forked from dgraph-io/badger
-
Notifications
You must be signed in to change notification settings - Fork 1
/
iterator.go
787 lines (702 loc) · 21.5 KB
/
iterator.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
/*
* Copyright 2017 Dgraph Labs, Inc. and Contributors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package badger
import (
"bytes"
"fmt"
"hash/crc32"
"math"
"sort"
"sync"
"time"
"github.com/dgraph-io/badger/v4/table"
"github.com/dgraph-io/badger/v4/y"
"github.com/dgraph-io/ristretto/z"
)
type prefetchStatus uint8
const (
prefetched prefetchStatus = iota + 1
)
// Item is returned during iteration. Both the Key() and Value() output is only valid until
// iterator.Next() is called.
type Item struct {
key []byte
vptr []byte
val []byte
version uint64
expiresAt uint64
slice *y.Slice // Used only during prefetching.
next *Item
txn *Txn
err error
wg sync.WaitGroup
status prefetchStatus
meta byte // We need to store meta to know about bitValuePointer.
userMeta byte
}
// String returns a string representation of Item
func (item *Item) String() string {
return fmt.Sprintf("key=%q, version=%d, meta=%x", item.Key(), item.Version(), item.meta)
}
// Key returns the key.
//
// Key is only valid as long as item is valid, or transaction is valid. If you need to use it
// outside its validity, please use KeyCopy.
func (item *Item) Key() []byte {
return item.key
}
// KeyCopy returns a copy of the key of the item, writing it to dst slice.
// If nil is passed, or capacity of dst isn't sufficient, a new slice would be allocated and
// returned.
func (item *Item) KeyCopy(dst []byte) []byte {
return y.SafeCopy(dst, item.key)
}
// Version returns the commit timestamp of the item.
func (item *Item) Version() uint64 {
return item.version
}
// Value retrieves the value of the item from the value log.
//
// This method must be called within a transaction. Calling it outside a
// transaction is considered undefined behavior. If an iterator is being used,
// then Item.Value() is defined in the current iteration only, because items are
// reused.
//
// If you need to use a value outside a transaction, please use Item.ValueCopy
// instead, or copy it yourself. Value might change once discard or commit is called.
// Use ValueCopy if you want to do a Set after Get.
func (item *Item) Value(fn func(val []byte) error) error {
item.wg.Wait()
if item.status == prefetched {
if item.err == nil && fn != nil {
if err := fn(item.val); err != nil {
return err
}
}
return item.err
}
buf, cb, err := item.yieldItemValue()
defer runCallback(cb)
if err != nil {
return err
}
if fn != nil {
return fn(buf)
}
return nil
}
// ValueCopy returns a copy of the value of the item from the value log, writing it to dst slice.
// If nil is passed, or capacity of dst isn't sufficient, a new slice would be allocated and
// returned. Tip: It might make sense to reuse the returned slice as dst argument for the next call.
//
// This function is useful in long running iterate/update transactions to avoid a write deadlock.
// See Github issue: https://github.com/dgraph-io/badger/issues/315
func (item *Item) ValueCopy(dst []byte) ([]byte, error) {
item.wg.Wait()
if item.status == prefetched {
return y.SafeCopy(dst, item.val), item.err
}
buf, cb, err := item.yieldItemValue()
defer runCallback(cb)
return y.SafeCopy(dst, buf), err
}
func (item *Item) hasValue() bool {
if item.meta == 0 && item.vptr == nil {
// key not found
return false
}
return true
}
// IsDeletedOrExpired returns true if item contains deleted or expired value.
func (item *Item) IsDeletedOrExpired() bool {
return isDeletedOrExpired(item.meta, item.expiresAt)
}
// DiscardEarlierVersions returns whether the item was created with the
// option to discard earlier versions of a key when multiple are available.
func (item *Item) DiscardEarlierVersions() bool {
return item.meta&bitDiscardEarlierVersions > 0
}
func (item *Item) yieldItemValue() ([]byte, func(), error) {
key := item.Key() // No need to copy.
if !item.hasValue() {
return nil, nil, nil
}
if item.slice == nil {
item.slice = new(y.Slice)
}
if (item.meta & bitValuePointer) == 0 {
val := item.slice.Resize(len(item.vptr))
copy(val, item.vptr)
return val, nil, nil
}
var vp valuePointer
vp.Decode(item.vptr)
db := item.txn.db
result, cb, err := db.vlog.Read(vp, item.slice)
if err != nil {
db.opt.Errorf("Unable to read: Key: %v, Version : %v, meta: %v, userMeta: %v"+
" Error: %v", key, item.version, item.meta, item.userMeta, err)
var txn *Txn
if db.opt.managedTxns {
txn = db.NewTransactionAt(math.MaxUint64, false)
} else {
txn = db.NewTransaction(false)
}
defer txn.Discard()
iopt := DefaultIteratorOptions
iopt.AllVersions = true
iopt.InternalAccess = true
iopt.PrefetchValues = false
it := txn.NewKeyIterator(item.Key(), iopt)
defer it.Close()
for it.Rewind(); it.Valid(); it.Next() {
item := it.Item()
var vp valuePointer
if item.meta&bitValuePointer > 0 {
vp.Decode(item.vptr)
}
db.opt.Errorf("Key: %v, Version : %v, meta: %v, userMeta: %v valuePointer: %+v",
item.Key(), item.version, item.meta, item.userMeta, vp)
}
}
// Don't return error if we cannot read the value. Just log the error.
return result, cb, nil
}
func runCallback(cb func()) {
if cb != nil {
cb()
}
}
func (item *Item) prefetchValue() {
val, cb, err := item.yieldItemValue()
defer runCallback(cb)
item.err = err
item.status = prefetched
if val == nil {
return
}
buf := item.slice.Resize(len(val))
copy(buf, val)
item.val = buf
}
// EstimatedSize returns the approximate size of the key-value pair.
//
// This can be called while iterating through a store to quickly estimate the
// size of a range of key-value pairs (without fetching the corresponding
// values).
func (item *Item) EstimatedSize() int64 {
if !item.hasValue() {
return 0
}
if (item.meta & bitValuePointer) == 0 {
return int64(len(item.key) + len(item.vptr))
}
var vp valuePointer
vp.Decode(item.vptr)
return int64(vp.Len) // includes key length.
}
// KeySize returns the size of the key.
// Exact size of the key is key + 8 bytes of timestamp
func (item *Item) KeySize() int64 {
return int64(len(item.key))
}
// ValueSize returns the approximate size of the value.
//
// This can be called to quickly estimate the size of a value without fetching
// it.
func (item *Item) ValueSize() int64 {
if !item.hasValue() {
return 0
}
if (item.meta & bitValuePointer) == 0 {
return int64(len(item.vptr))
}
var vp valuePointer
vp.Decode(item.vptr)
klen := int64(len(item.key) + 8) // 8 bytes for timestamp.
// 6 bytes are for the approximate length of the header. Since header is encoded in varint, we
// cannot find the exact length of header without fetching it.
return int64(vp.Len) - klen - 6 - crc32.Size
}
// UserMeta returns the userMeta set by the user. Typically, this byte, optionally set by the user
// is used to interpret the value.
func (item *Item) UserMeta() byte {
return item.userMeta
}
// ExpiresAt returns a Unix time value indicating when the item will be
// considered expired. 0 indicates that the item will never expire.
func (item *Item) ExpiresAt() uint64 {
return item.expiresAt
}
// TODO: Switch this to use linked list container in Go.
type list struct {
head *Item
tail *Item
}
func (l *list) push(i *Item) {
i.next = nil
if l.tail == nil {
l.head = i
l.tail = i
return
}
l.tail.next = i
l.tail = i
}
func (l *list) pop() *Item {
if l.head == nil {
return nil
}
i := l.head
if l.head == l.tail {
l.tail = nil
l.head = nil
} else {
l.head = i.next
}
i.next = nil
return i
}
// IteratorOptions is used to set options when iterating over Badger key-value
// stores.
//
// This package provides DefaultIteratorOptions which contains options that
// should work for most applications. Consider using that as a starting point
// before customizing it for your own needs.
type IteratorOptions struct {
// PrefetchSize is the number of KV pairs to prefetch while iterating.
// Valid only if PrefetchValues is true.
PrefetchSize int
// PrefetchValues Indicates whether we should prefetch values during
// iteration and store them.
PrefetchValues bool
Reverse bool // Direction of iteration. False is forward, true is backward.
AllVersions bool // Fetch all valid versions of the same key.
InternalAccess bool // Used to allow internal access to badger keys.
// The following option is used to narrow down the SSTables that iterator
// picks up. If Prefix is specified, only tables which could have this
// prefix are picked based on their range of keys.
prefixIsKey bool // If set, use the prefix for bloom filter lookup.
Prefix []byte // Only iterate over this given prefix.
SinceTs uint64 // Only read data that has version > SinceTs.
}
func (opt *IteratorOptions) compareToPrefix(key []byte) int {
// We should compare key without timestamp. For example key - a[TS] might be > "aa" prefix.
key = y.ParseKey(key)
if len(key) > len(opt.Prefix) {
key = key[:len(opt.Prefix)]
}
return bytes.Compare(key, opt.Prefix)
}
func (opt *IteratorOptions) pickTable(t table.TableInterface) bool {
// Ignore this table if its max version is less than the sinceTs.
if t.MaxVersion() < opt.SinceTs {
return false
}
if len(opt.Prefix) == 0 {
return true
}
if opt.compareToPrefix(t.Smallest()) > 0 {
return false
}
if opt.compareToPrefix(t.Biggest()) < 0 {
return false
}
// Bloom filter lookup would only work if opt.Prefix does NOT have the read
// timestamp as part of the key.
if opt.prefixIsKey && t.DoesNotHave(y.Hash(opt.Prefix)) {
return false
}
return true
}
// pickTables picks the necessary table for the iterator. This function also assumes
// that the tables are sorted in the right order.
func (opt *IteratorOptions) pickTables(all []*table.Table) []*table.Table {
filterTables := func(tables []*table.Table) []*table.Table {
if opt.SinceTs > 0 {
tmp := tables[:0]
for _, t := range tables {
if t.MaxVersion() < opt.SinceTs {
continue
}
tmp = append(tmp, t)
}
tables = tmp
}
return tables
}
if len(opt.Prefix) == 0 {
out := make([]*table.Table, len(all))
copy(out, all)
return filterTables(out)
}
sIdx := sort.Search(len(all), func(i int) bool {
// table.Biggest >= opt.prefix
// if opt.Prefix < table.Biggest, then surely it is not in any of the preceding tables.
return opt.compareToPrefix(all[i].Biggest()) >= 0
})
if sIdx == len(all) {
// Not found.
return []*table.Table{}
}
filtered := all[sIdx:]
if !opt.prefixIsKey {
eIdx := sort.Search(len(filtered), func(i int) bool {
return opt.compareToPrefix(filtered[i].Smallest()) > 0
})
out := make([]*table.Table, len(filtered[:eIdx]))
copy(out, filtered[:eIdx])
return filterTables(out)
}
// opt.prefixIsKey == true. This code is optimizing for opt.prefixIsKey part.
var out []*table.Table
hash := y.Hash(opt.Prefix)
for _, t := range filtered {
// When we encounter the first table whose smallest key is higher than opt.Prefix, we can
// stop. This is an IMPORTANT optimization, just considering how often we call
// NewKeyIterator.
if opt.compareToPrefix(t.Smallest()) > 0 {
// if table.Smallest > opt.Prefix, then this and all tables after this can be ignored.
break
}
// opt.Prefix is actually the key. So, we can run bloom filter checks
// as well.
if t.DoesNotHave(hash) {
continue
}
out = append(out, t)
}
return filterTables(out)
}
// DefaultIteratorOptions contains default options when iterating over Badger key-value stores.
var DefaultIteratorOptions = IteratorOptions{
PrefetchValues: true,
PrefetchSize: 100,
Reverse: false,
AllVersions: false,
}
// Iterator helps iterating over the KV pairs in a lexicographically sorted order.
type Iterator struct {
iitr y.Iterator
txn *Txn
readTs uint64
opt IteratorOptions
item *Item
data list
waste list
lastKey []byte // Used to skip over multiple versions of the same key.
closed bool
scanned int // Used to estimate the size of data scanned by iterator.
// ThreadId is an optional value that can be set to identify which goroutine created
// the iterator. It can be used, for example, to uniquely identify each of the
// iterators created by the stream interface
ThreadId int
Alloc *z.Allocator
}
// NewIterator returns a new iterator. Depending upon the options, either only keys, or both
// key-value pairs would be fetched. The keys are returned in lexicographically sorted order.
// Using prefetch is recommended if you're doing a long running iteration, for performance.
//
// Multiple Iterators:
// For a read-only txn, multiple iterators can be running simultaneously. However, for a read-write
// txn, iterators have the nuance of being a snapshot of the writes for the transaction at the time
// iterator was created. If writes are performed after an iterator is created, then that iterator
// will not be able to see those writes. Only writes performed before an iterator was created can be
// viewed.
func (txn *Txn) NewIterator(opt IteratorOptions) *Iterator {
if txn.discarded {
panic(ErrDiscardedTxn)
}
if txn.db.IsClosed() {
panic(ErrDBClosed)
}
y.NumIteratorsCreatedAdd(txn.db.opt.MetricsEnabled, 1)
// Keep track of the number of active iterators.
txn.numIterators.Add(1)
// TODO: If Prefix is set, only pick those memtables which have keys with the prefix.
tables, decr := txn.db.getMemTables()
defer decr()
txn.db.vlog.incrIteratorCount()
var iters []y.Iterator
if itr := txn.newPendingWritesIterator(opt.Reverse); itr != nil {
iters = append(iters, itr)
}
for i := 0; i < len(tables); i++ {
iters = append(iters, tables[i].sl.NewUniIterator(opt.Reverse))
}
iters = txn.db.lc.appendIterators(iters, &opt) // This will increment references.
res := &Iterator{
txn: txn,
iitr: table.NewMergeIterator(iters, opt.Reverse),
opt: opt,
readTs: txn.readTs,
}
return res
}
// NewKeyIterator is just like NewIterator, but allows the user to iterate over all versions of a
// single key. Internally, it sets the Prefix option in provided opt, and uses that prefix to
// additionally run bloom filter lookups before picking tables from the LSM tree.
func (txn *Txn) NewKeyIterator(key []byte, opt IteratorOptions) *Iterator {
if len(opt.Prefix) > 0 {
panic("opt.Prefix should be nil for NewKeyIterator.")
}
opt.Prefix = key // This key must be without the timestamp.
opt.prefixIsKey = true
opt.AllVersions = true
return txn.NewIterator(opt)
}
func (it *Iterator) newItem() *Item {
item := it.waste.pop()
if item == nil {
item = &Item{slice: new(y.Slice), txn: it.txn}
}
return item
}
// Item returns pointer to the current key-value pair.
// This item is only valid until it.Next() gets called.
func (it *Iterator) Item() *Item {
tx := it.txn
tx.addReadKey(it.item.Key())
return it.item
}
// Valid returns false when iteration is done.
func (it *Iterator) Valid() bool {
if it.item == nil {
return false
}
if it.opt.prefixIsKey {
return bytes.Equal(it.item.key, it.opt.Prefix)
}
return bytes.HasPrefix(it.item.key, it.opt.Prefix)
}
// ValidForPrefix returns false when iteration is done
// or when the current key is not prefixed by the specified prefix.
func (it *Iterator) ValidForPrefix(prefix []byte) bool {
return it.Valid() && bytes.HasPrefix(it.item.key, prefix)
}
// Close would close the iterator. It is important to call this when you're done with iteration.
func (it *Iterator) Close() {
if it.closed {
return
}
it.closed = true
if it.iitr == nil {
it.txn.numIterators.Add(-1)
return
}
it.iitr.Close()
// It is important to wait for the fill goroutines to finish. Otherwise, we might leave zombie
// goroutines behind, which are waiting to acquire file read locks after DB has been closed.
waitFor := func(l list) {
item := l.pop()
for item != nil {
item.wg.Wait()
item = l.pop()
}
}
waitFor(it.waste)
waitFor(it.data)
// TODO: We could handle this error.
_ = it.txn.db.vlog.decrIteratorCount()
it.txn.numIterators.Add(-1)
}
// Next would advance the iterator by one. Always check it.Valid() after a Next()
// to ensure you have access to a valid it.Item().
func (it *Iterator) Next() {
if it.iitr == nil {
return
}
// Reuse current item
it.item.wg.Wait() // Just cleaner to wait before pushing to avoid doing ref counting.
it.scanned += len(it.item.key) + len(it.item.val) + len(it.item.vptr) + 2
it.waste.push(it.item)
// Set next item to current
it.item = it.data.pop()
for it.iitr.Valid() {
if it.parseItem() {
// parseItem calls one extra next.
// This is used to deal with the complexity of reverse iteration.
break
}
}
}
func isDeletedOrExpired(meta byte, expiresAt uint64) bool {
if meta&bitDelete > 0 {
return true
}
if expiresAt == 0 {
return false
}
return expiresAt <= uint64(time.Now().Unix())
}
// parseItem is a complex function because it needs to handle both forward and reverse iteration
// implementation. We store keys such that their versions are sorted in descending order. This makes
// forward iteration efficient, but revese iteration complicated. This tradeoff is better because
// forward iteration is more common than reverse. It returns true, if either the iterator is invalid
// or it has pushed an item into it.data list, else it returns false.
//
// This function advances the iterator.
func (it *Iterator) parseItem() bool {
mi := it.iitr
key := mi.Key()
setItem := func(item *Item) {
if it.item == nil {
it.item = item
} else {
it.data.push(item)
}
}
isInternalKey := bytes.HasPrefix(key, badgerPrefix)
// Skip badger keys.
if !it.opt.InternalAccess && isInternalKey {
mi.Next()
return false
}
// Skip any versions which are beyond the readTs.
version := y.ParseTs(key)
// Ignore everything that is above the readTs and below or at the sinceTs.
if version > it.readTs || (it.opt.SinceTs > 0 && version <= it.opt.SinceTs) {
mi.Next()
return false
}
// Skip banned keys only if it does not have badger internal prefix.
if !isInternalKey && it.txn.db.isBanned(key) != nil {
mi.Next()
return false
}
if it.opt.AllVersions {
// Return deleted or expired values also, otherwise user can't figure out
// whether the key was deleted.
item := it.newItem()
it.fill(item)
setItem(item)
mi.Next()
return true
}
// If iterating in forward direction, then just checking the last key against current key would
// be sufficient.
if !it.opt.Reverse {
if y.SameKey(it.lastKey, key) {
mi.Next()
return false
}
// Only track in forward direction.
// We should update lastKey as soon as we find a different key in our snapshot.
// Consider keys: a 5, b 7 (del), b 5. When iterating, lastKey = a.
// Then we see b 7, which is deleted. If we don't store lastKey = b, we'll then return b 5,
// which is wrong. Therefore, update lastKey here.
it.lastKey = y.SafeCopy(it.lastKey, mi.Key())
}
FILL:
// If deleted, advance and return.
vs := mi.Value()
if isDeletedOrExpired(vs.Meta, vs.ExpiresAt) {
mi.Next()
return false
}
item := it.newItem()
it.fill(item)
// fill item based on current cursor position. All Next calls have returned, so reaching here
// means no Next was called.
mi.Next() // Advance but no fill item yet.
if !it.opt.Reverse || !mi.Valid() { // Forward direction, or invalid.
setItem(item)
return true
}
// Reverse direction.
nextTs := y.ParseTs(mi.Key())
mik := y.ParseKey(mi.Key())
if nextTs <= it.readTs && bytes.Equal(mik, item.key) {
// This is a valid potential candidate.
goto FILL
}
// Ignore the next candidate. Return the current one.
setItem(item)
return true
}
func (it *Iterator) fill(item *Item) {
vs := it.iitr.Value()
item.meta = vs.Meta
item.userMeta = vs.UserMeta
item.expiresAt = vs.ExpiresAt
item.version = y.ParseTs(it.iitr.Key())
item.key = y.SafeCopy(item.key, y.ParseKey(it.iitr.Key()))
item.vptr = y.SafeCopy(item.vptr, vs.Value)
item.val = nil
if it.opt.PrefetchValues {
item.wg.Add(1)
go func() {
// FIXME we are not handling errors here.
item.prefetchValue()
item.wg.Done()
}()
}
}
func (it *Iterator) prefetch() {
prefetchSize := 2
if it.opt.PrefetchValues && it.opt.PrefetchSize > 1 {
prefetchSize = it.opt.PrefetchSize
}
i := it.iitr
var count int
it.item = nil
for i.Valid() {
if !it.parseItem() {
continue
}
count++
if count == prefetchSize {
break
}
}
}
// Seek would seek to the provided key if present. If absent, it would seek to the next
// smallest key greater than the provided key if iterating in the forward direction.
// Behavior would be reversed if iterating backwards.
func (it *Iterator) Seek(key []byte) {
if it.iitr == nil {
return
}
if len(key) > 0 {
it.txn.addReadKey(key)
}
for i := it.data.pop(); i != nil; i = it.data.pop() {
i.wg.Wait()
it.waste.push(i)
}
it.lastKey = it.lastKey[:0]
if len(key) == 0 {
key = it.opt.Prefix
}
if len(key) == 0 {
it.iitr.Rewind()
it.prefetch()
return
}
if !it.opt.Reverse {
key = y.KeyWithTs(key, it.txn.readTs)
} else {
key = y.KeyWithTs(key, 0)
}
it.iitr.Seek(key)
it.prefetch()
}
// Rewind would rewind the iterator cursor all the way to zero-th position, which would be the
// smallest key if iterating forward, and largest if iterating backward. It does not keep track of
// whether the cursor started with a Seek().
func (it *Iterator) Rewind() {
it.Seek(nil)
}