-
Notifications
You must be signed in to change notification settings - Fork 0
/
agent.py
133 lines (113 loc) · 4.62 KB
/
agent.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
import torch
import random
import numpy as np
from collections import deque
from game import SnakeGameAI, Direction, Point
from model import Linear_QNet, QTrainer
from helper import plot
MAX_MEMORY = 100_000
BATCH_SIZE = 1000
LR = 0.001
class Agent:
def __init__(self):
self.n_games = 0
self.epsilon = 0 #radnness
self.gamma = 0.9 # discount rate
self.memory = deque(maxlen=MAX_MEMORY)
self.model = Linear_QNet(11,256,3)
self.trainer = QTrainer(self.model, lr=LR, gamma=self.gamma)
def get_state(self, game):
head = game.snake[0]
point_l = Point(head.x - 20, head.y)
point_r = Point(head.x + 20, head.y)
point_u = Point(head.x, head.y - 20)
point_d = Point(head.x, head.y + 20)
dir_l = game.direction == Direction.LEFT
dir_r = game.direction == Direction.RIGHT
dir_u = game.direction == Direction.UP
dir_d = game.direction == Direction.DOWN
state = [
#Danger straight
(dir_r and game.is_collision(point_r)) or
(dir_r and game.is_collision(point_l)) or
(dir_r and game.is_collision(point_u)) or
(dir_r and game.is_collision(point_d)),
#Danger right
(dir_u and game.is_collision(point_r)) or
(dir_d and game.is_collision(point_l)) or
(dir_l and game.is_collision(point_u)) or
(dir_r and game.is_collision(point_d)),
#Danger left
(dir_d and game.is_collision(point_r)) or
(dir_u and game.is_collision(point_l)) or
(dir_r and game.is_collision(point_u)) or
(dir_l and game.is_collision(point_d)),
#Move direction
dir_l,
dir_r,
dir_u,
dir_d,
#food location
game.food.x < game.head.x, #food left
game.food.x > game.head.x, #food right
game.food.y < game.head.y, #food up
game.food.y > game.head.y #food down
]
return np.array(state, dtype=int)
def remember(self, state, action, reward, next_state, done):
self.memory.append((self, state, action, reward, next_state, done)) #pop left
def train_long_memory(self):
if len(self.memory) > BATCH_SIZE:
mini_sample = random.sample(self.memory, BATCH_SIZE)
else:
mini_sample = self.memory
states, actions, rewards, next_states, dones = zip(*mini_sample)
self.trainer.train_step(self, states, actions, rewards, next_states, dones)
def train_short_memory(self, state, action, reward, next_state, done):
self.trainer.train_step(self, state, action, reward, next_state, done)
def get_action(self, state):
#random moves: tradeoff exploration/exploitation
self.epsilon = 80 - self.n_games
final_move = [0,0,0]
if random.randint(0,200) < self.epsilon:
move = random.randint(0,2)
final_move[move] = 1
else:
state0 = torch.tensor(state, dtype=torch.float)
prediction = self.model(state0)
move = torch.argmax(prediction).item()
final_move[move] = 1
return final_move
def train():
plot_scores = []
plot_mean_scores = []
total_score = 0
record = 0
agent = Agent()
game = SnakeGameAI()
while True:
#get old state
state_old = agent.get_state(game)
final_move = agent.get_action(state_old)
reward, done, score = game.play_step(final_move)
state_new = agent.get_state(game)
#train short memory
agent.train_short_memory(state_old, final_move, reward, state_new,done)
#remember
agent.remember(state_old, final_move, reward, state_new,done)
if done:
#train long memory (replay memory) film review!
game.reset()
agent.n_games +=1
agent.train_long_memory()
if score > record:
record = score
agent.model.save()
print('Game', agent.n_games, 'Score', score, 'Record:', record)
plot_scores.append(score)
total_score += score
mean_score = total_score / agent.n_games
plot_mean_scores.append(mean_score)
plot(plot_scores, plot_mean_scores)
if __name__ == '__main__':
train()