diff --git a/Cubical.Algebra.AbGroup.Base.html b/Cubical.Algebra.AbGroup.Base.html index c859e5f451..18b8e33fff 100644 --- a/Cubical.Algebra.AbGroup.Base.html +++ b/Cubical.Algebra.AbGroup.Base.html @@ -76,7 +76,7 @@ open IsAbGroup isAbGroup public AbGroup : Type (ℓ-suc ) -AbGroup = TypeWithStr AbGroupStr +AbGroup = TypeWithStr AbGroupStr module _ {G : Type } {0g : G} {_+_ : G G G} { -_ : G G} (is-setG : isSet G) @@ -189,7 +189,7 @@ (m : A A A) (u : A) (inverse : A A) - (e : G A) + (e : G A) (p+ : x y e .fst (G .snd ._+_ x y) m (e .fst x) (e .fst y)) (pu : e .fst (G .snd .0g) u) (pinv : x e .fst (G .snd .-_ x) inverse (e .fst x)) @@ -235,7 +235,7 @@ -- over the unit and inverse from G to A. module _ (G : AbGroup ) {A : Type } (m : A A A) - (e : G A) + (e : G A) ( : x y e .fst (G .snd ._+_ x y) m (e .fst x) (e .fst y)) where diff --git a/Cubical.Algebra.Algebra.Base.html b/Cubical.Algebra.Algebra.Base.html index f3ffa17570..65caba1dd3 100644 --- a/Cubical.Algebra.Algebra.Base.html +++ b/Cubical.Algebra.Algebra.Base.html @@ -35,7 +35,7 @@ record IsAlgebra (R : Ring ) {A : Type ℓ'} (0a 1a : A) (_+_ _·_ : A A A) (-_ : A A) - (_⋆_ : R A A) : Type (ℓ-max ℓ') where + (_⋆_ : R A A) : Type (ℓ-max ℓ') where constructor isalgebra @@ -46,8 +46,8 @@ ·IsMonoid : IsMonoid 1a _·_ ·DistR+ : (x y z : A) x · (y + z) (x · y) + (x · z) ·DistL+ : (x y z : A) (x + y) · z (x · z) + (y · z) - ⋆AssocR : (r : R ) (x y : A) r (x · y) x · (r y) - ⋆AssocL : (r : R ) (x y : A) (r x) · y r (x · y) + ⋆AssocR : (r : R ) (x y : A) r (x · y) x · (r y) + ⋆AssocL : (r : R ) (x y : A) (r x) · y r (x · y) open IsLeftModule +IsLeftModule public @@ -68,7 +68,7 @@ _+_ : A A A _·_ : A A A -_ : A A - _⋆_ : R A A + _⋆_ : R A A isAlgebra : IsAlgebra R 0a 1a _+_ _·_ -_ _⋆_ open IsAlgebra isAlgebra public @@ -116,7 +116,7 @@ module _ {A : Type ℓ'} {0a 1a : A} (isSet-A : isSet A) - {_+_ _·_ : A A A} { -_ : A A} {_⋆_ : R A A} + {_+_ _·_ : A A A} { -_ : A A} {_⋆_ : R A A} (+Assoc : (x y z : A) x + (y + z) (x + y) + z) (+IdR : (x : A) x + 0a x) (+InvR : (x : A) x + (- x) 0a) @@ -126,12 +126,12 @@ (·IdL : (x : A) 1a · x x) (·DistR+ : (x y z : A) x · (y + z) (x · y) + (x · z)) (·DistL+ : (x y z : A) (x + y) · z (x · z) + (y · z)) - (⋆Assoc : (r s : R ) (x : A) (r ·s s) x r (s x)) - (⋆DistR+ : (r : R ) (x y : A) r (x + y) (r x) + (r y)) - (⋆DistL+ : (r s : R ) (x : A) (r +r s) x (r x) + (s x)) + (⋆Assoc : (r s : R ) (x : A) (r ·s s) x r (s x)) + (⋆DistR+ : (r : R ) (x y : A) r (x + y) (r x) + (r y)) + (⋆DistL+ : (r s : R ) (x : A) (r +r s) x (r x) + (s x)) (⋆IdL : (x : A) 1r x x) - (⋆AssocR : (r : R ) (x y : A) r (x · y) x · (r y)) - (⋆AssocL : (r : R ) (x y : A) (r x) · y r (x · y)) + (⋆AssocR : (r : R ) (x y : A) r (x · y) x · (r y)) + (⋆AssocL : (r : R ) (x y : A) (r x) · y r (x · y)) where makeIsAlgebra : IsAlgebra R 0a 1a _+_ _·_ -_ _⋆_ makeIsAlgebra .IsAlgebra.+IsLeftModule = makeIsLeftModule @@ -162,7 +162,7 @@ pres+ : (x y : A) f (x M.+ y) f x N.+ f y pres· : (x y : A) f (x M.· y) f x N.· f y pres- : (x : A) f (M.- x) N.- (f x) - pres⋆ : (r : R ) (y : A) f (r M.⋆ y) r N.⋆ f y + pres⋆ : (r : R ) (y : A) f (r M.⋆ y) r N.⋆ f y unquoteDecl IsAlgebraHomIsoΣ = declareRecordIsoΣ IsAlgebraHomIsoΣ (quote IsAlgebraHom) open IsAlgebraHom @@ -173,7 +173,7 @@ A B : Algebra R AlgebraHom : (M : Algebra R ℓ') (N : Algebra R ℓ'') Type _ -AlgebraHom M N = Σ[ f ( M N ) ] IsAlgebraHom (M .snd) f (N .snd) +AlgebraHom M N = Σ[ f ( M N ) ] IsAlgebraHom (M .snd) f (N .snd) IsAlgebraEquiv : {A : Type ℓ'} {B : Type ℓ''} (M : AlgebraStr R A) (e : A B) (N : AlgebraStr R B) @@ -181,9 +181,9 @@ IsAlgebraEquiv M e N = IsAlgebraHom M (e .fst) N AlgebraEquiv : (M : Algebra R ℓ') (N : Algebra R ℓ'') Type _ -AlgebraEquiv M N = Σ[ e M N ] IsAlgebraEquiv (M .snd) e (N .snd) +AlgebraEquiv M N = Σ[ e M N ] IsAlgebraEquiv (M .snd) e (N .snd) -_$a_ : AlgebraHom A B A B +_$a_ : AlgebraHom A B A B f $a x = fst f x AlgebraEquiv→AlgebraHom : AlgebraEquiv A B AlgebraHom A B @@ -193,7 +193,7 @@ (0a 1a : A) (_+_ _·_ : A A A) (-_ : A A) - (_⋆_ : R A A) + (_⋆_ : R A A) isProp (IsAlgebra R 0a 1a _+_ _·_ -_ _⋆_) isPropIsAlgebra R _ _ _ _ _ _ = let open IsLeftModule in isOfHLevelRetractFromIso 1 IsAlgebraIsoΣ @@ -224,7 +224,7 @@ isSetAlgebraHom _ N = isSetΣ (isSetΠ _ is-set)) λ _ isProp→isSet (isPropIsAlgebraHom _ _ _ _) where - open AlgebraStr (str N) + open AlgebraStr (str N) isSetAlgebraEquiv : (M : Algebra R ℓ') (N : Algebra R ℓ'') @@ -232,8 +232,8 @@ isSetAlgebraEquiv M N = isSetΣ (isOfHLevel≃ 2 M.is-set N.is-set) λ _ isProp→isSet (isPropIsAlgebraHom _ _ _ _) where - module M = AlgebraStr (str M) - module N = AlgebraStr (str N) + module M = AlgebraStr (str M) + module N = AlgebraStr (str N) AlgebraHom≡ : {φ ψ : AlgebraHom A B} fst φ fst ψ φ ψ AlgebraHom≡ = Σ≡Prop λ f isPropIsAlgebraHom _ _ f _ @@ -272,7 +272,7 @@ -- Variable generalization would fail below without the module parameters A and B. {A : Algebra R } {B : Algebra R ℓ'} - {f : A B } + {f : A B } where private @@ -281,9 +281,9 @@ module _ (p1 : f A.1a B.1a) - (p+ : (x y : A ) f (x A.+ y) f x B.+ f y) - ( : (x y : A ) f (x A.· y) f x B.· f y) - (p⋆ : (r : R ) (x : A ) f (r A.⋆ x) r B.⋆ f x) + (p+ : (x y : A ) f (x A.+ y) f x B.+ f y) + ( : (x y : A ) f (x A.· y) f x B.· f y) + (p⋆ : (r : R ) (x : A ) f (r A.⋆ x) r B.⋆ f x) where open IsAlgebraHom diff --git a/Cubical.Algebra.Algebra.Properties.html b/Cubical.Algebra.Algebra.Properties.html index ed7fe459ec..c47c18b018 100644 --- a/Cubical.Algebra.Algebra.Properties.html +++ b/Cubical.Algebra.Algebra.Properties.html @@ -40,13 +40,13 @@ open RingStr (snd R) renaming (_+_ to _+r_ ; _·_ to _·r_) open AlgebraStr (A .snd) - ⋆AnnihilL : (x : A ) 0r x 0a + ⋆AnnihilL : (x : A ) 0r x 0a ⋆AnnihilL = ModuleTheory.⋆AnnihilL R (Algebra→Module A) - ⋆AnnihilR : (r : R ) r 0a 0a + ⋆AnnihilR : (r : R ) r 0a 0a ⋆AnnihilR = ModuleTheory.⋆AnnihilR R (Algebra→Module A) - ⋆Dist· : (x y : R ) (a b : A ) (x ·r y) (a · b) (x a) · (y b) + ⋆Dist· : (x y : R ) (a b : A ) (x ·r y) (a · b) (x a) · (y b) ⋆Dist· x y a b = (x ·r y) (a · b) ≡⟨ ⋆AssocR _ _ _ a · ((x ·r y) b) ≡⟨ cong (a ·_) (⋆Assoc _ _ _) a · (x (y b)) ≡⟨ sym (⋆AssocR _ _ _) @@ -67,7 +67,7 @@ pres⋆ (snd (idAlgebraHom A)) r x = refl compIsAlgebraHom : - {g : B C } {f : A B } + {g : B C } {f : A B } IsAlgebraHom (B .snd) g (C .snd) IsAlgebraHom (A .snd) f (B .snd) IsAlgebraHom (A .snd) (g f) (C .snd) @@ -153,7 +153,7 @@ r (f⁻¹ x) compIsAlgebraEquiv : - {g : B C } {f : A B } + {g : B C } {f : A B } IsAlgebraEquiv (B .snd) g (C .snd) IsAlgebraEquiv (A .snd) f (B .snd) IsAlgebraEquiv (A .snd) (compEquiv f g) (C .snd) @@ -192,13 +192,13 @@ open AlgebraEquivs Algebra≡ : (A B : Algebra R ℓ') ( - Σ[ p A B ] + Σ[ p A B ] Σ[ q0 PathP i p i) (0a (snd A)) (0a (snd B)) ] Σ[ q1 PathP i p i) (1a (snd A)) (1a (snd B)) ] Σ[ r+ PathP i p i p i p i) (_+_ (snd A)) (_+_ (snd B)) ] Σ[ PathP i p i p i p i) (_·_ (snd A)) (_·_ (snd B)) ] Σ[ s- PathP i p i p i) (-_ (snd A)) (-_ (snd B)) ] - Σ[ s⋆ PathP i R p i p i) (_⋆_ (snd A)) (_⋆_ (snd B)) ] + Σ[ s⋆ PathP i R p i p i) (_⋆_ (snd A)) (_⋆_ (snd B)) ] PathP i IsAlgebra R (q0 i) (q1 i) (r+ i) ( i) (s- i) (s⋆ i)) (isAlgebra (snd A)) (isAlgebra (snd B))) (A B) @@ -208,13 +208,13 @@ theIso : Iso _ _ fun theIso (p , q0 , q1 , r+ , , s- , s⋆ , t) i = p i , algebrastr (q0 i) (q1 i) (r+ i) ( i) (s- i) (s⋆ i) (t i) - inv theIso x = cong ⟨_⟩ x , cong (0a snd) x , cong (1a snd) x + inv theIso x = cong ⟨_⟩ x , cong (0a snd) x , cong (1a snd) x , cong (_+_ snd) x , cong (_·_ snd) x , cong (-_ snd) x , cong (_⋆_ snd) x , cong (isAlgebra snd) x rightInv theIso _ = refl leftInv theIso _ = refl - caracAlgebra≡ : (p q : A B) cong ⟨_⟩ p cong ⟨_⟩ q p q + caracAlgebra≡ : (p q : A B) cong ⟨_⟩ p cong ⟨_⟩ q p q caracAlgebra≡ {A = A} {B = B} p q P = sym (transportTransport⁻ (ua (Algebra≡ A B)) p) ∙∙ cong (transport (ua (Algebra≡ A B))) helper @@ -230,14 +230,14 @@ λ _ isPropΣ (isOfHLevelPathP' 1 (isSetΠ λ _ is-set (snd B)) _ _) λ _ isPropΣ (isOfHLevelPathP' 1 (isSetΠ2 λ _ _ is-set (snd B)) _ _) λ _ isOfHLevelPathP 1 (isPropIsAlgebra _ _ _ _ _ _ _) _ _) - (transportRefl (cong ⟨_⟩ p) P sym (transportRefl (cong ⟨_⟩ q))) + (transportRefl (cong ⟨_⟩ p) P sym (transportRefl (cong ⟨_⟩ q))) uaCompAlgebraEquiv : (f : AlgebraEquiv A B) (g : AlgebraEquiv B C) uaAlgebra (compAlgebraEquiv f g) uaAlgebra f uaAlgebra g uaCompAlgebraEquiv f g = caracAlgebra≡ _ _ ( - cong ⟨_⟩ (uaAlgebra (compAlgebraEquiv f g)) + cong ⟨_⟩ (uaAlgebra (compAlgebraEquiv f g)) ≡⟨ uaCompEquiv _ _ - cong ⟨_⟩ (uaAlgebra f) cong ⟨_⟩ (uaAlgebra g) - ≡⟨ sym (cong-∙ ⟨_⟩ (uaAlgebra f) (uaAlgebra g)) - cong ⟨_⟩ (uaAlgebra f uaAlgebra g) ) + cong ⟨_⟩ (uaAlgebra f) cong ⟨_⟩ (uaAlgebra g) + ≡⟨ sym (cong-∙ ⟨_⟩ (uaAlgebra f) (uaAlgebra g)) + cong ⟨_⟩ (uaAlgebra f uaAlgebra g) ) \ No newline at end of file diff --git a/Cubical.Algebra.Algebra.Subalgebra.html b/Cubical.Algebra.Algebra.Subalgebra.html index 325392c567..6036babfe7 100644 --- a/Cubical.Algebra.Algebra.Subalgebra.html +++ b/Cubical.Algebra.Algebra.Subalgebra.html @@ -18,9 +18,9 @@ (R : Ring ) (A : Algebra R ℓ') where -open AlgebraStr (str A) +open AlgebraStr (str A) -record isSubalgebra (S : A ) : Type (ℓ-max ℓ') where +record isSubalgebra (S : A ) : Type (ℓ-max ℓ') where field submodule : isSubmodule R (Algebra→Module A) S submonoid : isSubmonoid (Algebra→MultMonoid A) S @@ -30,12 +30,12 @@ renaming (ε-closed to 1a-closed) module _ - (S : A ) - (+-closed : {x y : A } x S y S x + y S) + (S : A ) + (+-closed : {x y : A } x S y S x + y S) (0a-closed : 0a S) - (⋆-closed : {x : A } (r : R ) x S r x S) + (⋆-closed : {x : A } (r : R ) x S r x S) (1a-closed : 1a S) - (·-closed : {x y : A } (x S) (y S) (x · y) S) + (·-closed : {x y : A } (x S) (y S) (x · y) S) where private module sAlg = isSubalgebra @@ -50,17 +50,17 @@ makeSubalgebra .sAlg.submonoid .sMon.·-closed = ·-closed Subalgebra : Type (ℓ-max (ℓ-suc ℓ')) -Subalgebra = Σ[ S A ] isSubalgebra S +Subalgebra = Σ[ S A ] isSubalgebra S module _ ((S , isSubalgebra) : Subalgebra) where open isSubalgebra isSubalgebra private module algStr = AlgebraStr - Subalgebra→Algebra≡ : {x y : Σ[ a A ] a S} fst x fst y x y + Subalgebra→Algebra≡ : {x y : Σ[ a A ] a S} fst x fst y x y Subalgebra→Algebra≡ eq = Σ≡Prop (∈-isProp S) eq Subalgebra→Algebra : Algebra R ℓ' - Subalgebra→Algebra .fst = Σ[ a A ] a S + Subalgebra→Algebra .fst = Σ[ a A ] a S Subalgebra→Algebra .snd .algStr.0a = 0a , 0a-closed Subalgebra→Algebra .snd .algStr.1a = 1a , 1a-closed Subalgebra→Algebra .snd .algStr._+_ (a , a∈) (b , b∈) = a + b , +-closed a∈ b∈ diff --git a/Cubical.Algebra.CommAlgebra.Base.html b/Cubical.Algebra.CommAlgebra.Base.html index 530fa16b7a..557406ad43 100644 --- a/Cubical.Algebra.CommAlgebra.Base.html +++ b/Cubical.Algebra.CommAlgebra.Base.html @@ -29,7 +29,7 @@ record IsCommAlgebra (R : CommRing ) {A : Type ℓ'} (0a : A) (1a : A) (_+_ : A A A) (_·_ : A A A) (-_ : A A) - (_⋆_ : R A A) : Type (ℓ-max ℓ') where + (_⋆_ : R A A) : Type (ℓ-max ℓ') where constructor iscommalgebra @@ -51,7 +51,7 @@ _+_ : A A A _·_ : A A A -_ : A A - _⋆_ : R A A + _⋆_ : R A A isCommAlgebra : IsCommAlgebra R 0a 1a _+_ _·_ -_ _⋆_ open IsCommAlgebra isCommAlgebra public @@ -80,7 +80,7 @@ module _ {A : Type ℓ'} {0a 1a : A} - {_+_ _·_ : A A A} { -_ : A A} {_⋆_ : R A A} + {_+_ _·_ : A A A} { -_ : A A} {_⋆_ : R A A} (isSet-A : isSet A) (+Assoc : (x y z : A) x + (y + z) (x + y) + z) (+IdR : (x : A) x + 0a x) @@ -90,11 +90,11 @@ (·IdL : (x : A) 1a · x x) (·DistL+ : (x y z : A) (x + y) · z (x · z) + (y · z)) (·Comm : (x y : A) x · y y · x) - (⋆Assoc : (r s : R ) (x : A) (r ·s s) x r (s x)) - (⋆DistR+ : (r : R ) (x y : A) r (x + y) (r x) + (r y)) - (⋆DistL+ : (r s : R ) (x : A) (r +r s) x (r x) + (s x)) + (⋆Assoc : (r s : R ) (x : A) (r ·s s) x r (s x)) + (⋆DistR+ : (r : R ) (x y : A) r (x + y) (r x) + (r y)) + (⋆DistL+ : (r s : R ) (x : A) (r +r s) x (r x) + (s x)) (⋆IdL : (x : A) 1r x x) - (⋆AssocL : (r : R ) (x y : A) (r x) · y r (x · y)) + (⋆AssocL : (r : R ) (x y : A) (r x) · y r (x · y)) where @@ -152,7 +152,7 @@ commAlgebraFromCommRing→CommRing : CommAlgebra→CommRing commAlgebraFromCommRing S -- Note that this is not definitional: the proofs of the axioms might differ. - commAlgebraFromCommRing→CommRing i .fst = S + commAlgebraFromCommRing→CommRing i .fst = S commAlgebraFromCommRing→CommRing i .snd .CommRingStr.0r = 0r commAlgebraFromCommRing→CommRing i .snd .CommRingStr.1r = 1S commAlgebraFromCommRing→CommRing i .snd .CommRingStr._+_ = _+_ @@ -171,7 +171,7 @@ IsAlgebraHom (CommAlgebraStr→AlgebraStr M) (e .fst) (CommAlgebraStr→AlgebraStr N) CommAlgebraEquiv : (M : CommAlgebra R ℓ') (N : CommAlgebra R ℓ'') Type _ - CommAlgebraEquiv M N = Σ[ e M N ] IsCommAlgebraEquiv (M .snd) e (N .snd) + CommAlgebraEquiv M N = Σ[ e M N ] IsCommAlgebraEquiv (M .snd) e (N .snd) IsCommAlgebraHom : {A : Type ℓ'} {B : Type ℓ''} (M : CommAlgebraStr R A) (f : A B) (N : CommAlgebraStr R B) @@ -180,7 +180,7 @@ IsAlgebraHom (CommAlgebraStr→AlgebraStr M) f (CommAlgebraStr→AlgebraStr N) CommAlgebraHom : (M : CommAlgebra R ℓ') (N : CommAlgebra R ℓ'') Type _ - CommAlgebraHom M N = Σ[ f ( M N ) ] IsCommAlgebraHom (M .snd) f (N .snd) + CommAlgebraHom M N = Σ[ f ( M N ) ] IsCommAlgebraHom (M .snd) f (N .snd) CommAlgebraEquiv→CommAlgebraHom : {A : CommAlgebra R ℓ'} {B : CommAlgebra R ℓ''} CommAlgebraEquiv A B CommAlgebraHom A B @@ -246,7 +246,7 @@ (0a 1a : A) (_+_ _·_ : A A A) (-_ : A A) - (_⋆_ : R A A) + (_⋆_ : R A A) isProp (IsCommAlgebra R 0a 1a _+_ _·_ -_ _⋆_) isPropIsCommAlgebra R _ _ _ _ _ _ = isOfHLevelRetractFromIso 1 IsCommAlgebraIsoΣ diff --git a/Cubical.Algebra.CommAlgebra.FGIdeal.html b/Cubical.Algebra.CommAlgebra.FGIdeal.html index a04c4dd3de..b5454dc20e 100644 --- a/Cubical.Algebra.CommAlgebra.FGIdeal.html +++ b/Cubical.Algebra.CommAlgebra.FGIdeal.html @@ -26,7 +26,7 @@ generatedIdeal A = generatedIdealCommRing (CommAlgebra→CommRing A) incInIdeal : {n : } (A : CommAlgebra R ) - (U : FinVec A n) (i : Fin n) U i fst (generatedIdeal A U) + (U : FinVec A n) (i : Fin n) U i fst (generatedIdeal A U) incInIdeal A = ringIncInIdeal (CommAlgebra→CommRing A) syntax generatedIdeal A V = V ⟩[ A ] diff --git a/Cubical.Algebra.CommAlgebra.FPAlgebra.Base.html b/Cubical.Algebra.CommAlgebra.FPAlgebra.Base.html index a42f92aa54..eb8273a789 100644 --- a/Cubical.Algebra.CommAlgebra.FPAlgebra.Base.html +++ b/Cubical.Algebra.CommAlgebra.FPAlgebra.Base.html @@ -40,14 +40,14 @@ Polynomials : (n : ) CommAlgebra R Polynomials n = R [ Fin n ] - evPoly : {n : } (A : CommAlgebra R ) Polynomials n FinVec A n A + evPoly : {n : } (A : CommAlgebra R ) Polynomials n FinVec A n A evPoly A P values = fst (freeInducedHom A values) P - evPolyPoly : {n : } (P : Polynomials n ) evPoly (Polynomials n) P var P + evPolyPoly : {n : } (P : Polynomials n ) evPoly (Polynomials n) P var P evPolyPoly {n = n} P = cong u fst u P) (inducedHomVar R (Fin n)) evPolyHomomorphic : {n : } (A B : CommAlgebra R ) (f : CommAlgebraHom A B) - (P : Polynomials n ) (values : FinVec A n) + (P : Polynomials n ) (values : FinVec A n) (fst f) (evPoly A P values) evPoly B P (fst f values) evPolyHomomorphic A B f P values = (fst f) (evPoly A P values) ≡⟨ refl @@ -57,7 +57,7 @@ evPoly B P (fst f values) where open AlgebraHoms - module _ {m : } (n : ) (relation : FinVec Polynomials n m) where + module _ {m : } (n : ) (relation : FinVec Polynomials n m) where open CommAlgebraStr using (0a) open Cubical.Algebra.Algebra.Properties.AlgebraHoms @@ -75,7 +75,7 @@ modRelations : CommAlgebraHom (Polynomials n) (Polynomials n / relationsIdeal) modRelations = quotientHom (Polynomials n) relationsIdeal - generator : (i : Fin n) FPAlgebra + generator : (i : Fin n) FPAlgebra generator = fst modRelations var relationsHold : (i : Fin m) evPoly FPAlgebra (relation i) generator 0a (snd FPAlgebra) @@ -94,7 +94,7 @@ module _ (A : CommAlgebra R ) - (values : FinVec A n) + (values : FinVec A n) (relationsHold : (i : Fin m) evPoly A (relation i) values 0a (snd A)) where abstract {- @@ -173,7 +173,7 @@ Σ≡Prop _ isPropΠ _ is-set _ _)) (unique f mapsValues)} where - open CommAlgebraStr (str A) + open CommAlgebraStr (str A) {- ∀ A : Comm-R-Algebra, ∀ J : Finitely-generated-Ideal, @@ -181,7 +181,7 @@ -} zeroLocus : (A : CommAlgebra R ) Type - zeroLocus A = Σ[ v FinVec A n ] ((i : Fin m) evPoly A (relation i) v 0a (snd A)) + zeroLocus A = Σ[ v FinVec A n ] ((i : Fin m) evPoly A (relation i) v 0a (snd A)) inducedHomFP : (A : CommAlgebra R ) zeroLocus A CommAlgebraHom FPAlgebra A @@ -206,9 +206,9 @@ where compHom : CommAlgebraHom (Polynomials n) A compHom = CommAlgebraHoms.compCommAlgebraHom (Polynomials n) FPAlgebra A modRelations f - value : FinVec A n + value : FinVec A n value = (Iso.fun (homMapIso A)) compHom - step1 : (x : Polynomials n ) evPoly A x value fst compHom (evPoly (Polynomials n) x var) + step1 : (x : Polynomials n ) evPoly A x value fst compHom (evPoly (Polynomials n) x var) step1 x = sym (evPolyHomomorphic (Polynomials n) A compHom x var) FPHomIso : {A : CommAlgebra R } @@ -223,7 +223,7 @@ (0a (snd A)))) (funExt (inducedHomOnGenerators A (fst b) (snd b))) where - open CommAlgebraStr (str A) + open CommAlgebraStr (str A) Iso.leftInv (FPHomIso {A}) = λ a Σ≡Prop f isPropIsCommAlgebraHom {} {R} {} {} {FPAlgebra} {A} f) λ i fst (unique A @@ -245,7 +245,7 @@ field n : m : - relations : FinVec Polynomials n m + relations : FinVec Polynomials n m equiv : CommAlgebraEquiv (FPAlgebra n relations) A isFPAlgebra : (A : CommAlgebra R ℓ') Type _ diff --git a/Cubical.Algebra.CommAlgebra.FPAlgebra.Instances.html b/Cubical.Algebra.CommAlgebra.FPAlgebra.Instances.html index 6c5f819e65..808bc5c0db 100644 --- a/Cubical.Algebra.CommAlgebra.FPAlgebra.Instances.html +++ b/Cubical.Algebra.CommAlgebra.FPAlgebra.Instances.html @@ -94,7 +94,7 @@ fst toA evaluateAt B fromA ≡⟨ refl fst toA generator _ _ ≡⟨ funExt (inducedHomOnGenerators _ _ _ _ _) Construction.var ) - toAAsEquiv : B A + toAAsEquiv : B A toAAsEquiv = isoToEquiv (iso (fst toA) (fst fromA) a i fst (inverse2 i) a) @@ -148,7 +148,7 @@ {- Quotients of the base ring by finitely generated ideals are finitely presented. -} - module _ {m : } (xs : FinVec R m) where + module _ {m : } (xs : FinVec R m) where ⟨xs⟩ : IdealsIn (initialCAlg R) ⟨xs⟩ = generatedIdeal (initialCAlg R) xs @@ -156,7 +156,7 @@ open CommAlgebraStr ⦃...⦄ private - rels : FinVec Polynomials {R = R} 0 m + rels : FinVec Polynomials {R = R} 0 m rels = Construction.const xs B = FPAlgebra 0 rels @@ -185,9 +185,9 @@ toA : CommAlgebraHom B R/⟨xs⟩ toA = inducedHom 0 rels R/⟨xs⟩ ()) relation-holds where - vals : FinVec R/⟨xs⟩ 0 + vals : FinVec R/⟨xs⟩ 0 vals () - vals' : FinVec initialCAlg R 0 + vals' : FinVec initialCAlg R 0 vals' () relation-holds = λ i evPoly R/⟨xs⟩ (rels i) vals ≡⟨ sym @@ -233,7 +233,7 @@ toFrom = injectivePrecomp (initialCAlg R) ⟨xs⟩ R/⟨xs⟩ (toA ∘a fromA) (idCAlgHom R/⟨xs⟩) (isContr→isProp (initialityContr R R/⟨xs⟩) _ _) - module _ {m : } (x : R ) where + module _ {m : } (x : R ) where R/⟨x⟩FP : FinitePresentation (initialCAlg R / generatedIdeal (initialCAlg R) (replicateFinVec 1 x)) R/⟨x⟩FP = R/⟨xs⟩FP (replicateFinVec 1 x) \ No newline at end of file diff --git a/Cubical.Algebra.CommAlgebra.FreeCommAlgebra.OnCoproduct.html b/Cubical.Algebra.CommAlgebra.FreeCommAlgebra.OnCoproduct.html index a9d026e17f..c6e427562e 100644 --- a/Cubical.Algebra.CommAlgebra.FreeCommAlgebra.OnCoproduct.html +++ b/Cubical.Algebra.CommAlgebra.FreeCommAlgebra.OnCoproduct.html @@ -129,7 +129,7 @@ inverse to each other. -} - incVar : (x : I J) R[I][J] + incVar : (x : I J) R[I][J] incVar (inl i) = const (var i) incVar (inr j) = var j @@ -140,28 +140,28 @@ fromOnGenerators : (x : I J) fst from (incVar x) (var x) fromOnGenerators (inl i) = fst from (const (var i)) ≡⟨⟩ - (subst X R[I][J] X) (cong fst ≡R[I⊎J]) (fst from')) (const (var i)) ≡⟨ step1 - (subst X R[I][J] X) refl (fst from')) (const (var i)) ≡⟨ step2 + (subst X R[I][J] X) (cong fst ≡R[I⊎J]) (fst from')) (const (var i)) ≡⟨ step1 + (subst X R[I][J] X) refl (fst from')) (const (var i)) ≡⟨ step2 (fst from') (const (var i)) ≡⟨⟩ var (inl i) · 1a ≡⟨ ·IdR _ var (inl i) where step1 : _ _ - step1 = cong u subst X R[I][J] X) u (fst from') (const (var i))) fst≡R[I⊎J] + step1 = cong u subst X R[I][J] X) u (fst from') (const (var i))) fst≡R[I⊎J] step2 : _ _ step2 = cong u u (const (var i))) - (substRefl {B = λ (X : Type ) R[I][J] X} (fst from')) + (substRefl {B = λ (X : Type ) R[I][J] X} (fst from')) fromOnGenerators (inr j) = fst from (var j) ≡⟨⟩ - (subst X R[I][J] X) (cong fst ≡R[I⊎J]) (fst from')) (var j) ≡⟨ step1 - (subst X R[I][J] X) refl (fst from')) (var j) ≡⟨ step2 + (subst X R[I][J] X) (cong fst ≡R[I⊎J]) (fst from')) (var j) ≡⟨ step1 + (subst X R[I][J] X) refl (fst from')) (var j) ≡⟨ step2 (fst from') (var j) ≡⟨⟩ (var (inr j)) - where step1 = cong u subst X R[I][J] X) u (fst from') (var j)) fst≡R[I⊎J] + where step1 = cong u subst X R[I][J] X) u (fst from') (var j)) fst≡R[I⊎J] step2 = cong u u (var j)) - (substRefl {B = λ (X : Type ) R[I][J] X} (fst from')) + (substRefl {B = λ (X : Type ) R[I][J] X} (fst from')) open AlgebraHoms - fromTo : (x : R [ I J ] ) fst (from ∘a to) x x + fromTo : (x : R [ I J ] ) fst (from ∘a to) x x fromTo = isIdByUMP (from ∘a to) λ x fst (from ∘a to) (var x) ≡⟨ cong u fst from u) (toOnGenerators x) fst from (incVar x) ≡⟨ fromOnGenerators x @@ -224,12 +224,12 @@ to∘ψOnVar : (i : I) fst (to ∘a ψOverR) (var i) const (var i) to∘ψOnVar i = refl - to∘ψ≡const : (x : R [ I ] ) fst to (fst ψ x) const x + to∘ψ≡const : (x : R [ I ] ) fst to (fst ψ x) const x to∘ψ≡const = equalByUMP R[I][J] (to ∘a ψOverR) constHom to∘ψOnVar - toFromOverR[I] : (x : R[I][J]overR[I] ) fst (toOverR[I] ∘a fromOverR[I]) x x + toFromOverR[I] : (x : R[I][J]overR[I] ) fst (toOverR[I] ∘a fromOverR[I]) x x toFromOverR[I] = isIdByUMP (toOverR[I] ∘a fromOverR[I]) λ _ refl {- export bundled results -} diff --git a/Cubical.Algebra.CommAlgebra.FreeCommAlgebra.Properties.html b/Cubical.Algebra.CommAlgebra.FreeCommAlgebra.Properties.html index 5dd6865fe0..a99842a2dd 100644 --- a/Cubical.Algebra.CommAlgebra.FreeCommAlgebra.Properties.html +++ b/Cubical.Algebra.CommAlgebra.FreeCommAlgebra.Properties.html @@ -56,22 +56,22 @@ Construction of the 'elimProp' eliminator. -} module _ - {P : R [ I ] Type ℓ''} + {P : R [ I ] Type ℓ''} (isPropP : {x : _} isProp (P x)) (onVar : {x : I} P (var x)) - (onConst : {r : R } P (const r)) - (on+ : {x y : R [ I ] } P x P y P (x C.+ y)) - (on· : {x y : R [ I ] } P x P y P (x C.· y)) + (onConst : {r : R } P (const r)) + (on+ : {x y : R [ I ] } P x P y P (x C.+ y)) + (on· : {x y : R [ I ] } P x P y P (x C.· y)) where private - on- : {x : R [ I ] } P x P (C.- x) + on- : {x : R [ I ] } P x P (C.- x) on- {x} Px = subst P (minusByMult x) (on· onConst Px) where open ModuleTheory _ (Algebra→Module (CommAlgebra→Algebra (R [ I ]))) -- A helper to deal with the path constructor cases. mkPathP : - {x0 x1 : R [ I ] } + {x0 x1 : R [ I ] } (p : x0 x1) (Px0 : P (x0)) (Px1 : P (x1)) @@ -150,7 +150,7 @@ {- Construction of the induced map. -} - module _ (A : CommAlgebra R ℓ'') (φ : I A ) where + module _ (A : CommAlgebra R ℓ'') (φ : I A ) where open CommAlgebraStr (A .snd) open AlgebraTheory (CommRing→Ring R) (CommAlgebra→Algebra A) @@ -160,7 +160,7 @@ imageOf1Works : 1r 1a 1a imageOf1Works = ⋆IdL 1a - inducedMap : R [ I ] A + inducedMap : R [ I ] A inducedMap (var x) = φ x inducedMap (const r) = r 1a inducedMap (P C.+ Q) = (inducedMap P) + (inducedMap Q) @@ -225,10 +225,10 @@ Hom = CommAlgebraHom (R [ I ]) A open IsAlgebraHom - evaluateAt : Hom I A + evaluateAt : Hom I A evaluateAt φ x = φ .fst (var x) - mapRetrievable : (φ : I A ) + mapRetrievable : (φ : I A ) evaluateAt (inducedHom A φ) φ mapRetrievable φ = refl @@ -301,7 +301,7 @@ (A : CommAlgebra R ℓ'') (f g : CommAlgebraHom (R [ I ]) A) ((i : I) fst f (Construction.var i) fst g (Construction.var i)) - (x : R [ I ] ) fst f x fst g x + (x : R [ I ] ) fst f x fst g x equalByUMP {R = R} {I = I} A f g = funExt⁻ cong fst isoFunInjective (homMapIso A) f g funExt {- A corollary, which is useful for constructing isomorphisms to @@ -309,7 +309,7 @@ isIdByUMP : {R : CommRing } {I : Type ℓ'} (f : CommAlgebraHom (R [ I ]) (R [ I ])) ((i : I) fst f (Construction.var i) Construction.var i) - (x : R [ I ] ) fst f x x + (x : R [ I ] ) fst f x x isIdByUMP {R = R} {I = I} f p = equalByUMP (R [ I ]) f (idCAlgHom (R [ I ])) p -- The homomorphism induced by the variables is the identity. @@ -322,7 +322,7 @@ A′ = CommAlgebra→Algebra A B′ = CommAlgebra→Algebra B R′ = (CommRing→Ring R) - ν : AlgebraHom A′ B′ ( A B ) + ν : AlgebraHom A′ B′ ( A B ) ν φ = φ .fst {- @@ -341,7 +341,7 @@ Hom(R[I],B) ← (I → B) -} natIndHomR : {I : Type ℓ'} (ψ : CommAlgebraHom A B) - (ϕ : I A ) + (ϕ : I A ) ψ ∘a inducedHom A ϕ inducedHom B (fst ψ ϕ) natIndHomR ψ ϕ = isoFunInjective (homMapIso B) _ _ (evaluateAt B (ψ ∘a (inducedHom A ϕ)) ≡⟨ refl diff --git a/Cubical.Algebra.CommAlgebra.Instances.Unit.html b/Cubical.Algebra.CommAlgebra.Instances.Unit.html index c7249d7fae..697d8afae6 100644 --- a/Cubical.Algebra.CommAlgebra.Instances.Unit.html +++ b/Cubical.Algebra.CommAlgebra.Instances.Unit.html @@ -48,7 +48,7 @@ open CommAlgebraStr (snd A) module _ (1≡0 : 1a 0a) where - 1≡0→isContr : isContr A + 1≡0→isContr : isContr A 1≡0→isContr = 0a , λ a 0a ≡⟨ step1 a a · 0a ≡⟨ cong b a · b) (sym 1≡0) @@ -56,9 +56,9 @@ a where S = CommAlgebra→CommRing A open CommRingStr (snd S) renaming (_·_ to _·s_) - step1 : (x : A ) 0r x ·s 0r + step1 : (x : A ) 0r x ·s 0r step1 = solve S - step2 : (x : A ) x ·s 1r x + step2 : (x : A ) x ·s 1r x step2 = solve S equivFrom1≡0 : CommAlgebraEquiv A UnitCommAlgebra diff --git a/Cubical.Algebra.CommAlgebra.LocalisationAlgebra.html b/Cubical.Algebra.CommAlgebra.LocalisationAlgebra.html index 4e7a3cb2b6..3d7fcff2b3 100644 --- a/Cubical.Algebra.CommAlgebra.LocalisationAlgebra.html +++ b/Cubical.Algebra.CommAlgebra.LocalisationAlgebra.html @@ -38,7 +38,7 @@ module _ {ℓAlg : Level} (A : CommAlgebra R ℓAlg) - (S : A ) + (S : A ) (SMultClosedSubset : isMultClosedSubset (CommAlgebra→CommRing A) S) where @@ -46,10 +46,10 @@ (CommAlgebra→CommRing A) S SMultClosedSubset private module Units (A : CommAlgebra R ℓAlg) where - : A + : A = CommRing._ˣ (CommAlgebra→CommRing A) - _⁻¹ : (a : A ) a A + _⁻¹ : (a : A ) a A _⁻¹ a a-inv = fst a-inv open Units @@ -64,14 +64,14 @@ open CommRingStr {{ ... }} instance - _ = str R - _ = str S⁻¹Aᵣ - _ = str (CommAlgebra→CommRing A) + _ = str R + _ = str S⁻¹Aᵣ + _ = str (CommAlgebra→CommRing A) - _⋆ₚ_ : R A × RLoc.S A × RLoc.S + _⋆ₚ_ : R A × RLoc.S A × RLoc.S r ⋆ₚ (a , s) = (r A.⋆ a) , s - _⋆_ : R S⁻¹Aᵣ S⁻¹Aᵣ + _⋆_ : R S⁻¹Aᵣ S⁻¹Aᵣ _⋆_ r = SQ.setQuotUnaryOp (_⋆ₚ_ r) (a , s) (a' , s') @@ -80,31 +80,31 @@ cong (A._⋆_ r) eq sym (rearrange r (fst s-com) a' (fst s))) where - rearrange : (r : R ) (x y z : A ) x · (r A.⋆ y) · z r A.⋆ (x · y · z) + rearrange : (r : R ) (x y z : A ) x · (r A.⋆ y) · z r A.⋆ (x · y · z) rearrange r x y z = cong ( z) (sym (A.⋆AssocR r x y)) A.⋆AssocL r (x · y) z - ·Assoc⋆ : (r r' : R ) (x : S⁻¹Aᵣ ) (r · r') x r (r' x) + ·Assoc⋆ : (r r' : R ) (x : S⁻¹Aᵣ ) (r · r') x r (r' x) ·Assoc⋆ r r' = SQ.elimProp _ SQ.squash/ _ _) λ (a , _) cong SQ.[_] (≡-× (A.⋆Assoc r r' a) refl) - ⋆DistR+ : (r : R ) (x y : S⁻¹Aᵣ ) r (x + y) (r x) + (r y) + ⋆DistR+ : (r : R ) (x y : S⁻¹Aᵣ ) r (x + y) (r x) + (r y) ⋆DistR+ r = SQ.elimProp2 _ _ SQ.squash/ _ _) λ (a , s , _) (b , s' , _) cong SQ.[_] (≡-× (rearrange a b s s') refl) - where rearrange : (a b s s' : A ) + where rearrange : (a b s s' : A ) r A.⋆ (a · s' + b · s) (r A.⋆ a) · s' + (r A.⋆ b) · s rearrange a b s s' = A.⋆DistR+ r _ _ cong₂ _+_ (sym $ A.⋆AssocL r a s') (sym $ A.⋆AssocL r b s) - ⋆DistL+ : (r r' : R ) (x : S⁻¹Aᵣ ) (r + r') x (r x) + (r' x) + ⋆DistL+ : (r r' : R ) (x : S⁻¹Aᵣ ) (r + r') x (r x) + (r' x) ⋆DistL+ r r' = SQ.elimProp _ SQ.squash/ _ _) λ (a , s , _) SQ.eq/ _ _ ( (1r , containsOne) , sym (·Assoc 1r _ _) cong (1r ·_) (rearrange a s) ·Assoc 1r _ _) - where rearrange : (a s : A ) + where rearrange : (a s : A ) (r + r') A.⋆ a · (s · s) ((r A.⋆ a) · s + (r' A.⋆ a) · s) · s rearrange a s = A.⋆AssocL (r + r') a (s · s) cong ((r + r') A.⋆_) (·Assoc a s s) @@ -113,11 +113,11 @@ cong₂ _+_ (sym $ A.⋆AssocL r a s) (sym $ A.⋆AssocL r' a s)) - ⋆IdL : (x : S⁻¹Aᵣ ) 1r x x + ⋆IdL : (x : S⁻¹Aᵣ ) 1r x x ⋆IdL = SQ.elimProp _ SQ.squash/ _ _) λ (a , _) cong SQ.[_] (≡-× (A.⋆IdL a) refl) - ⋆AssocL : (r : R ) (x y : S⁻¹Aᵣ ) (r x) · y r (x · y) + ⋆AssocL : (r : R ) (x y : S⁻¹Aᵣ ) (r x) · y r (x · y) ⋆AssocL r = SQ.elimProp2 _ _ SQ.squash/ _ _) λ (a , _) (b , _) cong SQ.[_] (≡-× (A.⋆AssocL r a b) refl) @@ -136,8 +136,8 @@ open CommAlgebraStr {{ ... }} instance - _ = str A - _ = str S⁻¹AAsCommAlgebra + _ = str A + _ = str S⁻¹AAsCommAlgebra hasLocUniversalProp : (X : CommAlgebra R ℓAlg) (φ : CommAlgebraHom A X) (∀ s s S fst φ s X ˣ) @@ -171,7 +171,7 @@ S⁻¹AHasUniversalProp B ψ ψS⊂Bˣ = (χₐ , χₐcomm) , χₐunique where - instance _ = str B + instance _ = str B -- Our strategy to build the above 3 using the ring equivalents is as -- follows: @@ -216,10 +216,10 @@ -- This is the template type for the _⋆_ preservation property we want -- to transport. - type-pres⋆ : (S : CommRing ℓAlg) (_⋆_ : R S S ) + type-pres⋆ : (S : CommRing ℓAlg) (_⋆_ : R S S ) (f : CommRingHom S (CommAlgebra→CommRing B)) Type _ type-pres⋆ S _S⋆_ f = - (r : R ) (a : S ) (f .fst) (r S⋆ a) r (f .fst) a + (r : R ) (a : S ) (f .fst) (r S⋆ a) r (f .fst) a -- The original function we get with the UP respects ⋆. original-pres⋆ : type-pres⋆ RLoc.S⁻¹RAsCommRing _⋆_ (original-univ .fst .fst) @@ -232,7 +232,7 @@ pres⋆ : type-pres⋆ (CommAlgebra→CommRing S⁻¹AAsCommAlgebra) _⋆_ (univ .fst .fst) pres⋆ = transport i type-pres⋆ (S⁻¹AAsCommAlgebra→CommRing (~ i)) - (_⋆_ str S⁻¹AAsCommAlgebra ⦄) + (_⋆_ str S⁻¹AAsCommAlgebra ⦄) (univ-transport-filler i .fst .fst)) original-pres⋆ @@ -270,8 +270,8 @@ private module Rec (P : Subalgebra R S⁻¹AAsCommAlgebra) - (A/1∈P : (a : A ) (/1AsCommAlgebraHom .fst a) (P .fst)) - (1/S∈P : (s : A ) (s∈S : s S) + (A/1∈P : (a : A ) (/1AsCommAlgebraHom .fst a) (P .fst)) + (1/S∈P : (s : A ) (s∈S : s S) (_⁻¹ S⁻¹AAsCommAlgebra ((/1AsCommAlgebraHom .fst) s) RUniv.S/1⊆S⁻¹Rˣ s s∈S ⦄) (P .fst)) @@ -284,7 +284,7 @@ mor : CommAlgebraHom A totalg mor = SubalgebraHom R S⁻¹AAsCommAlgebra P A /1AsCommAlgebraHom A/1∈P - morS⊂totalgˣ : (s : A ) (s∈S : s S) (fst mor s totalg ˣ) + morS⊂totalgˣ : (s : A ) (s∈S : s S) (fst mor s totalg ˣ) morS⊂totalgˣ s s∈S = let inv = RUniv.S/1⊆S⁻¹Rˣ s s∈S in (inv .fst , 1/S∈P s s∈S) , totalg≡ (inv .snd) @@ -322,7 +322,7 @@ eq = (sym $ cong fst $ snd contr-at-/1AsCommAlgebraHom post-composed) (cong fst $ snd contr-at-/1AsCommAlgebraHom id-also-good) - rec : (x : S⁻¹AAsCommAlgebra ) x (P .fst) + rec : (x : S⁻¹AAsCommAlgebra ) x (P .fst) rec x = transport (cong f fst f x (P .fst)) eq) (fst (fst sec) x .snd) diff --git a/Cubical.Algebra.CommAlgebra.Properties.html b/Cubical.Algebra.CommAlgebra.Properties.html index 80975b9b60..956b59f801 100644 --- a/Cubical.Algebra.CommAlgebra.Properties.html +++ b/Cubical.Algebra.CommAlgebra.Properties.html @@ -85,7 +85,7 @@ open CommRingStr (snd R) renaming (_·_ to _·r_) hiding (·IdL) open CommAlgebraStr (snd A) open AlgebraTheory (CommRing→Ring R) (CommAlgebra→Algebra A) - φ : R A + φ : R A φ r = r 1a φIsHom : IsRingHom (CommRing→Ring R .snd) φ (CommRing→Ring (CommAlgebra→CommRing A) .snd) φIsHom = makeIsRingHom (⋆IdL _) _ _ ⋆DistL+ _ _ _) @@ -122,7 +122,7 @@ open CommAlgebraStr ⦃...⦄ instance _ = snd A - AlgStrPathP : PathP i CommAlgebraStr R A ) (snd (toCommAlg (fromCommAlg A))) (snd A) + AlgStrPathP : PathP i CommAlgebraStr R A ) (snd (toCommAlg (fromCommAlg A))) (snd A) CommAlgebraStr.0a (AlgStrPathP i) = 0a CommAlgebraStr.1a (AlgStrPathP i) = 1a CommAlgebraStr._+_ (AlgStrPathP i) = _+_ @@ -237,13 +237,13 @@ open CommAlgebraEquivs CommAlgebra≡ : (A B : CommAlgebra R ℓ') ( - Σ[ p A B ] + Σ[ p A B ] Σ[ q0 PathP i p i) (0a (snd A)) (0a (snd B)) ] Σ[ q1 PathP i p i) (1a (snd A)) (1a (snd B)) ] Σ[ r+ PathP i p i p i p i) (_+_ (snd A)) (_+_ (snd B)) ] Σ[ PathP i p i p i p i) (_·_ (snd A)) (_·_ (snd B)) ] Σ[ s- PathP i p i p i) (-_ (snd A)) (-_ (snd B)) ] - Σ[ s⋆ PathP i R p i p i) (_⋆_ (snd A)) (_⋆_ (snd B)) ] + Σ[ s⋆ PathP i R p i p i) (_⋆_ (snd A)) (_⋆_ (snd B)) ] PathP i IsCommAlgebra R (q0 i) (q1 i) (r+ i) ( i) (s- i) (s⋆ i)) (isCommAlgebra (snd A)) (isCommAlgebra (snd B))) (A B) @@ -253,13 +253,13 @@ theIso : Iso _ _ fun theIso (p , q0 , q1 , r+ , , s- , s⋆ , t) i = p i , commalgebrastr (q0 i) (q1 i) (r+ i) ( i) (s- i) (s⋆ i) (t i) - inv theIso x = cong ⟨_⟩ x , cong (0a snd) x , cong (1a snd) x + inv theIso x = cong ⟨_⟩ x , cong (0a snd) x , cong (1a snd) x , cong (_+_ snd) x , cong (_·_ snd) x , cong (-_ snd) x , cong (_⋆_ snd) x , cong (isCommAlgebra snd) x rightInv theIso _ = refl leftInv theIso _ = refl - caracCommAlgebra≡ : {A B : CommAlgebra R ℓ'} (p q : A B) cong ⟨_⟩ p cong ⟨_⟩ q p q + caracCommAlgebra≡ : {A B : CommAlgebra R ℓ'} (p q : A B) cong ⟨_⟩ p cong ⟨_⟩ q p q caracCommAlgebra≡ {A = A} {B = B} p q P = sym (transportTransport⁻ (ua (CommAlgebra≡ A B)) p) ∙∙ cong (transport (ua (CommAlgebra≡ A B))) helper @@ -275,16 +275,16 @@ λ _ isPropΣ (isOfHLevelPathP' 1 (isSetΠ λ _ is-set (snd B)) _ _) λ _ isPropΣ (isOfHLevelPathP' 1 (isSetΠ2 λ _ _ is-set (snd B)) _ _) λ _ isOfHLevelPathP 1 (isPropIsCommAlgebra _ _ _ _ _ _ _) _ _) - (transportRefl (cong ⟨_⟩ p) P sym (transportRefl (cong ⟨_⟩ q))) + (transportRefl (cong ⟨_⟩ p) P sym (transportRefl (cong ⟨_⟩ q))) uaCompCommAlgebraEquiv : {A B C : CommAlgebra R ℓ'} (f : CommAlgebraEquiv A B) (g : CommAlgebraEquiv B C) uaCommAlgebra (compCommAlgebraEquiv f g) uaCommAlgebra f uaCommAlgebra g uaCompCommAlgebraEquiv f g = caracCommAlgebra≡ _ _ ( - cong ⟨_⟩ (uaCommAlgebra (compCommAlgebraEquiv f g)) + cong ⟨_⟩ (uaCommAlgebra (compCommAlgebraEquiv f g)) ≡⟨ uaCompEquiv _ _ - cong ⟨_⟩ (uaCommAlgebra f) cong ⟨_⟩ (uaCommAlgebra g) - ≡⟨ sym (cong-∙ ⟨_⟩ (uaCommAlgebra f) (uaCommAlgebra g)) - cong ⟨_⟩ (uaCommAlgebra f uaCommAlgebra g) ) + cong ⟨_⟩ (uaCommAlgebra f) cong ⟨_⟩ (uaCommAlgebra g) + ≡⟨ sym (cong-∙ ⟨_⟩ (uaCommAlgebra f) (uaCommAlgebra g)) + cong ⟨_⟩ (uaCommAlgebra f uaCommAlgebra g) ) open CommAlgebraHoms @@ -319,7 +319,7 @@ χ₂∘χ₁≡id : χ₂ ∘ca χ₁ idCommAlgebraHom _ χ₂∘χ₁≡id = isContr→isProp (contrHom _ _) _ _ - σIso : Iso σ x σ y + σIso : Iso σ x σ y fun σIso = fst χ₁ inv σIso = fst χ₂ rightInv σIso = funExt⁻ (cong fst χ₁∘χ₂≡id) diff --git a/Cubical.Algebra.CommAlgebra.QuotientAlgebra.html b/Cubical.Algebra.CommAlgebra.QuotientAlgebra.html index 6f738929f6..45369deed8 100644 --- a/Cubical.Algebra.CommAlgebra.QuotientAlgebra.html +++ b/Cubical.Algebra.CommAlgebra.QuotientAlgebra.html @@ -43,9 +43,9 @@ open CommAlgebraStr {{...}} open RingTheory (CommRing→Ring (CommAlgebra→CommRing A)) using (-DistR·) instance - _ : CommRingStr R  + _ : CommRingStr R  _ = snd R - _ : CommAlgebraStr R A + _ : CommAlgebraStr R A _ = snd A _/_ : CommAlgebra R @@ -70,7 +70,7 @@ where A/IAsCommRing : CommRing A/IAsCommRing = (CommAlgebra→CommRing A) CommRing./ I - [_]/ : A A/IAsCommRing + [_]/ : A A/IAsCommRing [_]/ = CommRing.[_]/ {R = CommAlgebra→CommRing A} {I = I} open CommIdeal using (isCommIdeal) eq : (r : fst R) (x y : fst A) x - y (fst I) [ r x ]/ [ r y ]/ @@ -100,9 +100,9 @@ open CommAlgebraStr ⦃...⦄ instance - _ : CommRingStr R + _ : CommRingStr R _ = snd R - _ : CommAlgebraStr R A + _ : CommAlgebraStr R A _ = snd A -- sanity check / maybe a helper function some day @@ -126,9 +126,9 @@ private instance - _ : CommAlgebraStr R B + _ : CommAlgebraStr R B _ = snd B - _ : CommRingStr B + _ : CommRingStr B _ = snd (CommAlgebra→CommRing B) inducedHom : CommAlgebraHom (A / I) B @@ -161,8 +161,8 @@ λ x λ i fst (p i) x) where instance - _ : CommAlgebraStr R B - _ = str B + _ : CommAlgebraStr R B + _ = str B {- trivial quotient -} @@ -217,10 +217,10 @@ {I : IdealsIn A} where abstract - isZeroFromIdeal : (x : A ) x (fst I) fst (quotientHom A I) x CommAlgebraStr.0a (snd (A / I)) + isZeroFromIdeal : (x : A ) x (fst I) fst (quotientHom A I) x CommAlgebraStr.0a (snd (A / I)) isZeroFromIdeal x x∈I = eq/ x 0a (subst (_∈ fst I) (step x) x∈I ) where open CommAlgebraStr (snd A) - step : (x : A ) x x - 0a + step : (x : A ) x x - 0a step = solve (CommAlgebra→CommRing A) \ No newline at end of file diff --git a/Cubical.Algebra.CommAlgebra.Subalgebra.html b/Cubical.Algebra.CommAlgebra.Subalgebra.html index cbc9792c77..551444c67d 100644 --- a/Cubical.Algebra.CommAlgebra.Subalgebra.html +++ b/Cubical.Algebra.CommAlgebra.Subalgebra.html @@ -34,7 +34,7 @@ Subalgebra→CommAlgebraHom = Subalgebra→AlgebraHom S SubalgebraHom : (B : CommAlgebra R ℓ') (f : CommAlgebraHom B A) - ((b : B ) fst f b fst S) + ((b : B ) fst f b fst S) CommAlgebraHom B Subalgebra→CommAlgebra SubalgebraHom _ f fb∈S = let open IsAlgebraHom (f .snd) in b (f .fst b) , fb∈S b) diff --git a/Cubical.Algebra.CommAlgebra.UnivariatePolyList.html b/Cubical.Algebra.CommAlgebra.UnivariatePolyList.html index d49ab6f874..621c98ccb2 100644 --- a/Cubical.Algebra.CommAlgebra.UnivariatePolyList.html +++ b/Cubical.Algebra.CommAlgebra.UnivariatePolyList.html @@ -39,7 +39,7 @@ constantPolynomialHom R) private - X : ListPolyCommAlgebra + X : ListPolyCommAlgebra X = 0r 1r [] {- export the generator 'X' -} @@ -53,13 +53,13 @@ _ = snd (Algebra→Ring A) _ = snd (CommAlgebra→Algebra ListPolyCommAlgebra) - module _ (x : A ) where + module _ (x : A ) where open AlgebraTheory using (⋆AnnihilL; ⋆AnnihilR) open RingTheory using (0RightAnnihilates; 0LeftAnnihilates) open AbGroupTheory using (comm-4) open PolyMod using (ElimProp; elimProp2; isSetPoly) - inducedMap : ListPolyCommAlgebra A + inducedMap : ListPolyCommAlgebra A inducedMap [] = 0a inducedMap (a p) = a 1a + (x · inducedMap p) inducedMap (drop0 i) = eq i @@ -78,7 +78,7 @@ 1a + 0a ≡⟨ +IdR 1a 1a - inducedMapPolyConst⋆ : (r : R ) (p : _) ϕ (r PolyConst* p) r ϕ p + inducedMapPolyConst⋆ : (r : R ) (p : _) ϕ (r PolyConst* p) r ϕ p inducedMapPolyConst⋆ r = ElimProp R p ϕ (r PolyConst* p) r ϕ p) @@ -96,10 +96,10 @@ r ϕ (s p) ) (is-set _ _) where - step : (s : R ) (p : _) _ _ + step : (s : R ) (p : _) _ _ step s p i = r (s 1a) + sym (⋆AssocR r x (ϕ p)) i - inducedMap⋆ : (r : R ) (p : _) ϕ (r p) r ϕ p + inducedMap⋆ : (r : R ) (p : _) ϕ (r p) r ϕ p inducedMap⋆ r p = ϕ (r p) ≡⟨ cong ϕ (sym (PolyConst*≡Poly* r p)) ϕ (r PolyConst* p) ≡⟨ inducedMapPolyConst⋆ r p @@ -127,7 +127,7 @@ (r 1a + x · ϕ p) + (s 1a + x · ϕ q) ≡⟨⟩ ϕ (r p) + ϕ (s q) ) (is-set _ _) - where step1 : (r s : R ) (p q : _) _ _ + where step1 : (r s : R ) (p q : _) _ _ step1 r s p q i = ⋆DistL+ r s 1a i + ·DistR+ x (ϕ p) (ϕ q) i M = (AbGroup→CommMonoid (Algebra→AbGroup A)) @@ -154,28 +154,28 @@ ϕ (r p) · ϕ q ) (is-set _ _) p where - step1 : (r : R ) (p : _) _ _ + step1 : (r : R ) (p : _) _ _ step1 r p = inducedMap+ (r PolyConst* q) (0r (p Poly* q)) - step2 : (r : R ) (p : _) _ _ + step2 : (r : R ) (p : _) _ _ step2 r p i = ϕ (PolyConst*≡Poly* r q i) + ϕ (0r (p Poly* q)) - step3 : (r : R ) (p : _) _ _ + step3 : (r : R ) (p : _) _ _ step3 r p i = inducedMap⋆ r q i + ϕ (0r (p Poly* q)) - step4 : (r : R ) (p : _) _ _ + step4 : (r : R ) (p : _) _ _ step4 r p i = r ϕ q + (⋆AnnihilL (CommRing→Ring R) A 1a i + x · ϕ (p · q)) - step5 : (r : R ) (p : _) _ _ + step5 : (r : R ) (p : _) _ _ step5 r p i = r ϕ q + +IdL (x · ϕ (p · q)) i - step6 : (r : R ) (p : _) _ _ _ + step6 : (r : R ) (p : _) _ _ _ step6 r p IH i = r ϕ q + x · IH i - step7 : (r : R ) (p : _) _ _ + step7 : (r : R ) (p : _) _ _ step7 r p i = r (sym (·IdL (ϕ q)) i) + ·Assoc x (ϕ p) (ϕ q) i - step8 : (r : R ) (p : _) _ _ + step8 : (r : R ) (p : _) _ _ step8 r p i = sym (⋆AssocL r 1a (ϕ q)) i + (x · ϕ p) · ϕ q inducedHom : AlgebraHom (CommAlgebra→Algebra ListPolyCommAlgebra) A @@ -201,7 +201,7 @@ λ i p pwEq p i where open IsAlgebraHom (snd f) - pwEq : (p : ListPolyCommAlgebra ) fst f p fst inducedHom p + pwEq : (p : ListPolyCommAlgebra ) fst f p fst inducedHom p pwEq = ElimProp R p fst f p fst inducedHom p) @@ -217,12 +217,12 @@ inducedMap (r p) ) (is-set _ _) where - useSolver : (r : R ) r (r · 1r) + 0r + useSolver : (r : R ) r (r · 1r) + 0r useSolver = solve R {- Reforumlation in terms of the R-AlgebraHom from R[X] to A -} - indcuedHomEquivalence : AlgebraHom (CommAlgebra→Algebra ListPolyCommAlgebra) A A + indcuedHomEquivalence : AlgebraHom (CommAlgebra→Algebra ListPolyCommAlgebra) A A fst indcuedHomEquivalence f = fst f X fst (fst (equiv-proof (snd indcuedHomEquivalence) x)) = inducedHom x snd (fst (equiv-proof (snd indcuedHomEquivalence) x)) = inducedMapGenerator x @@ -231,7 +231,7 @@ equalByUMP : (f g : AlgebraHom (CommAlgebra→Algebra ListPolyCommAlgebra) A) fst f X fst g X - (x : ListPolyCommAlgebra ) fst f x fst g x + (x : ListPolyCommAlgebra ) fst f x fst g x equalByUMP f g fX≡gX x = fst f x ≡[ i ]⟨ fst (inducedHomUnique (fst f X) f refl i) x fst (inducedHom (fst f X)) x ≡[ i ]⟨ fst (inducedHom (fX≡gX i)) x @@ -242,7 +242,7 @@ algebras with the same universal property -} isIdByUMP : (f : CommAlgebraHom ListPolyCommAlgebra ListPolyCommAlgebra) fst f X X - (x : ListPolyCommAlgebra ) fst f x x + (x : ListPolyCommAlgebra ) fst f x x isIdByUMP f = equalByUMP (CommAlgebra→Algebra ListPolyCommAlgebra) f diff --git a/Cubical.Algebra.CommMonoid.Base.html b/Cubical.Algebra.CommMonoid.Base.html index 8059994de5..76587eaafe 100644 --- a/Cubical.Algebra.CommMonoid.Base.html +++ b/Cubical.Algebra.CommMonoid.Base.html @@ -52,7 +52,7 @@ open IsCommMonoid isCommMonoid public CommMonoid : Type (ℓ-suc ) -CommMonoid = TypeWithStr CommMonoidStr +CommMonoid = TypeWithStr CommMonoidStr makeIsCommMonoid : {M : Type } {ε : M} {_·_ : M M M} (is-setM : isSet M) diff --git a/Cubical.Algebra.CommMonoid.GrothendieckGroup.html b/Cubical.Algebra.CommMonoid.GrothendieckGroup.html index 7ad4c120e0..e137b1de6a 100644 --- a/Cubical.Algebra.CommMonoid.GrothendieckGroup.html +++ b/Cubical.Algebra.CommMonoid.GrothendieckGroup.html @@ -40,11 +40,11 @@ _ = snd M _ = snd - R : Type _ - R (a₁ , b₁) (a₂ , b₂) = Σ[ k M ] k · (a₁ · b₂) k · (b₁ · a₂) + R : Type _ + R (a₁ , b₁) (a₂ , b₂) = Σ[ k M ] k · (a₁ · b₂) k · (b₁ · a₂) M²/R : Type _ - M²/R = / R + M²/R = / R 0/R : M²/R 0/R = [ ε , ε ] @@ -84,7 +84,7 @@ -/_ : M²/R M²/R -/_ = setQuotUnaryOp swap h where - swap : + swap : swap = λ (a , b) b , a h : u v R u v R (swap u) (swap v) @@ -159,7 +159,7 @@ fst inducedHom = elim x is-set) g proof where g = λ (a , b) f a - f b - proof : (u v : M ) (r : R M u v) g u g v + proof : (u v : M ) (r : R M u v) g u g v proof _ _ (k , p) = lemma (lemma₂ p) where lemma₂ : {k a b c d} k · (a · d) k · (b · c) f a + f d f b + f c @@ -196,7 +196,7 @@ lExp : {x y z} x y z + x z + y lExp r = cong₂ _+_ refl r - proof : ((a , b) (c , d) : M ) (f (a · c)) - (f (b · d)) (f a - f b) + (f c - f d) + proof : ((a , b) (c , d) : M ) (f (a · c)) - (f (b · d)) (f a - f b) + (f c - f d) proof (a , b) (c , d) = f (a · c) - f (b · d) ≡⟨ cong₂ _-_ (φ.pres· _ _) (φ.pres· _ _) (f a + f c) - (f b + f d) ≡⟨ lExp (invDistr _ _ ·Comm _ _) ·Assoc _ _ _ @@ -209,12 +209,12 @@ presinv (snd inducedHom) = elimProp _ is-set _ _) _ sym (invDistr _ _ cong₂ _-_ (invInv _) refl)) - solution : (m : M ) (fst inducedHom) (i m) f m + solution : (m : M ) (fst inducedHom) (i m) f m solution m = cong ((f m)+_) ((cong (-_) φ.presε) inv1g) ·IdR _ unique : (ψ : AbGroupHom (Groupification M) A) - (ψIsSolution : (m : M ) ψ .fst (i m) f m) - (u : M ) ψ .fst [ u ] inducedHom .fst [ u ] + (ψIsSolution : (m : M ) ψ .fst (i m) f m) + (u : M ) ψ .fst [ u ] inducedHom .fst [ u ] unique ψ ψIsSolution (a , b) = ψ .fst [ a , b ] ≡⟨ lemma ψ .fst ([ a , ε ] - [ b , ε ]) ≡⟨ (snd ψ).pres· _ _ cong₂ _+_ refl ((snd ψ).presinv _) diff --git a/Cubical.Algebra.CommMonoid.Properties.html b/Cubical.Algebra.CommMonoid.Properties.html index 0691aadde4..799d8d34e8 100644 --- a/Cubical.Algebra.CommMonoid.Properties.html +++ b/Cubical.Algebra.CommMonoid.Properties.html @@ -17,15 +17,15 @@ module _ (M : CommMonoid ) - (P : M hProp ℓ') + (P : M hProp ℓ') where open CommMonoidStr (snd M) module _ - (·Closed : (x y : M ) P x P y P (x · y) ) - (εContained : P ε ) + (·Closed : (x y : M ) P x P y P (x · y) ) + (εContained : P ε ) where private - subtype = Σ[ x M ] P x + subtype = Σ[ x M ] P x makeSubCommMonoid : CommMonoid _ fst makeSubCommMonoid = subtype @@ -43,7 +43,7 @@ module CommMonoidTheory (M' : CommMonoid ) where open CommMonoidStr (snd M') - private M = M' + private M = M' commAssocl : (x y z : M) x · (y · z) y · (x · z) commAssocl x y z = ·Assoc x y z ∙∙ cong ( z) (·Comm x y) ∙∙ sym (·Assoc y x z) diff --git a/Cubical.Algebra.CommRing.Base.html b/Cubical.Algebra.CommRing.Base.html index 9ff4481abd..f13f4be8aa 100644 --- a/Cubical.Algebra.CommRing.Base.html +++ b/Cubical.Algebra.CommRing.Base.html @@ -58,7 +58,7 @@ open IsCommRing isCommRing public CommRing : Type (ℓ-suc ) -CommRing = TypeWithStr CommRingStr +CommRing = TypeWithStr CommRingStr makeIsCommRing : {R : Type } {0r 1r : R} {_+_ _·_ : R R R} { -_ : R R} @@ -190,7 +190,7 @@ (0a 1a : A) (add mul : A A A) (inv : A A) - (e : R A) + (e : R A) (p0 : e .fst (R .snd .0r) 0a) (p1 : e .fst (R .snd .1r) 1a) (p+ : x y e .fst (R .snd ._+_ x y) add (e .fst x) (e .fst y)) diff --git a/Cubical.Algebra.CommRing.Kernel.html b/Cubical.Algebra.CommRing.Kernel.html index 339d8b338a..6890e0487f 100644 --- a/Cubical.Algebra.CommRing.Kernel.html +++ b/Cubical.Algebra.CommRing.Kernel.html @@ -4,7 +4,7 @@ open import Cubical.Foundations.Prelude open import Cubical.Foundations.Powerset using (_∈_) -open import Cubical.Foundations.Structure using (⟨_⟩) +open import Cubical.Foundations.Structure using (⟨_⟩) open import Cubical.Algebra.CommRing.Base open import Cubical.Algebra.CommRing.Ideal using (IdealsIn; Ideal→CommIdeal) @@ -22,6 +22,6 @@ kernelIdeal : IdealsIn R kernelIdeal = Ideal→CommIdeal (ringKernelIdeal f) - kernelFiber : (x y : R ) fst f x fst f y (x - y) fst kernelIdeal + kernelFiber : (x y : R ) fst f x fst f y (x - y) fst kernelIdeal kernelFiber x y p = ringKernelFiber f x y p \ No newline at end of file diff --git a/Cubical.Algebra.CommRing.LocalRing.html b/Cubical.Algebra.CommRing.LocalRing.html index 8faa65ae9d..a358e98cbe 100644 --- a/Cubical.Algebra.CommRing.LocalRing.html +++ b/Cubical.Algebra.CommRing.LocalRing.html @@ -19,7 +19,7 @@ open import Cubical.Foundations.Prelude open import Cubical.Foundations.Function using (_∘_) -open import Cubical.Foundations.Structure using (⟨_⟩) +open import Cubical.Foundations.Structure using (⟨_⟩) open import Cubical.Foundations.Powerset using (_∈_; ) open import Cubical.Foundations.HLevels open import Cubical.Foundations.Univalence using (hPropExt) @@ -52,7 +52,7 @@ isLocal : Type isLocal = {n : } - (xs : FinVec R n) + (xs : FinVec R n) xs R ˣ ∃[ i Fin n ] (xs i R ˣ) @@ -66,22 +66,22 @@ 1≢0 : ¬ (1r 0r) 1≢0 1≡0 = ∥_∥₁.rec isProp⊥ (¬Fin0 fst) (local xs 0∈Rˣ) where - xs : FinVec R 0 + xs : FinVec R 0 xs () 0∈Rˣ : 0r R ˣ 0∈Rˣ = subst (_∈ (R ˣ)) 1≡0 RˣContainsOne invertibleInBinarySum : - {x y : R } + {x y : R } x + y R ˣ (x R ˣ) (y R ˣ) ∥₁ invertibleInBinarySum {x = x} {y = y} x+yInv = ∥_∥₁.map Σ→⊎ (local {n = 2} xy (subst (_∈ R ˣ) (∑xy≡x+y x y) x+yInv)) where - xy : FinVec R 2 + xy : FinVec R 2 xy zero = x xy one = y - ∑xy≡x+y : (x y : R ) x + y x + (y + 0r) + ∑xy≡x+y : (x y : R ) x + y x + (y + 0r) ∑xy≡x+y = solve R Σ→⊎ : Σ[ i Fin 2 ] xy i R ˣ (x R ˣ) (y R ˣ) Σ→⊎ (zero , xInv) = ⊎.inl xInv @@ -89,12 +89,12 @@ onLinearCombinations : {n : } - (α xs : FinVec R n) + (α xs : FinVec R n) 1r linearCombination R α xs ∃[ i Fin n ] xs i R ˣ onLinearCombinations {n = n} α xs 1≡αxs = αxsHasInv→xsHasInv αxsHasInvertible where - αxs : FinVec R n + αxs : FinVec R n αxs i = α i · xs i αxsHasInvertible : ∃[ i Fin n ] αxs i R ˣ αxsHasInvertible = local αxs (subst (_∈ R ˣ) 1≡αxs RˣContainsOne) @@ -106,7 +106,7 @@ onFGIdeals : {n : } - (xs : FinVec R n) + (xs : FinVec R n) 1r fst (generatedIdeal R xs) ∃[ i Fin n ] xs i R ˣ onFGIdeals xs = @@ -115,7 +115,7 @@ λ{(α , 1≡αxs) onLinearCombinations α xs 1≡αxs} private - nonInvertibles : R + nonInvertibles : R nonInvertibles = λ x (¬ (x R ˣ)) , isProp→ isProp⊥ open CommIdeal.isCommIdeal @@ -126,7 +126,7 @@ contains0 nonInvertiblesFormIdeal (x , 0x≡1) = 1≢0 (sym 0x≡1 useSolver _) where - useSolver : (x : R ) 0r · x 0r + useSolver : (x : R ) 0r · x 0r useSolver = solve R ·Closed nonInvertiblesFormIdeal {x = x} r xNonInv rxInv = xNonInv (snd (RˣMultDistributing r x rxInv)) @@ -140,7 +140,7 @@ open CommRingStr (snd R) BinSum : Type - BinSum = (x y : R ) (x + y R ˣ) (x R ˣ) (y R ˣ) ∥₁ + BinSum = (x y : R ) (x + y R ˣ) (x R ˣ) (y R ˣ) ∥₁ Alternative : Type Alternative = (¬ 1r 0r) × BinSum @@ -163,7 +163,7 @@ alternative→isLocal {n = ℕ.zero} xs (0⁻¹ , 00⁻¹≡1) = ⊥.rec (1≢0 (sym 00⁻¹≡1 0x≡0 0⁻¹)) where - 0x≡0 : (x : R ) 0r · x 0r + 0x≡0 : (x : R ) 0r · x 0r 0x≡0 = solve R alternative→isLocal {n = ℕ.suc n} xxs x+∑xsInv = ∥_∥₁.rec @@ -174,9 +174,9 @@ alternative→isLocal xs)) (binSum x ( xs) x+∑xsInv) where - x : R + x : R x = xxs zero - xs : FinVec R n + xs : FinVec R n xs = xxs suc path : isLocal Alternative @@ -192,7 +192,7 @@ open CommRingStr (snd R) OneMinus : Type - OneMinus = (x : R ) (x R ˣ) (1r - x R ˣ) ∥₁ + OneMinus = (x : R ) (x R ˣ) (1r - x R ˣ) ∥₁ Alternative : Type Alternative = (¬ 1r 0r) × OneMinus @@ -208,7 +208,7 @@ binSum→OneMinus binSum x = binSum x (1r - x) (subst (_∈ R ˣ) (1≡x+1-x x) RˣContainsOne) where - 1≡x+1-x : (x : R ) 1r x + (1r - x) + 1≡x+1-x : (x : R ) 1r x + (1r - x) 1≡x+1-x = solve R open Units R @@ -220,7 +220,7 @@ (fst RˣMultDistributing y s⁻¹ subst (_∈ R ˣ) 1-xs⁻¹≡ys⁻¹)) (oneMinus (x · s⁻¹)) where - solveStep : (a b c : R ) (a + b) · c - a · c b · c + solveStep : (a b c : R ) (a + b) · c - a · c b · c solveStep = solve R 1-xs⁻¹≡ys⁻¹ : 1r - x · s⁻¹ y · s⁻¹ 1-xs⁻¹≡ys⁻¹ = diff --git a/Cubical.Algebra.CommRing.Properties.html b/Cubical.Algebra.CommRing.Properties.html index 73080d41c9..deebf2704c 100644 --- a/Cubical.Algebra.CommRing.Properties.html +++ b/Cubical.Algebra.CommRing.Properties.html @@ -303,7 +303,7 @@ open CommRingEquivs CommRing≡ : (A B : CommRing ) ( - Σ[ p A B ] + Σ[ p A B ] Σ[ q0 PathP i p i) (0r (snd A)) (0r (snd B)) ] Σ[ q1 PathP i p i) (1r (snd A)) (1r (snd B)) ] Σ[ r+ PathP i p i p i p i) (_+_ (snd A)) (_+_ (snd B)) ] @@ -317,12 +317,12 @@ theIso : Iso _ _ fun theIso (p , q0 , q1 , r+ , , s , t) i = p i , commringstr (q0 i) (q1 i) (r+ i) ( i) (s i) (t i) - inv theIso x = cong ⟨_⟩ x , cong (0r snd) x , cong (1r snd) x + inv theIso x = cong ⟨_⟩ x , cong (0r snd) x , cong (1r snd) x , cong (_+_ snd) x , cong (_·_ snd) x , cong (-_ snd) x , cong (isCommRing snd) x rightInv theIso _ = refl leftInv theIso _ = refl - caracCommRing≡ : {A B : CommRing } (p q : A B) cong ⟨_⟩ p cong ⟨_⟩ q p q + caracCommRing≡ : {A B : CommRing } (p q : A B) cong ⟨_⟩ p cong ⟨_⟩ q p q caracCommRing≡ {A = A} {B = B} p q P = sym (transportTransport⁻ (ua (CommRing≡ A B)) p) ∙∙ cong (transport (ua (CommRing≡ A B))) helper @@ -337,16 +337,16 @@ λ _ isPropΣ (isOfHLevelPathP' 1 (isSetΠ2 λ _ _ is-set (snd B)) _ _) λ _ isPropΣ (isOfHLevelPathP' 1 (isSetΠ λ _ is-set (snd B)) _ _) λ _ isOfHLevelPathP 1 (isPropIsCommRing _ _ _ _ _) _ _) - (transportRefl (cong ⟨_⟩ p) P sym (transportRefl (cong ⟨_⟩ q))) + (transportRefl (cong ⟨_⟩ p) P sym (transportRefl (cong ⟨_⟩ q))) uaCompCommRingEquiv : {A B C : CommRing } (f : CommRingEquiv A B) (g : CommRingEquiv B C) uaCommRing (compCommRingEquiv f g) uaCommRing f uaCommRing g uaCompCommRingEquiv f g = caracCommRing≡ _ _ ( - cong ⟨_⟩ (uaCommRing (compCommRingEquiv f g)) + cong ⟨_⟩ (uaCommRing (compCommRingEquiv f g)) ≡⟨ uaCompEquiv _ _ - cong ⟨_⟩ (uaCommRing f) cong ⟨_⟩ (uaCommRing g) - ≡⟨ sym (cong-∙ ⟨_⟩ (uaCommRing f) (uaCommRing g)) - cong ⟨_⟩ (uaCommRing f uaCommRing g) ) + cong ⟨_⟩ (uaCommRing f) cong ⟨_⟩ (uaCommRing g) + ≡⟨ sym (cong-∙ ⟨_⟩ (uaCommRing f) (uaCommRing g)) + cong ⟨_⟩ (uaCommRing f uaCommRing g) ) diff --git a/Cubical.Algebra.CommRing.Quotient.Base.html b/Cubical.Algebra.CommRing.Quotient.Base.html index 09db3f015b..b3f14fea2e 100644 --- a/Cubical.Algebra.CommRing.Quotient.Base.html +++ b/Cubical.Algebra.CommRing.Quotient.Base.html @@ -47,13 +47,13 @@ (B : Ring ℓ') (g : RingHom (CommRing→Ring A) B) {n : } - (v : FinVec A n) + (v : FinVec A n) (gnull : (k : Fin n) g $r v k RingStr.0r (snd B)) where open RingStr (snd B) using (0r; is-set) - zeroOnGeneratedIdeal : (x : A ) x fst (generatedIdeal A v) g $r x 0r + zeroOnGeneratedIdeal : (x : A ) x fst (generatedIdeal A v) g $r x 0r zeroOnGeneratedIdeal x x∈FGIdeal = PT.elim _ is-set (g $r x) 0r) @@ -69,7 +69,7 @@ (B : CommRing ℓ') (g : CommRingHom A B) {n : } - (v : FinVec A n) + (v : FinVec A n) (gnull : (k : Fin n) g $r v k CommRingStr.0r (snd B)) where @@ -80,7 +80,7 @@ (R S : CommRing ) (I : IdealsIn R) (f : CommRingHom R S) - (I⊆ker : (x : R ) x fst I fst f x CommRingStr.0r (snd S)) + (I⊆ker : (x : R ) x fst I fst f x CommRingStr.0r (snd S)) where inducedHom : CommRingHom (R / I) S @@ -104,6 +104,6 @@ kernel≡I : kernelIdeal R (R / I) π I kernel≡I = cong Ideal→CommIdeal (Ring.kernel≡I (CommIdeal→Ideal I)) - zeroOnIdeal : (x : R ) x fst I fst π x 0r + zeroOnIdeal : (x : R ) x fst I fst π x 0r zeroOnIdeal x x∈I = subst P fst ((fst P) x)) (sym kernel≡I) x∈I \ No newline at end of file diff --git a/Cubical.Algebra.CommRing.Quotient.IdealSum.html b/Cubical.Algebra.CommRing.Quotient.IdealSum.html index e313ce051e..8144d08d88 100644 --- a/Cubical.Algebra.CommRing.Quotient.IdealSum.html +++ b/Cubical.Algebra.CommRing.Quotient.IdealSum.html @@ -66,7 +66,7 @@ _ = snd ((R / I) / π₁J) _ = snd (R / (I +i J)) - πI+J≡0 : (x : R ) x (I +i J) fst π x 0r + πI+J≡0 : (x : R ) x (I +i J) fst π x 0r πI+J≡0 x = PT.rec (is-set _ _) λ ((a , b) , (a∈I , b∈J , x≡a+b)) @@ -83,7 +83,7 @@ 0r + 0r ≡⟨ +IdL _ 0r - π⁻¹0≡I+J : (x : R ) fst π x 0r x (I +i J) + π⁻¹0≡I+J : (x : R ) fst π x 0r x (I +i J) π⁻¹0≡I+J x πx≡0 = PT.rec isPropPropTrunc (b , b∈J , π₁b≡π₁x) step2 b b∈J π₁b≡π₁x) π₁x∈J where π₁x∈J : (fst π₁ x) π₁J π₁x∈J = subst (fst π₁ x ∈_) (kernel≡I π₁J) πx≡0 @@ -94,7 +94,7 @@ (subst K b - x K) (kernel≡I I) (kernelFiber R (R / I) π₁ b x π₁b≡π₁x)) - useSolver : (x b : R ) x - (b - x) + b + useSolver : (x b : R ) x - (b - x) + b useSolver = solve R step2 : b b J fst π₁ b fst π₁ x x (I +i J) @@ -104,7 +104,7 @@ ψ : CommRingHom (R / (I +i J)) ((R / I) / π₁J) ψ = UniversalProperty.inducedHom R ((R / I) / π₁J) (I +i J) π πI+J≡0 - kernel-0 : (x : R / (I +i J) ) fst ψ x 0r x 0r + kernel-0 : (x : R / (I +i J) ) fst ψ x 0r x 0r kernel-0 x ψx≡0 = PT.rec (is-set x 0r) (x' , π+x'≡x) @@ -128,7 +128,7 @@ ϕ : CommRingHom (R / (I +i J)) ((R / I) / π₁J) ϕ = ψ - ϕ-injective : {x y : R / (I +i J) } + ϕ-injective : {x y : R / (I +i J) } fst ϕ x fst ϕ y x y ϕ-injective = RingHomTheory.ker≡0→inj @@ -140,7 +140,7 @@ ϕ≡ψ : ϕ ψ ϕ≡ψ = refl - embedding : isEmbedding {A = R / (I +i J) } {B = (R / I) / π₁J } (fst ϕ) + embedding : isEmbedding {A = R / (I +i J) } {B = (R / I) / π₁J } (fst ϕ) embedding = injEmbedding is-set diff --git a/Cubical.Algebra.CommSemiring.Base.html b/Cubical.Algebra.CommSemiring.Base.html index 7351240968..d249466a29 100644 --- a/Cubical.Algebra.CommSemiring.Base.html +++ b/Cubical.Algebra.CommSemiring.Base.html @@ -3,7 +3,7 @@ module Cubical.Algebra.CommSemiring.Base where open import Cubical.Foundations.Prelude -open import Cubical.Foundations.SIP using (TypeWithStr) +open import Cubical.Foundations.SIP using (TypeWithStr) open import Cubical.Algebra.CommMonoid open import Cubical.Algebra.Monoid @@ -37,7 +37,7 @@ open IsCommSemiring isCommSemiring public CommSemiring : Type (ℓ-suc ) -CommSemiring = TypeWithStr CommSemiringStr +CommSemiring = TypeWithStr CommSemiringStr makeIsCommSemiring : {R : Type } {0r 1r : R} {_+_ _·_ : R R R} (is-setR : isSet R) diff --git a/Cubical.Algebra.DistLattice.Base.html b/Cubical.Algebra.DistLattice.Base.html index bf4c4defd3..71772f5dbd 100644 --- a/Cubical.Algebra.DistLattice.Base.html +++ b/Cubical.Algebra.DistLattice.Base.html @@ -73,7 +73,7 @@ open IsDistLattice isDistLattice public DistLattice : Type (ℓ-suc ) -DistLattice = TypeWithStr DistLatticeStr +DistLattice = TypeWithStr DistLatticeStr -- when proving the axioms for a distributive lattice -- we use the fact that from distributivity and absorption diff --git a/Cubical.Algebra.Field.Base.html b/Cubical.Algebra.Field.Base.html index 059bbf2c4c..378f36c9e9 100644 --- a/Cubical.Algebra.Field.Base.html +++ b/Cubical.Algebra.Field.Base.html @@ -73,7 +73,7 @@ Field : Type (ℓ-suc ) -Field = TypeWithStr FieldStr +Field = TypeWithStr FieldStr makeIsField : {R : Type } {0r 1r : R} {_+_ _·_ : R R R} { -_ : R R} @@ -152,7 +152,7 @@ unquoteDecl IsFieldHomIsoΣ = declareRecordIsoΣ IsFieldHomIsoΣ (quote IsFieldHom) FieldHom : (R : Field ) (S : Field ℓ') Type (ℓ-max ℓ') -FieldHom R S = Σ[ f ( R S ) ] IsFieldHom (R .snd) f (S .snd) +FieldHom R S = Σ[ f ( R S ) ] IsFieldHom (R .snd) f (S .snd) IsFieldEquiv : {A : Type } {B : Type ℓ'} @@ -163,7 +163,7 @@ FieldEquiv R S = Σ[ e (R .fst S .fst) ] IsFieldEquiv (R .snd) e (S .snd) -_$f_ : {R S : Field } (φ : FieldHom R S) (x : R ) S +_$f_ : {R S : Field } (φ : FieldHom R S) (x : R ) S φ $f x = φ .fst x diff --git a/Cubical.Algebra.Group.Abelianization.AbelianizationAsCoeq.html b/Cubical.Algebra.Group.Abelianization.AbelianizationAsCoeq.html index 00060b766b..513f116360 100644 --- a/Cubical.Algebra.Group.Abelianization.AbelianizationAsCoeq.html +++ b/Cubical.Algebra.Group.Abelianization.AbelianizationAsCoeq.html @@ -258,7 +258,7 @@ _ isPropIsGroupHom _ _) i x q x i) where - module H = AbGroupStr (str H) + module H = AbGroupStr (str H) q : (x : Abelianization) fst g x fst (inducedHom H f) x q = elimProp _ H.is-set _ _) @@ -418,8 +418,8 @@ p : h .fst isomorphism .fst p = Iso≡Set - (AbGroupStr.is-set (str asAbelianGroup)) - (AbGroupStr.is-set (str (HITasAbelianGroup G))) + (AbGroupStr.is-set (str asAbelianGroup)) + (AbGroupStr.is-set (str (HITasAbelianGroup G))) (h .fst) (isomorphism .fst) x cong diff --git a/Cubical.Algebra.Group.Abelianization.Properties.html b/Cubical.Algebra.Group.Abelianization.Properties.html index 0386032a10..5f780935cd 100644 --- a/Cubical.Algebra.Group.Abelianization.Properties.html +++ b/Cubical.Algebra.Group.Abelianization.Properties.html @@ -293,7 +293,7 @@ _ isPropIsGroupHom _ _) i x q x i) where - module H = AbGroupStr (str H) + module H = AbGroupStr (str H) q : (x : Abelianization G) fst g x fst (inducedHom H f) x q = (elimProp G) _ H.is-set _ _) diff --git a/Cubical.Algebra.Group.Base.html b/Cubical.Algebra.Group.Base.html index 4cb7ceaf7a..379f815b28 100644 --- a/Cubical.Algebra.Group.Base.html +++ b/Cubical.Algebra.Group.Base.html @@ -48,7 +48,7 @@ open IsGroup isGroup public Group : Type (ℓ-suc ) -Group = TypeWithStr GroupStr +Group = TypeWithStr GroupStr Group₀ : Type₁ Group₀ = Group ℓ-zero diff --git a/Cubical.Algebra.Group.GroupPath.html b/Cubical.Algebra.Group.GroupPath.html index b2265c2202..e02f1c551f 100644 --- a/Cubical.Algebra.Group.GroupPath.html +++ b/Cubical.Algebra.Group.GroupPath.html @@ -58,7 +58,7 @@ (m : A A A) (u : A) (inverse : A A) - (e : G A) + (e : G A) ( : x y e .fst (G .snd ._·_ x y) m (e .fst x) (e .fst y)) (pu : e .fst (G .snd .1g) u) (pinv : x e .fst (G .snd .inv x) inverse (e .fst x)) @@ -102,7 +102,7 @@ -- defined by transporting over the unit and inverse from G to A. module _ (G : Group ) {A : Type } (m : A A A) - (e : G A) + (e : G A) ( : x y e .fst (G .snd ._·_ x y) m (e .fst x) (e .fst y)) where @@ -139,7 +139,7 @@ -- Group-ua functoriality Group≡ : (G H : Group ) ( - Σ[ p G H ] + Σ[ p G H ] Σ[ q PathP i p i) (1g (snd G)) (1g (snd H)) ] Σ[ r PathP i p i p i p i) (_·_ (snd G)) (_·_ (snd H)) ] Σ[ s PathP i p i p i) (inv (snd G)) (inv (snd H)) ] @@ -149,11 +149,11 @@ where theIso : Iso _ _ fun theIso (p , q , r , s , t) i = p i , groupstr (q i) (r i) (s i) (t i) - inv theIso x = cong ⟨_⟩ x , cong (1g snd) x , cong (_·_ snd) x , cong (inv snd) x , cong (isGroup snd) x + inv theIso x = cong ⟨_⟩ x , cong (1g snd) x , cong (_·_ snd) x , cong (inv snd) x , cong (isGroup snd) x rightInv theIso _ = refl leftInv theIso _ = refl -caracGroup≡ : {G H : Group } (p q : G H) cong ⟨_⟩ p cong ⟨_⟩ q p q +caracGroup≡ : {G H : Group } (p q : G H) cong ⟨_⟩ p cong ⟨_⟩ q p q caracGroup≡ {G = G} {H = H} p q P = sym (transportTransport⁻ (ua (Group≡ G H)) p) ∙∙ cong (transport (ua (Group≡ G H))) helper @@ -166,7 +166,7 @@ λ _ isPropΣ (isOfHLevelPathP' 1 (isSetΠ2 λ _ _ is-set (snd H)) _ _) λ _ isPropΣ (isOfHLevelPathP' 1 (isSetΠ λ _ is-set (snd H)) _ _) λ _ isOfHLevelPathP 1 (isPropIsGroup _ _ _) _ _) - (transportRefl (cong ⟨_⟩ p) P sym (transportRefl (cong ⟨_⟩ q))) + (transportRefl (cong ⟨_⟩ p) P sym (transportRefl (cong ⟨_⟩ q))) uaGroupId : (G : Group ) uaGroup (idGroupEquiv {G = G}) refl uaGroupId G = caracGroup≡ _ _ uaIdEquiv @@ -174,11 +174,11 @@ uaCompGroupEquiv : {F G H : Group } (f : GroupEquiv F G) (g : GroupEquiv G H) uaGroup (compGroupEquiv f g) uaGroup f uaGroup g uaCompGroupEquiv f g = caracGroup≡ _ _ ( - cong ⟨_⟩ (uaGroup (compGroupEquiv f g)) + cong ⟨_⟩ (uaGroup (compGroupEquiv f g)) ≡⟨ uaCompEquiv _ _ - cong ⟨_⟩ (uaGroup f) cong ⟨_⟩ (uaGroup g) - ≡⟨ sym (cong-∙ ⟨_⟩ (uaGroup f) (uaGroup g)) - cong ⟨_⟩ (uaGroup f uaGroup g) ) + cong ⟨_⟩ (uaGroup f) cong ⟨_⟩ (uaGroup g) + ≡⟨ sym (cong-∙ ⟨_⟩ (uaGroup f) (uaGroup g)) + cong ⟨_⟩ (uaGroup f uaGroup g) ) -- J-rule for GroupEquivs GroupEquivJ : {G : Group } (P : (H : Group ) GroupEquiv G H Type ℓ') diff --git a/Cubical.Algebra.Group.Instances.Bool.html b/Cubical.Algebra.Group.Instances.Bool.html index e70676ada8..bddf71f8b0 100644 --- a/Cubical.Algebra.Group.Instances.Bool.html +++ b/Cubical.Algebra.Group.Instances.Bool.html @@ -55,13 +55,13 @@ module _ { : Level} {A : Group } (e : Iso (fst A) Bool) where private - discreteA : Discrete (typ A) + discreteA : Discrete (typ A) discreteA = isoPresDiscrete (invIso e) _≟_ _·A_ = GroupStr._·_ (snd A) -A_ = GroupStr.inv (snd A) - IsoABool : Iso Bool (typ A) + IsoABool : Iso Bool (typ A) IsoABool with (Iso.fun e (1g (snd A))) true ... | yes p = invIso e ... | no p = compIso notIso (invIso e) @@ -72,7 +72,7 @@ ... | no p = sym (cong (Iso.inv e) (¬true→false (Iso.fun e (1g (snd A))) p)) Iso.leftInv e (1g (snd A)) - decA : (x : typ A) (x 1g (snd A)) (x Iso.fun IsoABool false) + decA : (x : typ A) (x 1g (snd A)) (x Iso.fun IsoABool false) decA x with (Iso.inv IsoABool x) false | discreteA x (1g (snd A)) ... | yes p | yes q = inl q ... | yes p | no q = inr (sym (Iso.rightInv IsoABool x) cong (Iso.fun (IsoABool)) p) @@ -92,7 +92,7 @@ ... | no p | inl x = true→1 sym x ... | no p | inr x = true→1 ∙∙ sym (helper _ x) ∙∙ sym x where - helper : (x : typ A) x ·A x x x (1g (snd A)) + helper : (x : typ A) x ·A x x x (1g (snd A)) helper x p = sym (GroupStr.·IdR (snd A) x) ∙∙ cong (x ·A_) (sym ((snd A) .·InvR x)) ∙∙ ·AssocG (snd A) x x (-A x) ∙∙ cong (_·A (-A x)) p diff --git a/Cubical.Algebra.Group.Instances.Unit.html b/Cubical.Algebra.Group.Instances.Unit.html index 6fd56b5382..8ecdd982c0 100644 --- a/Cubical.Algebra.Group.Instances.Unit.html +++ b/Cubical.Algebra.Group.Instances.Unit.html @@ -82,14 +82,14 @@ rUnitGroupEquiv : {} {G : Group } GroupEquiv (DirProd G UnitGroup₀) G rUnitGroupEquiv = GroupIso→GroupEquiv rUnitGroupIso -contrGroupIsoUnit : {G : Group } isContr G GroupIso G UnitGroup₀ +contrGroupIsoUnit : {G : Group } isContr G GroupIso G UnitGroup₀ fun (fst (contrGroupIsoUnit contr)) _ = tt inv (fst (contrGroupIsoUnit contr)) _ = fst contr rightInv (fst (contrGroupIsoUnit contr)) _ = refl leftInv (fst (contrGroupIsoUnit contr)) x = snd contr x snd (contrGroupIsoUnit contr) = makeIsGroupHom λ _ _ refl -contrGroupEquivUnit : {G : Group } isContr G GroupEquiv G UnitGroup₀ +contrGroupEquivUnit : {G : Group } isContr G GroupEquiv G UnitGroup₀ contrGroupEquivUnit contr = GroupIso→GroupEquiv (contrGroupIsoUnit contr) isContr→≡UnitGroup : {G : Group ℓ-zero} isContr (fst G) UnitGroup₀ G diff --git a/Cubical.Algebra.Group.IsomorphismTheorems.html b/Cubical.Algebra.Group.IsomorphismTheorems.html index 1538f3c691..8006ea7a6d 100644 --- a/Cubical.Algebra.Group.IsomorphismTheorems.html +++ b/Cubical.Algebra.Group.IsomorphismTheorems.html @@ -46,7 +46,7 @@ imϕ = imGroup ϕ -- for completeness: - imNormalSubgroup : ((x y : H ) + imNormalSubgroup : ((x y : H ) GroupStr._·_ (snd H) x y GroupStr._·_ (snd H) y x) NormalSubgroup H imNormalSubgroup comm = imSubgroup ϕ , isNormalIm ϕ comm @@ -58,13 +58,13 @@ module kerG = GroupStr (snd (G / kerNormalSubgroup)) module ϕ = IsGroupHom (ϕ .snd) - f1 : imϕ G / kerNormalSubgroup + f1 : imϕ G / kerNormalSubgroup f1 (x , Hx) = rec→Set ( squash/) { (y , hy) [ y ]}) { (y , hy) (z , hz) eq/ y z (rem y z hy hz) }) Hx where - rem : (y z : G ) ϕ .fst y x ϕ .fst z x ϕ .fst (y G.· G.inv z) H.1g + rem : (y z : G ) ϕ .fst y x ϕ .fst z x ϕ .fst (y G.· G.inv z) H.1g rem y z hy hz = ϕ .fst (y G.· G.inv z) ≡⟨ ϕ.pres· _ _ ϕ .fst y H.· ϕ .fst (G.inv z) ≡⟨ cong (ϕ .fst y H.·_) (ϕ.presinv _) @@ -72,12 +72,12 @@ x H.· H.inv x ≡⟨ H.·InvR x H.1g - f2 : G / kerNormalSubgroup imϕ + f2 : G / kerNormalSubgroup imϕ f2 = recS imG.is-set y ϕ .fst y , y , refl ∣₁) x y r Σ≡Prop _ squash₁) (rem x y r)) where - rem : (x y : G ) ϕ .fst (x G.· G.inv y) H.1g ϕ .fst x ϕ .fst y + rem : (x y : G ) ϕ .fst (x G.· G.inv y) H.1g ϕ .fst x ϕ .fst y rem x y r = ϕ .fst x ≡⟨ sym (H.·IdR _) ϕ .fst x H.· H.1g ≡⟨ cong (ϕ .fst x H.·_) (sym (H.·InvL _)) @@ -88,16 +88,16 @@ H.1g H.· ϕ .fst y ≡⟨ H.·IdL _ ϕ .fst y - f12 : (x : G / kerNormalSubgroup ) f1 (f2 x) x + f12 : (x : G / kerNormalSubgroup ) f1 (f2 x) x f12 = elimProp _ squash/ _ _) _ refl) - f21 : (x : imϕ ) f2 (f1 x) x + f21 : (x : imϕ ) f2 (f1 x) x f21 (x , hx) = elim {P = λ hx f2 (f1 (x , hx)) (x , hx)} _ imG.is-set _ _) {(x , hx) Σ≡Prop _ squash₁) hx}) hx - f1-isHom : (x y : imϕ ) f1 (x imG.· y) f1 x kerG.· f1 y + f1-isHom : (x y : imϕ ) f1 (x imG.· y) f1 x kerG.· f1 y f1-isHom (x , hx) (y , hy) = elim2 {P = λ hx hy f1 ((x , hx) imG.· (y , hy)) f1 (x , hx) kerG.· f1 (y , hy)} _ _ kerG.is-set _ _) _ _ refl) hx hy diff --git a/Cubical.Algebra.Group.MorphismProperties.html b/Cubical.Algebra.Group.MorphismProperties.html index 4c7e51ec88..81b34ddc6a 100644 --- a/Cubical.Algebra.Group.MorphismProperties.html +++ b/Cubical.Algebra.Group.MorphismProperties.html @@ -91,11 +91,11 @@ _⋆²_ = _·_ (snd H) g = invEq (fst f) - isInj-f : (x y : G ) f' x f' y x y + isInj-f : (x y : G ) f' x f' y x y isInj-f x y = invEq (_ , isEquiv→isEmbedding (snd (fst f)) x y) -- H-level results -isPropIsGroupHom : (G : Group ) (H : Group ℓ') {f : G H } +isPropIsGroupHom : (G : Group ) (H : Group ℓ') {f : G H } isProp (IsGroupHom (G .snd) f (H .snd)) isPropIsGroupHom G H = isOfHLevelRetractFromIso 1 IsGroupHomIsoΣ @@ -109,13 +109,13 @@ isSetGroupHom {G = G} {H = H} = isSetΣ (isSetΠ λ _ is-set (snd H)) λ _ isProp→isSet (isPropIsGroupHom G H) -isPropIsInIm : (f : GroupHom G H) (x : H ) isProp (isInIm f x) +isPropIsInIm : (f : GroupHom G H) (x : H ) isProp (isInIm f x) isPropIsInIm f x = squash₁ isSetIm : (f : GroupHom G H) isSet (Im f) isSetIm {H = H} f = isSetΣ (is-set (snd H)) λ x isProp→isSet (isPropIsInIm f x) -isPropIsInKer : (f : GroupHom G H) (x : G ) isProp (isInKer f x) +isPropIsInKer : (f : GroupHom G H) (x : G ) isProp (isInKer f x) isPropIsInKer {H = H} f x = is-set (snd H) _ _ isSetKer : (f : GroupHom G H) isSet (Ker f) @@ -211,7 +211,7 @@ -- GroupEquiv identity, composition and inversion idGroupEquiv : GroupEquiv G G -fst (idGroupEquiv {G = G}) = idEquiv G +fst (idGroupEquiv {G = G}) = idEquiv G snd idGroupEquiv = makeIsGroupHom λ _ _ refl compGroupEquiv : GroupEquiv F G GroupEquiv G H GroupEquiv F H @@ -292,7 +292,7 @@ where f = fst (fun i) - helper : (b : _) isProp (Σ[ a G ] f a b) + helper : (b : _) isProp (Σ[ a G ] f a b) helper _ (a , ha) (b , hb) = Σ≡Prop _ is-set (snd H) _ _) (isInjective→isMono (fun i) (inj i) (ha sym hb) ) diff --git a/Cubical.Algebra.Group.Morphisms.html b/Cubical.Algebra.Group.Morphisms.html index 0ff190be4b..1975aa7ce8 100644 --- a/Cubical.Algebra.Group.Morphisms.html +++ b/Cubical.Algebra.Group.Morphisms.html @@ -75,26 +75,26 @@ variable G H : Group -isInIm : GroupHom G H H Type _ -isInIm {G = G} ϕ h = ∃[ g G ] ϕ .fst g h +isInIm : GroupHom G H H Type _ +isInIm {G = G} ϕ h = ∃[ g G ] ϕ .fst g h -isInKer : GroupHom G H G Type _ +isInKer : GroupHom G H G Type _ isInKer {H = H} ϕ g = ϕ .fst g 1g (snd H) Ker : GroupHom G H Type _ -Ker {G = G} ϕ = Σ[ x G ] isInKer ϕ x +Ker {G = G} ϕ = Σ[ x G ] isInKer ϕ x Im : GroupHom G H Type _ -Im {H = H} ϕ = Σ[ x H ] isInIm ϕ x +Im {H = H} ϕ = Σ[ x H ] isInIm ϕ x isSurjective : GroupHom G H Type _ -isSurjective {H = H} ϕ = (x : H ) isInIm ϕ x +isSurjective {H = H} ϕ = (x : H ) isInIm ϕ x isInjective : GroupHom G H Type _ -isInjective {G = G} ϕ = (x : G ) isInKer ϕ x x 1g (snd G) +isInjective {G = G} ϕ = (x : G ) isInKer ϕ x x 1g (snd G) isMono : GroupHom G H Type _ -isMono {G = G} f = {x y : G } f .fst x f .fst y x y +isMono {G = G} f = {x y : G } f .fst x f .fst y x y -- Group bijections record BijectionIso (G : Group ) (H : Group ℓ') : Type (ℓ-max ℓ') where diff --git a/Cubical.Algebra.Group.Properties.html b/Cubical.Algebra.Group.Properties.html index 9348f93b9a..18c3407bf9 100644 --- a/Cubical.Algebra.Group.Properties.html +++ b/Cubical.Algebra.Group.Properties.html @@ -31,39 +31,39 @@ module GroupTheory (G : Group ) where open GroupStr (snd G) abstract - ·CancelL : (a : G ) {b c : G } a · b a · c b c + ·CancelL : (a : G ) {b c : G } a · b a · c b c ·CancelL a {b} {c} p = b ≡⟨ sym (·IdL b) cong ( b) (sym (·InvL a)) sym (·Assoc _ _ _) inv a · (a · b) ≡⟨ cong (inv a ·_) p inv a · (a · c) ≡⟨ ·Assoc _ _ _ cong ( c) (·InvL a) ·IdL c c - ·CancelR : {a b : G } (c : G ) a · c b · c a b + ·CancelR : {a b : G } (c : G ) a · c b · c a b ·CancelR {a} {b} c p = a ≡⟨ sym (·IdR a) cong (a ·_) (sym (·InvR c)) ·Assoc _ _ _ (a · c) · inv c ≡⟨ cong ( inv c) p (b · c) · inv c ≡⟨ sym (·Assoc _ _ _) cong (b ·_) (·InvR c) ·IdR b b - invInv : (a : G ) inv (inv a) a + invInv : (a : G ) inv (inv a) a invInv a = ·CancelL (inv a) (·InvR (inv a) sym (·InvL a)) inv1g : inv 1g 1g inv1g = ·CancelL 1g (·InvR 1g sym (·IdL 1g)) - 1gUniqueL : {e : G } (x : G ) e · x x e 1g + 1gUniqueL : {e : G } (x : G ) e · x x e 1g 1gUniqueL {e} x p = ·CancelR x (p sym (·IdL _)) - 1gUniqueR : (x : G ) {e : G } x · e x e 1g + 1gUniqueR : (x : G ) {e : G } x · e x e 1g 1gUniqueR x {e} p = ·CancelL x (p sym (·IdR _)) - invUniqueL : {g h : G } g · h 1g g inv h + invUniqueL : {g h : G } g · h 1g g inv h invUniqueL {g} {h} p = ·CancelR h (p sym (·InvL h)) - invUniqueR : {g h : G } g · h 1g h inv g + invUniqueR : {g h : G } g · h 1g h inv g invUniqueR {g} {h} p = ·CancelL g (p sym (·InvR g)) - idFromIdempotency : (x : G ) x x · x x 1g + idFromIdempotency : (x : G ) x x · x x 1g idFromIdempotency x p = x ≡⟨ sym (·IdR x) x · 1g ≡⟨ cong u x · u) (sym (·InvR _)) @@ -73,7 +73,7 @@ 1g - invDistr : (a b : G ) inv (a · b) inv b · inv a + invDistr : (a b : G ) inv (a · b) inv b · inv a invDistr a b = sym (invUniqueR γ) where γ : (a · b) · (inv b · inv a) 1g γ = (a · b) · (inv b · inv a) diff --git a/Cubical.Algebra.Group.QuotientGroup.html b/Cubical.Algebra.Group.QuotientGroup.html index 338e8fbb3f..0a19e29739 100644 --- a/Cubical.Algebra.Group.QuotientGroup.html +++ b/Cubical.Algebra.Group.QuotientGroup.html @@ -35,7 +35,7 @@ open GroupStr (snd G') open GroupTheory G' private - G = G' + G = G' _~_ : G G Type x ~ y = x · inv y H' @@ -102,7 +102,7 @@ _/_ : (G : Group ) (H : NormalSubgroup G) Group G / H = asGroup G (H .fst) (H .snd) -[_]/G : {G : Group } {H : NormalSubgroup G} G G / H +[_]/G : {G : Group } {H : NormalSubgroup G} G G / H [ x ]/G = [ x ] -- Quotienting by a trivial subgroup diff --git a/Cubical.Algebra.Group.Subgroup.html b/Cubical.Algebra.Group.Subgroup.html index 1f326da9cb..4366b75c9c 100644 --- a/Cubical.Algebra.Group.Subgroup.html +++ b/Cubical.Algebra.Group.Subgroup.html @@ -32,7 +32,7 @@ module _ (G' : Group ) where open GroupStr (snd G') - private G = G' + private G = G' record isSubgroup (H : G) : Type where field @@ -59,7 +59,7 @@ Subgroup→Group : Subgroup Group Subgroup→Group (H , Hh) = makeGroup-right 1HG _·HG_ invHG isSetHG assocHG ridHG invrHG where - HG = Σ[ x G ] H x + HG = Σ[ x G ] H x isSetHG = isSetΣ is-set x isProp→isSet (H x .snd)) 1HG : HG @@ -89,7 +89,7 @@ open GroupStr (snd G') open isSubgroup open GroupTheory G' - private G = G' + private G = G' isNormal : Subgroup G' Type isNormal H = (g h : G) h H g · h · inv g H @@ -159,7 +159,7 @@ f = ϕ .fst module ϕ = IsGroupHom (ϕ .snd) - imSubset : H + imSubset : H imSubset x = isInIm ϕ x , isPropIsInIm ϕ x isSubgroupIm : isSubgroup H imSubset @@ -174,7 +174,7 @@ imGroup : Group imGroup = Subgroup→Group _ imSubgroup - isNormalIm : ((x y : H ) x H.· y y H.· x) + isNormalIm : ((x y : H ) x H.· y y H.· x) isNormal imSubgroup isNormalIm comm x y = map λ {(g , p) @@ -187,7 +187,7 @@ ((x H.· y) H.· H.inv x) ≡⟨ sym (H.·Assoc x y (H.inv x)) x H.· y H.· H.inv x )} - kerSubset : G + kerSubset : G kerSubset x = isInKer ϕ x , isPropIsInKer ϕ x isSubgroupKer : isSubgroup G kerSubset diff --git a/Cubical.Algebra.Lattice.Base.html b/Cubical.Algebra.Lattice.Base.html index 036530cf96..4b35259ec0 100644 --- a/Cubical.Algebra.Lattice.Base.html +++ b/Cubical.Algebra.Lattice.Base.html @@ -92,7 +92,7 @@ Lattice : Type (ℓ-suc ) -Lattice = TypeWithStr LatticeStr +Lattice = TypeWithStr LatticeStr makeIsLattice : {L : Type } {0l 1l : L} {_∨l_ _∧l_ : L L L} (is-setL : isSet L) @@ -156,7 +156,7 @@ unquoteDecl IsLatticeHomIsoΣ = declareRecordIsoΣ IsLatticeHomIsoΣ (quote IsLatticeHom) LatticeHom : (L : Lattice ) (M : Lattice ℓ') Type (ℓ-max ℓ') -LatticeHom L M = Σ[ f ( L M ) ] IsLatticeHom (L .snd) f (M .snd) +LatticeHom L M = Σ[ f ( L M ) ] IsLatticeHom (L .snd) f (M .snd) idLatticeHom : (L : Lattice ) LatticeHom L L fst (idLatticeHom L) x = x @@ -170,7 +170,7 @@ IsLatticeEquiv M e N = IsLatticeHom M (e .fst) N LatticeEquiv : (L : Lattice ) (M : Lattice ℓ') Type (ℓ-max ℓ') -LatticeEquiv L M = Σ[ e ( L M ) ] IsLatticeEquiv (L .snd) e (M .snd) +LatticeEquiv L M = Σ[ e ( L M ) ] IsLatticeEquiv (L .snd) e (M .snd) isPropIsLattice : {L : Type } (0l 1l : L) (_∨l_ _∧l_ : L L L) isProp (IsLattice 0l 1l _∨l_ _∧l_) diff --git a/Cubical.Algebra.Matrix.html b/Cubical.Algebra.Matrix.html index 05a3a6830c..c0d141aaac 100644 --- a/Cubical.Algebra.Matrix.html +++ b/Cubical.Algebra.Matrix.html @@ -85,7 +85,7 @@ module FinMatrixAbGroup (G' : AbGroup ) where open AbGroupStr (snd G') renaming ( is-set to isSetG ) - private G = G' + private G = G' zeroFinMatrix : {m n} FinMatrix G m n zeroFinMatrix _ _ = 0g @@ -135,7 +135,7 @@ module _ (G' : AbGroup ) where open AbGroupStr (snd G') - private G = G' + private G = G' zeroVecMatrix : {m n} VecMatrix G m n zeroVecMatrix = replicate (replicate 0g) @@ -207,7 +207,7 @@ open Sum R' open FinMatrixAbGroup (_ , abgroupstr _ _ _ (snd R' .RingStr.+IsAbGroup)) - private R = R' + private R = R' oneFinMatrix : {n} FinMatrix R n n oneFinMatrix i j = δ i j diff --git a/Cubical.Algebra.Module.Base.html b/Cubical.Algebra.Module.Base.html index 7853df5789..6638291eb8 100644 --- a/Cubical.Algebra.Module.Base.html +++ b/Cubical.Algebra.Module.Base.html @@ -32,15 +32,15 @@ (0m : M) (_+_ : M M M) (-_ : M M) - (_⋆_ : R M M) : Type (ℓ-max ℓ') where + (_⋆_ : R M M) : Type (ℓ-max ℓ') where open RingStr (snd R) using (_·_; 1r) renaming (_+_ to _+r_) field +IsAbGroup : IsAbGroup 0m _+_ -_ - ⋆Assoc : (r s : R ) (x : M) (r · s) x r (s x) - ⋆DistR+ : (r : R ) (x y : M) r (x + y) (r x) + (r y) - ⋆DistL+ : (r s : R ) (x : M) (r +r s) x (r x) + (s x) + ⋆Assoc : (r s : R ) (x : M) (r · s) x r (s x) + ⋆DistR+ : (r : R ) (x y : M) r (x + y) (r x) + (r y) + ⋆DistL+ : (r s : R ) (x : M) (r +r s) x (r x) + (s x) ⋆IdL : (x : M) 1r x x open IsAbGroup +IsAbGroup public @@ -58,7 +58,7 @@ 0m : A _+_ : A A A -_ : A A - _⋆_ : R A A + _⋆_ : R A A isLeftModule : IsLeftModule R 0m _+_ -_ _⋆_ infixr 7 _+_ @@ -87,15 +87,15 @@ open RingStr (snd R) using (1r) renaming (_+_ to _+r_; _·_ to _·s_) module _ {M : Type ℓ'} {0m : M} - {_+_ : M M M} { -_ : M M} {_⋆_ : R M M} + {_+_ : M M M} { -_ : M M} {_⋆_ : R M M} (isSet-M : isSet M) (+Assoc : (x y z : M) x + (y + z) (x + y) + z) (+IdR : (x : M) x + 0m x) (+InvR : (x : M) x + (- x) 0m) (+Comm : (x y : M) x + y y + x) - (⋆Assoc : (r s : R ) (x : M) (r ·s s) x r (s x)) - (⋆DistR+ : (r : R ) (x y : M) r (x + y) (r x) + (r y)) - (⋆DistL+ : (r s : R ) (x : M) (r +r s) x (r x) + (s x)) + (⋆Assoc : (r s : R ) (x : M) (r ·s s) x r (s x)) + (⋆DistR+ : (r : R ) (x y : M) r (x + y) (r x) + (r y)) + (⋆DistL+ : (r s : R ) (x : M) (r +r s) x (r x) + (s x)) (⋆IdL : (x : M) 1r x x) where @@ -120,10 +120,10 @@ pres0 : f M.0m N.0m pres+ : (x y : A) f (x M.+ y) f x N.+ f y pres- : (x : A) f (M.- x) N.- (f x) - pres⋆ : (r : R ) (y : A) f (r M.⋆ y) r N.⋆ f y + pres⋆ : (r : R ) (y : A) f (r M.⋆ y) r N.⋆ f y LeftModuleHom : {R : Ring } (M N : LeftModule R ℓ') Type (ℓ-max ℓ') -LeftModuleHom M N = Σ[ f ( M N ) ] IsLeftModuleHom (M .snd) f (N .snd) +LeftModuleHom M N = Σ[ f ( M N ) ] IsLeftModuleHom (M .snd) f (N .snd) IsLeftModuleEquiv : {R : Ring } {A B : Type ℓ'} (M : LeftModuleStr R A) (e : A B) (N : LeftModuleStr R B) @@ -131,13 +131,13 @@ IsLeftModuleEquiv M e N = IsLeftModuleHom M (e .fst) N LeftModuleEquiv : {R : Ring } (M N : LeftModule R ℓ') Type (ℓ-max ℓ') -LeftModuleEquiv M N = Σ[ e M N ] IsLeftModuleEquiv (M .snd) e (N .snd) +LeftModuleEquiv M N = Σ[ e M N ] IsLeftModuleEquiv (M .snd) e (N .snd) isPropIsLeftModule : (R : Ring ) {M : Type ℓ'} (0m : M) (_+_ : M M M) (-_ : M M) - (_⋆_ : R M M) + (_⋆_ : R M M) isProp (IsLeftModule R 0m _+_ -_ _⋆_) isPropIsLeftModule R _ _ _ _ = isOfHLevelRetractFromIso 1 IsLeftModuleIsoΣ diff --git a/Cubical.Algebra.Module.Instances.FinMatrix.html b/Cubical.Algebra.Module.Instances.FinMatrix.html index b7feffd20e..175120f2ac 100644 --- a/Cubical.Algebra.Module.Instances.FinMatrix.html +++ b/Cubical.Algebra.Module.Instances.FinMatrix.html @@ -4,7 +4,7 @@ open import Cubical.Foundations.Prelude open import Cubical.Foundations.HLevels -open import Cubical.Foundations.SIP using (str; ⟨_⟩) +open import Cubical.Foundations.SIP using (str; ⟨_⟩) open import Cubical.Functions.FunExtEquiv using (funExt₂) @@ -19,12 +19,12 @@ module _ {} (R : Ring ) {m n : } where private - open module R' = RingStr (str R) renaming (_+_ to _+r_; -_ to -r_) - module FV {n} = LeftModuleStr (str (FinVecLeftModule R {n})) + open module R' = RingStr (str R) renaming (_+_ to _+r_; -_ to -r_) + module FV {n} = LeftModuleStr (str (FinVecLeftModule R {n})) open LeftModuleStr FinMatrixLeftModule : LeftModule R - fst FinMatrixLeftModule = FinMatrix R m n + fst FinMatrixLeftModule = FinMatrix R m n 0m (snd FinMatrixLeftModule) = λ _ FV.0m _+_ (snd FinMatrixLeftModule) = λ xs ys x xs x FV.+ ys x -_ (snd FinMatrixLeftModule) = λ xs x FV.- xs x diff --git a/Cubical.Algebra.Module.Instances.FinVec.html b/Cubical.Algebra.Module.Instances.FinVec.html index 902a71ef46..b10c0bf5c3 100644 --- a/Cubical.Algebra.Module.Instances.FinVec.html +++ b/Cubical.Algebra.Module.Instances.FinVec.html @@ -4,7 +4,7 @@ open import Cubical.Foundations.Prelude open import Cubical.Foundations.HLevels -open import Cubical.Foundations.SIP using (str; ⟨_⟩) +open import Cubical.Foundations.SIP using (str; ⟨_⟩) open import Cubical.Data.Nat using () open import Cubical.Data.FinData @@ -14,11 +14,11 @@ module _ {} (R : Ring ) {n : } where - private open module R' = RingStr (str R) renaming (_+_ to _+r_; -_ to -r_) + private open module R' = RingStr (str R) renaming (_+_ to _+r_; -_ to -r_) open LeftModuleStr FinVecLeftModule : LeftModule R - fst FinVecLeftModule = FinVec R n + fst FinVecLeftModule = FinVec R n 0m (snd FinVecLeftModule) = λ _ 0r _+_ (snd FinVecLeftModule) = λ xs ys z xs z +r ys z -_ (snd FinVecLeftModule) = λ xs z -r xs z diff --git a/Cubical.Algebra.Module.Properties.html b/Cubical.Algebra.Module.Properties.html index bd1407e7b8..1f04c88d54 100644 --- a/Cubical.Algebra.Module.Properties.html +++ b/Cubical.Algebra.Module.Properties.html @@ -20,14 +20,14 @@ private instance _ = snd M - ⋆AnnihilL : (x : M ) R.0r x 0m + ⋆AnnihilL : (x : M ) R.0r x 0m ⋆AnnihilL x = let idempotent-+ = R.0r x ≡⟨ cong u u x) (sym (RingTheory.0Idempotent R)) (R.0r R.+ R.0r) x ≡⟨ ⋆DistL+ R.0r R.0r x (R.0r x) + (R.0r x) in GroupTheory.idFromIdempotency (LeftModule→Group M) (R.0r x) idempotent-+ - ⋆AnnihilR : (r : R ) r 0m 0m + ⋆AnnihilR : (r : R ) r 0m 0m ⋆AnnihilR r = GroupTheory.idFromIdempotency (LeftModule→Group M) (r 0m) helper where helper = r 0m ≡⟨ cong u r u) (sym (+IdL (0m))) @@ -35,7 +35,7 @@ (r 0m) + (r 0m) - minusByMult : (x : M ) (R.- R.1r) x - x + minusByMult : (x : M ) (R.- R.1r) x - x minusByMult x = let open AbGroupTheory (LeftModule→AbGroup M) in implicitInverse diff --git a/Cubical.Algebra.Module.Submodule.html b/Cubical.Algebra.Module.Submodule.html index fc067fbe32..871c14aa74 100644 --- a/Cubical.Algebra.Module.Submodule.html +++ b/Cubical.Algebra.Module.Submodule.html @@ -22,13 +22,13 @@ private module R = RingStr (snd R) - record isSubmodule (N : M ) : Type (ℓ-max ℓ') where + record isSubmodule (N : M ) : Type (ℓ-max ℓ') where field - +-closed : {x y : M } x N y N x + y N + +-closed : {x y : M } x N y N x + y N 0r-closed : 0m N - ⋆-closed : {x : M } (r : R ) x N r x N + ⋆-closed : {x : M } (r : R ) x N r x N - -closed : {x : M } x N - x N + -closed : {x : M } x N - x N -closed {x = x} x∈N = subst (_∈ N) (((R.- R.1r) x) ≡⟨ minusByMult x @@ -36,7 +36,7 @@ (⋆-closed (R.- R.1r) x∈N) Submodule : Type _ - Submodule = Σ[ N M ] isSubmodule N + Submodule = Σ[ N M ] isSubmodule N open isSubmodule diff --git a/Cubical.Algebra.Monoid.Base.html b/Cubical.Algebra.Monoid.Base.html index d26605dfd5..903b70a643 100644 --- a/Cubical.Algebra.Monoid.Base.html +++ b/Cubical.Algebra.Monoid.Base.html @@ -50,7 +50,7 @@ open IsMonoid isMonoid public Monoid : Type (ℓ-suc ) -Monoid = TypeWithStr MonoidStr +Monoid = TypeWithStr MonoidStr monoid : (A : Type ) (ε : A) (_·_ : A A A) (h : IsMonoid ε _·_) Monoid monoid A ε _·_ h = A , monoidstr ε _·_ h @@ -93,14 +93,14 @@ pres· : (x y : A) f (x M.· y) f x N.· f y MonoidHom : (L : Monoid ) (M : Monoid ℓ') Type (ℓ-max ℓ') -MonoidHom L M = Σ[ f ( L M ) ] IsMonoidHom (L .snd) f (M .snd) +MonoidHom L M = Σ[ f ( L M ) ] IsMonoidHom (L .snd) f (M .snd) IsMonoidEquiv : {A : Type } {B : Type ℓ'} (M : MonoidStr A) (e : A B) (N : MonoidStr B) Type (ℓ-max ℓ') IsMonoidEquiv M e N = IsMonoidHom M (e .fst) N MonoidEquiv : (M : Monoid ) (N : Monoid ℓ') Type (ℓ-max ℓ') -MonoidEquiv M N = Σ[ e M N ] IsMonoidEquiv (M .snd) e (N .snd) +MonoidEquiv M N = Σ[ e M N ] IsMonoidEquiv (M .snd) e (N .snd) -- We now extract the important results from the above module @@ -133,7 +133,7 @@ -- Added for its use in groups -- If there exists a inverse of an element it is unique - inv-lemma : (x y z : M ) y · x ε x · z ε y z + inv-lemma : (x y z : M ) y · x ε x · z ε y z inv-lemma x y z left-inverse right-inverse = y ≡⟨ sym (·IdR y) y · ε ≡⟨ cong - y · -) (sym right-inverse) diff --git a/Cubical.Algebra.Monoid.BigOp.html b/Cubical.Algebra.Monoid.BigOp.html index 91fec761c3..e776532e43 100644 --- a/Cubical.Algebra.Monoid.BigOp.html +++ b/Cubical.Algebra.Monoid.BigOp.html @@ -16,7 +16,7 @@ ℓ' : Level module MonoidBigOp (M' : Monoid ) where - private M = M' + private M = M' open MonoidStr (snd M') bigOp : {n : } FinVec M n M diff --git a/Cubical.Algebra.Monoid.Submonoid.html b/Cubical.Algebra.Monoid.Submonoid.html index 3d35c69354..00ff514f43 100644 --- a/Cubical.Algebra.Monoid.Submonoid.html +++ b/Cubical.Algebra.Monoid.Submonoid.html @@ -11,15 +11,15 @@ open import Cubical.Algebra.Monoid module Cubical.Algebra.Monoid.Submonoid { : Level} (M : Monoid ) where -open MonoidStr (str M) +open MonoidStr (str M) -record isSubmonoid (S : M ) : Type where +record isSubmonoid (S : M ) : Type where field ε-closed : ε S - ·-closed : {x y : M } (x S) (y S) (x · y) S + ·-closed : {x y : M } (x S) (y S) (x · y) S Submonoid : Type (ℓ-suc ) -Submonoid = Σ[ S M ] isSubmonoid S +Submonoid = Σ[ S M ] isSubmonoid S Submonoid→Monoid : Submonoid Monoid Submonoid→Monoid ( S , isSubmonoid ) = diff --git a/Cubical.Algebra.OrderedCommMonoid.Base.html b/Cubical.Algebra.OrderedCommMonoid.Base.html index 9a00734892..bed84a1aa5 100644 --- a/Cubical.Algebra.OrderedCommMonoid.Base.html +++ b/Cubical.Algebra.OrderedCommMonoid.Base.html @@ -6,8 +6,8 @@ -} open import Cubical.Foundations.Prelude -open import Cubical.Foundations.SIP using (TypeWithStr) -open import Cubical.Foundations.Structure using (⟨_⟩; str) +open import Cubical.Foundations.SIP using (TypeWithStr) +open import Cubical.Foundations.Structure using (⟨_⟩; str) open import Cubical.Algebra.CommMonoid.Base @@ -43,7 +43,7 @@ infixl 4 _≤_ OrderedCommMonoid : ( ℓ' : Level) Type (ℓ-suc (ℓ-max ℓ')) -OrderedCommMonoid ℓ' = TypeWithStr (OrderedCommMonoidStr ℓ') +OrderedCommMonoid ℓ' = TypeWithStr (OrderedCommMonoidStr ℓ') module _ {M : Type } {1m : M} {_·_ : M M M} {_≤_ : M M Type ℓ'} diff --git a/Cubical.Algebra.OrderedCommMonoid.PropCompletion.html b/Cubical.Algebra.OrderedCommMonoid.PropCompletion.html index a27ad999ab..dc457b1620 100644 --- a/Cubical.Algebra.OrderedCommMonoid.PropCompletion.html +++ b/Cubical.Algebra.OrderedCommMonoid.PropCompletion.html @@ -260,10 +260,10 @@ isSetBoundedPropCompletion : (M : OrderedCommMonoid ) - isSet ( BoundedPropCompletion M ) + isSet ( BoundedPropCompletion M ) isSetBoundedPropCompletion M = isSetΣSndProp is-set λ x PropCompletion.isPropIsBounded _ M x where - open OrderedCommMonoidStr (str (PropCompletion M)) + open OrderedCommMonoidStr (str (PropCompletion M)) \ No newline at end of file diff --git a/Cubical.Algebra.OrderedCommMonoid.Properties.html b/Cubical.Algebra.OrderedCommMonoid.Properties.html index 9773aeee31..2196cf21bc 100644 --- a/Cubical.Algebra.OrderedCommMonoid.Properties.html +++ b/Cubical.Algebra.OrderedCommMonoid.Properties.html @@ -5,7 +5,7 @@ open import Cubical.Foundations.Prelude open import Cubical.Foundations.Structure open import Cubical.Foundations.HLevels -open import Cubical.Foundations.SIP using (TypeWithStr) +open import Cubical.Foundations.SIP using (TypeWithStr) open import Cubical.Data.Sigma @@ -22,19 +22,19 @@ module _ (M : OrderedCommMonoid ℓ') - (P : M hProp ℓ'') + (P : M hProp ℓ'') where open OrderedCommMonoidStr (snd M) module _ - (·Closed : (x y : M ) P x P y P (x · y) ) - (εContained : P ε ) + (·Closed : (x y : M ) P x P y P (x · y) ) + (εContained : P ε ) where private - subtype = Σ[ x M ] P x + subtype = Σ[ x M ] P x submonoid = makeSubCommMonoid (OrderedCommMonoid→CommMonoid M) P ·Closed εContained - _≤ₛ_ : (x y : submonoid ) Type ℓ' + _≤ₛ_ : (x y : submonoid ) Type ℓ' x ≤ₛ y = (fst x) (fst y) - pres≤ : (x y : submonoid ) (x≤y : x ≤ₛ y) (fst x) (fst y) + pres≤ : (x y : submonoid ) (x≤y : x ≤ₛ y) (fst x) (fst y) pres≤ x y x≤y = x≤y makeOrderedSubmonoid : OrderedCommMonoid _ ℓ' diff --git a/Cubical.Algebra.Polynomials.TypevariateHIT.EquivUnivariateListPoly.html b/Cubical.Algebra.Polynomials.TypevariateHIT.EquivUnivariateListPoly.html index 2e99e3a132..bc3897092e 100644 --- a/Cubical.Algebra.Polynomials.TypevariateHIT.EquivUnivariateListPoly.html +++ b/Cubical.Algebra.Polynomials.TypevariateHIT.EquivUnivariateListPoly.html @@ -55,13 +55,13 @@ idList = AlgebraHoms.idAlgebraHom (CommAlgebra→Algebra (ListPolyCommAlgebra R)) idHIT = AlgebraHoms.idAlgebraHom (CommAlgebra→Algebra (R [ Unit ])) - toFrom : (x : ListPolyCommAlgebra R ) fst to (fst from x) x + toFrom : (x : ListPolyCommAlgebra R ) fst to (fst from x) x toFrom = isIdByUMP-List R (to ∘a from) (cong (fst to) fromPresX) - fromTo : (x : R [ Unit ] ) fst from (fst to x) x + fromTo : (x : R [ Unit ] ) fst from (fst to x) x fromTo = isIdByUMP-HIT (from ∘a to) λ {tt fromPresX} - typevariateListPolyIso : Iso R [ Unit ] ListPolyCommAlgebra R + typevariateListPolyIso : Iso R [ Unit ] ListPolyCommAlgebra R fun typevariateListPolyIso = fst to inv typevariateListPolyIso = fst from rightInv typevariateListPolyIso = toFrom diff --git a/Cubical.Algebra.Ring.Base.html b/Cubical.Algebra.Ring.Base.html index 2894b58ed9..c52c6ad814 100644 --- a/Cubical.Algebra.Ring.Base.html +++ b/Cubical.Algebra.Ring.Base.html @@ -80,7 +80,7 @@ open IsRing isRing public Ring : Type (ℓ-suc ) -Ring = TypeWithStr RingStr +Ring = TypeWithStr RingStr module _ {R : Type } {0r 1r : R} {_+_ _·_ : R R R} { -_ : R R} (is-setR : isSet R) @@ -144,16 +144,16 @@ unquoteDecl IsRingHomIsoΣ = declareRecordIsoΣ IsRingHomIsoΣ (quote IsRingHom) RingHom : (R : Ring ) (S : Ring ℓ') Type (ℓ-max ℓ') -RingHom R S = Σ[ f ( R S ) ] IsRingHom (R .snd) f (S .snd) +RingHom R S = Σ[ f ( R S ) ] IsRingHom (R .snd) f (S .snd) IsRingEquiv : {A : Type } {B : Type ℓ'} (M : RingStr A) (e : A B) (N : RingStr B) Type (ℓ-max ℓ') IsRingEquiv M e N = IsRingHom M (e .fst) N RingEquiv : (R : Ring ) (S : Ring ℓ') Type (ℓ-max ℓ') -RingEquiv R S = Σ[ e ( R S ) ] IsRingEquiv (R .snd) e (S .snd) +RingEquiv R S = Σ[ e ( R S ) ] IsRingEquiv (R .snd) e (S .snd) -_$r_ : {R : Ring } {S : Ring ℓ'} (φ : RingHom R S) (x : R ) S +_$r_ : {R : Ring } {S : Ring ℓ'} (φ : RingHom R S) (x : R ) S φ $r x = φ .fst x RingEquiv→RingHom : {A B : Ring } RingEquiv A B RingHom A B @@ -190,14 +190,14 @@ isSetRingHom : (R : Ring ) (S : Ring ℓ') isSet (RingHom R S) isSetRingHom R S = isSetΣSndProp (isSetΠ λ _ is-set) f isPropIsRingHom (snd R) f (snd S)) where - open RingStr (str S) using (is-set) + open RingStr (str S) using (is-set) isSetRingEquiv : (A : Ring ) (B : Ring ℓ') isSet (RingEquiv A B) isSetRingEquiv A B = isSetΣSndProp (isOfHLevel≃ 2 A.is-set B.is-set) e isPropIsRingHom (snd A) (fst e) (snd B)) where - module A = RingStr (str A) - module B = RingStr (str B) + module A = RingStr (str A) + module B = RingStr (str B) RingHomPathP : (R : Ring ) (S T : Ring ℓ') (p : S T) (φ : RingHom R S) (ψ : RingHom R T) PathP i R .fst p i .fst) (φ .fst) (ψ .fst) @@ -244,7 +244,7 @@ (0a 1a : A) (add mul : A A A) (inv : A A) - (e : R A) + (e : R A) (p0 : e .fst (R .snd .0r) 0a) (p1 : e .fst (R .snd .1r) 1a) (p+ : x y e .fst (R .snd ._+_ x y) add (e .fst x) (e .fst y)) @@ -312,7 +312,7 @@ -- Smart constructor for ring homomorphisms -- that infers the other equations from pres1, pres+, and pres· -module _ {R : Ring } {S : Ring ℓ'} {f : R S } where +module _ {R : Ring } {S : Ring ℓ'} {f : R S } where private module R = RingStr (R .snd) @@ -320,8 +320,8 @@ module _ (p1 : f R.1r S.1r) - (p+ : (x y : R ) f (x R.+ y) f x S.+ f y) - ( : (x y : R ) f (x R.· y) f x S.· f y) + (p+ : (x y : R ) f (x R.+ y) f x S.+ f y) + ( : (x y : R ) f (x R.· y) f x S.· f y) where open IsRingHom diff --git a/Cubical.Algebra.Ring.Ideal.Base.html b/Cubical.Algebra.Ring.Ideal.Base.html index bef0f4d56d..8d75d63337 100644 --- a/Cubical.Algebra.Ring.Ideal.Base.html +++ b/Cubical.Algebra.Ring.Ideal.Base.html @@ -19,7 +19,7 @@ module _ (R' : Ring ) where open RingStr (snd R') - private R = R' + private R = R' {- by default, 'ideal' means two-sided ideal -} record isIdeal (I : R) : Type where @@ -93,5 +93,5 @@ zeroIdeal = zeroSubset , isIdealZeroIdeal IdealsIn : (R : Ring ) Type _ -IdealsIn {} R = Σ[ I R ] isIdeal R I +IdealsIn {} R = Σ[ I R ] isIdeal R I \ No newline at end of file diff --git a/Cubical.Algebra.Ring.Kernel.html b/Cubical.Algebra.Ring.Kernel.html index ac933274dc..0fa1f33dc0 100644 --- a/Cubical.Algebra.Ring.Kernel.html +++ b/Cubical.Algebra.Ring.Kernel.html @@ -61,7 +61,7 @@ snd kernelIdeal = kernelIsIdeal - kernelFiber : (x y : R ) f x f y x - y kernel + kernelFiber : (x y : R ) f x f y x - y kernel kernelFiber x y fx≡fy = f (x - y) ≡⟨ pres+ x (- y) f x + f (- y) ≡[ i ]⟨ fx≡fy i + pres- y i f y - f y ≡⟨ +InvR (f y) diff --git a/Cubical.Algebra.Ring.Properties.html b/Cubical.Algebra.Ring.Properties.html index fd9741b543..5b3d1a504c 100644 --- a/Cubical.Algebra.Ring.Properties.html +++ b/Cubical.Algebra.Ring.Properties.html @@ -36,7 +36,7 @@ module RingTheory (R' : Ring ) where open RingStr (snd R') - private R = R' + private R = R' implicitInverse : (x y : R) x + y 0r y - x @@ -179,7 +179,7 @@ snd (idRingHom R) = makeIsRingHom refl _ _ refl) _ _ refl) compIsRingHom : {A : Ring } {B : Ring ℓ'} {C : Ring ℓ''} - {g : B C } {f : A B } + {g : B C } {f : A B } IsRingHom (B .snd) g (C .snd) IsRingHom (A .snd) f (B .snd) IsRingHom (A .snd) (g f) (C .snd) @@ -214,7 +214,7 @@ open RingHoms compIsRingEquiv : {A : Ring } {B : Ring ℓ'} {C : Ring ℓ''} - {g : B C } {f : A B } + {g : B C } {f : A B } IsRingEquiv (B .snd) g (C .snd) IsRingEquiv (A .snd) f (B .snd) IsRingEquiv (A .snd) (compEquiv f g) (C .snd) @@ -260,8 +260,8 @@ _ = snd S f = fst φ - ker≡0→inj : ({x : R } f x 0r x 0r) - ({x y : R } f x f y x y) + ker≡0→inj : ({x : R } f x 0r x 0r) + ({x y : R } f x f y x y) ker≡0→inj ker≡0 {x} {y} p = equalByDifference _ _ (ker≡0 path) where path : f (x - y) 0r @@ -278,7 +278,7 @@ open RingEquivs Ring≡ : (A B : Ring ) ( - Σ[ p A B ] + Σ[ p A B ] Σ[ q0 PathP i p i) (0r (snd A)) (0r (snd B)) ] Σ[ q1 PathP i p i) (1r (snd A)) (1r (snd B)) ] Σ[ r+ PathP i p i p i p i) (_+_ (snd A)) (_+_ (snd B)) ] @@ -292,12 +292,12 @@ theIso : Iso _ _ fun theIso (p , q0 , q1 , r+ , , s , t) i = p i , ringstr (q0 i) (q1 i) (r+ i) ( i) (s i) (t i) - inv theIso x = cong ⟨_⟩ x , cong (0r snd) x , cong (1r snd) x + inv theIso x = cong ⟨_⟩ x , cong (0r snd) x , cong (1r snd) x , cong (_+_ snd) x , cong (_·_ snd) x , cong (-_ snd) x , cong (isRing snd) x rightInv theIso _ = refl leftInv theIso _ = refl - caracRing≡ : {A B : Ring } (p q : A B) cong ⟨_⟩ p cong ⟨_⟩ q p q + caracRing≡ : {A B : Ring } (p q : A B) cong ⟨_⟩ p cong ⟨_⟩ q p q caracRing≡ {A = A} {B = B} p q P = sym (transportTransport⁻ (ua (Ring≡ A B)) p) ∙∙ cong (transport (ua (Ring≡ A B))) helper @@ -312,16 +312,16 @@ λ _ isPropΣ (isOfHLevelPathP' 1 (isSetΠ2 λ _ _ is-set (snd B)) _ _) λ _ isPropΣ (isOfHLevelPathP' 1 (isSetΠ λ _ is-set (snd B)) _ _) λ _ isOfHLevelPathP 1 (isPropIsRing _ _ _ _ _) _ _) - (transportRefl (cong ⟨_⟩ p) P sym (transportRefl (cong ⟨_⟩ q))) + (transportRefl (cong ⟨_⟩ p) P sym (transportRefl (cong ⟨_⟩ q))) uaCompRingEquiv : {A B C : Ring } (f : RingEquiv A B) (g : RingEquiv B C) uaRing (compRingEquiv f g) uaRing f uaRing g uaCompRingEquiv f g = caracRing≡ _ _ ( - cong ⟨_⟩ (uaRing (compRingEquiv f g)) + cong ⟨_⟩ (uaRing (compRingEquiv f g)) ≡⟨ uaCompEquiv _ _ - cong ⟨_⟩ (uaRing f) cong ⟨_⟩ (uaRing g) - ≡⟨ sym (cong-∙ ⟨_⟩ (uaRing f) (uaRing g)) - cong ⟨_⟩ (uaRing f uaRing g) ) + cong ⟨_⟩ (uaRing f) cong ⟨_⟩ (uaRing g) + ≡⟨ sym (cong-∙ ⟨_⟩ (uaRing f) (uaRing g)) + cong ⟨_⟩ (uaRing f uaRing g) ) diff --git a/Cubical.Algebra.Ring.Quotient.html b/Cubical.Algebra.Ring.Quotient.html index 483c0dfa84..d40ee38bfb 100644 --- a/Cubical.Algebra.Ring.Quotient.html +++ b/Cubical.Algebra.Ring.Quotient.html @@ -25,9 +25,9 @@ variable ℓ' : Level -module _ (R' : Ring ) (I : R' hProp ) (I-isIdeal : isIdeal R' I) where +module _ (R' : Ring ) (I : R' hProp ) (I-isIdeal : isIdeal R' I) where open RingStr (snd R') - private R = R' + private R = R' open isIdeal I-isIdeal open RingTheory R' @@ -194,7 +194,7 @@ _/_ : (R : Ring ) (I : IdealsIn R) Ring R / (I , IisIdeal) = asRing R I IisIdeal -[_]/I : {R : Ring } {I : IdealsIn R} (a : R ) R / I +[_]/I : {R : Ring } {I : IdealsIn R} (a : R ) R / I [ a ]/I = [ a ] quotientHom : (R : Ring ) (I : IdealsIn R) RingHom R (R / I) @@ -232,7 +232,7 @@ if S is from a different universe. Instead, the condition, that Iₛ is contained in the kernel of φ is rephrased explicitly. -} - inducedHom : ((x : R ) x Iₛ φ $r x 0r) RingHom (R / I) S + inducedHom : ((x : R ) x Iₛ φ $r x 0r) RingHom (R / I) S fst (inducedHom Iₛ⊆kernel) = elim _ is-set) @@ -251,13 +251,13 @@ pres- (snd (inducedHom Iₛ⊆kernel)) = elimProp _ is-set _ _) φ.pres- - solution : (p : ((x : R ) x Iₛ φ $r x 0r)) - (x : R ) inducedHom p $r [ x ] φ $r x + solution : (p : ((x : R ) x Iₛ φ $r x 0r)) + (x : R ) inducedHom p $r [ x ] φ $r x solution p x = refl - unique : (p : ((x : R ) x Iₛ φ $r x 0r)) - (ψ : RingHom (R / I) S) (ψIsSolution : (x : R ) ψ $r [ x ] φ $r x) - (x : R ) ψ $r [ x ] inducedHom p $r [ x ] + unique : (p : ((x : R ) x Iₛ φ $r x 0r)) + (ψ : RingHom (R / I) S) (ψIsSolution : (x : R ) ψ $r [ x ] φ $r x) + (x : R ) ψ $r [ x ] inducedHom p $r [ x ] unique p ψ ψIsSolution x = ψIsSolution x {- @@ -272,7 +272,7 @@ private π = quotientHom R I - x-0≡x : (x : R ) x - 0r x + x-0≡x : (x : R ) x - 0r x x-0≡x x = x - 0r ≡⟨ cong (x +_) (RingTheory.0Selfinverse R) x + 0r ≡⟨ +IdR x @@ -282,7 +282,7 @@ I⊆ker x x∈I = eq/ _ _ (subst (_∈ fst I) (sym (x-0≡x x)) x∈I) private - _~_ : Rel R R + _~_ : Rel R R x ~ y = x - y fst I ~IsPropValued : BinaryRelation.isPropValued _~_ @@ -291,7 +291,7 @@ -- _~_ is an equivalence relation. -- Note: This could be proved in the general setting of a subgroup of a group. - -[x-y]≡y-x : {x y : R } - (x - y) y - x + -[x-y]≡y-x : {x y : R } - (x - y) y - x -[x-y]≡y-x {x} {y} = - (x - y) ≡⟨ sym (-Dist _ _) - x + - (- y) ≡⟨ cong (- x +_) (-Idempotent _) @@ -299,7 +299,7 @@ y - x where open RingTheory R - x-y+y-z≡x-z : {x y z : R } (x - y) + (y - z) x - z + x-y+y-z≡x-z : {x y z : R } (x - y) + (y - z) x - z x-y+y-z≡x-z {x} {y} {z} = (x + - y) + (y + - z) ≡⟨ +Assoc _ _ _ ((x + - y) + y) + - z ≡⟨ cong (_+ - z) (sym (+Assoc _ _ _)) diff --git a/Cubical.Algebra.Semigroup.Base.html b/Cubical.Algebra.Semigroup.Base.html index 197d45b495..9312f519bc 100644 --- a/Cubical.Algebra.Semigroup.Base.html +++ b/Cubical.Algebra.Semigroup.Base.html @@ -54,7 +54,7 @@ open IsSemigroup isSemigroup public Semigroup : Type (ℓ-suc ) -Semigroup = TypeWithStr SemigroupStr +Semigroup = TypeWithStr SemigroupStr module _ (A : Type ) (_·_ : A A A) (h : IsSemigroup _·_) where semigroup : Semigroup @@ -80,7 +80,7 @@ open IsSemigroupEquiv SemigroupEquiv : (M N : Semigroup ) Type -SemigroupEquiv M N = Σ[ e M N ] IsSemigroupEquiv (M .snd) e (N .snd) +SemigroupEquiv M N = Σ[ e M N ] IsSemigroupEquiv (M .snd) e (N .snd) isPropIsSemigroup : {A : Type } (_·_ : A A A) isProp (IsSemigroup _·_) isPropIsSemigroup _·_ = diff --git a/Cubical.Algebra.Semilattice.Base.html b/Cubical.Algebra.Semilattice.Base.html index e51129b88e..c6dbfd3be5 100644 --- a/Cubical.Algebra.Semilattice.Base.html +++ b/Cubical.Algebra.Semilattice.Base.html @@ -69,7 +69,7 @@ open IsSemilattice isSemilattice public Semilattice : Type (ℓ-suc ) -Semilattice = TypeWithStr SemilatticeStr +Semilattice = TypeWithStr SemilatticeStr semilattice : (A : Type ) (ε : A) (_·_ : A A A) (h : IsSemilattice ε _·_) Semilattice semilattice A ε _·_ h = A , semilatticestr ε _·_ h diff --git a/Cubical.Algebra.Semiring.Base.html b/Cubical.Algebra.Semiring.Base.html index 5886667798..73316922ce 100644 --- a/Cubical.Algebra.Semiring.Base.html +++ b/Cubical.Algebra.Semiring.Base.html @@ -3,7 +3,7 @@ module Cubical.Algebra.Semiring.Base where open import Cubical.Foundations.Prelude -open import Cubical.Foundations.SIP using (TypeWithStr) +open import Cubical.Foundations.SIP using (TypeWithStr) open import Cubical.Algebra.CommMonoid open import Cubical.Algebra.Monoid @@ -53,7 +53,7 @@ open IsSemiring isSemiring public Semiring : Type (ℓ-suc ) -Semiring = TypeWithStr SemiringStr +Semiring = TypeWithStr SemiringStr makeIsSemiring : {R : Type } {0r 1r : R} {_+_ _·_ : R R R} (is-setR : isSet R) diff --git a/Cubical.Categories.Profunctor.Base.html b/Cubical.Categories.Profunctor.Base.html index 4b3e2505e0..bbd32a76cc 100644 --- a/Cubical.Categories.Profunctor.Base.html +++ b/Cubical.Categories.Profunctor.Base.html @@ -83,7 +83,7 @@ _⋆D_ = D._⋆_ Het[_,_] : C.ob D.ob Type ℓ' - Het[ c , d ] = asFunc c , d + Het[ c , d ] = asFunc c , d _⋆L⟨_⟩⋆R_ : {c c' d' d} (f : C.Hom[ c , c' ])(r : Het[ c' , d' ])(g : D.Hom[ d' , d ]) diff --git a/Cubical.Codata.M.AsLimit.Container.html b/Cubical.Codata.M.AsLimit.Container.html index e97fceeb83..f9a4f4c65e 100644 --- a/Cubical.Codata.M.AsLimit.Container.html +++ b/Cubical.Codata.M.AsLimit.Container.html @@ -29,7 +29,7 @@ -- Σ[ A ∈ (Type ℓ) ] (A → Type ℓ) Container : -> Type (ℓ-suc ) -Container = TypeWithStr x x Type ) +Container = TypeWithStr x x Type ) -- Polynomial functor (P₀ , P₁) defined over a container -- https://ncatlab.org/nlab/show/polynomial+functor diff --git a/Cubical.Cohomology.EilenbergMacLane.EilenbergSteenrod.html b/Cubical.Cohomology.EilenbergMacLane.EilenbergSteenrod.html index 712783b0f7..ec024ceff3 100644 --- a/Cubical.Cohomology.EilenbergMacLane.EilenbergSteenrod.html +++ b/Cubical.Cohomology.EilenbergMacLane.EilenbergSteenrod.html @@ -59,7 +59,7 @@ Hmap∙ (negsuc n) f = idGroupHom suspMap : (n : ) {A : Pointed ℓ'} - AbGroupHom (coHomRedℤ G (sucℤ n) (Susp (typ A) , north)) + AbGroupHom (coHomRedℤ G (sucℤ n) (Susp (typ A) , north)) (coHomRedℤ G n A) fst (suspMap (pos n) {A = A}) = ST.map λ f x ΩEM+1→EM n @@ -113,14 +113,14 @@ snd (suspMap (negsuc n)) = makeIsGroupHom λ _ _ refl toSusp-coHomRed : (n : ) {A : Pointed ℓ'} - A →∙ EM∙ G n (Susp (typ A) , north) →∙ EM∙ G (suc n) + A →∙ EM∙ G n (Susp (typ A) , north) →∙ EM∙ G (suc n) fst (toSusp-coHomRed n f) north = 0ₖ (suc n) fst (toSusp-coHomRed n f) south = 0ₖ (suc n) fst (toSusp-coHomRed n f) (merid a i) = EM→ΩEM+1 n (fst f a) i snd (toSusp-coHomRed n f) = refl suspMapIso : (n : ) {A : Pointed ℓ'} - AbGroupIso (coHomRedℤ G (sucℤ n) (Susp (typ A) , north)) + AbGroupIso (coHomRedℤ G (sucℤ n) (Susp (typ A) , north)) (coHomRedℤ G n A) fun (fst (suspMapIso n)) = suspMap n .fst inv (fst (suspMapIso (pos n))) = ST.map (toSusp-coHomRed n) @@ -147,7 +147,7 @@ ; south sym (snd f) cong (fst f) (merid (pt A)) ; (merid a i) j lem a f j i})) where - lem : (a : typ A) (f : Susp∙ (typ A) →∙ EM∙ G (suc n)) + lem : (a : typ A) (f : Susp∙ (typ A) →∙ EM∙ G (suc n)) PathP i snd f (~ i) (sym (snd f) cong (fst f) (merid (pt A))) i) (EM→ΩEM+1 n (ΩEM+1→EM n (sym (snd f) ∙∙ cong (fst f) (toSusp A a) diff --git a/Cubical.Cohomology.EilenbergMacLane.Groups.Wedge.html b/Cubical.Cohomology.EilenbergMacLane.Groups.Wedge.html index c213457085..23e7916b16 100644 --- a/Cubical.Cohomology.EilenbergMacLane.Groups.Wedge.html +++ b/Cubical.Cohomology.EilenbergMacLane.Groups.Wedge.html @@ -101,7 +101,7 @@ ∙∙ j f x +[ (suc n) ]ₖ (-0ₖ (suc n) j)) ∙∙ rUnitₖ (suc n) (f x) - p₂ : (x : typ B) _ _ + p₂ : (x : typ B) _ _ p₂ x = j f (inr x) -[ (suc n) ]ₖ (f (sym (push tt) j))) pgen (inr x) diff --git a/Cubical.Data.Bool.Properties.html b/Cubical.Data.Bool.Properties.html index 0292a9459f..8674027ba2 100644 --- a/Cubical.Data.Bool.Properties.html +++ b/Cubical.Data.Bool.Properties.html @@ -271,7 +271,7 @@ isPropDep-Bool→Type : isPropDep Bool→Type isPropDep-Bool→Type = isOfHLevel→isOfHLevelDep 1 isProp-Bool→Type -IsoBool→∙ : {} {A : Pointed } Iso ((Bool , true) →∙ A) (typ A) +IsoBool→∙ : {} {A : Pointed } Iso ((Bool , true) →∙ A) (typ A) Iso.fun IsoBool→∙ f = fst f false fst (Iso.inv IsoBool→∙ a) false = a fst (Iso.inv (IsoBool→∙ {A = A}) a) true = pt A diff --git a/Cubical.Data.Cardinality.Properties.html b/Cubical.Data.Cardinality.Properties.html index 311e0cdb5f..278c34743c 100644 --- a/Cubical.Data.Cardinality.Properties.html +++ b/Cubical.Data.Cardinality.Properties.html @@ -148,13 +148,13 @@ _≲'_ = ∥₂.rec2 isSetHProp λ (A , _) (B , _) A B ∥₁ , isPropPropTrunc _≲_ : Rel (Card {}) (Card {}) - A B = A ≲' B + A B = A ≲' B isPreorder≲ : IsPreorder {ℓ-suc } _≲_ isPreorder≲ = ispreorder isSetCard prop reflexive transitive where prop : BinaryRelation.isPropValued _≲_ - prop a b = str (a ≲' b) + prop a b = str (a ≲' b) reflexive : BinaryRelation.isRefl _≲_ reflexive = ∥₂.elim A isProp→isSet (prop A A)) diff --git a/Cubical.Data.DescendingList.Strict.Properties.html b/Cubical.Data.DescendingList.Strict.Properties.html index 6de460519f..4791643e12 100644 --- a/Cubical.Data.DescendingList.Strict.Properties.html +++ b/Cubical.Data.DescendingList.Strict.Properties.html @@ -63,17 +63,17 @@ >ᴴ-trans x y [] x>y y>zs = >ᴴ[] >ᴴ-trans x y (cons z zs _) x>y (>ᴴcons y>z) = >ᴴcons (>-trans x>y y>z) - ≡ₚ-sym : {A : Type} {x y : A} x ≡ₚ y y ≡ₚ x + ≡ₚ-sym : {A : Type} {x y : A} x ≡ₚ y y ≡ₚ x ≡ₚ-sym p = PropTrunc.rec squash₁ p sym p ∣₁) p - >-all : x l x >ᴴ l a a ∈ˡ l x > a + >-all : x l x >ᴴ l a a ∈ˡ l x > a >-all x (cons y zs y>zs) (>ᴴcons x>y) a a∈l = ⊔-elim (a ≡ₚ y) (a ∈ˡ zs) _ (x > a) , >-isProp {x} {a}) a≡ₚy substₚ q x > q , >-isProp) (≡ₚ-sym a≡ₚy) x>y) a∈zs >-all x zs (>ᴴ-trans x y zs x>y y>zs) a a∈zs) a∈l - >-absent : x l x >ᴴ l ¬ (x ∈ˡ l) + >-absent : x l x >ᴴ l ¬ (x ∈ˡ l) >-absent x l x>l x∈l = ⊥.rec (>-irreflexive (>-all x l x>l x x∈l)) >ᴴ-isProp : x xs isProp (x >ᴴ xs) @@ -124,12 +124,12 @@ import Cubical.Data.Sigma as D import Cubical.Data.Sum as D - from : a a ∈ˡ xs ¬ a ≡ₚ x (a ≡ₚ x a ∈ˡ xs) + from : a a ∈ˡ xs ¬ a ≡ₚ x (a ≡ₚ x a ∈ˡ xs) from a a∈xs = (PropTrunc.rec (snd ) a≢x) D., inr a∈xs where a≢x : Type¬ (a x) - a≢x = λ a≡x (>-absent x xs x>xs (transport i a≡x i ∈ˡ xs ) a∈xs )) + a≢x = λ a≡x (>-absent x xs x>xs (transport i a≡x i ∈ˡ xs ) a∈xs )) - to : a ¬ a ≡ₚ x (a ≡ₚ x a ∈ˡ xs) a ∈ˡ xs + to : a ¬ a ≡ₚ x (a ≡ₚ x a ∈ˡ xs) a ∈ˡ xs to a (a≢x D., x) = PropTrunc.rec (snd (a ∈ˡ xs)) { (D.inl a≡x) ⊥.rec (a≢x a≡x); (D.inr x) x }) x @@ -153,24 +153,24 @@ Memˡ-inj : l₁ l₂ Memˡ l₁ Memˡ l₂ l₁ l₂ Memˡ-inj [] [] eq = refl - Memˡ-inj [] (cons y ys y>ys) eq = ⊥.rec (lower (transport i eq (~ i) y ) (inl refl ∣₁))) - Memˡ-inj (cons y ys y>ys) [] eq = ⊥.rec (lower (transport i eq i y ) (inl refl ∣₁))) + Memˡ-inj [] (cons y ys y>ys) eq = ⊥.rec (lower (transport i eq (~ i) y ) (inl refl ∣₁))) + Memˡ-inj (cons y ys y>ys) [] eq = ⊥.rec (lower (transport i eq i y ) (inl refl ∣₁))) Memˡ-inj (cons x xs x>xs) (cons y ys y>ys) e = ⊔-elim (x ≡ₚ y) (x ∈ʰ unsort ys) _ ((cons x xs x>xs) (cons y ys y>ys)) , SDL-isSet _ _) (PropTrunc.rec (SDL-isSet _ _) with-x≡y) (⊥.rec x∉ys) - (transport i e i x ) (inl refl ∣₁)) where + (transport i e i x ) (inl refl ∣₁)) where xxs = cons x xs x>xs - x∉ys : ¬ x ∈ˡ ys + x∉ys : ¬ x ∈ˡ ys x∉ys x∈ys = ⊥.rec (>-irreflexive y>y) where y>x : y > x y>x = (>-all y ys y>ys x x∈ys) - y∈xxs : y ∈ˡ (cons x xs x>xs) - y∈xxs = (transport i e (~ i) y ) (inl refl ∣₁)) + y∈xxs : y ∈ˡ (cons x xs x>xs) + y∈xxs = (transport i e (~ i) y ) (inl refl ∣₁)) y>y : y > y y>y = >-all y xxs (>ᴴcons y>x) y y∈xxs diff --git a/Cubical.Data.FinSet.Base.html b/Cubical.Data.FinSet.Base.html index a92de72bd2..3f0f7db101 100644 --- a/Cubical.Data.FinSet.Base.html +++ b/Cubical.Data.FinSet.Base.html @@ -78,7 +78,7 @@ -- the type of finite sets/propositions FinSet : ( : Level) Type (ℓ-suc ) -FinSet = TypeWithStr _ isFinSet +FinSet = TypeWithStr _ isFinSet FinProp : ( : Level) Type (ℓ-suc ) FinProp = Σ[ P FinSet ] isProp (P .fst) diff --git a/Cubical.Data.FinType.Base.html b/Cubical.Data.FinType.Base.html index 92a6d73fa1..d66fa97e02 100644 --- a/Cubical.Data.FinType.Base.html +++ b/Cubical.Data.FinType.Base.html @@ -45,7 +45,7 @@ -- the type of finite types FinType : ( : Level)(n : ) Type (ℓ-suc ) -FinType n = TypeWithStr (isFinType n) +FinType n = TypeWithStr (isFinType n) -- basic numerical implications diff --git a/Cubical.Data.Maybe.Properties.html b/Cubical.Data.Maybe.Properties.html index 7dc1ff9491..9b7b0ad7d9 100644 --- a/Cubical.Data.Maybe.Properties.html +++ b/Cubical.Data.Maybe.Properties.html @@ -8,7 +8,7 @@ open import Cubical.Foundations.Function using (_∘_; idfun) open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Pointed.Base using (Pointed; _→∙_; pt) -open import Cubical.Foundations.Structure using (⟨_⟩) +open import Cubical.Foundations.Structure using (⟨_⟩) open import Cubical.Functions.Embedding using (isEmbedding) @@ -30,7 +30,7 @@ -- forgetful functor forgetting the base point. module _ {} (A : Type ) {ℓ'} (B : Pointed ℓ') where - freelyPointedIso : Iso (Maybe∙ A →∙ B) (A B ) + freelyPointedIso : Iso (Maybe∙ A →∙ B) (A B ) Iso.fun freelyPointedIso f∙ = fst f∙ just Iso.inv freelyPointedIso f = Maybe.rec (pt B) f , refl Iso.rightInv freelyPointedIso f = refl diff --git a/Cubical.Data.Queue.1List.html b/Cubical.Data.Queue.1List.html index b338e9c82a..09cb05aabc 100644 --- a/Cubical.Data.Queue.1List.html +++ b/Cubical.Data.Queue.1List.html @@ -38,7 +38,7 @@ WithLaws : Queue WithLaws = (Q , S , isSetQ , refl , deq-enq , isInjEnq , isInjDeq) where - S = str Raw + S = str Raw isSetQ : isSet Q isSetQ = isOfHLevelList 0 Aset @@ -90,5 +90,5 @@ isInjDeq _ _ p = isInjDeq-lemma _ _ (MaybePath.encode _ _ p) Finite : FiniteQueue - Finite = (Q , str WithLaws , subst isEquiv (sym (funExt foldrCons)) (idIsEquiv _)) + Finite = (Q , str WithLaws , subst isEquiv (sym (funExt foldrCons)) (idIsEquiv _)) \ No newline at end of file diff --git a/Cubical.Data.Queue.Finite.html b/Cubical.Data.Queue.Finite.html index 4e5a987793..479013f922 100644 --- a/Cubical.Data.Queue.Finite.html +++ b/Cubical.Data.Queue.Finite.html @@ -32,7 +32,7 @@ isContrFiniteQueue .snd (Q , (S@(emp , enq , deq) , _ , deq-emp , deq-enq , _) , fin) = sip finiteQueueUnivalentStr _ _ ((f , fin) , f∘emp , f∘enq , sym f∘deq) where - deq₁-enq₁ = str One.WithLaws .snd .snd .snd .fst + deq₁-enq₁ = str One.WithLaws .snd .snd .snd .fst f : Q₁ Q f = foldr enq emp @@ -47,7 +47,7 @@ fA (q , a) = (f q , a) f∘returnOrEnq : (x : A) (xsr : Maybe (List A × A)) - returnOrEnq S x (deqMap f xsr) fA (returnOrEnq (str One.Raw) x xsr) + returnOrEnq S x (deqMap f xsr) fA (returnOrEnq (str One.Raw) x xsr) f∘returnOrEnq _ nothing = refl f∘returnOrEnq _ (just _) = refl diff --git a/Cubical.Data.Queue.Truncated2List.html b/Cubical.Data.Queue.Truncated2List.html index b8b89076e1..b49c186d6f 100644 --- a/Cubical.Data.Queue.Truncated2List.html +++ b/Cubical.Data.Queue.Truncated2List.html @@ -146,11 +146,11 @@ -- We derive the axioms for 2List from those for 1List WithLaws : Queue - WithLaws = Q , str Raw , subst (uncurry QueueAxioms) Raw-1≡2 (snd (str One.WithLaws)) + WithLaws = Q , str Raw , subst (uncurry QueueAxioms) Raw-1≡2 (snd (str One.WithLaws)) WithLaws-1≡2 : One.WithLaws WithLaws WithLaws-1≡2 = sip queueUnivalentStr _ _ (quotEquiv , quotEquivHasQueueEquivStr) Finite : FiniteQueue - Finite = Q , str WithLaws , subst (uncurry FiniteQueueAxioms) WithLaws-1≡2 (snd (str One.Finite)) + Finite = Q , str WithLaws , subst (uncurry FiniteQueueAxioms) WithLaws-1≡2 (snd (str One.Finite)) \ No newline at end of file diff --git a/Cubical.Data.Queue.Untruncated2List.html b/Cubical.Data.Queue.Untruncated2List.html index 70248e02e2..0f2f4b3130 100644 --- a/Cubical.Data.Queue.Untruncated2List.html +++ b/Cubical.Data.Queue.Untruncated2List.html @@ -157,15 +157,15 @@ -- We derive the axioms for 2List from those for 1List WithLaws : Queue - WithLaws = Q , str Raw , subst (uncurry QueueAxioms) Raw-1≡2 (snd (str One.WithLaws)) + WithLaws = Q , str Raw , subst (uncurry QueueAxioms) Raw-1≡2 (snd (str One.WithLaws)) -- In particular, the untruncated queue type is a set isSetQ : isSet Q - isSetQ = str WithLaws .snd .fst + isSetQ = str WithLaws .snd .fst WithLaws-1≡2 : One.WithLaws WithLaws WithLaws-1≡2 = sip queueUnivalentStr _ _ (quotEquiv , quotEquivHasQueueEquivStr) Finite : FiniteQueue - Finite = Q , str WithLaws , subst (uncurry FiniteQueueAxioms) WithLaws-1≡2 (snd (str One.Finite)) + Finite = Q , str WithLaws , subst (uncurry FiniteQueueAxioms) WithLaws-1≡2 (snd (str One.Finite)) \ No newline at end of file diff --git a/Cubical.Experiments.EscardoSIP.html b/Cubical.Experiments.EscardoSIP.html index 9fa1d40c8c..4e9a634730 100644 --- a/Cubical.Experiments.EscardoSIP.html +++ b/Cubical.Experiments.EscardoSIP.html @@ -136,37 +136,37 @@ -- as S-structures. This we call a standard notion of structure. -SNS : (S : Type Type ℓ') (ι : StrEquiv S ℓ'') Type (ℓ-max (ℓ-max (ℓ-suc ) ℓ') ℓ'') +SNS : (S : Type Type ℓ') (ι : StrEquiv S ℓ'') Type (ℓ-max (ℓ-max (ℓ-suc ) ℓ') ℓ'') SNS { = } S ι = {X : (Type )} (s t : S X) ((s t) ι (X , s) (X , t) (idEquiv X)) -- Escardo's ρ can actually be defined from this: -ρ : {ι : StrEquiv S ℓ''} (θ : SNS S ι) (A : TypeWithStr S) (ι A A (idEquiv (typ A))) -ρ θ A = equivFun (θ (str A) (str A)) refl +ρ : {ι : StrEquiv S ℓ''} (θ : SNS S ι) (A : TypeWithStr S) (ι A A (idEquiv (typ A))) +ρ θ A = equivFun (θ (str A) (str A)) refl -- We introduce the notation a bit differently: -_≃[_]_ : (A : TypeWithStr S) (ι : StrEquiv S ℓ'') (B : TypeWithStr S) (Type (ℓ-max ℓ'')) -A ≃[ ι ] B = Σ[ f ((typ A) (typ B)) ] (ι A B f) +_≃[_]_ : (A : TypeWithStr S) (ι : StrEquiv S ℓ'') (B : TypeWithStr S) (Type (ℓ-max ℓ'')) +A ≃[ ι ] B = Σ[ f ((typ A) (typ B)) ] (ι A B f) -Id→homEq : (S : Type Type ℓ') (ι : StrEquiv S ℓ'') - (ρ : (A : TypeWithStr S) ι A A (idEquiv (typ A))) - (A B : TypeWithStr S) A B (A ≃[ ι ] B) -Id→homEq S ι ρ A B p = J y x A ≃[ ι ] y) (idEquiv (typ A) , ρ A) p +Id→homEq : (S : Type Type ℓ') (ι : StrEquiv S ℓ'') + (ρ : (A : TypeWithStr S) ι A A (idEquiv (typ A))) + (A B : TypeWithStr S) A B (A ≃[ ι ] B) +Id→homEq S ι ρ A B p = J y x A ≃[ ι ] y) (idEquiv (typ A) , ρ A) p -- Use a PathP version of Escardó's homomorphism-lemma -hom-lemma-dep : (S : Type Type ℓ') (ι : StrEquiv S ℓ'') (θ : SNS S ι) - (A B : TypeWithStr S) - (p : (typ A) (typ B)) - (PathP i S (p i)) (str A) (str B)) (ι A B (pathToEquiv p)) -hom-lemma-dep S ι θ A B p = (J P s γ s) p) (str B) +hom-lemma-dep : (S : Type Type ℓ') (ι : StrEquiv S ℓ'') (θ : SNS S ι) + (A B : TypeWithStr S) + (p : (typ A) (typ B)) + (PathP i S (p i)) (str A) (str B)) (ι A B (pathToEquiv p)) +hom-lemma-dep S ι θ A B p = (J P s γ s) p) (str B) where - P = y x (s : S y) PathP i S (x i)) (str A) s ι A (y , s) (pathToEquiv x)) + P = y x (s : S y) PathP i S (x i)) (str A) s ι A (y , s) (pathToEquiv x)) - γ : (s : S (typ A)) ((str A) s) ι A ((typ A) , s) (pathToEquiv refl) - γ s = subst f ((str A) s) ι A ((typ A) , s) f) (sym pathToEquivRefl) (θ (str A) s) + γ : (s : S (typ A)) ((str A) s) ι A ((typ A) , s) (pathToEquiv refl) + γ s = subst f ((str A) s) ι A ((typ A) , s) f) (sym pathToEquivRefl) (θ (str A) s) -- Define the inverse of Id→homEq directly. @@ -176,26 +176,26 @@ e -homEq→Id : (S : Type Type ℓ') (ι : StrEquiv S ℓ'') (θ : SNS S ι) - (A B : TypeWithStr S) (A ≃[ ι ] B) A B +homEq→Id : (S : Type Type ℓ') (ι : StrEquiv S ℓ'') (θ : SNS S ι) + (A B : TypeWithStr S) (A ≃[ ι ] B) A B homEq→Id S ι θ A B (f , φ) = ΣPathP (p , q) where p = ua f ψ : ι A B (pathToEquiv p) - ψ = subst g ι A B g) (sym (ua-lemma (typ A) (typ B) f)) φ + ψ = subst g ι A B g) (sym (ua-lemma (typ A) (typ B) f)) φ - q : PathP i S (p i)) (str A) (str B) + q : PathP i S (p i)) (str A) (str B) q = equivFun (invEquiv (hom-lemma-dep S ι θ A B p)) ψ -- Proof of the SIP: -SIP : (S : Type Type ℓ') (ι : StrEquiv S ℓ'') (θ : SNS S ι) - (A B : TypeWithStr S) ((A B) (A ≃[ ι ] B)) +SIP : (S : Type Type ℓ') (ι : StrEquiv S ℓ'') (θ : SNS S ι) + (A B : TypeWithStr S) ((A B) (A ≃[ ι ] B)) SIP S ι θ A B = (A B) ≃⟨ i - (Σ[ p (typ A) (typ B) ] PathP i S (p i)) (str A) (str B)) ≃⟨ ii - (Σ[ p (typ A) (typ B) ] (ι A B (pathToEquiv p))) ≃⟨ iii + (Σ[ p (typ A) (typ B) ] PathP i S (p i)) (str A) (str B)) ≃⟨ ii + (Σ[ p (typ A) (typ B) ] (ι A B (pathToEquiv p))) ≃⟨ iii (A ≃[ ι ] B) where i = invEquiv ΣPath≃PathΣ diff --git a/Cubical.Experiments.Poset.html b/Cubical.Experiments.Poset.html index d0de852bb1..2ef7c55d7d 100644 --- a/Cubical.Experiments.Poset.html +++ b/Cubical.Experiments.Poset.html @@ -36,13 +36,13 @@ -- We first start by defining what it means a for a function to be -- order-preserving. The name "monotonic" is reserved for partial orders. -isOrderPreserving : (M : TypeWithStr ℓ₀ (Order ℓ₁)) (N : TypeWithStr ℓ₀′ (Order ℓ₁′)) +isOrderPreserving : (M : TypeWithStr ℓ₀ (Order ℓ₁)) (N : TypeWithStr ℓ₀′ (Order ℓ₁′)) (fst M fst N) Type _ isOrderPreserving (A , _⊑₀_) (B , _⊑₁_) f = - (x y : A) x ⊑₀ y f x ⊑₁ f y + (x y : A) x ⊑₀ y f x ⊑₁ f y -isPropIsOrderPreserving : (M : TypeWithStr ℓ₀ (Order ℓ₁)) - (N : TypeWithStr ℓ₀′ (Order ℓ₁′)) +isPropIsOrderPreserving : (M : TypeWithStr ℓ₀ (Order ℓ₁)) + (N : TypeWithStr ℓ₀′ (Order ℓ₁′)) (f : fst M fst N) isProp (isOrderPreserving M N f) isPropIsOrderPreserving M (_ , _⊑₁_) f = isPropΠ3 λ x y p snd (f x ⊑₁ f y) @@ -51,8 +51,8 @@ -- nothing but the property that both directions of the equivalence are -- order-preserving. -isAnOrderPreservingEqv : (M : TypeWithStr ℓ₀ (Order ℓ₁)) - (N : TypeWithStr ℓ₀′ (Order ℓ₁′)) +isAnOrderPreservingEqv : (M : TypeWithStr ℓ₀ (Order ℓ₁)) + (N : TypeWithStr ℓ₀′ (Order ℓ₁′)) fst M fst N Type _ isAnOrderPreservingEqv M N e@(f , _) = isOrderPreserving M N f × isOrderPreserving N M g @@ -84,10 +84,10 @@ f-equiv p = ((to , from) , eq) , NTS where to : isOrderPreserving (X , _⊑₀_) (X , _⊑₁_) (idfun _) - to x y = subst _⊑_ x ⊑₀ y x y ) p (idfun _) + to x y = subst _⊑_ x ⊑₀ y x y ) p (idfun _) from : isOrderPreserving (X , _⊑₁_) (X , _⊑₀_) (idfun _) - from x y = subst _⊑_ x y x ⊑₀ y ) p (idfun _) + from x y = subst _⊑_ x y x ⊑₀ y ) p (idfun _) eq : f (to , from) p eq = isSetOrder ℓ₁ X _⊑₀_ _⊑₁_ (f (to , from)) p @@ -104,13 +104,13 @@ -- raw ordered structures. isReflexive : {A : Type ℓ₀} Order ℓ₁ A hProp (ℓ-max ℓ₀ ℓ₁) -isReflexive {A = X} _⊑_ = ((x : X) x x ) , isPropΠ λ x snd (x x) +isReflexive {A = X} _⊑_ = ((x : X) x x ) , isPropΠ λ x snd (x x) isTransitive : {A : Type ℓ₀} Order ℓ₁ A hProp (ℓ-max ℓ₀ ℓ₁) isTransitive {ℓ₀ = ℓ₀} {ℓ₁ = ℓ₁} {A = X} _⊑_ = φ , φ-prop where φ : Type (ℓ-max ℓ₀ ℓ₁) - φ = ((x y z : X) x y y z x z ) + φ = ((x y z : X) x y y z x z ) φ-prop : isProp φ φ-prop = isPropΠ3 λ x y z snd (x y y z x z) @@ -118,7 +118,7 @@ isAntisym {ℓ₀ = ℓ₀} {ℓ₁ = ℓ₁} {A = X} A-set _⊑_ = φ , φ-prop where φ : Type (ℓ-max ℓ₀ ℓ₁) - φ = ((x y : X) x y y x x y) + φ = ((x y : X) x y y x x y) φ-prop : isProp φ φ-prop = isPropΠ3 λ x y z isPropΠ λ _ A-set x y @@ -130,12 +130,12 @@ isPartial : isSet A hProp (ℓ-max ℓ₀ ℓ₁) isPartial A-set = isReflexive _⊑_ isTransitive _⊑_ isAntisym A-set _⊑_ - φ = Σ[ A-set isSet A ] isPartial A-set + φ = Σ[ A-set isSet A ] isPartial A-set φ-prop = isOfHLevelΣ 1 isPropIsSet x snd (isPartial x)) -- The poset structure. PosetStructure : (ℓ₁ : Level) Type ℓ₀ Type (ℓ-max ℓ₀ (ℓ-suc ℓ₁)) -PosetStructure ℓ₁ = AxiomsStructure (Order ℓ₁) λ A _⊑_ satPosetAx ℓ₁ A _⊑_ +PosetStructure ℓ₁ = AxiomsStructure (Order ℓ₁) λ A _⊑_ satPosetAx ℓ₁ A _⊑_ isSetPosetStructure : (ℓ₁ : Level) (A : Type ℓ₀) isSet (PosetStructure ℓ₁ A) isSetPosetStructure ℓ₁ A = @@ -144,7 +144,7 @@ isProp→isSet (snd (satPosetAx ℓ₁ A _⊑_)) Poset : (ℓ₀ ℓ₁ : Level) Type (ℓ-max (ℓ-suc ℓ₀) (ℓ-suc ℓ₁)) -Poset ℓ₀ ℓ₁ = TypeWithStr ℓ₀ (PosetStructure ℓ₁) +Poset ℓ₀ ℓ₁ = TypeWithStr ℓ₀ (PosetStructure ℓ₁) -- Some projections for syntactic convenience. @@ -160,15 +160,15 @@ syntax rel P x y = x ⊑[ P ] y -⊑[_]-refl : (P : Poset ℓ₀ ℓ₁) (x : P ∣ₚ) x ⊑[ P ] x +⊑[_]-refl : (P : Poset ℓ₀ ℓ₁) (x : P ∣ₚ) x ⊑[ P ] x ⊑[_]-refl (_ , _ , _ , ⊑-refl , _) = ⊑-refl ⊑[_]-trans : (P : Poset ℓ₀ ℓ₁) (x y z : P ∣ₚ) - x ⊑[ P ] y y ⊑[ P ] z x ⊑[ P ] z + x ⊑[ P ] y y ⊑[ P ] z x ⊑[ P ] z ⊑[_]-trans (_ , _ , _ , _ , ⊑-trans , _) = ⊑-trans ⊑[_]-antisym : (P : Poset ℓ₀ ℓ₁) (x y : P ∣ₚ) - x ⊑[ P ] y y ⊑[ P ] x x y + x ⊑[ P ] y y ⊑[ P ] x x y ⊑[_]-antisym (_ , _ , _ , _ , _ , ⊑-antisym) = ⊑-antisym carrier-is-set : (P : Poset ℓ₀ ℓ₁) isSet P ∣ₚ @@ -210,10 +210,10 @@ module PosetReasoning (P : Poset ℓ₀ ℓ₁) where _⊑⟨_⟩_ : (x : P ∣ₚ) {y z : P ∣ₚ} - x ⊑[ P ] y y ⊑[ P ] z x ⊑[ P ] z + x ⊑[ P ] y y ⊑[ P ] z x ⊑[ P ] z _ ⊑⟨ p q = ⊑[ P ]-trans _ _ _ p q - _■ : (x : P ∣ₚ) x ⊑[ P ] x + _■ : (x : P ∣ₚ) x ⊑[ P ] x _■ = ⊑[ P ]-refl infixr 0 _⊑⟨_⟩_ @@ -249,7 +249,7 @@ isAMonotonicEqv (axiomsUnivalentStr _ NTS (SNS→UnivalentStr isAnOrderPreservingEqv orderUnivalentStr)) where - NTS : (A : Type ) (_⊑_ : Order ℓ₁ A) isProp satPosetAx ℓ₁ A _⊑_ + NTS : (A : Type ) (_⊑_ : Order ℓ₁ A) isProp satPosetAx ℓ₁ A _⊑_ NTS A _⊑_ = snd (satPosetAx ℓ₁ A _⊑_) poset-univ₀ : (P Q : Poset ℓ₀ ℓ₁) (P ≃ₚ Q) (P Q) diff --git a/Cubical.Experiments.ZCohomologyOld.KcompPrelims.html b/Cubical.Experiments.ZCohomologyOld.KcompPrelims.html index f7f8515b15..6c2489f4b7 100644 --- a/Cubical.Experiments.ZCohomologyOld.KcompPrelims.html +++ b/Cubical.Experiments.ZCohomologyOld.KcompPrelims.html @@ -47,7 +47,7 @@ -- Proof of Kₙ ≃ ∥ ΩSⁿ⁺¹ ∥ₙ for $n ≥ 2$ -- Entirely based on Cavallos proof of Freudenthal in Cubical.Homotopy.Freudenthal module miniFreudenthal (n : HLevel) where - σ : S₊ (2 + n) typ (Ω (S₊∙ (3 + n))) + σ : S₊ (2 + n) typ (Ω (S₊∙ (3 + n))) σ a = merid a merid north ⁻¹ S2+n = S₊ (2 + n) @@ -151,23 +151,23 @@ helper = cong suc (sym (+-suc n _)) sym (+-suc n _) stabSpheres-n≥2 : (n : ) Iso (hLevelTrunc (4 + n) (S₊ (2 + n))) - (hLevelTrunc (4 + n) (typ (Ω (S₊∙ (3 + n))))) + (hLevelTrunc (4 + n) (typ (Ω (S₊∙ (3 + n))))) stabSpheres-n≥2 n = connectedTruncIso (4 + n) (miniFreudenthal.σ n) (isConnectedσ-Sn n) -- -ϕ : (pt a : A) typ (Ω (Susp A , north)) +ϕ : (pt a : A) typ (Ω (Susp A , north)) ϕ pt a = (merid a) sym (merid pt) private - Kn→ΩKn+1 : (n : ) coHomK n typ (Ω (coHomK-ptd (suc n))) + Kn→ΩKn+1 : (n : ) coHomK n typ (Ω (coHomK-ptd (suc n))) Kn→ΩKn+1 zero x i = intLoop x i Kn→ΩKn+1 (suc zero) = trRec (isOfHLevelTrunc 4 north north ) λ a i ϕ base a i Kn→ΩKn+1 (suc (suc n)) = trRec (isOfHLevelTrunc (2 + (3 + n)) north north ) λ a i ϕ north a i - d-map : typ (Ω ((Susp ) , north)) + d-map : typ (Ω ((Susp ) , north)) d-map p = subst HopfSuspS¹ p base d-mapId : (r : ) d-map (ϕ base r) r @@ -204,7 +204,7 @@ Iso∥ϕ₁∥ : Iso (coHomK 1) ( Path (S₊ 2) north north 3) Iso∥ϕ₁∥ = composesToId→Iso d-Iso (trMap (ϕ base)) d-mapId2 -Iso-Kn-ΩKn+1 : (n : HLevel) Iso (coHomK n) (typ (Ω (coHomK-ptd (suc n)))) +Iso-Kn-ΩKn+1 : (n : HLevel) Iso (coHomK n) (typ (Ω (coHomK-ptd (suc n)))) Iso-Kn-ΩKn+1 zero = invIso (compIso (congIso (truncIdempotentIso _ isGroupoidS¹)) ΩS¹Isoℤ) Iso-Kn-ΩKn+1 (suc zero) = compIso Iso∥ϕ₁∥ (invIso (PathIdTruncIso 3)) Iso-Kn-ΩKn+1 (suc (suc n)) = compIso (stabSpheres-n≥2 n) diff --git a/Cubical.Experiments.ZCohomologyOld.Properties.html b/Cubical.Experiments.ZCohomologyOld.Properties.html index 51d754b227..7f368fb9e7 100644 --- a/Cubical.Experiments.ZCohomologyOld.Properties.html +++ b/Cubical.Experiments.ZCohomologyOld.Properties.html @@ -133,20 +133,20 @@ (coHom n A) (coHomRed n ((A Unit , inr (tt)))) coHomRed+1Equiv zero A i = helpLemma {C = (_ , pos 0)} i ∥₂ module coHomRed+1 where - helpLemma : {C : Pointed } ( (A (typ C)) ((((A Unit) , inr (tt)) →∙ C))) + helpLemma : {C : Pointed } ( (A (typ C)) ((((A Unit) , inr (tt)) →∙ C))) helpLemma {C = C} = isoToPath (iso map1 map2 b linvPf b) _ refl)) where - map1 : (A typ C) ((((A Unit) , inr (tt)) →∙ C)) + map1 : (A typ C) ((((A Unit) , inr (tt)) →∙ C)) map1 f = map1' , refl module helpmap where map1' : A Unit fst C map1' (inl x) = f x map1' (inr x) = pt C - map2 : ((((A Unit) , inr (tt)) →∙ C)) (A typ C) + map2 : ((((A Unit) , inr (tt)) →∙ C)) (A typ C) map2 (g , pf) x = g (inl x) linvPf : (b :((((A Unit) , inr (tt)) →∙ C))) map1 (map2 b) b @@ -160,13 +160,13 @@ ----------- -Kn→ΩKn+1 : (n : ) coHomK n typ (Ω (coHomK-ptd (suc n))) +Kn→ΩKn+1 : (n : ) coHomK n typ (Ω (coHomK-ptd (suc n))) Kn→ΩKn+1 n = Iso.fun (Iso-Kn-ΩKn+1 n) -ΩKn+1→Kn : (n : ) typ (Ω (coHomK-ptd (suc n))) coHomK n +ΩKn+1→Kn : (n : ) typ (Ω (coHomK-ptd (suc n))) coHomK n ΩKn+1→Kn n = Iso.inv (Iso-Kn-ΩKn+1 n) -Kn≃ΩKn+1 : {n : } coHomK n typ (Ω (coHomK-ptd (suc n))) +Kn≃ΩKn+1 : {n : } coHomK n typ (Ω (coHomK-ptd (suc n))) Kn≃ΩKn+1 {n = n} = isoToEquiv (Iso-Kn-ΩKn+1 n) ---------- Algebra/Group stuff -------- diff --git a/Cubical.Foundations.HLevels.html b/Cubical.Foundations.HLevels.html index 27e47ffe62..6dc6da9992 100644 --- a/Cubical.Foundations.HLevels.html +++ b/Cubical.Foundations.HLevels.html @@ -59,7 +59,7 @@ J y p (q : x y) isOfHLevel (suc n) (p q)) ( x refl) TypeOfHLevel : HLevel Type (ℓ-suc ) -TypeOfHLevel n = TypeWithStr (isOfHLevel n) +TypeOfHLevel n = TypeWithStr (isOfHLevel n) hProp hSet hGroupoid h2Groupoid : Type (ℓ-suc ) hProp = TypeOfHLevel 1 @@ -134,7 +134,7 @@ isPropIs2Groupoid : isProp (is2Groupoid A) isPropIs2Groupoid = isPropIsOfHLevel 4 -TypeOfHLevel≡ : (n : HLevel) {X Y : TypeOfHLevel n} X Y X Y +TypeOfHLevel≡ : (n : HLevel) {X Y : TypeOfHLevel n} X Y X Y TypeOfHLevel≡ n = Σ≡Prop _ isPropIsOfHLevel n) -- hlevels are preserved by retracts (and consequently equivalences) diff --git a/Cubical.Foundations.Pointed.Base.html b/Cubical.Foundations.Pointed.Base.html index 0da4cd927b..3ee105be4f 100644 --- a/Cubical.Foundations.Pointed.Base.html +++ b/Cubical.Foundations.Pointed.Base.html @@ -6,7 +6,7 @@ open import Cubical.Foundations.Equiv open import Cubical.Foundations.Structure -open import Cubical.Foundations.Structure using (typ) public +open import Cubical.Foundations.Structure using (typ) public open import Cubical.Foundations.GroupoidLaws open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Univalence @@ -17,10 +17,10 @@ ℓ' : Level Pointed : ( : Level) Type (ℓ-suc ) -Pointed = TypeWithStr x x) +Pointed = TypeWithStr x x) -pt : {} (A∙ : Pointed ) typ A∙ -pt = str +pt : {} (A∙ : Pointed ) typ A∙ +pt = str Pointed₀ = Pointed ℓ-zero @@ -63,12 +63,12 @@ Equiv∙J {} {ℓ'} {B = B} C ind {A = A} = uncurry λ e p help e (pt A) (pt B) p C ind where - help : {A : Type } (e : A typ B) (a : A) (b : typ B) + help : {A : Type } (e : A typ B) (a : A) (b : typ B) (p : fst e a b) (C : (A : Pointed ) A ≃∙ (fst B , b) Type ℓ') C (fst B , b) (idEquiv (fst B) , refl) C (A , a) (e , p) - help = EquivJ A e (a : A) (b : typ B) + help = EquivJ A e (a : A) (b : typ B) (p : fst e a b) (C : (A : Pointed ) A ≃∙ (fst B , b) Type ℓ') C (fst B , b) (idEquiv (fst B) , refl) @@ -77,7 +77,7 @@ (C : (A : Pointed ) A ≃∙ (fst B , b) Type ℓ') C (fst B , b) (idEquiv (fst B) , refl) - C (typ B , a) (idEquiv (typ B) , p)) + C (typ B , a) (idEquiv (typ B) , p)) λ _ p p ua∙ : {A B : Pointed } (e : fst A fst B) @@ -96,10 +96,10 @@ {- HIT allowing for pattern matching on pointed types -} data Pointer {} (A : Pointed ) : Type where pt₀ : Pointer A - ⌊_⌋ : typ A Pointer A + ⌊_⌋ : typ A Pointer A id : pt A pt₀ -IsoPointedPointer : {A : Pointed } Iso (typ A) (Pointer A) +IsoPointedPointer : {A : Pointed } Iso (typ A) (Pointer A) Iso.fun IsoPointedPointer = ⌊_⌋ Iso.inv (IsoPointedPointer {A = A}) pt₀ = pt A Iso.inv IsoPointedPointer x = x @@ -109,7 +109,7 @@ Iso.rightInv IsoPointedPointer (id i) j = id (i j) Iso.leftInv IsoPointedPointer x = refl -Pointed≡Pointer : {A : Pointed } typ A Pointer A +Pointed≡Pointer : {A : Pointed } typ A Pointer A Pointed≡Pointer = isoToPath IsoPointedPointer Pointer∙ : (A : Pointed ) Pointed @@ -136,7 +136,7 @@ -- pointed identity equivalence idEquiv∙ : (A : Pointed ) (A ≃∙ A) -idEquiv∙ A = idEquiv (typ A) , refl +idEquiv∙ A = idEquiv (typ A) , refl {- Equational reasoning for pointed equivalences diff --git a/Cubical.Foundations.Pointed.FunExt.html b/Cubical.Foundations.Pointed.FunExt.html index af0e758c23..15d1699ec6 100644 --- a/Cubical.Foundations.Pointed.FunExt.html +++ b/Cubical.Foundations.Pointed.FunExt.html @@ -14,7 +14,7 @@ variable ℓ' : Level -module _ {A : Pointed } {B : typ A Type ℓ'} {ptB : B (pt A)} where +module _ {A : Pointed } {B : typ A Type ℓ'} {ptB : B (pt A)} where -- pointed function extensionality funExt∙P : {f g : Π∙ A B ptB} f ∙∼P g f g diff --git a/Cubical.Foundations.Pointed.Homogeneous.html b/Cubical.Foundations.Pointed.Homogeneous.html index 159c8d5aa5..0b1e2f3757 100644 --- a/Cubical.Foundations.Pointed.Homogeneous.html +++ b/Cubical.Foundations.Pointed.Homogeneous.html @@ -116,16 +116,16 @@ isHomogeneousPi : { ℓ'} {A : Type } {B∙ : A Pointed ℓ'} (∀ a isHomogeneous (B∙ a)) isHomogeneous (Πᵘ∙ A B∙) -isHomogeneousPi h f i .fst = a typ (h a (f a) i) +isHomogeneousPi h f i .fst = a typ (h a (f a) i) isHomogeneousPi h f i .snd a = pt (h a (f a) i) -isHomogeneousΠ∙ : { ℓ'} (A : Pointed ) (B : typ A Type ℓ') +isHomogeneousΠ∙ : { ℓ'} (A : Pointed ) (B : typ A Type ℓ') (b₀ : B (pt A)) - ((a : typ A) (x : B a) isHomogeneous (B a , x)) + ((a : typ A) (x : B a) isHomogeneous (B a , x)) (f : Π∙ A B b₀) isHomogeneous (Π∙ A B b₀ , f) fst (isHomogeneousΠ∙ A B b₀ h f g i) = - Σ[ r ((a : typ A) fst ((h a (fst f a) (fst g a)) i)) ] + Σ[ r ((a : typ A) fst ((h a (fst f a) (fst g a)) i)) ] r (pt A) hcomp k λ {(i = i0) snd f k ; (i = i1) snd g k}) (snd (h (pt A) (fst f (pt A)) (fst g (pt A)) i)) @@ -144,19 +144,19 @@ ( i Π∙ A∙ a T a i) (t₀ i)) , PathPIsoPath _ _ _ .Iso.inv (→∙Homogeneous≡ h - (PathPIsoPath i (a : typ A∙) T a i) _ pt B∙) _ .Iso.fun + (PathPIsoPath i (a : typ A∙) T a i) _ pt B∙) _ .Iso.fun i a pt (h (f∙ .fst a) i)))) ) where - T : a typ B∙ typ B∙ - T a i = typ (h (f∙ .fst a) i) + T : a typ B∙ typ B∙ + T a i = typ (h (f∙ .fst a) i) t₀ : PathP i T (pt A∙) i) (pt B∙) (pt B∙) t₀ = cong pt (h (f∙ .fst (pt A∙))) f∙ .snd isHomogeneousProd : { ℓ'} {A∙ : Pointed } {B∙ : Pointed ℓ'} isHomogeneous A∙ isHomogeneous B∙ isHomogeneous (A∙ ×∙ B∙) -isHomogeneousProd hA hB (a , b) i .fst = typ (hA a i) × typ (hB b i) +isHomogeneousProd hA hB (a , b) i .fst = typ (hA a i) × typ (hB b i) isHomogeneousProd hA hB (a , b) i .snd .fst = pt (hA a i) isHomogeneousProd hA hB (a , b) i .snd .snd = pt (hB b i) @@ -166,10 +166,10 @@ where eqv : (x y) (x y) eqv = compPathlEquiv (q sym p) -module HomogeneousDiscrete {} {A∙ : Pointed } (dA : Discrete (typ A∙)) (y : typ A∙) where +module HomogeneousDiscrete {} {A∙ : Pointed } (dA : Discrete (typ A∙)) (y : typ A∙) where -- switches pt A∙ with y - switch : typ A∙ typ A∙ + switch : typ A∙ typ A∙ switch x with dA x (pt A∙) ... | yes _ = y ... | no _ with dA x y @@ -200,11 +200,11 @@ switch-idp x | no ¬p | no ¬q | no _ | yes q = ⊥.rec (¬q q) switch-idp x | no ¬p | no ¬q | no _ | no _ = refl - switch-eqv : typ A∙ typ A∙ + switch-eqv : typ A∙ typ A∙ switch-eqv = isoToEquiv (iso switch switch switch-idp switch-idp) -isHomogeneousDiscrete : {} {A∙ : Pointed } (dA : Discrete (typ A∙)) isHomogeneous A∙ +isHomogeneousDiscrete : {} {A∙ : Pointed } (dA : Discrete (typ A∙)) isHomogeneous A∙ isHomogeneousDiscrete {} {A∙} dA y - = pointed-sip (typ A∙ , pt A∙) (typ A∙ , y) (switch-eqv , switch-ptA∙) + = pointed-sip (typ A∙ , pt A∙) (typ A∙ , y) (switch-eqv , switch-ptA∙) where open HomogeneousDiscrete {} {A∙} dA y \ No newline at end of file diff --git a/Cubical.Foundations.Pointed.Homotopy.html b/Cubical.Foundations.Pointed.Homotopy.html index c5702e765f..dd03b1ddda 100644 --- a/Cubical.Foundations.Pointed.Homotopy.html +++ b/Cubical.Foundations.Pointed.Homotopy.html @@ -25,7 +25,7 @@ variable ℓ' : Level -module _ {A : Pointed } {B : typ A Type ℓ'} {ptB : B (pt A)} where +module _ {A : Pointed } {B : typ A Type ℓ'} {ptB : B (pt A)} where = pt A diff --git a/Cubical.Foundations.Pointed.Properties.html b/Cubical.Foundations.Pointed.Properties.html index 702bef941d..f36ecb4709 100644 --- a/Cubical.Foundations.Pointed.Properties.html +++ b/Cubical.Foundations.Pointed.Properties.html @@ -17,32 +17,32 @@ ℓ' ℓA ℓB ℓC ℓD : Level -- the default pointed Π-type: A is pointed, and B has a base point in the chosen fiber -Π∙ : (A : Pointed ) (B : typ A Type ℓ') (ptB : B (pt A)) Type (ℓ-max ℓ') -Π∙ A B ptB = Σ[ f ((a : typ A) B a) ] f (pt A) ptB +Π∙ : (A : Pointed ) (B : typ A Type ℓ') (ptB : B (pt A)) Type (ℓ-max ℓ') +Π∙ A B ptB = Σ[ f ((a : typ A) B a) ] f (pt A) ptB -- the unpointed Π-type becomes a pointed type if the fibers are all pointed Πᵘ∙ : (A : Type ) (B : A Pointed ℓ') Pointed (ℓ-max ℓ') -Πᵘ∙ A B .fst = a typ (B a) +Πᵘ∙ A B .fst = a typ (B a) Πᵘ∙ A B .snd a = pt (B a) -- if the base and all fibers are pointed, we have the pointed pointed Π-type -Πᵖ∙ : (A : Pointed ) (B : typ A Pointed ℓ') Pointed (ℓ-max ℓ') -Πᵖ∙ A B .fst = Π∙ A (typ B) (pt (B (pt A))) +Πᵖ∙ : (A : Pointed ) (B : typ A Pointed ℓ') Pointed (ℓ-max ℓ') +Πᵖ∙ A B .fst = Π∙ A (typ B) (pt (B (pt A))) Πᵖ∙ A B .snd .fst a = pt (B a) Πᵖ∙ A B .snd .snd = refl -- the default pointed Σ-type is just the Σ-type, but as a pointed type -Σ∙ : (A : Pointed ) (B : typ A Type ℓ') (ptB : B (pt A)) Pointed (ℓ-max ℓ') -Σ∙ A B ptB .fst = Σ[ a typ A ] B a +Σ∙ : (A : Pointed ) (B : typ A Type ℓ') (ptB : B (pt A)) Pointed (ℓ-max ℓ') +Σ∙ A B ptB .fst = Σ[ a typ A ] B a Σ∙ A B ptB .snd .fst = pt A Σ∙ A B ptB .snd .snd = ptB -- version if B is a family of pointed types -Σᵖ∙ : (A : Pointed ) (B : typ A Pointed ℓ') Pointed (ℓ-max ℓ') -Σᵖ∙ A B = Σ∙ A (typ B) (pt (B (pt A))) +Σᵖ∙ : (A : Pointed ) (B : typ A Pointed ℓ') Pointed (ℓ-max ℓ') +Σᵖ∙ A B = Σ∙ A (typ B) (pt (B (pt A))) _×∙_ : (A∙ : Pointed ) (B∙ : Pointed ℓ') Pointed (ℓ-max ℓ') -(A∙ ×∙ B∙) .fst = (typ A∙) × (typ B∙) +(A∙ ×∙ B∙) .fst = (typ A∙) × (typ B∙) (A∙ ×∙ B∙) .snd .fst = pt A∙ (A∙ ×∙ B∙) .snd .snd = pt B∙ @@ -95,8 +95,8 @@ (cong h (cong g f∙ g∙) h∙) ) module _ { ℓ' : Level} {A : Pointed } {B : Pointed ℓ'} (f : A →∙ B) where - isInIm∙ : (x : typ B) Type (ℓ-max ℓ') - isInIm∙ x = Σ[ z typ A ] fst f z x + isInIm∙ : (x : typ B) Type (ℓ-max ℓ') + isInIm∙ x = Σ[ z typ A ] fst f z x isInKer∙ : (x : fst A) Type ℓ' isInKer∙ x = fst f x snd B diff --git a/Cubical.Foundations.Powerset.html b/Cubical.Foundations.Powerset.html index 01bd3dde17..1b7f2e48b3 100644 --- a/Cubical.Foundations.Powerset.html +++ b/Cubical.Foundations.Powerset.html @@ -34,7 +34,7 @@ infix 5 _∈_ _∈_ : {X : Type } X X Type -x A = A x +x A = A x _⊆_ : {X : Type } X X Type A B = x x A x B diff --git a/Cubical.Foundations.RelationalStructure.html b/Cubical.Foundations.RelationalStructure.html index 51f3a37214..c951b33069 100644 --- a/Cubical.Foundations.RelationalStructure.html +++ b/Cubical.Foundations.RelationalStructure.html @@ -36,17 +36,17 @@ -- Given a type A and relation R, a quotient structure is a structure on the set quotient A/R such that -- the graph of [_] : A → A/R is a structured relation InducedQuotientStr : (S : Type Type ℓ') (ρ : StrRel S ℓ'') - (A : TypeWithStr S) (R : Rel (typ A) (typ A) ) + (A : TypeWithStr S) (R : Rel (typ A) (typ A) ) Type (ℓ-max ℓ' ℓ'') InducedQuotientStr S ρ A R = - Σ[ s S (typ A / R) ] ρ (graphRel [_]) (A .snd) s + Σ[ s S (typ A / R) ] ρ (graphRel [_]) (A .snd) s -- A structured equivalence relation R on a structured type A should induce a structure on A/R InducesQuotientStr : (S : Type Type ℓ') (ρ : StrRel S ℓ'') Type _ InducesQuotientStr { = } S ρ = - (A : TypeWithStr S) (R : EquivPropRel (typ A) ) + (A : TypeWithStr S) (R : EquivPropRel (typ A) ) ρ (R .fst .fst) (A .snd) (A .snd) - ∃![ s S (typ A / R .fst .fst) ] ρ (graphRel [_]) (A .snd) s + ∃![ s S (typ A / R .fst .fst) ] ρ (graphRel [_]) (A .snd) s -- The identity should be a structured relation isReflexiveStrRel : {S : Type Type ℓ'} (ρ : StrRel S ℓ'') Type _ @@ -101,9 +101,9 @@ -- We can also ask for a notion of structured relations to agree with some notion of structured equivalences. StrRelMatchesEquiv : {S : Type Type ℓ'} - StrRel S ℓ'' StrEquiv S ℓ''' Type _ + StrRel S ℓ'' StrEquiv S ℓ''' Type _ StrRelMatchesEquiv {S = S} ρ ι = - (A B : TypeWithStr _ S) (e : typ A typ B) + (A B : TypeWithStr _ S) (e : typ A typ B) ρ (graphRel (e .fst)) (A .snd) (B .snd) ι A B e -- Additional conditions for a "positive" notion of structured relation @@ -206,7 +206,7 @@ -- structures. record QERDescends (S : Type Type ℓ') (ρ : StrRel S ℓ'') - (A B : TypeWithStr S) (R : QuasiEquivRel (typ A) (typ B) ) : Type (ℓ-max ℓ' ℓ'') + (A B : TypeWithStr S) (R : QuasiEquivRel (typ A) (typ B) ) : Type (ℓ-max ℓ' ℓ'') where private module E = QER→Equiv R @@ -220,7 +220,7 @@ structuredQER→structuredEquiv : {S : Type Type ℓ'} {ρ : StrRel S ℓ''} (θ : SuitableStrRel S ρ) - (A B : TypeWithStr S) (R : QuasiEquivRel (typ A) (typ B) ) + (A B : TypeWithStr S) (R : QuasiEquivRel (typ A) (typ B) ) ρ (R .fst .fst) (A .snd) (B .snd) QERDescends S ρ A B R structuredQER→structuredEquiv {ρ = ρ} θ (X , s) (Y , t) R r .quoᴸ = diff --git a/Cubical.Foundations.SIP.html b/Cubical.Foundations.SIP.html index e86f20a50e..cd97f9e616 100644 --- a/Cubical.Foundations.SIP.html +++ b/Cubical.Foundations.SIP.html @@ -30,28 +30,28 @@ -- a proposition. Indeed this type should correspond to the ways s and t can be identified -- as S-structures. This we call a standard notion of structure or SNS. -- We will use a different definition, but the two definitions are interchangeable. -SNS : (S : Type ℓ₁ Type ℓ₂) (ι : StrEquiv S ℓ₃) Type (ℓ-max (ℓ-max (ℓ-suc ℓ₁) ℓ₂) ℓ₃) +SNS : (S : Type ℓ₁ Type ℓ₂) (ι : StrEquiv S ℓ₃) Type (ℓ-max (ℓ-max (ℓ-suc ℓ₁) ℓ₂) ℓ₃) SNS {ℓ₁} S ι = {X : Type ℓ₁} (s t : S X) ι (X , s) (X , t) (idEquiv X) (s t) -- We introduce the notation for structure preserving equivalences a -- bit differently, but this definition doesn't actually change from -- Escardó's notes. -_≃[_]_ : (A : TypeWithStr ℓ₁ S) (ι : StrEquiv S ℓ₂) (B : TypeWithStr ℓ₁ S) Type (ℓ-max ℓ₁ ℓ₂) -A ≃[ ι ] B = Σ[ e typ A typ B ] (ι A B e) +_≃[_]_ : (A : TypeWithStr ℓ₁ S) (ι : StrEquiv S ℓ₂) (B : TypeWithStr ℓ₁ S) Type (ℓ-max ℓ₁ ℓ₂) +A ≃[ ι ] B = Σ[ e typ A typ B ] (ι A B e) -- The following PathP version of SNS is a bit easier to work with -- for the proof of the SIP -UnivalentStr : (S : Type ℓ₁ Type ℓ₂) (ι : StrEquiv S ℓ₃) Type (ℓ-max (ℓ-max (ℓ-suc ℓ₁) ℓ₂) ℓ₃) +UnivalentStr : (S : Type ℓ₁ Type ℓ₂) (ι : StrEquiv S ℓ₃) Type (ℓ-max (ℓ-max (ℓ-suc ℓ₁) ℓ₂) ℓ₃) UnivalentStr {ℓ₁} S ι = - {A B : TypeWithStr ℓ₁ S} (e : typ A typ B) - ι A B e PathP i S (ua e i)) (str A) (str B) + {A B : TypeWithStr ℓ₁ S} (e : typ A typ B) + ι A B e PathP i S (ua e i)) (str A) (str B) -- A quick sanity-check that our definition is interchangeable with -- Escardó's. The direction SNS→UnivalentStr corresponds more or less -- to a dependent EquivJ formulation of Escardó's homomorphism-lemma. -UnivalentStr→SNS : (S : Type ℓ₁ Type ℓ₂) (ι : StrEquiv S ℓ₃) +UnivalentStr→SNS : (S : Type ℓ₁ Type ℓ₂) (ι : StrEquiv S ℓ₃) UnivalentStr S ι SNS S ι UnivalentStr→SNS S ι θ {X = X} s t = ι (X , s) (X , t) (idEquiv X) @@ -62,10 +62,10 @@ -SNS→UnivalentStr : (ι : StrEquiv S ℓ₃) SNS S ι UnivalentStr S ι -SNS→UnivalentStr {S = S} ι θ {A = A} {B = B} e = EquivJ P C e (str A) (str B) +SNS→UnivalentStr : (ι : StrEquiv S ℓ₃) SNS S ι UnivalentStr S ι +SNS→UnivalentStr {S = S} ι θ {A = A} {B = B} e = EquivJ P C e (str A) (str B) where - Y = typ B + Y = typ B P : (X : Type _) X Y Type _ P X e' = (s : S X) (t : S Y) ι (X , s) (Y , t) e' PathP i S (ua e' i)) s t @@ -79,12 +79,12 @@ PathP i S (ua (idEquiv Y) i)) s t -TransportStr : {S : Type Type ℓ₁} (α : EquivAction S) Type (ℓ-max (ℓ-suc ) ℓ₁) +TransportStr : {S : Type Type ℓ₁} (α : EquivAction S) Type (ℓ-max (ℓ-suc ) ℓ₁) TransportStr {} {S = S} α = {X Y : Type } (e : X Y) (s : S X) equivFun (α e) s subst S (ua e) s -TransportStr→UnivalentStr : {S : Type Type ℓ₁} (α : EquivAction S) - TransportStr α UnivalentStr S (EquivAction→StrEquiv α) +TransportStr→UnivalentStr : {S : Type Type ℓ₁} (α : EquivAction S) + TransportStr α UnivalentStr S (EquivAction→StrEquiv α) TransportStr→UnivalentStr {S = S} α τ {X , s} {Y , t} e = equivFun (α e) s t ≃⟨ pathToEquiv (cong (_≡ t) (τ e s)) @@ -93,12 +93,12 @@ PathP i S (ua e i)) s t -UnivalentStr→TransportStr : {S : Type Type ℓ₁} (α : EquivAction S) - UnivalentStr S (EquivAction→StrEquiv α) TransportStr α +UnivalentStr→TransportStr : {S : Type Type ℓ₁} (α : EquivAction S) + UnivalentStr S (EquivAction→StrEquiv α) TransportStr α UnivalentStr→TransportStr {S = S} α θ e s = invEq (θ e) (transport-filler (cong S (ua e)) s) -invTransportStr : {S : Type Type ℓ₂} (α : EquivAction S) (τ : TransportStr α) +invTransportStr : {S : Type Type ℓ₂} (α : EquivAction S) (τ : TransportStr α) {X Y : Type } (e : X Y) (t : S Y) invEq (α e) t subst⁻ S (ua e) t invTransportStr {S = S} α τ e t = sym (transport⁻Transport (cong S (ua e)) (invEq (α e) t)) @@ -110,8 +110,8 @@ --- --- sip : A ≃[ ι ] B → A ≡ B -module _ {S : Type ℓ₁ Type ℓ₂} {ι : StrEquiv S ℓ₃} - (θ : UnivalentStr S ι) (A B : TypeWithStr ℓ₁ S) +module _ {S : Type ℓ₁ Type ℓ₂} {ι : StrEquiv S ℓ₃} + (θ : UnivalentStr S ι) (A B : TypeWithStr ℓ₁ S) where sip : A ≃[ ι ] B A B diff --git a/Cubical.Foundations.Structure.html b/Cubical.Foundations.Structure.html index 3c435003f4..acb8ee9074 100644 --- a/Cubical.Foundations.Structure.html +++ b/Cubical.Foundations.Structure.html @@ -11,39 +11,39 @@ S : Type Type ℓ' -- A structure is a type-family S : Type ℓ → Type ℓ', i.e. for X : Type ℓ and s : S X, --- the pair (X , s) : TypeWithStr ℓ S means that X is equipped with a S-structure, witnessed by s. +-- the pair (X , s) : TypeWithStr ℓ S means that X is equipped with an S-structure, witnessed by s. -TypeWithStr : ( : Level) (S : Type Type ℓ') Type (ℓ-max (ℓ-suc ) ℓ') -TypeWithStr S = Σ[ X Type ] S X +TypeWithStr : ( : Level) (S : Type Type ℓ') Type (ℓ-max (ℓ-suc ) ℓ') +TypeWithStr S = Σ[ X Type ] S X -typ : TypeWithStr S Type -typ = fst +typ : TypeWithStr S Type +typ = fst -str : (A : TypeWithStr S) S (typ A) -str = snd +str : (A : TypeWithStr S) S (typ A) +str = snd --- Alternative notation for typ -⟨_⟩ : TypeWithStr S Type -⟨_⟩ = typ +-- Alternative notation for typ +⟨_⟩ : TypeWithStr S Type +⟨_⟩ = typ -instance - mkTypeWithStr : {} {S : Type Type ℓ'} {X} {{S X}} TypeWithStr S - mkTypeWithStr {{i}} = _ , i +instance + mkTypeWithStr : {} {S : Type Type ℓ'} {X} {{S X}} TypeWithStr S + mkTypeWithStr {{i}} = _ , i --- An S-structure should have a notion of S-homomorphism, or rather S-isomorphism. --- This will be implemented by a function ι : StrEquiv S ℓ' --- that gives us for any two types with S-structure (X , s) and (Y , t) a family: --- ι (X , s) (Y , t) : (X ≃ Y) → Type ℓ'' -StrEquiv : (S : Type Type ℓ'') (ℓ' : Level) Type (ℓ-max (ℓ-suc (ℓ-max ℓ')) ℓ'') -StrEquiv {} S ℓ' = (A B : TypeWithStr S) typ A typ B Type ℓ' +-- An S-structure should have a notion of S-homomorphism, or rather S-isomorphism. +-- This will be implemented by a function ι : StrEquiv S ℓ' +-- that gives us for any two types with S-structure (X , s) and (Y , t) a family: +-- ι (X , s) (Y , t) : (X ≃ Y) → Type ℓ'' +StrEquiv : (S : Type Type ℓ'') (ℓ' : Level) Type (ℓ-max (ℓ-suc (ℓ-max ℓ')) ℓ'') +StrEquiv {} S ℓ' = (A B : TypeWithStr S) typ A typ B Type ℓ' --- An S-structure may instead be equipped with an action on equivalences, which will --- induce a notion of S-homomorphism +-- An S-structure may instead be equipped with an action on equivalences, which will +-- induce a notion of S-homomorphism -EquivAction : (S : Type Type ℓ'') Type (ℓ-max (ℓ-suc ) ℓ'') -EquivAction {} S = {X Y : Type } X Y S X S Y +EquivAction : (S : Type Type ℓ'') Type (ℓ-max (ℓ-suc ) ℓ'') +EquivAction {} S = {X Y : Type } X Y S X S Y -EquivAction→StrEquiv : {S : Type Type ℓ''} - EquivAction S StrEquiv S ℓ'' -EquivAction→StrEquiv α (X , s) (Y , t) e = equivFun (α e) s t +EquivAction→StrEquiv : {S : Type Type ℓ''} + EquivAction S StrEquiv S ℓ'' +EquivAction→StrEquiv α (X , s) (Y , t) e = equivFun (α e) s t \ No newline at end of file diff --git a/Cubical.Functions.Bundle.html b/Cubical.Functions.Bundle.html index 8351039b0f..ba1519d497 100644 --- a/Cubical.Functions.Bundle.html +++ b/Cubical.Functions.Bundle.html @@ -32,7 +32,7 @@ inc p⁻¹ x = (x ,_) fibPrEquiv : (p⁻¹ : B TypeEqvTo F) (x : B) fiber (pr p⁻¹) x p⁻¹ x .fst - fibPrEquiv p⁻¹ x = fiberEquiv x typ (p⁻¹ x)) x + fibPrEquiv p⁻¹ x = fiberEquiv x typ (p⁻¹ x)) x module _ {ℓb ℓf} (B : Type ℓb) ( : Level) (F : Type ℓf) where private diff --git a/Cubical.Functions.Logic.html b/Cubical.Functions.Logic.html index e153bd58a1..72bb66a4af 100644 --- a/Cubical.Functions.Logic.html +++ b/Cubical.Functions.Logic.html @@ -66,38 +66,38 @@ _≡ₚ_ : (x y : A) hProp _ x ≡ₚ y = x y ∥ₚ -hProp≡ : P Q P Q +hProp≡ : P Q P Q hProp≡ = TypeOfHLevel≡ 1 -isProp⟨⟩ : (A : hProp ) isProp A +isProp⟨⟩ : (A : hProp ) isProp A isProp⟨⟩ = snd -------------------------------------------------------------------------------- -- Logical implication of mere propositions _⇒_ : (A : hProp ) (B : hProp ℓ') hProp _ -A B = ( A B ) , isPropΠ λ _ isProp⟨⟩ B +A B = ( A B ) , isPropΠ λ _ isProp⟨⟩ B -⇔toPath : P Q Q P P Q +⇔toPath : P Q Q P P Q ⇔toPath {P = P} {Q = Q} P⇒Q Q⇒P = hProp≡ (hPropExt (isProp⟨⟩ P) (isProp⟨⟩ Q) P⇒Q Q⇒P) -pathTo⇒ : P Q P Q +pathTo⇒ : P Q P Q pathTo⇒ p x = subst fst p x -pathTo⇐ : P Q Q P +pathTo⇐ : P Q Q P pathTo⇐ p x = subst fst (sym p) x -substₚ : {x y : A} (B : A hProp ) x ≡ₚ y B x B y +substₚ : {x y : A} (B : A hProp ) x ≡ₚ y B x B y substₚ {x = x} {y = y} B = PropTrunc.elim _ isPropΠ λ _ isProp⟨⟩ (B y)) (subst (fst B)) -------------------------------------------------------------------------------- -- Mixfix notations for ⇔-toPath -- see ⊔-identityˡ and ⊔-identityʳ for the difference -⇒∶_⇐∶_ : P Q Q P P Q +⇒∶_⇐∶_ : P Q Q P P Q ⇒∶_⇐∶_ = ⇔toPath -⇐∶_⇒∶_ : Q P P Q P Q +⇐∶_⇒∶_ : Q P P Q P Q ⇐∶ g ⇒∶ f = ⇔toPath f g -------------------------------------------------------------------------------- -- False and True @@ -112,7 +112,7 @@ -- Pseudo-complement of mere propositions ¬_ : hProp hProp _ -¬ A = ( A ⊥.⊥) , isPropΠ λ _ ⊥.isProp⊥ +¬ A = ( A ⊥.⊥) , isPropΠ λ _ ⊥.isProp⊥ _≢ₚ_ : (x y : A) hProp _ x ≢ₚ y = ¬ x ≡ₚ y @@ -124,7 +124,7 @@ A ⊔′ B = A B ∥₁ _⊔_ : hProp hProp ℓ' hProp _ -P Q = P Q ∥ₚ +P Q = P Q ∥ₚ inl : A A ⊔′ B inl x = ⊎.inl x ∣₁ @@ -132,8 +132,8 @@ inr : B A ⊔′ B inr x = ⊎.inr x ∣₁ -⊔-elim : (P : hProp ) (Q : hProp ℓ') (R : P Q hProp ℓ'') - (∀ x R (inl x) ) (∀ y R (inr y) ) (∀ z R z ) +⊔-elim : (P : hProp ) (Q : hProp ℓ') (R : P Q hProp ℓ'') + (∀ x R (inl x) ) (∀ y R (inr y) ) (∀ z R z ) ⊔-elim _ _ R P⇒R Q⇒R = PropTrunc.elim (snd R) (⊎.elim P⇒R Q⇒R) -------------------------------------------------------------------------------- @@ -142,10 +142,10 @@ A ⊓′ B = A × B _⊓_ : hProp hProp ℓ' hProp _ -A B = A ⊓′ B , isOfHLevelΣ 1 (isProp⟨⟩ A) (\ _ isProp⟨⟩ B) +A B = A ⊓′ B , isOfHLevelΣ 1 (isProp⟨⟩ A) (\ _ isProp⟨⟩ B) -⊓-intro : (P : hProp ) (Q : P hProp ℓ') (R : P hProp ℓ'') - (∀ a Q a ) (∀ a R a ) (∀ (a : P ) Q a R a ) +⊓-intro : (P : hProp ) (Q : P hProp ℓ') (R : P hProp ℓ'') + (∀ a Q a ) (∀ a R a ) (∀ (a : P ) Q a R a ) ⊓-intro _ _ _ = \ f g a f a , g a -------------------------------------------------------------------------------- @@ -154,18 +154,18 @@ _⇔_ : hProp hProp ℓ' hProp _ A B = (A B) (B A) -⇔-id : (P : hProp ) P P -⇔-id P = (idfun P ) , (idfun P ) +⇔-id : (P : hProp ) P P +⇔-id P = (idfun P ) , (idfun P ) -------------------------------------------------------------------------------- -- Universal Quantifier ∀[∶]-syntax : (A hProp ) hProp _ -∀[∶]-syntax {A = A} P = (∀ x P x ) , isPropΠ (isProp⟨⟩ P) +∀[∶]-syntax {A = A} P = (∀ x P x ) , isPropΠ (isProp⟨⟩ P) ∀[]-syntax : (A hProp ) hProp _ -∀[]-syntax {A = A} P = (∀ x P x ) , isPropΠ (isProp⟨⟩ P) +∀[]-syntax {A = A} P = (∀ x P x ) , isPropΠ (isProp⟨⟩ P) syntax ∀[∶]-syntax {A = A} a P) = ∀[ a A ] P syntax ∀[]-syntax a P) = ∀[ a ] P @@ -174,10 +174,10 @@ -- Existential Quantifier ∃[]-syntax : (A hProp ) hProp _ -∃[]-syntax {A = A} P = Σ A (⟨_⟩ P) ∥ₚ +∃[]-syntax {A = A} P = Σ A (⟨_⟩ P) ∥ₚ ∃[∶]-syntax : (A hProp ) hProp _ -∃[∶]-syntax {A = A} P = Σ A (⟨_⟩ P) ∥ₚ +∃[∶]-syntax {A = A} P = Σ A (⟨_⟩ P) ∥ₚ syntax ∃[∶]-syntax {A = A} x P) = ∃[ x A ] P syntax ∃[]-syntax x P) = ∃[ x ] P @@ -186,7 +186,7 @@ -- Decidable mere proposition Decₚ : (P : hProp ) hProp -Decₚ P = Dec P , isPropDec (isProp⟨⟩ P) +Decₚ P = Dec P , isPropDec (isProp⟨⟩ P) -------------------------------------------------------------------------------- -- Negation commutes with truncation diff --git a/Cubical.HITs.Bouquet.FundamentalGroupProof.html b/Cubical.HITs.Bouquet.FundamentalGroupProof.html index 606f1b4c52..e68295e32a 100644 --- a/Cubical.HITs.Bouquet.FundamentalGroupProof.html +++ b/Cubical.HITs.Bouquet.FundamentalGroupProof.html @@ -48,7 +48,7 @@ -- Functions without using the truncated forms of types -looping : FreeGroupoid A typ ΩBouquet +looping : FreeGroupoid A typ ΩBouquet looping (η a) = loop a looping (g1 · g2) = looping g1 looping g2 looping ε = refl @@ -66,7 +66,7 @@ code {A = A} base = (FreeGroupoid A) code (loop a i) = pathsInU (η a) i -winding : typ ΩBouquet FreeGroupoid A +winding : typ ΩBouquet FreeGroupoid A winding l = subst code l ε winding∙ : ΩBouquet →∙ FreeGroupoid∙ {A = A} @@ -179,7 +179,7 @@ ≡⟨ cong e' looping e') (transportRefl ε) refl -left-homotopy : (l : typ (ΩBouquet {A = A})) looping (winding l) l +left-homotopy : (l : typ (ΩBouquet {A = A})) looping (winding l) l left-homotopy l = decodeEncode base l -- Truncated proofs of right homotopy of winding/looping functions diff --git a/Cubical.HITs.CumulativeHierarchy.Constructions.html b/Cubical.HITs.CumulativeHierarchy.Constructions.html index 48cf9689f6..d6ec8d706d 100644 --- a/Cubical.HITs.CumulativeHierarchy.Constructions.html +++ b/Cubical.HITs.CumulativeHierarchy.Constructions.html @@ -53,17 +53,17 @@ open SetStructure structure using (resSet) public field ∈-rep : V hProp ℓ' - unpack : (x : X) ∈-rep (ix x) - repack : {y : V } ∈-rep y fiber ix y ∥₁ + unpack : (x : X) ∈-rep (ix x) + repack : {y : V } ∈-rep y fiber ix y ∥₁ open PropMonad - classification : ∀[ y ] (y ∈ₛ resSet ∈-rep y) + classification : ∀[ y ] (y ∈ₛ resSet ∈-rep y) classification y = intoClassifier , fromClassifier where - intoClassifier : y ∈ₛ resSet ∈-rep y + intoClassifier : y ∈ₛ resSet ∈-rep y intoClassifier (yi , yr) = proof (∈-rep y) by do (x , ix) ∈∈ₛ {b = resSet} .snd (yi , yr) return (subst (fst ∈-rep) ix (unpack x)) - fromClassifier : ∈-rep y y ∈ₛ resSet + fromClassifier : ∈-rep y y ∈ₛ resSet fromClassifier yr = ∈∈ₛ {b = resSet} .fst (repack {y = y} yr) ------------ @@ -85,7 +85,7 @@ : V = SetStructure.resSet EmptyStructure - ∅-empty : ∀[ b V ] ¬ (b ∈ₛ ) + ∅-empty : ∀[ b V ] ¬ (b ∈ₛ ) ∅-empty b = SetPackage.classification EmptyPackage b .fst open EmptySet using (; ∅-empty) public @@ -102,14 +102,14 @@ ∈-rep UnionPackage y = ∃[ v ] (v ∈ₛ S) (y ∈ₛ v) unpack UnionPackage (vi , yi) = S ⟫↪ vi , ∈ₛ⟪ S ⟫↪ vi , ∈ₛ⟪ S ⟫↪ vi ⟫↪ yi ∣₁ repack UnionPackage {y = y} = P.rec squash₁ go where - go : Σ[ v V _ ] v ∈ₛ S ⊓′ y ∈ₛ v fiber _ y ∥₁ + go : Σ[ v V _ ] v ∈ₛ S ⊓′ y ∈ₛ v fiber _ y ∥₁ go (v , (vi , vS) , xv) = repFiber≃fiber _ _ .fst ((vi , key .fst) , key .snd) ∣₁ where path : v S ⟫↪ vi path = sym (equivFun identityPrinciple vS) key : Σ[ i S ⟫↪ vi ] S ⟫↪ vi ⟫↪ i y key = subst v Σ[ ix v ] v ⟫↪ ix y) path xv - union-ax : ∀[ u ] (u ∈ₛ UNION (∃[ v ] (v ∈ₛ S) (u ∈ₛ v))) + union-ax : ∀[ u ] (u ∈ₛ UNION (∃[ v ] (v ∈ₛ S) (u ∈ₛ v))) union-ax = classification where open SetPackage UnionPackage using (classification) open UnionSet renaming (UNION to infixr 9 ⋃_) using (union-ax) public @@ -133,7 +133,7 @@ PAIR : V PAIR = SetStructure.resSet PairingStructure - pairing-ax : ∀[ d ] (d ∈ₛ PAIR (d ≡ₕ a) (d ≡ₕ b)) + pairing-ax : ∀[ d ] (d ∈ₛ PAIR (d ≡ₕ a) (d ≡ₕ b)) pairing-ax = classification where open SetPackage PairingPackage using (classification) -- pairing TODO: notation? @@ -186,17 +186,17 @@ lift (suc n) , sym (subst v y (v v ⁆s)) (sym eq) yv) ∣₁ ) - infinity-ax : ∀[ y ] (y ∈ₛ ω (y ≡ₕ ) (∃[ v ] (y ≡ₕ sucV v) (v ∈ₛ ω))) + infinity-ax : ∀[ y ] (y ∈ₛ ω (y ≡ₕ ) (∃[ v ] (y ≡ₕ sucV v) (v ∈ₛ ω))) infinity-ax = classification where open SetPackage ωPackage using (classification) - ω-empty : ∈ₛ ω + ω-empty : ∈ₛ ω ω-empty = infinity-ax .snd (L.inl refl) - ω-next : ∀[ x V ] x ∈ₛ ω sucV x ∈ₛ ω + ω-next : ∀[ x V ] x ∈ₛ ω sucV x ∈ₛ ω ω-next x x∈ω = infinity-ax (sucV x) .snd (L.inr x , refl , x∈ω ∣₁) - #-in-ω : n # n ∈ₛ ω + #-in-ω : n # n ∈ₛ ω #-in-ω zero = ω-empty #-in-ω (suc n) = ω-next (# n) (#-in-ω n) @@ -219,14 +219,14 @@ (z , (a , za) , yr) m a , cong r (equivFun identityPrinciple za) sym yr ∣₁ - replacement-ax : ∀[ y ] (y ∈ₛ REPLACED (∃[ z ] (z ∈ₛ a) (y ≡ₕ r z))) + replacement-ax : ∀[ y ] (y ∈ₛ REPLACED (∃[ z ] (z ∈ₛ a) (y ≡ₕ r z))) replacement-ax y = classification y where open SetPackage ReplacementPackage using (classification) open ReplacementSet renaming (REPLACED to infix 12 ⁅_∣_⁆) using (replacement-ax) public module SeparationSet (a : V ) (ϕ : V hProp ) where SeparationStructure : SetStructure - SetStructure.X SeparationStructure = Σ[ x a ] ϕ ( a ⟫↪ x) + SetStructure.X SeparationStructure = Σ[ x a ] ϕ ( a ⟫↪ x) SetStructure.ix SeparationStructure = a ⟫↪ fst SeparationPackage : SetPackage _ @@ -240,7 +240,7 @@ SEPAREE : V SEPAREE = SetStructure.resSet SeparationStructure - separation-ax : ∀[ y ] (y ∈ₛ SEPAREE (y ∈ₛ a) ϕ y) + separation-ax : ∀[ y ] (y ∈ₛ SEPAREE (y ∈ₛ a) ϕ y) separation-ax y = classification y .fst , classification y .snd where open SetPackage SeparationPackage using (classification) open SeparationSet renaming (SEPAREE to infix 12 ⁅_∶_⁆) using (separation-ax) public diff --git a/Cubical.HITs.CumulativeHierarchy.Properties.html b/Cubical.HITs.CumulativeHierarchy.Properties.html index c5a0db00d7..293673668a 100644 --- a/Cubical.HITs.CumulativeHierarchy.Properties.html +++ b/Cubical.HITs.CumulativeHierarchy.Properties.html @@ -58,7 +58,7 @@ {rec₁ : X₁ Y hProp } {rec₂ : X₂ Y hProp } (rec₁→₂ : (x₁ : X₁) ∃[ (x₂ , p) fiber ix₂ (ix₁ x₁) ] rec₂ x₂ rec₁ x₁) (rec₂→₁ : (x₂ : X₂) ∃[ (x₁ , p) fiber ix₁ (ix₂ x₂) ] rec₁ x₁ rec₂ x₂) - goalProp X₁ ix₁ Y iy rec₁ goalProp X₂ ix₂ Y iy rec₂ + goalProp X₁ ix₁ Y iy rec₁ goalProp X₂ ix₂ Y iy rec₂ lemma _ rec₁→₂ rec₂→₁ (X₁→Y , Y→X₁) = x₂ do ((x₁ , c_) , xr₁) rec₂→₁ x₂ (y , yr) X₁→Y x₁ @@ -80,7 +80,7 @@ (lemma iy rec₂→₁ rec₁→₂) _≊_ : (s t : V ) Type -s t = s t +s t = s t ∼refl : (a : V ) a a ∼refl = elimProp a isProp⟨⟩ (a a)) @@ -93,8 +93,8 @@ where open PropMonad - eqImageXY : {X Y : Type } {ix : X V } {iy : Y V } (∀ x y ix x iy y ix x iy y) - sett X ix sett Y iy eqImage ix iy + eqImageXY : {X Y : Type } {ix : X V } {iy : Y V } (∀ x y ix x iy y ix x iy y) + sett X ix sett Y iy eqImage ix iy eqImageXY rec rel = x do (y , y∼x) fst rel x ; y , sym (rec _ _ y∼x) ∣₁) , y do (x , x∼y) snd rel y ; x , rec _ _ x∼y ∣₁) @@ -138,12 +138,12 @@ fiberwise1 : b fiber ix₁ b fiber ix₂ b fiberwise1 b fbx₁ = proof (_ , isEmbedding→hasPropFibers isEmb₂ b) - by subst A b A ) (sym p q) fbx₁ ∣₁ + by subst A b A ) (sym p q) fbx₁ ∣₁ fiberwise2 : b fiber ix₂ b fiber ix₁ b fiberwise2 b fbx₂ = proof (_ , isEmbedding→hasPropFibers isEmb₁ b) - by subst A b A ) (sym q p) fbx₂ ∣₁ + by subst A b A ) (sym q p) fbx₂ ∣₁ sett-repr : (X : Type ) (ix : X V ) MonicPresentation (sett X ix) sett-repr {} X ix = (Rep , ixRep , isEmbIxRep) , seteq X Rep ix ixRep eqImIxRep where @@ -241,37 +241,37 @@ _∈ₛ_ : (a b : V ) hProp a ∈ₛ b = repFiber b ⟫↪ a , isPropRepFiber b a -∈-asFiber : {a b : V } a b fiber b ⟫↪ a +∈-asFiber : {a b : V } a b fiber b ⟫↪ a ∈-asFiber {a = a} {b = b} = - subst br a br fiber b ⟫↪ a) (sym b ⟫-represents) asRep + subst br a br fiber b ⟫↪ a) (sym b ⟫-represents) asRep where - asRep : a sett b b ⟫↪ fiber b ⟫↪ a + asRep : a sett b b ⟫↪ fiber b ⟫↪ a asRep = P.propTruncIdempotent≃ (isEmbedding→hasPropFibers isEmb⟪ b ⟫↪ a) .fst -∈-fromFiber : {a b : V } fiber b ⟫↪ a a b -∈-fromFiber {a = a} {b = b} = subst br a br ) (sym b ⟫-represents) ∣_∣₁ +∈-fromFiber : {a b : V } fiber b ⟫↪ a a b +∈-fromFiber {a = a} {b = b} = subst br a br ) (sym b ⟫-represents) ∣_∣₁ -∈∈ₛ : {a b : V } a b a ∈ₛ b +∈∈ₛ : {a b : V } a b a ∈ₛ b ∈∈ₛ {a = a} {b = b} = leftToRight , rightToLeft where repEquiv : repFiber b ⟫↪ a fiber b ⟫↪ a repEquiv = repFiber≃fiber b ⟫↪ a - leftToRight : (a b) a ∈ₛ b + leftToRight : (a b) a ∈ₛ b leftToRight a∈b = invEq repEquiv (∈-asFiber {b = b} a∈b) - rightToLeft : a ∈ₛ b (a b) + rightToLeft : a ∈ₛ b (a b) rightToLeft a∈ₛb = ∈-fromFiber {b = b} (equivFun repEquiv a∈ₛb) ix∈ₛ : {X : Type } {ix : X V } - (x : X) ix x ∈ₛ sett X ix + (x : X) ix x ∈ₛ sett X ix ix∈ₛ {X = X} {ix = ix} x = ∈∈ₛ {a = ix x} {b = sett X ix} .fst x , refl ∣₁ -∈ₛ⟪_⟫↪_ : (a : V ) (ix : a ) a ⟫↪ ix ∈ₛ a +∈ₛ⟪_⟫↪_ : (a : V ) (ix : a ) a ⟫↪ ix ∈ₛ a ∈ₛ⟪ a ⟫↪ ix = ix , ∼refl ( a ⟫↪ ix) -- also here, the left side is in level (ℓ-suc ℓ) while the right is in ℓ -presentation : (a : V ) (Σ[ v V ] v ∈ₛ a ) a +presentation : (a : V ) (Σ[ v V ] v ∈ₛ a ) a presentation a = isoToEquiv (iso into from _ refl) retr) where - into : Σ[ v V _ ] v ∈ₛ a a + into : Σ[ v V _ ] v ∈ₛ a a into = fst snd - from : a Σ[ v V _ ] v ∈ₛ a + from : a Σ[ v V _ ] v ∈ₛ a from ⟪a⟫ = a ⟫↪ ⟪a⟫ , ∈ₛ⟪ a ⟫↪ ⟪a⟫ retr : retract into from retr s = Σ≡Prop v (v ∈ₛ a) .snd) (equivFun identityPrinciple (s .snd .snd)) @@ -280,16 +280,16 @@ _⊆_ : (a b : V ) hProp (ℓ-suc ) a b = ∀[ x ] x ∈ₛ a x ∈ₛ b -⊆-refl : (a : V ) a a +⊆-refl : (a : V ) a a ⊆-refl a = λ _ xa xa _⊆ₛ_ : (a b : V ) hProp a ⊆ₛ b = ∀[ x ] a ⟫↪ x ∈ₛ b -⊆⇔⊆ₛ : (a b : V ) a b a ⊆ₛ b +⊆⇔⊆ₛ : (a b : V ) a b a ⊆ₛ b ⊆⇔⊆ₛ a b = s invEq curryEquiv s invEq (presentation a)) - , s x xa subst x x ∈ₛ b ) (equivFun identityPrinciple (xa .snd)) (s (xa .fst))) + , s x xa subst x x ∈ₛ b ) (equivFun identityPrinciple (xa .snd)) (s (xa .fst))) -- the homotopy definition of equality as an hProp, we know this is equivalent to bisimulation infix 4 _≡ₕ_ @@ -297,7 +297,7 @@ _≡ₕ_ a b = (a b) , setIsSet a b -- extensionality -extensionality : ∀[ a V ] ∀[ b ] (a b) (b a) (a ≡ₕ b) +extensionality : ∀[ a V ] ∀[ b ] (a b) (b a) (a ≡ₕ b) extensionality { = } a b imeq = a ⟫-represents ∙∙ settab ∙∙ sym b ⟫-represents where abpth : Path (Embedding _ _) ( a , a ⟫↪ , isEmb⟪ a ⟫↪) ( b , b ⟫↪ , isEmb⟪ b ⟫↪) abpth = equivFun (EmbeddingIP _ _) @@ -307,8 +307,8 @@ settab : sett a a ⟫↪ sett b b ⟫↪ settab i = sett (abpth i .fst) (abpth i .snd .fst) -extInverse : ∀[ a V ] ∀[ b ] (a ≡ₕ b) (a b) (b a) -extInverse a b a≡b = subst b (a b) (b a) ) a≡b (⊆-refl a , ⊆-refl a) +extInverse : ∀[ a V ] ∀[ b ] (a ≡ₕ b) (a b) (b a) +extInverse a b a≡b = subst b (a b) (b a) ) a≡b (⊆-refl a , ⊆-refl a) set≡-characterization : {a b : V } (a ≡ₕ b) (a b) (b a) set≡-characterization = ⇔toPath (extInverse _ _) (extensionality _ _) diff --git a/Cubical.HITs.PropositionalTruncation.MagicTrick.html b/Cubical.HITs.PropositionalTruncation.MagicTrick.html index f1da98ecfd..8463f4c164 100644 --- a/Cubical.HITs.PropositionalTruncation.MagicTrick.html +++ b/Cubical.HITs.PropositionalTruncation.MagicTrick.html @@ -27,7 +27,7 @@ module Recover {} (A∙ : Pointed ) (h : isHomogeneous A∙) where private - A = typ A∙ + A = typ A∙ a = pt A∙ toEquivPtd : A ∥₁ Σ[ B∙ Pointed ] (A , a) B∙ @@ -43,7 +43,7 @@ -- thus any truncated element (of a homogeneous type) can be recovered by agda's normalizer! - recover : (tx : A ∥₁) typ (B∙ tx) + recover : (tx : A ∥₁) typ (B∙ tx) recover tx = pt (B∙ tx) recover∣∣ : (x : A) recover x ∣₁ x @@ -59,7 +59,7 @@ -- one might wonder if (cong recover (squash₁ ∣ x ∣₁ ∣ y ∣₁)) therefore has type x ≡ y, but thankfully -- typ (B∙ (squash₁ ∣ x ∣₁ ∣ y ∣₁ i)) is *not* A (it's a messy hcomp involving h x and h y) recover-squash₁ : x y -- x ≡ y -- this raises an error - PathP i typ (B∙ (squash₁ x ∣₁ y ∣₁ i))) x y + PathP i typ (B∙ (squash₁ x ∣₁ y ∣₁ i))) x y recover-squash₁ x y = cong recover (squash₁ x ∣₁ y ∣₁) diff --git a/Cubical.HITs.PropositionalTruncation.Monad.html b/Cubical.HITs.PropositionalTruncation.Monad.html index 3211a8bd1f..aa8b455eba 100644 --- a/Cubical.HITs.PropositionalTruncation.Monad.html +++ b/Cubical.HITs.PropositionalTruncation.Monad.html @@ -18,7 +18,7 @@ P Q : Type infix 1 proof_by_ -proof_by_ : (P : hProp ) P ∥₁ P +proof_by_ : (P : hProp ) P ∥₁ P proof P by p = rec (isProp⟨⟩ P) p p) p return : P P ∥₁ diff --git a/Cubical.HITs.RPn.Base.html b/Cubical.HITs.RPn.Base.html index 7866709614..93f0f2417b 100644 --- a/Cubical.HITs.RPn.Base.html +++ b/Cubical.HITs.RPn.Base.html @@ -94,25 +94,25 @@ -- proof of Theorem III.4 in [BR17], where the authors reference needing ⊕-comm. module ⊕* (X : 2-EltType₀) where - _⊕*_ : typ X typ X Bool + _⊕*_ : typ X typ X Bool y ⊕* z = invEquiv (fst (fst (isContr-2-EltPointedEquiv (fst X , y , snd X)))) .fst z -- we've already shown that this map is an equivalence on the right - isEquivʳ : (y : typ X) isEquiv (y ⊕*_) + isEquivʳ : (y : typ X) isEquiv (y ⊕*_) isEquivʳ y = invEquiv (fst (fst (isContr-2-EltPointedEquiv (fst X , y , snd X)))) .snd - Equivʳ : typ X typ X Bool + Equivʳ : typ X typ X Bool Equivʳ y = (y ⊕*_) , isEquivʳ y -- any mere proposition that holds for (Bool, _⊕_) holds for (typ X, _⊕*_) -- this amounts to just carefully unfolding the PropTrunc.elim and J in isContr-2-EltPointedEquiv elim : {ℓ'} (P : (A : Type₀) (_⊕'_ : A A Bool) Type ℓ') (propP : A _⊕'_ isProp (P A _⊕'_)) - P Bool _⊕_ P (typ X) _⊕*_ - elim {ℓ'} P propP r = PropTrunc.elim {P = λ ∣e∣ P (typ X) (R₁ ∣e∣)} _ propP _ _) + P Bool _⊕_ P (typ X) _⊕*_ + elim {ℓ'} P propP r = PropTrunc.elim {P = λ ∣e∣ P (typ X) (R₁ ∣e∣)} _ propP _ _) e EquivJ A e P A (R₂ A e)) r e) (snd X) - where R₁ : fst X Bool ∥₁ typ X typ X Bool + where R₁ : fst X Bool ∥₁ typ X typ X Bool R₁ ∣e∣ y = invEq (fst (fst (isContr-2-EltPointedEquiv (fst X , y , ∣e∣)))) R₂ : (B : Type₀) B Bool B B Bool R₂ A e y = invEq (fst (fst (J A∙ _ isContr ((Bool , false) ≃[ PointedEquivStr ] A∙)) @@ -121,15 +121,15 @@ -- as a consequence, we get that ⊕* is commutative, and is therefore also an equivalence on the left - comm : (y z : typ X) y ⊕* z z ⊕* y + comm : (y z : typ X) y ⊕* z z ⊕* y comm = elim A _⊕'_ (x y : A) x ⊕' y y ⊕' x) _ _ isPropΠ2 _ _ isSetBool _ _)) ⊕-comm - isEquivˡ : (y : typ X) isEquiv (_⊕* y) + isEquivˡ : (y : typ X) isEquiv (_⊕* y) isEquivˡ y = subst isEquiv (funExt z comm y z)) (isEquivʳ y) - Equivˡ : typ X typ X Bool + Equivˡ : typ X typ X Bool Equivˡ y = (_⊕* y) , isEquivˡ y -- Lemma II.2 in [BR17], though we do not use it here @@ -166,7 +166,7 @@ cov⁻¹ (ℕ→ℕ₋₁ n) (push (x , y) i) = ua ((λ z y ⊕* z) , ⊕*.isEquivʳ (cov⁻¹ (-1+ n) x) y) i , ∣p∣ i where open ⊕* (cov⁻¹ (-1+ n) x) ∣p∣ = isProp→PathP i squash₁ {A = ua (⊕*.Equivʳ (cov⁻¹ (-1+ n) x) y) i Bool}) - (str (cov⁻¹ (-1+ n) x)) ( idEquiv _ ∣₁) + (str (cov⁻¹ (-1+ n) x)) ( idEquiv _ ∣₁) {- tt Total (cov⁻¹ (n-1)) — — — > Unit @@ -218,24 +218,24 @@ Thus the flattening lemma gives us that `Total (cov⁻¹ n) ≃ Pushout Σf Σg`. -} open FlatteningLemma {- f = -} x pr (cov⁻¹ (-1+ n)) x) {- g = -} _ tt) - {- F = -} x typ (cov⁻¹ (-1+ n) x)) {- G = -} _ Bool) + {- F = -} x typ (cov⁻¹ (-1+ n) x)) {- G = -} _ Bool) {- e = -} { (x , y) ⊕*.Equivʳ (cov⁻¹ (-1+ n) x) y }) hiding (Σf ; Σg) - cov⁻¹≃E : x typ (cov⁻¹ (ℕ→ℕ₋₁ n) x) E x + cov⁻¹≃E : x typ (cov⁻¹ (ℕ→ℕ₋₁ n) x) E x cov⁻¹≃E (inl x) = idEquiv _ cov⁻¹≃E (inr x) = idEquiv _ cov⁻¹≃E (push a i) = idEquiv _ -- for easier reference, we copy these definitons here - Σf : Σ[ x Total (cov⁻¹ (-1+ n)) ] typ (cov⁻¹ (-1+ n) (fst x)) Total (cov⁻¹ (-1+ n)) - Σg : Σ[ x Total (cov⁻¹ (-1+ n)) ] typ (cov⁻¹ (-1+ n) (fst x)) Unit × Bool + Σf : Σ[ x Total (cov⁻¹ (-1+ n)) ] typ (cov⁻¹ (-1+ n) (fst x)) Total (cov⁻¹ (-1+ n)) + Σg : Σ[ x Total (cov⁻¹ (-1+ n)) ] typ (cov⁻¹ (-1+ n) (fst x)) Unit × Bool Σf ((x , y) , z) = (x , z) -- ≡ (f a , x) Σg ((x , y) , z) = (tt , y ⊕* z) -- ≡ (g a , (e a) .fst x) where open ⊕* (cov⁻¹ (-1+ n) x) i : Total (cov⁻¹ (ℕ→ℕ₋₁ n)) Pushout Σf Σg - i = (Σ[ x RP (ℕ→ℕ₋₁ n) ] typ (cov⁻¹ (ℕ→ℕ₋₁ n) x)) ≃⟨ Σ-cong-equiv-snd cov⁻¹≃E + i = (Σ[ x RP (ℕ→ℕ₋₁ n) ] typ (cov⁻¹ (ℕ→ℕ₋₁ n) x)) ≃⟨ Σ-cong-equiv-snd cov⁻¹≃E (Σ[ x RP (ℕ→ℕ₋₁ n) ] E x) ≃⟨ flatten Pushout Σf Σg {- @@ -259,13 +259,13 @@ This was proved above by ⊕*.isEquivˡ. -} - u : {n} (Σ[ x Total (cov⁻¹ n) ] typ (cov⁻¹ n (fst x))) (Total (cov⁻¹ n) × Bool) - u {n} = Σ[ x Total (cov⁻¹ n) ] typ (cov⁻¹ n (fst x)) ≃⟨ Σ-assoc-≃ - Σ[ x RP n ] (typ (cov⁻¹ n x)) × (typ (cov⁻¹ n x)) ≃⟨ Σ-cong-equiv-snd x Σ-swap-≃) - Σ[ x RP n ] (typ (cov⁻¹ n x)) × (typ (cov⁻¹ n x)) ≃⟨ Σ-cong-equiv-snd + u : {n} (Σ[ x Total (cov⁻¹ n) ] typ (cov⁻¹ n (fst x))) (Total (cov⁻¹ n) × Bool) + u {n} = Σ[ x Total (cov⁻¹ n) ] typ (cov⁻¹ n (fst x)) ≃⟨ Σ-assoc-≃ + Σ[ x RP n ] (typ (cov⁻¹ n x)) × (typ (cov⁻¹ n x)) ≃⟨ Σ-cong-equiv-snd x Σ-swap-≃) + Σ[ x RP n ] (typ (cov⁻¹ n x)) × (typ (cov⁻¹ n x)) ≃⟨ Σ-cong-equiv-snd x Σ-cong-equiv-snd y ⊕*.Equivˡ (cov⁻¹ n x) y)) - Σ[ x RP n ] (typ (cov⁻¹ n x)) × Bool ≃⟨ invEquiv Σ-assoc-≃ + Σ[ x RP n ] (typ (cov⁻¹ n x)) × Bool ≃⟨ invEquiv Σ-assoc-≃ Total (cov⁻¹ n) × Bool H : x u .fst x (Σf x , snd (Σg x)) diff --git a/Cubical.HITs.SmashProduct.Base.html b/Cubical.HITs.SmashProduct.Base.html index 0967438266..3c038c91e8 100644 --- a/Cubical.HITs.SmashProduct.Base.html +++ b/Cubical.HITs.SmashProduct.Base.html @@ -18,9 +18,9 @@ data Smash { ℓ'} (A : Pointed ) (B : Pointed ℓ') : Type (ℓ-max ℓ') where basel : Smash A B baser : Smash A B - proj : (x : typ A) (y : typ B) Smash A B - gluel : (a : typ A) proj a (pt B) basel - gluer : (b : typ B) proj (pt A) b baser + proj : (x : typ A) (y : typ B) Smash A B + gluel : (a : typ A) proj a (pt B) basel + gluer : (b : typ B) proj (pt A) b baser private variable @@ -59,7 +59,7 @@ --- Alternative definition -i∧ : {A : Pointed } {B : Pointed ℓ'} A B (typ A) × (typ B) +i∧ : {A : Pointed } {B : Pointed ℓ'} A B (typ A) × (typ B) i∧ {A = A , ptA} {B = B , ptB} (inl x) = x , ptB i∧ {A = A , ptA} {B = B , ptB} (inr x) = ptA , x i∧ {A = A , ptA} {B = B , ptB} (push tt i) = ptA , ptB @@ -200,8 +200,8 @@ _⋀→refl_ : { ℓ'} {C : Type } {D : Type ℓ'} - (f : typ A C) - (g : typ B D) + (f : typ A C) + (g : typ B D) (A B) ((C , f (pt A)) (D , g (pt B))) (f ⋀→refl g) (inl x) = inl tt (f ⋀→refl g) (inr (x , y)) = inr (f x , g y) @@ -210,8 +210,8 @@ (f ⋀→refl g) (push (push a i₁) i) = push (push tt i₁) i _⋀∙→refl_ : { ℓ'} {C : Type } {D : Type ℓ'} - (f : typ A C) - (g : typ B D) + (f : typ A C) + (g : typ B D) (A ⋀∙ B) →∙ ((C , f (pt A)) ⋀∙ (D , g (pt B))) fst (f ⋀∙→refl g) = f ⋀→refl g snd (f ⋀∙→refl g) = refl @@ -241,15 +241,15 @@ -- HIT corresponding to A ⋀ B ⋀ C data ⋀×3 : Type (ℓ-max (ℓ-max ℓ' ℓ'')) where base : ⋀×3 - proj : typ A typ B typ C ⋀×3 + proj : typ A typ B typ C ⋀×3 - gluel : (x : typ A) (y : typ B) proj x y (pt C) base - gluem : (x : typ A) (z : typ C) proj x (pt B) z base - gluer : (y : typ B) (z : typ C) proj (pt A) y z base + gluel : (x : typ A) (y : typ B) proj x y (pt C) base + gluem : (x : typ A) (z : typ C) proj x (pt B) z base + gluer : (y : typ B) (z : typ C) proj (pt A) y z base - gluel≡gluem : (a : typ A) gluel a (pt B) gluem a (pt C) - gluel≡gluer : (y : typ B) Path (Path (⋀×3) _ _) (gluel (pt A) y) (gluer y (pt C)) - gluem≡gluer : (z : typ C) gluem (pt A) z gluer (pt B) z + gluel≡gluem : (a : typ A) gluel a (pt B) gluem a (pt C) + gluel≡gluer : (y : typ B) Path (Path (⋀×3) _ _) (gluel (pt A) y) (gluer y (pt C)) + gluem≡gluer : (z : typ C) gluem (pt A) z gluer (pt B) z coh : Cube (gluel≡gluer (snd B)) (gluem≡gluer (pt C)) (gluel≡gluem (pt A)) _ gluer (snd B) (pt C)) @@ -258,7 +258,7 @@ -- Step 1 (main step): show A ⋀ (B ⋀ C) ≃ ⋀×3 A B C -- some fillers needed for the maps back and forth - filler₁ : typ B (i j k : I) ⋀×3 + filler₁ : typ B (i j k : I) ⋀×3 filler₁ a i j r = hfill k λ {(i = i0) gluer a (pt C) (j k) ; (i = i1) base @@ -267,7 +267,7 @@ (inS (gluel≡gluer a j i)) r - filler₂ : typ C (i j k : I) ⋀×3 + filler₂ : typ C (i j k : I) ⋀×3 filler₂ c i j r = hfill k λ {(i = i0) gluer (pt B) c (j k) ; (i = i1) base @@ -276,7 +276,7 @@ (inS (gluem≡gluer c j i)) r - filler₃ : typ B (i j r : I) A (B ⋀∙ C) + filler₃ : typ B (i j r : I) A (B ⋀∙ C) filler₃ b i j r = hfill k λ {(i = i0) compPath-filler' j inr (pt A , (push (inl b) (~ j)))) @@ -287,7 +287,7 @@ (inS (push (push tt i) (~ j))) r - filler₄ : typ C (i j r : I) A (B ⋀∙ C) + filler₄ : typ C (i j r : I) A (B ⋀∙ C) filler₄ c i j r = hfill k λ {(i = i0) compPath-filler' j inr (pt A , (push (inr c) (~ j)))) @@ -361,7 +361,7 @@ ⋀×3→⋀ (coh i j k) = coh-filler₂ i j k i1 -- fillers for cancellation - gluel-fill : (x : typ A) (b : typ B) (i j k : I) ⋀×3 + gluel-fill : (x : typ A) (b : typ B) (i j k : I) ⋀×3 gluel-fill x y i j k = hfill k λ {(i = i0) gluel x y (~ k) ; (i = i1) base @@ -373,7 +373,7 @@ (inS base) k - gluem-fill : (x : typ A) (z : typ C) (i j k : I) ⋀×3 + gluem-fill : (x : typ A) (z : typ C) (i j k : I) ⋀×3 gluem-fill x z i j k = hfill k λ {(i = i0) gluem x z (~ k) ; (i = i1) base @@ -384,7 +384,7 @@ (inS base) k - gluel≡gluer₁ : (y : typ B) (i j r k : I) ⋀×3 + gluel≡gluer₁ : (y : typ B) (i j r k : I) ⋀×3 gluel≡gluer₁ y i j r k = hfill k λ {(r = i0) base ; (r = i1) gluer y (snd C) (i k) @@ -396,7 +396,7 @@ k - gluem≡gluer₁ : (y : typ C) (i j r k : I) ⋀×3 + gluem≡gluer₁ : (y : typ C) (i j r k : I) ⋀×3 gluem≡gluer₁ z i j r k = hfill k λ {(i = i0) gluem≡gluer z j (~ r) ; (i = i1) gluer (snd B) z (~ r k) @@ -407,7 +407,7 @@ (inS (gluem≡gluer z (j i) (~ r))) k - gluel≡gluer₂ : (y : typ B) (k i j r : I) ⋀×3 + gluel≡gluer₂ : (y : typ B) (k i j r : I) ⋀×3 gluel≡gluer₂ y k i j r = hfill r λ {(i = i0) gluel≡gluer y (k j) (~ r) ; (i = i1) base @@ -418,7 +418,7 @@ (inS base) r - gluem≡gluer₂ : (y : typ C) (k i j r : I) ⋀×3 + gluem≡gluer₂ : (y : typ C) (k i j r : I) ⋀×3 gluem≡gluer₂ y k i j r = hfill r λ {(i = i0) gluem≡gluer y (k j) (~ r) ; (i = i1) base @@ -429,7 +429,7 @@ (inS base) r - gluel≡gluem-fill : (a : typ A) (i j k r : I) ⋀×3 + gluel≡gluem-fill : (a : typ A) (i j k r : I) ⋀×3 gluel≡gluem-fill a i j k r = hfill r λ {(i = i0) gluel≡gluem a k (~ r) ; (i = i1) base @@ -489,7 +489,7 @@ ; (r = i1) gluer (snd B) (snd C) (~ l)}) (coh i (r k) (~ l))) - filler₆ : (x : typ A) (a : typ B) (i j k : I) A (B C , inl tt) + filler₆ : (x : typ A) (a : typ B) (i j k : I) A (B C , inl tt) filler₆ x a i j k = hfill k λ {(i = i0) inr (x , push (inl a) k) ; (i = i1) push (inl x) j @@ -500,7 +500,7 @@ (inS (push (inl x) (j ~ i))) k - filler₇ : (x : typ A) (a : typ C) (i j k : I) A (B C , inl tt) + filler₇ : (x : typ A) (a : typ C) (i j k : I) A (B C , inl tt) filler₇ x a i j k = hfill k λ {(i = i0) inr (x , push (inr a) k) ; (i = i1) push (inl x) j @@ -511,7 +511,7 @@ (inS (push (inl x) (j ~ i))) k - filler₈ : (x : typ A) (i j k r : I) A (B C , inl tt) + filler₈ : (x : typ A) (i j k r : I) A (B C , inl tt) filler₈ x i j k r = hfill r λ {(i = i0) inr (x , push (push tt k) r) ; (i = i1) push (inl x) j @@ -533,7 +533,7 @@ (inS (filler₅ j (~ i k) i1)) r - lr-fill₁ : (b : typ C) (i j k r : I) A (B ⋀∙ C) + lr-fill₁ : (b : typ C) (i j k r : I) A (B ⋀∙ C) lr-fill₁ a i j k r = hfill r λ {(i = i0) push (inr (push (inr a) r)) (~ j ~ k) ; (i = i1) filler₅ j k i1 @@ -544,7 +544,7 @@ (inS (btm-fill i j k i1)) r - ll-fill₁ : (a : typ B) (i j k r : I) A (B ⋀∙ C) + ll-fill₁ : (a : typ B) (i j k r : I) A (B ⋀∙ C) ll-fill₁ a i j k r = hfill r λ {(i = i0) push (inr (push (inl a) r)) (~ j ~ k) ; (i = i1) filler₅ j k i1 @@ -555,7 +555,7 @@ (inS (btm-fill i j k i1)) r - ll-fill₂ : (a : typ B) (i j k r : I) A (B ⋀∙ C) + ll-fill₂ : (a : typ B) (i j k r : I) A (B ⋀∙ C) ll-fill₂ a i j k r = hfill r λ {(i = i0) push (inr (inr (a , pt C))) (~ j (~ r ~ k)) ; (i = i1) filler₅ j k i1 @@ -566,7 +566,7 @@ (inS (ll-fill₁ a i j k i1)) r - lr-fill₂ : (a : typ C) (i j k r : I) A (B ⋀∙ C) + lr-fill₂ : (a : typ C) (i j k r : I) A (B ⋀∙ C) lr-fill₂ a i j k r = hfill r λ {(i = i0) push (inr (inr (pt B , a))) (~ j (~ r ~ k)) ; (i = i1) filler₅ j k i1 @@ -761,9 +761,9 @@ module _ {C : Type } (f g : A B C) (bp : f (inl tt) g (inl tt)) (proj : (x : _) f (inr x) g (inr x)) - (pl : (x : typ A) PathP i f (push (inl x) i) g (push (inl x) i)) + (pl : (x : typ A) PathP i f (push (inl x) i) g (push (inl x) i)) bp (proj (x , pt B))) - (p-r : (x : typ B) PathP i f (push (inr x) i) g (push (inr x) i)) + (p-r : (x : typ B) PathP i f (push (inr x) i) g (push (inr x) i)) bp (proj (pt A , x))) where private diff --git a/Cubical.HITs.SmashProduct.Pentagon.html b/Cubical.HITs.SmashProduct.Pentagon.html index 7c1240c685..c90374909c 100644 --- a/Cubical.HITs.SmashProduct.Pentagon.html +++ b/Cubical.HITs.SmashProduct.Pentagon.html @@ -60,7 +60,7 @@ λ x y funExt⁻ (cong fst (to→∙ₗ≡to→∙ᵣ x)) y sym p≡refl) , p≡refl) where - module lemmas₁ (x : typ A) (y : typ B) where + module lemmas₁ (x : typ A) (y : typ B) where module N = ⋀-fun≡' z asscₗ (inr (x , inr (y , z)))) z asscᵣ (inr (x , inr (y , z)))) _ refl) @@ -142,7 +142,7 @@ j assc-r-r-p-l (pt C) j ∙∙ refl ∙∙ sym (assc-r-r-p-l (pt C) i1)) ∙∙lCancel _ - main₂ : (x : typ A) (y : typ B) (c : (C D)) + main₂ : (x : typ A) (y : typ B) (c : (C D)) asscₗ (inr (x , inr (y , c))) asscᵣ (inr (x , inr (y , c))) main₂ x y = ⋀-fun≡'.main {A = C} {B = D} _ _ @@ -156,7 +156,7 @@ ∙∙lCancel _) sym (lemmas₁.p≡refl x y))) - module lemmas₂ (x : typ A) where + module lemmas₂ (x : typ A) where module K = ⋀-fun≡' z asscₗ (inr (x , z))) z asscᵣ (inr (x , z))) y₁ main₂ x (fst y₁) (snd y₁)) @@ -279,7 +279,7 @@ ∙∙ sym (assc-r-p-r-l i1)) ∙∙lCancel _ - main₁ : (x : typ A) (y : B (C ⋀∙ D)) + main₁ : (x : typ A) (y : B (C ⋀∙ D)) asscₗ (inr (x , y)) asscᵣ (inr (x , y)) main₁ x = ⋀-fun≡'.main {A = B} {B = (C ⋀∙ D)} _ _ y main₂ x (fst y) (snd y)) diff --git a/Cubical.HITs.SmashProduct.SymmetricMonoidal.html b/Cubical.HITs.SmashProduct.SymmetricMonoidal.html index 46fa4fab7f..9b0a52e668 100644 --- a/Cubical.HITs.SmashProduct.SymmetricMonoidal.html +++ b/Cubical.HITs.SmashProduct.SymmetricMonoidal.html @@ -240,7 +240,7 @@ lem : ⋀comm→∙ ∘∙ ⋀comm→∙ idfun∙ _ lem = ΣPathP ((funExt (Iso.rightInv ⋀CommIso)) , (sym (rUnit refl))) -Bool⋀→ : Bool*∙ {} A typ A +Bool⋀→ : Bool*∙ {} A typ A Bool⋀→ {A = A} (inl x) = pt A Bool⋀→ (inr (lift false , a)) = a Bool⋀→ {A = A} (inr (lift true , a)) = pt A @@ -249,7 +249,7 @@ Bool⋀→ {A = A} (push (inr x) i) = pt A Bool⋀→ {A = A} (push (push a i₁) i) = pt A -⋀lIdIso : Iso (Bool*∙ {} A) (typ A) +⋀lIdIso : Iso (Bool*∙ {} A) (typ A) Iso.fun (⋀lIdIso {A = A}) (inl x) = pt A Iso.fun ⋀lIdIso = Bool⋀→ Iso.inv ⋀lIdIso a = inr (false* , a) diff --git a/Cubical.HITs.Susp.Properties.html b/Cubical.HITs.Susp.Properties.html index dc182de58b..0999ed9915 100644 --- a/Cubical.HITs.Susp.Properties.html +++ b/Cubical.HITs.Susp.Properties.html @@ -129,15 +129,15 @@ ; (merid a i) refl} Iso.leftInv funSpaceSuspIso _ = refl -toSusp : (A : Pointed ) typ A typ (Ω (Susp∙ (typ A))) +toSusp : (A : Pointed ) typ A typ (Ω (Susp∙ (typ A))) toSusp A x = merid x merid (pt A) ⁻¹ -toSuspPointed : (A : Pointed ) A →∙ Ω (Susp∙ (typ A)) +toSuspPointed : (A : Pointed ) A →∙ Ω (Susp∙ (typ A)) fst (toSuspPointed A) = toSusp A snd (toSuspPointed A) = rCancel (merid (pt A)) module _ { ℓ' : Level} {A : Pointed } {B : Pointed ℓ'} where - fromSusp→toΩ : Susp∙ (typ A) →∙ B (A →∙ Ω B) + fromSusp→toΩ : Susp∙ (typ A) →∙ B (A →∙ Ω B) fst (fromSusp→toΩ f) x = sym (snd f) ∙∙ cong (fst f) (toSusp A x) ∙∙ snd f snd (fromSusp→toΩ f) = cong (sym (snd f) ∙∙_∙∙ (snd f)) @@ -145,13 +145,13 @@ (rCancel (merid (pt A)))) ∙∙lCancel (snd f) - toΩ→fromSusp : A →∙ Ω B Susp∙ (typ A) →∙ B + toΩ→fromSusp : A →∙ Ω B Susp∙ (typ A) →∙ B fst (toΩ→fromSusp f) north = pt B fst (toΩ→fromSusp f) south = pt B fst (toΩ→fromSusp f) (merid a i) = fst f a i snd (toΩ→fromSusp f) = refl - ΩSuspAdjointIso : Iso (A →∙ Ω B) (Susp∙ (typ A) →∙ B) + ΩSuspAdjointIso : Iso (A →∙ Ω B) (Susp∙ (typ A) →∙ B) fun ΩSuspAdjointIso = toΩ→fromSusp inv ΩSuspAdjointIso = fromSusp→toΩ rightInv ΩSuspAdjointIso f = @@ -173,7 +173,7 @@ cong (fst f x ∙_) (cong sym (snd f)) sym (rUnit _)) - IsoΩFunSuspFun : Iso (typ (Ω (A →∙ B ))) (Susp∙ (typ A) →∙ B) + IsoΩFunSuspFun : Iso (typ (Ω (A →∙ B ))) (Susp∙ (typ A) →∙ B) IsoΩFunSuspFun = compIso (ΩfunExtIso A B) ΩSuspAdjointIso -- inversion @@ -201,7 +201,7 @@ module _ {A B : Pointed } where private -- some useful fillers - rinv-filler : (b : typ B) I I I join (Susp (typ A)) (typ B) + rinv-filler : (b : typ B) I I I join (Susp (typ A)) (typ B) rinv-filler b i j k = hfill k λ {(i = i0) push south b (~ k) ; (i = i1) push north b (~ k j) @@ -211,7 +211,7 @@ k suspJoin→joinSuspFiller : - I I I (a : typ A) (b : typ B) join (Susp (typ A)) (typ B) + I I I (a : typ A) (b : typ B) join (Susp (typ A)) (typ B) suspJoin→joinSuspFiller i j k a b = hfill k λ {(i = i0) push north b (~ k) ; (i = i1) push south b (~ k) @@ -221,7 +221,7 @@ k joinSuspFiller : - I I I (a : typ A) (b : typ B) Susp (join (typ A) (typ B)) + I I I (a : typ A) (b : typ B) Susp (join (typ A) (typ B)) joinSuspFiller i j k a b = hfill k λ {(i = i0) merid (push a b (~ k)) j ; (i = i1) north @@ -230,14 +230,14 @@ (inS (merid (inr b) (~ i j))) k - suspJoin→joinSusp : Susp (join (typ A) (typ B)) join (Susp (typ A)) (typ B) + suspJoin→joinSusp : Susp (join (typ A) (typ B)) join (Susp (typ A)) (typ B) suspJoin→joinSusp north = inl north suspJoin→joinSusp south = inl south suspJoin→joinSusp (merid (inl x) i) = inl ((merid x) i) suspJoin→joinSusp (merid (inr x) i) = inl (merid (pt A) i) suspJoin→joinSusp (merid (push a b j) i) = suspJoin→joinSuspFiller i j i1 a b - joinSusp→suspJoin : join (Susp (typ A)) (typ B) Susp (join (typ A) (typ B)) + joinSusp→suspJoin : join (Susp (typ A)) (typ B) Susp (join (typ A) (typ B)) joinSusp→suspJoin (inl north) = north joinSusp→suspJoin (inl south) = south joinSusp→suspJoin (inl (merid a i)) = merid (inl a) i @@ -247,7 +247,7 @@ joinSusp→suspJoin (push (merid a j) b i) = joinSuspFiller i j i1 a b - suspJoin→joinSusp→suspJoin : (x : Susp (join (typ A) (typ B))) + suspJoin→joinSusp→suspJoin : (x : Susp (join (typ A) (typ B))) joinSusp→suspJoin (suspJoin→joinSusp x) x suspJoin→joinSusp→suspJoin north = refl suspJoin→joinSusp→suspJoin south = refl @@ -279,7 +279,7 @@ ; (r = i1) merid (push a b (~ k j)) i}) (merid (inr b) (i r)) - joinSusp→suspJoin→joinSusp : (x : join (Susp (typ A)) (typ B)) + joinSusp→suspJoin→joinSusp : (x : join (Susp (typ A)) (typ B)) suspJoin→joinSusp (joinSusp→suspJoin x) x joinSusp→suspJoin→joinSusp (inl north) = refl joinSusp→suspJoin→joinSusp (inl south) = refl @@ -318,28 +318,28 @@ (inr b) Iso-joinSusp-suspJoin : - Iso (join (Susp (typ A)) (typ B)) (Susp (join (typ A) (typ B))) + Iso (join (Susp (typ A)) (typ B)) (Susp (join (typ A) (typ B))) Iso.fun Iso-joinSusp-suspJoin = joinSusp→suspJoin Iso.inv Iso-joinSusp-suspJoin = suspJoin→joinSusp Iso.rightInv Iso-joinSusp-suspJoin = suspJoin→joinSusp→suspJoin Iso.leftInv Iso-joinSusp-suspJoin = joinSusp→suspJoin→joinSusp -- interaction between invSusp and toSusp -toSusp-invSusp : (A : Pointed ) (x : Susp (typ A)) - toSusp (Susp∙ (typ A)) (invSusp x) sym (toSusp (Susp∙ (typ A)) x) +toSusp-invSusp : (A : Pointed ) (x : Susp (typ A)) + toSusp (Susp∙ (typ A)) (invSusp x) sym (toSusp (Susp∙ (typ A)) x) toSusp-invSusp A north = - cong (toSusp (Susp∙ (typ A))) (sym (merid (snd A))) + cong (toSusp (Susp∙ (typ A))) (sym (merid (snd A))) ∙∙ rCancel (merid north) ∙∙ cong sym (sym (rCancel (merid north))) toSusp-invSusp A south = rCancel (merid north) ∙∙ cong sym (sym (rCancel (merid north))) - ∙∙ cong sym (cong (toSusp (Susp∙ (typ A))) (merid (pt A))) + ∙∙ cong sym (cong (toSusp (Susp∙ (typ A))) (merid (pt A))) toSusp-invSusp A (merid a i) j = - lem (toSusp (Susp∙ (typ A)) north) (toSusp (Susp∙ (typ A)) south) + lem (toSusp (Susp∙ (typ A)) north) (toSusp (Susp∙ (typ A)) south) (sym (rCancel (merid north))) - (cong (toSusp (Susp∙ (typ A))) ((merid (pt A)))) - (cong (toSusp (Susp∙ (typ A))) (merid a)) (~ j) i + (cong (toSusp (Susp∙ (typ A))) ((merid (pt A)))) + (cong (toSusp (Susp∙ (typ A))) (merid a)) (~ j) i where lem : {A : Type } {x : A} (p q : x x) (l : refl p) (coh r : p q) diff --git a/Cubical.HITs.Truncation.Base.html b/Cubical.HITs.Truncation.Base.html index 28c439c499..f29fb7d641 100644 --- a/Cubical.HITs.Truncation.Base.html +++ b/Cubical.HITs.Truncation.Base.html @@ -39,7 +39,7 @@ -- Pointed version hLevelTrunc∙ : {} (n : ) (A : Pointed ) Pointed -fst (hLevelTrunc∙ n A) = hLevelTrunc n (typ A) +fst (hLevelTrunc∙ n A) = hLevelTrunc n (typ A) snd (hLevelTrunc∙ zero A) = tt* snd (hLevelTrunc∙ (suc n) A) = pt A ∣ₕ \ No newline at end of file diff --git a/Cubical.HITs.Wedge.Base.html b/Cubical.HITs.Wedge.Base.html index 2ac682b889..105cab3993 100644 --- a/Cubical.HITs.Wedge.Base.html +++ b/Cubical.HITs.Wedge.Base.html @@ -42,12 +42,12 @@ snd isContr-Unit⋁Unit (push tt i) j = push tt (i j) ⋁↪ : { ℓ'} {A : Pointed } {B : Pointed ℓ'} - A B typ A × typ B + A B typ A × typ B ⋁↪ {B = B} (inl x) = x , pt B ⋁↪ {A = A} (inr x) = pt A , x ⋁↪ {A = A} {B = B} (push a i) = pt A , pt B -fold⋁ : {} {A : Pointed } A A typ A +fold⋁ : {} {A : Pointed } A A typ A fold⋁ (inl x) = x fold⋁ (inr x) = x fold⋁ {A = A} (push a i) = snd A diff --git a/Cubical.Homotopy.Connected.html b/Cubical.Homotopy.Connected.html index 9f9804a202..b5f533b1f3 100644 --- a/Cubical.Homotopy.Connected.html +++ b/Cubical.Homotopy.Connected.html @@ -502,21 +502,21 @@ elim.isConnectedPrecompose inr n λ P (k P) , λ b refl where module _ { : Level} (P : (Pushout f g) TypeOfHLevel n) - (h : (b : B) typ (P (inr b))) + (h : (b : B) typ (P (inr b))) where Q : A TypeOfHLevel _ n Q a = (P (inl a)) - fun : (c : C) typ (Q (f c)) - fun c = transport i typ (P (push c (~ i)))) (h (g c)) + fun : (c : C) typ (Q (f c)) + fun c = transport i typ (P (push c (~ i)))) (h (g c)) - k : (d : Pushout f g) typ (P d) + k : (d : Pushout f g) typ (P d) k (inl x) = equiv-proof (elim.isEquivPrecompose f n Q iscon) fun .fst .fst x k (inr x) = h x k (push a i) = hcomp k λ { (i = i0) equiv-proof (elim.isEquivPrecompose f n Q iscon) fun .fst .snd i0 a - ; (i = i1) transportTransport⁻ j typ (P (push a j))) (h (g a)) k }) - (transp j typ (P (push a (i j)))) + ; (i = i1) transportTransport⁻ j typ (P (push a j))) (h (g a)) k }) + (transp j typ (P (push a (i j)))) (~ i) (equiv-proof (elim.isEquivPrecompose f n Q iscon) fun .fst .snd i a)) diff --git a/Cubical.Homotopy.EilenbergMacLane.CupProductTensor.html b/Cubical.Homotopy.EilenbergMacLane.CupProductTensor.html index 8b8c3f9c20..01270cecb7 100644 --- a/Cubical.Homotopy.EilenbergMacLane.CupProductTensor.html +++ b/Cubical.Homotopy.EilenbergMacLane.CupProductTensor.html @@ -218,7 +218,7 @@ (f m) λ n h finalpp m n h where - f : (m : ) G typ (Ω (EM∙ H' (suc m) →∙ EM∙ (G' H') (suc (suc m)) )) + f : (m : ) G typ (Ω (EM∙ H' (suc m) →∙ EM∙ (G' H') (suc (suc m)) )) fst (f m g i) x = EM→ΩEM+1 _ (·₀ g _ x) i snd (f zero g i) j = EM→ΩEM+1-0ₖ (suc zero) j i snd (f (suc m) g i) j = EM→ΩEM+1-0ₖ (suc (suc m)) j i diff --git a/Cubical.Homotopy.EilenbergMacLane.GradedCommTensor.html b/Cubical.Homotopy.EilenbergMacLane.GradedCommTensor.html index 8d79af473e..e8565b9a00 100644 --- a/Cubical.Homotopy.EilenbergMacLane.GradedCommTensor.html +++ b/Cubical.Homotopy.EilenbergMacLane.GradedCommTensor.html @@ -277,7 +277,7 @@ -- Another common construction (ΩKₙ → Ω²Kₙ₊₁) wrap : (n : ) (p : Path (EM G' n) (0ₖ n) (0ₖ n)) - typ ((Ω^ 2) (EM∙ G' (suc n))) + typ ((Ω^ 2) (EM∙ G' (suc n))) wrap n p = sym (EM→ΩEM+1-0ₖ n) ∙∙ cong (EM→ΩEM+1 n) p ∙∙ EM→ΩEM+1-0ₖ n wrapEq : (n : ) (p q : EM→ΩEM+1 {G = G'} n (0ₖ n) EM→ΩEM+1 n (0ₖ n)) @@ -1150,8 +1150,8 @@ sym (EM→ΩEM+1-sym (suc (m +ℕ suc n)) expr₂)) - substLem : {n : } (m : ) (p : n m) (x : typ (Ω (EM∙ (G' H') _))) - subst n typ (Ω (EM∙ (G' H') n))) (cong (suc suc) p) x + substLem : {n : } (m : ) (p : n m) (x : typ (Ω (EM∙ (G' H') _))) + subst n typ (Ω (EM∙ (G' H') n))) (cong (suc suc) p) x cong (subst (EM (G' H')) (cong (suc suc) p)) x substLem = J> λ x transportRefl x λ j i transportRefl (x i) (~ j) @@ -1181,7 +1181,7 @@ (_⌣ₖ_ {n = suc m} {m = suc n} (EM-raw→EM H' (suc m) a) (EM-raw→EM G' (suc n) b))))) - cong (subst n typ (Ω (EM∙ (G' H') n))) + cong (subst n typ (Ω (EM∙ (G' H') n))) (cong (suc suc) (+-comm (suc m) n))) (cong (cong (-ₖ^< suc n · suc (suc m) > (suc (suc m) +' suc n) @@ -1212,12 +1212,12 @@ -ₖ^< suc (suc n) · suc (suc m) >-Induced (suc (suc (m +ℕ n))) p q (GroupEquiv→GroupHom ⨂-comm) _))) - sym (compSubstℕ {A = λ n typ (Ω (EM∙ (G' H') n))} + sym (compSubstℕ {A = λ n typ (Ω (EM∙ (G' H') n))} (cong (suc suc) (sym (+-suc m n))) ℕpath (cong (suc suc) (+-comm (suc m) n))) cong (transport i₁ fst (Ω (EM∙ (G' H') (ℕpath i₁))))) ((substCommSlice (EM (H' G')) - n typ (Ω (EM∙ (G' H') (suc n)))) + n typ (Ω (EM∙ (G' H') (suc n)))) k x EM→ΩEM+1 k (-ₖ^< 2 +ℕ n · 2 +ℕ m > k p q (comm⨂-EM k (-ₖ x)))) (cong suc (sym (+-suc m n))) diff --git a/Cubical.Homotopy.EilenbergMacLane.GroupStructure.html b/Cubical.Homotopy.EilenbergMacLane.GroupStructure.html index 404510a125..6e53803bb9 100644 --- a/Cubical.Homotopy.EilenbergMacLane.GroupStructure.html +++ b/Cubical.Homotopy.EilenbergMacLane.GroupStructure.html @@ -151,19 +151,19 @@ x rUnitₖ (2 + n) x ) refl) - cong₂+₁ : (p q : typ (Ω (EM∙ G 1))) + cong₂+₁ : (p q : typ (Ω (EM∙ G 1))) cong₂ x y x +[ 1 ]ₖ y) p q p q cong₂+₁ p q = (cong₂Funct x y x +[ 1 ]ₖ y) p q) i (cong x rUnitₖ 1 x i) p) (cong x lUnitₖ 1 x i) q)) - cong₂+₂ : (n : ) (p q : typ (Ω (EM∙ G (suc (suc n))))) + cong₂+₂ : (n : ) (p q : typ (Ω (EM∙ G (suc (suc n))))) cong₂ x y x +[ (2 + n) ]ₖ y) p q p q cong₂+₂ n p q = (cong₂Funct x y x +[ (2 + n) ]ₖ y) p q) i (cong x rUnitₖ (2 + n) x i) p) (cong x lUnitₖ (2 + n) x i) q)) - isCommΩEM : (n : ) (p q : typ (Ω (EM∙ G (suc n)))) p q q p + isCommΩEM : (n : ) (p q : typ (Ω (EM∙ G (suc n)))) p q q p isCommΩEM zero p q = sym (cong₂+₁ p q) ∙∙ i j commₖ 1 (p j) (q j) i) @@ -173,7 +173,7 @@ ∙∙ i j commₖ (suc (suc n)) (p j) (q j) i) ∙∙ cong₂+₂ n q p) - cong-₁ : (p : typ (Ω (EM∙ G 1))) cong x -[ 1 ]ₖ x) p sym p + cong-₁ : (p : typ (Ω (EM∙ G 1))) cong x -[ 1 ]ₖ x) p sym p cong-₁ p = main embase p where decoder : (x : EM G 1) embase x x embase @@ -200,7 +200,7 @@ main : (x : EM G 1) (p : embase x) decoder x p sym p main x = J x p decoder x p sym p) refl - cong-₂ : (n : ) (p : typ (Ω (EM∙ G (2 + n)))) + cong-₂ : (n : ) (p : typ (Ω (EM∙ G (2 + n)))) cong x -[ 2 + n ]ₖ x) p sym p cong-₂ n p = main _ p where diff --git a/Cubical.Homotopy.EilenbergMacLane.Properties.html b/Cubical.Homotopy.EilenbergMacLane.Properties.html index ffadb619d6..2b49230642 100644 --- a/Cubical.Homotopy.EilenbergMacLane.Properties.html +++ b/Cubical.Homotopy.EilenbergMacLane.Properties.html @@ -289,21 +289,21 @@ i lUnitₖ (2 + n) (transportRefl x ∣ₕ i) i) i rUnitₖ (2 + n) (transportRefl x ∣ₕ i) i) - Iso-EM-ΩEM+1 : (n : ) Iso (EM G n) (typ (Ω (EM∙ G (suc n)))) + Iso-EM-ΩEM+1 : (n : ) Iso (EM G n) (typ (Ω (EM∙ G (suc n)))) Iso-EM-ΩEM+1 zero = invIso (ΩEM₁Iso (AbGroup→Group G)) Iso.fun (Iso-EM-ΩEM+1 (suc n)) = decode' n (0ₖ (2 + n)) Iso.inv (Iso-EM-ΩEM+1 (suc n)) = encode' n north Iso.rightInv (Iso-EM-ΩEM+1 (suc n)) = decode'-encode' _ _ Iso.leftInv (Iso-EM-ΩEM+1 (suc n)) = encode'-decode' _ - EM≃ΩEM+1 : (n : ) EM G n typ (Ω (EM∙ G (suc n))) + EM≃ΩEM+1 : (n : ) EM G n typ (Ω (EM∙ G (suc n))) EM≃ΩEM+1 n = isoToEquiv (Iso-EM-ΩEM+1 n) -- Some properties of the isomorphism - EM→ΩEM+1 : (n : ) EM G n typ (Ω (EM∙ G (suc n))) + EM→ΩEM+1 : (n : ) EM G n typ (Ω (EM∙ G (suc n))) EM→ΩEM+1 n = Iso.fun (Iso-EM-ΩEM+1 n) - ΩEM+1→EM : (n : ) typ (Ω (EM∙ G (suc n))) EM G n + ΩEM+1→EM : (n : ) typ (Ω (EM∙ G (suc n))) EM G n ΩEM+1→EM n = Iso.inv (Iso-EM-ΩEM+1 n) EM→ΩEM+1-0ₖ : (n : ) EM→ΩEM+1 n (0ₖ n) refl @@ -327,13 +327,13 @@ ∙assoc (EM→ΩEM+1-0ₖ n) - ΩEM+1→EM-sym : (n : ) (p : typ (Ω (EM∙ G (suc n)))) + ΩEM+1→EM-sym : (n : ) (p : typ (Ω (EM∙ G (suc n)))) ΩEM+1→EM n (sym p) -ₖ (ΩEM+1→EM n p) ΩEM+1→EM-sym n p = sym (cong (ΩEM+1→EM n) (EM→ΩEM+1-sym n (ΩEM+1→EM n p) cong sym (Iso.rightInv (Iso-EM-ΩEM+1 n) p))) Iso.leftInv (Iso-EM-ΩEM+1 n) (-ₖ ΩEM+1→EM n p) - ΩEM+1→EM-hom : (n : ) (p q : typ (Ω (EM∙ G (suc n)))) + ΩEM+1→EM-hom : (n : ) (p q : typ (Ω (EM∙ G (suc n)))) ΩEM+1→EM n (p q) (ΩEM+1→EM n p) +[ n ]ₖ (ΩEM+1→EM n q) ΩEM+1→EM-hom n = morphLemmas.isMorphInv x y x +[ n ]ₖ y) (_∙_) (EM→ΩEM+1 n) @@ -359,7 +359,7 @@ ua∙ (isoToEquiv (addIso n x)) (lUnitₖ n x) isCommΩEM-base : (n : ) (x : _) - (p q : typ (Ω (EM G (suc n) , x))) p q q p + (p q : typ (Ω (EM G (suc n) , x))) p q q p isCommΩEM-base n = EM-raw'-elim _ _ _ isOfHLevelΠ2 (2 + n) λ _ _ isOfHLevelPath (2 + n) @@ -371,7 +371,7 @@ * : (n : ) _ * n = EM-raw'→EM G (suc n) (snd (EM-raw'∙ G (suc n))) - lem : (n : ) (p q : typ (Ω (EM G (suc n) , * n))) + lem : (n : ) (p q : typ (Ω (EM G (suc n) , * n))) p q q p lem zero = isCommΩEM zero lem (suc n) = isCommΩEM (suc n) @@ -479,12 +479,12 @@ (invEquiv (EM≃ΩEM+1 n)) (ΩEM+1→EM-refl n) (~ i)) hlev - step₂ : isOfHLevel (suc m) (typ (Ω (A →∙ EM∙ G (suc n) ))) + step₂ : isOfHLevel (suc m) (typ (Ω (A →∙ EM∙ G (suc n) ))) step₂ = isOfHLevelRetractFromIso (suc m) (invIso (invIso (ΩfunExtIso _ _))) step₁ step₃ : isOfHLevel (suc (suc m)) (A →∙ EM∙ G (suc n)) step₃ = isOfHLevelΩ→isOfHLevel m - λ f subst x isOfHLevel (suc m) (typ (Ω x))) + λ f subst x isOfHLevel (suc m) (typ (Ω x))) (isHomogeneous→∙ (isHomogeneousEM (suc n)) f) step₂ @@ -499,7 +499,7 @@ isOfHLevel↑∙-lem (suc n) m = isOfHLevel→∙EM (suc (n + m)) (suc n) (isOfHLevel↑∙-lem n m) EM₁→∙Iso : {G : AbGroup } {H : AbGroup ℓ'} (m : ) - Iso (EM-raw'∙ G 1 →∙ EM∙ H (suc m)) (fst G typ (Ω (EM∙ H (suc m)))) + Iso (EM-raw'∙ G 1 →∙ EM∙ H (suc m)) (fst G typ (Ω (EM∙ H (suc m)))) Iso.fun (EM₁→∙Iso m) f g = sym (snd f) ∙∙ cong (fst f) (emloop-raw g) ∙∙ snd f fst (Iso.inv (EM₁→∙Iso m) f) embase-raw = 0ₖ (suc m) fst (Iso.inv (EM₁→∙Iso m) f) (emloop-raw g i) = f g i @@ -618,7 +618,7 @@ isOfHLevel↑∙∙ {G = G} {H = H} {L = L} n m zero = isOfHLevelΩ→isOfHLevel 0 λ f subst - isProp (cong x typ (Ω x)) + isProp (cong x typ (Ω x)) (isHomogeneous→∙ (isHomogeneous→∙ (isHomogeneousEM _)) f)) (isOfHLevelRetractFromIso 1 (ΩfunExtIso _ _) h) where @@ -634,7 +634,7 @@ isOfHLevelΩ→isOfHLevel (suc l) λ f subst (isOfHLevel (2 + l)) - (cong x typ (Ω x)) + (cong x typ (Ω x)) (isHomogeneous→∙ (isHomogeneous→∙ (isHomogeneousEM _)) f)) (isOfHLevelRetractFromIso (2 + l) (ΩfunExtIso _ _) h) where @@ -655,7 +655,7 @@ isOfHLevel↑∙∙' {G = G} {H = H} {L = L} n m zero = isOfHLevelΩ→isOfHLevel 0 λ f subst - isProp (cong x typ (Ω x)) + isProp (cong x typ (Ω x)) (isHomogeneous→∙ (isHomogeneous→∙ (isHomogeneousEM _)) f)) (isOfHLevelRetractFromIso 1 (ΩfunExtIso _ _) lem) @@ -671,7 +671,7 @@ isOfHLevelΩ→isOfHLevel (suc l) λ f subst (isOfHLevel (2 + l)) - (cong x typ (Ω x)) + (cong x typ (Ω x)) (isHomogeneous→∙ (isHomogeneous→∙ (isHomogeneousEM _)) f)) (isOfHLevelRetractFromIso (2 + l) (ΩfunExtIso _ _) lem) where @@ -692,7 +692,7 @@ isOfHLevel↑∙∙'' {G = G} {H = H} {L = L} n m zero = isOfHLevelΩ→isOfHLevel 0 λ f subst - isProp (cong x typ (Ω x)) + isProp (cong x typ (Ω x)) (isHomogeneous→∙ (isHomogeneous→∙ (isHomogeneousEM _)) f)) (isOfHLevelRetractFromIso 1 (ΩfunExtIso _ _) lem) @@ -708,7 +708,7 @@ isOfHLevelΩ→isOfHLevel (suc l) λ f subst (isOfHLevel (2 + l)) - (cong x typ (Ω x)) + (cong x typ (Ω x)) (isHomogeneous→∙ (isHomogeneous→∙ (isHomogeneousEM _)) f)) (isOfHLevelRetractFromIso (2 + l) (ΩfunExtIso _ _) lem) where diff --git a/Cubical.Homotopy.EilenbergSteenrod.html b/Cubical.Homotopy.EilenbergSteenrod.html index 4c54842f35..e30c3f7474 100644 --- a/Cubical.Homotopy.EilenbergSteenrod.html +++ b/Cubical.Homotopy.EilenbergSteenrod.html @@ -39,7 +39,7 @@ Boolℓ = Lift Bool , lift true field Hmap : (n : ) {A B : Pointed } (f : A →∙ B) AbGroupHom (H n B) (H n A) - Suspension : Σ[ F ((n : ) {A : Pointed } AbGroupEquiv (H (sucℤ n) (Susp (typ A) , north)) (H n A)) ] + Suspension : Σ[ F ((n : ) {A : Pointed } AbGroupEquiv (H (sucℤ n) (Susp (typ A) , north)) (H n A)) ] ({A B : Pointed } (f : A →∙ B) (n : ) fst (Hmap (sucℤ n) (suspFun (fst f) , refl)) invEq (fst (F n {A = B})) invEq (fst (F n {A = A})) fst (Hmap n f)) diff --git a/Cubical.Homotopy.Freudenthal.html b/Cubical.Homotopy.Freudenthal.html index ac4c101f9a..6c2e346687 100644 --- a/Cubical.Homotopy.Freudenthal.html +++ b/Cubical.Homotopy.Freudenthal.html @@ -39,7 +39,7 @@ -module _ {} (n : HLevel) {A : Pointed } (connA : isConnected (suc (suc n)) (typ A)) where +module _ {} (n : HLevel) {A : Pointed } (connA : isConnected (suc (suc n)) (typ A)) where private 2n+2 = suc n + suc n @@ -57,12 +57,12 @@ (cong (_∙ r) (rCancel' (rCancel' (merid (pt A)))) lUnit r ⁻¹)) - fwd : (p : north north) (a : typ A) + fwd : (p : north north) (a : typ A) hLevelTrunc 2n+2 (fiber (σ A) p) hLevelTrunc 2n+2 (fiber x merid x merid a ⁻¹) p) fwd p a = Trunc.rec (isOfHLevelTrunc 2n+2) (uncurry (WC.extension p a)) - isEquivFwd : (p : north north) (a : typ A) isEquiv (fwd p a) + isEquivFwd : (p : north north) (a : typ A) isEquiv (fwd p a) isEquivFwd p a .equiv-proof = elim.isEquivPrecompose _ pt A) (suc n) a @@ -85,11 +85,11 @@ )) .fst .fst a - interpolate : (a : typ A) - PathP i typ A north merid a i) x merid x merid a ⁻¹) merid + interpolate : (a : typ A) + PathP i typ A north merid a i) x merid x merid a ⁻¹) merid interpolate a i x j = compPath-filler (merid x) (merid a ⁻¹) (~ i) j - Code : (y : Susp (typ A)) north y Type + Code : (y : Susp (typ A)) north y Type Code north p = hLevelTrunc 2n+2 (fiber (σ A) p) Code south q = hLevelTrunc 2n+2 (fiber merid q) Code (merid a i) p = @@ -100,10 +100,10 @@ ; (i = i1) _ , idEquiv _ }) - encode : (y : Susp (typ A)) (p : north y) Code y p + encode : (y : Susp (typ A)) (p : north y) Code y p encode y = J Code pt A , rCancel' (merid (pt A)) - encodeMerid : (a : typ A) encode south (merid a) a , refl + encodeMerid : (a : typ A) encode south (merid a) a , refl encodeMerid a = cong (transport i gluePath i)) (funExt⁻ (WC.left refl a) _ λ i a , lem (rCancel' (merid a)) (rCancel' (merid (pt A))) i ) @@ -123,29 +123,29 @@ (uncurry λ a J p r encode south p a , r ) (encodeMerid a)) - isConnectedMerid : isConnectedFun 2n+2 (merid {A = typ A}) + isConnectedMerid : isConnectedFun 2n+2 (merid {A = typ A}) isConnectedMerid p = encode south p , contractCodeSouth p isConnectedσ : isConnectedFun 2n+2 (σ A) isConnectedσ = transport i isConnectedFun 2n+2 (interpolate (pt A) (~ i))) isConnectedMerid -isConn→isConnSusp : {} {A : Pointed } isConnected 2 (typ A) isConnected 2 (Susp (typ A)) +isConn→isConnSusp : {} {A : Pointed } isConnected 2 (typ A) isConnected 2 (Susp (typ A)) isConn→isConnSusp {A = A} iscon = north , trElim _ isOfHLevelSuc 1 (isOfHLevelTrunc 2 _ _)) (suspToPropElim (pt A) _ isOfHLevelTrunc 2 _ _) refl) FreudenthalEquiv : {} (n : HLevel) (A : Pointed ) - isConnected (2 + n) (typ A) - hLevelTrunc ((suc n) + (suc n)) (typ A) - hLevelTrunc ((suc n) + (suc n)) (typ (Ω (Susp (typ A) , north))) + isConnected (2 + n) (typ A) + hLevelTrunc ((suc n) + (suc n)) (typ A) + hLevelTrunc ((suc n) + (suc n)) (typ (Ω (Susp (typ A) , north))) FreudenthalEquiv n A iscon = connectedTruncEquiv _ (σ A) (isConnectedσ _ iscon) FreudenthalIso : {} (n : HLevel) (A : Pointed ) - isConnected (2 + n) (typ A) - Iso (hLevelTrunc ((suc n) + (suc n)) (typ A)) - (hLevelTrunc ((suc n) + (suc n)) (typ (Ω (Susp (typ A) , north)))) + isConnected (2 + n) (typ A) + Iso (hLevelTrunc ((suc n) + (suc n)) (typ A)) + (hLevelTrunc ((suc n) + (suc n)) (typ (Ω (Susp (typ A) , north)))) FreudenthalIso n A iscon = connectedTruncIso _ (σ A) (isConnectedσ _ iscon) \ No newline at end of file diff --git a/Cubical.Homotopy.Group.Base.html b/Cubical.Homotopy.Group.Base.html index aa9782bd3d..3d8a026baa 100644 --- a/Cubical.Homotopy.Group.Base.html +++ b/Cubical.Homotopy.Group.Base.html @@ -49,7 +49,7 @@ {- Homotopy group -} π : {} (n : ) (A : Pointed ) Type -π n A = typ ((Ω^ n) A) ∥₂ +π n A = typ ((Ω^ n) A) ∥₂ {- Alternative formulation. This will be given a group structure in the Properties file -} @@ -143,7 +143,7 @@ -- We use the following map mutual Ω→SphereMap : {} (n : ) {A : Pointed } - typ ((Ω^ n) A) (S₊∙ n →∙ A) + typ ((Ω^ n) A) (S₊∙ n →∙ A) fst (Ω→SphereMap zero a) false = a fst (Ω→SphereMap zero {A = A} a) true = pt A snd (Ω→SphereMap zero a) = refl @@ -185,12 +185,12 @@ -- We define the following maps which will be used to -- show that Ω→SphereMap is an equivalence Ω→SphereMapSplit₁ : {} {A : Pointed } (n : ) - typ ((Ω^ (suc n)) A) - typ (Ω (S₊∙ n →∙ A )) + typ ((Ω^ (suc n)) A) + typ (Ω (S₊∙ n →∙ A )) Ω→SphereMapSplit₁ n = Ω→ (Ω→SphereMap∙ n) .fst ΩSphereMap : {} {A : Pointed } (n : ) - typ (Ω (S₊∙ n →∙ A )) + typ (Ω (S₊∙ n →∙ A )) (S₊∙ (suc n) →∙ A) fst (ΩSphereMap {A = A} zero p) base = p i0 .fst false fst (ΩSphereMap {A = A} zero p) (loop i) = p i .fst false @@ -234,7 +234,7 @@ SphereMapΩ : {} {A : Pointed } (n : ) (S₊∙ (suc n) →∙ A) - typ (Ω (S₊∙ n →∙ A )) + typ (Ω (S₊∙ n →∙ A )) SphereMapΩ {A = A} zero (f , p) = ΣPathP ((funExt λ { false sym p ∙∙ cong f loop ∙∙ p ; true refl}) @@ -243,7 +243,7 @@ SphereMapΩIso : {} {A : Pointed } (n : ) Iso (S₊∙ (suc n) →∙ A) - (typ (Ω (S₊∙ n →∙ A ))) + (typ (Ω (S₊∙ n →∙ A ))) fun (SphereMapΩIso n) = SphereMapΩ n inv (SphereMapΩIso n) = ΩSphereMap n fst (rightInv (SphereMapΩIso zero) f i j) false = rUnit j fst (f j) false) (~ i) j @@ -266,7 +266,7 @@ Ωⁿ⁺¹A ----------------> Ω (Sⁿ →∙ A) -----------> (Sⁿ⁺¹ →∙ A) -} -Ω→SphereMap-split : {} {A : Pointed } (n : ) (p : typ ((Ω^ (suc n)) A)) +Ω→SphereMap-split : {} {A : Pointed } (n : ) (p : typ ((Ω^ (suc n)) A)) Ω→SphereMap (suc n) p ΩSphereMap n (Ω→SphereMapSplit₁ n p) Ω→SphereMap-split {A = A} zero p = ΣPathP ((funExt { base refl @@ -331,7 +331,7 @@ isEquiv-Ω→SphereMap (suc zero) {A = A} = isoToIsEquiv (iso _ invFun sec λ p sym (rUnit p)) where - invFun : S₊∙ 1 →∙ A typ (Ω A) + invFun : S₊∙ 1 →∙ A typ (Ω A) invFun (f , p) = sym p ∙∙ cong f loop ∙∙ p sec : section (Ω→SphereMap 1) invFun @@ -350,7 +350,7 @@ (invEquiv (isoToEquiv (SphereMapΩIso (suc n)))))) IsoΩSphereMap : {} {A : Pointed } (n : ) - Iso (typ ((Ω^ n) A)) (S₊∙ n →∙ A) + Iso (typ ((Ω^ n) A)) (S₊∙ n →∙ A) IsoΩSphereMap n = equivToIso (_ , isEquiv-Ω→SphereMap n) IsoSphereMapΩ : {} {A : Pointed } (n : ) @@ -387,7 +387,7 @@ ; (j = i1) p (~ k)}) ((q r) j) - lem : (p : typ ((Ω^ (suc (suc n))) A)) + lem : (p : typ ((Ω^ (suc (suc n))) A)) cong (fst (Ω→SphereMap (suc (suc n)) p)) (merid (ptSn _)) refl lem p = cong (sym (Ω→SphereMapId (suc n) (ptSn _)) ∙∙_∙∙ Ω→SphereMapId (suc n) (ptSn _)) @@ -663,7 +663,7 @@ {- Proof that πₙ(A) ≅ πₙ(∥ A ∥ₙ) -} isContrΩTrunc : {} {A : Pointed } (n : ) - isContr (typ ((Ω^ n) (hLevelTrunc∙ n A))) + isContr (typ ((Ω^ n) (hLevelTrunc∙ n A))) isContrΩTrunc {A = A} zero = isContrUnit* isContrΩTrunc {A = A} (suc n) = subst isContr main (isContrΩTrunc {A = Ω A} n) @@ -677,9 +677,9 @@ lem₂ = sym (ua∙ (isoToEquiv (PathIdTruncIso n)) (lem₁ n)) - main : (typ ((Ω^ n) (hLevelTrunc∙ n (Ω A)))) - (typ ((Ω^ suc n) (hLevelTrunc∙ (suc n) A))) - main = i typ ((Ω^ n) (lem₂ i))) + main : (typ ((Ω^ n) (hLevelTrunc∙ n (Ω A)))) + (typ ((Ω^ suc n) (hLevelTrunc∙ (suc n) A))) + main = i typ ((Ω^ n) (lem₂ i))) sym (isoToPath (flipΩIso n)) @@ -701,24 +701,24 @@ ΩTruncSwitchLem : {} {A : Pointed } (n m : ) Iso - (typ (Ω (hLevelTrunc∙ (suc (suc m)) ((Ω^ n) A)))) - (typ ((Ω^ suc n) (hLevelTrunc∙ (suc n + suc m) A))) + (typ (Ω (hLevelTrunc∙ (suc (suc m)) ((Ω^ n) A)))) + (typ ((Ω^ suc n) (hLevelTrunc∙ (suc n + suc m) A))) ΩTruncSwitchLem {A = A} n m = (equivToIso (Ω→ (ΩTruncSwitchFun n m) .fst , isEquivΩ→ _ (compEquiv (isoToEquiv (ΩTruncSwitch {A = A} n (suc (suc m)))) (pathToEquiv - i typ ((Ω^ n) (hLevelTrunc∙ (+-suc n (suc m) i) A)))) .snd))) + i typ ((Ω^ n) (hLevelTrunc∙ (+-suc n (suc m) i) A)))) .snd))) ΩTruncSwitch : {} {A : Pointed } (n m : ) Iso (hLevelTrunc m (fst ((Ω^ n) A))) - (typ ((Ω^ n) (hLevelTrunc∙ (n + m) A))) + (typ ((Ω^ n) (hLevelTrunc∙ (n + m) A))) ΩTruncSwitch {A = A} n zero = equivToIso (invEquiv (isContr→≃Unit* (subst isContr - i (typ ((Ω^ n) (hLevelTrunc∙ (+-comm zero n i) A)))) + i (typ ((Ω^ n) (hLevelTrunc∙ (+-comm zero n i) A)))) (isContrΩTrunc n)))) ΩTruncSwitch {A = A} zero (suc m) = idIso ΩTruncSwitch {A = A} (suc n) (suc m) = @@ -731,7 +731,7 @@ ΩTruncSwitch∙ {A = A} n zero = isContr→isProp ((subst isContr - i (typ ((Ω^ n) (hLevelTrunc∙ (+-comm zero n i) A)))) + i (typ ((Ω^ n) (hLevelTrunc∙ (+-comm zero n i) A)))) (isContrΩTrunc n))) _ _ ΩTruncSwitch∙ {A = A} zero (suc m) = refl ΩTruncSwitch∙ {A = A} (suc n) (suc m) = ∙∙lCancel _ @@ -748,30 +748,30 @@ 2TruncΩIso : {} {A : Pointed } (n : ) Iso (hLevelTrunc 2 (fst ((Ω^ n) A))) - (typ ((Ω^ n) (hLevelTrunc∙ (2 + n) A))) + (typ ((Ω^ n) (hLevelTrunc∙ (2 + n) A))) 2TruncΩIso zero = idIso 2TruncΩIso {A = A} (suc n) = compIso (ΩTruncSwitch (suc n) 2) - (pathToIso λ i typ ((Ω^ suc n) (hLevelTrunc∙ (+-comm (suc n) 2 i) A))) + (pathToIso λ i typ ((Ω^ suc n) (hLevelTrunc∙ (+-comm (suc n) 2 i) A))) hLevΩ+ : {} {A : Pointed } (n m : ) - isOfHLevel (m + n) (typ A) isOfHLevel n (typ ((Ω^ m) A)) + isOfHLevel (m + n) (typ A) isOfHLevel n (typ ((Ω^ m) A)) hLevΩ+ n zero p = p hLevΩ+ {A = A} zero (suc zero) p = refl , λ _ isProp→isSet p _ _ _ _ hLevΩ+ {A = A} zero (suc (suc zero)) p = refl , λ y isOfHLevelSuc 2 p _ _ _ _ refl y hLevΩ+ {A = A} zero (suc (suc (suc m))) p = transport - i isContr (typ (Ω (ua∙ + i isContr (typ (Ω (ua∙ (isoToEquiv (flipΩIso {A = A} (suc m))) (flipΩrefl m) (~ i))))) (hLevΩ+ {A = Ω A} zero (suc (suc m)) - (subst x isOfHLevel x (typ (Ω A))) + (subst x isOfHLevel x (typ (Ω A))) (+-comm zero (suc (suc m))) (lem (pt A) (pt A)))) where - lem : isOfHLevel (3 + m) (typ A) - lem = subst x isOfHLevel x (typ A)) + lem : isOfHLevel (3 + m) (typ A) + lem = subst x isOfHLevel x (typ A)) i suc (+-comm (2 + m) zero i)) p hLevΩ+ {A = A} (suc n) (suc m) p = subst (isOfHLevel (suc n)) @@ -780,12 +780,12 @@ (isOfHLevelPath' (m + suc n) p _ _)) isSetΩTrunc : {} {A : Pointed } (n : ) - (isSet (typ (Ω ((Ω^ n) (hLevelTrunc∙ (suc (suc (suc n))) A))))) + (isSet (typ (Ω ((Ω^ n) (hLevelTrunc∙ (suc (suc (suc n))) A))))) isSetΩTrunc {A = A} zero = isOfHLevelTrunc 3 _ _ isSetΩTrunc {A = A} (suc n) = hLevΩ+ 2 (suc (suc n)) (transport - i isOfHLevel (+-comm 2 (2 + n) i) (hLevelTrunc (4 + n) (typ A))) + i isOfHLevel (+-comm 2 (2 + n) i) (hLevelTrunc (4 + n) (typ A))) (isOfHLevelTrunc (suc (suc (suc (suc n)))))) πTruncIso : {} {A : Pointed } (n : ) @@ -809,21 +809,21 @@ cong (inv (setTruncIdempotentIso (isSetΩTrunc n))) (cong (transport - i typ ((Ω^ suc n) (hLevelTrunc∙ (+-comm (suc n) 2 i) A)))) + i typ ((Ω^ suc n) (hLevelTrunc∙ (+-comm (suc n) 2 i) A)))) (ΩTruncSwitch-hom n 1 a b) transpΩTruncSwitch w ((Ω^ n) (hLevelTrunc∙ w A))) (+-comm (suc n) 2) _ _)) where transpΩTruncSwitch : {} (A : Pointed ) {n m : } - (r : n m) (p q : typ (Ω (A n))) - subst n typ (Ω (A n))) r (p q) - subst n typ (Ω (A n))) r p - subst n typ (Ω (A n))) r q + (r : n m) (p q : typ (Ω (A n))) + subst n typ (Ω (A n))) r (p q) + subst n typ (Ω (A n))) r p + subst n typ (Ω (A n))) r q transpΩTruncSwitch A {n = n} = - J m r (p q : typ (Ω (A n))) - subst n typ (Ω (A n))) r (p q) - subst n typ (Ω (A n))) r p - subst n typ (Ω (A n))) r q) + J m r (p q : typ (Ω (A n))) + subst n typ (Ω (A n))) r (p q) + subst n typ (Ω (A n))) r p + subst n typ (Ω (A n))) r q) λ p q transportRefl _ cong₂ _∙_ (sym (transportRefl p)) (sym (transportRefl q)) @@ -921,20 +921,20 @@ p ∙∙ sym (Ω→SphereMap-split (suc n) (Ω^→ (2 + n) f .fst p)))) where - topSquare : (p : typ ((Ω^ (2 + n)) A)) - Path (typ (Ω ((S₊∙ (suc n)) →∙ B ))) + topSquare : (p : typ ((Ω^ (2 + n)) A)) + Path (typ (Ω ((S₊∙ (suc n)) →∙ B ))) ((Ω→ (post∘∙ (S₊∙ (suc n)) f) .fst Ω→ (Ω→SphereMap∙ (suc n)) .fst) p) (((Ω→ (Ω→SphereMap∙ (suc n))) .fst (Ω^→ (suc (suc n)) f .fst)) p) topSquare p = sym (Ω→∘ (post∘∙ (S₊∙ (suc n)) f) (Ω→SphereMap∙ (suc n)) p) i Ω→ (Ω^→≈post∘∙ {A = A} {B = B} n f i) .fst p) Ω→∘ (Ω→SphereMap∙ (suc n)) (Ω^→ (suc n) f) p - bottomSquare : (f : A →∙ B) (g : typ (Ω (S₊∙ (suc n) →∙ A ))) + bottomSquare : (f : A →∙ B) (g : typ (Ω (S₊∙ (suc n) →∙ A ))) Path (S₊∙ (2 + n) →∙ B) (ΩSphereMap (suc n) (Ω→ (post∘∙ (S₊∙ (suc n)) f) .fst g)) ((post∘∙ (S₊∙ (2 + n)) f .fst ΩSphereMap (suc n)) g) bottomSquare = - →∙J b₀ f (g : typ (Ω (S₊∙ (suc n) →∙ A ))) + →∙J b₀ f (g : typ (Ω (S₊∙ (suc n) →∙ A ))) Path (S₊∙ (suc (suc n)) →∙ (fst B , b₀)) (ΩSphereMap (suc n) (Ω→ (post∘∙ (S₊∙ (suc n)) f) .fst g)) ((post∘∙ (S₊∙ (suc (suc n))) f .fst ΩSphereMap (suc n)) g)) @@ -943,7 +943,7 @@ ; (merid a i) j lem f g a j i})) , lUnit refl) where - lem : (f : typ A typ B) (g : typ (Ω (S₊∙ (suc n) →∙ A ))) + lem : (f : typ A typ B) (g : typ (Ω (S₊∙ (suc n) →∙ A ))) (a : S₊ (suc n)) cong (fst (ΩSphereMap (suc n) (Ω→ (post∘∙ (S₊∙ (suc n)) (f , refl)) .fst g))) diff --git a/Cubical.Homotopy.Group.LES.html b/Cubical.Homotopy.Group.LES.html index 40bac0ddf2..1de3c55dbf 100644 --- a/Cubical.Homotopy.Group.LES.html +++ b/Cubical.Homotopy.Group.LES.html @@ -115,7 +115,7 @@ {- We need an iso Ω(fib f) ≅ fib(Ω f) -} ΩFibreIso : { ℓ' : Level} {A : Pointed } {B : Pointed ℓ'} (f : A →∙ B) - Iso (typ (Ω (fiber (fst f) (pt B) , (pt A) , snd f))) + Iso (typ (Ω (fiber (fst f) (pt B) , (pt A) , snd f))) (fiber (Ω→ f .fst) refl) fun (ΩFibreIso f) p = (cong fst p) , →∙∙lCancel (cong (fst f) (cong fst p)) (snd f) @@ -129,24 +129,24 @@ {- Some homomorphism properties of the above iso -} ΩFibreIsopres∙fst : { ℓ' : Level} {A : Pointed } {B : Pointed ℓ'} (f : A →∙ B) - (p q : (typ (Ω (fiber (fst f) (pt B) , (pt A) , snd f)))) + (p q : (typ (Ω (fiber (fst f) (pt B) , (pt A) , snd f)))) fst (fun (ΩFibreIso f) (p q)) fst (fun (ΩFibreIso f) p) fst (fun (ΩFibreIso f) q) ΩFibreIsopres∙fst f p q = cong-∙ fst p q ΩFibreIso⁻pres∙snd : { ℓ' : Level} {A : Pointed } {B : Pointed ℓ'} - (f : A →∙ B) (p q : typ (Ω (Ω B))) + (f : A →∙ B) (p q : typ (Ω (Ω B))) inv (ΩFibreIso f) (refl , (Ω→ f .snd p q)) inv (ΩFibreIso f) (refl , Ω→ f .snd p) inv (ΩFibreIso f) (refl , Ω→ f .snd q) ΩFibreIso⁻pres∙snd {A = A} {B = B}= - →∙J b₀ f (p q : typ (Ω (Ω (fst B , b₀)))) + →∙J b₀ f (p q : typ (Ω (Ω (fst B , b₀)))) inv (ΩFibreIso f) (refl , (Ω→ f .snd p q)) inv (ΩFibreIso f) (refl , Ω→ f .snd p) inv (ΩFibreIso f) (refl , Ω→ f .snd q)) ind where - ind : (f : typ A typ B) (p q : typ (Ω (Ω (fst B , f (pt A))))) + ind : (f : typ A typ B) (p q : typ (Ω (Ω (fst B , f (pt A))))) inv (ΩFibreIso (f , refl)) (refl , (sym (rUnit refl) p q)) inv (ΩFibreIso (f , refl)) (refl , sym (rUnit refl) p) inv (ΩFibreIso (f , refl)) (refl , sym (rUnit refl) q) @@ -356,7 +356,7 @@ A→B n = Ω^→ n f {- It preserves path composition -} - A→B-pres∙ : (n : ) (p q : typ ((Ω^ (suc n)) A)) + A→B-pres∙ : (n : ) (p q : typ ((Ω^ (suc n)) A)) fst (A→B (suc n)) (p q) fst (A→B (suc n)) p fst (A→B (suc n)) q A→B-pres∙ n p q = Ω^→pres∙ f n p q @@ -374,7 +374,7 @@ ∘∙ ΩB→fibΩ^f n {- It preserves path composition -} - ΩB→Ω^fibf-pres∙ : (n : ) (p q : typ ((Ω^ (2 + n)) B)) + ΩB→Ω^fibf-pres∙ : (n : ) (p q : typ ((Ω^ (2 + n)) B)) fst (ΩB→Ω^fibf (suc n)) (p q) fst (ΩB→Ω^fibf (suc n)) p fst (ΩB→Ω^fibf (suc n)) q ΩB→Ω^fibf-pres∙ n p q = @@ -518,7 +518,7 @@ (e₁ : IsGroupHom (snd (πGr n A)) (sMap (fst f)) (snd (πGr m B))) (e₂ : IsGroupHom (snd (πGr m B)) (sMap (fst g)) (snd (πGr l C))) where - ker⊂im : ((x : typ (Ω ((Ω^ m) B))) isInKer∙ g x isInIm∙ f x) + ker⊂im : ((x : typ (Ω ((Ω^ m) B))) isInKer∙ g x isInIm∙ f x) (x : π (suc m) B) isInKer (_ , e₂) x isInIm (_ , e₁) x ker⊂im ind = sElim _ isSetΠ λ _ isProp→isSet squash₁) @@ -527,7 +527,7 @@ ker∙ ind p ker∙ .fst ∣₂ , cong ∣_∣₂ (ind p ker∙ .snd) ∣₁ ) (fun PathIdTrunc₀Iso ker) - im⊂ker : ((x : typ (Ω ((Ω^ m) B))) isInIm∙ f x isInKer∙ g x) + im⊂ker : ((x : typ (Ω ((Ω^ m) B))) isInIm∙ f x isInKer∙ g x) (x : π (suc m) B) isInIm (_ , e₁) x isInKer (_ , e₂) x im⊂ker ind = sElim _ isSetΠ λ _ isSetPathImplicit) diff --git a/Cubical.Homotopy.Group.Pi4S3.BrunerieExperiments.html b/Cubical.Homotopy.Group.Pi4S3.BrunerieExperiments.html index 8fdf87e62f..a1c77c84ec 100644 --- a/Cubical.Homotopy.Group.Pi4S3.BrunerieExperiments.html +++ b/Cubical.Homotopy.Group.Pi4S3.BrunerieExperiments.html @@ -295,7 +295,7 @@ λ { base x x ; (surf i j) x surfc x i j} where - surfc : (x : K₂) typ ((Ω^ 2) (K₂ , x)) + surfc : (x : K₂) typ ((Ω^ 2) (K₂ , x)) surfc = 2GroupoidTrunc.elim _ isOfHLevelPath 4 (isOfHLevelPath 4 squash₄ _ _) _ _) @@ -318,7 +318,7 @@ encode x = J x p Code x) base ∣₄ -- We now get an alternative definition of f7 -f7' : typ (Ω (Susp∙ )) K₂ +f7' : typ (Ω (Susp∙ )) K₂ f7' = f7stuff.encode north -- We can define the Brunerie number by diff --git a/Cubical.Homotopy.Group.Pi4S3.DirectProof.html b/Cubical.Homotopy.Group.Pi4S3.DirectProof.html index 5d03cc437e..3947b8b0d5 100644 --- a/Cubical.Homotopy.Group.Pi4S3.DirectProof.html +++ b/Cubical.Homotopy.Group.Pi4S3.DirectProof.html @@ -127,7 +127,7 @@ σ-filler x y i j = compPath-filler (merid x) (sym (merid y)) i j to3ConnectedId : {f g : A →∙ B} - (isConnected 3 (typ B)) fst f fst g f ∣₂ g ∣₂ + (isConnected 3 (typ B)) fst f fst g f ∣₂ g ∣₂ to3ConnectedId {f = f} {g = g} con p = trRec (squash₂ _ _) q cong ∣_∣₂ (ΣPathP (p , q))) @@ -283,8 +283,8 @@ -- Group structure on π₃* -- todo: remove connectivity assumption -module _ (A : Pointed ) (con : (isConnected 3 (typ A))) where - π₃*Iso : Iso (typ (π'Gr 2 A)) (join , inl base) →∙ A ∥₂ +module _ (A : Pointed ) (con : (isConnected 3 (typ A))) where + π₃*Iso : Iso (typ (π'Gr 2 A)) (join , inl base) →∙ A ∥₂ fun π₃*Iso = sMap joinify inv π₃*Iso = sMap disjoin rightInv π₃*Iso = @@ -312,7 +312,7 @@ -- Induced homomorphisms (A →∙ B) → (π₃*(A) → π₃*(B)) -- todo: remove connectivity assumptions -module _ (conA : (isConnected 3 (typ A))) (conB : (isConnected 3 (typ B))) +module _ (conA : (isConnected 3 (typ A))) (conB : (isConnected 3 (typ B))) (f : A →∙ B) where postCompπ₃* : GroupHom (π₃* A conA) (π₃* B conB) fst postCompπ₃* = sMap (f ∘∙_) @@ -341,7 +341,7 @@ -- Induced iso (A ≃∙ B) → π₃*(A) ≅ π₃*(B) -- todo: remove connectivity assumptions -module _ (conA : (isConnected 3 (typ A))) (conB : (isConnected 3 (typ B))) +module _ (conA : (isConnected 3 (typ A))) (conB : (isConnected 3 (typ B))) (f : A ≃∙ B) where postCompπ₃*Equiv : GroupEquiv (π₃* A conA) (π₃* B conB) fst postCompπ₃*Equiv = isoToEquiv h diff --git a/Cubical.Homotopy.Group.Pi4S3.S3PushoutIso.html b/Cubical.Homotopy.Group.Pi4S3.S3PushoutIso.html index 81eedbd7ad..66bfce4d27 100644 --- a/Cubical.Homotopy.Group.Pi4S3.S3PushoutIso.html +++ b/Cubical.Homotopy.Group.Pi4S3.S3PushoutIso.html @@ -519,7 +519,7 @@ mainLemma (surf i j) x k = surf-filler x k i j where ∙ΩbaseId : - (q : typ (Ω (Susp∙ (typ S²∙)))) q q σ S²∙ base + (q : typ (Ω (Susp∙ (typ S²∙)))) q q σ S²∙ base ∙ΩbaseId q = rUnit q cong (q ∙_) (sym (rCancel (merid base))) cubeCoherence : @@ -671,7 +671,7 @@ mainId x) IsoΩ∥SuspS²∥₅∥Pushout⋁↪fold⋁S²∥₅ : - Iso (hLevelTrunc 5 (typ (Ω (Susp∙ )))) + Iso (hLevelTrunc 5 (typ (Ω (Susp∙ )))) (hLevelTrunc 5 Pushout⋁↪fold⋁S²) IsoΩ∥SuspS²∥₅∥Pushout⋁↪fold⋁S²∥₅ = compIso (invIso (PathIdTruncIso _)) is diff --git a/Cubical.Homotopy.Group.Pi4S3.S3PushoutIso2.html b/Cubical.Homotopy.Group.Pi4S3.S3PushoutIso2.html index 6720ab7ffa..15d236b922 100644 --- a/Cubical.Homotopy.Group.Pi4S3.S3PushoutIso2.html +++ b/Cubical.Homotopy.Group.Pi4S3.S3PushoutIso2.html @@ -31,13 +31,13 @@ private ∙≃→π≅ : {} {A B : Pointed } (n : ) - (e : typ A typ B) + (e : typ A typ B) fst e (pt A) pt B GroupEquiv (πGr n A) (πGr n B) ∙≃→π≅ {A = A} {B = B} n e = EquivJ A e (a : A) fst e a pt B GroupEquiv (πGr n (A , a)) (πGr n B)) - b p J b p GroupEquiv (πGr n (typ B , b)) (πGr n B)) + b p J b p GroupEquiv (πGr n (typ B , b)) (πGr n B)) idGroupEquiv (sym p)) e (pt A) diff --git a/Cubical.Homotopy.Group.SuspensionMap.html b/Cubical.Homotopy.Group.SuspensionMap.html index 8f463b8409..51115be2b2 100644 --- a/Cubical.Homotopy.Group.SuspensionMap.html +++ b/Cubical.Homotopy.Group.SuspensionMap.html @@ -65,7 +65,7 @@ -- Definition of the suspension functions suspMap : {} {A : Pointed }(n : ) S₊∙ (suc n) →∙ A - S₊∙ (suc (suc n)) →∙ Susp∙ (typ A) + S₊∙ (suc (suc n)) →∙ Susp∙ (typ A) fst (suspMap n f) north = north fst (suspMap n f) south = north fst (suspMap {A = A} n f) (merid a i) = @@ -74,23 +74,23 @@ suspMapΩ∙ : {} {A : Pointed } (n : ) ((Ω^ n) A) - →∙ ((Ω^ (suc n)) (Susp∙ (typ A))) + →∙ ((Ω^ (suc n)) (Susp∙ (typ A))) fst (suspMapΩ∙ {A = A} zero) a = merid a sym (merid (pt A)) snd (suspMapΩ∙ {A = A} zero) = rCancel (merid (pt A)) suspMapΩ∙ {A = A} (suc n) = Ω→ (suspMapΩ∙ {A = A} n) suspMapΩ : {} {A : Pointed } (n : ) - typ ((Ω^ n) A) typ ((Ω^ (suc n)) (Susp∙ (typ A))) + typ ((Ω^ n) A) typ ((Ω^ (suc n)) (Susp∙ (typ A))) suspMapΩ {A = A} n = suspMapΩ∙ {A = A} n .fst suspMapπ' : {} (n : ) {A : Pointed } π' (suc n) A - π' (suc (suc n)) (Susp∙ (typ A)) + π' (suc (suc n)) (Susp∙ (typ A)) suspMapπ' n = sMap (suspMap n) suspMapπ : {} {A : Pointed } (n : ) - π n A π (suc n) (Susp∙ (typ A)) + π n A π (suc n) (Susp∙ (typ A)) suspMapπ n = sMap (suspMapΩ n) {- suspMapΩ @@ -113,8 +113,8 @@ -} botᵣ : {} {A : Pointed } (n : ) - (S₊∙ n →∙ Ω (Susp∙ (typ A))) - S₊∙ (suc n) →∙ Susp∙ (typ A) + (S₊∙ n →∙ Ω (Susp∙ (typ A))) + S₊∙ (suc n) →∙ Susp∙ (typ A) fst (botᵣ zero (f , p)) base = north fst (botᵣ zero (f , p)) (loop i) = f false i snd (botᵣ zero (f , p)) = refl @@ -168,14 +168,14 @@ (funExt (isNatural-Ω→SphereMap n)) mid□ : {} {A : Pointed } (n : ) - (p : typ ((Ω^ (suc n)) A)) + (p : typ ((Ω^ (suc n)) A)) fst (post∘∙ (S₊∙ (suc n)) (σ∙ A)) (Ω→SphereMap (suc n) p) Ω→SphereMap (suc n) (fst (Ω^→ (suc n) (σ∙ A)) p) mid□ {A = A} n p = funExt⁻ (cong fst (isNatural-Ω→SphereMap∙ - A (Ω (Susp∙ (typ A))) + A (Ω (Susp∙ (typ A))) (isHomogeneousPath _ _) (σ∙ A) (suc n))) p @@ -191,7 +191,7 @@ -- We prove that botᵣ is an equivalence botᵣ⁻' : {} {A : Pointed } (n : ) - S₊∙ (suc n) →∙ Susp∙ (typ A) (S₊ n typ (Ω (Susp∙ (typ A)))) + S₊∙ (suc n) →∙ Susp∙ (typ A) (S₊ n typ (Ω (Susp∙ (typ A)))) botᵣ⁻' zero f false = sym (snd f) ∙∙ cong (fst f) loop ∙∙ snd f botᵣ⁻' zero f true = refl @@ -201,8 +201,8 @@ ∙∙ snd f botᵣ⁻ : {} {A : Pointed } (n : ) - S₊∙ (suc n) →∙ Susp∙ (typ A) - (S₊∙ n →∙ Ω (Susp∙ (typ A))) + S₊∙ (suc n) →∙ Susp∙ (typ A) + (S₊∙ n →∙ Ω (Susp∙ (typ A))) fst (botᵣ⁻ {A = A} n f) = botᵣ⁻' {A = A} n f snd (botᵣ⁻ {A = A} zero f) = refl snd (botᵣ⁻ {A = A} (suc n) f) = @@ -211,8 +211,8 @@ ∙∙lCancel (snd f) botᵣIso : {} {A : Pointed } (n : ) - Iso (S₊∙ n →∙ Ω (Susp∙ (typ A))) - (S₊∙ (suc n) →∙ Susp∙ (typ A)) + Iso (S₊∙ n →∙ Ω (Susp∙ (typ A))) + (S₊∙ (suc n) →∙ Susp∙ (typ A)) botᵣIso {A = A} n = (iso (botᵣ {A = A} n) (botᵣ⁻ {A = A} n) (h n) (retr n)) where h : (n : ) section (botᵣ {A = A} n) (botᵣ⁻ {A = A} n) @@ -249,15 +249,15 @@ -- Right hand composite iso IsoΩSphereMapᵣ : {} {A : Pointed } (n : ) - Iso (typ ((Ω^ (suc n)) (Susp∙ (typ A)))) ((S₊∙ (suc n) →∙ Susp∙ (typ A))) + Iso (typ ((Ω^ (suc n)) (Susp∙ (typ A)))) ((S₊∙ (suc n) →∙ Susp∙ (typ A))) IsoΩSphereMapᵣ {A = A} n = compIso (flipΩIso n) (compIso (IsoΩSphereMap n) (botᵣIso {A = A} n)) -- The dependent path between the two suspension functions suspMapPathP : {} (A : Pointed ) (n : ) - (typ ((Ω^ (suc n)) A) (typ ((Ω^ (suc (suc n))) (Susp∙ (typ A))))) - ((S₊∙ (suc n) →∙ A) S₊∙ (suc (suc n)) →∙ (Susp∙ (typ A))) + (typ ((Ω^ (suc n)) A) (typ ((Ω^ (suc (suc n))) (Susp∙ (typ A))))) + ((S₊∙ (suc n) →∙ A) S₊∙ (suc (suc n)) →∙ (Susp∙ (typ A))) suspMapPathP A n i = isoToPath (IsoΩSphereMap {A = A} (suc n)) i isoToPath (IsoΩSphereMapᵣ {A = A} (suc n)) i @@ -274,7 +274,7 @@ (Iso.inv (IsoΩSphereMap {A = A} (suc n)) (transportRefl p i)))) i) ∙∙ cong (botᵣ {A = A} (suc n)) - (cong (Ω→SphereMap (suc n) {A = Ω (Susp∙ (typ A)) }) + (cong (Ω→SphereMap (suc n) {A = Ω (Susp∙ (typ A)) }) ((sym (funExt⁻ (cong fst (top□ {A = A} n)) (invEq (Ω→SphereMap (suc n) , isEquiv-Ω→SphereMap (suc n)) p)))) @@ -287,7 +287,7 @@ -- Connectedness of suspFunΩ (Freudenthal) suspMapΩ-connected : {} (n : HLevel) (m : ) {A : Pointed } - (connA : isConnected (suc (suc n)) (typ A)) + (connA : isConnected (suc (suc n)) (typ A)) isConnectedFun ((suc n + suc n) m) (suspMapΩ {A = A} m) suspMapΩ-connected n zero {A = A} connA = isConnectedσ n connA suspMapΩ-connected n (suc m) {A = A} connA with ((n + suc n) m) @@ -306,15 +306,15 @@ -- We prove that the right iso is structure preserving private invComp : {} {A : Pointed } (n : ) - S₊∙ n →∙ Ω (Susp∙ (typ A)) - S₊∙ n →∙ Ω (Susp∙ (typ A)) - S₊∙ n →∙ Ω (Susp∙ (typ A)) + S₊∙ n →∙ Ω (Susp∙ (typ A)) + S₊∙ n →∙ Ω (Susp∙ (typ A)) + S₊∙ n →∙ Ω (Susp∙ (typ A)) fst (invComp n f g) x = (fst f x) (fst g x) snd (invComp n f g) = cong₂ _∙_ (snd f) (snd g) sym (rUnit refl) -- We prove that it agrees with ∙Π ∙Π≡invComp : {} {A : Pointed } (n : ) - (f g : S₊∙ (suc n) →∙ Ω (Susp∙ (typ A))) + (f g : S₊∙ (suc n) →∙ Ω (Susp∙ (typ A))) ∙Π f g invComp {A = A} (suc n) f g ∙Π≡invComp zero f g = →∙Homogeneous≡ (isHomogeneousPath _ _) @@ -383,10 +383,10 @@ c-f = sym (snd f) ∙∙ cong-f ∙∙ snd f c-g = sym (snd g) ∙∙ cong-g ∙∙ snd g - p : I I fst (Ω (Susp∙ (typ A))) + p : I I fst (Ω (Susp∙ (typ A))) p i j = hcomp k - λ { (i = i0) (rUnit _ snd (Susp∙ (typ A))) + λ { (i = i0) (rUnit _ snd (Susp∙ (typ A))) sym ((cong (fst f north ∙_) (snd g) cong (_∙ refl) (snd f)))) j ; (i = i1) (rUnit refl @@ -403,7 +403,7 @@ (merid a) (sym (merid (ptSn _))) (~ k) i)}) (hcomp k - λ {(i = i0) (rUnit _ snd (Susp∙ (typ A))) + λ {(i = i0) (rUnit _ snd (Susp∙ (typ A))) sym ((cong (fst f north ∙_) (snd g) cong (_∙ refl) (snd f)))) j ; (i = i1) (rUnit refl sym (cong₂ _∙_ (snd f) (snd g))) j @@ -425,7 +425,7 @@ (sym (snd g)) cong-g refl (~ k))) i}) (hcomp k λ {(i = i0) compPath-filler - (rUnit _ snd (Susp∙ (typ A)))) + (rUnit _ snd (Susp∙ (typ A)))) (sym ((cong (_∙ refl) (snd f)))) k j ; (i = i1) compPath-filler (rUnit refl) @@ -438,7 +438,7 @@ (((cong x rUnit x j) c-f) (cong x lUnit x j) c-g)) i)))) hom-botᵣ⁻ : {} {A : Pointed } (n : ) - (f g : S₊∙ (suc n) →∙ Susp∙ (typ A)) + (f g : S₊∙ (suc n) →∙ Susp∙ (typ A)) botᵣ⁻ {A = A} n (∙Π f g) invComp {A = A} n (botᵣ⁻ {A = A} n f) (botᵣ⁻ {A = A} n g) hom-botᵣ⁻ zero f g = @@ -461,7 +461,7 @@ -- We get that botᵣ⁻ (and hence botᵣ) is homomorphism hom-botᵣ⁻' : {} {A : Pointed } (n : ) - (f g : S₊∙ (suc (suc n)) →∙ Susp∙ (typ A)) + (f g : S₊∙ (suc (suc n)) →∙ Susp∙ (typ A)) botᵣ⁻ {A = A} (suc n) (∙Π f g) ∙Π (botᵣ⁻ {A = A} (suc n) f) (botᵣ⁻ {A = A} (suc n) g) hom-botᵣ⁻' {A = A} n f g = @@ -469,7 +469,7 @@ sym (∙Π≡invComp {A = A} _ (botᵣ⁻ {A = A} _ f) (botᵣ⁻ {A = A} _ g)) hom-botᵣ : {} {A : Pointed } (n : ) - (f g : S₊∙ (suc n) →∙ Ω (Susp∙ (typ A))) + (f g : S₊∙ (suc n) →∙ Ω (Susp∙ (typ A))) botᵣ {A = A} (suc n) (∙Π f g) ∙Π (botᵣ {A = A} (suc n) f) (botᵣ {A = A} (suc n) g) hom-botᵣ {A = A} n f g = @@ -481,19 +481,19 @@ f g isHom-IsoΩSphereMapᵣ : {} {A : Pointed } (n : ) - (p q : typ ((Ω^ (2 + n)) (Susp∙ (typ A)))) + (p q : typ ((Ω^ (2 + n)) (Susp∙ (typ A)))) Iso.fun (IsoΩSphereMapᵣ (suc n)) (p q) ∙Π (Iso.fun (IsoΩSphereMapᵣ (suc n)) p) (Iso.fun (IsoΩSphereMapᵣ (suc n)) q) isHom-IsoΩSphereMapᵣ {A = A} n p q = cong (botᵣ {A = A} (suc n)) - (cong (Ω→SphereMap (suc n) {A = Ω (Susp∙ (typ A))}) + (cong (Ω→SphereMap (suc n) {A = Ω (Susp∙ (typ A))}) (flipΩIsopres· n p q) isHom-Ω→SphereMap n (fun (flipΩIso (suc n)) p) (fun (flipΩIso (suc n)) q)) hom-botᵣ n _ _ -suspMapΩ→hom : {} {A : Pointed } (n : ) (p q : typ ((Ω^ (suc n)) A)) +suspMapΩ→hom : {} {A : Pointed } (n : ) (p q : typ ((Ω^ (suc n)) A)) suspMapΩ (suc n) (p q) suspMapΩ (suc n) p suspMapΩ (suc n) q suspMapΩ→hom {A = A} n p q = @@ -527,12 +527,12 @@ ∙∙ cong₂ _+B_ (rightInv e p) (rightInv e q))) pₗ : {} (A : Pointed ) (n : ) - typ (Ω ((Ω^ n) A)) (S₊∙ (suc n) →∙ A) + typ (Ω ((Ω^ n) A)) (S₊∙ (suc n) →∙ A) pₗ A n = isoToPath (IsoΩSphereMap {A = A} (suc n)) pᵣ : {} (A : Pointed ) (n : ) - typ ((Ω^ (2 + n)) (Susp∙ (typ A))) - (S₊∙ (suc (suc n)) →∙ Susp∙ (typ A)) + typ ((Ω^ (2 + n)) (Susp∙ (typ A))) + (S₊∙ (suc (suc n)) →∙ Susp∙ (typ A)) pᵣ A n = isoToPath (IsoΩSphereMapᵣ {A = A} (suc n)) ∙Π→∙ : {} {A : Pointed } (n : ) @@ -555,7 +555,7 @@ (suspMapΩ→hom n) suspMapπHom : {} {A : Pointed } (n : ) - GroupHom (πGr n A) (πGr (suc n) (Susp∙ (typ A))) + GroupHom (πGr n A) (πGr (suc n) (Susp∙ (typ A))) fst (suspMapπHom {A = A} n) = suspMapπ (suc n) snd (suspMapπHom {A = A} n) = makeIsGroupHom @@ -563,15 +563,15 @@ λ p q cong ∣_∣₂ (suspMapΩ→hom n p q)) suspMapπ'Hom : {} {A : Pointed } (n : ) - GroupHom (π'Gr n A) (π'Gr (suc n) (Susp∙ (typ A))) + GroupHom (π'Gr n A) (π'Gr (suc n) (Susp∙ (typ A))) fst (suspMapπ'Hom {A = A} n) = suspMapπ' n snd (suspMapπ'Hom {A = A} n) = makeIsGroupHom (sElim2 _ _ isSetPathImplicit) λ f g cong ∣_∣₂ (isHom-suspMap n f g)) πGr≅π'Grᵣ : {} (n : ) (A : Pointed ) - GroupIso (πGr (suc n) (Susp∙ (typ A))) - (π'Gr (suc n) (Susp∙ (typ A))) + GroupIso (πGr (suc n) (Susp∙ (typ A))) + (π'Gr (suc n) (Susp∙ (typ A))) fst (πGr≅π'Grᵣ n A) = setTruncIso (IsoΩSphereMapᵣ (suc n)) snd (πGr≅π'Grᵣ n A) = makeIsGroupHom (sElim2 _ _ isSetPathImplicit) diff --git a/Cubical.Homotopy.HSpace.html b/Cubical.Homotopy.HSpace.html index b4ec0bf359..ba962e509b 100644 --- a/Cubical.Homotopy.HSpace.html +++ b/Cubical.Homotopy.HSpace.html @@ -22,9 +22,9 @@ record HSpace (A : Pointed ) : Type where constructor HSp field - μ : typ A typ A typ A - μₗ : (x : typ A) μ (pt A) x x - μᵣ : (x : typ A) μ x (pt A) x + μ : typ A typ A typ A + μₗ : (x : typ A) μ (pt A) x x + μᵣ : (x : typ A) μ x (pt A) x μₗᵣ : μₗ (pt A) μᵣ (pt A) record AssocHSpace {A : Pointed } (e : HSpace A) : Type where @@ -34,7 +34,7 @@ μ-assoc : (x y z : _) μ (μ x y) z μ x (μ y z) - μ-assoc-filler : (y z : typ A) + μ-assoc-filler : (y z : typ A) PathP i μ (μₗ y i) z μₗ (μ y z) i) (μ-assoc (pt A) y z) @@ -44,18 +44,18 @@ constructor LeftInvHSp open HSpace e field - μ-equiv : (x : typ A) isEquiv (μ x) + μ-equiv : (x : typ A) isEquiv (μ x) - μ≃ : typ A typ A typ A + μ≃ : typ A typ A typ A μ≃ x = (μ x , μ-equiv x) - μ⁻¹ : typ A typ A typ A + μ⁻¹ : typ A typ A typ A μ⁻¹ x = invIsEq (μ-equiv x) - μ⁻¹ₗ : (x : typ A) μ⁻¹ (pt A) x x + μ⁻¹ₗ : (x : typ A) μ⁻¹ (pt A) x x μ⁻¹ₗ x = sym (invEq (equivAdjointEquiv (μ≃ (pt A))) (μₗ x)) - μ⁻¹ᵣ : (x : typ A) μ⁻¹ x x (pt A) + μ⁻¹ᵣ : (x : typ A) μ⁻¹ x x (pt A) μ⁻¹ᵣ x = sym (invEq (equivAdjointEquiv (μ≃ x)) (μᵣ x)) -- every left-invertible H-space is (strongly) homogeneous @@ -76,7 +76,7 @@ {- H-space structures on A are exactly pointed sections of the evaluation map, expressed here with a pointed Π-type -} HSpace-Π∙-Iso : (A : Pointed ) Iso (HSpace A) - (Π∙ A x A →∙ (typ A , x)) (idfun∙ A)) + (Π∙ A x A →∙ (typ A , x)) (idfun∙ A)) fst (fst (Iso.fun (HSpace-Π∙-Iso A) e) x) = HSpace.μ e x snd (fst (Iso.fun (HSpace-Π∙-Iso A) e) x) = HSpace.μᵣ e x fst (snd (Iso.fun (HSpace-Π∙-Iso A) e) i) x = HSpace.μₗ e x i @@ -99,7 +99,7 @@ (secEq slideSquareEquiv (flipSquare (HSpace.μₗᵣ e)) k) HSpace-Π∙-Equiv : (A : Pointed ) HSpace A - Π∙ A x A →∙ (typ A , x)) (idfun∙ A) + Π∙ A x A →∙ (typ A , x)) (idfun∙ A) HSpace-Π∙-Equiv A = isoToEquiv (HSpace-Π∙-Iso A) {- every (strongly) homogeneous structure on A gives rise @@ -107,20 +107,20 @@ HSpace-homogeneous : (A : Pointed ) isHomogeneous A HSpace A HSpace-homogeneous A h = Iso.inv (HSpace-Π∙-Iso A) s where - k : (x : typ A) A ≃∙ (typ A , x) - k x = pointed-sip⁻ A (typ A , x) (sym (h (pt A)) h x) + k : (x : typ A) A ≃∙ (typ A , x) + k x = pointed-sip⁻ A (typ A , x) (sym (h (pt A)) h x) k₀ : k (pt A) idEquiv∙ A k₀ = congS (pointed-sip⁻ A A) (lCancel (h (pt A))) pointed-sip⁻-refl A - s : Π∙ A x A →∙ (typ A , x)) (idfun∙ A) + s : Π∙ A x A →∙ (typ A , x)) (idfun∙ A) fst s x = ≃∙map (k x) snd s = congS ≃∙map k₀ LeftInvHSpace-homogeneous : (A : Pointed ) (h : isHomogeneous A) LeftInvHSpace (HSpace-homogeneous A h) LeftInvHSpace.μ-equiv (LeftInvHSpace-homogeneous A h) x = - equivIsEquiv (fst (pointed-sip⁻ A (typ A , x) (sym (h (pt A)) h x))) + equivIsEquiv (fst (pointed-sip⁻ A (typ A , x) (sym (h (pt A)) h x))) -- Instances open HSpace @@ -181,7 +181,7 @@ ; (k = i1) k1filler i j h } ) (cntfiller i j k) where - cntfiller : I I I typ X + cntfiller : I I I typ X cntfiller i j = hfill h λ { (i = i0) μXₗ (pt X) j ; (i = i1) pt X @@ -189,7 +189,7 @@ ; (j = i1) pt X }) (inS (μXₗ (pt X) (i j))) - k0filler : I I I typ X + k0filler : I I I typ X k0filler i j = hfill h λ { (i = i0) doubleCompPath-filler refl (μXₗ (pt X)) refl h j ; (i = i1) pt X @@ -197,7 +197,7 @@ ; (j = i1) pt X}) (inS (μXₗ (pt X) (i j))) - k1filler : I I I typ X + k1filler : I I I typ X k1filler i j = hfill h λ { (i = i0) doubleCompPath-filler refl (μXₗ (pt X)) refl h j ; (i = i1) pt X diff --git a/Cubical.Homotopy.Hopf.html b/Cubical.Homotopy.Hopf.html index a2b5bbfa4b..b4f997caa4 100644 --- a/Cubical.Homotopy.Hopf.html +++ b/Cubical.Homotopy.Hopf.html @@ -43,52 +43,52 @@ λ _ refl module Hopf { : Level} {A : Pointed } {e : HSpace A} - (e-ass : AssocHSpace e) (conA : ((x y : typ A) x y ∥₁)) where - isEquiv-μ : (x : typ A) isEquiv z (μ e z x)) + (e-ass : AssocHSpace e) (conA : ((x y : typ A) x y ∥₁)) where + isEquiv-μ : (x : typ A) isEquiv z (μ e z x)) isEquiv-μ x = pRec (isPropIsEquiv _) (J x _ isEquiv z μ e z x)) (subst isEquiv (funExt z sym (μᵣ e z))) - (idIsEquiv (typ A)))) + (idIsEquiv (typ A)))) (conA (pt A) x) - isEquiv-μ' : (x : typ A) isEquiv (μ e x) + isEquiv-μ' : (x : typ A) isEquiv (μ e x) isEquiv-μ' x = pRec (isPropIsEquiv _) (J x _ isEquiv (μ e x)) - (subst isEquiv (funExt x sym (μₗ e x))) (idIsEquiv (typ A)))) + (subst isEquiv (funExt x sym (μₗ e x))) (idIsEquiv (typ A)))) (conA (pt A) x) - μ-eq : (x : typ A) typ A typ A + μ-eq : (x : typ A) typ A typ A μ-eq x = z μ e z x) , (isEquiv-μ x) - μ-eq' : (x : typ A) typ A typ A + μ-eq' : (x : typ A) typ A typ A μ-eq' x = μ e x , isEquiv-μ' x - Hopf : Susp (typ A) Type - Hopf north = typ A - Hopf south = typ A + Hopf : Susp (typ A) Type + Hopf north = typ A + Hopf south = typ A Hopf (merid a i₁) = ua (μ-eq a) i₁ TotalSpaceHopfPush : Type _ TotalSpaceHopfPush = - Pushout {A = typ A × typ A} fst λ x μ e (fst x) (snd x) + Pushout {A = typ A × typ A} fst λ x μ e (fst x) (snd x) TotalSpaceHopfPush→TotalSpace : - TotalSpaceHopfPush Σ[ x Susp (typ A) ] Hopf x + TotalSpaceHopfPush Σ[ x Susp (typ A) ] Hopf x TotalSpaceHopfPush→TotalSpace (inl x) = north , x TotalSpaceHopfPush→TotalSpace (inr x) = south , x TotalSpaceHopfPush→TotalSpace (push (x , y) i₁) = merid y i₁ , ua-gluePt (μ-eq y) i₁ x - joinIso₁ : Iso (TotalSpaceHopfPush) (join (typ A) (typ A)) + joinIso₁ : Iso (TotalSpaceHopfPush) (join (typ A) (typ A)) joinIso₁ = theIso where - F : TotalSpaceHopfPush join (typ A) (typ A) + F : TotalSpaceHopfPush join (typ A) (typ A) F (inl x) = inl x F (inr x) = inr x F (push (a , x) i) = push a (μ e a x) i - G : join (typ A) (typ A) TotalSpaceHopfPush + G : join (typ A) (typ A) TotalSpaceHopfPush G (inl x) = inl x G (inr x) = inr x G (push a b i) = @@ -124,7 +124,7 @@ ; (j = i1) push (x , retEq (μ-eq' x) y k) i}) ((push (x , invEq (μ-eq' x) (μ e x y))) i)) - theIso : Iso TotalSpaceHopfPush (join (typ A) (typ A)) + theIso : Iso TotalSpaceHopfPush (join (typ A) (typ A)) fun theIso = F inv theIso = G rightInv theIso = s @@ -187,21 +187,21 @@ ; (j = i1) push (x , y) (i ~ k)}) (inr (μ e x y)) - theIso : Iso TotalSpaceHopfPush (Σ (Susp (typ A)) Hopf) + theIso : Iso TotalSpaceHopfPush (Σ (Susp (typ A)) Hopf) fun theIso = TotalSpaceHopfPush→TotalSpace inv theIso = inv' rightInv theIso = sect leftInv theIso = retr - IsoTotalSpaceJoin : Iso (Σ[ x Susp (typ A) ] Hopf x) (join (typ A) (typ A)) + IsoTotalSpaceJoin : Iso (Σ[ x Susp (typ A) ] Hopf x) (join (typ A) (typ A)) IsoTotalSpaceJoin = compIso (equivToIso (invEquiv (_ , isEquivTotalSpaceHopfPush→TotalSpace))) joinIso₁ - induced : TotalSpaceHopfPush Susp (typ A) + induced : TotalSpaceHopfPush Susp (typ A) induced = fst TotalSpaceHopfPush→TotalSpace - ua-lem : (x y z : typ A) (i j : I) ua (μ-eq y) i + ua-lem : (x y z : typ A) (i j : I) ua (μ-eq y) i ua-lem x y z i j = fill k ua (μ-eq y) i) j λ { (i = i0) μ e z x @@ -209,15 +209,15 @@ (inS (ua-gluePt (μ-eq y) i (μ e z x))) j - TotalSpaceHopfPush→≃Hopf : (x : TotalSpaceHopfPush) typ A Hopf (induced x) + TotalSpaceHopfPush→≃Hopf : (x : TotalSpaceHopfPush) typ A Hopf (induced x) TotalSpaceHopfPush→≃Hopf (inl x) = μ-eq x TotalSpaceHopfPush→≃Hopf (inr x) = μ-eq x TotalSpaceHopfPush→≃Hopf (push (x , y) i₁) = pp x y i₁ where - pp : (x y : _) PathP i typ A ua (μ-eq y) i) (μ-eq x) (μ-eq (μ e x y)) + pp : (x y : _) PathP i typ A ua (μ-eq y) i) (μ-eq x) (μ-eq (μ e x y)) pp x y = ΣPathP (P , help) where - P : PathP z typ A ua (μ-eq y) z) (fst (μ-eq x)) + P : PathP z typ A ua (μ-eq y) z) (fst (μ-eq x)) (fst (μ-eq (μ e x y))) P i z = ua-lem x y z i i1 @@ -226,11 +226,11 @@ (snd (μ-eq (μ e x y))) help = toPathP (isPropIsEquiv _ _ _) - Push→TotalSpaceHopf : (a : typ A) (x : TotalSpaceHopfPush) - Σ[ x Susp (typ A) ] Hopf x + Push→TotalSpaceHopf : (a : typ A) (x : TotalSpaceHopfPush) + Σ[ x Susp (typ A) ] Hopf x Push→TotalSpaceHopf a x = (induced x) , fst (TotalSpaceHopfPush→≃Hopf x) a - Push→TotalSpaceHopf-equiv : (a : typ A) isEquiv (Push→TotalSpaceHopf a) + Push→TotalSpaceHopf-equiv : (a : typ A) isEquiv (Push→TotalSpaceHopf a) Push→TotalSpaceHopf-equiv a = pRec (isPropIsEquiv _) (J a _ isEquiv (Push→TotalSpaceHopf a)) (subst isEquiv (sym main) @@ -263,7 +263,7 @@ TotalSpaceHopfPush² = Pushout {A = TotalSpaceHopfPush} _ tt) induced P : TotalSpaceHopfPush² Type _ - P (inl x) = typ A + P (inl x) = typ A P (inr x) = Hopf x P (push a i) = ua (TotalSpaceHopfPush→≃Hopf a) i @@ -272,8 +272,8 @@ TotalSpacePush²' : Type _ TotalSpacePush²' = - Pushout {A = typ A × TotalSpaceHopfPush} - {C = Σ[ x Susp (typ A) ] Hopf x} + Pushout {A = typ A × TotalSpaceHopfPush} + {C = Σ[ x Susp (typ A) ] Hopf x} fst λ x Push→TotalSpaceHopf (fst x) (snd x) @@ -282,7 +282,7 @@ compIso iso₂ (compIso (equivToIso fl.flatten) iso₁) where module fl = - FlatteningLemma _ tt) induced x typ A) + FlatteningLemma _ tt) induced x typ A) Hopf TotalSpaceHopfPush→≃Hopf iso₁ : Iso (Pushout fl.Σf fl.Σg) TotalSpacePush²' @@ -314,12 +314,12 @@ leftInv iso₂ (push a i , snd₁) = refl F : TotalSpacePush²' - (Pushout {A = typ A × Σ (Susp (typ A)) Hopf} fst snd) + (Pushout {A = typ A × Σ (Susp (typ A)) Hopf} fst snd) F (inl x) = inl x F (inr x) = inr x F (push (x , y) i) = push (x , Push→TotalSpaceHopf x y) i - G : (Pushout {A = typ A × Σ (Susp (typ A)) Hopf} fst snd) + G : (Pushout {A = typ A × Σ (Susp (typ A)) Hopf} fst snd) TotalSpacePush²' G (inl x) = inl x G (inr x) = inr x @@ -330,7 +330,7 @@ (push (x , invEq (_ , Push→TotalSpaceHopf-equiv x) y) i) IsoTotalSpacePush²'ΣPush : Iso TotalSpacePush²' - (Pushout {A = typ A × Σ (Susp (typ A)) Hopf} fst snd) + (Pushout {A = typ A × Σ (Susp (typ A)) Hopf} fst snd) fun IsoTotalSpacePush²'ΣPush = F inv IsoTotalSpacePush²'ΣPush = G rightInv IsoTotalSpacePush²'ΣPush (inl x) = refl @@ -374,12 +374,12 @@ (push (x , retEq (Push→TotalSpaceHopf x , Push→TotalSpaceHopf-equiv x) y j) i)) - joinIso₂ : Iso TotalSpacePush² (join (typ A) (join (typ A) (typ A))) + joinIso₂ : Iso TotalSpacePush² (join (typ A) (join (typ A) (typ A))) joinIso₂ = compIso IsoTotalSpacePush²TotalSpacePush²' (compIso IsoTotalSpacePush²'ΣPush (compIso (equivToIso (joinPushout≃join _ _)) - (pathToIso (cong (join (typ A)) + (pathToIso (cong (join (typ A)) (isoToPath IsoTotalSpaceJoin))))) diff --git a/Cubical.Homotopy.Loopspace.html b/Cubical.Homotopy.Loopspace.html index 43fed919a8..51ff30fe9a 100644 --- a/Cubical.Homotopy.Loopspace.html +++ b/Cubical.Homotopy.Loopspace.html @@ -68,7 +68,7 @@ {- Ω→ is a homomorphism -} Ω→pres∙filler : { ℓ'} {A : Pointed } {B : Pointed ℓ'} (f : A →∙ B) - (p q : typ (Ω A)) + (p q : typ (Ω A)) I I I fst B Ω→pres∙filler f p q i j k = hfill @@ -85,7 +85,7 @@ k Ω→pres∙ : { ℓ'} {A : Pointed } {B : Pointed ℓ'} (f : A →∙ B) - (p q : typ (Ω A)) + (p q : typ (Ω A)) fst (Ω→ f) (p q) fst (Ω→ f) p fst (Ω→ f) q Ω→pres∙ f p q i j = Ω→pres∙filler f p q i j i1 @@ -141,7 +141,7 @@ {- Ω^→ is homomorphism -} Ω^→pres∙ : { ℓ'} {A : Pointed } {B : Pointed ℓ'} (f : A →∙ B) (n : ) - (p q : typ ((Ω^ (suc n)) A)) + (p q : typ ((Ω^ (suc n)) A)) fst (Ω^→ (suc n) f) (p q) fst (Ω^→ (suc n) f) p fst (Ω^→ (suc n) f) q Ω^→pres∙ {A = A} {B = B} f n p q = Ω→pres∙ (Ω^→ n f) p q @@ -184,7 +184,7 @@ Ω≃∙pres∙ : { ℓ'} {A : Pointed } {B : Pointed ℓ'} (e : A ≃∙ B) - (p q : typ (Ω A)) + (p q : typ (Ω A)) fst (fst (Ω≃∙ e)) (p q) fst (fst (Ω≃∙ e)) p fst (fst (Ω≃∙ e)) q @@ -202,7 +202,7 @@ snd (Ω→ (fst (fst (Ω^≃∙ n e)) , snd (Ω^≃∙ n e))) ΩfunExtIso : { ℓ'} (A : Pointed ) (B : Pointed ℓ') - Iso (typ (Ω (A →∙ B ))) (A →∙ Ω B) + Iso (typ (Ω (A →∙ B ))) (A →∙ Ω B) fst (fun (ΩfunExtIso A B) p) x = funExt⁻ (cong fst p) x snd (fun (ΩfunExtIso A B) p) i j = snd (p j) i fst (inv (ΩfunExtIso A B) (f , p) i) x = f x i @@ -212,16 +212,16 @@ {- Commutativity of loop spaces -} isComm∙ : {} (A : Pointed ) Type -isComm∙ A = (p q : typ (Ω A)) p q q p +isComm∙ A = (p q : typ (Ω A)) p q q p private - mainPath : {} {A : Pointed } (n : ) (α β : typ ((Ω^ (2 + n)) A)) + mainPath : {} {A : Pointed } (n : ) (α β : typ ((Ω^ (2 + n)) A)) i α i refl) i refl β i) i refl β i) i α i refl) mainPath n α β i = j α (j ~ i) β (j i)) λ j α (~ i j) β (i j) -EH-filler : {} {A : Pointed } (n : ) typ ((Ω^ (2 + n)) A) - typ ((Ω^ (2 + n)) A) I I I _ +EH-filler : {} {A : Pointed } (n : ) typ ((Ω^ (2 + n)) A) + typ ((Ω^ (2 + n)) A) I I I _ EH-filler {A = A} n α β i j z = hfill k λ { (i = i0) ((cong x rUnit x (~ k)) α) cong x lUnit x (~ k)) β) j @@ -251,7 +251,7 @@ basep = snd (Ω ((Ω^ n) A)) {- Generalisations of EH α β when α or β is refl -} -EH-gen-l : {} {A : Pointed } (n : ) {x y : typ ((Ω^ (suc n)) A)} (α : x y) +EH-gen-l : {} {A : Pointed } (n : ) {x y : typ ((Ω^ (suc n)) A)} (α : x y) α refl refl α EH-gen-l { = } {A = A} n {x = x} {y = y} α i j z = hcomp k λ { (i = i0) ((cong x rUnit x (~ k)) α) refl) j z @@ -262,7 +262,7 @@ ; (z = i1) y i1}) (((λ j α (j ~ i) refl) λ j α (~ i j) refl) j z) -EH-gen-r : {} {A : Pointed } (n : ) {x y : typ ((Ω^ (suc n)) A)} (β : x y) +EH-gen-r : {} {A : Pointed } (n : ) {x y : typ ((Ω^ (suc n)) A)} (β : x y) refl β β refl EH-gen-r {A = A} n {x = x} {y = y} β i j z = hcomp k λ { (i = i0) (refl cong x lUnit x (~ k)) β) j z @@ -275,7 +275,7 @@ {- characterisations of EH α β when α or β is refl -} EH-α-refl : {} {A : Pointed } (n : ) - (α : typ ((Ω^ (2 + n)) A)) + (α : typ ((Ω^ (2 + n)) A)) EH n α refl sym (rUnit α) lUnit α EH-α-refl {A = A} n α i j k = hcomp r λ { (i = i0) EH-gen-l n i α (i r)) j k @@ -287,7 +287,7 @@ ((EH-refl-refl n sym (lCancel (rUnit refl))) i j k) EH-refl-β : {} {A : Pointed } (n : ) - (β : typ ((Ω^ (2 + n)) A)) + (β : typ ((Ω^ (2 + n)) A)) EH n refl β sym (lUnit β) rUnit β EH-refl-β {A = A} n β i j k = hcomp r λ { (i = i0) EH-gen-r n i β (i r)) j k @@ -298,7 +298,7 @@ ; (k = i1) β r}) ((EH-refl-refl n sym (lCancel (rUnit refl))) i j k) -syllepsis : {} {A : Pointed } (n : ) (α β : typ ((Ω^ 3) A)) +syllepsis : {} {A : Pointed } (n : ) (α β : typ ((Ω^ 3) A)) EH 0 α β sym (EH 0 β α) syllepsis {A = A} n α β k i j = hcomp r λ { (i = i0) i=i0 r j k @@ -311,7 +311,7 @@ where guy = snd (Ω (Ω A)) - btm-filler : I I I typ (Ω (Ω A)) + btm-filler : I I I typ (Ω (Ω A)) btm-filler j i k = hcomp r λ {(j = i0) mainPath 1 β α (~ i) k @@ -332,7 +332,7 @@ ; (j = i1) lUnit guy (~ i k)}) (inS (rUnit refl (~ i ~ j))) z - i=i1 : I I I typ (Ω (Ω A)) + i=i1 : I I I typ (Ω (Ω A)) i=i1 r j k = hcomp i λ { (r = i0) (cong x compPath-filler (sym (lUnit x)) (rUnit x) i k) β cong x compPath-filler (sym (rUnit x)) (lUnit x) i k) α) j @@ -346,7 +346,7 @@ (((cong x lUnit x (~ r ~ k)) β cong x rUnit x (~ r ~ k)) α)) j) - i=i0 : I I I typ (Ω (Ω A)) + i=i0 : I I I typ (Ω (Ω A)) i=i0 r j k = hcomp i λ { (r = i0) (cong x compPath-filler (sym (rUnit x)) (lUnit x) i k) α cong x compPath-filler (sym (lUnit x)) (rUnit x) i k) β) j @@ -360,7 +360,7 @@ ((cong x rUnit x (~ r ~ k)) α cong x lUnit x (~ r ~ k)) β) j) - j-filler : I I I typ (Ω (Ω A)) + j-filler : I I I typ (Ω (Ω A)) j-filler r i k = hcomp j λ { (i = i0) link j r k ; (i = i1) link j r k @@ -416,8 +416,8 @@ ---- Misc. ---- isCommA→isCommTrunc : {} {A : Pointed } (n : ) isComm∙ A - isOfHLevel (suc n) (typ A) - isComm∙ ( typ A (suc n) , pt A ) + isOfHLevel (suc n) (typ A) + isComm∙ ( typ A (suc n) , pt A ) isCommA→isCommTrunc {A = (A , a)} n comm hlev p q = ((λ i j (leftInv (truncIdempotentIso (suc n) hlev) ((p q) j) (~ i))) ∙∙ i cong {B = λ _ A (suc n) } x x ) @@ -430,7 +430,7 @@ (congFunct {A = A (suc n)} {B = A} (trRec hlev x x)) q p (~ i))) ∙∙ i j (leftInv (truncIdempotentIso (suc n) hlev) ((q p) j) i))) -ptdIso→comm : { ℓ'} {A : Pointed } {B : Type ℓ'} (e : Iso (typ A) B) +ptdIso→comm : { ℓ'} {A : Pointed } {B : Type ℓ'} (e : Iso (typ A) B) isComm∙ A isComm∙ (B , fun e (pt A)) ptdIso→comm {A = (A , a)} {B = B} e comm p q = sym (rightInv (congIso e) (p q)) @@ -440,11 +440,11 @@ ∙∙ rightInv (congIso e) (q p) {- Homotopy group version -} -π-comp : {} {A : Pointed } (n : ) typ ((Ω^ (suc n)) A) ∥₂ - typ ((Ω^ (suc n)) A) ∥₂ typ ((Ω^ (suc n)) A) ∥₂ +π-comp : {} {A : Pointed } (n : ) typ ((Ω^ (suc n)) A) ∥₂ + typ ((Ω^ (suc n)) A) ∥₂ typ ((Ω^ (suc n)) A) ∥₂ π-comp n = elim2 _ _ isSetSetTrunc) λ p q p q ∣₂ -EH-π : {} {A : Pointed } (n : ) (p q : typ ((Ω^ (2 + n)) A) ∥₂) +EH-π : {} {A : Pointed } (n : ) (p q : typ ((Ω^ (2 + n)) A) ∥₂) π-comp (1 + n) p q π-comp (1 + n) q p EH-π n = elim2 x y isOfHLevelPath 2 isSetSetTrunc _ _) λ p q cong ∣_∣₂ (EH n p q) diff --git a/Cubical.Homotopy.Prespectrum.html b/Cubical.Homotopy.Prespectrum.html index d80cdd4463..a7493ba52b 100644 --- a/Cubical.Homotopy.Prespectrum.html +++ b/Cubical.Homotopy.Prespectrum.html @@ -49,7 +49,7 @@ where space : Pointed _ space zero = A - space (suc n) = Susp∙ (typ (space n)) + space (suc n) = Susp∙ (typ (space n)) map : (n : ) _ map n = toSuspPointed (space n) diff --git a/Cubical.Homotopy.WedgeConnectivity.html b/Cubical.Homotopy.WedgeConnectivity.html index bcc8f40629..cb4e705df8 100644 --- a/Cubical.Homotopy.WedgeConnectivity.html +++ b/Cubical.Homotopy.WedgeConnectivity.html @@ -19,18 +19,18 @@ module WedgeConnectivity { ℓ' ℓ''} (n m : ) - (A : Pointed ) (connA : isConnected (suc n) (typ A)) - (B : Pointed ℓ') (connB : isConnected (suc m) (typ B)) - (P : typ A typ B TypeOfHLevel ℓ'' (n + m)) - (f : (a : typ A) P a (pt B) .fst) - (g : (b : typ B) P (pt A) b .fst) + (A : Pointed ) (connA : isConnected (suc n) (typ A)) + (B : Pointed ℓ') (connB : isConnected (suc m) (typ B)) + (P : typ A typ B TypeOfHLevel ℓ'' (n + m)) + (f : (a : typ A) P a (pt B) .fst) + (g : (b : typ B) P (pt A) b .fst) (p : f (pt A) g (pt B)) where private - Q : typ A TypeOfHLevel _ n + Q : typ A TypeOfHLevel _ n Q a = - ( (Σ[ k ((b : typ B) P a b .fst) ] k (pt B) f a) + ( (Σ[ k ((b : typ B) P a b .fst) ] k (pt B) f a) , isOfHLevelRetract n {(h , q) h , funExt λ _ q}) {(h , q) h , funExt⁻ q _}) diff --git a/Cubical.Homotopy.Whitehead.html b/Cubical.Homotopy.Whitehead.html index 8d053c93ff..6831144fb4 100644 --- a/Cubical.Homotopy.Whitehead.html +++ b/Cubical.Homotopy.Whitehead.html @@ -26,8 +26,8 @@ open 3x3-span joinTo⋁ : { ℓ'} {A : Pointed } {B : Pointed ℓ'} - join (typ A) (typ B) - (Susp (typ A) , north) (Susp (typ B) , north) + join (typ A) (typ B) + (Susp (typ A) , north) (Susp (typ B) , north) joinTo⋁ (inl x) = inr north joinTo⋁ (inr x) = inl north joinTo⋁ {A = A} {B = B} (push a b i) = @@ -57,7 +57,7 @@ [_∣_]-pre : {} {X : Pointed } {n m : } (S₊∙ (suc (suc n)) →∙ X) (S₊∙ (suc (suc m)) →∙ X) - join (typ (S₊∙ (suc n))) (typ (S₊∙ (suc m))) fst X + join (typ (S₊∙ (suc n))) (typ (S₊∙ (suc m))) fst X [_∣_]-pre {n = n} {m = m} f g x = _∨→_ f g (joinTo⋁ {A = S₊∙ (suc n)} {B = S₊∙ (suc m)} diff --git a/Cubical.Modalities.Instances.Closed.html b/Cubical.Modalities.Instances.Closed.html index 3fefdf9a61..d196f20d59 100644 --- a/Cubical.Modalities.Instances.Closed.html +++ b/Cubical.Modalities.Instances.Closed.html @@ -7,7 +7,7 @@ open import Cubical.Foundations.Prelude open import Cubical.Foundations.HLevels using (hProp; isProp→; inhProp→isContr; isContr→isContrPath) -open import Cubical.Foundations.Structure using (⟨_⟩) +open import Cubical.Foundations.Structure using (⟨_⟩) open import Cubical.Data.Unit @@ -19,16 +19,16 @@ open Modality closedModality - Modality.◯ closedModality A = join X A + Modality.◯ closedModality A = join X A Modality.η closedModality = inr - Modality.isModal closedModality A = X isContr A + Modality.isModal closedModality A = X isContr A Modality.isPropIsModal closedModality = isProp→ isPropIsContr Modality.◯-isModal closedModality {A = A} x = subst t isContr (join t A)) (sym ⟨X⟩≡Unit*) joinAnnihilL where - ⟨X⟩≡Unit* : X Unit* + ⟨X⟩≡Unit* : X Unit* ⟨X⟩≡Unit* = isContr→≡Unit* (inhProp→isContr x (snd X)) Modality.◯-elim closedModality {B = B} B-modal f (inl x) = fst (B-modal (inl x) x) diff --git a/Cubical.Modalities.Instances.DoubleNegation.html b/Cubical.Modalities.Instances.DoubleNegation.html index b4d6de42db..b3456ed387 100644 --- a/Cubical.Modalities.Instances.DoubleNegation.html +++ b/Cubical.Modalities.Instances.DoubleNegation.html @@ -8,7 +8,7 @@ open import Cubical.Foundations.Prelude open import Cubical.Foundations.Function using (_∘_; const) open import Cubical.Foundations.HLevels using (hProp; isProp→isContrPath) -open import Cubical.Foundations.Structure using (⟨_⟩) +open import Cubical.Foundations.Structure using (⟨_⟩) open import Cubical.Data.Empty using (⊥*; isProp⊥*) open import Cubical.Data.Sigma using (_×_; ΣPathP) @@ -18,7 +18,7 @@ -- Generalized negation with respect to the proposition Y. ¬ : Type Type - ¬ A = A Y + ¬ A = A Y ¬¬ : Type Type ¬¬ = ¬ ¬ diff --git a/Cubical.Modalities.Instances.Open.html b/Cubical.Modalities.Instances.Open.html index 84dd4903e2..e204d91983 100644 --- a/Cubical.Modalities.Instances.Open.html +++ b/Cubical.Modalities.Instances.Open.html @@ -10,7 +10,7 @@ open import Cubical.Foundations.Isomorphism using (isoToIsEquiv; iso) open import Cubical.Foundations.Function using (const) open import Cubical.Foundations.HLevels using (hProp) -open import Cubical.Foundations.Structure using (⟨_⟩) +open import Cubical.Foundations.Structure using (⟨_⟩) module _ { : Level} (X : hProp ) where @@ -20,7 +20,7 @@ -- We want to use ◯ and η as soon as we defined them. open Modality openModality - Modality.◯ openModality A = X A + Modality.◯ openModality A = X A Modality.η openModality = const Modality.isModal openModality A = isEquiv (η {A = A}) diff --git a/Cubical.Modalities.Modality.html b/Cubical.Modalities.Modality.html index a3eebdad9f..0f9291485b 100644 --- a/Cubical.Modalities.Modality.html +++ b/Cubical.Modalities.Modality.html @@ -36,7 +36,7 @@ ◯-=-isModal : {A : Type } (x y : A) isModal (x y) ◯-Types : Type (ℓ-suc ) - ◯-Types = TypeWithStr isModal + ◯-Types = TypeWithStr isModal {- elimination rules -} diff --git a/Cubical.Papers.RepresentationIndependence.html b/Cubical.Papers.RepresentationIndependence.html index 4340ee05b2..9dc564c667 100644 --- a/Cubical.Papers.RepresentationIndependence.html +++ b/Cubical.Papers.RepresentationIndependence.html @@ -120,7 +120,7 @@ ------------------------------------------------------------------------- -- 3.1 Structures -open SIP using (TypeWithStr ; StrEquiv ; _≃[_]_ +open SIP using (TypeWithStr ; StrEquiv ; _≃[_]_ ; UnivalentStr ; SIP ; sip) public -- the last two terms above correspond to lemma 3.3 @@ -141,7 +141,7 @@ MonoidStructure = AxiomsStructure RawMonoidStructure MonoidAxioms Monoid : Type₁ -Monoid = TypeWithStr ℓ-zero MonoidStructure +Monoid = TypeWithStr ℓ-zero MonoidStructure MonoidEquiv : (M N : Monoid) fst M fst N Type MonoidEquiv (_ , (εᴹ , _·_) , _) (_ , (εᴺ , _∗_) , _) (φ , _) = @@ -166,16 +166,16 @@ open MaybeStr using (MaybeEquivStr) public -- Transport Structures -open Structure using (EquivAction) public +open Structure using (EquivAction) public open SIP using (TransportStr ; TransportStr→UnivalentStr ; UnivalentStr→TransportStr) public -open Structure using (EquivAction→StrEquiv) public +open Structure using (EquivAction→StrEquiv) public open FunctionStr using (FunctionEquivStr+) public -- Monoids Revisited RawMonoid : Type₁ -RawMonoid = TypeWithStr _ RawMonoidStructure +RawMonoid = TypeWithStr _ RawMonoidStructure Monoid→RawMonoid : Monoid RawMonoid Monoid→RawMonoid (A , r , _) = (A , r) @@ -194,7 +194,7 @@ (Semigroup.IsSemigroup.is-set α _ _) (Semigroup.IsSemigroup.is-set α _ _)) -MonoidEquivStr : StrEquiv MonoidStructure ℓ-zero +MonoidEquivStr : StrEquiv MonoidStructure ℓ-zero MonoidEquivStr = AxiomsEquivStr RawMonoidEquivStr MonoidAxioms monoidUnivalentStr : UnivalentStr MonoidStructure MonoidEquivStr diff --git a/Cubical.Relation.Binary.Order.Apartness.Base.html b/Cubical.Relation.Binary.Order.Apartness.Base.html index d031b689b3..3fdaa3bc1c 100644 --- a/Cubical.Relation.Binary.Order.Apartness.Base.html +++ b/Cubical.Relation.Binary.Order.Apartness.Base.html @@ -65,7 +65,7 @@ open IsApartness isApartness public Apartness : ℓ' Type (ℓ-max (ℓ-suc ) (ℓ-suc ℓ')) -Apartness ℓ' = TypeWithStr (ApartnessStr ℓ') +Apartness ℓ' = TypeWithStr (ApartnessStr ℓ') apartness : (A : Type ) (_#_ : A A Type ℓ') (h : IsApartness _#_) Apartness ℓ' apartness A _#_ h = A , apartnessstr _#_ h @@ -86,7 +86,7 @@ ApartnessEquiv : (M : Apartness ℓ₀ ℓ₀') (M : Apartness ℓ₁ ℓ₁') Type (ℓ-max (ℓ-max ℓ₀ ℓ₀') (ℓ-max ℓ₁ ℓ₁')) -ApartnessEquiv M N = Σ[ e M N ] IsApartnessEquiv (M .snd) e (N .snd) +ApartnessEquiv M N = Σ[ e M N ] IsApartnessEquiv (M .snd) e (N .snd) isPropIsApartness : {A : Type } (_#_ : A A Type ℓ') isProp (IsApartness _#_) isPropIsApartness _#_ = isOfHLevelRetractFromIso 1 IsApartnessIsoΣ @@ -112,7 +112,7 @@ ApartnessPath = 𝒮ᴰ-Apartness .UARel.ua -- an easier way of establishing an equivalence of apartness relations -module _ {P : Apartness ℓ₀ ℓ₀'} {S : Apartness ℓ₁ ℓ₁'} (e : P S ) where +module _ {P : Apartness ℓ₀ ℓ₀'} {S : Apartness ℓ₁ ℓ₁'} (e : P S ) where private module P = ApartnessStr (P .snd) module S = ApartnessStr (S .snd) diff --git a/Cubical.Relation.Binary.Order.Loset.Base.html b/Cubical.Relation.Binary.Order.Loset.Base.html index f7931e6c9a..06f3109935 100644 --- a/Cubical.Relation.Binary.Order.Loset.Base.html +++ b/Cubical.Relation.Binary.Order.Loset.Base.html @@ -68,7 +68,7 @@ open IsLoset isLoset public Loset : ℓ' Type (ℓ-max (ℓ-suc ) (ℓ-suc ℓ')) -Loset ℓ' = TypeWithStr (LosetStr ℓ') +Loset ℓ' = TypeWithStr (LosetStr ℓ') loset : (A : Type ) (_<_ : A A Type ℓ') (h : IsLoset _<_) Loset ℓ' loset A _<_ h = A , losetstr _<_ h @@ -89,7 +89,7 @@ LosetEquiv : (M : Loset ℓ₀ ℓ₀') (M : Loset ℓ₁ ℓ₁') Type (ℓ-max (ℓ-max ℓ₀ ℓ₀') (ℓ-max ℓ₁ ℓ₁')) -LosetEquiv M N = Σ[ e M N ] IsLosetEquiv (M .snd) e (N .snd) +LosetEquiv M N = Σ[ e M N ] IsLosetEquiv (M .snd) e (N .snd) isPropIsLoset : {A : Type } (_<_ : A A Type ℓ') isProp (IsLoset _<_) isPropIsLoset _<_ = isOfHLevelRetractFromIso 1 IsLosetIsoΣ @@ -116,7 +116,7 @@ LosetPath = 𝒮ᴰ-Loset .UARel.ua -- an easier way of establishing an equivalence of losets -module _ {P : Loset ℓ₀ ℓ₀'} {S : Loset ℓ₁ ℓ₁'} (e : P S ) where +module _ {P : Loset ℓ₀ ℓ₀'} {S : Loset ℓ₁ ℓ₁'} (e : P S ) where private module P = LosetStr (P .snd) module S = LosetStr (S .snd) diff --git a/Cubical.Relation.Binary.Order.Poset.Base.html b/Cubical.Relation.Binary.Order.Poset.Base.html index 2a5ed3e0af..7755f0bf72 100644 --- a/Cubical.Relation.Binary.Order.Poset.Base.html +++ b/Cubical.Relation.Binary.Order.Poset.Base.html @@ -58,7 +58,7 @@ open IsPoset isPoset public Poset : ℓ' Type (ℓ-max (ℓ-suc ) (ℓ-suc ℓ')) -Poset ℓ' = TypeWithStr (PosetStr ℓ') +Poset ℓ' = TypeWithStr (PosetStr ℓ') poset : (A : Type ) (_≤_ : A A Type ℓ') (h : IsPoset _≤_) Poset ℓ' poset A _≤_ h = A , posetstr _≤_ h @@ -79,7 +79,7 @@ PosetEquiv : (M : Poset ℓ₀ ℓ₀') (M : Poset ℓ₁ ℓ₁') Type (ℓ-max (ℓ-max ℓ₀ ℓ₀') (ℓ-max ℓ₁ ℓ₁')) -PosetEquiv M N = Σ[ e M N ] IsPosetEquiv (M .snd) e (N .snd) +PosetEquiv M N = Σ[ e M N ] IsPosetEquiv (M .snd) e (N .snd) isPropIsPoset : {A : Type } (_≤_ : A A Type ℓ') isProp (IsPoset _≤_) isPropIsPoset _≤_ = isOfHLevelRetractFromIso 1 IsPosetIsoΣ @@ -105,7 +105,7 @@ PosetPath = 𝒮ᴰ-Poset .UARel.ua -- an easier way of establishing an equivalence of posets -module _ {P : Poset ℓ₀ ℓ₀'} {S : Poset ℓ₁ ℓ₁'} (e : P S ) where +module _ {P : Poset ℓ₀ ℓ₀'} {S : Poset ℓ₁ ℓ₁'} (e : P S ) where private module P = PosetStr (P .snd) module S = PosetStr (S .snd) diff --git a/Cubical.Relation.Binary.Order.Preorder.Base.html b/Cubical.Relation.Binary.Order.Preorder.Base.html index 19787a0aea..4544e49ebd 100644 --- a/Cubical.Relation.Binary.Order.Preorder.Base.html +++ b/Cubical.Relation.Binary.Order.Preorder.Base.html @@ -56,7 +56,7 @@ open IsPreorder isPreorder public Preorder : ℓ' Type (ℓ-max (ℓ-suc ) (ℓ-suc ℓ')) -Preorder ℓ' = TypeWithStr (PreorderStr ℓ') +Preorder ℓ' = TypeWithStr (PreorderStr ℓ') preorder : (A : Type ) (_≲_ : A A Type ℓ') (h : IsPreorder _≲_) Preorder ℓ' preorder A _≲_ h = A , preorderstr _≲_ h @@ -77,7 +77,7 @@ PreorderEquiv : (M : Preorder ℓ₀ ℓ₀') (M : Preorder ℓ₁ ℓ₁') Type (ℓ-max (ℓ-max ℓ₀ ℓ₀') (ℓ-max ℓ₁ ℓ₁')) -PreorderEquiv M N = Σ[ e M N ] IsPreorderEquiv (M .snd) e (N .snd) +PreorderEquiv M N = Σ[ e M N ] IsPreorderEquiv (M .snd) e (N .snd) isPropIsPreorder : {A : Type } (_≲_ : A A Type ℓ') isProp (IsPreorder _≲_) isPropIsPreorder _≲_ = isOfHLevelRetractFromIso 1 IsPreorderIsoΣ @@ -102,7 +102,7 @@ PreorderPath = 𝒮ᴰ-Preorder .UARel.ua -- an easier way of establishing an equivalence of preorders -module _ {P : Preorder ℓ₀ ℓ₀'} {S : Preorder ℓ₁ ℓ₁'} (e : P S ) where +module _ {P : Preorder ℓ₀ ℓ₀'} {S : Preorder ℓ₁ ℓ₁'} (e : P S ) where private module P = PreorderStr (P .snd) module S = PreorderStr (S .snd) diff --git a/Cubical.Relation.Binary.Order.StrictPoset.Base.html b/Cubical.Relation.Binary.Order.StrictPoset.Base.html index 3169d797e3..adc3307a98 100644 --- a/Cubical.Relation.Binary.Order.StrictPoset.Base.html +++ b/Cubical.Relation.Binary.Order.StrictPoset.Base.html @@ -62,7 +62,7 @@ open IsStrictPoset isStrictPoset public StrictPoset : ℓ' Type (ℓ-max (ℓ-suc ) (ℓ-suc ℓ')) -StrictPoset ℓ' = TypeWithStr (StrictPosetStr ℓ') +StrictPoset ℓ' = TypeWithStr (StrictPosetStr ℓ') strictposet : (A : Type ) (_<_ : A A Type ℓ') (h : IsStrictPoset _<_) StrictPoset ℓ' strictposet A _<_ h = A , strictposetstr _<_ h @@ -83,7 +83,7 @@ StrictPosetEquiv : (M : StrictPoset ℓ₀ ℓ₀') (M : StrictPoset ℓ₁ ℓ₁') Type (ℓ-max (ℓ-max ℓ₀ ℓ₀') (ℓ-max ℓ₁ ℓ₁')) -StrictPosetEquiv M N = Σ[ e M N ] IsStrictPosetEquiv (M .snd) e (N .snd) +StrictPosetEquiv M N = Σ[ e M N ] IsStrictPosetEquiv (M .snd) e (N .snd) isPropIsStrictPoset : {A : Type } (_<_ : A A Type ℓ') isProp (IsStrictPoset _<_) isPropIsStrictPoset _<_ = isOfHLevelRetractFromIso 1 IsStrictPosetIsoΣ @@ -108,7 +108,7 @@ StrictPosetPath = 𝒮ᴰ-StrictPoset .UARel.ua -- an easier way of establishing an equivalence of strict posets -module _ {P : StrictPoset ℓ₀ ℓ₀'} {S : StrictPoset ℓ₁ ℓ₁'} (e : P S ) where +module _ {P : StrictPoset ℓ₀ ℓ₀'} {S : StrictPoset ℓ₁ ℓ₁'} (e : P S ) where private module P = StrictPosetStr (P .snd) module S = StrictPosetStr (S .snd) diff --git a/Cubical.Relation.Binary.Order.Toset.Base.html b/Cubical.Relation.Binary.Order.Toset.Base.html index d9a0c57e87..1ee21275be 100644 --- a/Cubical.Relation.Binary.Order.Toset.Base.html +++ b/Cubical.Relation.Binary.Order.Toset.Base.html @@ -65,7 +65,7 @@ open IsToset isToset public Toset : ℓ' Type (ℓ-max (ℓ-suc ) (ℓ-suc ℓ')) -Toset ℓ' = TypeWithStr (TosetStr ℓ') +Toset ℓ' = TypeWithStr (TosetStr ℓ') toset : (A : Type ) (_≤_ : A A Type ℓ') (h : IsToset _≤_) Toset ℓ' toset A _≤_ h = A , tosetstr _≤_ h @@ -86,7 +86,7 @@ TosetEquiv : (M : Toset ℓ₀ ℓ₀') (M : Toset ℓ₁ ℓ₁') Type (ℓ-max (ℓ-max ℓ₀ ℓ₀') (ℓ-max ℓ₁ ℓ₁')) -TosetEquiv M N = Σ[ e M N ] IsTosetEquiv (M .snd) e (N .snd) +TosetEquiv M N = Σ[ e M N ] IsTosetEquiv (M .snd) e (N .snd) isPropIsToset : {A : Type } (_≤_ : A A Type ℓ') isProp (IsToset _≤_) isPropIsToset _≤_ = isOfHLevelRetractFromIso 1 IsTosetIsoΣ @@ -113,7 +113,7 @@ TosetPath = 𝒮ᴰ-Toset .UARel.ua -- an easier way of establishing an equivalence of tosets -module _ {P : Toset ℓ₀ ℓ₀'} {S : Toset ℓ₁ ℓ₁'} (e : P S ) where +module _ {P : Toset ℓ₀ ℓ₀'} {S : Toset ℓ₁ ℓ₁'} (e : P S ) where private module P = TosetStr (P .snd) module S = TosetStr (S .snd) diff --git a/Cubical.Relation.ZigZag.Applications.MultiSet.html b/Cubical.Relation.ZigZag.Applications.MultiSet.html index bb9e02c72f..df6cca1986 100644 --- a/Cubical.Relation.ZigZag.Applications.MultiSet.html +++ b/Cubical.Relation.ZigZag.Applications.MultiSet.html @@ -226,7 +226,7 @@ -- We get a path between structure over the equivalence from the fact that the QER is structured List/Rᴸ≡AList/Rᴬᴸ : - Path (TypeWithStr S.structure) (List/Rᴸ , LQstructure) (AList/Rᴬᴸ , ALQstructure) + Path (TypeWithStr S.structure) (List/Rᴸ , LQstructure) (AList/Rᴬᴸ , ALQstructure) List/Rᴸ≡AList/Rᴬᴸ = sip S.univalent _ _ (E.Thm , S.matches (List/Rᴸ , LQstructure) (AList/Rᴬᴸ , ALQstructure) E.Thm .fst (main .rel)) @@ -236,7 +236,7 @@ LQunion = LQstructure .snd .snd .fst ALQunion = ALQstructure .snd .snd .fst - hasAssociativeUnion : TypeWithStr S.structure Type + hasAssociativeUnion : TypeWithStr S.structure Type hasAssociativeUnion (_ , _ , _ , _⊔_ , _) = xs ys zs (xs ys) zs xs (ys zs) diff --git a/Cubical.Structures.Axioms.html b/Cubical.Structures.Axioms.html index ecf32a621f..c3bbfea4ef 100644 --- a/Cubical.Structures.Axioms.html +++ b/Cubical.Structures.Axioms.html @@ -28,13 +28,13 @@ Type Type (ℓ-max ℓ₁ ℓ₂) AxiomsStructure S axioms X = Σ[ s S X ] (axioms X s) -AxiomsEquivStr : {S : Type Type ℓ₁} (ι : StrEquiv S ℓ₁') +AxiomsEquivStr : {S : Type Type ℓ₁} (ι : StrEquiv S ℓ₁') (axioms : (X : Type ) S X Type ℓ₂) - StrEquiv (AxiomsStructure S axioms) ℓ₁' + StrEquiv (AxiomsStructure S axioms) ℓ₁' AxiomsEquivStr ι axioms (X , (s , a)) (Y , (t , b)) e = ι (X , s) (Y , t) e axiomsUnivalentStr : {S : Type Type ℓ₁} - (ι : (A B : TypeWithStr S) A .fst B .fst Type ℓ₁') + (ι : (A B : TypeWithStr S) A .fst B .fst Type ℓ₁') {axioms : (X : Type ) S X Type ℓ₂} (axioms-are-Props : (X : Type ) (s : S X) isProp (axioms X s)) (θ : UnivalentStr S ι) @@ -50,21 +50,21 @@ inducedStructure : {S : Type Type ℓ₁} - {ι : (A B : TypeWithStr S) A .fst B .fst Type ℓ₁'} + {ι : (A B : TypeWithStr S) A .fst B .fst Type ℓ₁'} (θ : UnivalentStr S ι) {axioms : (X : Type ) S X Type ℓ₂} - (A : TypeWithStr (AxiomsStructure S axioms)) (B : TypeWithStr S) - (typ A , str A .fst) ≃[ ι ] B - TypeWithStr (AxiomsStructure S axioms) + (A : TypeWithStr (AxiomsStructure S axioms)) (B : TypeWithStr S) + (typ A , str A .fst) ≃[ ι ] B + TypeWithStr (AxiomsStructure S axioms) inducedStructure θ {axioms} A B eqv = B .fst , B .snd , subst (uncurry axioms) (sip θ _ _ eqv) (A .snd .snd) transferAxioms : {S : Type Type ℓ₁} - {ι : (A B : TypeWithStr S) A .fst B .fst Type ℓ₁'} + {ι : (A B : TypeWithStr S) A .fst B .fst Type ℓ₁'} (θ : UnivalentStr S ι) {axioms : (X : Type ) S X Type ℓ₂} - (A : TypeWithStr (AxiomsStructure S axioms)) (B : TypeWithStr S) - (typ A , str A .fst) ≃[ ι ] B + (A : TypeWithStr (AxiomsStructure S axioms)) (B : TypeWithStr S) + (typ A , str A .fst) ≃[ ι ] B axioms (fst B) (snd B) transferAxioms θ {axioms} A B eqv = subst (uncurry axioms) (sip θ _ _ eqv) (A .snd .snd) diff --git a/Cubical.Structures.Constant.html b/Cubical.Structures.Constant.html index 5e59a33f88..fd6c1d5f9b 100644 --- a/Cubical.Structures.Constant.html +++ b/Cubical.Structures.Constant.html @@ -23,13 +23,13 @@ ConstantStructure : Type Type ℓ' ConstantStructure _ = A - ConstantEquivStr : StrEquiv {} ConstantStructure ℓ' + ConstantEquivStr : StrEquiv {} ConstantStructure ℓ' ConstantEquivStr (_ , a) (_ , a') _ = a a' constantUnivalentStr : UnivalentStr {} ConstantStructure ConstantEquivStr constantUnivalentStr e = idEquiv _ - constantEquivAction : EquivAction {} ConstantStructure + constantEquivAction : EquivAction {} ConstantStructure constantEquivAction e = idEquiv _ constantTransportStr : TransportStr {} constantEquivAction diff --git a/Cubical.Structures.Function.html b/Cubical.Structures.Function.html index cdfa300fee..a17375870d 100644 --- a/Cubical.Structures.Function.html +++ b/Cubical.Structures.Function.html @@ -32,14 +32,14 @@ FunctionStructure S T X = S X T X FunctionEquivStr : {S : Type Type ℓ₁} {T : Type Type ℓ₂} - StrEquiv S ℓ₁' StrEquiv T ℓ₂' - StrEquiv (FunctionStructure S T) (ℓ-max ℓ₁ (ℓ-max ℓ₁' ℓ₂')) + StrEquiv S ℓ₁' StrEquiv T ℓ₂' + StrEquiv (FunctionStructure S T) (ℓ-max ℓ₁ (ℓ-max ℓ₁' ℓ₂')) FunctionEquivStr {S = S} {T} ι₁ ι₂ (X , f) (Y , g) e = {s : S X} {t : S Y} ι₁ (X , s) (Y , t) e ι₂ (X , f s) (Y , g t) e functionUnivalentStr : {S : Type Type ℓ₁} {T : Type Type ℓ₂} - (ι₁ : StrEquiv S ℓ₁') (θ₁ : UnivalentStr S ι₁) - (ι₂ : StrEquiv T ℓ₂') (θ₂ : UnivalentStr T ι₂) + (ι₁ : StrEquiv S ℓ₁') (θ₁ : UnivalentStr S ι₁) + (ι₂ : StrEquiv T ℓ₂') (θ₂ : UnivalentStr T ι₂) UnivalentStr (FunctionStructure S T) (FunctionEquivStr ι₁ ι₂) functionUnivalentStr ι₁ θ₁ ι₂ θ₂ e = compEquiv @@ -47,13 +47,13 @@ funExtDepEquiv functionEquivAction : {S : Type Type ℓ₁} {T : Type Type ℓ₂} - EquivAction S EquivAction T - EquivAction (FunctionStructure S T) + EquivAction S EquivAction T + EquivAction (FunctionStructure S T) functionEquivAction α₁ α₂ e = equiv→ (α₁ e) (α₂ e) functionTransportStr : {S : Type Type ℓ₁} {T : Type Type ℓ₂} - (α₁ : EquivAction S) (τ₁ : TransportStr α₁) - (α₂ : EquivAction T) (τ₂ : TransportStr α₂) + (α₁ : EquivAction S) (τ₁ : TransportStr α₁) + (α₂ : EquivAction T) (τ₂ : TransportStr α₂) TransportStr (functionEquivAction α₁ α₂) functionTransportStr {S = S} α₁ τ₁ α₂ τ₂ e f = funExt λ t @@ -63,14 +63,14 @@ -- Definition of structured equivalence using an action in the domain FunctionEquivStr+ : {S : Type Type ℓ₁} {T : Type Type ℓ₂} - EquivAction S StrEquiv T ℓ₂' - StrEquiv (FunctionStructure S T) (ℓ-max ℓ₁ ℓ₂') + EquivAction S StrEquiv T ℓ₂' + StrEquiv (FunctionStructure S T) (ℓ-max ℓ₁ ℓ₂') FunctionEquivStr+ {S = S} {T} α₁ ι₂ (X , f) (Y , g) e = (s : S X) ι₂ (X , f s) (Y , g (equivFun (α₁ e) s)) e functionUnivalentStr+ : {S : Type Type ℓ₁} {T : Type Type ℓ₂} - (α₁ : EquivAction S) (τ₁ : TransportStr α₁) - (ι₂ : StrEquiv T ℓ₂') (θ₂ : UnivalentStr T ι₂) + (α₁ : EquivAction S) (τ₁ : TransportStr α₁) + (ι₂ : StrEquiv T ℓ₂') (θ₂ : UnivalentStr T ι₂) UnivalentStr (FunctionStructure S T) (FunctionEquivStr+ α₁ ι₂) functionUnivalentStr+ {S = S} {T} α₁ τ₁ ι₂ θ₂ {X , f} {Y , g} e = compEquiv diff --git a/Cubical.Structures.Macro.html b/Cubical.Structures.Macro.html index 751711c563..536234cee0 100644 --- a/Cubical.Structures.Macro.html +++ b/Cubical.Structures.Macro.html @@ -38,7 +38,7 @@ -- Maybe on a structure S: X ↦ Maybe (S X) maybe : {ℓ₁} TranspDesc ℓ₁ TranspDesc ℓ₁ -- arbitrary transport structure - foreign : {ℓ₁} {S : Type Type ℓ₁} (α : EquivAction S) TransportStr α TranspDesc ℓ₁ + foreign : {ℓ₁} {S : Type Type ℓ₁} (α : EquivAction S) TransportStr α TranspDesc ℓ₁ -- Structure defined by a transport descriptor TranspMacroStructure : { ℓ₁} TranspDesc ℓ₁ Type Type ℓ₁ @@ -50,7 +50,7 @@ TranspMacroStructure (foreign {S = S} α τ) = S -- Action defined by a transport descriptor -transpMacroAction : { ℓ₁} (d : TranspDesc ℓ₁) EquivAction (TranspMacroStructure d) +transpMacroAction : { ℓ₁} (d : TranspDesc ℓ₁) EquivAction (TranspMacroStructure d) transpMacroAction (constant A) = constantEquivAction A transpMacroAction var = pointedEquivAction transpMacroAction (d₀ , d₁) = productEquivAction (transpMacroAction d₀) (transpMacroAction d₁) @@ -100,7 +100,7 @@ -- univalent structure from transport structure transpDesc : {ℓ₁} TranspDesc ℓ₁ Desc ℓ₁ ℓ₁ -- arbitrary univalent notion of structure - foreign : {ℓ₁ ℓ₁'} {S : Type Type ℓ₁} (ι : StrEquiv S ℓ₁') UnivalentStr S ι Desc ℓ₁ ℓ₁' + foreign : {ℓ₁ ℓ₁'} {S : Type Type ℓ₁} (ι : StrEquiv S ℓ₁') UnivalentStr S ι Desc ℓ₁ ℓ₁' infixr 4 _,_ @@ -117,7 +117,7 @@ MacroStructure (foreign {S = S} _ _) = S -- Notion of structured equivalence defined by a descriptor -MacroEquivStr : { ℓ₁ ℓ₁'} (d : Desc ℓ₁ ℓ₁') StrEquiv (MacroStructure d) ℓ₁' +MacroEquivStr : { ℓ₁ ℓ₁'} (d : Desc ℓ₁ ℓ₁') StrEquiv (MacroStructure d) ℓ₁' MacroEquivStr (constant A) = ConstantEquivStr A MacroEquivStr var = PointedEquivStr MacroEquivStr (d₀ , d₁) = ProductEquivStr (MacroEquivStr d₀) (MacroEquivStr d₁) @@ -125,7 +125,7 @@ MacroEquivStr (function d₀ d₁) = FunctionEquivStr (MacroEquivStr d₀) (MacroEquivStr d₁) MacroEquivStr (maybe d) = MaybeEquivStr (MacroEquivStr d) MacroEquivStr (axioms d ax _) = AxiomsEquivStr (MacroEquivStr d) ax -MacroEquivStr (transpDesc d) = EquivAction→StrEquiv (transpMacroAction d) +MacroEquivStr (transpDesc d) = EquivAction→StrEquiv (transpMacroAction d) MacroEquivStr (foreign ι _) = ι -- Proof that structure induced by descriptor is univalent diff --git a/Cubical.Structures.Maybe.html b/Cubical.Structures.Maybe.html index a0c321c09e..4e60a0a6d4 100644 --- a/Cubical.Structures.Maybe.html +++ b/Cubical.Structures.Maybe.html @@ -89,10 +89,10 @@ MaybeStructure S X = Maybe (S X) MaybeEquivStr : {S : Type Type ℓ₁} - StrEquiv S ℓ₁' StrEquiv (MaybeStructure S) ℓ₁' + StrEquiv S ℓ₁' StrEquiv (MaybeStructure S) ℓ₁' MaybeEquivStr ι (X , ox) (Y , oy) e = MaybeRel x y ι (X , x) (Y , y) e) ox oy -maybeUnivalentStr : {S : Type Type ℓ₁} (ι : StrEquiv S ℓ₁') +maybeUnivalentStr : {S : Type Type ℓ₁} (ι : StrEquiv S ℓ₁') UnivalentStr S ι UnivalentStr (MaybeStructure S) (MaybeEquivStr ι) maybeUnivalentStr ι θ {X , ox} {Y , oy} e = compEquiv @@ -100,10 +100,10 @@ (MaybePathP.Code≃PathP ox oy) maybeEquivAction : {S : Type Type ℓ₁} - EquivAction S EquivAction (MaybeStructure S) + EquivAction S EquivAction (MaybeStructure S) maybeEquivAction α e = congMaybeEquiv (α e) -maybeTransportStr : {S : Type Type ℓ₁} (α : EquivAction S) +maybeTransportStr : {S : Type Type ℓ₁} (α : EquivAction S) TransportStr α TransportStr (maybeEquivAction α) maybeTransportStr _ τ e nothing = refl maybeTransportStr _ τ e (just x) = cong just (τ e x) diff --git a/Cubical.Structures.MultiSet.html b/Cubical.Structures.MultiSet.html index dbcc8b8494..5cd27a5ede 100644 --- a/Cubical.Structures.MultiSet.html +++ b/Cubical.Structures.MultiSet.html @@ -29,7 +29,7 @@ countUnivalentStr = autoUnivalentStr CountStructure Count : Type (ℓ-suc ) - Count = TypeWithStr CountStructure + Count = TypeWithStr CountStructure MultiSetStructure : Type Type MultiSetStructure X = X × (A X X) × (A X ) @@ -40,5 +40,5 @@ multiSetUnivalentStr = autoUnivalentStr MultiSetStructure MultiSet : Type (ℓ-suc ) - MultiSet = TypeWithStr MultiSetStructure + MultiSet = TypeWithStr MultiSetStructure \ No newline at end of file diff --git a/Cubical.Structures.Parameterized.html b/Cubical.Structures.Parameterized.html index 33c57aa539..900a323314 100644 --- a/Cubical.Structures.Parameterized.html +++ b/Cubical.Structures.Parameterized.html @@ -27,20 +27,20 @@ ParamStructure S X = (a : A) S a X ParamEquivStr : {S : A Type Type ℓ₁} - (∀ a StrEquiv (S a) ℓ₁') StrEquiv (ParamStructure S) (ℓ-max ℓ₀ ℓ₁') + (∀ a StrEquiv (S a) ℓ₁') StrEquiv (ParamStructure S) (ℓ-max ℓ₀ ℓ₁') ParamEquivStr ι (X , l) (Y , m) e = a ι a (X , l a) (Y , m a) e paramUnivalentStr : {S : A Type Type ℓ₁} - (ι : a StrEquiv (S a) ℓ₁') (θ : a UnivalentStr (S a) (ι a)) + (ι : a StrEquiv (S a) ℓ₁') (θ : a UnivalentStr (S a) (ι a)) UnivalentStr (ParamStructure S) (ParamEquivStr ι) paramUnivalentStr ι θ e = compEquiv (equivΠCod λ a θ a e) funExtEquiv paramEquivAction : {S : A Type Type ℓ₁} - (∀ a EquivAction (S a)) EquivAction (ParamStructure S) + (∀ a EquivAction (S a)) EquivAction (ParamStructure S) paramEquivAction α e = equivΠCod a α a e) paramTransportStr : {S : A Type Type ℓ₁} - (α : a EquivAction (S a)) (τ : a TransportStr (α a)) + (α : a EquivAction (S a)) (τ : a TransportStr (α a)) TransportStr (paramEquivAction α) paramTransportStr {S = S} α τ e f = funExt λ a diff --git a/Cubical.Structures.Pointed.html b/Cubical.Structures.Pointed.html index 7200b8c36d..1261ca3069 100644 --- a/Cubical.Structures.Pointed.html +++ b/Cubical.Structures.Pointed.html @@ -24,7 +24,7 @@ PointedStructure : Type Type PointedStructure X = X -PointedEquivStr : StrEquiv PointedStructure +PointedEquivStr : StrEquiv PointedStructure PointedEquivStr A B f = equivFun f (pt A) pt B pointedUnivalentStr : UnivalentStr {} PointedStructure PointedEquivStr @@ -53,7 +53,7 @@ pointed-sip⁻-refl : (A : Pointed ) pointed-sip⁻ A A refl idEquiv∙ A pointed-sip⁻-refl A = sym (invEq (equivAdjointEquiv (pointedSIP A A)) (pointed-sip-idEquiv∙ A)) -pointedEquivAction : EquivAction {} PointedStructure +pointedEquivAction : EquivAction {} PointedStructure pointedEquivAction e = e pointedTransportStr : TransportStr {} pointedEquivAction diff --git a/Cubical.Structures.Product.html b/Cubical.Structures.Product.html index 897a686e59..c4d7c04255 100644 --- a/Cubical.Structures.Product.html +++ b/Cubical.Structures.Product.html @@ -25,28 +25,28 @@ ProductStructure S₁ S₂ X = S₁ X × S₂ X ProductEquivStr : - {S₁ : Type Type ℓ₁} (ι₁ : StrEquiv S₁ ℓ₁') - {S₂ : Type Type ℓ₂} (ι₂ : StrEquiv S₂ ℓ₂') - StrEquiv (ProductStructure S₁ S₂) (ℓ-max ℓ₁' ℓ₂') + {S₁ : Type Type ℓ₁} (ι₁ : StrEquiv S₁ ℓ₁') + {S₂ : Type Type ℓ₂} (ι₂ : StrEquiv S₂ ℓ₂') + StrEquiv (ProductStructure S₁ S₂) (ℓ-max ℓ₁' ℓ₂') ProductEquivStr ι₁ ι₂ (X , s₁ , s₂) (Y , t₁ , t₂) f = (ι₁ (X , s₁) (Y , t₁) f) × (ι₂ (X , s₂) (Y , t₂) f) productUnivalentStr : - {S₁ : Type Type ℓ₁} (ι₁ : StrEquiv S₁ ℓ₁') (θ₁ : UnivalentStr S₁ ι₁) - {S₂ : Type Type ℓ₂} (ι₂ : StrEquiv S₂ ℓ₂') (θ₂ : UnivalentStr S₂ ι₂) + {S₁ : Type Type ℓ₁} (ι₁ : StrEquiv S₁ ℓ₁') (θ₁ : UnivalentStr S₁ ι₁) + {S₂ : Type Type ℓ₂} (ι₂ : StrEquiv S₂ ℓ₂') (θ₂ : UnivalentStr S₂ ι₂) UnivalentStr (ProductStructure S₁ S₂) (ProductEquivStr ι₁ ι₂) productUnivalentStr {S₁ = S₁} ι₁ θ₁ {S₂} ι₂ θ₂ {X , s₁ , s₂} {Y , t₁ , t₂} e = compEquiv (Σ-cong-equiv (θ₁ e) _ θ₂ e)) ΣPath≃PathΣ productEquivAction : - {S₁ : Type Type ℓ₁} (α₁ : EquivAction S₁) - {S₂ : Type Type ℓ₂} (α₂ : EquivAction S₂) - EquivAction (ProductStructure S₁ S₂) + {S₁ : Type Type ℓ₁} (α₁ : EquivAction S₁) + {S₂ : Type Type ℓ₂} (α₂ : EquivAction S₂) + EquivAction (ProductStructure S₁ S₂) productEquivAction α₁ α₂ e = Σ-cong-equiv (α₁ e) _ α₂ e) productTransportStr : - {S₁ : Type Type ℓ₁} (α₁ : EquivAction S₁) (τ₁ : TransportStr α₁) - {S₂ : Type Type ℓ₂} (α₂ : EquivAction S₂) (τ₂ : TransportStr α₂) + {S₁ : Type Type ℓ₁} (α₁ : EquivAction S₁) (τ₁ : TransportStr α₁) + {S₂ : Type Type ℓ₂} (α₂ : EquivAction S₂) (τ₂ : TransportStr α₂) TransportStr (productEquivAction α₁ α₂) productTransportStr _ τ₁ _ τ₂ e (s₁ , s₂) = ΣPathP (τ₁ e s₁ , τ₂ e s₂) \ No newline at end of file diff --git a/Cubical.Structures.Queue.html b/Cubical.Structures.Queue.html index 4ed113525e..969bb0e9ff 100644 --- a/Cubical.Structures.Queue.html +++ b/Cubical.Structures.Queue.html @@ -58,7 +58,7 @@ ) RawQueue : Type (ℓ-suc ) - RawQueue = TypeWithStr RawQueueStructure + RawQueue = TypeWithStr RawQueueStructure returnOrEnq : {Q : Type } RawQueueStructure Q A Maybe (Q × A) Q × A @@ -88,9 +88,9 @@ QueueStructure = AxiomsStructure RawQueueStructure QueueAxioms Queue : Type (ℓ-suc ) - Queue = TypeWithStr QueueStructure + Queue = TypeWithStr QueueStructure - QueueEquivStr : StrEquiv QueueStructure + QueueEquivStr : StrEquiv QueueStructure QueueEquivStr = AxiomsEquivStr RawQueueEquivStr QueueAxioms queueUnivalentStr : UnivalentStr QueueStructure QueueEquivStr @@ -107,9 +107,9 @@ FiniteQueueStructure = AxiomsStructure QueueStructure FiniteQueueAxioms FiniteQueue : Type (ℓ-suc ) - FiniteQueue = TypeWithStr FiniteQueueStructure + FiniteQueue = TypeWithStr FiniteQueueStructure - FiniteQueueEquivStr : StrEquiv FiniteQueueStructure + FiniteQueueEquivStr : StrEquiv FiniteQueueStructure FiniteQueueEquivStr = AxiomsEquivStr QueueEquivStr FiniteQueueAxioms finiteQueueUnivalentStr : UnivalentStr FiniteQueueStructure FiniteQueueEquivStr diff --git a/Cubical.Structures.Record.html b/Cubical.Structures.Record.html index 91d5ba2726..fcc576bb7d 100644 --- a/Cubical.Structures.Record.html +++ b/Cubical.Structures.Record.html @@ -40,13 +40,13 @@ module _ { ℓ₁ ℓ₁'} where mutual - data AutoFields (R : Type Type ℓ₁) (ι : StrEquiv R ℓ₁') : Typeω + data AutoFields (R : Type Type ℓ₁) (ι : StrEquiv R ℓ₁') : Typeω where fields: : AutoFields R ι _data[_∣_] : (fs : AutoFields R ι) - {ℓ₂ ℓ₂'} {S : Type Type ℓ₂} {ι' : StrEquiv S ℓ₂'} + {ℓ₂ ℓ₂'} {S : Type Type ℓ₂} {ι' : StrEquiv S ℓ₂'} (f : {X : Type } R X S X) - ({A B : TypeWithStr R} {e : typ A typ B} ι A B e ι' (map-snd f A) (map-snd f B) e) + ({A B : TypeWithStr R} {e : typ A typ B} ι A B e ι' (map-snd f A) (map-snd f B) e) AutoFields R ι _prop[_∣_] : (fs : AutoFields R ι) {ℓ₂} {P : (X : Type ) GatherFields fs X Type ℓ₂} @@ -54,14 +54,14 @@ isPropProperty R ι fs P AutoFields R ι - GatherFieldsLevel : {R : Type Type ℓ₁} {ι : StrEquiv R ℓ₁'} + GatherFieldsLevel : {R : Type Type ℓ₁} {ι : StrEquiv R ℓ₁'} AutoFields R ι Level GatherFieldsLevel fields: = ℓ-zero GatherFieldsLevel (_data[_∣_] fs {ℓ₂ = ℓ₂} _ _) = ℓ-max (GatherFieldsLevel fs) ℓ₂ GatherFieldsLevel (_prop[_∣_] fs {ℓ₂ = ℓ₂} _ _) = ℓ-max (GatherFieldsLevel fs) ℓ₂ - GatherFields : {R : Type Type ℓ₁} {ι : StrEquiv R ℓ₁'} + GatherFields : {R : Type Type ℓ₁} {ι : StrEquiv R ℓ₁'} (dat : AutoFields R ι) Type Type (GatherFieldsLevel dat) GatherFields fields: X = Unit @@ -69,7 +69,7 @@ GatherFields (_prop[_∣_] fs {P = P} _ _) X = Σ[ s GatherFields fs X ] (P X s) - projectFields : {R : Type Type ℓ₁} {ι : StrEquiv R ℓ₁'} + projectFields : {R : Type Type ℓ₁} {ι : StrEquiv R ℓ₁'} (fs : AutoFields R ι) {X : Type } R X GatherFields fs X projectFields fields: = _ @@ -77,7 +77,7 @@ projectFields (fs prop[ f _ ]) r = projectFields fs r , f r isPropProperty : {ℓ₂} (R : Type Type ℓ₁) - (ι : StrEquiv R ℓ₁') + (ι : StrEquiv R ℓ₁') (fs : AutoFields R ι) (P : (X : Type ) GatherFields fs X Type ℓ₂) Type (ℓ-max (ℓ-suc ) (ℓ-max ℓ₁ ℓ₂)) @@ -85,7 +85,7 @@ {X : Type } (r : R X) isProp (P X (projectFields fs r)) data AutoRecordSpec : Typeω where - autoRecordSpec : (R : Type Type ℓ₁) (ι : StrEquiv R ℓ₁') + autoRecordSpec : (R : Type Type ℓ₁) (ι : StrEquiv R ℓ₁') AutoFields R ι AutoRecordSpec @@ -113,7 +113,7 @@ module _ { ℓ₁ ℓ₁' ℓ₂} (R : Type Type ℓ₁) -- Structure record - (ι : StrEquiv R ℓ₁') -- Equivalence record + (ι : StrEquiv R ℓ₁') -- Equivalence record (fs : AutoFields R ι) -- Prior fields (P : (X : Type ) GatherFields fs X Type ℓ₂) -- Property type (f : {X : Type } (r : R X) P X (projectFields fs r)) -- Property projection @@ -124,13 +124,13 @@ PropHelperCenterType : Type _ PropHelperCenterType = - (A B : TypeWithStr R) (e : A .fst B .fst) + (A B : TypeWithStr R) (e : A .fst B .fst) (p : PathP i Prev (ua e i)) (prev (A .snd)) (prev (B .snd))) PathP i P (ua e i) (p i)) (f (A .snd)) (f (B .snd)) PropHelperContractType : PropHelperCenterType Type _ PropHelperContractType c = - (A B : TypeWithStr R) (e : A .fst B .fst) + (A B : TypeWithStr R) (e : A .fst B .fst) {p₀ : PathP i Prev (ua e i)) (prev (A .snd)) (prev (B .snd))} (q : PathP i R (ua e i)) (A .snd) (B .snd)) (p : p₀ i prev (q i))) @@ -149,28 +149,28 @@ isOfHLevelPathP' 0 (isOfHLevelPathP 1 (propP _) _ _) _ _ .fst -- Build proof of univalence from an isomorphism - module _ { ℓ₁ ℓ₁'} (S : Type Type ℓ₁) (ι : StrEquiv S ℓ₁') where + module _ { ℓ₁ ℓ₁'} (S : Type Type ℓ₁) (ι : StrEquiv S ℓ₁') where fwdShape : Type _ fwdShape = - (A B : TypeWithStr S) (e : typ A typ B) ι A B e PathP i S (ua e i)) (str A) (str B) + (A B : TypeWithStr S) (e : typ A typ B) ι A B e PathP i S (ua e i)) (str A) (str B) bwdShape : Type _ bwdShape = - (A B : TypeWithStr S) (e : typ A typ B) PathP i S (ua e i)) (str A) (str B) ι A B e + (A B : TypeWithStr S) (e : typ A typ B) PathP i S (ua e i)) (str A) (str B) ι A B e fwdBwdShape : fwdShape bwdShape Type _ fwdBwdShape fwd bwd = - (A B : TypeWithStr S) (e : typ A typ B) p fwd A B e (bwd A B e p) p + (A B : TypeWithStr S) (e : typ A typ B) p fwd A B e (bwd A B e p) p bwdFwdShape : fwdShape bwdShape Type _ bwdFwdShape fwd bwd = - (A B : TypeWithStr S) (e : typ A typ B) r bwd A B e (fwd A B e r) r + (A B : TypeWithStr S) (e : typ A typ B) r bwd A B e (fwd A B e r) r -- The implicit arguments A,B in UnivalentStr make some things annoying so let's avoid them ExplicitUnivalentStr : Type _ ExplicitUnivalentStr = - (A B : TypeWithStr _ S) (e : typ A typ B) ι A B e PathP i S (ua e i)) (str A) (str B) + (A B : TypeWithStr _ S) (e : typ A typ B) ι A B e PathP i S (ua e i)) (str A) (str B) explicitUnivalentStr : (fwd : fwdShape) (bwd : bwdShape) fwdBwdShape fwd bwd bwdFwdShape fwd bwd diff --git a/Cubical.Structures.Relational.Function.html b/Cubical.Structures.Relational.Function.html index 9f5b40adbe..2468cfcb90 100644 --- a/Cubical.Structures.Relational.Function.html +++ b/Cubical.Structures.Relational.Function.html @@ -157,8 +157,8 @@ θ₂ .prop propR _ _ functionRelMatchesEquiv : {S : Type Type ℓ₁} {T : Type Type ℓ₂} - (ρ₁ : StrRel S ℓ₁') {ι₁ : StrEquiv S ℓ₁''} - (ρ₂ : StrRel T ℓ₂') {ι₂ : StrEquiv T ℓ₂''} + (ρ₁ : StrRel S ℓ₁') {ι₁ : StrEquiv S ℓ₁''} + (ρ₂ : StrRel T ℓ₂') {ι₂ : StrEquiv T ℓ₂''} StrRelMatchesEquiv ρ₁ ι₁ StrRelMatchesEquiv ρ₂ ι₂ StrRelMatchesEquiv (FunctionRelStr ρ₁ ρ₂) (FunctionEquivStr ι₁ ι₂) @@ -166,9 +166,9 @@ equivImplicitΠCod (equivImplicitΠCod (equiv→ (μ₁ _ _ e) (μ₂ _ _ e))) functionRelMatchesEquiv+ : {S : Type Type ℓ₁} {T : Type Type ℓ₂} - (ρ₁ : StrRel S ℓ₁') (α₁ : EquivAction S) - (ρ₂ : StrRel T ℓ₂') (ι₂ : StrEquiv T ℓ₂'') - StrRelMatchesEquiv ρ₁ (EquivAction→StrEquiv α₁) + (ρ₁ : StrRel S ℓ₁') (α₁ : EquivAction S) + (ρ₂ : StrRel T ℓ₂') (ι₂ : StrEquiv T ℓ₂'') + StrRelMatchesEquiv ρ₁ (EquivAction→StrEquiv α₁) StrRelMatchesEquiv ρ₂ ι₂ StrRelMatchesEquiv (FunctionRelStr ρ₁ ρ₂) (FunctionEquivStr+ α₁ ι₂) functionRelMatchesEquiv+ ρ₁ α₁ ρ₂ ι₂ μ₁ μ₂ (X , f) (Y , g) e = @@ -178,7 +178,7 @@ where open Iso isom : Iso - (FunctionEquivStr (EquivAction→StrEquiv α₁) ι₂ (X , f) (Y , g) e) + (FunctionEquivStr (EquivAction→StrEquiv α₁) ι₂ (X , f) (Y , g) e) (FunctionEquivStr+ α₁ ι₂ (X , f) (Y , g) e) isom .fun h s = h refl isom .inv k {x} = J y _ ι₂ (X , f x) (Y , g y) e) (k x) diff --git a/Cubical.Structures.Relational.Macro.html b/Cubical.Structures.Relational.Macro.html index 1e57ef2ff8..38ab2226d9 100644 --- a/Cubical.Structures.Relational.Macro.html +++ b/Cubical.Structures.Relational.Macro.html @@ -123,7 +123,7 @@ {- Proof that structured relations and equivalences agree -} posRelMacroMatchesEquiv : { ℓ₁} (d : PosRelDesc ℓ₁) - StrRelMatchesEquiv (PosRelMacroRelStr d) (EquivAction→StrEquiv (transpMacroAction (posRelDesc→TranspDesc d))) + StrRelMatchesEquiv (PosRelMacroRelStr d) (EquivAction→StrEquiv (transpMacroAction (posRelDesc→TranspDesc d))) posRelMacroMatchesEquiv (constant A) _ _ _ = idEquiv _ posRelMacroMatchesEquiv var _ _ _ = idEquiv _ posRelMacroMatchesEquiv (d₀ , d₁) = diff --git a/Cubical.Structures.Relational.Maybe.html b/Cubical.Structures.Relational.Maybe.html index 3b7793f6c7..4e767c9d96 100644 --- a/Cubical.Structures.Relational.Maybe.html +++ b/Cubical.Structures.Relational.Maybe.html @@ -52,7 +52,7 @@ maybeSuitableRel θ .prop propR (just x) nothing = isOfHLevelLift 1 isProp⊥ maybeSuitableRel θ .prop propR (just x) (just y) = θ .prop propR x y -maybeRelMatchesEquiv : {S : Type Type ℓ₁} (ρ : StrRel S ℓ₁') {ι : StrEquiv S ℓ₁''} +maybeRelMatchesEquiv : {S : Type Type ℓ₁} (ρ : StrRel S ℓ₁') {ι : StrEquiv S ℓ₁''} StrRelMatchesEquiv ρ ι StrRelMatchesEquiv (MaybeRelStr ρ) (MaybeEquivStr ι) maybeRelMatchesEquiv ρ μ (X , nothing) (Y , nothing) _ = Lift≃Lift (idEquiv _) @@ -115,9 +115,9 @@ isom .leftInv = elimProp _ squash/ _ _) {nothing refl; (just _) refl}) maybeRelMatchesTransp : {S : Type Type ℓ₁} - (ρ : StrRel S ℓ₁') (α : EquivAction S) - StrRelMatchesEquiv ρ (EquivAction→StrEquiv α) - StrRelMatchesEquiv (MaybeRelStr ρ) (EquivAction→StrEquiv (maybeEquivAction α)) + (ρ : StrRel S ℓ₁') (α : EquivAction S) + StrRelMatchesEquiv ρ (EquivAction→StrEquiv α) + StrRelMatchesEquiv (MaybeRelStr ρ) (EquivAction→StrEquiv (maybeEquivAction α)) maybeRelMatchesTransp _ _ μ (X , nothing) (Y , nothing) _ = isContr→Equiv (isOfHLevelLift 0 isContrUnit) isContr-nothing≡nothing maybeRelMatchesTransp _ _ μ (X , nothing) (Y , just y) _ = diff --git a/Cubical.Structures.Relational.Parameterized.html b/Cubical.Structures.Relational.Parameterized.html index b1c4387c22..d4c9029bba 100644 --- a/Cubical.Structures.Relational.Parameterized.html +++ b/Cubical.Structures.Relational.Parameterized.html @@ -55,7 +55,7 @@ isPropΠ λ a θ a .prop propR (s a) (t a) paramRelMatchesEquiv : {S : A Type Type ℓ₁} - (ρ : a StrRel (S a) ℓ₁') {ι : a StrEquiv (S a) ℓ₁''} + (ρ : a StrRel (S a) ℓ₁') {ι : a StrEquiv (S a) ℓ₁''} (∀ a StrRelMatchesEquiv (ρ a) (ι a)) StrRelMatchesEquiv (ParamRelStr ρ) (ParamEquivStr A ι) paramRelMatchesEquiv ρ μ _ _ e = equivΠCod λ a μ a _ _ e diff --git a/Cubical.Structures.Relational.Product.html b/Cubical.Structures.Relational.Product.html index 27d9b85849..d77b2305df 100644 --- a/Cubical.Structures.Relational.Product.html +++ b/Cubical.Structures.Relational.Product.html @@ -58,8 +58,8 @@ isProp× (θ₁ .prop propR s₁ t₁) (θ₂ .prop propR s₂ t₂) productRelMatchesEquiv : - {S₁ : Type Type ℓ₁} (ρ₁ : StrRel S₁ ℓ₁') {ι₁ : StrEquiv S₁ ℓ₁''} - {S₂ : Type Type ℓ₂} (ρ₂ : StrRel S₂ ℓ₂') {ι₂ : StrEquiv S₂ ℓ₂''} + {S₁ : Type Type ℓ₁} (ρ₁ : StrRel S₁ ℓ₁') {ι₁ : StrEquiv S₁ ℓ₁''} + {S₂ : Type Type ℓ₂} (ρ₂ : StrRel S₂ ℓ₂') {ι₂ : StrEquiv S₂ ℓ₂''} StrRelMatchesEquiv ρ₁ ι₁ StrRelMatchesEquiv ρ₂ ι₂ StrRelMatchesEquiv (ProductRelStr ρ₁ ρ₂) (ProductEquivStr ι₁ ι₂) productRelMatchesEquiv ρ₁ ρ₂ μ₁ μ₂ A B e = @@ -132,11 +132,11 @@ isom .leftInv = elimProp _ squash/ _ _) _ refl) productRelMatchesTransp : - {S₁ : Type Type ℓ₁} (ρ₁ : StrRel S₁ ℓ₁') (α₁ : EquivAction S₁) - {S₂ : Type Type ℓ₂} (ρ₂ : StrRel S₂ ℓ₂') (α₂ : EquivAction S₂) - StrRelMatchesEquiv ρ₁ (EquivAction→StrEquiv α₁) - StrRelMatchesEquiv ρ₂ (EquivAction→StrEquiv α₂) - StrRelMatchesEquiv (ProductRelStr ρ₁ ρ₂) (EquivAction→StrEquiv (productEquivAction α₁ α₂)) + {S₁ : Type Type ℓ₁} (ρ₁ : StrRel S₁ ℓ₁') (α₁ : EquivAction S₁) + {S₂ : Type Type ℓ₂} (ρ₂ : StrRel S₂ ℓ₂') (α₂ : EquivAction S₂) + StrRelMatchesEquiv ρ₁ (EquivAction→StrEquiv α₁) + StrRelMatchesEquiv ρ₂ (EquivAction→StrEquiv α₂) + StrRelMatchesEquiv (ProductRelStr ρ₁ ρ₂) (EquivAction→StrEquiv (productEquivAction α₁ α₂)) productRelMatchesTransp _ _ _ _ μ₁ μ₂ _ _ e = compEquiv (Σ-cong-equiv (μ₁ _ _ e) _ μ₂ _ _ e)) ΣPath≃PathΣ \ No newline at end of file diff --git a/Cubical.Structures.Transfer.html b/Cubical.Structures.Transfer.html index b826907bab..79b8c2bf3c 100644 --- a/Cubical.Structures.Transfer.html +++ b/Cubical.Structures.Transfer.html @@ -19,30 +19,30 @@ transfer : {ℓ₂' ℓ₀ : Level} {S : Type Type ℓ₁} {H : Type Type ℓ₂} (P : X S X H X Type ℓ₀) - (α : EquivAction H) (τ : TransportStr α) - (ι : StrEquiv S ℓ₂') (θ : UnivalentStr S ι) + (α : EquivAction H) (τ : TransportStr α) + (ι : StrEquiv S ℓ₂') (θ : UnivalentStr S ι) {X Y : Type } {s : S X} {t : S Y} (e : (X , s) ≃[ ι ] (Y , t)) (h : H Y) P X s (invEq (α (e .fst)) h) P Y t h transfer P α τ ι θ {X} {Y} {s} {t} e h = subst {(Z , u , h) P Z u h}) (sip - (productUnivalentStr ι θ (EquivAction→StrEquiv α) (TransportStr→UnivalentStr α τ)) + (productUnivalentStr ι θ (EquivAction→StrEquiv α) (TransportStr→UnivalentStr α τ)) (X , s , invEq (α (e .fst)) h) (Y , t , h) (e .fst , e .snd , secEq (α (e .fst)) h)) transfer⁻ : {ℓ₂' ℓ₀ : Level} {S : Type Type ℓ₁} {H : Type Type ℓ₂} (P : X S X H X Type ℓ₀) - (α : EquivAction H) (τ : TransportStr α) - (ι : StrEquiv S ℓ₂') (θ : UnivalentStr S ι) + (α : EquivAction H) (τ : TransportStr α) + (ι : StrEquiv S ℓ₂') (θ : UnivalentStr S ι) {X Y : Type } {s : S X} {t : S Y} (e : (X , s) ≃[ ι ] (Y , t)) (h : H X) P Y t (equivFun (α (e .fst)) h) P X s h transfer⁻ P α τ ι θ {X} {Y} {s} {t} e h = subst⁻ {(Z , u , h) P Z u h}) (sip - (productUnivalentStr ι θ (EquivAction→StrEquiv α) (TransportStr→UnivalentStr α τ)) + (productUnivalentStr ι θ (EquivAction→StrEquiv α) (TransportStr→UnivalentStr α τ)) (X , s , h) (Y , t , equivFun (α (e .fst)) h) (e .fst , e .snd , refl)) diff --git a/Cubical.Structures.TypeEqvTo.html b/Cubical.Structures.TypeEqvTo.html index c11a43bee4..525506612a 100644 --- a/Cubical.Structures.TypeEqvTo.html +++ b/Cubical.Structures.TypeEqvTo.html @@ -18,17 +18,17 @@ ℓ' ℓ'' : Level TypeEqvTo : ( : Level) (X : Type ℓ') Type (ℓ-max (ℓ-suc ) ℓ') -TypeEqvTo X = TypeWithStr Y Y X ∥₁) +TypeEqvTo X = TypeWithStr Y Y X ∥₁) PointedEqvTo : ( : Level) (X : Type ℓ') Type (ℓ-max (ℓ-suc ) ℓ') -PointedEqvTo X = TypeWithStr Y Y × Y X ∥₁) +PointedEqvTo X = TypeWithStr Y Y × Y X ∥₁) module _ (X : Type ℓ') where PointedEqvToStructure : Type Type (ℓ-max ℓ') PointedEqvToStructure = AxiomsStructure PointedStructure Y _ Y X ∥₁) - PointedEqvToEquivStr : StrEquiv PointedEqvToStructure ℓ'' + PointedEqvToEquivStr : StrEquiv PointedEqvToStructure ℓ'' PointedEqvToEquivStr = AxiomsEquivStr PointedEquivStr Y _ Y X ∥₁) pointedEqvToUnivalentStr : UnivalentStr {} PointedEqvToStructure PointedEqvToEquivStr diff --git a/Cubical.Tactics.CommRingSolver.Examples.html b/Cubical.Tactics.CommRingSolver.Examples.html index 721fef5578..534a7ae4d8 100644 --- a/Cubical.Tactics.CommRingSolver.Examples.html +++ b/Cubical.Tactics.CommRingSolver.Examples.html @@ -95,7 +95,7 @@ The ring solver should also be able to deal with more complicated arguments and operations with that are not given as the exact names in CommRingStr. -} - _ : (x y : A ) x + y y + x + _ : (x y : A ) x + y y + x _ = solve (CommAlgebra→CommRing A) diff --git a/Cubical.Tactics.MonoidSolver.CommSolver.html b/Cubical.Tactics.MonoidSolver.CommSolver.html index 95e1a4beb7..ed9ff73078 100644 --- a/Cubical.Tactics.MonoidSolver.CommSolver.html +++ b/Cubical.Tactics.MonoidSolver.CommSolver.html @@ -23,10 +23,10 @@ open CommMonoidTheory M Env : Type - Env n = Vec M n + Env n = Vec M n -- evaluation of an expression (without normalization) - ⟦_⟧ : ∀{n} Expr M n Env n M + ⟦_⟧ : ∀{n} Expr M n Env n M ε⊗ v = ε i v = lookup i v e₁ e₂ v = e₁ v · e₂ v @@ -47,13 +47,13 @@ e[ (Fin.suc j) ] = 0 e[ j ] -- normalization of an expression - normalize : {n : } Expr M n NormalForm n + normalize : {n : } Expr M n NormalForm n normalize ( i) = e[ i ] normalize ε⊗ = emptyForm normalize (e₁ e₂) = (normalize e₁) (normalize e₂) -- evaluation of normalform - eval : {n : } NormalForm n Env n M + eval : {n : } NormalForm n Env n M eval [] v = ε eval (x xs) (v vs) = iter x w v · w) (eval xs vs) @@ -88,7 +88,7 @@ -- proof that evaluation of an expression is invariant under normalization isEqualToNormalform : {n : } - (e : Expr M n) + (e : Expr M n) (v : Env n) eval (normalize e) v e v isEqualToNormalform ε⊗ v = emptyFormEvaluatesToε v @@ -99,7 +99,7 @@ e₁ v · e₂ v solve : {n : } - (e₁ e₂ : Expr M n) + (e₁ e₂ : Expr M n) (v : Env n) (p : eval (normalize e₁) v eval (normalize e₂) v) e₁ v e₂ v @@ -110,7 +110,7 @@ e₂ v solve : (M : CommMonoid ) - {n : } (e₁ e₂ : Expr M n) (v : Eval.Env M n) + {n : } (e₁ e₂ : Expr M n) (v : Eval.Env M n) (p : Eval.eval M (Eval.normalize M e₁) v Eval.eval M (Eval.normalize M e₂) v) _ solve M = EqualityToNormalform.solve M diff --git a/Cubical.Tactics.MonoidSolver.Solver.html b/Cubical.Tactics.MonoidSolver.Solver.html index 83bb8939d4..8f7b350bb8 100644 --- a/Cubical.Tactics.MonoidSolver.Solver.html +++ b/Cubical.Tactics.MonoidSolver.Solver.html @@ -24,10 +24,10 @@ open MonoidStr (snd M) Env : Type - Env n = Vec M n + Env n = Vec M n -- evaluation of an expression (without normalization) - ⟦_⟧ : ∀{n} Expr M n Env n M + ⟦_⟧ : ∀{n} Expr M n Env n M ε⊗ v = ε i v = lookup i v e₁ e₂ v = e₁ v · e₂ v @@ -36,13 +36,13 @@ NormalForm n = List (Fin n) -- normalization of an expression - normalize : ∀{n} Expr M n NormalForm n + normalize : ∀{n} Expr M n NormalForm n normalize ( i) = i [] normalize ε⊗ = [] normalize (e₁ e₂) = (normalize e₁) ++ (normalize e₂) -- evaluation of normalform - eval : {n} NormalForm n Env n M + eval : {n} NormalForm n Env n M eval [] v = ε eval (x xs) v = (lookup x v) · (eval xs v) @@ -59,7 +59,7 @@ -- proof that evaluation of an expression is invariant under normalization isEqualToNormalform : (n : ) - (e : Expr M n) + (e : Expr M n) (v : Env n) eval (normalize e) v e v isEqualToNormalform n ( i) v = ·IdR _ @@ -70,7 +70,7 @@ e₁ v · e₂ v solve : {n : } - (e₁ e₂ : Expr M n) + (e₁ e₂ : Expr M n) (v : Env n) (p : eval (normalize e₁) v eval (normalize e₂) v) e₁ v e₂ v @@ -81,7 +81,7 @@ e₂ v solve : (M : Monoid ) - {n : } (e₁ e₂ : Expr M n) (v : Eval.Env M n) + {n : } (e₁ e₂ : Expr M n) (v : Eval.Env M n) (p : Eval.eval M (Eval.normalize M e₁) v Eval.eval M (Eval.normalize M e₂) v) _ solve M = EqualityToNormalform.solve M diff --git a/Cubical.Talks.EPA2020.html b/Cubical.Talks.EPA2020.html index 6461d749d7..40c8b8c9fe 100644 --- a/Cubical.Talks.EPA2020.html +++ b/Cubical.Talks.EPA2020.html @@ -327,8 +327,8 @@ -- This is a very useful consequence of univalence open import Cubical.Foundations.SIP -sip' : { : Level} {S : Type Type } {ι : StrEquiv S } - (θ : UnivalentStr S ι) (A B : TypeWithStr S) A ≃[ ι ] B A B +sip' : { : Level} {S : Type Type } {ι : StrEquiv S } + (θ : UnivalentStr S ι) (A B : TypeWithStr S) A ≃[ ι ] B A B sip' = sip -- The tricky thing is to prove that (S,ι) is a univalent structure. diff --git a/Cubical.ZCohomology.EilenbergSteenrodZ.html b/Cubical.ZCohomology.EilenbergSteenrodZ.html index 68f835c741..d781ca3994 100644 --- a/Cubical.ZCohomology.EilenbergSteenrodZ.html +++ b/Cubical.ZCohomology.EilenbergSteenrodZ.html @@ -61,7 +61,7 @@ suspΩFun : {} {A : Type } (n : ) (f : A coHomK n) Susp A coHomK (suc n) suspΩFun n f = suspΩFun' n λ a Kn→ΩKn+1 n (f a) - ≡suspΩFun : {} (n : ) (A : Pointed ) (f : Susp (typ A) coHomK (suc n)) (p : f north 0ₖ _) + ≡suspΩFun : {} (n : ) (A : Pointed ) (f : Susp (typ A) coHomK (suc n)) (p : f north 0ₖ _) f suspΩFun' n λ a sym p ∙∙ (cong f (merid a)) ∙∙ (cong f (sym (merid (pt A))) p) ≡suspΩFun n s f p i north = p i ≡suspΩFun n s f p i south = (cong f (sym (merid (pt s))) p) i @@ -69,9 +69,9 @@ doubleCompPath-filler (sym p) (cong f (merid a)) (cong f (sym (merid (pt s))) p) i j -- induction principle for Hⁿ(Susp A) -SuspCohomElim : { ℓ'} {A : Pointed } (n : ) {B : coHom (suc n) (Susp (typ A)) Type ℓ'} - ((x : coHom (suc n) (Susp (typ A))) isProp (B x)) - ((f : typ A Path _ (0ₖ _) (0ₖ _)) f (pt A) refl B suspΩFun' n f ∣₂) +SuspCohomElim : { ℓ'} {A : Pointed } (n : ) {B : coHom (suc n) (Susp (typ A)) Type ℓ'} + ((x : coHom (suc n) (Susp (typ A))) isProp (B x)) + ((f : typ A Path _ (0ₖ _) (0ₖ _)) f (pt A) refl B suspΩFun' n f ∣₂) (x : _) B x SuspCohomElim {A = A} n {B = B} isprop f = coHomPointedElim _ north isprop λ g gid @@ -88,7 +88,7 @@ -- Alternative definition with reduced groups replaced by unreduced one for n ≥ 1 coHomFunctor' : { : Level} (n : ) Pointed AbGroup coHomFunctor' (pos zero) = coHomFunctor 0 -coHomFunctor' (pos (suc n)) A = coHomGroup (suc n) (typ A) +coHomFunctor' (pos (suc n)) A = coHomGroup (suc n) (typ A) coHomFunctor' (negsuc n) = coHomFunctor (negsuc n) coHomFunctor≡coHomFunctor' : {} coHomFunctor {} coHomFunctor' @@ -97,7 +97,7 @@ ; (negsuc n) refl} -- Ĥ⁰(Susp A) is contractible -H0-susp : {} {A : Pointed } isContr (coHomRed 0 (Susp (typ A) , north)) +H0-susp : {} {A : Pointed } isContr (coHomRed 0 (Susp (typ A) , north)) fst H0-susp = 0ₕ∙ _ snd (H0-susp {A = A}) = ST.elim _ isOfHLevelPath 2 isSetSetTrunc _ _) @@ -113,13 +113,13 @@ private suspFunCharacFun : {} {A : Pointed } (n : ) - ((Susp (typ A)) coHomK (suc n)) - (typ A (coHomK n)) + ((Susp (typ A)) coHomK (suc n)) + (typ A (coHomK n)) suspFunCharacFun {A = A} n f x = ΩKn+1→Kn n (sym (rCancelₖ (suc n) (f north)) ∙∙ cong x f x -[ (suc n) ]ₖ f north) ((merid x) sym (merid (pt A))) ∙∙ rCancelₖ (suc n) (f north)) - linvLem : {} {A : Pointed } (n : ) (f : typ A Path (coHomK (suc n)) (0ₖ _) (0ₖ _)) + linvLem : {} {A : Pointed } (n : ) (f : typ A Path (coHomK (suc n)) (0ₖ _) (0ₖ _)) (fId : f (pt A) refl) (x : _) suspΩFun n (suspFunCharacFun {A = A} n (suspΩFun' n f)) x suspΩFun' n f x @@ -127,7 +127,7 @@ linvLem n f fId south = refl linvLem {A = A} n f fId (merid x i) j = helper n x f fId j i where - helper : (n : ) (a : typ A) (f : typ A Path (coHomK (suc n)) (0ₖ _) (0ₖ _)) + helper : (n : ) (a : typ A) (f : typ A Path (coHomK (suc n)) (0ₖ _) (0ₖ _)) (fId : f (pt A) refl) Kn→ΩKn+1 n (suspFunCharacFun {A = A} n (suspΩFun' n f) a) f a helper zero a f fId = @@ -151,7 +151,7 @@ ∙∙ sym (rUnit (f a)) -suspFunCharac : {} {A : Pointed } (n : ) Iso (coHom (suc (suc n)) (Susp (typ A))) (coHom (suc n) (typ A)) +suspFunCharac : {} {A : Pointed } (n : ) Iso (coHom (suc (suc n)) (Susp (typ A))) (coHom (suc n) (typ A)) fun (suspFunCharac {A = A} n) = ST.map λ f suspFunCharacFun {A = A} (suc n) f inv (suspFunCharac {A = A} n) = ST.map (suspΩFun (suc n)) @@ -179,7 +179,7 @@ λ f fId cong ∣_∣₂ (funExt (linvLem (suc n) f fId)) -- We also need that H¹(Susp A) ≃ Ĥ⁰(A) -suspFunCharac0 : {} {A : Pointed } Iso ( ((Susp (typ A)) coHomK 1) ∥₂) A →∙ ( , 0) ∥₂ +suspFunCharac0 : {} {A : Pointed } Iso ( ((Susp (typ A)) coHomK 1) ∥₂) A →∙ ( , 0) ∥₂ fun (suspFunCharac0 {A = A}) = ST.map λ f suspFunCharacFun {A = A} 0 f , (cong (ΩKn+1→Kn 0) ((λ i sym (rCancelₖ _ (f north)) @@ -232,7 +232,7 @@ ; south refl ; (merid a i) j helper a (fst f) (fst g) j i})))) where - helper : (a : typ A) (f g : typ A coHomK 0) + helper : (a : typ A) (f g : typ A coHomK 0) Kn→ΩKn+1 0 (f a +[ 0 ]ₖ g a) cong₂ _+ₖ_ (Kn→ΩKn+1 0 (f a)) (Kn→ΩKn+1 0 (g a)) helper a f g = Kn→ΩKn+1-hom 0 (f a) (g a) @@ -247,7 +247,7 @@ ; south refl ; (merid a i) j helper a f g j i})))) where - helper : (a : typ A) (f g : typ A coHomK (suc n)) + helper : (a : typ A) (f g : typ A coHomK (suc n)) Kn→ΩKn+1 (suc n) (f a +ₖ g a) cong₂ _+ₖ_ (Kn→ΩKn+1 (suc n) (f a)) (Kn→ΩKn+1 (suc n) (g a)) helper a f g = Kn→ΩKn+1-hom (suc n) (f a) (g a) @@ -315,7 +315,7 @@ λ {(p , q) _ Σ≡Prop _ isSetSetTrunc _ _) refl}) fun (exactnessIso (pos (suc n)) f) ker = (fst ker) , inIm-helper (fst ker) (snd ker) where - inIm-helper : (x : coHom (suc n) (typ B)) + inIm-helper : (x : coHom (suc n) (typ B)) isInKer (theMorph (pos (suc n)) {A = A} {B = B} f) x isInIm (theMorph (pos (suc n)) {A = B} {B = _ , inr (pt B)} (cfcod (fst f) , refl)) x inIm-helper = @@ -328,7 +328,7 @@ (Iso.fun PathIdTrunc₀Iso inker) inv (exactnessIso (pos (suc n)) f) im = fst im , inKer-helper (fst im) (snd im) where - inKer-helper : (x : coHom (suc n) (typ B)) + inKer-helper : (x : coHom (suc n) (typ B)) isInIm (theMorph (pos (suc n)) {A = B} {B = _ , inr (pt B)} (cfcod (fst f) , refl)) x isInKer (theMorph (pos (suc n)) {A = A} {B = B} f) x inKer-helper = diff --git a/Cubical.ZCohomology.GroupStructure.html b/Cubical.ZCohomology.GroupStructure.html index 5a01b49fe8..7fde244676 100644 --- a/Cubical.ZCohomology.GroupStructure.html +++ b/Cubical.ZCohomology.GroupStructure.html @@ -73,8 +73,8 @@ wedgeConHLev n = subst x isOfHLevel x (coHomK (2 + n))) (sym (+-suc (2 + n) (suc n) +-suc (3 + n) n)) (isOfHLevelPlus' {n = n} (4 + n) (isOfHLevelTrunc (4 + n))) -wedgeConHLev' : (n : ) isOfHLevel ((2 + n) + (2 + n)) (typ (Ω (coHomK-ptd (3 + n)))) -wedgeConHLev' n = subst x isOfHLevel x (typ (Ω (coHomK-ptd (3 + n))))) +wedgeConHLev' : (n : ) isOfHLevel ((2 + n) + (2 + n)) (typ (Ω (coHomK-ptd (3 + n)))) +wedgeConHLev' n = subst x isOfHLevel x (typ (Ω (coHomK-ptd (3 + n))))) (sym (+-suc (2 + n) (suc n) +-suc (3 + n) n)) (isOfHLevelPlus' {n = n} (4 + n) (isOfHLevelTrunc (5 + n) _ _)) @@ -237,10 +237,10 @@ T.elim _ isOfHLevelPath (4 + n) (isOfHLevelTrunc (4 + n)) _ _) λ x refl -∙≡+₁ : (p q : typ (Ω (coHomK-ptd 1))) p q cong₂ _+ₖ_ p q +∙≡+₁ : (p q : typ (Ω (coHomK-ptd 1))) p q cong₂ _+ₖ_ p q ∙≡+₁ p q = i j rUnitₖ 1 (p j) (~ i)) λ j lUnitₖ 1 (q j) (~ i)) sym (cong₂Funct _+ₖ_ p q) -∙≡+₂ : (n : ) (p q : typ (Ω (coHomK-ptd (suc (suc n))))) p q cong₂ _+ₖ_ p q +∙≡+₂ : (n : ) (p q : typ (Ω (coHomK-ptd (suc (suc n))))) p q cong₂ _+ₖ_ p q ∙≡+₂ n p q = i j rUnitₖ (2 + n) (p j) (~ i)) λ j lUnitₖ (2 + n) (q j) (~ i)) sym (cong₂Funct _+ₖ_ p q) lCancelₖ : (n : ) (x : coHomK n) (-ₖ_ {n = n} x) +ₖ x coHom-pt n @@ -343,7 +343,7 @@ -- without having to use the equivalence Kₙ ≃ ΩKₙ₊₁ -cong+ₖ-comm : (n : ) (p q : typ (Ω (coHomK-ptd (suc n)))) cong₂ _+ₖ_ p q cong₂ _+ₖ_ q p +cong+ₖ-comm : (n : ) (p q : typ (Ω (coHomK-ptd (suc n)))) cong₂ _+ₖ_ p q cong₂ _+ₖ_ q p cong+ₖ-comm zero p q = rUnit (cong₂ _+ₖ_ p q) ∙∙ i j commₖ 1 base base (i j)) @@ -700,9 +700,9 @@ -- Alternative definition of cohomology using ΩKₙ instead. Useful for breaking proofs of group isos -- up into smaller parts coHomGrΩ : {} (n : ) (A : Type ) Group -coHomGrΩ n A = (A typ (Ω (coHomK-ptd (suc n)))) ∥₂ , coHomGrnA +coHomGrΩ n A = (A typ (Ω (coHomK-ptd (suc n)))) ∥₂ , coHomGrnA where - coHomGrnA : GroupStr (A typ (Ω (coHomK-ptd (suc n)))) ∥₂ + coHomGrnA : GroupStr (A typ (Ω (coHomK-ptd (suc n)))) ∥₂ 1g coHomGrnA = _ refl) ∣₂ GroupStr._·_ coHomGrnA = ST.rec2 § λ p q x p x q x) ∣₂ inv coHomGrnA = ST.map λ f x sym (f x) @@ -710,7 +710,7 @@ where abstract helper : - IsGroup {G = (A typ (Ω (coHomK-ptd (suc n)))) ∥₂} + IsGroup {G = (A typ (Ω (coHomK-ptd (suc n)))) ∥₂} ( _ refl) ∣₂) (ST.rec2 § λ p q x p x q x) ∣₂) (ST.map λ f x sym (f x)) helper = makeIsGroup § (ST.elim3 _ _ _ isOfHLevelPath 2 § _ _) p q r cong ∣_∣₂ (funExt λ x assoc∙ (p x) (q x) (r x)))) diff --git a/Cubical.ZCohomology.Groups.Prelims.html b/Cubical.ZCohomology.Groups.Prelims.html index cb96868faf..915f4befa4 100644 --- a/Cubical.ZCohomology.Groups.Prelims.html +++ b/Cubical.ZCohomology.Groups.Prelims.html @@ -33,13 +33,13 @@ -- We strengthen the elimination rule for Hⁿ(S¹). We show that we only need to work with elements ∣ f ∣₂ (definitionally) sending loop to some loop p -- and sending base to 0 -elimFunS¹ : (n : ) (p : typ (Ω (coHomK-ptd (suc n)))) coHomK (suc n) +elimFunS¹ : (n : ) (p : typ (Ω (coHomK-ptd (suc n)))) coHomK (suc n) elimFunS¹ n p base = ptSn (suc n) elimFunS¹ n p (loop i) = p i coHomPointedElimS¹ : {} (n : ) {B : coHom (suc n) Type } ((x : coHom (suc n) ) isProp (B x)) - ((p : typ (Ω (coHomK-ptd (suc n)))) B elimFunS¹ n p ∣₂) + ((p : typ (Ω (coHomK-ptd (suc n)))) B elimFunS¹ n p ∣₂) (x : coHom (suc n) ) B x coHomPointedElimS¹ n {B = B} x p = coHomPointedElim n base x @@ -49,7 +49,7 @@ coHomPointedElimS¹2 : {} (n : ) {B : (x y : coHom (suc n) ) Type } ((x y : coHom (suc n) ) isProp (B x y)) - ((p q : typ (Ω (coHomK-ptd (suc n)))) B elimFunS¹ n p ∣₂ elimFunS¹ n q ∣₂) + ((p q : typ (Ω (coHomK-ptd (suc n)))) B elimFunS¹ n p ∣₂ elimFunS¹ n q ∣₂) (x y : coHom (suc n) ) B x y coHomPointedElimS¹2 n {B = B} x p = coHomPointedElim2 _ base x λ f g fId gId @@ -58,7 +58,7 @@ (p (sym fId ∙∙ cong f loop ∙∙ fId) (sym gId ∙∙ cong g loop ∙∙ gId)) -- We do the same thing for Sⁿ, n ≥ 2. -elimFunSⁿ : (n m : ) (p : S₊ (suc m) typ (Ω (coHomK-ptd (suc n)))) +elimFunSⁿ : (n m : ) (p : S₊ (suc m) typ (Ω (coHomK-ptd (suc n)))) (S₊ (2 + m)) coHomK (suc n) elimFunSⁿ n m p north = ptSn (suc n) elimFunSⁿ n m p south = ptSn (suc n) @@ -208,7 +208,7 @@ (loop-helper2 i j) where - F : typ (Ω (coHomK-ptd 2)) a base +K snd (coHomK-ptd 2) a base +K snd (coHomK-ptd 2) + F : typ (Ω (coHomK-ptd 2)) a base +K snd (coHomK-ptd 2) a base +K snd (coHomK-ptd 2) F = cong (_+K_ {n = 2} (a base)) G : 0ₖ 2 0ₖ 2 a base +K snd (coHomK-ptd 2) a base +K snd (coHomK-ptd 2) diff --git a/Cubical.ZCohomology.Groups.Sn.html b/Cubical.ZCohomology.Groups.Sn.html index 98fb811d5b..ff1e228a31 100644 --- a/Cubical.ZCohomology.Groups.Sn.html +++ b/Cubical.ZCohomology.Groups.Sn.html @@ -56,7 +56,7 @@ -------------------------- H⁰(Sⁿ) for n > 1 ----------------------------- -Sn-connected : (n : ) (x : typ (S₊∙ (suc n))) pt (S₊∙ (suc n)) x ∥₁ +Sn-connected : (n : ) (x : typ (S₊∙ (suc n))) pt (S₊∙ (suc n)) x ∥₁ Sn-connected zero = toPropElim _ isPropPropTrunc) refl ∣₁ Sn-connected (suc zero) = suspToPropElim base _ isPropPropTrunc) refl ∣₁ Sn-connected (suc (suc n)) = suspToPropElim north _ isPropPropTrunc) refl ∣₁ @@ -196,7 +196,7 @@ (isOfHLevelRetractFromIso 0 helper (_ , helper2)) where - helper : Iso coHomGr (2 + n) (S₊ 1) Σ (hLevelTrunc (4 + n) (S₊ (2 + n))) x x x ∥₂) ∥₂ + helper : Iso coHomGr (2 + n) (S₊ 1) Σ (hLevelTrunc (4 + n) (S₊ (2 + n))) x x x ∥₂) ∥₂ helper = compIso (setTruncIso IsoFunSpaceS¹) IsoSetTruncateSndΣ helper2 : (x : Σ (hLevelTrunc (4 + n) (S₊ (2 + n))) x x x ∥₂) ∥₂) north , refl ∣₂ ∣₂ x @@ -222,13 +222,13 @@ H¹-Sⁿ≅0 : (n : ) GroupIso (coHomGr 1 (S₊ (2 + n))) UnitGroup₀ H¹-Sⁿ≅0 zero = contrGroupIsoUnit isContrH¹S² where - isContrH¹S² : isContr coHomGr 1 (S₊ 2) + isContrH¹S² : isContr coHomGr 1 (S₊ 2) isContrH¹S² = _ base ) ∣₂ , coHomPointedElim 0 north _ isSetSetTrunc _ _) λ f p cong ∣_∣₂ (funExt λ x sym p ∙∙ sym (spoke f north) ∙∙ spoke f x) H¹-Sⁿ≅0 (suc n) = contrGroupIsoUnit isContrH¹S³⁺ⁿ where - anIso : Iso coHomGr 1 (S₊ (3 + n)) (S₊ (3 + n) hLevelTrunc (4 + n) (coHomK 1)) ∥₂ + anIso : Iso coHomGr 1 (S₊ (3 + n)) (S₊ (3 + n) hLevelTrunc (4 + n) (coHomK 1)) ∥₂ anIso = setTruncIso (codomainIso @@ -245,7 +245,7 @@ (T.elim _ isOfHLevelΠ 3 λ _ isOfHLevelPlus {n = 1} 2 (isSetSetTrunc _ _)) (toPropElim _ isPropΠ λ _ isSetSetTrunc _ _) λ p cong ∣_∣₂ (funExt λ x p ∙∙ sym (spoke f north) ∙∙ spoke f x))) - isContrH¹S³⁺ⁿ : isContr coHomGr 1 (S₊ (3 + n)) + isContrH¹S³⁺ⁿ : isContr coHomGr 1 (S₊ (3 + n)) isContrH¹S³⁺ⁿ = isOfHLevelRetractFromIso 0 anIso diff --git a/Cubical.ZCohomology.Groups.SphereProduct.html b/Cubical.ZCohomology.Groups.SphereProduct.html index 28d4cb946d..4820bf1dc5 100644 --- a/Cubical.ZCohomology.Groups.SphereProduct.html +++ b/Cubical.ZCohomology.Groups.SphereProduct.html @@ -118,7 +118,7 @@ charac-fun : (S₊ (suc n) S₊ (suc m) - typ (Ω (coHomK-ptd (suc (suc (suc n + m)))))) + typ (Ω (coHomK-ptd (suc (suc (suc n + m)))))) S₊ (suc (suc n)) × S₊ (suc m) coHomK (suc (suc (suc n + m))) charac-fun g (north , y) = 0ₖ _ charac-fun g (south , y) = 0ₖ _ @@ -127,7 +127,7 @@ rewrte : (f : S₊ (suc (suc n)) × S₊ (suc m) coHomK (suc (suc (suc n + m)))) ∃[ g (S₊ (suc n) S₊ (suc m) - typ (Ω (coHomK-ptd (suc (suc (suc n + m)))))) ] + typ (Ω (coHomK-ptd (suc (suc (suc n + m)))))) ] charac-fun g f rewrte f = PT.map p @@ -152,7 +152,7 @@ ∥Path∥ : (g : S₊ (suc n) S₊ (suc m) - typ (Ω (coHomK-ptd (suc (suc (suc n + m)))))) + typ (Ω (coHomK-ptd (suc (suc (suc n + m)))))) (g (ptSn _)) _ refl) ∥₁ ∥Path∥ g = fun PathIdTrunc₀Iso diff --git a/Cubical.ZCohomology.Groups.Torus.html b/Cubical.ZCohomology.Groups.Torus.html index 170d926ee4..44fea61d61 100644 --- a/Cubical.ZCohomology.Groups.Torus.html +++ b/Cubical.ZCohomology.Groups.Torus.html @@ -59,7 +59,7 @@ -- that some Isos are morphisms. They make things type-check faster, but should probably not be used for computations. -- We first need some functions -elimFunT² : (n : ) (p q : typ (Ω (coHomK-ptd (suc n)))) +elimFunT² : (n : ) (p q : typ (Ω (coHomK-ptd (suc n)))) Square q q p p × coHomK (suc n) elimFunT² n p q P (base , base) = ptSn (suc n) diff --git a/Cubical.ZCohomology.Groups.Wedge.html b/Cubical.ZCohomology.Groups.Wedge.html index 5b164ffed6..ea38565d84 100644 --- a/Cubical.ZCohomology.Groups.Wedge.html +++ b/Cubical.ZCohomology.Groups.Wedge.html @@ -108,13 +108,13 @@ module _ { ℓ'} (A : Pointed ) (B : Pointed ℓ') where private - wedgeFun⁻ : n (f : typ A coHomK (suc n)) (g : typ B coHomK (suc n)) + wedgeFun⁻ : n (f : typ A coHomK (suc n)) (g : typ B coHomK (suc n)) ((A B) coHomK (suc n)) wedgeFun⁻ n f g (inl x) = f x +ₖ g (pt B) wedgeFun⁻ n f g (inr x) = f (pt A) +ₖ g x wedgeFun⁻ n f g (push a i) = f (pt A) +ₖ g (pt B) - Hⁿ-⋁ : (n : ) GroupIso (coHomGr (suc n) (A B)) (×coHomGr (suc n) (typ A) (typ B)) + Hⁿ-⋁ : (n : ) GroupIso (coHomGr (suc n) (A B)) (×coHomGr (suc n) (typ A) (typ B)) fun (fst (Hⁿ-⋁ zero)) = ST.elim _ isSet× isSetSetTrunc isSetSetTrunc) λ f x f (inl x)) ∣₂ , x f (inr x)) ∣₂ @@ -245,7 +245,7 @@ λ {(f , p) (g , q) ΣPathP (cong ∣_∣₂ (Σ≡Prop _ isSetℤ _ _) refl) , cong ∣_∣₂ (Σ≡Prop _ isSetℤ _ _) refl))}) - wedgeConnected : ((x : typ A) pt A x ∥₁) ((x : typ B) pt B x ∥₁) (x : A B) inl (pt A) x ∥₁ + wedgeConnected : ((x : typ A) pt A x ∥₁) ((x : typ B) pt B x ∥₁) (x : A B) inl (pt A) x ∥₁ wedgeConnected conA conB = Pushout.elimProp _ _ isPropPropTrunc) diff --git a/Cubical.ZCohomology.Gysin.html b/Cubical.ZCohomology.Gysin.html index d61509438f..e7090fb7ba 100644 --- a/Cubical.ZCohomology.Gysin.html +++ b/Cubical.ZCohomology.Gysin.html @@ -517,19 +517,19 @@ -- We now generealise the equivalence g to also apply to arbitrary fibrations (Q : B → Type) -- satisfying (Q * ≃∙ Sⁿ) -module _ {} (B : Pointed ) (Q : typ B Pointed ℓ-zero) - (conB : (x y : typ B) x y ∥₁) - (n : ) (Q-is : Iso (typ (Q (pt B))) (S₊ n)) +module _ {} (B : Pointed ) (Q : typ B Pointed ℓ-zero) + (conB : (x y : typ B) x y ∥₁) + (n : ) (Q-is : Iso (typ (Q (pt B))) (S₊ n)) (Q-is-ptd : Iso.fun Q-is (pt (Q (pt B))) snd (S₊∙ n)) - (c : (b : typ B) (Q b →∙ coHomK-ptd n)) + (c : (b : typ B) (Q b →∙ coHomK-ptd n)) (c-pt : c (pt B) .fst ((λ x genFunSpace n .fst (Iso.fun Q-is x)))) where - g : (b : typ B) (i : ) coHomK i (Q b →∙ coHomK-ptd (i +' n)) + g : (b : typ B) (i : ) coHomK i (Q b →∙ coHomK-ptd (i +' n)) fst (g b i x) y = x ⌣ₖ c b .fst y snd (g b i x) = cong (x ⌣ₖ_) (c b .snd) ⌣ₖ-0ₖ i n x - g-hom : (b : typ B) (i : ) (x y : coHomK i) + g-hom : (b : typ B) (i : ) (x y : coHomK i) g b i (x +ₖ y) ((g b i x) ++ (g b i y)) g-hom b i x y = →∙Homogeneous≡ (isHomogeneousKn _) @@ -554,19 +554,19 @@ g-base : (i : ) isEquiv (g (pt B) i) g-base i = transport j isEquiv (gPathP' i (~ j))) (g-base.isEquiv-g n i) - g-equiv : (b : typ B) (i : ) isEquiv (g b i) + g-equiv : (b : typ B) (i : ) isEquiv (g b i) g-equiv b i = PT.rec (isPropIsEquiv _) (J b _ isEquiv (g b i)) (g-base i)) (conB (pt B) b) -module _ {} (B : Pointed ) (Q : typ B Pointed ℓ-zero) - (conB : (x y : typ B) x y ∥₂) - (n : ) (Q-is : Iso (typ (Q (pt B))) (S₊ n)) +module _ {} (B : Pointed ) (Q : typ B Pointed ℓ-zero) + (conB : (x y : typ B) x y ∥₂) + (n : ) (Q-is : Iso (typ (Q (pt B))) (S₊ n)) (Q-is-ptd : Iso.fun Q-is (pt (Q (pt B))) snd (S₊∙ n)) where - is-setQ→K : (b : typ B) isSet (Q b →∙ coHomK-ptd n) + is-setQ→K : (b : typ B) isSet (Q b →∙ coHomK-ptd n) is-setQ→K b = ST.rec (isProp→isOfHLevelSuc 1 isPropIsSet) (J b _ isSet (Q b →∙ coHomK-ptd n)) @@ -577,7 +577,7 @@ (conB (pt B) b) - isConnB : isConnected 3 (typ B) + isConnB : isConnected 3 (typ B) fst isConnB = pt B snd isConnB = T.elim _ isOfHLevelPath 3 (isOfHLevelTrunc 3) _ _) @@ -590,7 +590,7 @@ -- We construct a term in c* : (b : B) → (Q b →∙ Kₙ) -- Which is equal to the generator of (Sⁿ →∙ Kₙ) over the base point. - c* : Σ[ c ((b : typ B) (Q b →∙ coHomK-ptd n)) ] + c* : Σ[ c ((b : typ B) (Q b →∙ coHomK-ptd n)) ] (c (pt B) .fst ((λ x genFunSpace n .fst (Iso.fun Q-is x)))) fst c* b = ST.rec (is-setQ→K b) @@ -643,9 +643,9 @@ -- We are now almost ready to define the Thom isomorphism. -- The following module contains the types and functions occuring in it. -module preThom { ℓ'} (B : Pointed ) (P : typ B Type ℓ') where +module preThom { ℓ'} (B : Pointed ) (P : typ B Type ℓ') where E : Type _ - E = Σ (typ B) P + E = Σ (typ B) P : Type _ = Pushout {A = E} _ tt) fst @@ -658,14 +658,14 @@ i (suc n) P-base south = inr (pt B) i (suc n) P-base (merid a i₁) = push (pt B , Iso.inv P-base a) i₁ - Q : typ B Pointed ℓ' + Q : typ B Pointed ℓ' Q x = Susp (P x) , north F : Type _ - F = Σ (typ B) λ x Q x .fst + F = Σ (typ B) λ x Q x .fst : Type _ - = Pushout {A = typ B} {C = F} _ tt) λ b b , north + = Pushout {A = typ B} {C = F} _ tt) λ b b , north invFE : invFE (inl x) = inl tt @@ -698,13 +698,13 @@ Iso.leftInv IsoFE (push a i₁) k = push a (i₁ k) - F̃→Q : {} {A : Pointed } ( , inl tt) →∙ A (b : typ B) Q b →∙ A + F̃→Q : {} {A : Pointed } ( , inl tt) →∙ A (b : typ B) Q b →∙ A fst (F̃→Q {A = A , a} (f , p) b) north = f (inr (b , north)) fst (F̃→Q {A = A , a} (f , p) b) south = f (inr (b , south)) fst (F̃→Q {A = A , a} (f , p) b) (merid a₁ i₁) = f (inr (b , merid a₁ i₁)) snd (F̃→Q {A = A , a} (f , p) b) = sym (cong f (push b)) p - Q→F̃ : {} {A : Pointed } ((b : typ B) Q b →∙ A) ( , inl tt) →∙ A + Q→F̃ : {} {A : Pointed } ((b : typ B) Q b →∙ A) ( , inl tt) →∙ A fst (Q→F̃ {A = A , a} f) (inl x) = a fst (Q→F̃ {A = A , a} f) (inr (x , north)) = f x .fst north fst (Q→F̃ {A = A , a} f) (inr (x , south)) = f x .fst south @@ -712,7 +712,7 @@ fst (Q→F̃ {A = A , a} f) (push a₁ i₁) = snd (f a₁) (~ i₁) snd (Q→F̃ {A = A , a} f) = refl - Q→F̃-hom : (n : ) (f g : ((b : typ B) Q b →∙ coHomK-ptd n)) + Q→F̃-hom : (n : ) (f g : ((b : typ B) Q b →∙ coHomK-ptd n)) Q→F̃ b f b ++ g b) (Q→F̃ f ++ Q→F̃ g) Q→F̃-hom n f g = →∙Homogeneous≡ (isHomogeneousKn _) @@ -725,13 +725,13 @@ (rUnitₖ n (0ₖ n)) (~ i) (~ j)}) Q→F̃→Q : {} {A : Pointed } - (x : (b : typ B) Q b →∙ A) (b : typ B) (q : Q b .fst) + (x : (b : typ B) Q b →∙ A) (b : typ B) (q : Q b .fst) F̃→Q (Q→F̃ x) b .fst q x b .fst q Q→F̃→Q f b north = refl Q→F̃→Q f b south = refl Q→F̃→Q f b (merid a i₁) = refl - F̃→Q→F̃ : {} {A : Pointed } (f : typ A) (p : _) + F̃→Q→F̃ : {} {A : Pointed } (f : typ A) (p : _) (x : ) fst (Q→F̃ {A = A} (F̃→Q (f , p))) x f x F̃→Q→F̃ f p (inl x) = sym p F̃→Q→F̃ f p (inr (x , north)) = refl @@ -742,7 +742,7 @@ IsoF̃Q : {} {A : Pointed } Iso (( , inl tt) →∙ A) - ((b : typ B) Q b →∙ A) + ((b : typ B) Q b →∙ A) Iso.fun (IsoF̃Q {A = A , a}) = F̃→Q Iso.inv (IsoF̃Q {A = A , a}) = Q→F̃ Iso.rightInv (IsoF̃Q {A = A , a}) f = @@ -753,7 +753,7 @@ , λ i j p (~ i j)) -- The main result - ι : (k : ) Iso ((b : typ B) Q b →∙ coHomK-ptd k) + ι : (k : ) Iso ((b : typ B) Q b →∙ coHomK-ptd k) (( , inl tt) →∙ coHomK-ptd k) ι k = compIso (invIso IsoF̃Q) IsoFE-extend where @@ -771,7 +771,7 @@ →∙Homogeneous≡ (isHomogeneousKn _) (funExt λ x cong (G .fst) (Iso.leftInv IsoFE x)) - ι-hom : (k : ) (f g : ((b : typ B) Q b →∙ coHomK-ptd k)) + ι-hom : (k : ) (f g : ((b : typ B) Q b →∙ coHomK-ptd k)) Iso.fun (ι k) b f b ++ g b) (Iso.fun (ι k) f ++ Iso.fun (ι k) g) ι-hom k f g = @@ -781,16 +781,16 @@ -- Packing everything up gives us the Thom Isomorphism between -- the nᵗʰ cohomology of B and the (n+i)ᵗʰ reduced cohomology of Ẽ, -- as defined above -module Thom {} (B : Pointed ) (P : typ B Type ℓ-zero) - (conB : (x y : typ B) x y ∥₁) - (n : ) (Q-is : Iso (typ (preThom.Q B P (pt B))) (S₊ n)) +module Thom {} (B : Pointed ) (P : typ B Type ℓ-zero) + (conB : (x y : typ B) x y ∥₁) + (n : ) (Q-is : Iso (typ (preThom.Q B P (pt B))) (S₊ n)) (Q-is-ptd : Iso.fun Q-is (pt (preThom.Q B P (pt B))) snd (S₊∙ n)) - (c : (b : typ B) (preThom.Q B P b →∙ coHomK-ptd n)) + (c : (b : typ B) (preThom.Q B P b →∙ coHomK-ptd n)) (c-pt : c (pt B) .fst ((λ x genFunSpace n .fst (Iso.fun Q-is x)))) where ϕ : (i : ) - GroupEquiv (coHomGr i (typ B)) + GroupEquiv (coHomGr i (typ B)) (coHomRedGrDir (i +' n) (preThom.Ẽ B P , inl tt)) fst (ϕ i) = isoToEquiv @@ -813,13 +813,13 @@ addAgree (i +' n) _ _) -- We finally get the Gysin sequence -module Gysin {} (B : Pointed ) (P : typ B Type ℓ-zero) - (conB : (x y : typ B) x y ∥₂) - (n : ) (Q-is : Iso (typ (preThom.Q B P (pt B))) (S₊ n)) +module Gysin {} (B : Pointed ) (P : typ B Type ℓ-zero) + (conB : (x y : typ B) x y ∥₂) + (n : ) (Q-is : Iso (typ (preThom.Q B P (pt B))) (S₊ n)) (Q-is-ptd : Iso.fun Q-is (pt (preThom.Q B P (pt B))) snd (S₊∙ n)) where - 0-connB : (x y : typ B) x y ∥₁ + 0-connB : (x y : typ B) x y ∥₁ 0-connB x y = ST.rec (isProp→isSet squash₁) (∥_∥₁.∣_∣₁) (conB x y) c = (c* B (preThom.Q B P) conB n Q-is Q-is-ptd .fst) @@ -835,21 +835,21 @@ E'̃ = preThom.Ẽ B P -- The generator of coHom n (typ B) - e : coHom n (typ B) + e : coHom n (typ B) e = b c b .fst south) ∣₂ -- The maps of interest are ⌣, p, E-susp and j*. In reality, we are interested -- in the composition of ϕ and j* (which is just the cup product), -- but it's easier to first give an exact sequence involving p, E-susp and j* - ⌣-hom : (i : ) GroupHom (coHomGr i (typ B)) (coHomGr (i +' n) (typ B)) + ⌣-hom : (i : ) GroupHom (coHomGr i (typ B)) (coHomGr (i +' n) (typ B)) fst (⌣-hom i) x = x e snd (⌣-hom i) = makeIsGroupHom λ f g rightDistr-⌣ _ _ f g e - p : E' typ B + p : E' typ B p = fst - p-hom : (i : ) GroupHom (coHomGr i (typ B)) (coHomGr i E') + p-hom : (i : ) GroupHom (coHomGr i (typ B)) (coHomGr i E') p-hom i = coHomMorph _ p E-susp : (i : ) @@ -879,7 +879,7 @@ module cofibSeq where j* : (i : ) - GroupHom (coHomRedGrDir i (E'̃ , (inl tt))) (coHomGr i (typ B)) + GroupHom (coHomRedGrDir i (E'̃ , (inl tt))) (coHomGr i (typ B)) fst (j* i) = ST.map λ f λ x fst f (inr x) snd (j* zero) = makeIsGroupHom @@ -986,7 +986,7 @@ -- We compose ϕ and j*. The above exact sequence will induce another one for -- this composition. In fact, this group hom is definitionally equal to -- (λ x → x ⌣ e) modulo truncation elimination and snd fields. - ϕ∘j : (i : ) GroupHom (coHomGr i (typ B)) (coHomGr (i +' n) (typ B)) + ϕ∘j : (i : ) GroupHom (coHomGr i (typ B)) (coHomGr (i +' n) (typ B)) ϕ∘j i = compGroupHom (fst (fst (ϕ i)) , snd (ϕ i)) (cofibSeq.j* (i +' n)) private @@ -1021,16 +1021,16 @@ ∙∙ sym (transportRefl _) thomIso' : (i : ) GroupEquiv (coHomRedGrDir (suc (i +' n)) (E'̃ , inl tt)) - (coHomGr (suc i) (typ B)) + (coHomGr (suc i) (typ B)) thomIso' i = (Path→GroupPath n coHomRedGrDir n (E'̃ , inl tt)) _ (+'-suc' i n) (invGroupEquiv (ϕ (suc i)))) ϕ' : (i : ) GroupHom (coHomRedGrDir (suc (i +' n)) (E'̃ , inl tt)) - (coHomGr (suc i) (typ B)) + (coHomGr (suc i) (typ B)) ϕ' i = fst (fst (thomIso' i)) , snd (thomIso' i) - susp∘ϕ : (i : ) GroupHom (coHomGr (i +' n) E') (coHomGr (suc i) (typ B)) + susp∘ϕ : (i : ) GroupHom (coHomGr (i +' n) E') (coHomGr (suc i) (typ B)) susp∘ϕ i = compGroupHom (E-susp (i +' n)) (ϕ' i) Im-ϕ∘j⊂Ker-p : (i : ) (x : _) isInIm (ϕ∘j i) x isInKer (p-hom _) x @@ -1068,11 +1068,11 @@ ((h-ret n coHomRedGrDir n (E'̃ , inl tt)) _ (invGroupEquiv (ϕ (suc i))) (+'-suc' i n)) (fst (E-susp _) f)) ∙∙ (natTranspLem _ n fst (cofibSeq.j* n)) (sym (+'-suc' i n)) - cong (subst z coHomGr z (typ B) .fst) (sym (+'-suc' i n))) + cong (subst z coHomGr z (typ B) .fst) (sym (+'-suc' i n))) (Im-Susp⊂Ker-j _ (fst (E-susp (i +' n)) f) f , refl ∣₁) tLem i n))) where - tLem : (i n : ) subst z coHomGr z (typ B) .fst) (sym (+'-suc' i n)) + tLem : (i n : ) subst z coHomGr z (typ B) .fst) (sym (+'-suc' i n)) (0ₕ _) 0ₕ _ tLem zero zero = refl tLem zero (suc n) = refl @@ -1088,7 +1088,7 @@ (Ker-j⊂Im-Susp _ (invEq (fst (thomIso' _)) x) ((cong (cofibSeq.j* (suc (i +' n)) .fst ) lem₁ natTranspLem _ n cofibSeq.j* n .fst) (+'-suc' i n)) - ∙∙ cong (transport j (coHomGr (+'-suc' i n j) (typ B) .fst))) p + ∙∙ cong (transport j (coHomGr (+'-suc' i n j) (typ B) .fst))) p ∙∙ lem₂ i n)) where lem₁ : invEq (fst (thomIso' i)) x @@ -1099,8 +1099,8 @@ λ i transportRefl (transportRefl x i) i) lem₂ : (i n : ) - transport j coHomGr (+'-suc' i n j) (typ B) .fst) - (GroupStr.1g (coHomGr (suc i +' n) (typ B) .snd)) 0ₕ _ + transport j coHomGr (+'-suc' i n j) (typ B) .fst) + (GroupStr.1g (coHomGr (suc i +' n) (typ B) .snd)) 0ₕ _ lem₂ zero zero = refl lem₂ zero (suc n) = refl lem₂ (suc i₁) zero = refl diff --git a/Cubical.ZCohomology.MayerVietorisUnreduced.html b/Cubical.ZCohomology.MayerVietorisUnreduced.html index 240355abdb..3b38739f05 100644 --- a/Cubical.ZCohomology.MayerVietorisUnreduced.html +++ b/Cubical.ZCohomology.MayerVietorisUnreduced.html @@ -104,7 +104,7 @@ snd (d n) = dIsHom n -- The long exact sequence - Im-d⊂Ker-i : (n : ) (x : (coHomGr (suc n) (Pushout f g)) ) + Im-d⊂Ker-i : (n : ) (x : (coHomGr (suc n) (Pushout f g)) ) isInIm (d n) x isInKer (i (suc n)) x Im-d⊂Ker-i n = ST.elim _ isSetΠ λ _ isOfHLevelPath 2 (isSet× isSetSetTrunc isSetSetTrunc) _ _) @@ -114,7 +114,7 @@ δ x δ (inl x)) ∣₂ , x δ (inr x)) ∣₂ ) (b (~ i))) - Ker-i⊂Im-d : (n : ) (x : coHomGr (suc n) (Pushout f g) ) + Ker-i⊂Im-d : (n : ) (x : coHomGr (suc n) (Pushout f g) ) isInKer (i (suc n)) x isInIm (d n) x Ker-i⊂Im-d n = @@ -148,7 +148,7 @@ ; (j = i1) F (push a i)}) (doubleCompPath-filler (sym (cong F F (f a)) p1)) (cong F (push a)) (cong F F (g a)) p2) (~ j) i) - Im-i⊂Ker-Δ : (n : ) (x : ×coHomGr n A B ) + Im-i⊂Ker-Δ : (n : ) (x : ×coHomGr n A B ) isInIm (i n) x isInKer (Δ n) x Im-i⊂Ker-Δ n (Fa , Fb) = @@ -169,7 +169,7 @@ ∙∙ i x Fd (inl (f x))) ∣₂ -[ n ]ₕ x Fd (push x (~ i))) ∣₂ ) ∙∙ rCancelₕ n x Fd (inl (f x))) ∣₂ - Ker-Δ⊂Im-i : (n : ) (a : ×coHomGr n A B ) + Ker-Δ⊂Im-i : (n : ) (a : ×coHomGr n A B ) isInKer (Δ n) a isInIm (i n) a Ker-Δ⊂Im-i n = prodElim _ isSetΠ _ isProp→isSet isPropPropTrunc)) diff --git a/Cubical.ZCohomology.Properties.html b/Cubical.ZCohomology.Properties.html index 560010d611..b2f79ed133 100644 --- a/Cubical.ZCohomology.Properties.html +++ b/Cubical.ZCohomology.Properties.html @@ -169,20 +169,20 @@ (coHom n A) (coHomRed n ((A Unit , inr (tt)))) coHomRed+1Equiv zero A i = helpLemma {C = ( , pos 0)} i ∥₂ module coHomRed+1 where - helpLemma : {C : Pointed } ( (A (typ C)) ((((A Unit) , inr (tt)) →∙ C))) + helpLemma : {C : Pointed } ( (A (typ C)) ((((A Unit) , inr (tt)) →∙ C))) helpLemma {C = C} = isoToPath (iso map-helper1 map-helper2 b linvPf b) _ refl)) where - map-helper1 : (A typ C) ((((A Unit) , inr (tt)) →∙ C)) + map-helper1 : (A typ C) ((((A Unit) , inr (tt)) →∙ C)) map-helper1 f = map1' , refl module helpmap where map1' : A Unit fst C map1' (inl x) = f x map1' (inr x) = pt C - map-helper2 : ((((A Unit) , inr (tt)) →∙ C)) (A typ C) + map-helper2 : ((((A Unit) , inr (tt)) →∙ C)) (A typ C) map-helper2 (g , pf) x = g (inl x) linvPf : (b :((((A Unit) , inr (tt)) →∙ C))) map-helper1 (map-helper2 b) b @@ -194,7 +194,7 @@ coHomRed+1Equiv (suc zero) A i = coHomRed+1.helpLemma A i {C = (coHomK 1 , base )} i ∥₂ coHomRed+1Equiv (suc (suc n)) A i = coHomRed+1.helpLemma A i {C = (coHomK (2 + n) , north )} i ∥₂ -Iso-coHom-coHomRed : {} {A : Pointed } (n : ) Iso (coHomRed (suc n) A) (coHom (suc n) (typ A)) +Iso-coHom-coHomRed : {} {A : Pointed } (n : ) Iso (coHomRed (suc n) A) (coHom (suc n) (typ A)) fun (Iso-coHom-coHomRed {A = A , a} n) = ST.map fst inv' (Iso-coHom-coHomRed {A = A , a} n) = ST.map λ f x f x -ₖ f a) , rCancelₖ _ _ rightInv (Iso-coHom-coHomRed {A = A , a} n) = @@ -230,7 +230,7 @@ +∙≡+ (suc n) = ST.elim2 _ _ isOfHLevelPath 2 § _ _) λ _ _ refl private - homhelp : {} (n : ) (A : Pointed ) (x y : coHom (suc n) (typ A)) + homhelp : {} (n : ) (A : Pointed ) (x y : coHom (suc n) (typ A)) Iso.inv (Iso-coHom-coHomRed {A = A} n) (x +ₕ y) Iso.inv (Iso-coHom-coHomRed n) x +ₕ∙ Iso.inv (Iso-coHom-coHomRed n) y homhelp n A = morphLemmas.isMorphInv _+ₕ∙_ _+ₕ_ @@ -238,7 +238,7 @@ (Iso.rightInv (Iso-coHom-coHomRed n)) (Iso.leftInv (Iso-coHom-coHomRed n)) coHomGr≅coHomRedGr : {} (n : ) (A : Pointed ) - GroupEquiv (coHomRedGrDir (suc n) A) (coHomGr (suc n) (typ A)) + GroupEquiv (coHomRedGrDir (suc n) A) (coHomGr (suc n) (typ A)) fst (coHomGr≅coHomRedGr n A) = isoToEquiv (Iso-coHom-coHomRed n) snd (coHomGr≅coHomRedGr n A) = makeIsGroupHom (+∙≡+ n) @@ -246,17 +246,17 @@ coHomRedGroup zero A = coHomRedGroupDir zero A coHomRedGroup (suc n) A = InducedAbGroupFromPres· - (coHomGroup (suc n) (typ A)) + (coHomGroup (suc n) (typ A)) _+ₕ∙_ (isoToEquiv (invIso (Iso-coHom-coHomRed n))) (homhelp n A) abstract coHomGroup≡coHomRedGroup : {} (n : ) (A : Pointed ) - coHomGroup (suc n) (typ A) coHomRedGroup (suc n) A + coHomGroup (suc n) (typ A) coHomRedGroup (suc n) A coHomGroup≡coHomRedGroup n A = InducedAbGroupPathFromPres· - (coHomGroup (suc n) (typ A)) + (coHomGroup (suc n) (typ A)) _+ₕ∙_ (isoToEquiv (invIso (Iso-coHom-coHomRed n))) (homhelp n A) @@ -419,7 +419,7 @@ ∙∙ sym (rUnitₖ _ (encode q)) ∙∙ cong (encode q +ₖ_) (cong ∣_∣ (sym (transportRefl _)))) -stabSpheres : (n : ) Iso (coHomK (suc n)) (typ (Ω (coHomK-ptd (2 + n)))) +stabSpheres : (n : ) Iso (coHomK (suc n)) (typ (Ω (coHomK-ptd (2 + n)))) fun (stabSpheres n) = decode _ inv' (stabSpheres n) = encode rightInv (stabSpheres n) p = decode-encode p @@ -437,18 +437,18 @@ ∙∙ cong ( a +ₖ_) -0ₖ ∙∙ rUnitₖ (suc n) a ) -Iso-Kn-ΩKn+1 : (n : HLevel) Iso (coHomK n) (typ (Ω (coHomK-ptd (suc n)))) +Iso-Kn-ΩKn+1 : (n : HLevel) Iso (coHomK n) (typ (Ω (coHomK-ptd (suc n)))) Iso-Kn-ΩKn+1 zero = invIso (compIso (congIso (truncIdempotentIso _ isGroupoidS¹)) ΩS¹Isoℤ) Iso-Kn-ΩKn+1 (suc n) = stabSpheres n -Kn≃ΩKn+1 : {n : } coHomK n typ (Ω (coHomK-ptd (suc n))) +Kn≃ΩKn+1 : {n : } coHomK n typ (Ω (coHomK-ptd (suc n))) Kn≃ΩKn+1 {n = n} = isoToEquiv (Iso-Kn-ΩKn+1 n) -- Some properties of the Iso -Kn→ΩKn+1 : (n : ) coHomK n typ (Ω (coHomK-ptd (suc n))) +Kn→ΩKn+1 : (n : ) coHomK n typ (Ω (coHomK-ptd (suc n))) Kn→ΩKn+1 n = Iso.fun (Iso-Kn-ΩKn+1 n) -ΩKn+1→Kn : (n : ) typ (Ω (coHomK-ptd (suc n))) coHomK n +ΩKn+1→Kn : (n : ) typ (Ω (coHomK-ptd (suc n))) coHomK n ΩKn+1→Kn n = Iso.inv (Iso-Kn-ΩKn+1 n) Kn→ΩKn+10ₖ : (n : ) Kn→ΩKn+1 n (0ₖ n) refl @@ -516,13 +516,13 @@ λ f g cong ∣_∣₂ (funExt λ x Kn→ΩKn+1-hom n (f x) (g x))) module lockedKnIso (key : Unit') where - Kn→ΩKn+1' : (n : ) coHomK n typ (Ω (coHomK-ptd (suc n))) + Kn→ΩKn+1' : (n : ) coHomK n typ (Ω (coHomK-ptd (suc n))) Kn→ΩKn+1' n = lock key (Iso.fun (Iso-Kn-ΩKn+1 n)) - ΩKn+1→Kn' : (n : ) typ (Ω (coHomK-ptd (suc n))) coHomK n + ΩKn+1→Kn' : (n : ) typ (Ω (coHomK-ptd (suc n))) coHomK n ΩKn+1→Kn' n = lock key (Iso.inv (Iso-Kn-ΩKn+1 n)) - ΩKn+1→Kn→ΩKn+1 : (n : ) (x : typ (Ω (coHomK-ptd (suc n)))) Kn→ΩKn+1' n (ΩKn+1→Kn' n x) x + ΩKn+1→Kn→ΩKn+1 : (n : ) (x : typ (Ω (coHomK-ptd (suc n)))) Kn→ΩKn+1' n (ΩKn+1→Kn' n x) x ΩKn+1→Kn→ΩKn+1 n x = pm key where pm : (key : Unit') lock key (Iso.fun (Iso-Kn-ΩKn+1 n)) (lock key (Iso.inv (Iso-Kn-ΩKn+1 n)) x) x @@ -581,13 +581,13 @@ (invEquiv Kn≃ΩKn+1) (ΩKn+1→Kn-refl n) (~ i)) hlev - step₂ : isOfHLevel (suc m) (typ (Ω (A →∙ coHomK-ptd (suc n) ))) + step₂ : isOfHLevel (suc m) (typ (Ω (A →∙ coHomK-ptd (suc n) ))) step₂ = isOfHLevelRetractFromIso (suc m) (invIso (invIso (ΩfunExtIso _ _))) step₁ step₃ : isOfHLevel (suc (suc m)) (A →∙ coHomK-ptd (suc n)) step₃ = isOfHLevelΩ→isOfHLevel m - λ f subst x isOfHLevel (suc m) (typ (Ω x))) + λ f subst x isOfHLevel (suc m) (typ (Ω x))) (isHomogeneous→∙ (isHomogeneousKn (suc n)) f) step₂ @@ -625,7 +625,7 @@ isOfHLevel↑∙∙ n m zero = isOfHLevelΩ→isOfHLevel 0 λ f subst - isProp (cong x typ (Ω x)) + isProp (cong x typ (Ω x)) (isHomogeneous→∙ (isHomogeneous→∙ (isHomogeneousKn _)) f)) (isOfHLevelRetractFromIso 1 (ΩfunExtIso _ _) h) where @@ -639,7 +639,7 @@ isOfHLevelΩ→isOfHLevel (suc l) λ f subst - (isOfHLevel (2 + l)) (cong x typ (Ω x)) + (isOfHLevel (2 + l)) (cong x typ (Ω x)) (isHomogeneous→∙ (isHomogeneous→∙ (isHomogeneousKn _)) f)) (isOfHLevelRetractFromIso (2 + l) (ΩfunExtIso _ _) h) where diff --git a/Cubical.ZCohomology.RingStructure.GradedCommutativity.html b/Cubical.ZCohomology.RingStructure.GradedCommutativity.html index ca862d0d5d..07c1e5a5fe 100644 --- a/Cubical.ZCohomology.RingStructure.GradedCommutativity.html +++ b/Cubical.ZCohomology.RingStructure.GradedCommutativity.html @@ -57,13 +57,13 @@ -- Recurring expressions private - ΩKn+1→Ω²Kn+2 : {k : } typ (Ω (coHomK-ptd k)) typ ((Ω^ 2) (coHomK-ptd (suc k))) + ΩKn+1→Ω²Kn+2 : {k : } typ (Ω (coHomK-ptd k)) typ ((Ω^ 2) (coHomK-ptd (suc k))) ΩKn+1→Ω²Kn+2 x = sym (Kn→ΩKn+10ₖ _) ∙∙ cong (Kn→ΩKn+1 _) x ∙∙ Kn→ΩKn+10ₖ _ - ΩKn+1→Ω²Kn+2' : {k : } Kn→ΩKn+1 k (0ₖ k) Kn→ΩKn+1 k (0ₖ k) typ ((Ω^ 2) (coHomK-ptd (suc k))) + ΩKn+1→Ω²Kn+2' : {k : } Kn→ΩKn+1 k (0ₖ k) Kn→ΩKn+1 k (0ₖ k) typ ((Ω^ 2) (coHomK-ptd (suc k))) ΩKn+1→Ω²Kn+2' p = sym (Kn→ΩKn+10ₖ _) ∙∙ p ∙∙ Kn→ΩKn+10ₖ _ - Kn→Ω²Kn+2 : {k : } coHomK k typ ((Ω^ 2) (coHomK-ptd (2 + k))) + Kn→Ω²Kn+2 : {k : } coHomK k typ ((Ω^ 2) (coHomK-ptd (2 + k))) Kn→Ω²Kn+2 x = ΩKn+1→Ω²Kn+2 (Kn→ΩKn+1 _ x) -- Definition of of -ₖ'ⁿ̇*ᵐ