forked from PINTO0309/MobileNet-SSD-RealSense
-
Notifications
You must be signed in to change notification settings - Fork 0
/
MultiStickSSDwithRealSense.py
executable file
·557 lines (469 loc) · 22.1 KB
/
MultiStickSSDwithRealSense.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
import sys
if sys.version_info.major < 3 or sys.version_info.minor < 4:
print("Please using python3.4 or greater!")
sys.exit(1)
import pyrealsense2 as rs
import numpy as np
import cv2, io, time, argparse, re
from mvnc import mvncapi as mvnc
from os import system
from os.path import isfile, join
from time import sleep
import multiprocessing as mp
pipeline = None
lastresults = None
threads = []
processes = []
frameBuffer = None
results = None
fps = ""
detectfps = ""
framecount = 0
detectframecount = 0
time1 = 0
time2 = 0
graph_folder = ""
cam = None
camera_mode = 0
camera_width = 320
camera_height = 240
window_name = ""
background_transparent_mode = 0
ssd_detection_mode = 1
face_detection_mode = 0
elapsedtime = 0.0
temperature = 0.0
max_temperature = 0.0
active_stick_pointer = 0
mp_active_stick_number = None
stick_num_of_cluster = 0
cluster_switch_cycle = 10000
cluster_switch_temperature = 65.0
background_img = None
depth_sensor = None
depth_scale = 1.0
align_to = None
align = None
LABELS = [['background',
'aeroplane', 'bicycle', 'bird', 'boat',
'bottle', 'bus', 'car', 'cat', 'chair',
'cow', 'diningtable', 'dog', 'horse',
'motorbike', 'person', 'pottedplant',
'sheep', 'sofa', 'train', 'tvmonitor'],
['background', 'face']]
def camThread(LABELS, results, frameBuffer, camera_mode, camera_width, camera_height, background_transparent_mode, background_img):
global fps
global detectfps
global lastresults
global framecount
global detectframecount
global time1
global time2
global cam
global window_name
global depth_scale
global align_to
global align
# Configure depth and color streams
# Or
# Open USB Camera streams
if camera_mode == 0:
pipeline = rs.pipeline()
config = rs.config()
config.enable_stream(rs.stream.depth, 640, 480, rs.format.z16, 30)
config.enable_stream(rs.stream.color, 640, 480, rs.format.bgr8, 30)
profile = pipeline.start(config)
depth_sensor = profile.get_device().first_depth_sensor()
depth_scale = depth_sensor.get_depth_scale()
align_to = rs.stream.color
align = rs.align(align_to)
window_name = "RealSense"
elif camera_mode == 1:
cam = cv2.VideoCapture(0)
if cam.isOpened() != True:
print("USB Camera Open Error!!!")
sys.exit(0)
cam.set(cv2.CAP_PROP_FPS, 30)
cam.set(cv2.CAP_PROP_FRAME_WIDTH, camera_width)
cam.set(cv2.CAP_PROP_FRAME_HEIGHT, camera_height)
window_name = "USB Camera"
cv2.namedWindow(window_name, cv2.WINDOW_AUTOSIZE)
while True:
t1 = time.perf_counter()
# 0:= RealSense Mode
# 1:= USB Camera Mode
if camera_mode == 0:
# Wait for a coherent pair of frames: depth and color
frames = pipeline.wait_for_frames()
depth_frame = frames.get_depth_frame()
color_frame = frames.get_color_frame()
if not depth_frame or not color_frame:
continue
if frameBuffer.full():
frameBuffer.get()
color_image = np.asanyarray(color_frame.get_data())
elif camera_mode == 1:
# USB Camera Stream Read
s, color_image = cam.read()
if not s:
continue
if frameBuffer.full():
frameBuffer.get()
frames = color_image
height = color_image.shape[0]
width = color_image.shape[1]
frameBuffer.put(color_image.copy())
res = None
if not results.empty():
res = results.get(False)
detectframecount += 1
imdraw = overlay_on_image(frames, res, LABELS, camera_mode, background_transparent_mode,
background_img, depth_scale=depth_scale, align=align)
lastresults = res
else:
imdraw = overlay_on_image(frames, lastresults, LABELS, camera_mode, background_transparent_mode,
background_img, depth_scale=depth_scale, align=align)
cv2.imshow(window_name, cv2.resize(imdraw, (width, height)))
if cv2.waitKey(1)&0xFF == ord('q'):
# Stop streaming
if pipeline != None:
pipeline.stop()
sys.exit(0)
## Print FPS
framecount += 1
if framecount >= 15:
fps = "(Playback) {:.1f} FPS".format(time1/15)
detectfps = "(Detection) {:.1f} FPS".format(detectframecount/time2)
framecount = 0
detectframecount = 0
time1 = 0
time2 = 0
t2 = time.perf_counter()
elapsedTime = t2-t1
time1 += 1/elapsedTime
time2 += elapsedTime
def inferencer(results, frameBuffer, ssd_detection_mode, face_detection_mode, devnum, mp_active_stick_number, mp_stick_temperature):
graphs = []
graph_buffers = []
graphHandles = []
graphHandle0 = None
graphHandle1 = None
mvnc.global_set_option(mvnc.GlobalOption.RW_LOG_LEVEL, 4)
devices = mvnc.enumerate_devices()
if len(devices) == 0:
print("No NCS devices found")
sys.exit(1)
print(len(devices))
# 1:= Enabled MobileNet-SSD Model
if ssd_detection_mode == 1:
with open(join(graph_folder, "graph"), mode="rb") as f:
graph_buffers.append(f.read())
graphs.append(mvnc.Graph('MobileNet-SSD'))
# 1:= Enabled Fullweight FaceDetection Model
if face_detection_mode == 1:
with open(join(graph_folder, "graph.fullfacedetection"), mode="rb") as f:
graph_buffers.append(f.read())
graphs.append(mvnc.Graph('FullFaceDetection'))
# 2:= Enabled Lightweight FaceDetection Model
if face_detection_mode == 2:
with open(join(graph_folder, "graph.shortfacedetection"), mode="rb") as f:
graph_buffers.append(f.read())
graphs.append(mvnc.Graph('ShortFaceDetection'))
devopen = False
for device in devices:
try:
device = mvnc.Device(device)
device.open()
for (graph, graph_buffer) in zip(graphs, graph_buffers):
graphHandles.append(graph.allocate_with_fifos(device, graph_buffer))
devopen = True
break
except:
continue
if devopen == False:
print("NCS Devices open Error!!!")
sys.exit(1)
print("Loaded Graphs!!! ")
THERMAL_STATS = mvnc.DeviceOption.RO_THERMAL_STATS
temperature = device.get_option
while True:
# 0:= Inactive stick, 1:= Active stick
if mp_active_stick_number[devnum] == 0:
continue
# Measure the temperature inside the stick
mp_stick_temperature[devnum] = temperature(THERMAL_STATS)[0]
try:
if frameBuffer.empty():
continue
color_image = frameBuffer.get()
prepimg = preprocess_image(color_image)
res = None
for (graph, graphHandle) in zip(graphs, graphHandles):
graphHandle0 = graphHandle[0]
graphHandle1 = graphHandle[1]
graph.queue_inference_with_fifo_elem(graphHandle0, graphHandle1, prepimg.astype(np.float32), None)
out, _ = graphHandle1.read_elem()
num_valid_boxes = int(out[0])
if num_valid_boxes > 0:
if isinstance(res, type(None)):
res = [out]
else:
res = np.append(res, [out], axis=0)
results.put(res)
except:
import traceback
traceback.print_exc()
def preprocess_image(src):
try:
img = cv2.resize(src, (300, 300))
img = img - 127.5
img = img * 0.007843
return img
except:
import traceback
traceback.print_exc()
def overlay_on_image(frames, object_infos, LABELS, camera_mode, background_transparent_mode, background_img, depth_scale=1.0, align=None):
try:
# 0:=RealSense Mode, 1:=USB Camera Mode
if camera_mode == 0:
# 0:= No background transparent, 1:= Background transparent
if background_transparent_mode == 0:
depth_frame = frames.get_depth_frame()
color_frame = frames.get_color_frame()
elif background_transparent_mode == 1:
aligned_frames = align.process(frames)
depth_frame = aligned_frames.get_depth_frame()
color_frame = aligned_frames.get_color_frame()
depth_dist = depth_frame.as_depth_frame()
depth_image = np.asanyarray(depth_frame.get_data())
color_image = np.asanyarray(color_frame.get_data())
elif camera_mode == 1:
color_image = frames
if isinstance(object_infos, type(None)):
# 0:= No background transparent, 1:= Background transparent
if background_transparent_mode == 0:
return color_image
elif background_transparent_mode == 1:
return background_img
# Show images
height = color_image.shape[0]
width = color_image.shape[1]
entire_pixel = height * width
occupancy_threshold = 0.9
if background_transparent_mode == 0:
img_cp = color_image.copy()
elif background_transparent_mode == 1:
img_cp = background_img.copy()
for (object_info, LABEL) in zip(object_infos, LABELS):
num_valid_boxes = int(object_info[0])
if num_valid_boxes > 0:
drawing_initial_flag = True
for box_index in range(num_valid_boxes):
base_index = 7 + box_index * 7
if (not np.isfinite(object_info[base_index]) or
not np.isfinite(object_info[base_index + 1]) or
not np.isfinite(object_info[base_index + 2]) or
not np.isfinite(object_info[base_index + 3]) or
not np.isfinite(object_info[base_index + 4]) or
not np.isfinite(object_info[base_index + 5]) or
not np.isfinite(object_info[base_index + 6])):
continue
x1 = max(0, int(object_info[base_index + 3] * height))
y1 = max(0, int(object_info[base_index + 4] * width))
x2 = min(height, int(object_info[base_index + 5] * height))
y2 = min(width, int(object_info[base_index + 6] * width))
object_info_overlay = object_info[base_index:base_index + 7]
# 0:= No background transparent, 1:= Background transparent
if background_transparent_mode == 0:
min_score_percent = 60
elif background_transparent_mode == 1:
min_score_percent = 20
source_image_width = width
source_image_height = height
base_index = 0
class_id = object_info_overlay[base_index + 1]
percentage = int(object_info_overlay[base_index + 2] * 100)
if (percentage <= min_score_percent):
continue
box_left = int(object_info_overlay[base_index + 3] * source_image_width)
box_top = int(object_info_overlay[base_index + 4] * source_image_height)
box_right = int(object_info_overlay[base_index + 5] * source_image_width)
box_bottom = int(object_info_overlay[base_index + 6] * source_image_height)
# 0:=RealSense Mode, 1:=USB Camera Mode
if camera_mode == 0:
meters = depth_dist.get_distance(box_left+int((box_right-box_left)/2), box_top+int((box_bottom-box_top)/2))
label_text = LABEL[int(class_id)] + " (" + str(percentage) + "%)"+ " {:.2f}".format(meters) + " meters away"
elif camera_mode == 1:
label_text = LABEL[int(class_id)] + " (" + str(percentage) + "%)"
# 0:= No background transparent, 1:= Background transparent
if background_transparent_mode == 0:
box_color = (255, 128, 0)
box_thickness = 1
cv2.rectangle(img_cp, (box_left, box_top), (box_right, box_bottom), box_color, box_thickness)
label_background_color = (125, 175, 75)
label_text_color = (255, 255, 255)
label_size = cv2.getTextSize(label_text, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 1)[0]
label_left = box_left
label_top = box_top - label_size[1]
if (label_top < 1):
label_top = 1
label_right = label_left + label_size[0]
label_bottom = label_top + label_size[1]
cv2.rectangle(img_cp, (label_left - 1, label_top - 1), (label_right + 1, label_bottom + 1), label_background_color, -1)
cv2.putText(img_cp, label_text, (label_left, label_bottom), cv2.FONT_HERSHEY_SIMPLEX, 0.5, label_text_color, 1)
elif background_transparent_mode == 1:
clipping_distance = (meters+0.05) / depth_scale
depth_image_3d = np.dstack((depth_image, depth_image, depth_image))
fore = np.where((depth_image_3d > clipping_distance) | (depth_image_3d <= 0), 0, color_image)
area = abs(box_bottom - box_top) * abs(box_right - box_left)
occupancy = area / entire_pixel
if occupancy <= occupancy_threshold:
if drawing_initial_flag == True:
img_cp = fore
drawing_initial_flag = False
else:
img_cp[box_top:box_bottom, box_left:box_right] = cv2.addWeighted(img_cp[box_top:box_bottom, box_left:box_right],
0.85,
fore[box_top:box_bottom, box_left:box_right],
0.85,
0)
cv2.putText(img_cp, fps, (width-170,15), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (38,0,255), 1, cv2.LINE_AA)
cv2.putText(img_cp, detectfps, (width-170,30), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (38,0,255), 1, cv2.LINE_AA)
return img_cp
except:
import traceback
traceback.print_exc()
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('-grp','--graph',dest='graph_folder',type=str,default='./',help='MVNC graphs Path. (Default=./)')
parser.add_argument('-mod','--mode',dest='camera_mode',type=int,default=0,help='Camera Mode. (0:=RealSense Mode, 1:=USB Camera Mode. Defalut=0)')
parser.add_argument('-wd','--width',dest='camera_width',type=int,default=320,help='Width of the frames in the video stream. (USB Camera Mode Only. Default=320)')
parser.add_argument('-ht','--height',dest='camera_height',type=int,default=240,help='Height of the frames in the video stream. (USB Camera Mode Only. Default=240)')
parser.add_argument('-tp','--transparent',dest='background_transparent_mode',type=int,default=0,help='TransparentMode. (RealSense Mode Only. 0:=No background transparent, 1:=Background transparent)')
parser.add_argument('-sd','--ssddetection',dest='ssd_detection_mode',type=int,default=1,help='SSDDetectionMode. (0:=Disabled, 1:=Enabled Default=1)')
parser.add_argument('-fd','--facedetection',dest='face_detection_mode',type=int,default=0,help='FaceDetectionMode. (0:=Disabled, 1:=Full, 2:=Short Default=0)')
parser.add_argument('-snc','--sticknumofcluster',dest='stick_num_of_cluster',type=int,default=0,help='Number of sticks to be clustered. (0:=Clustering invalid, n:=Number of sticks Default=0)')
parser.add_argument('-csc','--clusterswitchcycle',dest='cluster_switch_cycle',type=int,default=10000,help='Cycle of switching active cluster. (n:=millisecond Default=10000)')
parser.add_argument('-cst','--clusterswittemperature',dest='cluster_switch_temperature',type=float,default=65.0,help='Temperature threshold to switch active cluster. (n.n:=temperature(Celsius) Default=65.0)')
args = parser.parse_args()
graph_folder = args.graph_folder
camera_mode = args.camera_mode
camera_width = args.camera_width
camera_height = args.camera_height
background_transparent_mode = args.background_transparent_mode
ssd_detection_mode = args.ssd_detection_mode
face_detection_mode = args.face_detection_mode
stick_num_of_cluster = args.stick_num_of_cluster
cluster_switch_cycle = args.cluster_switch_cycle
cluster_switch_temperature = args.cluster_switch_temperature
# 0:=RealSense Mode, 1:=USB Camera Mode
if camera_mode != 0 and camera_mode != 1:
print("Camera Mode Error!! " + str(camera_mode))
sys.exit(0)
if camera_mode != 0 and background_transparent_mode == 1:
background_transparent_mode = 0
if background_transparent_mode == 1:
background_img = np.zeros((camera_height, camera_width, 3), dtype=np.uint8)
if face_detection_mode != 0:
ssd_detection_mode = 0
if ssd_detection_mode == 0 and face_detection_mode != 0:
del(LABELS[0])
devices = None
try:
mp.set_start_method('forkserver')
frameBuffer = mp.Queue(10)
results = mp.Queue()
# Start streaming
p = mp.Process(target=camThread,
args=(LABELS, results, frameBuffer, camera_mode, camera_width, camera_height, background_transparent_mode, background_img),
daemon=True)
p.start()
processes.append(p)
# Start detection MultiStick
devices = mvnc.enumerate_devices()
if len(devices) == 0:
print("No devices found")
sys.exit(0)
device_count = len(devices)
if stick_num_of_cluster > 0 and stick_num_of_cluster > (device_count // 2):
print("`stick_num_of_cluster` must be less than half of the total number of sticks.")
sys.exit(0)
# Initialization of clustering stick
mp_active_stick_number = mp.Array('i', device_count)
mp_stick_temperature = mp.Array('f', device_count)
# 0:= Clustering invalid, n:= Number of sticks to be clustered
if stick_num_of_cluster > 0:
# Activate only the sticks in the cluster
for devnum in range(stick_num_of_cluster):
# 0:= Inactive, 1:= Active
mp_active_stick_number[devnum] = 1
else:
# Activate all sticks
for devnum in range(device_count):
# 0:= Inactive, 1:= Active
mp_active_stick_number[devnum] = 1
# Activation of inferencer
for devnum in range(device_count):
p = mp.Process(target=inferencer,
args=(results, frameBuffer, ssd_detection_mode, face_detection_mode, devnum, mp_active_stick_number, mp_stick_temperature),
daemon=True)
p.start()
processes.append(p)
# Cluster switching determination
t1 = time.perf_counter() * 1000
while True:
# Switch cluster
if stick_num_of_cluster > 0:
# Measure inside temperature of stick
relative_pointer = active_stick_pointer
counta = 0
max_temperature = 0.0
while True:
temperature = mp_stick_temperature[relative_pointer]
if max_temperature < temperature:
max_temperature = temperature
relative_pointer += 1
counta += 1
if relative_pointer > (device_count - 1):
relative_pointer = 0
if counta >= stick_num_of_cluster:
break
# Cluster switching judgment
if (cluster_switch_cycle > 0 and elapsedtime >= cluster_switch_cycle) or max_temperature >= cluster_switch_temperature:
# Cluster inactivate
counta = 0
while True:
mp_active_stick_number[active_stick_pointer] = 0
active_stick_pointer += 1
counta += 1
if active_stick_pointer > (device_count - 1):
active_stick_pointer = 0
if counta >= stick_num_of_cluster:
break
# Cluster activate
relative_pointer = active_stick_pointer
counta = 0
while True:
mp_active_stick_number[relative_pointer] = 1
relative_pointer += 1
counta += 1
if relative_pointer > (device_count - 1):
relative_pointer = 0
if counta >= stick_num_of_cluster:
break
elapsedtime = 0.0
t1 = time.perf_counter() * 1000
t2 = time.perf_counter() * 1000
elapsedtime = (t2-t1)
print("Active Sticks =", mp_active_stick_number[:],
"elapsedtime(millisec) = {:.1f}".format(elapsedtime),
"max_temperature = {:.1f}".format(max_temperature))
else:
sleep(1)
except:
import traceback
traceback.print_exc()
finally:
for p in range(len(processes)):
processes[p].terminate()
print("\n\nFinished\n\n")