-
Notifications
You must be signed in to change notification settings - Fork 2
/
lecture4.tex
1394 lines (1302 loc) · 47.5 KB
/
lecture4.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
%% -*- coding:utf-8 -*-
\chapter{Tensor product. Structure of finite K-algebras}
This is a digression on commutative algebra. We introduce and study
the notion of tensor product of modules over a ring. We prove a
structure theorem for finite algebras over a field (a version of the
well-known "Chinese remainder theorem").
\section{Definition of tensor product}
\subsection{Summary for previous lectures}
We considered finite \mynameref{def:fextension1} $L$ i.e
$\left[L:K\right] < \infty$. We also saw that if
$L$ is generated by a finite number of \mynameref{def:degsepelem}s
$\alpha_1, \dots, \alpha_r$ then the number of
\mynameref{def:homomorphism}s over $K$ from $L$ to $\bar{K}$ denoted by
$\left|Hom_K\left(L, \bar{K}\right)\right|$ is equal to
$\left[L:K\right]$. In general
\[
\left[L:K\right]_{sep} =
\left|Hom_K\left(L, \bar{K}\right)\right| \le
\left[L:K\right].
\]
For $L = K\left(\alpha\right)$ it is clear because the number of
homomorphisms is equal to the number of roots of the
\mynameref{def:minpolynomial} $P_{min}\left(\alpha, K\right)$. In
general one can use induction and multiplicativity of the degree
$\left[L:K\right]$ and number of homomorphisms (see theorem
\mynameref{thm:lec3_3}). Thus separable extension was exactly an
extension which had the right number of homomorphisms into the
algebraic closure.
Our next goal is to characterize the separability in the terms of
tensor product.
\subsection{Tensor product}
\begin{definition}[Tensor product]
Let $A$ is a ring, $N$, $M$ are $A$-\mynameref{def:module}s. The
tensor product $M \otimes_A N$
is another $A$-\mynameref{def:module} together with an
$A$-bilinear map $\phi: M \times N \to M \otimes_A N$ which has
``\mynameref{def:universalproperty}'' defined below
\label{def:tensorproduct}
\end{definition}
\begin{definition}[Universal property]
$A$-bilinear map $\phi: M \times N \to M \otimes_A N$ has
``universal property'' if
$\forall P$ - $A$-\mynameref{def:module} and
for $A$-bilinear $f: M \times N \to P$ (
i.e.
\(
\forall m, f_m:
N \xrightarrow[n \to f(m,n)]{} P
\)
and
\(
\forall n, f_n:
M \xrightarrow[m \to f(m,n)]{} P
\)
are \mynameref{def:homomorphism}s of $A$-modules
), then
$\exists! \tilde{f}$ - homomorphism of $A$-modules such that
$f = \tilde{f} \circ \phi$
\footnote{
That means that we have a \mynameref{def:commutativediagram} there
}
\begin{tikzpicture}[description/.style={fill=white,inner sep=2pt}]
\matrix (m) [matrix of math nodes, row sep=3em,
column sep=2.5em, text height=1.5ex, text depth=0.25ex]
{ M \times N & & P \\
& M \otimes_A N & \\ };
%\draw[double,double distance=5pt] (m-1-1) – (m-1-3);
\path[->]
(m-1-1) edge node[auto] {$ f $} (m-1-3)
edge node[auto] {$ \phi $} (m-2-2)
(m-2-2) edge node[auto] {$ \tilde{f} $} (m-1-3);
\end{tikzpicture}
\label{def:universalproperty}
\end{definition}
The property characterize the pair
$\left(\phi, M \otimes N\right)$.
Really if have another pair
$\left(\overline{\phi}, \overline{M \otimes N}\right)$
like this one then by definition we have mutually inverse
homomorphisms of $A$-modules between them
\begin{lemma}[About uniqueness of object defined by universal
property]
\footnote{
It is out of the lecture video and can be considered as an
explanation for the claim about having mutually inverse
homomorphisms of $A$-modules. The proof was taken from
\cite{bib:KeithConradTensorProduct1}.
}
If we have two objects $\left(\phi, M \otimes N\right)$
and $\left(\overline{\phi},\overline{M \otimes N}\right)$
which both satisfies \mynameref{def:universalproperty} than there is
an unique \mynameref{def:isomorphism} between them:
\[
\left(\phi, M \otimes N\right) \cong \left(\overline{\phi},
\overline{M \otimes N}\right)
\]
\begin{proof}
Let $P = \overline{M \otimes N}$ and $f =
\overline{\phi}$. In
the case we can consider the following diagram
\begin{tikzpicture}[description/.style={fill=white,inner sep=2pt}]
\matrix (m) [matrix of math nodes, row sep=3em,
column sep=2.5em, text height=1.5ex, text depth=0.25ex]
{ & & M \otimes_A N & \\
M \times N & & \overline{M \otimes_A N} \\
& & M \otimes_A N & \\ };
%\draw[double,double distance=5pt] (m-1-1) – (m-1-3);
\path[->]
(m-2-1) edge node[auto] {$ \phi $} (m-1-3)
(m-1-3) edge node[auto] {$ g = \tilde{\overline{\phi}} $} (m-2-3)
(m-2-1) edge node[auto] {$ \overline{\phi} $} (m-2-3)
(m-2-1) edge node[auto] {$ \phi $} (m-3-3)
(m-2-3) edge node[auto] {$ \bar{g} = \tilde{\phi} $} (m-3-3);
\end{tikzpicture}
As soon as we fixed $\overline{ M \otimes_A N}$
we 2 unique homomorphisms (which are defined by the fixed
$\overline{ M \otimes_A N}$) -
$g : M \otimes_A N \to \overline{ M \otimes_A N}$
and
$\bar{g} : \overline{M \otimes_A N} \to M \otimes_A N$.
Both $g$ and $\bar{g}$ are linear and, as mentioned above, the pair is
unique (if we fix $g$ we will have only one $\bar{g}$ that corresponds
to $g$). The composition $g \circ \bar{g}$ maps $M \otimes_A N$ to
itself. I.e. $\forall x \in M \times N$ we have
$\bar{g}\left(g\left(\phi\left(x\right)\right)\right) =
\phi\left(x\right)$. If $y = \phi\left(x\right)$ then
$\bar{g}\left(g\left(y\right)\right) = y$. The last equation holds
$\forall y \in Im\left(\phi\right)$ i.e. $\forall y \in M \otimes_A
N$. Therefore $\bar{g} = g^{-1}$.
\footnote {
Another explanation is the following: thus if we fix $g$ and choose
$\bar{g} = g^{-1}$ we will get $g \circ \bar{g} = id_{M \otimes_A
N}$ that satisfied all requirements. The choice is final because
we don't have a possibility to choose any other $\bar{g}$ (it should
be unique).
}
Thus we have an
\mynameref{def:isomorphism} and the isomorphism is unique as soon as the
function $g$ is unique due the \mynameref{def:universalproperty}.
We just prove an isomorphism existence between
$M \otimes N$ and $\overline{M \otimes N}$ but the tensor product is
characterized not only by the module $M \otimes N$
but also a bilinear map $\phi$. Let $P = \overline{M \otimes N}$ thus
we can get that $\bar{\phi} = \tilde{\bar{\phi}} \circ \phi$ is
determined by the unique
relation $\phi \to \bar{\phi}$ as soon as
$\tilde{\bar{\phi}}$ is unique.
Analogues one can get the unique relation
$\bar{\phi} \to \phi$.
\end{proof}
\label{lem:universalpropertyuniqueness}
\end{lemma}
The uniqueness does not mean existence and we should proof that such
object exists.
\begin{lemma}[About tensor product existence]
Tensor product defined via \mynameref{def:universalproperty} exists
\begin{proof}
Lets consider $\mathcal{E}$ the maps (functions) from
$M \times N$ to $A$ as sets which are $0$ almost everywhere
(i.e. outside of a finite set). For example we can consider delta
functions:
\[
\delta_{m,n} : M \times N \to A
\]
such that
\begin{eqnarray}
\delta_{m,n}(m,n) = 1,
\nonumber \\
\delta_{m,n}(m',n') = 0 \mbox{ if } (m,n) \ne (m',n')
\nonumber
\end{eqnarray}
Then $\mathcal{E}$ is a A-\mynameref{def:freemodule} with basis
$\delta_{m,n}$. Thus we have a map of sets $M \times N \to
\mathcal{E}$ such that $(m,n) \to \delta_{m,n}$ which is not bilinear
but we can make it bilinear by means of changing $\mathcal{E}$.
Let $\mathcal{F} \subset \mathcal{E}$ a submodule generated by
$\delta_{m+m',n} - \delta_{m,n} - \delta_{m',n}$,
$\delta_{m,n+n'} - \delta_{m,n} - \delta_{m,n'}$,
$\delta_{am,n} - a\delta_{m,n}$,
$\delta_{m,an} - a\delta_{m,n}$.
\footnote{
The basis is chosen to be a bilinear $\mod \mathcal{F}$, for instance
$\delta_{m+m',n} = \delta_{m,n} + \delta_{m',n} \mod \mathcal{F}$
}
It can be shown that $M \times N \to \mathcal{E}/\mathcal{F}$ is
bilinear
\footnote{
Follows from the basis choice
}
and has the desired \mynameref{def:universalproperty}.
Really lets we have the following bilinear map:
$f: M \times N \to P$. Then we can consider the following linear
map (\mynameref{def:homomorphism})
$f': \mathcal{E} \to P$ that sends $\delta_{m,n}$ to
$f(n,m)$. Using the fact that $f$ is bilinear we can get
\begin{eqnarray}
f'(\delta_{m+m',n}) =
f(m+m', n) = f(m, n) + f(m', n) =
\nonumber \\
=
f'(\delta_{m,n}) + f'(\delta_{m',n}).
\nonumber
\end{eqnarray}
With the same approach one can get the following relations
\begin{eqnarray}
f'(\delta_{m,n+n'}) = f'(\delta_{m,n}) + f'(\delta_{m,n'}),
\nonumber \\
f'(\delta_{am,n}) = a f'(\delta_{m,n}),
\nonumber \\
f'(\delta_{m,an}) = a f'(\delta_{m,n})
\nonumber
\end{eqnarray}
with the $f'$ linearity we have
\begin{eqnarray}
f'(\delta_{m+m',n}) = f'(\delta_{m,n} + \delta_{m',n}),
\nonumber \\
f'(\delta_{m,n+n'}) = f'(\delta_{m,n} + \delta_{m,n'}),
\nonumber \\
f'(\delta_{am,n}) = f'(a \delta_{m,n}),
\nonumber \\
f'(\delta_{m,an}) = f'(a \delta_{m,n})
\nonumber
\end{eqnarray}
The kernel $\ker f' = \mathcal{F}$ thus if we want to have a
homomorphism to $P$ we have to replace $\mathcal{E}$ with
$\mathcal{E}/\mathcal{F}$ that is also denoted by
$M \otimes_A N$. In the case we will replace $f'$ with
$\tilde{f}\left(\delta_{m,n} \mod \mathcal{F}\right) = f(m,n)$. As
soon as the images for the basis is fixed the mapping is unique.
\end{proof}
\label{lem:tensorproductexistence}
\end{lemma}
We will denote $\phi\left(m,n\right) = \delta_{m,n} \mod \mathcal{F}$ as
$m \otimes n$. I.e our tensor product can be considered as the
$\left(\otimes, M \otimes_A N\right)$ pair.
\begin{remark}
Wrong idea is to define $M \otimes_A N$
as a set of $m \otimes n$. I.e.
$M \otimes_A N \neq \{m \otimes n\}$. The $M \otimes_A N$ is
generated by $m \otimes n$ i.e.
$\forall x \in M \otimes_A N$ we have
$x = \sum_{i = 1}^k m_i \otimes n_i$ i.e. each element is a finite
sum of $m \otimes n$ and I cannot reduce these further
\footnote{
i.e. $\exists x \in M \otimes_A N$ such that
$\exists! m \in M, n \in N: x = m \otimes n$ but
$\exists m_1, \dots, m_k \in M, n_1, \dots, n_k \in N :
x = \sum_{i = 1}^k m_i \otimes n_i$
}.
\end{remark}
\section{Tensor product of modules}
\subsection{Advantages of the universal property}
Now, you can ask why haven't I just defined the tensor product by
this construction? Why am I talking of this universal property?
And the answer is because it is easier to prove things this way.
So advantages of the universal property is as follows: the proofs
become easy.
\subsection{Several examples of universal property usage}
\begin{example}[Commutativity proof]
We want to prove that
\[
M \otimes_A N \cong N \otimes_A M
\]
We have the following bilinear map:
$M \times N \to N \otimes_A M$ for which the pair
$(m,n)$ is mapped to $n \otimes m$. Thus from
\mynameref{def:universalproperty} we have that there is a linear map
(homomorphism)
$\alpha: M \otimes_A N \to N \otimes_A M$:
\begin{tikzpicture}[description/.style={fill=white,inner sep=2pt}]
\matrix (m) [matrix of math nodes, row sep=3em,
column sep=2.5em, text height=1.5ex, text depth=0.25ex]
{ M \times N & & N \otimes_A M \\
& M \otimes_A N & \\ };
%\draw[double,double distance=5pt] (m-1-1) – (m-1-3);
\path[->]
(m-1-1) edge node[auto] {$ (m,n) \to n \otimes m $} (m-1-3)
(m-1-1) edge node[description] {$ (m,n) \to m \otimes n $} (m-2-2)
(m-2-2) edge node[description] {$ \alpha $} (m-1-3);
\end{tikzpicture}
With the same
construction we can also get the inverse map $a^{-1}$ that sends
$N \otimes_A M$ to $M \otimes_A N$:
\begin{tikzpicture}[description/.style={fill=white,inner sep=2pt}]
\matrix (m) [matrix of math nodes, row sep=3em,
column sep=2.5em, text height=1.5ex, text depth=0.25ex]
{ M \times N & & M \otimes_A N \\
& N \otimes_A M & \\ };
%\draw[double,double distance=5pt] (m-1-1) – (m-1-3);
\path[->]
(m-1-1) edge node[auto] {$ (m,n) \to m \otimes n $} (m-1-3)
(m-1-1) edge node[description] {$ (m,n) \to n \otimes m $} (m-2-2)
(m-2-2) edge node[description] {$ \alpha^{-1} $} (m-1-3);
\end{tikzpicture}
\end{example}
Also
\begin{corollary}
\[
A \otimes_A M \cong M
\]
\begin{proof}
For the proof
\footnote{
The proof is missed in the lectures
}
lets look at $A$.
Really $A$ can be considered as $A$-module because all
requirements from definition \ref{def:module} are satisfied. The
following diagrams shows that there exist 2 homomorphisms:
$\alpha: A \otimes_A M \to M$ and
$\alpha^{-1}: M \to A \otimes_A M$ as result there is a homomorphism
$A \otimes_A M \cong M$:
\begin{tikzpicture}[description/.style={fill=white,inner sep=2pt}]
\matrix (m) [matrix of math nodes, row sep=3em,
column sep=2.5em, text height=1.5ex, text depth=0.25ex]
{ A \times M & & M \\
& A \otimes_A M & \\ };
%\draw[double,double distance=5pt] (m-1-1) – (m-1-3);
\path[->]
(m-1-1) edge node[auto] {$ (a,m) \to a \cdot m $} (m-1-3)
(m-1-1) edge node[description] {$ (a,m) \to a \otimes_A m $} (m-2-2)
(m-2-2) edge node[description] {$ \alpha $} (m-1-3);
\end{tikzpicture}
\begin{tikzpicture}[description/.style={fill=white,inner sep=2pt}]
\matrix (m) [matrix of math nodes, row sep=3em,
column sep=2.5em, text height=1.5ex, text depth=0.25ex]
{ A \times M & & A \otimes_A M \\
& M & \\ };
%\draw[double,double distance=5pt] (m-1-1) – (m-1-3);
\path[->]
(m-1-1) edge node[auto] {$ (a,m) \to a \otimes_A m $} (m-1-3)
(m-1-1) edge node[description] {$ (a,m) \to a \cdot m $} (m-2-2)
(m-2-2) edge node[description] {$ \alpha^{-1} $} (m-1-3);
\end{tikzpicture}
In the diagrams $m \in M$, as usual, and $a \in A$.
\end{proof}
\end{corollary}
If we have that $M$ is generated by $e_1, e_2, \dots$ and
$N$ is generated by $\epsilon_1, \epsilon_2, \dots$ than
$M \otimes_A N$ is generated by pairs $e_i \otimes \epsilon_j$. It's
obvious.
More complex fact is the following
\begin{proposition}
Let $M$ and $N$ are \mynameref{def:freemodule}s
with corresponding basises $e_1, e_2, \dots, e_n$ and
$\epsilon_1, \epsilon_2, \dots, \epsilon_m$ than
$M \otimes_A N$ is also free module with basis $e_i \otimes
\epsilon_j$ where $1 \le i \le n$ and
$1 \le j \le m$.
\begin{proof}
Lets define
$f_{i_0,j_0}: M \times N \to A$ as a map that sends
$\left(\sum a_i e_i, \sum b_j \epsilon_j\right)$ to
$a_{i_0} b_{j_0}$. It's bilinear
\footnote{
for example
$\left(\sum (a_i + a_i') e_i, \sum b_j \epsilon_j\right)$ is
sent to $(a_{j_0} + a_{j_0}') b_{j_0}$.
}
so it factors through the tensor product
$\tilde{f}_{i_0, j_0} : M \otimes_A N \to A$. The map
$\tilde{f}_{i_0, j_0}$ sends $e_{i_0} \otimes \epsilon_{j_0}$ to 1
and all others to 0.
\footnote{
Because $f_{i_0, j_0} = \tilde{f}_{i_0, j_0} \phi$ i.e.
\begin{eqnarray}
a_{i_0} b_{j_0} =
f_{i_0,j_0}\left(\sum a_i e_i, \sum b_j\epsilon_j\right) =
\nonumber \\
= \tilde{f}_{i_0,j_0}\left(
\phi\left(\sum a_i e_i, \sum b_j\epsilon_j\right)\right) =
\nonumber \\
=
\tilde{f}_{i_0,j_0}\left(\sum a_i e_i \otimes \sum b_j
\epsilon_j\right) =
\sum_{i,j} a_i b_j \tilde{f}_{i_0,j_0}(e_i \otimes \epsilon_j).
\nonumber
\end{eqnarray}
}
So if
\[
\sum \alpha_{ij} e_i \otimes \epsilon_j = 0
\]
then applying $\tilde{f}_{i_0, j_0}$ for all indices one can get
that $\forall i,j: \alpha_{ij} = 0$.
\footnote{
because $\tilde{f}$ should be linear.
}
\end{proof}
\label{prop:lec4_1}
\end{proposition}
In particular for the \mynameref{def:vectorspace} the tensor product is
defined in the same way (as just proved in the proposition
\ref{prop:lec4_1}): the tensor product of 2 vector spaces with
basises $e_1, e_2, \dots, e_n$ and
$\epsilon_1, \epsilon_2, \dots, \epsilon_m$ is another vector space
with the following basis $e_i \otimes \epsilon_j$ i.e. the definition
does not take into consideration the \mynameref{def:universalproperty}.
\begin{proposition}[Associative]
\[
\left(M_1 \otimes_A M_2\right) \otimes_A M_3
\cong
M_1 \otimes_A \left(M_2 \otimes_A M_3\right)
\]
\begin{proof}
There is just a scratch of the proof.
Introduce
$M_1 \otimes_A M_2 \otimes_A M_3$
as a universal object for 3-linear maps and show that 2 considered
parts are isomorphic each other.
\end{proof}
\label{prop:lec4_Associative}
\end{proposition}
\section{Base change}
Let $A$ is a \mynameref{def:ring} and $B$ is $A$-algebra. Let also $M$
is an $A$-\mynameref{def:module} and $N$ is $B$-module.
I can of course make $N$ into $A$-module (just forgetting the
additional $A$-algebra structure). But we can also make $B$-module on
$M$ (that is not a trivial thing) by considering $B \otimes_A M$
\footnote{
In other words we can make a $B$-module from $A$-module $M$
}
.
We can introduce $B$-module structure on $B \otimes_A M$ by
\footnote{
I.e. we introduced $B$-algebra operations for objects from
$B \otimes_A M$. See also definition \ref{def:kalgebra}.
}
\[
b \cdot \left(b' \otimes m \right) = \left( b \cdot b' \right) \otimes m
\]
\begin{example}[The complexification of a real vector space]
We can ``make'' $\mathbb{R}^{2n}$ from $\mathbb{C}^n$ by forgetting
the complex structure.
\footnote{
In the case we have ring $A = \mathbb{R}$ and $B = \mathbb{C}$ -
$A$ algebra. $A$ - module is the following vector space
$M = \mathbb{R}^{n}$ and $B$ - module is $N = \mathbb{C}^n$.
}
The $\mathbb{C}^n$ has the following basis $e_1, \dots, e_n$.
The $\mathbb{R}^{2n}$ has the following one
$e_1, \dots, e_n, i e_1, \dots, i e_n$. Now we forgot about
multiplication rules for $i = \sqrt{-1}$ and denote $i e_i$ as
$v_i$. In the case the basis for $\mathbb{R}^{2n}$ is the following
one: $e_1, \dots, e_n, v_1, \dots, v_n$.
But we can also do the following constructions
\[
\mathbb{R}^n \rightarrow
\mathbb{C}^n = \mathbb{C} \otimes \mathbb{R}^n \rightarrow
\mathbb{R}^{2n}
\]
for the $\mathbb{C}^n$ basis we have
$1_{\mathbb{C}} \otimes e_1, \dots, 1_{\mathbb{C}} \otimes e_n$ and
for
$\mathbb{R}^{2n}$ -
$1 \otimes e_1, \dots, 1 \otimes e_n, i \otimes e_1, \dots, i
\otimes e_n$.
\footnote{
some additional clarification:
$\forall x \in \mathbb{C} \otimes \mathbb{R}^n$ we have
\[
x = \sum_{i=1}^n c_i \otimes r_i e_i =
\sum_{i=1}^n c_i r_i 1_{\mathbb{C}} \otimes e_i =
\sum_{i=1}^n c_i' 1_{\mathbb{C}} \otimes e_i,
\]
where $c_i,c_i'=c_i r_i \in \mathbb{C}, r_i \in \mathbb{R}$. Thus
we just got $\mathbb{C}^n$.
From other side we can write $c_i$
as follows: $c_i = a_i + i b_i$, where $a_i, b_i \in \mathbb{R}$.
Therefore
\[
x = \sum_{i=1}^n a_i r_i 1 \otimes e_i + \sum_{i=1}^n b_i r_i i \otimes e_i.
\]
I.e. $x \in \mathbb{R}^{2n}$ and the basis in $\mathbb{R}^{2n}$ is
formed by $1 \otimes e_1, \dots, 1 \otimes e_n, i \otimes e_1,
\dots, i \otimes e_n$.
}
\end{example}
\begin{proposition}
In general we have the following. If $M$ - free $A$ - module with
basis $e_1, \dots, e_n$ then $B \otimes_A M$ is a free $B$ module with
basis $1_B \otimes e_1, \dots, 1_B \otimes e_n$.
\label{prop:lec4_Addon}
\begin{proof}
The proof is the same as at proposition \ref{prop:lec4_1}. Again we
construct certain bilinear maps and say that those factor over the
tensor product and this implies that certain families are linearly
independent.
Really lets define bilinear map $f_{i_0}: B \times M \to A$ such that
\[
f_{i_0}\left(b, \sum_{i=1}^n m_i e_i\right) = b m_{i_0} e_{i_0}
\]
so there exists a linear map $\tilde{f}_{i_0}$ (homomorphism) such
that $f_{i_0} = \tilde{f}_{i_0} \phi$ or
\begin{eqnarray}
f_{i_0}\left(b, \sum_{i=1}^n m_i e_i\right) =
\tilde{f}_{i_0} \left(
\phi\left(b, \sum_{i=1}^n m_i e_i\right)
\right)
\nonumber \\
=
\tilde{f}_{i_0}\left(b \otimes \sum_{i=1}^n m_i e_i\right) =
b \tilde{f}_{i_0}\left(1_B \otimes \sum_{i=1}^n m_i e_i \right) =
b m_{i_0}
\nonumber
\end{eqnarray}
i.e. it sends $1_B \otimes e_{i_0}$ to 1 and all others $1_B \otimes
e_i$ to 0.
Thus the following sum $\sum \alpha_i 1_B \otimes e_i$ is equal to 0
if and only if $\alpha_i = 0$ i.e. $\alpha_i 1_B \otimes e_i$ forms a basis.
\end{proof}
\end{proposition}
\begin{remark}
We have the following maps.
\begin{itemize}
\label{item:lec4_maps}
\item For A - modules:
$\alpha: M \xrightarrow[m \to 1_B \otimes_A m]{} B \otimes_A M$
which makes a $B$-module from an $A$-module.
\item For B - modules:
$\mu: B \otimes_A N \xrightarrow[b \otimes n \to b n]{} N$.
\end{itemize}
\label{rem:lec4_maps}
\end{remark}
\begin{theorem}[Base-change]
Let $A$ is a \mynameref{def:ring} and $B$ is $A$-algebra. Let also $M$
is an $A$-\mynameref{def:module} and $N$ is $B$-module.
\[
Hom_A\left(M, N\right)
\leftrightarrow
Hom_B\left(B \otimes_A M, N\right)
\]
I.e. the homomorphisms
\footnote{
$A$-homomorphisms between $A$ modules $Hom_A\left(M, N\right)$ are the
same as $B$-homomorphisms between $B$ modules
$Hom_B\left(B \otimes_A M, N\right)$.
}
are the same or in other words the
corresponding groups of homomorphisms are isomorphic:
\[
Hom_A\left(M, N\right)
\cong
Hom_B\left(B \otimes_A M, N\right)
\]
\label{thm:basechange}
\begin{proof}
First of all we have
\footnote{
One homomorphism from $Hom_B\left(B \otimes_A M, N\right)$
}
\mynameref{def:homomorphism} $f: B \otimes_A M \to N$. We also have
the following map (see remark \ref{rem:lec4_maps}):
$\alpha: M \to B \otimes_A M$.
Thus $f \cdot \alpha: M \to N$ i.e.
we can set the following relation
\[
\hat{f} : Hom_B\left(B \otimes_A M, N\right)
\to Hom_A\left(M, N\right)
\]
such that $\hat{f}\left(f\right) = f \alpha$.
In other direction we have $g: M \to N$ thus
$id_B \otimes g: B \otimes_A M \to B \otimes_A N$ but
( see remark \ref{rem:lec4_maps}) we have
$\mu: B \otimes_A N \to N$ i.e. we have the following relation
\[
\hat{g} : Hom_A\left(M, N\right) \to
Hom_B\left(B \otimes_A M, N\right)
\]
such that
\[
\hat g(g) = \mu \cdot (id_B \otimes g).
\]
And we can check that those maps ($\hat{f}$ and $\hat{g}$) are
mutually inverse. For the proof
\footnote{
It's missed in the lectures
}
the fact consider the following diagram
\begin{tikzpicture}[description/.style={fill=white,inner sep=2pt}]
\matrix (m) [matrix of math nodes, row sep=3em,
column sep=2.5em, text height=1.5ex, text depth=0.25ex]
{ M & & N \\
& B \otimes_A M & & B \otimes_A N \\ };
%\draw[double,double distance=5pt] (m-1-1) – (m-1-3);
\path[->]
([yshift=1ex]m-1-1.east) edge node[description] {$ f \alpha $}
([yshift=1ex]m-1-3.west);
\path[->]
([yshift=-1ex]m-1-1.east) edge node[description] {$ g $}
([yshift=-1ex]m-1-3.west);
\path[->]
(m-1-1) edge node[description] {$ \alpha $} (m-2-2)
(m-2-2) edge node[description] {$ f $} (m-1-3)
(m-2-2) edge node[description] {$ id_B \otimes g $}
(m-2-4)
(m-2-4) edge node[description] {$ \mu $} (m-1-3)
;
\end{tikzpicture}
One can conclude, as soon as the diagram commutes
\begin{tikzpicture}[description/.style={fill=white,inner sep=2pt}]
\matrix (m) [matrix of math nodes, row sep=3em,
column sep=2.5em, text height=1.5ex, text depth=0.25ex]
{ M & & N \\
& B \otimes_A M & & B \otimes_A N \\ };
%\draw[double,double distance=5pt] (m-1-1) – (m-1-3);
\path[->]
([yshift=-1ex]m-1-1.east) edge node[description] {$ g $}
([yshift=-1ex]m-1-3.west);
\path[->]
(m-1-1) edge node[description] {$ \alpha $} (m-2-2)
(m-2-2) edge node[description] {$ id_B \otimes g $}
(m-2-4)
(m-2-4) edge node[description] {$ \mu $} (m-1-3)
;
\end{tikzpicture}
\[
\hat{f}\left(\hat{g}\left(g\right)\right) =
\mu \cdot (id_B \otimes g) \cdot \alpha = g.
\]
I. e. $\hat{f}\circ\hat{g} = id$
\footnote {
Operation $\circ$ is defined as follows $(\hat{a} \circ \hat{b})(x) =
\hat{a}(\hat{b}(x))$ where $\hat{a}, \hat{b}$ are 2 maps acting
on a set $X$ and $x \in X$.
}
or in other words $\hat{f}$ and
$\hat{g}$ are mutually inverse.
\end{proof}
\end{theorem}
\section{Examples. Tensor product of algebras}
\begin{proposition}
If $I \subset A$ - is an \mynameref{def:ideal} so my $B$ - $A$ algebra
will be $B = A/I$ then
\[
A/I \otimes_A M \cong M/IM
\]
where $IM$ is a sub-module of $M$.
\label{prop:lec4_prop2}
\begin{proof}
We have map $\alpha: M \to B \otimes_A M = A/I \otimes_A M$
(see remark \ref{rem:lec4_maps})
which sends $m$ to $\bar{1} \otimes m$.
\footnote{
$\bar{1} = 1_A + I$
}
The map sends $IM$ to $0$
because
$\forall i \in I, m \in M : im \to \bar{1} \otimes im = \bar{i} \otimes m$
because the tensor product is over $A$ and everything is $A$
linear and as result $\bar{1} \otimes im = \bar{i} \otimes m$,
but $\bar{i} \otimes m = \bar{0} \otimes m = 0$.
\footnote{
because
$\bar{i} = 0 \mod I$
}
Thus $\alpha$ sends $IM$ to 0. So $\alpha$ induces
$\bar{\alpha}: M/IM \to A/I \otimes_A M$ such that
$\bar{\alpha}\left(\bar{m}\right) = \bar{1} \otimes m$.
For other direction we apply \mynameref{thm:basechange}. The
following map (projection) of $A$-modules
\[
M \xrightarrow{m \to \bar{m}} M/IM
\]
gives us the following map of $B$-modules
\footnote{
the \mynameref{thm:basechange} says that homomorphism of
$A$-modules $M \to N$ is isomorphic to homomorphism of $B$
modules $B\otimes_A M \to N$. Using $N = M/IM$ we can get that
$B\otimes_A M \to M/IM$ is isomorphic (i.e. the same) to
$M \to M/IM$. We also can get the same result just ignore $B$:
$B \otimes_A M \to M \to M/IM$.
}
\[
\bar{\beta}: B \otimes_A M \to M/IM
\]
i.e.
\[
\bar{\beta}: A/I \otimes_A M \to M/IM
\]
that sends $\bar{a} \otimes m$ to $\bar{am}$
Ones check again that this inverse to $\bar{\alpha}$.
\footnote{
For example
\(
\bar{\beta}\left(\bar{\alpha}\left(\bar{m}\right)\right) =
\bar{\beta}\left(\bar{1} \otimes m\right) = \overline{1 \cdot m} = \bar{m}
\)
}
\end{proof}
\end{proposition}
Several examples:
\begin{example}
Let $\mathbb{Z}/2\mathbb{Z} \otimes_\mathbb{Z}
\mathbb{Z}/3\mathbb{Z}$ what will we obtain?
\[
\mathbb{Z}/2\mathbb{Z} \otimes_\mathbb{Z} \cong
^{\mathbb{Z}/3\mathbb{Z}}/_{(2) \cdot \mathbb{Z}/3\mathbb{Z}}
\]
but 2 is invertible: $2^{-1} = -1 \mod 3$
\footnote{
I.e. there exist an invertible element $2^{-1} \in
\mathbb{Z}/3\mathbb{Z} = \mathbb{F}_3$ therefore
$1_{\mathbb{F}_3} \in 2 \cdot \mathbb{F}_3$ or
$2 \cdot \mathbb{F}_3 = \mathbb{F}_3$ and as result
$(2) \cdot \mathbb{F}_3 = \mathbb{F}_3$. I.e. $(2)$ is not a
\mynameref{def:properideal} in $\mathbb{F}_3$ because it is equal
to $\mathbb{F}_3$.
}
thus
$(2)\mathbb{Z}/3\mathbb{Z} =\mathbb{Z}/3\mathbb{Z}$ and as result
\[
\mathbb{Z}/2\mathbb{Z} \otimes_\mathbb{Z} \cong
^{\mathbb{Z}/3\mathbb{Z}}/_{ \mathbb{Z}/3\mathbb{Z}} = 0
\]
\end{example}
\begin{example}
Another obvious example
\footnote {
$B \otimes_A A\left[X\right]$ has the following $B$-basis:
$\{1_B \otimes X^i\}$ thus
$\forall b \in B \otimes_A A\left[X\right]$ we can get
\[
b = \sum b_i \cdot 1_B \otimes X^i
\]
and there is an obvious isomorphism
\[
f: B \otimes_A A\left[X\right]
\xrightarrow[b \to \sum b_i X^i]{}
B\left[X\right]
\]
}
\[
B \otimes_A A\left[X\right] \cong B\left[X\right]
\]
and more interesting one
\[
B \otimes_A A\left[X\right]/(P) \cong B\left[X\right]/(P),
\]
there $(P)$ becomes an ideal generated by $P$ in
$B\left[X\right]$.
\label{ex:lec4_1}
\end{example}
\subsection{Tensor product of A-algebras}
Let $B, C$ are $A$-algebras. The following maps form an algebra
structure on $A$:
\[
\alpha: A \to B
\]
\[
\beta: A \to C
\]
New $A$-algebra $B \otimes_A C$: is a ring with respect to the
following operation
\footnote{
that makes it $A$-algebra (see \mynameref{def:kalgebra})
}
\begin{equation}
\left(b \otimes c \right) \cdot \left(b' \otimes c'\right) =
\left(b \cdot b'\right) \otimes \left(c \cdot c'\right)
\label{eq:lec4_algebra_tensor_product}
\end{equation}
The tensor product has the following
\begin{definition}[Universal property]
Let we have the following maps
\begin{eqnarray}
\alpha: A \to B,
\nonumber \\
\beta: A \to C,
\nonumber \\
\phi: B \xrightarrow[b \to b \otimes 1_C ]{} B \otimes_A C,
\nonumber \\
\psi: C \xrightarrow[c \to 1_B \otimes c ]{} B \otimes_A C
\nonumber
\end{eqnarray}
Then for any $A$-algebra $D$ one has
\[
Hom_A\left(B \otimes_A C, D\right)
\leftrightarrow
Hom_A\left(B, D\right) \times
Hom_A\left(C, D\right)
\]
i.e. if I have some \mynameref{def:homomorphism}
$h \in Hom_A\left(B \otimes_A C, D\right)$ this is the same as
giving 2 homomorphisms
$f \in Hom_A\left(B, D\right)$ and
$g \in Hom_A\left(C, D\right)$ such that all maps in the following
diagram commute (see \mynameref{def:commutativediagram}).
\begin{tikzpicture}[description/.style={fill=white,inner sep=2pt}]
\matrix (m) [matrix of math nodes, row sep=3em,
column sep=2.5em, text height=1.5ex, text depth=0.25ex]
{ D & & B \otimes C & \\
& B & & C & \\
& & A & & \\
};
%\draw[double,double distance=5pt] (m-1-1) – (m-1-3);
\path[->]
(m-2-2) edge node[description] {$ \phi $} (m-1-3)
(m-2-4) edge node[description] {$ \psi $} (m-1-3)
(m-3-3) edge node[description] {$ \alpha $} (m-2-2)
(m-3-3) edge node[description] {$ \beta $} (m-2-4)
(m-1-3) edge [bend right=15] node[description] {$ h $}
(m-1-1);
\path[->, dashed]
(m-2-2) edge [bend left=15] node[description] {$ f $} (m-1-1)
(m-2-4) edge [bend left=15] node[description] {$ g $} (m-1-1)
;
\end{tikzpicture}
Thus if we have $h$ then we can define
$f = h \cdot \phi$ and $g = h \cdot \psi$. And conversely if I have
$f$ and $g$ then I can define $h$ by the following rule:
\[
h\left(b \otimes c\right) = f(b) \cdot g(c)
\]
\end{definition}
The main point for us is that the tensor product of the $A$-algebras is
itself an $A$-algebra by this very simple rule, component-wise
multiplication (see (\ref{eq:lec4_algebra_tensor_product})).
Let consider next example.
We will start with the following
\[
\mathbb{C} \cong {\mathbb{R}\left[X\right]}/{\left(X^2 + 1\right)}
\]
therefore with result from example \ref{ex:lec4_1} one can get
\[
\mathbb{C} \otimes_\mathbb{R} \mathbb{C}
\cong
\mathbb{C} \otimes_\mathbb{R}
{\mathbb{R}\left[X\right]}/{\left(X^2 + 1\right)}
\cong
^{\mathbb{C}\left[X\right]}/_{\left(X^2 + 1\right)}
\]
but by \mynameref{thm:chineseremainder}
\[
^{\mathbb{C}\left[X\right]}/_{\left(X^2 + 1\right)}
\cong
^{\mathbb{C}\left[X\right]}/_{\left(X + i\right)}
\times
^{\mathbb{C}\left[X\right]}/_{\left(X - i\right)}
\cong
\mathbb{C} \times \mathbb{C}
\]
As result we have that
$\mathbb{C} \otimes_\mathbb{R} \mathbb{C}$ is not a field
because it
has zero divisors. How we can get the zero divisors?
The element $\overline{X + i}$ is a zero divisor
in
\(
^{\mathbb{C}\left[X\right]}/_{\left(X^2 + 1\right)}
\)
because
\[
\left(X + i\right) \left(X - i\right) \equiv 0 \mod {\left(X^2 + 1\right)}
\].
Another proof (not a part of the lecture) of the fact that $\mathbb{C}
\otimes_\mathbb{R} \mathbb{C}$ is not a field consider the following
one
\[
\mathbb{C}
\otimes_\mathbb{R} \mathbb{C}
\cong
^{\mathbb{C}\left[X\right]}/_{\left(X^2 + 1\right)}
\]
but the polynomial $X^2 + 1 = \left(X + i\right)\left(X - i \right)$
is reducible in $\mathbb{C}\left[X\right]$ i.e. is not a
\mynameref{def:maxideal} (see theorem \ref{thm:irreducibleideal}) and
with the theorem \ref{thm:maxideal} the quotient by the polynomial is
not a field (see also claim \ref{claim:lec1_sec14}).
\section{Relatively prime ideals. Chinese remainder theorem}
\begin{definition}[Relatively prime ideals]
Let $A$ - \mynameref{def:ring} and $I,J$ are \mynameref{def:ideal}s.
$I$ and $J$ are relatively prime if $I + J = A$.
\label{def:relprimeideals}
\end{definition}
\begin{lemma}
\begin{enumerate}
\item If $I,J$ are relatively prime then $IJ = I \cap J$
\item If $I_1, \dots, I_k$ relatively prime with $J$ then
$\prod_{i =1}^k I_i = I_1 \dots I_k$ is also
relatively prime with $J$.
\item If $I, J$ relatively prime then $I^k$ and $J^l$ are also
relatively prime for any $l$ and $k$.
\end{enumerate}
\begin{proof}
\begin{enumerate}
\item
The following one $IJ \subset I \cap J$ is clear
\footnote {
Assuming that $I$ and $J$ commute we have if
$x \in IJ$ then $x \in I$ and if
$x \in JI$ then $x \in J$ i.e. $x \in I \cap J$.
}
If $I$ and $J$ are relatively prime then $1_A = i + j$ for some
$i \in I$ and $j \in J$. Thus $\forall x \in I \cap J$ we have the
following ones:
$x i \in IJ$ and $x j \in IJ$ and as result
\[
x = x i + x j \in IJ
\]
i.e. $I \cap J \subset IJ$.
\item Suppose for simplicity that $k = 2$. In the case we have
$1_A = i_1 + j_1 = i_2 + j_2$ where $i_1 \in I_1, i_2 \in I_2$ and
$j_1, j_2 \in J$.
we also have
\[
1_A = \left(i_1 + j_1\right) \left(i_2 + j_2\right) =
i_1 i_2 + \left(j_1 i_2 + j_2 i_1 + j_1 j_2\right)
\in I_1 I_2 + J
\]
thus $\forall x \in A$ we have
\[
x = 1_A x =
i_1 i_2 x + \left(j_1 i_2 + j_2 i_1 + j_1 j_2\right) x
\in I_1 I_2 + J,
\]
i.e. $I_1 I_2 + J = A$ therefore $I_1 I_2$ and $J$ are
relatively prime.
\item is obvious
\footnote{
It follows from the 2 because we can assume $I_i = I$ and will
get that $\forall k, I^k$ is relatively prime with $J$. From
other side we can assume $I_i = J$ and $J = I^k$ and conclude
that $J^l$ is relatively prime with $I^k$.