forked from ICCC-Platform/PTGAN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train_stage2_v1.py
291 lines (243 loc) · 11.1 KB
/
train_stage2_v1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
import os
from torch.backends import cudnn
from utils.logger import setup_logger
from datasets import make_dataloader, get_trainloader_uda, get_testloader_uda
from model import make_model
from solver import make_optimizer, WarmupMultiStepLR
from loss import make_loss
from processor import do_uda_train
import random
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn import Parameter
import numpy as np
import os
import argparse
from timm.scheduler import create_scheduler
from config import cfg
from timm.data import Mixup
from sklearn.cluster import DBSCAN, KMeans
from utils.faiss_rerank import compute_jaccard_distance
from utils.faiss_rerank import batch_cosine_dist, cosine_dist
from utils.metrics import euclidean_distance
def set_seed(seed):
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
random.seed(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = True
def copy_state_dict(state_dict, model, strip=None):
tgt_state = model.state_dict()
copied_names = set()
for name, param in state_dict.items():
name = name.replace('module.', '')
if strip is not None and name.startswith(strip):
name = name[len(strip):]
if name not in tgt_state:
continue
if isinstance(param, Parameter):
param = param.data
if param.size() != tgt_state[name].size():
print('mismatch:', name, param.size(), tgt_state[name].size())
continue
tgt_state[name].copy_(param)
copied_names.add(name)
missing = set(tgt_state.keys()) - copied_names
if len(missing) > 0:
print("missing keys in state_dict:", missing)
return model
class IterLoader:
def __init__(self, loader, length=None):
self.loader = loader
self.length = length
self.iter = None
def __len__(self):
if (self.length is not None):
return self.length
return len(self.loader)
def new_epoch(self):
self.iter = iter(self.loader)
def next(self):
try:
return next(self.iter)
except:
self.iter = iter(self.loader)
return next(self.iter)
def extract_features(model, data_loader, print_freq):
model.eval()
feats = []
vids = []
camids = []
trkids = []
with torch.no_grad():
for i, (img, vid, camid, trkid, _) in enumerate(data_loader):
img = img.to('cuda')
feat = model(img)
feats.append(feat)
vids.extend(vid)
camids.extend(camid)
trkids.extend(trkid)
feats = torch.cat(feats, dim=0)
vids = torch.tensor(vids).cpu().numpy()
camids = torch.tensor(camids).cpu().numpy()
trkids = torch.tensor(trkids).cpu().numpy()
return feats, vids, camids, trkids
def calc_distmat(feat):
rerank_distmat = compute_jaccard_distance(feat, k1=30, k2=6, search_option=3)
cosine_distmat = batch_cosine_dist(feat, feat).cpu().numpy()
final_dist = rerank_distmat * 0.9 + cosine_distmat * 0.1
return final_dist
def compute_P2(qf, gf, gc, la=3.0):
X = gf
neg_vec = {}
u_cams = np.unique(gc)
P = {}
for cam in u_cams:
curX = gf[gc == cam]
neg_vec[cam] = torch.mean(curX, axis=0)
tmp_eye = torch.eye(X.shape[1]).cuda()
P[cam] = torch.inverse(curX.T.matmul(curX)+curX.shape[0]*la*tmp_eye)
return P, neg_vec
def meanfeat_sub(P, neg_vec, in_feats, in_cams):
out_feats = []
for i in range(in_feats.shape[0]):
camid = in_cams[i]
feat = in_feats[i] - neg_vec[camid]
feat = P[camid].matmul(feat)
feat = feat/torch.norm(feat, p=2)
out_feats.append(feat)
out_feats = torch.stack(out_feats)
return out_feats
if __name__ == '__main__':
parser = argparse.ArgumentParser(description="ReID Baseline Training")
parser.add_argument(
"--config_file", default="", help="path to config file", type=str
)
parser.add_argument("opts", help="Modify config options using the command-line", default=None,
nargs=argparse.REMAINDER)
parser.add_argument('--sched', default='cosine', type=str, metavar='SCHEDULER',
help='LR scheduler (default: "cosine"')
# parser.add_argument('--lr', type=float, default=0.01, metavar='LR',
# help='learning rate (default: 5e-4)')
parser.add_argument('--lr-noise', type=float, nargs='+', default=None, metavar='pct, pct',
help='learning rate noise on/off epoch percentages')
parser.add_argument('--lr-noise-pct', type=float, default=0.67, metavar='PERCENT',
help='learning rate noise limit percent (default: 0.67)')
parser.add_argument('--lr-noise-std', type=float, default=1.0, metavar='STDDEV',
help='learning rate noise std-dev (default: 1.0)')
parser.add_argument('--warmup-lr', type=float, default=1e-6, metavar='LR',
help='warmup learning rate (default: 1e-6)')
parser.add_argument('--min-lr', type=float, default=1e-5, metavar='LR',
help='lower lr bound for cyclic schedulers that hit 0 (1e-5)')
parser.add_argument('--warmup-epochs', type=int, default=5, metavar='N',
help='epochs to warmup LR, if scheduler supports')
parser.add_argument('--cooldown-epochs', type=int, default=10, metavar='N',
help='epochs to cooldown LR at min_lr, after cyclic schedule ends')
parser.add_argument('--decay-rate', '--dr', type=float, default=0.1, metavar='RATE',
help='LR decay rate (default: 0.1)')
parser.add_argument('--epochs', default=120, type=int)
parser.add_argument("--local_rank", default=0, type=int)
args = parser.parse_args()
if args.config_file != "":
cfg.merge_from_file(args.config_file)
cfg.merge_from_list(args.opts)
cfg.freeze()
set_seed(cfg.SOLVER.SEED)
if cfg.MODEL.DIST_TRAIN:
torch.cuda.set_device(args.local_rank)
else:
pass
output_dir = cfg.OUTPUT_DIR
if output_dir and not os.path.exists(output_dir):
os.makedirs(output_dir)
logger = setup_logger("reid_baseline", output_dir, if_train=True)
logger.info("Saving model in the path :{}".format(cfg.OUTPUT_DIR))
logger.info("EPS:%.f LA:%.f"%(cfg.STAGE2.EPS, cfg.STAGE2.LA))
if args.config_file != "":
logger.info("Loaded configuration file {}".format(args.config_file))
with open(args.config_file, 'r') as cf:
config_str = "\n" + cf.read()
# logger.info(config_str)
logger.info("Running with config:\n{}".format(cfg))
if cfg.MODEL.DIST_TRAIN:
torch.distributed.init_process_group(backend='nccl', init_method='env://')
os.environ['CUDA_VISIBLE_DEVICES'] = cfg.MODEL.DEVICE_ID
val_loader, num_query, testset = get_testloader_uda(cfg)
aug_loader, num_query, _ = get_testloader_uda(cfg, aug=True)
num_classes = 1500
model = make_model(cfg, num_class=num_classes)
initial_weights = torch.load(cfg.MODEL.PRETRAIN_PATH, map_location='cpu')
copy_state_dict(initial_weights, model)
#model_ema.classifier.weight.data.copy_(model.classifier.weight.data)
if True:
model.to(args.local_rank)
if torch.cuda.device_count() > 1 and cfg.MODEL.DIST_TRAIN:
print('Using {} GPUs for training'.format(torch.cuda.device_count()))
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[local_rank], find_unused_parameters=True)
for epoch in range(cfg.SOLVER.MAX_EPOCHS):
if epoch % 3 == 0: # and epoch < 9) or (epoch % 6 == 0):
target_features, target_labels, target_camids, target_trkids = extract_features(model, val_loader, print_freq=100)
target_features = F.normalize(target_features, dim=1)
aug_features, _, _, _ = extract_features(model, aug_loader, print_freq=100)
aug_features = F.normalize(aug_features, dim=1)
target_features = (aug_features + target_features) / 2.0
P, neg_vec = compute_P2(target_features, target_features, target_camids, la=cfg.STAGE2.LA)
target_features = meanfeat_sub(P, neg_vec, target_features, target_camids)
#torch.save(target_features, 'target_features.pth')
#target_features = torch.load('target_features.pth')
gallery_trkids = target_trkids[num_query:]
unique_trkids = sorted(list(set(gallery_trkids[gallery_trkids != -1])))
gallery_features = target_features[num_query:]
track_features = []
for i, trkid in enumerate(unique_trkids):
track_feature = torch.mean(gallery_features[gallery_trkids == trkid], dim=0, keepdim=True)
tmp_indices = (gallery_trkids == trkid)
gallery_features[tmp_indices] = gallery_features[tmp_indices] * 0.3 + track_feature * 0.7
target_features[num_query:] = gallery_features
final_dist = calc_distmat(target_features)
final_dist[final_dist < 0.0] = 0.0
final_dist[final_dist > 1.0] = 1.0
cluster = DBSCAN(eps=cfg.STAGE2.EPS, min_samples=10, metric='precomputed', n_jobs=-1)
pseudo_labels = cluster.fit_predict(final_dist)
labelset = list(set(pseudo_labels[pseudo_labels >= 0]))
idxs = np.where(np.in1d(pseudo_labels, labelset))
psolabels = pseudo_labels[idxs]
psofeatures = target_features[idxs]
mean_features = []
for label in labelset:
mean_indices = (psolabels == label)
mean_features.append(torch.mean(psofeatures[mean_indices], dim=0))
mean_features = torch.stack(mean_features).cuda()
num_classes = len(mean_features)
model.num_classes = len(mean_features)
model.classifier = nn.Linear(model.in_planes, len(mean_features), bias=False)
model.classifier.weight = nn.Parameter(mean_features)
del target_features
pids = []
new_dataset = []
for i, (item, label) in enumerate(zip(testset, pseudo_labels)):
if label == -1 or label not in labelset:
continue
pids.append(label)
new_dataset.append((item[0], label, item[2], item[3]))
print('new class are {}, length of new dataset is {}'.format(len(set(pids)), len(new_dataset)))
train_loader = IterLoader(get_trainloader_uda(cfg, new_dataset, num_classes))
train_loader.new_epoch()
loss_func, center_criterion = make_loss(cfg, num_classes=num_classes)
optimizer, optimizer_center = make_optimizer(cfg, model, center_criterion)
do_uda_train(
epoch,
cfg,
model,
center_criterion,
train_loader,
val_loader,
optimizer,
optimizer_center,
loss_func,
num_query, args.local_rank
)
print(cfg.OUTPUT_DIR)