-
Notifications
You must be signed in to change notification settings - Fork 61
/
solver_sDantzig.m
84 lines (77 loc) · 2.54 KB
/
solver_sDantzig.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
function varargout = solver_sDantzig( A, b, delta, mu, x0, z0, opts, varargin )
% SOLVER_SDANTZIG Dantzig selector problem. Uses smoothing.
%[ x, out, opts ] = solver_sDantzig( A, b, delta, mu, x0, z0, opts )
% Solves the smoothed Dantzig
% minimize norm(x,1) + (1/2)*mu*norm(x-x0).^2
% s.t. norm(D.*(A'*(A*x-b)),Inf) <= delta
% by constructing and solving the composite dual
% maximize - g_sm(z) - delta*norm(z,1)
% where
% gsm(z) = sup_x <z,D.*A'*(Ax-b)>-norm(x,1)-(1/2)*mu*norm(x-x0)
% A must be a linear operator, b must be a vector, and delta and mu
% must be positive scalars. Initial points x0 and z0 are optional.
% The standard calling sequence assumes that D=I. To supply a scaling,
% pass the cell array { A, D } instead of A. D must either be a scalar,
% a vector of weights, or a linear operator.
% Supply default values
error(nargchk(4,8,nargin));
if nargin < 5, x0 = []; end
if nargin < 6, z0 = []; end
if nargin < 7, opts = []; end
% -- legacy options from original software --
if isfield(opts,'lambda0')
z0 = opts.lambda0;
opts = rmfield(opts,'lambda0');
end
if isfield(opts,'xPlug')
x0 = opts.xPlug;
opts = rmfield(opts,'xPlug');
end
if isfield(opts,'solver')
svr = opts.solver;
opts = rmfield(opts,'solver');
if isfield(opts,'alg') && ~isempty(opts.alg)
disp('Warning: conflictiong options for the algorithm');
else
% if specified as "solver_AT", truncate:
s = strfind( svr, '_' );
if ~isempty(s), svr = svr(s+1:end); end
opts.alg = svr;
end
end
% Extract the linear operators
D = [];
if isa( A, 'cell' ),
if length(A) > 1, D = A{2}; end
A = A{1};
end
if isempty(D),
D = @(x)x;
elseif isa( D, 'double' ),
D = @(x)D.*x;
end
if isa( A, 'double' ),
A = linop_matrix(A);
end
% Call TFOCS
objectiveF = prox_l1;
affineF = { @(y,mode)linear_DS( D, A, y, mode ), -D(A(b,2)) };
dualproxF = prox_l1( delta );
[varargout{1:max(nargout,1)}] = ...
tfocs_SCD( objectiveF, affineF, dualproxF, mu, x0, z0, opts, varargin{:} );
% Implements x -> D*A'*A*x and its adjoint if A is a linop
function y = linear_DS( D, A, y, mode )
switch mode,
case 0,
y = A([],0);
if iscell( y ),
y = { y{1}, y{1} };
else
y = { [y(2),1], [y(2),1] };
end
case 1, y = D(A(A(y,1),2));
case 2, y = A(A(D(y),1),2);
end
% TFOCS v1.3 by Stephen Becker, Emmanuel Candes, and Michael Grant.
% Copyright 2013 California Institute of Technology and CVX Research.
% See the file LICENSE for full license information.