This repository holds the slides and examples of a class on Automated Machine Learning as Jupyter notebooks.
- Python 3.7 and pip (see guides on installation for your operating system)
- Jupyter
- Optional, but recommended: virtualenv
- Optional, but recommended: virtualenvwrapper
- Optional: Graphviz
git clone https://github.com/vikua/aml-class-20.git
cd aml-class-20
mkvirtualenv aml
Optiopnal step, env should be activated by default once created:
workon aml
Install dependencies:
pip install -r requirements.txt
Create ipython kernel:
python -m ipykernel install --user --name aml
virtualenv aml
source aml/bin/activate
pip install -r requirements.txt
python -m ipykernel install --user --name aml
pip install -r requirements.txt
- At the command line, run
jupyter notebook
- Open your web browser to the directed url
- Open ipynb file of interest