-
Notifications
You must be signed in to change notification settings - Fork 0
/
csp_DMD.py
641 lines (563 loc) · 27.5 KB
/
csp_DMD.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
# -*- coding: utf-8 -*-
# Authors: Romain Trachel <trachelr@gmail.com>
# Alexandre Gramfort <alexandre.gramfort@inria.fr>
# Alexandre Barachant <alexandre.barachant@gmail.com>
# Clemens Brunner <clemens.brunner@gmail.com>
# Jean-Remi King <jeanremi.king@gmail.com>
# License: BSD (3-clause)
#
# Adjusted by Christian Goelz <goelz@sportmed.upb.de> to use it with DMD
import copy as cp
import numpy as np
import pandas as pd
from scipy import linalg
from mne.cov import _regularized_covariance
from mne.utils import fill_doc, _check_option
from sklearn.preprocessing import StandardScaler
class CSP():
"""M/EEG signal decomposition using the Common Spatial Patterns (CSP).
This object can be used as a supervised decomposition to estimate
spatial filters for feature extraction in a 2 class decoding problem.
CSP in the context of EEG was first described in [1]; a comprehensive
tutorial on CSP can be found in [2]. Multiclass solving is implemented
from [3].
Parameters
----------
n_components : int, default 4
The number of components to decompose M/EEG signals.
This number should be set by cross-validation.
reg : float | str | None (default None)
If not None (same as ``'empirical'``, default), allow
regularization for covariance estimation.
If float, shrinkage is used (0 <= shrinkage <= 1).
For str options, ``reg`` will be passed to ``method`` to
:func:`mne.compute_covariance`.
log : None | bool (default None)
If transform_into == 'average_power' and log is None or True, then
applies a log transform to standardize the features, else the features
are z-scored. If transform_into == 'csp_space', then log must be None.
cov_est : 'concat' | 'epoch', default 'concat'
If 'concat', covariance matrices are estimated on concatenated epochs
for each class.
If 'epoch', covariance matrices are estimated on each epoch separately
and then averaged over each class.
transform_into : {'average_power', 'csp_space'}
If 'average_power' then self.transform will return the average power of
each spatial filter. If 'csp_space' self.transform will return the data
in CSP space. Defaults to 'average_power'.
norm_trace : bool
Normalize class covariance by its trace. Defaults to False. Trace
normalization is a step of the original CSP algorithm [1]_ to eliminate
magnitude variations in the EEG between individuals. It is not applied
in more recent work [2]_, [3]_ and can have a negative impact on
patterns ordering.
cov_method_params : dict | None
Parameters to pass to :func:`mne.compute_covariance`.
.. versionadded:: 0.16
%(rank_None)s
.. versionadded:: 0.17
Attributes
----------
filters_ : ndarray, shape (n_channels, n_channels)
If fit, the CSP components used to decompose the data, else None.
patterns_ : ndarray, shape (n_channels, n_channels)
If fit, the CSP patterns used to restore M/EEG signals, else None.
mean_ : ndarray, shape (n_components,)
If fit, the mean squared power for each component.
std_ : ndarray, shape (n_components,)
If fit, the std squared power for each component.
References
----------
.. [1] Zoltan J. Koles, Michael S. Lazar, Steven Z. Zhou. Spatial Patterns
Underlying Population Differences in the Background EEG. Brain
Topography 2(4), 275-284, 1990.
.. [2] Benjamin Blankertz, Ryota Tomioka, Steven Lemm, Motoaki Kawanabe,
Klaus-Robert Müller. Optimizing Spatial Filters for Robust EEG
Single-Trial Analysis. IEEE Signal Processing Magazine 25(1), 41-56,
2008.
.. [3] Grosse-Wentrup, Moritz, and Martin Buss. Multiclass common spatial
patterns and information theoretic feature extraction. IEEE
Transactions on Biomedical Engineering, Vol 55, no. 8, 2008.
"""
def __init__(self, n_components=4, reg=None, log=None, cov_est="concat",
transform_into='average_power', norm_trace=False,
cov_method_params=None, rank=None):
"""Init of CSP."""
# Init default CSP
if not isinstance(n_components, int):
raise ValueError('n_components must be an integer.')
self.n_components = n_components
self.rank = rank
self.reg = reg
# Init default cov_est
if not (cov_est == "concat" or cov_est == "epoch"):
raise ValueError("unknown covariance estimation method")
self.cov_est = cov_est
# Init default transform_into
_check_option('transform_into', transform_into,
['average_power', 'csp_space'])
self.transform_into = transform_into
# Init default log
if transform_into == 'average_power':
if log is not None and not isinstance(log, bool):
raise ValueError('log must be a boolean if transform_into == '
'"average_power".')
else:
if log is not None:
raise ValueError('log must be a None if transform_into == '
'"csp_space".')
self.log = log
if not isinstance(norm_trace, bool):
raise ValueError('norm_trace must be a bool.')
self.norm_trace = norm_trace
self.cov_method_params = cov_method_params
def _check_Xy(self, X, y=None):
"""Aux. function to check input data."""
if y is not None:
if len(X) != len(y) or len(y) < 1:
raise ValueError('X and y must have the same length.')
if X.ndim < 2:
raise ValueError('X must have at least 2 dimensions.')
def fit(self, X, y = None):
"""Estimate the CSP decomposition on epochs.
Parameters
----------
X : Dataframe, shape (n_epochs,n_columns)
dataframe with mode magnitudes at each channel corresponding window,
trial and label - The data on which to estimate the CSP.
Returns
-------
self : instance of CSP
Returns the modified instance.
"""
y = X['label'].reset_index(drop = True)
trials = X['trial'].reset_index(drop = True)
X = X.values[:,:-4]
X = StandardScaler().fit_transform(X)
if not isinstance(X, np.ndarray):
raise ValueError("X should be of type ndarray (got %s)."
% type(X))
self._check_Xy(X, y)
n_channels = X.shape[1]
self._classes = np.unique(y)
n_classes = len(self._classes)
if n_classes < 2:
raise ValueError("n_classes must be >= 2.")
covs = np.zeros((n_classes, n_channels, n_channels))
sample_weights = list()
for class_idx, this_class in enumerate(self._classes):
if self.cov_est == "concat": # concatenate epochs
class_ = X[y == this_class].T
cov = _regularized_covariance(
class_, reg=self.reg, method_params=self.cov_method_params,
rank=self.rank)
weight = sum(y == this_class)
elif self.cov_est == "epoch":
class_ = X[y == this_class]
cov = np.zeros((n_channels, n_channels))
for this_X in class_:
cov += _regularized_covariance(
this_X, reg=self.reg,
method_params=self.cov_method_params,
rank=self.rank)
cov /= len(class_)
weight = len(class_)
covs[class_idx] = cov
if self.norm_trace:
# Append covariance matrix and weight. Prior to version 0.15,
# trace normalization was applied, but was breaking results for
# some usecases by changing the apparent ranking of patterns.
# Trace normalization of the covariance matrix was removed
# without signigificant effect on patterns or performances.
# If the user interested in this feature, we suggest trace
# normalization of the epochs prior to the CSP.
covs[class_idx] /= np.trace(cov)
sample_weights.append(weight)
if n_classes == 2:
eigen_values, eigen_vectors = linalg.eigh(covs[0], covs.sum(0))
# sort eigenvectors
ix = np.argsort(np.abs(eigen_values - 0.5))[::-1]
else:
# The multiclass case is adapted from
# http://github.com/alexandrebarachant/pyRiemann
eigen_vectors, D = _ajd_pham(covs)
# Here we apply an euclidean mean. See pyRiemann for other metrics
mean_cov = np.average(covs, axis=0, weights=sample_weights)
eigen_vectors = eigen_vectors.T
# normalize
for ii in range(eigen_vectors.shape[1]):
tmp = np.dot(np.dot(eigen_vectors[:, ii].T, mean_cov),
eigen_vectors[:, ii])
eigen_vectors[:, ii] /= np.sqrt(tmp)
# class probability
class_probas = [np.mean(y == _class) for _class in self._classes]
# mutual information
mutual_info = []
for jj in range(eigen_vectors.shape[1]):
aa, bb = 0, 0
for (cov, prob) in zip(covs, class_probas):
tmp = np.dot(np.dot(eigen_vectors[:, jj].T, cov),
eigen_vectors[:, jj])
aa += prob * np.log(np.sqrt(tmp))
bb += prob * (tmp ** 2 - 1)
mi = - (aa + (3.0 / 16) * (bb ** 2))
mutual_info.append(mi)
ix = np.argsort(mutual_info)[::-1]
# sort eigenvectors
eigen_vectors = eigen_vectors[:, ix]
self.filters_ = eigen_vectors.T
self.patterns_ = linalg.pinv2(eigen_vectors)
pick_filters = self.filters_[:self.n_components]
X = np.dot(pick_filters, X.T)
# compute features (mean band power)
X = pd.DataFrame(X.T)
X, y = mean_trial(X,trials,y)
# To standardize features
self.mean_ = X.mean(axis=0)
self.std_ = X.std(axis=0)
return self
def transform(self, X):
"""Estimate epochs sources given the CSP filters.
Parameters
----------
X : array, shape (n_epochs, n_channels, n_times)
The data.
Returns
-------
X : ndarray
If self.transform_into == 'average_power' then returns the power of
CSP features averaged over time and shape (n_epochs, n_sources)
If self.transform_into == 'csp_space' then returns the data in CSP
space and shape is (n_epochs, n_sources, n_times).
"""
y = X['label'].reset_index(drop = True)
trials = X['trial'].reset_index(drop = True)
X = X.values[:,:-4]
X = StandardScaler().fit_transform(X)
if not isinstance(X, np.ndarray):
raise ValueError("X should be of type ndarray (got %s)." % type(X))
if self.filters_ is None:
raise RuntimeError('No filters available. Please first fit CSP '
'decomposition.')
pick_filters = self.filters_[:self.n_components]
X = np.dot(pick_filters, X.T)
# compute features (mean band power)
if self.transform_into == 'average_power':
X, y = mean_trial(pd.DataFrame(X.T),trials,y)
return X, y
def plot_patterns(self, info, components=None, ch_type=None,
vmin=None, vmax=None, cmap='RdBu_r', sensors=True,
colorbar=True, scalings=None, units='a.u.', res=64,
size=1, cbar_fmt='%3.1f', name_format='CSP%01d',
show=True, show_names=False, title=None, mask=None,
mask_params=None, outlines='head', contours=6,
image_interp='bilinear', average=None,
sphere=None):
"""Plot topographic patterns of components.
The patterns explain how the measured data was generated from the
neural sources (a.k.a. the forward model).
Parameters
----------
info : instance of Info
Info dictionary of the epochs used for fitting.
If not possible, consider using ``create_info``.
components : float | array of float | None
The patterns to plot. If None, n_components will be shown.
ch_type : 'mag' | 'grad' | 'planar1' | 'planar2' | 'eeg' | None
The channel type to plot. For 'grad', the gradiometers are
collected in pairs and the RMS for each pair is plotted.
If None, then first available channel type from order given
above is used. Defaults to None.
vmin : float | callable
The value specifying the lower bound of the color range.
If None, and vmax is None, -vmax is used. Else np.min(data).
If callable, the output equals vmin(data).
vmax : float | callable
The value specifying the upper bound of the color range.
If None, the maximum absolute value is used. If vmin is None,
but vmax is not, default np.min(data).
If callable, the output equals vmax(data).
cmap : matplotlib colormap | (colormap, bool) | 'interactive' | None
Colormap to use. If tuple, the first value indicates the colormap
to use and the second value is a boolean defining interactivity. In
interactive mode the colors are adjustable by clicking and dragging
the colorbar with left and right mouse button. Left mouse button
moves the scale up and down and right mouse button adjusts the
range. Hitting space bar resets the range. Up and down arrows can
be used to change the colormap. If None, 'Reds' is used for all
positive data, otherwise defaults to 'RdBu_r'. If 'interactive',
translates to (None, True). Defaults to 'RdBu_r'.
.. warning:: Interactive mode works smoothly only for a small
amount of topomaps.
sensors : bool | str
Add markers for sensor locations to the plot. Accepts matplotlib
plot format string (e.g., 'r+' for red plusses). If True,
a circle will be used (via .add_artist). Defaults to True.
colorbar : bool
Plot a colorbar.
scalings : dict | float | None
The scalings of the channel types to be applied for plotting.
If None, defaults to ``dict(eeg=1e6, grad=1e13, mag=1e15)``.
units : dict | str | None
The unit of the channel type used for colorbar label. If
scale is None the unit is automatically determined.
res : int
The resolution of the topomap image (n pixels along each side).
size : float
Side length per topomap in inches.
cbar_fmt : str
String format for colorbar values.
name_format : str
String format for topomap values. Defaults to "CSP%%01d".
show : bool
Show figure if True.
show_names : bool | callable
If True, show channel names on top of the map. If a callable is
passed, channel names will be formatted using the callable; e.g.,
to delete the prefix 'MEG ' from all channel names, pass the
function lambda x: x.replace('MEG ', ''). If `mask` is not None,
only significant sensors will be shown.
title : str | None
Title. If None (default), no title is displayed.
mask : ndarray of bool, shape (n_channels, n_times) | None
The channels to be marked as significant at a given time point.
Indices set to `True` will be considered. Defaults to None.
mask_params : dict | None
Additional plotting parameters for plotting significant sensors.
Default (None) equals::
dict(marker='o', markerfacecolor='w', markeredgecolor='k',
linewidth=0, markersize=4)
%(topomap_outlines)s
contours : int | array of float
The number of contour lines to draw. If 0, no contours will be
drawn. When an integer, matplotlib ticker locator is used to find
suitable values for the contour thresholds (may sometimes be
inaccurate, use array for accuracy). If an array, the values
represent the levels for the contours. Defaults to 6.
image_interp : str
The image interpolation to be used.
All matplotlib options are accepted.
average : float | None
The time window around a given time to be used for averaging
(seconds). For example, 0.01 would translate into window that
starts 5 ms before and ends 5 ms after a given time point.
Defaults to None, which means no averaging.
%(topomap_sphere_auto)s
Returns
-------
fig : instance of matplotlib.figure.Figure
The figure.
"""
from mne import EvokedArray
if components is None:
components = np.arange(self.n_components)
# set sampling frequency to have 1 component per time point
info = cp.deepcopy(info)
info['sfreq'] = 1.
# create an evoked
patterns = EvokedArray(self.patterns_.T, info, tmin=0)
# the call plot_topomap
return patterns.plot_topomap(
times=components, ch_type=ch_type,
vmin=vmin, vmax=vmax, cmap=cmap, colorbar=colorbar, res=res,
cbar_fmt=cbar_fmt, sensors=sensors,
scalings=scalings, units=units, time_unit='s',
time_format=name_format, size=size, show_names=show_names,
title=title, mask_params=mask_params, mask=mask, outlines=outlines,
contours=contours, image_interp=image_interp, show=show,
average=average, sphere=sphere)
@fill_doc
def plot_filters(self, info, components=None, ch_type=None,
vmin=None, vmax=None, cmap='RdBu_r', sensors=True,
colorbar=True, scalings=None, units='a.u.', res=64,
size=1, cbar_fmt='%3.1f', name_format='CSP%01d',
show=True, show_names=False, title=None, mask=None,
mask_params=None, outlines='head', contours=6,
image_interp='bilinear', average=None):
"""Plot topographic filters of components.
The filters are used to extract discriminant neural sources from
the measured data (a.k.a. the backward model).
Parameters
----------
info : instance of Info
Info dictionary of the epochs used for fitting.
If not possible, consider using ``create_info``.
components : float | array of float | None
The patterns to plot. If None, n_components will be shown.
ch_type : 'mag' | 'grad' | 'planar1' | 'planar2' | 'eeg' | None
The channel type to plot. For 'grad', the gradiometers are
collected in pairs and the RMS for each pair is plotted.
If None, then first available channel type from order given
above is used. Defaults to None.
vmin : float | callable
The value specifying the lower bound of the color range.
If None, and vmax is None, -vmax is used. Else np.min(data).
If callable, the output equals vmin(data).
vmax : float | callable
The value specifying the upper bound of the color range.
If None, the maximum absolute value is used. If vmin is None,
but vmax is not, defaults to np.min(data).
If callable, the output equals vmax(data).
cmap : matplotlib colormap | (colormap, bool) | 'interactive' | None
Colormap to use. If tuple, the first value indicates the colormap
to use and the second value is a boolean defining interactivity. In
interactive mode the colors are adjustable by clicking and dragging
the colorbar with left and right mouse button. Left mouse button
moves the scale up and down and right mouse button adjusts the
range. Hitting space bar resets the range. Up and down arrows can
be used to change the colormap. If None, 'Reds' is used for all
positive data, otherwise defaults to 'RdBu_r'. If 'interactive',
translates to (None, True). Defaults to 'RdBu_r'.
.. warning:: Interactive mode works smoothly only for a small
amount of topomaps.
sensors : bool | str
Add markers for sensor locations to the plot. Accepts matplotlib
plot format string (e.g., 'r+' for red plusses). If True,
a circle will be used (via .add_artist). Defaults to True.
colorbar : bool
Plot a colorbar.
scalings : dict | float | None
The scalings of the channel types to be applied for plotting.
If None, defaults to ``dict(eeg=1e6, grad=1e13, mag=1e15)``.
units : dict | str | None
The unit of the channel type used for colorbar label. If
scale is None the unit is automatically determined.
res : int
The resolution of the topomap image (n pixels along each side).
size : float
Side length per topomap in inches.
cbar_fmt : str
String format for colorbar values.
name_format : str
String format for topomap values. Defaults to "CSP%%01d".
show : bool
Show figure if True.
show_names : bool | callable
If True, show channel names on top of the map. If a callable is
passed, channel names will be formatted using the callable; e.g.,
to delete the prefix 'MEG ' from all channel names, pass the
function lambda x: x.replace('MEG ', ''). If `mask` is not None,
only significant sensors will be shown.
title : str | None
Title. If None (default), no title is displayed.
mask : ndarray of bool, shape (n_channels, n_times) | None
The channels to be marked as significant at a given time point.
Indices set to `True` will be considered. Defaults to None.
mask_params : dict | None
Additional plotting parameters for plotting significant sensors.
Default (None) equals::
dict(marker='o', markerfacecolor='w', markeredgecolor='k',
linewidth=0, markersize=4)
%(topomap_outlines)s
contours : int | array of float
The number of contour lines to draw. If 0, no contours will be
drawn. When an integer, matplotlib ticker locator is used to find
suitable values for the contour thresholds (may sometimes be
inaccurate, use array for accuracy). If an array, the values
represent the levels for the contours. Defaults to 6.
image_interp : str
The image interpolation to be used.
All matplotlib options are accepted.
average : float | None
The time window around a given time to be used for averaging
(seconds). For example, 0.01 would translate into window that
starts 5 ms before and ends 5 ms after a given time point.
Defaults to None, which means no averaging.
Returns
-------
fig : instance of matplotlib.figure.Figure
The figure.
"""
from mne import EvokedArray
if components is None:
components = np.arange(self.n_components)
# set sampling frequency to have 1 component per time point
info = cp.deepcopy(info)
info['sfreq'] = 1.
# create an evoked
filters = EvokedArray(self.filters_, info, tmin=0)
# the call plot_topomap
return filters.plot_topomap(
times=components, ch_type=ch_type, vmin=vmin,
vmax=vmax, cmap=cmap, colorbar=colorbar, res=res,
cbar_fmt=cbar_fmt, sensors=sensors, scalings=scalings, units=units,
time_unit='s', time_format=name_format, size=size,
show_names=show_names, title=title, mask_params=mask_params,
mask=mask, outlines=outlines, contours=contours,
image_interp=image_interp, show=show, average=average)
def _ajd_pham(X, eps=1e-6, max_iter=15):
"""Approximate joint diagonalization based on Pham's algorithm.
This is a direct implementation of the PHAM's AJD algorithm [1].
Parameters
----------
X : ndarray, shape (n_epochs, n_channels, n_channels)
A set of covariance matrices to diagonalize.
eps : float, default 1e-6
The tolerance for stopping criterion.
max_iter : int, default 1000
The maximum number of iteration to reach convergence.
Returns
-------
V : ndarray, shape (n_channels, n_channels)
The diagonalizer.
D : ndarray, shape (n_epochs, n_channels, n_channels)
The set of quasi diagonal matrices.
References
----------
.. [1] Pham, Dinh Tuan. "Joint approximate diagonalization of positive
definite Hermitian matrices." SIAM Journal on Matrix Analysis and
Applications 22, no. 4 (2001): 1136-1152.
"""
# Adapted from http://github.com/alexandrebarachant/pyRiemann
n_epochs = X.shape[0]
# Reshape input matrix
A = np.concatenate(X, axis=0).T
# Init variables
n_times, n_m = A.shape
V = np.eye(n_times)
epsilon = n_times * (n_times - 1) * eps
for it in range(max_iter):
decr = 0
for ii in range(1, n_times):
for jj in range(ii):
Ii = np.arange(ii, n_m, n_times)
Ij = np.arange(jj, n_m, n_times)
c1 = A[ii, Ii]
c2 = A[jj, Ij]
g12 = np.mean(A[ii, Ij] / c1)
g21 = np.mean(A[ii, Ij] / c2)
omega21 = np.mean(c1 / c2)
omega12 = np.mean(c2 / c1)
omega = np.sqrt(omega12 * omega21)
tmp = np.sqrt(omega21 / omega12)
tmp1 = (tmp * g12 + g21) / (omega + 1)
tmp2 = (tmp * g12 - g21) / max(omega - 1, 1e-9)
h12 = tmp1 + tmp2
h21 = np.conj((tmp1 - tmp2) / tmp)
decr += n_epochs * (g12 * np.conj(h12) + g21 * h21) / 2.0
tmp = 1 + 1.j * 0.5 * np.imag(h12 * h21)
tmp = np.real(tmp + np.sqrt(tmp ** 2 - h12 * h21))
tau = np.array([[1, -h12 / tmp], [-h21 / tmp, 1]])
A[[ii, jj], :] = np.dot(tau, A[[ii, jj], :])
tmp = np.c_[A[:, Ii], A[:, Ij]]
tmp = np.reshape(tmp, (n_times * n_epochs, 2), order='F')
tmp = np.dot(tmp, tau.T)
tmp = np.reshape(tmp, (n_times, n_epochs * 2), order='F')
A[:, Ii] = tmp[:, :n_epochs]
A[:, Ij] = tmp[:, n_epochs:]
V[[ii, jj], :] = np.dot(tau, V[[ii, jj], :])
if decr < epsilon:
break
D = np.reshape(A, (n_times, -1, n_times)).transpose(1, 0, 2)
return V, D
def mean_trial(X,trials,y):
FiltB = []
labels = []
this_trial = pd.unique(trials)
for trial in this_trial :
index = trials == trial
# FiltB.append(X[index].pow(2).mean().values)
x = X[index].values
FiltB.append(np.log(np.var(x, axis=0)))
labels.append(np.mean(y[index]))
return(np.r_[FiltB], np.array(labels))