyc4H1MZlUqlQosNuaNS8y6dtuVvoz7Ar1KQFpSYEbCtPO15HXYYZ4549KzCZC4TzxrLQ6AuA1JNgUp2R6UBmhLp9PK5/OB0eh9Biuz0+mo0WiEec1zrq+vK5PJhPcBBPyQcOZWt9vV1tZWmFeABb5WWGMeJIgBlt2yOHzc2If2w0I/lgdDHkVdfhSSyWQC8Mfac50Hoxj9SJaIZ1pJt/ambDarqampkLkS++VxQPNeCW2BCe7MZHzNfn/7YEre47V0Oh18U3yqbrc7EAz27CMCy+vr6wNMaAKZsNI9S+mgzxPLnfSf24ZXrlzRf/gP/0H5fF4zMzOByTw5ORnKhPr+yF7q5AACBWAelHT1A1MlDRDbvvGNb+j69etaW1vT4uJi8BVdl2MjNZtNbW1tDYDpXJdsOrfjJAWf3u1GMtAkBbxhc3Mz6BwPPnt2HKA2ulAaJA84ZhCXKPODsG8nvd52BjYZA9L2wZtkQHBvytsUi8WQTeckAsbk9OnTobRMtVoNOtQzxb3f0+m0pqenderUqXDmSnzGTqvV0tra2o5sV65VrVb1/PPPa2xsTKdPnw6fQUe3222trKxoc3NTN27cUKVSCcz53fqGexzLgyV3BKKzKUxNTelzn/uc3vWud+kv/IW/oF/5lV851MY9KpJKpYJiHh8f18mTJ1Uul0Nt9NuByx7RBozf2trSzMyM1tbWVK/XVa1Wtba2dhSPM9AuHGEH0XHiYobwvbg/DiKbqqTQBlLPHGw+CkHxttttXbt2TalUSisrK7px44ay2ayuXr2q8+fPq1Qq6aUvfakmJiZULBY1PT0dHGFnNMV9544fDlS73dba2prW19e1uLioxcVF1et1fe1rX9O1a9dUqVR04cKFEHDZ2NgIh1kVCoWHqoyLCw6xH7KJsbeboKT7/VvnC6ysrIT0TNgTHlSIMwU82gw7BUC72Wyq1WppdHQ0HPyGcsT5zmazOnv2rKanp3Xu3Dm96lWvCiekZzK3DqR94YUXtLq6queff171ej0cJuwgeiqVCqn9+Xw+GFIElDKZjNrttiqVirrdrq5fv67r168PpOo9CHIc9b5/8qjqcgza+CClWNx5jLOnJIVyYNK204IuLxQKmpqa0ujoqEqlkkqlUgA+k2oPx/d1J4i9mLbwPYB8HJl4f3YHBn0cl2WIA2sxyM/12fMciOWQVAcRHIz2UlQOCPM+ZTnQwZJCwIA+dxuCPoG148Dy2NjYrk6Gs3qwC+gfZ4/5nh0zrgFivfa2g7dee5P+ICBJHwGu8ky1Wi04g555ELOzmKuxU9ZoNIJeuXr1ajhElMA8/YP9AxML+8sz9Nye8MNY6SfmoQc33Hlz4JfrANLEjjTzFqAmlUoNgAyML2PF73w+H8ZmdHRU3W43OPA+7wBmcJ7pT553a2srsEoZZ4LstMUZkz53vV848AwGahxkoeTR8PCwxsfHdeLEiTC30+m0Op2OFhYW1Gg0QjDd67oz9oBMjUZD6+vrA+QafgBgOKiM8hKUcnTwwuuwJoF2bjvz/Mxz2sM4MH63k7vR4962Y7kzeVR1+VEIAF2hUFCpVApsctdJZJqx5zmwjL2QTqdVKBQ0MzOjZrMZAl+xHMVch807Pj4+4Me4rqfEo/eDt5lyL+w57HvtdntA5/d6vUDW6ff7gYXcbrdDuUuC8vTZnZR0SWIHH7QvsQEk6cKFC7p69apGRkb0xBNP6PHHH1exWNT58+c1OTk5YC/RL25LEHjJZG6VxiH4Wq1W1Ww2B7AH/Lharaavfe1runTpktbX19VoNAYIG4C/BGc516xQKARAGZ0HuUDSgA1VKBTCGHBdB9GphuCBXfAa1/secOl0OkEfeE30mBHPM3vgfT9C4BbyV0wmIfODIHc2mx0IXrh+9KyCmZkZDQ8Ph1r4MP6l7cwr7AgII2fPntVrX/tajY2NqVqtBnLc8vJy8OsZt/gZJIXsArJW6EMEIgbn2iwtLQ3YyPF8PWo59sn3L3cEonsnDQ0N6f/+v/9vvfKVr9S73/3uQ2vYoyQoYRwvNqCY7XO7ayA4fQ4e7pb2ea/FI50xs8wd9XsFznJdZ7N5v8ZtOUrBQZE0wDKqVqtaXl5Wt9tVqVQKxpi0fcANjDBABhevP4uC7Xa7WltbC8ynWq2mRqMRHKy4hIePTVIt/odJGOPbPYfPES9V4FF/BzpiEF3aBp1iRYGTjnGVz+claaA+soPoExMT4Wd8fDwoWcZ8YmJC6XRaKysr4TBTDAQEY5C5g6POvgCIjgFAvfajDCjtR44V9v2TR1WXe51nn+t77Q0xuzlmb/K6NJgFFTN2Y/YS14kB5nju+v7jjsxu7QX4wvHy0iVJ3/dnjB0lf3bvI/+8f4Znvp1u9e/zOfa5+JnR24CggLD+E49n3Mdxn8IW80BI3F4HCT2NOXaQuLYHYWEYSwrAAu12Z9D70MEZbzsguusc2NgerI2fM9ZRcTDc52PcDp45KVDv7aONcZ84I9vvEdt/8VyI57qvn/j9+Pvc16+dJDF7PR7L2B6K54mkHW1kfD14T9Ail8uFYLgHb8iOo0YwczK2JQjeMK/a7fZA4AMQhOCJz4d4j/PrOtAVC9eP9zuf/wQ5bifHIPr9lUdVl99LcZ/AM6RifcBekqRDXb/7vrHfdXOvJGnfdIltFfSBZ28RMIwZxa5vks4dYU9x+8j9qrt5nsMUzyoiw4tMH/S4B5bdxor3SAK73W43gOUOKEOwarfb4fDQWI/5XHS/1PWFtL2nJ9l+fC6pTBmv7WZb+uuM227jjo3G67vZiLQvyZ72e7nO94PefQ75+14qSBoMIjB20jZpA+CdPofcwLodHh5WuVwOJV4JRHAtsjA4L8UPlo91F/3f7/cD9uPkFZ8HnmX+oMixT75/uSMQ/T/+x/+4I0XsySef1J/9s39Wf/iHf3goDXuUhGgeB22SMnY3yoRrEmUGdN1rozpsccXChkdwwMtT3EsA3RlWREZdAbnzvds1+L2bocHvO9kc+E6n09HKyko4IOPSpUvK5XJ6+umnQxrwzMxMOKSuUCgEVmBspPhBkgCk1N7s9XpqNBoBXG82mwHgLZfLymazQcHHrMOHEUSPgwEA2YDWCOsFRXnmzBnlcjnNzMxodnZWIyMjoXSBs+OS5gWvEchypQ/TgnHO5/NKp9PBYOr3+5qfn9d3fMd36PTp05qcnNTJkycHDmpbX19XqVQKpQLa7bZWV1d18eJFXb58eWAettvtUN+v0Wjo+vXrA+vPa/pSRxfD8UGRY4V9/+RR1eUAmknz3J1LB27RHxi/8UGQMGCS5hyMImk7hdUdHXc4+JtgKCAk2TAc1OXf9T2IPQeniH3DnXa+RxscmIwZrrzPczqT2p2yJPDf33eHwp077hc7RP4ajKL4vVwuF5wY+goQkef38YLlnBQQcADWHURPx2fOOECJ0HbStWFTN5tNjYyMhDM2CISz78dpw7HTyxhxT7LDvD4r6cT0N/aepIHx8wMtmYteugVbKZfLDfQn8x4mGPOca8XzmWfytHbGWdouFxKD6fQnrHcXZ+OxHr1sTAz8SwrsctiVXraAvuKHgHMqlQrM7aSx8LkSZ6rApMdOyGazmp+fVz6fD6xPD/aMjo5qa2srsAgBwre2tkL5PYIkjMfQ0JC63a5qtdrAM3tmBsEZmO2+v3hfxn/78yDOtPSsEeaNr4+95BhEv7/yqOryeyXpdDqUOikWiyoUCuFgSM6ZcHFd5vs566XVaoU9Pw4cH6W4DmV/cFCffdB1P/oXPcue0el0dOXKlXDt3crP4gP53tfvb5fZ9Ewh7nlQiYOe6JPD2De2trZCxtDw8LCeffbZ4BuPj48HFn0+nx8IbLrOwI/e2NjQ0tKS6vX6jgAxGUgbGxsDmY8epM5kbpX95TBRCFaxHkDwPR2MJevJgeVmsxkCs+12O5TpYex6vV54H724tbWlarUaSowVi8VgI2GTYDd7SV2eGb8azKLdbu8A6rEBwbNGR0d14sQJzc/P7wi2YzOApfX7fdXrdbXb7ZAdOjQ0pFqtFogO0i29NzY2pnPnzmlzc1M3b94MNhcBjdnZWX3P93yPTp06pVwup8nJSWUymbCnuq796le/qmq1qlqtFrItJA3MC8aC7EG3fSnR5/14t/rzMOXYJ9+/3BGI/oY3vCHx9b/8l/+y/vJf/st31aBHUVj8MIy9zMlBxTcoNnZSpe6HwnbnPE6HPwjT/k6FDYs2uEO3n3rs7uAlKXbf8O9mc/BUaJTryMiIrl27FiKfs7OzGh0dDexkQASUFG0ghXxzc1Nra2thA+dZcMpwqlFUhUIhMJgajcYAeHS/WRN3Kzi5GDGxEGkmZXNqakrFYlFTU1Oanp4OjAN3/m8nzjrB8ZcUAhIYOrAJUZRzc3N6yUteovPnzyuXy6lUKg3sBb1eL9R5W19f15UrV1QoFLSysjLARpAUMg+kW4Y/nyFKT6kfDLQHKdp9LPdfHlVdnnSAjzSoPwHcPBDsYCaglrTN/HFgebf7sc79EML4RxqsHc3+RbvQRbvppZjJ6uChSwy+811ngvNczj4DzHOJAcY4wOxMZd4jrZa9N2bJOtAe2zCAxV5fE/CWPd6dFVi8SW13ByZ+JmdSO3CclLGDY4nO5b44sTwvzqQHVJKY5vQZ9+PclKmpqcBy5qAs+pa5wpgBknA9B3ccUI8DFgTk3YHjWei/mGnpIKvfy9PZ6Sfvd8YK+4y2xOuT/vHsAw9w+Lj2er3Q3wA1cTbabsCy624v7eJz3O/rYBP6NZPJqFAoaHJyUqVSSWNjY6EMBDYYgAjzGPJCo9EI4AmgipcCIqDh9inzQ9KOv30Nxu2P11ss3l/0kwenDguoOpZ7K4+qLr9Xwj5IFgmlsPysCfYEPy/CdYgHngnMEaS93yB6DPI6wOfBSdoKY5dn3traCucypdPpsI/FAXu3pzy4j1+OXne/6G775bD7td+/VdozLolbLBY1OzsbynWRIewkpWazqX6/H87c2NjY0Orqagiq0O9gP34eSCqVCsAwAVUvLcTf3q98VtpmXzthBJ1CmSFAeC+RQva6z41+vx+C6MyFfv9WSblOp6PJyclQ7oSyY+hF9G98iCdl1bLZrFKp1MA9EfQ8Zwlks1lNTk5qfHw82FDoReYd5xKQNdBoNAJzPJvNBpvISTSA7PTV8vLyQCCmVCrpVa96lV7+8pcPlDylpKHb4s1mU//1v/7XoCc9+BCPBWB70rqMfYJjefhk3yD6k08+qZ//+Z9XPp/Xk08+uednP/jBD951w47lwZNYaSal495r0Hw/ktQe3wDdoXagfy8QPXZO/fWDiju4fjAYRl2n01G9XlcmkxmI4iMoQKKYKF6MFIwX7oUDhtPmDqor+YddfFxjMAb2XS6XC6wTjObYWb/TvvCADoYjjjVGQDqd1sTEhHK5XAAA4vvRXumW4i8Wi1pfXw/st93EWZW0I6ne64Mmx1Hvo5UXgy6PQfQ4WOqsWGeT8Rvw0VnE0i2d5wcDwjpLEjemkfj+OGM4UBsbG+HAJxwUZ255lokH7pxJj24hSIqjllQnPG5vEuMXYDn+ngMGXi7M7QKcLtc13p+upxzEjpnPMSgMIOrAMjWwkTh4EgPp/qw+H5JAYm+bAw/+Hnuv9z/pus5i8rb43sdvn1cEd+JybMwLv7/bM/4MPkYxuOzf7/V6O8DamIlO270ea5Jj6My5GHTyeeltcRss/s7/x967x1i6Vuedz67bvu+6dPWVc+ESGAMeO5YZIXBs40kgwiOHEFsmEwmRxCCjk3EMRxqPz9iMj+3YiNhCLY+NsSUnOOOA+cMhnkhWAszEeDBHI4HBMwMZMpjD4Zw+fan7vtZ17/mj9Xvr+VZ9u2pXd3V3dfde0lZV7dr7+97b9661nvWs9fp64fsA4BANAMMjeOXfjaQI2hrvQ598DaDXB4NBJljiWZe+NgDmfax4TqOtGfvOesl7DqO+9Gcq77n2fvmY8HkfKx8L1sCo9tDtggFjXX58eRh0+Z0S1ynxuXd/LPqKkjJ7AjqZTDIYybfKuL5VGebzsl+Siett8owgzyTz/gGMsudG30raLyGF3tnc3Ez7Ad9FPzKWeX5nBP4j0O9g8t0gBPX7/eRrk2ko7RMSvK+M5d7eXsoQd3IA+oN+5gX2nRTB99inXd9H/VwoFDJMdA/08pOyYv4/2uI/6Tdgvx9wzT18/GmX2xi8B4lgmA6hLZRa4TU5OZnRf/z0w0adoID9DPA9GAwSyO52vs8fmWuw68+fP69C4WbWH2RD96PdbpmcnNTi4mIKeHN4fN69fF6jzXhadd698Mk/8pGP6Nd+7dd09epVvfa1r9Xly5f1/d///UM//7nPfU5PPvmkvvrVr+rSpUv6mZ/5Gb33ve/NfOaP/uiP9IEPfEB/9Vd/pVe84hX6lV/5Fb397W9P///gBz+of/Nv/o3+3//3/1W5XNYb3/hGfehDH9J/8V/8FyO3e2QQ/ctf/nJi//zFX/zFoQ/FWA7KaQaxRhFXZrxg/jjjOzqmd0PcYPAXSprf2QC91IsruKhU3JhwxeF1pdlojzO3vtFubGxoYmJCa2trun79esZBZLOOhlieoqzVaqksCRFvaT99DoeOg7K8Fvgwg+Z+E2e4IYxfqVTSwsKCFhcXNT8/rwsXLqQapoDTtxMAwvhj/qhjzrro9/sJtD979qzOnDmTmAZ5DjVzw0HEHF54WPsA/7gGctr3njGIfnflYdDlsDgdCKI/OEAAYe78eXql1x12cLLb7SZHp9VqpT2XfQSnI89BYo/ixcGbOGA4KbBo4sFMwxwgB2VpP3s7fXanzHUb13Ggm+8S6GU/8nY4AOEgrx/M7IdhDXMsnLUk7acrA+biKPJeLJEiKVMChdRh7yP7soMe0n7AwX/n+74mAMSZdz8QHvuA7DAHO9vtttrttvr9fvp/XIvOxOK63W432Rg4zQD40Smlfc5Ko/8+vu4s+3qmDx64oW3MRQSx80ByB37zzulxHZvnuDsg4GC/O8KszUajkUAhSjJwPpBf2+fCg0O8RxuHtdWBJeaoUCiksj3YEPwdg/F8dmpqSr1eL52Vwr7DmEZCg+tyZ7V5VkEsj8T6Zb1HosdgMMjUgfV7M6elUinzPBwnAD8G0e++PAy6/E4JzwN+kZQ9M2JyclL1ej2Bj71eLxO8xa9iHyB7mBKKHtg+KckLkiGRHOa6vFQqaXFxUZVKRZubm+p2u5KUSolub29reXlZ3W73AFjYaDRSQDwGYaX9vZOxoRTV7u6uyuVy8oU8OycSghxU5rPYRdwXe21ra0tra2tDDxk/Sdne3k7ZQ5TXisFMD8B40JP2+6GSZIA5q9qF4LmXsnPigO/NjFGsfS4pkeomJydVrVbT3l6pVJKN6tgH7aCdbodSVmYwuFk6RcqWoXNgHxvFS8VhU+QFlHjGeJ09e1alUkmDwSAx+QlK8Vwx72RNwLqXpNXV1dS3M2fOJIyF9U5beB4k6cKFC1pcXEyM/9XV1UwWKVn7TmosFot6zWtek8rm3LhxI7Mv+PORR5S4U7rObavb9avvpk/+yU9+Uu973/v0kY98RN/3fd+n3/md39Fb3/pWfe1rX9Njjz124PPPPvusfviHf1jvec979Ad/8Af68z//cz3xxBM6e/asfvRHf1SS9Mwzz+gd73iHfvmXf1lvf/vb9alPfUo//uM/rs9//vN6/etfL+kmEP9P/sk/0X/1X/1X2t3d1c/93M/pLW95i772ta8lW+0oGRlE/4//8T+m3//0T/901K+NJchJPDzDHtA7JQ5SSwcPiMoDDPjevZZhUXmcTT+cIm+TR1G408mL6+O0HGce+Lwzhw9rv4tHNWE0w5CEleR9cTaj9/V2gePTJNEgc6HfpJUBZpdKpTT/JzEGfg2MDlLypZupgZVKRbVaLSnjYUwV5gUjDKDgMDnNke3DZAyi3115GHR5BJAQgom+lzuwxnv87kFSdAjgLi8cIhwIPitlA7LuqDhohx7AGfKDx50962CwB4jjffIclhgoHcbicj3pgLuPAfeJjhTf516AmgQKIivfQUF3Rl3HRsDf2+N9YK/MY+PjDDpYmBcwj46x63neZ46j+PdwIAHWe71eYqzF+tIAA26TeHkX/4m4/RXnzsuw5DnXfH9YH/zZ4L4eiOC+w8q/ObsZWyS22//2ORjWPm8X/0Ov4tgCFnkwie/62EVg3dsc2xKdX78/QS9/TqNNxV4QMwCj3s8LKvja9qwa+hJtOAdvfC7y5tjHlGt5OxygP+xaedceg+h3Vx4GXX6nxPfrqJukbLkXKX9v4Nlzxq8HxE/St4rBwfi/6OfG/YE9s9+/WfuaPQn9jL3jfn5edo3rbK4f9R+AOez8uMdFG8j31liCzH112no3fFb30T1AeRgTnnb5fsyaiHZc/Cz/w4bDVvX78tPBfA9+x0AKaxJ9zb1cZ+WJ34cAtZ9Fk/dZtxedAHGY7sBu42wTyChbW1sZYgZjBYHCMwV5EfAfDAaJyAEI7s9LHJu5uTmdPXs2BRWcQEH/GDP6ODExkRjsMSB0mB67W1jd7d7nbvvkH/7wh/UTP/ETeve73y1Junz5sv7Df/gP+u3f/m198IMfPPD5j370o3rsscd0+fJlSdKrX/1qffGLX9Sv//qvJxD98uXLevOb36ynnnpKkvTUU0/pc5/7nC5fvqxPfOITkqR//+//fea6//Jf/kudO3dOX/rSl/QDP/ADI7X92DXR2Ri/8pWv6Du/8zuP+/WHUmDocCLv5uZmYswcBYxFcWXFKdCkDp0049SNaRzUCEbzApj0uqZ32yh2B1vadyph5cEQBMB05pYrIMQdDa8RiUKhREqsIZnXbzcSYC95ZBPDo9/vpwNAHMzhGnkRTVckMfXa14sDAf57HLf7UfKcQ0kZELper2tubi6B2Ld6LsGogoFQq9U0GAwSWw2g57Ax538cWNjpdA6wUscyltuRB1mXs9dG/er6y8sgOGCLEZ2X1ZEH+OGkwJjywFw0aGEB5d2b/R/HHb0VAV0H0N1Zc13hTlMcC5wzB+XQ7zjbOKzslX4v7w97mbP1KZvl+lXaP3AVcaDWgXoyAGD/dbtdbW1tpbMlqO1ZKBTSPs5P9DoHY0a9AKjJWLgeJG07AsBxn6Zf6BaAAvQJzqbbBehjZ6pLyoDBBBwAKnCUGT8PRnhwIIKde3s3a7ZH3ebsRF9DOPg+Rn6oJCnS2FAwsuNZLc5E42/+5wCtPwsOEtBGz2501j/nCvkhb864c+ZnLAnk4D7zyzh6cCTartGJ9zFkvj0g52CG28l818eDv7EBY2CEtvle4Zklw0Burk2bY63iCELt7e0loN/Xml/7brA+x3Lr8iDr8jspDmy6fgU4b7fb6na7mbOF3Ibn83t7Nw9glKT19fVks+eB87cqcY+U9rN3pqenVa/XUzkRz+jhfIVms5ky69gHW61WOuiYetjso+gJ9gRASh83mNUOoGMDAGZ6QJlAMvsnbGV0eV5AD/3o2XCzs7OqVCrps4PBINkM/n3PWjtK6C/say+9It2sg00W4mF+G+OD/8dhmQQw+v1+yk5ibhwInpiYSCVbEcbC9RHtiuQP7gt5y20QD8J6QMT1g3RTJ83Ozqb/xSCN60rX4bR5dnZWjUZD3W5X6+vrarVaGfvPCRYc6EtZNsbFz73BLsF2Bf+irdRPZx24Ten6Gl3rh6BiL/X7N7PFPYjkY4VtPDl5s9TMjRs31Gq1DoD0h0kMOp20RJv3Xkqz2cz8TYAkyvb2tr70pS/pZ3/2ZzPvv+Utb9EXvvCF3Gs/88wzestb3pJ572//7b+t3/u939POzo6mp6f1zDPP6P3vf/+BzwC85wlnIsQDug+TY4PoU1NTevzxx09UOTzoQuTXAVI/EOk44pHQXq+XNqi8COGtCg+6pyIRJZSyB1Txe61WS4phWHTzTkncONwg8pqdOBc43Dhmkc3jwnWcseDRUNKuXRHSDhfGampqSvPz81pcXNTMzIxmZ2dT5BWQ4Pr161pZWUlzPGxTdBCGtg1jVvjn/Hv++/0u0SFnfqvVqmq1mubm5rSwsJAOCvHU75MUB878Hg70HBUtdjCj3W4nY/dBlXut8B9GeZB1uYOa0WiNjC6eM6+JHgPSrh9cv2Cg4yS5gwFg6yAietUBNUA8r60Ji4b9zB1YB7TdwXWnywHxyATzvjk46N/BNuGwJnSK6wtnqjkwDMDp/3dQGen3+8mB9yCCs9larZa63a62t7fV6XSSc0W9UQLSOGTsr5EpjaOEAx+ddWeWeSo77fS1Uijsl+ggs4g1QF+9HAvO/MTERHLwmMtSqZTGyjOjfB0yf6wvHO3d3d2Mfslzpr2PMYDLvHs/AfnRNZ76T7kcQBJKm3C9Xq+XmGAe0GHM+G5ci/STuXPSAw4R5AMy70j/dhvUD0PDPmPcmQcPOjGu/B7fiwF51oTfy4MCEYjz8oG+nnw/8bGIQpsiSYI1Gsso8B2uz2eYd4Ay5ieeuxDXCiAMJKBR5G7r8XtRR/XP/uzP9Gu/9mv60pe+pKtXr+pTn/qU/u7f/bt3qosjyYOsy++UODjn44b+oNYxOoq9kbrNTiTb2dlRu93W3t6e1tbWtLGxkc6rOmnBH5eUnudisaj5+XlVq9XkS7LvonPX1tbUbreTXz8xMaGNjQ11Op10TfqDrkE/4Itubm5m9hjsBklJZ1OiA72HbQWITjAQAJPsLABOt5co18U+75k8HhgdDAbqdDpJb7G3ovNH2ZcAV0ulks6dO6dKpZL2PuwTal8fdT0+Mz09neYFMLtQKCRchbXlh6L7uDEGDlrHIClC1hu2BPfEbvJ2M7f+N/phcnJS8/PzOnPmjPb29tL3XVcx7zw7U1NTGVvh4sWLeulLX6r19XV9/etfV7PZzNwf2xKwfnZ2NvnkjiF5cAZdxRrZ3NxMdlGlUkmlap2YQd+iLqTkLWPe6XQyz5f/5LNORNna2tKLL76ojY2N1LdRBL0f/YuTkpO85u1e69FHH838/Qu/8At6+umnD3xueXlZe3t7On/+fOb98+fP69q1a7nXvnbtWu7nd3d3tby8rIsXLw79zLBrDgYDPfnkk/obf+NvHCsQfUto58///M/rqaee0urq6q18/aETN1qdSeVO42EL1llazvjhIAUYVCclDip7qjGOjf/trCFn4NxtyVNskYUX2+s1UmP7efn7fMfZUn69mDLv4kBLrVZTvV5Xo9FQo9FISoS/AS4wag4DevOA9OhMOyMuMv8cHLnfJTJKJR1Yww6suVFy0uLXZv34eMM08MNgfE4womBittvtkY3B+03i/nbc11huXR5UXe77etzfHQyTlAHM4v7h+0Qe6HWY/nbA0PeBvOvE4O+wPvl989oc25H3vrfFGbyuz5zVfRjgF/92B5t+xTbm/T1MT/n/vB9eGsOD+rR12NxHPR/tlzxdcNjYeT18P4/E7SXejzZD1EvuPHoZl8N0tJMDIvPc15R/N+6dPmc+hvGzw9aYr++4piMIHK/jbXNA3UHdPCbcYc92XAd5oEPe85f3+2Gf9/Xp9V/jOA17RuNelGd3ertjAMKvFecljoev92G2etzrfHxHyZi9XT1+XF1OHdWf+7mf05e//GV9//d/v9761rfq29/+du7nqaP6/d///fryl7+s//F//B/1T//pP9Uf/dEfpc9QR/Wd73yn/vIv/1LvfOc79eM//uP6P//P/zN9ptPp6Lu/+7v1m7/5m8dq752WB1WX30nxfQibPNrZeXtQXlCdn35ux50gJ+X5NNGvjWdeSdnzP/L2d98nI7Eq6oW88WOs/GcUxmmYXeQ2ie9Vrp/pf7RRXN9GH2+Y+PWKxWIiABCkhSENiTCCvEdJ9LM9GBP3O9/LwYliSTYPGiDDcJeoLyQdsKXybNe8fThvn3Y9FnWNpAO6PdrUPq+R+OD6J/rSrv/8s4DT0Z+ObXYCDGQED/ZEWysG/QeDQSJKkKXyoMlJ6PHnn39eGxsb6UVZlWESn1X2ieN8Pr5/nGv+d//df6f/6//6v1Kpl1Hl2Ex0SfqN3/gNfeMb39ClS5f0+OOPHyjA/hd/8Re3ctkHVmBc7ezsaHV1Vc8//7zW19f1kpe85EAKuDRcAfHwbmxsaHt7W9euXdMLL7yQgLaTkImJ/QNEUCaevhudEjYiFE001P2huhNgpSsDT2MjWkkKlUcR/bTpoxStb/jOMkIZsgmjAIjmOnOnUCio0WjokUceUalU0ktf+lJdvHgxHRZZLBYTYLqzs6Nz587p6tWrarfb+uY3v6nV1dVknLkQHd/b20tpU1yLFDnGfnNzU81mMzH6iHxjOMIAux/FjVeCU/Tb08Wq1Wom/f5OiwMcg8EgMSop57S6uqp6va6FhYWMkbizs6O1tTX1ej194xvf0P/9f//fWl1dTYeXPGhyKw60f3csty4Pqi6vVqtpn0fi/uY1FCNL2hk36BMHbCVlGMVe2zoewDUMhPYSIt1uN7Fo/KCkPEasB80j6Mp7lKeAreXAmQePaauzz3BEXWfSB8bKnUP6GVmy3tetra3EQnOdjf7id3QSDg3sNxzPQqGQ5nZqaiplwAFou4PNuESWrTP5sGlgyTFuvl7oB9clGD4zM6OFhQWdPXs2E5Tv9XoqFova3d1NTPXt7W1NTU1lyrRJUqVSUbVazdhUpN6j07BpPEOCuaYvMMO8DIevH9YF9+C6rFnGAgCFNcZcMl+U0SGtnXYz1v5s0Ubepz88Tw7WABywjjc3N9MacIcb4MQD4h5Eoa1eps/bEAFsf7YimOSOOZ/hOthqrE0YjNiatI1nG6Yqz/ZgMMhkyfh8efu8LIPvAe7oY/f6HhMZ9L6+uHeeDeTgE3NEf46S29HjfP84cq/qqL71rW/VW9/61lvt5h2TB1WX30lBPzabTX3rW99SpVLR/Py85ubmNDExoUajkfZLMsU4Twm/HsYwOmlzc1PXr19PPt1JS7FYVL1eTz4bzG7+huUrZfVyHjDujHPOXYJx3e/3NTs7q3q9Lilb4snBURjBgNiQgNxfjsCr35+92g9t9AOYXR9zTfQ37GtJyRbY3t7W6upqyg7PE/ZKWPnT09O6ePGizp07p3K5rPPnz6tararX62ljY0NbW1vJd9ze3tb6+npi+0f94dLr9XT16tVMNlKhsJ/J5qVW+P7u7q5WVlbU6XRUrVZ14cKFVOoGWwTyFfba5ORkhuHPdXyvR++4ngO/oN3OtF5fX096mSATNhLjnxeYZU288MILarfbid0esSBenFXmWXLYoHxW2i8ZyHtRX9Nu5gpwG4yD709N3SyfS3m8TqejZrOZ7Er8c+wqf47Q9zdu3EggcafTGVl3+fN4muUkfHJIoUfJ4uKiJicnDzDEb9y4cYBJjly4cCH381NTUzpz5syhn8m75k/91E/pf/1f/1f92Z/9mR555JEj2+xySyD6vU5du98Ex7BQKKjdbmt5eVmbm5tqNBpaXFzMODKHXYMNjZIwa2trWl5eThvHSYhHBYvFosrlcnKwPTXcDfboeEfA4KiI0kkISsNBg8HgZppbdBaPE0l24Ts+RpIyDpZnCUj7CqBarer8+fOq1+t6/PHH9dhjj6W0ZNKWCbQwluvr67px44aazeZQNhrvb21tpRRyJILo7XY7KUKcU4AkUpvuN3HjjL6gpDCSUNJ34jDRo4S1yBxRemlmZibNh6eLTUxMaHNzUysrK2q323rxxRf1rW99K6WI3o9zNJbTKw+qLuc59z3anR0EEB1g0/cEDxg7w4m9A8eC67D3UmIDvcfPqDcB4Qn+wTyK52s4sCbt16n2a3mfImjpAORgMMgw1rz+OY4a+1EUHxt3oukL/Qcw5nPYLQ7+u8PI2DuI7nVaSadmHCiDNjV1s5yKH/zmDCbaFtlvgLDugErKOINRPADBuJVKJTUaDZ05cyYDUHuaMPrHA+s+p9VqVZVKJTOHOzs7KeDqjjffjWuUQAggDvMS1wPj4+/5Oqf/Xg6OsfSyQrC2HLh24Jb+OUsbAWR2h9gBep4HD67EOXB2tIPokXnn/fW2+FqIDPG8oJeD2B7EoHRBv79/dgFzQP8oI+SZZ146yNeaz20e+80/53PozDvPRojMPeyheF9/PnjfA2GxbM2dllFqqZ6mOqqnRR5UXX4nhWe+2+3q+vXrCVSmbBR+A+sDn5JzJLzGN+dw7O7uam1t7Y6dYUTwOD6T7KPoJfZZ7ABKm0jZkq3sp5QYoUxpv99PZWs8G4X7AAhSMosAM76ok9ecVOCCfnT9A6COTkT3sP86oYGAe6FQSCVIOp2ONjY2Mvt1FPo/MzOTCIAXLlzQ448/ngHRm82mKpVKCqAApBI8icGBeC8AffqEnwfxTsoeHE0/m82mms2m5ufntbCwkLFxIBxgZ+Vlv7s+Y92CTUSJNiZELi9x4jYcNiTtx7b0wDRlNTjLywkYro/4rgcJaDO6ygP+6Deux++8Txu99r9niRG44Hp7e3tqtVqJYDg7O6vBYKBqtZrG3AkjnM+ztrampaWlVEN7VBn77wdlZmZG3/u936vPfOYzmbJpn/nMZ/S2t70t9ztveMMb9O/+3b/LvPfpT39ar3vd69K6ecMb3qDPfOYzGX3+6U9/Wm984xvT34PBQD/1Uz+lT33qU/rTP/1TvexlLzt2+2/JMvqFX/iFW/naQy84iM1mU7u7u4mJ6gd4eVRN2neGAAebzWbanHjwT7LMgyvMmDIb02Z9MxwmREvvBGgZlbkrg8i+GeYc36rgcLAp45i7MSDtKyXYATCiObgEY81rplLDe2dnJwG/sMvjPOP8AOjEyDuf9xJCDmQAPLtjdz9JDGDEdKxonN0t8Pww2d7e1vXr1zU9PZ1q/vrz1u12de3aNXU6Hb344ouJwRYzER4UOYmo91huTR5UXT4sFTQyoTHGnW0Z9w72Dd87+D7B0s3NzeSQRtaotA8ect1CoZCygjww7vuxPxcOOFPv2Zm2eQwXBx1j0DsCkd63WP/SQXLP+OIe/B+nxbOm3AHxMmP+XmSiez+cDc9cUAPdgwC0k5+R3RxZeA7uM7bOnnZ2F06d3xO9zHtRpzjozlrBMfTxc6CY36kturOzc2D9+Zh4gMbT3ln/0v5hrowJcxSDOhFsdXa6n+OBkOkWv8taz2PY8awcpoO93BmkArftHBzw12G2izv3/mx6kMt/px3+/SgeJGBMeS6dMb+3t19TFlaeAxFxvcdx8bnyoAP/c/3ne4HbxOxxPlduA8bgA+/HINRRcjt63Ps1Si3V01JH9TTJg6rL74Y4yLyxsZECN+gA9HLUXWSW9Pt9bWxsJB99GKh6qwLgHe2UaNfQVjKGKCvD52BA5wGnbhvA0gVUl5TZ6yI73PW+v2DzEuCL2IFntEcdxj098Em/eQ+7ivvj49IvmObs1bHPHErpNbJ9fwXkx+6AIc+eGl9RfJxpl2MRjJnbTNzb54T3or724LnbUAD8PtboHNpPH5x04H3nO+5PUyc+rgsCNnljcdj4ILQlZvC73o5jErMUGFv66ERGnh1fM6VSKRPM39nZSYfvNptNra6upky/mZkZ7e7uqtlsamtrS8vLyw+sPy7dfZ/8ySef1Dvf+U697nWv0xve8Ab97u/+rr797W+n80qeeuopXblyRf/qX/0rSdJ73/te/eZv/qaefPJJvec979Ezzzyj3/u938uUYvnpn/5p/cAP/IA+9KEP6W1ve5v++I//WJ/97Gf1+c9/Pn3mn/yTf6KPf/zj+uM//mPV6/Wk52dnZ1Uul0dq+23RC770pS/pP/2n/6RCoaDXvOY1+p7v+Z7budxDIe12W88991xKG1lfX1e1WtXFixfVaDQyadXuCJI+tLq6qm9+85tqt9vpFPDI2LlVYXNCoeAoolQd5PcosTt4DhbQJiKAJwliS1lgwZ1xnEBvowMqt9sO5sYVmLME3WFHYc7Pz+vSpUuanZ1NaWMETzilHKAUQ6VYLGpxcTGl+pMOnzcOlPlBuXBSvDuFONTulHa73TR/EXy+H4Q1AJO/2+1mmHcOtMQaendT/H6tVkvPP/+8Wq1WOhSFeaO0wPXr19XtdtVsNrW0tJQJfjxoMgbR7708aLqcZ93ZKvwO2OVZS/EQPZwLP4DaSxoA9LXb7RRIBUjf2dlJ7ODooLpTgj4nfZq00Lyame5MAi6ifyYmJhLo6PoBdhm60Eu3OCDsTF5JaT9l3AD8KUUySiAy6inGB93IKx4sGkG92GacH/bMmAaMLmS/hDEm7TtlztCXlD5D6ZhC4WbJGMBzGF8EvhuNhs6ePatyuaxGo5FS+z0Q7UF01mKv11OhUMicY+PgDCVCIEqwvtbW1tJaxBbjMFNn5pEt4U42DDq3ldzGdFY+tooD/M5E92y4breb0tn5vDvz/nwhOzs76vV6mpycTGPpQRJslK2tLW1sbKjdbqd5hVEWgzFIBMP9uXP2Nf/3gI+vV38GGCsPqHAfr3vcbrcTK91LExSLxQTssP57vV7qA1mS9N1BcQ9ouL3CnuY2rGeuYOM569CzBvwgWsYiluzJC5SNIicFoj///POZNPDIQneJ+5CDbaN+Pr5/3GueNnnQdPlREoNJtyKbm5taXl7WxMTNclzLy8sqlUp6/PHHNTc3lwEYfU/kANFms6mrV6+q1+sd6zDLUWV6elqzs7PJD2e/ir4n9gH7V7vdVrfbVaVS0WOPPaZ6vZ5hFDtw7aBsvV5PYCm6FICaDHUHrgeDQcq0QW9BLuMAaHww7Kn4zDm7mb0Ivw4AGBY3gYG9vb20v2NLYEewd9fr9aSzOHiUe87Pz+sVr3hFspM8i65QKKT3fT9dX1/XlStXMnbMsLmmDwQ0tra2ElkOYJZ2u//NGvPyZZ5N6P+v1WopcxD90mq1MgFdfpL15uC6ZzTETEHPtqhWqynrrtlspnuwDvwVxyBm0TuwTv+2t7dTGSEOEcc+YO6xq8gSoc2sd19XnU4n6b1qtZohoNTrdc3NzWl3dzfdk2dFUjqHbDAYpGxBPks9dF9LD5rcbZ/8He94h1ZWVvRLv/RLunr1qr7zO79Tf/Inf6LHH39cknT16tXMWScve9nL9Cd/8id6//vfr9/6rd/SpUuX9Bu/8RupLJskvfGNb9Qf/uEf6ud//uf1gQ98QK94xSv0yU9+Uq9//evTZ377t39bkvSmN70p055/+S//pf7hP/yHI7X9lkD0Gzdu6O///b+vP/3TP9Xc3JwGg4E2Njb0Qz/0Q/rDP/xDnT179lYu+1AIRu7m5qaq1WpiGVPjjE0Aox2nvtPpqNVqaX19Xaurq+p0OonFdpLK2qPCrlgdfHRmj0uesemb8Ukbo74ReyTeFYQ7IScJ4vu1ANU9vSky4FFgvLxMDiC6dNMQKpfLqlQqqbbqzMxMYhYME1deOOY+Rz5GLl5S4H4DJJl7DJBYBsGZmABJkXF1pyXvXjs7O1pZWdHq6mrmmecZ29ra0o0bNxIbEbDiQZUxiH7v5EHW5XmglKRcXeGBX/YTBxbzgGMHq/jf3t5eBsiMLHYHujjLBAD8sAPCndnL7w5AsufTLmm/hreUZZzGdnkQ3EF8xg2nD8adZ1rFa+PYRpaOA58eaPbgLu13NhHgnqf8kk6PY4hjyTWdJUZb3A5w4JS14AAt4+YsMhw5QGwvDcZ147i5reRgt7fPGXKMMaU/ACdYi4Dk/X4/pcD7HDkYEhnpzBPXknRg/t1ucSa6f4f+OQvN59oBewe0/Xmhr07G8PnAJqFEoc+bz7Pbf5Ht5uuR7zuL0uc2CuPE//NKG/GZ6FCzX3AQHX31gInbJ6PYxHEM3a70PrPOmRe+A4jjWQ2IMxp9PDwgEYMhw+SkQPRRaqmehjqqp00eZF1+pwUwWNrPvKpUKmq32weef/ZKgOXNzU11Oh0tLy/fkRrotAkAPe7F/J/3CCS7jcEeSMkZAtq+P3IN/FX+HzPI0LFuE7Hnw1B2X4xr8nkH7n2/Rj+6nnBw2dnTrnMYD9rJ/zxIjN0Vmc6A7OVy+QCQzXWp1Y7OR/dGnTNM/DPsy/ij6ISYjRQDwa7jfSwYM+wQ7oct4To2lquL8+j7P2Pp+pb1Mzk5qXa7nbGjYiWAYf2P79Nfn0NKJ0Ub18cBW8XXnqSEm0nKBLZ5Xj0zj3lF9znRY2NjQ8vLy+r3+6rX6wlEJ2B+WODkQZB74ZM/8cQTeuKJJ3L/97GPfezAez/4gz945DkfP/ZjP6Yf+7EfG/r/k5jDWwLRf+qnfkrNZlNf/epX9epXv1qS9LWvfU3vete79E//6T899ummD5vwkLdaLUlKNTNh55TL5QPMOZjo7XZbrVYrsdFO6kF2hyzPOYufjSA6Sg8mE9dwA9wN9lsFMl1xkbbmjopv+rFvd1KcFegHfEVHLirFvJ/DPjeq0HfahKKl5l00iNzBQ/HmpaifRqH+HvXFY8Rbun3n7qTFwR2YbFL2tHDAtQc5ZWws914eVF2OfogAn+99DjC6sPc56OmAtO+dMJfduRwMBup0Opn0ZZ5tdwz9HAt3/JwF6sHVvNIkAGTcO/YDwBkmPU6F13enT+ydvo/6/R3UjA6xs4TY39yWiEBnZHChq5gXroVTTVq1l6DhMz7+/M288R0Hq2Gq81n65+XY3HHjXuhPHGmcMF9f0QF38oCXKoGd7MBxs9nMlHJx1rWkBKJz4Lunnzs70u2FCIAyThFoQPhuuVxOa4E5cGAb29P1Kv2I/Xe2Nf3BfmVeuWYsx+bCusoDZtxm9TXq9+d95sOJBRFY97UdbckIYnlwCJCc4A62qYP+eUy9+L73zZ9rD47EPnjZI9+PfHx873AA39eNs9J93k6T3Ms6qqdVHlRdfpSctG1PaZd+v6+rV6+mDF+eI/TP3t5eKrVIyaZRxfXicT5P+7hXpVI58DkPoqInvN55tCHQH17ygmv5Z12vkgkHGCll7QL2ajLz8Gl6vV7Ss5JSQBqdAOsZ9jlBc/eDsUscxJX2gxsEuvPGMAL37O/sn+gjP4eBcfCD6m/HN46g78LCggqFQiZw7mPY6XS0t7eX2sW92e/jIdeMGzYf2e6A6z5XTs5we9f1INcpFApqtVrp/364KPrCD/P089diwNeDEp5hV61Wk64h+BODJP4aDAYpQ4I+sA58nbldwJrxA0FLpVJqa/S7nZxyUlUfxvLgyC2B6P/+3/97ffazn02KWpJe85rX6Ld+67cOHNwylqy4Ic1hgRMTE7py5UraxIk2s8nv7e0faECK8p2IhEXwnN8PeyEe4XW2FcrXlaBvbrciKApYAACS7vg72+dOCtdHCeC4R8coginRAYzR5mH/H0UcxCD1rlar6fz58yoWi5lU5OvXr6c6YJQjiODAaRUML07IBpjwcTptCo91yZrt9XpqtVqZwFMEnB50uRdR77HclAdVl7MPoAscBHInKo9RzU8vIeLlYbwsFowvZ/7EQz+dPeOGOLo8rmFPT+X6EfjNY9M6w1hS2sthsLl94eVmcKa4F84c+6s7rNK+A+YgNYGH6IDx8u8DOEbA2QPNjJ8D5pQgcTslluYCOAQUcwYSpe+YK2k/YIL+hmnlID6MJrLHyCYjQOH7tut7bxM/ARQAkdHFu7s3D6MjeOqsfwDO6enplFpMHVcHQ+gr69fbwBw4iM5Y4TAy3oVCITnIvi4oe7O7u5sce67hQRjaGteVg7EEjmFGFgqF5HgPI4f4s5NnJ/GM+brzZ5QxYq541tgf3En36zjQ7kw3rsN3u91uqovMeLo9OixgkUdY8Nq1Xm4pggK+t9Fu+hWfQw9esQZ437MsfB9hvxsldf127ZXjfvde1VFtt9v6xje+kf5+9tln9ZWvfEULCwt67LHHbrn/tysPqi6/28IeBGnNWb9uC/T7/UTeicG6wyT6csdd9zyP7i/6tT27FT3IHoPfF3W6l61yO8izmj247GAsepk900vOoOvI2Ol0OmmPGQwGqtVqmp2dVb/fT+UrvRzMwsKC6vV62nejLedlVtA5ExMTqRSI65+8sWL8+/1+JsOsXC4nWwAdjM3kNuOt4BgeBKjX6zp37pyKxaI2Nja0traW9Am2CsF17A7PbpeUyo5glzogziHsxWIxjS+kBAIcgPDlclmzs7PJjmB+fe1Q779YLKaSd67bAeVbrVYq9+IHcHNdSH2cb8PaY6w5WBVbbHJyMmN3c6/BYJCCLxAx8uxIaT/I4pgaz4CX5OMgcPQZ9jBz9zDI2CcfXW4JKeMhjALzYiyjiUd4JSUFh9PEBuAOTGRw3QlxZzDvYeJv/+mAeV5EHmUXnWzkMGUU7+OMJAccfFzu9oMcGVDeTx8fV5DMrb/8/97H425qKBBAdNhrnDRPahs1/RxswEAcxtQ8DeJOcN6BqdFIvZfAdN5z4r9Hg/Zhk7HCvnfyoOpyZ3IPY4A6YO7/j87psOBW1JP8zGOrsKc6qOb7wDDJuwd6Iy9DycE2T5vGQYngvpRl0vITXQBoGu+Tp2eHBXpjX+M+HMFBZ8Q6iD7MCc67ts+tX9/1MOOFnnMny8HIPMaz62vGLc5lBC7d+fN06bwxcSCT9uAYEwRxED0GKfLsocPsLW+nz4G/aAOg62Bw8LC4o0CFvIARYxzHxT/jTLb4LMf1E0kgeZ/LY3czRt6neI1he2K07/x9+uUliuiXj623we/jAfbYniisOf+c/3TAnft5O3wNuq09CkB4t0H0e1VH9Ytf/KJ+6Id+KP395JNPSpLe9a535aad3y15UHX5vRDWsh/Kyd7owTx8qbvRHvcJjxLfV/i8Ewvc5/Ag6GHZ7b5HeKCQ70cWurc3Bh4jySwPY+A9zwjK0495e1Pcs/mu73HeDr9vbEfU2bebleM6hiyBSqWSzmUBeI56wfW8j3XsZ7xPtFtiH48aA9eFjkVEm83nhrU0jLntusXbm6d/Y79GGVfa4f2J14jrKT7b9wpLOg0y9slHl1sC0f/r//q/1k//9E/rE5/4hC5duiRJunLlit7//vfrb/7Nv3miDXwYBEMbI5f0F14o8zsJoPtGw/09Yu2bsdeYpD0YEw76+mfZnGC7eJq8dLgD7g5Kv7/PytvZ2ckwovLkTjPRXQCicXY9NajdbmtlZUXb29uq1WrpQLTd3V3NzMxk6qGurKxoeXlZq6urWl9fV6vVSumFowhR5kqlope//OW6cOGC6vW6Lly4kA6zgiHQaDS0tLSkwWCgdrutdrutM2fOqFQqHXC8T4t4xkGz2dSNGzcy0WIp69RubW1l0gr5/90QV8SsB1+/py1N+l7IWGHfO3lQdTmpmugkdz48ZTWC7TCuSDFFf7gTFZmtztJysJZnvN/vJ0a4i4O8EahyNrk7Ur7eccKijuM90mNJUaZMHDqX/g8Gg8QSY7+kpAt7lAOr8TBSB3jdToiAnAcPGD9PjceWACimrbC9vZ9c2xlDeXup16N2B9DXA/2B5cV8RueLNna7Xa2trSXGHSnWPv/0f2dnR91uN7HAYJVxb/8887O7u5sActhnMzMzWlxcVK1WS+w1dDTjSTYWB3TFurGxpA999bHhEErGn7HjGrDzmKe9vb1M/XgHPlgbbgO6g8ucorfb7XY654esMh//SqWS6S81eD2Twa/L2AIixmAIbaL9ngGQF6ByQCiC/MMyAKLNxv9YS7Qh2r8eMIrnEXlfo9MfnwEPGmDHE/xAANWwWSNbP5bFGiZ3G0SX7k0d1Te96U2n0u54UHX5SUsk2Bwm/N+fbw/q3Uq5xcMAy2GCr0NGFOxs9uN4LfAE17Uwb52dTYkQSm+gJ2Bye2kUmN4E1xkHSRm7oNVq6caNG9rZ2VG9Xle9XpekZI8whhzIyvenpqY0NzeXmO87OztJ901MTCQ2O6VA0B3oWt8z6T+HOdNv9u+YXYUug5Xdbrc1OTmZdMLOzo6uXr2qlZUVbWxsZOyO4wolXGq1mhYXF/WqV71K1WpVS0tLunHjRuonffMzs9AVjJmXLcE26ff3D9gcDAapggG6LeJIbl+hS7AJHMNhXFn3tMXt6VKppL29vZQd7jam24LdbldLS0uq1Wpqt9tqNBoZvVypVJINVigU0li4rck9PUOA54E1GvV1XjDacTZKLI4arLrfxP2Tw2Tsk48utwSi/+Zv/qbe9ra36aUvfakeffRRFQoFPffcc/qu7/ou/S//y/9y0m18KMQdNa+XhVIYhbV2u+LAI5soxrWzp6V9Npw7X2zSAMe+2SEeHYxpN8PaI+0b8ihfNsk8cNlTy9xxu9PikVCACoAIyo6gYBqNRjJOZmZmMsq62WxqfX1dzWYz41iOOvdeX+zixYt6+ctfrlqtlguiDwY3U7NarZZeeOEFbW5uqlwuZxyu0wqk7+3drBe3vr4+lBHC+Hu91bsZWEFwcJ3deVj917GM5W7Ig6rLu92upP2DvNGdExM3S5BEVqgDSTiDDmzhXKDfCJY62O61iHnee71eJsjrQB5/u+5H0IkOlrnzQ18cZGfP9hrolBzhvcjwwRnyuq6USWNcPLjgzOjYTk/TdsDBQT7vB2PGdSkJ56nlpM5LWUADiYFID0w4i8zBjuhUMT6sC3eqCHr6fTc3N9VqtTLlcqamplLAwkFRdD+1zklT5978dGDbWcvValXValXFYlGNRkP1el2NRkPz8/Op5IrP097eXsYJp2+sdZxMxtdr3WPfOcuca3obHZDlpz9DLnmkC9oSCSKsQWdEuj3sGYfYnsyzj2W0KR1AdzCafriz7jZ2ZPqxHiJLLQaG8gghUcc74B3BKP/pLE/+Zo78uffXsDbE68d9xZ/LGCS4FbBwLHdXHlRdflISny1pNMAnT+/crhzX5t/b20s2jeuqvLKbvrf4HgpA7M8zdkS/v3+uWK1WS/aD2yv87gSgGFwARL927Zo2Nzd18eLFVLedGuMO4jMXHhzAv9/Z2Ukgv+s2af98EK7nOpPxkpQ5EN2D4rGUmoOug8FAvV5PpVIp+Zfb29uJ0MY5Nrcqk5OTajQaWlhY0IULF/T444+rVqul+uDb29tqNpsZMNf1jWcBuE6nzC8vQHfmCj3LdWLA27MtHPuRsmec+MuzBbkGAQzA+7yANGUCsZG3t7czpWMorcO65//YLZ496HXQOfTV25gH+DN+/OR3L/X3IMqoIPpYRpdbAtEfffRR/cVf/IU++9nP6j/9p/+kwWCg17zmNfpbf+tvnXT7HkqJBnp83el7swk6E92VKUrTWTB8FnDWQfTIVHPnK15byk/TdqY7bCuPiLuSvxcgqSsgNnRPg9/c3Exg7+rqanK4d3Z2EhOdVK7V1VWtrq5qY2MjvXccsBVwxWvgYnTMzMykTAOiuMViMYE9MLpRgA5inAZhfaJYvbbsMEcVMIE1k+cs38n24mTnAeijZhc8yDKOet87eVB1uQPZrjt59iNYFBk30XF2cNyBusgQ5TvONEUfeNDY20F7XdCNfo3ojHiZE2nf0XEg2D/v7XK9TWDAg40+BlEc3Pd7RBsl7/f4Hm3xvTBvH49j5UAqwVOfY/5mn41z4unU2CboS/rI3Pt9na2EjseB97qf2E29Xi8dqAbrzdeNB0kczOXeBD9iwMYDKfztJXsiKDA5OalKpXIgOIN4gMbBdJ+PvKAIbUSiDefPj1+HdUOQAoAkTy86+MH9HbCP4Liv+fhcxbXFdwaD/YPlhq1DZzJ65qCXRmAO/bsAA9GBjyC4i4P8Djbl2Qu+N+Wx7liXo+rZ+Az5tY763u3o47Euvz15UHX5SYnr/xggu5+EvZL2z8zMZAht7mN7qUuye5wQh54gywgAE7sg2jroRQ/+0w5nKft7MNzRBa5/XE94zWvP6gIE92CjB7a5l/v+rpsqlUpmLHzet7e3tba2ps3NzRS839raUqvVknQzo5EMcs6wIxhx3P2O9lHCBeDcA6PoUgIHAOr47K7f84LEkOT8jBq3T2ObmRcfQ5+jeA3/v9+fucaG9LN+4k9+d5uDuWSNEBjwtvsaBC/hvVgiLW/t0lawJz7HfBOkIvhwkkGz0yKu24/63NgnH01uGR373/63/03/+//+v+vGjRvq9/v6yle+oo9//OOSpH/xL/7FiTXwYZZhzsSdFBhBXpOLTSWWmeG9wWD/cAdKl3CYBOw0gNnJyUltbW1lnNY8h5y2sMmi7HFMcV5IX/JD4EgFku5uORdnDfnGPRgMtLGxof/v//v/NDMzo06no9XVVRWLxXToB6z67e1tvfDCC7py5Yo2Nze1srKiXq838qaGEVSpVNKhLY1GI6WBz8zMJGU1PT2tubm55BByyOXq6mo68GNubu7UgOgo3m63m8ZndXU1HS6bNz5bW1vpELNOp6N2u505oOVutBfjgpR+yvMQqHjYlE6UscK+t/Ig6nKMYC+9wvux7Ja0z2jx70Y2qzOIXX85QIazipOHM+KM4Mgqcj3nLFN3Vh1EdpDc2d+xba5PYaJxX+7ph5V7VpePmTsq7uz5T2+nM3sc8I7POU5iDCj4Z/w99koAVL7vtdwjI9d/d0exVqslW6FUKiXm08zMzAEwHn3ph7z2er3M96enp7W1taVisZhhv5FRtrm5qbW1NbXbbZXL5Vy96sxkwFj0drFYzNwL0IFMg4mJCZXL5TSXsNF9ndTr9cy6xRllPPmdNHbsMmeSsy75DmeuFAqFDLDt88e8AM442EtKP2OKI+sBLcaFzwwGN5mCBBecEYeNGssg0RZfnzwfHjhxBzo60QAEZAv6geyAGpTY8fUMA9P7wjgSlImla3w/og9xD3CShu89/vxE8D6Kvx+d6xgYPErGIPq9lwdRl5+k5AF695vg90xPT2t2djbpLHQheqxQKCRfM+pFDyTs7e2pXC6ncmHdbletVivt9673YxDWQXNAcOyMiYmJpPf4DnsRe6KDuxsbG6m8aaPR0NTUVOor7YZ9Tok039MhjEn74DqHge/u7qYSqW4rra+v6+tf/7qmp6d17tw5zc/Pp/14enpazWZT169fT+eHMS5+KOUogl/OgZyLi4u6ePGiarVa2ucpKYdvDuHuueeeU6vVSiX56A/6l8Dv1NSU5ufnM6QISZk5ZI6wG6Ptia3nthLfZ/4Gg0FGv6Lfm82mrl27lnxuX2vxefOAPS+A8X6/rzNnzqQDZ8mK9DXIvExMTOjcuXOanZ1N9gRtov2sCezdfr+fORB+ZWVFzz33XLL5q9VqxtZ4kOQ4gfSxTz6a3BI69ou/+Iv6pV/6Jb3uda/TxYsX7yiT82GXu70g3Vn1mq7uuOeB6O5gACJEB8eVKM4cbCp3mhy4iG1xtjSpyGzWHm281wJLDUGpTU1NqVarJeVHyhpO787OjlZWVrS6uprS6o8bEcWJhMVGah4v5m9vby8pdkr2wAwjNczT9e6luAOJsqUGbB4LHfE+8cLovFuCocJ69dIyp2Gt3msZK+x7Jw+qLme/iEEq2CfO5s1jejvw5j8R/3xksJOuHMFs12t+/WFMVBcPyjoDHd0Z+xjZ8Q5iOxsdEB39FEHwPIn9jiwn/s/fDpr6sx6Bwbw59M/wcjY0ziQv/0zcG+gTwL8HNzwgwDV8vriXj53/Hz2LrYLextnHZgH45t4+Hj5f7qx6SR70t48b3/N1gVMaAxpuv0V2FvrJ06O9bI9fx3WuswrjunVmGNfp9/czIAB/nNXta8zXr8+3Z0y4feTPt3/f12N8n/tF5r2DLRF0wkZyZqePqafc+94Q2xFJMj5O8Z6Mg6SMbcma9ec7iu9RSATQ4/89q2AUMsoYRL+38qDq8rFkxfU29cZ57j0rBtC02+3mPlv8H7IbJUDxtbFhYhDVyQPx3tg/XJ+2EuRF8vYj9Ca2xczMTCLnDQaDVPsakBhhrwdkdZutWCymsiDr6+sH9ijKtABg12q1tA9PTk5qbW1Ny8vL2t7eVqfTSWftHBdAp0/45BwmChOdMWFcCQo0m82U+cZnANkJePPTs9qi/o+s8WESsyUjC93JHdidXoFgfX096cWjJNp12B/YWD6vcRw5D29iYr98jK89193RRnX7mzVA5gFzgN3ysOqksU8+utwSiP7Rj35UH/vYx/TOd77zpNtzQHZ3d/X000/rX//rf61r167p4sWL+of/8B/q53/+5zMPxi/+4i/qd3/3d7W2tqbXv/71+q3f+i299rWvvePte9DENxmAXVLDiAK7s8GGB/sJB8fTeNkMUUxe6mVzc/NAWrq3xUF0mGDUJPO0NpTuaRVXFCsrK4lttrKykhQigPDq6mqqnXorKUUoNOqwwkjzA1ZgrMHOpu46h6osLS0l8B0lVCqV7jh7Owob8u7urjqdjra3t9OBq25gDfsuYzE5Oal2u50OsuEgE4/Sn3SbJSUjdmtrK7HXyNSIynwsY7nbcrd0+b3Q4zBw+d2dsxgUdmPd2em0zVmf7lRI+6nIzpRGImPdnQ53eqNzgyMUdcBh+5QHkx2odGcgBhdcV9Nvv4cDpXGfdMDa2fAOfkfg2Rlz/lmcF3fWHJSUlCn34WVocN6dye2p48wXLCZnVjkLnn74uOcxtScmJhKDnj4QgHBd3u/31W63k16fmppKLEHGz8eKNnt5MsYsBhQi2Ly3t5f0OLVUmR8CJO12O9WYlZScRdoRGfsxoESbCoVCSv33A0pdYkDF2Yy+/unDKHYFwSlJybahP6w/nF9/BuN65lnndy/D4zo5BlH8M74eCAD4noBE1iZtcbDLg2BexsCvFYNkgFl8h2vG59NBeL8eYMthMuq+M5bTIQ+yLh/LvrAPSUqMX3QQ+xSM3GEAupQtd1koFLS0tJTISc1mM4Hm7GvUYafEqAc1fW/EpvAgLzYQmTpuc5RKpQxuwH7obGWE9eVgOXuTZ9D7Zz1Y6Wd6uO7f3d1NviF7a6FQUK/XS764ZzUex2/js9gTBI0pIYNN4XYS5UU4xBSsw4HybrerWq2WWPtuK7htgczMzCTGNuMVfVDGmqC/l5hxOxJ7jWoAPk6jZFe7rlxfX092OUz7vb09LS0tpba4DQcR8cyZMykbMI6j40k+DrEkHvPqmaMEl8a++VhGkVsC0be3t/XGN77xpNuSKx/60If00Y9+VL//+7+v1772tfriF7+of/SP/pFmZ2f10z/905Kkf/7P/7k+/OEP62Mf+5he9apX6Z/9s3+mN7/5zfr617+eIrVjGV1QFDh/KBOAAGc7uWPsNc3cofGI+OTkZAJj/bCzyGqjHThDXB+l73VQJaWUptPG7KX/7lhvbW3p2rVrGcfeHWZ3MI/bH4wpTjFvtVpqNpvq9/uqVCrJEABc5hDTdrudjBD+hqEuKf0eGV53Wuj/9va2VlZW1Gq1tL6+rqWlpQOlGvKEz/T7fa2trSUFPTc3J2m/9tpJC4ob8LzX62l1dVXLy8uZUi5jGUe976XcLV1+L/S4l2vxMzlwpCJLFJDL97k8AC4yzweDgTqdTkpj9hrIOJ6uM+Mh3FHQee64+UFazrZF2OMAVN05jM6oO1rsn5QzGcZej0BnHvDs2Wl+MGTc53BavB2c2+EAt9sFrvc9oO6lMBh37hkZVHl1Nn3snNkMQMpceaDEy5bw+8TERGJGRZCfg6o8Kyyy5T3o4d93YNftKhxrBzJIN/fDSzc3N9VutzU1NZXKuXD4FiVoIpDuOt6Z04zN9PS0qtVqKhngYIWD2Q4ME2CYmJjI1EwdDAaZjEXWsK9vB/E5u6XT6SSwhdJszmBjTCMLLQaTeJ79PWkf/I5MOXe6sZfIIHTmHs8813JwXFIiNPiewud4jjy4wjPE+vWsTn82+T0yUhkfX/NeLibadG5X5bHU8+R29DjfH8uty4Osy8eyL+4jUi5sYmIi7a/tdjvj9xwm8WwxgFH0s+8vHDja6/W0vr6esAH2hgjiOnMYvQPTHXC/VCqpXq9n+uTlY90Xpj2SDvhsg8EgU0YWWyYCupQzZV+lr3t7e1pZWdHa2pqkbAA5BrtvZ85oe7fbTfYCpcCYL8q4rKysZPxyx1RgTp85c0YveclLEjbj9iTXo92lUkmVSkWDwSAdkoquQkczNoDilJ/xQ8zpQ6lUSqV/1tbWkl87CgvdWfc3btzQ+vq6zp49q+/4ju9QrVZLPn6hUEj3B2inDC32MDY2OBPXhyyA3VgoFDKkGvRqrOHuc/awytgnH11uCUR/97vfrY9//OP6wAc+cNLtOSDPPPOM3va2t+m/+W/+G0nSS1/6Un3iE5/QF7/4RUk3J+zy5cv6uZ/7Of29v/f3JEm///u/r/Pnz+vjH/+4fvInf/LANYmyIUQgx5IVN8IdEMfwd0fQI5D+EEWWlUfMnfHjDrPf3xlzfC9GO0972k2MDrPROyAzLHqM5DG9DrsfCoJa5yhu5oqyO0SR/QRzxrZQKCS2N4GACELcKUDdwQUUXa/XyyjqUVPGfCw2NzcTc8zT90+iP9FBZ6y5n6f0n7Zgz72UscK+d3K3dPmd0OPS4brc2S4erPU9LO69eSwmSRkQyvUg+4uzw7wGsQOSDjy7bnM9Ju2zgbxUBIChA4x5a98d2AiiO0gY//bxcr3soKL/jPfza7I3R6DeP+/v5z3/PrYOZjIezrR2Vhlz4/PoYLr/HT/r8+Mvf98zB3ztRFspsuN93cT7xfnw9/1vd6IjAI9Od5Y///Ox43PYIHEt+vj7z9jGGIg4jsQ+5s2HP7uMV+wDOpx54juRXce6iCC6s7N9Ln2ujpoXXxvONveX3zfuCw7iO7ucOR4mHuQYtqZ9PztK/LO3o4vHIPq9kwdZl49lX/w58cChBzCPw6RlD4uBWWm/BJjfK2Zl+f48zCaRdMB3RAA0R+mvtL83e+m1vP5EQoF/N0/yAv5HSSRZHCZuK+CLTk9PpywmArP85OU2Qp6tFYO89DlmRnkw1fVDzHiKr9hPaT/o72VSvcTbqOJ4kOMig8EgjYu0ry9j4DmO7TDsJGZeOa6Qh1s97DL2yUeXkUH0J598Mv3e7/f1u7/7u/rsZz+r7/qu70rpHsiHP/zhE2vg3/gbf0Mf/ehH9Z//83/Wq171Kv3lX/6lPv/5z+vy5cuSpGeffVbXrl3TW97ylvSdYrGoH/zBH9QXvvCFXIX9wQ9+UL/4i794Ym28H2UU4NmVEZtkHntPOngIahTf/HzzdsU6zEF3oMJ/l7Ipt3kPvhsBd1Oi8zXMuHCFxnuIM5R8rFxR5qVOuQH17LPPqtVqqV6va2VlRcViMVPD7LnnntPS0lKKeLvy3N7e1vLysrrdriqVinq9XqrlVq/XM6naJynO9iNivrm5qaWlpVQHfVRjxw3EtbW1xDyoVqvp4NW5ublM3X7G/jjic0yKG6V7rl27pl6vp+Xl5XR4zpiFvi9jhX135V7o8juhx6XhurxYLGayZzj7gT5LB8t+SPsMmbgP5OkRdwBId+besHv4vqc/4yi5s4oD4o6Sg7HDWKuRRctP3+P9e65rHFiObHnakMemJfiIXeCsaWmf3cb4OZDojqQDjvQBvROFmqQ47+549fv9NGe0C5uCtvpceq16D3jAvkNHeACUsXSA2teDO2nYTNwrijuMLq4TvF4596UW6OTkZKoz645zrL3O/WHlUdIF+8BBCAcZWI+0IzINncUV++W/O6AT1ybsun6/nwJEU1NTqUyMP7usDQLh6FXS2QuFQirrAmPNs0k8m4E2+/qMgS7vd79/86A8L8tGG6Id6s+zZ1PQt6mpqcTen5ycVLlcTvPqQQCuRdacS2yn6z/WO+MZgbQ80obbpwBTefb4KDb0GES/+/Iw6PKx5Is/LwCzDjQe91peRsz3BAc1pX1bhfvGPSlmWHPYsQct0SF+ECQ+KPsQZfe4DrrEs9nR0ZKS7iBTixJqrpe8dBc22Khj5YBzXhDUg9N5Qjt6vZ5eeOEFra6uan5+Xjs7OyqXyylTeWtrK2WD+zVdv9Dmra0traysJCCbbEg/XFbat3Vd53o9/QjOY+d56UPPkrp+/bqef/755FeTITYqOYy+MF+Fws3DQmHYe+kayrwwdmRxcT8y77AbuCZriTJCjCs2Xbfb1fb2tprN5lj3BBn75KPLyCD6l7/85czff/2v/3VJ0v/z//w/mfdPmpn6P/wP/4M2Njb0Hd/xHcnY/JVf+RX9t//tfytJunbtmiTp/Pnzme+dP39ezz33XO41n3rqqYzx0Ww29eijj55ou0+zOItlFCDdN9lblQi457Ulb+349/Ii0pIyEXgcCBTB3ZQYMXa23LBxPmqzAtzw9CdPh8+7trPorly5ovX1ddXrdXU6nUz9uc3NzaTMMUZ8rPv9myVQ1tfXVa1WJUmVSkULCwsqlUoZsOkkBZBhZ2dHGxsbun79ura2trS6unrsE7MZ352dnXRIS7/f1+zsbKprS001T4u+1fWDcYDDTVra5uamNjY2Ug3D232exjKWW5V7ocvvhB6XhutyADVKhJRKpVSPk33OS1k48ObgtLS/F3jAVtoHufkbtruXJXEWlwPAnm7N/gTo5cCWZ3A5A8vbEoFvzw7zNG3p4IGNfuC3A4fObpP2D490Nj/tRtcwFn7oozvBcc/L0/3uzPM316QWK2Mp7Tv0sW0+FzjSjK+X9KHfe3t7yRF0RjcAtjOunDHMmPq68D4BoPpcDtv/I+DJXDKHhUIhpX7zk0wy7A0PvNBXnGkAec9uiExmZ3LjmDpgQju8D9E+87l2kJ/fsTU8AAVo4mnXvs7pE46xpARuF4tFlctlVavVdK1yuXyAqBFJGfQlPhP+XPka8EPBeQEi8QzSTliaHqTyfcFLPnEfB2Q8iMX/DhPawFrLC0RxPe4Xs0gjU9QzN0bJ+hvL3ZeHQZeP5XA5CR+dfeCw/0ed6/9ziTYKe1G0o6R94BnQc2trK6ObXY868EoJD/SZpBRIxe/y816krO3je/Wo4vthLKtFGw8D0V3vXLt2TYVCQRsbG5qenla5XNbS0pKuXbuWbJ24h7sNgXAoZr/fz5x/tri4qGq1mnnu3W7CBoJg5vcggIsOjrbf7u6u1tbWdP369UxW4GESsSbHLVi/1OPHvmF8IcDgV7ve3tvbrx/PmpiZmUn2HuSWcrmc7J9Op5PKwnLN+11iIGssd09GBtH/43/8j3eyHUPlk5/8pP7gD/5AH//4x/Xa175WX/nKV/S+971Ply5d0rve9a70uWgkHAaCwVJ7GOVuA8tHCfN0GMjsP4d9xh09//tu9zcaNB7VH1U8wk0NMGcxwWpyJyjvHih1Dtbc2NhIQISXdHEgKIqDNKRXoaxphx/Y5oDIYeylvPEB5KAEze7ubmKeEzTIe85HFYyIra2tdMp6qVRKNWPzUsUOC+7E9uOMUoeWn91uN8O8G7Ye3KH3sXQ2rINrEcS4X2Uc9b67ci90+Z3Q49JwXY5zg0OWV0PTfzpLCmDMX1FPOXPXWUn8jz3Tmb0RgIvAatxT6IekjDMTA37Swb3WwT3+H1nRzvKlLQSk3eGM/XOAm6AkDi77IPf3+cvTMQ6SHlbmKmYMxL7Gmvfx4Fhnieft3cPWGYBkXo1p5oAxyxPGLq6fYWuaefD/c18CL9yvUCgk4CHaPH7gZ3RefX17oMfB33hAG9dxXe3veTuxfwDd0et+MKyXyvFAjTOhuT/r3IFpz3qAzQiT3VmZrsddf+atARf6gv3kPz1wQ/u4vpdd8vHl+fPzGGhXZH0z5rTPyxlFO9eDGawNnoe8QKDPKZ/1tcY1HTAaZgNFuR09zvfHcjx5GHT5WA6K65NRyHAncT8vJTbK5+Oe40QC/1z0u9iX2IdisDfacp7NRxBROphVlWfX0YZRhXagX7E36J8T544CltG3MKkJCh/mj0dxXec4ANfz7C5AZEkpO81tGMYWuw57Y2NjI5WW4aD0eJbKSQikOdYXcwR5we0GzzRzm5gxcRIjJAPOLer1eqk/o5aFRVwn8ruPw73SYSd937FPPrrcUk30uyn//X//3+tnf/Zn9ff//t+XJP2X/+V/qeeee04f/OAH9a53vUsXLlyQpHRKOHLjxo0DkfCHXdxwl07PYh8FKB/2PRQjTri0X0sWwPluiDuQRLlRiMdVNs6mW1hYUKVSSSlJOM4oltXVVXU6naQ0fPPb27t5ANfm5qZarZZWV1eTA87YAaI78O9Cf0jbmp6e1ubmZgLRYaRz2BjGBVHuPNDDDSf6AVN8e3tb7XZbzWYzAd6UJMA5jI77KAYHfQWMl24a7e12W71eT8ViUQsLC6kPpAu6gZE3386041rdblfXrl1Tt9vV6uqqrl69mtgFw9YB7DsAINrhDjasDYILGDn3e2mYscJ+8OVu6/FKpZIOJHJ9F8EnN34prQBoxe8uEbianp4+AA6wr0n7JUK8DATnOsTv+L6MowB7FWa9O3AY8gB6OHPOLMUh9b7E/dLBTndM8gKjg8Egk7rr+sOdV77r98xjftFfLxfnZTfIvmIs6CPAAexgxgenEcfRxcF/AgYOPHJdBzBxHPkOoGa5XE46GseT//s1IgDp//dx8uADLCra5mnnrAs/RJVxQ3dMTk6q0WioUCgkdpfre9YKbH3WEDrF2032hvcBZzfakf5swQL09/LK/Pg6iYeXSfvnCzigQqAaFiIZBzj2k5OT2t7eVrFY1PT0dLKfuK8/b1J+KUJsLPrqpANfPx7Moq3+HGMjwaarVCq5+1EMNPl4eyYD6wISBetD2j9UlPVRLpfTmuSzEdiPtjfPnT/3EZAfJmMQ/eGQsU+eL3fbr75Vv/lWBAAWvXuYzxV1JbqQM7lc0F/Sfpm1mZmZpA8lpcAK+s0D5Ds7O0m/8fKAuzONXYfgn6KrjiNTU1NqNBrJ3gBj4HB07ukM/GHS7XZ15cqVVKKNGuijgug7OztaX1/PgPqSUgnUUqmkxcVFTU9PJwxAkhYWFpKNFEvgAZw3m03t7e3p6tWryUbERvHSdqOsvzy7L77XarX0jW98Q1NTU5qbm9Pc3FwaU7eLJSW8wfWsB/sJrg8GA21sbCS7dWlpKZEAAexHnX/sDOy+vBIzxwmAnGYZ++Sjy6kH0UlPccHJlaSXvexlunDhgj7zmc/oe77neyTddFw/97nP6UMf+tBdb+9Y7o3kASOjsGfuRBtiGZfjRms9usqJ2mzaKL3NzU1NTU2p1WolxZkHpnqk9XbSljytPKZ24ax6DUavpZoHQDNOniYPa7vT6aQSM86cc8fPmQ7H6YOkFFTAyKhWqwl4YW/x4EtkVEpZ9iaAASeao6D5SW07DMth4mnf5XI5tYe2wDrEmc9jsd6PMlbYD77cbT0O4DozMyNpnyXke4eUzRzieSYAO2xtxfXqYDOGtJdhwVFjD3A2loOseQCfl3/AUcgro+XBNi9Jxf3jfuzA52GfjW3EuQXYjc4UY5FXzznPOfT3yJiinAqMY3dSXfc4SOtjBOOX+Yj39OB7BP8d/Jb2GfK+/3sf41jFz+WxjH29eNDGWU0O7rNuCTR4qrsD935dnL29vb0Ma8yv7axvDwr72p6YmEjjzj0A473PPpduK/jzhp73NewBagdQaK+Pkc+bzw1rsFgspjXEmO7t7aU9wOcirv/4XjzkzZlw9CcGSng2HLT29ehMdLdrvG95wSifo/iZqPt5VgDeIZjE9RfnPT4LcQ2MCpSMQfQHX8Y+eb5EPfCgyahkHbclfH+nJJbrHgfkPYDPXoq/64C8X9MDi5Qf8XYOBvslVmJmjWcNjTpffJeAqGf44WtPTEwkksRR14WJHskDo4oTGfAXJR0oiedM9H6/r0ajkfoTbRHsV3zNdrt9ICBwJ3xOAgLMea1WSwFxGPR+T/o6PT2dCCB8Bt3vZYIo5QIJEOB7mMSgmNt9MzMziaDjGMD9TmhDxj756HLqQfQf+ZEf0a/8yq/oscce02tf+1p9+ctf1oc//GH943/8jyXdXNjve9/79Ku/+qt65StfqVe+8pX61V/9VVUqFf2Df/AP7nHrT5ccV2HcD+IMGmeib29vJyd3GCP6pNvhdT9vlYUu7R8QBYuqVqslpU3E2l9E3HGW3dk7Crg9qh21Wi0B+efPn0+1hQH0PZoPYwtl7KBEHCucTQwAGAXb29upHziqruQj0OR1W0cdZzc8UNrFYjGx4YvFour1enL0KaPjRjLzioLHAEBJLy8vJ6VNMCACb5JULpdVq9U0NTWl+fl5zc7Oanp6Wo1GIzEFHURnba+vryeW4erqauak9LGM5bTJ3dbjDhIBJLEf+6GeDlb796R9MA3B4HbgEvEaw+wN7uCxrznDKjqTtIX3pqen094wMzOT9gNnmEdAb9Sxoe3+PS9p43rVnWHaz57mpVt8DBkfP+zM98EIvO7u7qb+ObCHLolBA3doGCtezpzNuyfigVCfexxvrx/qzlYsdeFM6XhNrispw/xiT8fx97FwEJoDqqnNDQjNWHmbuIb3xV+A4eVyWbOzsyqXy2ldDQYDraysqNlsZmqPomui/vUx5J5e0z+v3JgHF2ifMxXzAkoRvGeNwk4k6LK7u6tWq5WeKQ/uw0534N7nk989yOBMdPSuBzS4t5R9Xr0cBW2p1+upLcyB7xFc37PVDrMd3dakHdE+YY1h60Tbycfb2f6+BzloNZaxIGOf/KC4X30S/nV8Vo/7/3st2ATOHvaMKc+mY//lMOlCoZCxuyjRxT7pgUL+PxgMMmVFsYk8S452OOB5HLDQ/Wn6QWCUPvMZgF0OpPZSL0jcs48j7M3lcllnz55NGeGMBX6opOSDNpvNlFW3tLSkXq+X0evs9f1+X6urq6ndw8rFSvtYhQc2sBGPy/BHBoObrHEy37FHPOuLg+Z5DzsADMLJKhDbOEwUX/mwefeAd6VSSdlkc3NzKTuPuZyfn082Gvfp9XqpLWN5sOXUg+j/8//8P+sDH/iAnnjiCd24cUOXLl3ST/7kT+p/+p/+p/SZn/mZn1Gv19MTTzyhtbU1vf71r9enP/3pdPrwWPbltCrd2xEUF/VZYSNJWWfiTjoDHo2EKez1zY4T6Qa4LZVKqtfrmp+fV6lU0uzsbIrMAt7u7e2pWCwmpcI4MBaw125FJicntbi4qLNnz2phYUGvfe1rNT8/nzm8Y3l5Wc1mUysrK/rWt76l1dXVTH/dSXZgBmPE6wPnjROMUne4nd2GoQKQP8o4e7kfQILp6WmtrKyoWq1qZmZG8/PzCWAgzdyNPu5J+RZA9FarlcD4aKy5YHQ0Gg098sgjqlQqeuyxx3Tx4sWULhjLuTBW29vbWllZUbfb1fXr1/Wf//N/Tqz3UcfgtMn92OaxjC53W48DMqIbAMQiSxZDGDDTHQF3AJ0Z6wAfz6bXkOT7W1tbGTASQNkPTXTGNAChl++q1+upL3w2Mmb9npFZEwOZ/rv3xUFud6by0lPj/WCLR8DNGet83sfSXzCgnL2LLnSHO7K7aaeX4MK5dXZ1nm6JLHXXU86wj/1y0Nf/52Pp6wsWnZfrAlAnXdlZeJT8YZxwzCgXRqkOxsTJAnHevWYr5Y2q1WoKiNfrdc3Ozqrf76tSqWh5eTmdR4JuA9h18N9Z0Q5O5LGeGTNKLPkcx/GLoIIHkX2+JSUHm7Fy8gSZXNPT06n0HCVV4j3oh9c7d93tc+HlTtDPrE8cb89SICDuWRQE9ZwpB9hSKBQytoU/N/zu7fBAkwevPA2e9eNgkgcnAP79ufRzBQClRpGxHn/w5X7wye8WWexOsM99T8zzHWKg/7Q9czGIzHvYApTu8qycQqGQfK+dnR21Wi3t7u6qUqmoUqkkwtPa2lryx0qlkvr9fiqr4XWxI+HJfU0nVBxn7NxeQYdDdJOUggNun7XbbS0vLyf7kAwut1+OC6Sj86enpzU3N6e/9tf+mubm5pIu2tnZ0ZUrV3Tjxg1JN8ukcJDm+vq69vb2tLGxcQAPcZDaD7ofBqCzDsmUd9u50+ncMohOm3u9niYnJ9VqtVQul1NmvmchTk9P69KlS1pcXNT29rZefPHFBLiTlbC0tKT19fWMPXZU8AQm/PT0tC5cuKAzZ86oWq3qkUceUb1eV6vV0srKinZ3d9OBtjs7O1pdXVWv19ONGzeS3XDans9R5X5t992WUw+i1+t1Xb58WZcvXx76mUKhoKefflpPP/30XWvXwyiRHZRn3N8rcQWHEve09luN+I5yX8QdLWcRHXczcvaYpwPjoHFdlAj13TBKcCjdyT9uO/huqVRSrVZTo9HQ7Oys5ubmknPoLKp2u53GwFPg80B0Z4HmpUBx7wiaxL7ANsgznI4SB+FpB04rrEjqqgK4ez/c0eVgGEAOIt0YEXlGsNeBrdVqKpfLqtfrCTzHoHRggbHi2lNTU+p2u6pWq5Ju1maLjLL7QW7lGfHvjuX0y93W4w5oIs4U8zXnAKZ/zsEqB1z5PM4f34nAPN93VqkzbT0wyH4Nw4kAHo5aXtkQ9FoeYOAOA46rj03U5fweJQJ2h4nbBT4GEVh1Pe0Au/8dWcver7z/O5tqGEia116/pn/evxcDD+zdrqMig9rbi/7g/3wPoNXTkh1kjf3ysaONeWe++Fj6eHldedYWteT7/X7KMgMkiGz+2Cf/CUjigYc4JlzbxzMGpnycD3PysY0io9wPX6WteYenu23IOGG3ePDIbTmeZX9uI2DuKf68B2DkthBAgDMbYTBKShmGjE+ejePPf96zyfc9KDYMDPEx8Wty71Fs+9vR43x/LKdfxj55Vu4kYH+ca0db4DQ8T67T0YNxT0PQUdhLvmfnZSFHe4xr8B5/++ejX37cMYp2k+sCfDLHG7a3tzP2wq34qnltgHVOlnitVkvXJ2AP0Q2d7FnqeWVHPMgbWfN5bYi+uc/PMLt0VEGXk3lPn7kXgRBK2xKg2NzcTEQD+kkAYxShD9PT0ylTj0BOuVxWtVpVrVbT3t7NM9AmJ2+ej1MqlRJ5cmJiIgXxY2WA+0XGPvnocupB9LGcDoE9Nz09ndhx7gC3Wi11u91jMYJPUvy+HIDi7ClnNJ0UI90dWpjh/X4/c+jVqIEFV0quID1lzFn1OLCVSiU5X/yvVCql+1MixcsYHCXcp1qt6vHHH9crX/lK1et1LS4uqlqtJueeOabczLVr11QqlbS2tqbr168nRZcHLDhQkTcWbhC4wxpBdMZ/mCN5lLjD3Gw2E2ut2WxmWI0OmLhzDfvNlbUzEfOkWCzq3LlzqlQqeslLXqJXvepVqlQq6TCViYmJDDvRDTfG48yZM6nkC2D6N7/5zfQcAObfDzJW2GM5aXHw1wFn6SBI5K8ItOOARNYyn/NUZZ63yMwFyOJgUFJDYdbEICHMHsq5sNd64M+dTAelaXME9L3/XvIEx8SvH7OocFYiYOvj6kxxLzUR06kdlC4UCpl61V6+ivbRnxhU9b54UMPrn3LPOEYTExOJkewAqdd5d91Ne2mTBza87AWZAg5aRoCS+3MoGe10proHdmu1WirV1u12tbm5mQsuR8ATB4+ALgB6rVZLTiFl2WD2nT17VuVyWZ1OR5LUbre1traWOTw2lkKinaz7uN58jWxvb2tmZiatA7INYn13B/79mXRiAc8B/aU9jA/lb6amplL/GYM8kJj2UXLJWXgxkMZadTYg9hpMe7829en9Xr5med663W6aM2f887znBQajzePgiO9NHoTx70Ubw0sluN2cB7pEGYPoYzktcrfW0u2u+WHXPMw/inpdUvLXAKF9nx7l2R1VjguMej/Yy2gjex1lRdCfAKHoC+47Pz+fyoi6L+iCrnEmPySnGBA9LumPPZGsIt6DHU3pL9cZAKoErZkXdOqt+KxTU1N65JFHdP78ec3Nzenxxx9XvV5PGMTU1FQ6TJQMaXTgYffLs2+HCeQ95iBmk0PqO8oXPkogqu3s7GhycjIRxTygvbOzo6tXr6ZyLpS8o22UtTlKILUxvq961auSfU6fyQjkMHvGALtzfn5e8/Pzyb7q9Xq6fv26bty4cSAwdJpl7JOPLmMQfSxHCo4OTtf58+dVLpczTjvsqcMinXdSHETY3t5Oyh6wH2XMZ08KSHd2MEwsyqm4sTOKAJI6E9HrvPLCAOFzXtsUEIBUZ5x2Z0YfJQAF1WpVly5d0itf+UoVi8UE2rpQr25qakqXLl1KQP61a9duuYzMYSB6HhvBmQ3+/1EEg4cyPH5/xiIytPKAg+OwP2ZmZnT27FnNz8/r0Ucf1Ste8YoMcDZMfM0CfFSrVdXrdfV6PW1tbWllZSU55fcLiD6WsZy0RIM+gujIMOaSlC1vEPcbD55KOvAZ31cASQFcI4jOXs7BUOVyOe35eYcXRafFmbS02wMItM8Z0NzXy4IA6rVarVQaDEec9jsrFQcpsmGd/eRjRZv9nAnf29n7fB908J15cnaaB4+5pwd5IxMIfRjL6FDPcliqNzqRtjOXAKketEEf+Rz4mnMQnTEBRGBemM9qtZocScBYB+Tpbwzy4sy7foQpjYPHTwIKCwsLajQaarVa2t7eVrlc1t7entbW1iQpc+aGr8WjbD3u7wfGYjMQSHHAnT5F0Niz7jxwztwDvNBWt5d8vmJQmuANB5D5WvXPxqAKa6LRaKRxrdfr6bMRsPZ5Yo0TtNrb20trIpadwrbOC+I7uSDawNjBHpCK65BrxrrqXiImZsGMZSxjuXMyCoAV/z85OZnKdXkZuVH251HF94fj+lcuxWIx7ckAz4VCIe1/fpizZzQ3Gg3Nzc1ldPUwUJ89i8+SYXQ7AB8AOnpY2j94e2pqKmUyRx8Rohulapz8cKvtuHDhgl71qlepWq3q4sWLKpfLarVayb6Zn59XtVpNJDrG8CgZpU1uQ0r7NdBdb9JOt4VvRdCPsNG9pCrXXl9fz3z+VsUZ5JcuXdJ3f/d3q1wua3l5OZ0Lg26W9mvxYy9OTk5qdnZWxWJRtVpN9Xo9tZtSq7cz72M5nTIG0e8TOSoNKEamT0LYtCYnJzU3N6dGo6FaraaLFy+qUqkkJw1jfmpqSltbW1pdXc04cXdDHMTEKabOqpQtkZLnEI0iMVLrbGR/uTMzqngKsAMW3h8vgcJm7I6hzwOMIgfTI6NxmERww9l2eZ91hhiR2ZOS4xhrJ3lPnPRhrC8H6EZd44wTjMB6va5qtXog1XsUcWeX2qeVSkWNRkPdbjeV17kfZBz1HsudEteLw9ZKfO4iEyzuuf6ZeF32Q94DKHPmzjAQ3dNVI3CFg+LsMmf5xCBe/IleAfjDYQWwB1DzvQ/mDf3wIGUcC98r8/ZDB9pjzXNPc45gnpeS8ffj/Ma5I4Do4LYHFGAxeaDAAxVxX3dmsacve3siCOzApX/ev0NZD7+uZwg4+Ovj5u3hfv6T3z2IEddEfJ/rOWs6vmiv3wNbI+8Zc7Db5wvnE5bzYSB63rx7WwEHvCYuP72v/reDx3x+WEA8gkdxXcTsCcbIAZ7DfjpQ74GkUqmUOcvB5zqC27FN3s4IfPlz7GPl4vvAqPr5dvS4t28sY7lfJG9vut3n4Dj39oyixcXFtGeQTUX2EuUmTwOxZm9vL+ED+Ok+juynvv+4PnY/Wzrol3EPPjsMPB8GwB8m7PcEvGEhewlTfG10iwfVox3h/viobfGAO0Flz1ZyQgIM7jjGJyGuw9zOpM8xaHtS94zjdVLPGoEoSImMnevWvEwvaT8g76QPt3fL5XKGsX7aZeyTjy5jEP0UiztL0cGWshvKcZhBo4rXg/rrf/2v65WvfKVqtZoeeeSRVIeZez///PO6fv26VlZW9KUvfSmV84CRfTeEvnNQ087OTiZqChsv72TwowBMd8I8LYcSNtTGpqwH4P2ofZ+amlKlUklpeV5Ti3tISps6c+110GGiw1CnDQQ3SH/GCBkmALNE3WFN5SlE3kNRVKvV3MO7jiN5SjJu6lGZnrRS9WvmgULHvRdMi2KxqIWFBT3++OO6ePGiZmdnE5B1K2PGwWW7u7t65JFHtLu7q42NDXW7XXU6nbtm0N+OjBX2WE5anA2EsxZB71h2AXFmN99zZqcDV562GwFNfw9nF7YLoHks5yLl1//c3t5OBxXB0nIg30HbvEwwwPvp6WnNz89rbm4ulWajLQTjNjY21Gq1tLm5qVKppE6nkwHuaY+kDOMc8WfS2+dBBBj2cezz+s89fKzoJ862A8KU1cI28XnnerTfGW+dTicd/MX1HLyMQGke4I/j5aVvBoNBhjEcAUyu6QePoss924Fxi2vMf+d/Xm7N54prYgtMT09ra2sr9cXPYPGzWCIoy5gSFKb/boMCJvhcOhMdW8QZcr6WPYjvzxz39YC9B1uYY2dxT05OpkxBd+7JDMkLztBG7wOMM89UgNVfLpdTTXQ/pDSmutNOHxf6Q71VCBJbW1taWlpK/WO9+/qKQY1o47mN6+slBlz8sxGgGoUoMAbRx/IwCTotZgYd5V+dlExPT+uv/bW/ppe97GUql8s6d+5cyhBn/1pfX1er1dLq6qr+8i//UktLS7d8v5PyJXq9nq5evZoy4Tg0krGcmZlRvV5P2Tno4U6nc6A0h5foYp/d2dlJAQP2/Lh/sacfBy9xLGZhYUHnzp1Tr9fT6upqAtHRq/jvW1tb6aBuSUkXoTPBSI5T8mRiYkLValXz8/MaDAZqt9vpuwSSAdEBhvv9/oEs8tsRMqVch5BNWSgUcu3l2xW3Qe6EriiXy3rpS1+aglErKysZW4f7gv9Eu8z77fq/Vqvp/PnzaR2MWp/9XsrYJx9dxiD6KRdnneBY4FS4snRm7K1EWPME1hoK+uUvf7nq9boee+wx1Wq1DIBPWZFSqaSvf/3rWl1dvScPE5sc4+AHTaFgcCQis+4oIN2dcNhrvNg8HeAeVTy67bU7cZhQWM5Opz3O5CPaTTtJNaN/Djgc1R4HCo6KYjsrzI3Kk5AIpDsz6m4AxCd5D4yncrms2dnZVDvtdtj7nrlQr9e1sLAgSSdqMN1pGSvssZy0OAuX9RUZyXwO8Qwl33fY62GRuAPmYJMDc84ImpiYSCAbKcHs9TBU8sT3OGdJ46x5W72kQ7yGs2U5MImDiynRBfOVa01PT2cyWnAGIyDt7RwmtMEdPK8fLh1k0tIXgFlnrvs1fY486On2UGwr8ykp4/x67e8IejqBwcHwPHa+60wH4ocxqiNozPuDwSAB67Eu/bDx5nt+Hxx3Dwy43cjYe8ZZZJ/zk/45ywqH3YFmb08EoSMhINqsPk55LE/mg7awrnZ3d1PNdQ9+8D3qpLv4uvL1FdejS9xHPPDAus4LwPvfcV1yH+wnDipzex/xYJvvD7H9XBub0AMew/oW+0j/RpExiD6Wh03Yf3ztjxJwOkpctx1274WFBT366KOqVCrpnCX2z36/r+XlZW1sbKhYLOrrX//6bbfrJARAHP1Rr9eT7kGneplQ9jdqpbvejXu8l2ajNFecDw/e38pcAZJXq9VUjsb1CjYOvrfbjfjvrk9vZd+EgEHwH/sg2lbb29sHzvU6CfFxzSN7YmOd9J5+J3XE1NSUZmdntbi4mNaQtO9j+zw5GO418j2zkbklOM617gcZ++SjyxhEP4XCRuebH3W33Kh2R5HSJTChhxnp0ugs2kqlosXFRc3Ozur8+fM6d+5cqsFcLpfTNfb29rSwsJA21rNnz6rT6ajVamVY2XdLPH0q3p8NPo7lUcrFwXGi29Th9GiyO4mjCIrN2V8wwD06nwdku7OGsNkzBtPT04ml7oyywwItGCzFYlHdbletVisBP9EJY0y2trbUarW0vr6ubrd7286Up+X5wVgRQPesgLsBqt+qFAqFVGeeYBPP9EkYNn797e3ttIYYn9M6LmMZy50QZxpL2QMuXdzhZD+hFjFsEmebx+8CIHqA1sFW6i3jdLkuB6z24KekzN4GWO6ZJeh32iBl65Cjm7w9ZJUVi8UE6FO7kb0CnS7t1xtfW1tLY0fNTxd3pryUBnqH9pANFkF0B/vinKCfec+BPYBiD37HNFo+F/Vx1OUelPCSaR4wd2Dedbz/P5aB8eAyYAs6nrY5E522OTjg33eGuwPO8V4eMKLNAMjM4e7ubqa+uLRf87zX66UACmwyZ4Q7y5uMtUKhkOp/ehuHgeC0MT5THijnvh4I4nqekcD7gBZ83u0+J1LEdZtnX3lJlij+jDvAzFg7KO/jH6/l69JJEE5IAEj39exseP9unsRAH33ycfexjN8jODGWsYzlpvh+4fs5gq7t97MHSLqujs9uXsBtmOCHVatVNRqNVIfZs4+8Lfgc+JJ5OvdeyGAwSCA07UK3uM+CbqQEnevpfr9/INMK+21YP2OwHYl2gxMKJicnk91EyRyY8eigOH+RTMeZJDEziP7mZRAOG7dWq6UbN25k9JD7yJLSWKytrWl1dVXtdvu2AzwevEBnRL03MTGRsgFPy1obJtgNxWJR9Xo9g7M5XgLGxnOGLs1jxseAQrVaTWvksDPPxnJ/yhhEP4XCQ4gy5uH1VGJ3KnGsAQCkfYXiaa5sev46bFNtNBp66Utfqvn5eb385S/Xy1/+8swBk5EJ12g0VC6X9Y1vfEN7e3u6fv261tfX77oRTt9wjAuF/TQb0noBN3DmPQqOeP8crKU0ioPorvhHVRqudIgswwjEYPAD5zzi632VstFSrh3TCmE90odh7SQVfmJiQmtra1pZWVGtVkuGGNfHOSQavrS0pGvXrqnZbN6Wsnagwhl8Ma1bUgYAOQkGyJ0S2KgLCwuan59P9dCdpXc7UigUUtBLkmq1WmIqHDcz4m7LOOo9lpOWzc3NtM9FcNNLV8QMHgKInmEk7es4fncHSzpY6gPAjoM7q9VqKtfFy0E9Uo/dKdnZ2VGr1dLu7q46nU7GCcJp8ewk9np0k9+rXC5rbm5OpVJJs7OzajQaKpVKmp+fT/qmUqlIuqknut2ums2mNjY20v2azeaBIKwDql6/m0OXNjc3E4hfrVYzbCmcPJha6F4Hhh2kYK93GygyiyUlZr2kA3oBp5X/UT+WufZ5d/1DvwE5WS8+H4yF6yzmOGYgsIYcROcaDlizxnZ3d5Ozl+esswYdGKd96IBOp6P19fVEeuBaPB/0n2D4xsZGGt+89Pfd3d1Uj5e5iodhejsjoBuBWw+EOzuegJADyJQmirYbwRu+h03MXJJtQSDK58eF+wwjG3CvYZ/BvvTATrRPfN5ihiFAma8nxjyWyol7AOsqb434uOfZSzEz5DgZcrdLYhjr8rHcD4JPFvcA99spp7m2tqZut5vJEvE9kr2f/XeUZ6BUKmlubk71el3nzp3T+fPnDwTa+InP1ul0kk+Jr3oaZGtrSxsbG5k9XTp4VgRgJDqm2Wwmf9zrq+eRH/Ik73+eCYZOpLQMjHlsmO3tba2srKQ66G4nSMroVWk/Y6FcLie90+v1ku3jTPvDBFt1eXlZ3/rWt9IZdei1SCajdM7Vq1fTurtV8UA2NpgHLXgVCoVMOZPTvK8XCgU1Gg01Gg0tLCykDE3PGuh2u+p2u5qenk52fKvVSn2MBA9pP6uP3yuVSiIc3A8y9slHl5M7AXAsJyKujCMDydNt43vRgeflzlzez2EAHp/BSYrsWZw7r+HpkVp3cm6l7ychKDJeAL7+018eCfe0HF5534mfP+4G4vPjc+vK6rBx8f/5vPvLU+VGAW09aMBJ7yj8OAbb29va2tpKKW3Uoz8J8SjwUa/Trqyl/fq3MbvgpMSfSV9Dp11iYO+4r+PKRz7yEb3sZS9TqVTS937v9+r/+D/+j0M//7nPfU7f+73fq1KppJe//OX66Ec/euAzf/RHf6TXvOY1KhaLes1rXqNPfepTmf//2Z/9mX7kR35Ely5dUqFQ0L/9t/82dxyefvppXbp0SeVyWW9605v01a9+9dj9G0s2iOz7SN7a8aBd/In4/hr3XAerfS93nezPvevxPPZTZEpFHRP1TB7bNz4bOPzeVge0Ae385X06ah+hzw4MRGZ+tGFGBeg8cMrcuB5yHR91cdQNkU0evxN1Sp5Oj/Pj68XXFEBAXC95Y+dAvbc3fj/ahR6IHzZPrGMvBRRtGN6HbACDMoKvefaov9x+8b4e1q48lj9jEZn+fIZXXOPeRrdz41h7G+P45kl83vx7cS/xz0RbPA/scolrJY80MSwg4cGnvGv5uA/TpR50imv8KLldPX7a7bexjOUoX8t9Lg+W+94U98WjfPEoZLgByhGcjcE8D8K67j9pv+N2hH09z6ce5lv7/hl1eCRMHEfiHESd54xvv2+8Bv0aZoP5Nd0/H9VfGwxukhM6nU7yy+MYoMvdN48ZycddA1FH5umNw+zU0yg8I9i7bhvk+ejR9op2m4vrfJ7X4wSl76WM9fjoMmainzLxjRYFGR9yj9BKWTayM3acieyOGi8Hj/MUD04293YDwBV2BA74DpG4KBE49vYhvjlHEOQ4wnWIGBcK+wdNuVJ0R8f7585drIUOy8sdmuPIMMd0WGDkuNeUlJgHXHcwGBxQAHljRmT82WefVa/X0+zsrDY2NlSr1dJ67Pf7Wl1dTQfXPP/881pbW9PW1laG5VkoFNK4jbrR8n9ncjkjzf/vGRmnWQg28XyfZMBIUu5aGpaSfprkdhTvcb/3yU9+Uu973/v0kY98RN/3fd+n3/md39Fb3/pWfe1rX9Njjz124PPPPvusfviHf1jvec979Ad/8Af68z//cz3xxBM6e/asfvRHf1SS9Mwzz+gd73iHfvmXf1lvf/vb9alPfUo//uM/rs9//vN6/etfL0nqdDr67u/+bv2jf/SP0vei/PN//s/14Q9/WB/72Mf0qle9Sv/sn/0zvfnNb9bXv/511ev1Y47Mwy3sNbGUVwS/vASKOyAwQDnIMU+i48y+SgCZ5z3PUUJnwJKlJreUPVgz6tYIrlIixXW4l79y1rU7DAS7PTjOwaKugyLQyn5MO9xWoea76ys/7Jq28n8v55EX8M/Tu3Hc89KYXSd4RlPUo/3+zQPBNzc3cx3w6BD7HDMG7uD7+oGB73qca/nvCGuxUChkmILMpe/pLpEJ6evJ18JgMFCn05GklInHQZj1el2FQiFl2HU6Ha2urqYDzRnXuNadqY+jiM7hPvTLgxh+Hf+/21E+T7wfgXlfi9F2JJiDYx+BdLezaUO0i5gPfx6xxz1YDZkAhiJr0oNKzKtfm7/9GYiZKaOAK95GxsNr0/rz4M8Z2Q8ROPc1P8xGzJPbdaBPu/02lrFIWTvb97wYiJWUypjxvElKz32hUEisdg9YHvUcFYtFzc/Pa3Z2NrGjyTTC1+P559XtdnXu3LmU0baysnKAjc5n8/Z89NtJP6PoKnxExoi9Z3NzM7OfYjf4YZwxGHurILrbVmSyTUxMpICys8iZKwewPWgi7duUjCnve4CX9eH2zVGyu7ur5eVlbW5uqtFoaHt7O5Pl2O/3tbGxkTLPms3mgbnzM9ewr45ad/5/z4jy8Udn3sr43yuJweLYB38uIRb6gfX87jZQni0TfY/TLHfTJ7/fZQyinzJBsaKg3WiPDlT8HkrIHTFPlY7AMP9DkUVhU+DeEdD1iGQE8PhOnvHvbCBX9q5Aaac70AABx3lIfdNnc9ze3k5tGAai893IinLH2a9/qxIdbf8ZnbGjwFAPrnhwwueFuYoR5Thmg8HNlOdvf/vbunHjhubn57W9vZ1K+aD4X3zxRS0tLandbuvKlSvqdDpp/h0Q8RTw44ybp4jFuTnOde61sNZ4nkad0+Ncn3s46+S0pG3eaWk2m5m/CUBG+fCHP6yf+Imf0Lvf/W5J0uXLl/Uf/sN/0G//9m/rgx/84IHPf/SjH9Vjjz2my5cvS5Je/epX64tf/KJ+/dd/PYHhly9f1pvf/GY99dRTkqSnnnpKn/vc53T58mV94hOfkCS99a1v1Vvf+tah7R8MBrp8+bJ+7ud+Tn/v7/09SdLv//7v6/z58/r4xz+un/zJnzzmiDzc4vsMwHAMRDq7lbIi7ixSgiM+o1FP+L4L8O6sc3S660P0L04YrCGAcXS9s94iiO56woPhOEfSQaARB9EBdAf9pewBk9gGeZlafJY05UajcSBw7o5jBATj/ud2hYONXmYFoa1kxrnT4p91EJ0UfOZYUmJpua4/TKI+Yw59LfT7/QSi49w60B+BX35iX/iYMJ9uf7mgT+irO/URpIeNxjqjPn6tVsuA6Jubm1pdXdXW1layQ329eZv9eeFzrrNjJkgMgPjaimMYgx4OMrsdhl0YCSYTExOp/M9hejZvTiLLMNq1fl4RzwgvQGz64hkqzKmPkdsCXh4qL8PA7VF3zv05I2jFWnGQhD6xloaBTnmM9LGM5WEW32Oir1soFBKY5lky2BD+jFIiTlLGxmBvOwqsBkSnDEWlUtH29rba7fYBEB3d3uv1tLi4mErLUNYr2hNRv7ndcSeYxb7PAKZL2QOkfd+MOu2kBf+Y/bffv1kScGJiImNTRuBYurmn4nO4bel7vPvl0r79RED/KHyDPXx5eVlra2vpDKxqtZpK8u3t7emFF17Q8vJyZl0g6JlSqaS9vT31er2R/WknKkSd4PrlfhJ0v2dAOFnPx4Y16jqVNYB/nxfQz8OY7hfsYiyHyxhEP2US2VjROeAzLq4II1vKWVRsDM7yioC4y+7ubqZMB8wiFDT3dmd3a2srpRBhLLiChgHkkfzIEvONGqfEa8Yexp4/Shyg96j7sMhbHhP+dhk3w+SwOb7V60UnjPePYjbxXdbJ1tZWqnUOe2Jvb09ra2tqt9vq9XqZyGsE0T16n6eAj5K7rXAYn5jShYN/HFY94o7/nepPZGPcD4r6JKLejz76aOb9X/iFX9DTTz+deW97e1tf+tKX9LM/+7OZ99/ylrfoC1/4Qu71n3nmGb3lLW/JvPe3//bf1u/93u9pZ2dH09PTeuaZZ/T+97//wGcA3keRZ599VteuXcvcq1gs6gd/8Af1hS98YQyiH1McND5sv8PRiaUr/Hl3Jy6yYaP+jEC938cZ4lyP+0bnMD4TcR93IBIHnCBx3p4fAfDoFDsYSp1wDoeKIKcDuQCJXgImb6zjPsp9HZiNc4IjGplS0Y6J4s6cM5GZP74TWbrex9gmt5+kLEvdAwr+P9ej0Z7zdeRzEMHc+F4E3vPIB9g13m5+p82w7/261DaFeefjdRQIzU8nSLAW3E6LddKjHPUcuc0WgWT/PpIHRPN5wKJhgeYIqvOcRceal18L8J7vxs/6nMb3JI1kH7kt68zxyHyM+xfi9/DP5N1nFLldu/h+sFXG8nBKHhA2zE+P+79/Vtovx8JneOb8ejEI7kK20OTkpHq9XirBFXWTtB8kbrVaqbaz+y6+35I97iCxB245Q8NtB9+DbsWvixLB3HiPO71H5O3RrlfBK2LAn9/jddwXJkDNGGGzeeD7sP7F9cWYc26Jl8KhrGpeoMTxGNf/d2ufPwlxu0c6WLlgVPG1K2XtfZ6TGEwmaA8GwvcdeMcWGAwGxyrVc1rkJHzyh0XGIPopEwx1ZyQPcyhcfFNHEZIOivEcgXUk1rDi1el0Erv42rVrqVavbxZ8f319XWtra7p+/bquXr2qF198Uc1mU4VC4cAJ4bCZnWkfWUdsRDCVOHRjd3dXzWYzKQnA2+M8uGyC7mAzdlGiMvf3TkKOArRHmfu8aw671lEbua8/Bw46nY6+8Y1vZNbZYDDIBFf6/X5K66fsC0qJSC1lC241AHI3xI2MWq2mRqORMaA5DAeAyZklw2QwGKS+R5DiJJSrPy/+inXwTqOchMJ+/vnn1Wg00vt5LPTl5WXt7e3p/PnzmffPnz+va9eu5V7/2rVruZ8npfLixYtDPzPsmsPuw/fidZ577rmRrzOWm9Lv9w8cMBkFsNgznWAs59Wp9PIMw9itEYxif4+ZXrBk0V/uQOP4uGHvLCdvFyw2GMvOQnZHmUNK9/b21O12tbm5mb6HrQCIury8rNXVVW1sbKjVaqnT6WQOYpyYmEh2APq7VCqpVqtlSpJJB59tAhb89NRZZ/Lxs9PppP3Vnc8IXsS5d9CWPrIWaIeXXvG5g6kf54u54W/WDYCpBzV4cS13YN2+c8A7ghP+PveFqezrwp1J9DL3iesXXby6upqeEdaQA/de0sjbEYGXGHzi/+VyOZUp4LBTyBWIO/gOMHlf4hw4m5PSKZ56H4Ek1irrhuu7XdLpdDIOc7SFnSFJu/05w2HmGZmcnEyEEieNeEAoBs14z+1Rtzcd1Irj52CIl6jh5YxzT0P3a8bUfr//qPb1GEQfy4Mq6Diyp9kvYZJL+6Uz3deWsmc1FAoFVSqV5KOzvwwGg0x2C89st9tNZd6QtbU17ezsqFar6cKFC1pcXJSUDfpJN3XfjRs3tLKyoqWlJX3jG99IB0x6aTRA/fn5+aTPY4BgYmIiZci53USgfWdnRxsbG0cejHmY5D3/MdB/J4U90gMZvJj/hYUFDQaDVE7G9SZzJu3bHbVaTWfOnNHU1JReeOGFZOfDHO92u6kEKutgmLD2aCtrZ3V19QCgnAfMc26dZ7zjl48SvI02yb0UMAafp93dXXW73WMT1bxEC3Y2NefdnsBOhkg4Pz+viYmJFKiiHZ7xJ0mVSiVlJHqA7DTLGEQfXcYg+ikTj3hHg38Y2Obv+2bqSsCdezYEr1/pQDIPAezjiYkJtdvttKnU63VNT0+nB213d1e9Xk/tdlvtdlutVisB3Q4AcPLx/Px8qsOKMz6stikKv9vtJofagUEcl+PK3VLMo8pJRylxfg+7bow+u+PpILp002kFhPHILRKNTH53ZxVn9LSnfPkz6OAQ/SGg41HpUdaRr2d30k9K3BH3wNhpl5NQ2KS2jiLxmYjOxyifj+8f95on1bax5IsDiew5/izwbHgA0IHvwxiszqp2Fo/rWQdCC4VCclr5vAe8SMHO0918hz1ZUmZvdiCWz1GuzPvL3sP/HcwDpAXk63Q6ajabarfbySGIpVRw+Mvlctr7+d2DF87CxaHDefNr4UAyZl7bGxDdxzayavPm31lGkYHu4+Lp2D7WzjrOA+p93BxsiKC1A+v0wz8XbREfK38vr5xLzOCjz84oxPHmnthTDkLTzghiR1A/b++LY85z53PGODGmnm3AWj2q7Io/b27bOili2PPKT+aCewF2+1zG/SBPHIh2QANQ221s5jsC9D5meS/+P2zc/f4EK3zP8u9gg/l8xKBUXv98HRwlYxB9LA+qeDAs+uW+r/i+zt++L3Ed3ndmMtf1Eh8RQJf22eW9Xk/r6+tqtVqZEi7S/t7QbDZ17do1raysaGVlRWtrawf6RfsrlYqq1eoBf5w21et1zczMpBIh+P3okna7ffIDr7u3L7h94PqX+cPecV0R59uvhW6rVqsJL2m1WioUbpbsq1ar6na76vV6IwUf0FsI7ex2u5KyZeywz3zfBodx29b11Sh+xmnZo5kL9Bo2I3jQqD65lM3S9DF229xLGu3u7mYCElwDGxubEruVs4DuJz9uDKKPLmMQ/RRKNKRvV5w9HJ1rd0zixrO9vZ0Opfj2t7+tarWqWq2mbrerarUqaX8Dev7553X9+nUtLy9rY2NDOzs7mpqaStG6RqOh2dnZDBOdA0id5Uv/JWWcX8BZgFgUkLObcYbup4fYHSt3Mt25PMxxzRN3riJryp1iFKh0U+kSLaWetM8JSopUMQ4d4z3ElXFkM4yqqO+1uMG4sLCgCxcuZJiD3W5Xg8FAvV5PzWYzKdvDhCg2RidGMOv/dseF68MczUvne9hlcXFRk5OTBxjiN27cOMAARy5cuJD7+ampKZ05c+bQzwy75rD7SDcZ6RcvXrzl64zlpkS2susWB5BgiPJ/3+/YKx10c4lAGN/zsirs43nMaWen5QFZEQyMwLlfi73ef/o12LcHg4E2NjZULBbV7XZTvVTP+lpeXtbKykpiwXHoYq1Wk6RUzqtQKKT9i9rq6GlAVNhZDkTj3AE6Tk1NJefH91LXVR7Y9PtHNnfstzOcHXD2LCJnGjMf6D+fZ5/3yMpi3GOZunjAWwTQXfKAWQdJGQfX39yTPkfw2gEB2otDHxnWrBP/fhQPcvA7WRYcTOuAvAPJznqjHwDZvs59Hj1gz7rheY0MT28z12aNsC69/jDzg63qDM0YrOBeONQ4zNFm9na7/UXgzMEZfzYjcw6mvTPHI7judjI/Dwu6Dts7fD0yxm573i9221jGcqeEPY+AsQPWgGYOrHrg0kuD5flfMSDvQfnDhKyxZ599VtPT04nc5oeVXrt2TUtLS9rY2Ei6gkOl2RfZG+v1uiqVSmqnlA0E+95Bu6kBTWmLarWaMsfRW3nnrZ128fFn7ydogO6MQVvfk5kHSWq1WpqYuJl56DWz0Xu1Wk3T09OJ4S9lcRl0FfiLpMScdtna2srUN2et+ZwhYC/4pB7sOa3+ottTs7OzWlxcTKQQMCBJCUzH3j1MmEsvWwyOVKlUMnaY4xo7Oztqt9uJlOAYDTbOzMxMCoStrKyk7PWxPFgyBtFPmbjjFJ20w5hXw8SdFTeE8wDOKKRxU+v02rVrajQaevnLX67Z2dnkJOzu7uqb3/ymXnjhBfV6PV27dk3dbleNRkNnz55VsVjU3NxcOnjMAdq8KG4cj8HgJvud+y0sLCTA8Pr169rc3NT6+npKUY4OyWkVd75jajCOF/0hmHCYMxMj6V5vF4PGT9WW9sGFWq2WyvWUy2VVq9XM2gBk2du7WQf9xo0b2tnZUbPZTJFwB6w8cOPvR7bGaZRisaizZ8+qWq3q0qVLeuyxxzJplu12W5VKRe12W1evXlWr1Toy8NXv91Mmx/T0tFqtlur1elK2tzMerKN2u62lpaVUpx5D9rQ/C3cr6j0zM6Pv/d7v1Wc+8xm9/e1vT+9/5jOf0dve9rbc77zhDW/Qv/t3/y7z3qc//Wm97nWvS0byG97wBn3mM5/J1EX/9Kc/rTe+8Y0jt+1lL3uZLly4oM985jP6nu/5Hkk3jcHPfe5z+tCHPjTydcZyU/zALwfI2QNhr+AcugMMMIiBPDGxX/M77l15wbOYKu3MLv8uTmgE6h0ok7JlO/L2TwczcVppvwOYrVYrHV7Vbrczh1LhhOB4kzKODVCpVDQ3N5eYy14uaTAYpEOtvJxLHihOv9FtpVJJ29vbKSjrZS8cmPDrAti7DeGgpc85LDsHAWBvUU6n1+sl0JS5KJfLmYC2zwe60NeArxVnfBWLxeT4xcCOiwd3HDT3cWB8PAABmOvBC8YoAsHMxc7OjsrlcuYcG0AiZyvnsZNpS6fTSWPgNoK3wcEhH0e3eVx83hxA8jrj3jbGmOec70WQnvJM5XJZlUolwyoFtKDcEWn6zizNC8TgREcH2+ePIIKXKfJ6xD7vtJV5JdhOzeN4LgHfcyCe5yBvbXF9MkTiwWiSMmn9cb5GAcJul8By2u2UsTy8Esu9oX/4H+Ub/FBCD2p6MNODadgWrv+9Trb7fPH52NnZ0Te/+U2tr6+rUqno/PnzCRyn3vbzzz+va9euJaBxenpac3NzunjxYmbfnJmZ0ezsrIrFYgJj9/b2VCqVDrSPPRf7hbbNzc0l3bqysqKtra1MqaxblWH9v1PCHElZ+wGcgc8wf/gBrAP86WKxqJ2dHd24cSNlHRCkGAwG6fDxM2fOaDAYaHV1NWXgOWEAu+rMmTOJbLOxsZFsJq7XarUy/r0zq9FljGG5XFa9Xk9lS1y3nlaZmppSrVbTzMyMzp07p5e//OWamJhIvu7m5mZavxsbGwkMP0yYh+3tbRWLxVRJAcxKknq9XjqMHfttc3NTGxsbkm7iBTwH/MRW2Nvb08rKitbX19OZBPeD3C2f/EGQMYh+CiUa2Q6iSsPLC+Qt3ttZ0M6Qgb22u7urubm5pBhxDFZXV7W2tpaUtbSfckOqN+k3HsUfVZz9hZOzu7ubapei1P2zd1tGCQj4T3/fAyfe16PA2bx7xACMz2O8Hs49JVhwNJmrPBAdZeUKOoI6x+n/KHIckPl2594NZcbD68QPBgNVq1UNBoMUEBolgs8YwjLb3t5OINqtiq8VIuoAAfcDgC7dXYX95JNP6p3vfKde97rX6Q1veIN+93d/V9/+9rf13ve+V5L01FNP6cqVK/pX/+pfSZLe+9736jd/8zf15JNP6j3veY+eeeYZ/d7v/Z4+8YlPpGv+9E//tH7gB35AH/rQh/S2t71Nf/zHf6zPfvaz+vznP58+02639Y1vfCP9/eyzz+orX/mKFhYW9Nhjj6lQKOh973uffvVXf1WvfOUr9cpXvlK/+qu/qkqlon/wD/7BLY3NwyxHlYZAfM/OA6cBpvy9w1hiw/43bJ06Wz22Nwa9/ffIfnLdEZ1v9ibASEDrQqGQfsKC8vNHHOh00BKnwXVJZKvRHw/Y0h5njwPcedmLYfPm187TO5HxPmwMHQx2vchn3HF2UNL11zCd5+y1yDAc1r9o7/krryyXzzn6CACb+7o95CwzsiQc5PWgTxQHib1NAPARZPa/EV/j/lzybDkw7p+NwQvvM98ftl78efMgFGvUD9HzmsZc059Jt4Mc5HdgzO/rYxXnKU/XcS3/HgExB91dn/vYcM9YAigG5HzNuq3s1/P0dB/XUez1MYg+lgdZXFe4LvGsjcPWsD/Dvp/HvYXrHmW/DwY3g21kflcqlbSvA+C12+10lpiDvoDj3N+D1DEzj0BAng3iLz8HhWwnSrqetmfbg7tH4Sau0+Ih1DHg7PbQ5ORk5mwqMgHiOsIGyisThM4iuwC8A1vNdYNnAA7LQPb7embBSclRuvh2r82YeCDL5yTq8lGE+cCm2d7ezthPw2xNz6Skfb6u3DaDrHFUxvppkbvpk9/vMgbRT5k4CwmQzTfxaMyyYN3hZVPxGlkxpcwdyTxn0q+/t7eXFDV11UqlUmYDbzab6cTwubk5TU9Pp5QbDtfyA1mOK3wHZ55r4XCwacJQ97SmOykoIZQcDqwfACYpbdCk9/hhab6BDwaDxHpEeUYFm+fAu4HGtfb29lLaF4yzmLI8Pz+f0vjm5ubS2EYQyuv11et1SUr94XrOlvM0dvrf6/WSUXHU3DCuDsw4ky8aLfSbtc09IgAx6pyS7kZpG1IgWcswLsi8gL3BHEZhnQ4GAzWbTb3wwgva2trS2bNnMzXkI3vwKNnZ2Uk1Ca9evapvfetbmfML7geFdjcV9jve8Q6trKzol37pl3T16lV953d+p/7kT/5Ejz/+uCTp6tWr+va3v50+/7KXvUx/8id/ove///36rd/6LV26dEm/8Ru/oR/90R9Nn3njG9+oP/zDP9TP//zP6wMf+IBe8YpX6JOf/KRe//rXp8988Ytf1A/90A+lv5988klJ0rve9S597GMfkyT9zM/8jHq9np544gmtra3p9a9/vT796U+n520so0sETBEHOV3c6PagmINVvs8hfBZnR9ovYRJBXwfg4t7koFUsvxHXOPdnT4FF7CVRqHft9bi91iNnOly/fj0xptAZMHILhUJi7larVc3OzmacQPqK/oslU4aBhj4/PieA1uyHzr5Fp3qf6EsEmyM4S78BfV1P+F5PmblGo5FS4wFKfc1sbW2lmrAORjpjmnbB/otjQx886OGAJ/1xXe7AqtfxRt9Sp7NYLKZzPDzrgjWFDh8MBglMQZ9NT09n2sN9nYkMU9LbSbu3trYSKMCccSAd4+m6GvAnrn9AAn/OcErjMxwBaF9TkpI9BfuOkgylUimBPNhjZCh4rWLWq7PrGQfmIpZlcnslBgcimOZzhO2/sbGhZrOpra0tra+vq91up/97/2MwbXNz84DTz71oE+302sx5ewzjP6r9NAbRx/IwCM9h1GGUKHX2OT6PB+P8nA/XzXzG9TNs4mE+BZ+DLet71GAwUKfTSfW2fT/Gp/HAs+uvGHSjLbz8nBL3gbEP5ubmki/kdaJvBUQ87r7g4xmDirST89m63a6azeaBPZB+81n0K9fDj/aMBJ8vHxvE92vf77HhYClPTEykg7lnZmZSadFyuZz2Yg9auJ0zPT2t3d3dhMe4rnF7oVAopJKf+I/HIV1hz7gNMD09nch3fk/657bUrQj38iwODvgsFApqtVqpxFrEXw4T5mV7e1svvPCC1tfXdf78+fQ8A5T7uvKgNZgUdidt5Wer1dKLL7544GD10yxjEH10GYPop0xwLPb29lLNKleM7hzyeUkZZhXKKz4IcXNDsXnUO+8B2Nvb0/r6ekpfee655zL/LxQKacOpVqu6ePFickQXFhYyDJ/bETYvoo0oNq8JSWoOm9WdfKCdXVYqldRoNNIBLUSMke3t7ZTaxgGdruAwrPr9vorFYvrdDTK/nwMV/B8HzKPfgCu8vIb55OSkZmdnde7cuUz7h80T78/OzqparaZ0vW63m5xJTyFzwNtBdHe8DxtX1hWsMZxxZ7SxdglOeKp9LCMwqkxMTCSwHBCd8eGkbUkppaterycGB/fOW3dkaQCikw5+9uzZdM/jgOgYcxzie/36dT333HPa2tpKddvHclCeeOIJPfHEE7n/A9B2+cEf/EH9xV/8xaHX/LEf+zH92I/92ND/v+lNbzpyPgqFgp5++mk9/fTTh35uLEdLZNm6g+BMVgRwlu9K+0FBvptXzzAvsOf7X/yflGWk8TdGOW2NTDT/PYKNOLVeh5S0cm9DBJ7ZjyYmJtI13FHBceMQrEajoYmJCfV6vQQ+OmMqAujRpnAGcmSCeSDCA9KAFZQocSCQ+UXv5TEF/b7sza6DYCWzv5fL5VR6DlAf3Ut/SX92fSwptYNzWniPNejrz1P3I4juYKkHNxxEd/uAdTs9PZ3SyNFJnlUAwAHQUygUtLW1lRxv5pbgO+3yvkSihj9P9J9nD3swlvlh3lhnPh9e8sSfZX92cFwjgMzYxfcoQcQ6pv4vILq0X2O22Wym54J0e+8jc+dt53OxXI8/F75WIujv9hrBAw4CpE2000kx3I91HOfGAzysFW9XqVQ6ECxEPFDiAY6xjOVhFwcDfZ8CuOM5g4Ha6XQy+svP7/KAG/u4g+iHkc4ImlELenV1NfN/D/yRFe7l2Nj3HUPwvTcStvyMBvZrdCTth93uuovA5O2CqKOKBzOdqIB9UiqVdObMGVWr1XT2S975FoCxBKYBVLG70IsOoOYFfvP8afZXP6TVg/WUxyuVSonc5kx/z6pCv5RKJdXr9XQt1pAD9vRzd/fm4eIEzyPDPo4nEnVqv99PuolyK/jCzLefz3UcoD4KuojrMM/o8nK5rPX19WTjjKqz0M2A6OjS8+fPJ1/fySjoeA9Og0l5v5n3Vqulq1ev3nZZo7GcThmD6KdQHORmY3X2VYyyuvMR2Sp51+XhjyDBYQ/4MJaPlGVjA2xH5vmdMMJxaCSle0rZk6mHpTXdrrCZ4ux72Y9qtZocFMSdIHcgcZBxLDG+nPXovzN/eem4zl6Lr5gWztihDIelYh/Wdwc9JCXD0JkarI2Y8RCv5YaPM9n9kFPY2h6FZx0zxgSRCK7goDqTwr+TJ8yFp2vB4HBm5sTEhGq1mubm5tL9uHY8cNWvjWFB/bVms6nd3d10WK+PSZ4B43Pd6XRSXfpOp5PS0Y4bOLiXMo56j+WkxY1YfxbyACNJGWcEwQmT9oFx/75/x7/rYLqDxXzP9Xoe+4nPRt3sTpYb8f557487cV7aw8eEetpxb/bvecAyjxXnwQDvd9QltJ9rMA44F86QZf930DCP0RslsgOH6TPXYVyfgC2EAEBnrsM4QGxAD8c92llXPo/eLuYtAhc+jnnXcz3qEvVFDNQM6z8ADmPg7DbuEddhDP7kXTcGTLiPH7jnzqb3jzT4+DxhV7idkkco8bbEMaKPzizEAcYRJ5gQszfjOkdYw4ATvBef19guH08HObA98rJE3QY4bH4dVEfi/eLY3K7NcDt6nO+PZSynXdBdkY3q5R49+8e/E/dl37PdfzjOszBsX5KUAVrRa9Q4d30qZQ/l9r1vmN/mWWjscR4Q7/dvnnlSq9Uy+9nt7hNHCe0nYOuAK8FDSpZWq9XESs8LyKOXXB/53LnedRCdM2bwPRlfXwPxFa/rgec8m4+2YJ+4jTosqzkvUH/YXLhfzt+FQiGNHwEUzlkhUOO2D2sk3pOfPkajzi998GD9zs5Oytptt9tp3Xn2/WF99fbhn9M/xyXy7Ft0LaWTOLDVyS33k34b++SjyxhEP2XiACSnC2MQ8wA7iM7DyaEmsIjYWH1zRcH75sUGdlgkcpg442Z2dlbz8/Oq1WpaXFxMJ04fxmy+XWFznpqa0uzsbIYlB5ja6XROPPrt7PPFxUVVKpXEuoe9R3QaodzH7u7N+vEcfLG8vJwOCCElz0FlSalcjTuQ0UGkv6wF1gOHbvj9AadhZtVqtQyLcJT+S/vMt7m5uVTzi3Z4WpuzBn1zLhT2mebFYlELCwvJkfVDaL3Wax5YwE8PRgAkO7i8traWWAesi7wNf3t7W+vr69re3talS5dUq9VUq9V08eJFLS4uqtfrqVarJQbaxMSEut2uXnzxRS0tLanX6+n69euJDR7vsbW1pWvXrml6ejplTlQqFV28eFHnzp1LrJF4MKKzEzc2NrS5uamlpSX91V/9VSors76+ngm83A8yVthjOWmhxAISwSp39tAjzqKSdCAQGPdcHByM61iP0r8L84f7Ax7Gki/oZWe6RiDWnV8H6xCcZFhUODA+FhH08z4SsCedmJJysJj8sFC+i9Pszir9j2A5AWV0Htf1IDglszh41B1NZz8Nc/xpF/31vrs9RAC5XC5rfn4+6R50oo+b78c4yTANnZQAo9iZyAAKCLqaAyRpE2sAcVY49kHsYywzQpAWp/sw8IY+8T8AbP+dv501H9ciupz24Eyjv0n1LpfLmUCMA8VOBOHcHXdsCRD7+OQBEz73PgbYE8ViUY1GQ41GI9lb7BcTExMZBjo2FM+Jl6mjH9ib9Nftc0gVeeuQ/tKvbrebDvRtt9uZWrqMUSy14M9bDJp5gC+Ce57l4ePEOsgD4I+SMYg+lgddeIbwzfGzvIRWJCzB2MUf8GfXn03+7+Uub+eZQodXq9V0UCL+FYSkvEA8fiF7YafTSddz8pKUPVTRbSvsBvyazc1NPfvss7px40bGrrkTAh4AkY09EeB3enpajUYjZWzNz89re3tbq6urajab6UB1ANCVlZVkK2Dn1Wq1xBSH5AWrm73U9SH2GrYT6yYvM5t5q1QqmcAH2dyuE50oQHCYrAcOjndSJfu9H1zr//OANfqLA2cJxExOTur8+fM6e/asdnZ2tLy8rE6nk9YafeXasYQsOhPfd3l5We12+8h5jTYSWXRzc3N65JFHEv7S6XS0sLCgWq2mXq+nF198USsrKxlbwcXBfn4uLy/r61//ukqlkmZnZ1Opv/n5+TQf9Xo96VIy/q9cuZLKqa6urmpnZ0dra2v3nW4b++SjyxhEP4XCphZThol4O3vHNyo/+JGHG4eYzTYPRL9dRT0xcbOG1+zsrCqVSoru5rHRTlLYVCUl5wzgAIf1TpyGjJNC/dRarZbqv6PAYjkXUvQctGi329rY2EgOFzVbUQ7ODGNzjwC7G0DMPxu6O2gost3d3aQIcW4B/I8zVz4G5XI5geY4YKMGLnA8SaOv1+uq1WpaWFhIysrZaxHIcnHHHCMNpjeBJYzYww75ALDgd/o4OzurhYWF9HxhCHDqNtfb2NjQ6urqAaAfoWYdhjTGpgdgnDnqpSkom8Np3zdu3NCVK1cSI512308yVthjOWlxAFw6WF5kb28vA7pGtrY7F1JW1/Bcs3fxXZhPXD+yzLxO9u7ubib9mb3TnVn28jwQPbLi/Tnw9rDHR4AsAmVuK6BH/eWsO3dEvL3+HEdd4iCzg4LoKS8vQVucxeR1qiNgmne/PAfdx4h+kiYNwAvA4HswOgNneHt7O7U1L+vNwQQcZdaU60gcQQDvvEOmPQCBvebBHwdiXN+w/uM4xL12YmIirQ/S1Z055mQN+ph3HZ41Bw48yMScMm7OJuO6Dg743+huwG1/liMQEJ8Rf648WEbmIA4wpQ0ATjY2NtTpdBJY5ll9nhXB8wxowrPkNpYfPs5Y+Zj6s06QHyKC21I+Lh4MwdZ3EJ29zVlzDhQ4cOBj5Iy9+IwfJWMQfSwPg3iwz8t6VCqVtCc5EA5YjX+GXvb9m70nL8voVoX9zglT6De/v9ssDo4DonM+Sl65SfZ0xgK7B1sC1ne329XS0pLW1tZSIP6otku3tidgSwDoooMajUYq50XWOO1zMiHBcSlbjg1dT8AkntECOE67se9qtVrafz0omsfM9zXhWXF830vuIQ6kx8w69F4c12E+elwTkAUZN0qqXrx4UZcuXdLOzo4mJyfVbrfTeEL65Bq0mTUk3WSKQ/CjTPBR4sEnD+qXSiXNz8+ns33AfAiGbGxsaH19PfU7Sp6ea7VaunHjRgqAeVYi69vHl8Da+vp6IkkuLy9nas07eeC0y9gnH13GIPopFjYKHDce4LxyLs5a8Yfdwc3ogLjjeysLHwfMS12Uy+WMg3e3hLbs7u4mIL9QKGTqj5+EoAgAPmEpY6BE4DdunJTtQDHzO04UPzc3N5OChuUEm8oBnwgce5SXjd3TyhzkcJDpduZqGDs+b+wYP5hqBCGKxaLOnDmTAhBHHah71H1Yg87EgPHd6/USwxEmYDQiaasz4KgviwEIg5Gadc1mM83R0tJSAj4oc+PC3wDim5ubyQiAKcEYMNcEQra2trS6uqput6vV1VW12+0ERo1lLGPZL0/g4Foe0OvMUmfhRGaz/1/KptzyfnSIHEx3h8mZ3M6URVd4+SlnHHlb2GvdeYplOWKgNc9ZiOC8Owg4h3kOnt8/6voYDOAV+4KTzzh6CRdn9DHWHvD3NvsYOEjo40NfEfZUP0Aa3QOwHteQO54ETKhDClCOvRb1CTZaBNGx25wc4WBmXAM4Y9gBXvPWgYcIdke97/PJ725jeMA+T/e6o4/jTO1YZ0ITjPDsibw2MJ4ekGDNDHu2fFw9qO1rjznxkkXx2aK9zOXMzIzm5uYSs5AgB88TbaLtPLue3YHTTb8ADxxYwN6DXOFnxvh8MaaMA/3mvv4s+x7G34xj3MPiWuJ7cYwfNqd4LGM5TBzMdP/Laz/H8hFessv3f9cxt+OL5wm+Fv4POp39B13EvkZgHvBcUgYA9WBc3H+jvve+4pNKSvsgem5YX48zBugSzy6DcU8gk/e95E60T/Dpp6amEqENf5zPM7cc4up2XMySYnwI/vr5JDHDiGug07FJCDhwH8h5Dob7WTjMBf11nXAUiOv2MGQuss3BPADRB4NBCvh6cNnH19c4tk3EACYnJ3XmzJlMvXnIFZEQ5s+HY0/b29sps5/+e917fOtOp6Pr16+PRDRjXHd3d7W+vq7d3d102H2lUsmUaaHPZC1AZov27liPPpgyBtFPsbDRspH6JuQguqTMZuwPrbNN3IHj/7fzYE9NTSXHaXZ2Nm2GgH93U6hhOjExobm5OUnS+vp62gBdsd+OkBbGwalnz55NEW5KyuSVsCkWi2lDxbmsVqvq9XqanJxMp6gzN17CBeXvRkC8PorMnUlKCBCAQamhrEcFvw8Td5APEwdfZmdndfHiRZVKJZ07d04LCwvJIQcMcFboqO1zYAdjj3TqwWCgM2fOJMd4dXU1HcZ55cqVZBjFEg4odE5xdyOQVLKpqalMatnS0lJiorfb7VzjimePaPzExISuX7+eWCIEFtx5x/He2dlRq9VKRgPK/KQYLHdbxlHvsZy0YMj7WRTsfV73GZDPgSR3LsvlcvpsFK87yXOJOJgLKOrsZBhpzlCJLBlPG/c92+/BnuflZLyGo6QMKOfOekw7J/CL4+17oI+NH9rEdR1Y59r+8gMynSXMYWs4fe7oMUalUinpRy/xISlz2LSD8G4P5YGvzDeMZHQ6gAN1suM5H3yfffrMmTMqFova2trS2tqaer1e6j/OI3+7LvZ+YNvRJnQRzDZ3tpkL7B2cbcB0+sghuFEnxKAH9+U7AMDOaMYZdzCWMa9WqynFmbRn1rivW3f6WUcRpPc6tp61AVjhmRuu4xmbZrOZ7k2ZIOwhaT+FHWCEuWI8OaAMG6BWq6nVaml3d/8w+BiodqCa/xcKhUSCmJycVLPZTMz+mIHgzySOuYMPvDgEFXuevjhBhrnHfvLMEp9PHH5+h7Tgcis24e36E2NdPpb7QQh8Stms8WazKSl/HfNsuF3gezF7Qx5T9lalUCioWq3q7NmzGf8Kv1DKniWG7O7uamNj44B94CC671n0jT0fABRgulwuZ9j67D8nAS763gZ5jczwer2eyQSKZAn0MvYC52Ggj8kyXltby+hg/DZ0ZavVUqFQSP4jYyTt+2zop2azeYDM4fYX+pyD3Cnttbu7mwh7PpfdblfXr19P+p5r4vd6kPSo/Rlba2ZmRo888oguXrwoaR9bYq3QPw6+5uBY2oQOd13p+p6ANSX7KDuDL7u7u6ulpaWUgYa4XTk5OalaraZSqaR2u60XX3wxYwuAR+3t3TwgdGNjQ9euXdMXvvCFXBA9Bhi2t7dTtvjGxkbG3y8Wi6nMEeMCgRN/323U+1GvjX3y0WUMop9y8egbRnNkk8QItoPm7vw6++ekAOWYNn4na6AfJvTVU2hpiwcQTkJiKRSi/Di2kZnn7ev3++l7sI75nqQDmy/GhztrDpDwOYAKWBIAFp6Odi+ZRa7MMRI42KXRaGSAlZO4l6TMGEnKMC5Q+g6MM9aR5RnZa/yPdUBEHTDGa9kd1Sc3nGGlTU1NpbURgToMNWr23c/gucvDpnjHcmcFAFPaB6kwvvm/A5d5wboYaPT/u45FXP8iEUSXlHFOHWyNDrQ7W34v3xP8vs6+jszkYZIXXPaxiX3mpzuitC9eN+/l9/Lxj33iPjCUHBDME78WoLez5qLj6mPpZUe8vnjsp/eBz6DLec/Tfn1+mGtpP2tM2idK+JjlMdW4ho+Nr81oEw4DKOJnI6Ae33O7hc/4+nA7iIAE7ERnj+c9J94Gn0PEx1pSpsSMjzVj5KV1YjDGA0m+HvisO/i7u7upLw4OxGCMB6LynhNn9ccyNZxb48Kc561RKXu4bny2ow/g8xgDYVzDg4r+Px+749pjYz0+lgdd8gCmCBpGOcxW8P31JIVnO9bmlrJlLaLtk3eosV+T9vPKC1a7HvOgg+vXk+ynBw795eXoXL/RRm8z5DZpv449pWwQD6j7OLHHxzFgXaATvczPsH64fvNgO7qQuYxYi9s83s+jxtrv6eeX1Ot1DQaDBGyzlggSewlh+hSDFHm2ZSSySErBHUgElA4aBua6/QNr3AUCDIGeQqGgTqdzILsyXtPnLpY2Y7xnZmYyB4/C0idg/6BkhI91+WgyBtHvE8Hgjc5UBM45QMRLrEjKGPM86NTkZoM/riKHiU7qlKfu3gtBWRDh3Nzc1MzMzIHDNW7n+jB3qPtOjTkMlWGOvjuKzE2/31etVsuw0Zhjby+Ghx9k6awzV+yurCN7DgFoB0xGedG+UcXZUwC6UTAGYJ1XKhXNzc3p3Llzif0VwZM7JfSNWvaMTalUSod9rq+vp8NWKU/ktelQpNGh5Vmo1WrqdrvpUJNohB0mzlqU9p9ZN3x9jvMAsPtRxlHvsZy08EyWSqUDYJcDoOxPkUHj68oBKOlgcM33aSm7J3tZCt8jXY8XCoWhDDScOkqUYcQDFvqhjx7gc0cm3s+dSdo/DEx2p9frqCLuPHkgmD77YZiMj2ccOdifp3scYPf7wgJDtwwLLJOtI+0DB+5k00fu7aVV+Jt9mf2WNQRwOz09nZjSDmozVqyBCKK77cb/JycnU21sB2eZO59Drg17Gb3PPXwNutPpmQpua2xtbWUC8A6UYPf4AWOFQkH1ej2VHsMWxNkHYOB5Yk34fLqzGoMW8T1f1+jiPEDcyQm84toa9jywJqvVapo3WOAOLDnr3Ncp2WMePPDyLnyfgLiUzeLICySxTgEW9vb21Ol00vx5n3y+IuDF+olBDZ7XSDjxPoyiZ29Hj/P9sYzlQRT2FLfpJydv1ukul8vqdrtaXl5OvjnM4lsRgpp+1pI/1+wlfJZDKymJAZsbsJTDlyGMDQaDdAYUtbKlff9kcnJSs7OzmTZNTk5qbm5OtVpN6+vr2tjYuO39AuE67L9uG8XgAbrd/WPexzf3PTfPN3Vg2fWT76ODwSDZBTCq88p6xuuiI/wsM8BqCFaFQkHr6+uZwI1nLcMSbzabmcO48+49MzOjM2fOJD+XcjblcjlzeG4kebjd62NG+z1gkKdn/f98d2rqZr15bA9sobW1NXU6nUyghHaROVAul5NejfYw418oFBJpD9wi6sI4H/6z3++nDDevbuDBkweB0CaNffLjyBhEv48kPtQubOaVSkXnz59XtVrV3NycFhYWMs4HaWc7Ozu6evVqSrO+FUbr9PT0gcNKTjrKfFzBqZakXq+XamEPBvus7lsRZ6ZxsAggK/W989iM8RqSMmnrlUolgQ3uWDLHKAJ3PPNAEpSXA0b+fxeUtIPowwyGYcJ6weH39DwXlGOtVtPjjz+uhYUFVSoVzc7OpoDL3Vov3IfU836/n9IdAS329vYSGM7ceqYBxpUDNyjyarWqra2tDJjebrePBaJjqBxmRD9sSmosYzmuODguKVe/uaOUB8q55DkC7KOwVGBNOwiPse2gWQSw4v7A317Ca35+XmfOnEn3gaVEiRM/e8HtBAdu/foxQJfH4oqMJ8Yyb1yc0Y/TR6pvr9dLJWJw4NGBfC8GfB1UdLYw/aJvjIfrRGdxe51sBHvFgXTa4OVnGLcIKLNmnLnlZWpov4PorAt0M0487WcsASIAKdA9cQ0zHwAuOzs7Kb052gLUYveSd1yD/+Psux6MTHK38UiRr9VqajQaCSTCmY1ghTucLv68DBs/fw97AX3sdg7vA274PMXgD23yZ4FnAHIDa6lcLqdgEM65j6EDU5F5XigUMofNud2EjnemaAT8sTVIFwdk8H0tBnm4l9+TvwmoOBvQnX/aH8GPsc0xloddPCh13O/5OUeuYxcXF1Wv17W+vp7qcFNb/VafOchJxWIxlVv1gD/7LKQ79pRms6n19XUtLi7q7Nmzmp6ezpzzRKkRz4j16xNoxD+mzCUs4UqlksbwypUrJwags88CwnpJMOykqAO8dGdkf6NHnNjmQl+H+XUOogN+H0V4Ys91+4NsJQfs+Vyz2dTm5qZKpVIqMUL7OVDz+vXrR4KhxWJRFy9e1OzsbDoXxsmWgNXOcncsRMra0bEPUY8wZmRTE5zneeD+rF1K4AGiO9kFghrXx4bZ3d1NYy/tnyUmKZXt4xwxtzfjOOX5AL1e78BnHbAfy8MnYxD9ARB3KnAQiSzG9GRp/+RtGNXUnMxjLR91XwcS7yYgelibpKxTf5LtcqV7GPP8qPYNu0bcoB0kjyyh+H8U9VGK06OmGETHKcXjTENP1/N70lZq4sFSAxQ4Lmh/kuJrBCCEKHy1Wk1KPWZV5I37nZKHyWkdR73HctISDX1AOv8fz39kbfpPv560DxpjvDtD2NnLnhHk5TmkrDMRHQwH9XAKYZ+zb3r9a5hJsKId+HR94GBb7KuPlbct7z1vs4s7Sw7CxutEWyHqzgj++b187H1u877r3/fvRXEdnCe+N7m9g8PoNkbUn3FdOYs5z6nO0+VcJwYS/PP+d5xzB4v987Ftfs/YPmd/O+DrLH4nT9BOH5/YTsBcXyeMjYO2sc1cP4/1hS7H7oBMEQkOEXj3ZyLaZ/H9PMaZBwG8/by4t8+Pz8thhAckAv4OJrA+4tz7NeljfKZHsY19bztMbkePe1vHMpYHRdgn8XsAO2M5Ds+aY//AhjguQBftnli6xQU/DtsgBqqjL+qBZP+8Xz/uld6uvKyykxCuHckQ0v55aXkS9/7DXkeBrP6+67dR90XfuwHRCQBI2TNDCBa7n0pAepSse8YJnIjgA2OBjuj3++n+jiO5LReZ2KwB1sgwHRszB3n5PXguONyUw05jdhrjkmcjud49CXkY9NTYJx9dxiD6AyBTU1M6f/58Spe6cOGCyuVycnqikqjVahoMbrLnGo2Gut2uvvWtb+natWsHlO4wwZDngAg2tuOCyicthUIhc0AaL9hYJ/GAuyPifx/n+xGM5/0o7li7M5/3uVEBXuZ4e3tb6+vrkm5GaM+dOzcUoECIwsPM4vBWgCIpWy/8JS95SVqPlHOJ4PS9FJhek5OTevTRR3XmzJlMml+hsJ96hoGCEelGLp/hb1LjvV7cWPJlrLDHctISwSEMdgxu2C6A1A5sOds0D+SN9ZWlbBmQTqeTHCA/9BfHJjrPEWCu1Wqp5BeHY1WrVdXr9Ux72Kv7/X5ik+3t7aW9GWYOe31euRfGhvu7U+ZMdG9/rIFJ/xFSwHGoKHfmAYHIgo2vPHatz21MUY+gJv0FIMBecQADR9L77Oxlv97k5GQ6+8JTitn7yWpyVn1cNzDGvU/O7ud7DrQyzxMTE8mu8bRpxgN95OnMzmx3uyjaL4yRH2zpdVABfur1emIT8sKpZbxi5hz3GQwGmfqpHGxHv70fDuI78AJALe0f5Mu88pNskEKhkA4Up03ULR0GZtNud+jdqefZj8AIDNKZmZmMIx+B+Dz7jPbxeWfXI6wZ+igpHRrna4b5Z0w9C8VBDA+C+FrIC6Bx/VGyOMcg+ljGsi9TU1Mp8xbGMEFIB5K73a4KhYIeffTRpCfQoVeuXNHy8vKx7ut6e2trS61WK5WbRHewZ3Q6nXR48uTkZPLPsCG8BB22RL/fV6VS0WAwSPvVYDBIeqJQ2M++cf1L23xPzwuGHlfYN6rVqs6cOSNp30+t1+spg6/X6x2onc33Y4Dc/0aneIb3YcI+7PvyKH3wIOjq6moqR9toNFKJnUajIUlqNBra2tpKtkihUFCr1dL6+nryQckQiKV6Jycnde7cOS0uLqpYLGp+fj5T9lBSstv6/X76H21025kyQOgdxo6SQv1+P9nCeUEj+o5fjb5k3U1NTemxxx7TY489lmnf3NxcqgQwOzur+fn5pIc9i8PtSaou4JfH9TOWfRn75KPLGER/AAQH5+zZs6nmNCnAUdgcpf2a5t1uV0tLS8lROQpsdqD1qAM174W4MsxjFN+qxL4dFzw/7LpHXed2HZS8a5FSJd1UNgsLCwn4OEw8TZ50/cj4w/iYm5vTxYsXVSwWVa/Xh67LeyUeZV9cXEzAF4EBd1SdNRfZc842xdg6iTr8D4OMFfZYTlqcSeOMKfYlz0CRlHF4nNUZ93ycEvaGyHBiTwWEBER3cIr2AHxyXUAyUllLpZJmZ2czwWo+G/dpWOgAxzixgKMwm6Ts4V5eVsVZ+RFc41o4Uux/OEbuCHEvruOHjueB0HHMPRU4jxEXQWAHO5kDZ2QxVu7Ae1vcXvDrc23S2b2MCWCEA/OAqIDWEbBlLlxYC64n4p4WmVl83oPvsN6i7uE9Z4bHQDlt83Hj5aUHyFxkDbLuHCiPgSIHoH0sYgo0jDbP5pD2n1c+w7U8IMTnCIgzfjMzMymQxGciyz+CCw505+kW3h8GqHhQJrK+fW4jkO5z5HuOB5Sc+c9ac9uENREZ/ZEJyLh5GyNLMIL/Yyb6WB52ybMHDpOJiYnkj+P/eNB8MBgkoNrPMkN/9no9ra2tHbudvr9jg3i9a/ZOAPter5e+hz0AIOnnWTg4yVkt6HFpH0AFRHa9Hglnbp+dhADs1mq1VM6E4CTZ9m4XuV5ycRvB23pcwD/WEB9F3NbpdDra3t5OQQCypCFSAGBHEkK73U72KSXAYkB/YmJC9Xpd58+f1+TkZBofzyhH1zBW9MkD0uVy+UDQlhI6ZIK5regYkZMoaC82MLYM9sr8/Hy6V7vd1t7eXiKJ+tl/k5OTad2yXt12dVJBJLfdru45KYLmaZGxTz66jEH0+1jcsWIjoVbzKOKRVkrAUGd1VDb6aQHOo3i7TqqNDj4769gZUqNcAwXLhu7K625uQBhRGApra2vq9Xopiuzj5g55p9NJh9DkHZYCg5I0LMqjnBb2+TCJzwMGE3Vi2+12AoMAVqhZh+HWarXUarXU6XQSm+NhUypjGctpEpwinm8vJwVw6ozUyNR2R8WBX/7nn/Ea1dFQjywsnImJif1DuwBjSf/2uujREXXmktfk5h7OABtlbNxhjCnX3n8HrSNjmN9xkmKf47Vdr3gdbwc6I1OM/TeCtHzPv5vXHwdznalErWmcQUmZ+wCQOkjhOhKQPAIOvjZiQCU65VzTAxY4rnkOvDv87pA6axAwwZnFOM2Uc4sMawdGvI5vZGxHcDg+Mzjk7pgzphG8zVurDlz4/fKAYQfXCd4w9/1+P/3kGQU8or9+IDvnvAASuG1AWx2MigECKZtl4Layr59o80WGnK8FXy+sR4AG1j+fj0x0D9bFtsXn2YMeYxnLWPblqGfC7QeC9Oh13xewOzwoje7I02NHidsS/mzjg2E7uF0SQeFh/jx7A7rGdZL3A/a174VuX7jtRDs9cHpY37jHMGHPXl1dTTZTpVLRxMSEms2mJiYmErGBPrsNRv8Y/16vl8gQw8qv3UlhL4fQhS8Zz2rx9dJsNjNn5OSBxcwHRA1JyYf1sRgMBuk9D8gQhHAyiQfn0R/oWMdLnG3udoavFZ4dtzfApPz8vl6vp1arpZ2dHW1sbKTyNj5fnpmJP+6A/UnKWFc+vDIG0e9jccBvbm5OZ86cyUQQR/k+ypWIp280R0l0Jk+LuCEQnbVbFd/wOTBtcnIyRfklZUrnHCY4uZRFIf3/OPXTTkIAhrvdbjIYYukA1hKKbHd3V+12OzG1aTdSKBTUaDT0+OOPq1wu6/z582o0GgeAqdMm0QglTbFQKGh1dTVzmJ+n9jOPW1tbunbtmpaWlrS8vKylpSWtrKwMPXB1LPsyjnqP5aQlrgtnQ3tQz+tnAu7xP4KcMKtwApw14+/B+mm328kBQfcAwnF90rr56eeYzM7OpgONYY/Rdme8RHDRHVvAyggy+isC217mJB7WKSnjTHJvZxkh9Iv32Vsd1GR888ADZzwxdsyhs8p5D+ctlq7BuYPBjzhwjoMH+Mh8c3/GEFAWBh7X8cAFwCw2go+Hs7sdkPB59DF0sNtZW3FdO1Mbp3lnZ0ftdjtzz4mJCW1tbWXSsGGqkd7spWa4D/YAfY/stMjQc+aXr0UHvx2w9/n1tQbg73PhoHlkbftzyfrLy470MjAEuL3tfBbQgrIzZIjUarXkrPt5BwjsN2dZept5fhlHZ5I7wEPfGUvPWolZJB6QooySM9g9IyMPuPBgkksMqBwlt2u7jnX5WO5n4fkGPIfYVqvVkk7Y2dlJZLcYlI++9HHAPkqxoLt5pmu1ms6dO6d+v5+AxLhnoB/Q+b43RV0wMzOTIQmgs/b29tRut9Xr9Q5kzLh+Akx1XXpYqSjXD4cB2Xt7e1pZWVG321Wj0dArX/lKzc3NaXt7W1euXFG/388crO1nZ5TLZRUKhQzxaX19XSsrK0k/3k0QnYAu9+52uymrgZJxjI3rDbCESEBw/Ya9UK/XNT8/r83NTV29elXtdluzs7M6d+5cCjy0221J+wdfk3kO2QA9xFln3M+D/oDYzDHldGgL3+E9ruu6z3UtcwEegQ5kXXMdf7aYy2azmQ4qjcGFeyGjBIfulYx98tFlDKLfx+LOubOHb+UaKF+cvKO+Ex2D0wSiu5x02xwwcTY5YExkR8XvOmDjwMvdBtARTzvrdDrJuHCQaWJiIp2QTbkC2Nl5TAYc70qlklhsp3V9uABsuAEyGAwSONPr9VL9dEkHQPRut5vK28DSj6l0YzkoY4U9ljspkWEdGcV5OsIN3MgwzQOc8kpheJDaA87sqc6OjzW6I+DswLG3FYdhWPv5zDBxG8LHwX+PwJs/c3GvjECAs7hjuRhnfjGmDv55P5zRzhzkzVME+h249DnzPvnn8z7H/Q8LxrM+vC+0z53a2KZhEts17PMOMngpFF4444DGjLsHLgDPoy7nJ2tyGHPcbR5vp48dP5m/aDceRXSIbcsbi/gcOKutUNg/24TfaaMDylwb1p+z5zxzhXI+voZ9rhhPwP44rnnPsveT79MeL88CiME1YlDKmf60PT5jcUwdUL9VGYPoYxmLMro9ss4dGGefQLAZfB9ifz/q2fL9yZ9jWMdkRhEUdj8nr93x2vzfdU30d9ElHiTkezHwH22vk3j2YT5DkigWi6m+fLQX3Abzs0LYy712dp7dc6fF7ZNod7otQnAGoodnwEVxhjd4EXYCfXUd7ZlN3B/MAnsH3CMCwqw1f3FNaZ/8kAcksz75LBkEPhdeMaHT6SS/nEAQ40dpJHx0DyiPZbiHTecLAADXI0lEQVSMffLRZQyi38fiwICUf+DkKMKm5dHFvM+4o4R4WtFpEd8AnPV0Utfu9XpqNpvq9/va2NjIODaxTADiwHm73Va73Van09H6+nqKkN7LMYRVjrLa2trKOLrOcnK2kxtr5XJZU1M3D6uljlmpVLovAPQo9JtsARzv5eVlTU1Npb4Snd/e3tYLL7yQIt6tVuvURLxPu4wV9lhOWgaDQYZd5Wd3OIjpDkFMjyV9FVAt71AqxGtwc1836nFcYBTxf5w5dyociI6MolGAbsT3b+4v7aeTe31WZ8zTH0mZGt7oNMbM7+HOqIv/34E9Z4Hj/Mb2ez8ZIySWvfA9JALQeWsDB9GZ6Mw1mQI+DxMTE+lzPh+bm5vqdDopk6vX66Xr+1i7rmQ8uBZt9GC6M74j2BkBff7v48BncDIR1jTBbgdpfJ5Ye1571IEdv48HI3xeYtDEwWyfWwd+WHcElFy2t7cTy9Jr5sf14gEVXz8RcPC14i/fD3Z2dhKTrt/vpz4A1DjI7oB3bEtk23MtJ614/xHm0P+mLz5WcQ793nyP/vO7jw+fyfs9rsFhMgbRx3K3xX2Le71+HLijLV4+wvc0bAkyg1zXsO9I0uzsrAaDm6VSODQyT5yxi72xs7OTSlIREGTP8OsAQLKn0Rdp/wBIt6WkfX+Wvc0B/GKxqEajkfY3Hw/2KcBttyUOG9Oj9hb23cFgkM54i3puZmYmnSXh+z/XbbVa2tjYSNlknk10r9eWpKSLYvCBfh/lay4sLOiRRx5RuVzW3NxcslexdwCusTN5D3vVsypiiR6yEljLHgTmHBVpXyfFw8gJIHkggL54mWK+s76+rtXV1fTe5uZmJsjjNub169e1urqazhnwjK97KadhTQ2TsU8+uoxB9PtYPLIYQdvjChvp9vb2AdATBe8bFD9PK4gemW0n1b5+v59Smvb29rS2tpaUCEYSytoF53V3dzcpa0B0Tre+l2MIIFAoFNJp8Xnic+8yOXnzgJJSqaSFhQUtLi7e1wA6TI3t7W1tbGyo3+9raWlJe3t7qd7e9PS0er1eOszlxRdf1MrKinZ2dlK9trGMZSx3XzD0cQRiiRIMfS/fwe/oCwBeL78l5WdfOcPF2ao4FQ7iVyqVzAGVeWz1CJDngbARSHY95+CvA5jSwRIrzoaPoCj9LxaLqlarycl3lpxnsjkLyEF5ZzJzbRhQ8bBN+uhtZS5j8INXLD+X956DtT7n1PmEseY16H1cYlo3AHWr1UrBVNZI1I8OFsT5cAa5M4lj+R4H5r2fziz2YMvExM0yMpQkkW464gDRsNFIZ3dAG/uFQHisKR/Ba2dC0z9/1niPPvn1fF6cDef99HXt7DZf4z7uEUBnXZJVBqg0jMnn4ImzLmMZKK4zbM05KO5AkweyANLz2pzHmssLovCeBy5oE+vA+xRZ+w6e01YP5MR+jWUsp0EcTJTuLYDjwDn7CPuD63qyWicnJ1Wr1VQulzO6bHNzM+mRubk51et1tVotdbvdoT5Fv99PZzywDxSLRfV6vVTezDNreJ797BV8GteJDna6oKuk/ZJe7Bkckjo1NZUhiBWLxfRZAs6jyKh+MXttp9PRtWvX1Gw21Wg0dPbs2czZMu6Lu923sbGRzvpCD/nautfiY+4yavsWFxf1Xd/1XSqXyxn9x5xRrhRdUiwWNT09rdnZ2Uy5Fml/jW1tbWlpaSmdFwbYTW3yiYmbB7vOzMxkArfYAgQ93M52EsDExEQirOF3c19Kyu7u7mpjY0NSlkDB/5aWlrS+vj5SMGYsYzmujEH0+1hOclNw0Nmd+Wj0+30j88ydxHspEUQ/6Y0TBxyQZXNzU8ViMdUUjwCLpJRWRD1NjIiYpnSv5VaNUdieGGWsm5gaeL+Js9i2trYyaX5EwDFUMQZwyscymoyj3mO5G8I649mMJQ5i0HVYKm/e/s77eTrTmeiRAY6T5sCXXy+2P/ZlmO6gj74Hcz0HMr1kjF87puJyDwf4HAyNYKWzc/PGy22XyPbygH3eGOddJ14zsrIiYBh1EzqdPrkzSRsdTOW9qBO8LYc54D5ezngb1s9h3/dxywO2fVwcZAeAdhvO2dK+hn0c4n3yAOejdL73LbbRbUi/DsGXvLVE4Iq2+Bp0wNj/xn4DPOdn3kHgHqSImRIRxPd+OWvTr+VjGb/jn3MmuN/f+8naYXwc8Mpb88PmIe99xoxn4ii5XTt7rMvH8qBJ3Md8f/Pn2n1WD8rFa/nvbm/E9/2ZjVknft0YkIv61LNoEG9vvKf/HUuvxX7fKWEvn5yczJQz8/IkkSFPgBXm/mnNID5um9wOBZuQ9kvvMDbYhF66JWIovo78Wr52ff1EXRz7Ee1ttxnz+uy2nbcZTMWDQ1zXS9WMZXQZ++SjyxhEv4+FzWNqaipFm0c1eF1QIO12O0Wgp6amVKvVNDs7m6LUHIbCyw9Dc2M+z6m4W0L0nxpYvE5KKQ4G+wfBDAYDXb16VcViMZ2MPT09ndgFLpubm4mxvLq6qvX1dW1tbaXvnRYQ/ValWCzq3LlzqZRLrKF6PwogQ71eTwewXL9+Pf1P2jdGYILEw8rGcrSMFfZYTlryWJzR+MbIxunyAxa9pIuUPXgYx5XvS8rd7xworVQqKpfLGUYaLFi+n3cgeHRQ0T/Svv6PDggOhNc/5aCzyA72YCdOCI6ktO8wR5Y7rHAvV+NMcQfEHSyQlPbLyASjXxyqirgD5457fJ+2ErB2INKDBTCvHICgzFqhcLNUx87OTipRRlu8rid9WFtbU7PZzLD8vN1xTXp9cRj8sLTySnnk/e3rweuN5n02D7B1sMZZX6w/7D0/ZJbnJQY8/N7MBWvKAfoIGvn9/JoeUPJatX4P+uVri2eR4Ee/30/f39rayqSKkxZPOQEyCyFEcH3azBp3EMEDcTwPECKY11KplLEXYx+QYfZ63hi7fe7ZDADonoHiAaAofM/Z6w6CxAyCUfTsGEQfy90WD5CdNkGX+GHE/X4/HWYpKQXusEEiCIkfi4+IzgYYnZubU61Wy+hy9jj2IQDGmPHDs83+7jYQez3+DNefmJjIsNulfUA12hZuszAew8rFnqTs7OxofX09+dv0k6wqssH9f4PBQEtLS1pbW0u6wLPd7lcplUo6f/68qtWqarWa1tfXE/mLcjdue2L3cSYIOgbfttVqSZLq9bqq1Wpij2PLcgiqB575rgeUvIwf+pGDu6emplJAw21GSal87mAw0OOPP66dnR1du3ZNS0tLknTg+QHbOilh/Ubf4kGTsU8+uoxB9PtY2Lhw+qkrdVwQneuwcaLsKpWKFhYWNDMzkzZNPusPikec7zXz2Fl0XgfuJCORbmSsr69nUnJnZmYyji3j1Ol0krO9vLys9fX15MDd74dPoogbjYbOnDmjWq123wPoCGnt/X4/1drjWYvsubHcmowV9ljulDgwFEE8B0M9gwR96sxjSQdAdK7V7/cz54nkgeGkorp+ZA9xvXkYWzQ6Bw5Ce5ucdYzjgoPizPF4ba8P72Cl99OdaZx0B4cd3Pb7RKaS61DASewKgvIAt5Ed58+8g8EOqjOXhznzXkrHAYNYkoSa5qwLt7larZba7fYBEDzaQs46jy8OqYQBTxu9vVEikM49HBz17+YB6dwjZhWwVpkHH6M8Rlm0rQio5DEVnd0cQV4H0730CX1gnUfGGnPv9e0dUPYgDfMGYE4GGSn+Djg50O/AgK9F+ss6ZqwAp2L//Bl25qYz6eM8+dpmrXuAIZaM4f3DnhtfLw6kR1vU23aUjEH0sdwLOa3rhgBcqVRKQHjMAGIfcjCSwCU6iX3KwWw+U6/Xtbi4mHmGIcRJSmxsKXueAvsU2XEe1Jb2Dw5lzyRQSDDSbYR4uCR9R3y/9yynOyX4avS5VCqlWuj0iaxhtzM2NjZS2Y8HRaanp7WwsKDZ2VlNTk6q2+1qMNgvoTI9Pa25ubkUBCaIEjOud3d31W63tba2lmws7Do+VygUcs9S8ywI/Oler6dOp5PRd5AbsB3Qxb4mAdar1aoWFxe1tbWlK1euaG1t7cTHLs9u9EDAGEQf/t2HScYg+n0s7pAC0s7MzKRo3lGCQ0h5EVg4pVJJklSr1VSv1zUzM6NqtZpqt7nzi4xyv7sh3ieU/Umw0CPoIO07Vl6SxcEC2sNPghTuhN/vGw6GG/VVi8XiqVkLJyEYrdQY5ERzZ+UN+05cM3lMvrGMZSwnLw7CSVnQCqMcB4D3vCY6e7MDhLHEBQIQyb6X5yQ66O5629nAOLvb29vpWjCm3XjPK7PiesfbzzhwXkd0Yl1PRSAvlvVwNrcD6cOAav6OACAsJK/T6oCrA7ejio9nnl5FR6GnqPPNPVkf7vAxXzG44s4m98oDzRG3lYaB2nE9OCgbQWMH4IfVSPW17O3A2fV58usztzDk41g4sz0CJ95XL+sSAzfe/gigI4ytr8G8a3jAiDH0LBRfzzxnMTATxy7vfQdb8pivHpjhb9rhJIsIUjvhJY/d5msyCs+sB7ho3+7ubiYAcJjEeY3P84NAhhjLWO627O3taX19PQUjvaRbDOi6bpf2z1ghyEeAmYB4vV7X9PS0Go2GqtVqxi/nc4g/w9EG8tKbDoby8j3EdT+BQ0kZ1jZ7UKfT0dTUlPb2bp6n0u/31W63E1h9t4hjHpxg/Nnv2JfzdOWDIgQ/yIpCID+g58m289I3ECP4DOf67O3tJVuK+ZUOHiTu2U1OXGHNl8vlA7rZs0Glg2XvPPCPvcQ6zQvoHzYueTa5j1HUfW7Ljv33sSAPDtr1EAqbxvb2tm7cuKGdnR01Gg099thjIwGZvV4vnUa9urqqjY0NlctlnT17VqVSSYuLi7p48WICDyOzxjc7Iuswqu62+AbHgZ2tVivVLL2dTc+B1Dz2nqTMAWnOfPeUItLLOp2Oer1eLvPofhIYFZzc3Wg01Gg0Mqe43+/CnJdKJdXrdc3Pz2cCNFHcQHCjczAYpDRIntuxIr4p46j3WE5aXF9FYNmBY9+//XBQBwNh0MC09kMBcSAiY5f33KFwJhT3dtY7rDEcPdKPua+z03AMnZXuKdiwx2C/U3rNgwAA2jglXIs20W8PIEbwPLK53Vn3fc6BZwL2u7u76nQ66TDzCOLGgL2DtzFg7SwlZ6b7dRnPer2uubm5FLigv4iDCA7Ke9q919GOTPA8GyGyshkv+uLlSPg7gvPuUOLgAu5L+4EjSATOLGS9w7bPO/TbgR7K90WQ2n/37yH+PPX7/eR8x+AITm9eliD3IZ3cSw65LSYp8/z4IX7+PPF5z0zw4Ahj6/f2Z5qxBqCn3YwB+t3XGs+NM9qdOOFZA8yFz3vMZPSgBJ9lrcQU88igp4387cAF1+e9yGTPCxgMk9vR497XsYzlQZCdnR19+9vf1tWrV3X27Fl9x3d8h+r1etIf7AOQ1iCpdbtdtdttbW9va319PR2aKN3cN2dnZ/WSl7xEpVJJ8/Pzqtfr2tra0traWtp/YxDXA/HoB+45MzOT9GC3203sefYCt3HYD/wAZsBxbIbt7W1dv35dhUIh+YWbm5t6/vnndf369cz9peGB5ZMQDqD0jDlpH/DFBvESOHfLLz/O3nqrMjk5mewdJ0pyQCflZwHIpX07DpC9Wq2mNYANVK1WU2UC9J0HIlznEgRyHVQqlTQ7O5vWEt9tNpuZ9YrdG88R4iyyzc3NVDXBSyYdJdg4rFcvMRiBdJdhQfRblbuxBm5Fxj756DIG0R8AIfWFE5IxrvPY0wiOAGlmbCQwiXG6q9VqAkodHHfWj7/nxvfdFne+PB3pdhQi/UMB+6bnIIE7mbFNDgbgND4oIKo7mdTedQfxfhd32klTJ/qd91lpP8qN4YaTHVmXY7kpY4U9lpOWGMh1ANCBVwfLHbjMAwwdCIzM4Pg3OtCdV9cRGOsebEVwOHBq4hqPQL8HCfwV9y4P6uHgMAZ5tkJkATkoGPvtOnEYe4d2OQOd+8dxjdfIk+jsHBacZAywZfwcF8Ywr//OoHL2f142Ht9hbCQNtT/cVopr7iimU2Rm5d3fQVaEeR6mfzyIwYt2xjWSN17ep7x+5LHJaVcUX9+x7wDHMfgzbAz9OfMx4n/xvnlt5VnywIb/pG0OXvtn4n29P1yb9nj/HNDwtsZ5JWjgIL23NTJR47wN+9xxgPQxiD6WsewLAKIkVavVBAjG4KbrU2k/+wQ9SYkMdBaZ4aVSSaVSScVi8cBz6s9yXnDbDy/1wGL8vu/5vg8SwHVAXVLagwjslkolTU9PJ+CcgMBJPuuH+ZreV/bG2C8PXsdxut8FnYTfinhJIM8yhJ3vNgDvRxvSiRSMndvKvv7QL05u8Ew3J1vs7u6mtrl+BNQH+Hbb1W2VwySuYe7tGYhHzftJAuinVcY++egyBtEfACF9ig3ID9GAfcYLNtLu7q42Nja0urqqra0tdbvdtLlUKpWkpONBWJIyDpWzYmABEcV2R+lOC8D55uamWq2W1tfX1el0MptjLLERnW43IDBWYFaXy+UUveWzAPZ7e3uqVquq1+uamppK9eOZG8aMQ2RI0RvFYT7NUigUVCwWU6mfB4mBHqVQKKhcLqvRaEjKT5HmWSkWi5qbm0sH+WFkzMzMpKg87IexjBX2WE5eAJF9f3cgCqPewewIaOMs4CjklUFxAApD3pnl/h0MdGebOgjHT69hSok2Um4Hg0HKhIF97UxcB+Giw4PgnPs9HXwE4KYN3JvSMh6A4BoeQKbPOEX89JrizsQjQI/+yANGua5f3/vkQKSD0+y/ztqr1+taWFhQobB/YNbOzo5KpVJKT4alFMuK0F/a4Kxo2pTH1ka4DkxlAHoPMri4A+p/eyaEO6c+lz43Eaz35wCbkYwDX2+eMu1MxAhMe/+xCX3uosPozrGXBqD9DsQ4sO1reWZmJpP9J2WZYnwfu1TaPwSvWCweKK3HWudzjC9MPW8LJI3d3d1U65i2FwrZsi2RYOE2M+vFx9Ln2p+HWDbQiRk+Bh4cYv37fXyshwXPXPLIIXlyL0D0j3zkI/q1X/s1Xb16Va997Wt1+fJlff/3f//Qz3/uc5/Tk08+qa9+9au6dOmSfuZnfkbvfe97M5/5oz/6I33gAx/QX/3VX+kVr3iFfuVXfkVvf/vbb+u+Y3m4pdvt6vnnn09scQf/2L9hw1IvGp8afTE3N5d8C/yt3d39QzKlfXCUEi/4mhMTE8l/LRQK6TDSiYn9EhqArbCSC4X9Q0rZM9mvyVJCf01MTKher2tiYr8mO3sGjOHBYJCxkaLkAZgx2DoYDBK+4YFxPssYeP122s+Y0X50NyTCPCbynZS77bvE4HG/309YEDrLSYFu28SANlkLkjJ2bB6JkPmJh9vDivfv+dojIM1zEAM6tVpNpVJJzWYzHZSKPZzXb84QwN70tcgaGctNGfvko8sYRH8ApN/vq9lsqlAoqN1uq9vtamZmRrOzs8lZJOq2tbWljY2NdIL1yspKJkKLgmKDQhm55DGIALAx2Nmo7gaoirHQ6XTU7Xa1tramlZWVTK02jAuUMsof5embBhtstVrVhQsXVKvV0lj6WABiYOgwxhzKxRi5w7q5uZnq1wMs3K+bTqGwf/o8GQv3opTP3ZCJiZvlAGZnZxOI4UJkHQBmcXExGa2wMzAQKMcwBtHHMpY7J16uxUFuaR/IkrIHE7p4ABmQEYmAJHoOZ5h7+/ccRPfgbtSnOALoZK/lLe2XC8OR8VIgktLnHfyPqdg4Je7EOyhHiRUcUvY2HFPaHzOx6IezvADm+R57nzOSHBAGHPDr0xcCHz6m/ET/emACvU+Zurm5OTUaDc3Pz6tQKCSbYW9vT71eL8OCYi62trbSteL8RyY/dkWeM05bHQRg3viOl4Zxic4p/fKMBWyRvPUZgXUHYh2AoV48DEevkepOpoOx3s/IQMuzbXysnJzha8hLCvn4Mgesb356DWH6CgjkgD32bKlUSiA2z5uD6AQTSqWSGo1GpvzNYHCz5ALBLErk+Nrw+ffnIs5pZD/mHV7MNbBnYw3fvNJynuHR7/dT/Vp/f1TQwIH60ySf/OQn9b73vU8f+chH9H3f9336nd/5Hb31rW/V1772NT322GMHPv/ss8/qh3/4h/We97xHf/AHf6A///M/1xNPPKGzZ8/qR3/0RyVJzzzzjN7xjnfol3/5l/X2t79dn/rUp/TjP/7j+vznP6/Xv/71t3TfsYyl0+noW9/6VqbGNP4TpZ7a7XZ6vnnG0XWlUklnzpxJ55RRps1LRAIwl0olVSoVDQYD3bhxQ51OJ+l5fBDIdZLS/oX+RN9LSv4qADv6mT3bbYlGo6FKpZIOr6Rd7JX4TXmZQrQlBoQ9u4f9a3p6WrOzs0lXlcvlDHOekjfT09Pa2NjQ0tKSBoNBIgaCjRSLxYSZsJf3er0HCkzN64vbLo5hONM71u93vYENB1GEz7ne95/4wBxYTqCl1+ulNvJiTrytm5ubmXNpJGl+fl6Li4uJDLq5uamJiYlMQMnHAHLn4uJiqsXuJflipte9lEjUGcvplntKG/2zP/sz/ciP/IguXbqkQqGgf/tv/23m/4PBQE8//bQuXbqkcrmsN73pTfrqV7+a+czW1pZ+6qd+SouLi6pWq/o7f+fv6IUXXriLvTgdwsZIiZbNzU11u111u131er3M79STwpmNab+u0JDDwHCcBoB0otd3o3QFCpl+E3mO0X4/+NJfGBXObsNggIXkL5hs/l6j0VCtVktsdQ8g8IoHs+UxgA4T2hbTq2Ka1XGco5MQZzo9SMZHnnhZhLy+OjgQU+G8Jt+w7z+s4kDPrbzGcu/ltOnyYQzcPKZMfM+BvaP2VF9/Dqo6G+aoNevXdlAdvYo+hf3q+tXB1zwmszuqPhaMR3RY4udjH2PbD3sm43vOOPKAtTtRjKOzwnhF8NW/5+9FuyXqdJxv/91fgPpRh7tz4/10gNc/F9eNfyZej7FAX0SAOU9icCEy80edI5e8sXWdljcO0ZaJz9ywew9jPHtgxgH/ON4+79Em8rHIe94i0SOuG2+bz0XU6VGXx7F15rjvMzGQcZQey7MXh4HzPpa+78X7e/kq3rsdvXq7epx7NpvNzIsgVpQPf/jD+omf+Am9+93v1qtf/WpdvnxZjz76qH77t3879/Mf/ehH9dhjj+ny5ct69atfrXe/+936x//4H+vXf/3X02cuX76sN7/5zXrqqaf0Hd/xHXrqqaf0N//m39Tly5dv+b73m5w2Xf4gCAAgPip63ANx/r5nnSB5NonvMdLBff//b+/NwyyrynPx95yqM9fY1bNAC4REFDUKkYBGMCoG5xGMxiHXGAnXyKBXIOpPNBGC5jFEnKKXKyqJcO+jJmqIoUkUw6UjChInLg5p7Aa6qa6u+YxVdfbvj37eVe/+ap+qU93VXdP3Pk89VXXO3nuNe31rvd+7vsV1sQ0jmjSW2HB2FnxHdY6TNP6zvFEUhTKSdNWyqF3W0CL8W0VZTEeV8IVCIYScLRaLKBaLYQ3O79QhrE52XZ/Z+cdixz5rh9pdix/NNSDrlQ6IJLtrbUSr/Nm+YWHHb1sX9jol8NmXdC5BzFd/OsdKmpu0uieJO1FuZqWsy5d7XbsUdny9YFmV6OVyGU996lPxh3/4h0EJoPjwhz+Mj370o7jpppvw67/+6/iLv/gLPP/5z8eDDz6I7u5uAMCll16Kr3/967jlllswMDCAd77znXjxi1+Me++9d82qYucDD8qgwoYKdf6o+lpV2ASNvRLRVLMkqaO4yB8dHcWBAwfQ2dkZlPClUgl9fX0xo7LUZaVxPnjwIA4cOBDirlUqlaAm7+joCAS4GjmG1WCdjY2NIZ1OY2BgAD09Pejr68PJJ58cDszs7++PGXVOUjhZoEHgxEiNT6sF8kKDth5mR6Uen8N8AIi1K9uvldFbKlAJxnAux2LXwXKBCo1isRjeL/u9kiTa1hoSQh0OnASvdxyJ4fX6WxlYabacccW1b9kJu5JXSkaqMlTfcx1Lbb/TQ0n5bGBWWUUFj4WmxR+Svdzazefo9laO7RzndRHCzzo7OxPPBdFyc5xqRXBSFceFPnfVtCJK9V5dpOmiiflkmThuqnrYKl/ZPvyb+VBlPA9/5DZhKv14sNamTZswMDAQ/gcOHbBFJRbnEnRM6NyIdUCbrwdY6TjPMvFgVBKAVAFqP9O6AhC2m2v/4b3W+aA7HZQE1nkG61n7Pa+xZeT8zu5coO1i/bKdeI/uwLNOnFQqFYQVVKLZvqZ9hEQP64TxWXWHo50vpdPpEHaG8xF9FjBXER9FUWwuxXdM20vB/Nl5F/M0MTERFP2sU3vgLtuUKjndWcL2ZBtbJ16ruYJ1uGndcD6oZJveo3mx5BzrnmUF5p4xkYQjXUDz3uOPPz72+fvf/35cffXVsc8ajQbuvfdeXHnllbHPzzvvPNx9992Jz9+1axfOO++82GcveMELcOONN4YDnXft2oXLLrtszjUk0Q8n3dWGlWbL1wKazUOhMzgmclzlb2vL7S457jprNptBRc75jY4ptJ9jY2OYmZnB6OgoRkdHY4QqgDm2is+v1WooFArhGo57wGy4KIZ/bTYPHTDZ1dUV+AaquamQHx8fD+pg/uZOrHQ6Hchvaz84FpTLZUxMTACYDfXR29uLHTt2oKenJ+wWUjtH5b46O1WdTHsFzB5yyb91PpMES7TbdTnbRHcS2J1Kuk5s14m6GHR0dKC/vx89PT0hrKzusmP/YnsyxIpCbRdtotpGOjKA2blIR0dHaEu1M+RY1AbRWcT8WjumPA3znErNKtXVzvN/bVdbFkuSZ7PZcJAv52TM03zz9KVsp1bPWglrWl+Tt49lJdHPP/98nH/++YnfRVGE66+/Hu95z3vwyle+EgDw+c9/Hlu2bMHf//3f421vexvGxsZw44034otf/CKe97znAQBuvvlmHH/88bjjjjvwghe84JiVZaVABz0uDtoBO75u8dXFctLgpIPxxMQERkZGwoDHBQJjrx0NDx8dATTQDOFSLpdRr9eDB5rbtwYGBuaQ6Pl8Pgzm3PbW1dWFDRs2YGBgANu2bUNfX19wCHARaOuAHvfp6WkMDw/HYmwpaaATp4XqRBfGHPT5tz10rtFoBBIBSN5mv9RQct+qv9YaaKi51TGprFaxZ9WEy7VbYKXDDfbqx0qz5SRk7WJU/7fElR4KqAuBpGdbaDgVSw5ysZSkKrP55a6pbDYbbAodAiTkkxTdhM2zhk2xhBowOyZZdbHmi2XjltpW6hOGxLD32x+SuaxjtWVRFAXCnvVEm60HTXGBpvYunU4HYpmg3WRItr6+vrB7jGkztAdJdG41VmLUzo/osE4K+cOFvKqQSfZq3hQk2bPZ7BwVflIfIqnNutQ6ZV40z0n93hIGurhXksE6iJkenRicz5A8SKVSYXu49hu2pXVGWSJdnSrqeGFdsz/ztx6Oxvjq1Wo1pMsftbmqkmOdM7560jugxDgdXUwrk8mEkCrMK/uhOuvYx1jXSXMm69RQUsGOH63ISN7HNlDygG3I/LKv6veEKizbmdstFYm+d+/ecPYMgJizgRgaGsLMzAy2bNkS+3zLli3Yv39/4vP379+feP309DSGhoawbdu2ltfwmYeT7mrDSrPlawF8Hw8XOnZoiCq1uwDC2EtV++TkJCYnJ5HP59FoNGJEu+6s5fPL5TKAQ8QqxyIV4EVRFMR5MzOHzg+h/dZzWjhvGR8fx+DgYEx1DMwS4hSrpVKHQs3aedLMzAzGx8fD+M/d4Zs3bw4x4hl6RkOAWbEa80UHhjoOaVc4X5yPQLdkakdHR7DrJOxpSzR0nSVmaX+Sdg8eKVKpFEqlEjZu3BjahofTcnzn/EXnJeps13KqQ4DlJrlN7kPDweg8gWeG6HwGmCXeNR3OcZREj6Io5qi3ogudVyivYp0Wds1NRw4w6xyqVquJNnU9Ct6WY02+HOebfOc738FHPvIR3Hvvvdi3bx+++tWv4uUvf/mi8r1iY6Lv3r0b+/fvjykHcrkczjnnHNx9991429vehnvvvRdTU1Oxa7Zv347TTjsNd999d0tjzZjExPj4+NEryCoDjU1nZ2cI/cJFii7MqNqpVCpBbcRtYx0dHWHQZngTntK9mEm5wi7WaaC43bNcLsdiZ3FgtTE+7XYrTia4tZtebG4J4338mwM786QLUv1OF4XA7GFuGu+ulUpc1cxUp/EATyVZmA6fTxKf7cU6UuXiUkPzutaJ4fkcIOpMUfUdJ2ncocBtm0dzh4DDsZKwHLbcjnk6ZvMzHYP1fdT3mwucJFW6Tsx18q3EPMeLVopSVTTxt1UpK2GspJzNky6q9dlU8CjpaAl1tauqxqY95+4mli2JdFc1kS5GlSTVreBWSct7SACoeludk1o2LuS4AON4y/to/3UOo4tm2kkuoFnXtOUqKmBf05juOp9J2hJsnapMdz5bqXMJ7b9cjGs9WNi61r7J9ta6ZrtzsZ0Eza8l6bVfJ70jnAOxTMyL7UdJdWDViWwnJdBt2mxPqwi08x9dzGsZlazm/Xp4KRf+KiDhfboDQetLf2v9k3jQ+bAdVxSqhNdQiUnOPztf1rbRNmolBmBeWznrjia487MdJM3D5nu3kq63n7fzzMWmu1bg6/LlAcVxUXQoxvj4+Hggv61d1LmC2i/GXOehoByLSXbqbiF1oKkimOMq0+BZC8BsfPRarYbJyclgMy0xzWcxLeadzky1GXpIqpLV6rTWuZcVqul6TcdZ2nByHDz4lGu1+cj0dDoduACS+urkTqfTKJVKwVmZzWbD+l8dtXaH4FKCa3/Ns0LrnXML5SvUSQzMniGktk9Jdy2TzglZH3TKsPyWxGYfUueHpqNnsxDkQBYSJqq91cNMmc9KpYJyuRw768dxbLFc55sstOuqHaxYEp1e/SSP/69+9atwTTabRX9//5xr5lMFXHvttfjABz6wxDle/eAC9uDBg+F0bW4tLxQKYSHOgXJiYgLDw8Oo1WoYGhrC8PAwUqkUxsbG0NHREU5NzufzYXsRB1Sd+LeTL1Ul6fawxx57LIRwGR0dnaP86uvrQ7FYRG9vL3p7e4PxpYHjlmFOUjo7O7Fx40YMDAxgw4YN6O/vR29vb1Cy2ckKiWsO3iRIeVgVjdPk5GQg/CuVSqLXHZglPBibdWBgIBD43d3dYRJBA0JDoFvMJyYmwsGlBw8eRLlcDuq5pVwMqXKylcJuLcGqFiwJRSVjs9lELpcLRDoX9uPj42FyuZoPlF1qLIfX23HssBy2vFarhYk/MDdWKIDYYjNpIm4JQH6uY50S5CQilUQnmcvnM12bFzqaeQ8XMCT1OL6r/dWtxAol0fk3D4Du7OxEd3d3WOTx2RyTNPb6zMwMKpVKTGWvi2mFEv+6QOS9qurWxSR3bNEBqYszu1BmuiRJWc9UAlOhR4dzZ2dnULr19vaiWCwGpzi3IrPtWdckHJVY5zb3sbGxsE2dB68yTyQg+AzWifYtCgqoZKb6ztoCXeCpfWfafIaFXq+HTWaz2bAQ1YWvkiF0OllSWt8fJXHpmLAOA+13zIeqqvW9se+QJbqZT5JF6vBQpwXtsZI8qsjkXFYX/Myfbinn7g9eo6IHmxbnAVSBcpeg7kBgGsyTkvra5/gOa96SHBMUeHCuwbzrNer8Y5p8r/kO8R3V9tK257ulfbwdHIkd5/3tYuPGjejo6JhjGwYHB+fYGWLr1q2J13d2dmJgYGDea/jMw0l3LcHX5csDHqBIJy/JWYbs0PUxx3N7jgrDselacmBgIIwVVIfb3bYcE0qlUnAS9vf3xxze09PTYV07MTGBffv2hbWx2hbOH7q6ugKvoOHQAIS1fRRFIdyLzimYP66Di8UigLkhsfgsHdd4aPnExEQINzM0NBTG+nw+HwhoS6iq4GHz5s2hDJxLDQ0NYXR0FJ2dndi+fTt6e3tRr9eD82JoaCjsZNF6Weo1DOcs6XQaXV1dIQyt2lYKBhluRed/ALBhw4bQrzgXpE2lLSVJT3vGOQrrnXaTZ8iVy2WMjo5ienoamzdvxpYtWzAzM4OhoSFMTEzEnCS0j+zrnPuqDVdnkPZZdQKzX7CPDw8Ph3j7DJk4MTERDpefb7fIelKjL8Wa3DpBKVRNgp4zAhw6m+Rf/uVf8KlPfQrXXnvtnOv1fBMAOPXUU/H9738ff/VXfxXIcD3fBACuuuoq3Hnnnbj++uvxpS99CcD8u67axYqPv3A4Hv+FrrnqqqswNjYWfvbu3bskeV0L4OBIDy23VuuCQhfb9OLSmPLecrmMcrmMSqUSO/261VbiVtCBkAttbnOvVqthuxoNOIliGk06ATjItvpb/1cSmz8ceHWiYZX1SqyyrpImMzZ+rgWNPScZPMyUxkgPNmVMuqQDT1kGu0V7KaEk0lqHVeTpbyB+RgAP99X3Q1WMrkSPw5JG7f44Vg+OpS3XhYoSuWp/lFi0UGWoEmLME8ujyie7y0nHXauISkov6cwEpmNtiu5oslDymjZa7bgSZiyf2iP9X9OyISss8cu60WdY+91K7a420pZNVWSWPFWFudaxLrJp1zXkh95jFerahjqm2/xZ4tmqzi3Zq2R7q/mEkhh2rtIqLri+K1YFxr7FutE+rO3diuBWIkXJCO2rep/2WyWO7fun75C9h7/tXNH2UyV/7Tunbanl1ffevvv6nmqf5XyzVquhUqmgWq2GuaaqybX9rEJfHXN27LEK+VZ2zda9VVvacYPp2XeOz7eOL36medXr28Hh2vHF2vJsNovTTz8dO3fujH2+c+dOnH322Yn3nHXWWXOuv/3223HGGWcER0Gra/jMw0l3LcLX5ccWJDMpwpqcnAyxpjX0xXx2tlarhTW5KrA5jqmjWnetWHvLEGnFYjGI0HSnNfPIXep2vOf4bEN/WCU8gBDzvFAohO9sqBbmTfOp39v5Fsl/rtG4LtPdUkn9VO0fRQlcg6vIkDvIuSbv7e1Fd3d3EA/qbqyjtYbR+RodploP6vSnjVOhA6/ROa2107pLjGBf0/kmhZN0AJGop6CBdUEyXp27ai95b1Ko4XbmRXSOMGY/3wGN4e/r8lkcqR0//vjjg3i1t7c3kQwHZs8ZseeVHM75Jt///vdD/2p1zVKfXbJi5aNbt24FcMirvW3btvC5evy3bt2KRqOBkZGRmNd7cHBw3gnNfB6R9Q6qqKempjAyMhIMXqlUCltyOMhOTEwEz2KlUok9I5VKoVarYXh4OBjaiYkJZDIZdHd3hwHcLjhsXjh4clCenp7G6OhoGPzGx8fD4jaJ3OD/Sc/nd0l1oIu5VgMF64JqJ+brsccew/79+8PEp9lsolwuY3h4OHhrrQFV1R3Vc7lcDgMDAygWi7GY6Oq1Zx5VtUhDTyPa2dmJWq2G0dHR2OE1jqUFDTC3TtZqtdBWURTFDLXX/yyWwuvtWLlYLluuC0Ed/zl20i7xbyXcgLjCUxdvVHPqYkv7sKZj1e066adCl/dwHNfFKGM7c8GreVVynYsEYHZBop9RwcxdUVxY6a4sEtdUw+tij4vMJEJbnQgsCwn6SqUSnIqMM057DSCmHlbSV8nsJFhllc4V+AySAqoW5/NIfmp+Cc5naDOHhoaCwo67vVhPqtJnnbM+WA4urKlEV0WwtiPzr3nhdVw00nHP30yH+dHFsn7P9mYbaUx3Kv3UAaL1qvZK51VKoOg9Sepl9gfGpKUSzpLn+o7Y98KS0vousQ8xz7pzwirbWB72aSX4dXGufYW/mSZVndoWdN7Yd1xjo2v4AyU4tHxsQ6r+rQMjqb60nlluDemgdWodD0qy2D7F6+dT6Gk+jsQeL/beyy+/HG94wxtwxhln4KyzzsJnPvMZ7NmzJ8RFveqqq/DII4/gC1/4AgDgoosuwsc//nFcfvnleOtb34pdu3bhxhtvDKo0ALjkkkvw7Gc/G9dddx1e9rKX4R//8R9xxx134K677mo73bUMX5cvH/h+TE1NhfATOgbrORAc0zhnUNAGz8wcOniUoVdpm7LZLLq7u2O2V8NaKVlfLpdj54dQ2TxfWAy1dbQvTIP3dXV1AUBYVwOIOZX1HAyOa5pHQh0Fo6OjmJiYCPXTbDaDQ1QPHtU8EalUKojU9FBo2rp0+lAIl/7+/pAvloXk/4YNG8Jca2JiIsQK10PKlwKpVCoo5JlPzndolzmnBBDmALyGtpWq8qTdmjrfs3Mu2irtT7T53d3d4RBn8jm8F5iNq8/21dC17DecT9mdiws5ZbXdVXXejm1j+usFS7Emb+dsE2D5zjdZKqxYEv3EE0/E1q1bsXPnTjztaU8DcOgFu/POO3HdddcBAE4//XRkMhns3LkTF1xwAQBg3759+PGPf4wPf/jDy5b31YyZmZnYlpyJiQmk04dim9PTysk/Fed2ocUBlwY2lToU4oXe5N7e3uCFLBaLMe8xwXQ40DJuFU8epwHSmGtM1y5GrKovSSGUpKywSi27wFRyf3R0FA8//DBqtRr27t2LRx99NDaxIOGvIV4U9G5nMhn09/djy5YtsXAuSXVkwTzSgHJCUSwWMT4+jmq12tKDfLhYr4S89nX9TNVrtm+1u/vC4VhLWC5bbtVItAVKqlmyTR2fakO4cEulUrFwZLqA47uv32noFz6TUEcoMLsYoT3lVmDd2aLKK5KrTJ8OUksmK0joacxxEmZcSOrChflqNBqoVCrBBjKkiqqr9NAnLnJIPHOxqKo1LvZ0OzcXX1yAJamvrfqZeVJ1uFXOkbRVlZMuDvX5dIJWKhUMDQ1h//79oSx6qFtnZ2dMuaWLb7atloN2nOXTsrDfabmA2QPY2K9s6BetN6t+n56ejjmCdM5B4oBzOn6fpIzWz9QBRfJV5xL8jMSCde7U6/VAQqgyX+2pnc9Zglm/0/dB86sOEoaz4eeck3HBzvfdhi3i+8U+pf2Lz2dIBd0Rwfu13lkuvgNU1LF8qqJk37LkOPuOtrPtx7YdgNn46fquqLpQHSQaMkmfryTTSsGFF16IgwcP4oMf/CD27duH0047Dbfddht27NgB4JD92LNnT7j+xBNPxG233YbLLrsMn/jEJ7B9+3Z87GMfi8VCPfvss3HLLbfgve99L973vvfh5JNPxq233hpiqLaT7lqGr8uXF+r8oxN3cnIyhCZhCCadl1hwHEqn00H8RvV0JpNBoVAI9oa2nYS57gQnSc9QG0w36SBNQtdC6nzVXS8MBdTR0YFqtYqRkRFEUYTNmzeju7s7RqZzfsA5DcvDdGjHa7Ua9u3bh8ceeywoozs7O8P3rUK3aL77+vqwffv2OZ+TJO7p6Qn2kfOfVCoVYn8zvFy9XseBAwcwOTkZc3wsFThHZbiZKIqCree8Y2JiAuVyORDomUwGU1NTYQ4cRRHK5XJMEADM2jXrnKdNYWgyOos19n2hUEBvb2/Y9UDnC4DYAajsR5yDsq2sUEUdRnaHWhLYR5K4nvng6/XDw2LONgGW73yTI8WykuiTk5P4xS9+Ef7fvXs37r//fmzYsAEnnHACLr30UlxzzTU45ZRTcMopp+Caa65BsVjE6173OgBAb28v3vKWt+Cd73xniGH9rne9C09+8pPDqeCOxYOdkZ5dDpyqbuPAzAWWLuL0OarO5TM0tjrv0wUIB0Il0bnlhp/ZQ850UaAeUC5udFHDfKnhVuKhVRgAu7WVCywNbcOtclSbM5+6Fb5V+ADdUq6TBM3/QoMKCQTGrtOQNFyoLfWWpfVCDLdbzvVSH0uFpfB6O5YXK82WKwEOIJFoBBD7nvcB8VAYStbpbwurxrUqc1V36nWE2l21GST71J7a+5SstPYlySar3bPvn807oeoxJSVnZmbC4otl1G29DGPG+QLtIO/VhSftIO2VKtKt01vJSWvPbXm03LTrSiDqczTf+sP7mC/rVFcwv7pF3m411+uYF53kq/qYv5OU4UnpqjODi11VIms7JpVD66XV+LzQXEQJb0vM63VJogf2YZuGvpdJjmw7D1W1NfPB/22/sQp8K+oA4o4uAMFZofMqrX/No6rLVdVu88W+rZ/Z+uc4xDT5PjFtJc1btV0rAQmfv9h54pHOew7n3osvvhgXX3xx4nc33XTTnM/OOecc3HffffM+89WvfjVe/epXH3a6qx0rzZY74rBrcDoG+WPXijru87faAHXiRdGhs1YYE5y2nYQ50+D6lmGtACSO3fqjO/nU+atQ2wbMrrHVial2nGOgtVPqGNawmlTds6xJ84Uk6LyE+eLcRW2X3SHOMVh5jmazOWdtr3ORpYbaPt1d1Kqceo/aSn6vTm2bjv7We5Un0h2OSe2tc/Kk+VBS/hdDjPqacWEcyzX5cp1vslRYVhL9+9//Pp7znOeE/y+//HIAwJve9CbcdNNNePe7341qtYqLL74YIyMjOPPMM3H77beju7s73PPXf/3X6OzsxAUXXIBqtYrnPve5uOmmm+aovByLB1U6qVQqGCwgfhAR1Xm6HZ4DGhUsHEh52AW3wlIppsouu6jl/VyIKzFNz25Hx6FDT0qlUiDP6fnctGlTzHMNIBbDXQ8Yoep+eHgYwKGFzsaNG2NqJV1Y1ev1cLDq4OAgHn74YVQqFezbtw8HDhyIGQk+I2lwote1p6cnHMLa29uLzs7OoNRLMlpJYD0Ch4wYD5ABDnkGOzs7g+f9SI0JJzY85GatGyf2Z07k1np5jxWcRF/9WGm2nFvDlQBvtf2U47Mu1uiM5DNoQ3SxpASkqtqpxlGylNBFCICYTaXCjGGfarVaTP2sJJm1BZp/fbYS04QuargI5TW0H7xe7Rcd2qqiZXgOmwbvnZycjIXNUGKO91EZ1tfXF8KWqXpLSVYLquIqlUpQvSvZrw7usbExzMzMIJ/Ph4MWmT5DsjUajXBIeaVSwejoKEZGRmLKZQ11w7rS81F0Uc3zVdiHtI50cUqnCfPFg0fVaWPnRwolzTs7O5HP50PftvG/dQ5VLBZDP1YnP9tZxQOc7+k7ovnQ/1kvURQFJb0NfcN+Z+tSyQeWjf+r0IHvE+dmesA5nRdsL30/9Z1haIQkxSbLre8x86dxWVk+PUSYdcW8RtEhQUOpVIo5u1q9z3p2AccdPXCY/2u9JznWWNfaxpYEsW1IIkP76koM5+I4OlhpttwRhxLgPAuM744S1Hq9EsZA3BnI7xnahLHT1Z5xzNO5Dp9pSXNgdl6Tz+eDkljjgiuJTJtCRTvX1QDC/CeKIkxMTITxa9OmTZiZmQnnhpG81/lUs9nE+Pg4fvWrX6FSqWB8fDwcOK/Oh/mchaxL5pkHkisHocQzx0nmR8dkrTvGCO/s7Ax1rbvajgSsw0qlgmazGXbAkffgvKKrqyu0Kx0h1hbxey0DMGtfOZfQvmEdApVKZQ4Rzucm2Qydj/L5lUolthNL54Kcb7NtjwbWm206lmtyPWfkFa94Rfh8586deNnLXpZ4z1lnnYWvf/3rsc9anW9y2WWXxa5Z6rNLlpVEP/fcc+et8FQqhauvvhpXX311y2vy+TxuuOEG3HDDDUchh+sbahTsdk5O7mkMSDIoGGOLXmye5lwulwHEt7wmqdhpCK2XmddyUcLtXxs2bAhbzLmFmyeKq5e8XC6Hw0Q4cWC4mFTqUOgZGhr+TVJF1UX1ej0Y5pGRkbBFa3h4GKOjo20NJiwzTyznNiw6BJj3xYALrJmZmRAuZ3p6GoVCYY5RPFJoyJq1bmhUxbjWy3os4ST66sdKs+V6mCQJRp2UqyJHFalKGnOBR1LSkmR0LgOzY4NVvttJvS4i1P7podPlcjkseCYnJzE9PT3HKcD7tBwa310d03bRwYUcFWZKELKudGHIe5g/5i2dTgfnujpvddHOLeBKGFsFGgnm3t7eEOKtq6sr2Gs7F9A0qIajDbcxYEkMsy6VANAQatztRscFDyzn30pEqgqayjpVyyvxzTkSSVWr7LJlUdusz+KCvdW9zJeKE1h+G3qIdaaOAavqV0eEVVgr8a9jN++3/UHzqeS7JZF14cznJ5EQmja3zWu/UqcZ86v9WN9x3XWgSkN1+NjnqoOG5A+vZRtTVKKklbYJHTvsQ3buqzs9WE4AwTmiTsFWsO8Kd3FaNb2SHuq44PN1XFsoPSfRVz9Wmi13xKHvmQoC1A5ZG8ux1M5zkp4FHCKvFwtdy6tznGegbdy4MeZo0fts+CiG+qDgq9lshjjwHR0dYV3Oc9qYnp4/kUqlUKlUsH///uAoZRnJRSwE2jE98Jufc46ou52URFe7DsSdnZzPRdGh8Ktsj8Ml0e0YTnEB56hq1wGgu7sbhUIB09PTQUjIMtp+Y6MNaL0kOeDVOUtCn3NYHkZryfaknU/swxRwcC6uhLwVfxwtEn294VivyZfrfJOFdl21gxUbE92xcqHGkkYkabEeRdGchXnSIpjGPYlEty8zF76dnZ3o6urCwMAAcrkc+vr6Qhw1DYVCEpngop950W1eHMS5IM9msxgdHY2pmLR8JM+r1SrGxsbCYZI2bul84AKSi1/dvm4XV4uFqtPs8623+HDAyYqeAr5WoWVdDw4Dh2M1I2nc5IIgaXzW3SW6s0p3WAFziSneowtXVdQmXd8qn0n2TglZJUF1EcxnqgpXba4uMJPqSdNoVXdKdCaRfqxDhQ0ZwgWc2iIurKg+pxO5WCyGZ9rnKCmoCmU6OHUewvZmXHlLdFPBTPWdzgfUOZxE5M9XV9aG6y4C2yd08ak2Omm7O/tEkhPICg1UxW/zYOdiNkyPEuiWRLd9VPtFUqijpDLoYpv5VCLfLty17yuUzFYSJek9S6oHW3+WpLfzJCUS9DqtM5ZF61idCpyj8qAtbbMkB5n+rURX0vwwSUmo5A3zxPrSMmhetI3bIewdjrWKpVgrLQf4zuv6kqQkx8ylUj/rnIkHSPJvxuLmbnF12toxGUBwaNPZqLaXazDuGqdzmQ5LjsU8e2JsbKzl2rSddiWHoCFRrd1O2qnFuqUAgzumuGtA55a0+TbE3GKQdI/mKZvNxtpZ7bjabd15YPuPfqZ2k8+zcxZ12tDJYwUHOje0Ao6kuQjTUDtN8QPP53OsPizX+SYL7bpqB06iOxYFHei4lYqKaatE10NJdNDVbTy6yEiCfk9l16ZNm9DX14e+vj7s2LEDhUIB3d3d6OnpiamAgHicNqZNontiYgLDw8PhpGx6pw8ePIjx8XGMjY2h2WyiVCqhp6cHAwMDse1itVoNBw4cQLVaxdDQEB599NFgKBdbl9lsFsViEcViMXZY25GS6Ay3UygU0NXVhXQ6HQ57TbreYj6DTi/z5ORkUL6vVWhZuU3OsTQ41l5vx9oHx1aOaUqyUhmjhBMXk7oYpE3ThQUwS2hpjE6qrviboSSoeuffwNwDRWmfdMHARQVVSrrwoBrcPqNUKs35jMqiVo5ZPTOEtoLXqWObCy3+rapzDWsDzCrhm81mUPnqQolbvBnCpaenB319fXjc4x4XyHTumuJ2devA1HkB66tWq6FarQaCMp1Oh63AJMsZXoU7vdjWtVoNQ0NDqNVqGB0dxejoaFC4E7qY075jSUv2AZKl2naWvFWiQA+npHpdQ7gwLSU6+Qwlgjmf4EKefUXD9CjBzhAyGk6G74s6L2ze1eGURATrPVpPVJZNTU3Ftmdr/+f3dLSwP6ndZd4nJyfDrgimqdexPKp0t6SNbmdXolnrXolnJdLpbKEqPmluwLTZr1lvuiuAY46+V/yb6VBdyHm3dQ4k7YBhnQKzitQk5xDTUuKEc8h2cCR2XMvpcKwUqC1c6XN+dfCpjeI7zHChdBTPzMyEnVZHinQ6HXZSb9q0Cb/+67+OUqmEcrkcQnEMDAygp6cHjUYD5XI5thOJcdYZym5oaCgQ6ax3Jfx/9atfIZfLYfPmzdi2bRs6OjpCODeux/k8xm9nPq29nq9di8Uitm3bhnw+j4GBAeTzeUxPT6NSqYSQMBpnvbu7O3agel9fH7Zu3YpsNovBwcFw8Cl3SnIexPFeQ/Mwf4dLqtNekRuhOJBg3XJep0p0PTeG4786X9RGcp5K+6Vzxmbz0Bl43IlFu8X3iva7VqvFIgdwTsY0p6enY7sBGIJmamoKjz32GIaHh+fM19Yi1LYfzfFoOdbky3G+ybkL7LpqB06iOxYFqzpSb6pVIHGRoCRAqw7bTkfmxL5UKqGrqwt9fX3YsGFD+J8L4yQ1DxeFXLzw+0ajEQw3F4Z6WMrIyEgYzJVIIIk+PDwclOjcMraYwU0XQFxE09t6pEp0rTMuoG3seuvE4O92BxYlp1b6JPNIEEVRiBO71lX3xxpOojuWGtYWqSOX6mZLNJHI0vFSlcTAXAW6VVSpPWy1GNKtyyT0rMKZ0FASSmLad4b5tQqj+ZTolnxbyN7wO4YHY70qQWd/W5Kdz1CymKS5KtILhUKMICbJSoKUai7WLfPBxRZB28TwGaqc0l1f1Wp1jhJdF7RJda51orDKLm07CyVLdSdDu/bf9kWCyjENQWcJV3UKWSW6FT7wfk3Xzh2UYF4o30r4axpaJn1PtJyaJh0FXJBzJ4JtJ3UKaVtoGW2/1b5C6DzJLmZZb63muZzjAYdIFBurXpV8NoQK64B1klQXmq+k/GnbM79J7WIJEgBzxo4kOInuWGuw79Jqgo4P3MFdLBbD+0+H6VKAYxvDt2zZsgXd3d0YGRkJ6XOHWWdnZ0y0oM+gfScZbsvD8X5iYgL1ej2cIdbR0YFyuRx+BgcHQ9hYrYfFrnM7OztRKpVQKBRiZ+Ko3dCQOjonYflIlFOlrtfy93z2/khIdJLgFHXYcGm8Zr4QYdouaoes3VEnrgpPWGcq2NBdY8CheZrGyQdmuQXd+c00OP8kDzM+Ph7mLsuBxfImR5KO8jZHC74mbx9OojsWDR0k9XeSl5cGWyfwhzMhoSEqFovYvHkzNm3ahN7eXvT19SGfz4ctY3YA17iUTLerqyuo0nt6ehBFUThUTBf7PGSM3mwqnlSJOD4+jkajcdiHddp6WepJmy7otI1aKcWSFsq62FZEURTKXiwW5ywI1xJorCcnJ0O8PofDsTKhsX+BeAgUHcdonzheKZHFhYNVoqmTVu9T53LSOK52yCrbGG5EHXWELlCo9rGhWzRPSqJz4adgXtsha7kwUcIvKU652j3WmeZd661YLIaYnLThjJvKcmlaTF+fR9tOVfn09HQIAaNOcqs4Zv2QjFRCgWelVCqV4FhX57qd82gf0l0PurC2ZKclsnmvJetJyFLJTiGCLt61fdTGa3uoOoyx3wGEwza5IO3s7AxnxLA+dNFvF262zS0xrcSCOl/sbkUlt3kN25DgDg4Ne5N0VgzbUAUemhedz2gd6kF39pkkGHSORMU520WdRUrIW8cD+wPLTcWdOgK0vqxTAYgfqJrUH3UOrHWo45T2wSSnRFIbr7eFscMBxJ2UKxk6RujYoLubuF6jcIwOag2Btdhyarxw2nE9z4TzGet0Zf6USKYgLpPJYHBwMIRYtXniDreZmRmMjo6GZ3E3OUVw1kbpeNzuuEaegDu11BFv51v6fLU/lUolzGfU/qnjX8linWvos5Wk191FSfmgCDCTyaBcLiOTycTEgTzknKFzpqamQtiaVCoVDmunkp351vmFzjm0TMDsYdr8jDaOSvju7m50d3cjnZ6Nm8/86E6xKIrCrr50Oh12gheLRfT396NWqwWnzHK+p8cqXbfHKw9OojsWDV38WdWVQhfQRxJXMZU6tH2VW7+PO+44PO5xj0OxWMTAwEDs4FBer+CCGzhk9Pv6+kI8yk2bNgVjNz4+Hq4nacrTrJPyT2+zXZQtplx2QqExwY4UduGnREw75L0lSZImJVTpFwqF2Hbww3WWrESwncvlcoiB7yT60sG93o6lBglpkk46OW9FLFtyGcAcMkwXSUpUZbPZOU7cVuOfVQJF0aHdTxxLudixNpb5psOYRJwds9WRSXJQdwqpyt4SwJpHLiAZSoXkvi74NNSHJayVyOXvVCqFrq4u9Pf3o1AoYOPGjejv7485woHZEBmMZ27bgDa9WCyGBXNvb29QWrEOdA7Cszu4QNT2pLqN24vpVOdiXfOvYW2SFFw6L7DhQzT2qZKd1slDkp/tpSStOmG4ONX8qFqZ6kCq8ZWsZR2ynavVaiDOG41G7BA1litpEWeJcO3bOtdQVby+V5ZET6VSwXlA55KS06wz+w7zHUql4qGNkt433T3Hd0j7iqrWrcKOJA638bOtdYeLKhKtc4Hfcxt/Op0Obcj8sV30XdR+ZR1T2o8BhNBF6gTQvqbjhI5V9tD5pHlfKxyJHef9DsdKwmLXdMsJ2gcNkaWxvPm+UwzEsYQOVdrRxUDPNNm4cSM2bNgQwoaSIKYjmnaJYxLHOe6gYxz1bDaLhx56KIR8STprhc7earWKwcFBAHOdpEllWWz5ms1mCBFiD66kgyLJCazj+/j4eLBl5B3S6dnwZZzjWGLcOmnp7OV8kelyfGd9R1EU4oSn02lMTEyE9tcQOpyLcL4TRRG6u7uDQ+LgwYPhjBqq2Qnu2GNZWX7OB2lf1f4xHGqz2cS2bdtCPymVSiEv7Csq8GAeuPN/amoKO3bswNatW1GtVpHL5Q6r7y4GSU7m5cCR2thjkc5y19GxhpPojsPGYl6WI32xaFx5UAljiikp3Ar6HY0HjQJjpCad7KwLDTU+Wp6jMck6GoNQ0jOTlHFJ19i/rUJKt13ZbV6rHVYF5uFclh5usB1LjSTnnyX6Wjn6kuyAfq4qGSV2k+yDJaFUpQ0gZl9UyZqkbrLOa/1by8gFk3Wetgrr0Mo28Jk25nm7sEQrbS/V0Vzg6zZfrbOFlEVKDOoPydGkNuHz7MKci1gbzkTb3tpK67wA4v2uHcd6q3ZIIi95rc2frSNLaivRqqSwEvKq+G8V+z0J2i9sn9f60DrU7/R/WwaSxbY/aJ3avDEkk62X+fqUkvyavlXTq1BEHRa2PmzcfqZhP2M7AbPhd7ROksqRRKxrGdTho44YLZv2CyVi1PmS5FRbCE6iOxzLAzvWEdZWtWtb24GOmyTsqXDWfKgNSRqzNJ+6046kbdLBp63s+FKD47naQ3Vi2vzwt9oGFdoBcSEGn2fbQ+cFSWtzOz4nzVmZd8YP5+dWCHI4dZL0mdryJDttd2kl2WF9HuuPQhDaNxWErBRye63B1+Ttw0l0x6KhC3/dZg3M3dqjh1MdTtxsGpBSqYSNGzfO2f69EIFuoUrEnp4ebNy4EdlsFpVKJXaAhh0IrJFcCqihobHLZDJzJhpH+nytf257SlIy2QWzGkZLDjB/nGDUajWMjY2FGHKq5lzNoHe8UqlgcnIS4+PjsbA1jiOHG2zHUmNycjIW9oSLMqtEt/ZISTsAcybyqkqlfQPik37+TxVtFEWxMcMqYzk2U4WjRCavo7OXCieqZ7n9ls9IItCVkAQQG9Mt4cw6SKVS4RBWKpht6BBVlGm5+Z3mn3Yhk8kEG14oFFAqlVAsFpFKpYIiS5+lC1clX/nDuOqNRgP5fD5m5ywxap0qbCPWAUMAKUnd0dERU4+lUqkQVo79gcpy5l2JSaqBLYnAHx62RSWghh5R2631bcPr8DtLjmt9AYeUc6VSac5cjP2TB45TiUanBPsY+5G2syrorFJet5/bHR66LZ1KPyWpqYJnuBkSEdzppm2rC2mtZ+s04i4E5pnPbxXvuxV5oWFpZmZmwg4S4NBuB6tCVwJeCSb+WDJD213HB5176e6MpJ01fLdTqVSM2GJ+VPHIemDf0nrUtl4ITqI7HMuDViSqvlN2B7ISxIf77pH0zufz6O3txcDAQLCTzeahcGQM1QEgzHE45qkDV8N2bdmyBcViEcPDwxgcHFy2HQHMF3f9dXd3I4oO7cC2cz+18xpujIptHe9LpVI45FXnh5ynMXztzMxsHHPdLWDnbK3G3qmpKQwPD6PRaKBYLKKnpwednZ0oFovhDDnu4GO8/FTq0E4uthN3wnGnF+dd3LVmd3laxzjzWCgUQl4Zo73ZbMZU8zxQnWl1dHSgUCggl8sF280Y6Az5Y2PnHw2sN9vka/L24SS6Y1FQ4pcDux7mlBSHVhdYhxM3PJ1OhxhYPT096O7uRqlUii262gUXHZlMBo1GA729vejo6MDQ0BA6OzvnnVQcjcFB61KVYEpgLxWRrluY7eIuacHItHWxbRfobO96vY6JiYnY1ry1AC68edBNuVxuS2HocDiWDwy5ROJZySaSeUm7ZqyyRYkwG64FiJ85oQ5REl2qblZlK6/X7a90cNIGUA3L9EiGKYnO8ZaksRKHScpZLaM6AawjleSwhnFppbC1xKXaEV04MmQLDwLnYaK5XC62QFTFcpIzWclEEpr8YegZlilJMa6KZj1AVMNysCwkCbRuqLjjQjlJDcdFt9pamzafz8Wy2lslF+w2eHU4qB2ybWj7Nkl/1rXOCdLpdAhdx/jodABo/dsFMoBA6Kpaj++FVTXrXCOVSoV8sC54jRLuetAY+4RV6tm+yP5o+ydVefqeKOltnRL6PE2TY4mGcOH/JK+T1P9ah9q39Vpg9kwH7Tf6w/ogGUVCg99xPNEy6Hih0HrXdltvi2GHY7VjPlKV778S2EDcsbtYcFzLZrMolUro7e2NzWtIPPNaDT3GtLnm1t3M/f394ZytoaGh2Hh9LMcl2kraCZLLtEHq4LQh2Biru1KphHkRfzgPGh8fj4kZWMZsNotCoRBsAJ216jxNsvEWMzMzIXRPOp1Gf39/2AVIwpphVfi//Zt9hSHvms1mEDHqPFfzlLTzCZgl0sm1UKhRrVaRz+eDWIXzMtorfs753cTERHAO0AnvcCwHnER3LBqcZHMQTFqsUvmjhvFwjLUuQuxBaEdCLvN+GjuNIakLFVULHo4DYD6oWoAebxoK1pfGITuc59NAazxbXXhbY2xVXWqw5wPV6Dz0QxdhR9JOywlOECqVCiqVSuyAHF9gLh3c6+1YalBBQ5vBv5WITArHAMzdZmw/U9BW6HipJDrHWw0BlbSTy9pGtU9U+Gh5ksh8dQrwWVy8WUcoYZ0FCtoklkEJTA0/oc9JIg5tW6hCXvORRLpqfdh42jZPJNEtach2V+W4jaGp9WChjogkQl7DYACzpC/zxh0C2k7WPqqKHIhvU1cSlX3F5pufMx9KTiQ5NyxhqsSundtxsZzUZnyWbTeF7Xva/vaZSU4gPWzWhu/T95n5VmgfZX9W9bz2Z90FoE4NJdltG1hnlTpCNPa99gvNm76/7KPAbHgXJeR5j+2HSeXm55yH63ihClCWQfN0uPO2I50XuS13OA4Par/03VbHJs8E4Y6nw12TK+jUp1NR7Y7mJWl9meSMpx2k+plzBjvuafmO5rih9lvtKW2JnU/Ze4H4bh8eJs0dWOpE1nLozkT9TkUbQNz+qROYIPnN9qddUxvPs1/U8W9ttooW1G7TnvO7JJuhcw2Nj2/tr9o41hUdLzwIt6urK/SJ0dFRJ9GPEnxN3j6cRHcsChyoU6lDW25UgWMJX3oZqfiyp3QvBDWq2Ww2HGBCQ3S4RLouaqgC6+npwcDAQFhw0NDR8DCcR5Ia70hAQ8JDN6anp1EsFtHV1RUMS6vtxvOBxo/bopj/crkclHpKoCeR6brI00lOUtnr9ToGBwcxPj6OVCqFTZs2zVFgrSaw/iYmJvDII4+gUqlgYmJiyR0pjmNvsD/5yU/iIx/5CPbt24cnPelJuP766/E7v/M7La+/8847cfnll+MnP/kJtm/fjne/+9246KKLYtd8+ctfxvve9z788pe/xMknn4wPfehDeMUrXrGodN/85jfj85//fOyeM888E//xH/+x6DKud9BW5PP5GAmtUNIMmBuSTBcMer+qhJVgVnKcJBq36yaR17ooI7GneclkMiFsSFdXV1AMqe1T+8dFjSVdk8hxq2DWhasqz2n/LNlnF5VMR0lFloUhS2i77SGiuihttSBVO8jtv+qg7+joQE9PDwqFQrB5ANDV1RX6QC6XQzqdRqVSiW2L1vaxpIKqnVUZrQoxe4+WgYtUu/DkNax3/V/V0iSy9bm6uNb+q+3BeRcXyNrOrEsS63b3oIZ2KRaLYb7FrdpKuLPPMC3rBGIdME0lR9j+7GMkuKnO50K6UCiEeZltC82X3XmhAgX2m3K5HLaEUxWpJLk6Pqanp0M4G9turfq7jinWQca+rw4XBdNRwYj2jVZOFHWEcGzQHS4kbNLpNAqFQiwkEOtqIadhO3bWSXSHY/lAm6SOXZ79RZvCcZZhOfSdXez7l0qlQphVhgLhri6Og7VaLYS4IimqdldBe6C7pRjKg6HRGAaEZaF9PVqYnp5GpVIJNpG2l3MQrQsl/HUuw9BfDNGi6/2xsTHU6/WYuI3qcdpgHZ/1kHHOe7hDkXMiS8ZPTEyE+Q/tK1XelUoFIyMjmJycDIdxq82JoigWjqZQKCCVSoU20TmNth3zqHNnzkump6fDbj5gtt11LsEdDOReJiYmkM/nceKJJ6KzsxO7d+/Ggw8+iFqthnK5fHQafx3DSfT24SS6Y9HQxQm3jNqttQBiW44PNx66VaJTTXYkSnRdKHCiwe1TXDjxgDIaplYha44UWpdcbFuF4uGC9c6FtMa2BRY+nEQXzPZvCxo7eo3XCtlcq9UwMTERJlBroUwrDcfSYN9666249NJL8clPfhLPfOYz8bd/+7c4//zz8dOf/hQnnHDCnOt3796NF77whXjrW9+Km2++Gf/3//5fXHzxxdi0aRNe9apXAQB27dqFCy+8EH/+53+OV7ziFfjqV7+KCy64AHfddRfOPPPMRaX7e7/3e/jc5z4X/ucE3LE46EGTJKM05AGVTa3UUEA8BIpV7gLJ4cpUda5bfZMUS2oX7YJWbZP+WBWq5l2hiljmn9cwXX5u86UkLn9b4pWEncbDVKKdz6W91h1fqkZnXrUeFWrr1XmgzgKWlWeksIyqRNdFvJKmNv2k8UT7RZIS3RIR+gztG1Sa6zW6s07JcNu/+L8Svba9WWZVGdoy2T5uFe98DucN2Ww2kM02TTs/07pRxbOWRZ0TLLvG1bcOG767VFTzb/3hc6hgs/Wiyjslk6gwtA4p27fs85LAeZuWQ/sV60FD6liok0/zo3026d1nOlZYYvsT57TqwON1vEfTaaUabQUn0R2O5YW1RWpXdS2rZ48cCRhLm+E/7FzGrpd17NN8qg2hwxFA7FwbDdmm8xu1nUsN2kLaH1VwWyekFWMwb/yeu92np6cxOTmJWq0WwnZZW0PuhCQ07VsSB0EbmSRWi6IohKNR0QF/6FDhGSj2jDu1FTqHSrLB7G8UVaqt532sT7U/nKfZ3Va8h+vvTCYThBIPPfQQhoeHY44Mx9LBSfT24SS647ChBgZA7G9gdvtsEoHQDtQQq/fVkg2HAxrhTCYT1N/9/f3Bu0uDQiNHwoBG50i837qIVWPFLUuTk5MoFouxA6N0sT1fmYDZw76mpqZQLpfDjyr4kgY6S5C3IgeS7iXhQi/60NBQOMiEB8etFqjzRNUCSzXxdCw9xsfHY//ncrmgdFB89KMfxVve8hb80R/9EQDg+uuvx7/8y7/gU5/6FK699to513/605/GCSecgOuvvx4AcOqpp+L73/8+/uqv/iqQ6Ndffz2e//zn46qrrgIAXHXVVbjzzjtx/fXX40tf+tKi0s3lcti6desR1oaDqh8qP0ncAvFwKq0WYRr6gGMXbY8qza06FZhdeOiBiJaUswSbOpm5IMrlcigUCmHxqM5qTSeKoliIEo7/ajs0PV0AknhrNBpBCaTOVuaL39lxXBXiGopCSVTeb4k5XeCrEl1tO4lxDeOheVAlMp/DRVkqlQpbzfW6qampoMrioZBaL3yGjR1r09ZrWCb+ZrvroZlUjFlSmwtjdVRrW/Ezqri0rpLKbPPK9LjA5d/8nO2mZEC1Wg3XM5wLF9EKK0jQtrcKer5DOveh0tsuwpvNZkzNp4Q625355TvMZ2p5SR7RyV8ul2PvyszMTKg3bRcVMmgMdQuSC5ZI0brRtuRhaToH5DV67oBujU8ag6xDTAUOtk9adaD2L30+3yHel/S+OxyO1QElUDme2l1oRwo+l+OVDWVG28SxhTtiSJqqCpvjjZ7Fks1msWnTJszMHDrfho58jt9jY2MYHh5OJKKXChwvx8fH8fDDD8d2xus4riHBWBe6G1HPP5mYmMDo6GjY3a62OpVKBdW9zkusEIRlZh3Ox0lw/jA6OhrmRMViER0dHeju7g55syFz1TlvhRic2+juJ3veiPa9KIpiQgx1sFOdzvRp+2nPuPvv4MGDyGQyITa7w7HccBLdcdjg4AggxN1SLES8tgM1GBrTm8bmcCb61kPabDbR29sbIww4aNNAcRsZt6sdCYluCQGWY2JiImbMuP282WwGtXwrIl2dDSQH6vU6RkZGMDY2hsnJyeD9tukqadGKXE/6W9FsNsP2s+HhYTz66KNhkkEia7UsyKampjA2NoZarYYDBw7gwIEDIcSBY+mxFF7v448/Pvb5+9//flx99dWxzxqNBu69915ceeWVsc/PO+883H333YnP37VrF84777zYZy94wQtw4403YmpqCplMBrt27cJll1025xoS74tJ99vf/jY2b96Mvr4+nHPOOfjQhz6EzZs3t64ARyKKxSJKpVJQSBFczCjRpqSSLhaUFFTynM5C2iXr0FVbpUS6JaiUWNfdTjz0KZ/Po6enB7lcLqayJpRoZGxIJcqUOFbCX0l0tZ/2sEnrKFBFLMurqnQewMnnArPKVlUwMY90TNM5zXpl2WgDeS8X6GqnlOBl3XPLNBejGouddUFbxf/VcQogRnBqffM73a2QdPClxpKv1+uJuwisk0PnUOrAYDuo/dbyUrHGerb513yzbVTJpk4Q5oVpURWoB3spYc3nqtJe3xsl89lfbd0VCoU56kTWm1W76YG66jRg3atSj+lxh9z4+DhGR0djdpx55mKf7acxaW14FU2P+VIyxTrM9D1ivdvwUMCs+pDP0+fqLgY+w+4moENA57fWcWfnrerAUSgR3244viOx47zf4XAsDegM1XAcS/2OUWhG+0rhio751rmfz+dRKpXC2psOW6LRaKBarWJqagqFQgEnnHBCGA91F1mz2cSjjz4aQpTSCbmUYDrT09N47LHHMDIyglKphJNPPhl9fX0xJzjDyKmTgIdxkkPo6upCo9HA0NAQ9u3bF5zgNiRKd3c3SqUS6vU6hoeHw1qjUCiEugRmd4DbtXwSqtUqDhw4gHw+j66uLvT19SGTyaCvry+ECtR5hIbsU7vENuJ8laFdGo1GcAqogEV31XMepLaS8y/OMziH0XBrmUwGjUYDjz76KJrNJoaHh51EP4pYijX5eoGT6I4jwpGS5O1CVVe62DkSJboOwjR8XDTaLcJcjFu1fbvQxaAuAJMW6xpHld54IHmrLaELNPXkU0Gti/qkNFkn7SjRW8GS+FT9qcJsJRPp6rCp1WohbqqSSo6lx1IY7L1796Knpyd8nqRCHxoawszMDLZs2RL7fMuWLdi/f3/i8/fv3594/fT0NIaGhrBt27aW1/CZ7aZ7/vnn4zWveQ127NiB3bt3433vex9+93d/F/fee29ieRytoWFDrKJmvr5mCXH7nSXA50Or8VOfQah6l/m25C+QHH5F86O2MYmYtA4DzZO9V59n64f54O8klXarOlEFuv5uVadJ9s5+z7rT9tMwMkpKKkHYqr2S0lMFtT7Hkqfq3Of/VinH72y62gZK6HIhT6JdVV5J9bZQnTFdLRehxD3tn5ah1bxFn8XyJ/UdzSvzyXpkG+r8LiktO09R5432ZRIA6tBSpdxC89f53llty1aOhaQdh9r2tg/wHpufhdpSn2OdJrau9DM7H7ROsMXASXSHY2XhaBDnCpLkuVxu3vV4q/lUK+j4r+tfHWejKJqjnD4c6Jit4yI/40+z2UStVgvOZNpCm2fruCRvQXtKwQCdC0ljvXXK2nG71Tp9PmjIWN2VYJ2kSfYg6X8tf6v5AGFD39i5iwojk9IkGU+hg4dWPbpwEr19OInuWLFQUrNSqQQV0eTkZNiClMvlFmU8dVHaaDRQqVRi4VlU8URVFtWBnCi0q8zh8wCgUCigu7s7KK803+n0bBx0GpKRkZFYqJlsNhsOG1WPPMtERRrDqUxMTGBqagpDQ0OYmJgInuOkrVb6v11EJRm6hQbJSqWC/fv3x7zRuVwOPT09KzbGMycY09PTGBkZwd69ezE5OYmRkZGW4W8cS4OlMNg9PT0xEn0+2PFiIWdc0vX283aeudA1F154Yfj7tNNOwxlnnIEdO3bgn/7pn/DKV75yviI5DBink6oW9jGNFa3bTDkO2tjDupiziy2NYUxnpSWfVak034JDFd20D7RBxHzEvTqZeS0/528lR2nvLEHPe+cjL3VhaWNo2vrTdLmra2JiIqY4ooKM46zaOK0DPQxUw9CoypdqXKt4SiI6mT8N48L7aac0vAvvy+VywZZ3dXWhUCjMaQtdSLNcVHdrnHa9h+du1Ov1UFf6jHK5jFqtFovtrot56/DgTrtsNpu4WNa0bftr/9DDNUlc8MBb63Dhs1QRaN8lznf0egBh58HMzEwIbcd3gs+k+k23zbO/qnqfuxp48Fij0Qj1xzLYOZD2E1XT277SCmxXrX+qDHXnB+tV61zfTZ2T8Te3wbeK+a75U6U/n2EPVbZOPX1/LeHfbggIJ9EdjmOPI3F8HQlo0w4cOIBarYbHPe5xAA7ZaYbQUjVxV1dXGN9HR0fnOIZ1t52GLaFdY2hVph1FUVCrd3Z2YnJycsHdwnYOzjjlzF+xWAx8w9TUVGwuoHZ5//79mJiYiM2ddLc4MLvzivUwMjISDrYeHx8Pc08tDzB7sKhV1+tOeHW2ttvuDO/aaDQwMjISdrpbAYeKHHRdTB6ENoH1yXJbxyxtK3d0MaZ5Op1GtVoNIThZBs59bGg/zgGq1SoGBwdRrVZRqVRc1HYU4SR6+3AS3bGiQYNRr9fDoMtQJYwVu1hwscVtY1Qc60KC4Vu4QOXBbhrTs12kUodCmvT39yObzYatWrpIomp8enoao6OjGBsbCwatUqkgn8/H4qKx3KpW44Ge4+PjGBsbQ6PRwPDwcDA4Gg+TBrgVia51b38vhGq1Gtqnu7sb+XwehUIhxPddqeDkb2xsDPv27Qt1uNRbBB3Lg40bN6Kjo2OO6nxwcHCOSpzYunVr4vWdnZ0YGBiY9xo+83DSBYBt27Zhx44d+PnPf95eAR0B9kwJ3anDd5p2gKFFrHKW99mFlzpXNaSCHhKlBKGOrUnjrDppGYJFY4EnLZKTHDKWmFQltCXRudjkb0sAWkWtgostdSaxLpSE1LrTcBuVSiUQptaOaV6UTNe2UvWsKr00tA7DfqiNTVKr2XphWXm/9huWMZvNhu3opVIJhUJhji2v1WrhmbqDjmRBoVCI2RXaeXsAuDoY+H2z2QyL1lb2nO2jc5lWfceC8wnt43qoO8MNWUeJ3VGgzhibV405zjyx77PsujXekrk2pAmAmNqcirVarRbqjU4KgsS0hqjRPq4EvvY1rUPWM6/VXQ+M7QogkB8qlFCyge+eKvY0/ju/0/FMoX1Yw7Dw2fa+pLlcKyeLltvhONZYLpJ4NYA2bjnqJoqiQDaT4AUQYn5PT0+HcTCdTqNQKKCrqysQ7xoGhnMKOnx1bKZdpthNxVzT09Nh3rTQIZNJKudMJoNisYhMJoONGzeiv78fU1NTGB0dDYdtchfo2NhYKOvBgwcxMjISnptOp9HX14f+/v7YXFId9GNjY6E8PJujVb1Wq1VUq9XwP+uV9ksdn+22vcZWHxsbCyHF6ISwh3ty3sKdXDzktaOjI7Q1gJiTnfM+nfNQYNLd3Y2uri5kMhnU6/XYuSsM7Vev14PzQUUB/H54eBgTExM+FjhWDJxEd6wKTE1NhROa1RPJRXgr5RxBo0vPaL1eR6VSweTkZBjMaZi4kKMRVEOyGFUyyXclSWiI7FZbjbdJopxKOy6QeK+SILp4onqLiivdsmU9iywr60QVk7be7P3tlJ/3VatVTExMBO8+gOCQWMwOgqMFnSgwbryqANzbffRxrLze2WwWp59+Onbu3IlXvOIV4fOdO3fiZS97WeI9Z511Fr7+9a/HPrv99ttxxhlnBCXtWWedhZ07d8biot9+++04++yzDztdADh48CD27t2Lbdu2tV1GxyyUKCLBqpN7VW4TSgQDyWS1KqQIkp+qPrKxxwmSbPqbB+GSPNPFpf4k5UPL1Gq8UgIvieBUKAmuJKrugFKS3RKL9hlJ+eBisF6vx0KbqV209pxltmVnfeuhVty2rOoqKpt1YaskOstm1fnMC+02F5z8v5VzxH6mxC/7o+aJ8xL2JXUOWHXyQmOmqtdsH7f1aNueYL2QCCa5z+3gWo6k9HWhz3Ir2Z80H7E7HVQpbt89ddSQZGe9aSgarT+7K8TWiUKJ9FaEhSWjNRa8vjckhXiP7dvaVzVNzSffPzpHrJLc7iSxfZHpJjkGW9WBfrcQXInucKwv8J3n2Euim5+TGNezJHReoWMdn1Gv18MazK49SbKrXVOivV2oXU8i13UsVsc0FfK2/KwDdZqnUqkg0lNneLs7e5Lq2jqpDwdRFIU6Jn+iO+QpWuDzdV6mNkwdOMwTyW8q89VuqrOdnIh9nh4sqmfK8GwT3xV+bHCs1uRrAU6iO1Y8oujQtrEoilAul9Hf349msxkL6UJiFmit0uPieXh4OKi1/+u//gvlcjkcRMctytx2plvQJyYmwiK3HXR2dqK7uxvZbBa9vb3hIA+7TZgGisq8KDq03ZhbwKrVKvL5fPCMk0ynMeSCkVvomEcldJIMPw1gKxIASI7R2k57RdGhrXaDg4MYHx9HqVTC9PQ0ent70dXVhYGBgdhEajkQRVHY7l2r1fDQQw9hcHAQ9Xo9hMBZbwZhOXAsDfbll1+ON7zhDTjjjDNw1lln4TOf+Qz27NmDiy66CABw1VVX4ZFHHsEXvvAFAMBFF12Ej3/847j88svx1re+Fbt27cKNN96IL33pS+GZl1xyCZ797Gfjuuuuw8te9jL84z/+I+644w7cddddbac7OTmJq6++Gq961auwbds2PPTQQ/izP/szbNy4MUa8O9qDVcZy8k1FLyfp9vAiJa8tkauLBY69dMAyLBjHPSXqOZ6TLOaikgdF8W+G+GI6VuHDcZILFSUKuYClY5mLVmv7VB2tCjCrGCZ0kcVFEVXyrci4+doEQFgMUU3NXUtdXV1zCOtWizCWp1KpBIUx1V08uIwLw3w+HxboUXRIPUd1MhdoLCPLqeE22CcYwoTbvtWWK/nLMGy60FWCl4tILhapshobGwsHqrEt7WKbi0xLyNpFLvsd+4cljq1zXJXU7CPsa3wOz4Uhgc7+mhRiRIkEDcvC+uKhoao053sYRVFsJ6DuoLO7G9jP0+l02EXGutZ3Q3dcJBHh6mTTOtX+YNXzrG+SOZyXqaqe9yjBrelqm3EMIpmgZeN1/F7HJXUE2T6RRBSl0/HwMlbVb8e+xc77Dhc+13IkwftFayz2nTsaqnXOq0ZHR/HYY4/Fnp/P58MBnM1mM4Qz4RxCndy0fWNjY9izZw/K5XKwSZlMBps2bUJvb2/YpTQzcyjsFwl32vH58gnM7vLhs3V8VRKYa3GOlZlMBr29vYHYVQEWgNh8kHMSzkvUhumYOx9U1MZ7yT3MJ5hYCM1mM4SW4WGn2WwWGzduRG9vLzKZTOyQaxUMUB2vB42y3qrVarC/GzZsQHd3d/icPEWlUglczaZNm0LoGoap4w7SWq0W1uCDg4MhPK0q4B1HD06itw8n0R0rHlEUxQhNxvzu6Dh0IrQqdFot6pVMoOEdHx/HyMhIiKWmXnM1DiQrVG3YDkg45HI55PP5QPYnQbdCcfEFIGaE1aBxscuJB8vFBXA7Hlu7oEtSoisRsNjBkZMmKuTHx8fDBIYTleUCy6JbvoeHh8MhkItpZ8eR41gZ3gsvvBAHDx7EBz/4Qezbtw+nnXYabrvtNuzYsQMAsG/fPuzZsydcf+KJJ+K2227DZZddhk984hPYvn07Pvaxj+FVr3pVuObss8/GLbfcgve+97143/veh5NPPhm33norzjzzzLbT7ejowI9+9CN84QtfwOjoKLZt24bnPOc5uPXWW9Hd3X1M6matQYl0JV+VhNXFDBd1QOszIvg3n6dhIxiyQbeiKkFllT2ZTCbEbe/s7EQ+nweAQMDqIs9u21ZCX5VZ/CzJkUybYMdzq0jXcVnVYqoYPxLHJx293KKti1itI90WzbpUwpC2jmQ424JtSSeEqreUYFWlsiqB51OiM5Qa5wnaNuqMYHurGp8LbhLLnK/w81qtFmwlSXSCxCrT0ja2zm9LkKtyW3efWVhCXPsv+zXzz8W8dXZo+homRetR38Wk3Q1KuLPetCx6LbenA4iFxLPhcPQ91LmH1oOtE90JkrQzwtYRCXp1SvBzew9/a1vp+67pav+yTi/mW+e3SWIILZOW1ZI09vNWddMK620B7XCsFhwNsZI6AilIIgHNsYrzGg1HZsdW2kSuzUdHR4NSmj+bN29GoVAItlNtUbthN5lfFUuwbnRewbzbXUyZTCbMO/i52neWjzvck2x5O1BbqII3tceHCwpAuAsQQDizjOXmPIrzDhXGEXZnGduP11IkoXWrDgkKFTkHZP1qaLNarYbx8XEMDw8fdnkdhwe35e3BSXTHqgAH4Hq9jgMHDgT1H9VmVJLbxTcXGFyg1ut1PPzwwxgdHQ1qdA3nQsWZqtdmZg4dhEIFXatYZhZKlKjaaiGQzI+iKBx0wkM6NV4sF01WSbWYrV5KEFBpp6Fl+DwNF5OkyEoqO8vChevY2FhY4NLIMqaskhhHA9oXdGvYyMgIhoeHwwSQ5XMDsnZx8cUX4+KLL0787qabbprz2TnnnIP77rtv3me++tWvxqtf/erDTrdQKOBf/uVf5r3f0T4sgZdElqna2JKBJFaTyHMdA+12Yy54VJ1MZypDe9GZyp1HHG+V1LY/SripE0CdAbqIpNNV80PnJZ+lCmYlgVvZqaSwIErcq8I6Se2rcbYBBDU6SXUAQYHM/JBoVeK9XC4HZdLw8HBwMutilXVKlZuGRaF6nc4O9gPmUXcisM5ahXBRpwXLzz5lHTDMi1WvK/HOMithrKRsknPELvIBhPlD0u4CvUfnM6o8Zn2xDrU8VMRRGa3iBV3oa17tIprtnUQaa1n0uXoIMP9WVTXFFfp+MG0+k/Ma7Sda/xwrbN5ZN0oo6HOUxNb647P4Tljnh74P2h9054rOZ7PZbEwgoY4aS9bbfqLEu9aDdXjo/zqPczgcDgVtZr1ex8GDB1Gv15HP58PB2yRQ1QFJRbKOOTMzMzhw4ADGx8fDzmAdS6empnDgwIHYgdFUv9tdXwuho+PQIaI814OEOndaWZW3FX3R/qgNAxCbD3D8P9y1pIoJ6JDg2WIAQtgc1s3hkOta941GA+Pj43j00UfDvDSfz8fmu2qTaRtol6nML5VKoe7Yxsy7htVTe8I2qNfreOSRRwAAIyMjGBoaCg4Sh2Olwkl0x6qAEgWPPPIIhoaG0NfXh2q1imKxGDvUg9uFdHvWxMQERkdHUavVsHfvXhw8eDBs/2U8bB7mydhgqmgiybqYbVQ0HqVSCfl8vi3ltRI66XQaPT09QVHX1dU1x3Nvt+gvNmYYF+6FQgGbN28OZD0PPqWhLpfLGBoaCjHe5pscqCODi/AoijA0NISDBw+iq6sLw8PDyOVy2L59OzZv3hyUmEdzscb+MzExgX379qFareLAgQN47LHHwkQwKYax4+hCSYnDudfhsGDICYJ9TPsLbQUXKrQZvCZJ2aQLOFUyq1pWn081Dp/PsZYKdDoQmUdg7kGd/I6LM+6KUuWtKqM0fARJO1UUEUqYq9KZpKkS30xb69LaG9adJXrT6XQIN6OqbyX/crlcOPOEZLmS1row5Q6yRqOBAwcOYGJiYk7b836qmZSEr1Qq4eAzLug4V5iZmQl9woZ0oUpKHeKsB21Dkp1aF6xXkuhKTFunSzo99+BNYJZwVuh8hESALnZrtVpQ4yftKqMCnrCOEabLtPl9tVoN6fBdU2Ua603TVFKbDnk9QFfrnHXc2dkZI6P5LIZk0ndjdHQUIyMjYWHPutZ5BcMT6U4A68jg3EphnU6sT91VwPduZmYmFlJJHRnWoaHp83+WW9uSdaM7KFR1bslxJZZ0FwLLwOez3+s8Up2FOh9dCEdix3m/w+E4urBj0JFAQ27t2bMHHR0d6O7uxtatW5HP5zExMYGhoaEQCqVQKKBWq2FkZCSmaq7X69izZw+GhoZi45DmmaFAVAl+OGveTCaDgYEB9PT0hHE0nU6Hdb/aVDv/YtoU5ZFspv1ifjhOL4bcV3As5XyRed6yZQuiKAoHbNbrdYyPj8fix7cDtRkMdzY0NISJiQlkMhmccMIJKJVKiKIo7PQjia+CAgoZKpUK8vk8enp6YuHpmB+S/+qwt6ECJycn8dhjj4Wd4Tz3rp0dBo6lha/J24eT6I5VAxoyej2z2SwmJyeDYooLMhLgSi7wwEiS4eVyORY3k8ZS43ypl5eGZrEDxHzKvvnu4aJJY6Dbrc80skkKtXbT0W3vDDtDZT+AQESQGNAtw0l1oXnX56sSXOP31mq1EA9NFVmqSNNnLwTNk6rEmK5OgGioq9XqEakGHEcGN9iOowGrgFIVthJ9SeNKq35lFeF24WLJUBJiOp4nHRxqwyi0ylOS0km3HLcqu81fkl2yn6va2ubDLmx0G3SrutN8kuDUsFkkTNXW8pla3wzdQpVSo9GI1bsuvJTYtOr9+dpYCW7WhZKoWm6tb0ucL/Tb2rqk/mgdEzbfTJt9jIQ/65TEQ1I/iaIodugl86F/a77UWaD9kP+rqt/2aZZDlc5MW/uaktv8W1XSSmZYckPJYFtWJbO5u0HnHESrd89ew35l24JlXAyh0epd5N86n1ICX8tmy2rnQklltf086fp24SS6w7HysdTvma6vgEM2h2decCzm+rKjoyOEvlOFMeOJM+Z2q/xaZ9/hgGO3nhujaak9Wmj9rkIxu1bVn8XmVXcA8SebzaJQKCCKDp3ZxjN49ByThQR++lwrMtGzdlScoWIRi6T5NEl0u8NNnRN0OqsAsNFohPU4+4hjeeBr8vbhJLpjVYHGemZmJng6M5kMHnvsMXR1dcXimnNwpvqMh5qMj4+HrUYc1HXRTbWhqrIO12irp/xwCHg9dE4PrgIQlEnMt8Zwayetzs5ObNiwAT09PSgUCti0aVNIh15iLpIZSqbRaIS44TamLIlwKtn5mZLoqpZsNpt45JFHcODAAWSzWfT09AQiv1Qqhbbkc1sRXgTLzbxR8cbQLRMTE2GiNjo6Goz2YrcDOpYWbrAdRwscb6gMonqbByNRsaukn46vXABo2BS1K3ofMLuTiGM3F1jc4cNwYdyiq+O5bm/W/KdSqZB3Kqo1FruSkuq4ZNrq2FQ1uarONd65kvW6ONIycncRn2mV1ZaAY56UeFU1LW2Lql61DKoo566y6elplMvlsGDnvborQNXPtAlaB7rYUzV+EqmsxLFuodZrLFFuF9atbBhtHfNqw23wb+aVJLmSygyPpurrcrkc8s48M62Ojg5Uq9VYaLjp6ekw50ilUsGpzkO/SqVSLN98Lv/WsrYCHR0MBcM5gr6LfJaKJiiEYF9Q9R1tvSXZVXSgThDbT+k4oWpfd22wzvWwTy2nOgL4LPYRgvlUYkH7g5Lj/J6/9W/Ohzg/ZVrqiGL/TXKYJDnbgHhYG3XKsIzt2Fkn0R0rGfp+rkccq3LX63UMDQ3FxAPpdBqPPfZYOHSbYzXzxd3O8+XRriEPF1wL2nBf5XI5zDdok6zIgb9LpVJYq1J9rfkj0d1oNILQr93xsaOjA729vSgWi7E5WrFYDIruDRs2BFV/sVgM4ViGh4db1k8+nw8cCc9o432cQwGH5qGDg4Nh7qD1xh2UDKdH+8d46hQmMmSO2m8l+rkTbXr60FlptOd8rqvPlxe+Jm8fTqI7VhV04UsDBSB4ulOpVNg2r+orbklqZYj1s6WKwaVpHa5RoEqcRLqGO9FFH8s8nxJQQePX39+PLVu2IJfLob+/PyzkrfKt2WyiVCqFcoyNjcW2d7PeOzs70dXVhf7+fqTTs/F/1RFRqVTCFrSRkZGw5XxgYACFQgHd3d3YuHFjODmcIQ9Ipqs6QFVuJGempqZCnNzR0VGMjo6GWPpchHNr/3ob8B2O9QZO3qlaJgGt4RZ4HTBLUGp4Cd21ZEl0giQUwzAoic3dPbqAsXlUqPIWQEwdVKvVYk4BJYFV8a4EHZ9FQprQfPK6JMWyjrm680lVshaaNvOkjgjWK0lLkuga2oN2jQdsT09Px2JfcxxXolHDfzA92h9bNvYNVXID8TM0LEjIa5q23K0UzvOp/0lsWxLXLuCtwpj5J9HN80203emsYLia7u7uYK9VfUaHDfOSz+dRLBaRyWRQKpXCDjXWDedVuq3fEtZ2N4j2s1RqNmSc9he9ns8vl8sYHx8PIgfGRWf7si8pkaG7y1R9qG3Ea/V94VzFhtXR8EJ8rjrbVJRhQ8OpoMLu1mN/0zAz7AfqaMvn8zHyXN8nHW9UIah1ofXB39oHk3b+HY6S0uFYSbBjr/fno4dGo5F4EORC9b9Qm+hYdiTtRxKd9k7nWlEUhbWohmTjWpdzDdrBYrGI3t7eMLfR0Fj5fD7Ed59vPmHR0dGBnp4ebNiwIWYTKMSgHSuVSpiamgq/AWB0dLQliZ7L5dDX14dsNovu7m4Ui8VwThx38wGz8en37dsXyHDyAt3d3SGkHg9+3bZtG7q6utBoNMLBoly3a/hBFbfxTDqKGrWOHI7VBCfRHasWuvWKi0iGc6HHmwswjU92rAZqLtwbjUYgu5NUegpVuqnnVg24XqsL63YnFrrIZfx4JaiTrtd86xZxOhzss1RdpoePcfsZVWd0bJAQYXp0HOjiXvOoCjKryJqamgqebh5UQ0PeigBzLB/c6+04GlAnpg3joQRTUlgEJfoAxBYzqiqyimWrQFYlkf7Ml2c7xgOzSnh1ymooF03PptPuO8IxWqFEWhJZnPR7vufzdyu1O39IHnJXGclWYJbE18VvUtpMY6Ht2Gw3EqT2EHDdDUD1vSqGNS+t7GererBtp44KG5ebedH2tLsOWvUvllN3LOjnGupE/0+K3c5ya/pUoWm5kkh/YHa3Hx0FSuZbsQFtNh1GJMrVOaI7C5JEEnyuCgxsX7RImme0agPWC/uGdfAn9Q3mmwS6PsdeZ/OozjKS7eoEsO2l886kd2Uh+5vk/EmCK9EdKxUL2QHH0kIdjLrLhY7cRqOx6Pd9KccHdTzy3BraDVWhc7zUNSYwG+6KtsnOBbkOtfPNdsF86ZxVnfdK1uva2+6U0nR1fqDvQi6XiznB1REMIDjguXO7o6MjhF2hqAFAING1/M1mM+wW5Gd0glMU4uvxlQdfk7cPJ9Edqx6pVArd3d3YsmULMpkMNmzYgGKxiEqlEk4MP3jwICqVyjF9wdXjDRzy4tpFqEK3lU1MTMRUVQACGQ0gLOqprqRBbSeuNw10oVBAqVQK29GsCkxBQx1FEYrFInp6eoJ3udFoBHUbt4zxmRrOhXnjgp8TAYYkGB0dDfl77LHHAqFB8ly311kSXR0O6oTQA16Y3yNd7DmWFm6wHUcDHJtmZmZCOC86Nm2f04P8OM5wbIqiKJzdoAspJe908cIFGXcKcexUdbii1SJLxzSe48C8cMznIoRks55xoc8BEAvnYh2yllxkOSyhnKQqJkGRVC5dkHHhSpulSKfTQaHf29uL/v7+oH7OZrOo1WrI5/PBoaoxO62yXsts69QqbZl/pq+HZgEIimcullOpVFB5W5JflddJxKkqtfkse84JbSZ3Q7AM2j+UwOfBZrTn3I2n6nUuUpVA1XmF9l1ew91f2q+UnGWZuUOOYXas85/hk1r1kXw+Hw6es0o7kv4UQoyPj2NiYgJRFMVEEeqMsUpr2n0bjk8Je+0TGs7Ehh8CkOjYUOJc/+ZzdL5inXqc3/A+bQt12rGP8DnclahqfvadVmMM02e69hBSfb6q69s9c8dJdMdKxlpXuVrn3XKCY72uBWlfJycnsW/fvkXHvF6qdRtJ3Eajgb6+vrADmzako6MjHKAJzI753A0HzNp47sTivCCfzwfx1vj4eJg3LIYkTqfT6OrqwsDAACqVStg5WS6XcfDgwTA3pSM6n8/H6tqGESPJr3NQitMAYPPmzWg2D4W8HRsbixH3nDunUqkQBjWVSsXs19jYWKg/3UlF54PaF9aDikION1Su4+jB1+Ttw0l0x5pALpcLJC5P3mbIkM7OToyPjwM4ti84tyJPT0+jUCjMWcgmIYoi1Ov1YKx5rRocJZB1kdfuVjfd8q9hcBZaKFHJxQWvLnb14BM9RIaLNSVcWA5d9OmuAZumquZbkei6sHbDvLrgBttxNKCTdT3IqtViWsOI6EJFz39o1d+SFMCqqm5HHZ6klrPpKymou5RUiUpi1qqjmKdWsNeqEjkpz62UrUnPUoVwEoFJApGkLO1IqVQKcTgZa7NcLsccyklla1f9RfJbyXNLGqqzBECwZywj60mJdC4gk8DFqVWxa36oRFdFOutQD+G2in11hOvC3aqitW+oOq3ZbIbnsV70PiIp1r7GX+e7w7kM+7b2S3VOdXZ2olAoBPI+l8uFg2b1WVSy6buoBHGSw0GdXuyvJNvV4UWwPtRBxHRsm7L99B5VNWp7Kbmt74M+U8l2dRDYHQsaCoaOQs63tB0572J5NT3Ni4bhsZhvzFA4ie5wLC9WGpFOG84wnxQqHDhwYNkOjuRakeNxsVhELpcL45fdlcZ5DglpYJZEpy3itSST6/V6EO0tVmVN+1csFmOiBx6+yrlps9lELpdDqVQKjnfWL6H3qxKdNjqdTodzVACEPGs/YpnViUCQXKet5I86nh2rD74mbx9OojtWLYrFIjZu3Ih8Po+TTz4Zv/ZrvxYO+qASfevWrajVati9ezc6OztRq9UwOjqKSqVy1POnqsdarYaDBw8im83GiGsAc7a4TUxMzPF40wiqam16ehqVSgX1en3RMb6PdGuj3YKuC0hV5iVti9bPLLmUVIdKvCcRD2q4fVuYw+HQONgaBgWYDdVCFQ9DgGk8bFVNk8TjYorX8FlJ5Lcd03SsV5WOKmi56OD3qjRXMo0gaRZFUbArdkeRjp+abzv2WgKQ12hICEu8tqPs07FZ20JjpVP51dfXh0KhgI0bN2LLli0hdmc+n0e1WkUmkwl2jtuB2T4aViRpG7bu0lKCU50OJPG1fPqjea9WqzEHsrafEqEaM1y3LyupbG0fyWJeS2g+9BDWJOeMLoJU3axhTawq2joLrKKZ99jdB+w3djt5Uv/QRT3rn21I2DAlmh+N+Z20684q/7Ws6rzQcjIt7fv6nmqb6v1JDgley/QsSc/60jFJhRFJJDrrRncDaH3qu63P4vX8XsPfcP6l7wUwq7pkfRzpPNHhcBw7HKkjaymQzWZDHO2tW7di27ZtyGazQaldrVaxbds2NBoNHDhwAI899himpqZQqVSW7DyyhcAxu1arYXh4OGa3uAMrnU6HXXMzMzOoVqshf7rupU3g2V52x/ORtAcdEc1mE8ViEd3d3YEj4O6jpB1m6jBm6FSWic+10N2YJOvbyb/aH+vYdjjWOpxEd6xa9Pf34ylPeQo2bNiApz71qXja056GTCYTyARVL913330olUoYGxvDAw88cMxIdIYTiaJDCnMeCNLV1QVgdsHI7frctlUul2OLbBpnVclR/aXKxMUYL10kHc5iyRLhqoiz6isljpSsoJIuiYhiHdrwCa2u09+O1QP3ejuWGlSsatgPklkcV7nY499UbirpWalUgsqT4xljRFqyWsM3AHEiXR2JzANJL5KtlhQkwWaV6ABiJDRwKCxGoVCIkZqaLyXt6Mi0BLqqi21ZAMTI3/kIdCUVNQyGkqVMj4rjvr6+cEDVCSecgB07diCXy6GnpweFQiGEZqvVasjlcmg2m+HQLhLK3B1lCU8udDWsFxfDtEVcQFqVuSr/aZ/5XA2Z08qxqw5uvdcq2vQZtVoNlUollg91CAEI6m0l8tUxo/eyb/OdYHsAcw/M5ee2f6gjQsF2bDabc8QBOq6rQ0P7Eg/6BQ6JIqampkIbcEGvpLBuG9fnan9MUntTqEB1u50v2J0D2i48NI7XW9U260QPck3KC5+l3+t4o3MlVdJzDEuKT29V5XTmcJefJccZOk+dFtpXbLgatm07anRXojscy4eV8v4Ui0Ucd9xxKBaLQdxGxTSd/V1dXUilUrjnnntw1113YWJiAo8++ugxJdGjKML4+HgIx6JzQ4oqlJBmaBUdc9Pp2bPYdH7INX87baJjuV4fRVEIg5NOp9Hb24uBgQE0m01MTk6iUqnMGZeZXwoMstlsOEyU8wB11Or93C1Ah4bOhVrN9zgvWUk7IBxHDl+Ttw8n0R2rFplMBn19fdiwYQMGBgawcePG4G1VkmJ6ehoDAwPo6+sL22uPFXQRQ0I/k8mgVqsFRRIX1bVaLSjSGTNViR8ugnXBpIq1xQxe6iVXT3a7UKWULuqSiPmkxR5hCYSF8qy/HWsDbrAdSw1VeSYpRbljRuM9A3FSjgsSJdE5HieNmUq82d02qlxSotqqdyyJrmRaEjmn6dkDN1WBy2dY2B1FNv+E2oqk75IUwHqf7hKy9cCFKGNi0yHA34VCAQCCOorXzMzMxGJAK7GpedJ6sPWoRLGtg6T20NjutN9qk/U+60RX1TDrPEnxa1X/2s7aF7Q+bbqqqGbZVIlv23Q+VbfuHFB1t71W61Fhdy3Yv0ncKonPz3XRz3S0nVulYaHkvSUR9P1Qx1g7cyJLwtu+tdCcRdvC3svvmU+7U8W2Q1Kb2HEnKe+2P2iZbJ9dqC6cRHc41jc6OjqCarq7uxs9PT1Bic7fAwMDSKfT2LBhAwqFQgjVdqzB+OhWEEaxl9rapBAlFCTQvtswe+0gyc6okl1FDplMZk54N2sDdJ6j862kXW+ah1ZzVn4/X3l87F5b8DV5+3AS3bHqwAG+t7cXJ598MrZt24YtW7bMObhN1YKbNm3CqaeeiqGhIezevfuY57nZbAZiXA8bpVHTA0ioUlMjyVAvagS5SF9sGBMS9dyWzq3phUKh5URGDXOtVsPk5GTwdiuxQNKAxAFDu2hZ9HqNO7zeBl/HIbjBdiw1dEyhApW7ZQqFAjKZTCBoNWawOjsbjUYg23VhoYSdDb+gixHGtaSaKJ/PA0AsziavtyE3ONbbdPi3fk47p3nRMdaq1+kU4D1aPr1fYUk+/dz+1oWn2gdVybNeqZAqFAro7e1FT09PCMdGZzcdIdlsFqlUCqVSKRzSzV1ndDKTeNWykpAtl8uhzjXWty6S9X9VofE+tY90YlNJbcci2mfdIUZbqISo3WKt/ULvseFq7CFeVKDp4lftrzrieViZDQWXpK6mopn9hnae12mZrCPDOgLs9/YQM84b2I72vbI7O6wzS50kqvCz6mtC54sdHR0hVq4Sy3xHkg4n5TNYF3a3nKroF3Ji6TP12RrzXJ0u9twD7VckdtjX+Y7w4Du9lveqQ0bHsVZ1Z+EkusPh6OrqwuMf/3j09/dj06ZNwY5XKhVUKhVUq9XYjqy+vj6k02ns37+/7TSs0/pwoSIy+7cdk5PGQNqqdDqNcrkcW8O3my87h5qZmcHk5CQOHjwY7A93eNFuA3PDe01PT4edeRqajfNA7rRLp9NhjhtFUYhZX6lUAjdhFff8vZBTeL1hIefCUt1zrOFr8vbhJLpj1YGGo7u7GyeffDJOOOEEdHd3hwVj0rWbNm0CAGzYsAG7du065gOZLu5Izlgk5Yf3kPheCpAYSKcPxT6rVCrI5XKxuMBJeSMhoyQ6F+AaQ1i3XCv5o+pQ++MkusPhWCpwnOG4wsVDJpNBd3d3UD6XSiWkUocOR2LYBC5EVJmqZJiC47gSUiSseECmHvqk5Jo6QTUcB5/XSnVL2FAXzBudmFzM0YlA4lhjWvNzJSWVRFe7laRmJZTMY7iUZvPQFmg9RFrJUH6mJHpvby+6urqCc4N1FEVRWAQWi0V0dXXFiHUALR0GdEJzAcp2sfnXhad1+qq6XmPn0zGudWUXttzurDvkkpwjhCWB2S60q9ZRoWnROc4t5oz1rs9keBr2E7aVKuqVBNDyKslLIl3riWnYcmhZk9T+fF+VtLUEOZ+hRLJVoOt7yP7ONOYj0S0po89RJZ+2Md8h/p9E4Cc5JXSeo+9DkhiCz0tyKKhyvNUP33Hew7GAYV20X9vdC/M51RwOx9rCUhHTpVIJj3/844OwjWMX14y5XC44K6enp9Hb2wsAi9ohrg7SI103Jj2Dtq2de+k8ZRgUfr6Y9BXN5qFQdcPDw+FcGNoyhv5ShTqhc1c7B7GOeJ6lxrE+m81iZmYmhLexh74qkc48rvf1equ58EL36NzHsfrhJLpjVaPVVtWka6xSfTmxnAMo0242Z08RbzabIdasqho5waB6TeMM66JPVWVczHPrmSqmuEDWA/t065lj/cG93o6jAZKIXHDQBpBYBGbDO9AJaENe2MVDq7+VzNPvVb1u7Y4lyyxBqmOjqk2Tnqfjpz6DebCkGOskibDjM5RI5uTfkpdKCus9SrzpPUmhOZKerYSz/bH3a140HjzbV/Nn60TrScutTt0kFXQSrMpan8f/LembRFzo7/n6jFWA6242zWtSv9L+rn1HF3h0gqsSj2WkfdfyaR9lWfV/zZctU5INsPXRao7Q6t2zJHdSnTabzdgukCSVt1Vn63tj30XrHLHvoTpqLOabl2odK4Fun5XUh/T5eqiydSrYvqmft2Nnj5TQclvucCw/jvQ91DmLHZvU8cv5GEUGrcQC8+VzpY0ZS5EfOud5Hg8dEYVCIYgGWJdTU1NB2c/d6oQKPOg8J8FuBQK6M1zD0Vg7shpU1Csdq6H+fE3ePpxEd6w66EJIF8jzXa/qpvX2kieBhvrAgQMol8solUpoNBrI5/PI5XIh9ICqz3mw2+joKCYnJ2MhE6ampjA+Ph7bbkbjT4UBvfuVSgXj4+Nhiz2Nv7fL+oQbbMdSgws02glV5mrYKqpwq9VqGLv0EFK7sLOkm0LtkoYUUeU1gBhxacNacSzV2ND2Jym2ZbPZDDuV9EwN1oHmRw9l5L2q7JqamgpKJL5fPHyTRFwSCc1dSVbJxEVyPp+PEb/q1LYkOslwJYC1ntQRYNuJz2VZqMZnu+phXaxrpsX60NAdevA11VyEEpNKQNp82+t5KKk6C2gH7SHhVhGsZZ6ZmUGlUgkhibLZLDKZTAgjRKW/9otarYaJiYnYGSxab+xLSriTOGfbaBgdlkvHYu0jeq6AJZn5nSWb2feUdNH88G97IC5hQ+gokpwTdKzZd5v9RndtsC2SysJ07UFzNpxLK2W3kvdKYKhDqlW51ImhfUXHCwol9D3kta0cFDYufSs4ie5wrF4s1fs3PT2N8fHxoKLOZDJhjJmamgph7rLZLCYnJ9HV1YXp6elFKdF1DFtrmJmZwejoKMrlciDPOzs7sW3bNvT39wc7Uy6XUalUMDo6CgCYnJwM9ofjfhRFKJfLABB2ndn5FcPQ8LBS2n4rLtD6Xov1vlgcTh2slnrzNXn7cBLdsSrRSum1EKyHdT2DW+y4BaxQKIRFlYYGmJmZQblcxsjICKrVaiC+7aKQW81IUjDmrS7WSMhXq9WgSPdQLusbbrAdSw0le4FZEljV6Krctec7kES324ZtaApCx0JVASeFsFAlkJLjdDLqAYuqwrVpWNJWf2zccw33QnJNFU36TC7SFK0IdA0tQZJaF2s86JvOVNY707Oqfkumsw6UQLXvvFWIa9uQJFZlfDqdDso3EqSt6lFVyVp3Ns9APIQMn5Wk0NbreT+vsbH8W22x1zao1+uxtNn2JHyZXzogaHfZ3+0uB16r/SKVSsVinnOhbncPJO0K0DmaVWzb+ZvdAadqcPu+2LqgY0adIa12HiYpyS0Rz+/ZFnY3R5JqW/sN25V1184uyCTC35LpJOTnI7Zt/lT5qU6sVCoVC0lk85G0g6QVnER3HCuoiMqxssCwItVqFblcLnyuNpjh7bLZbPhtQ9othLXa9lEUoVaroVarIZ1OhzPL+vv7Y+Q3BQBcd6st1x16nP9wfKaQhA5VOu85J2gVymat1rdjLnxN3j6cRHesOvAlnZycxCOPPIIoirB9+/agvlLig4uJkZERPPTQQzh48GDwzK53KDlRr9eDkjyXy2FychLALKHTaDQCeZ50aApJFE4AJicngxJOF24k0amCs4d1ORwOx5FCY3ECcXKKJKU9zFmVwPpbCUElbJUgtaQeCWMNTULQJnFcpaMyiUTXe5TIBeIxqpVUV0cBHQck0Um+WfLYwhLTSsgrqcb6s2FwWOakvCiBSWKW25c7OztDfHrmk+3Dw7C4a6Berwcyl/WhNp91yf81JjzLouo3jf1N6N9UIye1qb1eFb62j2gcU/1O21h3D9iQIbxelfraf5hGZ2dnqDcukklwsP7sTgBtH/ZRHpxq297GXGff0gW71lkr8LtWdWufq3WozgLOM/g509fnJanQ+Tn7g16b5FBiWupAIZJiuVuHkP2t/VWdCZakZz1YZ0yr+ZP2Lat813pJKh9Jf61Dh2OlYC2tGdaaQ6Ber2P//v2o1Wro6upCb29vbG6QzWYD+Ts6OopHH30UY2NjqFQqa64ujhSst+npaYyNjWHv3r0AgNHR0UCe6xyH4zXvSXLCco3OHVI8xLtarXq9OxyLhJPojlUHGuORkRHcf//92Lt3L57+9Kdj06ZNyGazYYHDxffU1BT27t2L733vexgZGcHQ0NAyl2DlQNVptVottp0eiIfLSYqVRtCjTUKkWq3GiABdLGr8tiQ1l2N9wb3ejqVGPp8PCwTurNFwJQBCaAue91Cr1WILDQAhLjQVUxzTCLtIoeNQ1VVKVKqiWh2TughKUltznCYs6QrEDz/luMuwJao8t4srfaZVBLPe6AxVJzXzRWeEhlphmhrSi6p0kuNMs1aroVwuY3R0FNPT0+jq6kJfX18g/UkAj4+Ph7BhdPiq+tguJkksUxVPxwZ/K/mqbWnP+iChqNcrmaz1yPbVEDLWwaC21SrP2cZK+LdydlCVrE6VqampEO+aJKjWIduJ56Bks1kUi8VY/ait5rxAyefOzk7MzMyEMD38jj8sO8ubz+djczELviPcuWZDkKizn2W1jpCOjo7wbBtux8IS6douhUIhVm8a2khV2blcLnZQLoBY2AK2fSunmzoqWM92hwOdAlbFD8QPFdZ60TKSJNHdE2yjjo4O5HK5WDgpWyfM00LqeU3TleiOlYDVQsaq4GutYHx8HA888ABKpRKOO+44HHfccWE8Y5jQRqOBarWKhx9+GD/84Q8xOTmJ8fHxYH98d/Ih6Hx13759OHjwYPgsiSTnb3WMqq3hrqNqtRrmadyVx51p82G1vFeOI4OvyduHk+iOVYtGo4GxsTGk0+kQ45MLFS4euE1/YmICIyMjGBkZmXPy9HqHXcADh3dSuy74uOjjQl8X86225TvWJ9xgO5YaSl4rOcXxB5glgK2aR1W1GmrDklhJ6k4bHkJ/NA/qUORiSMOAJKlQk/63/Z9p21AuNmxIu9Dy2HJpXnQ8Z32rctmqnVVpy/qo1+vIZrPBZqvd4FZj3XJsd0Qp8a1/q3I3KU+ajuY/qd4XCqFh8zHf2KYLUnudkp5JqmSF2lo6KNj2qobXXQ+tHCmWMFVFm93NwfpLUprz2VoOXdjbUCM2fEhSWBNbXtaT9m91Kug1Nt1W6nQ+Tx0UltzmdRRr8FkaM13L3q6KOylEi5Lvrb5LAsuk74JVx+vYaPsY79GxcCE4ie5wHB7WEpHO+NoUCqjd5RyEDvByuYzx8XFUq9VA8K6VelgqsD7sWTPt3GM/0x16tOF2V5vD4Wvy9uEkumPVYnJyEr/85S9RKpUwPT2NgwcPIpfLoaurC7lcLoQoqdfr+NnPfoaf//znQfXmaA+HMyBaxZUq5RYiFhzrD26wHUuNer0eiEUdc5RUpMqUBKOqowGEAxTT6TTy+Tyy2WyM8OPigwQaSTwNX6LKWkLJcxv/3BLArchygmrYfD4f1PeqlNZdWRrWwZLjCnu4ol1c6c4kVcjzPnXIqqJVnQ5Mk/dXq1UMDw+jUqmEz6kIpvKKqv2JiQlMTEyg0WigVqsFVRYX5vp85kvbkoSuOkqYZxsjXPPP9rffsR/Ygzat04A/GupHn2UdFeyDlvBk+VSJbJ0mSW3Xzlip/ZntoCHX1KkRRVFIi+W3DquknWtJ/bvVPdZho+2ruyuURE+lUqGtW5U/iWhXJ791Rtm2tcQ5CXfWlxIetk8kOZu0zbSebHvwc/4wL6qC17AvrZwvmid1OGpbJYV5mQ9OojtWClZLXzrW+TwWJDXt+fT0NO655x7UarWwq4y2Y3JyElNTU3j44YcxOjoadozpfM2xtND5n12ft9svvF3WB3xN3j6cRHesWvA06XQ6jQMHDuDnP/85crkcNmzYgK6uLpTLZQwODqJWq2F4eBhDQ0OugG4TR1pHqspzOByOYwkqoEgAqqJW46AzXrSSp8ChxSZDkJAMz+VyMfJPYzCTTFOSlGFMNCwDMLuYUdJNoUr0pG25SrCSJM/lciiVSjHST6+lcpvPZV6T1PKqpk3anWTzr4eF8Tol5Fi3Wr+WbK3VahgaGkImkwlEuaqK9QCtRqMR4qOTRGdoHBKIeqgmSU62C/sFiXE9RDupnaampgIJb9XjjUYjlg7bWhXu/J59SUPJ2J0OSuoqgarhNqyyD0AIa2PD7TCvSXa4lY1XUpfkh4a4IRHCd0DzpO/EfA6gpD7Be9R5YvPL9yGbzSaWRcMPkRhnG+kzOQ/UPs88qTNCCfWkcCsMi5L0zugcyLaxdfJY6D2q9Nc8a99Kp9OxUDlKwCv0OVo+hkTS913DDDkcjqODY7UeVftxNNOcmZkJ8c2///3v4/7770c2m8XGjRvR3d2NarWKoaGhsDNKx2fH0YPaT4Wv0R2Ow4eT6I5VC12gV6tVTExMhMOyqFwbGxsLijU/xNLhWHlwr7djqUF1jRJBXECo6pjfqfKVpJQS0jYkCgk6GwYiKeSJVcHbn/lCtZD00rQIVZEmHfypCtykHUC6qJ4Pmn+rWp8vzIMSxJZAt6EleA1J8lqtFlMH8xBWOkP0QFNL8Fp1cpLC2+bzcJGkpG7Vn0iyLzY9VUi3E1rjcJ6v5CqfoeSx1msS9D5bz3pfO3ljO1riWUljJaJtnWj66sxge+h7oX1P+0879WzrQnekZDKZWLghW3c2dNBCIXsWgq13+45pWe17QUcJgECmazigdvPmSnSHw0HobjWew5FOp8P5Mwwt5u+941jskHC0D1+Ttw8n0R2rHlEUoVwuB3XZwYMHg3qL6jUbP9XhcKwMuMF2LDV4SDLDbdhwLUrOArOqSx7Gmc1mkc/nw6GLVt2tBCmAcMiihoCwJD6J/Gq1inq9jkqlErY1a8gGJd6s+pn5Bw4RXsViMRzYxYNPbfgLJZ5JzPO5GqbCku4aK97mhfnT+OZ2K7aSoVSpWwJUFePMJ53h2i6qplZCuVaroV6vx0LLaB6VuGZZ1dlg1Xk6nijxrs4JgmXTAxi1b/G5ukMhm82Gsti6UqjzgX2HQgCtT4Ulj5UAt98n9Q9tS9YRd2B0dnaGsDl2F4HuRLBOpaTdDHpgrD0YlUIHllV3FWg96/vIerJ1qWp63s8wNNaBlU6nUa/XUa1Wg7qc9cLvbZl1POFOgFKpFHtms9kMc1Btb3sIr20rpsM+pbsbbJtrXWioF4V1QNj06HTT8jJtOrYWgpPoDsfKxXK+XzMzMxgbG0O5XA7jyWrZ4WLnR46lxbHaIeFoH74mbx9OojvWBHjgmMPhWH1Yb4bXcXRBMoiKZZLolqTSH4anyOVyyOVyyGazIQQIMEuKcdKv4Tr0UEFVGytZzx9uYWZIEj1E0xLASkbyeSTnGRYkl8uFsDFaNk1fSe4kEnm+OlGiVe9VYq4VeackMKFktJaN6TGedJIimb/T6XQgMqlo448S80qaK5GepJi2sOS53V2g5SPxnOToIBHMNmpFoCeplpX4JfGaFD97Iaji2Sqsk8KOsH1J/iuhatXTVv1v60qJdX2HeE8SQa3P0z5lFdSq/Lfl1TbQstowM1p+jheqxE7aBcLPbQgYhrPhWKN9Xx1BSbtKkqA7QJIU/tpHoygK/UsdIzYdbVvNk/ZhfZ8bjcaCqnzNr8Ox3rESiNeVREpGUYRqtbrc2XCsUKykvuo4BG+P9tDezOgo4Tvf+Q5e8pKXYPv27UilUviHf/iH8N3U1BSuuOIKPPnJT0apVML27dvxxje+EY8++mjsGfV6HX/6p3+KjRs3olQq4aUvfSkefvjhY1wSh8PhcDjWJ1aaLVfSmoSWJXiVjMtkMoE8p6pcD4DU30pcqeqcxCiJXSXL9Te3M5PYt/GZCX0+SXr9YR5J1FpiN0nppXknlDRLIq5ZdqbHNKyaP+nZSVDijvdpvpVMZj0o4a9OCSWkLYGredc6ZFuRaFRVcRK5aUl0VcK3Io4JPWhW6y0pXIktow31Y8MLJYXsUOeHbVMF701y8PBHVcn2PWBZgFk1e5K6uxU5rApq+y6xrtRJYvNlD7W1dWDrV9Ow7an9T5XXfEc19r+2e6ty2/T08FG+r/qj78tCedNya7ravho+yIbpUdW7/q391Dp91EHoWPtYabZ8NeJId2UsVR4cjtUA76uO1YplJdHL5TKe+tSn4uMf//ic7yqVCu677z68733vw3333YevfOUr+NnPfoaXvvSlsesuvfRSfPWrX8Utt9yCu+66C5OTk3jxi1+8arYKORwOx3qGVb8u9sex/FhptpxENYnrpPMwSBYxLEpPTw+6u7tRLBZRKBRihLoeCMn/M5kM8vk88vk80ul0IPxqtRqq1Sqq1SrK5TIqlUr4PTExgfHxcYyOjmJycjKmkLekuRLX2Ww2hJhJ+qECVolH6zxQ0pK/rdrchp1QtbumpYeiqsLfKr6BuQskJToV+iwSiEpAAocISoZpYxgXkpqWiFUCU9uKod5YR0m7FJhPhrFRQpKKZSrEW6nV2b8YHkjV3EwfQOz5SSS9tgX7AcOsqPpdSVVV6Gu5LHEfRVE4YJf9luQxVdnsh0mkryW5WZfqwGBdal9km7Ac+q51dHTEnmvfJeaRcXXZTtqX1Tml7606nZIcF3pI7djYGCYmJsI4wvpg+6vjgX2R0BBL3NWi/7MvZrPZObs6LNGtdW3HNfue6zuu5DfrSHeu8PlaL2wThrIqlUooFApzDnJNwpHacbflKwMrzZbPh4V2EzkcR4q1Pja1eoeO1bvl4//Kg9vx9rGs8oLzzz8f559/fuJ3vb292LlzZ+yzG264Ac94xjOwZ88enHDCCRgbG8ONN96IL37xi3je854HALj55ptx/PHH44477sALXvCCxGdzAUaMj48vUYkcDofDsRgcidFdbwZ7pWKl2XIu1jWUAn/bsCD8rWR5EslGWIU0EA+bYslPIE4QK/lsr9O0+GybD4YsUbKdaVuyMinf+tuGt2iVH02L5VXSnaFwbP0obCgdLRvzrt/Z+tB7VYGbdL1VoyeFodE8tRpH7PW8VutaCX6b56Q+pHWsdaXpaBr6rCRlvAWJby2fhSqc7WdAPFY920ffCebRlsmq8234En3/bB5teZLqgH8ztBDD29h6YB/RtrFq9CSoQ8J+xvxoWfgO8F2y5VPnjt6vfdHep/fatEnUM2yL7oBR2LrVNPRH00mlUqEsJOGVmF8IR2qL3ZavDKw0W54EJ84djqWFhlTx92t9w9fk7WNV7dEbGxtDKpVCX18fAODee+/F1NQUzjvvvHDN9u3bcdppp+Huu+9uaayvvfZafOADHzgWWXY4HA7HPHCDvf5wtG257ReWoKIqk8pXKjCVZNPwHzZeNNMgEU5laBJJSHIqSbXNgyapVlVivrOzM/aZEtokNZOIZC2vvYeEmZLQNuay/q2HcWpICaqclYCz9a+EIaGqeFXfArPEpVVzU32uKmPdWZBUVrtzgG3MOmP5SRRqn7Eqai4ueeYK02cbJRHEqgCempqaQ3wrMakEqYYT4XdWvakEt8brZ/m03myoEW2HpAUzy8B42rY/J8Xd1/+ZX5ZJ25oKc80f30P9W4lsxuS2edV6Zd9UKIlvQ8ywDq26Wutawwqpk0hj2itJr6S29ld1Num7bYl1rbukctg6VjW8fm8dOFoGvjvqNAQQ6lffA92pot/NByfR1yeWY13ufcWxmmFt7nIiKX3a/eXOm2N54Gvy9rFqSPRarYYrr7wSr3vd69DT0wMA2L9/P7LZLPr7+2PXbtmyBfv372/5rKuuugqXX355+H98fBzHH3/80cm4w+FwOBwOAMfGllv1qpJR/M0QHxryg0QhiU7+reQ3iTM99JGhMID4gaDAoQUTCS8lyVTZzRAK+rnGNdb8qzqU5KuG52Ca+luVr5bg0+ex3LyXIUNIyJJMrtfrMYJS65af8xk2pIcNX0FYZ4AlnjV+uVXxK/GubaeHw7Iu9SBSmwc+I5PJxJ6t4V9YFoVVXWucfCXsWR4e1snnMLSLOgqUlGWaSmiSdGYf1fAddreBrWdtIxvTn3nSEEOqTtYyaR0lEejqgNG+oP2SdaHhbFhHGq5E653p6Dtin01MTU3FHCPqXLG7CvhcjZNPaJvT0aGHCStRr/lkPetuDX2X9d1NcjJoefRZ9Xo9lEX7YZLKnM/m8xlWhuW2u0To4NM+43BY+Lrc4Tg8rHSSeiXnzeFYKVgVJPrU1BRe+9rXotls4pOf/OSC1ycpoxScQDocDodjeeFe7/WDY23LkxTaJNxUda4EnJKg9j77bBJuqna1RLE+l9AQGfxff1tFuM2j1oslSXlNUl0oQWph82jjms+nNNa8twJDRdh6XSpY9bp+btNtld9WqixtZ3uvOjk0Lf7orgFtT+aNpCUQP3iU9aWhNJJU47acSfm3qnDr5LFI2nXRql5afd8ulPBP6h9JYWGIVn1uob5oFez6DiXtqmCdqUKPv7W9rOpfSXr73mqZLZLyY59rHR/sa8BsO9sfOtxU/Z5UVkXS2JcEV6KvL/i63OFwONYefE3ePlY8iT41NYULLrgAu3fvxr/9278FbzcAbN26FY1GAyMjIzGv9+DgIM4+++zlyK7D4XA4FgE32OsDx9KWWxUmCeHOzk4UCoWg2qWKU8N92IMkVTWtauDp6WlUq9WgSqXiVdXAJFaVCCVRoIR0Ekml5LmG/1AFsCpT+QyrguZ1VG/bw0OZliqOCSUG+ZtKbgBBrapkoJLG/A5AUBSzfpVQ1vza8BWax/lIeLaPJR+1zbQfaFqWVGTe9eBRKuH1+VbdrES+zR/Lp3H3NZwO+1Sj0Qj9impp5tneR2g+lDTn85inJJW8Hs5pnSu2n2jaLItVyNtdIBoaxb5TNpwQQ4yoOpz9RR0LesipOk00HIzdAaFgXSYpzllv9h3TttezCNgvWBb2aW0L9j1blzo2sR10t4rdiaH1xXrS9lMFuo4XAMJ16XQ6tlNE+x/zy/wwD2yX+eAk+vqBr8sdjsNHkrPSsb5g54YrCb4mbx8LywuWETTUP//5z3HHHXdgYGAg9v3pp5+OTCYTO+hk3759+PGPf+zG2uFwOFYBkhRzi/lxrHwca1uuIRLYR0gg5vN5FItFZLPZWPxsJUOVRNfnqYqTBGSj0UCj0YiRhfYePltDi5AYt4f2WSW1Kuctaajkti2nJRH1WiX9kp7P/KnDgOVUgpEEm60v2xYkG20scz3E1TobkpS3SUgKx2KJeKuY1jAlhNYJr7Wx4209Kylt+06rnQsA5hx2qm2pdT01NRXS1J0TqnDWstt0te2VfM7n88GZ1EoNbe/X+lXltaqvWymbVSGdRKSzfJlMJjiz2A+1Tllv+pl1xmj/bdUGDPXDswg0HZtHrWtb59pmOhbo4cF6r5ZVnRoaH9866tQBZvNhr7Pvtl4/PT2Ner2OWq2Ger0+J1SOlsc6ldo9WNRt+dqHr8sdDofjyDDfvGu54Xa8fSyrEn1ychK/+MUvwv+7d+/G/fffjw0bNmD79u149atfjfvuuw/f+MY3MDMzE+KpbdiwAdlsFr29vXjLW96Cd77znRgYGMCGDRvwrne9C09+8pPDqeAOh8PhcDiOHlaaLVdij+RhLpcLJLYl15JCciSRr0pcaXxufQaRFNqD0GfwXiXWlHTXz2w++BxNO0n9rPGeLRGsebWqcD3sUsOZKPmnh5YSrHsqg+1iQdNVxSyVxnqdrVeFErQKGypHnR+aV3u/lkFJXtueltBV1Tswq15W54L2Adt+duHBOlGyPQm6c0BV5Za41TQ1PRLONn1tZ1vfSWjVDqw/W9/8rfWh713STgYlcnXXBZ0YSe8e+7Hmxe4Osf2L6XO3gobhaVUnTEvTSerHuguAafN+9pVW7xKJcELLTaW+OoaS8qn9Uw9mtd9zXOP39sBTx9rFSrPlDofDsVSwtnq5MJ8wxLF6sKwk+ve//3085znPCf/zUJE3velNuPrqq/G1r30NAPCbv/mbsfu+9a1v4dxzzwUA/PVf/zU6OztxwQUXoFqt4rnPfS5uuummtpQTDofD4VheHMmEZiVMhhwrz5Y3Go0wWe7o6ECxWESxWAwHCpJ0UoVsNptNVHpbYpWqz3q9jkqlgmZz9tBIVZirKtiGOyE5R1LMHiZKAp0Heyalb9W/1hEAIKhN9WBTkmVMi9eTDFYVKlW1Nq+5XC4WYsQqWgklkS0ZrWVV8pTEp9ZHK4KWxL7dKcC8KlnKz7QOrKLXhspodVAmVcuM42uV/rxeiVMlN9WJYtXcVGSzT2rfSKoHlo9KaJaRZVZnAO9XkpwhebQ/MY9JizzrXGrVNnym5oHQQ3b1YExtQ5Zteno67Ipgv+FhpHyfeY91XrQK16K7QphPJfRzuVws7ImS/ABi77a+T1pu9ks6wpTwVyeC5oHl1H6ninLWJcOtpFKpcEAo68CSBKwzfS+YpjoX1THIa5n/duzskdrio2nLR0ZG8I53vCPYoZe+9KW44YYb0NfXN29+PvCBD+Azn/kMRkZGcOaZZ+ITn/gEnvSkJ4Vr6vU63vWud+FLX/pSsFmf/OQncdxxx4VrPvShD+Gf/umfcP/99yObzWJ0dPRoFXNJsNJsuWNtwzqgHY6jBRWJzDdvORZYyaptX5O3j2Ul0c8999x5K7ydxsjn87jhhhtwww03LGXWHA6Hw3EM4AZ79WOl2fKZmZkYeZlOpwNJrvGMFZZAt/m2xKcSp3wukHyIqH2OTuKVBLfhKZLyk3Qv0UrtroSwVQEz7SS1vJJqlphrpQJOqlNLMmpe7feq/k2qTwurqp/vuqSFi11QKZFu88sfdZKw7jRmtVWxa31onjVf/FvV5UxLy6ZKbiWgVXU9n8rdpmWf3UrJ3KpeWn2elKYtg+3Prch7VaNrG9jdE3q9vke2Hfh5q36p6mv+3ar/Jo1tLJN1otnQQ5aYT+rr6viwfZVEf6tn210YzJs68egQ0vbge2/zOB9WMon+ute9Dg8//DC++c1vAgD++I//GG94wxvw9a9/veU9H/7wh/HRj34UN910E379138df/EXf4HnP//5ePDBB9Hd3Q0AuPTSS/H1r38dt9xyCwYGBvDOd74TL37xi3HvvfcGwrjRaOA1r3kNzjrrLNx4441HrYxLhZVmyx3rAzqGO7HuOBrQHWqO1vA1eftY8QeLOhwOh2Ptwg22Y6lBBTpV54x/Dsw9RNKSoUoiqjKaP4xV3Wg05sQ4VmW1VaZSEa6HiZIE1RjPGnLGEo1KihOW9KTadGpqKijQVSmueVX1PQlU5k/jc2uZeF8SAQvMxr22dan3q3LfOhlYB1Y1pHXIeuRvDd1i25QkqLZ5kgOBn7Od9VoqhDX/urNA20aJTg2VovXCPmrJZG1TVbHzepZVw5Lw0EeSqUqm83Obz6S6SCLcFdqmtgzW0aJ9X+sjSa2tB3eqc0jJbyWAtY74mRLR/M46POx9NgyTzWdnZ2dQwfM+S9zr8/QzDYei39v3WsuUyWRQKBTCGEPVuZL43GGjccu1HPxhe2h/1fKzzXgt28M6JaIoCgeMLoSVSqI/8MAD+OY3v4n/+I//wJlnngkA+OxnP4uzzjoLDz74IH7jN34jMS/XX3893vOe9+CVr3wlAODzn/88tmzZgr//+7/H2972NoyNjeHGG2/EF7/4xRCm5Oabb8bxxx+PO+64Ay94wQsAAB/4wAcAADfddNNRKZ9jZcMJ4daYT7DgcCw1knZqOebC1+Ttw0l0h8PhcDgcawYMjVAqlWJkMb9T4s2qvpNU5EpG68F8GiIjKSSLEvd8Bsk6hutgSAb+rWEmrPpd86KhIDTfeqghyTglK1WVT7KaafGH95OwBhBCy7A+WS6r8mXZlbRlnaRSqRiJzjrSiTfT0LZk/lmmWq0WI2+VnNT21BA3qhRPIoKVtE1yVJAQp2OG96uDRR0QrAs+W0lxJYeTDqTVsjDder0+J2QM+0sqlQoxrlWpriFOSMRq/pJ2Osy3zdm+G2wfdb4oEWvDNyQp0G3okiQkLcySCBirmGYft89gHWhetc01XrqS1Or0skQ6+yD7Za1WixH47Dc6JjAvSqizP3N8UWU8688qxZk/u3sllUohn8/PcTIBCOFg2B+to0P7UVJInKOF8fHx2P8MmXS42LVrF3p7ewOBDgC//du/jd7eXtx9992JJPru3buxf/9+nHfeebF8nHPOObj77rvxtre9Dffeey+mpqZi12zfvh2nnXYa7r777kCiO9YvrJ1xHEI7O1scqwftEtPL/S5YsYLDcaSYfw+mw+FwOBxHEUqqHM6Pw2GRpORNWrgtFI4EiB8WOZ9y2KZhSbskpe9C4RKUbFSCc75+b4lWDZWhpKFVydp8W0JVlb1JeZ4vdIV9hiX7WtULy6PErxKuti2Snp+khp8PWg5bN0ntZEOoJKmx2yUN9DqtGz7TEuSEOoXmS8/mzV7XTpxQ1m0rtFLV631JTgyrkNfn2b48X9r2b9vvW71vrfpGq7K2Glfsu2TLp0S9DTmlh9WSgNcdDEkKeILPtU43fmbrTseSpJ0t/LtdO3ukdpxpHH/88ejt7Q0/11577YJpz4f9+/dj8+bNcz7fvHlzOBQz6R4A2LJlS+zzLVu2hO/279+PbDaL/v7+ltc4HA6Hw7Ga4Gvy9uFKdIfD4XAsG47E6K43g+1oD1R98rfGK+dvfp4U25uKUo0drOFD9NBAAHNCJqg6l89S1a0SejbMh6q3lcCnip1pM58k7ZLCuChxzzIqQUfylepXIK5+V0WxPTSVsAefkuzjM6anp2OHK2azWRQKhVCupPjyVLKrop7lajQasVA6rE+2AZXyWk7Wqx6Cqu3BemUs/Xw+DwAhLRtCg9dRpR9FUciThqlRxbIuMJIOk7Q7F0hs6u4FS3hyt4AqwbRf6a4B1rfmyyrBtf34THXC6POtup7PZ/6JXC4Xi8tvSXXtg1RXs2+zrpN2O/A+Jao1pI2qr7VOWG92R4KWK+lAWQVDRWn+tP2039VqtXB/LpeLHeap5eT9fFZnZ2c4wFjDyiQ5G1gW/tb2tuFekpxDBD9j+s1mM7wDC+FIbTHv37t3L3p6esLnrVToV199dQiV0grf+973ACQ7lazjKQn2+3buaecax/qAOqQds/D6WFtotz293VcHfE3ePpxEdzgcDseywQ22Y6mhhKo9mJHkIQldJQKTQluQiGJ4BY03bUkzJR5J2in5aftrUggZq2wGZslSIknNbUM9KFGsjgKrJCbpo3lX8lCJdHs/71EHAmEJZ15P5wbLqspZrRc+Q0PpaJiZpLok+achY5hnEq/aDqpwV+WuhquxeVPHhraTOj+SYmdrXWvdsq+wXvV/zV+S+l6J4yQlupKhURSFgyRZH6xH21daqbVJMCsRq+S0qqEJtgXD0Wib8FoSwFp27UN2BwbLr84Dq7ZWx5DWhT5H64vEO59h4+LbnQXq6LG7PbRtOW6wDoBZMl37BfuNpmkdCOrUY/osK9Oz+VxIwa91qe2qdddOOJelItF7enpiJHorvP3tb8drX/vaea95/OMfjx/+8Id47LHH5nx34MCBOUpzYuvWrQAOqc23bdsWPh8cHAz3bN26FY1GAyMjIzE1+uDgIM4+++wF8+9YHzhWc9RWu7ocDodjMfA1eftwEt3hcDgcDseaQSaTCWpkEoYkqFQJropYJZ+UAFYyW8lUQknsJIKa31nVtSVYLaxSVgk2VZwmEYlKnLUKY6F5TSJ79bfeo2W292hMcHVAsC3YHrxer21nO2iSI0Lzpkp5Ep16MKPeq3HWCd0ZwPRszHKSmFpvlqjU51jFNq9nHpLajG2qZCyfZ+PtU4me1H/5LH2GPfg1qU4XChmi1yf14ySVM0ljVZsT+rxW74R1VlhVflIbaP5s37Lp2Ot1B4mmZctmSf+kOlCHB3ezJOWVIOGfSh06L4F9iPfxXbK7MZLaQh0tmpYl3JlP6whgn1tp2LhxIzZu3LjgdWeddRbGxsZwzz334BnPeAYA4Lvf/S7GxsZakt0nnngitm7dip07d+JpT3sagEO7Uu68805cd911AIDTTz8dmUwGO3fuxAUXXAAA2LdvH3784x/jwx/+8FIU0eFoG74DwrFc0Dmow7GesPJmRg6Hw+FYN3Cvt2OpUSqVUCgUAgFlD/SjepqHeWp4EyWCVfmpB4my31lSmWBafFaj0UC9Xo89n/fpIZVAsspWVcq8TwkzJRep1lbSz4ZxUGJXCVWr9FUouaYK/FQqFSOVGX5ieno6/N1sNpHJZJDP54MzQOtVD12lYtzC5s06ErLZLLLZLDKZTCycD//WgxrZhgxV0dHREdTBvIfp1Gq1WFl5H4CYU4DQ/pbJZJDL5WJKfpY7iqJQ9qSwGdbBw3ZiPabThw69rFQqIS9at7bdbNgQdWZYRwHTVzW39jU6H/QwXX2m5ledQLa9CevwUSU/oSFWpqen5zw/SXGtYZY0XAzT0LrSd4BtyDzSeaY7S7SeWC/q0MhkMpiZmUGtVsPMzAwajQYqlUoYdzg2aTtpX2YfZP+o1+uBSNfxgGGEtN60XFovGhpFif0k8p3hZFiOhbBUSvSlxqmnnorf+73fw1vf+lb87d/+LQDgj//4j/HiF784dqjoE57wBFx77bV4xStegVQqhUsvvRTXXHMNTjnlFJxyyim45pprUCwW8brXvQ4A0Nvbi7e85S145zvfiYGBAWzYsAHvete78OQnPxnPe97zwnP37NmD4eFh7NmzBzMzM7j//vsBAL/2a7+Grq6uo1Jmx/qEz4cdxxpJu9a8Hx4ekoQsywFfk7cPJ9EdDofDsWxwg+1YamgoF0vwAQhkopLgOoEluaQKchtWIkn1RdJRla9KcKtyFJgNA5Ok3FUoEamqUi1PkqLZ3m9V6a3SXkjxzd+q2lUyU+OxMy8aWidJhb5Q2AlbXls+Ja+TlOhKUmqaJEqTQnEkqZfZJ7QOkqDp250ATNvuIFDniv5Wolp3V9BZMR9s2JRWKvNWaOc6vcb2K+u8UucHMDfEzXxp67VJfcXuoLD9WHeAtCoX203zyXQZ7ibp3eD1tg31eyXlWRdJ/cd+xv5BhwD7AcO6WAW5PkPHLE1vIeWqkvLt9IGVSqIDwN/93d/hHe94B8477zwAwEtf+lJ8/OMfj13z4IMPYmxsLPz/7ne/G9VqFRdffDFGRkZw5pln4vbbb0d3d3e45q//+q/R2dmJCy64ANVqFc997nNx0003xULh/H//3/+Hz3/+8+F/Ktu/9a1v4dxzzz0axXU4HI5jitWiRl/p+VwJ+fM1eftwEt3hcDgcywY32I6lRj6fD4f3WRLIqldJjgGzB/Fp6IWkUCxKtlqiTUlkVaJTBathGqiStiEhlFScLxSFktFUNwPJISdIwDHUjebFhhXhs6io1YNZbXgHJYSjKApqYz18lUQfVa9KsrPeGCddY9gnEexaFySW9QBZ/k0C2+4KUPI8KYyMfmcJX9t/tA70e1V7J4X1SBq3NDQM49+rklrLxHZL+l6V5XweMHtAaRRFQeWsbcq20XwmOQmoAtf/mZZer58xf+qAsXVn0ySRncvlYjss7H1WIc+/lfhmmnpwp20Pzav2ce6M0GvVkcLrlSTXfCnJzWsajQZqtVp4vzTUlPYFpg8c6pc8w0EdU5pW0hjC/zV/NtSQQtuP/y/k5NPrDxdH05Zv2LABN99886LST6VSuPrqq3H11Ve3vCefz+OGG27ADTfc0PKam266CTfddNNisus4DCSFVHI4HEcXOm6uhvVY0rxhpcCKAJY7H8f63tUIJ9EdDofD4XCsGeTzeRQKhXBApBLMllwCZhXeJIFJZDYajRCKodVhlnymkmAkpRuNRoxET6fTMYLfhjdhXvhM/mgMZZJaSpaSYExSm/KZJKdzuVwIMaL51zAsDEvBeywBqnm2xPT09HQsBIq9Xg/KZLlIWtqQFElqdW0DS5zr/6raZr6V6OcPyX5Ng84TbedWamltd5KlSTsgrNJer6XDgg4GHsLJkB/qvFAyXdXJ/FwdPtoPtLx0LhHqrGH/Zf7pcFHSWNX6fF9sn1BSneXU+uT9zCfzzfuYNutOQ/7oYa9av9oXSSSzLdkntO5t/m3+1PmkjhUl9Hkd61jbknXFPs12qdfrqFQqsfzob747wCGnF59l0+X7bwlEbXd9to6D+Xw+1u7aXmyTVo4Uh2O5YHexAHMdPU6kOxzHDquNOLVCiJWU/5WUF8fC8JmRw+FwOJYNqgQ9nJ/F4pOf/CROPPFE5PN5nH766fj3f//3ea+/8847cfrppyOfz+Okk07Cpz/96TnXfPnLX8YTn/hE5HI5PPGJT8RXv/rVRacbRRGuvvpqbN++HYVCAeeeey5+8pOfLLp8DsyJMw5gTp9RQjZJaWo/U6LbQok7+wySfUoOKjGaFF5ioQn+fO+CjbOsPxpr2qbBsiWFMVkoT3q/3qtpJT1fiemkWN22DZLKpcplVdcmxXkm5gsdY9PT5ySRiTZfWu75nmt3G2gfmE/1bAl7W2btW/ZZSX1pvnrS/CnJrPnVvt/OeJxEylrngr3eHojaLqk7n71o1Ye1fdQhktSeSekl7Z6wO0fUgZS008WONdr/7Bii75jmMalddTxKgu3nSbsuWuFI7biTBw6Hw+FwLC+Ww46v1HX5QnAS3eFwOBzLhmNpsG+99VZceumleM973oMf/OAH+J3f+R2cf/752LNnT+L1u3fvxgtf+EL8zu/8Dn7wgx/gz/7sz/COd7wDX/7yl8M1u3btwoUXXog3vOEN+M///E+84Q1vwAUXXIDvfve7i0r3wx/+MD760Y/i4x//OL73ve9h69ateP7zn4+JiYlF1qiDJLoesqk/lkhiOJSpqSnU6/WgHLfxhAkNN2IJMT1Qk+lkMhmUSiUUi0UUi0UUCgUUCoU5xLEqWi0xqepjm18qeK1imT88yDCbzYa6IbGtz6LaV+PAA7PhLRgGxCq5GfqGan0bk57lsmFjeKCn/qTT6fCser2Oer0e1MRRFMXyksvlkM/nYweKajgXlo35tHWqIVGsaptqbD5bD9Ek9NlUvtvr2Hf0WqatKm3NO+tK24QHj2rd684Cti9/M/SHpptEUGuetW6o5NZ+ZRX/umNA+5CtYw2tY0lpJZaVUGY9sUz6o23MvNqyaBpJDi5C3yv2Nw1Rw/fHpqlji5LgUXToMNBarRYO/dQ+YA8sZrvqu8ddMLojgn1E88J21vMG2A95reZZ0016z5OcUhoSaT44ie44FkjqL/YdXCmwIa4cKwPWae1YfTiS9nO7Mz+OtR1fyevyhZCKvAdhfHwcvb29y50Nh8PhWHMYGxtDT0/PnM+XctxtlYbFmWeeiac//en41Kc+FT479dRT8fKXvxzXXnvtnOuvuOIKfO1rX8MDDzwQPrvooovwn//5n9i1axcA4MILL8T4+Dj++Z//OVzze7/3e+jv78eXvvSlttKNogjbt2/HpZdeiiuuuAIAUK/XsWXLFlx33XV429vetsgaWZ9gn3rZy16Gzs7OWKxzqwolKUWyncQlSWmGkAAQiK5W0BArStIpAU5yr1QqBYKT5BRjiJOM1Ocyz3y+EsIk6TRcC6F/k3BOpVKBWNNQFvV6HdVqFTMzM5icnEStVgsEdzqdRi6XQ7FYjBGg+vxarYZyuRwjAIHZONjZbBalUikQsSy3En9si1qthlqthqmpKUxMTKBarYYQMcwzw80Ui0VkMhkUi0UMDAwgm80in8/HQlWwHUhIjo+PY2RkJEa6dHZ2BqeGqraVzCVI7uvUOZVKIZ/Po7OzE/l8Hl1dXaGuWNfsV9rumk6lUsHU1BTK5TKGhoYwNTUVI9aLxWIgTYvFYsxRoapphh9qNpuoVquh3viTyWTQ3d0dc4hEUYRarYZ6vR7aDZgNi2QdB5OTk+Hd0D7G/BQKhZijQ/tLvV7HgQMHUC6XA9ncbDbR1dUV6i2fz8dC8jAsC9uQYZbUMaL9n/2afTeVSsXOH2DbKLHOOOUAUCgUQix2Oob4vabF9lVnhZLl9j0kenp6wvuQRPprGCW2Own3ZrMZ3hG+F6wPjh3sG7yW7yP7LJ1PTJ/jB8NL2XqpVqv493//90Q7u9Trp3ZtuWNtYy2syzU02Xw7QNYz1EYfq/uTwl05Vg/s3M7bcPE42rZ8MXZ8pa7L24HHRIfHIHI4HI6jhWMxvo6Pj8f+p2JR0Wg0cO+99+LKK6+MfX7eeefh7rvvTnzurl27cN5558U+e8ELXoAbb7wxkFy7du3CZZddNuea66+/vu10d+/ejf3798fSyuVyOOecc3D33Xc7id4m2NdIfM1Houv/SqIrSU1SKolMtenqjyXRNR4yFcQk8ZhfklaLIdFV/UrlLGH/1ljrLJOSflYly2tUeU4luFXW6b1aV0ogMCa8De2i/5MstfmxCna9T9X0VLGrup/twDpOeq72AVVRJ7W71rnWL3cDaF1puBNVt/NeS9ZbRbPdPcEfe8Cm9ifbrtpX2H7sg0qi23ZjuyYdJJq0m8Mq+fVzJdHtbgfbhrxf+4XeZ9tQ20z7tr5Puujmc1V5r32cZSSZrHmy44ju1LB1PR+JrvWq75Qq55lPjclOEl13KNh3RWHzov1a25V1wHdESXStF18rOY4V1kJf03HekYwjrZvDud/bZXVD283b8PBwtOutnTU5sLLX5e3ASXQABw8eXO4sOBwOx5rExMREonc7m81i69at2L9//xE9v6urC8cff3zss/e///24+uqrY58NDQ1hZmYGW7ZsiX2+ZcuWlnnYv39/4vXT09MYGhrCtm3bWl7DZ7aTLn8nXfOrX/2qVdEdBrTlt9122zLnxHEs4HM3h+PYIcmWL5UdB4CtW7eGw2Qd6xtrYWxfSaFlHLNw4nX1w9vwyHA0bXm7a3JgZa/L24GT6AA2bNgAANizZ8+q3z6mGB8fx/HHH4+9e/eume2RXqbVg7VYrrVYJuDolCuKIkxMTGD79u2J3+fzeezevXveMBntpmPVfkkebyLpsLWFDtaz19vP23nmUl3jaI21aMt9zFk9WItlAtZmudZimYBjb8uXyo4DCOGYHA635asHa7Fca7FMwNos11osE7B6bfli1+TAyl6Xzwcn0TG7DbW3t3dNvYBET0/PmiuXl2n1YC2Way2WCVj6ci20+GH84mOBjRs3oqOjY46XeXBwcI43mkjyyg8ODqKzsxMDAwPzXsNntpPu1q1bARzysG/btq2tvDnmYi3bch9zVg/WYpmAtVmutVgm4Nja8mNpxx3rA27LVx/WYrnWYpmAtVmutVgmYG3b8pW8Lm8HfmS0w+FwONY8stksTj/9dOzcuTP2+c6dO3H22Wcn3nPWWWfNuf7222/HGWecgUwmM+81fGY76Z544onYunVr7JpGo4E777yzZd4cDofD4XA4HA6Hw+FYTVjJ6/J24Ep0h8PhcKwLXH755XjDG96AM844A2eddRY+85nPYM+ePbjooosAAFdddRUeeeQRfOELXwBw6MTvj3/847j88svx1re+Fbt27cKNN94YTvcGgEsuuQTPfvazcd111+FlL3sZ/vEf/xF33HEH7rrrrrbTTaVSuPTSS3HNNdfglFNOwSmnnIJrrrkGxWIRr3vd645hDTkcDofD4XA4HA6Hw3H0sFLX5e3ASXQcitXz/ve/f8GYPasNa7FcXqbVg7VYrrVYJmDtlsviwgsvxMGDB/HBD34Q+/btw2mnnYbbbrsNO3bsAADs27cPe/bsCdefeOKJuO2223DZZZfhE5/4BLZv346PfexjeNWrXhWuOfvss3HLLbfgve99L973vvfh5JNPxq233oozzzyz7XQB4N3vfjeq1SouvvhijIyM4Mwzz8Ttt9+O7u7uY1AzawNrsR+vxTIBa7Nca7FMwNos11osE7B2y+VYX1iL/XgtlglYm+Vai2UC1ma51mKZgLVbLouVvC5fCKnIj7h1OBwOh8PhcDgcDofD4XA4HA6HIxEeE93hcDgcDofD4XA4HA6Hw+FwOByOFnAS3eFwOBwOh8PhcDgcDofD4XA4HI4WcBLd4XA4HA6Hw+FwOBwOh8PhcDgcjhZwEt3hcDgcDofD4XA4HA6Hw+FwOByOFlj3JPonP/lJnHjiicjn8zj99NPx7//+78udpUXh2muvxW/91m+hu7sbmzdvxstf/nI8+OCDsWuiKMLVV1+N7du3o1Ao4Nxzz8VPfvKTZcrx4nHttdcilUrh0ksvDZ+t1jI98sgj+IM/+AMMDAygWCziN3/zN3HvvfeG71dbuaanp/He974XJ554IgqFAk466SR88IMfRLPZDNeshjJ95zvfwUte8hJs374dqVQK//AP/xD7vp0y1Ot1/Omf/ik2btyIUqmEl770pXj44YePYSnimK9MU1NTuOKKK/DkJz8ZpVIJ27dvxxvf+EY8+uijsWestDI5HK3gtnzlY63Y8rVmx4G1YcvXoh0H3JY71hdWsy1fD3YccFu+kuG2/BBWos1zW77GEK1j3HLLLVEmk4k++9nPRj/96U+jSy65JCqVStGvfvWr5c5a23jBC14Qfe5zn4t+/OMfR/fff3/0ohe9KDrhhBOiycnJcM1f/uVfRt3d3dGXv/zl6Ec/+lF04YUXRtu2bYvGx8eXMeft4Z577oke//jHR095ylOiSy65JHy+Gss0PDwc7dixI3rzm98cffe73412794d3XHHHdEvfvGLcM1qK9df/MVfRAMDA9E3vvGNaPfu3dH/+T//J+rq6oquv/76cM1qKNNtt90Wvec974m+/OUvRwCir371q7Hv2ynDRRddFD3ucY+Ldu7cGd13333Rc57znOipT31qND09fYxLcwjzlWl0dDR63vOeF916663R//t//y/atWtXdOaZZ0ann3567BkrrUwORxLclq+csbQV1ootX4t2PIrWhi1fi3Y8ityWO9YPVrstX+t2PIrclq/kMkWR23JiJdo8t+VrC+uaRH/GM54RXXTRRbHPnvCEJ0RXXnnlMuXoyDE4OBgBiO68884oiqKo2WxGW7dujf7yL/8yXFOr1aLe3t7o05/+9HJlsy1MTExEp5xySrRz587onHPOCcZ6tZbpiiuuiJ71rGe1/H41lutFL3pR9N/+23+LffbKV74y+oM/+IMoilZnmaxha6cMo6OjUSaTiW655ZZwzSOPPBKl0+nom9/85jHLeyskTUIs7rnnnghAWKys9DI5HITb8pU5lhJryZavRTseRWvPlq9FOx5FbssdaxtrzZavJTseRW7LV3qZoshteRStDpvntnz1Y92Gc2k0Grj33ntx3nnnxT4/77zzcPfddy9Tro4cY2NjAIANGzYAAHbv3o39+/fHypnL5XDOOees+HL+9//+3/GiF70Iz3ve82Kfr9Yyfe1rX8MZZ5yB17zmNdi8eTOe9rSn4bOf/Wz4fjWW61nPehb+9V//FT/72c8AAP/5n/+Ju+66Cy984QsBrM4yWbRThnvvvRdTU1Oxa7Zv347TTjtt1ZRzbGwMqVQKfX19ANZGmRxrH27LV/5YupZs+Vq048Dat+XrxY4DbssdqxNr0ZavJTsOuC1f6WUC3JYDa8fmuS1f2ehc7gwsF4aGhjAzM4MtW7bEPt+yZQv279+/TLk6MkRRhMsvvxzPetazcNpppwFAKEtSOX/1q18d8zy2i1tuuQX33Xcfvve97835brWW6b/+67/wqU99Cpdffjn+7M/+DPfccw/e8Y53IJfL4Y1vfOOqLNcVV1yBsbExPOEJT0BHRwdmZmbwoQ99CL//+78PYPW2laKdMuzfvx/ZbBb9/f1zrlkN40mtVsOVV16J173udejp6QGw+svkWB9wW76yx9K1ZsvXoh0H1r4tXw92HHBb7li9WGu2fC3ZccBtObGSywS4Lec1q93muS1f+Vi3JDqRSqVi/0dRNOez1YK3v/3t+OEPf4i77rprznerqZx79+7FJZdcgttvvx35fL7ldaupTADQbDZxxhln4JprrgEAPO1pT8NPfvITfOpTn8Ib3/jGcN1qKtett96Km2++GX//93+PJz3pSbj//vtx6aWXYvv27XjTm94UrltNZWqFwynDaijn1NQUXvva16LZbOKTn/zkgtevhjI51h/WwhhDuC1fuWVai3YcWD+2fK3accBtuWNtYLWPMcRaseOA23LFSi4T4LZ8PqyWMrotXx1Yt+FcNm7ciI6Ojjmem8HBwTnerdWAP/3TP8XXvvY1fOtb38Jxxx0XPt+6dSsArKpy3nvvvRgcHMTpp5+Ozs5OdHZ24s4778THPvYxdHZ2hnyvpjIBwLZt2/DEJz4x9tmpp56KPXv2AFidbfU//sf/wJVXXonXvva1ePKTn4w3vOENuOyyy3DttdcCWJ1lsminDFu3bkWj0cDIyEjLa1YipqamcMEFF2D37t3YuXNn8HYDq7dMjvUFt+Urt5xr0ZavRTsOrH1bvpbtOOC23LH6sZZs+Vqy44DbcsVKLhPgtpzXrFab57Z89WDdkujZbBann346du7cGft8586dOPvss5cpV4tHFEV4+9vfjq985Sv4t3/7N5x44omx70888URs3bo1Vs5Go4E777xzxZbzuc99Ln70ox/h/vvvDz9nnHEGXv/61+P+++/HSSedtOrKBADPfOYz8eCDD8Y++9nPfoYdO3YAWJ1tValUkE7Hh5GOjg40m00Aq7NMFu2U4fTTT0cmk4lds2/fPvz4xz9eseWkof75z3+OO+64AwMDA7HvV2OZHOsPbstX7li6Fm35WrTjwNq35WvVjgNuyx1rA2vBlq9FOw64LSdWepkAt+XA6rV5bstXGY7F6aUrFbfcckuUyWSiG2+8MfrpT38aXXrppVGpVIoeeuih5c5a2/iTP/mTqLe3N/r2t78d7du3L/xUKpVwzV/+5V9Gvb290Ve+8pXoRz/6UfT7v//70bZt26Lx8fFlzPnioKeAR9HqLNM999wTdXZ2Rh/60Iein//859Hf/d3fRcViMbr55pvDNautXG9605uixz3ucdE3vvGNaPfu3dFXvvKVaOPGjdG73/3ucM1qKNPExET0gx/8IPrBD34QAYg++tGPRj/4wQ/CidjtlOGiiy6KjjvuuOiOO+6I7rvvvuh3f/d3o6c+9anR9PT0iivT1NRU9NKXvjQ67rjjovvvvz82dtTr9RVbJocjCW7LV85YuhBWuy1fi3Y8itaGLV+LdjyK3JY71g9Wuy1fL3Y8ityWr1S4LT+ElWjz3JavLaxrEj2KougTn/hEtGPHjiibzUZPf/rTozvvvHO5s7QoAEj8+dznPheuaTab0fvf//5o69atUS6Xi5797GdHP/rRj5Yv04cBa6xXa5m+/vWvR6eddlqUy+WiJzzhCdFnPvOZ2PerrVzj4+PRJZdcEp1wwglRPp+PTjrppOg973lPbMBfDWX61re+lfgevelNb4qiqL0yVKvV6O1vf3u0YcOGqFAoRC9+8YujPXv2LENpDmG+Mu3evbvl2PGtb31rxZbJ4WgFt+WrA2vBlq81Ox5Fa8OWr0U7HkVuyx3rC6vZlq8XOx5FbstXKtyWH8JKtHluy9cWUlEURYevY3c4HA6Hw+FwOBwOh8PhcDgcDodj7WLdxkR3OBwOh8PhcDgcDofD4XA4HA6HYyE4ie5wOBwOh8PhcDgcDofD4XA4HA5HCziJ7nA4HA6Hw+FwOBwOh8PhcDgcDkcLOInucDgcDofD4XA4HA6Hw+FwOBwORws4ie5wOBwOh8PhcDgcDofD4XA4HA5HCziJ7nA4HA6Hw+FwOBwOh8PhcDgcDkcLOInucDgcDofD4XA4HA6Hw+FwOBwORws4ie5wOBwOh8PhcDgcDofD4XA4HA5HCziJ7nAIzj33XFx66aWr5rlLjYceegipVAr333//cmfF4XA4HI7Dgttyt+UOh8PhWN1wW+623OFYiehc7gw4HOsBX/nKV5DJZI5Zet/+9rfxnOc8ByMjI+jr6ztm6TocDofDsVbhttzhcDgcjtUNt+UOh+NI4CS6w3EUMTU1hUwmgw0bNix3VhwOh8PhcBwG3JY7HA6Hw7G64bbc4XAsBTyci8Nh0Gw28e53vxsbNmzA1q1bcfXVV4fv9uzZg5e97GXo6upCT08PLrjgAjz22GPh+6uvvhq/+Zu/if/1v/4XTjrpJORyOURRFNs29u1vfxupVGrOz5vf/ObwnE996lM4+eSTkc1m8Ru/8Rv44he/GMtjKpXC//yf/xOveMUrUCwWccopp+BrX/sagENbv57znOcAAPr7+2PP/uY3v4lnPetZ6Ovrw8DAAF784hfjl7/85WHV0wc/+EFs374dBw8eDJ+99KUvxbOf/Ww0m83DeqbD4XA4HEsBt+XtwW25w+FwOFYq3Ja3B7flDsexg5PoDofB5z//eZRKJXz3u9/Fhz/8YXzwgx/Ezp07EUURXv7yl2N4eBh33nkndu7ciV/+8pe48MILY/f/4he/wP/+3/8bX/7ylxNjmJ199tnYt29f+Pm3f/s35PN5PPvZzwYAfPWrX8Ull1yCd77znfjxj3+Mt73tbfjDP/xDfOtb34o95wMf+AAuuOAC/PCHP8QLX/hCvP71r8fw8DCOP/54fPnLXwYAPPjgg9i3bx/+5m/+BgBQLpdx+eWX43vf+x7+9V//Fel0Gq94xSsOy7i+5z3vweMf/3j80R/9EQDg05/+NL7zne/gi1/8ItJpH1ocDofDsXxwW94e3JY7HA6HY6XCbXl7cFvucBxDRA6HI+Ccc86JnvWsZ8U++63f+q3oiiuuiG6//faoo6Mj2rNnT/juJz/5SQQguueee6IoiqL3v//9USaTiQYHB+c895JLLpmT3tDQUHTyySdHF198cfjs7LPPjt761rfGrnvNa14TvfCFLwz/A4je+973hv8nJyejVCoV/fM//3MURVH0rW99KwIQjYyMzFvewcHBCED0ox/9KIqiKNq9e3cEIPrBD34w733EL3/5y6i7uzu64ooromKxGN18881t3edwOBwOx9GC23K35Q6Hw+FY3XBb7rbc4ViJcLeUw2HwlKc8Jfb/tm3bMDg4iAceeADHH388jj/++PDdE5/4RPT19eGBBx4In+3YsQObNm1aMJ2pqSm86lWvwgknnBA80gDwwAMP4JnPfGbs2mc+85mxNGw+S6USuru7MTg4OG+av/zlL/G6170OJ510Enp6enDiiScCOLQd7nBw0kkn4a/+6q9w3XXX4SUveQle//rXH9ZzHA6Hw+FYSrgtbx9uyx0Oh8OxEuG2vH24LXc4jg38YFGHw8Ce1p1KpdBsNhFFEVKp1Jzr7eelUqmtdP7kT/4Ee/bswfe+9z10dsZfRZtOUtqt8jkfXvKSl+D444/HZz/7WWzfvh3NZhOnnXYaGo1GW3lOwne+8x10dHTgoYcewvT09JyyOBwOh8NxrOG2fHFwW+5wOByOlQa35YuD23KH4+jDlegOR5t44hOfiD179mDv3r3hs5/+9KcYGxvDqaeeuqhnffSjH8Wtt96Kr33taxgYGIh9d+qpp+Kuu+6KfXb33XcvKo1sNgsAmJmZCZ8dPHgQDzzwAN773vfiuc99Lk499VSMjIwsKt8Wt956K77yla/g29/+Nvbu3Ys///M/P6LnORwOh8NxNOG2fC7cljscDodjNcFt+Vy4LXc4jg3cNeVwtInnPe95eMpTnoLXv/71uP766zE9PY2LL74Y55xzDs4444y2n3PHHXfg3e9+Nz7xiU9g48aN2L9/PwCgUCigt7cX/+N//A9ccMEFePrTn47nPve5+PrXv46vfOUruOOOO9pOY8eOHUilUvjGN76BF77whSgUCujv78fAwAA+85nPYNu2bdizZw+uvPLKRdcD8fDDD+NP/uRPcN111+FZz3oWbrrpJrzoRS/C+eefj9/+7d8+7Oc6HA6Hw3G04LY8DrflDofD4VhtcFseh9tyh+PYwZXoDkebSKVS+Id/+Af09/fj2c9+Np73vOfhpJNOwq233rqo59x1112YmZnBRRddhG3btoWfSy65BADw8pe/HH/zN3+Dj3zkI3jSk56Ev/3bv8XnPvc5nHvuuW2n8bjHPQ4f+MAHcOWVV2LLli14+9vfjnQ6jVtuuQX33nsvTjvtNFx22WX4yEc+sqi8E1EU4c1vfjOe8Yxn4O1vfzsA4PnPfz7e/va34w/+4A8wOTl5WM91OBwOh+Nowm35LNyWOxwOh2M1wm35LNyWOxzHFqkoiqLlzoTD4XA4HA6Hw+FwOBwOh8PhcDgcKxGuRHc4HA6Hw+FwOBwOh8PhcDgcDoejBZxEdzgcibjooovQ1dWV+HPRRRctd/YcDofD4XAsALflDofD4XCsbrgtdzhWDjyci8PhSMTg4CDGx8cTv+vp6cHmzZuPcY4cDofD4XAsBm7LHQ6Hw+FY3XBb7nCsHDiJ7nA4HA6Hw+FwOBwOh8PhcDgcDkcLeDgXh8PhcDgcDofD4XA4HA6Hw+FwOFrASXSHw+FwOBwOh8PhcDgcDofD4XA4WsBJdIfD4XA4HA6Hw+FwOBwOh8PhcDhawEl0h8PhcDgcDofD4XA4HA6Hw+FwOFrASXSHw+FwOBwOh8PhcDgcDofD4XA4WsBJdIfD4XA4HA6Hw+FwOBwOh8PhcDhawEl0h8PhcDgcDofD4XA4HA6Hw+FwOFrg/wftn2vrZ40nEQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 30, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "algo=FISTA(initial=ig.allocate(0), f=F, g=G, update_objective_interval=10) \n", + "algo.run(500, callbacks=[img_qual_callback])\n", + "show2D([ground_truth, recon, algo.solution], title = ['Ground Truth', 'FDK Reconstruction', 'TV solution'], origin = 'upper', num_cols = 3)" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 31, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAGsCAYAAAAPJKchAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAt2UlEQVR4nO3df3RU5b3v8c9MJpkESMIvCQQCxh9UFKWaVJtQ6u94UOl1nV6lR1uoQm9Tf0JqT42cVZTlauw51UU9CmoVOd5yCqsHdXF7qJreVkCwVwmkIlClgiZAYgxKEn7l1zz3j8xMMskEMmFmPyT7/VprVpI9e2Y/88jy+cx3P/vZHmOMEQAAgCVe2w0AAADuRhgBAABWEUYAAIBVhBEAAGAVYQQAAFhFGAEAAFYRRgAAgFWEEQAAYBVhBAAAWEUYAQAAVg2oMLJx40bNmjVL2dnZ8ng8eu211xJ+zAMHDui73/2uRo0apSFDhuirX/2qKioqEn5cAADcYkCFkaNHj2ratGl6+umnHTnel19+qenTpys5OVl/+MMftGvXLj3xxBMaPny4I8cHAMANPAP1Rnkej0evvvqqbrnllvC2lpYW/cu//ItWrVqlw4cPa+rUqfrFL36hq666ql/HeOihh7R582Zt2rQpPo0GAAA9DKjKyKnceeed2rx5s1avXq33339ft956q/7hH/5Be/bs6df7rVu3Tvn5+br11ls1ZswYXXrppfr1r38d51YDAOBug6Yy8vHHH+v888/X/v37lZ2dHd7vuuuu0+WXX66f//znMR8jNTVVklRSUqJbb71V7777rhYsWKDnnntOc+bMicvnAADA7Xy2GxAv27ZtkzFGkydPjtje3NysUaNGSZI++eQT5ebmnvR97rnnnvCclEAgoPz8/HCQufTSS7Vz504tX76cMAIAQJwMmjASCASUlJSkiooKJSUlRTw3bNgwSdL48eO1e/fuk77PiBEjwr+PGzdOF154YcTzU6ZM0dq1a+PUagAAMGjCyKWXXqr29nbV1dVpxowZUfdJTk7WBRdc0Of3nD59uj788MOIbR999JEmTZp0Wm0FAACdBlQYOXLkiP7+97+H/963b58qKys1cuRITZ48WXfccYfmzJmjJ554Qpdeeqnq6+v1pz/9SRdffLFuvPHGmI+3cOFCFRYW6uc//7luu+02vfvuu3r++ef1/PPPx/NjAQDgagNqAutbb72lq6++usf2uXPnauXKlWptbdVjjz2ml19+WQcOHNCoUaNUUFCgRx99VBdffHG/jvn73/9epaWl2rNnj3Jzc1VSUqIf/OAHp/tRAABA0IAKIwAAYPAZVOuMAACAgYcwAgAArBoQE1gDgYAOHjyo9PR0eTwe280BAAB9YIxRU1OTsrOz5fX2Xv8YEGHk4MGDysnJsd0MAADQD9XV1ZowYUKvzw+IMJKeni6p48NkZGRYbg0AAOiLxsZG5eTkhMfx3gyIMBI6NZORkUEYAQBggDnVFAsmsAIAAKsIIwAAwCrCCAAAsIowAgAArCKMAAAAqwgjAADAKsIIAACwijACAACsIowAAACrCCMAAMAqwggAALCKMAIAAKwaEDfKS5S1Ffv1wcEGZWWk6q7puUrxkc0AAHCaq8PIho8+17q/HpQkfSUrXVdfMMZyiwAAcB9XlwKuvzAr/PuR5jaLLQEAwL1cHUZmTctW4bmjJEkBYyy3BgAAd3J1GJEkr8djuwkAALia68NIKItQGQEAwA7CSDCNkEUAALCDMBL8GSCMAABghevDiDeYRgylEQAArHB9GOE0DQAAdrk+jIQrIyKNAABgg+vDSGjWCHNGAACww/VhpHPOiN12AADgVq4PI6wzAgCAXa4PI6EVWIkiAADY4fow4uHSXgAArCKMcGkvAABWEUaCP5kzAgCAHa4PI14qIwAAWOX6MMLVNAAA2EUYsd0AAABczvVhJHSahsoIAAB2xBxGNm7cqFmzZik7O1sej0evvfbaKV+zYcMG5eXlKTU1Veecc46effbZ/rQ1MViBFQAAq2IOI0ePHtW0adP09NNP92n/ffv26cYbb9SMGTO0fft2Pfzww7r//vu1du3amBubCCx6BgCAXb5YXzBz5kzNnDmzz/s/++yzmjhxopYuXSpJmjJlirZu3apf/vKX+va3vx3r4eOOS3sBALAr4XNG3nnnHRUVFUVsu+GGG7R161a1trZGfU1zc7MaGxsjHonCpb0AANiV8DBSW1urrKysiG1ZWVlqa2tTfX191NeUlZUpMzMz/MjJyUlY+1gOHgAAuxy5mia05HpIaODvvj2ktLRUDQ0N4Ud1dXXC20YWAQDAjpjnjMRq7Nixqq2tjdhWV1cnn8+nUaNGRX2N3++X3+9PdNMkdV30zJHDAQCAbhJeGSkoKFB5eXnEtjfffFP5+flKTk5O9OFPyRs6TcP1NAAAWBFzGDly5IgqKytVWVkpqePS3crKSlVVVUnqOMUyZ86c8P7FxcX69NNPVVJSot27d2vFihV68cUX9eCDD8bnE5wmj0KLnlluCAAALhXzaZqtW7fq6quvDv9dUlIiSZo7d65WrlypmpqacDCRpNzcXK1fv14LFy7UM888o+zsbD311FNnxGW9UmdlhEkjAADYEXMYueqqq0565cnKlSt7bLvyyiu1bdu2WA/lCI+HyggAADa5/t40HuaMAABgFWGEOSMAAFjl+jDi5UZ5AABY5fowwgqsAADY5fowwl17AQCwy/VhJHTb3gCTRgAAsML1YYTKCAAAdrk+jITWPAswZwQAACtcH0a83LUXAACrXB9GuJoGAAC7CCPMGQEAwCrCSPAnc0YAALDD9WGEOSMAANjl+jASmjPCMiMAANjh+jASujcNs0YAALDD9WEkNIE1ELDcEAAAXIowErq0l8oIAABWEEaC19MwZwQAADtcH0a84UXP7LYDAAC3cn0YYQVWAADscn0Y4a69AADY5fowEsIKrAAA2OH6MMIKrAAA2OX6MNK5AitpBAAAGwgjwZ9EEQAA7HB9GPF6Q6dpiCMAANjg+jASroyQRQAAsIIwwgRWAACsIowwgRUAAKtcH0ZY9AwAALtcH0Y654wQRwAAsMH1YYRFzwAAsMv1YUTMGQEAwCrXhxHmjAAAYJfrw0hozkiANAIAgBWuDyPeYA8wgRUAADtcH0Y8YgIrAAA2EUaC52kMs0YAALCCMBJMI4GA5YYAAOBSrg8jXiojAABY5fowEpozwtU0AADY4fow4g2vB2+1GQAAuJbrwwh37QUAwC7CCCuwAgBgFWEk+JPKCAAAdrg+jHDXXgAA7HJ9GAkvekYaAQDACteHEe7aCwCAXa4PI+JqGgAArHJ9GGHOCAAAdrk+jHReTWO1GQAAuJbrw0hnZYQ0AgCADf0KI8uWLVNubq5SU1OVl5enTZs2nXT/VatWadq0aRoyZIjGjRunO++8U4cOHepXg+Ot82oau+0AAMCtYg4ja9as0YIFC7Ro0SJt375dM2bM0MyZM1VVVRV1/7fffltz5szRvHnztHPnTv3ud7/Te++9p/nz55924+PBw117AQCwKuYw8uSTT2revHmaP3++pkyZoqVLlyonJ0fLly+Puv9f/vIXnX322br//vuVm5urb3zjG/rhD3+orVu3nnbj44G79gIAYFdMYaSlpUUVFRUqKiqK2F5UVKQtW7ZEfU1hYaH279+v9evXyxijzz77TP/1X/+lm266qdfjNDc3q7GxMeKRKF4WPQMAwKqYwkh9fb3a29uVlZUVsT0rK0u1tbVRX1NYWKhVq1Zp9uzZSklJ0dixYzV8+HD9+7//e6/HKSsrU2ZmZviRk5MTSzNj4uHSXgAArOrXBNbQAB5ijOmxLWTXrl26//779bOf/UwVFRV6/fXXtW/fPhUXF/f6/qWlpWpoaAg/qqur+9PMPglXRhJ2BAAAcDK+WHYePXq0kpKSelRB6urqelRLQsrKyjR9+nT95Cc/kSRdcsklGjp0qGbMmKHHHntM48aN6/Eav98vv98fS9P6zcMKrAAAWBVTZSQlJUV5eXkqLy+P2F5eXq7CwsKorzl27Ji83sjDJCUlSTpT5mlwmgYAAJtiPk1TUlKiF154QStWrNDu3bu1cOFCVVVVhU+7lJaWas6cOeH9Z82apVdeeUXLly/X3r17tXnzZt1///26/PLLlZ2dHb9P0k9eKiMAAFgV02kaSZo9e7YOHTqkJUuWqKamRlOnTtX69es1adIkSVJNTU3EmiPf//731dTUpKefflo//vGPNXz4cF1zzTX6xS9+Eb9PcRqYwAoAgF0ec2acKzmpxsZGZWZmqqGhQRkZGXF97/f3H9a3nt6s7MxUbSm9Nq7vDQCAm/V1/Hb9vWlCi56d8YkMAIBBijDCvWkAALCKMMIEVgAArHJ9GPF6OE0DAIBNrg8jHu5NAwCAVa4PI14u7QUAwCrXh5HQHXWYMwIAgB2EEeaMAABgFWEkdDVNgDgCAIANrg8jXE0DAIBdrg8joTkjTBkBAMAO14eRzqtpSCMAANjg+jDSuQKr3XYAAOBWhJHQomfMGgEAwArCSDCNUBkBAMAO14cRb3gGq9VmAADgWq4PIx6FKiOkEQAAbHB9GPGG54wAAAAbXB9GFL6ahjgCAIANrg8j3LUXAAC7XB9GPF1+Z+EzAACc5/owEqqMSFRHAACwwfVhpEsWYd4IAAAWEEa6VkYstgMAALcijFAZAQDAKteHEeaMAABgl+vDSOTVNNaaAQCAa7k+jERURpg1AgCA41wfRiLnjNhrBwAAbkUY6RJGWPQMAADnEUa6zBqhMgIAgPMIIxEzWK01AwAA13J9GOk6gZV1RgAAcJ7rwwiFEQAA7CKMsAIrAABWEUZYgRUAAKtcH0YkyRvMIyx6BgCA8wgj6qyOUBkBAMB5hBF1qYwQRgAAcBxhRJ0LnzGBFQAA5xFG1HlFDVEEAADnEUbUGUYCrAcPAIDjCCOKXIUVAAA4izCizlVYmTMCAIDzCCPqrIyQRQAAcB5hRAqXRqiMAADgPMKIulRGLLcDAAA3Ioyoy6W9VEYAAHAcYUTMGQEAwCbCiLpeTWO1GQAAuBJhRF1ulMesEQAAHEcYUdcVWO22AwAAN+pXGFm2bJlyc3OVmpqqvLw8bdq06aT7Nzc3a9GiRZo0aZL8fr/OPfdcrVixol8NToTwXXupjAAA4DhfrC9Ys2aNFixYoGXLlmn69Ol67rnnNHPmTO3atUsTJ06M+prbbrtNn332mV588UWdd955qqurU1tb22k3Pl5Cd+1lAisAAM6LOYw8+eSTmjdvnubPny9JWrp0qd544w0tX75cZWVlPfZ//fXXtWHDBu3du1cjR46UJJ199tmn1+o4C1dGCCMAADguptM0LS0tqqioUFFRUcT2oqIibdmyJepr1q1bp/z8fP3rv/6rxo8fr8mTJ+vBBx/U8ePHez1Oc3OzGhsbIx6JFJrAygqsAAA4L6bKSH19vdrb25WVlRWxPSsrS7W1tVFfs3fvXr399ttKTU3Vq6++qvr6et1999364osvep03UlZWpkcffTSWpp2W8KJnjh0RAACE9GsCa6iSEGKM6bEtJBAIyOPxaNWqVbr88st144036sknn9TKlSt7rY6UlpaqoaEh/Kiuru5PM/vMw71pAACwJqbKyOjRo5WUlNSjClJXV9ejWhIybtw4jR8/XpmZmeFtU6ZMkTFG+/fv1/nnn9/jNX6/X36/P5amnRZWYAUAwJ6YKiMpKSnKy8tTeXl5xPby8nIVFhZGfc306dN18OBBHTlyJLzto48+ktfr1YQJE/rR5PgL1XS4Nw0AAM6L+TRNSUmJXnjhBa1YsUK7d+/WwoULVVVVpeLiYkkdp1jmzJkT3v/222/XqFGjdOedd2rXrl3auHGjfvKTn+iuu+5SWlpa/D7JafCGJ7BabggAAC4U86W9s2fP1qFDh7RkyRLV1NRo6tSpWr9+vSZNmiRJqqmpUVVVVXj/YcOGqby8XPfdd5/y8/M1atQo3XbbbXrsscfi9ylOU3JSRyZra2cJVgAAnOYxA+DcRGNjozIzM9XQ0KCMjIy4v///ePpt/XV/g16cm69rp0Sf+wIAAGLT1/Gbe9NISk1OkiSdaKUyAgCA0wgj6gwjx1vbLbcEAAD3IYxISiOMAABgDWFEUmpyRzc0E0YAAHAcYURSWkqwMtJCGAEAwGmEEUl+X3ACaxthBAAApxFG1LUywtU0AAA4jTAiKZXKCAAA1hBGJKWldHTDCeaMAADgOMKIuix6RmUEAADHEUbUZdEzKiMAADiOMCKWgwcAwCbCiFiBFQAAmwgj6lyB9QRhBAAAxxFG1FkZIYwAAOA8woiYMwIAgE2EEXW5mobKCAAAjiOMqHM5eE7TAADgPMKIpFRfRzc0twUUCBjLrQEAwF0II+qsjEgdgQQAADiHMKLOG+VJzBsBAMBphBFJXq9HKT7WGgEAwAbCSFBo3giVEQAAnEUYCeKKGgAA7CCMBKWyCisAAFYQRoLSWIUVAAArCCNB/tAqrC1URgAAcBJhJCgtdOfeNsIIAABOIowEpVIZAQDACsJIUHjOCCuwAgDgKMJIUPhqGiojAAA4ijASxKW9AADYQRgJSk1mBVYAAGwgjASxzggAAHYQRoJCYYTKCAAAziKMBIXmjDQTRgAAcBRhJCg1hcoIAAA2EEaCUn3BFVgJIwAAOIowEpRGZQQAACsII0GpPq6mAQDABsJIUKgywmkaAACcRRgJYtEzAADsIIwEsRw8AAB2EEaCQmHkODfKAwDAUYSRoPBy8G1MYAUAwEmEkaBQZaSlLaD2gLHcGgAA3IMwEhSqjEjMGwEAwEmEkaDUZK88no7fjzFvBAAAxxBGgjweT+edewkjAAA4hjDSxZDgwmfHWtsstwQAAPcgjHQRmsTKaRoAAJxDGOkiVBnhNA0AAM7pVxhZtmyZcnNzlZqaqry8PG3atKlPr9u8ebN8Pp+++tWv9uewCZeW4pNEZQQAACfFHEbWrFmjBQsWaNGiRdq+fbtmzJihmTNnqqqq6qSva2ho0Jw5c3Tttdf2u7GJNiR8moY5IwAAOCXmMPLkk09q3rx5mj9/vqZMmaKlS5cqJydHy5cvP+nrfvjDH+r2229XQUFBvxubaJymAQDAeTGFkZaWFlVUVKioqChie1FRkbZs2dLr61566SV9/PHHWrx4cZ+O09zcrMbGxoiHE9JSmMAKAIDTYgoj9fX1am9vV1ZWVsT2rKws1dbWRn3Nnj179NBDD2nVqlXy+Xx9Ok5ZWZkyMzPDj5ycnFia2W/hyggrsAIA4Jh+TWD1hJYqDTLG9NgmSe3t7br99tv16KOPavLkyX1+/9LSUjU0NIQf1dXV/WlmzIaEJ7AyZwQAAKf0rVQRNHr0aCUlJfWogtTV1fWolkhSU1OTtm7dqu3bt+vee++VJAUCARlj5PP59Oabb+qaa67p8Tq/3y+/3x9L0+KC0zQAADgvpspISkqK8vLyVF5eHrG9vLxchYWFPfbPyMjQjh07VFlZGX4UFxfrK1/5iiorK3XFFVecXuvjbAjLwQMA4LiYKiOSVFJSou9973vKz89XQUGBnn/+eVVVVam4uFhSxymWAwcO6OWXX5bX69XUqVMjXj9mzBilpqb22H4moDICAIDzYg4js2fP1qFDh7RkyRLV1NRo6tSpWr9+vSZNmiRJqqmpOeWaI2eqISx6BgCA4zzGGGO7EafS2NiozMxMNTQ0KCMjI2HHeW37AS1YU6np543SqvlfT9hxAABwg76O39ybpgtO0wAA4DzCSBeswAoAgPMII10MoTICAIDjCCNdpCUzgRUAAKcRRrroPE3DCqwAADiFMNLFEH/wNE1ruwKBM/4iIwAABgXCSBfD/B2naYzhZnkAADiFMNJFWnKSQvf7O8qpGgAAHEEY6cLj8WhocBXWo81URgAAcAJhpJuhwXkjR5upjAAA4ATCSDedlRHCCAAATiCMdDM0OImVOSMAADiDMNJN52ka5owAAOAEwkg3nKYBAMBZhJFuQqdpjhBGAABwBGGkm9BpGu5PAwCAMwgj3XCaBgAAZxFGuhnC1TQAADiKMNLNMK6mAQDAUYSRbpjACgCAswgj3YTmjBzjNA0AAI4gjHTTWRnhNA0AAE4gjHQzNIUb5QEA4CTCSDfDUoOVkROEEQAAnEAY6SY9NVkSE1gBAHAKYaSb9NTOq2naA8ZyawAAGPwII90MC05glaiOAADgBMJIN6nJSUpJ6ugWwggAAIlHGIkidKqm6USr5ZYAADD4EUaiGBYOI1RGAABINMJIFOlc3gsAgGMII1Gk+zsu723kNA0AAAlHGImC0zQAADiHMBJF17VGAABAYhFGokj3czUNAABOIYxEEVoSntM0AAAkHmEkCq6mAQDAOYSRKEITWBsJIwAAJBxhJIrO0zTMGQEAINEII1FkpnWEkYbjhBEAABKNMBLF8GAYaSSMAACQcISRKEKVkcOEEQAAEo4wEsXwIR1h5FhLu1rbA5ZbAwDA4EYYiSI0gVVi3ggAAIlGGIkiyesJrzVy+BhhBACARCKM9CJ0qobKCAAAiUUY6UUmV9QAAOAIwkgvhqelSJIOH2+x3BIAAAY3wkgvwgufMWcEAICEIoz0IjM8Z4T70wAAkEiEkV6wJDwAAM4gjPSicxVW5owAAJBI/Qojy5YtU25urlJTU5WXl6dNmzb1uu8rr7yi66+/XmeddZYyMjJUUFCgN954o98NdsrIIR0TWL88ShgBACCRYg4ja9as0YIFC7Ro0SJt375dM2bM0MyZM1VVVRV1/40bN+r666/X+vXrVVFRoauvvlqzZs3S9u3bT7vxiTRyaEcY+YIwAgBAQnmMMSaWF1xxxRW67LLLtHz58vC2KVOm6JZbblFZWVmf3uOiiy7S7Nmz9bOf/axP+zc2NiozM1MNDQ3KyMiIpbn9VvHpl/r28i2aMCJNb//0GkeOCQDAYNLX8TumykhLS4sqKipUVFQUsb2oqEhbtmzp03sEAgE1NTVp5MiRve7T3NysxsbGiIfTRlEZAQDAETGFkfr6erW3tysrKytie1ZWlmpra/v0Hk888YSOHj2q2267rdd9ysrKlJmZGX7k5OTE0sy4GDmsI4wca2nXidZ2x48PAIBb9GsCq8fjifjbGNNjWzS//e1v9cgjj2jNmjUaM2ZMr/uVlpaqoaEh/Kiuru5PM09Lut+n5KSOz0R1BACAxPHFsvPo0aOVlJTUowpSV1fXo1rS3Zo1azRv3jz97ne/03XXXXfSff1+v/x+fyxNizuPx6ORQ1P0WWOzvjjaouzhaVbbAwDAYBVTZSQlJUV5eXkqLy+P2F5eXq7CwsJeX/fb3/5W3//+9/Wf//mfuummm/rXUgtGDu0IRIeojAAAkDAxVUYkqaSkRN/73veUn5+vgoICPf/886qqqlJxcbGkjlMsBw4c0MsvvyypI4jMmTNHv/rVr/T1r389XFVJS0tTZmZmHD9K/I0c2rHw2RdHmy23BACAwSvmMDJ79mwdOnRIS5YsUU1NjaZOnar169dr0qRJkqSampqINUeee+45tbW16Z577tE999wT3j537lytXLny9D9BAoUrI0eojAAAkCgxhxFJuvvuu3X33XdHfa57wHjrrbf6c4gzApf3AgCQeNyb5iRGBy/v/byJ0zQAACQKYeQkxmSkSpLqCCMAACQMYeQkxqR3zBkhjAAAkDiEkZMYkx6sjDSesNwSAAAGL8LISYzJ6FxnpLU9YLk1AAAMToSRkxg5JEU+b8eS8PVHOFUDAEAiEEZOwuv16KzQvJFGwggAAIlAGDmF0CTWz5g3AgBAQhBGTuGsdC7vBQAgkQgjpzAusyOM1DQct9wSAAAGJ8LIKYwfkSZJOvAlYQQAgEQgjJzC+OHBMHKYMAIAQCIQRk6ByggAAIlFGDmFCcHKSG3jCRY+AwAgAQgjpzB6mF8pSV4FjFTbwOW9AADEG2HkFLxej7KHd1xRw7wRAADijzDSBxNGDJEkVX9xzHJLAAAYfAgjfXD26I4w8smho5ZbAgDA4EMY6YPc0cMkSfvqCSMAAMQbYaQPzhk9VJK093PCCAAA8UYY6YNzzuoII58cOqpAwFhuDQAAgwthpA/GD09TcpJHJ1oDquHuvQAAxBVhpA98SV5NHNkxifXvdUcstwYAgMGFMNJHF4zNkCT9rabRcksAABhcCCN9NGVcuiRpN2EEAIC4Ioz00ZRxHZWR3TVNllsCAMDgQhjpo1AY+fjzI2pua7fcGgAABg/CSB+Ny0zV8CHJagsY/Y3qCAAAcUMY6SOPx6NLc4ZLkrZVfWm3MQAADCKEkRjkTRohSar4lDACAEC8EEZicFkwjGwjjAAAEDeEkRhMmzBcSV6PDjacUPUXx2w3BwCAQYEwEoOhfp8umzhckrTho8/tNgYAgEGCMBKjb55/liRpI2EEAIC4IIzE6JuTO8LIlo8Psd4IAABxQBiJ0cXjM5WV4deR5jZt+qjednMAABjwCCMx8no9uvHicZKk379/0HJrAAAY+Agj/XDzJdmSpDd2fqbGE62WWwMAwMBGGOmHyyYO1+SsYTre2q5XKvbbbg4AAAMaYaQfPB6P7rhikiRp5ZZP1NYesNwiAAAGLsJIP/3PvAkaMSRZnxw6pv/D3BEAAPqNMNJPQ/0+zZ9xjiTpl298pOMtXOYLAEB/EEZOw13TczV+eJoOHD6upf/3I9vNAQBgQCKMnIa0lCQtnnWhJOn5jXtZIh4AMGAYY9TSFtCxljY1HGu1upCnz9qRB4mii8bqO1/L0er3qvWj31Ro1fwrdOnEEbabBQBIoEDAqDUQUFu7UVu7UUt7QG3Bv1vbA2oLdAz0bQGjtvaAWtuN2gIBtYZ+D/4dfZ/ge7R3HqPzdR37d/wd2ie4PUo7Qq/puY9Re8BEfKZnbr9MN10yzkp/Ekbi4NH/cZEOHD6uTXvqdefK97T8jjwVnDvKdrMA4IzUHugcsEODcPTBt3Pg7Ry8TY9Bv/tA3THAh/bpHgI6B+auxz1lCOjWrm7j+KDQFrB3ZajHGHPGd2ljY6MyMzPV0NCgjIwM282J6mhzm7774v/T9qrD8nqkkusn639981yl+DgTBiB+2nt8Kz7ZoNnL4Bs4+bfz2EJA5Lfznu0KvU9nOwbjQC5JyUke+bxe+ZI8Sk7yhv9OTvLIl+SVz+tRiq/jpy/4fHKSN2KfZG9wW/i5ju0pofdI8ig5yjE6/+59n/Axur131789Hk9c+6Sv4zdhJI6Ot7Rr0Ws79Mq2A5KkSaOG6IFrz9dNl4yT35dkuXWAuxnTUZbu/k062rfkHt/O+1g+D5fCo3w7jwwBJyvjn/zb+pn/f+z+SQkOor5ug3Fvg2ZyeH+vUnxdBmSvV8k+Ty8DfGhgDg3wwfcI7hNtoE4Jt6XzGCnB9+o66CdiIB8MCCOWGGP06vYDKvvD3/R5U7MkafSwFN18Sbaum5Kly3NHUi3BgGOMCQ6apx6oIwbb0PMRg373c989vzlHG/SjfTtv7fIe0UNAZBl/MPJ41DEAd/nWGzlo9vVbcWif0ADfZR+vR8m+yBDQY9A/yUAd/nbeyzf/JAbyQYswYtnR5jat3PKJ/vc7n6q28UR4+9CUJH114nBdmjNCU8dn6rwxwzRp1BAlJxFQBitjzEm+Ufcsh0fs2+351m4T0VoDAbW2mR7fuKOXz/v27by3Ng1GXo+6fSvuHJA7Bvju35wjv61HfoPva4m+85t21BK9L8o3/3A7ug/wXiV5GcRx5iKMnCFa2wPa8OHn+uPuz/TH3XWqP9LcYx+f16NJo4Zo/IghGpvh19iMVI3NTNNZ6X5lpPqUOSRZGanJykhL1tCUJNd8gwh9G28PRA7k4ZJ4P8+PR3wTj3iPnoN1a8Cote0UgSE8oz64f7cg0X3G+mCR5PVEGTRPfV47emm8++DdtxJ9r+fMT/YNvsvzDORAYhFGzkCBgNHfaptUWX1Y26q+1N9qG/Vx3VEdb+37td1ej5SemqzUZK/8viT5fV75u/7u6yivJnk98npCD8nr7fw9VBL1ehTexxijgJGMjIxRcIJZ6PeOn0bq+GlM8PeO17Qbo/b2UHDoHIAjf3YM0O09ngt0/t0euX2QjuGSFBxgQwNl92/C0SeihSexeSNL3H2Z3NZZou8+eEf5dt7boO+N/HbuZSAHcAoJDSPLli3Tv/3bv6mmpkYXXXSRli5dqhkzZvS6/4YNG1RSUqKdO3cqOztb//zP/6zi4uI+H2+whJFoAgGj2sYT+vjzI6ppOKHahhOqbTyhzxpOqP5Is5pOtKnxRKsajrcO2lJ5LDweBQfG/p8f93kjy/E9BuuIffs+0S303hGT6aJMhGOiGwC36Ov4HfM6I2vWrNGCBQu0bNkyTZ8+Xc8995xmzpypXbt2aeLEiT3237dvn2688Ub94Ac/0G9+8xtt3rxZd999t8466yx9+9vfjvXwg47X61H28DRlD0876X7GGDW3BdRwvFVNJ1p1ojWg5raAmtva1dzWcWlec1tAza0dfweMUSBg1G5CFQyj9oDC2wPBikfo4fV45FHHHYk9HsmjjsqJxxO5zePpqM6Efvd4POEJaOGfSR4leb09t3u9XZ6Psj3i9Z3bu54OoKwOAINPzJWRK664QpdddpmWL18e3jZlyhTdcsstKisr67H/T3/6U61bt067d+8ObysuLtZf//pXvfPOO3065mCujAAAMFj1dfyO6RKOlpYWVVRUqKioKGJ7UVGRtmzZEvU177zzTo/9b7jhBm3dulWtra1RX9Pc3KzGxsaIBwAAGJxiCiP19fVqb29XVlZWxPasrCzV1tZGfU1tbW3U/dva2lRfXx/1NWVlZcrMzAw/cnJyYmkmAAAYQPq1uEX3yXfGmJNOyIu2f7TtIaWlpWpoaAg/qqur+9NMAAAwAMQ0gXX06NFKSkrqUQWpq6vrUf0IGTt2bNT9fT6fRo2KfjM5v98vv98fS9MAAMAAFVNlJCUlRXl5eSovL4/YXl5ersLCwqivKSgo6LH/m2++qfz8fCUnJ8fYXAAAMNjEfJqmpKREL7zwglasWKHdu3dr4cKFqqqqCq8bUlpaqjlz5oT3Ly4u1qeffqqSkhLt3r1bK1as0IsvvqgHH3wwfp8CAAAMWDGvMzJ79mwdOnRIS5YsUU1NjaZOnar169dr0qRJkqSamhpVVVWF98/NzdX69eu1cOFCPfPMM8rOztZTTz3FGiMAAEASy8EDAIAEScg6IwAAAPFGGAEAAFYRRgAAgFWEEQAAYBVhBAAAWBXzpb02hC744YZ5AAAMHKFx+1QX7g6IMNLU1CRJ3DAPAIABqKmpSZmZmb0+PyDWGQkEAjp48KDS09NPekO+WDU2NionJ0fV1dWsX5Jg9LUz6Gdn0M/OoJ+dkch+NsaoqalJ2dnZ8np7nxkyICojXq9XEyZMSNj7Z2Rk8A/dIfS1M+hnZ9DPzqCfnZGofj5ZRSSECawAAMAqwggAALDK1WHE7/dr8eLF8vv9tpsy6NHXzqCfnUE/O4N+dsaZ0M8DYgIrAAAYvFxdGQEAAPYRRgAAgFWEEQAAYBVhBAAAWOXqMLJs2TLl5uYqNTVVeXl52rRpk+0mDSgbN27UrFmzlJ2dLY/Ho9deey3ieWOMHnnkEWVnZystLU1XXXWVdu7cGbFPc3Oz7rvvPo0ePVpDhw7Vt771Le3fv9/BT3FmKysr09e+9jWlp6drzJgxuuWWW/Thhx9G7EM/x8fy5ct1ySWXhBd+Kigo0B/+8Ifw8/Rz/JWVlcnj8WjBggXhbfRzfDzyyCPyeDwRj7Fjx4afP+P62bjU6tWrTXJysvn1r39tdu3aZR544AEzdOhQ8+mnn9pu2oCxfv16s2jRIrN27Vojybz66qsRzz/++OMmPT3drF271uzYscPMnj3bjBs3zjQ2Nob3KS4uNuPHjzfl5eVm27Zt5uqrrzbTpk0zbW1tDn+aM9MNN9xgXnrpJfPBBx+YyspKc9NNN5mJEyeaI0eOhPehn+Nj3bp15r//+7/Nhx9+aD788EPz8MMPm+TkZPPBBx8YY+jneHv33XfN2WefbS655BLzwAMPhLfTz/GxePFic9FFF5mamprwo66uLvz8mdbPrg0jl19+uSkuLo7YdsEFF5iHHnrIUosGtu5hJBAImLFjx5rHH388vO3EiRMmMzPTPPvss8YYYw4fPmySk5PN6tWrw/scOHDAeL1e8/rrrzvW9oGkrq7OSDIbNmwwxtDPiTZixAjzwgsv0M9x1tTUZM4//3xTXl5urrzyynAYoZ/jZ/HixWbatGlRnzsT+9mVp2laWlpUUVGhoqKiiO1FRUXasmWLpVYNLvv27VNtbW1EH/v9fl155ZXhPq6oqFBra2vEPtnZ2Zo6dSr/HXrR0NAgSRo5cqQk+jlR2tvbtXr1ah09elQFBQX0c5zdc889uummm3TddddFbKef42vPnj3Kzs5Wbm6uvvOd72jv3r2Szsx+HhA3you3+vp6tbe3KysrK2J7VlaWamtrLbVqcAn1Y7Q+/vTTT8P7pKSkaMSIET324b9DT8YYlZSU6Bvf+IamTp0qiX6Otx07dqigoEAnTpzQsGHD9Oqrr+rCCy8M/8+Xfj59q1ev1rZt2/Tee+/1eI5/z/FzxRVX6OWXX9bkyZP12Wef6bHHHlNhYaF27tx5RvazK8NIiMfjifjbGNNjG05Pf/qY/w7R3XvvvXr//ff19ttv93iOfo6Pr3zlK6qsrNThw4e1du1azZ07Vxs2bAg/Tz+fnurqaj3wwAN68803lZqa2ut+9PPpmzlzZvj3iy++WAUFBTr33HP1H//xH/r6178u6czqZ1eephk9erSSkpJ6pLu6uroeSRH9E5q1fbI+Hjt2rFpaWvTll1/2ug863HfffVq3bp3+/Oc/a8KECeHt9HN8paSk6LzzzlN+fr7Kyso0bdo0/epXv6Kf46SiokJ1dXXKy8uTz+eTz+fThg0b9NRTT8nn84X7iX6Ov6FDh+riiy/Wnj17zsh/z64MIykpKcrLy1N5eXnE9vLychUWFlpq1eCSm5ursWPHRvRxS0uLNmzYEO7jvLw8JScnR+xTU1OjDz74gP8OQcYY3XvvvXrllVf0pz/9Sbm5uRHP08+JZYxRc3Mz/Rwn1157rXbs2KHKysrwIz8/X3fccYcqKyt1zjnn0M8J0tzcrN27d2vcuHFn5r/nuE+JHSBCl/a++OKLZteuXWbBggVm6NCh5pNPPrHdtAGjqanJbN++3Wzfvt1IMk8++aTZvn17+PLoxx9/3GRmZppXXnnF7Nixw/zTP/1T1EvHJkyYYP74xz+abdu2mWuuuYZL9Lr40Y9+ZDIzM81bb70VcYnesWPHwvvQz/FRWlpqNm7caPbt22fef/998/DDDxuv12vefPNNYwz9nChdr6Yxhn6Olx//+MfmrbfeMnv37jV/+ctfzM0332zS09PDY9yZ1s+uDSPGGPPMM8+YSZMmmZSUFHPZZZeFL5dE3/z5z382kno85s6da4zpuHxs8eLFZuzYscbv95tvfvObZseOHRHvcfz4cXPvvfeakSNHmrS0NHPzzTebqqoqC5/mzBStfyWZl156KbwP/Rwfd911V/j/B2eddZa59tprw0HEGPo5UbqHEfo5PkLrhiQnJ5vs7Gzzj//4j2bnzp3h58+0fvYYY0z86y0AAAB948o5IwAA4MxBGAEAAFYRRgAAgFWEEQAAYBVhBAAAWEUYAQAAVhFGAACAVYQRAABgFWEEAABYRRgBAABWEUYAAIBVhBEAAGDV/wdMZ/hPXdwyMgAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.plot(range(501), img_qual_callback.metrics_store['global_MSE'])" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 32, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAh8AAAGdCAYAAACyzRGfAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABmgUlEQVR4nO3dd3zb9Z0/8NdXe1iWpyzv2LGzB1kkYSVhpORKeoy7FspxpJMyUrh0Ar+W0PYIdHDQg9KWtpDeQcNxzCs0JIyEQggJGWQ520ns2PK29tb398dX+tqy7BAnGrb1evL4PiR/9ZX01TcmeuX9WYIoiiKIiIiI0kSR6RMgIiKi7MLwQURERGnF8EFERERpxfBBREREacXwQURERGnF8EFERERpxfBBREREacXwQURERGmlyvQJDBSJRNDS0gKTyQRBEDJ9OkRERHQWRFGE0+lEWVkZFIoz1zZGXPhoaWlBZWVlpk+DiIiIzkFTUxMqKirOeMywwsdTTz2Fp556CidOnAAATJ06FT/+8Y+xbNkyAFLqefDBB/H73/8ePT09mD9/Pp588klMnTr1rN/DZDLJJ5+bmzuc0yMiIqIMcTgcqKyslL/Hz2RY4aOiogIPP/ww6urqAABr167FP/7jP2LXrl2YOnUqfv7zn+PRRx/Fs88+iwkTJuBnP/sZrrrqKhw6dOisTgaA3NSSm5vL8EFERDTKnE2XCeF8F5YrKCjAL37xC3z1q19FWVkZ7rnnHvzgBz8AAPj9fpSUlOCRRx7Bbbfddlav53A4YDabYbfbGT6IiIhGieF8f5/zaJdwOIx169bB7XZj4cKFaGxshM1mw9KlS+VjtFotFi1ahC1btgz5On6/Hw6HI24jIiKisWvY4WPv3r3IycmBVqvFt771LbzyyiuYMmUKbDYbAKCkpCTu+JKSEvmxwaxZswZms1ne2NmUiIhobBt2+Jg4cSJ2796NrVu34vbbb8ett96KAwcOyI8PbOsRRfGM7T/33nsv7Ha7vDU1NQ33lIiIiGgUGfZQW41GI3c4nTt3LrZv347HH39c7udhs9lQWloqH9/e3p5QDelPq9VCq9UO9zSIiIholDrvGU5FUYTf70dNTQ2sVis2btwoPxYIBLB582ZcdNFF5/s2RERENEYMq/Jx3333YdmyZaisrITT6cS6deuwadMmrF+/HoIg4J577sFDDz2E+vp61NfX46GHHoLBYMCXv/zlVJ0/ERERjTLDCh9tbW245ZZb0NraCrPZjBkzZmD9+vW46qqrAADf//734fV6cccdd8iTjG3YsOGs5/ggIiKise+85/lINs7zQURENPqkZZ4PIiIionPB8EFERERpxfBBREREaTXseT5olPA5gN6TgLsT8HRJm98BhAJA2A+Eg4CgAFRaQKkFVBpAbQAMhYCxuG8zFAIKZlQiIkoeho/RLhwEbHuA0zuBlt1A52Gg+zjg6UzO66t0QF41UFAD5NdItwXjAcskILccOIvVC4mIiPpj+BiNvL3Awb8Ch98Cjr0HBJyDH2coBHJKpFtDAaAzR6scWkCpBiJhIBwAQn7pNuAC3F2Au0MKL55uIOQDOg9J20DaXMAyObpNkW6t0wF9fko/PhERjW4MH6OFKAIntwA71wIHXpNCQYwuDyifA5TPBkqmAgW1UpVCd55DlcNBwN4M9DQC3Y19t11Hpc3vAJo+lrb+8scBZbOA0guAsguA0pkMJEREJOM8H6NB4/vAew8Bpz7q22eZAkz+AlC/VPqiT3e/jFBACiDtB4D2Bmlr2wv0nhr8+PwaKYiUzQLK50q3GkNaT5mIiFJnON/fDB8jWfdx4I3vAMfelX5WaoGZNwKzb5WqHCOxv4WnG2jdLfU/id32nkw8TlAC1mlAxYVAxTygcp4UUEbiZyIios/E8DHahUPA1ieB99YAIS+g1EiB49JVQG5Zps9u+PoHkpadQPMngLM18ThDUV8QqZgHlM0GtDnpPlsiIjoHDB+jmaMFePErQNNW6eeay4BrHgMKx2f0tJJKFKW+JM3b+7bWT6VOr/0JCsAyVQojlfOlQFJQy+oIEdEIxPAxWp3aCqy7WRppos0Frn4YuODL2fFlG/RJQ4abtwNN26TqiKM58ThDkRREYoGkbBag1qf/fImIKA7Dx2h04DXgpW9IE4CVTAe+uHZsVTvOhaMlGkSigaR1d2J1RKECrDOAyguj23zAXJGR0yUiymYMH6PNp+uAV74FQAQm/gNwwx85EmQwQZ/UPNO8LTrEdxvgaks8zlQWH0asM6QZXImIKGUYPkaTvf8LvPwNQIxInUqv+Q9Aocz0WY0OoigN7W3e3hdGbHsBMRx/nFIrNc/IfUcuBEwlmTlnIqIxiuFjtDi+CfjvG4BICJj9r8A1j3MdlfMVcEtTzTdvk8JI0zbA2514XF51tO9ItEJimQooOeceEdG5YvgYDToOAX+4CvDbgWn/BFz/NINHKogi0HVMqozEAkl7A4ABv/ZqozR3SmxUTflsIMeSkVMmIhqNGD5GOr8T+N0ioPuY9GX3r68Dal2mzyp7+OzSaJpYc03zJ9JU8QPllkdnZJ0t3ZbN4jTxRERDGM73N+vM6SaKwF9XScEjtwK48XkGj3TTmYG6K6QNkBbY6zjU12/k9A5pdWDHaWk7+Ne+5xbURoPIbCmUWGdwIjQiomFi5SPddj0HvHaHNL34V94EqhZk+oxoMH6nNLLm9E6gZZc0M2vPicTjBAVQNLFfdWS2NG28Spv2UyYiyiQ2u4xUjhbgyflSif/y/wdc9r1MnxENh6e7L4i07JaCibMl8TiFGiiZEl3ZdyZgnSn9zMnQiGgMY7PLSBRrbvE7gPI5wCWrMn1GNFyGgvjmGgBw2qRAcnqnFEpO75RG17R+Km0xghIonhgNIzOit9MB3RgL2EREZ4GVj3TZ/wrw4grpX8Xf+jtgmZzpM6JUiM090rKzL4C07pGmzB9MQW1fGCmdIVVJcorTe85EREnAysdIE/AAb/0/6f6l32HwGMsEAcivlrap10n7RFFqcrPt6Qsjtj2AvQnoPi5tB17tew1TmRREYlWSkqnSvCQcik1EYwTDRzps+U9pkTRzJXDJPZk+G0o3QQDM5dI2cVnffndXXyCJ3XYdk/qROFuAw+v7jtXkAJYpUt+RkmlSILFMAfR5af84RETni+Ej1RwtwAf/Id2/6kF2OqQ+xkJg/BJpi/E7Adu+aBjZA9g+lYYBB1zSJGnN2+JfI7dCCiL9t8I6QKlO72chIhoGho9Ue/+XQMgrTSY29fpMnw2NdFoTUL1Q2mLCQaki0rYPaD8AtO2XNnuTVFFzNANH3uo7XqmROreWTJOqI5bJQPEkabVfQUj/ZyIiGoDhI5V6m4Cdf5buX/4j/sVP50apBiyTpK0/b298GGnbL/0ccEkL7Nn2xh+vyZFCSfFk6dYSvTVX8neTiNKK4SOV/v5LIBIExl0K1Fya6bOhsUafB1RfJG0xkQjQe7JfKNknNdt0HZVCyekd0tafJgcomtBXISmOBp3cCnZyJaKUYPhIFUcLsOu/pftL7svsuVD2UCiAghppm/T5vv2hgDSqpqNBCiPtDfGhpCU6T0l/amO0UhINI8X9KiUMJUR0Hhg+UmXb00AkBFQN+JcpUSaoNIM33YSDUiiJhZFYOOk8AgTdg4cSlV7q1FpUL1VMYreFdYDGkL7PRESjFsNHKgQ8wI5npPsL78jsuRCdiVIdrW5MjN8fDgLdjYNUSo5IHajb9krbQOaqxFBSNAHIsbBfCRHJGD5SYc8LgLcHyKsCJv5Dps+GaPiUaqB4grT1Fw5JfUo6j0gr/3Yejt4/JP3O209J27F34p+nNQ8eSgpqOCyYKAsxfCSbKALbfi/dn/8tQKHM7PkQJZNSBRSOl7aJV8c/5u7qF0gO9wWU3pOA3w6c/kTa+lOogPyaaBipk5puCsZLt6yWEI1ZDB/J1rJLGmmg0gEX3JzpsyFKH2MhYBwwRwkABH1Sv5L+gaTriHQ/4JLudx0BDg14PY0pGnTq4m8LxnNmV6JRjuEj2T79i3Q76Rr+BUkEAGpddFr4KfH7RRFwtkphpOOwNPKm6yjQfUxanC/gBFp3S9tAxuK+CokcTOqkZhzOIkw04jF8JFPID+x9Ubp/wU2ZPReikU4QgNwyaatdHP9YyA/0nOgLJF1Hga7j0q3LBrg7pK1p68AXlWZyjQsk0WaivGqp2YiIMo7/JybT4bekTnemUqB2yWcfT0SDU2kHH4UDSOvfdB2LVkmO94WTzqNS3xJ7k7Qd3xT/PIUKyB8HFNQmbnlV7PhKlEYMH8m05wXpdsaX2NGUKFW0JqDsAmnrTxQBT1c0jBzrVzE5JoWUkLdv30CCEsirHCKYVEtNR0SUNAwfyRLwAEejwwun3ZDZcyHKRoIAGIukrWpB/GORCOA4LYWQuK2xL5j0nJC2Y+8OfGGpKaegJjGY5I8DNMb0fD6iMYThI1mOvyf9BZZXBVinZ/psiKg/hUKqbORVArWL4h8TRcBpGySYRMNJwNnXlNP4fuJrm0qjYSQaTvL7hRRdbno+H9Eow/CRLA1/lW4nXcO5CYhGE0EAckulbdzF8Y+JIuDuHCKYHAN8dmnEjrMVOPlh4msbivqCSV61VCnJHwfkV0uhhc2zlKUYPpIhHAIO/026P+mazJ4LESWPIAA5xdJWNT/xcU93X9NNbOuJ/uzuADyd0ta8LfG5So20SF8sjOSP6xdQqgF9foo/HFHmMHwkw6kt0igXQyFQOchfUEQ0NhkKpK1iTuJjPocURLqOSX1Jek9G+5WclJpwwgGpetJ9bPDX1pkTqyX544C8cVLzkUqbqk9FlHIMH8lw+C3pdsLVnEeAiCS6XKB0prQNFA4Bzpa+MDIwnLjbpSYd2x5pSxCdIyVWLcmrlPqbmaP9WnIrpJWMiUYoflMmQ+Nm6Xb85Zk9DyIaHZQqKSzkVQE1gzwecEuzvA4VToJuafSO4/TgfU0gSH1K8iqjgaQqer+qb5/GkNKPSHQmDB/ny90F2KJLi9csOvOxRERnQ2MELJOlbaBYJ1g5jJyQmnF6m6TAYm8CQj6psuJsAZo+Hvw9DEUDwkm/ykleldTsQ5QiDB/nK1b1sEyVOqUREaVS/06wFXMTH4+FE/spKYz0NiWGE7+jrzNsy67B30drTmzO6X9rKJKGMBOdg2GFjzVr1uDll1/GwYMHodfrcdFFF+GRRx7BxIl9UyCvWLECa9eujXve/PnzsXXrwDUYxohY+Bg4dwARUSb0Dyflg3SEBQBvbzSQ9A8np/rCiadLmqq+zQ607Rv8NZQaILdcmoAtdmsul4JJbrl0n9UTGsKwwsfmzZtx5513Yt68eQiFQrj//vuxdOlSHDhwAEZj3yx/V199NZ555hn5Z41mDHd8Oh4NH2xyIaLRQp8nbUNNiBhwx4eSgUHFaZNG6/Q0SttQtLl9QcRcIXWEjYWU3OjGqeuz0rDCx/r16+N+fuaZZ2CxWLBjxw5cdtll8n6tVgur1ZqcMxzJek9J/+MJSqD6okyfDRFRcmiMgGWStA0mHJQmVrM3A/bTgKO57769WfrZ2yM173Q4gI6God/LWNyvclIxoJJSAeSUcDK2Mei8+nzY7XYAQEFBQdz+TZs2wWKxIC8vD4sWLcK///u/w2KxDPoafr8ffr9f/tnhcJzPKaXXyS3SbdksTqNMRNlDqe7rpDqUgDsxmMTdPw0EPdJkbO4OoHX34K+jUEkjd3LLpeHFsU3eVwrkWDm0eJQ55/AhiiJWrVqFSy65BNOmTZP3L1u2DP/8z/+M6upqNDY24kc/+hEuv/xy7NixA1pt4qQ4a9aswYMPPniup5FZzdulW04sRkQUT2MEiidI22BEUaqO2KOBxHE68b6jBYiE+tbWOROjJTpNfnk0mPQPKmXSY1pT8j8nnRNBFEXxXJ5455134o033sAHH3yAioqKIY9rbW1FdXU11q1bh+uvvz7h8cEqH5WVlbDb7cjNHeHVhN9dBrR+CvzTM8C0xM+WKZ6gB13eLriCLnhCHriDbnhCHgTDQQCAIAhQQAGFoIBBbUCuJlfatLkwa8xQK9UZ/gRERAAiYcDV1hdIHC3S5myNvx8OnN3raXMHCSb9Kii55dJM1Vyf65w4HA6Yzeaz+v4+p8rHypUr8frrr+P9998/Y/AAgNLSUlRXV+PIkSODPq7VagetiIx4AQ9gi/YCr5iX9rf3BD040HUAx+3Hpa33OFrdrejwdsAddJ/z6woQUKQvQmlOKcqMZSjNKUVNbg3G543H+LzxMKq5fDgRpYlC2RcShiKK0ugcx2nA0SrdOlsH3G+R+p/Ets5DQ7+eUgOYrNEKilUKJzkl0ftWqYnHZJVG8jCknLNhhQ9RFLFy5Uq88sor2LRpE2pqBpuaL15XVxeamppQWlp6zic5IrXuBsSw9ItoPnMASwZRFLGvcx/eOfUOttu240DXAYTE0JDH61V6mNQmGNQGaVMZoFFqIIoiYv9FxAhcARecASccAQecASdEiOjwdqDD24E9HYnTOpcaS1GbV4sJeRMwpWgKphZORUVOBQT+T0hEmSAIgLFI2gabyj7G75QCibMlMZjENneHVEWJDTs+E5UuGkpKAVNJXygZGFL0+QwpgxhW+Ljzzjvx/PPP47XXXoPJZILNZgMAmM1m6PV6uFwurF69GjfccANKS0tx4sQJ3HfffSgqKsJ1112Xkg+QMbH+HhVzU/qL1eZuwwuHXsCbjW/itOt03GMWgwUT8idgvHk8avNqUWmqRLG+GMWG4nOqUETECHp8PbC5bWhxt6DF1YLTrtM4bj+OY73H0OntRKu7Fa3uVnx4um9K51xNLqYWTsXUoqmYVjgNMy0zUaQvOu/PTkSUNFoTUGwaug8KAIQCgMvWF05cbVJAcUZvXW3SMGNfrzSLbO9JaTsTpSYaREr6hZJoaOkfWPQFWTVp27D6fAz1r9tnnnkGK1asgNfrxbXXXotdu3aht7cXpaWlWLJkCX7605+isrLyrN5jOG1GGfXCLUDD68CVDwKX3JP0lz/ScwR/2PsHbDixQa5w6FV6LKpYhEvKL8Fc61yU55Qn/X3PxO6341jvMRztPYpD3Yewv2s/DvUcQiiSWIGpNFVilmUWZltmY5ZlFmrMNayOENHYEPT2BRGnLT6kuGx9+73dZ/+aCjWQY5GGHueUSJPEGS1993NKoj9bRmyTz3C+v8+5w2mqjJrw8avJUvluxZvAuIuT9rJd3i48uftJvHTkJUTECABgTskc3DjpRiyqWAS9Sp+090qGQDiAI71HsL9zPw50HcCezj042nMUIuJ/rcxaM2YVz8Jc61wsKF2A+vx6KITsSflElIVC/mgw6V85GSSkeDqH97pKbWJQ6R9Ocix997WmtAUVho9Uc7QCj04CBAVwb7M0pOw8iaKIV46+gl9s/wVcQRcA4IqqK/CNGd/A1MKp5/366eQIOLCnYw92tu3E7o7d2NuxF76wL+6YfG0+5lnnYX7pfMwvnY8qUxUrI0SUnUIBwN0uhRNXh3Trbgdc/bbYz/5hzoWl0vULI/2DSjEw5yvSCstJwvCRaoc3AM//M1A8CbhziBUjh8ERcOBHH/wI7za9CwCYXDAZ35v3Pcyzpn8UTSoEw0E0dDdgZ9tOfGz7GDvadsAb8sYdYzVacaH1QiwoXYD5pfNhMQw+KR0RUVYLeqWOsXIwaYv+3JYYVAKuoV9HoQZ+1JHUqkjKh9pmvba90m3JtDMfdxYa7Y349rvfxgnHCagUKnx71rfxr1P+FcpzmE7YGwij0+WH3RuEwxdE/1ipEASYdCrk6tQw6VQw69VQKNJTaVAr1ZhRPAMzimdgxbQVCIaD2Ne1D1tbt+Lj1o/xacensLlteP3Y63j92OsAgPHm8VhYthALyxZiTskcDvElIgIAtf6zZ5eNCXgGVFD6BZVwMKP9Rlj5OBcvfgXY/zJw5Wrgkn8755fZ27EXt719G5wBJ6xGKx5f8jimFE45q+c6fUFsP9GNrce78WlTL050udHm8H/2E6M0SgVK83QoM+tRka/HRKsJk0tzMclqQmFOeudd8Ya82NW2Cx/bPsbW1q1o6GqI6zOiElSYUTwDC8oWYGHpQkwrmgaVgrmZiGgkYbNLqj0xD+g8DNz8ElB/5Tm9xK72Xbj97dvhDroxo2gGHr/88c8cnhoMR7B+nw0v72zG+0c6EY4k/tHp1AqY9WqYdGqo+lU2AuEIXL4QnL4QvMHwGd+nzKzDhTUFuLCmEBfWFGB8sTGt/TF6fb3YZtuGj1o/wkctHyUMMc5R52CedR4WlC7AwrKFGJc7jv1FiIgyjOEjlYJe4KEyQIwA3zkkjc8epkPdh7Bi/Qq4gi7Ms87DE5c/AYPaMOTxvmAY/731JP74QSNa7X0dN6sLDVhYW4i546SAUFNkRJ7hsxdXCoYjaHP40NLrw+leD052eXCw1YkGmwMnuzwJxxflaHBJXREWT7TgsgnFKDCmdwGnJmcTPmr5SG6mcQTiO1xZjVYpiJQuxPzS+SjUF6b1/IiIiOEjtU7vAJ6+HDAUAd87Ouw2s1ZXK/7lzX9Bu7cdsy2z8durfjvk8FlRFPHmXhseXt+Apm6pg2axSYsb51Xi2lnlGF+cc94fZyCXP4RPm3rxcWM3tjV2YdepXvhDEflxQQBmVuRhyUQLFk8sxvRyc9r6jgBAOBLGwe6D+Kj1I2xt2Yqd7TsRjATjjpmYP1GuiswumT3ihicTEY1FDB+ptGMt8H/fBmoXA//62rCe6gv5cMvfbsHB7oOoy6vDs1c/C7PWPOixLb1efO9/P8WHR7sAACW5WvzblRNw3exyaFXD74x6rvyhMHad6sXmwx1472A7DtqccY8X5Whx1RQLlk6xYuH4QujU6Ts3oK+/SKyJ5lBP/JoNaoUasyyzsLBsIeZb52NS4SSoFVw4j4go2Rg+UunN7wHbfg8svAv43L+f9dNEUcSPt/wYrx59FfnafLxwzQsozRl8vZvXP23B/3tlLxy+EHRqBW67bDxuW1QLgybznSxb7V5sPtSBTYc68MHRTrj8fbObGjVKLJ5owVVTSrBkogVmQ/q/5Lu8Xfi4Veq4+lHrR7C5bXGP61V6zCiegTmWOZhdMhszimewMkJElAQMH6n0p2XAqS3Adb8DZt541k979eir+NGHP4JCUOB3V/0OC0oXJBwTDEew+vX9eO5jaUGjmZV5+I8vzkRtCppXkiEQiuDjxi5s2N+GjQfaYHP09UdRKQQsqC3E0qkluHJyCcry0v8FL4oiTjpOylWRHW07EvqLqAQVphROweyS2ZhtmY3ZJbOHrEYREdHQGD5SRRSBR6oBnx341geAdfpZPa3F1YLrX78e7qAbK2etxDdnfDPhGLsniDue34EPj3ZBEICVl9dj5eV1UCtHxxTkoihi72k7Nuxvw4YDNhxui5/cZnq5GUunlOBz06yot+RkZHRKRIzgaO9R7GrbhR3tO7CzbSfaPG0Jx9Xl1WG2ZTYusFyAC4ovQIWJq/YSEX0Who9UcbUDv6wHIAD32wC17jOfEhEj+PqGr2O7bTsuKL4Az179bMIEYqd7vbjlDx/jeKcbRo0Sj984C1dOKUnRh0iPE51ubDwgBZFPTvbETXhWU2TE0iklWDrVilmVeWntsNqfKIpocbdgZ9tO7GjbgZ3tO9Fob0w4rkBXgBnFMzCzeCZmFs/EtKJpbKohIhqA4SNVTnwAPPt5IH8ccPenZ/WUlw6/hNUfrYZepcdLy19CZW786r7NPR7c9PRWNHV7UZ6nxx9unYvJpSPsc5+nTpcf7zS0YcP+Nvz9aCcC/UbPWExaXBUNIgtrC6FRZbbS0+3rlisjn7Z/igPdBxJW7VUJKkwomCCHkZnFM1GeU87qCBFlNYaPVPnkT8Bf/w2oXwrc/OJnHt7r68XyV5ej19+L78/7Pm6Zckvc4/2DR3WhAeu+uQCl5rH9L2qXP4TNhzqw4YAN7za0w9mvw6pJp8Llkyz43FQrFk0ohlGb+Q62/rAfDV0N+LTjU2lr/xTt3vaE4wp1hVIQsczEBcUXYErhFOhUn10ZIyIaKxg+UuVvPwQ+fuqsR7o8+NGD+N/D/4v6/Hr8zzX/EzcleLc7gOt+8yFOdnkwrtCAv2RB8BgoEIrgo+NdeGu/DRsPtKHD2Tc9vEalwKV1RfjcVCuumGxJ+5TvQxFFEa3u1rgwcrD7IEJiYnVkUsEkzLTMxIyiGZheNJ19R4hoTGP4SJX/uh449g6w/NfAnFvPeOjhnsP4p9f/CSJEPHv1s5hTMkd+zB8K41/+8DG2n+hBZYEe/3PbwqwLHgNFIiJ2NfViw34b3tpvw4l+M60qBGDuuAJ8bqoVS6eUoLJg6NlgM8EX8uFA14G+QNLxKTq9nQnHmbVmTCuahmmF0zC9aDqmFU3jbKxENGYwfKTKf0wH7KeAr6wHqhee8dC7370b7za9i6uqr8Kjix+V94uiiFX/8yle2XUaJp0Kr9xxEeosplSf+agiiiIOt7nw1n4bNhywYd/p+OGxU8tysXSKFZdPsmBqWW7GOqwORRRFnHadloPIvs59ONh9MGEmVgAoM5ZhWlFfGJlSOOWMU+0TEY1UDB+pEPAAD0UnBfveccA49L9Y93fux41v3AiFoMArX3gFtXm18mNPbTqGR9YfhFIhYO1XLsQl9WdeTI6kvjEb9rfhrf02bD/Rjf7r6RXlaHBZfTEWTSzGJXVFI6Z5ZqBAOIDDPYexr3Mf9nbuxb7OfWi0N8at3gsACkGBWnOtHEamF01HXX4dZ2UlohGP4SMVWj8FfncZoC8AfpA4HLO/29++HR+c/gDLa5fjoUsfkvdva+zGjb//CBER+Nm10/AvC6pTfdZjTpfLj3cOtmPjgTZsOdoJd6BvhV5BAGaUm7FoghRGZlbkQTWC50lxBVw40HVADiN7O/cOOu+IVqnFxIKJmFIwBVMKpa02r5aBhIhGFIaPVNj7v8BLXwOqFgJfXT/kYcd6j+Ha166FQlDg/679P1TlVgGQOpj+w+N/h83hw/WzyvGrL85k58PzFAhFsONkDzYf7sD7hztwoDW+eSZXp8KC2kIsHF+Ii8YXYUJJZiY3G44OT0dcdWRf1z44A86E49QKNSbkT8DkwslSICmYgrr8OmiVI7PyQ0Rj33C+vzM/lnG06Dws3RbVn/Gwvxz8CwBgccViOXgAwI9e2webw4faIiN+eu20Ef8lOBpoVAosHC+Fix8um4R2hw/vH+nE5sMd+PuRDvR6gthwoA0bDkjVhKIcDebXFuKi8YVYWFuImiLjiPtzKDYUY0nVEiypWgJAmqTulOMUDnQdQEN3g3Tb1QBn0In9Xfuxv2u//FyVoML4vPGYUjgFkwsnY3LBZEwsmMgJ0YhoxGHl42y9uALY/wpw1U+Bi7896CGOgANXvnglvCEv/rj0j7iw9EIAwN/2tuL253ZCqRDw6h0XY3oF1w5JtXBEmu59y7FOfHSsC9tPdMMXjMQdY83VyeFlfk0BqgoMIy6MDEYURTS7muUgEgslvf7ehGNjfUgmF0zG5MLJmJg/ERMLJnL9GiJKOja7pMJvLwVse4Ab/wJM+odBD1m7fy1++ckvUZdXh5e/8DIEQUCvJ4ArH92MTlcAdy2pw3c/NzHNJ06A1ETzaXMvthztwkfHO7HzZC8C4fgwYjFpMa+mABeOK8C8cQWYZDWNuJE0QxFFETa3DQe6D8ih5EDXAXT5ugY93mq0YlL+JEwomIBJBZMwMX8iKkwVUAgjt48MEY1sbHZJNlEEek5I9wtqhjzs1aOvAgBumnST/C/oX204jE5XAPWWHKy8oi7FJ0pD0agUmBcNFXejHr5gGDtP9uCj41346FgX9jTb0e704409rXhjTysAacbVudX5mFdTgPk1BZhenpfx6d+HIggCSnNKUZpTiiuqrpD3t3vapSDSLQWSwz2Hcdp1Gja3DTa3DZuaN8nHGlQGTMifgIkFUnVkYv5E1OfXs9mGiJKOlY+z4e4CfhEdLnu/DVAn/mV8pOcIrn/9eqgUKmz64iaYtWY0tDrw+V//HRER+Ms3FmDheE4oNVL5gmF82tSL7Se68XFjN3ae7IkbSQMAWpUCF1Tm4cIaKcTMrs5HzgiYAn64nAEnDvccxsHug/Lt0Z6jCEQCCccKEFCdW42JBRMxqWCSFE7yJ8JisIyKJioiSh9WPpKtJzq01lQ6aPAAgL81/g0AcEn5JTBrzRBFEQ/+335ERODz00sZPEY4nVqJ+bWFmF9biLsAhMIRNLQ6se1EN7Y3dmP7iW50uQP4uFEKJwCgVAiYUpobrajkY051Piy5I389F5PGhDklc+Jm3Q1FQjjpOImD3QdxqOcQDnVLW5evCyccJ3DCcQJvnXhLPj5fm48J+RNQn1+P+vx61OXVoS6vjhOkEdFZYfg4G93R8JE/eJOLKIpy+PiHGqk/yN+PdGLr8W5oVQrc+w+T0nKalDwqpQLTK8yYXmHG1y6pgSiKON7pxvbGbmxr7Ma2E91o7vFi72k79p62408fSr8jFfl6zKnOx+wqKYxMsppG9FwjMSqFNFJmfN54fB6fl/d3ejulINJzSKqUdB/GCccJ9Ph78LHtY3xs+zjudSpyKlCXX4f6vHpMyJ+Aurw6VJurOScJEcVh+DgbscrHEP099nbuRbOrGXqVHosqFkEURTz2tjQ0918WVKMin/8aHO0EQcD44hyML87BjRdKQ6hb7V5si1ZFdp7sxUGbA809XjT3ePHa7hYAgEGjxMyKPMyplsLIrKo85Bk0mfwow1KkL0JReREuLr9Y3ucL+XCs9xgO9xzGkd4jONJzBEd7j6LT24lmVzOaXc3Y1LRJPl6lUKHGXIP6PKlKErstNZay6YYoSzF8nI3PqHy8feptANLcHga1Ae8f7sDOU73QqhS4bVHtoM+h0a/UrMc/XlCOf7ygHADg8ofwaVMvdpzswY6TPdh5qgdOX0jq1Hq8b9RJnSUHs6vy5ApJbXEOlKNkVA0A6FQ6TC2aiqlFU+P2d/u6cbTnaFwgOdp7FO6gG0d6pH3oNzmwUW1EXV6d3GxTn1eP2rxaFOoKGUqIxjiGj7PxGZWPD09/CABYVLkIAPCf7x4BANw8vxoW08jvA0DJkaNV4eK6IlxcJ63XE4mIONrhkoLIyR7sONWD4x1uHG134Wi7C//zSTMAwKhRYmq5GTMrzJhRkYcZFeZRM+dIfwW6AlxYeqE8vw0gNUm2uFvkUHK45zCO9h5Fo70R7qBbXnyvP7PWjPHm8ajNq427ZSdXorGDo13Oxi8nAi4b8I13gfI5cQ91eDpw+YuXQ4CATV/ahNZuJT7/6w+gUgj48IeXo2QUdECk9Ol2B7DrlFQZ+eRkD/adtsMzYFQNAJj1asyoMGNGhRnTy/Mws9IMa65uzHz5BsNBnHCcwNHeo3JV5Jj9GJqdzQmL7cXkqHPkIDI+bzxqzbUYnzceVqOV85MQjQAc7ZJMAY8UPIBBm122tGwBAEwunIwCXQF+sXUvAODqaVYGD0pQYNTgiskluGJyCQBpJtaj7S7sae7FnmY79py2o6HFAbs3iL8f6cTfj3TKzy3K0WByaS6mlOViSmkuppbloqZodDXZxKiVanmkzLKaZfJ+X8iHE44TON57HMfsx+TbU45TcAVd2NOxB3s69sS9ll6ll4NI7Ha8eTzKcsqgVCjT/dGI6CwwfHyW2ORiOjNgKEh4+MMWqcnl4rKL4fAF8dru0wDAFWvprCgVAiZaTZhoNeGf51YCkGZjPdzmxKfNvdjTJAWSw21OdLoCCYFEp1ZgkrUvkEwpy8UkqwkGzej8X1un0mFSwSRMKogfIRYMB3HScTIukBzrPYYTjhPwhrwJ69wA0mrANeYa1JprpS2vFjW5NajKrYJGOXo6/RKNRaPzb6h06hm6s2lEjGBry1YAwMXlF+OVnafhCYRRb8nB/JrEoEJ0NjQqBaaVmzGt3Iyb50v7vIEwDrU5caDFgQOtdhxocaCh1QlvMIzdTb3Y3dQrP18QgJoioxxGYrfFOdpR22yjVqpRl1+Huvz4WYJDkRCanE1xgeS4/Tga7Y3wh/042H0QB7sPxj1HIShQkVOBGnNN3FZrruWaN0RpwvDxWbqH7mza0N2AHn8PjGojZhTPwE/+dxsA4Ob5VaP2L3kamfQaJS6ozMMFlXnyvnBExMkuNw60OrC/xRENJg50OP043uHG8Q43/hqdKh4ACo0aTLSaMMkqVUcmlZpQbzFBrxm9TROxYbw15hpcgb5p5cORMFpcLXGB5IT9BI7bj8MVdOGU8xROOU9hc/PmuNcr0BVgXO64hGBSZmQTDlEyMXx8lt6T0m1eYjPKzradAIA5JXPQZg/i06ZeKATg8zPK0nmGlKWUCgG1xTmoLc7BNf1+59qdPjS0OuUwcqDFjuOdbnS5A9hyrAtbjvUN+1UIwLhCIyaVSqFkotWEydZcVOTrR82ieoNRKpSozK1EZW4lFlculveLoohObyca7Y3S5miU77e6W9Ht60a3rxs723fGvZ5GoUG1uRq15lopkORKoaQ6t5qzuhKdA4aPz9LbJN3mVSY8tLt9NwBglmUW1u+TOqXOG1eAYpM2XWdHlMBi0sFi0mHRhGJ5nzcQxpF2Jw62OnHQ5sRBmwMHbU50uwM43unG8U433txrk483apSY0L9KEr1vNozumUoFQUCxoRjFhuK4IcEA4Al6cMJxoi+YRMPJSftJBCKBvrlKBig1lvZVSXL7qiVF+iJWQImGwPDxWezR8GGuSngoNj/BzOKZePgD6S/uf5hemrZTIzpbeo0yOodInrxPFEV0uPw4ZJNCSYPNgUM2J460ueAOhLHrVC92neqNe51Ssw6TrCZMtOZicqnUUba2KGfErvY7HAa1AVMKp2BK4ZS4/eFIGC3ulvhQEt16/D1odbei1d0qj3yLMalNGGceh6rcKlSbqlGdK21VuVUwaUzp/GhEIw7Dx2cZovJhc9vQ5mmDUlCiWF2PHSelUS9XT7Om+wyJzokgCHKV5NL6vipJKBzBiS43GlqdUjCJVkmae7xotfvQavfhvUMd8vEqhYBxRUZMKMlBncWEeksOJpSYUFNkHBOhRKlQotJUiUpTJS6ruCzusR5fjzw0uH8zzmnXaTiDTuzt3Iu9nXsTXrNAVyCHkercalSZquRgolcNvngl0VjC8HEmPjvgt0v3zfHhI9bkMrFgIt4/3AsAmFudz7k9aNRTKRWos5hQZzFh+cy+/Q5fEIdtfc02sYqJ0x+SZ20F+ppulAoB4woNqLeYpGBSIt3WFBmhVY2Nzpv5unzk6/IxyzIrbr8/7MdJx8m47ZTjFE46TqLL1yX3LdnVvivhNS0GC8blJlZMKkwVHCJMYwbDx5nEqh76AkCbE/fQ7o7dAIALii/AB4ekeRcun2xJ59kRpVWuTo254wowd1zfMHJRFGFz+HC4zYUjbVKTzZF26dbpD+FYhxvHOtxY328KDqVCQHWhQa6Q1FlyUG8xobbYCJ16bIQSrVKLCfkTMCF/QsJjroALJ51SGDnhOIFTjlPyfUfAgXZPO9o97dhm2xb3PIWgQKmxFNW51XIlJrZVmCpYMaFRheHjTOyf3dl0RtFM/OVv0uiBi8cXpevMiEYEQRBQataj1KyP6+AqiiLaHH4cbnPiSHs0mLS7cLjNCacvJA8Ffmt/m/wchQBUFxoxvjgHdZYcjC82YrwlB+OLckZ9R9f+cjQ5mFo4FVMLpyY81uvrTQgmscqJJ+TBaddpnHadHvR1i/XFchAZGE7ytHns/EojCsPHmcQqHwOaXHwhHw51HwIAGMTxcPiOwqRVYWrZCFmLhijDBEGA1ayD1azDZQNCSbszGkr6VUkOtznh8IXQ2OlGY6cbbze0xb1eUY62L4wUR4NJcQ7K80b3kOCB8nR5yNPlYWbxzLj9oiiiy9clB5EmZ1Pc5gw40eHtQIe3I2GYMCCtizNUMCkxlHAOE0o7ho8zsZ+SbvPiR7oc6TmCkBhCga4Ah09L/9POry2ASjn6O9cRpZIgCCjJ1aEkN76TqyiK6HD6cbjNhWMd/bZ2N2wOHzpdfnS6/Pi4sTvu9XRqBWqK+sLI+GjFpLYoZ1RPnjaQIAgo0hehSF+EOSVzEh63++0JgSS2tXva4Qq60NDdgIbuhoTnqhVqlOeUJ4SSSlMlyk3l0Co5dQAlH8PHmQxR+TjYI03XPLlgMj46Lv1luKC2MK2nRjSWCIIAS64OllwdLqmPb750+oJo7HTLYSQWTBo73fAFI2hodaCh1ZHwmuV5+mjzTQ7GW6RwUltsHNXTzA/FrDXDrDVjWtG0hMd8IR+anc3xocTVhGZnM067TiMYkVYYPuE4MehrF+uLUZZThvKccpTnlKPCVCH/bDVaoVaMnSYxSh+GjzMZos/HwS4pfNTnT8Cf/i6Fj4vY34MoJUw6dcIcJYA0JLipx4tj7f2rJW4cbXfB7g3idK8Xp3u92Hy4I/71tCrUFBtRUyRVSGqKjagtMmJckRE52rH3V6JOpRt0XRxAmsPE5rHFBZP+QcUddMvNObF5jfpTCApYDVaUm8pRZixDuakcFTkVKM8pR1lOGSwGCxQCK8KUaOz9n5ZMn1H50ItVcAfCyDeoMcnKSYOI0kmlVKCmSAoRV6JE3i+KIrrdgehIG5ccTo52uNDc44XTH8KeZjv2NNsTXrMkVxt9Tan5Jvb6lQUGqMdgs6pSoZQrGgtKF8Q9Jooiev29aHG1oNklVUlOO0/LnV5bXC0IRAJocbegxd0y6OurFeq4qklZTpkcTspN5cjX5o+5KhSdHYaPoQR9gLtdut+vz0c4EpanWHY7SwA4MKe6YEx1eiMazQRBQGGOFoU5Wlw4YHVpXzCMU90eabRNpwuNHW65k2uXO4A2hx9tDj+2Ho/vW6JSCKgqMMhhpLY4J3prhMU09ppxAOk6xuYxmVqUODInIkbQ6e3EaddpNDub0eJqkYPJaddp2Nw2BCNBuZPsYPQqvRxKSo2lKMspQ5mxDKU5pSg1lqJIX8TKyRg1rPCxZs0avPzyyzh48CD0ej0uuugiPPLII5g4caJ8jCiKePDBB/H73/8ePT09mD9/Pp588klMnZr4yzui2ZulW7UR0OfLu085T8Eb8kKn1KGpzQDAgZkVXIabaDTQqZWYUGLChJLESmWvJyAHkePRUHK8043GThd8wYi8Bs5ARo0y2oyTg9poIImFFJNu7PaHUAgKWAwWWAyWhEnWACAUCaHN0yZXS2LVkxZXC047T6Pd2w5vyIujvUdxtPfooO+hVqhhNVpRZiyTbgeElBJjCSdeG6WGFT42b96MO++8E/PmzUMoFML999+PpUuX4sCBAzAajQCAn//853j00Ufx7LPPYsKECfjZz36Gq666CocOHYLJNIqaJuSRLpVAv3/VxIbYTsifgH0NTgDAjH7LnBPR6JRn0GBWlQazqvLj9kci0kRqchiJVU063Wjq9sAdCGPfaQf2nU7s9Fps0kb7lkh9SqoLDKguNKK60ADjGOxf0p9KoZKbWwbjD/vlakmLqwWt7la0uFpgc9vQ4m5Bu6cdwUhQ7n8yGAHSKKDSnNK4iknsfpmxDDmanEGfS5k1rN/+9evXx/38zDPPwGKxYMeOHbjssssgiiIee+wx3H///bj++usBAGvXrkVJSQmef/553Hbbbck781SzRyfyMVfE7T7YLfX3qMmtx4fRfwVNL2flg2isUigElOXpUZanx8V18R3LA6EITnX3VUpiVZPjnW50uvzocErbtgFDhAFp7pLqQkNcIJE2I/IN6jHZlNOfVqmVVwAeTDASRLunvS+Q9AsoscX8/GG/3CF2T8eeQV/HpDbFhZMyYxmsOVI1pdRYikJ9IZt2MuC8orfdLnXYKiiQ2lUbGxths9mwdOlS+RitVotFixZhy5Ytg4YPv98Pv98v/+xwJP7rISMc0Q5UuWVxu2OdTY2Q+oFUFuhRYGTZjygbaVR96+AM5PAFcSIWRjpcONntwckuD052udHjCcpzl+w42ZPwXJNWheoiA6oL+kJJVYER44oMKDHpsqKPWWz+kaEqJ6IootvXLQeRwaondr8dzqATzh4nDvccHvR1VAoVSgwl0mYsgdVohdVglW6jGzvGJt85hw9RFLFq1SpccsklmDZNGltus0mLSpWUlMQdW1JSgpMnB+9wtGbNGjz44IPnehqp44hWPnLjf/EPd0u/wF6PtI7LwOF/RESAtBbOYEOEAcDuDeJUlwcnu91yIDnZ5cGpbg9a7T44/aEhm3K0KgWqCvoCSVWBHpUFBlQWGFCRr4dBM7abc2IEQUChvhCF+sJB5zcBAHfQjVZXK1rcfdWTFneLvK/T24lQJHTGaesBQKPQDBlMSgzS/lxNLgPKMJzzb+ldd92FPXv24IMPPkh4bOAfgCiKQ/6h3HvvvVi1apX8s8PhQGVl4loqaTdI5SM2hTEAtLSZwc6mRHQuzHo1pleYMX2Qvz98wTCaolWSE11unOr24ESXB6e63Gju8cIfikjr5bS7Bn3tohwNKvKlMFKZHw0m+QZUFkhNR2NxyPBQjGrjkHOcAFKn2E5vJ2xuW9/m6bvf5mlDp7cTgUjgjH1PAGnkTiyIyJshPqSw/0mfcwofK1euxOuvv473338fFRV9fSKsVisAqQJSWloq729vb0+ohsRotVpotSNw+t5BwkejvRGANOPfgWMBAKx8EFFy6dRK1JeYUD/IiJxQOIKWXh9OdrvlQNLU7UVTjwdN3R44fCF0ugLodAWwu6k34fkKASg161FZoI8GEkPc/eIcbVY06cSoFCo5HAwlGA6izdM2aDBpc0v7e/w98Ia8Z5wpFpDW2CkxlKDYUAyLwYISQ4k8Yii2FeoKs2KtnWGFD1EUsXLlSrzyyivYtGkTamriOwrV1NTAarVi48aNmDVLGnoVCASwefNmPPLII8k763RwxsJHX7NLLHxU5FTjfbsPggBMY2dTIkoTlVKBqkIDqgoNuLQ+8XG7N4imbg+ae6QmnP7BJFY1ic38uhWJnWA1KgUq8vVypaRKrpoYUJ6nR14WdIQdSK1Uo8JUgQpTxZDH+EK+voASDSYDKynOgBOuoAsuuwvH7MeGfC2loEShvlAKKfpoSDH2Cyl66Xa0V1GGFT7uvPNOPP/883jttddgMpnkPh5msxl6vR6CIOCee+7BQw89hPr6etTX1+Ohhx6CwWDAl7/85ZR8gJQIeABvtBPYIJWPXKUUSKoLDGNyOmYiGp3MejXM5eZB/1EUiYjodPnR1D+YdHui4cSLVrsXgVAk2kE2cT4TADBolCjP06M8Xy/fVuRLwaQiX591lZMYnUqH6txqVOdWD3mMJ+iBzW1Du7cd7R5pa3O3yffbve3o9HYiLIblfWdiUBnk6kmskjKwmlKoLxyxa+8M65vzqaeeAgAsXrw4bv8zzzyDFStWAAC+//3vw+v14o477pAnGduwYcPomuPD2SrdanIAba68+7j9uHQnKHU2nWTNHfhMIqIRSaHoW7xvTnVBwuPBcAStvT4pmESrJU09XrmS0ukKwBMIn7G/iUapQGmeTgomA0NKngFWsw4aVfb0OenPoDagNq8WtXm1Qx4TjoTR5euSgolHCiYdng75fmxzBV3whDyf2cwjQOqUG6ugFBuKUawvlsKK3oKLyy+GSpGZf0APu9nlswiCgNWrV2P16tXnek6ZJ490KYubYCxW+XC7pP9xJ3I9FyIaI9T9mnQG4wuGpSabHq9829zjke/bHD4EwpHo6B3PoK8hCECJSTegcqKXKydledkzWmcwSoVSrlpMw+AjeACpiiJXT/oFkw5vX1Dp9HQiJEodaju9nWjoboh/L0GJnbfsTPVHGlL2/imfySCdTYORIJqd0pTrtk6ppMnF5IgoW+jUSowvzsH44sH7GgTDEdjsvoSAEutjcrpXataxOXywOXyDzm8CAHkGNUrNepSZdbCadSjL06M0dt+sh9Wsg0499jtknolBbcA48ziMM48b8piIGEG3r1sasePplCZj83TIt0ExmNHJ1Rg+BjPIHB9NjiaExBD0Kj2O25QAREwqZbMLEREgVU5i840MJhIR0en2JwaTfrdOfwi9niB6PUE0tA494WSBUYNSsy666VGa13e/zKxHiVkLrSq7A4pCUKBIX4QifRFQmOmzScTwMZgzDLMtM1SjPSRCp5Ym+iEios+mUAiwmHSwmHQJ6+fE2L1BtNq9aO31odXuQ6vdi5ZeH2wOaV+L3QtfMIJudwDd7gD2twwdUIpyNLDKgUQHq1mPsjwdrLlSFaUklxWUTGL4GMxg4cMRHemikqohE0tMUGZhr24iolQx69Uw69VDduYXRRF2b1AOJC29UkBptfuigUW67w9F5PlOBpslNiZXp5KDiLRpYY12yrVG9xXlaKDKoonZ0oXhYzCDNLvEKh9CdKQLO5sSEaWXIAjIM2iQZ9BgStnQAaXHE0RLrxe2WPXE7oPN7kNLrxdt0T4nvmAEDl8IDp8Lh9sGH70DSBOzFeVoYTVLVRurWYsSkw4l0dBijYYWsz775kA5Hwwfgxmk8nHSIa1N43TmAQAmcpgtEdGIIwgCCowaFBg1Q04CKYoiHL4Q2hw+KYzYfWh3+uX7bU4/2uw+dLj8CEdEtDv9aHf6AdiHfF+tSiGHEUu0glISvV9s0sJi0qHYpEWuTsWQAoaPRCE/4JbWb+lf+YgtOtTWbQTAkS5ERKOVIAhyE8+EQaaxjwlHRHS5/Ghz+OWKSXv0NravzeFDjycIfyiCU93SBG5nolUpomEkPpQM/HmsN/cwfAzklGZthVIL6KVOUd6QF53eTgBAS6fUyfRMv7BERDT6KftNzDYdQy+l4QuG0eHsCyhyWLH70OH0o90p3Tp8IfhDETT3eNHc4z3jewsCUGDQoHjIkBK9zdXBqFGOumoKw8dAsfBhssoTjJ12SlUPo8oEZ9iAXJ0KRTmaTJ0hERGNIDq18ozDjGNiIaXd6UeH09fvfv9bHzpdAanq4g6gyx3AQZvzjK+rVyul5p0crXwrVU+iW7SSUpSjHTEjfBg+BnL1Cx9RzS5pcjGzugQ2AHWWnFGXMomIKLPONqREIiK6PYGEUNL/59jm8ofgDYbPOLNsfyadCsXRUPLcN+ZDnaGmHYaPgZyDhI/ozKYasRgAhpzhj4iI6HwpFIJctZhceuZj3f4QOl39QopD6jzb6fJHhxtL+ztdfgTDIpy+EJzRzraZCh4Aw0eiWPjISax8hAPSmi51FoYPIiLKPKNWBaNWhepC4xmPE0URDm8IHS4piLj9oTSd4eAYPgY6Q+XD6ZKG17LyQUREo4kgCDAb1DAb1CPiH9BjdxzPuRqsz0c0fHT0SMlyJPzBERERjVYMHwPJzS4lAKRSVazZxe/Nh0apQEW+PlNnR0RENOoxfAwkN7tIvXw6vZ3wh/0QoIAYzENNkXFMT/xCRESUavwW7S/kB7zd0v1os0us6mFSFQFQYrzlzJ16iIiI6MwYPvpztUm3So08u2msv4c6Osy2jp1NiYiIzgvDR3/OaPjI6ZvdVB5m65fCSC3DBxER0Xlh+OjP2SrdmkrkXTa31AfE45HWcqkqPPPMdERERHRmDB/9xZpd+g2zbXNL+xxuqa9H9WdMi0tERERnxvDRX6zy0W9201jlIxIww6hRosDIBeWIiIjOB8NHf85BKh8eaZ8YMqOq0MgF5YiIiM4Tw0d/cp8PKXy4Ai64gi4AQCSYxyYXIiKiJGD46G9An49Y1UMtGAFRw86mREREScDw0d+APh+x/h6qiDTMtoqVDyIiovPG8BETCgCeLun+gMpHOGgGAFSz8kFERHTeGD5i3O3SrUIN6AsA9FU+vF5pYjFWPoiIiM4fw0dM/9VsFdJliYWPkD8XSoWAsjyuZktERHS+GD5i5NVsE4fZRkJmlOfpoeZqtkREROeN36YxA4bZAn2VDzGYxyYXIiKiJGH4iBlsavV+lY9Khg8iIqKkYPiIGTDM1hlwwh10AwDEoBkV+ezvQURElAwMHzHy1OrSiraxBeWUojTBmDVXl6kzIyIiGlMYPmJcsQ6npQAAmyf6c1ia46M0j+GDiIgoGRg+YvoPtQXQ4ekAAAT9JgBAmZnNLkRERMnA8AEA4SDg7pTuRysfnd7O6EPSBGNWMysfREREycDwAQCudgAioFABhkIAQIdXqnxEQrkoNGqgUyszeIJERERjB8MH0Nffw2iRZzeNVT7EUA6rHkREREnE8AEMOrtpX/jIRSn7exARESUNwwcwaPiIdTgVQyaU5GozcVZERERjEsMHkBA+RFGUKx+RkAkWE5tdiIiIkoXhA+jr8xGd3dQddMMX9gGQKh8WVj6IiIiShuEDSJjdNDbSRRB1gKiBxcTwQURElCwMH0C/FW3LAPR1NkVImmCMzS5ERETJw/ABJPT5iIWPUHSCMTa7EBERJQ/DRzgIuKVmltjsprGRLpGgCYIAFBo1mTo7IiKiMYfhY5DZTfvm+DCh0KiFSsnLRERElCzD/lZ9//33sXz5cpSVlUEQBLz66qtxj69YsQKCIMRtCxYsSNb5Jl//BeWis5vGOpyKoVx2NiUiIkqyYYcPt9uNmTNn4oknnhjymKuvvhqtra3y9uabb57XSaaU3Nk0cXbTSDgHhTlsciEiIkom1XCfsGzZMixbtuyMx2i1Wlit1jMeM2LI4aNU3tV/anX29yAiIkqulHRm2LRpEywWCyZMmIBvfOMbaG9vH/JYv98Ph8MRt6XVYFOre/umVs9n+CAiIkqqpIePZcuW4bnnnsO7776LX/3qV9i+fTsuv/xy+P3+QY9fs2YNzGazvFVWVib7lM7MFR8+AuEA7H47gFiHU4YPIiKiZBp2s8tn+dKXviTfnzZtGubOnYvq6mq88cYbuP766xOOv/fee7Fq1Sr5Z4fDkd4AIlc+pGaXbl83AECAEmJYz8oHERFRkiU9fAxUWlqK6upqHDlyZNDHtVottNoMjigZ0OzS5esCACgiJgAKVj6IiIiSLOUTWHR1daGpqQmlpaWffXAmDOhw2u2VKh+IGAEA+QaGDyIiomQaduXD5XLh6NGj8s+NjY3YvXs3CgoKUFBQgNWrV+OGG25AaWkpTpw4gfvuuw9FRUW47rrrknriSRHyAx6p0hELHz3+HgBAOCiFDw61JSIiSq5hh49PPvkES5YskX+O9de49dZb8dRTT2Hv3r3485//jN7eXpSWlmLJkiV44YUXYDKZknfWyeKKrmar1AD6fAB9lY9gwACAlQ8iIqJkG3b4WLx4MURRHPLxt95667xOKK369/cQBABAt18KH2LICEEA8hg+iIiIkiq7Fy0ZZIKxWOVDDOcg36CBUiFk4syIiIjGrCwPH4kTjMX6fIhhI/IN6kycFRER0ZiW5eFj6MpHJJSDQiMXlSMiIkq2LA8fn1H5MLLyQURElGxZHj6ilY+cvvARm+FUDOWggJUPIiKipMvy8BEdahutfHiCHnhDXgBS5aOAlQ8iIqKky/LwEd/nI9bkIkANRLSsfBAREaVA9oaPoBfw9Ur3o5WPHp8UPlSiCYDAdV2IiIhSIHvDR6yzqUoP6MwA+vp7IBxd14Xhg4iIKOkYPvrNbtrlldZ5CYei67owfBARESVdFoePxDk+Yn0+5HVdGD6IiIiSjuGj3xwfsQnGYivaFnBdFyIioqTL3vBhPy3dmsvlXf0nGNOpFdBrlJk4MyIiojEti8NHk3RrrpR3dfmkPh+RUA7Mes7xQURElArZGz4c0cpHbr/Khy9W+WD4ICIiSpXsDR/2ZunWXCHv6pta3Yg8Pft7EBERpUJ2ho+QH3BFp1aPhg9RFPtVPozIZeWDiIgoJbIzfDhapFuVDjAUAgA8IQ/8YT8AaVE5NrsQERGlRpaGj379PaITjMWaXJTQAqKG4YOIiChFsjN8nKG/h0YwSQ8xfBAREaUEw0dU/KJygFmvSvtpERERZQOGjyh5UblIjvSQgZUPIiKiVMjO8DHIHB+x8BGJLirHZhciIqLUyM7wcYbKRyjI8EFERJRKWRo+Yuu6JPb58Pv00kMMH0RERCmRfeHD5wD8dun+IM0uPr8UPjjJGBERUWpkX/iI9ffQ5QHaHHl3rPIRCUU7nDJ8EBERpUT2hQ+vFDJiM5vGxFa0FcNG6NVKaFXKdJ8ZERFRVsi+8BGSplCHSifvEkURvb5e6X7IyKoHERFRCmVx+NDKuzwhDwKRAACp8sHwQURElDrZFz7CieEj1tlUreC6LkRERKmWfeEjJFU4oNTIu2KdTfWKXAAc6UJERJRKWRg+fNJtvz4fsfChjYYPVj6IiIhSJ/vCh9zs0lf5iDW7qMAVbYmIiFIt+8KH3OzS1+ejxy9VPhQRzvFBRESUalkYPoZudkE4tq6LKt1nRURElDWyL3yEo5UPVWKH03BsRVsDKx9ERESpkn3hIzbPxyDNLoEAF5UjIiJKtewNH/3m+ZBXtPUzfBAREaVa9oWPM0wy5vZI/UAYPoiIiFIn+8KH3OyS2OfD7Y2FD03C04iIiCg5sjd8REe7+MN+eEIeAEAk1uGUlQ8iIqKUyb7wMaDZJVb1UApKIKKDXq2ERpV9l4WIiChdsu9bdsDaLrH+HiZ1HgCBVQ8iIqIUy8LwET/JWK+vFwBgVJkBsMmFiIgo1bIvfAyYZKzbL1U+dFxUjoiIKC2yL3wMmGQs1udDI0jhI5fhg4iIKKWyN3wM7HAKLipHRESUDsMOH++//z6WL1+OsrIyCIKAV199Ne5xURSxevVqlJWVQa/XY/Hixdi/f3+yzvf8DRjtEutwKnBFWyIiorQYdvhwu92YOXMmnnjiiUEf//nPf45HH30UTzzxBLZv3w6r1YqrrroKTqfzvE82KYZodhFDBgAMH0RERKk27LXjly1bhmXLlg36mCiKeOyxx3D//ffj+uuvBwCsXbsWJSUleP7553Hbbbed39kmw8Bml+iicqFgLHwM+5IQERHRMCS1z0djYyNsNhuWLl0q79NqtVi0aBG2bNky6HP8fj8cDkfcllJDTDIWCETDh4GVDyIiolRKaviw2WwAgJKSkrj9JSUl8mMDrVmzBmazWd4qKyuTeUqJBqztEqt8eH3SvB95XNeFiIgopVIy2kUQhLifRVFM2Bdz7733wm63y1tTU1MqTqlPv7VdQpEQ7H47gL4VbTnUloiIKLWS2sHBarUCkCogpaWl8v729vaEakiMVquFVqsd9LGkC4cAMSzdV2nR6+8FAAgQ4HBrAETY4ZSIiCjFklr5qKmpgdVqxcaNG+V9gUAAmzdvxkUXXZTMtzo3sf4eAKDSyv09zFozXP6IdJ/hg4iIKKWGXflwuVw4evSo/HNjYyN2796NgoICVFVV4Z577sFDDz2E+vp61NfX46GHHoLBYMCXv/zlpJ74OQn1Cx/KvvCRq8mDKEq7GT6IiIhSa9jh45NPPsGSJUvkn1etWgUAuPXWW/Hss8/i+9//PrxeL+644w709PRg/vz52LBhA0wmU/LO+lyEQ8DL35DuCwpAqZLXdTGppUXl9GolNKrsm/SViIgonYYdPhYvXgwxViYYhCAIWL16NVavXn0+55V8YgQ4+rZ032gB0DfM1qDkirZERETpkj0zaimUwJWrpfs1iwAAvb5eAICWK9oSERGlTXaFj0v+LW5Xl68LQN+KtgwfREREqZfVHRw6vZ0AAKUohQ/O8UFERJR6WR0+urxS5UMIs/JBRESULlkdPmKVDzGUA4Dhg4iIKB2yOnzE+nyEgkYADB9ERETpkLXhwxP0wBvyAgD8Pil85HFFWyIiopTL2vARa3LRq/Rw+ZQAWPkgIiJKh6wNH7Eml0JdIXo9QQCAmZUPIiKilMva8BGrfBTpi2D3RsMHKx9EREQpl7XhIzbMtlBfCHu08pHH8EFERJRyWRs+YpWPAl0hnP4QACDPoMnkKREREWWFrA8fOap8eV+uLntmmyciIsqUrA0fsQ6nOoW0oq1Jq4JKmbWXg4iIKG2y9ts21udDAyl8cKQLERFRemR9+FCK0fDBzqZERERpkZXhQxRFuc8HwtK6LpzdlIiIKD2yMny4gi4EIgEAQCgQnVpdz5EuRERE6ZCV4SNW9TCpTfD4panVc9nsQkRElBZZHT4K9YXo9UoVEDa7EBERpUdWhg/ObkpERJQ5WRk+2jxtAIASQwnXdSEiIkqzrAwfNrcNgBQ+eqPhg80uRERE6ZGV4UOufBhL0OuR+nyYOdqFiIgoLbIyfLR72gHEml2kReXY7EJERJQeWRk+YpUPi8ECO0e7EBERpVXWhY9wJIwOTwcAwKQqQjAsAmD4ICIiSpesCx9dvi6ExTCUghIq5AIA1EoBerUyw2dGRESUHbIufMSqHoW6Qji9EQBSZ1NBEDJ5WkRERFkj68KHL+wDABjUBs5uSkRElAFZFz5CEWl0i0qhgoMTjBEREaVdVoePXk6tTkRElHbZGz4ElTy7KSsfRERE6ZO94aNf5cPMPh9ERERpk3XhIyhKgUOlUKHHLXU4LTRyanUiIqJ0ybrw0b/y0R1d1yWf4YOIiChtsjp8xCofBQaGDyIionTJ6vDBygcREVH6ZW34UCvUfZUPhg8iIqK0ydrwoRSU8lDbfDa7EBERpU3WhY9gRAockYgCorSgLadXJyIiSqOsCx+xykc4In30XJ0KamXWXQYiIqKMybpv3Vj4CIWlj87+HkREROmVdeEj1uwSCgkAGD6IiIjSLevCR0iUKh/BMMMHERFRJmRf+Ig2uwSCUvjgSBciIqL0UmX6BNJNDh/SDSsfRESjQDgcRjAYzPRpZD21Wg2lUnner5O14cMX/R3m7KZERCOXKIqw2Wzo7e3N9KlQVF5eHqxWKwRBOOfXyN7wEYj2+WCzCxHRiBULHhaLBQaD4by+8Oj8iKIIj8eD9vZ2AEBpaek5v1bSw8fq1avx4IMPxu0rKSmBzWZL9ludk77wIc0wxsoHEdHIFA6H5eBRWFiY6dMhAHq9HgDQ3t4Oi8Vyzk0wKal8TJ06FW+//bb8czLah5IlFj680rIuKDBydlMiopEo1sfDYDBk+Eyov9ifRzAYHFnhQ6VSwWq1ntWxfr8ffr9f/tnhcKTilGSxobYeOXxoU/p+RER0ftjUMrIk488jJUNtjxw5grKyMtTU1ODGG2/E8ePHhzx2zZo1MJvN8lZZWZmKU5LFJhnzB9nng4iIKBOSHj7mz5+PP//5z3jrrbfw9NNPw2az4aKLLkJXV9egx997772w2+3y1tTUlOxTihNrdhFFBZQKASZd1vW5JSIiyqikh49ly5bhhhtuwPTp03HllVfijTfeAACsXbt20OO1Wi1yc3PjtlSKhQ+ISuQb1FAoWM4jIqLkEQThjNuKFSsyfYoZl/J/9huNRkyfPh1HjhxJ9VudlfjwwSYXIiJKrtbWVvn+Cy+8gB//+Mc4dOiQvC82YiSbpXx6db/fj4aGhvMaD5xMcviAgsNsiYgo6axWq7yZzWYIghC37/nnn8f48eOh0WgwceJE/Nd//Vfc8wVBwFNPPYVly5ZBr9ejpqYGL774YoY+TWokvfLx3e9+F8uXL0dVVRXa29vxs5/9DA6HA7feemuy3+qc9PX5UMJi4kgXIqLRRBRFeIPhjLy3Xq0875Eer7zyCu6++2489thjuPLKK/HXv/4VX/nKV1BRUYElS5bIx/3oRz/Cww8/jMcffxz/9V//hZtuugnTpk3D5MmTz/djjAhJDx/Nzc246aab0NnZieLiYixYsABbt25FdXV1st/qnMSG2kJUopjhg4hoVPEGw5jy47cy8t4HfvI5GDTn97X5y1/+EitWrMAdd9wBAFi1ahW2bt2KX/7yl3Hh45//+Z/x9a9/HQDw05/+FBs3bsR//ud/4je/+c15vf9IkfTwsW7dumS/ZFL19flQMHwQEVFaNTQ04Jvf/GbcvosvvhiPP/543L6FCxcm/Lx79+5Un17aZN040/4dTotzGD6IiEYTvVqJAz/5XMbeOxkGNt2IonhWzTljabK1lHc4HWlik4yJohKWXF2Gz4aIiIZDEAQYNKqMbMn48p88eTI++OCDuH1btmxJ6MuxdevWhJ8nTZp03u8/UmRv5QMKVj6IiCitvve97+GLX/wiZs+ejSuuuAL/93//h5dffjluPTQAePHFFzF37lxccskleO6557Bt2zb88Y9/zNBZJ1/2hg92OCUiojS79tpr8fjjj+MXv/gFvv3tb6OmpgbPPPMMFi9eHHfcgw8+iHXr1uGOO+6A1WrFc889hylTpmTmpFMg68JHICyFDwFKFHCeDyIiSqEVK1YkzGh6++234/bbbz/j88rKyrBhw4YUnllmZV2fj1C0z0eeXgclp1YnIiJKu+wLH9F5PnI0bHIhIiLKhKxrdglH+3yoFVn30YmIaBQQRTHTp5ByWVX5EEUREUQAAGoVwwcREVEmZFX46BtmC6gV6gyeCRERUfbKqvARm2AMADRKhg8iIqJMyKrwIS8qB4YPIiKiTMmu8BHpHz7Y54OIiCgTsiZ8hCNh/PeB/wYAiKICGmVyFggiIiKi4cma8BERI3h679PRH9RQq7LmoxMR0QgmCAJeffXVsz5+xYoVuPbaa8/rPU+cOAFBELB79+7zep1zlT3fwAJwVfVVGG9YCJ/tWmiU2fPRiYgoM2w2G+6++27U1dVBp9OhpKQEl1xyCX7729/C4/Fk+vQyJms6PqgVajy6+FE8+d5R7N5xCGolp1YnIqLUOX78OC6++GLk5eXhoYcewvTp0xEKhXD48GH86U9/QllZGb7whS9k+jQzIuv++R8KSzPHqVn5ICKiFLrjjjugUqnwySef4Itf/CImT56M6dOn44YbbsAbb7yB5cuXD/q8vXv34vLLL4der0dhYSG++c1vwuVyJRz34IMPwmKxIDc3F7fddhsCgYD82Pr163HJJZcgLy8PhYWFuOaaa3Ds2LGUfdbhyrpv4GA4OsMpwwcR0egjikDAnZltGNOed3V1YcOGDbjzzjthNBoHPUYQEivwHo8HV199NfLz87F9+3a8+OKLePvtt3HXXXfFHffOO++goaEB7733Hv7yl7/glVdewYMPPig/7na7sWrVKmzfvh3vvPMOFAoFrrvuOkQikbP+DKmUNc0uMbHwoWGHUyKi0SfoAR4qy8x739cCaAYPEgMdPXoUoihi4sSJcfuLiorg8/kAAHfeeSceeeSRuMefe+45eL1e/PnPf5ZDyxNPPIHly5fjkUceQUlJCQBAo9HgT3/6EwwGA6ZOnYqf/OQn+N73voef/vSnUCgUuOGGG+Je949//CMsFgsOHDiAadOmndPHT6as+wYOyJUP9vkgIqLUGljd2LZtG3bv3o2pU6fC7/cnHN/Q0ICZM2fGVUsuvvhiRCIRHDp0SN43c+ZMGAwG+eeFCxfC5XKhqakJAHDs2DF8+ctfRm1tLXJzc1FTUwMAOHXqVFI/37nK2soHm12IiEYhtUGqQGTqvc9SXV0dBEHAwYMH4/bX1tYCAPR6/aDPE0Vx0OYYYPBmmqGOWb58OSorK/H000+jrKwMkUgE06ZNi+sXkknZFz5C7HBKRDRqCcJZN31kUmFhIa666io88cQTWLly5ZD9PgaaMmUK1q5dC7fbLT/nww8/hEKhwIQJE+TjPv30U3i9XjnEbN26FTk5OaioqEBXVxcaGhrwu9/9DpdeeikA4IMPPkjyJzw/WfcNLPf5YPggIqIU+s1vfoNQKIS5c+fihRdeQENDAw4dOoT//u//xsGDB6EcZKbtm2++GTqdDrfeeiv27duH9957DytXrsQtt9wi9/cAgEAggK997Ws4cOAA/va3v+GBBx7AXXfdBYVCgfz8fBQWFuL3v/89jh49infffRerVq1K50f/TFlX+WCfDyIiSofx48dj165deOihh3DvvfeiubkZWq0WU6ZMwXe/+13ccccdCc8xGAx46623cPfdd2PevHkwGAy44YYb8Oijj8Ydd8UVV6C+vh6XXXYZ/H4/brzxRqxevRoAoFAosG7dOnz729/GtGnTMHHiRPz617/G4sWL0/Cpz44gisMYO5QGDocDZrMZdrsdubm5SX/92/7rE7y1vw3/ft003Dy/OumvT0REyeHz+dDY2IiamhrodLpMnw5FDfXnMpzv76xrewhykjEiIqKMyrpvYPb5ICIiyqys+wYOhDjUloiIKJOy7hs4yA6nREREGZWF4SPa54PTqxMREWVE1n0Ds88HERFRZmXdN3CA06sTERFlVNZ9A7PPBxERUWZlX/jg2i5EREQZlXXfwHKfD3Y4JSIiyois+wZmnw8iIkq1FStWQBAEeSssLMTVV1+NPXv2DOs1rr322rh9J06cgCAI2L17d3JPOM2y7huYfT6IiCgdrr76arS2tqK1tRXvvPMOVCoVrrnmmkyf1oiQheFD6vPBobZERJRKWq0WVqsVVqsVF1xwAX7wgx+gqakJHR0dAIC9e/fi8ssvh16vR2FhIb75zW/C5XIBAFavXo21a9fitddek6snmzZtQk1NDQBg1qxZEARBXqk2EongJz/5CSoqKqDVanHBBRdg/fr18rnEKib/8z//g0svvRR6vR7z5s3D4cOHsX37dsydOxc5OTm4+uqr5fNLJVXK32EECUdEhCPscEpENFqJoghvyJuR99ar9BCEc6uau1wuPPfcc6irq0NhYSE8Hg+uvvpqLFiwANu3b0d7ezu+/vWv46677sKzzz6L7373u2hoaIDD4cAzzzwDACgoKMC2bdtw4YUX4u2338bUqVOh0WgAAI8//jh+9atf4Xe/+x1mzZqFP/3pT/jCF76A/fv3o76+Xj6PBx54AI899hiqqqrw1a9+FTfddBNyc3Px+OOPw2Aw4Itf/CJ+/OMf46mnnjr/C3YGWRU+Yk0uAGc4JSIajbwhL+Y/Pz8j7/3xlz+GQW046+P/+te/IicnBwDgdrtRWlqKv/71r1AoFHjuuefg9Xrx5z//GUajEQDwxBNPYPny5XjkkUdQUlICvV4Pv98Pq9Uqv2ZxcTEAoLCwMG7/L3/5S/zgBz/AjTfeCAB45JFH8N577+Gxxx7Dk08+KR/33e9+F5/73OcAAHfffTduuukmvPPOO7j44osBAF/72tfw7LPPnsPVGZ6s+gaOCx/s80FERCm0ZMkS7N69G7t378bHH3+MpUuXYtmyZTh58iQaGhowc+ZMOXgAwMUXX4xIJIJDhw4N630cDgdaWlrkANH/9RoaGuL2zZgxQ75fUlICAJg+fXrcvvb29mG9/7nIssqHKN9XK7IqdxERjQl6lR4ff/njjL33cBiNRtTV1ck/z5kzB2azGU8//TREURyyCedcm3YGPm+w91Cr1QnHD9wXiUSQalkTPkLhCH706j4AgFIhQKFg5YOIaLQRBGFYTR8jiSAIUCgU8Hq9mDJlCtauXQu32y1XPz788EMoFApMmDABAKDRaBAOh+NeI9bHo//+3NxclJWV4YMPPsBll10m79+yZQsuvPDCVH+sc5I1//yPiMAbe1sBAPkG9WccTUREdH78fj9sNhtsNhsaGhqwcuVKuFwuLF++HDfffDN0Oh1uvfVW7Nu3D++99x5WrlyJW265RW4OGTduHPbs2YNDhw6hs7MTwWAQFosFer0e69evR1tbG+x2OwDge9/7Hh555BG88MILOHToEH74wx9i9+7duPvuuzN5CYaUNZUPhQDcuWQ8AOCy+uIMnw0REY1169evR2lpKQDAZDJh0qRJePHFF+XhsW+99RbuvvtuzJs3DwaDATfccAMeffRR+fnf+MY3sGnTJsydOxculwvvvfceFi9ejF//+tf4yU9+gh//+Me49NJLsWnTJnz729+Gw+HAd77zHbS3t2PKlCl4/fXX40a6jCSCKIriZx+WPg6HA2azGXa7Hbm5uZk+HSIiyhCfz4fGxkbU1NRAp9Nl+nQoaqg/l+F8f2dNswsRERGNDCkLH7/5zW/kVDRnzhz8/e9/T9VbERER0SiSkvDxwgsv4J577sH999+PXbt24dJLL8WyZctw6tSpVLwdERERjSIpCR+PPvoovva1r+HrX/86Jk+ejMceewyVlZUpn66ViIiIRr6kh49AIIAdO3Zg6dKlcfuXLl2KLVu2JBzv9/vhcDjiNiIiIhq7kh4+Ojs7EQ6H5XHKMSUlJbDZbAnHr1mzBmazWd4qKyuTfUpERDSKpWPGTTp7yfjzSNk8H2czzSsA3HvvvVi1apX8s8PhYAAhIiJoNBooFAq0tLSguLgYGo3mnKcep/MniiICgQA6OjqgUCjk2VbPRdLDR1FREZRKZUKVo729PaEaAgBarRZarTbZp0FERKOcQqFATU0NWltb0dLSkunToSiDwYCqqioozmONtKSHD41Ggzlz5mDjxo247rrr5P0bN27EP/7jPyb77YiIaAzTaDSoqqpCKBRKWOeE0k+pVEKlUp13BSolzS6rVq3CLbfcgrlz52LhwoX4/e9/j1OnTuFb3/pWKt6OiIjGMEEQoFar41ZfpdEtJeHjS1/6Erq6uvCTn/wEra2tmDZtGt58801UV1en4u2IiIhoFOHaLkRERHTeuLYLERERjVgpG2p7rmKFGE42RkRENHrEvrfPpkFlxIUPp9MJAJzrg4iIaBRyOp0wm81nPGbE9fmIRCJoaWmByWRK+mQysQnMmpqa2J8khXid04PXOX14rdOD1zk9UnWdRVGE0+lEWVnZZ84BMuIqHwqFAhUVFSl9j9zcXP5ipwGvc3rwOqcPr3V68DqnRyqu82dVPGLY4ZSIiIjSiuGDiIiI0iqrwodWq8UDDzzAtWRSjNc5PXid04fXOj14ndNjJFznEdfhlIiIiMa2rKp8EBERUeYxfBAREVFaMXwQERFRWjF8EBERUVoxfBAREVFaZU34+M1vfoOamhrodDrMmTMHf//73zN9SqPK+++/j+XLl6OsrAyCIODVV1+Ne1wURaxevRplZWXQ6/VYvHgx9u/fH3eM3+/HypUrUVRUBKPRiC984Qtobm5O46cY+dasWYN58+bBZDLBYrHg2muvxaFDh+KO4bU+f0899RRmzJghz/C4cOFC/O1vf5Mf5zVOjTVr1kAQBNxzzz3yPl7r5Fi9ejUEQYjbrFar/PiIu85iFli3bp2oVqvFp59+Wjxw4IB49913i0ajUTx58mSmT23UePPNN8X7779ffOmll0QA4iuvvBL3+MMPPyyaTCbxpZdeEvfu3St+6UtfEktLS0WHwyEf861vfUssLy8XN27cKO7cuVNcsmSJOHPmTDEUCqX504xcn/vc58RnnnlG3Ldvn7h7927x85//vFhVVSW6XC75GF7r8/f666+Lb7zxhnjo0CHx0KFD4n333Seq1Wpx3759oijyGqfCtm3bxHHjxokzZswQ7777bnk/r3VyPPDAA+LUqVPF1tZWeWtvb5cfH2nXOSvCx4UXXih+61vfits3adIk8Yc//GGGzmh0Gxg+IpGIaLVaxYcfflje5/P5RLPZLP72t78VRVEUe3t7RbVaLa5bt04+5vTp06JCoRDXr1+ftnMfbdrb20UA4ubNm0VR5LVOpfz8fPEPf/gDr3EKOJ1Osb6+Xty4caO4aNEiOXzwWifPAw88IM6cOXPQx0bidR7zzS6BQAA7duzA0qVL4/YvXboUW7ZsydBZjS2NjY2w2Wxx11ir1WLRokXyNd6xYweCwWDcMWVlZZg2bRr/HM7AbrcDAAoKCgDwWqdCOBzGunXr4Ha7sXDhQl7jFLjzzjvx+c9/HldeeWXcfl7r5Dpy5AjKyspQU1ODG2+8EcePHwcwMq/ziFvVNtk6OzsRDodRUlISt7+kpAQ2my1DZzW2xK7jYNf45MmT8jEajQb5+fkJx/DPYXCiKGLVqlW45JJLMG3aNAC81sm0d+9eLFy4ED6fDzk5OXjllVcwZcoU+S9aXuPkWLduHXbu3Int27cnPMbf5+SZP38+/vznP2PChAloa2vDz372M1x00UXYv3//iLzOYz58xAiCEPezKIoJ++j8nMs15p/D0O666y7s2bMHH3zwQcJjvNbnb+LEidi9ezd6e3vx0ksv4dZbb8XmzZvlx3mNz19TUxPuvvtubNiwATqdbsjjeK3P37Jly+T706dPx8KFCzF+/HisXbsWCxYsADCyrvOYb3YpKiqCUqlMSG7t7e0JKZDOTaxH9ZmusdVqRSAQQE9Pz5DHUJ+VK1fi9ddfx3vvvYeKigp5P6918mg0GtTV1WHu3LlYs2YNZs6ciccff5zXOIl27NiB9vZ2zJkzByqVCiqVCps3b8avf/1rqFQq+VrxWief0WjE9OnTceTIkRH5Oz3mw4dGo8GcOXOwcePGuP0bN27ERRddlKGzGltqampgtVrjrnEgEMDmzZvlazxnzhyo1eq4Y1pbW7Fv3z7+OfQjiiLuuusuvPzyy3j33XdRU1MT9zivdeqIogi/389rnERXXHEF9u7di927d8vb3LlzcfPNN2P37t2ora3ltU4Rv9+PhoYGlJaWjszf6aR3YR2BYkNt//jHP4oHDhwQ77nnHtFoNIonTpzI9KmNGk6nU9y1a5e4a9cuEYD46KOPirt27ZKHKz/88MOi2WwWX375ZXHv3r3iTTfdNOgwroqKCvHtt98Wd+7cKV5++eUcLjfA7bffLprNZnHTpk1xQ+Y8Ho98DK/1+bv33nvF999/X2xsbBT37Nkj3nfffaJCoRA3bNggiiKvcSr1H+0iirzWyfKd73xH3LRpk3j8+HFx69at4jXXXCOaTCb5e26kXeesCB+iKIpPPvmkWF1dLWo0GnH27Nny0EU6O++9954IIGG79dZbRVGUhnI98MADotVqFbVarXjZZZeJe/fujXsNr9cr3nXXXWJBQYGo1+vFa665Rjx16lQGPs3INdg1BiA+88wz8jG81ufvq1/9qvz3QXFxsXjFFVfIwUMUeY1TaWD44LVOjti8HWq1WiwrKxOvv/56cf/+/fLjI+06C6IoismvpxARERENbsz3+SAiIqKRheGDiIiI0orhg4iIiNKK4YOIiIjSiuGDiIiI0orhg4iIiNKK4YOIiIjSiuGDiIiI0orhg4iIiNKK4YOIiIjSiuGDiIiI0ur/A3HCfApc2TPDAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.plot(range(501), img_qual_callback.metrics_store['top_PSNR'], label='Top')\n", + "plt.plot(range(501), img_qual_callback.metrics_store['global_PSNR'], label='Global')\n", + "plt.plot(range(501), img_qual_callback.metrics_store['bottom_PSNR'], label='Bottom')\n", + "plt.legend()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "cil_testing2", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.12" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/v24.2.0/_sources/demos/deriv2_cgls.ipynb.txt b/v24.2.0/_sources/demos/deriv2_cgls.ipynb.txt new file mode 100644 index 0000000000..3cce6a2e50 --- /dev/null +++ b/v24.2.0/_sources/demos/deriv2_cgls.ipynb.txt @@ -0,0 +1,645 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "id": "602dbdfe", + "metadata": {}, + "outputs": [], + "source": [ + "# -*- coding: utf-8 -*-\n", + "# Copyright 2023 United Kingdom Research and Innovation\n", + "#\n", + "# Licensed under the Apache License, Version 2.0 (the \"License\");\n", + "# you may not use this file except in compliance with the License.\n", + "# You may obtain a copy of the License at\n", + "#\n", + "# http://www.apache.org/licenses/LICENSE-2.0\n", + "#\n", + "# Unless required by applicable law or agreed to in writing, software\n", + "# distributed under the License is distributed on an \"AS IS\" BASIS,\n", + "# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n", + "# See the License for the specific language governing permissions and\n", + "# limitations under the License.\n", + "#\n", + "# Authored by: Bill Lionheart (University of Manchester),\n", + "# Edited by: Margaret Duff (STFC - UKRI)" + ] + }, + { + "cell_type": "markdown", + "id": "6f8acbea", + "metadata": {}, + "source": [ + "# 1D inverse problem demo using deriv2 from regtools" + ] + }, + { + "cell_type": "markdown", + "id": "5dc422b7", + "metadata": {}, + "source": [ + "We roughly translated deriv2 (P. C. Hansen, Regularization Tools Version 4.0 for Matlab 7.3, Numerical Algorithms, 46 (2007), pp. 189-194.) to Python. The righthand side vector b is made as Ax so is \"exact\" as a vector. We will look at the singular valued decomposition (SVD) and regularized solution as an example of a mildly ill posed problem and show how to recostruct using the Core Imaging Library (CIL. See Jørgensen, Jakob S., et al. \"Core Imaging Library-Part I: a versatile Python framework for tomographic imaging.\" Philosophical Transactions of the Royal Society A 379.2204 (2021): 20200192. and https://tomographicimaging.github.io/CIL/nightly/index.html). " + ] + }, + { + "cell_type": "markdown", + "id": "7f0222cb", + "metadata": {}, + "source": [ + "This notebook was developed as part of the CCPi CIL Hackathon https://ccpi.ac.uk/events/byod-cil-hackathon/ in March 2023 in Cambridge as part of the Rich Nonlinear Tomography programme at the Isaac Newton Institute for Mathematical Sciences https://www.newton.ac.uk/event/rnt/. The CIL is supported by the CCPi EPSRC grant EP/T026677/1 and the Isaac NewtonInstitute by EP/R014604/1 The author would like to thank the Isaac Newton Institute for support and hospitality.(c) W.R.B. Lionheart 2023. Apache License" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "b2a54694", + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "from cil.optimisation.algorithms import CGLS\n", + "from cil.optimisation.operators import MatrixOperator\n", + "from cil.framework import VectorData, BlockDataContainer\n", + "from deriv2 import deriv2\n", + "from cil.optimisation.operators import BlockOperator,IdentityOperator" + ] + }, + { + "cell_type": "markdown", + "id": "d33631d9", + "metadata": {}, + "source": [ + "### CIL version 23.0.1" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "751f22b8", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "23.0.1\n" + ] + } + ], + "source": [ + "import cil\n", + "print(cil.__version__)" + ] + }, + { + "cell_type": "markdown", + "id": "250103e8", + "metadata": {}, + "source": [ + "We set up a 1D inverse problem, in which the forward model integrates twice. The notebook will first set up and solve a basic formulation of the problem using just python/numpy, and after that using CIL.\n", + "\n", + "Consider a discretization of a first kind Fredholm integral equation whose kernel K is the Green's function for the second derivative:\n", + " $$\n", + " K(s,t) = \\begin{cases} s(t-1) , s < t \\\\\n", + " t(s-1) , s \\geq t \\end{cases} $$\n", + "\n", + "and $$ \\int_0^1K(s,t)x(t)dt=b(s). $$\n", + "\n", + " For this notebook, consider the case\n", + "$$ b(s) = (s^3 - s)/6 , \\ \\ x(t) = t$$\n", + "\n", + " where the integral is disretised using the Galerkin method with orthonormal box functions, with interval size $1/n$.\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "27770924", + "metadata": {}, + "outputs": [], + "source": [ + "\n", + "# Test of one dimensional inverse problems using deriv2 from reg tools\n", + "n = 100\n", + "A,b,x = deriv2(n,1)\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "id": "113e7dc1", + "metadata": {}, + "source": [ + "The functions $b$ and $x$ can be plotted:" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "336dc870", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAGdCAYAAADAAnMpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABGy0lEQVR4nO3deVxU9eI+8GcYGFYBBWURJNwXBBTS0LyVFWZmaRl067Zd6+bttiBaV6Ob6a1oc6lMu5XVt/trQS2XikzqlnuLCIjiDgqyiIAw7LN9fn+cYRNQBmHOLM/79TqvmTnOwIcjcB4+5zxnFEIIASIiIiKZOMg9ACIiIrJvDCNEREQkK4YRIiIikhXDCBEREcmKYYSIiIhkxTBCREREsmIYISIiIlkxjBAREZGsHOUeQFcYDAYUFRWhT58+UCgUcg+HiIiIukAIgerqagQGBsLBofP5D6sII0VFRQgODpZ7GERERNQNBQUFCAoK6vTfrSKM9OnTB4D0xXh6eso8GiIiIuoKtVqN4ODg5v14Z6wijDQdmvH09GQYISIisjKXO8WCJ7ASERGRrBhGiIiISFYMI0RERCQrqzhnpCuEENDpdNDr9XIPpVcolUo4Ojqy2kxERDbHJsKIRqNBcXEx6urq5B5Kr3Jzc0NAQABUKpXcQyEiIuoxVh9GDAYD8vLyoFQqERgYCJVKZXOzB0IIaDQanD9/Hnl5eRg2bNglLx5DRERkTUwOIzt37sQbb7yB9PR0FBcXY9OmTZg1a9YlX7Njxw4kJibi8OHDCAwMxLPPPot58+Z1d8xtaDQaGAwGBAcHw83NrUc+piVydXWFk5MTzpw5A41GAxcXF7mHRERE1CNM/vO6trYWERERWL16dZeen5eXh1tvvRVTpkxBRkYGnnvuOTz11FP46quvTB7spdjDTIE9fI1ERGR/TJ4ZmT59OqZPn97l57/33nsYNGgQVq1aBQAYNWoU9u/fjzfffBN33XWXqZ+eiIiIbEyv/6m9b98+xMbGtlk3bdo07N+/H1qttsPXNDY2Qq1Wt1mIiIjINvV6GCkpKYGfn1+bdX5+ftDpdCgrK+vwNcnJyfDy8mpe+CZ5REREtsssJyFc3G4RQnS4vsnixYtRVVXVvBQUFPT6GImIiEgevR5G/P39UVJS0mZdaWkpHB0d4ePj0+FrnJ2dm98Uj2+OR0RE1Ht+zS3H/et+Q51GJ9sYej2MxMTEIC0trc267du3Izo6Gk5OTj3++YQQqNPoZFmaZny64vz58/D398crr7zSvO63336DSqXC9u3be3y7EBERtdao0yM59Qj+/MGv2HWiDGt+PiXbWExu09TU1ODkyZPNj/Py8pCZmYl+/fph0KBBWLx4MQoLC/Hpp58CAObNm4fVq1cjMTERjz76KPbt24d169bhiy++6LmvopV6rR6jX/ihVz725eQsmwY3Vdc2af/+/fHRRx9h1qxZiI2NxciRI/GXv/wFjz/+eLsTfomIiHrSsZJqJKRk4kixVBCJjw7GvOuHyDYek8PI/v37ccMNNzQ/TkxMBAA8+OCD+OSTT1BcXIz8/Pzmfw8NDUVqairmz5+Pd999F4GBgXj77bdZ6wVw66234tFHH8V9992Hq6++Gi4uLnj11VflHhYREdkog0Hg472n8dq2o9DoDOjnrkLynWMxbYy/rONSCFOOLchErVbDy8sLVVVV7c4faWhoQF5eHkJDQ+Hi4gIhBOq18rxZnquT0uRL0dfX1yMsLAwFBQXYv38/wsPDO33uxV8rERFRVxVX1WPhhizsOVkOALhhRH+8NiccA/r03v7kUvvv1qz+vWkuplAounyoxBLk5uaiqKgIBoMBZ86cuWQYISIi6o6tWUV4flM21A06uDg54PkZo3HfxEEW815u1rPXtkEajQb33Xcf4uPjMXLkSMydOxfZ2dntrstCRETUHVX1WizZcgibM4sAABFBXlgZH4nB/T1kHllbDCMySkpKQlVVFd5++214eHjg+++/x9y5c/Htt9/KPTQiIrJye0+VYeH6LBRVNcBBATwxdRienDoUTkrLe58zhhGZ/PLLL1i1ahV+/vnn5uNo//3vfxEeHo61a9fi73//u8wjJCIia9So02P59uP4YFcuhABCfNywIi4SUSF95R5apxhGZHL99de3e2+eQYMGobKyUp4BERGR1TtaokbCl5k4WlINALjn6mD867bRcHe27N29ZY+OiIiILstgEPhoTx5e33YMGr0BPu4qvHpXOG4ebR3nIDKMEBERWbGiSqmyu/eUVNm9ceQAvHpXOPr3cZZ5ZF3HMEJERGSlWld2XZ2U+Ndto/HnCcEWU9ntKoYRIiIiK1NVp8W/thzC1iypshsZ7I2V8ZEI9XWXeWTdwzBCRERkRfaeLMOCDVkormqA0kGBJ6cOxRM3DIWjBVZ2u4phhIiIyAo0aPV484dj+HB3HgDgKh83rIyPxLhBllvZ7SqGESIiIgt3pFiq7B47J1V2/zxhEJ6fMcriK7tdZRtfBRERkQ0yGAQ+3J2LN3843lzZfe2ucNxkJZXdrmIYkcn111+PyMhIrFq1Su6hEBGRBSqsrMeC9Zn4NbcCAHDTKKmy6+thPZXdrmIYISIisjBbMgvx/OZDqLbyym5XMYwQERFZiKo6LZ7fcgjf2Ehlt6ustwdkA3Q6HZ544gl4e3vDx8cHzz//PIQQcg+LiIhksOdkGW55aye+ySqC0kGB+TcNx8Z5MTYfRABbnBkRAtDWyfO5ndwAE6bQ/u///g9z587Fb7/9hv379+Nvf/sbQkJC8Oijj/biIImIyJI0aPV444djWGes7Ib6umNlfCQig73lHZgZ2V4Y0dYBrwTK87mfKwJUXU+wwcHBWLlyJRQKBUaMGIHs7GysXLmSYYSIyE7kFKkxP6WlsnvfxEFImjEKbirb2z1fCg/TyOiaa65pczJSTEwMTpw4Ab1eL+OoiIiot+kNAv/ZcQqz3t2DY+eq4euhwkcPRePl2WPtLogAtjgz4uQmzVDI9bmJiIgu4eyFOixYn4Xf8poqu3549a6xNlnZ7SrbCyMKhUmHSuT066+/tns8bNgwKJVKmUZERES9RQiBzZmFeGHzYVQ36uCmUmLJzNGIi7bdym5X2V4YsSIFBQVITEzEY489hgMHDuCdd97B8uXL5R4WERH1sMo6DZI2H8J3B4sBAOMGeWNVfCRCfKzjj+fexjAiowceeAD19fWYMGEClEolnnzySfztb3+Te1hERNSDdp8ow8INWShRS++y+/SNw/D49UOs+l12exrDiEx++eWX5vtr166VbyBERNQrGrR6vL7tGD7aI1V2BxsruxF2VNntKoYRIiKiHpZTpEZCSgaOn6sBAPzlmkF47lb7q+x2FbcKERFRD9EbBD7YlYvl249Bqxfw9XDG63PGYupI23qX3Z7GMEJERNQDzl6oQ+L6LPxurOzGjvZD8p1j4WPHld2uYhghIiK6AkIIbMooxJItUmXXXaXEkpljcHd0kN1XdruKYYSIiKibKus0SNp0CN9lS5XdqJC+WBEXwcquiWwmjNjDu93aw9dIRGQtdp04j4UbsnBO3QhHBwUSbhqGedexstsdVh9GnJycAAB1dXVwdXWVeTS9q65Oejfipq+ZiIjMr0Grx6vfH8Une08DAAb3d8eq+EiEB3nLOi5rZvVhRKlUwtvbG6WlpQAANzc3mztGJ4RAXV0dSktL4e3tzcvFExHJ5FBhFeanZOJEqVTZfSAmBIunj4Krir+Xr4TVhxEA8Pf3B4DmQGKrvL29m79WIiIyH71B4P2duViRJlV2+/dxxhtzwnH9iAFyD80m2EQYUSgUCAgIwIABA6DVauUeTq9wcnLijAgRkQwKKqR32f39tFTZvWWMP165cyz6uatkHpntsIkw0kSpVHKHTUREPUIIga8OFOLFrYdR01TZvX0M7o5iZben2VQYISIi6gkXajVI2pyN1OwSAEB0SF+siIvEIB83mUdmmxhGiIiIWtlx/Dye2ZCF0mqpsjv/5uGYd90QKB04G9JbGEaIiIjQvrI7pL87VsWPw9ggL3kHZgcYRoiIyO4dKqxCQkomTrKyKwuGESIislt6g8B7O05hZdpx6AwCA/o44427I3Dd8P5yD82uMIwQEZFdKqioQ+L6TPxx+gIAYHqYP16ZPRZ9Wdk1O4YRIiKyKxdXdj2cHfHi7WNw1/iBrOzKhGGEiIjsxoVaDZ7blI3vD0mV3auvkiq7wf1Y2ZUTwwgREdmFX46V4tmNB1Fa3QgnpVTZfexPrOxaAoYRIiKyafUaPZK/P4JP950BAAwd4IFV8ZEIG8jKrqVgGCEiIpuVfbYKCSkZOHW+FgDw0KSrsGj6SLg4sbJrSRhGiIjI5ugNAmt/OYlVP55gZdcKMIwQEZFNyS+vw/z1mUg/w8qutWAYISIimyCEwIb0s1i69TBqNXp4ODti6e1jcCcruxaPYYSIiKxeRa0Gi78+iB8OnwPAyq61YRghIiKr9rOxsnuelV2rxTBCRERWqV6jxyupR/DfX6XK7rABHljJyq5VcujOi9asWYPQ0FC4uLggKioKu3btuuTzP/vsM0RERMDNzQ0BAQF4+OGHUV5e3q0BExERHTxbiRnv7GoOIg9PvgrfPHktg4iVMjmMpKSkICEhAUlJScjIyMCUKVMwffp05Ofnd/j83bt344EHHsDcuXNx+PBhbNiwAX/88QceeeSRKx48ERHZF53egHd+OoE71+xF7vla+Hk6479zJ2DJzDG8dogVUwghhCkvmDhxIsaPH4+1a9c2rxs1ahRmzZqF5OTkds9/8803sXbtWpw6dap53TvvvIPXX38dBQUFXfqcarUaXl5eqKqqgqenpynDJSIiG3GmvBbzUzJxIL8SADAjPAAvzwqDtxsru5aqq/tvk2ZGNBoN0tPTERsb22Z9bGws9u7d2+FrJk2ahLNnzyI1NRVCCJw7dw4bN27EjBkzOv08jY2NUKvVbRYiIrJPQgis/6MAt761CwfyK9HH2REr4yOw+s/jGERshElhpKysDHq9Hn5+fm3W+/n5oaSkpMPXTJo0CZ999hni4+OhUqng7+8Pb29vvPPOO51+nuTkZHh5eTUvwcHBpgyTiIhsRHlNIx77bzqe/eogajV6TAjth+8TpmD2uCBeO8SGdOsE1ou/AYQQnX5T5OTk4KmnnsILL7yA9PR0bNu2DXl5eZg3b16nH3/x4sWoqqpqXrp6OIeIiGzHz0dLMW3VLmzPOQcnpQKLp4/EF49eg6C+vHaIrTGp2uvr6wulUtluFqS0tLTdbEmT5ORkTJ48Gc888wwAIDw8HO7u7pgyZQpeeuklBAQEtHuNs7MznJ2dTRkaERHZiDqNDi9/dwSf/SYVI4b7eWBV/DiMDuQ5g7bKpJkRlUqFqKgopKWltVmflpaGSZMmdfiauro6ODi0/TRKpXTGs4nnzhIRkY3LKqjEbW/vbg4ic68NxdYnrmUQsXEmX/QsMTER999/P6KjoxETE4P3338f+fn5zYddFi9ejMLCQnz66acAgJkzZ+LRRx/F2rVrMW3aNBQXFyMhIQETJkxAYGBgz341RERklXR6A9b8cgpv/XQCeoOAv6cLlsdFYPJQX7mHRmZgchiJj49HeXk5li1bhuLiYoSFhSE1NRUhISEAgOLi4jbXHHnooYdQXV2N1atXY8GCBfD29sbUqVPx2muv9dxXQUREVuviyu5t4QF4edZYeLk5yTswMhuTrzMiB15nhIjI9gghkPJHAZZ9m4M6jR59XBzx7zvCcEdkIJsyNqKr+2++Nw0REZldWU0jFn2VjR+PSO+ye83gflgeF4mB3q4yj4zkwDBCRERm9dORc/jnVwdRVqOBSumAhdOG45FrB8OB77JrtxhGiIjILOo0Orz03RF8bmzKjPDrg1X3RGJUAA+/2zuGESIi6nWZBZWYn5KJvLJaAMAj14Zi4bQRfHM7AsAwQkREvUinN2D1zyfxzv9OQm8QCPBywfK7IzCJlV1qhWGEiIh6RV6ZVNnNLKgEANweEYh/3xHGyi61wzBCREQ9SgiBL34vwL+/zUG9VqrsvjQrDHdEDpR7aGShGEaIiKjHnK9uxKKvDuKno6UAgJjBPlgeF4FAVnbpEhhGiIioR/yYI1V2y2ulyu6zt4zAXyeHsrJLl8UwQkREV6S2UYeXvsvBF78XAABG+kuV3ZH+rOxS1zCMEBFRtx3Iv4DElEycLq+DQgE8OmUwFsQOh7MjK7vUdQwjRERkMq3egNX/O4nVP0uV3UAvFyyPi0TMEB+5h0ZWiGGEiIhMkldWi4SUTGQZK7t3RAZi2R1h8HJlZZe6h2GEiIi6RAiBz3/Px0vfHkG9Vg9PF0e8NHssbo8IlHtoZOUYRoiI6LIuruxOGuKDN+9mZZd6BsMIERFdUlrOOSxqquw6OuDZaazsUs9iGCEiog7VNurw729z8OUfrOxS72IYISKidtLPXEDi+kycMVZ2/zZlMBJZ2aVewjBCRETNtHoD3vnpBFb/fBIGAVZ2ySwYRoiICACQe74G81MykXW2CgAwKzIQS1nZJTNgGCEisnNCCHz2Wz5e/q6lsvvy7LGYycoumQnDCBGRHSutbsCir7LxP2Nld/JQqbIb4MXKLpkPwwgRkZ3afrgEi77ORoWxsvvPW0bi4UlXsbJLZscwQkRkZ2oadfj3NzlI2S9VdkcFeGJVfCRG+PeReWRkrxhGiIjsSPqZCsxPyUJ+hbGy+6fBSLyZlV2SF8MIEZEd0OoNeOvHE1jzi1TZHejtihVxEZg4mJVdkh/DCBGRjTtlrOweNFZ27xw3EC/eMQaeLqzskmVgGCEislFCCPz31zN4JfUIGrQGeLk64ZXZYzEjPEDuoRG1wTBCRGSDStUNeGbjQew4fh4AMGWYL96YEwF/LxeZR0bUHsMIEZGN2XaoBIu/PogLdVqoHB2w6JaReIiVXbJgDCNERDaiplGHpVsPY0P6WQDA6ABPrLonEsP9WNkly8YwQkRkA/afrsD89ZkoqKiHQgE89qchSLx5OFSODnIPjeiyGEaIiKyYRmfAWz8dx9pfTrGyS1aLYYSIyEqdLJUqu9mFxsru+IF48XZWdsn6MIwQEVkZIQQ+3SdVdht1Bni7SZXdW8eyskvWiWGEiMiKnDNWdneysks2hGGEiMhKfJ9djMWbslFZp4WzowMWTx+JB2JY2SXrxzBCRGThqhu0eHFrDr46IFV2xwRK77I7jJVdshEMI0REFuz3vAokrs/E2QtSZffv1w1Bwk2s7JJtYRghIrJAGp0Bq348jrU7TkEIIKivK1bGR+Lqq/rJPTSiHscwQkRkYU6WViMhJROHCtUAgDlRQVgyczT6sLJLNophhIjIQhgMAp/uO43k7482V3aTZ4/FdFZ2ycYxjBARWYBz6gYs3JCFXSfKAAB/Gt4fb8wJh58nK7tk+xhGiIhklppdjOdaVXafu3UUHogJgULByi7ZB4YRIiKZqBu0eHHrYXx9oBAAEDZQquwOHcDKLtkXhhEiIhn8nleB+SmZKKysh4MC+Pv1Q/D0jazskn1iGCEiMiONzoCVPx7He8bKbnA/V6yMi0Q0K7tkxxhGiIjM5Pi5aiR8mYmcYqmye3dUEF5gZZeIYYSIqLcZDAKf7D2NV7cdhUZnQF83JyTfORa3hLGySwQwjBAR9aqSqgY8s7GlsnudsbI7gJVdomYMI0REveTbg0VI2nQIVfVauDg5IOnWUfjLNazsEl2MYYSIqIepG7RYsuUwNmVIld2xA72wMj4SQwd4yDwyIsvEMEJE1IN+yy1H4vqs5sruP24YiqduHAYnJSu7RJ3p1k/HmjVrEBoaChcXF0RFRWHXrl2XfH5jYyOSkpIQEhICZ2dnDBkyBB999FG3BkxEZIkadXokf38E93zwKwor6zGonxs2zIvBgtgRDCJEl2HyzEhKSgoSEhKwZs0aTJ48Gf/5z38wffp05OTkYNCgQR2+Ji4uDufOncO6deswdOhQlJaWQqfTXfHgiYgswfFz1Xj6y0wcMVZ246KD8MLMMfBw5uQzUVcohBDClBdMnDgR48ePx9q1a5vXjRo1CrNmzUJycnK752/btg333HMPcnNz0a9f9y7qo1ar4eXlhaqqKnh6enbrYxAR9TSDQeDjvafxmrGy289dheQ7x2LaGH+5h0ZkEbq6/zZp7lCj0SA9PR2xsbFt1sfGxmLv3r0dvmbr1q2Ijo7G66+/joEDB2L48OFYuHAh6uvrO/08jY2NUKvVbRYiIktSXFWP+z/6Df/+NgcanQE3jOiPbQlTGESIusGkOcSysjLo9Xr4+fm1We/n54eSkpIOX5Obm4vdu3fDxcUFmzZtQllZGR5//HFUVFR0et5IcnIyli5dasrQiIjM5pusIiRtyoa6QSdVdmeMxl8mDmJll6ibunVA8+IfOCFEpz+EBoMBCoUCn332Gby8vAAAK1aswJw5c/Duu+/C1dW13WsWL16MxMTE5sdqtRrBwcHdGSoRUY+pqtdiyZZD2JxZBAAID5Iqu0P6s7JLdCVMCiO+vr5QKpXtZkFKS0vbzZY0CQgIwMCBA5uDCCCdYyKEwNmzZzFs2LB2r3F2doazs7MpQyMi6lX7TpVj4YaWyu4TNwzFk6zsEvUIk36KVCoVoqKikJaW1mZ9WloaJk2a1OFrJk+ejKKiItTU1DSvO378OBwcHBAUFNSNIRMRmU+jTo9XUo/g3g9bV3YnIZGVXaIeY/JPUmJiIj788EN89NFHOHLkCObPn4/8/HzMmzcPgHSI5YEHHmh+/r333gsfHx88/PDDyMnJwc6dO/HMM8/gr3/9a4eHaIiILMXREjXuWL0H7+/MhRDAPVcH4/unpyAqpK/cQyOyKSafMxIfH4/y8nIsW7YMxcXFCAsLQ2pqKkJCQgAAxcXFyM/Pb36+h4cH0tLS8OSTTyI6Oho+Pj6Ii4vDSy+91HNfBRFRDzIYBD7ak4fXtx2DRm+Aj7GyG8umDFGvMPk6I3LgdUaIyFyKKuuxcEMW9p4qBwBMHTkAr90Vjv59eB4bkam6uv/m5QGJiIy2ZhXheWNl19VJiedvG4V7J7CyS9TbGEaIyO5V1WvxwpZD2GKs7EYEe2NlXAQGs7JLZBYMI0Rk1/aeKsPC9VkoqmqA0kGBJ24YiiemDmVThsiMGEaIyC41aPVYvv0YPtydByGAEB83rIyPxPhBbMoQmRvDCBHZnSPFasxPycTRkmoAwJ8nBOP5GaPhznfZJZIFf/KIyG4YDAIf7s7Fmz8cb67svnpXOG4e3fEVpInIPBhGiMguFFXWY8H6LOzLlSq7N44cgFdZ2SWyCAwjRGTztmQW4vnNh1BtrOz+67bR+POEYFZ2iSwEwwgR2ayqOi2e33II32RJld3IYG+sjI9EqK+7zCMjotYYRojIJu09WYYFG7JQbKzsPjl1KJ64YSgcWdklsjgMI0RkUxq0erz5g1TZBYCrjJXdcazsElkshhEishlHitVI+DITx85Jld17Jw7C8zNGwU3FX3VElow/oURk9Tqq7L52VzhuYmWXyCowjBCRVSusrMeC9Zn4NbcCAHDTKKmy6+vByi6RtWAYISKrJITAlswi/GuLVNl1U0mV3XuuZmWXyNowjBCR1amq0yJpcza+PVgMABg3yBsr4yJxFSu7RFaJYYSIrMqek2VYsD4LJWqpsvv0jcPw+PVDWNklsmIMI0RkFRq0ery+7Rg+2iNVdkN93bEyPhKRwd7yDoyIrhjDCBFZvJwiNRJSMnD8XA0A4L6Jg5DEyi6RzeBPMhFZLL1B4INduVi+/Ri0egFfDxVenxOOqSNZ2SWyJQwjRGSRzl6ow4L1WfgtT6rs3jzaD6/eORY+rOwS2RyGESKyKEIIbMooxJIth1HdKFV2l8wcjbhoVnaJbBXDCBFZjMo6DZI2HcJ32VJld/wg6V12Q3xY2SWyZQwjRGQRdp8ow4INmTinboSjsbL7d1Z2iewCwwgRyapBq8dr247i4z2nAQCDfd2x6p5IhAd5yzouIjIfhhEiks2hwirMT8nEiVKpsvuXawbhuVtZ2SWyN/yJJyKz0xsE3t+ZixVpUmW3fx9nvD4nHDeMGCD30IhIBgwjRGRWBRVSZff301Jld9oYPyTfGY5+7iqZR0ZEcmEYISKzEELg6wOFWLL1MGoadXBXKbFk5hjcHR3Eyi6RnWMYIaJed6FWg6TN2UjNLgEARIf0xYq4SAzycZN5ZERkCRhGiKhX7Tx+Hs9szGqu7M6/eTjmXTcESgfOhhCRhGGEiHpFg1aPV78/ik/2ngYADO7vjrfix2FskJe8AyMii8MwQkQ97lBhFRJSMnHSWNl9ICYEi6ePgqtKKfPIiMgSMYwQUY/RGwTe23EKK9OOQ2eQKrtvzAnH9azsEtElMIwQUY8oqKhD4vpM/HH6AgDgljH+eOXOsazsEtFlMYwQ0RURQuCrA4V40VjZ9XB2xJKZozEnipVdIuoahhEi6raKWg2SNmXj+0Mtld2V8ZEI7sfKLhF1HcMIEXXLL8dK8czGgzhfzcouEV0ZhhEiMkm9Ro/k74/g031nAABDB3hgVXwkwgaysktE3cMwQkRdln22CgkpGTh1vhYA8NCkq7Bo+ki4OLGyS0TdxzBCRJelNwis/eUkVv14AjqDwIA+znjj7ghcN7y/3EMjIhvAMEJEl5RfXof56zORfkaq7E4P88crs8eiLyu7RNRDGEaIqENCCGxIP4ulWw+jVqOHh7Mjlt4+BneOH8jKLhH1KIYRImqnolaDxV8fxA+HzwEArr5KepddVnaJqDcwjBBRGz8fK8Wzxsquk1Kq7D72J1Z2iaj3MIwQEQCpsvtK6hH891dWdonIvBhGiAgHz1YiISUTuazsEpEMGEaI7JhOb8DaX07hrZ+kyq6fpzPevDsCU4axsktE5sMwQmSnzpTXYn5KJg7kVwIAZowNwMuzw+DtxsouEZkXwwiRnRFCYMP+s1j6jVTZ7ePsiKV3jMHscazsEpE8GEaI7Eh5TSMWf52N7TlSZXdCaD+siItAUF9WdolIPgwjRHbi56PSu+yW1UiV3QWxI/DolMGs7BKR7By686I1a9YgNDQULi4uiIqKwq5du7r0uj179sDR0RGRkZHd+bRE1A11Gh2SNmXj4U/+QFlNI4b7eWDzPyZj3nW8dggRWQaTw0hKSgoSEhKQlJSEjIwMTJkyBdOnT0d+fv4lX1dVVYUHHngAN954Y7cHS0SmySqoxG1v78Znv0k/n3+dHIqtT1yLMYG8dggRWQ6FEEKY8oKJEydi/PjxWLt2bfO6UaNGYdasWUhOTu70dffccw+GDRsGpVKJzZs3IzMzs8ufU61Ww8vLC1VVVfD09DRluER2Sac3YI2xsqs3CPh7uuDNuyNw7TBfuYdGRHakq/tvk2ZGNBoN0tPTERsb22Z9bGws9u7d2+nrPv74Y5w6dQpLlizp0udpbGyEWq1usxBR15wpr8Xd/9mHFWnHoTcI3BYegG0JUxhEiMhimXQCa1lZGfR6Pfz8/Nqs9/PzQ0lJSYevOXHiBBYtWoRdu3bB0bFrny45ORlLly41ZWhEdk8IgZQ/CrDs2xzUGSu7y2aNwaxIVnaJyLJ16wTWi3+xCSE6/GWn1+tx7733YunSpRg+fHiXP/7ixYtRVVXVvBQUFHRnmER2o6ymEY9+mo5FX2ejTqPHxNB++D5hCmaPC2IQISKLZ9LMiK+vL5RKZbtZkNLS0nazJQBQXV2N/fv3IyMjA0888QQAwGAwQAgBR0dHbN++HVOnTm33OmdnZzg7O5syNCK79b+j5/DsxoMoq9HASanAwtgReISVXSKyIiaFEZVKhaioKKSlpWH27NnN69PS0nDHHXe0e76npyeys7PbrFuzZg3+97//YePGjQgNDe3msImoTqPDS98dwefGpsxwPw+sih+H0YE8yZuIrIvJFz1LTEzE/fffj+joaMTExOD9999Hfn4+5s2bB0A6xFJYWIhPP/0UDg4OCAsLa/P6AQMGwMXFpd16Iuq6zIJKzE/JRF6Z9C67c68NxTPTRvBddonIKpkcRuLj41FeXo5ly5ahuLgYYWFhSE1NRUhICACguLj4stccIaLu0ekNWP3zSbzzv5PNld3lcRGYPJRNGSKyXiZfZ0QOvM4IEZBXJr3LbmZBJQBgZkQgXrojDF5uTvIOjIioE13df/O9aYgsnBACX/xegH9/m4N6rR59XBzx0qww3BE5UO6hERH1CIYRIgtWVtOIRV8dxI9HSgEA1wzuh+VxkRjo7SrzyIiIeg7DCJGF+jHnHP751UGU12qgUjrgmWkjMPfaUDiwsktENoZhhMjC1DZKld0vfpdOBB/h1wer7onEqACeL0VEtolhhMiCZORfwPyUTJwur4NCATxybSgWxLKyS0S2jWGEyAJo9Qas/t9JrP5ZquwGerngzbgITBrCyi4R2T6GESKZ5ZXVIiElE1nGyu4dkYFYdkcYvFxZ2SUi+8AwQiQTIQQ+/z0fL317hJVdIrJrDCNEMjhfLVV2fzoqVXZjBvtgeVwEAlnZJSI7xDBCZGZpOeewqFVl99lbRuCvk1nZJSL7xTBCZCa1jTr8+9scfPlHAQBgpL9U2R3pz8ouEdk3hhEiMzhgrOyeMVZ2H50yGAtih8PZkZVdIiKGEaJepNUb8M5PJ7D655MwCCDQywXL4yIRM8RH7qEREVkMhhGiXnLqfA0SUzKRdbYKADArMhBLWdklImqHYYSohwkh8P9+y8fL3+WgQWuAp4sjXp49FjMjAuUeGhGRRWIYIepBpdUN+OfGg/j52HkAwKQhUmU3wIuVXSKizjCMEPWQHw6XYPHX2aio1UDl6IB/3jISD0+6ipVdIqLLYBghukI1jTr8+5scpOyXKrujAjyxKj4SI/z7yDwyIiLrwDBCdAXSz0iV3fwKqbL7tz8NRuLNrOwSEZmCYYSoG7R6A97+6QTeNVZ2B3q7YnlcBK4ZzMouEZGpGEaITHTqfA3mp2TioLGye+e4gXjxjjHwdGFll4ioOxhGiLpICIH/9+sZvJx6BA1aA7xcnfDy7DDcFs7KLhHRlWAYIeqC0uoGPLvxIH4xVnavHeqLN++OgL+Xi8wjIyKyfgwjRJex7VAJFn99EBfqtFA5OmDRLSPxECu7REQ9hmGEqBM1jTos3XoYG9LPAgBGB3hi1T2RGO7Hyi4RUU9iGCHqwP7TFZi/PhMFFfVQKIDH/jQEiTcPh8rRQe6hERHZHIYRola0egPe+vEE1vzSUtldEReBiazsEhH1GoYRIqOTpVJlN7vQWNkdPxAv3s7KLhFRb2MYIbsnhMB/fz2DV1pVdl+ZPRYzwgPkHhoRkV1gGCG7VqpuwDMbD2LHcamyO2WYL96Yw8ouEZE5MYyQ3dp2qBiLv87GhTotnB0dsGj6SDwYw8ouEZG5MYyQ3alu0GLpNznY2Kqy+9Y9kRjGyi4RkSwYRsiu/HG6AvNTMnH2glTZnXfdEMy/iZVdIiI5MYyQXdDoDFj143G8t+NUc2V3ZXwkJoT2k3toRER2j2GEbN7J0mokpGTiUKEaAHDX+CC8ePto9GFll4jIIjCMkM0SQuD/9p5G8vdH0agzwNvNCcmzx2L6WFZ2iYgsCcMI2aRz6gYs3JCFXSfKAAB/Gt4fb8wJh58nK7tERJaGYYRsTmp2MZ7blI1KY2X3uVtH4YGYECgUrOwSEVkihhGyGdUNWizZehhfHygEAIQN9MSq+HEYOsBD5pEREdGlMIyQTfg9rwKJ66XKroMC+Pv1Q/D0jazsEhFZA4YRsmoanQErjZVdIYDgfq5YEReJq69iZZeIyFowjJDVOnFOquweLpIqu3dHBeGFmazsEhFZG4YRsjoGg8D/7TuNV42V3b5uTki+cyxuCWNll4jIGjGMkFUpqWrAMxtbKrvXGSu7A1jZJSKyWgwjZDW+PViEpE2HUFWvhYuTA5JuHYW/XMPKLhGRtWMYIYunbtBiyZbD2JQhVXbDg7ywIi6SlV0iIhvBMEIW7bfcciSuz0JhpVTZ/ccNQ/HUjcPgpGRll4jIVjCMkEXS6AxYkXYc/9kpVXYH9XPDyvgIRIWwsktEZGsYRsjiHD9Xjae/zMSRYqmyGxcdhBdmjoGHM79diYhsEX+7k8UwGAQ+3nsar207Co2xsvvqXeGYNsZf7qEREVEvYhghi1BcVY+FG7Kw52Q5AOD6Ef3x+pxwDOjDyi4Rka1jGCHZfZNVhKRN2VA36KTK7ozR+MvEQazsEhHZCYYRkk1VvRZLthzC5swiAFJld2V8JIb0Z2WXiMiedKsfuWbNGoSGhsLFxQVRUVHYtWtXp8/9+uuvcfPNN6N///7w9PRETEwMfvjhh24PmGzDvlPlmL5qJzZnFsFBATw1dSi++vskBhEiIjtkchhJSUlBQkICkpKSkJGRgSlTpmD69OnIz8/v8Pk7d+7EzTffjNTUVKSnp+OGG27AzJkzkZGRccWDJ+vTqNMjOfUI7v3wVxRVNSDExw0b5k1CYuwIXjuEiMhOKYQQwpQXTJw4EePHj8fatWub140aNQqzZs1CcnJylz7GmDFjEB8fjxdeeKFLz1er1fDy8kJVVRU8PT1NGS5ZkKMlaiR8mYmjJdUAgHuuDsa/bhsNd1Z2iYhsUlf33ybtBTQaDdLT07Fo0aI262NjY7F3794ufQyDwYDq6mr069f5xasaGxvR2NjY/FitVpsyTLIwBoPAR3vy8Pq2Y9DoDejnrsKrd45FLCu7REQEE8NIWVkZ9Ho9/Pz82qz38/NDSUlJlz7G8uXLUVtbi7i4uE6fk5ycjKVLl5oyNLJQF1d2p44cgNfuCkf/Ps4yj4yIiCxFtw7SX1y5FEJ0qYb5xRdf4MUXX0RKSgoGDBjQ6fMWL16Mqqqq5qWgoKA7wySZbc0qwrSVO7HnZDlcnZR4eXYY1j0YzSBCRERtmDQz4uvrC6VS2W4WpLS0tN1sycVSUlIwd+5cbNiwATfddNMln+vs7AxnZ+6wrFVVvRYvbDmELcbKboSxsjuYTRkiIuqASTMjKpUKUVFRSEtLa7M+LS0NkyZN6vR1X3zxBR566CF8/vnnmDFjRvdGSlZh76kyTF+1E1syi6B0UOCpG4dh498nMYgQEVGnTK4xJCYm4v7770d0dDRiYmLw/vvvIz8/H/PmzQMgHWIpLCzEp59+CkAKIg888ADeeustXHPNNc2zKq6urvDy8urBL4Xk1KjT480fjuHD3XkQAgjxccPK+EiMH9RX7qEREZGFMzmMxMfHo7y8HMuWLUNxcTHCwsKQmpqKkJAQAEBxcXGba4785z//gU6nwz/+8Q/84x//aF7/4IMP4pNPPrnyr4Bkd3Fl988TgvH8DFZ2iYioa0y+zogceJ0Ry2QwCKzbnYc3fpAquz7uKrx6VzhuHn3p84eIiMg+9Mp1RoiaFFXWY8H6LOzLlSq7N44cgFdZ2SUiom5gGCGTbcksxPObD6G6QQdXJyVemDka91wdzHfZJSKibmEYoS6rqtPiX1sOYWuWVNmNDPbGyvhIhPq6yzwyIiKyZgwj1CV7T5ZhwYYsFFc1QOmgwJNTh+KJG4bCkW9uR0REV4hhhC6pQavHGz8cw7rdeQCAq4yV3XGs7BIRUQ9hGKFOHSmWKrvHzkmV3XsnDsLzM0bBTcVvGyIi6jncq1A7BoPAh7tz8eYPx5sru6/dFY6bWNklIqJewDBCbRRW1mPB+kz8mlsBALhplB9evWssfD1Y2SUiot7BMELNWld23VRKvHDbaMSzsktERL2MYYRQVafF81sO4RtjZXfcIG+sjIvEVazsEhGRGTCM2Lk9J8uwsFVl9+kbh+Hx64ewsktERGbDMGKnLq7shvq6Y2V8JCKDveUdGBER2R2GETuUU6TG/JSWyu59EwchiZVdIiKSCfc+dkRvEPhwVy6Wb5cqu74eznh9zlhMHcnKLhERyYdhxE6cvVCHBeuz8FueVNm9ebQfXr1zLHxY2SUiIpkxjNg4IQQ2Zxbihc2HUd0oVXaXzByNuGhWdomIyDIwjNiwyjoNkjYfwncHiwEA4wdJ77Ib4sPKLhERWQ6GERu1+4RU2S1RN8DRWNn9Oyu7RERkgRhGbEyDVo/Xth3Fx3tOAwAG+7pj1T2RCA/ylnVcREREnWEYsSGHi6qQ8GUmTpTWAAD+cs0gPHcrK7tERGTZuJeyAXqDwPs7c7Ei7Ri0eoH+fZzx+pxw3DBigNxDIyIiuiyGEStXUCFVdn8/LVV2p43xQ/Kd4ejnrpJ5ZERERF3DMGKlhBDYlFGIF7YcRk2jDu4qJZbMHIO7o4NY2SUiIqvCMGKFKus0SNp0CN9lS5Xd6JC+WBEXiUE+bjKPjIiIyHQMI1Zm14nzWLghC+fUjXB0UGD+zcMx77ohUDpwNoSIiKwTw4iVaNDq8er3R/HJ3tMAgMH93fFW/DiMDfKSd2BERERXiGHEChwqrEJCSiZOGiu7D8SEYPH0UXBVKWUeGRER0ZVjGLFgeoPAf3aewsq0482V3TfmhON6VnaJiMiGMIxYqIKKOiSuz8Qfpy8AAG4Z449X7hzLyi4REdkchhELI4TAVwcK8eJWqbLr4eyIJTNHY04UK7tERGSbGEYsyIVaDZI2ZyM1uwSAVNldGR+J4H6s7BIRke1iGLEQO46fxzMbslBazcouERHZF4YRmdVr9Hj1+yP4v31nAABDB3hgVXwkwgaysktERPaBYURGhwqr8PSXGTh1vhYA8NCkq7Bo+ki4OLGyS0RE9oNhRAZ6g8B7O6TKrs4gMKCPM964OwLXDe8v99CIiIjMjmHEzAoq6jA/JRP7z0iV3elh/nhl9lj0ZWWXiIjsFMOImQghsDH9LF7cehi1Gj08nB2x9PYxuHP8QFZ2iYjIrjGMmEFFrQaLvz6IHw6fAwBcfZX0Lrus7BIRETGM9Lqfj5Xi2Y0Hcb66EU5KqbL72J9Y2SUiImrCMNJL6jV6vJJ6BP/9lZVdIiKiS2EY6QXZZ6vwdEoGclnZJSIiuiyGkR6k0xvw3o5TWPXjCegMAn6eznjz7ghMGcbKLhERUWcYRnpIfnkd5q/PRLqxsjtjbABenh0GbzdWdomIiC6FYeQKCSGwYf9ZLP1Gquz2cXbE0jvGYPY4VnaJiIi6gmHkCpTXNGLx19nYniNVdieE9sOKuAgE9WVll4iIqKsYRrrp56OleGbjQZTVSJXdBbEj8OiUwazsEhERmYhhxET1Gj1eTs3B//s1HwAw3M8DK+MjMSaQlV0iIqLuYBgxQVZBJeanZCK3TKrs/nVyKJ69ZQQru0RERFeAYaQLdHoD1vxyCm//JFV2/T1d8ObdEbh2mK/cQyMiIrJ6DCOXcaa8FvNTMnEgvxIAMCM8AC/PYmWXiIiopzCMdEIIgZQ/CrDs2xzUGSu7y2aNwaxIVnaJiIh6EsNIB8prGrHo62ykGSu7E0P7YTkru0RERL2CYeQi/zt6Ds9uPIiyGg2clAosjB2BR1jZJSIi6jUO3XnRmjVrEBoaChcXF0RFRWHXrl2XfP6OHTsQFRUFFxcXDB48GO+99163Btub6jQ6PLcpG3/9ZD/KajQY7ueBLf+4Fo9dN4RBhIiIqBeZHEZSUlKQkJCApKQkZGRkYMqUKZg+fTry8/M7fH5eXh5uvfVWTJkyBRkZGXjuuefw1FNP4auvvrriwfeUzIJKzHh7Nz7/Tfoa/jo5FFufuBajAz1lHhkREZHtUwghhCkvmDhxIsaPH4+1a9c2rxs1ahRmzZqF5OTkds//5z//ia1bt+LIkSPN6+bNm4esrCzs27evS59TrVbDy8sLVVVV8PTsuYCgz/kWe3//HSkngLMGH2g8BiIp7k+YPGxAj30OIiIie9XV/bdJ54xoNBqkp6dj0aJFbdbHxsZi7969Hb5m3759iI2NbbNu2rRpWLduHbRaLZycnNq9prGxEY2NjW2+mJ4mhMCv33yAKfW/YErTELQAvlQBngMB72DAKxjwCrrodiDg5Nrj4yEiIrJXJoWRsrIy6PV6+Pn5tVnv5+eHkpKSDl9TUlLS4fN1Oh3KysoQEBDQ7jXJyclYunSpKUMzmUKhAEImI/WoFhP71cNHVwpUFwF6DXAhT1o64+ZrDCdBgPeglvteQYDXIMDdF2D9l4iILFmDGig6ABT8AZz9A4h9Ceg/XJahdKtNc/F1NoQQl7z2RkfP72h9k8WLFyMxMbH5sVqtRnBwcHeGekkxcc+grOYp+Hi6SCv0WkBdBKgLgaqzQGW+dFtVYHxcAGhrgboyaSnO7PgDK51bhZOmWZWBLY89BwIq1oSJiMhMDHrg/DGgcD9QmC4FkNIcAK3O1Bh1m3WEEV9fXyiVynazIKWlpe1mP5r4+/t3+HxHR0f4+Ph0+BpnZ2c4OzubMrRucXBQYEBTEAEApRPQN0RaOiIE0FAphZKqs22DSlUBUFUIVBcD+kag4pS0dKb17ErT4jmwJbx4+AEO3So7ERGRPRNC2i8VHZCCR+EBoCgD0NS0f67XICD4aiDoaiBksvnHamRSGFGpVIiKikJaWhpmz57dvD4tLQ133HFHh6+JiYnBN99802bd9u3bER0d3eH5IhZNoQBc+0pLQHjHz2maXWkTVIz3KwukWRdNzeVnVxwcAc/AlpmUptkVz6CW+y7ePBxERGTv1MXSvqQoUwodRQeA2vPtn+fkDgwcLy1BxgDSx9/co+2QyYdpEhMTcf/99yM6OhoxMTF4//33kZ+fj3nz5gGQDrEUFhbi008/BSA1Z1avXo3ExEQ8+uij2LdvH9atW4cvvviiZ78SS9Gl2ZWqDmZWzkpBpbJAml0x6KTDRJUdV6YBACoPY1AxhhXPpsAysGWmhYeDiIhsgxDSPqP4IFCcZVwygZpz7Z/r4AgMGC0Fj8DxQFA00H8k4GCZ7zJvchiJj49HeXk5li1bhuLiYoSFhSE1NRUhIdLOt7i4uM01R0JDQ5Gamor58+fj3XffRWBgIN5++23cddddPfdVWBOFAnD1lhb/sI6fo9cBNSXSYZ+msNJ0HkvTUl8hzbCUHZOWzrj2vSikGG89B0ozL54DASeXzl9PRETmp9cBZceBkmyg5KBxyQbqL7R/rsIB8B0BBI4DAiOl8OEfZlXNT5OvMyKH3rrOiFXT1BkPBxW0DSrqQinENB0O6go3n5aA4tUqpDQHlkCr+qYmIrIqNaXAucOtlkPA+aNSu/NiDo5A/1FAQIR0ukBABOA/FlC5m3/cXdAr1xkhC6JyA3yHSktHmg4HqQtbzmFpHVSa7uvqgbpyaSk52Pnnc+3bEk76BLQKKq3uO3vyHBYios40VAGlR4HzR4DSI1LwKD0inT/YEVUfKWg0L2HSoRfH3i94mBvDiK1qfTjIb0zHzxFCmvJrqjM3h5WilhCjLgS0ddLz6i9Iib0zTu5SOOkT0Cq0XHTr4Qco+W1HRDasrkI6xHL+KHDeeFt6RLqWVYcUQL9QwC/MuIyRgofXILtpVXKvYM8UCsCtn7R0dv5KU51ZXdw2pFQXGR8XS+saKqVrsJSflJbOPyngMUA6g7tPYEt46ePf9ta1n938EBKRFTLopYJB+UkpeJSdMC7HgdrSzl/XJxAYMFI61OI3Wprp6D/S7ssGDCN0aa3rzH6jO3+epk5qAamLOrktlk7KNeikM79rzklngnfGwUmaRenj37J4tL5v/Dc3X4YWIuodQki/v8pPARW50rWjyk9JAaQit+NzOpp4BQO+w6Wg0X+4FD76j5Bmq6kdhhHqGSo3wGeItHTGYJCOjaqLgOoSaXalukT6Ya8ukQJLdZF0/opBC6jPSsulKJTSTIuHnzGg+LXcb16M/27nf3kQUQf0WqkIUGF8G5CKPODC6ZbH2rrOX6t0BvoNlsKGr3HxGSrdOnuY7UuwBQwjZD4ODsZgcJl3RdZppGnO1kGlukSaWak+13Jbex4QeuNzii//+VV9Wj6/xwDAvem2f8tjd1/pvoWemU5EJjIYf0c0XbepMh+4cAaoPCPdqs8CwtD56xVK6T3IfIZIwcNnaMviFWSx1+2wNgwjZHkcVS2XyL8Uva4ltNSck+pxTYeAqkvaPtY1AJpqoKL60pfpb+LkDnj0l4JKU0hxb3rsKy1uTbc+0sXuiMi8WrcGqwqlYNH6+kxNV70W+kt/HEdX48UqQ6UTSZtu+w2Wggh/vnsdwwhZL6Vjy3VQLkUIoLG6JbDUlhqDStP989K/1Z6X1ukbpZNxL9RK07Vd4eLdElDcfAB3n5b7bj7Gf+snnZjr5gM492ENmuhSmv/YMJ5z1jQD2nTSfNM5aV25npKDo3QOh/cg4xIi3fa9Slo8BvDnUWYMI2T7FArAxVNafIdd+rlNwaX2PFBbJv0ybL5/vtV94+P6CmmKt6FSWi7ZJGrFwalVOOknnSB88ePmpZ+xpt2XF58j62Yw/qw0Bf/mPwJazWw2HYqtLUObd5S9lOYrTV/0DulewYB3sPGNR3k4xZIxjBC11jq4XOpk3CYGvXT9lVrjGx/WlRvvl7csbR5XSBeaM2hbDiGZwtFFmoVx9e7g1ku67+LV8tjZ07jeU7rPX8jUU4QAtPVSIK+rMN4av8frKtr/PDQF+csdMmlNoWzVqDNW/5uvEB3YcnkAnuNl9RhGiK6Eg7LlHJKu0tS1/cXd/Mv8Qstt81IB1FdK94VeOvelxngyb3eoPIwBxRhOnPu0Wpoee0i3qta3HtKtykP6xe/kxkq1LdA1SjOBjWqgQd1y21BlvF8lff81VEkzGvWVxlvj96q+sXuf18XbeOK4n3Ruloef9Liptt9c3fdhgLYTDCNE5qZyk5bLnaDbWtPho6aQ0mbHUNmys2ioatmBNO1MGtTSbAwgHV/X1FziSpAmcHKXgknT4mT8upzcLrrvKt06uhjvu7bcd3RpWZyMt0qVcZ2q5bE9Hs8XQqqd6hul0KBrkG619dJ9bR2gbbqtl85z0tZLYVdbK91qao3/57Ut9xurjbc13Q8TrTk4tpwL1XzI0eeik7z7GU8E7y/9m6Pqyj8v2RSGESJr0PrwUd8Q01+v07SEk9Z/BTdWt/xl3Hy/9Q5LLe3EGmtadmZNx/G1tdJS26NfacccnKT341A6Sdd2UDpJi0PTrWOrx47SrYNSWq9wkG4dlNK0v8LBeN/hokUBQNFyC7SEoDbvJyqk84SEaHXfIJ0PIQzSDJZBb7zVSesNOuOilf5Nr5Xu67XShbP02lbBQyOFDb0GXT5n4ko5uUuzYE2H9Fof4mt3CLBv2/OaVB72GRapRzGMENkDRxXgaOLhpI4YDMa/xOuMf3HXtfzl3fQXeuv7rdfpGlr9VV9vvN/qL35d0+PG9n+xG7SARntlY7d2zTNGzsZZJdeWmaamGSiVu/FxB7NWTYfaWh96azo0x0MhJDOGESLqOgcH407MA8BlLl53JYSQZgZ0DdKMQVNAabrfPKtgnE1onm0wzkDota1mJoy3wtAyY9F0H0L6XE2zG02zHU1jgEC7WRJAmkmBomVGRaFoP+vSNBvj4Cj9W/PsjWPLfaWTFDKUKmmdo7M08+Ooalnv5Cqt4zk6ZMMYRojI8igU0o7ZBt8qnYjaY9QmIiIiWTGMEBERkawYRoiIiEhWDCNEREQkK4YRIiIikhXDCBEREcmKYYSIiIhkxTBCREREsmIYISIiIlkxjBAREZGsGEaIiIhIVgwjREREJCuGESIiIpKVVbxrrxDSW3qr1WqZR0JERERd1bTfbtqPd8Yqwkh1dTUAIDg4WOaREBERkamqq6vh5eXV6b8rxOXiigUwGAwoKipCnz59oFAoeuzjqtVqBAcHo6CgAJ6enj32cak9bmvz4HY2D25n8+B2No/e3M5CCFRXVyMwMBAODp2fGWIVMyMODg4ICgrqtY/v6enJb3Qz4bY2D25n8+B2Ng9uZ/Pore18qRmRJjyBlYiIiGTFMEJERESysusw4uzsjCVLlsDZ2Vnuodg8bmvz4HY2D25n8+B2Ng9L2M5WcQIrERER2S67nhkhIiIi+TGMEBERkawYRoiIiEhWDCNEREQkK5sPI2vWrEFoaChcXFwQFRWFXbt2XfL5O3bsQFRUFFxcXDB48GC89957ZhqpdTNlO3/99de4+eab0b9/f3h6eiImJgY//PCDGUdr3Uz9nm6yZ88eODo6IjIysncHaCNM3c6NjY1ISkpCSEgInJ2dMWTIEHz00UdmGq31MnU7f/bZZ4iIiICbmxsCAgLw8MMPo7y83EyjtU47d+7EzJkzERgYCIVCgc2bN1/2NWbfFwob9uWXXwonJyfxwQcfiJycHPH0008Ld3d3cebMmQ6fn5ubK9zc3MTTTz8tcnJyxAcffCCcnJzExo0bzTxy62Lqdn766afFa6+9Jn7//Xdx/PhxsXjxYuHk5CQOHDhg5pFbH1O3dZPKykoxePBgERsbKyIiIswzWCvWne18++23i4kTJ4q0tDSRl5cnfvvtN7Fnzx4zjtr6mLqdd+3aJRwcHMRbb70lcnNzxa5du8SYMWPErFmzzDxy65KamiqSkpLEV199JQCITZs2XfL5cuwLbTqMTJgwQcybN6/NupEjR4pFixZ1+Pxnn31WjBw5ss26xx57TFxzzTW9NkZbYOp27sjo0aPF0qVLe3poNqe72zo+Pl48//zzYsmSJQwjXWDqdv7++++Fl5eXKC8vN8fwbIap2/mNN94QgwcPbrPu7bffFkFBQb02RlvTlTAix77QZg/TaDQapKenIzY2ts362NhY7N27t8PX7Nu3r93zp02bhv3790Or1fbaWK1Zd7bzxQwGA6qrq9GvX7/eGKLN6O62/vjjj3Hq1CksWbKkt4doE7qznbdu3Yro6Gi8/vrrGDhwIIYPH46FCxeivr7eHEO2St3ZzpMmTcLZs2eRmpoKIQTOnTuHjRs3YsaMGeYYst2QY19oFW+U1x1lZWXQ6/Xw8/Nrs97Pzw8lJSUdvqakpKTD5+t0OpSVlSEgIKDXxmuturOdL7Z8+XLU1tYiLi6uN4ZoM7qzrU+cOIFFixZh165dcHS02R/3HtWd7Zybm4vdu3fDxcUFmzZtQllZGR5//HFUVFTwvJFOdGc7T5o0CZ999hni4+PR0NAAnU6H22+/He+88445hmw35NgX2uzMSBOFQtHmsRCi3brLPb+j9dSWqdu5yRdffIEXX3wRKSkpGDBgQG8Nz6Z0dVvr9Xrce++9WLp0KYYPH26u4dkMU76nDQYDFAoFPvvsM0yYMAG33norVqxYgU8++YSzI5dhynbOycnBU089hRdeeAHp6enYtm0b8vLyMG/ePHMM1a6Ye19os38q+fr6QqlUtkvYpaWl7RJfE39//w6f7+joCB8fn14bqzXrznZukpKSgrlz52LDhg246aabenOYNsHUbV1dXY39+/cjIyMDTzzxBABppymEgKOjI7Zv346pU6eaZezWpDvf0wEBARg4cGCbt0ofNWoUhBA4e/Yshg0b1qtjtkbd2c7JycmYPHkynnnmGQBAeHg43N3dMWXKFLz00kucve4hcuwLbXZmRKVSISoqCmlpaW3Wp6WlYdKkSR2+JiYmpt3zt2/fjujoaDg5OfXaWK1Zd7YzIM2IPPTQQ/j88895vLeLTN3Wnp6eyM7ORmZmZvMyb948jBgxApmZmZg4caK5hm5VuvM9PXnyZBQVFaGmpqZ53fHjx+Hg4ICgoKBeHa+16s52rqurg4ND292WUqkE0PKXO105WfaFvXZqrAVoqo2tW7dO5OTkiISEBOHu7i5Onz4thBBi0aJF4v77729+flOdaf78+SInJ0esW7eO1d4uMHU7f/7558LR0VG8++67ori4uHmprKyU60uwGqZu64uxTdM1pm7n6upqERQUJObMmSMOHz4sduzYIYYNGyYeeeQRub4Eq2Dqdv7444+Fo6OjWLNmjTh16pTYvXu3iI6OFhMmTJDrS7AK1dXVIiMjQ2RkZAgAYsWKFSIjI6O5Qm0J+0KbDiNCCPHuu++KkJAQoVKpxPjx48WOHTua/+3BBx8U1113XZvn//LLL2LcuHFCpVKJq666Sqxdu9bMI7ZOpmzn6667TgBotzz44IPmH7gVMvV7ujWGka4zdTsfOXJE3HTTTcLV1VUEBQWJxMREUVdXZ+ZRWx9Tt/Pbb78tRo8eLVxdXUVAQIC47777xNmzZ808auvy888/X/J3riXsCxVCcG6LiIiI5GOz54wQERGRdWAYISIiIlkxjBAREZGsGEaIiIhIVgwjREREJCuGESIiIpIVwwgRERHJimGEiIiIZMUwQkRERLJiGCEiIiJZMYwQERGRrBhGiIiISFb/HxmGn7N1wWwRAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "\n", + "plt.figure()\n", + "plt.plot(np.linspace(0,1,n),x, label='x')\n", + "plt.plot(np.linspace(0,1,n),b, label='b')\n", + "plt.plot()\n", + "plt.legend()\n", + "plt.show()\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "id": "84dfaf27", + "metadata": {}, + "source": [ + "This has made a A, x, and b where Ax=b. We can check check this is the case up to floating point error: " + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "6d854bd7", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0.0" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "np.linalg.norm(A@x-b)" + ] + }, + { + "cell_type": "markdown", + "id": "554b487c", + "metadata": {}, + "source": [ + "Now make a version of b with noise" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "35d30bb8", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjgAAAGdCAYAAAAfTAk2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABx4ElEQVR4nO3deVxU9f7H8deZYRgWYRQREEXBfVfcEM2lVFxSs01No2zx2s+8Zptlm5ZdTSu1stXKul7LFsM2I/dd3HEDwQVXBFzYZGfm/P44ShG4oA4Hhs/z8ZgHw3e+Z3ifEzkfzvme71dRVVVFCCGEEMKBGPQOIIQQQghxq0mBI4QQQgiHIwWOEEIIIRyOFDhCCCGEcDhS4AghhBDC4UiBI4QQQgiHIwWOEEIIIRyOFDhCCCGEcDhOegfQg81mIzExEQ8PDxRF0TuOEEIIIa6DqqpkZmbi7++PwXD1czRVssBJTEwkICBA7xhCCCGEuAEnT56kbt26V+1TJQscDw8PQDtAnp6eOqcRQgghxPXIyMggICCg6HP8aqpkgXP5spSnp6cUOEIIIUQlcz3DS2SQsRBCCCEcjhQ4QgghhHA4UuAIIYQQwuFIgSOEEEIIhyMFjhBCCCEcjhQ4QgghhHA4UuAIIYQQwuFIgSOEEEIIhyMFjhBCCCEcjhQ4QgghhHA4UuAIIYQQwuFIgSOEEEIIh1MlF9u0l4t5hXy+4Sg2FZ7p20TvOEIIIUSVJQXOLbTzeCpzVx7C2cnA8E4B1KnuqnckIYQQokoql0tUH330EUFBQbi4uNChQwc2bNhw1f7r1q2jQ4cOuLi40KBBAz755JMSfZYsWUKLFi0wm820aNGCiIgIe8W/bj0ae9OlgRf5hTbmrojXO44QQghRZdm9wPnuu++YOHEiL7/8Mrt376Z79+4MGDCAEydOlNo/ISGBgQMH0r17d3bv3s1LL73EhAkTWLJkSVGfLVu2MHz4cMLDw9mzZw/h4eEMGzaMrVu32nt3rkpRFF7t5k5b5TBLdp3iUHKmrnmEEEKIqkpRVVW15w8ICQmhffv2fPzxx0VtzZs3Z+jQocyYMaNE/xdeeIFffvmF2NjYorYnnniCPXv2sGXLFgCGDx9ORkYGf/zxR1Gf/v37U6NGDb799ttrZsrIyMBisZCeno6np+fN7F5xh1fBtw+QbPDmtswZ3N6iDp891PHWvb8QQghRhZXl89uuZ3Dy8/PZuXMnYWFhxdrDwsLYvHlzqdts2bKlRP9+/fqxY8cOCgoKrtrnSu+Zl5dHRkZGsYdd1O0ELhZ8C07zqNMfLI9JZufxVPv8LCGEEEJckV0LnHPnzmG1WvH19S3W7uvrS1JSUqnbJCUlldq/sLCQc+fOXbXPld5zxowZWCyWokdAQMCN7tLVuXhC39cBeMZ5KbVIZWbkQex8kkwIIYQQ/1Aug4wVRSn2vaqqJdqu1f+f7WV5z8mTJ5Oenl70OHnyZJnyl0mbEVCnI2ZbDi85f8e2hAusjT9rv58nhBBCiBLsWuB4e3tjNBpLnFlJSUkpcQbmMj8/v1L7Ozk5UbNmzav2udJ7ms1mPD09iz3sxmCAgbMAuNuwnvZKPLMi47DZ5CyOEEIIUV7sWuA4OzvToUMHVqxYUax9xYoVdO3atdRtQkNDS/Rfvnw5HTt2xGQyXbXPld6z3NXpAMEPAjDN+b8cPJPGr3sTdQ4lhBBCVB12v0T1zDPP8Pnnn/Pll18SGxvL008/zYkTJ3jiiScA7fLRQw89VNT/iSee4Pjx4zzzzDPExsby5Zdf8sUXX/Dcc88V9XnqqadYvnw5M2fO5ODBg8ycOZOVK1cyceJEe+/O9es9BcyetFSOcr9xHe8ujye/0KZ3KiGEEKJKsHuBM3z4cObOncsbb7xBu3btWL9+PcuWLaN+/foAnDlzpticOEFBQSxbtoy1a9fSrl07pk2bxvvvv8+9995b1Kdr164sXryYBQsW0KZNG7766iu+++47QkJC7L0716+aD/R8AYAXTd+RduEsi7eXPvePEEIIIW4tu8+DUxHZbR6cfyrMh0+6wbl4Nltb8ILzZCInDcTdLCtkCCGEEGVVYebBqfKcnGHox6jOHnQ1xjC7YBoL1+7TO5UQQgjh8KTAsbe6HVEeWkq+yZNOhnhu2/wYqeeS9U4lhBBCODQpcMpD3Y44PfIb6YonrZQj5H8xEC7K3DhCCCGEvUiBU04M/m2JH/gdKWp1fHMOU/BFf8iQW8eFEEIIe5ACpxx17BjKdN93Oa3WxJR6GL7sDxcS9I4lhBBCOBwpcMqRoig8PKg39+dNIcHmC2nHtSInJfbaGwshhBDiukmBU86C69WgTctWDMufwilTEFxMggUD4fQuvaMJIYQQDkMKHB08168J55Xq3Jk5mYvebSHnAnw9RIocIYQQ4haRAkcHjXw8uL9DAOlU4/8Mr6EG3gb5mbDhXb2jCSGEEA5BChydTOzbGLOTgQ0n8tjR5Bmt8eg6bfZjIYQQQtwUKXB0UtviyuiugQC8ttWI6uatncU5tU3fYEIIIYQDkAJHR//XqyEeLk7EJmdx0itUazy8Ut9QQgghhAOQAkdH1d2ceaJnQwAWJGtfpcARQgghbp4UODp7tFsQPh5mfs5shooCSfsgM0nvWEIIIUSlJgWOzlydjTzVpzEX8CSGBlrjkdX6hhJCCCEqOSlwKoBhHQMI8nZnVWFrrUEuUwkhhBA3RQqcCsBkNPBcWFPWWdsCYDu8GmxWnVMJIYQQZZeeU8CA9zYwY1kshVabbjmkwKkgBrb2w+rfgQzVDUNuqsxqLIQQolLadOgs586cYEVsMk5G/coMKXAqCEVReH5ASzbYWgGQvu8PnRMJIYQQZbd/3y62u4zju4KJYJMzOALo1sibM97dAEjdu0znNEIIIUTZqKpKztHNADh71ASDnMERl9zWfwQA9XIOcvDoMX3DCCGEEGUQcyaDpnkHAHBv3E3XLFLgVDDNmjYj0TkIg6Ky+vfv9I4jhBBCXLe1cWfpaIgHwKl+V12zSIFTAbm37AeAT8pGthw5r3MaIYQQ4vrsij1MI0Oi9k1AZ12zSIFTAVlaDwCgp2EPM/+IQVVVnRMJIYQQV5eeU4DxtLZgdIFXE3Dz0jWPFDgVUb1QbCY3ainp2E7v5s8DsnSDEEKIim3T4XO0V+IAMAWG6pxGCpyKycmMoXEYAAON25j1Z5yukyUJIYQQ17I2LqVo/A31pMARV9LiLgDudNrG0bMX+WHnKZ0DCSGEEKVTVZWouFO0UY5oDfVC9A2EFDgVV+MwcHIlgGRaKseYuzKenHxZvkEIIUTFE3smE9+LB3FWrKjuvlAjSO9IUuBUWOZq0LgPAMPddpGckcdXm4/pm0kIIYQoxdr4vy5PKfVCQFF0TiQFTsXWYigA97hsB1Q+WnuYtOx8XSMJIYQQ/6TNf6MNMK4I429ACpyKrUk/MJqplnWCAbXOk5lbyEdrj+idSgghhCiSkVvAruPn6VA0wFj/8TcgBU7FZvaAxn0BeCHgIABfbT5GYlqO9vqaGfBFP8hJ0ymgEEKIqm7ToXMEqaeprmSByQ382ugdCZACp+K7dDdV/eQVhATWIL/QxtyV8bDvR1j3FpyMgiOrdQ4phBCiqloTl/LX5ak6HcBo0jfQJVLgVHRN+oPRGeX8IaaGav+5tu/cgfWXp/7qczZOp3BCCCGqMlVVK+T4G5ACp+Jz8YSGvQFofmE1g1p48Z7pA4wFF8HorPU5G6tjQCGEEFXVgcQMUjLz6GQ4pDXU66JvoL+RAqcyaDlU+xrzM296LKGNIYFUtRoJIVO1djmDI4QQQgerD6ZQi1TqKcmgGKBuJ70jFXHSO4C4Dk36g8EEZw9S/aw22Pi5grGY4uvwCcD5w2AtqDDXPYUQQlQNqw7+bXkG35baVYcKQs7gVAau1aHhHUXfZrX/F5uMnYg85UShkzvYCuG83D4uhBCi/JzNzGPvqTQ6XR5/E1BxLk+BFDiVR5th2tfa7XAf+CaPdgsCFA7b/LX2S2d2hBBCiPKwNi4FVYXbzZc+fyrQ+Buwc4GTmppKeHg4FosFi8VCeHg4aWlpV91GVVWmTp2Kv78/rq6u9OrViwMHDhTr89lnn9GrVy88PT1RFOWa7+kQWt0LD/0Co38DJzNjezakupuJffm1tddlHI4QQohytCYuhSbKSYKsx7RhFH+70lAR2LXAGTlyJNHR0URGRhIZGUl0dDTh4eFX3WbWrFnMnj2befPmsX37dvz8/Ojbty+ZmZlFfbKzs+nfvz8vvfSSPeNXLIoCDXpqk/8BFlcT429vxCG1DgDWFLmTSgghRPnIL7SxIf4cdxk3aQ2N+4Kbl76h/sFug4xjY2OJjIwkKiqKkBBt2ub58+cTGhpKXFwcTZs2LbGNqqrMnTuXl19+mXvuuQeAr7/+Gl9fX7755hvGjh0LwMSJEwFYu3atveJXCg92qc8r6xtAAaQd30dNvQMJIYSoEnYcu8DFvHzudtmiNbS+X99ApbDbGZwtW7ZgsViKihuALl26YLFY2Lx5c6nbJCQkkJSURFhYWFGb2WymZ8+eV9zmeuTl5ZGRkVHs4QhcTEb69OwJgGdWAmkXs3VOJIQQoipYfTCFDko8/pwFZw9oOkDvSCXYrcBJSkrCx8enRLuPjw9JSUlX3AbA19e3WLuvr+8Vt7keM2bMKBoHZLFYCAgIuOH3qmj6hnYkFzMmrCz+c73ecYQQQlQBqw+mMPTy5anmg8Hkqm+gUpS5wJk6dSqKolz1sWPHDgAURSmxvaqqpbb/3T9fv55trmby5Mmkp6cXPU6ePHnD71XRGI1G8r0aA7A/eiunLy/EKYQQQtjBsXNZnDyXzp3GrVpDm4p3eQpuYAzO+PHjGTFixFX7BAYGsnfvXpKTk0u8dvbs2RJnaC7z8/MDtDM5tWvXLmpPSUm54jbXw2w2Yzabb3j7is4joBVc2E+g7SSzl8fz7rC2ekcSQgjhoFYfTKGHYQ81lIvg7gNBPfWOVKoyFzje3t54e3tfs19oaCjp6els27aNzp07A7B161bS09Pp2rVrqdsEBQXh5+fHihUrCA4OBiA/P59169Yxc+bMskatMpRazQBobDjNh7tPMaZHEM38Ks5skkIIIRzH6oMpDDNeGhfb6l4wGPUNdAV2G4PTvHlz+vfvz5gxY4iKiiIqKooxY8YwaNCgYndQNWvWjIiICEC7NDVx4kSmT59OREQE+/fvZ/To0bi5uTFy5MiibZKSkoiOjubw4cMA7Nu3j+joaC5cuGCv3anYLhU4HVyTUVWY+YdM+ieEEOLWu5hXyP6EU/Q17NQaKujlKbDzPDiLFi2idevWhIWFERYWRps2bVi4cGGxPnFxcaSnpxd9P2nSJCZOnMi4cePo2LEjp0+fZvny5Xh4eBT1+eSTTwgODmbMmDEA9OjRg+DgYH755Rd77k7FdanA8beewtmgsibuLFuOnNc5lBBCCEez8dBZble346rko3o1BP/2eke6IkVVVVXvEOUtIyMDi8VCeno6np4OcCnHZoXpdaAwhznNF/Pebhtt61pY+mS3mxqcLYQQQvzdcz/sYfDe8fQ07oVek6HXi+X688vy+S1rUTkCgxG8tTupHm2Sh5uzkT2n0lm278ZvrRdCCCH+zmpTiY6N5zbDPq2hAk7u93dS4DiKS5epLJmHGdO9AQBv/3mQgtSTsPt/2lkeIYQQ4gbtPpFKp7wtGBUVm397qNlQ70hXJQWOo/DRChzOxjGmRwO8qzlz5nwaWZ8Php+fhOhF+uYTQghRqa2ITaanYS8AhqYDdU5zbVLgOIpalwucg1QzO/FU78aMc/qZ6lkJWntMFR2ALYQQ4pZYc+A03Qz7tW8aVayVw0tjt8U2RTm7XOCciweblRGBF1Gc/lbUJKyD3AxwcYBB1UIIIcpVwrksLOf34GHOweZaE0PtYL0jXZOcwXEUNQLBaIbCXLiQgOm3p3DCynJrB46q/mDNh8Mr9U4phBCiEloVm0xP4x4ADI3uAEPFLx8qfkJxfQxG8G6iPf9jEpzegersweJaT/GntYPWfvB3/fIJIYSotFbEJNPToBU4NOytb5jrJAWOI6l1aYboI6sAUPpOZeyg21hu7QiANf5PKMzXK50QQohKKDUrn4Tjx2htOKY1NKz4429AChzHcvlOKoCALtDhUUIa1MS7aSgpanWM+ZlwbIN++YQQQlQ6a+NT6Ip29xR+bcDjxhe/Lk9S4DiSWs21r0ZnGPxe0TXSSQNasNKmXaZK2fGTXumEEEJUQitjUorG39CoclyeAilwHEvjMOjwCNzzWbGzOY19PchtOAAAY/wfqDLpnxBCiOuQX2hjfXwy3S/PXtyoj76BykAKHEfi5AyD50LLu0u8dOeQYVxUXalpO8/WTavKP5sQQohKZ2vCeernH8ZbyUB1rgZ1O+sd6bpJgVNF+HpZOOndDYCjG76j0GrTOZEQQoiKbmVMMj0uzV6sBPXU/pCuJKTAqULqdxsGQKfcLXy/45TOaYQQQlRkqqqyMjZFWzkcKtX4G5ACp0pxa9Efq+JEY8Npflqxhqy8Qr0jCSGEqEjys8GmneE/kJhBRtp5Oijx2mtS4IgKy8WinWIEOuRs4fMNCToHEkIIUWEcWQ3Ta8O8DrDpfdZFH6Sr4QBOig1qNtJmzK9EZC2qKsbQ/E44uooBxq2MXH+YB0IC8PFw0TuWEEIIvR1aoX29cBRWvMoYTCQ7VdfaKtHdU5fJGZyqptkgVKMz7QxH6V64lfdWHtI7kRBCiIrg3KXPgxZDyavVGmcKCDCc1doqyfIMfycFTlXj4YvSdQIAr5oWsnT7YQ6nXNQ5lBBCCN2dP6x97TyGr1t9xZC8aax2HwAdRkPD23WNdiOkwKmKuj8LlgDqKucYa1jKzMiDeicSQgihp8J8SDuuPa/ZiD9jUtirNuT0bW9pM+MbTfrmuwFS4FRFzm7QfwYAY42/ER+7h20JF3QOJYQQQjepx0C1gXM1UlQLu06kAtC3hZ++uW6CFDhVVbNB0LA3ZqWQqU5fM/33GFRV1TuVEEIIPVy+PFWzIStjz6Kq0DagOn6WynsTihQ4VZWiwIBZqAYTtxv3UCtxFcv2JemdSgghhB6KCpzGLI/RPgvCWlSOVcOvRAqcqsy7EUrXfwPwmtNC5kbuIb9QlnAQQogq57x2B1WeJYjNh88D0K9l5b08BVLgiB7PYfOsQ4DhLHdlfMP/oo7rnUgIIUR5O38EgAN5PuRbbTSo5U4jn2o6h7o5UuBUdc7uGAbMBLQBx3+sWkl6ToHOoYQQQpSrS5eoVqZ4AJX/7A1IgSMAmg/G1mwwJsXKy9aP+Hh1nN6JhBBClJfcDLiYDMBPx7VBxZV9/A1IgSMuMQx8mwKTB+0MR7FFfcKp1Gy9IwkhhCgPF7TLU3ku3iTlOePraaZt3er6ZroFpMARGs/aOPV7E4CJhu/58te1usYRQghRTi6NvzltrANA3xa+GAyKnoluCSlwRBGl/UNc9OuCm5JHr0PT2XcyTe9IQggh7O3SGlTRWd4ADGhVW880t4wUOOIvBgPV7vuQAsVED+M+1i/5QCb/E0IIR3dpgPHBAh9quJkICfLSOdCtIQWOKM67EdmhzwHwQOonrN97WOdAQggh7OpSgZOg1iashR9ORscoDRxjL8QtZen9LOdcAvFSLnLq97cotMrkf0II4ZBUFfXSGJyjam36t678t4dfJgWOKMlowm3gGwDcnfcrP2/YpXMgIYQQdnExBSU/E6uqkGr2p1tDb70T3TJS4IhSubUeQoqlDW5KHtZ1s8jMlcn/hBDC4Vy6PHVKrUXP5nVxdnKcssBx9kTcWoqC113TAbjbtpLvItfpHEgIIcStpl66g+qoWpsBrRzn8hRIgSOuwqlBd8769cCkWPHd9S5n0nP0jiSEEOIWOnv8AAAnDf70aFJL5zS3lhQ44qq879Im/xts2Mw3P/+ucxohhBC3UvrJWACcfZvgYjLqnObWkgJHXJVSuy2pDYYA0OHw++w/na5zIiGEELeCqqo4pycAENikjc5pbj0pcMQ11Rj0OlaM9DLsISJisUz+J4QQDiD2dCq1bWcAaNOmo85pbj27FjipqamEh4djsViwWCyEh4eTlpZ21W1UVWXq1Kn4+/vj6upKr169OHDgQNHrFy5c4N///jdNmzbFzc2NevXqMWHCBNLT5cyC3Xg1ILt1OAB3p3zE6pgzOgcSQghxs7bs2o2zYiVfMePmXU/vOLecXQuckSNHEh0dTWRkJJGRkURHRxMeHn7VbWbNmsXs2bOZN28e27dvx8/Pj759+5KZmQlAYmIiiYmJvPPOO+zbt4+vvvqKyMhIHnvsMXvuSpXn0f9Vco3VaGU4xp5fPqBAJv8TQohK7UjsHgByPOqDwfEu6Ciqna43xMbG0qJFC6KioggJCQEgKiqK0NBQDh48SNOmTUtso6oq/v7+TJw4kRdeeAGAvLw8fH19mTlzJmPHji31Z/3www88+OCDZGVl4eTkdM1sGRkZWCwW0tPT8fT0vIm9rFpyN36Iy8qXuKBWY3nvPxjRw/Gu2QohRFUQn5zJ4vcn85ppIQVNh2B6YKHeka5LWT6/7VaybdmyBYvFUlTcAHTp0gWLxcLmzZtL3SYhIYGkpCTCwsKK2sxmMz179rziNkDRjl6puMnLyyMjI6PYQ5SdS+i/SKvWEC/lIuqa6WTI5H9CCFEp/b73DEGKNtzA5NNY5zT2YbcCJykpCR8fnxLtPj4+JCUlXXEbAF9f32Ltvr6+V9zm/PnzTJs27YpndwBmzJhRNA7IYrEQEBBwvbsh/s5owmPouwDcb/uT73+P1DmQEEKIslJVld/3/VXgULORvoHspMwFztSpU1EU5aqPHTt2AKAoSontVVUttf3v/vn6lbbJyMjgzjvvpEWLFkyZMuWK7zd58mTS09OLHidPnryeXRWlMDa6nZS6/XBSbLTaM52T57P0jiSEEKIM4pMvcjjlIg0Ml04cOGiBc+0BK/8wfvx4RowYcdU+gYGB7N27l+Tk5BKvnT17tsQZmsv8/LRpopOSkqhdu3ZRe0pKSoltMjMz6d+/P9WqVSMiIgKTyXTFPGazGbPZfNXM4vrVuvdt8t9bQxdDDF8s+YzH/vW03pGEEEJcp9/2JhKgJOOvnNcapMDReHt74+197dVGQ0NDSU9PZ9u2bXTu3BmArVu3kp6eTteuXUvdJigoCD8/P1asWEFwcDAA+fn5rFu3jpkzZxb1y8jIoF+/fpjNZn755RdcXFzKuhviJig16pPW4Ul8ds6h/+kP2H10BMENal97QyGEELpSVZXf957hQeNKraFRH3Dz0jeUndhtDE7z5s3p378/Y8aMISoqiqioKMaMGcOgQYOK3UHVrFkzIiIiAO3S1MSJE5k+fToRERHs37+f0aNH4+bmxsiRIwHtzE1YWBhZWVl88cUXZGRkkJSURFJSElar1V67I/7Bp/8LpJp8qKOcJyriQ5n8TwghKoHYM5kknrvAcONaraHTGD3j2FWZz+CUxaJFi5gwYULRXVFDhgxh3rx5xfrExcUVm6Rv0qRJ5OTkMG7cOFJTUwkJCWH58uV4eHgAsHPnTrZu3QpAo0bFT6slJCQQGBhoxz0SRUyuOHUbD2tfIyz9R37b8wSD29XVO5UQQoir+H1fIoONW6iuZEH1+tC4r96R7MZu8+BUZDIPzi2Sl0nerGaYrRd5wTSZ1yc973CLtQkhhKNQVZXb317Dhxcn0tJwHPq+Ad2e0jtWmVSIeXBEFWD2wNBZm0H6nrwIvtyUoHMgIYQQV3IgMQOv1D20NBxHdXKB4KuvLFDZSYEjboop9P+wKU6EGA6yYU0kZzPz9I4khBCiFL/tPcNDTssBUFrd57CDiy+TAkfcHM/aKG2GATDK9gtzVsbrHEgIIcQ/qarKlr0HGGjQxrDS2XEHF18mBY64aUrXfwMwwLCNTdu2czBJlsIQQoiKZN/pdHpkLMNZsWKt0xH82+kdye6kwBE3z7cFNOqDUVF5xPgH//k9Vm4bF0KICmRZ9ElGOq0GwBhy5aWNHIkUOOLWuHQWZ5hxHfsOJbAmLkXnQEIIIQBsNpWM6KXUVi6QZ/aCFnfpHalcSIEjbo2gnuDXGjclj1HGVbz5eywFVpveqYQQosrbcTyVu/J/A8DYYTQ4VY2li6TAEbeGokCodhYn3LSaY2cz+V/UcZ1DCSGE2L5lDSGGg1gx4tTF8QcXXyYFjrh1WtwFrjXw4xw9DHuYu/IQadn5eqcSQogqq8BqIyD+awDO1x8Anv46Jyo/UuCIW8fkAm0fAGCM+wbScwqYu/KQzqGEEKLq2rrvIP3UTQB43TFB5zTlSwoccWu1fxiAroXbqUUqC6OOczjlos6hhBCiarq48TPMSiGn3FrgVD9E7zjlSgoccWv5NIOAEBTVyou1d2G1qUxfFqt3KiGEqHJyc3PocDYCgPyOVePW8L+TAkfcepfO4gyxrsTZqLL6YArr4s/qHEoIIaqWgyv/Sy0ljbN4Edh9pN5xyp0UOOLWazkUzJ6YMo7zasvzAEz7Leav28bPxkF+ln75hBDC0akq1fd9AUBM3WEYTM46Byp/UuCIW8/ZHVrfD8Bww2q83J05nHKRRVsSYMVr8GFn+KIfFModVkIIYQ9ZRzYRmBdHnmrC7/Yn9I6jCylwhH100C5TOR9axuSetXCmAN+V/4ZN72mvJ++DDe/qGFAIIRzXhVXvA7DauSdNGgTqG0YnUuAI+6jdFmq3A2s+9+b/yo/ubzOATVgxQvCDWp8N70DyAV1jCiGEw8k6h/+ZFQCktn4MRVF0DqQPKXCE/Vw6i2PY+A5trPvJVF0ZXfAC8SEzoOmdYCuEn58Ea6HOQYUQwnGkx63HiI04W126du2pdxzdSIEj7KfVfWBy0557+DO77ntssLZi2u+xqHe+A2YLJO6GqA/1zSmEEA7kRLS2avhRtzYEervrnEY/UuAI+3HxhP5vQYuh8PhKRt8zCJNRYcOhc6w+bYR+/9H6rZkO5w7rGlUIIRyFKXEbANUaddM5ib6kwBH21eFhGPY1WOpQv6Y7j3YLAuDN32PJbz0SGtwOhbnwy7/BJquPCyHEzThyOoWGBdofjK1C++mcRl9S4IhyNf6ORnhXM5NwLouvtxyHwe+ByR1ObIa4ZXrHE0KISm3bppWYFCupxprU8G+kdxxdSYEjypWHi4lJ/ZsC8P6qQ5x18vvrrqqja/ULJoQQlZzNppIRvxGAHL9OUEXvnrpMChxR7u5rX5c2dS1k5hXyzp9xUL+r9sKJLfoGE0KISmz7sQs0ydsPQK2WVffuqcukwBHlzmBQmDK4JQDf7zxJrKmV9kLyAchJ1TGZEEJUXkt3naS94RAApsBQndPoTwocoYsO9WswtJ0/qgqvrEpBrdkIUOHEVr2jCSFEpZNbYOXg/u1YlGysTm7g21rvSLqTAkfo5sUBzXE1Gdl5PJUT1dpqjcc36RtKCCEqodUHU2hREAOAIaATGJ10TqQ/KXCEbvwsLjx5e0MAvjrlrzXKOBwhhCizn3adpoMhHgClXhed01QMUuAIXT3evQEBXq6syNYKHRJ3Q36WvqGEEKISuZCVz9q4FDopcVqDFDiAFDhCZy4mIy8PbMEptRZnVC9tfapTO/SOJYQQlcbvexPxsl0gwHAWFAPU7aR3pApBChyhu34tfeneuBbbbM20BrlMJYQQ123JrtN0NFw6e+PbEswe+gaqIKTAEbpTFIUpg1uwQ9UKnNTYtfoGEkKISuJwSibRJ9PobNTG31BPbg+/TAocUSE08vGgTtveALgm7yQ/L1fnREIIUfH9uPM0AL1cj2oNASE6pqlYpMARFcbIQX1JwwMX8vljRaTecYQQokKz2lQidp/CjVzqFRzRGuUMThEpcESF4elqJstXGxx3ePsKUjLlLI4QQlzJhkNnSc7Io7vrMQyqFSwBYKmjd6wKQwocUaHUbnMHAG1tB5gVGadzGiGEqLh+3HkKgBF+iVqDXJ4qRgocUaEYArWFNzsZ4liy8wS7TsjaVEII8U/p2QUsj0nGgI3QnLVaY325PPV3UuCIisWvLZjcsSjZNFVOMeXnA1htqt6phBCiQvl1byL5hTae8NqFS9phcKkOre/XO1aFIgWOqFiMThDQGYDuzvHsO53O9ztO6hxKCCEqlh93nsKIlbHqD1pD13+Di0XfUBWMXQuc1NRUwsPDsVgsWCwWwsPDSUtLu+o2qqoydepU/P39cXV1pVevXhw4cKBYn7Fjx9KwYUNcXV2pVasWd911FwcPHrTjnohyVb8bAA/4adeXZ0UeJC07X89EQghRYVye++Y+pw1Yck6CW00IeULvWBWOXQuckSNHEh0dTWRkJJGRkURHRxMeHn7VbWbNmsXs2bOZN28e27dvx8/Pj759+5KZmVnUp0OHDixYsIDY2Fj+/PNPVFUlLCwMq9Vqz90R5eXSdeSgc2t5sfoq0rLzeHd5vM6hhBCiYvhx52lMFPK8y89aw21Pg7mavqEqIEVVVbsMcIiNjaVFixZERUUREqKN7I6KiiI0NJSDBw/StGnTEtuoqoq/vz8TJ07khRdeACAvLw9fX19mzpzJ2LFjS/1Ze/fupW3bthw+fJiGDRteM1tGRgYWi4X09HQ8PT1vYi+FXdhs8MNDEPsrAButLZlU+ASfjb+LVnXkFKwQouqy2lS6vrWKPlm/8x/Tl1DNFyZEg7Ob3tHKRVk+v+12BmfLli1YLJai4gagS5cuWCwWNm/eXOo2CQkJJCUlERYWVtRmNpvp2bPnFbfJyspiwYIFBAUFERAQUGqfvLw8MjIyij1EBWYwwLCFMGgOmNy4zXiAP5xfYPn3H2KnelwIISqF9fFnScvIZIJpqdbQ/dkqU9yUld0KnKSkJHx8fEq0+/j4kJSUdMVtAHx9fYu1+/r6ltjmo48+olq1alSrVo3IyEhWrFiBs7Nzqe87Y8aMonFAFovlioWQqEAUBTo+CmM3kO8XjEXJ5pn0mWz/5VO9kwkhhG4Wbz/BA8bV+HIBPOtA+4f1jlRhlbnAmTp1KoqiXPWxY8cOQFtE8Z9UVS21/e/++Xpp24waNYrdu3ezbt06GjduzLBhw8jNLX3m28mTJ5Oenl70OHlS7sqpNLwb4TxmBQf87wPAbffnZOQW6BxKCCHKSWI0RL4Evz5F7nePcfehyUx0WqK91uM5MLnoGq8icyrrBuPHj2fEiBFX7RMYGMjevXtJTk4u8drZs2dLnKG5zM/PD9DO5NSuXbuoPSUlpcQ2l8/GNG7cmC5dulCjRg0iIiJ44IEHSryv2WzGbDZfc99EBWU00Xj4dArnRNCKQ3z0yx+MGzZE71RCCGFfNhv8MBpSEwBwAfpfPi1RIxDaPahTsMqhzAWOt7c33t7e1+wXGhpKeno627Zto3NnbV6TrVu3kp6eTteuXUvdJigoCD8/P1asWEFwcDAA+fn5rFu3jpkzZ17156mqSl5eXhn3RlQWzhZfzgX0xvvkcsx7vyHmtl608JcB4kIIB3Zis1bcOFdD7fpvPt18hlNZCoM7NCDkjrvBqfRhGUJjtzE4zZs3p3///owZM4aoqCiioqIYM2YMgwYNKnYHVbNmzYiIiAC0S1MTJ05k+vTpREREsH//fkaPHo2bmxsjR44E4OjRo8yYMYOdO3dy4sQJtmzZwrBhw3B1dWXgwIH22h1RAXh3fxyAocaNvLF0tww4FkI4tt3/0762uocdgf/irYwwfjL2p+Wd46C6jCW9FrvOg7No0SJat25NWFgYYWFhtGnThoULFxbrExcXR3p6etH3kyZNYuLEiYwbN46OHTty+vRpli9fjoeHBwAuLi5s2LCBgQMH0qhRI4YNG4a7uzubN28udVCzcCANe2N196Wmkkn1U6v5addpvRMJIYR95GbAgaXa8+BwFm/Txo4ObuNPNXOZL75USXabB6cik3lwKrGVr8PG2ay2tmOS+RVWPdsLi6tJ71RCCHFr7fwKfn0KvJuQ8dgmOk9fRW6BjZ/GdaV9vRp6p9NNhZgHRwi7CNYG1fU07sV4MYk5K2SGYyGEA9q9SPsa/CC/7DlDboGNxj7VCA6ormusykQKHFG51GwI9bpixMa9xvX8d8sx9p9Ov/Z2QghRWZyNg1PbQDFCmxFFCw4P7xRwzWlWxF+kwBGVT3ttPbNH3DaiqjZe/Xk/NluVu9IqhHBUlwcXN+nHgUwX9p5Kx2RUuKd9XX1zVTJS4IjKp8Vd4OxBrYJEepkPsftEWtFfOEIIUalZC2DPYu15u1F8v137ty2spR9e7nJbeFlIgSMqH2d3aHUPAC/V3gnAW5EHuZCVr2cqIYS4eYdWQFYKuNciJ7APP+3W7hYd3lFuCy8rKXBE5RSsXaZqdG4lt9e6SFp2ATP/OKhzKCGEuEmXL0+1Gc6vB86SmVtIPS83bmt07Ql2RXFS4IjKqW5HCOyOUpjL++5fomDjux0n2Xn8gt7JhBDixlxMgUN/as+DH2TR1hMAPNC5HgaDDC4uKylwROWkKDDkAzC54ZEUxbsNdgPwcsR+Cq02ncMJIcQNiI8EWyH4t2d/gT97TqZhMirc31EGF98IKXBE5eUVBL2nAHD32U9o7prGwaRMvtp8TN9cQghxI05EaV8b3s4327SzN/1b1ca7miwWfSOkwBGVW+d/QUAXlIIsvqz5P0Bl9op4EtNy9E4mhBBlc6nAyfHrxM+XBhePCqmnZ6JKTQocUbkZDHDXh+DkQu1zm3neZzvZ+Vbe+DVG72RCCHH9Lp6FC0cA+PVCXbLyrTSs5U5IkJfOwSovKXBE5efdCG5/GYAncr/E35BK5IEkVsUm6xxMCCGu08mtAKi1mrNgVxoAI0Pqy8zFN0EKHOEYQp+EOh0w5mfwQ42PMZPPaz8fICffqncyIYS4tpPa5alzXu2IPZOB2cnAve3r6ByqcpMCRzgGgxHu/gxcqlMnaz+fuX3MmbQs3l99SO9kQghxbSe0MzgrLwYBMKiNP9XdZObimyEFjnAc3o3ggW/B6ExP21ZedVrI/PVHiE/O1DuZEEJcWUEunIkG4IvjPgCMlMHFN00KHOFY6neFuz8F4BGnP3lY+Z2XI/bJYpxCiIorcTdY88l2rsnhwlo08/Ogfb3qeqeq9KTAEY6n1T0Q9iYAr5oWUevEH7IYpxCi4ro0wHi7tTGg8FBooAwuvgWkwBGOKXQ8dB4LwBzTx3yzbBVnM/N0DiWEEKW4VOCsz22Ih4sTQ4P9dQ7kGKTAEY5JUaD/DGwNbsesFPCc9Qve/O2A3qmEEKI4VS0qcHbamjKsYwBuzk46h3IMUuAIx2UwYhg0G5vRTA/jPvL3LWV9/Fm9UwkhxF/OH4bs8+SqJg6ogYR3qa93IochBY5wbF4NMNw2EYBXTQv5T8R2mRtHCFFxXFqeYY/akG5NaxPo7a5zIMchBY5wfLc9jc1SD3/lAndnfiNz4wghKozC41sA2GlrwsOhgfqGcTBS4AjHZ3LFMHAWAI8Zl7F6/QYOJmXoHEoIISD78CYAjru3pmeTWjqncSxS4IiqoekAaDIAk2LlNeMCJi/Zi1XmxhFC6EjNOodn1jEAWoX0xWCQW8NvJSlwRNUx4C1UowvdjAeoe/oP/hd1XO9EQogq7NCOVQAcVuswpEsrndM4HilwRNVRIxCl+zMATDV9zZeRUSSm5egcSghRVR2LXg3AhZrtsbiZdE7jeKTAEVXLbRNRfVtRU8lkivoxr0bsQ1XlUpUQonwlpuXgdX43AHXb9NI3jIOSAkdULU5mlHs/x2Y0c4cxGr/D3/L7vjN6pxJCVDE/rN9FO0W7o9O/TW+d0zgmKXBE1ePTHEOfqQC87LSIL39eSXp2gb6ZhBBVRnZ+IVm7fsRJsZHu1Rq8gvSO5JCkwBFVU8gT2AJ74qbk8VrBHN76fZ/eiYQQVcSSnafob1sPgEfHB3RO47ikwBFVk8GA4e6PKXT2pJ3hKL57PmDzkXN6pxJCODibTSVywxbaGw5jw4Ch9X16R3JYUuCIqstSB6fBcwAYb1zKgh8iZBkHIYRdrYlLIThduz1cDewBHr46J3JcUuCIqq31fRQ0H4qTYmNC9jzmrojRO5EQwoF9ufEoQ43a7MXGtsN0TuPYpMARVZ7pzrcpMHnS2nCMwi2fsudkmt6RhBAOKPZMBmlHd9LIkIhqdIHmg/WO5NCkwBGimg+m/tMAeMb4Pe/8sJL8QpvOoYQQjubLjQlFZ2+Upv3BxVPnRI5NChwhAIIfoqBOZ9yVPB5K/ZBP1h7WO5EQwoGcu5jHr9GnGGzUVg+n9f36BqoCpMARAsBgwHTXB9gUJ/oadxG39hsOJWfqnUoI4SD+u+U4weoB/JRUVBcLNO6rdySHJwWOEJf5NEO5bSIArxq/4rXvo2TFcSHETcvOL2ThlmMMNVy6PNViKDiZ9Q1VBUiBI8TfKD2eo7B6EH5KKo+kzOCb1Tv1jiSEqOR+2HGK7OwsBjpt0xrk8lS5kAJHiL8zueI05D1sGAgz7uSuDYM5t/I9sBbqnUwIUQkVWm2sXL+Ot0zz8SAbPOtA/W56x6oS7FrgpKamEh4ejsViwWKxEB4eTlpa2lW3UVWVqVOn4u/vj6urK7169eLAgQNX7DtgwAAURWHp0qW3fgdE1dSgJ8qjkSSYGuGpZOO98TXUT7tDzM+w9wdY/zb88m9YeDds/1zvtEKIikhV4chqLnw2hIW5E7j70t1ThD4JBjm3UB7sepRHjhxJdHQ0kZGRREZGEh0dTXh4+FW3mTVrFrNnz2bevHls374dPz8/+vbtS2ZmyQGfc+fORVEUe8UXVZhSLwTTE2uZanucC2o1lJQY+P4h+OlxWP0m7PovHFkNkS9BYZ7ecYUQFYmqwuKRsPBufJI3YFMVDtfsBY/8AV3G6Z2uynCy1xvHxsYSGRlJVFQUISEhAMyfP5/Q0FDi4uJo2rRpiW1UVWXu3Lm8/PLL3HPPPQB8/fXX+Pr68s033zB27Niivnv27GH27Nls376d2rVr22s3RBVWt6YHDQdO4PalnXneeQnDvQ5hsvhD9XpQoz5s/RRyLkBiNNQL0TuuEKKiSD4AccuwGUx8nX8H3ygD+O7RUeDurHeyKsVuZ3C2bNmCxWIpKm4AunTpgsViYfPmzaVuk5CQQFJSEmFhYUVtZrOZnj17FtsmOzubBx54gHnz5uHn53fNLHl5eWRkZBR7CHE9RnWuR/MG9Xgl/2HC3T7C9vBvcPfH0OtFqN9V63Rii74hhRAVS3wkAHucO/B64cOEduyElxQ35c5uBU5SUhI+Pj4l2n18fEhKSrriNgC+vsUXH/P19S22zdNPP03Xrl256667rivLjBkzisYBWSwWAgICrnc3RBVnMCjMurctriYjUUcv8L+tx/96UQocIURpLhU432e2xKDA47c10DlQ1VTmAmfq1KkoinLVx44dOwBKHR+jquo1x8388/W/b/PLL7+wevVq5s6de92ZJ0+eTHp6etHj5MmT172tEPVquvFCf+2S6oxlBzl+PuvSC120ryeiwCZLOwghgItn4ZT2GbjaGsyA1rWpV9NN51BVU5nH4IwfP54RI0ZctU9gYCB79+4lOTm5xGtnz54tcYbmssuXm5KSkoqNq0lJSSnaZvXq1Rw5coTq1asX2/bee++le/furF27tsT7ms1mzGaZVEncuIdCA4k8kETU0Qs8/8NeFv+rCwa/NmByg9w0OBcHPs31jimE0Nuh5YDKflsQyXgxtoecvdFLmQscb29vvL29r9kvNDSU9PR0tm3bRufOnQHYunUr6enpdO3atdRtgoKC8PPzY8WKFQQHBwOQn5/PunXrmDlzJgAvvvgijz/+eLHtWrduzZw5cxg8WFZmFfZhMCi8fV9b+s1dz7ZjF/hq8zEevS0I6naChHVwfLMUOEKIostTq2zB3NbImzZ1q+ubpwqz2xic5s2b079/f8aMGUNUVBRRUVGMGTOGQYMGFbuDqlmzZkRERADapamJEycyffp0IiIi2L9/P6NHj8bNzY2RI0cC2lmeVq1aFXsA1KtXj6CgIHvtjhAEeLnx0kCtiJn150GOnr0I9UK1F09E6ZhMCFEhFOZhO7wKgFXWYJ68vZHOgao2u86Ds2jRIlq3bk1YWBhhYWG0adOGhQsXFusTFxdHenp60feTJk1i4sSJjBs3jo4dO3L69GmWL1+Oh4eHPaMKcV1GhdTjtkbe5BbYeO6HPVgD/jYORwhRtR3fhKEgixS1Os4B7enSwEvvRFWaoqpqlVtNMCMjA4vFQnp6Op6ennrHEZXM6bQc+s9ZT2ZeIa/2rcdjG3uCaoWnD4Clrt7xhBA6yf3lOVx2zWdxYS98H5zP7c1K3kksbk5ZPr9lvmghyqhOdVdeHdQCgJmrT5HjrV0mlbM4QlRhqkrugd8BOGTpRq+mtXQOJKTAEeIG3N+xLnc08yHfauPPjECtUebDEaLKyjp9gOp5ieSpJjr1vkeWEaoApMAR4gYoisJb97SmupuJPzIvDW4/LgWOEFXV3tXfARDt1Jq+7RrqnEaAFDhC3DAfTxf+M7Q1O23aXYFqSgzkpOqcSghR3nILrLgcXQ6AqcVAjAY5e1MRSIEjxE24s01turVrzlGbHwoqeQlb9Y4khChnERv30kaNA6B1r/t1TiMukwJHiJv0xpBW7HfSBh1vW/ebzmmEEOUpt8DKwY0/YVRUUqs1xlQzUO9I4hIpcIS4SRY3E006hQFgPrONjYfO6ZxICFFevt16nLsLtLunPNoN0TmN+DspcIS4BZp11gqctsoRXvp+O2nZ+TonEkLYW26BlZg139LOcIRCowtOXZ7QO5L4GylwhLgVvBqguvtgVgrxuRjDy0v3UwXn0BSiSvk2KoExBYsAULqMg2oysV9FIgWOELeCoqDU19alGuW0ht/3nmFp9GmdQwkh7CW3wMqxtV/RxHCaPJMnxtue0juS+AcpcIS4Vbo8CYqBu40b6GfYxmtLD3DyQrbeqYQQdvDtliM8XrAYAGP3p8G1ur6BRAlS4Ahxq9QLgW7aX3Fvm7/EJe8cz36/B6tNLlUJ4Uhy8q2krP2UAMNZss21ZOxNBSUFjhC3Uq+XwLc1nmoGb5s/Z9ux83y6/ojeqYQQt9B3mw/yqPUHAJzveAGc3XROJEojBY4Qt5KTM9zzGRjN9FJ28YBxNbOXx7P3VJreyYQQt0B2fiEX18+jlpLORdc6OHV4WO9I4gqkwBHiVvNtAb1fA2CK8yLqqGd4anE0WXmFOgcTQtysResPEG5dCoBL2KvaHzWiQpICRwh76DIOArvjoubyvstnJJy7yOu/HtA7lRDiJqRnF5C48X9YlGwy3QNxajtM70jiKqTAEcIeDAYY+jEYzbRVD9LEcJrvd5zit72JeicTQtygT9cfYYhtNQDuoY+CwahzInE1UuAIYS/VAyCoBwCvNDoOwOSf9nE6LUfPVEKIG5CSmcvGTesJNhzGpjhhaPeA3pHENUiBI4Q9Ne0PwG227bQLqE5mbiFPL46WW8eFqGTmrT7MXap29kZp2l9mLa4EpMARwp6aaAWO4dR2PrgrAHdnI9uOXWDe6sM6BxNCXK+TF7JZsu0Idxs3AKC0f0jnROJ6SIEjhD1Z6oJfa0Al4NxGpg1tBcB7q+LZlnBB32xCiOsyZ0U8PdUdeCkXwaM2NOytdyRxHaTAEcLeLp3FIT6Se9rX5Z72dbCp8NTi3aRm5cPhlbBnMcjinEJUOPHJmUREn2a4ca3W0G4kGJ30jCSukxQ4QthbkwHa18OroTCfaXe1ooG3O2fSc5nx7XLUb0ZAxFiIj9Q3pxCihFmRcfirZ+lu3Kc1BD+obyBx3aTAEcLe/IOhmi/kZ8LxjbibnfhgZDDORgPtj81HsRVo/SJfhIJcfbMKIYpEHT3Pythk7ndajwEVAruDVwO9Y4nrJAWOEPZmMEDjMO15nHaWpqW/hbd6uXGfcT0AVmdPSD0GWz7QKaQQ4u9sNpXpy2JRsPGw6yatUQYXVypS4AhRHppeukwV/0fRWJu7M/6Hk2JjtbUd05XHtNc3zIb0UzqFFEJc9uveRPaeSqeP+SA1CpLAbIHmg/WOJcpAChwhykODXmA0Q9oJSImFlIMo+7TViBe6jOKL9I4cdm0NBdmw/FV9swpRxeUWWJkVGQeovOKlzX1Dm2FgctU1lygbKXCEKA/O7tCgp/Y8/g9YOx1Qoflgxj94P04GAxPSHsCGAQ78BMc26hpXiKrs683HOJ2Ww7Bqe6mfuhkMJgh5Qu9YooykwBGivFy+XXz7lxDzM6BAr5foUL8GLw5oRowayGLrHVqfZZPAKquPC1HeUrPymbfmMK7kMsX0X62x67/Bu5G+wUSZSYEjRHlp0k/7mnFpjE3r+8C3BQCP3RZE3xa+zCq4nwyqQcoB2P65TkGFqLreX32IzNxCplb/A/ecM2AJgB7P6R1L3AApcIQoL0WzGgOKEXq+WPSSoii8c19bqtXwYVbB/QCoK6dCykEdggpRRax/B95vDzG/AJBwLouFW47TUDnN/flLtT7939IuMYtKRwocIcpTy7u1r8GjSpzytriZ+HBke76nD+utrVEKc2DJYzI3jhD2UJgPm96HC0fg+3BYOo63f9lOoc3G+5ZvMNgKtOkdmt2pd1Jxg6TAEaI8dZ0Ao5bAwHdLfbltQHVeGtiSZwv+j/OqJyTvhxWvlXNIIaqAYxsgLx2cXAEFohcx+djjvGD6npa5u7W7HgfMBEXRO6m4QVLgCFGejCZo3AecnK/Y5eGugYS0ac6zBWO1hm2fQtwf5RRQiCri4O/a17bDKXjod84oPgQYzvJ/xp+19u7PyKzFlZwUOEJUMIqiMPPeNpzy7s7nhdoEgerScZBxRudkQjgImw3ilmnPmw3iq1O16ZsznZ+VS3cx1mwE3Z7SL5+4JaTAEaICcjc78cmDHZhnGMV+WyBKzgX4aQzYrHpHE6LyS9wNmWfA2YOz3iG8v+oQF3Ejb+D7MG4rPL5SJvVzAFLgCFFBNfKpxn/u68iEgvFkq2ZtzMDu/+kdS4jK7+Bv2tfGfXl7VQKZeYW0qWvhvg51wacZuNbQN5+4JaTAEaICu7NNbW7v1o13C7VbxwtXvgG56TqnEqKSu1TgHPe5nR92avNSTR3SEoNBBhQ7EilwhKjgXhzQjJi6wzliq41Tzjny18zSO5IQldfZeDgXj2owMXmvH6oK9wTXoX09OWvjaOxa4KSmphIeHo7FYsFisRAeHk5aWtpVt1FVlalTp+Lv74+rqyu9evXiwIEDxfr06tULRVGKPUaMGGHHPRFCPyajgfce7MwHzo8CYNj6Cbazh3VOJUQlFafdPXXGqzObTxdQzezECwOa6RxK2INdC5yRI0cSHR1NZGQkkZGRREdHEx4eftVtZs2axezZs5k3bx7bt2/Hz8+Pvn37kpmZWazfmDFjOHPmTNHj008/teeuCKErHw8XHnpoDGttwThRyPFvJ+odSYjK6dLt4V+caw7As2FN8PV00TORsBO7FTixsbFERkby+eefExoaSmhoKPPnz+e3334jLi6u1G1UVWXu3Lm8/PLL3HPPPbRq1Yqvv/6a7Oxsvvnmm2J93dzc8PPzK3pYLBZ77YoQFUL7ejXI6vU6BaqRoAsb2LNmid6RhKhcMs7Aqe0A/JIbTEt/T8K71Nc5lLAXuxU4W7ZswWKxEBISUtTWpUsXLBYLmzdvLnWbhIQEkpKSCAsLK2ozm8307NmzxDaLFi3C29ubli1b8txzz5U4w/N3eXl5ZGRkFHsIURndeUdPtta6D4Bq617lWHKavoGEqEwuzX2zy9aIc0oN/nN3a5yMMhTVUdntv2xSUhI+Pj4l2n18fEhKSrriNgC+vr7F2n19fYttM2rUKL799lvWrl3Lq6++ypIlS7jnnnuumGXGjBlF44AsFgsBAQE3sktCVAidR88kXfGkIaf5/cs3ycwt0DuSEJWCLVa7PLXc2pGRnevRLqC6voGEXZW5wJk6dWqJAb7/fOzYsQPQZmT9J1VVS23/u3++/s9txowZQ58+fWjVqhUjRozgxx9/ZOXKlezatavU95s8eTLp6elFj5MnT5Z1t4WoMJyr1UDp/SoAD+cu5M2Fy7DaVJ1TCVHB5aajJqwDYLtLKJP6ycBiR+dU1g3Gjx9/zTuWAgMD2bt3L8nJySVeO3v2bIkzNJf5+fkB2pmc2rVrF7WnpKRccRuA9u3bYzKZOHToEO3bty/xutlsxmw2XzWzEJWJZ9fHuLj/R6olbeW+k2/y7p+NmDSgpd6xhKiw0lfPwaIWctjmz6ghfbC4mfSOJOyszGdwvL29adas2VUfLi4uhIaGkp6ezrZt24q23bp1K+np6XTt2rXU9w4KCsLPz48VK1YUteXn57Nu3borbgNw4MABCgoKihVFQjg0g5Fqw+dT4OROJ0M86sb3Wbr7tN6phKiQ1CNr8dg2F4BlXuHcHVxH30CiXNhtDE7z5s3p378/Y8aMISoqiqioKMaMGcOgQYNo2rRpUb9mzZoREREBaJemJk6cyPTp04mIiGD//v2MHj0aNzc3Ro4cCcCRI0d444032LFjB8eOHWPZsmXcf//9BAcH061bN3vtjhAVT436mAa9A8DTTj+wYMnPRJ9M0zeTEBVNZjJ53z+KAZXvbHcw+MGnrjlMQjgGuw4fX7RoEa1btyYsLIywsDDatGnDwoULi/WJi4sjPf2vqecnTZrExIkTGTduHB07duT06dMsX74cDw8PAJydnVm1ahX9+vWjadOmTJgwgbCwMFauXInRaLTn7ghR8bR9ALXZYJwVK28b5jH+680kpefqnUqIisFmJf/7R3DJO0+sLYDMXm8S5O2udypRThRVVavc6MSMjAwsFgvp6el4enrqHUeIm5N1HttHXTBkpfB1YV/21gjjP3fUwCU7UZv3o1FvaNxX75RClL81M2DdW2SpZp6t8T7z/j1Mbguv5Mry+S0FjhQ4whHE/wnfDCv9Nedq8NwhcHYr30xC6OnoWtT/DkVB5ZnCJ3l83Iu08Jd/7yu7snx+SykrhCNo0g+6TsBmNHNK9WarrRn7vPpBNV/IvwjxkXonFKL85Gdji/g/FFS+LbydOj0eluKmCpICRwhHETYNw6sp7Lx7PcPzX2Nw4sPs9x2ivbbvR32zCVGeoj7EkJnIKdWbhdX/j/F3NNI7kdCBFDhCOJi72tXh6T5NAHjuYGOt8dByyEnVMZUQ5eTiWQrXzwHg7cLhTLu/E2YnuQGlKpICRwgHNKF3I4a28+egtS7xaj2wFUDML3rHEsLuclf+B6fCLPbagvDrNooO9b30jiR0IgWOEA5IURTeurcNnQO9iCjUJsnMi/5O51RC2Jd6Nh5T9NcALPQYwzNhshxDVSYFjhAOysVk5LOHOrCn+h0AmE5uJvPsCZ1TCXGTbFb48VFYcCec2lHspcQlL2LExmpbe0aPelAuTVVxUuAI4cCquzkz87HBRCvNMKDy8/8+IL/QpncsIW7crv/C/iVwfCN83gd+fxZy0zl7YA11klZRqBpI6vwSLf0teicVOpMCRwgHF+Dlhk/XBwFok7qCF5fspQpOfyUcQfYFWPW69tw/GFBh++eo8zqTH/FvAFa59mPYgN76ZRQVhhQ4QlQB/l0fwKYYaWNIIDp6O7P+jNM7khBlt/pN7W5Anxbw2Ep4+FfwaohyMYk6hSfJUs00f2CGzFYsAClwhKga3L0xNNTG4gwxbubjtUf4YmOCzqGEKIMze2DnAu35gFlgdIKgHuwf8gfvW+/lrGphX6sXqFc/SN+cosKQAkeIqqL1/QCM9tgBqEz7LYalu0/rm0mI66GqsOx5UG3Q6l4I6g7AxbxCxv8Qw+yCe3ml0U+E3PeMzkFFRSIFjhBVRbOB4ORK9ZwTzGpxAlB57oc9rIlL0TuZEFe39zs4uRVM7tB3WlHza0v3c+x8Nv4WF2be2wZFUXQMKSoaKXCEqCrMHtBCW7ph2NHJrK4xg+7sYtz/drLrhMxyLCqo3AxY/qr2vOfzYKkDwE+7TvHT7tMYFHjvgWCquznrGFJURE56BxBClKMBs7TVxXf/jwY5+1ngvJ8YW32Wf3kb/t1b4uftDc7u4OYFdTtr4xyE0NO2TyErBWo2gi7jAEg4l8UrS/cDMLFPEzoFymzFoiT510uIqsS1OgyaDT0nwZYPUXd8QYv847TgOGz4R9+uEyBsWmnvIkT5ObpO+xr6JDiZyS2w8u9vd5Gdb6VLAy+evF0W0hSlk0tUQlRFHn4QNg1l4n5ye7zKKufbibR2YpvShnzfdlqfrZ9A6jE9U4qqzloIp3dpzwO6APD6rwfYfzqDGm4m5g4PxmiQcTeidFLgCFGVuXnhcsdztJvwHW9Xf4VhOS8SdnEq+fV7gjVfm3dECL2kHICCLDB7Qq1mfL/9JN9uO4miwHsjgvGzuOidUFRgUuAIIahZzcyix7sQ4OXKsfPZPHV+KCoK7PsBEnfrHU9UVSe3aV/rdmL/mUxe+Vkbd/Ns3yb0aFJLx2CiMpACRwgBgJ/FhW8e74Kvp5k/zvmyxrmX9sLyV7V5SIQob5cKnBy/Djzxv53kF9ro09yHcb1k3I24NilwhBBFArzcWPR4F7yrmXk1YygFOMGxDXB4pd7RRFV0cisA8w55cSo1h3pebrw7rB0GGXcjroMUOEKIYhr5VOPbMSHkutfhy8J+AFj/fBVsVp2TiSolMxnSjqOi8PUJb8xOBj55sAMWV5PeyUQlIQWOEKKExr4efDOmC98430+a6o7xXCw5O/6ndyxRlZzSLk8dtNXlIm7MuKc1Lfw9dQ4lKhMpcIQQpWrq58Gn/+rNl4Z7AciKfJ30zEydU4mqIiVmPQC7bE0Y26MB97Svq3MiUdlIgSOEuKJmfp4MeORVkqiJt+08X3w6h9SsfL1jCQeXlJ7Lmf3aBH85fh2Y1L+ZzolEZSQFjhDiqprX88HQ6VEAbs/4mQfmR3HuYl7Jjsc2wdZP5Y4rcVNy8q3839dbaGY7CsCIe+6VyfzEDZECRwhxTT49/4VqMBFsOIxT8h6Gf7qFpPTcvzpknYdvhsMfk+DIav2CikrNZtNWuOfMHsxKAVYXL6rVbqp3LFFJSYEjhLi2aj4oLYcCMNZ1DUfOZjH8sy2cSs3WXt84G/Ivjc+RAkfcoBl/xPL7vjN0cjoEgLF+F1Dk7I24MVLgCCGuT6cxANypbKJFjUKOn8/m/k+2cOxIHGyb/1e/o2v1yScqtc83HGX+hgQAHg5I0RrrdtIxkajspMARQlyfgM7g2xqDNZfFnY7QsJY7Z9Jz2b3wRbDmQe22Wr/k/XAxRd+solL5ZU8ib/4eC8CL/ZtSJ3Of9kJAiI6pRGUnBY4Q4vooCnR+HADPff/lh7FdGFg7kyHqGgCiW78Mfq21vkfX6ZVSVDKbj5zjue/3ADC6ayBj25og8wwYnMA/WOd0ojKTAkcIcf1a3w9mC6Qm4HVmI+/7/o5RUVlh7cD9v1s54tFZ63d0jb45RaUQk5jB2P/uJN9qY2BrP14d1ALl1HbtRb/W4Oymb0BRqUmBI4S4fs7u0G6k9nz5Kzgd/AUVha1BT1JgVXn9wKUVno+skdvFxVUdTrnIQ19uJTOvkM5BXswe1k67HfzyCuJyeUrcJClwhBBl00m7TMVZbcyE0mY4k0ffw4Nd6rHV1ow81QSZiVjPxusYUlRkx89nMerzKM5dzKdFbU/mP9QRF5NRe/HSApsEdNYvoHAIUuAIIcrGuxE0uF17bjDB7ZMxGhSm3dWKpwe0YbutCQA/fP9fcgtkgU5R3Om0HEbO30pyRh6jahzkF/MrWD5tDzODYFotOBOtdawrBY64OU56B6jIrFYrBQUFescQOjOZTBiNRr1jVCw9noNjG+C2p6FGIACKovBEz4bEJIdBzAFqJm/mgflRfP5QR2pWM+ubV1QIKRm5jJofxem0HHp4pfJm/tsoSTklOwZ2B4usPSVujqKqVe9CeUZGBhaLhfT0dDw9S65Oq6oqSUlJpKWllX84USFVr14dPz8/FJl07C/WQjAYS07ElrgbPuvFRVxpl/sptb08+OLhTjTx9dAnp6gQUjJzGTV/K4dSLhJU3Yk/PabhfHafVsz0ngLmauBcTfvqUl0m+BOlutbn99/JGZxSXC5ufHx8cHNzkw+1KkxVVbKzs0lJ0eZ1qV27ts6JKhDjFf758GsLrl5Uy7lAmOUUyy4EcveHm3hvRDB9WviWb0ZRIZxJz2HU/K0cPZeFn6cLPzeLxDl6H7h6wT2fgae/3hGFA5IC5x+sVmtRcVOzZk2944gKwNXVFYCUlBR8fHzkctW1GAzQoCcciODdDqmcT2jP1oQLjFm4g0n9mvFEzwbyR0NVYbNxIjWXkZ9HcSo1hzrVXfmpbxaev36mvT70IyluhN3IION/uDzmxs1N5l8Qf7n8+yBjsq5Tg14AuJ7cwMLHQhgZUg9VhZmRB3nm+z0y+NiR5aZrq8rP64T6Zi1OzxtIl4xIWnnZ+DG8Ib6rJmr9Ov8Lmg7QNapwbHYtcFJTUwkPD8disWCxWAgPD7/muBZVVZk6dSr+/v64urrSq1cvDhw4UKLfli1buOOOO3B3d6d69er06tWLnJxSBqvdIPkLU/yd/D6U0eW7rE5tx7nwIv8Z2oo37mqJ0aAQsfs09368mRPns/XNKG6t5Bj4dSK821xbVf5cPIqtkFB1N++YPuXX3Eeo/d1AyD4HPi2h7zS9EwsHZ9cCZ+TIkURHRxMZGUlkZCTR0dGEh4dfdZtZs2Yxe/Zs5s2bx/bt2/Hz86Nv375kZmYW9dmyZQv9+/cnLCyMbdu2sX37dsaPH4/BICekhKgQatQHrwagWuHYRhRF4aHQQP77aGe83J05kJjBoA82sOagrFnlEE7vhE97wM4FUJBFtqUx/+FRBuTNYKHLKAprNkOxFUDGKXByhfu+BJOL3qmFo1PtJCYmRgXUqKioorYtW7aogHrw4MFSt7HZbKqfn5/61ltvFbXl5uaqFotF/eSTT4raQkJC1FdeeeWGs6Wnp6uAmp6eXuK1nJwcNSYmRs3Jybnh93cE9evXV+fMmWO39z9z5ozap08f1c3NTbVYLHb7OaVJSEhQAXX37t3XvY38XtyAX59W1SmeqvrVYFXdt0RVUw6qamGBejo1Wx0yb6Na/4Xf1Pov/Ka+uzxOLbTa9E4rbsbP47X/1vN7qxuW/6Q2ekn7b3vfx5vUtKx8rU9yjKpumK2qR9frm1VUalf7/P4nu53y2LJlCxaLhZCQv6bb7tKlCxaLhc2bN5e6TUJCAklJSYSFhRW1mc1mevbsWbRNSkoKW7duxcfHh65du+Lr60vPnj3ZuHHjFbPk5eWRkZFR7OGIRo8ejaIovPXWW8Xaly5dWuZLLNu3b+df//rXrYxXzJw5czhz5gzR0dHEx8uMtw6pcV/ta8I6+PER+LAzTK+Nf8S9fD/cn/Au9QF4f9UhRi/YRkpmro5hxQ0rzIeYXwBYWvMxHlzlTIEV7mxdm4WPhWBxM2n9fJpr8yYFddcxrKhK7FbgJCUl4ePjU6Ldx8eHpKSkK24D4Otb/FZSX1/foteOHj0KwNSpUxkzZgyRkZG0b9+e3r17c+jQoVLfd8aMGUXjgCwWCwEBATe8XxWdi4sLM2fOJDU19abep1atWnYdaH3kyBE6dOhA48aNS/09ARnQW+k17gdD5kFwONTpCCZ3sObD8U2Yf3qUaYOaMGd4W1xMBjYcOsfA9zawLv6s3qlFWR1ZDblpZDjV5Jmt1QB4/LYgPngg+K/lF4TQQZkLnKlTp6IoylUfO3bsAEofmKmq6jXPJvzz9b9vY7PZABg7diyPPPIIwcHBzJkzh6ZNm/Lll1+W+n6TJ08mPT296HHy5Mmy7nal0adPH/z8/JgxY8ZV+y1ZsoSWLVtiNpsJDAzk3XffLfZ6YGAgc+fOLfp+6tSp1KtXD7PZjL+/PxMmTCh6LT8/n0mTJlGnTh3c3d0JCQlh7dq1V/zZgYGBLFmyhP/+978oisLo0aMB7b/7J598wl133YW7uztvvvkmAL/++isdOnTAxcWFBg0a8Prrr1NYWFj0funp6fzrX//Cx8cHT09P7rjjDvbs2XPNY3Xw4EG6du2Ki4sLLVu2vGpmcQMMBmgfDnfNgzGrYPIpeGKTNolb4i5Y8Rp3B9fl1/G30czPg3MX83n4y21MXxZLfqFN7/TiOuVFfw/Aj7mdUBUDUwa34JVBLTAYZGC+0FeZ58EZP348I0aMuGqfwMBA9u7dS3JyconXzp49W+IMzWV+fn6Adibn7xOqpaSkFG1zub1FixbFtm3evDknTpwo9X3NZjNm841PFa+qKjk63dbqajKW6fKS0Whk+vTpjBw5kgkTJlC3bsnpznfu3MmwYcOYOnUqw4cPZ/PmzYwbN46aNWsWFRt/9+OPPzJnzhwWL15My5YtSUpKKlZAPPLIIxw7dozFixfj7+9PREQE/fv3Z9++fTRu3LjE+23fvp2HHnoIT09P3nvvvaJ5ZgCmTJnCjBkzmDNnDkajkT///JMHH3yQ999/n+7du3PkyJGiS2dTpkxBVVXuvPNOvLy8WLZsGRaLhU8//ZTevXsTHx+Pl5fXFY/V888/z9y5c2nRogWzZ89myJAhJCQkyPxH9mIwgF8ruPsT+HYEbP0YArvRuPlglj7ZjRnLYvl6yzEubFrAjuh9NA3uRs3goeDbUma1raBiTyRTP/Z3AJYbuvHxiA70b+WncyohNGUucLy9vfH29r5mv9DQUNLT09m2bRudO2uLpm3dupX09HS6du1a6jZBQUH4+fmxYsUKgoODAe3swLp165g5cyagFU/+/v7ExcUV2zY+Pp4BA+wzp0JOgZUWr/1pl/e+lpg3+uHmXLb/THfffTft2rVjypQpfPHFFyVenz17Nr179+bVV18FoEmTJsTExPD222+XWuCcOHECPz8/+vTpg8lkol69ekX/TY8cOcK3337LqVOn8PfXJux67rnniIyMZMGCBUyfPr3E+9WqVQuz2Yyrq2tRUXvZyJEjefTRR4u+Dw8P58UXX+Thhx8GoEGDBkybNo1JkyYxZcoU1qxZw759+0hJSSkqYt955x2WLl3Kjz/+eNVxROPHj+fee+8F4OOPPyYyMpIvvviCSZMmXXEbcQs0HQBd/w2bP4ClT4Jfa1xqBPJ6Twv/TvwY7+SNkA9s3Qxb30atXg+l6UBo/5BW7Igbl5cJihGcb/7y8y97Elm95BPmGnI5o/jw+v+Npmntq0+dL0R5stsYnObNm9O/f3/GjBlDVFQUUVFRjBkzhkGDBtG0adOifs2aNSMiIgLQLlFMnDiR6dOnExERwf79+xk9ejRubm6MHDmyqM/zzz/P+++/z48//sjhw4d59dVXOXjwII899pi9dqfSmTlzJl9//TUxMTElXouNjaVbt27F2rp168ahQ4ewWkueqbr//vvJycmhQYMGjBkzhoiIiKJLRLt27UJVVZo0aUK1atWKHuvWrePIkSNlzt2xY8di3+/cuZM33nij2HuPGTOGM2fOkJ2dzc6dO7l48SI1a9Ys1ichIeGaPz80NLTouZOTEx07diQ2NrbMmcUN6D1FWy06Lx1+eAS2fwEfheKdvBHVaGaZx32ssLYnVzWhpJ2ArZ/A/N5wvuy/U+KSvEyY1xk+7wO2G78EmF9o4z+/xzDh2930V7WbP2p0fkCKG1Hh2HWphkWLFjFhwoSiu6KGDBnCvHnzivWJi4sjPT296PtJkyaRk5PDuHHjSE1NJSQkhOXLl+Ph8ddCfRMnTiQ3N5enn36aCxcu0LZtW1asWEHDhg3tsh+uJiMxb/Szy3tfz8++ET169KBfv3689NJLJc7KlDYOSr3KmqsBAQHExcWxYsUKVq5cybhx43j77bdZt24dNpsNo9HIzp07SyxhUK1atTLndnd3L/a9zWbj9ddf55577inR18XFBZvNRu3atUsdP1O9evUy/3yZ0K+cGE3aXCifdtfG4yTu0toDQlDu+pABNRvx7baTdPt9N8EFe5hg+pk2hYdRl45DeWSZtsinKJtjGyEzUXucPQi+La69zT/f4lwWExbvZu+pdDzIpo/THlDBJXiYHQILcXPsWuB4eXnxv//976p9/vnBqigKU6dOZerUqVfd7sUXX+TFF1+82YjXRVGUMl8mqgjeeust2rVrR5MmTYq1t2jRosRt9Zs3b6ZJkyZXXGfJ1dWVIUOGMGTIEJ588kmaNWvGvn37CA4Oxmq1kpKSQvfut/72z/bt2xMXF0ejRo2u+HpSUhJOTk4EBgaW6b2joqLo0aMHAIWFhezcuZPx48ffbGRxvaoHwNBL43GcXKD3axAyFgxGFGBkSD26N/bm+R99+L+j9fjT/ALVTkaRtOI9/Po9o3f6yidhw1/Pj28qc4Hz065TvLp0P1n5ViyuJhZ2OIfTjnzwbiqXDkWFVPk+tcV1a926NaNGjeKDDz4o1v7ss8/SqVMnpk2bxvDhw9myZQvz5s3jo48+KvV9vvrqK6xWKyEhIbi5ubFw4UJcXV2pX78+NWvWZNSoUTz00EO8++67BAcHc+7cOVavXk3r1q0ZOHDgTe3Da6+9xqBBgwgICOD+++/HYDCwd+9e9u3bx5tvvkmfPn0IDQ1l6NChzJw5k6ZNm5KYmMiyZcsYOnRoiUtef/fhhx/SuHFjmjdvzpw5c0hNTS02/keUg6b94f82g2sN8Cy5UnuAlxvfPN6F/22tzbuR4UxhPpbNM/gkqyUPDepdKf/w0M2x9X89P74JOo+5rs0ycguY8vMBInafBqBzkBdzh7fD/7dPtQ6t75NB4KJCkrUNHNy0adNKnCVr374933//PYsXL6ZVq1a89tprvPHGG6UOMAbtUs/8+fPp1q0bbdq0YdWqVfz6669FdxstWLCAhx56iGeffZamTZsyZMgQtm7dekvmG+rXrx+//fYbK1asoFOnTnTp0oXZs2dTv742SZyiKCxbtowePXrw6KOP0qRJE0aMGMGxY8eueLfeZW+99RYzZ86kbdu2bNiwgZ9//vm6BtCLW8y3RanFzWUGg7bMw9inpxHr2gFXJZ8O0a/Q7901RO5P0n6/rYUQFwmxv8FVLrdWWdkXIGn/X98f33xdx2llTDJ9Z68jYvdpjAaFZ/s24dsxXfA3ZcGRNVqnliUvHwtRESjq1QZfOKiMjAwsFgvp6el4ehYfGJebm0tCQgJBQUG4uMhaKUIjvxcVRNoJCud1wakwizcKwllq7cakWlu51/YnpqxErU9QTxg8V1sLS2hif4XvHoQaQZCRCNY8GL8TvEu/9Hv+Yh6v/xrDL3u0YxpY04137m9Lx8BL0y5s/wJ+fwZqt4Wx60t9DyHs4Wqf3/8k53eFEJVH9Xo49X8Tfnual5wX86LtW5wztTv6so2euCr5KAnr4KOucPtL0GUcGG/inzlVhTPR2pkhv9bQcugt2Y1yd3n8TaPekBKrXaI6vqlEgaOqKj9HJ/LGbzFkZmVzh3EfE2vH0Dp3J8o3WWAr1BZQteZrG7S6r5x3RIjrJwWOEKJy6fAIxPyM09G1oMAxczM+yOzFb7YuNHBO59MaC6mXvgNWvAr7l2h3a9Us4x2W54/Avh+0x/nDf7WfngB9pla+u7iOXSpwArtr452Ob9IuU3V4uKjL3lNpvPFrDDkndvOy0x/0c9lFNbLg3BXe07UGtL7f/tmFuEFS4AghKhdFgfsWwO6FUP82Aut2YMSxCxz6LYa9p5zpkfw0D7tsZLLT/3A5Ew1LHoMxa65/IOy6t2HNm3997+QCdTtpRcLm97WC5575YC77NAi6uHgWUi7NhxXYHVwswNtakQOkZObydmQcP+46hYd6kc3maVRTcrT+1fygxRBoPhg864DBSSvuDE7akhsmuVwrKi4pcIQQlY+bF3R7qujbToFe/PxkN/48kMS7y+P5OqU7y2nBKpfncUvcTda+X3Bvc9e13zf7Amx4R3ve8A5oMxya3QlmD9j7A/z8JMQtgy/7wQOLtVvdK7rLZ298W4F7TQjorBUo6Sf5/Nd1zN2Ry8U87TLfG/WiqZaSAzUbw5APICBEW2JDiEpIfnOFEA5BURT6t6pN5MQevDeiHeaaAXxZqE3QeXrJK0z//QBJ6blXf5M930JhLvi2hgd/grYjtOIGoM398MgycPeB5P0w/3Y4G2/nvboF/n55CsiwOXPGvRkAMVuWcTGvkLYB1fnp/7owtOAPrW/ok1A/VIobUanJb68QwqEYDQp3tavDymd6Uu/OF7iIO02UE5zZ9A3dZ63m2e/3EH0yreTs3aoKO77Unnd6tPRLWnU7wpjVWgGUdRaWv2L/HbpZlwYYp/t1Yc6KeG57azU/pwYB0Nf9CB+Nak/E/3Wlff5uSE0AswXayMzEovKTAkcI4ZCcjAaGhLbE/faJAEx2jcBmLWTJrlMM/XATgz7YyDdbTxRdniFhnTa+xtkDWl/lA756AAz7Wlu08tCfcGKr/XfmRmWcgfOHsKHQ+8cC3lt1iIzcQk56tAOgv8dRBraujcGgwPb52jbtRoKz+5XfU4hKQgocIYRDU7r8H7jVxN96mtV9znBPcB2cnQwcSMzgpYh9hPxnJc//sIdzay7N5N12+LUHENdsCMGjtOerp1W4yQUv5hWyZOcp3vtCOyN1wFafc1Y32gZU54MHgnnj348DCsqFI5CZBKnHIf5PbeNOsmixcAxS4AghHJvZA257GoD6++Yx+97mbJ3cm1fubE4Db3ey8q2s27mP6idWAPBhZk92HLuA1XaNoqXHJDA6a2Ncjq618078Q95FOLO3WGFVYLWx5mAKE77dTcc3V/DsD3vwOb8dgBTvECLGdeXnJ7sxuK0/Rrfq2rw+oN1NteNLQIUGvcC7cfnuixB2IndRiVIFBgYyceJEJk6ceMvfe+3atdx+++2kpqbe0IrfQpRZp8dh8zxIPwG7/kuNzmN4vHsDHrstiG0JF8j88z84JdvYZmvK29FGiN5CDTcTPZrU4vamPvRoUgsvd+fi71k9ADo+Cls/gVVvaMVBeazJlHEGvroTLhwht8tE/vQdw9r4c6yNSyE1u6CoWwNvdwYUHoJc6N3/PqhXo/j7BN4GSXvhyGo4uExr63R961MJURnIGRwHMnr0aBRF4a233irWvnTpUpQy/sO7fft2/vWvf93KeELox+QKPZ7Tnq9/By4cBbQ7r0LqW+iTrd095N71X9wdXAcPFydSswv4OTqRid9F0+HNFdz5/gam/Lyfn6NPczrt0jwx3Z8Fkxsk7tJuH7eztOSTZM0fCBeOAOASNZeEJa8Ssfs0qdkF1HR3ZnTXQH5+shurHm9A9dxT2lih+qEl36x+V+1r9DeQcwE860KT/nbfByHKi5zBcTAuLi7MnDmTsWPHUqNGjWtvcAW1atW6hamEqADaPwybP4C04/BRqFbwdJ0Ah5ZDZiK4edOyTzhznMwUWG3sPpHGmrgU1hxM4WBSJgcSMziQmMHXW44D4OtpppmfJ//yvo9uZ/5Lzp+vk1f3DizuLmX7g0JVIS8DctIgNw1yUsk3uHDcpTlHzmVz5GwWR1Iucuz4MWZefInGhtOcUr352dqVJ51+YaLTT7QP9MZ8x4u0r18Dk/HS363Rlwou/+C/bnX/u3qXChzVpn3t+MjNLWshRAUjv80Opk+fPhw+fJgZM2Ywa9asK/ZbsmQJr732GocPH6Z27dr8+9//5tlnny16/Z+XqKZOncqXX35JcnIyNWvW5L777uP999/njTfe4IcffmDfvn3F3r9Dhw7ceeedvPHGG1fMsGnTJl566SXi4uJo27Ytn3/+Oa1bt765AyDElTg5w0M/w69PaXdMrX4T9n6vzVQMEPwgOJkBMBkNdA7yonOQFy/0b0ZSei7bj11g5/FUdh5PJeZMBskZeSRnnGU3t7HR/COeqXG8MH0ay43d8fV0KXpUMxtxNTnh5myklu0s9dO24pmVgGf2CWpkH6d63imMamGxqM6Am1qTY9au/GLtRopanW+d/0Njw2lSlJr8t9EHBDZuRXpmWywbp9Hj1Gdwyhfq/h/E/AH7foTDK7U3C+pe+vFwrwm1msPZWDCYoP1DdjrwQuhDCpzroapQkK3Pzza5lem6vtFoZPr06YwcOZIJEyZQt27dEn127tzJsGHDmDp1KsOHD2fz5s2MGzeOmjVrMnr06BL9f/zxR+bMmcPixYtp2bIlSUlJ7NmzB4BHH32U119/ne3bt9OpUycA9u7dy+7du/nhhx+umvX555/nvffew8/Pj5deeokhQ4YQHx+PyWS67v0Voky8grQiZ9+P8OdkOHd5oj5FO4NxBX4WFwa39WdwW38AsvMLOZCYQXxyJoeSL/LH4fsZnvE1k0zfEZXXguPna3D8fPF/M9oph1noPAOPy8sg/EOuaiIdd9JVd/yUC9RRzvOE06884fQr+UY3nK3Z2Nx98Xn0D14qWlvrOTAbYNXr2t1c69+Bwr+9f+22Vy9cgrprBU7LoVDN5xoHT4jKRQqc61GQDdP99fnZLyWWeU6Ku+++m3bt2jFlyhS++OKLEq/Pnj2b3r178+qrrwLQpEkTYmJiePvtt0stcE6cOIGfnx99+vTBZDJRr149OnfuDEDdunXp168fCxYsKCpwFixYQM+ePWnQoMFVc06ZMoW+ffsC8PXXX1O3bl0iIiIYNkwmGRN2pCjarMSN+2iDg3cs0JZkqBF43W/h5uxEp0AvOgV6aQ150+HjNdRNO8Emv3fZ32cRJ63VScnIJSffSrW0WEbEvI2rNYcz5iASqgVzwaU+aW6BpLvXw9nTj+qeHnh7mPF2N5PrpuJxZi3Kvh/g0HKcrdng7oPhkd9LLhza/RmwWbX1swpztP1ofb+20rdPs6vvSM8XtJmZOz5apkMoRGUgBY6DmjlzJnfccUexy06XxcbGctddxdfl6datG3PnzsVqtWI0Fl8p+f7772fu3Lk0aNCA/v37M3DgQAYPHoyTk/brM2bMGB599FFmz56N0Whk0aJFvPvuu9fMGBr618BHLy8vmjZtSmxs7I3srhBl51oDBs2BPq9rZ0pvhrkaPPwbfD0IU9pRgleNJHj0b2BpACkH4auJYM2EgC7UfnAJta9noU6vodqZlZxUOLJGW0PKUvKMLAA9n4eATuBcDep0uP6zvu7e2rZCOCApcK6HyU07k6LXz74BPXr0oF+/frz00kslzsqoqlpiEGSJaev/JiAggLi4OFasWMHKlSsZN24cb7/9NuvWrcNkMjF48GDMZjMRERGYzWby8vK49957byh3We/2EuKmuXjemvepUR9G/w5fD9aWPFgwEIa8Dz+Nhezz2mDfUd+XfRVy1xrQ6p5r92vQ64ZiC+GopMC5HopSKacuf+utt2jXrh1NmjQp1t6iRQs2btxYrG3z5s00adKkxNmby1xdXRkyZAhDhgzhySefpFmzZuzbt4/27dvj5OTEww8/zIIFCzCbzYwYMQI3t2sXZlFRUdSrVw+A1NRU4uPjadbsGqfUhajIqtfTipyvBmlFzn8vnSn1baUt3uli0TefEFWIFDgOrHXr1owaNYoPPvigWPuzzz5Lp06dmDZtGsOHD2fLli3MmzePjz76qNT3+eqrr7BarYSEhODm5sbChQtxdXWlfv36RX0ef/xxmjdvDmh3R12PN954g5o1a+Lr68vLL7+Mt7c3Q4cOvbGdFaKisNTVVh3/apA2X03NxhC+FNy89E4mRJUiE/05uGnTppW4/NS+fXu+//57Fi9eTKtWrXjttdd44403Sh1gDFC9enXmz59Pt27daNOmDatWreLXX3+lZs2aRX0aN25M165dadq0KSEhIdeV7a233uKpp56iQ4cOnDlzhl9++QVnZ+drbyhERefpD4/+CQPfgUf+gGoyr5QQ5U1Rrzb4wkFlZGRgsVhIT0/H07P49ffc3FwSEhIICgrCxcVFp4SVj6qqNGvWjLFjx/LMM8/oHeeWk98LIYTQ39U+v/9JLlGJm5aSksLChQs5ffo0jzxy5blEhBBCiPIiBY64ab6+vnh7e/PZZ5/d1PIQQgghxK0iBY64aVXwKqcQQogKTgYZCyGEEMLhSIEjhBBCCIcjBc4V2Gw2vSOICkR+H4QQonKRMTj/4OzsjMFgIDExkVq1auHs7CzLB1RhqqqSn5/P2bNnMRgMMk+PEEJUElLg/IPBYCAoKIgzZ86QmKjT+lOiwnFzc6NevXoYDHLSUwghKgMpcErh7OxMvXr1KCwsxGq16h1H6MxoNOLk5CRn8oQQohKRAucKFEXBZDJhMpn0jiKEEEKIMpLz7UIIIYRwOFLgCCGEEMLhSIEjhBBCCIdTJcfgXF5aICMjQ+ckQgghhLhelz+3r2eJoCpZ4GRmZgIQEBCgcxIhhBBClFVmZiYWi+WqfRS1Cq6UaLPZSExMxMPD45bf+puRkUFAQAAnT57E09Pzlr63+Isc5/Ihx7l8yHEuP3Ksy4e9jrOqqmRmZuLv73/Necmq5Bkcg8FA3bp17fozPD095X+eciDHuXzIcS4fcpzLjxzr8mGP43ytMzeXySBjIYQQQjgcKXCEEEII4XCkwLnFzGYzU6ZMwWw26x3FoclxLh9ynMuHHOfyI8e6fFSE41wlBxkLIYQQwrHJGRwhhBBCOBwpcIQQQgjhcKTAEUIIIYTDkQJHCCGEEA5HCpwb8NFHHxEUFISLiwsdOnRgw4YNV+2/bt06OnTogIuLCw0aNOCTTz4pp6SVW1mO808//UTfvn2pVasWnp6ehIaG8ueff5Zj2sqrrL/Pl23atAknJyfatWtn34AOoqzHOS8vj5dffpn69etjNptp2LAhX375ZTmlrbzKepwXLVpE27ZtcXNzo3bt2jzyyCOcP3++nNJWTuvXr2fw4MH4+/ujKApLly695ja6fA6qokwWL16smkwmdf78+WpMTIz61FNPqe7u7urx48dL7X/06FHVzc1Nfeqpp9SYmBh1/vz5qslkUn/88cdyTl65lPU4P/XUU+rMmTPVbdu2qfHx8erkyZNVk8mk7tq1q5yTVy5lPc6XpaWlqQ0aNFDDwsLUtm3blk/YSuxGjvOQIUPUkJAQdcWKFWpCQoK6detWddOmTeWYuvIp63HesGGDajAY1Pfee089evSoumHDBrVly5bq0KFDyzl55bJs2TL15ZdfVpcsWaICakRExFX76/U5KAVOGXXu3Fl94oknirU1a9ZMffHFF0vtP2nSJLVZs2bF2saOHat26dLFbhkdQVmPc2latGihvv7667c6mkO50eM8fPhw9ZVXXlGnTJkiBc51KOtx/uOPP1SLxaKeP3++POI5jLIe57fffltt0KBBsbb3339frVu3rt0yOprrKXD0+hyUS1RlkJ+fz86dOwkLCyvWHhYWxubNm0vdZsuWLSX69+vXjx07dlBQUGC3rJXZjRznf7LZbGRmZuLl5WWPiA7hRo/zggULOHLkCFOmTLF3RIdwI8f5l19+oWPHjsyaNYs6derQpEkTnnvuOXJycsojcqV0I8e5a9eunDp1imXLlqGqKsnJyfz444/ceeed5RG5ytDrc7BKLrZ5o86dO4fVasXX17dYu6+vL0lJSaVuk5SUVGr/wsJCzp07R+3ate2Wt7K6keP8T++++y5ZWVkMGzbMHhEdwo0c50OHDvHiiy+yYcMGnJzkn4/rcSPH+ejRo2zcuBEXFxciIiI4d+4c48aN48KFCzIO5wpu5Dh37dqVRYsWMXz4cHJzcyksLGTIkCF88MEH5RG5ytDrc1DO4NwARVGKfa+qaom2a/UvrV0UV9bjfNm3337L1KlT+e677/Dx8bFXPIdxvcfZarUycuRIXn/9dZo0aVJe8RxGWX6fbTYbiqKwaNEiOnfuzMCBA5k9ezZfffWVnMW5hrIc55iYGCZMmMBrr73Gzp07iYyMJCEhgSeeeKI8olYpenwOyp9gZeDt7Y3RaCzx10BKSkqJ6vQyPz+/Uvs7OTlRs2ZNu2WtzG7kOF/23Xff8dhjj/HDDz/Qp08fe8as9Mp6nDMzM9mxYwe7d+9m/PjxgPZBrKoqTk5OLF++nDvuuKNcslcmN/L7XLt2berUqYPFYilqa968OaqqcurUKRo3bmzXzJXRjRznGTNm0K1bN55//nkA2rRpg7u7O927d+fNN9+UM+y3iF6fg3IGpwycnZ3p0KEDK1asKNa+YsUKunbtWuo2oaGhJfovX76cjh07YjKZ7Ja1MruR4wzamZvRo0fzzTffyDX061DW4+zp6cm+ffuIjo4uejzxxBM0bdqU6OhoQkJCyit6pXIjv8/dunUjMTGRixcvFrXFx8djMBioW7euXfNWVjdynLOzszEYin8MGo1G4K8zDOLm6fY5aNchzA7o8m2IX3zxhRoTE6NOnDhRdXd3V48dO6aqqqq++OKLanh4eFH/y7fHPf3002pMTIz6xRdfyG3i16Gsx/mbb75RnZyc1A8//FA9c+ZM0SMtLU2vXagUynqc/0nuoro+ZT3OmZmZat26ddX77rtPPXDggLpu3Tq1cePG6uOPP67XLlQKZT3OCxYsUJ2cnNSPPvpIPXLkiLpx40a1Y8eOaufOnfXahUohMzNT3b17t7p7924VUGfPnq3u3r276Hb8ivI5KAXODfjwww/V+vXrq87Ozmr79u3VdevWFb328MMPqz179izWf+3atWpwcLDq7OysBgYGqh9//HE5J66cynKce/bsqQIlHg8//HD5B69kyvr7/HdS4Fy/sh7n2NhYtU+fPqqrq6tat25d9ZlnnlGzs7PLOXXlU9bj/P7776stWrRQXV1d1dq1a6ujRo1ST506Vc6pK5c1a9Zc9d/bivI5qKiqnIcTQgghhGORMThCCCGEcDhS4AghhBDC4UiBI4QQQgiHIwWOEEIIIRyOFDhCCCGEcDhS4AghhBDC4UiBI4QQQgiHIwWOEEIIIRyOFDhCCCGEcDhS4AghhBDC4UiBI4QQQgiHIwWOEEIIIRzO/wNIrlWT9zGyPAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "bn= b + 0.001*np.random.randn(n)\n", + "plt.figure()\n", + "plt.plot(np.linspace(0,1,n),b, label='Noise free b')\n", + "plt.plot(np.linspace(0,1,n),bn, label='Noisy b')\n", + "plt.legend()\n", + "plt.show()\n" + ] + }, + { + "cell_type": "markdown", + "id": "cd88fee8", + "metadata": {}, + "source": [ + "$A$, $x$ and $b$ are stored as Numpy arrays. Just as in Matlab we can look at the singular value decomposition (SVD). On a log scale we see the singular values decay as a negative power as expected for an operator that approximates the inverse of two derivatives.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "761ac845", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiwAAAGxCAYAAABBZ+3pAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABFpElEQVR4nO3deXxU5cH28WsyM1mAJEACgUCAoJbFFJdEKSCKgkFAFMWKqEgFbFM3INoHESyLS3CpT2pleZWgtShQCyoqKqEiBUllEVCBKjwCQUgKCZIEgaz3+wfMwJCEzCSTOQF/389ngDlznzP3OZPl4t6OzRhjBAAA0IAFWV0BAACAmhBYAABAg0dgAQAADR6BBQAANHgEFgAA0OARWAAAQINHYAEAAA0egQUAADR4BBYAANDgEVjOQTabzavHZ599ps8++0w2m03/+Mc/rK62Xn/9ddlsNu3evdvqqkiSdu/eLZvNptdff93qqtRKhw4d9Jvf/MbqatTZP//5TyUlJalx48ay2Wx69913qyy3f/9+TZ06VZs3b6702m9+8xs1adKkfit60l/+8hddeOGFCg4Ols1m0+HDhwPyvoHm+tnx2WefWV2VerVt2zZNnTrVsp9LL730kmw2mxISEix5/3OJw+oKwHdZWVkez5988kmtXLlSn376qcf2rl276ssvvwxk1c5q0KBBysrKUuvWra2uChoIY4xuv/12/eIXv9DSpUvVuHFjderUqcqy+/fv17Rp09ShQwddeumlga3oSZs3b9bDDz+sMWPGaOTIkXI4HAoPD7ekLvCPbdu2adq0aerTp486dOgQ8PefN2+eJGnr1q364osv1L1794DX4VxBYDkH/epXv/J43qJFCwUFBVXa3tC0aNFCLVq0sLoa9aa0tFQ2m00OB99W3tq/f78OHTqkW265RX379rW6OjXaunWrJOm+++7TlVde6ZdjHj16VI0aNfLLsXx17NgxhYWFWfLe9cXK6+lrPTZs2KAtW7Zo0KBB+vDDD5WRkUFgOQu6hH4mSktLNWnSJMXGxioiIkL9+vXTt99+W6ncihUr1LdvX0VERKhRo0bq1auX/vnPf9Z4/IqKCj311FPq1KmTwsLC1LRpU3Xr1k1//vOf3WWq6hLq06ePEhIStH79evXu3VuNGjVSx44dNWPGDFVUVHi8x9atW5WcnKxGjRqpRYsWeuCBB/Thhx9WaraurqukT58+6tOnz1nPY+fOnbr33nt10UUXqVGjRmrTpo0GDx6sr7/+2qOcq7n8b3/7mx555BG1adNGISEh2rlzZ6VjlpaWqmXLlhoxYkSl1w4fPqywsDClpqZKko4fP65HHnlEl156qSIjI9W8eXP16NFD77333lnrLVXf5VZd0743n/XBgwf129/+VnFxcQoJCVGLFi3Uq1cvrVixosb6rFmzRn379lV4eLgaNWqknj176sMPP3S/PnXqVLVt21aSNGHCBNlstmr/h/vZZ5/piiuukCTde++97m7PqVOnepTbuXOnBg4cqCZNmiguLk6PPPKIiouLPcqUlJToqaeeUufOnd3ndO+99+rgwYNnPZ8+ffro7rvvliR1795dNpvN4+ts3rx5uuSSSxQaGqrmzZvrlltu0fbt2z2O4eq6+vrrr5WcnKzw8HD17dtXM2fOVFBQkA4cOOAu+6c//Uk2m00PPPCAe1tFRYWaNWumRx55xL1t2rRp6t69u5o3b66IiAhdfvnlysjI0Jn3te3QoYNuvPFGLVmyRJdddplCQ0M1bdo0SdJ//vMf3XDDDWrUqJGio6OVkpKioqKis16P09X0WUunvj4zMzN17733qnnz5mrcuLEGDx6s77//vtIxvfn6nDp1qmw2m7788kvddtttatasmS644AJJJ8LAHXfcoQ4dOigsLEwdOnTQ8OHDtWfPHo86/frXv5YkXXvtte6vq9O7ievyudYkIyNDkjRjxgz17NlTCxcu1NGjR2vc7+eKwPIz8fjjj2vPnj2aO3euXnnlFe3YsUODBw9WeXm5u8z8+fOVnJysiIgI/fWvf9Xf//53NW/eXP37968xtDz33HOaOnWqhg8frg8//FCLFi3S6NGjverfz83N1V133aW7775bS5cu1YABAzRx4kTNnz/fXSYnJ0fXXHONvv32W82ePVtvvPGGioqK9OCDD9b6mlRl//79ioqK0owZM/Txxx9r5syZcjgc6t69e5UBb+LEicrOztacOXP0/vvvq2XLlpXKOJ1O3X333Vq8eLEKCws9XluwYIGOHz+ue++9V5JUXFysQ4cO6dFHH9W7776rBQsW6KqrrtKtt96qN954w2/n6e1nPWLECL377rv64x//qOXLl2vu3Lnq16+f8vPzz3r8VatW6brrrlNBQYEyMjK0YMEChYeHa/DgwVq0aJEkacyYMVqyZIkk6aGHHlJWVpbeeeedKo93+eWX67XXXpMkTZ48WVlZWcrKytKYMWPcZUpLS3XTTTepb9++eu+99zRq1Cj97//+r5599ll3mYqKCt18882aMWOG7rzzTn344YeaMWOGMjMz1adPHx07dqzac5o1a5YmT54sSXrttdeUlZWlJ554QpKUlpam0aNH6+KLL9aSJUv05z//WV999ZV69OihHTt2eBynpKREN910k6677jq99957mjZtmvr16ydjjMe1X7FihcLCwpSZmenetmHDBh0+fFj9+vVzb9u9e7d+97vf6e9//7uWLFmiW2+9VQ899JCefPLJSufw5Zdf6g9/+IMefvhhffzxxxo6dKj++9//6pprrtE333yjWbNm6W9/+5uOHDni9feWN5/16UaPHq2goCC99dZbSk9P17p169SnTx+PnxW+/iy69dZbdeGFF+rtt9/WnDlz3NelU6dOSk9P1yeffKJnn31WOTk5uuKKK5SXlyfpRDf1M888I0maOXOm++tq0KBBkur+uZ7NsWPHtGDBAl1xxRVKSEjQqFGjVFRUpLffftur6/6zZHDOGzlypGncuHGVr61cudJIMgMHDvTY/ve//91IMllZWcYYY3766SfTvHlzM3jwYI9y5eXl5pJLLjFXXnnlWetw4403mksvvfSsZV577TUjyezatcu97ZprrjGSzBdffOFRtmvXrqZ///7u53/4wx+MzWYzW7du9SjXv39/I8msXLnSva19+/Zm5MiRld7/mmuuMddcc437+a5du4wk89prr1Vb57KyMlNSUmIuuugiM378ePd213W9+uqrz3rOLl999ZWRZF555RWP7VdeeaVJTEw86/uXlpaa0aNHm8suu8zjtTPPs6rre3pdXdfIl8+6SZMmZty4cV6d4+l+9atfmZYtW5qioiKPc0lISDBt27Y1FRUVxphTn8Hzzz9f4zHXr19f7ec1cuRII8n8/e9/99g+cOBA06lTJ/fzBQsWGElm8eLFVR571qxZZ62D6xqvX7/eve3HH380YWFhlb7HsrOzTUhIiLnzzjsr1XPevHmVjt22bVszatQoY4wxxcXFpnHjxmbChAlGktmzZ48xxpinn37aOJ1Oc+TIkSrrV15ebkpLS8306dNNVFSU+zobc+LrxW63m2+//dZjnwkTJhibzWY2b97ssf3666+v9L1VFW8/a9e1u+WWWzz2//zzz40k89RTTxljfPv6nDJlipFk/vjHP561jq46HTlyxDRu3Nj8+c9/dm9/++23qzxPf32u1XnjjTeMJDNnzhxjjDFFRUWmSZMmpnfv3l4f4+eGFpafiZtuusnjebdu3STJ3Ty6du1aHTp0SCNHjlRZWZn7UVFRoRtuuEHr16/XTz/9VO3xr7zySm3ZskX333+/Pvnkk0otCWfTqlWrSuMBunXr5tF0u2rVKiUkJKhr164e5YYPH+71+3ijrKxMzzzzjLp27arg4GA5HA4FBwdrx44dlZqBJWno0KFeHfeXv/ylEhMT3a0EkrR9+3atW7dOo0aN8ij79ttvq1evXmrSpIkcDoecTqcyMjKqfP/a8OWzvvLKK/X666/rqaee0r///W+VlpbWePyffvpJX3zxhW677TaPmTt2u10jRozQDz/8UGVrVV3ZbDYNHjzYY9uZX0cffPCBmjZtqsGDB3uc+6WXXqpWrVrVakZMVlaWjh07VqkbMi4uTtddd12VLQJVfd307dvX3dW2du1aHT16VKmpqYqOjna3sqxYsUI9evRQ48aN3ft9+umn6tevnyIjI2W32+V0OvXHP/5R+fn5Hl1Mruvxi1/8wmPbypUrdfHFF+uSSy7x2H7nnXfWeO61+azvuusuj+c9e/ZU+/bttXLlSve5+/qzqKrreeTIEU2YMEEXXnihHA6HHA6HmjRpop9++smr7yV/fa7VycjIUFhYmO644w5JUpMmTfTrX/9aq1evrtR6gxMILD8TUVFRHs9DQkIkyd0E/t///leSdNttt8npdHo8nn32WRljdOjQoWqPP3HiRL3wwgv697//rQEDBigqKkp9+/bVhg0bfK6bq36nN8/n5+crJiamUrmqttVFamqqnnjiCQ0ZMkTvv/++vvjiC61fv16XXHJJld0Fvsx4GjVqlLKysvSf//xH0oluhZCQEI/QtWTJEt1+++1q06aN5s+fr6ysLK1fv16jRo3S8ePH636C8u2zXrRokUaOHKm5c+eqR48eat68ue655x7l5uZWe/wff/xRxpgqr01sbKwk1dilVBuNGjVSaGiox7aQkBCP6/bf//5Xhw8fVnBwcKVzz83NdXcV+MJ1LtWd75nn2qhRI0VERFQq269fP2VnZ2vHjh1asWKFLrvsMrVs2VLXXXedVqxYoWPHjmnt2rUe3UHr1q1TcnKyJOnVV1/V559/rvXr12vSpEmSVOlrtqo65ufnq1WrVpW2V7XtTLX5rKt7L1e52vwsqur977zzTr388ssaM2aMPvnkE61bt07r169XixYtztr15+Kvz7UqO3fu1L/+9S8NGjRIxhgdPnxYhw8f1m233Sbp1MwheGI6AyRJ0dHRkk6sMVHdbKOzhQOHw6HU1FSlpqbq8OHDWrFihR5//HH1799fe/furfOo/aioKPcPstNV9YszNDS00kBLScrLy3OfZ3Xmz5+ve+65x92vffq+TZs2rVTeZrPVUPNThg8frtTUVL3++ut6+umn9be//U1DhgxRs2bNPN4/Pj5eixYt8jh2VedzJtcv6zPLnvlL2JfPOjo6Wunp6UpPT1d2draWLl2qxx57TAcOHNDHH39c5b7NmjVTUFCQcnJyKr22f/9+jzoEWnR0tKKioqqte22mKLsCd3Xne+a5Vvc14xqkuWLFCmVmZur66693b588ebL+9a9/qbi42COwLFy4UE6nUx988IFHWKtuLZuq3jsqKqrK76OzhVKX2nzW1b3XhRde6FHel59FZ55XQUGBPvjgA02ZMkWPPfaYe7trjJg3/PW5VmXevHkyxugf//hHlWtk/fWvf9VTTz0lu93u9TF/DmhhgSSpV69eatq0qbZt26akpKQqH8HBwV4dq2nTprrtttv0wAMP6NChQ35ZkMk1KHDbtm0e2xcuXFipbIcOHfTVV195bPvuu++86oaw2Wzu1ieXDz/8UPv27atFrT01a9ZMQ4YM0RtvvKEPPvhAubm5lbqDbDabe0Eyl9zcXK9mCblm2Jx57kuXLvV4XtvPul27dnrwwQd1/fXXn3V9n8aNG6t79+5asmSJx/9kKyoqNH/+fLVt27ZSt4Q3zmwVrI0bb7xR+fn5Ki8vr/K8q1sD5mx69OihsLAwj0HikvTDDz/o008/9Xq6duvWrdW1a1ctXrxYGzdudAeW66+/XgcPHtSLL76oiIgI92wpSe5p9Kf/Yjt27Jj+9re/eV3/a6+9Vlu3btWWLVs8tr/11ls17lubz/rNN9/0eL527Vrt2bPHPYPPHz+LbDabjDGVvpfnzp3rMdFAqv7ryl+f65nKy8v117/+VRdccIFWrlxZ6fHII48oJydHH330Ua2Ofz6jhQWSTvSf/uUvf9HIkSN16NAh3XbbbWrZsqUOHjyoLVu26ODBg5o9e3a1+w8ePFgJCQlKSkpSixYttGfPHqWnp6t9+/a66KKL6ly/cePGad68eRowYICmT5+umJgYvfXWW+7ulaCgU9l7xIgRuvvuu3X//fdr6NCh2rNnj5577jmv1oC58cYb9frrr6tz587q1q2bNm7cqOeff949/bauRo0apUWLFunBBx9U27ZtPf637Hr/JUuW6P7779dtt92mvXv36sknn1Tr1q1r7Ne+4oor1KlTJz366KMqKytTs2bN9M4772jNmjUe5bz9rAsKCnTttdfqzjvvVOfOnRUeHq7169fr448/1q233nrWuqSlpen666/Xtddeq0cffVTBwcGaNWuWvvnmGy1YsMCn/426XHDBBQoLC9Obb76pLl26qEmTJoqNjXV3PXjjjjvu0JtvvqmBAwdq7NixuvLKK+V0OvXDDz9o5cqVuvnmm3XLLbf4VK+mTZvqiSee0OOPP6577rlHw4cPV35+vqZNm6bQ0FBNmTLF62P17dtXf/nLXxQWFqZevXpJkuLj4xUfH6/ly5frpptu8ljnZ9CgQXrxxRd155136re//a3y8/P1wgsvVPpFfTau761BgwbpqaeeUkxMjN58803391ZNfP2sN2zYoDFjxujXv/619u7dq0mTJqlNmza6//77JdX9Z5EkRURE6Oqrr9bzzz+v6OhodejQQatWrVJGRkalllLXCrOvvPKKwsPDFRoaqvj4eEVFRfntcz3dRx99pP379+vZZ5+tcpmFhIQEvfzyy8rIyNCNN95Yq/c4b1k33hf+4s0sobfffttje3UzZFatWmUGDRpkmjdvbpxOp2nTpo0ZNGhQpf3P9Kc//cn07NnTREdHm+DgYNOuXTszevRos3v3bneZ6mYJXXzxxVWeU/v27T22ffPNN6Zfv34mNDTUNG/e3IwePdr89a9/NZLMli1b3OUqKirMc889Zzp27GhCQ0NNUlKS+fTTT72aJfTjjz+a0aNHm5YtW5pGjRqZq666yqxevbrSvtVd15qUl5ebuLg4I8lMmjSpyjIzZswwHTp0MCEhIaZLly7m1Vdfdc+GOF1Vs6G+++47k5ycbCIiIkyLFi3MQw89ZD788MMqZ0HU9FkfP37cpKSkmG7dupmIiAgTFhZmOnXqZKZMmWJ++umnGs919erV5rrrrjONGzc2YWFh5le/+pV5//33Pcr4MkvImBOzfDp37mycTqeRZKZMmWKMqf57oKrrVlpaal544QVzySWXmNDQUNOkSRPTuXNn87vf/c7s2LHjrO9f1Swhl7lz55pu3bqZ4OBgExkZaW6++eZKs9rO9r1qjDHvvfeekWSuv/56j+333XefkWReeumlSvvMmzfPdOrUyYSEhJiOHTuatLQ0k5GRUel7rX379mbQoEFVvu+2bdvM9ddf7/G95apLTbOEjPHus3Zdu+XLl5sRI0aYpk2bumfhVHXdvflZ5Pp8Dx48WGn/H374wQwdOtQ0a9bMhIeHmxtuuMF88803VX7fpKenm/j4eGO32yv9TPDH53q6IUOGmODgYHPgwIFqy9xxxx3G4XCY3Nxcr475c2Ez5ozVhYBzyG9/+1stWLBA+fn5XndZAQi8119/Xffee6/Wr1+vpKQkq6uDcxBdQjhnTJ8+XbGxserYsaOOHDmiDz74QHPnztXkyZMJKwBwniOw4JzhdDr1/PPP64cfflBZWZkuuugivfjiixo7dqzVVQMA1DO6hAAAQIPHtGYAANDgEVgAAECDR2ABAAAN3nkz6LaiokL79+9XeHh4rRalAgAAgWeMUVFRkWJjYz0WAT3TeRNY9u/fr7i4OKurAQAAamHv3r1nXVX8vAksrpuW7d271+s7ZgIAAGsVFhYqLi6uxpuPnjeBxdUNFBERQWABAOAcU9NwDgbdAgCABo/AAgAAGjwCCwAAaPAILAAAoMEjsAAAgAaPwAIAABo8AgsAAGjwCCwAAKDBI7AAAIAGj8ACAAAaPAILAABo8AgsAACgwTtvbn5YXzLW7NLeQ0c1/Mp26tTq7HeSBAAA9YMWlhp88NV+vb52t/bk/2R1VQAA+NmqVWCZNWuW4uPjFRoaqsTERK1evbrasjk5ObrzzjvVqVMnBQUFady4cVWWW7x4sbp27aqQkBB17dpV77zzTm2q5nfOoBOXqLzCWFwTAAB+vnwOLIsWLdK4ceM0adIkbdq0Sb1799aAAQOUnZ1dZfni4mK1aNFCkyZN0iWXXFJlmaysLA0bNkwjRozQli1bNGLECN1+++364osvfK2e39mDbJKkUgILAACWsRljfPpN3L17d11++eWaPXu2e1uXLl00ZMgQpaWlnXXfPn366NJLL1V6errH9mHDhqmwsFAfffSRe9sNN9ygZs2aacGCBV7Vq7CwUJGRkSooKFBERIT3J1SDERlfaPWOPL14+yW69fK2fjsuAADw/ve3Ty0sJSUl2rhxo5KTkz22Jycna+3atbWrqU60sJx5zP79+5/1mMXFxSosLPR41Aen/cQlKqOFBQAAy/gUWPLy8lReXq6YmBiP7TExMcrNza11JXJzc30+ZlpamiIjI92PuLi4Wr//2bi6hMrKCSwAAFilVoNubTabx3NjTKVt9X3MiRMnqqCgwP3Yu3dvnd6/Ok77ycBSUVEvxwcAADXzaR2W6Oho2e32Si0fBw4cqNRC4otWrVr5fMyQkBCFhITU+j29ZT85S4gWFgAArONTC0twcLASExOVmZnpsT0zM1M9e/asdSV69OhR6ZjLly+v0zH9xRlECwsAAFbzeaXb1NRUjRgxQklJSerRo4deeeUVZWdnKyUlRdKJrpp9+/bpjTfecO+zefNmSdKRI0d08OBBbd68WcHBwerataskaezYsbr66qv17LPP6uabb9Z7772nFStWaM2aNX44xbpxuLuEaGEBAMAqPgeWYcOGKT8/X9OnT1dOTo4SEhK0bNkytW/fXtKJheLOXJPlsssuc/9748aNeuutt9S+fXvt3r1bktSzZ08tXLhQkydP1hNPPKELLrhAixYtUvfu3etwav5BlxAAANbzeR2Whqq+1mH543vf6I2sPXr4uguVmtzJb8cFAAD1tA7Lz5EjiHVYAACwGoGlBoxhAQDAegSWGjhc9xIqZ5YQAABWIbDUwBVYuFszAADWIbDUwHHyXkKlzBICAMAyBJYauMawlLNwHAAAliGw1MDBzQ8BALAcgaUGrmnNpYxhAQDAMgSWGjjpEgIAwHIElhq4luZn0C0AANYhsNTAvXAc67AAAGAZAksN3INuGcMCAIBlCCw1cK3DwiwhAACsQ2CpgdPdwkKXEAAAViGw1MBOlxAAAJYjsNTASZcQAACWI7DUwD1LiBYWAAAsQ2CpgbtLiGnNAABYhsBSA3eXEC0sAABYhsBSAzuzhAAAsByBpQbOIAbdAgBgNQJLDVyDbrmXEAAA1iGw1MC1ND93awYAwDoElhqwND8AANYjsNSAmx8CAGA9AksNTi0cR5cQAABWIbDUwHFyllBpuZExtLIAAGAFAksNXF1CkkSvEAAA1iCw1MDVJSRJpSzPDwCAJQgsNXAtzS8x8BYAAKsQWGpgP61LqJypzQAAWILAUoPTx7CUMlMIAABLEFhqYLPZTlvtlhYWAACsQGDxgqtbiEG3AABYg8DiBSfL8wMAYCkCixfsLM8PAIClCCxecLI8PwAAliKweMG1PD9dQgAAWIPA4gW6hAAAsBaBxQvuLiFmCQEAYAkCixccrllCtLAAAGAJAosXXAvHMYYFAABrEFi84LpjM0vzAwBgDQKLF+wnZwlx80MAAKxBYPGCM4h1WAAAsBKBxQvuLiFaWAAAsASBxQuuheO4WzMAANYgsHjhVAsLXUIAAFiBwOIFWlgAALAWgcULrnVYSgksAABYgsDiBQdL8wMAYCkCixdcLSx0CQEAYA0Cixdc9xJiWjMAANYgsHiBuzUDAGAtAosX7O6VbmlhAQDACrUKLLNmzVJ8fLxCQ0OVmJio1atXn7X8qlWrlJiYqNDQUHXs2FFz5sypVCY9PV2dOnVSWFiY4uLiNH78eB0/frw21fM717RmluYHAMAaPgeWRYsWady4cZo0aZI2bdqk3r17a8CAAcrOzq6y/K5duzRw4ED17t1bmzZt0uOPP66HH35Yixcvdpd588039dhjj2nKlCnavn27MjIytGjRIk2cOLH2Z+ZHp7qEaGEBAMAKDl93ePHFFzV69GiNGTNG0omWkU8++USzZ89WWlpapfJz5sxRu3btlJ6eLknq0qWLNmzYoBdeeEFDhw6VJGVlZalXr1668847JUkdOnTQ8OHDtW7dutqel1/Z3S0sBBYAAKzgUwtLSUmJNm7cqOTkZI/tycnJWrt2bZX7ZGVlVSrfv39/bdiwQaWlpZKkq666Shs3bnQHlO+//17Lli3ToEGDqq1LcXGxCgsLPR71hUG3AABYy6cWlry8PJWXlysmJsZje0xMjHJzc6vcJzc3t8ryZWVlysvLU+vWrXXHHXfo4MGDuuqqq2SMUVlZmX7/+9/rscceq7YuaWlpmjZtmi/VrzUG3QIAYK1aDbq12Wwez40xlbbVVP707Z999pmefvppzZo1S19++aWWLFmiDz74QE8++WS1x5w4caIKCgrcj71799bmVLziPLkOC2NYAACwhk8tLNHR0bLb7ZVaUw4cOFCpFcWlVatWVZZ3OByKioqSJD3xxBMaMWKEe1zML3/5S/3000/67W9/q0mTJikoqHKuCgkJUUhIiC/Vr7VT9xKiSwgAACv41MISHBysxMREZWZmemzPzMxUz549q9ynR48elcovX75cSUlJcjqdkqSjR49WCiV2u13GGHdrjJXsLM0PAIClfO4SSk1N1dy5czVv3jxt375d48ePV3Z2tlJSUiSd6Kq555573OVTUlK0Z88epaamavv27Zo3b54yMjL06KOPussMHjxYs2fP1sKFC7Vr1y5lZmbqiSee0E033SS73e6H06wbuoQAALCWz9Oahw0bpvz8fE2fPl05OTlKSEjQsmXL1L59e0lSTk6Ox5os8fHxWrZsmcaPH6+ZM2cqNjZWL730kntKsyRNnjxZNptNkydP1r59+9SiRQsNHjxYTz/9tB9Ose5cd2suZZYQAACWsJmG0OfiB4WFhYqMjFRBQYEiIiL8euxF67M1YfHX6tu5pTJ+c4Vfjw0AwM+Zt7+/uZeQF1xL85cyhgUAAEsQWLzg6hIqZ5YQAACWILB4wd3CwqBbAAAsQWDxgoOl+QEAsBSBxQsO1mEBAMBSBBYvOOx0CQEAYCUCixec7psf0iUEAIAVCCxe4G7NAABYi8DiBQdL8wMAYCkCixcYdAsAgLUILF7gXkIAAFiLwOIF992aaWEBAMASBBYvuAfd0sICAIAlCCxecAbRwgIAgJUILF44tTQ/gQUAACsQWLzgYOE4AAAsRWDxgmsdlgojVdAtBABAwBFYvODqEpIYxwIAgBUILF5wdQlJdAsBAGAFAosXHEGnLhN3bAYAIPAILF44vYWF5fkBAAg8AosXgoJscmUWFo8DACDwCCxecs0UKqWFBQCAgCOweMl9x2bGsAAAEHAEFi+5Aksps4QAAAg4AouXXHdsZtAtAACBR2DxkuuOzaUMugUAIOAILF5ytbBwA0QAAAKPwOIlu/sGiAQWAAACjcDiJdf9hFiHBQCAwCOweMl5cnl+WlgAAAg8AouX6BICAMA6BBYvOekSAgDAMgQWL7mW5qeFBQCAwCOweMndJcS0ZgAAAo7A4iV3lxBL8wMAEHAEFi/Zg1g4DgAAqxBYvOQMooUFAACrEFi85Fo4rpQWFgAAAo7A4iVHEHdrBgDAKgQWL51qYaFLCACAQCOweMnB0vwAAFiGwOIlx8lBt3QJAQAQeAQWL9ElBACAdQgsXqKFBQAA6xBYvOS6lxDTmgEACDwCi5cc3K0ZAADLEFi85HCvdEsLCwAAgUZg8dKpac20sAAAEGgEFi+579bMGBYAAAKOwOIlOwvHAQBgGQKLl5wMugUAwDIEFi/ZGXQLAIBlCCxecq3DwhgWAAACj8DiJae7hYUuIQAAAo3A4iW6hAAAsE6tAsusWbMUHx+v0NBQJSYmavXq1Wctv2rVKiUmJio0NFQdO3bUnDlzKpU5fPiwHnjgAbVu3VqhoaHq0qWLli1bVpvq1QsnXUIAAFjG58CyaNEijRs3TpMmTdKmTZvUu3dvDRgwQNnZ2VWW37VrlwYOHKjevXtr06ZNevzxx/Xwww9r8eLF7jIlJSW6/vrrtXv3bv3jH//Qt99+q1dffVVt2rSp/Zn5GXdrBgDAOg5fd3jxxRc1evRojRkzRpKUnp6uTz75RLNnz1ZaWlql8nPmzFG7du2Unp4uSerSpYs2bNigF154QUOHDpUkzZs3T4cOHdLatWvldDolSe3bt6/tOdUL7tYMAIB1fGphKSkp0caNG5WcnOyxPTk5WWvXrq1yn6ysrErl+/fvrw0bNqi0tFSStHTpUvXo0UMPPPCAYmJilJCQoGeeeUbl5eXV1qW4uFiFhYUej/rkWpq/lMACAEDA+RRY8vLyVF5erpiYGI/tMTExys3NrXKf3NzcKsuXlZUpLy9PkvT999/rH//4h8rLy7Vs2TJNnjxZf/rTn/T0009XW5e0tDRFRka6H3Fxcb6cis/sdlcLC11CAAAEWq0G3dpsNo/nxphK22oqf/r2iooKtWzZUq+88ooSExN1xx13aNKkSZo9e3a1x5w4caIKCgrcj71799bmVLzmDGLQLQAAVvFpDEt0dLTsdnul1pQDBw5UakVxadWqVZXlHQ6HoqKiJEmtW7eW0+mU3W53l+nSpYtyc3NVUlKi4ODgSscNCQlRSEiIL9WvEwbdAgBgHZ9aWIKDg5WYmKjMzEyP7ZmZmerZs2eV+/To0aNS+eXLlyspKck9wLZXr17auXOnKk7rbvnuu+/UunXrKsOKFRh0CwCAdXzuEkpNTdXcuXM1b948bd++XePHj1d2drZSUlIkneiqueeee9zlU1JStGfPHqWmpmr79u2aN2+eMjIy9Oijj7rL/P73v1d+fr7Gjh2r7777Th9++KGeeeYZPfDAA344Rf9wLc1fSpcQAAAB5/O05mHDhik/P1/Tp09XTk6OEhIStGzZMvc05JycHI81WeLj47Vs2TKNHz9eM2fOVGxsrF566SX3lGZJiouL0/LlyzV+/Hh169ZNbdq00dixYzVhwgQ/nKJ/OFiaHwAAy9iMawTsOa6wsFCRkZEqKChQRESE34//n9xC3ZC+WtFNgrVh8vV+Pz4AAD9H3v7+5l5CXnKvw0KXEAAAAUdg8RKDbgEAsA6BxUtMawYAwDoEFi+579ZMCwsAAAFHYPGS/bQuofNknDIAAOcMAouXXEvzS7SyAAAQaAQWL7nGsEjcTwgAgEAjsHjJ1SUksXgcAACBRmDxkmvQrUQLCwAAgUZg8dJpDSyMYQEAIMAILF6y2Wxy2rmfEAAAViCw+MC1PD9dQgAABBaBxQen7thMYAEAIJAILD5wTW0uY3l+AAACisDiA4edOzYDAGAFAosPuGMzAADWILD4wH3HZmYJAQAQUAQWHzBLCAAAaxBYfHBqlhAtLAAABBKBxQeuQbe0sAAAEFgEFh8w6BYAAGsQWHzgHnTLOiwAAAQUgcUHTtegW1pYAAAIKAKLD+wszQ8AgCUILD5gaX4AAKxBYPGBe1ozs4QAAAgoAosP3NOa6RICACCgCCw+cNpZOA4AACsQWHxgZ2l+AAAsQWDxgZOl+QEAsASBxQenFo6jhQUAgEAisPjA1SXE0vwAAAQWgcUHTtZhAQDAEgQWH7hWui2lhQUAgIAisPjAaadLCAAAKxBYfOBa6Za7NQMAEFgEFh+4AgstLAAABBaBxQeupfmZ1gwAQGARWHzA3ZoBALAGgcUHdAkBAGANAosPHCcXjmNaMwAAgUVg8QFdQgAAWIPA4gNXC0sZLSwAAAQUgcUHtLAAAGANAosPXINuaWEBACCwCCw+cK3DUsY6LAAABBSBxQdOdwsLXUIAAAQSgcUHdrqEAACwBIHFB066hAAAsASBxQeuWULcrRkAgMAisPjAztL8AABYgsDiA3eXEIEFAICAIrD4wM4sIQAALEFg8YEziEG3AABYgcDig1ODbgksAAAEUq0Cy6xZsxQfH6/Q0FAlJiZq9erVZy2/atUqJSYmKjQ0VB07dtScOXOqLbtw4ULZbDYNGTKkNlWrVw73oFu6hAAACCSfA8uiRYs0btw4TZo0SZs2bVLv3r01YMAAZWdnV1l+165dGjhwoHr37q1Nmzbp8ccf18MPP6zFixdXKrtnzx49+uij6t27t+9nEgAszQ8AgDV8DiwvvviiRo8erTFjxqhLly5KT09XXFycZs+eXWX5OXPmqF27dkpPT1eXLl00ZswYjRo1Si+88IJHufLyct11112aNm2aOnbsWLuzqWeuFpZSWlgAAAgonwJLSUmJNm7cqOTkZI/tycnJWrt2bZX7ZGVlVSrfv39/bdiwQaWlpe5t06dPV4sWLTR69Giv6lJcXKzCwkKPR31zjWFhHRYAAALLp8CSl5en8vJyxcTEeGyPiYlRbm5ulfvk5uZWWb6srEx5eXmSpM8//1wZGRl69dVXva5LWlqaIiMj3Y+4uDhfTqVWHCdnCZWWGxlDaAEAIFBqNejWZrN5PDfGVNpWU3nX9qKiIt1999169dVXFR0d7XUdJk6cqIKCAvdj7969PpxB7bi6hCSJRhYAAALH4Uvh6Oho2e32Sq0pBw4cqNSK4tKqVasqyzscDkVFRWnr1q3avXu3Bg8e7H694uQYEYfDoW+//VYXXHBBpeOGhIQoJCTEl+rXmatLSDpxPyF7kD2g7w8AwM+VTy0swcHBSkxMVGZmpsf2zMxM9ezZs8p9evToUan88uXLlZSUJKfTqc6dO+vrr7/W5s2b3Y+bbrpJ1157rTZv3hyQrh5vuZbml1ieHwCAQPKphUWSUlNTNWLECCUlJalHjx565ZVXlJ2drZSUFEknumr27dunN954Q5KUkpKil19+WampqbrvvvuUlZWljIwMLViwQJIUGhqqhIQEj/do2rSpJFXabjX7aV1C5UxtBgAgYHwOLMOGDVN+fr6mT5+unJwcJSQkaNmyZWrfvr0kKScnx2NNlvj4eC1btkzjx4/XzJkzFRsbq5deeklDhw7131kEyOljWJjaDABA4NjMeTLdpbCwUJGRkSooKFBERES9vc+Fjy9TWYXRvyf2VavI0Hp7HwAAfg68/f3NvYR8xB2bAQAIPAKLj5wszw8AQMARWHxECwsAAIFHYPGR0+4KLLSwAAAQKAQWH7mW56dLCACAwCGw+OhUlxCBBQCAQCGw+MjdJVTOGBYAAAKFwOIjh/3UHZsBAEBgEFh85FrttpwuIQAAAobA4iPXHZtZmh8AgMAhsPjIziwhAAACjsDiI6e7S4gWFgAAAoXA4iN3lxAtLAAABAyBxUeuheMYdAsAQOAQWHx0qoWFLiEAAAKFwOIj99L8tLAAABAwBBYfOViaHwCAgCOw+MjB0vwAAAQcgcVH7hYWZgkBABAwBBYfue4lRJcQAACBQ2DxEXdrBgAg8AgsPrIz6BYAgIAjsPjo1LRmWlgAAAgUAouPTnUJ0cICAECgEFh8ZGfhOAAAAo7A4iMG3QIAEHgEFh+5Bt2W0sICAEDAEFh85Dy5Dks5Y1gAAAgYAouPHO4WFrqEAAAIFAKLj1xdQuV0CQEAEDAEFh+5uoSY1gwAQOAQWHzkultzKbOEAAAIGAKLjxx0CQEAEHAEFh+5luZnWjMAAIFDYPGRg4XjAAAIOAKLjxwszQ8AQMARWHxECwsAAIFHYPERg24BAAg8AouPHCfXYSllHRYAAAKGwOIj58kWljKW5gcAIGAILD6yuwMLLSwAAAQKgcVHwY4Tl6y4lBYWAAAChcDio6jGIZKkvCPFMoZWFgAAAoHA4qOWEScCS3FZhQqPl1lcGwAAfh4ILD4KddoVHuqQJB0sOm5xbQAA+HkgsNRCy/ATrSwHCostrgkAAD8PBJZaaBkeKkk6UERgAQAgEAgsteAax3KALiEAAAKCwFILdAkBABBYBJZaoEsIAIDAIrDUAl1CAAAEFoGlFlq4uoRoYQEAICAILLXg6hI6yBgWAAACgsBSC64uoaLiMh0rKbe4NgAAnP8ILLUQHuJQqPPEpWMcCwAA9a9WgWXWrFmKj49XaGioEhMTtXr16rOWX7VqlRITExUaGqqOHTtqzpw5Hq+/+uqr6t27t5o1a6ZmzZqpX79+WrduXW2qFhA2m42ZQgAABJDPgWXRokUaN26cJk2apE2bNql3794aMGCAsrOzqyy/a9cuDRw4UL1799amTZv0+OOP6+GHH9bixYvdZT777DMNHz5cK1euVFZWltq1a6fk5GTt27ev9mdWz1iLBQCAwLEZY4wvO3Tv3l2XX365Zs+e7d7WpUsXDRkyRGlpaZXKT5gwQUuXLtX27dvd21JSUrRlyxZlZWVV+R7l5eVq1qyZXn75Zd1zzz1e1auwsFCRkZEqKChQRESEL6dUK/e/uVHLvs7VlMFddW+v+Hp/PwAAzkfe/v72qYWlpKREGzduVHJyssf25ORkrV27tsp9srKyKpXv37+/NmzYoNLS0ir3OXr0qEpLS9W8efNq61JcXKzCwkKPRyDRJQQAQOD4FFjy8vJUXl6umJgYj+0xMTHKzc2tcp/c3Nwqy5eVlSkvL6/KfR577DG1adNG/fr1q7YuaWlpioyMdD/i4uJ8OZU6a0GXEAAAAVOrQbc2m83juTGm0raayle1XZKee+45LViwQEuWLFFoaGi1x5w4caIKCgrcj7179/pyCnXmHsPCLCEAAOqdw5fC0dHRstvtlVpTDhw4UKkVxaVVq1ZVlnc4HIqKivLY/sILL+iZZ57RihUr1K1bt7PWJSQkRCEhIb5U369aRpxcPI4uIQAA6p1PLSzBwcFKTExUZmamx/bMzEz17Nmzyn169OhRqfzy5cuVlJQkp9Pp3vb888/rySef1Mcff6ykpCRfqmWJlizPDwBAwPjcJZSamqq5c+dq3rx52r59u8aPH6/s7GylpKRIOtFVc/rMnpSUFO3Zs0epqanavn275s2bp4yMDD366KPuMs8995wmT56sefPmqUOHDsrNzVVubq6OHDnih1OsH67AcuinEpWUVVhcGwAAzm8+dQlJ0rBhw5Sfn6/p06crJydHCQkJWrZsmdq3by9JysnJ8ViTJT4+XsuWLdP48eM1c+ZMxcbG6qWXXtLQoUPdZWbNmqWSkhLddtttHu81ZcoUTZ06tZanVr+aNQqWI8imsgqjvCPFim0aZnWVAAA4b/m8DktDFeh1WCSpR9o/lVNwXO8+0EuXxjUNyHsCAHA+qZd1WODp1Gq3zBQCAKA+EVjqoAWLxwEAEBAEljpoGcFMIQAAAoHAUgeuLqGDLB4HAEC9IrDUgft+QizPDwBAvSKw1EELFo8DACAgCCx1wP2EAAAIDAJLHbgG3eYdKVF5xXmxnA0AAA0SgaUOopuEyGaTyiuMDv1UYnV1AAA4bxFY6sBpD1LzRsGS6BYCAKA+EVjqiIG3AADUPwJLHbWMODG1+SBTmwEAqDcEljpiphAAAPWPwFJHLekSAgCg3hFY6ujUHZsJLAAA1BcCSx25xrDQJQQAQP0hsNQRXUIAANQ/AksduW+AWFQsY1jtFgCA+kBgqSPX8vwlZRUqPFZmcW0AADg/EVjqKNRpV3ioQxLjWAAAqC8EFj9gHAsAAPWLwOIHp8ax0MICAEB9ILD4QfuoRpKkbfsLLa4JAADnJwKLH/S6MFqS9K/v8iyuCQAA5ycCix9cdWG0bDbp2/8WKbeAbiEAAPyNwOIHzRoHq1vbppKkf3130NrKAABwHiKw+Mk1v2ghSVq1g8ACAIC/EVj85JpfnBjHsmZHnsorWPEWAAB/IrD4ySVtmyo81KGCY6Xa8sNhq6sDAMB5hcDiJw57kHpf5JotRLcQAAD+RGDxo6svOjGOhcACAIB/EVj86OqTA2837z2sgqOlFtcGAIDzB4HFj2Kbhumilk1UYaQ1O1lEDgAAfyGw+JmrlWXVdwcsrgkAAOcPAoufudZj+dd3eTKG6c0AAPgDgcXProxvrhBHkHILj2vHgSNWVwcAgPMCgcXPQp12de8YJUla9S2zhQAA8AcCSz1wdwuxTD8AAH5BYKkHrsCS9X/52km3EAAAdUZgqQcXtmyi6zq3VFmF0dSlWxl8CwBAHRFY6smUwV0V7AjSmp15WvZ1rtXVAQDgnEZgqSftoxrr/j4XSJKe/GCbfious7hGAACcuwgs9SjlmgvUrnkj5RYe10uf7rC6OgAAnLMILPUo1GnX1Ju6SpIyVu/SzgNFFtcIAIBzE4Glnl3XOUb9usSorMLoiXcZgAsAQG0QWAJgyuCuCnEEKev7fL2+drfV1QEA4JxDYAmAuOaNNLbfRZKkae9vU/qK72hpAQDABwSWAPn9NRfo4esulCSlr9ihSe9+o/IKQgsAAN4gsASIzWZTanInPTkkQTab9NYX2fr9/I06XlpuddUAAGjwCCwBNuJX7TX7rssV7AjS8m3/1R2v/Ftf/XDY6moBANCgEVgscENCa70x6kqFhzq0ee9h3fTy53powSZl5x+1umoAADRIBBaL/KpjlD4a21u3XtZGNpv0/pb96vviZ5q6dKv2HT5mdfUAAGhQbOY8ma5SWFioyMhIFRQUKCIiwurq+GTr/gLN+Og/Wr0jz73tig7NdPOlbTTwl63VvHGwhbUDAKD+ePv7m8DSgKzZkaeZK3fq37vy5fpUHEE29bwwWj06RunK+Ob6ZZtIBTtoGAMAnB8ILOewnIJj+mBLjt7dvE9b9xd6vBbqDNJlcc3UrW2kfhETrk6twnVhyyYKddotqi0AALVHYDlP7DxQpFXf5Wndrnyt23VIPx4trVQmyCa1a95Icc0bqW2zRoprHqa4Zo3UOjJULcND1TIihEADAGiQ6jWwzJo1S88//7xycnJ08cUXKz09Xb179662/KpVq5SamqqtW7cqNjZW//M//6OUlBSPMosXL9YTTzyh//u//9MFF1ygp59+WrfccovXdTpfA8vpKiqM/u/gEa3f/aP+k1uo/+QW6dvcIhUcqxxizhQe6lCL8BA1bxSsZo2D1ayRU80aBysyzKnwUKciQh2KCHUqPNShxiEONQlxqFGwXY1DHApxBMlmswXgDAEAPzfe/v52+HrgRYsWady4cZo1a5Z69eql//f//p8GDBigbdu2qV27dpXK79q1SwMHDtR9992n+fPn6/PPP9f999+vFi1aaOjQoZKkrKwsDRs2TE8++aRuueUWvfPOO7r99tu1Zs0ade/e3dcqnreCgmy6KCZcF8WEu7cZY3SwqFg7Dx7RDz8e0w+Hjmrvj8e099BR/bfouA4UFqu4rEJFx8tUdLxM3+snn9/XHmRTmNOuUKddYcFB7n+HOIIU4rAr1BmkYEeQgu0n/3YEKdhuP/m3TU57kJyOIDmCbAp2BMkRFCSH3San3SZHUJCcdpvsQSded9htsgfZZLe5/h0ku82moCDJERQke5AUZDtRxvW3Pcgmm02y21z/dr1+ouyJx4l/22wifAHAOcjnFpbu3bvr8ssv1+zZs93bunTpoiFDhigtLa1S+QkTJmjp0qXavn27e1tKSoq2bNmirKwsSdKwYcNUWFiojz76yF3mhhtuULNmzbRgwQKv6vVzaGGpDWOMCo+X6WDRcR0oKtbho6U69FOJDh8t0Y9HS1VwrFRFx0tVeKxMRcUn/j5aUqafist17Dxdhff0IGM7Lci4A41OhEObPEPO6c+DToaeM/dzldPJ52dyvX6i/In9Km0/7TXbyTdxvXby0Kfe57RjyeP1M49/ssxp+5xeJ9d+p79mq+L1U/vZqil72nHPuAKe73lGmTOO47nfGcep4pi+7lfdxjPrfPp7nO04lct4F4or7efVbjXX0bu9aq5P1cepXeCvzf8T/Plfi5/zf1T8eeqjesUrrnkj/x1Q9dTCUlJSoo0bN+qxxx7z2J6cnKy1a9dWuU9WVpaSk5M9tvXv318ZGRkqLS2V0+lUVlaWxo8fX6lMenp6tXUpLi5WcXGx+3lhYWG1ZX/ObDabIsOcigxz6sKW4TXvcJryCqOjJWU6VnIivBw9+fexknIVl5WruLRCxWUVOl5aruKyCpWUVaikvML979LyU4+SMqPS8gqVVVSotNyorPzk3xUVKq8wKi03J/+uUIUxKqswqji5vcKceM21vfzka+XGqKJCKj/5urcqjFRhjKTzYvgWAATM4Eti/R5YvOVTYMnLy1N5ebliYmI8tsfExCg3N7fKfXJzc6ssX1ZWpry8PLVu3braMtUdU5LS0tI0bdo0X6oPH9mDbAoPPTHG5Vxg3MHmRCA58TgRvFyvGZ14zbi268TYIGMko1NljKvMyb9dr5/+7wpzotyJrOQ6xsnXq2i4rDi5n04vd9p+rnM4ebgz3s/zdXPGe+q0453696l9VE2Z0/8++bbu8sb9x6l9PPar9Lz6MqrielTa35sylUpUvV/lMlVsO+NoVZfxz3G8UeX5e3Esb+pYeZ/aVbI29fHrwb05jF+O4rfq1P79G+h/qGIiQi17b5/HsEiVm9aMMWdtbquq/JnbfT3mxIkTlZqa6n5eWFiouLi4miuP85bt5LgXAMD5x6fAEh0dLbvdXqnl48CBA5VaSFxatWpVZXmHw6GoqKizlqnumJIUEhKikJAQX6oPAADOUT4tmRocHKzExERlZmZ6bM/MzFTPnj2r3KdHjx6Vyi9fvlxJSUlyOp1nLVPdMQEAwM+Lz11CqampGjFihJKSktSjRw+98sorys7Odq+rMnHiRO3bt09vvPGGpBMzgl5++WWlpqbqvvvuU1ZWljIyMjxm/4wdO1ZXX321nn32Wd1888167733tGLFCq1Zs8ZPpwkAAM5lPgeWYcOGKT8/X9OnT1dOTo4SEhK0bNkytW/fXpKUk5Oj7Oxsd/n4+HgtW7ZM48eP18yZMxUbG6uXXnrJvQaLJPXs2VMLFy7U5MmT9cQTT+iCCy7QokWLWIMFAABIYml+AABgIW9/f3PbXwAA0OARWAAAQINHYAEAAA0egQUAADR4BBYAANDgEVgAAECDR2ABAAANHoEFAAA0eLW6W3ND5Fr/rrCw0OKaAAAAb7l+b9e0ju15E1iKiookSXFxcRbXBAAA+KqoqEiRkZHVvn7eLM1fUVGh/fv3Kzw8XDabzW/HLSwsVFxcnPbu3cuS//WMax04XOvA4noHDtc6cPx1rY0xKioqUmxsrIKCqh+pct60sAQFBalt27b1dvyIiAi++AOEax04XOvA4noHDtc6cPxxrc/WsuLCoFsAANDgEVgAAECDR2CpQUhIiKZMmaKQkBCrq3Le41oHDtc6sLjegcO1DpxAX+vzZtAtAAA4f9HCAgAAGjwCCwAAaPAILAAAoMEjsAAAgAaPwAIAABo8AksNZs2apfj4eIWGhioxMVGrV6+2ukrntLS0NF1xxRUKDw9Xy5YtNWTIEH377bceZYwxmjp1qmJjYxUWFqY+ffpo69atFtX4/JGWliabzaZx48a5t3Gt/Wvfvn26++67FRUVpUaNGunSSy/Vxo0b3a9zvf2jrKxMkydPVnx8vMLCwtSxY0dNnz5dFRUV7jJc69r517/+pcGDBys2NlY2m03vvvuux+veXNfi4mI99NBDio6OVuPGjXXTTTfphx9+qHvlDKq1cOFC43Q6zauvvmq2bdtmxo4daxo3bmz27NljddXOWf379zevvfaa+eabb8zmzZvNoEGDTLt27cyRI0fcZWbMmGHCw8PN4sWLzddff22GDRtmWrdubQoLCy2s+blt3bp1pkOHDqZbt25m7Nix7u1ca/85dOiQad++vfnNb35jvvjiC7Nr1y6zYsUKs3PnTncZrrd/PPXUUyYqKsp88MEHZteuXebtt982TZo0Menp6e4yXOvaWbZsmZk0aZJZvHixkWTeeecdj9e9ua4pKSmmTZs2JjMz03z55Zfm2muvNZdccokpKyurU90ILGdx5ZVXmpSUFI9tnTt3No899phFNTr/HDhwwEgyq1atMsYYU1FRYVq1amVmzJjhLnP8+HETGRlp5syZY1U1z2lFRUXmoosuMpmZmeaaa65xBxautX9NmDDBXHXVVdW+zvX2n0GDBplRo0Z5bLv11lvN3XffbYzhWvvLmYHFm+t6+PBh43Q6zcKFC91l9u3bZ4KCgszHH39cp/rQJVSNkpISbdy4UcnJyR7bk5OTtXbtWotqdf4pKCiQJDVv3lyStGvXLuXm5npc95CQEF1zzTVc91p64IEHNGjQIPXr189jO9fav5YuXaqkpCT9+te/VsuWLXXZZZfp1Vdfdb/O9fafq666Sv/85z/13XffSZK2bNmiNWvWaODAgZK41vXFm+u6ceNGlZaWepSJjY1VQkJCna/9eXO3Zn/Ly8tTeXm5YmJiPLbHxMQoNzfXolqdX4wxSk1N1VVXXaWEhARJcl/bqq77nj17Al7Hc93ChQv15Zdfav369ZVe41r71/fff6/Zs2crNTVVjz/+uNatW6eHH35YISEhuueee7jefjRhwgQVFBSoc+fOstvtKi8v19NPP63hw4dL4mu7vnhzXXNzcxUcHKxmzZpVKlPX350ElhrYbDaP58aYSttQOw8++KC++uorrVmzptJrXPe627t3r8aOHavly5crNDS02nJca/+oqKhQUlKSnnnmGUnSZZddpq1bt2r27Nm655573OW43nW3aNEizZ8/X2+99ZYuvvhibd68WePGjVNsbKxGjhzpLse1rh+1ua7+uPZ0CVUjOjpadru9UiI8cOBApXQJ3z300ENaunSpVq5cqbZt27q3t2rVSpK47n6wceNGHThwQImJiXI4HHI4HFq1apVeeuklORwO9/XkWvtH69at1bVrV49tXbp0UXZ2tiS+tv3pD3/4gx577DHdcccd+uUvf6kRI0Zo/PjxSktLk8S1ri/eXNdWrVqppKREP/74Y7VlaovAUo3g4GAlJiYqMzPTY3tmZqZ69uxpUa3OfcYYPfjgg1qyZIk+/fRTxcfHe7weHx+vVq1aeVz3kpISrVq1iuvuo759++rrr7/W5s2b3Y+kpCTddddd2rx5szp27Mi19qNevXpVmqL/3XffqX379pL42vano0ePKijI89eX3W53T2vmWtcPb65rYmKinE6nR5mcnBx98803db/2dRqye55zTWvOyMgw27ZtM+PGjTONGzc2u3fvtrpq56zf//73JjIy0nz22WcmJyfH/Th69Ki7zIwZM0xkZKRZsmSJ+frrr83w4cOZjugnp88SMoZr7U/r1q0zDofDPP3002bHjh3mzTffNI0aNTLz5893l+F6+8fIkSNNmzZt3NOalyxZYqKjo83//M//uMtwrWunqKjIbNq0yWzatMlIMi+++KLZtGmTezkPb65rSkqKadu2rVmxYoX58ssvzXXXXce05kCYOXOmad++vQkODjaXX365e/otakdSlY/XXnvNXaaiosJMmTLFtGrVyoSEhJirr77afP3119ZV+jxyZmDhWvvX+++/bxISEkxISIjp3LmzeeWVVzxe53r7R2FhoRk7dqxp166dCQ0NNR07djSTJk0yxcXF7jJc69pZuXJllT+jR44caYzx7roeO3bMPPjgg6Z58+YmLCzM3HjjjSY7O7vOdbMZY0zd2mgAAADqF2NYAABAg0dgAQAADR6BBQAANHgEFgAA0OARWAAAQINHYAEAAA0egQUAADR4BBYAANDgEVgAAECDR2ABAAANHoEFAAA0eP8fauGraF6YBm0AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAG2CAYAAACDLKdOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABZDElEQVR4nO3deVwU9f8H8Nfswu5yiRyCglziiSgIooInmphnZlppIVqZmn7NtMvMzLLsVDNRMzO0POjwSi3FvFBQ8b6vFEEBEQ9OuT+/P4z9hRwuuDCwvJ6Px/7B7OzMe3dmdl/MfD6fkYQQAkREREQGQiF3AURERET6xHBDREREBoXhhoiIiAwKww0REREZFIYbIiIiMigMN0RERGRQGG6IiIjIoDDcEBERkUFhuCEiIiKDYhDhZsGCBZAkCZ6enhV6XY8ePdCjR4+qKeoRdu/eDUmSsHv3blnWrytJkvDhhx9W+HUJCQn48MMPcfz4cb3XdOzYMXTv3h2WlpaQJAnz588vdb6srCx8+OGHpX7GH374ISRJQkpKit7rq6hRo0bB1dVV7jK0wsLCIEkSYmNj5S6lwmJjYyFJEsLCwuQu5bF9++23aNq0KVQqFSRJwr1790qdLyoqCh9++GGpz7u6umLAgAFVWyiA3NxcjBs3Do0aNYJSqYS3t3eVr1MuRd8dhm7r1q2V+u7XlyFDhkCSJEycOLFSrzeIcLN8+XIAwJkzZ3Dw4EGZqyHgQbiZNWtWlYSbl156CYmJiVi7di2io6Px/PPPlzpfVlYWZs2aVeMD5IwZM7B+/Xq5y6Aa5Pjx45g0aRICAwOxc+dOREdHw8LCotR5o6KiMGvWrDLDT3VYvHgxvvvuO0yfPh379u3DTz/9JFstpB9bt27FrFmzZFl3cnIyNm/eDABYtWoVsrOzK7yMWh9uDh8+jBMnTqB///4AgB9++EHmiqiqnT59Gk888QT69u2LTp06oWHDhnKX9Fjc3d3Rrl07ucuoMllZWXKXUOucOXMGADBmzBh06dIFnTp1glKplLmqsp0+fRomJiaYOHEi/P390aZNm8de5v379/VQWcUVFBQgJydHlnVXpZpyHOqyXVeuXIm8vDz0798f9+7dw7p16yq8nlofborCzGeffYaAgACsXbv2sTbinTt38Nprr8HR0REqlQpNmjTB9OnTS+zs9+7dw8svvwxra2uYm5ujf//+uHLlSqUv4xTZtGkT/P39YWpqCgsLC/Tu3RvR0dEl5tu4cSPatm0LtVqNJk2a4JtvvtH5dGmPHj3g6emJyMhIdOrUCSYmJnB0dMSMGTNQUFDwyNefPn0aTz31FKysrKDRaODt7Y0VK1Zon9+9ezf8/PwAAKNHj4YkSTp9Lo9abtHlkvz8fCxevFi73NLExsaiQYMGAIBZs2Zp5x01alSx+W7evInhw4fD0tIS9vb2eOmll5CamlpsHiEEFi1aBG9vb5iYmMDKygpDhw7FlStXHvlZ3bp1C6+++iqcnJygVqvRoEEDdO7cGTt27NDOU9plqaLTsT/99BNatWoFU1NTeHl5af+b+S9d9oXyLtfosm0iIiLw1FNPoXHjxtBoNGjatCnGjh1b4rJe0XqPHj2KoUOHwsrKCu7u7qUu88SJE5AkqdR/SP78809IkoRNmzYBAC5fvozRo0ejWbNmMDU1haOjIwYOHIhTp06VWzdQ9mW/0o4XXbf1sWPHMGDAANjZ2UGtVsPBwQH9+/fH9evXH1nP8uXL4eXlBY1GA2trazz99NM4d+6c9vkePXrgxRdfBAB07Nix1P32v+/hrbfeAgC4ublp9/OHz1b+9ddf8PHxgYmJCVq2bKk92/1fSUlJGDt2LBo3bgyVSgU3NzfMmjUL+fn55b4fSZKwbNky3L9/X7v+ov0sOzsb06ZNg5ubG1QqFRwdHTFhwoQSZ5mKLp+tW7cO7dq1g0ajwaxZszBs2DC0bt262LwDBw6EJEn49ddftdOOHj0KSZLwxx9/AHhw3L322mvw8PCAubk57Ozs0LNnT0RGRhZbVtFx8cUXX2D27Nlwc3ODWq3Grl27AABbtmyBt7c31Go13Nzc8NVXX5X7WTzsUdsaeLB/mpub48yZM+jVqxfMzMzQoEEDTJw4scRvma77Z9F3/N69exEQEABTU1O89NJLAIDw8HAEBQWhUaNGMDExQatWrfDuu+8iMzOzWE2hoaEAoN2m/71U/bjbVZfPzd7eHitWrICJiUmp++sjiVosKytLWFpaCj8/PyGEEMuWLRMARFhYmE6v7969u+jevbv27/v374u2bdsKMzMz8dVXX4nt27eLGTNmCCMjI9GvXz/tfAUFBaJLly5Co9GIzz77TGzfvl3MmjVLNGvWTAAQM2fOfOS6d+3aJQCIXbt2aaetWrVKABBBQUFiw4YNIjw8XPj6+gqVSiUiIyO18/35559CoVCIHj16iPXr14tff/1VdOzYUbi6ugpdNmn37t2FjY2NcHBwEAsWLBDbtm0TkyZNEgDEhAkTis378Ps5f/68sLCwEO7u7mLlypViy5YtYvjw4QKA+Pzzz4UQQqSmpooff/xRABDvv/++iI6OFtHR0SI+Pr7MmnRZbnJysoiOjhYAxNChQ7XLLU12drb466+/BADx8ssva+e9fPmyEEKImTNnCgCiRYsW4oMPPhARERFi7ty5Qq1Wi9GjRxdb1pgxY4SxsbGYOnWq+Ouvv8Tq1atFy5Ythb29vUhKSir3s+7Tp49o0KCBWLp0qdi9e7fYsGGD+OCDD8TatWu184SEhAgXF5cSn7urq6vo0KGD+OWXX8TWrVtFjx49hJGRkfjnn3+08+m6L1y9elUAED/++GOJGh/exkXb7urVq9ppixcvFnPmzBGbNm0Se/bsEStWrBBeXl6iRYsWIjc3Vztf0efq4uIi3nnnHRERESE2bNhQ5ufTrl070blz5xLTn332WWFnZyfy8vKEEELs2bNHTJ06Vfz2229iz549Yv369WLw4MHCxMREnD9/vtz3Wdrn+99a/0uXbZ2RkSFsbGxE+/btxS+//CL27NkjwsPDxbhx48TZs2fLfK9CCPHpp58KAGL48OFiy5YtYuXKlaJJkybC0tJSXLx4UQghxJkzZ8T777+vfR//3W8fFh8fL/73v/8JAGLdunXa/Tw1NVUIIYSLi4to3Lix8PDwECtXrhTbtm0Tw4YNEwDEnj17tMtJTEwUTk5OwsXFRXz33Xdix44d4uOPPxZqtVqMGjWq3PcUHR0t+vXrJ0xMTLTrT05OFoWFhaJPnz7CyMhIzJgxQ2zfvl189dVXwszMTLRr105kZ2drl+Hi4iIaNWokmjRpIpYvXy527dolDh06JJYsWSIAiISEBCGEEHl5ecLCwkKYmJiIMWPGaF//+eefCyMjI5GWliaEePB9Mn78eLF27Vqxe/dusXnzZvHyyy8LhUJR7Du3aH9xdHQUgYGB4rfffhPbt28XV69eFTt27BBKpVJ06dJFrFu3Tvz666/Cz89PODs76/Q9q8u2FuLB/qlSqYSzs7P45JNPxPbt28WHH34ojIyMxIABA4otU9fvou7duwtra2vh5OQkvv32W7Fr1y7t9v7444/FvHnzxJYtW8Tu3bvFkiVLhJubmwgMDNS+/vLly2Lo0KECgHabRkdHi+zsbL1s1/Ls379fABBvvfWWEEKIF198UUiSJK5cufLIz/y/anW4WblypQAglixZIoQQIj09XZibm4uuXbvq9PqHw03RgfTLL78Um+/zzz8XAMT27duFEEJs2bJFABCLFy8uNt+cOXMqHW4KCgqEg4ODaNOmjSgoKNDOl56eLuzs7ERAQIB2mp+fn3BychI5OTnF5rOxsdE53AAQGzduLDZ9zJgxQqFQiGvXrmmnPfx+nn/+eaFWq0VcXFyx1/bt21eYmpqKe/fuCSGEiImJKfPHtDS6LreopodDWGlu3bpV5vYo+mH74osvik1/7bXXhEajEYWFhUIIoQ1TX3/9dbH54uPjhYmJiXj77bfLrcHc3FxMnjy53HnKCjf29vbaL2shhEhKShIKhULMmTNHO03XfeFxw81/FRYWiry8PHHt2rUS+1HR5/rBBx+U+56LLFiwQAAQFy5c0E67c+eOUKvVYurUqWW+Lj8/X+Tm5opmzZqJN954o9z3qWu40XVbHz58WAAoN7SV5u7du8LExKTYP0pCCBEXFyfUarUYMWKEdlrRNoiJiXnkcr/88ssyt5eLi4vQaDTFjun79+8La2trMXbsWO20sWPHCnNz82LzCSHEV199JQCIM2fOlFtDSEiIMDMzKzat6J+Lh4+x8PBwAUAsXbq0WJ1KpbLYfiDEgx9ZAGLlypVCCCH27dsnAIi3335buLm5aefr3bt3se/Ih+Xn54u8vDzRq1cv8fTTT2unF+0v7u7uxUK6EEJ07NhRODg4iPv372unpaWlCWtr60d+z1ZkW4eEhAgA4ptvvik27yeffCIAiH379gkhKvZdVPQd//fff5dbZ9GxvGfPHgFAnDhxQvvchAkTSn2f+tiu5XnppZcEAHHu3DkhxP//Vs6YMUPnZQghRK2+LPXDDz/AxMRE26DU3Nwcw4YNQ2RkJC5dulTh5e3cuRNmZmYYOnRoselFp4T//vtvAMCePXsAAM8++2yx+YYPH15imfn5+cUeQohS133hwgUkJCQgODgYCsX/bxZzc3M888wzOHDgALKyspCZmYnDhw9j8ODBUKlUxeYbOHCgzu/VwsICgwYNKjZtxIgRKCwsxN69e8t83c6dO9GrVy84OTkVmz5q1ChkZWWVeglNF1W13Ed5+DNo27YtsrOzkZycDADYvHkzJEnCiy++WGw7NmzYEF5eXo9srNyhQweEhYVh9uzZOHDgAPLy8nSuLTAwsFgjUnt7e9jZ2eHatWsAoLd9QRfJyckYN24cnJycYGRkBGNjY7i4uABAidPsAPDMM8/otNwXXngBarW62OWyNWvWICcnB6NHj9ZOy8/Px6effgoPDw+oVCoYGRlBpVLh0qVLpa6/MnTd1k2bNoWVlRXeeecdLFmyBGfPntVp+dHR0bh//36JS0xOTk7o2bOn9vtF37y9veHs7Kz9W6PRoHnz5tr9CHjw3gMDA+Hg4FDsvfft2xfA/3/nVcTOnTsBoMT7HTZsGMzMzEq837Zt26J58+bFprm7u8PV1VV7GTciIgJt2rTBiy++iKtXr+Kff/5BTk4O9u3bhyeeeKLYa5csWQIfHx9oNBrtPvv333+Xur8MGjQIxsbG2r8zMzMRExODIUOGQKPRaKdbWFjodGxVZlu/8MILxf4eMWIEAGgvkVX0u8jKygo9e/YssZ4rV65gxIgRaNiwIZRKJYyNjdG9e3cApR/LD9PHdi1LRkYGfvnlFwQEBKBly5YAgO7du8Pd3R1hYWEoLCzUaTlALW5zc/nyZezduxf9+/eHEAL37t3DvXv3tMGkMtfobt++jYYNG5a4Dm9nZwcjIyPcvn1bO5+RkRGsra2LzWdvb1/s79jYWBgbGxd7lPUlUbTsRo0alXjOwcEBhYWFuHv3Lu7evQshRIl1lbb+8pQ2b1HD3KJayqqzrBof9dryVNVyH8XGxqbY32q1GsD/N3q7efOm9vN+eFseOHDgkV3Jw8PDERISgmXLlsHf3x/W1tYYOXIkkpKSKlxbUX1FtelrX3iUwsJCBAUFYd26dXj77bfx999/49ChQzhw4ACA0hsIlrYtS2NtbY1BgwZh5cqV2vZeYWFh6NChQ7G2FlOmTMGMGTMwePBg/PHHHzh48CBiYmLg5eWlt4anum5rS0tL7NmzB97e3njvvffQunVrODg4YObMmeWG10cd49W1jwPF9yPgwXv/448/Srzvom1QmSETir4ni9q+FZEkCQ0bNizxfsvaZ3r16qX9wdyxYwd69+6NNm3awN7eHjt27MD+/ftx//79YuFm7ty5GD9+PDp27Ijff/8dBw4cQExMDJ588kmd9te7d++isLCw1M4KunRgqOi2NjIyKrGdHv4+ruh3UWnrzsjIQNeuXXHw4EHMnj0bu3fvRkxMjLbBri7Hkr62a2nCw8ORkZGBZ599VvubnpqaimeffRbx8fGIiIjQeVlGOs9ZwyxfvhxCCPz222/47bffSjy/YsUKzJ49u0I9DGxsbHDw4EEIIYoFnOTkZOTn58PW1lY7X35+Pu7cuVMs4Dz8g+Xg4ICYmJhi01q0aFHmugEgMTGxxHMJCQlQKBSwsrLS1nbz5s0S8+nyg1mkvNeX9mX43zrLqhGA9jOqqKpa7uOytbWFJEmIjIzUBp//Km3aw6+fP38+5s+fj7i4OGzatAnvvvsukpOT8ddffz1WbVZWVjrvC0X/fT7cMF6XH9TTp0/jxIkTCAsLQ0hIiHb65cuXy3xNRcYBGT16NH799VdERETA2dkZMTExWLx4cbF5fv75Z4wcORKffvppsekpKSmoX79+ucvXaDSl9n55+MegItu6TZs2WLt2LYQQOHnyJMLCwvDRRx/BxMQE7777bql1POoYl2sfBx6897Zt2+KTTz4p9fmifzIqouh78tatW8V+CIUQSEpK0nY6KFLWPtOrVy/88MMPOHToEA4ePIj3338fANCzZ09ERETg2rVrMDc3R6dOnbSv+fnnn9GjR48S+1F6enqp63h43UXHVmnfqRX5x0TXbZ2fn4/bt28X++59+Pu4ot9FpX2eO3fuREJCAnbv3q09WwOgQsMI6Gu7lqaoc8HkyZMxefLkUp/v06ePTsuqlWduCgoKsGLFCri7u2PXrl0lHlOnTkViYiL+/PPPCi23V69eyMjIwIYNG4pNX7lypfZ5ANqdIjw8vNh8a9euLfa3SqVC+/btiz3KGquiRYsWcHR0xOrVq4tdusrMzMTvv/+u7UFlZmaG9u3bY8OGDcjNzdXOl5GRUWpPmrKkp6dre6IUWb16NRQKBbp161bm63r16qU9QP5r5cqVMDU11X7BPHwG5FF0XW5FVLSG0gwYMABCCNy4caPEtmzfvn2Furw6Oztj4sSJ6N27N44ePVrpmopUZF+wt7eHRqPByZMni03fuHHjI9dT9OX08Jfnd999V9nSiwkKCoKjoyN+/PFH/Pjjj9BoNCUu8UqSVGL9W7ZswY0bNx65fFdXVyQnJxcLgbm5udi2bVux+SqzrSVJgpeXF+bNm4f69euXu139/f1hYmKCn3/+udj069evay/LVoa+9vPTp0/D3d291PdemXBT9H4efr+///47MjMzdX6/vXr1giRJmDFjRrHvpyeeeAK7du1CREQEunXrVuyyUmn7y8mTJ3W+vG1mZoYOHTpg3bp1xcZYSU9P1/bIKk9ltvWqVauK/b169WoA0A40q4/vooocy2XtV/rarg87d+4coqOj8cwzz5T6u96rVy9s3LhR5zOctfLMzZ9//omEhAR8/vnnpY4w7OnpiYULF+KHH36o0OicI0eORGhoKEJCQhAbG4s2bdpg3759+PTTT9GvXz/tac8nn3wSnTt3xtSpU5GWlgZfX19ER0drQ9B/28zoSqFQ4IsvvsALL7yAAQMGYOzYscjJycGXX36Je/fu4bPPPtPO+9FHH6F///7o06cPXn/9dRQUFODLL7+Eubk57ty5o9P6bGxsMH78eMTFxaF58+bYunUrvv/+e4wfP77Y9fmHzZw5U3t9/oMPPoC1tTVWrVqFLVu24IsvvoClpSWAB9fKTUxMsGrVKrRq1Qrm5uZwcHAo80tS1+VWhIWFBVxcXLBx40b06tUL1tbWsLW1rdBowJ07d8arr76K0aNH4/Dhw+jWrRvMzMyQmJiIffv2oU2bNhg/fnypr01NTUVgYCBGjBiBli1bwsLCAjExMfjrr78wZMiQCr+f0ui6LxRdq1++fDnc3d3h5eWFQ4cOab9Ay9OyZUu4u7vj3XffhRAC1tbW+OOPPyp0irg8SqUSI0eOxNy5c1GvXj0MGTKkxPYeMGAAwsLC0LJlS7Rt2xZHjhzBl19+icaNGz9y+c899xw++OADPP/883jrrbeQnZ2NBQsWlBj2QNdtvXnzZixatAiDBw9GkyZNIITAunXrcO/ePfTu3bvMOurXr48ZM2bgvffew8iRIzF8+HDcvn0bs2bNgkajwcyZMyv1+RX9qH3zzTcICQmBsbExWrRoUeY/UqX56KOPEBERgYCAAEyaNAktWrRAdnY2YmNjsXXrVixZskSnz/q/evfujT59+uCdd95BWloaOnfujJMnT2LmzJlo164dgoODdVqOnZ0dPD09sX37dgQGBsLU1BTAg3Bz584d3LlzB3Pnzi32mgEDBuDjjz/GzJkz0b17d1y4cAEfffQR3NzcHtm1vcjHH3+MJ598Er1798bUqVNRUFCAzz//HGZmZo/8nq3otlapVPj666+RkZEBPz8/REVFYfbs2ejbty+6dOkC4PG+i4oEBATAysoK48aNw8yZM2FsbIxVq1bhxIkTJeYt2q8+//xz9O3bF0qlEm3bttXbdn1Y0Vmbt99+Gx06dCjxfHp6Ov7++2/8/PPPeP311x+9wAo1P64hBg8eLFQqlUhOTi5znueff14YGRmV21X34d5SQghx+/ZtMW7cONGoUSNhZGQkXFxcxLRp04p1bxPiQY+O0aNHi/r16wtTU1PRu3dvceDAgVJbvZemtK7gQgixYcMG0bFjR6HRaISZmZno1auX2L9/f4nXr1+/XrRp00bbhfCzzz4TkyZNElZWVo9cd/fu3UXr1q3F7t27Rfv27YVarRaNGjUS7733nrbrbRGU0tvo1KlTYuDAgcLS0lKoVCrh5eVVai+cNWvWiJYtWwpjY2OdepHpulzo2FtKCCF27Ngh2rVrJ9RqtQAgQkJChBD/31Pm1q1bxeYvq6fQ8uXLRceOHYWZmZkwMTER7u7uYuTIkeLw4cNlrjs7O1uMGzdOtG3bVtSrV0+YmJiIFi1aiJkzZ4rMzEztfGX1lirtPbq4uGjfQxFd94XU1FTxyiuvCHt7e2FmZiYGDhwoYmNjdeotdfbsWdG7d29hYWEhrKysxLBhw0RcXFyJ15b1uT7KxYsXBQABQERERJR4/u7du+Lll18WdnZ2wtTUVHTp0kVERkaWOIbL6hW2detW4e3tLUxMTESTJk3EwoULS+0KLsSjt/X58+fF8OHDhbu7uzAxMRGWlpaiQ4cOOg9BsWzZMtG2bVuhUqmEpaWleOqpp0r0RqpIbykhhJg2bZpwcHAQCoWi2PeKi4uL6N+/f4n5S/vuu3Xrlpg0aZJwc3MTxsbGwtraWvj6+orp06eLjIyMctdfWm8pIR70zHrnnXeEi4uLMDY2Fo0aNRLjx48Xd+/eLTZfWXUWeeONNwQA8cknnxSbXjT8xsmTJ4tNz8nJEW+++aZwdHQUGo1G+Pj4iA0bNpQ41or2ly+//LLU9W7atEm7rYqOrbL2m9Losq2LPruTJ0+KHj16CBMTE2FtbS3Gjx9f6ueuy3dR0Xd8aaKiooS/v78wNTUVDRo0EK+88oo4evRoieMmJydHvPLKK6JBgwZCkqRi3wn62q5FcnNzhZ2dnfD29i5znvz8fNG4cWPRpk2bRy5PCCEkIcrovkMVtnr1arzwwgvYv38/AgICqnXdeXl58Pb2hqOjI7Zv317uvD169EBKSgpOnz5dTdVRdarIvkBE8ho1ahR+++03ZGRkyF2KQamVl6VqgjVr1uDGjRto06YNFAoFDhw4gC+//BLdunWrlmDz8ssvo3fv3mjUqBGSkpKwZMkSnDt3Dt98802Vr5tqFu4LRETFMdxUkoWFBdauXYvZs2cjMzMTjRo1wqhRozB79uxqWX96ejrefPNN3Lp1C8bGxvDx8cHWrVtLjPVAho/7AhFRcbwsRURERAalVnYFJyIiIioLww0REREZFIYbIiIiMigG16C4sLAQCQkJsLCwqNCwz0RERCQfIQTS09Ph4OBQqcFw/8vgwk1CQkKJO0sTERFR7RAfH1/hEbEfZnDhpmjI8fj4eNSrV0/maoiIiEgXaWlpcHJyqtCtQ8picOGm6FJUvXr1GG6IiIhqGX00KWGDYiIiIjIoDDdERERkUBhuiIiIyKAw3BAREZFBYbghIiIig8JwQ0RERAaF4YaIiIgMCsMNERERGZQaGW6efvppWFlZYejQoXKXQkRERLVMjQw3kyZNwsqVK+Uug4iIiGqhGhluAgMD9XJvCSIiIqp7Khxu9u7di4EDB8LBwQGSJGHDhg0l5lm0aBHc3Nyg0Wjg6+uLyMhIfdRKRERE9EgVDjeZmZnw8vLCwoULS30+PDwckydPxvTp03Hs2DF07doVffv2RVxcnHYeX19feHp6lngkJCRU/p0QERERoRJ3Be/bty/69u1b5vNz587Fyy+/jFdeeQUAMH/+fGzbtg2LFy/GnDlzAABHjhypZLkl5eTkICcnR/t3Wlqa3pZNREREtY9e29zk5ubiyJEjCAoKKjY9KCgIUVFR+lyV1pw5c2Bpaal9ODk5Vcl6iIiIqHbQa7hJSUlBQUEB7O3ti023t7dHUlKSzsvp06cPhg0bhq1bt6Jx48aIiYkpc95p06YhNTVV+4iPj690/URERFT7VfiylC4kSSr2txCixLTybNu2Ted51Wo11Gq1zvMTERGRYdPrmRtbW1solcoSZ2mSk5NLnM0hIiIiqgp6DTcqlQq+vr6IiIgoNj0iIgIBAQH6XFUJoaGh8PDwgJ+fX5Wuh4iIiGq2Cl+WysjIwOXLl7V/X716FcePH4e1tTWcnZ0xZcoUBAcHo3379vD398fSpUsRFxeHcePG6bXwh02YMAETJkxAWloaLC0tq3RdREREVHNVONwcPnwYgYGB2r+nTJkCAAgJCUFYWBiee+453L59Gx999BESExPh6emJrVu3wsXFRX9VExEREZVBEkIIuYvQp6IzN6mpqahXr57c5RAREZEO9Pn7XSPvLVUZbHNDREREAM/cEBERUQ3AMzdEREREZWC4ISIiIoPCcENEREQGxWDCDRsUExEREcAGxURERFQDsEExERERURkYboiIiMigMNwQERGRQWG4ISIiIoNiMOGGvaWIiIgIYG8pIiIiqgHYW4qIiIioDAw3REREZFAYboiIiMigMNwQERGRQTGYcMPeUkRERASwtxQRERHVAOwtRURERFQGhhsiIiIyKAw3REREZFAYboiIiMigMNwQERGRQWG4ISIiIoNiMOGG49wQERERwHFuiIiIqAbgODdEREREZWC4ISIiIoPCcENEREQGheGGiIiIDArDDRERERkUhhsiIiIyKAw3REREZFAYboiIiMigGEy44QjFREREBHCEYiIiIqoBOEIxERERURkYboiIiMigMNwQERGRQTGSu4CqMu33k1Cbmut3oRLg7VQfQ3waw1xtsB8dERFRrWawDYqdJv8Chdq0StZhrjbCUN/GGOnvgiYN9BygiIiI6iB9Nig22HDzzdbjMDGz0Ouys3ILsPHEDVy5lamd1r15A4wKcEX35g2gUEh6XR8REVFdwXBTjqruCl5YKLDvcgpWRMVi54VkFH16rjamCPZ3xbD2jVFPY6z39RIRERkyhptyVOc4N9duZ+Kn6GsIPxyP9Ox8AICpSokhPo4I8XdFM3v9njkiIiIyVAw35ZBjEL+s3HysP3YDK6JicfFmhnZ656Y2CPF3Ra9W9lDykhUREVGZGG7KIecIxUIIRP9zG2FRsdhx7iYK//1kG1uZYKS/C55t74T6pqpqrYmIiKg2YLgpR025/cL1u1n46cA1hMfE415WHgBAY6zA0+0cERLgipYNeWsIIiKiIgw35agp4abI/dwCbDpxA2FR13AuMU07vaObNUYFuKK3hz2MlBxLkYiI6jaGm3LUtHBTRAiBmNi7CIu6im1nbqLg32tWDpYavNDJBcM7OMPajJesiIiobmK4KUVoaChCQ0NRUFCAixcv1rhw818J9+5j1cFrWHMoHncycwEAKiMFnvJyQEiAKzwdLWWukIiIqHox3JSjpp65KU12XgE2n0zEiqhYnLqRqp3e3sUKIQGueNKzIYx5yYqIiOoAhpty1KZwU0QIgaNx97AiKhZbTyUi/99LVvb11Hih44NLVg0s1DJXSUREVHUYbspRG8PNf91My8aqg3FYfTAOKRk5AACVUoH+bRthVIArvJzqy1sgERFRFWC4KUdtDzdFcvMLsfVUIsKiYnE8/p52urdTfYwKcEW/No2gMuIlKyIiMgwMN+UwlHDzXyfiH1yy2nwyEbkFhQAAW3M1RnR0xgsdnWFfTyNzhURERI+H4aYchhhuitxKz8HaQ3H4+eA13Ex7cMnKSCGhb5tGGBXgAh9nK0gSb/NARES1D8NNOQw53BTJKyjEtjNJWBEVi5jYu9rpno71EOLvioFeDtAYK2WskIiIqGIYbspRF8LNf52+kYoVUbHYeCIBufkPLllZm6kwvIMTXuzkgkaWJjJXSERE9GgMN+Woa+GmyJ3MXKyNicPP0deQkJoNAFAqJPRpbY8Qf1d0cLPmJSsiIqqxGG7KUVfDTZH8gkLsOHcTYVGxOHDljnZ6q0b1EOLvgqe8HWGi4iUrIiKqWRhuylHXw81/nU9Kw4qoa1h/7Dqy8x5csqpvaozn/JwQ3MkFja1MZa6QiIjoAYabcjDclHQvKxe/HI7HyuhruH73PgBAIQFPtLLHqABX+Lvb8JIVERHJiuGmHAw3ZSsoFNh5PhkromKx73KKdnpze3OM9HfFEB9HmKqMZKyQiIjqKoabcjDc6OZycjpWRF3D70evIyu3AABgoTHCs+2dMNLfBS42ZjJXSEREdQnDTTkYbiomLTsPvx6+jp+iYxF7OwsAIElAzxZ2CAlwRZemtlAoeMmKiIiqFsNNORhuKqewUGDPxVsIi4rFnou3tNObNDBDiL8rnvFtDHM1L1kREVHVYLgpB8PN47tyKwMro6/htyPXkZGTDwAwVxthqG9jjPR3QZMG5jJXSEREhobhphwMN/qTkZOPdUevY0VULP65lamd3q15A4wKcEGP5na8ZEVERHph0OEmPj4ewcHBSE5OhpGREWbMmIFhw4bp/HqGG/0TQmDf5RSE7Y/FzgvJKNpjXGxM8UoXNzzn5wyVkULeIomIqFYz6HCTmJiImzdvwtvbG8nJyfDx8cGFCxdgZqZb7x2Gm6p17XYmfoq+hvDD8UjPfnDJyrG+CV5/ohmGtHOEkZIhh4iIKs6gw83D2rZtiy1btsDJyUmn+RluqkdWbj5+PXwdobsuIzk9BwDgZmuGyU80w8C2DrxcRUREFaLP3+8K/5u9d+9eDBw4EA4ODpAkCRs2bCgxz6JFi+Dm5gaNRgNfX19ERkZWqrjDhw+jsLBQ52BD1cdUZYSQAFfseSsQ0/u1grWZCldTMvH62uPo+00ktp1JQg3PzUREZKAqHG4yMzPh5eWFhQsXlvp8eHg4Jk+ejOnTp+PYsWPo2rUr+vbti7i4OO08vr6+8PT0LPFISEjQznP79m2MHDkSS5curcTboupiolJiTLcm2Pt2IN4Mag4LjREu3EzH2J+O4KnQ/dhz8RZDDhERVavHuiwlSRLWr1+PwYMHa6d17NgRPj4+WLx4sXZaq1atMHjwYMyZM0en5ebk5KB3794YM2YMgoODHzlvTk6O9u+0tDQ4OTnxspRMUrPy8H3kFSzff1U78rGfqxWmBrVApyY2MldHREQ1layXpcqTm5uLI0eOICgoqNj0oKAgREVF6bQMIQRGjRqFnj17PjLYAMCcOXNgaWmpffASlrwsTY3xZp8WiHw7EK90cYPKSIGY2Lt4fukBBP9wEMfi7spdIhERGTi9hpuUlBQUFBTA3t6+2HR7e3skJSXptIz9+/cjPDwcGzZsgLe3N7y9vXHq1Kky5582bRpSU1O1j/j4+Md6D6QfNuZqvD/AA3vfCsSLnZxhrJQQeSkFTy+KwisrYnA2IU3uEomIyEBVyXj6klS8p4wQosS0snTp0gWFhYU6r0utVkOtVleoPqo+DS01mD24DcZ2c8eCvy/h96PXseNcMnacS0b/to3wxhPN0dSOIx4TEZH+6PXMja2tLZRKZYmzNMnJySXO5uhbaGgoPDw84OfnV6XrocpxsjbFl8O8EDGlOwZ6OQAAtpxMRNC8PZj6ywnE/XvTTiIiosel13CjUqng6+uLiIiIYtMjIiIQEBCgz1WVMGHCBJw9exYxMTFVuh56PO4NzPHt8Hb48/Wu6O1hj0IB/H70Onp+vRvT159CYup9uUskIqJarsKXpTIyMnD58mXt31evXsXx48dhbW0NZ2dnTJkyBcHBwWjfvj38/f2xdOlSxMXFYdy4cXotnGq3Vo3q4fuR7XE8/h6+3n4BkZdSsOpgHH49ch3BnVwwvoc7bM15uZGIiCquwl3Bd+/ejcDAwBLTQ0JCEBYWBuDBIH5ffPEFEhMT4enpiXnz5qFbt256KfhROEJx7XTwym18vf0iDsXeAQCYqpQYFeCKsd3cYWlqLHN1RERU1erU7RcqiuGm9hJCIPJSCr7efgEnrqcCACw0RhjTtQle6uIGc3WVtH8nIqIagOGmFKGhoQgNDUVBQQEuXrzIcFOLCSEQcfYm5kZcxPmkdACAlakxxvdwR3AnV5iolDJXSERE+sZwUw6euTEchYUCm08lYn7ERVxJyQQA2FmoMbFnUzzn5wS1EUMOEZGhYLgpB8ON4ckvKMT6Yzfwzd+XcP3ug95UjvVN8HqvZhji4wgjpV47/RERkQwYbsrBcGO4cvMLEX44Hgt3XsLNtAf3E3OzNcPkJ5phYFsHKBS6DRRJREQ1D8NNKdjmpu7IzivAzweuYdHuf3AnMxcA0MLeAm/0bo4+re11Hg2biIhqDoabcvDMTd2RkZOPsP1X8d3eK0jPzgcAtHG0xNSg5ujevAFDDhFRLcJwUw6Gm7onNSsPy/ZdwfJ9V5GZWwAA8HO1wtSgFujUxEbm6oiISBcMN+VguKm7bmfkYMmef7Ay+hpy8h/cfLVHiwaY3q8VmtlbyFwdERGVh+GmHAw3dDMtGwt3XsbamDjkFQgoFRJGdHDGG72bw9pMJXd5RERUCoabcjDcUJGrKZn4dOs5RJy9CeDBaMeTejbDyAAXjpFDRFTD6PP322AGCAkNDYWHhwf8/PzkLoVqCDdbM3w/sj1Wj+kIj0b1kJ6dj0+2nkPQvL3463QSDCzXExHRv3jmhuqEgkKB349cx5fbL+BW+oMxcjq6WWPGAA94OlrKXB0REfGyVDkYbqg8GTn5WLL7H3wfeQU5+YWQJOAZn8Z4q08L2NfTyF0eEVGdxXBTDoYb0sWNe/fxxV/nsfF4AgDAVKXEuO7uGNO1CW/MSUQkA4abcjDcUEUcjbuL2ZvP4mjcPQBAI0sN3n6yBZ7ycuTtHIiIqhHDTTkYbqiihBD442QiPv/zPG7ce3BjTq/GlpgxwAPtXa1lro6IqG5gb6lSsLcUVZYkSRjk5YC/p3bHW31awEylxInrqRi6JBoTVh9F/J0suUskIqIK4Jkboockp2dj7vaLCD8cDyEAlZECL3V2w4RAd1hojOUuj4jIIPGyVDkYbkhfziakYfaWs4j65zYAwNZchSm9W+A5Pyco2R6HiEivGG7KwXBD+iSEwI5zyfh06zlcTckEALRsaIH3+3ugSzNbmasjIjIcDDflYLihqpCbX4ifD1zDN39fQur9PABAr5Z2mNavFZramctcHRFR7cdwUw6GG6pK97JyMX/HJfx84BryCwWMFBJe7OSC13s1gxVvyklEVGkMN+VguKHq8M+tDMzZeg47ziUDACxNjDGpVzMEd3KByshgOiESEVUbhptyMNxQddp3KQWzt5zF+aR0AEATWzN8OKg1ujVvIHNlRES1C8e5KQXHuSE5dGlmiy2TumLOkDawNVfhSkomRi4/hHE/HdEOCEhERNWLZ26I9CT1fh7m77iIldHXUFAooDFWYGJgU7zStQk0xrxfFRFReXhZqhwMNyS3c4lpmLnxDA7F3gEAuNiY4sOBrRHY0k7myoiIai6Gm3Iw3FBNIITAphMJ+GTLOSSn5wAAnmhlhw8GtIazjanM1RER1Txsc0NUw0mShKe8HfH31O4Y09UNRgoJO84l44l5ezAv4iKy8wrkLpGIyGDxzA1RNbh0Mx0zN53R3sqhsZUJPhjggd4e9pAk3sqBiIiXpcrBcEM1lRACW08lYfaWs0hMzQYA9GjRADMHtoabrZnM1RERyYvhphwMN1TTZebkY+Guy1gWeQV5BQIqpQJjurlhQmBTmKqM5C6PiEgWDDflYLih2uKfWxn4cNMZRF5KAQA4WGowY4AHnvRsyEtVRFTnMNyUg+GGahMhBLaduYmPN5/VDvrXtZktZg5szRtyElGdwnBTDoYbqo3u5xZg8e7LWLL3CnLzC2GslPBSFzf8r2czmKt5qYqIDB+7gpeCt1+g2sxEpcSUoBaIeKMbera0Q16BwHd7rqDX17ux6UQCDOx/ECKiKsUzN0Q10N/nbmLWH2cRdycLABDgboOPB3vCvQEvVRGRYeKZGyID16uVPba/0Q1TejeH2kiBqH9uo+/8SMzlAIBERI/EcENUQ2mMlZjUqxki3uiOHi0aILegEAv+voQn5+9F5KVbcpdHRFRjMdwQ1XDONqb4cZQfFr3gA/t6asTezkLwD4cwac0xJKdny10eEVGNw3BDVAtIkoR+bRphx5TuGN3ZFQoJ2HQiAb2+2oOfomNRUGhQTeeIiB4LGxQT1UKnrqdi+oZTOHk9FQDg1dgSnzzdBp6OljJXRkRUOWxQTFTHtWlsifWvdcZHT7WGhdoIJ66nYtDCfZj1xxmkZ+fJXR4RkawYbohqKaVCwkh/V/w9tTsGejmgUAA/7o/FE3P3YOupRI6NQ0R1FsMNUS1nV0+Db4e3w4qXOsDFxhQ303Lw2qqjeCksBvH/jpNDRFSXMNwQGYjuzRtg2+RumNSzKYyVEnZduIXe8/YgdNdl5OYXyl0eEVG1YbghMiAa4we3cfjz9W7wb2KD7LxCfLntAvoviMTBK7flLo+IqFow3BAZoKZ25lg9piPmPecFGzMVLiVn4LmlB/D2bydwLytX7vKIiKoUww2RgZIkCU+3a4y/p3bHiI7OAIBfDl/HE3P38GacRGTQDCbc8K7gRKWrb6rCp0+3wW/j/NHUzhwpGbmYtOYYRrPBMREZKA7iR1SH5OQX4Ls9V7Bw52XkFhTCxFiJqUHNMSrAFUZKg/lfh4hqIQ7iR0SVojZ6cDPOPyd3RQc3a9zPK8DsLefw9KIonL6RKnd5RER6wXBDVAe5NzDH2jGd8NmQNqinMcKpG6l4KnQ/Pt16Dlm5+XKXR0T0WBhuiOoohULC8x2csWNqdwxo2wgFhQJL915Bn/l7sefiLbnLIyKqNIYbojrOzkKDhSN8sHxUezjWN0H8nfsIWX4Ik9ceQ0pGjtzlERFVGMMNEQEAera0x/Y3uuGlzm5QSMCG4wl4Yu4e/Ho4nt3GiahWYbghIi0ztRE+GOiB9a91RqtG9XAvKw9v/XYSLyw7iNiUTLnLIyLSCcMNEZXg5VQfmyZ2xrS+LaExViDqn9voM38vluz5B/kFvE8VEdVsDDdEVCpjpQJju7tj++Tu6NLUFjn5hfjsz/MYvGg/ziSw2zgR1VwMN0RULmcbU/z0cgd8ObQt6mmMcPpGGgYt3I8v/jqP7LwCucsjIiqB4YaIHkmSJAxr74QdU7ujX5uGKCgUWLT7H/T7JhKHrt6RuzwiomIYbohIZ3YWGix6wRdLXvSFnYUaV1Iy8ex30Zix4TTSs/PkLo+ICADDDRFVwpOeDRExpTue93MCAPx04BqC5u3FzvM3Za6MiIjhhogqydLEGJ890xarX+kIZ2tTJKZm46Www5i05hhuc/A/IpIRww0RPZaAprbYNrkbXu3WBAoJ2HTiweB/G47d4OB/RCQLhhsiemwmKiXe69cKGyZ0RsuGFriblYfJ4cfxUlgMElPvy10eEdUxDDdEpDdtG9fHH//rgjeDmkOlVGDXhVsImrsXaw7F8SwOEVUbhhsi0itjpQITezbD1te7oJ1zfaTn5GPaulN48YeDiL+TJXd5RFQH1Lhwk56eDj8/P3h7e6NNmzb4/vvv5S6JiCqhqZ0FfhsXgPf7t4LGWIH9l28jaN5ehO2/isJCnsUhoqojiRp2rrigoAA5OTkwNTVFVlYWPD09ERMTAxsbG51en5aWBktLS6SmpqJevXpVXC0R6SI2JRPv/H4SB/8d8M/P1QqfP9MWTRqYy1wZEdUU+vz9rnFnbpRKJUxNTQEA2dnZKCgo4LV6olrO1dYMa8Z0wseDPWGmUiIm9i76fhOJ73gjTiKqAhUON3v37sXAgQPh4OAASZKwYcOGEvMsWrQIbm5u0Gg08PX1RWRkZIXWce/ePXh5eaFx48Z4++23YWtrW9EyiaiGUSgkBHdywbY3uqFrswc34pzz53k8szgKF5LS5S6PiAxIhcNNZmYmvLy8sHDhwlKfDw8Px+TJkzF9+nQcO3YMXbt2Rd++fREXF6edx9fXF56eniUeCQkJAID69evjxIkTuHr1KlavXo2bNznqKZGhaGxlipUvdcAXQ9vCQmOEE9dTMeDbSCz4+xLyeBaHiPTgsdrcSJKE9evXY/DgwdppHTt2hI+PDxYvXqyd1qpVKwwePBhz5syp8DrGjx+Pnj17YtiwYaU+n5OTg5yc/x8NNS0tDU5OTmxzQ1QL3EzLxvT1p7DjXDIAwKNRPXw1zAseDjx2ieqaGtvmJjc3F0eOHEFQUFCx6UFBQYiKitJpGTdv3kRaWhqAB2907969aNGiRZnzz5kzB5aWltqHk5NT5d8AEVUr+3oafD+yPb553hv1TY1xNjENgxbuw/wdF5Gbz7M4RFQ5eg03KSkpKCgogL29fbHp9vb2SEpK0mkZ169fR7du3eDl5YUuXbpg4sSJaNu2bZnzT5s2DampqdpHfHz8Y70HIqpekiThKW9HRLzRHX1a2yO/UGD+jkt4KnQ/ziSkyl0eEdVCRlWxUEmSiv0thCgxrSy+vr44fvy4zutSq9VQq9UVKY+IaqAGFmosedEXm08m4oONp3EuMQ1PLdyP1wKbYmJgU6iMalznTiKqofT6bWFrawulUlniLE1ycnKJszlERA+TJAkDvRyw/Y3u6OvZEPmFAgv+voRBC/fh9A2exSEi3eg13KhUKvj6+iIiIqLY9IiICAQEBOhzVSWEhobCw8MDfn5+VboeIqp6DSzUWPyiL0JH+MDaTIXzSel4KnQ/5m6/wLY4RPRIFe4tlZGRgcuXLwMA2rVrh7lz5yIwMBDW1tZwdnZGeHg4goODsWTJEvj7+2Pp0qX4/vvvcebMGbi4uFTJm/gvjlBMZFhSMnIwc+MZbDmVCABo2dACXw71QpvGljJXRkT6pM/f7wqHm927dyMwMLDE9JCQEISFhQF4MIjfF198gcTERHh6emLevHno1q3bYxWqK4YbIsO05d+2OLczc6FUSJjQwx0TezZjWxwiAyFruKnpGG6IDNftjBx88J+zOK0a1cPXHBeHyCDU2HFu5MQ2N0SGz8ZcjdAXfLBwRDtYmRrj3L/j4nB0YyL6L565IaJa6VZ6Dt7fcArbzjy4PYunYz18PcwbLRpayFwZEVUGz9wQUZ1XNC7ON897w9LEGKdvpGHAt5EI3XWZdxonquMYboio1vr/0Y274YlWdsgrEPhy2wU8szgKl27yTuNEdRXDDRHVenb/3qNq7rNeqPfvncb7f7sP3+35BwWFBnXlnYh0YDDhhg2Kieo2SZIwxKcxIqZ0R2CLBsjNL8ScP8/j2e+iEZuSKXd5RFSN2KCYiAyOEAK/Hr6OjzafRUZOPkyMlZjWryVe7OgChUK3+9wRUfVig2IionJIkoRn/Zzw1+SuCHC3wf28Anyw8QyClx/EjXv35S6PiKoYww0RGazGVqb4+eWOmDWoNTTGCuy/fBt95u3FLzHxMLCT1kT0Hww3RGTQFAoJIQGu+PP1bvB1sUJGTj7e/v0kXgqLQXJattzlEVEVMJhwwwbFRFQeN1sz/DLWH+/1awmVUoFdF24haP5e/HEiQe7SiEjP2KCYiOqcizfTMeWX4zh9Iw0AMKBtI3z8lCeszFQyV0ZUd7FBMRHRY2hub4H1r3XGpF7NoFRI2HwyEUHz92LX+WS5SyMiPWC4IaI6yVipwJTezbFufADcG5jhVnoORofF4N3fTyIjJ1/u8ojoMTDcEFGd5uVUH1smdcXLXdwgScDamHg8OX8vDly5LXdpRFRJDDdEVOdpjJWYMcADq1/pBMf6Jrh+9z6Gf38AszefRXZegdzlEVEFMdwQEf3L390Gf03uiufaO0EIYNm+qxj47T6cvpEqd2lEVAEGE27YFZyI9MFCY4zPh7bFspHtYWuuwqXkDAwO3Y+FOy8hv6BQ7vKISAfsCk5EVIbbGTmYvv40/jqTBABo51wfc5/1hputmcyVERkedgUnIqoGNuZqLH7RB3Of9YKF2gjH4u6h3zeR+Ck6lrdvIKrBGG6IiMohSRKG+DTGX290096Ec8bGMwj5MQY3efsGohqJ4YaISAeO9U3w88sdMXOgB9RGCuy9eAtB8/Zi80nevoGopmG4ISLSkUIhYXRnN2yZ1AWejvWQej8PE1cfw+S1x5B6P0/u8ojoXww3REQV1NTOAuvGd8b/ejaFQgI2HE/Ak/P3IupyitylEREYboiIKkVlpMDUoBb4dVwAXG1MkZiajRHLDuKjPzjwH5HcDCbccJwbIpKDr4sVtkzqihEdnQEAy/c/GPjvTAIH/iOSC8e5ISLSk53nb+Lt304hJSMHxkoJU3q3wKvdmkCpkOQujajG4zg3REQ1UM+W9tg2uSt6e9gjr0Dg87/OY/jSA4i/kyV3aUR1CsMNEZEe2ZirsTTYF58/0wamKiUOxd5B328i8fuR6xz4j6iaMNwQEemZJEl4zs8Zf77eFT7O9ZGRk4+pv57AxNXHcC8rV+7yiAweww0RURVxsTHDL2P9MbV3cxgpJGw5lYg+8/di3yV2GSeqSgw3RERVyEipwP96NcO61wLQxNYMN9Ny8OIPB/HxZnYZJ6oqDDdERNWgbeP62DypC174t8v4D/uuYnDofpxPSpO5MiLDw3BDRFRNTFVG+OTpNvghpD1szFQ4n5SOQQv3Y1nkFRQWsrExkb4w3BARVbNerezx1+Ru6NXSDrn5hZi95RxCfjzEu4wT6YnBhBuOUExEtUkDCzWWhbTH7MGe0BgrEHkpBU/O34u/TifJXRpRrccRiomIZHY5OQOTw4/h9I0H7W+ea++EDwZ6wExtJHNlRNWHIxQTERmQpnbmWDe+M8Z1d4ckAeGH49F/QSSOx9+TuzSiWonhhoioBlAZKfBu35ZY/UonOFhqEHs7C0MXRyF012UUsLExUYUw3BAR1SD+7jb48/Vu6N+2EfILBb7cdgHDlx7A9bu8PxWRrhhuiIhqGEtTYywc3g5fDfOC2X/uT7XpRILcpRHVCgw3REQ1kCRJGOrbGFtf7wpvp/pIz87HpDXHMOWX48jIyZe7PKIajeGGiKgGc7Exw6/j/DGpVzMoJGDd0Rvo900kjsXdlbs0ohqL4YaIqIYzViowpXdzhI/1h2N9E8TdycLQJdFYuPMSGxsTlYLhhoiolvBztcbW17tioJcDCgoFvtp+EcO/P4Ab9+7LXRpRjcJwQ0RUi1iaGGPB8974uqix8dU76Dt/L7aeSpS7NKIag+GGiKiWkSQJz/g2xpZJXeHV2BJp2fl4bdVRvPv7SWTlsrExEcMNEVEt5Wprht/GB+C1Hg9GNl4bE48BC/bh9I1UuUsjkhXDDRFRLWasVODtJ1ti1csdYV9PjSspmXh60X4si7yCQjY2pjrKYMIN7wpORHVZQFNb/PV6N/T2sEdegcDsLecwOiwGt9Jz5C6NqNrxruBERAZECIGfD8Zh9uazyMkvhK25Gl8/64XuzRvIXRpRuXhXcCIiKpUkSQju5IJNE7ugub05UjJyELL8ED7Zcha5+YVyl0dULRhuiIgMUIuGFtg0sQuCO7kAAL6PvIpnFkfhakqmzJURVT2GGyIiA6UxVuLjwZ74LtgX9U2NcepGKgYsiMS6o9flLo2oSjHcEBEZuD6tG2LrpK7o4GaNzNwCTPnlBKaE8wacZLgYboiI6gCH+iZYM6YTpvRu/uAGnMduYMCCSJy6zjFxyPAw3BAR1RFKhYRJvZohfKw/HCw1iL2dhSGLH4yJY2AdZ6mOY7ghIqpjim7A2af1/4+J81JYDG5ncEwcMgwMN0REdVB9UxWWvOiLj59qDZWRArsu3EK/BZGI/ue23KURPTaGGyKiOkqSJAT7u2LjhM5wb2CGm2k5GLHsAOZGXEQBb91AtRjDDRFRHdeqUT388b8uGObbGEIAC/6+hOHfH0BSarbcpRFVCsMNERHBVGWEL4d5Yf5z3jBTKXHo6h30/WYvdp6/KXdpRBXGcENERFqD2zli86SuaO1QD3ez8vBS2GHeuoFqHYYbIiIqxs3WDOteC8CoAFcAD27dMOy7aMTfyZK3MCIdMdwQEVEJaiMlPhzUGt8F+6Kexggn4u+h34JI/HU6Ue7SiB6J4YaIiMrUp3VDbH29K9o510d6dj7G/XwUMzeeRk5+gdylEZWJ4YaIiMrV2MoUv4z1x9juTQAAK6Kv4ZnFUYjlHcaphmK4ISKiRzJWKjCtbyv8OMoPVqbGOH0jDQO+3YfNJxPkLo2ohBobbrKysuDi4oI333xT7lKIiOhfgS3tsPX1rmjvYoWMnHxMXH0M7284hew8XqaimqPGhptPPvkEHTt2lLsMIiJ6SCNLE6x9tRNe6+EOAPj5QByGLOJlKqo5amS4uXTpEs6fP49+/frJXQoREZXCSKnA20+2RNhoP1ibqXA28cFlqi0n2ZuK5FfhcLN3714MHDgQDg4OkCQJGzZsKDHPokWL4ObmBo1GA19fX0RGRlZoHW+++SbmzJlT0dKIiKia9Whhhy2TusDP9cFlqgmrj+ID9qYimVU43GRmZsLLywsLFy4s9fnw8HBMnjwZ06dPx7Fjx9C1a1f07dsXcXFx2nl8fX3h6elZ4pGQkICNGzeiefPmaN68eeXfFRERVZtGliZYM6YTxv97mWpl9DUMXRyNuNsc9I/kIQkhKn3rV0mSsH79egwePFg7rWPHjvDx8cHixYu101q1aoXBgwfrdDZm2rRp+Pnnn6FUKpGRkYG8vDxMnToVH3zwQanz5+TkICcnR/t3WloanJyckJqainr16lX2rRERUSXsOp+MN345jntZebDQGOGrYV7o07qh3GVRLZCWlgZLS0u9/H7rtc1Nbm4ujhw5gqCgoGLTg4KCEBUVpdMy5syZg/j4eMTGxuKrr77CmDFjygw2RfNbWlpqH05OTo/1HoiIqPICW9ph66Su8Pl30L+xPx3BBxtPIys3X+7SqA7Ra7hJSUlBQUEB7O3ti023t7dHUlKSPlelNW3aNKSmpmof8fHxVbIeIiLSjUN9E4SP9ceYrm4AHlym6r9gH47G3ZW5MqorjKpioZIkFftbCFFimi5GjRr1yHnUajXUanWFl01ERFXHWKnA9P4e6Na8Ad769SSupmRi6OIotHexhrWZClZmKvRsaYfeHvaPXhhRBen1zI2trS2USmWJszTJycklzuYQEZHh69qsAbZN7oan2zmiUACHYu/grzNJWHMoDmNWHsaHm84gr6BQ7jLJwOg13KhUKvj6+iIiIqLY9IiICAQEBOhzVSWEhobCw8MDfn5+VboeIiKqGEtTY8x7zht/TOyCb4e3w8dPtcaIjs4AgLCoWLzw/UEkp2fLXCUZkgr3lsrIyMDly5cBAO3atcPcuXMRGBgIa2trODs7Izw8HMHBwViyZAn8/f2xdOlSfP/99zhz5gxcXFyq5E38lz5bWxMRUdXZfiYJU345gYycfNhZqLH4RV/4uljJXRbJRJ+/3xUON7t370ZgYGCJ6SEhIQgLCwPwYBC/L774AomJifD09MS8efPQrVu3xypUVww3RES1xz+3MjD2pyO4nJwBY6WEDwe1xogOzpVqp0m1m6zhpqZjuCEiql0ycvLx1q8n8OfpB+01n2vvhFlPtYbGWClzZVSdauw4N3JimxsiotrJXG2ERS/44J0nW0IhAeGH4/Hc0gNITL0vd2lUS/HMDRER1Rh7L97C/9YcQ+r9PNiaq7DoBV90cLOWuyyqBjxzQ0REBqlb8wb4Y2IXtGxogZSMXIz4/gBWRsfCwP4PpyrGcENERDWKs40p1r0WgIFeDsgvFPhg4xm8/dtJZOfxTuOkG4YbIiKqcUxVRljwvDfe6/egHc6vR67juaUHkJTK8XDo0Qwm3LBBMRGRYZEkCa92c8eKlzqgvqkxTsTfw4Bv9+Fw7B25S6Majg2KiYioxou7nYVXfzqM80npMFZKmDXIUzvKMRkGNigmIqI6pagdTv82jZBXIPDe+lOYvv4UcvN5XyoqieGGiIhqBVOVERaOaIe3+rSAJAGrDsbhhWUHcCs9R+7SqIZhuCEiolpDkiRMCGyKH0Law0JthJjYu3hq4T6cvpEqd2lUgxhMuGGDYiKiuqNnS3tsmNgZTWzNkJCajWcWR2Hj8Rtyl0U1BBsUExFRrZV6Pw+T1x7Drgu3AADje7jjzaAWUCp4483ahg2KiYiIAFiaGGNZiB/GdXcHACze/Q/GrDyM9Ow8mSsjOTHcEBFRraZUSHi3b0t887w31EYK7DyfjKcXRSE2JVPu0kgmDDdERGQQnvJ2xK/j/NGwngaXkzPwVOh+7LuUIndZJAOGGyIiMhhtG9fHpomd4e1UH6n38xDy4yGE7b/KG2/WMQw3RERkUOzqabD21U4Y4uOIgkKBD/84i/c44F+dYjDhhl3BiYioiMZYia+HeeG9fi0hScCaQ/EI/uEg7mTmyl0aVQN2BSciIoO28/xNTFpzHBk5+XCyNsEPIX5obm8hd1n0EHYFJyIi0lHPlvZY/1oAnK1NEX/nPoYsisKu88lyl0VViOGGiIgMXjN7C2yY0Bkd3ayRkZOPl1fEYFnkFTY0NlAMN0REVCdYm6nw08sd8byfEwoFMHvLOUxbx4bGhojhhoiI6gyVkQJzhrTBjAEeUEjA2ph4jFx+EHfZ0NigMNwQEVGdIkkSXu7ihh9C/GCuNsKBK3fw9KL9+OdWhtylkZ4w3BARUZ0U2NIOv48PgGN9E8TezsLTofux/zJHNDYEBhNuOM4NERFVVIuGFtg4sTN8nOsjLTsfIcsPYc2hOLnLosfEcW6IiKjOy84rwDu/n8TG4wkAgDFd3fBu31ZQKiSZK6s7OM4NERGRHmmMlZj/nDem9G4OAPg+8irG/nQEmTn5MldGlcFwQ0REhAcNjSf1aoYFw9tBZaTAjnM38ex30UhKzZa7NKoghhsiIqL/GOTlgDVjOsHGTIUzCWkYHLofZxJS5S6LKoDhhoiI6CG+LlbYMKEzmtqZIyktG8OWRGPn+Ztyl0U6YrghIiIqhZO1KX4fH4DOTW2QlVuAV1YcxoqoWLnLIh0w3BAREZXB0sQYYaM74Ln2D27ZMHPTGcz64wwKCg2qo7HBYbghIiIqh7FSgc+eaYO3n2wBAPhxfyzG/XwEWbnsSVVTMdwQERE9giRJeK1HUywc8aAnVcTZm3h+6QEkp7MnVU1kMOGGIxQTEVFVG9DWAWvGdIS1mQonr6fi6dAoXLqZLndZ9BCOUExERFRBsSmZGB0Wg6spmbDQGOG7YF8EuNvKXVatxhGKiYiIZORqa4Z14wPQ3sUK6f/ek2rd0etyl0X/YrghIiKqBCszFX5+pSP6t22EvAKBKb+cwIK/L8HALojUSgw3RERElaQxVuLb59thbLcmAIC5ERfx7u+nkFdQKHNldRvDDRER0WNQKCRM69cKHw/2hEICwg/H4+UVh5HBm27KhuGGiIhID4I7uWBpcHuYGCux9+ItPLskGjfT2FVcDgw3REREevKEhz3WvtoJtuYqnE1Mw5BFUbjIruLVjuGGiIhIj7yc6mPd+M5oYmuGG/fuY+jiKBy4clvusuoUhhsiIiI9c7Z5cNNNXxcrpGXnY+QPh/DHiQS5y6ozGG6IiIiqgJWZCqte6YgnWzdEbkEh/rfmGL7fe4VdxasBww0REVEV0RgrEfqCD0YFuAIAPtl6DrP+OMu7ilcxhhsiIqIqpFRImDnQA+/1awkACIuKxcTVR5GdVyBzZYaL4YaIiKiKSZKEV7u5Y8HwdlApFfjzdBKCfziIe1m5cpdmkBhuiIiIqskgLweseKkDLDRGiIm9i2cWRyH+TpbcZRkcgwk3oaGh8PDwgJ+fn9ylEBERlcnf3Qa/jQtAI0sN/rmViSGLo3AmIVXusgyKJAys2bY+b5lORERUVRJT72P0jzE4n5QOM5USS4J90bVZA7nLko0+f78N5swNERFRbdLI0gS/jPOHfxMbZOYWYPSPMfj9yHW5yzIIDDdEREQyqacxRthLfhjk5YD8QoGpv57Awp2XOBbOY2K4ISIikpHaSIn5z3ljbPcmAICvtl/Ee+tPI7+gUObKai+GGyIiIpkpFBKm9W2Fj55qDUkC1hyKw6s/HUFmTr7cpdVKDDdEREQ1xEh/Vyx50RdqIwV2nk/G80sPIDk9W+6yah2GGyIiohqkT+uGWPNqJ1ibqXDqRiqGLIrC5eQMucuqVRhuiIiIahgfZyv8Pj4ALjamuH73Pp5ZHIWDV27LXVatwXBDRERUA7nZmmHd+AC0c66P1Pt5CP7hEDYevyF3WbUCww0REVENZWOuxpoxndDXsyFyCwrx+trj+PZvdhV/FIYbIiKiGkxjrEToCB+82u1BV/GvIy7izV9PIjefXcXLwnBDRERUwykUEt7r1wofD/aEUiHh96PXMXI57ypeFoYbIiKiWiK4kwt+CGkPc7URDly5g6cXReHKLfakehjDDRERUS3So4Udfh8fAMf6JriakonBofux71KK3GXVKAw3REREtUyLhhbYMKEz2jnXR1p2PkJ+PIQVUbFsaPwvhhsiIqJaqIHFg55UQ9o5oqBQYOamM5i27hRy8gvkLk12DDdERES1lMZYia+f9cJ7/VpCIQFrY+Lx/NIDuJlWt2/ZUCPDjZGREby9veHt7Y1XXnlF7nKIiIhqLEmS8Go3dywf5Yd6GiMci7uH/gv21ekRjSVRAy/Q2draIiWlco2j0tLSYGlpidTUVNSrV0/PlREREdVcsSmZGPfzEZxPSodSIeGdJ1tgTNcmkCRJ7tIeSZ+/3zXyzA0RERFVnKutGda9FoCnvB1QUCjw6dbzGLPyCO5m1q3xcCocbvbu3YuBAwfCwcEBkiRhw4YNJeZZtGgR3NzcoNFo4Ovri8jIyAqtIy0tDb6+vujSpQv27NlT0RKJiIjqLFOVEeY/543Zgz2hUiqw49xN9FsQieh/6s5lqgqHm8zMTHh5eWHhwoWlPh8eHo7Jkydj+vTpOHbsGLp27Yq+ffsiLi5OO4+vry88PT1LPBISEgAAsbGxOHLkCJYsWYKRI0ciLS2tkm+PiIio7pEkCS92csH6CQFoYmuGxNRsjFh2AHP+PFcnelM9VpsbSZKwfv16DB48WDutY8eO8PHxweLFi7XTWrVqhcGDB2POnDkVXkffvn3x8ccfo3379qU+n5OTg5ycHO3faWlpcHJyYpsbIiIiAJk5+Zj1xxn8cvg6AKCFvQW+HNYWbRvXl7ewh9TYNje5ubk4cuQIgoKCik0PCgpCVFSUTsu4e/euNqxcv34dZ8+eRZMmTcqcf86cObC0tNQ+nJycKv8GiIiIDIyZ2ghfDPXCd8G+sDFT4cLNdAwO3Y/Zm88iMydf7vKqhF7DTUpKCgoKCmBvb19sur29PZKSknRaxrlz59C+fXt4eXlhwIAB+Oabb2BtbV3m/NOmTUNqaqr2ER8f/1jvgYiIyBD1ad0Q29/ohkFeDigUwLJ9V9Hr6z3YePyGwY1sbFQVC324y5kQQuduaAEBATh16pTO61Kr1VCr1RWqj4iIqC6yMVdjwfB2eNrHER9sPI34O/fx+trjWL7vKt7s0wJdmtrWim7jj6LXMze2trZQKpUlztIkJyeXOJtDRERE8ghsYYeIN7rjzaDmMFMpceJ6KoJ/OIRnFkfhr9NJKCis3Wdy9BpuVCoVfH19ERERUWx6REQEAgIC9LmqEkJDQ+Hh4QE/P78qXQ8REZEh0BgrMbFnM+x+KxCjO7tCZaTA0bh7GPfzEXT9fCe+3n4BF5LSa+Ulqwr3lsrIyMDly5cBAO3atcPcuXMRGBgIa2trODs7Izw8HMHBwViyZAn8/f2xdOlSfP/99zhz5gxcXFyq5E38F0coJiIiqrjktGysiI7F6oNxuJuVp53uWN8EHZtYo42jJVxtzWBnoUYDCzXsLDR6Xb8+f78rHG52796NwMDAEtNDQkIQFhYG4MEgfl988QUSExPh6emJefPmoVu3bo9VqK4YboiIiCovO68A28/exKbjN7D3Ugpy8wtLzOPjXB/rXuus1/XKGm5qOoYbIiIi/bifW4BDsXdw5NpdnE9MQ9ydLKRk5KK9ixWWBPvqdV36/P2ukt5ScggNDUVoaCgKCgx/5EUiIqLqYKJSonvzBujevIHcpVQIz9wQERGR7GrsCMVEREREcmO4ISIiIoPCcENEREQGxWDCDQfxIyIiIoANiomIiKgGYINiIiIiojIw3BAREZFBYbghIiIig8JwQ0RERAbFYMINe0sRERERwN5SREREVAOwtxQRERFRGRhuiIiIyKAYyV2AvhVdZUtLS5O5EiIiItJV0e+2PlrLGFy4SU9PBwA4OTnJXAkRERFVVHp6OiwtLR9rGQbXoLiwsBAJCQno2bMnDh8+rNNr/Pz8EBMT88j50tLS4OTkhPj4eDZW/peun51cqru+qlqfvpb7OMupzGsr8hoeh5XH47B61sfj8P9VxXEohEB6ejocHBygUDxeqxmDO3OjUCjQuHFjGBkZ6fyBK5XKCm2cevXq8Uv1XxX97KpbdddXVevT13IfZzmVeW1FXsPjsPJ4HFbP+ngclqTv4/Bxz9gUMdgGxRMmTKiSeam4mv7ZVXd9VbU+fS33cZZTmdfyOKweNf2z43Gov+XwONSNwV2WqkocQ4dIfjwOieRX049Dgz1zUxXUajVmzpwJtVotdylEdRaPQyL51fTjkGduiIiIyKDwzA0REREZFIYbIiIiMigMN0RERGRQGG6IiIjIoDDc6MnmzZvRokULNGvWDMuWLZO7HKI66emnn4aVlRWGDh0qdylEdVJ8fDx69OgBDw8PtG3bFr/++qssdbC3lB7k5+fDw8MDu3btQr169eDj44ODBw/C2tpa7tKI6pRdu3YhIyMDK1aswG+//SZ3OUR1TmJiIm7evAlvb28kJyfDx8cHFy5cgJmZWbXWwTM3enDo0CG0bt0ajo6OsLCwQL9+/bBt2za5yyKqcwIDA2FhYSF3GUR1VqNGjeDt7Q0AsLOzg7W1Ne7cuVPtdTDcANi7dy8GDhwIBwcHSJKEDRs2lJhn0aJFcHNzg0ajga+vLyIjI7XPJSQkwNHRUft348aNcePGjeoonchgPO5xSESPT5/H4eHDh1FYWAgnJ6cqrrokhhsAmZmZ8PLywsKFC0t9Pjw8HJMnT8b06dNx7NgxdO3aFX379kVcXByAB3cyfZgkSVVaM5GhedzjkIgen76Ow9u3b2PkyJFYunRpdZRdkqBiAIj169cXm9ahQwcxbty4YtNatmwp3n33XSGEEPv37xeDBw/WPjdp0iSxatWqKq+VyFBV5jgssmvXLvHMM89UdYlEBq+yx2F2drbo2rWrWLlyZXWUWSqeuXmE3NxcHDlyBEFBQcWmBwUFISoqCgDQoUMHnD59Gjdu3EB6ejq2bt2KPn36yFEukUHS5Tgkoqqly3EohMCoUaPQs2dPBAcHy1EmAMBItjXXEikpKSgoKIC9vX2x6fb29khKSgIAGBkZ4euvv0ZgYCAKCwvx9ttvw8bGRo5yiQySLschAPTp0wdHjx5FZmYmGjdujPXr18PPz6+6yyUySLoch/v370d4eDjatm2rba/z008/oU2bNtVaK8ONjh5uQyOEKDZt0KBBGDRoUHWXRVSnPOo4ZC9FoqpX3nHYpUsXFBYWylFWMbws9Qi2trZQKpXF/jsEgOTk5BLplYiqBo9DIvnVpuOQ4eYRVCoVfH19ERERUWx6REQEAgICZKqKqG7hcUgkv9p0HPKyFICMjAxcvnxZ+/fVq1dx/PhxWFtbw9nZGVOmTEFwcDDat28Pf39/LF26FHFxcRg3bpyMVRMZFh6HRPIzmONQtn5aNciuXbsEgBKPkJAQ7TyhoaHCxcVFqFQq4ePjI/bs2SNfwUQGiMchkfwM5TjkvaWIiIjIoLDNDRERERkUhhsiIiIyKAw3REREZFAYboiIiMigMNwQERGRQWG4ISIiIoPCcENEREQGheGGiIiIDArDDRERERkUhhsiIiIyKAw3REREZFAYboiIiMigMNwQERGRQfk/j9kKkaBE6cYAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "u, s, vh = np.linalg.svd(A, full_matrices=True)\n", + "plt.figure()\n", + "plt.plot(s)\n", + "plt.title('The singular values of the forward operator A')\n", + "plt.show()\n", + "plt.figure()\n", + "plt.loglog(s)\n", + "plt.title('A log-log plot of the singular values of the forward operator A')\n", + "plt.show()\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "id": "ad79f585", + "metadata": {}, + "source": [ + "Solving the least squares problem $\\min_x\\|Ax-b\\|_2^2$ demonstrates the ill-posedness of the problem:" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "cab55e6b", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "
" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjMAAAGdCAYAAADnrPLBAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAADAe0lEQVR4nOydd3gc1dX/v7NVvViyJcuWuzEYG9uYagOm11BCCC0vwUmA5AUCxJBCSMCQACEBQgIB8iO0AAFekpACBGy66baDAeOOO7ZcZKtLW+f3x+69c+fu3NlZaVe7I53P8/gB7Y5Gd2dn7j33nO85R9N1XQdBEARBEIRL8eR7AARBEARBEH2BjBmCIAiCIFwNGTMEQRAEQbgaMmYIgiAIgnA1ZMwQBEEQBOFqyJghCIIgCMLVkDFDEARBEISrIWOGIAiCIAhX48v3APqDeDyObdu2oby8HJqm5Xs4BEEQBEE4QNd1tLe3o6GhAR6P2v8yKIyZbdu2obGxMd/DIAiCIAiiF2zZsgUjR45Uvj8ojJny8nIAiYtRUVGR59EQBEEQBOGEtrY2NDY28nVcxaAwZlhoqaKigowZgiAIgnAZ6SQiJAAmCIIgCMLVkDFDEARBEISrIWOGIAiCIAhXMyg0MwRBEP1NLBZDJBLJ9zAIoqDxer3w+Xx9LptCxgxBEESW6ejowNatW6Hrer6HQhAFT0lJCYYPH45AINDrc5AxQxAEkUVisRi2bt2KkpISDB06lAp1EoQCXdcRDoexa9cubNiwARMnTrQtjGcHGTMEQRBZJBKJQNd1DB06FMXFxfkeDkEUNMXFxfD7/di0aRPC4TCKiop6dR4SABMEQeQA8sgQhDN6640xnSML4yAIgiAIgsgbZMwQBEEQxABj7ty5OOuss/p8nvnz52P69Ol9Pk+uIWOGIAiCyNri11s0TcM//vGPvP19wvo7uO666/Daa6/lZ0AZQAJggiAIgugD4XC4T2nFhUxZWRnKysryPYy0kGfGxWzZ04U/vvUF2nuoMBdBELllxYoVOPXUU1FWVoa6ujpcdNFF2L17N3//5ZdfxhFHHIGqqirU1NTgK1/5Cr744gv+fjgcxpVXXonhw4ejqKgIY8aMwe233w4AGDNmDADgq1/9KjRN4z/L2J0DANauXYujjjoKRUVFmDx5MhYuXGjyNrz55pvQNA0tLS38d5YtWwZN07Bx40YAQHNzMy644AKMHDkSJSUlmDp1Kp5++mnTOI4++mhceeWVmDdvHmpra3HCCSc4ukZ//etfMXXqVBQXF6OmpgbHH388Ojs7LT/r3r178Y1vfINnxU2cOBGPPvoof/+zzz7Dsccey8912WWXoaOjw/Jc7Brfc889ptemT5+O+fPn8/eB1O9ADjPF43HccsstGDlyJILBIKZPn46XX36Zv79x40Zomoa///3vOOaYY1BSUoJp06bh/fffV44tG5Ax42Luf/ML3P6fVfj3J9vzPRSCIBTouo6ucDQv/7JVtG/79u2YM2cOpk+fjiVLluDll1/Gjh07cO655/JjOjs7MW/ePCxevBivvfYaPB4PvvrVryIejwMAfv/73+Nf//oX/u///g+rV6/Gk08+yRfMxYsXAwAeffRRbN++nf8sY3eOeDyOs88+G16vFx988AEefPBB/PjHP874s/b09GDmzJl44YUXsHz5clx22WW46KKL8OGHH5qOe/zxx+Hz+fDuu+/ij3/8Y9prtH37dlxwwQX49re/jZUrV+LNN9/E2WefrfyOfv7zn2PFihX4z3/+g5UrV+KBBx5AbW0tAKCrqwsnn3wyqqursXjxYjz33HN49dVXceWVV2b8eRlOv4Pf/e53uOuuu3DnnXfi008/xUknnYQzzjgDa9euNR13ww034LrrrsOyZcuwzz774IILLkA0Gu31+NJBYSYXwzwy5JkhiMKlOxLD5BtfycvfXnHLSSgJ9H2af+CBB3DggQfitttu46898sgjaGxsxJo1a7DPPvvga1/7mul3Hn74YQwbNgwrVqzAlClTsHnzZkycOBFHHHEENE3D6NGj+bFDhw4FAFRVVaG+vl45DrtzvPrqq1i5ciU2btyIkSNHAgBuu+02nHLKKRl91hEjRuC6667jP3//+9/Hyy+/jOeeew6HHnoof33ChAn49a9/zX++8cYbba9RR0cHotEozj77bD7uqVOn2n7WGTNm4KCDDgIAk7fqqaeeQnd3N/785z+jtLQUAHDffffh9NNPxx133IG6urqMPjPg/Du488478eMf/xjnn38+AOCOO+7AG2+8gXvuuQd/+MMf+HHXXXcdTjvtNADAzTffjP333x/r1q3Dvvvum/HYnECeGRcTiycs+micSqYTBJE7li5dijfeeIPrJ8rKyviixEJJX3zxBS688EKMGzcOFRUVGDt2LIDEogwkBMbLli3DpEmTcNVVV2HBggUZj8PuHCtXrsSoUaO4IQMAhx9+eMZ/IxaL4dZbb8UBBxyAmpoalJWVYcGCBfxzMJiRwUh3jaZNm4bjjjsOU6dOxde//nU89NBD2Lt3r3Ic//u//4tnnnkG06dPx49+9CO89957ps86bdo0bsgAwOzZsxGPx7F69eqMP7NT2trasG3bNsyePdv0+uzZs7Fy5UrTawcccAD//+HDhwMAdu7cmbOxkWfGxTBjJkbGDEEULMV+L1bcclLe/nY2iMfjfNcvwxaq008/HY2NjXjooYfQ0NCAeDyOKVOmIBwOAwAOPPBAbNiwAf/5z3/w6quv4txzz8Xxxx+Pv/71r47HYXcOq3CNXLiQFWcTj5Wbgd5111347W9/i3vuuQdTp05FaWkprrnmGv45GKIhAaS/Rl6vFwsXLsR7772HBQsW4N5778UNN9yADz/8kBt+Iqeccgo2bdqEF198Ea+++iqOO+44XHHFFbjzzjuh67qyKKPqdY/Hk3KNetsIVf4bVuPx+/0px7OQYy4gY8bFkGeGIAofTdOyEurJJwceeCD+9re/YcyYMfD5Uj9Lc3MzVq5ciT/+8Y848sgjAQDvvPNOynEVFRU477zzcN555+Gcc87BySefjD179mDIkCHw+/2IxWJpx6I6x+TJk7F582Zs27YNDQ0NAJAiOmWhlO3bt6O6uhpAQgAssmjRIpx55pn4n//5HwCJBXjt2rXYb7/9+nSNgMS9MHv2bMyePRs33ngjRo8ejeeffx7z5s2zPH7o0KGYO3cu5s6diyOPPBI//OEPceedd2Ly5Ml4/PHH0dnZyY2qd999Fx6PB/vss4/yXNu3G/rKtrY2bNiwwXRMuu+goqICDQ0NeOedd3DUUUfx19977z0ccsghyt/rDyjM5GJiOvPM5M7aJQhi8NDa2oply5aZ/m3evBlXXHEF9uzZgwsuuAAfffQR1q9fjwULFuDb3/42YrEYqqurUVNTg//3//4f1q1bh9dffz1lgf7tb3+LZ555BqtWrcKaNWvw3HPPob6+HlVVVQASmpDXXnsNTU1NyvCL3TmOP/54TJo0Cd/85jfxySefYNGiRbjhhhtMvz9hwgQ0NjZi/vz5WLNmDV588UXcddddKccwD8rKlSvx3e9+F01NTWmvXbpr9OGHH+K2227DkiVLsHnzZvz973/Hrl27lEbSjTfeiH/+859Yt24dPv/8c7zwwgv82G984xsoKirCxRdfjOXLl+ONN97A97//fVx00UVKvcyxxx6LJ554AosWLcLy5ctx8cUXw+s1e+6cfAc//OEPcccdd+DZZ5/F6tWr8ZOf/ATLli3D1VdfnfYa5RIyZlwMeWYIgsgmb775JmbMmGH6d+ONN6KhoQHvvvsuYrEYTjrpJEyZMgVXX301Kisr4fF44PF48Mwzz2Dp0qWYMmUKfvCDH+A3v/mN6dxlZWW44447cNBBB+Hggw/Gxo0b8dJLL/HQz1133YWFCxeisbERM2bMsByf3Tk8Hg+ef/55hEIhHHLIIbjkkktw6623mn7f7/fj6aefxqpVqzBt2jTccccd+OUvf2k65uc//zkOPPBAnHTSSTj66KNRX1/vqJhgumtUUVGBt99+G6eeeir22Wcf/OxnP8Ndd92lFCgHAgFcf/31OOCAA3DUUUfB6/XimWeeAQCUlJTglVdewZ49e3DwwQfjnHPOwXHHHYf77rtPOb7rr78eRx11FL7yla/g1FNPxVlnnYXx48ebjnHyHVx11VW49tprce2112Lq1Kl4+eWX8a9//QsTJ05Me41yiaZnK3evgGlra0NlZSVaW1tRUVGR7+FkjQsf+gDvfdGMS44Yi599ZXK+h0MQBBKpvRs2bMDYsWN73QGYyB6apuH555/Pa3Vjwh67Z8bp+k2eGRcTJc8MQRAEQZAx42bilM1EEARBEJTN5GbIM0MQBGHPIFBSECDPjKuJUzYTQRAEQZAx42aiMfLMEARBEAQZMy7G8MyQMUMQBEEMXsiYcTFUZ4YgCIIgyJhxNbw3U4yMGYIgCGLwQsaMi2HtDMgzQxAEQQxmyJhxMUwATNlMBEEMZubPn4/p06fnexg4+uijcc011/Tr39Q0Df/4xz/6fJ4xY8bgnnvu6fN58gUZMy4mTp4ZgiCySFNTE66++mpMmDABRUVFqKurwxFHHIEHH3wQXV1d+R5er3nzzTehaRpaWloK8nz9yWOPPcabe4osXrwYl112Wf8PKEtQ0TwXE6UKwARBZIn169dj9uzZqKqqwm233YapU6ciGo1izZo1eOSRR9DQ0IAzzjjD8ncjkQj8fn8/jzj7hMNhBAKBfA8jLwwdOjTfQ+gT5JlxMXHKZiIIIktcfvnl8Pl8WLJkCc4991zst99+mDp1Kr72ta/hxRdfxOmnn86P1TQNDz74IM4880yUlpbyztMPPPAAxo8fj0AggEmTJuGJJ57gv7Nx40ZomoZly5bx11paWqBpGt58800Ahsfjtddew0EHHYSSkhLMmjULq1evNo31V7/6Ferq6lBeXo7vfOc76OnpUX6ujRs34phjjgEAVFdXQ9M0zJ07F0AiLHTllVdi3rx5qK2txQknnJB2nHbnA4B4PI4f/ehHGDJkCOrr6zF//nzb6/7mm2/ikEMOQWlpKaqqqjB79mxs2rSJv293Ta3OJXuMli1bBk3TsHHjRrz55pv41re+hdbWVmiaBk3T+PjkMNPmzZtx5plnoqysDBUVFTj33HOxY8cO/j4L7T3xxBMYM2YMKisrcf7556O9vd328+YKMmZcDHlmCMIF6DoQ7szPP4el/Jubm7FgwQJcccUVKC0ttTxG0zTTzzfddBPOPPNMfPbZZ/j2t7+N559/HldffTWuvfZaLF++HN/97nfxrW99C2+88UbGl+yGG27AXXfdhSVLlsDn8+Hb3/42f+///u//cNNNN+HWW2/FkiVLMHz4cNx///3KczU2NuJvf/sbAGD16tXYvn07fve73/H3H3/8cfh8Prz77rv44x//mHZsTs5XWlqKDz/8EL/+9a9xyy23YOHChZbnikajOOusszBnzhx8+umneP/993HZZZfxa53NawoAs2bNwj333IOKigps374d27dvx3XXXZdynK7rOOuss7Bnzx689dZbWLhwIb744gucd955puO++OIL/OMf/8ALL7yAF154AW+99RZ+9atf9WpsfSWnYaa3334bv/nNb7B06VJs3749pQ373Llz8fjjj5t+59BDD8UHH3zAfw6FQrjuuuvw9NNPo7u7G8cddxzuv/9+jBw5MpdDdwXkmSEIFxDpAm5ryM/f/uk2IGBtnIisW7cOuq5j0qRJptdra2u51+OKK67AHXfcwd+78MILTUbGhRdeiLlz5+Lyyy8HAMybNw8ffPAB7rzzTu7JcMqtt96KOXPmAAB+8pOf4LTTTkNPTw+Kiopwzz334Nvf/jYuueQSAMAvf/lLvPrqq0rvjNfrxZAhQwAAw4YNS9GLTJgwAb/+9a/5zxs3brQdW7rzHXDAAbjpppsAABMnTsR9992H1157DSeccELKudra2tDa2oqvfOUrGD9+PABgv/324+/feeedWbumABAIBFBZWQlN01BfX6887tVXX8Wnn36KDRs2oLGxEQDwxBNPYP/998fixYtx8MEHA0h4oR577DGUl5cDAC666CK89tpruPXWWzMeW1/JqWems7MT06ZNw3333ac85uSTT+YW4vbt2/HSSy+Z3r/mmmvw/PPP45lnnsE777yDjo4OfOUrX0EsFsvl0F2B4ZmhbCaCIPqO7H356KOPsGzZMuy///4IhUKm9w466CDTzytXrsTs2bNNr82ePRsrV67MeBwHHHAA///hw4cDAHbu3Mn/zuGHH246Xv45E+TP0VfEsQOJ8bOxywwZMgRz587FSSedhNNPPx2/+93vsH37dv5+Nq9pJqxcuRKNjY3ckAGAyZMno6qqyvS3x4wZww0ZwP6z5pqcemZOOeUUnHLKKbbHBINBpYXY2tqKhx9+GE888QSOP/54AMCTTz6JxsZGvPrqqzjppJOyPmY3wevMUNE8gihc/CUJD0m+/rYDJkyYAE3TsGrVKtPr48aNAwAUFxen/I5VOEo2hnRd5695PB7+GiMSiVgPWxATs9+P52jTJn+OTMZphSyE1jTNduyPPvoorrrqKrz88st49tln8bOf/QwLFy7EYYcdxn9fRLymMn0de7q/Ib+e6WfNJXnXzLz55psYNmwY9tlnH1x66aUmq27p0qWIRCI48cQT+WsNDQ2YMmUK3nvvPeU5Q6EQ2traTP8GItTOgCBcgKYlQj35+KdY9GRqampwwgkn4L777kNnZ2evPuZ+++2Hd955x/Tae++9x8MmLFtG9DyIIttM/o4oRQCQ8rMMy1By4tF3Ms5MzueEGTNm4Prrr8d7772HKVOm4C9/+QuA9Ne0t2NPN+7Jkydj8+bN2LJlC39txYoVaG1tVf7tfJNXY+aUU07BU089hddffx133XUXFi9ejGOPPZa7M5uamhAIBFBdXW36vbq6OjQ1NSnPe/vtt6OyspL/E11lAwVd1412BmTMEATRR+6//35Eo1EcdNBBePbZZ7Fy5UqsXr0aTz75JFatWgWv12v7+z/84Q/x2GOP4cEHH8TatWtx99134+9//zsXmBYXF+Owww7Dr371K6xYsQJvv/02fvazn2U8zquvvhqPPPIIHnnkEaxZswY33XQTPv/8c9vfGT16NDRNwwsvvIBdu3aho6NDeayTcWZyPjs2bNiA66+/Hu+//z42bdqEBQsWYM2aNdxgSHdNZSZMmIDGxkbMnz8fa9aswYsvvoi77rrLdMyYMWPQ0dGB1157Dbt377asH3T88cfjgAMOwDe+8Q3897//xUcffYRvfvObmDNnTtbDcllD7ycA6M8//7ztMdu2bdP9fr/+t7/9Tdd1XX/qqaf0QCCQctzxxx+vf/e731Wep6enR29tbeX/tmzZogPQW1tb+/QZColoLK6P/vEL+ugfv6Afccdr+R4OQRBJuru79RUrVujd3d35HkrGbNu2Tb/yyiv1sWPH6n6/Xy8rK9MPOeQQ/Te/+Y3e2dnJj1PN5/fff78+btw43e/36/vss4/+5z//2fT+ihUr9MMOO0wvLi7Wp0+fri9YsEAHoL/xxhu6ruv6G2+8oQPQ9+7dy3/n448/1gHoGzZs4K/deuutem1trV5WVqZffPHF+o9+9CN92rRptp/tlltu0evr63VN0/SLL75Y13VdnzNnjn711VenHJtunJmc78wzz+TvyzQ1NelnnXWWPnz4cD0QCOijR4/Wb7zxRj0Wi/Fj0l1T+bt455139KlTp+pFRUX6kUceqT/33HMp1+973/ueXlNTowPQb7rpJl3XdX306NH6b3/7W37Mpk2b9DPOOEMvLS3Vy8vL9a9//et6U1MTf/+mm25Kuea//e1v9dGjR1t+VjvsnpnW1lZH67em6w5z9/qIpmkp2UxWTJw4EZdccgl+/OMf4/XXX8dxxx2HPXv2mLwz06ZNw1lnnYWbb77Z0d9ua2tDZWUlWltbUVFR0ZePUTCEo3Hs87P/AAAaKovw3vXH5XlEBEEAQE9PDzZs2ICxY8eiqKgo38MxEY/riOs6fN68KwwIgmP3zDhdvwvqjm5ubsaWLVu4en3mzJnw+/2mHP3t27dj+fLlmDVrVr6GWRCIoSXSzBAE4YT1uzuxqqkd0RhlQBIDi5xmM3V0dGDdunX85w0bNmDZsmUYMmQIhgwZgvnz5+NrX/sahg8fjo0bN+KnP/0pamtr8dWvfhUAUFlZie985zu49tprUVNTgyFDhuC6667D1KlTeXbTYCUmONRIM0MQhBNC0Rjiuo5ITIfPXgJDEK4ip8bMkiVLTIV95s2bBwC4+OKL8cADD+Czzz7Dn//8Z7S0tGD48OE45phj8Oyzz5ry1n/729/C5/Ph3HPP5UXzHnvssbRitIEOeWYIgsgYnf2H5gxiYJFTY+boo4+GnSTnlVdeSXuOoqIi3Hvvvbj33nuzOTTXIxoz5JkhCMIJbKboH6UkQfQfBaWZIZxj9sxQ/JsgiPTo0n8JYqBAxoxLIc8MQRQ2/ZQomhFsTIU4NmLwko37kYwZlyIKgEkzQxCFA9PzhcPhPI/EjLhgkC1DFBKscJ/cHiETcqqZIXJHLGaemOJxHR6Ps9LlBEHkDp/Ph5KSEuzatQt+v5/3y8k3cV2HHk0YWKGQFz0aNesl8ouu6+jq6sLOnTtRVVXVp8QeMmZcSkzaWkXjOgJkzBBE3tE0DcOHD8eGDRuwadOmfA+Ho+s6drb0AABirQEUBwZ3RihROFRVVSkbTjuFjBmXEpNEv6SbIYjCIRAIYOLEiQUVauoMR3Hp84mmhdefsh+OH1uX5xERRCK0lI1SK2TMuBS5gGcio4l2WgRRKHg8noJqZxCKR/BleyK01BUvrLERRF8pjGAukTFyOjZ5ZgiCsEOcMyLUzoAYYJAx41Lk0jKU0UQQhB2izi4SJWOGGFiQMeNSyDNDEEQmUAsUYiBDxoxLiVtkMxEEQaiICuUcwhRmIgYYZMy4FHFiAsx1ZwiCIGREz0wkSvMFMbAgY8alpNaZoZ0WQRBqotTPjRjAkDHjUmSNDGlmCIKwQ5wjKMxEDDTImHEpsvFCmhmCIOygMBMxkCFjxqXIAmDyzBAEYYfJmCHPDDHAIGPGpcgCYPLMEARhh6iTIc0MMdAgY8alpHpmaHIiCEKNSTNDYSZigEHGjEuRPTGyp4YgCEIkSmEmYgBDxoxLoWwmgiAygTQzxECGjBmXQtlMBEFkgtkzQ/MFMbAgY8alkGeGIIhMiJNnhhjAkDHjUsgzQxBEJpBmhhjIkDHjUlLaGdDkRBCEDWLGIyUMEAMNMmZcCnlmCILIhCi1MyAGMGTMuBTSzBAEkQmUzUQMZMiYcSnkmSEIIhPE0BIZM8RAg4wZl5LqmaHJiSAINaLOjjQzxECDjBmXklIBmDwzBEHYECPNDDGAIWPGpcRJM0MQRAZQajYxkCFjxqWkpmaTMVOI3Pf6Wlz08IcIR2nxIPJLLEap2cTAhYwZl0LZTO7gyQ82Y9Ha3Vi5vS3fQyEGOZSaTQxkyJhxKZTN5A5C0RgAcusT+YdSs4mBDBkzLoWymdwBa+hHO2Ei34ihaWo0SQw0yJhxKeSZcQdMK0OLB5FvYsI9GIvrKUkEBOFmyJgpUHRdR2t3RPm+bLyQZqbw0HWde2RIAEzkG3nOiJA3lxhAkDFToMz/1+eY+YuFWNVkLRyNy9lMZMwUHBGquEoUEPKGh7yFxEAip8bM22+/jdNPPx0NDQ3QNA3/+Mc/TO/ruo758+ejoaEBxcXFOProo/H555+bjgmFQvj+97+P2tpalJaW4owzzsDWrVtzOeyC4JOtrYjGdazd0WH5PnlmCh9RJ0PGDJFvUgpt0j1JDCByasx0dnZi2rRpuO+++yzf//Wvf427774b9913HxYvXoz6+nqccMIJaG9v58dcc801eP755/HMM8/gnXfeQUdHB77yla8gFovlcuh5pyeS+HxRhStYjndT3YjCIyKElijMROQbOUmAROmEFRt2d6I77L711ZfLk59yyik45ZRTLN/TdR333HMPbrjhBpx99tkAgMcffxx1dXX4y1/+gu9+97tobW3Fww8/jCeeeALHH388AODJJ59EY2MjXn31VZx00km5HH5e6WbGjMJIYbssv1dDJKZTNlMBYvbMkLFJ5BfZdqF7kpBZu6MdJ/z2bZwwuQ4PffOgfA8nI/KmmdmwYQOamppw4okn8teCwSDmzJmD9957DwCwdOlSRCIR0zENDQ2YMmUKP8aKUCiEtrY20z+30RVmnhnrCYd5ZoI+r+1xRP4Imzwz7tvpEAMLecMTIW8hIbF5TxcAYFNzZ55Hkjl5M2aampoAAHV1dabX6+rq+HtNTU0IBAKorq5WHmPF7bffjsrKSv6vsbExy6PPPT1pjBn2esCX+ApJM1N4kGeGKCRSm9OSMTOY2LC7E8fd9Sb+ulStOWX3SMiFhm7es5k0TTP9rOt6ymsy6Y65/vrr0drayv9t2bIlK2PtL3RdR1cyzBRTxLVZAaxg0pghz0zhYfLMkD6ByDPyhiccpTljMPHuut34YlcnXvpsu/IYJmsIRdw3X+XNmKmvrweAFA/Lzp07ubemvr4e4XAYe/fuVR5jRTAYREVFhemfm0hoYBI3lcpIYQWwyDNTuEQom4koIFLqzNA9Oahgol67751563pcGBbPmzEzduxY1NfXY+HChfy1cDiMt956C7NmzQIAzJw5E36/33TM9u3bsXz5cn7MQERUkiuNGfLMFDyiZ8btC8eu9hDeW7cbuk73mVtJrTPj7nuSyIx0SSWAEQ53o2cmp9lMHR0dWLduHf95w4YNWLZsGYYMGYJRo0bhmmuuwW233YaJEydi4sSJuO2221BSUoILL7wQAFBZWYnvfOc7uPbaa1FTU4MhQ4bguuuuw9SpU3l200CE3XSA2uMSkwTAlM1UeAwkzcxP/vYpXlu1E89fPgszRlWn/wWi4KCieYMbI6nExjOTnLNC0ZgjyUchkVNjZsmSJTjmmGP4z/PmzQMAXHzxxXjsscfwox/9CN3d3bj88suxd+9eHHrooViwYAHKy8v57/z2t7+Fz+fDueeei+7ubhx33HF47LHH4PV6czn0vNIVjvL/V+2eDGMm6ZmhiangCA+gOjNftnQDAHa09eR5JERvIc/M4IbVLrMzYiPJeySuJ7z9fi8ZMwCAo48+2tYtrWka5s+fj/nz5yuPKSoqwr333ot77703ByMsTJx4Zlg7A9LMFC7ipOF2AbCTiZAobOQdORkzgwu2SbZbK8Sq0D2RGPzevOcIOcY9Ix1EiJoZ1eLBPDGkmSlcTJoZl3tmuiPpxYMAlcgvZCjMNLjpTupg7J5h8R5xW3o2GTMFiNkzY5+aTZ6ZwiUcE41Sd00MMszAtgtn/mnRehxw8wJ8sqWln0ZFZAJlMw1uupOeGbuNr2jgkjFD9BlH2UwpFYDddeMNBiJCHQ+374J7khObXbjsg/V70BWO4ePNe5XHEPmDNDODGyObKb0AGABCEXelZ5MxU4CInhnVTphNTOSZKVxC4sTgsl2OSCyu85CZ7UQYZ5kQ7v2sbkXXdVz+1FJc+uclSp2iPJeQMTO4MOrMpBcAA0CPy9KzcyoAJnpHZp4Z0swUKpEBUmemJ5Jew5V4L1lwy2WT4ECgIxTFS58lCpC29URRWexPOSamk2ZmMJNJajaQSM92E+SZKUC6wg40M5JnhlKzC4/wAKkALHoKIzYTIQuruW0SHAi09xjlHFTeM3nOcPM9SWROj4OieVESABPZJJMwE3XNLlwGimfGlF1n08+HGTrkmel/OkKGMaMKObM5otifmDPcfE8SmdPlpJ0BCYCJbJJJOwNDM+OuG28wIHpmwi72nImeFjsXdUSoHkr0L+09Ef7/EWVoOvH9FPmZZyb/92QsrmPZlhbXF5V0A1wAbFdnRni+e0gATPQVk2cmTZiJNDOFy0CpM9Mddtb9m3ltyDPT/zgJM7FddyF5Zv7236046w/v4v4316U/mOgTTsorUGo2kVVEzUz6MBNlMxUqZs+MuyYGESdhT0AIM5Fnpt8Rw0zpkgaKCsiY2bKnCwCwOflfIjdEYnF+XzgWAJNnhugrPRk0miQBcOEyULpmmwTAdp4ZFmYiz0y/Y/bM2IemDWMm/3MGm+vonskt4gY5rgPxNLoqgDwzRBYwCS4dpmaTZ6bwEBd+N4eZnKZms0WUNDP9T0eP8+a0hRRmYiFJt+kz3IZ8fVVZieI94bbvhIyZAqTLQTuDqOyZIWOm4DB1zS6AXXBv6SHPTMEjCoCV2Uwx5pkpnNRs5vWj0GRuET0zgNp7R9lMRFbpcaCZYV2zWWo2ZTMVHqIXoxAWjt5iyq6z+RzMeKOFqf9pN2lm0nhmAknPjE2afX/BDGUSjeeWbqfGDIWZiGzSFUkv5mOLSsBLnpl88dPnP8P3nliqLB8vTgZuTj3tdhpmSt6D5Jnpf8xhJvuFqshHYabBRrfDMJNoCLstXEztDAoQJ3Vm2MtBP2lm8kE8ruMvH24GAOxsD6GuoijlmAFZAdhBmIk8M/2PKABWJw0k68wwz0wBzBlswSRjJrc49syIYSaXbUrIM1OAOHHr82wm8szkhbAphVEhphO8MdG4rswgKHTEEIDKmNF1nXsE3DYJDgTE1Ox0AmDumSkAbyGFmfqHFM+M4h4RX3ebZ4aMmQKkO4PU7KDfa3sckRvEEJLqoZdry9j1NSpkeiLpPYXi6+SZ6X9EAXC62lTFgcIRADMjxm0Lp9voCkdNPzt5jt22KSFjpgDpyqSdgdcIM6m0G0T2ESdflVBOXiwKoa5HbxA9hSrtj5tTOgcCTgTAKb2ZCmADRJ6Z/kF+JpVZsibPjLu+EzJmCox4XDfdRFZhJl3XBc+M8RWSd6b/CDvxzEiTgVtFwN0OPDNyGXQyrPsXU9E8pxWAC+B+ZF488szkFjk1O51IHHDfpoSMmQJDdtFbTUziS8wzozrWLbht8TOFmRS7ypQwUwG49XuDkzoz4uu67u72DW6kI00FYF3XjWymAiyaF4nptBnLIbJmhurMEDlHtqCtHnDRjTwQPDOvr9qBGb9YiNdW7sj3UBxj9swojJkB4plxUgFYXhjdNhG6mWgsnjbjTJwaCsuYiVn+P5Fd5GwmZQVgF6dmkzFTYKTcdBaLh3gfBr1e/v9u9cwsWrsbLV0RvLNud76H4pjehJkKYfHoDU5Ss+WdHi1M/YeYyQRYb2rE14oLqDeT6NWkeyZ39Co122UbEjJmCgzZHWgl1BI9M6ydQeLY/E9OvYE9aG6azEIOPDMDUQCsKhUgh5XclgnhZkS9DGAt7BXnhkJpZxCL66b7psdli6ebSA0zORAAu+wZJmOmwHBiQYv2jd+rQdOSx7o09Zc9aPJnL2TCTjQzA8YzI9aZcRpmcs936XZkY8ZqoRLnhkJpNCnfI27azLiN1DCT4jl2cYkFMmYKDKaZCdo0kBQnJq9Hg8+TsGbc6plhn1nePRQy4ZiYmm09brbwM5G229y2jFCvwkzu/KxuJNMwE68AnGdPoXyPkDGTO8gzQ/Q77IEuL/IDUExMycwfjwZomgafJ2n4uDSMwT5zt4seHvFBtzJSdN1woZcEC2Mn3FucaGZSwkwu29W5mY5QxPSzlZEiborYRinf96O8wJIBnDt6k5rttmeYjJkCg910FUWJtllWqnNm4HiTHpmB4pnpcVOYKU1xKXGyKA0kv8sBYMw4EQ4CtDD1J07CTOKcwTyF+b4fZU9MiDwzOSPFM6MsmkcCYCJLdHPPTGIB1HWk9PSRjRmvN/Fft2YzdbswzGSuM5M6btHYKXW7Z0asAOygzgzgvl2dm3EiAI4Kc4afGzP5DjNJnhm6Z3KGrJlRbXxFI6cnEnNV/S8yZgqMbinMBKQaKdyY0QaGZ4YLgN1qzFjsYETxb2nQl3zNfd9PSkVqxT0mGznkmek/ZGPGKgOSbYh8Hg3+AgkzpWpm6J7JFWxuNUKM1oUVxdfjurs2yGTMFBjdyYZgZckFEEh1CaZ4Zjya5XFugXtm3BRmSmPMsIXC69F4l2I3VsWVP1tM0f1bDjORZ6b/kDUzVqFAk2cmOV/k25iRPZokAM4dbG6tKE5sku1CkSJuCjWRMVNgdIcTNw8LMwE2nhmumfGYXs8XPZEYvvbAe7hrweqMfo91dHXTZGZuNGkRZkpOAgGvx9gJu2hiYFh5y6x0XPLCSLvs/qNDDjNZGDPMW+MTwkxxPb9zhhxWonsmd8jyBbtQpIibdExkzBQYXZHExGQKM0mTE8tm8iaNGMMzk19jZvmXrVi6aS+eXbwlo99jk5ibwkzp6swwL0zA50HAWxg74d5gacxYLJYpmhkXfZduh4WZWAFN60KbgmdGKLSZz3uSUrP7D7ZhrChSe2as7gU3FTIkY6bAYBk9pUGvshie4ZlJ/Fwompm2noS7u1Oqe2FHNBbnC3+3iwRn6cJM7H2/1yMILt0zMTCYe7pcDHtaToRSNpOLJkG305583oaUBAAodt0xUQCs8dfza8yQALg/iMd1bjgyz4xVKFJcP0qTtYjctCkhY6bAYGnKxQGv0kiJcTGf5JnJc3YC2yF2RWKWugorxJ2/rrsnRhtK05uJLRJBn2HMhF1YB4gtOKVBHzeurbQ/qZ4Zd3yPA4H25CaiqiS9HsLn8cDvET0zeQwzReie6Q/EuYp5ZqxDxYl7QdOA4mQ5CbfMxwAZMwUHW9yL/V5lMTw2MbE5qVAEwG3diUlV153vsmTRr1tczc49M5qrPTPs+yjyG0aZpcBU1szQLrvfYBWAq5OeGatwsxGa1uDxaHzOIM/MwIeFmAAjscRaJJ6cszwenvVExgzRa9jiXiJ4ZlQCYGbs+NLUmWntjli+nm3aBCGiXGJdhVurgKbVzDABsM/DtQxyryY30M2NGa9tFozsdXKLUToQYALg6lLmmVGHENic4i8AHZdsvJBnJjeIadlsLrLs3yWEIoPJZqRueo7JmCkwxMWDGSmyoI97ZpJufyYEjllMYv/4+EtMu3kB/m9JZqLc3iDWu+gKOXsI5DLbbhEBp81mihmaGVcLgIWwp9+mRkVq0Tz3fVa3wp67Ku6ZsV+oABRE4TwSAPcP4jNst/Flz7DPqyGYLCfhpuc478bM/PnzoWma6V99fT1/X9d1zJ8/Hw0NDSguLsbRRx+Nzz//PI8jzi1sMS8J+LiRIk84KZ4Zm2ym5V+2AgCWbWnJyXhFWOwe6L1nxi21ZtK1MxA9M4Zmxj0TA8Mq7GlllKWEmWhh6jfaeZgpvWcm1ZjJ3z3JxKVsU5bte+adtbvx/ac/xp7OcFbP6zb4muL3GqFim9Rsv9eDoqRnhgTAGbL//vtj+/bt/N9nn33G3/v1r3+Nu+++G/fddx8WL16M+vp6nHDCCWhvb8/jiHMHt6L9NgJg1mhSKppnlc3EFtCWrtw/0GKYSfa4qJCNF9d4ZtI0mhQ7Zht1ZtwnAGafs9jvtfUwyWEmN+3o3EwoGuOGs51mhnlrvFKYKZ+hT2a8VCYLuWU7xPzQovX49yfb8PqqnVk9r9tgc3GRIF2w3pAYoUjSzPQSn8+H+vp6/m/o0KEAEl6Ze+65BzfccAPOPvtsTJkyBY8//ji6urrwl7/8Jc+jzg18JxzwcJegfONFFanZVu5lNlm1dOVeNyN6ZpymZ7tWACx6Zix7MyVeEz0zrgwzmcKe6cNMbkzpdDNiwTxmFFjdZ6maGfUO3Yp31u7GtpbuPo1Vht1bLDyWbQEw0wqKAliZaCyO5V+2Os6+dCOGt994hm0FwF4PDzO5ZT4GCsSYWbt2LRoaGjB27Ficf/75WL9+PQBgw4YNaGpqwoknnsiPDQaDmDNnDt577z3l+UKhENra2kz/3AJPzfb7lJ6ZODdmzKnZlp6ZpDGzt1+MGWPS6LSZQES6XBpmStebiXlhAl4jM8D1AmAbzwwLM5UVFXZKZzgax9od7a6pZ5QOFs4tDXgR9CcWoGyHmT7f1or/efhDXPPssmwMmcM8MYZnJrvPPrs2dnPK/W9+ga/c+w7++t+tWf3bhYTo7ffbbHzZJiWhmSHPTMYceuih+POf/4xXXnkFDz30EJqamjBr1iw0NzejqakJAFBXV2f6nbq6Ov6eFbfffjsqKyv5v8bGxpx+hmzSI4i1VJV9uWcmGWu208yEkpNVaz+EmXrjmelxa5gpjTETEgTA+cwcCUVjfVokDPGgfWo2mwhZ6meh7uhufXEFTvjt23hzza58DyUrsA1EWZF68yO+xnRP/J50sFit39UJAPhyb3Y9Mz3cM5N5mOmht9fjzD+8a5upybxWdufd2Jz4bCu2uWfDmynGM+yz9a6yDYnXo6HITwLgjDnllFPwta99DVOnTsXxxx+PF198EQDw+OOP82M0Vq0ria7rKa+JXH/99WhtbeX/tmzJfSZPNtB1nXsqSgJe5eIRTymap+7NxCarln5Iz27rFjwzjrOZzEaPW4yZcJqieYUgANZ1HWfc+y6OufPNXjd+7BEEwHa7+Qj3zCQWpkKdBD9NCuLZAu12uDETNIwZq4JoUZVnxkF4ZVd7CIB9uKY39Ehan0wM4KcXb8YnW1rw3017lcewzZVd+Ir9zabWHsd/22108WfY2FhZpmYzAbCpzow75mOgAIwZmdLSUkydOhVr167lWU2yF2bnzp0p3hqRYDCIiooK0z83EInp3CAp8nuVxfDYTedJ0cyoBcBd4VjOb0zRM+N04ut2aXpmWLiW4vdmvJb/dgahaByrd7Rje2sPtrX0brIWjRmVhkt8rbzAPTPMuyA3Z3Qr7JkrL/Lbes64Z8YrGTMOjM7dHQljxukGxSmyADgTA5htnNp6rDdpsbiOzqRHwu5eZF6bHe0D15jp4bXLRIM3TWo2rzNTmJsSKwrOmAmFQli5ciWGDx+OsWPHor6+HgsXLuTvh8NhvPXWW5g1a1YeR5kbxNiuKNZK0czokmeG1aOxyjIRJojWHOpmorE4nzwAoMPhxNcte2ZcqJkBUvUwpqJ5earpIV5LtrvO+Bys4JbJM6MOM7HeL4U4CYaiMexMXgenmq5Ch+lCyot8tg1n+QZIy7xoHrt3wrF4VnVfoZQwk/Nnnxlx7QqjVPx+7e5F9jd3DGDPjKh783KD1yabSRAAk2cmA6677jq89dZb2LBhAz788EOcc845aGtrw8UXXwxN03DNNdfgtttuw/PPP4/ly5dj7ty5KCkpwYUXXpjvoWcddtP5PIkS+EYanaSZiZlTs209M8Lkk8tQk1xXxqlnxq1F8+RJXX7oxd5M+aoALIqre2/MGKnZ3EVtKR5MhpmCTABs/T3uag/hT4vW90upAJkdrcY1UC2CbkM0Znw2IQRWeFPOZnIS+tzVYVy3TJrIpoMZGVUZCoDD0TjfTKi+R9HzZndeNt/sbA9lPaMpHI1jR1v+jaQuKwGwZTYTCzNpQp2ZwtuUqPClPyS3bN26FRdccAF2796NoUOH4rDDDsMHH3yA0aNHAwB+9KMfobu7G5dffjn27t2LQw89FAsWLEB5eXmeR559mAFQnExvVWUpxbhnxnmdGQDYm8PiUfKk0uuieW4xZtJUvLXqzdTfmhnR67Wrl250UwVgr9ooi0jZTKrd8CPvbsADb36B7nAM3z9uYq/G1Fu+FFKLs7ko5xNRM2OXbs1uPVkz46Q57W7RmAlHUV0a6NOYGUzLwlOzHS6cYji7XRFmandozLC/GY3r2N0ZwrDyIkdjcMIVf/kvXl+1E6/Om4OxtaVZO2+m9Ag6TJ/NPcI2KW6tAJx3Y+aZZ56xfV/TNMyfPx/z58/vnwHlEbHaKgDlTjgmuYwLwTMjx66dtjNgi2XA50E4Gk/JbipU5B2L/DMzXBIC4PxkM4leL3F3nQnMw2JqfGoZb0+GmdJ4ZnYnPUTb87BjFY0Zp8Z2ocMW7fIiv23D2ZiwUAGZpWaLXr1s6mZSNTOxtMkdgNlQUXpmQsZ8ZGfMiPWQdrRm15hZs6MdsbiOJRv35NWYETfJdt5Vo2ieIAB2yeYSKIAwE2HAxZbcM2PfNdvwzKizmURvQC5d+/Kk4lSTwAy4muRuz72eGfO4Dc+MUAE4n8ZMb8NMrHqo34uAL70AWPTMWNVyYfdFPsJM2wakMZNYtMuCPvgV8wUgZjNJqdlp7sl4XMfuDuO7yuZ143VmkpqZuO5MV2Y2Zpx4ZtSfUZxvsh0SYobful0dWT1vpoihYp+iRU7iNdEzQ3VmiD4gxjYBqIvm6eY0S8eemRwKgNskr49TNz77zEO4MVP4D080FheyzqwfeksBcD+3MxAFwDv7KAAu8nscTYTlydRswDqsxoTh+eiXYzJmBrBmxur7UVUAlttQyLR0R0zzT3Y1M8kwU7FxzzipAmwOM6k8M4Ix4yA1GwCaMjBm1u1sxwfrm22PYWHeL3bmtwxAt+CZsdNVReOGZ8aoM+OOzSVAxkxBIeoTACjrRsgdcA3NjH02Uy7DTGxSYWN26o5miyU3ZlwQZhIX6fIiw0Uuwhb3QB5Ts7PimXFYZyYqFc0DrHfEbDHsj/YaMgM7zOTj3hareSA1m0md1SIi3zfZqjWj6zrfAFQU+8EiS05EwG0OjBnxdbs5pbeembmPLsaFD32AnQotmlgz7Iu8e2bE2mU2GW+8nISRmk2eGaJXiDcdYMS3++SZ6bcwU2KCqatIxJwdh5kkz0yh1icREQ1Elopsp5kJ5Mll22USAPfOmOkxCYDVuzpm4BT7vbwLstWujhkze/MQZhqIAuAOLgD2K8PSgJVnxlmYabektXJacoGhqgMjPgtFfq+g0Uj/jIgNbVXnFz1vqudO13WTwe20cF40FsfWvd2I68DONuvnKhFmTfz/5j1defVwdAmhYnvvampqthvmYwYZMwVEd0qYyXpykqt5GnVm8hhmSk4e9ZUJY8Zx1+zkw8KqgLpBM8MmR69HQ2nAuhdRWOjNlCsB8J8Wrcc/l32pfF+8ls2dYUtNVTpYlVbRM2MVmmCvBXxCjQqLhamDGzORfu2PpOu6KczUPkCMmXYxzGRTAZj3ZvJmFmaSjeBMjMA/v78RB8xfgJeXb095T1wki3xGWMPJ4ulEACx+v6pzys+s0zCT6OFWzXPiZi4W17G5ucvRuXNBd9jYJNun7xup2aSZIfpEl9BDA1B3w+YTE3MZ22SZiMZMLnfDzDPDjBnHqdlhSQDshjBT1Kghoyr7HeYuW7FoXvYmhq17u/DLF1fi+r9/pjxGnGhjcb1X378oALaNtwviwSJePVTtmQlH4xkZri8vb8LvXl3bawNob1fEtAsPR7NbAC5fcAFwkc823Tqq0MxkGmbKJDz34YY9AIBPtramvCfW1PJ5PSjinoD034mT1GwndWbk152GmUQPt8oDLc9j63bmL9RkquJtl5EYF59h9YakUCFjpoAw9AnmbtjyjcdTs9PUmYnHddPv5tIzw3ZI9ckwUzgad7R4c8+Mi8JMIUHcq4otR4Rj7Crn9pbNexI7va5wTLkod0kLT6ahJl3XTdVD7YwyUSNkV6NCrBKdSSf3G/+5HL99dQ1WNbU7/wACzCtTXWKITQdCqIkLgIPmCsCy0cd0NLzOjE1mmogcZsrkmu1MGgdWYmtmtLBFkxvAjgTAxvk6QlFLA1c0clQGkvz6DkXISGZPp+CZUYTdZCMnn7qZLosNiZ3uzeugN9Ou9lDBbTzJmCkgDHdg0jOj2GnJ8W+VZkbOJrHrMNtXZGMGcFZrhuk63JSazR5w08Kt0MyIqdnZLJondjBWiTJlF3imxoxojIiZEOni7SrPTEQqh++0iGMsrvM6Ob1Nn92avF6jakr5RO12EbCu66Y6MyycCaRubFI8MzbaCRF2zzDdl9PwMWAYB1bXuUcwksX/OgszGfNYXDcbyAzxb3ZHYpYGD/tbTOPV2h1x9PfFTDyVZ0ZOgMinZ8YkALYp42ESANt4yvZ2hnHkr1/HBQ99kKsh9woyZgqIbukBVxkpMZVmJm69oDJyGWZiQryasgDfwacTAcfjhgCv2kXGDA8z+W3CTEIoKiBUzs2WTkRsHGk1mQPmdgZA5unZ4s6ryGeflRWxmAhlz4y8q3fqKdzbFeZiyt6mdDPPzMiqYi7adrsx0xMxSgSUFfn45gewmDOkFihOq1IzI3LUkBIAzq+Zruvc8LTStRjGTGIcQX8mYaao9HPqfSSP08pLKGZSMp2iExGwOI/K3k9+bumZ/CKLXdojsTh+8rdPceuLKxwdL2bJ2m5ITKnZas/MxuZO9ETiWP5la9ZbQPQFMmYKCLkCsCrlOuYwm0kOP/RE4jkL47QJO8SSYGL86VzSokvZjZqZhGdGEWay0MwA1rHq3vBliyEodDqhZuqZ6RE8UD4hxdxKkyGGmVSeGXmBcWpciwZMc0ffjJmGqiKePl6oYaYte7rwxPsb0z6r7ckqt5oGlAa8fB4AUu+zFM+MT61/EmH3zJiaRAVbp9esrTvKnwmxGi8jJczkU+usUs4tGS9WxpL8mpX2Q/QOMa2fExGw2TNjH2Zi1Y2/2NWRtY3MHf9ZhWcWb8FDizYoNUOMSCzOv/sSvy9NBeD0GxLAuLbRuI49echKVEHGTAEhqs4BoZ2BIsxk1Jmxdh2K/YHYsbkKNbGHqrzIxzN8VA86Q1xsWX+WUDReUNa+FYZmxqt86MWieWzhALInAhY9M6rdMgs/scU7U2OGfT9MF2SXlWXquOtXeWbM94PTUgGiAbO7s3cp5ttamTFTjNLk9ch2RtPaHe1YtHZXn8/zq/+sws//+TleXt5ke5zYl0nTNLMxI31HxpyR/C4dhpmYZmZMTWaemR3t9vcnM5SZ4dvbbKbEz6lzmvyalRZH9IQPKw8mxu3AmBHDo6oQL3t29q0vh8+joSscw/YsdOb+z2fb8ad3NvCf03k3xbBgUcCjzJAFBIM3TZ0Z0ZhUpabnAzJmCgieOSK3M0gTZkrnmQn6vLzKZq5CTW3diYe6osiPUoeeGUOY5uG/AzgTAeaaUDSmNDxM2Uy8u6wqm8loNAlkrwqwmGas0jGw11mIINP+TLKnkNeosKln5BdKoaf3zDgzrJsFA2ZPLz0zTGPUUFWcE8+MruuY++hiXPTwR9i6t29puEzcnc5LwIS1rB+W1yMazfbNaZlhahdmisV17oUYnewt5FQzI4ZrrATA7HlhWUyGADjzMFObxfnle83KSApx75CHe2acGDOiN0JVHJR5ZiqK/RidNAT7KgLesLsTP/zrp6bX0hkz7HN7PVrSw+pgQyIIgGNxPeVY8fqrigbmAzJmCgimcSiRGk2mdM2WUrN5OEqawLjr3+fh/U9yldEkemaYgDltmElYLNmkBuQ/1NQVjuLo37yJcx54z/J9UzaTIswkembEHbNq8cgkTVjXdUcF4Nh1HFObNGYynHjkXmG8x5RN1+xEmMmZZqZXYaZeama+THqyRgjGTDZbGmzZ082/k77WFGELarpnVRT/AjB5Z1LmDKlqOPsu7cJMzZ0hxPWEQLaxuhiAcwNQNAqsBcByNhMT0jsXALMQjlWYSf5urbQ44vzDEheaWtMb/Jl4ZkoDXowfWgagbyLg7nAM//vkUnSEojhkzBBMGJY4Z7pnSGyRo2nGxsq2a7bHSM0GUp9j0evV2zYpuYCMmQJCrLYKGBOPbBk79cyEhDAT88zkogpwOBo3SpMX+flikW4X1yVkb3mEQk35FgEv29yC7a09+GSrtcAtHEuGX3zqNGT2nQV9HmiaxrNBrHZEv3hhBabfsgAbdzsTCTZ3hk1/L71nJrGrzlgzIzSoAxLFtADrukfsMvkEHZG8G5YnfqeGtRhm6o0x0xOJ8XDJiKpi3gwzmwLgj7fs5f/f2w7lQOJasrGmCwkzLQr7PACUO29VnRm7MBO7X4aUBlGRnD+cXjNxkXMiAC6y0WjIME/MiKri5PnN1ykW13mIm53fak4Rw0yscrkzz4zx95SamZBRM4wZHr31zOi6jp//czlWNbWjtiyI+y6cgdqyRFg+XYsaVYucmEX6vpiRKOr8ZAOTeeGB3lcWzwVkzBQQXRGjIRigbjSZUgFYIRQWS+qzCru58MyIk0lZkY9rftJNfN3ShMY+t5VLeM2Odpx8z9t48dPUaqLZ5uMtLSljFHFUNE/omg3AlNEk8+GGZnSFY/ho4x5H4xPTsgH1dWZjZ27u3mpmirin0LpqrLhw+oWCW/JuWC6F79QzI4aZmnthKLCQR7Hfi6oSP9fMZNWY2dzC/393L0NhgOENAYDWbvvziH2ZGKoCmil1ZhxUpWafY2h5MOPQnGgUhCwKFLJnPCjXmUmzkQlFjbpKDdyYMY9J/F5ry4LK87L7M+jLTABs8syk0auJnpneNpx84dPt+OvSrfBowL0XzMCwiiJhPre/R7rZmsJCxWLIW64sL4SKPcmwFJDGM5PlTuN9gYyZAiKlnYFi9xSXPTOK5mFi1g0PM+VAANwmCBG9Hk3wzKQxZqS6Ouxzd4dTJ9g3Vu3EqqZ2/OWjTVkbtwpxYbIyZiyL5tn0ZgLsFw/mQZGNFBWiXibx+/YT6uikZqatJ5pRNptsbKoqAJuNGbWBxxZCdk2camb6ms30pZDJpGka15hkUzMjGsByoblMEAWV6TwzogCYofqO5A2Q38a4ZjDjt7YswDcoThvIyh4O+VozbYyhmXEmABYNl+Gs2rjCmAl4PTwUZW3MGF6LuoqE0eMoNdtBNhP3OgcNz8y6XnpmXlu5AwDw7dljcfj4GgBAVXI+39uZzjNj9q6aM96k51jy3qk8rGbNDHlmCAvkbCafwuOS6pmxVqiHhaybquKEJZ8LAbColwHAU7PTNaWTBabcmLGYeJiCfuX29pz29NF1HcuEkIGVfsecmp3qHtd1nRugbNGwq+vB/oZspKj4UjpOtcCwCbWusojvsjLxzsjfj6oCsHjf+b0eG89MYhIcmdRf9CabqTsSy7hzM7teI6oTRl22PTM9kRhWbDNK9u/uwwQvCirTeVF59V/BM5MuaSClnYFN5iC7V0TPTDjmrA2EXE1XJcjldWb4wml/7rakgVcW9AmaGfN16hA8Vqp7ERCMdZ+Hh5l2tvfYzi/haNyUBae6F5kAuCTgxbihRpi3N9mkzOjfp76cv8ayP1vSeO+6Jd2bTyisqPLMsE20KiuxjYwZIh2qOjPyhBOXMhNU4ShRhMrKuLfmJMxknlTZYqFywTK6pHhukZ0xk4zT7ukM90mTkI6te7tNYQI7z0zQ57X0QogGi+GZUWsU2N+QjRQV8nHpRYg+DE2mnmZy7WQBsMpTyIwbj5a4Z9N5ZkYmjQqnFYBlnUym3hlmJI6oSixYbGFWNSnMlM+3tZmuSbY8M+kFwGwTYbRoSF/OwRz2tA8zGcZMqeD9cWJMyuEH+VrLAuBghp6Z8iIfn29Sw0yGlsiu+FtIuL+HlSfujUhMty3MKBvgqirnogC4vMjPPT+90c0wbzoLLQEQNJDpUrPNYSYWhgTUiSXsHlIlN5hSsymbibAipQJwmnYGHimbKcVtyESoXo/hlsyBZ4btltikatSZcaaZ4Z6ZAAszpU4Q4u5rdS/78zjhv5v3mn62Gku63kziwsYWjaCNALgrU89MMhzF9ABWHrBw1CiWVRzwGsZMBjspueS8KlTG3dNeuWaIdTYT88y09UTTFm0DUqv+ZloFmKdlVyb+brZTsz9O3jPsPu6LZkb0aLSlFQCrw0xy5+yUFigsNdtBmGloWTBR/NFhG4h4XOc7dnZN0nlm+D2TxutjNmYS842cmi2GvVkYy+o5NvUd83m4qNZONyOHRpXtDKSmwVwE3IuMJmZAiX3FmGGTbj5n15l5+z0ejbdvSA0XG6nZAJRlJ0xhprZQTj3lmUDGTIEglvaXw0xKl7E3jWeGCbp8muGWzKFnpkLyzKSLr3cLrljAmPisdmfihLVqe+6MGVEvA1hnCpkFwKm9mcQFIiCHmaKpiwx7bVtLj6OCgawA3D51Zckxpk6o4uRd0ktjRo63qyoAR4SwGwClZ4YZXSwLBUivCxG7fbP02eYMC+eJBfMAZD2bielljpxYC6CPnhlhp9sesjf2rATAPkUBTZVmxi7MJHpmANEItH+u93SFEY3r0DRDfC5XAebGjFxnJq1nJnGeiiK/4JmxDjOVBX22WhzuHUrer8w7Y5fRxAxpZtirPTOGABiAIQLuRVsD5sGsEj0zDktt8FpeASPVmntYU+4RFmZinhnrMJN4vUPRuGWdn3xAxkyBIBaKS81mst5lpXpmrFOzA4JnJhcVgNt6ZM+Ms6J5bLEschRmMsa9sqmtjyNWIwo5AUWxLVbmX5HNxDwXPo9m9MLxWRcpEw2RcCzuqMIt8zRMTO72rBYXlhnHivb1yphJ8cxYe5fEvkzi8bIomn3WiiIfN3zTiYDFvkzjhyW0B5l6Pli1ZGbMGJqZ7JQAWJY0gE+YXAcgEQbr7W5V1iDYLRSWAuA05RzYQmXXZ4thCIAT9w4XAafxuDJjoKY0yD0IqWEm871V5MtmmMmov2Pn8eFjSH4untFkU2uGGdbsXuoMW3ftNlKzE+fmIuAMPTPRmGEsVAmemSrH2Uzm2mWAUGIhjWdGZWDK1zvT+lW5goyZAsFUdtpnFmul67Oi2o2JmpncCoDNO8SSoLMwE1twSxyFmYxz5SrMJAo5G5ITm51nJqCoMyOnZYv/Lxeckw23dBlNXeEoNwAm1pXz11KPM4fwhpb1QTPjN9+PcghDrE8BQKlTYItMScDHG4umux/38F2pn4s0MwkziQUGWXiLF82z6BmUKTvbevBlSzc0DThuv4QxE47FTbU4Mj2fiN1iZSUAVoWm2a6bbYB4yNAuzKT0zNh/Nqb7qasIKr1g3CsibWSseiiJiBsntnlqD9kJgNUen27JO+Sk1gy799i9FNftm1gyw5l5ZtZnqJkRjVmmkwGMkFOmdWYAtfbNEACrNTOJTu3mhI9CaWlAxkyB0C0UefKkyVJiAmDjuDSp2T6vY7dkb2ATDCusVZbMZkpXNE8uElhsU+BKFJ2t3dHhSGuRKUzIWVsWxISkoWBfZ8ZrqZkRNTUMlQBYNtzEnktWMF1NWdDHwy5Wi4uc9s4WpEwmHlkAzEWjUksGsfovYLinVZqZ0qCP7yzTiYCZ2HdIaYA3I82k1szujjDC0Tg0zVis2CTsNM3YDubJm1RXjiGlAX7u3orUZc+MnSfVSgCsrACsyGaSawYxwtE4nyuYIVzq0JhhxkBdRRFPg0+pyMt6M/kkL0CaVibixqlC4Zlh18UcZrLyzJhFyPUOjBl2vzL9FWB9PTq54W72zGza05VRtW9m7JdLXdHZ89PaHUn5rkWsjBlVs8loigA4daPWGY7xOkjMQCuUjCYyZgoE7g4MiAWw7G861s7Ap2h7EBYWGWbMhKLxrLcLSPHMBJxpEuRsJjvNjDhhhWNxbHBYLTcTmJBzxqgq7i3qtvB6WLYzEMYsdsxmqLJHZINP7IZthViWny8uFt9nl5TmP6wX2UypgnTV/Wje0al2w8x4KAv6jJ1lGuOa6WNqSgOoSS6qmWQzMeNvWHmQG5eligW2NzCN1YxRVQCMhb83upl4XOehHWa42e28O6zCTAqRtlw13NDMWC+s7Lr7PBpPgXYantvhyDMjhZkyzmYSPDM95lAPS50uS+OZYZ7D4kDimPrKZK0ZO89M0rioLQ/y+cpq09YlbSaGJdPbY3Edm5qdz13MMyeGmACjlYOu2wvFuyTvKgBls8moLAC2CKEzQ9Hn0bgeqlAymsiYKRDkgnmATWq2FP9WZjMJi25Z0Md3ZelqE2SKvEPkRfMyrDNTpAgzRWNxPhmy7r2rchBqYrvs6Y1VRsjLxjMjhpl6LMJMQcEzwxZSeVcmn9+pZ6ahqki4zlZhJnM1aeaZyaQGinxPqkTM4ai5po5KONjBPTNex9kYzK1fUxrEEOaZySDMZFwvYyct1kyxStnNBG4AN1YDMPQlvTFmROEs2/XaLVTtFmEmdQVg85wRUIQ9GaJehnmAyxw2kGUds+sqipRp8Km9mRzWmRFCHOxzx+K66TkyhZlstDjcG548Zhjvz5TeMzOkJGA01JU2PLqumyoAA4m+WeOT9WYySc9mRfHEtGzAmNMBe4O3R9rUAHYtL+RNSapXS9y4DuuFtzeXkDFTIMheCkDtcZHj39y1LBfN454ZDZqm5SzUZHTMZp4ZpwJg84OmKpon7uoOHjMEALAqByLgZcIum30PlpoZoe+SvWfGKFCl6lIsG25b02hmmKZmRHUxL05o5ZmRr60oAHYqTpUrAKsWStkTFVR5ZsKGJ8EoFZDGM8PCTGUBnjqbSTYTL5gnGDOlwjPWl1BTNBbHp1sTGivmmaktT4yxN4Xz2KKQ8ELZZx/G47qRmm0qmmevs2Oha2NBs74X5EwmwPAypNPC7RTCTOk9M3Jo0mk2U6JtCvu8orHEtURBn22LFB7qYgJgJ5qZ5PdRXRoQGuqazx2KxnkoRpzPx/dCBMwMlSrJmAEM74zdhkDWzgHqLFknnhmxDAfL/qIwE2FCFlsCxk2V2s6Ave9UM5M4j5ObvzcwAV6F5JlRKf0ZchhDZcywiarY78WUEZUAsp+evSMp5PRowAEjq2yrEbOHO6ioMyNfd0CdPSIbS+lqzYiehlKhO7l8nQ3jOHEM8xhkIk6V70mWkaXa0dnF2tk4gUS4wmlvGVOYqTTxGfZkEGayMmZ8Xg//TH2pNbN6Rzu6IzGUB33ck2J4ZjJ/xpi7fmh5UdqNR1ckxrO8yoOCZkbRzkCtmYlbPqNiKwOGUwGwGGZSaWbYvdHbMFNFsR+apgmen0jKMWVFPqEYn7ryNvPMMGNmb1dEOQ7umSn1842CLMAXn2lRNtCb9GyrGjOM6tL0zYPlORZQi8Qjcmq2RasW4/r7MCxZCJDCTIQJOeQC2LUzSHpm0mQzyUJUtoBkuwqwKpsprtu7jeW4smoXxUSQFcU+7Jss6Z3tMBPTPuxTV46yoNEs02k7g2hc5wuI3JeJHQtYGTOJa8cWjXRVgLcKizPzzETjemrKt5SSWeT3cs/Zrg5nk4+ccSIa1+ICKIeZrHQKoWiMG+WlgmbGeZgpwMNMuzudpz5bhZnYGIC+VQFm98z0UVX8WexLmIl5ZoaVG12qVQJgUbvArjegrgXENjrMmyt2RbYSkIpNJhk8rJJWM9OT/BwOPDNynZkMiuaJ/xWzfrhmJujnAmMrYbER6kocU1Xi58+sqoQBux+rSwLKelrM2Av6PHyjCfQuPZs9H2ImE8NJ82ArLaZPpcVkLVg8Zm+ZuCnhYb6g30gqIM8MIWIdZlLEv5M/pvXM8DBT4pxVOWo2KYryAHNNAzuXtLzz53VmwtaemfIiP/atrwCQWPTberL3OT7ewsS/1bZjAQRNjN9j0sWw622bmi0tMuwasF1ba3fEVji9TTBmSoUJStYnyQUJAWQ8+ah6MwHme00Oq1lNguL4SgNeI5vJcZgpyEMv4WjcccE7ucYMg2c0ZdjnSYQbM41V/DU2xl4ZM1xrEuSlFFT6tg7B+6BpxoLJ68yoKgCzQps2PXqA1BozgLOeVtFYnH/2hGaGpU87qwAcjlp7ihiyPk8UATM6BF2N3XNsCIANXQvzzqhEwMy4GFIaUHpm5LRsBtPMbNjd6dgYZ4aKfZjJxpjh60p6g9cosaAW8ps1M4lrtYs0MwOTK/7yX5x+7zsZFScDrD0z3EhJaWcge2bS92YCgMoc1JrRdZ3HUSuKfXxcTnQzqmwmObTTJsTJK0v8vAZMNuvNyFkpJTYCYKMYoddkzDB3bFhKVQbUAmB2DYaWB/nkpAo1xeI6FyeOqC6GV9iVy4uylXHMJx+nxkxKF3dxATQ+hxFmUntmOoTdqs/rySDMZHhmSgI+PhantWa2WYSZAMPL0JeMJsMAruKv1fJ6Pr0JMzHPjBFmUgmA2yQPBUOls1NlMwHWzU/FJpMMZjzb9Wba3RFGXE/8nZrSgFHTR9p4pAqAjfvUqm4LQ+WZEcNMYpsHu6J5cpgJgG337J5IjD9X1aUBoW2LtWdGnMsBoHFICTxaYnxOswqZMWMZZnLwDBnrSvqMNyfhYrHODwsztYeiWc+Q7Q1kzGSR5o4QXvx0Oz77shXfe3JpRpkSVjtpdc0I8/vpejMZYabsN5vsiRg9gMR6FypxnIi6a7b5c8i9nyZlOdSUEHK2AAAOTC5MxQ48M4HkwsyuP3vo5esOqLtmiwI95j1QFc7b2d6DaFyHz6Nxw6RUcZ1lATCAjKsAp/ZmMj6PuJuPpISZjEmQ7UBF8S8AxwJgHmZKejwMz0d6Y6E7HOPGkGzMlDnwMtjR2hXB+qT2YXoykwkQwky9cL3z8EyFYdiqQggdQihFRKWzS9XMGIapVc0muWAe4Cw12wgxJbKgyi3CTLqu87AP02UUCc+KSq+SKNhm9gJb1ZoRDZ4iRX8hwDBwRIPfrnAe2wT6PBrKgz4e5pWzCdkzzQxmRtDn5U1WNzjUzbC/yYpMijgpb2BZZ0aV8eYoNdvQzJQHjetbCLoZMmayyGdftvL/X7ppL3769+XOM0ek0v6AXc2IxM9p68xwD0Li/Vw0m2Q7Io9mzhIxCuepF4uUbCammVGEmZiOYN/hiVDTqu3ZyWha1dSOnkgc5UU+jKstM43Fvmu2eSJmD72oqWFw8aycmi1cA7bgqnQzzMipryziBlSJIj1UFgADmRszsrHpV3hmuHDQY64cChjXShT/AuD6l5Yutf5F7MvEjjdqzaT/DKwnU2nAy72GjL4aM8uSxu+YmhI+NsBcZybTlgYmz0wazQxPPw5ae2ZkA4VtdNh9o2ma0DjUQjNjEWZykpptGGTmDuUdUp0odmnEprpsbCqdXSga55sBZiTJAuBYXOf3flnQp6xdFYnF+XwpembqbdKzeZp0aQCapik9M7IWUGRsrRFqcgIz9istNDOVDsobGJqZ9OtKigDYogKwGObTNK2gMprImMkiy5PGzMRhZfB6NPztv1vx0KL1jn5XLu0PqIW9ssvYp7C05TBTLppNih1qxdh9usJ5um7UhmCGg6o3kxhmApB1EbBYX4aF7uwKYsnC6qDf7I5lVVWdFM0zroEPI6oSE4PSmLEQs3LXf0g1ofbOM6PrutC7JjF2TdMM8aDJM5N0T/vMnhnACL2x3TwzZpiLPBLTLVPLAXNfJnY8KybnJMy0MblgjKwuMd2bgPUimwmfCPeMCEvNDil0PW+s3on5//rcsgosFwBXGAJglb5NLinPSNuc1uMRjrW+JwF7z4ytMZO8t+pYC4QiY8FnY+gJG39PNCS4WFfhmWHzgKYBZQEWZjJrZsRrXlakrgAszjFBQUDN+jPtsHhG9kqZRWrPTKqXnZGpMdPaZQiOZZx4Zni9KQfZTHJqttFiwsIzU2QUAwQKo9YMGTNZhNWcOO/gRvz8tP0AALf/ZxVeW7kj7e/Kpf0Bm6J5uvl9NoHpOkxdl+WsmlwIgOVWBgxe0E2xUIWFnVFazUy32bXMRMCrm9rT7n47QlGs3WFv9CzZuAeAeWGyq08RFlKzxf9yzYxNarZcPl40OkYk+72oNDOWNVMUfbC6I6kTaib9mcIxoVaG335Xx3b2zGDzeTSwJA7mrerkYRHDC8eum6qlgdiXiV2/mgwK5y3/MuG527+hIuU9J2JWO1ZsS5yblQpglASMTDirUNgvX1iBx97biAUrmkyv67pR/XdYedDUGNbqHreqMQPY9WZiGyDjNVXto55IjC9a1mEm9TUTa8wA5urE7B5lISaPZvb2GfoW6zlDbKzJNh1ys0k2NlbQUtUmgT3Xmmb2JDKP0g4Lz4yYyQSgV56ZcUkR8PoMPTNWxowxn1s/C/G4zo04c5gpVZag67rR809OzRY1M0wfmZyLCyk9m4yZLMI8M1NGVOLiWWNwwSGjoOvAVU9/jDVpFlQrwabfocvYK8a/BWNGFKoCMDIkshpmMhsaDLZrUU184u6Ma2aUYSazwHjc0FL4vRo6QtG0RebmPbsMJ97zNt5bt9t6HJEYXlu5EwAwZ5+hxvhtiualeGakMJOVZob9f4pnRtg5pdPMWIlZVUJrq2JZmXhmTLtnseOuhYdJDjNpmpayI+6QwkxA+tRSsS8TI5OWBsuTTUP3lwwOAMqUYaewzu37DU81lFTp2eFoHBubE+0qxJA0kLgGzKgQxeDhaNwy7KISAKtaoDA9hNeTek/Khg+7PwI+jymMZQiA02tmmJA26PPweYx5wUQtlugxs+ujBIheAWOuYfMO21Rxj1Vy3EzEKmvf2P1d5DOPwS6bSQ55qrKZ5L5MIpl4ZnoiMb6xqypNDTMZ/c2snx/RgLNKLBHDi+K6kZKaragADIDCTAOR5o4QtrX2QNMSO0FN03DLmfvjsHFD0BmO4Q9vrLP9fdtsppR2Bub32SICmENSqWGm7FcAVrm72aJlVWofMMJqfq/GF8h02Uxs4vJ7PZgwLH2oqbU7gtdX7YSuA09+uMnymDdW7URHKIoRVcU4cJQh5FSFvHRdT/F4yap/u9RsVTuD4oBhzKg8M1ZpxpnsDtkuyokxw8bl82iKcJmFAFgw3mQDj90HYjp5Og2XWDCPYXhm0n+Gz9nmwsIzU+4gZKKiIxTFpqRRYm3MWFcB3rynkz+fn39p1nuxxaC6xI+gz4uyoI8/31Y7b6Mvk3mR86rEnbpZAAyoCzny6r9lQdNCX5pmgwIYBfOYh0MsbMd+j3sLpGwfVeVohtVck+KZ6TF7rKzE6IBQ/ddvXgJFY0b2iHHPTPIeVNWZ6VYIgAHDmNnU3GnbIBIw5mlvUnAsUy00m7RCNOCsNiTiJlk0aFM1M1ap2Yn7rjcNbHMFGTNZgu20xtaWmhbdb80eCwB8R6bCqjcTu+lU7Qy4Z8ajpbwHpHoIRGMmXXimqbUHy5K6ADvkVgYMJgZW6SGMLuHG52WfPRrXTROsHKcFgP2SupnVNm0N3lqzi0/qr67YaemR+tcn2wAAX5k2nLuuAcMISOkTFde5joMZMYY71iwANvVmUojuxDDTyKSR0tTWY6ljEFsZMFRGo2U2E/NqdIYtzy9iVZEaUIWZUgXP8i6702KCT9efSezLxGDZTOk8M2xzAQCTbcJMcv0TJ7B7rq4iaPIaMVSemXU7jd348m2tpmdQLDQHJIwAOxEwO/cQaceu9uaadXaA8V3KYSartGxA6GkVjSvvnx1SmAkwDIt2C8+MiF0fJfH3rY2ZpGdG6lclerrFcInq/q6rDMKjJT7jDmmBFvsyATaeGT6XpxogDZXFCPg8iMR0pQeWwYzYqmS1Yxl2f3SEopYaLLYhkYv3GQ1jhQ2JsG7Y9WZqkwxKrpmhMJNz7r//fowdOxZFRUWYOXMmFi1alO8hmWAhpqmSS3tEmt02QxbDAmbPjDjxxVI8M9bVPA0PActmShYdi8Uts3QYO9t6cPp97+CsP7yLVz5vUh4HiL1SzJNqOrGglUC1SCjsJI7PSpfD0rNX2nhmRK1SOBbHv5OGizj211clQkynH9Bgek/0EonXXpwQVZoZ695MqjCTManWlgUR8HoQ161TQ40wk7FQlCr6M8mNJoGE8cDumXTGAC+DLrnKnYSZgNRdnWWYqdTeUyj2ZWI4bTb5eVLTMqamJCUECjgvzW8F08tYeWWAREdlILXWjNhgsKUrYgqR8kymCsOAsEvPZtk2wyvNKeeqnktyajagLp7GNFViJhNg9vKprhv7HPWiMRM0Fl3AMCSCklckXbNJuWAeYMw77NyirgZQp3xbbaaAxAZlXLKA5UppoyT2ZQLUXlEWOrbyzHg8GsbWMN2MfSVgFj6SO2YzEi0dEv9v5b2zSssGrBNGxL5+fkep2Uwzk1ntqlziCmPm2WefxTXXXIMbbrgBH3/8MY488kiccsop2Lx5c76HxvlMYcywkMCu9pBt3Rm7dgaA2UiRU7OFw0w3qNgQEUh4S9gCq1pAIrE4rvzLx/zmvP7vn9la3Va7pcTfsl8srHZGAa+HfxZRN2Pl/UmXnh2NxfHm6l0AgFOn1gMA/rp0q+mYhSt2IBSNY9zQ0hSRKJsAYnHdtDCIOyDmiZDDTLKmBkgvAC4OeOHxaBjOMpqkXVtrd4TvOhtMmhnnnhmPR+MhkHSTj9X9KH4O067OIsyU4pkJmRcZQIj5ZxBmqnWYms2MGSu9jDiO3mQzrUj2BZusMmYUnhm5W/Ln2wzdDHvGmGcGACpL1J4ZlnY+vLLI9LoRZjKLO+UMSECdYbe7PbWVAZC4n9nvWHlcQ9EY96bVCUaZ3J+J1XcRM5kAMSSkyGbqtvPMSGGmpAHl83r4PCoaSXwM/lSDg2VLrpTmFrEvE6DOZupUGBEMp7oZ5km2qv4LJL5LZvBa1Q7jadkpz3Cq945tSDTNKMYqz2sxoblpqmcm/8ZMqh+sALn77rvxne98B5dccgkA4J577sErr7yCBx54ALfffnueR5fgs62G+FekusSPIr8HPZE4mlp7MDpplct0W2gcfILbPhrXwZ59eWJiKbPRuG6tmUkKgDVNQ2VxALs7QtjbFU4p8Q4Av355FT7auAdlQR/qK4uwbmcHfvTXT/Ho3IMtXZ1WuyVAzLKxnpis6qBomoZivxed4ZjJM2Pl/WFhpg27O9ETiaVMSks27UVrdwTVJX7MP2N/LPh8Bz7Z2oo1TW3YJ9kj5d/LtsKDOM48oA5aPAYgee10HcVaDAEk/m53VycCxX4AOsI9PShCCAEv4Il2AbqOCk8IpehGrKcN6CmHJ9yOcnShTO8EulsA6CiJt6MSHQiE/UDXHv53guE9GIIuVMRagA4N+5X1oLO5Fc07NgNDo4kx6Tp27mxHHfagstiHku4dQDcA6KjTd6EBu+Hv8AMtZWAxsKrwNni0KCp6vgT27OWf7YCSZqxtb0fH9lVAUY1wxXT+u4AObeceTNC2YqynBNi5ko93IjYhoHXBv6sSKErc6zUd6zBZ24aG7jiwPQToOvbDBvi0NgR2BoGSIahqWYMDtJ0YE4oBWzsA6Jgc24gZ2laU7eoAWEhTGEPV7tU4SNuN/cI9wKZmQNcxvDOEQ7WV8HYB+oYANGjG98Z/X0dk3VrM9jTj5KIW4IvUczfuacEczxo0dhQBa0QjQzedR/49AKjYuAInejpxjL4bWLk25diZHbtwqmczRm9fBSxfy3+3YcsqnO7pQnnQh45QFNFl64B4Q+J73LgVZ3l24ZjQUOCTlYCu45TYeozztKFqzQYgXM3PE4/HcWT7Z4h5dYzf2gQ0G8/Q9B07cIG3CQfuGgIsWQzoOuK6jv/xLgcAFH+yFUh6QM6MrMMh3m4MXbkSaC7nn3P8hm34lncPjmqrBd5fZLo3vhtYje5wDIEPVwJlAdPn7ukO43veLxKL7NLVfLzn9WzFQd4ONC5/H2ipRMOOdlzp3YYR4SDw1vv83Od2bsUhvg6M/3wRsLci5dpPXd+Ma317MHVvBfDaMAA6xnaE8EPfZhR3eYGFb2Lylhb82NeMfdrKgIX/AnQdN/g3IByLo/iNt4Dk4j+6uRM/8zVhWE8QePkl09+5rHMvZvpaMHZZKdBVy8dx3q5tONEXxiGfDwW+LMY+HSH80rcdZZ1e4N/P82tx1pZdmOnrwsy11UBrKT8v+8/lbS04zteGCUtLgZ3Vyvtsv90duMe/F/UdRcBfh1jcn8Dd2g50+WMY8tKTAAs5Jt8b0RnGA/5mlMW8wDOP8Pe+ub0Nx/m7MG55KbAjMWdURKL4k383vBqApx4DAIwNRfGovxn+kAd48n7EY3E87t8NDTqG/O3/AZqG8bEYnvDvgRbWEX/sXnhmfhOYeg7ygaZnWtmpnwmHwygpKcFzzz2Hr371q/z1q6++GsuWLcNbb72V8juhUAihkGEptrW1obGxEa2traiosN5N9YrFfwI+eRaRWAyffdkKDcABIyvBowvJS7uqqQ2haBzja0t4aqp8467d2Y5IVMeYmmJuScf1ONbs6IAGHROGlfHzfrEzkZI8uqaEZy9s2N2BuA6MHlKc3Ino2LKnC7G4joaqooRmQ9exvTWhxxhWHhRcsInJqjsSw94uJkQMwOcB9nSEoCPhFSkR3cLJ8bf3RBCKxlAa8KLY7+Gv90Tj6A5H4fd6UBbwQHyYgYQmpjsSg88DlPh9/P2ucBTQdRT5PWC/FYoYpfCTSejQkdxR6rqRCiwsKrqe1LZogAcFfYsTBEEMDI6fDxzxg6yesq2tDZWVlWnX74L3zOzevRuxWAx1dXWm1+vq6tDUZK3nuP3223HzzTfnfnCtW4GtH8EP4EC2zm9LPWxfIBHQ26M+1UR2zF7jNQ+Afdl5hczi8RoAzXzsWPZai/FaIzuJ4C0dzl6z8HAWAyhmhlgyylHHfg4l/0mUAyjXAESS/5IUASjSAMQBWESp/AD8bFMtRBlKkPwcSc+txs4DAIKTRwMQYP8jbIzF9y0cSa4hDo13OGY/x+M6NE0z0ms1DTE9oXnweAB/0gOnQ0NPJAYdGooD3oT3InmunmgckZjO63AAGsD/jMbPG47F0RGKwefxJOPjLLMmikg8joriAIJeD6BpaOuJoDsSR1nQn/TIadjTFUZPNI6q4kRPpd2dIfRE9US34YAP0BJZIM2dYRT5vQl3taaZxrC1pQfhaBzDK4sFl72G9bu7ENd1jKopRcDnNY8didtkzY6Et2ViXYVJU8YO64nqWLuzA16PhsnDK6WbxRiD+f8T1+/zbW3QNA0zGqsNb6VwbFsoipXb2xDweTGjsTpxPaMxLNnUAk0DJjdUYvmXbfD5PDhkzBBomoZPtraitTuK/YaXY2gy1LR2Zye+bOnBqJqSRGXq5N9q64lg8cYWBH0eHDFxqGmMm5o7sXpHB4ZXFmHqyIQ3JxrX8erKndABnDi5PuHR1TS8v74ZzZ0RzBxVjeHcS6vhnXXN2NMVxkFjhqChsli4NhpeX7UTLT1RzJ5Qi7ryItN7W1u68P4Xe1BTFsSx+9bxYS3e1IIvdnZg/xGVmDqiEut3deKDDXvQUFWCoyclx69peHfdbqzf3YUDR1Unwr7S9V+0rhnrdnZg5ughOGBkwisYjul44oOE3ODiWWPw0ca9+HxbG6Y3VuHgMQlvxl8Wb0FbTwxfnTEiKUzWsLKpDW+u3oVRNaU4bepwPgYgUeDx0fc2AgD+d854+Lxe6NDxhzfXIxbXMXfWWFSWBNDWE8GfFm2E16Ph6uP34dfhmcWbsWVvD06f1pAIWQnXCAC2tvTgyQ82oaLYj8uPnqC41zS8unIH3l/fjMPG1eCEyfWmMbL/f/KDTVi7swNnTh+RyMYU7uPl29rxzOLNGFVTisuOHMffe+mzJixatxtHThyKU6cmtII7O8K4c8FqFPm9uOWMKYCmobU7gl+8uBKapuE350zDly09uGvBapQV+XHLmVP4eG/69+do6YrgBydOwph9DkW+KHhjhiGHOHRdtwx7AMD111+PefPm8Z+ZZybrHHAeMOIgvPjZdvxj2TYcMrYGlx41no2YDRyPvrsBb63dja/OGIEzp48UTmAsJJc98V90ReL4zTkHJOPgGnQA33j4I+jQ8OD/HJhsFKnhGw9/iFhcxx++cWAy00PD3McWozMUwz3nz8CIZP+PC/7fBwjFdDz4PwdiWEVisrrtpVX4aONefO/ocTh5/8SN3BON4drnPsXmPd2Y0lCBX3x1Kl8A4jrws38ux7ItrZhYV4Y7vz49qZtIPEzXPvcJPvuyDTecui/mTKrjn2vRul2Y/++V2L+hEr8/f0bKA/3vz7bjrgWrMWv8UNx29lT+3kWPfIQNzV343XnTMXN0NXa1h3HW/e/B69Hw1o+OgaZ5+LE72ntwzgPvIxzT8cD/zOQP86bmLpzz4PvwejS8eu0clAX9CMd0nPy7RWjpiuD3F87Ao+9uwtJNe3HN8RMxd9ZY/l2J39sxd76FXR0hPPe9w7Hf8MTkuWJ7O8558H0MKy/Cmz88BgDws39+jueWbsU1x0/E/86ZgKue+Rgvf74DN56+P/7n0NEAgHe+2I2LH12CSXXleOnqo/jf2efnLyMci+O9Hx+LhuoS/N/iLfjR3z7FUfsMxZ+/fQi/U+54aSX++PZ6fGv2GNx0+v789Zc+2YbvP/0xDh9Xg6cvOwxAwlt2wPwFAIBVPzvZFIK775XVuO+NdfjmgaOTE5I1/1q6Fdc99wmOnjQUj33LGMclD7yHJZv24sGvH4iTpwwHAPz8mY/xz2Xb8LPj98MlR44DAPz4z0uwcMUO3HbqVFx46Chcev+7+HhzC/547kyctH9Cw/TByh34zuNLMHVoJf79/SNSxnDGLxZiTziMl79xJC+UCADf+s0b2NTchefOPJwvWCKL1zfj/P/3AUZUFePdK461/Hx7Wrpx+q9eh9+rYe13TzW9t/zLVty1YDVuOG0/XgKA8eqn23DlXz7GtMYq/POS2Zbnbt7difPufBMl8GLFt04GACxZtxsX/ulDjK0txX++cyS+edMriEV0fHDWcaivLMKVv34dWyLd+Ntph2Po6MRn+vfCNfj9a2vxP2NG4ZdnTeXnf295E763dimm1VfhiAvNY3j93Q24+d8r8JWG4bjv/AMBAF09EXwveT+s+fop8CY9sn/404d4p2U3fnfwdJw5fQQ/x8/vfBMbIp34v2MPR8NY8/X9wwPvYemmvXhwpvH982vz7gbMX70CpzUOx7FnHWi8/tJK/HHbelzSOBZTvzIZ77y/ETeu/RynDq/H0afP5Me98PfP8HTTZswbvw/2P25iynV94s9LsGDbDvxy6hQccFjiufLFdfzy3Zeg68DpRx6Hv3euxl83b8WPJk3CwUlD4ZHP38K6jg5Mm34Y6sYnQqsfvrsBd3y+AqcNG47Tjj/Q9HdKdR2PLFmIvV0RHL3fEZg6shLd4SjuXPAKAOCS404Cgj7oXRH8/s0FQAz439mncI3ck58uwvJYGw6adjD2nTQs5XOUdIbx4LsLoXUC3z70ZEvdDgC88uUneC62FUPGTcIJh0+wPGbpxmV4fvuXaBi2Lw48dLzpvdVLt+LJDz7BUVVDcdnBxjP82e5VeHr1FyiuGYtTZ04GAOxtasf//edt1BQFcMuBJwAA9K4w/vqvhQCA26eegq2b9uLv8Q8wrqQUmHY0P9+yRe/gk45WnDZ0JsYMq7ccZ39Q8MZMbW0tvF5vihdm586dKd4aRjAYRDAYtHwvqwzbDxi2H/61ZAkWxhtw6L77AZPGpRzWvmUt3ly9BvWeRpw58YCU93Vdx2uRMGJxHZ4JxwKsRgOAD9GNWFxHz8gjUJl8/f1YG+I6EBs1G0ju4j71dmGPHkZX/cFAXTl0XccHseZEqGXUofy4vUOCWLZhK74ITAJGJh6Q37+8Ci82D8ew8iAennsEfIII0QPg+9+YhJPvWYQVTRGMXVmMa/guBPg82ow1ejtQtz8wzCg6p7fU4Au9Df5YOTDUOJ6x0+/FRr0NB5Q2AEOMa9YS/BJb9Va0FjUA1XXYG27HlxiK6iI/tKpRpnPUVQJHHtSFv3y4GXd/0I4npyQezAUfr8cuVGH2uBqU1SQm6QCAOTP2w6PvbsTv39uLxZuj0FGOEw6aDJSkaocAIB4sR0eHF50oAYKJRa1bi6ILRYj7S4BAwmj0BooRQgBdcT/gL0JX3Icw/PD5g4AvId7z+YOIwYtQXAM8yRT0WDwpCNZQktQYqWrNsOrSqu7PYgVgpr/yaOb0cAAYVZMYc7q0+3QCYFHIbFUk0BAAyxWAnQmArfoyMWpKA9jU3KUUAbPMQqvKvwyWLhyJ6QhFY1zsCACPv7cRb6zehbIiP+69YIbp95godPJws5EjwkTWXeEYusJRlAR8XPw7fmgpivxeTBxWhlVN7Vj+ZSvqKoJGKwPh2atSZDM1JcW/DZL4F7CuACxmqvisUrOltF65bL+IUaQxVQu3wyIjC0jtg8VTs1MEwOnqzKQKgD2eRB2b9p4o2nuilj2rrKoAMwGwnFEFJDbO+w2vwHtfNGPl9jZMHVnJhc0BnyellxyQeObY/c9ai8jCW0Z1iR+VxX60dkewsbnTZKiLsErtqmwm8T2rhq1d/Bk2f0arwopRqS8TANMzEYrGlckeCU9ia95FwAWfzRQIBDBz5kwsXLjQ9PrChQsxa9asPI3KjEr8y2hI00AwEjOEu7KVziYftmDoum60MxA8U3KBPVM9FK9xTqPWTOLh3NUewqPvbgQA/OKsKabJlDG8shjzz0gYCk99uNnUMsGqBgwg1D9R1plJ7Rki/swab7Yr2iUw/nfOePg8Gt5ZtxtLNyXieK8mU7KP29ds7H7twIRX7KONe6DrwEGjq1OMA8uxCJOrVasCJ72Z/BbF5rqE87LvndWQ+XJvN08Jf++L3Xh/fTN8Hg0nTjbvfEosssbEgnmy9/KYScOgaQnjyK5cQI8iddWqkWE4mvp55SZ1nVJvJsC+t4xVXyZGDc8Wss6C+lzRakBELN4nZzSxlOnXV+5IWVhXJjOZVGnZQGLxZp+fZQZ9keySPD6Z9rt/Q2Jsn33ZiraeKL9OYgZRpaLOzPZkWna9hTFjvVAlLqSYqQJY35OxuM7/nlUWDU9pt2ggy1oAiDVmAKHOjFQ0L+iXjZk0FYBD1mUgKoT+TEa2jXEMr18jzEWqOjMMZmCsSBqv7B4dUhLgz5Q5uyv1+Su1KHQHJIwlntFk0z27xaYvE4NVdW+1SM3usahdBhgZb6YKwFJfJsC8EeqJxJSta4yWBmTMpGXevHn405/+hEceeQQrV67ED37wA2zevBnf+9738j00U3Eu1U6wIZluq1o8xMJsKUXKkpMPM3bEbCVz0zjzcaYUYuGmlJtN3v/mOnRHYpjWWIUTJ1t7ugDg1KnDURrwYld7yFSKXZ3NZF1mn2FVVwcw6pqw9420bGtjpnFICTdSfv/aOrR2RbBkU0JMdPx+5s+zf0MFT7sEgDOmm2vLyBRbtDQISX2ZxP9nDdlY76aAxTFiGqyVB4Wl2nZHYry44R3/WQUAuPDQUdyzwrDqgWVVY4YxtDyIg0YntBQLbGoI8Toz0v1olc4btagzI++yeS8hi6J5VkW/rPoyMdI1mzTaiqgNDq9HU3oZtrYkClx2hmNYtNbcBoN5ZuyMGU3TeHo2q9nCPTPJTDo2ts+3tfJ+RpXFftP1rlKkZjNjpqEy1RC3qhpuVWMGML5L0fBp645wI9LKI2DXn2lHu7mVAUNOgzeK5kl1ZpjRkaY3k+wZEAvnsfmozOSZST2v6v5m7DfcnJ4tV/9l8PRswZjptHn+GONq0/doYt4WO88Mq9Vk1dLAKmMUMDYksTSeGY9H4/eInWdmGG+Tkt/Cea4wZs477zzcc889uOWWWzB9+nS8/fbbeOmllzB69Oh8D40v7OOEyr8yRuG81BLZgLl0fEAKC1h5XBiirlE+Tm3MGM0mt7V046mkeO6HJ05SapCAhMvxqGTvoteShebiQt2B1ArA6h0cYN2LCjBcotyYUbRLELn8mPEJTc2aXfjda2sRi+uYOKwsZeHXNA3nzEwYPh4NOEWK+csUS6ESQOGZkbwQERvPjPi9dFt4UIqSxfOAhCfvP8ub8MnWVpQEvPj+sak6AqveTFY1ZkSYZuWVz9UNUNNXALYPM4k1KnRd5+MTd6t2Rb+s+jIxjCrAqTvBrnCUGw5TGtSeGXEsbMcPJBb+7S3GpPyfz7bz/9/bGeaGhGgUW8EK57FaM+t2sjATM2YSY1v+ZZtRME+q66Iqmrc9GWay9MxYhJnYQuWRnm+/RZiJhZjKg74UIxKwLzbIKubWSd7dcqkPlsqQSNfOgDU5lOdZsdYM8/6IDTitPD4hRUsFBjNWV25vg66LIU9p08Y9o4kx67pueGYsGk0ynNSa4XVmim08M2xzalU0TxkqZt5V8Rm2NnjFuc3oeyV5Zlh/pjy3NHCFMQMAl19+OTZu3IhQKISlS5fiqKOOyveQAAiVf0eqJ856abcto7rpgNTJKa7be2aY+58VzPN6NFOhLLHZ5L2vr0U4Fsdh44Zg9gSx5og1x+6bELOxyrqd4SgPeanqzPRE4pY9SNiEJceV2TUIcWPG3jMDAKNrSnFWUsD4yLsbAADH7WftZTpn5kjMGFWFS44cl1IUTIYZA6LnTC5EmPh/695M4jFWHYpVBh2r8Lt5TxfufCVRr0M1XrGeDzOUrZpMijBj5qONe5Qdqw3PmRRvt6oAbGG8iZ6ZUDTOjWzRmBGLfsnPhVXBPMaQUqMtg8zK7e2I64nCdcMqUhd7EaM/k/H97mjrMW0YFq7cwb9PtksfNcS6qrDIUNafqSOEjlCUG0Hjk12TJw+vgKYlWlewisKy1iStZ6bKSjNjDksDas+MzyLMxL0BFo0NgTSaGdaSQQ4zsQrAPeYwU4pmRqqkLaLrulB9VvbMsDBTRCiaZ6GZsawAbL0ETqwrg8+joa0n8d3JHbMZ/HokN23hmDHf2Xlmxg61N2Z0XefPRLXiuwDUuipAmGMVFYAjwn0etXiGAXOrlnSeGQozuRxV5V+RoM/LFyIr3YxdWMArxcAz9cyIJfUBQ6ewbmcH/m9JoiLuD0+y98owjtk3obf4fFsbtrd285vb79VSJgWxlLeVd0bpmZEMCGM3Zq9Vv+KY8aZKyMfvl5pFACR2Ms9fPhs/PXU/2/MBxo7OFGaKMC+EMW65N5PRzsBKMyN4ZiLWuiGmm7n39XVYv7sTNaUBXHrkWMsxsokqFte5MWXVKkKkcUgJ9htegVhc5/oiGZVnxmrnzz6TuZ2BUc1V3MXLu1Xen0kyTKz6MjFqbfozsaq6diEmPhYeMjEWAqaXaRxSjKHlQbT3RPHuF4lQ0woeYrL3yiTGmPTMtIe5LqK2LMB30qVBHw81vLYq8R3IHg2mTWjriXCdWjyuc6Oh3iLMJIebxf/3emTPDPsujXsynU5D1aakKxzl80FKmEnyzIQUhrIsGhfpiRgGsZ1nxvAUC5oZC8+M0WjS+hkJ+rzci7Zyexu/P1OMGd4bLWb6L6B+/oD0npmOUJR/XjvNjF1/M9W6YlcB2OeVPTPGtUuvmaEwk6tZ/mV6sSFgLwLuUehHgNTJKa7UzHhMx/HOzpKlXSmo32NxHcdMGoqZo1PTW62oLQtiRmMVAOC1lTtNHVRlYygglBHvstjFqfqGyN2q5V4gKsYNLcMZ0xIamCGlAcwQOmD3lhJJvwNYX1e5N5NVKCrgS90Fq4wOpoVgnoArj52g9ASIFaPZ+ZiRVGLj5j5p/4TnStV7S9W7xsrDxI03X6pnJhSJ83EV+T0pC6oqG8OqLxOjhntmUneCXC+TJsQEGLv3dkEAvHVvQi/TWF2Ck5MeLBZqciL+ZYgtDVjYi/X8YbA5Y8nGhMZraIV1mEnXjTHu7gwhEtPh0VLDUoD1rpt7ZqS5wKr5KfseKhXPm0oAzEJMJQGvySsi/g4LU6gMCSttC4P9rkczmtgymDHT0hXh95o5zGQOXQPqZpciom5mT5e1ZqZU8swwUX/A57EM0zHGJCvB7+kMWzbAZZ6WIr/HdoxVNiL6bkUozcojZyUABoSNWiTGveSpnpmEEb67I5y2E3guIWOmDzR3hLhxYpcGChihAysRsF1YQL7xxJtFXBdUnpmA5MqVMxSuPXGS7bhlWPjm9VU7bfUsmmYILK3EgqrQmpxB1KZoZGnFvBMmYfLwClx+9PiURbM3GJlVomcmKQD2i8aMOcxk1ZuJGT8xoeWEyqATu2I3DinGhYeaU9JFvB6Nj5PtllVeLxEWanp77W5L/QMPBSgmwqjFROj3iMaMsTB1WKRlM6pLjLCniH2YSS0ANjYX6Q0OtuCJIRPWE2tkdTFOSfb0WrBiByKxuCPxL6NWCDMZadmSMZM0uNgzK2cSBn1e/gwxTQTT8wwtD1oullbZZlYdsxPHpqbZO/XMdEgblC17DCNQ3tiImhld19VhJptGk21C+Cj1/Im5gfWrSozTODf7OyExzKS4v0X25bqZdi6wHSKJcXlvtDDzzLCNhPq8ifH5eDNOK+/MXgd6GcAwZkLRuGmeAoSM0ZQwU2rGGxMDy558cW4TN68itWUBaFpiblOJ8vsDMmb6gBPxL4Pttq2MGbYbsprsVdlMXo9meqhlhbqVbgMw1444dWp9Wo+SzHHJ8M2763ZzwZfK0DAybSyMGYVXQhbdquK0VoyqKcFLVx/JC7f1FZYFYOWZCVqmIcthJiENVvge2Pvdipi22DPr2hMmmeo9WCHXmkknAAYSAtbRNSUIR+N4a82ulPdVxqZVNlPY4vOK3ior8S9D5ZnZ06kWADNDYU9n2OSpDEVjWLsz4T3ZPwPPjFWYaWR1CQ4ZMwRDSgNo6YrgnbW7uYhX1WDSNMbyVM/MhGHWnhmGHJ4BUkXA2xXdshm8I3LMwjOjCDOZPTPqGjOAkY0mN1fczIyZISUWv5O4znE9cV+pumYHbcJMqqzJxGuJ8zNDz6hunYAt5j2Wnhn1EiiKgFXZTHLWphPxL8Mu1NTiIJMJSFxb9r3KoSbV/GIdKrY2eK0EwHKyh8/r4ZuOfIaayJjpA0YKaPqJs0HIaJJhAsB9LDIk5J1WLCny9Eq7E+6ZiUlhJsmYKfZ7MbyyCH6vhnknpBazS8ekunKMqCpGKBrHy8kQhcrQKLFJ4+xShDFUmpl0YaZcUGyhmbGuM2POZrISCYsLPXtf5ZGbNrIKRX4PDhpdzUNndpRIGRXpNDNAwnNmZDWlhppUqfO87pGwq7MOM6V6Zqwm+CEqz0wyzMRqyoiwBSWuG4XFAGDtjg5EYjoqi/0YWW292IuUWXgZWFr2yOpi+LweHo677411CMfiKA/6HJ27VqiF88VOVmPG3GR2suTNtarxJNeaaVJ0y2bw+cKizoyczRSw8OIY6cDWHgF2r8nPNPPMjLIwZkoCXp611tETVYZ4eGq2pTGj3tQwA4dlecmLrXU2k71IHjDCTBuaO7nXRzauZc+Mk7Rshp0IeK+DGjNA4jlWhZpUc6yVSDzKPTOyjskQT6uyyQDwFhz5FAGTMdMHNE1DXUWQ9wmxw04zs9xGRMwKHPHUbIUFraozI2tmNE3Ds5cdjhevOjKlVLsTNE3j4toFaYyZUkkcJ2Io7a0nntQwU/8Xqy6x2NGFLDxe3BWbnCwj0dSJQQzBsPeNMJP5s9VXFuHD64/Hk5ccaipypqJU8oAZRpL9NWML9eurdqbUeVEKgJn2J2ofZjJ7ZpI6BqswU6m1gLGZC4BTJ3O/18MXeTE9W6wv40TQzkMmJs1M4vlk5RRYyf6lydpF+w13dm5mzOxs6+GLlRxmqiz2Y7RQPsBKA8M9M93OPDNc3GnSzFiLO62qObek8cyUKjQzm7kxkzouTdMM3Uwoqgxh2oeZ1OFmlpXGro18n7F7MZM6M0DCuKwtC0DXgU3Nic8nGxeyZqabe2bSGzN2tWacemYSx1hvCLoVmyWfJ/UeUadmW4WZUp9jXmsmj+nZZMz0gSuOmYAPf3o8vjXbOtNEZISiTL2u67YZUSkCYN3amEnRzPDdcurEO6qmBPvUZW7IMI5N6mbYwq4KsckPuojKK2FoZlgFYOs4bX/ACviJYTL7OjPJonkWXjGPRxOqOSc1M4r0dCAh1LabaEX4dU4aDSxWni5uP6OxmmfsvL++2fQemwjlUIBVhdmIxb0WFDwzRpgpdTy9CTMBRq0ZsQrwcpbJ5CDEBBiTMhtfPK7z53Nk0sMwa3yNSQzrJJMJAIYmjZnOcAzhWBxBn8ey2rQ4Vjk1G0hNzzaMGYVnxjLMlPivSjNjCjN1snRg6+teZpHODgjGTE2qZwYwDI6OnqghAPbJXgAjA05GlZYNGN8jm4/KFJ4ZUVOiMqhkZH1UimdG2rB1OtCrMeyqALek8ZCJVCueIVWYySdtkAFBACynZgtzW7tNmQwjPZvCTK7GidiU1YTY2R4yPaxb93ajtTsCv1ezNDBkl6DhMpaOk7OZFJ6ZbHDYuCGmnYdKM1OqmPgAdRiDx7dTwkx58MxIhhVgLe6VC8RZ1V0Rf47wMJNzl7TtOKV0WR5msjAeRDweDSckqz6/vNwcamILjio1O12dGdEz02GjmbESAIt9mWosspmA1CrAG3Z38s+wv0MdWKkkUN/ZnsgU8nk01CUnZ7/Xw68R4Ez8CyTuV/HZGze0zNLLxkLU5UGfZfYZL1efvB4slDLcosYMkFrKQfz/VM1MapipxaaVAWAYpGKYSdd1bG5Wh5kAc3p2SOmZSQ0HMew1M+bXZM+MEfIUyyKk18wAqcUR03lmumxCqjKiZkYupppOuyRSyWqHdVt7Zpy0JImqBMBCcgG7ZlZz8clT6vHDkyZh1oTatOPNFWTM9BNDSgN8gt/RarjimFdmUn15ir4FUKdmyxa0Opsp+19x0OfFkRONppLKMJOFZ4OhyuTpSzZTtpENK0AMM1nVmYmbUpbla89+TtHM9NGYka9zl43HR4bpZhau2GHKlGO9sVI0MxZpndwzo8hm6rSZ4K08M3Z9mRhievam5k5c8P8+wO6OMCbVlStrDMmUJe8ptjCztOzhVUWm5+uUKUY/LFnnokLTNJMhJot/GdMaE8bMSIURUJmhZ8ZK3GkkDVjfj5FMwkzJ7zAcjfPvvbU7wivvjqxWGDNCGrxSMyPVaxKx18xYF9GTz2stAHbumSn2e1Oeh5Q6Mxk8041DSuDzaOiOxNDUZvZoOOnLxLDqcRaNGWGhTATAcmo2856JHlCrcPFx+9XhimMm4MAslMToLWTM9BOapnE3s6ibSVd0T9XOQBbzGUaPXOukbwuliuOEBSOdZkYWCya6RSfGJy+4omYmHI3zXVpejBkmAI44DDMlx8yQvWJySwNVFeRM4QJgVmdGaJOQjsPH1aC8yIfdHSG8u87oQ6QumpcqHrQMMzGdQiTOx+XUM8O8LZXFqX2ZGMxQ+GRLKy586EM0tfVg4rAyPHXpoY4+N2Bk5rD7kz2XcjjoiIm1GDWkBA2VRRmFZ2sF8bIs/mUcPq4Gvzhzf/zq7KmW74vZTGLBPGU2k6W4U1EB2GM2roH0wlPxO2QLOAsx1VUElcaBaDim680kNt5lZGTMSPeZXFU88f/WNVhkRGPGKuSZ4pkJO/fM+L0e7smSQ0283o8jzQzrz2Q8Q//d3ILuSAyVxf4Ub5mViD+m8N6xjdqudqOOkLyRLhQKc1QDlAYL3Uy6jChuRSdvNlWapUozk4swE2BUAwbUmUaqztliqrNdBWDmWgZS4+D9gZxZBaiK5hlhJnGXK197uUhZtjwzcrpsJuGrgM/DG3U+/M4G/rq6r4t5VyeG1XwWnplQxPDMlFmEvYwKphF+XYxMJvWulIWZ/vbfrfiypRvjhpbiqUsPNRkQ6WBl9ju5Z8ZIyxYJ+rx48aoj8MoPjnKsYwKMFHIgVfzL0DQNFx0+BtOSxShlxGymdAXzAEUF4OT3I4e5ZMO0JxLjmweV8FTsFN2RvM8222QyMQzNTISHe1RhJjYWkbZMwkxpsplicZ0/x+m+z/FDy/h1smorkFJnxmGIl8EKKbLq0gwW7nPimTH6MxnzJWs5c/SkoSnGh1WtKP4MK+rMsB5j+dhUOoWMmX5E7p6t67ptJhOQmnKtKk1u1Jkxh5nkOjPZorYsiEPHJioHqyaxUkUaJ1soNS11fGKdmXahUFY2iuBlivOieYagTmwamrJ4SJ2zs2XMlEgpxk7qzIh8a/YYaBrw1ppdWLezHRGhv0xQYcyEJQ0XYDbeRJ1CujozrODWgb9YiCv/8l/865NtAKwzmRhiyvaYmhI8felhlqnNdjD9B7vPWJjJKvW6vMifsQjd7JmxNmbSITaGZXVUhpUXKXfHPAwoijtVXbN95kWNeWV8Hs0ylMCQa6vY1ZhhsPOxyuNAatE8cS6QjRk7z4yq4jCDh5mS4Svx3Ok0MwGfh2d9WhkWqjozTp+9mckO9os37jG9ni7cJ2Ll3WRtSqx61FlppdIJgJlnxkm9r3xBxkw/wj0zSRHfly3d2NuVEP9OUnThlZXnMUU2k5zFYFW4Ldv8/vwZeHTuwdyokSlVFNgSUwblNFdRM5PPtGwgg3YGwoTYwftVpT5aRpjJXAHY6cSnIkUzk6GRNLqmFCckJ72H39lo9pylEQ+K4QyrMFM4Gud6CitjpsjvxQ+O3wc1pQG090Txwqfb8fRHmwGoM5kAwzgYNaQET192GOrSNJW0gmczhc2eGauso97ACudpmiH2zBTumemKcL2MVbdsBs82E74XVQakbJiyTKaqkoBt+rncn8muxgyDeUt2Can0cqacx6NxA6tHKhVgV+PEKxlf8jHMu8CeN5Mx4yAMzzLYrO7HVM9M+lYiIock587FG/eaRMAsZOQkm0muM7Nxdye+2NUJn0fDnH2Gphxv2WiSCYCle4RtSphnhowZAoBYayYxKTGvzD515coqr3JNAKVnRnIvW2XdZJthFUXJcJP1xGcU2LIOM1kt4kXJ5nPdkRjauvOXlg3YN5oUPRaiYcNCY1bXXa6ea4Ry+jZByJqZrgw0M4zvHJEoL/D3/27lnkOvR0sxhgOSAFgMq1mFmQBjYlbt9q86biI+uuF4/O1/Z+GKY8Zj3/pyeDTgKIuJmDF7Qg2evvQw/PvKI5T6kXSIdWZ0XRdaGagX5UxgnpkRVcW99r7xbKbuCM9ksuqWzWDzQlw3kgXUmhlzmInt7NPVNimVijQ6CTOx7353codv5ZUFDMFpJp4Z+XV1mCnpuRT6Jzmp43RUMtnBqmUN37AljZjODDcoU0dUosjvwZ7OMK8UHY3FefsGZ3VmmIg+8f0xr8whY4dY9tiybDSZxjPD6j7lay52QuGaWQMQudaMk47bXhY+ipk1M2nrzPSDMZMO+UFnqCpTAoYnQNeFOG0e0rIBY0IKReOIx3V4PJqlZ8aXbKoZjevcC2HpmRG8FUA2NTMsoyJZuMvGWFRxyNghmDKiAsu/bMOfFiW0M1aeM1lgavLMWLQzAIyJ0Mozw/B6NMwcXY2Zo6vxw5P2RTQWtxUaapqGw8fXOP14lrDrFo0n+gVtZTVmHFT4dQIT/U4bWdXrcxhhpjCamGemQj0+8ZpF4zoCHo2LO1M8M1LYk4lO04U25PRsR5qZpIHBnukiX+q9BSQ3CULGE6M9ZJ/VWF7kw/bW5P/LAmCWlciF987Ev4wzpzfgsHE1lu0mZMMuk9RsIDE/T2+swgfr9+CjDXsxYVg5N2QAoMpB5XMjzJS4Rq+t3AnAOsQEqPqrWRdWZM8xcxrloxK7U8gz04+IAuBEsbyE6MuuHYJf5ZlRLDI8m4kvurnJZnKC8aCbjZkem92LaOCwzI18ic5EI4MZCCotEvuZ7SCtdp2yANhpcbt0lEi9mbgAOAOxqqZpuOSIcQCAf3z8JQBrY1OuM8Or/3rNvcL8XqNDNqvS66QqKqM/MibEBWfD7k6Eo3F4PZoy7TlTjpo4FE9+51D88qwpvT4HWzx6InFsbE5kvNh5ZkSDkoUOoorqrgFpUePNDdOENsQwUyQW5y1aHHlmkuJulVZFVQXYKNim8swYc0SKZkbYRMTjuqO+TCKapqG+ssjS+BJD0bG43qsNyiFjWKgpoZth30N5kc/RcyDqqlq6wvgoeR5ViQKrbCa2vvhTumabPweFmQgARm2IrnAMLV2RtOJfILWdgbs8M+bwB8OuS7jf6+ET8s48i87EeDozZlgNjBRjxs/EpOowk6xRUGUMZYq4O4zHja7EmRpJp04djrqKIL+HrCZ7uVw+M2rk+hSAcY3YTtPOM5MPPB6NG1irdyQ2FvUVanFtb85/xMRaZTVdJ5QHfbxA5qqmdgD2mhlxXoikSRqQ70enolNeBTgcxbaWbsTiOoI+D4YqMqwAI/TDPTOKe96qw7Wu62krgYtzhDxfiH8rFI07rjHjBPGe7o7EjEaTDrOZAODgpG7mow0JIySTGjPicbG4jhc/245YXMfEYWUYXWOt05KTRQDD8JXvEXkOIGOGAJB4eFi65pJNe7GnMwyfRy3+Bey7ZpuP85jeLwxjRiEAVlT/ZbBJhntm8uTa9Hg0/jAz8aDqurKF2xAAp+7i/JLeJNPMBxUlQq0LUbybiWYGSHymbx4+hv+sMjYB4zpYdcxmyItFoRkzgLHIMkNhRJZCTNnC49H4/c/COXYaIXFnHZM0M6oMyNQwk1PPTMwUYrITDZdJZRqUxoxQbJHBvB6AnWZG8MzYGDPdQvp5XzcRQOK5Z5e1KxTNWAAMAAeOqobXo+HLlm582dKdUV8mIPH52Dz116VbAahDTIAgAI7pXHQselhFZC0npWYTHBZqYp2KJ9aV2+4Q5AnHqWcmwsNM/Z/SzFAVzVM1QGOw13e25b+2AZuU5DCTyphhO0hLAbCkUVBVQc4UsaEnWyw0zbkbXeQbh47iv2c1Ljm7Lqpo3QCkeq/s0n3zBbt2q5PGTLb0MtmE6SaYbsEuDObxaHxxZToIls0ke896HWbivcCijvQyQKoRoioZYRVmYs+U16MpDX+TZyZoni9EIXtPJMafZTmE0hs0TTM8o+FYrzYopUEfFxcv3rAnbedyK5hQ/OPNLQDUISbAbLDE+HphLwBm5Cuz1AlkzPQzDcldFStqNHWEfXn0FM+MMjXbus5MXj0zQtqimHZoCFStHwy2iLKmZfl0bcq1ZqzaGYg/d9gIgMVspnA0zg2Ckj5mM4mdjO3S3p1QVRLgRfSsjOyAz1oAbPV5Uz0z+dNvqShPMWayk8mUTcSMFLuCeQy51gwzVlRhJiObyakA2NikOKkxAxgFChlpPTOCh5GFbsuCPuU9bZfNJJ+Xh5myNDeWCLVmepNJCBi6mY827smoxgxD9OIMKQ1ghk1bAVkknvivogKwNM8VcjYTGTP9DPPMMOvbTi8DpPbCSeuZSR4XynEFYCewxSsa17kRAKTP4inmYSaWzZS/B4jtFLvShZn8TB+S1MxY1pnR+DnsqiBnirhTZq0X+hK6uvLYCZg9oQbfOHRUynvcRS2HmSy6s8u7ukwn+P6ALcyshsvILNWYySaVwg7drmAeg29spDkjJTVbuB+B3gmAndSYAaxCP9afgS2eomemtds+LRswe2+tPIBiFeCeNGHuTBE3bV29FPUz3UzCM5P8HjKY90Rj5phJw2yLjPpMuipZyG/+XtykmSnckQ1Q5EwEu0wmILXnkjKbqZ97MzlBXLy6wjFT3yVAHWaSj8vnA8Q+A5sAuZGYRjOTTgDMPChWtVwyHmNy8o7rRl+jvkzUwyuL8dQlh1m+51fs+uUsCMDsxi/2e/NSxTkd8sJXyGEmwF78y5CzVVSaGblmkFPPjKh/cRpmUnWylrFqCtnuoNksmyOCPo/lsydWATY8M9mZG5lnpqUrzK+l09RsxsFJz8zanR28/1cmYSZR55Su0aposMhFVlXtDBiUmk1wxOqiXo9mamRmhayFUXtmzFqGQggzeT0aN1jE9Ox0KcmykZNPzQxvNpkMlalTs82l8S09M0wzE9WNHVwvw0EiYqNKlvra19CVCrmfj22YSbhGhSj+BayMmcIOM9mlZTPk/lm8iaDXOszEQgy8yWSa7Cv23HaEotjcnDRmajI0ZhSGhJUAOF3BPPE91THs7/WEBQFwljwzbMMjdpbO9NxDSgO8s/pba3YByDTMlPjOAl4PjrQpNgkk5mU25UTS9PyTqzQXsmeGjJl+pkEwZiYOK0ubHigXOMq0N1M+jRlA6F0iFM7rTpMaKU8E+dwNFAt1JMTuwkoBcMhZBeB0GV2Z4BGEkazCarYmahl5obTqmM0QPTNWTSYLATH8oWnOPB/9jRhCsCuYxzA2QGbPjEeTjRlmmCa6VLd2O8uiYYbJtpZunnbfmMYIlMW76erMhIQwE6uMa/fdMNGvSmQuGkndGdaZSQcL87L+RX6v1qt5l3lnmO4uk5R+ZvgcOm6II6G9X25/w40ZewEwaWYIjmjMpNPLAM7bGRRiNhMglNoXPDPpFP+yZ6YwBMBRk+4ntc6MnJptn82Urb5MDGN3GMrqeWW4zoJ7ZqwnQcAdnhlxXPUVRXk3/q3ou2dGpZkxPmtzZ4hnS7HMGBXsmq3fnSjiN7Q86Mh4FhfZdHVmRM/Mko17AQAHjVaLWvcfUYHSgJf3OpIpttDMqFrIZAoL87Jnr7cp34eMNX8+q1YEKs6ZORJHTqzFtSdOcnS8rLFUVQCWv6dCzmYq3JENUGpKAwj4PAhH45g6Mr0x45U1M06zmRTajv5GrEnBSCfAS32A8pmaLXhmBGNGDiOlhJksNTOJ7ygUjaett5EppUEvdncYu8NcGTNGOq85zGQVVhM9M4VqzIgLbCHqZQDzouZIM+M1e2aMDZB1ajZg3DelAW/aOYN9l+y86fQyjLIiHy+EmS6biXlmorE4/rs5YcwcrDBUgITOa+nPT1CmfAcFLU62w0yyZ6a39zrzzDCcFs0DgHFDy/DEdw51fLzPqwGR1CrR8iZMvJ6alrkWqD8pvG3IAMfj0TAh2fF3ps1Og2E0BZMKYGn2nhkeZspjOwMgtaNz4v/T1JkJFE6ctoiPPyZcU0+KzsUIM6Xvmh2JxbNWMI8he2aKczTpsN18XE8sZirhIGD2zBRijRlANmYKTy8DmI0ZJ0012VwgZ0CmamaMn5mR4UR0Kn+XTo0ZsWeSrMVgyALgz7e1oSscQ2WxH/sMUxcXTfyuWn8mZjN1Z1sAnCWv6MjqEjQIxmomxkymGHopFmZKn5pdFvQ5asyZLwpzhhng/OEbB2JTcyf2b3DimTHfdKwTrter8szI2UyF4ZkRO2enKxYnGjkBnydr3oveUCJkVoUU4l/xNZVAGDAbMz1pau1kCtOkGALgXGlmzGmdEbuiecKC5QbPzIgCTMsGzAaGk75RfqkauCqbSfx5V7IMQnVpei+ovFinqzHDEPVJaQXAyeeD9Ss6aHR1nxZSMUMyxD3DWdLMJJ+9XdyY6f29fsjYIfjHsm0AgCoH30VvkTumO/HMFHL1X4A8M3lhbG0pjp5knz7H8EsuY7VnxhwnDxWIMcMWi03JJnlA+q7OojGT7weId9wVPTOWqZ/mz2KVbi2mwmarYzYj1TOTWwEwwIwZu2wmIcyUo/H0FXGBLdQwExPkOimYB6irhsu7bk3T+D3JFmIn3oDeembE31Pdn0HBgwIY/YrsQkxOYF7CnkiM63GytUniz14WQrzsc3o9Wkr372yiEvLL3juPx7hHCjmTCSBjpuCRhVpxlZhPDjPZ9MzpT47dN2G0/WnRBl5gqztdf5aAaMzk9wEqtgoz2XhmGHbtDMKxeK86W9tRyj0zudXMyDUqojb3mds8M4UaZhpbW4oDR1XhnJkjHTXBlDMg2UZIzmYCjO9tZ7IPmpMwk/xdOjdmjI2Jqvoue456oolSCEs2JfUyY/pmzLDnOBSJGfNPlsJMvGhlFkLHs8bXQtMShnVfSzbYodZVqYtf5ntjmY7CnGEIjizs5WmWDrOZVIK4/uLsA0fguaVb8MH6PbjhH8vx+LcOTlvyW1zgy/NcpKnYFGay7pgNpPZ5sdIqiU0ac5XNxMI+uTJmWI0KXU+2ZbAJM5k8M64wZgrTM+P3evD3y2c7Pl6VASlvgIBk7aNwjGtmnNQ2Cfg8CHg9fMPkWDMjhpkctDP4YlcH9nSGEfR5HGV+2mGkZse516coW8+edG/LP2fC2NpSPHXJoY48cH3BJ+mq2L2iChe3h8gzQ/QRXj6eaWZ0hWfGq9DM5FkArGkabvvqVAR8Hry9Zhf+uWybkc2UptEkkH/PDM9mytAzY1V3RSw4l806M0Cq6z9XAmDAXAU4ahdmckGdGdHIGu4g7dkNGMaMtOu28J6x+SUTATBgVL0N+DyOF15nqdksHBTH4mRK9vTGqj6Hy8UwU3eWezPJGT591avNGl+LCWnEzn1FGWay9MwkPg8ZM0SfkI0UdvMpPTOxwiqaByTSBq86dgIA4JYXVvD0ZaVmxhRmyq9npshCAOwozJSmzky6jK5Mka9lrjwzAOBnu7qoqJlxZ5hp1JAS7FtfjlOn1met7ki+kReqqI1nhtWh2pWBZwYwFvDG6mLHwlyTAFiZzWR4ZhYn9TKq2jGZEBTO25OmaGemlEiGeqHe6yJcV5UmNRswnuNCbmUAUJip4JGNlJjKMyOEo+JxnU9ghWDMAMBlR43Hvz/ZjtU72vlr6VzNAFBRnGfNjNDOQNUx2+o1u95Mkaie9TCTPIHm1JhJhiaicedhpkJNzQ74PPjP1UfmVJ/Q36hboFjckz7mmUloZpymA7Pv02mISfwdIDUsy+B1ZqJxfJTMZOqrXkY8b3ckzp/jbDeaZORKfJ9NfB7Z4FWXWCDPDJEVfFJqdkwh5hNTuO3K7ueLgM+D286eCnHYTrKZ8l0+W2w0GbYtEOfAMyM2muRhpuxMEPK1zJbHxwp2T4ajurJyKCB5Zgq42NZAMmQAsTaVOQPSUjPjNcI6QPpWBgwmOM/EmCl3lJqdGM+2lm5s3dsNjwYc6KAeVzrE+jXZFgDLz16hZu6J8FCkg0rezOuc77k4HYWx0hFKUsV85tfl42Jx3VR2P9/ZTCIzR1fjosNG85+d9GbKt2aG1aLoChv1KRxpZuwaTeagaF6qZyZ31y0gZELYVgAWFgvZFU/kDllnF1OEphPHml9z6plh95vTGjOArJmxDzOxOWz/hsqsePWKxTBTNNt1Zvrv2csWRjZTepE4ZTMRWcEn7bLiinYGoms5InpmHKRy9ic/PGkSln/ZioaqYss0QEASAOc9mynxiIiNJq2L5jkJMyX7GkXj6I5kOTW7H13dPqH4n9OieYUaZhqIMKFvzIFnRr5PnRozX50xArvaQzhhcp3jcWXSm4lx0Ji+e2XEvxfKQW8m2ROTyxBvtpA7pttV8p4wrAwfbtiDSfVl/TfAXkAzTIHjk6t5xtL1Zorblt3PN+VF/rRppkWmMFO+PTPOiuY5qjNj0c4ga0Xzgv03oYrdlu3bGRR+avZAxC95c1UbICDVCK10GGY6+8CROPvAkRmNq8xRarZ5PIdkQS8jnrdb6M2UPQFw9lKz+4tMUrNvPmN/fG/O+Iy8cPkgr9v2MWPGQNM007+f/OQnpmM2b96M008/HaWlpaitrcVVV12FcDicpxH3P7KYz4lnppAymXpDIWUzMaOgK5JGAOxAM2O0M8iBAFhOD82pMSN6ZtSp2eSZyQ8+4T4D7D0z4mtej5bTsG65WDRPEWaShcEHZcuYST6zLd3G2pGtjYTsXc1VK5FsIhZW1HXdNszk83oK3pABCsAzc8stt+DSSy/lP5eVGa6sWCyG0047DUOHDsU777yD5uZmXHzxxdB1Hffee28+htvvpIr5rAXARgq3XjAds3tLIQmA2e4tFtfRGVJ3xHYSZhIrAHenqbWTKaWSZyaXYSYx9Zd5Cq2MN/LM5AdZ3MmSBqw8M+J9WlXsz6kn11lvJmM842pLMTRLxeOYkdTSFRHGkJ350evRUOz3Gm1aXKAP85t0bzp/3UmF6UIl7zNMeXk56uvrLd9bsGABVqxYgS1btqChoQEAcNddd2Hu3Lm49dZbUVFR0Z9DzQupaZaJ11MFwMYCI4aZ3EhxAaVmix4ONhHaNZpkpO+anXgtV+mhuRQhMsM5HItzw9kyzCQsTG7YrQ4UZHFn1CZTRbxPnWYy9ZaKIh/qKoKIxdXh40RoPFFhOhsp2Qw2p7AaVz6PltWFuzQoGDNuEAB7DO8d2yADhZUwkil5X+3uuOMO1NTUYPr06bj11ltNIaT3338fU6ZM4YYMAJx00kkIhUJYunSp8pyhUAhtbW2mf25F1szw1GxFmEnMZrKqQusGgj4PT+HOd5jJ7/Vww7Gl286YceCZEdoZ9KRp6ZAp8m4wl6nZomfGLsw0tDyIYr8XY2tL+9TxmMgMo5yD3Hcn9Vhx8XIq/u31uLwevHz1UVjwg6OUhoSmadxr09fmkiJyWCvbz4f4HLsiNVvw+Js8MxYGr1vIqwl59dVX48ADD0R1dTU++ugjXH/99diwYQP+9Kc/AQCamppQV2dWy1dXVyMQCKCpqUl53ttvvx0333xzTsfeX/i8ZqGW0jMj7Mbs0mXdgMej4XtzxmN3ewjDK/NfYr444EV7TxQtSXeKZZjJL3tmrPrgGNlMbPrIhWYm6PMoM8WygdiWwagcmvr3yov8WPCDo1xRRGwgYYSmzZoZq6J5PpNnJrfGDABUl6b/GyOqi7GpuROzxtdk7e/KYl9V0b7eUuqgI3gh4RfqkjFjF7DWzLiFrBsz8+fPT2tILF68GAcddBB+8IMf8NcOOOAAVFdX45xzzuHeGsC6oJWu67ax3euvvx7z5s3jP7e1taGxsTHTj1IQiFlK4n8dZTO5uDz7j0/eN99D4BT7E8ZMa9IzY11TxWP7MyCmQxqTR7YyKsSdZq5TQ8VwWdjGMwNkVoeEyA5eqdCmqp8bYL6XnbYyyDVPfudQtHSH0VCVvcaf8nOWrRozDNEbU8gFIhle04aE6TCtaxG5haxf9SuvvBLnn3++7TFjxoyxfP2www4DAKxbtw41NTWor6/Hhx9+aDpm7969iEQiKR4bkWAwiGAwt11H+wtRdQ4AzCOYms0kVAB2eTZTocF2WsyYkb0wQGqYyU4zI5Itw8Pj0VAa8KIzHMt5zF7MyrILMxH5ISVpQFHOQTwWcOY16Q/qK4tQn2WPrBxmylb1X4aYju0KAbAgS2DFFd0s/gVyYMzU1taitra2V7/78ccfAwCGDx8OADj88MNx6623Yvv27fy1BQsWIBgMYubMmdkZcIGTWgE4nWfGyGYKuvzmLBSKpUwIuyaSqp8BK5GwllUjoCToQ2c4lnM3t5gJYRdmIvJDSgVgB+0MgNwLgPOJbLxkyyPKYJ4Zr0dzRXhfTN9nRq/fxV4ZII+amffffx8ffPABjjnmGFRWVmLx4sX4wQ9+gDPOOAOjRo0CAJx44omYPHkyLrroIvzmN7/Bnj17cN111+HSSy8dFJlMgFnYK/53INeZKTSYcdDWkzRmLHZ1Xo8Gv1fj2ia7OjP8vDmYUHeh/8JM4ah9nRkiP/AyDVITwXRF83ItAM4nHo+GgM/D58ZcCYBLAt6CK1RqhZUA2O2embyNPhgM4tlnn8XRRx+NyZMn48Ybb8Sll16Kp59+mh/j9Xrx4osvoqioCLNnz8a5556Ls846C3feeWe+ht3vyK3auTEj15kRPTMsm4l2y1mBGQdJ6YGlHibxujFB+i2O8Xo0iOtJtj0obELNZSYTYG5+atfOgMgPvLqrNGdYpc+bs5kGrmcGMNeVsQoV9wVW58kNrQwAswCYGbtuXy/y5pk58MAD8cEHH6Q9btSoUXjhhRf6YUSFCVs4dB2IC8pzlWcmFtcRcnnRvEJDNg5U1zXo86AjlDxGsbj7vR6eOp9tbQurspvrCTWQzMqKCJ4Zq4WSyA+yzo6FqOVCm4AcZhq4nhkgEVpqS9aZyXaYiT3LbhD/AmKWbNxWU+UmaLUrcMQbLGFFq3ozGV8lq2Hi5mymQqJYmqDsjBl+jMKYEV/Puqub7w5zO6GKmgy3lwEYiPik0HSca2bSpWYPcM+M8LzlIsQLuCMtG5CqeNvcH27C3aMfBIiuv2g8ru7NJBzHmhjSApMdiiWXtDLMlJwgfR5NmeIoGkLZnvjYrjD3AmCxN9PAiLcPJMRdNwDlBggAAv1YNC/fiAaMqjdUb2HZTK7xzAihSC4Adrl3lWagAifFM5OmazYAdEXUPYSIzJE9Hek8M3b6EfG9bIeD2PlyLwAWxYMDYyIcSPilOjP2mpnB5JnJnVeUtWcoy2GjzmwihiIHyobEHVd+EOMXXH/RmK4sgCUaN6wjs8qDQGRGSvVQRfiOXW87I1JsMZHtCbWiOLEYqfreZAurOjPkBSwc2FzgxDPDvsuSgFd5Xw8UgibPTHY/6wn71eHsA0fg6zPdUZzVVF4hKQB2c/VfgIyZgsfj0XjjtWg8zndZsphPzG5iYSbaLWcH2dORLpvJ1pjJoWfmgkMa0dIVyfmEaiUedPuubiDBU7Md1ZlJvDbQQ0yA2YDJdjuD6tIA7j53elbPmUsMg1cXakW5+xkmY8YF+DyJ+iUxm2wmTzLtN66Dd2+lMFN2cJzNlHRj23kpTALgLBszE4aV465zp2X1nFZYtzMgw7lQ8KdkM7Fy9WrPzEAPMQHm1Oxcly8odPxCA2PmwaNsJiLn8LoeMR0xhQBYPK6bC4AH9wObLYoce2bSh5lMAmC/O/cSYiNDFsKgMFPhkEmdGdYgcVj5wGj/Yoe4eci2ANhtiN5Vdn+4fUPiztl0kCG2NLCrCeD1aEAM6AqTADiblDiuM5M4zm5SyGWYqb9gnyEUjQsLJd1rhYIqzGQ1Zxy33zBcecwEnDylvv8GmCfElgbZ1sy4DZMAeICkZpMx4wK8fHJSp2YDhtHDPTNkzGQFORyk8kI4EgALho5balLIsImQGc2A+3d1AwleByimIx7XwZq0Wy1WJQEfrjtpUn8OL2/kMpvJbfj5BtlIzXZ74Uta7VyAODnxzASL+Dczeow6M+6+OQsF2ehQiQeZZsZparZbJ9SAdJ8B7hcPDiTEvjssLA24XxPRV4pyWGfGbZgbTQ4MAbC7Rz9IECt6xm3i3+y4LvLMZJUUAbDSM+O1fV9+z61hJmZckzFTmPgEcScLMSVeH9zGTC5Ts92GT0jNjgyQ1GyagVyAKRXWps8K23lRNlN2kY0OVUjFWZgpd9lM/QVrosnCTB6Ndv2FhNicNhonzwxD9MYMdmPGLySVkGeG6DcsPTNWfVY85kWGspmyg+iZCfo80CwMSfYekMYzMwDSQ/2SNovEv4WFuFDFYmTMMIrJM8MRN8iUmk30G14xm4l5Ziy+OXZcT4S6ZmcT0YNid02ZG9t50Tx36u/ZZ+iKUA+wQkQsiGbSzCiM8MFCLhtNug2jArBum7rvJmgWcgFiESyjnYGVZ8Z8M5Ixkx1kz4yKsmTNDjsjJSC2M3BpmMknCYApk6mw8AvZj0bBPCibnw4WzGGmwT03esUwE6szQ6nZRK7ximl0vGaE+jgGLTLZQTRO7PrXnD6tAZv3dOHcg9TtBAZCnRnmiQlHWUqnuyfBgYZYQyQ2QGqIZAOqM2PgE9aUyABJzSZjxgWImhmjAFbq5CQbM9RoMjuI19HO2zWkNICff2Wy7bkGQmq2bLxQmKmwECsA2xXZHGwUkWaGI3r7SQBM9BtiTYCYTZ0Z2bImAXB28Hg07pbuq4EoGkNu9czIHj+37+gGGmIFYLvqv4MNqjNjYBIAU2o20V94rTwzFguI7K0hzUz2YKGmvl7TAZGaLe3g3L6jG2hYFtl0+UKVDZgB49HIm8gz3sQWOS7flAzub9Ql+IUCR3aeGT8JgHMGCwn1dRIUqzK7NcxExkxhI3rOuK6JjBnumSnye5XlFQYLRpVoY4NMAmAi53gdds2WXyNjJnswL0qwj+5ptvAHvB7XCmflsBIJzQsLcR4IRWMprw1WRlYXo7LYj0l15fkeSt4RCyuSAJjoN7igLxYHKxth2WiSFpmckS3PDDNm3BpiAlKvAXlmCgvx+2A1p8gzA5QX+fHuT46lxAgYXhhdN7x3bn+OyZhxAWwiCictaEDRaFJyEwZJAJw1mPHRV28X+323in8BMpoLHdFw6WGeGfqOABi1oAY74jPM2t+43eB1tyk2SGA3XigiGDM2jSYZFGbKHswzY1dnxgnMq+FWvQxAmplCxxRmSs4Zg736L2FGrDvUExkYbUncPfpBAvO4sPg3oPLMkDGTK0qy5JnxJysAuznMJAsFyZgpLDRN4xsb0swQVlh5ZtzuYaVZyAX4+cQkeGasNDPCa16PRhNYFil20Hcpk/O42d3t95nvK7e7pwcisjeXKgATIqZQZGRgNJp074w6iPA6NGbE1wZ7HYVsw7OZ+mjMHDFxKM4/uBGnHTA8G8PKC/LC6CcPYMGR+I7ihmbG5QsVkV2Y9y4a19HNeqy53OAlY8YFsFhmKGKEmazmJtHadrvLsNCoKQsCAIaUBPp0nrKgD7/62gHZGFLekO8tMpwLjxTPDM0HhITPmzBmmMHr9nuEjBkX4JM8M16PZln0ScxmCvRRqEqYmTtrDGrLAjhjWkO+h5J3xF0dQGGmQoR5z5i4kzwzhIzf40EP4ugJDwwBMBkzLoBNROGofWxTXFSolkJ2GVIawDcPH5PvYRQMfq8H0XjSPU33WsHB5gK+6yZjhpBgnhguAHb5PUKzkAtgbn3umVGkWYrp2pTJROQS0SVNYabCQw4zeSg1m5BgnphuSs0m+gs5NVu1y/KRAJjoJ8T7i3b9hQdLl2cbILfrIYjswzwxA6VKNK14LkDWzHgUN50pm4k8M0QOERdHCjMVHjzMxDUz9B0RZmRPjNsNXrrDXUBqzYj0nhnKZiJyiVgoz+2x9oGIXM7B7btuIvvI94TbaxG5e/SDBLmap9ozI2Yz0VdL5A6TMUMhzYKDfSeUzUSoGGg91mgWcgE+Of7tRDNDqdlEDvFTmKmgYQtVD3lmCAWyJ4YEwETO8Ump2arMBKoATPQX4kRIC2XhIWtmVN5cYvAie2Lc/hzndMW79dZbMWvWLJSUlKCqqsrymM2bN+P0009HaWkpamtrcdVVVyEcDpuO+eyzzzBnzhwUFxdjxIgRuOWWW6Drei6HXlCkxL8V7kCqM0P0F6I3hkKahYfP48ybSwxeZE+M28PFOS2aFw6H8fWvfx2HH344Hn744ZT3Y7EYTjvtNAwdOhTvvPMOmpubcfHFF0PXddx7770AgLa2Npxwwgk45phjsHjxYqxZswZz585FaWkprr322lwOv2AwwkzJ+LeDOjNuj38ShY3fJDZ39yQ4EDGSBkgzQ1gjG7huv0dyaszcfPPNAIDHHnvM8v0FCxZgxYoV2LJlCxoaEmXi77rrLsydOxe33norKioq8NRTT6GnpwePPfYYgsEgpkyZgjVr1uDuu+/GvHnzLMv6DzS4ADhin5rto9Rsop/wU52ZgkYu50DfESEjb0LcvgHO64r3/vvvY8qUKdyQAYCTTjoJoVAIS5cu5cfMmTMHwWDQdMy2bduwceNGy/OGQiG0tbWZ/rkZHmaK2U9MlM1E9Bc+qjZd0MjNaanODCEjyxVIANwHmpqaUFdXZ3qturoagUAATU1NymPYz+wYmdtvvx2VlZX8X2NjYw5G338wizmdANhcAZiymYjcYa4A7O5JcCDip2wmIg3yc+v2elEZz0Lz58+Hpmm2/5YsWeL4fFZhIl3XTa/LxzDxryrEdP3116O1tZX/27Jli+PxFCLyrkolAKYKwER/4SN9VkHjpa7ZRBpSiua53DOTsWbmyiuvxPnnn297zJgxYxydq76+Hh9++KHptb179yISiXDvS319fYoHZufOnQCQ4rFhBINBU1jK7cgWsyPPDBkzRA4xFc2je63g8EuaGTJmCJnUMJO775GMjZna2lrU1tZm5Y8ffvjhuPXWW7F9+3YMHz4cQEIUHAwGMXPmTH7MT3/6U4TDYQQCAX5MQ0ODY6PJ7cgTkVozI4aZ3H1jEoWNuZ0BGTOFBluYYvGEF5vCTISMLAB2+z2S01lo8+bNWLZsGTZv3oxYLIZly5Zh2bJl6OjoAACceOKJmDx5Mi666CJ8/PHHeO2113Ddddfh0ksvRUVFBQDgwgsvRDAYxNy5c7F8+XI8//zzuO222wZNJhOQajErs5lIlEn0E34KMxU0csiAPDOEzEDrzZTT1Owbb7wRjz/+OP95xowZAIA33ngDRx99NLxeL1588UVcfvnlmD17NoqLi3HhhRfizjvv5L9TWVmJhQsX4oorrsBBBx2E6upqzJs3D/Pmzcvl0AuKlLLTytRsIZvJ5fFPorDxUZipoEldqMiYIcykFs1z9z2SU2PmscceU9aYYYwaNQovvPCC7TFTp07F22+/ncWRuQunxY2oNxPRXwQozFTQyBsgSs0mZETjxevRXB/poDvcBcjGi8qYoWwmor8QDWe/z92T4EBE3mWTo5aQGWj91egWdwEp8W9VNhNpZoh+QgwtuT3WPhBJ3QDRd0SYMeve3H9/uP8TDAKchplMFYBdHv8kChtx8iN9VuEhb4AGws6byC4+KczkdmgWcgFyNpMzzQx9tUTu8FOYqaCRa1MNhMWKyC6iR9Xt4l+AjBlXkCrmc1JnhgTARO6gMFNh4x1gBdGI7CNufgfCM+z+TzAIcCoAJs8M0V+Y+4DRvVZoyBlm5JkhZMRQ5EAwdmkWcgEpmQkKATBlMxH9hXh/UZip8EgpVU/GDCFBAmCi33HumSFRJtE/mNM66V4rNGTjRdXPjRi8mMNM7r8/aBZyAb3SzNBumcgh1M6gsEnJZqLviJAwh5ncbwq4/xMMAhxnM3lJAEz0D8wt7RsAlUMHIqnlHGiqJ8yImxDyzBD9gvM6M6SZIfoHZswMhFj7QGSgdUQmso8pVDwAPHc0E7kApx1wKZuJ6C/Y5EchpsLEqc6OGLyIBsxA6K/m/k8wCEjxzFA2E5FnAuSZKWhkI5M8M4SMn1Kzif4mZZeluPEom4noLwzPDN1nhYicNOAhY4aQENeVgSAA9uV7AER6nHpmiv1eaFrCkCH3P5FLuGaGsuYKkpQKwGTMEBKmjMQBcH+QMeMCNE2D16MhFtcBqCemyhI/bj1rKsqLfJRhQuSUsbWlCPg82Le+It9DISygCsBEOkTv3UC4P8iYcQmiMWPnMr7w0FH9NSRiEFNXUYTFPz0epUEqAVCIpFYAdn8YgcguvgFWAZiMGZfg92gIJ/+fXMZEIVBZ4s/3EAgFTss5EIMXEgATeUGcjEjMRxCEHSkVgGnOICSoazaRF0xWNE1MBEHYQJ4ZIh3imjIQEkbImHEJJs8MiXsJgrBB1kCQMUPIiKElCjMR/cZA63BKEETukI0XmjMIGVM7AwozEf2FGAOnXRZBEHbIYQOaMwgZajRJ5AUfCYAJgnBIqgCYpnrCzECrAOz+TzBI8FKYiSAIh6QIgAeAJoLILiQAJvKCaDmTAJggCDuctkAhBi+Umk3kBdONNwCsaIIgcoccNiDNDCHjo6J5RD4QbzbyzBAEYYfsmaHQNCFjajRJxgzRXww0lyBBELlD3mmTZoaQMTeadP+a4v5PMEgQ3cQDQHhOEEQOkbtmk2eGkCHPDJEX/N6BZUUTBJE7PB4NYjSaNDOEjKZp/L4YCN5+93+CQQJ5ZgiCyAT/AKvwSmQf5rEjATDRb/hMxgx9bQRB2GNOGsjjQIiChXn8KcxE9BsmsRZlMxEEkQa2AfJ6NGg0ZxAWUJiJ6HfEbASKfxMEkQ5WR4TmC0IF88iQZ4boN/weMmYIgnAO10PQfEEoYB6ZgSBdcP8nGCR4TTUBaHIiCMIeP3lmiDQwXRUJgIl+w0eeGYIgMsBLnhkiDVwATJ4Ze2699VbMmjULJSUlqKqqsjxG07SUfw8++KDpmM8++wxz5sxBcXExRowYgVtuuQW6rudy6AWHaDmTAJggiHSwOYM2P4SK4ZVFAID65H/djC+XJw+Hw/j617+Oww8/HA8//LDyuEcffRQnn3wy/7myspL/f1tbG0444QQcc8wxWLx4MdasWYO5c+eitLQU1157bS6HX1CQZ4YgiEzweyjMRNjz+wtmYPOeLkwYVpbvofSZnBozN998MwDgsccesz2uqqoK9fX1lu899dRT6OnpwWOPPYZgMIgpU6ZgzZo1uPvuuzFv3rxBk3JImhmCIDJhIKXdErmhtiyI2rJgvoeRFQriLr/yyitRW1uLgw8+GA8++CDi8Th/7/3338ecOXMQDBoX/KSTTsK2bduwceNGy/OFQiG0tbWZ/rkdP6VmEwSRAX4KMxGDiLwbM7/4xS/w3HPP4dVXX8X555+Pa6+9Frfddht/v6mpCXV1dabfYT83NTVZnvP2229HZWUl/9fY2Ji7D9BPeCnMRBBEBrA6MyQAJgYDGRsz8+fPtxTtiv+WLFni+Hw/+9nPcPjhh2P69Om49tprccstt+A3v/mN6Rg5lMTEv6oQ0/XXX4/W1lb+b8uWLRl+ysLD5xX7rNDkRBCEPV4PeWaIwUPGmpkrr7wS559/vu0xY8aM6e14cNhhh6GtrQ07duxAXV0d6uvrUzwwO3fuBIAUjw0jGAyawlIDAdGA8dDkRBBEGijMRAwmMjZmamtrUVtbm4uxAAA+/vhjFBUV8VTuww8/HD/96U8RDocRCAQAAAsWLEBDQ0OfjCa3IU5I5JkhCCIdPspmIgYROc1m2rx5M/bs2YPNmzcjFoth2bJlAIAJEyagrKwM//73v9HU1ITDDz8cxcXFeOONN3DDDTfgsssu456VCy+8EDfffDPmzp2Ln/70p1i7di1uu+023HjjjYMmkwkwC4A9g+hzEwTRO9icQZsfYjCQU2PmxhtvxOOPP85/njFjBgDgjTfewNFHHw2/34/7778f8+bNQzwex7hx43DLLbfgiiuu4L9TWVmJhQsX4oorrsBBBx2E6upqzJs3D/Pmzcvl0AsOMTWbJieCINJBmhliMJFTY+axxx6zrTFz8sknm4rlqZg6dSrefvvtLI7MfZBmhiCITDCymfKetEoQOYfucpcgtjMgzwxBEOnwk2eGGESQMeMSqJ0BQRCZ4CUBMDGIIGPGJfionQFBEBlAqdnEYIKMGZdAXbMJgsgEH2UzEYMIMmZcAttdaRoJgAmCSA/VmSEGE2TMuAQ+MZFXhiAIBzCPjOjVJYiBChkzLoFNTOSVIQjCCSw120up2cQggO5yl+Cl+DdBEBnAPTM0ZxCDADJmXIKfwkwEQWQACy9R+xNiMEDGjEvgpckp/k0QhAPKi/wAgLKgN88jIYjck9N2BkT24DUjaJdFEIQDzp4xAp2hKL46Y0S+h0IQOYeMGZdATeMIgsiE6tIArjpuYr6HQRD9AoWZXEJVSQAAUFHsz/NICIIgCKKwIM+MSxhbW4rfnjcN42rL8j0UgiAIgigoyJhxEV+dMTLfQyAIgiCIgoPCTARBEARBuBoyZgiCIAiCcDVkzBAEQRAE4WrImCEIgiAIwtWQMUMQBEEQhKshY4YgCIIgCFdDxgxBEARBEK6GjBmCIAiCIFwNGTMEQRAEQbgaMmYIgiAIgnA1ZMwQBEEQBOFqyJghCIIgCMLVkDFDEARBEISrGRRds3VdBwC0tbXleSQEQRAEQTiFrdtsHVcxKIyZ9vZ2AEBjY2OeR0IQBEEQRKa0t7ejsrJS+b6mpzN3BgDxeBzbtm1DeXk5NE3L6rnb2trQ2NiILVu2oKKiIqvnJgzoOvcPdJ37B7rO/QNd5/4hl9dZ13W0t7ejoaEBHo9aGTMoPDMejwcjR47M6d+oqKigh6UfoOvcP9B17h/oOvcPdJ37h1xdZzuPDIMEwARBEARBuBoyZgiCIAiCcDVkzPSRYDCIm266CcFgMN9DGdDQde4f6Dr3D3Sd+we6zv1DIVznQSEAJgiCIAhi4EKeGYIgCIIgXA0ZMwRBEARBuBoyZgiCIAiCcDVkzBAEQRAE4WrImEnD/fffj7Fjx6KoqAgzZ87EokWLbI9/6623MHPmTBQVFWHcuHF48MEH+2mk7ieTa/33v/8dJ5xwAoYOHYqKigocfvjheOWVV/pxtO4l03ua8e6778Ln82H69Om5HeAAIdPrHAqFcMMNN2D06NEIBoMYP348HnnkkX4arXvJ9Do/9dRTmDZtGkpKSjB8+HB861vfQnNzcz+N1p28/fbbOP3009HQ0ABN0/CPf/wj7e/0+1qoE0qeeeYZ3e/36w899JC+YsUK/eqrr9ZLS0v1TZs2WR6/fv16vaSkRL/66qv1FStW6A899JDu9/v1v/71r/08cveR6bW++uqr9TvuuEP/6KOP9DVr1ujXX3+97vf79f/+97/9PHJ3kel1ZrS0tOjjxo3TTzzxRH3atGn9M1gX05vrfMYZZ+iHHnqovnDhQn3Dhg36hx9+qL/77rv9OGr3kel1XrRoke7xePTf/e53+vr16/VFixbp+++/v37WWWf188jdxUsvvaTfcMMN+t/+9jcdgP7888/bHp+PtZCMGRsOOeQQ/Xvf+57ptX333Vf/yU9+Ynn8j370I33fffc1vfbd735XP+yww3I2xoFCptfaismTJ+s333xztoc2oOjtdT7vvPP0n/3sZ/pNN91ExowDMr3O//nPf/TKykq9ubm5P4Y3YMj0Ov/mN7/Rx40bZ3rt97//vT5y5MicjXGg4cSYycdaSGEmBeFwGEuXLsWJJ55oev3EE0/Ee++9Z/k777//fsrxJ510EpYsWYJIJJKzsbqd3lxrmXg8jvb2dgwZMiQXQxwQ9PY6P/roo/jiiy9w00035XqIA4LeXOd//etfOOigg/DrX/8aI0aMwD777IPrrrsO3d3d/TFkV9Kb6zxr1ixs3boVL730EnRdx44dO/DXv/4Vp512Wn8MedCQj7VwUDSa7A27d+9GLBZDXV2d6fW6ujo0NTVZ/k5TU5Pl8dFoFLt378bw4cNzNl4305trLXPXXXehs7MT5557bi6GOCDozXVeu3YtfvKTn2DRokXw+Wi6cEJvrvP69evxzjvvoKioCM8//zx2796Nyy+/HHv27CHdjILeXOdZs2bhqaeewnnnnYeenh5Eo1GcccYZuPfee/tjyIOGfKyF5JlJg6Zppp91XU95Ld3xVq8TqWR6rRlPP/005s+fj2effRbDhg3L1fAGDE6vcywWw4UXXoibb74Z++yzT38Nb8CQyf0cj8ehaRqeeuopHHLIITj11FNx991347HHHiPvTBoyuc4rVqzAVVddhRtvvBFLly7Fyy+/jA0bNuB73/tefwx1UNHfayFttRTU1tbC6/WmWPg7d+5MsTgZ9fX1lsf7fD7U1NTkbKxupzfXmvHss8/iO9/5Dp577jkcf/zxuRym68n0Ore3t2PJkiX4+OOPceWVVwJILLq6rsPn82HBggU49thj+2XsbqI39/Pw4cMxYsQIVFZW8tf2228/6LqOrVu3YuLEiTkdsxvpzXW+/fbbMXv2bPzwhz8EABxwwAEoLf3/7ds9SyNRFMbxs3EyEALpAwPaiGCnDhEjMo0fwU5CLCws1coPYG0RiKmCXT6EKXTAfgJiBEGwEG2FSNrHYjG7rvuScTeJd/n/4DaTGzhzGHIfbubmbW1tzQ4PD9k9/0cmsRayM/MLvu/b0tKStdvtN9fb7baVy+WffmdlZeXd/NPTUwvD0LLZ7Mhqdd1Hem32dUdma2vLWq0W/3kPIW2fC4WCXV5eWqfTGYydnR2bm5uzTqdjy8vL4yrdKR95nldXV+3h4cGen58H125ubiyTyVgQBCOt11Uf6XO/37dM5u2yNzU1ZWbfdg7w9yayFo7s1eL/wOuxv2azqW63q93dXeXzed3d3UmSDg4OVKlUBvNfj6Pt7e2p2+2q2WxyNHtIaXvdarXkeZ7q9boeHx8H4+npaVK34IS0ff4Rp5mGk7bPvV5PQRBoY2NDV1dXiuNYs7Oz2t7entQtOCFtn09OTuR5no6Pj3V7e6uLiwuFYahSqTSpW3BCr9dTkiRKkkRmpqOjIyVJMjgC/xnWQsLMH9TrdU1PT8v3fS0uLiqO48Fn1WpVURS9mX9+fq6FhQX5vq+ZmRk1Go0xV+yuNL2Ookhm9m5Uq9XxF+6YtM/09wgzw0vb5+vra62vryuXyykIAu3v76vf74+5avek7XOtVtP8/LxyuZyKxaI2Nzd1f38/5qrdcnZ29tvf28+wFn6R2FsDAADu4p0ZAADgNMIMAABwGmEGAAA4jTADAACcRpgBAABOI8wAAACnEWYAAIDTCDMAAMBphBkAAOA0wgwAAHAaYQYAADiNMAMAAJz2AqR5lA49+HpFAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "xlq=np.linalg.lstsq(A,bn,rcond=None)[0]\n", + "\n", + "plt.figure()\n", + "plt.plot(np.linspace(0,1,n),xlq, label='Least squares solution')\n", + "plt.plot(np.linspace(0,1,n),x, label='Ground truth solution')\n", + "plt.legend()\n", + "plt.figure()\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "id": "44ed725c", + "metadata": {}, + "source": [ + "We see the solution matches the observed data well:" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "28589f81", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "4.213659415696782e-15" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "np.linalg.norm(A@xlq-bn)" + ] + }, + { + "cell_type": "markdown", + "id": "54c64567", + "metadata": {}, + "source": [ + "However this is not a desired solution to our inverse problem. Now, instead, solve using Tikonov regularization: " + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "e14a076f", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "
" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAGdCAYAAADAAnMpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAByRElEQVR4nO3dd3QUVRvH8e/upndIICSU0CF0CB0BpQpIkaogVUpUpKkoolLUF0VFsFAEAVFApIqIQEQ6KC3UUEMglIQQSnrdve8fK5FAgCQkmWzyfM7Zc9zZKc8Ocfe3d+7cq1NKKYQQQgghNKLXugAhhBBCFG4SRoQQQgihKQkjQgghhNCUhBEhhBBCaErCiBBCCCE0JWFECCGEEJqSMCKEEEIITUkYEUIIIYSmrLQuIDNMJhPXrl3D2dkZnU6ndTlCCCGEyASlFDExMXh7e6PXP7z9wyLCyLVr1yhdurTWZQghhBAiGy5fvkypUqUe+rpFhBFnZ2fA/GZcXFw0rkYIIYQQmREdHU3p0qXTvscfxiLCyN1LMy4uLhJGhBBCCAvzuC4W0oFVCCGEEJqSMCKEEEIITUkYEUIIIYSmLKLPSGYopUhNTcVoNGpdihBCPDGDwYCVlZUMZyAKhQIRRpKTkwkLCyM+Pl7rUoQQIsc4ODjg5eWFjY2N1qUIkassPoyYTCZCQkIwGAx4e3tjY2MjvySEEBZNKUVycjI3btwgJCSESpUqPXLAKCEsXZbDyM6dO/nss884dOgQYWFhrF27lm7duj1ymx07djBu3DhOnjyJt7c348ePx9/fP7s1p5OcnIzJZKJ06dI4ODjkyD6FEEJr9vb2WFtbc+nSJZKTk7Gzs9O6JCFyTZajdlxcHLVr1+abb77J1PohISF07NiR5s2bExgYyLvvvsuoUaNYvXp1lot9FPnVIIQoaORzTRQWWW4Z6dChAx06dMj0+nPnzqVMmTLMnDkTAF9fXw4ePMjnn39Ojx49snp4IYQQQhQwuR679+3bR7t27dIta9++PQcPHiQlJSXDbZKSkoiOjk73KGwmT55MnTp10p4PGjTokZfD7l9fZN7TTz/NmDFjnng/efFvoNPpWLduXa7s++LFi+h0Oo4cOfLE+8rNOoUQBU+uh5Hw8HA8PT3TLfP09CQ1NZXIyMgMt5k2bRqurq5pj4I2SZ5Op3vkY9CgQbz55pts3bpV61JFFhTGf7OHBbCwsLAstaAKIQq3PLmb5v67W5RSGS6/a8KECYwbNy7t+d2JdgqKsLCwtP9esWIFH3zwAWfOnElbZm9vj5OTE05OTlqUpzmj0YhOp7OY6+VKKYxGY6H+N7tfiRIltC5BCGFBcv3TvkSJEoSHh6dbFhERgZWVFe7u7hluY2trmzYpXkGcHK9EiRJpD1dXV3Q63QPLHtfkf+jQIYoXL87HH3+cbvmPP/5I2bJlcXV15YUXXiAmJibttaSkJEaNGkXx4sWxs7Pjqaee4sCBA2mvb9++HZ1Ox9atW6lfvz4ODg40bdo0XVACmDNnDhUqVMDGxoYqVarw448/pr324osv8sILL6RbPyUlBQ8PDxYtWpThe1m8eDFubm5s2LCBatWqYWtrm3YHwfjx4ylZsiSOjo40atSI7du3p9t2/vz5aXdSPf/888yYMQM3N7e01zO6vDVmzBiefvrph51afvrpJ+rXr4+zszMlSpSgb9++REREPHCeNm/eTP369bG1tWXXrl0P/Jtt376dhg0b4ujoiJubG82aNePSpUtpr//222/4+flhZ2dH+fLlmTJlCqmpqWmvnzt3jhYtWmBnZ0e1atUICAh4aM13rVq1ipo1a2Jvb4+7uztt2rQhLi4OMN8GP3XqVEqVKoWtrS116tRh06ZND93X3X+Xe61bty7tR8TixYuZMmUKR48eTWvVW7x4MfDgZZrjx4/TqlWrtLqGDx9ObGxs2ut3/50+//xzvLy8cHd357XXXnvopdyHycx+MrqE5Obmllb73ctVv/zyC82bN8fe3p4GDRpw9uxZDhw4QP369XFycuLZZ5/lxo0bDxx7ypQpFC9eHBcXF0aMGEFycjIAS5Yswd3dnaSkpHTH7tGjBwMGDMjS+xQiR13cA0u6QXKcZiXkehhp0qTJAx+iW7ZsoX79+lhbW+f48ZRSxCenavK42+KT27Zv307r1q2ZMmUKEydOTFseHBzMunXr2LBhAxs2bGDHjh188sknaa+PHz+e1atX88MPP3D48GEqVqxI+/btuXXrVrr9T5w4kS+++IKDBw9iZWXFkCFD0l5bu3Yto0eP5o033uDEiROMGDGCwYMHs23bNgD69evH+vXr033RbN68mbi4uEd2WI6Pj2fatGksWLCAkydPUrx4cQYPHsyePXv4+eefOXbsGL169eLZZ5/l3LlzAOzZswd/f39Gjx7NkSNHaNu27QPhLDuSk5P58MMPOXr0KOvWrSMkJIRBgwY9sN748eOZNm0ap06dolatWuleS01NpVu3brRs2ZJjx46xb98+hg8fnvZFvnnzZl566SVGjRpFUFAQ8+bNY/HixWn1m0wmunfvjsFg4O+//2bu3Lm8/fbbj6w7LCyMF198kSFDhnDq1Cm2b99O9+7d0/4uZ82axRdffMHnn3/OsWPHaN++PV26dEk7n1nVp08f3njjDapXr05YWBhhYWH06dPngfXi4+N59tlnKVKkCAcOHGDlypX8+eefjBw5Mt1627ZtIzg4mG3btvHDDz+wePHitICQFTm1n0mTJvHee+9x+PBhrKysePHFFxk/fjyzZs1i165dBAcH88EHH6TbZuvWrZw6dYpt27axfPly1q5dy5QpUwDo1asXRqOR9evXp60fGRnJhg0bGDx4cJbrE+KJmYyw/VP44Tm4sA12zdCuFpVFMTExKjAwUAUGBipAzZgxQwUGBqpLly4ppZR65513VP/+/dPWv3DhgnJwcFBjx45VQUFB6vvvv1fW1tZq1apVmT5mVFSUAlRUVNQDryUkJKigoCCVkJCglFIqLilF+by9QZNHXFJKVk+nWrRokXJ1dX1g+aRJk1Tt2rXTng8cOFB17dpVrVu3Tjk7O6tly5Y9sL6Dg4OKjo5OW/bWW2+pRo0aKaWUio2NVdbW1mrp0qVprycnJytvb281ffp0pZRS27ZtU4D6888/09b5/fffFZB2fps2baqGDRuW7ti9evVSHTt2TNunh4eHWrJkSdrrL774ourVq9cjzwGgjhw5krbs/PnzSqfTqatXr6Zbt3Xr1mrChAlKKaX69OmjOnXqlO71fv36pTufd8/bvUaPHq1atmyZ9rxly5Zq9OjRD61v//79ClAxMTFKqf/O07p169Ktd++/2c2bNxWgtm/fnuE+mzdvrv73v/+lW/bjjz8qLy8vpZRSmzdvVgaDQV2+fDnt9T/++EMBau3atRnu89ChQwpQFy9ezPB1b29v9fHHH6db1qBBA/Xqq68qpZQKCQlRgAoMDFRKZfy3uXbtWnXvx8b9f6d33Vvnd999p4oUKaJiY2PTXv/999+VXq9X4eHhSinzv5OPj49KTU1NW6dXr16qT58+Gb6Xh8nMfjI6h66urmrRokVKqf/Ow4IFC9JeX758uQLU1q1b05ZNmzZNValSJd2xixYtquLi4tKWzZkzRzk5OSmj0aiUUuqVV15RHTp0SHt95syZqnz58spkMmX4fu7/fBMix0RdU2pRJ6UmuZgfa/yVSozJ+cM84vv7XlluGTl48CB169albt26AIwbN466deum/UIICwsjNDQ0bf1y5cqxceNGtm/fTp06dfjwww/56quv5LbebPjnn3/o0aMHP/zwAy+++OIDr5ctWxZnZ+e0515eXmmXF4KDg0lJSaFZs2Zpr1tbW9OwYUNOnTqVbj/3/sr38vICSNvPqVOn0u0DoFmzZmn7sLa2plevXixduhQwj0vz66+/0q9fv0e+Nxsbm3THPXz4MEopKleunNYXw8nJiR07dhAcHAzAmTNnaNiwYbr93P88OwIDA+natSs+Pj44OzunXdK59+8aoH79+g/dR9GiRRk0aBDt27enc+fOzJo1K11foUOHDjF16tR0723YsGFp0xqcOnWKMmXKUKpUqbRtmjRp8si6a9euTevWralZsya9evVi/vz53L59GzD3u7p27doj/+1yy6lTp6hduzaOjo7pjmsymdJdAqxevToGgyHt+b1/v//73//Snav7/y3u9aj9ZMW9f493O+HXrFkz3bL791u7du10gy82adKE2NhYLl++DMCwYcPYsmULV69eBWDRokUMGjRIRo0WeevcnzD3Kbi4C6wd4fl58PwcsNWuz1uWO7A+/fTTj7wckVFzaMuWLTl8+HBWD5Ut9tYGgqa2z5NjZXTs3FShQgXc3d1ZuHAhnTp1emC+ivsve+l0OkwmE/DwTsNKqQeW3bufu6/d3U9m9tGvXz9atmxJREQEAQEB2NnZPfbOCnt7+3T7MJlMGAwGDh06lO6LBUjrJJpR7ff/ber1+geWPaofQlxcHO3ataNdu3b89NNPFCtWjNDQUNq3b5927f+ue79cM7Jo0SJGjRrFpk2bWLFiBe+99x4BAQE0btwYk8nElClT6N69+wPb2dnZZfj/2OO+sAwGAwEBAezdu5ctW7bw9ddfM3HiRP7555+0/lmZ+fe/K6vn7mEedYx7lz/q79ff35/evXunvebt7f3Q4z1qP3efZ+Z9ZfT/wf3L7t3vo9zdvm7dutSuXZslS5bQvn17jh8/zm+//ZapfQjxxIwp8NeHsGeW+blnTei1CDwqaVsXedBnJK/pdDocbKw0eeT2rxsPDw/++usvgoOD6dOnT5a+GCpWrIiNjQ27d+9OW5aSksLBgwfx9fXN9H58fX3T7QNg79696fbRtGlTSpcuzYoVK1i6dCm9evXK8kRfdevWxWg0EhERQcWKFdM97t6pUbVqVfbv359uu4MHD6Z7XqxYsXQtEsAjx9E4ffo0kZGRfPLJJzRv3pyqVatm61f1ve9jwoQJ7N27lxo1arBs2TIA6tWrx5kzZx54bxUrVkSv11OtWjVCQ0O5du1a2r727dv32OPpdDqaNWvGlClTCAwMxMbGhrVr1+Li4oK3t/dj/+3uVaxYMWJiYtI6wMKD587GxuaxM2VXq1aNI0eOpNvPnj170Ov1VK5c+bHvCcwtTfeeIyur7N8IeP/fxLlz53Jsks2jR4+SkJCQ9vzvv//GyckpXQvX0KFDWbRoEQsXLqRNmzYF6k5BkY/dvgSLOvwXRBoMhaF/5osgAgUwjBR0xYsX56+//uL06dO8+OKL6e6+eBRHR0deeeUV3nrrLTZt2kRQUBDDhg0jPj6el19+OdPHf+utt1i8eDFz587l3LlzzJgxgzVr1vDmm2+mraPT6ejbty9z584lICCAl156Kcvvs3LlyvTr148BAwawZs0aQkJCOHDgAJ9++ikbN24E4PXXX2fjxo3MmDGDc+fOMW/ePP744490obBVq1YcPHiQJUuWcO7cOSZNmsSJEyceetwyZcpgY2PD119/zYULF1i/fj0ffvhhlusPCQlhwoQJ7Nu3j0uXLrFlyxbOnj2b9sX/wQcfsGTJEiZPnszJkyc5depUWusJQJs2bahSpQoDBgzg6NGj7Nq1K11n5Yz8888//O9//+PgwYOEhoayZs0abty4kXbMt956i08//ZQVK1Zw5swZ3nnnHY4cOcLo0aMz3F+jRo1wcHDg3Xff5fz58yxbtuyBls+yZcsSEhLCkSNHiIyMfOBOETC3lNnZ2TFw4EBOnDjBtm3beP311+nfv/8DYxDlhVatWvHNN99w+PBhDh48iL+/f451pk9OTubll18mKCiIP/74g0mTJjFy5Mh0t6n369ePq1evMn/+/HSdw4XINUHrYV5zuHIAbF2h94/Q6Quwzj/zHUkYsUAlSpTgr7/+4vjx4/Tr1++xv0zv+uSTT+jRowf9+/enXr16nD9/ns2bN1OkSJFMH7tbt27MmjWLzz77jOrVqzNv3jwWLVr0wK2y/fr1IygoiJIlSz7QTyGzFi1axIABA3jjjTeoUqUKXbp04Z9//kn7JdmsWTPmzp3LjBkzqF27Nps2bWLs2LHpJhRr374977//PuPHj6dBgwbExMQ88jbKYsWKsXjxYlauXEm1atX45JNP+Pzzz7Ncu4ODA6dPn6ZHjx5UrlyZ4cOHM3LkSEaMGJFW14YNGwgICKBBgwY0btyYGTNm4OPjA5gvkaxdu5akpCQaNmzI0KFDH3unkIuLCzt37qRjx45UrlyZ9957jy+++CLtEtmoUaN44403eOONN6hZsyabNm1i/fr1VKqU8S+jokWL8tNPP7Fx40Zq1qzJ8uXLmTx5crp1evTowbPPPsszzzxDsWLFWL58eYbnYvPmzdy6dYsGDRrQs2dPWrdunen5rXLaF198QenSpWnRogV9+/blzTffzLFJNlu3bk2lSpVo0aIFvXv3pnPnzg+cMxcXF3r06IGTk9NjJxkV4omkJMLvb8Iv/SExCko1AP9dUK2L1pU9QKce1QEkn4iOjsbV1ZWoqKgHxhxJTEwkJCSEcuXKyayWgmHDhnH69Gl27dqldSmikBk0aBB37tzJ1DD4bdu2xdfXl6+++uqR68nnm8i2yPOwchBcP25+3mw0tHofDDk/pMajPOr7+155MgKrELnl888/p23btjg6OvLHH3/www8/MHv2bK3LEiJDt27dYsuWLfz111+atQyJQuDoz7BhHKTEgYM7PP8dVGqjdVWPJGFEWLT9+/czffp0YmJiKF++PF999RVDhw7VuiwhMlSvXj1u377Np59+SpUqVbQuRxQ0SbGw8S04au4oT9nm0H0+uHhpW1cmSBgRFu2XX37RugQhgIyHNbjfxYsXc70OUUiFnzBflrl5DnR6aPkOtHgT9Lk75EROkTAihBBCWCql4OBC2DQBjEng7AU9FkDZp7SuLEskjAghhBCWKOEO/DYKgn41P6/UDrrNAUcPTcvKDgkjQgghhKW5cghWDYY7l0BvBW2mQONXQW+ZI3ZIGBFCCCEshckE+76BrVPAlApuPtBzEZTy07qyJyJhRAghhLAEcZGw1h/OB5ifV+sGXb4CO1dNy8oJEkaEEEKI/O7iblg9FGLCwMoOnp0GfoOhgMz4bJkXl4SmJk+eTJ06dbQug6effpoxY8bk6TF1Ol2mRth8nLJlyzJz5swn3o8QooAzGWH7J/BDZ3MQ8agMw/6C+kMKTBABCSOaCg8PZ/To0VSsWBE7Ozs8PT156qmnmDt3bo7NIqqF7du3o9PpuHPnTr7cX15avHgxbm5uDyw/cOAAw4cPz/uChBCWIzoMlnSF7dNAmaBOPxi+HTyra11ZjpPLNBq5cOECzZo1w83Njf/973/UrFmT1NRUzp49y8KFC/H29qZLl4wnM0pJScmxWUa1lJycjI2NjdZlaKJYsWJalyCEyM/OBcDaERB/E6wd4bkvoXYfravKNdIyopFXX30VKysrDh48SO/evfH19aVmzZr06NGD33//nc6dO6etq9PpmDt3Ll27dsXR0ZGPPvoIgDlz5lChQgVsbGyoUqUKP/74Y9o2Fy9eRKfTceTIkbRld+7cQafTsX37duC/FoetW7dSv359HBwcaNq0KWfOnElX6yeffIKnpyfOzs68/PLLJCYmPvR9Xbx4kWeeeQaAIkWKoNPpGDRoEGC+rDJy5EjGjRuHh4cHbdu2fWydj9ofgMlkYvz48RQtWpQSJUo8MEPq/bZv307Dhg1xdHTEzc2NZs2acenSpbTXH3VOM9rX/S02R44cQafTcfHiRbZv387gwYOJiopCp9Oh0+nS6rv/Mk1oaChdu3bFyckJFxcXevfuzfXr19Nev3tp7Mcff6Rs2bK4urrywgsvEBMT88j3K4SwMMYU2PI+LO1pDiIlasKInQU6iEBBDCNKQXKcNo9MToB88+ZNtmzZwmuvvYajo2OG6+juuxY4adIkunbtyvHjxxkyZAhr165l9OjRvPHGG5w4cYIRI0YwePBgtm3bluVTNnHiRL744gsOHjyIlZUVQ4YMSXvtl19+YdKkSXz88cccPHgQLy+vR05EV7p0aVavXg3AmTNnCAsLY9asWWmv//DDD1hZWbFnzx7mzZv32Noysz9HR0f++ecfpk+fztSpUwkICMhwX6mpqXTr1o2WLVty7Ngx9u3bx/Dhw9POdU6eU4CmTZsyc+ZMXFxcCAsLIywsjDfffPOB9ZRSdOvWjVu3brFjxw4CAgIIDg6mT5/0Hz7BwcGsW7eODRs2sGHDBnbs2MEnn3ySrdqEEPnQ7Uuw8FnY++9szg2Gwct/gkdFbevKAwXvMk1KPPzPW5tjv3sNbDIOF/c6f/48SqkHJsry8PBIa3V47bXX+PTTT9Ne69u3b7qQ0LdvXwYNGsSrr74KwLhx4/j777/5/PPP01oSMuvjjz+mZcuWALzzzjt06tSJxMRE7OzsmDlzJkOGDEmbfO6jjz7izz//fGjriMFgoGjRogAUL178gf4SFStWZPr06WnPHzdXx+P2V6tWLSZNmgRApUqV+Oabb9i6dStt27Z9YF/R0dFERUXx3HPPUaFCBQB8fX3TXv/8889z7JwC2NjY4Orqik6no0SJEg9d788//+TYsWOEhIRQunRpAH788UeqV6/OgQMHaNCgAWBuBVq8eDHOzs4A9O/fn61bt/Lxxx9nuTYhRD4T9Cv8+jokRZlv1e36Lfh2fvx2BUTBaxmxIPe3fuzfv58jR45QvXp1kpKS0r1Wv379dM9PnTpFs2bN0i1r1qwZp06dynIdtWrVSvtvLy/z7I4RERFpx2nSpEm69e9/nhX3v48ndW/tYK7/bu33K1q0KIMGDaJ9+/Z07tyZWbNmERYWlvZ6Tp7TrDh16hSlS5dOCyIA1apVw83NLd2xy5YtmxZE4NHvVQhhIVIS4fc34JcB5iBSqiH47y5UQQQKYsuItYO5hUKrY2dCxYoV0el0nD59Ot3y8uXLA2Bvb//ANhldzrk/zCil0pbp/x0SWN1z6SglJSXjsu/pDHt3e5PJ9Nj3kR33v4+s1JmR+zvy6nS6R9a+aNEiRo0axaZNm1ixYgXvvfceAQEBNG7cOG37e917Tu/3pLU/7hj3L8/qexVC5HOR52DlYLh+3Py82Rho9R4YLP8GhawqeC0jOp35UokWj0ze8+3u7k7btm355ptviIuLy9bb9PX1Zffu3emW7d27N+2yw927Ne795X9vJ9GsHOfvv/9Ot+z+5/e7e4eM0Wh87P4zU2dW9pcZdevWZcKECezdu5caNWqwbNky4PHnNLu1P67uatWqERoayuXLl9OWBQUFERUV9dBjCyEs3JHlMK+lOYg4eMBLq6HtlEIZRKAgtoxYiNmzZ9OsWTPq16/P5MmTqVWrFnq9ngMHDnD69Gn8/B49z8Bbb71F7969qVevHq1bt+a3335jzZo1/Pnnn4C5daVx48Z88sknlC1blsjISN57770s1zl69GgGDhxI/fr1eeqpp1i6dCknT55Ma8XJiI+PDzqdjg0bNtCxY0fs7e1xcnLKcN3M1JmV/T1KSEgI3333HV26dMHb25szZ85w9uxZBgwYADz+nN6vYsWKlC5dmsmTJ/PRRx9x7tw5vvjii3TrlC1bltjYWLZu3Urt2rVxcHDAwSF9C1qbNm2oVasW/fr1Y+bMmaSmpvLqq6/SsmXLHL+sJYTQWFIsbHwTji43Py/XArrPB+eH9ysrFJQFiIqKUoCKiop64LWEhAQVFBSkEhISNKjsyVy7dk2NHDlSlStXTllbWysnJyfVsGFD9dlnn6m4uLi09QC1du3aB7afPXu2Kl++vLK2tlaVK1dWS5YsSfd6UFCQaty4sbK3t1d16tRRW7ZsUYDatm2bUkqpbdu2KUDdvn07bZvAwEAFqJCQkLRlH3/8sfLw8FBOTk5q4MCBavz48ap27dqPfG9Tp05VJUqUUDqdTg0cOFAppVTLli3V6NGjH1j3cXVmZX9du3ZNe/1+4eHhqlu3bsrLy0vZ2NgoHx8f9cEHHyij0Zi2zuPO6f3/Frt371Y1a9ZUdnZ2qnnz5mrlypUPnD9/f3/l7u6uADVp0iSllFI+Pj7qyy+/TFvn0qVLqkuXLsrR0VE5OzurXr16qfDw8LTXJ02a9MA5//LLL5WPj0+G71UUDJb8+SYyEHZMqa/8lJrkotRkN6W2T1fKmKp1VbnqUd/f99Iplcn7UTUUHR2Nq6srUVFRuLi4pHstMTGRkJAQypUrh52dnUYVCiFEzpPPtwJCKTiwADZPBGMSOHtDjwVQttnjt7Vwj/r+vpdcphFCCCFyS8IdWP86nFpvfl75Weg6GxzdNS0rv5EwIoQQQuSGKwdh1WC4Ewp6a3MH1cavFqgJ7nKKhBEhhBAiJ5lMsO9r2DoVTKng5gO9FkHJR9+YUJhJGBFCCCFySlwkrPWH8/9OS1H9eeg8yzyqqngoCSNCCCFETgjZBauHQmw4WNnBs5+A3yC5LJMJBSaMWMBNQUIIkSXyuWYhTEbY8SnsmA4o8KhivizjWV3ryiyGxYeRu0Nkx8fHZziMuhBCWKr4+HjgwakARD4SfQ1WD4NL/47eXPcl6DA9U5Omiv9YfBgxGAy4ubmlTRjm4ODw0LlEhBDCEiiliI+PJyIiAjc3NwwGg9YliYyc3QLr/CH+Jtg4wXMzoVYvrauySBYfRoC06dllBlMhREHi5uaW9vkm8pHUZNg6BfZ9Y35eohb0WgzuFTQty5IViDCi0+nw8vKiePHi2Zo1VQgh8htra2tpEcmPboXA6pfh6iHz84YjoN2HYGWrbV0WrkCEkbsMBoP8zyuEECJ3nFwL60dBUrT5Vt2us8H3Oa2rKhAKVBgRQgghclxKAmx+Fw4uND8v3cg8t4xbGW3rKkAkjAghhBAPc+MsrBwEEScBHTw1Bp6ZCAa5wyknSRgRQggh7qcUHFkGG9+ElHhwLAbPz4OKrbWurECSMCKEEELcKykGfn8Djq0wPy/XErrPB2dPbesqwCSMCCGEEHeFHTNflrkVDDo9PPMuPDUO9HJzRG6SMCKEEKJAiE1K5fCl21jpdfh6uVDE0SbzGysFBxaYO6oak8GlpLmTqk/T3CtYpJEwIoQQwiIZTYrDobfZfS6SvcGRBIbeIdX033w+JVzs8PVypmZJV15sVAYv14dMGZJwG9a/Dqd+Mz+v3AG6zQaHonnwLgSATlnATEzR0dG4uroSFRWFi4uL1uUIIYTQ2N7zkUz5LYgz12PSLS9d1B4dOkJvxadbbmetZ+hT5fF/ugJOtvf8Dr+8H1a9DFGhoLc2D2DWyF9m2s0hmf3+lpYRIYQQFiP0Zjwfbwxi88nrADjbWdGycjGequhBs4oelC7qAEBMYgpnwmMICovmt6PXOHDxNt9sO8/PB0IZ3aYyL9YvidXf38DWqaCMUKSceaZd77pavr1CS1pGhBBC5HtRCSnM2xHMgt0hJKeaMOh19G/sw5g2lXBzeHTfEKUUW4Ku88kfpwmJjMOdKOY5zad+6mHzCjV6mCe5s5Pvl5wmLSNCCCEsXlRCCgt3h7BwTwgxiakAPFXRgw86V6Oyp3Om9qHT6WhfvQStqhZn2x8rqXvwXYql3iYRG263+AivZ4bLZRmNSRgRQgiR70QlpLBoTwjf7/4vhFT2dOKNdlVoV80TXVbDgzEV6x2f0u7gZ4Dior40wxNGcm1HWeaVuUmzih45/yZEpkkYEUIIkW8kp5pY+s8lZm09x5148yzslT2dGN26Mh1qlECvz0YLRtRVWD0UQvean9ftT5GnP6bIz0GcDbnFwIX7md6zFt3rlcrBdyKyQsKIEEIIzSml2HzyOp9uMvfrAKhY3ImxbZ4ghACc2QTrXoGEW2DjBJ1nQc2euAJLXm7ImyuP8dvRa4z75ShRCSkMblYu596UyDQJI0IIITR1OjyaD9adZP/FWwB4ONkyrm1letcvhZVBn72dpibD1imw7xvzc6/a0HMRuFdIW8XWysCsPnUo4WLL/F0hTPktiCIONnSrW/JJ35LIIgkjQgghNJGYYuSrref4bucFUk0KO2s9w5qXZ0TL+8YCyapbIbBqCFz7926ZRv7QdipY2T6wql6v492OvqQYFYv3XuTNlUdxc7Dm6SrFs398kWUSRoQQQuS5vecjeXftcS7eNA9O9mz1EkzqUu3ho6Rm1ok18NtoSIoGOzfoNgeqdnzkJjqdjg+eq8atuGTWH73GKz8dZtmwRtQtU+TJahGZJmFECCFEnomKT+HjjUH8cvAKAJ4utkztWoP21Us82Y5TEmDTO3Bosfl56cbmuWXcSmdqc71ex+e9anM7Ppld5yIZsvgAK/2bULF45m4fFk8mmxfjhBBCiKzZcjKctl/u4JeDV9DpoH9jHwLGtXzyIBJxGua3+jeI6KD5GzDo90wHkbtsrPTMfcmP2qXduB2fwoDv9xP17x09IndJGBFCCJGrbsYmMXLZYYb/eIiImCTKF3Nk5YgmfNitBi521tnfsVJw+Ef47mmICALH4tB/DbT+AAzZa/h3tLVi0aAGlHV34FpUItP+OJX9+kSmZSuMzJ49m3LlymFnZ4efnx+7du165PpLly6ldu3aODg44OXlxeDBg7l582a2ChZCCJH/KaU4duUO0/44Rdsvd7LhWBgGvY5Xnq7AxlHNqV/2CWfETYqBNcNh/UhITYDyz4D/bqjQ6olrL+pow2e9agPw84HL/H1Bvq9yW5bnplmxYgX9+/dn9uzZNGvWjHnz5rFgwQKCgoIoU6bMA+vv3r2bli1b8uWXX9K5c2euXr2Kv78/lSpVYu3atZk6psxNI4QQ+VtCspFrUQlcu5PA7nOR/H48jCu3E9Jer1rCmc961qZmKdcnP1jYUVg5GG4Fg84ArSZCs7Ggz9nG/nfXHmfZP6GU93Bk4+jm2FkbcnT/hUFmv7+zHEYaNWpEvXr1mDNnTtoyX19funXrxrRp0x5Y//PPP2fOnDkEBwenLfv666+ZPn06ly9fztQxJYwIIUT+EhGTyM/7L7MlKJwrtxPSRku9l721gVZVi9Oxphdtq3liY/WEYUEp2P8dbHkPjMngUgp6fg9lGj/Zfh8iOjGFNl/sICImiZHPVOTN9lVy5TgFWa5MlJecnMyhQ4d455130i1v164de/fuzXCbpk2bMnHiRDZu3EiHDh2IiIhg1apVdOrU6aHHSUpKIikpKd2bEUIIoS2lFIdD77Bk30U2Hg8jxZj+t6yjjQEvN3uqlnCmY00vnqlSHHubHGpNSLgNv46E0xvMz6t0hK7fgsMTXu55BBc7a6Z2rY7/T4eZuyOY52p7UbWE/CDODVkKI5GRkRiNRjw9PdMt9/T0JDw8PMNtmjZtytKlS+nTpw+JiYmkpqbSpUsXvv7664ceZ9q0aUyZMiUrpQkhhMhFp8KimbDmOEcu30lbVq+MG30b+VDd2wVvN3tc7KyyPoFdZoT+A6tfhqjLYLCBth9CoxF5MtPuszW8aFfNky1B13ln9XFWv9IUQ3aHphcPla02s/v/2JRSD/0DDAoKYtSoUXzwwQccOnSITZs2ERISgr+//0P3P2HCBKKiotIemb2cI4QQImelGk3M3n6eLt/s5sjlO9hY6enlV4rfRj7Fmleb0dOvFL5eLrjaW+d8EDGZYNcMWNTBHESKlIOXt0Bj/zwJIndN7VoDZ1srjly+w09/X8qz4xYmWWoZ8fDwwGAwPNAKEhER8UBryV3Tpk2jWbNmvPXWWwDUqlULR0dHmjdvzkcffYSXl9cD29ja2mJr++CwvUIIIfLOhRuxvLHyKIGhdwBo4+vJ/7rXoLizXe4fPPYGrB0BwVvNz2v0hOe+BLu8v0xSwtWO8c9W4f1fTzJr6zl6+pXC8UmGqxcPyFLLiI2NDX5+fgQEBKRbHhAQQNOmTTPcJj4+Hv19PZwNBvM1xCz2nRVCCJFHfjlwmY5f7SIw9A7OtlZ80as28wf45U0QubAd5jYzBxEre+jytXk0VQ2CyF0vNixDWXcHbsUl88O+i5rVUVBl+TLNuHHjWLBgAQsXLuTUqVOMHTuW0NDQtMsuEyZMYMCAAWnrd+7cmTVr1jBnzhwuXLjAnj17GDVqFA0bNsTb2zvn3okQQognppTiiy1nGL/6GIkpJp6q6MHmsS3o4Vcqd/qD3MuYCn99BEu6Qex1KOYLw7dBvQF5elkmI1YGPaPbVALgu50XiEmUkVlzUpbbmfr06cPNmzeZOnUqYWFh1KhRg40bN+Lj4wNAWFgYoaGhaesPGjSImJgYvvnmG9544w3c3Nxo1aoVn376ac69CyGEEE8sOdXEO2uOsebwVQBGtarI2LaVcz+EAERdhdVDIfTfOzPrDYRnPwEbh9w/diZ1qV2Sb/46T/CNOBbtucio1pW0LqnAyPI4I1qQcUaEECJ3RSem8OpPh9l9PhKDXsf/nq9BnwYPDmSZK85sgnWvQMItsHGGzjOhZs+8OXYW/Xb0Gq8vD8TZzordb7fC1f4JhrMvBDL7/S1z0wghRCF39U4CvefuY/f5SBxsDCwYWD9vgkhqMmx6F5b3MQcRrzowYke+DSIAnWp6UdnTiZjEVL7fdUHrcgoMCSNCCFGIHbp0i67f7OZ0eAzFnG35ZUQTnqlSPPcPfOsCLGwHf39rft74VfNtu+4Vcv/YT0Cv1zG2TWUAFu65yO24ZI0rKhgkjAghRCG16tAVXvzuHyJjk/H1cmHtq02pUTIH5o55nBOrYW4LuBYI9kXgxZ/h2WlgZRlDOrSvXoJqXi7EJqUyX1pHcoSEESGEKGSMJsW0jad4c+VRko0m2lf3ZJV/E0oVyeXOosnxsH4UrBoCyTFQpol5pt0qHXL3uDlMr9cxtq25dWTx3ovcjE16zBbicSSMCCFEIXIjJonBiw8wb6f5F/3rrSoyp59f7g/iFXEa5reCwz8AOmjxFgzcAK6lcve4uaSNb3FqlXIlPtnId9I68sQkjAghRCGx7XQEHWbtZOfZG9ha6Zn1Qh3eaFcFfW7OtaIUHF4C3z0NN06BY3EYsA5avQcGyx3FVKfTMebfcUeW7L0krSNPSMKIEEIUcIkpRiavP8ngxQeIjE2maglnfnv9KbrWKZnLB46GNcNg/euQmgAVWsEre6D807l73DzyTBVz60hCirSOPCkJI0IIUYBdvhVPt2/3sHjvRQAGNS3LuteaUdnTOXcPfO0IfNcSjq8EnQFafwD9VoNTHtypk0ekdSTnSBgRQogC6lRYNN3n7OV0eAzujjYsGtSAyV2qY2dtyL2DKgV/z4Xv25pv33UtDYP/gOZvgL7gfeVI60jOKHh/GUIIIThw8Ra95+3jRkwSVUs4s3F0c56pmsutEvG34Od+sOltMCZDlU4wYieUaZS7x9WQtI7kDAkjQghRwGw9dZ2XFvxDTGIq9X2KsGJ4Ezxdcnm23dC/YW5zOPM7GGygw3R4YSk4FM3d4+YD0jry5CSMCCFEAbLm8BWG/3iIpFQTraoW58eXG+HqkIvzp5hMsOsLWNQRoq9A0fLwcgA0GqH5TLt5RVpHnpyEESGEKCB+O3qNN1YexWhSdK9Xknn9/bC3ycX+IbER8FN32DoVlBFq9jJflvGuk3vHzKfStY7slNaRrJIwIoQQBcBfp68zdsURlIIXG5bh8561sTbk4kd88DaY0wwubANrB+j6LXSfD7a5fJdOPnVv68iPf1/ilsxZkyUSRoQQwsLtC77JKz8dJtWk6FrHm4+61ci9gcyMqeaWkB+fh7gIKF4Nhm2Dui8VmssyD/NMleJU93YhPtnIoj0hWpdjUSSMCCGEBTty+Q5DfzhAUqqJNr7F+bxXbQy5FUSirsDiTuY+IijwGwTD/oLiVXPneBZGp9PxequKACzec5GohBSNK7IcEkaEEMJCnbsew6BF+4lLNtK0gjvf9K2Xe5dmTm+EuU/B5b/B1gV6LoLOs8DaPneOZ6HaVStBZU8nYpJSWfLvQHPi8SSMCCGEBboZa57w7k58CnVKuzF/QP3cGcwsNQn+eAd+fhESboN3XXMn1Rrdc/5YBYBer+O1Z8ytI9/vCSEuKVXjiiyDhBEhhLAwSalGRvx4iCu3E/Bxd2DhoAa5M+vuzWDzSKr/zDE/bzIShmyBouVy/lgFyHO1vCnn4cid+BSW/nNJ63IsgoQRIYSwIEopJqw5zsFLt3G2s+L7gQ0o6miT8wc6vgrmtYSwo2BfFF5cAe0/BqtcOFYBY9DreOXpCgB8tzOExBSjxhXlfxJGhBDCgszZEcyaw1cx6HXM7lePisWdcvYAyfHmWXZXvwzJMVCmKfjvhirP5uxxCrjn65akpJs9kbFJ/Lw/VOty8j0JI0IIYSE2nQhn+qYzAEzuXI3mlYrl7AEiTsH8VnB4CaCDFuNh4G/gWjJnj1MIWBv0aa0j83ZeIClVWkceRcKIEEJYgJDIOMb9cgSAgU186N+kbM7tXCk49AN89wzcOAVOnjDgV2g1EQy50BelkOjpVwpPF1vCohLZcDRM63LyNQkjQgiRz6UYTYxZcYT4ZCONyxfl/eeq5dzOE6PNl2R+GwWpCVChFfjvgfItc+4YhZSdtYH+jX0AWHHwssbV5G8SRoQQIp/75q/zHL18B2c7K2b0roNVTo0lcvUwzGsBJ1aDzgBtJkO/1eCUw5d/CrEefqXQ6WB/yC1CIuO0LiffkjAihBD52KFLt/lm23kAPn6+Jt5uOTDImFKwbzZ83w5uh4BraRiyCZ4aC3r5WshJXq72tPi3b8+qQ9I68jDyVyeEEPlUbFIq4345gtGk6FbHmy61vZ98p/G3YPmLsHkCmFKg6nPgvwtKN3zyfYsM9WlQGoBVh65gNCmNq8mfJIwIIUQ+9eFvQVy6GU9JN3umdK3x5Du8tM88pPvZP8BgAx0/hz4/gX2RJ9+3eKjWvsUp4mDN9egkdp67oXU5+ZKEESGEyIc2HLvGioOX0engi961cbW3zv7OTEbY+Zl5krvoq+BeEYZuhYbDCv1Mu3nB1spAt7rm26NXSkfWDEkYEUKIfGb3uUjGrTgKwIgWFWhc3j37O4u5Dj8+D399BMoItfrA8O3gVStnihWZ0svPfKkmIOg6t+KSNa4m/5EwIoQQ+cjh0NsM//EgyUYTz1YvwZvtKmd/Z+e3wtxmELIDrB2g62x4fh7YOudcwSJTqnm7ULOkKylGxbrAq1qXk+9IGBFCiHziVFg0gxbuJz7ZSPNKHsx6MZu38RpT4M/J8FN3iLsBxaubW0Pq9pPLMhrqXb8UAL8cvIxS0pH1XhJGhBAiH7gYGUf/7/cTnZiKn08R5vX3w9bKkPUd3bls7huy+0vz8/pDYNhWKFYlZwsWWdaldklsrPScDo/h+NUorcvJVySMCCGExq5HJ9JvwT9Exibh6+XCwkENcLDJxjDspzaYL8tc/gdsXaDXYnjuS7DOgbFJxBNzdbCmQ40SgLl1RPxHwogQQmgoJjGFQYsOcPVOAmXdHVgypGHW75xJTYKN42FFP0iMAu96MGInVH8+d4oW2Xa3I+tvR8NINZo0rib/kDAihBAaSU418cpPhzkVFo2Hkw1LhjSimLNt1nZyMxgWtIH988zPm4yEIZuhaLmcL1g8sSYV3HFzsCYqIYVDl25rXU6+IWFECCE0oJTinTXH2H0+EgcbA4sGNaSMu0PWdnJspXlumfBjYF8U+v4C7T8GK5vcKVo8MYNexzNVigPw1+kIjavJPySMCCGEBj7fcoY1h69i0Ov4tl89apZyzfzGyXHw62uwZigkx4JPM3hlD1Run3sFixzT2tccRv48dV3jSvKPbPSQEkII8SSW7w/l223BAEzrXjPtl3KmXA+ClYMg8gygg5bjocV4MMjHuaVoUbkYVnodwTfiuBgZR1kPR61L0py0jAghRB46HHqbD349AcCYNpXoXb905jZUCg4ugvnPmIOIUwkYuB6eeVeCiIVxsbOmYbmiAGyVSzWAhBEhhMgzkbFJvLb0MClGRceaJRjdulLmNkyMglWDYcMYSE2Eim3AfzeUa5Gr9Yrc06qquTVsq1yqASSMCCFEnkg1mhi1PJCwqETKF3Nkes/a6DIzGurVQ+ZOqifXgt4K2k6FvivBqVjuFy1yTRtfTwD2h9wiOjFF42q0J2FECCHywBcBZ9kbfBMHGwPzXvLDyfYxl1aUgn3fwvft4fZFcCsDgzdBs9Ggl49uS1fWw5HyxRxJNSl2nr2hdTmak79oIYTIZZtPhjNnu7nD6vSetajk+ZiJ6uJuwvIXYPO7YEoB3y4wYheUbpAH1Yq8crd15K9T0m9EwogQQuSiCzdiefOXowAMaVaO52p5P3qDS3th7lNwdhMYbKHj59B7Cdi75X6xIk/d7Tey7UwERlPhnjhPwogQQuSSmMQUhv94iJikVBqULcKEjlUfvrLJCDummye5i7kG7hVh6J/QcJjMtFtA1fcpgoudFbfjUwgMLdyjsUoYEUKIXGAyKcb9cpTzEbGUcLHj2371sDY85CM3Jhx+7AbbPgZlgtovwvAd4FUrT2sWecvKoOfpKncHQCvcl2okjAghRC746q9zBARdx8ZKz7z+fhR3tst4xfN/wpxmELITrB2h21x4fi7YOuVtwUITd0dj/et04b7FV0bKEUKIHLblZDgz/zwHwMfdalC7tNuDKxlT4K+PYM9M83PPGtBzERSrnGd1Cu09Xbk4Br2Os9djuXwrntJFszg/UQEhLSNCCJGDzl2PYeyKIwAMalqWXhmNsHonFBZ1/C+INBgKQ7dKECmEXB2sqe9TBCjcE+dJGBFCiBwSnZjCiB8PEZdspFG5okzs5PvgSqd+M98tc2U/2Lqa75Tp9AVYP+QyjijwWlYxD2C353ykxpVoRy7TCCFEDjCZFG/8cpQLkXF4u2bQYTUlEba8Bwfmm5+X9IOeC6FIWU3qFflH0woewBn+vnATo0lh0Be+u6ekZUQIIXLA7O3n0zqsznnJDw8n2/9ejDwP37f5L4g0HQVDNksQEQDU8HbB2daK6MRUTl6L0rocTUgYEUKIJ7TtTARfBJwF4KOu93VYPboCvmsJ4cfBwR36rYJ2H4LBWptiRb5jZdDTqLw7AHuDb2pcjTYkjAghxBO4dDOO0csDUQr6NipD7wb/dlhNjoN1r8La4ZAcC2Wbg/8eqNRW24JFvtS0QuEOI9JnRAghsikh2ciIHw8RnZhKndJuTOpczfxC+AlYNRgiz4JODy3fgRZvgt6gbcEi32pa0RxGDoTcIjnVhI1V4WorKFzvVgghcohSivGrj3E6PAYPJxvmvFQPW4MeDi6EBa3NQcTZCwb+Bk+/LUFEPFLl4s64O9qQkGLkyOU7WpeT57IVRmbPnk25cuWws7PDz8+PXbt2PXL9pKQkJk6ciI+PD7a2tlSoUIGFCxdmq2AhhMgP5u64wG9Hr2Gl1/Ft33p42SbDykGwYSykJkKlduC/G8o+pXWpwgLo9Toap12qKXy3+GY5jKxYsYIxY8YwceJEAgMDad68OR06dCA0NPSh2/Tu3ZutW7fy/fffc+bMGZYvX07Vqo+YMEoIIfKxbWcimL75NACTulSnke1FmNscgtaB3grafggvrgBHD03rFJalWQXz30th7DeiU0plad7iRo0aUa9ePebMmZO2zNfXl27dujFt2rQH1t+0aRMvvPACFy5coGjRotkqMjo6GldXV6KionBxccnWPoQQIidcuBFL12/3EJOYyosNSvE/r53o/pwCphRwK2Me0r1Ufa3LFBboYmQcT3++HWuDjmOT2mNvY/mX9jL7/Z2llpHk5GQOHTpEu3bt0i1v164de/fuzXCb9evXU79+faZPn07JkiWpXLkyb775JgkJCQ89TlJSEtHR0ekeQgihtZjEFIb/eIiYxFSeLq3n44SP0G15zxxEqnWFEbskiIhs83F3wNvVjhSj4sDFW1qXk6eyFEYiIyMxGo14enqmW+7p6Ul4eHiG21y4cIHdu3dz4sQJ1q5dy8yZM1m1ahWvvfbaQ48zbdo0XF1d0x6lS2cwt4MQQuQho0kxdsURzkfE8qxTMN8njEV/fgsYbKHTDOj1A9i7aV2msGA6nY4mhfRSTbY6sOp06YeqVUo9sOwuk8mETqdj6dKlNGzYkI4dOzJjxgwWL1780NaRCRMmEBUVlfa4fPlydsoUQogc8+mm0/x1Kpyx1muZY5yEITYMPCrDsL+gwcvwkM9AIbKi2b+3+O4rZJ1YszTOiIeHBwaD4YFWkIiIiAdaS+7y8vKiZMmSuLq6pi3z9fVFKcWVK1eoVKnSA9vY2tpia2v7wHIhhNDCz/tDWbfzED9Zf0tTQxAooE4/6PgZ2DhqXZ4oQJr8e0fN8atRRCWk4GpfOEbqzVLLiI2NDX5+fgQEBKRbHhAQQNOmTTPcplmzZly7do3Y2Ni0ZWfPnkWv11OqVKlslCyEEHlnb3AkW379iY22E8xBxNoRnp8H3WZLEBE5zsvVnvIejpgU7A8pPP1GsnyZZty4cSxYsICFCxdy6tQpxo4dS2hoKP7+/oD5EsuAAQPS1u/bty/u7u4MHjyYoKAgdu7cyVtvvcWQIUOwt7fPuXcihBA57EL4bc78OI6F1p/ioYtGedaAETug9gtalyYKsLutI3vOF55LNVkeDr5Pnz7cvHmTqVOnEhYWRo0aNdi4cSM+Pj4AhIWFpRtzxMnJiYCAAF5//XXq16+Pu7s7vXv35qOPPsq5dyGEEDksOuw8CfP7MpgzAKT6vYzVs/8DazuNKxMFXdMKHiz9J5R9hagTa5bHGdGCjDMihMhLqSd+JWn1qziqWGJwwNT5a1z9empdligkbsUlU+9Dc3eIw++3paijjcYVZV+ujDMihBAFWkoi/P4GVqsG4KhiOaoqcr3vnxJERJ4q6mhD+WLm/kiBobc1riZvSBgRQgiAyHOwoA0cWADA3NTO3Oj1KxUrV9e4MFEY+ZUpAsBhCSNCCFFIHP0Z5rWE68e5qVwYmPw2pjaTaVND7vgT2qjnYw4jhy4VjjCS5Q6sQghRYCTFwsa34OgyAPZTnZFJr9K0TnVeaVlB4+JEYeb3bxg5ejmKVKMJK0PBbjso2O9OCCEeJvwEfPc0HF2G0un5wbYvLyROwKt0OT7pUeuho0oLkRcqFnPC2c6KhBQjp8NjtC4n10kYEUIULkrBge9hfiu4eQ6cvZhfbhaTop7Dw9me+f39sLO2/NlShWXT63XULVN4LtVIGBFCFB4Jd2DlQPh9HBiToFJ7tj69hv8FuaPTwcw+dSjuIuOIiPyhMHVilT4jQojC4cpBWDUY7oSC3hraTCas2mDGzdoDgH/LCjSt6KFxkUL8p56PG1A4WkYkjAghCjaTCfZ9A1ungCkV3Hyg5yKM3vUYu+BvohJSqF3KlXFtK2tdqRDp1Cnthk4HV24nEBGdWKBb7eQyjRCi4IqLhGW9IeB9cxCp1g38d0EpP+buCObvC7dwsDEw64W6WBfwuxWE5XG2s6aKpzNQ8C/VyP99QoiCKWQXzH0KzgeAlR089yX0Wgx2rhy5fIcvA84CMLVrDcp6yOy7In+6O97I4dA72haSyySMCCEKFpMRtn8CS7pATBh4VIZhf0H9IaDTEZuUyqjlgaSaFM/V8qJHvZJaVyzEQ/kVkjtqpM+IEKLgiA6DNcPg4i7z8zovQcfpYPNfy8cHv54g9FY8Jd3s+fj5mjKeiMjX7raMHL8SRVKqEVurgnnbubSMCCEKhnMBMLeZOYhYO8Lz30G3b9MFkV+PXGXN4avodTDzhTq42ltrWLAQj1fW3YGijjYkG02cvBatdTm5RsKIEMKypSbDlvdgaU+IvwklasKInVC7T7rVLt+K5721JwB4vVUlGpQtqkW1QmSJTqejXhk3AA4X4Es1EkaEEJbr9kVY1AH2fm1+3nA4vPwneFRMt1qq0cSYFUeISUrFz6cIr7eq+OC+hMin/uvEWnDDiPQZEUJYppPrYP0oSIoCO1fo+i34ds5w1a//Os+hS7dxtrViZp86BX7SMVGw1LunE6tSqkD2c5IwIoSwLCmJsPldOPi9+XmphtDze3Ark+Hqvx65ytd/nQPg4+41KV3UIa8qFSJH1C7lhkGv43p0EteiEinpZq91STlOfh4IISzHjbOwoPV/QeSpsTB440ODyIZj1xi74ggmBf0b+9CltnceFitEzrC3MVDd2wUouLf4ShgRQliGI8vgu5Zw/QQ4eMBLq6HNZDBkfEfMphNhjP7ZHER6+ZViSpfqeVuvEDno7qWagtqJVS7TCCHyt6RY+P0NOPaz+Xm5FtB9PjiXeOgmW06GM3JZIEaTonu9knzSoxZ6fcG7zi4Kj9qlXQE4cTVK40pyh4QRIUT+FXbMPNPuzfOg08PT70LzcaDPeOCnFKOJXw5eZvL6k6SaFF3rePNZz9oYJIgIC1ezpDmMnLwWjdGkCtzftIQRIUT+oxQcWACbJ4IxCZy9zZ1UfZpmuHpiipGVh64wd3swV+8kANCplhdf9JIgIgqGch5OONoYiEs2Enwjlsr/TqBXUEgYEULkLwl3YP1IOPWb+XnlZ6HbHHD4b5AypRQ3YpM4dz2WI5fvsGTfRa5HJwFQzNmWES3KM6hpWbmFVxQYBr2O6t6u7L94i2NXoiSMCCFErrl8AFYNgahQ0FtD26nQ+BXQ6Qi+EcuvgVfZd+EmZ6/HEpWQkm5Tb1c7/J+uQO/6pbGzLpjzd4jCrUZJcxg5cTWKnn6ltC4nR0kYEUJoz2SCfV/D1qlgSoUiZaHnIm64VGfD3ousC7zK0SvpO+7pdeDj7kiFYk608S1O93qlsLGSlhBRcNUqZe43cuzKHW0LyQUSRoQQ2oq9Aev84fyf5ufVuxPV5nNm7b7Okn1bSTUpwNxM3aKSBx1relHd25XyxRylBUQUKjX+7cQaFBZNqtFUoC5DShgRQmgnZCesHgax4WBlh7H9NJamPMOXXx/idrz5Mkzt0m48X8eb52p74+Fkq3HBQminvIdjWifW8zdiqVrCReuScoyEESFE3jOmws7psGM6oFAeVThQ/wsm7jJxLiIIgMqeTrzXqRotKhfTtlYh8gm9Xkf1kq7sD7nF8StREkaEECLboq/B6qFwaQ8AYRV6MSbqRf5ZFw1AEQdrxrWtzIsNyxSoZmghckKtf8PIiatR9KpfWutycoyEESFE3jm7Gdb6Q8ItjFaOfO3wGjNP1gESsbPWM6BJWV57uiKuDhkP8S5EYVfzbifWAjYSq4QRIUTuS02GrVNg3zcAnNNXYFjcq1yM9cLWSs9LjX0Y0bI8xZ3tNC5UiPzt7kisQdcKVidWCSNCiFylboUQt2wgTpFHAViU2p5pqX3RW9syqEEZXn26AsVdJIQIkRll3R1xsrUiNimVcxGx+HoVjH4jEkaEELkiOjGFwxsX0eDYJJyI545yZHzKcK6WaM37DcvQpbY3rvZyOUaIrNDrddQo6cLfF25x/GqUhBEhhLifyaQ4HHqbXw9eoMbxafTRmccOOawqs8X3f7z+VMO0a95CiOypWdLVHEauRNG7gHRilTAihHgiJpMi8PIdfj8WxsbjYTjGBPON9Vf46i9jQsfJckOo1PMj6jk6aF2qEAXC3cHPjhegTqwSRoQQWaaU4uS1aH47eo0Nx8L+nSlX0cuwgyk2P+CgSyLZzh3rnguoWbGV1uUKUaDUKuUGmEdiTTGasC4AnVgljAghMu16dCLL/gnlt6PXuBAZl7a8mE0yc9x+on70v0O6l38am+e/A2dPjSoVouDyKeqAs60VMUmpnLseSzVvy+83ImFECPFYyakmFu0J4aut54hLNgJga6WntW9x+vlE0eTw++hvBYPOAM+8C0+NA73l/1oTIj8yd2J1Zd+Fm5y4GiVhRAhR8O08e4PJv53kwg1zS0id0m4MbOpDm6rFcT62GLZMBGMyuJSEHt+DTxNtCxaiEKhZyhxGjl29Q+8Glt+JVcKIECJDd+KTeWf1cTadDAfAw8mWCR2q8nzdkuiT7sCvg+H0BvPKlTtAt9ngUFS7goUoRGqmdWKN1riSnCFhRAjxgPMRsQz94QAXb8Zj0OsY1LQso9tUwsXOGi7vh1VDIOoy6K2h3YfQyB90Oq3LFqLQuBtGThWQTqwSRoQQ6ew4e4ORyw4Tk5hKSTd7vhvgR3VvVzCZYPeXsPVDUEYoUg56LQLvulqXLESh4+PugLOdFTGJqZy9HmP+f9SCWXaUEkLkGKUUC3eHMHjRfmISU6nvU4RfRzYzf8jFRsDSHvDnZHMQqdETRuyUICKERnQ6HTX+DSAnCsB4IxJGhBAopZjyWxBTNwRhUtDTrxRLhzXCw8kWLuyAuU9B8F9gZQ+dv4IeC8DO8nvwC2HJ7o5mXBAGP5PLNEIUckoppm4IYvHei+h0MKFDVYY1L4/OZIS/PoadnwEKilWFXouhuK/WJQshuHckVsvvxCphRIhCTCnF9M1nWLTnIgCfdq9lvk0w6iqsHgqhe80r1hsAz34KNjKkuxD5RUHqxCphRIhC7Kut55mzPRiAD7vVMAeRs5thrT8k3AIbZ+g8E2r21LZQIcQDCtJIrJYbo4QQT2TO9mC+/PMsAO918qV/fS/YPBGW9TYHEa86MGKHBBEh8im9Xkf1kuYAYumdWCWMCFHIKKX4MuAsn246DcBb7aswtLoOFraHfd+YV2r8Kry8BdwraFipEOJxahaQGXzlMo0QhUiK0cS7a46z8tAVAMa2qcxrxY7BvNGQFA32RaDrbKjaUeNKhRCZUUPCiBDCksQmpfLq0sPsPHsDvQ6mda5En5vfwKrF5hVKN4ae34NrKU3rFEJk3r2dWFONJqwstBOrhBEhCoGI6EQGLz7AyWvR2FsbWNTJmcaHB0JEEKCD5m/A0xPAIB8JQliSsu6OONlaEZuUyvkbsVQtYZmdWC0zQgkhMi08KpGec/dx8lo07g7WbHn6Eo239jQHEcfi0H8ttH5fgogQFkiv16XdRXP8iuVeqpEwIkQBdiMmib4L/ib0VjxViujYUWk5pXeNh5R4KP8M+O+GCs9oXaYQ4gncvVRjyXfUyE8hIQqo23HJ9P/+Hy7ciONp56vMt5mN9ZkQ0Bmg1URoNhb08ntECEtXEO6oydYn0ezZsylXrhx2dnb4+fmxa9euTG23Z88erKysqFOnTnYOK4TIpKiEFPov/IfT4dGMdNjKIuNErKNCwKUUDN5o7iMiQUSIAuHuHTVB/3ZitURZ/jRasWIFY8aMYeLEiQQGBtK8eXM6dOhAaGjoI7eLiopiwIABtG7dOtvFCiEeLy4plcGL9nP56jUW2s3iTdP36EzJUKUj+O+CMo21LlEIkYPKezjiaGMgMcVE8I04rcvJliyHkRkzZvDyyy8zdOhQfH19mTlzJqVLl2bOnDmP3G7EiBH07duXJk2aZLtYIcSjJSQbGbL4AFzezx9279KK/aC3hmc/gReWgUNRrUsUQuQwvV5HdW/LvlSTpTCSnJzMoUOHaNeuXbrl7dq1Y+/evQ/dbtGiRQQHBzNp0qRMHScpKYno6Oh0DyHEoyWmGBmxZD/1Qhfzi81UvImEouVhaAA0fgV0Oq1LFELkkhoW3ok1Sx1YIyMjMRqNeHp6plvu6elJeHh4htucO3eOd955h127dmFllbnDTZs2jSlTpmSlNCEKteRUE+8s2crQS1NpYX3cvLBmL+g0A+wsc9wBIUTm1Sz17+29FhpGstWDTXffLyyl1APLAIxGI3379mXKlClUrlw50/ufMGECUVFRaY/Lly9np0whCoUUo4lvv1/AxNChtDAcx2iwgy5fQ/f5EkSEKCTu3lETdC0ao0lpXE3WZallxMPDA4PB8EArSERExAOtJQAxMTEcPHiQwMBARo4cCYDJZEIphZWVFVu2bKFVq1YPbGdra4utrW1WShOiUEpKTuKvueMYfXMpep0izrUSjv1+hOK+WpcmhMhD5TyccLAxEJ9s5MKNWCp5OmtdUpZkqWXExsYGPz8/AgIC0i0PCAigadOmD6zv4uLC8ePHOXLkSNrD39+fKlWqcOTIERo1avRk1QtRiN0JC+HCZ8/Q4dZP6HWKq+V74/jaTgkiQhRCBr2O6t6We6kmy4OejRs3jv79+1O/fn2aNGnCd999R2hoKP7+/oD5EsvVq1dZsmQJer2eGjVqpNu+ePHi2NnZPbBcCJF51w+sxe731/Elhlhlz+Vm0/BtN1jrsoQQGqru7cqBi7c5fjWK7vUsa8LLLIeRPn36cPPmTaZOnUpYWBg1atRg48aN+Pj4ABAWFvbYMUeEENmUmkz4mrcpEbQQgNO6Cti8uBjfKrU0LkwIobW7/UZOXrO8O1B1Sql839MlOjoaV1dXoqKicHGRDnmikLp1gTtLXsLtzkkA1tt1pfGIrylexFXjwoQQ+UHQtWg6frULFzsrjk5ql+GNJXkts9/fMjeNEBZAHV9F8rpRuBnjuK2cWOb1NkOGvIa9jUHr0oQQ+USF4o5Y6XVEJ6ZyLSqRkm72WpeUaRJGhMjPkuMx/vE2hsAl2AL7TVX4p+50XuvaEr1e+189Qoj8w9bKQMXiTpwOj+HUtWiLCiMyU5YQ+VXEaYzfPYMhcAkmpeMb4/MEd/iZ159/WoKIECJDVUuYb+k9HW5Z/UYkjAiR3ygFh5dg+q4lhsjTRCg3hvMetQd8xotNymtdnRAiH/P1MvfLOBUWo3ElWSOXaYTITxKjYcNYOLEKPbDTWJPpDuOYMaQtlS1sECMhRN5LCyMW1jIiYUSI/OLaEVg1GG5dIBU9X6T0ZmvRF1gytAklXO20rk4IYQGqepl/tFyMjCMh2WgxndwljAihNaXgn3kQ8D4YkwlT7ryW/DrGkg1YMbghRRxttK5QCGEhijvb4eFkQ2RsMmevx1C7tJvWJWWK9BkRQkvxt+DnfrDpbTAmE2BqwLNJ07Ar34SlwxpLEBFCZFnVEnf7jVjOpRoJI0JoJfQfmNsczvxOqs6aSSkDGZY8hobVKrBwUAOcbKXhUgiRdb7/XqqxpDAin3ZC5DWTCfZ8CX99DMpIuJU3L8e9xklVjiHNyvFux6pYGeR3ghAie/7rxGo5d9RIGBEiL8VGwJrhcGEbAFsMLRgbOxCjtSOzetSia52SGhcohLB0916mUUrli2HhH0fCiBB5JXibOYjERZBqsOeDlIEsS2xO6aIOzHupPtW8Zd4lIcSTq1jcCSu9jhgLGhZewogQuc2YCtunwa4vAMV1u/L0jXqFYFWSFpWL8dULdXBzkI6qQoicYWOlt7hh4eXCtBC5KeoK/PAc7PocUPzp0IEWdz4gWJVk5DMVWTSogQQRIUSOu9tvxFKGhZeWESFyy+mN8OurkHAbo7Uzk9Rwfrrlh6ONgVm96/BsjRJaVyiEKKB8vZxZG2g5w8JLGBEip6UmQcAk+GcOALdcq9Pr5nCCU4tRvpgj3/X3o2JxGdpdCJF7LG2sEQkjQuSkm8HmId3DjgKw26MPg690IgUr2vh6MqNPbVzsrDUuUghR0N29TBNy0zKGhZcwIkROOb4KfhsDyTGY7IowzXYU869UQaeDN9pU5rVnKqLX5/9b7IQQlq+Ys23asPBnrsdQJ58PCy9hRIgnlRxvHs798BIAooo1oO/tYZy844SLnRWzXqjLM1WLa1ykEKKw8fVyYde5SE6HRUsYEaJAizgFKwfDjVModOwoMZCXL7bGiIGqJZyZ+5IfZT0cta5SCFEI3Q0jltBvRMKIENmhlLkl5I+3ITWBFPtivKNGsfpiBQAGNvHhnQ6++f46rRCi4Kpa4t85aixgWHgJI0JkVWI0bBgLJ1YBEOLaiD43BhNhcsHTxZbPetamReViGhcphCjs0uaosYBh4SWMCJEV1wLNl2Vuh2DSGfiaF5h5vQMKPZ1re/Nh1+oyiJkQIl+oUMwJa4NlDAsvYUSIzFAK/p6DCvgAnSmFcF0xXk18jcOqMuWLOfL2s1VpX10GMRNC5B82VnoqFDMPC386LH8PCy9hRIjHib+Fce0rGM5tQgdsMjZgfMow7F3c+aRNZXr6lcLKIDMrCCHyn0qezpwOj+F8RCytfT21LuehJIwI8QjRZ3aiWz0U5+TrJCkrPkp9id9sOuLfugKDm5aTDqpCiHytUnEnAM5ej9W4kkeTMCJERkxGrm74H56HZ2CFiQumEnxo/xZPt2zD3vqlcLCR/3WEEPlfZU9zGDkfkb/vqJFPVCHuF3OdyCUDKXljHwAB1k+T3P5z5tetIJdjhBAW5e48WOciYvP1HTUSRoS4hzr/FwkrXsYj5Rbxypafi42mz7C3cbSV/1WEEJbHx90Ba4OO+GQjV+8kUKqIg9YlZUh+5gkBYEzBFDAZ9VN3HFJuccpUmoXVFjHw1XcliAghLJa1QU95D/OlmnMR+bffiIQRIe5cRi3qhH7Pl+hR/GRszYE2KxnZpxMGmdhOCGHhKt7tN5KPO7HKTz5RuJ3agPr1NXSJd4hW9kw0Due5F1+VMUOEEAXGf3fU5N9OrBJGROGUmgRb3of989ABR0zlGZ3yOm/37SBBRAhRoFT2/K8Ta34lYUQUPjeDYeUgCD8GwHepnfgstQ8f96hHx5pe2tYmhBA57G7LyPl8fEeNhBFRuBxbCRvGQHIsidZuvBI3jG2murzXyZfeDUprXZ0QQuQ4H3dHrPQ6YpNSCYtKxDsfDgsvYUQUDslx8Md4CPwJgEj3+jx3dSDhuDOqdSWGNi+vcYFCCJE7bKz0lPNw5FxELOciYvNlGJG7aUTBdz0Ivnvm3yCi43y112gaNoZw3BnUtCxj21TSukIhhMhVlf69o+ZcPu3EKi0jouBSCg7/AH+8DamJ4FSCY40+o+cma5JNJnr6leKD56rly+unQgiRk8wjsYZzLp/e3istI6JgSoyGVUPgt9HmIFKxDUef+40+W2xINproUKMEn3SviV7GERFCFAJ356g5l0/nqJGWEVHwXD1sDiK3Q0BvBa0/4HCplxi46CAJKUZaVC7GzBfqyDwzQohCo9LdOWqu5887aiSMiIJDKfh7NgRMAlMKuJYhvut3fHbShR82/I1JQcOyRZn3kh+2VgatqxVCiDxT1sMBg15HTFIq16OTKOFqp3VJ6UgYEQVD/C1Y9wqc3WR+7tuFrZXf570VlwmLugVAl9refPx8DextJIgIIQoXWysDZd0dCL4Rx7mIGAkjQuS4S3th1csQcw1lsCXE710+vt6UrSvOAVCmqAMfdatBi8rFNC5UCCG0U6m4M8E34jh7PZbmlfLX56GEEWG5TEbYNQO2/w+UiTv2PrypRvPnzhLADaz0Ooa3KM+o1pWws5bWECFE4VbJ04lNJ+F8PuzEKmFEWKaYcNTqYegu7gRgjbE5790eTDx2ONla0aWON4OblqXSv3MyCCFEYXf38zA/3t4rYURYnFtH/8Buwys4pNwmXtnyfspgVptaULeMGy82KEOnWl442sqfthBC3Ove2Xvz2x018oktLIJSisMhEdz8bRLtbi8H4JSpDG/rx1KvcSM2NSxN1RIuGlcphBD5VzkPR/Q6iE5M5UZMEsVd8k8nVgkjIl9LSjWy4WgYv+/az2u3/kc7vblT6hb7TiS0nsovtctJfxAhhMgEO2sDPu6OhETGcS4iVsKIEI+TkGxk2f5QvtsZTJ3Y3XxpPQ9XfTwJeidutv6cds1e1LpEIYSwOJWKOxESGcfZ6zE0q+ihdTlpJIyIfCU2KZWf/r7Egl0XiImNZYLVMgbZbAEg1ase9r0XUapIWW2LFEIIC1XJ04ktQdc5F5G/OrFKGBH5QlKqkR/3XeKbbee5E59COV0Yy+y/obIKMa/Q9HWsWn0AVjbaFiqEEBbsv2Hh89ftvRJGhKaUUmw8Hs6nm04TeisegOGuBxifOhcrYwI4uEO3uVC5ncaVCiGE5av47x01F27EaVxJehJGhGYCQ2/z4YYgDofeAaCMk+KHEispd2WdeYWyzaH7fHDx0qxGIYQoSMp5OAJwMy6ZqPgUXB2sNa7ITMKIyHMpRhNfbT3Ht9vOY1Jgb23g3fom+oVOQn/lHOj00PJtaPEW6OVOGSGEyCmOtlZ4uthyPTqJ4MhY6pUponVJgIQRkccuRsYxesURjl6+A8DzdbyZUnI/LtvfB2MSOHtBjwVQ9iltCxVCiAKqvIcT16OTuHAjTsKIKFyUUqw8dIXJ608Sn2zExc6K6Z3L8mzw/2DrOvNKFdvC83PBMf/cbiaEEAVN+WKO7Ltwkws38s8dNfrsbDR79mzKlSuHnZ0dfn5+7Nq166HrrlmzhrZt21KsWDFcXFxo0qQJmzdvznbBwvKkGE28vfoY41cdIz7ZSKNyRdn6ghPP7uoFQetAbwVtP4S+v0gQEUKIXFa+WP7rxJrlMLJixQrGjBnDxIkTCQwMpHnz5nTo0IHQ0NAM19+5cydt27Zl48aNHDp0iGeeeYbOnTsTGBj4xMWL/C86MYXBiw7wy8Er6HUwvn0lltc4QLFfusCdS+BWBoZshmajQJ+tbCyEECILyhczd2K9EJl/WkZ0SimVlQ0aNWpEvXr1mDNnTtoyX19funXrxrRp0zK1j+rVq9OnTx8++OCDTK0fHR2Nq6srUVFRuLjI/COW4uqdBIYsOsCZ6zE42Bj4rkdZnjrxAZz7t2WsWlfo/BXYu2lapxBCFCahN+Np8dk2bKz0nJr6LAZ97k2Yl9nv7yz1GUlOTubQoUO888476Za3a9eOvXv3ZmofJpOJmJgYihYt+tB1kpKSSEpKSnseHR2dlTJFPnDiahSDFx8wT8bkbMvP7U2U//N5iLkGBlt4dhrUHwL5aNZIIYQoDEoWscfGSk9yqomrtxMo4+6gdUlZu0wTGRmJ0WjE09Mz3XJPT0/Cw8MztY8vvviCuLg4evfu/dB1pk2bhqura9qjdOnSWSlTaGzn2Rv0nrePGzFJ+BZ34E+/vyn/ex9zEHGvBMO2QoOXJYgIIYQGDHodZf8NIMH55FJNti7S6+77ElFKPbAsI8uXL2fy5MmsWLGC4sWLP3S9CRMmEBUVlfa4fPlydsoUGlgXeJUhiw8Qn2zkuXI6fnP7HJe/PwNlgtp9Yfh2KFFT6zKFEKJQK++RvzqxZukyjYeHBwaD4YFWkIiIiAdaS+63YsUKXn75ZVauXEmbNm0eua6trS22trZZKU3kA9/vDuHDDUEAvF3xMv63PkMXHwnWjvDcDKj9gsYVCiGEgP86sYZYYsuIjY0Nfn5+BAQEpFseEBBA06ZNH7rd8uXLGTRoEMuWLaNTp07Zq1TkW0opPvnjNB9uCMKKVJb6/M4rV942BxHPmjBihwQRIYTIR/Lb7b1ZHvRs3Lhx9O/fn/r169OkSRO+++47QkND8ff3B8yXWK5evcqSJUsAcxAZMGAAs2bNonHjxmmtKvb29ri6uubgWxFaMJoUE9ce5+cDlymlu8GqYgsocf24+cUGQ6Hdx2Btp22RQggh0km7vddSw0ifPn24efMmU6dOJSwsjBo1arBx40Z8fHwACAsLSzfmyLx580hNTeW1117jtddeS1s+cOBAFi9e/OTvQGgm1WjirVXHWBt4lQ6G/cyyX4hNdDTYukLXb6BaF61LFEIIkYEK//YZCY9OJC4pFUdbbQdkz/I4I1qQcUbynxSjiTE/H+HP45d433opLxn+vXRXsj70XAhFfLQtUAghxCP5fRjAzbhkNrz+FDVK5s6VilwZZ0QIgKRUIyOXBRJ8KpB1tl/jq7tkfqHZaGj1Phjyx5TUQgghHq58MUduxiUTfCM218JIZkkYEVlyOy6ZMSuOUPT8Gn6zWYijLgkcPOD5eVDp0XdJCSGEyD/Kezhx4OLtfNFvRMKIyBSlFBuOhfHprwcZkzKfnjY7zS+UbQ7d54OLl7YFCiGEyJL/5qiRMCIsQHhUIu+tO8GV0wdYbP0VFQ3XUDo9upbvQIs3QW/QukQhhBBZ9N/tvdqPNSJhRDzU5VvxrA28yvydwXRJ3cy3Nj9iq0tBOXuh67EAyj6ldYlCCCGy6b+Bz+IyPZJ6bpEwItKJTkzhj+NhrD58lf0ht3Ahjk+s59PJer95hUrt0XWbA47u2hYqhBDiiZQp6oCVXkd8spHw6ES8XO01q0XCiADgTnwyc3dc4Ie9F0lIMQJQR3+e7+y/pbjxOkpvja7NZGj8KuizNaWREEKIfMTaoKdMUQcuRMZx4UachBGhndikVBbtDuG7nReISUoFoFIxB6YU20aTi9+iM6aCmw+6nouglJ/G1QohhMhJ5Ys5/htGYmlW0UOzOiSMFFImk2LpP5eY+ec5bsYlA1C1hDPvtixG85Pvozv/7yBm1bpBl6/ATobuF0KIgqZ8MSc4FUGwxrf3ShgphM5dj+Ht1cc4HHoHgLLuDoxrV4XnnM+jX/s8xISBlR08Ow38BoOGnZqEEELknnIe+eP2XgkjhUhSqpE524P5dtt5UowKJ1sr3mpfhb4NSmK95wtY9ykoE3hUhl6LwbO61iULIYTIReXvhhGNb++VMFJIHA69zdurjnEuwvwH17pqcT7sVgNv/R1Y+jxc3GVesc5L0HE62DhqV6wQQog8cXeskat3EkhMMWJnrc24URJGCrj45FS+2HKWhXtCUAo8nGyY3KU6nWp6oTv/J6wdAfE3wcYJOs2A2n20LlkIIUQe8XCywdnOipjEVC7ejKNqCW0mo5UwUoDtDY7kndXHCb0VD0D3eiV5v1M1itgCAe/D3q/NK5aoCT0Xg0dFzWoVQgiR93Q6HeWLOXH08h1CbkgYETkoOjGFaRtPs3x/KADernZ83L0mz1QpDrcvwrIhcPWQeeWGw6Hth2Btp13BQgghNNO4XFHc7K1xstMuEkgYKWC2nYng3TXHCYtKBOClxmV4+9mqONtZw8l1sH4UJEWZb9Xt+i34dta2YCGEEJqa0NFX6xIkjBQUd+KTmbohiDWHrwLg4+7Apz1q0bi8O6Qkwoa34eD35pVLNYSe34NbGQ0rFkIIIcwkjBQAm0+G8966E9yISUKng5ebleONdlWwtzHAjbOwajBcP2FeudkYaPUeGKw1rVkIIYS4S8KIBbsdl8yk9SdZf/QaABWKOTK9Z238fIqYVziyDH5/A1LiwcEDus+Dim00rFgIIYR4kIQRC7XpRDjvrTtOZGwyeh2MaFmB0a0rme8RT4qFjW/C0eXmlcu1gO7zwbmEtkULIYQQGZAwYmGiElJ4f92JtNaQSsWd+LxXbWqXdjOvEH4cVg6Gm+dAp4en34Xm40CvzUA2QgghxONIGLEgBy/eYvTPR7h6JwGDXod/y/KMal0JWysDKAUHFsDmiWBMAmdv6LEAyjbTumwhhBDikSSMWACjSfHNX+eZtfUsJgVlijow64U61C3zb9+QhDuw/nU4td78vPKz0G0OOBTVrGYhhBAisySM5HPX7iQw5ucj7L94C4Dn65Zkatfq5nFDAK4cNN8tcycU9NbQdio0fkVm2hVCCGExJIzkY9vORDBuxRFux6fgaGPgo+dr8HzdUuYXTSbY9zVsnQqmVChSFnouhJJ+mtYshBBCZJWEkXzIaFJ8GXCWb7adB6BmSVe+6VsXH/d/Z9KNizRPcHf+T/Pz6t2h80zzqKpCCCGEhZEwks9ExCQyevkR9l24CUD/xj5M7OT737TOITth9TCIDQcrO+jwKdQbKJdlhBBCWCwJI/nIrnM3GPfLUW7EJOFgY2Ba95p0rVPS/KLJCDs+hR3TAQUeVaDXIvCsrmnNQgghxJOSMJIPJKea+HzLGb7beQGAyp5OzO7nR8XiTuYVoq+ZW0Mu7TY/r/sSdJgONo4aVSyEEELkHAkjGgu+Ecuo5YGcvBYNmGfZndixmnleGYCzW2CdP8TfBBsneG4m1OqlXcFCCCFEDpMwoqFfj1zlndXHSUgxUsTBmk971KJd9X+HbE9Nhq1TYN835uclakGvxeBeQbN6hRBCiNwgYUQj649eY+yKI5gUNKvozozedfB0sTO/eCsEVr8MVw+ZnzccAe0+BCtb7QoWQgghcomEEQ1sOhGeFkRebFiaj7vVRK//926Yk2th/ShIigY7N+j6Lfg+p2m9QgghRG6SMJLHtp2J4PXlhzGaFN3rlvwviKQkwKYJcGiRecXSjaDH9+BWWtuChRBCiFwmYSQP7T0fif+Ph0gxKjrV9GJ6z1rmIHLjLKwcBBEnAR08NRaeeRcM1lqXLIQQQuQ6CSN5ZM/5SIb+cJCkVBNtfD2Z+UIdrPQ6CFwKG9+ElHhwLAbPz4OKrbUuVwghhMgzEkbywIZj5s6qKUZFi8rF+LZfXaxT4+D3N+HYz+aVyrWE7vPB2VPbYoUQQog8JmEkl/2w9yKTfzuJUtCpphcz+tTG9sZJ82WZW8Gg05svyTw1DvQGrcsVQggh8pyEkVyilGJGwFm+/ss82d2AJj5Meq4ahoMLYMtEMCaDS0lzJ1WfJhpXK4QQQmhHwkguUErx/q8n+OnvUADeaFuZkU080K3sD6c3mFeq3AG6zQaHohpWKoQQQmhPwkgu+PLPc/z0dyh6HXzUrSZ9vcNhXneICgW9tXkAs0b+MtOuEEIIgYSRHLf0n0t8tfUcAB91rU7flNWw8ENQRihSDnouhJL1NK5SCCGEyD8kjOSgLSfDeX/dCQDebu5O33PjIHir+cUaPcyT3Nm5aFegEEIIkQ9JGMkhBy/e4vXlgZgUTPSNYOipsRB7HazsocOnUG+AXJYRQgghMiBhJAecj4jl5R8Okpqawleem+kcshQdCopVhZ6LwLOa1iUKIYQQ+ZaEkSd0Oy6Zl384gH1COMuc51I96qT5hbr9ocN0sHHQtkAhhBAin5Mw8gSSU034/3SICrd3M8NuHm4pMWDjDJ1nQs2eWpcnhBBCWAQJI9mklGLymkDaXp7FUJs/zAu9apsvy7hX0LY4IYQQwoJIGMmmFZt30ufEGGpbXTAvaPQKtJ0CVrbaFiaEEEJYGAkj2XBs8yI67puAiz6BJCsXbHvOg6odtS5LCCGEsEgSRrIiJYFrK8ZQ6/zPoIOLDjXxGb4M3MpoXZkQQghhsSSMZFbEaWJ+6o939FlMSsdGtxdpP3IWOmsbrSsTQgghLJqEkcdRCgJ/wvj7mzgbE7mhXFlW8j1eGTIUayu91tUJIYQQFk/CyKMkxcCGsXB8JQZgp7Emf1adwgcvPIOVQYKIEEIIkRMkjDzMtSOoVYPR3bpAqtIzI7UXd+q9ykfP10avl2HdhRBCiJwiYeR+SsH+71Bb3kNnTOaqcmdU8khqNW3Px89VQyfzywghhBA5KlvXGmbPnk25cuWws7PDz8+PXbt2PXL9HTt24Ofnh52dHeXLl2fu3LnZKjbXxd+CFS/BH+PRGZMJMPrRMWka7Tt05QMJIkIIIUSuyHIYWbFiBWPGjGHixIkEBgbSvHlzOnToQGhoaIbrh4SE0LFjR5o3b05gYCDvvvsuo0aNYvXq1U9cfI4K/QfmtYDTG0jBiskpAxip3uSTfi0Y3qKCBBEhhBAil+iUUiorGzRq1Ih69eoxZ86ctGW+vr5069aNadOmPbD+22+/zfr16zl16lTaMn9/f44ePcq+ffsydczo6GhcXV2JiorCxcUlK+U+nskEe2bCXx+BMnJZ58Uria8R5lCV+QPrU69MkZw9nhBCCFFIZPb7O0stI8nJyRw6dIh27dqlW96uXTv27t2b4Tb79u17YP327dtz8OBBUlJSsnL4nBcbAUt7wNYpoIxs1j1Fh4QPifeoydpXm0kQEUIIIfJAljqwRkZGYjQa8fT0TLfc09OT8PDwDLcJDw/PcP3U1FQiIyPx8vJ6YJukpCSSkpLSnkdHR2elzMwxmeDH5+H6CUxWdnxsGsz38U9RxdOFpcMa4eEkc8wIIYQQeSFbHVjv7z+hlHpkn4qM1s9o+V3Tpk3D1dU17VG6dOnslPloej20mUJS0ar0MU3j+/jmVC3hwjIJIkIIIUSeylIY8fDwwGAwPNAKEhER8UDrx10lSpTIcH0rKyvc3d0z3GbChAlERUWlPS5fvpyVMjMtyLEhTW9P5kC8J9W9XVg+rDHuEkSEEEKIPJWlMGJjY4Ofnx8BAQHplgcEBNC0adMMt2nSpMkD62/ZsoX69etjbW2d4Ta2tra4uLike+Q0k0kxZkUgNxNM1C7lyrKhjSniKPPMCCGEEHkty5dpxo0bx4IFC1i4cCGnTp1i7NixhIaG4u/vD5hbNQYMGJC2vr+/P5cuXWLcuHGcOnWKhQsX8v333/Pmm2/m3LvIBr1ex+x+9WhbzZMfhzbC1SHjYCSEEEKI3JXlEVj79OnDzZs3mTp1KmFhYdSoUYONGzfi4+MDQFhYWLoxR8qVK8fGjRsZO3Ys3377Ld7e3nz11Vf06NEj595FNlUs7sz8AfW1LkMIIYQo1LI8zogWcnWcESGEEELkilwZZ0QIIYQQIqdJGBFCCCGEpiSMCCGEEEJTEkaEEEIIoSkJI0IIIYTQlIQRIYQQQmhKwogQQgghNCVhRAghhBCakjAihBBCCE1JGBFCCCGEpiSMCCGEEEJTEkaEEEIIoaksz9qrhbtz+UVHR2tciRBCCCEy6+739uPm5LWIMBITEwNA6dKlNa5ECCGEEFkVExODq6vrQ1/XqcfFlXzAZDJx7do1nJ2d0el0Obbf6OhoSpcuzeXLlx85tbF4cnKu84ac57wh5zlvyHnOG7l5npVSxMTE4O3tjV7/8J4hFtEyotfrKVWqVK7t38XFRf7Q84ic67wh5zlvyHnOG3Ke80ZunedHtYjcJR1YhRBCCKEpCSNCCCGE0FShDiO2trZMmjQJW1tbrUsp8ORc5w05z3lDznPekPOcN/LDebaIDqxCCCGEKLgKdcuIEEIIIbQnYUQIIYQQmpIwIoQQQghNSRgRQgghhKYKfBiZPXs25cqVw87ODj8/P3bt2vXI9Xfs2IGfnx92dnaUL1+euXPn5lGlli0r53nNmjW0bduWYsWK4eLiQpMmTdi8eXMeVmvZsvo3fdeePXuwsrKiTp06uVtgAZHV85yUlMTEiRPx8fHB1taWChUqsHDhwjyq1nJl9TwvXbqU2rVr4+DggJeXF4MHD+bmzZt5VK1l2rlzJ507d8bb2xudTse6deseu02efxeqAuznn39W1tbWav78+SooKEiNHj1aOTo6qkuXLmW4/oULF5SDg4MaPXq0CgoKUvPnz1fW1tZq1apVeVy5ZcnqeR49erT69NNP1f79+9XZs2fVhAkTlLW1tTp8+HAeV255snqu77pz544qX768ateunapdu3beFGvBsnOeu3Tpoho1aqQCAgJUSEiI+ueff9SePXvysGrLk9XzvGvXLqXX69WsWbPUhQsX1K5du1T16tVVt27d8rhyy7Jx40Y1ceJEtXr1agWotWvXPnJ9Lb4LC3QYadiwofL390+3rGrVquqdd97JcP3x48erqlWrpls2YsQI1bhx41yrsSDI6nnOSLVq1dSUKVNyurQCJ7vnuk+fPuq9995TkyZNkjCSCVk9z3/88YdydXVVN2/ezIvyCoysnufPPvtMlS9fPt2yr776SpUqVSrXaixoMhNGtPguLLCXaZKTkzl06BDt2rVLt7xdu3bs3bs3w2327dv3wPrt27fn4MGDpKSk5Fqtliw75/l+JpOJmJgYihYtmhslFhjZPdeLFi0iODiYSZMm5XaJBUJ2zvP69eupX78+06dPp2TJklSuXJk333yThISEvCjZImXnPDdt2pQrV66wceNGlFJcv36dVatW0alTp7woudDQ4rvQIibKy47IyEiMRiOenp7plnt6ehIeHp7hNuHh4Rmun5qaSmRkJF5eXrlWr6XKznm+3xdffEFcXBy9e/fOjRILjOyc63PnzvHOO++wa9curKwK7P/uOSo75/nChQvs3r0bOzs71q5dS2RkJK+++iq3bt2SfiMPkZ3z3LRpU5YuXUqfPn1ITEwkNTWVLl268PXXX+dFyYWGFt+FBbZl5C6dTpfuuVLqgWWPWz+j5SK9rJ7nu5YvX87kyZNZsWIFxYsXz63yCpTMnmuj0Ujfvn2ZMmUKlStXzqvyCoys/E2bTCZ0Oh1Lly6lYcOGdOzYkRkzZrB48WJpHXmMrJznoKAgRo0axQcffMChQ4fYtGkTISEh+Pv750WphUpefxcW2J9KHh4eGAyGBxJ2RETEA4nvrhIlSmS4vpWVFe7u7rlWqyXLznm+a8WKFbz88susXLmSNm3a5GaZBUJWz3VMTAwHDx4kMDCQkSNHAuYvTaUUVlZWbNmyhVatWuVJ7ZYkO3/TXl5elCxZMt1U6b6+viiluHLlCpUqVcrVmi1Rds7ztGnTaNasGW+99RYAtWrVwtHRkebNm/PRRx9J63UO0eK7sMC2jNjY2ODn50dAQEC65QEBATRt2jTDbZo0afLA+lu2bKF+/fpYW1vnWq2WLDvnGcwtIoMGDWLZsmVyvTeTsnquXVxcOH78OEeOHEl7+Pv7U6VKFY4cOUKjRo3yqnSLkp2/6WbNmnHt2jViY2PTlp09exa9Xk+pUqVytV5LlZ3zHB8fj16f/mvLYDAA//1yF09Ok+/CXOsamw/cvW3s+++/V0FBQWrMmDHK0dFRXbx4USml1DvvvKP69++ftv7d25nGjh2rgoKC1Pfffy+39mZCVs/zsmXLlJWVlfr2229VWFhY2uPOnTtavQWLkdVzfT+5myZzsnqeY2JiVKlSpVTPnj3VyZMn1Y4dO1SlSpXU0KFDtXoLFiGr53nRokXKyspKzZ49WwUHB6vdu3er+vXrq4YNG2r1FixCTEyMCgwMVIGBgQpQM2bMUIGBgWm3UOeH78ICHUaUUurbb79VPj4+ysbGRtWrV0/t2LEj7bWBAweqli1bplt/+/btqm7dusrGxkaVLVtWzZkzJ48rtkxZOc8tW7ZUwAOPgQMH5n3hFiirf9P3kjCSeVk9z6dOnVJt2rRR9vb2qlSpUmrcuHEqPj4+j6u2PFk9z1999ZWqVq2asre3V15eXqpfv37qypUreVy1Zdm2bdsjP3Pzw3ehTilp2xJCCCGEdgpsnxEhhBBCWAYJI0IIIYTQlIQRIYQQQmhKwogQQgghNCVhRAghhBCakjAihBBCCE1JGBFCCCGEpiSMCCGEEEJTEkaEEEIIoSkJI0IIIYTQlIQRIYQQQmhKwogQQgghNPV/jShYZTzTT+wAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "reg_param= 0.005\n", + "\n", + "Atik=np.vstack((A,reg_param*np.eye(n))) \n", + "\n", + "btik = np.hstack((bn,np.zeros(n)))\n", + "\n", + "xtik = np.linalg.lstsq(Atik,btik,rcond=None)[0]\n", + "plt.figure()\n", + "plt.plot(np.linspace(0,1,n),xtik, label='Tikhonov regularised solution- numpy')\n", + "plt.plot(np.linspace(0,1,n),x, label='Ground truth solution')\n", + "plt.legend()\n", + "plt.figure()\n" + ] + }, + { + "cell_type": "markdown", + "id": "5e35764d", + "metadata": {}, + "source": [ + "This solution is an improvement, although we still have this odd behaviour at the end of the interval. " + ] + }, + { + "cell_type": "markdown", + "id": "9c93e53f", + "metadata": {}, + "source": [ + "Now convert the matrix and operators to CIL types so we can use inbuilt optimisation routines and regularisers in CIL: " + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "7ab3314c", + "metadata": {}, + "outputs": [], + "source": [ + "Aop = MatrixOperator(A)\n", + "bop= VectorData(bn) \n" + ] + }, + { + "cell_type": "markdown", + "id": "1a523f4b", + "metadata": {}, + "source": [ + "We run CGLS to solve the un-regularised least squares problem $$\\min_x \\|Ax-b\\|_2^2.$$ We choose a small number of iterations to implicitly regularise via early stopping: " + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "a8bd2985", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " Iter Max Iter Time/Iter Objective\n", + " [s] \n", + " 0 4 0.000 2.16038e-01\n", + "-------------------------------------------------------\n", + " 4 4 0.081 \n", + "Stop criterion has been reached.\n", + "\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAGdCAYAAADAAnMpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAB5T0lEQVR4nO3dd1zU9R/A8dexN8gUFQE3bsVt5rZyr7Sf5ra0tDRbmpajzHZmpeautDJXmZo5cq/cC9woqCACsvfd5/fHyRWKCggcB+/n43GP+n7v8/1+3/e94+7tZ2qUUgohhBBCCCMxM3YAQgghhCjdJBkRQgghhFFJMiKEEEIIo5JkRAghhBBGJcmIEEIIIYxKkhEhhBBCGJUkI0IIIYQwKklGhBBCCGFUFsYOIDd0Oh03b97E0dERjUZj7HCEEEIIkQtKKRISEihXrhxmZg+u/zCJZOTmzZv4+PgYOwwhhBBC5ENYWBgVKlR44PMmkYw4OjoC+hfj5ORk5GiEEEIIkRvx8fH4+PgYfscfxCSSkaymGScnJ0lGhBBCCBPzqC4W0oFVCCGEEEYlyYgQQgghjEqSESGEEEIYlUn0GckNpRSZmZlotVpjhyKEECbN3NwcCwsLmUpBFJkSkYykp6cTHh5OcnKysUMRQogSwc7ODm9vb6ysrIwdiigFTD4Z0el0hISEYG5uTrly5bCyspJsXggh8kkpRXp6Ordv3yYkJISqVas+dLIqIQpCnpOR3bt38+mnn3L06FHCw8NZt24dPXv2fOgxu3btYsKECZw9e5Zy5crx1ltvMXr06PzGnE16ejo6nQ4fHx/s7OwK5JxCCFGa2draYmlpybVr10hPT8fGxsbYIYkSLs/pblJSEvXq1eObb77JVfmQkBA6d+5Mq1atOH78OO+88w6vvvoqa9asyXOwDyOZuxBCFBz5ThVFKc81I8888wzPPPNMrsvPnz+fihUrMnv2bAACAgI4cuQIn332GX369Mnr5YUQQghRwhR66nvgwAE6deqUbd9TTz3FkSNHyMjIyPGYtLQ04uPjsz2EKM6GDh36yObK3Jg2bRr169d/7PMUpNy8tp07d6LRaIiNjS2SmB6luMVT0Pz8/Az/wBOiJCj0ZCQiIgIvL69s+7y8vMjMzCQqKirHY2bNmoWzs7PhURIXySuoH6/80mg0/Pbbb0a7vsj5PXjjjTfYvn27cQJ6gK+++oply5YZttu0acP48eONFk9xYOy/38OHD/Piiy8a7fpCFLQiaRS8d3SLUirH/VkmTZpEXFyc4REWFlboMQrTkZ6ebuwQCo2DgwNubm7GDiMbZ2dnXFxcjB1Grj2oxrUk8fDwkA77okQp9GSkbNmyREREZNsXGRmJhYXFA790ra2tDYvildbF8YKCgujcuTMODg54eXkxaNCgbDVJmzdv5oknnsDFxQU3Nze6du3K5cuXDc+np6czduxYvL29sbGxwc/Pj1mzZgH6Kl6AXr16odFoDNv3etg5AC5evMiTTz6JjY0NNWvWZOvWrdn+tZ9TVfmJEyfQaDRcvXoVgOjoaP73v/9RoUIF7OzsqFOnDj///HO2ONq0acPYsWOZMGEC7u7udOzYMVf3aPXq1dSpUwdbW1vc3Nzo0KEDSUlJOb7WO3fuMHDgQDw8PLC1taVq1aosXbrU8Pzp06dp166d4VwvvvgiiYmJOZ4r6x7fW41ev359pk2bZnge7n8P7m2m0el0zJgxgwoVKmBtbU39+vXZvHmz4fmrV6+i0WhYu3Ytbdu2xc7Ojnr16nHgwIEHxvb666/TrVs3w/bs2bPRaDRs3LjRsK969ep89913QPZagKFDh7Jr1y6++uorNBpNtvcS4OjRozRq1Ag7OztatGjB+fPnHxgHwI0bN+jfvz9lypTBzc2NHj16ZDvf4cOH6dixI+7u7jg7O9O6dWuOHTuW7RwajYb58+fTo0cP7O3t+eCDD7I9n5SUhJOTE6tXr862/48//sDe3p6EhIQcY3vQ52fatGl8//33/P7774Z7sHPnTuDRn5Osezl9+nQ8PT1xcnJi1KhR2RLsrM/72LFjDX/fU6ZMMfwjDu7/fGk0GhYtWkSvXr2ws7OjatWqrF+/PtvrWb9+PVWrVsXW1pa2bdvy/fffl+imLJEHV/fBDz0hPefvx6JQ6MlI8+bN2bp1a7Z9W7ZsoVGjRlhaWhb49ZRSJKdnGuXx3y+LxxEeHk7r1q2pX78+R44cYfPmzdy6dYt+/foZyiQlJTFhwgQOHz7M9u3bMTMzo1evXuh0OgDmzJnD+vXr+fXXXzl//jzLly83/OAdPnwYgKVLlxIeHm7YvtfDzqHT6ejduzfm5uYcPHiQ+fPn8/bbb+f5taamphIYGMiGDRs4c+YML774IoMGDeLQoUPZyn3//fdYWFiwb98+vvvuu0feo/DwcP73v/8xfPhwgoOD2blzJ717937ge/Tuu+8SFBTEn3/+SXBwMPPmzcPd3R2A5ORknn76acqUKcPhw4dZtWoV27ZtY+zYsXl+vVly+x589dVXfP7553z22WecOnWKp556iu7du3Px4sVs5SZPnswbb7zBiRMnqFatGv/73//IzMzM8Zxt2rRhz549hs/Krl27cHd3Z9euXYC+afXChQu0bt06x3iaN2/OCy+8QHh4OOHh4dmaUSdPnsznn3/OkSNHsLCwYPjw4Q+8B8nJybRt2xYHBwd2797N3r17cXBw4Omnnzb8OCckJDBkyBD27NnDwYMHqVq1Kp07d74vgZg6dSo9evTg9OnT913T3t6e5557LltyCfp737dv3xyXNn/Y5+eNN96gX79+PP3004Z70KJFi1x/TrZv305wcDA7duzg559/Zt26dUyfPj1bmazP+6FDh5gzZw5ffvklixYteuC9BJg+fTr9+vXj1KlTdO7cmYEDBxITEwPok9a+ffvSs2dPTpw4wahRo5g8efJDzydKAZ0Wdn0C33eFKztgzxfGi0XlUUJCgjp+/Lg6fvy4AtQXX3yhjh8/rq5du6aUUmrixIlq0KBBhvJXrlxRdnZ26rXXXlNBQUFq8eLFytLSUq1evTrX14yLi1OAiouLu++5lJQUFRQUpFJSUpRSSiWlZSjftzcY5ZGUlpHr1zRkyBDVo0ePHJ979913VadOnbLtCwsLU4A6f/58jsdERkYqQJ0+fVoppdQrr7yi2rVrp3Q6XY7lAbVu3bqHxviwc/z111/K3NxchYWFGfb9+eef2c67Y8cOBag7d+4YymR9bkJCQh543c6dO6vXX3/dsN26dWtVv379bGUedY+OHj2qAHX16tWHvsYs3bp1U8OGDcvxuQULFqgyZcqoxMREw76NGzcqMzMzFRERoZS6//309fVVX375Zbbz1KtXT02dOtWwndN7MHXqVFWvXj3Ddrly5dTMmTOzlWncuLF6+eWXlVJKhYSEKEAtWrTI8PzZs2cVoIKDg3N8PbGxscrMzEwdOXJE6XQ65ebmpmbNmqUaN26slFLqp59+Ul5eXoby97621q1bq3HjxmU7Z9Z7vW3btmz3CDD8bd5r8eLFqnr16tk+X2lpacrW1lb99ddfOR6TmZmpHB0d1R9//GHYB6jx48fnGE/WZ+/QoUPK3Nxc3bhxQyml1O3bt5WlpaXauXNnjtd51Ocnp7/f3H5OXF1dVVJSkqHMvHnzlIODg9JqtUop/f0NCAjIdl/efvttFRAQYNi+9/MFqClTphi2ExMTlUajUX/++afh+Nq1a2eLd/Lkyff9ff7Xvd+tooSJD1dqWVelpjrpH2tHK5WaUOCXedjv93/luWbkyJEjNGjQgAYNGgAwYcIEGjRowHvvvQfo/0URGhpqKO/v78+mTZvYuXMn9evX5/3332fOnDkyrPchjh49yo4dO3BwcDA8atSoAWBoirl8+TIDBgygUqVKODk54e/vD2C490OHDuXEiRNUr16dV199lS1btuQ5joedIzg4mIoVK1KhQgXDvubNm+f5GlqtlpkzZ1K3bl3c3NxwcHBgy5Yt2T5DAI0aNcq2/ah7VK9ePdq3b0+dOnV49tlnWbhwIXfu3HlgHC+99BK//PIL9evX56233mL//v3ZXmu9evWwt7c37GvZsiU6ne6RzRCPIz4+nps3b9KyZcts+1u2bElwcHC2fXXr1jX8v7e3N6BvDs2Js7Mz9evXZ+fOnZw+fRozMzNGjRrFyZMnSUhIYOfOnTnWiuRGXuI4evQoly5dwtHR0fAeurq6kpqaavicR0ZGMnr0aKpVq2bo0J6YmPjIz8e9mjRpQq1atfjhhx8A+PHHH6lYsSJPPvlkjuXz+vmB3H9O6tWrl62/R/PmzUlMTMzWN65Zs2bZ+tQ1b96cixcvPnTtrf/ee3t7exwdHQ33/vz58zRu3Pi+eyJKqUvbYV5LCNkNlvbQcz70mgfWDkYLKc/zjLRp0+ahzRH/7XWfJad23sJia2lO0IyniuRaOV27IOh0Orp168bHH39833NZX/DdunXDx8eHhQsXUq5cOXQ6HbVr1zZUbzds2JCQkBD+/PNPtm3bRr9+/ejQocN97eYP87Bz5PQZuLdDctakSf8te2/nws8//5wvv/yS2bNnU6dOHezt7Rk/fvx9nVT/+wUPj75H5ubmbN26lf3797Nlyxa+/vprJk+ezKFDhwyJ238988wzXLt2jY0bN7Jt2zbat2/PmDFj+Oyzz1BKPbCz9YP2m5mZ3XeP8tuxMqcO4Pfu+2+TZ9ZzWc0wOWnTpg07d+7EysqK1q1bU6ZMGWrVqsW+ffvYuXNnvkfL5CUOnU5HYGAgK1asuO85Dw8PQJ8Q3759m9mzZ+Pr64u1tTXNmzd/5OcjJyNHjuSbb75h4sSJLF26lGHDhj3w/cvr5wdyfl+y5GaJisddxuLeZm+NRmO49znF9rDvcVFCaTNgx0zY+6V+26s29F0KHtWMGxdFNJqmKGk0GuysLIzyKKg1cRo2bMjZs2fx8/OjSpUq2R729vZER0cTHBzMlClTaN++PQEBATn+q83JyYn+/fuzcOFCVq5cyZo1awxtyJaWlrla4fhB56hZsyahoaHcvHnTUPbeTpNZPyjh4eGGfSdOnMhWZs+ePfTo0YPnn3+eevXqUalSpfv6Q+TnHoH+s9CyZUumT5/O8ePHsbKyYt26dQ88p4eHB0OHDmX58uXMnj2bBQsWAFCzZk1OnDiRrfPrvn37MDMzo1q1nP+IPTw8sr3u+Ph4QkJCspV51Hvg5OREuXLl2Lt3b7b9+/fvJyAg4IHH5UZWv5G///6bNm3aAPp/NPzyyy8P7C+SxcrKqkBWx27YsCEXL17E09PzvvfQ2dkZ0H8+Xn31VTp37kytWrWwtrZ+4JQAj/L8888TGhrKnDlzOHv2LEOGDHlo+Yd9fnK6B7n9nJw8eZKUlBTD9sGDB3FwcMhWy3jw4MFs587qL2Nunr9/8NSoUeO+fklHjhzJ17mEiYoNg2Vd/k1EGg2HkduKRSICJTAZMSVxcXGcOHEi2yM0NJQxY8YQExPD//73P/755x+uXLnCli1bGD58OFqt1jDyYMGCBVy6dIm///6bCRMmZDv3l19+yS+//MK5c+e4cOECq1atomzZsoYhmn5+fmzfvp2IiIgHVj8/7BwdOnSgevXqDB48mJMnT7Jnz577OsRVqVIFHx8fpk2bxoULF9i4cSOff/75fWWy/gUaHBzMqFGj7ht9lZNH3aNDhw7x4YcfcuTIEUJDQ1m7di23b99+4I/4e++9x++//86lS5c4e/YsGzZsMJQdOHAgNjY2DBkyhDNnzrBjxw5eeeUVBg0adN8cOlnatWvHjz/+yJ49ezhz5gxDhgy574ckN+/Bm2++yccff8zKlSs5f/48EydO5MSJE4wbN+6R9+hhnnzySRISEvjjjz8MyUibNm1Yvnw5Hh4e1KxZ84HH+vn5cejQIa5evUpUVNRDa2AeZuDAgbi7u9OjRw/27NlDSEgIu3btYty4cVy/fh3Qfz5+/PFHgoODOXToEAMHDsTW1jZf1ytTpgy9e/fmzTffpFOnTtl+/O/1qM+Pn58fp06d4vz580RFRZGRkZHrz0l6ejojRowwdJieOnUqY8eOzTb9elhYGBMmTOD8+fP8/PPPfP3114/1no8aNYpz587x9ttvc+HCBX799VdDLbYsLFoKnNsI85+AsENg7QTPfg9dvwTL/P0tFYoC761SCPLSgdVUDBkyRAH3PYYMGaKUUurChQuqV69eysXFRdna2qoaNWqo8ePHGzq1bd26VQUEBChra2tVt25dtXPnzmwdIhcsWKDq16+v7O3tlZOTk2rfvr06duyY4frr169XVapUURYWFsrX1zfHGB91jvPnz6snnnhCWVlZqWrVqqnNmzff1ylz7969qk6dOsrGxka1atVKrVq1KlsH1ujoaNWjRw/l4OCgPD091ZQpU9TgwYMf2WHyUfcoKChIPfXUU8rDw0NZW1uratWqqa+//vqB78f777+vAgIClK2trXJ1dVU9evRQV65cMTx/6tQp1bZtW2VjY6NcXV3VCy+8oBIS/u3sdW+Hxri4ONWvXz/l5OSkfHx81LJly+7rwJrTe3BvB1atVqumT5+uypcvrywtLVW9evUMnRKV+rcD6/Hjxw377ty5owC1Y8eOB75epZQKDAxUHh4ehs9UdHS00mg0qm/fvtnK3fvazp8/r5o1a6ZsbW0N72V+OyuHh4erwYMHK3d3d2Vtba0qVaqkXnjhBcPf+rFjx1SjRo2UtbW1qlq1qlq1alWOnTfv7QicUzxKKbV9+3YFqF9//fWh9+ZRn5/IyEjVsWNH5eDgkO1e5/Zz8t577yk3Nzfl4OCgRo4cqVJTUw1lWrdurV5++WU1evRo5eTkpMqUKaMmTpyYrUNrbu6Bs7OzWrp0qWH7999/V1WqVFHW1taqTZs2at68eQ/tYGyq363iPzJSldr01r+dVBe0VSompEhDyG0HVo1Sxb/hMD4+HmdnZ+Li4u6bcyQ1NZWQkBD8/f1lZcliQKPR5GolZyGMYcWKFYwbN46bN29iZWVV5NcfOnQosbGxD539uE2bNtSvX7/Qp3ufOXMm8+fPf+CkkvLdauKiL8PqYRB+Ur/dfCy0nwoWRfu5f9jv93/luQOrEEKYmuTkZEJCQpg1axajRo0ySiJibHPnzqVx48a4ubmxb98+Pv3008eaK0cUY6dXwx/jIT0BbF2h13yoZpyBHbklyYgQosT75JNPmDlzJk8++SSTJk0ydjhGcfHiRT744ANiYmKoWLEir7/+eqm4F5laHWduxhMZn0p0UjoxSelEJabh4WhNt7rl8HEtQdPqpyfD5rfhmH4IOxVbQJ9F4FzeuHHlgjTTCCGEuI+pf7cqpdgadIuPNp/jyu0HT3Me6FuGnvXL0aVuOVztTbjGLDIYVg2D28GABp58E1q/DebGrXOQZhohhBCl0vHQO8zadI5/ruqnMnC0saCyhwPuDla42ltRxt6Kszfi2Xc5iqPX7nD02h2m/xHEiFb+TOhYDWuLgpkzqkgoBceXw6Y3ITMFHLyg9wKo1MbYkeWJJCNCCCFKhNQMLW+vOcXvJ/TzH1lbmDGylT+jWlfGyeb+tdBuxafyx8mb/HbiBmduxPPdrivsvhDF7P71qV72/jWLip20BNjwGpxepd+u1FafiDh4GjeufJBkRAghhMnL0Op4ecUx/j4XiUYDfRtWYEKnang7P3guDS8nG0a2qsTIVpX462wEk9aeJjg8nm7f7OWtp6ozvKU/ZmbFdB6Wmyf0o2ViroDGHNpNgZbjwcw0pw+TZEQIIYRJ0+kUr/96kr/PRWJtYcayYU1oXtktT+d4qlZZGlR04e3Vp9hx/jYfbAxm14XbLBzcCJsCWuqjQCgF/yyALVNAmw5OFaDvYqjYzNiRPRbTTKGEEEII9B1V31t/hvUnb2JhpmH+84F5TkSyeDrasGRoYz7oWRtbS3P2XIxi+h9BBRzxY0i5Ayufhz/f0ici1TvD6D0mn4iAJCNCCCFM2GdbzrP8YCgaDXzRvz5tazxefwmNRsPzzXz5blAgGg38/E8oa45eL6BoH0PYPzC/FZzbAGaW8PRH8NxPYOdq7MgKhCQjIs+mTZtG/fr1jR0Gbdq0yffqsvml0WgeOntmbvn5+RX6DJtClHTL9oXw7Y7LAHzQszbd65UrsHM/Wc2Dce2rAjD5t9Oci4gvsHPniU4He2fDkqchLgzK+MOILdDsJShB6wpJMmJEERERjBs3jipVqmBjY4OXlxdPPPEE8+fPJzk52djh5dvOnTvRaDTExsYWy/MVpWXLlhkWJ/yvw4cP8+KLLxZ9QEKUEMHh8Xy46RwAbz5VnYFNfQv8Gq+0q0qrqu6kZuh4efkxEtMyC/waD5V4G1b0hW1TQWmhVm8YtRvKNyzaOIqAdGA1kitXrtCyZUtcXFz48MMPqVOnDpmZmVy4cIElS5ZQrlw5unfvnuOxGRkZWFreP0zN1KSnp5fKabkBPDw8jB2CECYrLVPLaytPkK7V0SHAi5fbVC6U65ibafjquQZ0mbOHK1FJvL36FN8MaFA0Kx2H7IE1IyExAixs4JlPoOHgElUb8l9SM2IkL7/8MhYWFhw5coR+/foREBBAnTp16NOnDxs3bqRbt26GshqNhvnz59OjRw/s7e354IMPAJg3bx6VK1fGysqK6tWr8+OPPxqOuXr1KhqNhhMnThj2xcbGotFo2LlzJ/BvjcP27dtp1KgRdnZ2tGjRgvPnz2eL9aOPPsLLywtHR0dGjBhBamrqA1/X1atXadu2LaBfsl2j0TB06FBA36wyduxYJkyYgLu7Ox07dnxknA87H4BOp+Ott97C1dWVsmXLMm3atIfe9507d9KkSRPs7e1xcXGhZcuWXLt2zfD8w+5pTue6t8bmxIkTaDQarl69ys6dOxk2bBhxcXFoNBo0Go0hvnubaUJDQ+nRowcODg44OTnRr18/bt26ZXg+q2nsxx9/xM/PD2dnZ5577jkSEhIe+nqFKIm+3HqRcxEJuNlbMat3nUJNDlztrfh2YEMszDRsPB3O8oPXHn3Q49BpYccs+KG7PhHxqAEv7IDAISU2EYGSmIwoBelJxnnkcmb96OhotmzZwpgxY7C3t8+xzL1/XFOnTqVHjx6cPn2a4cOHs27dOsaNG8frr7/OmTNnGDVqFMOGDWPHjh15vmWTJ0/m888/58iRI1hYWDB8+HDDc7/++itTp05l5syZHDlyBG9vb+bOnfvAc/n4+LBmzRoAzp8/T3h4OF999ZXh+e+//x4LCwv27dvHd99998jYcnM+e3t7Dh06xCeffMKMGTPYunVrjufKzMykZ8+etG7dmlOnTnHgwAFefPFFw70uyHsK0KJFC2bPno2TkxPh4eGEh4fzxhtv3FdOKUXPnj2JiYlh165dbN26lcuXL9O/f/9s5S5fvsxvv/3Ghg0b2LBhA7t27eKjjz7KV2xCmKrDV2P4bre+n8iHvevg4Whd6NdsWLEMkzoHAPDpX+eJTU4vnAvF34Tvu8Ouj0DpoMHz8MLf4FWzcK5XjJS8ZpqMZPiw4Dox5ck7N8Eq5+Tivy5duoRSiurVq2fb7+7ubqh1GDNmDB9//LHhuQEDBmRLEgYMGMDQoUN5+eWXAZgwYQIHDx7ks88+M9Qk5NbMmTNp3bo1ABMnTqRLly6kpqZiY2PD7NmzGT58OCNHjgTggw8+YNu2bQ+sHTE3N8fVVd+729PT877+ElWqVOGTTz4xbF+9evWhsT3qfHXr1mXq1KkAVK1alW+++Ybt27fTsWPH+84VHx9PXFwcXbt2pXJlfbVuQECA4fnPPvuswO4pgJWVFc7Ozmg0GsqWLfvActu2bePUqVOEhITg4+MDwI8//kitWrU4fPgwjRs3BvS1QMuWLcPRUT8z5KBBg9i+fTszZ87Mc2xCmKLEtExe//UkSkHfwAo8VevBf1cFbWgLP1YdCeNcRAJzd17mnc4Bjz4oLy5uhXWjIDkarByg65dQt1/BXqMYK3k1Iybk3tqPf/75hxMnTlCrVi3S0tKyPdeoUaNs28HBwbRs2TLbvpYtWxIcHJznOOrWrWv4f29vbwAiIyMN12nevHm28vdu58W9r+Nx/Td20MefFfu9XF1dGTp0KE899RTdunXjq6++Ijw83PB8Qd7TvAgODsbHx8eQiADUrFkTFxeXbNf28/MzJCLw8NcqREk0c2MQoTHJlHex5b1uRVtbYG6m4e2nawCwbP9VbsSmFMyJtRmw5V19R9XkaChbV99JtRQlIlASa0Ys7fQ1FMa6di5UqVIFjUbDuXPnsu2vVKkSALa2909fnFNzzr3JjFLKsM/s7pTA/12UOSMjI+ew/9MZNut4nU73yNeRH/e+jrzEmZN7O/JqNJqHxr506VJeffVVNm/ezMqVK5kyZQpbt26lWbNmhuP/67/39F6PG/ujrnHv/ry+ViFKku3Bt/j5nzA0Gvjs2Xo5rjVT2NpU96BZJVcOXonh8y3n+aJf/cc74Z1rsHo43Dii324yCjq9DxaF3/RU3JS8mhGNRt9UYoxHLjsXubm50bFjR7755huSkh68tPXDBAQEsHfv3mz79u/fb2h2yBqt8d9/+f+3k2hernPw4MFs++7dvlfWCBmtVvvI8+cmzrycLzcaNGjApEmT2L9/P7Vr1+ann34CHn1P8xv7o+KuWbMmoaGhhIWFGfYFBQURFxf3wGsLUZpEJabx9ppTAIxo6Z/vGVYfl0ajYdIz+r/JdcdvEBz+GHOPBP2un8TsxhGwcYZ+P0LnT0plIgIlMRkxEXPnziUzM5NGjRqxcuVKgoODOX/+PMuXL+fcuXOYmz98LYQ333yTZcuWMX/+fC5evMgXX3zB2rVrDR0kbW1tadasGR999BFBQUHs3r2bKVOm5DnOcePGsWTJEpYsWcKFCxeYOnUqZ8+efegxvr6+aDQaNmzYwO3bt0lMTHxg2dzEmZfzPUxISAiTJk3iwIEDXLt2jS1btnDhwgXDD/6j7um9qlSpgo+PD9OmTePChQts3LiRzz//PFsZPz8/EhMT2b59O1FRUTnOH9OhQwfq1q3LwIEDOXbsGP/88w+DBw+mdevWBd6sJYSpUUoxcc0pohLTqVHWkTeeqv7ogwpRPR8XutT1Rin4ePO5Rx9wr4xU2Pg6/DoY0uKgQmMYtQdq5jyVQ6mhTEBcXJwCVFxc3H3PpaSkqKCgIJWSkmKEyB7PzZs31dixY5W/v7+ytLRUDg4OqkmTJurTTz9VSUlJhnKAWrdu3X3Hz507V1WqVElZWlqqatWqqR9++CHb80FBQapZs2bK1tZW1a9fX23ZskUBaseOHUoppXbs2KEAdefOHcMxx48fV4AKCQkx7Js5c6Zyd3dXDg4OasiQIeqtt95S9erVe+hrmzFjhipbtqzSaDRqyJAhSimlWrdurcaNG3df2UfFmZfz9ejRw/D8vSIiIlTPnj2Vt7e3srKyUr6+vuq9995TWq3WUOZR9/Te92Lv3r2qTp06ysbGRrVq1UqtWrXqvvs3evRo5ebmpgA1depUpZRSvr6+6ssvvzSUuXbtmurevbuyt7dXjo6O6tlnn1URERGG56dOnXrfPf/yyy+Vr69vjq9ViMdVXL5bVxy8pnzf3qCqvrNJBYff/xtgDCG3E1XlSRuV79sb1L5Lt3N/4O2LSs1tqdRUJ/1jy7tKZaYXXqDFwMN+v/9Lo1Qux6MaUXx8PM7OzsTFxeHk5JTtudTUVEJCQvD398fGxsZIEQohRMlSHL5bQ6KS6PzVHlIytEzpEsDIVpWMEkdOpv5+hu8PXKNuBWd+e7klZmaPaKY/uRI2vAYZSWDnBr0WQNUORROsET3s9/u/pJlGCCFEsZOh1TF+5QlSMrS0qOzG8Jb+xg4pm1faV8XeypxT1+PYEhTx4ILpSfDbGFj3oj4R8WsFo/eVikQkLyQZEUIIUex88/clTobF4mRjwWfP1nt0zUMRc3ewZvgT+gTp678vkWMjw62zsKAtnFgOGjNo8w4M/h2cvIs42uJPkhEhhBDFypkbcXyz4xIAH/SqQzmX+6c7KA6Gt/TH3sqcszfj+fvcf+b8UQqOLIWF7SDqPDiUhcHroc3bYPbwwQmllSQjQgghio30TB1vrj6FVqfoXKcs3esZaUbtXChjb8XzzfWrBc/Jqh1JjYPVw2DDeMhMhSod4aV94N/KuMEWc5KMCCGEKDbm7bxMcHg8ZewsmdGjtrHDeaQXWlXCxtKMk2GxHDu4A757Es6uAzML6DgDBvwK9u7GDrPYKzEzsJrAoCAhhDAZxvhOPRcRzzc7LgIwrXst3B2K/wRg7g7WDGxSEXVwHnX/+hnIBOeK0HcJ+DQ2dngmw+STkawpspOTk3OcRl0IIUTeZU3Qd+8yBIUlU6vjzVWnyNAqOtb0KtbNM9kkx/BW7HSsLf8CILriU7j97zuwLWPkwEyLyScj5ubmuLi4GBYMs7Oze+BaIkIIIR5OKUVycjKRkZG4uLg8cjbogvLd7iucvhGHs60lM3vWNo3v8dCDsHoE1vHXydRYMi39eS5l9OMXSUTyzOSTEcCwPLusYCqEEAXDxcXF8N1a2C5FJvDVNn3zzHtda+LpVMwnsNTpYN+X8PdMUFpwrUzM0/NZ+X0UGSF3OHw1hsZ+rsaO0qSUiGREo9Hg7e2Np6dnvlZNFUII8S9LS8siqxHR6RTvrD1DulZH2+oe9G5Yvkium2+JkbD2RbiyQ79dpx90/QJPa0f6Bp7m539C+frvS/wwvIlx4zQxJSIZyWJubl5kf0BCCCEe3+qj1/nnagy2lua8X9ybZ67s1CciibfA0g46fwr1BxpWbH+5TWVWHg5l94XbXLiVQDUvR+PGa0JkaK8QQgijiE5M48M/gwF4rWNVKpSxM3JED6DNhL8/gB966hMRz5rwwg5o8LwhEQHwcbWjU01909bSfSFGCtY0STIihBDCKGb9eY7Y5AxqlHVkWDFbe8Yg7gZ83w12fwooaDgEXvgbPGvkWHxEK/3rWHvsBjFJ6UUYqGmTZEQIIUSRO3glmtVHr6PRwIe962BpXgx/js5vhvlPQOh+sHLUzx3SfQ5YPngaiUa+ZahbwZm0TB0rDl4rwmBNWzF894UQQpRkaZlaJq87DcCAJhVpWLGYDYXNTIe/JsPP/SElBrzrw+jdULvPIw/VaDSMuLuA3g8Hr5GWqS3kYEsGSUaEEEIUqQW7rnD5dhLuDta89XTOzR1GExMCS56CA9/ot5u9DCO2gGulXJ+icx1vvJysuZ2QxoaT4YUUaMkiyYgQQogicy06ia/vrsj7btcAnG2LZobXXDmzVr+2zM1jYOMCz/0MT88Ci7xNS29pbsbg5n4ALN4bIsuV5IIkI0IIIYqEUor3fj9LeqaOVlXdi8+U7xkpsOE1/Wq7afHg0wxG74UanfN9yoFNK2JjaUZQeDwHr8QUYLAlkyQjQgghisSfZyLYdeE2VhZmzOhRTOYUuX0BFraHI0sADbR6HYZuBBefxzqti50VfRpWAPS1I+LhJBkRQghR6BLTMpnxRxAAL7WujL+7vZEjAk78BAtaQ+RZsPeA59dA+/fAvGDmAx1+tyPr9nO3uBqVVCDnLKkkGRFCCFHovtx6gYj4VHzd7HipTWXjBpOWCOtGw28vQUYy+LeG0fugSvsCvUxlDwdaV/NAKVh7/EaBnrukkWRECCFEoQq6Gc+y/VcBmNGjNjaWRly2I+I0LGgDJ38GjRm0mwKD1oGjV6FcrmcDfb+YjaduSkfWhyhRa9MIIYQoXnQ6xZTfTqPVKbrU8aZ1NQ/jBKIUHFkMm98BbRo4loM+i8CvZaFetkOAF1YWZly+ncT5WwnUKOtUqNczVVIzIoQQotD8cOAqx0Jjsbcy592uNY0TREos/DoYNr6uT0SqPqUfLVPIiQiAo42lIQHbeErmHHkQSUaEEEIUihNhsczcpF8I762na1DW2abog7h+FL5rBcHrwcwSOs2EASvB3q3IQuha1xvQJyPSVJMzaaYRQghR4O4kpTNmxTEytIpnapdlcHPfog1Ap4OD38K2aaDLBBdf6LsUKgQWbRxA+7tNNVeikggOT6BmOWmquZfUjAghhChQOp1i/MoT3IhNwd/dnk/61i3aOUWSovXrymyZok9EavaEUbuNkogAOFhb0Lb63aaa0zeNEkNxJ8mIEEKIAvXNjkvsunAbG0sz5g5siKNNEU75fnWffqXdi1vA3Bq6fgnPLgNbl6KLIQdd62aNqpGmmpxIM40QQogCs/diFF9uuwDABz3rEOBdRE0SOi3s+Rx2zgKlA/dq+maZsrWL5vqP0K6GJzaWZlyNTubszXhql3c2dkjFitSMCCGEKBCXIhN55edjKAXPNfahb2CForlwQgT82BN2zNQnIvX+By/sKDaJCIC9tQXtangCsEFG1dxHkhEhhBCPLSwmmecXHeJOcgZ1KzgzrXutornwpe36ZpmQ3WBpDz3nQ6/5YO1QNNfPgy517jbVnJYJ0O6Vr2Rk7ty5+Pv7Y2NjQ2BgIHv27Hlo+RUrVlCvXj3s7Ozw9vZm2LBhREdH5ytgIYQQxUtkfCrPLz5ERHwqVTwdWDasSeHPsqrNgG3TYXlvSLoNXrXhxZ1Q/3+Fe93H0LaGB7aW5oTFpHD6RpyxwylW8pyMrFy5kvHjxzN58mSOHz9Oq1ateOaZZwgNDc2x/N69exk8eDAjRozg7NmzrFq1isOHDzNy5MjHDl4IIYRxxSanM2jxP1yLTsbH1ZblI5riam9VyBcNg2VdYO8X+u1GI2DkNvCoVrjXfUx2Vha0C9A31cgEaNnlORn54osvGDFiBCNHjiQgIIDZs2fj4+PDvHnzcix/8OBB/Pz8ePXVV/H39+eJJ55g1KhRHDly5LGDF0IIYTyJaZkMWXqY87cS8HS0ZsWIZoU/sdm5TfpmmbBDYO0Ez34PXb8AS9vCvW4B6XZ3ArRNZyQZ+a88JSPp6ekcPXqUTp06ZdvfqVMn9u/fn+MxLVq04Pr162zatAmlFLdu3WL16tV06dIl/1ELIYQwKqUUr608wcmwWFzsLFk+sikV3ewK74KZafDnRPjlf5AaC+UDYfQeqNWz8K5ZCJ6s5oGluYawmBRCo5ONHU6xkadkJCoqCq1Wi5dX9tUNvby8iIiIyPGYFi1asGLFCvr374+VlRVly5bFxcWFr7/++oHXSUtLIz4+PttDCCFE8bF4bwhbg25hZW7G0qGNqeblWHgXi74MizvCobs18M3HwrDNUMav8K5ZSOysLKjv4wLA/stRxg2mGMlXB9Z7Z9JTSj1wdr2goCBeffVV3nvvPY4ePcrmzZsJCQlh9OjRDzz/rFmzcHZ2Njx8fHzyE6YQQohCcPTaHT768xwA73arSYOKZQrvYqdXw3etIfwk2LrCgF/hqZlgUcj9UgpRi8ruAOy7LAM5suQpGXF3d8fc3Py+WpDIyMj7akuyzJo1i5YtW/Lmm29St25dnnrqKebOncuSJUsID8+5zWzSpEnExcUZHmFhYXkJUwghRCGJSUpn7E/HyNQputb15vmmFQvnQunJsP4VWDMC0hPAt6V+pd1qTxXO9YpQi8r6RfoOXI6SIb535SkZsbKyIjAwkK1bt2bbv3XrVlq0aJHjMcnJyZiZZb+Mubl+yNeD3gRra2ucnJyyPYQQQhiXTqeY8OsJwuNSqeRuz0d9CmnNmchzsLAdHPsB0EDrt2HwenAuX/DXMoL6FV2wsTQjKjGdC7cSjR1OsZDnZpoJEyawaNEilixZQnBwMK+99hqhoaGGZpdJkyYxePBgQ/lu3bqxdu1a5s2bx5UrV9i3bx+vvvoqTZo0oVy5cgX3SoQQQhSq+bsvs/P8bawtzPh2YEMcrAt4RRGl4NiPsKAN3A4GBy8Y/Bu0fQfMS87qJdYW5jT2cwWk30iWPL+7/fv3Jzo6mhkzZhAeHk7t2rXZtGkTvr765aHDw8OzzTkydOhQEhIS+Oabb3j99ddxcXGhXbt2fPzxxwX3KoQQQhSqk2GxfL5Fv+bMjB61Cn7NmbQE2PAanF6l367cDnp9Bw6eBXudYqJFZXf2XIxi/+VohrX0N3Y4RqdRJtBgFR8fj7OzM3FxcdJkI4QQRSwtU0u3r/dy4VYi3eqVY85z9Qu2eSb8JKwaBjGXQWMO7aZAy/FgVnJXLDl1PZbu3+zD0caC4+92xMK8ZL7W3P5+l5x6LyGEEIXi2x2XuXArEXcHK2Z0r1VwiYhS8M9C2DIZtOngVAH6LoaKzQrm/MVYrXLOONpYkJCaydmb8dS7O9y3tCqZqZgQQogCcfZmHHN3XAJgRo/alCmoqd5T7sDK5+HPN/WJSPXO+knMSkEiAmBupqFZJf2omn3Sb0SSESGEEDnL0Op4a/UpMnWKZ2qXpXMd74I5cdg/MP9JOLcBzCzh6Y/guZ/AzrVgzm8iWhqG+Mp8I9JMI4QQIkcLdl/h7M14XOwsmd6j1uOfUKeD/XNg+wxQWijjD32XQPmGj39uE9Siin7ys8NXY0jL1GJtUcgrHRdjUjMihBDiPhdvJfDVtosATO1WE0/Hx1wAL/E2rOgL26bqE5FavWHU7lKbiABU9XTA3cGa1Awdx0NjjR2OUUkyIoQQIhudTjFx7WnStTra1/CkZ/3HnGwsZLd+pd3L28HCBrrN0deI2JTu0ZEajcYwG+v+S6W734gkI0IIIbJZfew6R6/dwc7KnA961c7/6BmdFnZ8CN93h8QI8KgBL+yAwCFQGDO3miBDMlLK+41InxEhhBAGcckZhkXwxneoirezbf5OFH8T1rwA1/bqt+s/D50/ASv7Aoq0ZGh5t9/IibBYktIysS/oWW1NhNSMCCGEMPh0yzliktKp6umQ/5lBL27VN8tc2wtWDtB7EfT8VhKRHPi42lGhjC2ZOsU/V2OMHY7RSDIihBAC0M8KuuKQfjmPGT1qY5nXWUG1GbDlXX1H1eRoKFtX30m17rOFEG3J0fzufCP/hEgyIoQQohTT6hTv/nYGpaBn/XI0v9uXIdfuXIMlT+uH7gI0GQUjt4Fb5YIPtoQJ9C0DwLFrd4wcifGUzsYpIYQQ2aw8HMbJ63E4WlvwTueAvB0c9Dv8/gqkxYGNM3T/Bmp2L5xAS6CGd5ORU9fjyNTqSuw6NQ8jyYgQQpRy0YlpfPKXvtPqax2r4emUyzlFMlJhyxQ4vFC/XaEx9FkMZXwLKdKSqYqHA47WFiSkZXIuIoHa5Z2NHVKRK33plxBCiGym/xFEbHIGNco6Mrh5LhOJqEuwqMO/iUjLcTDsT0lE8sHMTEP9ii4AHA+LNWosxiLJiBBClGLbgm6x/uRNzDTwcZ+6uWsiOLkSvnsSbp0GOzcYuBo6zgBzy8IPuIRqUFHfVHO8lPYbkWYaIYQopeJTM5jy2xkAXmhV6dHL2Kcnwaa34MRy/bZfK+i9EJwKaAG9UqxBKa8ZkWRECCFKqVmbgomIT8XPzY7xHao9vPCtIFg1FKLOg8YMWk+EJ98As9K7uFtBanA3EQyJSiImKR1XeyvjBlTEpJlGCCFKof2Xovj5nzBA3zxja/WApEIpOLoMFrbVJyIOZWHwemjztiQiBcjFzopKHvpJ4Y6Hlr6mGklGhBCilElOz2Ti2tMAPN+sIk0rPWBOkdR4WD0c/hgHmalQpSO8tA/8WxVhtKVHw6x+I6VwBV9JRoQQopT57K8LhMYkU87ZhrefrpFzoZvH9Z1Uz64FMwt9B9UBv4K9e9EGW4pk9Rs5VgprRqTPiBBClCI7zkWyZF8IADN718HR5p4RMErBwXmw9T3QZYBzRei7BHwaGyHa0iWrZuRkWCxancLcrPSsbCzJiBBClBLhcSlM+PUEAENb+NG2umf2Askx8PsYOL9Jvx3QDbp/DbZlijbQUqqalyP2VuYkpWu5cCuBAG8nY4dUZKSZRgghSoFMrY5xv5zgTnIGtcs7ManzPc0zoQdhfit9ImJuBZ0/g34/SiJShMzNNIbh1aWt34gkI0IIUQrM+fsS/4TEYG9lztf/a4i1xd2RMDod7PkclnaG+OvgWlm/wF2TF0BTepoJiouspprS1m9EmmmEEKKE238piq//vgjAh73r4O+uH0JKYiSsfRGu7NBv13kWun4J1o5GilSU1k6skowIIUQJFpWYxriVJ1AK+jfyoUf98vonLu/QJyJJkWBhC10+g/oDpTbEyLKmhb9yO4nY5HRc7ErH5GfSTCOEECWUUopJa09zOyGNqp4OTOteC7SZsP19+LGXPhHxrAkv7oQGz0siUgy42lvh52YHlK6p4SUZEUKIEmrNsRtsDbqFpbmGr55rgG1KBHzfFfZ8BihoOARGbgfPB8w1IoyiNE5+JsmIEEKUQDdiU5i+/iwA4ztUo2bCPpjfEkIPgJUj9FkM3eeAlZ2RIxX3MiyaV4r6jUifESGEKGF0OsVbq0+SkJZJYx97XkpbAj9/q3/Su75+EjO3ykaNUTxYVr+RE6Gx6HQKs1Iw+ZkkI0IIUcL8ePAa+y5FU8XyNj9qPsHs4An9E81ehg7TwMLamOGJR6hR1hErCzMS0jK5FpP87+inEkyaaYQQogS5cjuRWX8G08XsIJusJ2MTeQJsXOC5n+DpWZKImAALczNqlNUPrz57M87I0RQNSUaEEKKE0OoUk379h3fVQr61moNVZiL4NIXRe6FGF2OHJ/KgVjn9VPBnb8YbOZKiIc00QghRQqz562+m3RpHgEUYCg2aJ16Dtu+AueWjDxbFSs1yzkCYJCNCCCFMR+SeJXQ9OBE7szRSrVyx6bcIqrQ3dlgin7JqRoIkGRFCCFHspSWiNk7A89RK0MAZ6wbUGvsLOJY1dmTiMQSUdcJMo59BNzI+FU8nG2OHVKikz4gQQpiqiNOwoDWaUyvRKg1f6frj8uIfaCQRMXm2VuZU8nAASke/EUlGhBDC1CgFhxfBwvYQfYkI5cpz6e/i2nkyFdxkkbuS4t9OrCV/RI0kI0IIYUpSYmHVENj4OmjTOGrdlGfSPsTcvwUDm1Q0dnSiANX0Lj0jaqTPiBBCmIrrR2H1MIi9BmaWHKk2nr4n6mNracEnfeqVipk6S5Na5ZyB0pGMSM2IEEIUdzod7P8alnTSJyIuvkT1X8/Q4MaAhjefqk5FN1ljpqTJaqYJjUkmPjXDyNEULklGhBCiOEuKhp+fgy1TQJcJNXuiRu1m4kFLEtMyaVDRhSEt/IwdpSgEZeytKOesH0UTXMJrRyQZEUKI4urqPpj/BFz8C8ytoeuX8OwyNlxIZltwJJbmGj7uUxdzaZ4psWqWkqYaSUaEEKK40Wlh16fwfVdIuAnu1eCFv6HRcO4kZzBt/VkAxrStQjUvGT1TkpWWaeGlA6sQQhQnCRGw9gUI2a3frjcAOn8K1vo5J97fGER0UjrVvBx4uU0VIwYqikJpGd4ryYgQQhQXl7bDulGQdBss7aHrF1DvOcPTuy/cZu2xG2g08FGfulhZSOV2SVfzbjJyKTKRtEwt1hbmRo6ocMgnWQghjE2bAdumwfLe+kTEqzaM2pUtEUlJ1/LOutMADG3hR8OKZYwUrChK5V1scba1JFOnuHgr0djhFBpJRoQQwphiw2BZF9j7pX670QgYuQ3cq2YrNm/XZa7fSaG8iy1vdKpuhECFMWg0mlLRVCPJiBBCGMu5jfrRMmGHwNoJnl2mb5qxtM1WLDQ6mfm7LgPwbtcA7K2lhb00KQ2dWOUTLYQQRS0zDba+B4fm67fLNYS+S8DVP8fiMzYEkZ6po1VVd56qJYvglTalYSZWSUaEEKIoRV/WT+keflK/3XwstJ8KFlY5Ft9xLpJtwbewMNMwtVstNBqZU6S0yaoZCQ6PR6tTJXJeGUlGhBCiqJxeDX+Mh/QEsHWFnvOg+tMPLJ6WqWX6H/o5RUY84U8VT4ciClQUJ5U8HLCxNCM5XcvV6CQqe5S8z4H0GRFCiMKWngzrX4E1I/SJSMUWMHrvQxMRgEV7QrganYynozWvtK/60LKi5DI301C9rL52JKiENtVIMiKEEIUp8hwsbAfHfgA08ORbMOQPcC7/0MNuxqbwzd+XAJjcJQAH6bRaqpX0Tqzy6RZCiMKgFBxfDpvehMwUcPCC3gugUptHHpqp1fHGqpOkZGhp4udK93rlCj9eUawFlNVP+3/hVoKRIykckowIIURBS0uADa/B6VX67Upt9YmIg2euDv/oz3PsvxyNnZU5M3vVlk6rwrAGkSQjQgghHi38JKwaCjFXQGMO7aZAy/FglrtW8d9P3GDR3hAAPn+2HlVlITzBv8nI9TspJKVllri5ZvLVZ2Tu3Ln4+/tjY2NDYGAge/bseWj5tLQ0Jk+ejK+vL9bW1lSuXJklS5bkK2AhhCiWlIJD38GiDvpExKkCDNsErSbkOhE5cyOOt1afAmBM28o8U8e7MCMWJqSMvRXuDtYAXIwsedPC5zm1WrlyJePHj2fu3Lm0bNmS7777jmeeeYagoCAqVqyY4zH9+vXj1q1bLF68mCpVqhAZGUlmZuZjBy+EEMVCyh34fSyc26Dfrt4ZenwLdq65PkVMUjqjfjxKWqaONtU9mNBRpnwX2VUv60DUpTQu3Eqgvo+LscMpUHlORr744gtGjBjByJEjAZg9ezZ//fUX8+bNY9asWfeV37x5M7t27eLKlSu4uur/MP38/B4vaiGEKC7C/oHVwyEuDMytoOP70HQU5KGfR4ZWx9ifjnEjNgU/Nzu+eq5BiZzYSjyeqp6O7LsUzYWIktdvJE/NNOnp6Rw9epROnTpl29+pUyf279+f4zHr16+nUaNGfPLJJ5QvX55q1arxxhtvkJKS8sDrpKWlER8fn+0hhBDFik4He2fDkqf1iUgZfxixBZqNzlMiAvDBhiD2X47G3sqcBYMb4WxrWTgxC5Nm6MRa2ptpoqKi0Gq1eHl5Zdvv5eVFREREjsdcuXKFvXv3YmNjw7p164iKiuLll18mJibmgf1GZs2axfTp0/MSmhBCFJ3E27BuFFzert+u3Qe6zgYbpzyf6qdDoXx/4BoAn/erb/jBEeJe1cvqZ169WAJH1OSrA+u9w8yUUg8ceqbT6dBoNKxYsYImTZrQuXNnvvjiC5YtW/bA2pFJkyYRFxdneISFheUnTCGEKHghe/Qr7V7eDha20G0O9Fmcr0Tk0JVo3vv9DACvd6zG07VlETzxYFU89YlqeFwqcSkZRo6mYOUpGXF3d8fc3Py+WpDIyMj7akuyeHt7U758eZydnQ37AgICUEpx/fr1HI+xtrbGyckp20MIIYxKp4Uds+CH7pAYAR414IW/IXBInptlAMJiknlpxTEydYqudb0Z265KIQQtShJnW0u8nW0AuBRZsmpH8pSMWFlZERgYyNatW7Pt37p1Ky1atMjxmJYtW3Lz5k0SE/9t47pw4QJmZmZUqFAhHyELIUQRi78J33eHXR+B0kGD5/WJiFfNfJ0uKS2TF344QkxSOrXLO/Fp33oysZnIlax5Z85HlKx+I3luppkwYQKLFi1iyZIlBAcH89prrxEaGsro0aMBfRPL4MGDDeUHDBiAm5sbw4YNIygoiN27d/Pmm28yfPhwbG1tC+6VCCFEYbi4Vd8sc20vWDlA74X6YbtW9vk6nVKKN1ef5FxEAu4O1iwY1AhbK/MCDlqUVNXurtxc0mZizfPQ3v79+xMdHc2MGTMIDw+ndu3abNq0CV9fXwDCw8MJDQ01lHdwcGDr1q288sorNGrUCDc3N/r168cHH3xQcK9CCCEKmjYDts+A/XP022XrwrPLwK3yY5124Z4rbDodgaW5hu8GBVLORf5RJnKv2t01ai6WsGYajVJKGTuIR4mPj8fZ2Zm4uDjpPyKEKHx3rsGaEXD9sH67ySjo9D5YWD/WafdfjuL5RYfQKfigZ22eb+ZbAMGK0uREWCw9v92Hu4M1R6Z0MHY4j5Tb3++SNbm9EEI8rqD1sH4spMaBjbO+SSag22OfNjwuhVd+Oo5OQZ+GFRjYNOcZq4V4mKp3m2miEtO4k5ROGXsrI0dUMPI1tFcIIUqcjFTY+Ab8OkifiFRoDKP3Fkgikpap5aXlx4hOSqemt5OsxCvyzd7aggpl9E17JanfiCQjQggRdQkWd4DDC/XbLcfBsD/BpWBqLz7YEMyJsFicbCyY/3wgNpbSYVXkn2EmVklGhBCihDi5Er57EiJOg50bDFwDHWeAecFMyb7i0DV+PKifYfWr5xpQ0c2uQM4rSq+qXlkjakrO8F7pMyKEKJ3Sk2DTW3BiuX7br5V+2K6Td4FdYsf5SN797d8ZVtvW8Cywc4vSq3oJrBmRZEQIUfrcCoJVQyHqPGjMoPXb8OSbYFZwzSdnb8YxdsUxdAr6BlaQGVZFgflvM83DlmMxJZKMCCFKD6Xg2Pfw59uQmQoOZaHPIvBvVaCXCY9LYfiywySla2lZxY0Pe9UpET8Yonio7OGARgN3kjOISkzHw/HxhpwXB5KMCCFKh9R4+GMcnF2r367SAXp9B/buBXqZhNQMhi09zK34NKp5OTB3YCBWFtI9TxQcWytzfF3tuBqdzMVbCSUiGZG/ECFEyXfzuL6T6tm1YGah76A6YFWBJyLpmTpeXnGMcxH6H4glQxvjbFswHWGF+C/DGjUlpN+IJCNCiJJLKTgwFxZ1hDsh4FwRhm3WD901K9ivP51O8fqqk+y5GIWdlTmLhzSiQhkZOSMKx7+dWEvGiBppphFClEzJMfD7GDi/Sb9doyv0+AZsyxT4pZRSTP/jLH+cvImluYb5zwdSt4JLgV9HiCxZw3svlpCaEUlGhBAlz7UD+rVl4m+AuRU89SE0HgmF1In0678v8f2Ba2g08Nmz9XiymkehXEeILNX+00xTEkbUSDIihCg5dDrY+wXs+BCUFlwrw7NLwbteoV1y+cFrfLH1AgDTutWiR/3yhXYtIbJU8rDH3ExDQmomt+LTKOtsY+yQHoskI0KIkiHhFqx7Ea7s1G/X6QddvwBrx0K75G/Hb/Du7/pJzV5tX5UhLfwK7VpC/Je1hTm+bnZcuZ3ExcgEk09GpAOrEML0Xd4B85/QJyKWdvqVdnsvKNREZPXR67z26wmUguebVeS1DlUL7VpC5KSap/7zfbEEdGKVZEQIYbq0mbD9ffixFyRFgmdNeGEHNHi+0PqHAPx6OIw3V59EKRjYtCIzussqvKLoGTqxRpp+MiLNNEII0xR3Q99JNfSAfrvhEHj6I7Aq3OG0Px0K5Z11pwEY3NyX6d1rSSIijKKKpz4ZuRRp+iNqJBkRQpie85vht9GQcgesHKHbbKjTt9Av++OBq7z7+1kAhrX0472uNSUREUZT1fPfuUZMfUSNJCNCCNORmQ7bp8OBb/Tb3vWh7xJwq1yol9XpFJ/8dZ75uy4DMPIJfyZ3CTDpL39h+ip52GOmgbiUDG4npuHpaLqdWCUZEUKYhpgQWD0cbh7Tbzd9CTpOB4vCXZcjNUPL66tOsvFUOADjO1RlXPuqkogIo7OxNKfi3TVqLt1KlGRECCEK1dl1sP5VSIsHGxfoORdqdCn0y8YkpfPCD0c4eu0OluYaPupdlz6BFQr9ukLkVhVPR/2CeZGJtKhSsGstFSVJRoQQxVdGCvz1DhxZot/2aQp9FoOLT6Ff+srtRIYvO8zV6GQcbSz4blAgLSqb7pe9KJmqeTmwLfgWF028E6skI0KI4un2BVg9DG6dATTwxGvQ9h0wL/xVcHdduM3Yn46RkJpJhTK2LBvWmCqehTdniRD59e8aNaY9vFeSESFE8XPiJ9j4OmQkg70H9PoOqrQv9MsqpVi8N4QPNwWjUxDoW4b5zwfi4Vi4/VKEyK+sETWXTHyuEUlGhBDFR1oibHoDTv6s3/Z/EnovBMeyhX/pTC1T1p1h1dHrADwbWIEPetXG2sK80K8tRH5V9nBAo4HopHSiE9NwczDNxFmSESFE8RBxGlYNg+iLoDGDNu9AqwlgVvjJQFxKBiO/P8zhq3cw08DkLjUZ3tJPRsyIYs/WypwKZWwJi0nhYmSiJCNCCJEvSsGRxbD5HdCmgWM56LMI/FoWyeWjEtMYtPgfgsPjcbSx4NsBDXmymkeRXFuIglDV09GQjDSr5GbscPJFkhEhhPGkxML6VyB4vX67aifoOR/si+YL9WZsCs8vPsSV20m4O1izfGQTapR1KpJrC1FQqno68Pe5SC7dMt0RNZKMCCGM4/pRWD0UYkPBzAI6TIdmL4NZ0azfeTUqiYGLDnEjNoXyLrYsH9kUf3f7Irm2EAUpa40aU14wT5IRIUTR0ung4LewbRroMsHFF/ouhQqBRRbCuYh4Bi3+h9sJafi727N8ZFPKu9gW2fWFKEjVvPQjaiQZEUKUaHeS0jl5PZZT1+MIi0nGydYSV3sr3OytcLW3wtvZlopudjjbPmIOkKRo+O0luPiXfrtmD+g2B2xdCv01ZDl4JZoXfjhCQmomNco68uOIpjJ0V5i0yndrRm4npBGbnI6LnZWRI8o7SUaEEDk6FxHPoj0h/BMSQ2hMcq6OcbGzpKKrHT6udpR1ssHT0Rqvu//1TzpJ2W1j0STcBHNreHoWNBoORThi5c/T4YxbeYL0TB2NfMuwaEgjk/ziFuK/HKwtKO9iy41YfSfWxn6uxg4pzyQZEUJkE3QznjnbL7L5bES2/f7u9tSt4ExlDwcS0zKJTkwnJimNmKR0bsSmEJWYTmxyBrHJcZy6Hmc4zgwdY8x/o6nFGjQaRaimPIs838UsvC6uf1/C0cYCRxtLHKwtsLUyx0wDGjRoNGCm0eDvbk9Z58dfAOz7/VeZ9sdZlIJONb2Y878G2FjKHCKiZKji6aBPRm5JMiKEMGEXbyXw6V/n2RJ0C9BXWHSu403/Rj7Uq+CCs93Dm2CS0jIJjUnmWnQy1+8kE5mQRmrMDfqFvU/ttBMArNG24t2MYSSH2EDI1VzH5uVkTb0KLtTzcaGRbxka+7liZpa7GpXk9Exmb7vIgt1XABjYtCIzetTGPJfHC2EKqno6sOvCbZNdo0aSESFKOaUUKw+HMXX9WdIydWg00LVuOV5tV4WqXrlfj8Xe2oIAbycCvO8Ojb20DdaOgrQosLRD1/kzWlTqzaKoJEKikgiNSSY+JYP41EwSUjNJSM0gJV17NyZQKDK0imvRSdyKT2NL0C1DolTexZZnG1Xg2UY+D+x4mpSWyY8Hr7Fw9xWik9IBeL1jNca2qyKTmYkSJ2uNGlOdFl6SESFKsaS0TCavO81vJ24C8GQ1D97rGvB4i8JpM2DHTNj7pX7bqzb0XYqZRzW8AW9n2zytfpucnsmZG/Gcuh7L8bBYdl+4zY3YFGZvu8hX2y/yRBV3An3L4GhjiaO1BQ42Fly5ncjivSHcSc4AwMfVlrefrkHXuuXy/7qEKMay/mZNdcE8SUaEKKWCw+MZ89MxrtxOwtxMwxudqjPqyUq5bv7IUWworB4B1//RbzcaDk99CJb5HzZrZ2VBE39Xmvjr28FTM7RsPhPBysNhHLgSzZ6LUey5GJXjsf7u9oxpW4Ue9cthaV4085cIYQxZNSMR8anEp2bgZFP4q1sXJElGhChltDrFsv1X+WTzOdIydZR1suHrAQ0ev9PbuY3w28uQGgvWTtB9DtTqVSAx/5eNpTk9G5SnZ4PyXItOYv2Jm4THp5KYmkliWiaJqZmYmcFzjSvSta43FpKEiFLAycaSsk42RMSncikykYYVyxg7pDyRZESIUuTK7UTeWn2KI9fuANC6mgdf9Kv3eItrZabB1vfg0Hz9drmG0HcJuPoXQMQP5+tmzyvtqxb6dYQwBVW9HIiIT+XirQRJRoQQxY9Wp1i6L4RP/zpPWqYOeytz3ukSwIAmFR+vM2f0ZVg9DMJP6rebj4X2U8FC5u4QoqhV8XRgz8Uok+w3IsmIECVcXHIGo5cf5cCVaACeqOLOR33qUKGM3eOd+PRq+GM8pCeAbRn9AnfVn378gIUQ+VL1bifWS7clGRFCFCPX7yQzdOlhLkUmYm9lzpSuNXmusc/j1YakJ8Pmt+HYD/rtii2gzyJwLl8wQQsh8qWSh36hxyu3k4wcSd5JMiJECXXmRhzDlh3mdkIaZZ1sWDqs8b9zgORX5DlYNRRuBwMaePINaD0RzOWrRAhjq3R31enrd5JJy9RibWE6MwzLN4gQJdCuC7d5eflRktK1VPdyZNnwxng7P8aqtErB8eWw6U3ITAF7T+izECq1KbCYhRCPx8PRGgdrCxLTMgmNTs7TpIXGJmPehChh1hy9zvBlh0lK19KishurXmr+eIlIWgKsfRHWj9UnIpXawkv7JBERopjR3F3LCeBKlGk11UjNiBAlyNJ9IUz/IwiAXg3K83GfulhZPMa/OcJPwqphEHMZNObQbgq0HA9m8u8YIYqjSh72nL4RZ3L9RiQZEaIEUErx1faLzN52EYDhLf2Z0iUg/7OpKgX/LIQtk0GbDk4VoO9iqNisAKMWQhS0rJqRkCjTGlEjyYgQJk6nU7y/MYil+64CMKFjNV55nMXgUu7A72Ph3Ab9dvXO0ONbsDO9ZcmFKG0qeeinhZeaESFEkUnP1DFx7SnWHrsBwLRuNRna8jFmPg37R7+2TFwomFlCpw+g6SiQVW6FMAmVDDUjkowIIYpAVGIaLy0/yuGrdzA30/Bp37r0blghfyfT6WD/HNg+A5QWyvhB36VQvmGBxiyEKFxZzTTRSenEJWfgbGcaC+ZJMiKECQoOj2fk90e4EZuCo40FX/+vAW2qe+bvZIm3Yd0ouLxdv12rN3SbDTbOBRavEKJo2Ftb4OVkza34NK5EJdLARNaokWRECBPz19kIXlt5guR0Lf7u9iwa0ojKd9uJ8yxkD6wZCYkRYGEDT38EgUOlWUYIE1bJ3UGfjNxOkmRECFGwlFJ8t/sKH/15DtCvMfPtgIb5q4bVaWHXJ7D7E1A6cK8Ozy4Fr1oFHLUQoqj5e9hz4Eq0SfUbkWRECBOg1Smmrj/D8oOhAAxt4ceULgFYmOdjvo/4m7DmBbi2V7/d4Hl45hOwsi/AiIUQxlLJMPGZ6QzvlWREiGIuJV3LKz8fZ1vwLTQaeK9rTYbld8TMxa36/iHJ0WBpD12/hHr9CzZgIYRRmeKCeZKMCFGMRSWmMeL7I5wMi8XawoyvnqvP07W9834ibYZ+pMz+OfrtsnWg7zJwr1Kg8QohjK+Su74P2dXoJHQ6lf/JD4tQvuZ0njt3Lv7+/tjY2BAYGMiePXtyddy+ffuwsLCgfv36+bmsEKXKzdgU+s7bz8mwWFzsLFkxsmn+EpE712DJ0/8mIo1fgBHbJBERooSqUMYWS3MNqRk6wuNTjR1OruQ5GVm5ciXjx49n8uTJHD9+nFatWvHMM88QGhr60OPi4uIYPHgw7du3z3ewQpQW4XEp/G/hQa5GJ1OhjC1rXmpBI798zIAa9DvMbwU3joC1M/T7Ebp8BpY2BR+0EKJYsDA3o6KrHQBXbptGv5E8JyNffPEFI0aMYOTIkQQEBDB79mx8fHyYN2/eQ48bNWoUAwYMoHnz5vkOVojSICIulQELD3EtOpmKrnb8Oqp53ofuZqTCxtfh18GQFgflG8HoPVCze+EELYQoVvzvNtWYyoiaPCUj6enpHD16lE6dOmXb36lTJ/bv3//A45YuXcrly5eZOnVqrq6TlpZGfHx8tocQpUFkfCoDFh4kJCqJCmVs+fnFZpRzsc3bSaIuwaIOcHiRfrvlOBi+Gcr4FnzAQohiqbKJdWLNUwfWqKgotFotXl5e2fZ7eXkRERGR4zEXL15k4sSJ7NmzBwuL3F1u1qxZTJ8+PS+hCWHyIhNSeW7hQa5EJVHexZafX2hG+bwmIidXwobXICMJ7Nyg13dQtWPhBCyEKLb8DcN7TSMZyVcH1ntXA1VK5bhCqFarZcCAAUyfPp1q1arl+vyTJk0iLi7O8AgLC8tPmEKYjLCYZPrNP8CV2/pE5JcXm+Fzt803V9KT4LcxsO5FfSLi1wpG75VERIhS6t/Ve02jz0ieakbc3d0xNze/rxYkMjLyvtoSgISEBI4cOcLx48cZO3YsADqdDqUUFhYWbNmyhXbt2t13nLW1NdbW1nkJTQiTdeFWAoMWH+JWfBoVytjy08g8JiK3zsKqYRB1HtBAm4nw5JtgZl5oMQshiresmpEbsSmkZmixsSze3wd5SkasrKwIDAxk69at9OrVy7B/69at9OjR477yTk5OnD59Otu+uXPn8vfff7N69Wr8/R9jqXMhSoDjoXcYtuwwsckZVPNy4McRTfFyyuVIF6Xg6DLYPBEyU8GhLPRZCP5PFmrMQojiz93BCkcbCxJSM7kWnUz1so7GDumh8jzp2YQJExg0aBCNGjWiefPmLFiwgNDQUEaPHg3om1hu3LjBDz/8gJmZGbVr1852vKenJzY2NvftF6K02X3hNqOXHyU5XUuDii4sHdoYFzur3B2cGg9/jIOza/XbVTpAz/ng4FF4AQshTIZGo6GSuz0nr8cREpVY8pKR/v37Ex0dzYwZMwgPD6d27dps2rQJX199T/3w8PBHzjkiRGn319kIxv50jAytolVVd74bFIidVS7/HG8cg9XD4M5VMLOA9u9B81fALF9dwIQQJVQlDwdOXo/jsgmMqNEopZSxg3iU+Ph4nJ2diYuLw8nJydjhCPFYNpy6ybhfTqDVKbrU8ebL/vWxsshFIqEUHJoPW94FXQY4V4S+S8CnceEHLYQwOXO2X+SLrRfoG1iBz56tZ5QYcvv7LWvTCFGE1h2/zuu/nkSnoHeD8nzSt27uVt5NjoHfx8D5TfrtGl2hxzdgW6ZwAxZCmKx/F8wr/iNqJBkRooj8ejiMt9eeQino38iHD3vXwTw3C1iFHoTVIyD+OphbwVMfQuORkMNweiGEyJI1osYUZmGVZESIIrD84DWm/HYGgEHNfJnevdajV9LU6WDfl/D3TFBacK0Mzy4Fb+NUtwohTEtWMnInOYM7SemUsc9lB3kjkB5vQhSynw6FGhKREU/4M6NHLhKRxEhY3hu2z9AnInX6wahdkogIIXLNzsoCb2f9VAFXoop3U40kI0IUol/+CeWddfq5dkY+4c+ULgE5zlaczeUdMK8lXNkBFrbQ/RvovQCsi/fQPCFE8ePrpp9A8Vp0spEjeThJRoQoJL8eCWPS3URkWEs/Jj8qEdFmwvb34cdekBQJnjXhxZ3QcJD0DxFC5Iufm76pprgnI9JnRIhCsObodd5eo++sOrSFH+91rfnwRCTuBqwZCaF3V79uOASe/gis8jAtvBBC3KPi3ZqR0BhJRoQoVVYdCeOtu4nIoGa+TO32iETk/Gb47SVIiQErR+g2G+r0LbJ4hRAll69rVs1I8R5RI8mIEAXo+/1Xmbr+LAADmlZkevdaD05EMtNh+3Q48I1+27u+fhIzt8pFE6wQosQzlT4jkowIUUC+3XGJT/86D+hHzTy0s2pMCKweDjeP6bebvgQdp4OFrFYthCg4Wc000UnpJKZl4mBdPH/2i2dUQpgQpRSfbTnPtzsuA/Bq+6q81qHqgxORM2v1i9ylxYONC/ScCzW6FF3AQohSw8nGEld7K2KS0rkWnUStcs7GDilHkowI8RgytTpmbAjihwPXAJj0TA1GtX5AM0tGCmyeBEeX6rd9mkKfxeDiU0TRCiFKo4qudsQkpRManSzJiBAlTXxqBmN/Os7uC7cBeL9nbQY188258O0LsGooROr7k/DEBGj7DphbFk2wQohSy9fNjhNhsVwtxv1GJBkRIh+uRiUx4vvDXL6dhK2lOV/0q8czdbxzLnziJ9j4OmQkg70H9PoOqrQv2oCFEKWW7925RkJjiu+IGklGhMij/ZeieGnFMeJSMvB2tmHh4EbULp9D1Wdaoj4JOfWLftv/Sei9EBzLFm3AQohSzde1+I+okWREiFxSSrFs/1VmbgwmU6eo7+PCgkGBeDrZ3F844rS+WSb6EmjMoM070GoCmJkXedxCiNLNFIb3SjIiRC4kpWUyae1p1p+8CUCP+uX4uE9dbCzvSS6UgiOLYfM7oE0Dx3LQZxH4tTRC1EII8e/w3ptxKaRlarG2KH7/KJJkRIhHuHI7kdHLj3LhViIWZhomdQ5geEu/+4fupsTC+lcgeL1+u+pT0HMe2LsVecxCCJHFw8EaOytzktO1XL+TQmUPB2OHdB9JRoR4iL/ORvD6rydJTMvEw9GauQMb0tjP9f6C14/C6qEQGwpmFtBhOjQfIwvcCSGMTqPRUNHVjnMRCYRGJ0syIoQp2XPxNi+vOIZWp2ji58o3Axrc3z9Ep4OD38K2aaDLBBdf6LsUKgQaJWYhhMiJr5s+GblaTNeokWREiBxcikw0JCI96pfjs2frYWlulr1QUjT8NhoubtFv1+wB3eaArUuRxyuEEA+TNby3uHZilWREiHvcSUpnxPeHSUjNpJFvGT7pW/f+ROTqPlgzEhJugrk1PP0hNBohzTJCiGIpa0RNaIwkI0IUe+mZOkYtP8q16GR8XG35blBg9p7nOi3s+QJ2fghKB25V4dmlULaO8YIWQohH8HXNqhmRZhohijWlFJPXneafkBgcrS1YPKQxbg7/WUU3IQLWvgAhu/Xb9QZA50/Buvh1BhNCiP/KqhkJi0lBq1OYmxWvWlxJRoS4a9n+q6w6eh0zDXw9oAHVvBz/ffLSdlg3CpJug6UddPkc6g8wXrBCCJEH3s42WJhpSNfqiIhPpbyLrbFDysbs0UWEKPmCbsYza9M5ACZ3qUmb6p76J7QZ+pEyy3vrExGv2vDiLklEhBAmxcLcDB/DtPDFr6lGkhFR6qVmaBn3y3HStTo6BHgxvKWf/onYMFjWBfZ+qd9uNBxGbgOPakaLVQgh8qvi3WQktBiOqJFmGlHqzdwYzMXIRDwcrfm4Tx39zKrnNsJvL0NqLFg7Qfc5UKuXsUMVQoh8y+o3clWSESGKl21Bt/jx4DUAPn+2Hm42wJ8T4dA8fYFyDaHvEnD1N16QQghRAAw1IzHFr5lGkhFRakUmpPLWmlMAjHjCnyfd4mFxHwg/qS/QfCy0nwoWVkaMUgghCoZfMZ74TJIRUSrpdIo3Vp0iJimdAG8nJvqcge8mQHoC2JaBnvOh+tPGDlMIIQqMYeKz6GSUUvcv9mlEkoyIUmnp/qvsvnAbZ4sMfim7Ast1P+ufqNgC+iwC5/LGDVAIIQpY1miahLRMYpLSs8+jZGQymkaUOkE34/n4z3NU0Vxnl8sMnIN/BjTw5Jsw5A9JRIQQJZKNpTll7y72ea2YTQsvyYgoVVIztIz7+Rg9+JuNNu/ikngZ7D1h8G/QbgqYS2WhEKLk+m9TTXEi37yiVPl0/RFejv2EXpb7QAGV2kDvheDgaezQhBCi0Pm62XEoJKbYdWKVZESUGof27WDgydFUMo9AaczRtJsMLV8DM6kgFEKUDr5uxXPBPElGRMmnFAm759Jgx3tYmWUSZ+WF8/M/QMVmxo5MCCGKVNZcI8Wtz4gkI6JkS7lDxtoxOF7cCMABy6Y0fOUncHQ3cmBCCFH0spKRsGKWjEj9tCi5wg6jndcKy4sbSVfmfKoZhsfINVhLIiKEKKWyhvdGJqSRmqE1cjT/kmRElDw6HeydjVr6NObxYVzVeTHCYibdR71PFS9HY0cnhBBGU8bOEjsrcwBuxKYYOZp/STIiSpakKPjpWdg2FY0ukz+0zRhm9RlTRw2iellJRIQQpZtGo8GnTPFrqpE+I6LkCNkDa0ZCYgRpWDEtYxA77Tvz04vN8Xe3N3Z0QghRLPi42nL+VgLX7xSfmhFJRoTp02lh1yew+xNQOi6p8oxJf4VE5+qsfKEZFe9O8iOEEAIqZNWM3JGaESEKRnw4rH0Bru4BYGVmG6ZlDqZB5fL8+Fx9PB1tjBygEEIULxXK2AJwPUZqRoR4fBe3wboXITmaFGyYlD6c9eoJxnWoxth2VTA3Kz4rUgohRHGRNaLmutSMCPEYtBnw9/uw7ysAgpSfvlnGwY8VzzWgeWU3IwcohBDFV1bNSJj0GREin2JDYfVwuH4YgGWZnZiVOYAmVcvxZf/6uBejJbGFEKI4yuozEpOUTlJaJvbWxk8FjB+BELkV/Af8PgZS40jAnjfSX2A7TXnjmeq82KoSZtIsI4QQj+Rsa4mTjQXxqZlcv5NSLKY9kGREFH8ZqbBlChxeCMAJXRXGZryCcq7IrwMa0LBiGSMHKIQQpsXH1Y6zN+MJi0mWZESIR4q6BKuHQsRpAOZnduOzzGfpUKsCH/epi7OdpXHjE0IIE+RT5m4yUkw6sUoyIoqvkythw2uQkUQsToxPH80+TQOmdAtgSAs/NBpplhFCiPwwDO8tJp1YJRkRxU96Emx6C04sB+Cgriavpo/B0qUcqwY2pL6Pi3HjE0IIE+dTzFbvlWREFC+3zsKqYRB1Hh0avsrozdfaXrQLKMvnz9aXZhkhhCgAPq5SMyLE/ZSCY9/Dn29DZirRGlfGpr3EIVWLN5+uwejWlaRZRgghCkhxmxJekhFhfKnxsGE8nFkDwD7q82rKKHR27vzwv4Y8UdXduPEJIUQJk9VnJCE1k7jkDKPXOksyIozr5nF9s8ydEHQaCz7OeJYFmV2oVd6F+c8HGrJ3IYQQBcfOygI3eyuik9IJu5OMs52zUeORZEQYh1JwaD5seRd0Gdyx9GJE4kscU9Xo07ACM3vVxsbS3NhRCiFEiVXB1Y7opHSu30mmdnnjJiNm+Tlo7ty5+Pv7Y2NjQ2BgIHv27Hlg2bVr19KxY0c8PDxwcnKiefPm/PXXX/kOWJQAyTHwywDYPBF0Gfxj3YLWCe9zgmpM6RLAZ8/WlURECCEKmU/WGjXFYPXePCcjK1euZPz48UyePJnjx4/TqlUrnnnmGUJDQ3Msv3v3bjp27MimTZs4evQobdu2pVu3bhw/fvyxgxcmKPQgzG8F5zehM7NituUL9Isbg87ahcVDGjOylXRUFUKIopDVDF4cVu/VKKVUXg5o2rQpDRs2ZN68eYZ9AQEB9OzZk1mzZuXqHLVq1aJ///689957uSofHx+Ps7MzcXFxODk55SVcUVzodLDvS/h7JigtqU5+DI5/iX9SffBxtWXxkMZU8zL+lMRCCFFarDh0jcnrztCuhidLhjYulGvk9vc7T31G0tPTOXr0KBMnTsy2v1OnTuzfvz9X59DpdCQkJODq6vrAMmlpaaSlpRm24+Pj8xKmKG4SI2HdKLj8NwC3/XvQ+XIvbqdb0bCiCwsHN8JNVtsVQogi5VOm+Ex8lqdmmqioKLRaLV5eXtn2e3l5ERERkatzfP755yQlJdGvX78Hlpk1axbOzs6Gh4+PT17CFMXJlZ0w/wl9ImJhy/mms3ji4nPcTreiZRU3lo9sKomIEEIYwX+nhM9jI0mBy1cH1nvb9JVSuWrn//nnn5k2bRorV67E09PzgeUmTZpEXFyc4REWFpafMIUxaTPh7w/gh56QeAs8a7K3/Wq67fUnLVPRroYni4c0xs5KBnQJIYQxlC9ji0YDKRlaopPSjRpLnn4J3N3dMTc3v68WJDIy8r7aknutXLmSESNGsGrVKjp06PDQstbW1lhby7+WTVbcDVgzEkLvNt01HMJmn/GMWXUOrU7RuU5ZZvdvgJVFvnJhIYQQBcDawhwvRxsi4lMJi0nG3Yi11Hn6NbCysiIwMJCtW7dm279161ZatGjxwON+/vlnhg4dyk8//USXLl3yF6kwDec365tlQveDlSP0WczuGu/yymp9ItK7QXnmPCeJiBBCFAfFZfXePNeRT5gwgUGDBtGoUSOaN2/OggULCA0NZfTo0YC+ieXGjRv88MMPgD4RGTx4MF999RXNmjUz1KrY2tri7GzcSVZEAcpMh+3T4cA3+m3vetB3KUcTXRm16BAZWkXXut58+mw9zM1k6K4QQhQHPq52HLl2x+hr1OQ5Genfvz/R0dHMmDGD8PBwateuzaZNm/D19QUgPDw825wj3333HZmZmYwZM4YxY8YY9g8ZMoRly5Y9/isQxhcTAquHw81j+u2mL0HH6ZyPSmf4sgOkZGh5spoHX/SrL4mIEEIUIxWKycRneZ5nxBhknpFi7Ow6WP8qpMWDjQv0nAs1uhAanUzf+fuJTEijYUUXlo9sKp1VhRCimPn1cBhvrTlFq6ru/DiiaYGfv1DmGRHCICMF/noHjizRb/s0hT6LwcWHyIRUBi05RGRCGtW9HFkyVEbNCCFEcVTB1UT7jAjB7QuwehjcOqPffmICtH0HzC2JS8lg8OJ/uBadjI+rLT+OaIKLnZVx4xVCCJGjrInPbtxJQadTmBmpKV2SEZE3J36Cja9DRjLYe0Cv76BKewBS0rWM/P4w5yIScHewZvmIpng62Rg5YCGEEA/i7WyDuZmGdK2OyIQ0yjob5ztbkhGRO2mJsOkNOPmzftv/Sei9EBzLApCh1THmp2McvnoHRxsLfhzRBF83eyMGLIQQ4lEszM3wdrbh+p0Uwu4kGy0ZkckexKNFnIYFbfSJiMYM2k6BQb8ZEhGdTvHW6lP8fS4SG0szlgxtTIC3dDQWQghT8O+IGuMN75WaEfFgSuk7qG6eBNo0cCwHfRaBX8v/FFF8sDGYdcdvYGGmYd7AQBr7PXgRRCGEEMVLv0Y+tKnuSZ3yxpv7S5IRkbPUOP2Q3aDf9NtVn4Ke88DeLVuxBbuvsGRfCACfPluXtjUevOaQEEKI4qd3wwrGDkGSEZGDG0dh1TCIvQZmltBhGjQfA/cshrj22HVm/XkOgCldAujVwPgfaCGEEKZHkhHxL6XgwLewbRroMsDFF/ouhQqB9xXdeT6St1afAuDFJysxslWlIg5WCCFESSHJiNBLiobfXoKLf+m3a/aE7nPA5v42xJNhsby84hiZOkXP+uWY+HSNoo1VCCFEiSLJiIBr+2H1CEi4CebW8PQsaDT8vmYZgH9CYhi9/CjJ6VpaVXXnk771jDZJjhBCiJJBkpHSTKeFPV/Azg9B6cCtKjy7FMrWub+oTrFgzxU+/es8Wp2ibgVn5j0fiJWFjA4XQgjxeCQZKa0SImDtixCyS79d73/Q+TOwdrivaFxyBq+vOsG24EgAejcozwe9ast6M0IIIQqE/JqURpe2w7pRkHQbLO2gy+dQf8B9xZRSHLgczVtrTnH9TgpWFmZM716L5xr7oMmhCUcIIYTID0lGShNtJuyYCXu/0G971daPlvGolq1YplbHpjMRLNx9hdM34gDwdbPj2wENqW3ESXGEEEKUTJKMlBaxYbBmJIQd1G83Gg5PfQiWtoYiqRlaVhwKZcneEG7E6peTtrYwo18jH954qjrOtpbGiFwIIUQJJ8lIaXBuk37YbmosWDvph+zW6mV4WinFptMRzPozmOt39EmIm70VQ1r48XwzX1ztrYwUuBBCiNJAkpGSLDMNtk6FQ/P02+Ua6JtlXP0NRU5dj+X9DUEcvnoHgLJONrzaviq9G5bHxtLcGFELIYQoZSQZKamiL8PqYRB+Ur/dfCy0nwoW+lqOuOQMZm4K4tcj1wGwtTRnVOtKvPhkJRklI4QQokjJr05JdHo1/DEe0hPAtgz0nA/Vnwb0TTJ/nongvd/PEpWYBuiH6r75dHW8nW0fclIhhBCicEgyUpKkJ8Pmt+HYD/rtis2hz2JwLg/ArfhU3v3tDFuCbgFQ2cOej/vUpZGfq7EiFkIIISQZKTEiz8GqoXA7GNDAk29A64lgboFOp/j5cCgf/XmOhNRMLMw0vNymMmPaVcHaQvqFCCGEMC5JRkydUnB8OWx6EzJTwN4T+iyESm0AOBcRzztrT3MsNBaAuhWc+bhPXQK8nYwXsxBCCPEfkoyYsrQE2DABTv+q367UFnovAAdPktMz+Wr7RRbtCUGrU9hbmfN6p+oMbu6LhbmsJyOEEKL4kGTEVIWfhFXDIOYyaMyh3WRo+RpKo+GvM+G8vyHYMHHZ07XKMrV7TemgKoQQoliSZMTUKAX/LIQtk0GbDk4VoO9iqNiMS5GJTP/jLHsuRgFQ3sWW6d1r0aGml5GDFkIIIR5MkhFTknIHfh8L5zbot6t3hh7fkmDmyDebglm8N4RMncLKwoxRT1bi5TZVsLWSDqpCCCGKN0lGTEXYYVg9HOJCwcwSOr2PtvEoVh29zmdbjhKVmA5AhwBP3u1aE183eyMHLIQQQuSOJCPFnU4HB76G7TNAlwll/KHvEvanVuT9b/YRHB4PgL+7Pe92DaBdDWmSEUIIYVokGSnOkqJg3Wi4tFW/XbsP11vOYsbWMLYEHQLAycaCcR2qMaiZL1YWMkpGCCGE6ZFkpLgK2QNrX4CEcLCwIaPTLL6Jbcn8b4+RlqnD3EzDwKYVGd+hmqyqK4QQwqRJMlLc6LSw+1PY9TEoHcqjBgcafMpbOzK5fucSAM0ruTG9Ry2qeTkaOVghhBDi8UkyUpzEh+trQ67uASCx5nO8njCAv9YnAODtbMPkLgF0qeONRqMxZqRCCCFEgZFkpLi4uA3WvQjJ0SgrBzb7vc24U1VJz0zE0lzDyFaVGNu2CvbW8pYJIYQoWeSXzdi0GfqRMvvnAJDgEsDotLHsO1UG0PFEFXem96hFZQ8H48YphBBCFBJJRozpzjVYMwKuHwbgL/vuvBrRmzSs8HKy5t2uNaVJRgghRIknyYixBK2H9WMhNY5kMwdeSx3JX6lNsDI348WWfrzavioO0iQjhBCiFJBfu6KWkQpb34V/FgBwQleFsWmvcAMPejUoz4SO1fBxtTNykEIIIUTRkWSkKEVdgtVDIeI0APMzu/FZ5rO0rObNd09Xp1Y5Z+PGJ4QQQhiBJCNF5dSvsOE1SE8kVuPE+LTR7Nc05JN+dejdsIKxoxNCCCGMRpKRwpaeBJveghPLAThCTV5OGYPOoSy/DA6kYcUyRg5QCCGEMC5JRgrTrSBYNRSizqPQ8LW2N7MzelHD24WFQxpR3sXW2BEKIYQQRifJSGFQCo59D3++DZmpxJi5Mib1JQ7oatG5Tlk+e7YedlZy64UQQgiQZKTgpcbDH+Pg7FoA9qj6jE8eRZq1G590q8mzgRVk3hAhhBDiPyQZKUg3jsHqYXDnKpmY82lGPxZou9C0kjuf9q0nQ3aFEEKIHEgyUhCUgkPzYcu7oMvglpkno1PGcNa8OlO61mBYCz/MzKQ2RAghhMiJJCOPKzkGfh8D5zcBsMusKa8kj8DC3pVfhjSS0TJCCCHEI0gy8jhCD8LqERB/HZ2ZFR/pnmdBcnv83R1YNqwxvm72xo5QCCGEKPYkGckPnQ72fQl/zwSlJdHel4Gxozip9SPQtwwLBzfC1d7K2FEKIYQQJkGSkbxKjIS1L8KVHQCElOtCt5DeJCpbOtcpyxf96mNjaW7kIIUQQgjTIclIXlzZCWtegKRIsLDl78pvMfxkNUDDwKYVmdGjNubSUVUIIYTIE0lGckObCbs+gt2fAQrlWZNFXu8y87AC4OU2lXnzqeoyf4gQQgiRD5KMPErcDVgzEkL3A5BZfzBT059nxeEoACY9U4NRrSsbM0IhhBDCpEky8jAX/oJ1oyElBqwcCW05i2FHfLh8OwozDXzYqw7PNalo7CiFEEIIkybJSE4y02H7dDjwDQDKuz7LK0xl+l+pZOqS8HS05rNn6/FkNQ8jByqEEEKYPklG7hUTAquHw81jAMTWG8mo8G4c2pMEQOc6ZZnZsw5lZOiuEEIIUSDM8nPQ3Llz8ff3x8bGhsDAQPbs2fPQ8rt27SIwMBAbGxsqVarE/Pnz8xVsoTv7G3zXGm4eQ9m4sKbapzQ+0p5DoUk4WFvw+bP1+HZAQ0lEhBBCiAKU52Rk5cqVjB8/nsmTJ3P8+HFatWrFM888Q2hoaI7lQ0JC6Ny5M61ateL48eO88847vPrqq6xZs+axgy8wGamwYQKsGgJpccS4NaC37mNeP1WeDK2iTXUP/hzXij6y4q4QQghR4DRKKZWXA5o2bUrDhg2ZN2+eYV9AQAA9e/Zk1qxZ95V/++23Wb9+PcHBwYZ9o0eP5uTJkxw4cCBX14yPj8fZ2Zm4uDicnJzyEu6j3b6gX2n31hkUGv5w6s+EyM5kYkF5F1umdqtJx5pekoQIIYQQeZTb3+889RlJT0/n6NGjTJw4Mdv+Tp06sX///hyPOXDgAJ06dcq276mnnmLx4sVkZGRgaWl53zFpaWmkpaVlezGF4sTPsPF1yEgizdqN8ekv8WdkTawszHj1yUq81KYKtlYym6oQQghRmPKUjERFRaHVavHy8sq238vLi4iIiByPiYiIyLF8ZmYmUVFReHt733fMrFmzmD59el5CyzudDk6thIwkLjkE8r+oEdzGhdrlnZjdvwFVPB0K9/pCCCGEAPLZgfXeJgul1EObMXIqn9P+LJMmTSIuLs7wCAsLy0+YD2dmRnDzz5hvPZROUa8RpXFhVOtKrH2ppSQiQgghRBHKU82Iu7s75ubm99WCREZG3lf7kaVs2bI5lrewsMDNzS3HY6ytrbG2ts5LaHmmlGLCpnCC4zrh5WTNl/3q06KKe6FeUwghhBD3y1PNiJWVFYGBgWzdujXb/q1bt9KiRYscj2nevPl95bds2UKjRo1y7C9SVDQaDZ89W5eudb3ZPO5JSUSEEEIII8lzM82ECRNYtGgRS5YsITg4mNdee43Q0FBGjx4N6JtYBg8ebCg/evRorl27xoQJEwgODmbJkiUsXryYN954o+BeRT7VKufMNzJviBBCCGFUeZ6BtX///kRHRzNjxgzCw8OpXbs2mzZtwtfXF4Dw8PBsc474+/uzadMmXnvtNb799lvKlSvHnDlz6NOnT8G9CiGEEEKYrDzPM2IMhTrPiBBCCCEKRW5/v/M1mkYIIYQQoqBIMiKEEEIIo5JkRAghhBBGJcmIEEIIIYxKkhEhhBBCGJUkI0IIIYQwKklGhBBCCGFUkowIIYQQwqgkGRFCCCGEUUkyIoQQQgijkmRECCGEEEaV54XyjCFr+Zz4+HgjRyKEEEKI3Mr63X7UMngmkYwkJCQA4OPjY+RIhBBCCJFXCQkJODs7P/B5k1i1V6fTcfPmTRwdHdFoNAV23vj4eHx8fAgLC5PVgAuZ3OuiIfe5aMh9Lhpyn4tGYd5npRQJCQmUK1cOM7MH9wwxiZoRMzMzKlSoUGjnd3Jykg96EZF7XTTkPhcNuc9FQ+5z0Sis+/ywGpEs0oFVCCGEEEYlyYgQQgghjKpUJyPW1tZMnToVa2trY4dS4sm9Lhpyn4uG3OeiIfe5aBSH+2wSHViFEEIIUXKV6poRIYQQQhifJCNCCCGEMCpJRoQQQghhVJKMCCGEEMKoSnwyMnfuXPz9/bGxsSEwMJA9e/Y8tPyuXbsIDAzExsaGSpUqMX/+/CKK1LTl5T6vXbuWjh074uHhgZOTE82bN+evv/4qwmhNW14/01n27duHhYUF9evXL9wAS4i83ue0tDQmT56Mr68v1tbWVK5cmSVLlhRRtKYrr/d5xYoV1KtXDzs7O7y9vRk2bBjR0dFFFK1p2r17N926daNcuXJoNBp+++23Rx5T5L+FqgT75ZdflKWlpVq4cKEKCgpS48aNU/b29uratWs5lr9y5Yqys7NT48aNU0FBQWrhwoXK0tJSrV69uogjNy15vc/jxo1TH3/8sfrnn3/UhQsX1KRJk5SlpaU6duxYEUduevJ6r7PExsaqSpUqqU6dOql69eoVTbAmLD/3uXv37qpp06Zq69atKiQkRB06dEjt27evCKM2PXm9z3v27FFmZmbqq6++UleuXFF79uxRtWrVUj179iziyE3Lpk2b1OTJk9WaNWsUoNatW/fQ8sb4LSzRyUiTJk3U6NGjs+2rUaOGmjhxYo7l33rrLVWjRo1s+0aNGqWaNWtWaDGWBHm9zzmpWbOmmj59ekGHVuLk9173799fTZkyRU2dOlWSkVzI633+888/lbOzs4qOji6K8EqMvN7nTz/9VFWqVCnbvjlz5qgKFSoUWowlTW6SEWP8FpbYZpr09HSOHj1Kp06dsu3v1KkT+/fvz/GYAwcO3Ff+qaee4siRI2RkZBRarKYsP/f5XjqdjoSEBFxdXQsjxBIjv/d66dKlXL58malTpxZ2iCVCfu7z+vXradSoEZ988gnly5enWrVqvPHGG6SkpBRFyCYpP/e5RYsWXL9+nU2bNqGU4tatW6xevZouXboURcilhjF+C01iobz8iIqKQqvV4uXllW2/l5cXEREROR4TERGRY/nMzEyioqLw9vYutHhNVX7u870+//xzkpKS6NevX2GEWGLk515fvHiRiRMnsmfPHiwsSuyfe4HKz32+cuUKe/fuxcbGhnXr1hEVFcXLL79MTEyM9Bt5gPzc5xYtWrBixQr69+9PamoqmZmZdO/ena+//rooQi41jPFbWGJrRrJoNJps20qp+/Y9qnxO+0V2eb3PWX7++WemTZvGypUr8fT0LKzwSpTc3mutVsuAAQOYPn061apVK6rwSoy8fKZ1Oh0ajYYVK1bQpEkTOnfuzBdffMGyZcukduQR8nKfg4KCePXVV3nvvfc4evQomzdvJiQkhNGjRxdFqKVKUf8Wlth/Krm7u2Nubn5fhh0ZGXlfxpelbNmyOZa3sLDAzc2t0GI1Zfm5z1lWrlzJiBEjWLVqFR06dCjMMEuEvN7rhIQEjhw5wvHjxxk7diyg/9FUSmFhYcGWLVto165dkcRuSvLzmfb29qZ8+fLZlkoPCAhAKcX169epWrVqocZsivJzn2fNmkXLli158803Aahbty729va0atWKDz74QGqvC4gxfgtLbM2IlZUVgYGBbN26Ndv+rVu30qJFixyPad68+X3lt2zZQqNGjbC0tCy0WE1Zfu4z6GtEhg4dyk8//STtvbmU13vt5OTE6dOnOXHihOExevRoqlevzokTJ2jatGlRhW5S8vOZbtmyJTdv3iQxMdGw78KFC5iZmVGhQoVCjddU5ec+JycnY2aW/WfL3Nwc+Pdf7uLxGeW3sNC6xhYDWcPGFi9erIKCgtT48eOVvb29unr1qlJKqYkTJ6pBgwYZymcNZ3rttddUUFCQWrx4sQztzYW83ueffvpJWVhYqG+//VaFh4cbHrGxscZ6CSYjr/f6XjKaJnfyep8TEhJUhQoVVN++fdXZs2fVrl27VNWqVdXIkSON9RJMQl7v89KlS5WFhYWaO3euunz5stq7d69q1KiRatKkibFegklISEhQx48fV8ePH1eA+uKLL9Tx48cNQ6iLw29hiU5GlFLq22+/Vb6+vsrKyko1bNhQ7dq1y/DckCFDVOvWrbOV37lzp2rQoIGysrJSfn5+at68eUUcsWnKy31u3bq1Au57DBkypOgDN0F5/Uz/lyQjuZfX+xwcHKw6dOigbG1tVYUKFdSECRNUcnJyEUdtevJ6n+fMmaNq1qypbG1tlbe3txo4cKC6fv16EUdtWnbs2PHQ79zi8FuoUUrqtoQQQghhPCW2z4gQQgghTIMkI0IIIYQwKklGhBBCCGFUkowIIYQQwqgkGRFCCCGEUUkyIoQQQgijkmRECCGEEEYlyYgQQgghjEqSESGEEEIYlSQjQgghhDAqSUaEEEIIYVSSjAghhBDCqP4Py/upeFPT1bsAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "#bop = VectorData(np.reshape(b,[-1]))\n", + "op = VectorData(bn)\n", + "cgls = CGLS(operator=Aop, data=bop, max_iteration=4, update_objective_interval=10)\n", + "cgls.run()\n", + "\n", + "plt.figure()\n", + "plt.plot(np.linspace(0,1,100),cgls.solution.as_array(), label='Least squares solution with early stopping')\n", + "plt.plot(np.linspace(0,1,100),x, label='Ground truth solution')\n", + "plt.legend()\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "90dcba3f", + "metadata": {}, + "source": [ + "We can also do Tikhonov regularisation using the CIL framework. For example, in the block framework below: " + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "15ff9d79", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " Iter Max Iter Time/Iter Objective\n", + " [s] \n", + " 0 1000 0.000 2.16038e-01\n", + " 1 1000 0.130 3.73899e-03\n", + " 2 1000 0.108 9.73406e-04\n", + " 3 1000 0.109 8.16896e-04\n", + " 4 1000 0.111 8.07526e-04\n", + " 5 1000 0.106 8.07019e-04\n", + " 6 1000 0.105 8.07002e-04\n", + " 7 1000 0.106 8.07002e-04\n", + " 8 1000 0.110 8.07002e-04\n", + "Tolerance is reached: 1e-06\n", + "-------------------------------------------------------\n", + " 8 1000 0.110 8.07002e-04\n", + "Stop criterion has been reached.\n", + "\n" + ] + } + ], + "source": [ + "ig = Aop.domain_geometry()\n", + "L = IdentityOperator(ig)\n", + "operator_block = BlockOperator(Aop, reg_param*L)\n", + "\n", + "zero_data = L.range.allocate(0)\n", + "data_block = BlockDataContainer(bop, zero_data)\n", + "\n", + "cglsb = CGLS(operator=operator_block, data=data_block, max_iteration=1000, update_objctive_interval=10)\n", + "cglsb.run()" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "id": "74107db6", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAGdCAYAAADAAnMpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABxJElEQVR4nO3dd3QU1fvH8fduNr1CQkIgIdTQa5COSJeOVAWRokhsNBFB/NIEsaCiIL2JgiJVRARCr1JDDz0QSkIIkF53d35/rOzPQIAkJJls8rzOyTnu7OzMs0Pc/eTeO/dqFEVREEIIIYRQiVbtAoQQQghRuEkYEUIIIYSqJIwIIYQQQlUSRoQQQgihKgkjQgghhFCVhBEhhBBCqErCiBBCCCFUJWFECCGEEKrSqV1AZhiNRm7fvo2zszMajUbtcoQQQgiRCYqiEBcXR4kSJdBqn9z+YRFh5Pbt2/j6+qpdhhBCCCGy4caNG/j4+DzxeYsII87OzoDpzbi4uKhcjRBCCCEyIzY2Fl9fX/P3+JNYRBh52DXj4uIiYUQIIYSwMM8aYiEDWIUQQgihKgkjQgghhFCVhBEhhBBCqMoixoxkhqIo6PV6DAaD2qUIIQowa2trrKys1C5DiAKlQISR1NRUwsPDSUxMVLsUIUQBp9Fo8PHxwcnJSe1ShCgwLD6MGI1GQkNDsbKyokSJEtjY2MjEaEKIXKEoCnfv3uXmzZtUqFBBWkiEyCFZDiN79uzh66+/5tixY4SHh7Nu3Tq6du361Nfs3r2bkSNHcvbsWUqUKMHo0aMJDAzMbs3ppKamYjQa8fX1xcHBIUeOKYQQT1KsWDGuXbtGWlqahBEhckiWB7AmJCRQs2ZNZs2alan9Q0NDad++PU2bNiU4OJhPPvmEoUOHsmbNmiwX+zRPm2ZWCCFyirS8CpHzstwy0q5dO9q1a5fp/efOnUupUqWYMWMGAJUrV+bo0aNMnz6d7t27Z/X0QgghhChgcr054eDBg7Rp0ybdtrZt23L06FHS0tIyfE1KSgqxsbHpfgqbiRMnUqtWLfPjAQMGPLU77NH9Rea99NJLDB8+/LmPkxf/BhqNhvXr1+fKsa9du4ZGo+HEiRPPfazcrFMIUfDkehiJiIjAy8sr3TYvLy/0ej1RUVEZvmbatGm4urqafwraInkajeapPwMGDGDUqFFs375d7VJFFhTGf7MnBbDw8PAstaDmpNjYWMaNG0elSpWws7OjePHitGrVirVr16IoCvB4AM2pQCqEyJ48uZvm0T7Whx8IT+p7HTt2LCNHjjQ/frjQTkERHh5u/u+VK1cyfvx4Lly4YN5mb2+Pk5NTob110GAwoNFoLGYckKIoGAyGQv1v9qjixYurct7o6GiaNGlCTEwMU6ZM4YUXXkCn07F7925Gjx5NixYtcHNzU6U2IcST5fqnffHixYmIiEi3LTIyEp1Oh7u7e4avsbW1NS+KVxAXxytevLj5x9XVFY1G89i2ZzX5Hzt2DE9PT6ZOnZpu+88//0zp0qVxdXXl1VdfJS4uzvxcSkoKQ4cOxdPTEzs7O5o0acKRI0fMz+/atQuNRsP27dupW7cuDg4ONGrUKF1QApgzZw7lypXDxsaGihUr8vPPP5ufe+2113j11VfT7Z+WloaHhwdLlizJ8L0sXboUNzc3Nm7cSJUqVbC1teX69eukpqYyevRoSpYsiaOjI/Xr12fXrl3pXrtgwQLznVSvvPIK3377bbovm4y6t4YPH85LL730pEvLL7/8Qt26dXF2dqZ48eL06dOHyMjIx67Tli1bqFu3Lra2tuzdu/exf7Ndu3ZRr149HB0dcXNzo3Hjxly/ft38/J9//klAQAB2dnaULVuWSZMmodfrzc9funSJF198ETs7O6pUqUJQUNATa35o9erVVK9eHXt7e9zd3WnVqhUJCQmA6Tb4yZMn4+Pjg62tLbVq1WLz5s1PPNbDf5f/Wr9+vfmPiKVLlzJp0iROnjxpbtVbunQp8Hg3zenTp2nRooW5rrfffpv4+Hjz8w//naZPn463tzfu7u689957T+zKfZJPPvmEa9eucejQIfr370+VKlXw9/dn8ODBnDhxQsKiEBm5th+WdYXUBNVKyPUw0rBhw8c+RLdu3UrdunWxtrbO8fMpikJiql6Vn4ctPrlt165dtGzZkkmTJjFu3Djz9itXrrB+/Xo2btzIxo0b2b17N1988YX5+dGjR7NmzRp++uknjh8/Tvny5Wnbti33799Pd/xx48bxzTffcPToUXQ6HYMGDTI/t27dOoYNG8aHH37ImTNnGDJkCAMHDmTnzp0A9O3blw0bNqT7otmyZQsJCQlPHbCcmJjItGnTWLhwIWfPnsXT05OBAweyf/9+fvvtN06dOkXPnj15+eWXuXTpEgD79+8nMDCQYcOGceLECVq3bv1YOMuO1NRUPvvsM06ePMn69esJDQ1lwIABj+03evRopk2bRkhICDVq1Ej3nF6vp2vXrjRr1oxTp05x8OBB3n77bfMX+ZYtW3j99dcZOnQo586dY968eSxdutRcv9FopFu3blhZWfHPP/8wd+5cPv7446fWHR4ezmuvvcagQYMICQlh165ddOvWzfx7+f333/PNN98wffp0Tp06Rdu2bencubP5emZV7969+fDDD6latSrh4eGEh4fTu3fvx/ZLTEzk5ZdfpkiRIhw5coRVq1axbds23n///XT77dy5kytXrrBz505++uknli5dag43mWE0Gvntt9/o27cvJUqUeOx5JycndDqLn1pJiJxjNMCuL+GnjnB1J+z9VrVSsvx/Znx8PJcvXzY/Dg0N5cSJExQtWpRSpUoxduxYbt26xbJlywAIDAxk1qxZjBw5ksGDB3Pw4EEWLVrEr7/+mnPv4j+S0gxUGb8lV479LOcmt8XBJnc/7P744w/69evHvHnzeO2119I9ZzQaWbp0Kc7OzgD069eP7du3M3XqVBISEpgzZw5Lly419+UvWLCAoKAgFi1axEcffWQ+ztSpU2nWrBkAY8aMoUOHDiQnJ2NnZ8f06dMZMGAA7777LgAjR47kn3/+Yfr06TRv3py2bdvi6OjIunXr6NevHwArVqygU6dOT23hSktLY/bs2dSsWRMwBatff/2Vmzdvmr9YRo0axebNm1myZAmff/45M2fOpF27dowaNQoAf39/Dhw4wMaNG5/rGv83fJUtW5YffviBevXqER8fn+4v68mTJ9O6desMjxEbG0tMTAwdO3akXLlygOlOsoemTp3KmDFj6N+/v/k8n332GaNHj2bChAls27aNkJAQrl27ho+PDwCff/75U8dhhIeHo9fr6datG35+fgBUr17d/Pz06dP5+OOPzS1XX375JTt37mTGjBn8+OOPWbpG8P/diTqd7qndMsuXLycpKYlly5bh6OgIwKxZs+jUqRNffvmleUxZkSJFmDVrFlZWVlSqVIkOHTqwfft2Bg8enKl6oqKiePDgAZUqVcryexGi0IkNh7WD4dpe0+OafaDJCNXKyXLLyNGjR6lduza1a9cGTF9GtWvXZvz48YDpAzEsLMy8f5kyZdi0aRO7du2iVq1afPbZZ/zwww9yW282HDp0iO7du/PTTz89FkQASpcubQ4iAN7e3ubuhStXrpCWlkbjxo3Nz1tbW1OvXj1CQkLSHee/f+V7e3sDmI8TEhKS7hgAjRs3Nh/D2tqanj17snz5csA0L80ff/xB3759n/rebGxs0p33+PHjKIqCv7+/eSyGk5MTu3fv5sqVKwBcuHCBevXqpTvOo4+zIzg4mC5duuDn54ezs7O5S+e/v9cAdevWfeIxihYtyoABA2jbti2dOnXi+++/TzdW6NixY0yePDndexs8eLB5WYOQkBBKlSplDiJgamV8mpo1a9KyZUuqV69Oz549WbBgAQ8ePABM4ej27dtP/bfLLSEhIdSsWdMcRB6e12g0pusCrFq1arpJxP77+/v555+nu1aP/lvAs8eiCSH+dWkbzG1iCiLWjvDKPHhlDtiq142Z5T/jX3rppad2R2TUrNqsWTOOHz+e1VNli721Fecmt82Tc2V07txUrlw53N3dWbx4MR06dMDGxibd8492e2k0GoxGI/DkD2pFUR7b9t/jPHzu4XEyc4y+ffvSrFkzIiMjCQoKws7O7pl3Vtjb26c7htFoxMrKimPHjj02y+XD1omMan/0d1Or1T627WnjEBISEmjTpg1t2rThl19+oVixYoSFhdG2bVtSU1PT7fvfL9eMLFmyhKFDh7J582ZWrlzJp59+SlBQEA0aNMBoNDJp0iS6dev22Ovs7Owy/H/sWV+yVlZWBAUFceDAAbZu3crMmTMZN24chw4dMo/Pysy//0NZvXZP8rRz/Hf7035/AwMD6dWrl/m5jLphihUrRpEiRXI9XAlhsQxpsOMz2P+96bFXdei5BDwqqFsXeTBmJK9pNBocbHSq/OT2X2QeHh7s2LGDK1eu0Lt37yx9MZQvXx4bGxv27dtn3paWlsbRo0fTdR88S+XKldMdA+DAgQPpjtGoUSN8fX1ZuXIly5cvp2fPno8Fp2epXbs2BoOByMhIypcvn+7nYZdApUqVOHz4cLrXHT16NN3jYsWKpWuRAJ46j8b58+eJioriiy++oGnTplSqVCnd4NWsql27NmPHjuXAgQNUq1aNFStWAFCnTh0uXLjw2HsrX748Wq2WKlWqEBYWxu3bt83HOnjw4DPPp9FoaNy4MZMmTSI4OBgbGxvWrVuHi4sLJUqUeOa/3X8VK1aMuLg48wBYePza2djYPHOl7CpVqnDixIl0x9m/fz9arRZ/f/9nvicwtTT99xplNPZDq9XSu3dvli9fnu66PZSQkJBugLAQhcqD67Ck3f8HkRfegre25YsgAgVgobzCxtPTkx07dtC8eXNee+01fvvtt0wNynN0dOSdd97ho48+Mo/v+eqrr0hMTOTNN9/M9Pk/+ugjevXqRZ06dWjZsiV//vkna9euZdu2beZ9NBoNffr0Ye7cuVy8eNE8uDUr/P396du3L2+88QbffPMNtWvXJioqih07dlC9enXat2/PBx98wIsvvsi3335Lp06d2LFjB3///Xe6UNiiRQu+/vprli1bRsOGDfnll184c+aMuZvxUaVKlcLGxoaZM2cSGBjImTNn+Oyzz7Jcf2hoKPPnz6dz586UKFGCCxcucPHiRd544w0Axo8fT8eOHfH19aVnz55otVpOnTrF6dOnmTJlCq1ataJixYrm9/9w7oynOXToENu3b6dNmzZ4enpy6NAh7t69aw4bH330ERMmTKBcuXLUqlWLJUuWcOLECXOX2qPq16+Pg4MDn3zyCR988AGHDx9+rOWzdOnS5nFjPj4+ODs7Y2trm26fvn37MmHCBPr378/EiRO5e/cuH3zwAf369XtsDqLn9fnnn7Nr1y7q16/P1KlTzQPl9+7dy7Rp0zhy5MgTb+29e/fuY2Hr4R1uQli0cxtgw/uQHAO2rtBlJlTponZV6SkWICYmRgGUmJiYx55LSkpSzp07pyQlJalQ2fNbsmSJ4urq+tj2CRMmKDVr1jQ/7t+/v9KlSxfz49u3byv+/v5Kr169FL1e/9j+iqIo3333neLn52d+nJSUpHzwwQeKh4eHYmtrqzRu3Fg5fPiw+fmdO3cqgPLgwQPztuDgYAVQQkNDzdtmz56tlC1bVrG2tlb8/f2VZcuWPVb/2bNnFUDx8/NTjEZjtq5BamqqMn78eKV06dKKtbW1Urx4ceWVV15RTp06Zd5n/vz5SsmSJRV7e3ula9euypQpU5TixYunO8748eMVLy8vxdXVVRkxYoTy/vvvK82aNTM/36xZM2XYsGHmxytWrFBKly6t2NraKg0bNlQ2bNigAEpwcPATr5OipP83i4iIULp27ap4e3srNjY2ip+fnzJ+/HjFYDCY99+8ebPSqFEjxd7eXnFxcVHq1aunzJ8/3/z8hQsXlCZNmig2NjaKv7+/snnzZgVQ1q1bl+F1PHfunNK2bVulWLFiiq2treLv76/MnDnT/LzBYFAmTZqklCxZUrG2tlZq1qyp/P333+bnQ0ND071PRVGUdevWKeXLl1fs7OyUjh07KvPnz1f++7GRnJysdO/eXXFzc1MAZcmSJYqiKI/VeerUKaV58+aKnZ2dUrRoUWXw4MFKXFyc+flHf78VRVGGDRuW7t8ps6Kjo5UxY8YoFSpUUGxsbBQvLy+lVatWyrp168y/i4/+mzdr1kwBHvuZMGHCY8e39M8cUYikJinKxg8VZYKL6Wd+C0W5fy1PS3ja9/d/aRQlj+5HfQ6xsbG4uroSExPz2B0ZycnJhIaGUqZMGezs7FSqUOQXgwcP5vz58+zdu1ftUkQBJZ85wiJEXYJVA+HOadPjxsOgxf/AKuen1Hiap31//5d00wiLNn36dFq3bo2joyN///03P/30E7Nnz1a7LCGEUM/J32DjSEhLAAd3090yFTKehiC/kDAiLNrhw4f56quviIuLM88J8tZbb6ldlhBC5L2UeNj0EZw0DZSndFPotgBcvNWtKxMkjAiL9vvvv6tdghBCqC/iDKwaAPcugUYLzcbAi6NAm7tTTuQUCSNCCCGEpVIUOLoYNo8FQwo4e0P3hVC6idqVZYmEESGEEMISJUXDn8Pg3HrT4wptoOsccPRQs6pskTAihBBCWJqbx2D1AIgOA60OWk2EBu+B1jLnMpUwIoQQQlgKoxEOzoLtk8CoBzc/6LEEfALUruy5SBgRQgghLEFCFKwLhMtBpsdVukCnH8DeTdWycoKEESGEECK/C90LawdDXDhY2UK7LyBgIBSQVaots3NJqGrixInUqlVL7TJ46aWXGD58eJ6eU6PRsH79+uc+TunSpZkxY8ZzH0cIUcAZDbDrC1jW2RREPPxh8A6oO6jABBGQMKKqiIgIhg0bRvny5bGzs8PLy4smTZowd+5cEhMT1S4v23bt2oVGoyE6OjpfHi8vLV26NMOF2Y4cOcLbb7+d9wUJISxHbDgs6wK7poFihJp94O1dULya2pXlOOmmUcnVq1dp3Lgxbm5ufP7551SvXh29Xs/FixdZvHgxJUqUoHPnzhm+Ni0tDWvrvF1fIDekpqZiY2OjdhmqKFasmNolCCHys0tBsG4IJN4Da0fo+B3U7K12VblGWkZU8u6776LT6Th69Ci9evWicuXKVK9ene7du/PXX3/RqVMn874ajYa5c+fSpUsXHB0dmTJlCgBz5syhXLly2NjYULFiRX7++Wfza65du4ZGo0m3JHp0dDQajYZdu3YB/9/isH37durWrYuDgwONGjXiwoUL6Wr94osv8PLywtnZmTfffJPk5OQnvq9r167RvHlzAIoUKYJGo2HAgAGAqVvl/fffZ+TIkXh4eNC6detn1vm04wEYjUZGjx5N0aJFKV68OBMnTnzqdd+1axf16tXD0dERNzc3GjduzPXr183PP+2aZnSsR1tsTpw4gUaj4dq1a+zatYuBAwcSExODRqNBo9GY63u0myYsLIwuXbrg5OSEi4sLvXr14s6dO+bnH3aN/fzzz5QuXRpXV1deffVV4uLinvp+hRAWxpAGW/8Hy3uYgkjx6jBkT4EOIlAQw4iiQGqCOj+ZXAD53r17bN26lffeew9HR8cM99E80hc4YcIEunTpwunTpxk0aBDr1q1j2LBhfPjhh5w5c4YhQ4YwcOBAdu7cmeVLNm7cOL755huOHj2KTqdj0KBB5ud+//13JkyYwNSpUzl69Cje3t5PXYjO19eXNWvWAHDhwgXCw8P5/vvvzc//9NNP6HQ69u/fz7x5855ZW2aO5+joyKFDh/jqq6+YPHkyQUFBGR5Lr9fTtWtXmjVrxqlTpzh48CBvv/22+Vrn5DUFaNSoETNmzMDFxYXw8HDCw8MZNWrUY/spikLXrl25f/8+u3fvJigoiCtXrtC7d/oPnytXrrB+/Xo2btzIxo0b2b17N1988UW2ahNC5EMPrsHil+HAD6bHLwyGN7eBR3lVy8oLBa+bJi0RPi+hzrk/uQ02GYeL/7p8+TKKolCxYsV02z08PMytDu+99x5ffvml+bk+ffqkCwl9+vRhwIABvPvuuwCMHDmSf/75h+nTp5tbEjJr6tSpNGvWDIAxY8bQoUMHkpOTsbOzY8aMGQwaNMi8+NyUKVPYtm3bE1tHrKysKFq0KACenp6PjZcoX748X331lfnxtWvXnlrbs45Xo0YNJkyYAECFChWYNWsW27dvp3Xrx1eojI2NJSYmho4dO1KuXDkAKleubH5++vTpOXZNAWxsbHB1dUWj0VC8ePEn7rdt2zZOnTpFaGgovr6+APz8889UrVqVI0eO8MILLwCmVqClS5fi7OwMQL9+/di+fTtTp07Ncm1CiHzm3B/wxweQEgN2rtB5FlTJuKu+ICp4LSMW5NHWj8OHD3PixAmqVq1KSkpKuufq1q2b7nFISAiNGzdOt61x48aEhIRkuY4aNWqY/9vb27S6Y2RkpPk8DRs2TLf/o4+z4tH38bz+WzuY6n9Y+6OKFi3KgAEDaNu2LZ06deL7778nPDzc/HxOXtOsCAkJwdfX1xxEAKpUqYKbm1u6c5cuXdocRODp71UIYSHSkmHjSPj9DVMQ8XkBhuwtVEEECmLLiLWDqYVCrXNnQvny5dFoNJw/fz7d9rJlywJgb2//2Gsy6s55NMwoimLepv13SmDlP11HaWlpGZf9n8GwD19vNBqf+T6y49H3kZU6M/LoQF6NRvPU2pcsWcLQoUPZvHkzK1eu5NNPPyUoKIgGDRqYX/9f/72mj3re2p91jke3Z/W9CiHyubsXYfVAuHPG9LjxcGjxKVhZ/g0KWVXwWkY0GlNXiRo/mbzn293dndatWzNr1iwSEhKy9TYrV67Mvn370m07cOCAudvh4d0a//3L/7+DRLNynn/++SfdtkcfP+rhHTIGg+GZx89MnVk5XmbUrl2bsWPHcuDAAapVq8aKFSuAZ1/T7Nb+rLqrVKlCWFgYN27cMG87d+4cMTExTzy3EMLCnfgV5r9kCiIOHvD6Gmg9qVAGESiILSMWYvbs2TRu3Ji6desyceJEatSogVar5ciRI5w/f56AgKevM/DRRx/Rq1cv6tSpQ8uWLfnzzz9Zu3Yt27ZtA0ytKw0aNOCLL76gdOnSREVF8emnn2a5zmHDhtG/f3/q1q1LkyZNWL58OWfPnjW34mTEz88PjUbDxo0bad++Pfb29jg5OWW4b2bqzMrxniY0NJT58+fTuXNnSpQowYULF7h48SJvvPEG8Oxr+qjy5cvj6+vLxIkTmTJlCpcuXeKbb75Jt0/p0qWJj49n+/bt1KxZEwcHBxwc0regtWrViho1atC3b19mzJiBXq/n3XffpVmzZjnerSWEUFlKPGwaBSd/NT0u8yJ0WwDOTx5XVigoFiAmJkYBlJiYmMeeS0pKUs6dO6ckJSWpUNnzuX37tvL+++8rZcqUUaytrRUnJyelXr16ytdff60kJCSY9wOUdevWPfb62bNnK2XLllWsra0Vf39/ZdmyZemeP3funNKgQQPF3t5eqVWrlrJ161YFUHbu3KkoiqLs3LlTAZQHDx6YXxMcHKwASmhoqHnb1KlTFQ8PD8XJyUnp37+/Mnr0aKVmzZpPfW+TJ09Wihcvrmg0GqV///6KoihKs2bNlGHDhj2277PqzMrxunTpYn7+UREREUrXrl0Vb29vxcbGRvHz81PGjx+vGAwG8z7PuqaP/lvs27dPqV69umJnZ6c0bdpUWbVq1WPXLzAwUHF3d1cAZcKECYqiKIqfn5/y3Xffmfe5fv260rlzZ8XR0VFxdnZWevbsqURERJifnzBhwmPX/LvvvlP8/PwyfK8i91jyZ45QWfgpRfkhQFEmuCjKRDdF2fWVohj0aleVq572/f1fGkXJ5P2oKoqNjcXV1ZWYmBhcXFzSPZecnExoaChlypTBzs5OpQqFEIWFfOaILFMUOLoINn8ChhRwLgHdF0Lpxs9+rYV72vf3f0k3jRBCCJFbkqJhwwcQssH02P9l6DIbHN1VLSu/kTAihBBC5IabR013y0SHgdbaNEC1wbsFaoG7nCJhRAghhMhJRiMcnAnbJ4NRD25+0HMJlHz6jQmFmYQRIYQQIqckRMG6QLj877IUVV+BTt+bZlUVTyRhRAghhMgJoXthzVsQHwE6O3j5CwgYIN0ymVBgwogF3BQkhCgA5LNGPMZogN1fwu6vAAU8Kpq6Zbyqql2ZxbD4MPJwiuzExMQMp1EXQoiclJqaCpgWcRSC2NuwZjBc/3f25tqvQ7uvMrVoqvh/Fh9GrKyscHNzMy8Y5uDg8MS1RIQQ4nkYjUbu3r2Lg4MDOp3Ff3yK53VxK6wPhMR7YOMEHWdAjZ5qV2WRCsT/TQ+XZ5cVTIUQuU2r1VKqVCn5o6cw06fC9klwcJbpcfEa0HMpuJdTtSxLViDCiEajwdvbG09Pz2ytmiqEEJllY2NjXrFZFEL3Q2HNm3DrmOlxvbehzRTQ2apbl4UrEGHkISsrK+nHFUIIkTvOroMNQyEl1nSrbpfZULmj2lUVCAUqjAghhBA5Li0JtnwCRxebHvvWN60t41ZK3boKEAkjQgghxJPcvQirBkDkWUADTYZD83FgZa1yYQWLhBEhhBAiIydWwF8fQloiOBaDV+ZB+ZZqV1UgSRgRQggh/isl3hRCTv1melymGXRbAM5e6tZVgEkYEUIIIR4KP2VaaffeZdBoofkn0GQkaOXmiNwkYUQIIUSBkJiqJzgsGp1WQyVvF1ztszCuQ1HgyELYMg4MKeBS0jRI1a9R7hUszCSMCCGEsEgGo8KJG9HsvxzF/stRHA97QJrh/9cOKulmT2VvF6qVdOG1eqXwcrHL+EBJD+CP9+H8RtNj/3bQdTY4FM2DdyEANIoFrPoUGxuLq6srMTExuLi4qF2OEEIIlR24EsXkP89xPiIu3fYSrnZoNBpuRSel225vbcXgpmV4u1k5nGz/83f4jcOw+k2ICQOtNbT5DOoHykq7OSSz39/SMiKEEMJi3LifyOebQvj7TAQAzrY6mvp70KicB03Ke+DnblqfLCYxjZCIWELCY/nz5G2Oh0Xzw47LrDh8gxGtK9A7oCS6f2bB9smgGKBIGeixGErWUfkdFk7SMiKEECLfi0lKY/6eKyzYG0qq3ohWA6838GNEK3+KONo89bWKorD5TARfbj7PtXuJuBPDPKcF1NUfN+1QrbtpkTs7+X7JadIyIoQQwuLFJKWxZH8oi/aFEpesB6BROXfGd6pCpeKZCw8ajYZ21b1pWdmLHX+vos6xT/DUPyAZGx40m4L3S29Lt4zKJIwIIYTIdzIKIRU8nfiwTUXaVvXK+qrJBj02e77k5WNfAwrXtL68nfQ+4btKM9f3Ho3Le+T8mxCZJmFECCFEvpGqN7L80HW+336J6ETTKuwVPJ0Y1qoC7at5o9VmowUj5haseQvCDpge1+5HkZem4vbbOS6G3mfAksN82b0G3er45OA7EVkhYUQIIYTqFEVhy9kIvvjbNK4DoLynE8OfJ4QAXNwC6wIh6T7YOEGn76F6D1yBZYPq8eGqk/x1KpyRv58kLllP/0alc+w9icyTMCKEEEJVIeGxjP/jDEeuPQDAw8mGka0r0quuDzorbfYOqk+F7ZPg4CzTY++a0GMJuJcz72JnbcXMV2vj7WLHwn2hTNhwFjcHa7rUKvm8b0lkkYQRIYQQqkhOM/D99kss2HMVvVHBzlrL4KZlGfLoXCBZdT8UVg+C2//eLVP/HWg9CXS2j+2q1WoY16EyeqPC0gPXGLXqJEUcbHjRv1j2zy+yTMKIEEKIPLfvUhTj1p/m+r9dMi9XLc6EzlXwdrV/vgOfWQt/DoOUWLBzg65zoFL7p75Eo9EwvmMV7ieksuHkbQJ/OcaKwQ2o5ev2fLWITJMwIoQQIs9EJ6Yy5a8QVh+7CUBxFzsmdalK26rFn+/AaUmweQwcW2p67NvAtLaMm2+mXq7VapjesyYPElPZeymKgUsOsyqwEeU9nZ6vLpEp2eyME0IIIbJm85kIWn27h9XHbqLRwBsN/Qga+eLzB5HI87Cgxb9BRGNaZXfAX5kOIg/Z6LTMfT2Amr5uPEhMo//iw8T8e0ePyF0SRoQQQuSqqPgU3lt+nMBfjhEVn0LZYo6sDmzI5C7VcLbLwsq6j1IUOP4zLGgOkefA0RP6rYVWE8Aqew3/jrY6lgx4gdLuDtyKTmLa3yHZr09kWrbCyOzZsylTpgx2dnYEBASwd+/ep+6/fPlyatasiYODA97e3gwcOJB79+5lq2AhhBD5n6KYVtT9fFMIrb/dzV+nw7HSanj3pXJsGtqUAL/nXBE3JQ7Wvg0b3oe0RCjbHAL3QbkWz117UUcbvu5ZE4Dfjtzg4BX5vsptWV6bZuXKlfTr14/Zs2fTuHFj5s2bx8KFCzl37hylSpV6bP99+/bRrFkzvvvuOzp16sStW7cIDAykQoUKrFu3LlPnlLVphBAif0tM1XM7Opnb0UnsuxzFX6fC062cW9nbha971KBaSdfnP1n4SVg1EO5fAY0VtBgHjUeANmcb+8etO83yQ2GU8XDk72FNsbO2ytHjFwaZ/f7OchipX78+derUYc6cOeZtlStXpmvXrkybNu2x/adPn86cOXO4cuWKedvMmTP56quvuHHjRqbOKWFECCHyl8i4ZH47fIOt5yK4+SDJPFvqfznYWNGikicdqnvTqooX1tmdM+QhRYHD82Hrp2BIBRcf6LEISjV4vuM+QWxyGq2/3c2d2BTea16Oj9pWypXzFGS5slBeamoqx44dY8yYMem2t2nThgMHDmT4mkaNGjFu3Dg2bdpEu3btiIyMZPXq1XTo0OGJ50lJSSElJSXdmxFCCKEuRVE4HhbNsoPX2HQ6nDRD+r9lnWx1lHCzo1JxF9pXL85LFT1zrjUh6QH88T6c32h6XLE9dPkRHJ6zu+cpXOysmdS5GoG/HGPe7qt0rFGCyt7yB3FuyFIYiYqKwmAw4OXllW67l5cXERERGb6mUaNGLF++nN69e5OcnIxer6dz587MnDnzieeZNm0akyZNykppQgghctH5iFjGrDnNiRvR5m0BfkXoU68U1Uq64u1mh8vzDEZ9mrBDsOZNiLkBVjbQ+jOoPyRPVtp9uVpx2lb1YsvZO4xZe5q17zTCKrtT04snylab2aOrJSqK8sQVFM+dO8fQoUMZP348x44dY/PmzYSGhhIYGPjE448dO5aYmBjzT2a7c4QQQuQsvcHI7F2X6TRzHyduRGOj09IzwIeNHzRhzTuN6B7gQ8XizrkTRIxG2PstLGlnCiJFysCbW6FBYJ4EkYcmd6mGs62Okzei+fngtTw7b2GSpZYRDw8PrKysHmsFiYyMfKy15KFp06bRuHFjPvroIwBq1KiBo6MjTZs2ZcqUKXh7ez/2GltbW2xtH5+2VwghRN65ejeeD1edJDgsGoBWlb34vFs1PJ3tcv/k8Xdh3dtwZYfpcbUe0PE7sMv7bhIvFzs+bleJT9ef4Ycdl+lR1/f5pqsXj8lSy4iNjQ0BAQEEBQWl2x4UFESjRo0yfE1iYiLaR0Y4W1mZ+hCzOHZWCCFEHvn9yA3a/7CX4LBonG11fNOzJgveCMibIHJ1F8xtbAoiOnvoPNM0m6oKQeShV1/wpYyHI/cTUvnpwDXV6iiostxNM3LkSBYuXMjixYsJCQlhxIgRhIWFmbtdxo4dyxtvvGHev1OnTqxdu5Y5c+Zw9epV9u/fz9ChQ6lXrx4lSpTIuXcihBDiuSmKwjdbLzB6zSmS04w0Ke/BlhEv0j3A54nd8TnGoIcdU2BZV4i/A8Uqw9s7oc4bedotkxGdlZZhLSsAMH/PVWKTZWbWnJTldqbevXtz7949Jk+eTHh4ONWqVWPTpk34+fkBEB4eTlhYmHn/AQMGEBcXx6xZs/jwww9xc3OjRYsWfPnllzn3LoQQQjy3VL2RMWtPsfb4LQCGtijPiNb+uR9CAGJuwZq3IOzfOzPr9IeXvwAbh9w/dyZ1qlmCWTsvczkyniX7rjGsVQW1SyowsjzPiBpknhEhhMhdsclpvPvLcfZdjsJKq+HzV6rR+4XHJ7LMFRf+hvXvmG7ftXGGTjOgeo+8OXcWbTx1m/dXBONsp2Pf6Ba4OuTSHUQFRGa/v2VtGiGEKORuRSfRa+5B9l2OwtHGikX96+ZNENGnwuax8OurpiDiXQuG7M63QQSgfTVvKhV3Ji5Zz8J9V9Uup8CQMCKEEIXYsev36TJrH+cj4ijmbMvKIQ15qaJn7p/4/lVY3Ab+mW163OBd02277uVy/9zPQavVMLyVPwCL94XyICFV5YoKBgkjQghRSK0+dpPX5h8iKj6Vyt4urH+vcc6sHfMsZ9bA3BfhdjDYF4HXfoOXp4HOMqZ0aFvVi6olXEhINTBvj7SO5AQJI0IIUcgYjAqfbwph1KqTpBqMvFy1OGveaUhJN/vcPXFqImwYCqsHQWoc+DYwrbRbsV3unjeHaTQaRrY2tY78dOAaUfEpz3iFeBYJI0IIUYhExiUzYMlh5v/7F/3QFuWZ3bcODja5PIlX5HlY0AKO/wRooOkoGPAXuPrk7nlzSYtKntT0cSUpzWC+liL7JIwIIUQhsfN8JO1m7GXvpShsdVpmvlabkW0qos3NtVYUBY4vg/kvwd0QcPSEfuug5f/AynJnMdVoNAz/t3Vk2UFpHXleEkaEEKKAS04zMHHDWQYuPcK9hFQqFXdm4wdN6FQzlyeeTI6FtYNhwwegT4KyzeGd/VCuee6eN4+85F+Mmr5uJKcZpXXkOUkYEUKIAizsXiJdf9zP0n+nMB/UuAzr32tMBS/n3D3x7RMwvxmcXgUaK2g5Hl5fC055cKdOHtFoNAz/d+IzaR15PhJGhBCigAoJj6X73AOcj4jDw8mGJQNfYHynKthZW+XeSRUF/pkLi1qbbt919YWBf0PTD0Fb8L5ypHUkZxS83wwhhBAcuXafXvMOcjcuhUrFnflraFOa5/b8IYn34be+sPljMKRCxQ4wZA+Uqp+751WRtI7kDAkjQghRwGwPucPrCw8Rl6znhdJFWDmkIV4uubzabtg/MLcpXPgLrGyg3Vfw6nJwKJq7580HpHXk+UkYEUKIAmTt8Zu8/fMxUvRGWlbyZNmg+rja5+L6KUYj7P0GlrSH2JtQtCy8GQT1h6i+0m5ekdaR5ydhRAghCog/T97mw1UnMRgVutUpydx+Adjb5OL4kPhI+KUbbJ8MigGq9zR1y5SolXvnzKf+2zoyb/cVtcuxOBJGhBCiANhx/g4jVp5AUaBP/VJM71ETa6tc/Ii/shPmNIarO8HaAbr8CN0WgG0u36WTT2k0Goa3NLWO/PJPGPdlzZoskTAihBAW7uCVe7zzy3H0RoUutUowpUu13JvIzKA3tYT8/AokRIJnFRi8E2q/Xmi6ZZ7kpYrFqF7SNCvrIlnRN0skjAghhAU7cSOat346QoreSKvKXkzvWTP3gkjMTVjawTRGBAUCBsDgHeBZKXfOZ2E0Gg3vtygPwE8HrhOTmKZyRZZDwogQQlioi3fi6L/4MAmpBhqXd2dWn9q51zVzfhPMbQI3/gFbF+ixBDp9D9a5vLiehWld2YuKXs7Ep+j56eA1tcuxGBJGhBDCAkXFpzBo6RFiktKoXcqN+f3q5s5kZvoU+HsM/PYaJD2AErVhyG6o1i3nz1UAaLUa3vu3dWTx/lDiU/QqV2QZJIwIIYSFSdEbCPz5GDcfJOHn7sDi/i/gaJsLi87du2KaSfXQHNPjBu/BoK2m23fFE3Wo7k0ZD0eiE9P45Z/rapdjESSMCCGEBVEUhbFrTnP0+gOc7XQs6v8CRRxtcv5Ep1fDvGYQfhLsi8JrK+Hlz0GXC+cqYKy0Gt59qRwAC/deJSnVoHJF+Z+EESGEsCCzd11hbfAtrLQaZvetQ3lPp5w9QWoi/PE+rHkTUuOgVCMI3AcVX87Z8xRwXWuXxKeIPVHxqfx2JEztcvI9CSNCCGEhNp8J5+stFwCY2LkqTSsUy9kTRIbAguYQ/DOggRdHQ/8/wbVkzp6nELC20vLOv60j83ZfJUUvrSNPI2FECCEsQGhUAiN/PwnAgEal6dfAL+cOrihw7CeY3xzungcnL3jjD2gxDqxyYSxKIdEjwAcvF1siYpP582S42uXkaxJGhBAin0szGBm+8gSJqQYalC3Kpx0q59zBk2NNXTJ/DgV9EpRrAYH7oWyznDtHIWWrszKHxt+P3lC5mvxNwogQQuRzM3dc5uSNaFzsdHzbqxa6nJpL5NZxmPcinFkDGitoNRH6rgGnHO7+KcS6B/ig1cDh0PuERiWoXU6+JWFECCHysWPXHzBrxyUApr5SnRJuOTDJmKLAwdmwqA08CAVXXxi0GZqMAK18LeQkb1d7XvQ3hbvVx6R15Enkt04IIfKp+BQ9I1aewKjAK7VL0qlmiec/aOJ9+PU12DIWjGlQqSME7gXfes9/bJGhXnV9AVh97CYGo6JyNfmThBEhhMinJm04S9j9REq62TOpS9XnP+D1g6Yp3S/+DVY20H469P4F7Is8/7HFE7Ws7EkRB2vuxKaw59JdtcvJlySMCCFEPrTh5G1WHbuJRgPf9qqJi5119g9mNMCer02L3MXeAvfy8NZ2qDe40K+0mxdsdVZ0rW26PXqVDGTNkIQRIYTIZ/Zeusuof2/jDWxWjvpl3bN/sLg78Es32DEFFAPU6A1v7wLvGjlTrMiUngGmrpqgc3e4F5+icjX5j4QRIYTIR45df8Dby46RajDSvnpxRrWpmP2DXdkBcxvD1V1g7QBdZsMr88DWOcfqFZlTpYQL1Uu6kmZQWH/ittrl5DsSRoQQIp8ICY9l4JLDJKUZeNG/GN/1roWVNhvdKAY9bJsEP3eDhLvgWdXUGlK7r3TLqKhXXR/A1FWjKDKQ9b8kjAghRD4QGpVAv0WHiU3WU9evCHNfr4OtzirrB4q+AUvbw75vAQUCBsLg7VDsOVpYRI7oXKsktjot5yPiOH0rRu1y8hUJI0IIobI7scm8vvAQUfEpVPF2YdGAF3CwycY07Of/Mt0tc+MQ2LpAz6XQaQZY58DcJOK5udpb83K14oDMyPooCSNCCKGiuOQ0Biw5wq3oJMp4OPLToHq42mfxzhl9Cvz9MfzWB5KjoUQdGLIHqr6SKzWL7Hs4kPXPk+HoDUaVq8k/JIwIIYRKUvVG3vnlOCHhsXg42bBsUD2KOdtm7SD3rsDCVnBorulxw/dh0BYoWibnCxbPrWE5d9wcrIlJSuPY9Qdql5NvSBgRQggVKIrCmDWn2Hc5CgcbK5YMqIdvUYesHeTUKtPaMhGnwL4o9Pkd2k4FnU3uFC2em5VWQ/OKngDsOB+pcjX5h4QRIYRQwddbLrA2+BZWWg0/9q1DdR/XzL84NQH+eA/WvgWp8eDXGAL3gX/b3CtY5JiWlU1hZFvIHZUryT+yMUJKCCHE81hxKIzZu64AMK1bdfNfyply5xysGgBRFwANNBsNL44GK/k4txQv+hdDp9Vw5W4C16ISKO3hqHZJqpOWESGEyEPHwx4wYcMZAIa3qmBeRO2ZFAWOLoEFzU1BxMkL3vgDmn8iQcTCuNhZU69MUQC2S1cNIGFECCHyTFR8Cu/+cpw0g0L76sUZ1rJC5l6YHAOrB8LG4aBPhnItIXA/lG2Wq/WK3NOikqk1bLt01QASRoQQIk/oDUaG/hpMRGwyZYs58lWPmmgyMxvqrWOmQapn14FWB60nQ9/V4FQs94sWuaZVZS8ADofeJzY5TeVq1CdhRAgh8sA3QRc5cOUeDjZWzHs9ACfbZ3StKAoc/BEWtYUH18CtFAzcDI2HgVY+ui1daQ9HyhZzRG9U2HPxrtrlqE5+o4UQIpdtORvBnH8HrH7VowYVvJ6xUF3iffj1VdjyCRjToHJnGLIXfF/Ig2pFXnnYOrIjRMaNSBgRQohcdPVuPKN+PwnAoMZl6FijxNNfcP2AaUr3i5vByhbaT4dey8DeLfeLFXnq4biRnRciMRgL98J5EkaEECKXxCWn8fbPx4hL0fNC6SKMbV/pyTsbDbD7a1jaAWJvgXt5eGsb1BssK+0WUHX9iuBip+NBYhrBYYV7NlYJI0IIkQuMRoWRv5/kcmQ8xV3s+LFvHaytnvCRGxcBP78CO6eAYoSar8Hbu8G7Rt4WLfKUzkrLSxUfToBWuLtqJIwIIUQu+GHHJYLO3cFGp2VuvwA8ne0y3vHyNlO3TOhusHaErnPhlblg65S3BQtVPJyNdcf5wn2Lr8yUI4QQOWzr2QhmbLsEwJSu1ajl6/b4ToY02DEF9s8wPfaqBj2WQDH/PKtTqO8lf0+stBou3onnxv3ErK9PVEBIy4gQQuSgy5FxjPx3wOqARqUznmE1OgyWtP//IPLCW/DWdgkihZCrgzV1/YoAhXvhPAkjQgiRQ+KS03h72THiU/TUL1OUcR0qP75TyEZTt8zNw2DrarpTpsM3YP2EbhxR4DWraJrAbv/lKJUrUY900wghRA54OGD1alQC3q4ZDFhNS4ag/8Hh+abHJQOgx2IoUlqVekX+0aicB3CBf67ew2BUsNIWvrunpGVECCFywJzdV0wDVq20zH09AA8n2/9/MuoyLGr1/0Gk0Qem2VQliAigWgkXnG11xCbrOXs7Ru1yVCFhRAghntPui3eZvvUCAJ91rUrN/w5YPfU7zG8GEafBwd20rkybKaCzUadYke/orLTUL+sOwIEr91SuRh0SRoQQ4jncuJ/I0F+DURR4rV4per9QyvREagKsfw/WDobUePBrAoH7oEJrdQsW+VKjcoU7jMiYESGEyKakVANDfj5GTFIaNX3dmNi5iumJO2dh1UCIugAaLbw4GpqNBq2VugWLfKtReVMYORJ6n1S9ERtd4WorKFzvVgghcoiiKHy85hTnwmNxd7RhTt862Fpp4ehiWNDCFEScisMbG6D5WAki4qn8PZ1xd7QhKc3AiRvRapeT57IVRmbPnk2ZMmWws7MjICCAvXv3PnX/lJQUxo0bh5+fH7a2tpQrV47Fixdnq2AhhMgP5u+5yoaTt9FpNfzYtw4l7FJh9UDYOAL0yVC+NbyzH8o0VbtUYQG0Wg0NzF01he8W3yyHkZUrVzJ8+HDGjRtHcHAwTZs2pV27doSFhT3xNb169WL79u0sWrSICxcu8Ouvv1Kp0lMWjBJCiHxs98W7fLn5PADjO1Whge01mPcinF0HWh20/gz6/A6OHuoWKixK43Km35fCOG5EoyhKltYtrl+/PnXq1GHOnDnmbZUrV6Zr165Mmzbtsf03b97Mq6++ytWrVylatGi2ioyNjcXV1ZWYmBhcXFyydQwhhMgJoVEJdJm1j9hkPb0DfPii5B402yaBMQ3cSpmmdPepq3aZwgJdi0rgpem7sLbScGpCW+xtLL9rL7Pf31lqGUlNTeXYsWO0adMm3fY2bdpw4MCBDF+zYcMG6taty1dffUXJkiXx9/dn1KhRJCUlPfE8KSkpxMbGpvsRQgi1xSWnMXjZUWKT9TTz0fB5yhQ0Wz81BZEqXWDIXgkiItv83B0o4WpHmkHhyLX7apeTp7IURqKiojAYDHh5eaXb7uXlRURERIavuXr1Kvv27ePMmTOsW7eOGTNmsHr1at57770nnmfatGm4urqaf3x9M1jbQQgh8pDRqDBi5UkuR8bT1ukyi5NHYnV5K1jZmqZz7/kT2LupXaawYBqNhoaFtKsmWwNYNZr0U9UqivLYtoeMRiMajYbly5dTr1492rdvz7fffsvSpUuf2DoyduxYYmJizD83btzITplCCJFjvtxynh0h4Qy3Xsdcw0Ss4sPBvQIM3m5a6O4Jn4FCZEXjf2/xPVjIBrFmaZ4RDw8PrKysHmsFiYyMfKy15CFvb29KliyJq6ureVvlypVRFIWbN29SoUKFx15ja2uLra3tY9uFEEINvx+5wdrdx/jF+kcaWZ0DBajZB9p/DbZOapcnCpCG/95Rc/pWDDFJabjaW6tcUd7IUsuIjY0NAQEBBAUFpdseFBREo0aNMnxN48aNuX37NvHx8eZtFy9eRKvV4uPjk42ShRAi7xy8co/N63/mb9uxpiBi7QivzINX5kgQETnO29Wesh6OGBU4HFp4xo1kuZtm5MiRLFy4kMWLFxMSEsKIESMICwsjMDAQMHWxvPHGG+b9+/Tpg7u7OwMHDuTcuXPs2bOHjz76iEGDBmFvb59z70QIIXJY6J1ozv88gsXWX+KhiUXxqgZDdkPNV9UuTRRgD1tH9l8uPF01WZ4Ovnfv3ty7d4/JkycTHh5OtWrV2LRpE35+fgCEh4enm3PEycmJoKAgPvjgA+rWrYu7uzu9evViypQpOfcuhBAih8WGXyFxwWsMxLQAnj7gTXQvfw7WdipXJgq6RuU8WH4ojIOFaBBrlucZUYPMMyKEyEv6M3+QsuZdHJV44nDA2GkmrgE91C5LFBL3E1Kp85lpOMTx/7WmqKPlrvCcK/OMCCFEgZaWDH+NQrf6DRyVeE4q5Yl4bZsEEZGnijraULaYIwDBYQ9UriZvSBgRQgiAqMuwsBUcWQDAXH0n7vRYT4WKVVUuTBRGAaWKAHBcwogQQhQSJ38zrS1z5zT3FBf6p36MoeVE2lSXCReFOur4mcLIseuFI4xkeQCrEEIUGCnxsOkjOLkCgMNU5f2Ud2lQsyrvvlRO5eJEYRbwbxg5eSMGvcGIzqpgtx0U7HcnhBBPEnEG5r8EJ1egaLT8ZNuHV5PH4u1Tmq961HjirNJC5IXyxZxwttORlGbgfESc2uXkOgkjQojCRVHgyCJY0ALuXQJnbxaW/Z4JMR3xcLZn/ht1sbO2/NVShWXTajXULlV4umokjAghCo+kaFjVH/4aCYYUqNCW7S+tZepZdzQa+K53LbxcZB4RkT8UpkGsMmZECFE43DwKqwdCdBhoraHVRMKrDOTDH/YDMOTFcjQu76FykUL8vzp+bkDhaBmRMCKEKNiMRjg4C7ZPAqMe3PygxxIMJeowcuEhohPTqOHjysjW/mpXKkQ6tXzd0Gjg5oMkImOT8SzArXbSTSOEKLgSomBFLwj6nymIVOkKgXvBJ4B5e65w8Oo9HGys+P7V2tjo5ONQ5C/OdtZU9HIGCn5XjfzfJ4QomEL3wtwmcDkIdHbQ8TvouRTsXDlxI5pvt14EYFLnqpTxcFS3ViGe4OF8I8fDotUtJJdJGBFCFCxGA+z6ApZ1hrhw8PCHwTug7iDQaIhP0TPst2D0RoWONbzpEeCjdsVCPFFAIbmjRsaMCCEKjthwWDsYru01Pa71OrT/Cmz+v+Vjwh9nuX4vkZJu9kx9pbrMJyLytYctI6dvxpCiN2CrK5i3nUvLiBCiYLgUBHMbm4KItSO8Mh+6/pguiPxx4hZrjt9Eq4EZr9bC1d5axYKFeLbS7g4UdbQh1WDk7O1YtcvJNRJGhBCWTZ8KWz+F5T0g8R4Urw5D9kDN3ul2u3E/kU/XnQHggxYVeKF0UTWqFSJLNBoNdUq5AXC8AHfVSBgRQliuB9dgSTs4MNP0uN7b8OY28Cifbje9wciw34KJS9ET4FeED1qUf/xYQuRT/z+IteCGERkzIoSwTGfXw4ahkBIDdq7Q5Ueo3CnDXX/YcZnjYdE42+qY0btWgV90TBQsdf4ziFVRlAI5zknCiBDCsqQlw5ZP4Ogi02OfetBjEbiVynD3P07cYuaOSwBM7VYd36IOeVWpEDmipo8bVloNd2JTuB2TTEk3e7VLynHy54EQwnLcvQgLW/5/EGkyAgZuemIQ+fPkbUasPIGiQL8GfnSuWSIPixUiZ9jbWFG1hAtQcG/xlTAihLAMJ1bA/GZw5ww4eMDra6DVRLDK+I6Yv0+HM3zlCYwK9AzwYVLnqnlbrxA56GFXTUEdxCrdNEKI/C0lHv76EE79Znpc5kXotgCciz/xJVvPRvDBr8EYjArd6pTki+410GoLXj+7KDxq+roCcOZWjMqV5A4JI0KI/Cv8lGml3XuXQaOFlz6BpiNBm/HET6l6I78fvcGkP8+iNyp0qVWCr3vUxEqCiLBw1UuawsjZ27EYjEqB+52WMCKEyH8UBY4shC3jwJACziVMg1T9GmW4e3KagVXHbjJ31xVuRScB0LGGN9/0lCAiCoYyHk442liRkGrgyt14/P9dQK+gkDAihMhfkqJhwwcQssH02P9l6DoHHP5/kjJFUbgbn8LlO/EE34hm2cFr3IlNAaCYsy1DXizLgEal5RZeUWBYaTVULeHK4Wv3OXUzRsKIEELkmhtHYPUgiAkDrTW0ngwN3gGNhmtRCaw/cYsDl+9xMTKO6MS0dC/1drUjsFk5er/gi511wVy/QxRu1UqawsiZWzEFboFHCSNCCPUZjXBwJmyfDEY9FCkNPZZwz7UqGw9eZ13wLU7ciE73Eo0G/Io6UMHLmZaVPOlWxwcbnbSEiIKrho9p3Mipm9HqFpILJIwIIdSVEAXrhsDlbabHVbsR03o6s/bfYemB7aQZFAC0GmhaoRgdqntTpYQL5T2dpAVEFCrV/h3Eei48Fr3BWKC6ISWMCCHUE7oH1gyG+AjQ2WFo+wW/6pvz7czj3E9IBUx/Db5SuyQda5SgmLOtygULoZ6yHo7mQayX78ZTqbiL2iXlGAkjQoi8ZzTA7i9h91eAguJRkaMvfMOn+xQu3DkLQHlPJz7tUJmXKnqqW6sQ+YRWq6FqSVcOh97n9M0YCSNCCJFtsbdhzVtwfT8AEWV7MCKuDwfXxQLg5mDNyNb+vFavFNYFqBlaiJxQ498wcuZWDD3r+qpdTo6RMCKEyDsXt8C6QEi6j0HnyCzHd/nuXG0gGVudln4N/PigRQVcHTKe4l2Iwq76w0GsBWwmVgkjQojcp0+F7ZPg4CwALmnLMjjhPa7Fe2Oj09K3fineaVYOTxc7lQsVIn97OBPrudsFaxCrhBEhRK5S7oeSsKI/TlEnAViib8s0fR80Olv6v+DLu83L4yUhRIhMKe3uiJOtjvgUPZci46nsXTDGjUgYEULkitjkNI5vWsoLp8bjRCLRiiOj097mpldL/lfPl861SuJqL90xQmSFVquhWkkX/rl6n9O3YiSMCCHEo4xGheAbD/jj6FWqnPqCVzVBABxX/Nla+XPeb/IC1Uu6otHIejFCZFf1kq6mMHIzhl4FZBCrhBEhxHNRFIXgG9H8dSqcTafDcYi9wizrmVTWhmFEw5kygyjfYwp1HB3ULlWIAuHh5GenC9AgVgkjQogsUxSFc+GxbDh5m40nw80r5XbX7uEzmyU4aFJItXPHusdCapRvoXK1QhQsNXzcANNMrGkGY4G4BV7CiBAi0yJjk1lxOIwNJ29z9W6CeXsxmzR+dFtOvditpg1lmmHTbQE4e6lUqRAFl19RB5xtdcSl6Ll0J54qJSx/3IiEESHEM6XqjSzZH8oP2y+RkGoAwEanpWUlT/r4xdA4eDza+5dBYwXNP4EmI0Ar68YIkRtMg1hdOXj1HmduxUgYEUIUfHsu3mXin2fNLSE1fVx5o2Fp2lTxxPn0T7BlHBhSwKUkdF8Efg1VrliIgq+6jymMnLoVTa8XLH8Qq4QRIUSGohNTGbv2NH+fiQDAw8mGj1+uRPc6PmhTouGPgXB+o2ln/3bQdTY4FFWvYCEKkermQayxKleSMySMCCEeczkynrd+OsK1e4lYaTX0b1iaYa0qmOYFuXEYVr8JMWGgtYY2n0H9QJDbdYXIMw/DSEgBGcQqYUQIkc6ei3d5b8Vx4pL1lHSzZ16/ANOthEYj7JsB2yeDYoAiZaDHYihZR+2ShSh0/NwdcLbTEZes5+KdOKqWcFW7pOdi2VFKCJFjFEVhyf5QBiw5TFyynrp+Rfjj/camIBJ/F5b3gG0TTEGkWncYskeCiBAq0Wg0VPs3gJwpAPONSBgRQqAoCpP+PMekP89hVKBngA/LB9fHw8kWru6GuY3hynbQ2UOn700DVe0sfwS/EJbs4Qq+BWHyM+mmEaKQUxSFyRvPsfTANTQa+KRdZd5qWgaN0QA7psKerwEFilWCnkvBs7LaJQsh+O9MrJY/iFXCiBCFmKIofLn5Akv2XwPgy+41TGtdxNyCNW9B2AHTjnXegJe/BBuZ0l2I/KIgDWKVMCJEIfb99kvM3X0FgCldq5mCyMUtsC4Qku6DjTN0mgHVe6hbqBDiMQVpJlbLjVFCiOcye9dlZmy7BMD/Olbh9brepgnMVvQyBRHvmjBktwQRIfIprVZD1ZKmAGLpg1gljAhRyCiKwrdBF/lq8wUAPn65Em9WARa3hYOzTDvVfwfeDAL3cuoVKoR4puoFZAVf6aYRohBJMxgZu/Y0q4/dBODD1v6843ES5g2DlFiwczPNpFqpg7qFCiEy5eEg1jO3JYwIISxAXHIa7y4/zt5LUVhpNUzrVJ5eUT/C6iWmHXwbQPeF4Gb561wIUVj8dxCr3mBEZ6GDWCWMCFEI3IlNZsCSI4SEx2JvbcXSji7UPzYAIs8CGmg6El76BKzkI0EIS1La3REnWx3xKXou342nUnHLHMRqmRFKCJFp4TFJ9Jh7gJDwWDwcrdnaPIz627qbgoijJ/RbBy3HSxARwgJptRrzXTSnb1puV42EESEKsMi4ZPouOMSN+0lUKqphd/lf8d3zEaQlQtnmELgPyjVXu0whxHN42FVjyXfUyJ9CQhRQ9xNSeX3hIa5GJfCSSzgLbX5Ed+EqaKygxThoPAK08veIEJauINxRk61PotmzZ1OmTBns7OwICAhg7969mXrd/v370el01KpVKzunFUJkUkxiGv0WHeLinTjec9zOEv1YdNFXwcUHBm6Cph9KEBGigHh4R825fwexWqIsfxqtXLmS4cOHM27cOIKDg2natCnt2rUjLCzsqa+LiYnhjTfeoGXLltkuVgjxbPEpevovOcyN27dZbPc9HxkWoTGmQsX2ELgXSjVQu0QhRA4q6+GIo40VyWlGrtxNULucbMlyGPn222958803eeutt6hcuTIzZszA19eXOXPmPPV1Q4YMoU+fPjRs2DDbxQohni4xVc+gJUfQ3jzMZrtPaMFhsLIxrSvz6gpwKKp2iUKIHKbVaqhawrK7arIURlJTUzl27Bht2rRJt71NmzYcOHDgia9bsmQJV65cYcKECZk6T0pKCrGxsel+hBBPl5xmYPDSwwTcWMrvNpMpQRQULWuaSbVBIGg0apcohMgl1Sx8EGuWBrBGRUVhMBjw8vJKt93Ly4uIiIgMX3Pp0iXGjBnD3r170ekyd7pp06YxadKkrJQmRKGWojcw+qdtDLnxGS9anzZtrN4TOn4Hts7qFieEyHXVfSx7jZpsjWDTPPIXlqIoj20DMBgM9OnTh0mTJuHv75/p448dO5aYmBjzz40bN7JTphCFQprByKxFi/j0xtu8aHUag5UddJ4F3RZIEBGikHh4R83Z27EYjIrK1WRdllpGPDw8sLKyeqwVJDIy8rHWEoC4uDiOHj1KcHAw77//PgBGoxFFUdDpdGzdupUWLVo89jpbW1tsbW2zUpoQhVJySgo75o5kxP3laDUKCa4VcOz7M3hWVrs0IUQeKuPhhIONFYmpBq7ejaeCl2X9IZKllhEbGxsCAgIICgpKtz0oKIhGjRo9tr+LiwunT5/mxIkT5p/AwEAqVqzIiRMnqF+//vNVL0Qh9iDiGlent6D9g1/QahRul+uN43t7JIgIUQhZaTVU8f53JlYL7KrJ8qRnI0eOpF+/ftStW5eGDRsyf/58wsLCCAwMBExdLLdu3WLZsmVotVqqVauW7vWenp7Y2dk9tl0IkXkRh9div2koVYgjHntuNZlGxVYD1S5LCKGiaiVdOXr9AadvxdCtjo/a5WRJlsNI7969uXfvHpMnTyY8PJxq1aqxadMm/Pz8AAgPD3/mnCNCiGzSpxK+ZjTeIaaVds9rymH32lIq+tdQuTAhhNqq/WfciKXRKIqS70e6xMbG4urqSkxMDC4ulrkioRDP7f5VHvz0OkVizgKwwb4rDd+eSbEi8v+EEALO3o6hww/7cLHTcXJCmwxvLMlrmf3+lrVphLAAyunVpK4fShFDAg8UJ34r8TEDB72HnbWV2qUJIfKJ8p5O6LQaYpP13I5JpqSbvdolZZqEESHys9RE9Js+RndiGbbAYWNFjgZ8TWCnF9Fq1f+rRwiRf9jqrCjv6cT5iDjOh8daVBiRlbKEyK8iz6Of3xzdiWUYFQ2zDK8Q2v433u3STIKIECJDlYqbbukNCbescSMSRoTIbxQFji/DOL8Zuqjz3FVcGaIZR603ptO7QVm1qxNC5GOV/729NyQiTuVKska6aYTIT5Jj4a+RcHoVWmCPoTpfO47k24GtLW4SIyFE3qv0MIxYWMuIhBEh8ovbwbB6ENy/ih4t36T1Yqf7a/z0VgO8XOzUrk4IYQEqe5v+aLkWlUBSqgF7G8sY5C5hRAi1KQocmgdbPwVjGuGKO++nvo/Bpz6/DXwBNwcbtSsUQlgIT2c7PJxsiIpP5eKdOGr6uqldUqbImBEh1JR4H37rC5s/BmMa24x1eTllGnblGrH8rfoSRIQQWVapuOV11UgYEUItYYdgblO48Bd6jTUT0vrzVuoIGlQtx+IBL+BoKw2XQoise9hVc96CBrHKp50Qec1ohP3fwY6poBiI0JXgzYT3OKuUYXDTMnz8ciV0VvJ3ghAiex62jJyzoJYRCSNC5KX4SFj7NlzdCcBW7YuMiO+P0dqJH3rUoHPNEioXKISwdA9v7z0fHouiKPliWvhnkTAiRF65stMURBIi0VvZ8b/UAfya3BQ/d0fmvh5g/gARQojnUc7T0eKmhZcwIkRuM+hh1zTY+w2gcMeuLH1jArms+PBSxWJ837s2rg7WalcphCggLHFaeOmYFiI3xdyEnzrC3umAQpBDO16MHs9lxYehLcqzuP8LEkSEEDmusoVNfiYtI0Lklgt/w/p3IOkBBmtnxhvfZvn9AJxsdfzQqyZtqxZXu0IhRAH1/2vUWMYdNRJGhMhp+hQImgCH5gBwz7UqvaLe5oqhGOWKOTKvX13KezqpXKQQoiD7/zVqpGVEiMLn3hXTlO7hJwDY59GbgTc7kIaONlW8+KZXTZztpFtGCJG7KlnYtPASRoTIKadXw5/DITUOo11Rptl+wIKbFdFoYFRrf959qTxabf6/xU4IYfksbVp4CSNCPK/URNN07seXARBd7AX63B/MuWgnXOx0fP9abZpX9FS5SCFEYVOpuAv7LkcREh4rYUSIAi0yBFYNhLshKGjYXbw/b15riQErKhV3Zl6/APzcHdWuUghRCFX2dmbf5SiLmBZewogQ2aEoppaQvz8GfRJp9sUYo3zAmmvlAejf0I8x7Srn+35aIUTB9XAQqyVMCy9hRIisSo6FjcPhzBoAQl3r0/vuACKNrni52DK9Z02aViimbo1CiELvv6v35vdp4SWMCJEVt4NN3TIPQjFqrJjJq8y40w4FLZ1qluCzLlVxc7BRu0ohhKC8pxM6rYY4C5gWXsKIEJmhKHBoLsrW/6ExphGhKca7ye9xXPGnbDFHPn65kkxiJoTIV2x0WsoVc+LCnTguROTvaeEljAjxLIn3Max7F6tLf6MBthjq8lHa29g5uzOttT89A3zQWcnKCkKI/KeClymMXLoTT4tKXmqX80QSRoR4iviL+1BWD8I59Q4pio6p+r78Yd2BIS3KMahxGRmgKoTI1/y9nIFwLkXGq13KU0kYESIjRgO3N36O5/Fv0WHkqrE4k+0+olmblhyo64ujrfyvI4TI/yr8u/TEpTv5+/Ze+UQV4lFxd4j6eQAlIg8AsE3XjJS201lQpzzW0h0jhLAgFbz+DSOR8fn6jhoJI0L8h3J5B0kr38Qj7T6Jii2/erxP78FjcZL1ZIQQFsjP3RFrKw2JqYZ8fUeN/JknBIBBjzFoIsov3XBIu0+I0ZeFVRbT/91PJYgIISyWtZWWMh6mWaAv5uOuGgkjQkTfQFnSHu3+79CisNzQkn9a/M4HvTrIXTJCCItXwdO0gu/lO/l3EKt80orC7fxfKHOboLl5iFjFng/ShuHe+0cGvlQl3/atCiFEVjwcN5KfW0ZkzIgonPQpEDQeDs1FA5wwlmVo2geMfu1lXq7mrXZ1QgiRYx62jOTn23sljIjC594VWD0Qwk8CMF/fga/1vfmsW2061iihcnFCCJGzHraMXM7Hd9RIGBGFy6lVpkXuUuNJtnbjnYTB7DTWZlz7yrxar5Ta1QkhRI4r7e6ITqshPkVPeEwyJfLhHTUSRkThkJoAf4+G4F8AiHKvS6fb/QlX3PmgRXkGv1hW5QKFECJ32Oi0lPZw5HJkPJci4/NlGJEBrKLgu3MO5jf/N4houFLlPRqFDydccad/Qz9GtvZXu0IhhMhV+X0mVgkjouBSFDi2FBY0h6gL4FSc0y1/pt3JpqQatXSv48OETlXzZf+pEELkpApe/w5izae390oYEQVTciysHgR/DgN9MpRvxcmOf9JrqzWpBiMvVy3Ol92ro9VKEBFCFHzmlpHI/NkyImNGRMFz67gpiDwIBa0OWo7nuM/r9F9ylKQ0Ay/6F+P712rJhGZCiEIjv69RI2FEFByKAv/MhqAJYEwD11IkdpnP12dd+GnjPxgVqFe6KPNeD8BWZ6V2tUIIkWfKeDhipdUQl6znTmwKxV3t1C4pHQkjomBIvA/r34GLm02PK3diu///+HTlTcJj7gPQuWYJpr5SDXsbCSJCiMLFVmeFn7sDV+8mcCkyTsKIEDnu+gFY/SbE3UaxsiU04BOm3mnE9pWXAShV1IEpXavxon8xlQsVQgj1VPB0MoWRO/E0rZC/Pg8ljAjLZTTA3m9h1+egGIm292MUw9m2xwu4i06r4e0XyzK0ZQXsrKU1RAhRuPl7ObPl7J18OYhVwoiwTHERKGsGo7m2B4B1xqaMezCQROxwtLGiS+2SDGxU2nw7mxBCFHblzXON5L/beyWMCIsTfepvbP58F4e0+yQqtvwvbSBrjC9Sy9eN1+r50rFGCRxt5VdbCCH+678L5uW3O2rkE1tYBEVROH7tLvc2TKDNgxUAhBhL8bF2BLXq12PTC6WoUsJF5SqFECL/KlvMEa0GYpLSuBuXgqdL/hnEKmFE5GupeiObToezcc8h3rn3OW20lwDYYt+ehOafsbJWGbk7RgghMsHO2go/d0dCoxK4FBkvYUSIZ0lOM/Db4TDm7blKjbi9fGM9D1dtIklaJ6JafE3bJn3ULlEIISxOeU8nQqMSuHgnjsblPdQux0zCiMhXElP1LP8njPl7rxIbF8dY3QoG2GwFIK14Hex7L8G3SGl1ixRCCAvl7+VE0Lk7XIrMX4NYJYyIfCFVb2T5oevM3HGZ+wmplNGEs9x+Fv5KqGmHRh9g3WI86GzULVQIISyYeRBrPlu9V8KIUJWiKGw5G8EXf5/n2r1EAN5yPczH+vlYGxLBwR26zgX/NipXKoQQlq9cMdPtvVfvJqhcSXoSRoRqTt6I5rON5zh6/QEAPo4KPxVfRblb6007lG4K3eaDSwn1ihRCiAKkTDFHAO4lpBKTmIarg7XKFZlIGBF5Tm8w8sOOy8zacQmjAnbWWsbWMdLv5iS0ty6CRgvNPoYXPwKt3CkjhBA5xclWh5eLLXdiU7gSFU+dUkXULgmQMCLyWNi9RIatDCY4LBqATjW8meJ7BNfd40GfDE7FoftCKNNU3UKFEKKAKuvhxJ3YFK7eTZAwIgoXRVFYe/wW4/84Q0KqAWdbHV909KND6DTYvt60U/nW8MpccMw/t5sJIURBU7aYIwev3uPq3fxzR402Oy+aPXs2ZcqUwc7OjoCAAPbu3fvEfdeuXUvr1q0pVqwYLi4uNGzYkC1btmS7YGF50gxGPll3mg9XnSQh1UC90kXZ9qozHfb3gnPrQauD1p9Bn98liAghRC4rmw8HsWY5jKxcuZLhw4czbtw4goODadq0Ke3atSMsLCzD/ffs2UPr1q3ZtGkTx44do3nz5nTq1Ing4ODnLl7kf3HJaQxaeoRfD99Aq4FRrcvzW/UjeK3qBNHXwa0UDNoCjYeCNlvZWAghRBaU/XcQa2hU/gkjGkVRlKy8oH79+tSpU4c5c+aYt1WuXJmuXbsybdq0TB2jatWq9O7dm/Hjx2dq/9jYWFxdXYmJicHFRdYfsRS3o5MYtPQI5yPisLe2Yl53P148OwEu/dsyVqULdPoB7N1UrVMIIQqTsHuJvPj1Tmx0WkImv4yVNvcWzMvs93eWxoykpqZy7NgxxowZk257mzZtOHDgQKaOYTQaiYuLo2jRok/cJyUlhZSUFPPj2NjYrJQp8oEzt2J486cj3IlNoZizLb+1MVJuezeIuw1WtvDyNKg7CPLRqpFCCFEYlCxij41OS6reyO3oJHyLOqhdUta6aaKiojAYDHh5eaXb7uXlRURERKaO8c0335CQkECvXr2euM+0adNwdXU1//j6+malTKGyvZfu0nveQe7EplDJ057tAf9QblNvUxBxrwCDt8MLb0oQEUIIFVhpNZR2NwWQK/lkEGu2Ouk1j3yJKIry2LaM/Prrr0ycOJGVK1fi6en5xP3Gjh1LTEyM+efGjRvZKVOo4I8Ttxi09AgJqQbal4aNbt/g8s/XoBihZh94excUr652mUIIUaiV9chfg1iz1E3j4eGBlZXVY60gkZGRj7WWPGrlypW8+eabrFq1ilatWj11X1tbW2xtbbNSmsgHFu0L5bON5wD4qNwN3n3wNZrEKLB2hI7fQs1XVa5QCCEE/P8g1qtRFtgyYmNjQ0BAAEFBQem2BwUF0ahRoye+7tdff2XAgAGsWLGCDh06ZK9SkW8pisIXf5/ns43n0KHnF7+/eO/Wx6Yg4lUdhuyWICKEEPlIfru9N8uTno0cOZJ+/fpRt25dGjZsyPz58wkLCyMwMBAwdbHcunWLZcuWAaYg8sYbb/D999/ToEEDc6uKvb09rq6uOfhWhBoMRoVx607z25Eb+GjusrrYQorfOW168oW3oM1UsLZTt0ghhBDpmFtGLDWM9O7dm3v37jF58mTCw8OpVq0amzZtws/PD4Dw8PB0c47MmzcPvV7Pe++9x3vvvWfe3r9/f5YuXfr870CoRm8wMmrVSdafuE07q8N8b78Ym9hYsHWFLrOgSme1SxRCCJGBcv+OGYmITSYhRY+jrboTsmd5nhE1yDwj+U+awciw34LZfjqMT61X0M9qq+mJknWhx2Io4qdugUIIIZ4q4LMg7iWksvGDJlQrmTs9Fbkyz4gQACl6A+8tD+bK+ROst/2ByprrpicaD4MW/wOr/LEktRBCiCcr4+HIvYRUrtyNz7UwklkSRkSW3E9IZdhvwXhcWcdGm8U4alLAwQNemQcVnn6XlBBCiPyjbDFHjl5/kC/GjUgYEZmiKAobTt7myw3HGZE6n542e0xPlG4K3RaAi7e6BQohhMgS8x01+WCNGgkj4pnCY5L4dN0Zbl04yjLrHyivu42i0aJpNgZeHAVaK7VLFEIIkUVlPR7eUaP+XCMSRsQT3bifyJrjN1m49ypd9FuYbfMztpo0FGdvNN0XQukmapcohBAimx62jIRGJWR6JvXcImFEpBObnMamU+GsPX6Lw9fu40ICX1ovoIP1YdMOFdqg6ToHHD3ULVQIIcRzKVXUASuthsRUAxGxyXi72qtWi4QRAcCDhFTm7rnCTweukZxmBKCW9jLz7X/E03AHRatD02oSNHgXtNla0kgIIUQ+YqPTUqqoA6FRCVy9myBhRKgnPkXP4n2hLNhzlbgUPQD+xRyY6LmbhqEz0Rj04OaHpscS8AlQuVohhBA5qayHoymMRCXQuLx6Ld4SRgopg1Fh+aHrzNh2ifsJqQBU9nbhk2YeNDk7Hs2lfycxq9IVOv8AdjJ1vxBCFDRlizmy/bz6g1gljBRCF+/E8fGaUwSHRQOmiW9Gtvang/MVtOtegbhw0NnBy9MgYCCoOKhJCCFE7skvC+ZJGClEUvQGZu+8wuxdl0kzKDjZ6hj9ckVeq1sS6/3fwPovQTGChz/0XApeVdUuWQghRC4y394bJS0jIg8cu/6AMWtOcSnS9AvXqrInn3WthrcmGpa/Atf2mnas1Rfafw02juoVK4QQIk88bBm5+SCJ5DQDdtbqzBslYaSAS0zV8/WWCyw9cA1FAQ8nGyZ2rkqH6t5oLm+DdUMg8R5YO0LH76Bmb7VLFkIIkUc8nGxwttMRl6zn+r1EKhZ3VqUOCSMF2P7LUYxZe4ob95MA6F7Hh/91rIybrQaCxsOBH0w7Fq8OPZaCR3n1ihVCCJHnNBoNZYs5cfJGNFfvxksYETknNjmNz/8K4bcjNwAo4WrH592q81JFT3hwDZa/CbeOmnau9za0/gys7dQrWAghhGrqlymKi50OR1v1IoGEkQJmx/k7fLL2DBGxyQD0a+DHx+0q4WSrg3N/wB8fQEqM6VbdLj9C5U4qVyyEEEJNn7SvrHYJEkYKiujEVCb/eY61wbcAKO3uwBfda9CgrDukJcNfH8ORhaadfV6AHovBrZSKFQshhBAmEkYKgC1nIxi37gxR8SloNfBmkzKMbF0RexsruHsRVg+EO2dMOzceBi3+B1bW6hYthBBC/EvCiAW7n5DKxA1n2XDyNgDlPZ34qkcN6pQqYtrhxAr4axSkJYCDB3SbB+VbqVixEEII8TgJIxZq85lwPl1/hqj4VLQaCGxWjqEtK5juEU+Jh02j4OSvpp3LvAjdFoBzcXWLFkIIITIgYcTCxCSl8b/1Z8ytIf5eTnzdoyY1fd1MO0SchlUD4d4l0GjhpU+g6UjQqjORjRBCCPEsEkYsyNFr9xn22wluRSdhpdUQ2KwsQ1tWwFZnBYpiGqC6ZRwYUsC5BHRfCKUbq122EEII8VQSRiyA3mBk1s7L/LD9EkYF/Nwd+P7V2tR62BqSFA0bPoCQDabH/i9Dl9ng6K5WyUIIIUSmSRjJ525FJzH8t2COXHsAQLc6JZncpZpp3hCAm0dNd8tEh4HWGlpPggbvykq7QgghLIaEkXxs54VIRqw8QXRiGk62Oqa+Uo0utUqanjQa4eBM2D4ZjHooUto0d0jJAFVrFkIIIbJKwkg+pDcY+W7bRX7ceQWAGj6uzHytNn7u/66kmxBlWuDu8jbT46qvQKfvTbOqCiGEEBZGwkg+ExmXzNBfg/nn6n3ANJ37px0rmwapAoTugTWDIT4CdHbw8hcQMEC6ZYQQQlgsCSP5yJ6Ldxn5+0mi4lNwtLFiWvcadK5ZwvSk0QC7v4TdXwEKeFSEnkvAq6qqNQshhBDPS8JIPpCiNzB9ywUW7A0FoKKXM7Nfr0O5Yk6mHWJvm1pDru8zPa79OrT7CmwcVapYCCGEyDkSRlR25W48Q38N5uztWMDULTOuQ2XTTKoAF7fC+kBIvAc2TtBxBtToqV7BQgghRA6TMKKiP07cYsya0ySlGSjiYM1XPWrSuoqX6Ul9KmyfBAdnmR4XrwE9l4J7OdXqFUIIIXKDhBGVbDh5mxErT2BUoHF5d77tVQsvFzvTk/dDYc2bcOuY6XG9IdDmM9DZqlewEEIIkUskjKhg85kIcxB5rZ4vU7tWR6v9926Ys+tgw1BIiQU7N+jyI1TuqGq9QgghRG6SMJLHdp6P5INfj2MwKnSrU/L/g0haEmweC8eWmHb0rQ/dF4Gbr7oFCyGEELlMwkge2n85iiG/HCPNoNChhjdfda9hCiJ3L5hW2o08C2igyQho/glYWatdshBCCJHrJIzkkX2Xohi87CipeiOtq3gxo3ctdFoNBC+HTaMgLREci8Er86B8S7XLFUIIIfKMhJE88OfJ24z8/QRpBoVm/sWY1ac21vpE+GsknFpp2qlMM+i2AJy91C1WCCGEyGMSRnLZ0v2hTNp4DkWBDjW8+bZXTWzvnjWttHvvMmi08NIn0HQkaK3ULlcIIYTIcxJGcomiKHyz9SKzdl4GoH9DPyZ0rIL22CLYMg4MKeBS0jRI1a+hytUKIYQQ6pEwkgsUReF/f5zhl3/CABjVxp/3GnigWdUPzm807eTfDrrOBoeiKlYqhBBCqE/CSC74btslfvknDK0Gpr5Snde878C8bhATBlpraD0ZGrwjK+0KIYQQSBjJccsPXeeH7ZcAmNKlKq+lroXFk0ExQJEy0GMxlKyjcpVCCCFE/iFhJAdtORvB/9afAeDjpu70uTQSrmw3PVmtu2mROzsX9QoUQggh8iEJIznk6LX7DP01GKMC4ypH8lbICIi/Azp7aPcl1HlDumWEEEKIDEgYyQGXI+N486ej6PVpzCy+hY6hy9GgQLFK0GMJeFVRu0QhhBAi35Iw8pzuJ6QyaOlR7JMiWOE8j6rRpm4aaveDdl+BjYO6BQohhBD5nISR55CqNxL4yzHKRe/nO7u5uKXFgY0zdJoB1XuoXZ4QQghhESSMZJOiKIxfc5zWN35gsM0m00bvmqZuGfdy6hYnhBBCWBAJI9n065Y9vHp2OLV0V00b6r8DrSeBzlbdwoQQQggLI2EkG05tWULHg2Nx0SaRonPBtsc8qNRe7bKEEEIIiyRhJCvSkrj92zBqXFkJGrjuWJ1Sg1eAWym1KxNCCCEsloSRzIo8T9wv/SgRexGjouFvt9do8/73aKxt1K5MCCGEsGgSRp5FUeDEcvQbR+FsSOKu4sqvPv8jcOCbWOu0alcnhBBCWDwJI0+TEgcbR8Lp39EBew3V2FZpMv97tTk6KwkiQgghRE6QMPIk4SdRVg1Ec/8KekXLt/oexAS8z2dda6DVyrTuQgghRE6RMPIoRYHD81G2forGkMotxZ1hqe9Rs3E7pnSojEbWlxFCCCFyVLb6GmbPnk2ZMmWws7MjICCAvXv3PnX/3bt3ExAQgJ2dHWXLlmXu3LnZKjbXJd6Hla/D36PRGFIJMgTQIXUaL7d/hU8liAghhBC5IsthZOXKlQwfPpxx48YRHBxM06ZNadeuHWFhYRnuHxoaSvv27WnatCnBwcF88sknDB06lDVr1jx38Tkq7BDMexHObyQNHRPT3uADRvFF3xd5q2lZCSJCCCFELtEoiqJk5QX169enTp06zJkzx7ytcuXKdO3alWnTpj22/8cff8yGDRsICQkxbwsMDOTkyZMcPHgwU+eMjY3F1dWVmJgYXFxcslLusxmNsH8G7JgCioEbGm/eSX6PCMdKLOz/ArV83XL2fEIIIUQhkdnv7yy1jKSmpnLs2DHatGmTbnubNm04cOBAhq85ePDgY/u3bduWo0ePkpaWlpXT57z4SFjeHbZPAsXAFk0T2iV9RqJHdda921iCiBBCCJEHsjSANSoqCoPBgJeXV7rtXl5eREREZPiaiIiIDPfX6/VERUXh7e392GtSUlJISUkxP46Njc1KmZljNMLPr8CdMxh1dkw1DmRRYhMqermwfHB9PJxkjRkhhBAiL2RrAOuj4ycURXnqmIqM9s9o+0PTpk3D1dXV/OPr65udMp9Oq4VWk0gpWonexmksSmxKZW9Xfn27gQQRIYQQIg9lKYx4eHhgZWX1WCtIZGTkY60fDxUvXjzD/XU6He7u7hm+ZuzYscTExJh/bty4kZUyM+2cYz0aPZjIkUQvqpV04dfB9SnqKNO7CyGEEHkpS2HExsaGgIAAgoKC0m0PCgqiUaNGGb6mYcOGj+2/detW6tati7W1dYavsbW1xcXFJd1PTjMaFYavDOZekpGaPq4sf7MBbg4SRIQQQoi8luVumpEjR7Jw4UIWL15MSEgII0aMICwsjMDAQMDUqvHGG2+Y9w8MDOT69euMHDmSkJAQFi9ezKJFixg1alTOvYts0Go1zO5bh9ZVvPj5rfq4OmQcjIQQQgiRu7I8A2vv3r25d+8ekydPJjw8nGrVqrFp0yb8/PwACA8PTzfnSJkyZdi0aRMjRozgxx9/pESJEvzwww907949595FNpX3dGbBG3XVLkMIIYQo1LI8z4gacnWeESGEEELkilyZZ0QIIYQQIqdJGBFCCCGEqiSMCCGEEEJVEkaEEEIIoSoJI0IIIYRQlYQRIYQQQqhKwogQQgghVCVhRAghhBCqkjAihBBCCFVJGBFCCCGEqiSMCCGEEEJVEkaEEEIIoaosr9qrhodr+cXGxqpciRBCCCEy6+H39rPW5LWIMBIXFweAr6+vypUIIYQQIqvi4uJwdXV94vMa5VlxJR8wGo3cvn0bZ2dnNBpNjh03NjYWX19fbty48dSljcXzk2udN+Q65w25znlDrnPeyM3rrCgKcXFxlChRAq32ySNDLKJlRKvV4uPjk2vHd3FxkV/0PCLXOm/Idc4bcp3zhlznvJFb1/lpLSIPyQBWIYQQQqhKwogQQgghVFWow4itrS0TJkzA1tZW7VIKPLnWeUOuc96Q65w35DrnjfxwnS1iAKsQQgghCq5C3TIihBBCCPVJGBFCCCGEqiSMCCGEEEJVEkaEEEIIoaoCH0Zmz55NmTJlsLOzIyAggL179z51/927dxMQEICdnR1ly5Zl7ty5eVSpZcvKdV67di2tW7emWLFiuLi40LBhQ7Zs2ZKH1Vq2rP5OP7R//350Oh21atXK3QILiKxe55SUFMaNG4efnx+2traUK1eOxYsX51G1liur13n58uXUrFkTBwcHvL29GThwIPfu3cujai3Tnj176NSpEyVKlECj0bB+/fpnvibPvwuVAuy3335TrK2tlQULFijnzp1Thg0bpjg6OirXr1/PcP+rV68qDg4OyrBhw5Rz584pCxYsUKytrZXVq1fnceWWJavXediwYcqXX36pHD58WLl48aIyduxYxdraWjl+/HgeV255snqtH4qOjlbKli2rtGnTRqlZs2beFGvBsnOdO3furNSvX18JCgpSQkNDlUOHDin79+/Pw6otT1av8969exWtVqt8//33ytWrV5W9e/cqVatWVbp27ZrHlVuWTZs2KePGjVPWrFmjAMq6deueur8a34UFOozUq1dPCQwMTLetUqVKypgxYzLcf/To0UqlSpXSbRsyZIjSoEGDXKuxIMjqdc5IlSpVlEmTJuV0aQVOdq917969lU8//VSZMGGChJFMyOp1/vvvvxVXV1fl3r17eVFegZHV6/z1118rZcuWTbfthx9+UHx8fHKtxoImM2FEje/CAttNk5qayrFjx2jTpk267W3atOHAgQMZvubgwYOP7d+2bVuOHj1KWlpartVqybJznR9lNBqJi4ujaNGiuVFigZHda71kyRKuXLnChAkTcrvEAiE713nDhg3UrVuXr776ipIlS+Lv78+oUaNISkrKi5ItUnauc6NGjbh58yabNm1CURTu3LnD6tWr6dChQ16UXGio8V1oEQvlZUdUVBQGgwEvL6902728vIiIiMjwNRERERnur9friYqKwtvbO9fqtVTZuc6P+uabb0hISKBXr165UWKBkZ1rfenSJcaMGcPevXvR6Qrs/+45KjvX+erVq+zbtw87OzvWrVtHVFQU7777Lvfv35dxI0+QnevcqFEjli9fTu/evUlOTkav19O5c2dmzpyZFyUXGmp8FxbYlpGHNBpNuseKojy27Vn7Z7RdpJfV6/zQr7/+ysSJE1m5ciWenp65VV6BktlrbTAY6NOnD5MmTcLf3z+vyiswsvI7bTQa0Wg0LF++nHr16tG+fXu+/fZbli5dKq0jz5CV63zu3DmGDh3K+PHjOXbsGJs3byY0NJTAwMC8KLVQyevvwgL7p5KHhwdWVlaPJezIyMjHEt9DxYsXz3B/nU6Hu7t7rtVqybJznR9auXIlb775JqtWraJVq1a5WWaBkNVrHRcXx9GjRwkODub9998HTF+aiqKg0+nYunUrLVq0yJPaLUl2fqe9vb0pWbJkuqXSK1eujKIo3Lx5kwoVKuRqzZYoO9d52rRpNG7cmI8++giAGjVq4OjoSNOmTZkyZYq0XucQNb4LC2zLiI2NDQEBAQQFBaXbHhQURKNGjTJ8TcOGDR/bf+vWrdStWxdra+tcq9WSZec6g6lFZMCAAaxYsUL6ezMpq9faxcWF06dPc+LECfNPYGAgFStW5MSJE9SvXz+vSrco2fmdbty4Mbdv3yY+Pt687eLFi2i1Wnx8fHK1XkuVneucmJiIVpv+a8vKygr4/7/cxfNT5bsw14bG5gMPbxtbtGiRcu7cOWX48OGKo6Ojcu3aNUVRFGXMmDFKv379zPs/vJ1pxIgRyrlz55RFixbJrb2ZkNXrvGLFCkWn0yk//vijEh4ebv6Jjo5W6y1YjKxe60fJ3TSZk9XrHBcXp/j4+Cg9evRQzp49q+zevVupUKGC8tZbb6n1FixCVq/zkiVLFJ1Op8yePVu5cuWKsm/fPqVu3bpKvXr11HoLFiEuLk4JDg5WgoODFUD59ttvleDgYPMt1Pnhu7BAhxFFUZQff/xR8fPzU2xsbJQ6deoou3fvNj/Xv39/pVmzZun237Vrl1K7dm3FxsZGKV26tDJnzpw8rtgyZeU6N2vWTAEe++nfv3/eF26Bsvo7/V8SRjIvq9c5JCREadWqlWJvb6/4+PgoI0eOVBITE/O4asuT1ev8ww8/KFWqVFHs7e0Vb29vpW/fvsrNmzfzuGrLsnPnzqd+5uaH70KNokjblhBCCCHUU2DHjAghhBDCMkgYEUIIIYSqJIwIIYQQQlUSRoQQQgihKgkjQgghhFCVhBEhhBBCqErCiBBCCCFUJWFECCGEEKqSMCKEEEIIVUkYEUIIIYSqJIwIIYQQQlUSRoQQQgihqv8DMpnxhvXEJcEAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure()\n", + "plt.plot(np.linspace(0,1,n), cglsb.solution.as_array(), label='Tikhonov regularised solution- CIL')\n", + "plt.plot(np.linspace(0,1,n),x, label='Ground truth solution')\n", + "plt.legend()\n", + "plt.show()\n" + ] + }, + { + "cell_type": "markdown", + "id": "1fa3e6b0", + "metadata": {}, + "source": [ + "We can compare the results of Tikhonov regularisation implemented by numpy and CIL: " + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "7c6e22c8", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAGdCAYAAADAAnMpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAACFKklEQVR4nO3dd3hU1dbA4d+0VNI7RQhNCSAKoYYi0kUURUSKigVErwKiIIgCUTrIh+gFrCACylUBpUpEQJp0pIROKEJCCIEkpM/M/v6IGTNpJCHJpKz3efLonDnnzJ6TMGfN3muvrVFKKYQQQgghbERr6wYIIYQQonKTYEQIIYQQNiXBiBBCCCFsSoIRIYQQQtiUBCNCCCGEsCkJRoQQQghhUxKMCCGEEMKmJBgRQgghhE3pbd2AgjCbzVy9ehUXFxc0Go2tmyOEEEKIAlBKkZCQQNWqVdFq8+7/KBfByNWrV6lRo4atmyGEEEKIIrh8+TLVq1fP8/lyEYy4uLgAGW/G1dXVxq0RQgghREHEx8dTo0YNy308L+UiGMkcmnF1dZVgRAghhChn7pRiIQmsQgghhLApCUaEEEIIYVMSjAghhBDCpspFzkhBKKUwGo2YTCZbN0UIIe6aTqdDr9dLOQNRKVSIYCQtLY3IyEiSkpJs3RQhhCg2Tk5OBAQEYGdnZ+umCFGiyn0wYjabiYiIQKfTUbVqVezs7OSbhBCiXFNKkZaWxvXr14mIiKBevXr5FowSorwrdDDyxx9/MGvWLA4cOEBkZCSrVq2id+/e+R6zbds2Ro0axfHjx6latSpjxoxh2LBhRW2zlbS0NMxmMzVq1MDJyalYzimEELbm6OiIwWDg4sWLpKWl4eDgYOsmCVFiCh1qJyYm0qRJEz799NMC7R8REcEjjzxCu3btOHToEO+++y7Dhw/np59+KnRj8yPfGoQQFY18ronKotA9Iz169KBHjx4F3n/hwoXcc889zJ07F4AGDRqwf/9+Zs+eTZ8+fQr78kIIIYSoYEo87N69ezddu3a12tatWzf2799Penp6rsekpqYSHx9v9VPZTJo0iQceeMDyePDgwfkOh2XfXxTcQw89xMiRI+/6PKXxO9BoNKxevbpEzn3hwgU0Gg2HDx++63OVZDuFEBVPiQcjUVFR+Pn5WW3z8/PDaDQSExOT6zHTpk3Dzc3N8lMai+SZzIrd527w8+Er7D53A5NZldhraTSafH8GDx7M22+/zebNm0usDaL4VcbfWV4BWGRkZKF6UItTfHw848eP57777sPBwQF/f386d+7MypUrUSrj33X2ALS4AlIhRNGUymya7LNbMj8Q8pr1Mm7cOEaNGmV5nLnQTknZeCyS0DXhRMalWLYFuDkwsVcQ3RsFFPvrRUZGWv5/xYoVTJgwgVOnTlm2OTo6UqVKFapUqVLsr10emEwmNBpNuRkvV0phMpkq9e8sO39/f5u87q1bt2jbti1xcXFMnjyZ5s2bo9fr2bZtG2PGjOHhhx/G3d3dJm0TQuStxD/t/f39iYqKstoWHR2NXq/Hy8sr12Ps7e0ti+KV9OJ4G49F8urSg1aBCEBUXAqvLj3IxmOReRxZdP7+/pYfNzc3NBpNjm136vI/cOAAvr6+TJkyxWr7t99+S61atXBzc+OZZ54hISHB8lxqairDhw/H19cXBwcH2rZty759+yzPb926FY1Gw+bNmwkODsbJyYk2bdpYBUoACxYsoE6dOtjZ2XHvvffy7bffWp7r378/zzzzjNX+6enpeHt7s2jRolzfy+LFi3F3d2ft2rUEBQVhb29vmUEwZswYqlWrhrOzMy1btmTr1q1Wx37xxReWmVRPPPEEc+bMsbrZ5Da8NXLkSB566KG8Li1Lly4lODgYFxcX/P39GTBgANHR0Tmu06+//kpwcDD29vZs3749x+9s69attGjRAmdnZ9zd3QkJCeHixYuW59esWUOzZs1wcHCgdu3ahIaGYjQaLc+fOXOG9u3b4+DgQFBQEGFhYXm2OdOPP/5I48aNcXR0xMvLi86dO5OYmAhkTIP/4IMPqF69Ovb29jzwwANs3Lgxz3Nl/l6yWr16teVLxOLFiwkNDeWvv/6y9OotXrwYyDlMc/ToUR5++GFLu4YOHcrt27ctz2f+nmbPnk1AQABeXl785z//yXMoNy/vvvsuFy5cYM+ePTz//PMEBQVRv359hgwZwuHDhyVYFCIX+6P2M3TTUJLSbVerq8SDkdatW+f4EN20aRPBwcEYDIaSfvl8mcyK0DXh5DYgk7ktdE14iQ7ZFMXWrVvp1KkToaGhjB8/3rL93LlzrF69mrVr17J27Vq2bdvG9OnTLc+PGTOGn376iW+++YaDBw9St25dunXrRmxsrNX5x48fz0cffcT+/fvR6/W8+OKLludWrVrFiBEjeOuttzh27BivvPIKL7zwAlu2bAFg4MCB/PLLL1Y3ml9//ZXExMR8E5aTkpKYNm0aX375JcePH8fX15cXXniBnTt38v3333PkyBH69u1L9+7dOXPmDAA7d+5k2LBhjBgxgsOHD9OlS5ccwVlRpKWl8eGHH/LXX3+xevVqIiIiGDx4cI79xowZw7Rp0zhx4gT333+/1XNGo5HevXvToUMHjhw5wu7duxk6dKjlRv7rr78yaNAghg8fTnh4OJ999hmLFy+2tN9sNvPkk0+i0+n4888/WbhwIe+8806+7Y6MjKR///68+OKLnDhxgq1bt/Lkk09aeiI//vhjPvroI2bPns2RI0fo1q0bjz32mOV6Fla/fv146623aNiwIZGRkURGRtKvX78c+yUlJdG9e3c8PDzYt28fP/zwA7/99huvv/661X5btmzh3LlzbNmyhW+++YbFixdbgpuCMJvNfP/99wwcOJCqVavmeL5KlSro9eW+tJIQxcZkNrHgrwW8tOkldkfu5sujX9quMaqQEhIS1KFDh9ShQ4cUoObMmaMOHTqkLl68qJRSauzYserZZ5+17H/+/Hnl5OSk3nzzTRUeHq6++uorZTAY1I8//ljg14yLi1OAiouLy/FccnKyCg8PV8nJyYV9K2rX2RhV8521d/zZdTam0OcuqEWLFik3N7cc2ydOnKiaNGliefz888+rxx9/XK1evVq5uLio5cuX59jfyclJxcfHW7aNHj1atWzZUiml1O3bt5XBYFDLli2zPJ+WlqaqVq2qZs6cqZRSasuWLQpQv/32m2WfdevWKcByfdu0aaOGDBli9dp9+/ZVjzzyiOWc3t7easmSJZbn+/fvr/r27ZvvNQDU4cOHLdvOnj2rNBqNunLlitW+nTp1UuPGjVNKKdWvXz/Vs2dPq+cHDhxodT0zr1tWI0aMUB06dLA87tChgxoxYkSe7du7d68CVEJCglLq3+u0evVqq/2y/s5u3LihALV169Zcz9muXTs1depUq23ffvutCggIUEop9euvvyqdTqcuX75seX7Dhg0KUKtWrcr1nAcOHFCAunDhQq7PV61aVU2ZMsVqW/PmzdVrr72mlFIqIiJCAerQoUNKqdz/NletWqWyfmxk/zvNlLWdn3/+ufLw8FC3b9+2PL9u3Tql1WpVVFSUUirj91SzZk1lNBot+/Tt21f169cv1/eSm2vXrlk+k+4k++/8Tn8DtnI3n29C5Oda4jX14sYXVaPFjVSjxY3Uu9vfVYlpicX+Ovndv7MqdM/I/v37efDBB3nwwQcBGDVqFA8++CATJkwAMr6dXbp0ybJ/YGAg69evZ+vWrTzwwAN8+OGHzJs3r0xM641OSLnzToXYr6Tt2bOHPn368M0339C/f/8cz9eqVQsXFxfL44CAAMvwwrlz50hPTyckJMTyvMFgoEWLFpw4ccLqPFm/5QcEZOTMZJ7nxIkTVucACAkJsZzDYDDQt29fli1bBmTUpfn5558ZOHBgvu/Nzs7O6nUPHjyIUor69etbcjGqVKnCtm3bOHfuHACnTp2iRYsWVufJ/rgoDh06xOOPP07NmjVxcXGxDOlk/bsGCA4OzvMcnp6eDB48mG7dutGrVy8+/vhjq1yhAwcO8MEHH1i9tyFDhliWNThx4gT33HMP1atXtxzTunXrfNvdpEkTOnXqROPGjenbty9ffPEFN2/eBDLyrq5evZrv766knDhxgiZNmuDs7Gz1umaz2WoIsGHDhuh0OsvjrH+/U6dOtbpW2X8XcOdcNCFEhh1XdtB3TV/2Ru3FUe/I1LZTmdJ2Ck4G2xUOLXSf5UMPPWT5R5+b3LpVO3TowMGDBwv7UiXO16VgFQ0Lul9Jq1OnDl5eXnz99df07Nkzx3oV2Ye9NBoNZrMZyPuDWimVY1vW82Q+l3megpxj4MCBdOjQgejoaMLCwnBwcLjjzApHR0erc5jNZnQ6HQcOHLC6QQGWcf/c2p79b1Or1ebYll8eQmJiIl27dqVr164sXboUHx8fLl26RLdu3UhLS7PaN+vNNTeLFi1i+PDhbNy4kRUrVvDee+8RFhZGq1atMJvNhIaG8uSTT+Y4zsHBIdd/Y3e6yep0OsLCwti1axebNm3ik08+Yfz48ezZs8eSn1WQ33+mwl67vOT3Glm35/f3O2zYMJ5++mnLc7kNw/j4+ODh4VHiwZUQ5VW6OZ1PDn3ComMZ+Xv3etzLrA6zCHQLtHHLSiFnpCxrEehJgJsDeX3Ea8iYVdMi0LM0m5Unb29vfv/9d86dO0e/fv0KdWOoW7cudnZ27Nixw7ItPT2d/fv306BBgwKfp0GDBlbnANi1a5fVOdq0aUONGjVYsWIFy5Yto2/fvoVe6OvBBx/EZDIRHR1N3bp1rX4yZ2rcd9997N271+q4/fv3Wz328fGx6pEA8q2jcfLkSWJiYpg+fTrt2rXjvvvus0peLawHH3yQcePGsWvXLho1asTy5csBaNq0KadOncrx3urWrYtWqyUoKIhLly5x9epVy7l27959x9fTaDSEhIQQGhrKoUOHsLOzY9WqVbi6ulK1atU7/u6y8vHxISEhwZIACzmvnZ2d3R1Xyg4KCuLw4cNW59m5cydarZb69evf8T1BRk9T1muUW+6HVqulX79+LFu2zOq6ZUpMTLRKEBaiMrly+wqDNw62BCL97u3Hsp7LykQgApU8GNFpNUzsFQSQIyDJfDyxVxA6bdnp9vX19eX333/n5MmT9O/fv8Afrs7Ozrz66quMHj2ajRs3Eh4ezpAhQ0hKSuKll14q8OuPHj2axYsXs3DhQs6cOcOcOXNYuXIlb7/9tmUfjUbDgAEDWLhwIWFhYQwaNKjQ77N+/foMHDiQ5557jpUrVxIREcG+ffuYMWMG69evB+CNN95g/fr1zJkzhzNnzvDZZ5+xYcMGq2/bDz/8MPv372fJkiWcOXOGiRMncuzYsTxf95577sHOzo5PPvmE8+fP88svv/Dhhx8Wuv0RERGMGzeO3bt3c/HiRTZt2sTp06ctN/4JEyawZMkSJk2axPHjxzlx4oSl9wSgc+fO3HvvvTz33HP89ddfbN++3SpZOTd79uxh6tSp7N+/n0uXLrFy5UquX79uec3Ro0czY8YMVqxYwalTpxg7diyHDx9mxIgRuZ6vZcuWODk58e6773L27FmWL1+eo+ezVq1aREREcPjwYWJiYkhNTc1xnoEDB+Lg4MDzzz/PsWPH2LJlC2+88QbPPvtsjhpEd2vq1KnUqFGDli1bsmTJEsLDwzlz5gxff/01DzzwgFVidXbXr1/n8OHDVj/ZZwIKUR79dvE3+q7py5HrR3AxuPB/D/0f77V6D3udva2b9q9iz1YpASWVwJppw9GrqtXU36ySVltN/U1tOHr1bppdIIVNYM109epVVb9+ffX0008ro9GYayLh//3f/6maNWtaHicnJ6s33nhDeXt7K3t7exUSEqL27t1reT4zMfPmzZuWbZmJyhEREZZt8+fPV7Vr11YGg0HVr1/fKlk10/HjxxWgatasqcxmc5GuQVpampowYYKqVauWMhgMyt/fXz3xxBPqyJEjln0+//xzVa1aNeXo6Kh69+6tJk+erPz9/a3OM2HCBOXn56fc3NzUm2++qV5//fV8E1iXL1+uatWqpezt7VXr1q3VL7/8YpXYmdt1Usr6dxYVFaV69+6tAgIClJ2dnapZs6aaMGGCMplMlv03btyo2rRpoxwdHZWrq6tq0aKF+vzzzy3Pnzp1SrVt21bZ2dmp+vXrq40bN+abwBoeHq66deumfHx8lL29vapfv7765JNPLM+bTCYVGhqqqlWrpgwGg2rSpInasGGD5fnsCaxKZSSs1q1bVzk4OKhHH31Uff7551YJrCkpKapPnz7K3d1dAWrRokVKKZWjnUeOHFEdO3ZUDg4OytPTUw0ZMsSSEKxUwRKNC+rWrVtq7Nixql69esrOzk75+fmpzp07q1WrVln+FnNLYCVjEp3Vz8SJEwv9+sVJEljF3UgxpqjJuydbklQHrBug/k74u1TbUNAEVo1S+SSAlBHx8fG4ubkRFxeXo+ZISkoKERERBAYG3tWqliazYm9ELNEJKfi6ZAzNlKUeEVEwQ4YM4eTJk2zfvt3WTRHirhXX55uofC7EXeDtbW9z6mZGkvgLjV7gjQffwKAt3ZIa+d2/s5JJ9//QaTW0rpN7ETZRds2ePZsuXbrg7OzMhg0b+Oabb5g/f76tmyWEEDaz5twaPvzzQ5KNyXjYezC13VTaVmtr62blS4IRUa7t3buXmTNnkpCQQO3atZk3bx4vv/yyrZslhBClLik9iSl7pvDLuV8AaOHfgmntpuHr5Gvjlt2ZBCOiXPvf//5n6yYIIYTNnYo9xdvb3uZC/AW0Gi3DmgxjaOOh6LS6Ox9cBkgwIoQQQpRTSil+OP0DM/bOIM2chq+jL9PbT6e5f3NbN61QJBgRQgghyqH4tHgm7ZpE2MWM9d/aVWvH5LaT8XQoG7WxCkOCESGEEKKcOXr9KKP/GM2V21fQa/SMbDaSZ4OeRaspn+XDJBgRQgghygmzMrPk+BI+PvgxRmWkWpVqzGo/i8Y+jW3dtLsiwYgQQghRDsSmxDJ+x3h2XMlY1qFrza5MajMJFzuXOxxZ9kkwIoQQQpRx+6L2MfaPsUQnR2Ovs2dM8zH0rd+3wqxSXT4HlyqBSZMm8cADD1geDx48mN69exd4f1FwDz30ECNHjrzr85TG70Cj0bB69eoSOfeFCxfQaDT5LiRYUCXZTiEqE5PZxILDC3h508tEJ0cT6BbI8p7LefrepytMIAISjNiERqPJ92fw4MG8/fbbbN682dZNFYVQGX9neQVgkZGR9OjRo/QbJEQFEp0UzZCwIcz/az5mZebxOo/zfc/vqe9RsNWuyxMZpskqIQr2L4LgF8DFv8ReJuuS9itWrGDChAmcOnXKss3R0ZEqVapQpUqVEmtDWWYymdBoNGi15SNWVkphMpkq9e8sO3//kvv3I0RlsP3v7YzfMZ6bqTdx1Dvyfqv36VWnl62bVWLKx6d9aUmIgm3TM/5bgvz9/S0/bm5uaDSaHNvu1OV/4MABfH19mTJlitX2b7/9llq1auHm5sYzzzxDQkKC5bnU1FSGDx+Or68vDg4OtG3bln379lme37p1KxqNhs2bNxMcHIyTkxNt2rSxCpQAFixYQJ06dbCzs+Pee+/l22+/tTzXv39/nnnmGav909PT8fb2ZtGiRbm+l8WLF+Pu7s7atWsJCgrC3t6eixcvkpaWxpgxY6hWrRrOzs60bNmSrVu3Wh37xRdfUKNGDZycnHjiiSeYM2cO7u7uludzG94aOXIkDz30UF6XlqVLlxIcHIyLiwv+/v4MGDCA6OjoHNfp119/JTg4GHt7e7Zv357jd7Z161ZatGiBs7Mz7u7uhISEcPHiRcvza9asoVmzZjg4OFC7dm1CQ0MxGo2W58+cOUP79u1xcHAgKCiIsLCwPNuc6ccff6Rx48Y4Ojri5eVF586dSUxMBMBsNvPBBx9QvXp17O3teeCBB9i4cWOe58r8vWS1evVqS9fw4sWLCQ0N5a+//rL06i1evBjIOUxz9OhRHn74YUu7hg4dyu3bty3PZ/6eZs+eTUBAAF5eXvznP/8hPT39ju85q4KcJ7chJHd3d0vbM4er/ve//9GuXTscHR1p3rw5p0+fZt++fQQHB1OlShW6d+/O9evXc7x2aGgovr6+uLq68sorr5CWlgbAkiVL8PLyIjU11eq1+/Tpw3PPPVeo9ykqrnRzOnP2z+G1za9xM/Um93nex/8e/V+FDkRAgpFyaevWrXTq1InQ0FDGjx9v2X7u3DlWr17N2rVrWbt2Ldu2bWP69OmW58eMGcNPP/3EN998w8GDB6lbty7dunUjNjbW6vzjx4/no48+Yv/+/ej1el588UXLc6tWrWLEiBG89dZbHDt2jFdeeYUXXniBLVu2ADBw4EB++eUXqxvNr7/+SmJiIn369MnzPSUlJTFt2jS+/PJLjh8/jq+vLy+88AI7d+7k+++/58iRI/Tt25fu3btz5swZAHbu3MmwYcMYMWIEhw8fpkuXLjmCs6JIS0vjww8/5K+//mL16tVEREQwePDgHPuNGTOGadOmceLECe6//36r54xGI71796ZDhw4cOXKE3bt3M3ToUMuN/Ndff2XQoEEMHz6c8PBwPvvsMxYvXmxpv9ls5sknn0Sn0/Hnn3+ycOFC3nnnnXzbHRkZSf/+/XnxxRc5ceIEW7du5cknnyRzYe6PP/6Yjz76iNmzZ3PkyBG6devGY489ZrmehdWvXz/eeustGjZsSGRkJJGRkfTr1y/HfklJSXTv3h0PDw/27dvHDz/8wG+//cbrr79utd+WLVs4d+4cW7Zs4ZtvvmHx4sWWAKEwius8EydO5L333uPgwYPo9Xr69+/PmDFj+Pjjj9m+fTvnzp1jwoQJVsds3ryZEydOsGXLFr777jtWrVpFaGgoAH379sVkMvHLL79Y9o+JiWHt2rW88MILhW6fqHiu3L7C4A2DWXQ844vbM/c+w9JHllLLrZZtG1YaVDkQFxenABUXF5fjueTkZBUeHq6Sk5OLdvL4SKWuHMr42b9YqYmuGf/N3BYfeRctv7NFixYpNze3HNsnTpyomjRpYnn8/PPPq8cff1ytXr1aubi4qOXLl+fY38nJScXHx1u2jR49WrVs2VIppdTt27eVwWBQy5YtszyflpamqlatqmbOnKmUUmrLli0KUL/99ptln3Xr1inAcn3btGmjhgwZYvXaffv2VY888ojlnN7e3mrJkiWW5/v376/69u2b7zUA1OHDhy3bzp49qzQajbpy5YrVvp06dVLjxo1TSinVr18/1bNnT6vnBw4caHU9M69bViNGjFAdOnSwPO7QoYMaMWJEnu3bu3evAlRCQoJS6t/rtHr1aqv9sv7Obty4oQC1devWXM/Zrl07NXXqVKtt3377rQoICFBKKfXrr78qnU6nLl++bHl+w4YNClCrVq3K9ZwHDhxQgLpw4UKuz1etWlVNmTLFalvz5s3Va6+9ppRSKiIiQgHq0KFDSqnc/zZXrVqlsn5sZP87zZS1nZ9//rny8PBQt2/ftjy/bt06pdVqVVRUlFIq4/dUs2ZNZTQaLfv07dtX9evXL9f3kpeCnCe3a+jm5qYWLVqklPr3Onz55ZeW57/77jsFqM2bN1u2TZs2Td17771Wr+3p6akSExMt2xYsWKCqVKmiTCaTUkqpV199VfXo0cPy/Ny5c1Xt2rWV2WzO9f3c9eebKDc2XdikWi9rrRotbqRaL2+tfrvw250PKgfyu39nJT0j+xfB5x0yftYMz9i2Zvi/2/bnPrRgC3v27KFPnz5888039O/fP8fztWrVwsXl3/nmAQEBluGFc+fOkZ6eTkhIiOV5g8FAixYtOHHihNV5sn7LDwgIALCc58SJE1bnAAgJCbGcw2Aw0LdvX5YtWwZAYmIiP//8MwMHDsz3vdnZ2Vm97sGDB1FKUb9+fUsuRpUqVdi2bRvnzp0D4NSpU7Ro0cLqPNkfF8WhQ4d4/PHHqVmzJi4uLpYhnUuXLlntFxwcnOc5PD09GTx4MN26daNXr158/PHHVrlCBw4c4IMPPrB6b0OGDCEyMpKkpCROnDjBPffcQ/Xq1S3HtG7dOt92N2nShE6dOtG4cWP69u3LF198wc2bNwGIj4/n6tWr+f7uSsqJEydo0qQJzs7OVq9rNputhgAbNmyITvfvol5Z/36nTp1qda2y/y6yyu88hZH179HPzw+Axo0bW23Lft4mTZrg5ORkedy6dWtu377N5cuXARgyZAibNm3iypUrACxatIjBgwdXqFkRonBSTalM/nMyo7aOIiE9gSY+Tfix1490qtnJ1k0rVZLAGvwC3PtP1n/kXxmBSK95ENAkY1sJJrIWVp06dfDy8uLrr7+mZ8+e2NnZWT1vMBisHms0GsxmM4Clqz77h55SKse2rOfJfC7zPAU5x8CBA+nQoQPR0dGEhYXh4OBwx5kVjo6OVucwm83odDoOHDhgdWMBLEmiubU9831m0mq1Obbll4eQmJhI165d6dq1K0uXLsXHx4dLly7RrVs3y9h/pqw319wsWrSI4cOHs3HjRlasWMF7771HWFgYrVq1wmw2ExoaypNPPpnjOAcHhxxthpzXPTudTkdYWBi7du1i06ZNfPLJJ4wfP549e/bg5eWV6zlyu4aZCnvt8pLfa2Tdnt/f77Bhw3j66actz1WtWjXP18vvPJmPC/K+cvt3kH1b1vPmJ/P4Bx98kCZNmrBkyRK6devG0aNHWbNmTYHOISqeiLgIRm8bzambGUH5i41e5PUHX8egNdzhyIpHekZc/KHqAxk/mQFIQJN/t5WhYMTb25vff/+dc+fO0a9fv0LdGOrWrYudnR07duywbEtPT2f//v00aNCgwOdp0KCB1TkAdu3aZXWONm3aUKNGDVasWMGyZcvo27dvjsDpTh588EFMJhPR0dHUrVvX6idzpsZ9993H3r17rY7bv3+/1WMfHx+rHgkg3zoaJ0+eJCYmhunTp9OuXTvuu+++In2rzvo+xo0bx65du2jUqBHLly8HoGnTppw6dSrHe6tbty5arZagoCAuXbrE1atXLefavXv3HV9Po9EQEhJCaGgohw4dws7OjlWrVuHq6krVqlXv+LvLysfHh4SEBEsCLOS8dnZ2dphMpnzbFBQUxOHDh63Os3PnTrRaLfXrF2yKoqenp9U10uuL/j0q+9/EmTNnSEpKKvL5svrrr79ITk62PP7zzz+pUqWKVQ/Xyy+/zKJFi/j666/p3LkzNWrUKJbXFuXLL+d+od/afpy6eQpPB08Wdl7Im83erJSBCEgwUu74+vry+++/c/LkSfr37281+yI/zs7OvPrqq4wePZqNGzcSHh7OkCFDSEpK4qWXXirw648ePZrFixezcOFCzpw5w5w5c1i5ciVvv/22ZR+NRsOAAQNYuHAhYWFhDBo0qNDvs379+gwcOJDnnnuOlStXEhERwb59+5gxYwbr168H4I033mD9+vXMmTOHM2fO8Nlnn7Fhwwarb9sPP/ww+/fvZ8mSJZw5c4aJEydy7NixPF/3nnvuwc7Ojk8++YTz58/zyy+/8OGHHxa6/REREYwbN47du3dz8eJFNm3axOnTpy03/gkTJrBkyRImTZrE8ePHOXHihKX3BKBz587ce++9PPfcc/z1119s377dKlk5N3v27GHq1Kns37+fS5cusXLlSq5fv255zdGjRzNjxgxWrFjBqVOnGDt2LIcPH2bEiBG5nq9ly5Y4OTnx7rvvcvbsWZYvX54jEbRWrVpERERw+PBhYmJicswUgYyeMgcHB55//nmOHTvGli1beOONN3j22Wctwx+l6eGHH+bTTz/l4MGD7N+/n2HDhuXoTSmqtLQ0XnrpJcLDw9mwYQMTJ07k9ddft5qmPnDgQK5cucIXX3xhlRwuKoek9CTG7xjP+B3jSTYm09K/JT/2+pGQaiF3PrgCk2AkKxd/6DC2TPWG5Mbf35/ff/+do0ePMnDgwDt+M800ffp0+vTpw7PPPkvTpk05e/Ysv/76Kx4eHgV+7d69e/Pxxx8za9YsGjZsyGeffcaiRYtyTJUdOHAg4eHhVKtWLUeeQkEtWrSI5557jrfeeot7772Xxx57jD179li+SYaEhLBw4ULmzJlDkyZN2LhxI2+++SYODg6Wc3Tr1o3333+fMWPG0Lx5cxISEvKdRunj48PixYv54YcfCAoKYvr06cyePbvQbXdycuLkyZP06dOH+vXrM3ToUF5//XVeeeUVS7vWrl1LWFgYzZs3p1WrVsyZM4eaNWsCGUMkq1atIjU1lRYtWvDyyy/fcaaQq6srf/zxB4888gj169fnvffe46OPPrIMkQ0fPpy33nqLt956i8aNG7Nx40Z++eUX6tWrl+v5PD09Wbp0KevXr6dx48Z89913TJo0yWqfPn360L17dzp27IiPjw/fffddrtfi119/JTY2lubNm/PUU0/RqVMnPv3008Je1mLx0UcfUaNGDdq3b8+AAQN4++23rfI87kanTp2oV68e7du35+mnn6ZXr145rpmrqyt9+vShSpUq+VZVFhXPqdhT9Fvbj1/O/YJWo+X1B17nsy6f4ePkY+um2ZxG5TY4XcbEx8fj5uZGXFwcrq6uVs+lpKQQERFBYGCg1U1IVE5Dhgzh5MmTbN++3dZNEZXM4MGDuXXrVoHK4Hfp0oUGDRowb968fPeTz7eKQSnFilMrmLVvFmnmNHydfJnRbgbB/nknwVcU+d2/s5IEVlGuzZ49my5duuDs7MyGDRv45ptvmD9/vq2bJUSuYmNj2bRpE7///rvNeoZE6YpPi2fSrkmEXcwoWtihegc+DPkQD4eC90hXBhKMiHJt7969zJw5k4SEBGrXrs28efN4+eWXbd0sIXLVtGlTbt68yYwZM7j33ntt3RxRwo5cP8KYP8Zw5fYV9Fo9bzZ9k2eDnpWp3LmQYESUa//73/9s3QQhAApU5fXChQsl3g5he2Zl5pvj3zDv4DyMyki1KtWY3WE2jbwb2bppZZYEI0IIIUQxiU2JZfyO8ey4kjGNvlutbkxsPREXO5c7HFm5STAihBBCFIN9Uft45493uJ58HXudPe+0eIen6j0lwzIFIMGIEEIIcRdMZhMLjyzks78+Q6Go7VabWR1mUd+jYEX9hAQjQgghRJFdS7zG2O1j2X8to/rzE3WfYGyLsTgZiqd2TWUhwYgQQghRBH/8/Qfv7XiPm6k3cdI7MaH1BHrW7mnrZpVLEowIIYQQhZBuSufjgx/zTfg3ADTwbMCsDrOo6VrTxi0rv6QcvCi0SZMm8cADD9i6GTz00EOMHDmyVF9To9EUqMLmndSqVYu5c+fe9XmEEKXrcsJlnt/4vCUQGXDfAJY+slQCkbskwYgNRUVFMWLECOrWrYuDgwN+fn60bduWhQsXFtsqorawdetWNBoNt27dKpPnK02LFy/G3d09x/Z9+/YxdOjQ0m+QEKLIfr3wK0+veZqjMUdxsXNhbse5jGs5Djtd4VYlFznJMI2NnD9/npCQENzd3Zk6dSqNGzfGaDRy+vRpvv76a6pWrcpjjz2W67Hp6enFtsqoLaWlpWFnVzn/Efv4yMJYQpQXKcYUZu2bxf9OZxRZfMDnAWa0n0HVKlVt3LKKQ3pGbOS1115Dr9ezf/9+nn76aRo0aEDjxo3p06cP69ato1evXpZ9NRoNCxcu5PHHH8fZ2ZnJkycDsGDBAurUqYOdnR333nsv3377reWYCxcuoNFoOHz4sGXbrVu30Gg0bN26Ffi3x2Hz5s0EBwfj5OREmzZtOHXqlFVbp0+fjp+fHy4uLrz00kukpKTk+b4uXLhAx44dAfDw8ECj0TB48GAgY1jl9ddfZ9SoUXh7e9OlS5c7tjO/8wGYzWbGjBmDp6cn/v7+OVZIzW7r1q20aNECZ2dn3N3dCQkJ4eLFi5bn87umuZ0re4/N4cOH0Wg0XLhwga1bt/LCCy8QFxeHRqNBo9FY2pd9mObSpUs8/vjjVKlSBVdXV55++mmuXbtmeT5zaOzbb7+lVq1auLm58cwzz5CQkJDv+xVC3J3zcecZsH4A/zv9PzRoeKnRS3zd/WsJRIpZhQtGlFIkpSfZ5KegCyDfuHGDTZs28Z///AdnZ+dc98leJGfixIk8/vjjHD16lBdffJFVq1YxYsQI3nrrLY4dO8Yrr7zCCy+8wJYtWwp9zcaPH89HH33E/v370ev1vPjii5bn/ve//zFx4kSmTJnC/v37CQgIyHchuho1avDTTz8BcOrUKSIjI/n4448tz3/zzTfo9Xp27tzJZ599dse2FeR8zs7O7Nmzh5kzZ/LBBx8QFhaW67mMRiO9e/emQ4cOHDlyhN27dzN06FDLtS7OawrQpk0b5s6di6urK5GRkURGRvL222/n2E8pRe/evYmNjWXbtm2EhYVx7tw5+vXrZ7XfuXPnWL16NWvXrmXt2rVs27aN6dOnF6ltQlREJrNi97kb/Hz4CrvP3cBkLvqi9EopVp9dzTNrn+HMzTN4OniysPNCRjYbiUFb/numy5oKN0yTbEym5fKWNnntPQP2FGhu+dmzZ1FK5Vgoy9vb29Lr8J///IcZM2ZYnhswYIBVkDBgwAAGDx7Ma6+9BsCoUaP4888/mT17tqUnoaCmTJlChw4dABg7diw9e/YkJSUFBwcH5s6dy4svvmhZfG7y5Mn89ttvefaO6HQ6PD09AfD19c2RL1G3bl1mzpxpeXyntTrudL7777+fiRMnAlCvXj0+/fRTNm/eTJcuXXKcKz4+nri4OB599FHq1KkDQIMGDSzPz549u9iuKYCdnR1ubm5oNBr8/f3z3O+3337jyJEjREREUKNGDQC+/fZbGjZsyL59+2jevDmQ0Qu0ePFiXFwyyko/++yzbN68mSlTphS6bUKUdyazYm9ELNEJKfi6OHAzMY0P14VjjItkoH4zk42d0Ln607/FPdTydsbXxYEWgZ7otHeuhpqYnsjkPyez9vxaAFoGtGR6u+l4O3qX9NuqtCpcz0h5kr33Y+/evRw+fJiGDRuSmppq9VxwcLDV4xMnThASEmK1LSQkhBMnThS6Hffff7/l/wMCAgCIjo62vE7r1q2t9s/+uDCyv4+7lbXtkNH+zLZn5+npyeDBg+nWrRu9evXi448/JjIy0vJ8cV7Twjhx4gQ1atSwBCIAQUFBuLu7W712rVq1LIEI5P9ehajINh6LpO2M3xn+xQYifnyP4V9s4LXlB4mMS8FXc4uR+pX4am4RFZ/K0t/2WvZpO+N3Nh6LzPfcJ2NP0m9tP9aeX4tWo+WNB9/gs86fSSBSwipcz4ij3pE9A/bY7LULom7dumg0Gk6ePGm1vXbt2hnnccx5ntyGc7IHM0opyzatVmvZlik9PT3X9mRNhs083mw23/F9FEX291GYduYmeyKvRqPJt+2LFi1i+PDhbNy4kRUrVvDee+8RFhZGq1atLMdnlfWaZne3bb/Ta2TfXtj3KkRFtPFYJK8uPYgCGv4TeISZmnFdeeS6v2+WfcLjPBi29CBvdq6Xo7dEKcX3p75n1r5ZpJvT8XPyY0b7GTTza1a6b7CSqnA9IxqNBieDk01+CroYkpeXF126dOHTTz8lMTGxSO+zQYMG7Nixw2rbrl27LMMOmbM1sn7zz5okWpjX+fPPP622ZX+cXeYMGZPJdMfzF6SdhTlfQTz44IOMGzeOXbt20ahRI5YvXw7c+ZoWte13andQUBCXLl3i8uXLlm3h4eHExcXl+dpCVDYms2LnmRjG/nSU7JkgHsTTUBNBQ00EjbQXAGikvUBDTQR1NFcs+2Uel723ZOXh04zaOoqpe6aSbk7noeoP8WOvHyUQKUUVrmekvJg/fz4hISEEBwczadIk7r//frRaLfv27ePkyZM0a5b/P4LRo0fz9NNP07RpUzp16sSaNWtYuXIlv/32G5DRu9KqVSumT59OrVq1iImJ4b333it0O0eMGMHzzz9PcHAwbdu2ZdmyZRw/ftzSi5ObmjVrotFoWLt2LY888giOjo5UqVIl130L0s7CnC8/ERERfP755zz22GNUrVqVU6dOcfr0aZ577jngztc0u7p161KjRg0mTZrE5MmTOXPmDB999JHVPrVq1eL27dts3ryZJk2a4OTkhJOTdV5R586duf/++xk4cCBz587FaDTy2muv0aFDh2If1hKiPNp4LJLQNRn5IK/p1/KH5n5u4moJPJ7Xh9FFd9DqmBmGL6weN9JegH86Ej2It/SWnEyL5/19k9Da3UKv1fNWs7cY2GCgrLRbyipcz0h5UadOHQ4dOkTnzp0ZN24cTZo0ITg4mE8++YS3336bDz/8MN/je/fuzccff8ysWbNo2LAhn332GYsWLeKhhx6y7PP111+Tnp5OcHAwI0aMsEwJLox+/foxYcIE3nnnHZo1a8bFixd59dVX8z2mWrVqhIaGMnbsWPz8/Hj99dfz3f9O7Szs+fLi5OTEyZMn6dOnD/Xr12fo0KG8/vrrvPLKK0DBrmlWBoOB7777jpMnT9KkSRNmzJiRo+1t2rRh2LBh9OvXDx8fH6vk3UyZVV09PDxo3749nTt3pnbt2qxYsaJI71OI8i7rrJiPfzvDq0v/zQcZqt/AUvsZrLMfbwk4sgYiYaYHcz3nDMMXrLMfzzr78fTQ7cUMxHsexrHmZ2jtbqExerOk+1IGBQ2SQMQGNKqg81FtKD4+Hjc3N+Li4nB1dbV6LiUlhYiICAIDA3FwcLBRC4UQovhVxs+3rL0gA/WbWWbsxHUy8kEaaiJYZz+e4WmvcU5Vo5H2AjMMX/BO+hCOmWsBGb0eS+1n5NhncvpAopUbAK76aGICtrHTKSM/zym+DqbIXjzToS0hdb0LPOtG3Fl+9++sZJhGCCGETWVO0w0Lj+LrnReAf5NT95vq4cstAMuwjKMmHRQkq4yk7mPmWhxXgf8cFwHAOVUtY9s/QzOBmkjeMyxjj4M943y8uK53xMFsZuyNmzx5+xJfaB1I2r6D4Vs6oXcLYGKvILo3Cii1a1DZSTAihBDCZrL3hPjwb08IQA/dPgbqf7c6Jns+SFbRyp25xieJVu5W29ebmjHfw5V4r4OggTppaVS9+hBfpzTma/7tUcmcdfPq0oMsGNRUApJSIsGIEEIIm8htmu55s79leAUgQgUwPC2jEKGv5hbvGZZbhmU8iKe97ijRyp0ANwfe79kAD2d7ohM6Migmie/2XiI63p0pPMrRe3ainP4GwPnWfXx3K4ynUhrn6FGBjFk3GiB0TThdgvxlyKYUSDAihBCi1GQOyUTFJfPhuhM5punOs7NebuI9wzLL/y8zZlRCzjosc8wQzH8HN6VVba8cQcPrD9flywNr+frUBZQpHmWyIzXqSe5JcMPRfpNlSjBgNSU4c2gnOs6dvRGxtK7jVTxvXuRJghEhhBClIvuQjK8xmABNRjiSGQx8nP4E51QAdTRXGWFYnSM5daA+Y62ozLBjep/GhNTNWR013ZTO3INzWRK+BIAGng14LGAM/70WR7SKZK7xSdrrjjJUv97quKxDQHONT7LzbLAktJaCChOMlINJQUIIUSgV6XMttyEZH27lyAcZYVhl9ThrL4gPNy35IP5uDnkmmV5OuMyYbWM4duMYAAMbDGRUs1HY6ezo3zSjZ2bn2WC+2LKfn00ZS0Bkn5mTOQT0xZb9/HTwiiS0lrByH4xklshOSkrKtYy6EEKUV0lJSUDOpQDKE5NZ8ee5G7lWTt1gas5yUycgZzBQR3PFMmSjISOPY1DnFtTy7si8fBa923hhI6G7QrmdfhtXO1cmh0ym4z3/LnSp02poXceLFoGe/HTwCuFxHhnt+mdoJjP4aaiJYKh+PT+bQiShtRSU+2BEp9Ph7u5uWTDMyangZdmFEKIsUkqRlJREdHQ07u7u6HQ6WzepSO5UObWaNpab5ozaE1fMGatzZwYDWWfF5NcLkinFmMKMfTP48fSPADzo+yAz2s0goErux+i0Gib2CuLVpQe50x1DElpLXrkPRgDL8uyygqkQoiJxd3e3fL6VNZmJqNEJKZYF5wDLtgsxScz97bRlWGaofgND9RuszpE1PyMzOTXTdTxIaPk284L875izce7WOd7e9jZnb51Fg4aXG7/Maw+8hl6b/y2ue6MAFgxqSuiacKLj3Pnc2MOS1CoJraWrQgQjGo2GgIAAfH19i7RqqhBClDUGg6HM9ohkT0SdbOxEupMvAIakaEvlVIX1Srr5VU41KQ3X8bBM0y1IjoZSitVnVzN1z1RSTCl4OXgxtd1U2lRtU+D30r1RAF2C/Pm/sNMkbd/MUvsZVs9nT2iNTuiY/RSiGBQpGJk/fz6zZs0iMjKShg0bMnfuXNq1a5fn/suWLWPmzJmcOXMGNzc3unfvzuzZs/HyKt7oUqfTldl/vEIIUZ7lVyU1zNSM40keVtsKWznV09lAzUd7M88173yQrBLTE/nwzw9Zd34dAK0DWjO13VS8HXPOrLkTnVZDSF1vhm/pRJipmaXN2QOmaOXOPJfKUZa/tBU6GFmxYgUjR460rDr72Wef0aNHD8LDw7nnnnty7L9jxw6ee+45/u///o9evXpx5coVhg0bxssvv8yqVatyeQUhhBBlyZ2qpOamoJVTM0OOqU80LnBy6IkbJxj9x2guxl9Ep9Hx+oOv82KjF9Fqir72a4tAT/RuAXkmtEJGwBQVn8Luczdkum8xK3QwMmfOHF566SVefvllAObOncuvv/7KggULmDZtWo79//zzT2rVqsXw4cMBCAwM5JVXXsl19VIhhBBlS0GqpLbWhlNHXQEyqqRCwSunFiQ5NZNSiuUnl/PR/o9IN6fj7+zPzPYzedA395V6C6MgCa26xGgu/vQdU42yfk1xK1QwkpaWxoEDBxg7dqzV9q5du7Jr165cj2nTpg3jx49n/fr19OjRg+joaH788Ud69uyZ5+ukpqaSmppqeRwfH1+YZgohhLgLd1MlNbdtha2cmpu41Dgm7JzA75czelseqvEQk0Mm42bvVpi3lq/sCa3Z17jxzTIsJdN9i1ehgpGYmBhMJhN+fn5W2/38/IiKisr1mDZt2rBs2TL69etHSkoKRqORxx57jE8++STP15k2bRqhoaGFaZoQQohiUJQqqZPTBxKtMoKC7L0gULjKqbk5HH2YMX+MITIxEoPWwFvBbzHgvgElUsYhM6E1Ixh7CNO6E5CYlmM/me5bvIqUwJr9D0AplecfRXh4OMOHD2fChAl069aNyMhIRo8ezbBhw/jqq69yPWbcuHGMGjXK8jg+Pp4aNWoUpalCCCEKqKhVUnebg3IsOFeUyqnZmZWZr499zaeHPsWkTNRwqcGsDrNo6NWwGN5t3jILo+0+dwNd4jUa/jP0JNN9S06hghFvb290Ol2OXpDo6OgcvSWZpk2bRkhICKNHjwbg/vvvx9nZmXbt2jF58mQCAnL+Qdrb22Nvb1+YpgkhhLgLJrMidE14kauk5qYwlVOzu5F8g/E7xrPz6k4AegT2YEKrCVSxq1LEd1h40QkpDNRvZqR+pdV2me5b/AoVjNjZ2dGsWTPCwsJ44oknLNvDwsJ4/PHHcz0mKSkJvd76ZTKn31akdReEEKK8MpkVi3dGYIyLzNELUNAqqe5OGdN1o5MKVzk1N39G/sm47eOISY7BQefAuJbjeKLuE6VeXdvXxYHJRpnuWxoKPUwzatQonn32WYKDg2ndujWff/45ly5dYtiwYUDGEMuVK1dYsiRjpcRevXoxZMgQFixYYBmmGTlyJC1atKBq1arF+26EEEIUStYckU/sPqGV9qTV84WpkgqZFVgL1wuSyWg2suCvBXxx5AsUirrudZnVfhZ1PerexTssujtN99UA/m7/Vp8VRVfoYKRfv37cuHGDDz74gMjISBo1asT69eupWbMmAJGRkVy6dMmy/+DBg0lISODTTz/lrbfewt3dnYcffpgZM2bk9RJCCCFKQfYckVbak3ddJbWouRNRiVG888c7HIw+CECfen14p8U7OOpttwBqftN9Mx9P7BUkyavFQKPKwVhJfHw8bm5uxMXF4erqauvmCCFEuWcyK9rO+J3IuBQgI/F0nf14eqZOsaxam/UxZBT9ev/RhvgXsEpqQW27vI33dr7HrdRbOBucmdh6Ij0CexTLuYtD9hlGy4yd0Ln607/FPdTydraszSNBSU4FvX9XiLVphBBCFExmDZGdZ6/nmiOSOVOkjuaK5ZiiVEktiHRTOv938P/4NvxbAIK8gpjVfhb3uOas5m1LWaf7Rid0ZFBMEt/tvcTS3/Za1uaRImh3R3pGhBCiksj+Dd+JFIbq1+e5/5/m+3gj7Y0SudFejr/M6D9Gc/zGcQAGNRjEm83exE5nV2yvURKsh7b+7T0K/6f3SIqgWZOeESGEEBa51RAZlPoOP5tCgLxnigzr2YbBIYHFOgSxMWIjk3ZPIjE9ETd7NyaHTOahGg8V2/lLSl7Tn0GKoN0tCUaEEKICM5kVf567wdifjua4id7E1ZIPktdMkeIMRJKNyczYO4OfzvwEQFPfpsxoPwN/Z/9iOX9J2xsRm+/QFkgRtKKSYEQIISqorMMyr+nX8ofmfm7imutN1IN/1wAriZki526d4+1tb3P21lk0aBhy/xBebfIqem35uQ1JEbSSU37+CoQQQhRY9mGZofoNDNVvsNon6030c2OPuy5WlhulFKvOrmLanmmkmFLwcvBievvptApoddfnLm1SBK3kSDAihBAVTF65DfnVEIlW7vTr2Jx5db2LbZrq7bTbfPjnh6yPyEiSbVO1DVPaTsHbsWAL5JU1UgSt5EgwIoQQFcSdpu06atJBQbLKKN2e/Sb6Zpf6xTYsE34jnNHbRnMp4RI6jY7XH3ydFxu9iFajLZbz24IUQSs5EowIIUQFkJkfklnEbOQdchsyFfdNVCnF8pPL+Wj/R6Sb0wlwDmBm+5k84PvAXZ+7LOjeKIAFg5oSuiac6DjrdXje79kAN0c7fj58RQqhFZLUGRFCiHIua36IDzcZqN/MRmMwOk3Gx3v2YRkP4mmvO8oXxp7FWkMkLjWO93e+z5bLWwDoWKMjH4Z8iJu9212fu6zJ7IWKTkjB18WBm4lpfLjOukqrFEKTOiNCCFEpZM8P8f2nhkiYqVme03YBjhmC+e/gprSq7VUs394PRR9izB9jiEqMwqA18FbwWwy4b0Cpr7RbWnRajWX67sZjkfxnuXUNlzBTM8LjPHh16UEphFYAEowIIUQ5tjci1jI0UxCZocH0Po0JqXv3iaRmZebrY1/z6aFPMSkT97jcw6wOswjyCrrrc5cHUgiteEgwIoQQ5ZTJrNh5NgYfbuKbTyEuk9KUyLTdmOQY3t3+LrsjdwPwSOAjTGg9AWeD812fu7yQQmjFQ4IRIYQoh7IWNPvE7hNaaU9aPZ+9EJex3dhinba7++puxm0fx42UGzjqHRnXYhy96/ausMMyeZFCaMVDghEhhChnshc0a6U9mWcNEQ2Aix8/F9O0XaPZyPzD8/ny6JcoFHXd6zK7w2zquNe563OXR1IIrXhIMCKEEOVIXjkK51S1jOTULMmqlpVkH2taLIFIVGIUY/4Yw6HoQwA8Vf8p3mn+Dg76ynujlUJoxUOCESGEKEfulKNQR3PFsm9x5odsubSF93e9T1xqHFUMVZjYZiLda3W/6/OWd1IIrXhIMCKEEOVIQXIU/jTfx6NtHmBoz5C7vgmmmdL4vwP/x9ITSwFo6NWQWR1mUcOlxl2dtyLJrxBaZa8zUlASjAghRDmQWWTrzLUEVhQkRyGowV0HIpfiL/H2trc5EXsCgOeCnmNk05EYdIa7Om9F1L1RAF2C/P8phNaReS4ONKvpwYGLN6UiawFIMCKEEGVc1pkzA/WbgU55FjQrrhyF9efX88GfH5CYnoi7vTuTQybToUaHuzpnRZe9EFqHWVssv7PJUpE1X+V3xSIhhKgEMmfORMalWKqrZtYUya44chSSjclM2jWJd7a/Q2J6Ik19m/JDrx8kECmEvH5nUXEpvLr0IBuPRdq6iWWO9IwIIUQZlV91z0zRqvhyFM7ePMvoP0Zz9tZZNGgYev9QhjUZhl4rt4qCkoqsRSN/YUIIUUYVqLqncr/rgmZKKVaeWcn0vdNJMaXg7ejN9HbTaRnQsnjeSCUiFVmLRoIRIYQoowpa3TPQr2ORb2y3027zwe4P2HBhAwBtqrZhatupeDnKjbIopCJr0UgwIoQQZUyhZ84Usbrn8ZjjjP5jNJcTLqPT6HjjwTd4odELaDWSTlhUUpG1aCQYEUKIMqQ0Zs4opVh6YilzDszBaDYS4BzAzPYzecD3geJ8K5WSVGQtGgl/hRCijCiNmTO3Um4x/PfhzNw3E6PZSKd7OvFDrx8kECkmmRVZAanIWggSjAghRBlQlJkzCwY1LdTMmYPXDvLUmqfY+vdWDFoD77Z8l/976P9ws3e7+zcgLDIrsvq7Odz176yykGEaIYQoA0py5ozJbOKrY18x//B8TMpELddazOowi/s87yv+NyKA3CuySgXWvEkwIoQQNmYyK3aejSmRmTMxyTGM3T6WPZF7AHi09qO81+o9nA3OxdN4kaesFVlF/iQYEUIIG8qasDpEn8yg1He4iWuxzMLYdWUX43aMIzYlFke9I++2fJfH6zyORiPfzm0lc6ZUdEKKrFeThQQjQghhI5kJqwpoqLnFUP0Gfja1zZg9cxezMNLN6fz30H/56thXANTzqMfs9rOp7V675N6MuKPsM6VkvZp/SQKrEELYQEESVjMVZhZG5O1IXtz4oiUQebr+0yx/ZLkEIjYm69XkT3pGhBDCBu6UsOpBPJ8bHynUmjObL23m/Z3vk5CWQBVDFSa1mUS3Wt1K9o2IO5L1au5MghEhhChFmTkDG45FFihhtV/HYN7scm++N6k0Uxof7f+I5SeXA9DIqxEzO8ykhkuNknkTolBkvZo7k2BECCFKSfacgY3G4DuXDa/rk28gcjH+IqO3jeZE7AkAng96nhFNR2DQGUr8/YiCkfVq7kyCESGEKAXZk1VH6lcSZmp2V6Xe151fxwe7PyDJmIS7vTtT2k6hffX2Jf5eROHIejV3JsGIEEKUsMIkq8KdE1aT0pOYvnc6q86uAqCZXzNmtJuBn7Nf8TRYFCtZr+bOJBgRQogSVpCcAZPSWJUNzyth9czNM7y97W3Ox51Hg4ZXmrzCK/e/gl4rH+dlVeZ6Na8uPSjr1eRB/nqFEKKEFTRnILb5W8xrFJBrISylFD+e+ZEZe2eQakrFx9GH6e2m0yKgRam8B3F3MterCV0TTnSce4ECz8pEghEhhChBJrMiJiGVZQXJGWgUkOtsioS0BEJ3h/LrhV8BCKkWwpSQKXg5Vs6ZF+WVrFeTNwlGhBCihGSfPbPM2InreBQqZ+BYzDFGbxvN37f/Rq/RM7zpcJ5v+DxajdSsLI9kvZrcSTAihBAlIK/ZM9eVh9V+eeUMKKX4Nvxb/u/g/2E0G6lWpRoz2s+giU+T0nsTQpQSCUaEEKKY3Wn2TLTKP2fgZspN3t/5Ptv+3gZAl5pdmNRmEq52rqXQeiFKnwQjQghRzAoye2aZsRPDerZhcEigVY/IgWsHGPPHGKKTorHT2jG6+Wj63dtPVtoVFZoEI0IIUcwKOnvG26WjJRAxmU18cfQLFvy1ALMyU8u1FrM6zOI+z/tKte2idGUuDxCdkIJvJU5olWBECCGKSeaN5cy1BFYUouLm9aTrjNs+jj1RewB4rM5jjG85HieDk03ehygd2ROcJxs7oXcLqJRTfSUYEUKIYpD9xgKdClTqfeeVnby7411iU2Jx1DvyXqv3eKzOY7Z6G6KU5JXgHB7nwatLD7JgUNNKFZDI3DAhhLhLmTeWyLgUfP+5sfj+ky+SXWYH/HuP1mfeobkM+20YsSmx1Peoz/ePfi+BSCWQX4Jz5rbQNeGYzAVdQKD8k54RIYS4CwVZdyb77JnhXb347vI4/rr+FwD97u3H6OajsdfZl06jhU0VJME5Os6dvRGxlaYmiQQjQghxFwp0Y1HuGNuNZV5db27rDjFx92skpCXgYnAhNCSULjW72KTtwjYKmuAcndCxtJtmMxKMCCHEXSjojaW6Twi/X1/I96e+B6Cxd2Nmtp9JdZfqpdpeYXu+Lg5MLkSCc2UgwYgQQhRRQdediTKY8Ts/isuJZwF4oeELvNH0DQxag62aLmyoRaAnercAwuM8Mob3CrE8QEUlwYgQQhRBQdedMbgewiFgNZcTU/Gw92BK2ym0q97Oto0XNqXTapjYK4hXlx4ke0WRvJYHqOhkNo0QQhRSQWbPmDXpOAT8gEO1FaBNpbl/c3587EcJRASQsYLvgkFN8XdzyJHgXNmm9YL0jAghRKEUZN2ZCdruXKm1GoN9LBq0vPrAMIY2HopOqyvVtoqyrXujALoE+f9TgbUj86QCqxBCiILIb/aMMituu59gle9p0BrxcfRlRvvpNPdvbrsGizJNp9VUmum7+SnSMM38+fMJDAzEwcGBZs2asX379nz3T01NZfz48dSsWRN7e3vq1KnD119/XaQGCyGELZjMit3nbrDhWEaOyDr78ayzH2+ZNfOe3Zc0qP5/3PTfDloj9V2a8+NjP0ggIkQBFLpnZMWKFYwcOZL58+cTEhLCZ599Ro8ePQgPD+eee+7J9Zinn36aa9eu8dVXX1G3bl2io6MxGo133XghhCgN2ZNVNxqDrWbPPOv8DS/6BJJslwxKiz66PaNCJuDpUHlmQwhxNzRKqULVm23ZsiVNmzZlwYIFlm0NGjSgd+/eTJs2Lcf+Gzdu5JlnnuH8+fN4ehbtH2Z8fDxubm7ExcXh6upapHMIIURRWK8hEsE6+/H0TJ3yz7ozihqev3DbdxdGjQZzmgcpV/rja1+fHe88XCnH/oXIqqD370IN06SlpXHgwAG6du1qtb1r167s2rUr12N++eUXgoODmTlzJtWqVaN+/fq8/fbbJCcn5/k6qampxMfHW/0IIURpyy9ZVaNLxLH6N9zy241Ro8ExvjZJEcMxp9xT6aZlCnG3CjVMExMTg8lkws/Pz2q7n58fUVFRuR5z/vx5duzYgYODA6tWrSImJobXXnuN2NjYPPNGpk2bRmhoaGGaJoQQxS6vZNWqzge54h+OyZAIZh1tYqpx4MZT+Lt5VMrl34W4W0WaTaPRWEf8Sqkc2zKZzWY0Gg3Lli3Dzc0NgDlz5vDUU0/x3//+F0dHxxzHjBs3jlGjRlkex8fHU6NGjaI0VQghiix7qXcTsMDdlb3uezFrNASmpfNAZBA0eZ9PGgVU2mmZoniZzOqf6b4p+FaS6b6FCka8vb3R6XQ5ekGio6Nz9JZkCggIoFq1apZABDJyTJRS/P3339SrVy/HMfb29tjby+qVQgjbyV7q3ahPJLXqem44xQLgfKs+6dfassHsw7xGATI9UxSL7MnSk42d0LsFVPget0LljNjZ2dGsWTPCwsKstoeFhdGmTZtcjwkJCeHq1avcvn3bsu306dNotVqqV5cFooQQZc/GY5G0nfE7C9ftYqB+M5FOsfxdaxU3nGJxNJvxutqRqMgXOWmuj94toFKtISJKTl6VfaPiUnh16UE2Hou0dRNLTKHrjIwaNYovv/ySr7/+mhMnTvDmm29y6dIlhg0bBmQMsTz33HOW/QcMGICXlxcvvPAC4eHh/PHHH4wePZoXX3wx1yEaIYSwpaw3BB/NDcw+v5N+zw9o9YkYUrxYcTUK5/j6lXYNEVEy8kuWztwWuiYck7lQE2DLjULnjPTr148bN27wwQcfEBkZSaNGjVi/fj01a9YEIDIykkuXLln2r1KlCmFhYbzxxhsEBwfj5eXF008/zeTJk4vvXQghRDHIekPQGGK5Vu0XFjlmTEdMi22FfXQIP+u2WdYQqehd56L05FfZN3Pxxeg4d/ZGxFbIIcFC1xmxBakzIoQoDbvP3WD4Fxuo4nKQGwHbULo0XExm6l57kBvxrYCMtWeG9WzD4JBA6RERxebnw1eI+PE9S7J0buYanyTwqck8/kC1UmzZ3Sno/VvWphFCVHqZsxfWHr1IYMDXnHC/DsD9KanMvB5DNePfYL8GyLgheLt0lEBEFCtfFwcm/5MsDRk9IjMMX/BO+hCOmWsBGYHwPBcHG7ay5EgwIoSo1DJnL6QlH6NK9WXEumcUZHS50YSqN3ypZviq0twQhO20CPRE7xZAeJxHRo7IP0Mzx8y1OK4C0QD+bg4VNlm6SAvlCSFERZCZrHpd7SI9cDGx9slojQ4kXXqBq9H9CTfXBv69IYSrQJk9I0qETqthYq8gALL3uVWGZGkJRoQQlZLJrJi09hD2Af/Dsdr/UFojLZJT8L/wFKbEe3PsXxluCMK2ujcKYMGgpvi7ORCt3JlrfNKSLL1gUNMKnSwtwzRCiEpp5bF9JHnOwGAfC0pDvRu1+TxhC++ar6PXRABgUhqrG4LMnhElrXujALoE+f9TgbUj8ypJBVaZTSOEqFSUUvxw+gem7ZmOUaXjazQy/foNmqek5th3rvFJYpu/RQ8p9S5EkchsGiGEyCY+LZ6JOyfx26WMKtLahDoYokKYZHLMe/aClHoXosRJMCKEqBSOXD/C67+N4mbaNVBaWsRU5a+YPpzkn2TUSjZ7QYiyRBJYhRAVmlmZWXxsMc+uf46badcwp3nid/Fxvrq9Cz9NXK7HSLKqEKVLekaEEBVWbEos43eMZ8eVHQCkxzcmJbIP9ioSsi0Mnn32giSrClF6JBgRQlRI+6L2MfaPsUQnR2PQ2qGudKRGXE00ROa+7odyx9huLPPqekuyqhClTIIRIUSFYjKb+PzI5yw8shCzMhPoFkhPvzEkn/qKkfZfWO07w/Dv47nGJwn06yjJqkLYgAQjQogKIzopmrHbx7Ivah8Avev2ZlyLcfx1KZnhlXjdDyHKOglGhBAVwva/tzN+x3hupt7EUe/I+63ep1edXpjMCrM5iXRHX44ne2TsLDNnhChTJBgRQpRr6aZ05h2ax+LjiwG4z/M+ZrWfRS23WpZF8IxxkQzWb2YZnbiOh9XxMnNGCNuTYEQIUW79nfA37/zxDkdijgDQ/77+vBX8FvY6e8sieApoqLnFSP1KwkzNuK48ZOaMKHdMZvVPifgUfCtgiXgJRoQQ5dKmC5uYtGsSCekJuNi58GGbD+lUsxOQ8cEduiacvNa6uI4Hiw39+e/gprSq7VWhPtRFxZO1h2+gfjOTjZ3QuwVUqCBaghEhRLmSakpl1r5ZrDi1AoAmPk2Y2X4mVatUtXx73Hn2Osa4SBpqbgHkPpU32R2tRiOBiCjT8urhC4/z4NWlByvMar4SjAghyo3zcecZvW00p2+eBuClRi/xnwf/g0FryPHtcYg+haH69VbHZ5/KG53QsVTbL0Rh5NfDp8jIdwpdE06XIP9yH1RLMCKEKBd+PvszU/ZMIdmYjKeDJ1PbTiWkWgiQ+7fHQanv8LMp43mZyivKo70RsXfu4YtzZ29EbLmvjyPBiBCiTEtKT2Lyn5NZc34NALWrPMCwoPdpFVAPk1nx57kbjP3paI5vjzdx5bgKzHggU3lFORSdkMJA/WZG6ldaba+IPXwSjAghyqyTsScZvW00F+IvgNKgv96WDmeSmLBvL+OcLgBgSIrmNf1a/tDcz01cc/326EG85ZwylVeUF74uDkyuJMX6JBgRQpQ5Sim+O/k9s/bNwqjSMae7knKlP/elwCj78Ww2BXM8KaNeSEPNLYbqNzBUv8HqHFm/PX5u7CFTeUW50yLQE71bAOFxHhk9fxW4h0+CESFEmRKfFs8rG97h2K2MlXZr3HYj+urzJJqqgiYiz+OGp73GOVUtz2+P/To2l0XwRLmi02qY2CuIV5ceJPtfbEXr4ZNgRAhRZvx1/S/e+O0tbqZdQykdHtEtWJe0ghHqPOc0qZYhmNbacOqoKwD4/pPc56hJBwXJygDk/Pb4Zpf6FeJDW1Qu3RsFsGBQU0LXhBMdV3GL9WmUUnnVBSoz4uPjcXNzIy4uDldXV1s3RwhRzNJNJqbsWMiqC19gxoQ5zZPkKwNokJrOOvvxRTpnz9QphP+TwFpRajGIyqu8VmAt6P1bekaEEDb146FwJu+diMnhJACOcXXwutYOrTnd0hPycfoTnFMB1NFcZYRhNZPTBxKt3ICMnpH3DMstwzIexNNed7RCfnsUlZdOqyn303fzI8GIEKLUZX7LW/bXZrbEzkXrkIDGrOP92GhSb9ZhkOEDq/1HGFZZPd5tDrJM2234Tx5J5rAMwDFDsJR6F6IckWBECFGqNh6LZNKao6QYfsLkvQutAUypvlS72p6+zGGQqQXfmToDOacy1tFcYZ7d/DzPnRl2TO/TmJC63qXwboQQxUGCESFEico61n0hJomPt+7Dvur36J0zejQCbtVAd60L92uugAGqaWO5ac4YW75izpiymNnrkXW1XXenjETV6KSKm9QnRGUhwYgQosRkXy9miUMtHAPXo9UnoTEZmHYjkp6Jl8Bup+WYrPVBlhmtK0tex4OElm8zL8jfUlshI9DpyLxylNQnhLAmwYgQothk7wWZ+9tpFBCkuUG67++ku7miBQwp3rSJvI+eLM+RnJq1PohJabiOB9HKnYA8ej0qclKfEJWFBCNCiCLLHnx8t/cSpviMXpBlxk4oPNAYbnCt2i8sccwYehkYl8Co2EvYcRDImZyaNRHV09lAzUd7M89Vej2EqMgkGBFCFEn2IZhlxk5cx8Oyau5+Uz2quBzghv8fpOnScDWZaBzViKu36/A2OafkZk1OzQw5pj7RWPI/hKgEJBgRQhRIXkMwmcFHmKkZ11XGejEpGg2agHXEuGUsUPdASiozo2MIMF0Bu4zzZeaD5JacKomoQlQuEowIIe4ot14QhYfVPnU0GeXZazkcY0BVP87YxYOCe2LrUu+GLwGG763yQTyIZ6B+i+X47MmpMiQjROUhwYgQIleZPSFh4VF8vfMCgNUQjC+3AP6tkmo3n9VVnJnm5UGy1g5Pk4lp0Tdok3KJZRrrXhAAH25aekLySk4VQlQOEowIIXLI3hPiQ0Y+SKYeun0M1P9ueZyo0fChtyfrqjgD0Co5GeerPZiSfi9g3QuiARQwqHMLannLlFwhiqK8rlWTFwlGhBBWNh6L5NWlB63yQc6b/Tmnqll6QSJUAMPTXgPA4PA3p6ru46LBAEpDYEx9PrsdRq/0e3PtBZF8ECHuTvYvC5ONndC7BZTrf1cSjAghLExmReiacLIv5Z29BPt7hmUo4DuXKsz09MSkNaBLdybhyrOYUhRa+zBAekGEKG65fVkIMzUjPM6DV5ceLLcrVEswIoSwdPnuPHsdY1wkDTW3APJcNXeUaTA7/M6T7JLx/EOJSZy58jy3TLWIll4QIUpEXl8WICPo1wCha8LpEuRf7gJ+CUaEqOSyd/kO0acwVL/eap+shckO29vxu89eTIbbKKXDcO0haifc4k+TP/6u9vRvIb0gQpSEvRGxuX5ZaKS9AOaMfaLj3NkbEVvuKhNLMCJEJZZbl++g1Hf42RQCWK+ae9RcE4PXH1z0PoFJcxtzmhfJV/ozom1Hank7S/AhRAmLTkhhoH4zI/UrrbZnXc9prvFJohM6Zj+0zJNgRIhKKq8u35u4WhJPM79t/aXx5WL1LeirnAE0aOMa4Jz0PB89VT7Hp4Uoj3xdHJhs7ESYqRlg/WUhs35PtHJnnouDDVtZNBKMCFFJFaTL14N49jjYE+nzE3p9EspsoHmVFxgS0p+Wtb2kF0SIUtQi0BO9WwDhcR4ZXyL++XeaWb9HA/i7OVhWtC5PJBgRohIymRU7z8bk2+VrBIa6NuNlTz/QJKFN9+fNJh8wuHlrG7RYCKHTapjYK4hXlx4k+9eAzMcTewWVyy8JEowIUclkTVgdok9mUOo73MTVqsv3sNabG1U3k+oUBUBbv57MengCVeycbNx6ISq37o0CWDCoKaFrwomOqzjrOUkwIkQlkj1hdah+Az+b2mbkiPzT5bvPUcO1gFVo9Ulgtmda+1AerdPTpu0WQvyre6MAugT5/1OBtWLMXJNgRIhKIr8aBQAKE7M83bnuthEtYEquxrvBk3m0TnBpNlMIUQA6rabcTd/NjwQjQlRwdypo1kh7AaMunpiqv7LE0RUAw+0OTGs3mkfvr2mjVgshKhMJRoSowApS0Kyj+zL+8PYkWavF3qSjjddb/N+zg8p1l68QonyRYESICupOBc0a6M7h4reKH11dALBP8ocrT9C/wyMSiAghSpUEI0JUQHcqaKa1u0ZktYOkO7iAgtQbHbl9vTP+bs7lskaBEKJ8k2BEiAoor4JmDbUR3HY5yU2/naRrjXgZTeiuPsb5xHZA+a1RIIQo3yQYEaKCyaugWaJGg7bqKmKrOANQI9GZttfqsiq1UbmvUSCEKN8kGBGiAsmroFkNxyNcrvoHlwwGUBrcrjcn+sZD2HVswby63uW+RoEQonzTFuWg+fPnExgYiIODA82aNWP79u0FOm7nzp3o9XoeeOCBorysECIfmQmrkXEp+P5T0CwWF067X2VnjT1cMhjQpVch6eIrXLnxJAa3qrzZpT6t68gaM0II2yp0MLJixQpGjhzJ+PHjOXToEO3ataNHjx5cunQp3+Pi4uJ47rnn6NSpU5EbK4TIXW4Jq3FaLTHVNuHgvwa0Zh5KTMI/og/m5FqA5IcIIcoOjVIqr4KMuWrZsiVNmzZlwYIFlm0NGjSgd+/eTJs2Lc/jnnnmGerVq4dOp2P16tUcPny4wK8ZHx+Pm5sbcXFxuLq6Fqa5QlRoWQuardiyH99/ElarOR3iQtVdROr1oLRUjX6AJ+NT+dL4KHq3AMkPEUKUioLevwuVM5KWlsaBAwcYO3as1fauXbuya9euPI9btGgR586dY+nSpUyePPmOr5OamkpqaqrlcXx8fGGaKUSlkFtBs5f16/nazZVPPdwwafTck57OzOgYGqZdYC5P0q9jMG92uVd6RIQQZUqhgpGYmBhMJhN+fn5W2/38/IiKisr1mDNnzjB27Fi2b9+OXl+wl5s2bRqhoaGFaZoQlUpuBc36GYfzhW8bUpz/BuCR24mkRz3GGGNdAKKVO/Pq+kggIkQFldlTGp2Qgm85WzyvSLNpNBrrN6eUyrENwGQyMWDAAEJDQ6lfv36Bzz9u3DhGjRpleRwfH0+NGjWK0lQhKpzc8kP+dLDnpM+vmPXJKLMBr2ttmJ7yLY8a63JcBaIB/N0cpKCZEBVU9p7SycZO5WpItlDBiLe3NzqdLkcvSHR0dI7eEoCEhAT279/PoUOHeP311wEwm80opdDr9WzatImHH344x3H29vbY29sXpmlCVHi5LXinMGPw2cxQT1+UJhlDqgdeVzrjl6ZH888/ocyvCZKwKkTFlFtPaZipGeFxHry69CALBjUt8wFJoYIROzs7mjVrRlhYGE888YRle1hYGI8//niO/V1dXTl69KjVtvnz5/P777/z448/EhgYWMRmC1G55JYf8pj9r7zj68VBBwdAQ5/427wTexlHzV98ruvBXOOTRCt3KWgmRAWW19IPAIqMLyOha8LpEuRfpr+MFHqYZtSoUTz77LMEBwfTunVrPv/8cy5dusSwYcOAjCGWK1eusGTJErRaLY0aNbI63tfXFwcHhxzbhRC5y+1bTy/DIP4bUBuzLhW9ScfUG9fYemsgT5lrARn5If06NpeCZkJUcHkt/dBIewHMGftEx7mzNyKW1nW8bNLGgih0MNKvXz9u3LjBBx98QGRkJI0aNWL9+vXUrFkTgMjIyDvWHBFCFEz2bz0KEzM83bng9kfG88nVCLjajh7amXxqrmWVH/Jml/oShAhRwUUnpORY+gFghuELy//PNT5JdELH0m5aoRS6zogtSJ0RURmZzIrFOyNYuG4XvppbpBviSKy2nniHjKnuLrGNcb/eEk+VyFL7GfRMnUK4yhj6LA9jxEKIu7f73A2Gf7HBUmOokfYCMwxf8E76EI5l6SmdN6SHTXpGSqTOiBCidGTNEfnE7hNuulwi1NuTRK0WN5OJD2Ni6Zi0DuzW8blR8kOEqKxaBHqidwsgPM4jowf1n6GZY9l6Ssv6TDoJRoQoY7LmiDTQXmejTzQ/uXoD4JHkzv9ijvN/KS8yW/JDhKj0dFoNE3sF8erSg2T/l1+eZtIVaaE8IUTJyJojorW7xrVaq/jJtQooSI15mCqX+uJvMlm+9YSrQPRuAbLgnRCVWPdGASwY1BR/NweilbtVT2l5GbKVnhEhyoCsNUTS465S030PN/12kq414m00UTuyJVGJ9aijuWI5pjx96xFClKzujQLoEuT/TwXWjsyrDBVYhRDFJ2t+SF+7TdSsfp7TLnEAtElKZsr1G3ibV4J9Rrb8n+b7JD9ECJGDTqsp09N38yPBiBA2lDU/pJ7DGbZV38slgwGUBrfrzXG75Y634cscmfHDerZhcEhgufnWI4QQ+ZFgRAgb+Tc/RGHw2EWU7zrQGtClVyH+yrMkJNfkuCYCyJkZL4GIEKIikWBECBvIrCGSnnAe3+q/kOxyAYCHE5PQRnbktNEMmgg8iLccIzkiQoiKSoIRIUpZZo5IWto+qtReTqxBYVCKt2JvMiD+NhrdN6DL2FdqiAghKgMJRoQoRRk5IvsxeG3DPmATsRqFY5oTble6cyQ9kYG5VE6UGiJCiIpOghEhSonJrJi4bg8ONZagr3IGgEduJ3Lk6gucMN2LXR75IbLGjBCiopNgRIgSlllD5Ifjm0nynoNen4jGrKdR9H1MT17PWK6i1dhJDREhRKUlwYgQJWjjsUgmrTlKit2PmLx2gx7qpqXxUfRVaqefB6xX15QaIkKIykiCESFKyMZjkbz2/e/YV/sevdMFADxv1iEl+iHeUPo8V9eUGiJCiMpGghEhipnJrPjz3A3eWf8dToEr0OiT0JjsmHnjKp/EvsJxFZixYx6ra0ogIoSobCQYEaIYZQzLHCHF4TvMfgfQAHbJPrSJuo/uLGOL9oIlCJEaIkIIkUGCESGKycZjkby2YhMO1b5D55iRjPpsXDxvxl7CwAHAOj9EaogIIUQGCUaEuAuZM2Wi4pIJ3bIMp8Af0OhS0ZrsmXf9Mj/FvUhvVS3P/BCpISKEEBKMCFFkmZVU0+MvUTNgCSbvGDSAfZI/baLupYPmDOs16aAgWRkAqSEihCg9mV+WohNS8HVxKNNfeiQYEaIIMlfb1dhdwz1wMaftb4KCV27FMezWJfSavYD1sEwmyQ8RQpS0zC9LxrhIBuo3M9nYCb1bQJkdDpZgRIhCsMyU+ekIeve92PutIV2bjrfRhOvVzmxIqs8GyDEs40E87XVHJT9ECFHiMr8sKaCh5hYj9SsJMzUjPM6DV5ceZMGgpmXu80eCESEKyDIsk3CBulUXcdolDgDvRC9+jPmLmal2HPtn3ytmT+DfYRmAY4Zg/ju4Ka1qe0mPiBCiRJjMitA14ahcnlNk9MyGrgmnS5B/mfockmBEiDxkHW+9EJPE3N9Oo3H4G7fAJZy2i0enFG/cvMULcZfQYj0ks8zY0fL/mf/cp/dpTEhd79J9E0KISmVvRCzGuEgaam4BGb20lv/+U1YgOs6dvRGxtK7jZZM25kaCESFykX28danxYfQe4dj7bcCoMRFgNBJwpQMrkxtxOpeZMial4ToeMiwjhChV0QkpDNRvZqR+pdX2rF+W5hqfJDqhY/ZDbUqCESGyyT7eOthuNT/4R+LgklE7xC/Blx9iDzA1tQox5JwpA+DpbKDmo72Z51q2M9iFEBWLr4sDk42dCDM1A3Lmr0FGWYF5Lg42bGVOEowIkUX28dYUx0iequZPvP4KBqUYfeMmzyRcQkP+M2WmPtFYekKEEKWuRaAnercAwuM8Mj7H8lh2okWgpw1bmZMEI0Lwb37IzrPXMcZFEqSJJd7rMNe996M0eqqkOXLf1WB2p7pxTnOL9wzLZaaMEKLM0Wk1TOwVlFF6INtzZbmsgAQjotLLnh8ywD6B4wF/cdkxoxvz0duJvBdzGWd1Cuz+TU6VmTJCiLKoe6MAFgxqSuiacKLj3MvFshMSjIhKLXt+SIsq6/mPTw2Megc0Zj2No+9jWvJ6q/FWD+IZqN8CyEwZIUTZ1L1RAF2C/P+ZEdiReVKBVYiyyTo/xMQt7z0M8/JBaVIxpfiTcmUAt9ITwX69VS+IDzfLxTcNIUTlptNqytT03fxIMCIqrcz5+PcaLhNTdTPxTtcADffcqoH5Wle0KhEP4i37a8goGjSocwtqeZf9bxpCCFFeSDAiKiWTWbHzbAwhbj+yz+80aTodVcxmJl2/QbekS2C3E4DPjT2kF0QIIUqYBCOi0tl4LJJJa46Q4vAdpqrnAB12yT4ER91HN5blmI/fr2Nz5tX1ll4QIYQoIRKMiEpl47FIXluxCYfqy9E5XAXA5cb9XI1+mvOay2Cfcz7+m13qSxAihBAlSGvrBghRWkxmxXu/fYtT4Dx0DlfRGh34b1Q0Htdbkz0uL8vz8YUQoqKRnhFR4ZnMiu1nr/Dx4ZmkemxBA9gnBdAmqj7tNadZ988CUh7E87nxEckPEUKIUibBiKjQNh6LZMKGzaS4fYmyvwEKht2K45Vbl9Br9gA5F5Dq1zGYN7vcKz0iQghRSiQYERXWhqNXGb7uM+z9fkGjNeJjNOJ6tSvrk+qxnnwWkKrrI4GIEEKUIglGRIVjMiu2nLrEO9vfwyHgMAAOt2vww43dPJdcz1K8rLwsICWEEBWdBCOiQtl4LJIJGzeS4vY1yvkWKA3u11vQ+pYbXoadNPonPwTIUdAMJGFVCCFsQaOUUnfezbbi4+Nxc3MjLi4OV1dXWzdHlCGZq+1GJ6QQcT2R+Ye+xs53IxqNiarpRmZej6FJalqux35u7EESjiwzdkLvFiAJq0IIUcwKev+WnhFRbmVdbbeP3a9855uAvd85ABzjA/nh5h+8l/Iq51S1PPNDpKCZEELYngQjolzJ7AkJC4/i650XAKjjdIKwavsx6/Vg1uER3ZpW8U64GrbhqEkHBcnKAEhBMyGEKIskGBHlRtaekIH6zXjTkXivw0T7/AYaPZ5pBj67fon70pZDRuxhNW03k+SHCCFE2SLBiCizsuaDXIhJYu5vp1FAQ80tBtqv5qeqEaQ63wDgsYTb6KO6Mt/cDQBfzS3eMyy3DMt4EE973VEpaCaEEGWQBCOiTMreC7LM2AmFBwDJzpd5qmoAt3Q3cDSbGX/jJo/fTgT995bjlxk7Av8OywAcMwTz38FNaVXbS3pEhBCiDJFgRJQZueWDNNTcYqR+JftN9fDhBnE++7nudRjQ4ZnqSN2rLbmQHg+G1VbJqR7EM1C/Bfh3WGZ6n8aE1PUu7bclhBBlRtYeZ18XhzKTvC/BiCgTsveE+NCJ6//0hAC0sd/FroDTXHawB+Dp+ARGx17GgVOW/JCsvSA+3GSu8UkZlhFCiH9k/5ydXIbKGkgwImxu47FIXl160JIPMlK/kvNmf8uU3M1OjnzpfYV0nT16k54W1+ryfuomS09IHc0V5tnNBzJ6QRQwqHMLanl3ZF4ZivyFEMJWcvucDTM1IzzOg1eXHmTBoKY2DUgkGBE2kdlVGBWXzIfrTpC98t48u/mkauAjDw9GuvkARhqnpDLz+hW2pdQE/b89IdHKXXpBhBAiDyazInRNeI7PWcj48qYBQteE0yXI32Zf3CQYEaUue1ehrzGYAE3GP5NG2gsAfEAPNvhf5rZDRsn2wNha3IruzCvorPJBAK7jQULLt5kX5C+9IEIIkc3eiFiMcZE01NwC/v2czbo8RnScO3sjYmldx8smbZRgRJSq3LoKfbjFQP3vln3WODux1vsoyVotHiYTk6/fYMatVwjPJR8kQHpChBAiX9EJKQzUb2akfqXV9qx1mOYanyQ6oWNpN81CghFR4u40JLPB1Jzlpk6YNeko/41ccbsKgH1iVRpEBtFe9zUzkHwQIYQoCl8XByYbOxFmagaQ5/IY81wcbNZGCUZEiSrIkEw1bSzXDOnEVP0No/0ttErhEhPM3zF9OEgcc9UtyQcRQogiahHoid4tgPA4j4wvg/8MzWRfHqNFoKfN2ijBiCgxBRmSUUAzz+/4zdMDo1ZDFaOOedevMikumL/RSj6IEELcJZ1Ww8ReQby69CDZP0HLyvIYEoyIEpFX9nbmkAzAvfozaPzXsKmKMwAOt2tQ5erD7NQcl3wQIYQoRt0bBbBgUFNC14QTHVf2ZiAWKRiZP38+s2bNIjIykoYNGzJ37lzatWuX674rV65kwYIFHD58mNTUVBo2bMikSZPo1q3bXTVclF0ms2Lxzohcs7eraWO5aXYl1SGabVX3kGbnDEpLSnR3EmLbYnK2p+aj/ZnnKvkgQghRnLo3CqBLkP8/FVjLVt6dRimV29TjPK1YsYJnn32W+fPnExISwmeffcaXX35JeHg499xzT479R44cSdWqVenYsSPu7u4sWrSI2bNns2fPHh588MECvWZ8fDxubm7ExcXh6upamOaKUpY1R+QTu09opT1p9bwZ+NbVhbme7hg1GqqlGzFeeYpzya0AbF54RwghRPEp6P270MFIy5Ytadq0KQsWLLBsa9CgAb1792batGkFOkfDhg3p168fEyZMKND+EoyUD9Y5IhGssx/P8LTXLJVUx9p/RR+vB7le5ToADvG1eeq6Kz+mdSszJYmFEEIUn4Levws1TJOWlsaBAwcYO3as1fauXbuya9euAp3DbDaTkJCAp2feWbupqamkpqZaHsfHxxemmcIG8soROaeqcVwFkmJ/laeq+XNdfx1l1pN67VH06W2p/0QjGZIRQohKrlDBSExMDCaTCT8/P6vtfn5+REVFFegcH330EYmJiTz99NN57jNt2jRCQ0ML0zRhI5k1RHaevZ5rjkhDbQRxHgeI9t4PGj36VHfirzyHObUq0wbdLz0hQgghipbAqtFYf4NVSuXYlpvvvvuOSZMm8fPPP+Pr65vnfuPGjWPUqFGWx/Hx8dSoUaMoTRUlKHsNkSH6FIbq11uej9bpuOH/C3GOGYV0WsfrOHj1BXxdazKxrwzJCCGEyFCoYMTb2xudTpejFyQ6OjpHb0l2K1as4KWXXuKHH36gc+fO+e5rb2+Pvb19YZomSlluNUQGpb7Dz6YQAPyq7ONcwD5idTo0Zj2eUe04FNeCV3u2YXBIoAzJCCGEsNAWZmc7OzuaNWtGWFiY1fawsDDatGmT53HfffcdgwcPZvny5fTs2bNoLRVlRl75ITdx5bi6h7M+J9hX/SCxOh2GFC8SIkZwMS4jSVUCESGEENkVephm1KhRPPvsswQHB9O6dWs+//xzLl26xLBhw4CMIZYrV66wZMkSICMQee655/j4449p1aqVpVfF0dERNze3YnwrojTkV0Oktt0JogJWkeYYDUC/+AR2Rb7ETbMPYPsKf0IIIcqmQgcj/fr148aNG3zwwQdERkbSqFEj1q9fT82aNQGIjIzk0qVLlv0/++wzjEYj//nPf/jPf/5j2f7888+zePHiu38HotTkV0PkNydHDnhvJU2nxcVkpu21mlRJ9OO62bvMVPgTQghRNhW6zogtSJ0R28urhshZ/ND4beKS+2UA7JJ98b7amdi0GvTr2JyQut4ybVcIISqpEqkzIiqXzGm7UXHJfLjuRI4ckZMGZ/6uuh6dQyQALjeacDX6aWLR4e/mwJtd6ksQIoQQ4o4kGBG5yj5t19cYTIAmIxxppL3AmipORHv9iE5rwmC0Y17M30y71YpIdIDkhwghhCg4CUaERWZPSFh4FF/vvAD8O23Xh1sM1P9OkkbDFC8P3nXxBky0SE5h2vUrnE+vV6ZWgBRCCFF+SDAigJw9IT504joeluc3mJqzWP8AMQG/YbS/hVYp6tyoS2TMw7yAlmjlzjCpISKEEKIIJBippDJ7QaITUrgQk8Tc305bFTA7b/a3LHCnAKPHX0T5nAKtCX26I5/HXGBS3DDCVSAawN/NQQIRIYQQRSLBSCWUvRdkmbETKksvCMA8u/kAxGs1vOXtzXHncADaJyXzQGQtmmtPAZAZekiOiBBCiKKSYKSSya2M+35TPXy5BfxbwOzj9Cc4ZO/Aqar7uG1IQ6M0uEW3IuJmY84pLYl6b8kREUIIUSwkGKkkTGbFn+duMPanozmm6PbQ7WOg/nfLYzPg5vUbf3m6Y9RoqJZuxHilL2eTWwLg6Wyg5qO9mefqIDVEhBBC3DUJRiqBrMMyr+nX8ofmfm7iaukFiVABDE97DQBX/XVuBGxlh5MjAD7xAfwQu5dnUnwtQzJTn2gsPSFCCCGKjQQjFVz2YZmh+g0M1W+w2uc9wzIA9jnYM9ynKrf1jmjMOpKvPUb8rXp8pa8mQzJCCFEBZZ3M4Otiu95uCUYqoDtVTh2e9pplpswMwxeMSX+ZXR43iPM+CBoTgWnpJF95ijMpwcQACS3fZl6QvwzJCCFEBZJ9MsNkYyf0bgE2+dIpwUgFc6fKqQCOmnRQkKwMROt0/O57jFTnqwDobjWmXYye/6XXIUB6QoQQokLKbTJDmKkZ4XEevLr0IAsGNS3Vz34JRiqQ3P64MiunZjXD8AUA2x0deMrHn1TdVZTJjpSoJ3ijxdPU8nZmng2764QQQpQck1kRuiY8R685gCKjZEPomnC6BPmX2j1AgpFy7k5DMhtMzVlu6gRgGZYZnf4SO72ukeB1BABNii9OcS8z+7GHpBdECCEquL0RsRjjImmouQX822veSHshYzolEB3nzt6IWFrX8SqVNkkwUo4VZEimmjaWm+aMZZuvmD35W6/jd/+/SHOMBkATH8K8bhNoVzdAekGEEKISiE5IYaB+MyP1K622Z/aaA8w1Pkl0QsdSa5MEI+VUYYdkAN53aM7TvgGk6aJRJgdSIp/i08ef46H60hsihBCVha+LA5ONnQgzNQP+7TV/J30Ix8y1AIhW7sxzcSi1NkkwUs7kV7wstyGZd9KHcFRV56bvbm57hANaNElVcUp4mdmPt5VhGSGEqGRaBHqidwsgPM4j4z7yz9DMMXMtjmdZb6xFoGeptUmCkXLkTsXLsg/JABzSu/F31XXoHKIAaOvzNAPqDaVNHV8ZlhFCiEpIp9UwsVcQry49SPa7gK3WG9MopXJLqC1T4uPjcXNzIy4uDldXV1s3xyash2UiWGc/Pt/9lxk7UsV9L+97+aG0RsxGZ4beN54RIb1Kp8FCCCHKtNwWTS3uOiMFvX9Lz0g5kNc0rOzFyzLH+8yadG747SDZ3Qswokutx/vNP+DpBxvZovlCCCHKoO6NAugS5P9PBdaONi3pIMFIGZY5bXfn2eu5TsPKWrwMMsb7TtjZ41BtJTr762jQ8tg9g5nQ7g3s9PKrFkIIYU2n1ZTa9N38yB2qjMrefTZEn8JQ/XqrfbLOlFFAgvtxnHz/RKM14mbwZu7Dswj2Dy7llgshhBCFI8FIGZTbtN1Bqe/wsykEyDkNy1UbQ3JAGDdddqABGri15PPus3F3cLfl2xBCCCEKRIKRMiS/abs3ceW4Csx4kGUa1gl7HY7VfkdrF49Oo+fNZm/yXNCzaDQyU0YIIUT5IMFIGXGnabtZy/R6EI8ZiPc8jJPPPjQaM552Afy3yxwaeUuSqhBCiPJFpvaWAYWdtvux6sJGv0j+do4HoIlHBxZ0n4aLnUsptFYIIYQoGJnaW8bdaYG7vKbtpjhdITpgKxhuY9DaMbbFWPrWf0qGZYQQQpRbEozYQEEWuMs+bfeo+R7Oep3Fzvt3NBpFbbfazOowi/oe9W31NoQQQohiIcFIKSvKAnfXdDqi71mLvVMkAM29uvFptw9wMjiVZtOFEEKIEiHBSCnKq5JqXgvcHTPXQud8ksiAHaTqI8Fsz4A6bzKu/cDSb7wQQghRQiQYKUV7I2JzraSa2wJ3R801OOcTjp3XdgBqONfj085zqO1eq7SbLYQQQpQoCUZKicms2Hk2hoH6zYzUr7R6LuuQzDJjRy7rdVzz/wU7x2gAQnweZ163Cdjp7Eq1zUIIIURpkGCkFGRNWB2iT2ZQ6juWGiJZh2QAblc5z0cBF0jXRYPZiefrjebttk/Z9g0IIYQQJUiCkRKWPWF1qH4DP5vaZlRTzVJJ9TjVsfdbi53HHgDquDTi0y4fUd2lqu0aL4QQQpQCCUZKUF4Jq9ml293EqerP6Byi0KDhpcYv8doDr2HQGkqlnUIIIYQtSTBSAjILmu08ez3XhNXM0u7uxPGmY2sifVeh06ZTRe/ORw/NoE21NjZruxBCCFHaJBgpZtkLmg3RpzBUv95qnxmGL0jUaJji5ckaF2cAWvq3ZHr76Xg7etui2UIIIYTNSDBSjHIraDYo9R1+NoUA/9YQeVXbjz8DwjHaxYHS8HitFwlt/wY6rc62b0AIIYSwAQlGikle+SE3cc1IVgWUWbHcpQo7PPeA1ow53Q3nuOcJfe5ldFpZW0YIIUTlJMFIMcmroFlmfohZm0p8wG9Mc/EEzBgTGpAS+RQf9W8ngYgQQohKTYKRYnCngmaH7e14x8ebOIMerdKgvfYwzuZH+b/+DeneKMBGrRZCCCHKBglG7lJ+Bc2mGb7g6SqdOOV9FjQKTZo7PQLG8ni7VrQI9JQeESGEEAIJRu5KfgXNTJpkXvPz4ZTTGQDS45rgntSfKS89IkGIEEIIkYUEI0WUX0EzndNZIqv9yBW9IxqznuRrj2G81ZxJg5pKICKEEEJkI8FIEeWWsGoE7HzCcPI8j1kDnqn23L4yEGeH+5k4KEjyQ4QQQohcSDBSRNEJKVYJq1E6HS/5+nLW4TwATybcxuXag9C2B292uVd6RIQQQog8SDBSSJml3s9cS2CFsRNhpmYkO1/kVtXNpOvS0Zt0uEU9xP6EukQrd+bV9ZFARAghhMiHBCOFkL3Uu+Ihzvocx85rBwANUtO49fdznE57AA3g7+ZAi0BP2zZaCCGEKOO0tm5AeZE5cyYyLgVfzS36OPyCqvWNJRBxiW3E0qtRGNLdyOwHmdgrSHpFhBBCiDuQnpECyD5zJtHlHE8H+JOmvY4yOZJ8tS8OtwOYr3cgWrnj7+bAxF6SsCqEEEIUhAQjd2AyKxbvjMAYF0kDbQy3fHdxw+MEoMUj2R3HK4+gNzoSDRjbjWVeXW8paCaEEEIUggQj+ciaIzLO+WO+9Y/ntp0dGqV4OS6e125eQq87AjqYa3ySQL+OtK7jZetmCyGEEOWKBCN5+Le6qqKm+59M80siRWuH1uhIcFRDhqev5J30IRwz1wLImDnj4mDbRgshhBDlkAQjubDkiGhTcfBfRazbYUCLQ2J1Yq48T5Q5BuxXcsxci+MqUGbOCCGEEHdBgpEsMmuI7Dx7nbTUQ3gErsJoF49GaRh+8yanY7py3BxDHc0VyzEyc0YIIYS4OxKM/CMzPyQ97ioPen2HsebfmLUKf6ORmdExPJiaBoYvLfv/ab5PZs4IIYQQxaBIdUbmz59PYGAgDg4ONGvWjO3bt+e7/7Zt22jWrBkODg7Url2bhQsXFqmxJcVSQyQhFm31//Gn72XMWoVjQk1051/i+9vPA/BO+hB6pk6hZ+oU3kh7g2E927DjnYclEBFCCCHuQqGDkRUrVjBy5EjGjx/PoUOHaNeuHT169ODSpUu57h8REcEjjzxCu3btOHToEO+++y7Dhw/np59+uuvGF4fM/BCN40Wca88j2eUCBqXwuNaG6L+HcdLUwJKkmpkjEq4C0bsFMDgkUIZmhBBCiLtU6GGaOXPm8NJLL/Hyyy8DMHfuXH799VcWLFjAtGnTcuy/cOFC7rnnHubOnQtAgwYN2L9/P7Nnz6ZPnz531/q7kJkfsuPMNVL0q3AO+AM0Cqc0J76+fo4liS64aC4A4EG85TjJERFCCCGKV6GCkbS0NA4cOMDYsWOttnft2pVdu3bleszu3bvp2rWr1bZu3brx1VdfkZ6ejsFgKGST754lP+T2WbyrLcHomxFs9LidyISYy1RRihmGLyz7f27swVzjk5IjIoQQQpSAQgUjMTExmEwm/Pz8rLb7+fkRFRWV6zFRUVG57m80GomJiSEgIOdNPTU1ldTUVMvj+Pj4HPsU1b/1Q8x4Bi7nikM8GrMOj2ttORZ3Lx9qLzLD8EWOGiL9OjaX6qpCCCFECSjSbBqNxvpmrJTKse1O++e2PdO0adMIDQ0tStPyZb3GjBb36y1x9/uZhL8Hcia1WUabzBltyl5D5M0u9SUIEUIIIUpAoRJYvb290el0OXpBoqOjc/R+ZPL39891f71ej5dX7qXTx40bR1xcnOXn8uXLhWlmnvZGxGKMi6ShJoKGmgiaJ5v54UoUTY3xlm2SHyKEEEKUrkL1jNjZ2dGsWTPCwsJ44oknLNvDwsJ4/PHHcz2mdevWrFmzxmrbpk2bCA4OzjNfxN7eHnt7+8I0rUCiE1IYqN/MSP1Kq+2SHyKEEELYTqGHaUaNGsWzzz5LcHAwrVu35vPPP+fSpUsMGzYMyOjVuHLlCkuWLAFg2LBhfPrpp4waNYohQ4awe/duvvrqK7777rvifScF4OviwGRjJ8JMGUMyjbQXJD9ECCGEsLFCByP9+vXjxo0bfPDBB0RGRtKoUSPWr19PzZo1AYiMjLSqORIYGMj69et58803+e9//0vVqlWZN2+eTab1tgj0RO8WQHicR0beiDlju+SHCCGEELajUZnZpGVYfHw8bm5uxMXF4erqelfnypxNAxCkiWCd/Xh6pk4hXAUCsGBQUxmWEUIIIYpBQe/fRSoHX551bxTAgkFN8XdzIFq5W+WHSCAihBBClL5K1zOSKbMCa3RCCr4uDpIfIoQQQhSzgt6/K+2qvTqthtZ1cp9aLIQQQojSU+mGaYQQQghRtkgwIoQQQgibkmBECCGEEDYlwYgQQgghbEqCESGEEELYlAQjQgghhLApCUaEEEIIYVMSjAghhBDCpiQYEUIIIYRNlYsKrJkV6+Pj423cEiGEEEIUVOZ9+04rz5SLYCQhIQGAGjVq2LglQgghhCishIQE3Nzc8ny+XCyUZzabuXr1Ki4uLmg0xbeYXXx8PDVq1ODy5cvFtgCfyJ1c69Ih17l0yHUuHXKdS0dJXmelFAkJCVStWhWtNu/MkHLRM6LVaqlevXqJnd/V1VX+0EuJXOvSIde5dMh1Lh1ynUtHSV3n/HpEMkkCqxBCCCFsSoIRIYQQQthUpQ5G7O3tmThxIvb29rZuSoUn17p0yHUuHXKdS4dc59JRFq5zuUhgFUIIIUTFVal7RoQQQghhexKMCCGEEMKmJBgRQgghhE1JMCKEEEIIm6rwwcj8+fMJDAzEwcGBZs2asX379nz337ZtG82aNcPBwYHatWuzcOHCUmpp+VaY67xy5Uq6dOmCj48Prq6utG7dml9//bUUW1u+FfZvOtPOnTvR6/U88MADJdvACqKw1zk1NZXx48dTs2ZN7O3tqVOnDl9//XUptbb8Kux1XrZsGU2aNMHJyYmAgABeeOEFbty4UUqtLZ/++OMPevXqRdWqVdFoNKxevfqOx5T6vVBVYN9//70yGAzqiy++UOHh4WrEiBHK2dlZXbx4Mdf9z58/r5ycnNSIESNUeHi4+uKLL5TBYFA//vhjKbe8fCnsdR4xYoSaMWOG2rt3rzp9+rQaN26cMhgM6uDBg6Xc8vKnsNc6061bt1Tt2rVV165dVZMmTUqnseVYUa7zY489plq2bKnCwsJURESE2rNnj9q5c2cptrr8Kex13r59u9Jqterjjz9W58+fV9u3b1cNGzZUvXv3LuWWly/r169X48ePVz/99JMC1KpVq/Ld3xb3wgodjLRo0UINGzbMatt9992nxo4dm+v+Y8aMUffdd5/VtldeeUW1atWqxNpYERT2OucmKChIhYaGFnfTKpyiXut+/fqp9957T02cOFGCkQIo7HXesGGDcnNzUzdu3CiN5lUYhb3Os2bNUrVr17baNm/ePFW9evUSa2NFU5BgxBb3wgo7TJOWlsaBAwfo2rWr1fauXbuya9euXI/ZvXt3jv27devG/v37SU9PL7G2lmdFuc7Zmc1mEhIS8PT0LIkmVhhFvdaLFi3i3LlzTJw4saSbWCEU5Tr/8ssvBAcHM3PmTKpVq0b9+vV5++23SU5OLo0ml0tFuc5t2rTh77//Zv369SiluHbtGj/++CM9e/YsjSZXGra4F5aLhfKKIiYmBpPJhJ+fn9V2Pz8/oqKicj0mKioq1/2NRiMxMTEEBASUWHvLq6Jc5+w++ugjEhMTefrpp0uiiRVGUa71mTNnGDt2LNu3b0evr7D/3ItVUa7z+fPn2bFjBw4ODqxatYqYmBhee+01YmNjJW8kD0W5zm3atGHZsmX069ePlJQUjEYjjz32GJ988klpNLnSsMW9sML2jGTSaDRWj5VSObbdaf/ctgtrhb3Omb777jsmTZrEihUr8PX1LanmVSgFvdYmk4kBAwYQGhpK/fr1S6t5FUZh/qbNZjMajYZly5bRokULHnnkEebMmcPixYuld+QOCnOdw8PDGT58OBMmTODAgQNs3LiRiIgIhg0bVhpNrVRK+15YYb8qeXt7o9PpckTY0dHROSK+TP7+/rnur9fr8fLyKrG2lmdFuc6ZVqxYwUsvvcQPP/xA586dS7KZFUJhr3VCQgL79+/n0KFDvP7660DGTVMphV6vZ9OmTTz88MOl0vbypCh/0wEBAVSrVs1qqfQGDRqglOLvv/+mXr16Jdrm8qgo13natGmEhIQwevRoAO6//36cnZ1p164dkydPlt7rYmKLe2GF7Rmxs7OjWbNmhIWFWW0PCwujTZs2uR7TunXrHPtv2rSJ4OBgDAZDibW1PCvKdYaMHpHBgwezfPlyGe8toMJea1dXV44ePcrhw4ctP8OGDePee+/l8OHDtGzZsrSaXq4U5W86JCSEq1evcvv2bcu206dPo9VqqV69eom2t7wqynVOSkpCq7W+bel0OuDfb+7i7tnkXlhiqbFlQOa0sa+++kqFh4erkSNHKmdnZ3XhwgWllFJjx45Vzz77rGX/zOlMb775pgoPD1dfffWVTO0tgMJe5+XLlyu9Xq/++9//qsjISMvPrVu3bPUWyo3CXuvsZDZNwRT2OickJKjq1aurp556Sh0/flxt27ZN1atXT7388su2egvlQmGv86JFi5Rer1fz589X586dUzt27FDBwcGqRYsWtnoL5UJCQoI6dOiQOnTokALUnDlz1KFDhyxTqMvCvbBCByNKKfXf//5X1axZU9nZ2ammTZuqbdu2WZ57/vnnVYcOHaz237p1q3rwwQeVnZ2dqlWrllqwYEEpt7h8Ksx17tChgwJy/Dz//POl3/ByqLB/01lJMFJwhb3OJ06cUJ07d1aOjo6qevXqatSoUSopKamUW13+FPY6z5s3TwUFBSlHR0cVEBCgBg4cqP7+++9SbnX5smXLlnw/c8vCvVCjlPRtCSGEEMJ2KmzOiBBCCCHKBwlGhBBCCGFTEowIIYQQwqYkGBFCCCGETUkwIoQQQgibkmBECCGEEDYlwYgQQgghbEqCESGEEELYlAQjQgghhLApCUaEEEIIYVMSjAghhBDCpiQYEUIIIYRN/T9ueSninRm8igAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure()\n", + "plt.plot(np.linspace(0,1,n), cglsb.solution.as_array(),'o', label='Tikhonov regularised solution- CIL')\n", + "plt.plot(np.linspace(0,1,n),xtik, '+', label='Tikhonov regularised solution- numpy')\n", + "plt.plot(np.linspace(0,1,n),x, label='Ground truth solution')\n", + "plt.legend()\n", + "plt.show()\n" + ] + }, + { + "cell_type": "markdown", + "id": "acc199d9", + "metadata": {}, + "source": [ + "You can see that the solutions are identical!" + ] + }, + { + "cell_type": "markdown", + "id": "c27a9218", + "metadata": {}, + "source": [ + "We think the reconstruction error near the boundary at 1 is caused by the discretisation of the integral - for future investigation " + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.12" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/v24.2.0/_sources/developer_guide.rst.txt b/v24.2.0/_sources/developer_guide.rst.txt new file mode 100644 index 0000000000..eb434d86b9 --- /dev/null +++ b/v24.2.0/_sources/developer_guide.rst.txt @@ -0,0 +1,153 @@ +.. Copyright 2020 United Kingdom Research and Innovation + Copyright 2020 The University of Manchester + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + http://www.apache.org/licenses/LICENSE-2.0 + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. + Authors: + CIL Developers, listed at: https://github.com/TomographicImaging/CIL/blob/master/NOTICE.txt + Kyle Pidgeon (UKRI-STFC) + +Developers' Guide +***************** + +CIL is an Object Orientated software. It has evolved during the years and it currently does not fully adheres to the following conventions. New additions must comply with +the following. + +Conventions on new CIL objects +============================== + +For each class there are **essential**, and **non-essential** parameters. The non-essential can be further be divided in **often configured** and **advanced** parameters: + +* essential +* non-essential + + * often-configured + * advanced + +The definition of what are the essential, often-configured and advanced parameters depends on the actual class. + +Creator +------- + +To create an instance of a class, the creator of a class should require the **essential** and **often-configured** parameters as named parameters. + +It should not accept positional arguments `*args` or key-worded arguments `**kwargs` so that the user can clearly understand what parameters are necessary to +create the instance. + +Setter methods and properties +----------------------------- + +Use of `property` is favoured instead of class members to store parameters so that the parameters can be protected. + +The class should provide setter methods to change all the parameters at any time. Setter methods to set multiple parameters at the same time is also accepted. +Setter methods should be named `set_`. The use of `set_` helps IDEs and user to find what they should change in an instance of a class. + + +Other methods +------------- + +Methods that are not meant to be used by the user should have a `_` (underscore) at the beginning of the name. +All methods should follow the convention of small caps underscore separated words. + +Documentation +============= + +Docstrings +---------- + +The Core Imaging Library (CIL) follows the `NumpyDoc `_ +style with the `PyData Sphinx HTML theme `_. +When contributing your code please refer to `this `_ link +for docstring formatting and this rendered `example `_. + +Example from ``cil`` +^^^^^^^^^^^^^^^^^^^^ + +The following provides an example of the docstring format used within ``cil``, and the rendered documentation generated from it. + +Source +"""""" + +.. literalinclude:: ../../Wrappers/Python/cil/recon/FBP.py + :caption: `FBP.run method from cil.io.recon.FBP` + :language: python + :pyobject: FBP.run + +Rendered +"""""""" + +.. automethod:: cil.recon.FBP.FBP.run + + +Building documentation locally +------------------------------ + +The easiest way to test documentation changes is to open a pull request and `download the rendered documentation from the CI `_. + +Alternatively, to build the docs locally, you will need a working ``cil`` installation. +For development of the documentation embedded within the source code itself (e.g. docstrings), you should build ``cil`` from source. + +The following steps can be used to create an environment that is suitable for building ``cil`` and its documentation, and to start +a HTTP server to view the documentation. + +#. Clone ``cil`` repo +#. Update conda with ``conda update -n base -c defaults conda`` +#. Follow the instructions `here `_ to create a conda environment and build ``cil`` from source +#. Go to ``docs`` folder +#. Install packages from ``docs_environment.yml`` +#. [Install Ruby version 3.2](https://www.ruby-lang.org/en/documentation/installation/#installers) +#. Install the web dependencies with ``make web-deps`` +#. Build the documentation with ``make dirhtml web`` +#. Start an HTTP server with ``make serve`` to access the docs via `localhost:8000 `_. + +Example: +:: + + git clone --recurse-submodule git@github.com:TomographicImaging/CIL + cd CIL + sh scripts/create_local_env_for_cil_development_tests.sh -n NUMPY_VERSION -p PYTHON_VERSION -e ENVIRONMENT_NAME + conda activate ENVIRONMENT_NAME + cmake -S . -B ./build -DCMAKE_INSTALL_PREFIX=${CONDA_PREFIX} + cmake --build ./build --target install + cd docs + conda update -n base -c defaults conda + conda env update -f docs_environment.yml # with the name field set to ENVIRONMENT_NAME + make web-deps # install dependencies (requires ruby 3.2) + make dirhtml web serve + +Notebooks gallery +----------------- + +The ``mkdemos.py`` script (called by ``make dirhtml``): + +- downloads notebooks from external URLs to ``source/demos/*.ipynb`` +- uses the ``demos-template.rst`` file to generate the gallery in ``source/demos.rst`` + +The ``nbsphinx`` extension will convert the ``*.ipynb`` files to HTML. + +Contributions guidelines +======================== + +Make sure that each contributed file contains the following text enclosed in the appropriate comment syntax for the file format. Please replace `[yyyy]` and `[name of copyright owner]` with your own identifying information. Optionally you may add author name and email. + +:: + + Copyright [yyyy] United Kingdom Research and Innovation + Copyright [yyyy] The University of Manchester + Copyright [yyyy] [name of copyright owner] + Author(s): [Author name, Author email (optional)] + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + http://www.apache.org/licenses/LICENSE-2.0 + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. diff --git a/v24.2.0/_sources/framework.rst.txt b/v24.2.0/_sources/framework.rst.txt new file mode 100644 index 0000000000..5d20634b9e --- /dev/null +++ b/v24.2.0/_sources/framework.rst.txt @@ -0,0 +1,268 @@ +.. Copyright 2019 United Kingdom Research and Innovation + Copyright 2019 The University of Manchester + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. + + Authors: + CIL Developers, listed at: https://github.com/TomographicImaging/CIL/blob/master/NOTICE.txt + +Framework +********* + + +AcquisitionGeometry +=================== + +The :code:`AcquisitionGeometry` class holds the system acquisition parameters. + +.. autoclass:: cil.framework.AcquisitionGeometry + +We create the appropriate :code:`AcquisitionGeometry` for our data by using the static methods: + +Parallel2D Geometry +------------------- +.. automethod:: cil.framework.AcquisitionGeometry.create_Parallel2D + +Parallel3D Geometry +------------------- +.. automethod:: cil.framework.AcquisitionGeometry.create_Parallel3D + +Cone2D Geometry (Fanbeam) +------------------------- +.. automethod:: cil.framework.AcquisitionGeometry.create_Cone2D + +Cone3D Geometry +--------------- +.. automethod:: cil.framework.AcquisitionGeometry.create_Cone3D + + +Configure the geometry +---------------------- +This gives us an acquisition geometry object configured with the spatial geometry of the system. + +It is then necessary to configure the panel, angular data and dimension labels: + +.. automethod:: cil.framework.AcquisitionGeometry.set_panel +.. automethod:: cil.framework.AcquisitionGeometry.set_angles +.. automethod:: cil.framework.AcquisitionGeometry.set_labels +.. automethod:: cil.framework.AcquisitionGeometry.set_channels + + +Use the geometry +---------------- +We can use this geometry to generate related objects. Including a 2D slice :code:`AcquisitionGeometry`, an :code:`AcquisitionData` container, and a default :code:`ImageGeometry`. + +.. automethod:: cil.framework.AcquisitionGeometry.get_slice +.. automethod:: cil.framework.AcquisitionGeometry.allocate +.. automethod:: cil.framework.AcquisitionGeometry.get_ImageGeometry + + + +ImageGeometry +============= + + +The :code:`ImageGeometry` class holds meta data describing the reconstruction volume of interest. This will be centred on the rotation axis position defined +in :code:`AcquisitionGeometry`, with the z-direction aligned with the rotation axis direction. + +.. autoclass:: cil.framework.ImageGeometry + :members: + + +BlockGeometry +============= + +.. autoclass:: cil.framework.BlockGeometry + :members: + :inherited-members: + + + +Data Containers +=============== + +:code:`AcquisitionData` and :code:`ImageData` inherit from the same parent :code:`DataContainer` class, +therefore they largely behave the same way. + +There are algebraic operations defined for both :code:`AcquisitionData` and :code:`ImageData`. +Following operations are defined: + +* binary operations (between two DataContainers or scalar and DataContainer) + + * :code:`+` addition + * :code:`-` subtraction + * :code:`/` division + * :code:`*` multiplication + * :code:`**` power + * :code:`maximum` + * :code:`minimum` + +* in-place operations + + * :code:`+=` + * :code:`-=` + * :code:`*=` + * :code:`**=` + * :code:`/=` + +* unary operations + + * :code:`abs` + * :code:`sqrt` + * :code:`sign` + * :code:`conjugate` + +* reductions + + * :code:`sum` + * :code:`norm` + * :code:`dot` product + + +DataContainer +------------- + +.. autoclass:: cil.framework.DataContainer + :members: + :inherited-members: + +AcquisitionData +--------------- + +.. autoclass:: cil.framework.AcquisitionData + :members: + :inherited-members: + +ImageData +--------- + +.. autoclass:: cil.framework.ImageData + :members: + :inherited-members: + +VectorData +---------- + +.. autoclass:: cil.framework.VectorData + :members: + :inherited-members: + + +BlockDataContainer +------------------ + +A :code:`BlockDataContainer` can be instantiated from a number of `DataContainer`_ and subclasses +represents a column vector of :code:`DataContainer` s. + +.. code:: python + + bdc = BlockDataContainer(DataContainer0, DataContainer1) + +This provide a base class that will behave as normal :code:`DataContainer`. + +.. autoclass:: cil.framework.BlockDataContainer + :members: + :inherited-members: + +Partitioner +=========== + +This method partitions an instance of tomography :code:`AcquisitionData` into a number of batches. For example, to use with a stochastic optimisation method. + +The partitioning is done by taking batches of angles and the corresponding data collected by taking projections along these angles. The partitioner method chooses what angles go in which batch depending on the `mode` and takes in an `AquisitionData` object and outputs a `BlockDataContainer` where each element in the block is `AquisitionData` object with the batch of data and corresponding geometry. +We consider a **batch** to be a subset of the :code:`AcquisitionData` and the verb, **to partition**, to be the act of splitting into batches. + + +For example: + +.. code-block :: python + + from cil.utilities import dataexample + from cil.plugins.astra.operators import ProjectionOperator + + # get the data + data = dataexample.SIMULATED_PARALLEL_BEAM_DATA.get() + data.reorder('astra') + data = data.get_slice(vertical='centre') + + # create the geometries + ag = data.geometry + ig = ag.get_ImageGeometry() + + # partition the data into batches contained in the elements of a BlockDataContainer + data_partitioned = data.partition(num_batches=10, mode='staggered') # Choose mode from `sequential`, `staggered` or `random_permutation` + # From the partitioned data build a BlockOperator container the projectors for each batch + A_partitioned = ProjectionOperator(ig, data_partitioned.geometry, device = "cpu") + + print('The total number of angles is ', len(data.geometry.angles)) + print('The first 30 angles are ', data.geometry.angles[:30]) + + print('In batch zero the number of angles is ', len(data_partitioned[0].geometry.angles)) + print('The angles in batch zero are ', data_partitioned[0].geometry.angles) + print('The angles in batch one are ', data_partitioned[1].geometry.angles) + +.. code-block :: RST + + The total number of angles is 300 + The first 30 angles are [ 0. 1.2 2.4 3.6 4.8 6. 7.2 8.4 9.6 10.8 12. 13.2 14.4 15.6 + 16.8 18. 19.2 20.4 21.6 22.8 24. 25.2 26.4 27.6 28.8 30. 31.2 32.4 + 33.6 34.8] + In batch zero the number of angles is 30 + The angles in batch zero are [ 0. 12. 24. 36. 48. 60. 72. 84. 96. 108. 120. 132. 144. 156. + 168. 180. 192. 204. 216. 228. 240. 252. 264. 276. 288. 300. 312. 324. + 336. 348.] + The angles in batch one are [ 1.2 13.2 25.2 37.2 49.2 61.2 73.2 85.2 97.2 109.2 121.2 133.2 + 145.2 157.2 169.2 181.2 193.2 205.2 217.2 229.2 241.2 253.2 265.2 277.2 + 289.2 301.2 313.2 325.2 337.2 349.2] + + +The :code:`partition` method is defined as part of: + +.. autoclass:: cil.framework.Partitioner + :members: + + +Labels +========= +Classes which define the accepted labels + +.. autoclass:: cil.framework.labels.ImageDimension + :members: + :undoc-members: + +.. autoclass:: cil.framework.labels.AcquisitionDimension + :members: + :undoc-members: + +.. autoclass:: cil.framework.labels.FillType + :members: + +.. autoclass:: cil.framework.labels.AngleUnit + :members: + :undoc-members: + +.. autoclass:: cil.framework.labels.AcquisitionType + :members: + + +DataProcessor +============= +.. autoclass:: cil.framework.DataProcessor + :members: + :inherited-members: + +.. autoclass:: cil.framework.Processor + :members: + :inherited-members: + +:ref:`Return Home ` diff --git a/v24.2.0/_sources/index.rst.txt b/v24.2.0/_sources/index.rst.txt new file mode 100644 index 0000000000..7f93157df8 --- /dev/null +++ b/v24.2.0/_sources/index.rst.txt @@ -0,0 +1,92 @@ +.. Copyright 2019 United Kingdom Research and Innovation + Copyright 2019 The University of Manchester + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + http://www.apache.org/licenses/LICENSE-2.0 + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. + Authors: + CIL Developers, listed at: https://github.com/TomographicImaging/CIL/blob/master/NOTICE.txt + +Welcome to CIL's documentation! +############################### + +The aim of this package is to enable rapid prototyping of optimisation-based +reconstruction problems, i.e. defining and solving different optimization problems to enforce different properties on the reconstructed image, while being +powerful enough to be employed on real scale problems. + +Firstly, it provides a framework to handle acquisition and reconstruction +data and metadata; it also provides a basic input/output package to read data +from different sources, e.g. Nikon X-Radia, NeXus. + +Secondly, it provides an object-oriented framework for defining mathematical +operators and functions as well a collection of useful example operators and +functions. Both smooth and non-smooth functions can be used. + +Further, it provides a number of high-level generic implementations of +optimisation algorithms to solve generically formulated optimisation problems +constructed from operator and function objects. + +Demos and Examples +================== +A number of demos can be found in the `CIL-Demos`_ repository. + +For detailed information refer to our articles and the repositories +with the code to reproduce the article's results. + +Cite this work +============== + +If you use this software please consider citing one or both of the articles below. + +1. Jørgensen JS et al. 2021 Core Imaging Library Part I: a versatile python framework for tomographic imaging +https://doi.org/10.1098/rsta.2020.0192 . Phil. Trans. R. Soc. A 20200192. +The code to reproduce the article results. https://github.com/TomographicImaging/Paper-2021-RSTA-CIL-Part-I + +2. Papoutsellis E et al. 2021 Core Imaging Library - Part II: multichannel reconstruction for dynamic and spectral +tomography https://doi.org/10.1098/rsta.2020.0193 Phil. Trans. R. Soc. A 20200193. +The code to reproduce the article results. https://github.com/TomographicImaging/Paper-2021-RSTA-CIL-Part-II + +Table of Contents +================= + +.. toctree:: + :maxdepth: 3 + :name: mastertoc + + introduction + framework + io + optimisation + processors + recon + utilities + plugins + developer_guide + demos + +.. Indices and tables +.. ================== + +.. * :ref:`genindex` +.. * :ref:`modindex` +.. * :ref:`search` + +Contacts +======== + +Please refer to the main `CCPi website`_ for up-to-date information. + +The CIL developers may be contacted: + +* by joining the `devel mailing list`_ +* on the CIL's GitHub repository page https://github.com/TomographicImaging/CIL or +* on the CIL Discord channel https://discord.gg/9NTWu9MEGq + +.. _devel mailing list: https://www.jiscmail.ac.uk/cgi-bin/webadmin?A0=CCPI-DEVEL +.. _CCPi website: https://www.ccpi.ac.uk +.. _CIL-Demos: https://github.com/vais-ral/CIL-Demos diff --git a/v24.2.0/_sources/introduction.rst.txt b/v24.2.0/_sources/introduction.rst.txt new file mode 100644 index 0000000000..cfb91af958 --- /dev/null +++ b/v24.2.0/_sources/introduction.rst.txt @@ -0,0 +1,158 @@ +.. Copyright 2022 United Kingdom Research and Innovation + Copyright 2022 The University of Manchester + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. + + Authors: + CIL Developers, listed at: https://github.com/TomographicImaging/CIL/blob/master/NOTICE.txt + +Introduction +************ + +The goal of the Core Imaging Library is to allow the user to simply create iterative reconstruction methods which +go beyond the standard filter back projection technique and which better suit the data characteristics. +The framework comprises: + +* :code:`cil.framework` module gives the building blocks used to describe and handle the data +* :code:`cil.io` module which provides a number of loaders for real CT machines, e.g. Nikon. It also provides reader and writer to save to NeXuS file format. +* :code:`cil.optimisation` module allows the user to create iterative methods to reconstruct acquisition data applying different types of regularisation, which better suit the data characteristics. +* :code:`cil.plugins` module which allows CIL to use selected functionality from ASTRA, TIGRE, TomoPhantom and the Regularisation Toolkit +* :code:`cil.processors` module contains tools for data manipulation and common CT pre-processing steps +* :code:`cil.recon` module contains an optimised FDK/FBP reconstructors, making using the both CIL accelerated libraries and the Tigre/ASTRA back-projectors +* :code:`cil.utilities` module contains a selection of display tools for 2D and 3D data, as well as real and simulated test datasets + + +CT Geometry +========== + +Please refer to `this `_ notebook on the CIL-Demos +repository for full description. + + +In conventional CT systems, an object is placed between a source emitting X-rays and a detector array +measuring the X-ray transmission images of the incident X-rays. Typically, either the object is placed +on a rotating sample stage and rotates with respect to the source-detector assembly, or the +source-detector gantry rotates with respect to the stationary object. +This arrangement results in so-called circular scanning trajectory. Depending on source and detector +types, there are three conventional data acquisition geometries: + +* parallel geometry (2D or 3D), +* fan-beam geometry, and +* cone-beam geometry. + +Parallel geometry +----------------- + +Parallel beams of X-rays are emitted onto 1D (single pixel row) or 2D detector array. This geometry +is common for synchrotron sources. 2D parallel geometry is illustrated below. + +.. figure:: images/parallel.png + :align: center + :alt: alternate text + :figclass: align-center + + 2D Parallel geometry + +.. figure:: images/parallel3d.png + :align: center + :alt: alternate text + :figclass: align-center + + 3D Parallel geometry + +Fan-beam geometry +----------------- + +A single point-like X-ray source emits a cone beam onto 1D detector pixel row. Cone-beam is typically + collimated to imaging field of view. Collimation allows greatly reduce amount of scatter radiation + reaching the detector. Fan-beam geometry is used when scattering has significant influence on image + quality or single-slice reconstruction is sufficient. + +.. figure:: images/fan.png + :align: center + :alt: alternate text + :figclass: align-center + + Fan beam geometry + +Cone-beam geometry +------------------ +A single point-like X-ray source emits a cone beam onto 2D detector array. +Cone-beam geometry is mainly used in lab-based CT instruments. Depending on where the sample +is placed between the source and the detector one can achieve a different magnification factor :math:`F`: + +.. math:: + + F = \frac{r_1 + r_2}{r_1} + +where :math:`r_1` and :math:`r_2` are the distance from the source to the center of the sample and +the distance from the center of the sample to the detector, respectively. + +.. figure:: images/cone.png + :align: center + :alt: alternate text + :figclass: align-center + + Cone beam geometry + + +Multi channel data +================== + +CIL is designed to work with 4D data. + +Both :code:`AcquisitionGeometry`, :code:`AcquisitionData` and :code:`ImageGeometry`, :code:`ImageData` +can be defined for multi-channel (spectral/time) CT data using :code:`channels` attribute. + + +Block Framework +=============== + +The block framework allows writing more advanced `optimisation problems`_. Consider the typical +`Tikhonov regularisation `_: + +.. math:: + + \underset{u}{\mathrm{argmin}}\begin{Vmatrix}A u - b \end{Vmatrix}^2_2 + \alpha^2\|Lu\|^2_2 + +where, + +* :math:`A` is the projection operator +* :math:`b` is the acquired data +* :math:`u` is the unknown image to be solved for +* :math:`\alpha` is the regularisation parameter +* :math:`L` is a regularisation operator + +The first term measures the fidelity of the solution to the data. The second term measures the +fidelity to the prior knowledge we have imposed on the system, operator :math:`L`. + +This can be re-written equivalently in the block matrix form: + +.. math:: + \underset{u}{\mathrm{argmin}}\begin{Vmatrix}\binom{A}{\alpha L} u - \binom{b}{0}\end{Vmatrix}^2_2 + +With the definitions: + +* :math:`\tilde{A} = \binom{A}{\alpha L}` +* :math:`\tilde{b} = \binom{b}{0}` + +this can now be recognised as a least squares problem which can be solved by any algorithm in the :code:`cil.optimisation` +which can solve least squares problem, e.g. CGLS. + +.. math:: + + \underset{u}{\mathrm{argmin}}\begin{Vmatrix}\tilde{A} u - \tilde{b}\end{Vmatrix}^2_2 + +To be able to express our optimisation problems in the matrix form above, we developed the so-called, +Block Framework comprising 4 main actors: :code:`BlockGeometry`, :code:`BlockDataContainer`, +:code:`BlockFunction` and :code:`BlockOperator`. diff --git a/v24.2.0/_sources/io.rst.txt b/v24.2.0/_sources/io.rst.txt new file mode 100644 index 0000000000..b555071d2d --- /dev/null +++ b/v24.2.0/_sources/io.rst.txt @@ -0,0 +1,101 @@ +.. Copyright 2019 United Kingdom Research and Innovation + Copyright 2019 The University of Manchester + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. + + Authors: + CIL Developers, listed at: https://github.com/TomographicImaging/CIL/blob/master/NOTICE.txt + Kyle Pidgeon (UKRI-STFC) + +Read/ write AcquisitionData and ImageData +***************************************** + + +NeXuS +===== + +The CCPi Framework provides classes to read and write :code:`AcquisitionData` and :code:`ImageData` +as NeXuS files. + +.. code:: python + + # imports + from cil.io import NEXUSDataWriter, NEXUSDataReader + + # initialise NEXUS Writer + writer = NEXUSDataWriter() + writer.set_up(data=my_data, + file_name='tmp_nexus.nxs') + # write data + writer.write() + + # read data + # initialize NEXUS reader + reader = NEXUSDataReader() + reader.set_up(file_name='tmp_nexus.nxs') + # load data + ad1 = reader.read() + # get AcquisitionGeometry + ag1 = reader.get_geometry() + +.. autoclass:: cil.io.NEXUSDataReader + :members: + :inherited-members: +.. autoclass:: cil.io.NEXUSDataWriter + :members: + :inherited-members: +| + +Nikon +===== +.. autoclass:: cil.io.NikonDataReader + :members: + :inherited-members: + +ZEISS +===== +.. autoclass:: cil.io.ZEISSDataReader + :members: + :inherited-members: + +TIFF Reader/Writer +================== + +.. autoclass:: cil.io.TIFFStackReader + :members: + :exclude-members: set_up + +.. autoclass:: cil.io.TIFFWriter + :members: + :exclude-members: set_up + +RAW File Writer +=============== + +.. autoclass:: cil.io.RAWFileWriter + :members: + +:ref:`Return Home ` + +HDF5 Utilities +================== + +Utility functions to browse HDF5 files. These allow you to browse groups and read in datasets as numpy.ndarrays. + +A CIL geometry and dataset must be constructed manually from the array and metadata. + +.. autoclass:: cil.io.utilities.HDF5_utilities + :members: + + +:ref:`Return Home ` diff --git a/v24.2.0/_sources/optimisation.rst.txt b/v24.2.0/_sources/optimisation.rst.txt new file mode 100644 index 0000000000..72fc5a6885 --- /dev/null +++ b/v24.2.0/_sources/optimisation.rst.txt @@ -0,0 +1,901 @@ +.. Copyright 2019 United Kingdom Research and Innovation + Copyright 2019 The University of Manchester + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. + + Authors: + CIL Developers, listed at: https://github.com/TomographicImaging/CIL/blob/master/NOTICE.txt + +Optimisation framework +********************** +This package allows rapid prototyping of optimisation-based reconstruction problems, i.e. defining and solving different optimization problems to enforce different properties on the reconstructed image. + +Firstly, it provides an object-oriented framework for defining mathematical operators and functions as well a collection of useful example operators and functions. Both smooth and non-smooth functions can be used. + +Further, it provides a number of high-level generic implementations of optimisation algorithms to solve generically formulated optimisation problems constructed from operator and function objects. + +The fundamental components are: + ++ :code:`Operator`: A class specifying a (currently linear) operator. ++ :code:`Function`: A class specifying mathematical functions such as a least squares data fidelity. ++ :code:`Algorithm`: Implementation of an iterative optimisation algorithm to solve a particular generic optimisation problem. Algorithms are iterable Python object which can be run in a for loop. Can be stopped and warm restarted. + + + +Algorithms (Deterministic) +========================== + +A number of generic algorithm implementations are provided including +Gradient Descent (GD), Conjugate Gradient Least Squares (CGLS), +Simultaneous Iterative Reconstruction Technique (SIRT), Primal Dual Hybrid +Gradient (PDHG), Primal dual three-operator (PD3O), Iterative Shrinkage Thresholding Algorithm (ISTA), +and Fast Iterative Shrinkage Thresholding Algorithm (FISTA). + +An algorithm is designed for a particular generic optimisation problem accepts and number of +instances of :code:`Function` derived classes and/or :code:`Operator` derived classes as input to +define a specific instance of the generic optimisation problem to be solved. +They are iterable objects which can be run in a for loop. +The user can provide a stopping criterion different than the default max_iteration. + +New algorithms can be easily created by extending the :code:`Algorithm` class. +The user is required to implement only 4 methods: set_up, __init__, update and update_objective. + ++ :code:`set_up` and :code:`__init__` are used to configure the algorithm ++ :code:`update` is the actual iteration updating the solution ++ :code:`update_objective` defines how the objective is calculated. + +For example, the implementation of the update of the Gradient Descent +algorithm to minimise a Function will only be: + +.. code-block :: python + + def update(self): + self.x += -self.rate * self.objective_function.gradient(self.x) + def update_objective(self): + self.loss.append(self.objective_function(self.x)) + +The :code:`Algorithm` provides the infrastructure to continue iteration, to access the values of the +objective function in subsequent iterations, the time for each iteration, and to provide a nice +print to screen of the status of the optimisation. + +Base class +---------- +.. autoclass:: cil.optimisation.algorithms.Algorithm + :members: + :inherited-members: + +GD +-- +.. autoclass:: cil.optimisation.algorithms.GD + :members: + :inherited-members: run, update_objective_interval, max_iteration + +CGLS +---- +.. autoclass:: cil.optimisation.algorithms.CGLS + :members: + :inherited-members: run, update_objective_interval, max_iteration + +SIRT +---- +.. autoclass:: cil.optimisation.algorithms.SIRT + :members: update, update_objective + :inherited-members: run, update_objective_interval, max_iteration + +ISTA +---- +.. autoclass:: cil.optimisation.algorithms.ISTA + :members: + :special-members: + :inherited-members: run, update_objective_interval, max_iteration + +FISTA +----- +.. autoclass:: cil.optimisation.algorithms.FISTA + :members: + :special-members: + :inherited-members: run, update_objective_interval, max_iteration + +PDHG +---- +.. autoclass:: cil.optimisation.algorithms.PDHG + :members: update, set_step_sizes, update_step_sizes, update_objective + :member-order: bysource + :inherited-members: run, update_objective_interval, max_iteration + +LADMM +----- +.. autoclass:: cil.optimisation.algorithms.LADMM + :members: + :inherited-members: run, update_objective_interval, max_iteration + +PD3O +---- +.. autoclass:: cil.optimisation.algorithms.PD3O + :members: + :inherited-members: run, update_objective_interval, max_iteration + + +Algorithms (Stochastic) +======================== + +Consider optimisation problems that take the form of a separable sum: + +.. math:: \min_{x} f(x)+g(x) = \min_{x} \sum_{i=0}^{n-1} f_{i}(x) + g(x) = \min_{x} (f_{0}(x) + f_{1}(x) + ... + f_{n-1}(x))+g(x) + +where :math:`n` is the number of functions. Where there is a large number of :math:`f_i` or their gradients are expensive to calculate, stochastic optimisation methods could prove more efficient. +There is a growing range of Stochastic optimisation algorithms available with potential benefits of faster convergence in number of iterations or in computational cost. +This is an area of continued development for CIL and, depending on the properties of the :math:`f_i` and the regulariser :math:`g`, there is a range of different options for the user. + + + +SPDHG +----- +Stochastic Primal Dual Hybrid Gradient (SPDHG) is a stochastic version of PDHG and deals with optimisation problems of the form: + + .. math:: + + \min_{x} f(Kx) + g(x) = \min_{x} \sum f_i(K_i x) + g(x) + +where :math:`f_i` and the regulariser :math:`g` need only be proper, convex and lower semi-continuous ( i.e. do not need to be differentiable). +Each iteration considers just one index of the sum, potentially reducing computational cost. For more examples see our [user notebooks]( https://github.com/vais-ral/CIL-Demos/blob/master/Tomography/Simulated/Single%20Channel/PDHG_vs_SPDHG.py). + + +.. autoclass:: cil.optimisation.algorithms.SPDHG + :members: + :inherited-members: run, update_objective_interval, max_iteration + + +Approximate gradient methods +---------------------------------- + +Alternatively, consider that, in addition to the functions :math:`f_i` and the regulariser :math:`g` being proper, convex and lower semi-continuous, the :math:`f_i` are differentiable. In this case we consider stochastic methods that replace a gradient calculation in a deterministic algorithm with a, potentially cheaper to calculate, approximate gradient. +For example, when :math:`g(x)=0`, the standard Gradient Descent algorithm utilises iterations of the form + + .. math:: + x_{k+1}=x_k-\alpha \nabla f(x_k) =x_k-\alpha \sum_{i=0}^{n-1}\nabla f_i(x_k). +:math:`\nabla f(x_k)=\sum_{i=0}^{n-1}\nabla f_i(x_k)` with :math:`n \nabla f_i(x_k)`, for an index :math:`i` which changes each iteration, leads to the well known stochastic gradient descent algorithm. + + + +Replacing, :math:`\nabla f(x_k)=\sum_{i=0}^{n-1}\nabla f_i(x_k)` with :math:`n \nabla f_i(x_k)`, for an index :math:`i` which changes each iteration, leads to the well known stochastic gradient descent algorithm. + +In addition, if :math:`g(x)\neq 0` and has a calculable proximal ( need not be differentiable) one can consider ISTA iterations: + + .. math:: + x_{k+1}=prox_{\alpha g}(x_k-\alpha \nabla f(x_k) )=prox_{\alpha g}(x_k-\alpha \sum_{i=0}^{n-1}\nabla f_i(x_k)) + +and again replacing :math:`\nabla f(x_k)=\sum_{i=0}^{n-1}\nabla f_i(x_k)` with an approximate gradient. + +In a similar way, plugging approximate gradient calculations into deterministic algorithms can lead to a range of stochastic algorithms. In the following table, the left hand column has the approximate gradient function subclass, :ref:`Approximate Gradient base class` the header row has one of CIL's deterministic optimisation algorithm and the body of the table has the resulting stochastic algorithm. + ++----------------+-------+------------+----------------+ +| | GD | ISTA | FISTA | ++----------------+-------+------------+----------------+ +| SGFunction | SGD | Prox-SGD | Acc-Prox-SGD | ++----------------+-------+------------+----------------+ +| SAGFunction\ | SAG | Prox-SAG | Acc-Prox-SAG | ++----------------+-------+------------+----------------+ +| SAGAFunction\ | SAGA | Prox-SAGA | Acc-Prox-SAGA | ++----------------+-------+------------+----------------+ +| SVRGFunction\ | SVRG | Prox-SVRG | Acc-Prox-SVRG | ++----------------+-------+------------+----------------+ +| LSVRGFunction\| LSVRG | Prox-LSVRG | Acc-Prox-LSVRG | ++----------------+-------+------------+----------------+ + +\*In development + +The stochastic gradient functions can be found listed under functions in the documentation. + +Stochastic Gradient Descent Example +---------------------------------- +The below is an example of Stochastic Gradient Descent built of the SGFunction and Gradient Descent algorithm: + +.. code-block :: python + + from cil.optimisation.utilities import Sampler + from cil.optimisation.algorithms import GD + from cil.optimisation.functions import LeastSquares, SGFunction + from cil.utilities import dataexample + from cil.plugins.astra.operators import ProjectionOperator + + # get the data + data = dataexample.SIMULATED_PARALLEL_BEAM_DATA.get() + data.reorder('astra') + data = data.get_slice(vertical='centre') + + # create the geometries + ag = data.geometry + ig = ag.get_ImageGeometry() + + # partition the data and build the projectors + n_subsets = 10 + partitioned_data = data.partition(n_subsets, 'sequential') + A_partitioned = ProjectionOperator(ig, partitioned_data.geometry, device = "cpu") + + # create the list of functions for the stochastic sum + list_of_functions = [LeastSquares(Ai, b=bi) for Ai,bi in zip(A_partitioned, partitioned_data)] + + #define the sampler and the stochastic gradient function + sampler = Sampler.staggered(len(list_of_functions), stride=2) + f = SGFunction(list_of_functions, sampler=sampler) + + #set up and run the gradient descent algorithm + alg = GD(initial=ig.allocate(0), objective_function=f, step_size=1/f.L) + alg.run(300) + + +Note +---- + All the approximate gradients written in CIL are of a similar order of magnitude to the full gradient calculation. For example, in the :code:`SGFunction` we approximate the full gradient by :math:`n\nabla f_i` for an index :math:`i` given by the sampler. + The multiplication by :math:`n` is a choice to more easily allow comparisons between stochastic and non-stochastic methods and between stochastic methods with varying numbers of subsets. + The multiplication ensures that the (SAGA, SGD, and SVRG and LSVRG) approximate gradients are an unbiased estimator of the full gradient ie :math:`\mathbb{E}\left[\tilde\nabla f(x)\right] =\nabla f(x)`. + This has an implication when choosing step sizes. For example, a suitable step size for GD with a SGFunction could be + :math:`\propto 1/(L_{max}*n)`, where :math:`L_{max}` is the largest Lipschitz constant of the list of functions in the SGFunction and the additional factor of :math:`n` reflects this multiplication by :math:`n` in the approximate gradient. + + +Memory requirements +------------------- +Note that the approximate gradient methods have different memory requirements: ++ The `SGFunction` has the same requirements as a `SumFunction`, so no increased memory usage ++ `SAGFunction` and `SAGAFunction` both store `n+3` times the image size in memory to store the last calculated gradient for each function in the sum and for intermediary calculations. ++ `SVRGFunction` and `LSVRGFunction` with the default `store_gradients = False` store 4 times the image size in memory, including the "snapshot" point and gradient. If `store_gradients = True`, some computational effort is saved, at the expensive of stored memory `n+4` times the image size. + + +Operators +========= +The two most important methods are :code:`direct` and :code:`adjoint` +methods that describe the result of applying the operator, and its +adjoint respectively, onto a compatible :code:`DataContainer` input. +The output is another :code:`DataContainer` object or subclass +hereof. An important special case is to represent the tomographic +forward and backprojection operations. + + +Operator base classes +--------------------- + +All operators extend the :code:`Operator` class. A special class is the :code:`LinearOperator` +which represents an operator for which the :code:`adjoint` operation is defined. +A :code:`ScaledOperator` represents the multiplication of any operator with a scalar. + +.. autoclass:: cil.optimisation.operators.Operator + :members: + :inherited-members: + +.. autoclass:: cil.optimisation.operators.LinearOperator + :members: + + +.. autoclass:: cil.optimisation.operators.ScaledOperator + :members: + + +.. autoclass:: cil.optimisation.operators.CompositionOperator + :members: + + +.. autoclass:: cil.optimisation.operators.DiagonalOperator + :members: + + +.. autoclass:: cil.optimisation.operators.ChannelwiseOperator + :members: + + +.. autoclass:: cil.optimisation.operators.SumOperator + :members: + + +Trivial operators +----------------- + +Trivial operators are the following. + +.. autoclass:: cil.optimisation.operators.IdentityOperator + :members: + + +.. autoclass:: cil.optimisation.operators.ZeroOperator + :members: + + +.. autoclass:: cil.optimisation.operators.MatrixOperator + :members: + + +.. autoclass:: cil.optimisation.operators.MaskOperator + :members: + + +.. autoclass:: cil.optimisation.operators.ProjectionMap + :members: + +GradientOperator +----------------- + +.. autoclass:: cil.optimisation.operators.GradientOperator + :members: + + +.. autoclass:: cil.optimisation.operators.FiniteDifferenceOperator + :members: + +.. autoclass:: cil.optimisation.operators.SparseFiniteDifferenceOperator + :members: + +.. autoclass:: cil.optimisation.operators.SymmetrisedGradientOperator + :members: + + +WaveletOperator +--------------- +We utilise PyWavelets (https://pywavelets.readthedocs.io/en/latest/index.html) to build wavelet operators in CIL: + +.. autoclass:: cil.optimisation.operators.WaveletOperator + :members: + + + + +Functions +========= + +A :code:`Function` represents a mathematical function of one or more inputs +and is intended to accept :code:`DataContainers` as input as well as any +additional parameters. + +Fixed parameters can be passed in during the creation of the function object. +The methods of the function reflect the properties of it, for example, if the function +represented is differentiable the function should contain a method :code:`gradient` +which should return the gradient of the function evaluated at an input point. +If the function is not differentiable but allows a simple proximal operator, +the method :code:`proximal` should return the proximal operator evaluated at an +input point. The function value is evaluated by calling the function itself, +e.g. :code:`f(x)` for a :code:`Function f` and input point :code:`x`. + + +Base classes +------------ + +.. autoclass:: cil.optimisation.functions.Function + :members: + :inherited-members: + +.. autoclass:: cil.optimisation.functions.SumFunction + :members: + :inherited-members: + +.. autoclass:: cil.optimisation.functions.ScaledFunction + :members: + :inherited-members: + +.. autoclass:: cil.optimisation.functions.SumScalarFunction + :members: + :inherited-members: + +.. autoclass:: cil.optimisation.functions.TranslateFunction + :members: + :inherited-members: + +Simple functions +---------------- +.. autoclass:: cil.optimisation.functions.ConstantFunction + :members: + :inherited-members: + +.. autoclass:: cil.optimisation.functions.ZeroFunction + :members: + :inherited-members: + +.. autoclass:: cil.optimisation.functions.Rosenbrock + :members: + :inherited-members: + +Composition of operator and a function +-------------------------------------- + +This class allows the user to write a function which does the following: + +.. math:: + + F ( x ) = G ( Ax ) + +where :math:`A` is an operator. For instance the least squares function can +be expressed as + +.. math:: + + F(x) = || Ax - b ||^2_2 \qquad \text{where} \qquad G(y) = || y - b ||^2_2 + +.. code-block :: python + + F1 = Norm2Sq(A, b) + # or equivalently + F2 = OperatorCompositionFunction(L2NormSquared(b=b), A) + + +.. autoclass:: cil.optimisation.functions.OperatorCompositionFunction + :members: + :inherited-members: + +Indicator box +------------- + +.. autoclass:: cil.optimisation.functions.IndicatorBox + :members: + :inherited-members: + + +KullbackLeibler +--------------- + +.. autoclass:: cil.optimisation.functions.KullbackLeibler + :members: + :inherited-members: + +L1 Norm +------- + +.. autoclass:: cil.optimisation.functions.L1Norm + :members: + :inherited-members: + +L2 Norm Squared +----------------------- +.. l2norm: + +.. autoclass:: cil.optimisation.functions.L2NormSquared + :members: + :inherited-members: + +.. autoclass:: cil.optimisation.functions.WeightedL2NormSquared + :members: + :inherited-members: + + +Least Squares +------------- + +.. autoclass:: cil.optimisation.functions.LeastSquares + :members: + :inherited-members: + + +L1 Sparsity +---------- +.. autoclass:: cil.optimisation.functions.L1Sparsity + :members: + :inherited-members: + + +Mixed L21 norm +-------------- + +.. autoclass:: cil.optimisation.functions.MixedL21Norm + :members: + :inherited-members: + +Smooth Mixed L21 norm +--------------------- + +.. autoclass:: cil.optimisation.functions.SmoothMixedL21Norm + :members: + :inherited-members: + +Mixed L11 norm +--------------------- + +.. autoclass:: cil.optimisation.functions.MixedL11Norm + :members: + :inherited-members: + +Total variation +--------------- + +.. autoclass:: cil.optimisation.functions.TotalVariation + :members: + :inherited-members: + +Approximate Gradient base class +-------------------------------- + +.. autoclass:: cil.optimisation.functions.ApproximateGradientSumFunction + :members: + :inherited-members: + + +Stochastic Gradient function +----------------------------- + +.. autoclass:: cil.optimisation.functions.SGFunction + :members: + :inherited-members: + +SAG function +------------- + +.. autoclass:: cil.optimisation.functions.SAGFunction + :members: + :inherited-members: + +SAGA function +-------------- + +.. autoclass:: cil.optimisation.functions.SAGAFunction + :members: + :inherited-members: + + + +Stochastic Variance Reduced Gradient Function +---------------------------------------------- +.. autoclass:: cil.optimisation.functions.SVRGFunction + :members: + :inherited-members: + + +Loopless Stochastic Variance Reduced Gradient Function +---------------------------------------------- +.. autoclass:: cil.optimisation.functions.LSVRGFunction + :members: + :inherited-members: + + + +Utilities +========= + +Contains utilities for the CIL optimisation framework. + +Samplers +-------- + +Here, we define samplers that select from a list of indices {0, 1, …, N-1} either randomly or by some deterministic pattern. +The :code:`cil.optimisation.utilities.sampler` class defines a function :code:`next()` which gives the next sample. It also has utility to :code:`get_samples` to access which samples have or will be drawn. + +For ease of use we provide the following static methods in `cil.optimisation.utilities.sampler` that allow you to configure your sampler object rather than initialising the classes directly: + +.. automethod:: cil.optimisation.utilities.Sampler.from_function + +.. automethod:: cil.optimisation.utilities.Sampler.sequential + +.. automethod:: cil.optimisation.utilities.Sampler.staggered + +.. automethod:: cil.optimisation.utilities.Sampler.herman_meyer + +.. automethod:: cil.optimisation.utilities.Sampler.random_with_replacement + +.. automethod:: cil.optimisation.utilities.Sampler.random_without_replacement + + +They will all instantiate a Sampler defined in the following class: + +.. autoclass:: cil.optimisation.utilities.Sampler + :members: + + +In addition, we provide a random sampling class which is a child class of `cil.optimisation.utilities.sampler` and provides options for sampling with and without replacement: + +.. autoclass:: cil.optimisation.utilities.SamplerRandom + :members: + +Callbacks +--------- + +A list of :code:`Callback` s to be executed each iteration can be passed to `Algorithms`_ :code:`run` method. + +.. code-block :: python + + from cil.optimisation.utilities.callbacks import LogfileCallback + ... + algorithm.run(..., callbacks=[LogfileCallback("log.txt")]) + +.. autoclass:: cil.optimisation.utilities.callbacks.Callback + :members: + +Built-in callbacks include: + +.. autoclass:: cil.optimisation.utilities.callbacks.ProgressCallback + :members: + +.. autoclass:: cil.optimisation.utilities.callbacks.TextProgressCallback + :members: + +.. autoclass:: cil.optimisation.utilities.callbacks.LogfileCallback + :members: + +Users can also write custom callbacks. + +Below is an example of a custom callback implementing early stopping. +In each iteration of the :code:`TestAlgo`, the objective :math:`x` is reduced by :math:`5`. The :code:`EarlyStopping` callback terminates the algorithm when :math:`x \le -15`. The algorithm thus terminates after :math:`3` iterations. + +.. code:: python + + from cil.optimisation.algorithms import Algorithm + from cil.optimisation.utilities import callbacks + + class TestAlgo(Algorithm): + def __init__(self, *args, **kwargs): + self.x = 0 + super().__init__(*args, **kwargs) + self.configured = True + + def update(self): + self.x -= 5 + + def update_objective(self): + self.loss.append(2 ** self.x) + + class EarlyStopping(callbacks.Callback): + def __call__(self, algorithm: Algorithm): + if algorithm.x <= -15: # arbitrary stopping criterion + raise StopIteration + + algo = TestAlgo() + algo.run(20, callbacks=[callbacks.ProgressCallback(), EarlyStopping()]) + + +.. code:: raw + + Output: + 15%|███ | 3/20 [00:00<00:00, 11770.73it/s, objective=3.05e-5] + + +Step size methods +------------------ +A step size method is a class which acts on an algorithm and can be passed to `cil.optimisation.algorithm.GD`, `cil.optimisation.algorithm.ISTA` `cil.optimisation.algorithm.FISTA` and it's method `get_step_size` is called after the calculation of the gradient before the gradient descent step is taken. It outputs a float value to be used as the step-size. + +Currently in CIL we have a base class: + +.. autoclass:: cil.optimisation.utilities.StepSizeMethods.StepSizeRule + :members: + +We also have a number of example classes: + +.. autoclass:: cil.optimisation.utilities.StepSizeMethods.ConstantStepSize + :members: + +.. autoclass:: cil.optimisation.utilities.StepSizeMethods.ArmijoStepSizeRule + :members: + +.. autoclass:: cil.optimisation.utilities.StepSizeMethods.BarzilaiBorweinStepSizeRule + :members: + + + +Preconditioners +---------------- +A preconditioner is a class which acts on an algorithm and can be passed to `cil.optimisation.algorithm.GD`, `cil.optimisation.algorithm.ISTA` or `cil.optimisation.algorithm.FISTA` and it's method `apply` is called after the calculation of the gradient before the gradient descent step is taken. It modifies and returns a passed `gradient`. + +Currently in CIL we have a base class: + +.. autoclass:: cil.optimisation.utilities.preconditioner.Preconditioner + :members: + +We also have a number of already provided pre-conditioners + +.. autoclass:: cil.optimisation.utilities.preconditioner.Sensitivity + :members: + +.. autoclass:: cil.optimisation.utilities.preconditioner.AdaptiveSensitivity + :members: + + + +Block Framework +*************** + +To be able to express more advanced optimisation problems we developed the +`Block Framework`_, which provides a generic strategy to treat variational +problems in the following form: + +.. math:: + \min \text{Regulariser} + \text{Fidelity} + +The block framework consists of: + ++ `BlockDataContainer`_ ++ `BlockFunction`_ ++ `BlockOperator`_ + + + + +The block framework allows writing more advanced optimisation problems. Consider the typical +`Tikhonov regularisation `_: + +.. math:: + + \underset{u}{\mathrm{argmin}}\begin{Vmatrix}A u - b \end{Vmatrix}^2_2 + \alpha^2\|Lu\|^2_2 + +where, + +* :math:`A` is the projection operator +* :math:`b` is the acquired data +* :math:`u` is the unknown image to be solved for +* :math:`\alpha` is the regularisation parameter +* :math:`L` is a regularisation operator + +The first term measures the fidelity of the solution to the data. The second term measures the +fidelity to the prior knowledge we have imposed on the system, operator :math:`L`. + +This can be re-written equivalently in the block matrix form: + +.. math:: + \underset{u}{\mathrm{argmin}}\begin{Vmatrix}\binom{A}{\alpha L} u - \binom{b}{0}\end{Vmatrix}^2_2 + +With the definitions: + +* :math:`\tilde{A} = \binom{A}{\alpha L}` +* :math:`\tilde{b} = \binom{b}{0}` + +this can now be recognised as a least squares problem which can be solved by any algorithm in the :code:`cil.optimisation` +which can solve least squares problem, e.g. CGLS. + +.. math:: + + \underset{u}{\mathrm{argmin}}\begin{Vmatrix}\tilde{A} u - \tilde{b}\end{Vmatrix}^2_2 + +To be able to express our optimisation problems in the matrix form above, we developed the so-called, +Block Framework comprising 4 main actors: :code:`BlockGeometry`, :code:`BlockDataContainer`, +:code:`BlockFunction` and :code:`BlockOperator`. + + + +BlockDataContainer +================== + +`BlockDataContainer`_ holds `DataContainer`_ as column vector. It is possible to +do basic algebra between `BlockDataContainer`_ s and with numbers, list or numpy arrays. + +.. math:: + + x = [x_{1}, x_{2} ]\in (X_{1}\times X_{2}) + + y = [y_{1}, y_{2}, y_{3} ]\in(Y_{1}\times Y_{2} \times Y_{3}) + + +.. autoclass:: cil.framework.BlockDataContainer + :members: + :special-members: + + +Block Function +============== + +`BlockFunction`_ acts on `BlockDataContainer`_ as a separable sum function: + + .. math:: + + f = [f_1,...,f_n] \newline + + f([x_1,...,x_n]) = f_1(x_1) + .... + f_n(x_n) + + +.. math:: + + Y = \begin{bmatrix} + y_{1}\\ + y_{2}\\ + y_{3}\\ + \end{bmatrix}, \quad F = [ f_{1}, f_{2}, f_{3} ] + + F(Y) : = f_{1}(y_{1}) + f_{2}(y_{2}) + f_{3}(y_{3}) + + +.. autoclass:: cil.optimisation.functions.BlockFunction + :members: + :special-members: + +Block Operator +============== + +`BlockOperator`_ represent a block matrix with operators + +.. math:: + K = \begin{bmatrix} + A_{1} & A_{2} \\ + A_{3} & A_{4} \\ + A_{5} & A_{6} + \end{bmatrix}_{(3,2)} * \quad \underbrace{\begin{bmatrix} + x_{1} \\ + x_{2} + \end{bmatrix}_{(2,1)}}_{\textbf{x}} = \begin{bmatrix} + A_{1}x_{1} + A_{2}x_{2}\\ + A_{3}x_{1} + A_{4}x_{2}\\ + A_{5}x_{1} + A_{6}x_{2}\\ + \end{bmatrix}_{(3,1)} = \begin{bmatrix} + y_{1}\\ + y_{2}\\ + y_{3} + \end{bmatrix}_{(3,1)} = \textbf{y} + +Column: Share the same domains :math:`X_{1}, X_{2}` + +Rows: Share the same ranges :math:`Y_{1}, Y_{2}, Y_{3}` + +.. math:: + K : (X_{1}\times X_{2}) \rightarrow (Y_{1}\times Y_{2} \times Y_{3}) + +:math:`A_{1}, A_{3}, A_{5}`: share the same domain :math:`X_{1}` and +:math:`A_{2}, A_{4}, A_{6}`: share the same domain :math:`X_{2}` + +.. math:: + + A_{1}: X_{1} \rightarrow Y_{1} \\ + A_{3}: X_{1} \rightarrow Y_{2} \\ + A_{5}: X_{1} \rightarrow Y_{3} \\ + A_{2}: X_{2} \rightarrow Y_{1} \\ + A_{4}: X_{2} \rightarrow Y_{2} \\ + A_{6}: X_{2} \rightarrow Y_{3} + +For instance with these ingredients one may write the following objective +function, + +.. math:: + \alpha ||\nabla u||_{2,1} + ||u - g||_2^2 + +where :math:`g` represent the measured values, :math:`u` the solution +:math:`\nabla` is the gradient operator, :math:`|| ~~ ||_{2,1}` is a norm for +the output of the gradient operator and :math:`|| x-g ||^2_2` is +least squares fidelity function as + +.. math:: + K = \begin{bmatrix} + \nabla \\ + \mathbb{1} + \end{bmatrix} + + F(x) = \Big[ \alpha \lVert ~x~ \rVert_{2,1} ~~ , ~~ || x - g||_2^2 \Big] + + w = [ u ] + +Then we have rewritten the problem as + +.. math:: + F(Kw) = \alpha \left\lVert \nabla u \right\rVert_{2,1} + ||u-g||^2_2 + +Which in Python would be like + +.. code-block:: python + + op1 = GradientOperator(ig, correlation=GradientOperator.CORRELATION_SPACE) + op2 = IdentityOperator(ig, ag) + + # Create BlockOperator + K = BlockOperator(op1, op2, shape=(2,1) ) + + # Create functions + F = BlockFunction(alpha * MixedL21Norm(), 0.5 * L2NormSquared(b=noisy_data)) + + +.. autoclass:: cil.optimisation.operators.BlockOperator + :members: + :special-members: + + +:ref:`Return Home ` + +.. _BlockDataContainer: #blockdatacontainer +.. _DataContainer: ../framework/#datacontainer +.. _BlockFunction: #block-function +.. _BlockOperator: #block-operator + + + + +References +---------- + +.. bibliography:: diff --git a/v24.2.0/_sources/plugins.rst.txt b/v24.2.0/_sources/plugins.rst.txt new file mode 100644 index 0000000000..54e0a17183 --- /dev/null +++ b/v24.2.0/_sources/plugins.rst.txt @@ -0,0 +1,112 @@ +.. Copyright 2019 United Kingdom Research and Innovation + Copyright 2019 The University of Manchester + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. + + Authors: + CIL Developers, listed at: https://github.com/TomographicImaging/CIL/blob/master/NOTICE.txt + +CIL Plugins +************ + +CCPi Regularisation +=================== + +This plugin allows the use of regularisation functions from the `CCPi Regularisation toolkit +`_ +(`10.1016/j.softx.2019.04.003 `_, +a set of CPU/GPU optimised regularisation modules for iterative image reconstruction and +other image processing tasks. + +Total variation +--------------- + +.. autoclass:: cil.plugins.ccpi_regularisation.functions.FGP_TV + + +Other regularisation functions +------------------------------ + +.. autoclass:: cil.plugins.ccpi_regularisation.functions.TGV + :members: + :special-members: + +.. autoclass:: cil.plugins.ccpi_regularisation.functions.FGP_dTV + :members: + :special-members: + +.. autoclass:: cil.plugins.ccpi_regularisation.functions.TNV + :members: + :special-members: + + +TomoPhantom +=========== +This plugin allows the use of part of `TomoPhantom +`_ +(`10.1016/j.softx.2018.05.003 `_, +a toolbox written in C language to generate customisable 2D-4D phantoms (with a +temporal capability). + +.. autofunction:: cil.plugins.TomoPhantom.get_ImageData + +TIGRE +===== +This plugin allows the use of `TIGRE +`_ +(`10.1088/2057-1976/2/5/055010 `_ +for forward and back projections and filter back projection reconstruction. + +FBP +--- +This reconstructs with FBP for parallel-beam data, and with FDK weights for cone-beam data + +.. autoclass:: cil.plugins.tigre.FBP + :exclude-members: check_input, get_input + :members: + :inherited-members: set_input, get_output + + +Projection Operator +------------------- + +.. autoclass:: cil.plugins.tigre.ProjectionOperator + :members: + + + +ASTRA +===== +This plugin allows the use of `ASTRA-toolbox +`_ +(`10.1364/OE.24.025129 `_) +for forward and back projections and filter back projection reconstruction. + + +FBP +--- +This reconstructs with FBP for parallel-beam data, and with FDK weights for cone-beam data + +.. autoclass:: cil.plugins.astra.FBP + :exclude-members: check_input, get_input + :members: + :inherited-members: set_input, get_output + + +Projection Operator +------------------- + +.. autoclass:: cil.plugins.astra.ProjectionOperator + :members: + +:ref:`Return Home ` diff --git a/v24.2.0/_sources/processors.rst.txt b/v24.2.0/_sources/processors.rst.txt new file mode 100644 index 0000000000..1381a065fc --- /dev/null +++ b/v24.2.0/_sources/processors.rst.txt @@ -0,0 +1,151 @@ +.. Copyright 2021 United Kingdom Research and Innovation + Copyright 2021 The University of Manchester + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. + + Authors: + CIL Developers, listed at: https://github.com/TomographicImaging/CIL/blob/master/NOTICE.txt + +Processors +********** + +This module allows the user to manipulate or pre-process their data. + +Data Manipulation +================= + +These processors can be used on `ImageData` or `AcquisitionData` objects. + + +Data Slicer +----------- + +.. autoclass:: cil.processors.Slicer + :exclude-members: check_input, get_input + :members: + :inherited-members: set_input, get_output + + +Data Binner +----------- + +.. autoclass:: cil.processors.Binner + :exclude-members: check_input, get_input + :members: + :inherited-members: set_input, get_output + + +Data Padder +----------- + +.. autoclass:: cil.processors.Padder + :exclude-members: check_input, get_input + :members: + :inherited-members: set_input, get_output + + +Mask Generator from Data +------------------------ + +.. autoclass:: cil.processors.MaskGenerator + :exclude-members: check_input, get_input + :members: + :inherited-members: set_input, get_output + + +Data Masking +------------ + +.. autoclass:: cil.processors.Masker + :exclude-members: check_input, get_input + :members: + :inherited-members: set_input, get_output + + +Pre-processors +============== + +These processors can be used with `AcquisitionData` objects + + +Centre Of Rotation Corrector +---------------------------- + +In the ideal alignment of a CT instrument, the projection of the axis of rotation onto the +detector coincides with the vertical midline of the detector. In practice this is hard to achieve +due to misalignments and/or kinematic errors in positioning of CT instrument components. +A slight offset of the center of rotation with respect to the theoretical position will contribute +to the loss of resolution; in more severe cases, it will cause severe artifacts in the reconstructed +volume (double-borders). + +:code:`CentreOfRotationCorrector` can be used to estimate the offset of center of rotation from the data. + +:code:`CentreOfRotationCorrector` supports both parallel and cone-beam geometry with 2 different algorithms: + +* Cross-correlation, is suitable for single slice parallel-beam geometry. It requires two projections 180 degree apart. + +* Image sharpness method, which maximising the sharpness of a reconstructed slice. It can be used on single +slice parallel-beam, and centre-slice of cone-beam geometry. For use only with datasets that can be reconstructed with FBP/FDK. + + +.. autoclass:: cil.processors.CentreOfRotationCorrector + :exclude-members: check_input, get_input + :members: + :inherited-members: set_input, get_output + + +Data Normaliser +--------------- + +.. autoclass:: cil.processors.Normaliser + :exclude-members: check_input, get_input + :members: + :inherited-members: set_input, get_output + + +Transmission to Absorption Converter +------------------------------------- + +.. autoclass:: cil.processors.TransmissionAbsorptionConverter + :exclude-members: check_input, get_input + :members: + :inherited-members: set_input, get_output + + +Absorption to Transmission Converter +------------------------------------ + +.. autoclass:: cil.processors.AbsorptionTransmissionConverter + :exclude-members: check_input, get_input + :members: + :inherited-members: set_input, get_output + + +Ring Remover +------------ + +.. autoclass:: cil.processors.RingRemover + :exclude-members: check_input, get_input + :members: + :inherited-members: set_input, get_output + + +Paganin Processor +----------------- + +.. autoclass:: cil.processors.PaganinProcessor + :exclude-members: check_input, get_input + :members: + :inherited-members: + +:ref:`Return Home ` diff --git a/v24.2.0/_sources/recon.rst.txt b/v24.2.0/_sources/recon.rst.txt new file mode 100644 index 0000000000..1b94483a43 --- /dev/null +++ b/v24.2.0/_sources/recon.rst.txt @@ -0,0 +1,60 @@ +.. Copyright 2021 United Kingdom Research and Innovation + Copyright 2021 The University of Manchester + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. + + Authors: + CIL Developers, listed at: https://github.com/TomographicImaging/CIL/blob/master/NOTICE.txt + +Recon +***** + +This module allows the user to run pre-configured reconstruction algorithms on their data. + + +Analytical Reconstruction +========================= + +The CIL analytical reconstructions use CIL to filter and prepare the data using highly optimised routines. The filtered data is then +backprojected using projectors from TIGRE or ASTRA-TOOLBOX. + +Standard FBP (filtered-backprojection) should be used for parallel-beam data. FDK (Feldkamp, Davis, and Kress) is a filtered-backprojection +algorithm for reconstruction of cone-beam data measured with a standard circular orbit. + +The filter can be set to a predefined function, or a custom filter can be set. The predefined filters take the following forms: + +.. figure:: images/FBP_filters1.png + :align: center + :alt: FBP Filters + :figclass: align-center + + +FBP - Reconstructor for parallel-beam geometry +---------------------------------------------- + + +.. autoclass:: cil.recon.FBP + :members: + :inherited-members: + + +FDK - Reconstructor for cone-beam geometry +------------------------------------------ + + +.. autoclass:: cil.recon.FDK + :members: + :inherited-members: + + +:ref:`Return Home ` diff --git a/v24.2.0/_sources/utilities.rst.txt b/v24.2.0/_sources/utilities.rst.txt new file mode 100644 index 0000000000..816d491b4b --- /dev/null +++ b/v24.2.0/_sources/utilities.rst.txt @@ -0,0 +1,140 @@ +.. Copyright 2021 United Kingdom Research and Innovation + Copyright 2021 The University of Manchester + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. + + Authors: + CIL Developers, listed at: https://github.com/TomographicImaging/CIL/blob/master/NOTICE.txt + +Utilities +********* + + +Test datasets +============= + +A range of small test datasets to generate and use + + +A set of simulated volumes and CT data +-------------------------------------- + +.. autoclass:: cil.utilities.dataexample.SIMULATED_CONE_BEAM_DATA + :members: + +.. autoclass:: cil.utilities.dataexample.SIMULATED_PARALLEL_BEAM_DATA + :members: + +.. autoclass:: cil.utilities.dataexample.SIMULATED_CONE_BEAM_DATA + :members: + + +A CT dataset from the Diamond Light Source +------------------------------------------ + +.. autoclass:: cil.utilities.dataexample.SYNCHROTRON_PARALLEL_BEAM_DATA + :members: + + +Simulated image data +-------------------- + +.. autoclass:: cil.utilities.dataexample.TestData + :members: + :inherited-members: + +Remote data +----------- +Remote data classes can be used to access specific datasets from zenodo. These +datasets are not packaged as part of CIL, instead the `download_data(data_dir)` +method can be used to download the dataset to a chosen data directory then loaded +from that data directory using `get(data_dir)`. + +Walnut +------ + +.. autoclass:: cil.utilities.dataexample.WALNUT + :members: + :inherited-members: + +USB +------ + +.. autoclass:: cil.utilities.dataexample.USB + :members: + :inherited-members: + +KORN +------ + +.. autoclass:: cil.utilities.dataexample.KORN + :members: + :inherited-members: + +SANDSTONE +------ +.. autoclass:: cil.utilities.dataexample.SANDSTONE + :members: + :inherited-members: + + + +Image Quality metrics +===================== + +.. automodule:: cil.utilities.quality_measures + :members: + + +Visualisation +============ + +show2D - Display 2D slices +-------------------------- + +.. autoclass:: cil.utilities.display.show2D + :members: + :inherited-members: + +show1D - Display 1D slices +-------------------------- + +.. autoclass:: cil.utilities.display.show1D + :members: + :inherited-members: + +show_geometry - Display system geometry +--------------------------------------- + +.. autoclass:: cil.utilities.display.show_geometry + :members: + :inherited-members: + + +islicer - interactive display of 2D slices +------------------------------------------ + +.. autoclass:: cil.utilities.jupyter.islicer + :members: + :inherited-members: + + +link_islicer - link islicer objects by index +-------------------------------------------- + +.. autoclass:: cil.utilities.jupyter.link_islicer + :members: + :inherited-members: + + +:ref:`Return Home ` diff --git a/v24.2.0/_static/basic.css b/v24.2.0/_static/basic.css new file mode 100644 index 0000000000..2af6139e6b --- /dev/null +++ b/v24.2.0/_static/basic.css @@ -0,0 +1,925 @@ +/* + * basic.css + * ~~~~~~~~~ + * + * Sphinx stylesheet -- basic theme. + * + * :copyright: Copyright 2007-2024 by the Sphinx team, see AUTHORS. + * :license: BSD, see LICENSE for details. + * + */ + +/* -- main layout ----------------------------------------------------------- */ + +div.clearer { + clear: both; +} + +div.section::after { + display: block; + content: ''; + clear: left; +} + +/* -- relbar ---------------------------------------------------------------- */ + +div.related { + width: 100%; + font-size: 90%; +} + +div.related h3 { + display: none; +} + +div.related ul { + margin: 0; + padding: 0 0 0 10px; + list-style: none; +} + +div.related li { + display: inline; +} + +div.related li.right { + float: right; + margin-right: 5px; +} + +/* -- sidebar --------------------------------------------------------------- */ + +div.sphinxsidebarwrapper { + padding: 10px 5px 0 10px; +} + +div.sphinxsidebar { + float: left; + width: 270px; + margin-left: -100%; + font-size: 90%; + word-wrap: break-word; + overflow-wrap : break-word; +} + +div.sphinxsidebar ul { + list-style: none; +} + +div.sphinxsidebar ul ul, +div.sphinxsidebar ul.want-points { + margin-left: 20px; + list-style: square; +} + +div.sphinxsidebar ul ul { + margin-top: 0; + margin-bottom: 0; +} + +div.sphinxsidebar form { + margin-top: 10px; +} + +div.sphinxsidebar input { + border: 1px solid #98dbcc; + font-family: sans-serif; + font-size: 1em; +} + +div.sphinxsidebar #searchbox form.search { + overflow: hidden; +} + +div.sphinxsidebar #searchbox input[type="text"] { + float: left; + width: 80%; + padding: 0.25em; + box-sizing: border-box; +} + +div.sphinxsidebar #searchbox input[type="submit"] { + float: left; + width: 20%; + border-left: none; + padding: 0.25em; + box-sizing: border-box; +} + + +img { + border: 0; + max-width: 100%; +} + +/* -- search page ----------------------------------------------------------- */ + +ul.search { + margin: 10px 0 0 20px; + padding: 0; +} + +ul.search li { + padding: 5px 0 5px 20px; + background-image: url(file.png); + background-repeat: no-repeat; + background-position: 0 7px; +} + +ul.search li a { + font-weight: bold; +} + +ul.search li p.context { + color: #888; + margin: 2px 0 0 30px; + text-align: left; +} + +ul.keywordmatches li.goodmatch a { + font-weight: bold; +} + +/* -- index page ------------------------------------------------------------ */ + +table.contentstable { + width: 90%; + margin-left: auto; + margin-right: auto; +} + +table.contentstable p.biglink { + line-height: 150%; +} + +a.biglink { + font-size: 1.3em; +} + +span.linkdescr { + font-style: italic; + padding-top: 5px; + font-size: 90%; +} + +/* -- general index --------------------------------------------------------- */ + +table.indextable { + width: 100%; +} + +table.indextable td { + text-align: left; + vertical-align: top; +} + +table.indextable ul { + margin-top: 0; + margin-bottom: 0; + list-style-type: none; +} + +table.indextable > tbody > tr > td > ul { + padding-left: 0em; +} + +table.indextable tr.pcap { + height: 10px; +} + +table.indextable tr.cap { + margin-top: 10px; + background-color: #f2f2f2; +} + +img.toggler { + margin-right: 3px; + margin-top: 3px; + cursor: pointer; +} + +div.modindex-jumpbox { + border-top: 1px solid #ddd; + border-bottom: 1px solid #ddd; + margin: 1em 0 1em 0; + padding: 0.4em; +} + +div.genindex-jumpbox { + border-top: 1px solid #ddd; + border-bottom: 1px solid #ddd; + margin: 1em 0 1em 0; + padding: 0.4em; +} + +/* -- domain module index --------------------------------------------------- */ + +table.modindextable td { + padding: 2px; + border-collapse: collapse; +} + +/* -- general body styles --------------------------------------------------- */ + +div.body { + min-width: 360px; + max-width: 800px; +} + +div.body p, div.body dd, div.body li, div.body blockquote { + -moz-hyphens: auto; + -ms-hyphens: auto; + -webkit-hyphens: auto; + hyphens: auto; +} + +a.headerlink { + visibility: hidden; +} + +a:visited { + color: #551A8B; +} + +h1:hover > a.headerlink, +h2:hover > a.headerlink, +h3:hover > a.headerlink, +h4:hover > a.headerlink, +h5:hover > a.headerlink, +h6:hover > a.headerlink, +dt:hover > a.headerlink, +caption:hover > a.headerlink, +p.caption:hover > a.headerlink, +div.code-block-caption:hover > a.headerlink { + visibility: visible; +} + +div.body p.caption { + text-align: inherit; +} + +div.body td { + text-align: left; +} + +.first { + margin-top: 0 !important; +} + +p.rubric { + margin-top: 30px; + font-weight: bold; +} + +img.align-left, figure.align-left, .figure.align-left, object.align-left { + clear: left; + float: left; + margin-right: 1em; +} + +img.align-right, figure.align-right, .figure.align-right, object.align-right { + clear: right; + float: right; + margin-left: 1em; +} + +img.align-center, figure.align-center, .figure.align-center, object.align-center { + display: block; + margin-left: auto; + margin-right: auto; +} + +img.align-default, figure.align-default, .figure.align-default { + display: block; + margin-left: auto; + margin-right: auto; +} + +.align-left { + text-align: left; +} + +.align-center { + text-align: center; +} + +.align-default { + text-align: center; +} + +.align-right { + text-align: right; +} + +/* -- sidebars -------------------------------------------------------------- */ + +div.sidebar, +aside.sidebar { + margin: 0 0 0.5em 1em; + border: 1px solid #ddb; + padding: 7px; + background-color: #ffe; + width: 40%; + float: right; + clear: right; + overflow-x: auto; +} + +p.sidebar-title { + font-weight: bold; +} + +nav.contents, +aside.topic, +div.admonition, div.topic, blockquote { + clear: left; +} + +/* -- topics ---------------------------------------------------------------- */ + +nav.contents, +aside.topic, +div.topic { + border: 1px solid #ccc; + padding: 7px; + margin: 10px 0 10px 0; +} + +p.topic-title { + font-size: 1.1em; + font-weight: bold; + margin-top: 10px; +} + +/* -- admonitions ----------------------------------------------------------- */ + +div.admonition { + margin-top: 10px; + margin-bottom: 10px; + padding: 7px; +} + +div.admonition dt { + font-weight: bold; +} + +p.admonition-title { + margin: 0px 10px 5px 0px; + font-weight: bold; +} + +div.body p.centered { + text-align: center; + margin-top: 25px; +} + +/* -- content of sidebars/topics/admonitions -------------------------------- */ + +div.sidebar > :last-child, +aside.sidebar > :last-child, +nav.contents > :last-child, +aside.topic > :last-child, +div.topic > :last-child, +div.admonition > :last-child { + margin-bottom: 0; +} + +div.sidebar::after, +aside.sidebar::after, +nav.contents::after, +aside.topic::after, +div.topic::after, +div.admonition::after, +blockquote::after { + display: block; + content: ''; + clear: both; +} + +/* -- tables ---------------------------------------------------------------- */ + +table.docutils { + margin-top: 10px; + margin-bottom: 10px; + border: 0; + border-collapse: collapse; +} + +table.align-center { + margin-left: auto; + margin-right: auto; +} + +table.align-default { + margin-left: auto; + margin-right: auto; +} + +table caption span.caption-number { + font-style: italic; +} + +table caption span.caption-text { +} + +table.docutils td, table.docutils th { + padding: 1px 8px 1px 5px; + border-top: 0; + border-left: 0; + border-right: 0; + border-bottom: 1px solid #aaa; +} + +th { + text-align: left; + padding-right: 5px; +} + +table.citation { + border-left: solid 1px gray; + margin-left: 1px; +} + +table.citation td { + border-bottom: none; +} + +th > :first-child, +td > :first-child { + margin-top: 0px; +} + +th > :last-child, +td > :last-child { + margin-bottom: 0px; +} + +/* -- figures --------------------------------------------------------------- */ + +div.figure, figure { + margin: 0.5em; + padding: 0.5em; +} + +div.figure p.caption, figcaption { + padding: 0.3em; +} + +div.figure p.caption span.caption-number, +figcaption span.caption-number { + font-style: italic; +} + +div.figure p.caption span.caption-text, +figcaption span.caption-text { +} + +/* -- field list styles ----------------------------------------------------- */ + +table.field-list td, table.field-list th { + border: 0 !important; +} + +.field-list ul { + margin: 0; + padding-left: 1em; +} + +.field-list p { + margin: 0; +} + +.field-name { + -moz-hyphens: manual; + -ms-hyphens: manual; + -webkit-hyphens: manual; + hyphens: manual; +} + +/* -- hlist styles ---------------------------------------------------------- */ + +table.hlist { + margin: 1em 0; +} + +table.hlist td { + vertical-align: top; +} + +/* -- object description styles --------------------------------------------- */ + +.sig { + font-family: 'Consolas', 'Menlo', 'DejaVu Sans Mono', 'Bitstream Vera Sans Mono', monospace; +} + +.sig-name, code.descname { + background-color: transparent; + font-weight: bold; +} + +.sig-name { + font-size: 1.1em; +} + +code.descname { + font-size: 1.2em; +} + +.sig-prename, code.descclassname { + background-color: transparent; +} + +.optional { + font-size: 1.3em; +} + +.sig-paren { + font-size: larger; +} + +.sig-param.n { + font-style: italic; +} + +/* C++ specific styling */ + +.sig-inline.c-texpr, +.sig-inline.cpp-texpr { + font-family: unset; +} + +.sig.c .k, .sig.c .kt, +.sig.cpp .k, .sig.cpp .kt { + color: #0033B3; +} + +.sig.c .m, +.sig.cpp .m { + color: #1750EB; +} + +.sig.c .s, .sig.c .sc, +.sig.cpp .s, .sig.cpp .sc { + color: #067D17; +} + + +/* -- other body styles ----------------------------------------------------- */ + +ol.arabic { + list-style: decimal; +} + +ol.loweralpha { + list-style: lower-alpha; +} + +ol.upperalpha { + list-style: upper-alpha; +} + +ol.lowerroman { + list-style: lower-roman; +} + +ol.upperroman { + list-style: upper-roman; +} + +:not(li) > ol > li:first-child > :first-child, +:not(li) > ul > li:first-child > :first-child { + margin-top: 0px; +} + +:not(li) > ol > li:last-child > :last-child, +:not(li) > ul > li:last-child > :last-child { + margin-bottom: 0px; +} + +ol.simple ol p, +ol.simple ul p, +ul.simple ol p, +ul.simple ul p { + margin-top: 0; +} + +ol.simple > li:not(:first-child) > p, +ul.simple > li:not(:first-child) > p { + margin-top: 0; +} + +ol.simple p, +ul.simple p { + margin-bottom: 0; +} + +aside.footnote > span, +div.citation > span { + float: left; +} +aside.footnote > span:last-of-type, +div.citation > span:last-of-type { + padding-right: 0.5em; +} +aside.footnote > p { + margin-left: 2em; +} +div.citation > p { + margin-left: 4em; +} +aside.footnote > p:last-of-type, +div.citation > p:last-of-type { + margin-bottom: 0em; +} +aside.footnote > p:last-of-type:after, +div.citation > p:last-of-type:after { + content: ""; + clear: both; +} + +dl.field-list { + display: grid; + grid-template-columns: fit-content(30%) auto; +} + +dl.field-list > dt { + font-weight: bold; + word-break: break-word; + padding-left: 0.5em; + padding-right: 5px; +} + +dl.field-list > dd { + padding-left: 0.5em; + margin-top: 0em; + margin-left: 0em; + margin-bottom: 0em; +} + +dl { + margin-bottom: 15px; +} + +dd > :first-child { + margin-top: 0px; +} + +dd ul, dd table { + margin-bottom: 10px; +} + +dd { + margin-top: 3px; + margin-bottom: 10px; + margin-left: 30px; +} + +.sig dd { + margin-top: 0px; + margin-bottom: 0px; +} + +.sig dl { + margin-top: 0px; + margin-bottom: 0px; +} + +dl > dd:last-child, +dl > dd:last-child > :last-child { + margin-bottom: 0; +} + +dt:target, span.highlighted { + background-color: #fbe54e; +} + +rect.highlighted { + fill: #fbe54e; +} + +dl.glossary dt { + font-weight: bold; + font-size: 1.1em; +} + +.versionmodified { + font-style: italic; +} + +.system-message { + background-color: #fda; + padding: 5px; + border: 3px solid red; +} + +.footnote:target { + background-color: #ffa; +} + +.line-block { + display: block; + margin-top: 1em; + margin-bottom: 1em; +} + +.line-block .line-block { + margin-top: 0; + margin-bottom: 0; + margin-left: 1.5em; +} + +.guilabel, .menuselection { + font-family: sans-serif; +} + +.accelerator { + text-decoration: underline; +} + +.classifier { + font-style: oblique; +} + +.classifier:before { + font-style: normal; + margin: 0 0.5em; + content: ":"; + display: inline-block; +} + +abbr, acronym { + border-bottom: dotted 1px; + cursor: help; +} + +.translated { + background-color: rgba(207, 255, 207, 0.2) +} + +.untranslated { + background-color: rgba(255, 207, 207, 0.2) +} + +/* -- code displays --------------------------------------------------------- */ + +pre { + overflow: auto; + overflow-y: hidden; /* fixes display issues on Chrome browsers */ +} + +pre, div[class*="highlight-"] { + clear: both; +} + +span.pre { + -moz-hyphens: none; + -ms-hyphens: none; + -webkit-hyphens: none; + hyphens: none; + white-space: nowrap; +} + +div[class*="highlight-"] { + margin: 1em 0; +} + +td.linenos pre { + border: 0; + background-color: transparent; + color: #aaa; +} + +table.highlighttable { + display: block; +} + +table.highlighttable tbody { + display: block; +} + +table.highlighttable tr { + display: flex; +} + +table.highlighttable td { + margin: 0; + padding: 0; +} + +table.highlighttable td.linenos { + padding-right: 0.5em; +} + +table.highlighttable td.code { + flex: 1; + overflow: hidden; +} + +.highlight .hll { + display: block; +} + +div.highlight pre, +table.highlighttable pre { + margin: 0; +} + +div.code-block-caption + div { + margin-top: 0; +} + +div.code-block-caption { + margin-top: 1em; + padding: 2px 5px; + font-size: small; +} + +div.code-block-caption code { + background-color: transparent; +} + +table.highlighttable td.linenos, +span.linenos, +div.highlight span.gp { /* gp: Generic.Prompt */ + user-select: none; + -webkit-user-select: text; /* Safari fallback only */ + -webkit-user-select: none; /* Chrome/Safari */ + -moz-user-select: none; /* Firefox */ + -ms-user-select: none; /* IE10+ */ +} + +div.code-block-caption span.caption-number { + padding: 0.1em 0.3em; + font-style: italic; +} + +div.code-block-caption span.caption-text { +} + +div.literal-block-wrapper { + margin: 1em 0; +} + +code.xref, a code { + background-color: transparent; + font-weight: bold; +} + +h1 code, h2 code, h3 code, h4 code, h5 code, h6 code { + background-color: transparent; +} + +.viewcode-link { + float: right; +} + +.viewcode-back { + float: right; + font-family: sans-serif; +} + +div.viewcode-block:target { + margin: -1px -10px; + padding: 0 10px; +} + +/* -- math display ---------------------------------------------------------- */ + +img.math { + vertical-align: middle; +} + +div.body div.math p { + text-align: center; +} + +span.eqno { + float: right; +} + +span.eqno a.headerlink { + position: absolute; + z-index: 1; +} + +div.math:hover a.headerlink { + visibility: visible; +} + +/* -- printout stylesheet --------------------------------------------------- */ + +@media print { + div.document, + div.documentwrapper, + div.bodywrapper { + margin: 0 !important; + width: 100%; + } + + div.sphinxsidebar, + div.related, + div.footer, + #top-link { + display: none; + } +} \ No newline at end of file diff --git a/v24.2.0/_static/binder_badge_logo.svg b/v24.2.0/_static/binder_badge_logo.svg new file mode 100644 index 0000000000..327f6b639a --- /dev/null +++ b/v24.2.0/_static/binder_badge_logo.svg @@ -0,0 +1 @@ + launchlaunchbinderbinder \ No newline at end of file diff --git a/v24.2.0/_static/broken_example.png b/v24.2.0/_static/broken_example.png new file mode 100644 index 0000000000..4fea24e7df Binary files /dev/null and b/v24.2.0/_static/broken_example.png differ diff --git a/v24.2.0/_static/check-solid.svg b/v24.2.0/_static/check-solid.svg new file mode 100644 index 0000000000..92fad4b5c0 --- /dev/null +++ b/v24.2.0/_static/check-solid.svg @@ -0,0 +1,4 @@ + + + + diff --git a/v24.2.0/_static/clipboard.min.js b/v24.2.0/_static/clipboard.min.js new file mode 100644 index 0000000000..54b3c46381 --- /dev/null +++ b/v24.2.0/_static/clipboard.min.js @@ -0,0 +1,7 @@ +/*! + * clipboard.js v2.0.8 + * https://clipboardjs.com/ + * + * Licensed MIT © Zeno Rocha + */ +!function(t,e){"object"==typeof exports&&"object"==typeof module?module.exports=e():"function"==typeof define&&define.amd?define([],e):"object"==typeof exports?exports.ClipboardJS=e():t.ClipboardJS=e()}(this,function(){return n={686:function(t,e,n){"use strict";n.d(e,{default:function(){return o}});var e=n(279),i=n.n(e),e=n(370),u=n.n(e),e=n(817),c=n.n(e);function a(t){try{return document.execCommand(t)}catch(t){return}}var f=function(t){t=c()(t);return a("cut"),t};var l=function(t){var e,n,o,r=1 + + + + diff --git a/v24.2.0/_static/copybutton.css b/v24.2.0/_static/copybutton.css new file mode 100644 index 0000000000..f1916ec7d1 --- /dev/null +++ b/v24.2.0/_static/copybutton.css @@ -0,0 +1,94 @@ +/* Copy buttons */ +button.copybtn { + position: absolute; + display: flex; + top: .3em; + right: .3em; + width: 1.7em; + height: 1.7em; + opacity: 0; + transition: opacity 0.3s, border .3s, background-color .3s; + user-select: none; + padding: 0; + border: none; + outline: none; + border-radius: 0.4em; + /* The colors that GitHub uses */ + border: #1b1f2426 1px solid; + background-color: #f6f8fa; + color: #57606a; +} + +button.copybtn.success { + border-color: #22863a; + color: #22863a; +} + +button.copybtn svg { + stroke: currentColor; + width: 1.5em; + height: 1.5em; + padding: 0.1em; +} + +div.highlight { + position: relative; +} + +/* Show the copybutton */ +.highlight:hover button.copybtn, button.copybtn.success { + opacity: 1; +} + +.highlight button.copybtn:hover { + background-color: rgb(235, 235, 235); +} + +.highlight button.copybtn:active { + background-color: rgb(187, 187, 187); +} + +/** + * A minimal CSS-only tooltip copied from: + * https://codepen.io/mildrenben/pen/rVBrpK + * + * To use, write HTML like the following: + * + *

Short

+ */ + .o-tooltip--left { + position: relative; + } + + .o-tooltip--left:after { + opacity: 0; + visibility: hidden; + position: absolute; + content: attr(data-tooltip); + padding: .2em; + font-size: .8em; + left: -.2em; + background: grey; + color: white; + white-space: nowrap; + z-index: 2; + border-radius: 2px; + transform: translateX(-102%) translateY(0); + transition: opacity 0.2s cubic-bezier(0.64, 0.09, 0.08, 1), transform 0.2s cubic-bezier(0.64, 0.09, 0.08, 1); +} + +.o-tooltip--left:hover:after { + display: block; + opacity: 1; + visibility: visible; + transform: translateX(-100%) translateY(0); + transition: opacity 0.2s cubic-bezier(0.64, 0.09, 0.08, 1), transform 0.2s cubic-bezier(0.64, 0.09, 0.08, 1); + transition-delay: .5s; +} + +/* By default the copy button shouldn't show up when printing a page */ +@media print { + button.copybtn { + display: none; + } +} diff --git a/v24.2.0/_static/copybutton.js b/v24.2.0/_static/copybutton.js new file mode 100644 index 0000000000..2ea7ff3e21 --- /dev/null +++ b/v24.2.0/_static/copybutton.js @@ -0,0 +1,248 @@ +// Localization support +const messages = { + 'en': { + 'copy': 'Copy', + 'copy_to_clipboard': 'Copy to clipboard', + 'copy_success': 'Copied!', + 'copy_failure': 'Failed to copy', + }, + 'es' : { + 'copy': 'Copiar', + 'copy_to_clipboard': 'Copiar al portapapeles', + 'copy_success': '¡Copiado!', + 'copy_failure': 'Error al copiar', + }, + 'de' : { + 'copy': 'Kopieren', + 'copy_to_clipboard': 'In die Zwischenablage kopieren', + 'copy_success': 'Kopiert!', + 'copy_failure': 'Fehler beim Kopieren', + }, + 'fr' : { + 'copy': 'Copier', + 'copy_to_clipboard': 'Copier dans le presse-papier', + 'copy_success': 'Copié !', + 'copy_failure': 'Échec de la copie', + }, + 'ru': { + 'copy': 'Скопировать', + 'copy_to_clipboard': 'Скопировать в буфер', + 'copy_success': 'Скопировано!', + 'copy_failure': 'Не удалось скопировать', + }, + 'zh-CN': { + 'copy': '复制', + 'copy_to_clipboard': '复制到剪贴板', + 'copy_success': '复制成功!', + 'copy_failure': '复制失败', + }, + 'it' : { + 'copy': 'Copiare', + 'copy_to_clipboard': 'Copiato negli appunti', + 'copy_success': 'Copiato!', + 'copy_failure': 'Errore durante la copia', + } +} + +let locale = 'en' +if( document.documentElement.lang !== undefined + && messages[document.documentElement.lang] !== undefined ) { + locale = document.documentElement.lang +} + +let doc_url_root = DOCUMENTATION_OPTIONS.URL_ROOT; +if (doc_url_root == '#') { + doc_url_root = ''; +} + +/** + * SVG files for our copy buttons + */ +let iconCheck = ` + ${messages[locale]['copy_success']} + + +` + +// If the user specified their own SVG use that, otherwise use the default +let iconCopy = ``; +if (!iconCopy) { + iconCopy = ` + ${messages[locale]['copy_to_clipboard']} + + + +` +} + +/** + * Set up copy/paste for code blocks + */ + +const runWhenDOMLoaded = cb => { + if (document.readyState != 'loading') { + cb() + } else if (document.addEventListener) { + document.addEventListener('DOMContentLoaded', cb) + } else { + document.attachEvent('onreadystatechange', function() { + if (document.readyState == 'complete') cb() + }) + } +} + +const codeCellId = index => `codecell${index}` + +// Clears selected text since ClipboardJS will select the text when copying +const clearSelection = () => { + if (window.getSelection) { + window.getSelection().removeAllRanges() + } else if (document.selection) { + document.selection.empty() + } +} + +// Changes tooltip text for a moment, then changes it back +// We want the timeout of our `success` class to be a bit shorter than the +// tooltip and icon change, so that we can hide the icon before changing back. +var timeoutIcon = 2000; +var timeoutSuccessClass = 1500; + +const temporarilyChangeTooltip = (el, oldText, newText) => { + el.setAttribute('data-tooltip', newText) + el.classList.add('success') + // Remove success a little bit sooner than we change the tooltip + // So that we can use CSS to hide the copybutton first + setTimeout(() => el.classList.remove('success'), timeoutSuccessClass) + setTimeout(() => el.setAttribute('data-tooltip', oldText), timeoutIcon) +} + +// Changes the copy button icon for two seconds, then changes it back +const temporarilyChangeIcon = (el) => { + el.innerHTML = iconCheck; + setTimeout(() => {el.innerHTML = iconCopy}, timeoutIcon) +} + +const addCopyButtonToCodeCells = () => { + // If ClipboardJS hasn't loaded, wait a bit and try again. This + // happens because we load ClipboardJS asynchronously. + if (window.ClipboardJS === undefined) { + setTimeout(addCopyButtonToCodeCells, 250) + return + } + + // Add copybuttons to all of our code cells + const COPYBUTTON_SELECTOR = 'div.highlight pre'; + const codeCells = document.querySelectorAll(COPYBUTTON_SELECTOR) + codeCells.forEach((codeCell, index) => { + const id = codeCellId(index) + codeCell.setAttribute('id', id) + + const clipboardButton = id => + `` + codeCell.insertAdjacentHTML('afterend', clipboardButton(id)) + }) + +function escapeRegExp(string) { + return string.replace(/[.*+?^${}()|[\]\\]/g, '\\$&'); // $& means the whole matched string +} + +/** + * Removes excluded text from a Node. + * + * @param {Node} target Node to filter. + * @param {string} exclude CSS selector of nodes to exclude. + * @returns {DOMString} Text from `target` with text removed. + */ +function filterText(target, exclude) { + const clone = target.cloneNode(true); // clone as to not modify the live DOM + if (exclude) { + // remove excluded nodes + clone.querySelectorAll(exclude).forEach(node => node.remove()); + } + return clone.innerText; +} + +// Callback when a copy button is clicked. Will be passed the node that was clicked +// should then grab the text and replace pieces of text that shouldn't be used in output +function formatCopyText(textContent, copybuttonPromptText, isRegexp = false, onlyCopyPromptLines = true, removePrompts = true, copyEmptyLines = true, lineContinuationChar = "", hereDocDelim = "") { + var regexp; + var match; + + // Do we check for line continuation characters and "HERE-documents"? + var useLineCont = !!lineContinuationChar + var useHereDoc = !!hereDocDelim + + // create regexp to capture prompt and remaining line + if (isRegexp) { + regexp = new RegExp('^(' + copybuttonPromptText + ')(.*)') + } else { + regexp = new RegExp('^(' + escapeRegExp(copybuttonPromptText) + ')(.*)') + } + + const outputLines = []; + var promptFound = false; + var gotLineCont = false; + var gotHereDoc = false; + const lineGotPrompt = []; + for (const line of textContent.split('\n')) { + match = line.match(regexp) + if (match || gotLineCont || gotHereDoc) { + promptFound = regexp.test(line) + lineGotPrompt.push(promptFound) + if (removePrompts && promptFound) { + outputLines.push(match[2]) + } else { + outputLines.push(line) + } + gotLineCont = line.endsWith(lineContinuationChar) & useLineCont + if (line.includes(hereDocDelim) & useHereDoc) + gotHereDoc = !gotHereDoc + } else if (!onlyCopyPromptLines) { + outputLines.push(line) + } else if (copyEmptyLines && line.trim() === '') { + outputLines.push(line) + } + } + + // If no lines with the prompt were found then just use original lines + if (lineGotPrompt.some(v => v === true)) { + textContent = outputLines.join('\n'); + } + + // Remove a trailing newline to avoid auto-running when pasting + if (textContent.endsWith("\n")) { + textContent = textContent.slice(0, -1) + } + return textContent +} + + +var copyTargetText = (trigger) => { + var target = document.querySelector(trigger.attributes['data-clipboard-target'].value); + + // get filtered text + let exclude = '.linenos'; + + let text = filterText(target, exclude); + return formatCopyText(text, '', false, true, true, true, '', '') +} + + // Initialize with a callback so we can modify the text before copy + const clipboard = new ClipboardJS('.copybtn', {text: copyTargetText}) + + // Update UI with error/success messages + clipboard.on('success', event => { + clearSelection() + temporarilyChangeTooltip(event.trigger, messages[locale]['copy'], messages[locale]['copy_success']) + temporarilyChangeIcon(event.trigger) + }) + + clipboard.on('error', event => { + temporarilyChangeTooltip(event.trigger, messages[locale]['copy'], messages[locale]['copy_failure']) + }) +} + +runWhenDOMLoaded(addCopyButtonToCodeCells) \ No newline at end of file diff --git a/v24.2.0/_static/copybutton_funcs.js b/v24.2.0/_static/copybutton_funcs.js new file mode 100644 index 0000000000..dbe1aaad79 --- /dev/null +++ b/v24.2.0/_static/copybutton_funcs.js @@ -0,0 +1,73 @@ +function escapeRegExp(string) { + return string.replace(/[.*+?^${}()|[\]\\]/g, '\\$&'); // $& means the whole matched string +} + +/** + * Removes excluded text from a Node. + * + * @param {Node} target Node to filter. + * @param {string} exclude CSS selector of nodes to exclude. + * @returns {DOMString} Text from `target` with text removed. + */ +export function filterText(target, exclude) { + const clone = target.cloneNode(true); // clone as to not modify the live DOM + if (exclude) { + // remove excluded nodes + clone.querySelectorAll(exclude).forEach(node => node.remove()); + } + return clone.innerText; +} + +// Callback when a copy button is clicked. Will be passed the node that was clicked +// should then grab the text and replace pieces of text that shouldn't be used in output +export function formatCopyText(textContent, copybuttonPromptText, isRegexp = false, onlyCopyPromptLines = true, removePrompts = true, copyEmptyLines = true, lineContinuationChar = "", hereDocDelim = "") { + var regexp; + var match; + + // Do we check for line continuation characters and "HERE-documents"? + var useLineCont = !!lineContinuationChar + var useHereDoc = !!hereDocDelim + + // create regexp to capture prompt and remaining line + if (isRegexp) { + regexp = new RegExp('^(' + copybuttonPromptText + ')(.*)') + } else { + regexp = new RegExp('^(' + escapeRegExp(copybuttonPromptText) + ')(.*)') + } + + const outputLines = []; + var promptFound = false; + var gotLineCont = false; + var gotHereDoc = false; + const lineGotPrompt = []; + for (const line of textContent.split('\n')) { + match = line.match(regexp) + if (match || gotLineCont || gotHereDoc) { + promptFound = regexp.test(line) + lineGotPrompt.push(promptFound) + if (removePrompts && promptFound) { + outputLines.push(match[2]) + } else { + outputLines.push(line) + } + gotLineCont = line.endsWith(lineContinuationChar) & useLineCont + if (line.includes(hereDocDelim) & useHereDoc) + gotHereDoc = !gotHereDoc + } else if (!onlyCopyPromptLines) { + outputLines.push(line) + } else if (copyEmptyLines && line.trim() === '') { + outputLines.push(line) + } + } + + // If no lines with the prompt were found then just use original lines + if (lineGotPrompt.some(v => v === true)) { + textContent = outputLines.join('\n'); + } + + // Remove a trailing newline to avoid auto-running when pasting + if (textContent.endsWith("\n")) { + textContent = textContent.slice(0, -1) + } + return textContent +} diff --git a/v24.2.0/_static/doctools.js b/v24.2.0/_static/doctools.js new file mode 100644 index 0000000000..4d67807d17 --- /dev/null +++ b/v24.2.0/_static/doctools.js @@ -0,0 +1,156 @@ +/* + * doctools.js + * ~~~~~~~~~~~ + * + * Base JavaScript utilities for all Sphinx HTML documentation. + * + * :copyright: Copyright 2007-2024 by the Sphinx team, see AUTHORS. + * :license: BSD, see LICENSE for details. + * + */ +"use strict"; + +const BLACKLISTED_KEY_CONTROL_ELEMENTS = new Set([ + "TEXTAREA", + "INPUT", + "SELECT", + "BUTTON", +]); + +const _ready = (callback) => { + if (document.readyState !== "loading") { + callback(); + } else { + document.addEventListener("DOMContentLoaded", callback); + } +}; + +/** + * Small JavaScript module for the documentation. + */ +const Documentation = { + init: () => { + Documentation.initDomainIndexTable(); + Documentation.initOnKeyListeners(); + }, + + /** + * i18n support + */ + TRANSLATIONS: {}, + PLURAL_EXPR: (n) => (n === 1 ? 0 : 1), + LOCALE: "unknown", + + // gettext and ngettext don't access this so that the functions + // can safely bound to a different name (_ = Documentation.gettext) + gettext: (string) => { + const translated = Documentation.TRANSLATIONS[string]; + switch (typeof translated) { + case "undefined": + return string; // no translation + case "string": + return translated; // translation exists + default: + return translated[0]; // (singular, plural) translation tuple exists + } + }, + + ngettext: (singular, plural, n) => { + const translated = Documentation.TRANSLATIONS[singular]; + if (typeof translated !== "undefined") + return translated[Documentation.PLURAL_EXPR(n)]; + return n === 1 ? singular : plural; + }, + + addTranslations: (catalog) => { + Object.assign(Documentation.TRANSLATIONS, catalog.messages); + Documentation.PLURAL_EXPR = new Function( + "n", + `return (${catalog.plural_expr})` + ); + Documentation.LOCALE = catalog.locale; + }, + + /** + * helper function to focus on search bar + */ + focusSearchBar: () => { + document.querySelectorAll("input[name=q]")[0]?.focus(); + }, + + /** + * Initialise the domain index toggle buttons + */ + initDomainIndexTable: () => { + const toggler = (el) => { + const idNumber = el.id.substr(7); + const toggledRows = document.querySelectorAll(`tr.cg-${idNumber}`); + if (el.src.substr(-9) === "minus.png") { + el.src = `${el.src.substr(0, el.src.length - 9)}plus.png`; + toggledRows.forEach((el) => (el.style.display = "none")); + } else { + el.src = `${el.src.substr(0, el.src.length - 8)}minus.png`; + toggledRows.forEach((el) => (el.style.display = "")); + } + }; + + const togglerElements = document.querySelectorAll("img.toggler"); + togglerElements.forEach((el) => + el.addEventListener("click", (event) => toggler(event.currentTarget)) + ); + togglerElements.forEach((el) => (el.style.display = "")); + if (DOCUMENTATION_OPTIONS.COLLAPSE_INDEX) togglerElements.forEach(toggler); + }, + + initOnKeyListeners: () => { + // only install a listener if it is really needed + if ( + !DOCUMENTATION_OPTIONS.NAVIGATION_WITH_KEYS && + !DOCUMENTATION_OPTIONS.ENABLE_SEARCH_SHORTCUTS + ) + return; + + document.addEventListener("keydown", (event) => { + // bail for input elements + if (BLACKLISTED_KEY_CONTROL_ELEMENTS.has(document.activeElement.tagName)) return; + // bail with special keys + if (event.altKey || event.ctrlKey || event.metaKey) return; + + if (!event.shiftKey) { + switch (event.key) { + case "ArrowLeft": + if (!DOCUMENTATION_OPTIONS.NAVIGATION_WITH_KEYS) break; + + const prevLink = document.querySelector('link[rel="prev"]'); + if (prevLink && prevLink.href) { + window.location.href = prevLink.href; + event.preventDefault(); + } + break; + case "ArrowRight": + if (!DOCUMENTATION_OPTIONS.NAVIGATION_WITH_KEYS) break; + + const nextLink = document.querySelector('link[rel="next"]'); + if (nextLink && nextLink.href) { + window.location.href = nextLink.href; + event.preventDefault(); + } + break; + } + } + + // some keyboard layouts may need Shift to get / + switch (event.key) { + case "/": + if (!DOCUMENTATION_OPTIONS.ENABLE_SEARCH_SHORTCUTS) break; + Documentation.focusSearchBar(); + event.preventDefault(); + } + }); + }, +}; + +// quick alias for translations +const _ = Documentation.gettext; + +_ready(Documentation.init); diff --git a/v24.2.0/_static/documentation_options.js b/v24.2.0/_static/documentation_options.js new file mode 100644 index 0000000000..7676cbb815 --- /dev/null +++ b/v24.2.0/_static/documentation_options.js @@ -0,0 +1,13 @@ +const DOCUMENTATION_OPTIONS = { + VERSION: '24.2.0', + LANGUAGE: 'en', + COLLAPSE_INDEX: false, + BUILDER: 'dirhtml', + FILE_SUFFIX: '.html', + LINK_SUFFIX: '.html', + HAS_SOURCE: true, + SOURCELINK_SUFFIX: '.txt', + NAVIGATION_WITH_KEYS: false, + SHOW_SEARCH_SUMMARY: true, + ENABLE_SEARCH_SHORTCUTS: true, +}; \ No newline at end of file diff --git a/v24.2.0/_static/file.png b/v24.2.0/_static/file.png new file mode 100644 index 0000000000..a858a410e4 Binary files /dev/null and b/v24.2.0/_static/file.png differ diff --git a/v24.2.0/_static/jupyterlite_badge_logo.svg b/v24.2.0/_static/jupyterlite_badge_logo.svg new file mode 100644 index 0000000000..5de36d7fd5 --- /dev/null +++ b/v24.2.0/_static/jupyterlite_badge_logo.svg @@ -0,0 +1,3 @@ + + +launchlaunchlitelite \ No newline at end of file diff --git a/v24.2.0/_static/language_data.js b/v24.2.0/_static/language_data.js new file mode 100644 index 0000000000..367b8ed81b --- /dev/null +++ b/v24.2.0/_static/language_data.js @@ -0,0 +1,199 @@ +/* + * language_data.js + * ~~~~~~~~~~~~~~~~ + * + * This script contains the language-specific data used by searchtools.js, + * namely the list of stopwords, stemmer, scorer and splitter. + * + * :copyright: Copyright 2007-2024 by the Sphinx team, see AUTHORS. + * :license: BSD, see LICENSE for details. + * + */ + +var stopwords = ["a", "and", "are", "as", "at", "be", "but", "by", "for", "if", "in", "into", "is", "it", "near", "no", "not", "of", "on", "or", "such", "that", "the", "their", "then", "there", "these", "they", "this", "to", "was", "will", "with"]; + + +/* Non-minified version is copied as a separate JS file, if available */ + +/** + * Porter Stemmer + */ +var Stemmer = function() { + + var step2list = { + ational: 'ate', + tional: 'tion', + enci: 'ence', + anci: 'ance', + izer: 'ize', + bli: 'ble', + alli: 'al', + entli: 'ent', + eli: 'e', + ousli: 'ous', + ization: 'ize', + ation: 'ate', + ator: 'ate', + alism: 'al', + iveness: 'ive', + fulness: 'ful', + ousness: 'ous', + aliti: 'al', + iviti: 'ive', + biliti: 'ble', + logi: 'log' + }; + + var step3list = { + icate: 'ic', + ative: '', + alize: 'al', + iciti: 'ic', + ical: 'ic', + ful: '', + ness: '' + }; + + var c = "[^aeiou]"; // consonant + var v = "[aeiouy]"; // vowel + var C = c + "[^aeiouy]*"; // consonant sequence + var V = v + "[aeiou]*"; // vowel sequence + + var mgr0 = "^(" + C + ")?" + V + C; // [C]VC... is m>0 + var meq1 = "^(" + C + ")?" + V + C + "(" + V + ")?$"; // [C]VC[V] is m=1 + var mgr1 = "^(" + C + ")?" + V + C + V + C; // [C]VCVC... is m>1 + var s_v = "^(" + C + ")?" + v; // vowel in stem + + this.stemWord = function (w) { + var stem; + var suffix; + var firstch; + var origword = w; + + if (w.length < 3) + return w; + + var re; + var re2; + var re3; + var re4; + + firstch = w.substr(0,1); + if (firstch == "y") + w = firstch.toUpperCase() + w.substr(1); + + // Step 1a + re = /^(.+?)(ss|i)es$/; + re2 = /^(.+?)([^s])s$/; + + if (re.test(w)) + w = w.replace(re,"$1$2"); + else if (re2.test(w)) + w = w.replace(re2,"$1$2"); + + // Step 1b + re = /^(.+?)eed$/; + re2 = /^(.+?)(ed|ing)$/; + if (re.test(w)) { + var fp = re.exec(w); + re = new RegExp(mgr0); + if (re.test(fp[1])) { + re = /.$/; + w = w.replace(re,""); + } + } + else if (re2.test(w)) { + var fp = re2.exec(w); + stem = fp[1]; + re2 = new RegExp(s_v); + if (re2.test(stem)) { + w = stem; + re2 = /(at|bl|iz)$/; + re3 = new RegExp("([^aeiouylsz])\\1$"); + re4 = new RegExp("^" + C + v + "[^aeiouwxy]$"); + if (re2.test(w)) + w = w + "e"; + else if (re3.test(w)) { + re = /.$/; + w = w.replace(re,""); + } + else if (re4.test(w)) + w = w + "e"; + } + } + + // Step 1c + re = /^(.+?)y$/; + if (re.test(w)) { + var fp = re.exec(w); + stem = fp[1]; + re = new RegExp(s_v); + if (re.test(stem)) + w = stem + "i"; + } + + // Step 2 + re = /^(.+?)(ational|tional|enci|anci|izer|bli|alli|entli|eli|ousli|ization|ation|ator|alism|iveness|fulness|ousness|aliti|iviti|biliti|logi)$/; + if (re.test(w)) { + var fp = re.exec(w); + stem = fp[1]; + suffix = fp[2]; + re = new RegExp(mgr0); + if (re.test(stem)) + w = stem + step2list[suffix]; + } + + // Step 3 + re = /^(.+?)(icate|ative|alize|iciti|ical|ful|ness)$/; + if (re.test(w)) { + var fp = re.exec(w); + stem = fp[1]; + suffix = fp[2]; + re = new RegExp(mgr0); + if (re.test(stem)) + w = stem + step3list[suffix]; + } + + // Step 4 + re = /^(.+?)(al|ance|ence|er|ic|able|ible|ant|ement|ment|ent|ou|ism|ate|iti|ous|ive|ize)$/; + re2 = /^(.+?)(s|t)(ion)$/; + if (re.test(w)) { + var fp = re.exec(w); + stem = fp[1]; + re = new RegExp(mgr1); + if (re.test(stem)) + w = stem; + } + else if (re2.test(w)) { + var fp = re2.exec(w); + stem = fp[1] + fp[2]; + re2 = new RegExp(mgr1); + if (re2.test(stem)) + w = stem; + } + + // Step 5 + re = /^(.+?)e$/; + if (re.test(w)) { + var fp = re.exec(w); + stem = fp[1]; + re = new RegExp(mgr1); + re2 = new RegExp(meq1); + re3 = new RegExp("^" + C + v + "[^aeiouwxy]$"); + if (re.test(stem) || (re2.test(stem) && !(re3.test(stem)))) + w = stem; + } + re = /ll$/; + re2 = new RegExp(mgr1); + if (re.test(w) && re2.test(w)) { + re = /.$/; + w = w.replace(re,""); + } + + // and turn initial Y back to y + if (firstch == "y") + w = firstch.toLowerCase() + w.substr(1); + return w; + } +} + diff --git a/v24.2.0/_static/minus.png b/v24.2.0/_static/minus.png new file mode 100644 index 0000000000..d96755fdaf Binary files /dev/null and b/v24.2.0/_static/minus.png differ diff --git a/v24.2.0/_static/nbsphinx-broken-thumbnail.svg b/v24.2.0/_static/nbsphinx-broken-thumbnail.svg new file mode 100644 index 0000000000..4919ca8829 --- /dev/null +++ b/v24.2.0/_static/nbsphinx-broken-thumbnail.svg @@ -0,0 +1,9 @@ + + + + diff --git a/v24.2.0/_static/nbsphinx-code-cells.css b/v24.2.0/_static/nbsphinx-code-cells.css new file mode 100644 index 0000000000..a3fb27c30f --- /dev/null +++ b/v24.2.0/_static/nbsphinx-code-cells.css @@ -0,0 +1,259 @@ +/* remove conflicting styling from Sphinx themes */ +div.nbinput.container div.prompt *, +div.nboutput.container div.prompt *, +div.nbinput.container div.input_area pre, +div.nboutput.container div.output_area pre, +div.nbinput.container div.input_area .highlight, +div.nboutput.container div.output_area .highlight { + border: none; + padding: 0; + margin: 0; + box-shadow: none; +} + +div.nbinput.container > div[class*=highlight], +div.nboutput.container > div[class*=highlight] { + margin: 0; +} + +div.nbinput.container div.prompt *, +div.nboutput.container div.prompt * { + background: none; +} + +div.nboutput.container div.output_area .highlight, +div.nboutput.container div.output_area pre { + background: unset; +} + +div.nboutput.container div.output_area div.highlight { + color: unset; /* override Pygments text color */ +} + +/* avoid gaps between output lines */ +div.nboutput.container div[class*=highlight] pre { + line-height: normal; +} + +/* input/output containers */ +div.nbinput.container, +div.nboutput.container { + display: -webkit-flex; + display: flex; + align-items: flex-start; + margin: 0; + width: 100%; +} +@media (max-width: 540px) { + div.nbinput.container, + div.nboutput.container { + flex-direction: column; + } +} + +/* input container */ +div.nbinput.container { + padding-top: 5px; +} + +/* last container */ +div.nblast.container { + padding-bottom: 5px; +} + +/* input prompt */ +div.nbinput.container div.prompt pre, +/* for sphinx_immaterial theme: */ +div.nbinput.container div.prompt pre > code { + color: #307FC1; +} + +/* output prompt */ +div.nboutput.container div.prompt pre, +/* for sphinx_immaterial theme: */ +div.nboutput.container div.prompt pre > code { + color: #BF5B3D; +} + +/* all prompts */ +div.nbinput.container div.prompt, +div.nboutput.container div.prompt { + width: 4.5ex; + padding-top: 5px; + position: relative; + user-select: none; +} + +div.nbinput.container div.prompt > div, +div.nboutput.container div.prompt > div { + position: absolute; + right: 0; + margin-right: 0.3ex; +} + +@media (max-width: 540px) { + div.nbinput.container div.prompt, + div.nboutput.container div.prompt { + width: unset; + text-align: left; + padding: 0.4em; + } + div.nboutput.container div.prompt.empty { + padding: 0; + } + + div.nbinput.container div.prompt > div, + div.nboutput.container div.prompt > div { + position: unset; + } +} + +/* disable scrollbars and line breaks on prompts */ +div.nbinput.container div.prompt pre, +div.nboutput.container div.prompt pre { + overflow: hidden; + white-space: pre; +} + +/* input/output area */ +div.nbinput.container div.input_area, +div.nboutput.container div.output_area { + -webkit-flex: 1; + flex: 1; + overflow: auto; +} +@media (max-width: 540px) { + div.nbinput.container div.input_area, + div.nboutput.container div.output_area { + width: 100%; + } +} + +/* input area */ +div.nbinput.container div.input_area { + border: 1px solid #e0e0e0; + border-radius: 2px; + /*background: #f5f5f5;*/ +} + +/* override MathJax center alignment in output cells */ +div.nboutput.container div[class*=MathJax] { + text-align: left !important; +} + +/* override sphinx.ext.imgmath center alignment in output cells */ +div.nboutput.container div.math p { + text-align: left; +} + +/* standard error */ +div.nboutput.container div.output_area.stderr { + background: #fdd; +} + +/* ANSI colors */ +.ansi-black-fg { color: #3E424D; } +.ansi-black-bg { background-color: #3E424D; } +.ansi-black-intense-fg { color: #282C36; } +.ansi-black-intense-bg { background-color: #282C36; } +.ansi-red-fg { color: #E75C58; } +.ansi-red-bg { background-color: #E75C58; } +.ansi-red-intense-fg { color: #B22B31; } +.ansi-red-intense-bg { background-color: #B22B31; } +.ansi-green-fg { color: #00A250; } +.ansi-green-bg { background-color: #00A250; } +.ansi-green-intense-fg { color: #007427; } +.ansi-green-intense-bg { background-color: #007427; } +.ansi-yellow-fg { color: #DDB62B; } +.ansi-yellow-bg { background-color: #DDB62B; } +.ansi-yellow-intense-fg { color: #B27D12; } +.ansi-yellow-intense-bg { background-color: #B27D12; } +.ansi-blue-fg { color: #208FFB; } +.ansi-blue-bg { background-color: #208FFB; } +.ansi-blue-intense-fg { color: #0065CA; } +.ansi-blue-intense-bg { background-color: #0065CA; } +.ansi-magenta-fg { color: #D160C4; } +.ansi-magenta-bg { background-color: #D160C4; } +.ansi-magenta-intense-fg { color: #A03196; } +.ansi-magenta-intense-bg { background-color: #A03196; } +.ansi-cyan-fg { color: #60C6C8; } +.ansi-cyan-bg { background-color: #60C6C8; } +.ansi-cyan-intense-fg { color: #258F8F; } +.ansi-cyan-intense-bg { background-color: #258F8F; } +.ansi-white-fg { color: #C5C1B4; } +.ansi-white-bg { background-color: #C5C1B4; } +.ansi-white-intense-fg { color: #A1A6B2; } +.ansi-white-intense-bg { background-color: #A1A6B2; } + +.ansi-default-inverse-fg { color: #FFFFFF; } +.ansi-default-inverse-bg { background-color: #000000; } + +.ansi-bold { font-weight: bold; } +.ansi-underline { text-decoration: underline; } + + +div.nbinput.container div.input_area div[class*=highlight] > pre, +div.nboutput.container div.output_area div[class*=highlight] > pre, +div.nboutput.container div.output_area div[class*=highlight].math, +div.nboutput.container div.output_area.rendered_html, +div.nboutput.container div.output_area > div.output_javascript, +div.nboutput.container div.output_area:not(.rendered_html) > img{ + padding: 5px; + margin: 0; +} + +/* fix copybtn overflow problem in chromium (needed for 'sphinx_copybutton') */ +div.nbinput.container div.input_area > div[class^='highlight'], +div.nboutput.container div.output_area > div[class^='highlight']{ + overflow-y: hidden; +} + +/* hide copy button on prompts for 'sphinx_copybutton' extension ... */ +.prompt .copybtn, +/* ... and 'sphinx_immaterial' theme */ +.prompt .md-clipboard.md-icon { + display: none; +} + +/* Some additional styling taken form the Jupyter notebook CSS */ +.jp-RenderedHTMLCommon table, +div.rendered_html table { + border: none; + border-collapse: collapse; + border-spacing: 0; + color: black; + font-size: 12px; + table-layout: fixed; +} +.jp-RenderedHTMLCommon thead, +div.rendered_html thead { + border-bottom: 1px solid black; + vertical-align: bottom; +} +.jp-RenderedHTMLCommon tr, +.jp-RenderedHTMLCommon th, +.jp-RenderedHTMLCommon td, +div.rendered_html tr, +div.rendered_html th, +div.rendered_html td { + text-align: right; + vertical-align: middle; + padding: 0.5em 0.5em; + line-height: normal; + white-space: normal; + max-width: none; + border: none; +} +.jp-RenderedHTMLCommon th, +div.rendered_html th { + font-weight: bold; +} +.jp-RenderedHTMLCommon tbody tr:nth-child(odd), +div.rendered_html tbody tr:nth-child(odd) { + background: #f5f5f5; +} +.jp-RenderedHTMLCommon tbody tr:hover, +div.rendered_html tbody tr:hover { + background: rgba(66, 165, 245, 0.2); +} + diff --git a/v24.2.0/_static/nbsphinx-gallery.css b/v24.2.0/_static/nbsphinx-gallery.css new file mode 100644 index 0000000000..365c27a96b --- /dev/null +++ b/v24.2.0/_static/nbsphinx-gallery.css @@ -0,0 +1,31 @@ +.nbsphinx-gallery { + display: grid; + grid-template-columns: repeat(auto-fill, minmax(160px, 1fr)); + gap: 5px; + margin-top: 1em; + margin-bottom: 1em; +} + +.nbsphinx-gallery > a { + padding: 5px; + border: 1px dotted currentColor; + border-radius: 2px; + text-align: center; +} + +.nbsphinx-gallery > a:hover { + border-style: solid; +} + +.nbsphinx-gallery img { + max-width: 100%; + max-height: 100%; +} + +.nbsphinx-gallery > a > div:first-child { + display: flex; + align-items: start; + justify-content: center; + height: 120px; + margin-bottom: 5px; +} diff --git a/v24.2.0/_static/nbsphinx-no-thumbnail.svg b/v24.2.0/_static/nbsphinx-no-thumbnail.svg new file mode 100644 index 0000000000..9dca7588fa --- /dev/null +++ b/v24.2.0/_static/nbsphinx-no-thumbnail.svg @@ -0,0 +1,9 @@ + + + + diff --git a/v24.2.0/_static/no_image.png b/v24.2.0/_static/no_image.png new file mode 100644 index 0000000000..8c2d48d5d3 Binary files /dev/null and b/v24.2.0/_static/no_image.png differ diff --git a/v24.2.0/_static/plus.png b/v24.2.0/_static/plus.png new file mode 100644 index 0000000000..7107cec93a Binary files /dev/null and b/v24.2.0/_static/plus.png differ diff --git a/v24.2.0/_static/pygments.css b/v24.2.0/_static/pygments.css new file mode 100644 index 0000000000..012e6a00a4 --- /dev/null +++ b/v24.2.0/_static/pygments.css @@ -0,0 +1,152 @@ +html[data-theme="light"] .highlight pre { line-height: 125%; } +html[data-theme="light"] .highlight td.linenos .normal { color: inherit; background-color: transparent; padding-left: 5px; padding-right: 5px; } +html[data-theme="light"] .highlight span.linenos { color: inherit; background-color: transparent; padding-left: 5px; padding-right: 5px; } +html[data-theme="light"] .highlight td.linenos .special { color: #000000; background-color: #ffffc0; padding-left: 5px; padding-right: 5px; } +html[data-theme="light"] .highlight span.linenos.special { color: #000000; background-color: #ffffc0; padding-left: 5px; padding-right: 5px; } +html[data-theme="light"] .highlight .hll { background-color: #fae4c2 } +html[data-theme="light"] .highlight { background: #fefefe; color: #080808 } +html[data-theme="light"] .highlight .c { color: #515151 } /* Comment */ +html[data-theme="light"] .highlight .err { color: #a12236 } /* Error */ +html[data-theme="light"] .highlight .k { color: #6730c5 } /* Keyword */ +html[data-theme="light"] .highlight .l { color: #7f4707 } /* Literal */ +html[data-theme="light"] .highlight .n { color: #080808 } /* Name */ +html[data-theme="light"] .highlight .o { color: #00622f } /* Operator */ +html[data-theme="light"] .highlight .p { color: #080808 } /* Punctuation */ +html[data-theme="light"] .highlight .ch { color: #515151 } /* Comment.Hashbang */ +html[data-theme="light"] .highlight .cm { color: #515151 } /* Comment.Multiline */ +html[data-theme="light"] .highlight .cp { color: #515151 } /* Comment.Preproc */ +html[data-theme="light"] .highlight .cpf { color: #515151 } /* Comment.PreprocFile */ +html[data-theme="light"] .highlight .c1 { color: #515151 } /* Comment.Single */ +html[data-theme="light"] .highlight .cs { color: #515151 } /* Comment.Special */ +html[data-theme="light"] .highlight .gd { color: #005b82 } /* Generic.Deleted */ +html[data-theme="light"] .highlight .ge { font-style: italic } /* Generic.Emph */ +html[data-theme="light"] .highlight .gh { color: #005b82 } /* Generic.Heading */ +html[data-theme="light"] .highlight .gs { font-weight: bold } /* Generic.Strong */ +html[data-theme="light"] .highlight .gu { color: #005b82 } /* Generic.Subheading */ +html[data-theme="light"] .highlight .kc { color: #6730c5 } /* Keyword.Constant */ +html[data-theme="light"] .highlight .kd { color: #6730c5 } /* Keyword.Declaration */ +html[data-theme="light"] .highlight .kn { color: #6730c5 } /* Keyword.Namespace */ +html[data-theme="light"] .highlight .kp { color: #6730c5 } /* Keyword.Pseudo */ +html[data-theme="light"] .highlight .kr { color: #6730c5 } /* Keyword.Reserved */ +html[data-theme="light"] .highlight .kt { color: #7f4707 } /* Keyword.Type */ +html[data-theme="light"] .highlight .ld { color: #7f4707 } /* Literal.Date */ +html[data-theme="light"] .highlight .m { color: #7f4707 } /* Literal.Number */ +html[data-theme="light"] .highlight .s { color: #00622f } /* Literal.String */ +html[data-theme="light"] .highlight .na { color: #912583 } /* Name.Attribute */ +html[data-theme="light"] .highlight .nb { color: #7f4707 } /* Name.Builtin */ +html[data-theme="light"] .highlight .nc { color: #005b82 } /* Name.Class */ +html[data-theme="light"] .highlight .no { color: #005b82 } /* Name.Constant */ +html[data-theme="light"] .highlight .nd { color: #7f4707 } /* Name.Decorator */ +html[data-theme="light"] .highlight .ni { color: #00622f } /* Name.Entity */ +html[data-theme="light"] .highlight .ne { color: #6730c5 } /* Name.Exception */ +html[data-theme="light"] .highlight .nf { color: #005b82 } /* Name.Function */ +html[data-theme="light"] .highlight .nl { color: #7f4707 } /* Name.Label */ +html[data-theme="light"] .highlight .nn { color: #080808 } /* Name.Namespace */ +html[data-theme="light"] .highlight .nx { color: #080808 } /* Name.Other */ +html[data-theme="light"] .highlight .py { color: #005b82 } /* Name.Property */ +html[data-theme="light"] .highlight .nt { color: #005b82 } /* Name.Tag */ +html[data-theme="light"] .highlight .nv { color: #a12236 } /* Name.Variable */ +html[data-theme="light"] .highlight .ow { color: #6730c5 } /* Operator.Word */ +html[data-theme="light"] .highlight .pm { color: #080808 } /* Punctuation.Marker */ +html[data-theme="light"] .highlight .w { color: #080808 } /* Text.Whitespace */ +html[data-theme="light"] .highlight .mb { color: #7f4707 } /* Literal.Number.Bin */ +html[data-theme="light"] .highlight .mf { color: #7f4707 } /* Literal.Number.Float */ +html[data-theme="light"] .highlight .mh { color: #7f4707 } /* Literal.Number.Hex */ +html[data-theme="light"] .highlight .mi { color: #7f4707 } /* Literal.Number.Integer */ +html[data-theme="light"] .highlight .mo { color: #7f4707 } /* Literal.Number.Oct */ +html[data-theme="light"] .highlight .sa { color: #00622f } /* Literal.String.Affix */ +html[data-theme="light"] .highlight .sb { color: #00622f } /* Literal.String.Backtick */ +html[data-theme="light"] .highlight .sc { color: #00622f } /* Literal.String.Char */ +html[data-theme="light"] .highlight .dl { color: #00622f } /* Literal.String.Delimiter */ +html[data-theme="light"] .highlight .sd { color: #00622f } /* Literal.String.Doc */ +html[data-theme="light"] .highlight .s2 { color: #00622f } /* Literal.String.Double */ +html[data-theme="light"] .highlight .se { color: #00622f } /* Literal.String.Escape */ +html[data-theme="light"] .highlight .sh { color: #00622f } /* Literal.String.Heredoc */ +html[data-theme="light"] .highlight .si { color: #00622f } /* Literal.String.Interpol */ +html[data-theme="light"] .highlight .sx { color: #00622f } /* Literal.String.Other */ +html[data-theme="light"] .highlight .sr { color: #a12236 } /* Literal.String.Regex */ +html[data-theme="light"] .highlight .s1 { color: #00622f } /* Literal.String.Single */ +html[data-theme="light"] .highlight .ss { color: #005b82 } /* Literal.String.Symbol */ +html[data-theme="light"] .highlight .bp { color: #7f4707 } /* Name.Builtin.Pseudo */ +html[data-theme="light"] .highlight .fm { color: #005b82 } /* Name.Function.Magic */ +html[data-theme="light"] .highlight .vc { color: #a12236 } /* Name.Variable.Class */ +html[data-theme="light"] .highlight .vg { color: #a12236 } /* Name.Variable.Global */ +html[data-theme="light"] .highlight .vi { color: #a12236 } /* Name.Variable.Instance */ +html[data-theme="light"] .highlight .vm { color: #7f4707 } /* Name.Variable.Magic */ +html[data-theme="light"] .highlight .il { color: #7f4707 } /* Literal.Number.Integer.Long */ +html[data-theme="dark"] .highlight pre { line-height: 125%; } +html[data-theme="dark"] .highlight td.linenos .normal { color: inherit; background-color: transparent; padding-left: 5px; padding-right: 5px; } +html[data-theme="dark"] .highlight span.linenos { color: inherit; background-color: transparent; padding-left: 5px; padding-right: 5px; } +html[data-theme="dark"] .highlight td.linenos .special { color: #000000; background-color: #ffffc0; padding-left: 5px; padding-right: 5px; } +html[data-theme="dark"] .highlight span.linenos.special { color: #000000; background-color: #ffffc0; padding-left: 5px; padding-right: 5px; } +html[data-theme="dark"] .highlight .hll { background-color: #ffd9002e } +html[data-theme="dark"] .highlight { background: #2b2b2b; color: #f8f8f2 } +html[data-theme="dark"] .highlight .c { color: #ffd900 } /* Comment */ +html[data-theme="dark"] .highlight .err { color: #ffa07a } /* Error */ +html[data-theme="dark"] .highlight .k { color: #dcc6e0 } /* Keyword */ +html[data-theme="dark"] .highlight .l { color: #ffd900 } /* Literal */ +html[data-theme="dark"] .highlight .n { color: #f8f8f2 } /* Name */ +html[data-theme="dark"] .highlight .o { color: #abe338 } /* Operator */ +html[data-theme="dark"] .highlight .p { color: #f8f8f2 } /* Punctuation */ +html[data-theme="dark"] .highlight .ch { color: #ffd900 } /* Comment.Hashbang */ +html[data-theme="dark"] .highlight .cm { color: #ffd900 } /* Comment.Multiline */ +html[data-theme="dark"] .highlight .cp { color: #ffd900 } /* Comment.Preproc */ +html[data-theme="dark"] .highlight .cpf { color: #ffd900 } /* Comment.PreprocFile */ +html[data-theme="dark"] .highlight .c1 { color: #ffd900 } /* Comment.Single */ +html[data-theme="dark"] .highlight .cs { color: #ffd900 } /* Comment.Special */ +html[data-theme="dark"] .highlight .gd { color: #00e0e0 } /* Generic.Deleted */ +html[data-theme="dark"] .highlight .ge { font-style: italic } /* Generic.Emph */ +html[data-theme="dark"] .highlight .gh { color: #00e0e0 } /* Generic.Heading */ +html[data-theme="dark"] .highlight .gs { font-weight: bold } /* Generic.Strong */ +html[data-theme="dark"] .highlight .gu { color: #00e0e0 } /* Generic.Subheading */ +html[data-theme="dark"] .highlight .kc { color: #dcc6e0 } /* Keyword.Constant */ +html[data-theme="dark"] .highlight .kd { color: #dcc6e0 } /* Keyword.Declaration */ +html[data-theme="dark"] .highlight .kn { color: #dcc6e0 } /* Keyword.Namespace */ +html[data-theme="dark"] .highlight .kp { color: #dcc6e0 } /* Keyword.Pseudo */ +html[data-theme="dark"] .highlight .kr { color: #dcc6e0 } /* Keyword.Reserved */ +html[data-theme="dark"] .highlight .kt { color: #ffd900 } /* Keyword.Type */ +html[data-theme="dark"] .highlight .ld { color: #ffd900 } /* Literal.Date */ +html[data-theme="dark"] .highlight .m { color: #ffd900 } /* Literal.Number */ +html[data-theme="dark"] .highlight .s { color: #abe338 } /* Literal.String */ +html[data-theme="dark"] .highlight .na { color: #ffd900 } /* Name.Attribute */ +html[data-theme="dark"] .highlight .nb { color: #ffd900 } /* Name.Builtin */ +html[data-theme="dark"] .highlight .nc { color: #00e0e0 } /* Name.Class */ +html[data-theme="dark"] .highlight .no { color: #00e0e0 } /* Name.Constant */ +html[data-theme="dark"] .highlight .nd { color: #ffd900 } /* Name.Decorator */ +html[data-theme="dark"] .highlight .ni { color: #abe338 } /* Name.Entity */ +html[data-theme="dark"] .highlight .ne { color: #dcc6e0 } /* Name.Exception */ +html[data-theme="dark"] .highlight .nf { color: #00e0e0 } /* Name.Function */ +html[data-theme="dark"] .highlight .nl { color: #ffd900 } /* Name.Label */ +html[data-theme="dark"] .highlight .nn { color: #f8f8f2 } /* Name.Namespace */ +html[data-theme="dark"] .highlight .nx { color: #f8f8f2 } /* Name.Other */ +html[data-theme="dark"] .highlight .py { color: #00e0e0 } /* Name.Property */ +html[data-theme="dark"] .highlight .nt { color: #00e0e0 } /* Name.Tag */ +html[data-theme="dark"] .highlight .nv { color: #ffa07a } /* Name.Variable */ +html[data-theme="dark"] .highlight .ow { color: #dcc6e0 } /* Operator.Word */ +html[data-theme="dark"] .highlight .pm { color: #f8f8f2 } /* Punctuation.Marker */ +html[data-theme="dark"] .highlight .w { color: #f8f8f2 } /* Text.Whitespace */ +html[data-theme="dark"] .highlight .mb { color: #ffd900 } /* Literal.Number.Bin */ +html[data-theme="dark"] .highlight .mf { color: #ffd900 } /* Literal.Number.Float */ +html[data-theme="dark"] .highlight .mh { color: #ffd900 } /* Literal.Number.Hex */ +html[data-theme="dark"] .highlight .mi { color: #ffd900 } /* Literal.Number.Integer */ +html[data-theme="dark"] .highlight .mo { color: #ffd900 } /* Literal.Number.Oct */ +html[data-theme="dark"] .highlight .sa { color: #abe338 } /* Literal.String.Affix */ +html[data-theme="dark"] .highlight .sb { color: #abe338 } /* Literal.String.Backtick */ +html[data-theme="dark"] .highlight .sc { color: #abe338 } /* Literal.String.Char */ +html[data-theme="dark"] .highlight .dl { color: #abe338 } /* Literal.String.Delimiter */ +html[data-theme="dark"] .highlight .sd { color: #abe338 } /* Literal.String.Doc */ +html[data-theme="dark"] .highlight .s2 { color: #abe338 } /* Literal.String.Double */ +html[data-theme="dark"] .highlight .se { color: #abe338 } /* Literal.String.Escape */ +html[data-theme="dark"] .highlight .sh { color: #abe338 } /* Literal.String.Heredoc */ +html[data-theme="dark"] .highlight .si { color: #abe338 } /* Literal.String.Interpol */ +html[data-theme="dark"] .highlight .sx { color: #abe338 } /* Literal.String.Other */ +html[data-theme="dark"] .highlight .sr { color: #ffa07a } /* Literal.String.Regex */ +html[data-theme="dark"] .highlight .s1 { color: #abe338 } /* Literal.String.Single */ +html[data-theme="dark"] .highlight .ss { color: #00e0e0 } /* Literal.String.Symbol */ +html[data-theme="dark"] .highlight .bp { color: #ffd900 } /* Name.Builtin.Pseudo */ +html[data-theme="dark"] .highlight .fm { color: #00e0e0 } /* Name.Function.Magic */ +html[data-theme="dark"] .highlight .vc { color: #ffa07a } /* Name.Variable.Class */ +html[data-theme="dark"] .highlight .vg { color: #ffa07a } /* Name.Variable.Global */ +html[data-theme="dark"] .highlight .vi { color: #ffa07a } /* Name.Variable.Instance */ +html[data-theme="dark"] .highlight .vm { color: #ffd900 } /* Name.Variable.Magic */ +html[data-theme="dark"] .highlight .il { color: #ffd900 } /* Literal.Number.Integer.Long */ \ No newline at end of file diff --git a/v24.2.0/_static/scripts/bootstrap.js b/v24.2.0/_static/scripts/bootstrap.js new file mode 100644 index 0000000000..c8178debbc --- /dev/null +++ b/v24.2.0/_static/scripts/bootstrap.js @@ -0,0 +1,3 @@ +/*! For license information please see bootstrap.js.LICENSE.txt */ +(()=>{"use strict";var t={d:(e,i)=>{for(var n in i)t.o(i,n)&&!t.o(e,n)&&Object.defineProperty(e,n,{enumerable:!0,get:i[n]})},o:(t,e)=>Object.prototype.hasOwnProperty.call(t,e),r:t=>{"undefined"!=typeof Symbol&&Symbol.toStringTag&&Object.defineProperty(t,Symbol.toStringTag,{value:"Module"}),Object.defineProperty(t,"__esModule",{value:!0})}},e={};t.r(e),t.d(e,{afterMain:()=>E,afterRead:()=>v,afterWrite:()=>C,applyStyles:()=>$,arrow:()=>J,auto:()=>a,basePlacements:()=>l,beforeMain:()=>y,beforeRead:()=>_,beforeWrite:()=>A,bottom:()=>s,clippingParents:()=>d,computeStyles:()=>it,createPopper:()=>Dt,createPopperBase:()=>St,createPopperLite:()=>$t,detectOverflow:()=>_t,end:()=>h,eventListeners:()=>st,flip:()=>bt,hide:()=>wt,left:()=>r,main:()=>w,modifierPhases:()=>O,offset:()=>Et,placements:()=>g,popper:()=>f,popperGenerator:()=>Lt,popperOffsets:()=>At,preventOverflow:()=>Tt,read:()=>b,reference:()=>p,right:()=>o,start:()=>c,top:()=>n,variationPlacements:()=>m,viewport:()=>u,write:()=>T});var i={};t.r(i),t.d(i,{Alert:()=>Oe,Button:()=>ke,Carousel:()=>li,Collapse:()=>Ei,Dropdown:()=>Ki,Modal:()=>Ln,Offcanvas:()=>Kn,Popover:()=>bs,ScrollSpy:()=>Ls,Tab:()=>Js,Toast:()=>po,Tooltip:()=>fs});var n="top",s="bottom",o="right",r="left",a="auto",l=[n,s,o,r],c="start",h="end",d="clippingParents",u="viewport",f="popper",p="reference",m=l.reduce((function(t,e){return t.concat([e+"-"+c,e+"-"+h])}),[]),g=[].concat(l,[a]).reduce((function(t,e){return t.concat([e,e+"-"+c,e+"-"+h])}),[]),_="beforeRead",b="read",v="afterRead",y="beforeMain",w="main",E="afterMain",A="beforeWrite",T="write",C="afterWrite",O=[_,b,v,y,w,E,A,T,C];function x(t){return t?(t.nodeName||"").toLowerCase():null}function k(t){if(null==t)return window;if("[object Window]"!==t.toString()){var e=t.ownerDocument;return e&&e.defaultView||window}return t}function L(t){return t instanceof k(t).Element||t instanceof Element}function S(t){return t instanceof k(t).HTMLElement||t instanceof HTMLElement}function D(t){return"undefined"!=typeof ShadowRoot&&(t instanceof k(t).ShadowRoot||t instanceof ShadowRoot)}const $={name:"applyStyles",enabled:!0,phase:"write",fn:function(t){var e=t.state;Object.keys(e.elements).forEach((function(t){var i=e.styles[t]||{},n=e.attributes[t]||{},s=e.elements[t];S(s)&&x(s)&&(Object.assign(s.style,i),Object.keys(n).forEach((function(t){var e=n[t];!1===e?s.removeAttribute(t):s.setAttribute(t,!0===e?"":e)})))}))},effect:function(t){var e=t.state,i={popper:{position:e.options.strategy,left:"0",top:"0",margin:"0"},arrow:{position:"absolute"},reference:{}};return Object.assign(e.elements.popper.style,i.popper),e.styles=i,e.elements.arrow&&Object.assign(e.elements.arrow.style,i.arrow),function(){Object.keys(e.elements).forEach((function(t){var n=e.elements[t],s=e.attributes[t]||{},o=Object.keys(e.styles.hasOwnProperty(t)?e.styles[t]:i[t]).reduce((function(t,e){return t[e]="",t}),{});S(n)&&x(n)&&(Object.assign(n.style,o),Object.keys(s).forEach((function(t){n.removeAttribute(t)})))}))}},requires:["computeStyles"]};function I(t){return t.split("-")[0]}var N=Math.max,P=Math.min,M=Math.round;function j(){var t=navigator.userAgentData;return null!=t&&t.brands&&Array.isArray(t.brands)?t.brands.map((function(t){return t.brand+"/"+t.version})).join(" "):navigator.userAgent}function F(){return!/^((?!chrome|android).)*safari/i.test(j())}function H(t,e,i){void 0===e&&(e=!1),void 0===i&&(i=!1);var n=t.getBoundingClientRect(),s=1,o=1;e&&S(t)&&(s=t.offsetWidth>0&&M(n.width)/t.offsetWidth||1,o=t.offsetHeight>0&&M(n.height)/t.offsetHeight||1);var r=(L(t)?k(t):window).visualViewport,a=!F()&&i,l=(n.left+(a&&r?r.offsetLeft:0))/s,c=(n.top+(a&&r?r.offsetTop:0))/o,h=n.width/s,d=n.height/o;return{width:h,height:d,top:c,right:l+h,bottom:c+d,left:l,x:l,y:c}}function B(t){var e=H(t),i=t.offsetWidth,n=t.offsetHeight;return Math.abs(e.width-i)<=1&&(i=e.width),Math.abs(e.height-n)<=1&&(n=e.height),{x:t.offsetLeft,y:t.offsetTop,width:i,height:n}}function W(t,e){var i=e.getRootNode&&e.getRootNode();if(t.contains(e))return!0;if(i&&D(i)){var n=e;do{if(n&&t.isSameNode(n))return!0;n=n.parentNode||n.host}while(n)}return!1}function z(t){return k(t).getComputedStyle(t)}function R(t){return["table","td","th"].indexOf(x(t))>=0}function q(t){return((L(t)?t.ownerDocument:t.document)||window.document).documentElement}function V(t){return"html"===x(t)?t:t.assignedSlot||t.parentNode||(D(t)?t.host:null)||q(t)}function Y(t){return S(t)&&"fixed"!==z(t).position?t.offsetParent:null}function K(t){for(var e=k(t),i=Y(t);i&&R(i)&&"static"===z(i).position;)i=Y(i);return i&&("html"===x(i)||"body"===x(i)&&"static"===z(i).position)?e:i||function(t){var e=/firefox/i.test(j());if(/Trident/i.test(j())&&S(t)&&"fixed"===z(t).position)return null;var i=V(t);for(D(i)&&(i=i.host);S(i)&&["html","body"].indexOf(x(i))<0;){var n=z(i);if("none"!==n.transform||"none"!==n.perspective||"paint"===n.contain||-1!==["transform","perspective"].indexOf(n.willChange)||e&&"filter"===n.willChange||e&&n.filter&&"none"!==n.filter)return i;i=i.parentNode}return null}(t)||e}function Q(t){return["top","bottom"].indexOf(t)>=0?"x":"y"}function X(t,e,i){return N(t,P(e,i))}function U(t){return Object.assign({},{top:0,right:0,bottom:0,left:0},t)}function G(t,e){return e.reduce((function(e,i){return e[i]=t,e}),{})}const J={name:"arrow",enabled:!0,phase:"main",fn:function(t){var e,i=t.state,a=t.name,c=t.options,h=i.elements.arrow,d=i.modifiersData.popperOffsets,u=I(i.placement),f=Q(u),p=[r,o].indexOf(u)>=0?"height":"width";if(h&&d){var m=function(t,e){return U("number"!=typeof(t="function"==typeof t?t(Object.assign({},e.rects,{placement:e.placement})):t)?t:G(t,l))}(c.padding,i),g=B(h),_="y"===f?n:r,b="y"===f?s:o,v=i.rects.reference[p]+i.rects.reference[f]-d[f]-i.rects.popper[p],y=d[f]-i.rects.reference[f],w=K(h),E=w?"y"===f?w.clientHeight||0:w.clientWidth||0:0,A=v/2-y/2,T=m[_],C=E-g[p]-m[b],O=E/2-g[p]/2+A,x=X(T,O,C),k=f;i.modifiersData[a]=((e={})[k]=x,e.centerOffset=x-O,e)}},effect:function(t){var e=t.state,i=t.options.element,n=void 0===i?"[data-popper-arrow]":i;null!=n&&("string"!=typeof n||(n=e.elements.popper.querySelector(n)))&&W(e.elements.popper,n)&&(e.elements.arrow=n)},requires:["popperOffsets"],requiresIfExists:["preventOverflow"]};function Z(t){return t.split("-")[1]}var tt={top:"auto",right:"auto",bottom:"auto",left:"auto"};function et(t){var e,i=t.popper,a=t.popperRect,l=t.placement,c=t.variation,d=t.offsets,u=t.position,f=t.gpuAcceleration,p=t.adaptive,m=t.roundOffsets,g=t.isFixed,_=d.x,b=void 0===_?0:_,v=d.y,y=void 0===v?0:v,w="function"==typeof m?m({x:b,y}):{x:b,y};b=w.x,y=w.y;var E=d.hasOwnProperty("x"),A=d.hasOwnProperty("y"),T=r,C=n,O=window;if(p){var x=K(i),L="clientHeight",S="clientWidth";x===k(i)&&"static"!==z(x=q(i)).position&&"absolute"===u&&(L="scrollHeight",S="scrollWidth"),(l===n||(l===r||l===o)&&c===h)&&(C=s,y-=(g&&x===O&&O.visualViewport?O.visualViewport.height:x[L])-a.height,y*=f?1:-1),l!==r&&(l!==n&&l!==s||c!==h)||(T=o,b-=(g&&x===O&&O.visualViewport?O.visualViewport.width:x[S])-a.width,b*=f?1:-1)}var D,$=Object.assign({position:u},p&&tt),I=!0===m?function(t,e){var i=t.x,n=t.y,s=e.devicePixelRatio||1;return{x:M(i*s)/s||0,y:M(n*s)/s||0}}({x:b,y},k(i)):{x:b,y};return b=I.x,y=I.y,f?Object.assign({},$,((D={})[C]=A?"0":"",D[T]=E?"0":"",D.transform=(O.devicePixelRatio||1)<=1?"translate("+b+"px, "+y+"px)":"translate3d("+b+"px, "+y+"px, 0)",D)):Object.assign({},$,((e={})[C]=A?y+"px":"",e[T]=E?b+"px":"",e.transform="",e))}const it={name:"computeStyles",enabled:!0,phase:"beforeWrite",fn:function(t){var e=t.state,i=t.options,n=i.gpuAcceleration,s=void 0===n||n,o=i.adaptive,r=void 0===o||o,a=i.roundOffsets,l=void 0===a||a,c={placement:I(e.placement),variation:Z(e.placement),popper:e.elements.popper,popperRect:e.rects.popper,gpuAcceleration:s,isFixed:"fixed"===e.options.strategy};null!=e.modifiersData.popperOffsets&&(e.styles.popper=Object.assign({},e.styles.popper,et(Object.assign({},c,{offsets:e.modifiersData.popperOffsets,position:e.options.strategy,adaptive:r,roundOffsets:l})))),null!=e.modifiersData.arrow&&(e.styles.arrow=Object.assign({},e.styles.arrow,et(Object.assign({},c,{offsets:e.modifiersData.arrow,position:"absolute",adaptive:!1,roundOffsets:l})))),e.attributes.popper=Object.assign({},e.attributes.popper,{"data-popper-placement":e.placement})},data:{}};var nt={passive:!0};const st={name:"eventListeners",enabled:!0,phase:"write",fn:function(){},effect:function(t){var e=t.state,i=t.instance,n=t.options,s=n.scroll,o=void 0===s||s,r=n.resize,a=void 0===r||r,l=k(e.elements.popper),c=[].concat(e.scrollParents.reference,e.scrollParents.popper);return o&&c.forEach((function(t){t.addEventListener("scroll",i.update,nt)})),a&&l.addEventListener("resize",i.update,nt),function(){o&&c.forEach((function(t){t.removeEventListener("scroll",i.update,nt)})),a&&l.removeEventListener("resize",i.update,nt)}},data:{}};var ot={left:"right",right:"left",bottom:"top",top:"bottom"};function rt(t){return t.replace(/left|right|bottom|top/g,(function(t){return ot[t]}))}var at={start:"end",end:"start"};function lt(t){return t.replace(/start|end/g,(function(t){return at[t]}))}function ct(t){var e=k(t);return{scrollLeft:e.pageXOffset,scrollTop:e.pageYOffset}}function ht(t){return H(q(t)).left+ct(t).scrollLeft}function dt(t){var e=z(t),i=e.overflow,n=e.overflowX,s=e.overflowY;return/auto|scroll|overlay|hidden/.test(i+s+n)}function ut(t){return["html","body","#document"].indexOf(x(t))>=0?t.ownerDocument.body:S(t)&&dt(t)?t:ut(V(t))}function ft(t,e){var i;void 0===e&&(e=[]);var n=ut(t),s=n===(null==(i=t.ownerDocument)?void 0:i.body),o=k(n),r=s?[o].concat(o.visualViewport||[],dt(n)?n:[]):n,a=e.concat(r);return s?a:a.concat(ft(V(r)))}function pt(t){return Object.assign({},t,{left:t.x,top:t.y,right:t.x+t.width,bottom:t.y+t.height})}function mt(t,e,i){return e===u?pt(function(t,e){var i=k(t),n=q(t),s=i.visualViewport,o=n.clientWidth,r=n.clientHeight,a=0,l=0;if(s){o=s.width,r=s.height;var c=F();(c||!c&&"fixed"===e)&&(a=s.offsetLeft,l=s.offsetTop)}return{width:o,height:r,x:a+ht(t),y:l}}(t,i)):L(e)?function(t,e){var i=H(t,!1,"fixed"===e);return i.top=i.top+t.clientTop,i.left=i.left+t.clientLeft,i.bottom=i.top+t.clientHeight,i.right=i.left+t.clientWidth,i.width=t.clientWidth,i.height=t.clientHeight,i.x=i.left,i.y=i.top,i}(e,i):pt(function(t){var e,i=q(t),n=ct(t),s=null==(e=t.ownerDocument)?void 0:e.body,o=N(i.scrollWidth,i.clientWidth,s?s.scrollWidth:0,s?s.clientWidth:0),r=N(i.scrollHeight,i.clientHeight,s?s.scrollHeight:0,s?s.clientHeight:0),a=-n.scrollLeft+ht(t),l=-n.scrollTop;return"rtl"===z(s||i).direction&&(a+=N(i.clientWidth,s?s.clientWidth:0)-o),{width:o,height:r,x:a,y:l}}(q(t)))}function gt(t){var e,i=t.reference,a=t.element,l=t.placement,d=l?I(l):null,u=l?Z(l):null,f=i.x+i.width/2-a.width/2,p=i.y+i.height/2-a.height/2;switch(d){case n:e={x:f,y:i.y-a.height};break;case s:e={x:f,y:i.y+i.height};break;case o:e={x:i.x+i.width,y:p};break;case r:e={x:i.x-a.width,y:p};break;default:e={x:i.x,y:i.y}}var m=d?Q(d):null;if(null!=m){var g="y"===m?"height":"width";switch(u){case c:e[m]=e[m]-(i[g]/2-a[g]/2);break;case h:e[m]=e[m]+(i[g]/2-a[g]/2)}}return e}function _t(t,e){void 0===e&&(e={});var i=e,r=i.placement,a=void 0===r?t.placement:r,c=i.strategy,h=void 0===c?t.strategy:c,m=i.boundary,g=void 0===m?d:m,_=i.rootBoundary,b=void 0===_?u:_,v=i.elementContext,y=void 0===v?f:v,w=i.altBoundary,E=void 0!==w&&w,A=i.padding,T=void 0===A?0:A,C=U("number"!=typeof T?T:G(T,l)),O=y===f?p:f,k=t.rects.popper,D=t.elements[E?O:y],$=function(t,e,i,n){var s="clippingParents"===e?function(t){var e=ft(V(t)),i=["absolute","fixed"].indexOf(z(t).position)>=0&&S(t)?K(t):t;return L(i)?e.filter((function(t){return L(t)&&W(t,i)&&"body"!==x(t)})):[]}(t):[].concat(e),o=[].concat(s,[i]),r=o[0],a=o.reduce((function(e,i){var s=mt(t,i,n);return e.top=N(s.top,e.top),e.right=P(s.right,e.right),e.bottom=P(s.bottom,e.bottom),e.left=N(s.left,e.left),e}),mt(t,r,n));return a.width=a.right-a.left,a.height=a.bottom-a.top,a.x=a.left,a.y=a.top,a}(L(D)?D:D.contextElement||q(t.elements.popper),g,b,h),I=H(t.elements.reference),M=gt({reference:I,element:k,strategy:"absolute",placement:a}),j=pt(Object.assign({},k,M)),F=y===f?j:I,B={top:$.top-F.top+C.top,bottom:F.bottom-$.bottom+C.bottom,left:$.left-F.left+C.left,right:F.right-$.right+C.right},R=t.modifiersData.offset;if(y===f&&R){var Y=R[a];Object.keys(B).forEach((function(t){var e=[o,s].indexOf(t)>=0?1:-1,i=[n,s].indexOf(t)>=0?"y":"x";B[t]+=Y[i]*e}))}return B}const bt={name:"flip",enabled:!0,phase:"main",fn:function(t){var e=t.state,i=t.options,h=t.name;if(!e.modifiersData[h]._skip){for(var d=i.mainAxis,u=void 0===d||d,f=i.altAxis,p=void 0===f||f,_=i.fallbackPlacements,b=i.padding,v=i.boundary,y=i.rootBoundary,w=i.altBoundary,E=i.flipVariations,A=void 0===E||E,T=i.allowedAutoPlacements,C=e.options.placement,O=I(C),x=_||(O!==C&&A?function(t){if(I(t)===a)return[];var e=rt(t);return[lt(t),e,lt(e)]}(C):[rt(C)]),k=[C].concat(x).reduce((function(t,i){return t.concat(I(i)===a?function(t,e){void 0===e&&(e={});var i=e,n=i.placement,s=i.boundary,o=i.rootBoundary,r=i.padding,a=i.flipVariations,c=i.allowedAutoPlacements,h=void 0===c?g:c,d=Z(n),u=d?a?m:m.filter((function(t){return Z(t)===d})):l,f=u.filter((function(t){return h.indexOf(t)>=0}));0===f.length&&(f=u);var p=f.reduce((function(e,i){return e[i]=_t(t,{placement:i,boundary:s,rootBoundary:o,padding:r})[I(i)],e}),{});return Object.keys(p).sort((function(t,e){return p[t]-p[e]}))}(e,{placement:i,boundary:v,rootBoundary:y,padding:b,flipVariations:A,allowedAutoPlacements:T}):i)}),[]),L=e.rects.reference,S=e.rects.popper,D=new Map,$=!0,N=k[0],P=0;P=0,B=H?"width":"height",W=_t(e,{placement:M,boundary:v,rootBoundary:y,altBoundary:w,padding:b}),z=H?F?o:r:F?s:n;L[B]>S[B]&&(z=rt(z));var R=rt(z),q=[];if(u&&q.push(W[j]<=0),p&&q.push(W[z]<=0,W[R]<=0),q.every((function(t){return t}))){N=M,$=!1;break}D.set(M,q)}if($)for(var V=function(t){var e=k.find((function(e){var i=D.get(e);if(i)return i.slice(0,t).every((function(t){return t}))}));if(e)return N=e,"break"},Y=A?3:1;Y>0&&"break"!==V(Y);Y--);e.placement!==N&&(e.modifiersData[h]._skip=!0,e.placement=N,e.reset=!0)}},requiresIfExists:["offset"],data:{_skip:!1}};function vt(t,e,i){return void 0===i&&(i={x:0,y:0}),{top:t.top-e.height-i.y,right:t.right-e.width+i.x,bottom:t.bottom-e.height+i.y,left:t.left-e.width-i.x}}function yt(t){return[n,o,s,r].some((function(e){return t[e]>=0}))}const wt={name:"hide",enabled:!0,phase:"main",requiresIfExists:["preventOverflow"],fn:function(t){var e=t.state,i=t.name,n=e.rects.reference,s=e.rects.popper,o=e.modifiersData.preventOverflow,r=_t(e,{elementContext:"reference"}),a=_t(e,{altBoundary:!0}),l=vt(r,n),c=vt(a,s,o),h=yt(l),d=yt(c);e.modifiersData[i]={referenceClippingOffsets:l,popperEscapeOffsets:c,isReferenceHidden:h,hasPopperEscaped:d},e.attributes.popper=Object.assign({},e.attributes.popper,{"data-popper-reference-hidden":h,"data-popper-escaped":d})}},Et={name:"offset",enabled:!0,phase:"main",requires:["popperOffsets"],fn:function(t){var e=t.state,i=t.options,s=t.name,a=i.offset,l=void 0===a?[0,0]:a,c=g.reduce((function(t,i){return t[i]=function(t,e,i){var s=I(t),a=[r,n].indexOf(s)>=0?-1:1,l="function"==typeof i?i(Object.assign({},e,{placement:t})):i,c=l[0],h=l[1];return c=c||0,h=(h||0)*a,[r,o].indexOf(s)>=0?{x:h,y:c}:{x:c,y:h}}(i,e.rects,l),t}),{}),h=c[e.placement],d=h.x,u=h.y;null!=e.modifiersData.popperOffsets&&(e.modifiersData.popperOffsets.x+=d,e.modifiersData.popperOffsets.y+=u),e.modifiersData[s]=c}},At={name:"popperOffsets",enabled:!0,phase:"read",fn:function(t){var e=t.state,i=t.name;e.modifiersData[i]=gt({reference:e.rects.reference,element:e.rects.popper,strategy:"absolute",placement:e.placement})},data:{}},Tt={name:"preventOverflow",enabled:!0,phase:"main",fn:function(t){var e=t.state,i=t.options,a=t.name,l=i.mainAxis,h=void 0===l||l,d=i.altAxis,u=void 0!==d&&d,f=i.boundary,p=i.rootBoundary,m=i.altBoundary,g=i.padding,_=i.tether,b=void 0===_||_,v=i.tetherOffset,y=void 0===v?0:v,w=_t(e,{boundary:f,rootBoundary:p,padding:g,altBoundary:m}),E=I(e.placement),A=Z(e.placement),T=!A,C=Q(E),O="x"===C?"y":"x",x=e.modifiersData.popperOffsets,k=e.rects.reference,L=e.rects.popper,S="function"==typeof y?y(Object.assign({},e.rects,{placement:e.placement})):y,D="number"==typeof S?{mainAxis:S,altAxis:S}:Object.assign({mainAxis:0,altAxis:0},S),$=e.modifiersData.offset?e.modifiersData.offset[e.placement]:null,M={x:0,y:0};if(x){if(h){var j,F="y"===C?n:r,H="y"===C?s:o,W="y"===C?"height":"width",z=x[C],R=z+w[F],q=z-w[H],V=b?-L[W]/2:0,Y=A===c?k[W]:L[W],U=A===c?-L[W]:-k[W],G=e.elements.arrow,J=b&&G?B(G):{width:0,height:0},tt=e.modifiersData["arrow#persistent"]?e.modifiersData["arrow#persistent"].padding:{top:0,right:0,bottom:0,left:0},et=tt[F],it=tt[H],nt=X(0,k[W],J[W]),st=T?k[W]/2-V-nt-et-D.mainAxis:Y-nt-et-D.mainAxis,ot=T?-k[W]/2+V+nt+it+D.mainAxis:U+nt+it+D.mainAxis,rt=e.elements.arrow&&K(e.elements.arrow),at=rt?"y"===C?rt.clientTop||0:rt.clientLeft||0:0,lt=null!=(j=null==$?void 0:$[C])?j:0,ct=z+ot-lt,ht=X(b?P(R,z+st-lt-at):R,z,b?N(q,ct):q);x[C]=ht,M[C]=ht-z}if(u){var dt,ut="x"===C?n:r,ft="x"===C?s:o,pt=x[O],mt="y"===O?"height":"width",gt=pt+w[ut],bt=pt-w[ft],vt=-1!==[n,r].indexOf(E),yt=null!=(dt=null==$?void 0:$[O])?dt:0,wt=vt?gt:pt-k[mt]-L[mt]-yt+D.altAxis,Et=vt?pt+k[mt]+L[mt]-yt-D.altAxis:bt,At=b&&vt?function(t,e,i){var n=X(t,e,i);return n>i?i:n}(wt,pt,Et):X(b?wt:gt,pt,b?Et:bt);x[O]=At,M[O]=At-pt}e.modifiersData[a]=M}},requiresIfExists:["offset"]};function Ct(t,e,i){void 0===i&&(i=!1);var n,s,o=S(e),r=S(e)&&function(t){var e=t.getBoundingClientRect(),i=M(e.width)/t.offsetWidth||1,n=M(e.height)/t.offsetHeight||1;return 1!==i||1!==n}(e),a=q(e),l=H(t,r,i),c={scrollLeft:0,scrollTop:0},h={x:0,y:0};return(o||!o&&!i)&&(("body"!==x(e)||dt(a))&&(c=(n=e)!==k(n)&&S(n)?{scrollLeft:(s=n).scrollLeft,scrollTop:s.scrollTop}:ct(n)),S(e)?((h=H(e,!0)).x+=e.clientLeft,h.y+=e.clientTop):a&&(h.x=ht(a))),{x:l.left+c.scrollLeft-h.x,y:l.top+c.scrollTop-h.y,width:l.width,height:l.height}}function Ot(t){var e=new Map,i=new Set,n=[];function s(t){i.add(t.name),[].concat(t.requires||[],t.requiresIfExists||[]).forEach((function(t){if(!i.has(t)){var n=e.get(t);n&&s(n)}})),n.push(t)}return t.forEach((function(t){e.set(t.name,t)})),t.forEach((function(t){i.has(t.name)||s(t)})),n}var xt={placement:"bottom",modifiers:[],strategy:"absolute"};function kt(){for(var t=arguments.length,e=new Array(t),i=0;iIt.has(t)&&It.get(t).get(e)||null,remove(t,e){if(!It.has(t))return;const i=It.get(t);i.delete(e),0===i.size&&It.delete(t)}},Pt="transitionend",Mt=t=>(t&&window.CSS&&window.CSS.escape&&(t=t.replace(/#([^\s"#']+)/g,((t,e)=>`#${CSS.escape(e)}`))),t),jt=t=>{t.dispatchEvent(new Event(Pt))},Ft=t=>!(!t||"object"!=typeof t)&&(void 0!==t.jquery&&(t=t[0]),void 0!==t.nodeType),Ht=t=>Ft(t)?t.jquery?t[0]:t:"string"==typeof t&&t.length>0?document.querySelector(Mt(t)):null,Bt=t=>{if(!Ft(t)||0===t.getClientRects().length)return!1;const e="visible"===getComputedStyle(t).getPropertyValue("visibility"),i=t.closest("details:not([open])");if(!i)return e;if(i!==t){const e=t.closest("summary");if(e&&e.parentNode!==i)return!1;if(null===e)return!1}return e},Wt=t=>!t||t.nodeType!==Node.ELEMENT_NODE||!!t.classList.contains("disabled")||(void 0!==t.disabled?t.disabled:t.hasAttribute("disabled")&&"false"!==t.getAttribute("disabled")),zt=t=>{if(!document.documentElement.attachShadow)return null;if("function"==typeof t.getRootNode){const e=t.getRootNode();return e instanceof ShadowRoot?e:null}return t instanceof ShadowRoot?t:t.parentNode?zt(t.parentNode):null},Rt=()=>{},qt=t=>{t.offsetHeight},Vt=()=>window.jQuery&&!document.body.hasAttribute("data-bs-no-jquery")?window.jQuery:null,Yt=[],Kt=()=>"rtl"===document.documentElement.dir,Qt=t=>{var e;e=()=>{const e=Vt();if(e){const i=t.NAME,n=e.fn[i];e.fn[i]=t.jQueryInterface,e.fn[i].Constructor=t,e.fn[i].noConflict=()=>(e.fn[i]=n,t.jQueryInterface)}},"loading"===document.readyState?(Yt.length||document.addEventListener("DOMContentLoaded",(()=>{for(const t of Yt)t()})),Yt.push(e)):e()},Xt=(t,e=[],i=t)=>"function"==typeof t?t(...e):i,Ut=(t,e,i=!0)=>{if(!i)return void Xt(t);const n=(t=>{if(!t)return 0;let{transitionDuration:e,transitionDelay:i}=window.getComputedStyle(t);const n=Number.parseFloat(e),s=Number.parseFloat(i);return n||s?(e=e.split(",")[0],i=i.split(",")[0],1e3*(Number.parseFloat(e)+Number.parseFloat(i))):0})(e)+5;let s=!1;const o=({target:i})=>{i===e&&(s=!0,e.removeEventListener(Pt,o),Xt(t))};e.addEventListener(Pt,o),setTimeout((()=>{s||jt(e)}),n)},Gt=(t,e,i,n)=>{const s=t.length;let o=t.indexOf(e);return-1===o?!i&&n?t[s-1]:t[0]:(o+=i?1:-1,n&&(o=(o+s)%s),t[Math.max(0,Math.min(o,s-1))])},Jt=/[^.]*(?=\..*)\.|.*/,Zt=/\..*/,te=/::\d+$/,ee={};let ie=1;const ne={mouseenter:"mouseover",mouseleave:"mouseout"},se=new Set(["click","dblclick","mouseup","mousedown","contextmenu","mousewheel","DOMMouseScroll","mouseover","mouseout","mousemove","selectstart","selectend","keydown","keypress","keyup","orientationchange","touchstart","touchmove","touchend","touchcancel","pointerdown","pointermove","pointerup","pointerleave","pointercancel","gesturestart","gesturechange","gestureend","focus","blur","change","reset","select","submit","focusin","focusout","load","unload","beforeunload","resize","move","DOMContentLoaded","readystatechange","error","abort","scroll"]);function oe(t,e){return e&&`${e}::${ie++}`||t.uidEvent||ie++}function re(t){const e=oe(t);return t.uidEvent=e,ee[e]=ee[e]||{},ee[e]}function ae(t,e,i=null){return Object.values(t).find((t=>t.callable===e&&t.delegationSelector===i))}function le(t,e,i){const n="string"==typeof e,s=n?i:e||i;let o=ue(t);return se.has(o)||(o=t),[n,s,o]}function ce(t,e,i,n,s){if("string"!=typeof e||!t)return;let[o,r,a]=le(e,i,n);if(e in ne){const t=t=>function(e){if(!e.relatedTarget||e.relatedTarget!==e.delegateTarget&&!e.delegateTarget.contains(e.relatedTarget))return t.call(this,e)};r=t(r)}const l=re(t),c=l[a]||(l[a]={}),h=ae(c,r,o?i:null);if(h)return void(h.oneOff=h.oneOff&&s);const d=oe(r,e.replace(Jt,"")),u=o?function(t,e,i){return function n(s){const o=t.querySelectorAll(e);for(let{target:r}=s;r&&r!==this;r=r.parentNode)for(const a of o)if(a===r)return pe(s,{delegateTarget:r}),n.oneOff&&fe.off(t,s.type,e,i),i.apply(r,[s])}}(t,i,r):function(t,e){return function i(n){return pe(n,{delegateTarget:t}),i.oneOff&&fe.off(t,n.type,e),e.apply(t,[n])}}(t,r);u.delegationSelector=o?i:null,u.callable=r,u.oneOff=s,u.uidEvent=d,c[d]=u,t.addEventListener(a,u,o)}function he(t,e,i,n,s){const o=ae(e[i],n,s);o&&(t.removeEventListener(i,o,Boolean(s)),delete e[i][o.uidEvent])}function de(t,e,i,n){const s=e[i]||{};for(const[o,r]of Object.entries(s))o.includes(n)&&he(t,e,i,r.callable,r.delegationSelector)}function ue(t){return t=t.replace(Zt,""),ne[t]||t}const fe={on(t,e,i,n){ce(t,e,i,n,!1)},one(t,e,i,n){ce(t,e,i,n,!0)},off(t,e,i,n){if("string"!=typeof e||!t)return;const[s,o,r]=le(e,i,n),a=r!==e,l=re(t),c=l[r]||{},h=e.startsWith(".");if(void 0===o){if(h)for(const i of Object.keys(l))de(t,l,i,e.slice(1));for(const[i,n]of Object.entries(c)){const s=i.replace(te,"");a&&!e.includes(s)||he(t,l,r,n.callable,n.delegationSelector)}}else{if(!Object.keys(c).length)return;he(t,l,r,o,s?i:null)}},trigger(t,e,i){if("string"!=typeof e||!t)return null;const n=Vt();let s=null,o=!0,r=!0,a=!1;e!==ue(e)&&n&&(s=n.Event(e,i),n(t).trigger(s),o=!s.isPropagationStopped(),r=!s.isImmediatePropagationStopped(),a=s.isDefaultPrevented());const l=pe(new Event(e,{bubbles:o,cancelable:!0}),i);return a&&l.preventDefault(),r&&t.dispatchEvent(l),l.defaultPrevented&&s&&s.preventDefault(),l}};function pe(t,e={}){for(const[i,n]of Object.entries(e))try{t[i]=n}catch(e){Object.defineProperty(t,i,{configurable:!0,get:()=>n})}return t}function me(t){if("true"===t)return!0;if("false"===t)return!1;if(t===Number(t).toString())return Number(t);if(""===t||"null"===t)return null;if("string"!=typeof t)return t;try{return JSON.parse(decodeURIComponent(t))}catch(e){return t}}function ge(t){return t.replace(/[A-Z]/g,(t=>`-${t.toLowerCase()}`))}const _e={setDataAttribute(t,e,i){t.setAttribute(`data-bs-${ge(e)}`,i)},removeDataAttribute(t,e){t.removeAttribute(`data-bs-${ge(e)}`)},getDataAttributes(t){if(!t)return{};const e={},i=Object.keys(t.dataset).filter((t=>t.startsWith("bs")&&!t.startsWith("bsConfig")));for(const n of i){let i=n.replace(/^bs/,"");i=i.charAt(0).toLowerCase()+i.slice(1,i.length),e[i]=me(t.dataset[n])}return e},getDataAttribute:(t,e)=>me(t.getAttribute(`data-bs-${ge(e)}`))};class be{static get Default(){return{}}static get DefaultType(){return{}}static get NAME(){throw new Error('You have to implement the static method "NAME", for each component!')}_getConfig(t){return t=this._mergeConfigObj(t),t=this._configAfterMerge(t),this._typeCheckConfig(t),t}_configAfterMerge(t){return t}_mergeConfigObj(t,e){const i=Ft(e)?_e.getDataAttribute(e,"config"):{};return{...this.constructor.Default,..."object"==typeof i?i:{},...Ft(e)?_e.getDataAttributes(e):{},..."object"==typeof t?t:{}}}_typeCheckConfig(t,e=this.constructor.DefaultType){for(const[n,s]of Object.entries(e)){const e=t[n],o=Ft(e)?"element":null==(i=e)?`${i}`:Object.prototype.toString.call(i).match(/\s([a-z]+)/i)[1].toLowerCase();if(!new RegExp(s).test(o))throw new TypeError(`${this.constructor.NAME.toUpperCase()}: Option "${n}" provided type "${o}" but expected type "${s}".`)}var i}}class ve extends be{constructor(t,e){super(),(t=Ht(t))&&(this._element=t,this._config=this._getConfig(e),Nt.set(this._element,this.constructor.DATA_KEY,this))}dispose(){Nt.remove(this._element,this.constructor.DATA_KEY),fe.off(this._element,this.constructor.EVENT_KEY);for(const t of Object.getOwnPropertyNames(this))this[t]=null}_queueCallback(t,e,i=!0){Ut(t,e,i)}_getConfig(t){return t=this._mergeConfigObj(t,this._element),t=this._configAfterMerge(t),this._typeCheckConfig(t),t}static getInstance(t){return Nt.get(Ht(t),this.DATA_KEY)}static getOrCreateInstance(t,e={}){return this.getInstance(t)||new this(t,"object"==typeof e?e:null)}static get VERSION(){return"5.3.3"}static get DATA_KEY(){return`bs.${this.NAME}`}static get EVENT_KEY(){return`.${this.DATA_KEY}`}static eventName(t){return`${t}${this.EVENT_KEY}`}}const ye=t=>{let e=t.getAttribute("data-bs-target");if(!e||"#"===e){let i=t.getAttribute("href");if(!i||!i.includes("#")&&!i.startsWith("."))return null;i.includes("#")&&!i.startsWith("#")&&(i=`#${i.split("#")[1]}`),e=i&&"#"!==i?i.trim():null}return e?e.split(",").map((t=>Mt(t))).join(","):null},we={find:(t,e=document.documentElement)=>[].concat(...Element.prototype.querySelectorAll.call(e,t)),findOne:(t,e=document.documentElement)=>Element.prototype.querySelector.call(e,t),children:(t,e)=>[].concat(...t.children).filter((t=>t.matches(e))),parents(t,e){const i=[];let n=t.parentNode.closest(e);for(;n;)i.push(n),n=n.parentNode.closest(e);return i},prev(t,e){let i=t.previousElementSibling;for(;i;){if(i.matches(e))return[i];i=i.previousElementSibling}return[]},next(t,e){let i=t.nextElementSibling;for(;i;){if(i.matches(e))return[i];i=i.nextElementSibling}return[]},focusableChildren(t){const e=["a","button","input","textarea","select","details","[tabindex]",'[contenteditable="true"]'].map((t=>`${t}:not([tabindex^="-"])`)).join(",");return this.find(e,t).filter((t=>!Wt(t)&&Bt(t)))},getSelectorFromElement(t){const e=ye(t);return e&&we.findOne(e)?e:null},getElementFromSelector(t){const e=ye(t);return e?we.findOne(e):null},getMultipleElementsFromSelector(t){const e=ye(t);return e?we.find(e):[]}},Ee=(t,e="hide")=>{const i=`click.dismiss${t.EVENT_KEY}`,n=t.NAME;fe.on(document,i,`[data-bs-dismiss="${n}"]`,(function(i){if(["A","AREA"].includes(this.tagName)&&i.preventDefault(),Wt(this))return;const s=we.getElementFromSelector(this)||this.closest(`.${n}`);t.getOrCreateInstance(s)[e]()}))},Ae=".bs.alert",Te=`close${Ae}`,Ce=`closed${Ae}`;class Oe extends ve{static get NAME(){return"alert"}close(){if(fe.trigger(this._element,Te).defaultPrevented)return;this._element.classList.remove("show");const t=this._element.classList.contains("fade");this._queueCallback((()=>this._destroyElement()),this._element,t)}_destroyElement(){this._element.remove(),fe.trigger(this._element,Ce),this.dispose()}static jQueryInterface(t){return this.each((function(){const e=Oe.getOrCreateInstance(this);if("string"==typeof t){if(void 0===e[t]||t.startsWith("_")||"constructor"===t)throw new TypeError(`No method named "${t}"`);e[t](this)}}))}}Ee(Oe,"close"),Qt(Oe);const xe='[data-bs-toggle="button"]';class ke extends ve{static get NAME(){return"button"}toggle(){this._element.setAttribute("aria-pressed",this._element.classList.toggle("active"))}static jQueryInterface(t){return this.each((function(){const e=ke.getOrCreateInstance(this);"toggle"===t&&e[t]()}))}}fe.on(document,"click.bs.button.data-api",xe,(t=>{t.preventDefault();const e=t.target.closest(xe);ke.getOrCreateInstance(e).toggle()})),Qt(ke);const Le=".bs.swipe",Se=`touchstart${Le}`,De=`touchmove${Le}`,$e=`touchend${Le}`,Ie=`pointerdown${Le}`,Ne=`pointerup${Le}`,Pe={endCallback:null,leftCallback:null,rightCallback:null},Me={endCallback:"(function|null)",leftCallback:"(function|null)",rightCallback:"(function|null)"};class je extends be{constructor(t,e){super(),this._element=t,t&&je.isSupported()&&(this._config=this._getConfig(e),this._deltaX=0,this._supportPointerEvents=Boolean(window.PointerEvent),this._initEvents())}static get Default(){return Pe}static get DefaultType(){return Me}static get NAME(){return"swipe"}dispose(){fe.off(this._element,Le)}_start(t){this._supportPointerEvents?this._eventIsPointerPenTouch(t)&&(this._deltaX=t.clientX):this._deltaX=t.touches[0].clientX}_end(t){this._eventIsPointerPenTouch(t)&&(this._deltaX=t.clientX-this._deltaX),this._handleSwipe(),Xt(this._config.endCallback)}_move(t){this._deltaX=t.touches&&t.touches.length>1?0:t.touches[0].clientX-this._deltaX}_handleSwipe(){const t=Math.abs(this._deltaX);if(t<=40)return;const e=t/this._deltaX;this._deltaX=0,e&&Xt(e>0?this._config.rightCallback:this._config.leftCallback)}_initEvents(){this._supportPointerEvents?(fe.on(this._element,Ie,(t=>this._start(t))),fe.on(this._element,Ne,(t=>this._end(t))),this._element.classList.add("pointer-event")):(fe.on(this._element,Se,(t=>this._start(t))),fe.on(this._element,De,(t=>this._move(t))),fe.on(this._element,$e,(t=>this._end(t))))}_eventIsPointerPenTouch(t){return this._supportPointerEvents&&("pen"===t.pointerType||"touch"===t.pointerType)}static isSupported(){return"ontouchstart"in document.documentElement||navigator.maxTouchPoints>0}}const Fe=".bs.carousel",He=".data-api",Be="ArrowLeft",We="ArrowRight",ze="next",Re="prev",qe="left",Ve="right",Ye=`slide${Fe}`,Ke=`slid${Fe}`,Qe=`keydown${Fe}`,Xe=`mouseenter${Fe}`,Ue=`mouseleave${Fe}`,Ge=`dragstart${Fe}`,Je=`load${Fe}${He}`,Ze=`click${Fe}${He}`,ti="carousel",ei="active",ii=".active",ni=".carousel-item",si=ii+ni,oi={[Be]:Ve,[We]:qe},ri={interval:5e3,keyboard:!0,pause:"hover",ride:!1,touch:!0,wrap:!0},ai={interval:"(number|boolean)",keyboard:"boolean",pause:"(string|boolean)",ride:"(boolean|string)",touch:"boolean",wrap:"boolean"};class li extends ve{constructor(t,e){super(t,e),this._interval=null,this._activeElement=null,this._isSliding=!1,this.touchTimeout=null,this._swipeHelper=null,this._indicatorsElement=we.findOne(".carousel-indicators",this._element),this._addEventListeners(),this._config.ride===ti&&this.cycle()}static get Default(){return ri}static get DefaultType(){return ai}static get NAME(){return"carousel"}next(){this._slide(ze)}nextWhenVisible(){!document.hidden&&Bt(this._element)&&this.next()}prev(){this._slide(Re)}pause(){this._isSliding&&jt(this._element),this._clearInterval()}cycle(){this._clearInterval(),this._updateInterval(),this._interval=setInterval((()=>this.nextWhenVisible()),this._config.interval)}_maybeEnableCycle(){this._config.ride&&(this._isSliding?fe.one(this._element,Ke,(()=>this.cycle())):this.cycle())}to(t){const e=this._getItems();if(t>e.length-1||t<0)return;if(this._isSliding)return void fe.one(this._element,Ke,(()=>this.to(t)));const i=this._getItemIndex(this._getActive());if(i===t)return;const n=t>i?ze:Re;this._slide(n,e[t])}dispose(){this._swipeHelper&&this._swipeHelper.dispose(),super.dispose()}_configAfterMerge(t){return t.defaultInterval=t.interval,t}_addEventListeners(){this._config.keyboard&&fe.on(this._element,Qe,(t=>this._keydown(t))),"hover"===this._config.pause&&(fe.on(this._element,Xe,(()=>this.pause())),fe.on(this._element,Ue,(()=>this._maybeEnableCycle()))),this._config.touch&&je.isSupported()&&this._addTouchEventListeners()}_addTouchEventListeners(){for(const t of we.find(".carousel-item img",this._element))fe.on(t,Ge,(t=>t.preventDefault()));const t={leftCallback:()=>this._slide(this._directionToOrder(qe)),rightCallback:()=>this._slide(this._directionToOrder(Ve)),endCallback:()=>{"hover"===this._config.pause&&(this.pause(),this.touchTimeout&&clearTimeout(this.touchTimeout),this.touchTimeout=setTimeout((()=>this._maybeEnableCycle()),500+this._config.interval))}};this._swipeHelper=new je(this._element,t)}_keydown(t){if(/input|textarea/i.test(t.target.tagName))return;const e=oi[t.key];e&&(t.preventDefault(),this._slide(this._directionToOrder(e)))}_getItemIndex(t){return this._getItems().indexOf(t)}_setActiveIndicatorElement(t){if(!this._indicatorsElement)return;const e=we.findOne(ii,this._indicatorsElement);e.classList.remove(ei),e.removeAttribute("aria-current");const i=we.findOne(`[data-bs-slide-to="${t}"]`,this._indicatorsElement);i&&(i.classList.add(ei),i.setAttribute("aria-current","true"))}_updateInterval(){const t=this._activeElement||this._getActive();if(!t)return;const e=Number.parseInt(t.getAttribute("data-bs-interval"),10);this._config.interval=e||this._config.defaultInterval}_slide(t,e=null){if(this._isSliding)return;const i=this._getActive(),n=t===ze,s=e||Gt(this._getItems(),i,n,this._config.wrap);if(s===i)return;const o=this._getItemIndex(s),r=e=>fe.trigger(this._element,e,{relatedTarget:s,direction:this._orderToDirection(t),from:this._getItemIndex(i),to:o});if(r(Ye).defaultPrevented)return;if(!i||!s)return;const a=Boolean(this._interval);this.pause(),this._isSliding=!0,this._setActiveIndicatorElement(o),this._activeElement=s;const l=n?"carousel-item-start":"carousel-item-end",c=n?"carousel-item-next":"carousel-item-prev";s.classList.add(c),qt(s),i.classList.add(l),s.classList.add(l),this._queueCallback((()=>{s.classList.remove(l,c),s.classList.add(ei),i.classList.remove(ei,c,l),this._isSliding=!1,r(Ke)}),i,this._isAnimated()),a&&this.cycle()}_isAnimated(){return this._element.classList.contains("slide")}_getActive(){return we.findOne(si,this._element)}_getItems(){return we.find(ni,this._element)}_clearInterval(){this._interval&&(clearInterval(this._interval),this._interval=null)}_directionToOrder(t){return Kt()?t===qe?Re:ze:t===qe?ze:Re}_orderToDirection(t){return Kt()?t===Re?qe:Ve:t===Re?Ve:qe}static jQueryInterface(t){return this.each((function(){const e=li.getOrCreateInstance(this,t);if("number"!=typeof t){if("string"==typeof t){if(void 0===e[t]||t.startsWith("_")||"constructor"===t)throw new TypeError(`No method named "${t}"`);e[t]()}}else e.to(t)}))}}fe.on(document,Ze,"[data-bs-slide], [data-bs-slide-to]",(function(t){const e=we.getElementFromSelector(this);if(!e||!e.classList.contains(ti))return;t.preventDefault();const i=li.getOrCreateInstance(e),n=this.getAttribute("data-bs-slide-to");return n?(i.to(n),void i._maybeEnableCycle()):"next"===_e.getDataAttribute(this,"slide")?(i.next(),void i._maybeEnableCycle()):(i.prev(),void i._maybeEnableCycle())})),fe.on(window,Je,(()=>{const t=we.find('[data-bs-ride="carousel"]');for(const e of t)li.getOrCreateInstance(e)})),Qt(li);const ci=".bs.collapse",hi=`show${ci}`,di=`shown${ci}`,ui=`hide${ci}`,fi=`hidden${ci}`,pi=`click${ci}.data-api`,mi="show",gi="collapse",_i="collapsing",bi=`:scope .${gi} .${gi}`,vi='[data-bs-toggle="collapse"]',yi={parent:null,toggle:!0},wi={parent:"(null|element)",toggle:"boolean"};class Ei extends ve{constructor(t,e){super(t,e),this._isTransitioning=!1,this._triggerArray=[];const i=we.find(vi);for(const t of i){const e=we.getSelectorFromElement(t),i=we.find(e).filter((t=>t===this._element));null!==e&&i.length&&this._triggerArray.push(t)}this._initializeChildren(),this._config.parent||this._addAriaAndCollapsedClass(this._triggerArray,this._isShown()),this._config.toggle&&this.toggle()}static get Default(){return yi}static get DefaultType(){return wi}static get NAME(){return"collapse"}toggle(){this._isShown()?this.hide():this.show()}show(){if(this._isTransitioning||this._isShown())return;let t=[];if(this._config.parent&&(t=this._getFirstLevelChildren(".collapse.show, .collapse.collapsing").filter((t=>t!==this._element)).map((t=>Ei.getOrCreateInstance(t,{toggle:!1})))),t.length&&t[0]._isTransitioning)return;if(fe.trigger(this._element,hi).defaultPrevented)return;for(const e of t)e.hide();const e=this._getDimension();this._element.classList.remove(gi),this._element.classList.add(_i),this._element.style[e]=0,this._addAriaAndCollapsedClass(this._triggerArray,!0),this._isTransitioning=!0;const i=`scroll${e[0].toUpperCase()+e.slice(1)}`;this._queueCallback((()=>{this._isTransitioning=!1,this._element.classList.remove(_i),this._element.classList.add(gi,mi),this._element.style[e]="",fe.trigger(this._element,di)}),this._element,!0),this._element.style[e]=`${this._element[i]}px`}hide(){if(this._isTransitioning||!this._isShown())return;if(fe.trigger(this._element,ui).defaultPrevented)return;const t=this._getDimension();this._element.style[t]=`${this._element.getBoundingClientRect()[t]}px`,qt(this._element),this._element.classList.add(_i),this._element.classList.remove(gi,mi);for(const t of this._triggerArray){const e=we.getElementFromSelector(t);e&&!this._isShown(e)&&this._addAriaAndCollapsedClass([t],!1)}this._isTransitioning=!0,this._element.style[t]="",this._queueCallback((()=>{this._isTransitioning=!1,this._element.classList.remove(_i),this._element.classList.add(gi),fe.trigger(this._element,fi)}),this._element,!0)}_isShown(t=this._element){return t.classList.contains(mi)}_configAfterMerge(t){return t.toggle=Boolean(t.toggle),t.parent=Ht(t.parent),t}_getDimension(){return this._element.classList.contains("collapse-horizontal")?"width":"height"}_initializeChildren(){if(!this._config.parent)return;const t=this._getFirstLevelChildren(vi);for(const e of t){const t=we.getElementFromSelector(e);t&&this._addAriaAndCollapsedClass([e],this._isShown(t))}}_getFirstLevelChildren(t){const e=we.find(bi,this._config.parent);return we.find(t,this._config.parent).filter((t=>!e.includes(t)))}_addAriaAndCollapsedClass(t,e){if(t.length)for(const i of t)i.classList.toggle("collapsed",!e),i.setAttribute("aria-expanded",e)}static jQueryInterface(t){const e={};return"string"==typeof t&&/show|hide/.test(t)&&(e.toggle=!1),this.each((function(){const i=Ei.getOrCreateInstance(this,e);if("string"==typeof t){if(void 0===i[t])throw new TypeError(`No method named "${t}"`);i[t]()}}))}}fe.on(document,pi,vi,(function(t){("A"===t.target.tagName||t.delegateTarget&&"A"===t.delegateTarget.tagName)&&t.preventDefault();for(const t of we.getMultipleElementsFromSelector(this))Ei.getOrCreateInstance(t,{toggle:!1}).toggle()})),Qt(Ei);const Ai="dropdown",Ti=".bs.dropdown",Ci=".data-api",Oi="ArrowUp",xi="ArrowDown",ki=`hide${Ti}`,Li=`hidden${Ti}`,Si=`show${Ti}`,Di=`shown${Ti}`,$i=`click${Ti}${Ci}`,Ii=`keydown${Ti}${Ci}`,Ni=`keyup${Ti}${Ci}`,Pi="show",Mi='[data-bs-toggle="dropdown"]:not(.disabled):not(:disabled)',ji=`${Mi}.${Pi}`,Fi=".dropdown-menu",Hi=Kt()?"top-end":"top-start",Bi=Kt()?"top-start":"top-end",Wi=Kt()?"bottom-end":"bottom-start",zi=Kt()?"bottom-start":"bottom-end",Ri=Kt()?"left-start":"right-start",qi=Kt()?"right-start":"left-start",Vi={autoClose:!0,boundary:"clippingParents",display:"dynamic",offset:[0,2],popperConfig:null,reference:"toggle"},Yi={autoClose:"(boolean|string)",boundary:"(string|element)",display:"string",offset:"(array|string|function)",popperConfig:"(null|object|function)",reference:"(string|element|object)"};class Ki extends ve{constructor(t,e){super(t,e),this._popper=null,this._parent=this._element.parentNode,this._menu=we.next(this._element,Fi)[0]||we.prev(this._element,Fi)[0]||we.findOne(Fi,this._parent),this._inNavbar=this._detectNavbar()}static get Default(){return Vi}static get DefaultType(){return Yi}static get NAME(){return Ai}toggle(){return this._isShown()?this.hide():this.show()}show(){if(Wt(this._element)||this._isShown())return;const t={relatedTarget:this._element};if(!fe.trigger(this._element,Si,t).defaultPrevented){if(this._createPopper(),"ontouchstart"in document.documentElement&&!this._parent.closest(".navbar-nav"))for(const t of[].concat(...document.body.children))fe.on(t,"mouseover",Rt);this._element.focus(),this._element.setAttribute("aria-expanded",!0),this._menu.classList.add(Pi),this._element.classList.add(Pi),fe.trigger(this._element,Di,t)}}hide(){if(Wt(this._element)||!this._isShown())return;const t={relatedTarget:this._element};this._completeHide(t)}dispose(){this._popper&&this._popper.destroy(),super.dispose()}update(){this._inNavbar=this._detectNavbar(),this._popper&&this._popper.update()}_completeHide(t){if(!fe.trigger(this._element,ki,t).defaultPrevented){if("ontouchstart"in document.documentElement)for(const t of[].concat(...document.body.children))fe.off(t,"mouseover",Rt);this._popper&&this._popper.destroy(),this._menu.classList.remove(Pi),this._element.classList.remove(Pi),this._element.setAttribute("aria-expanded","false"),_e.removeDataAttribute(this._menu,"popper"),fe.trigger(this._element,Li,t)}}_getConfig(t){if("object"==typeof(t=super._getConfig(t)).reference&&!Ft(t.reference)&&"function"!=typeof t.reference.getBoundingClientRect)throw new TypeError(`${Ai.toUpperCase()}: Option "reference" provided type "object" without a required "getBoundingClientRect" method.`);return t}_createPopper(){if(void 0===e)throw new TypeError("Bootstrap's dropdowns require Popper (https://popper.js.org)");let t=this._element;"parent"===this._config.reference?t=this._parent:Ft(this._config.reference)?t=Ht(this._config.reference):"object"==typeof this._config.reference&&(t=this._config.reference);const i=this._getPopperConfig();this._popper=Dt(t,this._menu,i)}_isShown(){return this._menu.classList.contains(Pi)}_getPlacement(){const t=this._parent;if(t.classList.contains("dropend"))return Ri;if(t.classList.contains("dropstart"))return qi;if(t.classList.contains("dropup-center"))return"top";if(t.classList.contains("dropdown-center"))return"bottom";const e="end"===getComputedStyle(this._menu).getPropertyValue("--bs-position").trim();return t.classList.contains("dropup")?e?Bi:Hi:e?zi:Wi}_detectNavbar(){return null!==this._element.closest(".navbar")}_getOffset(){const{offset:t}=this._config;return"string"==typeof t?t.split(",").map((t=>Number.parseInt(t,10))):"function"==typeof t?e=>t(e,this._element):t}_getPopperConfig(){const t={placement:this._getPlacement(),modifiers:[{name:"preventOverflow",options:{boundary:this._config.boundary}},{name:"offset",options:{offset:this._getOffset()}}]};return(this._inNavbar||"static"===this._config.display)&&(_e.setDataAttribute(this._menu,"popper","static"),t.modifiers=[{name:"applyStyles",enabled:!1}]),{...t,...Xt(this._config.popperConfig,[t])}}_selectMenuItem({key:t,target:e}){const i=we.find(".dropdown-menu .dropdown-item:not(.disabled):not(:disabled)",this._menu).filter((t=>Bt(t)));i.length&&Gt(i,e,t===xi,!i.includes(e)).focus()}static jQueryInterface(t){return this.each((function(){const e=Ki.getOrCreateInstance(this,t);if("string"==typeof t){if(void 0===e[t])throw new TypeError(`No method named "${t}"`);e[t]()}}))}static clearMenus(t){if(2===t.button||"keyup"===t.type&&"Tab"!==t.key)return;const e=we.find(ji);for(const i of e){const e=Ki.getInstance(i);if(!e||!1===e._config.autoClose)continue;const n=t.composedPath(),s=n.includes(e._menu);if(n.includes(e._element)||"inside"===e._config.autoClose&&!s||"outside"===e._config.autoClose&&s)continue;if(e._menu.contains(t.target)&&("keyup"===t.type&&"Tab"===t.key||/input|select|option|textarea|form/i.test(t.target.tagName)))continue;const o={relatedTarget:e._element};"click"===t.type&&(o.clickEvent=t),e._completeHide(o)}}static dataApiKeydownHandler(t){const e=/input|textarea/i.test(t.target.tagName),i="Escape"===t.key,n=[Oi,xi].includes(t.key);if(!n&&!i)return;if(e&&!i)return;t.preventDefault();const s=this.matches(Mi)?this:we.prev(this,Mi)[0]||we.next(this,Mi)[0]||we.findOne(Mi,t.delegateTarget.parentNode),o=Ki.getOrCreateInstance(s);if(n)return t.stopPropagation(),o.show(),void o._selectMenuItem(t);o._isShown()&&(t.stopPropagation(),o.hide(),s.focus())}}fe.on(document,Ii,Mi,Ki.dataApiKeydownHandler),fe.on(document,Ii,Fi,Ki.dataApiKeydownHandler),fe.on(document,$i,Ki.clearMenus),fe.on(document,Ni,Ki.clearMenus),fe.on(document,$i,Mi,(function(t){t.preventDefault(),Ki.getOrCreateInstance(this).toggle()})),Qt(Ki);const Qi="backdrop",Xi="show",Ui=`mousedown.bs.${Qi}`,Gi={className:"modal-backdrop",clickCallback:null,isAnimated:!1,isVisible:!0,rootElement:"body"},Ji={className:"string",clickCallback:"(function|null)",isAnimated:"boolean",isVisible:"boolean",rootElement:"(element|string)"};class Zi extends be{constructor(t){super(),this._config=this._getConfig(t),this._isAppended=!1,this._element=null}static get Default(){return Gi}static get DefaultType(){return Ji}static get NAME(){return Qi}show(t){if(!this._config.isVisible)return void Xt(t);this._append();const e=this._getElement();this._config.isAnimated&&qt(e),e.classList.add(Xi),this._emulateAnimation((()=>{Xt(t)}))}hide(t){this._config.isVisible?(this._getElement().classList.remove(Xi),this._emulateAnimation((()=>{this.dispose(),Xt(t)}))):Xt(t)}dispose(){this._isAppended&&(fe.off(this._element,Ui),this._element.remove(),this._isAppended=!1)}_getElement(){if(!this._element){const t=document.createElement("div");t.className=this._config.className,this._config.isAnimated&&t.classList.add("fade"),this._element=t}return this._element}_configAfterMerge(t){return t.rootElement=Ht(t.rootElement),t}_append(){if(this._isAppended)return;const t=this._getElement();this._config.rootElement.append(t),fe.on(t,Ui,(()=>{Xt(this._config.clickCallback)})),this._isAppended=!0}_emulateAnimation(t){Ut(t,this._getElement(),this._config.isAnimated)}}const tn=".bs.focustrap",en=`focusin${tn}`,nn=`keydown.tab${tn}`,sn="backward",on={autofocus:!0,trapElement:null},rn={autofocus:"boolean",trapElement:"element"};class an extends be{constructor(t){super(),this._config=this._getConfig(t),this._isActive=!1,this._lastTabNavDirection=null}static get Default(){return on}static get DefaultType(){return rn}static get NAME(){return"focustrap"}activate(){this._isActive||(this._config.autofocus&&this._config.trapElement.focus(),fe.off(document,tn),fe.on(document,en,(t=>this._handleFocusin(t))),fe.on(document,nn,(t=>this._handleKeydown(t))),this._isActive=!0)}deactivate(){this._isActive&&(this._isActive=!1,fe.off(document,tn))}_handleFocusin(t){const{trapElement:e}=this._config;if(t.target===document||t.target===e||e.contains(t.target))return;const i=we.focusableChildren(e);0===i.length?e.focus():this._lastTabNavDirection===sn?i[i.length-1].focus():i[0].focus()}_handleKeydown(t){"Tab"===t.key&&(this._lastTabNavDirection=t.shiftKey?sn:"forward")}}const ln=".fixed-top, .fixed-bottom, .is-fixed, .sticky-top",cn=".sticky-top",hn="padding-right",dn="margin-right";class un{constructor(){this._element=document.body}getWidth(){const t=document.documentElement.clientWidth;return Math.abs(window.innerWidth-t)}hide(){const t=this.getWidth();this._disableOverFlow(),this._setElementAttributes(this._element,hn,(e=>e+t)),this._setElementAttributes(ln,hn,(e=>e+t)),this._setElementAttributes(cn,dn,(e=>e-t))}reset(){this._resetElementAttributes(this._element,"overflow"),this._resetElementAttributes(this._element,hn),this._resetElementAttributes(ln,hn),this._resetElementAttributes(cn,dn)}isOverflowing(){return this.getWidth()>0}_disableOverFlow(){this._saveInitialAttribute(this._element,"overflow"),this._element.style.overflow="hidden"}_setElementAttributes(t,e,i){const n=this.getWidth();this._applyManipulationCallback(t,(t=>{if(t!==this._element&&window.innerWidth>t.clientWidth+n)return;this._saveInitialAttribute(t,e);const s=window.getComputedStyle(t).getPropertyValue(e);t.style.setProperty(e,`${i(Number.parseFloat(s))}px`)}))}_saveInitialAttribute(t,e){const i=t.style.getPropertyValue(e);i&&_e.setDataAttribute(t,e,i)}_resetElementAttributes(t,e){this._applyManipulationCallback(t,(t=>{const i=_e.getDataAttribute(t,e);null!==i?(_e.removeDataAttribute(t,e),t.style.setProperty(e,i)):t.style.removeProperty(e)}))}_applyManipulationCallback(t,e){if(Ft(t))e(t);else for(const i of we.find(t,this._element))e(i)}}const fn=".bs.modal",pn=`hide${fn}`,mn=`hidePrevented${fn}`,gn=`hidden${fn}`,_n=`show${fn}`,bn=`shown${fn}`,vn=`resize${fn}`,yn=`click.dismiss${fn}`,wn=`mousedown.dismiss${fn}`,En=`keydown.dismiss${fn}`,An=`click${fn}.data-api`,Tn="modal-open",Cn="show",On="modal-static",xn={backdrop:!0,focus:!0,keyboard:!0},kn={backdrop:"(boolean|string)",focus:"boolean",keyboard:"boolean"};class Ln extends ve{constructor(t,e){super(t,e),this._dialog=we.findOne(".modal-dialog",this._element),this._backdrop=this._initializeBackDrop(),this._focustrap=this._initializeFocusTrap(),this._isShown=!1,this._isTransitioning=!1,this._scrollBar=new un,this._addEventListeners()}static get Default(){return xn}static get DefaultType(){return kn}static get NAME(){return"modal"}toggle(t){return this._isShown?this.hide():this.show(t)}show(t){this._isShown||this._isTransitioning||fe.trigger(this._element,_n,{relatedTarget:t}).defaultPrevented||(this._isShown=!0,this._isTransitioning=!0,this._scrollBar.hide(),document.body.classList.add(Tn),this._adjustDialog(),this._backdrop.show((()=>this._showElement(t))))}hide(){this._isShown&&!this._isTransitioning&&(fe.trigger(this._element,pn).defaultPrevented||(this._isShown=!1,this._isTransitioning=!0,this._focustrap.deactivate(),this._element.classList.remove(Cn),this._queueCallback((()=>this._hideModal()),this._element,this._isAnimated())))}dispose(){fe.off(window,fn),fe.off(this._dialog,fn),this._backdrop.dispose(),this._focustrap.deactivate(),super.dispose()}handleUpdate(){this._adjustDialog()}_initializeBackDrop(){return new Zi({isVisible:Boolean(this._config.backdrop),isAnimated:this._isAnimated()})}_initializeFocusTrap(){return new an({trapElement:this._element})}_showElement(t){document.body.contains(this._element)||document.body.append(this._element),this._element.style.display="block",this._element.removeAttribute("aria-hidden"),this._element.setAttribute("aria-modal",!0),this._element.setAttribute("role","dialog"),this._element.scrollTop=0;const e=we.findOne(".modal-body",this._dialog);e&&(e.scrollTop=0),qt(this._element),this._element.classList.add(Cn),this._queueCallback((()=>{this._config.focus&&this._focustrap.activate(),this._isTransitioning=!1,fe.trigger(this._element,bn,{relatedTarget:t})}),this._dialog,this._isAnimated())}_addEventListeners(){fe.on(this._element,En,(t=>{"Escape"===t.key&&(this._config.keyboard?this.hide():this._triggerBackdropTransition())})),fe.on(window,vn,(()=>{this._isShown&&!this._isTransitioning&&this._adjustDialog()})),fe.on(this._element,wn,(t=>{fe.one(this._element,yn,(e=>{this._element===t.target&&this._element===e.target&&("static"!==this._config.backdrop?this._config.backdrop&&this.hide():this._triggerBackdropTransition())}))}))}_hideModal(){this._element.style.display="none",this._element.setAttribute("aria-hidden",!0),this._element.removeAttribute("aria-modal"),this._element.removeAttribute("role"),this._isTransitioning=!1,this._backdrop.hide((()=>{document.body.classList.remove(Tn),this._resetAdjustments(),this._scrollBar.reset(),fe.trigger(this._element,gn)}))}_isAnimated(){return this._element.classList.contains("fade")}_triggerBackdropTransition(){if(fe.trigger(this._element,mn).defaultPrevented)return;const t=this._element.scrollHeight>document.documentElement.clientHeight,e=this._element.style.overflowY;"hidden"===e||this._element.classList.contains(On)||(t||(this._element.style.overflowY="hidden"),this._element.classList.add(On),this._queueCallback((()=>{this._element.classList.remove(On),this._queueCallback((()=>{this._element.style.overflowY=e}),this._dialog)}),this._dialog),this._element.focus())}_adjustDialog(){const t=this._element.scrollHeight>document.documentElement.clientHeight,e=this._scrollBar.getWidth(),i=e>0;if(i&&!t){const t=Kt()?"paddingLeft":"paddingRight";this._element.style[t]=`${e}px`}if(!i&&t){const t=Kt()?"paddingRight":"paddingLeft";this._element.style[t]=`${e}px`}}_resetAdjustments(){this._element.style.paddingLeft="",this._element.style.paddingRight=""}static jQueryInterface(t,e){return this.each((function(){const i=Ln.getOrCreateInstance(this,t);if("string"==typeof t){if(void 0===i[t])throw new TypeError(`No method named "${t}"`);i[t](e)}}))}}fe.on(document,An,'[data-bs-toggle="modal"]',(function(t){const e=we.getElementFromSelector(this);["A","AREA"].includes(this.tagName)&&t.preventDefault(),fe.one(e,_n,(t=>{t.defaultPrevented||fe.one(e,gn,(()=>{Bt(this)&&this.focus()}))}));const i=we.findOne(".modal.show");i&&Ln.getInstance(i).hide(),Ln.getOrCreateInstance(e).toggle(this)})),Ee(Ln),Qt(Ln);const Sn=".bs.offcanvas",Dn=".data-api",$n=`load${Sn}${Dn}`,In="show",Nn="showing",Pn="hiding",Mn=".offcanvas.show",jn=`show${Sn}`,Fn=`shown${Sn}`,Hn=`hide${Sn}`,Bn=`hidePrevented${Sn}`,Wn=`hidden${Sn}`,zn=`resize${Sn}`,Rn=`click${Sn}${Dn}`,qn=`keydown.dismiss${Sn}`,Vn={backdrop:!0,keyboard:!0,scroll:!1},Yn={backdrop:"(boolean|string)",keyboard:"boolean",scroll:"boolean"};class Kn extends ve{constructor(t,e){super(t,e),this._isShown=!1,this._backdrop=this._initializeBackDrop(),this._focustrap=this._initializeFocusTrap(),this._addEventListeners()}static get Default(){return Vn}static get DefaultType(){return Yn}static get NAME(){return"offcanvas"}toggle(t){return this._isShown?this.hide():this.show(t)}show(t){this._isShown||fe.trigger(this._element,jn,{relatedTarget:t}).defaultPrevented||(this._isShown=!0,this._backdrop.show(),this._config.scroll||(new un).hide(),this._element.setAttribute("aria-modal",!0),this._element.setAttribute("role","dialog"),this._element.classList.add(Nn),this._queueCallback((()=>{this._config.scroll&&!this._config.backdrop||this._focustrap.activate(),this._element.classList.add(In),this._element.classList.remove(Nn),fe.trigger(this._element,Fn,{relatedTarget:t})}),this._element,!0))}hide(){this._isShown&&(fe.trigger(this._element,Hn).defaultPrevented||(this._focustrap.deactivate(),this._element.blur(),this._isShown=!1,this._element.classList.add(Pn),this._backdrop.hide(),this._queueCallback((()=>{this._element.classList.remove(In,Pn),this._element.removeAttribute("aria-modal"),this._element.removeAttribute("role"),this._config.scroll||(new un).reset(),fe.trigger(this._element,Wn)}),this._element,!0)))}dispose(){this._backdrop.dispose(),this._focustrap.deactivate(),super.dispose()}_initializeBackDrop(){const t=Boolean(this._config.backdrop);return new Zi({className:"offcanvas-backdrop",isVisible:t,isAnimated:!0,rootElement:this._element.parentNode,clickCallback:t?()=>{"static"!==this._config.backdrop?this.hide():fe.trigger(this._element,Bn)}:null})}_initializeFocusTrap(){return new an({trapElement:this._element})}_addEventListeners(){fe.on(this._element,qn,(t=>{"Escape"===t.key&&(this._config.keyboard?this.hide():fe.trigger(this._element,Bn))}))}static jQueryInterface(t){return this.each((function(){const e=Kn.getOrCreateInstance(this,t);if("string"==typeof t){if(void 0===e[t]||t.startsWith("_")||"constructor"===t)throw new TypeError(`No method named "${t}"`);e[t](this)}}))}}fe.on(document,Rn,'[data-bs-toggle="offcanvas"]',(function(t){const e=we.getElementFromSelector(this);if(["A","AREA"].includes(this.tagName)&&t.preventDefault(),Wt(this))return;fe.one(e,Wn,(()=>{Bt(this)&&this.focus()}));const i=we.findOne(Mn);i&&i!==e&&Kn.getInstance(i).hide(),Kn.getOrCreateInstance(e).toggle(this)})),fe.on(window,$n,(()=>{for(const t of we.find(Mn))Kn.getOrCreateInstance(t).show()})),fe.on(window,zn,(()=>{for(const t of we.find("[aria-modal][class*=show][class*=offcanvas-]"))"fixed"!==getComputedStyle(t).position&&Kn.getOrCreateInstance(t).hide()})),Ee(Kn),Qt(Kn);const Qn={"*":["class","dir","id","lang","role",/^aria-[\w-]*$/i],a:["target","href","title","rel"],area:[],b:[],br:[],col:[],code:[],dd:[],div:[],dl:[],dt:[],em:[],hr:[],h1:[],h2:[],h3:[],h4:[],h5:[],h6:[],i:[],img:["src","srcset","alt","title","width","height"],li:[],ol:[],p:[],pre:[],s:[],small:[],span:[],sub:[],sup:[],strong:[],u:[],ul:[]},Xn=new Set(["background","cite","href","itemtype","longdesc","poster","src","xlink:href"]),Un=/^(?!javascript:)(?:[a-z0-9+.-]+:|[^&:/?#]*(?:[/?#]|$))/i,Gn=(t,e)=>{const i=t.nodeName.toLowerCase();return e.includes(i)?!Xn.has(i)||Boolean(Un.test(t.nodeValue)):e.filter((t=>t instanceof RegExp)).some((t=>t.test(i)))},Jn={allowList:Qn,content:{},extraClass:"",html:!1,sanitize:!0,sanitizeFn:null,template:"
"},Zn={allowList:"object",content:"object",extraClass:"(string|function)",html:"boolean",sanitize:"boolean",sanitizeFn:"(null|function)",template:"string"},ts={entry:"(string|element|function|null)",selector:"(string|element)"};class es extends be{constructor(t){super(),this._config=this._getConfig(t)}static get Default(){return Jn}static get DefaultType(){return Zn}static get NAME(){return"TemplateFactory"}getContent(){return Object.values(this._config.content).map((t=>this._resolvePossibleFunction(t))).filter(Boolean)}hasContent(){return this.getContent().length>0}changeContent(t){return this._checkContent(t),this._config.content={...this._config.content,...t},this}toHtml(){const t=document.createElement("div");t.innerHTML=this._maybeSanitize(this._config.template);for(const[e,i]of Object.entries(this._config.content))this._setContent(t,i,e);const e=t.children[0],i=this._resolvePossibleFunction(this._config.extraClass);return i&&e.classList.add(...i.split(" ")),e}_typeCheckConfig(t){super._typeCheckConfig(t),this._checkContent(t.content)}_checkContent(t){for(const[e,i]of Object.entries(t))super._typeCheckConfig({selector:e,entry:i},ts)}_setContent(t,e,i){const n=we.findOne(i,t);n&&((e=this._resolvePossibleFunction(e))?Ft(e)?this._putElementInTemplate(Ht(e),n):this._config.html?n.innerHTML=this._maybeSanitize(e):n.textContent=e:n.remove())}_maybeSanitize(t){return this._config.sanitize?function(t,e,i){if(!t.length)return t;if(i&&"function"==typeof i)return i(t);const n=(new window.DOMParser).parseFromString(t,"text/html"),s=[].concat(...n.body.querySelectorAll("*"));for(const t of s){const i=t.nodeName.toLowerCase();if(!Object.keys(e).includes(i)){t.remove();continue}const n=[].concat(...t.attributes),s=[].concat(e["*"]||[],e[i]||[]);for(const e of n)Gn(e,s)||t.removeAttribute(e.nodeName)}return n.body.innerHTML}(t,this._config.allowList,this._config.sanitizeFn):t}_resolvePossibleFunction(t){return Xt(t,[this])}_putElementInTemplate(t,e){if(this._config.html)return e.innerHTML="",void e.append(t);e.textContent=t.textContent}}const is=new Set(["sanitize","allowList","sanitizeFn"]),ns="fade",ss="show",os=".tooltip-inner",rs=".modal",as="hide.bs.modal",ls="hover",cs="focus",hs={AUTO:"auto",TOP:"top",RIGHT:Kt()?"left":"right",BOTTOM:"bottom",LEFT:Kt()?"right":"left"},ds={allowList:Qn,animation:!0,boundary:"clippingParents",container:!1,customClass:"",delay:0,fallbackPlacements:["top","right","bottom","left"],html:!1,offset:[0,6],placement:"top",popperConfig:null,sanitize:!0,sanitizeFn:null,selector:!1,template:'',title:"",trigger:"hover focus"},us={allowList:"object",animation:"boolean",boundary:"(string|element)",container:"(string|element|boolean)",customClass:"(string|function)",delay:"(number|object)",fallbackPlacements:"array",html:"boolean",offset:"(array|string|function)",placement:"(string|function)",popperConfig:"(null|object|function)",sanitize:"boolean",sanitizeFn:"(null|function)",selector:"(string|boolean)",template:"string",title:"(string|element|function)",trigger:"string"};class fs extends ve{constructor(t,i){if(void 0===e)throw new TypeError("Bootstrap's tooltips require Popper (https://popper.js.org)");super(t,i),this._isEnabled=!0,this._timeout=0,this._isHovered=null,this._activeTrigger={},this._popper=null,this._templateFactory=null,this._newContent=null,this.tip=null,this._setListeners(),this._config.selector||this._fixTitle()}static get Default(){return ds}static get DefaultType(){return us}static get NAME(){return"tooltip"}enable(){this._isEnabled=!0}disable(){this._isEnabled=!1}toggleEnabled(){this._isEnabled=!this._isEnabled}toggle(){this._isEnabled&&(this._activeTrigger.click=!this._activeTrigger.click,this._isShown()?this._leave():this._enter())}dispose(){clearTimeout(this._timeout),fe.off(this._element.closest(rs),as,this._hideModalHandler),this._element.getAttribute("data-bs-original-title")&&this._element.setAttribute("title",this._element.getAttribute("data-bs-original-title")),this._disposePopper(),super.dispose()}show(){if("none"===this._element.style.display)throw new Error("Please use show on visible elements");if(!this._isWithContent()||!this._isEnabled)return;const t=fe.trigger(this._element,this.constructor.eventName("show")),e=(zt(this._element)||this._element.ownerDocument.documentElement).contains(this._element);if(t.defaultPrevented||!e)return;this._disposePopper();const i=this._getTipElement();this._element.setAttribute("aria-describedby",i.getAttribute("id"));const{container:n}=this._config;if(this._element.ownerDocument.documentElement.contains(this.tip)||(n.append(i),fe.trigger(this._element,this.constructor.eventName("inserted"))),this._popper=this._createPopper(i),i.classList.add(ss),"ontouchstart"in document.documentElement)for(const t of[].concat(...document.body.children))fe.on(t,"mouseover",Rt);this._queueCallback((()=>{fe.trigger(this._element,this.constructor.eventName("shown")),!1===this._isHovered&&this._leave(),this._isHovered=!1}),this.tip,this._isAnimated())}hide(){if(this._isShown()&&!fe.trigger(this._element,this.constructor.eventName("hide")).defaultPrevented){if(this._getTipElement().classList.remove(ss),"ontouchstart"in document.documentElement)for(const t of[].concat(...document.body.children))fe.off(t,"mouseover",Rt);this._activeTrigger.click=!1,this._activeTrigger[cs]=!1,this._activeTrigger[ls]=!1,this._isHovered=null,this._queueCallback((()=>{this._isWithActiveTrigger()||(this._isHovered||this._disposePopper(),this._element.removeAttribute("aria-describedby"),fe.trigger(this._element,this.constructor.eventName("hidden")))}),this.tip,this._isAnimated())}}update(){this._popper&&this._popper.update()}_isWithContent(){return Boolean(this._getTitle())}_getTipElement(){return this.tip||(this.tip=this._createTipElement(this._newContent||this._getContentForTemplate())),this.tip}_createTipElement(t){const e=this._getTemplateFactory(t).toHtml();if(!e)return null;e.classList.remove(ns,ss),e.classList.add(`bs-${this.constructor.NAME}-auto`);const i=(t=>{do{t+=Math.floor(1e6*Math.random())}while(document.getElementById(t));return t})(this.constructor.NAME).toString();return e.setAttribute("id",i),this._isAnimated()&&e.classList.add(ns),e}setContent(t){this._newContent=t,this._isShown()&&(this._disposePopper(),this.show())}_getTemplateFactory(t){return this._templateFactory?this._templateFactory.changeContent(t):this._templateFactory=new es({...this._config,content:t,extraClass:this._resolvePossibleFunction(this._config.customClass)}),this._templateFactory}_getContentForTemplate(){return{[os]:this._getTitle()}}_getTitle(){return this._resolvePossibleFunction(this._config.title)||this._element.getAttribute("data-bs-original-title")}_initializeOnDelegatedTarget(t){return this.constructor.getOrCreateInstance(t.delegateTarget,this._getDelegateConfig())}_isAnimated(){return this._config.animation||this.tip&&this.tip.classList.contains(ns)}_isShown(){return this.tip&&this.tip.classList.contains(ss)}_createPopper(t){const e=Xt(this._config.placement,[this,t,this._element]),i=hs[e.toUpperCase()];return Dt(this._element,t,this._getPopperConfig(i))}_getOffset(){const{offset:t}=this._config;return"string"==typeof t?t.split(",").map((t=>Number.parseInt(t,10))):"function"==typeof t?e=>t(e,this._element):t}_resolvePossibleFunction(t){return Xt(t,[this._element])}_getPopperConfig(t){const e={placement:t,modifiers:[{name:"flip",options:{fallbackPlacements:this._config.fallbackPlacements}},{name:"offset",options:{offset:this._getOffset()}},{name:"preventOverflow",options:{boundary:this._config.boundary}},{name:"arrow",options:{element:`.${this.constructor.NAME}-arrow`}},{name:"preSetPlacement",enabled:!0,phase:"beforeMain",fn:t=>{this._getTipElement().setAttribute("data-popper-placement",t.state.placement)}}]};return{...e,...Xt(this._config.popperConfig,[e])}}_setListeners(){const t=this._config.trigger.split(" ");for(const e of t)if("click"===e)fe.on(this._element,this.constructor.eventName("click"),this._config.selector,(t=>{this._initializeOnDelegatedTarget(t).toggle()}));else if("manual"!==e){const t=e===ls?this.constructor.eventName("mouseenter"):this.constructor.eventName("focusin"),i=e===ls?this.constructor.eventName("mouseleave"):this.constructor.eventName("focusout");fe.on(this._element,t,this._config.selector,(t=>{const e=this._initializeOnDelegatedTarget(t);e._activeTrigger["focusin"===t.type?cs:ls]=!0,e._enter()})),fe.on(this._element,i,this._config.selector,(t=>{const e=this._initializeOnDelegatedTarget(t);e._activeTrigger["focusout"===t.type?cs:ls]=e._element.contains(t.relatedTarget),e._leave()}))}this._hideModalHandler=()=>{this._element&&this.hide()},fe.on(this._element.closest(rs),as,this._hideModalHandler)}_fixTitle(){const t=this._element.getAttribute("title");t&&(this._element.getAttribute("aria-label")||this._element.textContent.trim()||this._element.setAttribute("aria-label",t),this._element.setAttribute("data-bs-original-title",t),this._element.removeAttribute("title"))}_enter(){this._isShown()||this._isHovered?this._isHovered=!0:(this._isHovered=!0,this._setTimeout((()=>{this._isHovered&&this.show()}),this._config.delay.show))}_leave(){this._isWithActiveTrigger()||(this._isHovered=!1,this._setTimeout((()=>{this._isHovered||this.hide()}),this._config.delay.hide))}_setTimeout(t,e){clearTimeout(this._timeout),this._timeout=setTimeout(t,e)}_isWithActiveTrigger(){return Object.values(this._activeTrigger).includes(!0)}_getConfig(t){const e=_e.getDataAttributes(this._element);for(const t of Object.keys(e))is.has(t)&&delete e[t];return t={...e,..."object"==typeof t&&t?t:{}},t=this._mergeConfigObj(t),t=this._configAfterMerge(t),this._typeCheckConfig(t),t}_configAfterMerge(t){return t.container=!1===t.container?document.body:Ht(t.container),"number"==typeof t.delay&&(t.delay={show:t.delay,hide:t.delay}),"number"==typeof t.title&&(t.title=t.title.toString()),"number"==typeof t.content&&(t.content=t.content.toString()),t}_getDelegateConfig(){const t={};for(const[e,i]of Object.entries(this._config))this.constructor.Default[e]!==i&&(t[e]=i);return t.selector=!1,t.trigger="manual",t}_disposePopper(){this._popper&&(this._popper.destroy(),this._popper=null),this.tip&&(this.tip.remove(),this.tip=null)}static jQueryInterface(t){return this.each((function(){const e=fs.getOrCreateInstance(this,t);if("string"==typeof t){if(void 0===e[t])throw new TypeError(`No method named "${t}"`);e[t]()}}))}}Qt(fs);const ps=".popover-header",ms=".popover-body",gs={...fs.Default,content:"",offset:[0,8],placement:"right",template:'',trigger:"click"},_s={...fs.DefaultType,content:"(null|string|element|function)"};class bs extends fs{static get Default(){return gs}static get DefaultType(){return _s}static get NAME(){return"popover"}_isWithContent(){return this._getTitle()||this._getContent()}_getContentForTemplate(){return{[ps]:this._getTitle(),[ms]:this._getContent()}}_getContent(){return this._resolvePossibleFunction(this._config.content)}static jQueryInterface(t){return this.each((function(){const e=bs.getOrCreateInstance(this,t);if("string"==typeof t){if(void 0===e[t])throw new TypeError(`No method named "${t}"`);e[t]()}}))}}Qt(bs);const vs=".bs.scrollspy",ys=`activate${vs}`,ws=`click${vs}`,Es=`load${vs}.data-api`,As="active",Ts="[href]",Cs=".nav-link",Os=`${Cs}, .nav-item > ${Cs}, .list-group-item`,xs={offset:null,rootMargin:"0px 0px -25%",smoothScroll:!1,target:null,threshold:[.1,.5,1]},ks={offset:"(number|null)",rootMargin:"string",smoothScroll:"boolean",target:"element",threshold:"array"};class Ls extends ve{constructor(t,e){super(t,e),this._targetLinks=new Map,this._observableSections=new Map,this._rootElement="visible"===getComputedStyle(this._element).overflowY?null:this._element,this._activeTarget=null,this._observer=null,this._previousScrollData={visibleEntryTop:0,parentScrollTop:0},this.refresh()}static get Default(){return xs}static get DefaultType(){return ks}static get NAME(){return"scrollspy"}refresh(){this._initializeTargetsAndObservables(),this._maybeEnableSmoothScroll(),this._observer?this._observer.disconnect():this._observer=this._getNewObserver();for(const t of this._observableSections.values())this._observer.observe(t)}dispose(){this._observer.disconnect(),super.dispose()}_configAfterMerge(t){return t.target=Ht(t.target)||document.body,t.rootMargin=t.offset?`${t.offset}px 0px -30%`:t.rootMargin,"string"==typeof t.threshold&&(t.threshold=t.threshold.split(",").map((t=>Number.parseFloat(t)))),t}_maybeEnableSmoothScroll(){this._config.smoothScroll&&(fe.off(this._config.target,ws),fe.on(this._config.target,ws,Ts,(t=>{const e=this._observableSections.get(t.target.hash);if(e){t.preventDefault();const i=this._rootElement||window,n=e.offsetTop-this._element.offsetTop;if(i.scrollTo)return void i.scrollTo({top:n,behavior:"smooth"});i.scrollTop=n}})))}_getNewObserver(){const t={root:this._rootElement,threshold:this._config.threshold,rootMargin:this._config.rootMargin};return new IntersectionObserver((t=>this._observerCallback(t)),t)}_observerCallback(t){const e=t=>this._targetLinks.get(`#${t.target.id}`),i=t=>{this._previousScrollData.visibleEntryTop=t.target.offsetTop,this._process(e(t))},n=(this._rootElement||document.documentElement).scrollTop,s=n>=this._previousScrollData.parentScrollTop;this._previousScrollData.parentScrollTop=n;for(const o of t){if(!o.isIntersecting){this._activeTarget=null,this._clearActiveClass(e(o));continue}const t=o.target.offsetTop>=this._previousScrollData.visibleEntryTop;if(s&&t){if(i(o),!n)return}else s||t||i(o)}}_initializeTargetsAndObservables(){this._targetLinks=new Map,this._observableSections=new Map;const t=we.find(Ts,this._config.target);for(const e of t){if(!e.hash||Wt(e))continue;const t=we.findOne(decodeURI(e.hash),this._element);Bt(t)&&(this._targetLinks.set(decodeURI(e.hash),e),this._observableSections.set(e.hash,t))}}_process(t){this._activeTarget!==t&&(this._clearActiveClass(this._config.target),this._activeTarget=t,t.classList.add(As),this._activateParents(t),fe.trigger(this._element,ys,{relatedTarget:t}))}_activateParents(t){if(t.classList.contains("dropdown-item"))we.findOne(".dropdown-toggle",t.closest(".dropdown")).classList.add(As);else for(const e of we.parents(t,".nav, .list-group"))for(const t of we.prev(e,Os))t.classList.add(As)}_clearActiveClass(t){t.classList.remove(As);const e=we.find(`${Ts}.${As}`,t);for(const t of e)t.classList.remove(As)}static jQueryInterface(t){return this.each((function(){const e=Ls.getOrCreateInstance(this,t);if("string"==typeof t){if(void 0===e[t]||t.startsWith("_")||"constructor"===t)throw new TypeError(`No method named "${t}"`);e[t]()}}))}}fe.on(window,Es,(()=>{for(const t of we.find('[data-bs-spy="scroll"]'))Ls.getOrCreateInstance(t)})),Qt(Ls);const Ss=".bs.tab",Ds=`hide${Ss}`,$s=`hidden${Ss}`,Is=`show${Ss}`,Ns=`shown${Ss}`,Ps=`click${Ss}`,Ms=`keydown${Ss}`,js=`load${Ss}`,Fs="ArrowLeft",Hs="ArrowRight",Bs="ArrowUp",Ws="ArrowDown",zs="Home",Rs="End",qs="active",Vs="fade",Ys="show",Ks=".dropdown-toggle",Qs=`:not(${Ks})`,Xs='[data-bs-toggle="tab"], [data-bs-toggle="pill"], [data-bs-toggle="list"]',Us=`.nav-link${Qs}, .list-group-item${Qs}, [role="tab"]${Qs}, ${Xs}`,Gs=`.${qs}[data-bs-toggle="tab"], .${qs}[data-bs-toggle="pill"], .${qs}[data-bs-toggle="list"]`;class Js extends ve{constructor(t){super(t),this._parent=this._element.closest('.list-group, .nav, [role="tablist"]'),this._parent&&(this._setInitialAttributes(this._parent,this._getChildren()),fe.on(this._element,Ms,(t=>this._keydown(t))))}static get NAME(){return"tab"}show(){const t=this._element;if(this._elemIsActive(t))return;const e=this._getActiveElem(),i=e?fe.trigger(e,Ds,{relatedTarget:t}):null;fe.trigger(t,Is,{relatedTarget:e}).defaultPrevented||i&&i.defaultPrevented||(this._deactivate(e,t),this._activate(t,e))}_activate(t,e){t&&(t.classList.add(qs),this._activate(we.getElementFromSelector(t)),this._queueCallback((()=>{"tab"===t.getAttribute("role")?(t.removeAttribute("tabindex"),t.setAttribute("aria-selected",!0),this._toggleDropDown(t,!0),fe.trigger(t,Ns,{relatedTarget:e})):t.classList.add(Ys)}),t,t.classList.contains(Vs)))}_deactivate(t,e){t&&(t.classList.remove(qs),t.blur(),this._deactivate(we.getElementFromSelector(t)),this._queueCallback((()=>{"tab"===t.getAttribute("role")?(t.setAttribute("aria-selected",!1),t.setAttribute("tabindex","-1"),this._toggleDropDown(t,!1),fe.trigger(t,$s,{relatedTarget:e})):t.classList.remove(Ys)}),t,t.classList.contains(Vs)))}_keydown(t){if(![Fs,Hs,Bs,Ws,zs,Rs].includes(t.key))return;t.stopPropagation(),t.preventDefault();const e=this._getChildren().filter((t=>!Wt(t)));let i;if([zs,Rs].includes(t.key))i=e[t.key===zs?0:e.length-1];else{const n=[Hs,Ws].includes(t.key);i=Gt(e,t.target,n,!0)}i&&(i.focus({preventScroll:!0}),Js.getOrCreateInstance(i).show())}_getChildren(){return we.find(Us,this._parent)}_getActiveElem(){return this._getChildren().find((t=>this._elemIsActive(t)))||null}_setInitialAttributes(t,e){this._setAttributeIfNotExists(t,"role","tablist");for(const t of e)this._setInitialAttributesOnChild(t)}_setInitialAttributesOnChild(t){t=this._getInnerElement(t);const e=this._elemIsActive(t),i=this._getOuterElement(t);t.setAttribute("aria-selected",e),i!==t&&this._setAttributeIfNotExists(i,"role","presentation"),e||t.setAttribute("tabindex","-1"),this._setAttributeIfNotExists(t,"role","tab"),this._setInitialAttributesOnTargetPanel(t)}_setInitialAttributesOnTargetPanel(t){const e=we.getElementFromSelector(t);e&&(this._setAttributeIfNotExists(e,"role","tabpanel"),t.id&&this._setAttributeIfNotExists(e,"aria-labelledby",`${t.id}`))}_toggleDropDown(t,e){const i=this._getOuterElement(t);if(!i.classList.contains("dropdown"))return;const n=(t,n)=>{const s=we.findOne(t,i);s&&s.classList.toggle(n,e)};n(Ks,qs),n(".dropdown-menu",Ys),i.setAttribute("aria-expanded",e)}_setAttributeIfNotExists(t,e,i){t.hasAttribute(e)||t.setAttribute(e,i)}_elemIsActive(t){return t.classList.contains(qs)}_getInnerElement(t){return t.matches(Us)?t:we.findOne(Us,t)}_getOuterElement(t){return t.closest(".nav-item, .list-group-item")||t}static jQueryInterface(t){return this.each((function(){const e=Js.getOrCreateInstance(this);if("string"==typeof t){if(void 0===e[t]||t.startsWith("_")||"constructor"===t)throw new TypeError(`No method named "${t}"`);e[t]()}}))}}fe.on(document,Ps,Xs,(function(t){["A","AREA"].includes(this.tagName)&&t.preventDefault(),Wt(this)||Js.getOrCreateInstance(this).show()})),fe.on(window,js,(()=>{for(const t of we.find(Gs))Js.getOrCreateInstance(t)})),Qt(Js);const Zs=".bs.toast",to=`mouseover${Zs}`,eo=`mouseout${Zs}`,io=`focusin${Zs}`,no=`focusout${Zs}`,so=`hide${Zs}`,oo=`hidden${Zs}`,ro=`show${Zs}`,ao=`shown${Zs}`,lo="hide",co="show",ho="showing",uo={animation:"boolean",autohide:"boolean",delay:"number"},fo={animation:!0,autohide:!0,delay:5e3};class po extends ve{constructor(t,e){super(t,e),this._timeout=null,this._hasMouseInteraction=!1,this._hasKeyboardInteraction=!1,this._setListeners()}static get Default(){return fo}static get DefaultType(){return uo}static get NAME(){return"toast"}show(){fe.trigger(this._element,ro).defaultPrevented||(this._clearTimeout(),this._config.animation&&this._element.classList.add("fade"),this._element.classList.remove(lo),qt(this._element),this._element.classList.add(co,ho),this._queueCallback((()=>{this._element.classList.remove(ho),fe.trigger(this._element,ao),this._maybeScheduleHide()}),this._element,this._config.animation))}hide(){this.isShown()&&(fe.trigger(this._element,so).defaultPrevented||(this._element.classList.add(ho),this._queueCallback((()=>{this._element.classList.add(lo),this._element.classList.remove(ho,co),fe.trigger(this._element,oo)}),this._element,this._config.animation)))}dispose(){this._clearTimeout(),this.isShown()&&this._element.classList.remove(co),super.dispose()}isShown(){return this._element.classList.contains(co)}_maybeScheduleHide(){this._config.autohide&&(this._hasMouseInteraction||this._hasKeyboardInteraction||(this._timeout=setTimeout((()=>{this.hide()}),this._config.delay)))}_onInteraction(t,e){switch(t.type){case"mouseover":case"mouseout":this._hasMouseInteraction=e;break;case"focusin":case"focusout":this._hasKeyboardInteraction=e}if(e)return void this._clearTimeout();const i=t.relatedTarget;this._element===i||this._element.contains(i)||this._maybeScheduleHide()}_setListeners(){fe.on(this._element,to,(t=>this._onInteraction(t,!0))),fe.on(this._element,eo,(t=>this._onInteraction(t,!1))),fe.on(this._element,io,(t=>this._onInteraction(t,!0))),fe.on(this._element,no,(t=>this._onInteraction(t,!1)))}_clearTimeout(){clearTimeout(this._timeout),this._timeout=null}static jQueryInterface(t){return this.each((function(){const e=po.getOrCreateInstance(this,t);if("string"==typeof t){if(void 0===e[t])throw new TypeError(`No method named "${t}"`);e[t](this)}}))}}function mo(t){"loading"!=document.readyState?t():document.addEventListener("DOMContentLoaded",t)}Ee(po),Qt(po),mo((function(){[].slice.call(document.querySelectorAll('[data-bs-toggle="tooltip"]')).map((function(t){return new fs(t,{delay:{show:500,hide:100}})}))})),mo((function(){document.getElementById("pst-back-to-top").addEventListener("click",(function(){document.body.scrollTop=0,document.documentElement.scrollTop=0}))})),mo((function(){var t=document.getElementById("pst-back-to-top"),e=document.getElementsByClassName("bd-header")[0].getBoundingClientRect();window.addEventListener("scroll",(function(){this.oldScroll>this.scrollY&&this.scrollY>e.bottom?t.style.display="block":t.style.display="none",this.oldScroll=this.scrollY}))})),window.bootstrap=i})(); +//# sourceMappingURL=bootstrap.js.map \ No newline at end of file diff --git a/v24.2.0/_static/scripts/bootstrap.js.map b/v24.2.0/_static/scripts/bootstrap.js.map new file mode 100644 index 0000000000..4a3502aeb2 --- /dev/null +++ b/v24.2.0/_static/scripts/bootstrap.js.map @@ -0,0 +1 @@ +{"version":3,"file":"scripts/bootstrap.js","mappings":";mBACA,IAAIA,EAAsB,CCA1BA,EAAwB,CAACC,EAASC,KACjC,IAAI,IAAIC,KAAOD,EACXF,EAAoBI,EAAEF,EAAYC,KAASH,EAAoBI,EAAEH,EAASE,IAC5EE,OAAOC,eAAeL,EAASE,EAAK,CAAEI,YAAY,EAAMC,IAAKN,EAAWC,IAE1E,ECNDH,EAAwB,CAACS,EAAKC,IAAUL,OAAOM,UAAUC,eAAeC,KAAKJ,EAAKC,GCClFV,EAAyBC,IACH,oBAAXa,QAA0BA,OAAOC,aAC1CV,OAAOC,eAAeL,EAASa,OAAOC,YAAa,CAAEC,MAAO,WAE7DX,OAAOC,eAAeL,EAAS,aAAc,CAAEe,OAAO,GAAO,01BCLvD,IAAI,EAAM,MACNC,EAAS,SACTC,EAAQ,QACRC,EAAO,OACPC,EAAO,OACPC,EAAiB,CAAC,EAAKJ,EAAQC,EAAOC,GACtCG,EAAQ,QACRC,EAAM,MACNC,EAAkB,kBAClBC,EAAW,WACXC,EAAS,SACTC,EAAY,YACZC,EAAmCP,EAAeQ,QAAO,SAAUC,EAAKC,GACjF,OAAOD,EAAIE,OAAO,CAACD,EAAY,IAAMT,EAAOS,EAAY,IAAMR,GAChE,GAAG,IACQ,EAA0B,GAAGS,OAAOX,EAAgB,CAACD,IAAOS,QAAO,SAAUC,EAAKC,GAC3F,OAAOD,EAAIE,OAAO,CAACD,EAAWA,EAAY,IAAMT,EAAOS,EAAY,IAAMR,GAC3E,GAAG,IAEQU,EAAa,aACbC,EAAO,OACPC,EAAY,YAEZC,EAAa,aACbC,EAAO,OACPC,EAAY,YAEZC,EAAc,cACdC,EAAQ,QACRC,EAAa,aACbC,EAAiB,CAACT,EAAYC,EAAMC,EAAWC,EAAYC,EAAMC,EAAWC,EAAaC,EAAOC,GC9B5F,SAASE,EAAYC,GAClC,OAAOA,GAAWA,EAAQC,UAAY,IAAIC,cAAgB,IAC5D,CCFe,SAASC,EAAUC,GAChC,GAAY,MAARA,EACF,OAAOC,OAGT,GAAwB,oBAApBD,EAAKE,WAAkC,CACzC,IAAIC,EAAgBH,EAAKG,cACzB,OAAOA,GAAgBA,EAAcC,aAAwBH,MAC/D,CAEA,OAAOD,CACT,CCTA,SAASK,EAAUL,GAEjB,OAAOA,aADUD,EAAUC,GAAMM,SACIN,aAAgBM,OACvD,CAEA,SAASC,EAAcP,GAErB,OAAOA,aADUD,EAAUC,GAAMQ,aACIR,aAAgBQ,WACvD,CAEA,SAASC,EAAaT,GAEpB,MAA0B,oBAAfU,aAKJV,aADUD,EAAUC,GAAMU,YACIV,aAAgBU,WACvD,CCwDA,SACEC,KAAM,cACNC,SAAS,EACTC,MAAO,QACPC,GA5EF,SAAqBC,GACnB,IAAIC,EAAQD,EAAKC,MACjB3D,OAAO4D,KAAKD,EAAME,UAAUC,SAAQ,SAAUR,GAC5C,IAAIS,EAAQJ,EAAMK,OAAOV,IAAS,CAAC,EAC/BW,EAAaN,EAAMM,WAAWX,IAAS,CAAC,EACxCf,EAAUoB,EAAME,SAASP,GAExBJ,EAAcX,IAAaD,EAAYC,KAO5CvC,OAAOkE,OAAO3B,EAAQwB,MAAOA,GAC7B/D,OAAO4D,KAAKK,GAAYH,SAAQ,SAAUR,GACxC,IAAI3C,EAAQsD,EAAWX,IAET,IAAV3C,EACF4B,EAAQ4B,gBAAgBb,GAExBf,EAAQ6B,aAAad,GAAgB,IAAV3C,EAAiB,GAAKA,EAErD,IACF,GACF,EAoDE0D,OAlDF,SAAgBC,GACd,IAAIX,EAAQW,EAAMX,MACdY,EAAgB,CAClBlD,OAAQ,CACNmD,SAAUb,EAAMc,QAAQC,SACxB5D,KAAM,IACN6D,IAAK,IACLC,OAAQ,KAEVC,MAAO,CACLL,SAAU,YAEZlD,UAAW,CAAC,GASd,OAPAtB,OAAOkE,OAAOP,EAAME,SAASxC,OAAO0C,MAAOQ,EAAclD,QACzDsC,EAAMK,OAASO,EAEXZ,EAAME,SAASgB,OACjB7E,OAAOkE,OAAOP,EAAME,SAASgB,MAAMd,MAAOQ,EAAcM,OAGnD,WACL7E,OAAO4D,KAAKD,EAAME,UAAUC,SAAQ,SAAUR,GAC5C,IAAIf,EAAUoB,EAAME,SAASP,GACzBW,EAAaN,EAAMM,WAAWX,IAAS,CAAC,EAGxCS,EAFkB/D,OAAO4D,KAAKD,EAAMK,OAAOzD,eAAe+C,GAAQK,EAAMK,OAAOV,GAAQiB,EAAcjB,IAE7E9B,QAAO,SAAUuC,EAAOe,GAElD,OADAf,EAAMe,GAAY,GACXf,CACT,GAAG,CAAC,GAECb,EAAcX,IAAaD,EAAYC,KAI5CvC,OAAOkE,OAAO3B,EAAQwB,MAAOA,GAC7B/D,OAAO4D,KAAKK,GAAYH,SAAQ,SAAUiB,GACxCxC,EAAQ4B,gBAAgBY,EAC1B,IACF,GACF,CACF,EASEC,SAAU,CAAC,kBCjFE,SAASC,EAAiBvD,GACvC,OAAOA,EAAUwD,MAAM,KAAK,EAC9B,CCHO,IAAI,EAAMC,KAAKC,IACX,EAAMD,KAAKE,IACXC,EAAQH,KAAKG,MCFT,SAASC,IACtB,IAAIC,EAASC,UAAUC,cAEvB,OAAc,MAAVF,GAAkBA,EAAOG,QAAUC,MAAMC,QAAQL,EAAOG,QACnDH,EAAOG,OAAOG,KAAI,SAAUC,GACjC,OAAOA,EAAKC,MAAQ,IAAMD,EAAKE,OACjC,IAAGC,KAAK,KAGHT,UAAUU,SACnB,CCTe,SAASC,IACtB,OAAQ,iCAAiCC,KAAKd,IAChD,CCCe,SAASe,EAAsB/D,EAASgE,EAAcC,QAC9C,IAAjBD,IACFA,GAAe,QAGO,IAApBC,IACFA,GAAkB,GAGpB,IAAIC,EAAalE,EAAQ+D,wBACrBI,EAAS,EACTC,EAAS,EAETJ,GAAgBrD,EAAcX,KAChCmE,EAASnE,EAAQqE,YAAc,GAAItB,EAAMmB,EAAWI,OAAStE,EAAQqE,aAAmB,EACxFD,EAASpE,EAAQuE,aAAe,GAAIxB,EAAMmB,EAAWM,QAAUxE,EAAQuE,cAAoB,GAG7F,IACIE,GADOhE,EAAUT,GAAWG,EAAUH,GAAWK,QAC3BoE,eAEtBC,GAAoBb,KAAsBI,EAC1CU,GAAKT,EAAW3F,MAAQmG,GAAoBD,EAAiBA,EAAeG,WAAa,IAAMT,EAC/FU,GAAKX,EAAW9B,KAAOsC,GAAoBD,EAAiBA,EAAeK,UAAY,IAAMV,EAC7FE,EAAQJ,EAAWI,MAAQH,EAC3BK,EAASN,EAAWM,OAASJ,EACjC,MAAO,CACLE,MAAOA,EACPE,OAAQA,EACRpC,IAAKyC,EACLvG,MAAOqG,EAAIL,EACXjG,OAAQwG,EAAIL,EACZjG,KAAMoG,EACNA,EAAGA,EACHE,EAAGA,EAEP,CCrCe,SAASE,EAAc/E,GACpC,IAAIkE,EAAaH,EAAsB/D,GAGnCsE,EAAQtE,EAAQqE,YAChBG,EAASxE,EAAQuE,aAUrB,OARI3B,KAAKoC,IAAId,EAAWI,MAAQA,IAAU,IACxCA,EAAQJ,EAAWI,OAGjB1B,KAAKoC,IAAId,EAAWM,OAASA,IAAW,IAC1CA,EAASN,EAAWM,QAGf,CACLG,EAAG3E,EAAQ4E,WACXC,EAAG7E,EAAQ8E,UACXR,MAAOA,EACPE,OAAQA,EAEZ,CCvBe,SAASS,EAASC,EAAQC,GACvC,IAAIC,EAAWD,EAAME,aAAeF,EAAME,cAE1C,GAAIH,EAAOD,SAASE,GAClB,OAAO,EAEJ,GAAIC,GAAYvE,EAAauE,GAAW,CACzC,IAAIE,EAAOH,EAEX,EAAG,CACD,GAAIG,GAAQJ,EAAOK,WAAWD,GAC5B,OAAO,EAITA,EAAOA,EAAKE,YAAcF,EAAKG,IACjC,OAASH,EACX,CAGF,OAAO,CACT,CCrBe,SAAS,EAAiBtF,GACvC,OAAOG,EAAUH,GAAS0F,iBAAiB1F,EAC7C,CCFe,SAAS2F,EAAe3F,GACrC,MAAO,CAAC,QAAS,KAAM,MAAM4F,QAAQ7F,EAAYC,KAAa,CAChE,CCFe,SAAS6F,EAAmB7F,GAEzC,QAASS,EAAUT,GAAWA,EAAQO,cACtCP,EAAQ8F,WAAazF,OAAOyF,UAAUC,eACxC,CCFe,SAASC,EAAchG,GACpC,MAA6B,SAAzBD,EAAYC,GACPA,EAMPA,EAAQiG,cACRjG,EAAQwF,aACR3E,EAAab,GAAWA,EAAQyF,KAAO,OAEvCI,EAAmB7F,EAGvB,CCVA,SAASkG,EAAoBlG,GAC3B,OAAKW,EAAcX,IACoB,UAAvC,EAAiBA,GAASiC,SAInBjC,EAAQmG,aAHN,IAIX,CAwCe,SAASC,EAAgBpG,GAItC,IAHA,IAAIK,EAASF,EAAUH,GACnBmG,EAAeD,EAAoBlG,GAEhCmG,GAAgBR,EAAeQ,IAA6D,WAA5C,EAAiBA,GAAclE,UACpFkE,EAAeD,EAAoBC,GAGrC,OAAIA,IAA+C,SAA9BpG,EAAYoG,IAA0D,SAA9BpG,EAAYoG,IAAwE,WAA5C,EAAiBA,GAAclE,UAC3H5B,EAGF8F,GAhDT,SAA4BnG,GAC1B,IAAIqG,EAAY,WAAWvC,KAAKd,KAGhC,GAFW,WAAWc,KAAKd,MAEfrC,EAAcX,IAII,UAFX,EAAiBA,GAEnBiC,SACb,OAAO,KAIX,IAAIqE,EAAcN,EAAchG,GAMhC,IAJIa,EAAayF,KACfA,EAAcA,EAAYb,MAGrB9E,EAAc2F,IAAgB,CAAC,OAAQ,QAAQV,QAAQ7F,EAAYuG,IAAgB,GAAG,CAC3F,IAAIC,EAAM,EAAiBD,GAI3B,GAAsB,SAAlBC,EAAIC,WAA4C,SAApBD,EAAIE,aAA0C,UAAhBF,EAAIG,UAAiF,IAA1D,CAAC,YAAa,eAAed,QAAQW,EAAII,aAAsBN,GAAgC,WAAnBE,EAAII,YAA2BN,GAAaE,EAAIK,QAAyB,SAAfL,EAAIK,OACjO,OAAON,EAEPA,EAAcA,EAAYd,UAE9B,CAEA,OAAO,IACT,CAgByBqB,CAAmB7G,IAAYK,CACxD,CCpEe,SAASyG,EAAyB3H,GAC/C,MAAO,CAAC,MAAO,UAAUyG,QAAQzG,IAAc,EAAI,IAAM,GAC3D,CCDO,SAAS4H,EAAOjE,EAAK1E,EAAOyE,GACjC,OAAO,EAAQC,EAAK,EAAQ1E,EAAOyE,GACrC,CCFe,SAASmE,EAAmBC,GACzC,OAAOxJ,OAAOkE,OAAO,CAAC,ECDf,CACLS,IAAK,EACL9D,MAAO,EACPD,OAAQ,EACRE,KAAM,GDHuC0I,EACjD,CEHe,SAASC,EAAgB9I,EAAOiD,GAC7C,OAAOA,EAAKpC,QAAO,SAAUkI,EAAS5J,GAEpC,OADA4J,EAAQ5J,GAAOa,EACR+I,CACT,GAAG,CAAC,EACN,CC4EA,SACEpG,KAAM,QACNC,SAAS,EACTC,MAAO,OACPC,GApEF,SAAeC,GACb,IAAIiG,EAEAhG,EAAQD,EAAKC,MACbL,EAAOI,EAAKJ,KACZmB,EAAUf,EAAKe,QACfmF,EAAejG,EAAME,SAASgB,MAC9BgF,EAAgBlG,EAAMmG,cAAcD,cACpCE,EAAgB9E,EAAiBtB,EAAMjC,WACvCsI,EAAOX,EAAyBU,GAEhCE,EADa,CAACnJ,EAAMD,GAAOsH,QAAQ4B,IAAkB,EAClC,SAAW,QAElC,GAAKH,GAAiBC,EAAtB,CAIA,IAAIL,EAxBgB,SAAyBU,EAASvG,GAItD,OAAO4F,EAAsC,iBAH7CW,EAA6B,mBAAZA,EAAyBA,EAAQlK,OAAOkE,OAAO,CAAC,EAAGP,EAAMwG,MAAO,CAC/EzI,UAAWiC,EAAMjC,aACbwI,GACkDA,EAAUT,EAAgBS,EAASlJ,GAC7F,CAmBsBoJ,CAAgB3F,EAAQyF,QAASvG,GACjD0G,EAAY/C,EAAcsC,GAC1BU,EAAmB,MAATN,EAAe,EAAMlJ,EAC/ByJ,EAAmB,MAATP,EAAepJ,EAASC,EAClC2J,EAAU7G,EAAMwG,MAAM7I,UAAU2I,GAAOtG,EAAMwG,MAAM7I,UAAU0I,GAAQH,EAAcG,GAAQrG,EAAMwG,MAAM9I,OAAO4I,GAC9GQ,EAAYZ,EAAcG,GAAQrG,EAAMwG,MAAM7I,UAAU0I,GACxDU,EAAoB/B,EAAgBiB,GACpCe,EAAaD,EAA6B,MAATV,EAAeU,EAAkBE,cAAgB,EAAIF,EAAkBG,aAAe,EAAI,EAC3HC,EAAoBN,EAAU,EAAIC,EAAY,EAG9CpF,EAAMmE,EAAcc,GACpBlF,EAAMuF,EAAaN,EAAUJ,GAAOT,EAAce,GAClDQ,EAASJ,EAAa,EAAIN,EAAUJ,GAAO,EAAIa,EAC/CE,EAAS1B,EAAOjE,EAAK0F,EAAQ3F,GAE7B6F,EAAWjB,EACfrG,EAAMmG,cAAcxG,KAASqG,EAAwB,CAAC,GAAyBsB,GAAYD,EAAQrB,EAAsBuB,aAAeF,EAASD,EAAQpB,EAnBzJ,CAoBF,EAkCEtF,OAhCF,SAAgBC,GACd,IAAIX,EAAQW,EAAMX,MAEdwH,EADU7G,EAAMG,QACWlC,QAC3BqH,OAAoC,IAArBuB,EAA8B,sBAAwBA,EAErD,MAAhBvB,IAKwB,iBAAjBA,IACTA,EAAejG,EAAME,SAASxC,OAAO+J,cAAcxB,MAOhDpC,EAAS7D,EAAME,SAASxC,OAAQuI,KAIrCjG,EAAME,SAASgB,MAAQ+E,EACzB,EASE5E,SAAU,CAAC,iBACXqG,iBAAkB,CAAC,oBCxFN,SAASC,EAAa5J,GACnC,OAAOA,EAAUwD,MAAM,KAAK,EAC9B,CCOA,IAAIqG,GAAa,CACf5G,IAAK,OACL9D,MAAO,OACPD,OAAQ,OACRE,KAAM,QAeD,SAAS0K,GAAYlH,GAC1B,IAAImH,EAEApK,EAASiD,EAAMjD,OACfqK,EAAapH,EAAMoH,WACnBhK,EAAY4C,EAAM5C,UAClBiK,EAAYrH,EAAMqH,UAClBC,EAAUtH,EAAMsH,QAChBpH,EAAWF,EAAME,SACjBqH,EAAkBvH,EAAMuH,gBACxBC,EAAWxH,EAAMwH,SACjBC,EAAezH,EAAMyH,aACrBC,EAAU1H,EAAM0H,QAChBC,EAAaL,EAAQ1E,EACrBA,OAAmB,IAAf+E,EAAwB,EAAIA,EAChCC,EAAaN,EAAQxE,EACrBA,OAAmB,IAAf8E,EAAwB,EAAIA,EAEhCC,EAAgC,mBAAjBJ,EAA8BA,EAAa,CAC5D7E,EAAGA,EACHE,IACG,CACHF,EAAGA,EACHE,GAGFF,EAAIiF,EAAMjF,EACVE,EAAI+E,EAAM/E,EACV,IAAIgF,EAAOR,EAAQrL,eAAe,KAC9B8L,EAAOT,EAAQrL,eAAe,KAC9B+L,EAAQxL,EACRyL,EAAQ,EACRC,EAAM5J,OAEV,GAAIkJ,EAAU,CACZ,IAAIpD,EAAeC,EAAgBtH,GAC/BoL,EAAa,eACbC,EAAY,cAEZhE,IAAiBhG,EAAUrB,IAGmB,WAA5C,EAFJqH,EAAeN,EAAmB/G,IAECmD,UAAsC,aAAbA,IAC1DiI,EAAa,eACbC,EAAY,gBAOZhL,IAAc,IAAQA,IAAcZ,GAAQY,IAAcb,IAAU8K,IAAczK,KACpFqL,EAAQ3L,EAGRwG,IAFc4E,GAAWtD,IAAiB8D,GAAOA,EAAIxF,eAAiBwF,EAAIxF,eAAeD,OACzF2B,EAAa+D,IACEf,EAAW3E,OAC1BK,GAAKyE,EAAkB,GAAK,GAG1BnK,IAAcZ,IAASY,IAAc,GAAOA,IAAcd,GAAW+K,IAAczK,KACrFoL,EAAQzL,EAGRqG,IAFc8E,GAAWtD,IAAiB8D,GAAOA,EAAIxF,eAAiBwF,EAAIxF,eAAeH,MACzF6B,EAAagE,IACEhB,EAAW7E,MAC1BK,GAAK2E,EAAkB,GAAK,EAEhC,CAEA,IAgBMc,EAhBFC,EAAe5M,OAAOkE,OAAO,CAC/BM,SAAUA,GACTsH,GAAYP,IAEXsB,GAAyB,IAAjBd,EAlFd,SAA2BrI,EAAM8I,GAC/B,IAAItF,EAAIxD,EAAKwD,EACTE,EAAI1D,EAAK0D,EACT0F,EAAMN,EAAIO,kBAAoB,EAClC,MAAO,CACL7F,EAAG5B,EAAM4B,EAAI4F,GAAOA,GAAO,EAC3B1F,EAAG9B,EAAM8B,EAAI0F,GAAOA,GAAO,EAE/B,CA0EsCE,CAAkB,CACpD9F,EAAGA,EACHE,GACC1E,EAAUrB,IAAW,CACtB6F,EAAGA,EACHE,GAMF,OAHAF,EAAI2F,EAAM3F,EACVE,EAAIyF,EAAMzF,EAENyE,EAGK7L,OAAOkE,OAAO,CAAC,EAAG0I,IAAeD,EAAiB,CAAC,GAAkBJ,GAASF,EAAO,IAAM,GAAIM,EAAeL,GAASF,EAAO,IAAM,GAAIO,EAAe5D,WAAayD,EAAIO,kBAAoB,IAAM,EAAI,aAAe7F,EAAI,OAASE,EAAI,MAAQ,eAAiBF,EAAI,OAASE,EAAI,SAAUuF,IAG5R3M,OAAOkE,OAAO,CAAC,EAAG0I,IAAenB,EAAkB,CAAC,GAAmBc,GAASF,EAAOjF,EAAI,KAAO,GAAIqE,EAAgBa,GAASF,EAAOlF,EAAI,KAAO,GAAIuE,EAAgB1C,UAAY,GAAI0C,GAC9L,CA4CA,UACEnI,KAAM,gBACNC,SAAS,EACTC,MAAO,cACPC,GA9CF,SAAuBwJ,GACrB,IAAItJ,EAAQsJ,EAAMtJ,MACdc,EAAUwI,EAAMxI,QAChByI,EAAwBzI,EAAQoH,gBAChCA,OAA4C,IAA1BqB,GAA0CA,EAC5DC,EAAoB1I,EAAQqH,SAC5BA,OAAiC,IAAtBqB,GAAsCA,EACjDC,EAAwB3I,EAAQsH,aAChCA,OAAyC,IAA1BqB,GAA0CA,EACzDR,EAAe,CACjBlL,UAAWuD,EAAiBtB,EAAMjC,WAClCiK,UAAWL,EAAa3H,EAAMjC,WAC9BL,OAAQsC,EAAME,SAASxC,OACvBqK,WAAY/H,EAAMwG,MAAM9I,OACxBwK,gBAAiBA,EACjBG,QAAoC,UAA3BrI,EAAMc,QAAQC,UAGgB,MAArCf,EAAMmG,cAAcD,gBACtBlG,EAAMK,OAAO3C,OAASrB,OAAOkE,OAAO,CAAC,EAAGP,EAAMK,OAAO3C,OAAQmK,GAAYxL,OAAOkE,OAAO,CAAC,EAAG0I,EAAc,CACvGhB,QAASjI,EAAMmG,cAAcD,cAC7BrF,SAAUb,EAAMc,QAAQC,SACxBoH,SAAUA,EACVC,aAAcA,OAIe,MAA7BpI,EAAMmG,cAAcjF,QACtBlB,EAAMK,OAAOa,MAAQ7E,OAAOkE,OAAO,CAAC,EAAGP,EAAMK,OAAOa,MAAO2G,GAAYxL,OAAOkE,OAAO,CAAC,EAAG0I,EAAc,CACrGhB,QAASjI,EAAMmG,cAAcjF,MAC7BL,SAAU,WACVsH,UAAU,EACVC,aAAcA,OAIlBpI,EAAMM,WAAW5C,OAASrB,OAAOkE,OAAO,CAAC,EAAGP,EAAMM,WAAW5C,OAAQ,CACnE,wBAAyBsC,EAAMjC,WAEnC,EAQE2L,KAAM,CAAC,GCrKT,IAAIC,GAAU,CACZA,SAAS,GAsCX,UACEhK,KAAM,iBACNC,SAAS,EACTC,MAAO,QACPC,GAAI,WAAe,EACnBY,OAxCF,SAAgBX,GACd,IAAIC,EAAQD,EAAKC,MACb4J,EAAW7J,EAAK6J,SAChB9I,EAAUf,EAAKe,QACf+I,EAAkB/I,EAAQgJ,OAC1BA,OAA6B,IAApBD,GAAoCA,EAC7CE,EAAkBjJ,EAAQkJ,OAC1BA,OAA6B,IAApBD,GAAoCA,EAC7C9K,EAASF,EAAUiB,EAAME,SAASxC,QAClCuM,EAAgB,GAAGjM,OAAOgC,EAAMiK,cAActM,UAAWqC,EAAMiK,cAAcvM,QAYjF,OAVIoM,GACFG,EAAc9J,SAAQ,SAAU+J,GAC9BA,EAAaC,iBAAiB,SAAUP,EAASQ,OAAQT,GAC3D,IAGEK,GACF/K,EAAOkL,iBAAiB,SAAUP,EAASQ,OAAQT,IAG9C,WACDG,GACFG,EAAc9J,SAAQ,SAAU+J,GAC9BA,EAAaG,oBAAoB,SAAUT,EAASQ,OAAQT,GAC9D,IAGEK,GACF/K,EAAOoL,oBAAoB,SAAUT,EAASQ,OAAQT,GAE1D,CACF,EASED,KAAM,CAAC,GC/CT,IAAIY,GAAO,CACTnN,KAAM,QACND,MAAO,OACPD,OAAQ,MACR+D,IAAK,UAEQ,SAASuJ,GAAqBxM,GAC3C,OAAOA,EAAUyM,QAAQ,0BAA0B,SAAUC,GAC3D,OAAOH,GAAKG,EACd,GACF,CCVA,IAAI,GAAO,CACTnN,MAAO,MACPC,IAAK,SAEQ,SAASmN,GAA8B3M,GACpD,OAAOA,EAAUyM,QAAQ,cAAc,SAAUC,GAC/C,OAAO,GAAKA,EACd,GACF,CCPe,SAASE,GAAgB3L,GACtC,IAAI6J,EAAM9J,EAAUC,GAGpB,MAAO,CACL4L,WAHe/B,EAAIgC,YAInBC,UAHcjC,EAAIkC,YAKtB,CCNe,SAASC,GAAoBpM,GAQ1C,OAAO+D,EAAsB8B,EAAmB7F,IAAUzB,KAAOwN,GAAgB/L,GAASgM,UAC5F,CCXe,SAASK,GAAerM,GAErC,IAAIsM,EAAoB,EAAiBtM,GACrCuM,EAAWD,EAAkBC,SAC7BC,EAAYF,EAAkBE,UAC9BC,EAAYH,EAAkBG,UAElC,MAAO,6BAA6B3I,KAAKyI,EAAWE,EAAYD,EAClE,CCLe,SAASE,GAAgBtM,GACtC,MAAI,CAAC,OAAQ,OAAQ,aAAawF,QAAQ7F,EAAYK,KAAU,EAEvDA,EAAKG,cAAcoM,KAGxBhM,EAAcP,IAASiM,GAAejM,GACjCA,EAGFsM,GAAgB1G,EAAc5F,GACvC,CCJe,SAASwM,GAAkB5M,EAAS6M,GACjD,IAAIC,OAES,IAATD,IACFA,EAAO,IAGT,IAAIvB,EAAeoB,GAAgB1M,GAC/B+M,EAASzB,KAAqE,OAAlDwB,EAAwB9M,EAAQO,oBAAyB,EAASuM,EAAsBH,MACpH1C,EAAM9J,EAAUmL,GAChB0B,EAASD,EAAS,CAAC9C,GAAK7K,OAAO6K,EAAIxF,gBAAkB,GAAI4H,GAAef,GAAgBA,EAAe,IAAMA,EAC7G2B,EAAcJ,EAAKzN,OAAO4N,GAC9B,OAAOD,EAASE,EAChBA,EAAY7N,OAAOwN,GAAkB5G,EAAcgH,IACrD,CCzBe,SAASE,GAAiBC,GACvC,OAAO1P,OAAOkE,OAAO,CAAC,EAAGwL,EAAM,CAC7B5O,KAAM4O,EAAKxI,EACXvC,IAAK+K,EAAKtI,EACVvG,MAAO6O,EAAKxI,EAAIwI,EAAK7I,MACrBjG,OAAQ8O,EAAKtI,EAAIsI,EAAK3I,QAE1B,CCqBA,SAAS4I,GAA2BpN,EAASqN,EAAgBlL,GAC3D,OAAOkL,IAAmBxO,EAAWqO,GCzBxB,SAAyBlN,EAASmC,GAC/C,IAAI8H,EAAM9J,EAAUH,GAChBsN,EAAOzH,EAAmB7F,GAC1ByE,EAAiBwF,EAAIxF,eACrBH,EAAQgJ,EAAKhF,YACb9D,EAAS8I,EAAKjF,aACd1D,EAAI,EACJE,EAAI,EAER,GAAIJ,EAAgB,CAClBH,EAAQG,EAAeH,MACvBE,EAASC,EAAeD,OACxB,IAAI+I,EAAiB1J,KAEjB0J,IAAmBA,GAA+B,UAAbpL,KACvCwC,EAAIF,EAAeG,WACnBC,EAAIJ,EAAeK,UAEvB,CAEA,MAAO,CACLR,MAAOA,EACPE,OAAQA,EACRG,EAAGA,EAAIyH,GAAoBpM,GAC3B6E,EAAGA,EAEP,CDDwD2I,CAAgBxN,EAASmC,IAAa1B,EAAU4M,GAdxG,SAAoCrN,EAASmC,GAC3C,IAAIgL,EAAOpJ,EAAsB/D,GAAS,EAAoB,UAAbmC,GASjD,OARAgL,EAAK/K,IAAM+K,EAAK/K,IAAMpC,EAAQyN,UAC9BN,EAAK5O,KAAO4O,EAAK5O,KAAOyB,EAAQ0N,WAChCP,EAAK9O,OAAS8O,EAAK/K,IAAMpC,EAAQqI,aACjC8E,EAAK7O,MAAQ6O,EAAK5O,KAAOyB,EAAQsI,YACjC6E,EAAK7I,MAAQtE,EAAQsI,YACrB6E,EAAK3I,OAASxE,EAAQqI,aACtB8E,EAAKxI,EAAIwI,EAAK5O,KACd4O,EAAKtI,EAAIsI,EAAK/K,IACP+K,CACT,CAG0HQ,CAA2BN,EAAgBlL,GAAY+K,GEtBlK,SAAyBlN,GACtC,IAAI8M,EAEAQ,EAAOzH,EAAmB7F,GAC1B4N,EAAY7B,GAAgB/L,GAC5B2M,EAA0D,OAAlDG,EAAwB9M,EAAQO,oBAAyB,EAASuM,EAAsBH,KAChGrI,EAAQ,EAAIgJ,EAAKO,YAAaP,EAAKhF,YAAaqE,EAAOA,EAAKkB,YAAc,EAAGlB,EAAOA,EAAKrE,YAAc,GACvG9D,EAAS,EAAI8I,EAAKQ,aAAcR,EAAKjF,aAAcsE,EAAOA,EAAKmB,aAAe,EAAGnB,EAAOA,EAAKtE,aAAe,GAC5G1D,GAAKiJ,EAAU5B,WAAaI,GAAoBpM,GAChD6E,GAAK+I,EAAU1B,UAMnB,MAJiD,QAA7C,EAAiBS,GAAQW,GAAMS,YACjCpJ,GAAK,EAAI2I,EAAKhF,YAAaqE,EAAOA,EAAKrE,YAAc,GAAKhE,GAGrD,CACLA,MAAOA,EACPE,OAAQA,EACRG,EAAGA,EACHE,EAAGA,EAEP,CFCkMmJ,CAAgBnI,EAAmB7F,IACrO,CG1Be,SAASiO,GAAe9M,GACrC,IAOIkI,EAPAtK,EAAYoC,EAAKpC,UACjBiB,EAAUmB,EAAKnB,QACfb,EAAYgC,EAAKhC,UACjBqI,EAAgBrI,EAAYuD,EAAiBvD,GAAa,KAC1DiK,EAAYjK,EAAY4J,EAAa5J,GAAa,KAClD+O,EAAUnP,EAAU4F,EAAI5F,EAAUuF,MAAQ,EAAItE,EAAQsE,MAAQ,EAC9D6J,EAAUpP,EAAU8F,EAAI9F,EAAUyF,OAAS,EAAIxE,EAAQwE,OAAS,EAGpE,OAAQgD,GACN,KAAK,EACH6B,EAAU,CACR1E,EAAGuJ,EACHrJ,EAAG9F,EAAU8F,EAAI7E,EAAQwE,QAE3B,MAEF,KAAKnG,EACHgL,EAAU,CACR1E,EAAGuJ,EACHrJ,EAAG9F,EAAU8F,EAAI9F,EAAUyF,QAE7B,MAEF,KAAKlG,EACH+K,EAAU,CACR1E,EAAG5F,EAAU4F,EAAI5F,EAAUuF,MAC3BO,EAAGsJ,GAEL,MAEF,KAAK5P,EACH8K,EAAU,CACR1E,EAAG5F,EAAU4F,EAAI3E,EAAQsE,MACzBO,EAAGsJ,GAEL,MAEF,QACE9E,EAAU,CACR1E,EAAG5F,EAAU4F,EACbE,EAAG9F,EAAU8F,GAInB,IAAIuJ,EAAW5G,EAAgBV,EAAyBU,GAAiB,KAEzE,GAAgB,MAAZ4G,EAAkB,CACpB,IAAI1G,EAAmB,MAAb0G,EAAmB,SAAW,QAExC,OAAQhF,GACN,KAAK1K,EACH2K,EAAQ+E,GAAY/E,EAAQ+E,IAAarP,EAAU2I,GAAO,EAAI1H,EAAQ0H,GAAO,GAC7E,MAEF,KAAK/I,EACH0K,EAAQ+E,GAAY/E,EAAQ+E,IAAarP,EAAU2I,GAAO,EAAI1H,EAAQ0H,GAAO,GAKnF,CAEA,OAAO2B,CACT,CC3De,SAASgF,GAAejN,EAAOc,QAC5B,IAAZA,IACFA,EAAU,CAAC,GAGb,IAAIoM,EAAWpM,EACXqM,EAAqBD,EAASnP,UAC9BA,OAAmC,IAAvBoP,EAAgCnN,EAAMjC,UAAYoP,EAC9DC,EAAoBF,EAASnM,SAC7BA,OAAiC,IAAtBqM,EAA+BpN,EAAMe,SAAWqM,EAC3DC,EAAoBH,EAASI,SAC7BA,OAAiC,IAAtBD,EAA+B7P,EAAkB6P,EAC5DE,EAAwBL,EAASM,aACjCA,OAAyC,IAA1BD,EAAmC9P,EAAW8P,EAC7DE,EAAwBP,EAASQ,eACjCA,OAA2C,IAA1BD,EAAmC/P,EAAS+P,EAC7DE,EAAuBT,EAASU,YAChCA,OAAuC,IAAzBD,GAA0CA,EACxDE,EAAmBX,EAAS3G,QAC5BA,OAA+B,IAArBsH,EAA8B,EAAIA,EAC5ChI,EAAgBD,EAAsC,iBAAZW,EAAuBA,EAAUT,EAAgBS,EAASlJ,IACpGyQ,EAAaJ,IAAmBhQ,EAASC,EAAYD,EACrDqK,EAAa/H,EAAMwG,MAAM9I,OACzBkB,EAAUoB,EAAME,SAAS0N,EAAcE,EAAaJ,GACpDK,EJkBS,SAAyBnP,EAAS0O,EAAUE,EAAczM,GACvE,IAAIiN,EAAmC,oBAAbV,EAlB5B,SAA4B1O,GAC1B,IAAIpB,EAAkBgO,GAAkB5G,EAAchG,IAElDqP,EADoB,CAAC,WAAY,SAASzJ,QAAQ,EAAiB5F,GAASiC,WAAa,GACnDtB,EAAcX,GAAWoG,EAAgBpG,GAAWA,EAE9F,OAAKS,EAAU4O,GAKRzQ,EAAgBgI,QAAO,SAAUyG,GACtC,OAAO5M,EAAU4M,IAAmBpI,EAASoI,EAAgBgC,IAAmD,SAAhCtP,EAAYsN,EAC9F,IANS,EAOX,CAK6DiC,CAAmBtP,GAAW,GAAGZ,OAAOsP,GAC/F9P,EAAkB,GAAGQ,OAAOgQ,EAAqB,CAACR,IAClDW,EAAsB3Q,EAAgB,GACtC4Q,EAAe5Q,EAAgBK,QAAO,SAAUwQ,EAASpC,GAC3D,IAAIF,EAAOC,GAA2BpN,EAASqN,EAAgBlL,GAK/D,OAJAsN,EAAQrN,IAAM,EAAI+K,EAAK/K,IAAKqN,EAAQrN,KACpCqN,EAAQnR,MAAQ,EAAI6O,EAAK7O,MAAOmR,EAAQnR,OACxCmR,EAAQpR,OAAS,EAAI8O,EAAK9O,OAAQoR,EAAQpR,QAC1CoR,EAAQlR,KAAO,EAAI4O,EAAK5O,KAAMkR,EAAQlR,MAC/BkR,CACT,GAAGrC,GAA2BpN,EAASuP,EAAqBpN,IAK5D,OAJAqN,EAAalL,MAAQkL,EAAalR,MAAQkR,EAAajR,KACvDiR,EAAahL,OAASgL,EAAanR,OAASmR,EAAapN,IACzDoN,EAAa7K,EAAI6K,EAAajR,KAC9BiR,EAAa3K,EAAI2K,EAAapN,IACvBoN,CACT,CInC2BE,CAAgBjP,EAAUT,GAAWA,EAAUA,EAAQ2P,gBAAkB9J,EAAmBzE,EAAME,SAASxC,QAAS4P,EAAUE,EAAczM,GACjKyN,EAAsB7L,EAAsB3C,EAAME,SAASvC,WAC3DuI,EAAgB2G,GAAe,CACjClP,UAAW6Q,EACX5P,QAASmJ,EACThH,SAAU,WACVhD,UAAWA,IAET0Q,EAAmB3C,GAAiBzP,OAAOkE,OAAO,CAAC,EAAGwH,EAAY7B,IAClEwI,EAAoBhB,IAAmBhQ,EAAS+Q,EAAmBD,EAGnEG,EAAkB,CACpB3N,IAAK+M,EAAmB/M,IAAM0N,EAAkB1N,IAAM6E,EAAc7E,IACpE/D,OAAQyR,EAAkBzR,OAAS8Q,EAAmB9Q,OAAS4I,EAAc5I,OAC7EE,KAAM4Q,EAAmB5Q,KAAOuR,EAAkBvR,KAAO0I,EAAc1I,KACvED,MAAOwR,EAAkBxR,MAAQ6Q,EAAmB7Q,MAAQ2I,EAAc3I,OAExE0R,EAAa5O,EAAMmG,cAAckB,OAErC,GAAIqG,IAAmBhQ,GAAUkR,EAAY,CAC3C,IAAIvH,EAASuH,EAAW7Q,GACxB1B,OAAO4D,KAAK0O,GAAiBxO,SAAQ,SAAUhE,GAC7C,IAAI0S,EAAW,CAAC3R,EAAOD,GAAQuH,QAAQrI,IAAQ,EAAI,GAAK,EACpDkK,EAAO,CAAC,EAAKpJ,GAAQuH,QAAQrI,IAAQ,EAAI,IAAM,IACnDwS,EAAgBxS,IAAQkL,EAAOhB,GAAQwI,CACzC,GACF,CAEA,OAAOF,CACT,CCyEA,UACEhP,KAAM,OACNC,SAAS,EACTC,MAAO,OACPC,GA5HF,SAAcC,GACZ,IAAIC,EAAQD,EAAKC,MACbc,EAAUf,EAAKe,QACfnB,EAAOI,EAAKJ,KAEhB,IAAIK,EAAMmG,cAAcxG,GAAMmP,MAA9B,CAoCA,IAhCA,IAAIC,EAAoBjO,EAAQkM,SAC5BgC,OAAsC,IAAtBD,GAAsCA,EACtDE,EAAmBnO,EAAQoO,QAC3BC,OAAoC,IAArBF,GAAqCA,EACpDG,EAA8BtO,EAAQuO,mBACtC9I,EAAUzF,EAAQyF,QAClB+G,EAAWxM,EAAQwM,SACnBE,EAAe1M,EAAQ0M,aACvBI,EAAc9M,EAAQ8M,YACtB0B,EAAwBxO,EAAQyO,eAChCA,OAA2C,IAA1BD,GAA0CA,EAC3DE,EAAwB1O,EAAQ0O,sBAChCC,EAAqBzP,EAAMc,QAAQ/C,UACnCqI,EAAgB9E,EAAiBmO,GAEjCJ,EAAqBD,IADHhJ,IAAkBqJ,GACqCF,EAjC/E,SAAuCxR,GACrC,GAAIuD,EAAiBvD,KAAeX,EAClC,MAAO,GAGT,IAAIsS,EAAoBnF,GAAqBxM,GAC7C,MAAO,CAAC2M,GAA8B3M,GAAY2R,EAAmBhF,GAA8BgF,GACrG,CA0B6IC,CAA8BF,GAA3E,CAAClF,GAAqBkF,KAChHG,EAAa,CAACH,GAAoBzR,OAAOqR,GAAoBxR,QAAO,SAAUC,EAAKC,GACrF,OAAOD,EAAIE,OAAOsD,EAAiBvD,KAAeX,ECvCvC,SAA8B4C,EAAOc,QAClC,IAAZA,IACFA,EAAU,CAAC,GAGb,IAAIoM,EAAWpM,EACX/C,EAAYmP,EAASnP,UACrBuP,EAAWJ,EAASI,SACpBE,EAAeN,EAASM,aACxBjH,EAAU2G,EAAS3G,QACnBgJ,EAAiBrC,EAASqC,eAC1BM,EAAwB3C,EAASsC,sBACjCA,OAAkD,IAA1BK,EAAmC,EAAgBA,EAC3E7H,EAAYL,EAAa5J,GACzB6R,EAAa5H,EAAYuH,EAAiB3R,EAAsBA,EAAoB4H,QAAO,SAAUzH,GACvG,OAAO4J,EAAa5J,KAAeiK,CACrC,IAAK3K,EACDyS,EAAoBF,EAAWpK,QAAO,SAAUzH,GAClD,OAAOyR,EAAsBhL,QAAQzG,IAAc,CACrD,IAEiC,IAA7B+R,EAAkBC,SACpBD,EAAoBF,GAItB,IAAII,EAAYF,EAAkBjS,QAAO,SAAUC,EAAKC,GAOtD,OANAD,EAAIC,GAAakP,GAAejN,EAAO,CACrCjC,UAAWA,EACXuP,SAAUA,EACVE,aAAcA,EACdjH,QAASA,IACRjF,EAAiBvD,IACbD,CACT,GAAG,CAAC,GACJ,OAAOzB,OAAO4D,KAAK+P,GAAWC,MAAK,SAAUC,EAAGC,GAC9C,OAAOH,EAAUE,GAAKF,EAAUG,EAClC,GACF,CDC6DC,CAAqBpQ,EAAO,CACnFjC,UAAWA,EACXuP,SAAUA,EACVE,aAAcA,EACdjH,QAASA,EACTgJ,eAAgBA,EAChBC,sBAAuBA,IACpBzR,EACP,GAAG,IACCsS,EAAgBrQ,EAAMwG,MAAM7I,UAC5BoK,EAAa/H,EAAMwG,MAAM9I,OACzB4S,EAAY,IAAIC,IAChBC,GAAqB,EACrBC,EAAwBb,EAAW,GAE9Bc,EAAI,EAAGA,EAAId,EAAWG,OAAQW,IAAK,CAC1C,IAAI3S,EAAY6R,EAAWc,GAEvBC,EAAiBrP,EAAiBvD,GAElC6S,EAAmBjJ,EAAa5J,KAAeT,EAC/CuT,EAAa,CAAC,EAAK5T,GAAQuH,QAAQmM,IAAmB,EACtDrK,EAAMuK,EAAa,QAAU,SAC7B1F,EAAW8B,GAAejN,EAAO,CACnCjC,UAAWA,EACXuP,SAAUA,EACVE,aAAcA,EACdI,YAAaA,EACbrH,QAASA,IAEPuK,EAAoBD,EAAaD,EAAmB1T,EAAQC,EAAOyT,EAAmB3T,EAAS,EAE/FoT,EAAc/J,GAAOyB,EAAWzB,KAClCwK,EAAoBvG,GAAqBuG,IAG3C,IAAIC,EAAmBxG,GAAqBuG,GACxCE,EAAS,GAUb,GARIhC,GACFgC,EAAOC,KAAK9F,EAASwF,IAAmB,GAGtCxB,GACF6B,EAAOC,KAAK9F,EAAS2F,IAAsB,EAAG3F,EAAS4F,IAAqB,GAG1EC,EAAOE,OAAM,SAAUC,GACzB,OAAOA,CACT,IAAI,CACFV,EAAwB1S,EACxByS,GAAqB,EACrB,KACF,CAEAF,EAAUc,IAAIrT,EAAWiT,EAC3B,CAEA,GAAIR,EAqBF,IAnBA,IAEIa,EAAQ,SAAeC,GACzB,IAAIC,EAAmB3B,EAAW4B,MAAK,SAAUzT,GAC/C,IAAIiT,EAASV,EAAU9T,IAAIuB,GAE3B,GAAIiT,EACF,OAAOA,EAAOS,MAAM,EAAGH,GAAIJ,OAAM,SAAUC,GACzC,OAAOA,CACT,GAEJ,IAEA,GAAII,EAEF,OADAd,EAAwBc,EACjB,OAEX,EAESD,EAnBY/B,EAAiB,EAAI,EAmBZ+B,EAAK,GAGpB,UAFFD,EAAMC,GADmBA,KAOpCtR,EAAMjC,YAAc0S,IACtBzQ,EAAMmG,cAAcxG,GAAMmP,OAAQ,EAClC9O,EAAMjC,UAAY0S,EAClBzQ,EAAM0R,OAAQ,EA5GhB,CA8GF,EAQEhK,iBAAkB,CAAC,UACnBgC,KAAM,CACJoF,OAAO,IE7IX,SAAS6C,GAAexG,EAAUY,EAAM6F,GAQtC,YAPyB,IAArBA,IACFA,EAAmB,CACjBrO,EAAG,EACHE,EAAG,IAIA,CACLzC,IAAKmK,EAASnK,IAAM+K,EAAK3I,OAASwO,EAAiBnO,EACnDvG,MAAOiO,EAASjO,MAAQ6O,EAAK7I,MAAQ0O,EAAiBrO,EACtDtG,OAAQkO,EAASlO,OAAS8O,EAAK3I,OAASwO,EAAiBnO,EACzDtG,KAAMgO,EAAShO,KAAO4O,EAAK7I,MAAQ0O,EAAiBrO,EAExD,CAEA,SAASsO,GAAsB1G,GAC7B,MAAO,CAAC,EAAKjO,EAAOD,EAAQE,GAAM2U,MAAK,SAAUC,GAC/C,OAAO5G,EAAS4G,IAAS,CAC3B,GACF,CA+BA,UACEpS,KAAM,OACNC,SAAS,EACTC,MAAO,OACP6H,iBAAkB,CAAC,mBACnB5H,GAlCF,SAAcC,GACZ,IAAIC,EAAQD,EAAKC,MACbL,EAAOI,EAAKJ,KACZ0Q,EAAgBrQ,EAAMwG,MAAM7I,UAC5BoK,EAAa/H,EAAMwG,MAAM9I,OACzBkU,EAAmB5R,EAAMmG,cAAc6L,gBACvCC,EAAoBhF,GAAejN,EAAO,CAC5C0N,eAAgB,cAEdwE,EAAoBjF,GAAejN,EAAO,CAC5C4N,aAAa,IAEXuE,EAA2BR,GAAeM,EAAmB5B,GAC7D+B,EAAsBT,GAAeO,EAAmBnK,EAAY6J,GACpES,EAAoBR,GAAsBM,GAC1CG,EAAmBT,GAAsBO,GAC7CpS,EAAMmG,cAAcxG,GAAQ,CAC1BwS,yBAA0BA,EAC1BC,oBAAqBA,EACrBC,kBAAmBA,EACnBC,iBAAkBA,GAEpBtS,EAAMM,WAAW5C,OAASrB,OAAOkE,OAAO,CAAC,EAAGP,EAAMM,WAAW5C,OAAQ,CACnE,+BAAgC2U,EAChC,sBAAuBC,GAE3B,GCJA,IACE3S,KAAM,SACNC,SAAS,EACTC,MAAO,OACPwB,SAAU,CAAC,iBACXvB,GA5BF,SAAgBa,GACd,IAAIX,EAAQW,EAAMX,MACdc,EAAUH,EAAMG,QAChBnB,EAAOgB,EAAMhB,KACb4S,EAAkBzR,EAAQuG,OAC1BA,OAA6B,IAApBkL,EAA6B,CAAC,EAAG,GAAKA,EAC/C7I,EAAO,EAAW7L,QAAO,SAAUC,EAAKC,GAE1C,OADAD,EAAIC,GA5BD,SAAiCA,EAAWyI,EAAOa,GACxD,IAAIjB,EAAgB9E,EAAiBvD,GACjCyU,EAAiB,CAACrV,EAAM,GAAKqH,QAAQ4B,IAAkB,GAAK,EAAI,EAEhErG,EAAyB,mBAAXsH,EAAwBA,EAAOhL,OAAOkE,OAAO,CAAC,EAAGiG,EAAO,CACxEzI,UAAWA,KACPsJ,EACFoL,EAAW1S,EAAK,GAChB2S,EAAW3S,EAAK,GAIpB,OAFA0S,EAAWA,GAAY,EACvBC,GAAYA,GAAY,GAAKF,EACtB,CAACrV,EAAMD,GAAOsH,QAAQ4B,IAAkB,EAAI,CACjD7C,EAAGmP,EACHjP,EAAGgP,GACD,CACFlP,EAAGkP,EACHhP,EAAGiP,EAEP,CASqBC,CAAwB5U,EAAWiC,EAAMwG,MAAOa,GAC1DvJ,CACT,GAAG,CAAC,GACA8U,EAAwBlJ,EAAK1J,EAAMjC,WACnCwF,EAAIqP,EAAsBrP,EAC1BE,EAAImP,EAAsBnP,EAEW,MAArCzD,EAAMmG,cAAcD,gBACtBlG,EAAMmG,cAAcD,cAAc3C,GAAKA,EACvCvD,EAAMmG,cAAcD,cAAczC,GAAKA,GAGzCzD,EAAMmG,cAAcxG,GAAQ+J,CAC9B,GC1BA,IACE/J,KAAM,gBACNC,SAAS,EACTC,MAAO,OACPC,GApBF,SAAuBC,GACrB,IAAIC,EAAQD,EAAKC,MACbL,EAAOI,EAAKJ,KAKhBK,EAAMmG,cAAcxG,GAAQkN,GAAe,CACzClP,UAAWqC,EAAMwG,MAAM7I,UACvBiB,QAASoB,EAAMwG,MAAM9I,OACrBqD,SAAU,WACVhD,UAAWiC,EAAMjC,WAErB,EAQE2L,KAAM,CAAC,GCgHT,IACE/J,KAAM,kBACNC,SAAS,EACTC,MAAO,OACPC,GA/HF,SAAyBC,GACvB,IAAIC,EAAQD,EAAKC,MACbc,EAAUf,EAAKe,QACfnB,EAAOI,EAAKJ,KACZoP,EAAoBjO,EAAQkM,SAC5BgC,OAAsC,IAAtBD,GAAsCA,EACtDE,EAAmBnO,EAAQoO,QAC3BC,OAAoC,IAArBF,GAAsCA,EACrD3B,EAAWxM,EAAQwM,SACnBE,EAAe1M,EAAQ0M,aACvBI,EAAc9M,EAAQ8M,YACtBrH,EAAUzF,EAAQyF,QAClBsM,EAAkB/R,EAAQgS,OAC1BA,OAA6B,IAApBD,GAAoCA,EAC7CE,EAAwBjS,EAAQkS,aAChCA,OAAyC,IAA1BD,EAAmC,EAAIA,EACtD5H,EAAW8B,GAAejN,EAAO,CACnCsN,SAAUA,EACVE,aAAcA,EACdjH,QAASA,EACTqH,YAAaA,IAEXxH,EAAgB9E,EAAiBtB,EAAMjC,WACvCiK,EAAYL,EAAa3H,EAAMjC,WAC/BkV,GAAmBjL,EACnBgF,EAAWtH,EAAyBU,GACpC8I,ECrCY,MDqCSlC,ECrCH,IAAM,IDsCxB9G,EAAgBlG,EAAMmG,cAAcD,cACpCmK,EAAgBrQ,EAAMwG,MAAM7I,UAC5BoK,EAAa/H,EAAMwG,MAAM9I,OACzBwV,EAA4C,mBAAjBF,EAA8BA,EAAa3W,OAAOkE,OAAO,CAAC,EAAGP,EAAMwG,MAAO,CACvGzI,UAAWiC,EAAMjC,aACbiV,EACFG,EAA2D,iBAAtBD,EAAiC,CACxElG,SAAUkG,EACVhE,QAASgE,GACP7W,OAAOkE,OAAO,CAChByM,SAAU,EACVkC,QAAS,GACRgE,GACCE,EAAsBpT,EAAMmG,cAAckB,OAASrH,EAAMmG,cAAckB,OAAOrH,EAAMjC,WAAa,KACjG2L,EAAO,CACTnG,EAAG,EACHE,EAAG,GAGL,GAAKyC,EAAL,CAIA,GAAI8I,EAAe,CACjB,IAAIqE,EAEAC,EAAwB,MAAbtG,EAAmB,EAAM7P,EACpCoW,EAAuB,MAAbvG,EAAmB/P,EAASC,EACtCoJ,EAAmB,MAAb0G,EAAmB,SAAW,QACpC3F,EAASnB,EAAc8G,GACvBtL,EAAM2F,EAAS8D,EAASmI,GACxB7R,EAAM4F,EAAS8D,EAASoI,GACxBC,EAAWV,GAAU/K,EAAWzB,GAAO,EAAI,EAC3CmN,EAASzL,IAAc1K,EAAQ+S,EAAc/J,GAAOyB,EAAWzB,GAC/DoN,EAAS1L,IAAc1K,GAASyK,EAAWzB,IAAQ+J,EAAc/J,GAGjEL,EAAejG,EAAME,SAASgB,MAC9BwF,EAAYoM,GAAU7M,EAAetC,EAAcsC,GAAgB,CACrE/C,MAAO,EACPE,OAAQ,GAENuQ,GAAqB3T,EAAMmG,cAAc,oBAAsBnG,EAAMmG,cAAc,oBAAoBI,QxBhFtG,CACLvF,IAAK,EACL9D,MAAO,EACPD,OAAQ,EACRE,KAAM,GwB6EFyW,GAAkBD,GAAmBL,GACrCO,GAAkBF,GAAmBJ,GAMrCO,GAAWnO,EAAO,EAAG0K,EAAc/J,GAAMI,EAAUJ,IACnDyN,GAAYd,EAAkB5C,EAAc/J,GAAO,EAAIkN,EAAWM,GAAWF,GAAkBT,EAA4BnG,SAAWyG,EAASK,GAAWF,GAAkBT,EAA4BnG,SACxMgH,GAAYf,GAAmB5C,EAAc/J,GAAO,EAAIkN,EAAWM,GAAWD,GAAkBV,EAA4BnG,SAAW0G,EAASI,GAAWD,GAAkBV,EAA4BnG,SACzMjG,GAAoB/G,EAAME,SAASgB,OAAS8D,EAAgBhF,EAAME,SAASgB,OAC3E+S,GAAelN,GAAiC,MAAbiG,EAAmBjG,GAAkBsF,WAAa,EAAItF,GAAkBuF,YAAc,EAAI,EAC7H4H,GAAwH,OAAjGb,EAA+C,MAAvBD,OAA8B,EAASA,EAAoBpG,IAAqBqG,EAAwB,EAEvJc,GAAY9M,EAAS2M,GAAYE,GACjCE,GAAkBzO,EAAOmN,EAAS,EAAQpR,EAF9B2F,EAAS0M,GAAYG,GAAsBD,IAEKvS,EAAK2F,EAAQyL,EAAS,EAAQrR,EAAK0S,IAAa1S,GAChHyE,EAAc8G,GAAYoH,GAC1B1K,EAAKsD,GAAYoH,GAAkB/M,CACrC,CAEA,GAAI8H,EAAc,CAChB,IAAIkF,GAEAC,GAAyB,MAAbtH,EAAmB,EAAM7P,EAErCoX,GAAwB,MAAbvH,EAAmB/P,EAASC,EAEvCsX,GAAUtO,EAAcgJ,GAExBuF,GAAmB,MAAZvF,EAAkB,SAAW,QAEpCwF,GAAOF,GAAUrJ,EAASmJ,IAE1BK,GAAOH,GAAUrJ,EAASoJ,IAE1BK,IAAuD,IAAxC,CAAC,EAAKzX,GAAMqH,QAAQ4B,GAEnCyO,GAAyH,OAAjGR,GAAgD,MAAvBjB,OAA8B,EAASA,EAAoBlE,IAAoBmF,GAAyB,EAEzJS,GAAaF,GAAeF,GAAOF,GAAUnE,EAAcoE,IAAQ1M,EAAW0M,IAAQI,GAAuB1B,EAA4BjE,QAEzI6F,GAAaH,GAAeJ,GAAUnE,EAAcoE,IAAQ1M,EAAW0M,IAAQI,GAAuB1B,EAA4BjE,QAAUyF,GAE5IK,GAAmBlC,GAAU8B,G1BzH9B,SAAwBlT,EAAK1E,EAAOyE,GACzC,IAAIwT,EAAItP,EAAOjE,EAAK1E,EAAOyE,GAC3B,OAAOwT,EAAIxT,EAAMA,EAAMwT,CACzB,C0BsHoDC,CAAeJ,GAAYN,GAASO,IAAcpP,EAAOmN,EAASgC,GAAaJ,GAAMF,GAAS1B,EAASiC,GAAaJ,IAEpKzO,EAAcgJ,GAAW8F,GACzBtL,EAAKwF,GAAW8F,GAAmBR,EACrC,CAEAxU,EAAMmG,cAAcxG,GAAQ+J,CAvE5B,CAwEF,EAQEhC,iBAAkB,CAAC,WE1HN,SAASyN,GAAiBC,EAAyBrQ,EAAcsD,QAC9D,IAAZA,IACFA,GAAU,GAGZ,ICnBoCrJ,ECJOJ,EFuBvCyW,EAA0B9V,EAAcwF,GACxCuQ,EAAuB/V,EAAcwF,IAf3C,SAAyBnG,GACvB,IAAImN,EAAOnN,EAAQ+D,wBACfI,EAASpB,EAAMoK,EAAK7I,OAAStE,EAAQqE,aAAe,EACpDD,EAASrB,EAAMoK,EAAK3I,QAAUxE,EAAQuE,cAAgB,EAC1D,OAAkB,IAAXJ,GAA2B,IAAXC,CACzB,CAU4DuS,CAAgBxQ,GACtEJ,EAAkBF,EAAmBM,GACrCgH,EAAOpJ,EAAsByS,EAAyBE,EAAsBjN,GAC5EyB,EAAS,CACXc,WAAY,EACZE,UAAW,GAET7C,EAAU,CACZ1E,EAAG,EACHE,EAAG,GAkBL,OAfI4R,IAA4BA,IAA4BhN,MACxB,SAA9B1J,EAAYoG,IAChBkG,GAAetG,MACbmF,GCnCgC9K,EDmCT+F,KClCdhG,EAAUC,IAAUO,EAAcP,GCJxC,CACL4L,YAFyChM,EDQbI,GCNR4L,WACpBE,UAAWlM,EAAQkM,WDGZH,GAAgB3L,IDoCnBO,EAAcwF,KAChBkD,EAAUtF,EAAsBoC,GAAc,IACtCxB,GAAKwB,EAAauH,WAC1BrE,EAAQxE,GAAKsB,EAAasH,WACjB1H,IACTsD,EAAQ1E,EAAIyH,GAAoBrG,KAI7B,CACLpB,EAAGwI,EAAK5O,KAAO2M,EAAOc,WAAa3C,EAAQ1E,EAC3CE,EAAGsI,EAAK/K,IAAM8I,EAAOgB,UAAY7C,EAAQxE,EACzCP,MAAO6I,EAAK7I,MACZE,OAAQ2I,EAAK3I,OAEjB,CGvDA,SAASoS,GAAMC,GACb,IAAItT,EAAM,IAAIoO,IACVmF,EAAU,IAAIC,IACdC,EAAS,GAKb,SAAS3F,EAAK4F,GACZH,EAAQI,IAAID,EAASlW,MACN,GAAG3B,OAAO6X,EAASxU,UAAY,GAAIwU,EAASnO,kBAAoB,IACtEvH,SAAQ,SAAU4V,GACzB,IAAKL,EAAQM,IAAID,GAAM,CACrB,IAAIE,EAAc9T,EAAI3F,IAAIuZ,GAEtBE,GACFhG,EAAKgG,EAET,CACF,IACAL,EAAO3E,KAAK4E,EACd,CAQA,OAzBAJ,EAAUtV,SAAQ,SAAU0V,GAC1B1T,EAAIiP,IAAIyE,EAASlW,KAAMkW,EACzB,IAiBAJ,EAAUtV,SAAQ,SAAU0V,GACrBH,EAAQM,IAAIH,EAASlW,OAExBsQ,EAAK4F,EAET,IACOD,CACT,CCvBA,IAAIM,GAAkB,CACpBnY,UAAW,SACX0X,UAAW,GACX1U,SAAU,YAGZ,SAASoV,KACP,IAAK,IAAI1B,EAAO2B,UAAUrG,OAAQsG,EAAO,IAAIpU,MAAMwS,GAAO6B,EAAO,EAAGA,EAAO7B,EAAM6B,IAC/ED,EAAKC,GAAQF,UAAUE,GAGzB,OAAQD,EAAKvE,MAAK,SAAUlT,GAC1B,QAASA,GAAoD,mBAAlCA,EAAQ+D,sBACrC,GACF,CAEO,SAAS4T,GAAgBC,QACL,IAArBA,IACFA,EAAmB,CAAC,GAGtB,IAAIC,EAAoBD,EACpBE,EAAwBD,EAAkBE,iBAC1CA,OAA6C,IAA1BD,EAAmC,GAAKA,EAC3DE,EAAyBH,EAAkBI,eAC3CA,OAA4C,IAA3BD,EAAoCV,GAAkBU,EAC3E,OAAO,SAAsBjZ,EAAWD,EAAQoD,QAC9B,IAAZA,IACFA,EAAU+V,GAGZ,ICxC6B/W,EAC3BgX,EDuCE9W,EAAQ,CACVjC,UAAW,SACXgZ,iBAAkB,GAClBjW,QAASzE,OAAOkE,OAAO,CAAC,EAAG2V,GAAiBW,GAC5C1Q,cAAe,CAAC,EAChBjG,SAAU,CACRvC,UAAWA,EACXD,OAAQA,GAEV4C,WAAY,CAAC,EACbD,OAAQ,CAAC,GAEP2W,EAAmB,GACnBC,GAAc,EACdrN,EAAW,CACb5J,MAAOA,EACPkX,WAAY,SAAoBC,GAC9B,IAAIrW,EAAsC,mBAArBqW,EAAkCA,EAAiBnX,EAAMc,SAAWqW,EACzFC,IACApX,EAAMc,QAAUzE,OAAOkE,OAAO,CAAC,EAAGsW,EAAgB7W,EAAMc,QAASA,GACjEd,EAAMiK,cAAgB,CACpBtM,UAAW0B,EAAU1B,GAAa6N,GAAkB7N,GAAaA,EAAU4Q,eAAiB/C,GAAkB7N,EAAU4Q,gBAAkB,GAC1I7Q,OAAQ8N,GAAkB9N,IAI5B,IElE4B+X,EAC9B4B,EFiEMN,EDhCG,SAAwBtB,GAErC,IAAIsB,EAAmBvB,GAAMC,GAE7B,OAAO/W,EAAeb,QAAO,SAAUC,EAAK+B,GAC1C,OAAO/B,EAAIE,OAAO+Y,EAAiBvR,QAAO,SAAUqQ,GAClD,OAAOA,EAAShW,QAAUA,CAC5B,IACF,GAAG,GACL,CCuB+ByX,EElEK7B,EFkEsB,GAAGzX,OAAO2Y,EAAkB3W,EAAMc,QAAQ2U,WEjE9F4B,EAAS5B,EAAU5X,QAAO,SAAUwZ,EAAQE,GAC9C,IAAIC,EAAWH,EAAOE,EAAQ5X,MAK9B,OAJA0X,EAAOE,EAAQ5X,MAAQ6X,EAAWnb,OAAOkE,OAAO,CAAC,EAAGiX,EAAUD,EAAS,CACrEzW,QAASzE,OAAOkE,OAAO,CAAC,EAAGiX,EAAS1W,QAASyW,EAAQzW,SACrD4I,KAAMrN,OAAOkE,OAAO,CAAC,EAAGiX,EAAS9N,KAAM6N,EAAQ7N,QAC5C6N,EACEF,CACT,GAAG,CAAC,GAEGhb,OAAO4D,KAAKoX,GAAQlV,KAAI,SAAUhG,GACvC,OAAOkb,EAAOlb,EAChB,MF4DM,OAJA6D,EAAM+W,iBAAmBA,EAAiBvR,QAAO,SAAUiS,GACzD,OAAOA,EAAE7X,OACX,IA+FFI,EAAM+W,iBAAiB5W,SAAQ,SAAUJ,GACvC,IAAIJ,EAAOI,EAAKJ,KACZ+X,EAAe3X,EAAKe,QACpBA,OAA2B,IAAjB4W,EAA0B,CAAC,EAAIA,EACzChX,EAASX,EAAKW,OAElB,GAAsB,mBAAXA,EAAuB,CAChC,IAAIiX,EAAYjX,EAAO,CACrBV,MAAOA,EACPL,KAAMA,EACNiK,SAAUA,EACV9I,QAASA,IAKXkW,EAAiB/F,KAAK0G,GAFT,WAAmB,EAGlC,CACF,IA/GS/N,EAASQ,QAClB,EAMAwN,YAAa,WACX,IAAIX,EAAJ,CAIA,IAAIY,EAAkB7X,EAAME,SACxBvC,EAAYka,EAAgBla,UAC5BD,EAASma,EAAgBna,OAG7B,GAAKyY,GAAiBxY,EAAWD,GAAjC,CAKAsC,EAAMwG,MAAQ,CACZ7I,UAAWwX,GAAiBxX,EAAWqH,EAAgBtH,GAAoC,UAA3BsC,EAAMc,QAAQC,UAC9ErD,OAAQiG,EAAcjG,IAOxBsC,EAAM0R,OAAQ,EACd1R,EAAMjC,UAAYiC,EAAMc,QAAQ/C,UAKhCiC,EAAM+W,iBAAiB5W,SAAQ,SAAU0V,GACvC,OAAO7V,EAAMmG,cAAc0P,EAASlW,MAAQtD,OAAOkE,OAAO,CAAC,EAAGsV,EAASnM,KACzE,IAEA,IAAK,IAAIoO,EAAQ,EAAGA,EAAQ9X,EAAM+W,iBAAiBhH,OAAQ+H,IACzD,IAAoB,IAAhB9X,EAAM0R,MAAV,CAMA,IAAIqG,EAAwB/X,EAAM+W,iBAAiBe,GAC/ChY,EAAKiY,EAAsBjY,GAC3BkY,EAAyBD,EAAsBjX,QAC/CoM,OAAsC,IAA3B8K,EAAoC,CAAC,EAAIA,EACpDrY,EAAOoY,EAAsBpY,KAEf,mBAAPG,IACTE,EAAQF,EAAG,CACTE,MAAOA,EACPc,QAASoM,EACTvN,KAAMA,EACNiK,SAAUA,KACN5J,EAdR,MAHEA,EAAM0R,OAAQ,EACdoG,GAAS,CAzBb,CATA,CAqDF,EAGA1N,QC1I2BtK,ED0IV,WACf,OAAO,IAAImY,SAAQ,SAAUC,GAC3BtO,EAASgO,cACTM,EAAQlY,EACV,GACF,EC7IG,WAUL,OATK8W,IACHA,EAAU,IAAImB,SAAQ,SAAUC,GAC9BD,QAAQC,UAAUC,MAAK,WACrBrB,OAAUsB,EACVF,EAAQpY,IACV,GACF,KAGKgX,CACT,GDmIIuB,QAAS,WACPjB,IACAH,GAAc,CAChB,GAGF,IAAKd,GAAiBxY,EAAWD,GAC/B,OAAOkM,EAmCT,SAASwN,IACPJ,EAAiB7W,SAAQ,SAAUL,GACjC,OAAOA,GACT,IACAkX,EAAmB,EACrB,CAEA,OAvCApN,EAASsN,WAAWpW,GAASqX,MAAK,SAAUnY,IACrCiX,GAAenW,EAAQwX,eAC1BxX,EAAQwX,cAActY,EAE1B,IAmCO4J,CACT,CACF,CACO,IAAI2O,GAA4BhC,KGzLnC,GAA4BA,GAAgB,CAC9CI,iBAFqB,CAAC6B,GAAgB,GAAe,GAAe,EAAa,GAAQ,GAAM,GAAiB,EAAO,MCJrH,GAA4BjC,GAAgB,CAC9CI,iBAFqB,CAAC6B,GAAgB,GAAe,GAAe,KCatE,MAAMC,GAAa,IAAIlI,IACjBmI,GAAO,CACX,GAAAtH,CAAIxS,EAASzC,EAAKyN,GACX6O,GAAWzC,IAAIpX,IAClB6Z,GAAWrH,IAAIxS,EAAS,IAAI2R,KAE9B,MAAMoI,EAAcF,GAAWjc,IAAIoC,GAI9B+Z,EAAY3C,IAAI7Z,IAA6B,IAArBwc,EAAYC,KAKzCD,EAAYvH,IAAIjV,EAAKyN,GAHnBiP,QAAQC,MAAM,+EAA+E7W,MAAM8W,KAAKJ,EAAY1Y,QAAQ,MAIhI,EACAzD,IAAG,CAACoC,EAASzC,IACPsc,GAAWzC,IAAIpX,IACV6Z,GAAWjc,IAAIoC,GAASpC,IAAIL,IAE9B,KAET,MAAA6c,CAAOpa,EAASzC,GACd,IAAKsc,GAAWzC,IAAIpX,GAClB,OAEF,MAAM+Z,EAAcF,GAAWjc,IAAIoC,GACnC+Z,EAAYM,OAAO9c,GAGM,IAArBwc,EAAYC,MACdH,GAAWQ,OAAOra,EAEtB,GAYIsa,GAAiB,gBAOjBC,GAAgBC,IAChBA,GAAYna,OAAOoa,KAAOpa,OAAOoa,IAAIC,SAEvCF,EAAWA,EAAS5O,QAAQ,iBAAiB,CAAC+O,EAAOC,IAAO,IAAIH,IAAIC,OAAOE,QAEtEJ,GA4CHK,GAAuB7a,IAC3BA,EAAQ8a,cAAc,IAAIC,MAAMT,IAAgB,EAE5C,GAAYU,MACXA,GAA4B,iBAAXA,UAGO,IAAlBA,EAAOC,SAChBD,EAASA,EAAO,SAEgB,IAApBA,EAAOE,UAEjBC,GAAaH,GAEb,GAAUA,GACLA,EAAOC,OAASD,EAAO,GAAKA,EAEf,iBAAXA,GAAuBA,EAAO7J,OAAS,EACzCrL,SAAS+C,cAAc0R,GAAcS,IAEvC,KAEHI,GAAYpb,IAChB,IAAK,GAAUA,IAAgD,IAApCA,EAAQqb,iBAAiBlK,OAClD,OAAO,EAET,MAAMmK,EAAgF,YAA7D5V,iBAAiB1F,GAASub,iBAAiB,cAE9DC,EAAgBxb,EAAQyb,QAAQ,uBACtC,IAAKD,EACH,OAAOF,EAET,GAAIE,IAAkBxb,EAAS,CAC7B,MAAM0b,EAAU1b,EAAQyb,QAAQ,WAChC,GAAIC,GAAWA,EAAQlW,aAAegW,EACpC,OAAO,EAET,GAAgB,OAAZE,EACF,OAAO,CAEX,CACA,OAAOJ,CAAgB,EAEnBK,GAAa3b,IACZA,GAAWA,EAAQkb,WAAaU,KAAKC,gBAGtC7b,EAAQ8b,UAAU7W,SAAS,mBAGC,IAArBjF,EAAQ+b,SACV/b,EAAQ+b,SAEV/b,EAAQgc,aAAa,aAAoD,UAArChc,EAAQic,aAAa,aAE5DC,GAAiBlc,IACrB,IAAK8F,SAASC,gBAAgBoW,aAC5B,OAAO,KAIT,GAAmC,mBAAxBnc,EAAQqF,YAA4B,CAC7C,MAAM+W,EAAOpc,EAAQqF,cACrB,OAAO+W,aAAgBtb,WAAasb,EAAO,IAC7C,CACA,OAAIpc,aAAmBc,WACdd,EAIJA,EAAQwF,WAGN0W,GAAelc,EAAQwF,YAFrB,IAEgC,EAErC6W,GAAO,OAUPC,GAAStc,IACbA,EAAQuE,YAAY,EAEhBgY,GAAY,IACZlc,OAAOmc,SAAW1W,SAAS6G,KAAKqP,aAAa,qBACxC3b,OAAOmc,OAET,KAEHC,GAA4B,GAgB5BC,GAAQ,IAAuC,QAAjC5W,SAASC,gBAAgB4W,IACvCC,GAAqBC,IAhBAC,QAiBN,KACjB,MAAMC,EAAIR,KAEV,GAAIQ,EAAG,CACL,MAAMhc,EAAO8b,EAAOG,KACdC,EAAqBF,EAAE7b,GAAGH,GAChCgc,EAAE7b,GAAGH,GAAQ8b,EAAOK,gBACpBH,EAAE7b,GAAGH,GAAMoc,YAAcN,EACzBE,EAAE7b,GAAGH,GAAMqc,WAAa,KACtBL,EAAE7b,GAAGH,GAAQkc,EACNJ,EAAOK,gBAElB,GA5B0B,YAAxBpX,SAASuX,YAENZ,GAA0BtL,QAC7BrL,SAASyF,iBAAiB,oBAAoB,KAC5C,IAAK,MAAMuR,KAAYL,GACrBK,GACF,IAGJL,GAA0BpK,KAAKyK,IAE/BA,GAkBA,EAEEQ,GAAU,CAACC,EAAkB9F,EAAO,GAAI+F,EAAeD,IACxB,mBAArBA,EAAkCA,KAAoB9F,GAAQ+F,EAExEC,GAAyB,CAACX,EAAUY,EAAmBC,GAAoB,KAC/E,IAAKA,EAEH,YADAL,GAAQR,GAGV,MACMc,EA/JiC5d,KACvC,IAAKA,EACH,OAAO,EAIT,IAAI,mBACF6d,EAAkB,gBAClBC,GACEzd,OAAOqF,iBAAiB1F,GAC5B,MAAM+d,EAA0BC,OAAOC,WAAWJ,GAC5CK,EAAuBF,OAAOC,WAAWH,GAG/C,OAAKC,GAA4BG,GAKjCL,EAAqBA,EAAmBlb,MAAM,KAAK,GACnDmb,EAAkBA,EAAgBnb,MAAM,KAAK,GAtDf,KAuDtBqb,OAAOC,WAAWJ,GAAsBG,OAAOC,WAAWH,KANzD,CAMoG,EA0IpFK,CAAiCT,GADlC,EAExB,IAAIU,GAAS,EACb,MAAMC,EAAU,EACdrR,aAEIA,IAAW0Q,IAGfU,GAAS,EACTV,EAAkBjS,oBAAoB6O,GAAgB+D,GACtDf,GAAQR,GAAS,EAEnBY,EAAkBnS,iBAAiB+O,GAAgB+D,GACnDC,YAAW,KACJF,GACHvD,GAAqB6C,EACvB,GACCE,EAAiB,EAYhBW,GAAuB,CAAC1R,EAAM2R,EAAeC,EAAeC,KAChE,MAAMC,EAAa9R,EAAKsE,OACxB,IAAI+H,EAAQrM,EAAKjH,QAAQ4Y,GAIzB,OAAe,IAAXtF,GACMuF,GAAiBC,EAAiB7R,EAAK8R,EAAa,GAAK9R,EAAK,IAExEqM,GAASuF,EAAgB,GAAK,EAC1BC,IACFxF,GAASA,EAAQyF,GAAcA,GAE1B9R,EAAKjK,KAAKC,IAAI,EAAGD,KAAKE,IAAIoW,EAAOyF,EAAa,KAAI,EAerDC,GAAiB,qBACjBC,GAAiB,OACjBC,GAAgB,SAChBC,GAAgB,CAAC,EACvB,IAAIC,GAAW,EACf,MAAMC,GAAe,CACnBC,WAAY,YACZC,WAAY,YAERC,GAAe,IAAIrI,IAAI,CAAC,QAAS,WAAY,UAAW,YAAa,cAAe,aAAc,iBAAkB,YAAa,WAAY,YAAa,cAAe,YAAa,UAAW,WAAY,QAAS,oBAAqB,aAAc,YAAa,WAAY,cAAe,cAAe,cAAe,YAAa,eAAgB,gBAAiB,eAAgB,gBAAiB,aAAc,QAAS,OAAQ,SAAU,QAAS,SAAU,SAAU,UAAW,WAAY,OAAQ,SAAU,eAAgB,SAAU,OAAQ,mBAAoB,mBAAoB,QAAS,QAAS,WAM/lB,SAASsI,GAAarf,EAASsf,GAC7B,OAAOA,GAAO,GAAGA,MAAQN,QAAgBhf,EAAQgf,UAAYA,IAC/D,CACA,SAASO,GAAiBvf,GACxB,MAAMsf,EAAMD,GAAarf,GAGzB,OAFAA,EAAQgf,SAAWM,EACnBP,GAAcO,GAAOP,GAAcO,IAAQ,CAAC,EACrCP,GAAcO,EACvB,CAiCA,SAASE,GAAYC,EAAQC,EAAUC,EAAqB,MAC1D,OAAOliB,OAAOmiB,OAAOH,GAAQ7M,MAAKiN,GAASA,EAAMH,WAAaA,GAAYG,EAAMF,qBAAuBA,GACzG,CACA,SAASG,GAAoBC,EAAmB1B,EAAS2B,GACvD,MAAMC,EAAiC,iBAAZ5B,EAErBqB,EAAWO,EAAcD,EAAqB3B,GAAW2B,EAC/D,IAAIE,EAAYC,GAAaJ,GAI7B,OAHKX,GAAahI,IAAI8I,KACpBA,EAAYH,GAEP,CAACE,EAAaP,EAAUQ,EACjC,CACA,SAASE,GAAWpgB,EAAS+f,EAAmB1B,EAAS2B,EAAoBK,GAC3E,GAAiC,iBAAtBN,IAAmC/f,EAC5C,OAEF,IAAKigB,EAAaP,EAAUQ,GAAaJ,GAAoBC,EAAmB1B,EAAS2B,GAIzF,GAAID,KAAqBd,GAAc,CACrC,MAAMqB,EAAepf,GACZ,SAAU2e,GACf,IAAKA,EAAMU,eAAiBV,EAAMU,gBAAkBV,EAAMW,iBAAmBX,EAAMW,eAAevb,SAAS4a,EAAMU,eAC/G,OAAOrf,EAAGjD,KAAKwiB,KAAMZ,EAEzB,EAEFH,EAAWY,EAAaZ,EAC1B,CACA,MAAMD,EAASF,GAAiBvf,GAC1B0gB,EAAWjB,EAAOS,KAAeT,EAAOS,GAAa,CAAC,GACtDS,EAAmBnB,GAAYkB,EAAUhB,EAAUO,EAAc5B,EAAU,MACjF,GAAIsC,EAEF,YADAA,EAAiBN,OAASM,EAAiBN,QAAUA,GAGvD,MAAMf,EAAMD,GAAaK,EAAUK,EAAkBnU,QAAQgT,GAAgB,KACvE1d,EAAK+e,EA5Db,SAAoCjgB,EAASwa,EAAUtZ,GACrD,OAAO,SAASmd,EAAQwB,GACtB,MAAMe,EAAc5gB,EAAQ6gB,iBAAiBrG,GAC7C,IAAK,IAAI,OACPxN,GACE6S,EAAO7S,GAAUA,IAAWyT,KAAMzT,EAASA,EAAOxH,WACpD,IAAK,MAAMsb,KAAcF,EACvB,GAAIE,IAAe9T,EASnB,OANA+T,GAAWlB,EAAO,CAChBW,eAAgBxT,IAEdqR,EAAQgC,QACVW,GAAaC,IAAIjhB,EAAS6f,EAAMqB,KAAM1G,EAAUtZ,GAE3CA,EAAGigB,MAAMnU,EAAQ,CAAC6S,GAG/B,CACF,CAwC2BuB,CAA2BphB,EAASqe,EAASqB,GAvExE,SAA0B1f,EAASkB,GACjC,OAAO,SAASmd,EAAQwB,GAOtB,OANAkB,GAAWlB,EAAO,CAChBW,eAAgBxgB,IAEdqe,EAAQgC,QACVW,GAAaC,IAAIjhB,EAAS6f,EAAMqB,KAAMhgB,GAEjCA,EAAGigB,MAAMnhB,EAAS,CAAC6f,GAC5B,CACF,CA6DoFwB,CAAiBrhB,EAAS0f,GAC5Gxe,EAAGye,mBAAqBM,EAAc5B,EAAU,KAChDnd,EAAGwe,SAAWA,EACdxe,EAAGmf,OAASA,EACZnf,EAAG8d,SAAWM,EACdoB,EAASpB,GAAOpe,EAChBlB,EAAQuL,iBAAiB2U,EAAWhf,EAAI+e,EAC1C,CACA,SAASqB,GAActhB,EAASyf,EAAQS,EAAW7B,EAASsB,GAC1D,MAAMze,EAAKse,GAAYC,EAAOS,GAAY7B,EAASsB,GAC9Cze,IAGLlB,EAAQyL,oBAAoByU,EAAWhf,EAAIqgB,QAAQ5B,WAC5CF,EAAOS,GAAWhf,EAAG8d,UAC9B,CACA,SAASwC,GAAyBxhB,EAASyf,EAAQS,EAAWuB,GAC5D,MAAMC,EAAoBjC,EAAOS,IAAc,CAAC,EAChD,IAAK,MAAOyB,EAAY9B,KAAUpiB,OAAOmkB,QAAQF,GAC3CC,EAAWE,SAASJ,IACtBH,GAActhB,EAASyf,EAAQS,EAAWL,EAAMH,SAAUG,EAAMF,mBAGtE,CACA,SAASQ,GAAaN,GAGpB,OADAA,EAAQA,EAAMjU,QAAQiT,GAAgB,IAC/BI,GAAaY,IAAUA,CAChC,CACA,MAAMmB,GAAe,CACnB,EAAAc,CAAG9hB,EAAS6f,EAAOxB,EAAS2B,GAC1BI,GAAWpgB,EAAS6f,EAAOxB,EAAS2B,GAAoB,EAC1D,EACA,GAAA+B,CAAI/hB,EAAS6f,EAAOxB,EAAS2B,GAC3BI,GAAWpgB,EAAS6f,EAAOxB,EAAS2B,GAAoB,EAC1D,EACA,GAAAiB,CAAIjhB,EAAS+f,EAAmB1B,EAAS2B,GACvC,GAAiC,iBAAtBD,IAAmC/f,EAC5C,OAEF,MAAOigB,EAAaP,EAAUQ,GAAaJ,GAAoBC,EAAmB1B,EAAS2B,GACrFgC,EAAc9B,IAAcH,EAC5BN,EAASF,GAAiBvf,GAC1B0hB,EAAoBjC,EAAOS,IAAc,CAAC,EAC1C+B,EAAclC,EAAkBmC,WAAW,KACjD,QAAwB,IAAbxC,EAAX,CAQA,GAAIuC,EACF,IAAK,MAAME,KAAgB1kB,OAAO4D,KAAKoe,GACrC+B,GAAyBxhB,EAASyf,EAAQ0C,EAAcpC,EAAkBlN,MAAM,IAGpF,IAAK,MAAOuP,EAAavC,KAAUpiB,OAAOmkB,QAAQF,GAAoB,CACpE,MAAMC,EAAaS,EAAYxW,QAAQkT,GAAe,IACjDkD,IAAejC,EAAkB8B,SAASF,IAC7CL,GAActhB,EAASyf,EAAQS,EAAWL,EAAMH,SAAUG,EAAMF,mBAEpE,CAXA,KAPA,CAEE,IAAKliB,OAAO4D,KAAKqgB,GAAmBvQ,OAClC,OAEFmQ,GAActhB,EAASyf,EAAQS,EAAWR,EAAUO,EAAc5B,EAAU,KAE9E,CAYF,EACA,OAAAgE,CAAQriB,EAAS6f,EAAOpI,GACtB,GAAqB,iBAAVoI,IAAuB7f,EAChC,OAAO,KAET,MAAM+c,EAAIR,KAGV,IAAI+F,EAAc,KACdC,GAAU,EACVC,GAAiB,EACjBC,GAAmB,EAJH5C,IADFM,GAAaN,IAMZ9C,IACjBuF,EAAcvF,EAAEhC,MAAM8E,EAAOpI,GAC7BsF,EAAE/c,GAASqiB,QAAQC,GACnBC,GAAWD,EAAYI,uBACvBF,GAAkBF,EAAYK,gCAC9BF,EAAmBH,EAAYM,sBAEjC,MAAMC,EAAM9B,GAAW,IAAIhG,MAAM8E,EAAO,CACtC0C,UACAO,YAAY,IACVrL,GAUJ,OATIgL,GACFI,EAAIE,iBAEFP,GACFxiB,EAAQ8a,cAAc+H,GAEpBA,EAAIJ,kBAAoBH,GAC1BA,EAAYS,iBAEPF,CACT,GAEF,SAAS9B,GAAWljB,EAAKmlB,EAAO,CAAC,GAC/B,IAAK,MAAOzlB,EAAKa,KAAUX,OAAOmkB,QAAQoB,GACxC,IACEnlB,EAAIN,GAAOa,CACb,CAAE,MAAO6kB,GACPxlB,OAAOC,eAAeG,EAAKN,EAAK,CAC9B2lB,cAAc,EACdtlB,IAAG,IACMQ,GAGb,CAEF,OAAOP,CACT,CASA,SAASslB,GAAc/kB,GACrB,GAAc,SAAVA,EACF,OAAO,EAET,GAAc,UAAVA,EACF,OAAO,EAET,GAAIA,IAAU4f,OAAO5f,GAAOkC,WAC1B,OAAO0d,OAAO5f,GAEhB,GAAc,KAAVA,GAA0B,SAAVA,EAClB,OAAO,KAET,GAAqB,iBAAVA,EACT,OAAOA,EAET,IACE,OAAOglB,KAAKC,MAAMC,mBAAmBllB,GACvC,CAAE,MAAO6kB,GACP,OAAO7kB,CACT,CACF,CACA,SAASmlB,GAAiBhmB,GACxB,OAAOA,EAAIqO,QAAQ,UAAU4X,GAAO,IAAIA,EAAItjB,iBAC9C,CACA,MAAMujB,GAAc,CAClB,gBAAAC,CAAiB1jB,EAASzC,EAAKa,GAC7B4B,EAAQ6B,aAAa,WAAW0hB,GAAiBhmB,KAAQa,EAC3D,EACA,mBAAAulB,CAAoB3jB,EAASzC,GAC3ByC,EAAQ4B,gBAAgB,WAAW2hB,GAAiBhmB,KACtD,EACA,iBAAAqmB,CAAkB5jB,GAChB,IAAKA,EACH,MAAO,CAAC,EAEV,MAAM0B,EAAa,CAAC,EACdmiB,EAASpmB,OAAO4D,KAAKrB,EAAQ8jB,SAASld,QAAOrJ,GAAOA,EAAI2kB,WAAW,QAAU3kB,EAAI2kB,WAAW,cAClG,IAAK,MAAM3kB,KAAOsmB,EAAQ,CACxB,IAAIE,EAAUxmB,EAAIqO,QAAQ,MAAO,IACjCmY,EAAUA,EAAQC,OAAO,GAAG9jB,cAAgB6jB,EAAQlR,MAAM,EAAGkR,EAAQ5S,QACrEzP,EAAWqiB,GAAWZ,GAAcnjB,EAAQ8jB,QAAQvmB,GACtD,CACA,OAAOmE,CACT,EACAuiB,iBAAgB,CAACjkB,EAASzC,IACjB4lB,GAAcnjB,EAAQic,aAAa,WAAWsH,GAAiBhmB,QAgB1E,MAAM2mB,GAEJ,kBAAWC,GACT,MAAO,CAAC,CACV,CACA,sBAAWC,GACT,MAAO,CAAC,CACV,CACA,eAAWpH,GACT,MAAM,IAAIqH,MAAM,sEAClB,CACA,UAAAC,CAAWC,GAIT,OAHAA,EAAS9D,KAAK+D,gBAAgBD,GAC9BA,EAAS9D,KAAKgE,kBAAkBF,GAChC9D,KAAKiE,iBAAiBH,GACfA,CACT,CACA,iBAAAE,CAAkBF,GAChB,OAAOA,CACT,CACA,eAAAC,CAAgBD,EAAQvkB,GACtB,MAAM2kB,EAAa,GAAU3kB,GAAWyjB,GAAYQ,iBAAiBjkB,EAAS,UAAY,CAAC,EAE3F,MAAO,IACFygB,KAAKmE,YAAYT,WACM,iBAAfQ,EAA0BA,EAAa,CAAC,KAC/C,GAAU3kB,GAAWyjB,GAAYG,kBAAkB5jB,GAAW,CAAC,KAC7C,iBAAXukB,EAAsBA,EAAS,CAAC,EAE/C,CACA,gBAAAG,CAAiBH,EAAQM,EAAcpE,KAAKmE,YAAYR,aACtD,IAAK,MAAO7hB,EAAUuiB,KAAkBrnB,OAAOmkB,QAAQiD,GAAc,CACnE,MAAMzmB,EAAQmmB,EAAOhiB,GACfwiB,EAAY,GAAU3mB,GAAS,UAhiBrC4c,OADSA,EAiiB+C5c,GA/hBnD,GAAG4c,IAELvd,OAAOM,UAAUuC,SAASrC,KAAK+c,GAAQL,MAAM,eAAe,GAAGza,cA8hBlE,IAAK,IAAI8kB,OAAOF,GAAehhB,KAAKihB,GAClC,MAAM,IAAIE,UAAU,GAAGxE,KAAKmE,YAAY5H,KAAKkI,0BAA0B3iB,qBAA4BwiB,yBAAiCD,MAExI,CAriBW9J,KAsiBb,EAqBF,MAAMmK,WAAsBjB,GAC1B,WAAAU,CAAY5kB,EAASukB,GACnBa,SACAplB,EAAUmb,GAAWnb,MAIrBygB,KAAK4E,SAAWrlB,EAChBygB,KAAK6E,QAAU7E,KAAK6D,WAAWC,GAC/BzK,GAAKtH,IAAIiO,KAAK4E,SAAU5E,KAAKmE,YAAYW,SAAU9E,MACrD,CAGA,OAAA+E,GACE1L,GAAKM,OAAOqG,KAAK4E,SAAU5E,KAAKmE,YAAYW,UAC5CvE,GAAaC,IAAIR,KAAK4E,SAAU5E,KAAKmE,YAAYa,WACjD,IAAK,MAAMC,KAAgBjoB,OAAOkoB,oBAAoBlF,MACpDA,KAAKiF,GAAgB,IAEzB,CACA,cAAAE,CAAe9I,EAAU9c,EAAS6lB,GAAa,GAC7CpI,GAAuBX,EAAU9c,EAAS6lB,EAC5C,CACA,UAAAvB,CAAWC,GAIT,OAHAA,EAAS9D,KAAK+D,gBAAgBD,EAAQ9D,KAAK4E,UAC3Cd,EAAS9D,KAAKgE,kBAAkBF,GAChC9D,KAAKiE,iBAAiBH,GACfA,CACT,CAGA,kBAAOuB,CAAY9lB,GACjB,OAAO8Z,GAAKlc,IAAIud,GAAWnb,GAAUygB,KAAK8E,SAC5C,CACA,0BAAOQ,CAAoB/lB,EAASukB,EAAS,CAAC,GAC5C,OAAO9D,KAAKqF,YAAY9lB,IAAY,IAAIygB,KAAKzgB,EAA2B,iBAAXukB,EAAsBA,EAAS,KAC9F,CACA,kBAAWyB,GACT,MA5CY,OA6Cd,CACA,mBAAWT,GACT,MAAO,MAAM9E,KAAKzD,MACpB,CACA,oBAAWyI,GACT,MAAO,IAAIhF,KAAK8E,UAClB,CACA,gBAAOU,CAAUllB,GACf,MAAO,GAAGA,IAAO0f,KAAKgF,WACxB,EAUF,MAAMS,GAAclmB,IAClB,IAAIwa,EAAWxa,EAAQic,aAAa,kBACpC,IAAKzB,GAAyB,MAAbA,EAAkB,CACjC,IAAI2L,EAAgBnmB,EAAQic,aAAa,QAMzC,IAAKkK,IAAkBA,EAActE,SAAS,OAASsE,EAAcjE,WAAW,KAC9E,OAAO,KAILiE,EAActE,SAAS,OAASsE,EAAcjE,WAAW,OAC3DiE,EAAgB,IAAIA,EAAcxjB,MAAM,KAAK,MAE/C6X,EAAW2L,GAAmC,MAAlBA,EAAwBA,EAAcC,OAAS,IAC7E,CACA,OAAO5L,EAAWA,EAAS7X,MAAM,KAAKY,KAAI8iB,GAAO9L,GAAc8L,KAAM1iB,KAAK,KAAO,IAAI,EAEjF2iB,GAAiB,CACrB1T,KAAI,CAAC4H,EAAUxa,EAAU8F,SAASC,kBACzB,GAAG3G,UAAUsB,QAAQ3C,UAAU8iB,iBAAiB5iB,KAAK+B,EAASwa,IAEvE+L,QAAO,CAAC/L,EAAUxa,EAAU8F,SAASC,kBAC5BrF,QAAQ3C,UAAU8K,cAAc5K,KAAK+B,EAASwa,GAEvDgM,SAAQ,CAACxmB,EAASwa,IACT,GAAGpb,UAAUY,EAAQwmB,UAAU5f,QAAOzB,GAASA,EAAMshB,QAAQjM,KAEtE,OAAAkM,CAAQ1mB,EAASwa,GACf,MAAMkM,EAAU,GAChB,IAAIC,EAAW3mB,EAAQwF,WAAWiW,QAAQjB,GAC1C,KAAOmM,GACLD,EAAQrU,KAAKsU,GACbA,EAAWA,EAASnhB,WAAWiW,QAAQjB,GAEzC,OAAOkM,CACT,EACA,IAAAE,CAAK5mB,EAASwa,GACZ,IAAIqM,EAAW7mB,EAAQ8mB,uBACvB,KAAOD,GAAU,CACf,GAAIA,EAASJ,QAAQjM,GACnB,MAAO,CAACqM,GAEVA,EAAWA,EAASC,sBACtB,CACA,MAAO,EACT,EAEA,IAAAxhB,CAAKtF,EAASwa,GACZ,IAAIlV,EAAOtF,EAAQ+mB,mBACnB,KAAOzhB,GAAM,CACX,GAAIA,EAAKmhB,QAAQjM,GACf,MAAO,CAAClV,GAEVA,EAAOA,EAAKyhB,kBACd,CACA,MAAO,EACT,EACA,iBAAAC,CAAkBhnB,GAChB,MAAMinB,EAAa,CAAC,IAAK,SAAU,QAAS,WAAY,SAAU,UAAW,aAAc,4BAA4B1jB,KAAIiX,GAAY,GAAGA,2BAAiC7W,KAAK,KAChL,OAAO8c,KAAK7N,KAAKqU,EAAYjnB,GAAS4G,QAAOsgB,IAAOvL,GAAWuL,IAAO9L,GAAU8L,IAClF,EACA,sBAAAC,CAAuBnnB,GACrB,MAAMwa,EAAW0L,GAAYlmB,GAC7B,OAAIwa,GACK8L,GAAeC,QAAQ/L,GAAYA,EAErC,IACT,EACA,sBAAA4M,CAAuBpnB,GACrB,MAAMwa,EAAW0L,GAAYlmB,GAC7B,OAAOwa,EAAW8L,GAAeC,QAAQ/L,GAAY,IACvD,EACA,+BAAA6M,CAAgCrnB,GAC9B,MAAMwa,EAAW0L,GAAYlmB,GAC7B,OAAOwa,EAAW8L,GAAe1T,KAAK4H,GAAY,EACpD,GAUI8M,GAAuB,CAACC,EAAWC,EAAS,UAChD,MAAMC,EAAa,gBAAgBF,EAAU9B,YACvC1kB,EAAOwmB,EAAUvK,KACvBgE,GAAac,GAAGhc,SAAU2hB,EAAY,qBAAqB1mB,OAAU,SAAU8e,GAI7E,GAHI,CAAC,IAAK,QAAQgC,SAASpB,KAAKiH,UAC9B7H,EAAMkD,iBAEJpH,GAAW8E,MACb,OAEF,MAAMzT,EAASsZ,GAAec,uBAAuB3G,OAASA,KAAKhF,QAAQ,IAAI1a,KAC9DwmB,EAAUxB,oBAAoB/Y,GAGtCwa,IACX,GAAE,EAiBEG,GAAc,YACdC,GAAc,QAAQD,KACtBE,GAAe,SAASF,KAQ9B,MAAMG,WAAc3C,GAElB,eAAWnI,GACT,MAfW,OAgBb,CAGA,KAAA+K,GAEE,GADmB/G,GAAaqB,QAAQ5B,KAAK4E,SAAUuC,IACxCnF,iBACb,OAEFhC,KAAK4E,SAASvJ,UAAU1B,OAlBF,QAmBtB,MAAMyL,EAAapF,KAAK4E,SAASvJ,UAAU7W,SApBrB,QAqBtBwb,KAAKmF,gBAAe,IAAMnF,KAAKuH,mBAAmBvH,KAAK4E,SAAUQ,EACnE,CAGA,eAAAmC,GACEvH,KAAK4E,SAASjL,SACd4G,GAAaqB,QAAQ5B,KAAK4E,SAAUwC,IACpCpH,KAAK+E,SACP,CAGA,sBAAOtI,CAAgBqH,GACrB,OAAO9D,KAAKwH,MAAK,WACf,MAAMnd,EAAOgd,GAAM/B,oBAAoBtF,MACvC,GAAsB,iBAAX8D,EAAX,CAGA,QAAqB/K,IAAjB1O,EAAKyZ,IAAyBA,EAAOrC,WAAW,MAAmB,gBAAXqC,EAC1D,MAAM,IAAIU,UAAU,oBAAoBV,MAE1CzZ,EAAKyZ,GAAQ9D,KAJb,CAKF,GACF,EAOF6G,GAAqBQ,GAAO,SAM5BlL,GAAmBkL,IAcnB,MAKMI,GAAyB,4BAO/B,MAAMC,WAAehD,GAEnB,eAAWnI,GACT,MAfW,QAgBb,CAGA,MAAAoL,GAEE3H,KAAK4E,SAASxjB,aAAa,eAAgB4e,KAAK4E,SAASvJ,UAAUsM,OAjB3C,UAkB1B,CAGA,sBAAOlL,CAAgBqH,GACrB,OAAO9D,KAAKwH,MAAK,WACf,MAAMnd,EAAOqd,GAAOpC,oBAAoBtF,MACzB,WAAX8D,GACFzZ,EAAKyZ,IAET,GACF,EAOFvD,GAAac,GAAGhc,SAjCe,2BAiCmBoiB,IAAwBrI,IACxEA,EAAMkD,iBACN,MAAMsF,EAASxI,EAAM7S,OAAOyO,QAAQyM,IACvBC,GAAOpC,oBAAoBsC,GACnCD,QAAQ,IAOfxL,GAAmBuL,IAcnB,MACMG,GAAc,YACdC,GAAmB,aAAaD,KAChCE,GAAkB,YAAYF,KAC9BG,GAAiB,WAAWH,KAC5BI,GAAoB,cAAcJ,KAClCK,GAAkB,YAAYL,KAK9BM,GAAY,CAChBC,YAAa,KACbC,aAAc,KACdC,cAAe,MAEXC,GAAgB,CACpBH,YAAa,kBACbC,aAAc,kBACdC,cAAe,mBAOjB,MAAME,WAAc/E,GAClB,WAAAU,CAAY5kB,EAASukB,GACnBa,QACA3E,KAAK4E,SAAWrlB,EACXA,GAAYipB,GAAMC,gBAGvBzI,KAAK6E,QAAU7E,KAAK6D,WAAWC,GAC/B9D,KAAK0I,QAAU,EACf1I,KAAK2I,sBAAwB7H,QAAQlhB,OAAOgpB,cAC5C5I,KAAK6I,cACP,CAGA,kBAAWnF,GACT,OAAOyE,EACT,CACA,sBAAWxE,GACT,OAAO4E,EACT,CACA,eAAWhM,GACT,MA/CW,OAgDb,CAGA,OAAAwI,GACExE,GAAaC,IAAIR,KAAK4E,SAAUiD,GAClC,CAGA,MAAAiB,CAAO1J,GACAY,KAAK2I,sBAIN3I,KAAK+I,wBAAwB3J,KAC/BY,KAAK0I,QAAUtJ,EAAM4J,SAJrBhJ,KAAK0I,QAAUtJ,EAAM6J,QAAQ,GAAGD,OAMpC,CACA,IAAAE,CAAK9J,GACCY,KAAK+I,wBAAwB3J,KAC/BY,KAAK0I,QAAUtJ,EAAM4J,QAAUhJ,KAAK0I,SAEtC1I,KAAKmJ,eACLtM,GAAQmD,KAAK6E,QAAQuD,YACvB,CACA,KAAAgB,CAAMhK,GACJY,KAAK0I,QAAUtJ,EAAM6J,SAAW7J,EAAM6J,QAAQvY,OAAS,EAAI,EAAI0O,EAAM6J,QAAQ,GAAGD,QAAUhJ,KAAK0I,OACjG,CACA,YAAAS,GACE,MAAME,EAAYlnB,KAAKoC,IAAIyb,KAAK0I,SAChC,GAAIW,GAnEgB,GAoElB,OAEF,MAAM/b,EAAY+b,EAAYrJ,KAAK0I,QACnC1I,KAAK0I,QAAU,EACVpb,GAGLuP,GAAQvP,EAAY,EAAI0S,KAAK6E,QAAQyD,cAAgBtI,KAAK6E,QAAQwD,aACpE,CACA,WAAAQ,GACM7I,KAAK2I,uBACPpI,GAAac,GAAGrB,KAAK4E,SAAUqD,IAAmB7I,GAASY,KAAK8I,OAAO1J,KACvEmB,GAAac,GAAGrB,KAAK4E,SAAUsD,IAAiB9I,GAASY,KAAKkJ,KAAK9J,KACnEY,KAAK4E,SAASvJ,UAAU5E,IAlFG,mBAoF3B8J,GAAac,GAAGrB,KAAK4E,SAAUkD,IAAkB1I,GAASY,KAAK8I,OAAO1J,KACtEmB,GAAac,GAAGrB,KAAK4E,SAAUmD,IAAiB3I,GAASY,KAAKoJ,MAAMhK,KACpEmB,GAAac,GAAGrB,KAAK4E,SAAUoD,IAAgB5I,GAASY,KAAKkJ,KAAK9J,KAEtE,CACA,uBAAA2J,CAAwB3J,GACtB,OAAOY,KAAK2I,wBA3FS,QA2FiBvJ,EAAMkK,aA5FrB,UA4FyDlK,EAAMkK,YACxF,CAGA,kBAAOb,GACL,MAAO,iBAAkBpjB,SAASC,iBAAmB7C,UAAU8mB,eAAiB,CAClF,EAeF,MAEMC,GAAc,eACdC,GAAiB,YACjBC,GAAmB,YACnBC,GAAoB,aAGpBC,GAAa,OACbC,GAAa,OACbC,GAAiB,OACjBC,GAAkB,QAClBC,GAAc,QAAQR,KACtBS,GAAa,OAAOT,KACpBU,GAAkB,UAAUV,KAC5BW,GAAqB,aAAaX,KAClCY,GAAqB,aAAaZ,KAClCa,GAAmB,YAAYb,KAC/Bc,GAAwB,OAAOd,KAAcC,KAC7Cc,GAAyB,QAAQf,KAAcC,KAC/Ce,GAAsB,WACtBC,GAAsB,SAMtBC,GAAkB,UAClBC,GAAgB,iBAChBC,GAAuBF,GAAkBC,GAKzCE,GAAmB,CACvB,CAACnB,IAAmBK,GACpB,CAACJ,IAAoBG,IAEjBgB,GAAY,CAChBC,SAAU,IACVC,UAAU,EACVC,MAAO,QACPC,MAAM,EACNC,OAAO,EACPC,MAAM,GAEFC,GAAgB,CACpBN,SAAU,mBAEVC,SAAU,UACVC,MAAO,mBACPC,KAAM,mBACNC,MAAO,UACPC,KAAM,WAOR,MAAME,WAAiB5G,GACrB,WAAAP,CAAY5kB,EAASukB,GACnBa,MAAMplB,EAASukB,GACf9D,KAAKuL,UAAY,KACjBvL,KAAKwL,eAAiB,KACtBxL,KAAKyL,YAAa,EAClBzL,KAAK0L,aAAe,KACpB1L,KAAK2L,aAAe,KACpB3L,KAAK4L,mBAAqB/F,GAAeC,QArCjB,uBAqC8C9F,KAAK4E,UAC3E5E,KAAK6L,qBACD7L,KAAK6E,QAAQqG,OAASV,IACxBxK,KAAK8L,OAET,CAGA,kBAAWpI,GACT,OAAOoH,EACT,CACA,sBAAWnH,GACT,OAAO0H,EACT,CACA,eAAW9O,GACT,MAnFW,UAoFb,CAGA,IAAA1X,GACEmb,KAAK+L,OAAOnC,GACd,CACA,eAAAoC,IAIO3mB,SAAS4mB,QAAUtR,GAAUqF,KAAK4E,WACrC5E,KAAKnb,MAET,CACA,IAAAshB,GACEnG,KAAK+L,OAAOlC,GACd,CACA,KAAAoB,GACMjL,KAAKyL,YACPrR,GAAqB4F,KAAK4E,UAE5B5E,KAAKkM,gBACP,CACA,KAAAJ,GACE9L,KAAKkM,iBACLlM,KAAKmM,kBACLnM,KAAKuL,UAAYa,aAAY,IAAMpM,KAAKgM,mBAAmBhM,KAAK6E,QAAQkG,SAC1E,CACA,iBAAAsB,GACOrM,KAAK6E,QAAQqG,OAGdlL,KAAKyL,WACPlL,GAAae,IAAItB,KAAK4E,SAAUqF,IAAY,IAAMjK,KAAK8L,UAGzD9L,KAAK8L,QACP,CACA,EAAAQ,CAAG7T,GACD,MAAM8T,EAAQvM,KAAKwM,YACnB,GAAI/T,EAAQ8T,EAAM7b,OAAS,GAAK+H,EAAQ,EACtC,OAEF,GAAIuH,KAAKyL,WAEP,YADAlL,GAAae,IAAItB,KAAK4E,SAAUqF,IAAY,IAAMjK,KAAKsM,GAAG7T,KAG5D,MAAMgU,EAAczM,KAAK0M,cAAc1M,KAAK2M,cAC5C,GAAIF,IAAgBhU,EAClB,OAEF,MAAMtC,EAAQsC,EAAQgU,EAAc7C,GAAaC,GACjD7J,KAAK+L,OAAO5V,EAAOoW,EAAM9T,GAC3B,CACA,OAAAsM,GACM/E,KAAK2L,cACP3L,KAAK2L,aAAa5G,UAEpBJ,MAAMI,SACR,CAGA,iBAAAf,CAAkBF,GAEhB,OADAA,EAAO8I,gBAAkB9I,EAAOiH,SACzBjH,CACT,CACA,kBAAA+H,GACM7L,KAAK6E,QAAQmG,UACfzK,GAAac,GAAGrB,KAAK4E,SAAUsF,IAAiB9K,GAASY,KAAK6M,SAASzN,KAE9C,UAAvBY,KAAK6E,QAAQoG,QACf1K,GAAac,GAAGrB,KAAK4E,SAAUuF,IAAoB,IAAMnK,KAAKiL,UAC9D1K,GAAac,GAAGrB,KAAK4E,SAAUwF,IAAoB,IAAMpK,KAAKqM,uBAE5DrM,KAAK6E,QAAQsG,OAAS3C,GAAMC,eAC9BzI,KAAK8M,yBAET,CACA,uBAAAA,GACE,IAAK,MAAMC,KAAOlH,GAAe1T,KArIX,qBAqImC6N,KAAK4E,UAC5DrE,GAAac,GAAG0L,EAAK1C,IAAkBjL,GAASA,EAAMkD,mBAExD,MAmBM0K,EAAc,CAClB3E,aAAc,IAAMrI,KAAK+L,OAAO/L,KAAKiN,kBAAkBnD,KACvDxB,cAAe,IAAMtI,KAAK+L,OAAO/L,KAAKiN,kBAAkBlD,KACxD3B,YAtBkB,KACS,UAAvBpI,KAAK6E,QAAQoG,QAYjBjL,KAAKiL,QACDjL,KAAK0L,cACPwB,aAAalN,KAAK0L,cAEpB1L,KAAK0L,aAAe7N,YAAW,IAAMmC,KAAKqM,qBAjLjB,IAiL+DrM,KAAK6E,QAAQkG,UAAS,GAOhH/K,KAAK2L,aAAe,IAAInD,GAAMxI,KAAK4E,SAAUoI,EAC/C,CACA,QAAAH,CAASzN,GACP,GAAI,kBAAkB/b,KAAK+b,EAAM7S,OAAO0a,SACtC,OAEF,MAAM3Z,EAAYud,GAAiBzL,EAAMtiB,KACrCwQ,IACF8R,EAAMkD,iBACNtC,KAAK+L,OAAO/L,KAAKiN,kBAAkB3f,IAEvC,CACA,aAAAof,CAAcntB,GACZ,OAAOygB,KAAKwM,YAAYrnB,QAAQ5F,EAClC,CACA,0BAAA4tB,CAA2B1U,GACzB,IAAKuH,KAAK4L,mBACR,OAEF,MAAMwB,EAAkBvH,GAAeC,QAAQ4E,GAAiB1K,KAAK4L,oBACrEwB,EAAgB/R,UAAU1B,OAAO8Q,IACjC2C,EAAgBjsB,gBAAgB,gBAChC,MAAMksB,EAAqBxH,GAAeC,QAAQ,sBAAsBrN,MAAWuH,KAAK4L,oBACpFyB,IACFA,EAAmBhS,UAAU5E,IAAIgU,IACjC4C,EAAmBjsB,aAAa,eAAgB,QAEpD,CACA,eAAA+qB,GACE,MAAM5sB,EAAUygB,KAAKwL,gBAAkBxL,KAAK2M,aAC5C,IAAKptB,EACH,OAEF,MAAM+tB,EAAkB/P,OAAOgQ,SAAShuB,EAAQic,aAAa,oBAAqB,IAClFwE,KAAK6E,QAAQkG,SAAWuC,GAAmBtN,KAAK6E,QAAQ+H,eAC1D,CACA,MAAAb,CAAO5V,EAAO5W,EAAU,MACtB,GAAIygB,KAAKyL,WACP,OAEF,MAAM1N,EAAgBiC,KAAK2M,aACrBa,EAASrX,IAAUyT,GACnB6D,EAAcluB,GAAWue,GAAqBkC,KAAKwM,YAAazO,EAAeyP,EAAQxN,KAAK6E,QAAQuG,MAC1G,GAAIqC,IAAgB1P,EAClB,OAEF,MAAM2P,EAAmB1N,KAAK0M,cAAce,GACtCE,EAAenI,GACZjF,GAAaqB,QAAQ5B,KAAK4E,SAAUY,EAAW,CACpD1F,cAAe2N,EACfngB,UAAW0S,KAAK4N,kBAAkBzX,GAClCuD,KAAMsG,KAAK0M,cAAc3O,GACzBuO,GAAIoB,IAIR,GADmBC,EAAa3D,IACjBhI,iBACb,OAEF,IAAKjE,IAAkB0P,EAGrB,OAEF,MAAMI,EAAY/M,QAAQd,KAAKuL,WAC/BvL,KAAKiL,QACLjL,KAAKyL,YAAa,EAClBzL,KAAKmN,2BAA2BO,GAChC1N,KAAKwL,eAAiBiC,EACtB,MAAMK,EAAuBN,EA3OR,sBADF,oBA6ObO,EAAiBP,EA3OH,qBACA,qBA2OpBC,EAAYpS,UAAU5E,IAAIsX,GAC1BlS,GAAO4R,GACP1P,EAAc1C,UAAU5E,IAAIqX,GAC5BL,EAAYpS,UAAU5E,IAAIqX,GAQ1B9N,KAAKmF,gBAPoB,KACvBsI,EAAYpS,UAAU1B,OAAOmU,EAAsBC,GACnDN,EAAYpS,UAAU5E,IAAIgU,IAC1B1M,EAAc1C,UAAU1B,OAAO8Q,GAAqBsD,EAAgBD,GACpE9N,KAAKyL,YAAa,EAClBkC,EAAa1D,GAAW,GAEYlM,EAAeiC,KAAKgO,eACtDH,GACF7N,KAAK8L,OAET,CACA,WAAAkC,GACE,OAAOhO,KAAK4E,SAASvJ,UAAU7W,SAhQV,QAiQvB,CACA,UAAAmoB,GACE,OAAO9G,GAAeC,QAAQ8E,GAAsB5K,KAAK4E,SAC3D,CACA,SAAA4H,GACE,OAAO3G,GAAe1T,KAAKwY,GAAe3K,KAAK4E,SACjD,CACA,cAAAsH,GACMlM,KAAKuL,YACP0C,cAAcjO,KAAKuL,WACnBvL,KAAKuL,UAAY,KAErB,CACA,iBAAA0B,CAAkB3f,GAChB,OAAI2O,KACK3O,IAAcwc,GAAiBD,GAAaD,GAE9Ctc,IAAcwc,GAAiBF,GAAaC,EACrD,CACA,iBAAA+D,CAAkBzX,GAChB,OAAI8F,KACK9F,IAAU0T,GAAaC,GAAiBC,GAE1C5T,IAAU0T,GAAaE,GAAkBD,EAClD,CAGA,sBAAOrN,CAAgBqH,GACrB,OAAO9D,KAAKwH,MAAK,WACf,MAAMnd,EAAOihB,GAAShG,oBAAoBtF,KAAM8D,GAChD,GAAsB,iBAAXA,GAIX,GAAsB,iBAAXA,EAAqB,CAC9B,QAAqB/K,IAAjB1O,EAAKyZ,IAAyBA,EAAOrC,WAAW,MAAmB,gBAAXqC,EAC1D,MAAM,IAAIU,UAAU,oBAAoBV,MAE1CzZ,EAAKyZ,IACP,OAREzZ,EAAKiiB,GAAGxI,EASZ,GACF,EAOFvD,GAAac,GAAGhc,SAAUklB,GAvSE,uCAuS2C,SAAUnL,GAC/E,MAAM7S,EAASsZ,GAAec,uBAAuB3G,MACrD,IAAKzT,IAAWA,EAAO8O,UAAU7W,SAASgmB,IACxC,OAEFpL,EAAMkD,iBACN,MAAM4L,EAAW5C,GAAShG,oBAAoB/Y,GACxC4hB,EAAanO,KAAKxE,aAAa,oBACrC,OAAI2S,GACFD,EAAS5B,GAAG6B,QACZD,EAAS7B,qBAGyC,SAAhDrJ,GAAYQ,iBAAiBxD,KAAM,UACrCkO,EAASrpB,YACTqpB,EAAS7B,sBAGX6B,EAAS/H,YACT+H,EAAS7B,oBACX,IACA9L,GAAac,GAAGzhB,OAAQ0qB,IAAuB,KAC7C,MAAM8D,EAAYvI,GAAe1T,KA5TR,6BA6TzB,IAAK,MAAM+b,KAAYE,EACrB9C,GAAShG,oBAAoB4I,EAC/B,IAOF/R,GAAmBmP,IAcnB,MAEM+C,GAAc,eAEdC,GAAe,OAAOD,KACtBE,GAAgB,QAAQF,KACxBG,GAAe,OAAOH,KACtBI,GAAiB,SAASJ,KAC1BK,GAAyB,QAAQL,cACjCM,GAAoB,OACpBC,GAAsB,WACtBC,GAAwB,aAExBC,GAA6B,WAAWF,OAAwBA,KAKhEG,GAAyB,8BACzBC,GAAY,CAChBvqB,OAAQ,KACRkjB,QAAQ,GAEJsH,GAAgB,CACpBxqB,OAAQ,iBACRkjB,OAAQ,WAOV,MAAMuH,WAAiBxK,GACrB,WAAAP,CAAY5kB,EAASukB,GACnBa,MAAMplB,EAASukB,GACf9D,KAAKmP,kBAAmB,EACxBnP,KAAKoP,cAAgB,GACrB,MAAMC,EAAaxJ,GAAe1T,KAAK4c,IACvC,IAAK,MAAMO,KAAQD,EAAY,CAC7B,MAAMtV,EAAW8L,GAAea,uBAAuB4I,GACjDC,EAAgB1J,GAAe1T,KAAK4H,GAAU5T,QAAOqpB,GAAgBA,IAAiBxP,KAAK4E,WAChF,OAAb7K,GAAqBwV,EAAc7e,QACrCsP,KAAKoP,cAAcxd,KAAK0d,EAE5B,CACAtP,KAAKyP,sBACAzP,KAAK6E,QAAQpgB,QAChBub,KAAK0P,0BAA0B1P,KAAKoP,cAAepP,KAAK2P,YAEtD3P,KAAK6E,QAAQ8C,QACf3H,KAAK2H,QAET,CAGA,kBAAWjE,GACT,OAAOsL,EACT,CACA,sBAAWrL,GACT,OAAOsL,EACT,CACA,eAAW1S,GACT,MA9DW,UA+Db,CAGA,MAAAoL,GACM3H,KAAK2P,WACP3P,KAAK4P,OAEL5P,KAAK6P,MAET,CACA,IAAAA,GACE,GAAI7P,KAAKmP,kBAAoBnP,KAAK2P,WAChC,OAEF,IAAIG,EAAiB,GAQrB,GALI9P,KAAK6E,QAAQpgB,SACfqrB,EAAiB9P,KAAK+P,uBAhEH,wCAgE4C5pB,QAAO5G,GAAWA,IAAYygB,KAAK4E,WAAU9hB,KAAIvD,GAAW2vB,GAAS5J,oBAAoB/lB,EAAS,CAC/JooB,QAAQ,OAGRmI,EAAepf,QAAUof,EAAe,GAAGX,iBAC7C,OAGF,GADmB5O,GAAaqB,QAAQ5B,KAAK4E,SAAU0J,IACxCtM,iBACb,OAEF,IAAK,MAAMgO,KAAkBF,EAC3BE,EAAeJ,OAEjB,MAAMK,EAAYjQ,KAAKkQ,gBACvBlQ,KAAK4E,SAASvJ,UAAU1B,OAAOiV,IAC/B5O,KAAK4E,SAASvJ,UAAU5E,IAAIoY,IAC5B7O,KAAK4E,SAAS7jB,MAAMkvB,GAAa,EACjCjQ,KAAK0P,0BAA0B1P,KAAKoP,eAAe,GACnDpP,KAAKmP,kBAAmB,EACxB,MAQMgB,EAAa,SADUF,EAAU,GAAGxL,cAAgBwL,EAAU7d,MAAM,KAE1E4N,KAAKmF,gBATY,KACfnF,KAAKmP,kBAAmB,EACxBnP,KAAK4E,SAASvJ,UAAU1B,OAAOkV,IAC/B7O,KAAK4E,SAASvJ,UAAU5E,IAAImY,GAAqBD,IACjD3O,KAAK4E,SAAS7jB,MAAMkvB,GAAa,GACjC1P,GAAaqB,QAAQ5B,KAAK4E,SAAU2J,GAAc,GAItBvO,KAAK4E,UAAU,GAC7C5E,KAAK4E,SAAS7jB,MAAMkvB,GAAa,GAAGjQ,KAAK4E,SAASuL,MACpD,CACA,IAAAP,GACE,GAAI5P,KAAKmP,mBAAqBnP,KAAK2P,WACjC,OAGF,GADmBpP,GAAaqB,QAAQ5B,KAAK4E,SAAU4J,IACxCxM,iBACb,OAEF,MAAMiO,EAAYjQ,KAAKkQ,gBACvBlQ,KAAK4E,SAAS7jB,MAAMkvB,GAAa,GAAGjQ,KAAK4E,SAASthB,wBAAwB2sB,OAC1EpU,GAAOmE,KAAK4E,UACZ5E,KAAK4E,SAASvJ,UAAU5E,IAAIoY,IAC5B7O,KAAK4E,SAASvJ,UAAU1B,OAAOiV,GAAqBD,IACpD,IAAK,MAAM/M,KAAW5B,KAAKoP,cAAe,CACxC,MAAM7vB,EAAUsmB,GAAec,uBAAuB/E,GAClDriB,IAAYygB,KAAK2P,SAASpwB,IAC5BygB,KAAK0P,0BAA0B,CAAC9N,IAAU,EAE9C,CACA5B,KAAKmP,kBAAmB,EAOxBnP,KAAK4E,SAAS7jB,MAAMkvB,GAAa,GACjCjQ,KAAKmF,gBAPY,KACfnF,KAAKmP,kBAAmB,EACxBnP,KAAK4E,SAASvJ,UAAU1B,OAAOkV,IAC/B7O,KAAK4E,SAASvJ,UAAU5E,IAAImY,IAC5BrO,GAAaqB,QAAQ5B,KAAK4E,SAAU6J,GAAe,GAGvBzO,KAAK4E,UAAU,EAC/C,CACA,QAAA+K,CAASpwB,EAAUygB,KAAK4E,UACtB,OAAOrlB,EAAQ8b,UAAU7W,SAASmqB,GACpC,CAGA,iBAAA3K,CAAkBF,GAGhB,OAFAA,EAAO6D,OAAS7G,QAAQgD,EAAO6D,QAC/B7D,EAAOrf,OAASiW,GAAWoJ,EAAOrf,QAC3Bqf,CACT,CACA,aAAAoM,GACE,OAAOlQ,KAAK4E,SAASvJ,UAAU7W,SA3IL,uBAChB,QACC,QA0Ib,CACA,mBAAAirB,GACE,IAAKzP,KAAK6E,QAAQpgB,OAChB,OAEF,MAAMshB,EAAW/F,KAAK+P,uBAAuBhB,IAC7C,IAAK,MAAMxvB,KAAWwmB,EAAU,CAC9B,MAAMqK,EAAWvK,GAAec,uBAAuBpnB,GACnD6wB,GACFpQ,KAAK0P,0BAA0B,CAACnwB,GAAUygB,KAAK2P,SAASS,GAE5D,CACF,CACA,sBAAAL,CAAuBhW,GACrB,MAAMgM,EAAWF,GAAe1T,KAAK2c,GAA4B9O,KAAK6E,QAAQpgB,QAE9E,OAAOohB,GAAe1T,KAAK4H,EAAUiG,KAAK6E,QAAQpgB,QAAQ0B,QAAO5G,IAAYwmB,EAAS3E,SAAS7hB,IACjG,CACA,yBAAAmwB,CAA0BW,EAAcC,GACtC,GAAKD,EAAa3f,OAGlB,IAAK,MAAMnR,KAAW8wB,EACpB9wB,EAAQ8b,UAAUsM,OArKK,aAqKyB2I,GAChD/wB,EAAQ6B,aAAa,gBAAiBkvB,EAE1C,CAGA,sBAAO7T,CAAgBqH,GACrB,MAAMe,EAAU,CAAC,EAIjB,MAHsB,iBAAXf,GAAuB,YAAYzgB,KAAKygB,KACjDe,EAAQ8C,QAAS,GAEZ3H,KAAKwH,MAAK,WACf,MAAMnd,EAAO6kB,GAAS5J,oBAAoBtF,KAAM6E,GAChD,GAAsB,iBAAXf,EAAqB,CAC9B,QAA4B,IAAjBzZ,EAAKyZ,GACd,MAAM,IAAIU,UAAU,oBAAoBV,MAE1CzZ,EAAKyZ,IACP,CACF,GACF,EAOFvD,GAAac,GAAGhc,SAAUqpB,GAAwBK,IAAwB,SAAU3P,IAErD,MAAzBA,EAAM7S,OAAO0a,SAAmB7H,EAAMW,gBAAmD,MAAjCX,EAAMW,eAAekH,UAC/E7H,EAAMkD,iBAER,IAAK,MAAM/iB,KAAWsmB,GAAee,gCAAgC5G,MACnEkP,GAAS5J,oBAAoB/lB,EAAS,CACpCooB,QAAQ,IACPA,QAEP,IAMAxL,GAAmB+S,IAcnB,MAAMqB,GAAS,WAETC,GAAc,eACdC,GAAiB,YAGjBC,GAAiB,UACjBC,GAAmB,YAGnBC,GAAe,OAAOJ,KACtBK,GAAiB,SAASL,KAC1BM,GAAe,OAAON,KACtBO,GAAgB,QAAQP,KACxBQ,GAAyB,QAAQR,KAAcC,KAC/CQ,GAAyB,UAAUT,KAAcC,KACjDS,GAAuB,QAAQV,KAAcC,KAC7CU,GAAoB,OAMpBC,GAAyB,4DACzBC,GAA6B,GAAGD,MAA0BD,KAC1DG,GAAgB,iBAIhBC,GAAgBtV,KAAU,UAAY,YACtCuV,GAAmBvV,KAAU,YAAc,UAC3CwV,GAAmBxV,KAAU,aAAe,eAC5CyV,GAAsBzV,KAAU,eAAiB,aACjD0V,GAAkB1V,KAAU,aAAe,cAC3C2V,GAAiB3V,KAAU,cAAgB,aAG3C4V,GAAY,CAChBC,WAAW,EACX7jB,SAAU,kBACV8jB,QAAS,UACT/pB,OAAQ,CAAC,EAAG,GACZgqB,aAAc,KACd1zB,UAAW,UAEP2zB,GAAgB,CACpBH,UAAW,mBACX7jB,SAAU,mBACV8jB,QAAS,SACT/pB,OAAQ,0BACRgqB,aAAc,yBACd1zB,UAAW,2BAOb,MAAM4zB,WAAiBxN,GACrB,WAAAP,CAAY5kB,EAASukB,GACnBa,MAAMplB,EAASukB,GACf9D,KAAKmS,QAAU,KACfnS,KAAKoS,QAAUpS,KAAK4E,SAAS7f,WAE7Bib,KAAKqS,MAAQxM,GAAehhB,KAAKmb,KAAK4E,SAAU0M,IAAe,IAAMzL,GAAeM,KAAKnG,KAAK4E,SAAU0M,IAAe,IAAMzL,GAAeC,QAAQwL,GAAetR,KAAKoS,SACxKpS,KAAKsS,UAAYtS,KAAKuS,eACxB,CAGA,kBAAW7O,GACT,OAAOmO,EACT,CACA,sBAAWlO,GACT,OAAOsO,EACT,CACA,eAAW1V,GACT,OAAOgU,EACT,CAGA,MAAA5I,GACE,OAAO3H,KAAK2P,WAAa3P,KAAK4P,OAAS5P,KAAK6P,MAC9C,CACA,IAAAA,GACE,GAAI3U,GAAW8E,KAAK4E,WAAa5E,KAAK2P,WACpC,OAEF,MAAM7P,EAAgB,CACpBA,cAAeE,KAAK4E,UAGtB,IADkBrE,GAAaqB,QAAQ5B,KAAK4E,SAAUkM,GAAchR,GACtDkC,iBAAd,CASA,GANAhC,KAAKwS,gBAMD,iBAAkBntB,SAASC,kBAAoB0a,KAAKoS,QAAQpX,QAzExC,eA0EtB,IAAK,MAAMzb,IAAW,GAAGZ,UAAU0G,SAAS6G,KAAK6Z,UAC/CxF,GAAac,GAAG9hB,EAAS,YAAaqc,IAG1CoE,KAAK4E,SAAS6N,QACdzS,KAAK4E,SAASxjB,aAAa,iBAAiB,GAC5C4e,KAAKqS,MAAMhX,UAAU5E,IAAI0a,IACzBnR,KAAK4E,SAASvJ,UAAU5E,IAAI0a,IAC5B5Q,GAAaqB,QAAQ5B,KAAK4E,SAAUmM,GAAejR,EAhBnD,CAiBF,CACA,IAAA8P,GACE,GAAI1U,GAAW8E,KAAK4E,YAAc5E,KAAK2P,WACrC,OAEF,MAAM7P,EAAgB,CACpBA,cAAeE,KAAK4E,UAEtB5E,KAAK0S,cAAc5S,EACrB,CACA,OAAAiF,GACM/E,KAAKmS,SACPnS,KAAKmS,QAAQnZ,UAEf2L,MAAMI,SACR,CACA,MAAAha,GACEiV,KAAKsS,UAAYtS,KAAKuS,gBAClBvS,KAAKmS,SACPnS,KAAKmS,QAAQpnB,QAEjB,CAGA,aAAA2nB,CAAc5S,GAEZ,IADkBS,GAAaqB,QAAQ5B,KAAK4E,SAAUgM,GAAc9Q,GACtDkC,iBAAd,CAMA,GAAI,iBAAkB3c,SAASC,gBAC7B,IAAK,MAAM/F,IAAW,GAAGZ,UAAU0G,SAAS6G,KAAK6Z,UAC/CxF,GAAaC,IAAIjhB,EAAS,YAAaqc,IAGvCoE,KAAKmS,SACPnS,KAAKmS,QAAQnZ,UAEfgH,KAAKqS,MAAMhX,UAAU1B,OAAOwX,IAC5BnR,KAAK4E,SAASvJ,UAAU1B,OAAOwX,IAC/BnR,KAAK4E,SAASxjB,aAAa,gBAAiB,SAC5C4hB,GAAYE,oBAAoBlD,KAAKqS,MAAO,UAC5C9R,GAAaqB,QAAQ5B,KAAK4E,SAAUiM,GAAgB/Q,EAhBpD,CAiBF,CACA,UAAA+D,CAAWC,GAET,GAAgC,iBADhCA,EAASa,MAAMd,WAAWC,IACRxlB,YAA2B,GAAUwlB,EAAOxlB,YAAgE,mBAA3CwlB,EAAOxlB,UAAUgF,sBAElG,MAAM,IAAIkhB,UAAU,GAAG+L,GAAO9L,+GAEhC,OAAOX,CACT,CACA,aAAA0O,GACE,QAAsB,IAAX,EACT,MAAM,IAAIhO,UAAU,gEAEtB,IAAImO,EAAmB3S,KAAK4E,SACG,WAA3B5E,KAAK6E,QAAQvmB,UACfq0B,EAAmB3S,KAAKoS,QACf,GAAUpS,KAAK6E,QAAQvmB,WAChCq0B,EAAmBjY,GAAWsF,KAAK6E,QAAQvmB,WACA,iBAA3B0hB,KAAK6E,QAAQvmB,YAC7Bq0B,EAAmB3S,KAAK6E,QAAQvmB,WAElC,MAAM0zB,EAAehS,KAAK4S,mBAC1B5S,KAAKmS,QAAU,GAAoBQ,EAAkB3S,KAAKqS,MAAOL,EACnE,CACA,QAAArC,GACE,OAAO3P,KAAKqS,MAAMhX,UAAU7W,SAAS2sB,GACvC,CACA,aAAA0B,GACE,MAAMC,EAAiB9S,KAAKoS,QAC5B,GAAIU,EAAezX,UAAU7W,SArKN,WAsKrB,OAAOmtB,GAET,GAAImB,EAAezX,UAAU7W,SAvKJ,aAwKvB,OAAOotB,GAET,GAAIkB,EAAezX,UAAU7W,SAzKA,iBA0K3B,MA5JsB,MA8JxB,GAAIsuB,EAAezX,UAAU7W,SA3KE,mBA4K7B,MA9JyB,SAkK3B,MAAMuuB,EAAkF,QAA1E9tB,iBAAiB+a,KAAKqS,OAAOvX,iBAAiB,iBAAiB6K,OAC7E,OAAImN,EAAezX,UAAU7W,SArLP,UAsLbuuB,EAAQvB,GAAmBD,GAE7BwB,EAAQrB,GAAsBD,EACvC,CACA,aAAAc,GACE,OAAkD,OAA3CvS,KAAK4E,SAAS5J,QAnLD,UAoLtB,CACA,UAAAgY,GACE,MAAM,OACJhrB,GACEgY,KAAK6E,QACT,MAAsB,iBAAX7c,EACFA,EAAO9F,MAAM,KAAKY,KAAInF,GAAS4f,OAAOgQ,SAAS5vB,EAAO,MAEzC,mBAAXqK,EACFirB,GAAcjrB,EAAOirB,EAAYjT,KAAK4E,UAExC5c,CACT,CACA,gBAAA4qB,GACE,MAAMM,EAAwB,CAC5Bx0B,UAAWshB,KAAK6S,gBAChBzc,UAAW,CAAC,CACV9V,KAAM,kBACNmB,QAAS,CACPwM,SAAU+R,KAAK6E,QAAQ5W,WAExB,CACD3N,KAAM,SACNmB,QAAS,CACPuG,OAAQgY,KAAKgT,iBAanB,OAPIhT,KAAKsS,WAAsC,WAAzBtS,KAAK6E,QAAQkN,WACjC/O,GAAYC,iBAAiBjD,KAAKqS,MAAO,SAAU,UACnDa,EAAsB9c,UAAY,CAAC,CACjC9V,KAAM,cACNC,SAAS,KAGN,IACF2yB,KACArW,GAAQmD,KAAK6E,QAAQmN,aAAc,CAACkB,IAE3C,CACA,eAAAC,EAAgB,IACdr2B,EAAG,OACHyP,IAEA,MAAMggB,EAAQ1G,GAAe1T,KAhOF,8DAgO+B6N,KAAKqS,OAAOlsB,QAAO5G,GAAWob,GAAUpb,KAC7FgtB,EAAM7b,QAMXoN,GAAqByO,EAAOhgB,EAAQzP,IAAQ6zB,IAAmBpE,EAAMnL,SAAS7U,IAASkmB,OACzF,CAGA,sBAAOhW,CAAgBqH,GACrB,OAAO9D,KAAKwH,MAAK,WACf,MAAMnd,EAAO6nB,GAAS5M,oBAAoBtF,KAAM8D,GAChD,GAAsB,iBAAXA,EAAX,CAGA,QAA4B,IAAjBzZ,EAAKyZ,GACd,MAAM,IAAIU,UAAU,oBAAoBV,MAE1CzZ,EAAKyZ,IAJL,CAKF,GACF,CACA,iBAAOsP,CAAWhU,GAChB,GA5QuB,IA4QnBA,EAAMwI,QAAgD,UAAfxI,EAAMqB,MA/QnC,QA+QuDrB,EAAMtiB,IACzE,OAEF,MAAMu2B,EAAcxN,GAAe1T,KAAKkf,IACxC,IAAK,MAAM1J,KAAU0L,EAAa,CAChC,MAAMC,EAAUpB,GAAS7M,YAAYsC,GACrC,IAAK2L,IAAyC,IAA9BA,EAAQzO,QAAQiN,UAC9B,SAEF,MAAMyB,EAAenU,EAAMmU,eACrBC,EAAeD,EAAanS,SAASkS,EAAQjB,OACnD,GAAIkB,EAAanS,SAASkS,EAAQ1O,WAA2C,WAA9B0O,EAAQzO,QAAQiN,YAA2B0B,GAA8C,YAA9BF,EAAQzO,QAAQiN,WAA2B0B,EACnJ,SAIF,GAAIF,EAAQjB,MAAM7tB,SAAS4a,EAAM7S,UAA2B,UAAf6S,EAAMqB,MA/RvC,QA+R2DrB,EAAMtiB,KAAqB,qCAAqCuG,KAAK+b,EAAM7S,OAAO0a,UACvJ,SAEF,MAAMnH,EAAgB,CACpBA,cAAewT,EAAQ1O,UAEN,UAAfxF,EAAMqB,OACRX,EAAckH,WAAa5H,GAE7BkU,EAAQZ,cAAc5S,EACxB,CACF,CACA,4BAAO2T,CAAsBrU,GAI3B,MAAMsU,EAAU,kBAAkBrwB,KAAK+b,EAAM7S,OAAO0a,SAC9C0M,EAjTW,WAiTKvU,EAAMtiB,IACtB82B,EAAkB,CAAClD,GAAgBC,IAAkBvP,SAAShC,EAAMtiB,KAC1E,IAAK82B,IAAoBD,EACvB,OAEF,GAAID,IAAYC,EACd,OAEFvU,EAAMkD,iBAGN,MAAMuR,EAAkB7T,KAAKgG,QAAQoL,IAA0BpR,KAAO6F,GAAeM,KAAKnG,KAAMoR,IAAwB,IAAMvL,GAAehhB,KAAKmb,KAAMoR,IAAwB,IAAMvL,GAAeC,QAAQsL,GAAwBhS,EAAMW,eAAehb,YACpPwF,EAAW2nB,GAAS5M,oBAAoBuO,GAC9C,GAAID,EAIF,OAHAxU,EAAM0U,kBACNvpB,EAASslB,YACTtlB,EAAS4oB,gBAAgB/T,GAGvB7U,EAASolB,aAEXvQ,EAAM0U,kBACNvpB,EAASqlB,OACTiE,EAAgBpB,QAEpB,EAOFlS,GAAac,GAAGhc,SAAU4rB,GAAwBG,GAAwBc,GAASuB,uBACnFlT,GAAac,GAAGhc,SAAU4rB,GAAwBK,GAAeY,GAASuB,uBAC1ElT,GAAac,GAAGhc,SAAU2rB,GAAwBkB,GAASkB,YAC3D7S,GAAac,GAAGhc,SAAU6rB,GAAsBgB,GAASkB,YACzD7S,GAAac,GAAGhc,SAAU2rB,GAAwBI,IAAwB,SAAUhS,GAClFA,EAAMkD,iBACN4P,GAAS5M,oBAAoBtF,MAAM2H,QACrC,IAMAxL,GAAmB+V,IAcnB,MAAM6B,GAAS,WAETC,GAAoB,OACpBC,GAAkB,gBAAgBF,KAClCG,GAAY,CAChBC,UAAW,iBACXC,cAAe,KACfhP,YAAY,EACZzK,WAAW,EAEX0Z,YAAa,QAETC,GAAgB,CACpBH,UAAW,SACXC,cAAe,kBACfhP,WAAY,UACZzK,UAAW,UACX0Z,YAAa,oBAOf,MAAME,WAAiB9Q,GACrB,WAAAU,CAAYL,GACVa,QACA3E,KAAK6E,QAAU7E,KAAK6D,WAAWC,GAC/B9D,KAAKwU,aAAc,EACnBxU,KAAK4E,SAAW,IAClB,CAGA,kBAAWlB,GACT,OAAOwQ,EACT,CACA,sBAAWvQ,GACT,OAAO2Q,EACT,CACA,eAAW/X,GACT,OAAOwX,EACT,CAGA,IAAAlE,CAAKxT,GACH,IAAK2D,KAAK6E,QAAQlK,UAEhB,YADAkC,GAAQR,GAGV2D,KAAKyU,UACL,MAAMl1B,EAAUygB,KAAK0U,cACjB1U,KAAK6E,QAAQO,YACfvJ,GAAOtc,GAETA,EAAQ8b,UAAU5E,IAAIud,IACtBhU,KAAK2U,mBAAkB,KACrB9X,GAAQR,EAAS,GAErB,CACA,IAAAuT,CAAKvT,GACE2D,KAAK6E,QAAQlK,WAIlBqF,KAAK0U,cAAcrZ,UAAU1B,OAAOqa,IACpChU,KAAK2U,mBAAkB,KACrB3U,KAAK+E,UACLlI,GAAQR,EAAS,KANjBQ,GAAQR,EAQZ,CACA,OAAA0I,GACO/E,KAAKwU,cAGVjU,GAAaC,IAAIR,KAAK4E,SAAUqP,IAChCjU,KAAK4E,SAASjL,SACdqG,KAAKwU,aAAc,EACrB,CAGA,WAAAE,GACE,IAAK1U,KAAK4E,SAAU,CAClB,MAAMgQ,EAAWvvB,SAASwvB,cAAc,OACxCD,EAAST,UAAYnU,KAAK6E,QAAQsP,UAC9BnU,KAAK6E,QAAQO,YACfwP,EAASvZ,UAAU5E,IApFD,QAsFpBuJ,KAAK4E,SAAWgQ,CAClB,CACA,OAAO5U,KAAK4E,QACd,CACA,iBAAAZ,CAAkBF,GAGhB,OADAA,EAAOuQ,YAAc3Z,GAAWoJ,EAAOuQ,aAChCvQ,CACT,CACA,OAAA2Q,GACE,GAAIzU,KAAKwU,YACP,OAEF,MAAMj1B,EAAUygB,KAAK0U,cACrB1U,KAAK6E,QAAQwP,YAAYS,OAAOv1B,GAChCghB,GAAac,GAAG9hB,EAAS00B,IAAiB,KACxCpX,GAAQmD,KAAK6E,QAAQuP,cAAc,IAErCpU,KAAKwU,aAAc,CACrB,CACA,iBAAAG,CAAkBtY,GAChBW,GAAuBX,EAAU2D,KAAK0U,cAAe1U,KAAK6E,QAAQO,WACpE,EAeF,MAEM2P,GAAc,gBACdC,GAAkB,UAAUD,KAC5BE,GAAoB,cAAcF,KAGlCG,GAAmB,WACnBC,GAAY,CAChBC,WAAW,EACXC,YAAa,MAETC,GAAgB,CACpBF,UAAW,UACXC,YAAa,WAOf,MAAME,WAAkB9R,GACtB,WAAAU,CAAYL,GACVa,QACA3E,KAAK6E,QAAU7E,KAAK6D,WAAWC,GAC/B9D,KAAKwV,WAAY,EACjBxV,KAAKyV,qBAAuB,IAC9B,CAGA,kBAAW/R,GACT,OAAOyR,EACT,CACA,sBAAWxR,GACT,OAAO2R,EACT,CACA,eAAW/Y,GACT,MArCW,WAsCb,CAGA,QAAAmZ,GACM1V,KAAKwV,YAGLxV,KAAK6E,QAAQuQ,WACfpV,KAAK6E,QAAQwQ,YAAY5C,QAE3BlS,GAAaC,IAAInb,SAAU0vB,IAC3BxU,GAAac,GAAGhc,SAAU2vB,IAAiB5V,GAASY,KAAK2V,eAAevW,KACxEmB,GAAac,GAAGhc,SAAU4vB,IAAmB7V,GAASY,KAAK4V,eAAexW,KAC1EY,KAAKwV,WAAY,EACnB,CACA,UAAAK,GACO7V,KAAKwV,YAGVxV,KAAKwV,WAAY,EACjBjV,GAAaC,IAAInb,SAAU0vB,IAC7B,CAGA,cAAAY,CAAevW,GACb,MAAM,YACJiW,GACErV,KAAK6E,QACT,GAAIzF,EAAM7S,SAAWlH,UAAY+Z,EAAM7S,SAAW8oB,GAAeA,EAAY7wB,SAAS4a,EAAM7S,QAC1F,OAEF,MAAM1L,EAAWglB,GAAeU,kBAAkB8O,GAC1B,IAApBx0B,EAAS6P,OACX2kB,EAAY5C,QACHzS,KAAKyV,uBAAyBP,GACvCr0B,EAASA,EAAS6P,OAAS,GAAG+hB,QAE9B5xB,EAAS,GAAG4xB,OAEhB,CACA,cAAAmD,CAAexW,GAzED,QA0ERA,EAAMtiB,MAGVkjB,KAAKyV,qBAAuBrW,EAAM0W,SAAWZ,GA5EzB,UA6EtB,EAeF,MAAMa,GAAyB,oDACzBC,GAA0B,cAC1BC,GAAmB,gBACnBC,GAAkB,eAMxB,MAAMC,GACJ,WAAAhS,GACEnE,KAAK4E,SAAWvf,SAAS6G,IAC3B,CAGA,QAAAkqB,GAEE,MAAMC,EAAgBhxB,SAASC,gBAAgBuC,YAC/C,OAAO1F,KAAKoC,IAAI3E,OAAO02B,WAAaD,EACtC,CACA,IAAAzG,GACE,MAAM/rB,EAAQmc,KAAKoW,WACnBpW,KAAKuW,mBAELvW,KAAKwW,sBAAsBxW,KAAK4E,SAAUqR,IAAkBQ,GAAmBA,EAAkB5yB,IAEjGmc,KAAKwW,sBAAsBT,GAAwBE,IAAkBQ,GAAmBA,EAAkB5yB,IAC1Gmc,KAAKwW,sBAAsBR,GAAyBE,IAAiBO,GAAmBA,EAAkB5yB,GAC5G,CACA,KAAAwO,GACE2N,KAAK0W,wBAAwB1W,KAAK4E,SAAU,YAC5C5E,KAAK0W,wBAAwB1W,KAAK4E,SAAUqR,IAC5CjW,KAAK0W,wBAAwBX,GAAwBE,IACrDjW,KAAK0W,wBAAwBV,GAAyBE,GACxD,CACA,aAAAS,GACE,OAAO3W,KAAKoW,WAAa,CAC3B,CAGA,gBAAAG,GACEvW,KAAK4W,sBAAsB5W,KAAK4E,SAAU,YAC1C5E,KAAK4E,SAAS7jB,MAAM+K,SAAW,QACjC,CACA,qBAAA0qB,CAAsBzc,EAAU8c,EAAexa,GAC7C,MAAMya,EAAiB9W,KAAKoW,WAS5BpW,KAAK+W,2BAA2Bhd,GARHxa,IAC3B,GAAIA,IAAYygB,KAAK4E,UAAYhlB,OAAO02B,WAAa/2B,EAAQsI,YAAcivB,EACzE,OAEF9W,KAAK4W,sBAAsBr3B,EAASs3B,GACpC,MAAMJ,EAAkB72B,OAAOqF,iBAAiB1F,GAASub,iBAAiB+b,GAC1Et3B,EAAQwB,MAAMi2B,YAAYH,EAAe,GAAGxa,EAASkB,OAAOC,WAAWiZ,QAAsB,GAGjG,CACA,qBAAAG,CAAsBr3B,EAASs3B,GAC7B,MAAMI,EAAc13B,EAAQwB,MAAM+Z,iBAAiB+b,GAC/CI,GACFjU,GAAYC,iBAAiB1jB,EAASs3B,EAAeI,EAEzD,CACA,uBAAAP,CAAwB3c,EAAU8c,GAWhC7W,KAAK+W,2BAA2Bhd,GAVHxa,IAC3B,MAAM5B,EAAQqlB,GAAYQ,iBAAiBjkB,EAASs3B,GAEtC,OAAVl5B,GAIJqlB,GAAYE,oBAAoB3jB,EAASs3B,GACzCt3B,EAAQwB,MAAMi2B,YAAYH,EAAel5B,IAJvC4B,EAAQwB,MAAMm2B,eAAeL,EAIgB,GAGnD,CACA,0BAAAE,CAA2Bhd,EAAUod,GACnC,GAAI,GAAUpd,GACZod,EAASpd,QAGX,IAAK,MAAM6L,KAAOC,GAAe1T,KAAK4H,EAAUiG,KAAK4E,UACnDuS,EAASvR,EAEb,EAeF,MAEMwR,GAAc,YAGdC,GAAe,OAAOD,KACtBE,GAAyB,gBAAgBF,KACzCG,GAAiB,SAASH,KAC1BI,GAAe,OAAOJ,KACtBK,GAAgB,QAAQL,KACxBM,GAAiB,SAASN,KAC1BO,GAAsB,gBAAgBP,KACtCQ,GAA0B,oBAAoBR,KAC9CS,GAA0B,kBAAkBT,KAC5CU,GAAyB,QAAQV,cACjCW,GAAkB,aAElBC,GAAoB,OACpBC,GAAoB,eAKpBC,GAAY,CAChBtD,UAAU,EACVnC,OAAO,EACPzH,UAAU,GAENmN,GAAgB,CACpBvD,SAAU,mBACVnC,MAAO,UACPzH,SAAU,WAOZ,MAAMoN,WAAc1T,GAClB,WAAAP,CAAY5kB,EAASukB,GACnBa,MAAMplB,EAASukB,GACf9D,KAAKqY,QAAUxS,GAAeC,QArBV,gBAqBmC9F,KAAK4E,UAC5D5E,KAAKsY,UAAYtY,KAAKuY,sBACtBvY,KAAKwY,WAAaxY,KAAKyY,uBACvBzY,KAAK2P,UAAW,EAChB3P,KAAKmP,kBAAmB,EACxBnP,KAAK0Y,WAAa,IAAIvC,GACtBnW,KAAK6L,oBACP,CAGA,kBAAWnI,GACT,OAAOwU,EACT,CACA,sBAAWvU,GACT,OAAOwU,EACT,CACA,eAAW5b,GACT,MA1DW,OA2Db,CAGA,MAAAoL,CAAO7H,GACL,OAAOE,KAAK2P,SAAW3P,KAAK4P,OAAS5P,KAAK6P,KAAK/P,EACjD,CACA,IAAA+P,CAAK/P,GACCE,KAAK2P,UAAY3P,KAAKmP,kBAGR5O,GAAaqB,QAAQ5B,KAAK4E,SAAU4S,GAAc,CAClE1X,kBAEYkC,mBAGdhC,KAAK2P,UAAW,EAChB3P,KAAKmP,kBAAmB,EACxBnP,KAAK0Y,WAAW9I,OAChBvqB,SAAS6G,KAAKmP,UAAU5E,IAAIshB,IAC5B/X,KAAK2Y,gBACL3Y,KAAKsY,UAAUzI,MAAK,IAAM7P,KAAK4Y,aAAa9Y,KAC9C,CACA,IAAA8P,GACO5P,KAAK2P,WAAY3P,KAAKmP,mBAGT5O,GAAaqB,QAAQ5B,KAAK4E,SAAUyS,IACxCrV,mBAGdhC,KAAK2P,UAAW,EAChB3P,KAAKmP,kBAAmB,EACxBnP,KAAKwY,WAAW3C,aAChB7V,KAAK4E,SAASvJ,UAAU1B,OAAOqe,IAC/BhY,KAAKmF,gBAAe,IAAMnF,KAAK6Y,cAAc7Y,KAAK4E,SAAU5E,KAAKgO,gBACnE,CACA,OAAAjJ,GACExE,GAAaC,IAAI5gB,OAAQw3B,IACzB7W,GAAaC,IAAIR,KAAKqY,QAASjB,IAC/BpX,KAAKsY,UAAUvT,UACf/E,KAAKwY,WAAW3C,aAChBlR,MAAMI,SACR,CACA,YAAA+T,GACE9Y,KAAK2Y,eACP,CAGA,mBAAAJ,GACE,OAAO,IAAIhE,GAAS,CAClB5Z,UAAWmG,QAAQd,KAAK6E,QAAQ+P,UAEhCxP,WAAYpF,KAAKgO,eAErB,CACA,oBAAAyK,GACE,OAAO,IAAIlD,GAAU,CACnBF,YAAarV,KAAK4E,UAEtB,CACA,YAAAgU,CAAa9Y,GAENza,SAAS6G,KAAK1H,SAASwb,KAAK4E,WAC/Bvf,SAAS6G,KAAK4oB,OAAO9U,KAAK4E,UAE5B5E,KAAK4E,SAAS7jB,MAAMgxB,QAAU,QAC9B/R,KAAK4E,SAASzjB,gBAAgB,eAC9B6e,KAAK4E,SAASxjB,aAAa,cAAc,GACzC4e,KAAK4E,SAASxjB,aAAa,OAAQ,UACnC4e,KAAK4E,SAASnZ,UAAY,EAC1B,MAAMstB,EAAYlT,GAAeC,QA7GT,cA6GsC9F,KAAKqY,SAC/DU,IACFA,EAAUttB,UAAY,GAExBoQ,GAAOmE,KAAK4E,UACZ5E,KAAK4E,SAASvJ,UAAU5E,IAAIuhB,IAU5BhY,KAAKmF,gBATsB,KACrBnF,KAAK6E,QAAQ4N,OACfzS,KAAKwY,WAAW9C,WAElB1V,KAAKmP,kBAAmB,EACxB5O,GAAaqB,QAAQ5B,KAAK4E,SAAU6S,GAAe,CACjD3X,iBACA,GAEoCE,KAAKqY,QAASrY,KAAKgO,cAC7D,CACA,kBAAAnC,GACEtL,GAAac,GAAGrB,KAAK4E,SAAUiT,IAAyBzY,IAhJvC,WAiJXA,EAAMtiB,MAGNkjB,KAAK6E,QAAQmG,SACfhL,KAAK4P,OAGP5P,KAAKgZ,6BAA4B,IAEnCzY,GAAac,GAAGzhB,OAAQ83B,IAAgB,KAClC1X,KAAK2P,WAAa3P,KAAKmP,kBACzBnP,KAAK2Y,eACP,IAEFpY,GAAac,GAAGrB,KAAK4E,SAAUgT,IAAyBxY,IAEtDmB,GAAae,IAAItB,KAAK4E,SAAU+S,IAAqBsB,IAC/CjZ,KAAK4E,WAAaxF,EAAM7S,QAAUyT,KAAK4E,WAAaqU,EAAO1sB,SAGjC,WAA1ByT,KAAK6E,QAAQ+P,SAIb5U,KAAK6E,QAAQ+P,UACf5U,KAAK4P,OAJL5P,KAAKgZ,6BAKP,GACA,GAEN,CACA,UAAAH,GACE7Y,KAAK4E,SAAS7jB,MAAMgxB,QAAU,OAC9B/R,KAAK4E,SAASxjB,aAAa,eAAe,GAC1C4e,KAAK4E,SAASzjB,gBAAgB,cAC9B6e,KAAK4E,SAASzjB,gBAAgB,QAC9B6e,KAAKmP,kBAAmB,EACxBnP,KAAKsY,UAAU1I,MAAK,KAClBvqB,SAAS6G,KAAKmP,UAAU1B,OAAOoe,IAC/B/X,KAAKkZ,oBACLlZ,KAAK0Y,WAAWrmB,QAChBkO,GAAaqB,QAAQ5B,KAAK4E,SAAU2S,GAAe,GAEvD,CACA,WAAAvJ,GACE,OAAOhO,KAAK4E,SAASvJ,UAAU7W,SAjLT,OAkLxB,CACA,0BAAAw0B,GAEE,GADkBzY,GAAaqB,QAAQ5B,KAAK4E,SAAU0S,IACxCtV,iBACZ,OAEF,MAAMmX,EAAqBnZ,KAAK4E,SAASvX,aAAehI,SAASC,gBAAgBsC,aAC3EwxB,EAAmBpZ,KAAK4E,SAAS7jB,MAAMiL,UAEpB,WAArBotB,GAAiCpZ,KAAK4E,SAASvJ,UAAU7W,SAASyzB,MAGjEkB,IACHnZ,KAAK4E,SAAS7jB,MAAMiL,UAAY,UAElCgU,KAAK4E,SAASvJ,UAAU5E,IAAIwhB,IAC5BjY,KAAKmF,gBAAe,KAClBnF,KAAK4E,SAASvJ,UAAU1B,OAAOse,IAC/BjY,KAAKmF,gBAAe,KAClBnF,KAAK4E,SAAS7jB,MAAMiL,UAAYotB,CAAgB,GAC/CpZ,KAAKqY,QAAQ,GACfrY,KAAKqY,SACRrY,KAAK4E,SAAS6N,QAChB,CAMA,aAAAkG,GACE,MAAMQ,EAAqBnZ,KAAK4E,SAASvX,aAAehI,SAASC,gBAAgBsC,aAC3EkvB,EAAiB9W,KAAK0Y,WAAWtC,WACjCiD,EAAoBvC,EAAiB,EAC3C,GAAIuC,IAAsBF,EAAoB,CAC5C,MAAMr3B,EAAWma,KAAU,cAAgB,eAC3C+D,KAAK4E,SAAS7jB,MAAMe,GAAY,GAAGg1B,KACrC,CACA,IAAKuC,GAAqBF,EAAoB,CAC5C,MAAMr3B,EAAWma,KAAU,eAAiB,cAC5C+D,KAAK4E,SAAS7jB,MAAMe,GAAY,GAAGg1B,KACrC,CACF,CACA,iBAAAoC,GACElZ,KAAK4E,SAAS7jB,MAAMu4B,YAAc,GAClCtZ,KAAK4E,SAAS7jB,MAAMw4B,aAAe,EACrC,CAGA,sBAAO9c,CAAgBqH,EAAQhE,GAC7B,OAAOE,KAAKwH,MAAK,WACf,MAAMnd,EAAO+tB,GAAM9S,oBAAoBtF,KAAM8D,GAC7C,GAAsB,iBAAXA,EAAX,CAGA,QAA4B,IAAjBzZ,EAAKyZ,GACd,MAAM,IAAIU,UAAU,oBAAoBV,MAE1CzZ,EAAKyZ,GAAQhE,EAJb,CAKF,GACF,EAOFS,GAAac,GAAGhc,SAAUyyB,GA9OK,4BA8O2C,SAAU1Y,GAClF,MAAM7S,EAASsZ,GAAec,uBAAuB3G,MACjD,CAAC,IAAK,QAAQoB,SAASpB,KAAKiH,UAC9B7H,EAAMkD,iBAER/B,GAAae,IAAI/U,EAAQirB,IAAcgC,IACjCA,EAAUxX,kBAIdzB,GAAae,IAAI/U,EAAQgrB,IAAgB,KACnC5c,GAAUqF,OACZA,KAAKyS,OACP,GACA,IAIJ,MAAMgH,EAAc5T,GAAeC,QAnQb,eAoQlB2T,GACFrB,GAAM/S,YAAYoU,GAAa7J,OAEpBwI,GAAM9S,oBAAoB/Y,GAClCob,OAAO3H,KACd,IACA6G,GAAqBuR,IAMrBjc,GAAmBic,IAcnB,MAEMsB,GAAc,gBACdC,GAAiB,YACjBC,GAAwB,OAAOF,KAAcC,KAE7CE,GAAoB,OACpBC,GAAuB,UACvBC,GAAoB,SAEpBC,GAAgB,kBAChBC,GAAe,OAAOP,KACtBQ,GAAgB,QAAQR,KACxBS,GAAe,OAAOT,KACtBU,GAAuB,gBAAgBV,KACvCW,GAAiB,SAASX,KAC1BY,GAAe,SAASZ,KACxBa,GAAyB,QAAQb,KAAcC,KAC/Ca,GAAwB,kBAAkBd,KAE1Ce,GAAY,CAChB7F,UAAU,EACV5J,UAAU,EACVvgB,QAAQ,GAEJiwB,GAAgB,CACpB9F,SAAU,mBACV5J,SAAU,UACVvgB,OAAQ,WAOV,MAAMkwB,WAAkBjW,GACtB,WAAAP,CAAY5kB,EAASukB,GACnBa,MAAMplB,EAASukB,GACf9D,KAAK2P,UAAW,EAChB3P,KAAKsY,UAAYtY,KAAKuY,sBACtBvY,KAAKwY,WAAaxY,KAAKyY,uBACvBzY,KAAK6L,oBACP,CAGA,kBAAWnI,GACT,OAAO+W,EACT,CACA,sBAAW9W,GACT,OAAO+W,EACT,CACA,eAAWne,GACT,MApDW,WAqDb,CAGA,MAAAoL,CAAO7H,GACL,OAAOE,KAAK2P,SAAW3P,KAAK4P,OAAS5P,KAAK6P,KAAK/P,EACjD,CACA,IAAA+P,CAAK/P,GACCE,KAAK2P,UAGSpP,GAAaqB,QAAQ5B,KAAK4E,SAAUqV,GAAc,CAClEna,kBAEYkC,mBAGdhC,KAAK2P,UAAW,EAChB3P,KAAKsY,UAAUzI,OACV7P,KAAK6E,QAAQpa,SAChB,IAAI0rB,IAAkBvG,OAExB5P,KAAK4E,SAASxjB,aAAa,cAAc,GACzC4e,KAAK4E,SAASxjB,aAAa,OAAQ,UACnC4e,KAAK4E,SAASvJ,UAAU5E,IAAIqjB,IAW5B9Z,KAAKmF,gBAVoB,KAClBnF,KAAK6E,QAAQpa,SAAUuV,KAAK6E,QAAQ+P,UACvC5U,KAAKwY,WAAW9C,WAElB1V,KAAK4E,SAASvJ,UAAU5E,IAAIojB,IAC5B7Z,KAAK4E,SAASvJ,UAAU1B,OAAOmgB,IAC/BvZ,GAAaqB,QAAQ5B,KAAK4E,SAAUsV,GAAe,CACjDpa,iBACA,GAEkCE,KAAK4E,UAAU,GACvD,CACA,IAAAgL,GACO5P,KAAK2P,WAGQpP,GAAaqB,QAAQ5B,KAAK4E,SAAUuV,IACxCnY,mBAGdhC,KAAKwY,WAAW3C,aAChB7V,KAAK4E,SAASgW,OACd5a,KAAK2P,UAAW,EAChB3P,KAAK4E,SAASvJ,UAAU5E,IAAIsjB,IAC5B/Z,KAAKsY,UAAU1I,OAUf5P,KAAKmF,gBAToB,KACvBnF,KAAK4E,SAASvJ,UAAU1B,OAAOkgB,GAAmBE,IAClD/Z,KAAK4E,SAASzjB,gBAAgB,cAC9B6e,KAAK4E,SAASzjB,gBAAgB,QACzB6e,KAAK6E,QAAQpa,SAChB,IAAI0rB,IAAkB9jB,QAExBkO,GAAaqB,QAAQ5B,KAAK4E,SAAUyV,GAAe,GAEfra,KAAK4E,UAAU,IACvD,CACA,OAAAG,GACE/E,KAAKsY,UAAUvT,UACf/E,KAAKwY,WAAW3C,aAChBlR,MAAMI,SACR,CAGA,mBAAAwT,GACE,MASM5d,EAAYmG,QAAQd,KAAK6E,QAAQ+P,UACvC,OAAO,IAAIL,GAAS,CAClBJ,UA3HsB,qBA4HtBxZ,YACAyK,YAAY,EACZiP,YAAarU,KAAK4E,SAAS7f,WAC3BqvB,cAAezZ,EAfK,KACU,WAA1BqF,KAAK6E,QAAQ+P,SAIjB5U,KAAK4P,OAHHrP,GAAaqB,QAAQ5B,KAAK4E,SAAUwV,GAG3B,EAUgC,MAE/C,CACA,oBAAA3B,GACE,OAAO,IAAIlD,GAAU,CACnBF,YAAarV,KAAK4E,UAEtB,CACA,kBAAAiH,GACEtL,GAAac,GAAGrB,KAAK4E,SAAU4V,IAAuBpb,IA5IvC,WA6ITA,EAAMtiB,MAGNkjB,KAAK6E,QAAQmG,SACfhL,KAAK4P,OAGPrP,GAAaqB,QAAQ5B,KAAK4E,SAAUwV,IAAqB,GAE7D,CAGA,sBAAO3d,CAAgBqH,GACrB,OAAO9D,KAAKwH,MAAK,WACf,MAAMnd,EAAOswB,GAAUrV,oBAAoBtF,KAAM8D,GACjD,GAAsB,iBAAXA,EAAX,CAGA,QAAqB/K,IAAjB1O,EAAKyZ,IAAyBA,EAAOrC,WAAW,MAAmB,gBAAXqC,EAC1D,MAAM,IAAIU,UAAU,oBAAoBV,MAE1CzZ,EAAKyZ,GAAQ9D,KAJb,CAKF,GACF,EAOFO,GAAac,GAAGhc,SAAUk1B,GA7JK,gCA6J2C,SAAUnb,GAClF,MAAM7S,EAASsZ,GAAec,uBAAuB3G,MAIrD,GAHI,CAAC,IAAK,QAAQoB,SAASpB,KAAKiH,UAC9B7H,EAAMkD,iBAEJpH,GAAW8E,MACb,OAEFO,GAAae,IAAI/U,EAAQ8tB,IAAgB,KAEnC1f,GAAUqF,OACZA,KAAKyS,OACP,IAIF,MAAMgH,EAAc5T,GAAeC,QAAQkU,IACvCP,GAAeA,IAAgBltB,GACjCouB,GAAUtV,YAAYoU,GAAa7J,OAExB+K,GAAUrV,oBAAoB/Y,GACtCob,OAAO3H,KACd,IACAO,GAAac,GAAGzhB,OAAQg6B,IAAuB,KAC7C,IAAK,MAAM7f,KAAY8L,GAAe1T,KAAK6nB,IACzCW,GAAUrV,oBAAoBvL,GAAU8V,MAC1C,IAEFtP,GAAac,GAAGzhB,OAAQ06B,IAAc,KACpC,IAAK,MAAM/6B,KAAWsmB,GAAe1T,KAAK,gDACG,UAAvClN,iBAAiB1F,GAASiC,UAC5Bm5B,GAAUrV,oBAAoB/lB,GAASqwB,MAE3C,IAEF/I,GAAqB8T,IAMrBxe,GAAmBwe,IAUnB,MACME,GAAmB,CAEvB,IAAK,CAAC,QAAS,MAAO,KAAM,OAAQ,OAHP,kBAI7BhqB,EAAG,CAAC,SAAU,OAAQ,QAAS,OAC/BiqB,KAAM,GACNhqB,EAAG,GACHiqB,GAAI,GACJC,IAAK,GACLC,KAAM,GACNC,GAAI,GACJC,IAAK,GACLC,GAAI,GACJC,GAAI,GACJC,GAAI,GACJC,GAAI,GACJC,GAAI,GACJC,GAAI,GACJC,GAAI,GACJC,GAAI,GACJC,GAAI,GACJC,GAAI,GACJxqB,EAAG,GACH0b,IAAK,CAAC,MAAO,SAAU,MAAO,QAAS,QAAS,UAChD+O,GAAI,GACJC,GAAI,GACJC,EAAG,GACHC,IAAK,GACLC,EAAG,GACHC,MAAO,GACPC,KAAM,GACNC,IAAK,GACLC,IAAK,GACLC,OAAQ,GACRC,EAAG,GACHC,GAAI,IAIAC,GAAgB,IAAIpmB,IAAI,CAAC,aAAc,OAAQ,OAAQ,WAAY,WAAY,SAAU,MAAO,eAShGqmB,GAAmB,0DACnBC,GAAmB,CAAC76B,EAAW86B,KACnC,MAAMC,EAAgB/6B,EAAUvC,SAASC,cACzC,OAAIo9B,EAAqBzb,SAAS0b,IAC5BJ,GAAc/lB,IAAImmB,IACbhc,QAAQ6b,GAAiBt5B,KAAKtB,EAAUg7B,YAM5CF,EAAqB12B,QAAO62B,GAAkBA,aAA0BzY,SAAQ9R,MAAKwqB,GAASA,EAAM55B,KAAKy5B,IAAe,EA0C3HI,GAAY,CAChBC,UAAWtC,GACXuC,QAAS,CAAC,EAEVC,WAAY,GACZxwB,MAAM,EACNywB,UAAU,EACVC,WAAY,KACZC,SAAU,eAENC,GAAgB,CACpBN,UAAW,SACXC,QAAS,SACTC,WAAY,oBACZxwB,KAAM,UACNywB,SAAU,UACVC,WAAY,kBACZC,SAAU,UAENE,GAAqB,CACzBC,MAAO,iCACP5jB,SAAU,oBAOZ,MAAM6jB,WAAwBna,GAC5B,WAAAU,CAAYL,GACVa,QACA3E,KAAK6E,QAAU7E,KAAK6D,WAAWC,EACjC,CAGA,kBAAWJ,GACT,OAAOwZ,EACT,CACA,sBAAWvZ,GACT,OAAO8Z,EACT,CACA,eAAWlhB,GACT,MA3CW,iBA4Cb,CAGA,UAAAshB,GACE,OAAO7gC,OAAOmiB,OAAOa,KAAK6E,QAAQuY,SAASt6B,KAAIghB,GAAU9D,KAAK8d,yBAAyBha,KAAS3d,OAAO2a,QACzG,CACA,UAAAid,GACE,OAAO/d,KAAK6d,aAAantB,OAAS,CACpC,CACA,aAAAstB,CAAcZ,GAMZ,OALApd,KAAKie,cAAcb,GACnBpd,KAAK6E,QAAQuY,QAAU,IAClBpd,KAAK6E,QAAQuY,WACbA,GAEEpd,IACT,CACA,MAAAke,GACE,MAAMC,EAAkB94B,SAASwvB,cAAc,OAC/CsJ,EAAgBC,UAAYpe,KAAKqe,eAAere,KAAK6E,QAAQ2Y,UAC7D,IAAK,MAAOzjB,EAAUukB,KAASthC,OAAOmkB,QAAQnB,KAAK6E,QAAQuY,SACzDpd,KAAKue,YAAYJ,EAAiBG,EAAMvkB,GAE1C,MAAMyjB,EAAWW,EAAgBpY,SAAS,GACpCsX,EAAard,KAAK8d,yBAAyB9d,KAAK6E,QAAQwY,YAI9D,OAHIA,GACFG,EAASniB,UAAU5E,OAAO4mB,EAAWn7B,MAAM,MAEtCs7B,CACT,CAGA,gBAAAvZ,CAAiBH,GACfa,MAAMV,iBAAiBH,GACvB9D,KAAKie,cAAcna,EAAOsZ,QAC5B,CACA,aAAAa,CAAcO,GACZ,IAAK,MAAOzkB,EAAUqjB,KAAYpgC,OAAOmkB,QAAQqd,GAC/C7Z,MAAMV,iBAAiB,CACrBlK,WACA4jB,MAAOP,GACNM,GAEP,CACA,WAAAa,CAAYf,EAAUJ,EAASrjB,GAC7B,MAAM0kB,EAAkB5Y,GAAeC,QAAQ/L,EAAUyjB,GACpDiB,KAGLrB,EAAUpd,KAAK8d,yBAAyBV,IAKpC,GAAUA,GACZpd,KAAK0e,sBAAsBhkB,GAAW0iB,GAAUqB,GAG9Cze,KAAK6E,QAAQhY,KACf4xB,EAAgBL,UAAYpe,KAAKqe,eAAejB,GAGlDqB,EAAgBE,YAAcvB,EAX5BqB,EAAgB9kB,SAYpB,CACA,cAAA0kB,CAAeG,GACb,OAAOxe,KAAK6E,QAAQyY,SApJxB,SAAsBsB,EAAYzB,EAAW0B,GAC3C,IAAKD,EAAWluB,OACd,OAAOkuB,EAET,GAAIC,GAAgD,mBAArBA,EAC7B,OAAOA,EAAiBD,GAE1B,MACME,GADY,IAAIl/B,OAAOm/B,WACKC,gBAAgBJ,EAAY,aACxD/9B,EAAW,GAAGlC,UAAUmgC,EAAgB5yB,KAAKkU,iBAAiB,MACpE,IAAK,MAAM7gB,KAAWsB,EAAU,CAC9B,MAAMo+B,EAAc1/B,EAAQC,SAASC,cACrC,IAAKzC,OAAO4D,KAAKu8B,GAAW/b,SAAS6d,GAAc,CACjD1/B,EAAQoa,SACR,QACF,CACA,MAAMulB,EAAgB,GAAGvgC,UAAUY,EAAQ0B,YACrCk+B,EAAoB,GAAGxgC,OAAOw+B,EAAU,MAAQ,GAAIA,EAAU8B,IAAgB,IACpF,IAAK,MAAMl9B,KAAam9B,EACjBtC,GAAiB76B,EAAWo9B,IAC/B5/B,EAAQ4B,gBAAgBY,EAAUvC,SAGxC,CACA,OAAOs/B,EAAgB5yB,KAAKkyB,SAC9B,CA2HmCgB,CAAaZ,EAAKxe,KAAK6E,QAAQsY,UAAWnd,KAAK6E,QAAQ0Y,YAAciB,CACtG,CACA,wBAAAV,CAAyBU,GACvB,OAAO3hB,GAAQ2hB,EAAK,CAACxe,MACvB,CACA,qBAAA0e,CAAsBn/B,EAASk/B,GAC7B,GAAIze,KAAK6E,QAAQhY,KAGf,OAFA4xB,EAAgBL,UAAY,QAC5BK,EAAgB3J,OAAOv1B,GAGzBk/B,EAAgBE,YAAcp/B,EAAQo/B,WACxC,EAeF,MACMU,GAAwB,IAAI/oB,IAAI,CAAC,WAAY,YAAa,eAC1DgpB,GAAoB,OAEpBC,GAAoB,OACpBC,GAAyB,iBACzBC,GAAiB,SACjBC,GAAmB,gBACnBC,GAAgB,QAChBC,GAAgB,QAahBC,GAAgB,CACpBC,KAAM,OACNC,IAAK,MACLC,MAAO/jB,KAAU,OAAS,QAC1BgkB,OAAQ,SACRC,KAAMjkB,KAAU,QAAU,QAEtBkkB,GAAY,CAChBhD,UAAWtC,GACXuF,WAAW,EACXnyB,SAAU,kBACVoyB,WAAW,EACXC,YAAa,GACbC,MAAO,EACPvwB,mBAAoB,CAAC,MAAO,QAAS,SAAU,QAC/CnD,MAAM,EACN7E,OAAQ,CAAC,EAAG,GACZtJ,UAAW,MACXszB,aAAc,KACdsL,UAAU,EACVC,WAAY,KACZxjB,UAAU,EACVyjB,SAAU,+GACVgD,MAAO,GACP5e,QAAS,eAEL6e,GAAgB,CACpBtD,UAAW,SACXiD,UAAW,UACXnyB,SAAU,mBACVoyB,UAAW,2BACXC,YAAa,oBACbC,MAAO,kBACPvwB,mBAAoB,QACpBnD,KAAM,UACN7E,OAAQ,0BACRtJ,UAAW,oBACXszB,aAAc,yBACdsL,SAAU,UACVC,WAAY,kBACZxjB,SAAU,mBACVyjB,SAAU,SACVgD,MAAO,4BACP5e,QAAS,UAOX,MAAM8e,WAAgBhc,GACpB,WAAAP,CAAY5kB,EAASukB,GACnB,QAAsB,IAAX,EACT,MAAM,IAAIU,UAAU,+DAEtBG,MAAMplB,EAASukB,GAGf9D,KAAK2gB,YAAa,EAClB3gB,KAAK4gB,SAAW,EAChB5gB,KAAK6gB,WAAa,KAClB7gB,KAAK8gB,eAAiB,CAAC,EACvB9gB,KAAKmS,QAAU,KACfnS,KAAK+gB,iBAAmB,KACxB/gB,KAAKghB,YAAc,KAGnBhhB,KAAKihB,IAAM,KACXjhB,KAAKkhB,gBACAlhB,KAAK6E,QAAQ9K,UAChBiG,KAAKmhB,WAET,CAGA,kBAAWzd,GACT,OAAOyc,EACT,CACA,sBAAWxc,GACT,OAAO8c,EACT,CACA,eAAWlkB,GACT,MAxGW,SAyGb,CAGA,MAAA6kB,GACEphB,KAAK2gB,YAAa,CACpB,CACA,OAAAU,GACErhB,KAAK2gB,YAAa,CACpB,CACA,aAAAW,GACEthB,KAAK2gB,YAAc3gB,KAAK2gB,UAC1B,CACA,MAAAhZ,GACO3H,KAAK2gB,aAGV3gB,KAAK8gB,eAAeS,OAASvhB,KAAK8gB,eAAeS,MAC7CvhB,KAAK2P,WACP3P,KAAKwhB,SAGPxhB,KAAKyhB,SACP,CACA,OAAA1c,GACEmI,aAAalN,KAAK4gB,UAClBrgB,GAAaC,IAAIR,KAAK4E,SAAS5J,QAAQykB,IAAiBC,GAAkB1f,KAAK0hB,mBAC3E1hB,KAAK4E,SAASpJ,aAAa,2BAC7BwE,KAAK4E,SAASxjB,aAAa,QAAS4e,KAAK4E,SAASpJ,aAAa,2BAEjEwE,KAAK2hB,iBACLhd,MAAMI,SACR,CACA,IAAA8K,GACE,GAAoC,SAAhC7P,KAAK4E,SAAS7jB,MAAMgxB,QACtB,MAAM,IAAInO,MAAM,uCAElB,IAAM5D,KAAK4hB,mBAAoB5hB,KAAK2gB,WAClC,OAEF,MAAMnH,EAAYjZ,GAAaqB,QAAQ5B,KAAK4E,SAAU5E,KAAKmE,YAAYqB,UAlItD,SAoIXqc,GADapmB,GAAeuE,KAAK4E,WACL5E,KAAK4E,SAAS9kB,cAAcwF,iBAAiBd,SAASwb,KAAK4E,UAC7F,GAAI4U,EAAUxX,mBAAqB6f,EACjC,OAIF7hB,KAAK2hB,iBACL,MAAMV,EAAMjhB,KAAK8hB,iBACjB9hB,KAAK4E,SAASxjB,aAAa,mBAAoB6/B,EAAIzlB,aAAa,OAChE,MAAM,UACJ6kB,GACErgB,KAAK6E,QAYT,GAXK7E,KAAK4E,SAAS9kB,cAAcwF,gBAAgBd,SAASwb,KAAKihB,OAC7DZ,EAAUvL,OAAOmM,GACjB1gB,GAAaqB,QAAQ5B,KAAK4E,SAAU5E,KAAKmE,YAAYqB,UAhJpC,cAkJnBxF,KAAKmS,QAAUnS,KAAKwS,cAAcyO,GAClCA,EAAI5lB,UAAU5E,IAAI8oB,IAMd,iBAAkBl6B,SAASC,gBAC7B,IAAK,MAAM/F,IAAW,GAAGZ,UAAU0G,SAAS6G,KAAK6Z,UAC/CxF,GAAac,GAAG9hB,EAAS,YAAaqc,IAU1CoE,KAAKmF,gBAPY,KACf5E,GAAaqB,QAAQ5B,KAAK4E,SAAU5E,KAAKmE,YAAYqB,UAhKrC,WAiKQ,IAApBxF,KAAK6gB,YACP7gB,KAAKwhB,SAEPxhB,KAAK6gB,YAAa,CAAK,GAEK7gB,KAAKihB,IAAKjhB,KAAKgO,cAC/C,CACA,IAAA4B,GACE,GAAK5P,KAAK2P,aAGQpP,GAAaqB,QAAQ5B,KAAK4E,SAAU5E,KAAKmE,YAAYqB,UA/KtD,SAgLHxD,iBAAd,CAQA,GALYhC,KAAK8hB,iBACbzmB,UAAU1B,OAAO4lB,IAIjB,iBAAkBl6B,SAASC,gBAC7B,IAAK,MAAM/F,IAAW,GAAGZ,UAAU0G,SAAS6G,KAAK6Z,UAC/CxF,GAAaC,IAAIjhB,EAAS,YAAaqc,IAG3CoE,KAAK8gB,eAA4B,OAAI,EACrC9gB,KAAK8gB,eAAelB,KAAiB,EACrC5f,KAAK8gB,eAAenB,KAAiB,EACrC3f,KAAK6gB,WAAa,KAYlB7gB,KAAKmF,gBAVY,KACXnF,KAAK+hB,yBAGJ/hB,KAAK6gB,YACR7gB,KAAK2hB,iBAEP3hB,KAAK4E,SAASzjB,gBAAgB,oBAC9Bof,GAAaqB,QAAQ5B,KAAK4E,SAAU5E,KAAKmE,YAAYqB,UAzMpC,WAyM8D,GAEnDxF,KAAKihB,IAAKjhB,KAAKgO,cA1B7C,CA2BF,CACA,MAAAjjB,GACMiV,KAAKmS,SACPnS,KAAKmS,QAAQpnB,QAEjB,CAGA,cAAA62B,GACE,OAAO9gB,QAAQd,KAAKgiB,YACtB,CACA,cAAAF,GAIE,OAHK9hB,KAAKihB,MACRjhB,KAAKihB,IAAMjhB,KAAKiiB,kBAAkBjiB,KAAKghB,aAAehhB,KAAKkiB,2BAEtDliB,KAAKihB,GACd,CACA,iBAAAgB,CAAkB7E,GAChB,MAAM6D,EAAMjhB,KAAKmiB,oBAAoB/E,GAASc,SAG9C,IAAK+C,EACH,OAAO,KAETA,EAAI5lB,UAAU1B,OAAO2lB,GAAmBC,IAExC0B,EAAI5lB,UAAU5E,IAAI,MAAMuJ,KAAKmE,YAAY5H,aACzC,MAAM6lB,EAvuGKC,KACb,GACEA,GAAUlgC,KAAKmgC,MA/BH,IA+BSngC,KAAKogC,gBACnBl9B,SAASm9B,eAAeH,IACjC,OAAOA,CAAM,EAmuGGI,CAAOziB,KAAKmE,YAAY5H,MAAM1c,WAK5C,OAJAohC,EAAI7/B,aAAa,KAAMghC,GACnBpiB,KAAKgO,eACPiT,EAAI5lB,UAAU5E,IAAI6oB,IAEb2B,CACT,CACA,UAAAyB,CAAWtF,GACTpd,KAAKghB,YAAc5D,EACfpd,KAAK2P,aACP3P,KAAK2hB,iBACL3hB,KAAK6P,OAET,CACA,mBAAAsS,CAAoB/E,GAYlB,OAXIpd,KAAK+gB,iBACP/gB,KAAK+gB,iBAAiB/C,cAAcZ,GAEpCpd,KAAK+gB,iBAAmB,IAAInD,GAAgB,IACvC5d,KAAK6E,QAGRuY,UACAC,WAAYrd,KAAK8d,yBAAyB9d,KAAK6E,QAAQyb,eAGpDtgB,KAAK+gB,gBACd,CACA,sBAAAmB,GACE,MAAO,CACL,CAAC1C,IAAyBxf,KAAKgiB,YAEnC,CACA,SAAAA,GACE,OAAOhiB,KAAK8d,yBAAyB9d,KAAK6E,QAAQ2b,QAAUxgB,KAAK4E,SAASpJ,aAAa,yBACzF,CAGA,4BAAAmnB,CAA6BvjB,GAC3B,OAAOY,KAAKmE,YAAYmB,oBAAoBlG,EAAMW,eAAgBC,KAAK4iB,qBACzE,CACA,WAAA5U,GACE,OAAOhO,KAAK6E,QAAQub,WAAapgB,KAAKihB,KAAOjhB,KAAKihB,IAAI5lB,UAAU7W,SAAS86B,GAC3E,CACA,QAAA3P,GACE,OAAO3P,KAAKihB,KAAOjhB,KAAKihB,IAAI5lB,UAAU7W,SAAS+6B,GACjD,CACA,aAAA/M,CAAcyO,GACZ,MAAMviC,EAAYme,GAAQmD,KAAK6E,QAAQnmB,UAAW,CAACshB,KAAMihB,EAAKjhB,KAAK4E,WAC7Die,EAAahD,GAAcnhC,EAAU+lB,eAC3C,OAAO,GAAoBzE,KAAK4E,SAAUqc,EAAKjhB,KAAK4S,iBAAiBiQ,GACvE,CACA,UAAA7P,GACE,MAAM,OACJhrB,GACEgY,KAAK6E,QACT,MAAsB,iBAAX7c,EACFA,EAAO9F,MAAM,KAAKY,KAAInF,GAAS4f,OAAOgQ,SAAS5vB,EAAO,MAEzC,mBAAXqK,EACFirB,GAAcjrB,EAAOirB,EAAYjT,KAAK4E,UAExC5c,CACT,CACA,wBAAA81B,CAAyBU,GACvB,OAAO3hB,GAAQ2hB,EAAK,CAACxe,KAAK4E,UAC5B,CACA,gBAAAgO,CAAiBiQ,GACf,MAAM3P,EAAwB,CAC5Bx0B,UAAWmkC,EACXzsB,UAAW,CAAC,CACV9V,KAAM,OACNmB,QAAS,CACPuO,mBAAoBgQ,KAAK6E,QAAQ7U,qBAElC,CACD1P,KAAM,SACNmB,QAAS,CACPuG,OAAQgY,KAAKgT,eAEd,CACD1yB,KAAM,kBACNmB,QAAS,CACPwM,SAAU+R,KAAK6E,QAAQ5W,WAExB,CACD3N,KAAM,QACNmB,QAAS,CACPlC,QAAS,IAAIygB,KAAKmE,YAAY5H,eAE/B,CACDjc,KAAM,kBACNC,SAAS,EACTC,MAAO,aACPC,GAAI4J,IAGF2V,KAAK8hB,iBAAiB1gC,aAAa,wBAAyBiJ,EAAK1J,MAAMjC,UAAU,KAIvF,MAAO,IACFw0B,KACArW,GAAQmD,KAAK6E,QAAQmN,aAAc,CAACkB,IAE3C,CACA,aAAAgO,GACE,MAAM4B,EAAW9iB,KAAK6E,QAAQjD,QAAQ1f,MAAM,KAC5C,IAAK,MAAM0f,KAAWkhB,EACpB,GAAgB,UAAZlhB,EACFrB,GAAac,GAAGrB,KAAK4E,SAAU5E,KAAKmE,YAAYqB,UAjVlC,SAiV4DxF,KAAK6E,QAAQ9K,UAAUqF,IAC/EY,KAAK2iB,6BAA6BvjB,GAC1CuI,QAAQ,SAEb,GA3VU,WA2VN/F,EAA4B,CACrC,MAAMmhB,EAAUnhB,IAAY+d,GAAgB3f,KAAKmE,YAAYqB,UAnV5C,cAmV0ExF,KAAKmE,YAAYqB,UArV5F,WAsVVwd,EAAWphB,IAAY+d,GAAgB3f,KAAKmE,YAAYqB,UAnV7C,cAmV2ExF,KAAKmE,YAAYqB,UArV5F,YAsVjBjF,GAAac,GAAGrB,KAAK4E,SAAUme,EAAS/iB,KAAK6E,QAAQ9K,UAAUqF,IAC7D,MAAMkU,EAAUtT,KAAK2iB,6BAA6BvjB,GAClDkU,EAAQwN,eAA8B,YAAf1hB,EAAMqB,KAAqBmf,GAAgBD,KAAiB,EACnFrM,EAAQmO,QAAQ,IAElBlhB,GAAac,GAAGrB,KAAK4E,SAAUoe,EAAUhjB,KAAK6E,QAAQ9K,UAAUqF,IAC9D,MAAMkU,EAAUtT,KAAK2iB,6BAA6BvjB,GAClDkU,EAAQwN,eAA8B,aAAf1hB,EAAMqB,KAAsBmf,GAAgBD,IAAiBrM,EAAQ1O,SAASpgB,SAAS4a,EAAMU,eACpHwT,EAAQkO,QAAQ,GAEpB,CAEFxhB,KAAK0hB,kBAAoB,KACnB1hB,KAAK4E,UACP5E,KAAK4P,MACP,EAEFrP,GAAac,GAAGrB,KAAK4E,SAAS5J,QAAQykB,IAAiBC,GAAkB1f,KAAK0hB,kBAChF,CACA,SAAAP,GACE,MAAMX,EAAQxgB,KAAK4E,SAASpJ,aAAa,SACpCglB,IAGAxgB,KAAK4E,SAASpJ,aAAa,eAAkBwE,KAAK4E,SAAS+Z,YAAYhZ,QAC1E3F,KAAK4E,SAASxjB,aAAa,aAAco/B,GAE3CxgB,KAAK4E,SAASxjB,aAAa,yBAA0Bo/B,GACrDxgB,KAAK4E,SAASzjB,gBAAgB,SAChC,CACA,MAAAsgC,GACMzhB,KAAK2P,YAAc3P,KAAK6gB,WAC1B7gB,KAAK6gB,YAAa,GAGpB7gB,KAAK6gB,YAAa,EAClB7gB,KAAKijB,aAAY,KACXjjB,KAAK6gB,YACP7gB,KAAK6P,MACP,GACC7P,KAAK6E,QAAQ0b,MAAM1Q,MACxB,CACA,MAAA2R,GACMxhB,KAAK+hB,yBAGT/hB,KAAK6gB,YAAa,EAClB7gB,KAAKijB,aAAY,KACVjjB,KAAK6gB,YACR7gB,KAAK4P,MACP,GACC5P,KAAK6E,QAAQ0b,MAAM3Q,MACxB,CACA,WAAAqT,CAAYrlB,EAASslB,GACnBhW,aAAalN,KAAK4gB,UAClB5gB,KAAK4gB,SAAW/iB,WAAWD,EAASslB,EACtC,CACA,oBAAAnB,GACE,OAAO/kC,OAAOmiB,OAAOa,KAAK8gB,gBAAgB1f,UAAS,EACrD,CACA,UAAAyC,CAAWC,GACT,MAAMqf,EAAiBngB,GAAYG,kBAAkBnD,KAAK4E,UAC1D,IAAK,MAAMwe,KAAiBpmC,OAAO4D,KAAKuiC,GAClC9D,GAAsB1oB,IAAIysB,WACrBD,EAAeC,GAU1B,OAPAtf,EAAS,IACJqf,KACmB,iBAAXrf,GAAuBA,EAASA,EAAS,CAAC,GAEvDA,EAAS9D,KAAK+D,gBAAgBD,GAC9BA,EAAS9D,KAAKgE,kBAAkBF,GAChC9D,KAAKiE,iBAAiBH,GACfA,CACT,CACA,iBAAAE,CAAkBF,GAchB,OAbAA,EAAOuc,WAAiC,IAArBvc,EAAOuc,UAAsBh7B,SAAS6G,KAAOwO,GAAWoJ,EAAOuc,WACtD,iBAAjBvc,EAAOyc,QAChBzc,EAAOyc,MAAQ,CACb1Q,KAAM/L,EAAOyc,MACb3Q,KAAM9L,EAAOyc,QAGW,iBAAjBzc,EAAO0c,QAChB1c,EAAO0c,MAAQ1c,EAAO0c,MAAM3gC,YAEA,iBAAnBikB,EAAOsZ,UAChBtZ,EAAOsZ,QAAUtZ,EAAOsZ,QAAQv9B,YAE3BikB,CACT,CACA,kBAAA8e,GACE,MAAM9e,EAAS,CAAC,EAChB,IAAK,MAAOhnB,EAAKa,KAAUX,OAAOmkB,QAAQnB,KAAK6E,SACzC7E,KAAKmE,YAAYT,QAAQ5mB,KAASa,IACpCmmB,EAAOhnB,GAAOa,GASlB,OANAmmB,EAAO/J,UAAW,EAClB+J,EAAOlC,QAAU,SAKVkC,CACT,CACA,cAAA6d,GACM3hB,KAAKmS,UACPnS,KAAKmS,QAAQnZ,UACbgH,KAAKmS,QAAU,MAEbnS,KAAKihB,MACPjhB,KAAKihB,IAAItnB,SACTqG,KAAKihB,IAAM,KAEf,CAGA,sBAAOxkB,CAAgBqH,GACrB,OAAO9D,KAAKwH,MAAK,WACf,MAAMnd,EAAOq2B,GAAQpb,oBAAoBtF,KAAM8D,GAC/C,GAAsB,iBAAXA,EAAX,CAGA,QAA4B,IAAjBzZ,EAAKyZ,GACd,MAAM,IAAIU,UAAU,oBAAoBV,MAE1CzZ,EAAKyZ,IAJL,CAKF,GACF,EAOF3H,GAAmBukB,IAcnB,MACM2C,GAAiB,kBACjBC,GAAmB,gBACnBC,GAAY,IACb7C,GAAQhd,QACX0Z,QAAS,GACTp1B,OAAQ,CAAC,EAAG,GACZtJ,UAAW,QACX8+B,SAAU,8IACV5b,QAAS,SAEL4hB,GAAgB,IACjB9C,GAAQ/c,YACXyZ,QAAS,kCAOX,MAAMqG,WAAgB/C,GAEpB,kBAAWhd,GACT,OAAO6f,EACT,CACA,sBAAW5f,GACT,OAAO6f,EACT,CACA,eAAWjnB,GACT,MA7BW,SA8Bb,CAGA,cAAAqlB,GACE,OAAO5hB,KAAKgiB,aAAehiB,KAAK0jB,aAClC,CAGA,sBAAAxB,GACE,MAAO,CACL,CAACmB,IAAiBrjB,KAAKgiB,YACvB,CAACsB,IAAmBtjB,KAAK0jB,cAE7B,CACA,WAAAA,GACE,OAAO1jB,KAAK8d,yBAAyB9d,KAAK6E,QAAQuY,QACpD,CAGA,sBAAO3gB,CAAgBqH,GACrB,OAAO9D,KAAKwH,MAAK,WACf,MAAMnd,EAAOo5B,GAAQne,oBAAoBtF,KAAM8D,GAC/C,GAAsB,iBAAXA,EAAX,CAGA,QAA4B,IAAjBzZ,EAAKyZ,GACd,MAAM,IAAIU,UAAU,oBAAoBV,MAE1CzZ,EAAKyZ,IAJL,CAKF,GACF,EAOF3H,GAAmBsnB,IAcnB,MAEME,GAAc,gBAEdC,GAAiB,WAAWD,KAC5BE,GAAc,QAAQF,KACtBG,GAAwB,OAAOH,cAE/BI,GAAsB,SAEtBC,GAAwB,SAExBC,GAAqB,YAGrBC,GAAsB,GAAGD,mBAA+CA,uBAGxEE,GAAY,CAChBn8B,OAAQ,KAERo8B,WAAY,eACZC,cAAc,EACd93B,OAAQ,KACR+3B,UAAW,CAAC,GAAK,GAAK,IAElBC,GAAgB,CACpBv8B,OAAQ,gBAERo8B,WAAY,SACZC,aAAc,UACd93B,OAAQ,UACR+3B,UAAW,SAOb,MAAME,WAAkB9f,GACtB,WAAAP,CAAY5kB,EAASukB,GACnBa,MAAMplB,EAASukB,GAGf9D,KAAKykB,aAAe,IAAIvzB,IACxB8O,KAAK0kB,oBAAsB,IAAIxzB,IAC/B8O,KAAK2kB,aAA6D,YAA9C1/B,iBAAiB+a,KAAK4E,UAAU5Y,UAA0B,KAAOgU,KAAK4E,SAC1F5E,KAAK4kB,cAAgB,KACrB5kB,KAAK6kB,UAAY,KACjB7kB,KAAK8kB,oBAAsB,CACzBC,gBAAiB,EACjBC,gBAAiB,GAEnBhlB,KAAKilB,SACP,CAGA,kBAAWvhB,GACT,OAAOygB,EACT,CACA,sBAAWxgB,GACT,OAAO4gB,EACT,CACA,eAAWhoB,GACT,MAhEW,WAiEb,CAGA,OAAA0oB,GACEjlB,KAAKklB,mCACLllB,KAAKmlB,2BACDnlB,KAAK6kB,UACP7kB,KAAK6kB,UAAUO,aAEfplB,KAAK6kB,UAAY7kB,KAAKqlB,kBAExB,IAAK,MAAMC,KAAWtlB,KAAK0kB,oBAAoBvlB,SAC7Ca,KAAK6kB,UAAUU,QAAQD,EAE3B,CACA,OAAAvgB,GACE/E,KAAK6kB,UAAUO,aACfzgB,MAAMI,SACR,CAGA,iBAAAf,CAAkBF,GAShB,OAPAA,EAAOvX,OAASmO,GAAWoJ,EAAOvX,SAAWlH,SAAS6G,KAGtD4X,EAAOsgB,WAAatgB,EAAO9b,OAAS,GAAG8b,EAAO9b,oBAAsB8b,EAAOsgB,WAC3C,iBAArBtgB,EAAOwgB,YAChBxgB,EAAOwgB,UAAYxgB,EAAOwgB,UAAUpiC,MAAM,KAAKY,KAAInF,GAAS4f,OAAOC,WAAW7f,MAEzEmmB,CACT,CACA,wBAAAqhB,GACOnlB,KAAK6E,QAAQwf,eAKlB9jB,GAAaC,IAAIR,KAAK6E,QAAQtY,OAAQs3B,IACtCtjB,GAAac,GAAGrB,KAAK6E,QAAQtY,OAAQs3B,GAAaG,IAAuB5kB,IACvE,MAAMomB,EAAoBxlB,KAAK0kB,oBAAoBvnC,IAAIiiB,EAAM7S,OAAOtB,MACpE,GAAIu6B,EAAmB,CACrBpmB,EAAMkD,iBACN,MAAM3G,EAAOqE,KAAK2kB,cAAgB/kC,OAC5BmE,EAASyhC,EAAkBnhC,UAAY2b,KAAK4E,SAASvgB,UAC3D,GAAIsX,EAAK8pB,SAKP,YAJA9pB,EAAK8pB,SAAS,CACZ9jC,IAAKoC,EACL2hC,SAAU,WAMd/pB,EAAKlQ,UAAY1H,CACnB,KAEJ,CACA,eAAAshC,GACE,MAAM5jC,EAAU,CACdka,KAAMqE,KAAK2kB,aACXL,UAAWtkB,KAAK6E,QAAQyf,UACxBF,WAAYpkB,KAAK6E,QAAQuf,YAE3B,OAAO,IAAIuB,sBAAqBxkB,GAAWnB,KAAK4lB,kBAAkBzkB,IAAU1f,EAC9E,CAGA,iBAAAmkC,CAAkBzkB,GAChB,MAAM0kB,EAAgBlI,GAAS3d,KAAKykB,aAAatnC,IAAI,IAAIwgC,EAAMpxB,OAAO4N,MAChEub,EAAWiI,IACf3d,KAAK8kB,oBAAoBC,gBAAkBpH,EAAMpxB,OAAOlI,UACxD2b,KAAK8lB,SAASD,EAAclI,GAAO,EAE/BqH,GAAmBhlB,KAAK2kB,cAAgBt/B,SAASC,iBAAiBmG,UAClEs6B,EAAkBf,GAAmBhlB,KAAK8kB,oBAAoBE,gBACpEhlB,KAAK8kB,oBAAoBE,gBAAkBA,EAC3C,IAAK,MAAMrH,KAASxc,EAAS,CAC3B,IAAKwc,EAAMqI,eAAgB,CACzBhmB,KAAK4kB,cAAgB,KACrB5kB,KAAKimB,kBAAkBJ,EAAclI,IACrC,QACF,CACA,MAAMuI,EAA2BvI,EAAMpxB,OAAOlI,WAAa2b,KAAK8kB,oBAAoBC,gBAEpF,GAAIgB,GAAmBG,GAGrB,GAFAxQ,EAASiI,IAEJqH,EACH,YAMCe,GAAoBG,GACvBxQ,EAASiI,EAEb,CACF,CACA,gCAAAuH,GACEllB,KAAKykB,aAAe,IAAIvzB,IACxB8O,KAAK0kB,oBAAsB,IAAIxzB,IAC/B,MAAMi1B,EAActgB,GAAe1T,KAAK6xB,GAAuBhkB,KAAK6E,QAAQtY,QAC5E,IAAK,MAAM65B,KAAUD,EAAa,CAEhC,IAAKC,EAAOn7B,MAAQiQ,GAAWkrB,GAC7B,SAEF,MAAMZ,EAAoB3f,GAAeC,QAAQugB,UAAUD,EAAOn7B,MAAO+U,KAAK4E,UAG1EjK,GAAU6qB,KACZxlB,KAAKykB,aAAa1yB,IAAIs0B,UAAUD,EAAOn7B,MAAOm7B,GAC9CpmB,KAAK0kB,oBAAoB3yB,IAAIq0B,EAAOn7B,KAAMu6B,GAE9C,CACF,CACA,QAAAM,CAASv5B,GACHyT,KAAK4kB,gBAAkBr4B,IAG3ByT,KAAKimB,kBAAkBjmB,KAAK6E,QAAQtY,QACpCyT,KAAK4kB,cAAgBr4B,EACrBA,EAAO8O,UAAU5E,IAAIstB,IACrB/jB,KAAKsmB,iBAAiB/5B,GACtBgU,GAAaqB,QAAQ5B,KAAK4E,SAAUgf,GAAgB,CAClD9jB,cAAevT,IAEnB,CACA,gBAAA+5B,CAAiB/5B,GAEf,GAAIA,EAAO8O,UAAU7W,SA9LQ,iBA+L3BqhB,GAAeC,QArLc,mBAqLsBvZ,EAAOyO,QAtLtC,cAsLkEK,UAAU5E,IAAIstB,SAGtG,IAAK,MAAMwC,KAAa1gB,GAAeI,QAAQ1Z,EA9LnB,qBAiM1B,IAAK,MAAMxJ,KAAQ8iB,GAAeM,KAAKogB,EAAWrC,IAChDnhC,EAAKsY,UAAU5E,IAAIstB,GAGzB,CACA,iBAAAkC,CAAkBxhC,GAChBA,EAAO4W,UAAU1B,OAAOoqB,IACxB,MAAMyC,EAAc3gB,GAAe1T,KAAK,GAAG6xB,MAAyBD,KAAuBt/B,GAC3F,IAAK,MAAM9E,KAAQ6mC,EACjB7mC,EAAK0b,UAAU1B,OAAOoqB,GAE1B,CAGA,sBAAOtnB,CAAgBqH,GACrB,OAAO9D,KAAKwH,MAAK,WACf,MAAMnd,EAAOm6B,GAAUlf,oBAAoBtF,KAAM8D,GACjD,GAAsB,iBAAXA,EAAX,CAGA,QAAqB/K,IAAjB1O,EAAKyZ,IAAyBA,EAAOrC,WAAW,MAAmB,gBAAXqC,EAC1D,MAAM,IAAIU,UAAU,oBAAoBV,MAE1CzZ,EAAKyZ,IAJL,CAKF,GACF,EAOFvD,GAAac,GAAGzhB,OAAQkkC,IAAuB,KAC7C,IAAK,MAAM2C,KAAO5gB,GAAe1T,KApOT,0BAqOtBqyB,GAAUlf,oBAAoBmhB,EAChC,IAOFtqB,GAAmBqoB,IAcnB,MAEMkC,GAAc,UACdC,GAAe,OAAOD,KACtBE,GAAiB,SAASF,KAC1BG,GAAe,OAAOH,KACtBI,GAAgB,QAAQJ,KACxBK,GAAuB,QAAQL,KAC/BM,GAAgB,UAAUN,KAC1BO,GAAsB,OAAOP,KAC7BQ,GAAiB,YACjBC,GAAkB,aAClBC,GAAe,UACfC,GAAiB,YACjBC,GAAW,OACXC,GAAU,MACVC,GAAoB,SACpBC,GAAoB,OACpBC,GAAoB,OAEpBC,GAA2B,mBAE3BC,GAA+B,QAAQD,MAIvCE,GAAuB,2EACvBC,GAAsB,YAFOF,uBAAiDA,mBAA6CA,OAE/EC,KAC5CE,GAA8B,IAAIP,8BAA6CA,+BAA8CA,4BAMnI,MAAMQ,WAAYtjB,GAChB,WAAAP,CAAY5kB,GACVolB,MAAMplB,GACNygB,KAAKoS,QAAUpS,KAAK4E,SAAS5J,QAdN,uCAelBgF,KAAKoS,UAOVpS,KAAKioB,sBAAsBjoB,KAAKoS,QAASpS,KAAKkoB,gBAC9C3nB,GAAac,GAAGrB,KAAK4E,SAAUoiB,IAAe5nB,GAASY,KAAK6M,SAASzN,KACvE,CAGA,eAAW7C,GACT,MAnDW,KAoDb,CAGA,IAAAsT,GAEE,MAAMsY,EAAYnoB,KAAK4E,SACvB,GAAI5E,KAAKooB,cAAcD,GACrB,OAIF,MAAME,EAASroB,KAAKsoB,iBACdC,EAAYF,EAAS9nB,GAAaqB,QAAQymB,EAAQ1B,GAAc,CACpE7mB,cAAeqoB,IACZ,KACa5nB,GAAaqB,QAAQumB,EAAWtB,GAAc,CAC9D/mB,cAAeuoB,IAEHrmB,kBAAoBumB,GAAaA,EAAUvmB,mBAGzDhC,KAAKwoB,YAAYH,EAAQF,GACzBnoB,KAAKyoB,UAAUN,EAAWE,GAC5B,CAGA,SAAAI,CAAUlpC,EAASmpC,GACZnpC,IAGLA,EAAQ8b,UAAU5E,IAAI+wB,IACtBxnB,KAAKyoB,UAAU5iB,GAAec,uBAAuBpnB,IAcrDygB,KAAKmF,gBAZY,KACsB,QAAjC5lB,EAAQic,aAAa,SAIzBjc,EAAQ4B,gBAAgB,YACxB5B,EAAQ6B,aAAa,iBAAiB,GACtC4e,KAAK2oB,gBAAgBppC,GAAS,GAC9BghB,GAAaqB,QAAQriB,EAASunC,GAAe,CAC3ChnB,cAAe4oB,KAPfnpC,EAAQ8b,UAAU5E,IAAIixB,GAQtB,GAE0BnoC,EAASA,EAAQ8b,UAAU7W,SAASijC,KACpE,CACA,WAAAe,CAAYjpC,EAASmpC,GACdnpC,IAGLA,EAAQ8b,UAAU1B,OAAO6tB,IACzBjoC,EAAQq7B,OACR5a,KAAKwoB,YAAY3iB,GAAec,uBAAuBpnB,IAcvDygB,KAAKmF,gBAZY,KACsB,QAAjC5lB,EAAQic,aAAa,SAIzBjc,EAAQ6B,aAAa,iBAAiB,GACtC7B,EAAQ6B,aAAa,WAAY,MACjC4e,KAAK2oB,gBAAgBppC,GAAS,GAC9BghB,GAAaqB,QAAQriB,EAASqnC,GAAgB,CAC5C9mB,cAAe4oB,KAPfnpC,EAAQ8b,UAAU1B,OAAO+tB,GAQzB,GAE0BnoC,EAASA,EAAQ8b,UAAU7W,SAASijC,KACpE,CACA,QAAA5a,CAASzN,GACP,IAAK,CAAC8nB,GAAgBC,GAAiBC,GAAcC,GAAgBC,GAAUC,IAASnmB,SAAShC,EAAMtiB,KACrG,OAEFsiB,EAAM0U,kBACN1U,EAAMkD,iBACN,MAAMyD,EAAW/F,KAAKkoB,eAAe/hC,QAAO5G,IAAY2b,GAAW3b,KACnE,IAAIqpC,EACJ,GAAI,CAACtB,GAAUC,IAASnmB,SAAShC,EAAMtiB,KACrC8rC,EAAoB7iB,EAAS3G,EAAMtiB,MAAQwqC,GAAW,EAAIvhB,EAASrV,OAAS,OACvE,CACL,MAAM8c,EAAS,CAAC2Z,GAAiBE,IAAgBjmB,SAAShC,EAAMtiB,KAChE8rC,EAAoB9qB,GAAqBiI,EAAU3G,EAAM7S,OAAQihB,GAAQ,EAC3E,CACIob,IACFA,EAAkBnW,MAAM,CACtBoW,eAAe,IAEjBb,GAAI1iB,oBAAoBsjB,GAAmB/Y,OAE/C,CACA,YAAAqY,GAEE,OAAOriB,GAAe1T,KAAK21B,GAAqB9nB,KAAKoS,QACvD,CACA,cAAAkW,GACE,OAAOtoB,KAAKkoB,eAAe/1B,MAAKzN,GAASsb,KAAKooB,cAAc1jC,MAAW,IACzE,CACA,qBAAAujC,CAAsBxjC,EAAQshB,GAC5B/F,KAAK8oB,yBAAyBrkC,EAAQ,OAAQ,WAC9C,IAAK,MAAMC,KAASqhB,EAClB/F,KAAK+oB,6BAA6BrkC,EAEtC,CACA,4BAAAqkC,CAA6BrkC,GAC3BA,EAAQsb,KAAKgpB,iBAAiBtkC,GAC9B,MAAMukC,EAAWjpB,KAAKooB,cAAc1jC,GAC9BwkC,EAAYlpB,KAAKmpB,iBAAiBzkC,GACxCA,EAAMtD,aAAa,gBAAiB6nC,GAChCC,IAAcxkC,GAChBsb,KAAK8oB,yBAAyBI,EAAW,OAAQ,gBAE9CD,GACHvkC,EAAMtD,aAAa,WAAY,MAEjC4e,KAAK8oB,yBAAyBpkC,EAAO,OAAQ,OAG7Csb,KAAKopB,mCAAmC1kC,EAC1C,CACA,kCAAA0kC,CAAmC1kC,GACjC,MAAM6H,EAASsZ,GAAec,uBAAuBjiB,GAChD6H,IAGLyT,KAAK8oB,yBAAyBv8B,EAAQ,OAAQ,YAC1C7H,EAAMyV,IACR6F,KAAK8oB,yBAAyBv8B,EAAQ,kBAAmB,GAAG7H,EAAMyV,MAEtE,CACA,eAAAwuB,CAAgBppC,EAAS8pC,GACvB,MAAMH,EAAYlpB,KAAKmpB,iBAAiB5pC,GACxC,IAAK2pC,EAAU7tB,UAAU7W,SApKN,YAqKjB,OAEF,MAAMmjB,EAAS,CAAC5N,EAAUoa,KACxB,MAAM50B,EAAUsmB,GAAeC,QAAQ/L,EAAUmvB,GAC7C3pC,GACFA,EAAQ8b,UAAUsM,OAAOwM,EAAWkV,EACtC,EAEF1hB,EAAOggB,GAA0BH,IACjC7f,EA5K2B,iBA4KI+f,IAC/BwB,EAAU9nC,aAAa,gBAAiBioC,EAC1C,CACA,wBAAAP,CAAyBvpC,EAASwC,EAAWpE,GACtC4B,EAAQgc,aAAaxZ,IACxBxC,EAAQ6B,aAAaW,EAAWpE,EAEpC,CACA,aAAAyqC,CAAc9Y,GACZ,OAAOA,EAAKjU,UAAU7W,SAASgjC,GACjC,CAGA,gBAAAwB,CAAiB1Z,GACf,OAAOA,EAAKtJ,QAAQ8hB,IAAuBxY,EAAOzJ,GAAeC,QAAQgiB,GAAqBxY,EAChG,CAGA,gBAAA6Z,CAAiB7Z,GACf,OAAOA,EAAKtU,QA5LO,gCA4LoBsU,CACzC,CAGA,sBAAO7S,CAAgBqH,GACrB,OAAO9D,KAAKwH,MAAK,WACf,MAAMnd,EAAO29B,GAAI1iB,oBAAoBtF,MACrC,GAAsB,iBAAX8D,EAAX,CAGA,QAAqB/K,IAAjB1O,EAAKyZ,IAAyBA,EAAOrC,WAAW,MAAmB,gBAAXqC,EAC1D,MAAM,IAAIU,UAAU,oBAAoBV,MAE1CzZ,EAAKyZ,IAJL,CAKF,GACF,EAOFvD,GAAac,GAAGhc,SAAU0hC,GAAsBc,IAAsB,SAAUzoB,GAC1E,CAAC,IAAK,QAAQgC,SAASpB,KAAKiH,UAC9B7H,EAAMkD,iBAEJpH,GAAW8E,OAGfgoB,GAAI1iB,oBAAoBtF,MAAM6P,MAChC,IAKAtP,GAAac,GAAGzhB,OAAQqnC,IAAqB,KAC3C,IAAK,MAAM1nC,KAAWsmB,GAAe1T,KAAK41B,IACxCC,GAAI1iB,oBAAoB/lB,EAC1B,IAMF4c,GAAmB6rB,IAcnB,MAEMhjB,GAAY,YACZskB,GAAkB,YAAYtkB,KAC9BukB,GAAiB,WAAWvkB,KAC5BwkB,GAAgB,UAAUxkB,KAC1BykB,GAAiB,WAAWzkB,KAC5B0kB,GAAa,OAAO1kB,KACpB2kB,GAAe,SAAS3kB,KACxB4kB,GAAa,OAAO5kB,KACpB6kB,GAAc,QAAQ7kB,KAEtB8kB,GAAkB,OAClBC,GAAkB,OAClBC,GAAqB,UACrBrmB,GAAc,CAClByc,UAAW,UACX6J,SAAU,UACV1J,MAAO,UAEH7c,GAAU,CACd0c,WAAW,EACX6J,UAAU,EACV1J,MAAO,KAOT,MAAM2J,WAAcxlB,GAClB,WAAAP,CAAY5kB,EAASukB,GACnBa,MAAMplB,EAASukB,GACf9D,KAAK4gB,SAAW,KAChB5gB,KAAKmqB,sBAAuB,EAC5BnqB,KAAKoqB,yBAA0B,EAC/BpqB,KAAKkhB,eACP,CAGA,kBAAWxd,GACT,OAAOA,EACT,CACA,sBAAWC,GACT,OAAOA,EACT,CACA,eAAWpH,GACT,MA/CS,OAgDX,CAGA,IAAAsT,GACoBtP,GAAaqB,QAAQ5B,KAAK4E,SAAUglB,IACxC5nB,mBAGdhC,KAAKqqB,gBACDrqB,KAAK6E,QAAQub,WACfpgB,KAAK4E,SAASvJ,UAAU5E,IA/CN,QAsDpBuJ,KAAK4E,SAASvJ,UAAU1B,OAAOmwB,IAC/BjuB,GAAOmE,KAAK4E,UACZ5E,KAAK4E,SAASvJ,UAAU5E,IAAIszB,GAAiBC,IAC7ChqB,KAAKmF,gBARY,KACfnF,KAAK4E,SAASvJ,UAAU1B,OAAOqwB,IAC/BzpB,GAAaqB,QAAQ5B,KAAK4E,SAAUilB,IACpC7pB,KAAKsqB,oBAAoB,GAKGtqB,KAAK4E,SAAU5E,KAAK6E,QAAQub,WAC5D,CACA,IAAAxQ,GACO5P,KAAKuqB,YAGQhqB,GAAaqB,QAAQ5B,KAAK4E,SAAU8kB,IACxC1nB,mBAQdhC,KAAK4E,SAASvJ,UAAU5E,IAAIuzB,IAC5BhqB,KAAKmF,gBANY,KACfnF,KAAK4E,SAASvJ,UAAU5E,IAAIqzB,IAC5B9pB,KAAK4E,SAASvJ,UAAU1B,OAAOqwB,GAAoBD,IACnDxpB,GAAaqB,QAAQ5B,KAAK4E,SAAU+kB,GAAa,GAGrB3pB,KAAK4E,SAAU5E,KAAK6E,QAAQub,YAC5D,CACA,OAAArb,GACE/E,KAAKqqB,gBACDrqB,KAAKuqB,WACPvqB,KAAK4E,SAASvJ,UAAU1B,OAAOowB,IAEjCplB,MAAMI,SACR,CACA,OAAAwlB,GACE,OAAOvqB,KAAK4E,SAASvJ,UAAU7W,SAASulC,GAC1C,CAIA,kBAAAO,GACOtqB,KAAK6E,QAAQolB,WAGdjqB,KAAKmqB,sBAAwBnqB,KAAKoqB,0BAGtCpqB,KAAK4gB,SAAW/iB,YAAW,KACzBmC,KAAK4P,MAAM,GACV5P,KAAK6E,QAAQ0b,QAClB,CACA,cAAAiK,CAAeprB,EAAOqrB,GACpB,OAAQrrB,EAAMqB,MACZ,IAAK,YACL,IAAK,WAEDT,KAAKmqB,qBAAuBM,EAC5B,MAEJ,IAAK,UACL,IAAK,WAEDzqB,KAAKoqB,wBAA0BK,EAIrC,GAAIA,EAEF,YADAzqB,KAAKqqB,gBAGP,MAAM5c,EAAcrO,EAAMU,cACtBE,KAAK4E,WAAa6I,GAAezN,KAAK4E,SAASpgB,SAASipB,IAG5DzN,KAAKsqB,oBACP,CACA,aAAApJ,GACE3gB,GAAac,GAAGrB,KAAK4E,SAAU0kB,IAAiBlqB,GAASY,KAAKwqB,eAAeprB,GAAO,KACpFmB,GAAac,GAAGrB,KAAK4E,SAAU2kB,IAAgBnqB,GAASY,KAAKwqB,eAAeprB,GAAO,KACnFmB,GAAac,GAAGrB,KAAK4E,SAAU4kB,IAAepqB,GAASY,KAAKwqB,eAAeprB,GAAO,KAClFmB,GAAac,GAAGrB,KAAK4E,SAAU6kB,IAAgBrqB,GAASY,KAAKwqB,eAAeprB,GAAO,IACrF,CACA,aAAAirB,GACEnd,aAAalN,KAAK4gB,UAClB5gB,KAAK4gB,SAAW,IAClB,CAGA,sBAAOnkB,CAAgBqH,GACrB,OAAO9D,KAAKwH,MAAK,WACf,MAAMnd,EAAO6/B,GAAM5kB,oBAAoBtF,KAAM8D,GAC7C,GAAsB,iBAAXA,EAAqB,CAC9B,QAA4B,IAAjBzZ,EAAKyZ,GACd,MAAM,IAAIU,UAAU,oBAAoBV,MAE1CzZ,EAAKyZ,GAAQ9D,KACf,CACF,GACF,ECr0IK,SAAS0qB,GAAcruB,GACD,WAAvBhX,SAASuX,WAAyBP,IACjChX,SAASyF,iBAAiB,mBAAoBuR,EACrD,CDy0IAwK,GAAqBqjB,IAMrB/tB,GAAmB+tB,IEpyInBQ,IAzCA,WAC2B,GAAGt4B,MAAM5U,KAChC6H,SAAS+a,iBAAiB,+BAETtd,KAAI,SAAU6nC,GAC/B,OAAO,IAAI,GAAkBA,EAAkB,CAC7CpK,MAAO,CAAE1Q,KAAM,IAAKD,KAAM,MAE9B,GACF,IAiCA8a,IA5BA,WACYrlC,SAASm9B,eAAe,mBAC9B13B,iBAAiB,SAAS,WAC5BzF,SAAS6G,KAAKT,UAAY,EAC1BpG,SAASC,gBAAgBmG,UAAY,CACvC,GACF,IAuBAi/B,IArBA,WACE,IAAIE,EAAMvlC,SAASm9B,eAAe,mBAC9BqI,EAASxlC,SACVylC,uBAAuB,aAAa,GACpCxnC,wBACH1D,OAAOkL,iBAAiB,UAAU,WAC5BkV,KAAK+qB,UAAY/qB,KAAKgrB,SAAWhrB,KAAKgrB,QAAUH,EAAOjtC,OACzDgtC,EAAI7pC,MAAMgxB,QAAU,QAEpB6Y,EAAI7pC,MAAMgxB,QAAU,OAEtB/R,KAAK+qB,UAAY/qB,KAAKgrB,OACxB,GACF,IAUAprC,OAAOqrC,UAAY","sources":["webpack://pydata_sphinx_theme/webpack/bootstrap","webpack://pydata_sphinx_theme/webpack/runtime/define property getters","webpack://pydata_sphinx_theme/webpack/runtime/hasOwnProperty shorthand","webpack://pydata_sphinx_theme/webpack/runtime/make namespace object","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/enums.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/dom-utils/getNodeName.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/dom-utils/getWindow.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/dom-utils/instanceOf.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/modifiers/applyStyles.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/utils/getBasePlacement.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/utils/math.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/utils/userAgent.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/dom-utils/isLayoutViewport.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/dom-utils/getBoundingClientRect.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/dom-utils/getLayoutRect.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/dom-utils/contains.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/dom-utils/getComputedStyle.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/dom-utils/isTableElement.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/dom-utils/getDocumentElement.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/dom-utils/getParentNode.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/dom-utils/getOffsetParent.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/utils/getMainAxisFromPlacement.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/utils/within.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/utils/mergePaddingObject.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/utils/getFreshSideObject.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/utils/expandToHashMap.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/modifiers/arrow.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/utils/getVariation.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/modifiers/computeStyles.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/modifiers/eventListeners.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/utils/getOppositePlacement.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/utils/getOppositeVariationPlacement.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/dom-utils/getWindowScroll.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/dom-utils/getWindowScrollBarX.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/dom-utils/isScrollParent.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/dom-utils/getScrollParent.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/dom-utils/listScrollParents.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/utils/rectToClientRect.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/dom-utils/getClippingRect.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/dom-utils/getViewportRect.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/dom-utils/getDocumentRect.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/utils/computeOffsets.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/utils/detectOverflow.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/modifiers/flip.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/utils/computeAutoPlacement.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/modifiers/hide.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/modifiers/offset.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/modifiers/popperOffsets.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/modifiers/preventOverflow.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/utils/getAltAxis.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/dom-utils/getCompositeRect.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/dom-utils/getNodeScroll.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/dom-utils/getHTMLElementScroll.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/utils/orderModifiers.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/createPopper.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/utils/debounce.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/utils/mergeByName.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/popper.js","webpack://pydata_sphinx_theme/./node_modules/@popperjs/core/lib/popper-lite.js","webpack://pydata_sphinx_theme/./node_modules/bootstrap/dist/js/bootstrap.esm.js","webpack://pydata_sphinx_theme/./src/pydata_sphinx_theme/assets/scripts/mixin.js","webpack://pydata_sphinx_theme/./src/pydata_sphinx_theme/assets/scripts/bootstrap.js"],"sourcesContent":["// The require scope\nvar __webpack_require__ = {};\n\n","// define getter functions for harmony exports\n__webpack_require__.d = (exports, definition) => {\n\tfor(var key in definition) {\n\t\tif(__webpack_require__.o(definition, key) && !__webpack_require__.o(exports, key)) {\n\t\t\tObject.defineProperty(exports, key, { enumerable: true, get: definition[key] });\n\t\t}\n\t}\n};","__webpack_require__.o = (obj, prop) => (Object.prototype.hasOwnProperty.call(obj, prop))","// define __esModule on exports\n__webpack_require__.r = (exports) => {\n\tif(typeof Symbol !== 'undefined' && Symbol.toStringTag) {\n\t\tObject.defineProperty(exports, Symbol.toStringTag, { value: 'Module' });\n\t}\n\tObject.defineProperty(exports, '__esModule', { value: true });\n};","export var top = 'top';\nexport var bottom = 'bottom';\nexport var right = 'right';\nexport var left = 'left';\nexport var auto = 'auto';\nexport var basePlacements = [top, bottom, right, left];\nexport var start = 'start';\nexport var end = 'end';\nexport var clippingParents = 'clippingParents';\nexport var viewport = 'viewport';\nexport var popper = 'popper';\nexport var reference = 'reference';\nexport var variationPlacements = /*#__PURE__*/basePlacements.reduce(function (acc, placement) {\n return acc.concat([placement + \"-\" + start, placement + \"-\" + end]);\n}, []);\nexport var placements = /*#__PURE__*/[].concat(basePlacements, [auto]).reduce(function (acc, placement) {\n return acc.concat([placement, placement + \"-\" + start, placement + \"-\" + end]);\n}, []); // modifiers that need to read the DOM\n\nexport var beforeRead = 'beforeRead';\nexport var read = 'read';\nexport var afterRead = 'afterRead'; // pure-logic modifiers\n\nexport var beforeMain = 'beforeMain';\nexport var main = 'main';\nexport var afterMain = 'afterMain'; // modifier with the purpose to write to the DOM (or write into a framework state)\n\nexport var beforeWrite = 'beforeWrite';\nexport var write = 'write';\nexport var afterWrite = 'afterWrite';\nexport var modifierPhases = [beforeRead, read, afterRead, beforeMain, main, afterMain, beforeWrite, write, afterWrite];","export default function getNodeName(element) {\n return element ? (element.nodeName || '').toLowerCase() : null;\n}","export default function getWindow(node) {\n if (node == null) {\n return window;\n }\n\n if (node.toString() !== '[object Window]') {\n var ownerDocument = node.ownerDocument;\n return ownerDocument ? ownerDocument.defaultView || window : window;\n }\n\n return node;\n}","import getWindow from \"./getWindow.js\";\n\nfunction isElement(node) {\n var OwnElement = getWindow(node).Element;\n return node instanceof OwnElement || node instanceof Element;\n}\n\nfunction isHTMLElement(node) {\n var OwnElement = getWindow(node).HTMLElement;\n return node instanceof OwnElement || node instanceof HTMLElement;\n}\n\nfunction isShadowRoot(node) {\n // IE 11 has no ShadowRoot\n if (typeof ShadowRoot === 'undefined') {\n return false;\n }\n\n var OwnElement = getWindow(node).ShadowRoot;\n return node instanceof OwnElement || node instanceof ShadowRoot;\n}\n\nexport { isElement, isHTMLElement, isShadowRoot };","import getNodeName from \"../dom-utils/getNodeName.js\";\nimport { isHTMLElement } from \"../dom-utils/instanceOf.js\"; // This modifier takes the styles prepared by the `computeStyles` modifier\n// and applies them to the HTMLElements such as popper and arrow\n\nfunction applyStyles(_ref) {\n var state = _ref.state;\n Object.keys(state.elements).forEach(function (name) {\n var style = state.styles[name] || {};\n var attributes = state.attributes[name] || {};\n var element = state.elements[name]; // arrow is optional + virtual elements\n\n if (!isHTMLElement(element) || !getNodeName(element)) {\n return;\n } // Flow doesn't support to extend this property, but it's the most\n // effective way to apply styles to an HTMLElement\n // $FlowFixMe[cannot-write]\n\n\n Object.assign(element.style, style);\n Object.keys(attributes).forEach(function (name) {\n var value = attributes[name];\n\n if (value === false) {\n element.removeAttribute(name);\n } else {\n element.setAttribute(name, value === true ? '' : value);\n }\n });\n });\n}\n\nfunction effect(_ref2) {\n var state = _ref2.state;\n var initialStyles = {\n popper: {\n position: state.options.strategy,\n left: '0',\n top: '0',\n margin: '0'\n },\n arrow: {\n position: 'absolute'\n },\n reference: {}\n };\n Object.assign(state.elements.popper.style, initialStyles.popper);\n state.styles = initialStyles;\n\n if (state.elements.arrow) {\n Object.assign(state.elements.arrow.style, initialStyles.arrow);\n }\n\n return function () {\n Object.keys(state.elements).forEach(function (name) {\n var element = state.elements[name];\n var attributes = state.attributes[name] || {};\n var styleProperties = Object.keys(state.styles.hasOwnProperty(name) ? state.styles[name] : initialStyles[name]); // Set all values to an empty string to unset them\n\n var style = styleProperties.reduce(function (style, property) {\n style[property] = '';\n return style;\n }, {}); // arrow is optional + virtual elements\n\n if (!isHTMLElement(element) || !getNodeName(element)) {\n return;\n }\n\n Object.assign(element.style, style);\n Object.keys(attributes).forEach(function (attribute) {\n element.removeAttribute(attribute);\n });\n });\n };\n} // eslint-disable-next-line import/no-unused-modules\n\n\nexport default {\n name: 'applyStyles',\n enabled: true,\n phase: 'write',\n fn: applyStyles,\n effect: effect,\n requires: ['computeStyles']\n};","import { auto } from \"../enums.js\";\nexport default function getBasePlacement(placement) {\n return placement.split('-')[0];\n}","export var max = Math.max;\nexport var min = Math.min;\nexport var round = Math.round;","export default function getUAString() {\n var uaData = navigator.userAgentData;\n\n if (uaData != null && uaData.brands && Array.isArray(uaData.brands)) {\n return uaData.brands.map(function (item) {\n return item.brand + \"/\" + item.version;\n }).join(' ');\n }\n\n return navigator.userAgent;\n}","import getUAString from \"../utils/userAgent.js\";\nexport default function isLayoutViewport() {\n return !/^((?!chrome|android).)*safari/i.test(getUAString());\n}","import { isElement, isHTMLElement } from \"./instanceOf.js\";\nimport { round } from \"../utils/math.js\";\nimport getWindow from \"./getWindow.js\";\nimport isLayoutViewport from \"./isLayoutViewport.js\";\nexport default function getBoundingClientRect(element, includeScale, isFixedStrategy) {\n if (includeScale === void 0) {\n includeScale = false;\n }\n\n if (isFixedStrategy === void 0) {\n isFixedStrategy = false;\n }\n\n var clientRect = element.getBoundingClientRect();\n var scaleX = 1;\n var scaleY = 1;\n\n if (includeScale && isHTMLElement(element)) {\n scaleX = element.offsetWidth > 0 ? round(clientRect.width) / element.offsetWidth || 1 : 1;\n scaleY = element.offsetHeight > 0 ? round(clientRect.height) / element.offsetHeight || 1 : 1;\n }\n\n var _ref = isElement(element) ? getWindow(element) : window,\n visualViewport = _ref.visualViewport;\n\n var addVisualOffsets = !isLayoutViewport() && isFixedStrategy;\n var x = (clientRect.left + (addVisualOffsets && visualViewport ? visualViewport.offsetLeft : 0)) / scaleX;\n var y = (clientRect.top + (addVisualOffsets && visualViewport ? visualViewport.offsetTop : 0)) / scaleY;\n var width = clientRect.width / scaleX;\n var height = clientRect.height / scaleY;\n return {\n width: width,\n height: height,\n top: y,\n right: x + width,\n bottom: y + height,\n left: x,\n x: x,\n y: y\n };\n}","import getBoundingClientRect from \"./getBoundingClientRect.js\"; // Returns the layout rect of an element relative to its offsetParent. Layout\n// means it doesn't take into account transforms.\n\nexport default function getLayoutRect(element) {\n var clientRect = getBoundingClientRect(element); // Use the clientRect sizes if it's not been transformed.\n // Fixes https://github.com/popperjs/popper-core/issues/1223\n\n var width = element.offsetWidth;\n var height = element.offsetHeight;\n\n if (Math.abs(clientRect.width - width) <= 1) {\n width = clientRect.width;\n }\n\n if (Math.abs(clientRect.height - height) <= 1) {\n height = clientRect.height;\n }\n\n return {\n x: element.offsetLeft,\n y: element.offsetTop,\n width: width,\n height: height\n };\n}","import { isShadowRoot } from \"./instanceOf.js\";\nexport default function contains(parent, child) {\n var rootNode = child.getRootNode && child.getRootNode(); // First, attempt with faster native method\n\n if (parent.contains(child)) {\n return true;\n } // then fallback to custom implementation with Shadow DOM support\n else if (rootNode && isShadowRoot(rootNode)) {\n var next = child;\n\n do {\n if (next && parent.isSameNode(next)) {\n return true;\n } // $FlowFixMe[prop-missing]: need a better way to handle this...\n\n\n next = next.parentNode || next.host;\n } while (next);\n } // Give up, the result is false\n\n\n return false;\n}","import getWindow from \"./getWindow.js\";\nexport default function getComputedStyle(element) {\n return getWindow(element).getComputedStyle(element);\n}","import getNodeName from \"./getNodeName.js\";\nexport default function isTableElement(element) {\n return ['table', 'td', 'th'].indexOf(getNodeName(element)) >= 0;\n}","import { isElement } from \"./instanceOf.js\";\nexport default function getDocumentElement(element) {\n // $FlowFixMe[incompatible-return]: assume body is always available\n return ((isElement(element) ? element.ownerDocument : // $FlowFixMe[prop-missing]\n element.document) || window.document).documentElement;\n}","import getNodeName from \"./getNodeName.js\";\nimport getDocumentElement from \"./getDocumentElement.js\";\nimport { isShadowRoot } from \"./instanceOf.js\";\nexport default function getParentNode(element) {\n if (getNodeName(element) === 'html') {\n return element;\n }\n\n return (// this is a quicker (but less type safe) way to save quite some bytes from the bundle\n // $FlowFixMe[incompatible-return]\n // $FlowFixMe[prop-missing]\n element.assignedSlot || // step into the shadow DOM of the parent of a slotted node\n element.parentNode || ( // DOM Element detected\n isShadowRoot(element) ? element.host : null) || // ShadowRoot detected\n // $FlowFixMe[incompatible-call]: HTMLElement is a Node\n getDocumentElement(element) // fallback\n\n );\n}","import getWindow from \"./getWindow.js\";\nimport getNodeName from \"./getNodeName.js\";\nimport getComputedStyle from \"./getComputedStyle.js\";\nimport { isHTMLElement, isShadowRoot } from \"./instanceOf.js\";\nimport isTableElement from \"./isTableElement.js\";\nimport getParentNode from \"./getParentNode.js\";\nimport getUAString from \"../utils/userAgent.js\";\n\nfunction getTrueOffsetParent(element) {\n if (!isHTMLElement(element) || // https://github.com/popperjs/popper-core/issues/837\n getComputedStyle(element).position === 'fixed') {\n return null;\n }\n\n return element.offsetParent;\n} // `.offsetParent` reports `null` for fixed elements, while absolute elements\n// return the containing block\n\n\nfunction getContainingBlock(element) {\n var isFirefox = /firefox/i.test(getUAString());\n var isIE = /Trident/i.test(getUAString());\n\n if (isIE && isHTMLElement(element)) {\n // In IE 9, 10 and 11 fixed elements containing block is always established by the viewport\n var elementCss = getComputedStyle(element);\n\n if (elementCss.position === 'fixed') {\n return null;\n }\n }\n\n var currentNode = getParentNode(element);\n\n if (isShadowRoot(currentNode)) {\n currentNode = currentNode.host;\n }\n\n while (isHTMLElement(currentNode) && ['html', 'body'].indexOf(getNodeName(currentNode)) < 0) {\n var css = getComputedStyle(currentNode); // This is non-exhaustive but covers the most common CSS properties that\n // create a containing block.\n // https://developer.mozilla.org/en-US/docs/Web/CSS/Containing_block#identifying_the_containing_block\n\n if (css.transform !== 'none' || css.perspective !== 'none' || css.contain === 'paint' || ['transform', 'perspective'].indexOf(css.willChange) !== -1 || isFirefox && css.willChange === 'filter' || isFirefox && css.filter && css.filter !== 'none') {\n return currentNode;\n } else {\n currentNode = currentNode.parentNode;\n }\n }\n\n return null;\n} // Gets the closest ancestor positioned element. Handles some edge cases,\n// such as table ancestors and cross browser bugs.\n\n\nexport default function getOffsetParent(element) {\n var window = getWindow(element);\n var offsetParent = getTrueOffsetParent(element);\n\n while (offsetParent && isTableElement(offsetParent) && getComputedStyle(offsetParent).position === 'static') {\n offsetParent = getTrueOffsetParent(offsetParent);\n }\n\n if (offsetParent && (getNodeName(offsetParent) === 'html' || getNodeName(offsetParent) === 'body' && getComputedStyle(offsetParent).position === 'static')) {\n return window;\n }\n\n return offsetParent || getContainingBlock(element) || window;\n}","export default function getMainAxisFromPlacement(placement) {\n return ['top', 'bottom'].indexOf(placement) >= 0 ? 'x' : 'y';\n}","import { max as mathMax, min as mathMin } from \"./math.js\";\nexport function within(min, value, max) {\n return mathMax(min, mathMin(value, max));\n}\nexport function withinMaxClamp(min, value, max) {\n var v = within(min, value, max);\n return v > max ? max : v;\n}","import getFreshSideObject from \"./getFreshSideObject.js\";\nexport default function mergePaddingObject(paddingObject) {\n return Object.assign({}, getFreshSideObject(), paddingObject);\n}","export default function getFreshSideObject() {\n return {\n top: 0,\n right: 0,\n bottom: 0,\n left: 0\n };\n}","export default function expandToHashMap(value, keys) {\n return keys.reduce(function (hashMap, key) {\n hashMap[key] = value;\n return hashMap;\n }, {});\n}","import getBasePlacement from \"../utils/getBasePlacement.js\";\nimport getLayoutRect from \"../dom-utils/getLayoutRect.js\";\nimport contains from \"../dom-utils/contains.js\";\nimport getOffsetParent from \"../dom-utils/getOffsetParent.js\";\nimport getMainAxisFromPlacement from \"../utils/getMainAxisFromPlacement.js\";\nimport { within } from \"../utils/within.js\";\nimport mergePaddingObject from \"../utils/mergePaddingObject.js\";\nimport expandToHashMap from \"../utils/expandToHashMap.js\";\nimport { left, right, basePlacements, top, bottom } from \"../enums.js\"; // eslint-disable-next-line import/no-unused-modules\n\nvar toPaddingObject = function toPaddingObject(padding, state) {\n padding = typeof padding === 'function' ? padding(Object.assign({}, state.rects, {\n placement: state.placement\n })) : padding;\n return mergePaddingObject(typeof padding !== 'number' ? padding : expandToHashMap(padding, basePlacements));\n};\n\nfunction arrow(_ref) {\n var _state$modifiersData$;\n\n var state = _ref.state,\n name = _ref.name,\n options = _ref.options;\n var arrowElement = state.elements.arrow;\n var popperOffsets = state.modifiersData.popperOffsets;\n var basePlacement = getBasePlacement(state.placement);\n var axis = getMainAxisFromPlacement(basePlacement);\n var isVertical = [left, right].indexOf(basePlacement) >= 0;\n var len = isVertical ? 'height' : 'width';\n\n if (!arrowElement || !popperOffsets) {\n return;\n }\n\n var paddingObject = toPaddingObject(options.padding, state);\n var arrowRect = getLayoutRect(arrowElement);\n var minProp = axis === 'y' ? top : left;\n var maxProp = axis === 'y' ? bottom : right;\n var endDiff = state.rects.reference[len] + state.rects.reference[axis] - popperOffsets[axis] - state.rects.popper[len];\n var startDiff = popperOffsets[axis] - state.rects.reference[axis];\n var arrowOffsetParent = getOffsetParent(arrowElement);\n var clientSize = arrowOffsetParent ? axis === 'y' ? arrowOffsetParent.clientHeight || 0 : arrowOffsetParent.clientWidth || 0 : 0;\n var centerToReference = endDiff / 2 - startDiff / 2; // Make sure the arrow doesn't overflow the popper if the center point is\n // outside of the popper bounds\n\n var min = paddingObject[minProp];\n var max = clientSize - arrowRect[len] - paddingObject[maxProp];\n var center = clientSize / 2 - arrowRect[len] / 2 + centerToReference;\n var offset = within(min, center, max); // Prevents breaking syntax highlighting...\n\n var axisProp = axis;\n state.modifiersData[name] = (_state$modifiersData$ = {}, _state$modifiersData$[axisProp] = offset, _state$modifiersData$.centerOffset = offset - center, _state$modifiersData$);\n}\n\nfunction effect(_ref2) {\n var state = _ref2.state,\n options = _ref2.options;\n var _options$element = options.element,\n arrowElement = _options$element === void 0 ? '[data-popper-arrow]' : _options$element;\n\n if (arrowElement == null) {\n return;\n } // CSS selector\n\n\n if (typeof arrowElement === 'string') {\n arrowElement = state.elements.popper.querySelector(arrowElement);\n\n if (!arrowElement) {\n return;\n }\n }\n\n if (!contains(state.elements.popper, arrowElement)) {\n return;\n }\n\n state.elements.arrow = arrowElement;\n} // eslint-disable-next-line import/no-unused-modules\n\n\nexport default {\n name: 'arrow',\n enabled: true,\n phase: 'main',\n fn: arrow,\n effect: effect,\n requires: ['popperOffsets'],\n requiresIfExists: ['preventOverflow']\n};","export default function getVariation(placement) {\n return placement.split('-')[1];\n}","import { top, left, right, bottom, end } from \"../enums.js\";\nimport getOffsetParent from \"../dom-utils/getOffsetParent.js\";\nimport getWindow from \"../dom-utils/getWindow.js\";\nimport getDocumentElement from \"../dom-utils/getDocumentElement.js\";\nimport getComputedStyle from \"../dom-utils/getComputedStyle.js\";\nimport getBasePlacement from \"../utils/getBasePlacement.js\";\nimport getVariation from \"../utils/getVariation.js\";\nimport { round } from \"../utils/math.js\"; // eslint-disable-next-line import/no-unused-modules\n\nvar unsetSides = {\n top: 'auto',\n right: 'auto',\n bottom: 'auto',\n left: 'auto'\n}; // Round the offsets to the nearest suitable subpixel based on the DPR.\n// Zooming can change the DPR, but it seems to report a value that will\n// cleanly divide the values into the appropriate subpixels.\n\nfunction roundOffsetsByDPR(_ref, win) {\n var x = _ref.x,\n y = _ref.y;\n var dpr = win.devicePixelRatio || 1;\n return {\n x: round(x * dpr) / dpr || 0,\n y: round(y * dpr) / dpr || 0\n };\n}\n\nexport function mapToStyles(_ref2) {\n var _Object$assign2;\n\n var popper = _ref2.popper,\n popperRect = _ref2.popperRect,\n placement = _ref2.placement,\n variation = _ref2.variation,\n offsets = _ref2.offsets,\n position = _ref2.position,\n gpuAcceleration = _ref2.gpuAcceleration,\n adaptive = _ref2.adaptive,\n roundOffsets = _ref2.roundOffsets,\n isFixed = _ref2.isFixed;\n var _offsets$x = offsets.x,\n x = _offsets$x === void 0 ? 0 : _offsets$x,\n _offsets$y = offsets.y,\n y = _offsets$y === void 0 ? 0 : _offsets$y;\n\n var _ref3 = typeof roundOffsets === 'function' ? roundOffsets({\n x: x,\n y: y\n }) : {\n x: x,\n y: y\n };\n\n x = _ref3.x;\n y = _ref3.y;\n var hasX = offsets.hasOwnProperty('x');\n var hasY = offsets.hasOwnProperty('y');\n var sideX = left;\n var sideY = top;\n var win = window;\n\n if (adaptive) {\n var offsetParent = getOffsetParent(popper);\n var heightProp = 'clientHeight';\n var widthProp = 'clientWidth';\n\n if (offsetParent === getWindow(popper)) {\n offsetParent = getDocumentElement(popper);\n\n if (getComputedStyle(offsetParent).position !== 'static' && position === 'absolute') {\n heightProp = 'scrollHeight';\n widthProp = 'scrollWidth';\n }\n } // $FlowFixMe[incompatible-cast]: force type refinement, we compare offsetParent with window above, but Flow doesn't detect it\n\n\n offsetParent = offsetParent;\n\n if (placement === top || (placement === left || placement === right) && variation === end) {\n sideY = bottom;\n var offsetY = isFixed && offsetParent === win && win.visualViewport ? win.visualViewport.height : // $FlowFixMe[prop-missing]\n offsetParent[heightProp];\n y -= offsetY - popperRect.height;\n y *= gpuAcceleration ? 1 : -1;\n }\n\n if (placement === left || (placement === top || placement === bottom) && variation === end) {\n sideX = right;\n var offsetX = isFixed && offsetParent === win && win.visualViewport ? win.visualViewport.width : // $FlowFixMe[prop-missing]\n offsetParent[widthProp];\n x -= offsetX - popperRect.width;\n x *= gpuAcceleration ? 1 : -1;\n }\n }\n\n var commonStyles = Object.assign({\n position: position\n }, adaptive && unsetSides);\n\n var _ref4 = roundOffsets === true ? roundOffsetsByDPR({\n x: x,\n y: y\n }, getWindow(popper)) : {\n x: x,\n y: y\n };\n\n x = _ref4.x;\n y = _ref4.y;\n\n if (gpuAcceleration) {\n var _Object$assign;\n\n return Object.assign({}, commonStyles, (_Object$assign = {}, _Object$assign[sideY] = hasY ? '0' : '', _Object$assign[sideX] = hasX ? '0' : '', _Object$assign.transform = (win.devicePixelRatio || 1) <= 1 ? \"translate(\" + x + \"px, \" + y + \"px)\" : \"translate3d(\" + x + \"px, \" + y + \"px, 0)\", _Object$assign));\n }\n\n return Object.assign({}, commonStyles, (_Object$assign2 = {}, _Object$assign2[sideY] = hasY ? y + \"px\" : '', _Object$assign2[sideX] = hasX ? x + \"px\" : '', _Object$assign2.transform = '', _Object$assign2));\n}\n\nfunction computeStyles(_ref5) {\n var state = _ref5.state,\n options = _ref5.options;\n var _options$gpuAccelerat = options.gpuAcceleration,\n gpuAcceleration = _options$gpuAccelerat === void 0 ? true : _options$gpuAccelerat,\n _options$adaptive = options.adaptive,\n adaptive = _options$adaptive === void 0 ? true : _options$adaptive,\n _options$roundOffsets = options.roundOffsets,\n roundOffsets = _options$roundOffsets === void 0 ? true : _options$roundOffsets;\n var commonStyles = {\n placement: getBasePlacement(state.placement),\n variation: getVariation(state.placement),\n popper: state.elements.popper,\n popperRect: state.rects.popper,\n gpuAcceleration: gpuAcceleration,\n isFixed: state.options.strategy === 'fixed'\n };\n\n if (state.modifiersData.popperOffsets != null) {\n state.styles.popper = Object.assign({}, state.styles.popper, mapToStyles(Object.assign({}, commonStyles, {\n offsets: state.modifiersData.popperOffsets,\n position: state.options.strategy,\n adaptive: adaptive,\n roundOffsets: roundOffsets\n })));\n }\n\n if (state.modifiersData.arrow != null) {\n state.styles.arrow = Object.assign({}, state.styles.arrow, mapToStyles(Object.assign({}, commonStyles, {\n offsets: state.modifiersData.arrow,\n position: 'absolute',\n adaptive: false,\n roundOffsets: roundOffsets\n })));\n }\n\n state.attributes.popper = Object.assign({}, state.attributes.popper, {\n 'data-popper-placement': state.placement\n });\n} // eslint-disable-next-line import/no-unused-modules\n\n\nexport default {\n name: 'computeStyles',\n enabled: true,\n phase: 'beforeWrite',\n fn: computeStyles,\n data: {}\n};","import getWindow from \"../dom-utils/getWindow.js\"; // eslint-disable-next-line import/no-unused-modules\n\nvar passive = {\n passive: true\n};\n\nfunction effect(_ref) {\n var state = _ref.state,\n instance = _ref.instance,\n options = _ref.options;\n var _options$scroll = options.scroll,\n scroll = _options$scroll === void 0 ? true : _options$scroll,\n _options$resize = options.resize,\n resize = _options$resize === void 0 ? true : _options$resize;\n var window = getWindow(state.elements.popper);\n var scrollParents = [].concat(state.scrollParents.reference, state.scrollParents.popper);\n\n if (scroll) {\n scrollParents.forEach(function (scrollParent) {\n scrollParent.addEventListener('scroll', instance.update, passive);\n });\n }\n\n if (resize) {\n window.addEventListener('resize', instance.update, passive);\n }\n\n return function () {\n if (scroll) {\n scrollParents.forEach(function (scrollParent) {\n scrollParent.removeEventListener('scroll', instance.update, passive);\n });\n }\n\n if (resize) {\n window.removeEventListener('resize', instance.update, passive);\n }\n };\n} // eslint-disable-next-line import/no-unused-modules\n\n\nexport default {\n name: 'eventListeners',\n enabled: true,\n phase: 'write',\n fn: function fn() {},\n effect: effect,\n data: {}\n};","var hash = {\n left: 'right',\n right: 'left',\n bottom: 'top',\n top: 'bottom'\n};\nexport default function getOppositePlacement(placement) {\n return placement.replace(/left|right|bottom|top/g, function (matched) {\n return hash[matched];\n });\n}","var hash = {\n start: 'end',\n end: 'start'\n};\nexport default function getOppositeVariationPlacement(placement) {\n return placement.replace(/start|end/g, function (matched) {\n return hash[matched];\n });\n}","import getWindow from \"./getWindow.js\";\nexport default function getWindowScroll(node) {\n var win = getWindow(node);\n var scrollLeft = win.pageXOffset;\n var scrollTop = win.pageYOffset;\n return {\n scrollLeft: scrollLeft,\n scrollTop: scrollTop\n };\n}","import getBoundingClientRect from \"./getBoundingClientRect.js\";\nimport getDocumentElement from \"./getDocumentElement.js\";\nimport getWindowScroll from \"./getWindowScroll.js\";\nexport default function getWindowScrollBarX(element) {\n // If has a CSS width greater than the viewport, then this will be\n // incorrect for RTL.\n // Popper 1 is broken in this case and never had a bug report so let's assume\n // it's not an issue. I don't think anyone ever specifies width on \n // anyway.\n // Browsers where the left scrollbar doesn't cause an issue report `0` for\n // this (e.g. Edge 2019, IE11, Safari)\n return getBoundingClientRect(getDocumentElement(element)).left + getWindowScroll(element).scrollLeft;\n}","import getComputedStyle from \"./getComputedStyle.js\";\nexport default function isScrollParent(element) {\n // Firefox wants us to check `-x` and `-y` variations as well\n var _getComputedStyle = getComputedStyle(element),\n overflow = _getComputedStyle.overflow,\n overflowX = _getComputedStyle.overflowX,\n overflowY = _getComputedStyle.overflowY;\n\n return /auto|scroll|overlay|hidden/.test(overflow + overflowY + overflowX);\n}","import getParentNode from \"./getParentNode.js\";\nimport isScrollParent from \"./isScrollParent.js\";\nimport getNodeName from \"./getNodeName.js\";\nimport { isHTMLElement } from \"./instanceOf.js\";\nexport default function getScrollParent(node) {\n if (['html', 'body', '#document'].indexOf(getNodeName(node)) >= 0) {\n // $FlowFixMe[incompatible-return]: assume body is always available\n return node.ownerDocument.body;\n }\n\n if (isHTMLElement(node) && isScrollParent(node)) {\n return node;\n }\n\n return getScrollParent(getParentNode(node));\n}","import getScrollParent from \"./getScrollParent.js\";\nimport getParentNode from \"./getParentNode.js\";\nimport getWindow from \"./getWindow.js\";\nimport isScrollParent from \"./isScrollParent.js\";\n/*\ngiven a DOM element, return the list of all scroll parents, up the list of ancesors\nuntil we get to the top window object. This list is what we attach scroll listeners\nto, because if any of these parent elements scroll, we'll need to re-calculate the\nreference element's position.\n*/\n\nexport default function listScrollParents(element, list) {\n var _element$ownerDocumen;\n\n if (list === void 0) {\n list = [];\n }\n\n var scrollParent = getScrollParent(element);\n var isBody = scrollParent === ((_element$ownerDocumen = element.ownerDocument) == null ? void 0 : _element$ownerDocumen.body);\n var win = getWindow(scrollParent);\n var target = isBody ? [win].concat(win.visualViewport || [], isScrollParent(scrollParent) ? scrollParent : []) : scrollParent;\n var updatedList = list.concat(target);\n return isBody ? updatedList : // $FlowFixMe[incompatible-call]: isBody tells us target will be an HTMLElement here\n updatedList.concat(listScrollParents(getParentNode(target)));\n}","export default function rectToClientRect(rect) {\n return Object.assign({}, rect, {\n left: rect.x,\n top: rect.y,\n right: rect.x + rect.width,\n bottom: rect.y + rect.height\n });\n}","import { viewport } from \"../enums.js\";\nimport getViewportRect from \"./getViewportRect.js\";\nimport getDocumentRect from \"./getDocumentRect.js\";\nimport listScrollParents from \"./listScrollParents.js\";\nimport getOffsetParent from \"./getOffsetParent.js\";\nimport getDocumentElement from \"./getDocumentElement.js\";\nimport getComputedStyle from \"./getComputedStyle.js\";\nimport { isElement, isHTMLElement } from \"./instanceOf.js\";\nimport getBoundingClientRect from \"./getBoundingClientRect.js\";\nimport getParentNode from \"./getParentNode.js\";\nimport contains from \"./contains.js\";\nimport getNodeName from \"./getNodeName.js\";\nimport rectToClientRect from \"../utils/rectToClientRect.js\";\nimport { max, min } from \"../utils/math.js\";\n\nfunction getInnerBoundingClientRect(element, strategy) {\n var rect = getBoundingClientRect(element, false, strategy === 'fixed');\n rect.top = rect.top + element.clientTop;\n rect.left = rect.left + element.clientLeft;\n rect.bottom = rect.top + element.clientHeight;\n rect.right = rect.left + element.clientWidth;\n rect.width = element.clientWidth;\n rect.height = element.clientHeight;\n rect.x = rect.left;\n rect.y = rect.top;\n return rect;\n}\n\nfunction getClientRectFromMixedType(element, clippingParent, strategy) {\n return clippingParent === viewport ? rectToClientRect(getViewportRect(element, strategy)) : isElement(clippingParent) ? getInnerBoundingClientRect(clippingParent, strategy) : rectToClientRect(getDocumentRect(getDocumentElement(element)));\n} // A \"clipping parent\" is an overflowable container with the characteristic of\n// clipping (or hiding) overflowing elements with a position different from\n// `initial`\n\n\nfunction getClippingParents(element) {\n var clippingParents = listScrollParents(getParentNode(element));\n var canEscapeClipping = ['absolute', 'fixed'].indexOf(getComputedStyle(element).position) >= 0;\n var clipperElement = canEscapeClipping && isHTMLElement(element) ? getOffsetParent(element) : element;\n\n if (!isElement(clipperElement)) {\n return [];\n } // $FlowFixMe[incompatible-return]: https://github.com/facebook/flow/issues/1414\n\n\n return clippingParents.filter(function (clippingParent) {\n return isElement(clippingParent) && contains(clippingParent, clipperElement) && getNodeName(clippingParent) !== 'body';\n });\n} // Gets the maximum area that the element is visible in due to any number of\n// clipping parents\n\n\nexport default function getClippingRect(element, boundary, rootBoundary, strategy) {\n var mainClippingParents = boundary === 'clippingParents' ? getClippingParents(element) : [].concat(boundary);\n var clippingParents = [].concat(mainClippingParents, [rootBoundary]);\n var firstClippingParent = clippingParents[0];\n var clippingRect = clippingParents.reduce(function (accRect, clippingParent) {\n var rect = getClientRectFromMixedType(element, clippingParent, strategy);\n accRect.top = max(rect.top, accRect.top);\n accRect.right = min(rect.right, accRect.right);\n accRect.bottom = min(rect.bottom, accRect.bottom);\n accRect.left = max(rect.left, accRect.left);\n return accRect;\n }, getClientRectFromMixedType(element, firstClippingParent, strategy));\n clippingRect.width = clippingRect.right - clippingRect.left;\n clippingRect.height = clippingRect.bottom - clippingRect.top;\n clippingRect.x = clippingRect.left;\n clippingRect.y = clippingRect.top;\n return clippingRect;\n}","import getWindow from \"./getWindow.js\";\nimport getDocumentElement from \"./getDocumentElement.js\";\nimport getWindowScrollBarX from \"./getWindowScrollBarX.js\";\nimport isLayoutViewport from \"./isLayoutViewport.js\";\nexport default function getViewportRect(element, strategy) {\n var win = getWindow(element);\n var html = getDocumentElement(element);\n var visualViewport = win.visualViewport;\n var width = html.clientWidth;\n var height = html.clientHeight;\n var x = 0;\n var y = 0;\n\n if (visualViewport) {\n width = visualViewport.width;\n height = visualViewport.height;\n var layoutViewport = isLayoutViewport();\n\n if (layoutViewport || !layoutViewport && strategy === 'fixed') {\n x = visualViewport.offsetLeft;\n y = visualViewport.offsetTop;\n }\n }\n\n return {\n width: width,\n height: height,\n x: x + getWindowScrollBarX(element),\n y: y\n };\n}","import getDocumentElement from \"./getDocumentElement.js\";\nimport getComputedStyle from \"./getComputedStyle.js\";\nimport getWindowScrollBarX from \"./getWindowScrollBarX.js\";\nimport getWindowScroll from \"./getWindowScroll.js\";\nimport { max } from \"../utils/math.js\"; // Gets the entire size of the scrollable document area, even extending outside\n// of the `` and `` rect bounds if horizontally scrollable\n\nexport default function getDocumentRect(element) {\n var _element$ownerDocumen;\n\n var html = getDocumentElement(element);\n var winScroll = getWindowScroll(element);\n var body = (_element$ownerDocumen = element.ownerDocument) == null ? void 0 : _element$ownerDocumen.body;\n var width = max(html.scrollWidth, html.clientWidth, body ? body.scrollWidth : 0, body ? body.clientWidth : 0);\n var height = max(html.scrollHeight, html.clientHeight, body ? body.scrollHeight : 0, body ? body.clientHeight : 0);\n var x = -winScroll.scrollLeft + getWindowScrollBarX(element);\n var y = -winScroll.scrollTop;\n\n if (getComputedStyle(body || html).direction === 'rtl') {\n x += max(html.clientWidth, body ? body.clientWidth : 0) - width;\n }\n\n return {\n width: width,\n height: height,\n x: x,\n y: y\n };\n}","import getBasePlacement from \"./getBasePlacement.js\";\nimport getVariation from \"./getVariation.js\";\nimport getMainAxisFromPlacement from \"./getMainAxisFromPlacement.js\";\nimport { top, right, bottom, left, start, end } from \"../enums.js\";\nexport default function computeOffsets(_ref) {\n var reference = _ref.reference,\n element = _ref.element,\n placement = _ref.placement;\n var basePlacement = placement ? getBasePlacement(placement) : null;\n var variation = placement ? getVariation(placement) : null;\n var commonX = reference.x + reference.width / 2 - element.width / 2;\n var commonY = reference.y + reference.height / 2 - element.height / 2;\n var offsets;\n\n switch (basePlacement) {\n case top:\n offsets = {\n x: commonX,\n y: reference.y - element.height\n };\n break;\n\n case bottom:\n offsets = {\n x: commonX,\n y: reference.y + reference.height\n };\n break;\n\n case right:\n offsets = {\n x: reference.x + reference.width,\n y: commonY\n };\n break;\n\n case left:\n offsets = {\n x: reference.x - element.width,\n y: commonY\n };\n break;\n\n default:\n offsets = {\n x: reference.x,\n y: reference.y\n };\n }\n\n var mainAxis = basePlacement ? getMainAxisFromPlacement(basePlacement) : null;\n\n if (mainAxis != null) {\n var len = mainAxis === 'y' ? 'height' : 'width';\n\n switch (variation) {\n case start:\n offsets[mainAxis] = offsets[mainAxis] - (reference[len] / 2 - element[len] / 2);\n break;\n\n case end:\n offsets[mainAxis] = offsets[mainAxis] + (reference[len] / 2 - element[len] / 2);\n break;\n\n default:\n }\n }\n\n return offsets;\n}","import getClippingRect from \"../dom-utils/getClippingRect.js\";\nimport getDocumentElement from \"../dom-utils/getDocumentElement.js\";\nimport getBoundingClientRect from \"../dom-utils/getBoundingClientRect.js\";\nimport computeOffsets from \"./computeOffsets.js\";\nimport rectToClientRect from \"./rectToClientRect.js\";\nimport { clippingParents, reference, popper, bottom, top, right, basePlacements, viewport } from \"../enums.js\";\nimport { isElement } from \"../dom-utils/instanceOf.js\";\nimport mergePaddingObject from \"./mergePaddingObject.js\";\nimport expandToHashMap from \"./expandToHashMap.js\"; // eslint-disable-next-line import/no-unused-modules\n\nexport default function detectOverflow(state, options) {\n if (options === void 0) {\n options = {};\n }\n\n var _options = options,\n _options$placement = _options.placement,\n placement = _options$placement === void 0 ? state.placement : _options$placement,\n _options$strategy = _options.strategy,\n strategy = _options$strategy === void 0 ? state.strategy : _options$strategy,\n _options$boundary = _options.boundary,\n boundary = _options$boundary === void 0 ? clippingParents : _options$boundary,\n _options$rootBoundary = _options.rootBoundary,\n rootBoundary = _options$rootBoundary === void 0 ? viewport : _options$rootBoundary,\n _options$elementConte = _options.elementContext,\n elementContext = _options$elementConte === void 0 ? popper : _options$elementConte,\n _options$altBoundary = _options.altBoundary,\n altBoundary = _options$altBoundary === void 0 ? false : _options$altBoundary,\n _options$padding = _options.padding,\n padding = _options$padding === void 0 ? 0 : _options$padding;\n var paddingObject = mergePaddingObject(typeof padding !== 'number' ? padding : expandToHashMap(padding, basePlacements));\n var altContext = elementContext === popper ? reference : popper;\n var popperRect = state.rects.popper;\n var element = state.elements[altBoundary ? altContext : elementContext];\n var clippingClientRect = getClippingRect(isElement(element) ? element : element.contextElement || getDocumentElement(state.elements.popper), boundary, rootBoundary, strategy);\n var referenceClientRect = getBoundingClientRect(state.elements.reference);\n var popperOffsets = computeOffsets({\n reference: referenceClientRect,\n element: popperRect,\n strategy: 'absolute',\n placement: placement\n });\n var popperClientRect = rectToClientRect(Object.assign({}, popperRect, popperOffsets));\n var elementClientRect = elementContext === popper ? popperClientRect : referenceClientRect; // positive = overflowing the clipping rect\n // 0 or negative = within the clipping rect\n\n var overflowOffsets = {\n top: clippingClientRect.top - elementClientRect.top + paddingObject.top,\n bottom: elementClientRect.bottom - clippingClientRect.bottom + paddingObject.bottom,\n left: clippingClientRect.left - elementClientRect.left + paddingObject.left,\n right: elementClientRect.right - clippingClientRect.right + paddingObject.right\n };\n var offsetData = state.modifiersData.offset; // Offsets can be applied only to the popper element\n\n if (elementContext === popper && offsetData) {\n var offset = offsetData[placement];\n Object.keys(overflowOffsets).forEach(function (key) {\n var multiply = [right, bottom].indexOf(key) >= 0 ? 1 : -1;\n var axis = [top, bottom].indexOf(key) >= 0 ? 'y' : 'x';\n overflowOffsets[key] += offset[axis] * multiply;\n });\n }\n\n return overflowOffsets;\n}","import getOppositePlacement from \"../utils/getOppositePlacement.js\";\nimport getBasePlacement from \"../utils/getBasePlacement.js\";\nimport getOppositeVariationPlacement from \"../utils/getOppositeVariationPlacement.js\";\nimport detectOverflow from \"../utils/detectOverflow.js\";\nimport computeAutoPlacement from \"../utils/computeAutoPlacement.js\";\nimport { bottom, top, start, right, left, auto } from \"../enums.js\";\nimport getVariation from \"../utils/getVariation.js\"; // eslint-disable-next-line import/no-unused-modules\n\nfunction getExpandedFallbackPlacements(placement) {\n if (getBasePlacement(placement) === auto) {\n return [];\n }\n\n var oppositePlacement = getOppositePlacement(placement);\n return [getOppositeVariationPlacement(placement), oppositePlacement, getOppositeVariationPlacement(oppositePlacement)];\n}\n\nfunction flip(_ref) {\n var state = _ref.state,\n options = _ref.options,\n name = _ref.name;\n\n if (state.modifiersData[name]._skip) {\n return;\n }\n\n var _options$mainAxis = options.mainAxis,\n checkMainAxis = _options$mainAxis === void 0 ? true : _options$mainAxis,\n _options$altAxis = options.altAxis,\n checkAltAxis = _options$altAxis === void 0 ? true : _options$altAxis,\n specifiedFallbackPlacements = options.fallbackPlacements,\n padding = options.padding,\n boundary = options.boundary,\n rootBoundary = options.rootBoundary,\n altBoundary = options.altBoundary,\n _options$flipVariatio = options.flipVariations,\n flipVariations = _options$flipVariatio === void 0 ? true : _options$flipVariatio,\n allowedAutoPlacements = options.allowedAutoPlacements;\n var preferredPlacement = state.options.placement;\n var basePlacement = getBasePlacement(preferredPlacement);\n var isBasePlacement = basePlacement === preferredPlacement;\n var fallbackPlacements = specifiedFallbackPlacements || (isBasePlacement || !flipVariations ? [getOppositePlacement(preferredPlacement)] : getExpandedFallbackPlacements(preferredPlacement));\n var placements = [preferredPlacement].concat(fallbackPlacements).reduce(function (acc, placement) {\n return acc.concat(getBasePlacement(placement) === auto ? computeAutoPlacement(state, {\n placement: placement,\n boundary: boundary,\n rootBoundary: rootBoundary,\n padding: padding,\n flipVariations: flipVariations,\n allowedAutoPlacements: allowedAutoPlacements\n }) : placement);\n }, []);\n var referenceRect = state.rects.reference;\n var popperRect = state.rects.popper;\n var checksMap = new Map();\n var makeFallbackChecks = true;\n var firstFittingPlacement = placements[0];\n\n for (var i = 0; i < placements.length; i++) {\n var placement = placements[i];\n\n var _basePlacement = getBasePlacement(placement);\n\n var isStartVariation = getVariation(placement) === start;\n var isVertical = [top, bottom].indexOf(_basePlacement) >= 0;\n var len = isVertical ? 'width' : 'height';\n var overflow = detectOverflow(state, {\n placement: placement,\n boundary: boundary,\n rootBoundary: rootBoundary,\n altBoundary: altBoundary,\n padding: padding\n });\n var mainVariationSide = isVertical ? isStartVariation ? right : left : isStartVariation ? bottom : top;\n\n if (referenceRect[len] > popperRect[len]) {\n mainVariationSide = getOppositePlacement(mainVariationSide);\n }\n\n var altVariationSide = getOppositePlacement(mainVariationSide);\n var checks = [];\n\n if (checkMainAxis) {\n checks.push(overflow[_basePlacement] <= 0);\n }\n\n if (checkAltAxis) {\n checks.push(overflow[mainVariationSide] <= 0, overflow[altVariationSide] <= 0);\n }\n\n if (checks.every(function (check) {\n return check;\n })) {\n firstFittingPlacement = placement;\n makeFallbackChecks = false;\n break;\n }\n\n checksMap.set(placement, checks);\n }\n\n if (makeFallbackChecks) {\n // `2` may be desired in some cases – research later\n var numberOfChecks = flipVariations ? 3 : 1;\n\n var _loop = function _loop(_i) {\n var fittingPlacement = placements.find(function (placement) {\n var checks = checksMap.get(placement);\n\n if (checks) {\n return checks.slice(0, _i).every(function (check) {\n return check;\n });\n }\n });\n\n if (fittingPlacement) {\n firstFittingPlacement = fittingPlacement;\n return \"break\";\n }\n };\n\n for (var _i = numberOfChecks; _i > 0; _i--) {\n var _ret = _loop(_i);\n\n if (_ret === \"break\") break;\n }\n }\n\n if (state.placement !== firstFittingPlacement) {\n state.modifiersData[name]._skip = true;\n state.placement = firstFittingPlacement;\n state.reset = true;\n }\n} // eslint-disable-next-line import/no-unused-modules\n\n\nexport default {\n name: 'flip',\n enabled: true,\n phase: 'main',\n fn: flip,\n requiresIfExists: ['offset'],\n data: {\n _skip: false\n }\n};","import getVariation from \"./getVariation.js\";\nimport { variationPlacements, basePlacements, placements as allPlacements } from \"../enums.js\";\nimport detectOverflow from \"./detectOverflow.js\";\nimport getBasePlacement from \"./getBasePlacement.js\";\nexport default function computeAutoPlacement(state, options) {\n if (options === void 0) {\n options = {};\n }\n\n var _options = options,\n placement = _options.placement,\n boundary = _options.boundary,\n rootBoundary = _options.rootBoundary,\n padding = _options.padding,\n flipVariations = _options.flipVariations,\n _options$allowedAutoP = _options.allowedAutoPlacements,\n allowedAutoPlacements = _options$allowedAutoP === void 0 ? allPlacements : _options$allowedAutoP;\n var variation = getVariation(placement);\n var placements = variation ? flipVariations ? variationPlacements : variationPlacements.filter(function (placement) {\n return getVariation(placement) === variation;\n }) : basePlacements;\n var allowedPlacements = placements.filter(function (placement) {\n return allowedAutoPlacements.indexOf(placement) >= 0;\n });\n\n if (allowedPlacements.length === 0) {\n allowedPlacements = placements;\n } // $FlowFixMe[incompatible-type]: Flow seems to have problems with two array unions...\n\n\n var overflows = allowedPlacements.reduce(function (acc, placement) {\n acc[placement] = detectOverflow(state, {\n placement: placement,\n boundary: boundary,\n rootBoundary: rootBoundary,\n padding: padding\n })[getBasePlacement(placement)];\n return acc;\n }, {});\n return Object.keys(overflows).sort(function (a, b) {\n return overflows[a] - overflows[b];\n });\n}","import { top, bottom, left, right } from \"../enums.js\";\nimport detectOverflow from \"../utils/detectOverflow.js\";\n\nfunction getSideOffsets(overflow, rect, preventedOffsets) {\n if (preventedOffsets === void 0) {\n preventedOffsets = {\n x: 0,\n y: 0\n };\n }\n\n return {\n top: overflow.top - rect.height - preventedOffsets.y,\n right: overflow.right - rect.width + preventedOffsets.x,\n bottom: overflow.bottom - rect.height + preventedOffsets.y,\n left: overflow.left - rect.width - preventedOffsets.x\n };\n}\n\nfunction isAnySideFullyClipped(overflow) {\n return [top, right, bottom, left].some(function (side) {\n return overflow[side] >= 0;\n });\n}\n\nfunction hide(_ref) {\n var state = _ref.state,\n name = _ref.name;\n var referenceRect = state.rects.reference;\n var popperRect = state.rects.popper;\n var preventedOffsets = state.modifiersData.preventOverflow;\n var referenceOverflow = detectOverflow(state, {\n elementContext: 'reference'\n });\n var popperAltOverflow = detectOverflow(state, {\n altBoundary: true\n });\n var referenceClippingOffsets = getSideOffsets(referenceOverflow, referenceRect);\n var popperEscapeOffsets = getSideOffsets(popperAltOverflow, popperRect, preventedOffsets);\n var isReferenceHidden = isAnySideFullyClipped(referenceClippingOffsets);\n var hasPopperEscaped = isAnySideFullyClipped(popperEscapeOffsets);\n state.modifiersData[name] = {\n referenceClippingOffsets: referenceClippingOffsets,\n popperEscapeOffsets: popperEscapeOffsets,\n isReferenceHidden: isReferenceHidden,\n hasPopperEscaped: hasPopperEscaped\n };\n state.attributes.popper = Object.assign({}, state.attributes.popper, {\n 'data-popper-reference-hidden': isReferenceHidden,\n 'data-popper-escaped': hasPopperEscaped\n });\n} // eslint-disable-next-line import/no-unused-modules\n\n\nexport default {\n name: 'hide',\n enabled: true,\n phase: 'main',\n requiresIfExists: ['preventOverflow'],\n fn: hide\n};","import getBasePlacement from \"../utils/getBasePlacement.js\";\nimport { top, left, right, placements } from \"../enums.js\"; // eslint-disable-next-line import/no-unused-modules\n\nexport function distanceAndSkiddingToXY(placement, rects, offset) {\n var basePlacement = getBasePlacement(placement);\n var invertDistance = [left, top].indexOf(basePlacement) >= 0 ? -1 : 1;\n\n var _ref = typeof offset === 'function' ? offset(Object.assign({}, rects, {\n placement: placement\n })) : offset,\n skidding = _ref[0],\n distance = _ref[1];\n\n skidding = skidding || 0;\n distance = (distance || 0) * invertDistance;\n return [left, right].indexOf(basePlacement) >= 0 ? {\n x: distance,\n y: skidding\n } : {\n x: skidding,\n y: distance\n };\n}\n\nfunction offset(_ref2) {\n var state = _ref2.state,\n options = _ref2.options,\n name = _ref2.name;\n var _options$offset = options.offset,\n offset = _options$offset === void 0 ? [0, 0] : _options$offset;\n var data = placements.reduce(function (acc, placement) {\n acc[placement] = distanceAndSkiddingToXY(placement, state.rects, offset);\n return acc;\n }, {});\n var _data$state$placement = data[state.placement],\n x = _data$state$placement.x,\n y = _data$state$placement.y;\n\n if (state.modifiersData.popperOffsets != null) {\n state.modifiersData.popperOffsets.x += x;\n state.modifiersData.popperOffsets.y += y;\n }\n\n state.modifiersData[name] = data;\n} // eslint-disable-next-line import/no-unused-modules\n\n\nexport default {\n name: 'offset',\n enabled: true,\n phase: 'main',\n requires: ['popperOffsets'],\n fn: offset\n};","import computeOffsets from \"../utils/computeOffsets.js\";\n\nfunction popperOffsets(_ref) {\n var state = _ref.state,\n name = _ref.name;\n // Offsets are the actual position the popper needs to have to be\n // properly positioned near its reference element\n // This is the most basic placement, and will be adjusted by\n // the modifiers in the next step\n state.modifiersData[name] = computeOffsets({\n reference: state.rects.reference,\n element: state.rects.popper,\n strategy: 'absolute',\n placement: state.placement\n });\n} // eslint-disable-next-line import/no-unused-modules\n\n\nexport default {\n name: 'popperOffsets',\n enabled: true,\n phase: 'read',\n fn: popperOffsets,\n data: {}\n};","import { top, left, right, bottom, start } from \"../enums.js\";\nimport getBasePlacement from \"../utils/getBasePlacement.js\";\nimport getMainAxisFromPlacement from \"../utils/getMainAxisFromPlacement.js\";\nimport getAltAxis from \"../utils/getAltAxis.js\";\nimport { within, withinMaxClamp } from \"../utils/within.js\";\nimport getLayoutRect from \"../dom-utils/getLayoutRect.js\";\nimport getOffsetParent from \"../dom-utils/getOffsetParent.js\";\nimport detectOverflow from \"../utils/detectOverflow.js\";\nimport getVariation from \"../utils/getVariation.js\";\nimport getFreshSideObject from \"../utils/getFreshSideObject.js\";\nimport { min as mathMin, max as mathMax } from \"../utils/math.js\";\n\nfunction preventOverflow(_ref) {\n var state = _ref.state,\n options = _ref.options,\n name = _ref.name;\n var _options$mainAxis = options.mainAxis,\n checkMainAxis = _options$mainAxis === void 0 ? true : _options$mainAxis,\n _options$altAxis = options.altAxis,\n checkAltAxis = _options$altAxis === void 0 ? false : _options$altAxis,\n boundary = options.boundary,\n rootBoundary = options.rootBoundary,\n altBoundary = options.altBoundary,\n padding = options.padding,\n _options$tether = options.tether,\n tether = _options$tether === void 0 ? true : _options$tether,\n _options$tetherOffset = options.tetherOffset,\n tetherOffset = _options$tetherOffset === void 0 ? 0 : _options$tetherOffset;\n var overflow = detectOverflow(state, {\n boundary: boundary,\n rootBoundary: rootBoundary,\n padding: padding,\n altBoundary: altBoundary\n });\n var basePlacement = getBasePlacement(state.placement);\n var variation = getVariation(state.placement);\n var isBasePlacement = !variation;\n var mainAxis = getMainAxisFromPlacement(basePlacement);\n var altAxis = getAltAxis(mainAxis);\n var popperOffsets = state.modifiersData.popperOffsets;\n var referenceRect = state.rects.reference;\n var popperRect = state.rects.popper;\n var tetherOffsetValue = typeof tetherOffset === 'function' ? tetherOffset(Object.assign({}, state.rects, {\n placement: state.placement\n })) : tetherOffset;\n var normalizedTetherOffsetValue = typeof tetherOffsetValue === 'number' ? {\n mainAxis: tetherOffsetValue,\n altAxis: tetherOffsetValue\n } : Object.assign({\n mainAxis: 0,\n altAxis: 0\n }, tetherOffsetValue);\n var offsetModifierState = state.modifiersData.offset ? state.modifiersData.offset[state.placement] : null;\n var data = {\n x: 0,\n y: 0\n };\n\n if (!popperOffsets) {\n return;\n }\n\n if (checkMainAxis) {\n var _offsetModifierState$;\n\n var mainSide = mainAxis === 'y' ? top : left;\n var altSide = mainAxis === 'y' ? bottom : right;\n var len = mainAxis === 'y' ? 'height' : 'width';\n var offset = popperOffsets[mainAxis];\n var min = offset + overflow[mainSide];\n var max = offset - overflow[altSide];\n var additive = tether ? -popperRect[len] / 2 : 0;\n var minLen = variation === start ? referenceRect[len] : popperRect[len];\n var maxLen = variation === start ? -popperRect[len] : -referenceRect[len]; // We need to include the arrow in the calculation so the arrow doesn't go\n // outside the reference bounds\n\n var arrowElement = state.elements.arrow;\n var arrowRect = tether && arrowElement ? getLayoutRect(arrowElement) : {\n width: 0,\n height: 0\n };\n var arrowPaddingObject = state.modifiersData['arrow#persistent'] ? state.modifiersData['arrow#persistent'].padding : getFreshSideObject();\n var arrowPaddingMin = arrowPaddingObject[mainSide];\n var arrowPaddingMax = arrowPaddingObject[altSide]; // If the reference length is smaller than the arrow length, we don't want\n // to include its full size in the calculation. If the reference is small\n // and near the edge of a boundary, the popper can overflow even if the\n // reference is not overflowing as well (e.g. virtual elements with no\n // width or height)\n\n var arrowLen = within(0, referenceRect[len], arrowRect[len]);\n var minOffset = isBasePlacement ? referenceRect[len] / 2 - additive - arrowLen - arrowPaddingMin - normalizedTetherOffsetValue.mainAxis : minLen - arrowLen - arrowPaddingMin - normalizedTetherOffsetValue.mainAxis;\n var maxOffset = isBasePlacement ? -referenceRect[len] / 2 + additive + arrowLen + arrowPaddingMax + normalizedTetherOffsetValue.mainAxis : maxLen + arrowLen + arrowPaddingMax + normalizedTetherOffsetValue.mainAxis;\n var arrowOffsetParent = state.elements.arrow && getOffsetParent(state.elements.arrow);\n var clientOffset = arrowOffsetParent ? mainAxis === 'y' ? arrowOffsetParent.clientTop || 0 : arrowOffsetParent.clientLeft || 0 : 0;\n var offsetModifierValue = (_offsetModifierState$ = offsetModifierState == null ? void 0 : offsetModifierState[mainAxis]) != null ? _offsetModifierState$ : 0;\n var tetherMin = offset + minOffset - offsetModifierValue - clientOffset;\n var tetherMax = offset + maxOffset - offsetModifierValue;\n var preventedOffset = within(tether ? mathMin(min, tetherMin) : min, offset, tether ? mathMax(max, tetherMax) : max);\n popperOffsets[mainAxis] = preventedOffset;\n data[mainAxis] = preventedOffset - offset;\n }\n\n if (checkAltAxis) {\n var _offsetModifierState$2;\n\n var _mainSide = mainAxis === 'x' ? top : left;\n\n var _altSide = mainAxis === 'x' ? bottom : right;\n\n var _offset = popperOffsets[altAxis];\n\n var _len = altAxis === 'y' ? 'height' : 'width';\n\n var _min = _offset + overflow[_mainSide];\n\n var _max = _offset - overflow[_altSide];\n\n var isOriginSide = [top, left].indexOf(basePlacement) !== -1;\n\n var _offsetModifierValue = (_offsetModifierState$2 = offsetModifierState == null ? void 0 : offsetModifierState[altAxis]) != null ? _offsetModifierState$2 : 0;\n\n var _tetherMin = isOriginSide ? _min : _offset - referenceRect[_len] - popperRect[_len] - _offsetModifierValue + normalizedTetherOffsetValue.altAxis;\n\n var _tetherMax = isOriginSide ? _offset + referenceRect[_len] + popperRect[_len] - _offsetModifierValue - normalizedTetherOffsetValue.altAxis : _max;\n\n var _preventedOffset = tether && isOriginSide ? withinMaxClamp(_tetherMin, _offset, _tetherMax) : within(tether ? _tetherMin : _min, _offset, tether ? _tetherMax : _max);\n\n popperOffsets[altAxis] = _preventedOffset;\n data[altAxis] = _preventedOffset - _offset;\n }\n\n state.modifiersData[name] = data;\n} // eslint-disable-next-line import/no-unused-modules\n\n\nexport default {\n name: 'preventOverflow',\n enabled: true,\n phase: 'main',\n fn: preventOverflow,\n requiresIfExists: ['offset']\n};","export default function getAltAxis(axis) {\n return axis === 'x' ? 'y' : 'x';\n}","import getBoundingClientRect from \"./getBoundingClientRect.js\";\nimport getNodeScroll from \"./getNodeScroll.js\";\nimport getNodeName from \"./getNodeName.js\";\nimport { isHTMLElement } from \"./instanceOf.js\";\nimport getWindowScrollBarX from \"./getWindowScrollBarX.js\";\nimport getDocumentElement from \"./getDocumentElement.js\";\nimport isScrollParent from \"./isScrollParent.js\";\nimport { round } from \"../utils/math.js\";\n\nfunction isElementScaled(element) {\n var rect = element.getBoundingClientRect();\n var scaleX = round(rect.width) / element.offsetWidth || 1;\n var scaleY = round(rect.height) / element.offsetHeight || 1;\n return scaleX !== 1 || scaleY !== 1;\n} // Returns the composite rect of an element relative to its offsetParent.\n// Composite means it takes into account transforms as well as layout.\n\n\nexport default function getCompositeRect(elementOrVirtualElement, offsetParent, isFixed) {\n if (isFixed === void 0) {\n isFixed = false;\n }\n\n var isOffsetParentAnElement = isHTMLElement(offsetParent);\n var offsetParentIsScaled = isHTMLElement(offsetParent) && isElementScaled(offsetParent);\n var documentElement = getDocumentElement(offsetParent);\n var rect = getBoundingClientRect(elementOrVirtualElement, offsetParentIsScaled, isFixed);\n var scroll = {\n scrollLeft: 0,\n scrollTop: 0\n };\n var offsets = {\n x: 0,\n y: 0\n };\n\n if (isOffsetParentAnElement || !isOffsetParentAnElement && !isFixed) {\n if (getNodeName(offsetParent) !== 'body' || // https://github.com/popperjs/popper-core/issues/1078\n isScrollParent(documentElement)) {\n scroll = getNodeScroll(offsetParent);\n }\n\n if (isHTMLElement(offsetParent)) {\n offsets = getBoundingClientRect(offsetParent, true);\n offsets.x += offsetParent.clientLeft;\n offsets.y += offsetParent.clientTop;\n } else if (documentElement) {\n offsets.x = getWindowScrollBarX(documentElement);\n }\n }\n\n return {\n x: rect.left + scroll.scrollLeft - offsets.x,\n y: rect.top + scroll.scrollTop - offsets.y,\n width: rect.width,\n height: rect.height\n };\n}","import getWindowScroll from \"./getWindowScroll.js\";\nimport getWindow from \"./getWindow.js\";\nimport { isHTMLElement } from \"./instanceOf.js\";\nimport getHTMLElementScroll from \"./getHTMLElementScroll.js\";\nexport default function getNodeScroll(node) {\n if (node === getWindow(node) || !isHTMLElement(node)) {\n return getWindowScroll(node);\n } else {\n return getHTMLElementScroll(node);\n }\n}","export default function getHTMLElementScroll(element) {\n return {\n scrollLeft: element.scrollLeft,\n scrollTop: element.scrollTop\n };\n}","import { modifierPhases } from \"../enums.js\"; // source: https://stackoverflow.com/questions/49875255\n\nfunction order(modifiers) {\n var map = new Map();\n var visited = new Set();\n var result = [];\n modifiers.forEach(function (modifier) {\n map.set(modifier.name, modifier);\n }); // On visiting object, check for its dependencies and visit them recursively\n\n function sort(modifier) {\n visited.add(modifier.name);\n var requires = [].concat(modifier.requires || [], modifier.requiresIfExists || []);\n requires.forEach(function (dep) {\n if (!visited.has(dep)) {\n var depModifier = map.get(dep);\n\n if (depModifier) {\n sort(depModifier);\n }\n }\n });\n result.push(modifier);\n }\n\n modifiers.forEach(function (modifier) {\n if (!visited.has(modifier.name)) {\n // check for visited object\n sort(modifier);\n }\n });\n return result;\n}\n\nexport default function orderModifiers(modifiers) {\n // order based on dependencies\n var orderedModifiers = order(modifiers); // order based on phase\n\n return modifierPhases.reduce(function (acc, phase) {\n return acc.concat(orderedModifiers.filter(function (modifier) {\n return modifier.phase === phase;\n }));\n }, []);\n}","import getCompositeRect from \"./dom-utils/getCompositeRect.js\";\nimport getLayoutRect from \"./dom-utils/getLayoutRect.js\";\nimport listScrollParents from \"./dom-utils/listScrollParents.js\";\nimport getOffsetParent from \"./dom-utils/getOffsetParent.js\";\nimport orderModifiers from \"./utils/orderModifiers.js\";\nimport debounce from \"./utils/debounce.js\";\nimport mergeByName from \"./utils/mergeByName.js\";\nimport detectOverflow from \"./utils/detectOverflow.js\";\nimport { isElement } from \"./dom-utils/instanceOf.js\";\nvar DEFAULT_OPTIONS = {\n placement: 'bottom',\n modifiers: [],\n strategy: 'absolute'\n};\n\nfunction areValidElements() {\n for (var _len = arguments.length, args = new Array(_len), _key = 0; _key < _len; _key++) {\n args[_key] = arguments[_key];\n }\n\n return !args.some(function (element) {\n return !(element && typeof element.getBoundingClientRect === 'function');\n });\n}\n\nexport function popperGenerator(generatorOptions) {\n if (generatorOptions === void 0) {\n generatorOptions = {};\n }\n\n var _generatorOptions = generatorOptions,\n _generatorOptions$def = _generatorOptions.defaultModifiers,\n defaultModifiers = _generatorOptions$def === void 0 ? [] : _generatorOptions$def,\n _generatorOptions$def2 = _generatorOptions.defaultOptions,\n defaultOptions = _generatorOptions$def2 === void 0 ? DEFAULT_OPTIONS : _generatorOptions$def2;\n return function createPopper(reference, popper, options) {\n if (options === void 0) {\n options = defaultOptions;\n }\n\n var state = {\n placement: 'bottom',\n orderedModifiers: [],\n options: Object.assign({}, DEFAULT_OPTIONS, defaultOptions),\n modifiersData: {},\n elements: {\n reference: reference,\n popper: popper\n },\n attributes: {},\n styles: {}\n };\n var effectCleanupFns = [];\n var isDestroyed = false;\n var instance = {\n state: state,\n setOptions: function setOptions(setOptionsAction) {\n var options = typeof setOptionsAction === 'function' ? setOptionsAction(state.options) : setOptionsAction;\n cleanupModifierEffects();\n state.options = Object.assign({}, defaultOptions, state.options, options);\n state.scrollParents = {\n reference: isElement(reference) ? listScrollParents(reference) : reference.contextElement ? listScrollParents(reference.contextElement) : [],\n popper: listScrollParents(popper)\n }; // Orders the modifiers based on their dependencies and `phase`\n // properties\n\n var orderedModifiers = orderModifiers(mergeByName([].concat(defaultModifiers, state.options.modifiers))); // Strip out disabled modifiers\n\n state.orderedModifiers = orderedModifiers.filter(function (m) {\n return m.enabled;\n });\n runModifierEffects();\n return instance.update();\n },\n // Sync update – it will always be executed, even if not necessary. This\n // is useful for low frequency updates where sync behavior simplifies the\n // logic.\n // For high frequency updates (e.g. `resize` and `scroll` events), always\n // prefer the async Popper#update method\n forceUpdate: function forceUpdate() {\n if (isDestroyed) {\n return;\n }\n\n var _state$elements = state.elements,\n reference = _state$elements.reference,\n popper = _state$elements.popper; // Don't proceed if `reference` or `popper` are not valid elements\n // anymore\n\n if (!areValidElements(reference, popper)) {\n return;\n } // Store the reference and popper rects to be read by modifiers\n\n\n state.rects = {\n reference: getCompositeRect(reference, getOffsetParent(popper), state.options.strategy === 'fixed'),\n popper: getLayoutRect(popper)\n }; // Modifiers have the ability to reset the current update cycle. The\n // most common use case for this is the `flip` modifier changing the\n // placement, which then needs to re-run all the modifiers, because the\n // logic was previously ran for the previous placement and is therefore\n // stale/incorrect\n\n state.reset = false;\n state.placement = state.options.placement; // On each update cycle, the `modifiersData` property for each modifier\n // is filled with the initial data specified by the modifier. This means\n // it doesn't persist and is fresh on each update.\n // To ensure persistent data, use `${name}#persistent`\n\n state.orderedModifiers.forEach(function (modifier) {\n return state.modifiersData[modifier.name] = Object.assign({}, modifier.data);\n });\n\n for (var index = 0; index < state.orderedModifiers.length; index++) {\n if (state.reset === true) {\n state.reset = false;\n index = -1;\n continue;\n }\n\n var _state$orderedModifie = state.orderedModifiers[index],\n fn = _state$orderedModifie.fn,\n _state$orderedModifie2 = _state$orderedModifie.options,\n _options = _state$orderedModifie2 === void 0 ? {} : _state$orderedModifie2,\n name = _state$orderedModifie.name;\n\n if (typeof fn === 'function') {\n state = fn({\n state: state,\n options: _options,\n name: name,\n instance: instance\n }) || state;\n }\n }\n },\n // Async and optimistically optimized update – it will not be executed if\n // not necessary (debounced to run at most once-per-tick)\n update: debounce(function () {\n return new Promise(function (resolve) {\n instance.forceUpdate();\n resolve(state);\n });\n }),\n destroy: function destroy() {\n cleanupModifierEffects();\n isDestroyed = true;\n }\n };\n\n if (!areValidElements(reference, popper)) {\n return instance;\n }\n\n instance.setOptions(options).then(function (state) {\n if (!isDestroyed && options.onFirstUpdate) {\n options.onFirstUpdate(state);\n }\n }); // Modifiers have the ability to execute arbitrary code before the first\n // update cycle runs. They will be executed in the same order as the update\n // cycle. This is useful when a modifier adds some persistent data that\n // other modifiers need to use, but the modifier is run after the dependent\n // one.\n\n function runModifierEffects() {\n state.orderedModifiers.forEach(function (_ref) {\n var name = _ref.name,\n _ref$options = _ref.options,\n options = _ref$options === void 0 ? {} : _ref$options,\n effect = _ref.effect;\n\n if (typeof effect === 'function') {\n var cleanupFn = effect({\n state: state,\n name: name,\n instance: instance,\n options: options\n });\n\n var noopFn = function noopFn() {};\n\n effectCleanupFns.push(cleanupFn || noopFn);\n }\n });\n }\n\n function cleanupModifierEffects() {\n effectCleanupFns.forEach(function (fn) {\n return fn();\n });\n effectCleanupFns = [];\n }\n\n return instance;\n };\n}\nexport var createPopper = /*#__PURE__*/popperGenerator(); // eslint-disable-next-line import/no-unused-modules\n\nexport { detectOverflow };","export default function debounce(fn) {\n var pending;\n return function () {\n if (!pending) {\n pending = new Promise(function (resolve) {\n Promise.resolve().then(function () {\n pending = undefined;\n resolve(fn());\n });\n });\n }\n\n return pending;\n };\n}","export default function mergeByName(modifiers) {\n var merged = modifiers.reduce(function (merged, current) {\n var existing = merged[current.name];\n merged[current.name] = existing ? Object.assign({}, existing, current, {\n options: Object.assign({}, existing.options, current.options),\n data: Object.assign({}, existing.data, current.data)\n }) : current;\n return merged;\n }, {}); // IE11 does not support Object.values\n\n return Object.keys(merged).map(function (key) {\n return merged[key];\n });\n}","import { popperGenerator, detectOverflow } from \"./createPopper.js\";\nimport eventListeners from \"./modifiers/eventListeners.js\";\nimport popperOffsets from \"./modifiers/popperOffsets.js\";\nimport computeStyles from \"./modifiers/computeStyles.js\";\nimport applyStyles from \"./modifiers/applyStyles.js\";\nimport offset from \"./modifiers/offset.js\";\nimport flip from \"./modifiers/flip.js\";\nimport preventOverflow from \"./modifiers/preventOverflow.js\";\nimport arrow from \"./modifiers/arrow.js\";\nimport hide from \"./modifiers/hide.js\";\nvar defaultModifiers = [eventListeners, popperOffsets, computeStyles, applyStyles, offset, flip, preventOverflow, arrow, hide];\nvar createPopper = /*#__PURE__*/popperGenerator({\n defaultModifiers: defaultModifiers\n}); // eslint-disable-next-line import/no-unused-modules\n\nexport { createPopper, popperGenerator, defaultModifiers, detectOverflow }; // eslint-disable-next-line import/no-unused-modules\n\nexport { createPopper as createPopperLite } from \"./popper-lite.js\"; // eslint-disable-next-line import/no-unused-modules\n\nexport * from \"./modifiers/index.js\";","import { popperGenerator, detectOverflow } from \"./createPopper.js\";\nimport eventListeners from \"./modifiers/eventListeners.js\";\nimport popperOffsets from \"./modifiers/popperOffsets.js\";\nimport computeStyles from \"./modifiers/computeStyles.js\";\nimport applyStyles from \"./modifiers/applyStyles.js\";\nvar defaultModifiers = [eventListeners, popperOffsets, computeStyles, applyStyles];\nvar createPopper = /*#__PURE__*/popperGenerator({\n defaultModifiers: defaultModifiers\n}); // eslint-disable-next-line import/no-unused-modules\n\nexport { createPopper, popperGenerator, defaultModifiers, detectOverflow };","/*!\n * Bootstrap v5.3.3 (https://getbootstrap.com/)\n * Copyright 2011-2024 The Bootstrap Authors (https://github.com/twbs/bootstrap/graphs/contributors)\n * Licensed under MIT (https://github.com/twbs/bootstrap/blob/main/LICENSE)\n */\nimport * as Popper from '@popperjs/core';\n\n/**\n * --------------------------------------------------------------------------\n * Bootstrap dom/data.js\n * Licensed under MIT (https://github.com/twbs/bootstrap/blob/main/LICENSE)\n * --------------------------------------------------------------------------\n */\n\n/**\n * Constants\n */\n\nconst elementMap = new Map();\nconst Data = {\n set(element, key, instance) {\n if (!elementMap.has(element)) {\n elementMap.set(element, new Map());\n }\n const instanceMap = elementMap.get(element);\n\n // make it clear we only want one instance per element\n // can be removed later when multiple key/instances are fine to be used\n if (!instanceMap.has(key) && instanceMap.size !== 0) {\n // eslint-disable-next-line no-console\n console.error(`Bootstrap doesn't allow more than one instance per element. Bound instance: ${Array.from(instanceMap.keys())[0]}.`);\n return;\n }\n instanceMap.set(key, instance);\n },\n get(element, key) {\n if (elementMap.has(element)) {\n return elementMap.get(element).get(key) || null;\n }\n return null;\n },\n remove(element, key) {\n if (!elementMap.has(element)) {\n return;\n }\n const instanceMap = elementMap.get(element);\n instanceMap.delete(key);\n\n // free up element references if there are no instances left for an element\n if (instanceMap.size === 0) {\n elementMap.delete(element);\n }\n }\n};\n\n/**\n * --------------------------------------------------------------------------\n * Bootstrap util/index.js\n * Licensed under MIT (https://github.com/twbs/bootstrap/blob/main/LICENSE)\n * --------------------------------------------------------------------------\n */\n\nconst MAX_UID = 1000000;\nconst MILLISECONDS_MULTIPLIER = 1000;\nconst TRANSITION_END = 'transitionend';\n\n/**\n * Properly escape IDs selectors to handle weird IDs\n * @param {string} selector\n * @returns {string}\n */\nconst parseSelector = selector => {\n if (selector && window.CSS && window.CSS.escape) {\n // document.querySelector needs escaping to handle IDs (html5+) containing for instance /\n selector = selector.replace(/#([^\\s\"#']+)/g, (match, id) => `#${CSS.escape(id)}`);\n }\n return selector;\n};\n\n// Shout-out Angus Croll (https://goo.gl/pxwQGp)\nconst toType = object => {\n if (object === null || object === undefined) {\n return `${object}`;\n }\n return Object.prototype.toString.call(object).match(/\\s([a-z]+)/i)[1].toLowerCase();\n};\n\n/**\n * Public Util API\n */\n\nconst getUID = prefix => {\n do {\n prefix += Math.floor(Math.random() * MAX_UID);\n } while (document.getElementById(prefix));\n return prefix;\n};\nconst getTransitionDurationFromElement = element => {\n if (!element) {\n return 0;\n }\n\n // Get transition-duration of the element\n let {\n transitionDuration,\n transitionDelay\n } = window.getComputedStyle(element);\n const floatTransitionDuration = Number.parseFloat(transitionDuration);\n const floatTransitionDelay = Number.parseFloat(transitionDelay);\n\n // Return 0 if element or transition duration is not found\n if (!floatTransitionDuration && !floatTransitionDelay) {\n return 0;\n }\n\n // If multiple durations are defined, take the first\n transitionDuration = transitionDuration.split(',')[0];\n transitionDelay = transitionDelay.split(',')[0];\n return (Number.parseFloat(transitionDuration) + Number.parseFloat(transitionDelay)) * MILLISECONDS_MULTIPLIER;\n};\nconst triggerTransitionEnd = element => {\n element.dispatchEvent(new Event(TRANSITION_END));\n};\nconst isElement = object => {\n if (!object || typeof object !== 'object') {\n return false;\n }\n if (typeof object.jquery !== 'undefined') {\n object = object[0];\n }\n return typeof object.nodeType !== 'undefined';\n};\nconst getElement = object => {\n // it's a jQuery object or a node element\n if (isElement(object)) {\n return object.jquery ? object[0] : object;\n }\n if (typeof object === 'string' && object.length > 0) {\n return document.querySelector(parseSelector(object));\n }\n return null;\n};\nconst isVisible = element => {\n if (!isElement(element) || element.getClientRects().length === 0) {\n return false;\n }\n const elementIsVisible = getComputedStyle(element).getPropertyValue('visibility') === 'visible';\n // Handle `details` element as its content may falsie appear visible when it is closed\n const closedDetails = element.closest('details:not([open])');\n if (!closedDetails) {\n return elementIsVisible;\n }\n if (closedDetails !== element) {\n const summary = element.closest('summary');\n if (summary && summary.parentNode !== closedDetails) {\n return false;\n }\n if (summary === null) {\n return false;\n }\n }\n return elementIsVisible;\n};\nconst isDisabled = element => {\n if (!element || element.nodeType !== Node.ELEMENT_NODE) {\n return true;\n }\n if (element.classList.contains('disabled')) {\n return true;\n }\n if (typeof element.disabled !== 'undefined') {\n return element.disabled;\n }\n return element.hasAttribute('disabled') && element.getAttribute('disabled') !== 'false';\n};\nconst findShadowRoot = element => {\n if (!document.documentElement.attachShadow) {\n return null;\n }\n\n // Can find the shadow root otherwise it'll return the document\n if (typeof element.getRootNode === 'function') {\n const root = element.getRootNode();\n return root instanceof ShadowRoot ? root : null;\n }\n if (element instanceof ShadowRoot) {\n return element;\n }\n\n // when we don't find a shadow root\n if (!element.parentNode) {\n return null;\n }\n return findShadowRoot(element.parentNode);\n};\nconst noop = () => {};\n\n/**\n * Trick to restart an element's animation\n *\n * @param {HTMLElement} element\n * @return void\n *\n * @see https://www.charistheo.io/blog/2021/02/restart-a-css-animation-with-javascript/#restarting-a-css-animation\n */\nconst reflow = element => {\n element.offsetHeight; // eslint-disable-line no-unused-expressions\n};\nconst getjQuery = () => {\n if (window.jQuery && !document.body.hasAttribute('data-bs-no-jquery')) {\n return window.jQuery;\n }\n return null;\n};\nconst DOMContentLoadedCallbacks = [];\nconst onDOMContentLoaded = callback => {\n if (document.readyState === 'loading') {\n // add listener on the first call when the document is in loading state\n if (!DOMContentLoadedCallbacks.length) {\n document.addEventListener('DOMContentLoaded', () => {\n for (const callback of DOMContentLoadedCallbacks) {\n callback();\n }\n });\n }\n DOMContentLoadedCallbacks.push(callback);\n } else {\n callback();\n }\n};\nconst isRTL = () => document.documentElement.dir === 'rtl';\nconst defineJQueryPlugin = plugin => {\n onDOMContentLoaded(() => {\n const $ = getjQuery();\n /* istanbul ignore if */\n if ($) {\n const name = plugin.NAME;\n const JQUERY_NO_CONFLICT = $.fn[name];\n $.fn[name] = plugin.jQueryInterface;\n $.fn[name].Constructor = plugin;\n $.fn[name].noConflict = () => {\n $.fn[name] = JQUERY_NO_CONFLICT;\n return plugin.jQueryInterface;\n };\n }\n });\n};\nconst execute = (possibleCallback, args = [], defaultValue = possibleCallback) => {\n return typeof possibleCallback === 'function' ? possibleCallback(...args) : defaultValue;\n};\nconst executeAfterTransition = (callback, transitionElement, waitForTransition = true) => {\n if (!waitForTransition) {\n execute(callback);\n return;\n }\n const durationPadding = 5;\n const emulatedDuration = getTransitionDurationFromElement(transitionElement) + durationPadding;\n let called = false;\n const handler = ({\n target\n }) => {\n if (target !== transitionElement) {\n return;\n }\n called = true;\n transitionElement.removeEventListener(TRANSITION_END, handler);\n execute(callback);\n };\n transitionElement.addEventListener(TRANSITION_END, handler);\n setTimeout(() => {\n if (!called) {\n triggerTransitionEnd(transitionElement);\n }\n }, emulatedDuration);\n};\n\n/**\n * Return the previous/next element of a list.\n *\n * @param {array} list The list of elements\n * @param activeElement The active element\n * @param shouldGetNext Choose to get next or previous element\n * @param isCycleAllowed\n * @return {Element|elem} The proper element\n */\nconst getNextActiveElement = (list, activeElement, shouldGetNext, isCycleAllowed) => {\n const listLength = list.length;\n let index = list.indexOf(activeElement);\n\n // if the element does not exist in the list return an element\n // depending on the direction and if cycle is allowed\n if (index === -1) {\n return !shouldGetNext && isCycleAllowed ? list[listLength - 1] : list[0];\n }\n index += shouldGetNext ? 1 : -1;\n if (isCycleAllowed) {\n index = (index + listLength) % listLength;\n }\n return list[Math.max(0, Math.min(index, listLength - 1))];\n};\n\n/**\n * --------------------------------------------------------------------------\n * Bootstrap dom/event-handler.js\n * Licensed under MIT (https://github.com/twbs/bootstrap/blob/main/LICENSE)\n * --------------------------------------------------------------------------\n */\n\n\n/**\n * Constants\n */\n\nconst namespaceRegex = /[^.]*(?=\\..*)\\.|.*/;\nconst stripNameRegex = /\\..*/;\nconst stripUidRegex = /::\\d+$/;\nconst eventRegistry = {}; // Events storage\nlet uidEvent = 1;\nconst customEvents = {\n mouseenter: 'mouseover',\n mouseleave: 'mouseout'\n};\nconst nativeEvents = new Set(['click', 'dblclick', 'mouseup', 'mousedown', 'contextmenu', 'mousewheel', 'DOMMouseScroll', 'mouseover', 'mouseout', 'mousemove', 'selectstart', 'selectend', 'keydown', 'keypress', 'keyup', 'orientationchange', 'touchstart', 'touchmove', 'touchend', 'touchcancel', 'pointerdown', 'pointermove', 'pointerup', 'pointerleave', 'pointercancel', 'gesturestart', 'gesturechange', 'gestureend', 'focus', 'blur', 'change', 'reset', 'select', 'submit', 'focusin', 'focusout', 'load', 'unload', 'beforeunload', 'resize', 'move', 'DOMContentLoaded', 'readystatechange', 'error', 'abort', 'scroll']);\n\n/**\n * Private methods\n */\n\nfunction makeEventUid(element, uid) {\n return uid && `${uid}::${uidEvent++}` || element.uidEvent || uidEvent++;\n}\nfunction getElementEvents(element) {\n const uid = makeEventUid(element);\n element.uidEvent = uid;\n eventRegistry[uid] = eventRegistry[uid] || {};\n return eventRegistry[uid];\n}\nfunction bootstrapHandler(element, fn) {\n return function handler(event) {\n hydrateObj(event, {\n delegateTarget: element\n });\n if (handler.oneOff) {\n EventHandler.off(element, event.type, fn);\n }\n return fn.apply(element, [event]);\n };\n}\nfunction bootstrapDelegationHandler(element, selector, fn) {\n return function handler(event) {\n const domElements = element.querySelectorAll(selector);\n for (let {\n target\n } = event; target && target !== this; target = target.parentNode) {\n for (const domElement of domElements) {\n if (domElement !== target) {\n continue;\n }\n hydrateObj(event, {\n delegateTarget: target\n });\n if (handler.oneOff) {\n EventHandler.off(element, event.type, selector, fn);\n }\n return fn.apply(target, [event]);\n }\n }\n };\n}\nfunction findHandler(events, callable, delegationSelector = null) {\n return Object.values(events).find(event => event.callable === callable && event.delegationSelector === delegationSelector);\n}\nfunction normalizeParameters(originalTypeEvent, handler, delegationFunction) {\n const isDelegated = typeof handler === 'string';\n // TODO: tooltip passes `false` instead of selector, so we need to check\n const callable = isDelegated ? delegationFunction : handler || delegationFunction;\n let typeEvent = getTypeEvent(originalTypeEvent);\n if (!nativeEvents.has(typeEvent)) {\n typeEvent = originalTypeEvent;\n }\n return [isDelegated, callable, typeEvent];\n}\nfunction addHandler(element, originalTypeEvent, handler, delegationFunction, oneOff) {\n if (typeof originalTypeEvent !== 'string' || !element) {\n return;\n }\n let [isDelegated, callable, typeEvent] = normalizeParameters(originalTypeEvent, handler, delegationFunction);\n\n // in case of mouseenter or mouseleave wrap the handler within a function that checks for its DOM position\n // this prevents the handler from being dispatched the same way as mouseover or mouseout does\n if (originalTypeEvent in customEvents) {\n const wrapFunction = fn => {\n return function (event) {\n if (!event.relatedTarget || event.relatedTarget !== event.delegateTarget && !event.delegateTarget.contains(event.relatedTarget)) {\n return fn.call(this, event);\n }\n };\n };\n callable = wrapFunction(callable);\n }\n const events = getElementEvents(element);\n const handlers = events[typeEvent] || (events[typeEvent] = {});\n const previousFunction = findHandler(handlers, callable, isDelegated ? handler : null);\n if (previousFunction) {\n previousFunction.oneOff = previousFunction.oneOff && oneOff;\n return;\n }\n const uid = makeEventUid(callable, originalTypeEvent.replace(namespaceRegex, ''));\n const fn = isDelegated ? bootstrapDelegationHandler(element, handler, callable) : bootstrapHandler(element, callable);\n fn.delegationSelector = isDelegated ? handler : null;\n fn.callable = callable;\n fn.oneOff = oneOff;\n fn.uidEvent = uid;\n handlers[uid] = fn;\n element.addEventListener(typeEvent, fn, isDelegated);\n}\nfunction removeHandler(element, events, typeEvent, handler, delegationSelector) {\n const fn = findHandler(events[typeEvent], handler, delegationSelector);\n if (!fn) {\n return;\n }\n element.removeEventListener(typeEvent, fn, Boolean(delegationSelector));\n delete events[typeEvent][fn.uidEvent];\n}\nfunction removeNamespacedHandlers(element, events, typeEvent, namespace) {\n const storeElementEvent = events[typeEvent] || {};\n for (const [handlerKey, event] of Object.entries(storeElementEvent)) {\n if (handlerKey.includes(namespace)) {\n removeHandler(element, events, typeEvent, event.callable, event.delegationSelector);\n }\n }\n}\nfunction getTypeEvent(event) {\n // allow to get the native events from namespaced events ('click.bs.button' --> 'click')\n event = event.replace(stripNameRegex, '');\n return customEvents[event] || event;\n}\nconst EventHandler = {\n on(element, event, handler, delegationFunction) {\n addHandler(element, event, handler, delegationFunction, false);\n },\n one(element, event, handler, delegationFunction) {\n addHandler(element, event, handler, delegationFunction, true);\n },\n off(element, originalTypeEvent, handler, delegationFunction) {\n if (typeof originalTypeEvent !== 'string' || !element) {\n return;\n }\n const [isDelegated, callable, typeEvent] = normalizeParameters(originalTypeEvent, handler, delegationFunction);\n const inNamespace = typeEvent !== originalTypeEvent;\n const events = getElementEvents(element);\n const storeElementEvent = events[typeEvent] || {};\n const isNamespace = originalTypeEvent.startsWith('.');\n if (typeof callable !== 'undefined') {\n // Simplest case: handler is passed, remove that listener ONLY.\n if (!Object.keys(storeElementEvent).length) {\n return;\n }\n removeHandler(element, events, typeEvent, callable, isDelegated ? handler : null);\n return;\n }\n if (isNamespace) {\n for (const elementEvent of Object.keys(events)) {\n removeNamespacedHandlers(element, events, elementEvent, originalTypeEvent.slice(1));\n }\n }\n for (const [keyHandlers, event] of Object.entries(storeElementEvent)) {\n const handlerKey = keyHandlers.replace(stripUidRegex, '');\n if (!inNamespace || originalTypeEvent.includes(handlerKey)) {\n removeHandler(element, events, typeEvent, event.callable, event.delegationSelector);\n }\n }\n },\n trigger(element, event, args) {\n if (typeof event !== 'string' || !element) {\n return null;\n }\n const $ = getjQuery();\n const typeEvent = getTypeEvent(event);\n const inNamespace = event !== typeEvent;\n let jQueryEvent = null;\n let bubbles = true;\n let nativeDispatch = true;\n let defaultPrevented = false;\n if (inNamespace && $) {\n jQueryEvent = $.Event(event, args);\n $(element).trigger(jQueryEvent);\n bubbles = !jQueryEvent.isPropagationStopped();\n nativeDispatch = !jQueryEvent.isImmediatePropagationStopped();\n defaultPrevented = jQueryEvent.isDefaultPrevented();\n }\n const evt = hydrateObj(new Event(event, {\n bubbles,\n cancelable: true\n }), args);\n if (defaultPrevented) {\n evt.preventDefault();\n }\n if (nativeDispatch) {\n element.dispatchEvent(evt);\n }\n if (evt.defaultPrevented && jQueryEvent) {\n jQueryEvent.preventDefault();\n }\n return evt;\n }\n};\nfunction hydrateObj(obj, meta = {}) {\n for (const [key, value] of Object.entries(meta)) {\n try {\n obj[key] = value;\n } catch (_unused) {\n Object.defineProperty(obj, key, {\n configurable: true,\n get() {\n return value;\n }\n });\n }\n }\n return obj;\n}\n\n/**\n * --------------------------------------------------------------------------\n * Bootstrap dom/manipulator.js\n * Licensed under MIT (https://github.com/twbs/bootstrap/blob/main/LICENSE)\n * --------------------------------------------------------------------------\n */\n\nfunction normalizeData(value) {\n if (value === 'true') {\n return true;\n }\n if (value === 'false') {\n return false;\n }\n if (value === Number(value).toString()) {\n return Number(value);\n }\n if (value === '' || value === 'null') {\n return null;\n }\n if (typeof value !== 'string') {\n return value;\n }\n try {\n return JSON.parse(decodeURIComponent(value));\n } catch (_unused) {\n return value;\n }\n}\nfunction normalizeDataKey(key) {\n return key.replace(/[A-Z]/g, chr => `-${chr.toLowerCase()}`);\n}\nconst Manipulator = {\n setDataAttribute(element, key, value) {\n element.setAttribute(`data-bs-${normalizeDataKey(key)}`, value);\n },\n removeDataAttribute(element, key) {\n element.removeAttribute(`data-bs-${normalizeDataKey(key)}`);\n },\n getDataAttributes(element) {\n if (!element) {\n return {};\n }\n const attributes = {};\n const bsKeys = Object.keys(element.dataset).filter(key => key.startsWith('bs') && !key.startsWith('bsConfig'));\n for (const key of bsKeys) {\n let pureKey = key.replace(/^bs/, '');\n pureKey = pureKey.charAt(0).toLowerCase() + pureKey.slice(1, pureKey.length);\n attributes[pureKey] = normalizeData(element.dataset[key]);\n }\n return attributes;\n },\n getDataAttribute(element, key) {\n return normalizeData(element.getAttribute(`data-bs-${normalizeDataKey(key)}`));\n }\n};\n\n/**\n * --------------------------------------------------------------------------\n * Bootstrap util/config.js\n * Licensed under MIT (https://github.com/twbs/bootstrap/blob/main/LICENSE)\n * --------------------------------------------------------------------------\n */\n\n\n/**\n * Class definition\n */\n\nclass Config {\n // Getters\n static get Default() {\n return {};\n }\n static get DefaultType() {\n return {};\n }\n static get NAME() {\n throw new Error('You have to implement the static method \"NAME\", for each component!');\n }\n _getConfig(config) {\n config = this._mergeConfigObj(config);\n config = this._configAfterMerge(config);\n this._typeCheckConfig(config);\n return config;\n }\n _configAfterMerge(config) {\n return config;\n }\n _mergeConfigObj(config, element) {\n const jsonConfig = isElement(element) ? Manipulator.getDataAttribute(element, 'config') : {}; // try to parse\n\n return {\n ...this.constructor.Default,\n ...(typeof jsonConfig === 'object' ? jsonConfig : {}),\n ...(isElement(element) ? Manipulator.getDataAttributes(element) : {}),\n ...(typeof config === 'object' ? config : {})\n };\n }\n _typeCheckConfig(config, configTypes = this.constructor.DefaultType) {\n for (const [property, expectedTypes] of Object.entries(configTypes)) {\n const value = config[property];\n const valueType = isElement(value) ? 'element' : toType(value);\n if (!new RegExp(expectedTypes).test(valueType)) {\n throw new TypeError(`${this.constructor.NAME.toUpperCase()}: Option \"${property}\" provided type \"${valueType}\" but expected type \"${expectedTypes}\".`);\n }\n }\n }\n}\n\n/**\n * --------------------------------------------------------------------------\n * Bootstrap base-component.js\n * Licensed under MIT (https://github.com/twbs/bootstrap/blob/main/LICENSE)\n * --------------------------------------------------------------------------\n */\n\n\n/**\n * Constants\n */\n\nconst VERSION = '5.3.3';\n\n/**\n * Class definition\n */\n\nclass BaseComponent extends Config {\n constructor(element, config) {\n super();\n element = getElement(element);\n if (!element) {\n return;\n }\n this._element = element;\n this._config = this._getConfig(config);\n Data.set(this._element, this.constructor.DATA_KEY, this);\n }\n\n // Public\n dispose() {\n Data.remove(this._element, this.constructor.DATA_KEY);\n EventHandler.off(this._element, this.constructor.EVENT_KEY);\n for (const propertyName of Object.getOwnPropertyNames(this)) {\n this[propertyName] = null;\n }\n }\n _queueCallback(callback, element, isAnimated = true) {\n executeAfterTransition(callback, element, isAnimated);\n }\n _getConfig(config) {\n config = this._mergeConfigObj(config, this._element);\n config = this._configAfterMerge(config);\n this._typeCheckConfig(config);\n return config;\n }\n\n // Static\n static getInstance(element) {\n return Data.get(getElement(element), this.DATA_KEY);\n }\n static getOrCreateInstance(element, config = {}) {\n return this.getInstance(element) || new this(element, typeof config === 'object' ? config : null);\n }\n static get VERSION() {\n return VERSION;\n }\n static get DATA_KEY() {\n return `bs.${this.NAME}`;\n }\n static get EVENT_KEY() {\n return `.${this.DATA_KEY}`;\n }\n static eventName(name) {\n return `${name}${this.EVENT_KEY}`;\n }\n}\n\n/**\n * --------------------------------------------------------------------------\n * Bootstrap dom/selector-engine.js\n * Licensed under MIT (https://github.com/twbs/bootstrap/blob/main/LICENSE)\n * --------------------------------------------------------------------------\n */\n\nconst getSelector = element => {\n let selector = element.getAttribute('data-bs-target');\n if (!selector || selector === '#') {\n let hrefAttribute = element.getAttribute('href');\n\n // The only valid content that could double as a selector are IDs or classes,\n // so everything starting with `#` or `.`. If a \"real\" URL is used as the selector,\n // `document.querySelector` will rightfully complain it is invalid.\n // See https://github.com/twbs/bootstrap/issues/32273\n if (!hrefAttribute || !hrefAttribute.includes('#') && !hrefAttribute.startsWith('.')) {\n return null;\n }\n\n // Just in case some CMS puts out a full URL with the anchor appended\n if (hrefAttribute.includes('#') && !hrefAttribute.startsWith('#')) {\n hrefAttribute = `#${hrefAttribute.split('#')[1]}`;\n }\n selector = hrefAttribute && hrefAttribute !== '#' ? hrefAttribute.trim() : null;\n }\n return selector ? selector.split(',').map(sel => parseSelector(sel)).join(',') : null;\n};\nconst SelectorEngine = {\n find(selector, element = document.documentElement) {\n return [].concat(...Element.prototype.querySelectorAll.call(element, selector));\n },\n findOne(selector, element = document.documentElement) {\n return Element.prototype.querySelector.call(element, selector);\n },\n children(element, selector) {\n return [].concat(...element.children).filter(child => child.matches(selector));\n },\n parents(element, selector) {\n const parents = [];\n let ancestor = element.parentNode.closest(selector);\n while (ancestor) {\n parents.push(ancestor);\n ancestor = ancestor.parentNode.closest(selector);\n }\n return parents;\n },\n prev(element, selector) {\n let previous = element.previousElementSibling;\n while (previous) {\n if (previous.matches(selector)) {\n return [previous];\n }\n previous = previous.previousElementSibling;\n }\n return [];\n },\n // TODO: this is now unused; remove later along with prev()\n next(element, selector) {\n let next = element.nextElementSibling;\n while (next) {\n if (next.matches(selector)) {\n return [next];\n }\n next = next.nextElementSibling;\n }\n return [];\n },\n focusableChildren(element) {\n const focusables = ['a', 'button', 'input', 'textarea', 'select', 'details', '[tabindex]', '[contenteditable=\"true\"]'].map(selector => `${selector}:not([tabindex^=\"-\"])`).join(',');\n return this.find(focusables, element).filter(el => !isDisabled(el) && isVisible(el));\n },\n getSelectorFromElement(element) {\n const selector = getSelector(element);\n if (selector) {\n return SelectorEngine.findOne(selector) ? selector : null;\n }\n return null;\n },\n getElementFromSelector(element) {\n const selector = getSelector(element);\n return selector ? SelectorEngine.findOne(selector) : null;\n },\n getMultipleElementsFromSelector(element) {\n const selector = getSelector(element);\n return selector ? SelectorEngine.find(selector) : [];\n }\n};\n\n/**\n * --------------------------------------------------------------------------\n * Bootstrap util/component-functions.js\n * Licensed under MIT (https://github.com/twbs/bootstrap/blob/main/LICENSE)\n * --------------------------------------------------------------------------\n */\n\nconst enableDismissTrigger = (component, method = 'hide') => {\n const clickEvent = `click.dismiss${component.EVENT_KEY}`;\n const name = component.NAME;\n EventHandler.on(document, clickEvent, `[data-bs-dismiss=\"${name}\"]`, function (event) {\n if (['A', 'AREA'].includes(this.tagName)) {\n event.preventDefault();\n }\n if (isDisabled(this)) {\n return;\n }\n const target = SelectorEngine.getElementFromSelector(this) || this.closest(`.${name}`);\n const instance = component.getOrCreateInstance(target);\n\n // Method argument is left, for Alert and only, as it doesn't implement the 'hide' method\n instance[method]();\n });\n};\n\n/**\n * --------------------------------------------------------------------------\n * Bootstrap alert.js\n * Licensed under MIT (https://github.com/twbs/bootstrap/blob/main/LICENSE)\n * --------------------------------------------------------------------------\n */\n\n\n/**\n * Constants\n */\n\nconst NAME$f = 'alert';\nconst DATA_KEY$a = 'bs.alert';\nconst EVENT_KEY$b = `.${DATA_KEY$a}`;\nconst EVENT_CLOSE = `close${EVENT_KEY$b}`;\nconst EVENT_CLOSED = `closed${EVENT_KEY$b}`;\nconst CLASS_NAME_FADE$5 = 'fade';\nconst CLASS_NAME_SHOW$8 = 'show';\n\n/**\n * Class definition\n */\n\nclass Alert extends BaseComponent {\n // Getters\n static get NAME() {\n return NAME$f;\n }\n\n // Public\n close() {\n const closeEvent = EventHandler.trigger(this._element, EVENT_CLOSE);\n if (closeEvent.defaultPrevented) {\n return;\n }\n this._element.classList.remove(CLASS_NAME_SHOW$8);\n const isAnimated = this._element.classList.contains(CLASS_NAME_FADE$5);\n this._queueCallback(() => this._destroyElement(), this._element, isAnimated);\n }\n\n // Private\n _destroyElement() {\n this._element.remove();\n EventHandler.trigger(this._element, EVENT_CLOSED);\n this.dispose();\n }\n\n // Static\n static jQueryInterface(config) {\n return this.each(function () {\n const data = Alert.getOrCreateInstance(this);\n if (typeof config !== 'string') {\n return;\n }\n if (data[config] === undefined || config.startsWith('_') || config === 'constructor') {\n throw new TypeError(`No method named \"${config}\"`);\n }\n data[config](this);\n });\n }\n}\n\n/**\n * Data API implementation\n */\n\nenableDismissTrigger(Alert, 'close');\n\n/**\n * jQuery\n */\n\ndefineJQueryPlugin(Alert);\n\n/**\n * --------------------------------------------------------------------------\n * Bootstrap button.js\n * Licensed under MIT (https://github.com/twbs/bootstrap/blob/main/LICENSE)\n * --------------------------------------------------------------------------\n */\n\n\n/**\n * Constants\n */\n\nconst NAME$e = 'button';\nconst DATA_KEY$9 = 'bs.button';\nconst EVENT_KEY$a = `.${DATA_KEY$9}`;\nconst DATA_API_KEY$6 = '.data-api';\nconst CLASS_NAME_ACTIVE$3 = 'active';\nconst SELECTOR_DATA_TOGGLE$5 = '[data-bs-toggle=\"button\"]';\nconst EVENT_CLICK_DATA_API$6 = `click${EVENT_KEY$a}${DATA_API_KEY$6}`;\n\n/**\n * Class definition\n */\n\nclass Button extends BaseComponent {\n // Getters\n static get NAME() {\n return NAME$e;\n }\n\n // Public\n toggle() {\n // Toggle class and sync the `aria-pressed` attribute with the return value of the `.toggle()` method\n this._element.setAttribute('aria-pressed', this._element.classList.toggle(CLASS_NAME_ACTIVE$3));\n }\n\n // Static\n static jQueryInterface(config) {\n return this.each(function () {\n const data = Button.getOrCreateInstance(this);\n if (config === 'toggle') {\n data[config]();\n }\n });\n }\n}\n\n/**\n * Data API implementation\n */\n\nEventHandler.on(document, EVENT_CLICK_DATA_API$6, SELECTOR_DATA_TOGGLE$5, event => {\n event.preventDefault();\n const button = event.target.closest(SELECTOR_DATA_TOGGLE$5);\n const data = Button.getOrCreateInstance(button);\n data.toggle();\n});\n\n/**\n * jQuery\n */\n\ndefineJQueryPlugin(Button);\n\n/**\n * --------------------------------------------------------------------------\n * Bootstrap util/swipe.js\n * Licensed under MIT (https://github.com/twbs/bootstrap/blob/main/LICENSE)\n * --------------------------------------------------------------------------\n */\n\n\n/**\n * Constants\n */\n\nconst NAME$d = 'swipe';\nconst EVENT_KEY$9 = '.bs.swipe';\nconst EVENT_TOUCHSTART = `touchstart${EVENT_KEY$9}`;\nconst EVENT_TOUCHMOVE = `touchmove${EVENT_KEY$9}`;\nconst EVENT_TOUCHEND = `touchend${EVENT_KEY$9}`;\nconst EVENT_POINTERDOWN = `pointerdown${EVENT_KEY$9}`;\nconst EVENT_POINTERUP = `pointerup${EVENT_KEY$9}`;\nconst POINTER_TYPE_TOUCH = 'touch';\nconst POINTER_TYPE_PEN = 'pen';\nconst CLASS_NAME_POINTER_EVENT = 'pointer-event';\nconst SWIPE_THRESHOLD = 40;\nconst Default$c = {\n endCallback: null,\n leftCallback: null,\n rightCallback: null\n};\nconst DefaultType$c = {\n endCallback: '(function|null)',\n leftCallback: '(function|null)',\n rightCallback: '(function|null)'\n};\n\n/**\n * Class definition\n */\n\nclass Swipe extends Config {\n constructor(element, config) {\n super();\n this._element = element;\n if (!element || !Swipe.isSupported()) {\n return;\n }\n this._config = this._getConfig(config);\n this._deltaX = 0;\n this._supportPointerEvents = Boolean(window.PointerEvent);\n this._initEvents();\n }\n\n // Getters\n static get Default() {\n return Default$c;\n }\n static get DefaultType() {\n return DefaultType$c;\n }\n static get NAME() {\n return NAME$d;\n }\n\n // Public\n dispose() {\n EventHandler.off(this._element, EVENT_KEY$9);\n }\n\n // Private\n _start(event) {\n if (!this._supportPointerEvents) {\n this._deltaX = event.touches[0].clientX;\n return;\n }\n if (this._eventIsPointerPenTouch(event)) {\n this._deltaX = event.clientX;\n }\n }\n _end(event) {\n if (this._eventIsPointerPenTouch(event)) {\n this._deltaX = event.clientX - this._deltaX;\n }\n this._handleSwipe();\n execute(this._config.endCallback);\n }\n _move(event) {\n this._deltaX = event.touches && event.touches.length > 1 ? 0 : event.touches[0].clientX - this._deltaX;\n }\n _handleSwipe() {\n const absDeltaX = Math.abs(this._deltaX);\n if (absDeltaX <= SWIPE_THRESHOLD) {\n return;\n }\n const direction = absDeltaX / this._deltaX;\n this._deltaX = 0;\n if (!direction) {\n return;\n }\n execute(direction > 0 ? this._config.rightCallback : this._config.leftCallback);\n }\n _initEvents() {\n if (this._supportPointerEvents) {\n EventHandler.on(this._element, EVENT_POINTERDOWN, event => this._start(event));\n EventHandler.on(this._element, EVENT_POINTERUP, event => this._end(event));\n this._element.classList.add(CLASS_NAME_POINTER_EVENT);\n } else {\n EventHandler.on(this._element, EVENT_TOUCHSTART, event => this._start(event));\n EventHandler.on(this._element, EVENT_TOUCHMOVE, event => this._move(event));\n EventHandler.on(this._element, EVENT_TOUCHEND, event => this._end(event));\n }\n }\n _eventIsPointerPenTouch(event) {\n return this._supportPointerEvents && (event.pointerType === POINTER_TYPE_PEN || event.pointerType === POINTER_TYPE_TOUCH);\n }\n\n // Static\n static isSupported() {\n return 'ontouchstart' in document.documentElement || navigator.maxTouchPoints > 0;\n }\n}\n\n/**\n * --------------------------------------------------------------------------\n * Bootstrap carousel.js\n * Licensed under MIT (https://github.com/twbs/bootstrap/blob/main/LICENSE)\n * --------------------------------------------------------------------------\n */\n\n\n/**\n * Constants\n */\n\nconst NAME$c = 'carousel';\nconst DATA_KEY$8 = 'bs.carousel';\nconst EVENT_KEY$8 = `.${DATA_KEY$8}`;\nconst DATA_API_KEY$5 = '.data-api';\nconst ARROW_LEFT_KEY$1 = 'ArrowLeft';\nconst ARROW_RIGHT_KEY$1 = 'ArrowRight';\nconst TOUCHEVENT_COMPAT_WAIT = 500; // Time for mouse compat events to fire after touch\n\nconst ORDER_NEXT = 'next';\nconst ORDER_PREV = 'prev';\nconst DIRECTION_LEFT = 'left';\nconst DIRECTION_RIGHT = 'right';\nconst EVENT_SLIDE = `slide${EVENT_KEY$8}`;\nconst EVENT_SLID = `slid${EVENT_KEY$8}`;\nconst EVENT_KEYDOWN$1 = `keydown${EVENT_KEY$8}`;\nconst EVENT_MOUSEENTER$1 = `mouseenter${EVENT_KEY$8}`;\nconst EVENT_MOUSELEAVE$1 = `mouseleave${EVENT_KEY$8}`;\nconst EVENT_DRAG_START = `dragstart${EVENT_KEY$8}`;\nconst EVENT_LOAD_DATA_API$3 = `load${EVENT_KEY$8}${DATA_API_KEY$5}`;\nconst EVENT_CLICK_DATA_API$5 = `click${EVENT_KEY$8}${DATA_API_KEY$5}`;\nconst CLASS_NAME_CAROUSEL = 'carousel';\nconst CLASS_NAME_ACTIVE$2 = 'active';\nconst CLASS_NAME_SLIDE = 'slide';\nconst CLASS_NAME_END = 'carousel-item-end';\nconst CLASS_NAME_START = 'carousel-item-start';\nconst CLASS_NAME_NEXT = 'carousel-item-next';\nconst CLASS_NAME_PREV = 'carousel-item-prev';\nconst SELECTOR_ACTIVE = '.active';\nconst SELECTOR_ITEM = '.carousel-item';\nconst SELECTOR_ACTIVE_ITEM = SELECTOR_ACTIVE + SELECTOR_ITEM;\nconst SELECTOR_ITEM_IMG = '.carousel-item img';\nconst SELECTOR_INDICATORS = '.carousel-indicators';\nconst SELECTOR_DATA_SLIDE = '[data-bs-slide], [data-bs-slide-to]';\nconst SELECTOR_DATA_RIDE = '[data-bs-ride=\"carousel\"]';\nconst KEY_TO_DIRECTION = {\n [ARROW_LEFT_KEY$1]: DIRECTION_RIGHT,\n [ARROW_RIGHT_KEY$1]: DIRECTION_LEFT\n};\nconst Default$b = {\n interval: 5000,\n keyboard: true,\n pause: 'hover',\n ride: false,\n touch: true,\n wrap: true\n};\nconst DefaultType$b = {\n interval: '(number|boolean)',\n // TODO:v6 remove boolean support\n keyboard: 'boolean',\n pause: '(string|boolean)',\n ride: '(boolean|string)',\n touch: 'boolean',\n wrap: 'boolean'\n};\n\n/**\n * Class definition\n */\n\nclass Carousel extends BaseComponent {\n constructor(element, config) {\n super(element, config);\n this._interval = null;\n this._activeElement = null;\n this._isSliding = false;\n this.touchTimeout = null;\n this._swipeHelper = null;\n this._indicatorsElement = SelectorEngine.findOne(SELECTOR_INDICATORS, this._element);\n this._addEventListeners();\n if (this._config.ride === CLASS_NAME_CAROUSEL) {\n this.cycle();\n }\n }\n\n // Getters\n static get Default() {\n return Default$b;\n }\n static get DefaultType() {\n return DefaultType$b;\n }\n static get NAME() {\n return NAME$c;\n }\n\n // Public\n next() {\n this._slide(ORDER_NEXT);\n }\n nextWhenVisible() {\n // FIXME TODO use `document.visibilityState`\n // Don't call next when the page isn't visible\n // or the carousel or its parent isn't visible\n if (!document.hidden && isVisible(this._element)) {\n this.next();\n }\n }\n prev() {\n this._slide(ORDER_PREV);\n }\n pause() {\n if (this._isSliding) {\n triggerTransitionEnd(this._element);\n }\n this._clearInterval();\n }\n cycle() {\n this._clearInterval();\n this._updateInterval();\n this._interval = setInterval(() => this.nextWhenVisible(), this._config.interval);\n }\n _maybeEnableCycle() {\n if (!this._config.ride) {\n return;\n }\n if (this._isSliding) {\n EventHandler.one(this._element, EVENT_SLID, () => this.cycle());\n return;\n }\n this.cycle();\n }\n to(index) {\n const items = this._getItems();\n if (index > items.length - 1 || index < 0) {\n return;\n }\n if (this._isSliding) {\n EventHandler.one(this._element, EVENT_SLID, () => this.to(index));\n return;\n }\n const activeIndex = this._getItemIndex(this._getActive());\n if (activeIndex === index) {\n return;\n }\n const order = index > activeIndex ? ORDER_NEXT : ORDER_PREV;\n this._slide(order, items[index]);\n }\n dispose() {\n if (this._swipeHelper) {\n this._swipeHelper.dispose();\n }\n super.dispose();\n }\n\n // Private\n _configAfterMerge(config) {\n config.defaultInterval = config.interval;\n return config;\n }\n _addEventListeners() {\n if (this._config.keyboard) {\n EventHandler.on(this._element, EVENT_KEYDOWN$1, event => this._keydown(event));\n }\n if (this._config.pause === 'hover') {\n EventHandler.on(this._element, EVENT_MOUSEENTER$1, () => this.pause());\n EventHandler.on(this._element, EVENT_MOUSELEAVE$1, () => this._maybeEnableCycle());\n }\n if (this._config.touch && Swipe.isSupported()) {\n this._addTouchEventListeners();\n }\n }\n _addTouchEventListeners() {\n for (const img of SelectorEngine.find(SELECTOR_ITEM_IMG, this._element)) {\n EventHandler.on(img, EVENT_DRAG_START, event => event.preventDefault());\n }\n const endCallBack = () => {\n if (this._config.pause !== 'hover') {\n return;\n }\n\n // If it's a touch-enabled device, mouseenter/leave are fired as\n // part of the mouse compatibility events on first tap - the carousel\n // would stop cycling until user tapped out of it;\n // here, we listen for touchend, explicitly pause the carousel\n // (as if it's the second time we tap on it, mouseenter compat event\n // is NOT fired) and after a timeout (to allow for mouse compatibility\n // events to fire) we explicitly restart cycling\n\n this.pause();\n if (this.touchTimeout) {\n clearTimeout(this.touchTimeout);\n }\n this.touchTimeout = setTimeout(() => this._maybeEnableCycle(), TOUCHEVENT_COMPAT_WAIT + this._config.interval);\n };\n const swipeConfig = {\n leftCallback: () => this._slide(this._directionToOrder(DIRECTION_LEFT)),\n rightCallback: () => this._slide(this._directionToOrder(DIRECTION_RIGHT)),\n endCallback: endCallBack\n };\n this._swipeHelper = new Swipe(this._element, swipeConfig);\n }\n _keydown(event) {\n if (/input|textarea/i.test(event.target.tagName)) {\n return;\n }\n const direction = KEY_TO_DIRECTION[event.key];\n if (direction) {\n event.preventDefault();\n this._slide(this._directionToOrder(direction));\n }\n }\n _getItemIndex(element) {\n return this._getItems().indexOf(element);\n }\n _setActiveIndicatorElement(index) {\n if (!this._indicatorsElement) {\n return;\n }\n const activeIndicator = SelectorEngine.findOne(SELECTOR_ACTIVE, this._indicatorsElement);\n activeIndicator.classList.remove(CLASS_NAME_ACTIVE$2);\n activeIndicator.removeAttribute('aria-current');\n const newActiveIndicator = SelectorEngine.findOne(`[data-bs-slide-to=\"${index}\"]`, this._indicatorsElement);\n if (newActiveIndicator) {\n newActiveIndicator.classList.add(CLASS_NAME_ACTIVE$2);\n newActiveIndicator.setAttribute('aria-current', 'true');\n }\n }\n _updateInterval() {\n const element = this._activeElement || this._getActive();\n if (!element) {\n return;\n }\n const elementInterval = Number.parseInt(element.getAttribute('data-bs-interval'), 10);\n this._config.interval = elementInterval || this._config.defaultInterval;\n }\n _slide(order, element = null) {\n if (this._isSliding) {\n return;\n }\n const activeElement = this._getActive();\n const isNext = order === ORDER_NEXT;\n const nextElement = element || getNextActiveElement(this._getItems(), activeElement, isNext, this._config.wrap);\n if (nextElement === activeElement) {\n return;\n }\n const nextElementIndex = this._getItemIndex(nextElement);\n const triggerEvent = eventName => {\n return EventHandler.trigger(this._element, eventName, {\n relatedTarget: nextElement,\n direction: this._orderToDirection(order),\n from: this._getItemIndex(activeElement),\n to: nextElementIndex\n });\n };\n const slideEvent = triggerEvent(EVENT_SLIDE);\n if (slideEvent.defaultPrevented) {\n return;\n }\n if (!activeElement || !nextElement) {\n // Some weirdness is happening, so we bail\n // TODO: change tests that use empty divs to avoid this check\n return;\n }\n const isCycling = Boolean(this._interval);\n this.pause();\n this._isSliding = true;\n this._setActiveIndicatorElement(nextElementIndex);\n this._activeElement = nextElement;\n const directionalClassName = isNext ? CLASS_NAME_START : CLASS_NAME_END;\n const orderClassName = isNext ? CLASS_NAME_NEXT : CLASS_NAME_PREV;\n nextElement.classList.add(orderClassName);\n reflow(nextElement);\n activeElement.classList.add(directionalClassName);\n nextElement.classList.add(directionalClassName);\n const completeCallBack = () => {\n nextElement.classList.remove(directionalClassName, orderClassName);\n nextElement.classList.add(CLASS_NAME_ACTIVE$2);\n activeElement.classList.remove(CLASS_NAME_ACTIVE$2, orderClassName, directionalClassName);\n this._isSliding = false;\n triggerEvent(EVENT_SLID);\n };\n this._queueCallback(completeCallBack, activeElement, this._isAnimated());\n if (isCycling) {\n this.cycle();\n }\n }\n _isAnimated() {\n return this._element.classList.contains(CLASS_NAME_SLIDE);\n }\n _getActive() {\n return SelectorEngine.findOne(SELECTOR_ACTIVE_ITEM, this._element);\n }\n _getItems() {\n return SelectorEngine.find(SELECTOR_ITEM, this._element);\n }\n _clearInterval() {\n if (this._interval) {\n clearInterval(this._interval);\n this._interval = null;\n }\n }\n _directionToOrder(direction) {\n if (isRTL()) {\n return direction === DIRECTION_LEFT ? ORDER_PREV : ORDER_NEXT;\n }\n return direction === DIRECTION_LEFT ? ORDER_NEXT : ORDER_PREV;\n }\n _orderToDirection(order) {\n if (isRTL()) {\n return order === ORDER_PREV ? DIRECTION_LEFT : DIRECTION_RIGHT;\n }\n return order === ORDER_PREV ? DIRECTION_RIGHT : DIRECTION_LEFT;\n }\n\n // Static\n static jQueryInterface(config) {\n return this.each(function () {\n const data = Carousel.getOrCreateInstance(this, config);\n if (typeof config === 'number') {\n data.to(config);\n return;\n }\n if (typeof config === 'string') {\n if (data[config] === undefined || config.startsWith('_') || config === 'constructor') {\n throw new TypeError(`No method named \"${config}\"`);\n }\n data[config]();\n }\n });\n }\n}\n\n/**\n * Data API implementation\n */\n\nEventHandler.on(document, EVENT_CLICK_DATA_API$5, SELECTOR_DATA_SLIDE, function (event) {\n const target = SelectorEngine.getElementFromSelector(this);\n if (!target || !target.classList.contains(CLASS_NAME_CAROUSEL)) {\n return;\n }\n event.preventDefault();\n const carousel = Carousel.getOrCreateInstance(target);\n const slideIndex = this.getAttribute('data-bs-slide-to');\n if (slideIndex) {\n carousel.to(slideIndex);\n carousel._maybeEnableCycle();\n return;\n }\n if (Manipulator.getDataAttribute(this, 'slide') === 'next') {\n carousel.next();\n carousel._maybeEnableCycle();\n return;\n }\n carousel.prev();\n carousel._maybeEnableCycle();\n});\nEventHandler.on(window, EVENT_LOAD_DATA_API$3, () => {\n const carousels = SelectorEngine.find(SELECTOR_DATA_RIDE);\n for (const carousel of carousels) {\n Carousel.getOrCreateInstance(carousel);\n }\n});\n\n/**\n * jQuery\n */\n\ndefineJQueryPlugin(Carousel);\n\n/**\n * --------------------------------------------------------------------------\n * Bootstrap collapse.js\n * Licensed under MIT (https://github.com/twbs/bootstrap/blob/main/LICENSE)\n * --------------------------------------------------------------------------\n */\n\n\n/**\n * Constants\n */\n\nconst NAME$b = 'collapse';\nconst DATA_KEY$7 = 'bs.collapse';\nconst EVENT_KEY$7 = `.${DATA_KEY$7}`;\nconst DATA_API_KEY$4 = '.data-api';\nconst EVENT_SHOW$6 = `show${EVENT_KEY$7}`;\nconst EVENT_SHOWN$6 = `shown${EVENT_KEY$7}`;\nconst EVENT_HIDE$6 = `hide${EVENT_KEY$7}`;\nconst EVENT_HIDDEN$6 = `hidden${EVENT_KEY$7}`;\nconst EVENT_CLICK_DATA_API$4 = `click${EVENT_KEY$7}${DATA_API_KEY$4}`;\nconst CLASS_NAME_SHOW$7 = 'show';\nconst CLASS_NAME_COLLAPSE = 'collapse';\nconst CLASS_NAME_COLLAPSING = 'collapsing';\nconst CLASS_NAME_COLLAPSED = 'collapsed';\nconst CLASS_NAME_DEEPER_CHILDREN = `:scope .${CLASS_NAME_COLLAPSE} .${CLASS_NAME_COLLAPSE}`;\nconst CLASS_NAME_HORIZONTAL = 'collapse-horizontal';\nconst WIDTH = 'width';\nconst HEIGHT = 'height';\nconst SELECTOR_ACTIVES = '.collapse.show, .collapse.collapsing';\nconst SELECTOR_DATA_TOGGLE$4 = '[data-bs-toggle=\"collapse\"]';\nconst Default$a = {\n parent: null,\n toggle: true\n};\nconst DefaultType$a = {\n parent: '(null|element)',\n toggle: 'boolean'\n};\n\n/**\n * Class definition\n */\n\nclass Collapse extends BaseComponent {\n constructor(element, config) {\n super(element, config);\n this._isTransitioning = false;\n this._triggerArray = [];\n const toggleList = SelectorEngine.find(SELECTOR_DATA_TOGGLE$4);\n for (const elem of toggleList) {\n const selector = SelectorEngine.getSelectorFromElement(elem);\n const filterElement = SelectorEngine.find(selector).filter(foundElement => foundElement === this._element);\n if (selector !== null && filterElement.length) {\n this._triggerArray.push(elem);\n }\n }\n this._initializeChildren();\n if (!this._config.parent) {\n this._addAriaAndCollapsedClass(this._triggerArray, this._isShown());\n }\n if (this._config.toggle) {\n this.toggle();\n }\n }\n\n // Getters\n static get Default() {\n return Default$a;\n }\n static get DefaultType() {\n return DefaultType$a;\n }\n static get NAME() {\n return NAME$b;\n }\n\n // Public\n toggle() {\n if (this._isShown()) {\n this.hide();\n } else {\n this.show();\n }\n }\n show() {\n if (this._isTransitioning || this._isShown()) {\n return;\n }\n let activeChildren = [];\n\n // find active children\n if (this._config.parent) {\n activeChildren = this._getFirstLevelChildren(SELECTOR_ACTIVES).filter(element => element !== this._element).map(element => Collapse.getOrCreateInstance(element, {\n toggle: false\n }));\n }\n if (activeChildren.length && activeChildren[0]._isTransitioning) {\n return;\n }\n const startEvent = EventHandler.trigger(this._element, EVENT_SHOW$6);\n if (startEvent.defaultPrevented) {\n return;\n }\n for (const activeInstance of activeChildren) {\n activeInstance.hide();\n }\n const dimension = this._getDimension();\n this._element.classList.remove(CLASS_NAME_COLLAPSE);\n this._element.classList.add(CLASS_NAME_COLLAPSING);\n this._element.style[dimension] = 0;\n this._addAriaAndCollapsedClass(this._triggerArray, true);\n this._isTransitioning = true;\n const complete = () => {\n this._isTransitioning = false;\n this._element.classList.remove(CLASS_NAME_COLLAPSING);\n this._element.classList.add(CLASS_NAME_COLLAPSE, CLASS_NAME_SHOW$7);\n this._element.style[dimension] = '';\n EventHandler.trigger(this._element, EVENT_SHOWN$6);\n };\n const capitalizedDimension = dimension[0].toUpperCase() + dimension.slice(1);\n const scrollSize = `scroll${capitalizedDimension}`;\n this._queueCallback(complete, this._element, true);\n this._element.style[dimension] = `${this._element[scrollSize]}px`;\n }\n hide() {\n if (this._isTransitioning || !this._isShown()) {\n return;\n }\n const startEvent = EventHandler.trigger(this._element, EVENT_HIDE$6);\n if (startEvent.defaultPrevented) {\n return;\n }\n const dimension = this._getDimension();\n this._element.style[dimension] = `${this._element.getBoundingClientRect()[dimension]}px`;\n reflow(this._element);\n this._element.classList.add(CLASS_NAME_COLLAPSING);\n this._element.classList.remove(CLASS_NAME_COLLAPSE, CLASS_NAME_SHOW$7);\n for (const trigger of this._triggerArray) {\n const element = SelectorEngine.getElementFromSelector(trigger);\n if (element && !this._isShown(element)) {\n this._addAriaAndCollapsedClass([trigger], false);\n }\n }\n this._isTransitioning = true;\n const complete = () => {\n this._isTransitioning = false;\n this._element.classList.remove(CLASS_NAME_COLLAPSING);\n this._element.classList.add(CLASS_NAME_COLLAPSE);\n EventHandler.trigger(this._element, EVENT_HIDDEN$6);\n };\n this._element.style[dimension] = '';\n this._queueCallback(complete, this._element, true);\n }\n _isShown(element = this._element) {\n return element.classList.contains(CLASS_NAME_SHOW$7);\n }\n\n // Private\n _configAfterMerge(config) {\n config.toggle = Boolean(config.toggle); // Coerce string values\n config.parent = getElement(config.parent);\n return config;\n }\n _getDimension() {\n return this._element.classList.contains(CLASS_NAME_HORIZONTAL) ? WIDTH : HEIGHT;\n }\n _initializeChildren() {\n if (!this._config.parent) {\n return;\n }\n const children = this._getFirstLevelChildren(SELECTOR_DATA_TOGGLE$4);\n for (const element of children) {\n const selected = SelectorEngine.getElementFromSelector(element);\n if (selected) {\n this._addAriaAndCollapsedClass([element], this._isShown(selected));\n }\n }\n }\n _getFirstLevelChildren(selector) {\n const children = SelectorEngine.find(CLASS_NAME_DEEPER_CHILDREN, this._config.parent);\n // remove children if greater depth\n return SelectorEngine.find(selector, this._config.parent).filter(element => !children.includes(element));\n }\n _addAriaAndCollapsedClass(triggerArray, isOpen) {\n if (!triggerArray.length) {\n return;\n }\n for (const element of triggerArray) {\n element.classList.toggle(CLASS_NAME_COLLAPSED, !isOpen);\n element.setAttribute('aria-expanded', isOpen);\n }\n }\n\n // Static\n static jQueryInterface(config) {\n const _config = {};\n if (typeof config === 'string' && /show|hide/.test(config)) {\n _config.toggle = false;\n }\n return this.each(function () {\n const data = Collapse.getOrCreateInstance(this, _config);\n if (typeof config === 'string') {\n if (typeof data[config] === 'undefined') {\n throw new TypeError(`No method named \"${config}\"`);\n }\n data[config]();\n }\n });\n }\n}\n\n/**\n * Data API implementation\n */\n\nEventHandler.on(document, EVENT_CLICK_DATA_API$4, SELECTOR_DATA_TOGGLE$4, function (event) {\n // preventDefault only for elements (which change the URL) not inside the collapsible element\n if (event.target.tagName === 'A' || event.delegateTarget && event.delegateTarget.tagName === 'A') {\n event.preventDefault();\n }\n for (const element of SelectorEngine.getMultipleElementsFromSelector(this)) {\n Collapse.getOrCreateInstance(element, {\n toggle: false\n }).toggle();\n }\n});\n\n/**\n * jQuery\n */\n\ndefineJQueryPlugin(Collapse);\n\n/**\n * --------------------------------------------------------------------------\n * Bootstrap dropdown.js\n * Licensed under MIT (https://github.com/twbs/bootstrap/blob/main/LICENSE)\n * --------------------------------------------------------------------------\n */\n\n\n/**\n * Constants\n */\n\nconst NAME$a = 'dropdown';\nconst DATA_KEY$6 = 'bs.dropdown';\nconst EVENT_KEY$6 = `.${DATA_KEY$6}`;\nconst DATA_API_KEY$3 = '.data-api';\nconst ESCAPE_KEY$2 = 'Escape';\nconst TAB_KEY$1 = 'Tab';\nconst ARROW_UP_KEY$1 = 'ArrowUp';\nconst ARROW_DOWN_KEY$1 = 'ArrowDown';\nconst RIGHT_MOUSE_BUTTON = 2; // MouseEvent.button value for the secondary button, usually the right button\n\nconst EVENT_HIDE$5 = `hide${EVENT_KEY$6}`;\nconst EVENT_HIDDEN$5 = `hidden${EVENT_KEY$6}`;\nconst EVENT_SHOW$5 = `show${EVENT_KEY$6}`;\nconst EVENT_SHOWN$5 = `shown${EVENT_KEY$6}`;\nconst EVENT_CLICK_DATA_API$3 = `click${EVENT_KEY$6}${DATA_API_KEY$3}`;\nconst EVENT_KEYDOWN_DATA_API = `keydown${EVENT_KEY$6}${DATA_API_KEY$3}`;\nconst EVENT_KEYUP_DATA_API = `keyup${EVENT_KEY$6}${DATA_API_KEY$3}`;\nconst CLASS_NAME_SHOW$6 = 'show';\nconst CLASS_NAME_DROPUP = 'dropup';\nconst CLASS_NAME_DROPEND = 'dropend';\nconst CLASS_NAME_DROPSTART = 'dropstart';\nconst CLASS_NAME_DROPUP_CENTER = 'dropup-center';\nconst CLASS_NAME_DROPDOWN_CENTER = 'dropdown-center';\nconst SELECTOR_DATA_TOGGLE$3 = '[data-bs-toggle=\"dropdown\"]:not(.disabled):not(:disabled)';\nconst SELECTOR_DATA_TOGGLE_SHOWN = `${SELECTOR_DATA_TOGGLE$3}.${CLASS_NAME_SHOW$6}`;\nconst SELECTOR_MENU = '.dropdown-menu';\nconst SELECTOR_NAVBAR = '.navbar';\nconst SELECTOR_NAVBAR_NAV = '.navbar-nav';\nconst SELECTOR_VISIBLE_ITEMS = '.dropdown-menu .dropdown-item:not(.disabled):not(:disabled)';\nconst PLACEMENT_TOP = isRTL() ? 'top-end' : 'top-start';\nconst PLACEMENT_TOPEND = isRTL() ? 'top-start' : 'top-end';\nconst PLACEMENT_BOTTOM = isRTL() ? 'bottom-end' : 'bottom-start';\nconst PLACEMENT_BOTTOMEND = isRTL() ? 'bottom-start' : 'bottom-end';\nconst PLACEMENT_RIGHT = isRTL() ? 'left-start' : 'right-start';\nconst PLACEMENT_LEFT = isRTL() ? 'right-start' : 'left-start';\nconst PLACEMENT_TOPCENTER = 'top';\nconst PLACEMENT_BOTTOMCENTER = 'bottom';\nconst Default$9 = {\n autoClose: true,\n boundary: 'clippingParents',\n display: 'dynamic',\n offset: [0, 2],\n popperConfig: null,\n reference: 'toggle'\n};\nconst DefaultType$9 = {\n autoClose: '(boolean|string)',\n boundary: '(string|element)',\n display: 'string',\n offset: '(array|string|function)',\n popperConfig: '(null|object|function)',\n reference: '(string|element|object)'\n};\n\n/**\n * Class definition\n */\n\nclass Dropdown extends BaseComponent {\n constructor(element, config) {\n super(element, config);\n this._popper = null;\n this._parent = this._element.parentNode; // dropdown wrapper\n // TODO: v6 revert #37011 & change markup https://getbootstrap.com/docs/5.3/forms/input-group/\n this._menu = SelectorEngine.next(this._element, SELECTOR_MENU)[0] || SelectorEngine.prev(this._element, SELECTOR_MENU)[0] || SelectorEngine.findOne(SELECTOR_MENU, this._parent);\n this._inNavbar = this._detectNavbar();\n }\n\n // Getters\n static get Default() {\n return Default$9;\n }\n static get DefaultType() {\n return DefaultType$9;\n }\n static get NAME() {\n return NAME$a;\n }\n\n // Public\n toggle() {\n return this._isShown() ? this.hide() : this.show();\n }\n show() {\n if (isDisabled(this._element) || this._isShown()) {\n return;\n }\n const relatedTarget = {\n relatedTarget: this._element\n };\n const showEvent = EventHandler.trigger(this._element, EVENT_SHOW$5, relatedTarget);\n if (showEvent.defaultPrevented) {\n return;\n }\n this._createPopper();\n\n // If this is a touch-enabled device we add extra\n // empty mouseover listeners to the body's immediate children;\n // only needed because of broken event delegation on iOS\n // https://www.quirksmode.org/blog/archives/2014/02/mouse_event_bub.html\n if ('ontouchstart' in document.documentElement && !this._parent.closest(SELECTOR_NAVBAR_NAV)) {\n for (const element of [].concat(...document.body.children)) {\n EventHandler.on(element, 'mouseover', noop);\n }\n }\n this._element.focus();\n this._element.setAttribute('aria-expanded', true);\n this._menu.classList.add(CLASS_NAME_SHOW$6);\n this._element.classList.add(CLASS_NAME_SHOW$6);\n EventHandler.trigger(this._element, EVENT_SHOWN$5, relatedTarget);\n }\n hide() {\n if (isDisabled(this._element) || !this._isShown()) {\n return;\n }\n const relatedTarget = {\n relatedTarget: this._element\n };\n this._completeHide(relatedTarget);\n }\n dispose() {\n if (this._popper) {\n this._popper.destroy();\n }\n super.dispose();\n }\n update() {\n this._inNavbar = this._detectNavbar();\n if (this._popper) {\n this._popper.update();\n }\n }\n\n // Private\n _completeHide(relatedTarget) {\n const hideEvent = EventHandler.trigger(this._element, EVENT_HIDE$5, relatedTarget);\n if (hideEvent.defaultPrevented) {\n return;\n }\n\n // If this is a touch-enabled device we remove the extra\n // empty mouseover listeners we added for iOS support\n if ('ontouchstart' in document.documentElement) {\n for (const element of [].concat(...document.body.children)) {\n EventHandler.off(element, 'mouseover', noop);\n }\n }\n if (this._popper) {\n this._popper.destroy();\n }\n this._menu.classList.remove(CLASS_NAME_SHOW$6);\n this._element.classList.remove(CLASS_NAME_SHOW$6);\n this._element.setAttribute('aria-expanded', 'false');\n Manipulator.removeDataAttribute(this._menu, 'popper');\n EventHandler.trigger(this._element, EVENT_HIDDEN$5, relatedTarget);\n }\n _getConfig(config) {\n config = super._getConfig(config);\n if (typeof config.reference === 'object' && !isElement(config.reference) && typeof config.reference.getBoundingClientRect !== 'function') {\n // Popper virtual elements require a getBoundingClientRect method\n throw new TypeError(`${NAME$a.toUpperCase()}: Option \"reference\" provided type \"object\" without a required \"getBoundingClientRect\" method.`);\n }\n return config;\n }\n _createPopper() {\n if (typeof Popper === 'undefined') {\n throw new TypeError('Bootstrap\\'s dropdowns require Popper (https://popper.js.org)');\n }\n let referenceElement = this._element;\n if (this._config.reference === 'parent') {\n referenceElement = this._parent;\n } else if (isElement(this._config.reference)) {\n referenceElement = getElement(this._config.reference);\n } else if (typeof this._config.reference === 'object') {\n referenceElement = this._config.reference;\n }\n const popperConfig = this._getPopperConfig();\n this._popper = Popper.createPopper(referenceElement, this._menu, popperConfig);\n }\n _isShown() {\n return this._menu.classList.contains(CLASS_NAME_SHOW$6);\n }\n _getPlacement() {\n const parentDropdown = this._parent;\n if (parentDropdown.classList.contains(CLASS_NAME_DROPEND)) {\n return PLACEMENT_RIGHT;\n }\n if (parentDropdown.classList.contains(CLASS_NAME_DROPSTART)) {\n return PLACEMENT_LEFT;\n }\n if (parentDropdown.classList.contains(CLASS_NAME_DROPUP_CENTER)) {\n return PLACEMENT_TOPCENTER;\n }\n if (parentDropdown.classList.contains(CLASS_NAME_DROPDOWN_CENTER)) {\n return PLACEMENT_BOTTOMCENTER;\n }\n\n // We need to trim the value because custom properties can also include spaces\n const isEnd = getComputedStyle(this._menu).getPropertyValue('--bs-position').trim() === 'end';\n if (parentDropdown.classList.contains(CLASS_NAME_DROPUP)) {\n return isEnd ? PLACEMENT_TOPEND : PLACEMENT_TOP;\n }\n return isEnd ? PLACEMENT_BOTTOMEND : PLACEMENT_BOTTOM;\n }\n _detectNavbar() {\n return this._element.closest(SELECTOR_NAVBAR) !== null;\n }\n _getOffset() {\n const {\n offset\n } = this._config;\n if (typeof offset === 'string') {\n return offset.split(',').map(value => Number.parseInt(value, 10));\n }\n if (typeof offset === 'function') {\n return popperData => offset(popperData, this._element);\n }\n return offset;\n }\n _getPopperConfig() {\n const defaultBsPopperConfig = {\n placement: this._getPlacement(),\n modifiers: [{\n name: 'preventOverflow',\n options: {\n boundary: this._config.boundary\n }\n }, {\n name: 'offset',\n options: {\n offset: this._getOffset()\n }\n }]\n };\n\n // Disable Popper if we have a static display or Dropdown is in Navbar\n if (this._inNavbar || this._config.display === 'static') {\n Manipulator.setDataAttribute(this._menu, 'popper', 'static'); // TODO: v6 remove\n defaultBsPopperConfig.modifiers = [{\n name: 'applyStyles',\n enabled: false\n }];\n }\n return {\n ...defaultBsPopperConfig,\n ...execute(this._config.popperConfig, [defaultBsPopperConfig])\n };\n }\n _selectMenuItem({\n key,\n target\n }) {\n const items = SelectorEngine.find(SELECTOR_VISIBLE_ITEMS, this._menu).filter(element => isVisible(element));\n if (!items.length) {\n return;\n }\n\n // if target isn't included in items (e.g. when expanding the dropdown)\n // allow cycling to get the last item in case key equals ARROW_UP_KEY\n getNextActiveElement(items, target, key === ARROW_DOWN_KEY$1, !items.includes(target)).focus();\n }\n\n // Static\n static jQueryInterface(config) {\n return this.each(function () {\n const data = Dropdown.getOrCreateInstance(this, config);\n if (typeof config !== 'string') {\n return;\n }\n if (typeof data[config] === 'undefined') {\n throw new TypeError(`No method named \"${config}\"`);\n }\n data[config]();\n });\n }\n static clearMenus(event) {\n if (event.button === RIGHT_MOUSE_BUTTON || event.type === 'keyup' && event.key !== TAB_KEY$1) {\n return;\n }\n const openToggles = SelectorEngine.find(SELECTOR_DATA_TOGGLE_SHOWN);\n for (const toggle of openToggles) {\n const context = Dropdown.getInstance(toggle);\n if (!context || context._config.autoClose === false) {\n continue;\n }\n const composedPath = event.composedPath();\n const isMenuTarget = composedPath.includes(context._menu);\n if (composedPath.includes(context._element) || context._config.autoClose === 'inside' && !isMenuTarget || context._config.autoClose === 'outside' && isMenuTarget) {\n continue;\n }\n\n // Tab navigation through the dropdown menu or events from contained inputs shouldn't close the menu\n if (context._menu.contains(event.target) && (event.type === 'keyup' && event.key === TAB_KEY$1 || /input|select|option|textarea|form/i.test(event.target.tagName))) {\n continue;\n }\n const relatedTarget = {\n relatedTarget: context._element\n };\n if (event.type === 'click') {\n relatedTarget.clickEvent = event;\n }\n context._completeHide(relatedTarget);\n }\n }\n static dataApiKeydownHandler(event) {\n // If not an UP | DOWN | ESCAPE key => not a dropdown command\n // If input/textarea && if key is other than ESCAPE => not a dropdown command\n\n const isInput = /input|textarea/i.test(event.target.tagName);\n const isEscapeEvent = event.key === ESCAPE_KEY$2;\n const isUpOrDownEvent = [ARROW_UP_KEY$1, ARROW_DOWN_KEY$1].includes(event.key);\n if (!isUpOrDownEvent && !isEscapeEvent) {\n return;\n }\n if (isInput && !isEscapeEvent) {\n return;\n }\n event.preventDefault();\n\n // TODO: v6 revert #37011 & change markup https://getbootstrap.com/docs/5.3/forms/input-group/\n const getToggleButton = this.matches(SELECTOR_DATA_TOGGLE$3) ? this : SelectorEngine.prev(this, SELECTOR_DATA_TOGGLE$3)[0] || SelectorEngine.next(this, SELECTOR_DATA_TOGGLE$3)[0] || SelectorEngine.findOne(SELECTOR_DATA_TOGGLE$3, event.delegateTarget.parentNode);\n const instance = Dropdown.getOrCreateInstance(getToggleButton);\n if (isUpOrDownEvent) {\n event.stopPropagation();\n instance.show();\n instance._selectMenuItem(event);\n return;\n }\n if (instance._isShown()) {\n // else is escape and we check if it is shown\n event.stopPropagation();\n instance.hide();\n getToggleButton.focus();\n }\n }\n}\n\n/**\n * Data API implementation\n */\n\nEventHandler.on(document, EVENT_KEYDOWN_DATA_API, SELECTOR_DATA_TOGGLE$3, Dropdown.dataApiKeydownHandler);\nEventHandler.on(document, EVENT_KEYDOWN_DATA_API, SELECTOR_MENU, Dropdown.dataApiKeydownHandler);\nEventHandler.on(document, EVENT_CLICK_DATA_API$3, Dropdown.clearMenus);\nEventHandler.on(document, EVENT_KEYUP_DATA_API, Dropdown.clearMenus);\nEventHandler.on(document, EVENT_CLICK_DATA_API$3, SELECTOR_DATA_TOGGLE$3, function (event) {\n event.preventDefault();\n Dropdown.getOrCreateInstance(this).toggle();\n});\n\n/**\n * jQuery\n */\n\ndefineJQueryPlugin(Dropdown);\n\n/**\n * --------------------------------------------------------------------------\n * Bootstrap util/backdrop.js\n * Licensed under MIT (https://github.com/twbs/bootstrap/blob/main/LICENSE)\n * --------------------------------------------------------------------------\n */\n\n\n/**\n * Constants\n */\n\nconst NAME$9 = 'backdrop';\nconst CLASS_NAME_FADE$4 = 'fade';\nconst CLASS_NAME_SHOW$5 = 'show';\nconst EVENT_MOUSEDOWN = `mousedown.bs.${NAME$9}`;\nconst Default$8 = {\n className: 'modal-backdrop',\n clickCallback: null,\n isAnimated: false,\n isVisible: true,\n // if false, we use the backdrop helper without adding any element to the dom\n rootElement: 'body' // give the choice to place backdrop under different elements\n};\nconst DefaultType$8 = {\n className: 'string',\n clickCallback: '(function|null)',\n isAnimated: 'boolean',\n isVisible: 'boolean',\n rootElement: '(element|string)'\n};\n\n/**\n * Class definition\n */\n\nclass Backdrop extends Config {\n constructor(config) {\n super();\n this._config = this._getConfig(config);\n this._isAppended = false;\n this._element = null;\n }\n\n // Getters\n static get Default() {\n return Default$8;\n }\n static get DefaultType() {\n return DefaultType$8;\n }\n static get NAME() {\n return NAME$9;\n }\n\n // Public\n show(callback) {\n if (!this._config.isVisible) {\n execute(callback);\n return;\n }\n this._append();\n const element = this._getElement();\n if (this._config.isAnimated) {\n reflow(element);\n }\n element.classList.add(CLASS_NAME_SHOW$5);\n this._emulateAnimation(() => {\n execute(callback);\n });\n }\n hide(callback) {\n if (!this._config.isVisible) {\n execute(callback);\n return;\n }\n this._getElement().classList.remove(CLASS_NAME_SHOW$5);\n this._emulateAnimation(() => {\n this.dispose();\n execute(callback);\n });\n }\n dispose() {\n if (!this._isAppended) {\n return;\n }\n EventHandler.off(this._element, EVENT_MOUSEDOWN);\n this._element.remove();\n this._isAppended = false;\n }\n\n // Private\n _getElement() {\n if (!this._element) {\n const backdrop = document.createElement('div');\n backdrop.className = this._config.className;\n if (this._config.isAnimated) {\n backdrop.classList.add(CLASS_NAME_FADE$4);\n }\n this._element = backdrop;\n }\n return this._element;\n }\n _configAfterMerge(config) {\n // use getElement() with the default \"body\" to get a fresh Element on each instantiation\n config.rootElement = getElement(config.rootElement);\n return config;\n }\n _append() {\n if (this._isAppended) {\n return;\n }\n const element = this._getElement();\n this._config.rootElement.append(element);\n EventHandler.on(element, EVENT_MOUSEDOWN, () => {\n execute(this._config.clickCallback);\n });\n this._isAppended = true;\n }\n _emulateAnimation(callback) {\n executeAfterTransition(callback, this._getElement(), this._config.isAnimated);\n }\n}\n\n/**\n * --------------------------------------------------------------------------\n * Bootstrap util/focustrap.js\n * Licensed under MIT (https://github.com/twbs/bootstrap/blob/main/LICENSE)\n * --------------------------------------------------------------------------\n */\n\n\n/**\n * Constants\n */\n\nconst NAME$8 = 'focustrap';\nconst DATA_KEY$5 = 'bs.focustrap';\nconst EVENT_KEY$5 = `.${DATA_KEY$5}`;\nconst EVENT_FOCUSIN$2 = `focusin${EVENT_KEY$5}`;\nconst EVENT_KEYDOWN_TAB = `keydown.tab${EVENT_KEY$5}`;\nconst TAB_KEY = 'Tab';\nconst TAB_NAV_FORWARD = 'forward';\nconst TAB_NAV_BACKWARD = 'backward';\nconst Default$7 = {\n autofocus: true,\n trapElement: null // The element to trap focus inside of\n};\nconst DefaultType$7 = {\n autofocus: 'boolean',\n trapElement: 'element'\n};\n\n/**\n * Class definition\n */\n\nclass FocusTrap extends Config {\n constructor(config) {\n super();\n this._config = this._getConfig(config);\n this._isActive = false;\n this._lastTabNavDirection = null;\n }\n\n // Getters\n static get Default() {\n return Default$7;\n }\n static get DefaultType() {\n return DefaultType$7;\n }\n static get NAME() {\n return NAME$8;\n }\n\n // Public\n activate() {\n if (this._isActive) {\n return;\n }\n if (this._config.autofocus) {\n this._config.trapElement.focus();\n }\n EventHandler.off(document, EVENT_KEY$5); // guard against infinite focus loop\n EventHandler.on(document, EVENT_FOCUSIN$2, event => this._handleFocusin(event));\n EventHandler.on(document, EVENT_KEYDOWN_TAB, event => this._handleKeydown(event));\n this._isActive = true;\n }\n deactivate() {\n if (!this._isActive) {\n return;\n }\n this._isActive = false;\n EventHandler.off(document, EVENT_KEY$5);\n }\n\n // Private\n _handleFocusin(event) {\n const {\n trapElement\n } = this._config;\n if (event.target === document || event.target === trapElement || trapElement.contains(event.target)) {\n return;\n }\n const elements = SelectorEngine.focusableChildren(trapElement);\n if (elements.length === 0) {\n trapElement.focus();\n } else if (this._lastTabNavDirection === TAB_NAV_BACKWARD) {\n elements[elements.length - 1].focus();\n } else {\n elements[0].focus();\n }\n }\n _handleKeydown(event) {\n if (event.key !== TAB_KEY) {\n return;\n }\n this._lastTabNavDirection = event.shiftKey ? TAB_NAV_BACKWARD : TAB_NAV_FORWARD;\n }\n}\n\n/**\n * --------------------------------------------------------------------------\n * Bootstrap util/scrollBar.js\n * Licensed under MIT (https://github.com/twbs/bootstrap/blob/main/LICENSE)\n * --------------------------------------------------------------------------\n */\n\n\n/**\n * Constants\n */\n\nconst SELECTOR_FIXED_CONTENT = '.fixed-top, .fixed-bottom, .is-fixed, .sticky-top';\nconst SELECTOR_STICKY_CONTENT = '.sticky-top';\nconst PROPERTY_PADDING = 'padding-right';\nconst PROPERTY_MARGIN = 'margin-right';\n\n/**\n * Class definition\n */\n\nclass ScrollBarHelper {\n constructor() {\n this._element = document.body;\n }\n\n // Public\n getWidth() {\n // https://developer.mozilla.org/en-US/docs/Web/API/Window/innerWidth#usage_notes\n const documentWidth = document.documentElement.clientWidth;\n return Math.abs(window.innerWidth - documentWidth);\n }\n hide() {\n const width = this.getWidth();\n this._disableOverFlow();\n // give padding to element to balance the hidden scrollbar width\n this._setElementAttributes(this._element, PROPERTY_PADDING, calculatedValue => calculatedValue + width);\n // trick: We adjust positive paddingRight and negative marginRight to sticky-top elements to keep showing fullwidth\n this._setElementAttributes(SELECTOR_FIXED_CONTENT, PROPERTY_PADDING, calculatedValue => calculatedValue + width);\n this._setElementAttributes(SELECTOR_STICKY_CONTENT, PROPERTY_MARGIN, calculatedValue => calculatedValue - width);\n }\n reset() {\n this._resetElementAttributes(this._element, 'overflow');\n this._resetElementAttributes(this._element, PROPERTY_PADDING);\n this._resetElementAttributes(SELECTOR_FIXED_CONTENT, PROPERTY_PADDING);\n this._resetElementAttributes(SELECTOR_STICKY_CONTENT, PROPERTY_MARGIN);\n }\n isOverflowing() {\n return this.getWidth() > 0;\n }\n\n // Private\n _disableOverFlow() {\n this._saveInitialAttribute(this._element, 'overflow');\n this._element.style.overflow = 'hidden';\n }\n _setElementAttributes(selector, styleProperty, callback) {\n const scrollbarWidth = this.getWidth();\n const manipulationCallBack = element => {\n if (element !== this._element && window.innerWidth > element.clientWidth + scrollbarWidth) {\n return;\n }\n this._saveInitialAttribute(element, styleProperty);\n const calculatedValue = window.getComputedStyle(element).getPropertyValue(styleProperty);\n element.style.setProperty(styleProperty, `${callback(Number.parseFloat(calculatedValue))}px`);\n };\n this._applyManipulationCallback(selector, manipulationCallBack);\n }\n _saveInitialAttribute(element, styleProperty) {\n const actualValue = element.style.getPropertyValue(styleProperty);\n if (actualValue) {\n Manipulator.setDataAttribute(element, styleProperty, actualValue);\n }\n }\n _resetElementAttributes(selector, styleProperty) {\n const manipulationCallBack = element => {\n const value = Manipulator.getDataAttribute(element, styleProperty);\n // We only want to remove the property if the value is `null`; the value can also be zero\n if (value === null) {\n element.style.removeProperty(styleProperty);\n return;\n }\n Manipulator.removeDataAttribute(element, styleProperty);\n element.style.setProperty(styleProperty, value);\n };\n this._applyManipulationCallback(selector, manipulationCallBack);\n }\n _applyManipulationCallback(selector, callBack) {\n if (isElement(selector)) {\n callBack(selector);\n return;\n }\n for (const sel of SelectorEngine.find(selector, this._element)) {\n callBack(sel);\n }\n }\n}\n\n/**\n * --------------------------------------------------------------------------\n * Bootstrap modal.js\n * Licensed under MIT (https://github.com/twbs/bootstrap/blob/main/LICENSE)\n * --------------------------------------------------------------------------\n */\n\n\n/**\n * Constants\n */\n\nconst NAME$7 = 'modal';\nconst DATA_KEY$4 = 'bs.modal';\nconst EVENT_KEY$4 = `.${DATA_KEY$4}`;\nconst DATA_API_KEY$2 = '.data-api';\nconst ESCAPE_KEY$1 = 'Escape';\nconst EVENT_HIDE$4 = `hide${EVENT_KEY$4}`;\nconst EVENT_HIDE_PREVENTED$1 = `hidePrevented${EVENT_KEY$4}`;\nconst EVENT_HIDDEN$4 = `hidden${EVENT_KEY$4}`;\nconst EVENT_SHOW$4 = `show${EVENT_KEY$4}`;\nconst EVENT_SHOWN$4 = `shown${EVENT_KEY$4}`;\nconst EVENT_RESIZE$1 = `resize${EVENT_KEY$4}`;\nconst EVENT_CLICK_DISMISS = `click.dismiss${EVENT_KEY$4}`;\nconst EVENT_MOUSEDOWN_DISMISS = `mousedown.dismiss${EVENT_KEY$4}`;\nconst EVENT_KEYDOWN_DISMISS$1 = `keydown.dismiss${EVENT_KEY$4}`;\nconst EVENT_CLICK_DATA_API$2 = `click${EVENT_KEY$4}${DATA_API_KEY$2}`;\nconst CLASS_NAME_OPEN = 'modal-open';\nconst CLASS_NAME_FADE$3 = 'fade';\nconst CLASS_NAME_SHOW$4 = 'show';\nconst CLASS_NAME_STATIC = 'modal-static';\nconst OPEN_SELECTOR$1 = '.modal.show';\nconst SELECTOR_DIALOG = '.modal-dialog';\nconst SELECTOR_MODAL_BODY = '.modal-body';\nconst SELECTOR_DATA_TOGGLE$2 = '[data-bs-toggle=\"modal\"]';\nconst Default$6 = {\n backdrop: true,\n focus: true,\n keyboard: true\n};\nconst DefaultType$6 = {\n backdrop: '(boolean|string)',\n focus: 'boolean',\n keyboard: 'boolean'\n};\n\n/**\n * Class definition\n */\n\nclass Modal extends BaseComponent {\n constructor(element, config) {\n super(element, config);\n this._dialog = SelectorEngine.findOne(SELECTOR_DIALOG, this._element);\n this._backdrop = this._initializeBackDrop();\n this._focustrap = this._initializeFocusTrap();\n this._isShown = false;\n this._isTransitioning = false;\n this._scrollBar = new ScrollBarHelper();\n this._addEventListeners();\n }\n\n // Getters\n static get Default() {\n return Default$6;\n }\n static get DefaultType() {\n return DefaultType$6;\n }\n static get NAME() {\n return NAME$7;\n }\n\n // Public\n toggle(relatedTarget) {\n return this._isShown ? this.hide() : this.show(relatedTarget);\n }\n show(relatedTarget) {\n if (this._isShown || this._isTransitioning) {\n return;\n }\n const showEvent = EventHandler.trigger(this._element, EVENT_SHOW$4, {\n relatedTarget\n });\n if (showEvent.defaultPrevented) {\n return;\n }\n this._isShown = true;\n this._isTransitioning = true;\n this._scrollBar.hide();\n document.body.classList.add(CLASS_NAME_OPEN);\n this._adjustDialog();\n this._backdrop.show(() => this._showElement(relatedTarget));\n }\n hide() {\n if (!this._isShown || this._isTransitioning) {\n return;\n }\n const hideEvent = EventHandler.trigger(this._element, EVENT_HIDE$4);\n if (hideEvent.defaultPrevented) {\n return;\n }\n this._isShown = false;\n this._isTransitioning = true;\n this._focustrap.deactivate();\n this._element.classList.remove(CLASS_NAME_SHOW$4);\n this._queueCallback(() => this._hideModal(), this._element, this._isAnimated());\n }\n dispose() {\n EventHandler.off(window, EVENT_KEY$4);\n EventHandler.off(this._dialog, EVENT_KEY$4);\n this._backdrop.dispose();\n this._focustrap.deactivate();\n super.dispose();\n }\n handleUpdate() {\n this._adjustDialog();\n }\n\n // Private\n _initializeBackDrop() {\n return new Backdrop({\n isVisible: Boolean(this._config.backdrop),\n // 'static' option will be translated to true, and booleans will keep their value,\n isAnimated: this._isAnimated()\n });\n }\n _initializeFocusTrap() {\n return new FocusTrap({\n trapElement: this._element\n });\n }\n _showElement(relatedTarget) {\n // try to append dynamic modal\n if (!document.body.contains(this._element)) {\n document.body.append(this._element);\n }\n this._element.style.display = 'block';\n this._element.removeAttribute('aria-hidden');\n this._element.setAttribute('aria-modal', true);\n this._element.setAttribute('role', 'dialog');\n this._element.scrollTop = 0;\n const modalBody = SelectorEngine.findOne(SELECTOR_MODAL_BODY, this._dialog);\n if (modalBody) {\n modalBody.scrollTop = 0;\n }\n reflow(this._element);\n this._element.classList.add(CLASS_NAME_SHOW$4);\n const transitionComplete = () => {\n if (this._config.focus) {\n this._focustrap.activate();\n }\n this._isTransitioning = false;\n EventHandler.trigger(this._element, EVENT_SHOWN$4, {\n relatedTarget\n });\n };\n this._queueCallback(transitionComplete, this._dialog, this._isAnimated());\n }\n _addEventListeners() {\n EventHandler.on(this._element, EVENT_KEYDOWN_DISMISS$1, event => {\n if (event.key !== ESCAPE_KEY$1) {\n return;\n }\n if (this._config.keyboard) {\n this.hide();\n return;\n }\n this._triggerBackdropTransition();\n });\n EventHandler.on(window, EVENT_RESIZE$1, () => {\n if (this._isShown && !this._isTransitioning) {\n this._adjustDialog();\n }\n });\n EventHandler.on(this._element, EVENT_MOUSEDOWN_DISMISS, event => {\n // a bad trick to segregate clicks that may start inside dialog but end outside, and avoid listen to scrollbar clicks\n EventHandler.one(this._element, EVENT_CLICK_DISMISS, event2 => {\n if (this._element !== event.target || this._element !== event2.target) {\n return;\n }\n if (this._config.backdrop === 'static') {\n this._triggerBackdropTransition();\n return;\n }\n if (this._config.backdrop) {\n this.hide();\n }\n });\n });\n }\n _hideModal() {\n this._element.style.display = 'none';\n this._element.setAttribute('aria-hidden', true);\n this._element.removeAttribute('aria-modal');\n this._element.removeAttribute('role');\n this._isTransitioning = false;\n this._backdrop.hide(() => {\n document.body.classList.remove(CLASS_NAME_OPEN);\n this._resetAdjustments();\n this._scrollBar.reset();\n EventHandler.trigger(this._element, EVENT_HIDDEN$4);\n });\n }\n _isAnimated() {\n return this._element.classList.contains(CLASS_NAME_FADE$3);\n }\n _triggerBackdropTransition() {\n const hideEvent = EventHandler.trigger(this._element, EVENT_HIDE_PREVENTED$1);\n if (hideEvent.defaultPrevented) {\n return;\n }\n const isModalOverflowing = this._element.scrollHeight > document.documentElement.clientHeight;\n const initialOverflowY = this._element.style.overflowY;\n // return if the following background transition hasn't yet completed\n if (initialOverflowY === 'hidden' || this._element.classList.contains(CLASS_NAME_STATIC)) {\n return;\n }\n if (!isModalOverflowing) {\n this._element.style.overflowY = 'hidden';\n }\n this._element.classList.add(CLASS_NAME_STATIC);\n this._queueCallback(() => {\n this._element.classList.remove(CLASS_NAME_STATIC);\n this._queueCallback(() => {\n this._element.style.overflowY = initialOverflowY;\n }, this._dialog);\n }, this._dialog);\n this._element.focus();\n }\n\n /**\n * The following methods are used to handle overflowing modals\n */\n\n _adjustDialog() {\n const isModalOverflowing = this._element.scrollHeight > document.documentElement.clientHeight;\n const scrollbarWidth = this._scrollBar.getWidth();\n const isBodyOverflowing = scrollbarWidth > 0;\n if (isBodyOverflowing && !isModalOverflowing) {\n const property = isRTL() ? 'paddingLeft' : 'paddingRight';\n this._element.style[property] = `${scrollbarWidth}px`;\n }\n if (!isBodyOverflowing && isModalOverflowing) {\n const property = isRTL() ? 'paddingRight' : 'paddingLeft';\n this._element.style[property] = `${scrollbarWidth}px`;\n }\n }\n _resetAdjustments() {\n this._element.style.paddingLeft = '';\n this._element.style.paddingRight = '';\n }\n\n // Static\n static jQueryInterface(config, relatedTarget) {\n return this.each(function () {\n const data = Modal.getOrCreateInstance(this, config);\n if (typeof config !== 'string') {\n return;\n }\n if (typeof data[config] === 'undefined') {\n throw new TypeError(`No method named \"${config}\"`);\n }\n data[config](relatedTarget);\n });\n }\n}\n\n/**\n * Data API implementation\n */\n\nEventHandler.on(document, EVENT_CLICK_DATA_API$2, SELECTOR_DATA_TOGGLE$2, function (event) {\n const target = SelectorEngine.getElementFromSelector(this);\n if (['A', 'AREA'].includes(this.tagName)) {\n event.preventDefault();\n }\n EventHandler.one(target, EVENT_SHOW$4, showEvent => {\n if (showEvent.defaultPrevented) {\n // only register focus restorer if modal will actually get shown\n return;\n }\n EventHandler.one(target, EVENT_HIDDEN$4, () => {\n if (isVisible(this)) {\n this.focus();\n }\n });\n });\n\n // avoid conflict when clicking modal toggler while another one is open\n const alreadyOpen = SelectorEngine.findOne(OPEN_SELECTOR$1);\n if (alreadyOpen) {\n Modal.getInstance(alreadyOpen).hide();\n }\n const data = Modal.getOrCreateInstance(target);\n data.toggle(this);\n});\nenableDismissTrigger(Modal);\n\n/**\n * jQuery\n */\n\ndefineJQueryPlugin(Modal);\n\n/**\n * --------------------------------------------------------------------------\n * Bootstrap offcanvas.js\n * Licensed under MIT (https://github.com/twbs/bootstrap/blob/main/LICENSE)\n * --------------------------------------------------------------------------\n */\n\n\n/**\n * Constants\n */\n\nconst NAME$6 = 'offcanvas';\nconst DATA_KEY$3 = 'bs.offcanvas';\nconst EVENT_KEY$3 = `.${DATA_KEY$3}`;\nconst DATA_API_KEY$1 = '.data-api';\nconst EVENT_LOAD_DATA_API$2 = `load${EVENT_KEY$3}${DATA_API_KEY$1}`;\nconst ESCAPE_KEY = 'Escape';\nconst CLASS_NAME_SHOW$3 = 'show';\nconst CLASS_NAME_SHOWING$1 = 'showing';\nconst CLASS_NAME_HIDING = 'hiding';\nconst CLASS_NAME_BACKDROP = 'offcanvas-backdrop';\nconst OPEN_SELECTOR = '.offcanvas.show';\nconst EVENT_SHOW$3 = `show${EVENT_KEY$3}`;\nconst EVENT_SHOWN$3 = `shown${EVENT_KEY$3}`;\nconst EVENT_HIDE$3 = `hide${EVENT_KEY$3}`;\nconst EVENT_HIDE_PREVENTED = `hidePrevented${EVENT_KEY$3}`;\nconst EVENT_HIDDEN$3 = `hidden${EVENT_KEY$3}`;\nconst EVENT_RESIZE = `resize${EVENT_KEY$3}`;\nconst EVENT_CLICK_DATA_API$1 = `click${EVENT_KEY$3}${DATA_API_KEY$1}`;\nconst EVENT_KEYDOWN_DISMISS = `keydown.dismiss${EVENT_KEY$3}`;\nconst SELECTOR_DATA_TOGGLE$1 = '[data-bs-toggle=\"offcanvas\"]';\nconst Default$5 = {\n backdrop: true,\n keyboard: true,\n scroll: false\n};\nconst DefaultType$5 = {\n backdrop: '(boolean|string)',\n keyboard: 'boolean',\n scroll: 'boolean'\n};\n\n/**\n * Class definition\n */\n\nclass Offcanvas extends BaseComponent {\n constructor(element, config) {\n super(element, config);\n this._isShown = false;\n this._backdrop = this._initializeBackDrop();\n this._focustrap = this._initializeFocusTrap();\n this._addEventListeners();\n }\n\n // Getters\n static get Default() {\n return Default$5;\n }\n static get DefaultType() {\n return DefaultType$5;\n }\n static get NAME() {\n return NAME$6;\n }\n\n // Public\n toggle(relatedTarget) {\n return this._isShown ? this.hide() : this.show(relatedTarget);\n }\n show(relatedTarget) {\n if (this._isShown) {\n return;\n }\n const showEvent = EventHandler.trigger(this._element, EVENT_SHOW$3, {\n relatedTarget\n });\n if (showEvent.defaultPrevented) {\n return;\n }\n this._isShown = true;\n this._backdrop.show();\n if (!this._config.scroll) {\n new ScrollBarHelper().hide();\n }\n this._element.setAttribute('aria-modal', true);\n this._element.setAttribute('role', 'dialog');\n this._element.classList.add(CLASS_NAME_SHOWING$1);\n const completeCallBack = () => {\n if (!this._config.scroll || this._config.backdrop) {\n this._focustrap.activate();\n }\n this._element.classList.add(CLASS_NAME_SHOW$3);\n this._element.classList.remove(CLASS_NAME_SHOWING$1);\n EventHandler.trigger(this._element, EVENT_SHOWN$3, {\n relatedTarget\n });\n };\n this._queueCallback(completeCallBack, this._element, true);\n }\n hide() {\n if (!this._isShown) {\n return;\n }\n const hideEvent = EventHandler.trigger(this._element, EVENT_HIDE$3);\n if (hideEvent.defaultPrevented) {\n return;\n }\n this._focustrap.deactivate();\n this._element.blur();\n this._isShown = false;\n this._element.classList.add(CLASS_NAME_HIDING);\n this._backdrop.hide();\n const completeCallback = () => {\n this._element.classList.remove(CLASS_NAME_SHOW$3, CLASS_NAME_HIDING);\n this._element.removeAttribute('aria-modal');\n this._element.removeAttribute('role');\n if (!this._config.scroll) {\n new ScrollBarHelper().reset();\n }\n EventHandler.trigger(this._element, EVENT_HIDDEN$3);\n };\n this._queueCallback(completeCallback, this._element, true);\n }\n dispose() {\n this._backdrop.dispose();\n this._focustrap.deactivate();\n super.dispose();\n }\n\n // Private\n _initializeBackDrop() {\n const clickCallback = () => {\n if (this._config.backdrop === 'static') {\n EventHandler.trigger(this._element, EVENT_HIDE_PREVENTED);\n return;\n }\n this.hide();\n };\n\n // 'static' option will be translated to true, and booleans will keep their value\n const isVisible = Boolean(this._config.backdrop);\n return new Backdrop({\n className: CLASS_NAME_BACKDROP,\n isVisible,\n isAnimated: true,\n rootElement: this._element.parentNode,\n clickCallback: isVisible ? clickCallback : null\n });\n }\n _initializeFocusTrap() {\n return new FocusTrap({\n trapElement: this._element\n });\n }\n _addEventListeners() {\n EventHandler.on(this._element, EVENT_KEYDOWN_DISMISS, event => {\n if (event.key !== ESCAPE_KEY) {\n return;\n }\n if (this._config.keyboard) {\n this.hide();\n return;\n }\n EventHandler.trigger(this._element, EVENT_HIDE_PREVENTED);\n });\n }\n\n // Static\n static jQueryInterface(config) {\n return this.each(function () {\n const data = Offcanvas.getOrCreateInstance(this, config);\n if (typeof config !== 'string') {\n return;\n }\n if (data[config] === undefined || config.startsWith('_') || config === 'constructor') {\n throw new TypeError(`No method named \"${config}\"`);\n }\n data[config](this);\n });\n }\n}\n\n/**\n * Data API implementation\n */\n\nEventHandler.on(document, EVENT_CLICK_DATA_API$1, SELECTOR_DATA_TOGGLE$1, function (event) {\n const target = SelectorEngine.getElementFromSelector(this);\n if (['A', 'AREA'].includes(this.tagName)) {\n event.preventDefault();\n }\n if (isDisabled(this)) {\n return;\n }\n EventHandler.one(target, EVENT_HIDDEN$3, () => {\n // focus on trigger when it is closed\n if (isVisible(this)) {\n this.focus();\n }\n });\n\n // avoid conflict when clicking a toggler of an offcanvas, while another is open\n const alreadyOpen = SelectorEngine.findOne(OPEN_SELECTOR);\n if (alreadyOpen && alreadyOpen !== target) {\n Offcanvas.getInstance(alreadyOpen).hide();\n }\n const data = Offcanvas.getOrCreateInstance(target);\n data.toggle(this);\n});\nEventHandler.on(window, EVENT_LOAD_DATA_API$2, () => {\n for (const selector of SelectorEngine.find(OPEN_SELECTOR)) {\n Offcanvas.getOrCreateInstance(selector).show();\n }\n});\nEventHandler.on(window, EVENT_RESIZE, () => {\n for (const element of SelectorEngine.find('[aria-modal][class*=show][class*=offcanvas-]')) {\n if (getComputedStyle(element).position !== 'fixed') {\n Offcanvas.getOrCreateInstance(element).hide();\n }\n }\n});\nenableDismissTrigger(Offcanvas);\n\n/**\n * jQuery\n */\n\ndefineJQueryPlugin(Offcanvas);\n\n/**\n * --------------------------------------------------------------------------\n * Bootstrap util/sanitizer.js\n * Licensed under MIT (https://github.com/twbs/bootstrap/blob/main/LICENSE)\n * --------------------------------------------------------------------------\n */\n\n// js-docs-start allow-list\nconst ARIA_ATTRIBUTE_PATTERN = /^aria-[\\w-]*$/i;\nconst DefaultAllowlist = {\n // Global attributes allowed on any supplied element below.\n '*': ['class', 'dir', 'id', 'lang', 'role', ARIA_ATTRIBUTE_PATTERN],\n a: ['target', 'href', 'title', 'rel'],\n area: [],\n b: [],\n br: [],\n col: [],\n code: [],\n dd: [],\n div: [],\n dl: [],\n dt: [],\n em: [],\n hr: [],\n h1: [],\n h2: [],\n h3: [],\n h4: [],\n h5: [],\n h6: [],\n i: [],\n img: ['src', 'srcset', 'alt', 'title', 'width', 'height'],\n li: [],\n ol: [],\n p: [],\n pre: [],\n s: [],\n small: [],\n span: [],\n sub: [],\n sup: [],\n strong: [],\n u: [],\n ul: []\n};\n// js-docs-end allow-list\n\nconst uriAttributes = new Set(['background', 'cite', 'href', 'itemtype', 'longdesc', 'poster', 'src', 'xlink:href']);\n\n/**\n * A pattern that recognizes URLs that are safe wrt. XSS in URL navigation\n * contexts.\n *\n * Shout-out to Angular https://github.com/angular/angular/blob/15.2.8/packages/core/src/sanitization/url_sanitizer.ts#L38\n */\n// eslint-disable-next-line unicorn/better-regex\nconst SAFE_URL_PATTERN = /^(?!javascript:)(?:[a-z0-9+.-]+:|[^&:/?#]*(?:[/?#]|$))/i;\nconst allowedAttribute = (attribute, allowedAttributeList) => {\n const attributeName = attribute.nodeName.toLowerCase();\n if (allowedAttributeList.includes(attributeName)) {\n if (uriAttributes.has(attributeName)) {\n return Boolean(SAFE_URL_PATTERN.test(attribute.nodeValue));\n }\n return true;\n }\n\n // Check if a regular expression validates the attribute.\n return allowedAttributeList.filter(attributeRegex => attributeRegex instanceof RegExp).some(regex => regex.test(attributeName));\n};\nfunction sanitizeHtml(unsafeHtml, allowList, sanitizeFunction) {\n if (!unsafeHtml.length) {\n return unsafeHtml;\n }\n if (sanitizeFunction && typeof sanitizeFunction === 'function') {\n return sanitizeFunction(unsafeHtml);\n }\n const domParser = new window.DOMParser();\n const createdDocument = domParser.parseFromString(unsafeHtml, 'text/html');\n const elements = [].concat(...createdDocument.body.querySelectorAll('*'));\n for (const element of elements) {\n const elementName = element.nodeName.toLowerCase();\n if (!Object.keys(allowList).includes(elementName)) {\n element.remove();\n continue;\n }\n const attributeList = [].concat(...element.attributes);\n const allowedAttributes = [].concat(allowList['*'] || [], allowList[elementName] || []);\n for (const attribute of attributeList) {\n if (!allowedAttribute(attribute, allowedAttributes)) {\n element.removeAttribute(attribute.nodeName);\n }\n }\n }\n return createdDocument.body.innerHTML;\n}\n\n/**\n * --------------------------------------------------------------------------\n * Bootstrap util/template-factory.js\n * Licensed under MIT (https://github.com/twbs/bootstrap/blob/main/LICENSE)\n * --------------------------------------------------------------------------\n */\n\n\n/**\n * Constants\n */\n\nconst NAME$5 = 'TemplateFactory';\nconst Default$4 = {\n allowList: DefaultAllowlist,\n content: {},\n // { selector : text , selector2 : text2 , }\n extraClass: '',\n html: false,\n sanitize: true,\n sanitizeFn: null,\n template: '
'\n};\nconst DefaultType$4 = {\n allowList: 'object',\n content: 'object',\n extraClass: '(string|function)',\n html: 'boolean',\n sanitize: 'boolean',\n sanitizeFn: '(null|function)',\n template: 'string'\n};\nconst DefaultContentType = {\n entry: '(string|element|function|null)',\n selector: '(string|element)'\n};\n\n/**\n * Class definition\n */\n\nclass TemplateFactory extends Config {\n constructor(config) {\n super();\n this._config = this._getConfig(config);\n }\n\n // Getters\n static get Default() {\n return Default$4;\n }\n static get DefaultType() {\n return DefaultType$4;\n }\n static get NAME() {\n return NAME$5;\n }\n\n // Public\n getContent() {\n return Object.values(this._config.content).map(config => this._resolvePossibleFunction(config)).filter(Boolean);\n }\n hasContent() {\n return this.getContent().length > 0;\n }\n changeContent(content) {\n this._checkContent(content);\n this._config.content = {\n ...this._config.content,\n ...content\n };\n return this;\n }\n toHtml() {\n const templateWrapper = document.createElement('div');\n templateWrapper.innerHTML = this._maybeSanitize(this._config.template);\n for (const [selector, text] of Object.entries(this._config.content)) {\n this._setContent(templateWrapper, text, selector);\n }\n const template = templateWrapper.children[0];\n const extraClass = this._resolvePossibleFunction(this._config.extraClass);\n if (extraClass) {\n template.classList.add(...extraClass.split(' '));\n }\n return template;\n }\n\n // Private\n _typeCheckConfig(config) {\n super._typeCheckConfig(config);\n this._checkContent(config.content);\n }\n _checkContent(arg) {\n for (const [selector, content] of Object.entries(arg)) {\n super._typeCheckConfig({\n selector,\n entry: content\n }, DefaultContentType);\n }\n }\n _setContent(template, content, selector) {\n const templateElement = SelectorEngine.findOne(selector, template);\n if (!templateElement) {\n return;\n }\n content = this._resolvePossibleFunction(content);\n if (!content) {\n templateElement.remove();\n return;\n }\n if (isElement(content)) {\n this._putElementInTemplate(getElement(content), templateElement);\n return;\n }\n if (this._config.html) {\n templateElement.innerHTML = this._maybeSanitize(content);\n return;\n }\n templateElement.textContent = content;\n }\n _maybeSanitize(arg) {\n return this._config.sanitize ? sanitizeHtml(arg, this._config.allowList, this._config.sanitizeFn) : arg;\n }\n _resolvePossibleFunction(arg) {\n return execute(arg, [this]);\n }\n _putElementInTemplate(element, templateElement) {\n if (this._config.html) {\n templateElement.innerHTML = '';\n templateElement.append(element);\n return;\n }\n templateElement.textContent = element.textContent;\n }\n}\n\n/**\n * --------------------------------------------------------------------------\n * Bootstrap tooltip.js\n * Licensed under MIT (https://github.com/twbs/bootstrap/blob/main/LICENSE)\n * --------------------------------------------------------------------------\n */\n\n\n/**\n * Constants\n */\n\nconst NAME$4 = 'tooltip';\nconst DISALLOWED_ATTRIBUTES = new Set(['sanitize', 'allowList', 'sanitizeFn']);\nconst CLASS_NAME_FADE$2 = 'fade';\nconst CLASS_NAME_MODAL = 'modal';\nconst CLASS_NAME_SHOW$2 = 'show';\nconst SELECTOR_TOOLTIP_INNER = '.tooltip-inner';\nconst SELECTOR_MODAL = `.${CLASS_NAME_MODAL}`;\nconst EVENT_MODAL_HIDE = 'hide.bs.modal';\nconst TRIGGER_HOVER = 'hover';\nconst TRIGGER_FOCUS = 'focus';\nconst TRIGGER_CLICK = 'click';\nconst TRIGGER_MANUAL = 'manual';\nconst EVENT_HIDE$2 = 'hide';\nconst EVENT_HIDDEN$2 = 'hidden';\nconst EVENT_SHOW$2 = 'show';\nconst EVENT_SHOWN$2 = 'shown';\nconst EVENT_INSERTED = 'inserted';\nconst EVENT_CLICK$1 = 'click';\nconst EVENT_FOCUSIN$1 = 'focusin';\nconst EVENT_FOCUSOUT$1 = 'focusout';\nconst EVENT_MOUSEENTER = 'mouseenter';\nconst EVENT_MOUSELEAVE = 'mouseleave';\nconst AttachmentMap = {\n AUTO: 'auto',\n TOP: 'top',\n RIGHT: isRTL() ? 'left' : 'right',\n BOTTOM: 'bottom',\n LEFT: isRTL() ? 'right' : 'left'\n};\nconst Default$3 = {\n allowList: DefaultAllowlist,\n animation: true,\n boundary: 'clippingParents',\n container: false,\n customClass: '',\n delay: 0,\n fallbackPlacements: ['top', 'right', 'bottom', 'left'],\n html: false,\n offset: [0, 6],\n placement: 'top',\n popperConfig: null,\n sanitize: true,\n sanitizeFn: null,\n selector: false,\n template: '
' + '
' + '
' + '
',\n title: '',\n trigger: 'hover focus'\n};\nconst DefaultType$3 = {\n allowList: 'object',\n animation: 'boolean',\n boundary: '(string|element)',\n container: '(string|element|boolean)',\n customClass: '(string|function)',\n delay: '(number|object)',\n fallbackPlacements: 'array',\n html: 'boolean',\n offset: '(array|string|function)',\n placement: '(string|function)',\n popperConfig: '(null|object|function)',\n sanitize: 'boolean',\n sanitizeFn: '(null|function)',\n selector: '(string|boolean)',\n template: 'string',\n title: '(string|element|function)',\n trigger: 'string'\n};\n\n/**\n * Class definition\n */\n\nclass Tooltip extends BaseComponent {\n constructor(element, config) {\n if (typeof Popper === 'undefined') {\n throw new TypeError('Bootstrap\\'s tooltips require Popper (https://popper.js.org)');\n }\n super(element, config);\n\n // Private\n this._isEnabled = true;\n this._timeout = 0;\n this._isHovered = null;\n this._activeTrigger = {};\n this._popper = null;\n this._templateFactory = null;\n this._newContent = null;\n\n // Protected\n this.tip = null;\n this._setListeners();\n if (!this._config.selector) {\n this._fixTitle();\n }\n }\n\n // Getters\n static get Default() {\n return Default$3;\n }\n static get DefaultType() {\n return DefaultType$3;\n }\n static get NAME() {\n return NAME$4;\n }\n\n // Public\n enable() {\n this._isEnabled = true;\n }\n disable() {\n this._isEnabled = false;\n }\n toggleEnabled() {\n this._isEnabled = !this._isEnabled;\n }\n toggle() {\n if (!this._isEnabled) {\n return;\n }\n this._activeTrigger.click = !this._activeTrigger.click;\n if (this._isShown()) {\n this._leave();\n return;\n }\n this._enter();\n }\n dispose() {\n clearTimeout(this._timeout);\n EventHandler.off(this._element.closest(SELECTOR_MODAL), EVENT_MODAL_HIDE, this._hideModalHandler);\n if (this._element.getAttribute('data-bs-original-title')) {\n this._element.setAttribute('title', this._element.getAttribute('data-bs-original-title'));\n }\n this._disposePopper();\n super.dispose();\n }\n show() {\n if (this._element.style.display === 'none') {\n throw new Error('Please use show on visible elements');\n }\n if (!(this._isWithContent() && this._isEnabled)) {\n return;\n }\n const showEvent = EventHandler.trigger(this._element, this.constructor.eventName(EVENT_SHOW$2));\n const shadowRoot = findShadowRoot(this._element);\n const isInTheDom = (shadowRoot || this._element.ownerDocument.documentElement).contains(this._element);\n if (showEvent.defaultPrevented || !isInTheDom) {\n return;\n }\n\n // TODO: v6 remove this or make it optional\n this._disposePopper();\n const tip = this._getTipElement();\n this._element.setAttribute('aria-describedby', tip.getAttribute('id'));\n const {\n container\n } = this._config;\n if (!this._element.ownerDocument.documentElement.contains(this.tip)) {\n container.append(tip);\n EventHandler.trigger(this._element, this.constructor.eventName(EVENT_INSERTED));\n }\n this._popper = this._createPopper(tip);\n tip.classList.add(CLASS_NAME_SHOW$2);\n\n // If this is a touch-enabled device we add extra\n // empty mouseover listeners to the body's immediate children;\n // only needed because of broken event delegation on iOS\n // https://www.quirksmode.org/blog/archives/2014/02/mouse_event_bub.html\n if ('ontouchstart' in document.documentElement) {\n for (const element of [].concat(...document.body.children)) {\n EventHandler.on(element, 'mouseover', noop);\n }\n }\n const complete = () => {\n EventHandler.trigger(this._element, this.constructor.eventName(EVENT_SHOWN$2));\n if (this._isHovered === false) {\n this._leave();\n }\n this._isHovered = false;\n };\n this._queueCallback(complete, this.tip, this._isAnimated());\n }\n hide() {\n if (!this._isShown()) {\n return;\n }\n const hideEvent = EventHandler.trigger(this._element, this.constructor.eventName(EVENT_HIDE$2));\n if (hideEvent.defaultPrevented) {\n return;\n }\n const tip = this._getTipElement();\n tip.classList.remove(CLASS_NAME_SHOW$2);\n\n // If this is a touch-enabled device we remove the extra\n // empty mouseover listeners we added for iOS support\n if ('ontouchstart' in document.documentElement) {\n for (const element of [].concat(...document.body.children)) {\n EventHandler.off(element, 'mouseover', noop);\n }\n }\n this._activeTrigger[TRIGGER_CLICK] = false;\n this._activeTrigger[TRIGGER_FOCUS] = false;\n this._activeTrigger[TRIGGER_HOVER] = false;\n this._isHovered = null; // it is a trick to support manual triggering\n\n const complete = () => {\n if (this._isWithActiveTrigger()) {\n return;\n }\n if (!this._isHovered) {\n this._disposePopper();\n }\n this._element.removeAttribute('aria-describedby');\n EventHandler.trigger(this._element, this.constructor.eventName(EVENT_HIDDEN$2));\n };\n this._queueCallback(complete, this.tip, this._isAnimated());\n }\n update() {\n if (this._popper) {\n this._popper.update();\n }\n }\n\n // Protected\n _isWithContent() {\n return Boolean(this._getTitle());\n }\n _getTipElement() {\n if (!this.tip) {\n this.tip = this._createTipElement(this._newContent || this._getContentForTemplate());\n }\n return this.tip;\n }\n _createTipElement(content) {\n const tip = this._getTemplateFactory(content).toHtml();\n\n // TODO: remove this check in v6\n if (!tip) {\n return null;\n }\n tip.classList.remove(CLASS_NAME_FADE$2, CLASS_NAME_SHOW$2);\n // TODO: v6 the following can be achieved with CSS only\n tip.classList.add(`bs-${this.constructor.NAME}-auto`);\n const tipId = getUID(this.constructor.NAME).toString();\n tip.setAttribute('id', tipId);\n if (this._isAnimated()) {\n tip.classList.add(CLASS_NAME_FADE$2);\n }\n return tip;\n }\n setContent(content) {\n this._newContent = content;\n if (this._isShown()) {\n this._disposePopper();\n this.show();\n }\n }\n _getTemplateFactory(content) {\n if (this._templateFactory) {\n this._templateFactory.changeContent(content);\n } else {\n this._templateFactory = new TemplateFactory({\n ...this._config,\n // the `content` var has to be after `this._config`\n // to override config.content in case of popover\n content,\n extraClass: this._resolvePossibleFunction(this._config.customClass)\n });\n }\n return this._templateFactory;\n }\n _getContentForTemplate() {\n return {\n [SELECTOR_TOOLTIP_INNER]: this._getTitle()\n };\n }\n _getTitle() {\n return this._resolvePossibleFunction(this._config.title) || this._element.getAttribute('data-bs-original-title');\n }\n\n // Private\n _initializeOnDelegatedTarget(event) {\n return this.constructor.getOrCreateInstance(event.delegateTarget, this._getDelegateConfig());\n }\n _isAnimated() {\n return this._config.animation || this.tip && this.tip.classList.contains(CLASS_NAME_FADE$2);\n }\n _isShown() {\n return this.tip && this.tip.classList.contains(CLASS_NAME_SHOW$2);\n }\n _createPopper(tip) {\n const placement = execute(this._config.placement, [this, tip, this._element]);\n const attachment = AttachmentMap[placement.toUpperCase()];\n return Popper.createPopper(this._element, tip, this._getPopperConfig(attachment));\n }\n _getOffset() {\n const {\n offset\n } = this._config;\n if (typeof offset === 'string') {\n return offset.split(',').map(value => Number.parseInt(value, 10));\n }\n if (typeof offset === 'function') {\n return popperData => offset(popperData, this._element);\n }\n return offset;\n }\n _resolvePossibleFunction(arg) {\n return execute(arg, [this._element]);\n }\n _getPopperConfig(attachment) {\n const defaultBsPopperConfig = {\n placement: attachment,\n modifiers: [{\n name: 'flip',\n options: {\n fallbackPlacements: this._config.fallbackPlacements\n }\n }, {\n name: 'offset',\n options: {\n offset: this._getOffset()\n }\n }, {\n name: 'preventOverflow',\n options: {\n boundary: this._config.boundary\n }\n }, {\n name: 'arrow',\n options: {\n element: `.${this.constructor.NAME}-arrow`\n }\n }, {\n name: 'preSetPlacement',\n enabled: true,\n phase: 'beforeMain',\n fn: data => {\n // Pre-set Popper's placement attribute in order to read the arrow sizes properly.\n // Otherwise, Popper mixes up the width and height dimensions since the initial arrow style is for top placement\n this._getTipElement().setAttribute('data-popper-placement', data.state.placement);\n }\n }]\n };\n return {\n ...defaultBsPopperConfig,\n ...execute(this._config.popperConfig, [defaultBsPopperConfig])\n };\n }\n _setListeners() {\n const triggers = this._config.trigger.split(' ');\n for (const trigger of triggers) {\n if (trigger === 'click') {\n EventHandler.on(this._element, this.constructor.eventName(EVENT_CLICK$1), this._config.selector, event => {\n const context = this._initializeOnDelegatedTarget(event);\n context.toggle();\n });\n } else if (trigger !== TRIGGER_MANUAL) {\n const eventIn = trigger === TRIGGER_HOVER ? this.constructor.eventName(EVENT_MOUSEENTER) : this.constructor.eventName(EVENT_FOCUSIN$1);\n const eventOut = trigger === TRIGGER_HOVER ? this.constructor.eventName(EVENT_MOUSELEAVE) : this.constructor.eventName(EVENT_FOCUSOUT$1);\n EventHandler.on(this._element, eventIn, this._config.selector, event => {\n const context = this._initializeOnDelegatedTarget(event);\n context._activeTrigger[event.type === 'focusin' ? TRIGGER_FOCUS : TRIGGER_HOVER] = true;\n context._enter();\n });\n EventHandler.on(this._element, eventOut, this._config.selector, event => {\n const context = this._initializeOnDelegatedTarget(event);\n context._activeTrigger[event.type === 'focusout' ? TRIGGER_FOCUS : TRIGGER_HOVER] = context._element.contains(event.relatedTarget);\n context._leave();\n });\n }\n }\n this._hideModalHandler = () => {\n if (this._element) {\n this.hide();\n }\n };\n EventHandler.on(this._element.closest(SELECTOR_MODAL), EVENT_MODAL_HIDE, this._hideModalHandler);\n }\n _fixTitle() {\n const title = this._element.getAttribute('title');\n if (!title) {\n return;\n }\n if (!this._element.getAttribute('aria-label') && !this._element.textContent.trim()) {\n this._element.setAttribute('aria-label', title);\n }\n this._element.setAttribute('data-bs-original-title', title); // DO NOT USE IT. Is only for backwards compatibility\n this._element.removeAttribute('title');\n }\n _enter() {\n if (this._isShown() || this._isHovered) {\n this._isHovered = true;\n return;\n }\n this._isHovered = true;\n this._setTimeout(() => {\n if (this._isHovered) {\n this.show();\n }\n }, this._config.delay.show);\n }\n _leave() {\n if (this._isWithActiveTrigger()) {\n return;\n }\n this._isHovered = false;\n this._setTimeout(() => {\n if (!this._isHovered) {\n this.hide();\n }\n }, this._config.delay.hide);\n }\n _setTimeout(handler, timeout) {\n clearTimeout(this._timeout);\n this._timeout = setTimeout(handler, timeout);\n }\n _isWithActiveTrigger() {\n return Object.values(this._activeTrigger).includes(true);\n }\n _getConfig(config) {\n const dataAttributes = Manipulator.getDataAttributes(this._element);\n for (const dataAttribute of Object.keys(dataAttributes)) {\n if (DISALLOWED_ATTRIBUTES.has(dataAttribute)) {\n delete dataAttributes[dataAttribute];\n }\n }\n config = {\n ...dataAttributes,\n ...(typeof config === 'object' && config ? config : {})\n };\n config = this._mergeConfigObj(config);\n config = this._configAfterMerge(config);\n this._typeCheckConfig(config);\n return config;\n }\n _configAfterMerge(config) {\n config.container = config.container === false ? document.body : getElement(config.container);\n if (typeof config.delay === 'number') {\n config.delay = {\n show: config.delay,\n hide: config.delay\n };\n }\n if (typeof config.title === 'number') {\n config.title = config.title.toString();\n }\n if (typeof config.content === 'number') {\n config.content = config.content.toString();\n }\n return config;\n }\n _getDelegateConfig() {\n const config = {};\n for (const [key, value] of Object.entries(this._config)) {\n if (this.constructor.Default[key] !== value) {\n config[key] = value;\n }\n }\n config.selector = false;\n config.trigger = 'manual';\n\n // In the future can be replaced with:\n // const keysWithDifferentValues = Object.entries(this._config).filter(entry => this.constructor.Default[entry[0]] !== this._config[entry[0]])\n // `Object.fromEntries(keysWithDifferentValues)`\n return config;\n }\n _disposePopper() {\n if (this._popper) {\n this._popper.destroy();\n this._popper = null;\n }\n if (this.tip) {\n this.tip.remove();\n this.tip = null;\n }\n }\n\n // Static\n static jQueryInterface(config) {\n return this.each(function () {\n const data = Tooltip.getOrCreateInstance(this, config);\n if (typeof config !== 'string') {\n return;\n }\n if (typeof data[config] === 'undefined') {\n throw new TypeError(`No method named \"${config}\"`);\n }\n data[config]();\n });\n }\n}\n\n/**\n * jQuery\n */\n\ndefineJQueryPlugin(Tooltip);\n\n/**\n * --------------------------------------------------------------------------\n * Bootstrap popover.js\n * Licensed under MIT (https://github.com/twbs/bootstrap/blob/main/LICENSE)\n * --------------------------------------------------------------------------\n */\n\n\n/**\n * Constants\n */\n\nconst NAME$3 = 'popover';\nconst SELECTOR_TITLE = '.popover-header';\nconst SELECTOR_CONTENT = '.popover-body';\nconst Default$2 = {\n ...Tooltip.Default,\n content: '',\n offset: [0, 8],\n placement: 'right',\n template: '
' + '
' + '

' + '
' + '
',\n trigger: 'click'\n};\nconst DefaultType$2 = {\n ...Tooltip.DefaultType,\n content: '(null|string|element|function)'\n};\n\n/**\n * Class definition\n */\n\nclass Popover extends Tooltip {\n // Getters\n static get Default() {\n return Default$2;\n }\n static get DefaultType() {\n return DefaultType$2;\n }\n static get NAME() {\n return NAME$3;\n }\n\n // Overrides\n _isWithContent() {\n return this._getTitle() || this._getContent();\n }\n\n // Private\n _getContentForTemplate() {\n return {\n [SELECTOR_TITLE]: this._getTitle(),\n [SELECTOR_CONTENT]: this._getContent()\n };\n }\n _getContent() {\n return this._resolvePossibleFunction(this._config.content);\n }\n\n // Static\n static jQueryInterface(config) {\n return this.each(function () {\n const data = Popover.getOrCreateInstance(this, config);\n if (typeof config !== 'string') {\n return;\n }\n if (typeof data[config] === 'undefined') {\n throw new TypeError(`No method named \"${config}\"`);\n }\n data[config]();\n });\n }\n}\n\n/**\n * jQuery\n */\n\ndefineJQueryPlugin(Popover);\n\n/**\n * --------------------------------------------------------------------------\n * Bootstrap scrollspy.js\n * Licensed under MIT (https://github.com/twbs/bootstrap/blob/main/LICENSE)\n * --------------------------------------------------------------------------\n */\n\n\n/**\n * Constants\n */\n\nconst NAME$2 = 'scrollspy';\nconst DATA_KEY$2 = 'bs.scrollspy';\nconst EVENT_KEY$2 = `.${DATA_KEY$2}`;\nconst DATA_API_KEY = '.data-api';\nconst EVENT_ACTIVATE = `activate${EVENT_KEY$2}`;\nconst EVENT_CLICK = `click${EVENT_KEY$2}`;\nconst EVENT_LOAD_DATA_API$1 = `load${EVENT_KEY$2}${DATA_API_KEY}`;\nconst CLASS_NAME_DROPDOWN_ITEM = 'dropdown-item';\nconst CLASS_NAME_ACTIVE$1 = 'active';\nconst SELECTOR_DATA_SPY = '[data-bs-spy=\"scroll\"]';\nconst SELECTOR_TARGET_LINKS = '[href]';\nconst SELECTOR_NAV_LIST_GROUP = '.nav, .list-group';\nconst SELECTOR_NAV_LINKS = '.nav-link';\nconst SELECTOR_NAV_ITEMS = '.nav-item';\nconst SELECTOR_LIST_ITEMS = '.list-group-item';\nconst SELECTOR_LINK_ITEMS = `${SELECTOR_NAV_LINKS}, ${SELECTOR_NAV_ITEMS} > ${SELECTOR_NAV_LINKS}, ${SELECTOR_LIST_ITEMS}`;\nconst SELECTOR_DROPDOWN = '.dropdown';\nconst SELECTOR_DROPDOWN_TOGGLE$1 = '.dropdown-toggle';\nconst Default$1 = {\n offset: null,\n // TODO: v6 @deprecated, keep it for backwards compatibility reasons\n rootMargin: '0px 0px -25%',\n smoothScroll: false,\n target: null,\n threshold: [0.1, 0.5, 1]\n};\nconst DefaultType$1 = {\n offset: '(number|null)',\n // TODO v6 @deprecated, keep it for backwards compatibility reasons\n rootMargin: 'string',\n smoothScroll: 'boolean',\n target: 'element',\n threshold: 'array'\n};\n\n/**\n * Class definition\n */\n\nclass ScrollSpy extends BaseComponent {\n constructor(element, config) {\n super(element, config);\n\n // this._element is the observablesContainer and config.target the menu links wrapper\n this._targetLinks = new Map();\n this._observableSections = new Map();\n this._rootElement = getComputedStyle(this._element).overflowY === 'visible' ? null : this._element;\n this._activeTarget = null;\n this._observer = null;\n this._previousScrollData = {\n visibleEntryTop: 0,\n parentScrollTop: 0\n };\n this.refresh(); // initialize\n }\n\n // Getters\n static get Default() {\n return Default$1;\n }\n static get DefaultType() {\n return DefaultType$1;\n }\n static get NAME() {\n return NAME$2;\n }\n\n // Public\n refresh() {\n this._initializeTargetsAndObservables();\n this._maybeEnableSmoothScroll();\n if (this._observer) {\n this._observer.disconnect();\n } else {\n this._observer = this._getNewObserver();\n }\n for (const section of this._observableSections.values()) {\n this._observer.observe(section);\n }\n }\n dispose() {\n this._observer.disconnect();\n super.dispose();\n }\n\n // Private\n _configAfterMerge(config) {\n // TODO: on v6 target should be given explicitly & remove the {target: 'ss-target'} case\n config.target = getElement(config.target) || document.body;\n\n // TODO: v6 Only for backwards compatibility reasons. Use rootMargin only\n config.rootMargin = config.offset ? `${config.offset}px 0px -30%` : config.rootMargin;\n if (typeof config.threshold === 'string') {\n config.threshold = config.threshold.split(',').map(value => Number.parseFloat(value));\n }\n return config;\n }\n _maybeEnableSmoothScroll() {\n if (!this._config.smoothScroll) {\n return;\n }\n\n // unregister any previous listeners\n EventHandler.off(this._config.target, EVENT_CLICK);\n EventHandler.on(this._config.target, EVENT_CLICK, SELECTOR_TARGET_LINKS, event => {\n const observableSection = this._observableSections.get(event.target.hash);\n if (observableSection) {\n event.preventDefault();\n const root = this._rootElement || window;\n const height = observableSection.offsetTop - this._element.offsetTop;\n if (root.scrollTo) {\n root.scrollTo({\n top: height,\n behavior: 'smooth'\n });\n return;\n }\n\n // Chrome 60 doesn't support `scrollTo`\n root.scrollTop = height;\n }\n });\n }\n _getNewObserver() {\n const options = {\n root: this._rootElement,\n threshold: this._config.threshold,\n rootMargin: this._config.rootMargin\n };\n return new IntersectionObserver(entries => this._observerCallback(entries), options);\n }\n\n // The logic of selection\n _observerCallback(entries) {\n const targetElement = entry => this._targetLinks.get(`#${entry.target.id}`);\n const activate = entry => {\n this._previousScrollData.visibleEntryTop = entry.target.offsetTop;\n this._process(targetElement(entry));\n };\n const parentScrollTop = (this._rootElement || document.documentElement).scrollTop;\n const userScrollsDown = parentScrollTop >= this._previousScrollData.parentScrollTop;\n this._previousScrollData.parentScrollTop = parentScrollTop;\n for (const entry of entries) {\n if (!entry.isIntersecting) {\n this._activeTarget = null;\n this._clearActiveClass(targetElement(entry));\n continue;\n }\n const entryIsLowerThanPrevious = entry.target.offsetTop >= this._previousScrollData.visibleEntryTop;\n // if we are scrolling down, pick the bigger offsetTop\n if (userScrollsDown && entryIsLowerThanPrevious) {\n activate(entry);\n // if parent isn't scrolled, let's keep the first visible item, breaking the iteration\n if (!parentScrollTop) {\n return;\n }\n continue;\n }\n\n // if we are scrolling up, pick the smallest offsetTop\n if (!userScrollsDown && !entryIsLowerThanPrevious) {\n activate(entry);\n }\n }\n }\n _initializeTargetsAndObservables() {\n this._targetLinks = new Map();\n this._observableSections = new Map();\n const targetLinks = SelectorEngine.find(SELECTOR_TARGET_LINKS, this._config.target);\n for (const anchor of targetLinks) {\n // ensure that the anchor has an id and is not disabled\n if (!anchor.hash || isDisabled(anchor)) {\n continue;\n }\n const observableSection = SelectorEngine.findOne(decodeURI(anchor.hash), this._element);\n\n // ensure that the observableSection exists & is visible\n if (isVisible(observableSection)) {\n this._targetLinks.set(decodeURI(anchor.hash), anchor);\n this._observableSections.set(anchor.hash, observableSection);\n }\n }\n }\n _process(target) {\n if (this._activeTarget === target) {\n return;\n }\n this._clearActiveClass(this._config.target);\n this._activeTarget = target;\n target.classList.add(CLASS_NAME_ACTIVE$1);\n this._activateParents(target);\n EventHandler.trigger(this._element, EVENT_ACTIVATE, {\n relatedTarget: target\n });\n }\n _activateParents(target) {\n // Activate dropdown parents\n if (target.classList.contains(CLASS_NAME_DROPDOWN_ITEM)) {\n SelectorEngine.findOne(SELECTOR_DROPDOWN_TOGGLE$1, target.closest(SELECTOR_DROPDOWN)).classList.add(CLASS_NAME_ACTIVE$1);\n return;\n }\n for (const listGroup of SelectorEngine.parents(target, SELECTOR_NAV_LIST_GROUP)) {\n // Set triggered links parents as active\n // With both