forked from chrchang/plink-ng
-
Notifications
You must be signed in to change notification settings - Fork 0
/
plink_matrix.c
419 lines (399 loc) · 11.2 KB
/
plink_matrix.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
// This file is part of PLINK 1.90, copyright (C) 2005-2016 Shaun Purcell,
// Christopher Chang.
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
#include "plink_common.h"
#include "plink_matrix.h"
#ifndef NOLAPACK
#ifndef __APPLE__
void xerbla_(void) {} // fix static linking error
#endif
#endif
inline double SQR(const double a) {
return a * a;
}
#ifdef __cplusplus
inline double SIGN(const double &a, const double &b) {
// PLINK helper.h SIGN() template specialized to doubles.
return (b >= 0)? (a >= 0 ? a : -a) : (a >= 0 ? -a : a);
}
#else
inline double SIGN(const double a, const double b) {
// PLINK helper.h SIGN() template specialized to doubles.
return (b >= 0)? (a >= 0 ? a : -a) : (a >= 0 ? -a : a);
}
#endif
double pythag(const double a, const double b) {
// PLINK stats.cpp pythag().
double absa,absb;
absa=fabs(a);
absb=fabs(b);
if (absa > absb) return absa*sqrt(1.0+SQR(absb/absa));
else return (absb == 0.0 ? 0.0 : absb*sqrt(1.0+SQR(absa/absb)));
}
#ifdef NOLAPACK
int32_t svdcmp_c(int32_t m, double* a, double* w, double* v) {
// C port of PLINK stats.cpp svdcmp().
// now thread-safe.
double* rv1 = &(w[(uint32_t)m]);
int32_t n = m;
int32_t flag;
int32_t l = 0; // suppress compile warning
int32_t i,its,j,jj,k,nm;
double anorm,c,f,g,h,s,scale,x,y,z;
double temp;
g=scale=anorm=0.0;
for (i=0;i<n;i++) {
l=i+2;
rv1[i]=scale*g;
g=s=scale=0.0;
if (i < m) {
for (k=i;k<m;k++) scale += fabs(a[k * m + i]);
if (scale != 0.0) {
for (k=i;k<m;k++) {
a[k * m + i] /= scale;
s += a[k * m + i]*a[k * m + i];
}
f=a[i * m + i];
g = -SIGN(sqrt(s),f);
h=f*g-s;
a[i * m + i]=f-g;
for (j=l-1;j<n;j++) {
for (s=0.0,k=i;k<m;k++) s += a[k * m + i]*a[k * m + j];
f=s/h;
for (k=i;k<m;k++) a[k * m + j] += f*a[k * m + i];
}
for (k=i;k<m;k++) a[k * m + i] *= scale;
}
}
w[i]=scale *g;
g=s=scale=0.0;
if (i+1 <= m && i+1 != n) {
for (k=l-1;k<n;k++) scale += fabs(a[i * m + k]);
if (scale != 0.0) {
for (k=l-1;k<n;k++) {
a[i * m + k] /= scale;
s += a[i * m + k]*a[i * m + k];
}
f=a[i * m + l-1];
g = -SIGN(sqrt(s),f);
h=f*g-s;
a[i * m + l-1]=f-g;
for (k=l-1;k<n;k++) rv1[k]=a[i * m + k]/h;
for (j=l-1;j<m;j++) {
for (s=0.0,k=l-1;k<n;k++) s += a[j * m + k]*a[i * m + k];
for (k=l-1;k<n;k++) a[j * m + k] += s*rv1[k];
}
for (k=l-1;k<n;k++) a[i * m + k] *= scale;
}
}
anorm=MAXV(anorm,(fabs(w[i])+fabs(rv1[i])));
}
for (i=n-1;i>=0;i--) {
if (i < n-1) {
if (g != 0.0) {
for (j=l;j<n;j++)
v[j * m + i]=(a[i * m + j]/a[i * m + l])/g;
for (j=l;j<n;j++) {
for (s=0.0,k=l;k<n;k++) s += a[i * m + k]*v[k * m + j];
for (k=l;k<n;k++) v[k * m + j] += s*v[k * m + i];
}
}
for (j=l;j<n;j++) v[i * m + j]=v[j * m + i]=0.0;
}
v[i * m + i]=1.0;
g=rv1[i];
l=i;
}
for (i=MINV(m,n)-1;i>=0;i--) {
l=i+1;
g=w[i];
for (j=l;j<n;j++) a[i * m + j]=0.0;
if (g != 0.0) {
g=1.0/g;
for (j=l;j<n;j++) {
for (s=0.0,k=l;k<m;k++) s += a[k * m + i]*a[k * m + j];
f=(s/a[i * m + i])*g;
for (k=i;k<m;k++) a[k * m + j] += f*a[k * m + i];
}
for (j=i;j<m;j++) a[j * m + i] *= g;
} else for (j=i;j<m;j++) a[j * m + i]=0.0;
++a[i * m + i];
}
for (k=n-1;k>=0;k--) {
for (its=0;its<30;its++) {
flag=1;
for (l=k;l>=0;l--) {
nm=l-1;
temp=fabs(rv1[l])+anorm;
if (temp == anorm) {
flag=0;
break;
}
temp=fabs(w[nm])+anorm;
if (temp == anorm) break;
}
if (flag) {
c=0.0;
s=1.0;
for (i=l;i<k+1;i++) {
f=s*rv1[i];
rv1[i]=c*rv1[i];
temp = fabs(f)+anorm;
if (temp == anorm) break;
g=w[i];
h=pythag(f,g);
w[i]=h;
h=1.0/h;
c=g*h;
s = -f*h;
for (j=0;j<m;j++) {
y=a[j * m + nm];
z=a[j * m + i];
a[j * m + nm]=y*c+z*s;
a[j * m + i]=z*c-y*s;
}
}
}
z=w[k];
if (l == k) {
if (z < 0.0) {
w[k] = -z;
for (j=0;j<n;j++) v[j * m + k] = -v[j * m + k];
}
break;
}
if (its == 29)
return 0; // cannot converge: multi-collinearity?
x=w[l];
nm=k-1;
y=w[nm];
g=rv1[nm];
h=rv1[k];
f=((y-z)*(y+z)+(g-h)*(g+h))/(2.0*h*y);
g=pythag(f,1.0);
f=((x-z)*(x+z)+h*((y/(f+SIGN(g,f)))-h))/x;
c=s=1.0;
for (j=l;j<=nm;j++) {
i=j+1;
g=rv1[i];
y=w[i];
h=s*g;
g=c*g;
z=pythag(f,h);
rv1[j]=z;
c=f/z;
s=h/z;
f=x*c+g*s;
g=g*c-x*s;
h=y*s;
y *= c;
for (jj=0;jj<n;jj++) {
x=v[jj * m + j];
z=v[jj * m + i];
v[jj * m + j]=x*c+z*s;
v[jj * m + i]=z*c-x*s;
}
z=pythag(f,h);
w[j]=z;
if (z) {
z=1.0/z;
c=f*z;
s=h*z;
}
f=c*g+s*y;
x=c*y-s*g;
for (jj=0;jj<m;jj++) {
y=a[jj * m + j];
z=a[jj * m + i];
a[jj * m + j]=y*c+z*s;
a[jj * m + i]=z*c-y*s;
}
}
rv1[l]=0.0;
rv1[k]=f;
w[k]=x;
}
}
return 1;
}
int32_t invert_matrix(int32_t dim, double* matrix, MATRIX_INVERT_BUF1_TYPE* dbl_1d_buf, double* dbl_2d_buf) {
// C port of PLINK stats.cpp's svd_inverse() function.
// Now thread-safe in NOLAPACK case.
// w -> dbl_1d_buf
// v -> dbl_2d_buf
const double eps = 1e-24;
int32_t i;
int32_t j;
int32_t k;
i = svdcmp_c(dim, matrix, dbl_1d_buf, dbl_2d_buf);
if (i == -1) {
return -1;
} else if (!i) {
return 1;
}
// Look for singular values
double wmax = 0;
for (i=0; i<dim; i++) {
wmax = dbl_1d_buf[i] > wmax ? dbl_1d_buf[i] : wmax;
}
double wmin = wmax * eps;
for (i=0; i<dim; i++) {
dbl_1d_buf[i] = dbl_1d_buf[i] < wmin ? 0 : (1 / dbl_1d_buf[i]);
}
for (i=0; i<dim; i++) {
for (j=0; j<dim; j++) {
matrix[i * dim + j] = matrix[i * dim + j] * dbl_1d_buf[j];
}
}
// [nxn].[t(v)]
for (i=0; i<dim; i++) {
fill_double_zero(dim, dbl_1d_buf);
for (j=0; j<dim; j++) {
for (k=0; k<dim; k++) {
dbl_1d_buf[j] += matrix[i * dim + k] * dbl_2d_buf[j * dim + k];
}
}
for (j = 0; j < dim; j++) {
matrix[i * dim + j] = dbl_1d_buf[j];
}
}
return 0;
}
#else
int32_t invert_matrix(__CLPK_integer dim, double* matrix, MATRIX_INVERT_BUF1_TYPE* int_1d_buf, double* dbl_2d_buf) {
// dgetrf_/dgetri_ is more efficient than dpotrf_/dpotri_ on OS X.
__CLPK_integer lwork = dim * dim;
__CLPK_integer info;
dgetrf_(&dim, &dim, matrix, &dim, int_1d_buf, &info);
dgetri_(&dim, matrix, &dim, int_1d_buf, dbl_2d_buf, &lwork, &info);
if (info) {
return 1;
}
return 0;
}
int32_t invert_matrix_checked(__CLPK_integer dim, double* matrix, MATRIX_INVERT_BUF1_TYPE* int_1d_buf, double* dbl_2d_buf) {
// This used to fall back on PLINK 1.07's SVD-based implementation when the
// rcond estimate was too small, but in practice that just slowed things down
// without meaningfully improving inversion of nonsingular matrices. So now
// this just exits a bit earlier, while leaving the old "binary search for
// the first row/column causing multicollinearity" logic to the caller.
__CLPK_integer lwork = dim * dim;
char cc = '1';
double norm = dlange_(&cc, &dim, &dim, matrix, &dim, dbl_2d_buf);
__CLPK_integer info;
double rcond;
dgetrf_(&dim, &dim, matrix, &dim, int_1d_buf, &info);
if (info > 0) {
return 1;
}
dgecon_(&cc, &dim, matrix, &dim, &norm, &rcond, dbl_2d_buf, &(int_1d_buf[dim]), &info);
if (rcond < MATRIX_SINGULAR_RCOND) {
return 1;
}
dgetri_(&dim, matrix, &dim, int_1d_buf, dbl_2d_buf, &lwork, &info);
return 0;
}
#endif
void col_major_matrix_multiply(__CLPK_integer row1_ct, __CLPK_integer col2_ct, __CLPK_integer common_ct, double* inmatrix1, double* inmatrix2, double* outmatrix) {
#ifdef NOLAPACK
uintptr_t row1_ct_l = row1_ct;
uintptr_t col2_ct_l = col2_ct;
uintptr_t common_ct_l = common_ct;
uintptr_t row_idx;
uintptr_t col_idx;
uintptr_t com_idx;
double* dptr;
double dxx;
// not optimized
for (col_idx = 0; col_idx < col2_ct_l; col_idx++) {
for (row_idx = 0; row_idx < row1_ct_l; row_idx++) {
dxx = 0;
dptr = &(inmatrix2[col_idx * common_ct]);
for (com_idx = 0; com_idx < common_ct_l; com_idx++) {
dxx += (*dptr++) * inmatrix1[com_idx * common_ct + row_idx];
}
*outmatrix++ = dxx;
}
}
#else
#ifdef _WIN32
char blas_char = 'N';
double dyy = 1;
double dzz = 0;
dgemm_(&blas_char, &blas_char, &row1_ct, &col2_ct, &common_ct, &dyy, inmatrix1, &row1_ct, inmatrix2, &common_ct, &dzz, outmatrix, &row1_ct);
#else
cblas_dgemm(CblasColMajor, CblasNoTrans, CblasNoTrans, row1_ct, col2_ct, common_ct, 1.0, inmatrix1, row1_ct, inmatrix2, common_ct, 0.0, outmatrix, row1_ct);
#endif // _WIN32
#endif // NOLAPACK
}
void col_major_fmatrix_multiply(__CLPK_integer row1_ct, __CLPK_integer col2_ct, __CLPK_integer common_ct, float* inmatrix1, float* inmatrix2, float* outmatrix) {
#ifdef NOLAPACK
uintptr_t row1_ct_l = row1_ct;
uintptr_t col2_ct_l = col2_ct;
uintptr_t common_ct_l = common_ct;
uintptr_t row_idx;
uintptr_t col_idx;
uintptr_t com_idx;
float* fptr;
float fxx;
// not optimized
for (col_idx = 0; col_idx < col2_ct_l; col_idx++) {
for (row_idx = 0; row_idx < row1_ct_l; row_idx++) {
fxx = 0;
fptr = &(inmatrix2[col_idx * common_ct]);
for (com_idx = 0; com_idx < common_ct_l; com_idx++) {
fxx += (*fptr++) * inmatrix1[com_idx * common_ct + row_idx];
}
*outmatrix++ = fxx;
}
}
#else
#ifdef _WIN32
char blas_char = 'N';
float fyy = 1;
float fzz = 0;
sgemm_(&blas_char, &blas_char, &row1_ct, &col2_ct, &common_ct, &fyy, inmatrix1, &row1_ct, inmatrix2, &common_ct, &fzz, outmatrix, &row1_ct);
#else
cblas_sgemm(CblasColMajor, CblasNoTrans, CblasNoTrans, row1_ct, col2_ct, common_ct, 1.0, inmatrix1, row1_ct, inmatrix2, common_ct, 0.0, outmatrix, row1_ct);
#endif // _WIN32
#endif // NOLAPACK
}
// Todo: replace these with cache-oblivious, or at least -friendlier,
// algorithms.
void transpose_copy(uintptr_t old_maj, uintptr_t new_maj, double* old_matrix, double* new_matrix) {
double* dptr;
uintptr_t new_maj_idx;
uintptr_t old_maj_idx;
for (new_maj_idx = 0; new_maj_idx < new_maj; new_maj_idx++) {
dptr = &(old_matrix[new_maj_idx]);
for (old_maj_idx = 0; old_maj_idx < old_maj; old_maj_idx++) {
*new_matrix++ = dptr[old_maj_idx * new_maj];
}
}
}
void transpose_copy_float(uintptr_t old_maj, uintptr_t new_maj, uint32_t new_maj_max, float* old_matrix, float* new_matrix) {
// new_maj = in-memory stride of old_matrix rows
// new_maj_max = actual number of rows in new_matrix
// (distinction is necessary for SSE alignment)
float* fptr;
uintptr_t new_maj_idx;
uintptr_t old_maj_idx;
for (new_maj_idx = 0; new_maj_idx < new_maj_max; new_maj_idx++) {
fptr = &(old_matrix[new_maj_idx]);
for (old_maj_idx = 0; old_maj_idx < old_maj; old_maj_idx++) {
*new_matrix++ = fptr[old_maj_idx * new_maj];
}
}
}