forked from PolyAI-LDN/conversational-datasets
-
Notifications
You must be signed in to change notification settings - Fork 0
/
run_baseline.py
238 lines (211 loc) · 8.51 KB
/
run_baseline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
"""Evaluate baseline models on conversational datasets.
For usage see README.md.
"""
import argparse
import csv
import enum
import random
import glog
import numpy as np
import tensorflow as tf
from tqdm import tqdm
from baselines import keyword_based, vector_based
def _parse_args():
"""Parse command-line args."""
parser = argparse.ArgumentParser()
parser.add_argument(
"--method",
type=Method.from_string, choices=list(Method), required=True,
help="The baseline method to use.")
parser.add_argument(
"--recall_k", type=int,
default=100, help="The value of k to compute recall at.")
parser.add_argument(
"--train_dataset", type=str, required=True,
help="File pattern of train set.")
parser.add_argument(
"--train_size", type=int, default=10000,
help="Number of examples from the training set to use in training.")
parser.add_argument(
"--test_dataset", type=str, required=True,
help="File pattern of test set.")
parser.add_argument(
"--eval_num_batches", type=int, default=500,
help="Number of batches to use in the evaluation.")
parser.add_argument(
"--output_file", type=str,
help="Optional file to output result as a CSV row.")
parser.add_argument(
"--deduplicate_eval", default=False, action="store_true",
help="If set, the evaluation will de-duplicate examples with "
"identical contexts.")
return parser.parse_args()
class Method(enum.Enum):
# Keyword based methods.
TF_IDF = 1
BM25 = 2
# Vector similarity based methods.
USE_SIM = 3
USE_LARGE_SIM = 4
ELMO_SIM = 5
BERT_SMALL_SIM = 6
BERT_LARGE_SIM = 7
# Vector mapping methods.
USE_MAP = 8
USE_LARGE_MAP = 9
ELMO_MAP = 10
BERT_SMALL_MAP = 11
BERT_LARGE_MAP = 12
def to_method_object(self):
"""Convert the enum to an instance of `BaselineMethod`."""
if self == self.TF_IDF:
return keyword_based.TfIdfMethod()
elif self == self.BM25:
return keyword_based.BM25Method()
elif self == self.USE_SIM:
return vector_based.VectorSimilarityMethod(
encoder=vector_based.TfHubEncoder(
"https://tfhub.dev/google/"
"universal-sentence-encoder/2"))
elif self == self.USE_LARGE_SIM:
return vector_based.VectorSimilarityMethod(
encoder=vector_based.TfHubEncoder(
"https://tfhub.dev/google/"
"universal-sentence-encoder-large/3"))
elif self == self.ELMO_SIM:
return vector_based.VectorSimilarityMethod(
encoder=vector_based.TfHubEncoder(
"https://tfhub.dev/google/elmo/1"))
elif self == self.USE_MAP:
return vector_based.VectorMappingMethod(
encoder=vector_based.TfHubEncoder(
"https://tfhub.dev/google/"
"universal-sentence-encoder/2"))
elif self == self.USE_LARGE_MAP:
return vector_based.VectorMappingMethod(
encoder=vector_based.TfHubEncoder(
"https://tfhub.dev/google/"
"universal-sentence-encoder-large/3"))
elif self == self.ELMO_MAP:
return vector_based.VectorMappingMethod(
encoder=vector_based.TfHubEncoder(
"https://tfhub.dev/google/elmo/1"))
elif self == self.BERT_SMALL_SIM:
return vector_based.VectorSimilarityMethod(
encoder=vector_based.BERTEncoder(
"https://tfhub.dev/google/"
"bert_uncased_L-12_H-768_A-12/1"))
elif self == self.BERT_SMALL_MAP:
return vector_based.VectorMappingMethod(
encoder=vector_based.BERTEncoder(
"https://tfhub.dev/google/"
"bert_uncased_L-12_H-768_A-12/1"))
elif self == self.BERT_LARGE_SIM:
return vector_based.VectorSimilarityMethod(
encoder=vector_based.BERTEncoder(
"https://tfhub.dev/google/"
"bert_uncased_L-24_H-1024_A-16/1"))
elif self == self.BERT_LARGE_MAP:
return vector_based.VectorMappingMethod(
encoder=vector_based.BERTEncoder(
"https://tfhub.dev/google/"
"bert_uncased_L-24_H-1024_A-16/1"))
raise ValueError("Unknown method {}".format(self))
def __str__(self):
"""String representation to use in argparse help text."""
return self.name
@staticmethod
def from_string(s):
"""Convert a string parsed from argparse to an enum instance."""
try:
return Method[s]
except KeyError:
raise ValueError()
def _evaluate_method(method, recall_k, contexts, responses):
accuracy_numerator = 0.0
accuracy_denominator = 0.0
for i in tqdm(range(0, len(contexts), recall_k)):
context_batch = contexts[i:i + recall_k]
responses_batch = responses[i:i + recall_k]
if len(context_batch) != recall_k:
break
# Shuffle the responses.
permutation = np.arange(recall_k)
np.random.shuffle(permutation)
context_batch_shuffled = [context_batch[j] for j in permutation]
predictions = method.rank_responses(
context_batch_shuffled, responses_batch)
if predictions.shape != (recall_k, ):
raise ValueError(
"Predictions returned by method should have shape ({}, ), "
"but saw {}".format(recall_k, predictions.shape))
accuracy_numerator += np.equal(predictions, permutation).mean()
accuracy_denominator += 1.0
accuracy = 100 * accuracy_numerator / accuracy_denominator
return accuracy
def _load_data(file_pattern, num_examples, deduplicate=False):
"""Load contexts and responses from the given conversational dataset."""
contexts = []
responses = []
seen_contexts = set()
complete = False
with tqdm(total=num_examples) as progress_bar:
file_names = tf.gfile.Glob(file_pattern)
random.shuffle(file_names)
if not file_names:
raise ValueError(
"No files matched pattern {}".format(file_pattern))
for file_name in file_names:
glog.info("Reading %s", file_name)
for record in tf.python_io.tf_record_iterator(file_name):
example = tf.train.Example()
example.ParseFromString(record)
context = example.features.feature[
'context'].bytes_list.value[0].decode("utf-8")
if deduplicate and context in seen_contexts:
continue
if deduplicate:
seen_contexts.add(context)
contexts.append(context)
response = example.features.feature[
'response'].bytes_list.value[0].decode("utf-8")
responses.append(response)
progress_bar.update(1)
if len(contexts) >= num_examples:
complete = True
break
if complete:
break
glog.info("Read %i examples", len(contexts))
if not complete:
glog.warning(
"%i examples were requested, but dataset only contains %i.",
num_examples, len(contexts))
return contexts, responses
if __name__ == "__main__":
args = _parse_args()
method = args.method.to_method_object()
glog.info("Loading training data")
contexts_train, responses_train = _load_data(
args.train_dataset, args.train_size)
glog.info("Training %s method", args.method)
method.train(contexts_train, responses_train)
glog.info("Loading test data")
contexts_test, responses_test = _load_data(
args.test_dataset, args.eval_num_batches * args.recall_k,
deduplicate=args.deduplicate_eval)
glog.info("Running evaluation")
accuracy = _evaluate_method(
method, args.recall_k, contexts_test, responses_test)
glog.info(
"Final computed 1-of-%i accuracy is %.1f%%",
args.recall_k, accuracy
)
if args.output_file is not None:
with open(args.output_file, "a") as f:
csv_writer = csv.writer(f)
csv_writer.writerow([
args.method, args.train_dataset, args.test_dataset,
len(contexts_train), len(contexts_test),
args.recall_k, accuracy
])