-
Notifications
You must be signed in to change notification settings - Fork 2
/
lecture7.tex
1311 lines (1234 loc) · 50.8 KB
/
lecture7.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
%% -*- coding:utf-8 -*-
\chapter{Galois correspondence and first examples. Examples continued}
We continue to study the examples: cyclotomic extensions (roots of
unity), cyclic extensions (Kummer and Artin-Schreier extensions). We
introduce the notion of the composite extension and make remarks on
its Galois group (when it is Galois), in the case when the composed
extensions are in some sense independent and one or both of them is
Galois. The notion of independence is also given a precise sense
("linearly disjoint extensions").
\section{Cyclotomic extensions (cont'd). Examples over $\mathbb{Q}$}
Last time we discussed cyclotomic extensions which are splitting
fields of $\Phi_n$ (generated by n-th roots
(\mynameref{def:primitiverootsofunity}) of 1). And we got a very precise
description of those extensions in the case when $\Phi_n$ was
irreducible, for instance, over $\mathbb{Q}$.
We have seen (see theorem \ref{thm:lec6_3}) that
$\mathbb{Q}\left(\zeta_n\right)$ is a \mynameref{def:galoisextension} of
\mynameref{def:galoisgroup} $\left(\mathbb{Z}/n\mathbb{Z}\right)^\times$
(see example \ref{ex:multiplicativegroup})
where $\zeta_n = e^{\frac{2 \pi i}{n}}$. So it acts as $g_a: \zeta_n \to
\zeta_n^a$ where $a \in \left(\mathbb{Z}/n\mathbb{Z}\right)^\times$
that can be considered as a number relatively prime to $n$: $\left(a,
n\right) = 1$.
\footnote{
$\left(\mathbb{Z}/n\mathbb{Z}\right)^\times$ consists of elements
which are invertible in $\mathbb{Z}/n\mathbb{Z}$. The numbers
which are prime to $n$ are invertible.
}
Lets consider several examples
\begin{example}[$n=8$]
Lets consider $n = 8$. In the case
\[
\left|\left(\mathbb{Z}/8\mathbb{Z}\right)^\times\right| = 4
\]
i.e. the group has 4 elements there are
\[
\left(\mathbb{Z}/8\mathbb{Z}\right)^\times =
\left\{
1,3,5,7
\right\}.
\]
So our Galois group also has 4 elements
\footnote{
There is a well known \mynameref{def:v4} $V_4$ -
the only non-cyclic group of order 4 (really there are 2 groups of
order 4: the first one is the Klein four group, the second one is
the cyclic group of order 4). We will also see the group when we
will investigate the solvability of group $S_4$ at example
\ref{ex:lec8_s4}.
}:
\[
Gal: \left\{
id, \zeta_8 \to \zeta_8^3,
\zeta_8 \to \zeta_8^5, \zeta_8 \to \zeta_8^7
\right\} =
\left\{
id, \sigma_3, \sigma_5, \sigma_7
\right\}.
\]
We can note that $\sigma_7 = \zeta_8 \to \zeta_8^7$ is something
very simple - it is complex conjugation:
$\sigma_7 = \zeta_8 \to \bar{\zeta}_8$. It's
\mynameref{def:fixedfield} $\mathbb{Q}\left(\zeta_8\right)^{\sigma_7}$
is determined by the following expression
\footnote{
First of all by the \mynameref{thm:galoiscorrespondence} for
any normal subgroup of the \mynameref{def:galoisgroup} ($V_4$ in our
case) there exists a sub-extension that is fixed by the normal
sub-group. For our $V_4$ (see \mynameref{def:v4}) we have 3 normal
subgroups:
$\{id, \sigma_3\}, \{id, \sigma_5\}, \{id, \sigma_7\}$. Lets
consider the last one i.e. lets find the extension that corresponds
to $\{id, \sigma_7\}$. The extension has the following form (we
are using triviality of $id$: $L^{id} = L$)
\[
\mathbb{Q}\left(\zeta_8\right)^{\{id, \sigma_7\}} =
\mathbb{Q}\left(\zeta_8\right)^{\sigma_7}
\]
To calculate $\mathbb{Q}\left(\zeta_8\right)^{\sigma_7}$ we have
to find a \mynameref{ex:lec5_primitiveelement} $\nu$ such
that $\nu \notin \mathbb{Q}$, $\nu \in
\mathbb{Q}\left(\zeta_8\right)$ and $\sigma_7\left(\nu\right) =
\nu$ (i.e. $\sigma_7$ fixes $\mathbb{Q}\left(\nu\right)$).
Using the fact that $\bar{\zeta}_8 = \zeta_8^7$, it can
be easy to check that
\begin{eqnarray}
\sigma_7\left(\zeta_8 + \bar{\zeta}_8\right) =
\sigma_7\left(\zeta_8 + \zeta_8^7\right) =
\nonumber \\
=
\zeta_8^7 + \zeta_8^{49} =
\zeta_8^7 + \zeta_8^{6 \cdot 8 + 1} =
\zeta_8^7 + \zeta_8 = \bar{\zeta}_8 + \zeta_8,
\nonumber
\end{eqnarray}
i.e. we can take $\nu = \zeta_8 + \bar{\zeta}_8$ as an element
that generates the required extension.
}
\[
\mathbb{Q}\left(\zeta_8\right)^{\sigma_7} =
\mathbb{Q}\left(\zeta_8\right) \cap \mathbb{R} =
\mathbb{Q}\left(\zeta_8 + \bar{\zeta}_8\right) =
\mathbb{Q}\left(\sqrt{2}\right)
\]
i.e. there is a quadratic extension.
\footnote{
In the expression we used the following fact
\[
\mathbb{Q}\left(\zeta_8\right) \cap \mathbb{R} =
\mathbb{Q}\left(Re\left(\zeta_8\right)\right) =
\mathbb{Q}\left(\zeta_8 + \bar{\zeta}_8\right).
\]
}
Our Galois group has 3 subgroups of order 2 so we have 3 quadratic
sub-extensions. One o them we have already found
($\mathbb{Q}\left(\sqrt{2}\right)$) lets find 2 others.
\footnote{
The following equations were used
\[
\sigma_3\left(\zeta_8 + \zeta_8^3\right) =
\zeta_8^3 + \zeta_8^9 = \zeta_8^3 + \zeta_8
\]
and
\[
\sigma_5\left(\zeta_8 \cdot \zeta_8^5\right) =
\zeta_8^5 \cdot \zeta_8^{25} =
\zeta_8^5 \cdot \zeta_8^{3 \cdot 8 + 1} =
\zeta_8^5 \cdot \zeta_8.
\]
}
\[
\mathbb{Q}\left(\zeta_8\right)^{\sigma_3} =
\mathbb{Q}\left(\zeta_8 + \zeta_8^3\right) =
\mathbb{Q}\left(i \sqrt{2}\right).
\]
and finally (with note $\zeta_8^5 = - \zeta_8, \zeta_8^6 = -i$)
\footnote{
we cannot choose $\zeta_8 + \zeta_8^5 = 0$ and have chosen
$\zeta_8 \cdot \zeta_8^5$ instead of it.
}
\[
\mathbb{Q}\left(\zeta_8\right)^{\sigma_5} =
\mathbb{Q}\left(\zeta_8 \cdot \zeta_8^5\right) =
\mathbb{Q}\left(\zeta_8^6\right) =
\mathbb{Q}\left(i\right).
\]
\label{ex:lec7_cyclotomic8}
\end{example}
\begin{example}[$n=5$]
$\mathbb{Q}\left(\zeta_5\right)$ where $\zeta_5 = e^{\frac{2 \pi
i}{5}}$. The \mynameref{def:galoisgroup} is the following:
\[
Gal \cong \left(\mathbb{Z}/5\mathbb{Z}\right)^\times
\]
that is a \mynameref{def:cyclicgroup} of order 4.
\footnote{
As it was mentioned above there are only 2 finite group of order
4. The first one $V_4$ (see \mynameref{def:v4}) was considered at example
\ref{ex:lec7_cyclotomic8}. There is the second one that isomorphic
to the cyclic group of order 4:
\[
\left(\mathbb{Z}/5\mathbb{Z}\right)^\times =
\left\{ 1,2,3,4
\right\}
\]
}
It is generated by
$\zeta_5 \to \zeta_5^2$
\footnote{
$Gal = \left<\zeta_5\right>$ and the group action on an element is
just a multiplication by $\zeta_5$ i.e.
$id \to \zeta_5, \zeta_5 \to \zeta_5^2, \zeta_5^2 \to \zeta_5^3,
\zeta_5^3 \to \zeta_5^4, \zeta_5^4 \to id$
}
and it has only one
\mynameref{def:propersubgroup} $\cong \mathbb{Z}/2\mathbb{Z}$
(see theorem \ref{thm:subgroupofcyclicgroup})
so our
field $\mathbb{Q}\left(\zeta_5\right)$
has only one sub-field different from $\mathbb{Q}$ of course and
this going to be a real part all of the complex conjugation which
are part of Galois group. Now this is the same as the real part
\(\mathbb{Q}\left(\zeta_5\right) \cap \mathbb{R} =
\mathbb{Q}\left(\zeta_5 + \bar{\zeta}_5\right) =
\mathbb{Q}\left(cos \frac{2 \pi}{5}\right)\).
\end{example}
So these were the examples of cyclotomic extensions of $\mathbb{Q}$
and of course the picture is exactly the same as long as the
cyclotomic polynomial is irreducible. If it is not reducible, which
can happen as we have seen, the Galois group becomes smaller.
\section{Kummer extensions}
\label{sec:kummerextension}
Consider a field $K$ such that the
\mynameref{def:fieldcharacteristic} of $K$ is prime to
a certain number $n$: $\left(char(K), n\right) = 1$
\footnote{
case $char(K) = 0$ is also included because it is used only one time
to prove separability (see note
\ref{note:lec7_kummer_extension_char_zero})
}
and such that $X^n
- 1$ splits in $K$. So $K$ contains all roots of unity. Consider an
element $a$ of $K$ : $a \in K$ and let $\alpha = \sqrt[n]{a}$ (i.e. a
root of $X^n - a$). Take
\begin{equation}
d = \min{\left\{ i \mid \alpha^i \in
K\right\}}.
\label{eq:lec7_d}
\end{equation}
\begin{proposition}
$d \mid n$, minimal polynomial of $\alpha$ is $X^d - \alpha^d$ and
$K\left(\alpha\right)$ is a \mynameref{def:galoisextension} with
cyclic \mynameref{def:galoisgroup} of order $d$.
\label{prop:lec7_1}
\begin{proof}
It's clear that $K\left(\alpha\right)$ is Galois because all the
n-th roots of unity are in $K$. So $K\left(\alpha\right)$
contains all roots of $X^n - a$.
\footnote{
Consider $\alpha_k = \alpha \zeta^k$ where
$k = 0,1, \dots, n - 1$. All such $\alpha_k$ are roots of
$X^n - a$ because
\[
\alpha_k^n - a = \alpha^n \left(\zeta^n\right)^k - a = a - a =0.
\]
We also have that $\forall k_1 \ne k_2: \alpha_{k_1} \ne
\alpha_{k_2}$ because $\zeta^{k_1} \ne \zeta^{k_2}$. Therefore
we have $n$ distinct roots i.e. all roots are in
$K\left(\alpha\right)$
}
Therefore $K\left(\alpha\right)$
is a splitting field of $X^n - a$ thus it's
normal. The extension is also separable because
$\left(char(K), n\right) = 1$.
\footnote{
If $P_n = X^n - a$ then $P_n' = n X^{n-1} \ne 0$ as soon as
$\left(char(K), n\right) = 1$ and as result $(P_n, P_n') = 1$
and $P_n$ does not have multiple roots and therefore it is
separable. As result the extension $K\left(\alpha\right)$ is
also separable.
The case $char(K) = 0$ is obvious because such extensions are
always separable (see section
\ref{sec:lec3_separable_elements}).
\label{note:lec7_kummer_extension_char_zero}
}
Thus $K\left(\alpha\right)$ is \mynameref{def:galoisextension}.
Lets define a \mynameref{def:homomorphism}
$f: Gal\left(K\left(\alpha\right)/K\right) \xrightarrow[g \to
\frac{g\left(\alpha\right)}{\alpha}]{} \mu_n$. This is correct
because $g$ sends $\alpha$ to another root of $X^n - a$ thus the
quotient $\frac{g\left(\alpha\right)}{\alpha}$ is a root of unity:
\footnote{
$g^n\left(\alpha\right) - \alpha^n =
g^n\left(\alpha\right) - a = 0$
}
\[
\left(\frac{g\left(\alpha\right)}{\alpha}\right)^n = 1.
\]
The homomorphism $f$ is \mynameref{def:injection} because
$g\left(\alpha\right)$ determines $g$.
\footnote{
If we have $g_1 \ne g_2$ then
$g_1\left(\alpha\right) \ne g_2\left(\alpha\right)$ because
in the case $g_1\left(\alpha\right)$ and
$g_2\left(\alpha\right)$ are 2 different roots of $X^n - a$.
As result the homomorphism $f$ is \mynameref{def:injection}.
}
What's the image? It should
be a \mynameref{def:subgroup} of a \mynameref{def:cyclicgroup} $\mu_n$
but the subgroup should be also cyclic.
\footnote{
see \mynameref{thm:fundamentaltheoremofcyclicgroup}
}
Let $\delta$ is the order of the image and we want to show that
$\delta = d$. Consider
$g\left(\alpha^\delta\right) = f\left(g\right)^\delta \cdot
\alpha^\delta = \alpha^\delta$ because $f\left(g\right)$ is a root
of 1 ($f\left(g\right) = \sqrt[\delta]{1}$).
\footnote{
Using $g\left(\alpha\right)g\left(\alpha\right) = g\left(\alpha
\cdot \alpha \right) = g\left(\alpha^2\right)$:
\begin{eqnarray}
f^\delta\left(g\right) =
\frac{g^\delta\left(\alpha\right)}{\alpha^\delta} =
\frac{g\left(\alpha^\delta\right)}{\alpha^\delta}.
\nonumber
\end{eqnarray}
}
Thus $\alpha^\delta
\in K$ ( see (\ref{eq:lec5_2})). And $\alpha^i \notin K$ for $i < \delta$ since otherwise
$\deg P_{min}\left(\alpha, K\right) = i < \delta$. But this is
impossible because
\[
\left[K\left(\alpha\right):K\right] =
\left|Gal\left(K\left(\alpha\right)/K\right)\right| = \delta.
\]
Thus only possible option is $d = \delta$.
\footnote{
$d$ was chosen accordingly (\ref{eq:lec7_d}) and therefore
$\delta \ge d$.
}
Thus
$P_{min}\left(\alpha, K\right) = X^d - \alpha^d$.
\end{proof}
\end{proposition}
\begin{proposition}
And conversely (to \ref{prop:lec7_1}) for all cyclic extension of
degree $n$ such that $\left(char(K), n\right) = 1$ is generated by
$\sqrt[n]{a}$ for some $a \in K$.
\begin{proof}
Consider $L$ is an extension of $K$.
$Gal\left(L/K\right) = \left<\sigma\right>$ then we have
$\sigma^n = id$. Linear algebra says that $\sigma$ is
\mynameref{def:diagonalizable_map}.
\footnote{
Apply theorem \ref{thm:diagonalizable_matrix} to the
diagonalizable $\sigma^n = id$.
Really a map is diagonalizable if it has $n$ distinct
eigenvalues (see theorem
\ref{thm:diagonalizable_map_eigenvalues}). This fact will be
proved below.
}
Now, let us show that all eigenspaces have dimension 1. Indeed if
$x,y$ are in the same \mynameref{def:eigenspace} then
$\sigma\left(\frac{x}{y}\right) = \frac{x}{y}$
\footnote{
$L^{\left<\sigma\right>} = K$ i.e. $L^{\sigma} = K$.
}
because $x$ and $y$
are multiplied by the same number.
Therefore $\frac{x}{y} \in
K$. And this is exactly means that dimension of the eigenspace is
1, $x,y$ are proportional over $K$.
\footnote{
I.e. if $\mathcal{L}$ is the eigenspace then we have that
$\exists x \in \mathcal{L}$ such that $\forall y \in
\mathcal{L}: y = k x$, where $k \in K$. This exactly means that
$\dim \mathcal{L} = 1$
}
Thus all roots of 1 are eigenvalues of $\sigma$.
\footnote{
Let $x$ - eigenvector of $\sigma$ and $\nu$ is the
eigenvalue. We have $\sigma\left(x\right) = \nu x$, using
$\sigma^n = id$ and $\sigma \circ \sigma(x) = \sigma(\nu x) =
\nu^2 x$, one can get $\sigma^n\left(x\right) = \nu^n x
= id(x) = x$. Thus $\nu^n = 1$ i.e. $\nu$ is a root of unity.
}
Then take
$\alpha$ such that $\sigma\left(\alpha\right) = \zeta \alpha$
where $\zeta$ is a \mynameref{def:primitiverootsofunity}. Then
$\left<\sigma\right>$ - orbit of $\alpha$ has $n$ elements
therefore $\left[K\left(\alpha\right):K\right] = n$ (see
explanation below) and $\alpha^n
\in K$ since $\sigma\left(\alpha^n\right) = \zeta^n \cdot \alpha^n
= \alpha^n$. We see that $\alpha$ is a root of $X^n - a$. This is
irreducible by degree reason.
Maybe I should have said here, why it follows from the formula,
$\left<\sigma\right>$ - orbit of $\alpha$ has $n$ elements
that the degree of the extension is exactly $n$. While this is
easy because either degree of the extension was less than $n$,
then also, $\alpha$ would have to be fixed by some non-trivial
subgroup of Galois group by Galois correspondence. And then its
orbit would have less than $n$ elements.
\footnote{
If we have $K \subset K\left(\alpha\right) \subset L$ and
$\left<\sigma\right>$ is a \mynameref{def:galoisgroup} $L/K$ and
$\left[K\left(\alpha\right):\right] = d < n$ then by
\mynameref{thm:galoiscorrespondence} there exists a subgroup
$H \subset \left<\sigma\right>$
(cyclic as soon as $\left<\sigma\right>$) that fixes the
$K\left(\alpha\right)$ and especially $\forall h \in H:
h\left(\alpha\right) = \alpha$
therefore
$\left|\sigma^k\left(\alpha\right)\right| < n$ i.e. the orbit
contains less than $n$ elements.
Another explanation as follows. If
$\left[K\left(\alpha\right):\right] = d < n$ then
$P_{min}\left(\alpha, K\right)$ has $d$ roots and the orbit
$Orb\left(\alpha\right)$ consists of roots of
$P_{min}\left(\alpha, K\right)$ and the number of roots is
$d < n$.
}
\end{proof}
\label{prop:lec7_2}
\end{proposition}
\section{Artin-Schreier extensions}
\begin{definition}[Artin-Schreier extension]
Let $L$ is an extension of a field $K$ such that $char K = p$, where $p$
is a prime number. If degree of the extension $n=\left[L:K\right]$
is equal to $p$, i.e. $n = char K$ then the extension is called as
Artin-Schreier extension.
\label{def:srtinschreierextension}
\end{definition}
\begin{definition}[Cyclic extension]
The Galois extension is called cyclic extension if the corresponding
\mynameref{def:galoisgroup} is cyclic.
\label{def:cyclicextension}
\end{definition}
\begin{theorem}[Artin-Schreier]
\label{thm:lec7_1}
Let $p = char(K)$ and let
$P = X^p - X - a \in K\left[X\right]$. Then $P$ is irreducible or
splits over $K$. Let $\alpha$ be a root. If $P$ is irreducible then
$K\left(\alpha\right)$ is \mynameref{def:cyclicextension} of $K$ of
degree $p$.
Conversely any cyclic extension of degree $p$ is like this: $L/K,
\exists \alpha \in K$ such that $L = K\left(\alpha\right)$, $\alpha$
- root of $X^p - X - a$ for some $a \in K$.
\begin{proof}
First of all notice that roots of $P$ are $\alpha + k$ where $k
\in \mathbb{F}_p$ ($k$ is an element of prime field).
\footnote{
In $\mathbb{F}_p$ we have $k^p = k$ and therefore
\begin{eqnarray}
\left(\alpha + k\right)^p -
\left(\alpha + k\right) -a =
\nonumber \\
=\alpha^p + k^p - \alpha -k - a =
\alpha^p + k - \alpha -k - a =
\nonumber \\
=
\alpha^p - \alpha - a =0,
\nonumber
\end{eqnarray}
as soon as $\alpha$ is a root of $X^p - X - a$.
}
If $P$ is irreducible then \mynameref{def:galoisgroup} should be
transitive
\index{Transitive group action}
on the roots (see remark \ref{rem:lec5_onnormalext}) then
$\exists \sigma \in Gal\left(K\left(\alpha\right)/K\right)$ such that
$\sigma\left(\alpha\right) = \alpha + 1$ (because roots of $P$ are
$\alpha + k$). The \mynameref{def:grouporder} for $\sigma$ is
$p = \left[K\left(\alpha\right):K\right]$
\footnote{
\[
\sigma^p = \sigma(\sigma(\sigma( \dots ( \sigma(\alpha) ) \dots
))) = \alpha + p = \alpha
\]
i.e. $\sigma^p = id$ and order of $\left<\sigma\right>$ is $p$.
}
so the $\sigma$ must
generate the \mynameref{def:galoisgroup}:
$Gal\left(K\left(\alpha\right)/K\right) = \left<\sigma\right>$.
We have to show that if $P$ is not irreducible then $P$ splits
i.e. $\alpha \in K$. Leave it for an exercise
\footnote{
Let $\alpha$ is a root then we can get $p$ different roots as
$\alpha + k$ where $k \in \mathbb{F}_p$. Suppose that $\alpha
\notin K$ and $Q$ is a
factor of $P$ (it should exist as soon as $P$ is reducible). $Q$
splits in $K\left(\alpha\right)$ as soon as $P$ splits there and
its factors have the form $X - \left(\alpha - i\right)$.
Let $d = \deg Q$, i.e.
\[
Q = \prod_{i}\left(X - \left(\alpha - i\right)\right) = X^d +
a_1 X^{d-1} + \dots + a_d.
\]
Consider the coefficient $a_1$. It should have the form
$a_1 = \sum_{i} \left(\alpha - i\right) = d \alpha -j$ (where
$i$ is taken
from $d$ factors of $Q$ and $\sum_{i} i = j$ - another
integer). $a_1 \in K$ (and as result $Q \in K\left[X\right]$)
only if $d = 0 \mod p$. Therefore $P$ has no nontrivial
factors that is in the contradiction with statement that $P$ is
reducible.
Thanks Ben Petschel for the hint.
}
Now we will prove the converse statement. Let $L$ is a
\mynameref{def:cyclicextension} of $K$ of degree $p$. We want to
find $\alpha$ such that $\sigma\left(\alpha\right) = \alpha + 1$
where $\sigma$ is a generator of $Gal\left(L/K\right)$ (we know
that the Galois group is cyclic i.e. must have the following form
$Gal\left(L/K\right) = \left<\sigma\right>$).
Set $f = \sigma -id$, $K = \ker f$
\footnote{
this is because
$\forall x \in K: \sigma\left(x\right) = x$ (see
(\ref{eq:lec5_2})).
}
and the \mynameref{def:rank} $rg f = p -1$.
\footnote{
In lectures we can hear about range (\mynameref{def:image}) not a
\mynameref{def:rank} but by future content we spoke about the rank
but not about range (image). In any way the equation $rg f = p
-1$ requires some explanation. As soon as $f^{p-1} \ne 0$
$\exists x \in L$ such that $f^{p-1}\left(x\right) \ne
0$. Therefore $f^{k}\left(x\right) \ne 0$ for all $k < p - 1$
because in other case
\[
f^{p-1}\left(x\right) = f\left( \dots f\left(
f^k\left(x\right) \right) \dots \right) =
f\left( \dots f\left( 0 \right) \dots \right) =
0.
\]
Lets show that $\left(f\left(x\right), f^2\left(x\right)\dots,
f^{p-1}\left(x\right) \right)$ is linearly independent.
For $k \in K, x \in L$ we can get
\[
f\left(k \cdot x\right) =
\sigma\left(k \cdot x\right) - k \cdot x =
\sigma\left(k\right) \cdot \sigma\left(x\right) -
k \cdot x = k \cdot \sigma\left(x\right) - k \cdot x =
k \cdot f\left(x\right).
\]
Thus for $k_i \in K$ such that:
\[
\sum_{i=1}^{p-1} k_i f^i\left(x\right) = 0
\]
applying $f^{p-1}$ one can get that $k_1 = 0$, applying
$f^{p-2}$ gives us $k_2 = 0$. Continue the way we get that all
$k_i = 0$. That proves the linear independence. Therefore
$rg\left(f\right) \ge p - 1$. The vector
$y = \left(f^{p-1}\left(x\right), f^{p-1}\left(x\right)\dots,
f^{p-1}\left(x\right) \right)$ is not zero but $f(y) = 0$
therefore $y \in \ker f$. This means that $\dim{\ker f} \ge
1$. Using \mynameref{thm:ranknullity} one can conclude that only
possible choice there is $\dim{\ker f} = 1$ and
$rg\left(f\right) = p - 1$.
}
We have
$\left(\sigma - id\right)^p = 0$
\footnote{
In $\mathbb{F}_p$ we have
\[
\left(\sigma - id\right)^p = \sigma^p - id = 0
\]
as soon as $\left<\sigma\right>$ has order $p$.
}
so the \mynameref{def:kernel} must
be included into \mynameref{def:image}:
$K = \ker f \subset \Ima f$
because otherwise $L = \ker f \oplus \Ima f$ ($L$ is a
direct sum
\footnote{
see also definition \ref{def:directsummodules} and example
\ref{ex:directsummodules}
}
of
kernel and image) and $f^k$ is never zero (but we have $f^p = 0$)
\footnote{
As soon as $f \ne 0$ exists $x \in L$ such that
$y = f^{p-1}\left(x\right) \ne 0$ but
$f\left(y\right) = f^p\left(x\right) = 0$,
therefore $y \in \ker f$. Using the fact that $\dim{\ker f} = 1$
(follows from $rg(f) = p - 1$ and \mynameref{thm:ranknullity}) and
$y \in \Ima f$ ($y = f\left(f^{p-2}\left(x\right)\right)$) one
can conclude that the \mynameref{def:kernel} must
be included into \mynameref{def:image}.
}.
So as soon as $K$ is in the image of $f$ then $\exists \alpha \in L$
such that $f\left(\alpha\right) = 1$
\footnote{
This is because $1 \in K$ but
$K \subset \ker\left(f\right) \subset \Ima\left(f\right)$ therefore
$1 \in Im\left(f\right)$.
}
but this means that
$\sigma\left(\alpha\right) = \alpha + 1$. Now consider
$\sigma\left(\alpha^p - \alpha\right) =
\left(\alpha + 1\right)^p - \left(\alpha + 1\right) = \alpha^p -
\alpha$ (because we are in the field of
\mynameref{def:fieldcharacteristic} $p$). This
means that $\alpha^p - \alpha \in K$ because the field is fixed by
Galois group (see (\ref{eq:lec5_2})). So
$\alpha^p - \alpha = a \in K$ and $\alpha$ is a root of $X^p - X
- a$ and this finished the proof of the theorem.
\end{proof}
\end{theorem}
\begin{myremark}
Theorem \ref{thm:lec7_1} shows that
\mynameref{def:srtinschreierextension} is a
\mynameref{def:cyclicextension} as well as
\mynameref{sec:kummerextension}. The different between both is in
relation between $n$ and $p$. \mynameref{sec:kummerextension}
plays a role in solvability for fields over
$\mathbb{Q}$ (see \mynameref{def:solvableextension}),
\mynameref{def:srtinschreierextension} plays the same
role for finite fields.
\end{myremark}
\section{Composite extensions. Properties}
\begin{definition}[Composite extension]
Let $L_1$ and $L_2$ are extensions of $K$ both contained in some
extension $L$ (for instance the \mynameref{def:algebraicclosure}
$\bar{K}$). The composite extension $L_1 L_2$ is the extension they
generate: $L_1 L_2 = L_2 L_1 = K\left(L_1 \cup L_2\right)$. I.e. the
composite extension is the smallest extension that contains both
$L_1$ and $L_2$.
\label{def:compositeextension}
\end{definition}
Another way to view this: consider the tensor product $L_1 \otimes_K
L_2$ - there is a $K$-algebra. By \mynameref{def:universalproperty}
there is a map from the tensor product to $L$:
\(
j: L_1 \otimes_K L_2 \to L
\)
such that $j\left(l_1 \otimes l_2\right) = l_1 l_2$
\footnote{
By the \mynameref{def:universalproperty} $j$ is a
\mynameref{def:fieldhomomorphism} as soon as
$L_1, L_2, L_1 \otimes_K L_2$ are the fields (see also theorem
\ref{thm:lec7_2}), but by lemma
\mynameref{lem:lec1_homomorphism_is_injection} the homomorphism is
injection.
}
\begin{tikzpicture}[description/.style={fill=white,inner sep=2pt}]
\matrix (m) [matrix of math nodes, row sep=3em,
column sep=2.5em, text height=1.5ex, text depth=0.25ex]
{ L_1 \times L_2 & & L \\
& L_1 \otimes_K L_2 & \\ };
%\draw[double,double distance=5pt] (m-1-1) – (m-1-3);
\path[->]
(m-1-1) edge node[auto] {$ f: (l_1,l_2) \to l_1 l_2 $} (m-1-3)
edge node[auto] {$ \phi $} (m-2-2)
(m-2-2) edge node[auto] {$ \tilde{f} = j $} (m-1-3);
\end{tikzpicture}
The
\mynameref{def:image} $\Ima j$ is a sub-algebra of $L$. If $L$ is
algebraic then any sub algebra is a sub field (see proposition
\ref{prop:lec1_algebraicsubalgebra}) and this
is exactly the field generated by $L_1 L_2$. In general we can take
its fraction field (to obtain a field from a ring (an algebra)) but in
our case, as it was mentioned above, as soon as $L$ is algebraic then
$L_{1,2}$ are fields.
\begin{property}
If $L_1$ is separable (pure inseparable, normal, finite of
degree $n$) over $K$ then $L_1 L_2$ is also separable (pure
inseparable, normal, finite of degree $ \le n$) over $L_2$
\begin{proof}
Let $x \in L_1$ ($L_1 L_2$ is generated by $L_1$ over $L_2$)
\footnote{
We have $K \subset L_2 \subset L_1 L_2$ as the case there
}
then it's minimal polynomial $P_{min}\left(x, L_2\right)$ is a
divisor of $P_{min}\left(x, K\right)$ in
$L_2\left[X\right]$ (see proposition \ref{prop:lec1_algebraic}).
Therefore $P_{min}\left(x, L_2\right)$ has a
degree $\le n$ where $n$
is degree of $P_{min}\left(x, K\right)$.
So if $P_{min}\left(x, K\right)$ is separable (pure inseparable)
then $P_{min}\left(x, L_2\right)$ is separable (pure inseparable).
\footnote{
From proposition \ref{prop:lec1_algebraic}) we know that
$P_{min}\left(x, L_2\right)$ is a divisor of $P_{min}\left(x,
K\right)$. Therefore if $P_{min}\left(x, K\right)$ does not have
multiply roots then $P_{min}\left(x, L_2\right)$ (its divisor)
will also have only non-multiply roots.
The inseparability is obvious because if the
$P_{min}\left(x,K\right)$ has only one root the same will be the
truth for $P_{min}\left(x, L\right)$.
}
The same is true for splitting so the normality is preserved.
\footnote{
i.e. the polynomial splits in $L_2$ if it splits in $K \supset L_2$
}
About dimensions (``finite extension of degree'' in the property
formulation). By the \mynameref{thm:basechange}
\footnote{
From \mynameref{thm:basechange} one can get
\[
\left|Hom_K\left(L_1, \bar{K}\right)\right| =
\left|Hom_{L_2}\left(L_2 \otimes_K L_1, \bar{K}\right)\right|
\]
But proposition \ref{prop:lec3_2}
says that
\[
\left|Hom_K\left(L_1, \bar{K}\right)\right| =
\deg\left(P_{min}\left(x,K\right)\right) =
\left[L_1 : K\right] =
\dim_K\left(L_1\right)
\]
and
\[
\left|Hom_{L_2}\left(L_2 \otimes_K L_1, \bar{K}\right)\right| =
\left[L_2 \otimes_K L_1 : L_2\right] =
\dim_{L_2}\left(L_1 \otimes_K L_2 \right)
\]
}:
\[
\dim_K L_1 = \dim_{L_2}\left(L_1 \otimes_K L_2\right)
\]
and as soon as $L_1 L_2$ is the $\Ima j$:
\footnote{
Using \mynameref{thm:ranknullity} one can conclude that for
$j: L_1 \otimes_K L_2 \to L_1L_2$,
$\dim{\Ima j} \le \dim{L_1\otimes_K L_2}$
(the equal sign is when $\dim{\ker{j}} = 0$).
}
\[
\dim_{L_2}\left(L_1 \otimes_K L_2\right) \ge
\dim_{L_2}\left(L_1 L_2\right)
\]
i.e.
\[
\dim_{L_2}\left(L_1 L_2\right) \le \dim_K L_1 = n.
\]
\end{proof}
\label{property:lec7_1}
\end{property}
\begin{property}
If $L_1, L_2$ are separable (pure inseparable, normal, finite of
degree $n$ and $m$) over $K$ then $L_1 L_2$ is also separable (pure
inseparable, normal, finite of degree $ \le n m $) over $K$
\begin{proof}
We have the following towers:
\[
K \hookrightarrow L_1 \hookrightarrow L_1 L_2
\]
and all properties except normality are preserved in the towers
so
follows from property \ref{property:lec7_1}.
\footnote{
From property \ref{property:lec7_1} follows that if $L_1$ is
separable over $K$ then $L_1 L_2$ is separable over
$L_2$. If $L_2$ is separable over $K$ then theorem
\ref{thm:lec3_3} about separability says the $L_1 L_2$ is
separable over $K$ as soon as $K \subset L_2 \subset L_1 L_2$.
About degrees: if $n = \left[L_1 : K\right]$ and
$m = \left[L_2 : K\right]$ then from property
\ref{property:lec7_1} follows that
$\left[L_1 L_2 : L_2\right] \le n$. Using theorem
\ref{thm:mulformuladegrees}
$\left[L_1 L_2 : K\right] = \left[L_1 L_2 : L_2\right] \left[
L_2 : K\right]\le nm$.
}
Normality is obvious because if $L_1$ is a splitting field of the
family polynomials $\left\{P_i\right\}_{i \in I}$
and $L_2$ is a splitting field of the
family polynomials $\left\{Q_j\right\}_{j \in J}$ then
$L_1 L_2$ is a splitting field of the union of those families
$\left\{P_i, Q_j\right\}_{i \in I, j \in J}$. So normality is
obviously preserved.
\end{proof}
\label{property:lec7_2}
\end{property}
\section{Linearly disjoint extensions. Examples}
\begin{theorem}
\label{thm:lec7_2}
The following statements are equivalent (for algebraic extensions)
\begin{enumerate}
\item $L_1 \otimes_K L_2$ is a field \label{thm:lec7_2_a}
\item $j$ is \mynameref{def:injection} \label{thm:lec7_2_b}
\item if we have $x_1, x_2, \dots, x_n \in L_1$ linearly independent
over $K$ then they are linearly independent
over $L_2$ \label{thm:lec7_2_c}
\item if we have two families: $x_1, x_2, \dots, x_n \in L_1$ linearly independent
over $K$ and $y_1, y_2, \dots, y_m \in L_2$ linearly independent
over $K$ then $x_i y_j$ are also linearly independent over $K$
\label{thm:lec7_2_d}
\end{enumerate}
When $L_1$ finite over $K$ then all the statements are equivalent to
$\left[L_1 L_2 : L_2\right] = \left[L_1 : K\right]$ or in other
words
$\left[L_1 L_2 : K\right] = \left[L_1 : K\right] \left[L_2 :
K\right]$
\footnote{
Using theorem \ref{thm:mulformuladegrees} we have $\left[L_1 L_2 :
K\right] = \left[L_1 L_2 : L_2\right] \left[L_2 : K\right]$.
}
\begin{definition}[Linearly disjoint extensions]
In the case $L_1$ and $L_2$ are called linearly disjoint extensions
\label{def:linearlydisjoint}
\end{definition}
\begin{proof}
Equivalence \ref{thm:lec7_2_a} and \ref{thm:lec7_2_b} is clear
because we have that $L_1 L_2 = \Ima j$.
\footnote{
By the \mynameref{def:universalproperty} $j$ is a
\mynameref{def:homomorphism}, but by lemma
\mynameref{lem:lec1_homomorphism_is_injection} the homomorphism is
injection if $L_1 \otimes_K L_2$ is a field i.e. if the
homomorphism is a \mynameref{def:fieldhomomorphism}.
If $j$ is injection then from the fact $L_1 L_2 = \Ima j$ we can
conclude that for any $x \in L_1 \otimes_K L_2$ such that $x \ne
0$ there exists
$y \in L_1 \otimes_K L_2$ such that $j(x) j(y) = 1$ as soon as
$L_1 L_2 = K\left(L_1 \cup L_2\right)$ is a field
(both $L_1$ and $L_2$ are algebraic). Therefore
$x y = 1$ and for any non zero element of $L_1 \otimes_K L_2$ we
can the the inverse one. This means that $L_1 \otimes_K L_2$ is
a field.
}
Then \ref{thm:lec7_2_b} implies \ref{thm:lec7_2_c}: we have
$x_1 \otimes 1, \dots, x_n \otimes 1$ are linearly independent
over $L_2$ by base change property
(see proposition \ref{prop:lec4_Addon}).
If $j$ is injective then their images $x_1, \dots, x_n$
are also linearly independent over $L_2$. This is because an
injective map transforms a linearly independent set of vectors
into a linearly independent set.
\footnote{
Let $x_1, \dots, x_n$ are not linearly independent over $L_2$
then there exists $\alpha_1, \dots, \alpha_n \in L_2$ such that
$\exists \alpha_k \ne 0$ but $\sum_{i=1}^n \alpha_i x_i =
0$. From other side $x_i = j\left(x_i \otimes 1\right)$
therefore $j\left(\sum_{i=1}^n \alpha_i x_i \otimes 1 \right) =
0$ but $\sum_{i=1}^n \alpha_i x_i \otimes 1 \ne 0$ as soon as
$x_1 \otimes 1, \dots, x_n \otimes 1$ are linearly independent
over $L_2$. Therefore we just got a contradiction: $j$ cannot be
injection.
}
\ref{thm:lec7_2_c} implies \ref{thm:lec7_2_d}: if we have some
relation $\sum_{i,j} a_{ij} x_i y_j = 0, a_{ij} \in K$ then since $x_i$
linearly independent over $K$ one can get $\sum_{j} a_{ij} y_j = 0$
but as soon as $y_j$ linearly independent we will get $a_{ij} =
0$.
Next \ref{thm:lec7_2_d} implies \ref{thm:lec7_2_b} (remember that
\ref{thm:lec7_2_b} is injectivity of $j$). Take
$z \in L_1 \otimes_K L_2$ such that $j\left(z\right) = 0$. We have
$z = \sum a_{ij} x_i \otimes y_j$ and
$j\left(z\right) = \sum a_{ij} x_i y_j = 0$ i.e. $a_{ij} = 0$ and
therefore $z = 0$. I.e. $j$ is \mynameref{def:injection}.
The part about finite degrees follows from the 4 properties.
\footnote{
Let $L_1$ and $L_2$ are linearly disjoint extensions over $K$
with finite degree: $\left[L_1:K\right] = n, \left[L_2:K\right]
= m$. From \ref{thm:lec7_2_c} we can conclude that
$\left[L_1 L_2:L_2\right] = n$ and using theorem
\ref{thm:mulformuladegrees} we will obtain
$\left[L_1 L_2:K\right] = \left[L_1 L_2:L_2\right]
\left[L_2 : K\right] = nm$.
}
\end{proof}
\end{theorem}
\begin{example}
First of all, the extensions which have relatively prime degrees are
always linearly disjoint.
I.e. if $\left[L_1 : K\right] = n$, $\left[L_2 : K\right] = m$ and
$\left(m, n\right) = 1$ then $L_1$ and $L_2$ are linearly
disjoint. Indeed $m$ and $n$ must divide $\left[L_1 L_2 : K\right]
\le m n$. With our conditions $\left[L_1 L_2 : K\right] = m n$ but
this is one of definition of linearly disjoint extensions
(see definition \ref{def:linearlydisjoint}).
\footnote{
The claim is the following: if $\left(m, n\right) = 1$ then $L_1$
and $L_2$ are linearly disjoint. From
property \ref{property:lec7_2} $\left[L_1 L_2 : K\right] \le m
n$. But from theorem
\ref{thm:mulformuladegrees} $n \mid \left[L_1 L_2 : K\right]$, as
soon as $K \subset L_1 \subset L_1 L_2$, and
$m \mid \left[L_1 L_2 : K\right]$, as
soon as $K \subset L_2 \subset L_1 L_2$ and therefore using
$\left(m, n\right) = 1$ one can conclude that $\left[L_1 L_2 :
K\right] = nm$ and thus $L_1$ and $L_2$ are linearly
disjoint by last statement of theorem \ref{thm:lec7_2}.
}
In particular $\mathbb{Q}\left(\sqrt[5]{2}\right)$ and
$\mathbb{Q}\left(\sqrt[5]{1}\right)$ are linearly disjoint
extensions because the degrees are
$\left[\mathbb{Q}\left(\sqrt[5]{2}\right): \mathbb{Q}\right] = 5$
and
$\left[\mathbb{Q}\left(\sqrt[5]{1}\right): \mathbb{Q}\right] = 4$.
\footnote{
$P_{min}\left(\sqrt[5]{2}, \mathbb{Q}\right) = X^5 - 2$ and
$\deg\left(P_{min}\left(\sqrt[5]{2}, \mathbb{Q}\right)\right) =
5$.
$P_{min}\left(\sqrt[5]{1}, \mathbb{Q}\right) = X^4 + X^3 + X^2 + X
+ 1$ and
$\deg\left(P_{min}\left(\sqrt[5]{1}, \mathbb{Q}\right)\right) =
4$.
}
From the other side with $\sqrt[5]{1} = e^{\frac{2 \pi i}{5}}$ the
following extensions are not linearly disjoint:
$\mathbb{Q}\left(\sqrt[5]{2}\right)$ and
$\mathbb{Q}\left(e^{\frac{2 \pi i}{5}} \cdot
\sqrt[5]{2}\right)$.
Indeed in both cases $L_1 L_2$ is a splitting
field of $X^5 - 2$ and (for the first case) $\left[L_1 L_2 :
\mathbb{Q}\right] = 4 \cdot 5 = 20$. In the second case both
$\left[L_{1,2}:\mathbb{Q}\right] = 5$ and $5 \cdot 5 \ne 20$.
So, you see that the difference is rather subtle. Well, the obvious
reason in the second case is that those extensions are generated by
rules of the same polynomial, but, still some effort is needed to
formalize why this is not linearly disjoint case.
In particular we see that $L_1 \cap L_2 = \mathbb{Q}$ does not
imply that $L_1$ and $L_2$ are linearly disjoint over
$\mathbb{Q}$. It's exactly what's happen in the second case.
\label{ex:lec7_1}
\end{example}
\section{Linearly disjoint extensions in the Galois case}
\begin{theorem}
Let $L_1, L_2 \subset \bar{K}$ - extensions of $K$. $L_1$ is
\mynameref{def:galoisextension}
over $K$. Let $K' = L_1 \cap L_2$. Then $L_1 L_2$ is Galois over
$L_2$.
$Gal\left(L_1 L_2/ L_2\right)$ stabilizes $L_1$. $\phi: g \to
\left.g\right|_{L_1}$ is an injective map of
$Gal\left(L_1 L_2/ L_2\right) \to Gal\left(L_1/ K\right)$ with
image $Gal\left(L_1/K'\right)$ and $L_1, L_2$ are linearly disjoint
over $K'$.
\label{thm:lec7_3}
\begin{proof}
The proof that $L_1 L_2$ is Galois over $L_2$ is obvious.
\footnote{
We have $L_1$ is \mynameref{def:galoisextension} and therefore
normal and separable over $K$. By property \ref{property:lec7_1}
this means that $L_1 L_2$ is normal and separable over $L_2$ or in
other words $L_1 L_2$ is Galois over $L_2$.
}
The next statement is that $Gal\left(L_1 L_2/ L_2\right)$
stabilizes
$L_1$.
\footnote{
I.e. $\forall g \in Gal\left(L_1 L_2/ L_2\right)$ and for
any $x \in L_1$ we have $g(x) \in L_1$ or in other words $g(L_1)
= L_1$ (see also definition \ref{def:stabilizersubgroup}).
}
Let $x \in L_1$ and $g \in Gal\left(L_1 L_2/
L_2\right)$ then
$g\left(x\right)$ is a root of $P_{min}\left(x, L_2\right)$.
\footnote{
This is because $g$ permutes roots and the image of the
permutation is the set of roots of the following polynomial
$P_{min}\left(x, L_2\right)$. Note that $x$ is also one of the
roots.
}
It is
also a root of $P_{min}\left(x, K\right)$.
\footnote{
This is because proposition \ref{prop:lec1_algebraic} i.e. because
$P_{min}\left(x, L_2\right)$ divides $P_{min}\left(x,
K\right)$ i.e. all roots of $P_{min}\left(x, L_2\right)$ are
also roots of $P_{min}\left(x, K\right)$.
}
But all such roots are
in $L_1$ because $L_1$ is a \mynameref{def:galoisextension}.
Therefore the map $\phi$ is well
defined. The map is injective because if we have some $\sigma$ such that
$\left. \sigma \right|_{L_1} = \left. \sigma \right|_{L_2} = id$
then it should be $\sigma = id$.
This is because our extension is
generated by $L_1$ and $L_2$, so if it happened to be in identity
on them both, it must be an identity.
\footnote{
\label{note:lec7_injectivity}
We have that $\phi(id) = id$ i.e. $\phi$ is