-
Notifications
You must be signed in to change notification settings - Fork 0
/
Typechecking.v
508 lines (448 loc) · 15.2 KB
/
Typechecking.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
(** * Typechecking: A Typechecker for STLC *)
(** The [has_type] relation of the STLC defines what it means for a
term to belong to a type (in some context). But it doesn't, by
itself, give us an algorithm for _checking_ whether or not a term
is well typed.
Fortunately, the rules defining [has_type] are _syntax directed_
-- that is, for every syntactic form of the language, there is
just one rule that can be used to give a type to terms of that
form. This makes it straightforward to translate the typing rules
into clauses of a typechecking _function_ that takes a term and a
context and either returns the term's type or else signals that
the term is not typable. *)
(** This short chapter constructs such a function and proves it
correct. *)
Set Warnings "-notation-overridden,-parsing".
From Coq Require Import Bool.Bool.
From PLF Require Import Maps.
From PLF Require Import Smallstep.
From PLF Require Import Stlc.
From PLF Require MoreStlc.
Module STLCTypes.
Export STLC.
(* ################################################################# *)
(** * Comparing Types *)
(** First, we need a function to compare two types for equality... *)
Locate "Bool".
Fixpoint eqb_ty (T1 T2:ty) : bool :=
match T1,T2 with
| <{ Bool }> , <{ Bool }> =>
true
| <{ T11->T12 }>, <{ T21->T22 }> =>
andb (eqb_ty T11 T21) (eqb_ty T12 T22)
| _,_ =>
false
end.
(** ... and we need to establish the usual two-way connection between
the boolean result returned by [eqb_ty] and the logical
proposition that its inputs are equal. *)
Lemma eqb_ty_refl : forall T,
eqb_ty T T = true.
Proof.
intros T. induction T; simpl.
reflexivity.
rewrite IHT1. rewrite IHT2. reflexivity. Qed.
Lemma eqb_ty__eq : forall T1 T2,
eqb_ty T1 T2 = true -> T1 = T2.
Proof with auto.
intros T1. induction T1; intros T2 Hbeq; destruct T2; inversion Hbeq.
- (* T1=Bool *)
reflexivity.
- (* T1 = T1_1->T1_2 *)
rewrite andb_true_iff in H0. inversion H0 as [Hbeq1 Hbeq2].
apply IHT1_1 in Hbeq1. apply IHT1_2 in Hbeq2. subst... Qed.
End STLCTypes.
(* ################################################################# *)
(** * The Typechecker *)
(** The typechecker works by walking over the structure of the given
term, returning either [Some T] or [None]. Each time we make a
recursive call to find out the types of the subterms, we need to
pattern-match on the results to make sure that they are not
[None]. Also, in the [app] case, we use pattern matching to
extract the left- and right-hand sides of the function's arrow
type (and fail if the type of the function is not [T11->T12]
for some [T11] and [T12]). *)
Module FirstTry.
Import STLCTypes.
Fixpoint type_check (Gamma : context) (t : tm) : option ty :=
match t with
| tm_var x =>
Gamma x
| <{\x:T2, t1}> =>
match type_check (x |-> T2 ; Gamma) t1 with
| Some T1 => Some <{T2->T1}>
| _ => None
end
| <{t1 t2}> =>
match type_check Gamma t1, type_check Gamma t2 with
| Some <{T11->T12}>, Some T2 =>
if eqb_ty T11 T2 then Some T12 else None
| _,_ => None
end
| <{true}> =>
Some <{Bool}>
| <{false}> =>
Some <{Bool}>
| <{if guard then t else f}> =>
match type_check Gamma guard with
| Some <{Bool}> =>
match type_check Gamma t, type_check Gamma f with
| Some T1, Some T2 =>
if eqb_ty T1 T2 then Some T1 else None
| _,_ => None
end
| _ => None
end
end.
End FirstTry.
(* ################################################################# *)
(** * Digression: Improving the Notation *)
(** Before we consider the properties of this algorithm, let's write
it out again in a cleaner way, using "monadic" notations in the
style of Haskell to streamline the plumbing of options. First, we
define a notation for composing two potentially failing (i.e.,
option-returning) computations: *)
Notation " x <- e1 ;; e2" := (match e1 with
| Some x => e2
| None => None
end)
(right associativity, at level 60).
(** Second, we define [return] and [fail] as synonyms for [Some] and
[None]: *)
Notation " 'return' e "
:= (Some e) (at level 60).
Notation " 'fail' "
:= None.
Module STLCChecker.
Import STLCTypes.
(** Now we can write the same type-checking function in a more
imperative-looking style using these notations. *)
Fixpoint type_check (Gamma : context) (t : tm) : option ty :=
match t with
| tm_var x =>
match Gamma x with
| Some T => return T
| None => fail
end
| <{\x:T2, t1}> =>
T1 <- type_check (x |-> T2 ; Gamma) t1 ;;
return <{T2->T1}>
| <{t1 t2}> =>
T1 <- type_check Gamma t1 ;;
T2 <- type_check Gamma t2 ;;
match T1 with
| <{T11->T12}> =>
if eqb_ty T11 T2 then return T12 else fail
| _ => fail
end
| <{true}> =>
return <{ Bool }>
| <{false}> =>
return <{ Bool }>
| <{if guard then t1 else t2}> =>
Tguard <- type_check Gamma guard ;;
T1 <- type_check Gamma t1 ;;
T2 <- type_check Gamma t2 ;;
match Tguard with
| <{ Bool }> =>
if eqb_ty T1 T2 then return T1 else fail
| _ => fail
end
end.
(* ################################################################# *)
(** * Properties *)
(** To verify that the typechecking algorithm is correct, we show that
it is _sound_ and _complete_ for the original [has_type]
relation -- that is, [type_check] and [has_type] define the same
partial function. *)
Theorem type_checking_sound : forall Gamma t T,
type_check Gamma t = Some T -> has_type Gamma t T.
Proof with eauto.
intros Gamma t. generalize dependent Gamma.
induction t; intros Gamma T Htc; inversion Htc.
- (* var *) rename s into x. destruct (Gamma x) eqn:H.
rename t into T'. inversion H0. subst. eauto. solve_by_invert.
- (* app *)
remember (type_check Gamma t1) as TO1.
destruct TO1 as [T1|]; try solve_by_invert;
destruct T1 as [|T11 T12]; try solve_by_invert;
remember (type_check Gamma t2) as TO2;
destruct TO2 as [T2|]; try solve_by_invert.
destruct (eqb_ty T11 T2) eqn: Heqb.
apply eqb_ty__eq in Heqb.
inversion H0; subst...
inversion H0.
- (* abs *)
rename s into x, t into T1.
remember (x |-> T1 ; Gamma) as G'.
remember (type_check G' t0) as TO2.
destruct TO2; try solve_by_invert.
inversion H0; subst...
- (* tru *) eauto.
- (* fls *) eauto.
- (* test *)
remember (type_check Gamma t1) as TOc.
remember (type_check Gamma t2) as TO1.
remember (type_check Gamma t3) as TO2.
destruct TOc as [Tc|]; try solve_by_invert.
destruct Tc; try solve_by_invert;
destruct TO1 as [T1|]; try solve_by_invert;
destruct TO2 as [T2|]; try solve_by_invert.
destruct (eqb_ty T1 T2) eqn:Heqb;
try solve_by_invert.
apply eqb_ty__eq in Heqb.
inversion H0. subst. subst...
Qed.
Theorem type_checking_complete : forall Gamma t T,
has_type Gamma t T -> type_check Gamma t = Some T.
Proof with auto.
intros Gamma t T Hty.
induction Hty; simpl.
- (* T_Var *) destruct (Gamma x0) eqn:H0; assumption.
- (* T_Abs *) rewrite IHHty...
- (* T_App *)
rewrite IHHty1. rewrite IHHty2.
rewrite (eqb_ty_refl T2)...
- (* T_True *) eauto.
- (* T_False *) eauto.
- (* T_If *) rewrite IHHty1. rewrite IHHty2.
rewrite IHHty3. rewrite (eqb_ty_refl T1)...
Qed.
End STLCChecker.
(* ################################################################# *)
(** * Exercises *)
(** **** Exercise: 5 stars, standard (typechecker_extensions)
In this exercise we'll extend the typechecker to deal with the
extended features discussed in chapter [MoreStlc]. Your job
is to fill in the omitted cases in the following. *)
Module TypecheckerExtensions.
(* Do not modify the following line: *)
Definition manual_grade_for_type_checking_sound : option (nat*string) := None.
(* Do not modify the following line: *)
Definition manual_grade_for_type_checking_complete : option (nat*string) := None.
Import MoreStlc.
Import STLCExtended.
Fixpoint eqb_ty (T1 T2 : ty) : bool :=
match T1,T2 with
| <{{Nat}}>, <{{Nat}}> =>
true
| <{{Unit}}>, <{{Unit}}> =>
true
| <{{T11 -> T12}}>, <{{T21 -> T22}}> =>
andb (eqb_ty T11 T21) (eqb_ty T12 T22)
| <{{T11 * T12}}>, <{{T21 * T22}}> =>
andb (eqb_ty T11 T21) (eqb_ty T12 T22)
| <{{T11 + T12}}>, <{{T21 + T22}}> =>
andb (eqb_ty T11 T21) (eqb_ty T12 T22)
| <{{List T11}}>, <{{List T21}}> =>
eqb_ty T11 T21
| _,_ =>
false
end.
Lemma eqb_ty_refl : forall T,
eqb_ty T T = true.
Proof.
intros T.
induction T; simpl; auto;
rewrite IHT1; rewrite IHT2; reflexivity. Qed.
Lemma eqb_ty__eq : forall T1 T2,
eqb_ty T1 T2 = true -> T1 = T2.
Proof.
intros T1.
induction T1; intros T2 Hbeq; destruct T2; inversion Hbeq;
try reflexivity;
try (rewrite andb_true_iff in H0; inversion H0 as [Hbeq1 Hbeq2];
apply IHT1_1 in Hbeq1; apply IHT1_2 in Hbeq2; subst; auto);
try (apply IHT1 in Hbeq; subst; auto).
Qed.
Fixpoint type_check (Gamma : context) (t : tm) : option ty :=
match t with
| tm_var x =>
match Gamma x with
| Some T => return T
| None => fail
end
| <{ \ x1 : T1, t2 }> =>
T2 <- type_check (x1 |-> T1 ; Gamma) t2 ;;
return <{{T1 -> T2}}>
| <{ t1 t2 }> =>
T1 <- type_check Gamma t1 ;;
T2 <- type_check Gamma t2 ;;
match T1 with
| <{{T11 -> T12}}> =>
if eqb_ty T11 T2 then return T12 else fail
| _ => fail
end
| tm_const _ =>
return <{{Nat}}>
| <{ succ t1 }> =>
T1 <- type_check Gamma t1 ;;
match T1 with
| <{{Nat}}> => return <{{Nat}}>
| _ => fail
end
| <{ pred t1 }> =>
T1 <- type_check Gamma t1 ;;
match T1 with
| <{{Nat}}> => return <{{Nat}}>
| _ => fail
end
| <{ t1 * t2 }> =>
T1 <- type_check Gamma t1 ;;
T2 <- type_check Gamma t2 ;;
match T1, T2 with
| <{{Nat}}>, <{{Nat}}> => return <{{Nat}}>
| _,_ => fail
end
| <{ if0 guard then t else f }> =>
Tguard <- type_check Gamma guard ;;
T1 <- type_check Gamma t ;;
T2 <- type_check Gamma f ;;
match Tguard with
| <{{Nat}}> => if eqb_ty T1 T2 then return T1 else fail
| _ => fail
end
(* Complete the following cases. *)
(* sums *)
(* FILL IN HERE *)
(* lists (the [tlcase] is given for free) *)
(* FILL IN HERE *)
| <{ case t0 of | nil => t1 | x21 :: x22 => t2 }> =>
match type_check Gamma t0 with
| Some <{{List T}}> =>
match type_check Gamma t1,
type_check (x21 |-> T ; x22 |-> <{{List T}}> ; Gamma) t2 with
| Some T1', Some T2' =>
if eqb_ty T1' T2' then Some T1' else None
| _,_ => None
end
| _ => None
end
(* unit *)
(* FILL IN HERE *)
(* pairs *)
(* FILL IN HERE *)
(* let *)
(* FILL IN HERE *)
(* fix *)
(* FILL IN HERE *)
| _ => None (* ... and delete this line when you complete the exercise. *)
end.
(** Just for fun, we'll do the soundness proof with just a bit more
automation than above, using these "mega-tactics": *)
Ltac invert_typecheck Gamma t T :=
remember (type_check Gamma t) as TO;
destruct TO as [T|];
try solve_by_invert; try (inversion H0; eauto); try (subst; eauto).
Ltac analyze T T1 T2 :=
destruct T as [T1 T2| |T1 T2|T1| |T1 T2]; try solve_by_invert.
Ltac fully_invert_typecheck Gamma t T T1 T2 :=
let TX := fresh T in
remember (type_check Gamma t) as TO;
destruct TO as [TX|]; try solve_by_invert;
destruct TX as [T1 T2| |T1 T2|T1| |T1 T2];
try solve_by_invert; try (inversion H0; eauto); try (subst; eauto).
Ltac case_equality S T :=
destruct (eqb_ty S T) eqn: Heqb;
inversion H0; apply eqb_ty__eq in Heqb; subst; subst; eauto.
Theorem type_checking_sound : forall Gamma t T,
type_check Gamma t = Some T ->
has_type Gamma t T.
Proof with eauto.
intros Gamma t. generalize dependent Gamma.
induction t; intros Gamma T Htc; inversion Htc.
- (* var *) rename s into x. destruct (Gamma x) eqn:H.
rename t into T'. inversion H0. subst. eauto. solve_by_invert.
- (* app *)
invert_typecheck Gamma t1 T1.
invert_typecheck Gamma t2 T2.
analyze T1 T11 T12.
case_equality T11 T2.
- (* abs *)
rename s into x, t into T1.
remember (x |-> T1 ; Gamma) as Gamma'.
invert_typecheck Gamma' t0 T0.
- (* const *) eauto.
- (* scc *)
rename t into t1.
fully_invert_typecheck Gamma t1 T1 T11 T12.
- (* prd *)
rename t into t1.
fully_invert_typecheck Gamma t1 T1 T11 T12.
- (* mlt *)
invert_typecheck Gamma t1 T1.
invert_typecheck Gamma t2 T2.
analyze T1 T11 T12; analyze T2 T21 T22.
inversion H0. subst. eauto.
- (* test0 *)
invert_typecheck Gamma t1 T1.
invert_typecheck Gamma t2 T2.
invert_typecheck Gamma t3 T3.
destruct T1; try solve_by_invert.
case_equality T2 T3.
(* FILL IN HERE *)
- (* tlcase *)
rename s into x31, s0 into x32.
fully_invert_typecheck Gamma t1 T1 T11 T12.
invert_typecheck Gamma t2 T2.
remember (x31 |-> T11 ; x32 |-> <{{List T11}}> ; Gamma) as Gamma'2.
invert_typecheck Gamma'2 t3 T3.
case_equality T2 T3.
(* FILL IN HERE *)
Qed.
Theorem type_checking_complete : forall Gamma t T,
has_type Gamma t T ->
type_check Gamma t = Some T.
Proof.
intros Gamma t T Hty.
induction Hty; simpl;
try (rewrite IHHty);
try (rewrite IHHty1);
try (rewrite IHHty2);
try (rewrite IHHty3);
try (rewrite (eqb_ty_refl T0));
try (rewrite (eqb_ty_refl T1));
try (rewrite (eqb_ty_refl T2));
try (rewrite (eqb_ty_refl T3));
eauto.
- destruct (Gamma x0); [assumption| solve_by_invert].
Admitted. (* ... and delete this line *)
(*
Qed. (* ... and uncomment this one *)
*)
End TypecheckerExtensions.
(** [] *)
(** **** Exercise: 5 stars, standard, optional (stlc_step_function)
Above, we showed how to write a typechecking function and prove it
sound and complete for the typing relation. Do the same for the
operational semantics -- i.e., write a _function_ [stepf] of type
[tm -> option tm] and prove that it is sound and complete with
respect to [step] from chapter [MoreStlc]. *)
Module StepFunction.
Import MoreStlc.
Import STLCExtended.
(* Operational semantics as a Coq function. *)
Fixpoint stepf (t : tm) : option tm
(* REPLACE THIS LINE WITH ":= _your_definition_ ." *). Admitted.
(* Soundness of [stepf]. *)
Theorem sound_stepf : forall t t',
stepf t = Some t' -> t --> t'.
Proof. (* FILL IN HERE *) Admitted.
(* Completeness of [stepf]. *)
Theorem complete_stepf : forall t t',
t --> t' -> stepf t = Some t'.
Proof. (* FILL IN HERE *) Admitted.
End StepFunction.
(** [] *)
(** **** Exercise: 5 stars, standard, optional (stlc_impl)
Using the Imp parser described in the [ImpParser] chapter
of _Logical Foundations_ as a guide, build a parser for extended
STLC programs. Combine it with the typechecking and stepping
functions from the above exercises to yield a complete typechecker
and interpreter for this language. *)
Module StlcImpl.
Import StepFunction.
(* FILL IN HERE *)
End StlcImpl.
(** [] *)
(* 2020-09-09 21:08 *)