-
Notifications
You must be signed in to change notification settings - Fork 18
/
rf602_chi2fit.py
77 lines (59 loc) · 2.49 KB
/
rf602_chi2fit.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
#####################################
#
# 'LIKELIHOOD AND MINIMIZATION' ROOT.RooFit tutorial macro #602
#
# Setting up a chi^2 fit to a binned dataset
#
#
#
# 07/2008 - Wouter Verkerke
#
# /
import ROOT
def rf602_chi2fit():
# S e t u p m o d e l
# ---------------------
# Declare observable x
x = ROOT.RooRealVar("x", "x", 0, 10)
# Create two Gaussian PDFs g1(x,mean1,sigma) anf g2(x,mean2,sigma) and
# their parameters
mean = ROOT.RooRealVar("mean", "mean of gaussians", 5)
sigma1 = ROOT.RooRealVar("sigma1", "width of gaussians", 0.5)
sigma2 = ROOT.RooRealVar("sigma2", "width of gaussians", 1)
sig1 = ROOT.RooGaussian("sig1", "Signal component 1", x, mean, sigma1)
sig2 = ROOT.RooGaussian("sig2", "Signal component 2", x, mean, sigma2)
# Build Chebychev polynomial p.d.f.
a0 = ROOT.RooRealVar("a0", "a0", 0.5, 0., 1.)
a1 = ROOT.RooRealVar("a1", "a1", -0.2, 0., 1.)
bkg = ROOT.RooChebychev("bkg", "Background", x, ROOT.RooArgList(a0, a1))
# Sum the signal components into a composite signal p.d.f.
sig1frac = ROOT.RooRealVar(
"sig1frac", "fraction of component 1 in signal", 0.8, 0., 1.)
sig = ROOT.RooAddPdf(
"sig", "Signal", ROOT.RooArgList(sig1, sig2), ROOT.RooArgList(sig1frac))
# Sum the composite signal and background
bkgfrac = ROOT.RooRealVar("bkgfrac", "fraction of background", 0.5, 0., 1.)
model = ROOT.RooAddPdf(
"model", "g1+g2+a", ROOT.RooArgList(bkg, sig), ROOT.RooArgList(bkgfrac))
# C r e a t e b i n n e d d a t a s e t
# -----------------------------------------
d = model.generate(ROOT.RooArgSet(x), 10000)
dh = d.binnedClone()
# Construct a chi^2 of the data and the model.
# When a p.d.f. is used in a chi^2 fit, probability density scaled
# by the number of events in the dataset to obtain the fit function
# If model is an extended p.d.f, expected number events is used
# instead of the observed number of events.
ll = ROOT.RooLinkedList()
model.chi2FitTo(dh, ll)
# NB: It is also possible to fit a ROOT.RooAbsReal function to a ROOT.RooDataHist
# using chi2FitTo().
# Note that entries with zero bins are _not_ allowed
# for a proper chi^2 calculation and will give error
# messages
dsmall = d.reduce(ROOT.RooFit.EventRange(1, 100))
dhsmall = dsmall.binnedClone()
chi2_lowstat = ROOT.RooChi2Var("chi2_lowstat", "chi2", model, dhsmall)
print chi2_lowstat.getVal()
if __name__ == "__main__":
rf602_chi2fit()