-
Notifications
You must be signed in to change notification settings - Fork 2
/
slicomex.c
546 lines (502 loc) · 17.6 KB
/
slicomex.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
//=================================================================================
// slicmex.c
//
//
// AUTORIGHTS
// Copyright (C) 2015 Ecole Polytechnique Federale de Lausanne (EPFL), Switzerland.
//
// Created by Radhakrishna Achanta on 12/06/15.
//=================================================================================
/*Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the name of EPFL nor the
names of its contributors may be used to endorse or promote products
derived from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE REGENTS AND CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include<mex.h>
#include <stdio.h>
#include <math.h>
#include <float.h>
void rgbtolab(int* rin, int* gin, int* bin, int sz, double* lvec, double* avec, double* bvec)
{
int i; int sR, sG, sB;
double R,G,B;
double X,Y,Z;
double r, g, b;
const double epsilon = 0.008856; //actual CIE standard
const double kappa = 903.3; //actual CIE standard
const double Xr = 0.950456; //reference white
const double Yr = 1.0; //reference white
const double Zr = 1.088754; //reference white
double xr,yr,zr;
double fx, fy, fz;
double lval,aval,bval;
for(i = 0; i < sz; i++)
{
sR = rin[i]; sG = gin[i]; sB = bin[i];
R = sR/255.0;
G = sG/255.0;
B = sB/255.0;
if(R <= 0.04045) r = R/12.92;
else r = pow((R+0.055)/1.055,2.4);
if(G <= 0.04045) g = G/12.92;
else g = pow((G+0.055)/1.055,2.4);
if(B <= 0.04045) b = B/12.92;
else b = pow((B+0.055)/1.055,2.4);
X = r*0.4124564 + g*0.3575761 + b*0.1804375;
Y = r*0.2126729 + g*0.7151522 + b*0.0721750;
Z = r*0.0193339 + g*0.1191920 + b*0.9503041;
//------------------------
// XYZ to LAB conversion
//------------------------
xr = X/Xr;
yr = Y/Yr;
zr = Z/Zr;
if(xr > epsilon) fx = pow(xr, 1.0/3.0);
else fx = (kappa*xr + 16.0)/116.0;
if(yr > epsilon) fy = pow(yr, 1.0/3.0);
else fy = (kappa*yr + 16.0)/116.0;
if(zr > epsilon) fz = pow(zr, 1.0/3.0);
else fz = (kappa*zr + 16.0)/116.0;
lval = 116.0*fy-16.0;
aval = 500.0*(fx-fy);
bval = 200.0*(fy-fz);
lvec[i] = lval; avec[i] = aval; bvec[i] = bval;
}
}
void getLABXYSeeds(int STEP, int width, int height, int* seedIndices, int* numseeds)
{
const bool hexgrid = false;
int n;
int xstrips, ystrips;
int xerr, yerr;
double xerrperstrip,yerrperstrip;
int xoff,yoff;
int x,y;
int xe,ye;
int seedx,seedy;
int i;
xstrips = (int)(0.5+(double)(width)/(double)(STEP));
ystrips = (int)(0.5+(double)(height)/(double)(STEP));
xerr = width - STEP*xstrips;if(xerr < 0){xstrips--;xerr = width - STEP*xstrips;}
yerr = height - STEP*ystrips;if(yerr < 0){ystrips--;yerr = height- STEP*ystrips;}
xerrperstrip = (double)(xerr)/(double)(xstrips);
yerrperstrip = (double)(yerr)/(double)(ystrips);
xoff = STEP/2;
yoff = STEP/2;
n = 0;
for( y = 0; y < ystrips; y++ )
{
ye = (y*yerrperstrip);
for( x = 0; x < xstrips; x++ )
{
xe = (x*xerrperstrip);
seedx = (x*STEP+xoff+xe);
if(hexgrid){ seedx = x*STEP+(xoff<<(y&0x1))+xe; if(seedx >= width)seedx = width-1; }//for hex grid sampling
seedy = (y*STEP+yoff+ye);
i = seedy*width + seedx;
seedIndices[n] = i;
n++;
}
}
*numseeds = n;
}
//===========================================================================
/// PerformSuperpixelSLICO
///
/// This function picks the maximum value of color distance as compact factor
/// M. So there is no need to input a constant value of M and S. There are two
/// advantages:
///
/// [1] The algorithm now better handles both textured and non-textured regions
/// [2] There is not need to set any parameters!!!
///
/// SLICO (or SLIC Zero) dynamically varies only the compactness factor,
/// not the step size S.
//===========================================================================
void PerformSuperpixelSLICO(double* lvec, double* avec, double* bvec, double* kseedsl, double* kseedsa, double* kseedsb, double* kseedsx, double* kseedsy, int width, int height, int numseeds, int* klabels, int STEP)
{
int x1, y1, x2, y2;
double l, a, b;
double dist;
double distxy;
int itr;
int n;
int x,y;
int i;
int ind;
int r,c;
int k;
int sz = width*height;
const int numk = numseeds;
int offset = STEP;
double* clustersize = mxMalloc(sizeof(double)*numk);
double* inv = mxMalloc(sizeof(double)*numk);
double* sigmal = mxMalloc(sizeof(double)*numk);
double* sigmaa = mxMalloc(sizeof(double)*numk);
double* sigmab = mxMalloc(sizeof(double)*numk);
double* sigmax = mxMalloc(sizeof(double)*numk);
double* sigmay = mxMalloc(sizeof(double)*numk);
double* distvec = mxMalloc(sizeof(double)*sz);
double* distlab = mxMalloc(sizeof(double)*sz);
double* maxlab = mxMalloc(sizeof(double)*numk);//variable M, the compactness factor or color distnce normalization factor
//double invwt = 1.0/((STEP/compactness)*(STEP/compactness));
double invxywt = 1.0/(STEP*STEP);//the spacial normalization constant
for(i = 0; i < sz; i++)
{
distlab[i] = DBL_MAX;
}
for(n = 0; n < numk; n++)
{
maxlab[n] = 10.0*10.0;//initialize with some reasonable compactness value
}
for( itr = 0; itr < 10; itr++ )
{
for(i = 0; i < sz; i++){distvec[i] = DBL_MAX;}
for( n = 0; n < numk; n++ )
{
x1 = kseedsx[n]-offset; if(x1 < 0) x1 = 0;
y1 = kseedsy[n]-offset; if(y1 < 0) y1 = 0;
x2 = kseedsx[n]+offset; if(x2 > width) x2 = width;
y2 = kseedsy[n]+offset; if(y2 > height) y2 = height;
for( y = y1; y < y2; y++ )
{
for( x = x1; x < x2; x++ )
{
i = y*width + x;
l = lvec[i];
a = avec[i];
b = bvec[i];
distlab[i] = (l - kseedsl[n])*(l - kseedsl[n]) +
(a - kseedsa[n])*(a - kseedsa[n]) +
(b - kseedsb[n])*(b - kseedsb[n]);
distxy = (x - kseedsx[n])*(x - kseedsx[n]) +
(y - kseedsy[n])*(y - kseedsy[n]);
dist = distlab[i]/maxlab[n] + distxy*invxywt;
if(dist < distvec[i])
{
distvec[i] = dist;
klabels[i] = n;
}
}
}
}
//-----------------------------------------------------------------
// Assign the max color distance for a cluster
//-----------------------------------------------------------------
if(0 == itr)
{
for(n = 0; n < numk; n++) maxlab[n] = 1.0;
}
for( i = 0; i < sz; i++ )
{
if(maxlab[klabels[i]] < distlab[i]) maxlab[klabels[i]] = distlab[i];
}
//-----------------------------------------------------------------
// Recalculate the centroid and store in the seed values
//-----------------------------------------------------------------
for(k = 0; k < numk; k++)
{
sigmal[k] = 0;
sigmaa[k] = 0;
sigmab[k] = 0;
sigmax[k] = 0;
sigmay[k] = 0;
clustersize[k] = 0;
}
ind = 0;
for( r = 0; r < height; r++ )
{
for( c = 0; c < width; c++ )
{
if(klabels[ind] >= 0)
{
sigmal[klabels[ind]] += lvec[ind];
sigmaa[klabels[ind]] += avec[ind];
sigmab[klabels[ind]] += bvec[ind];
sigmax[klabels[ind]] += c;
sigmay[klabels[ind]] += r;
clustersize[klabels[ind]] += 1.0;
}
ind++;
}
}
{for( k = 0; k < numk; k++ )
{
if( clustersize[k] <= 0 ) clustersize[k] = 1;
inv[k] = 1.0/clustersize[k];//computing inverse now to multiply, than divide later
}}
{for( k = 0; k < numk; k++ )
{
kseedsl[k] = sigmal[k]*inv[k];
kseedsa[k] = sigmaa[k]*inv[k];
kseedsb[k] = sigmab[k]*inv[k];
kseedsx[k] = sigmax[k]*inv[k];
kseedsy[k] = sigmay[k]*inv[k];
}}
}
mxFree(sigmal);
mxFree(sigmaa);
mxFree(sigmab);
mxFree(sigmax);
mxFree(sigmay);
mxFree(clustersize);
mxFree(inv);
mxFree(distvec);
mxFree(maxlab);
mxFree(distlab);
}
void EnforceSuperpixelConnectivity(int* labels, int width, int height, int numSuperpixels,int* nlabels, int* finalNumberOfLabels)
{
int i,j,k;
int n,c,count;
int x,y;
int ind;
int label;
int oindex;
int adjlabel;
const int dx4[4] = {-1, 0, 1, 0};
const int dy4[4] = { 0, -1, 0, 1};
const int sz = width*height;
const int SUPSZ = sz/numSuperpixels;
int* xvec = mxMalloc(sizeof(int)*SUPSZ*10);
int* yvec = mxMalloc(sizeof(int)*SUPSZ*10);
for( i = 0; i < sz; i++ ) nlabels[i] = -1;
oindex = 0;
adjlabel = 0;//adjacent label
label = 0;
for( j = 0; j < height; j++ )
{
for( k = 0; k < width; k++ )
{
if( 0 > nlabels[oindex] )
{
nlabels[oindex] = label;
//--------------------
// Start a new segment
//--------------------
xvec[0] = k;
yvec[0] = j;
//-------------------------------------------------------
// Quickly find an adjacent label for use later if needed
//-------------------------------------------------------
{for( n = 0; n < 4; n++ )
{
int x = xvec[0] + dx4[n];
int y = yvec[0] + dy4[n];
if( (x >= 0 && x < width) && (y >= 0 && y < height) )
{
int nindex = y*width + x;
if(nlabels[nindex] >= 0) adjlabel = nlabels[nindex];
}
}}
count = 1;
for( c = 0; c < count; c++ )
{
for( n = 0; n < 4; n++ )
{
x = xvec[c] + dx4[n];
y = yvec[c] + dy4[n];
if( (x >= 0 && x < width) && (y >= 0 && y < height) )
{
int nindex = y*width + x;
if( 0 > nlabels[nindex] && labels[oindex] == labels[nindex] )
{
xvec[count] = x;
yvec[count] = y;
nlabels[nindex] = label;
count++;
}
}
}
}
//-------------------------------------------------------
// If segment size is less then a limit, assign an
// adjacent label found before, and decrement label count.
//-------------------------------------------------------
if(count <= SUPSZ >> 2)
{
for( c = 0; c < count; c++ )
{
ind = yvec[c]*width+xvec[c];
nlabels[ind] = adjlabel;
}
label--;
}
label++;
}
oindex++;
}
}
*finalNumberOfLabels = label;
mxFree(xvec);
mxFree(yvec);
}
void mexFunction(int nlhs, mxArray *plhs[],
int nrhs, const mxArray *prhs[])
{
if (nrhs < 1) {
mexErrMsgTxt("At least one argument is required.") ;
} else if(nrhs > 2) {
mexErrMsgTxt("Too many input arguments.");
}
if(nlhs!=2) {
mexErrMsgIdAndTxt("SLIC:nlhs","Two outputs required, a labels and the number of labels, i.e superpixels.");
}
//---------------------------
// Variable declarations
//---------------------------
int numSuperpixels = 200;//default value
int width;
int height;
int sz;
int i, ii;
int x, y;
int* rin; int* gin; int* bin;
int* klabels;
int* clabels;
double* lvec; double* avec; double* bvec;
int step;
int* seedIndices;
int numseeds;
double* kseedsx;double* kseedsy;
double* kseedsl;double* kseedsa;double* kseedsb;
int k;
const mwSize* dims;//int* dims;
int* outputNumSuperpixels;
int* outlabels;
int finalNumberOfLabels;
unsigned char* imgbytes;
//---------------------------
int numelements = mxGetNumberOfElements(prhs[0]) ;
mwSize numdims = mxGetNumberOfDimensions(prhs[0]) ;
dims = mxGetDimensions(prhs[0]) ;
imgbytes = (unsigned char*)mxGetData(prhs[0]) ;//mxGetData returns a void pointer, so cast it
width = dims[1]; height = dims[0];//Note: first dimension provided is height and second is width
sz = width*height;
//---------------------------
numSuperpixels = mxGetScalar(prhs[1]);
//---------------------------
// Allocate memory
//---------------------------
rin = (int*)mxMalloc( sizeof(int) * sz ) ;
gin = (int*)mxMalloc( sizeof(int) * sz ) ;
bin = (int*)mxMalloc( sizeof(int) * sz ) ;
lvec = (double*)mxMalloc( sizeof(double) * sz ) ;
avec = (double*)mxMalloc( sizeof(double) * sz ) ;
bvec = (double*)mxMalloc( sizeof(double) * sz ) ;
klabels = (int*)mxMalloc( sizeof(int) * sz );//original k-means labels
clabels = (int*)mxMalloc( sizeof(int) * sz );//corrected labels after enforcing connectivity
seedIndices = (int*)mxMalloc( sizeof(int) * sz );
//---------------------------
// Perform color conversion
//---------------------------
//if(2 == numdims)
if(numelements/sz == 1)//if it is a grayscale image, copy the values directly into the lab vectors
{
for(x = 0, ii = 0; x < width; x++)//reading data from column-major MATLAB matrics to row-major C matrices (i.e perform transpose)
{
for(y = 0; y < height; y++)
{
i = y*width+x;
lvec[i] = imgbytes[ii];
avec[i] = imgbytes[ii];
bvec[i] = imgbytes[ii];
ii++;
}
}
}
else//else covert from rgb to lab
{
for(x = 0, ii = 0; x < width; x++)//reading data from column-major MATLAB matrics to row-major C matrices (i.e perform transpose)
{
for(y = 0; y < height; y++)
{
i = y*width+x;
rin[i] = imgbytes[ii];
gin[i] = imgbytes[ii+sz];
bin[i] = imgbytes[ii+sz+sz];
ii++;
}
}
rgbtolab(rin,gin,bin,sz,lvec,avec,bvec);
}
//---------------------------
// Find seeds
//---------------------------
step = sqrt((double)(sz)/(double)(numSuperpixels))+0.5;
getLABXYSeeds(step,width,height,seedIndices,&numseeds);
kseedsx = mxMalloc( sizeof(double) * numseeds ) ;
kseedsy = mxMalloc( sizeof(double) * numseeds ) ;
kseedsl = mxMalloc( sizeof(double) * numseeds ) ;
kseedsa = mxMalloc( sizeof(double) * numseeds ) ;
kseedsb = mxMalloc( sizeof(double) * numseeds ) ;
for(k = 0; k < numseeds; k++)
{
kseedsx[k] = seedIndices[k]%width;
kseedsy[k] = seedIndices[k]/width;
kseedsl[k] = lvec[seedIndices[k]];
kseedsa[k] = avec[seedIndices[k]];
kseedsb[k] = bvec[seedIndices[k]];
}
//---------------------------
// Compute superpixels
//---------------------------
PerformSuperpixelSLICO(lvec, avec, bvec, kseedsl,kseedsa,kseedsb,kseedsx,kseedsy,width,height,numseeds,klabels,step);
//---------------------------
// Enforce connectivity
//---------------------------
EnforceSuperpixelConnectivity(klabels,width,height,numSuperpixels,clabels,&finalNumberOfLabels);
//---------------------------
// Assign output labels
//---------------------------
plhs[0] = mxCreateNumericMatrix(height,width,mxINT32_CLASS,mxREAL);
outlabels = mxGetData(plhs[0]);
for(x = 0, ii = 0; x < width; x++)//copying data from row-major C matrix to column-major MATLAB matrix (i.e. perform transpose)
{
for(y = 0; y < height; y++)
{
i = y*width+x;
outlabels[ii] = clabels[i];
ii++;
}
}
//---------------------------
// Assign number of labels/seeds
//---------------------------
plhs[1] = mxCreateNumericMatrix(1,1,mxINT32_CLASS,mxREAL);
outputNumSuperpixels = (int*)mxGetData(plhs[1]);//gives a void*, cast it to int*
*outputNumSuperpixels = finalNumberOfLabels;
//---------------------------
// Deallocate memory
//---------------------------
mxFree(rin);
mxFree(gin);
mxFree(bin);
mxFree(lvec);
mxFree(avec);
mxFree(bvec);
mxFree(klabels);
mxFree(clabels);
mxFree(seedIndices);
mxFree(kseedsx);
mxFree(kseedsy);
mxFree(kseedsl);
mxFree(kseedsa);
mxFree(kseedsb);
}