-
Notifications
You must be signed in to change notification settings - Fork 0
/
brain.py
84 lines (68 loc) · 3.53 KB
/
brain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
# brain.py
# AI brain implementation
# author_github: benediktbwimmer
# date and time: april 2, 2023 at 13:28
# location: Innsbruck
# repository_url: AI_FILL
# description: This file is part of a human-ai collab project. it should implement the ability for an LLM to access a conversation.md
import os
# Load memory from the file
def load_memory(memory_file):
if os.path.exists(memory_file):
with open(memory_file, 'r') as f:
return f.read()
else:
print(f"Memory file {memory_file} not found.")
return ""
memory = load_memory("conversation.md")
FACTOR = 10
def answer_prompt(context, prompt):
thinking_effort = FACTOR # Add a default thinking_effort value based on the FACTOR
thinking_iterations = estimate_optimal_iterations_for_context_refinement(context, prompt, thinking_effort)
for _ in range(thinking_iterations):
context = refine_context(context, prompt, memory)
return predict_best_response(context, prompt)
def estimate_optimal_iterations_for_context_refinement(context, prompt, thinking_effort=FACTOR): # Add default value for thinking_effort
complexity = analyze_complexity(context, prompt)
thinking_iterations = int(complexity * thinking_effort)
return thinking_iterations
def analyze_complexity(context, prompt):
keywords = ['explain', 'describe', 'compare', 'analyze', 'how']
num_tokens = len(prompt.split())
num_keywords = sum([1 for word in prompt.split() if word.lower() in keywords])
complexity = (num_tokens + num_keywords) / 10
return complexity
def filter_memory_based_on_criteria(memory_lines, criteria):
filtered_memory = [line for line in memory_lines if line_meets_criteria(line, criteria)]
return '\n'.join(filtered_memory)
def improve_context_with_respect_to_criteria_(context, prompt, memory, criteria):
memory_lines = memory.split('\n')
filtered_memory = filter_memory_based_on_criteria(memory_lines, criteria)
refined_context = context + ' ' + filtered_memory
return refined_context
def refine_context(context, prompt, memory):
criteria = determine_evaluation_criteria(context, prompt, memory)
refined_context = improve_context_with_respect_to_criteria_(context, prompt, memory, criteria)
return refined_context
def determine_evaluation_criteria(context, prompt, memory):
# Placeholder: a more sophisticated method to determine criteria based on context, prompt, and memory
# This can be improved with a more advanced analysis of the input data
criteria = {'relevance': 1.0, 'accuracy': 1.0, 'coherence': 1.0}
return criteria
def line_meets_criteria(line, criteria):
# Placeholder: a method to determine if a memory line meets the given criteria
# This can be improved with a more advanced text filtering or information retrieval algorithm
score = calculate_line_score(line, criteria)
threshold = 0.5 # Placeholder: adjust the threshold based on the desired level of filtering
return score >= threshold
def calculate_line_score(line, criteria):
# Placeholder: a method to calculate the score of a memory line based on the criteria
# This can be improved with a more advanced scoring algorithm
score = 0.5 # Placeholder: a fixed score for all lines
return score
def predict_best_response(context, prompt):
response = generate_message_for_ai_model(context, prompt)
return response
def generate_message_for_ai_model(context, prompt):
message = f"Context: {context}\nPrompt: {prompt}\n\nPlease generate a response based on the given context and prompt."
return message