-
Notifications
You must be signed in to change notification settings - Fork 3
/
splitReadSamToBedpe
executable file
·293 lines (262 loc) · 10.4 KB
/
splitReadSamToBedpe
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
#!/usr/local/bin/python2.6
# -*- Mode: Python -*-
import sys
from optparse import OptionParser
import re
import os
cigarPattern = '([0-9]+[MIDNSHP])'
cigarSearch = re.compile(cigarPattern)
atomicCigarPattern = '([0-9]+)([MIDNSHP])'
atomicCigarSearch = re.compile(atomicCigarPattern)
class refPos (object):
"""
struct to store the end position of reference CIGAR operations
"""
def __init__(self, rPos):
self.rPos = int(rPos)
class queryPos (object):
"""
struct to store the start and end positions of query CIGAR operations
"""
def __init__(self, qsPos, qePos, qLen):
self.qsPos = int(qsPos)
self.qePos = int(qePos)
self.qLen = int(qLen)
class cigarOp (object):
"""
sturct to store a discrete CIGAR operations
"""
def __init__(self, opLength, op):
self.length = int(opLength)
self.op = op
class SAM (object):
"""
__very__ basic class for SAM input.
"""
def __init__(self, samList = []):
if len(samList) > 0:
self.query = samList[0]
self.flag = int(samList[1])
self.ref = samList[2]
self.pos = int(samList[3])
self.mapq = int(samList[4])
self.cigar = samList[5]
self.matRef = samList[6]
self.matePos = int(samList[7])
self.iSize = int(samList[8])
self.seq = samList[9]
self.qual = samList[10]
self.tags = samList[11:]#tags is a list of each tag:vtype:value sets
self.valid = 1
else:
self.valid = 0
self.query = 'null'
def extractCigarOps(self):
if (self.cigar == "*"):
self.cigarOps = []
elif (self.flag & 0x0010):
cigarOpStrings = cigarSearch.findall(self.cigar)
cigarOps = []
for opString in cigarOpStrings:
cigarOpList = atomicCigarSearch.findall(opString)
# "struct" for the op and it's length
cigar = cigarOp(cigarOpList[0][0], cigarOpList[0][1])
# add to the list of cigarOps
cigarOps.append(cigar)
self.cigarOps = cigarOps
cigarOps.reverse()
##do in reverse order because negative strand##
else:
cigarOpStrings = cigarSearch.findall(self.cigar)
cigarOps = []
for opString in cigarOpStrings:
cigarOpList = atomicCigarSearch.findall(opString)
# "struct" for the op and it's length
cigar = cigarOp(cigarOpList[0][0], cigarOpList[0][1])
# add to the list of cigarOps
cigarOps.append(cigar)
self.cigarOps = cigarOps
def getCigarOps(self):
return self.cigarOps
def isReverseStrand(self):
if (self.flag & 0x0010):
return True
return False
def extractTagValue (self, tagID):
for tag in self.tags:
tagParts = tag.split(':', 2);
if (tagParts[0] == tagID):
if (tagParts[1] == 'i'):
return int(tagParts[2]);
elif (tagParts[1] == 'H'):
return int(tagParts[2],16);
return tagParts[2];
return None;
def processSam(opts):
samFile = opts.samFile;
if samFile == "stdin":
s = sys.stdin
else:
s = open(samFile, 'r')
blockList = []
prevSam = SAM()
inBlock = 0
for line in s:
if line[0] == "@":
continue
samList = line.strip().split('\t')
currSam = SAM(samList)
if currSam.query != prevSam.query:
makeBedpe(blockList, opts)
blockList = [currSam]
prevSam = currSam
else:
blockList.append(currSam)
# Need to process the last block at end of file.
makeBedpe(blockList, opts)
def calcOverlap(bed1, bed2):
o = 1 + min(bed1[6], bed2[6]) - max(bed1[5], bed2[5])
return max(0, o)
totalLines = 0;
def outputBedpe(bed1, bed2, opts):
# set1 = set(range(bed1[5], bed1[6] + 1))
# set2 = set(range(bed2[5], bed2[6] + 1))
# nonOverlap1 = len(set1) - len(set1 & set2)
# nonOverlap2 = len(set2) - len(set1 & set2)
overlap = calcOverlap(bed1, bed2)
nonOverlap1 = (1 + bed1[6] - bed1[5]) - overlap
nonOverlap2 = (1 + bed2[6] - bed2[5]) - overlap
minNonOverlap = min(nonOverlap1, nonOverlap2)
if (minNonOverlap >= opts.MNO):
global totalLines;
totalLines += 1;
# sys.stderr.write(bed1[3] + ' ' + str(nonOverlap1) + ' ' + str(nonOverlap2) + ' ' + str(overlap) + ' ' + str(minNonOverlap) + '\n')
print str(bed1[0]) + "\t" + str(bed1[1]) + "\t" + str(bed1[2]) + "\t" + str(bed2[0]) + "\t" + \
str(bed2[1]) + "\t" + str(bed2[2]) + "\t" + str(bed1[3]) + "\t" + str(bed1[8]+bed2[8]) + "\t" + str(bed1[4]) + \
"\t" + str(bed2[4]) + "\t" + str(bed1[5]) + "\t" + str(bed1[6]) + "\t" + \
str(bed2[5]) + "\t" + str(bed2[6]) + "\t" + str(minNonOverlap) + "\t" + str(bed1[9]) + "\t" + \
"MQ1="+str(bed1[7])+":"+"MQ2="+str(bed2[7])+":"+"AS1="+str(bed1[8])+":"+"AS2="+str(bed2[8])
def makeBedpe(blockList, opts):
if (len(blockList) < 2):
return
# First put the "primary" alignments into the pBedBlock.
# And any remaining "secondary" alignments into the sBedBlock.
pBedBlock=[]
sBedBlock=[]
for i in xrange(len(blockList)):
blockList[i].extractCigarOps()
ref = calcRefPosFromCigar(blockList[i].cigarOps, blockList[i].pos)
query = calcQueryPosFromCigar(blockList[i].cigarOps)
strand = "+"
if blockList[i].isReverseStrand() == True:
strand = "-"
qual = int(blockList[i].mapq)
score = blockList[i].extractTagValue('AS');
# seqname, startRefOff, endRefOff, queryId, strand, startQueryOff, endQueryOff, mapQual, AS, queryLen
bed = [blockList[i].ref, blockList[i].pos - 1, ref.rPos - 1, blockList[i].query, strand, query.qsPos, query.qePos, qual, score, query.qLen]
yahaStatus = blockList[i].extractTagValue('YS')
# For non-YAHA input, assume all alignments are primary.
if (yahaStatus is None or ((yahaStatus & 0x20) != 0)):
pBedBlock.append([bed])
else:
sBedBlock.append(bed)
# Sort the primaries by starting query offset.
pBedBlock.sort(cmp=lambda x,y: cmp(x[0][5],y[0][5]))
# Now place secondaries into the corresponding primary list.
for i in xrange(len(sBedBlock)):
maxOverlap = -1;
maxJvalue = -1;
for j in xrange(len(pBedBlock)):
overlap = calcOverlap(sBedBlock[i], pBedBlock[j][0])
if (overlap > maxOverlap):
maxOverlap = overlap
maxJvalue = j
if (maxOverlap > 0):
pBedBlock[maxJvalue].append(sBedBlock[i])
# Now output all pairs from adjoining similarity sets.
for i in xrange(len(pBedBlock)-1):
set1 = pBedBlock[i]
for j in xrange(i+1, len(pBedBlock)):
set2 = pBedBlock[j];
# We need to check for the "span" feature.
# Let the adjacent ones goes through unmolested.
p1 = set1[0];
p2 = set2[0];
# sys.stderr.write(str(p1[6]) + ' ' + str(p2[5]) + '\n');
if ((opts.span == 0 and j > i+1) or (opts.span > 0 and p1[6] + opts.span -1 < p2[5])):
break;
for ii in xrange(len(set1)):
for jj in xrange(len(set2)):
outputBedpe(set1[ii], set2[jj], opts)
def calcRefPosFromCigar(cigarOps, alignmentStart):
rPos = alignmentStart
for cigar in cigarOps:
if cigar.op == 'M':
rPos += cigar.length
elif cigar.op == 'D':
rPos += cigar.length
elif cigar.op == 'I':
continue
elif cigar.op == 'N':
raise ValueError('Unexpected Cigar Operation')
d = refPos(rPos)
return d
def calcQueryPosFromCigar(cigarOps):
qsPos = 0
qePos = 0
qLen = 0
# if first op is a H, need to shift start position
# the opPosition counter sees if the for loop is looking at the first index of the cigar object
opPosition = 0
for cigar in cigarOps:
if opPosition == 0 and (cigar.op == 'H' or cigar.op == 'S'):
qsPos += cigar.length
qePos += cigar.length
qLen += cigar.length
elif opPosition > 0 and (cigar.op == 'H' or cigar.op == 'S'):
qLen += cigar.length
elif cigar.op == 'M' or cigar.op == 'I':
qePos += cigar.length
qLen += cigar.length
# elif cigar.op == 'D' or cigar.op == 'N':
# Do nothing.
opPosition += 1
d = queryPos(qsPos, qePos, qLen);
return d
def main():
usage = """%prog -i <samFile or stdin>>
splitReadSamToBedpe
Author: Michael Lindberg, Aaron Quinlan & Ira Hall
Description: reports split read mappings in a SAM file to bedpe;
IMPORTANT NOTE: this replaces previous versions splitReadSamToBedPe and splitReadSamToBedPe_ih (Ira completed final version)
OUTPUT: in addition to standard bedpe format,
col8=sum of alignment scores;
col11=queryStart1;
col12=queryEnd1;
col13=queryStart2;
col14=queryEnd2;
col15=minNonOverlap between the two alignments;
col15=query length;
col16=mapping qualities and alignment scores
Modified by GGF on Jan 12, 2012 to handle secondary alignments.
Modified by GGF on Feb 10, 2012 to add minNonOverlap parameter.
Modified by GGF on March 27, 2012 to add span parameter.
"""
parser = OptionParser(usage)
parser.add_option("-i", dest="samFile", help="sam filename sorted by read id (not enforced), or standard input (-i stdin)", metavar="FILE")
parser.add_option("-m", dest="MNO", help="minimum non-overlap to allow in output (default 25)", metavar="MNO", type="int", default=25);
parser.add_option("-s", dest="span", help="maximum span to allow between reported pairs (default 0)", metavar="SPAN", type="int", default=0);
(opts, args) = parser.parse_args()
if opts.samFile is None:
parser.print_help()
print
else:
try:
processSam(opts);
except IOError as err:
sys.stderr.write("Output " + str(totalLines) + " total lines.\n");
sys.stderr.write("IOError " + str(err) + "\n");
return
if __name__ == "__main__":
sys.exit(main())
(END)