-
Notifications
You must be signed in to change notification settings - Fork 0
/
DESCRIPTION
46 lines (46 loc) · 1.27 KB
/
DESCRIPTION
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
Package: miPredict
Type: Package
Title: Predictive models from multiply imputed data
Version: 0.2.6
Date: 2023-05-04
Authors@R: person("Peter", "Humburg", email = "p.humburg@unsw.edu.au",
role = c("aut", "cre"))
Maintainer: Peter Humburg <p.humburg@unsw.edu.au>
Description: Variable selection and model fitting for predictive
(generalized linear) models from multiply imputed data.
The focus is on logistic regression models with some support
for other GLMs.
Depends: R (>= 3.6.0)
Imports: mice, glmnet, glmnetUtils, dplyr, ggplot2, fmsb, pROC, stringr, tidyr, methods, rlang, generalhoslem, forcats, SpecsVerification, purrr, stats, classifierplots
License: MIT + file LICENSE
LazyData: true
Encoding: UTF-8
Roxygen: list(markdown = TRUE)
RoxygenNote: 7.1.1
Collate:
'boot_model.R'
'call_imputed.R'
'candidate_models.R'
'class_perf.R'
'clean_data.R'
'crossvalidate.R'
'fit_model.R'
'hoslem.R'
'internals.R'
'makeglm.r'
'pool_r2.R'
'pool_cor.R'
'performance.R'
'plot.R'
'pool_auc.R'
'pool_brier.R'
'pool_hoslem.R'
'pool_model.R'
'pool_predictions.R'
'pool_roc.R'
'predict_outcome.R'
'scale_data.R'
'select_model.R'
'select_variables.R'
Suggests:
testthat (>= 2.1.0)