-
Notifications
You must be signed in to change notification settings - Fork 2
/
train_gan.py
460 lines (414 loc) · 20.2 KB
/
train_gan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
from __future__ import print_function
import argparse
from datetime import datetime
import json
import os
import sys
import time
import numpy as np
import scipy
import tensorflow as tf
import librosa
import fnmatch
from models import HRNN_GAN, Discriminator, AudioReader
from models import find_files, get_test_batches, average_gradients, load, save, optimizer_factory, scalar_summary
from tensorflow import AggregationMethod as aggreg
from tensorflow.python.client import timeline
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument('--num_gpus', type=int, default=1)
parser.add_argument('--batch_size', type=int, required=True)
parser.add_argument('--nb_data_dir', type=str, required=True)
parser.add_argument('--wb_data_dir', type=str, required=True)
parser.add_argument('--test_nb_data_dir', type=str, required=True)
parser.add_argument('--test_wb_data_dir', type=str, required=True)
parser.add_argument('--logdir_root', type=str, required=True)
parser.add_argument('--ckpt_every', type=int, default=20)
parser.add_argument('--num_steps', type=int, default=10000)
parser.add_argument('--learning_rate', type=float, required=True)
parser.add_argument('--sample_size', type=int, default=48000)
parser.add_argument('--sample_rate', type=int, default=16000)
parser.add_argument('--l2_reg_strength', type=float, default=0.0)
parser.add_argument('--silence_threshold', type=float, default=0.0)
parser.add_argument('--optimizer', type=str, default='adam',
choices=optimizer_factory.keys())
parser.add_argument('--momentum', type=float, default=0.9)
parser.add_argument('--seq_len', type=int, required=True)
parser.add_argument('--big_frame_size', type=int, required=True)
parser.add_argument('--frame_size', type=int, required=True)
parser.add_argument('--q_levels', type=int, required=True)
parser.add_argument('--dim', type=int, required=True)
parser.add_argument('--n_rnn', type=int, choices=xrange(1,6), required=True)
parser.add_argument('--emb_size', type=int, required=True)
parser.add_argument('--rnn_type', choices=['LSTM', 'GRU'], required=True)
parser.add_argument('--max_checkpoints', type=int, default=5)
parser.add_argument('--d_learning_rate', type=float, required=True)
parser.add_argument('--bias_D_conv', type=bool, default=True)
parser.add_argument('--pretrain_num_steps', type=int, required=True)
parser.add_argument('--update_d_every', type=int, required=True)
return parser.parse_args()
def create_model(args):
net = HRNN_GAN(batch_size=args.batch_size,
big_frame_size=args.big_frame_size,
frame_size=args.frame_size,
q_levels=args.q_levels,
rnn_type=args.rnn_type,
dim=args.dim,
n_rnn=args.n_rnn,
seq_len=args.seq_len,
emb_size=args.emb_size)
return net
def create_discriminator(args, name):
discr = Discriminator(bias_D_conv=args.bias_D_conv,
name=name)
return discr
def train():
args = get_args()
if args.l2_reg_strength == 0:
args.l2_reg_strength = None
logdir = os.path.join(args.logdir_root, 'train')
logdir_test = os.path.join(args.logdir_root, 'test')
logdir_d = os.path.join(args.logdir_root, 'discriminator')
coord = tf.train.Coordinator()
# Number of steps to train HRNN only
pretrain_num_steps = args.pretrain_num_steps
# Number of steps to train HRNN before updating discriminator
update_d_every = args.update_d_every
# Get testing files
test_files = find_files(args.test_nb_data_dir)
# Create inputs
with tf.name_scope('create_inputs'):
reader = AudioReader(args.nb_data_dir,
args.wb_data_dir,
coord,
sample_rate=args.sample_rate,
sample_size=args.sample_size,
silence_threshold=args.silence_threshold)
nb_audio_batch, wb_audio_batch = \
reader.dequeue(args.batch_size)
# Create model
net = create_model(args)
discr = create_discriminator(args, name='discr')
global_step = tf.get_variable(
'global_step', [],
initializer=tf.constant_initializer(0),
trainable=False)
# Optimizers
optim = optimizer_factory[args.optimizer](
learning_rate=args.learning_rate,
momentum=args.momentum)
d_optim = tf.train.AdamOptimizer(
args.d_learning_rate)
# Set up placeholders and variables on each GPU
tower_net_grads = []
tower_net_grads_no_adv = []
tower_d_grads = []
losses = []
losses_no_adv = []
losses_adv = []
d_losses = []
wb_input_batch_rnn = []
nb_input_batch_rnn = []
samplernn_preds = []
train_big_frame_state = []
train_frame_state = []
final_big_frame_state = []
final_frame_state = []
goals = []
predictions = []
for i in xrange(args.num_gpus):
with tf.device('/gpu:%d' % (i)):
# Create input placeholders
nb_input_batch_rnn.append(
tf.Variable(tf.zeros([net.batch_size, net.seq_len, 1]),
trainable=False,
name='nb_input_batch_rnn',
dtype=tf.float32))
wb_input_batch_rnn.append(
tf.Variable(tf.zeros([net.batch_size, net.seq_len, 1]),
trainable=False,
name='wb_input_batch_rnn',
dtype=tf.float32))
# Create initial states
train_big_frame_state.append(
net.big_cell.zero_state(net.batch_size, tf.float32))
final_big_frame_state.append(
net.big_cell.zero_state(net.batch_size, tf.float32))
train_frame_state.append(
net.cell.zero_state(net.batch_size, tf.float32))
final_frame_state.append(
net.cell.zero_state(net.batch_size, tf.float32))
# Target/prediction placeholders
goals.append(
tf.Variable(tf.zeros([net.batch_size, net.seq_len, 1]),
trainable=False,
name='targets',
dtype=tf.float32))
predictions.append(
tf.Variable(tf.zeros([net.batch_size, net.seq_len, 1]),
trainable=False,
name='predictions',
dtype=tf.float32))
# Network output variables
with tf.variable_scope(tf.get_variable_scope()):
for i in xrange(args.num_gpus):
with tf.device('/gpu:%d' % (i)):
with tf.name_scope('TOWER_%d' % i) as scope:
print("Creating model on GPU:%d" % i)
# SampleRNN outputs
loss, final_big_frame_state[i], final_frame_state[i], \
goals[i], predictions[i] = \
net.loss_SampleRNN(
nb_input_batch_rnn[i],
wb_input_batch_rnn[i],
train_big_frame_state[i],
train_frame_state[i],
l2_reg_strength=args.l2_reg_strength)
# Discriminator inputs
bfs = net.big_frame_size
predictions[i] = tf.reshape(
predictions[i],
[net.batch_size, net.seq_len-bfs, 1])
d_rl_input = tf.concat(
[tf.cast(wb_input_batch_rnn[i][:, :-bfs, :], dtype=tf.int32),
tf.cast(nb_input_batch_rnn[i][:, :-bfs, :], dtype=tf.int32)],
2)
d_fk_input = tf.concat(
[tf.cast(predictions[i], dtype=tf.int32),
tf.cast(nb_input_batch_rnn[i][:, :-bfs, :], dtype=tf.int32)],
2)
d_rl_input = tf.cast(d_rl_input, dtype=tf.float32)
d_fk_input = tf.cast(d_fk_input, dtype=tf.float32)
# Discriminator outputs
d_rl_logits = discr.logits_Discriminator(
d_rl_input, reuse=False)
d_fk_logits = discr.logits_Discriminator(
d_fk_input, reuse=True)
# Discriminator loss
d_rl_loss = tf.reduce_mean(
tf.squared_difference(d_rl_logits, 1.0))
d_fk_loss = tf.reduce_mean(
tf.squared_difference(d_fk_logits, 0.0))
d_loss = d_rl_loss + d_fk_loss
d_losses.append(d_loss)
# SampleRNN loss
net_adv_loss = tf.reduce_mean(
tf.squared_difference(d_fk_logits, 1.0))
net_loss = net_adv_loss + loss
losses.append(net_loss)
losses_no_adv.append(loss)
losses_adv.append(net_adv_loss)
# Scalar summaries
d_rl_loss_sum = scalar_summary('d_rl_loss', d_rl_loss)
d_fk_loss_sum = scalar_summary('d_fk_loss', d_fk_loss)
d_loss_sum = scalar_summary('d_loss', d_loss)
net_loss_sum = scalar_summary(
'samplernn_loss', net_loss)
net_loss_adv_sum = scalar_summary(
'samplernn_adv_loss', net_adv_loss)
# Get trainable vars
net_trainable = tf.trainable_variables(
scope='SampleRNN')
d_trainable = tf.trainable_variables(
scope='Discriminator')
# Gradients
gradients = optim.compute_gradients(
net_loss, net_trainable,
aggregation_method=aggreg.EXPERIMENTAL_ACCUMULATE_N)
gradients_no_adv = optim.compute_gradients(
loss, net_trainable,
aggregation_method=aggreg.EXPERIMENTAL_ACCUMULATE_N)
d_gradients = d_optim.compute_gradients(
d_loss, d_trainable,
aggregation_method=aggreg.EXPERIMENTAL_ACCUMULATE_N)
tower_net_grads.append(gradients)
tower_net_grads_no_adv.append(gradients_no_adv)
tower_d_grads.append(d_gradients)
tf.get_variable_scope().reuse_variables()
# Gradients
net_grad_vars = average_gradients(tower_net_grads)
net_grad_vars_no_adv = average_gradients(tower_net_grads_no_adv)
d_grad_vars = average_gradients(tower_d_grads)
# Clip gradients
grads, vars = zip(*net_grad_vars)
grads_no_adv, vars = zip(*net_grad_vars_no_adv)
grads_clipped, _ = tf.clip_by_global_norm(grads, 5.0)
grads_clipped_no_adv, _ = tf.clip_by_global_norm(grads_no_adv, 5.0)
net_grad_vars = zip(grads_clipped, vars)
net_grad_vars_no_adv = zip(grads_clipped_no_adv, vars)
# Apply gradient ops
apply_gradient_op = optim.apply_gradients(
net_grad_vars, global_step=global_step)
apply_gradient_op_no_adv = optim.apply_gradients(
net_grad_vars_no_adv, global_step=global_step)
d_apply_gradient_op = d_optim.apply_gradients(
d_grad_vars, global_step=global_step)
# ---------------------------------------------------------------
# Start/continue training
# ---------------------------------------------------------------
writer = tf.summary.FileWriter(logdir)
test_writer = tf.summary.FileWriter(logdir_test)
writer.add_graph(tf.get_default_graph())
test_writer.add_graph(tf.get_default_graph())
summaries = tf.summary.merge_all()
# Configure session
tf_config = tf.ConfigProto(allow_soft_placement=True)
tf_config.gpu_options.allow_growth = True
sess = tf.Session(config=tf_config)
init = tf.global_variables_initializer()
sess.run(init)
# Load checkpoint
saver = tf.train.Saver(var_list=net_trainable,
max_to_keep=args.max_checkpoints)
d_saver = tf.train.Saver(var_list=d_trainable,
max_to_keep=args.max_checkpoints)
try:
saved_global_step = load(saver, sess, logdir)
load(d_saver, sess, logdir_d)
if saved_global_step is None: saved_global_step = -1
except:
print("Something went wrong while restoring checkpoint.")
raise
# Start queue runners
threads = tf.train.start_queue_runners(sess=sess, coord=coord)
reader.start_threads(sess)
# Train
step = None
last_saved_step = saved_global_step
try:
for step in range(saved_global_step + 1, args.num_steps + 1):
final_big_s = []
final_s = []
for g in xrange(args.num_gpus):
# Initialize cells
final_big_s.append(sess.run(net.big_initial_state))
final_s.append(sess.run(net.initial_state))
start_time = time.time()
nb_inputs_list = []
wb_inputs_list = []
for _ in xrange(args.num_gpus):
# Get input batches
nb_inputs, wb_inputs = sess.run(
[nb_audio_batch, wb_audio_batch])
nb_inputs_list.append(nb_inputs)
wb_inputs_list.append(wb_inputs)
loss_sum = 0
d_loss_sum = 0
loss_adv_sum = 0
idx_begin = 0
audio_length = args.sample_size - args.big_frame_size
bptt_length = args.seq_len - args.big_frame_size
stateful_rnn_length = audio_length / bptt_length
output_list = [summaries,
losses,
losses_adv,
d_losses,
apply_gradient_op,
final_big_frame_state,
final_frame_state]
output_list_no_adv = [summaries,
losses_no_adv,
losses_adv,
d_losses,
apply_gradient_op_no_adv,
final_big_frame_state,
final_frame_state]
discr_output_list = [d_apply_gradient_op]
for i in range(0, stateful_rnn_length):
inp_dict = {}
for g in xrange(args.num_gpus):
# Add seq_len samples as input for truncated BPTT
inp_dict[nb_input_batch_rnn[g]] = \
nb_inputs_list[g][:, idx_begin:idx_begin+args.seq_len, :]
inp_dict[wb_input_batch_rnn[g]] = \
wb_inputs_list[g][:, idx_begin:idx_begin+args.seq_len, :]
inp_dict[train_big_frame_state[g]] = final_big_s[g]
inp_dict[train_frame_state[g]] = final_s[g]
idx_begin += args.seq_len - args.big_frame_size
# Forward pass
if (step < pretrain_num_steps):
# Train with L1
summary, loss_gpus, loss_adv_gpus, d_loss_gpus, _, final_big_s, final_s = \
sess.run(output_list_no_adv, feed_dict=inp_dict)
else:
# Train with L1 + adversarial loss
summary, loss_gpus, loss_adv_gpus, d_loss_gpus, _, final_big_s, final_s = \
sess.run(output_list, feed_dict=inp_dict)
writer.add_summary(summary, step)
for g in xrange(args.num_gpus):
loss_gpu = loss_gpus[g] / stateful_rnn_length
d_loss_gpu = d_loss_gpus[g] / stateful_rnn_length
loss_adv_gpu = loss_adv_gpus[g] / stateful_rnn_length
loss_sum += loss_gpu / args.num_gpus
d_loss_sum += d_loss_gpu / args.num_gpus
loss_adv_sum += loss_adv_gpu / args.num_gpus
duration = time.time() - start_time
print('****** STEP {:d} ({:.3f} sec/step) ******'.format(step, duration))
if (step < pretrain_num_steps):
print('[SampleRNN] L1 loss = {:.3f}'.format(loss_sum))
else:
print('[SampleRNN] L1 + adv loss = {:.3f}'.format(loss_sum))
print('[SampleRNN] adv loss = {:.3f}'.format(loss_adv_sum))
print('[Discriminator] L2 loss = {:.3f}'.format(d_loss_sum))
if (step >= pretrain_num_steps) and (step % update_d_every == 0):
# Update discriminator parameters
print('Updating discriminator parameters...')
_ = sess.run(discr_output_list, feed_dict=inp_dict)
if step % args.ckpt_every == 0:
# Save models
save(saver, sess, logdir, step)
save(d_saver, sess, logdir_d, step)
last_saved_step = step
if step % 20 == 0:
# Test
test_nb_inputs, test_wb_inputs = get_test_batches(
test_files, args.batch_size, args.sample_rate)
test_output_list = [summaries,
losses,
final_big_frame_state,
final_frame_state]
test_output_list_no_adv = [summaries,
losses_no_adv,
final_big_frame_state,
final_frame_state]
loss_sum = 0
idx_begin = 0
audio_length = args.sample_size - args.big_frame_size
bptt_length = args.seq_len - args.big_frame_size
stateful_rnn_length = audio_length / bptt_length
for i in range(0, stateful_rnn_length):
inp_dict = {}
for g in xrange(args.num_gpus):
# Add seq_len samples as input for truncated BPTT
inp_dict[nb_input_batch_rnn[g]] = \
nb_inputs_list[g][:, idx_begin:idx_begin+args.seq_len, :]
inp_dict[wb_input_batch_rnn[g]] = \
wb_inputs_list[g][:, idx_begin:idx_begin+args.seq_len, :]
inp_dict[train_big_frame_state[g]] = \
sess.run(net.big_initial_state)
inp_dict[train_frame_state[g]] = \
sess.run(net.initial_state)
idx_begin += args.seq_len - args.big_frame_size
# Forward pass
if (step < pretrain_num_steps):
summary, test_loss_gpus, final_big_s, final_s = \
sess.run(test_output_list_no_adv, feed_dict=inp_dict)
else:
summary, test_loss_gpus, final_big_s, final_s = \
sess.run(test_output_list, feed_dict=inp_dict)
test_writer.add_summary(summary, step)
for g in xrange(args.num_gpus):
loss_gpu = test_loss_gpus[g] / stateful_rnn_length
loss_sum += loss_gpu / args.num_gpus
print('Testing loss: {}'.format(loss_sum))
except KeyboardInterrupt:
print()
finally:
if step > last_saved_step:
print('Saving HRNN model...')
save(saver, sess, logdir, step)
print('Saving discriminator model...')
save(d_saver, sess, logdir_d, step)
coord.request_stop()
coord.join(threads)
train()