-
Notifications
You must be signed in to change notification settings - Fork 0
/
vec3.h
188 lines (155 loc) · 3.75 KB
/
vec3.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
#ifndef VEC3_H
#define VEC3_H
#include <cmath>
#include <iostream>
using std::sqrt;
inline double random_double();
inline double random_double(double min, double max);
class vec3
{
public:
double e[3];
vec3() : e{0, 0, 0} {}
vec3(double e0, double e1, double e2) : e{e0, e1, e2} {}
double x() const { return e[0]; }
double y() const { return e[1]; }
double z() const { return e[2]; }
vec3 operator-() const { return vec3(-e[0], -e[1], -e[2]); }
double operator[](int i) const { return e[i]; }
double &operator[](int i) { return e[i]; }
vec3 &operator+=(const vec3 &v)
{
e[0] += v.e[0];
e[1] += v.e[1];
e[2] += v.e[2];
return *this;
}
vec3 &operator*=(double t)
{
e[0] *= t;
e[1] *= t;
e[2] *= t;
return *this;
}
vec3 &operator/=(double t)
{
return *this *= 1 / t;
}
double length() const
{
return sqrt(length_squared());
}
double length_squared() const
{
return e[0] * e[0] + e[1] * e[1] + e[2] * e[2];
}
bool near_zero() const
{
auto s = 1e-8;
return (fabs(e[0]) < s) && (fabs(e[1]) < s) && (fabs(e[2]) < s);
}
static vec3 random()
{
return vec3(random_double(), random_double(), random_double());
}
static vec3 random(double min, double max)
{
return vec3(random_double(min, max), random_double(min, max), random_double(min, max));
}
};
using point3 = vec3;
inline std::ostream &operator<<(std::ostream &out, const vec3 &v)
{
return out << v.e[0] << ' ' << v.e[1] << ' ' << v.e[2];
}
inline vec3 operator+(const vec3 &u, const vec3 &v)
{
return vec3(u.e[0] + v.e[0], u.e[1] + v.e[1], u.e[2] + v.e[2]);
}
inline vec3 operator-(const vec3 &u, const vec3 &v)
{
return vec3(u.e[0] - v.e[0], u.e[1] - v.e[1], u.e[2] - v.e[2]);
}
inline vec3 operator*(const vec3 &u, const vec3 &v)
{
return vec3(u.e[0] * v.e[0], u.e[1] * v.e[1], u.e[2] * v.e[2]);
}
inline vec3 operator*(double t, const vec3 &v)
{
return vec3(t * v.e[0], t * v.e[1], t * v.e[2]);
}
inline vec3 operator*(const vec3 &u, double t)
{
return t * u;
}
inline vec3 operator/(vec3 v, double t)
{
return (1 / t) * v;
}
inline double dot(const vec3 &u, const vec3 &v)
{
return u.e[0] * v.e[0] +
u.e[1] * v.e[1] +
u.e[2] * v.e[2];
}
inline vec3 cross(const vec3 &u, const vec3 &v)
{
return vec3(u.e[1] * v.e[2] - u.e[2] * v.e[1],
u.e[2] * v.e[0] - u.e[0] * v.e[2],
u.e[0] * v.e[1] - u.e[1] * v.e[0]);
}
inline vec3 unit(const vec3 &u)
{
return u / u.length();
}
inline vec3 random_in_unit_sphere()
{
while (true)
{
auto p = vec3::random(-1, 1);
if (p.length_squared() < 1)
{
return p;
}
}
}
inline vec3 random_in_unit_disk()
{
while (true)
{
auto p = vec3(random_double(-1, 1), random_double(-1, 1), 0);
if (p.length_squared() < 1)
{
return p;
}
}
}
inline vec3 random_unit_vector()
{
return unit(random_in_unit_sphere());
}
inline vec3 random_on_hemisphere(const vec3 &normal)
{
vec3 on_unit_sphere = random_unit_vector();
if (dot(on_unit_sphere, normal) > 0.0)
{
// same direction
return on_unit_sphere;
}
else
{
return -on_unit_sphere;
}
}
inline vec3 reflect(const vec3 &v, const vec3 &n)
{
return v - 2 * dot(v, n) * n;
}
inline vec3 refract(const vec3 &uv, const vec3 &n, double etai_over_etat)
{
auto cos_theta = fmin(dot(-uv, n), 1.0);
vec3 r_out_perp = etai_over_etat * (uv + cos_theta * n);
vec3 r_out_parallel = -sqrt(fabs(1.0 - r_out_perp.length_squared())) * n;
return r_out_perp + r_out_parallel;
}
#endif