-
Notifications
You must be signed in to change notification settings - Fork 0
/
pollution_model.py
207 lines (170 loc) · 7.84 KB
/
pollution_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
import torch
from torch import nn
import torch.nn.functional as F
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
# the function to yield the batches
def get_batches(arr, batch_size, seq_length):
'''Create a generator that returns batches of size
batch_size x seq_length from arr.
Arguments
---------
arr: Array you want to make batches from
batch_size: Batch size, the number of sequences per batch
seq_length: Number of encoded chars in a sequence
'''
feature_number = arr.shape[1]
batch_size_total = batch_size * seq_length
# total number of batches we can make
n_batches = len(arr)//batch_size_total
# Keep only enough days to make full batches
arr = arr[:n_batches * batch_size_total]
# Reshape into batch_size rows and feature_number vectors
arr = arr.reshape((-1, seq_length, feature_number))
# iterate through the array, one sequence at a time
for n in range(0, arr.shape[0], batch_size):
# The features
x= arr[n:n+batch_size,:,:-1]
# The targets
y = y= arr[n:n+batch_size,:,-1]
yield x, y
# build the model for pollution forecast
class LSTMForecaster(nn.Module):
def __init__(self, input_size, output_size, n_hidden=256, n_layers=2,
drop_prob=0.5, lr=0.001, train_on_gpu=False):
super().__init__()
self.drop_prob = drop_prob
self.n_layers = n_layers
self.n_hidden = n_hidden
self.lr = lr
self.input_size = input_size
self.output_size = output_size
self.train_on_gpu = train_on_gpu
## TODO: define the LSTM
self.lstm = nn.LSTM(input_size, n_hidden, n_layers,
dropout=drop_prob, batch_first=True)
## TODO: define a dropout layer
self.dropout = nn.Dropout(drop_prob)
## TODO: define the final, fully-connected output layer
self.fc = nn.Linear(n_hidden, output_size)
def forward(self, x, hidden):
''' Forward pass through the network.
These inputs are x, and the hidden/cell state `hidden`. '''
r_output, hidden = self.lstm(x, hidden)
out = self.dropout(r_output)
# Stack up LSTM outputs using view
out = out.contiguous().view(-1, self.n_hidden)
# put x through the fully-connected layer
out = self.fc(out)
# return the final output and the hidden state
return out, hidden
def init_hidden(self, batch_size):
''' Initializes hidden state '''
# Create two new tensors with sizes n_layers x batch_size x n_hidden,
# initialized to zero, for hidden state and cell state of LSTM
weight = next(self.parameters()).data
if (self.train_on_gpu):
hidden = (weight.new(self.n_layers, batch_size, self.n_hidden).zero_().cuda(),
weight.new(self.n_layers, batch_size, self.n_hidden).zero_().cuda())
else:
hidden = (weight.new(self.n_layers, batch_size, self.n_hidden).zero_(),
weight.new(self.n_layers, batch_size, self.n_hidden).zero_())
return hidden
# instantiate model
# in our examination we don't want to use parameter tunning, so
# for simplicity only these four parameters are used
def instantiate_model(n_in, n_out, n_hidden, n_layers, train_on_gpu):
'''instantiate LSTMforecaster'''
net = LSTMForecaster(n_in, n_out, n_hidden, n_layers, train_on_gpu=train_on_gpu)
return net
# Save the checkpoint
def save_checkpoint(net, val_loss, checkpoint_name):
checkpoint = { 'input_size': net.input_size,
'output_size': net.output_size,
'n_hidden': net.n_hidden,
'n_layers': net.n_layers,
'val_loss': val_loss,
'state_dict': net.state_dict()
}
torch.save(checkpoint, checkpoint_name)
# train the model
def train(net, data_train, data_validation, epochs=10, batch_size=10, seq_length=50, lr=0.001, clip=5, checkpoint_name='checkpoint.pth', train_on_gpu=False):
''' Training a network
Arguments
---------
net: network
data: data to train the network
epochs: Number of epochs to train
batch_size: Number of mini-sequences per mini-batch, aka batch size
seq_length: Number of character steps per mini-batch
lr: learning rate
clip: gradient clipping
print_every: Number of steps for printing training and validation loss
'''
net.train()
if(train_on_gpu):
net.cuda()
opt = torch.optim.Adam(net.parameters(), lr=lr)
criterion = nn.MSELoss()
counter = 0
train_losses = []
val_losses = []
mean_val_losses = []
min_val_loss = np.Inf
for e in range(epochs):
# initialize hidden state
h = net.init_hidden(batch_size)
for inputs, targets in get_batches(data_train, batch_size, seq_length):
if(train_on_gpu):
inputs, targets = inputs.cuda(), targets.cuda()
counter += 1
# Creating new variables for the hidden state, otherwise
# we'd backprop through the entire training history
h = tuple([each.data for each in h])
# zero accumulated gradients
net.zero_grad()
# get the output from the model
output, h = net(inputs, h)
# calculate the loss and perform backprop
train_loss = criterion(output, targets.view(batch_size*seq_length,-1))
train_losses.append(train_loss.item())
train_loss.backward()
# `clip_grad_norm` helps prevent the exploding gradient problem in RNNs / LSTMs.
nn.utils.clip_grad_norm_(net.parameters(), clip)
opt.step()
# loss stats
# Get validation loss
val_h = net.init_hidden(batch_size)
net.eval() # model to evaluation for validation process
for inputs, targets in get_batches(data_validation, batch_size, seq_length):
if(train_on_gpu):
inputs, targets = inputs.cuda(), targets.cuda()
output, val_h = net(inputs, val_h)
val_loss = criterion(output, targets.view(batch_size*seq_length,-1))
val_losses.append(val_loss.item())
net.train() # reset to train mode after iterationg through validation data
# save validation losses for later plotting
mean_val_loss = np.mean(val_losses)
mean_val_losses.append(mean_val_loss)
# the next step are done only every fourth counter
# if we would check every counter our model could be a bit
# better, but training would need more time
if counter % 4 == 0:
# check if our validation loss is lower than the earlier
# and save the model if lower
if mean_val_loss < min_val_loss:
min_val_loss = mean_val_loss
save_checkpoint(net, mean_val_loss, checkpoint_name)
print(f"model saved with {mean_val_loss} mean_val_loss")
# print some info
print( "Epoch: {}/{}...".format(e+1, epochs),
"Step: {}".format(counter),
"train_loss: {:.4f}...".format(train_loss.item()),
"mean_val_loss: {:.4f}".format(mean_val_loss))
# print plot of loss
if counter % 16 == 0:
plt.plot(train_losses, label='Training loss')
plt.plot(mean_val_losses, label='Validation loss')
plt.legend(frameon=False)
plt.show()