-
Notifications
You must be signed in to change notification settings - Fork 2
/
dlvo_kao_NaCl_CuCl_TinPM.py
366 lines (315 loc) · 15.6 KB
/
dlvo_kao_NaCl_CuCl_TinPM.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
# -*- coding: utf-8 -*-
"""
@author: Collin Sutton, UW Madison
"""
import numpy as np
import matplotlib.pyplot as plt
# for analytical solutions
from math import exp as exp
from matplotlib import rc
rc('font',**{'family':'serif','serif':['Times New Roman']})
plt.rcParams['font.size'] = 16
###DLVO method taken from "Mobilization of Attached Clustered Colloids in Porous Media" https://doi.org/10.1029/2018WR024504
###Calculations are of a finite thickness particle (kaolinite) and a comparatively infinite thickness grain (quartz sand), hence FTIT on the def names
##### (EQUATION S21)
def dlvo(vlvw_FTIT, vedl_FTIT, vbr_FTIT):
vdlvo = (vlvw_FTIT+vedl_FTIT+vbr_FTIT)
return vdlvo
# FT-plate-IT-plate
#van der Waals energies calculation(EQUATION S6)
def vlvw_FTIT(ah, h):
vlvw_FTIT = -(ah/(12*np.pi*(h**2)))
return vlvw_FTIT
#electrical double layer energies calculation (EQUATION S3 from Image interpretation for kaolinite detachment from solid substrate: type curves, stochastic model)
#need to do separate calculations for gammaS, gammaG, and k
#gammaS and gammaG are the reduced surface potential of particles (kaolinite) and grain(sand)
def vedl_FTIT(epsilon0, epsilonr, k, kB, T, gammaS, gammaG, z, ee, h):
vedl_FTIT = 32*epsilon0*epsilonr*k*gammaS*gammaG*(((kB*T)/(z*ee))**2)*(exp(-k*h))
return vedl_FTIT
## for Born Potential Energies Calculation ## (EQUATION S8)
##### sigmaB [m] is the Born collision parameter - for the commonly used sigmaB = 5 A, the resulting acceptable minimum separation distance, at h=h0 (i.e. contact) is estimated to be h0 = 2.5 A = 0.25 nm which compares well to h0 = 4-10 A (born can be neglected if h>1nm)
def vbr_FTIT(ah, sigma, h):
vbr_FTIT = (ah*(sigma**6))/(360*np.pi*(h**8))
return vbr_FTIT
#gamma calculation for kaolinite ## (after EQUATION S3)
def gammaS_FTIT(z, ee, zetaKao, kB, T):
gammaS = np.tanh((z*ee*zetaKao)/(4*kB*T))
return gammaS
#gamma calculation for sand grain ## (after EQUATION S3)
def gammG_FTIT(z, ee, zetaGlass, kB, T):
gammaG = np.tanh((z*ee*zetaGlass)/(4*kB*T))
return gammaG
#Debye-Huckel reciprical double layer length ## ( EQUATION S4)
def k_FTIT(ee, epsilonr, epsilon0, kB, T, zi, ni):
sigmaZiNi = (zi**2)*ni + ((zi**2)*ni)
k = np.sqrt(((ee**2)/(epsilonr*epsilon0*kB*T))*sigmaZiNi)
return k
#Debye-Huckel reciprical double layer length ## ( EQUATION S4)
def k_FTIT2(ee, epsilonr, epsilon0, kB, T, zi, ni, zi2, niCu, niCl2):
sigmaZiNi = (zi**2)*ni + (zi**2)*ni + (zi2**2)*niCu + (zi2**2)*niCl2
k = np.sqrt(((ee**2)/(epsilonr*epsilon0*kB*T))*sigmaZiNi)
return k
#DLVO parameters
ah = 1.49E-20 #[J]
kB = 1.38E-23 #[J/K]
T = 298.15 #[degree K] = 25 degrees C
# atomic collision constant with a typical value of 0.5 nm
sigma = 5E-10 #[m]
epsilon0 = 8.85E-12 # [C^2/(N*m^2)] #permativity of the solution
epsilonr = 78.46 #(relative permativity of water) [-]
z = 2 #electron valency ## assume z:z electron valency for NaCl - so z+ = 1 (Na) and z- = 1 (Cl)
zCu = 4
ee = 1.6E-19 #elemental charge [C]
Na = 6.02E23 # avogadro's number [1/mol]
zi = float(1) ## assume z:z electron valency for NaCl - so z+ = 1 (Na) and z- = 1 (Cl)
zi2 = float(2) ## assume z electron valency for CuCl2 - so z+ = 2 (Cu) and z- = 2 (Cl2)
hArr = np.linspace(1E-10, 3E-7, num=100000)
hlen = len(hArr)
vlvw = np.zeros([hlen])
vedl = np.zeros([hlen])
vbr = np.zeros([hlen])
vdlvo = np.zeros([hlen])
vdlvo_0_1NaCl = np.zeros([hlen])
vdlvo_0_01NaCl = np.zeros([hlen])
vdlvo_0_001NaCl = np.zeros([hlen])
vdlvo_0_1NaCl_Cu = np.zeros([hlen])
vdlvo_0_001NaCl_Cu = np.zeros([hlen])
##0.1 Molar NaCl
zetaKao = -38 / 1000 # [V] zeta must be in Volts - unit from zeta sizer is mV
zetaGlass = -57.3 / 1000 # [V] zeta must be in Volts - unit from zeta sizer is mV
epsilonM = 80.1 # Line 80 of SI at 20C
ni = 0.1*1000*Na
gammaS_0_1NaCl = gammaS_FTIT(z, ee, zetaKao, kB, T)
gammaG_0_1NaCl = gammG_FTIT(z, ee, zetaGlass, kB, T)
k_0_1NaCl = k_FTIT(ee, epsilonr, epsilon0, kB, T, zi, ni) #[1/m]
for i in range(0,hlen):
h = hArr[i]
vlvw[i] = vlvw_FTIT(ah, h)
vedl[i] = vedl_FTIT(epsilon0, epsilonr, k_0_1NaCl, kB, T, gammaS_0_1NaCl, gammaG_0_1NaCl, z, ee, h)
vbr[i] = vbr_FTIT(ah, sigma, h)
vdlvo[i] = dlvo(vlvw[i], vedl[i], vbr[i])
vdlvo_0_1NaCl[i] = vdlvo[i]
#0.001 Molar NaCl
zetaKao3 = -61.6 / 1000
zetaSand3 = -73.6 / 1000 #from implications of Cation Exchange on Clay Release and Colloid-Facilitated Transport in Porous Media - doi:10.2134/jeq2010.0156
ni3 = 0.001*1000*Na
gammaS_0_001NaCl = gammaS_FTIT(z, ee, zetaKao3, kB, T)
gammaG_0_001NaCl = gammG_FTIT(z, ee, zetaSand3, kB, T)
k_0_001NaCl = k_FTIT(ee, epsilonr, epsilon0, kB, T, zi, ni3) #[1/m]
for i in range(0,hlen):
h = hArr[i]
vlvw[i] = vlvw_FTIT(ah, h)
vedl[i] = vedl_FTIT(epsilon0, epsilonr, k_0_001NaCl, kB, T, gammaS_0_001NaCl, gammaG_0_001NaCl, z, ee, h)
vbr[i] = vbr_FTIT(ah, sigma, h)
vdlvo[i] = dlvo(vlvw[i], vedl[i], vbr[i])
vdlvo_0_001NaCl[i] = vdlvo[i]
##0.1 Molar NaCl with 2.64 mM CuCl2
zetaKaoCu = -25 / 1000 # [V] zeta must be in Volts - unit from zeta sizer is mV
zetaGlass = -57.3 / 1000 # [V] zeta must be in Volts - unit from zeta sizer is mV
epsilonM = 80.1 # Line 80 of SI at 20C
ni = 0.1*1000*Na
niCu = 0.00264*1000*Na
niCl2 = 0.00264*2*1000*Na
gammaS_0_1NaCl = gammaS_FTIT(zCu, ee, zetaKaoCu, kB, T)
gammaG_0_1NaCl = gammG_FTIT(zCu, ee, zetaGlass, kB, T)
k_0_1NaCl_Cu = k_FTIT2(ee, epsilonr, epsilon0, kB, T, zi, ni, zi2, niCu, niCl2) #[1/m]
for i in range(0,hlen):
h = hArr[i]
vlvw[i] = vlvw_FTIT(ah, h)
vedl[i] = vedl_FTIT(epsilon0, epsilonr, k_0_1NaCl_Cu, kB, T, gammaS_0_1NaCl, gammaG_0_1NaCl, zCu, ee, h)
vbr[i] = vbr_FTIT(ah, sigma, h)
vdlvo[i] = dlvo(vlvw[i], vedl[i], vbr[i])
vdlvo_0_1NaCl_Cu[i] = vdlvo[i]
#0.001 Molar NaCl with 2.64 mM CuCl2
zetaKaoCu2 = -60 / 1000
zetaSand3 = -73.6 / 1000 #from implications of Cation Exchange on Clay Release and Colloid-Facilitated Transport in Porous Media - doi:10.2134/jeq2010.0156
ni3 = 0.001*1000*Na
gammaS_0_001NaCl_Cu = gammaS_FTIT(zCu, ee, zetaKaoCu2, kB, T)
gammaG_0_001NaCl = gammG_FTIT(zCu, ee, zetaSand3, kB, T)
k_0_001NaCl_Cu = k_FTIT2(ee, epsilonr, epsilon0, kB, T, zi, ni3, zi2, niCu, niCl2) #[1/m]
for i in range(0,hlen):
h = hArr[i]
vlvw[i] = vlvw_FTIT(ah, h)
vedl[i] = vedl_FTIT(epsilon0, epsilonr, k_0_001NaCl_Cu, kB, T, gammaS_0_001NaCl_Cu, gammaG_0_001NaCl, zCu, ee, h)
vbr[i] = vbr_FTIT(ah, sigma, h)
vdlvo[i] = dlvo(vlvw[i], vedl[i], vbr[i])
vdlvo_0_001NaCl_Cu[i] = vdlvo[i]
vdlvo_0_1NaCl_kBT = vdlvo_0_1NaCl*(2E-5*2E-5)/(kB*T) #surface area of kaolinite (20 um)^2 / kB*T
vdlvo_0_01NaCl_kBT = vdlvo_0_01NaCl*(2E-5*2E-5)/(kB*T) #surface area of kaolinite (20 um)^2 / kB*T
vdlvo_0_001NaCl_kBT = vdlvo_0_001NaCl*(2E-5*2E-5)/(kB*T) #surface area of kaolinite (20 um)^2 / kB*T
vdlvo_0_1NaCl_Cu_kBT = vdlvo_0_1NaCl_Cu*(2E-5*2E-5)/(kB*T) #surface area of kaolinite (20 um)^2 / kB*T
vdlvo_0_001NaCl_Cu_kBT = vdlvo_0_001NaCl_Cu*(2E-5*2E-5)/(kB*T) #surface area of kaolinite (20 um)^2 / kB*T
# Raw plot without cropping [units in kbT]
coppers = plt.cm.copper(np.linspace(0,1, 5))
plt.figure(dpi=300)
plt.plot(hArr, vdlvo_0_1NaCl_kBT, c="black", label="0.1M NaCl")
plt.plot(hArr, vdlvo_0_001NaCl_kBT, c="black", linestyle="dashed", label="0.001M NaCl")
plt.plot(hArr, vdlvo_0_1NaCl_Cu_kBT, color=coppers[3], label="0.1M NaCl + Cu")
plt.plot(hArr, vdlvo_0_001NaCl_Cu_kBT, color=coppers[3], linestyle="dashed", label="0.001M NaCl + Cu")
plt.legend(loc ='best', prop={'size': 10})
plt.xscale("log")
plt.xlabel('Separation Distance [m]')
plt.ylabel('U [kbT]')
plt.title('DLVO Kaolinite System') ,plt.show(),plt.close()
# Raw plot with cropping [units in kbT]
plt.figure(dpi=300)
plt.plot(hArr, vdlvo_0_1NaCl_kBT, c="black", label="0.1M NaCl")
plt.plot(hArr, vdlvo_0_001NaCl_kBT, c="black", linestyle="dashed", label="0.001M NaCl")
plt.plot(hArr, vdlvo_0_1NaCl_Cu_kBT, color=coppers[3], label="0.1M NaCl + Cu")
plt.plot(hArr, vdlvo_0_001NaCl_Cu_kBT, color=coppers[3], linestyle="dashed", label="0.001M NaCl + Cu")
plt.legend(loc ='best', prop={'size': 10})
plt.xscale("log")
plt.ylim([-250000000, 100000000])
plt.xlim([1E-10, 3E-7])
plt.xlabel('Separation Distance [m]')
plt.ylabel('U [kbT]')
plt.title('DLVO Kaolinite System') ,plt.show(),plt.close()
# Raw plot with cropping [units in Jm^-2]
plt.figure(dpi=300)
plt.plot(hArr, vdlvo_0_1NaCl, c="black", label="0.1M NaCl")
plt.plot(hArr, vdlvo_0_001NaCl, c="black", linestyle="dashed", label="0.001M NaCl")
plt.plot(hArr, vdlvo_0_1NaCl_Cu, color=coppers[3], label="0.1M NaCl + Cu")
plt.plot(hArr, vdlvo_0_001NaCl_Cu, color=coppers[3], linestyle="dashed", label="0.001M NaCl + Cu")
plt.legend(loc ='best', prop={'size': 10})
plt.xscale("log")
plt.ylim([-0.0025, 0.001])
plt.xlim([1E-10, 3E-7])
plt.xlabel('Separation Distance [m]')
plt.ylabel('U [J/m^2]')
plt.title('DLVO Kaolinite System') ,plt.show(),plt.close()
##Next 5 plots are commented out - show individual plots of primary and secondary minimum for different IS solutions
# plt.figure(dpi=300)
# plt.plot(hArr, vdlvo_0_1NaCl, c="black", label="0.1M NaCl")
# plt.plot(hArr, vdlvo_0_1NaCl_Cu, color=coppers[3], label="0.1M NaCl + Cu")
# plt.legend(loc ='best', prop={'size': 10})
# plt.xscale("log")
# plt.ylim([-0.0025, 0.001])
# plt.xlim([1E-10, 3E-7])
# plt.xlabel('Separation Distance [m]')
# plt.ylabel('U [J/m^2]')
# plt.title('DLVO High IS') ,plt.show(),plt.close()
# fig = plt.figure(dpi=300)
# ax = fig.add_subplot(111)
# ax.plot(hArr, vdlvo_0_1NaCl, c="black", label="0.1M NaCl")
# ax.plot(hArr, vdlvo_0_1NaCl_Cu, color=coppers[3], label="0.1M NaCl + Cu")
# plt.legend(loc ='best', prop={'size': 10})
# plt.xscale("log")
# ax.spines['bottom'].set_position('zero')
# plt.ylim([-0.00001, 0.000005])
# plt.xlim([3E-9, 8E-8])
# plt.xlabel('Separation Distance [m]')
# plt.ylabel('U [J/m^2]')
# plt.title('Secondary Minimum for High IS') ,plt.show(),plt.close()
# plt.figure(dpi=300)
# plt.plot(hArr, vdlvo_0_001NaCl, c="black", linestyle="dashed", label="0.001M NaCl")
# plt.plot(hArr, vdlvo_0_001NaCl_Cu, color=coppers[3], linestyle="dashed", label="0.001M NaCl + Cu")
# plt.legend(loc ='best', prop={'size': 10})
# plt.xscale("log")
# plt.ylim([-0.0025, 0.001])
# plt.xlim([1E-10, 3E-7])
# plt.xlabel('Separation Distance [m]')
# plt.ylabel('U [J/m^2]')
# plt.title('DLVO Low IS') ,plt.show(),plt.close()
# plt.figure(dpi=300)
# plt.plot(hArr, vdlvo_0_001NaCl, c="black", linestyle="dashed", label="0.001M NaCl")
# plt.plot(hArr, vdlvo_0_001NaCl_Cu, color=coppers[3], linestyle="dashed", label="0.001M NaCl + Cu")
# plt.legend(loc ='best', prop={'size': 10})
# plt.xscale("log")
# plt.ylim([-0.0002, 0.00025])
# plt.xlim([8E-10, 6E-8])
# plt.xlabel('Separation Distance [m]')
# plt.ylabel('U [J/m^2]')
# plt.title('DLVO Low IS Energy Barrier') ,plt.show(),plt.close()
# ######### for changing x axis location
# fig = plt.figure(dpi=300)
# ax = fig.add_subplot(111)
# ax.plot(hArr, vdlvo_0_1NaCl, c="black", label="0.1M NaCl")
# ax.plot(hArr, vdlvo_0_001NaCl, c="black", linestyle="dashed", label="0.001M NaCl")
# ax.plot(hArr, vdlvo_0_1NaCl_Cu, color=coppers[3], label="0.1M NaCl + Cu")
# ax.plot(hArr, vdlvo_0_001NaCl_Cu, color=coppers[3], linestyle="dashed", label="0.001M NaCl + Cu")
# plt.legend(loc ='best', prop={'size': 10})
# plt.xscale("log")
# plt.ylim([-0.0000015, 0.0000001])
# plt.xlim([1E-8, 3E-7])
# ax.spines['bottom'].set_position('zero')
# plt.xlabel('[m]')
# plt.ylabel('U [J/m^2]')
# plt.title('Secondary Minimum for low IS') ,plt.show(),plt.close()
#zoom in of entire system with legend and labels
fig = plt.figure(dpi=300)
ax = fig.add_subplot(111)
ax.plot(hArr, vdlvo_0_1NaCl_kBT, c="black", label="0.1M NaCl")
#plt.plot(hArr, vdlvo_0_01NaCl_kBT, c="red", label="0.01M NaCl")
ax.plot(hArr, vdlvo_0_001NaCl_kBT, c="black", linestyle="dashed", label="0.001M NaCl")
ax.plot(hArr, vdlvo_0_1NaCl_Cu_kBT, color=coppers[3], label="0.1M NaCl + Cu")
ax.plot(hArr, vdlvo_0_001NaCl_Cu_kBT, color=coppers[3], linestyle="dashed", label="0.001M NaCl + Cu")
plt.legend(loc ='best', prop={'size': 10})
plt.xscale("log")
ax.spines['bottom'].set_position('zero')
plt.ylim([-1.5E7, 3E7])
plt.xlim([7E-10, 8E-8])
plt.xlabel('Separation Distance [m]')
plt.ylabel('U [kbT]')
plt.title('DLVO Kaolinite System') ,plt.show(),plt.close()
##zoom in of secondary minimum for high IS
# fig = plt.figure(dpi=300)
# ax = fig.add_subplot(111)
# ax.plot(hArr, vdlvo_0_1NaCl_kBT, c="black", label="0.1M NaCl")
# # plt.plot(hArr, vdlvo_0_01NaCl, c="red", label="0.01M NaCl")
# #plt.plot(hArr, vdlvo_0_001NaCl, c="black", linestyle="dashed", label="0.001M NaCl")
# ax.plot(hArr, vdlvo_0_1NaCl_Cu_kBT, color=coppers[3], label="0.1M NaCl + Cu")
# #plt.plot(hArr, vdlvo_0_001NaCl_Cu, c="gold", linestyle="dashed", label="0.001M NaCl + Cu")
# plt.legend(loc ='best', prop={'size': 10})
# plt.xscale("log")
# ax.spines['bottom'].set_position('zero')
# plt.ylim([-1.5E6, 1.5E6])
# plt.xlim([3E-9, 8E-8])
# plt.xlabel('Separation Distance [m]')
# plt.ylabel('U [kBT]')
# plt.title('Secondary Minimum for High IS') ,plt.show(),plt.close()
##zoom in of low IS energy barrier
# fig = plt.figure(dpi=300)
# ax = fig.add_subplot(111)
# #plt.plot(hArr, vdlvo_0_1NaCl, c="black", label="0.1M NaCl")
# # plt.plot(hArr, vdlvo_0_01NaCl, c="red", label="0.01M NaCl")
# ax.plot(hArr, vdlvo_0_001NaCl_kBT, c="black", linestyle="dashed", label="0.001M NaCl")
# #plt.plot(hArr, vdlvo_0_1NaCl_Cu, c="gold", label="0.1M NaCl + Cu")
# ax.plot(hArr, vdlvo_0_001NaCl_Cu_kBT, color=coppers[3], linestyle="dashed", label="0.001M NaCl + Cu")
# plt.legend(loc ='best', prop={'size': 10})
# plt.xscale("log")
# ax.spines['bottom'].set_position('zero')
# plt.ylim([-1.5E7, 3E7])
# plt.xlim([8E-10, 6E-8])
# plt.xlabel('Separation Distance [m]')
# plt.ylabel('U [kBT]')
# plt.title('DLVO Low IS Energy Barrier') ,plt.show(),plt.close()
###############manuscript plot#####################
from matplotlib.patches import Rectangle
figure, axes = plt.subplots(1, 2, figsize=(16,8), dpi=300)
axes[0].plot(hArr, vdlvo_0_1NaCl_kBT, c="black", label="100 mM NaCl")
axes[0].plot(hArr, vdlvo_0_001NaCl_kBT, c="black", linestyle="dashed", label="1 mM NaCl")
axes[0].plot(hArr, vdlvo_0_1NaCl_Cu_kBT, color=coppers[3], label="100 mM NaCl + Cu")
axes[0].plot(hArr, vdlvo_0_001NaCl_Cu_kBT, color=coppers[3], linestyle="dashed", label="1 mM NaCl + Cu")
axes[0].axhline(y=0,xmin=0,xmax=3,c="black",linewidth=0.5,zorder=0)
axes[1].plot(hArr, vdlvo_0_1NaCl_kBT, c="black", label="100 mM NaCl")
axes[1].plot(hArr, vdlvo_0_001NaCl_kBT, c="black", linestyle="dashed", label="1 mM NaCl")
axes[1].plot(hArr, vdlvo_0_1NaCl_Cu_kBT, color=coppers[3], label="100 mM NaCl + Cu")
axes[1].plot(hArr, vdlvo_0_001NaCl_Cu_kBT, color=coppers[3], linestyle="dashed", label="1 mM NaCl + Cu")
axes[1].axhline(y=0,xmin=0,xmax=3,c="black",linewidth=0.5,zorder=0)
axes[0].add_patch(Rectangle((7E-10, -1.5E7), 7.93e-8, 45000000,
edgecolor = 'black',
facecolor = 'none',
lw=4))
axes[0].set_ylim([-250000000, 100000000])
axes[0].set_xscale('log')
axes[1].legend(loc ='lower right', prop={'size': 16})
axes[1].set_ylim([-1.5E7, 3E7])
axes[1].set_xlim([7E-10, 8E-8])
axes[1].set_xscale('log')
for axes in axes.flat:
axes.set(xlabel='Separation Distance [m]', ylabel='U [$k_B T$]')
axes.tick_params(axis='both', labelsize=18)
plt.rcParams['axes.labelsize'] = 20
ax.xaxis.get_label().set_fontsize(20)
ax.yaxis.get_label().set_fontsize(20)
#plt.savefig('dlvo_AGU2022', transparent=True)