-
Notifications
You must be signed in to change notification settings - Fork 0
/
AlexNet.py
120 lines (96 loc) · 3.61 KB
/
AlexNet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
import torch.nn as nn
class AlexNet3D(nn.Module):
def __init__(self, num_classes=2):
super(AlexNet3D, self).__init__()
self.features = nn.Sequential(
nn.Conv3d(1, 64, kernel_size=11, stride=4, padding=2),
nn.ReLU(inplace=True),
nn.MaxPool3d(kernel_size=3, stride=2),
nn.Conv3d(64, 192, kernel_size=5, padding=2),
nn.ReLU(inplace=True),
nn.MaxPool3d(kernel_size=3, stride=2),
nn.Conv3d(192, 384, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv3d(384, 256, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv3d(256, 256, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.MaxPool3d(kernel_size=3, stride=2),
)
self.classifier = nn.Sequential(
nn.Dropout(),
nn.Linear(256 * 6 * 6 * 6, 4096),
nn.ReLU(inplace=True),
nn.Dropout(),
nn.Linear(4096, 4096),
nn.ReLU(inplace=True),
nn.Linear(4096, num_classes),
)
self.reset_parameters()
def reset_parameters(self):
for weight in self.parameters():
weight.data.uniform_(-0.1, 0.1)
def forward(self, x):
x = self.features(x)
x = x.view(x.size(0), 256 * 6 * 6 * 6)
x = self.classifier(x)
return x
import torch.nn as nn
import torch.utils.model_zoo as model_zoo
import math
__all__ = ['AlexNet', 'alexnet']
model_urls = {
'alexnet': 'https://download.pytorch.org/models/alexnet-owt-4df8aa71.pth',
}
class AlexNet(nn.Module):
def __init__(self, num_classes=1000):
super(AlexNet, self).__init__()
self.features = nn.Sequential(
nn.Conv2d(3, 64, kernel_size=11, stride=4, padding=2),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=3, stride=2),
nn.Conv2d(64, 192, kernel_size=5, padding=2),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=3, stride=2),
nn.Conv2d(192, 384, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(384, 256, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(256, 256, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=3, stride=2),
)
self.classifier = nn.Sequential(
nn.Dropout(),
nn.Linear(256 * 6 * 6, 4096),
nn.ReLU(inplace=True),
nn.Dropout(),
nn.Linear(4096, 4096),
nn.ReLU(inplace=True),
nn.Linear(4096, num_classes),
)
def forward(self, x):
x = self.features(x)
x = x.view(x.size(0), 256 * 6 * 6)
x = self.classifier(x)
return x
def alexnet(pretrained=False, **kwargs):
r"""AlexNet model architecture from the
`"One weird trick..." <https://arxiv.org/abs/1404.5997>`_ paper.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
model = AlexNet(**kwargs)
if pretrained:
model.load_state_dict(model_zoo.load_url(model_urls['alexnet']))
for p in model.features.parameters():
p.requires_grad = False
# fine-tune the last convolution layer
for p in model.features[10].parameters():
p.requires_grad = True
model.classifier.add_module('fc_out', nn.Linear(1000,2))
model.classifier.add_module('sigmoid', nn.LogSoftmax())
stdv = 1.0 / math.sqrt(1000)
for p in model.classifier.fc_out.parameters():
p.data.uniform_(-stdv, stdv)
return model