-
Notifications
You must be signed in to change notification settings - Fork 11
/
quadrotor.example.cpp
431 lines (374 loc) · 21.7 KB
/
quadrotor.example.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
/******************************************************************************
*
* @file ungar/example/mpc/quadrotor.example.cpp
* @author Flavio De Vincenti (flavio.devincenti@inf.ethz.ch)
*
* @section LICENSE
* -----------------------------------------------------------------------
*
* Copyright 2023 Flavio De Vincenti
*
* -----------------------------------------------------------------------
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the
* License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an "AS
* IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
* express or implied. See the License for the specific language
* governing permissions and limitations under the License.
*
* -----------------------------------------------------------------------
*
* @section DESCRIPTION
*
* This file implements a nonlinear model predictive controller for
* a quadrotor living in SE(3). The dynamical model of the quadrotor
* is adapted from the lecture notes of the course "Robot Dynamics"
* [1] held at ETH Zurich.
*
* @see [1] Marco Hutter, Roland Siegwart, Class Lecture, Topic:
* "Dynamic Modeling of Rotorcraft & Control." 151-0851-00L.
* Department of Mechanical and Process Engineering,
* ETH Zurich, Zurich, 2022.
*
******************************************************************************/
#include "ungar/autodiff/vector_composer.hpp"
#include "ungar/optimization/soft_sqp.hpp"
#include "ungar/variable_map.hpp"
int main() {
using namespace Ungar;
/*======================================================================================*/
/*~~~~~~~~~~~~~| PART I: QUADROTOR MODEL |~~~~~~~~~~~~~*/
/*======================================================================================*/
/*************** Define numeric invariants as integral constants. ***************/
constexpr auto N = 30_c; // Discrete time horizon.
constexpr auto NUM_ROTORS = 4_c;
/*************** Define decision variables. ***************/
// Positions are 3-dimensional vectors, orientations are unit quaternions,
// etc. The states are stacked poses and velocities.
UNGAR_VARIABLE(position, 3); // := p
UNGAR_VARIABLE(orientation, Q); // := q
UNGAR_VARIABLE(linear_velocity, 3); // := pDot
UNGAR_VARIABLE(b_angular_velocity, 3); // := bOmega
UNGAR_VARIABLE(x) <<=
(position, orientation, linear_velocity, b_angular_velocity); // x := [p q pDot bOmega]
UNGAR_VARIABLE(X) <<= (N + 1_c) * x; // X := [x0 x1 ... xN]
// The control inputs are the stacked rotor speeds, one for each rotor.
UNGAR_VARIABLE(rotor_speed, 1); // := r
UNGAR_VARIABLE(u) <<= NUM_ROTORS * rotor_speed; // u := [r0 r1 r2 r3]
UNGAR_VARIABLE(U) <<= N * u; // U := [u0 u1 ... uN-1]
/*************** Define parameters. ***************/
// Step size.
UNGAR_VARIABLE(step_size, 1);
// Inertial and geometric parameters.
UNGAR_VARIABLE(mass, 1);
UNGAR_VARIABLE(b_moi_diagonal, 3);
UNGAR_VARIABLE(b_propeller_position, 3);
// Physical constants and general parameters.
UNGAR_VARIABLE(standard_gravity, 1);
UNGAR_VARIABLE(thrust_constant, 1);
UNGAR_VARIABLE(drag_constant, 1);
UNGAR_VARIABLE(max_rotor_speed, 1);
// Reference trajectories.
UNGAR_VARIABLE(reference_position, 3);
UNGAR_VARIABLE(reference_orientation, Q);
UNGAR_VARIABLE(reference_linear_velocity, 3);
UNGAR_VARIABLE(b_reference_angular_velocity, 3);
// Measurements.
UNGAR_VARIABLE(measured_position, 3);
UNGAR_VARIABLE(measured_orientation, Q);
UNGAR_VARIABLE(measured_linear_velocity, 3);
UNGAR_VARIABLE(b_measured_angular_velocity, 3);
UNGAR_VARIABLE(measured_state) <<= (measured_position,
measured_orientation,
measured_linear_velocity,
b_measured_angular_velocity);
/*************** Define variables. ***************/
UNGAR_VARIABLE(decision_variables) <<= (X, U);
UNGAR_VARIABLE(parameters) <<= (step_size,
mass,
b_moi_diagonal,
NUM_ROTORS * b_propeller_position,
standard_gravity,
thrust_constant,
drag_constant,
max_rotor_speed,
(N + 1_c) * reference_position,
(N + 1_c) * reference_orientation,
(N + 1_c) * reference_linear_velocity,
(N + 1_c) * b_reference_angular_velocity,
measured_state);
UNGAR_VARIABLE(variables) <<= (decision_variables, parameters);
/*======================================================================================*/
/*~~~~~~~~~~~~~| PART II: QUADROTOR DYNAMICS |~~~~~~~~~~~~~*/
/*======================================================================================*/
/// @brief Given vectors of autodiff scalars corresponding to the system's state,
/// input and parameters at a given time step, compute the state at the
/// next time step using a Lie group semi-implicit Euler method.
/*************** Define discrete-time quadrotor dynamics equation. ***************/
const auto quadrotorDynamics = [&](const VectorXad& xUnderlying,
const VectorXad& uUnderlying,
const VectorXad& parametersUnderlying) -> VectorXad {
// Create variable lazy maps for the system's state, input and parameters.
/// @note As a convention, we name the underlying data representation of a
/// variable \c v as \c vUnderlying, and we name \c v_ the associated
/// map object.
const auto x_ = MakeVariableLazyMap(xUnderlying, x);
const auto u_ = MakeVariableLazyMap(uUnderlying, u);
const auto parameters_ = MakeVariableLazyMap(parametersUnderlying, parameters);
// Retrieve all variables.
const auto [dt, g0, b, d] =
parameters_.GetTuple(step_size, standard_gravity, thrust_constant, drag_constant);
const auto [m, bMOIDiagonal] = parameters_.GetTuple(mass, b_moi_diagonal);
const auto [p, q, pDot, bOmega] =
x_.GetTuple(position, orientation, linear_velocity, b_angular_velocity);
// Calculate thrust forces and drag moments for each rotor.
// Thrust force: bTi = b * ri^2 * ez
// Thrust moment: bMi = pPi x bTi
// Drag moment: bD = d * ri^2 * ez * (-1)^i
std::vector<Vector3ad> bThrustForces{}, bThrustMoments{}, bDragMoments{};
for (const auto i : enumerate(NUM_ROTORS)) {
const auto& r = u_.Get(rotor_speed, i);
const auto pP = parameters_.Get(b_propeller_position, i);
bThrustForces.emplace_back(b * Utils::Pow(r, 2) * Vector3ad::UnitZ());
bThrustMoments.emplace_back(pP.cross(bThrustForces.back()));
bDragMoments.emplace_back(d * Utils::Pow(r, 2) * Vector3ad::UnitZ() *
Utils::Pow(-1.0, i));
}
// Calculate linear acceleration and angular acceleration.
const auto summation = [](const std::vector<Vector3ad>& seq) {
return std::accumulate(seq.begin(), seq.end(), Vector3ad::Zero().eval());
};
const Vector3ad pDotDot = (q * summation(bThrustForces) - m * g0 * Vector3ad::UnitZ()) / m;
const Vector3ad bOmegaDot = bMOIDiagonal.cwiseInverse().cwiseProduct(
summation(bThrustMoments) + summation(bDragMoments) -
bOmega.cross(bMOIDiagonal.cwiseProduct(bOmega)));
// Create variable map with autodiff scalar type for the next state.
auto xNext_ = MakeVariableMap<ad_scalar_t>(x);
auto [pNext, qNext, pDotNext, bOmegaNext] =
xNext_.GetTuple(position, orientation, linear_velocity, b_angular_velocity);
// Update next state using Lie group semi-implicit Euler method and
// return underlying data.
/// @note For a description of the integration method, refer to [2].
/// This approach embeds the quaternion unit norm constraints
/// directly into the discretized dynamics equations.
///
/// @see [2] Flavio De Vincenti and Stelian Coros. "Centralized Model
/// Predictive Control for Collaborative Loco-Manipulation."
/// Robotics: Science and Systems (2023).
pDotNext = pDot + dt * pDotDot;
bOmegaNext = bOmega + dt * bOmegaDot;
pNext = p + dt * pDotNext;
qNext = q * Utils::ApproximateExponentialMap(dt * bOmegaNext);
return xNext_.Get();
};
/*======================================================================================*/
/*~~~~~~~~~~~~~| PART III: OPTIMAL CONTROL PROBLEM |~~~~~~~~~~~~~*/
/*======================================================================================*/
/*************** Define objective function. ***************/
const auto objectiveFunction = [&](const VectorXad& variablesUnderlying,
VectorXad& objectiveFunctionUnderlying) {
// Create variable lazy maps for the system's variables, which include both
// decision variables and parameters.
const auto variables_ = MakeVariableLazyMap(variablesUnderlying, variables);
ad_scalar_t value{0.0};
for (const auto k : enumerate(N + 1_step)) {
const auto p = variables_.Get(position, k);
const auto q = variables_.Get(orientation, k);
const auto pDot = variables_.Get(linear_velocity, k);
const auto bOmega = variables_.Get(b_angular_velocity, k);
const auto pRef = variables_.Get(reference_position, k);
const auto qRef = variables_.Get(reference_orientation, k);
const auto pDotRef = variables_.Get(reference_linear_velocity, k);
const auto bOmegaRef = variables_.Get(b_reference_angular_velocity, k);
// Reference state tracking.
value += ((p - pRef).squaredNorm() +
Utils::Min((q.coeffs() - qRef.coeffs()).squaredNorm(),
(q.coeffs() + qRef.coeffs()).squaredNorm()) +
(pDot - pDotRef).squaredNorm() + (bOmega - bOmegaRef).squaredNorm());
if (k && k != N) {
// Regularization of input variations.
const auto ukm1 = variables_.Get(u, k - 1_step);
const auto uk = variables_.Get(u, k);
value += 1e-6 * (uk - ukm1).squaredNorm();
}
if (k != N) {
// Input regularization.
const auto uk = variables_.Get(u, k);
value += 1e-6 * uk.squaredNorm();
}
}
/// @note Autodiff functions must return Eigen vectors, therefore the
/// objective function returns a vector of size 1 containing the
/// objective value.
objectiveFunctionUnderlying.resize(1_idx);
objectiveFunctionUnderlying << value;
};
/*************** Define equality constraints. ***************/
/// @brief Equality constraints are a function \c g of \c variables such that
/// \c g(variables) = 0.
const auto equalityConstraints = [&](const VectorXad& variablesUnderlying,
VectorXad& equalityConstraintsUnderlying) {
const auto variables_ = MakeVariableLazyMap(variablesUnderlying, variables);
// Define helper for composing equality constraints into a single Eigen vector.
Autodiff::VectorComposer composer;
// Add equality constraints for the initial state.
const auto x0 = variables_.Get(x, 0_step);
const auto xm = variables_.Get(measured_state);
composer << x0 - xm;
// Add system dynamics constraint for each time step.
for (const auto k : enumerate(N)) {
const auto xk = variables_.Get(x, k);
const auto xkp1 = variables_.Get(x, k + 1_step);
const auto uk = variables_.Get(u, k);
const auto params = variables_.Get(parameters);
composer << xkp1 - quadrotorDynamics(xk, uk, params);
}
equalityConstraintsUnderlying = composer.Compose();
};
/*************** Define inequality constraints. ***************/
/// @brief Inequality constraints are a function \c h of \c variables such that
/// \c h(variables) <= 0.
const auto inequalityConstraints = [&](const VectorXad& variablesUnderlying,
VectorXad& inequalityConstraintsUnderlying) {
const auto variables_ = MakeVariableLazyMap(variablesUnderlying, variables);
// Define helper for composing inequality constraints into a single Eigen vector.
Autodiff::VectorComposer composer;
const auto& rMax = variables_.Get(max_rotor_speed);
for (const auto k : enumerate(N)) {
for (const auto i : enumerate(NUM_ROTORS)) {
const auto r = variables_.Get(rotor_speed, k, i);
// Input bound constraints.
composer << r - rMax;
composer << -r;
}
}
inequalityConstraintsUnderlying = composer.Compose();
};
/*************** Define optimal control problem (OCP). ***************/
// Based on the autodiff functions defined above, generate code for the
// corresponding derivatives and compile it just-in-time.
Autodiff::Function::Blueprint objectiveFunctionBlueprint{objectiveFunction,
decision_variables.Size(),
parameters.Size(),
"quadrotor_mpc_obj"sv,
EnabledDerivatives::ALL};
Autodiff::Function::Blueprint equalityConstraintsBlueprint{equalityConstraints,
decision_variables.Size(),
parameters.Size(),
"quadrotor_mpc_eqs"sv,
EnabledDerivatives::JACOBIAN};
Autodiff::Function::Blueprint inequalityConstraintsBlueprint{inequalityConstraints,
decision_variables.Size(),
parameters.Size(),
"quadrotor_mpc_ineqs"sv,
EnabledDerivatives::JACOBIAN};
const bool recompileLibraries = true;
auto ocp =
MakeNLPProblem(Autodiff::MakeFunction(objectiveFunctionBlueprint, recompileLibraries),
Autodiff::MakeFunction(equalityConstraintsBlueprint, recompileLibraries),
Autodiff::MakeFunction(inequalityConstraintsBlueprint, recompileLibraries));
/*======================================================================================*/
/*~~~~~~~~~~~~~| PART IV: MODEL PREDICTIVE CONTROL |~~~~~~~~~~~~~*/
/*======================================================================================*/
/*************** Initialize OCP variables. ***************/
// Create variable map storing all decision variables and parameters for the quadrotor.
auto variables_ = MakeVariableMap<real_t>(variables);
// Step size.
variables_.Get(step_size) = 1.0 / static_cast<real_t>(N);
// Inertial and geometric parameters.
variables_.Get(mass) = 1.5;
variables_.Get(b_moi_diagonal).setConstant(3e-2);
// Propeller positions with respect to the quadrotor's center of mass.
// These values represent a square-shaped quadrotor configuration.
variables_.Get(b_propeller_position, 0_idx) = Vector3r(0.2, 0.2, 0.0);
variables_.Get(b_propeller_position, 1_idx) = Vector3r(-0.2, 0.2, 0.0);
variables_.Get(b_propeller_position, 2_idx) = Vector3r(-0.2, -0.2, 0.0);
variables_.Get(b_propeller_position, 3_idx) = Vector3r(0.2, -0.2, 0.0);
// Physical constants.
variables_.Get(standard_gravity) = 9.80665;
variables_.Get(thrust_constant) = 0.015;
variables_.Get(drag_constant) = 0.1;
variables_.Get(max_rotor_speed) = 1e2;
// Measurements.
const real_t initialHeight = 4.0;
variables_.Get(measured_position) = initialHeight * Vector3r::UnitZ();
variables_.Get(measured_orientation).setIdentity();
variables_.Get(measured_linear_velocity).setZero();
variables_.Get(b_measured_angular_velocity).setZero();
// Decision variables.
for (const auto k : enumerate(N + 1_step)) {
variables_.Get(x, k) = variables_.Get(measured_state);
}
variables_.Get(U).setConstant(
Utils::Sqrt(variables_.Get(mass) * variables_.Get(standard_gravity) /
variables_.Get(thrust_constant) / static_cast<real_t>(NUM_ROTORS)));
// Reference trajectories.
/// @brief Command the quadrotor to track a sinusoidal trajectory along the z-axis
/// while rotating about the z-axis.
const real_t zPeriodReference = 4.0;
const real_t zAmplitudeReference = 1.0;
const real_t yawRateReference = std::numbers::pi;
const real_t missionStartTime = zPeriodReference;
/*************** Solve OCP over receding horizon. ***************/
// Define OCP optimizer.
SoftSQPOptimizer optimizer{false, default_value, 40_idx};
const real_t finalTime = 10.0;
for (real_t time = 0.0; time < finalTime; time += variables_.Get(step_size)) {
// Integrate quadrotor dynamics using the optimized input.
variables_.Get(measured_state) = Utils::ToRealFunction(quadrotorDynamics)(
variables_.Get(measured_state), variables_.Get(u, 0_step), variables_.Get(parameters));
// Update reference trajectories.
for (const auto k : enumerate(N + 1_step)) {
const real_t t = time + static_cast<real_t>(k) * variables_.Get(step_size);
const real_t missionStarted = static_cast<real_t>(t > missionStartTime);
variables_.Get(reference_position, k) =
(initialHeight + missionStarted * zAmplitudeReference *
sin(2.0 * std::numbers::pi / zPeriodReference * t)) *
Vector3r::UnitZ();
variables_.Get(reference_orientation, k) =
missionStarted ? Utils::ElementaryZQuaternion(yawRateReference * t)
: Quaternionr::Identity();
variables_.Get(reference_linear_velocity, k) =
missionStarted * 2.0 * std::numbers::pi / zPeriodReference * zAmplitudeReference *
cos(2.0 * std::numbers::pi / zPeriodReference * t) * Vector3r::UnitZ();
variables_.Get(b_reference_angular_velocity, k) =
missionStarted * yawRateReference * Vector3r::UnitZ();
}
// Shift the previous solution by one time step to warm start the optimization.
for (const auto k : enumerate(N - 1_step)) {
variables_.Get(x, k) = variables_.Get(x, k + 1_step);
variables_.Get(u, k) = variables_.Get(u, k + 1_step);
}
variables_.Get(x, N - 1_step) = variables_.Get(x, N);
/// @note This trick prevents quaternion sign switches from
/// spoiling the optimization. Find more details in [2].
const auto& qm = std::as_const(variables_).Get(measured_orientation);
const auto& q0 = std::as_const(variables_).Get(orientation, 0_step);
if ((qm.coeffs() - q0.coeffs()).squaredNorm() >
(-qm.coeffs() - q0.coeffs()).squaredNorm()) {
variables_.Get(measured_orientation).coeffs() *= -1.0;
}
// Solve OCP and log optimization results.
variables_.Get(decision_variables) = optimizer.Optimize(ocp, variables_.Get());
UNGAR_LOG(
info,
"t = {:.3f}, obj = {:.3f}, eqs = {:.3f}, ineqs = {:.3f}, z ref = {:.3f}, z = "
"{:.3f}, yaw ref = {:.3f}, yaw = {:.3f}, u = {:.3f}",
time,
Utils::Squeeze(ocp.objective(variables_.Get())),
ocp.equalityConstraints(variables_.Get()).lpNorm<Eigen::Infinity>(),
ocp.inequalityConstraints(variables_.Get()).maxCoeff(),
variables_.Get(reference_position, 0_step).z(),
variables_.Get(position, 0_step).z(),
Utils::QuaternionToYawPitchRoll(variables_.Get(reference_orientation, 0_step)).z(),
Utils::QuaternionToYawPitchRoll(variables_.Get(orientation, 0_step)).z(),
fmt::join(variables_.Get(u, 0_step), ", "));
}
return 0;
}