-
Notifications
You must be signed in to change notification settings - Fork 0
/
four_channel_bilateral_teleoperation_params.m
73 lines (59 loc) · 1.21 KB
/
four_channel_bilateral_teleoperation_params.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
% Sample parameters for four channel bilateral teleoperation
clear all;
close all;
% Input function parameter (sin or step with low pass filter)
A = 1;
% Low pass frequency cuff off
Fip = 1;
% Sin frequency
Fc = 0.5;
% Human intention controller (PI)
Ph = 50;
Dh = 40;
% Master controller
Bm = 0.8;
Km = 1;
% Slave controllerxs
Bs = 0.8*4;
Ks = 4;
% Intertia of robot dynamics
Mm = 0.5;
Ms = 2;
% Make the real pole with re<0 to change the inertia of the robot
% dynamics verify this value by adding them to the simulink model
% Dm = 5;
% Ds = 10;
Dm = 0;
Ds = 0;
% Human impedance parameters
Jh = 0; %0.5;
Bh = 1.5; %70;
Kh = 1; %2000;
% Environment impedance parameters
Je = 0;
Be = 0; %100;
Ke = 200; %50; %200;
% Inner force loop
Cmf = 0; %1;
Csf = 0; %0.2;
Ts = 0.001;
VarianceForces = 0;
VarianceVelocities = 0;
% s = tf('s');
% Zm = Mm*s+Dm;
% Zs = Ms*s+Ds;
% Cm = (Bm*s+Km)/s;
% Cs = (Bs*s+Ks)/s;
% C4 = -(Mm*s^2+(Bm+Dm)*s+Km)/s;
% C2 = 1;
% C1 = (Ms*s^2+(Bs+Ds)*s+Ks)/s;
% C3 = 1;
% D = 1/(C1+C3*Zm+C3*Cm);
%
% H11 = (Zm+Cm)*D*(Zs+Cs-C3*C4)+C4
% H12 = -(Zm+Cm)*D*(1-C3*C2)-C2
% H21 = minreal(D*(Zs+Cs-C3*C4))
% H22 = -D*(1-C3*C2)
%
% Zwidth = (H12*H21 - H11*H22) / (H22*H21)
% G = w_n^2/(s^2+2*w_n*xi*s+w_n^2)