-
Notifications
You must be signed in to change notification settings - Fork 17
/
AnalyticMath.sol
424 lines (388 loc) · 25.3 KB
/
AnalyticMath.sol
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
// SPDX-License-Identifier: SEE LICENSE IN LICENSE
pragma solidity 0.8.26;
import "./IntegralMath.sol";
contract AnalyticMath {
uint8 internal constant MIN_PRECISION = 32;
uint8 internal constant MAX_PRECISION = 127;
uint256 internal constant FIXED_1 = 1 << MAX_PRECISION;
uint256 internal constant FIXED_2 = 2 << MAX_PRECISION;
// Auto-generated via 'PrintLn2ScalingFactors.py'
uint256 internal constant LN2_NUMERATOR = 0x3f80fe03f80fe03f80fe03f80fe03f8;
uint256 internal constant LN2_DENOMINATOR = 0x5b9de1d10bf4103d647b0955897ba80;
// Auto-generated via 'PrintOptimalThresholds.py'
uint256 internal constant OPT_LOG_MAX_VAL = 0x15bf0a8b1457695355fb8ac404e7a79e4;
uint256 internal constant OPT_EXP_MAX_VAL = 0x800000000000000000000000000000000;
uint256[MAX_PRECISION + 1] private maxExpArray;
/**
* @dev Should be executed either during construction or after construction (if too large for the constructor)
*/
function init() public virtual {
initMaxExpArray();
}
/**
* @dev Compute (a / b) ^ (c / d)
*/
function pow(uint256 a, uint256 b, uint256 c, uint256 d) internal view returns (uint256, uint256) { unchecked {
if (a >= b)
return mulDivExp(mulDivLog(FIXED_1, a, b), c, d);
(uint256 q, uint256 p) = mulDivExp(mulDivLog(FIXED_1, b, a), c, d);
return (p, q);
}}
/**
* @dev Compute log(a / b)
*/
function log(uint256 a, uint256 b) internal pure returns (uint256, uint256) { unchecked {
require(a >= b, "log: a < b");
return (mulDivLog(FIXED_1, a, b), FIXED_1);
}}
/**
* @dev Compute e ^ (a / b)
*/
function exp(uint256 a, uint256 b) internal view returns (uint256, uint256) { unchecked {
return mulDivExp(FIXED_1, a, b);
}}
/**
* @dev Compute log(x / FIXED_1) * FIXED_1
*/
function fixedLog(uint256 x) internal pure returns (uint256) { unchecked {
if (x < OPT_LOG_MAX_VAL) {
return optimalLog(x);
}
else {
return generalLog(x);
}
}}
/**
* @dev Compute e ^ (x / FIXED_1) * FIXED_1
*/
function fixedExp(uint256 x) internal view returns (uint256, uint256) { unchecked {
if (x < OPT_EXP_MAX_VAL) {
return (optimalExp(x), 1 << MAX_PRECISION);
}
else {
uint8 precision = findPosition(x);
return (generalExp(x >> (MAX_PRECISION - precision), precision), 1 << precision);
}
}}
/**
* @dev Compute log(x / FIXED_1) * FIXED_1
* This functions assumes that x >= FIXED_1, because the output would be negative otherwise
*/
function generalLog(uint256 x) internal pure returns (uint256) { unchecked {
uint256 res = 0;
// if x >= 2, then we compute the integer part of log2(x), which is larger than 0
if (x >= FIXED_2) {
uint8 count = IntegralMath.floorLog2(x / FIXED_1);
x >>= count; // now x < 2
res = count * FIXED_1;
}
// if x > 1, then we compute the fraction part of log2(x), which is larger than 0
if (x > FIXED_1) {
for (uint8 i = MAX_PRECISION; i > 0; --i) {
x = (x * x) / FIXED_1; // now 1 < x < 4
if (x >= FIXED_2) {
x >>= 1; // now 1 < x < 2
res += 1 << (i - 1);
}
}
}
return res * LN2_NUMERATOR / LN2_DENOMINATOR;
}}
/**
* @dev Approximate e ^ x as (x ^ 0) / 0! + (x ^ 1) / 1! + ... + (x ^ n) / n!
* Auto-generated via 'PrintFunctionGeneralExp.py'
* Detailed description:
* - This function returns "e ^ (x / 2 ^ precision) * 2 ^ precision", that is, the result is upshifted for accuracy
* - The global "maxExpArray" maps each "precision" to "((maximumExponent + 1) << (MAX_PRECISION - precision)) - 1"
* - The maximum permitted value for "x" is therefore given by "maxExpArray[precision] >> (MAX_PRECISION - precision)"
*/
function generalExp(uint256 x, uint8 precision) internal pure returns (uint256) { unchecked {
uint256 xi = x;
uint256 res = 0;
xi = (xi * x) >> precision; res += xi * 0x3442c4e6074a82f1797f72ac0000000; // add x^02 * (33! / 02!)
xi = (xi * x) >> precision; res += xi * 0x116b96f757c380fb287fd0e40000000; // add x^03 * (33! / 03!)
xi = (xi * x) >> precision; res += xi * 0x045ae5bdd5f0e03eca1ff4390000000; // add x^04 * (33! / 04!)
xi = (xi * x) >> precision; res += xi * 0x00defabf91302cd95b9ffda50000000; // add x^05 * (33! / 05!)
xi = (xi * x) >> precision; res += xi * 0x002529ca9832b22439efff9b8000000; // add x^06 * (33! / 06!)
xi = (xi * x) >> precision; res += xi * 0x00054f1cf12bd04e516b6da88000000; // add x^07 * (33! / 07!)
xi = (xi * x) >> precision; res += xi * 0x0000a9e39e257a09ca2d6db51000000; // add x^08 * (33! / 08!)
xi = (xi * x) >> precision; res += xi * 0x000012e066e7b839fa050c309000000; // add x^09 * (33! / 09!)
xi = (xi * x) >> precision; res += xi * 0x000001e33d7d926c329a1ad1a800000; // add x^10 * (33! / 10!)
xi = (xi * x) >> precision; res += xi * 0x0000002bee513bdb4a6b19b5f800000; // add x^11 * (33! / 11!)
xi = (xi * x) >> precision; res += xi * 0x00000003a9316fa79b88eccf2a00000; // add x^12 * (33! / 12!)
xi = (xi * x) >> precision; res += xi * 0x0000000048177ebe1fa812375200000; // add x^13 * (33! / 13!)
xi = (xi * x) >> precision; res += xi * 0x0000000005263fe90242dcbacf00000; // add x^14 * (33! / 14!)
xi = (xi * x) >> precision; res += xi * 0x000000000057e22099c030d94100000; // add x^15 * (33! / 15!)
xi = (xi * x) >> precision; res += xi * 0x0000000000057e22099c030d9410000; // add x^16 * (33! / 16!)
xi = (xi * x) >> precision; res += xi * 0x00000000000052b6b54569976310000; // add x^17 * (33! / 17!)
xi = (xi * x) >> precision; res += xi * 0x00000000000004985f67696bf748000; // add x^18 * (33! / 18!)
xi = (xi * x) >> precision; res += xi * 0x000000000000003dea12ea99e498000; // add x^19 * (33! / 19!)
xi = (xi * x) >> precision; res += xi * 0x00000000000000031880f2214b6e000; // add x^20 * (33! / 20!)
xi = (xi * x) >> precision; res += xi * 0x000000000000000025bcff56eb36000; // add x^21 * (33! / 21!)
xi = (xi * x) >> precision; res += xi * 0x000000000000000001b722e10ab1000; // add x^22 * (33! / 22!)
xi = (xi * x) >> precision; res += xi * 0x0000000000000000001317c70077000; // add x^23 * (33! / 23!)
xi = (xi * x) >> precision; res += xi * 0x00000000000000000000cba84aafa00; // add x^24 * (33! / 24!)
xi = (xi * x) >> precision; res += xi * 0x00000000000000000000082573a0a00; // add x^25 * (33! / 25!)
xi = (xi * x) >> precision; res += xi * 0x00000000000000000000005035ad900; // add x^26 * (33! / 26!)
xi = (xi * x) >> precision; res += xi * 0x000000000000000000000002f881b00; // add x^27 * (33! / 27!)
xi = (xi * x) >> precision; res += xi * 0x0000000000000000000000001b29340; // add x^28 * (33! / 28!)
xi = (xi * x) >> precision; res += xi * 0x00000000000000000000000000efc40; // add x^29 * (33! / 29!)
xi = (xi * x) >> precision; res += xi * 0x0000000000000000000000000007fe0; // add x^30 * (33! / 30!)
xi = (xi * x) >> precision; res += xi * 0x0000000000000000000000000000420; // add x^31 * (33! / 31!)
xi = (xi * x) >> precision; res += xi * 0x0000000000000000000000000000021; // add x^32 * (33! / 32!)
xi = (xi * x) >> precision; res += xi * 0x0000000000000000000000000000001; // add x^33 * (33! / 33!)
return res / 0x688589cc0e9505e2f2fee5580000000 + x + (1 << precision); // divide by 33! and then add x^1 / 1! + x^0 / 0!
}}
/**
* @dev Compute log(x / FIXED_1) * FIXED_1
* Input range: FIXED_1 <= x <= OPT_LOG_MAX_VAL - 1
* Auto-generated via 'PrintFunctionOptimalLog.py'
* Detailed description:
* - Rewrite the input as a product of natural exponents and a single residual r, such that 1 < r < 2
* - The natural logarithm of each (pre-calculated) exponent is the degree of the exponent
* - The natural logarithm of r is calculated via Taylor series for log(1 + x), where x = r - 1
* - The natural logarithm of the input is calculated by summing up the intermediate results above
* - For example: log(250) = log(e^4 * e^1 * e^0.5 * 1.021692859) = 4 + 1 + 0.5 + log(1 + 0.021692859)
*/
function optimalLog(uint256 x) internal pure returns (uint256) { unchecked {
uint256 res = 0;
uint256 y;
uint256 z;
uint256 w;
if (x >= 0xd3094c70f034de4b96ff7d5b6f99fcd9) {res += 0x40000000000000000000000000000000; x = x * FIXED_1 / 0xd3094c70f034de4b96ff7d5b6f99fcd9;} // add 1 / 2^1
if (x >= 0xa45af1e1f40c333b3de1db4dd55f29a8) {res += 0x20000000000000000000000000000000; x = x * FIXED_1 / 0xa45af1e1f40c333b3de1db4dd55f29a8;} // add 1 / 2^2
if (x >= 0x910b022db7ae67ce76b441c27035c6a2) {res += 0x10000000000000000000000000000000; x = x * FIXED_1 / 0x910b022db7ae67ce76b441c27035c6a2;} // add 1 / 2^3
if (x >= 0x88415abbe9a76bead8d00cf112e4d4a9) {res += 0x08000000000000000000000000000000; x = x * FIXED_1 / 0x88415abbe9a76bead8d00cf112e4d4a9;} // add 1 / 2^4
if (x >= 0x84102b00893f64c705e841d5d4064bd4) {res += 0x04000000000000000000000000000000; x = x * FIXED_1 / 0x84102b00893f64c705e841d5d4064bd4;} // add 1 / 2^5
if (x >= 0x8204055aaef1c8bd5c3259f4822735a3) {res += 0x02000000000000000000000000000000; x = x * FIXED_1 / 0x8204055aaef1c8bd5c3259f4822735a3;} // add 1 / 2^6
if (x >= 0x810100ab00222d861931c15e39b44e9a) {res += 0x01000000000000000000000000000000; x = x * FIXED_1 / 0x810100ab00222d861931c15e39b44e9a;} // add 1 / 2^7
if (x >= 0x808040155aabbbe9451521693554f734) {res += 0x00800000000000000000000000000000; x = x * FIXED_1 / 0x808040155aabbbe9451521693554f734;} // add 1 / 2^8
z = y = x - FIXED_1;
w = y * y / FIXED_1;
res += z * (0x100000000000000000000000000000000 - y) / 0x100000000000000000000000000000000; z = z * w / FIXED_1; // add y^01 / 01 - y^02 / 02
res += z * (0x0aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa - y) / 0x200000000000000000000000000000000; z = z * w / FIXED_1; // add y^03 / 03 - y^04 / 04
res += z * (0x099999999999999999999999999999999 - y) / 0x300000000000000000000000000000000; z = z * w / FIXED_1; // add y^05 / 05 - y^06 / 06
res += z * (0x092492492492492492492492492492492 - y) / 0x400000000000000000000000000000000; z = z * w / FIXED_1; // add y^07 / 07 - y^08 / 08
res += z * (0x08e38e38e38e38e38e38e38e38e38e38e - y) / 0x500000000000000000000000000000000; z = z * w / FIXED_1; // add y^09 / 09 - y^10 / 10
res += z * (0x08ba2e8ba2e8ba2e8ba2e8ba2e8ba2e8b - y) / 0x600000000000000000000000000000000; z = z * w / FIXED_1; // add y^11 / 11 - y^12 / 12
res += z * (0x089d89d89d89d89d89d89d89d89d89d89 - y) / 0x700000000000000000000000000000000; z = z * w / FIXED_1; // add y^13 / 13 - y^14 / 14
res += z * (0x088888888888888888888888888888888 - y) / 0x800000000000000000000000000000000; // add y^15 / 15 - y^16 / 16
return res;
}}
/**
* @dev Compute e ^ (x / FIXED_1) * FIXED_1
* Input range: 0 <= x <= OPT_EXP_MAX_VAL - 1
* Auto-generated via 'PrintFunctionOptimalExp.py'
* Detailed description:
* - Rewrite the input as a sum of binary exponents and a single residual r, as small as possible
* - The exponentiation of each binary exponent is given (pre-calculated)
* - The exponentiation of r is calculated via Taylor series for e^x, where x = r
* - The exponentiation of the input is calculated by multiplying the intermediate results above
* - For example: e^5.521692859 = e^(4 + 1 + 0.5 + 0.021692859) = e^4 * e^1 * e^0.5 * e^0.021692859
*/
function optimalExp(uint256 x) internal pure returns (uint256) { unchecked {
uint256 res = 0;
uint256 y;
uint256 z;
z = y = x % 0x10000000000000000000000000000000; // get the input modulo 2^(-3)
z = z * y / FIXED_1; res += z * 0x10e1b3be415a0000; // add y^02 * (20! / 02!)
z = z * y / FIXED_1; res += z * 0x05a0913f6b1e0000; // add y^03 * (20! / 03!)
z = z * y / FIXED_1; res += z * 0x0168244fdac78000; // add y^04 * (20! / 04!)
z = z * y / FIXED_1; res += z * 0x004807432bc18000; // add y^05 * (20! / 05!)
z = z * y / FIXED_1; res += z * 0x000c0135dca04000; // add y^06 * (20! / 06!)
z = z * y / FIXED_1; res += z * 0x0001b707b1cdc000; // add y^07 * (20! / 07!)
z = z * y / FIXED_1; res += z * 0x000036e0f639b800; // add y^08 * (20! / 08!)
z = z * y / FIXED_1; res += z * 0x00000618fee9f800; // add y^09 * (20! / 09!)
z = z * y / FIXED_1; res += z * 0x0000009c197dcc00; // add y^10 * (20! / 10!)
z = z * y / FIXED_1; res += z * 0x0000000e30dce400; // add y^11 * (20! / 11!)
z = z * y / FIXED_1; res += z * 0x000000012ebd1300; // add y^12 * (20! / 12!)
z = z * y / FIXED_1; res += z * 0x0000000017499f00; // add y^13 * (20! / 13!)
z = z * y / FIXED_1; res += z * 0x0000000001a9d480; // add y^14 * (20! / 14!)
z = z * y / FIXED_1; res += z * 0x00000000001c6380; // add y^15 * (20! / 15!)
z = z * y / FIXED_1; res += z * 0x000000000001c638; // add y^16 * (20! / 16!)
z = z * y / FIXED_1; res += z * 0x0000000000001ab8; // add y^17 * (20! / 17!)
z = z * y / FIXED_1; res += z * 0x000000000000017c; // add y^18 * (20! / 18!)
z = z * y / FIXED_1; res += z * 0x0000000000000014; // add y^19 * (20! / 19!)
z = z * y / FIXED_1; res += z * 0x0000000000000001; // add y^20 * (20! / 20!)
res = res / 0x21c3677c82b40000 + y + FIXED_1; // divide by 20! and then add y^1 / 1! + y^0 / 0!
if ((x & 0x010000000000000000000000000000000) != 0) res = res * 0x1c3d6a24ed82218787d624d3e5eba95f9 / 0x18ebef9eac820ae8682b9793ac6d1e776; // multiply by e^2^(-3)
if ((x & 0x020000000000000000000000000000000) != 0) res = res * 0x18ebef9eac820ae8682b9793ac6d1e778 / 0x1368b2fc6f9609fe7aceb46aa619baed4; // multiply by e^2^(-2)
if ((x & 0x040000000000000000000000000000000) != 0) res = res * 0x1368b2fc6f9609fe7aceb46aa619baed5 / 0x0bc5ab1b16779be3575bd8f0520a9f21f; // multiply by e^2^(-1)
if ((x & 0x080000000000000000000000000000000) != 0) res = res * 0x0bc5ab1b16779be3575bd8f0520a9f21e / 0x0454aaa8efe072e7f6ddbab84b40a55c9; // multiply by e^2^(+0)
if ((x & 0x100000000000000000000000000000000) != 0) res = res * 0x0454aaa8efe072e7f6ddbab84b40a55c5 / 0x00960aadc109e7a3bf4578099615711ea; // multiply by e^2^(+1)
if ((x & 0x200000000000000000000000000000000) != 0) res = res * 0x00960aadc109e7a3bf4578099615711d7 / 0x0002bf84208204f5977f9a8cf01fdce3d; // multiply by e^2^(+2)
if ((x & 0x400000000000000000000000000000000) != 0) res = res * 0x0002bf84208204f5977f9a8cf01fdc307 / 0x0000003c6ab775dd0b95b4cbee7e65d11; // multiply by e^2^(+3)
return res;
}}
/**
* @dev The global "maxExpArray" is sorted in descending order, and therefore the following statements are equivalent:
* - This function finds the position of [the smallest value in "maxExpArray" larger than or equal to "x"]
* - This function finds the highest position of [a value in "maxExpArray" larger than or equal to "x"]
* This function supports the rational approximation of "(a / b) ^ (c / d)" via "e ^ (log(a / b) * c / d)".
* The value of "log(a / b)" is represented with an integer slightly smaller than "log(a / b) * 2 ^ precision".
* The larger "precision" is, the more accurately this value represents the real value.
* However, the larger "precision" is, the more bits are required in order to store this value.
* And the exponentiation function, which takes "x" and calculates "e ^ x", is limited to a maximum exponent (a maximum value of "x").
* This maximum exponent depends on the "precision" used, and it is given by "maxExpArray[precision] >> (MAX_PRECISION - precision)".
* Hence we need to determine the highest precision which can be used for the given input, before calling the exponentiation function.
* This allows us to compute the result with maximum accuracy and without exceeding 256 bits in any of the intermediate computations.
*/
function findPosition(uint256 x) internal view returns (uint8) { unchecked {
uint8 lo = MIN_PRECISION;
uint8 hi = MAX_PRECISION;
while (lo + 1 < hi) {
uint8 mid = (lo + hi) / 2;
if (maxExpArray[mid] >= x)
lo = mid;
else
hi = mid;
}
if (maxExpArray[hi] >= x)
return hi;
if (maxExpArray[lo] >= x)
return lo;
revert("findPosition: x > max");
}}
/**
* @dev Initialize internal data structure
* Auto-generated via 'PrintMaxExpArray.py'
*/
function initMaxExpArray() internal {
// maxExpArray[ 0] = 0x6bffffffffffffffffffffffffffffffff;
// maxExpArray[ 1] = 0x67ffffffffffffffffffffffffffffffff;
// maxExpArray[ 2] = 0x637fffffffffffffffffffffffffffffff;
// maxExpArray[ 3] = 0x5f6fffffffffffffffffffffffffffffff;
// maxExpArray[ 4] = 0x5b77ffffffffffffffffffffffffffffff;
// maxExpArray[ 5] = 0x57b3ffffffffffffffffffffffffffffff;
// maxExpArray[ 6] = 0x5419ffffffffffffffffffffffffffffff;
// maxExpArray[ 7] = 0x50a2ffffffffffffffffffffffffffffff;
// maxExpArray[ 8] = 0x4d517fffffffffffffffffffffffffffff;
// maxExpArray[ 9] = 0x4a233fffffffffffffffffffffffffffff;
// maxExpArray[ 10] = 0x47165fffffffffffffffffffffffffffff;
// maxExpArray[ 11] = 0x4429afffffffffffffffffffffffffffff;
// maxExpArray[ 12] = 0x415bc7ffffffffffffffffffffffffffff;
// maxExpArray[ 13] = 0x3eab73ffffffffffffffffffffffffffff;
// maxExpArray[ 14] = 0x3c1771ffffffffffffffffffffffffffff;
// maxExpArray[ 15] = 0x399e96ffffffffffffffffffffffffffff;
// maxExpArray[ 16] = 0x373fc47fffffffffffffffffffffffffff;
// maxExpArray[ 17] = 0x34f9e8ffffffffffffffffffffffffffff;
// maxExpArray[ 18] = 0x32cbfd5fffffffffffffffffffffffffff;
// maxExpArray[ 19] = 0x30b5057fffffffffffffffffffffffffff;
// maxExpArray[ 20] = 0x2eb40f9fffffffffffffffffffffffffff;
// maxExpArray[ 21] = 0x2cc8340fffffffffffffffffffffffffff;
// maxExpArray[ 22] = 0x2af09481ffffffffffffffffffffffffff;
// maxExpArray[ 23] = 0x292c5bddffffffffffffffffffffffffff;
// maxExpArray[ 24] = 0x277abdcdffffffffffffffffffffffffff;
// maxExpArray[ 25] = 0x25daf6657fffffffffffffffffffffffff;
// maxExpArray[ 26] = 0x244c49c65fffffffffffffffffffffffff;
// maxExpArray[ 27] = 0x22ce03cd5fffffffffffffffffffffffff;
// maxExpArray[ 28] = 0x215f77c047ffffffffffffffffffffffff;
// maxExpArray[ 29] = 0x1fffffffffffffffffffffffffffffffff;
// maxExpArray[ 30] = 0x1eaefdbdabffffffffffffffffffffffff;
// maxExpArray[ 31] = 0x1d6bd8b2ebffffffffffffffffffffffff;
maxExpArray[ 32] = 0x1c35fedd14ffffffffffffffffffffffff;
maxExpArray[ 33] = 0x1b0ce43b323fffffffffffffffffffffff;
maxExpArray[ 34] = 0x19f0028ec1ffffffffffffffffffffffff;
maxExpArray[ 35] = 0x18ded91f0e7fffffffffffffffffffffff;
maxExpArray[ 36] = 0x17d8ec7f0417ffffffffffffffffffffff;
maxExpArray[ 37] = 0x16ddc6556cdbffffffffffffffffffffff;
maxExpArray[ 38] = 0x15ecf52776a1ffffffffffffffffffffff;
maxExpArray[ 39] = 0x15060c256cb2ffffffffffffffffffffff;
maxExpArray[ 40] = 0x1428a2f98d72ffffffffffffffffffffff;
maxExpArray[ 41] = 0x13545598e5c23fffffffffffffffffffff;
maxExpArray[ 42] = 0x1288c4161ce1dfffffffffffffffffffff;
maxExpArray[ 43] = 0x11c592761c666fffffffffffffffffffff;
maxExpArray[ 44] = 0x110a688680a757ffffffffffffffffffff;
maxExpArray[ 45] = 0x1056f1b5bedf77ffffffffffffffffffff;
maxExpArray[ 46] = 0x0faadceceeff8bffffffffffffffffffff;
maxExpArray[ 47] = 0x0f05dc6b27edadffffffffffffffffffff;
maxExpArray[ 48] = 0x0e67a5a25da4107fffffffffffffffffff;
maxExpArray[ 49] = 0x0dcff115b14eedffffffffffffffffffff;
maxExpArray[ 50] = 0x0d3e7a392431239fffffffffffffffffff;
maxExpArray[ 51] = 0x0cb2ff529eb71e4fffffffffffffffffff;
maxExpArray[ 52] = 0x0c2d415c3db974afffffffffffffffffff;
maxExpArray[ 53] = 0x0bad03e7d883f69bffffffffffffffffff;
maxExpArray[ 54] = 0x0b320d03b2c343d5ffffffffffffffffff;
maxExpArray[ 55] = 0x0abc25204e02828dffffffffffffffffff;
maxExpArray[ 56] = 0x0a4b16f74ee4bb207fffffffffffffffff;
maxExpArray[ 57] = 0x09deaf736ac1f569ffffffffffffffffff;
maxExpArray[ 58] = 0x0976bd9952c7aa957fffffffffffffffff;
maxExpArray[ 59] = 0x09131271922eaa606fffffffffffffffff;
maxExpArray[ 60] = 0x08b380f3558668c46fffffffffffffffff;
maxExpArray[ 61] = 0x0857ddf0117efa215bffffffffffffffff;
maxExpArray[ 62] = 0x07ffffffffffffffffffffffffffffffff;
maxExpArray[ 63] = 0x07abbf6f6abb9d087fffffffffffffffff;
maxExpArray[ 64] = 0x075af62cbac95f7dfa7fffffffffffffff;
maxExpArray[ 65] = 0x070d7fb7452e187ac13fffffffffffffff;
maxExpArray[ 66] = 0x06c3390ecc8af379295fffffffffffffff;
maxExpArray[ 67] = 0x067c00a3b07ffc01fd6fffffffffffffff;
maxExpArray[ 68] = 0x0637b647c39cbb9d3d27ffffffffffffff;
maxExpArray[ 69] = 0x05f63b1fc104dbd39587ffffffffffffff;
maxExpArray[ 70] = 0x05b771955b36e12f7235ffffffffffffff;
maxExpArray[ 71] = 0x057b3d49dda84556d6f6ffffffffffffff;
maxExpArray[ 72] = 0x054183095b2c8ececf30ffffffffffffff;
maxExpArray[ 73] = 0x050a28be635ca2b888f77fffffffffffff;
maxExpArray[ 74] = 0x04d5156639708c9db33c3fffffffffffff;
maxExpArray[ 75] = 0x04a23105873875bd52dfdfffffffffffff;
maxExpArray[ 76] = 0x0471649d87199aa990756fffffffffffff;
maxExpArray[ 77] = 0x04429a21a029d4c1457cfbffffffffffff;
maxExpArray[ 78] = 0x0415bc6d6fb7dd71af2cb3ffffffffffff;
maxExpArray[ 79] = 0x03eab73b3bbfe282243ce1ffffffffffff;
maxExpArray[ 80] = 0x03c1771ac9fb6b4c18e229ffffffffffff;
maxExpArray[ 81] = 0x0399e96897690418f785257fffffffffff;
maxExpArray[ 82] = 0x0373fc456c53bb779bf0ea9fffffffffff;
maxExpArray[ 83] = 0x034f9e8e490c48e67e6ab8bfffffffffff;
maxExpArray[ 84] = 0x032cbfd4a7adc790560b3337ffffffffff;
maxExpArray[ 85] = 0x030b50570f6e5d2acca94613ffffffffff;
maxExpArray[ 86] = 0x02eb40f9f620fda6b56c2861ffffffffff;
maxExpArray[ 87] = 0x02cc8340ecb0d0f520a6af58ffffffffff;
maxExpArray[ 88] = 0x02af09481380a0a35cf1ba02ffffffffff;
maxExpArray[ 89] = 0x0292c5bdd3b92ec810287b1b3fffffffff;
maxExpArray[ 90] = 0x0277abdcdab07d5a77ac6d6b9fffffffff;
maxExpArray[ 91] = 0x025daf6654b1eaa55fd64df5efffffffff;
maxExpArray[ 92] = 0x0244c49c648baa98192dce88b7ffffffff;
maxExpArray[ 93] = 0x022ce03cd5619a311b2471268bffffffff;
maxExpArray[ 94] = 0x0215f77c045fbe885654a44a0fffffffff;
maxExpArray[ 95] = 0x01ffffffffffffffffffffffffffffffff;
maxExpArray[ 96] = 0x01eaefdbdaaee7421fc4d3ede5ffffffff;
maxExpArray[ 97] = 0x01d6bd8b2eb257df7e8ca57b09bfffffff;
maxExpArray[ 98] = 0x01c35fedd14b861eb0443f7f133fffffff;
maxExpArray[ 99] = 0x01b0ce43b322bcde4a56e8ada5afffffff;
maxExpArray[100] = 0x019f0028ec1fff007f5a195a39dfffffff;
maxExpArray[101] = 0x018ded91f0e72ee74f49b15ba527ffffff;
maxExpArray[102] = 0x017d8ec7f04136f4e5615fd41a63ffffff;
maxExpArray[103] = 0x016ddc6556cdb84bdc8d12d22e6fffffff;
maxExpArray[104] = 0x015ecf52776a1155b5bd8395814f7fffff;
maxExpArray[105] = 0x015060c256cb23b3b3cc3754cf40ffffff;
maxExpArray[106] = 0x01428a2f98d728ae223ddab715be3fffff;
maxExpArray[107] = 0x013545598e5c23276ccf0ede68034fffff;
maxExpArray[108] = 0x01288c4161ce1d6f54b7f61081194fffff;
maxExpArray[109] = 0x011c592761c666aa641d5a01a40f17ffff;
maxExpArray[110] = 0x0110a688680a7530515f3e6e6cfdcdffff;
maxExpArray[111] = 0x01056f1b5bedf75c6bcb2ce8aed428ffff;
maxExpArray[112] = 0x00faadceceeff8a0890f3875f008277fff;
maxExpArray[113] = 0x00f05dc6b27edad306388a600f6ba0bfff;
maxExpArray[114] = 0x00e67a5a25da41063de1495d5b18cdbfff;
maxExpArray[115] = 0x00dcff115b14eedde6fc3aa5353f2e4fff;
maxExpArray[116] = 0x00d3e7a3924312399f9aae2e0f868f8fff;
maxExpArray[117] = 0x00cb2ff529eb71e41582cccd5a1ee26fff;
maxExpArray[118] = 0x00c2d415c3db974ab32a51840c0b67edff;
maxExpArray[119] = 0x00bad03e7d883f69ad5b0a186184e06bff;
maxExpArray[120] = 0x00b320d03b2c343d4829abd6075f0cc5ff;
maxExpArray[121] = 0x00abc25204e02828d73c6e80bcdb1a95bf;
maxExpArray[122] = 0x00a4b16f74ee4bb2040a1ec6c15fbbf2df;
maxExpArray[123] = 0x009deaf736ac1f569deb1b5ae3f36c130f;
maxExpArray[124] = 0x00976bd9952c7aa957f5937d790ef65037;
maxExpArray[125] = 0x009131271922eaa6064b73a22d0bd4f2bf;
maxExpArray[126] = 0x008b380f3558668c46c91c49a2f8e967b9;
maxExpArray[127] = 0x00857ddf0117efa215952912839f6473e6;
}
// auxiliary function
function mulDivLog(uint256 x, uint256 y, uint256 z) private pure returns (uint256) {
return fixedLog(IntegralMath.mulDivF(x, y, z));
}
// auxiliary function
function mulDivExp(uint256 x, uint256 y, uint256 z) private view returns (uint256, uint256) {
return fixedExp(IntegralMath.mulDivF(x, y, z));
}
}