forked from shuboc/LeetCode-2
-
Notifications
You must be signed in to change notification settings - Fork 1
/
binary-trees-with-factors.py
48 lines (44 loc) · 1.24 KB
/
binary-trees-with-factors.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
# Time: O(n^2)
# Space: O(n)
# Given an array of unique integers, each integer is strictly greater than 1.
# We make a binary tree using these integers and each number may be used for
# any number of times.
# Each non-leaf node's value should be equal to the product of the values of
# it's children.
# How many binary trees can we make? Return the answer modulo 10 ** 9 + 7.
#
# Example 1:
#
# Input: A = [2, 4]
# Output: 3
# Explanation: We can make these trees: [2], [4], [4, 2, 2]
# Example 2:
#
# Input: A = [2, 4, 5, 10]
# Output: 7
# Explanation: We can make these trees:
# [2], [4], [5], [10], [4, 2, 2], [10, 2, 5], [10, 5, 2].
#
# Note:
# - 1 <= A.length <= 1000.
# - 2 <= A[i] <= 10 ^ 9.
try:
xrange # Python 2
except NameError:
xrange = range # Python 3
class Solution(object):
def numFactoredBinaryTrees(self, A):
"""
:type A: List[int]
:rtype: int
"""
M = 10**9 + 7
A.sort()
dp = {}
for i in xrange(len(A)):
dp[A[i]] = 1
for j in xrange(i):
if A[i] % A[j] == 0 and A[i] // A[j] in dp:
dp[A[i]] += dp[A[j]] * dp[A[i] // A[j]]
dp[A[i]] %= M
return sum(dp.values()) % M