forked from shuboc/LeetCode-2
-
Notifications
You must be signed in to change notification settings - Fork 1
/
01-matrix.py
100 lines (91 loc) · 2.58 KB
/
01-matrix.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
# Time: O(m * n)
# Space: O(m * n)
# Given a matrix consists of 0 and 1, find the distance of the nearest 0 for each cell.
# The distance between two adjacent cells is 1.
#
# Example 1:
#
# Input:
# 0 0 0
# 0 1 0
# 0 0 0
#
# Output:
# 0 0 0
# 0 1 0
# 0 0 0
#
# Example 2:
#
# Input:
# 0 0 0
# 0 1 0
# 1 1 1
#
# Output:
# 0 0 0
# 0 1 0
# 1 2 1
#
# Note:
# The number of elements of the given matrix will not exceed 10,000.
# There are at least one 0 in the given matrix.
# The cells are adjacent in only four directions: up, down, left and right.
import collections
try:
xrange # Python 2
except NameError:
xrange = range # Python 3
class Solution(object):
def updateMatrix(self, matrix):
"""
:type matrix: List[List[int]]
:rtype: List[List[int]]
"""
queue = collections.deque([])
for i in xrange(len(matrix)):
for j in xrange(len(matrix[0])):
if matrix[i][j] == 0:
queue.append((i, j))
else:
matrix[i][j] = float("inf")
dirs = [(-1, 0), (1, 0), (0, -1), (0, 1)]
while queue:
cell = queue.popleft()
for dir in dirs:
i, j = cell[0]+dir[0], cell[1]+dir[1]
if not (0 <= i < len(matrix)) or not (0 <= j < len(matrix[0])) or \
matrix[i][j] <= matrix[cell[0]][cell[1]]+1:
continue
queue.append((i, j))
matrix[i][j] = matrix[cell[0]][cell[1]]+1
return matrix
# Time: O(m * n)
# Space: O(m * n)
# dp solution
class Solution2(object):
def updateMatrix(self, matrix):
"""
:type matrix: List[List[int]]
:rtype: List[List[int]]
"""
dp = [[float("inf")]*len(matrix[0]) for _ in xrange(len(matrix))]
for i in xrange(len(matrix)):
for j in xrange(len(matrix[i])):
if matrix[i][j] == 0:
dp[i][j] = 0
else:
if i > 0:
dp[i][j] = min(dp[i][j], dp[i-1][j]+1)
if j > 0:
dp[i][j] = min(dp[i][j], dp[i][j-1]+1)
for i in reversed(xrange(len(matrix))):
for j in reversed(xrange(len(matrix[i]))):
if matrix[i][j] == 0:
dp[i][j] = 0
else:
if i < len(matrix)-1:
dp[i][j] = min(dp[i][j], dp[i+1][j]+1)
if j < len(matrix[i])-1:
dp[i][j] = min(dp[i][j], dp[i][j+1]+1)
return dp