-
Notifications
You must be signed in to change notification settings - Fork 0
/
dragnet_nn_train.py
executable file
·82 lines (56 loc) · 2.72 KB
/
dragnet_nn_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
#!/usr/bin/python3
import argparse
import tensorflow as tf
from dragnet_nn.data_loader import data_loader
from dragnet_nn.dragnet_nn import *
def main(overwrite_brain = False):
train_loader = data_loader("./training_set_data/matrices_train.txt", "./training_set_data/labels_train.txt")
test_loader = data_loader("./training_set_data/matrices_test.txt", "./training_set_data/labels_test.txt")
test_matrices, test_labels = test_loader.all_data()
dimension = 900
evidence_classes = 76
x = tf.placeholder(tf.float32, [None, dimension])
W_conv1 = weight_variable([5, 5, 1, 32])
b_conv1 = bias_variable([32])
x_image = tf.reshape(x, [-1,30,30,1])
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
h_pool1 = max_pool_2x2(h_conv1)
W_conv2 = weight_variable([5, 5, 32, 64])
b_conv2 = bias_variable([64])
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
h_pool2 = max_pool_2x2(h_conv2)
W_fc1 = weight_variable([8 * 8 * 64, 1024])
b_fc1 = bias_variable([1024])
h_pool2_flat = tf.reshape(h_pool2, [-1, 8*8*64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
keep_prob = tf.placeholder(tf.float32)
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
W_fc2 = weight_variable([1024, evidence_classes])
b_fc2 = bias_variable([evidence_classes])
y_conv = tf.matmul(h_fc1_drop, W_fc2) + b_fc2
y_ = tf.placeholder(tf.float32, [None, evidence_classes])
cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y_conv))
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
correct_prediction = tf.equal(tf.argmax(y_conv,1), tf.argmax(y_,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
saver = tf.train.Saver()
sess = tf.InteractiveSession()
sess.run(tf.global_variables_initializer())
for i in range(20000):
batch = train_loader.next_batch_rolling(50)
if i % 100 == 0:
train_accuracy = accuracy.eval(feed_dict={x:batch[0], y_: batch[1], keep_prob: 1.0})
print("step %d, training accuracy %g"%(i, train_accuracy))
train_step.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5})
if overwrite_brain:
saver.save(sess, DRAGNET_NN_BRAIN_LOCATION + "dragnet_brain.ckpt")
print("test accuracy %g"%accuracy.eval(feed_dict={x: test_matrices, y_: test_labels, keep_prob: 1.0}))
sess.close()
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--overwrite_brain", help="overwrite current training data. default is false.", action="store_true")
args = parser.parse_args()
if args.overwrite_brain:
main(True)
else:
main(False)