-
Notifications
You must be signed in to change notification settings - Fork 2
/
requirements.tex
1981 lines (1741 loc) · 63.5 KB
/
requirements.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
%% -*- coding:utf-8 -*-
\begin{appendices}
\chapter{Course prerequisites}
There are several prerequisites for the course there. They consists of
definitions, theorems and examples mostly taken from Wikipedia.
\section{Sets}
\begin{definition}[Class]
A class is a collection of sets (or sometimes other mathematical
objects) that can be unambiguously defined by a property that all
its members share.
\label{def:class}
\end{definition}
\begin{definition}[Disjoint union]
Let \cite{wiki:disjointunion} $\{A_i: i \in I\}$ be a family of sets
indexed by $I$. The
disjoint union of this family is the set
\[
\sqcup_{i \in I} A_i = \cup_{i \in I}\left\{
\left(x, i\right): x \in A_i
\right\}.
\]
The elements of the disjoint union are ordered pairs $(x, i)$. Here $i$
serves as an auxiliary index that indicates which $A_i$ the element $x$
came from.
\label{def:disjointunion}
\end{definition}
\begin{example}[Disjoint union]
Let \cite{wiki:disjointunion} we have 2 sets $A_0 = \{1,2,3\}$ and
$A_1 = \{1,2\}$.
We can construct the following sets of pairs
\begin{eqnarray}
A_0^\ast = \left\{
\left(1,0\right),
\left(2,0\right),
\left(3,0\right)
\right\},
\nonumber \\
A_1^\ast = \left\{
\left(1,1\right),
\left(2,1\right)
\right\}
\nonumber
\end{eqnarray}
so
\[
A_0 \sqcup A_1 = A_0^\ast \cup A_1^\ast =
\left\{
\left(1,0\right),
\left(2,0\right),
\left(3,0\right),
\left(1,1\right),
\left(2,1\right)
\right\}
\]
\label{ex:disjointunion}
\end{example}
\section{Groups}
\begin{definition}[Monoid]
\label{def:monoid}
The set of elements $M$ with defined binary operation $\circ$ we will call
as a monoid if the following conditions are satisfied.
\begin{enumerate}
\item Closure: $\forall a, b \in M$: $a \circ b \in M$
\item Associativity: $\forall a, b, c \in M$:
$a \circ \left( b \circ c \right) =
\left( a \circ b \right) \circ c$
\item Identity element: $\exists e \in M$ such that
$\forall a \in M$: $e \circ a = a \circ e = a$
\end{enumerate}
\end{definition}
\begin{definition}[Group]
\label{def:group}
Let we have a set of elements $G$ with a defined binary operation
$\circ$ that satisfied the following properties.
\begin{enumerate}
\item Closure: $\forall a, b \in G$: $a \circ b \in G$
\item Associativity: $\forall a, b, c \in G$:
$a \circ \left( b \circ c \right) =
\left( a \circ b \right) \circ c$
\item Identity element: $\exists e \in G$ such that
$\forall a \in G$: $e \circ a = a \circ e = a$
\item Inverse element: $\forall a \in G$ $\exists a^{-1} \in G$ such that
$a \circ a^{-1} = e$
\end{enumerate}
In this case $\left(G, \circ\right)$ is called as group.
\end{definition}
Therefore the group is a \mynameref{def:monoid} with inverse element
property.
\begin{example}[Group $\mathbb{Z}/2\mathbb{Z}$]
Consider a set of 2 elements: $G = \left\{0, 1\right\}$ with the
operation $\circ$ defined by the table \ref{tab:CayleyZ2Z}.
\begin{table}
\centering
\caption{Cayley table for $\mathbb{Z}/2\mathbb{Z}$}
\label{tab:CayleyZ2Z}
\begin{tabular}{l|ll}
\toprule
$\circ$ & 0 & 1 \\
\midrule
0 & 0 & 1 \\
1 & 1 & 0 \\
\bottomrule
\end{tabular}
\end{table}
The identity element is $0$ i.e. $e = 0$.
Inverse element is the element itself
because $\forall a \in G$: $a \circ a = 0 = e$.
See also example \ref{ex:quotientgroup}
\label{ex:groupZ2}
\end{example}
\begin{definition}[Order of element in group]
Order, sometimes period, of an element a of a group is the smallest
positive integer $m$ such that $a^m = e$ (where $e$ denotes the identity
element of the group, and am denotes the product of $m$ copies of
$a$). If no such m exists, a is said to have infinite order.
\label{def:grouporder}
\end{definition}
\begin{theorem}[Lagrange]
For any finite group $G$, the order (number of elements) of every
subgroup $H$ of $G$ divides the order of $G$.
\label{thm:lagrange}
\end{theorem}
\begin{theorem}[Finite group of prime order]
Let $G$ is a finite group of prime order i.e.
$\left|G\right| = p$, where $p$ is prime number. Then $G$ is a
\mynameref{def:cyclicgroup}.
\label{thm:finite_group_of_prime_order}
\begin{proof}
Let $g \in G$ such that $g \ne e$ then, by theorem
\ref{thm:lagrange},
we have
$\left|\left<g\right>\right| \mid \left|G\right|$. Thus
$\left|\left<g\right>\right| = p$ because
$\left|G\right| = p$ and $p$ is a prime number. As result we have
$G = \left<g\right>$ and therefore $G$ is a cyclic group.
\end{proof}
\end{theorem}
\begin{definition}[Subgroup]
Let we have a \mynameref{def:group} $\left(G, \circ\right)$. The
subset $S \subset G$ is called as subgroup if $\left(S,
\circ\right)$ is a \mynameref{def:group}.
\label{def:subgroup}
\end{definition}
\begin{definition}[Proper subgroup]
A proper subgroup of a group $G$ is a \mynameref{def:subgroup} $H$
which is a proper subset of $G$ (i.e. $H \ne G$) \cite{wiki:group}
\label{def:propersubgroup}
\end{definition}
\begin{definition}[Coset]
If $G$ is a group, and $H$ is a subgroup of $G$, and $g$ is an
element of $G$, then
\[
gH = \left\{ gh \vert h \in H\right\}
\]
is the left coset of $H$ in $G$ with respect to $g$, and
\[
Hg = \left\{ hg \vert h \in H\right\}
\]
is the right coset of $H$ in $G$ with respect to $g$.
\label{def:coset}
\end{definition}
\begin{definition}[Normal subgroup]
A subgroup, $N$, of a group $G$, is called a normal subgroup if it
is invariant under conjugation i.e.
\[
N \triangleleft G \Leftrightarrow
\forall n \in N, \forall g \in G, g n g^{-1} \in N
\]
The definition taken from \cite{wiki:normalsubgroup}
We also can write normality in the \mynameref{def:coset} notation as
follows.
$N \triangleleft G$ if $\forall g \in G: gN = Ng$.
\label{def:normalsubgroup}
\end{definition}
\begin{definition}[Simple group]
A simple group is a nontrivial group whose only
\mynameref{def:normalsubgroup}s are the trivial group and the group
itself.
The definition taken from \cite{wiki:simplegroup}
\label{def:simplegroup}
\end{definition}
\begin{definition}[Quotient group]
A quotient group or factor group is a mathematical group obtained by
aggregating similar elements of a larger group using an equivalence
relation that preserves the group structure. For example, the
\mynameref{def:cyclicgroup} of addition modulo n can be obtained from
the integers by
identifying elements that differ by a multiple of n and defining a
group structure that operates on each such class (known as a
congruence class) as a single entity. It is part of the mathematical
field known as group theory \cite{wiki:quotientgroup}.
In a quotient of a group, the equivalence class of the identity
element is always a normal subgroup of the original group, and the
other equivalence classes are precisely the cosets of that normal
subgroup. The resulting quotient is written $G / N$, where $G$ is the
original group and $N$ is the normal subgroup.
In other words the quotient group can be defined as a set of all
left \mynameref{def:coset}s (they also equal to the right cosets as
soon as $N$ is a \mynameref{def:normalsubgroup}):
\[
G/N = \left\{a N: a \in G\right\}
\]
See also example \mynameref{ex:s3a3quotientgroup}.
\label{def:quotientgroup}
\end{definition}
\begin{theorem}[Quotient group]
If $G$ is a group and $H \triangleleft G$ then the operation $aH
\cdot bH = a \cdot H$ makes $G/H$ a group with identity $H$ and
inverse element $\left(a H\right)^{-1} = a^{-1} H$.
\begin{proof}
See \cite{book:kostrikin} p. 33.
\end{proof}
\label{thm:quotientgroup}
\end{theorem}
\begin{example}[Quotient group]
Consider \cite{wiki:quotientgroup} a group of integers $\mathbb{Z}$
(under addition) and the
subgroup $2\mathbb{Z}$ of all even integers. This is a normal
subgroup, because $\mathbb{Z}$ is \mynameref{def:abeliangroup}. There
are only two \mynameref{def:coset}s: the set
of even integers and the set of odd integers; therefore, the
quotient group $\mathbb{Z}/2\mathbb{Z}$ is the
\mynameref{def:cyclicgroup} with two
elements. This
quotient group is isomorphic with the set $\left\{ 0, 1 \right\}$
with addition modulo 2; informally, it is sometimes said that
$\mathbb{Z}/2\mathbb{Z}$
equals the set $\left\{ 0, 1 \right\}$ with addition modulo 2.
See also example \ref{ex:groupZ2}.
\label{ex:quotientgroup}
\end{example}
\begin{theorem}[Correspondence theorem]
The correspondence theorem, sometimes referred to as the fourth
isomorphism theorem or the lattice theorem, states that if
$N$ is a \mynameref{def:normalsubgroup} of a group $G$, then there
exists a bijection from the set of all subgroups $A$ of $G$
containing $N$, onto the set of all subgroups of the quotient group
$G/N$. The structure of the subgroups of $G/N$ is exactly the same
as the structure of the subgroups of $G$ containing $N$, with
$N$ collapsed to the identity element \cite{wiki:correspondence}.
\label{thm:correspondence}
\end{theorem}
\begin{definition}[Commutator]
The commutator of two elements, $g$ and $h$, of a group $G$, is the
element \cite{wiki:commutator}
\[
\left[g, h\right] = g^{-1} h^{-1} g h
\]
\label{def:commutator}
\end{definition}
\begin{definition}[Commutator subgroup]
The commutator subgroup or derived subgroup of a group is the
subgroup generated by all the \mynameref{def:commutator}s of the group
\cite{wiki:commutatorsubgroup}.
\label{def:commutatorsubgroup}
\end{definition}
\begin{theorem}[About quotient group and commutator subgroup]
Given a group $G$ a \mynameref{def:quotientgroup} $G/N$ is an
\mynameref{def:abeliangroup} if and only if $N \supseteq \left[G,
G\right]$
\cite{wiki:commutatorsubgroup}
\label{thm:about_quotient_group_and_commutatorsubgroup}
\end{theorem}
\begin{definition}[Abelianization]
The quotient $G/[G,G]$ is an abelian group
(as it follows from theorem \ref{thm:about_quotient_group_and_commutatorsubgroup})
called the abelianization of $G$ or $G$ made abelian.
\cite{wiki:commutatorsubgroup}
\label{def:abelianization}
\end{definition}
\subsection{Cyclic group}
\begin{definition}[Cyclic group]
A cyclic group or monogenous group is a group that is generated by a
single element.
Note that \mynameref{ex:groupZ2} is a cyclic group.
See example \ref{ex:multiplicativegroup}.
\label{def:cyclicgroup}
\end{definition}
\begin{theorem}[Fundamental theorem of cyclic groups]
In abstract algebra, every subgroup of a \mynameref{def:cyclicgroup} is
cyclic. Moreover, for a finite cyclic group of order $n$, every
\mynameref{def:subgroup}'s order is a divisor of $n$, and there is
exactly one subgroup for each divisor.This result has been called the
fundamental theorem of cyclic groups
\cite{wiki:subgroups_of_cyclic_groups}
\label{thm:fundamentaltheoremofcyclicgroup}
\end{theorem}
\begin{theorem}[About subgroups of a cyclic group]
Let \cite{mathstackexchange:cyclicgroupssubgroup}
$G=\left<a\right>$ be a cyclic group.
\begin{enumerate}
\item Every subgroup $S$ of $G$ is cyclic
\item If $\left|G\right| = n$, then $G$ has a unique subgroup of
order $d$ for each divisor $d$ of $n$
\end{enumerate}
See example \ref{ex:multiplicativegroup}
\label{thm:subgroupofcyclicgroup}
\end{theorem}
\subsection{Group action}
\begin{definition}[Action]
An action of a group is a way of
interpreting the elements of the
group as "acting" on some space in a way that preserves the structure
of that space. See also \cite{wiki:groupaction}.
\label{def:action}
\end{definition}
\begin{definition}[Orbit]
Consider \cite{wiki:groupaction} a group $G$ acting on a set
$X$. The orbit of an element $x \in X$
is the set of elements in $X$ to which $x$ can be moved by the elements
of $G$:
\[
Orb\left(x\right) = \left\{y \in X: \exists g \in G: y = g \cdot x \right\}
\]
The orbit of element $x$ is also denoted as $G\left(x\right)$.
\label{def:orbit}
\end{definition}
\begin{definition}[Fixed point]
The set of points of $X$ fixed by a group action are called the
group's set of fixed points, defined by
\[
\left\{
x: g x = x, \forall g \in G
\right\}.
\]
see also \cite{mathworld:groupfixedpoint}.
\label{def:fixedpoint}
\end{definition}
\begin{definition}[Stabilizer subgroup]
For every $x$ in $X$, we define \cite{wiki:groupaction} the
stabilizer subgroup of $G$ with
respect to $x$ (also called the isotropy group) as the set of all
elements in $G$ that fix $x$:
\[
G_{x}=\{g\in G\mid g\cdot x=x\}
\]
\label{def:stabilizersubgroup}
\end{definition}
\begin{theorem}[Orbit-stabilizer theorem]
If group $G$ and the set the group acting $X$ are finite then
\[
\left|G\right| = \left|Orb\left(x\right)\right|\left|G_x\right|
\]
where $x \in X$, $G\left(x\right)$ - is the \mynameref{def:orbit},
$G_x$ - \mynameref{def:stabilizersubgroup}.
Note: the result was got from \cite{wiki:groupaction} as
orbit-stabilizer theorem + \mynameref{thm:lagrange}
\label{thm:orbitstabilizertheorem}
\end{theorem}
\begin{definition}[Transitive group action]
The action of $G$ on $X$ is called \cite{wiki:groupaction}
transitive if $X$ is non-empty and if for each pair $x, y \in X$ there
exists a $g \in G$ such that $gx = y$.
\label{def:transitive}
\end{definition}
\begin{definition}[Free group action]
The action of $G$ on $X$ is called \cite{wiki:groupaction}
free if, given $g, h \in G$, the existence of an $x \in X$ with $g(x)
= h(x)$ implies $g = h$.
\label{def:freeaction}
\end{definition}
\begin{definition}[Quotient of the group action]
Consider \cite{wiki:groupaction} a group $G$ acting on a set
$X$. The set of all \mynameref{def:orbit}s of $X$ under the action of
$G$ is written as $X/G$, and is called the quotient of the action.
\label{def:quotientofgroupaction}
\end{definition}
\subsection{Direct product}
\begin{definition}[Direct product]
Given groups $G$ and $H$, the direct product $G \times H$ is defined as follows:
The underlying set is the Cartesian product, $G \times H$. That is, the
ordered pairs $\left(g,h\right)$, where $g \in G$ and $h \in H$.
The binary operation on $G \times H$ is defined component-wise:
\[
\left(g_1,h_1\right)\left(g_2,h_2\right) =
\left(g_1 \cdot g_2, h_1 \circ h_2\right)
\]
The resulting algebraic object satisfies the axioms for a group.
See \cite{wiki:directproduct}.
The direct product of 2 \mynameref{def:abeliangroup}s is also called
\mynameref{def:directsum}
\label{def:directproduct}
\end{definition}
\begin{property}[Direct product of groups]
Let $G_1$, $G_2$ - \mynameref{def:group}s and $G = G_1 \times G_2$ -
\mynameref{def:directproduct} of the groups. Then
\begin{enumerate}
\item $G_1 \cong \left(G_1, 1_{G_2}\right)$ and
$G_2 \cong \left(1_{G_1}, G_2\right)$
\item $G_1$ and $G_2$ are \mynameref{def:normalsubgroup}s in $G$
\end{enumerate}
See \cite{wiki:directproduct}.
\label{property:directproduct}
\end{property}
\begin{property}[Quotient of direct product]
Let $G_1$, $G_2$ - \mynameref{def:group}s and $G = G_1 \times G_2$ -
\mynameref{def:directproduct} of the groups.
Then
\[
G/G_1 \cong G_2
\]
and
\[
G/G_2 \cong G_1
\]
\label{property:directproductquotient}
\begin{proof}
Lets prove the first claim:
$G/G_1 \cong G_2$ (the second one is analogous).
Consider projection
$\pi: G \xrightarrow[(g_1, g_2) \to (1_{G_1}, g_2)]{} G_2$. The
$\pi$ is \mynameref{def:homomorphism}. Really
let $a = (a_1, a_2), b = (b_1, b_2) \in G$ where
$a_{1}, b_1 \in G_1$, $a_2, b_{2} \in G_2$:
\begin{eqnarray}
\pi\left(a \cdot b\right) = \pi\left(
(a_1, a_2) \cdot (b_1, b_2)
\right) =
\nonumber \\
= \pi\left(
(a_1 b_1, a_2 b_2)
\right) = a_2 b_2 =
\pi\left(a\right) \pi\left(b\right)
\nonumber
\end{eqnarray}
As result $\pi$ is a \mynameref{def:homomorphism}.
The $\pi$ is also a \mynameref{def:surjection} because $\forall a_2
\in G_2$ $\exists a \in G$ such that $\pi(a) = a_2$. Really we can
use $a = (1_{G_1}, a_2)$.
Therefore by \mynameref{thm:firstisomorphism} one can get
\[
G/\ker{\pi} \cong G_2,
\]
but $\forall g_1 \in G_1$ we have $(g_1, 1_{G_2}) \in \ker{\pi}$.
And conversely $\forall k \in \ker \pi$ we have $k = (k_1, k_2)$
where $k_1 \in G_1$ and $k_2 = 1_{G_2}$.
As result (see property \ref{property:directproduct})
\[
\ker \pi = \left(G_1, 1_{G_2}\right) \cong G_1.
\]
Therefore
\[
G/G_1 \cong G_2.
\]
\end{proof}
\end{property}
\subsection{Sylow theorems}
\begin{corollary}[Sylow]
Given a finite group $G$ and a prime number $p$ dividing the order of $G$,
then there exists an element (and hence a subgroup) of order $p$ in
$G$ \cite{wiki:sylow}
\label{cor:sylow}
\end{corollary}
\subsection{Abelian group}
\begin{definition}[Abelian group]
Let we have a \mynameref{def:group} $\left(G, \circ\right)$.
The group is called an Abelian or commutative if
$\forall a, b \in G$ it holds $a \circ b = b \circ a$.
\label{def:abeliangroup}
\end{definition}
\begin{theorem}[About order of element of an Abelian group]
If $G$ is a finite \mynameref{def:abeliangroup} and $m$ is the maximal
order of the elements of $G$ then the order of every element of $G$
divides $m$
\label{thm:abelianelementorder}
\end{theorem}
\begin{theorem}
Let $G$ is an \mynameref{def:abeliangroup} and $n = \left|G\right|$
the group order (number of elements) then $\forall g \in G$ the
following statement holds
\[
g^n = e,
\]
there $e$ is the group identity.
\begin{proof}
Let $m$ is the maximal order of group $G$. In this case by
\mynameref{thm:lagrange} $m \mid n$ i. e. $n = k_1 m$ where $k_1 \in
\mathbb{Z}$. Let $l$ is the order of $g$ i.e. $g^l = e$. By the
theorem \ref{thm:abelianelementorder} $l \mid m$ i.e.
$m = k_2 l$. Thus
\[
g^n = \left(g^m\right)^{k_1} =
\left(g^l\right)^{k_2 k_1} = e.
\]
\end{proof}
\label{thm:abelianelement}
\end{theorem}
\begin{theorem}[Cyclic Group is Abelian]
Let $G$ be a \mynameref{def:cyclicgroup} then $G$ is
\mynameref{def:abeliangroup}
\label{thm:cyclic_group_is_abelian}
\begin{proof}
As soon as $G = \left<g\right>$ then
$\forall x,y \in G, \exists n,m \in \mathbb{N}$ such that
$x = g^n, y = g^m$. In the case
\[
xy = g^n g^m = g^{n+m} = g^m g^n = yx,
\]
i.e. $G$ is abelian.
\end{proof}
\end{theorem}
\begin{remark}[Not every Abelian group is cyclic]
The theorem statement cannot be reversed i.e. there exist abelian
group that are not cyclic. For example well known \mynameref{def:v4}
$V_4$ that is an
\mynameref{def:abeliangroup} but not \mynameref{def:cyclicgroup}
\end{remark}
\begin{definition}[Klein four group]
\label{def:v4}
The Klein four group $V_4$ is a group of order 4
\footnote{there are only 2 groups of order 4: $V_4$ and
$\mathbb{Z}/4\mathbb{Z}$ (the only cyclic group of order 4)}
The Cayley table for the group is on the table \ref{tab:CayleyV4}
\cite{wiki:klein4group}.
\begin{table}
\centering
\caption{Cayley table for $V_4$}
\label{tab:CayleyV4}
\begin{tabular}{l|llll}
\toprule
$\circ$ & $e$ & $a$ & $b$ & $c$\\
\midrule
$e$ & $e$ & $a$ & $b$ & $c$ \\
$a$ & $a$ & $e$ & $c$ & $b$ \\
$b$ & $b$ & $c$ & $e$ & $a$ \\
$c$ & $c$ & $b$ & $a$ & $e$ \\
\bottomrule
\end{tabular}
\end{table}
\end{definition}
\begin{example}[Klein four group]
There are several examples of $V_4$:
\begin{itemize}
\item $V_4 \cong \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}$
\item $V_4 \cong \left(\mathbb{Z}/8\mathbb{Z}\right)^\times \cong \left(\mathbb{Z}/12\mathbb{Z}\right)^\times$
\end{itemize}
\end{example}
\begin{definition}[Direct sum]
The direct sum of two abelian groups $A$ and
$B$ is another abelian group $A \oplus B$ consisting of the ordered
pairs
$\left(a, b\right)$ where $a \in A$ and $b \in B$.
\cite{wiki:directsum}
See also \mynameref{def:directproduct}.
\label{def:directsum}
\end{definition}
\begin{definition}[Finitely generated abelian group]
An \mynameref{def:abeliangroup} $(G, +)$ is called finitely generated
\cite{wiki:fgagroup}
if there exist finitely many elements $x_1, \dots, x_s$ in $G$ such that
$\forall x \in G$:
\begin{equation}
x = n_1 x_1 + \dots + n_s x_s
\label{eq:fgagroup}
\end{equation}
with $n_i \in \mathbb{Z}$. In this case we say that $\{x_1, \dots,
x_s\}$ is a generating set of $G$.
In the (\ref{eq:fgagroup}) we have the following:
\[
n_i x_i = \underbrace{x_i + \dots x_i}_{n_i \text{ times}}
\]
\label{def:fgagroup}
\end{definition}
\begin{theorem}[The fundamental theorem of finitely generated abelian
groups]
Every \mynameref{def:fgagroup} $G$ is isomorphic to a
\mynameref{def:directsum} of primary cyclic groups and infinite cyclic
groups. A primary cyclic group is one whose order is a power of a
prime. That is, every finitely generated abelian group is isomorphic
to a group of the form
\[
\mathbb{Z}^n \oplus \mathbb{Z}_{q_1} \oplus
\dots \oplus \mathbb{Z}_{q_t}
\]
where the rank $n \ge 0$, and the numbers $q_1, \dots , q_t$ are
powers of (not
necessarily distinct) prime numbers. In particular, $G$ is finite if
and only if $n = 0$. The values of $n, q_1, \dots , q_t$ are (up to
rearranging the indices) uniquely determined by $G$.
The statement was took from \cite{wiki:fgagroup}.
\label{thm:fgagroup}
\end{theorem}
\begin{theorem}[Simple subgroup of an abelian group]
Every non-simple abelian group has a simple normal subgroup.
??? add link ???
\label{thm:simple_subgroup_of_abelian}
\end{theorem}
\section{Permutations}
\begin{example}[Permutation]
The following permutation
\[ \pi =
\begin{array}{c}
1 \to 2 \\
2 \to 5 \\
3 \to 4 \\
4 \to 3 \\
5 \to 1
\end{array}
\]
can be also written in different forms. The most common one is the following:
\[
\pi = \begin{pmatrix}
1 & 2 & 3 & 4 & 5 \\
2 & 5 & 4 & 3 & 1
\end{pmatrix}.
\]
In the permutation we can see 2 cycles:
$1 \to 2 \to 5 \to 1$ and $3 \to 4 \to 3$. The first cycle can be
written as $(1,2,5)$ (or $(5,1,2)$ or $(2,5,1)$) and the second
one as $(3,4)$ (or $(4,3)$). The cycles gives us the shortest form
of writing the permutation:
\[
\pi = (1,2,5)(3,4) = (3,4)(5,1,2).
\]
If we have 2 permutations
\[
\pi_1 = \begin{pmatrix}
1 & 2 & 3 & 4 & 5 \\
3 & 1 & 5 & 2 & 4
\end{pmatrix}.
\]
and
\[
\pi_2 = \begin{pmatrix}
1 & 2 & 3 & 4 & 5 \\
2 & 5 & 4 & 3 & 1
\end{pmatrix}.
\]
then we can combine them into the new one (via a multiplication)
\[ \pi = \pi_1 \pi_2 =
\begin{array}{c}
1 \to 2 \to 1 \\
2 \to 5 \to 4\\
3 \to 4 \to 2\\
4 \to 3 \to 5\\
5 \to 1 \to 3
\end{array} =
\begin{pmatrix}
1 & 2 & 3 & 4 & 5 \\
1 & 4 & 2 & 5 & 3
\end{pmatrix} = (1)(2,4,5,3) = (2,4,5,3)
\]
We have identity element
\[
e = \begin{pmatrix}
1 & 2 & 3 & 4 & 5 \\
1 & 2 & 3 & 4 & 5
\end{pmatrix}
\]
such that $\forall \pi: \pi e = e \pi = \pi$.
For every $\pi$ we can define $\pi^{-1}$ such that
$\pi \pi^{-1} = \pi^{-1} \pi = e$.
For our example
\[
\pi = \begin{pmatrix}
1 & 2 & 3 & 4 & 5 \\
2 & 5 & 4 & 3 & 1
\end{pmatrix} = (1,2,5)(3,4)
\]
we have
\[
\pi^{-1} = \begin{pmatrix}
2 & 5 & 4 & 3 & 1 \\
1 & 2 & 3 & 4 & 5
\end{pmatrix} =
\begin{pmatrix}
1 & 2 & 3 & 4 & 5 \\
5 & 1 & 4 & 3 & 2
\end{pmatrix} = (1,5,2)(3,4)
\]
As result we have a \mynameref{def:group} of permutations.
\label{ex:permutation}
\end{example}
\begin{definition}[Parity of a permutation]
When $X$ is a finite set of at least two elements, the permutations of
X (i.e. the bijective functions from $X$ to $X$) fall into two classes
of equal size: the even permutations and the odd permutations. If
any total ordering of $X$ is fixed, the parity (oddness or evenness)
of a permutation $\sigma$ of $X$ can be defined as the
parity of the number of inversions for $\sigma$, i.e., of pairs of elements
$x, y$ of $X$ such that $x < y$ and $\sigma (x) > \sigma (y)$
\cite{wiki:paritypermutation}.
\label{def:paritypermutation}
\end{definition}
\begin{example}[Parity of a permutation]
For the following permutation $(2,5,4,1,3)$ we have the following
inversions
\begin{eqnarray}
(2,5,4,1,3) \to_{(1,2)}
(1,5,4,2,3) \to_{(5,2)}
\nonumber \\
(1,2,4,5,3) \to_{(3,4)}
(1,2,3,5,4) \to_{(5,4)}
(1,2,3,4,5)
\nonumber
\end{eqnarray}
We have made 4 inversions and as result the permutation is even.
The same result can be got if we use the following equation $l - 1$
where $l$ is the circle length (5 in our case)
\label{ex:paritypermutation}
\end{example}
\begin{definition}[Alternating group]
Alternating group \cite{wiki:alteringgroup} is the group of even
permutations (see definition \ref{def:paritypermutation}) of a finite
set. The alternating group on a set of $n$ elements is called the
alternating group of degree n, or the alternating group on n letters
and denoted by $A_n$.
\label{def:alternatinggroup}
\end{definition}
\begin{example}[$S_n$ group]
If we a have a permutation of $n$ elements then it's possible to do
by means of $n!$ ways.
\label{ex:sngroup}
\end{example}
\begin{example}[$S_1$ group]
$S_1$ permutation of 1 element consists of only one element $e$ -
the simplest possible group
\label{ex:s1group}
\end{example}
\begin{example}[$S_2$ group]
$S_2$ permutation consists of 2 elements:
\begin{enumerate}
\item identity:
\(
e = \begin{pmatrix}
1 & 2 \\
1 & 2
\end{pmatrix}
\)
\item transposition:
\(
\tau = \begin{pmatrix}
1 & 2 \\
2 & 1
\end{pmatrix}
\)
\end{enumerate}
It's easy to see that the Cayley table has the form \ref{tab:CayleyS2}
\begin{table}
\centering
\caption{Cayley table for $S_2$}
\label{tab:CayleyS2}
\begin{tabular}{l|ll}
\toprule
$\circ$ & $e$ & $\tau$ \\
\midrule
$e$ & $e$ & $\tau$ \\
$\tau$ & $\tau$ & $e$ \\
\bottomrule
\end{tabular}
\end{table}
\label{ex:s2group}
\end{example}
\begin{example}[$S_3$ group]
$S_3$ permutation consists of 6 elements: $e, \tau, \tau_1, \tau_2,
\sigma, \sigma_1$. The most important are $e, \tau$ and $\sigma$
and all others can be obtained from this ones (see table
\ref{tab:CayleyS3}).
\begin{enumerate}
\item identity
\(
e = \begin{pmatrix}
1 & 2 & 3\\
1 & 2 & 3
\end{pmatrix}
\)
\item transposition:
\(
\tau = \begin{pmatrix}
1 & 2 & 3\\
2 & 1 & 3
\end{pmatrix}
\)
\item circle:
\(
\sigma = \begin{pmatrix}
1 & 2 & 3\\
2 & 3 & 1
\end{pmatrix}
\)
\end{enumerate}
Another elements of $S_3$:
\(
\tau_1 = \begin{pmatrix}
1 & 2 & 3\\
1 & 3 & 2
\end{pmatrix}
\),
\(
\tau_2 = \begin{pmatrix}
1 & 2 & 3\\
2 & 1 & 3
\end{pmatrix}
\) and
\(
\sigma_1 = \begin{pmatrix}
1 & 2 & 3\\
3 & 1 & 2
\end{pmatrix}
\).
\begin{table}
\centering
\caption{Cayley table for $S_3$ \cite{wiki:permutationgroups}}
\label{tab:CayleyS3}
\begin{tabular}{l|llllll}
\toprule
$\circ$ & $e$ & $\sigma$ & $\sigma_1$ & $\tau$ & $\tau_1$ & $\tau_2$\\
\midrule
$e$ & $e$ & $\sigma$ & $\sigma_1$ & $\tau$ & $\tau_1$ & $\tau_2$\\
$\sigma$ & $\sigma$ & $\sigma_1$ & $e$ & $\tau_2$ & $\tau$ & $\tau_1$\\
$\sigma_1$ & $\sigma_1$ & $e$ & $\sigma$ & $\tau_1$ & $\tau_2$ & $\tau$\\
$\tau$ & $\tau$ & $\tau_1$ & $\tau_2$ & $e$ & $\sigma_1$ & $\sigma$\\
$\tau_1$ & $\tau_1$ & $\tau_2$ & $\tau$ & $\sigma$ & $e$ & $\sigma_1$\\
$\tau_2$ & $\tau_2$ & $\tau$ & $\tau_1$ & $\sigma_1$ & $\sigma$ & $e$\\
\bottomrule
\end{tabular}
\end{table}
As we can see from the table \ref{tab:CayleyS3} the elements $e,
\sigma, \sigma_1$ forms a subgroup of $S_3$ moreover all the
permutation (see definition \ref{def:paritypermutation}). I.e. there
we will have \mynameref{def:alternatinggroup} $A_3$.
\label{ex:s3group}
\end{example}
\begin{example}[$S_3/A_3$ quotient group]
Lets consider the following \mynameref{def:quotientgroup}
$S_3/A_3$. As we can see all elements of $S_3$ can be divided into 2
classes each of them with size $3 = \left|A_3\right|$: $E= A_3 =
\left\{e, \sigma, \sigma_1\right\}$
and $G = \left\{\tau, \tau_1, \tau_2\right\}$. If we take an element
$x_1 \in E$ and multiply it on another element of $x_2 \in E$ we
will get $x_1 x_2 \in E$ (see table \ref{tab:CayleyS3}) i.e. $E
\cdot E =
E$. For $G$ we can get $G \cdot G = E$ and $E \cdot G = G \cdot E =
G$. Therefore $S_3/A_3 = \{E, G\}$ forms a group of order 2. Thus
\[
S_3/A_3 \cong \mathbb{Z}/2\mathbb{Z}
\]
\label{ex:s3a3quotientgroup}
\end{example}
\begin{definition}[Cycle]
A cyclic permutation (or cycle) is a permutation of the elements of
some set $X$ which maps the elements of some subset $S$ of $X$ to each
other in a cyclic fashion, while fixing (that is, mapping to
themselves) all other elements of $X$. If $S$ has $k$ elements, the cycle
is called a $k$-cycle \cite{wiki:cyclicpermutation}.
\label{def:cycle}
\end{definition}
\begin{example}[Cycle]
The following permutation is a 3-cycle:
\[
(1,2,3) = \begin{array}{c}
1 \to 2 \\
2 \to 3 \\
3 \to 1
\end{array}
\]
\label{ex:cycle}
\end{example}
\begin{definition}[Transposition]
A cycle with only two elements is called a transposition.
\cite{wiki:cyclicpermutation}
\label{def:transposition}
\end{definition}
\begin{example}[Transposition]
The following permutation is a transposition:
\[
(1,2) = \begin{array}{c}
1 \to 2 \\
2 \to 1
\end{array}
\]
\label{ex:transposition}
See also example \ref{ex:transposition_product}
\end{example}
\begin{example}[Transposition product]
\label{ex:transposition_product}
The example shows a product of 2 \mynameref{def:transposition}s with a
same element:
\begin{eqnarray}
(a,c)(a,b) =
\begin{array}{c}
a \to b \\
b \to a \to c\\
c \to a
\end{array} = (a,b,c)
\nonumber
\end{eqnarray}
\end{example}
\begin{theorem}
Every permutation can be represented as a product of
\mynameref{def:transposition}s
\begin{proof}
This is because any cycle $(a_1, a_2, a_3, \dots, a_{n-1}, a_n)$
can be represented as a product of transpositions as follows
\[
(a_1, a_2, a_3, \dots, a_{n-1}, a_n) =
(a_1, a_n)(a_1, a_{n-1}) \dots (a_1, a_3) (a_1, a_2)
\]
\end{proof}
\label{thm:permutationrepresent}