You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Weights loaded!
/home/sancha/repos/OptimalModulationDS/.venv/lib/python3.10/site-packages/torch/functional.py:504: UserWarning: torch.meshgrid: in an upcoming release, it will be required to pass the indexing argument. (Triggered internally at ../aten/src/ATen/native/TensorShape.cpp:3526.)
return _VF.meshgrid(tensors, **kwargs) # type: ignore[attr-defined]
/home/sancha/repos/OptimalModulationDS/python_scripts/ds_mppi/scripts/../functions/LinDS.py:8: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
self.q_goal = torch.tensor(q_goal)
/home/sancha/repos/OptimalModulationDS/.venv/lib/python3.10/site-packages/torch/_functorch/deprecated.py:73: UserWarning: We've integrated functorch into PyTorch. As the final step of the integration, functorch.vjp is deprecated as of PyTorch 2.0 and will be deleted in a future version of PyTorch >= 2.3. Please use torch.func.vjp instead; see the PyTorch 2.0 release notes and/or the torch.func migration guide for more details https://pytorch.org/docs/master/func.migrating.html warn_deprecated('vjp')Traceback (most recent call last): File "/home/sancha/repos/OptimalModulationDS/python_scripts/ds_mppi/scripts/standalonePlanar2d.py", line 223, in <module> main_int() File "/home/sancha/repos/OptimalModulationDS/python_scripts/ds_mppi/scripts/standalonePlanar2d.py", line 121, in main_int mppi = MPPI(q_0, q_f, dh_params, obs, dt, dt_H, N_traj, DS_ARRAY, dh_a, nn_model, 2) File "/home/sancha/repos/OptimalModulationDS/python_scripts/ds_mppi/scripts/../functions/MPPI.py", line 71, in __init__ _, _, _, _, _ = self.propagate() File "/home/sancha/repos/OptimalModulationDS/python_scripts/ds_mppi/scripts/../functions/MPPI.py", line 113, in propagate distance, self.nn_grad = self.distance_repulsion_nn(q_prev, aot=True) File "/home/sancha/repos/OptimalModulationDS/python_scripts/ds_mppi/scripts/../functions/MPPI.py", line 259, in distance_repulsion_nn nn_dist, nn_grad, nn_minidx = self.nn_model.dist_grad_closest_aot(nn_input[:, 0:-1]) File "/home/sancha/repos/OptimalModulationDS/python_scripts/ds_mppi/scripts/../../mlp_learn/sdf/robot_sdf.py", line 161, in dist_grad_closest_aot return self.aot_lambda(q) File "/home/sancha/repos/OptimalModulationDS/.venv/lib/python3.10/site-packages/torch/_functorch/aot_autograd.py", line 3725, in returned_function compiled_fn = create_aot_dispatcher_function( File "/home/sancha/repos/OptimalModulationDS/.venv/lib/python3.10/site-packages/torch/_dynamo/utils.py", line 189, in time_wrapper r = func(*args, **kwargs) File "/home/sancha/repos/OptimalModulationDS/.venv/lib/python3.10/site-packages/torch/_functorch/aot_autograd.py", line 3379, in create_aot_dispatcher_function fw_metadata = run_functionalized_fw_and_collect_metadata( File "/home/sancha/repos/OptimalModulationDS/.venv/lib/python3.10/site-packages/torch/_functorch/aot_autograd.py", line 757, in inner flat_f_outs = f(*flat_f_args) File "/home/sancha/repos/OptimalModulationDS/.venv/lib/python3.10/site-packages/torch/_functorch/aot_autograd.py", line 3525, in flat_fn tree_out = fn(*args, **kwargs) File "/home/sancha/repos/OptimalModulationDS/python_scripts/ds_mppi/scripts/../../mlp_learn/sdf/robot_sdf.py", line 154, in functorch_vjp dists, vjp_fn = vjp(self.model.forward, points) File "/home/sancha/repos/OptimalModulationDS/.venv/lib/python3.10/site-packages/torch/_functorch/deprecated.py", line 74, in vjp return _impl.vjp(func, *primals, has_aux=has_aux) File "/home/sancha/repos/OptimalModulationDS/.venv/lib/python3.10/site-packages/torch/_functorch/eager_transforms.py", line 267, in vjp return _vjp_with_argnums(func, *primals, has_aux=has_aux) File "/home/sancha/repos/OptimalModulationDS/.venv/lib/python3.10/site-packages/torch/_functorch/vmap.py", line 38, in fn return f(*args, **kwargs) File "/home/sancha/repos/OptimalModulationDS/.venv/lib/python3.10/site-packages/torch/_functorch/eager_transforms.py", line 294, in _vjp_with_argnums primals_out = func(*primals) File "/home/sancha/repos/OptimalModulationDS/python_scripts/ds_mppi/scripts/../../mlp_learn/sdf/network_macros_mod.py", line 143, in forward y = self.layers[0](x_nerf) File "/home/sancha/repos/OptimalModulationDS/.venv/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File "/home/sancha/repos/OptimalModulationDS/.venv/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl return forward_call(*args, **kwargs) File "/home/sancha/repos/OptimalModulationDS/.venv/lib/python3.10/site-packages/torch/nn/modules/container.py", line 215, in forward input = module(input) File "/home/sancha/repos/OptimalModulationDS/.venv/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File "/home/sancha/repos/OptimalModulationDS/.venv/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl return forward_call(*args, **kwargs) File "/home/sancha/repos/OptimalModulationDS/.venv/lib/python3.10/site-packages/torch/nn/modules/container.py", line 215, in forward input = module(input) File "/home/sancha/repos/OptimalModulationDS/.venv/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File "/home/sancha/repos/OptimalModulationDS/.venv/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1527, in _call_impl return forward_call(*args, **kwargs) File "/home/sancha/repos/OptimalModulationDS/.venv/lib/python3.10/site-packages/torch/nn/modules/linear.py", line 114, in forward return F.linear(input, self.weight, self.bias) File "/home/sancha/repos/OptimalModulationDS/.venv/lib/python3.10/site-packages/torch/utils/_stats.py", line 20, in wrapper return fn(*args, **kwargs) File "/home/sancha/repos/OptimalModulationDS/.venv/lib/python3.10/site-packages/torch/_subclasses/fake_tensor.py", line 1250, in __torch_dispatch__ return self.dispatch(func, types, args, kwargs) File "/home/sancha/repos/OptimalModulationDS/.venv/lib/python3.10/site-packages/torch/_subclasses/fake_tensor.py", line 1376, in dispatch ) = self.validate_and_convert_non_fake_tensors(func, converter, args, kwargs) File "/home/sancha/repos/OptimalModulationDS/.venv/lib/python3.10/site-packages/torch/_subclasses/fake_tensor.py", line 1597, in validate_and_convert_non_fake_tensors args, kwargs = tree_map_only( File "/home/sancha/repos/OptimalModulationDS/.venv/lib/python3.10/site-packages/torch/utils/_pytree.py", line 353, in tree_map_only return tree_map(map_only(ty)(fn), pytree) File "/home/sancha/repos/OptimalModulationDS/.venv/lib/python3.10/site-packages/torch/utils/_pytree.py", line 283, in tree_map return tree_unflatten([fn(i) for i in flat_args], spec) File "/home/sancha/repos/OptimalModulationDS/.venv/lib/python3.10/site-packages/torch/utils/_pytree.py", line 283, in <listcomp> return tree_unflatten([fn(i) for i in flat_args], spec) File "/home/sancha/repos/OptimalModulationDS/.venv/lib/python3.10/site-packages/torch/utils/_pytree.py", line 334, in inner return f(x) File "/home/sancha/repos/OptimalModulationDS/.venv/lib/python3.10/site-packages/torch/_subclasses/fake_tensor.py", line 1587, in validate raise Exception(Exception: Please convert all Tensors to FakeTensors first or instantiate FakeTensorMode with 'allow_non_fake_inputs'. Found in aten.t.default(Parameter containing:tensor([...], size=(256, 15), requires_grad=True))
When running
python_scripts/mlp_learn/sdf/robot_sdf.py
under the current version ofI get the following error:
When I switch to vjp:
it works! Why does
aot_lambda
not work? Should I continue usingfunctorch_vjp
? Thanks!The text was updated successfully, but these errors were encountered: