-
Notifications
You must be signed in to change notification settings - Fork 2
/
exindex.m
277 lines (250 loc) · 9.33 KB
/
exindex.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
function arr = exindex(arr, varargin)
%EXINDEX extended array indexing
% ARROUT = EXINDEX(ARRIN, S1, S2, ...) indexes a virtual array made by
% extending ARRIN with zeros in all directions, using subscripts S1, S2
% etc.
%
% ARROUT = EXINDEX(ARRIN, S1, R1, S2, R2, ...) extends ARRIN using rule
% R1 on the first dimension, R2 on the second dimension etc.
%
% ARROUT = EXINDEX(ARRIN, S1, S2, ..., R) extends ARRIN using rule R on
% every dimension.
%
% Subscripts
% ----------
%
% Broadly, if V is the virtual extended array, ARROUT = V(S1, S2, ...)
%
% The elements of the subscript arguments S1, S2 etc must be integers.
% They need not be positive and are not restricted in any way by the size
% of ARRIN. Logical indexing and linear indexing are not supported.
%
% There must be at least one subscript argument for each dimension of
% ARRIN as reported by NDIMS, except that row and column vectors may have
% 1 or 2 subscripts. A single subscript is taken to refer to the
% dimension along which the vector lies, as in normal vector indexing.
% Scalars require 2 subscripts. If there are more subscripts than
% dimensions, ARRIN is taken to have trailing singleton dimensions, as in
% normal array indexing.
%
% The number of dimensions of ARROUT will be the number of subscript
% arguments, though trailing singleton dimensions will, as usual, be
% suppressed. The size of ARROUT is given by the normal Matlab rules for
% the result of indexing into ARRIN: that is
%
% size(ARROUT) = size( ARRIN(ones(size(S1)), ones(size(S2)), ...) )
%
% A subscript argument may be the string ':'. This behaves like a colon
% in ordinary subscripting: a colon for the K'th subscript stands for
% 1:size(ARRIN, K). The 'end' keyword is not supported.
%
% Rules
% -----
%
% Each rule may be one of the following:
%
% A scalar cell: ARRIN is padded with elements equal to the contents of
% the cell. The class of the cell contents must be compatible with the
% class of ARRIN.
%
% If different constants are used on different dimensions, padding is
% done in the order of the subscripts. For example, a 2D array is
% extended first in the row index direction and then in the column
% index direction. For all other cases, the order in which dimensions
% are extended has no effect.
%
% 'circular': ARRIN is extended with copies of itself; i.e. V is tiled
% with ARRIN.
%
% 'symmetric': ARRIN is extended with copies of itself with reflection at
% its boundaries; i.e. V is tiled with [ARRIN fliplr(ARRIN);
% flipud(ARRIN) fliplr(flipud(ARRIN))].
%
% 'replicate': ARRIN is extended by copying its border elements; i.e. an
% element of V is equal to the nearest element of ARRIN.
%
% If no rule is given, padding is with zeros.
%
% Examples
% --------
%
% Pad a 2D matrix with K extra rows and columns with reflection on both
% axes:
%
% b = exindex(a, 1-k:size(a,1)+k, 1-k:size(a,2)+k, 'symmetric');
%
% Circularly shift a 2D matrix by R rows downwards and C columns
% rightwards:
%
% b = exindex(a, 1-r:size(a,1)-r, 1-c:size(a,2)-c, 'circular');
%
% Force a row or column vector to be 1024 elements long, trimming or
% padding with zeros as necessary:
%
% u = exindex(v, 1:1024);
%
% The same, with a non-zero padding value:
%
% u = exindex(v, 1:1024, {-1}); % note constant in cell
%
% Truncate or extend all the rows of a matrix to 1024 columns:
%
% b = exindex(a, ':', 1:1024);
%
% Extend a 2-D array into the third dimension by copying it:
%
% b = exindex(a, ':', ':', 1:3, 'replicate');
%
% Pad a 1-D cell array with cells containing the empty matrix:
%
% cellout = exindex(cellin, 0:10, {{[]}});
%
% See also: padarray, circshift, repmat
% Copyright David Young 2010
% Sort out arguments
[exindices, rules, nd, sz] = getinputs(arr, varargin{:});
consts = cellfun(@iscell, rules); % Check for constants, as can be
constused = any(consts); % more efficient if there are none
% Setup for constant padding
if constused
tofill = cell(1, nd);
end
% Main loop over subscript arguments, transforming them into valid
% subscripts into arr using the rule for each dimension
if constused
for i = 1:nd
[exindices{i}, tofill{i}] = extend(exindices{i}, rules{i}, sz(i));
end
else % no need for information for doing constants
for i = 1:nd
exindices{i} = extend(exindices{i}, rules{i}, sz(i));
end
end
% Create the new array by indexing into arr. If there are no constants,
% this does the whole job
arr = arr(exindices{:});
% Fill areas that need constants
if constused
% Get full range of output array indices
ranges = arrayfun(@(x) {1:x}, size(arr));
for i = nd:-1:1 % order matters
if consts(i)
ranges{i} = tofill{i}; % don't overwrite original
c = rules{i}; % get constant and fill ...
arr(ranges{:}) = c{1}; % we've checked c is scalar
ranges{i} = ~tofill{i}; % don't overwrite
end
end
end
end
% -------------------------------------------------------------------------
function [exindices, rules, nd, sz] = getinputs(arr, varargin)
% Sort out and check arguments. Inputs are as given in the help comments
% for exindex. Outputs are cell arrays; each element of exindices is a
% set of integer extended indices which has been checked for validity; each
% element of rules is a rule which has not been checked for validity.
% Use index/rules arguments only to establish no. dimensions - ndims(arr)
% is no use, as trailing singleton dimensions truncated and vectors can be
% 2D or 1D
nd = length(varargin);
if nd == 0
error('exindex:missingargs', 'Not enough arguments');
elseif nd == 1
exindices = varargin;
rules = {{0}};
elseif ~(isnumeric(varargin{2}) || strcmp(varargin{2}, ':'))
% have alternating indices and rule
nd = nd/2;
if round(nd) ~= nd
error('exindex:badnumargs', ...
'Odd number of arguments after initial index/rule pair');
end
exindices = varargin(1:2:end);
rules = varargin(2:2:end);
elseif nd > 2 && ~(isnumeric(varargin{end}) || strcmp(varargin{end}, ':'))
% have a general rule at end
nd = nd - 1;
exindices = varargin(1:nd);
[rules{1:nd}] = deal(varargin{end});
else
% no rule is specified
exindices = varargin;
[rules{1:nd}] = deal({0});
end
% Sort out mismatch of apparent array size and number of dimensions
% indexed
sz = size(arr);
ndarr = ndims(arr);
if nd < ndarr
if nd == 1 && ndarr == 2
% Matlab allows vectors to be indexed with a single subscript and
% to retain their shape. In all other cases (including scalars) a
% single subscript causes the output to take the same shape as the
% subscript array - we can't deal with this.
if sz(1) == 1 && sz(2) > 1
% have a row vector
exindices = [{1} exindices {1}];
rules = [rules rules]; % 1st rule doesn't matter
elseif sz(2) == 1 && sz(1) > 1
% have a column vector
exindices = [exindices {1}];
rules = [rules rules]; % 2nd rule doesn't matter
else
error('exindex:wantvector', ...
'Only one index but array is not a vector');
end
else
error('exindex:toofewindices', ...
'Array has more dimensions than there are index arguments');
end
nd = 2;
elseif nd > ndarr
% Effective array size
sz = [sz ones(1, nd-ndarr)];
end
% Expand any colons now to simplify checking.
% It's tempting to allow the 'end' keyword here: easy to substitute the
% size of the dimension. However, to be worthwhile it would be necessary to
% use evalin('caller',...) so that expressions using end could be given as
% in normal indexing. This would mean moving the code up to exindex itself,
% and evalin makes for inefficiency and fragility, so this hasn't been
% done.
colons = strcmp(exindices, ':');
if any(colons) % saves a little time
exindices(colons) = arrayfun(@(x) {1:x}, sz(colons));
end
% Check the indices (rules are checked as required in extend)
checkindex = @(ind) validateattributes(ind, {'numeric'}, ...
{'integer'}, 'exindex', 'index');
cellfun(checkindex, exindices);
end
% -------------------------------------------------------------------------
function [ind, tofill] = extend(ind, rule, s)
% The core function: maps extended array subscripts into valid input array
% subscripts.
if ischar(rule) % pad with rule
tofill = []; % never used
switch rule
case 'replicate'
ind = min( max(1,ind), s );
case 'circular'
ind = mod(ind-1, s) + 1;
case 'symmetric'
ind = mod(ind-1, 2*s) + 1;
ott = ind > s;
ind(ott) = 2*s + 1 - ind(ott);
otherwise
error('exindex:badopt', 'Unknown option');
end
elseif iscell(rule) && isscalar(rule) % pad with constant
% The main messiness is due to constant padding. This can't be done
% with indexing into the original array, but we want the indexing
% structure to be preserved, so for now we index to element 1 on each
% dimension, and record the indices of the regions that need to be
% fixed.
tofill = ind < 1 | ind > s;
ind(tofill) = 1;
else
error('exindex:badconst', 'Expecting string or scalar cell');
end
end