This repository has been archived by the owner on Apr 29, 2024. It is now read-only.
forked from yl4579/StyleTTS2
-
Notifications
You must be signed in to change notification settings - Fork 0
/
inference.py
284 lines (242 loc) · 10.5 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
import nltk
nltk.download("punkt")
import phonemizer
import torch
torch.manual_seed(0)
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
import random
random.seed(0)
import numpy as np
np.random.seed(0)
import time
import random
import yaml
from munch import Munch
from pydub import AudioSegment
import numpy as np
import torch
from torch import nn
import torch.nn.functional as F
import torchaudio
import librosa
import soundfile as sf
from nltk.tokenize import word_tokenize
from models import *
from utils import *
from text_utils import TextCleaner
import phonemizer
from Utils.PLBERT.util import load_plbert
from Modules.diffusion.sampler import DiffusionSampler, ADPM2Sampler, KarrasSchedule
textclenaer = TextCleaner()
to_mel = torchaudio.transforms.MelSpectrogram(
n_mels=80, n_fft=2048, win_length=1200, hop_length=300
)
mean, std = -4, 4
SPEECH_SPEEDS = {"slowest": 0.4, "slow": 0.5, "medium": 0.8, "default": 1.0}
SPEECH_SPEEDS_LIST = list(SPEECH_SPEEDS.keys())
STYLE_TTS2_SAMPLE_RATE = 24000
class StyleTTS2Inference:
def __init__(self, model_dir, language="hi", reference_audio_path=None):
self.model_dir = model_dir
self.config_path = f"{model_dir}/config.yml"
self.reference_audio_path = reference_audio_path
self.check_if_model_dir_has_pth_files_and_config()
self.config = yaml.safe_load(open(self.config_path))
self.language = language
self.global_phonemizer = phonemizer.backend.EspeakBackend(
language=self.language, preserve_punctuation=True, with_stress=True
)
self.device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Using {self.device} device")
self.load_model()
self.compute_style()
def check_if_model_dir_has_pth_files_and_config(self):
# Check first if the model directory exists
if not os.path.exists(self.model_dir):
raise FileNotFoundError(f"Model directory {self.model_dir} not found")
# Check for pth files
files = [f for f in os.listdir(f"{self.model_dir}/") if f.endswith(".pth")]
if len(files) == 0:
raise FileNotFoundError(f"No .pth files found in {self.model_dir}")
# Check for config file
if not os.path.exists(self.config_path):
raise FileNotFoundError(
f"Config file {self.config_path} not found in {self.model_dir}"
)
# Check for reference audio file
if self.reference_audio_path and not os.path.exists(self.reference_audio_path):
raise FileNotFoundError(
f"Reference audio file {self.reference_audio_path} not found"
)
def load_model(self):
# load pretrained ASR model
ASR_config = self.config.get("ASR_config", False)
ASR_path = self.config.get("ASR_path", False)
text_aligner = load_ASR_models(ASR_path, ASR_config)
# load pretrained F0 model
F0_path = self.config.get("F0_path", False)
pitch_extractor = load_F0_models(F0_path)
# load BERT model
BERT_path = self.config.get("PLBERT_dir", False)
plbert = load_plbert(BERT_path)
self.model_params = recursive_munch(self.config["model_params"])
self.model = build_model(
self.model_params, text_aligner, pitch_extractor, plbert
)
_ = [self.model[key].eval() for key in self.model]
_ = [self.model[key].to(self.device) for key in self.model]
files = [f for f in os.listdir(f"{self.model_dir}/") if f.endswith(".pth")]
params_whole = torch.load(f"{self.model_dir}/" + files[0], map_location="cpu")
params = params_whole["net"]
for key in self.model:
if key in params:
print("%s loaded" % key)
try:
self.model[key].load_state_dict(params[key])
except:
from collections import OrderedDict
state_dict = params[key]
new_state_dict = OrderedDict()
for k, v in state_dict.items():
name = k[7:] # remove `module.`
new_state_dict[name] = v
# load params
self.model[key].load_state_dict(new_state_dict, strict=False)
# except:
# _load(params[key], model[key])
_ = [self.model[key].eval() for key in self.model]
self.sampler = DiffusionSampler(
self.model.diffusion.diffusion,
sampler=ADPM2Sampler(),
sigma_schedule=KarrasSchedule(
sigma_min=0.0001, sigma_max=3.0, rho=9.0
), # empirical parameters
clamp=False,
)
def length_to_mask(self, lengths):
mask = (
torch.arange(lengths.max())
.unsqueeze(0)
.expand(lengths.shape[0], -1)
.type_as(lengths)
)
mask = torch.gt(mask + 1, lengths.unsqueeze(1))
return mask
def preprocess(self, wave):
wave_tensor = torch.from_numpy(wave).float()
mel_tensor = to_mel(wave_tensor)
mel_tensor = (torch.log(1e-5 + mel_tensor.unsqueeze(0)) - mean) / std
return mel_tensor
def compute_style(self):
path = self.reference_audio_path
wave, sr = librosa.load(path, sr=STYLE_TTS2_SAMPLE_RATE)
audio, index = librosa.effects.trim(wave, top_db=30)
if sr != STYLE_TTS2_SAMPLE_RATE:
audio = librosa.resample(
audio, orig_sr=sr, target_sr=STYLE_TTS2_SAMPLE_RATE
)
mel_tensor = self.preprocess(audio).to(self.device)
with torch.no_grad():
ref_s = self.model.style_encoder(mel_tensor.unsqueeze(1))
ref_p = self.model.predictor_encoder(mel_tensor.unsqueeze(1))
self.computed_style = torch.cat([ref_s, ref_p], dim=1)
def generate_output_path(self, extension="wav"):
return f"output_{time.time()}.{extension}"
def inference(
self,
text,
alpha=0.3,
beta=0.7,
diffusion_steps=5,
embedding_scale=1,
speech_speed="default",
output_path=None,
sample_rate=STYLE_TTS2_SAMPLE_RATE,
extention="wav",
):
if speech_speed not in SPEECH_SPEEDS:
raise ValueError(
f"Speech speed {speech_speed} not supported. Supported values are {', '.join(SPEECH_SPEEDS_LIST)}."
)
if extention not in ["wav", "mp3"]:
raise ValueError(
f"Extension {extention} not supported. Supported values are 'wav', 'mp3'."
)
ref_s = self.computed_style
text = text.strip()
ps = self.global_phonemizer.phonemize([text])
ps = word_tokenize(ps[0])
ps = " ".join(ps)
tokens = textclenaer(ps)
tokens.insert(0, 0)
tokens = torch.LongTensor(tokens).to(self.device).unsqueeze(0)
with torch.no_grad():
input_lengths = torch.LongTensor([tokens.shape[-1]]).to(self.device)
text_mask = length_to_mask(input_lengths).to(self.device)
t_en = self.model.text_encoder(tokens, input_lengths, text_mask)
bert_dur = self.model.bert(tokens, attention_mask=(~text_mask).int())
d_en = self.model.bert_encoder(bert_dur).transpose(-1, -2)
s_pred = self.sampler(
noise=torch.randn((1, 256)).unsqueeze(1).to(self.device),
embedding=bert_dur,
embedding_scale=embedding_scale,
features=ref_s, # reference from the same speaker as the embedding
num_steps=diffusion_steps,
).squeeze(1)
s = s_pred[:, 128:]
ref = s_pred[:, :128]
ref = alpha * ref + (1 - alpha) * ref_s[:, :128]
s = beta * s + (1 - beta) * ref_s[:, 128:]
d = self.model.predictor.text_encoder(d_en, s, input_lengths, text_mask)
x, _ = self.model.predictor.lstm(d)
duration = (
self.model.predictor.duration_proj(x) * SPEECH_SPEEDS[speech_speed]
)
duration = torch.sigmoid(duration).sum(axis=-1)
pred_dur = torch.round(duration.squeeze()).clamp(min=1)
pred_aln_trg = torch.zeros(input_lengths, int(pred_dur.sum().data))
c_frame = 0
for i in range(pred_aln_trg.size(0)):
pred_aln_trg[i, c_frame : c_frame + int(pred_dur[i].data)] = 1
c_frame += int(pred_dur[i].data)
# encode prosody
en = d.transpose(-1, -2) @ pred_aln_trg.unsqueeze(0).to(self.device)
if self.model_params.decoder.type == "hifigan":
asr_new = torch.zeros_like(en)
asr_new[:, :, 0] = en[:, :, 0]
asr_new[:, :, 1:] = en[:, :, 0:-1]
en = asr_new
F0_pred, N_pred = self.model.predictor.F0Ntrain(en, s)
asr = t_en @ pred_aln_trg.unsqueeze(0).to(self.device)
if self.model_params.decoder.type == "hifigan":
asr_new = torch.zeros_like(asr)
asr_new[:, :, 0] = asr[:, :, 0]
asr_new[:, :, 1:] = asr[:, :, 0:-1]
asr = asr_new
out = self.model.decoder(asr, F0_pred, N_pred, ref.squeeze().unsqueeze(0))
np_arr = (
out.squeeze().cpu().numpy()[..., :-50]
) # weird pulse at the end of the model, need to be fixed later
if not output_path:
output_path = self.generate_output_path("wav")
sf.write(output_path, np_arr, STYLE_TTS2_SAMPLE_RATE)
# Handle sample rate conversion
if sample_rate != STYLE_TTS2_SAMPLE_RATE:
wave, sr = librosa.load(output_path, sr=STYLE_TTS2_SAMPLE_RATE)
audio = librosa.resample(wave, orig_sr=sr, target_sr=sample_rate)
sf.write(output_path, audio, sample_rate)
# Handle extention conversion
if extention == "mp3":
sound = AudioSegment.from_wav(output_path)
output_path_mp3 = output_path.replace("wav", "mp3")
sound.export(output_path_mp3, format="mp3")
# Delete the wav file
os.remove(output_path)
output_path = output_path_mp3
return output_path
# Example Inference Usage
# model_dir = "path/to/model/dir"
# tts = StyleTTS2Inference(model_dir, language="hi", reference_audio_path="path/to/reference/audio.wav")
# text = "भारत एक बहुत बड़ा देश है।"
# audio_bytes = tts.inference(text)